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Foreword

The birth of the original idea of Quantum Communications might be dated back to
the same age when Claude E. Shannon formulated the mathematical theory of
communications in 1948. In 1950, Dennis Gabor wrote a seminal paper on how to
revise Information Theory by considering Quantum Physics, introducing the term
“quantum noise”. Actually, as the carrier frequency goes up to few tens of a
terahertz, quantum noise rapidly becomes more dominant than thermal noise. In
1960, Theodore H. Maiman succeeded in producing the first beam of laser light,
whose frequency was at a few hundred terahertz. For a long time, it was a crucial
trigger for full-scale studies on Quantum Communications. It was not, however, a
straightforward task at all for researchers to establish the unification of the para-
doxical aspects of Quantum Mechanics with the landmarks of Communications
Theory. It was only recently that the core of Quantum Communications, that is, the
theory of capacity for a lossy quantum-limited optical channel, was established.
Until now, many new ideas and schemes have been added to the original standard
scheme of Quantum Communications, represented by quantum key distribution,
quantum teleportation, and so on. Realizing a new paradigm of Quantum
Communications is now an endeavor in science and technology, because it requires
a grand sum of not only the latest Quantum Communications technologies but also
the basics of Information Theory and Signal Detection and Processing technologies.
Therefore, it is not easy for students and researchers to learn all the necessary
knowledge, to acquire techniques to design and implement the system, and to
operate it in practice. These tasks usually take a long time through a variety of
courses, and by reading many papers and several books.

This book is meant to achieve this very purpose. The author, Professor Gianfranco
Cariolaro, has been working for a long time in the fields of Communications and
Image Processing technologies, Deep Space Communications, and Quantum
Communications. From this book, readers can track a history of Quantum
Communications and learn its core concepts and very practical techniques. For this
decade, commercial applications of quantum key distribution have been taking place,
and in 2013, lunar laser communication was successfully demonstrated by the
National Aeronautics and Space Administration, where a novel photon counting
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method was employed. This means that an era of Quantum Communications in
practice is around the corner. I am very excited to have this book at such a time.
Through this book, readers will also be able to see a future Communications Tech-
nology on the shoulder of a long history of Quantum Communications.

Tokyo, Japan, September 2014 Masahide Sasaki
Director of Quantum ICT Laboratory

National Institute of Information
and Communications Technology
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Preface

Quantum Mechanics represents one of the most successful theories in the history of
science. Born more than a hundred years ago, for several decades Quantum
Mechanics was confined to a revolutionary interpretation of Physics and related
fields, like Astronomy. Only in the last decades, after the discovery of laser with the
possibility of producing coherent light, did Quantum Mechanics receive a strong
interest in the area of information, with very innovative and promising applications
(Quantum Computer, Quantum Cryptography, and Quantum Communications).

In particular, the original ideas of Quantum Communications were developed by
Helstrom [10] and by scientists from MIT [11, 13] proving the superiority of
quantum systems with respect to classic optical systems. However, the research in
this specific field did not obtain the same spectacular expansion as the other fields
of quantum information. In our personal opinion, the reason is twofold. One is the
difficulty in the implementation of quantum receivers, which involves sophisticated
optical operations. The other reason, perhaps the most relevant, was due to the
advent of optical fibers, whose tremendous capacity annihilated the effort on the
improvement of performances of the other transmission systems. This may explain
the concentration of interest in the other fields of quantum information. Never-
theless, Quantum Communications deserve a more adequate attention for us to be
prepared for the future developments, being confident that a strong progress in
quantum optics will be surely achieved.

There is another motivation for considering Quantum Communications, espe-
cially for educational purposes in Information Engineering. In fact, continuing with
our personal viewpoint, Quantum Mechanics is a discipline that cannot be ignored
in the future curriculum of information engineers (electronics, computer science,
telecommunications, and automatic control). On the other hand, Quantum
Mechanics is a difficult discipline for its mathematical and also philosophical
impact, and cannot be introduced at the level of Physics and Mathematical Physics
because the study burden in information engineering is already quite heavy.
However, we realized (with some surprise) that the notions of Quantum Mechanics
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needed for Quantum Communications may be easily tackled by information
engineering students. In fact, the notions needed at this level (vector spaces and
probability theory) are already known to these students and require only an ad hoc
recall. Following these ideas, six years ago the author introduced a course on
Quantum Communications in the last year of the Telecommunications degree
(master level) at the Faculty of Engineering of the University of Padova, and, as
confirmed by students and colleagues, the conclusion was that the teaching
experiment has proved very successful.

At the same time, experience shows that the majority of students, who join
quantum optics and quantum information community after taking courses in
quantum mechanics with concentration on elementary particles and high-energy
physics, have very little feeling for the real notion of information transfer and
manipulation as it is known in practical telecommunications. The comprehensive
consideration of Quantum Communication concepts presented in this book serves
to establish this missing conceptual link between the formal Quantum Mechanics
theory formulated originally for particles and the quantum optical information
manipulation utilizing quantum mechanics along with optics and telecommunica-
tions tools.

It is difficult to predict in what direction quantum information will evolve or
when the quantum computer will arrive, but it will surely have a strong impact in
the future. Students and researchers that will have learned Quantum Communica-
tions, having acquired the methodology and language, will be open to any other
application in the field of Quantum Information.

Organization of the Book

The book is organized into three parts and 13 chapters.
Chapter 1 (Introduction) essentially describes the evolution of Quantum

Mechanics in the previous century, with special emphasis on the last part of the
evolution in the area of Quantum Information, with its promising and exciting
applications.

Part I: Fundamentals
Chapter 2 collects the mathematical background needed in the formulation and

development of Quantum Mechanics: mainly notions of linear vector spaces and
Hilbert spaces, with special emphasis on the eigendecomposition of linear
operators.

Chapter 3 introduces the fundamentals of Quantum Mechanics, in four postu-
lates. Postulate 1 is concerned with the environment of Quantum Mechanics: a
Hilbert space. Postulate 2 formulates the evolution of a quantum system, according
to Schrödinger’s and Heisenberg’s visions. Postulate 3 is concerned with the
quantum measurements, which prescribes the possibility of extracting information
from a quantum system. Finally, Postulate 4 deals with the combination of two or
more interacting quantum systems. A particular emphasis is given to Postulate 3,
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because it manages the information in a quantum system and will be the basis of
Quantum Communications and Quantum Information consideration.

Part II: Quantum Communications Systems
Chapter 4 deals with the general foundations of telecommunications systems and

the difference between Classical and Quantum Communications systems. In the
second part of the chapter the foundations of optical classical communications,
which is the necessary prologue to optical quantum communications, are
developed.

Chapter 5 develops the concept of optimal quantum decision, which establishes
the best criterion to perform the measurements of Postulate 3 in a quantum system
to extract information. Here a nontrivial effort is made to express the results within
the language of telecommunications, where the quantum decision is applied to the
receiver.

Chapter 6 develops suboptimization in quantum decision. Since optimization is
very difficult, and exact solutions are only known in few cases, suboptimization
techniques are considered, the most important of which is called square-root
measurements (SRM).

Chapter 7 deals with the general formulation of quantum communication sys-
tems, where the transmitter (Alice) prepares and launches the information in a
quantum channel and the receiver (Bob) extracts the information by applying the
quantum decision rules. Although, in principle, the transmission of analog infor-
mation would be possible, according to the lines of present-day technology, only
digital information (data) is considered. In any case, we will refer to optical
communications, in which the information is conveyed through a coherent radiation
produced by a laser. The quantum formulation of coherent radiation is expressed
according to the universal and celebrated Glauber’s theory.

In the second part of the chapter, these basic ideas are applied to most popular
quantum communication systems, each one characterized by a specific modulation
format (OOK, PPM, PSK, and QAM). The performance of each specific system is
compared to that of the corresponding classical optical system, where the decision
is based on a simple photon counting. The comparisons will clearly state the
superiority of the quantum systems.

Chapter 8 reconsiders the analysis of Chap. 7 with the introduction of thermal
noise, in order to get a more realistic evaluation of the performance. Technically
speaking, the analysis in the absence of thermal noise is carried out using the
description of the system status made in terms of pure states, whereas the presence
of thermal noise requires a description in terms of density operators. Consequently,
the analysis becomes much more complicated (but challenging).

Chapter 9 deals with the implementation of coherent quantum communication
systems. The few implementations available in the literature and the difficulties
encountered in the realization are described. Also, some original ideas for an
improved implementation of quantum communication systems are described.
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Part III: Quantum Information
Chapter 10 begins by dealing with Quantum Information, which exhibits two

forms, discrete and continuous. Discrete quantum information is based on discrete
variables, the best known example of which is the quantum bit or qubit. Continuous
quantum information is based on continuous variables, the best known example of
which is provided by the quantized harmonic oscillator. An important remark is that
most of the operations in quantum information processing can be carried out both
with discrete and continuous variables (this last possibility is a quite recent
discovery).

Chapter 11, Quantum Mechanics fundamentals of Chap. 3 are confined to the
basic notions (relatively few) necessary to the development of Quantum Commu-
nications systems in Part II. In this chapter, for a full development of Quantum
Information, the above fundamentals are extended to continuous quantum variables,
to include Gaussian states and Gaussian transformations.

Chapter 12 deals with Information Theory, starting from Classical Shannon’s
Information Theory and then extending the concepts to Quantum Information
Theory. The latter is a relatively new discipline, which is based on quantum
mechanical principles and in particular on its intriguing resources, such as
entanglement.

Chapter 13 deals with the applications of Quantum Information, as quantum
random number generation, quantum key distribution, and teleportation. These
applications are developed with both discrete and continuous variables.

Suggested Paths
For the choice of the path one should bear in mind that the book is a combination

of Quantum Mechanics and Telecommunications, and perhaps students and
researchers in the area of Information Engineering have no preliminary knowledge
of Quantum Mechanics, whereas students and researchers in the area of Physics
may have no preliminary knowledge of Telecommunications (for which we rec-
ommend reading Chap. 4 on Telecommunications fundamentals).

As said above, the mathematics needed for the comprehension of the book is
confined to Linear Vector Spaces, as developed in Chap. 2. Hilbert spaces are
introduced for completeness, but they are not really used. The other mathematical
requirement is Probability Theory (probability fundamentals and random variables,
sometimes extended to random processes). These preliminaries must be known at a
good, but not too sophisticated level.

The book could be used by both graduate students (meaning people who have no
knowledge of Quantum Mechanics) and researchers (meaning people who have a
good knowledge of Quantum Mechanics, but not of classical Telecommunications)
following two different paths.

In the Introduction we will indicate in detail two different paths for “students”
and for “researchers”.
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Manuscript Preparation
To prepare the manuscript we used LATEX, supplemented with a personal

library of macros. The illustrations too are composed with LATEX, sometimes with
the help of Mathematica©.

Padova, October 2014 Gianfranco Cariolaro
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Chapter 1
Introduction

1.1 A Brief History of Quantum Mechanics

A Few Milestones in Quantum Mechanics

1900: Black body radiation law (Max Planck)

1905: Postulation of photons to explain photoelectric effect (Albert Einstein)

1909: Interference experiments (Geoffrey Ingram Taylor)

1913: Quantization of angular momentum of hydrogen (Niels Bohr)

1923: Compton effect (Arthur Holly Compton)

1924: Wave–particle duality extended to incorporate matter (Louis de Broglie)

1925: Matrices as basis for Quantum Mechanics (Werner Heisenberg)

1926: Probabilistic interpretation of the wavefunction (Max Born)

1926: Gilbert Lewis coined the word photon

1926: Wave equation to explain the hydrogen atom (Erwin Schrödinger)

1927: Uncertainty principle (Werner Heisenberg)

1927: Copenhagen interpretation (Niels Bohr)

1928: First solution of Quantum Mechanics explaining spin (Paul Dirac)

1930: Principles of Quantum Mechanics (Paul Dirac)

1930: Interference, how quantized light interacts with atoms (Enrico Fermi)

1932: Mathematical foundations of Quantum Mechanics (John von Neumann)

1935: EPR paradox (Einstein, Podolsky, and Rosen)

1950s: Theory of photon statistic and counting (Hanbury Brown, and Twiss)

1960s: Quantum theory of coherence (Glauber, Wolf, Sudarshan, and others)

1970: (early 1970s) Tunable lasers

© Springer International Publishing Switzerland 2015
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2 1 Introduction

1.1.1 The Dawn

In the last decade of the nineteenth century Newton’s mechanics, Maxwell’s electro-
magnetic theory, and Boltzmann’s statistical mechanics seemed capable of exhaus-
tively explaining any relevant physical phenomenon. However, some phenomena,
initially deemed as marginal, did not completely fit in the structure of these classic
disciplines. It all began with the discoveries of a Physics student called Max Planck
(1858–1947).1 Planck’s research was triggered by the study of the emission and
absorption of light by physical bodies. At that time, the founding theory of radiation
emission by a black body was based on classical electromagnetism. Applying this
theory, the phenomenon was well explained for relatively low frequencies of the
emitted radiation (visible or near infrared and downwards); however, for high fre-
quencies (ultraviolet and upwards) classical theory would predict an infinite increase
in the energy of the emitted radiation, which, as matter of fact, does not happen in
reality. To overcome such a problem, Planck formulated the hypothesis that the radi-
ating energy could only exist in the form of discrete quantities, or “packets”, which
he called quanta. To set the framework of Planck’s problem, we must recall the
previous research of the physicist J.W. Strutt Lord Rayleigh (1842–1919), who
studied the radiation of the black body from a classical point of view, modeling it
as a collection of electromagnetic oscillators, and considering the presence of the
radiation at frequency ν as the consequence of the excitation of the oscillator at such
frequency. With some contribution by Sir James Hopwood Jeans (1877–1946), he
arrived at the formulation of the Rayleigh-Jeans Law, given by the expression

E(ν) = 8πkT ν4

c4 = 8πkT

λ4 , (1.1)

which gives the value E(ν) of energy density per frequency unit emitted by a black
body at frequency ν. In (1.1) k = 1.38 10−23JK−1 is Boltzmann’s constant, T is
the absolute temperature of the black body, c is the speed of light, and λ = c/ν is
the wavelength. This law shows that the energy density irradiated by a black body
increases linearly with temperature and with the fourth power of the frequency of the
emitted radiation. Experimental measurements demonstrate that this law is perfectly
adequate at low frequencies: in fact, it is well known that, with increasing temperature,
the irradiated energy increases proportionally, at least up to the infrared. However,
measurements carried out at higher frequencies, for example in the ultraviolet range,
clearly show that the emitted energy values diverge considerably from those foreseen
by the theory. In addition, from a careful analysis of Eq. (1.1), one can see that
the expected result in this spectral interval has no physical meaning. In fact, this
equation states that, with increasing frequency, energy density increases indefinitely.
As a consequence, the equation asserts that the high-frequency oscillators (very
low wavelength, corresponding to the ultraviolet radiation, to the X-rays, and to

1 On December 14, 1900, Planck publishes his first paper on Quantum Theory in Verh. Deut. Phys.
Ges. 2,237–45.
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the γ -rays) should be excited even at room temperature. Such absurd result, which
posits the emission of a large amount of energy in the high-frequency region of the
electromagnetic spectrum, went under the name of ultraviolet catastrophe.

The solution of the problem was in fact due to Max Planck, who tackled it in mathe-
matical terms. Instead of integrating the energies of the “elementary oscillators” (that
is, in practice, of the electrons “oscillating” around the nucleus) considering them as
continuous quantities, he performed a summation of the energies, hypothesizing that
they could assume only discrete values, proportional to the characteristic oscillation
frequency ν of the electrons, by an appropriate constant h

E = hν. (1.2)

The relation discovered by Planck for the energy density per frequency unit of the
black body turns out to be (Planck’s relation)

E(ν) = 8π

c3

hν3

ehν/kT − 1

and it appears to be in perfect agreement with the experimental distribution for each
temperature, assuming h = 6.63 10−34 Js; h is known as Planck’s constant.

Planck’s theoretical discovery on quanta became accepted by the classical physi-
cists only when Albert Einstein (1879–1955)2 succeeded in explaining the photo-
electric effect, speculating that light radiation was constituted by energy packets,
subsequently called “photons”. Einstein showed that, thanks to quanta, other physi-
cal phenomena could be explained, in addition to the black body emission proposed
by Planck, and at that point the discrete nature of electromagnetic radiation became
a fundamental and generally accepted concept.

Another problem that could not be explained by classical mechanics was the
regularity of the emission spectrum of an atom, that is, the fact that it always appeared
as formed by the same characteristic frequencies, independently of its origin and of
possible excitation processes it had undergone, a fact that could not be convincingly
explained by the model proposed by Ernest Rutherford (1871–1937) in 1911. The
first one to address the problem in mathematical terms was Niels Bohr (1885–1962)
in 1913. Bohr hypothesized that the lines of an atomic spectrum were originated
by the transition of an electron between two discrete states of an atom. This theory
correctly interpreted, for the first time, the emission and absorption properties of an
atom of hydrogen.

The next step in the development of Quantum Mechanics was due to Louis-
Victor Pierre Raymond de Broglie3 (1892–1987), who extended to the particles
with mass the wave–particle duality that had been evidenced for electromagnetic

2 In 1905 he published on the Annalen der Physik three articles, the first on light quanta, the second
on Brownian motion, which would definitely confirm the atomicity of matter, the third on the
foundations of restricted relativity.
3 After publishing a few papers, he developed in full form this original idea in his Ph.D. thesis
(1924): Recherches sur la théorie des quanta.
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radiations. Louis de Broglie surmised that not only would light, generally modeled
as a wave, sometimes behave as a particle, but also electrons, usually modeled as
particles, could at times behave as waves. De Broglie suggested that the key for the
description of electrons in terms of wave–particle could be given by the relation

λ = h

mv
(1.3)

where λ is the wavelength of the wave associated to the electron, and m e v are,
respectively, the mass and the velocity of the electron itself. For example, a wave is
associated to an electron moving along a closed orbit around the atomic nucleus. In
this particular case, the wave is stationary and its wavelength is linked to mass and
velocity by relation (1.3).

We can say that de Broglie’s contribution marks the end of the pioneering phase
of Quantum Mechanics, whose various phenomena were examined and explained
individually, without attempting to formulate a general theory.

1.1.2 The Maturity of Quantum Mechanics

Quantum Mechanics reached maturity in the 1920s and in the 1930s, moving from
Quantum Theory to Quantum Mechanics, thanks to the work of Schrödinger, Heisen-
berg, Dirac, Pauli, and others.

Shortly after de Broglie’s conjecture, almost simultaneously, Quantum Mechan-
ics was presented by Erwin Schrödinger (1887–1961) and Werner Heisenberg
(1902–1976).4 Among the greatest physicists of the century, Schrödinger, stated the
fundamental equation of Undulatory Mechanics, known nowadays as Schrödinger’s
equation

Hψ = E ψ, (1.4)

where ψ is an eigenfunction describing the state of the system, H is an operator,
called Hamiltonian, and E is the eigenvalue accounting for the system’s energy.5

This equation, stated for non relativistic energies, is the basis for the description of
the various phenomena of molecular, atomic, and quantum nuclear physics.

Heisenberg, instead, introduced into Physics the uncertainty of physical entities.
His Uncertainty Principle, in fact, asserts that it is impossible to know, simultaneously
and exactly, couples of physical entities, like position and velocity of a particle. In
essence, the more precisely we know the position of a particle, the less information
we have on momentum, and vice versa, according to:

4 In 1927, he published on Zeitschrift fur Physik his famous paper on the uncertainty principle,
entitled: Über den anschaulichen Inhalt der quanten theoretischen Kinematik und Mechanik.
5 Equation (1.4) is Schrödinger’s time-independent equation, where ψ is an eigenfunction.
Schrödinger’s equation can also include the time to take into account system evolution.
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ΔxΔp ≥ h

4π
. (1.5)

This principle is of general validity, but it is particularly appreciable at the atomic or
subatomic scale.

The statistical laws related to the concept of probability became a reality: uncer-
tainty is a fundamental fact, and the relations connected to the principle evidence an
insuperable limit to our knowledge of nature.

The more precisely the position is determined, the less precisely the momentum is known
in this instant, and vice versa. (Heisenberg, Uncertainty Paper, 1927)

To conclude this historical note, we find it appropriate to mention the fundamen-
tal contribution, albeit indirect, given by the mathematician David Hilbert (1862–
1943), since the modern version of Quantum Mechanics requires a Hilbert space as
mathematical context.

1.2 Revolutionary Concepts of Quantum Mechanics

In describing reality, Quantum Mechanics presents a few concepts that appear revo-
lutionary with respect to Classical Physics, and even seem in contrast with common
sense. These concepts will be briefly summarized below.

1.2.1 Randomness

The fundamental difference between Classical Mechanics and Quantum Mechanics
lies in the fact that, while Classical Mechanics is a deterministic theory, Quantum
Mechanics envisages and formalizes indeterminate aspects of reality.

In the mathematical models of Classical Mechanics, once the initial state of
a system is known, and so are the forces acting on it, the system’s evolution is
perfectly predictable and deterministically measurable. Resort to probabilistic mod-
els is then justified exclusively by the need to account for lack of information on
entities characterizing the system.

In Quantum Mechanics, instead, randomness is an intrinsic element of the the-
ory. In fact, it states that the measurements performed on a system, starting from
exactly the same initial conditions, may produce different results. This is not due to
measurement imprecision, but rather to the fact that the result of any measurement
is intrinsically random and must be dealt with the Theory of Probability.

Randomness in Quantum Mechanics is expressed by the fact that the measure
of an entity is described by a complex function (the wave function), whose squared
modulus gives the probability density of the result (intended as a random variable).
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1.2.2 Indeterminacy

Another peculiar aspect of Quantum Mechanics is that in any experiment the mea-
surement procedure interferes with the system, altering it. In Classical Physics there is
no such problem, because measurement errors can be acknowledged and estimated,
but the measurement itself, if accurately performed, does not modify the system.
In Quantum Mechanics this is not possible any more, because, as established by
the above-mentioned Heisenberg’s principle, the accuracy in the knowledge of one
quantity (e.g., the position of a particle) inhibits an equal accuracy in the knowledge
of another quantity (e.g., velocity). This should be interpreted not only in the sense
that two quantities cannot be measured simultaneously with an arbitrary degree of
accuracy. As we shall see, they are conceptually undetermined with an uncertainty
whose lower bound is given by Heisenberg’s inequality.

1.2.3 Complementarity

The above example of position and momentum is a typical case of conjugate or com-
plementary entities. This corresponds to a distinctive feature of Quantum Mechanics,
whose fundamental example is the case of the wave function ψ(x) of position and the
wave function of momentum ψ̃(p): there exists no wave function ψ(x, p) providing
a joint statistical description of both entities. The same applies to other couples of
complementary variables.

1.2.4 Quantization

Differently from Classical Mechanics, in Quantum Mechanics, the states of a quan-
tum system can only correspond to discrete energy levels. In other words, the granular
nature of matter can be extended to energy.

This fact is in good agreement with the requirements of telecommunications,
where digital information is represented by quantities that can assume a finite number
of values.

1.2.5 Linearity and Superposition

Paradoxically, the states of a quantum system, although characterized by discrete
energy levels, have a continuous nature, in the sense that wave functions are contin-
uous functions. In addition, if ψ(x) and φ(x) are two possible wave functions, also
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their linear combination a ψ(x) + b φ(x), with a and b complex numbers, is still a
wave function.

Linearity is then another feature of Quantum Mechanics. The algebraic structure
in which its models are represented is constituted by Hilbert spaces, that are linear
spaces, and Schrödinger’s equation, which governs the evolution of the state, is a
linear differential equation.

Linearity and superposition, very simple mathematical concepts, are actually the
basis of Quantum Information and Computation and have practical consequences of
great importance.

1.2.6 Entanglement

The entanglement is a phenomenon of Quantum Mechanics in blatant contradiction
with physical intuition, as Classical Physics would suggest, to the point that its
meaning itself is still open to discussion.

Two particles emitted from the same source, when in the entanglement condition,
show strictly correlated characteristics that are preserved even when they move away
from each other. And when the state of one of them is measured, the state of the
other changes immediately with a “spooky action at a distance,” in total contrast
with common sense.

1.3 Quantum Information

The natural field of application of Quantum Mechanics is within Physics. However, in
the last 20 years (starting from the 1980s) it has exceptionally expanded into the area
of Information science and technologies. The main ideas come from the Postulates
of Quantum Mechanics, which in the last 100 years have never been disproved, and,
after a substantial reformulation, envisage extremely innovative applications, like the
quantum computer, quantum coding, quantum cryptography, and quantum commu-
nications. Many of these innovations, consequences of the Postulates, have already
had experimental verification and are the subject of a frenzied research activity.

It is worthwhile to introduce these innovations by adding some more histori-
cal notes.

1.3.1 The Discovery of Laser and the Theory of Quantum TLC

In the 1960s, after the discovery of laser, Ronny J. Glauber of Harvard University
formulated the quantum theory of optical coherence [1, 2]. The possibility of pro-
ducing coherent light led Helstrom [3], and other scientists from the Massachusetts
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Institute of Technology (MIT), to formulate the Theory of Quantum Telecommu-
nications, that is, a theory where the information is related to quantum states and
the analysis and design is based on the rules of Quantum Mechanics. This theory,
which we will develop in Chaps. 7 and 8, aimed to realize optical transmissions in
free air, as optical fibers were not yet available at that time; unfortunately it did not
generate appreciable applications, because the technology was not mature enough,
and mostly because the appearance of optical fibers, with their enormous through-
put, obscured the interest toward quantum telecommunications. Nevertheless, these
pioneering investigations may be considered the beginning of Quantum Information.

Recently, the QTLCs (Quantum Telecommunications) have been vigorously
revived at the Jet Propulsion Laboratory (JPL) of NASA, where the Deep Space
Network is in operation, and, in fact, it is in the area of deep space transmissions that
Quantum Communications are expected to play a crucial role. We are dealing, for
the time being, with niche applications, but it should be remembered that other fields,
like the application of error-correction codes, started precisely at JPL, and they led
to fully fledged applications many years later.

1.3.2 Quantum Information Based on Discrete
Quantum Variables. The Qubit

To understand the motivations that, in the early 1980s, led to studying information
in the context of Quantum Mechanics, we can start from Moore’s Law of electronic
circuit technology. As we know, this law, stated by Gordon Moore in 1965, asserts
that the complexity of electronic circuits (chips), at equal size, doubles approximately
every18 months, and this prediction has been substantially confirmed in the last 50
years. However, it assumes an indefinite reduction in the size of components, down
to the limit of atomic dimensions, where quantum effects become predominant. At
this point, a natural development is to try to reformulate Information Theory in the
framework of Quantum Mechanics. Following this line of thought, Benioff, Manin,
and Feynman postulated the idea of a Quantum Computer, for the simulation of
Quantum Systems. Differently from the classical computer, which, as is well known,
is a power-consuming device, the quantum computer, in theory, does not require
power consumption (this theoretical possibility had already been demonstrated by
Charles Bennett within IBM). Subsequently, in 1985 David Deutsch proved that a
Quantum Computer can naturally operate in parallel mode (quantum parallelism), in
the sense that it makes it possible to evaluate any function f (x), for every value of
x , in a single step. With this parallelism, the theoretical superiority of the quantum
computer with respect to the conventional one was demonstrated.

Still around those times, Charles Bennett and Gilles Brassard explored the pos-
sibility of secure information transmission based on the laws of Quantum Mechanics.
The principle is related to quantum measurements (Postulate 3 of Quantum Mechan-
ics) according to which, if the information is intercepted, the receiver is automatically

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_8
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and securely alerted. This marks the birth of Quantum Cryptography. On the other
hand, in 1991 Arthur Eckert proposes another form of secure transmission based
on entanglement, a phenomenon predicted by Postulate 4 of Quantum Mechanics.

In any case, Quantum Cryptography, as a quantum key distribution, is one of the
most concrete applications of Quantum Mechanics in the information area, in that it
already shows significant implementations.

The phenomenon of entanglement, typical of quantum mechanics, and totally
unforeseen by the classical theory, gave origin to another research thread: Superdense
Coding, according to which, by sending a single bit of quantum information (qubit),
two bits of classical information can be transmitted. This originated a very promising
new field, Quantum Coding, steadily growing, as witnessed by the numerous papers
appearing on the IEEE Trans. on Information Theory. It should be noticed that, in this
context, Shannon’s Information Theory is being reviewed, giving way to Quantum
Information Theory. Superdense Coding was invented by Bennett and Wiesner [4]
and experimentally implemented by Mattle et al. [5].

Bennett et al. [6] found another use of entanglement, quantum teleportation, in
which separate experiments sharing two halves of entangled systems can make use
of entanglement to transfer a quantum state from one to another using only classical
communications. Teleportation was later experimentally realized by Boschi et al. [7]
using optical techniques and by Bouwmeester et al. [8] using photon polarization.

Going back to Quantum Computing, we must mention the milestone achieved
by Peter Shor of AT&T in 1994, who demonstrated that a Quantum Computer
can decompose an integer number into prime factors with polynomial complexity,
whereas it is conjectured that the classic computer requires exponential complexity.
It is an alarming discovery, because the majority of current cryptographic security
systems are based on the (exponential) difficulty of prime factor decomposition. On
the other hand, this confirms the importance of investing in ideas and resources on
Quantum Cryptography.

The above history (1990–2010) on quantum computers, quantum cryptography,
and quantum teleportation refers to the manipulation of individual quanta of infor-
mation, known as quantum bits or qubits; in other words, based on discrete quantum
variables.

1.3.3 Quantum Information Based on Continuous
Quantum Variables

Very recently it was realized that the use of continuous quantum variables, instead of
qubits, represents a powerful alternative to quantum information processing [9]. In
this context, on the theoretical side, simple analytical tools are available (Gaussian
states, Gaussian operators, and Gaussian measurements) and, on the practical side, the
corresponding laboratory implementation is readily available. Hence, the continuous
state approach opens the way to a variety of tasks and applications, in competition
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with the discrete state approach. Furthermore, these new possibilities provide a new
challenge to the implementation of Quantum Communications systems.

In conclusion, Quantum Information comes in two forms, discrete and continuous.
From a historic viewpoint, the continuous form was developed in pioneering works
for Quantum Communications systems (1970) and the discrete form in the last two
decades, but now continuous and discrete forms are in competition.

1.4 Content of the Book

This book is a collection of ideas for an “educational experiment” on the teaching
of Quantum Information and particularly Quantum Telecommunications to students
of the Departments of Engineering and Physics, hence with the twofold objective
of opening a cross-disciplinary field of study and possibly providing a common
background for scientific collaboration.

Part I: Fundamentals

Chapter 2: Hilbert Spaces

This chapter contains the mathematical foundations required to understand Quantum
Mechanics, which develops over Hilbert spaces on complex numbers. Many notions
(vector spaces, and inner product vector spaces) are already known to students, others,
like the spectral decomposition of a Hermitian operator, are less known and represent
a fundamental subject in Quantum Measurements.

In any case, the collection provides a run-through and a symbolism acquisition,
useful to come to grips with the subsequent subjects.

Chapter 3: Elements of Quantum Mechanics

The formulation of these elements is presented following in sequence the four
Postulates of Quantum Mechanics. The development is partly parallel to Nielsen
and Chuang’s book [10]. However, herein to the four postulates are given differ-
ent emphasis; in particular, Postulate 3 on Quantum Measurements is developed
in great detail, as it represents the most interesting part with respect to Quantum
Communications.

Part II: Quantum Communications

Chapter 4: Introduction to Quantum Communications

The general foundations of telecommunications systems are introduced and the dif-
ference between Classical and Quantum Communications systems is explained.

In the second part of the chapter we introduce the foundations of optical classical
communications, which is the necessary prologue to optical quantum communica-
tions developed in the subsequent chapters. The mathematical framework is given by
Poisson processes, and more specifically by doubly stochastic Poisson processes.
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Chapter 5: Quantum Decision Theory: Analysis and Optimization

Only data transmission is considered, starting from the description and analysis of a
general scheme, shown in Fig. 1.1. For a general K -ary system, the rules are given to
calculate the transition probabilities and the error probabilities, obviously in terms
of quantum parameters. Then we develop, in a fully general way, the best choice of
quantum measurements that minimize the error probability (optimization).

Two important topics are also introduced: the geometrically uniform symmetry
(GUS) of a constellation of states and the compression of quantum states.

Chapter 6: Quantum Decision Theory: Suboptimization

Optimization in quantum decision is very difficult, and exact solutions are only
known in few cases. To overcome such a difficulty suboptimization is considered. In
quantum communications the most important suboptimal decision is called square-
root measurement (SRM), because its solution is based on the square root of an
operator. Particularly attractive is the SRM combined with the GUS of quantum
states.

Chapter 7: Quantum Communications Systems

In this chapter, the general Quantum Decision Theory is applied to systems in which
digital information is carried by the monochromatic radiation produced by a laser
(coherent states). As a preliminary, classic optical telecommunications systems are
outlined in order to provide the background and the inspiration for the transition
from classic to quantum optical telecommunication systems. The quantum version
differs mainly at the receiver, where the analysis and the design are carried out using
the Postulates of Quantum Mechanics.

Then the theory is explicitly applied to the more popular systems, like OOK (on
off keying), PSK (phase shift keying), PPM (pulse position modulation), and QAM
(quadrature amplitude modulation). Anyhow, we shall eventually demonstrate the
net gain in terms of performance that can be obtained by the quantum versions
compared to the classic schemes.

Chapter 8: Quantum Communications Systems in the Presence of Thermal
Noise

In the analysis of Chap. 7, the background noise (or thermal noise) is neglected, and
the uncertainty of the result (the message) is only due to the randomness arising in

classical
source

quantum
encoder

A

Alice

quantum
channel

|ψA quantum
measure

|ψA

Bob

decision
element

m A

Fig. 1.1 Quantum Communications system for digital transmission. A symbol to be transmitted,
|ψA〉 quantum state prepared by Alice, |̂ψA〉 received quantum state, m outcome of the quantum
measurement, and ̂A decided symbol

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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quantum measurements. In this chapter, the analysis of the main quantum transmis-
sion systems, developed in Chap. 7, takes into account background noise, which is
always present in real-world systems.

Chapter 9: Implementation of Quantum Communications Systems

While Quantum Communications theory is reaching a steady state, the implementa-
tion of the corresponding systems is still at an early stage. The chapter describes the
implementations realized so far around the world, a few promising ideas, and some
open problems.

Part III: Quantum Information

Chapter 10: Introduction to Quantum Information

Quantum Information exhibits two forms, discrete and continuous. Discrete quan-
tum information is based on discrete variables, the best known example of which
is the quantum bit or, briefly, qubit. Continuous quantum information is based on
continuous variables, the best known example of which is provided by the quantized
harmonic oscillator, which represents the fundamental tool in quantum optics and
is the basis for the introduction of coherent states and more generally of Gaussian
states.

An important remark is that most of the operations in quantum information
processing can be carried out both with discrete and continuous variables (this last
possibility is a quite recent discovery).

Chapter 11: Fundamentals of Quantum Continuous Variables

In Quantum Mechanics formulation of Chaps. 2 and 3 we have considered some
fundamentals, as bases, eigendecompositions, measurements, and operators, in the
discrete case. Specifically, we assumed the bases consisting of finite or enumerable
sets of vectors, the operator eigendecompositions having a finite or enumerable spec-
trum, and quantum measurements having a finite set (alphabet) of possible outcomes.
This formulation was sufficient because in the subsequent chapters we limit ourselves
to the development of digital Quantum Communications.

In this chapter, for a full development of Quantum Information, we extend the
above fundamentals to the continuous case, where the sets become a continuum. A
particular relevance is given to Gaussian states and Gaussian transformations.

Chapter 12: Quantum Information Theory

Information Theory was born in the field of Telecommunication in 1948 with
the revolutionary ideas developed by Shannon [11]. Its purpose is mainly: (1) to
define information mathematically and quantitatively, (2) to represent information in
an efficient way (data compression) for storage and transmission, and (3) to ensure
information protection (encoding) in the presence of noise and other impairments.
Recently, with the interest in quantum information processing, Information Theory
was extended to Quantum Mechanics. Of course, Quantum Information Theory, is
based on quantum mechanical principles and in particular on its intriguing phenom-
ena, like entanglement.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_3
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The chapter provides an overview of Quantum Information Theory starting from
Classical Information Theory, which represents a necessary preliminary. Thus, each
of the three items listed above are developed in the framework of Quantum Mechan-
ics, starting from the classical case.

Chapter 13: Applications of Quantum Information

The list of topics that will be developed in this chapter is:

• quantum random number generation,
• quantum key distribution,
• teleportation,

considered with both discrete and continuous variables.

1.5 Suggested Paths

As mentioned in the Preface, the book is meant to address readers from Physics and
Telecommunications, both graduate students and researchers, providing that they
are familiar with Linear Vector Spaces and Probability Theory. In order to account
for the different backgrounds and academic levels, two different paths through the
book are suggested, as illustrated in Fig. 1.2, with the indication of the difficulties6

probably encountered in each chapter.
Graduate students should begin by checking their mathematical background

while studying carefully Chap. 2, and solving some specific exercises to get famil-
iarity and confidence with the topic. In the study of Part III, they can skip, at least at
the first reading, the description of quantum systems in terms of density operators.
In fact, the formulation in terms of pure states is adequate to tackle the essence of
Quantum Communications and the comparison with classic optical systems. There-
fore Chap. 8 can be completely omitted (the content of this chapter may be regarded
as a very advanced topic). Once completed the comprehension of Part II, students
will have reached a reasonable and adequate mastering level on the subject. But they
might as well consider moving on to the more advanced topics of Part III, if they
have enough time and spirit of inquiry.

Researchers could avoid the study of Part I (or they could quickly browse through
it to acquire the symbolism and references for the next chapter). They will have to
study simultaneously the developments based on pure-state and density-operator
representations. In particular, Chap. 8, which is very advanced, may offer them stim-
ulating hints for original research. Eventually, they will complete their path with the
last three chapters.

6 Of course, the difficulty scale strongly depends on the preparation and on the personality of the
reader.

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_8
http://dx.doi.org/10.1007/978-3-319-15600-2_8
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Chapter 6
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Chapter 2

Vector and Hilbert Spaces
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Elements of Quantum Mechanics

Chapter 4

Introduction to Quantum Communications

Chapter 5
Quantum Decision Theory
Analysis and Optimization

Chapter 6
Quantum Decision Theory

Suboptimization

Chapter 7
Quantum Communications Systems
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Fundamentals

Part II
Quantum Communications
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Quantum Information

Fig. 1.2 The two suggested paths with the difficulties indicated by a gray level in the blocks

1.6 Conventions on Notation

Sections of advanced topics that can be omitted at the first reading are marked by
⇓. Problems are marked by asterisks indicating difficulty (* = easy, ** = medium,
*** = difficult). Sections and problems marked with the symbol � require notions
that are developed further on.
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Throughout the book, notations are explicitly specified at the first use and are
frequently recalled. Matrices and operators are denoted by uppercase letters, e.g., A,
Ψ . For quantum states, Dirac’s notation bra and ket is used, as 〈x | and |x〉.

List of Symbols

:= Equal by definition
⊗ Tensor product
⊕ Direct sum
Tr[·] Trace
TrA[·] Trace over the subsystem A
E[·] Expectation (of a random variable)
P[·] Probability (of an event)
qi := P[A = i] Source probabilities
pc( j |i) or p( j |i) Transition probabilities
V Vector space
H Hilbert space
Z Set of integer numbers
R Set of real numbers
C Set of complex numbers
A Alphabet (source)
M Alphabet of a quantum measurement
|x〉 Ket
〈x | Bra
〈x |y〉 Inner product of vectors |x〉 and |y〉
|x〉〈y| Outer product of vectors |x〉 and |y〉
|x〉 ⊥ |y〉 |x〉 and |y〉 are orthogonal (〈x |y〉 = 0)
‖x‖ Norm of vector |x〉
[xi j ] Matrix with entries xi j

[A, B], {A, B} Commutator and anticommutator of operators A and B
IH Identity operator of H
In Identity matrix of size n
|z| Absolute value of complex number z
|A| Dimension of set A
z∗ Conjugate of complex number z
A∗ Adjoint of operator A or conjugate transpose of matrix A
AT Transpose of matrix A
a, a∗ Annihilator and creation operators
q, p Quadrature operators
δi j Kronecker’s symbol
δ(x) Dirac delta function
h Planck’s constant
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� := h/(2π) Reduced Planck’s constant
k Boltzmann’s constant
WN := ei 2π/N N th radix of unity
W[N ] DFT matrix of order N

• for the list of symbols on Continuous Variables, see the beginning of Chap. 11
• for the list of symbols on Information Theory, see the beginning of Chap. 12

List of Acronyms

A/D Analog-to-digital
D/A Digital-to-analog
CFT Complex Fourier transform
CSP Convex semidefinite programming
DFT Discrete Fourier transform
EID Eigendecomposition
EPR Einstein-Podolsky-Rosen
FT Fourier transform
GUS Geometrically uniform symmetry
IID Independent Identically Distributed
LMI Linear matrix inequality
OOK On–off keying
POVM Positive Operator-Valued Measurements
PSD Positive semidefinite
PSK Phase shift keying
BPSK Binary PSK
PPM Pulse position modulation
QAM Quadrature amplitude modulation
QKD Quantum Key Distribution
SNR Signal to noise ratio
SRM Square root measurement
SVD Singular-value decomposition
TLC Telecommunications
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Part I
Fundamentals



Chapter 2
Vector and Hilbert Spaces

2.1 Introduction

The purpose of this chapter is to introduce Hilbert spaces, and more precisely the
Hilbert spaces on the field of complex numbers, which represent the abstract envi-
ronment in which Quantum Mechanics is developed.

To arrive at Hilbert spaces, we proceed gradually, beginning with spaces mathe-
matically less structured, tomove towardmore andmore structuredones, considering,
in order of complexity:

(1) linear or vector spaces, inwhich the points of the space are called vectors, and the
operations are the sum between two vectors and the multiplication by a scalar;

(2) normed vector spaces, in which the concept of norm of a vector x is introduced,
indicated by ||x ||, from which one can obtain the distance between two vectors
x and y as d(x, y) = ||x − y||;

(3) vector spaces with inner product, in which the concept of inner product between
two vectors x , y is introduced, and indicated in the form (x, y), from which the
norm can be obtained as ||x || = (x, x)1/2, and then also the distance d(x, y);

(4) Hilbert spaces, which are vector spaces with inner product, with the additional
property of completeness.

We will start from vector spaces, then we will move on directly to vector spaces
with inner product and, eventually, to Hilbert spaces. For vectors, we will initially
adopt the standard notation (x , y, etc.), and subsequently we will switch to Dirac’s
notation, which has the form |x〉, |y〉, etc., universally used in Quantum Mechanics.

© Springer International Publishing Switzerland 2015
G. Cariolaro, Quantum Communications, Signals and Communication Technology,
DOI 10.1007/978-3-319-15600-2_2
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2.2 Vector Spaces

2.2.1 Definition of Vector Space

Avector space on afieldF is essentially anAbelian group, and therefore a set provided
with the addition operation +, but completed with the operation of multiplication by
a scalar belonging to F.

Here we give the definition of vector space in the field of complex numbers C, as
it is of interest to Quantum Mechanics.

Definition 2.1 A vector space in the field of complex numbers C is a nonempty set
V, whose elements are called vectors, for which two operations are defined. The first
operation, addition, is indicated by + and assigns to each pair (x, y) ∈ V × V a
vector x + y ∈ V. The second operation, called multiplication by a scalar or simply
scalar multiplication, assigns to each pair (a, x) ∈ C × V a vector ax ∈ V. These
operations must satisfy the following properties, for x, y, z ∈ V and a, b ∈ C:

(1) x + (y + z) = (x + y) + z (associative property),
(2) x + y = y + x (commutative property),
(3) V contains an identity element 0 with the property 0 + x = x, ∀x ∈ V,
(4) V contains the opposite (or inverse) vector −x such that −x + x = 0, ∀x ∈ V,
(5) a(x + y) = ax + ay,
(6) (a + b)x = ax + bx . �

Notice that the first four properties assure that V is an Abelian group or commutative
group, and, globally, the properties make sure that every linear combination

a1x1 + a2x2 + · · · + an xn ai ∈ C, xi ∈ V

is also a vector of V.

2.2.2 Examples of Vector Spaces

Afirst example of a vector space onC is given byCn , that is, by the set of the n-tuples
of complex numbers,

x = (x1, x2, . . . , xn) with xi ∈ C

where scalar multiplication and addition must be intended in the usual sense, that is,

ax = (ax1, ax2, . . . , axn) , ∀a ∈ C

x + y = (x1 + y1, x2 + y2, . . . , xn + yn) .
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A second example is given by the sequence of complex numbers

x = (x1, x2, . . . , xi , . . .) with xi ∈ C.

In the first example, the vector space is finite dimensional, in the second, it is
infinite dimensional (further on, the concept of dimension of a vector space will be
formalized in general).

A third example of vector space is given by the class of continuous-time or
discrete-time, and alsomultidimensional, signals (complex functions).Wewill return
to this example with more details in the following section.

2.2.3 Definitions on Vector Spaces and Properties

We will now introduce the main definitions and establish a few properties of vector
spaces, following Roman’s textbook [1].

Vector Subspaces

A nonempty subset S of a vector space V, itself a vector space provided with the
same two operations on V, is called a subspace of V. Therefore, by definition, S is
closed with respect to the linear combinations of vectors of S.

Notice that {0}, where 0 is the identity element of V, is a subspace of V.

Generator Sets and Linear Independence

Let S0 be a nonempty subset of V, not necessarily a subspace; then the set of all the
linear combinations of vectors of S0 generates a subspace S of V, indicated in the
form

S = span (S0) = {a1x1 + a2x2 + · · · + an xn | ai ∈ C, xi ∈ S0}. (2.1)

In particular, the generator set S0 can consist of a single point of V. For example, in
C
2, the set S0 = {(1, 2)} consisting of the vector (1, 2), generates S = span (S0) =

{a(1, 2)|a ∈ C} = {(a, 2a)|a ∈ C}, which represents a straight line passing through
the origin (Fig. 2.1); it can be verified that S is a subspace of C2. The set S0 =
{(1, 2), (3, 0)} generates the entire C2, that is,1

span ((1, 2), (3, 0)) = C
2.

The concept of linear independence of a vector space is the usual one. A set
S0 = {x1, x2, . . . , xn} of vectors of V is linearly independent, if the equality

1 If S0 is constituted by some points, for example S0 = {x1, x2, x3}, the notation span(S0) =
span({x1, x2, x3}) is simplified to span(x1, x2, x3).
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• (1,2)

span((1,2))

•
(3,0)

• (1,2)

span ((1,2), (3,0))= C
2

Fig. 2.1 The set {(1, 2)} ofC2 generates a straight line trough the origin,while the set {(3, 0), (1, 2)}
generates C2 (for graphical reason the representation is limited to R

2)

a1 x1 + a2 x2 + · · · + an xn = 0 (2.2)

implies
a1 = 0, a2 = 0, . . . , an = 0.

Otherwise, the set is linearly dependent. For example, in C
2 the set {(1, 2), (0, 3)}

is constituted by two linear independent vectors, whereas the set {(1, 2), (2, 4)} is
linearly dependent because

a1(1, 2) + a2(2, 4) = (0, 0) for a1 = 2 e a2 = −1.

2.2.4 Bases and Dimensions of a Vector Space

A subsetB of a vector space V constituted by linearly independent vectors is a basis
of V if B generates V, that is, if two conditions are met:

(1) B ⊂ V is formed by linearly independent vectors,
(2) span (B) = V.

It can be proved that [1, Chap.1]:

(a) Every vector space V, except the degenerate space {0}, admits a basis B.
(b) If b1, b2, . . . , bn are vectors of a basis B of V, the linear combination

a1b1 + a2b2 + · · · + anbn = x (2.3)

is unique, i.e., the coefficients a1, a2, . . . , an , are uniquely identified by x .
(c) All the bases of a vector space have the same cardinality. Therefore, if B1 and

B2 are two bases of V, it follows that |B1| = |B2|.
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The property (c) is used to define the dimension of a vector space V, letting

dim V := |B|. (2.4)

Then the dimension of a vector space is given by the common cardinality of its bases.
In particular, if B is finite, the vector space V is of finite dimension; otherwise V is
of infinite dimension.

In Cn the standard basis is given by the n vectors

(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1). (2.5)

Therefore, dim C
n = n. We must observe that in C

n there are infinitely many other
bases, all of cardinality n.

In the vector space consisting of the sequences (x1, x2, . . .) of complex numbers,
the standard basis is given by the vectors

(1, 0, 0, . . .), (0, 1, 0, . . .), (0, 0, 1, . . .), . . . (2.6)

which are infinite. Therefore this space is of infinite dimension.

2.3 Inner-Product Vector Spaces

2.3.1 Definition of Inner Product

In a vector space V on complex numbers, the inner product, here indicated by the
symbol 〈·, ·〉, is a function

〈·, ·〉 : V × V → C

with the following properties, for x, y, z ∈ V and a, b ∈ C:

(1) it is a positive definite function, that is,

〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0;

(2) it enjoys the Hermitian symmetry

〈x, y〉 = 〈y, x〉∗;

(3) it is linear with respect to the first argument

〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉. �
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From properties (2) and (3) it follows that with respect to the second argument the
so-called conjugate linearity holds, namely

〈z, ax + by〉 = a∗〈z, x〉 + b∗〈z, y〉.

We observe that within the same vector spaceV it is possible to introduce different
inner products, and the choice must be made according to the application of interest.

2.3.2 Examples

In C
n , the standard form of inner product of two vectors x = (x1, x2, . . . , xn) and

y = (y1, y2, . . . , yn) is defined as follows:

〈x, y〉 = x1 y∗
1 + · · · + xn y∗

n =
n

∑

i=1

xi y∗
i (2.7a)

and it can be easily seen that such expression satisfies the properties (1), (2), and (3).
Interpreting the vectors x ∈ C

n as column vectors (n × 1 matrices), and indicating
with y∗ the conjugate transpose of y (1 × n matrix), that is,

x =
⎡

⎢

⎣

x1
...

xn

⎤

⎥

⎦
, y∗ = [

y∗
1 , . . . , y∗

n

]

(2.7b)

and applying the usual matrix product, we obtain

〈x, y〉 = y∗x = x1 y∗
1 + · · · + xn y∗

n (2.7c)

a very handy expression for algebraic manipulations.
The most classic example of infinite-dimensional inner-product vector space,

introduced by Hilbert himself, is the space �2 of the square-summable complex
sequences x = (x1, x2, . . .), that is, with

∞
∑

i=1

|xi |2 < ∞ (2.8)

where the standard inner product is defined by

〈x, y〉 =
∞
∑

i=1

xi y∗
i = lim

n→∞

n
∑

i=1

xi y∗
i .
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The existence of this limit is ensured by Schwartz’s inequality (see (2.12)), where
(2.8) is used.

Another example of inner-product vector space is given by the continuous func-
tions over an interval [a, b], where the standard inner product is defined by

〈x, y〉 =
∫ b

a
x(t) y∗(t) dt.

2.3.3 Examples from Signal Theory

These examples are proposed because they will allow us to illustrate some concepts
on vector spaces, in view of the reader’s familiarity with the subject.

We have seen that the class of signals s(t), t ∈ I , defined on a domain I , form a
vector space. If we limit ourselves to the signals L2(I ), for which it holds that 2

∫

I
dt |s(t)|2 < ∞, (2.9)

we can obtain a space with inner product defined by

〈x, y〉 =
∫

I
dt x(t) y∗(t) (2.10)

which verifies conditions (1), (2), and (3).
A first concept that can be exemplified through signals is that of a subspace. In the

space L2(I ), let us consider the subspace E(I ) formed by the even signals. Is E(I )
a subspace? The answer is yes, because every linear combination of even signals is
an even signal: therefore E(I ) is a subspace of L2(I ). The same conclusion applies
to the class O(I ) of odd signals. These two subspaces are illustrated in Fig. 2.2.

2.3.4 Norm and Distance. Convergence

From the inner product it is possible to define the norm ||x || of a vector x ∈ V through
the relation

||x || = √〈x, x〉. (2.11)

Intuitively, the norm may be thought of as representing the length of the vector. A
vector with unit norm ||x || = 1, is called unit vector (we anticipate that in Quantum
Mechanics only unit vectors are used). In terms of inner product and norm, we can

2 To proceed in unified form, valid for all the classes L2(I ), we use the Haar integral (see [2]).
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Fig. 2.2 Examples of vector
subspaces of the signal class
L2(I )

E(I)O(I)

L2(I)

E(I): class of even signals

O(I): class of odd signals

write the important Schwartz’s inequality

|〈x, y〉| ≤ ||x || ||y|| (2.12)

where the equal sign holds if and only if y is proportional to x , that is, y = kx for
an appropriate k ∈ C.

From (2.11) it follows that an inner-product vector space is also a normed space,
with the norm introduced by the inner product.

In an inner-product vector space we can also introduce the distance d(x, y)

between two points x, y ∈ V, through the relation

d(x, y) = ||x − y|| (2.13)

andwe can verify that this parameter has the properties required by distance inmetric
spaces, in particular the triangular inequality holds

d(x, y) ≤ d(x, z) + d(y, z). (2.14)

So an inner-product vector space is also a metric space.
Finally, the inner product allows us to introduce the concept of convergence. A

sequence {xn} of vectors of V converges to the vector x if

lim
n→∞ d(xn, x) = lim

n→∞ ||xn − x || = 0. (2.15)

Now, suppose that a sequence {xn} has the property (Cauchy’s sequence or
fundamental sequence)

d(xm, xn) → 0 for m, n → ∞.
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In general, for such a sequence, the limit (2.15) is not guaranteed to exist, and, if
it exists, it is not guaranteed that the limit x is a vector of V. So, an inner-product
vector space in which all the Cauchy sequences converge to a vector of V is said to
be complete. At this point we have all we need to define a Hilbert space.

2.4 Definition of Hilbert Space

Definition 2.2 A Hilbert space is a complete inner-product vector space.

It must be observed that a finite dimensional vector space is always complete, as
it is closed with respect to all its sequences, and therefore it is always a Hilbert
space. Instead, if the space is infinite dimensional, the completeness is not ensured,
and therefore it must be added as a hypothesis, in order for the inner-product vector
space to become a Hilbert space.

At this point, we want to reassure the reader: the theory of optical quantum com-
munications will be developed at a level that will not fully require the concept of a
Hilbert space, but the concept of inner-product vector space will suffice. Nonethe-
less, the introduction of the Hilbert space is still done here for consistency with the
Quantum Mechanics literature.

From now on, we will assume to operate on a Hilbert space, but, for what we just
said, we can refer to an inner-product vector space.

2.4.1 Orthogonality, Bases, and Coordinate Systems

In a Hilbert space, the basic concepts, introduced for vector spaces, can be expressed
by using orthogonality.

Let H be a Hilbert space. Then two vectors x, y ∈ H are orthogonal if

〈x, y〉 = 0. (2.16)

Extending what was seen in Sect. 2.2, we have that a Hilbert space admits orthogonal
bases, where each basis

B = {bi , i ∈ I } (2.17)

is formed by pairwise orthogonal vectors, that is,

〈bi , b j 〉 = 0 i, j ∈ I, i �= j

and furthermore, B generates H

span(B) = H.
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The set I in (2.17) is finite, I = {1, 2, . . . , n}, or countably infinite, I = {1, 2, . . .},
and may even be a continuum (but not considered in this book until Chap.11).

Remembering that a vector b is a unit vector if ||b||2 = 〈b, b〉 = 1, a basis
becomes orthonormal, if it is formed by unit vectors. The orthonormality condition
of a basis can be written in the compact form

〈bi , b j 〉 = δi j , (2.18)

where δi j is Kronecker’s symbol, defined as δi j = 1 for i = j and δi j = 0 for i �= j .
In general, a Hilbert space admits infinite orthonormal bases, all, obviously, with the
same cardinality.

For a fixed orthonormal basisB = {bi , i ∈ I }, every vector x ofH can be uniquely
written as a linear combination of the vectors of the basis

x =
∑

i∈I

ai bi (2.19)

where the coefficients are given by the inner products

ai = 〈x, bi 〉. (2.20)

In fact, we obtain

〈x, b j 〉 =
〈
∑

i

ai bi , b j

〉

=
∑

i

ai 〈bi , b j 〉 = a j

where in the last equality we used orthonormality condition (2.18).
The expansion (2.19) is called Fourier expansion of the vector x and the coeffi-

cients ai the Fourier coefficients of x , obtained with the basis B.
Through Fourier expansion, every orthonormal basis B = {bi , i ∈ I } defines a

coordinate system in theHilbert space. In fact, according to (2.19) and (2.20), a vector
x uniquely identifies its Fourier coefficients {ai , i ∈ I }, which are the coordinates
of x obtained with the basis B. Of course, if the basis is changed, the coordinate
system changes too, and so do the coordinates {ai , i ∈ I }. Sometimes, to remark the
dependence on B, we write (ai )B.

For a Hilbert space H with finite dimension n, a basis and the corresponding
coordinate system establish a one-to-one correspondence between H and C

n : the
vectors x ofH become the vectors ofCn composed by the Fourier coefficients of ai ,
that is,

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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x ∈ H
coordinates−−−−−−−→ xB =

⎡

⎢

⎢

⎢

⎣

a1
a2
...

an

⎤

⎥

⎥

⎥

⎦

∈ C
n . (2.21)

Example 2.1 (Periodic discrete signals) Consider the vector space L2 = L2(Z(T )/

Z(N T )) constituted by periodic discrete signals (with spacing T and period N T );
Z(T ) := {nT |n ∈ Z} is the set of multiples of T . A basis for this space is formed by
the signals

bi = bi (t) = 1

T
δZ(T )/Z(N T )(t − iT ), i = 0, 1, . . . , N − 1,

where δZ(T )/Z(N T ) is the periodic discrete impulse [2]

δZ(T )/Z(N T )(t) =
{

1/T t ∈ Z(N T )

0 t /∈ Z(N T )
t ∈ Z(T ).

This basis is orthonormal because

〈bi , b j 〉 =
∫

Z(T )/Z(N T )

dt bi (t) b∗
j (t) = δi j .

A first conclusion is that this vector space has finite dimension N .
For a generic signal x = x(t), coefficients (2.20) provide

ai = 〈x, bi 〉 =
∫

Z(T )/Z(Tp)

dt x(t) b∗
i (t) = 1

T
x(iT ),

and therefore the signal coordinates are given by a vector collecting the values in
one period, divided by T .

2.4.2 Dirac’s Notation

In Quantum Mechanics, where systems are defined on a Hilbert space, vectors are
indicated with a special notation, introduced by Dirac [3]. This notation, although
apparently obscure, is actually very useful, and will be adopted from now on.

A vector x of a Hilbert space H is interpreted as a column vector, of possibly
infinite dimension, and is indicated by the symbol

|x〉 (2.22a)
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which is called ket. Its transpose conjugate |x〉∗ should be interpreted as a row vector,
and is indicated by the symbol

〈x | = |x〉∗ (2.22b)

which is called bra.3 As a consequence, the inner product of two vectors |x〉 and |y〉
is indicated in the form

〈x |y〉. (2.22c)

We now exemplify this notation for the Hilbert space C
n , comparing it to the

standard notation

x =
⎡

⎢

⎣

x1
...

xn

⎤

⎥

⎦ becomes |x〉 =
⎡

⎢

⎣

x1
...

xn

⎤

⎥

⎦

x∗ = [

x∗
1 , . . . , x∗

n

]

becomes 〈x | = |x〉∗ = [

x∗
1 , . . . , x∗

n

]

〈x, y〉 = y∗x becomes 〈y|x〉 = x1 y∗
1 + · · · + xn y∗

n .

(2.23)

Again, to become familiar with Dirac’s notation, we also rewrite some relations, pre-
viously formulated with the conventional notation. A linear combination of vectors
is written in the form

|x〉 = a1|x1〉 + a2|x2〉 + · · · + an|xn〉.

The norm of a vector is written as ||x || = √〈x |x〉. The orthogonality condition
between two vectors |x〉 and |y〉 is now written as

〈x |y〉 = 0,

and the orthonormality of a basis B = {|bi 〉, i ∈ I } is written in the form

〈bi |b j 〉 = δi j .

The Fourier expansion with a finite-dimensional orthonormal basisB = {|bi 〉|i =
1, . . . , n} becomes

|x〉 = a1|b1〉 + · · · + an|bn〉 (2.24)

where
ai = 〈bi |x〉, (2.24a)

and can also be written in the form

|x〉 = (〈b1|x〉) |b1〉 + · · · + (〈bn|x〉) bn〉. (2.25)

3 These names are obtained by splitting up the word “bracket”; in the specific case, the brackets
are 〈 〉.
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Schwartz’s inequality (2.12) becomes

|〈x |y〉|2 ≤ 〈x |x〉〈y|y〉 or 〈x |y〉〈y|x〉 ≤ 〈x |x〉〈y|y〉. (2.26)

Problem 2.1 � A basis in H = C
2 is usually denoted by {|0〉, |1〉}. Write the

standard basis and a nonorthogonal basis.

Problem 2.2 �� An important basis in H = C
n is given by the columns of the

Discrete Fourier Transform (DFT) matrix of order n, given by

|wi 〉 = 1√
n

[

1, W −i
n , W −2i

n , . . . , W −i(n−1)
n

]T
, i = 0, 1, . . . , n − 1 (E1)

where Wn := exp(i2π/n) is the nth root of 1. Prove that this basis is orthonormal.

Problem 2.3 � Find the Fourier coefficients of ket

|x〉 =
⎡

⎣

1
i
2

⎤

⎦ ∈ C
3

with respect to the orthonormal basis (E1).

Problem 2.4 � Write the Fourier expansion (2.24) and (2.25) with a general ortho-
normal basis B = {|bi 〉|i ∈ I }.

2.5 Linear Operators

2.5.1 Definition

An operator A from the Hilbert spaceH to the same spaceH is defined as a function

A : H → H. (2.27)

If |x〉 ∈ H, the operator A returns the vector

|y〉 = A|x〉 with |y〉 ∈ H. (2.28)

To represent graphically the operator A, we can introduce a block (Fig. 2.3) con-
taining the symbol of the operator, and in (2.28) |x〉 is interpreted as input and |y〉 as
output.

The operator A : H → H is linear if the superposition principle holds, that is, if

A(a1|x1〉 + a2|x2〉) = a1A|x1〉 + a2A|x2〉
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Fig. 2.3 Graphical
representation of a linear
operator A

|x |y |x ,|y ∈H

Fig. 2.4 The linear operator
for “bras”; A∗ is the adjoint
of A A∗

x| y| x|, y|∈H∗

for every |x1〉, |x2〉 ∈ H and a1, a2 ∈ C.
A trivial linear operator is the identity operator IH on H defined by the relation

IH |x〉 ≡ |x〉, for any vector |x〉 ∈ H. Another trivial linear operator is the zero
operator, 0H, which maps any vector onto the zero vector, 0H|x〉 ≡ 0.

In the interpretation of Fig. 2.3 the operator A acts on the kets (column vectors)
of H: assuming as input the ket |x〉, the operator outputs the ket |y〉 = A|x〉. It is
possible to associate toH a Hilbert spaceH∗ (dual space) creating a correspondence
between each ket |x〉 ∈ H and its bra 〈x | in H∗. In this way, to each linear operator
A ofH a corresponding A∗ ofH∗ can be associated, and the relation (2.28) becomes
(Fig. 2.4)

〈y| = 〈x |A∗.

The operator A∗ is called the adjoint4 of A. In particular, if A = [ai j ]i, j=1,...,n is a
square matrix, it results that A∗ = [a∗

j i ]i, j=1,...,n is the conjugate transpose.

2.5.2 Composition of Operators and Commutability

The composition (product)5 AB of two linear operators A and B is defined as the
linear operator that, applied to a generic ket |x〉, gives the same result as would be
obtained from the successive application of B followed by A, that is,

{AB}|x〉 = A{B|x〉}. (2.29)

In the graphical representation the product must be seen as a cascade of blocks
(Fig. 2.5).

In general, like for matrices, the commutative property AB = BA does not hold.
Instead, to account for noncommutativity, the commutator between two operators

4 This is not the ordinary definition of adjoint operator, but it is an equivalent definition, deriving
from the relation |x〉∗ = 〈x | (see Sect. 2.8).
5 We take for granted the definition of sum A + B of two operators, and of multiplication of an
operator by a scalar k A.
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B A = AB

Fig. 2.5 Cascade connection of two operators

A and B is introduced, defined by

[A, B] := AB − BA. (2.30)

In particular, if two operators commute, that is, if AB = BA, the commutator results
in [A, B] = 0. Also an anticommutator is defined as

{A, B} := AB + BA. (2.31)

Clearly, it is possible to express the product between two operators A and B in terms
of the commutator and anticommutator

AB = 1

2
[A, B] + 1

2
{A, B}. (2.31a)

In Quantum Mechanics, the commutator and the anticommutator are exten-
sively used, e.g., to establish Heisenberg’s uncertainty principle (see Sect. 3.9). Since
most operator pairs do not commute, specific commutation relations are introduced
through the commutator (see Chap.11).

2.5.3 Matrix Representation of an Operator

As we have seen, a linear operator has properties very similar to those of a square
matrix and, more precisely, to the ones that are obtained with a linear transformation
of the kind y = Ax , where x and y are column vectors, and A is a square matrix, and
it can be stated that linear operators are a generalization of square matrices. Also, it
is possible to associate to each linear operator A a square matrix AB of appropriate
dimensions, n × n, if the Hilbert space has dimension n, or of infinite dimensions if
H has infinite dimension.

To associate a matrix to an operator A, we must fix an orthonormal basis B =
{|bi 〉, i ∈ I } of H. The relation

ai j = 〈bi |A|b j 〉, |bi 〉, |b j 〉 ∈ B (2.32)

allows us to define the elements ai j of a complex matrix AB = [ai j ]. In (2.32), the
expression 〈bi |A|b j 〉 must be intended as 〈bi |{A|b j 〉}, that is, as the inner product

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_11


36 2 Vector and Hilbert Spaces

of the bra 〈bi | and the ket |A|b j 〉 that is obtained by applying the operator A to the
ket |b j 〉. Clearly, the matrix AB = [ai j ], obtained from (2.32), depends on the basis
chosen, and sometimes the elements of the matrix are indicated in the form ai j B to
stress such dependence on B. Because all the bases ofH have the same cardinality,
all the matrices that can be associated to an operator have the same dimension.

From the matrix representation AB = [ai j B] we can obtain the operator A using
the outer product |bi 〉〈b j |, which will be introduced later on. The relation is

A =
∑

i

∑

j

ai j B|bi 〉〈b j | (2.33)

and will be proved in Sect. 2.7.
The matrix representation of an operator turns out to be useful as long as it allows

us to interpret relations between operators as relations between matrices, with which
we are usually more familiar. It is interesting to remark that an appropriate choice
of a basis for H can lead to an “equivalent” matrix representation, simpler with
respect to a generic choice of the basis. For example, we will see that a Hermitian
operator admits a diagonal matrix representation with respect to a basis given by the
eigenvectors of the operator itself.

In practice, as previously mentioned, in the calculations we will always refer to
the Hilbert space H = C

n , where the operators can be interpreted as n × n square
matrices with complex elements (the dimension of H could be infinite), keeping in
mind anyhow that matrix representations with different bases correspond to the usual
basis changes in normed vector spaces.

2.5.4 Trace of an Operator

An important parameter of an operator A is its trace, given by the sum of the diagonal
elements of its matrix representation, namely

Tr[A] =
∑

i

〈bi |A|bi 〉. (2.34)

The operation Tr[·] appears in the formulation of the third postulate of Quantum
Mechanics, and it is widely used in quantum decision.

The trace of an operator has the following properties, which will be often used in
the following:

(1) The trace of A is independent of the basis with respect to which it is calculated,
and therefore it is a characteristic parameter of the operator.

(2) The trace has the cyclic property
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Tr[AB] = Tr[BA] (2.35)

which holds even if the operators A and B are not commutable; such property
holds also for rectangular matrices, providing that the products AB and BA make
sense.

(3) The trace is linear, that is,

Tr[a A + bB] = a Tr[A] + b Tr[B], a, b ∈ C. (2.36)

For completeness we recall the important identity

〈u|A|u〉 = Tr[A|u〉〈u|] (2.37)

where |u〉 is an arbitrary vector, and |u〉〈u| is the operator given by the outer product,
which will be introduced later.

2.5.5 Image and Rank of an Operator

The image of an operator A of H is the set

im(A) := AH = {A|x〉 | |x〉 ∈ H}. (2.38)

It can be easily proved that im(A) is a subspace of H (see Problem2.6).
The dimension of this subspace defines the rank of the operator

rank(A) = dim im(A) = |AH|. (2.39)

This definition can be seen as the extension to operators of the concept of rank of a
matrix. As it appears from (2.38), to indicate the image of an operator of H we use
the compact symbol AH.

Problem 2.5 � Prove that the image of an operator on H is a subspace of H.

Problem 2.6 � Define the 2D operator that inverts the entries of a ket and write its
matrix representation with respect to the standard basis.

Problem 2.7 �� Find the matrix representation of the operator of the previous
problem with respect to the DFT basis.
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Fig. 2.6 Interpretation of
eigenvalue and eigenvector
of a linear operator A

A
|x0 λ |x0

2.6 Eigenvalues and Eigenvectors

An eigenvalue λ of a given operator A is a complex number such that a vector
|x0〉 ∈ H exists, different from zero, satisfying the following equation:

A|x0〉 = λ|x0〉 |x0〉 �= 0 . (2.40)

The vector |x0〉 is called eigenvector corresponding to the eigenvalue λ.6 The inter-
pretation of relation (2.40) is illustrated in Fig. 2.6.

The set of all the eigenvalues is called spectrum of the operator and it will be
indicated by the symbol σ(A).

From the definition it results that the eigenvector |x0〉 associated to a given eigen-
value is not unique, and in fact from (2.40) it results that also 2|x0〉, or i|x0〉 with i
the imaginary unit, are eigenvectors of λ. The set of all the eigenvectors associated
to the same eigenvalue

Eλ = {|x0〉
∣

∣ A|x0〉 = λ|x0〉} (2.41)

is always a subspace,7 which is called eigenspace associated to the eigenvalue λ.

2.6.1 Computing the Eigenvalues

In the space H = C
n , where the operator A can be interpreted as an n × n matrix,

the eigenvalue computation becomes the procedure usually followed with complex
square matrices, consisting in the evaluation of the solutions to the characteristic
equation

c(λ) = det[A − λ IH] = 0

where c(λ) is a polynomial. Then, for the fundamental theorem of Algebra, the
number r ≤ n of distinct solutions is found: λ1, λ2, . . . , λr , forming the spectrum
of A

σ(A) = {λ1, λ2, . . . , λr }.

6 The eigenvector corresponding to the eigenvalue λ is often indicated by the symbol |λ〉.
7 As we assume |x0〉 �= 0, to complete Eλ as a subspace, the vector 0 of Hmust be added.
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The solutions allow us to write c(λ) in the form

c(λ) = a0(λ − λ1)
p1(λ − λ2)

p2 . . . (λ − λr )
pr , a0 �= 0

where pi ≥ 1, p1+p2+· · ·+pr = n, and pi is called themultiplicityof the eigenvalue
λi . Thenwe can state that the characteristic equation has always n solutions, counting
the multiplicities.

As it is fundamental to distinguish whether we refer to distinct or to multiple
solutions, we will use different notations in the two cases

λ1, λ2, . . . , λr for distinct eigenvalues
λ̃1, λ̃2, . . . , λ̃n for eigenvalueswith repetitions

(2.42)

Example 2.2 The 4 × 4 complex matrix

A = 1

4

⎡

⎢

⎢

⎣

7 −1 + 2 i −1 −1 − 2 i
−1 − 2 i 7 −1 + 2 i −1

−1 −1 − 2 i 7 −1 + 2 i
−1 + 2 i −1 −1 − 2 i 7

⎤

⎥

⎥

⎦

(2.43)

has the characteristic polynomial

c(λ) = 6 − 17 λ + 17 λ2 − 7 λ3 + λ4

which has solutions λ1 = 1 with multiplicity 2, and λ2 = 2 and λ3 = 3 with
multiplicity 1. Therefore, the distinct eigenvalues are λ1 = 1, λ2 = 2 and λ3 = 3,
whereas the eigenvalues with repetition are

λ̃1 = 1, λ̃2 = 1, λ̃3 = 2, λ̃4 = 3.

The corresponding eigenvectors are, for example,

|λ̃1〉 =

⎡

⎢

⎢

⎣

1 + i
i
0
1

⎤

⎥

⎥

⎦

|λ̃2〉 =

⎡

⎢

⎢

⎣

−i
1 − i
1
0

⎤

⎥

⎥

⎦

|λ̃3〉 =

⎡

⎢

⎢

⎣

−1
1

−1
1

⎤

⎥

⎥

⎦

|λ̃4〉 =

⎡

⎢

⎢

⎣

−i
−1
i
1

⎤

⎥

⎥

⎦

. (2.44)

As we will see with the spectral decomposition theorem, it is possible to associate
different eigenvectors to coincident, or even orthogonal, eigenvalues. In (2.44) |λ̃1〉
and |λ̃2〉 are orthogonal, namely, 〈λ̃1|λ̃2〉 = 0.

What was stated above for Cn can apply to any finite dimensional space n, using
matrix representation. For an infinite dimensional space the spectrum can have infi-
nite cardinality, but not necessarily. In any case it seems that no general procedures
exist to compute the eigenvalues for the operators in an infinite dimensional space.
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Trace of an operator from the eigenvalues It can be proved that the sum of the
eigenvalues with coincidences gives the trace of the operator

n
∑

i=1

λ̃i =
r

∑

i=1

pi λi = Tr[A]. (2.45)

It is also worthwhile to observe that the product of the eigenvalues λ̃i gives the
determinant of the operator

λ̃1 λ̃2 . . . λ̃n = λ
p1
1 λ

p2
2 . . . λ

pr
r = det(A) (2.46)

and that the rank of A is given by the sum of the multiplicities of the λ̃i different
from zero.

2.7 Outer Product. Elementary Operators

The outer product of two vectors |x〉 and |y〉 in Dirac’s notation is indicated in
the form

|x〉〈y|,

which may appear similar to the inner product notation 〈x |y〉, but with factors
inverted. This is not the case: while 〈x |y〉 is a complex number, |x〉〈y| is an operator.
This can be quickly seen if |x〉 is interpreted as a column vector and 〈y| as a row
vector, referring for simplicity to the space Cn , where

|x〉 =
⎡

⎢

⎣

x1
...

xn

⎤

⎥

⎦ , 〈y| = [

y∗
1 , . . . , y∗

n

]

.

Then, using the matrix product, we have

|x〉〈y| =
⎡

⎢

⎣

x1
...

xn

⎤

⎥

⎦

[

y∗
1 , . . . , y∗

n

] =
⎡

⎢

⎣

x1y∗
1 · · · x1y∗

n
...

...

xn y∗
1 · · · xn y∗

n

⎤

⎥

⎦

that is, |x〉〈y| is an n × n square matrix.
The outer product8 makes it possible to formulate an important class of linear

operators, called elementary operators (or rank 1 operators) in the following way

8 Above, the outer product was defined in the Hilbert space C
n . For the definition in a generic

Hilbert space one can use the subsequent (2.48), which defines C = |c1〉〈c2| as a linear operator.
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Fig. 2.7 Interpretation of the
linear operator C = |c1〉〈c2| |c1 c2|

|x k|c1 k= c2 |x

C = |c1〉〈c2| (2.47)

where |c1〉 and |c2〉 are two arbitrary vectors of the Hilbert space H. To understand
its meaning, let us apply to C = |c1〉〈c2| an arbitrary ket |x〉 ∈ H (Fig. 2.7), which
results in

C |x〉 = (|c1〉〈c2|)|x〉 = (〈c2|x〉)|c1〉, ∀ |x〉 ∈ H, (2.48)

namely, a vector proportional to |c1〉, with a proportionality constant given by the
complex number k = 〈c2|x〉.

From this interpretation it is evident that the image of the elementary operator C
is a straight line through the origin identified by the vector |c1〉

im(|c1〉〈c2|) = {h |c1〉|h ∈ C}

and obviously the elementary operator has unit rank.
Within the class of the elementary operators, a fundamental role is played, espe-

cially in Quantum Mechanics, by the operators obtained from the outer product of a
ket |b〉 and the corresponding bra 〈b|, namely

B = |b〉〈b|. (2.49)

For these elementary operators, following the interpretation of Fig. 2.7, we realize
that B transforms an arbitrary ket |x〉 into a ket proportional to |b〉. As we will see,
if |b〉 is unitary, then |b〉〈b| turns out to be a projector.

2.7.1 Properties of an Orthonormal Basis

The elementary operators allow us to reinterpret in a very meaningful way the prop-
erties of an orthonormal basis in a Hilbert space H. If B = {|bi 〉, i ∈ I } is an
orthonormal basis onH, thenB identifies k = |I | elementary operators |bi 〉〈bi |, and
their sum gives the identity

∑

i∈I

|bi 〉〈bi | = IH for every orthonormal B = {|bi 〉, i ∈ I }. (2.50)
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In fact, if |x〉 is any vector of H, its Fourier expansion (see (2.24)), using the basis
B (see (2.24)), results in

∑

i

|bi 〉〈bi |x〉 =
∑

i

|bi 〉
∑

j

ai 〈bi |b j 〉

=
∑

i

|bi 〉 ai = |x〉

and, recalling that 〈bi |b j 〉 = δi j , we have

∑

i

|bi 〉〈bi |x〉 =
∑

i

ai |bi 〉 = |x〉.

In other words, if we apply to the sum of the elementary operators |bi 〉〈bi | the ket |x〉,
we obtain again the ket |x〉 and therefore such sum gives the identity. The property
(2.50), illustrated in Fig. 2.8, can be expressed by stating that the elementary operators
|bi 〉〈bi | obtained from an orthonormal basis B = {|bi 〉, i ∈ I } give a resolution of
the identity IH on H.

The properties of an orthonormal basis B = {|bi 〉, i ∈ I } on the Hilbert spaceH
can be so summarized:

(1) B is composed of linearly independent and orthonormal vectors

〈bi |b j 〉 = δi j ;

(2) the cardinality of B is, by definition, equal to the dimension ofH

|B| = dim H;

|b1 b1 |

|bN bN |

Σ
|x

=
|x

IH
|x |x

|bi bi |

...

...

Fig. 2.8 The elementary operators |bi 〉〈bi | obtained from an orthonormal basis B = {|b1〉,
. . . , |bN 〉} provide a resolution of the identity IH
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(3) the basis B, through its elementary operators |bi 〉〈bi |, gives a resolution of the
identity on H, as stated by (2.50);

(4) B makes it possible to develop every vector |x〉 of H in the form (Fourier
expansion)

|x〉 =
∑

i

ai |bi 〉 with ai = 〈bi |x〉. (2.51)

Continuous bases Above we have implicitly assumed that the basis consists of
an enumerable set of kets B. In Quantum Mechanics also continuous bases, which
consist of a continuum of eigenkets, are considered. This will be seen in the final
chapters in the context of Quantum Information (see in particular Sect. 11.2).

2.7.2 Useful Identities Through Elementary Operators

Previously, we anticipated two identities requiring the notion of elementary operator.
A first identity, related to the trace, is given by (2.37), namely

〈u|A|u〉 = Tr[A|u〉〈u|]

where A is an arbitrary operator, and |u〉 is a vector, also arbitrary. To prove this
relation, let us consider an orthonormal basis B = {|bi 〉, i ∈ I } and let us apply the
definition of a trace (2.34) to the operator A|u〉〈u|. We obtain

Tr[A|u〉〈u|] =
∑

i

〈bi |A|u〉〈u|bi 〉

=
∑

i

〈u|bi 〉〈bi |A|u〉 = 〈u|
∑

i

|bi 〉〈bi |A|u〉

= 〈u|IHA|u〉 = 〈u|A|u〉

where we took into account the fact that
∑

i |bi 〉〈bi | coincides with the identity
operator IH on H (see (2.50)).

A second identity is (2.33)

A =
∑

i

∑

j

ai j |bi 〉〈b j |

which makes it possible to reconstruct an operator A from its matrix representation
AB = [ai j ] obtained with the basis B. To prove this relation, let us write A in the
form IHAIH, and then let us express the identity IH in the form (2.50). We obtain

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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A = IHAIH =
∑

i

|bi 〉〈bi |A
∑

j

|b j 〉〈b j |

=
∑

i

∑

j

|bi 〉〈bi |A|b j 〉〈b j |

where (see (2.32)) 〈bi |A|b j 〉 = ai j .

2.8 Hermitian and Unitary Operators

Basically, in Quantum Mechanics only unitary and Hermitian operators are used.
Preliminary to the introduction of these two classes of operators is the concept of an
adjoint operator.

The definition of adjoint is given in a very abstract form (see below). If we want
to follow a more intuitive way, we can refer to the matrices associated to operators,
recalling that if A = [ai j ] is a complex square matrix, then:

• A∗ indicates the conjugate transpose matrix, that is, the matrix with elements a∗
j i ,• A is a Hermitian matrix, if A∗ = A,

• A is a normal matrix, if AA∗ = A∗ A,
• A is a unitary matrix, if AA∗ = I , where I is the identity matrix.

Note that the class of normal matrices includes as a special cases both Hermitian
and unitary matrices (Fig. 2.9). It is also worthwhile to recall the conjugate transpose
rule for the product of two square matrices

(AB)∗ = B∗ A∗. (2.52)

2.8.1 The Adjoint Operator

The adjoint operator A∗ was introduced in Sect. 2.5.1 as the operator for the bras 〈x |,
〈y|, whereas A is the operator for the kets |x〉, |y〉 (see Figs. 2.3 and 2.4). But the
standard definition of adjoint is the following.

Fig. 2.9 The class of normal
matrices includes Hermitian
matrices and unitary
matrices

normal
matrices

Hermitian
matrices unitary

matrices
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Given an operator A : H → H, the adjoint (or Hermitian adjoint) operator A∗
is defined through the inner product from the relation9

(A|x〉, |y〉) = (|x〉, A∗|y〉) , |x〉, |y〉 ∈ H. (2.53)

It can be proved that the operator A∗ verifying such relation exists and is unique and,
also, if AB = [ai j ] is the representative matrix of A, the corresponding matrix of A∗
is the conjugate transpose of AB, namely the matrix A∗

B = [a∗
j i ].

In addition, between two operators A and B and their adjoints the following
relations hold:

(A∗)∗ = A

(A + B)∗ = A∗ + B∗

(AB)∗ = B∗ A∗

(a A)∗ = a∗ A∗ a ∈ C

(2.54)

that is, exactly the same relations that are obtained interpreting A and B as complex
matrices.

2.8.2 Hermitian Operators

An operator A : H → H is called Hermitian (or self-adjoint) if it coincides with its
adjoint, that is, if

A∗ = A.

As a consequence, every representative matrix of A is a Hermitian matrix.
A fundamental property is that the spectrum of a Hermitian operator is composed

of real eigenvalues. To verify this property, we start out by observing that for each
vector |x〉 it results

〈x |A|x〉 ∈ R, ∀|x〉 ∈ H, A Hermitian. (2.55)

In fact, the conjugate of such product gives (〈x |A|x〉)∗ = 〈x |A∗|x〉 = 〈x |A|x〉.
Now, if λ is an eigenvalue of A and |x0〉 the corresponding eigenvector, it results that
〈x0|A|x0〉 = 〈x0|λx0〉 = λ〈x0|x0〉. Then λ = 〈x0|A|x0〉/〈x0|x0〉 is real, being a ratio
between real quantities.

Another important property of Hermitian operators is that the eigenvectors cor-
responding to distinct eigenvalues are always orthogonal. In fact, from A|x1〉 =
λ1|x1〉 and A|x2〉 = λ2|x2〉, remembering that λ1 and λ2 are real, it follows that
λ2〈x1|x2〉 = 〈x1|A|x2〉 = 〈λ1x1|x2〉 = λ1〈x1|x2〉. Therefore, if λ1 �= λ2, then nec-

9 In most textbooks the adjoint operator is indicated by the symbol A† and sometimes by A+.
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essarily 〈x1|x2〉 = 0. This property can be expressed in terms of eigenspaces (see
(2.41)) in the form: Eλ = {|x0〉

∣

∣ A|x0〉 = λ|x0〉}, λ ∈ σ(A), that is, the eigenspaces
of a Hermitian operator are orthogonal and this is indicated as follows:

Eλ ⊥ Eμ, λ �= μ.

Example 2.3 The matrix 4 × 4 defined by (2.43) is Hermitian in C
4. As σ(A) =

{1, 2, 3}, we have three eigenspaces E1, E2, E3. For the eigenvalues indicated in
(2.44) we have

|λ̃1〉, |λ̃2〉 ∈ E1, |λ̃3〉 ∈ E2, |λ̃4〉 ∈ E3.

It can be verified that orthogonality holds between eigenvectors belonging to different
eigenspaces. For example,

〈λ1|λ4〉 = [1 − i,−i, 0, 1]

⎡

⎢

⎢

⎣

−i
−1
i
1

⎤

⎥

⎥

⎦

= (1 − i)(−i) + (−i)(−1) + 1 = 0.

2.8.3 Unitary Operators

An operator U : H → H is called unitary if

U U∗ = IH (2.56)

where IH is the identity operator. Both unitary and Hermitian operators fall into the
more general class of normal operators, which are operators defined by the property
AA∗ = A∗ A.

From definition (2.56) it follows immediately that U is invertible, that is, there
exists an operator U−1 such that UU−1 = IH, given by

U−1 = U∗. (2.57)

Moreover, it can be proved that the spectrum ofU is always composed of eigenvalues
λi with unit modulus.

We observe that, if B = {|bi 〉, i ∈ I } is an orthonormal basis of H, all the other
bases can be obtained through unitary operators, according to {U |bi 〉, i ∈ I }.

An important property is that the unitary operators preserve the inner product.
In fact, if we apply the same unitary operator U to the vectors |x〉 and |y〉, so that
|u〉 = U |x〉 and |v〉 = U |y〉, from 〈u| = 〈x |U∗, we obtain

〈u|v〉 = 〈x |U∗U |y〉 = 〈x |y〉.
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Example 2.4 A remarkable example of unitary operator in H = L2(I ) is the oper-
ator/matrix F which gives the discrete Fourier transform (DFT)

F =
(

1/
√

N
)

[W −(r−s)
N ]r,s=0,1,...,N−1 (2.58)

where WN = ei2π/N . Then F is the DFT matrix. The inverse matrix is

F−1 = F∗ =
(

1/
√

N
)

[W r−s
N ]r,s=0,1,...,N−1. (2.59)

The columns of F , like for any unitarymatrix, form an orthonormal basis ofH = C
N .

Problem 2.8 � Classify the so-called Pauli matrices

σ0 = I =
[

1 0
0 1

]

, σx =
[

0 1
1 0

]

, σy =
[

0 −i
i 0

]

, σz =
[

1 0
0 −1

]

(E2)

which have an important role in quantum computation.

2.9 Projectors

Orthogonal projectors (briefly, projectors) areHermitian operators of absolute impor-
tance for Quantum Mechanics, since quantum measurements are formulated with
such operators.

2.9.1 Definition and Basic Properties

A projector P : H → H is an idempotent Hermitian operator, that is, with the
properties

P∗ = P, P2 = P (2.60)

and therefore Pn = P for every n ≥ 1.
Let P be the image of the projector P

P = im(P) = P H = {P|x〉 ∣

∣ |x〉 ∈ H}, (2.61)

then, if |s〉 is a vector of P, we get

P|s〉 = |s〉, |s〉 ∈ P. (2.62)
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In fact, as a consequence of idempotency, if |s〉 = P|x〉weobtain P|s〉 = P(P|x〉) =
P|x〉 = |s〉. Property (2.62) states that the subspace P is invariant with respect to
the operator P .

Expression (2.62) establishes that each |s〉 ∈ P is an eigenvector of P with
eigenvalue λ = 1; the spectrum of P can contain also the eigenvalue λ = 0

σ(P) ⊂ {0, 1}. (2.63)

In fact, the relation P|x〉 = λ|x〉, multiplied by P gives

P2|x〉 = λP|x〉 = λ2|x〉 → P|x〉 = λ2|x〉 = λ|x〉.

Therefore, every eigenvalue satisfies the condition λ2 = λ, which leads to (2.63).
Finally, (2.63) allows us to state that projectors are nonnegative or positive semi-

definite operators (see Sect. 2.12.1). This property is briefly written as P ≥ 0.

2.9.2 Why Orthogonal Projectors?

To understand this concept we must introduce the complementary projector

Pc = I − P (2.64)

where I = IH is the identity onH. Pc is in fact a projector because it is Hermitian,
and also P2

c = I 2 + P2 − IP − PI = I − P = Pc. Now, in addition to the subspace
P = PH, let us consider the complementary subspace Pc = PcH. It can be verified
that (see Problem2.9):

(1) all the vectors of Pc are orthogonal to the vectors of P, that is,

〈s⊥|s〉 = 0 |s〉 ∈ P, |s⊥〉 ∈ Pc (2.65)

and then we write Pc = P⊥.
(2) the following relations hold:

P|s⊥〉 = 0, |s⊥〉 ∈ Pc Pc|s〉 = 0, |s〉 ∈ P. (2.66)

(3) the decomposition of an arbitrary vector |x〉 of H

|x〉 = |s〉 + |s⊥〉 (2.67)

is uniquely determined by

|s〉 = P|x〉, |s⊥〉 = Pc|x〉. (2.67a)
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Fig. 2.10 Projection of the
vector |x〉 on P along P⊥

u

v

P

P⊥

|s|s⊥

|x

Property (3) establishes that the space H is given by the direct sum of the subspaces
P and P⊥, and we write H = P ⊕ P⊥. According to properties (1) and (2), the
projector P “projects the space H on P along P⊥”.

Example 2.5 Consider the space H = R
2, which is “slightly narrow” for a Hilbert

space, but sufficient to graphically illustrate the above properties. In R2, let us intro-

duce a system of Cartesian axes u, v (Fig. 2.10), and let us indicate by |x〉 =
[

u
v

]

the

generic point of R2.
Let Ph be the real matrix

Ph = 1

1 + h2

[

1 h
h h2

]

(2.68)

where h is a real parameter. It can be verified that P2
h = Ph , therefore Ph is a

projector. The space generated by Ph is

P =
{

Ph

[

u
v

]

|(u, v) ∈ R
2
}

=
{[

u
hu

]

|u ∈ R

}

This is a straight line passing through the origin, whose slope is determined by h.
We can see that the complementary projector

P(c)
h = I − Ph

has the same structure as (2.68) with the substitution h → −1/h, and therefore P⊥
is given by the line through the origin orthogonal to the one above. The conclusion
is that the projector Ph projects the space R2 onto the line P along the line P⊥.

It remains to verify that the geometric orthogonality here implicitly invoked,
coincides with the orthogonality defined by the inner product. If we denote by |s〉
the generic point of P, and by |s⊥〉 the generic point of P⊥, we get
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|s〉 =
[

u
hu

]

|s⊥〉 =
[

u1
(−1/h)u1

]

for given u and u1. Then

〈s⊥|s〉 = [

u1, (−1/h)u1
]

[

u
hu

]

= 0.

Finally, the decomposition R
2 = P ⊕ P⊥ must be interpreted in the following

way (see Fig. 2.10): each vector of R2 can be uniquely decomposed into a vector
of P and a vector of P⊥.

Example 2.6 Wenowpresent an example less related to the geometric interpretation,
a necessary effort if we want to comprehend the generality of Hilbert spaces.

Consider the Hilbert space L2 = L2(I ) of the signals defined in I (see Sect. 2.3,
Examples from Signal Theory), and let E be the subspace constituted by the even
signals, that is, those verifying the condition s(t) = s(−t). Notice that E is a sub-
space because every linear combination of even signals gives an even signal. The
orthogonality condition between two signals x(t) and y(t) is

∫

I
dt x(t) y∗(t) = 0.

We state that the orthogonal complement of E is given by the class O of the odd
signals, those verifying the condition s(−t) = −s(t). In fact, it can be easily verified
that if x(t) is even and y(t) is odd, their inner product is null (this for sufficiency;
for necessity, the proof is more complex). Then

E⊥ = O.

We now check that a signal x(t) of L2, which in general is neither even nor odd,
can be uniquely decomposed into an even component x p(t) and an odd component
xd(t). We have in fact (see Unified Theory [2])

x(t) = x p(t) + xd(t)

where

x p(t) = 1

2
[x(t) + x(−t)], xd(t) = 1

2
[x(t) − x(−t)].

Then (Fig. 2.11)

L2 = E ⊕ O.

Notice that E ∩ O = {0}, where 0 denotes the identically null signal.
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Fig. 2.11 The space L2 is
obtained as a direct sum of
the subspaces E and O= E⊥

EO

L2 =E ⊕ O

E: class of even signals

O: class of odd signals

2.9.3 General Properties of Projectors

We summarize the general properties of a projector P:

(1) the spectrum is always σ(P) = {0, 1},
(2) the multiplicity of eigenvalue 1 gives the rank of P and the dimension of the

subspace P = PH,
(3) P ≥ 0: is a positive semidefinite operator (see Sect. 2.12),
(4) Tr[P] = rank(P): the trace of P gives the rank of the projector.

(1) has already been seen. (3) is a consequence of (1) and of Theorem2.6.
(4) follows from (2.45).

2.9.4 Sum of Projectors. System of Projectors

The sum of two projectors P1 and P2

P = P1 + P2

is not in general a projector. But if two projectors are orthogonal in the sense that

P1P2 = 0,

the sum results again in a projector, as can be easily verified. An example of a pair
of orthogonal projectors has already been seen above: P and the complementary
projector Pc verify the orthogonality condition PPc = 0, and their sum is

P + Pc = I,

where I = IH is the identity on H, which is itself a projector.
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The concept can be extended to the sum of several projectors:

P = P1 + P2 + · · · + Pk (2.69)

where the addenda are pairwise orthogonal

PiPj = 0, i �= j. (2.69a)

To (2.69) one can associate k + 1 subspaces

P = PH and Pi = PiH, i = 1, . . . , k

and, generalizing what was previously seen, we find that every vector |s〉 of P can
be uniquely decomposed in the form

|s〉 = |s1〉 + |s2〉 + · · · + |sk〉 with |si 〉 = Pi |s〉. (2.70)

Hence P is given by the direct sum of the subspaces Pi

P = P1 ⊕ P2 ⊕ · · · ⊕ Pk .

If in (2.69) the sum of the projectors yields the identity I

P1 + P2 + · · · + Pk = I (2.71)

we say that the projectors {Pi } provide a resolution of the identity on H and form a
complete orthogonal class of projectors. In this case the direct sum gives the Hilbert
space H

P1 ⊕ P2 ⊕ · · · ⊕ Pk = H, (2.72)

as illustrated in Fig. 2.12 for k = 4, where each point |s〉 ofP is uniquely decomposed
into the sumof 4 components |si 〉 obtained from the relations |si 〉 = Pi |s〉, also shown
in the figure.

For later use we find it convenient to introduce the following definition:

Definition 2.3 A set of operators {Pi , i ∈ I } of the Hilbert space H constitutes a
complete system of orthogonal projectors, briefly projector system, if they have the
properties:

(1) the Pi are projectors (Hermitian and idempotent),
(2) the Pi are pairwise orthogonal (Pi Pj = 0) for i �= j ,
(3) the Pi form a resolution of the identity on H (

∑

i Pi = IH).

The peculiarities of a projector system have been illustrated in Fig. 2.12.

Rank of projectors A projector has always a reduced rank with respect to the
dimension of the space, unless P coincides with the identity I
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P1
|s1

P4

Σ

|s4

|s
=

|s
IH

|s |s
P2

|s2

P3
|s3

P1

P2P4

P3

H

Pi = Pi H

Fig. 2.12 The subspaces Pi give the space H as a direct sum. The projectors Pi give a resolution
of the identity IH and form a projector system

rank(P) = dimP < dimH (P �= I ).

In the decomposition (2.71) it results as

rank(P1) + · · · + rank(Pk) = rank(I ) = dimH,

and therefore in the corresponding direct sum we have that

dimP1 + · · · + dimPk = dimH.

2.9.5 Elementary Projectors

If |b〉 is any unitary ket, the elementary operator

B = |b〉〈b| with ||b|| = 1 (2.73)

is Hermitian and verifies the condition B2 = |b〉〈b|b〉〈b| = B, therefore it is a unit
rank projector. Applying to B any vector |x〉 of H we obtain

B|x〉 = |b〉〈b|x〉 = k |b〉 with k = 〈b|x〉.

Hence B projects the space H on the straight line through the origin identified by
the vector |b〉 (Fig. 2.13).

If two kets |b1〉 and |b2〉 are orthonormal, the corresponding elementary projectors
B1 = |b1〉〈b1| and B2 = |b2〉〈b2| verify the orthogonality (for operators)

B1B2 = |b1〉〈b1|b2〉〈b2| = 0
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Fig. 2.13 The elementary
projector |b〉〈b| projects an
arbitrary ket |x〉 of H on the
line of the ket |b〉

H

|b
0

|x

and therefore their sum

B1 + B2 = |b1〉〈b1| + |b2〉〈b2|

is still a projector (of rank 2).
Proceeding along this way we arrive at the following:

Theorem 2.1 If B = {|bi 〉, i ∈ I } is an orthonormal basis of H, the elementary
projectors Bi = |bi 〉〈bi | turn out to be orthogonal in pairs, and give the identity
resolution

∑

i∈I

Bi =
∑

i∈I

|bi 〉〈bi | = IH.

In conclusion, through a generic basis of a Hilbert space H of dimension n it is
always possible to “resolve” the space H through n elementary projectors, which
form a projector system.

Problem 2.9 � Prove properties (2.65), (2.66) and (2.67) for a projector and its
complement.

Problem 2.10 � Prove that projectors are positive semidefinite operators.

2.10 Spectral Decomposition Theorem (EID)

This theorem is perhaps the most important result of Linear Algebra because it sums
up several previous results and opens the door to get so many interesting results. It
will appear in various forms and will be referred to in different ways, for example,
as diagonalization of a matrix and also as eigendecomposition or EID.

2.10.1 Statement and First Consequences

Theorem 2.2 Let A be a Hermitian operator (or unitary) on the Hilbert space H,
and let {λi }, i = 1, 2, . . . , k be the distinct eigenvalues of A. Then A can be uniquely
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|x

P1

λ1|x1

P4

λ4

Σ =
|y

A
|x |y

P2

λ2

P3

λ3

|x2

|x3

|x4

Fig. 2.14 Spectral decomposition of an operator A with four distinct eigenvalues

decomposed in the form

A =
k

∑

i=1

λi Pi (2.74)

where the {Pi } form a projector system.

The spectral decomposition is illustrated in Fig. 2.14 for k = 4.

The theorem holds both for Hermitian operators, in which case the spectrum of the
operator is formed by real eigenvalues λi , and for unitary operators, the eigenvalues
λi have unit modulus.

We observe that, if pi is the multiplicity of the eigenvalue λi , the rank of the
projector Pi is just given by pi

rank(Pi ) = pi .

In particular, if the eigenvalues have all unitmultiplicity, that is, if A is nondegenerate,
the projectors Pi have unit rank and assume the form

Pi = |λi 〉〈λi |

where |λi 〉 is the eigenvector corresponding to eigenvalue λi . In this case the eigen-
vectors define an orthonormal basis forH.

Example 2.7 The 4 × 4 complex matrix considered in Example2.1

A = 1

4

⎡

⎢

⎢

⎣

7 −1 + 2 i −1 −1 − 2 i
−1 − 2 i 7 −1 + 2 i −1

−1 −1 − 2 i 7 −1 + 2 i
−1 + 2 i −1 −1 − 2 i 7

⎤

⎥

⎥

⎦

(2.75)
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is Hermitian. It has been found that the distinct eigenvalues are

λ1 = 1, λ2 = 2, λ3 = 3

with λ1 of multiplicity 2. Then it is possible to decompose A through 3 projectors,
in the form

A = λ1 P1 + λ2 P2 + λ3 P3

with P1 of rank 2 and P2, P3 of rank 1. Such projectors result in

P1 = 1

4

⎡

⎢

⎢

⎣

2 1 − i 0 1 + i
1 + i 2 1 − i 0
0 1 + i 2 1 − i

1 − i 0 1 + i 2

⎤

⎥

⎥

⎦

P2 = 1

4

⎡

⎢

⎢

⎣

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

⎤

⎥

⎥

⎦

P3 = 1

4

⎡

⎢

⎢

⎣

1 i −1 −i
−i 1 i −1
−1 −i 1 i
i −1 −i 1

⎤

⎥

⎥

⎦

.

We leave it to the reader to verify the idempotency, the orthogonality, and the com-
pleteness of these projectors. In other words, to prove that the set {P1, P2, P3} forms
a projector system.

2.10.2 Interpretation

The theorem can be interpreted in two ways:

• as resolution of a given Hermitian operator A, which makes it possible to identify
a projector system {Pi }, as well as the corresponding eigenvalues {λi },

• as synthesis, in which a projector system {Pi } is known, and, for so many fixed
distinct real numbers λi , a Hermitian operator can be built based on (2.74), having
the λi as eigenvalues.

It is very interesting to see how the spectral decomposition acts on the input |x〉
and on the output |y〉 of the operator, following Fig. 2.14. The parallel of projec-
tors decomposes in a unique way the input vector into orthogonal components (see
(2.70)).

|x〉 = |x1〉 + |x2〉 + · · · + |xk〉 (2.76)

where |xi 〉 = Pi |x〉. In fact, as a consequence of the orthogonality of the projectors,
we have

〈xi |x j 〉 = 〈x |PiPj |x〉 = 0, i �= j
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while (2.76) is a consequence of completeness. In addition, each component |xi 〉 is
an eigenvector of A with eigenvalue λi . In fact, we have

A|xi 〉 =
∑

j

λ j Pj |xi 〉 = λi |xi 〉

where we have taken into account that Pj |xi 〉 = PjPi |x〉 = 0 if i �= j .
Yet fromFig. 2.14, it appears that the decomposition of the input (2.76) is followed

by the decomposition of the output in the form

|y〉 = λ1|x1〉 + λ2|x2〉 + · · · + λk |xk〉

namely, as a sum of eigenvectors multiplied by the corresponding eigenvalues.
Going back to the decomposition of the input, as each component |xi 〉 = Pi |x〉

belongs to the eigenspace Eλi , and as |x〉 is an arbitrary ket of the Hilbert space H,
it results that

Pi H = Eλi

is the corresponding eigenspace. Furthermore, for completeness we have (see (2.72))

Eλ1 ⊕ Eλ2 ⊕ · · · ⊕ Eλk = H.

The reader can realize that the Spectral Decomposition Theorem allows us to refine
what we saw in Sect. 2.9.4 on the sum of orthogonal projectors.

2.10.3 Decomposition via Elementary Projectors

In the statement of the theorem the eigenvalues {λi } are assumed distinct, so the
spectrum of the operator A is

σ(A) = {λ1, λ2, . . . , λk} with k ≤ n

where k may be smaller than the space dimension.
Aswe have seen, if k = n all the eigenvalues have unitmultiplicity and the decom-

position (2.74) is done with elementary projectors. We can obtain a decomposition
with elementary projectors even if k < n, that is, not all the eigenvalues have unit
multiplicity. In this case we denote with

λ̃1, λ̃2, . . . , λ̃n

the eigenvalues with repetition (see (2.42)). Then the spectral decomposition (2.74)
takes the form
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A =
n

∑

i=1

λ̃i |bi 〉〈bi | (2.77)

where now the projectors Bi = |bi 〉〈bi | are all elementary, and form a complete
system of projectors.

To move from (2.74) to (2.77), let us consider an example regarding the space
H = C

4, with A a 4 × 4 matrix. Suppose now that

σ(A) = {λ1, λ2, λ3} p1 = 2, p2 = 1, p3 = 1.

Then Theorem2.2 provides the decomposition

A = λ1P1 + λ2P2 + λ3P3

with
P1 of rank 2, P2 = |λ2〉〈λ2|, P3 = |λ3〉〈λ3|.

Consider now the subspaceP1 = P1H having dimension 2, which in turn is a Hilbert
space, and therefore with basis composed of two orthonormal vectors, say |c1〉 and
|c2〉. Choosing such a basis, the sum of the corresponding elementary projectors
yields (see Theorem2.1)

P1 = |c1〉〈c1| + |c2〉〈c2|.

In this way we obtain (2.77) with (λ̃1, λ̃2, λ̃3, λ̃4) = (λ1, λ1, λ2, λ3) and |b1〉 = |c1〉,
|b2〉 = |c2〉, |b3〉 = |λ2〉, |b4〉 = |λ3〉. Notice that the |ci 〉 and the |λi 〉 are independent
(orthogonal) because they belong to different eigenspaces.

Example 2.8 In Example2.1 we have seen that the eigenvalues with repetition of
the matrix (2.75) are

λ̃1 = 1, λ̃2 = 1, λ̃3 = 2, λ̃4 = 3

and the corresponding eigenvectors are

|λ̃1〉 =

⎡

⎢

⎢

⎣

1 + i
i
0
1

⎤

⎥

⎥

⎦

|λ̃2〉 =

⎡

⎢

⎢

⎣

−i
1 − i
1
0

⎤

⎥

⎥

⎦

|λ̃3〉 =

⎡

⎢

⎢

⎣

−1
1

−1
1

⎤

⎥

⎥

⎦

|λ̃4〉 =

⎡

⎢

⎢

⎣

−i
−1
i
1

⎤

⎥

⎥

⎦

. (2.78)

These vectors are not normalized (they all have norm 2). The normalization results in

|bi 〉 = 1

2
|λ̃i 〉 (2.79)
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and makes it possible to build the elementary projectors Qi = |bi 〉〈bi |. Therefore
the spectral decomposition of matrix A via elementary projectors becomes

A = λ̃1Q1 + λ̃2Q2 + λ̃3Q3 + λ̃4Q4. (2.80)

We encourage the reader to verify that with choice (2.79) the elementary operators
Qi are idempotent and form a system of orthogonal (elementary) projectors.

2.10.4 Synthesis of an Operator from a Basis

The Spectral Decomposition Theorem in the form (2.77), revised with elementary
projectors, identifies an orthonormal basis {|bi 〉}.

The inverse procedure is also possible: given an orthonormal basis {|bi 〉}, a Her-
mitian (or unitary) operator can be built choosing an n-tuple of real eigenvalues λ̃i

(or with unit modulus to have a unitary operator). In this way we obtain the synthesis
of a Hermitian operator in the form (2.77).

Notice that with synthesis we can also obtain non-elementary projectors, thus
arriving at the general form (2.74) established by the Spectral Decomposition The-
orem. To this end, it suffices to choose some λ̃i equal. For example, if we want a
rank 3 projector, we let

λ̃1 = λ̃2 = λ̃3 = λ1

and then
λ̃1|b1〉〈b1| + λ̃2|b2〉〈b2| + λ̃3|b3〉〈b3| = λ1P1

where P1 = |b1〉〈b1| + |b2〉〈b2| + |b3〉〈b3| is actually a projector, as can be easily
verified.

2.10.5 Operators as Generators of Orthonormal Bases

In Quantum Mechanics, orthonormal bases are usually obtained from the EID of
operators, mainly Hermitian operators. Then, considering a Hermitian operator B,
the starting point is the eigenvalue relation

B|b〉 = b |b〉 (2.81)

where |b〉 denotes an eigenket of B and b the corresponding eigenvalue; B is given,
while b and |b〉 are considered unknowns. The solutions to (2.81) provide the spec-
trum σ(B) of B and also an orthonormal basis

B = {|b〉, b ∈ σ(B)}
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where |b〉 are supposed to be normalized, that is, 〈b|b〉 = 1. Note the economic
notation (due to Dirac [3]), where a single letter (b or B) is used to denote the
operator, the eigenkets, and the eigenvalues.

The bases obtained from operators are used in several ways, in particular to rep-
resent kets and bras through the Fourier expansion and operators through the matrix
representation. A systematic application of these concepts will be seen in Chap.11
in the context of Quantum Information (see in particular Sect. 11.2).

2.11 The Eigendecomposition (EID) as Diagonalization

In the previous forms of spectral decomposition (EID) particular emphasis was given
to projectors because those are the operators that are used in quantummeasurements.
Other forms are possible, or better, other interpretations of the EID, evidencing other
aspects.

Relation (2.77) can be written in the form

A = UΛ̃U∗ (2.82)

whereU is the n ×n matrix having as columns the vectors |bi 〉, and Λ̃ is the diagonal
matrix with diagonal elements λ̃i , namely

U = [|b1〉, |b2〉, . . . , |bn〉], Λ̃ = diag [λ̃1, λ̃2, . . . , λ̃n] , (2.82a)

and U∗ is the conjugate transpose of U having as rows the bras 〈bi |. As the kets |bi 〉
are orthonormal, the product UU∗ gives identity

UU∗ = IH. (2.82b)

Thus U is a unitary matrix.
The decomposition (2.82) is a consequence of the Spectral Decomposition Theo-

rem and is interpreted as diagonalization of the Hermitian matrix A. The result also
holds for unitary matrices and more generally for normal matrices. Furthermore,
from diagonalization one can obtain the spectral decomposition, therefore the two
decompositions are equivalent.

Example 2.9 The diagonalization of the Hermitian matrix A, defined by (2.75), is
obtained with

U = 1

2

⎡

⎢

⎢

⎣

1 + i −i −1 −i
i 1 − i 1 −1
0 1 −1 i
1 0 1 1

⎤

⎥

⎥

⎦

, Λ̃ =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

⎤

⎥

⎥

⎦

(2.83)

http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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2.11.1 On the Nonuniqueness of a Diagonalization

Is the diagonalization A = UΛ U∗ unique? A first remark is that the eigenvalues and
also their multiplicity are unique. Next, consider two diagonalizations of the same
matrix

A = UΛ U∗, A = U1Λ U∗
1 . (2.84)

By a left multiplication by U∗ and a right multiplication by U , we find

U∗UΛ U∗U = Λ = U∗U1Λ U∗
1 U.

Hence, a sufficient condition for the equivalence of the two diagonalizations is

U∗ U1 = IH (2.85)

which reads: if the unitary matrices U and U1 verify the condition (2.85), they both
diagonalize the same matrix A.

But, we can also permute the order of the eigenvalues in the diagonal matrix Λ,
combined with the same permutation of the eigenvectors in the unitary matrix, to
get a new diagonalization. These, however, are only formal observations. The true
answer to the question is given by [4]:

Theorem 2.3 A matrix is uniquely diagonalizable, up to a permutation, if and only
if its eigenvalues are all distinct.

2.11.2 Reduced Form of the EID

So far, in the EID we have not considered the rank of matrix A. We observe that
the rank of a linear operator is given by the number of nonzero eigenvalues (with
multiplicity) λ̃i . Then, if the n × n matrix A has the eigenvalue 0 with multiplicity
p0, the rank results in r = n − p0. Sorting the eigenvalues with the null ones at the
end, (2.77) and (2.82) become

A =
r

∑

i=1

λ̃i |bi 〉〈bi | = Ur Λ̃r U∗
r (2.86)

where

Ur = [|b1〉, |b2〉, . . . , |br 〉], Λ̃r = diag [λ̃1, λ̃2, . . . , λ̃r ]. (2.86a)

Therefore, Ur has dimensions n × r and collects as columns only the eigenvectors
corresponding to nonzero eigenvalues, and the r × r diagonal matrix Λ̃r collects
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such eigenvalues. In the form (2.82) the eigenvectors with null eigenvalues are not
relevant (because they are multiplied by 0), whereas in (2.86) all the eigenvectors are
relevant. These two forms will be often used in quantum decision and, to distinguish
them, the first will be called full form and the second reduced form.

2.11.3 Simultaneous Diagonalization and Commutativity

The diagonalization of a Hermitian operator given by (2.82), that is,

A = UΛ̃ U∗ (2.87)

is done with respect to the orthonormal basis constituted by the columns of the
unitary matrix U . The possibility that another operator B be diagonalizable with
respect to the same basis, namely

B = UΛ̃1U∗ (2.88)

is bound to the commutativity of the two operators. In fact:

Theorem 2.4 Two Hermitian operators A and B are commutative, BA = AB, if
and only if they are simultaneously diagonalizable, that is, if and only if they have a
common basis made by eigenvectors.

The sufficiency of the theorem is immediately verified. In fact, if (2.87) and (2.88)
hold simultaneously, we have

BA = UΛ̃1U∗UΛ̃U∗ = UΛ̃1Λ̃U∗

where the diagonal matrices are always commutable, Λ̃1Λ̃ = Λ̃Λ̃1, thus BA = AB.
Less immediate is the proof of necessity (see [5, p. 229]).

Commutativity and non-commutativity of Hermitian operators play a role in
Heisenberg’s Uncertainty Principle (see Sect. 3.9).

2.12 Functional Calculus

One of the most interesting applications of the Spectral Theorem is Functional Cal-
culus, which allows for the introduction of arbitrary functions of an operator A,
such as

Am, eA, cos A,
√

A.

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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We begin by observing that from the idempotency and the orthogonality, in decom-
position (2.74) we obtain

Am =
∑

k

λm
k Pk .

Thus a polynomial p(λ), λ ∈ C over complex numbers is extended to the operators
in the form

p(A) =
∑

k

p(λk)Pk .

This idea can be extended to an arbitrary complex function f : C → C through

f (A) =
∑

k

f (λk)Pk . (2.89)

An alternative form of (2.89), based on the compact form (2.82), is given by

f (A) = U f (Λ̃)U∗ (2.89a)

where
f (Λ̃) = diag [ f (λ̃1), . . . , f (λ̃n)]. (2.89b)

The following theorem links the Hermitian operators to the unitary operators [4]

Theorem 2.5 An operator U is unitary if and only if it can be written in the form

U = eiA with AHermitian operator,

where, from (2.89),
eiA =

∑

k

eiλk Pk . (2.90)

For a proof, see [4]. As a check, we observe that, if A is Hermitian, its eigenvalues
λk are real. Then, according to (2.90), the eigenvalues ofU are eiλk , which, as it must
be, have unit modulus.

Importance of the exponential of an operator In Quantum Mechanics a funda-
mental role is played by the exponential of an operator, in particular in the form
eA+B , where A and B do not commute. This topic will be developed in Sect. 11.6.

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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2.12.1 Positive Semidefinite Operators

We first observe that if A is a Hermitian operator, the quantity 〈x |A|x〉 is always a
real number. Then a Hermitian operator is:

• nonnegative or positive semidefinite and is written as A ≥ 0 if

〈x |A|x〉 ≥ 0 ∀ |x〉 ∈ H (2.91)

• positive definite and is written as A > 0 if

〈x |A|x〉 > 0 ∀ |x〉 �= 0. (2.92)

From the Spectral Theorem it can be proved that [1, Theorem10.23]:

Theorem 2.6 In a finite dimensional space, a Hermitian operator A is positive
semidefinite (positive) if and only if its eigenvalues are nonnegative (positive).

Remembering that the spectrum of a projector P is σ(P) = {0, 1}, we find, as
anticipated in Sect. 2.9.3:

Corollary 2.1 The projectors are always positive semidefinite operators.

2.12.2 Square Root of an Operator

The square root of a positive semidefinite Hermitian operator A ≥ 0 is introduced
starting from its spectral resolution

A = λ1P1 + · · · + λk Pk λ j ≥ 0

in the following way: √
A = √

λ1P1 + · · · + √

λk Pk (2.93a)

or in equivalent form (see (2.89a))

√
A = U

√

Λ̃ U∗ (2.93b)

where
√

Λ̃ = diag [
√

λ̃1, . . . ,
√

λ̃n]. The definition of
√

A is unique and it can be
soon verified that from (2.93) it follows that

(√
A
)2 = A.

The square root of a Hermitian operator will find interesting applications in Quan-
tum Communications starting from Chap.6.

http://dx.doi.org/10.1007/978-3-319-15600-2_6
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2.12.3 Polar Decomposition

These decompositions regard arbitrary operators and therefore not necessarily Her-
mitian or unitary [4]

Theorem 2.7 (Polar decomposition) Let A be an arbitrary operator. Then there
always exists a unitary operator U and two positive definite Hermitian operators J
and K such that

A = UJ = KU

where J and K are unique with

J = √
A∗ A and K = √

AA∗. (2.94)

The theorem can be considered as an extension to square matrices of the polar
decomposition of complex numbers: z = |z| exp(i arg z).

2.12.4 Singular Value Decomposition

So far we have considered operators of the Hilbert space, which in particular become
complex square matrices. The singular value decomposition (SVD) considers more
generally rectangular matrices.

Theorem 2.8 Let A be an m × n complex matrix. Then the singular value decom-
position of A results in

A = UDV∗, (2.95)

where

• U is an m × m unitary matrix,
• V is an n × n unitary matrix,
• D is an m × n diagonal matrix with real nonnegative values on the diagonal.

The positive values di of the diagonal matrix D are called the singular values of
A. It can be proved that the SVD of a matrix A is strictly connected to the EIDs of
the Hermitian matrices AA∗ and A∗ A (see [4] and Chap.5).

If the matrix has rank r , the positive values di are r and a more explicit form can
be given for the decomposition

A = Ur Dr V ∗
r =

r
∑

i=1

di |ui 〉〈vi | (2.96)

http://dx.doi.org/10.1007/978-3-319-15600-2_5


66 2 Vector and Hilbert Spaces

where

• Ur = [|u1〉 · · · |ur 〉] is an m × r matrix,
• Vr = [|v1〉 · · · |vr 〉] is an n × r matrix,
• D is an r × r diagonal matrix collecting on the diagonal the singular values di .

The form (2.96) will be called the reduced form of the SVD. Both forms play a
fundamental role in the theory of quantum decision.

Example 2.10 Consider the 4 × 2 matrix

A = 1

12
√
2

⎡

⎢

⎢

⎢

⎣

5 1

3 − 2 i 3 + 2 i

1 5

3 + 2 i 3 − 2 i

⎤

⎥

⎥

⎥

⎦

.

The SVD UDV∗ of A results in

U =

⎡

⎢

⎢

⎢

⎢

⎣

1
2

1
2

1
2

1
2

1
2

−i
2 − 1

2
i
2

1
2 − 1

2
1
2 − 1

2
1
2

i
2 − 1

2
−i
2

⎤

⎥

⎥

⎥

⎥

⎦

, V =
⎡

⎣

1√
2

1√
2

1√
2

− 1√
2

⎤

⎦ , D =

⎡

⎢

⎢

⎢

⎣

1
2 0

0 1
3

0 0

0 0

⎤

⎥

⎥

⎥

⎦

.

Therefore the singular values are d1 = 1/2 and d2 = 1/3. The reduced form
Ur Dr V ∗

r becomes

Ur =

⎡

⎢

⎢

⎢

⎢

⎣

1
2

1
2

1
2

−i
2

1
2 − 1

2
1
2

i
2

⎤

⎥

⎥

⎥

⎥

⎦

, Vr = V =
⎡

⎣

1√
2

1√
2

1√
2

− 1√
2

⎤

⎦ , Dr =
[

1
4 0

0 1
9

]

.

We leave it to the reader to verify that, carrying out the products in these decompo-
sitions, one obtains the original matrix A.

2.12.5 Cholesky’s Decomposition

Another interesting decomposition for Hermitian matrices is given by Cholesky’s
decomposition [4].

Theorem 2.9 (Cholesky’s decomposition) Let A be an n × n positive semidefinite
Hermitian matrix, then there exists an upper triangular matrix U, of dimensions
n × n, with nonnegative elements on the main diagonal, such that
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A = U∗U.

If A is positive semidefinite then the matrix U is unique, and the elements of its main
diagonal are all positive.

For a given matrix A it can turn out to be useful as an alternative to the EID for
the factor decomposition of the density operators (see Chap. 5).

Example 2.11 Consider again the Hermitian matrix of Example2.1

A = 1

4

⎡

⎢

⎢

⎣

7 −1 + 2i −1 −1 − 2i
−1 − 2i 7 −1 + 2i −1

−1 −1 − 2i 7 −1 + 2i
−1 + 2i −1 −1 − 2i 7

⎤

⎥

⎥

⎦

.

Cholesky’s decomposition, obtained with Mathematica, is specified by the trian-
gular factor

U =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√
7
2 −

1
2−i√
7

− 1
2
√
7

−
1
2+i√
7

0
√

11
7 − 2−3i√

77
− 1+i√

77

0 0
√

17
11 − 3−4i√

187

0 0 0 2
√

6
17

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1.32 −0.19 + i 0.38 −0.19 −0.19 − i 0.38
0 1.25 −0.23 + i 0.34 −0.11 − i 0.11
0 0 1.24 −0.22 + i 0.29
0 0 0 1.19

⎤

⎥

⎥

⎦

.

The decomposition is unique and has positive elements on the main diagonal, as
predicted by Theorem2.9.

Problem 2.11 � � � Let A be an arbitrary operator of the Hilbert space H. Show
that the operator AA∗ is always positive semidefinite.

Hint: use diagonalization of A.

2.13 Tensor Product

The tensor product makes it possible to combine two or more vector spaces to obtain
a larger vector space. In Quantum Mechanics it is used in Postulate 4 to combine
quantum systems.

Before giving the definition, we introduce the symbolism that will be used. If
H1 and H2 are two Hilbert spaces (on complex numbers), their tensor product is
indicated in the form

H = H1 ⊗ H2

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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and, as we will see, the new Hilbert space H has dimension

dim(H1 ⊗ H2) = dim(H1)dim(H2).

If |x〉 ∈ H1 and |y〉 ∈ H2 the kets and the bras of H are indicated, respectively, in
the form

|x〉 ⊗ |y〉 〈x | ⊗ 〈y| , (2.97)

which is sometimes simplified as

|x〉|y〉 〈x |〈y|. (2.97a)

If A is an operator ofH1 and B is an operator ofH2, the operator ofH is indicated
in the form

A ⊗ B.

We now list the abstract definitions of the vectors and of the operators that are
obtained through the tensor product. However, as these definitions are very abstract,
or better, scarcely operational, they can be skipped and the reader may move to the
next section, where the tensor product is developed for matrices and is more easily
understood.

2.13.1 Abstract Definition ⇓

We want to combine two Hilbert spacesH1 andH2 using the tensor product ⊗, and
let us denote by |x〉, |x1〉, |x2〉 arbitrary kets of H1, and by |y〉, |y1〉, |y2〉 arbitrary
kets of H2. Then, by definition, the tensor product of kets must have the following
properties:

(1) homogeneity

a(|x〉 ⊗ |y〉) = (a|x〉) ⊗ |y〉 = |x〉 ⊗ a(|y〉) (2.98a)

(2) linearity with respect to the first factor

(|x1〉 + |x2〉) ⊗ |y〉 = |x1〉 ⊗ |y〉 + |x2〉 ⊗ |y〉 (2.98b)

(3) linearity with respect to the second factor

|x〉 ⊗ (|y1〉 + |y2〉) = |x〉 ⊗ |y1〉 + |x〉 ⊗ |y2〉. (2.98c)
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Once defined the tensor products between the kets, imposing the above conditions,
the tensor product between bras can be obtained as follows:

〈x | ⊗ 〈y| = (|x〉)∗ ⊗ (|y〉)∗.

Then we can move on to define the tensor product of two operators in this way:

(A ⊗ B)(|x〉 ⊗ |y〉) = (A|x〉) ⊗ (B|y〉) (2.99)

where on the right-hand sidewe find the tensor product of two kets, which has already
been defined.

Finally, the inner product on H = H1 ⊗ H2 is defined by the inner products on
H1 and H2, through the relation

(〈x1| ⊗ 〈y1|)(|x2〉 ⊗ |y2〉) = 〈x1|x2〉 〈y1|y2〉. (2.100)

2.13.2 Kronecker’s Product of Vector and Matrices

Consider two row vectors written in standard notation

x = [x0, . . . , xm−1], y = [y0, . . . , yn−1]

and suppose we want to form a “product” containing all possible products between
the elements of two vectors

xi y j , i = 0, 1, . . . , m − 1, j = 0, 1, . . . , n − 1

The natural procedure would be to build the m × n matrix

[xi y j ]

but with the Kronecker product we want to build a vector containing all the mn
products. The problem is that of passing from a bidimensional configuration (2D),
like the matrix [xi y j ], to a 1D configuration, as a vector is. But, while in 1D there
is a natural order of the indexes, namely 0, 1, 2, . . ., in 2D such order does not exist
for the indexes (i, j). We must then introduce a conventional ordering to establish,
for example, whether (1, 2) comes before or after (2, 1). A solution to the problem
is given by the lexicographical order10 obtained as follows: in the pair of indexes
(i, j) we fix the first index starting from i = 0 and let run the second index j along

10 This name comes from the order given to words in the dictionary: a word of k letters,
a = (a1, . . . , ak) appears in the dictionary before the word b = (b1, . . . , bk), symbolized a < b, if
and only if the first ai which is different from bi comes before bi in the alphabet. In our context the
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its range, obtaining (0, 0), (0, 1), . . . , (1, n − 1), we then move to the value i = 1,
until i = m −1. In this way we associate the pair of integer indexes to a single index
given by

h = j + (i − 1) n, j = 0, 1, . . . , n − 1 i = 0, 1, . . . , m − 1

which gives the required 1D ordering. The resulting vector can be written in the
compact form:

x ⊗ y = [x1y, x2y, . . . , xm y] (2.101)

where the form xi y indicates the n-tuple (xi y1, . . . , xi yn). Relation (2.101) defines
Kronecker’s product of two vectors x and y.

Next we consider two matrices

A = [air ], i = 1, . . . , m, r = 1, . . . , p

B = [bis], j = 1, . . . , n, s = 1, . . . , q

where the dimensions are respectively m × p and n × q. To collect all the products
of the entries of the two matrices we would have to form a 4D matrix

[air b js]

but, if we want a standard 2D matrix, we apply the lexicographical order to the pairs
of indexes (i, j) and (r, s), given by the integers

h = j + i(p − 1), k = s + r(q − 1)

where h goes from 1 to mp and k from 1 to nq. In this way we build an A ⊗ B matrix
of dimension mn × pq.

The compact form for A ⊗ B is

A ⊗ B =
⎡

⎢

⎣

a11B . . . a1p B
...

. . .
...

am1B . . . amp B

⎤

⎥

⎦
(2.102)

where on the left-hand side we notice the “blocks” ai j B, which are n × q matrices.
Once we expand these blocks, we can see that on the left-hand side the resulting
matrix has dimensions mn × pq.

(Footnote 10 continued)
alphabet is given by the set of integers. Then we find, e.g., that (1, 3) < (2, 1), (0, 3, 2) < (1, 0, 1)
and (1, 1, 3) < (1, 2, 0).
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It can be verified that (2.102) falls into the abstract definition of tensor product,
based on the previous “abstract” conditions (1), (2), and (3).

Relation (2.102) extends to matrices in the compact form (2.101) seen for vectors
and represents the definition of the Kronecker product for matrices. It includes the
case of vectors, provided that vectors are regarded as matrices.

Example 2.12 If

|a〉 =
[

a1
a2

]

, |b〉 =
⎡

⎣

b1
b2
b3

⎤

⎦

the tensor product gives

|a〉 ⊗ |b〉 =
[

a1b
a2b

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a1b1
a1b2
a1b3
a2b1
a2b2
a2b3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

which is a 6 × 1 vector. In particular,

|a〉 =
[

1 + i
2 + i

]

, |b〉 =
⎡

⎣

1 + i
2 + 2i
3 + 2i

⎤

⎦ → |a〉 ⊗ |b〉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2i
4i

5 + i
1 + 3i
2 + 6i
4 + 7i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

If

A =
[

a11 a12
a21 a22

]

, B =
⎡

⎣

b11 b12
b21 b22
b31 b32

⎤

⎦

are two matrices of dimensions, respectively, 2 × 2 and 3 × 2, the tensor product
yields

A ⊗ B =
[

a11B a12B
a21B a22B

]

which is a 6 × 4 matrix. In particular, if
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A =
[

i 3
2 + i 1

]

, B =
⎡

⎣

2i 1
2 i
i 3

⎤

⎦ → A ⊗ B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2 i 6i 3
2i −1 6 3i
−1 3i 3i 9

−2 + 4i 2 + i 2i 1
4 + 2i −1 + 2i 2 i

−1 + 2i 6 + 3i i 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

For Kronecker’s product (2.102) the following rules can be established. The trans-
pose and the conjugate transpose simply result in

(A ⊗ B)T = AT ⊗ BT, (A ⊗ B)∗ = A∗ ⊗ B∗ (2.103)

and also the important rule holds (valid if the dimensions are compatiblewith ordinary
products)

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (B D) (2.104)

which contains both the Kronecker product and the ordinary matrix product and
will be called mixed-product law. In addition, for two invertible square matrices
we have

(A ⊗ B)−1 = A−1 ⊗ B−1. (2.105)

2.13.3 Properties of the Tensor Product

Kronecker’s product of matrices allows us now to interpret and verify the definition
and the properties of the tensor product on Hilbert spaces. This is done directly when
H1 = C

m an H2 = C
n and it turns out that H1 ⊗ H2 = C

mn , but using the matrix
representation it can be done for arbitrary Hilbert spaces of finite dimension (and
with some effort even of infinite dimension).

Then, if H1 and H2 have dimensions, respectively, m and n, and if |x〉 ∈ H1,
|y〉 ∈ H2, it results that:

• |x〉 ⊗ |y〉 is a ket of dimension mn (column vector)
• 〈x | ⊗ 〈y| is a bra of dimension mn (row vector).

For example, given the two kets |x〉 ∈ H1 = C
2 and |y〉 ∈ H2 = C

3

|x〉 =
[

x1
x2

]

, |y〉 =
⎡

⎣

y1
y2
y3

⎤

⎦
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the tensor product gives

|x〉 ⊗ |y〉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1y1
x1y2
x1y3
x2y1
x2y2
x2y3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 〈x | ⊗ 〈y| = [

x∗
1 y∗

1 , x∗
1 y∗

2 , x∗
1 y∗

3 , x∗
2 y∗

1 , x∗
2 y∗

2 , x∗
2 y∗

3

]

.

If A is an operator of H1 and B is an operator of H2, then

• A ⊗ B is an operator to which an mn × mn square matrix must be associated.

The following general properties can also be established:

(1) If {|bi 〉, i ∈ I } is a basis for H1 and {|c j 〉, j ∈ J } is a basis forH2, then

{|bi 〉 ⊗ |c j 〉, i ∈ I, j ∈ J } (2.106)

is a basis forH1 ⊗ H2.
(2) dim(H1 ⊗ dimH2) = dimH1 dimH2.
(3) If {λi , i ∈ I } is the spectrum of A and {μ j , j ∈ J } is the spectrum of B, the

spectrum of A ⊗ B results in

σ(A ⊗ B) = {λi μ j , i ∈ I, j ∈ J }. (2.107)

Analogously, the eigenvalues of A ⊗ B are given by {|λi 〉 ⊗ |μi 〉}.
(4) If A and B are (unitary) Hermitian operators, also A⊗ B is a (unitary) Hermitian

operator.
(5) If A and B are positive definite Hermitian operators, also A ⊗ B is a positive

definite Hermitian operator.
(6) For the trace, the simple rule holds that

Tr[A ⊗ B] = Tr[A] Tr[B]. (2.108)

Final Comment on Tensor Product

Asmentioned, the tensor product appears in Postulate 4 of QuantumMechanics. The
properties of this product, albeit with a rather heavy symbolism, seem natural enough
at first glance. However, just these apparently “intuitive” properties lead to paradox-
ical consequences, which are at the foundations of very interesting applications, as
we will see at the end of the following chapter.
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Problem 2.12 � Prove that if A and B are Hermitian operators, also A ⊗ B is a
Hermitian operator.

Problem 2.13 �� Establish the compatibility conditions for the dimensions of the
matrices in the mixed-product law (2.104).

Problem 2.14 �� Prove property (2.107) of the Kronecker product and, more
specifically, prove that, if λ is an eigenvalue of A with eigenvector |λ〉 and μ is
an eigenvalue of B with eigenvector |μ〉, then λμ is an eigenvalue of A ⊗ B with
eigenvector |λ〉 ⊗ |μ〉.
Problem 2.15 � � � The mixed-product law can be extended in several ways. In
particular,

(A1 ⊗ A2)(B1 ⊗ B2)(C1 ⊗ C2) = (A1B1C1) ⊗ (A2B2C2). (E5)

Prove this relation using (2.104).

Problem 2.16 �� Prove that, if the matrices A1 and A2 have, respectively, the
diagonalizations (see (2.87))

A1 = U1Λ1U∗
1 , A2 = U2Λ2U∗

2

then
A1 ⊗ A2 = (U1 ⊗ U2)(Λ1 ⊗ Λ2)(U

∗
1 ⊗ U∗

2 ) (E6)

is a diagonalization of A1 ⊗ A2.

2.14 Other Fundamentals Developed Throughout the Book

This chapter developed the essential fundamentals necessary for the comprehension
of the elements of QuantumMechanics that will be used in the next chapter, which in
turn are indeed required in the study ofQuantumCommunications systems developed
in Part II.

On the other hand, the mathematics encountered in the field of QuantumMechan-
ics is very extensive and a further development of fundamentals is out of the scope
of this book. Considering our philosophy of introducing the needed preliminaries in
a gradual form, a few fundamentals, which will be needed in Part III on Quantum
Information, will be introduced just before describing the applications. We mention
in particular the EID with a continuous spectrum and the partial trace.
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Chapter 3
Elements of Quantum Mechanics

3.1 Introduction

Quantum Mechanics will be formulated assuming four postulates:

• Postulate 1: gives the universal model of any physical system: a Hilbert space on
the field of complex numbers.

• Postulate 2: models the temporal evolution of a closed physical system that is not
influenced by other physical systems.

• Postulate 3: regards the information that can be extracted (through a quantum
measurement) from a quantum system at a given time instant.

• Postulate 4: formalizes the interaction among physical systems through a combi-
nation of multiple Hilbert spaces into a single Hilbert space.

In this formulation we will partly follow Nielsen and Chuang’s textbook [1], which
appears as one of the most complete and up to date. The variations with respect to
such textbook, which is mainly concerned with Quantum Computing and Quantum
Information, come mostly from the fact that our main objective is Quantum Com-
munications. Therefore, some aspects of Quantum Mechanics will not be further
expanded, such as the consequences of Postulate2 on the evolution of a quantum
system, while other points, in particular quantum measurements (Postulate3) will be
exhaustively investigated.

Clearly, the postulates of Quantum Mechanics are completely abstract, and give
no indications on how to associate to a given physical system a corresponding Hilbert
space. However, this is a common aspect of all the models of reality, in which the
match between the mathematical model and the physical reality to be described
must be done in a “reasonable” way, often with the help of Classical Mechanics.
The success of the choice will depend on the consequences and the results that
will be obtained. This does not rule out the existence of well-established choices
in particular domains, such as the model of an atomic or subatomic particle, or the
model of the electromagnetic radiation produced by a laser. An example of real-
world model, again based on few axioms, and certainly familiar to the reader, is

© Springer International Publishing Switzerland 2015
G. Cariolaro, Quantum Communications, Signals and Communication Technology,
DOI 10.1007/978-3-319-15600-2_3
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given by Probability Theory which forms the framework for many disciplines, with
undoubtedly useful consequences and results.

The fundamentals of QuantumMechanics formulated in this chapter through four
postulates are adequate for the development of Quantum Communications in Part
II (which will be confined to the digital transmission of information). But a further
in-depth analysis will be necessary in the final chapters (Part III) for the development
of Quantum Information.

3.2 The Environment of Quantum Mechanics

The first postulate of Quantum Mechanics defines the environment in which any
physical system must be described (Fig. 3.1).

Postulate 1 To each closed (or isolated) physical system, a Hilbert space H of
appropriate dimension on the field C of complex numbers, called state space, must
be associated. At each time instant of its evolution, the system is completely specified
by a state |ψ〉, given by a unit vector of H. �

Clearly, this postulate, like the other postulates of Quantum Mechanics, is com-
pletely abstract, and does not specify the nature of the state |ψ〉, except for the
mathematical detail that |ψ〉 must be unitary, that is, it must verify the normalization
condition

〈ψ |ψ〉 = 1. (3.1)

An important consequence on the possible states of a quantum system, deriving
from the linearity of Hilbert spaces, is state superposition: if |ψ1〉, |ψ2〉, . . . , |ψn〉
are states ofH, also their linear combination

|ψ〉 = a1|ψ1〉 + a2|ψ2〉 + · · · + an|ψn〉, ai ∈ C (3.2)

Fig. 3.1 Representation
of a quantum system
in the state |ψ〉

|ψ
•

H

H: Hilbert space on complex numbers

|ψ : state of the system
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is a state ofH. The complex coefficients ai must verify the normalization condition
(3.1), given by

∑

i

∑

j

a∗
i a j 〈ψi |ψ j 〉 = 1 . (3.2a)

The state superposition has several consequences, sometimes surprising, and
represents a remarkable difference of Quantum Mechanics with respect to Classic
Mechanics.

On the phase of a quantum state. As an additional mathematical detail, it must be
pointed out that a quantum state is defined modulus a phase rotation, and precisely
all the vectors obtained by multiplying a ket |ψ〉 by an arbitrary phasor eiϕ are
representing the same state.

3.2.1 An Elementary Example of a Quantum System: The
Qubit

The most elementary example of a quantum system is the qubit, which must be seen
as a bidimensional Hilbert space, substantially H = C

2. In such space, a basis is
provided by two orthonormal vectors, indicated in the form |0〉 and |1〉. A generic
state of a qubit system can be expressed in the form

|ψ〉 = a |0〉 + b |1〉 (3.3)

where a and b are complex numbers. As the normalization condition must hold, a
and b are not arbitrary, but must verify the condition

|a|2 + |b|2 = 1.

For instance

|ψ1〉 = 1√
2

|0〉 + 1√
2

|1〉, |ψ2〉 = i√
3
|0〉 + i + 1√

3
|1〉

are possible states of this bidimensional system. In particular, |ψ2〉 is the superpo-
sition of the state |0〉, with amplitude i/

√
3, and of the state |1〉, with amplitude

(i + 1)/
√
3.

The qubit, intended as a quantum system, can be compared to the bit, intended as
a two-state binary system (and not as the unit of measure of information). To the state
|0〉 (|1〉) of the qubit it corresponds the state 0 (1) of the bit; but the qubit can be in
every state given by the superposition of |0〉 and |1〉 according to (3.3) and therefore
has an infinity of possible states, whereas the bit presents only two states: state 0 and
state 1, with no intermediate states. Other more remarkable differences between the
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qubit and the bit will be seen with the other postulates. Considering the importance,
we must examine the qubit more thoroughly. This will be done in Sect. 3.12 of this
chapter.

3.2.2 A More Elaborate Example: The Laser Radiation

The quantum system describing a monochromatic coherent radiation emitted by a
laser at a certain optical frequency ν, and observed within a certain time interval, is
formulated by an infinite dimensional Hilbert space H. In this system the basis is
given by a set {|n〉 , n = 0, 1, . . .} of orthonormal states in which the parameter n is a
natural number representing the number of photons contained in the state |n〉; for this
reason, the states |n〉 are called number states (or Fock states). Once fixed this basis,
the monochromatic radiation of a laser is represented by a coherent state |α〉, which
is given by the linear combination of number states, according to the expression

|α〉 = e− 1
2 |α|2

∞
∑

n=0

αn

√
n! |n〉 . (3.4)

Hereα is a complex parameter characterizing the state |α〉.Note that in this expression
|α〉 is a quantum state, a point of the infinite dimensional Hilbert spaceH with basis
the number states |n〉, while α is a complex number. In symbols |α〉 ∈ H and α ∈ C.
Also, |n〉 ∈ H, while n is a non negative integer.

As we will see, using the postulate on quantum measurements, it can be proved
that α has the meaning given by

|α|2 = average number of photons in state |α〉. (3.4a)

By fixing α, e.g., α = 0.6− i2.4, one gets from (3.4) the coherent state |0.6− i2.4〉,
having |α|2 = 6.12 as average number of photons. In particular, for α = 0 we obtain
the state |0〉, containing no photons (ground state). According to (3.4), this state
coincides with the state |0〉 of the number states |n〉, that is,

|α〉α=0 = |n〉n=0 . (3.4b)

We can guess from the structure of (3.4) that the random variables bound to the
coherent states are related to the Poisson regime.

Coherent stateswill play a fundamental role in optical communications formulated
according to QuantumMechanics [2, 3]. They will be further investigated in Chap. 7
and subsequent, and mainly in Chap.11 in the context of Gaussian states.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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Example 3.1 Let us prove that the state given by (3.4) verifies the normalization
condition 〈α|α〉 = 1, as required by Postulate1. The bra 〈α| corresponding to the
ket (3.4) results in

〈α| = e− 1
2 |α|2

∞
∑

m=0

(α∗)m

√
m! 〈m|

and therefore, remembering that the number states |n〉 are orthonormal, that is,
〈m|n〉 = δmn , we obtain

〈α|α〉 = e−|α|2
∞
∑

m=0

∞
∑

n=0

(α∗)mαn

√
m!n! 〈m|n〉

= e−|α|2
∞
∑

m=0

|α|2m

m!
= e−|α|2e|α|2 = 1 .

Notice that the normalization applies also to the ground state |0〉, which then has unit
amplitude (and should not be confused with the null element of the Hilbert space).

3.3 On the Statistical Description of a Closed Quantum
System

The first postulate of Quantum Mechanics establishes that a closed (or isolated)
quantum system, formalized through a Hilbert space H, at each time instant of its
evolution, is completely described by a unit vector of H, called state. We must
insist1 on the fact that at each preset instant t , the system is at one precise point of
H expressed by a ket.

3.3.1 Pure States and Mixed States

Wefirst remark that, oncewe have decided to represent a physical system by aHilbert
space of a given dimension, any point of H is an admissible state. For instance, in
a qubit system, where H = C

2, every pair of complex numbers, constrained by
normalization, is an admissible state.

1 This insistence is justified by the fact that in the literature one finds expressions like “the system is
in a mixture of states (mixed states),” which suggests the idea of a simultaneous presence of many
states, whereas the first postulate of Quantum Mechanics establishes that an isolated system is in
just one well-defined state.
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|ψ
•

H

•

•
|ψi

•

•

Hpi=P[s=|ψ ]=1 pi=P[s=|ψi ]

ρ=|ψ ψ| ρ=∑i pi |ψi ψi |

Fig. 3.2 Quantum system H in condition of certain state (pure state) and of random state (mixed
states)

The following classification (pure and mixed states) is concerned with the knowl-
edge one has about the state of the system at a given time instant. The degree to
which the state of a quantum system is known depends on the point of view of the
observer, who may either fully know the system’s state, or only know its statistical
description. In other words, two cases must be considered:

(1) the observer knows the state of the system, say s = |ψ〉 ∈ H, with certainty,
(2) the observer knows that the state of the system belongs to a subset of H, say

S = {|ψ1〉, |ψ2〉, . . .}, but knows the specific state only probabilistically, through
the probabilities

pi := P[s = |ψi 〉] , (3.5)

obviously with pi ≥ 0 and
∑

i pi = 1.

The two situations are schematically illustrated in Fig. 3.2.
If we want to describe these two points of view in a single probabilistic model, in

case (1) the state {s = |ψ〉} represents the certain event, i.e. with P[s = |ψ〉] = 1,
while in case (2) the state s must be expressed as a random entity, that is, as a random
variable, or, more specifically, as a random state. Then, according to Probability
Theory, the random state is completely described by the ensemble

E = (S, p), with S = {|ψ1〉, |ψ2〉, . . .} and pi = P[s = |ψi 〉] . (3.6)

An alternative way of describing the random state s, commonly adopted in Quan-
tum Mechanics, is given by the density operator, defined as follows

ρ =
∑

i

pi |ψi 〉〈ψi | (3.7)

and is therefore given by a linear combination of the elementary operators |ψi 〉〈ψi |,
weighed by the respective probabilities.
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The density operator also allows us to describe a system in a pure state |ψ〉 through
the degenerate form

ρ = |ψ〉〈ψ | (3.8)

where P[s = |ψ〉] = 1.
As will be seen in the coming paragraphs, from the density operator ρ we can

obtain all the statistical descriptions relevant to Quantum Mechanics, because ρ

encompasses in its structure both the states and their probabilities.

Pure states and mixture of states. In QuantumMechanics, to indicate that the state
of the quantum system is known, or certain, it is said to be in a pure state. On the
other hand, if the state is probabilistically known, and, as we have seen, it is a random
variable, the system is said to be in a mixture of states (mixed states), characterized
by the density operator ρ [4, 5]. Nielsen and Chuang [1] to indicate a mixture of
states use the terminology ensemble {pi , |ψi 〉}, which appears more appropriate. The
terms pure state and mixed states are so consolidated in the literature that they will
be used also in this book. Note that we often encounter expression of the form: “the
quantum system is in state ρ” to indicate the presence of a mixed state characterized
by the density operator ρ (not excluding that ρ be a pure state with the degenerate
form (3.8)).

3.3.2 Properties of the Density Operator

As seen above, the density operator derives from two entities: the probabilities {pi }
and the states {|ψi 〉}. In general, no restriction is imposed on the states, apart from
the fact that they must be unitary, 〈ψi |ψi 〉 = 1. Thus, in general, the states of the
ensemble {pi , |ψi 〉} are not orthogonal.

It can be verified that the density operator has the following properties:

(1) ρ = ρ∗, it is a Hermitian operator,
(2) ρ ≥ 0, it is a positive semidefinite operator,
(3) Tr(ρ) = 1, it has unitary trace,
(4) Tr(ρ2) ≤ 1 and in particular Tr(ρ2) = 1 if and only if the system is in a pure

state.

To prove property (2), consider an arbitrary state |ϕ〉 ∈ H. We obtain

〈ϕ|ρ|ϕ〉 =
∑

i

pi 〈ϕ|ψi 〉〈ψi |ϕ〉

=
∑

i

pi |〈ϕ|ψi 〉|2 ≥ 0
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and then, by definition (see (2.91)), ρ ≥ 0. For property (3) we use the linearity of
the trace

Tr[ρ] =
∑

i

piTr[|ψi 〉〈ψi |] =
∑

i

pi = 1

where Tr[|ψi 〉〈ψi |] = 1 because |ψi 〉〈ψi | is an elementary projector (see Sect. 2.9).
Property (4),whichwill be proved in Problem3.2 and also verified on some examples,
makes it possible to check whether the system is in a certain state (for the observer)
or in a state only statistically known.

Example 3.2 Consider a qubit in a generic pure state |ψ〉 = a|0〉 + b|1〉 with |a|2 +
|b|2 = 1, where {|0〉, |1〉} is the basis. The density operator results in

ρ = |ψ〉〈ψ | = (a|0〉 + b|1〉)(a∗〈0| + b∗〈1|)
= |a|2|0〉〈0| + |b|2|1〉〈1| + ab∗|0〉〈1| + ba∗|1〉〈0| .

In terms of matrices, with

|0〉 =
[

1
0

]

, |1〉 =
[

0
1

]

it results

|0〉〈0| =
[

1 0
0 0

]

, |1〉〈1| =
[

0 0
0 1

]

, |0〉〈1| =
[

0 1
0 0

]

, |1〉〈0| =
[

0 0
1 0

]

and therefore

ρ =
[|a|2 ab∗

a∗b |b|2
]

=
[

a
b

]

[a∗ b∗] .

We observe that
Tr[ρ] = |a|2 + |b|2 = 1 ,

while we leave it to the reader to verify that Tr[ρ2] = 1.
Suppose now that the qubit is in a mixed state, namely in the state |0〉 with

probability 1
3 and in the state |1〉 with probability 2

3 . Then, the qubit is described by
the density operator

ρ = 1

3
|0〉〈0| + 2

3
|1〉〈1|

which in term of matrices yields

ρ =
[ 1
3 0
0 2

3

]

→ ρ2 =
[ 1
9 0
0 4

9

]

.

Now Tr[ρ] = 1 while Tr[ρ2] = 5
9 < 1.

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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Example 3.3 (Thermal noise) In a cavity at thermal equilibrium at a certain absolute
temperature T0 a chaotic radiation takes place, known as thermal noise or background
noise. Through the statistical theory of thermodynamics we can formulate such noise
in the framework of the same Hilbert space seen for coherent states, where the
orthonormal basis is formed by the number states |n〉. It can be shown [5] that the
corresponding density operator results in

ρ = (1 − ε)

∞
∑

n=0

εn|n〉〈n|, ε := e−hν/kT0 (3.9)

where ν is the frequency of the radiation mode and T0 the absolute temperature (h
and k are Planck’s and Boltzmann’s constants respectively). It can be proved (see
Problem3.3) that such operator verifies the condition

Tr[ρ2] = 1 − ε

1 + ε
< 1 ,

which establishes that the cavity is not in a pure state, but in a mixture of states (as
expected, because the observer doesn’t know the states of the system).

3.3.3 Nonunicity of the Density Operator Decomposition

Given a density operator ρ, with properties (1) to (4), the decomposition (3.7) is not
unique. This means that two or more ensembles E = (S, p) can give the same ρ. For
instance, in the qubit system of Example3.2 we have seen that the ensemble

|ψ1〉 = |0〉 , p1 = 1

3
, |ψ2〉 = |1〉 , p2 = 2

3
(3.10)

gives the density operator ρ = 1
3 |0〉〈0| + 2

3 |1〉〈1|. But the same density operator is
obtained with the ensemble (see Problem3.4)

|ψ1〉 =
√

1

3
|0〉 +

√

2

3
|1〉 , p1 = 1

2
, |ψ2〉 =

√

1

3
|0〉 −

√

2

3
|1〉 , p2 = 1

2
(3.11)

and also with the ensemble of four states

|ψ1〉 = − 1√
3

|0〉 − 2 i√
6

|1〉, p1 = 1

4
, |ψ2〉 = + 1√

3
|0〉 − 2√

6
|1〉 , p2 = 1

4

|ψ3〉 = − 1√
3

|0〉 + 2 i√
6

|1〉, p3 = 1

4
, |ψ4〉 = + 1√

3
|0〉 + 2√

6
|1 〉 , p4 = 1

4
.

(3.12)
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In general, to a density operator one can associate infinitely many ensembles.
The topic of the multiplicity of the ensembles of a density operator will be sys-

tematically developed in Sect. 3.11 at the end of this chapter.

3.3.4 Role of Density Operators

The density operators play a fundamental role in Quantum Mechanics, to the point
that its very postulates can be formulated exclusively in terms of density operators
[1, Chap. 2].

In Quantum Communications, developed in Part II, at the transmission side, the
modulator (or encoder) chooses a pure state among an alphabet of possible states;
the density operator is then of the type |ψ〉〈ψ |. In reception, one can still refer to a
pure state, if the thermal noise in neglected, but if we consider the thermal noise, the
state is not pure anymore, and we must proceed with density operators.

InQuantum Information, developed in Part III, amore sophisticated use ismade of
a density operator, through the representation in the phase space by the characteristic
function and by the Wigner function. These functions will allow for the introduction
of the important class of Gaussian states.

Problem 3.1 	 Prove that the density operator ρ of a quantum system in a pure
state is idempotent.

Problem 3.2 	 	 ∇ Prove that, if and only if Tr[ρ2] = 1, the density operator ρ

represents a pure state.
Hint: see Proposition3.5.

Problem 3.3 		 Prove relation (3.9), which states that a cavity at thermal equilib-
rium is in a mixed state.

Problem 3.4 		 Verify that the ensembles (3.10)–(3.12) give the same density
operator.

3.4 Dynamical Evolution of a Quantum System

Above we considered the state of a quantum system at a fixed time and now we
consider its temporal evolution. The assumption is that the system is closed as in
Postulate1, that is, “left to itself”, and in particular such that it is not affected bymea-
surement instruments. To describe this temporal evolution, two equivalent visions
are available: one is Schrödinger’s picture, the other is Heisenberg’s picture. Both
are described by a Hamiltonian operator H , a Hermitian operator corresponding
to the total energy of the physical system.2 The Hamiltonian generates the unitary

2 The Hamiltonian is often called observable, for a reason we shall see in the context of quantum
measurements (see Sect. 3.6).
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evolution U . In the Schrödinger’s picture the quantum state evolves according to U
and the observable is fixed (constant), while in the Heisenberg’s picture the state is
fixed and the observable evolves in time.

3.4.1 Postulate 2 of Quantum Mechanics

Let us indicate by |ψ(t)〉 ∈ H the state of the system at time t , which in this context
is called wave function.

Postulate 2 Theevolutionof a closedquantumsystem is describedbyaHamiltonian
operator H(t) through Schrödinger’s equation

i �
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 (3.13)

where |ψ(t)〉 is the wave function and � = h/(2π) is the reduced Planck’s constant.
As an alternative: The evolution of a closed quantum system is described by a

unitary operator U . If |ψ(t0)〉 is the state of the system at time t0, the state of the
system at time t becomes

|ψ(t)〉 = U (t0, t) |ψ(t0)〉 t > t0 (3.14)

where U = U (t0, t) depends only on t0 and t . �

According to this postulate, the dynamics of the quantum system is described by
theHamiltonian operator H(t), or by the temporal evolution operator U = U (t0, t),
in the sense that once we know H(t), we can solve the differential equation (3.13),
and then compute the temporal evolution (3.14).

It is important to remark that the postulate must be completed by some noncom-
mutativity conditions (see (3.21)). As a matter of fact, it will be the consequent
noncommutative algebra that will make the difference between QuantumMechanics
and Classical Mechanics. A second remark is that the restriction of the temporal
evolution of a quantum system to unitary operators has the important consequence
that not all temporal evolutions are possible. An example of an impossible action is
the copy, or clonation, of information (No-cloning Theorem). This will be seen at
the end of the chapter because it requires Postulate4.

The equivalence of the two formulations of Postulate2 is based on the following
statement.

Proposition 3.1 The Hermitian property of the Hamiltonian, H∗(t) = H(t), implies
the unitary property of the temporal evolution operator, U (t0, t) U∗(t0, t) = IH.

We limit the proof to the case in which the Hamiltonian is independent of time t .
In the case in which the Hamiltonian contains explicitly the time t , the conclusion is
the same, but the proof is cumbersome and can be found in [6].
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If the Hamiltonian H is not time-dependent, that is, H(t) = H , the solution to
Schrödinger’s equation is immediate and given by

|ψ(t)〉 = exp

[

− i

�
H (t − t0)

]

|ψ(t0)〉, t > t0 (3.15)

thus the temporal evolution results in

U (t − t0) = exp

[

− i

�
H (t − t0)

]

. (3.16)

This solution is the same as the one wewould obtain by considering H as a scalar, but
the exponential of an operator must be interpreted according to Functional Analysis
(see Sect. 2.12.3). Now we can easily check that relation (3.16) actually defines a
unitary operator, U U∗ = IH, as soon as we impose that H be Hermitian. This
conclusion is in agreement with Theorem2.5, which claims that an operator U is
unitary if and only if it can be expressed in the formU = exp(i H), with H Hermitian.

From the explicit solution (3.16) some important properties can be verified, valid
for any other solution of Schrödinger’s equation. In particular (see Problem3.5), the
norm of the wave function |ψ(t)〉 at time t remains of unit length, as it must be from
Postulate1. Moreover, the inner product of two wave functions |ψ1(t)〉 and |ψ2(t)〉
doesn’t change during the evolution; in particular, if two kets are orthogonal at time
t0, they stay orthogonal at each t > t0. In other words, in the geometry of quantum
evolution, lengths and angles between states are preserved.

Remark In Postulate2 the wave function is expressed as a pure state |ψ(t)〉, but it is
easy to express the evolution in terms of a density operator. Starting from definition
(3.7), which can now be rewritten showing the temporal dependency

ρ(t) =
∑

i

pi |ψi (t)〉〈ψi (t)|

and keeping inmind that for each state we have |ψi (t)〉 = U (t0, t)|ψi (t0)〉, we obtain
the relation

ρ(t) = U∗(t0, t)ρ(t0)U (t0, t), t > t0 (3.17)

which expresses the density operator at time t as a function of its initial value ρ(t0).

3.4.2 An Explicit Form of Hamiltonian. Reference System

The Hamiltonian operator H is associated to the energy of the system. For many
systems H can be obtained from the classic expression of energy in terms of coor-
dinates and moments, substituting these with the corresponding quantum operators.

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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A common reference system is given by a particle of mass m constrained to move
in one direction in a potential V (q), where q is the coordinate of the particle, which
may be any real number. We know from Classical Mechanics that the total energy
of a system is given by the sum of kinetic and potential energies

E = 1

2
m v2 + V (q) = 1

2

p2

m
+ V (q) (3.18)

where p = m v is the momentum and V (q) is a real function of the coordinate q. In
particular, in the harmonic oscillator the potential has the form V (q) = 1

2mω2q2,
where ω is the pulsation of the oscillator. In any case, the energy is expressed in
terms of two continuous dynamical variables: the momentum p and the coordinate
(position) q.

To treat this system according to the rules of Quantum Mechanics, we have to
replace the dynamical variables p and q with Hermitian operators (observ-
ables).3 Then the Hamiltonian reads as

H = 1

2

p2

m
+ V (q) (reference system) . (3.19)

It is remarkable that also the Hamiltonian H is a Hermitian operator, as can be easily
verified in the general case (3.19), and in particular in the case of the harmonic
oscillator, where

H = (p2 + ω2q2)

2m
(harmonic oscillator) . (3.20)

As noted before, the specification of the operators describing the physical system,
as p, q, and H , is not sufficient in QuantumMechanics, and should be completed by
the indication of the algebra the operators must obey. In the specific case the algebra
is non-commutative with the following commutation relation

[q, p] = i � IH (3.21)

where [·, ·] denotes the commutator (see Sect. 2.5), which in this case reads [q, p] =
q p − p q. This condition will lead to the quantization of the energy and represents
a remarkable difference with respect to Classical Mechanics, where p and q com-
mute. The commutation relation provides a link (Correspondence Principle) between
Quantum Mechanics and Classical Mechanics: if the Planck constant h → 0, the
operators p and q commute and a quantum solution should coincide with a classical
solution.

For an application of these concepts see the harmonic oscillator developed in
Sect. 11.3.

3 We use the same notation, p, q for the dynamic variables and operators. In the literature the
operators are usually marked with a hat, that is, p̂, q̂.

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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3.4.3 The Schrödinger and the Heisenberg Pictures

In the Schrödinger picture the Hermitian operators4 as pS , qS , and HS are time-
independent (fixed or stationary). Also, the bases are assumed as time-independent
and act as coordinate systems in Classical Mechanics. On the other hand, the state
describing the dynamical behavior of the system is time-dependent: if |ψ(t0)〉 is the
initial state, the state at time t is given by |ψS(t)〉 = U (t, t0)|ψ(t0)〉, as postulated by
(3.14). In the Heisenberg picture the Hermitian operators pH (t), qH (t), and HH (t),
and also the bases, are moving, while the state is fixed at the initial value |ψ(t0)〉. To
summarize

Schrödinger picture Heisenberg picture

Operators Fixed Moving

Bases Fixed Moving

State Moving Fixed

The two modes (pictures) of formulating Quantum Mechanics are physically
equivalent and this should not appear to be strange. For analogy, consider a moving
object in ClassicalMechanics: observing from a fixed coordinate system, one sees the
position of the object moving in time with a given time-dependent law, say q(t), with
initial value q(t0). On the other hand, observing from a coordinate system anchored
to the object, one sees a fixed position q(t0).

To establish the equivalence we have to link the state and the operators of the two
pictures. The states are related by (3.14), rewritten in the form

|ψS(t)〉 = U (t, t0) |ψH (t0)〉 (3.22)

where ψH (t0)〉 is fixed and |ψS(t)〉 is time-dependent. If AS is a (fixed) Hermitian
operator in the Schrödinger picture, in the Heisenberg picture it must be defined as

AH (t) = U∗(t, t0) AS U (t, t0) (3.23)

which provides the time-dependence of the operator.
But, for the equivalence, the commutation relations should be the same. In fact,

consider a general commutation relation, which in the Schrödinger picture has the
form

[AS, BS] = iCS (3.24a)

where AS , BS , and CS are observables. Then, using (3.23) for the three observables
one gets (see Problem3.6)

4 The subscripts S and H refer to Schrödinger’s and Heisenberg’s picture, respectively.



3.4 Dynamical Evolution of a Quantum System 91

[AH (t), BH (t)] = iCH (t) (3.24b)

which states that the commutation relation is the same in the two pictures. This
invariance holds in particular for the commutation relation of position andmomentum
operators, given by (3.21), that is,

[qS, pS] = [qH (t), pH (t)] = i IH

where qH (t) = U∗(t, t0) qS U (t, t0) and pH (t) = U∗(t, t0) pS U (t, t0).

Problem 3.5 	 Prove that if the temporal evolution operator U = U (t, t0) is uni-
tary, as assumed in Postulate2, then the norm of the wave function |ψ(t)〉 at time
t remains of unit length, as it must be from Postulate1. Moreover, prove that the
inner product of two wave functions |ψ1(t)〉 and |ψ2(t)〉 doesn’t change during the
evolution.

Problem 3.6 	 Suppose that AS , BS , and CS are three observables in the
Schrödinger picture that verify the commutation condition

[AS, BS] = iCS .

Prove that in the Heisenberg picture the commutation condition becomes

[AH (t), BH (t)] = iCH (t) .

3.5 Quantum Measurements

The third postulate of Quantum Mechanics regards quantum measurements, that
is, the methods for extracting information from a quantum system H, described in
general by a density operator ρ, and in particular by a pure state |ψ〉. In Quantum
Communications, quantum measurements are performed to obtain the information
required for decision, and therefore play a fundamental role.

It must be observed that the outcome of a quantum measurement is intrinsically
a random, or unpredictable, quantity, in the sense that if we prepare a set of identical
quantum systems, for which the same measurement technique is used, the results are
in general different. This is a fundamental difference from Classical Mechanics (see
Sect. 1.2).

The model of a quantum measurement is formulated on the basis of appropriate
Hermitian operators. The standard formulation is based on projectors, and was intro-
duced by vonNeumann (this is why they are referred to as projective or von Neumann
measurements), but other equivalent formulations are found in the literature, and also
various generalizations. Here the presentation of quantum measurements will fol-
low the approach recently proposed by Eldar and Forney [7]. From a speculative
viewpoint, the subject of quantum measurements is highly debated.

http://dx.doi.org/10.1007/978-3-319-15600-2_1
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Given their importance for Quantum Communications, the quantum measure-
ments will be discussed and amply exemplified following a constructive order, i.e.,
we will start from a restricted form of Postulate3, introducing increasing degrees of
generalization. Alternatively, one could proceed the other way around, starting from
the most general case, and gradually developing the special cases, but we believe
that the order we chose will be more effective at first reading (see Sect. 3.8 for an
overview).

Finally, we observe that the objective of quantummeasurements typically regards
the identification of the state of a physical system, but also, more in general, other
attributes of the system.

3.5.1 The Third Postulate of Quantum Mechanics

Let {Πi , i ∈ M} be a projector system in the Hilbert spaceH, as defined in Sect. 2.9,
Definition2.3, i.e., with the properties

Π∗
i = Πi , Πi ≥ 0 (3.25a)

Π2
i = Πi , ΠiΠ j = 0H i �= j (3.25b)

∑

i∈M
Πi = IH (3.25c)

where 0H is the null operator, IH is the identity operator onH, andM is a finite or
enumerable alphabet. In particular, the last property establishes that the projectors
give a resolution of the identity on H.

Postulate 3 A measurement on a quantum system, in the framework of a Hilbert
space H (state space), is obtained through a projector system {Πi , i ∈ M}. The
alphabet M provides the possible outcomes of the measurements. If immediately
before the measurement the system is in the state s = |ψ〉, the probability that the
outcome is m = i ∈ M is given by

pm(i |ψ) := P[m = i |s = |ψ〉] = 〈ψ |Πi |ψ〉, i ∈ M . (3.26)

If the outcome is m = i , after the measurement the system collapses to the state

|ψ(i)
post〉 = Πi |ψ〉√〈ψ |Πi |ψ〉 = Πi |ψ〉√

pm(i |ψ)
. � (3.27)

Postulate3 is illustrated in Fig. 3.3. We note that in (3.27) the denominator is due
to the normalization, which imposes that 〈ψ(i)

post|ψ(i)
post〉 = 1. Since the alphabet

M is assumed enumerable, the outcome of the measurement m must be modeled

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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H

Π1 Π2 Πi
→ m= i (measurement outcome)

· · · ···

H

•
|ψ •

|ψ(i)
post

Fig. 3.3 Illustration of the third postulate ofQuantumMechanics. In a quantum system,which is set
in the state |ψ〉, a projector system {Πi } is applied and the outcomem of themeasurement is a random
variable, described by the probability distribution pm(i |ψ) := P[m = i |s = |ψ〉] = 〈ψ |Πi |ψ〉.
After the measurement the system moves to the state |ψ(i)

post〉 = Πi |ψ〉/√pm(i |ψ)

as a discrete random variable with alphabet M and (conditioned) probability
distribution5 pm(i |ψ) given by (3.26), where the condition is that the system is
in the state s = |ψ〉.

One can easily see that pm(i |ψ) verifies the standard conditions of a probability
distribution (pm ≥ 0 and normalization). The condition pm ≥ 0 is ensured by the
property of the projectors to be positive semidefinite, that is, 〈ψ |Πi |ψ〉 ≥ 0, ∀ |ψ〉 ∈
H (see Sect. 2.12.1). The normalization condition for the distribution pm(i | ψ) is
ensured by the completeness condition (3.25b). In fact

∑

i∈M
pm(i |ψ) =〈ψ |

∑

i∈M
Πi |ψ〉 = 〈ψ |IH|ψ〉

=〈ψ |ψ〉 = 1,

where we used the fact that a state is always a unitary vector. Note that in the detailed
symbolism pm(i | ψ) the “condition” is explicitly indicated to stress that the outcome
of the measurement depends on the state of the quantum system (|ψ〉 is shortened
to ψ).

It remains to investigate the meaning of the postulate and its connection with
the physical reality. The very abstract formulation of Quantum Mechanics leads
to a very difficult interpretation. The dynamics described by Postulate3 is limited
to “immediately before” and “right after the measurement”, and this leads us to
think that the measurement is instantaneous and that the temporal evolution of the
measurement is not described. The expression “the measurement . . . is obtained by
means of a projector system” stresses the instantaneity and induces us to interpret

5 In Probability Theory a function as pm(i |ψ), which describes a discrete random variable, is called
“mass probability distribution”, while the term “probability distribution” refers to the integral of a
probability density. In Quantum Mechanics the term “mass” is usually omitted and in this book we
will follow this convention.

http://dx.doi.org/10.1007/978-3-319-15600-2_2


94 3 Elements of Quantum Mechanics

the measurement through a system having at the input all the projectors Πi and at
the output the measurement outcome m. But how is this achieved?

For the moment the author has found a partial answer given by the receiver of
Barnett and Riis [8], where a binary projector system is involved.

3.5.2 Measurements with Elementary Projectors

A very important case of projective measurements is obtained with elementary pro-
jectors (see Sect. 2.9.5). Let H be an M-dimensional Hilbert space and let

A = {|a1〉, |a2〉, . . . , |aM 〉}

be an orthonormal basis. Then, through the outer products

Πi = |ai 〉〈ai |, i = 1, . . . , M (3.28)

a projector system is obtained (see Theorem2.1 of Sect. 2.9).
The elementaryprojectors (3.28),which are all rank-one,whenapplied to ageneric

state |ψ〉, define the vectors

|bi 〉 = Πi |ψ〉 = |ai 〉〈ai |ψ〉 = ki |ai 〉

where ki = 〈ai |ψ〉. Hence, Πi = |ai 〉〈ai | projects the state |ψ〉 onto the one-
dimensional subspace of H generated by the ket |ai 〉. The vectors |ai 〉 forming the
projectors Πi are called measurement vectors [7].6

We now apply Postulate3 using elementary projectors (3.28). From (3.26) it
results that the probability that the measurement yield the outcome m = i , when
the system sits in the state |ψ〉, is simply

P[m = i |ψ] = |〈ψ |ai 〉|2 (3.29)

and therefore it is given by the squared modulus between the state |ψ〉 and the
measurement vector |ai 〉. Immediately after the measurement the state of the system
becomes

|ψ(i)
post〉 = Πi |ψ〉

|〈ψ |ai 〉| = |ai 〉〈ai |ψ〉
|〈ai |ψ〉| = |ai 〉 〈ai |ψ〉

|〈ai |ψ〉| (3.30)

6 The term “measurement vector” is not consolidated. More often the term “rank-one measurement
operator” is used to indicate a projector with the form (3.28).

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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where the last fraction is a complex number with a unitary modulus (phasor) and
therefore it can be neglected. Hence, if the measurement outcome is m = i , the
quantum system collapses to the state specified by the ket |ai 〉

|ψ(i)
post〉 = |ai 〉 . (3.31)

3.5.3 Postulate 3 in Terms of Density Operators

Postulate3 tacitly supposed that the state |ψ〉 inwhich the system is “prepared” before
the measurement were known (pure state). The density operator corresponding to
the pure state |ψ〉 is given by ρ = |ψ〉〈ψ | and then the probability (3.26) can be
rewritten in the form

P[m = i |ψ] = Tr[ρ Πi ], i ∈ M (3.32)

where Tr[.] denotes the trace. To get this result it is sufficient to apply to (3.26) the
important identity on the trace (2.34), which in this case becomes

〈ψ |Πi |ψ〉 = Tr[|ψ〉〈ψ |Πi ].

More generally, if the system state is statistically known through the density
operator

ρ =
∑

j

p j |ψ j 〉〈ψ j | (3.33)

where p j is the probability that the system be in the state |ψ j 〉, we can still apply
Postulate3, provided that we specify in which of the possible states the quantum
system is before themeasurement. In otherwords, it is required that, in the underlying
probability space, the event measurement be conditioned by the given state s = |ψ j 〉
and the outcome of themeasurement be formulated as a random variable conditioned
by the given state. Then one can apply (3.26) in the form

P[m = i |s = |ψ j 〉] = 〈ψ j |Πi |ψ j 〉 = Tr[|ψ j 〉〈ψ j |Πi ] (3.34)

which gives the probability that the measurement outcome be m = i , under the
condition that the system state before the measurement is s = |ψ j 〉. To get the
unconditioned probability one must compute the average with respect to the proba-
bilities of the condition, that is,

P[m = i] =
∑

j

P[s = ψ j ]P[m = i |s = ψ j ] .

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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Hence

P[m = i] =
∑

j

p jTr[|ψ j 〉〈ψ j |Πi ] = Tr[
∑

j

p j |ψ j 〉〈ψ j |Πi ]

=Tr[ρΠi ] (3.35)

where the linearity of the trace has been used.
The result is expressed in the form:

Proposition 3.2 In a quantum system where the states are described by the density
operator ρ, the probability that the outcome of the measurement, obtained with the
projector system {Πi , i ∈ M}, be m = i is given by

P[m = i |ρ] = Tr[ρΠi ], i ∈ M . (3.36)

If the outcome is m = i , the ensemble of states after the measurement is described
by the density operator

ρ
(i)
post = Πi ρ Πi

Tr[ρΠi ] = Πi ρ Πi

P[m = i |ρ] . (3.37)

In the symbolism in (3.36) we write explicitly the “condition” ρ to stress the fact
that the system states are statistically described by the operator ρ. The proof of (3.36)
is given in Appendix section “Probabilities and Random Variables in a Quantum
Measurement” and involves the statistical description of the random quantities: (1)
the state of the system s before themeasurement, (2) the outcome of themeasurement
m, and (3) the state of the system spost after the measurement.

With elementary projectors, Πi = |ai 〉〈ai |, relation (3.36) becomes

P[m = i |ρ] = Tr[ρ|ai 〉〈ai |] = 〈ai |ρ|ai 〉 . (3.38)

Proposition3.2 gives the general result since it is comprehensive of the mea-
surements performed in a quantum system set in a pure state, where ρ = |ψ〉〈ψ |,
as well as the measurements performed in a quantum system set in a “mixture of
states”, describes by the density operator ρ given by (3.33). As we shall see in the
next chapters, (3.36) will be the fundamental relation in the decision of Quantum
Communications systems.

Example 3.4 (Measurement in a qubit system with pure states) Consider a qubit
system, where H = C

2, and the projector system is given by

Π1 = 1

2

[

1 i
−i 1

]

, Π2 = 1

2

[

1 −i
i 1

]

. (3.39)
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The projective measurement is performed assuming that the system is in the state

|ψ〉 = 1√
5

[

1
2i

]

.

The alphabet of the measurement outcome m isM = {1, 2} and the probabilities
evaluated from (3.26) are given by

pm(1|ψ) = 〈ψ |Π1|ψ〉 = 1

10
, pm(2|ψ) = 〈ψ |Π2|ψ〉 = 9

10
.

The post-measurement states, evaluated from (3.27), are respectively

|ψ(1)
post〉 = 1√

2

[−1
i

]

, |ψ(2)
post〉 = 1√

2

[

1
i

]

.

Example 3.5 (Measurement in a qubit system with mixed states) Consider a qubit
system, where the projector system {Π1,Π2} is given by (3.39). The projective
measurement is performed assuming that the system is in a mixed state described by
the following ensemble

p(|ψ1〉) = 1

3
, |ψ1〉 =

⎡

⎣

1√
5

2i√
5

⎤

⎦ , p(|ψ2〉) = 2

3
, |ψ2〉 =

⎡

⎣

1√
2

−i√
2

⎤

⎦ .

The corresponding density operator is

ρ = 1

5

[

2 −i
i 3

]

.

The alphabet of the measurement outcome m is M = {1, 2} and the probabilities
evaluated from (3.35) are given by

P[m = 1|ρ] = Tr[ρΠ1] = 3

10
, P[m = 2|ρ] = Tr[ρΠ2] = 7

10
.

The post-measurement density operators are obtained from (3.37) and read

ρ
(1)
post = Π1 ρ Π1

Tr[ρΠ1] = 1

2

[

1 i
−i 1

]

, ρ
(2)
post = Π2 ρ Π2

Tr[ρΠ2] = 1

2

[

1 −i
i 1

]

.

Problem 3.7 	 Apply Postulate3 to a quantum system “prepared” in a pure state
|ψ〉, when the measurement is obtained by a set of orthonormal measurement vectors
{|a0〉, |a1〉, . . . , |aM−1〉}. Find the probability distribution of the measurem when the
state of the system is one of the measurement vectors. Which is the state of the system
after the measurement?
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3.6 Measurements with Observables

Postulate3 can also be formulated through a single Hermitian operator A, which, in
this context, is called observable. An observable combines both the projectors and
the alphabet of the measurement, with some advantages concerning the evaluation
of the statistical averages on the measurements. This possibility is ensured by the
spectral decomposition theorem, seen in the previous chapter and now recalled for
its importance.

Theorem 3.1 Let A be an observable and let {ai , i ∈ M} be the distinct eigenvalues
of A. Then A may be uniquely decomposed in the form

A =
∑

i∈M
ai Pi (3.40)

where the Pi , i ∈ M form a projector system.
In particular, if all the eigenvalues have unitary multiplicity, the decomposition

is given by elementary projectors

A =
∑

i∈M
ai |ai 〉〈ai | (3.40a)

with |ai 〉 the eigenkets of A.

Then an observable A provides a projector system, which allows us to apply
Postulate3 for a quantummeasurement, as depicted in Fig. 3.4. The onlymodification
is the alphabet,which is nowgivenby the spectrumof the operator, that is,M = σ(A).
Consequently, in a measurement with an observable the outcome is always an
eigenvalue of the observable.

To stress the equivalence between a measurement based on projectors and a mea-
surement made with an observable, it is easy to show that also Postulate3 implies
an observable. In fact, given the projector system {Πi , i ∈ M}, we can define the
operator

A =
∑

i∈M
i Πi . (3.41)

Fig. 3.4 Measurement by
means of an observable A in
a quantum system H set in a
pure state. The outcome of
the measurement is always
an eigenvalue of A

A
m ∈ σ(A)

H

•
|ψ
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Next, recalling that the decomposition in Theorem3.1 is unique, one sees by inspec-
tion that A is an observable (Hermitian) with eigenvalues i and projectors Πi .

3.6.1 Expectation and Moments in a Quantum Measurement

Postulate3 gives the complete statistical description of the random variable m, the
measurement outcome, through the probability distribution (3.26). Here we show
that the moments of m, and in particular the mean and the variance, can be obtained
from the observable A in a concise form.

We recall from Probability Theory that the expectation (or mean or average) of a
discrete random variable can be defined from its probability distribution pm(i |ψ) as

E[m|ψ] =
∑

i∈M
i pm(i |ψ) . (3.42)

This definition is extended to the expectation of an arbitrary function f (m) of m as

E[ f (m)|ψ] =
∑

i∈M
f (i) pm(i |ψ) . (3.42a)

Here the random variable is conditioned by a generic “condition” ψ and (3.42) are
called conditional expectations.

Coming back to a quantum measurement, we get:

Proposition 3.3 Let m be the outcome of a quantum measurement obtained with
an observable A, when the system is in the state |ψ〉. Then the expectation of m is
given by

E[m|ψ] = 〈ψ |A|ψ〉 . (3.43)

In fact, using the relation pm(i |ψ) = 〈ψ |Πi |ψ〉 and (3.41) in definition (3.42),
one gets

E[m|ψ] =
∑

i∈M
i 〈ψ |Πi |ψ〉 = 〈ψ |

∑

i∈M
iΠi |ψ〉 = 〈ψ |A|ψ〉 .

From A it is also possible to get the quadratic mean and then the variance. Con-
sidering property (3.25a), the square of A results in

A2 =
∑

i

i2 Πi
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from which

E[m2|ψ] =
∑

i

i2 pm(i |ψ) = 〈ψ |
∑

i

i2 Πi |ψ〉

=〈ψ | A2 |ψ〉 . (3.44)

Analogously, we can calculate the higher order moments E[mk |ψ] for k > 2.

3.6.2 Quantum Expectation with Mixed States

The quantum expectation can be evaluated from the observable A even when the sys-
tem state is not known, but it is described by a density operator. Then, the distribution
of m is given by (3.36) and the quantum expectation results in

E[m|ρ] = Tr[ρ A] := 〈A〉 . (3.45)

In fact,

E[m|ρ] =
∑

i

i P[m = i |ρ] =
∑

i

i Tr[ρΠi ]

from which one gets (3.45) using the linearity of the trace. Expression (3.45) gener-
alizes (3.43).

3.6.3 Combinations of Projectors

Starting from a system of M projectors {Pi , i ∈ M}, we can build a system with
a reduced number of projectors, N < M , in the following way. We partition the
alphabet M into N parts

I1 , I2 , . . . , IN (3.46)

with
N

⋃

k=1

Ik = M and Ih

⋂

Ik = ∅ , h �= k

and then we define the N Hermitian operators

Πk =
∑

i∈Ik

Pi , k = 1 , 2 , . . . , N . (3.47)
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We verify immediately from the properties of the projectors {Πi }:
(1) the idempotency: Π2

k = Πk ,
(2) the orthogonality: ΠhΠk = 0H,
(3) the identity resolution:

∑N
k=1 Πk = IH.

Therefore the operators (3.47) form a new projector system {Πk, k ∈ K} with
K = {1, . . . , N } and then, according to Postulate3, they can be used to perform
a measurement on H in which the result can take N possible values.

Once the new projectors Πk are obtained, a new observable can be formulated
representing them, given by

AI =
N

∑

k=1

i Πk

which depends on the partition (3.46).

3.6.4 Continuous Observables

Above we assumed that the possible results of the measurements belong to a finite
or enumerable set M, called alphabet. This is the case of interest for Quantum
Communications, but there are important cases in which the possible results belong
to a continuum, typically the set of real numbersR. For instance the position operator
q and the momentum operator p, introduced in Sect. 3.4, are observables with a
continuous spectrum.

The topic of quantum measurements, where the outcome is a continuous random
variable, described by a probability density instead of probability distribution, will be
seen in Chap.11 in the context of Quantum Information with continuous variables.

3.6.5 Remarks on Terminology

In Quantum Mechanics the expression “the outcome of the measurement associated
to the operator A” is simplified as “the observable A”, that is, measurement and
operator are identified.Moreover, “mean of the outcome obtainedwith the observable
A” is simplified in “mean of the observable A”. In agreement with these simplified
expressions, instead of E[m|ψ]we shouldwrite E[A], so that (3.43) becomes E[A] =
〈ψ |A|ψ〉. However, in the author’s opinion, these expressions are not convenient and
the interpretation of a mean of a measurement must be done according to (3.43),
instead of referring to the expectation of A.7 To avoid confusion it is convenient to
use a notation different from E[A], e.g.,

7 Strictly speaking, in the framework of Probability Theory an operator A is a fixed (non random)
object and its expectation would coincide with A itself.

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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〈A〉 = 〈ψ |A|ψ〉, 〈A2〉 = 〈ψ |A2|ψ〉 . (3.48)

With this notation the variance of m results in

σ 2
m(ψ) = 〈A2〉 − (〈A〉)2 . (3.49)

Having specified the probabilistic meaning of the expectation in the measurement
with an observable, in the following, expressions of the form 〈A〉, 〈A2〉, etc., will be
called quantum expectations.

Problem 3.8 	 Consider the Hermitian operator

H = 1

2

[

3 −i
i 3

]

and use it as an observable for the measurement in a qubit system prepared in the
pure state

|ψ〉 = 1√
5

[

1
2i

]

.

Evaluate the probability of the measurement outcome m and the post-measurement
states.

Problem 3.9 		 Let A be an observable with spectrum σ(A). Show that the
moments of a measurement m obtained with the observable when the state |ψ〉 is set
to an eigenket |a〉 of A, are simply given by

E[mk |a] = ak, k = 1, 2, . . . (E2)

where a ∈ σ(A) is the eigenvalue corresponding to the eigenket |a〉. Explain why.

3.7 Generalized Quantum Measurements (POVM)

The generalized quantum measurements are carried out through a set of Hermitian
operators, which are not necessarily projectors, and are called POVM (positive
operator-valued measurements).

3.7.1 Definition of POVM

A system of general measurement operators (POVM) {Qi , i ∈ M} is defined impos-
ing the following conditions to the operators Qi :
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(1) they are Hermitian operators, Q∗
i = Qi ,

(2) they are positive semidefinite: Qi ≥ 0,
(3) they resolve the identity:

∑

i Qi = IH.

Condition (3) is illustrated in Fig. 3.5.
From the above conditions, the POVM systems constitute a broader class than

the one of the projector systems, because the POVMs are not required to enjoy
idempotency and orthogonality. However, the above properties on POVMs ensure
that the probabilities calculated according to Postulate3

P[m = i |ψ] = 〈ψ |Qi |ψ〉 (3.50)

respect the conditions relative to a probability distribution, that is,

pm(i |ψ) ≥ 0,
∑

i

pm(i |ψ) = 1.

Furthermore, starting from (3.50), the “probability calculus” can be extended to
systems placed in a mixture of states described by a given density operator ρ, that is,

pm(i |ρ) = P[m = i |ρ] = Tr[ρ Qi ] . (3.51)

We arrive at this result in exactly the same way as with the projective measurements
(see (3.32)).

However, with the POVMs, Postulate3 cannot be fully applied to know the sys-
tem’s state immediately after the measurement. On the other hand, this knowledge
is irrelevant in many applications and in particular in quantum communications.

Fig. 3.5 Resolution of the
identity of a POVM system
with a quaternary
alphabet M

Q1

Q4

Σ = IH

Q2

Q3
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According to many authors, for example Helstrom [5], and Eldar and Forney
[9], through the POVM measurements from a quantum system more useful results
can be obtained with respect to von Neumann’s projective measurements, based
on projectors. As will be seen in Chap.5 in quantum decision theory, to improve
generality and simplicity, it is convenient to work out the formulation considering
POVMs, but often, due to contextual constraints, we will arrive at the conclusion that
such operators turn out to be projectors.

3.7.2 Elementary POVMs

A very interesting class of POVMs has the elementary form

Qi = |μi 〉〈μi |

where |μi 〉 are vectors of H not necessarily orthogonal, and not even normalized.
The elementary measurement operators are always Hermitian and also verify the
condition Qi ≥ 0, because 〈ψ |μi 〉〈μi |ψ〉 = |〈ψ |μi 〉|2 ≥ 0. Instead, the condition
that must be imposed is completeness, which assumes the form

∑

i∈M
|μi 〉〈μi | = IH . (3.52)

This condition can be modified when it is specified that the state |ψ〉 of the quantum
system belongs to a subspace U of the Hilbert space H and then becomes

∑

i∈M
Qi =

∑

i∈M
|μi 〉〈μi | = PU (3.53)

where PU is a projector on U. In fact, this condition guarantees, equally well as
(3.52), the normalization condition of the measurement probabilities. We recall in
fact from Sect. 2.9 (see (2.62)) that if |γ 〉 is a vector of U, the application of PU does
not modify |γ 〉, that is,

PU|γ 〉 = |γ 〉, ∀|γ 〉 ∈ U .

We then have

∑

i

P[m = i |γ ] =
∑

i

〈γ |Qi |γ 〉 = 〈γ |PU|γ 〉 = 〈γ |γ 〉 = 1 .

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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3.7.3 The POVMs as Projective Measurements

The POVMs do not really fall into Postulate3. However, it has been demonstrated
(Neumark’s theorem) that, given the Hilbert space H in which the measurement
operators satisfying the conditions (1), (2) and (3) seen in Sect. 3.7.1 are applied, an
auxiliary quantum system can always be found (ancilla)Ha , which, combined with
H (in the sense of Postulate4, as will be seen), forms an extended quantum system,
in which the POVM measurements reappear as standard (von Neumann) projective
measurements.

A simple demonstration of Neumark’s theorem is found in the paper by Eldar and
Forney [7].

3.8 Summary of Quantum Measurements

Quantum measurements, as developed in the previous sections from Postulate3, can
be categorized in various ways.

A first categorization reflects the hypotheses made on the quantum system on
which the measurements are carried out, and precisely:

(a) quantum system in a pure state |ψ〉,
(b) quantum system in a mixture of states specified by a density operator ρ.

These two hypotheses have been extensively discussed in Sect. 3.3, where it has been
seen that (a) is a special case of (b) with density operator ρ = |ψ〉〈ψ |.

A second categorization regards the measurement operators, and precisely:

(1) projective measurements or von Neumann measurements, performed with a pro-
jector system {Πi , i ∈ M};

(2) measurements with an observable, performed with a single Hermitian operator
A;

(3) generalized measurements, performed with a POVM system {Qi , i ∈ M}.
We have already seen the perfect equivalence of (1) and (2), as from the observable
A, through the Spectral Decomposition Theorem, a projector system can be obtained,
and vice versa, from this an observable can be built. The measurements with POVM
actually represent a generalization, because the operators {Qi , i ∈ M} are not nec-
essarily orthogonal. On the other hand, it has been mentioned that, introducing an
“appropriately expanded” Hilbert space, the POVMs can be viewed as projectors,
falling thus back into projective measurements.

Conceptually, we can reverse the line followed so far, in which we started from
the projective measurements applied to a quantum system in a pure state. Instead,
we can start from the generalized measurements on system in a mixture of states.
Then Postulate3 can be reformulated as follows:
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Postulate 3 (reformulation). A measurement on a quantum system defined on a
Hilbert space H (state space) is obtained applying a POVM system {Qi , i ∈ M},
where the alphabetM provides the possible results of the measurement. If before the
measurement the system is in a mixture of states specified by the density operator ρ,
the probability that the measurement outcome in m = i ∈ M is given by

P[m = i |ρ] = Tr[ρQi ], i ∈ M . � (3.54)

We leave it to the reader to verify that, starting from the postulate reformulated
in the more general way, all the other cases considered can be obtained.

Finally, a third classification regards the rank of the measurement operators, and
precisely:

(i) operators with generic rank,
(ii) operators with unit rank (elementary operators).

We recall in particular the elementary operators. In the projective measurements the
elementary projectors are obtained from an orthonormal basis , A = {|ai 〉, i ∈ M},
with 〈ai |a j 〉 = δi j , through the outer products Πi = |ai 〉〈ai |. In the measurements
with observable A, it must be assumed that A be non-degenerate (with distinct eigen-
values) to make sure that the spectral decomposition be made in terms of projectors
with unit rank. In the generalizedmeasurements the elementary POVMs are obtained
starting from a set of vectors B = {|bi 〉, i ∈ M} of the Hilbert space, still through
the outer products Qi = |bi 〉〈bi |, but with vectors |bi 〉 not necessarily orthogonal.

Terminology Conventions

In this book we use the expressions measurement operators for the generalized
measurements (POVM) and system of measurement operators to stress the fact that
the measurement operators verify the completeness. So “measurement operators”
will be equivalent to “POVM”. In particular, the measurement operators can be
pairwise orthogonal projectors, and a complete set of the same is called a projector
system.

The measurement operators of unit rank, that is, of the kind Qi = |bi 〉〈bi |, are
called elementary measurement operators and their factors |bi 〉 measurement
vectors.

3.9 Combined Measurements

We now consider a combination of measurements on the same quantum system. A
first case is the measurement on the same entity, repeated with the same procedure,
that is, with the same projector system. A second case regards two measurements of
different entities, performed simultaneously, andwill open theway to thewell-known
Heisenberg’s uncertainty principle.
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In these considerations we refer to Postulate3, in the “projective” version of
Sect. 3.5, because it requires the knowledge of the system state after themeasurement.

3.9.1 Sequential Repetition of the Same Measurement

Consider a quantum system H in the state |ψ〉, where a measurement is performed
with a projector system {Π, i ∈ M}, and the same projector system is applied again
for a second measurement (Fig. 3.6).

The first measurement yields m = i with probability pi = 〈ψ |Πi |ψ〉 and the
system collapses to the state

|ψ(i)
post〉 = Πi |ψ〉√

pi
.

In the second measurement the system is initially in the state |ψ(i)
post〉 and from

Postulate3 we obtain the result m′ = j with probability

p′
j = P[m′ = j |ψ(i)

post] = 〈ψ(i)
post|Π j |ψ(i)

post〉 = 〈ψ |ΠiΠ jΠi |ψ〉
pi

.

Now, if i = j , we get ΠiΠ jΠi = Πi and then

p′
i = P[m′ = i |ψ(i)

post] = 〈ψ |Πi |ψ〉
pi

= pi

pi
= 1 .

Instead, if i �= j and p j �= 0, for the orthogonality of the projectors, we get
ΠiΠ jΠi = 0. So the result of the repetition of the measurement (with the same
projectors) is m′ = i with probability 1, that is, with the repetition of the measure-
ment we get no new information on the system, and the repetition is useless.

It can be verified (see Problem3.10), applying (3.27), that the state after the second
measurement remains the same as it was after the first measurement, namely

|ψ(i)
post,post〉 = |ψ(i)

post〉 . (3.55)

H

Πi
first measurement second measurement

H

Πi

•
|ψ •

|ψpost

Fig. 3.6 Repetition of a quantum measurement with the same projectors
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3.9.2 Exact Simultaneous Measurements

We examine the possibility of performing simultaneous and exact measurements on
two (or more) entities of a quantum system (Fig. 3.7).

For the first measurement m ∈ M we use a projector system {Π A
i , i ∈ M}, and

for the second measurement n ∈ N another system of projectors {Π B
j , j ∈ N}. The

two projector systems can be summarized respectively by the observables

A =
∑

i∈M
i Π A

i and B =
∑

j∈N
j Π B

j .

The problem is the compatibility of the two measurements, because the system,
starting from the state |ψ〉, after two simultaneous measurements, must collapse to
a state |ψpost〉 compatible with both procedures, that is,

|ψpost〉 = Π A
i |ψ〉

√

pA
i

= Π B
j |ψ〉

√

pB
j

.

For simplicity, let us assume that the projectors be elementary in both cases

Π A
i = |ai 〉〈ai |, Π B

j = |b j 〉〈b j | ,

then the observables become

A =
∑

i∈M
i |ai 〉〈ai |, B =

∑

j∈N
j |b j 〉〈b j | .

Consequently, the compatibility condition becomes (see (3.31))

|ai 〉 = |b j 〉 , ∀i ∈ M, ∀ j ∈ N .

The conclusion is that the two observables must have the same set of eigenvectors.
On the other hand, we recall (see Theorem2.4 of Sect. 2.11)) that two Hermitian

A
m ∈ σ(A)

H •
|ψ

B
n ∈ σ(B)

H •
|ψ

Fig. 3.7 Simultaneous quantum measurements with two different observables, A and B, when the
system is in the state |ψ〉 of the Hilbert space H. The possible outcomes are two random variables
m and n

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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operators A and B admit a common basis if and only if the two operators commute,
that is,

AB = BA .

The same condition is required for the projectors, in the sense that A and B commute
if and only if the corresponding projectors Π A

i and Π B
j commute (see [10], pp. 157

and 170). The conclusion is that two distinct measurements on a quantum system are
possible if and only if the two projector systems, or the corresponding observables,
are commutable.

3.9.3 Heisenberg’s Uncertainty Principle

If the two observables A and B do not commute there is an uncertainty between the
variances of the outcomes. In order to quantify such uncertainties, we consider the
variances of the two outcomes m and n in the two measurements (see (3.48) and
(3.49))

σ 2
m = 〈ψ |A2|ψ〉 − (〈ψ |A|ψ〉)2, σ 2

n = 〈ψ |B2|ψ〉 − (〈ψ |B|ψ〉)2 (3.56)

Such formulation of the measurement and of the variance in terms of observables
gives origin, in an elegant manner, to an important result known as Heisenberg’s
Uncertainty Principle.

Remembering that A and B are two Hermitian operators, we use the identity
(2.31a), that is,

2AB = [A, B] + {A, B}

where [A, B] = AB − BA and {A, B} = AB + BA are respectively the commutator
and the anticommutator of A and B. Letting 〈ψ |AB|ψ〉 = x + iy, with x and y real,
we have

〈ψ |[A, B]|ψ〉 = 2iy, 〈ψ |{A, B}|ψ〉 = 2x

and so

4|〈ψ |AB|ψ〉|2 = |〈ψ |[A, B]|ψ〉|2 + |〈ψ |{A, B}|ψ〉|2
≥ |〈ψ |[A, B]|ψ〉|2 . (3.57)

On the other hand, Cauchy-Schwartz ’s inequality (see (2.26)) gives

|〈ψ |AB|ψ〉|2 ≤ 〈ψ |A2|ψ〉〈ψ |B2|ψ〉 (3.58)

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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which, combined to (3.57), yields

|〈ψ |[A, B]|ψ〉|2 ≤ 4〈ψ |A2|ψ〉〈ψ |B2|ψ〉. (3.59)

In the right-hand side of (3.59) there appear the mean squares E[m2] and E[n2]
of the random variables m ed n. If we want to find an inequality for the variances σ 2

m
and σ 2

n , all it takes is to substitute A with A − 〈A〉 and B with B − 〈B〉. We obtain

σmσn ≥ 1

2

∣

∣

∣〈ψ |[A, B|ψ〉
∣

∣

∣ (3.60)

which represents Heisenberg’s uncertainty principle.
We illustrate the principle with a “historical” application in which we consider

a particle with one degree of freedom and the operators A and B are observables
given by the position operator q and the momentum operator p of the particle. (see
the Reference System introduced in Sect. 3.4). In this case, the two operators do not
commute and their commutation relation is given by

[q, p] = i � IH

where � = h/(2π) is the reduced Planck constant. Then

〈ψ |[q − 〈q〉, p − 〈p〉]|ψ〉 = 〈ψ |[q, p]|ψ〉 = 〈ψ |i � IH|ψ〉 = i�

and (3.60) gives

σmσn ≥ 1

2
� . (3.61)

The interpretation of (3.61) must be done considering a large number N of identical
systems all sitting in the quantum state |ψ〉. In some of these systems the positionm is
measured, in others, themomentum n.With increasing N the estimates of the average
E[m] and E[n], and of the variances σ 2

m and σ 2
n , settle around values depending on

the state |ψ〉 of the N (identical) systems. The uncertainty principle asserts that in
no state |ψ〉 the product σmσn can be less than 1

2 �.

Problem 3.10 		 Prove that the state after the second measurement with the same
projector system remains the same as the one in which the system was after the first
measurement, as stated by (3.55).
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3.10 Composite Quantum Systems

The last postulate of Quantum Mechanics concerns the model of systems consisting
of subsystems, such as a pair of particles, or a system combining both the system on
which we want to perform the measurement and the measurement apparatus. In any
case we must arrive at a (larger) overall isolated and closed system, in which two (or
more) subsystems are identifiable. The formulation of the postulate is based on the
tensor product seen in Sect. 2.13.

Postulate 4 A system composed by two subsystemsH1 andH2 must be treated in
the framework of aHilbert spaceH given by the tensor product of the two component
subsystems

H = H1 ⊗ H2

and therefore, if |ψ1〉 is a state ofH1 and |ψ2〉 is a state ofH2, then

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 (3.62)

is a state of the composite system. This procedure extends in a straightforward way
to the composition of an arbitrary number of subsystems. �

The postulate is schematically illustrated in Fig. 3.8.
The formulation of a composite system is extremely simple and essential, and

this seems to suggest obvious consequences. On the contrary, composite systems
conceal surprising and even disconcerting aspects, like the entanglement, which lead
to revolutionary applications, especially in Quantum Information and in Quantum
Computing. Surprising and paradoxical aspects were already evidenced at the very
dawn of Quantum Mechanics, like the universally renowned Einstein, Podolski and
Rosen’s paradox [11], but only in the last two decades did research on the subject
develop substantially. Here we will point out only a few of these aspects.

|ψ1
•

|ψ1 ψ2
•

|ψ2
•

H1 ⊗ IH2 ⊗

H =H1 ⊗H2

IH1 H2

Fig. 3.8 The system composed by two subsystems H1 and H2 is given by the tensor product
H= H1 ⊗H2. In the composite systemH1 ⊗H2 the original subspaces appear asH1 ⊗ IH2 and
IH1 ⊗ H2

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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3.10.1 Marginal Rules of a Composite Space

We now consider the rules that could be labeled as “obvious”, because they derive
directly from the rules of tensor product and ofKronecker’s product seen inSect. 2.13.

(1) Composition of states. If |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, in the composite space
H = H1 ⊗ H2 the state becomes

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 (3.63)

as anticipated in (3.62).
(2) Evolution. If U1 is a unitary operator inH1, the corresponding unitary operator
in H is U1 ⊗ I2, where I2 is the identity operator on H2. The action of U1 ⊗ I2 is
the following

(U1 ⊗ I2)(|ψ1〉 ⊗ |ψ2〉) = (U1|ψ1〉) ⊗ |ψ2〉. (3.64)

Introducing the initial time t0 and the generic time t > t0, as done in Sect. 3.4, from
(3.64) we deduce that if the initial state is |ψ(t0)〉 = |ψ1(t0)〉 ⊗ |ψ2(t0)〉 the final
state is

|ψ(t)〉 = |ψ1(t)〉 ⊗ |ψ2(t)〉

where

|ψ1(t)〉 = U1|ψ1(t0)〉, |ψ2(t)〉 = |ψ2(t0)〉

with the obvious interpretation that the operatorU1⊗ I2 evolves only the states of the
subsystemH1 ofH1 ⊗H2. Similar conclusions can be drawn for a unitary operator
U2 ofH2 in the composite system, which becomes I1 ⊗ U2, where I1 is the identity
of H1.
(3) Measurements. If A1 and A2 are two observables respectively of H1 and of
H2, then the corresponding observables in H are A1 ⊗ I2 and I1 ⊗ A2. Notice that
A1 ⊗ I2 and I1 ⊗ A2 are always commuting and therefore the measurements on the
two subsystems can be performed simultaneously (see Sect. 3.9.2).

As you can see, borrowing the language of Probability Theory, the above rules
can be seen as marginal laws.

3.10.2 Quantum Measurements in a Composite Hilbert Space

Wereconsider inmoredetail the quantummeasurements in a compositeHilbert space,
confining the considerations to projective measurements. Then, if {Πi , i ∈ M} is a

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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projector system in the Hilbert spaceH = H1 ⊗H2, and the quantum system is in
the state |ψ〉 ∈ H, we can apply integrally Postulate3. Thus, the probability that the
outcome is m = i ∈ M is given by

pm(i |ψ) := P[m = i |s = |ψ〉] = 〈ψ |Πi |ψ〉, i ∈ M . (3.65)

If the system is in a separable state, that is,

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 := |ψ1〉|ψ2〉

we can consider a separable projector system

Πi1i2 = Π1
i1 ⊗ Π2

i2 , i ∈ M1, i2 ∈ M2

where Π1
i1
and Π2

i2
are projectors of H1 and of H2, respectively. In this case the

outcome of the measurement is a pair of random variables m = (m1, m2) and we
can apply (3.65) with

i = (i1, i2), m = (m1, m2), |ψ〉 = |ψ1〉 ⊗ |ψ2〉, Πi = Π1
i1 ⊗ Π2

i2

to get

pm1m2(i1, i2|ψ1ψ2) := P[m1 = i1, m2 = i2|s = |ψ〉1 ⊗ |ψ2〉]
= 〈ψ1| ⊗ 〈ψ2|Π1

i1 ⊗ Π2
i2 ||ψ1〉 ⊗ |ψ2〉 . (3.66)

The separability (and the intuition) suggests that the random variables may be
statistically independent. To see this we apply the mixed product law

(A ⊗ B)(C ⊗ D)(E ⊗ F) = (A C E) ⊗ (B D F)

in (3.66), to get

〈ψ1| ⊗ 〈ψ2|Π1
i1 ⊗ Π2

i2 |ψ1〉 ⊗ |ψ2〉 = (〈ψ1|Π1
i1 |ψ1〉) ⊗ (〈ψ2|Π2

i2 |ψ2〉)

where

〈ψ1|Π1
i1 |ψ1〉 = P[m1 = i1|ψ1], 〈ψ2|Π2

i2 |ψ2〉 = P[m2 = i2|ψ1]

which are scalars so that ⊗ can be dropped. Hence

P[m1 = i1, m2 = i2|s = |ψ〉1 ⊗ |ψ2〉] = P[m1 = i1|ψ1]P[m2 = i2|ψ1]

and the random variables turn out to be independent.
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The conclusion is that a quantummeasurementwith separable projectorswhen the
composite Hilbert space is in a separable state leads to independent randomvariables.
If the state is entangled, in general the random variables turn out to be correlated.

As an example of application we consider the photon counting in a two-mode
coherent states |α1〉 ⊗ |α2〉 using the elementary projectors given by the number
states of the two modes, that is,

Π1
i1 = |i1〉1 1〈i1|, Π2

i2 = |i2〉2 2〈i2| .

The outcome (m1, m2) is a pair of independent Poisson random variables.

Example 3.6 (Two qubit system) Consider the composition of two binary systems,
H1 = H2 = C

2, that is, the composition of two qubits. Indicating for clarity the basis
of H1 by |b0〉, |b1〉 (instead of |0〉 and |1〉 as done at the beginning of the chapter),
the generic state ofH1 results in

|ψ1〉 = u0|b0〉 + u1|b1〉, |u0|2 + |u1|2 = 1 .

Analogously, indicating by |c0〉, |c1〉 the basis of H2 we have

|ψ2〉 = v0|c0〉 + v1|c1〉, |v0|2 + |v1|2 = 1 .

The composite systemH = H1 ⊗ H2 has dimension 4 (it is isomorphic to C
4) and

one of its basis is given by (see (2.106))

{|b0〉 ⊗ |c0〉, |b0〉 ⊗ |c1〉, |b1〉 ⊗ |c0〉, |b1〉 ⊗ |c1〉} . (3.67)

The state ofH obtained as tensor product of |ψ1〉 and |ψ2〉 results in

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 = u0v0|b0〉 ⊗ |c0〉 + u0v1|b0〉 ⊗ |c1〉
+ u1v0|b1〉 ⊗ |c0〉 + u1v1|b1〉 ⊗ |c1〉 . (3.68)

It can be verified that the length of |ψ〉 is unitary

|u0v0|2 + |u0v1|2 + |u1v0|2 + |u1v1|2 = (|u0|2 + |u1|2)(|v0|2 + |v1|2) = 1 .

3.10.3 States Not Covered by the Tensor Product.
Entanglement

The most relevant surprises of a composite space come from the fact that not all the
states, not all the evolutions, and not all the measurements can be expressed as tensor
product of factors belonging to the component subsystems. Let us start out with an
example.

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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Example 3.7 We assert that in a two qubit system H1 ⊗ H2 not all the states are
given by the tensor product developed in (3.68). For example, the state

|ψ〉 = 1√
2
|b0〉 ⊗ |c1〉 + 1√

2
|b1〉 ⊗ |c0〉 (3.69)

is a state of H1 ⊗ H2 because it is a particular linear combination of the vectors of
the basis (3.67). To reach this state from (3.68) we should have

u0v0 = 0, u0v1 = 1√
2
, u1v0 = 1√

2
, u1v1 = 0

which has no solutions (the second and the third require u0, v1, u1, v0 different from
zero). So, the state (3.69) cannot be obtained as a product and must be classified as
entangled state.

Going back to the general case:

Definition 3.1 In a composite Hilbert spaceH1 ⊗H2 any state that is not given by
the tensor product of two states of the component systems, that is,

|ψ〉 �= |ψ1〉 ⊗ |ψ2〉 ∀|ψ1〉 ∈ H1 , ∀|ψ2〉 ∈ H2 . (3.70)

is called entangled state. If |ψ〉 = |ψ1〉 ⊗ |ψ2〉 the state is called separable.

For each of these states it is not possible to identify in the two component subsys-
tems two states that generate it as a product. It is, so to speak, a state that achieves
its existence only when the two systems are combined.

To see with a systemic eye that in a space H = H1 ⊗ H2 the “majority of the
states are entangled”, we observe that all the states of H1 ⊗ H2 can be generated,
like for any other Hilbert space, as a linear combination of a basis. In this case the
basis is

{|bi 〉 ⊗ |c j 〉, i ∈ I, j ∈ J }

and therefore all the states of H1 ⊗ H2 are given by

|x〉 =
∑

i∈I

∑

j∈J

ti j |bi 〉 ⊗ |c j 〉, ∀ti j ∈ C (3.71)

with the normalization constraint
∑

i j |ti j |2 = 1.
On the other hand, the states of H1 and H2 are given respectively by

|x1〉 =
∑

i

ui |bi 〉, |x2〉 =
∑

j

v j |c j 〉
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with the normalization constraint
∑

i |ui |2 = 1 and
∑

j |v j |2 = 1, so the states given
by the tensor product result in

|x1〉 ⊗ |x2〉 =
∑

i

∑

j

ui v j |bi 〉 ⊗ |c j 〉, ∀ui , v j ∈ C . (3.72)

These states can be obtained from (3.71) with

ti j = ui v j , (3.73)

but the opposite is not true, in the sense that it is not always possible to express the
states ofH1 ⊗H2 in the form (3.72) of tensor product of a state ofH1 and of a state
of H2.

This fact is better understood with spaces of finite dimensions: ifH1 andH2 have,
respectively, dimensions m1 = 4 and m2 = 3, it turns out that H has dimensions
m1 m2 = 12. Then, setting in (3.73) the 12 values of ti j we have a system of 12
equations with 7 unknowns u1 u2 u3 u4, v1 v2 v3, which in general has no solutions.

The problem of the separability will be seen systematically in Sect. 10.3 with the
Schmidt decomposition.

The consequences of the entanglement are numerous and they would deserve a
deeper insight, which will be seen in Part III.

3.10.4 No-Cloning Theorem

We describe another surprising consequence that takes place in the combination of
quantum systems, due to the fact that Postulate2 requires that the evolutions of a
system be always governed by a unitary operator, for which some evolutions are
impossible. One of these impossible evolutions is the copy (clonation) of a quantum
state.

Consider a quantum systemH in a state |ψ〉 and suppose we wanted, through an
appropriate evolution, to transfer (copy) this state to another system Hc, which at a
certain initial time is in whatever state; and it is not restrictive to indicate this state
by |0〉. Then, in the combination of the two systemsH⊗Hc we want to move from
the initial state |ψ〉⊗|0〉 to the state |ψ〉⊗|ψ〉, in which even the systemHc reaches
the state |ψ〉. For this to happen, there must exist a unitary operator ofH⊗Hc such
that

U (|ψ〉 ⊗ |0〉) = |ψ〉 ⊗ |ψ〉 (3.74a)

for every state |ψ〉. Because |ψ〉 is arbitrary, the same relation must hold even for a
state |φ〉 �= |ψ〉

U (|φ〉 ⊗ |0〉) = |φ〉 ⊗ |φ〉 . (3.74b)

http://dx.doi.org/10.1007/978-3-319-15600-2_10
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Now, if such operator existed, due to the linearity of the tensor product with respect
to the argument (see Sect. 2.13), we would have

U (α|ψ〉 + β|ϕ〉) ⊗ |0〉 = α|ψ〉 ⊗ |ψ〉 + β|ϕ〉 ⊗ |ϕ〉
�= (α|ψ〉 + β|ϕ〉) ⊗ (α|ψ〉 + β|ϕ〉) . (3.75)

Therefore no unitary transformation U exists allowing the copy according to (3.74).
This result is known as the no-cloning theorem: quantum information, differently
from classical, cannot be copied.

Also, this important topic will be reconsidered in the final chapters.

Problem 3.11 		 Consider the non normalized state

|ψ ′〉 = 2 |0 0〉 + i |0 1〉 + 3 |0 1〉

of a two-qubit system with basis B = {|0 0〉, |0 1〉, |1 0〉, |1 1〉} (here |0 0〉 stands for
|0〉 ⊗ |0〉, etc.). Find the normalized form, 〈ψ |ψ〉 = 1, and prove that the two qubits
|ψ〉 are entangled.

3.11 Nonunicity of the Density Operator Decomposition ⇓

In an n-dimensional Hilbert spaceH a (discrete) density operator is defined starting
from an ensemble E = (S, p), where S = {|ψ1〉, . . . , |ψk〉} is a set of normalized
states and p is a probability distribution over S. The resulting density operators is
(see (3.7))

ρ =
k

∑

i=1

pi |ψi 〉〈ψi | . (3.76)

In this section we discuss the multiplicity of the ensembles that generate the same
density operator.

3.11.1 Matrix Representation of an Ensemble

An ensemble E = (S, p) can be represented by an n × k matrix

̂Ψ = [√p1 |ψ1〉, . . . ,√pk |ψk〉] = [|̂ψ1〉, . . . , |̂ψk〉] (3.77)

where

|̂ψi 〉 = √
pi |ψi 〉, i = 1, . . . , k . (3.77a)

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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are called weighted states. From the matrix ̂Ψ the density operator (3.76) is obtained
in the form

ρ
n×n

= ̂Ψ
n×k

̂Ψ ∗
k×n

= [|̂ψ1〉|, . . . , |̂ψk〉]
⎡

⎢

⎣

〈̂ψ1|
...

〈̂ψk |

⎤

⎥

⎦ (3.78)

where ̂Ψ ∗ is the conjugate transpose of ̂Ψ . Then ̂Ψ is called k-factor or simply a
factor of the given density operator.

The factor ̂Ψ bears the full information of the ensemble E as well as of the density
operator.

Proposition 3.4 Factors and ensembles are in one-to-one correspondence, and
therefore generate the same density operator.

In fact, given an ensemble E = (S, p), one gets the corresponding factor ̂Ψ from
(3.77). Given a factor ̂Ψ , one gets the probabilities using (3.77a) as pi = 〈̂ψi |̂ψi 〉
and the normalized states of S as |ψi 〉 = (1/

√
pi )|̂ψi 〉.

Example 3.8 Consider the density operator obtained from the normalized states of
H = C

4

|ψ1〉 =

⎡

⎢

⎢

⎢

⎢

⎣

1
2

− i
2

− 1
2
i
2

⎤

⎥

⎥

⎥

⎥

⎦

, |ψ2〉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2+√
2

2
√
6

−2 i+√
2

2
√
6

−2+√
2

2
√
6

2 i+√
2

2
√
6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, |ψ3〉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1+√
2

2
√
3

− 2 i+√
2

2
√
6

− 2+√
2

2
√
6

−−2 i+√
2

2
√
6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

with probabilities p1 = 1/4, p2 = 3/8 and p3 = 3/8. The expression of ρ is
therefore

ρ = 1

4
|ψ1〉〈ψ1| + 3

8
|ψ2〉〈ψ2| + 3

8
|ψ3〉〈ψ3| =

⎡

⎢

⎢

⎢

⎣

1
4

1
16 + 3 i

16 − 1
8

1
16 − 3 i

16
1
16 − 3 i

16
1
4

1
16 + 3 i

16 − 1
8

− 1
8

1
16 − 3 i

16
1
4

1
16 + 3 i

16
1
16 + 3 i

16 − 1
8

1
16 − 3 i

16
1
4

⎤

⎥

⎥

⎥

⎦

.

A factor is

̂Ψ = 1

4

⎡

⎢

⎢

⎢

⎢

⎣

1 1 + 1√
2

1 − 1√
2

− i − i + 1√
2

− i − 1√
2

−1 −1 + 1√
2

−1 − 1√
2

i i + 1√
2

i − 1√
2

⎤

⎥

⎥

⎥

⎥

⎦

(3.79)
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and, in fact, we can check that ̂Ψ ̂Ψ ∗ = ρ. From the columns of ̂Ψ we can obtain
both the normalized states and the probabilities. For instance, from the first weighted
state one gets

|̂ψ1〉 = 1

4

⎡

⎢

⎢

⎣

1
−i
−1
i

⎤

⎥

⎥

⎦

→ p1 = 〈ψ1|ψ1〉 = 1

4
, |ψ1〉 = 1√

p1
|̂ψ1〉 =

⎡

⎢

⎢

⎢

⎢

⎣

1
2

− i
2

− 1
2
i
2

⎤

⎥

⎥

⎥

⎥

⎦

.

Note that, while a factor (or an ensemble) uniquely determines a density operator,
for a given density operator we may find infinitely many factors, according to the
paradigm

ensemble ⇐⇒ factor =⇒ density operator .

This problem was considered by Hugston, Josa andWootters in a letter [12] and here
it is reconsidered in a new form, completely based on matrix analysis. For instance,
in [12] the compact form (3.78) and the consequent application of the singular value
decomposition (SVD) are not considered. Note that factors of a density operator
play a fundamental role in quantum detection (see Chap.5, Sect. 5.7, and Chap.8)
and also in Quantum Information Theory (see Chap.12).

Before proceeding we refine a few definitions. For a k-factor it is easy to see that
theminimumvalue of k is given by the rank r of ρ, which is also the rank of any factor
of ρ, but the value of k may be arbitrarily large. An r -factor, with r = rank(ρ), will be
called a minimum factor of ρ. An ensemble E = (S, p), where S = {|ψ1〉, . . . , |ψk〉}
consists of orthonormal states, that is, 〈ψi |ψ j 〉 = δi j , is called orthonormal, and so
is for the corresponding factor, where the orthonormality condition is stated by

̂Ψ ∗
̂Ψ = diag {〈̂ψ1|̂ψ1〉, . . . , 〈̂ψk |̂ψk〉} = diag {p1, . . . , pk} . (3.80)

An orthonormal k-factor ̂Ψ is necessarily minimum. In fact, the k orthonormal
columns of ̂Ψ are linearly independent and therefore ̂Ψ has rank k, but rank̂Ψ =
rankρ = r . In the previous example, where k = 3, the rank of ρ is r = 2 and ̂Ψ ∗

̂Ψ

is not a diagonal matrix, so ̂Ψ is neither minimum nor orthonormal.

3.11.2 Minimum Factor from the EID

Now, we are ready to get the minimum factor from a density operator ρ, using the
eigendecomposition (EID).

Proposition 3.5 Let ρ be a density operator in an n-dimensional Hilbert space H

and let r = rankρ. The reduced EID of ρ has the form (see Sect.2.11)

ρ =
r

∑

i=1

σ 2
i |ui 〉〈ui | = U �2 U∗ (3.81)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_8
http://dx.doi.org/10.1007/978-3-319-15600-2_12
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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where σ 2
i are the r positive eigenvalues of ρ, |ui 〉 are the corresponding orthonormal

eigenvectors, U = [|u1〉, . . . , |ur 〉] and �2 = diag {σ 2
1 , . . . , σ 2

r }. Then,

̂Ψ0 = U � = [|̂ψ01〉, . . . , |̂ψ0r 〉] with |̂ψ0i 〉 = σi |ui 〉 (3.82)

is a minimum orthonormal factor of ρ.
In terms of an ensemble, from the EID we have the orthonormal ensemble E0 =

(S0, p0), where S0 = {|u0〉, . . . , |uk〉} and p0 i = σi . �

Proof Clearly ̂Ψ0̂Ψ ∗
0 = ρ, that is, ̂Ψ0 is a factor ofρ. Sinceρ isHermitian andpositive

semidefinite (PSD), its nonzero eigenvalues σ 2
i are positive. Moreover, Tr[ρ] = 1

and the trace is given by the sum of the eigenvalues. Hence, the σ 2
i form a probability

distribution. Finally note that in (3.81)U collects r orthonormal eigenvectors, so that
̂Ψ0 represents a minimum orthonormal factor of ρ.

Example 3.9 Reconsider the density operator of the previous example, which has
rank r = 2. The EID is given by ρ = U �2 U∗ with

U =

⎡

⎢

⎢

⎢

⎢

⎣

− 1
2 − 1

2
i
2 − 1

2
1
2 − 1

2

− 1
2 − 1

2

⎤

⎥

⎥

⎥

⎥

⎦

, �2 =
[ 3
4 0
0 1

4

]

→ � =
[√

3
4 0

0 1
2

]

.

Hence,

̂Ψ0 = U � =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
√
3
4 − 1

4
i
√
3

4 − 1
4√

3
4 − 1

4

−
√
3
4 − 1

4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(3.83)

is aminimumorthonormal factor of ρ.We can check thatU∗ U = I2 and ̂Ψ0̂Ψ ∗
0 = ρ .

The factor multiplicity is further investigated in problems. Problem3.12 estab-
lishes how to get a minimum factor from an arbitrary factor, using the singular-value
decomposition (SVD). Problem3.13 establishes how to get the whole class of factors
of a given ρ.

Problem 3.12 		 Minimum factor from an arbitrary factor. Let ̂Ψ be an arbitrary
k-factor of ρ. The reduced SVD of the n × k matrix ̂Ψ has the form (see Sect. 2.12)

̂Ψ =
r

∑

i=1

σi |ui 〉〈vi | = U �V ∗ (3.84)

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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where the σi are the square roots of the r positive eigenvalues σ 2
i of ̂Ψ ̂Ψ ∗ = ρ,

� = diag {σ1, . . . , σr }, |ui 〉 and U are the same as in the EID of (3.81), |vi 〉 are
orthonormal vectors of length k, and V = [|v1〉, . . . , |vr 〉]. Prove that a minimum
orthonormal factor of ρ is given by

̂Ψ0 = U � . (3.85)

Problem 3.13 			 Generation of all possible factors of a density operator. Let ̂Ψ

be a k-factor of ρ, that is, ̂Ψ ̂Ψ ∗ = ρ, and let A be an arbitrary k × p complex matrix
that verifies the condition A A∗ = Ik . Prove that

� = ̂Ψ A (3.86)

is a p-factor of ρ. This relation allows us to generate all the possible factors of a
given density operator

Problem 3.14 		 Find the reduced SVD of the factor (3.79) and show that it gives
the same minimum factor ̂Ψ0 obtained with the EID of ρ.

Problem 3.15 		 Consider the minimum factor given by (3.83) and find a 2 × 3
matrix to generate a 3-factor. Also, apply the 2 × 8 matrix

A = 1

2
√
2

[

1 1 1 1 1 1 1 1

1 e− iπ
4 −i e− 3iπ

4 −1 e
3iπ
4 i e

iπ
4

]

to generate an 8-factor.

3.12 Revisiting the Qubit and Its Description

The qubit has been introduced in Sect. 3.2 as the simplest quantum system. It was
then considered in Example3.2 in the context of quantum measurements. Due to the
relevance of such quantum system for applications, the qubit is now considered in
further detail.

We recall the main difference between the bit and the qubit. Regardless of its
physical realization, a bit is always understood to be either a 0 or a 1. An analogy
to this is a light switch, with the off position representing 0 and the on position
representing 1.A qubit has a few similarities to a classical bit, but, overall, it is very
different. Like a bit, a qubit can have two possible values, 0 and 1. The difference is
that, whereas a bit must be either 0 or 1, a qubit can be 0, 1, or a superposition of
both.
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3.12.1 Representation of Pure Qubit States
on the Bloch sphere

We reconsider the expression (3.3) of a generic qubit state

|ψ〉 = a |0〉 + b |1〉 (3.87)

which is a linear combination of the elements of the bases {|0〉, |1〉} with a and b
complex numbers. This representation is redundant because a and b are not arbitrary,
but are constrained by the normalization condition

|a|2 + |b|2 = 1. (3.88)

We can thus move from a representation with four degrees of freedom (dependence
on four real numbers, the real and the imaginary parts of a and b, respectively) to
three degrees of freedom. The redundancy can be further reduced to two degrees
of freedom. In fact, by letting a = eiγ cos 1

2θ and b = ei(γ+φ) sin 1
2θ , where the

normalization is verified, we have

|ψ〉 = eiγ
(

cos
1

2
θ |0〉 + eiφ sin

1

2
θ |1〉

)

.

The first exponential represents a global phase, and can thus be ignored because it
has no observable effects, as explained in Sect. 3.2. Hence, up to the irrelevant phase,
a general normalized qubit vector can be written as

|ψ〉 = cos
1

2
θ |0〉 + eiφ sin

1

2
θ |1〉 , (3.89)

in dependence of the two real parameters θ and φ. The possible states for a qubit
can then be put in correspondence, and thus visualized, as the points of the surface
of a unitary sphere, where a point is determined be the angles θ and φ, as shown in
Fig. 3.9. This representation is called Bloch sphere representation.

In order to develop some familiarity with the Bloch sphere representation, let us
provide the representation for some noteworthy states. For example, for φ = 0 and
θ = 0 (“North Pole”) one obtains the basis ket |0〉, while for φ = 0 and θ = π

(“South Pole”) one gets the basis ket |1〉. The points on the Equator correspond to
θ = 1

2π . It is easily seen that two qubit states |ψ1〉 and |ψ2〉 are orthogonal if they
are antipodal in the Bloch sphere, that is, if θ1 + θ2 = π .

The Bloch sphere representation allows us to illustrate geometrically the differ-
ence between the classical bit and the qubit. With the classical bit the representation
is limited to two points: the North Pole and the South Pole, while the qubit may be
located at any point of the surface, which is a two-dimensional manifold.
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Fig. 3.9 Representation of a qubit through the Bloch sphere

3.12.2 Representation of Mixed Qubit States in the Bloch Ball

It is possible to extend the Bloch sphere representation to visualize also mixed states
for qubits. These will correspond to points inside the Bloch sphere. In general, a
mixed qubit state can be written as a statistical combination of two orthogonal pure
qubit states, say

ρ = p|ψ1〉〈ψ1| + q|ψ2〉〈ψ2|, p, q ≥ 0 , p + q = 1 , 〈ψ1|ψ2〉 = 0

where |ψi 〉 = ai |0〉 + bi |1〉 with |ai |2 + |bi |2 = 1.
To our aim, however, a more efficient representation is obtained by recalling that a

density operator acting onH = C
2 can also be represented as a PSD 2×2 Hermitian

matrix having unitary trace. Then, without restrictions, we have that the general form
is given by

ρ = 1

2

[

1 + rz rx − iry

rx + iry 1 − rz

]

= 1

2
IH + 1

2

[

rz rx − iry

rx + iry −rz

]

(3.90)

where rx , ry , and rz are real numbers. The PSD condition of ρ can be translated to
the condition r2x + r2y + r2z ≤ 1. In this way, the 3D vector r := (rx , ry, rz), with
||r|| ≤ 1, allows for the representation of the density operator as a point inside the
Bloch sphere.

It can be seen that the state represented by (3.90) is pure if and only if ‖r‖ = 1
(see Problem3.16). Note also that the center of the sphere obtained with r = 0 gives
the completely chaotic mixed state ρ = 1

2 IH.



124 3 Elements of Quantum Mechanics

Relation (3.90) can be expressed in an elegant form by using Pauli’s matrices

σ0 = I =
[

1 0
0 1

]

, σx =
[

0 1
1 0

]

, σy =
[

0 −i
i 0

]

, σz =
[

1 0
0 −1

]

. (3.91)

These matrices form a basis for the 2 × 2 complex matrices, and in particular for
density operators. In fact, from (3.80) we have directly that any ρ can be expressed
in this basis as

ρ = 1

2

(

σ0 + rxσx + ryσy + rzσz
)

. (3.92)

3.12.3 Operations with a Qubit

We recall fromPostulate2 that the evolution of a system in aHilbert space is provided
by a unitary operator U , which acts in the form |ψ〉 → U |ψ〉 for pure states and
ρ → U ρ U∗ for mixed states. Now all Pauli’s matrices are unitary and can be
considered as unitary operators for the space H = C

2, that is, for a qubit system.
Now we suppose that the basis of the qubit is given explicitly by the vector

|0〉 =
[

1
0

]

, |1〉 =
[

0
1

]

and we consider the evolution when the input is one of the basis kets and the unitary
operator is one of the Pauli matrices. Of course, with U = σ0 = I2 with have no
evolution. With the other Pauli’s matrix we find:

• application of σx : bit-flip

σx |0〉 = |1〉, σx |1〉 = |0〉

• application of σz : bit-flip

σz |0〉 = |0〉, σz |1〉 = −|1〉

• application of σy : bit-phase-flip

σy |0〉 = i|1〉, σy |1〉 = −i|0〉 .

Here we have indicated the names given to the transformations in the fields of Quan-
tum Computation and Quantum Information, where they are quite fundamental.
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3.12.4 The Qubit in Nature

The qubit represents a wonderful theoretical discovery8 and nowadays it is the fun-
damental tool of Quantum Information and Quantum computation (with discrete
variables). But the question is: do qubits exist in Nature? The first concrete exper-
iment was conceived by Stern in 1921 and carried out by Gerlach in 1922 (today
known as the Stern–Gerlach experiment) by beaming silver atoms with a magnetic
field.

At the present time there is an enormous amount of experiments that set a system
into a qubit state with simpler methods related to the two different polarizations of
photons, to the alignment of a nuclear spin, and the two states of electrons orbiting
in a single atom [1].

3.12.5 Quantum Measurements with a Qubit

A quantum measurement allows us to gain information about the state of the qubit.
We recall from Sect. 3.5.2 that a quantum measurement performed with a system of
elementary projectors {Πi = |ai , i ∈ M} in a quantum system prepared in the state
|ψ〉 gives the outcome m = i with probability P[m = i |ψ] = |〈ai |ψ〉|2. After the
measurement the system moves to the state |ψpost〉 = |ai 〉.

We can apply these statements to the qubit |ψ〉 = a|0〉+b|1〉, using the projectors
Π0 = |0〉〈0| andΠ1 = |1〉〈1| obtained from the basis {|0〉, |1〉}.Wefind that the result
of the measurement will be either |0〉, with probability |a|2, or |1〉, with probability
|b|2. The measurement alters the state of the qubit: if the outcome is m = 0, the qubit
collapses to the state |ψpost〉 = |0〉, while if m = 1 the qubit collapses to the state
|ψpost〉 = |1〉.

This quantum measurement allows us to reflect about the amount of informa-
tion contained in a qubit. Considering the representation in the Bloch sphere, the
cardinality of a qubit is the same as the one of a two-dimensional real space and
therefore a qubit could contain an infinite amount of information. But, if we try to
extract this information with a quantum measurement, the qubit system collapses
into either state |0〉 or state |1〉. Hence with a measurement one gets only a single
bit of information, as with a classical bit. Then, the question is: why does the qubit,
potentially containing an infinite amount of information, does collapse into a pure
binary form? According to Nielsen and Chang [1, p.15]: “nobody knows”.

But even more interesting and intriguing questions arise with multiple qubits for
the possibility of the entanglement.

8 The introduction of the term “qubit” is attributed to Schumacher [13].
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3.12.6 Multiple Qubits

With two qubit systems H1 and H2 we can construct a composite systems by the
tensor product,H = H1⊗H2. If the bases of the component systems are {|01〉, |11〉}
and {|02〉, |12〉} a basis of H is given by

{|01〉 ⊗ |02〉, |01〉 ⊗ |12〉, |11〉 ⊗ |02〉, |11〉 ⊗ |12〉} (3.93a)

which is usually abbreviated in the form

{|00〉, |01〉, |10〉, |11〉} . (3.93b)

Thus, in particular, with the bases, we can form the four two-qubits |00〉, |01〉, |10〉,
and |11〉, exactly as in the classical case of four two-bits 00, 01, 10, and 11.

In general a two-qubit state is given by a linear combination of the basis vectors,
namely

|ψ〉 = a00 |00〉 + a01 |01〉 + a10 |10〉 + a11 |11〉 (3.94)

where the normalization condition is
∑

i
∑

j |ai j |2 = 1.
It is interesting to find conditions on the coefficient ai j for the presence of entan-

glement. This can be done using Schmidt’s decomposition developed in Chap.10,
which is essentially a singular value decomposition of the coefficient matrix. The
result is (see Problem3.17):

Proposition 3.6 The two-qubit state (3.94) is separable (non entangled) if and only
if the coefficients verify the condition

a01a10 = a00a11 . (3.95)

Then, e.g., we find that the Bell state

|ψ〉 = 1√
2
(|00〉 + |11〉) (3.96)

is entangled.
It would be interesting to see the information in a two-qubit system, in particular

in the case of entanglement, but this will be seen in the final part of the book.

Problem 3.16 		 Prove that the mixed state qubit expressed in the form (3.90)
represents a pure state if and only if the vector r has unit length. Under this condition,
from (3.90) find the corresponding pure state.

Problem 3.17 	 	∇ Using Schmidt’s decomposition given in Chap.10, prove
Proposition3.6.

Problem 3.18 		 Prove Proposition3.6 using the considerations of Sect. 3.10.2, in
particular relations (3.71) to (3.73).

http://dx.doi.org/10.1007/978-3-319-15600-2_10
http://dx.doi.org/10.1007/978-3-319-15600-2_10
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Appendix

Probabilities and Random Variables in a Quantum
Measurement

In this appendix we develop in detail the statistical description of the random quan-
tities one finds in a quantum measurement, starting from the case of pure states and
then considering the general case of mixed states.

Measurements with Pure States

The random quantity is given by the outcome of the measurement m, which
is described by the conditioned probability distribution given by (3.26), that is,
pm(i |ψ) := P[m = i |s = |ψ〉] = 〈ψ |Πi |ψ〉, where the condition s = |ψ〉 is
not random if the state of the system is known before the measurement. Also, the
state of the system after the measurement given by

spost = Πi |ψ〉√〈ψ |Πi |ψ〉 = Πi |ψ〉√
pm(i |ψ)

.

This state is not random because it is uniquely determined by the original state
s = |ψ〉.

Measurements with Mixed States

The scenario is more complicated because the random quantities become:

(1) the state of the system s before the measurement,
(2) the outcome of the measurement m,
(3) the state of the system spost after the measurement.

The statistical description of the state s in encoded in the density operator

ρ =
∑

|ψ〉∈S
ps(ψ)|ψ〉〈ψ |

which gives the ensemble (see (3.6)) E = (S, ps), where S = {|ψ1〉, |ψ2〉, . . .} is the
alphabet of the states and ps(ψ) = P[s = |ψ〉] is the probability distribution over S.
The statistical description of the measurement outcome m is given by the conditional
probability distribution

pm|s(i | j) := P[m = i |s = |ψ j ] = 〈ψ j |Πi |ψ j 〉 = Tr(|ψ j 〉〈ψ j |Πi ) (3.97)

with absolute probability distribution (see (3.35))
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pm(i) := P[m = i] = Tr[Πi ρ] . (3.98)

The relations to get the reverse conditional probability are

ps|m( j |i) :=P[s = |ψ j 〉|m = i] = P[m = i, s = |ψ j 〉]/P[m = i]
=P[m = i |s = |ψ j 〉]P[s = |ψ j 〉]/P[m = i]

and, considering (3.97) and (3.98),

ps|m( j |i) := P[s = |ψ j 〉|m = i] = Tr[Πi |ψ j ] ps( j)]
Tr[Πi ρ] . (3.99)

Finally we consider the state of the system after the measurement, spost. This state
can be evaluated from (3.27), for a given original state s = |ψ j 〉, that is,

|ψ(i)
post , j 〉 = Πi |ψ j 〉

√〈ψ j |Πi |ψ j 〉
= Πi |ψ j 〉

√

Tr[|ψ j 〉〈ψ j |Πi ]
. (3.100)

Here we consider that m = i is given, then also Πi is given, and therefore, as
s = |ψ j 〉 ∈ S, (3.100) generates the alphabet of the post-measurement states

S
(i)
post =

{

|ψ(i)
post , j 〉|ψ j ∈ S

}

.

The randomness of spost depends only on the randomness of the original state s =
|ψ j 〉 and the related probability distribution reads as

pspost( j |i) = P[spost = |ψ(i)
post , j 〉

∣

∣

∣ m = i] . (3.101)

Now we get the density operator ρ
(i)
post describing the system after the measurement

from the ensemble E(i)
post = (S

(i)
post, pspost), that is,

ρ
(i)
post =

∑

j

pspost( j |i)|ψ(i)
post , j 〉〈ψ(i)

post , j |.

For the explicit evaluation we remark that (3.100) establishes a one-to-one corre-
spondence between the random states s and spost, so that the probability distribution
(3.100) coincides with the probability distribution (3.99). Hence, using (3.99) and
(3.100) we get

ρ
(i)
post =

∑

j

Tr[Πi |ψ j 〉〈ψ j |] ps( j)

Tr[Πi ρ]
Πi |ψ j 〉〈ψ j |Πi

Tr[Πi |ψ j 〉〈ψ j |] =
∑

j

ps( j)Πi |ψ j 〉〈ψ j |Πi

Tr[Πi ρ]

and (3.37) follows.
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Quantum Communications



Chapter 4
Introduction to Part II: Quantum
Communications

This second part of the book is concerned with Quantum Communications, and
more specifically, with Quantum Telecommunications, as our scenario will be the
transmission of information from a sender to a user, located at a certain distance.
The starting point will be Classical Telecommunications, whose fundamentals lie
upon Classical Physics and this is due to several reasons. First, historical reasons,
in that Classical Telecommunication originated a hundred years before Quantum
Telecommunications (see below the fundamental dates), but mainly because the two
types of Telecommunications often share the same goal and therefore will be crucial
to compare their performance.

Organization of this Chapter

In this chapter we outline the foundations of Telecommunications Systems and intro-
duce the two basic approaches, Classical and Quantum Communications, and then
formally describe their differences.

In the second part of the chapter we introduce the foundations of optical classical
communications, which is the necessary prologue to optical quantum communica-
tions developed in Chaps. 5–9. The mathematical framework for optical classical
communications is given by Poisson processes, which allow us to represent ade-
quately the optical power and its processing inside the system, and also the electrical
current in photodetection. The theory of Poisson processes will be developed in
Sect. 4.5 and then applied to photodetection.

Organization of Part II

We now summarize the content of Part II, which consists of five chapters.
In Chap. 5, Quantum Detection Theory: Analysis and Optimization, the funda-

mentals of Quantum Mechanics of Chap. 3 are applied to develop Quantum Detec-
tion, which represents the essential part of quantum receivers. Quantum Detection is
based on quantum measurements and its goal is to extract the information from the
incoming quantum states. The choice of the projectors or POVMs for the quantum
measurements becomes the key strategy to design the best quantum receiver.

© Springer International Publishing Switzerland 2015
G. Cariolaro, Quantum Communications, Signals and Communication Technology,
DOI 10.1007/978-3-319-15600-2_4
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Chapter 6, Quantum Detection Theory: Suboptimization. In general, optimiza-
tion does not give explicit results and thus suboptimal detections are investigated.
The most important technique of suboptimization is based on square root
measurements (SRM), which can be applied to every quantum communication sys-
tem and achieves “pretty good” estimation of the system performance.

Chapter 7, Quantum Communications Systems, develops the fundamentals of
Quantum Communications Systems, where the information carrier is based on co-
herent states (representing the laser radiation at an optical frequency). These fun-
damentals are then applied to examine the most popular quantum communication
systems, based on PAM, QAM, PSK, and PPM modulations, and for each system the
performance is compared with the ones of the classical counterpart. In this chapter it
is assumed that the information carrier is given by pure states. This is useful as a first
simplified formulation because it allows for a better understanding of the essential
parts of a quantum communications system.

In Chap. 8, Quantum Communications Systems in the Presence of Thermal Noise,
the assumption of pure states is abandoned and mixed states are assumed at reception.
This allows us to obtain a more realistic formulation where thermal noise, always
present in a real-world system, is taken into account. Of course, the formulation with
mixed states, represented by density operators, becomes more difficult. Also, with
this more accurate formulation, the most popular quantum communication systems
are examined and compared to the corresponding classical systems.

In Chap. 9, Implementation of Quantum Communications Systems, significant re-
alizations of quantum communications systems are developed. The main solutions
proposed in the literature are described and also some original ideas are outlined.

A Few Milestones in Telecommunications

1838: First commercial telegraph (Cooke and Wheatstone)

1854: Antonio Meucci invented a telephone-like device

1858: First communication over a transatlantic telegraphic cable

1876: Alexander Graham Bell patented the first practical telephone

1896: Guglielmo Marconi patented the radio

1901: First wireless signal across the Atlantic Ocean

1926: First public demonstration of a television set by John Baird

1927: Opening of the first transatlantic telephone service

1931: First detection of radio astronomy waves coming from the deep space

1940: First TV transmissions over coaxial cable

1948: “A Mathematical Theory of Communications” (Claude Shannon)

1959: The word laser is coined (Gordon Gould)

1962: First commercial telecommunications satellite (Telstar)

1966: First fiber optical communications (Kao and Hockam)

1969: ARPANET sends the first packet: it is the beginning of computer networks

http://dx.doi.org/10.1007/978-3-319-15600-2_6
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_8
http://dx.doi.org/10.1007/978-3-319-15600-2_9
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1973: First modern era mobile cellular phone (Motorola)

1974: First release of the TCP/IP protocol (the foundation of Internet)

1975: First commercial fiber-optic network

1979: First mobile cellular phone network (NTT)

1980: Release of the Ethernet protocol

1982: Release of the SMTP protocol for e-mail

1983: 1st January: ARPANET changes from NCP to TCP/IP

1990: 23rd July: First HDTV transmission (Telettra & RAI, Italy)

1990: December: First web site developed by Tim Berners Lee

2003: August: Skype is released.

4.1 A General Scheme of a Telecommunications System

An essential scheme of a communication system, which is valid for both Classical
and Quantum Communications, is depicted in Fig. 4.1. A source of information emits
a message, say m, or m(t) to emphasize the time dependence, which must be sent
to a user located at a certain distance. The message may be of several kinds and of
any degree of complexity, as voice, music, still images, images with motion (cinema
and television), written text, numerical data, and so on. The transmitter converts
the message to a state or signal vm(t) representing a physical quantity, e.g., an
electromagnetic microwave or an optical radiation emitted by a laser. Then the signal
has the role of information carrier. The signal is sent to the desired distance using
a physical channel, e.g., an optical fiber, the free space, or a satellite link, which
delivers to the receiver a corrupted version v̂m(t) of the original signal vm(t). Finally,
the receiver extracts from the received signal v̂m(t) an approximate replica m̂ of the
original message.

In dependence of the context, the term “transmitter” is sometimes replaced by
“encoder” (and also by “modulator”) and the “receiver” by “decoder” (“demodula-
tor”). In Quantum Mechanics it is customary to humanize the transmitter/encoder as
Alice and the receiver/decoder as Bob.

inform.
source

Alice

transmitter
(TX)

m physical
channel

vm(t) receiver
(RX)

vm(t)

Bob

user
m

Fig. 4.1 Essential scheme of a telecommunications system
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4.1.1 Analog and Digital Messages

A fundamental classification is based on the nature of the message, which may
be continuous, as most of “natural” messages are (voice, images) or discrete, as
data. Correspondingly, the signals have a continuous-time evolution or a discrete
time evolution, respectively. Historically, communications were implemented for
more than a century for continuous messages (apart from the rudimentary telegraph
system), with the technical jargon of analog communications, but in the last four
decades all communications are implemented in the form of digital communications.
In fact, this is what is commonly referred to as digital revolution.

The digital revolution was started by a wonderful paper by Oliver et al. entitled
“The Philosophy of PCM,” published by the Proceedings of IRE [1] (now IEEE) in
1948 (the same annus mirabilis in which Shannon published the other masterpiece,
on Information Theory [2]). In essence, the authors proved that all continuous in-
formation can be converted into digital form with an arbitrarily prefixed and then
controlled fidelity. In other words, they claimed that all messages can be converted
to a sequence of 0s and 1s, and, from this sequence the original message can be
recovered with the desired accuracy (see the next section). This possibility had a
tremendous advantage in terms of unification in the system implementation and de-
sign. Nowadays this conclusion seems to be trivial, but it was not in 1948. However,
the implementation of this idea came 30 years later because it needed Very Large
Scale Integration of electronic components. Nowadays all information is digitalized
and, ultimately, this motivates our choice of dealing only with digital communica-
tions in this book.

Note that the same scheme of Fig. 4.1 can also be adapted to the storage of infor-
mation. The physical channel becomes the storage medium and the receiver becomes
the player that restores the message from the medium. The main difference is that a
communication system works in “real time,” whereas a recorder works in “deferred
time.”

4.1.2 Mathematical Representation of Messages and Signals

Messages and signals in a communications system are always modeled as random
or stochastic processes, and therefore are statistically described according to Prob-
ability Theory. The realizations of the random process are conveniently interpreted
as possible messages or signals that the communications system can convey and the
source of information may be viewed as an urn from which a realization is extracted
with a random mechanism.

An analog source of information is modeled as continuous-time continuous-
amplitude random process s(t). Figure 4.2 shows a few realizations of such kind
of process.
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Fig. 4.2 Realizations of a continuous-time continuous-amplitude random process
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Fig. 4.3 Realization of a binary digital signal sn = s(nT )

A digital source of information is modeled as a discrete-time discrete-amplitude
random process. In this case the realizations are written in the form s(nT ), where the
time t consists of equally T -spaced instants and the amplitude takes its values from
a finite-size alphabet A , which often is the binary alphabet A = {0, 1}. Figure 4.3
shows a realization of a binary process. The parameters of a digital source are: the
symbol period T (in seconds), or equivalently the symbol frequency fc = 1/T (in
symbols per second), and the nominal rate

R0 = fc log2 K bits/symbol with K = |A| = size of A. (4.1)

The effective rate of the source R is evaluated through the entropy (see Chap. 12) and
is equal to R0 only when the random process consists of equally likely and statistically
independent symbols. In all the other cases R < R0, because the information source
is redundant.

4.2 Essential Performances of a Communication System

The analysis of a communication system is usually subdivided into several parts
(blocks), where the functionality of each block is specified, and combined in order
to evaluate the overall performance. The accuracy in the specification of the blocks
depends on the target of the analysis. In general, to understand the principles upon

http://dx.doi.org/10.1007/978-3-319-15600-2_12
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which the system works, a simplified description is the most convenient approach.
On the opposite side, if the target is the computer simulation of the system before its
realization, a very detailed description is necessary. The same considerations hold
for the specification of the global performance that the system should realize, which
may either be limited to the essential or very detailed.

In this section we discuss the essential performance.

4.2.1 Analog Systems

For reasons of completeness we begin with an analog system, where the target is
the transmission of a class of continuous-time continuous-amplitude signals. If the
transmitted signal s(t) is a member of this class, in the ideal case the received signal
ŝ(t) should coincide with s(t), but also the form ŝ(t) = A0s(t − t0), where A0 is an
amplification or an attenuation and t0 is a delay, is accepted as a uncorrupted version
of s(t). More generally, an equivalent scheme of an analog system is given by a linear
system, specified by the impulse response h(t), followed by an additive noise n(t)
(Fig. 4.4). Then, the received signal can be decomposed in the form

ŝ(t) = su(t) + n(t)

where su(t) is the output of the linear system (useful signal) and n(t) is the noise. A
global parameter to quantify this impairment is usually given by the signal-to-noise
ratio (SNR)

Λ = E[s2
u (t)]

E[n2(t)] (4.2)

where E[·] denotes expectation (or statistical mean).
Another fundamental parameter of an analog system is the bandwidth B, given

by the maximum frequency of the signals that the system can transmit ensuring a
given SNR Λ. For instance, we say that an analog system has a bandwidth of B = 1
MHz with an SNR of 60 dB.

analog
system

s(t)
=

s(t)
h(t)

s(t)

linear system

Σ
s(t)

n(t)

Fig. 4.4 Analog communication system and equivalent scheme with additive noise
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4.2.2 Digital Systems

The parameters giving the performance of a digital system are specified in terms
of probabilities, and therefore very differently with respect to the analog case. We
consider the specification in the simplest case, where: (1) the source emits stationary
and statistically independent symbols An , belonging to a finite size alphabet, sayA =
{0, 1, . . . , K −1}, and (2) the global digital channel is memoryless and permanent, as
the transmission of An is not influenced (statistically) by the transmission of the other
symbols and is independent of n. The size K of the symbol alphabet A characterizes
the system as a K -ary digital system, so we have a binary system for K = 2, a ternary
system for K = 3, and so on.

The source sequence {An} is specified by the symbol probabilities

pA(a) := P[An = a], a ∈ A (4.3)

often called a priori probabilities. The function pA(a) forms a probability distribu-
tion, that is, it verifies the conditions pA(a) ≥ 0 and

∑

a∈A pA(a) = 1.
Let {̂An} be the sequence of symbols at the output of the system. Then the global

channel is completely specified by the transition probabilities

pc(b|a) := P[̂An = b|An = a], a, b ∈ A. (4.4)

The probabilities pA(a) and pc(b|a) are usually represented by a graph, as shown
Fig. 4.5 for a ternary digital system.

Note that the channel should be regarded as a random system, because, given the
input, say An = 1, the output is not uniquely determined and may be An = 1 with
probability pc(1|1), but also An = 0 with probability pc(0|1), etc.

From the a priori probabilities (4.3) and from the transition probabilities (4.4) one
can evaluate all the probabilities in the system, such as the joint probabilities given
by P[̂An = b, An = a] = pc(b|a)pA(a). A global parameter, which corresponds to
the SNR of the analog case, is given by the correct decision probability

source

pA

digital
channel

An

pc

An pA(1)

0

1

2

An

0

1

2

An

pc (1|0)

Fig. 4.5 Statistical description of a ternary digital system. The source is specified by the prior
probabilities pA(a) and the channel by the transition probabilities pc(b|a)
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Pc : = P
[

̂An = An

]

=
∑

a∈A
P[An = a] P

[

̂An = a|An = a
]

=
∑

a∈A
pA(a) pc(a|a) (4.5)

or by the complementary error probability

Pe := P
[

̂An �= An

]

= 1 − Pc. (4.6)

The parameter Pc, or Pe, gives the reliability of the transmission. Other important
parameters are concerned with the amount of information in the system. The source is
characterized by the nominal rate R0 defined by (4.1). Often, the system performance
is specified by the nominal rate and by the error probability, e.g., a digital commu-
nication system with a rate R0 = 10 Mbits/s where an error probability Pe ≤ 10−10

is ensured.
A more sophisticated parameter of a digital communication system is given by

the mutual information I (An; ̂An), also called accessible information in Quantum
Information Theory (see Chap. 12). It gives the average information transmitted by
the channel and has the following expression:

I (An; ̂An) =
∑

a,b

pA(a) pc(b|a) log2
pc(b|a)

∑

a′ pA(a′)pc(b|a′)
. (4.7)

It depends both on the source, through the a priori probabilities, and on the channel,
through the transition probabilities. Now, for a given channel, we can vary I (A; ̂A)

by changing the a priori probabilities pA(a). The maximum that one obtains gives
the capacity of the channel:

C := max
pA

I (An; ̂An) (4.8)

These information parameters will be discussed in detail in Chap. 12.

4.2.3 Analog Systems Through Digital Systems (Digital
Revolution)

For the transmission of an analog message we have two possibilities: using directly
an analog system, with the performance established above, or using a digital system
with appropriate interfaces, an A/D conversion in transmission and a D/A conversion
in reception, as shown in Fig. 4.6, having in mind to obtain the same performance.
Considering the importance of this second solution, which was at the core of the

http://dx.doi.org/10.1007/978-3-319-15600-2_12
http://dx.doi.org/10.1007/978-3-319-15600-2_12
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Fig. 4.6 Direct analog transmission and analog transmission through a digital transmission
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Fig. 4.7 A/D conversion of an analog signal s(t) to a binary sequence An = A(nT ). The signal
s(t) is first sampled to get the discrete-time sequences sn and quantized into L levels. The quantized
sequence qn is finally converted to binary words of length m. In the illustration L = 8 and m = 3

digital revolution, we now see it in detail, thus reviewing the “philosophy” of Oliver,
Pierce, and Shannon as cited above.

In the A/D conversion we start from a continuous-time continuous-amplitude
signal s(t) and we want to represent it through a binary sequence. To this end, three
operations are needed (Fig. 4.7).

(1) A sampling, to get a discrete-time signal sn = s(nTc), where the sampling
frequency Fc is chosen according to the Sampling Theorem. Specifically, as
Fc = 2B, where B is the signal bandwidth.

(2) A quantization, which approximates an amplitude sn = s(nTc) by an amplitude
qn chosen within a set of L = 2m levels, {Q0, Q1, . . . , QL−1},
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(3) A binary conversion, where each Qi is represented by a binary word of m bits.

The resulting binary sequence An = A(nT ) has symbol period T = Tc/m. Then,
after the A/D conversion, we obtain a source of digital information with nominal rate

R0 = fc = 2m B bits. (4.9)

The sampling does not introduce any error and the only error is in quantization. Then
the performance of the A/D conversion is established by the signal-to-quantization
error ratio Λq = E[s2

n ]/E[e2
n], where en = sn − qn is the quantization error. A

reference (simplified) formula for Λq is given by [3]

Λq = L2 = 22m . (4.10)

For instance, using m = 10 bits/sample one gets Λ = 106 = 60.2 dB.
In the D/A conversion the quantized levels are recovered from the binary sequence.

Some quantized level may be wrong for the error introduced by the digital system, but
if the error probability Pe is sufficiently small (Pe � 1/L2), the channel errors have
a negligible influence and the global performance is determined by the quantization,
that is, Λ � Λq .

Finally, we note that an analog system must be designed “ad hoc” for the given
analog signal, usually with stringent criteria. On the other hand, the digital system
can be used for all analog signals (converted to digital form), and this is just the key
factor that determined the digital revolution.

4.2.4 Simplified and Detailed Schemes

A simplification usually done in the analysis of digital systems is the reduction of a
message to a single symbol, although in reality a sequence of symbols with their time
evolution should be considered. The question is: to what extent we lose generality in
considering the transmission of a single symbol? The theory developed for a single
symbol leads to results valid for a sequence {An} of symbols under the following
conditions: (1) the sequence {An} is stationary and with independent symbols, (2)
the channel is permanent and memoryless, and (3) absence of interference between
symbols (intersymbol interference).

In the following we will often work under this simplification, and the “single
symbol” will be denoted by A0 or simply by A.

Problem 4.1 � A still image (photo) is quantized in 800×800 pixels with 8 bit/pixel
and transmitted by a digital channel with nominal rate R0 = 100 kbits/s. Find (1)
the signal-to-quantization error Λq , (2) the error probability Pe of the digital channel
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such that the channel error is negligible, and (3) the time needed to transmit the
photo. Note that the global SNR is given by [3]

Λ = Λq/(1 + Pe L2).

Problem 4.2 � A video signal (produced by a TV camera) has bandwidth B =
5 MHz. Evaluate the A/D conversion parameters that ensure Λq = 60 dB, and in
particular the nominal rate of the digital channel.

4.3 Classical and Quantum Communications Systems

In this section we introduce other important classifications, which allow us to evi-
dence the distinction between classical and quantum information and between clas-
sical and quantum communications systems.

4.3.1 Classical and Quantum Information

The information contained in a message, as a written text, speech, music, images,
strings of data, is strongly related to its randomness or uncertainty: if a message is
known in advance, it does not bring any information and, on the opposite end, when
a message is completely uncertain it brings the maximum of information. As we
shall see in Information Theory of Chap. 12, the mathematical tool for evaluating the
amount of information of a message is Probability Theory, where a symbol becomes
a random variable and a message evolving in time becomes a random process.

In any case, the information is classified as classical information or quantum
information, the distinction being not easy in these preliminary considerations.
Broadly speaking, classical is the information related to random symbols and quan-
tum is the information related to random quantum states (in the sense explained in
Sect. 3.3). The distinction may also regard the methodology used in the context: a
message of classical information is dealt with using the tools of Probability Theory,
and a message of quantum information is dealt with using Probability Theory, but
through the laws of Quantum Mechanics.

4.3.2 Classical and Quantum Communications Systems

The distinction will become clearer in the comparison between Classical and Quan-
tum Communications, as depicted in Fig. 4.8 in the simplest case: the transmission
of a message consisting of a single symbol A. Then in both systems the purpose is
the transmission of classical information.

http://dx.doi.org/10.1007/978-3-319-15600-2_12
http://dx.doi.org/10.1007/978-3-319-15600-2_3
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Fig. 4.8 Comparison of classical and quantum communications systems for the transmission of a
classical symbol A

In the Classical Communications system the initial encoding is formulated as a
classical–classical (c → c)1 mapping A → vA(t), A ∈ A, where the symbol A
in converted to a physical quantity vA(t) to be sent to the channel. Note that vA(t)
should belong to a set with |A| distinct waveforms. The classical channel provides
a c → c mapping vA(t) → v̂A(t), where v̂A(t) is a corrupted version of vA(t).
Finally, the decoding provides again a c → c mapping v̂A(t) → ̂A, where ̂A has
the original format, ̂A ∈ A, but may be different from A for the reasons explained
above. In conclusion, in a Classical Communications system all the operations are
performed in the classical domain according to c → c mappings.

In the Quantum Communications system the classical information given by the
symbol A is transmitted through quantum states. Then the initial encoding becomes
a classical–quantum (c → q) mapping A → ρA, where ρA is the quantum state to
be associated to the symbol A. Alice should be able to prepare |A| different quantum
states. The quantum channel provides a q → q mapping ρA → ρ̂A, where ρ̂A is a
corrupted version of ρA. Finally, the decoding provides a q → c mapping ρ̂A → ̂A.

To get a further insight into the differences between the two types of systems, we
consider a specific case (one of the most important in applications): a binary data
transmission using a laser radiation at optical frequencies using the 2-PSK (phase-
shift keying) modulation. We still remain in a situation where the system is simplified
with respect to the real-world system (see below), but we arrive at some important
general conclusions.

In the classical 2-PSK (or BPSK) system the encoder (or better the modulator)
provides a laser radiation at an optical frequency ν with waveforms in the interval
[0, T ), v0(t) = V0 cos(2πνt) when A = 0 and v1(t) = V0 cos(2πνt + π) when
A = 1 (Fig. 4.9). The radiation is sent to the optical channel, which may be an optical
fiber. At the receiver, the signal, in simplified conditions where the fiber attenuation
is compensated by an amplification at the receiver front end, has the form v̂A(t) =

1 Here we follow the formalism c → c, c → q, etc., used by Holevo and Giovannetti in a recent
paper [4].
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Fig. 4.9 The two modulation waveforms in the 2-PSK system for the transmission of the symbol
A = 0 and A = 1
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Fig. 4.10 States in 2-PSK modulation. For the transmission of symbol A = 0 Alice prepares the
system in the coherent state |β〉 and for the transmission of the symbol A = 1 the coherent state
| − β〉. A coherent state is in general determined by a complex number; in this case ±β are real

vA(t) + n(t), where n(t) is an additive Gaussian noise, and a classical demodulator
extracts from v̂A(t) the transmitted symbol with a certain error probability due to
the Gaussian noise. As we will see in detail in Chap. 7, the mathematics needed to
evaluate the performances is simply given by Probability Theory.

In the quantum 2-PSK system the encoder (Alice) prepares two coherent states
of the form | ± β〉, where β is a real amplitude (see Sect. 7.2). She sends to the fiber
|β〉 when A = 0 and | − β〉 when A = 1 (Fig. 4.10). Continuing with simplified
conditions, the fiber followed by an amplification may be considered as an ideal
quantum channel that produces at the output the state sent by Alice. Finally, the
decoder (Bob) performs a quantum measurement with a POVM system to extract
the transmitted symbol. In this case the error probability is determined by the law of
Quantum Mechanics related to quantum measurements.

We can further simplify the comparison to find what is the essential difference
between the two types of systems. At the transmitter and at the channel the two
systems (in simplified conditions!) do not exhibit a substantial difference, apart from
the mathematical formulation. The core of the difference lies in the receiver, where the
optimization to achieve the best performance is carried out with different approaches:
according to the Classical Detection Theory (substantially working with Probability

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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Theory) in the classical case and according to the theory of Quantum Detection in
the quantum case. As we shall see in the next chapters, this will really make the
difference in favor of the quantum system.

4.4 Scenarios of Classical Optical Communications

In this second part of the chapter we give the fundamentals of classical commu-
nications working at optical frequencies. Optical frequencies have a wide range,
going from ultraviolet to infrared, as shown in Table 4.1. In practice, the choice of
a specific frequency ν depends mainly on the propagation and on the availability of
the components working at that frequency. So far, the main applications have been
implemented in the infrared range in the band 200 THz ÷ 430 THz.

In presenting the scenarios, we consider essentially the budget of the optical
power, referring to the average optical power P(t), while the instantaneous optical
power p(t), which exhibits explicitly the presence of photons as energy quanta, will
be considered after the theory of Poisson processes of the next section. At a given
frequency ν the optical power P(t) consists of energy quanta h ν, whose intensity is
given by

λ(t) = P(t)

h ν
(4.11)

and has the meaning of average number of photons per second. For instance, with a
power P(t) = 1 mW at the optical frequency ν = 300 THz the quantum has energy
h ν = 1.9878 10−19 J and the intensity is λ(t) � 0.5 1016 photons/s.

4.4.1 General Scheme

A general scheme of Classical Optical Communications consists of several parts, as
shown in Fig. 4.11, where the digital transmission of a sequence of symbols {An} is

Table 4.1 Where optical frequencies are located

Name Wavelength λ Frequency ν Energy quantum h ν

Gamma ray Less than 0.01 nm More than 10 EHz

X-ray 0.01 nm ÷ 10 nm 30 EHz ÷ 30 PHz 9.878 fJ ÷ 9.878 aJ

Ultraviolet 10 nm ÷ 380 nm 30 PHz ÷ 790 THz 523.454 zJ ÷ 19.878 aJ

Visible 380 nm ÷ 700 nm 790 THz ÷ 430 THz 19.878 aJ ÷ 284.918 zJ

Infrared 700 nm ÷ 1 mm 430 THz ÷ 300 GHz 284.918 zJ ÷ 1198.78 zJ

Microwave 1 mm ÷ 1 m 300 GHz ÷ 300 MHz 1198.78 zJ ÷ 1198.78 yJ

Radio More than 1 mm Less than 300 MHz

y = 10−24 z = 10−21 a = 10−18 f = 10−15 P = 1015 E = 1018
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Fig. 4.11 Digital transmission over an optical channel

considered. The first block is a digital modulator, which converts the digital sequence
to a continuous time signal ID(t), an electrical current. This current drives a photon
emitter (laser or LED) to produce an optical power PT (t), which is sent over a
distance through an optical channel. At reception, a photodetector (pin diode or
APD) converts the received power PR(t) to an electrical current I (t), which drives
a demodulator to get a replica of the original digital sequence.

The central part of the scheme, the optical channel, will be discussed below. It
modifies the incoming optical power PT (t) in the form

PR(t) = Ac PT (t − tc)

where Ac is the attenuation and tc is the delay produced by the channel.
A fundamental classification of optical communication is into incoherent trans-

missions and coherent transmissions.

4.4.2 Incoherent Transmissions

In incoherent transmissions the information (data) is conveyed as intensity of the
optical radiation, that is, as the average power P(t). The most popular modulation
formats are the PAM (pulse amplitude modulation) and the PPM (pulse position
modulation), which are illustrated in Fig. 4.12.

In the PAM, the symbols, usually binary 0 and 1, are encoded into the amplitude
of the pulses in the form An g(t − nT ); in practice, the full pulse g(t − nT ) when
An = 1 and the absence of the pulse when An = 0. In the PPM format the symbols
are encoded into the position of the pulse in the form g(t − nT − AnΔT ), where
ΔT = T/M with M the size of the alphabet (M = 3 in Fig. 4.12). In any case,
the pulses must satisfy the constraint of being nonnegative because they physically
represent a power. Both laser and LED can be used in incoherent transmissions. It
is worth remarking that incoherent PAM, which is not very efficient but extremely
robust, is the most used format worldwide in connections with optical fibers, reaching
the capacity rate of ten terabits/s in a single fiber. Only very recently, coherent
transmission (more efficient) has been implemented with optical fibers.
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Fig. 4.12 Optical power PT (t) obtained with a binary PAM modulation, where the symbols are
encoded into the pulse amplitudes and with a ternary PPM modulation, where the symbols are
encoded into the pulse positions

4.4.3 Coherent Transmissions

Coherent transmissions exploit the fact that the radiation at frequency ν produced by
a laser has a sinusoidal waveform

v0(t) = V0 cos(2πνt + φ0) (4.12)

where the amplitude, when appropriately normalized, gives the optical power as
P = V 2

0 . The waveform (4.12) can be modulated in several forms, exactly as at
radio frequencies. The general form of a modulated signal is

v(t) = V (t) cos(2πνt + φ(t)) (4.13)

where the amplitude V (t) and the phase φ(t) are modulated according to the infor-
mation signal. The power becomes time-dependent as P(t) = V 2(t).

Then we have a lot of modulation formats, as OOK (on–off keying), PSK (phase-
shift keying), FSK (frequency-shift keying), and QAM (quadrature amplitude mod-
ulation). These formats will be examined in the next chapters for a comparison with
the corresponding quantum communications.

Coherent transmissions are more efficient than incoherent transmissions, but they
require the recovery of the sinusoidal carrier by a local laser at reception.

4.4.4 Guided Optical Channels (Optical Fibers)

A very important optical channel is provided by an optical fiber which “guides” the
optical power over a given distance D. A fiber is characterized by an attenuation,
which exponentially decreases with D, as
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AF = exp(−αD)

where the attenuation coefficient α depends on the type of the fiber, but also on the
optical frequency ν. The attenuation is usually specified by the attenuation per unit
length AF1 = 10α/ log 10, expressed in dB/km. This parameter had an important
and amazing story since its value passed from tens of dB/km in 1972 to less then 1
dB/km in the 1980s, thus permitting transoceanic connections.

From the attenuation we can calculate the received power as a function of the
transmitted power as

PR(t) = AF PT (t − tA).

Another important optical component that can be introduced in the optical channel
is the optical amplifier, which in practice is given by an optical fiber of few meters,
appropriately doped. In particular, an optical amplifier is used in transmission as a
“booster” to increase the power emitted by the photoemitter. The typical use is to
compensate the attenuation of the fiber according to the relation G A AF = 1, an
optical amplifier is characterized by the gain G A with an input/output relation of the
form

PA(t) = G A P(t − tA) + P0

where P0 is a spontaneous contribution of the amplifier.
Ordinary fibers and optical amplifiers can be combined in several ways to realize

optical channels, with the scenarios illustrated in Fig. 4.13.

optical fiber

optical
amplifier

optical
amplifier

optical
amplifier

optical
amplifier

··· optical
amplifier

···

Fig. 4.13 Examples of optical channels obtained with the connection of optical fibers and optical
amplifiers
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In the evaluation of the performance (error probability), in addition to the power
budget, the evaluation of the noise amount is necessary. The noise has two compo-
nents: the shot noise, caused by the granularity of the instantaneous power p(t), and
the thermal noise generated in the passive components of the receiver circuitry. The
shot noise will be considered after the illustration of the theory of Poisson processes.
The amount (variance) of the thermal noise can be evaluated with the standard meth-
ods of electronics through the noise figure or the noise temperature.

Example 4.1 (transatlantic connection) In a transatlantic connection with optical
fibers the global distance is Dg = 5000 km. The transmitter power, obtained by a laser
and a booster amplifier, is PT = 100 mW. The fiber attenuation is AF1 = 1 dB/km.
We want to find the number of links consisting of optical amplifiers and fibers needed
with the following constraints: (1) the optical power be greater than Pmin = 1 nW in
all the connection, and (2) the optical amplifiers have a gain G A of 60 dB.

We first evaluate the distance D1 obtained with the first link, passing from
PT = 100 mW to Pmin = 1 mW. The attenuation is AF = 10−9/10−1 =
10−8 = 80 dB. Then, D1 = 80 km. The first amplifier increases the power to
P1 = G A Pmin = 106 10−9 = 1 mW. The second link has an attenuation of
A2 = Pmin/P1 = 10−9/10−3 = 60 dB and therefore it reaches the distance
D2 = 60 km. At this point the connection becomes periodic with a distance
Dn = 60 km. Then the number of amplifier–fiber links is 5000/60 � 84.

Example 4.2 (transatlantic connection: practical implementation) In transoceanic
connections, typical cable lengths are approximately 6000–7000 km for crossing the
Atlantic Ocean, and about 9000–11,000 km for crossing the Pacific Ocean. The dis-
tance of 6000 km is generally taken as reference for “transoceanic” systems. Modern
submarine transmission systems can provide Tb/s capacity per fiber, using wave-
length division multiplexing (WDM). One of the most technologically advanced
systems installed is the Tata Global Network (TGN) in the Pacific, which provides
connectivity between North America and Asia. Each of the submarine cables of the
TGN Pacific section has eight pairs of fibers.

Undersea systems use erbium-doped fiber amplifiers (EDFAs) to counteract the
attenuation in the optical fiber cable. Thus the undersea amplified line can be seen
as a chain of single-mode fibers and optical amplifiers. For a 6000 km system the
repeaters (i.e., the amplification stages) are positioned every 50–90 km to balance
the cable attenuation. The gain needed to propagate a signal across that system is
about (0.2 dB/km) × (6000 km), namely 1200 dB, just to compensate for the loss in
the cable.

The noise generated in each EDFA limits the performance of a transmission system
and finally determines the spacing between amplifiers. So WDM systems require the
use of gain equalization filters in order to expand and/or flatten the intrinsic gain
shape of the amplifier chain.
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The end-to-end gain change over the optical bandwidth of the transmission line
should be limited to about 5–10 dB for suitable performance. If a 10-dB gain error
were equally distributed across a 6000 km system (75 amplifiers spaced 80 km apart)
the gain equalization would need to be accurate to within 0.1 dB per amplifier stage.
This level of gain equalization is routinely achieved for installed systems with optical
bandwidths of about 28 nm.

4.4.5 Free-space Optical Channels

An optical power can be transmitted through the free space. We refer to a directive
transmission (Fig. 4.14), where the propagation is essentially determined by geomet-
rical considerations. The power PT (t) produced by a laser is first focalized to form a
beam and sent to the free space by an antenna (or telescope). Then at a given distance
D a new antenna (or telescope) collects and focalizes a fraction PR(t) of the optical
power, which is conveyed to a photodetector. In the simplest case, the received power
PR(t) can be related to the transmitted power as (Friis’ formula)

PR(t) = GT

(

λ

4π D

)2

G R PT (t − t0) (4.14)

where GT and G R are the gains of the transmitting and of the receiving antennas,
respectively, and λ is the wavelength of the laser radiation. The expressions of the
gains are

GT = (4dT /λ)2, G R = (4π/λ2) AR

beam
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amplifier

beam
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Fig. 4.14 Examples of optical channels in the free space
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where dT is the diameter of the transmitting antenna and AR is the area of the receiving
antenna. Note that (4.14) requires that the aperture of the beam at the distance D,
given by D λ/dT , is greater than the diameter dR of the receiving antenna.

Example 4.3 We compare the performance at radio frequencies and at optical fre-
quencies, choosing

λ = 10 mm → ν = 30 GHz (in radio band, band Ka)

λ = 1µm → ν = 300 THz (optical band, infrared)

and in both cases the transmitting power and the antenna diameter are

PT = 1 W, dT = 100 mm.

The comparison is illustrated in Table 4.2. Note in particular the huge gain in the
optical case, which enhances the power of 1 W to the apparent power of 160 MW.
The comparison considers three distances D: few meters (indoor), few kilometers
(outdoor), and the deep space distance of 5 AU. The astronomical unit is the average
distance of the Sun from the Earth (1 AU = 150 Gm), 5 AU is the distance of Jupiter
from the Sun, the reference distance for missions to outer planets). Note that in a
transmission from Jupiter to the Earth the beam diameter is half an astronomical unit
(25 thousands times the Earth diameter) at radio frequencies and the power collected
by the receiving antenna is extremely small. At optical frequencies the beam diameter
is only of 7500 km and the received power is 108 greater.

The previous formula establishes the power budget of the system. As regards
the noise, in the free-space communications at the receiver front end we find an
additional noise, called sky noise, which is due to the fact that the receiving antenna

Table 4.2 Performance comparison between radio and optical frequencies in free-space
transmission

Parameter Radio frequency Optical frequency

Transmission gain
GT

31 dB 111.2 dB

Apparent power
GT PT

1.6 kW 160 MW

Indoor

D = 20 m, dR = 10 mm Beam aperture L D 2 m 0.2 mm

Received power PR 62.4µW 6.24 kW∗

Outdoor

D = 2 km, dR = 100 mm Beam aperture L D 200 m 20 mm

Received power PR 624 nW 62.4 W∗

Deep space

D = 5 AU, dR = 10 m Beam aperture L D 0.5 AU 7.5 Gm

Received power PR 1.77 10−21 W 0.77 pW
∗ Virtual values (condition dR < L D not verified)
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Fig. 4.15 Noise temperature Tr versus the frequency ν due to the combination of thermal noise
and quantum noise, with a space temperature Ta = 290 K

“sees the sky” and collects extra radiations. This noise is conveniently evaluated
by the noise temperature, expressed in absolute degrees (Kelvin) and has two main
components. One component is the thermal noise, which is due to the fact that the
receiving antenna sees a solid angle of the space at the absolute temperature Ta . The
corresponding noise temperature is given by

Tthermal = hν

k
[

exp(h ν/k Ta)
]

where ν is the frequency and k is Boltzmann’s constant (k = 1.3805 10−23 J/K). As
shown in Fig. 4.15, Tthermal � Ta for the frequencies up to the terahertz and quickly
decreases. The second component is due to the granularity of the radiation and the
corresponding noise temperature has the simple expression

Tshot = hν/k.

It is negligible up to the terahertz, but becomes dominant at the optical frequencies.
We realize that sky noise is huge at the optical frequencies: for ν � 300 THz,

Tsky � Tshot is in the order of 10,000 K. This leads to think that optical frequencies
represent a “forbidden band” for free-space optical transmissions. But, this is not
the case because at these frequencies directivity makes it possible to reach a large
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antenna gain and, on balance, optical communication has a superior budget with
respect to radio communications, as we shall see now.

In free-space communications it is easy to find the error probability achieved by an
optimum classical receiver (in the absence of encoding), according to the important
relation

Pe = Q(
√

Λ), Λ = PR

kTr R
(4.15)

where Q(x) := 1−(1/
√

2π)
∫ x
−∞ exp(−y2/2) dy is the complementary normalized

Gaussian distribution, PR is the received power, Tr is the noise temperature (in K),
R is the rate (in bit/s), and Λ is the SNR. The first trivial but important remark about
this formula is that it allows for the evaluation of the achievable rate with a given
received power and given noise temperature, for a fixed error probability.

Example 4.4 We reconsider the comparison between radio and optical frequencies
for a deep space transmission with the data of Table 4.2. A reasonable value of
the error probability for the transmission of images from Jupiter to Earth may be
Pe = 10−4, which corresponds to a SNR Λ = 16.0.

With a radio frequency of 30 GHz the received power is PR = 1.77 10−21 W; and
considering that cryogenic components are used at reception, the noise temperature
may be Tr = 16 K. Then the available rate is2

R = PR

kTrΛ
= 1.77 10−21

2.2 10−22 16
= 0.5 bit/s.

With an optical frequency of 300 THz the received power is PR = 1.77 10−13

W, while the noise temperature becomes Tr � Tshot = hν/k = 1 600 K. Then

R = PR

kTrΛ
= 1.77 10−13

2.13 10−20 16
= 508 kbit/s.

In conclusion, although at the optical frequencies the noise temperature is a thousand
times higher than at the radio frequencies, the available rate is a hundred thousands
times higher. To emphasize the difference we note that for the transmission of an
image of H = 5 Mbits, at radio frequencies the time needed is T = H/R =
10 Ms = 116 days!, while at an optical frequency the time is reduced to about 10 s.
Incidentally, note that with quantum optical communications the performance is an
order of magnitude better than with classical optical communications (see Chap. 7)
and the time for an image would be further reduced.

Problem 4.3 � Write the expressions of a PAM optical power P(t), with a generic
fundamental pulse g(t), valid for all t ∈ R.

2 The rate of NASA Voyager 2 at Jupiter in 1979 mission was of 115.2 kbit/s. This was achieved
acting on several factors: increasing the transmitting and the receiving antenna diameters and also
increasing the transmitter power (see Problem 4.4).

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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Problem 4.4 � The physical parameters of the transmitter (on spacecraft board)
and of the receiver (at Earth, Goldstone, California) of NASA Voyager 2 mission at
Jupiter (1979) were: radio frequency ν = 8.9 GHz, transmitted power PT = 24 W,
transmitter’s antenna diameter dT = 3.660 m, receiver’s antenna diameter dR =
64 m, noise temperature Tr = 14 K, accepted error probability Pe = 10−3. Find the
available rate. Repeat the evaluation at the optical frequency ν = 300 THz.

4.5 Poisson Processes

In the previous section we have seen the scenarios of optical classical communications
and how the average optical power P(t) is handled in the different systems. But for
performance evaluation we need to consider the instantaneous power p(t), where the
energy quanta appear explicitly, as well as the instantaneous current composed by
elementary charges. In both cases “granularity” causes the shot noise. To formulate
“granularity” the fundamental mathematical tool is provided by Poisson processes
which are briefly introduced in this section. For a general and exhaustive theory a
good reference on Poisson processes is given by Parzen’s book [5].

Poisson processes represent a relevant subclass of the family of point processes,
which describes random time instants at which some events happen. For instance,
the time at which a photon crosses a given section of an optical fiber (but also the
arrivals of cars at a highway entrance and the arrivals of telephone calls). A realization
of point processes is given by a discrete set of real numbers, . . . , t−1, t0, t1, t2, . . .,
whose elements are called arrival times or simply arrivals (Fig. 4.16). A convenient
way to represent a realization of a point process is given by a train of delta functions
located at arrival times (Fig. 4.16)

xδ(t) =
∑

i

δ(t − ti ). (4.16)

This signal allows us to count the number of arrivals within a given interval, say
(s, t], with t > s, as

n(s, t] :=
∫ t

s
xδ(u) du. (4.17)

This defines the counting process associated to the given point process, as shown in
Fig. 4.16.

4.5.1 Definition of Poisson Process

A Poisson process is defined as a point process that verifies the following axiomatic
properties:

(I) The countings n(si , ti ] in disjoint intervals are independent random variables.
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Fig. 4.16 Example of realization of a point process and of the corresponding impulsive process
xδ(t) and counting process n(s, t]

(II) For every s ∈ R, the limit

lim
h→0+

P[n(s, s + h] = 1]
h

= λ(s) (4.18)

exists and is finite. The function λ(t) is called intensity of the Poisson process.
(III) For every s ∈ R,

lim
h→0+

P[n(s, s + h] > 1]
h

= 0. (4.19)

Conditions (II) and (III) are somewhat technical. Broadly speaking, condition
(II) states that the probability that a single arrival happen in an infinitesimal in-
terval (t, t +dt] is given by λ(t) dt , and condition (III) states that the probability
of simultaneous arrivals is zero.

As we shall see, the statistical description of a Poisson process is completely
specified by its intensity λ(t). The intensity allows for the classification into homo-
geneous Poisson processes if λ(t) is independent of t , and nonhomogeneous Poisson
processes if λ(t) depends on t .

4.5.2 Statistical Description of a Poisson Process

From the above axioms it is possible to evaluate the statistics of the number of arrivals
in an arbitrary interval [5].
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Theorem 4.1 In a Poisson process with intensity λ(t) the number of arrivals n(s, t]
in the interval (s, t] is a Poisson random variable with mean

Λ = E[n(s, t]] =
∫ t

s
λ(a)da. (4.20)

Hence the probability distribution of the number of arrivals is given by

p(k; s, t) := P
[

n(s, t] = k
]

= e−Λ Λk

k! (4.21)

and is completely specified by the mean Λ. It is important to recall that a Poisson
random variable has the peculiarity that the variance of the number of arrivals n =
n(s, t] coincides with the mean

σ 2
n = mn = Λ. (4.22)

We also recall that the characteristic function of n = n(s, t] is given by

Ψn(z) := E[einz] = eΛ[exp(iz)−1]. (4.23)

The Poisson distribution is illustrated in Fig. 4.17 for a few values of the mean Λ (it
is also illustrated in Fig. 4.26 in the range of quantum limit).
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Fig. 4.17 Poisson distribution pn(k) for some values of the average Λ
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From (4.20) one can obtain the meaning of the intensity λ(t). Considering that
E[n(0, t]] = ∫ t

0 λ(u)du, one gets λ(t) = d
d t E[n(0, t]]. Hence the intensity λ(t)

is the derivative of the average (expectation) of the counting process and therefore
represents the average number of arrivals per second.

If the Poisson process is homogeneous with λ(t) = λ, the average is simply given
by Λ = (t − s)λ, and consequently the distribution of the number of arrivals n(s, t]
in the interval (s, t] does not depend on s, but only on the duration t − s. This defines
the stationarity of a homogeneous Poisson process.

Problem 4.5 �� Consider a Poisson random variable n. Prove that the variance σ 2
n

is equal to the mean mn = E[n] and that the characteristic function is given by (4.23).

Problem 4.6 � In the technique of single photon the following probabilities are
of interest

p0 = P[n = 0], p1 = P[n = 1], p>1 = P[n > 1].

Assuming that the arrivals are described by a Poisson process, write and plot these
probabilities. Moreover, find the average of photon arrivals such that p>1 = 0.1p1

Problem 4.7 � In the technique of single photon the optical power is attenuated to
realize the condition of the arrival of a single photon in a given symbol period (0, T ].
Assuming that the power produced by the laser be P0 = 10 mW at the frequency
ν = 300 THz and that the symbol period be T = 10 ns, find the attenuation A needed
to ensure that the condition of a single photon is verified in the 15 % of the symbol
periods.

4.6 Filtered Poisson Processes

In several applications a signal is obtained as the superposition of equal pulses (signals
of small duration) generated in correspondence with the arrivals of a Poisson process,
that is,

y(t) =
∑

i

h(t − ti ) (4.24)

where h(t) is the fundamental pulse (Fig. 4.18). The resulting signal is called filtered
Poisson process. The term “filtered” is justified by the fact that y(t) can be obtained
by filtering the impulsive process xδ(t) defined by (4.16), with a filter having impulse
response h(t). As we shall see, this model is useful in the representation of optical
powers and electrical currents in photodetection.

In (4.24) all the pulses have the same form, being a shifted replica of h(t). A
generalization of the model is obtained by amplifying each pulse by a random gain
gi in the form
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Fig. 4.18 Realization of a filtered Poisson process y(t) with fundamental pulse h(t)

y(t) =
∑

i

gi h(t − ti ). (4.25)

This model is called marked and filtered Poisson process, where the marks repre-
sent the gains. It finds applications to photodetection with the APD and in optical
amplification.

Note that in (4.24) the randomness of the filtered process is only due to the presence
of the point process {ti }, since h(t) is a deterministic (nonrandom) waveform. In
(4.25) we have two kind of randomness: the point process {ti } and the sequence of
gains {gi }.

4.6.1 Campbell’s Theorems

The statistical description of filtered Poisson process y(t) is established by a sequel
of Campbell’s theorems, which are formulated here in order of increasing complex-
ity. The theorems give the complete statistical description of the random process y(t)
through the hierarchy of the characteristic functions from which one gets the hier-
archy of the probability densities. This in principle, but the actual evaluation is very
difficult. Here we limit ourselves to the evaluation of the mean and of the variance
or the covariance, which is simpler.

Filtered Poisson Processes with Constant Intensity.

The first theorem is concerned with a filtered (not marked) Poisson process with a
constant intensity. In this case the specification of the process is given by the intensity
λ and by the pulse shape h(t).

Theorem 4.2 A filtered Poisson process

y(t) =
∑

i

h(t − ti ), (4.26)



160 4 Introduction to Part II: Quantum Communications

with a constant intensity λ is stationary. Its mean and covariance are, respectively,

my = λ

∫ +∞

−∞
h(t) d t, ky(τ ) = λ

∫ +∞

−∞
h(t) h(t + τ) d t. (4.27)

Marked and Filtered Poisson Processes with Time-Dependent Intensity.

In this case the specification of the process requires also the statistical description
of the gains. The assumption is that the gains {gi } are statistically independent and
uniformly distributed, and also independent of the arrivals {ti }.
Theorem 4.3 A marked and filtered Poisson process

y(t) =
∑

i

gi h(t − ti ), (4.28)

with a time-dependent intensity λ(t) is not stationary. The mean and the variance
are given by

my(t) = G
∫ +∞
−∞ λ(a) h(t − a) da

σ 2
y (t) = G2

∫ +∞
−∞ λ(a) h2(t − a) da

(4.29)

where G = E[gi ] and G2 = E[g2
i ] are the moments of the first two orders of the

gains gi .

4.6.2 Doubly Stochastic Poisson Processes

In the above formulation we assumed that the intensity λ(t) of the Poisson processes
was a given (nonrandom) function of time. This is not the case with Optical Commu-
nications, where the information is often encoded into the intensity λ(t) of a Poisson
process, so that λ(t) becomes itself a random process. This leads to the term doubly
stochastic Poisson processes.

The approach to deal with such processes is to work under the condition of
a given intensity λ(t). Technically, this is achieved with appropriate conditional
expectations, which allow us to use all the previous results on ordinary Poisson
processes (Poisson distribution of the arrivals and Campbell theorems). For instance,
the average number of arrivals in an interval (s, t], given by (4.20), becomes the mean
number of arrivals, conditioned by a given intensity in such interval, and is given by

Eλ[n(s, t]| λ(a), a ∈ (s, t]] =
∫ t

s
λ(a)da. (4.30)
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Correspondingly, n(s, t] becomes a conditioned Poisson random variable, where the
condition is “a given intensity.” From the conditioned mean (4.30) one can evaluate
the unconditioned mean, by taking the expectation with respect to the intensity.
Note that in general the unconditioned random variable n(s, t] will be no more a
Poisson random variable. A detailed application of these ideas will be described in
Sect. 4.7.

4.6.3 Instantaneous Power as a Filtered Poisson Process

A monochromatic optical power at the frequency ν consists of energy quanta hν,
where h is Planck’s constant (h = 6.6256 10−34 J/Hz). The contribution of a quan-
tum that crosses a section at the time ti can be represented as a power of the form [6]

(hν) δ(t − ti ). (4.31)

In fact, integrating this impulse one gets just the energy hν; the delta function indi-
cates that the energy is concentrated around the “arrival” time ti . The instantaneous
optical power crossing the prefixed section has the expression (Fig. 4.19)

p(t) =
∑

i

(hν) δ(t − ti ), (4.32)

where {ti } are the arrival times in that section.
The model, universally accepted for the arrival times, is a Poisson point process

and therefore is specified by an intensity λ(t), which represents the average number of

t

p(t)

ti

hν

t

pA(t)
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gi(hν)

Fig. 4.19 Examples of an instantaneous optical power p(t), where the delta impulses have area
h ν, and of an instantaneous amplified optical power pA(t), where the delta impulses have area
gi (h ν), with gi random gains
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photons per second. According to the theory developed above, Eq. (4.32) represents a
filtered Poisson process with fundamental pulse (hν) δ(t). From Campbell’s theorem
(Theorem 4.3), the statistical average of the instantaneous power results in

P(t) = E[p(t)] = hν λ(t). (4.33)

Note that from the average power P(t), one gets the intensity as λ(t) = P(t)/hν.
Equation (4.32) may represent the optical power produced by a laser and also the

power in a generic cross section of the optical medium (fiber or free space) and in
particular at the detection. In an amplified optical power the quantum hν is replaced
by a packet of quanta and (4.3) becomes

gi (hν) δ(t − ti ) (4.34)

where the gains gi are positive integer random variables having a geometric distrib-
ution [7, 8]. Then an amplified optical power is written in the form (Fig. 4.19)

pA(t) =
∑

i

gi (hν) δ(t − ti ) (4.35)

which represents a marked and filtered Poisson process with fundamental pulse
(hν) δ(t). The statistical average of pA(t) is given by (from Theorem 4.3)

PA(t) = G A(hν) λ(t) (4.36)

where G A = E[gi ] is the average gain of the amplified power (G A gives also the
nominal gain of the amplifier).

4.6.4 Instantaneous Current in a Photodiode

Also the instantaneous current in a photodiode can be represented by a filtered Poisson
process in that the current is due to the motion of electrons, or better, electron/hole
pairs in a pin photodiode (pin = positive intrinsic negative). In fact, the instantaneous
current can be written in the form (Fig. 4.20)

i(t) =
∑

k

e δ(t − tk) (4.37)

where e is the electron charge (e = 1.6022 10−19 C) and {tk} are the arrival times,
which can be modeled as a point Poisson process.

The statistical average of i(t) results in

I (t) = E[i(t)] = e λ(t) (4.38)
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Fig. 4.20 Examples of an instantaneous electrical current i(t) in a pin diode, where the delta
impulses have area e, and of an instantaneous amplified electrical current i A(t) in an APD, where
the delta impulses have area gi e, with gi random gains

and represents the current usually considered in the photodiode at a macroscopic
level. The difference is := i(t) − I (t) is the so-called shot noise.

An APD with the presence of random gains produces the instantaneous current

i A(t) =
∑

k

(gk e) δ(t − tk) (4.39)

where the gains gk are positive integers with a complicated probability distribution
[9]. The corresponding average current results in

IA(t) = GA e λ(t) (4.40)

G A = E[gk] is the average gain (G A gives also the nominal gain of the APD).
In (4.37) the impulses are ideal and this is an approximation. In reality the fun-

damental pulse has a shape i0(t) which depends on the geometry of the photodiode
and on the electrical field inside. Then a more accurate model is given by

i(t) =
∑

k

i0(t − tk) (4.41)

which is still a filtered Poisson process. Similar considerations hold for the current
in APD. Figure 4.21 shows the instantaneous currents in an APD. Note that in any
case the area of i0(t) is given by the elementary charge e.
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Fig. 4.21 Examples of current pulses in an APD

4.6.5 About the Gaussianity of Filtered Poisson Processes

Campbell’s theorems provide the complete statistical description of filtered Poisson
processes through the characteristic functions. In particular the first-order character-
istic function of the filtered Poisson process (4.37) results in

ψi (z, t) := E[exp(iz i(t))]
= exp

{

−
∫ +∞

−∞
λ(a)[1 − z i0(t − a)]da

}

(4.42)

from which one gets the probability density fi (a, t) (by the Fourier transform). This
probability density is not Gaussian, but it may be well approximated by the Gaussian
density

fi (a, t)Gauss = 1√
2πσi (t)

exp

(

− (a − mi (t))2

2σ 2
i (t)

)

(4.43)

where mi (t) := E[i(t)] is the mean and σi (t)2 is the variance, which can be calculated
by Theorem 4.3. The goodness of the Gaussian approximation is ensured by the
central limit theorem, which states that a random variable given by superposition of
several independent random variables tends to Gaussianity, and this is the case with
the current i(t) given by (4.41). A further trend to Gaussianity is provided when
the Poisson current i(t) is added to a thermal noise component iη(t), which is itself
Gaussian. This will be seen in detail when dealing with photodetection in the next
section.

Problem 4.8 �� Evaluate the mean my(t) and the variance σy(t)2 of a filtered
Poisson process y(t), where the intensity is constant λ(t) = λ0, and the fundamental
pulse is rectangular of amplitude h0 in (0, T ].
Problem 4.9 ��� Evaluate the mean my(t) and the variance σy(t)2 of a marked
and filtered Poisson process y(t), where the intensity is constant λ(t) = λ0, the
fundamental pulse is rectangular of amplitude h0 in (0, T ], and the gains have the
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geometrical distribution. pg(k) = (1 − a)ak , k = 0, 1, 2, . . . with a a positive
constant.

Problem 4.10 �� To illustrate the conditioning of a double stochastic Poisson
process we consider a (simplified) binary modulation, where the intensity of the
optical power in (0, T ] has the values λ0 = 109 photon/s with the symbol A = 0
and λ1 = 4 109 photon/s with the symbol A = 1. Find the conditioned distribution
of the number of arrivals

pn(k|A = 0), pn(k|A = 1)

and the unconditioned distribution pn(k), assuming P[A = 1] = 1/4 and T = 1 ns.

4.7 Optical Detection: Semiclassical Model

The semiclassical model of optical detection treats the electromagnetic field in clas-
sical form, that is, according to Maxwell’s undulatory theory, and derives the photoe-
mission current through a probabilistic scheme (theory of doubly stochastic Poisson
processes) [10–12]. We use the term “semiclassical” because the final evaluation is
done on the count of the photons, and therefore the electromagnetic field is considered
quantized into energy quanta.

The model assumes that the surface A of the photodetector is hit by a field of in-
tensity I (x, t) (measured in W/m2), and emits a current density J (x, t) (measured in
A/m2). We suppose that in every neighborhood of point x and in every neighborhood
of time t an electron is emitted with birth probability

λ(x, t) dx d t.

The intensity λ(x, t) is linked to the intensity of the electromagnetic field on the
surface of the photoemitter by the relation

λ(x, t) = R

e
I (x, t)

where e is the electron’s charge and R = e/(hν) is the responsivity of the photode-
tector, which we assume of unitary emittance (one photon per electron). It should
be noted that the intensity λ(x, t) may be deterministic, but may also be random,
depending on the nature of the field. We assume that the electron emission from the
surface of the photodetector produces a current density

J (x, t) =
∑

n

e δ(x − xn)δ(t − tn), (4.44)
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that is, an impulsive process, with {tn, xn} a point process of time instants and pho-
toemission points of intensity (of the point process) λ(x, t).

The photoemission process is then a doubly stochastic Poisson process. This
means that, with a given field intensity I (x, t), the electron count in the time interval
[0, T )

n = 1

e

∫ T

0

∫

A
I (x, t) dx d t

is a Poisson random variable with random parameter

n̄ =
∫ T

0

∫

A
λ(x, t) dx d t = R

e

∫ T

0

∫

A
I (x, t) dx d t

which represents the (conditioned) average of the number of arrivals n. The intensity
of the field is given by

I (x, t) = 1

Z
|e(x, t)|2

where e(x, t) is the complex envelope (see below) of the electric field and Z is the
wave impedance.

4.7.1 Simplified Model

The previous theory becomes simpler when the electric field is separable in the form

e(x, t) = e1(x) e2(t) (4.45)

which allows us to substitute relation (4.44) with a simple temporal process (as soon
as the integration with respect to x is carried out).

In this model we can evaluate the count statistics directly from the optical power,
instead of the current. Then, considering a quasimonochromatic radiation around the
optical frequency ν, and indicating with hν the corresponding energy quantum, the
(instantaneous) optical power has the expression

p(t) =
∑

k

(hν) δ(t − tk) (4.46)

where the arrival instants {tk} must be considered as a doubly stochastic Poisson
process with random intensity λ(t). For this kind of processes we can use integrally
the theory of ordinary Poisson processes, providing we operate under the condition of
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a given intensity. In particular, the average power, conditioned by a given intensity
λ(t), is obtained through Campbell’s theorem according to

P(t) = E[p(t)|{λ(·)}] = (hν) λ(t), (4.47)

where E[·|{λ(·)}] denotes the conditional expectation.
The number of arrivals in the reference interval [0, T ) is obtained by integrating

the instantaneous power

n = 1

hν

∫ T

0
p(t) d t (4.48)

and has a random average given by

n̄λ = E[n|{λ(·)}] =
∫ T

0
λ(t) d t = 1

hν

∫ T

0
P(t) d t. (4.49)

Our observations on doubly stochastic Poisson processes imply that the statistics
of the number of arrivals in an interval is Poisson, under the condition of a given
intensity. Therefore,

pn(k|λ(·)) = P[n = k|n̄λ] = e−n̄λ
n̄k

λ

k! , k = 0, 1, 2, . . . . (4.50)

It remains to relate the average power, and therefore the intensity of the point
process, to the signal (typically a modulated signal) v(t) present in the optical trans-
mission system in the form of electric field. From the previous general theory, using
the hypothesis of separability (4.45) and expressing v(t) through its complex enve-
lope cv(t) in the form

v(t) = � cv(t) ei 2π νt ,

we find that the average power is proportional to |cv(t)|2 and, by appropriate nor-
malization of the electric field, we can directly write [12]

P(t) = |cv(t)|2. (4.51)

Then, from the statistics of the complex process cv(t), we can evaluate the statistics
of the average power P(t), and therefore of the intensity λ(t), that conditions the
point process.

What is the complex envelope? In Modulation Theory a real signal v(t), whose
frequency content is around a frequency ν (bandpass signal), is efficiently represented
by the complex envelope [13], which is obtained as follows. With the ordinary Fourier
transform representation a bandpass signal has two modes, v+(t) with frequency
content around the frequency ν, and v−(t) with frequency content around the specular
frequency −ν. Then the complex envelope of v(t) is defined as



168 4 Introduction to Part II: Quantum Communications

cv(t) := 2 v+(t) e−i 2π ν t

where the exponential shifts the frequency content around the zero frequency. The
complex envelope represents the original real signal as

v(t) = �cv(t) ei 2π ν t .

For instance, the sinusoidal signal v(t) = V cos(2π t + φ) is decomposed through
Euler’s formula as v(t) = v+(t) + v−(t), where v±(t) = 1

2 V e±i( 2π ν t+φ). Then, its
complex envelope is cv(t) = V eiφ .

4.7.2 Complex Envelope and Instantaneous Power Duality

In the analysis of an optical system, at every point of the system, we have the “signal”
v(t), conveniently represented by its complex envelope cv(t). This is the classical
viewpoint, the same considered at radio frequencies. But at the same point of the
optical system we have the instantaneous power p(t), containing the quanta as stated
by (4.46), and therefore related to Quantum Mechanics. For this reason the joint
formulation of signal/complex envelope and instantaneous power is sometimes called
semiclassical model, rather than classical model.

Both cv(t) and p(t) must be considered for an exhaustive analysis of the system.
The fundamental relation linking the two quantities is given by (4.51). Note that
the average power can be obtained from the complex envelope, but not the converse,
because in P(t) the phase information is lost. On the other hand, the complex envelope
does not give any direct information about the granular nature of the instantaneous
power.

The duality intrinsic in the semiclassical model is summarized in Fig. 4.22.

signal v(t)

complex envelope cv(t)

instantaneous power p(t)

average power P(t)

intensity λ (t)

Poisson statistics

Fig. 4.22 Complex envelope and instantaneous power duality
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We develop two examples. The first is the representation of a monochromatic
radiation produced by a laser at frequency ν. The signal and complex envelope are,
respectively,

v0(t) = V0 cos(2πνt + φ0), cv0 = V0 ei φ0

while the average power and the intensity are, respectively,

Pv0 = V 2
0 , λ0 = V 2

0 /(hν).

The instantaneous power p0(t) has the general form (4.46) with the arrivals {tk}
having the constant intensity λ0.

As a second example we consider a modulated signal obtained with the carrier
v0(t). The general form is

v(t) = V (t) cos[2π t + φ(t)], cv(t) = V (t) e i φ(t) (4.52)

where V (t) ≥ 0 represents the amplitude modulation and φ(t) the phase modulation.
The average power and the intensity are, respectively,

P(t) = V 2(t), λ(t) = V 2(t)/(hν). (4.53)

The instantaneous power p(t) has the form (4.46) where now the arrivals {tk} have a
time-dependent intensity λ(t), which is also random if the modulated signal contains
an amplitude modulation. Note that in the passage to the average power, P(t) =
|cv(t)|2, the phase information is lost.

4.7.3 Digital Modulation

Relation (4.52) includes digital modulation but with a specific structure. The target
is the transmission of a sequence of complex symbols {Cn} through a finite number
of waveforms {γ0(t), γ1(t), . . . , γK−1(t). The expression of the complex envelope
is

cv(t) =
+∞
∑

n=−∞
γCn (t − nT ), −∞ < t < +∞

meaning that Cn is transmitted in the symbol period (nT, nT +T ] with the waveform
γCn (t − nT ). For simplicity we refer to the symbol C0 and we suppose that its
waveform γC0(t) is confined to the interval (0, T ], so that the complex envelope is
simply given by

cv(t) = γC0(t), 0 < t ≤ T . (4.54)
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In practice (4.54) represents the signal in the absence of thermal noise, but if we
want to take into account an additive thermal noise η(t), the complex envelope takes
the form

cv(t) = γC0(t) + cη(t), 0 < t ≤ T . (4.55)

where cη(t) is the complex envelope of the thermal noise η(t).
Now we develop the photon counting in the two cases of (4.54) and (4.55).

4.7.4 Photon Counting in the Absence of Thermal Noise

In optical communications the detection of a digital symbol is often based on the
counting of photons at the end of the symbol period, say (0, T ]. In this section we
develop the theory of photon counting in the absence of thermal noise, which will
be used in Chap. 7.

From the complex envelope given by (4.54)

cv(t) = γC0(t), 0 < t ≤ T

we obtain the intensity of the underlying point Poisson process as

λ(t) = 1

hν
P(t) = 1

hν
|γC0(t)|2.

Now the randomness of λ(t) is not only due to the randomness of C0 and if we fix C0
at a given symbol of the constellation, say C0 = 1, we have a nonrandom waveform
(deterministic signal) and so is for the intensity λ(t). This means that working under
the condition of a given C0 we get a nonrandom intensity and thus we can apply the
statistics of simple Poisson processes. In particular (4.49) becomes

n̄C0 = E[n|C0] =
∫ T

0
λ(t) d t = 1

hν

∫ T

0
P(t) d t (4.56)

and gives the average number of arrivals with a given transmitted symbol C0. Cor-
respondingly, we have the conditioned Poisson distribution

pn(k|C0) := P[n = k|C0] = e−n̄C0
n̄k

C0

k! , k = 0, 1, 2, . . . . (4.57)

In conclusion, in the absence of thermal noise the photon counting is governed
by a Poisson distribution. It is important to remark that in the evaluation of the
probabilities (transition and correct decision) we have to work under the condition
of a given symbol, so that pn(k|C0) is just the probability distribution of interest.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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4.7.5 Photon Counting in the Presence of Thermal Noise

We now develop the theory of photon counting in the presence of thermal noise,
which will be used in Chap. 8. The theory is not easy as it requires a sophisticated
application of doubly stochastic Poisson processes.3

From the complex envelope given by (4.55)

cv(t) = γC0(t) + cη(t), 0 < t ≤ T

we obtain the intensity of the underlying point process as

λ(t) = 1

hν
|γC0(t) + cη(t)|2. (4.58)

Now we observe that the randomness of λ(t) is not only due to the randomness of
C0 but also to the randomness of the noise cη(t) and to use the Poissonian statistic
we have to work under the condition of a given intensity λ(t). The randomness of
λ(t) can be removed by conditioning both C0 and cη(t). If we know the probability
density fλ(λ) of λ = λ(t), we will get the unconditioned probability distribution of
the arrivals as

pn(k) =
∫ ∞

0
pn(k|λ) fλ(λ) dλ (4.59)

with pn(k|λ) given by (4.50). In general the result so obtained is no more a Poisson
distribution.

Things, however, are not so simple because in the final evaluation of probabilities
we work “under the condition of a given symbol C0,” and therefore we want to obtain
the count statistic under this condition, as in (4.57). To this end we have to replace
in (4.59) the probability density fλ(λ) with the conditional density fλ(λ|C0) and the
final goal is the evaluation of the conditional probability distribution

pn(k|C0) =
∫ ∞

0
pn(k|λ) fλ(λ|C0) dλ. (4.60)

Reconsidering the structure of the intensity λ(t) given by (4.58) we see that the
term γC0(t), for a given C0, is nonrandom, while cη is a complex random process,
and the global statistical description is not given by a simple probability density,
as fλ(λ|C0). At this stage it is customary to make an approximation to complete
the evaluation. Specifically, it is assumed that the waveform γC0(t) and the complex
noise cη(t) are constant (in time) in the interval [0, T ), so that the intensity becomes

λ = 1

hν
|γC0 + cη|2, 0 < t < T . (4.61)

3 In Chap. 8 we will arrive at the same conclusions in a very easy way, where the counting is obtained
by a quantum measurement (see Sect. 8.5).

http://dx.doi.org/10.1007/978-3-319-15600-2_8
http://dx.doi.org/10.1007/978-3-319-15600-2_8
http://dx.doi.org/10.1007/978-3-319-15600-2_8
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The average number of photons in the interval (0, T ] is then

Λ = λ T = T

hν
|γC0 + cη|2 := |γ (C0) + c|2 (4.62)

with

γ (C0) := γC0 T√
hν

, c := cη T√
hν

. (4.63)

Note that γ (C0), under the condition of a given C0, becomes a constant (nonrandom)
and will be simply denoted by γ .

The above formulation leads to the following explicit result for the probability
density of Λ:

Proposition 4.1 Let Λ be the random variable given by |γ + c|2, where γ is a
complex constant and c = a + ib is a complex Gaussian random variable with zero
average, with a and b statistically independent and with the same variance σ 2. Then
the probability density of Λ results in a Rice density, given by

fΛ(Λ|γ ) =

⎧

⎪

⎨

⎪

⎩

Λ

σ 2 exp

(

−Λ + |γ |2
σ 2

)

I0

(

2|γ |√Λ

σ

)

, Λ ≥ 0

0 Λ < 0

(4.64)

where I0(·) is the Bessel function

I0(x) = 1

2π

∫ 2π

0
ex cos θdθ. �

For the proof see the book by Gagliardi and Karp [12]. The Rice density is shown in
Fig. 4.23 for σ 2 = 1 and some values of |γ |2.

4.7.6 From Rice’s Density to Laguerre’s Distribution

Note that the intensity λ given by (4.61) is dimensional, being the average number of
photon per second, while Λ = λ T is adimensional, and the Rice distribution refers
to Λ. The probability density of λ is obtained as fλ(λ) = T fΛ(λT ). Applying this
relation in (4.60) one gets [12]:

Proposition 4.2 Under the assumptions of the previous proposition, the arrival num-
ber n, conditioned by the symbol C0, has a Laguerre distribution given by

pn(k|γ ) = σ 2k

(σ 2 + 1)2k+1 exp

(

− |γ |2
σ 2 + 1

)

Lk

(

− |γ |2
σ 2(σ 2 + 1)

)

(4.65)
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Fig. 4.23 The Rice probability density for σ = 1 and for some values of |γ |2

where Lk(x) is the ordinary Laguerre polynomial. The dependence on the symbol
C0 is obtained when the parameter γ is expressed in the form of (4.63). �

The Laguerre distribution is illustrated in Fig. 4.24. The corresponding average
and variance are given by [12]

n(γ ) = |γ |2 + σ 2, σ 2
n (γ ) = |γ |2 + 2|γ |2σ 2 + σ 2(σ 2 + 1). (4.66)

At this point it is convenient to get an interpretation of the parameters and also to
introduce an alternative notation, related to Quantum Mechanics, which will be used
in Chap. 8. The reason for a double notation is to find an alignment between two
theories (classical and quantum), which use consolidated different notations. The
quantity |γ |2 = |γ (C0)|2 = |γC0 |2 T/hν represents the average number of photons
due to the “signal” γC0 and will be called number of signal photons. Analogously,
the quantity σ 2 = |cη|2T/hν represents the average number of photons due to the
“thermal noise” and will be called number of thermal photons. The alternative
notations are

Nγ := |γ |2 and N := σ 2. (4.67)

Then the global (average) number of photons is written as

n(γ ) := E[n|γ ] = |γ |2 + σ 2 = Nγ + N. (4.68)

Note that the variance can be written in the form

σ 2
n (γ ) = n(γ ) + 2|γ |2σ 2 + σ 4 = n(γ ) + 2N 2

γ N + N2 (4.69)

http://dx.doi.org/10.1007/978-3-319-15600-2_8
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Fig. 4.24 Laguerre distribution pn(k), which describes the photon counting n in the presence of
both signal and thermal noise, shown for N = 0.2 and some values of Nγ . For Nγ = 0 (absence of
signal) the Laguerre distribution degenerates to a geometric distribution

which emphasizes the difference with respect to the Poisson distribution, where
average and variance coincide. Another comparison is obtained with the variance in
the absence of thermal noise, namely

σ 2
Laguerre = σ 2

Poisson + N
(

1 + 2N 2
γ + N

)

with σ 2
Poisson = |γ |2 = Nγ . (4.70)

The Laguerre distribution (4.65) can be rewritten in terms of the average photon
numbers Nγ and N as

pn(k|γ ) = N k

(N + 1)k+1 exp

(

− Nγ

N + 1

)

Lk

(

− Nγ

N(N + 1)

)

. (4.71)

The distribution has two important degenerate cases. When Nγ = 0, that is, in the
absence of signal, pn(k|γ ) becomes a geometrical distribution

pn(k|0) = N k

(N + 1)k+1 (4.72)
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describing the photon numbers of the thermal noise. When N approaches zero
pn(k|γ ) becomes a Poisson distribution

lim
N→0

pn(k|γ ) = exp(−Nγ )
N k

γ

k! (4.73)

describing the photon number in the absence of thermal noise.

4.8 Simplified Theory of Photon Counting
and Implementation

In this section we consider the photon counting from a simpler viewpoint, and we
will arrive at a possible electronic implementation of the counter. The formulation
is different from that of Sect. 4.7.5, where signal and noise are jointly considered
in a filtered Poisson process, leading to a Laguerre distribution for counting. Here,
only the signal is modeled as a filtered Poisson process, while the noise is added as
a Gaussian process.

Remarkable in this counting is the quick transition from the Poisson to the
Gaussian regime with increasing Gaussian noise amount.

4.8.1 Counting with Uncorrupted Signal

First we consider an ideal photon counter, which receives at the input an instantaneous
optical power pR(t) of the form

pR(t) =
∑

i

(hν) δ(t − ti )

and gives at the output the number of photons counted in a symbol period. Figure 4.25
shows the counting in the period (0, T ], where the counting starts at t = 0, it counts
n(t) := n(0, t] and terminates at t = T ; then it is reset for the detection of a new
symbol. Substantially, the counter performs the integration

n := n(0, T ] = 1

hν

∫ T

0
pR(t)d t.

From Theorem 4.1 one deduces that the probability distribution of the counting n
is given by a Poisson distribution with mean

NR =
∫ T

0
λ(t) d t = 1

hν

∫ T

0
PR(t) d t = ET

hν
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Fig. 4.25 Photon counter with input the instantaneous optical power pR(t) consisting of quanta
hν at random times ti . The counting starts at t = 0 and gives the number of quanta n(t) in (0, t].
At t = T the counting gives the number of photons in the symbol period [0, T ) and is reset for the
detection of the next symbol
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Fig. 4.26 The Poisson probability distribution with mean NR = 20, in linear scale and logarithmic
scale

where ET is the optical energy in the interval (0, T ]. Then the distribution is explicitly
given by

pn(k) = P[n = k] = e−NR
(NR)k

k! , k = 0, 1, 2, . . . (4.74)

and is illustrated in Fig. 4.26 both in linear and in logarithmic scale for NR = 20
photons. Note in particular that the probability of n = 0 is 0.5 10−10.
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The counting n can be decomposed into its mean NR and the deviation Δn =
n − NR , from NR , which represents the shot noise. Considering that n is a Poisson
variable, the variance of the shot noise is given by the mean, that is, σ 2

Δn = NR .
Note the meaning of NR as number of signal photons (NR = Nγ ).

4.8.2 Presence of a Gaussian Noise

Now we suppose that the counter output n is corrupted by a Gaussian noise η with
a given variance σ 2

η , and we investigate the statistics of the random variable

u = n + η.

While n is a nonnegative integer, the presence of the Gaussian noise makes u a
continuous random variable. Assuming n and η independent, the probability density
of u is given by the convolution

fu(a) =
∫ +∞

−∞
fn(a − b) fη(b) db.

Now the probability densities of n and η are, respectively,

fn(a) =
∞
∑

m=0

pn(m) δ(a − m)

fη(a) = 1√
2πση

e
− a2

2σ2
η = 1

ση

ϕ

(

a

ση

)

.

where pn(k) is given by (4.74) and φ(x) = (1/
√

2π) exp(−x2/2) is the normalized
Gaussian density function. Then the convolution gives

fu(a) =
∞
∑

k=0

pn(k)
1

ση

ϕ

(

a − k

ση

)

=
∞
∑

k=0

e−NR
N k

R

k!
1

ση

ϕ

(

a − k

ση

)

, (4.75)

which provides the exact statistical description of the global variable u = n + η.
The parameters in (4.75) are: the mean NR of the Poissonian component n and the

standard deviation ση of the Gaussian component. We expect to find: for ση << NR

the dominance of the Poissonian component, and for ση >> NR the dominance of
the Gaussian component. For a comparison it is convenient to consider the Gaussian
approximation of u = n + η, where also η is considered to be Gaussian, so that u
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a

fu(a) NR = 20
σ2

η = 0.0225

20 a

fu(a) NR = 20
σ2

η = 0.0625
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fu(a) NR = 20
σ2

η = 0.2025

20 a

fu(a) NR = 20
σ2

η = 1

20

Fig. 4.27 Probability density of the random variable u = n + η obtained with NR = Nγ = 20
signal photons and four values of the number of thermal photons σ 2

η = N. The density is compared
with its Gaussian approximation (dashed line)

has a Gaussian density with mean NR and variance σ 2
u = NR + σ 2

η , that is,

fu(a)Gauss = 1
√

NR + σ 2
η

ϕ

⎛

⎝

a − NR
√

NR + σ 2
η

⎞

⎠ .

The comparison between the exact density and the Gaussian approximation is made
in Fig. 4.27 for the fixed value of NR = 20 and a few values of ση. Thus we realize
that the transition from the Poisson regime to the Gaussian regime happens very
quickly and with ση as small as ση = 1 the global variable is practically Gaussian.

Note that with the symbolism of the previous section:

NR = Nγ = number of signal photons, σ 2
η = N = number of thermal photons.

Note also that the global output u = n + η is not a counting variable, because it is
continuous. To get an estimate of the counting statistics we have to round u to an
integer. See Problem 4.11, where it is shown that u approximates a Laguerre variable.
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4.8.3 Electronic Implementation of a Photon Counter

An implementation of a photon counter requires the transition from the optical do-
main to the electronic domain. This is provided by a photodiode which converts
the optical power pR(t) to an electrical current i(t), as shown in Fig. 4.28, where
the photodiode is represented by its equivalent circuit. An incoming pulse of optical
power (hν) δ(t − tk) produces a pulse of electrical current i0(t − tk) at the photodiode
output; the pulse has an area equal to the electronic charge e. Then an amplifier–
integrator converts the electrical current to a voltage v(t). If the time constant Rs Cd

of the equivalent circuit is small with respect to the symbol period T , the current
pulses have a small duration and the integration in the period [0, T ) gives

v(T ) = K I

∫ T

0
i(t) d t = K I

∫ T

0

∑

k

i0(t − tk) d t = K I e n = v1n (4.76)

t

pR(t)

T0

i(t) CdRs

t=Tt=0

v(t) v(T )
amplifier

integrator

zi=∞

photodiode

incoming
power

t

i(t)

t

v(t)

T0

Fig. 4.28 Implementation of photon counter through a photodiode and an integrate-and-dump
circuit. The photon counting is made through an electron counting. The photodiode is represented
by its equivalent circuit
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t

pR(t)

t

i(t)

t

iη (t)

t

v(t)+vη (t)

T0

Fig. 4.29 Photon counter through the electron counting in the presence of thermal noise. The
thermal noise current iη(t) is produced by the passive part of the photon circuitry

where n is the number of current pulses generated in the interval (0, T ]. In (4.76)
K I is the integrator constant, e is the electron charge, and v1 = K I e gives the
contribution of each pulse.

In conclusion, in this implementation the photons are counted through the number
of electrons they produce. For simplicity we have assumed that the photodiode has
a unitary efficiency, so that we have the conversion 1hν → 1e, without any loss.

But to complete the analysis of the implementation we have to take into account
the thermal noise produced by the passive parts of the circuit, and we have to add to
the current i(t), produced by the optical power, a contribution iη(t) due to thermal
noise, as shown in Fig. 4.29. Thus at the integrator output at the end of the symbol
period we find the voltage

v(T ) + vη(T ) = v1(n + η), (4.77)

where vη(T ) is the contribution of the thermal noise given by vη(T ) = K I
∫ T

0 iη(t) d t
which is surely Gaussian and zero-mean. After the normalization we have the form
u = n + η of a Poisson variable corrupted by a Gaussian noise, as discussed above.

Problem 4.11 � Consider the counting of the random variable u = n +η, where n
is Poissonian with mean NR and η is Gaussian with zero mean and variance σ 2

η , with
u and η independent. Since u is continuous, for the counting we have to introduce a
rounding. Find the probability distribution of v = round(u).
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Chapter 5
Quantum Decision Theory:
Analysis and Optimization

5.1 Introduction

We consider the transmission of classical information through a quantum
channel, where the information carrier is given by quantum states. A system that
achieves this target is called Quantum Communications system. Like in classical
communications, in quantum communications the usual configuration applies: trans-
mitter, channel, and receiver. Analog quantum transmission systems have been con-
sidered too [1], but, as seen in the previous chapter, according to the current trend,
we limit ourselves exclusively to digital systems. So Fig. 5.1 illustrates a quantum
digital system, emphasizing its essential components.

In this chapter we will develop the theory of decision applied to the combination
of the quantum measure and the decision element, without any specification on the
nature of the quantum states. In the following chapters the quantum decision theory
will be applied to the systems in which the states are physically produced by a
coherent monochromatic radiation (coherent or Glauber states).

5.1.1 General Description of a Digital Transmission System

We consider the transmission of a single1 classical symbol A ∈ A. Thus, a classical
source emits a symbol among K possible symbols, A ∈ A ={0, 1, . . . , K −1}, with
assigned a priori probabilities

qi := P[A = i], i ∈ A. (5.1)

1 In Sect. 4.2 we justified the advantage of dealing with a single symbol instead of a sequence of
symbols.
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classical
source

quantum.
encoder

A

Alice

quantum
channel

|γA quantum
measurement

|γA

Bob

decision
element

m A

ρA

Fig. 5.1 Quantum communication system for the transmission of classical information through a
quantum channel. The transmission of a single digital symbol A ∈ A is considered. In transmission
a pure state |γA〉 is assumed, while in reception the quantum state may be a pure state, |γ̂A〉, or a
mixed state, ρ̂A

The transmitter (Alice) encodes the symbol A into a quantum state |γA〉 of a Hilbert
spaceHT , thus realizing the classical-to-quantummapping A → |γA〉. This implies
that Alice is capable of preparing the quantum system HT in K distinct quantum
states

|γ0〉, |γ1〉, . . . , |γK−1〉 (5.2)

whichmust be considered aspure, since they are known toAlice, because sheprepares
the specific state |γi 〉 when the source emits the symbol A = i . The pure state (ket)
prepared by Alice is alternatively described by the density operator ρi = |γi 〉〈γi |.

The channel, be it an optical fiber or the free space, modifies the density operators,
introducing noise and distortion, so that the received state is in general a mixed state
described by a density operator ρ̂A. Then the channel performs the quantum-to-
quantum mapping ρA → ρ̂A. As we shall see in Chap.12, a quite general model to
represent explicitly this mapping is given by the the Kraus representation [2]

ρ̂A =
∑

k

V ∗
k ρA Vk (5.3)

where {Vk} is a class of operators.
The receiver (Bob) performs a quantum measurement on the received state ρ̂A,

and, to this end, he must choose a system of measurement operators {Pk, k ∈ M},
which in general are POVM, and, in particular, projectors (seeSect. 3.8). The outcome
of the measurement m is a new discrete random variable with alphabetM, which can
be seen as the received signal, or better, in the language of telecommunications, the
signal at the decision point. Finally, according to the outcomem of the measurement,
a decision must be made, based on a decision criterion, to select the symbol ̂A ∈ A

thatwas presumably transmitted.Globally, the quantummeasurement combinedwith
the decision element provides the quantum-to-classical mapping ρ̂A → ̂A.

Note on symbolism. The alphabet A of the symbols is indicated in the form

A = {0, 1, . . . , K − 1}

but it can take other forms (also with complex symbols) related to the modulation
format. The alphabet of the measurements M can be different, even in cardinality,

http://dx.doi.org/10.1007/978-3-319-15600-2_12
http://dx.doi.org/10.1007/978-3-319-15600-2_3
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from the alphabet of the source, but as will be seen in the next section, it is not
restrictive to assume that the two alphabets coincide, then, in the analysis of specific
systems, we will assumeM = A.

Guidelines and Preview of the Chapter

As we want to adopt a very general and complete approach, the chapter may appear
long and complex. We encourage the reader to tackle it gradually, restricting the first
reading to the concepts related to decision with pure states, and skipping decision
based on mixed states. So the study of Chap.7 is quite feasible, as, for its compre-
hension, the decision theory based on pure states is sufficient. Later on, the study
can be resumed and completed, going through the decision with mixed states, a
subject necessary for a full understanding of Chap. 8. Another suggestion is to read
this chapter again after viewing the applications of quantum decision to quantum
communications systems, developed in Chaps. 7 and 8.

We now detail the line followed in this chapter for the Quantum Decision
Theory, but before we remark that this theory, here presented in the language of
Telecommunications, is an important and autonomous field of Quantum Mechan-
ics, which could be presented independently of quantum communications systems
(and, in fact, in QuantumMechanics the quantum communications systems are often
ignored).

The chapter is organized in four topics.

Analysis of Quantum Decision (Sects. 5.2 to 5.7)

We begin with the Analysis of a general quantum communications system, where the
target is the evaluation of the system’s performance in terms of probabilities. Then,
we deal with a specific case to let the reader become familiar with the main concepts
introduced: the optimization of a binary system following Helstrom’s theory.

Optimization of Quantum Decision (Sects. 5.8 to 5.11)

We give a general formulation of Quantum Optimization, which has the target of
finding the measurement operators that ensure the “best performance,” that is, the
maximum correct decision probability.Optimizationmaybeviewed in the framework
of convex linear programming and appears to be a formidable problem because the
unknowns are the measurement operators, which have severe constraints. Two main
results are Holevo’s and Kennedy’s theorems, which provide conditions that the
measurement operators must meet to be optimal.

Geometrically Uniform Symmetry (GUS) (Sects. 5.13 and 5.14)

The GUS is verified in several quantum communications systems and facilitates, in
general, analysis and performance evaluation, in particular, optimization and subop-
timization. We first consider the GUS for pure states and then for mixed states.

State Compression in Quantum Detection (Sect. 5.15)

In general, quantum states and measurement operators are “redundant,” but it is
possible and convenient to perform a compression onto a “compressed” space, where
redundancy is removed. Quantum detection can be reformulated in the “compressed”
space, getting properties simpler than in the original Hilbert space.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_8
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_8
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5.2 Analysis of a Quantum Communications System

In the Analysis of a general quantum communications system, it is assumed that both
the transmitter (Alice) and the receiver (Bob) are assigned and the target consists in
finding the statistical description of the system’s behavior in terms of probabilities,
exactly as in a classical communications system.

In a quantum system, probabilities come into play in two ways, and, in fact we
have two sources of randomness. One is related to the source of information, which
emits a symbol A = i ∈ A with a given probability qi = P[A = i], which is
called a priori probabilities. Therefore, we have a probability distribution qi , i ∈ A

of the random variable A. The other form of randomness is related to the quantum
measurement, which produces another random variable m ∈ M, whose statistical
description is provided by Postulate 3 of QuantumMechanics seen in Sect. 3.5. Then
the Analysis of the system will be necessarily based on Probability Theory.

Next, we have to study the viewpoint of Bob,who receives a “signal” and performs
the measurement. About this we can make two different hypotheses:

(1) The signal has not been contaminated, so that Bob receives the state |γA〉 that
Alice associated to the symbol A.

(2) The signal has been contaminated by the channel and by thermal noise (also
called background noise), and therefore Bob does not see the pure state |γA〉 any
more, but instead a mixed state represented by a density operator ρA.

The two cases are illustrated in Fig. 5.2.
Case (1) corresponds to a transmission with an ideal noiseless channel, whereas

case (2) accounts for the fact that the channel can fail to be ideal and noiseless. It is
important to observe that also in case (1) Bob will not be able to make with certainty
a correct decision, because it would be based on quantum measurements, which, as
already seen, do not give error-free results; in the classical case, the randomness of
the measurement with pure states corresponds to shot noise.

Alice ideal
channel|γA

A quantum
measurement

(Bob)|γA

{Pk , k∈M}

decision
element

m A

noisy
channel|γA

A

ρA

Fig. 5.2 Transmission of a classical symbol A through a quantum channel. At reception Bob
performs the measurement in a quantum system in a pure state |γA〉 (ideal channel) or in a quantum
system in a mixed state ρA (noisy channel)

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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The two cases can be unified considering that also in case (1), to the pure state
|γA〉 one can associate the degenerate density operator ρA = |γA〉〈γA|.

5.2.1 Quantum Measurement

To perform a quantum measurement, Bob chooses a measurement operator system

{Pk, k ∈ M}.

From Postulate 3, if we know that the system under measurement is in the state |γA〉,
the probability that the result of the measurement be m = k, is given by (see (3.26)
and (3.50))

P[m = k| γA] = 〈γA|Pk |γA〉, k ∈ M. (5.4)

Clearly, this result holds if the state |γA〉 is known with certainty (pure state). If,
instead, the system state is only statistically known through the density operator
ρA (mixed state), the probability that the result of the measurement be m = k is
calculated according to (see (3.32) and (3.51))

P[m = k| ρA] = Tr[ρA Pk], k ∈ M. (5.5)

Relation (5.5) includes relation (5.4), because it holds even when the system state
is known, thus ρA = |γA〉〈γA| and then it suffices to recall the identity on the trace
(2.37), to obtain (5.4) from (5.5).

In quantum communications systems, we must apply (5.4) when we neglect ther-
mal noise, and (5.5) when we take it into account.

5.2.2 The Digital Channel from the Source
to the Measurement

The steps that go from the transmitted symbol A ∈ A to the outcome of the mea-
surement m ∈ M identify a digital channel, as shown in Fig. 5.3. The alphabet at the
input of this channel is that of the possible symbols of the source

A = {0, 1, . . . , K − 1}, (5.6)

whereas at the output we have the alphabet M, which gives the possible outcomes
of the measurements and can be indicated in the form

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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Fig. 5.3 Source-to-measurement digital channel with transition probabilities p(k|i) = P[m =
k|A = i]. In the graph, the source alphabet is A = {0, 1} and the measurement alphabet is M =
{1, 2, 3, 4}

M = {1, 2, . . . , K ′} (5.7)

where the cardinality K ′ may be different from K .
The transition probabilities of this channel are given by (5.4) or by (5.5). In fact,

in the former case, thinking in terms of Probability Theory, the event {|γA〉 = |γi 〉}
coincides with the event {A = i}, because Alice has “prepared” the quantum system
in the state |γi 〉, having observed that A = i . Therefore, P[m = k| A = i] = P[m =
k| |γ 〉 = |γi 〉] and the transition probabilities of the channel become

p(k|i) := P[m = k| A = i] = 〈γi |Pk |γi 〉, k ∈ M, i ∈ A. (5.8a)

Even in the latter case, Alice has prepared the system in the state |γA〉. However,
because of the presence of noise, the state is not pure any more, but it is described by
the density operator ρA. However, at the level of events, we still have that to {A = i}
it uniquely corresponds {ρA = ρi }, thus

p(k|i) := P[m = k| A = i] = Tr[ρi Pk], k ∈ M, i ∈ A. (5.8b)

As usual, (5.8b) represents the general case, as it yields (5.8a) assumingρi = |γi 〉〈γi |.
It remains to observe that, for the sake of generality, we have chosen a measure-

ment alphabet M, in general different from the source alphabet A of the symbols.
For example, in Fig. 5.3 we have A = {0, 1} and M = {1, 2, 3, 4}. The important
constraint is that the cardinality of M must not be smaller than that of A

|M| ≥ |A| → K ′ ≥ K .

As we will see, the two alphabets are often chosen coincident.
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5.2.3 Post-measurement Decision. Correct
Decision Probability

Remaining in the general case, the decision criterion after the measurement must
be expressed by partitioning the measurement alphabet in correspondence with the
symbol alphabet, i.e., by finding a partition ofM of the type

M0,M1, . . . ,MK−1. (5.9)

Then the decision criterion becomes

m ∈ Mi ⇐⇒ ̂A = i. (5.10)

For example, in Fig. 5.4, where A = {0, 1} and M = {1, 2, 3, 4}, we have chosen
the partitions M0 = {1, 2} and M1 = {3, 4}.

Once chosen the decision criterion, we complete the global digital channel of
the quantum system, whose input is the symbol A ∈ A, and output the symbol
̂A ∈ A obtained after the decision (Fig. 5.4). The transition probabilities of this
global channel become

pc( j |i) = P[̂A = j | A = i] = P[m ∈ M j | A = i]
=

∑

k∈Mj

P[m = k| A = i]. (5.11)

Therefore, using (5.8b), we have

p(|)A∈A
decision

m∈M
=

A∈A
pc(|)

A

global channel

A∈A

A A A A

0

1

0

1

0

1

0

1

pc(0|0)

m

p(1|0) 1

2

3

4

Fig. 5.4 Global digital channel with transition probability pc( j |i) = P[ Â = j |A = i]
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pc( j |i) =
∑

k∈Mj

Tr[ρi Pk], i, j ∈ A. (5.12)

From the global transition probabilities, being also known the a priori probabilities
qi = P[A = i], we can calculate the correct decision probability as

Pc = P[̂A = A] =
∑

i∈A
qi pc(i |i)

=
∑

i∈A

∑

k∈Mi

qi Tr[ρi Pk] (5.13)

from which we obtain the error probability2 as Pe = 1 − Pc.

5.2.4 Combination of Measurement and Post-measurement
Decision

To the purpose of optimization, the decision criterion can be combined with the
system of the measurement operators.

Then, given the system of the measurement operators {Pk, k ∈ M}, and the
decision criterion determined by the partition (5.9), a set of new operators is defined
as follows:

Qi =
∑

k∈Mi

Pk, i ∈ A. (5.14)

The set of the operators {Qi , i ∈ A} forms a system of POVMs, that is, with the
properties (see Sect. 3.7):

(1) they are Hermitian operators, Q∗
i = Qi ,

(2) they are PSD, Qi ≥ 0,
(3) they resolve the identity,

∑

i∈A Qi = IH.

The proof of these properties is based on the fact that the initial operators Pk also
have such properties; in particular, (3) is obtained according to

∑

i∈A
Qi =

∑

i∈A

∑

k∈Mi

Pk =
∑

k∈M
Pk = IH.

Substituting the new operators (5.14) in (5.12) for the transition probabilities, we
obtain simply

2 In practice, the performance of a telecommunication system (classical or quantum) is often
expressed in terms of the error probability, but in theoretical formulation it is more convenient
to refer to the correct decision probability.

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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pc( j | i) = Tr[ρi Q j ], j, i ∈ A. (5.15)

Analogously, the correct decision probability becomes

Pc =
∑

i∈A
qiTr[ρi Qi ]. (5.16)

In particular, when the system in reception is in a pure state (absence of thermal
noise), letting ρi = |γi 〉〈γi | we obtain

Pc =
∑

i∈A
qi 〈γi |Qi |γi 〉. (5.16a)

At this point, conceptually, the quantum measurement can be performed directly
with the new measurement operators Qi (global measurement operators), and we
obtain directly, as its result, the decided symbol ̂A, as illustrated in Fig. 5.5.

In conclusion, we have seen that in principle, in reception, we perform a quantum
measurement, followed by a decision, but it is not restrictive to include in the
measurement also the final post-measurement decision, therefore the choice to make
for a good performance affects only the global measurement operators.

We finally remark the following statement:

Proposition 5.1 If the measurement operators {Pk , k ∈ M} form a projector system,
also the global operators {Qi , i ∈ A} form a projector system.

Problem 5.1 �� Prove Proposition5.1. Hint: see Sect. 3.6.4.

Problem 5.2 �� Optimization of decision element. In a post-measurement decision
the decision element is a mapping: M → A, where |M| ≥ |A|, in which every
point k ∈ M must be associated to a symbol a ∈ A, thus creating a partition
of M into K sets Ma, a ∈ A. For given a priori probabilities {qi } and transition
probabilities {pc( j |i)}, one can optimize the decision element with the criterion to

quantum
measurement

|γA

{Pk , k∈M}

decision
element

m

{Mi , i∈A}

=
A equivalent

quantum
measurement

|γA

{Qi , i∈A}

A

ρA ρA

Fig. 5.5 The quantum measurement with the system of measurement operators {Pk , k ∈ M},
followed by the decision element, is equivalent to the measurement with the system of global
measurement operators {Qi , i ∈ A}

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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get the maximum correct decision probability. Prove the following statement: Define
the K decision functions as

fa(k) := qa pc(k|a), a ∈ A, k ∈ M.

Then, for each k ∈ M, find the decision function fa(k) such that

fa(k) ≥ fb(k), ∀b �= a. (5.17)

The value of a that verifies (5.17) is placed in Ma . This defines the sets Ma that
determine the optimum decision element.

Problem 5.3 �� In a binary system {0, 1}, where the a priori probabilities are
q(0) = 1/3 and q(1) = 2/3, the quantum measurement, obtained with a photon
counting, gives two Poisson variables with averages Λ0 = E[m|A = 0] = 5 and
Λ1 = E[m|A = 1] = 20.

Apply the statement of the previous problem tofind the optimumdecision element.

Problem 5.4 � As in the previous problem but with Λ0 = 0 and Λ1 = 20 and
equally likely symbols.

5.3 Analysis and Optimization of Quantum Binary Systems

To become familiar with the problem, before proceeding with the general theory, it
seems useful to develop explicitly the decision theory in a binary quantum communi-
cations system, following thewell-knownHelstrom theory [1]. This theory represents
one of the few cases in which explicit closed-form results are obtained.

In a quantum binary system with symbols A ∈ {0, 1} the modulator (Alice) puts
the system in one of the two states |γ0〉 and |γ1〉. We assume that the measurement
alphabet M is still binary and coincident with the source alphabet, A = M =
{0, 1}, and therefore we omit the post-measurement decision element. Then, for the
measurement, we need two measurement operators (Hermitian and PSD) Q0 and
Q1 that maximize the correct decision probability (optimal decision). Given that
Q0 + Q1 = I , we can restrict our search to a single operator, for example, to Q1.

5.3.1 Optimization with Mixed States (General Case)

We now proceed with the case in which the system is specified by two density
operators ρ0 and ρ1. To calculate the probability of correct decision we use (5.16),
which, as Q0 = I − Q1, yields
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Pc = q0 Tr[ρ0Q0] + q1 Tr[ρ1Q1]
= q0 Tr[ρ0 I ] + Tr[(q1ρ1 − q0ρ0)Q1] (5.18)

= q0 + Tr[(q1ρ1 − q0ρ0)Q1]

where we have taken into account the fact that the trace of a density operator is
always unitary (see Sect. 3.3.2). The correct decision probability becomes

Pc = q0 + Tr[D Q1]

where
D := q1ρ1 − q0ρ0 = ρ̂1 − ρ̂0 (5.19)

is called for convenience decision operator (ρ̂i = qiρi are weighted density opera-
tors).

Then, tomaximize the correct decision probability, wemust find themeasurement
operator Q1 such that

max
Q1

Tr[(q1ρ1 − q0ρ0)Q1] = max
Q1

Tr[D Q1] q0 + q1 = 1.

To this end, let us consider the eigendecomposition (EID) of the decision operator

D = q1ρ1 − q0ρ0 =
∑

k

ηk |ηk〉〈ηk | (5.20)

where ηk is the generic eigenvalue, and |ηk〉 the corresponding eigenvector (the ηk

are assumed as distinct, so the corresponding vectors |ηk〉 are orthonormal). Note
that D is Hermitian but not PSD, so that the ηk are real, but may be either positive
or negative. We then have

Tr[D Q1] =
∑

k

ηkTr[|ηk〉〈ηk |Q1]

=
∑

k

ηk〈ηk |Q1|ηk〉, (5.21)

where we have used the notable identity (2.37).
Now the crucial point for optimization is to observe that the quantity

εk := 〈ηk |Q1|ηk〉

represents the probability of a measurement obtained through the measurement
operator Q1 when the system is in the state |ηk〉, and therefore 0 ≤ εk ≤ 1. Then the
maximumof the expression (5.21) is obtained by choosing, if possible, the termswith
ηk > 0 and εk = 1. This choice is actually possible if we define the measurement
operator Q1 in the following way

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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Q1 =
∑

ηk>0

|ηk〉〈ηk |. (5.22)

In fact, with this operator we obtain εk = 〈ηk |Q1|ηk〉 = 1 and the required maxi-
mum is

Tr[(q1ρ1 − q0ρ0)Q1] =
∑

ηk>0

ηk,

i.e., it is given by the sum of the positive eigenvalues. With this choice, the maximum
correct decision probability becomes

Pc = q0 +
∑

ηk>0

ηk . (5.23)

It remains to verify that the two operators obtained through the optimization

Q1 =
∑

ηk>0

|ηk〉〈ηk |, Q0 = I − Q1 =
∑

ηk<0

|ηk〉〈ηk | (5.24)

really form a measurement operator system. What is more, it can be shown that Q1
and Q0 form a projector system (see Problem5.5).

In conclusion, to obtain the maximum correct decision probability in a binary
system, we must perform a projective measurement with projectors given by (5.24).

Summary of the Optimization Procedure

We summarize the steps required to find the optimal measurement operators in a
quantum binary system:

(1) we start from the EID (5.20) of the decision operator

D = q1ρ1 − q0ρ0 =
∑

k

ηk |ηk〉〈ηk |; (5.25)

(2) the optimal measurement operators (projectors) Q0 and Q1 are calculated
from (5.24);

(3) the maximum probability of a correct decision is simply given by q0 plus the
sum of the positive eigenvalues of the operator D.

It is important to observe that this result is totally general, in the sense that no
hypothesis has been made on the density operators ρ0 and ρ1, which can describe
even mixed states. This general result will be applied in Chap.8 to binary quantum
communications systems in the presence of thermal noise.

http://dx.doi.org/10.1007/978-3-319-15600-2_8


5.3 Analysis and Optimization of Quantum Binary Systems 195

Problem 5.5 �� Prove that the operators Q1 and Q0, defined by (5.24), form a
projector system.

Problem 5.6 �� Consider the following density operators:

ρ0 = 1

208

⎡

⎢

⎢

⎣

46 13 − 37i −16 13 + 37i
13 + 37i 58 13 − 37i −32

−16 13 + 37i 46 13 − 37i
13 − 37i −32 13 + 37i 58

⎤

⎥

⎥

⎦

ρ1 = 1

208

⎡

⎢

⎢

⎣

58 29 − 29i 8 21 + 29i
29 + 29i 58 29 − 21i −8

8 29 + 21i 46 21 − 21i
21 − 29i −8 21 + 21i 46

⎤

⎥

⎥

⎦

First verify that they are “true” density operators. Then, assuming that they are the
states in a binary transmission with a priori probabilities q0 = 1/5 and q1 = 4/5,
find the correct decision probability Pc.

5.4 Binary Optimization with Pure States

The general theory of the previous section is now applied to a binary quantum system
prepared in one of the two pure states |γ0〉 and |γ1〉, therefore described by the density
operators

ρ0 = |γ0〉〈γ0| ρ1 = |γ1〉〈γ1|. (5.26)

We will find explicit and very important results, which be applied in Chap.7 to
quantum binary communications systems in the absence of thermal noise.

5.4.1 Helstrom’s Bound

To find the optimal measurement operators, we must evaluate the EID of the decision
operator, which with pure state is given by

D = q1ρ1 − q0ρ0 = q1|γ1〉〈γ1| − q0|γ0〉〈γ0|. (5.27)

To comprehend the nature of this operator, consider its image

D = im D = D H

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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which is a subspace generated by the linear combination of the two kets |γ0〉 and
|γ1〉, assumed (geometrically) independent, and whose dimension is dim D = 2.
Then the EID of D is limited to two terms (only two eigenvalues are different from
zero) and the two eigenvectors |η)〉 and |η1〉 of D must belong to the subspaceD and
therefore are linear combinations of two states3

|η0〉 = a00|γ0〉 + a01|γ1〉, |η1〉 = a10|γ0〉 + a11|γ1〉. (5.28)

Now, the coefficients ai j are obtained by applying the definition of eigenvector,
that is,

D |η0〉 = η0 |η0〉, D |η1〉 = η1 |η1〉 (5.29)

where η0 and η1 are the eigenvalues. Substituting (5.27) and (5.28) in (5.29), recalling
that 〈γ1|γ1〉 = 〈γ0|γ0〉 = 1 and letting X = 〈γ0|γ1〉, we obtain

q1(a0i X + a1i )|γ1〉 − q0(a0i + a1i X∗)|γ0〉 = η0i (a0i |γ0〉 + a1i |γ1〉), i = 0, 1.
(5.30)

But, because of the assumed independence, in (5.30) the coefficients of |γ1〉 and |γ0〉
must be equal to zeo. Hence

q1(ai 0X∗ + ai 1) = ηi ai 1, −q0(ai 0 + ai 1X) = ηi ai 0, i = 0, 1 . (5.31)

Solving with respect to ηi we get the equation

η2i − ηi (q1 − q0) − q0q1(1 − |X |2) = 0

from which

η0,1 = 1
2 (q1 − q0 ∓ R) , R :=

√

1 − 4q0q1|X |2 (5.32)

where η1 > 0 and η0 < 0.
We have only one positive eigenvalue, and (5.23) gives

Pc = 1
2

(

1 + √

1 − 4q0q1|X |2
)

Pe = 1
2

(

1 − √

1 − 4q0q1|X |2
) (5.33)

where the parameter
|X |2 = |〈γ0|γ1〉|2 (5.33a)

3 This point will be clarified in Sect. 5.11, Proposition5.4. The eigenvectors |ηi 〉 are called mea-
surement vectors because they form the measurement operators as Qi = |ηi 〉〈ηi |.
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represents the (quadratic) superposition degree between the two states. In the liter-
ature expressions (5.33) are universally known as Helstrom’s bound.

The optimal projectors derive from (5.24) and become

Q0 = |η0〉〈η0|, Q1 = |η1〉〈η1| (5.34)

and therefore they are of the elementary type, with measurement vectors given by
the eigenvectors |η0〉 and |η1〉 of the decision operator D.

It remains to complete the computation of these two eigenvectors, identified by
the linear combinations (5.28). Considering (5.31) we find

|η0〉 = a00

(

|γ0〉 + q1X∗

η0 − q1
|γ1〉

)

, |η1〉 = a11

(

− q0X

η1 + q0
|γ0〉 + |γ1〉

)

(5.35)

where a00 and a11 are calculated by imposing the normalization 〈ηi |ηi 〉 = 1. In the
general case, the calculation of the eigenvectors is very complicated4 and we prefer
to carry out the evaluation with the geometric approach developed below.

To consolidate the ideas on quantum detection we anticipate a few definitions and
properties on quantum detection and optimization. The linear combination (5.28)
can be written in the matrix form5

M = Γ A with Γ = [|γ0〉, |γ1〉], M = [|μ0〉, |μ1〉, A =
[

a00 a01
a10 a11

]

where Γ is called state matrix and M is called measurement matrix (see Sect. 5.6).
The target of optimization is to find the (optimal) measurement matrix Mopt that
maximizes the correct decision probability. In Sect. 5.11 we shall see that the optimal
measurement vectors are always orthogonal. This property can be written in the form
M∗

opt Mopt = I2, where I2 is the 2 × 2 identity matrix.
Finally, we note that a quantum systemwith pure states, sayS(q, Γ ), is completely

specified by the vector of the a priori probabilities q and by the state matrix Γ . The
optimization is specified by the measurement matrix Mopt, which allows us to find
the maximum correct decision probability as

Pe,max =
K−1
∑

i=0

|〈μi |γi 〉|2 =
K−1
∑

i=0

|〈Mopt(i)|Γ (i)〉|2 (5.36)

where |μi 〉 = Mopt(i) is the i th element of Mopt.

4 To the author’s knowledge the general expression of the eigenvectors (with X complex and not
equally likely symbols) does not seem to be available in the literature.
5 The measurement vectors, previously obtained as eigenvectors and denoted by |ηi 〉, are hereafter
denoted by |μi 〉.
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5.4.2 Optimization by Geometric Method

The binary optimization with pure states can be conveniently developed by a geo-
metric approach with several advantages. We first assume that the inner product
Y := 〈γ0|γ1〉 is real and then we generalize the approach to the complex case.

The geometry of decision with two pure states |γ0〉 and |γ1〉 is developed in the
subspaceD generated by two states. In this hyperplane, the states are written in terms
of an appropriate orthonormal basis {|u0〉, |u1〉} as (Fig. 5.6)

|γ0〉 = cos θ |u0〉 + sin θ |u1〉
|γ1〉 = cos θ |u0〉 − sin θ |u1〉 (5.37)

where
cos 2θ = 〈γ0|γ1〉 = Y. (5.38)

In (5.37) we have assumed that the basis vector |u0〉 lies in the bisection determined
by the state vectors, which does not represent a restriction. For now we assume the
two measurement vectors |μ0〉 and |μ1〉 not necessarily optimal, but satisfying the
conditions of being orthonormal, in addition to belonging to the Hilbert subspaceD.
Then they can be written as

|μ0〉 = cosφ|u0〉 + sin φ|u1〉
|μ1〉 = sin φ|u0〉 − cosφ|u1〉. (5.39)

Fig. 5.6 Binary decision
with generic state vectors
and measurement vectors

u0

u1

|μ0

|μ1

|γ0

|γ1

π/2
θ

θ
φ

φ
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Note that trigonometric functions take automatically into account the ket normaliza-
tion and allow us to express the ket geometry of the four vectors involved by only
two angles.

Considering that 〈μ0|γ0〉 = cos(φ − θ) and 〈μ1|γ1〉 = sin(φ + θ), the transition
probabilities p( j |i) := P[ Â0 = j |A0 = i] are given by

p(0|0) = cos2(φ − θ) = 1
2 [1 + sin 2θ sin 2φ + cos 2θ cos 2φ]

p(1|1) = sin2(φ + θ) = 1
2 [1 + sin 2θ sin 2φ − cos 2θ cos 2φ]

(5.40)

and the correct detection probability turns out to be

Pc = q0 cos
2(φ − θ) + q1 sin

2(φ + θ)

= 1
2 [1 + (q0 − q1)(cos 2θ cos 2φ + sin 2θ sin 2φ)] . (5.41)

Here the angle θ is given through the inner product Y (see (5.38)), while the angle φ

is unknown and is evaluated by optimization. It is immediate to see that the angle φ

giving the maximum of Pc is given by

tan 2φ = 1

q0 − q1
tan 2θ = 1

q0 − q1

√
1 − Y 2

Y
, (5.42)

which gives

sin 2φ = 1

R
sin 2θ, cos 2φ = q0 − q1

R
cos 2θ (5.43)

where R = √

1 − 4q0q1Y 2. The corresponding optimal correct decision probabil-
ity is

Pc = 1
2 (1 + R) = 1

2

(

1 +
√

1 − 4q0q1Y 2

)

, (5.44)

i.e., the Helstrom bound.
The transition probabilities (5.40), with the optimal decision, become

p(0|0) = 1
2

[

1 + (1 − Y 2 + (q0 − q1)Y 2)/R
]

p(1|1) = 1
2

[

1 + (1 − Y 2 − (q0 − q1)Y 2)/R
]

.
(5.45)

Finally, we consider the explicit evaluation of the optimal measurement vectors.
The first step is finding in (5.39) the expression of the basis vectors |u0〉 and |u1〉 in
terms of the given quantum states. For the particular choice made for these vectors
we have that |u0〉 is proportional to |γ0〉 + |γ1〉 and |u1〉 is proportional to |γ0〉 −
|γ1〉 (see Fig. 5.6), that is, |u0〉 = H0(|γ0〉 + |γ1〉) and |u1〉 = H1(|γ0〉 − |γ1〉).
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The normalization gives H0 = 1/
√
2 + 2Y and H1 = 1/

√
2 − 2Y . Next, in (5.39)

the optimal angle is given by (5.42) and then we find the optimal measurement
matrix as6

Mopt = Γ A with A = 1

2

⎡

⎢

⎢

⎢

⎢

⎣

√
1 − L√
1 − Y

+
√
1 + L√
1 + Y

√
1 − L√
1 + Y

−
√
1 + L√
1 − Y

√
1 + L√
1 + Y

−
√
1 − L√
1 − Y

√
1 − L√
1 + Y

+
√
1 + L√
1 − Y

⎤

⎥

⎥

⎥

⎥

⎦

(5.46)

where L = (q0−q1) Y/R. This completes the optimization with a real inner product.
In the general case of a complex inner product

X = |X | ei β

we introduce the new quantum states

|γ̃0〉 = |γ0〉, |γ̃1〉 = e−i β |γ1〉

which give the matrix relation

˜Γ = Γ B, with B =
[

e−i β 0
0 1

]

. (5.47)

Now we have two binary systems, S(q, Γ ) and S(q, ˜Γ ), with the same a priori prob-
abilities, but different inner products, respectively X = |X | ei β and ˜X = 〈γ̃0|γ̃1〉 =
e−i β〈γ0|γ1〉 = |X |. It is immediate to verify (see (5.36)) that if Mopt is the optimal
measurement matrix for S(q, Γ ), the optimal measurement matrix for S(q, ˜Γ ) is
given by

˜Mopt = Mopt B → Mopt = ˜Mopt B−1. (5.48)

But the system S(q, ˜Γ ) has a real inner product and, with the replacement Y →
|X |, we can use the previous theory to find: (1) the Helstrom bound from (5.44),
(2) the transition probabilities from (5.45) and (3) the optimal measurement matrix
˜Mopt = ˜Γ ˜A from (5.46). Hence, from ˜Mopt we can obtain the measurement matrix
for the system S(q, Γ ). In fact, by combination of (5.47) and (5.48) we find

Mopt = Γ A with A = B ˜A B−1

6 To express cosφ and sin φ from tan 2φ we use the trigonometric identities

sin φ = 2−1/2

√

1 − 1/
√

1 + tan2 2φ, cosφ = 2−1/2

√

1 + 1/
√

1 + tan2 2φ

which hold for 0 ≤ φ ≤ π/4. This range of φ covers the cases of interest.
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which gives

A =
[

a00 a01
a10 a11

]

=
[

ã00 ei β ã01
e−i β ã10 ã11

]

.

We summarize the general results as follows:

Proposition 5.2 The optimization of the quantum decision in a binary system pre-
pared in the pure states |γ0〉 and |γ1〉, having inner product 〈γ0|γ1〉 := X = |X |eiβ
and a priori probabilities q0 and q1, gives the transition probabilities

p(0|0) = 1
2

[

1 + (1 − |X |2 + (q0 − q1)|X |2)/R
]

p(1|1) = 1
2

[

1 + (1 − |X |2 − (q0 − q1)|X |2)/R
]

.
(5.49)

and the correct decision probability

Pc = 1
2

(

1 +
√

1 − 4q0q1|X |2
)

. (5.50)

The optimal measurement matrix is obtained as Mopt = Γ A, where

A = 1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

√
1 − L√
1 − |X | +

√
1 + L√
1 + |X | ei β

( √
1 − L√
1 + |X | −

√
1 + L√
1 − |X |

)

e−iβ

( √
1 + L√
1 + |X | −

√
1 − L√
1 − |X |

) √
1 − L√
1 + |X | +

√
1 + L√
1 − |X |

⎤

⎥

⎥

⎥

⎥

⎥

⎦

with
R = √

1 − 4q0q1, L = |(q0 − q1)X |/R.

5.4.3 Pure States with Equally Likely Symbols

With equally likely symbols (q0 = q1 = 1
2 ) we find several simplifications. In the

trigonometric approach the optimization is obtained by rotating the measurement
vectors until they form the same angle with the corresponding state vectors, specif-
ically, we have θ = π/4, as shown in Fig. 5.7. The expressions of correct decision
probabilities and of the error probability are simplified as

Pc = 1
2

(

1 +
√

1 − |X |2
)

, Pe = 1
2

(

1 −
√

1 − |X |2
)

. (5.51)
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Fig. 5.7 Optimal binary
decision with equally
probable symbols
(q0 = q1 = 1

2 ). The
optimization is obtained by
rotating the measurement
vectors until they form the
same angle with the
corresponding state vectors

u0

u1

|μ1

|μ0

|γ0

|γ1

π/2

θ

θ φ

φ

φ=π/4

The transition probabilities become equal

p(0|0) = p(1|1) = 1
2

(

1 +
√

1 − |X |2
)

= Pc

and hence we get a binary symmetric channel.
The measurement vectors become

|μ0〉 = a |γ0〉 + b ei β |γ1〉, |μ1〉 = b e−i β |γ0〉 + a |γ1〉 (5.52)

where β = arg X and

a = 1

2

[

1√
1 − |X | + 1√

1 + |X |
]

, b = 1

2

[

1√
1 + |X | − 1√

1 − |X |
]

. (5.53)

Problem 5.7 �� Find the coefficients a01 and a11 in the expression of the mea-
surement vectors (5.35), assuming equally likely symbols and X real.

Problem 5.8 �� Write the fundamental relations of the geometrical approach in
matrix form, using the matrices

Γ = [|γ0〉, |γ1〉], U = [|u0〉, |u1〉], M = [|μ0〉, |μ1〉].
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5.5 System Specification in Quantum Decision Theory

After a thorough examination of decision in a binary system, we return to the general
considerations, assuming a K -ary system.

From the general analysis of Sect. 5.2 and from the choice of proceeding with
global measurements, we realize that the system specification in quantum decision
can be limited to the following few parameters (“players”).

On the transmitter side (Alice), the players are:

(a) the a priori probabilities qi , i ∈ A,
(b) the states |γi 〉, i ∈ A, or the density operator ρi , i ∈ A.

The sets {|γi 〉|i ∈ A} and {ρi |i ∈ A} will be called constellations of states.
At the receiver side (Bob) the players are the (global) measurement operators,

which must form a measurement operator system {Qi , i ∈ A} in the sense already
underlined, but worthwhile recalling:

(1) they are Hermitian operators, Q∗
i = Qi ,

(2) they are PSD, Qi ≥ 0,
(3) they give a resolution of the identity,

∑

i∈A Qi = IH.

There are several ways to specify the above parameters, as we shall see in the next
sections, making the usual distinction between pure and mixed states.

5.5.1 Weighted States and Weighted Density Operators

In the above, the transmitter specification is composed by two players, however,
the same specification can be obtained by a single player with the introduction of
weighted states (already used in Sect. 3.11).

The weighted states are defined by

|γ̂i 〉 = √
qi |γi 〉, i ∈ A (5.54)

and contain the information of both the probabilities qi and the states |γi 〉. In fact,
considering that the states are normalized, 〈γi |γi 〉 = 1, one gets

qi = 〈γ̂i |γ̂i 〉, |γi 〉 = (1/
√

qi ) |γ̂i 〉. (5.55)

The weighted density operators are defined by

ρ̂i = qi ρi , i ∈ A. (5.56)

Then, considering that Tr[ρi ] = 1, one gets

qi = Tr[ρ̂i ], ρi = (1/qi ) ρ̂i . (5.57)

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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5.6 State and Measurement Matrices with Pure States

If the decision is taken from pure states, that is, from rank-one density operators, also
the measurement operators may be chosen with rank-one, and therefore expressed
by measurement vectors in the form Qi = |μi 〉〈μi |. This was seen in Sect. 5.3 with
a binary system, but it holds in general (see Kennedy’s theorem in Sect. 5.11). Then,
referring to an n-dimensional Hilbert spaceH, the players become vectors (kets) of
H, which can be conveniently represented in the matrix form.

Now, K pure states |γi 〉, interpreted as column vectors of dimension n × 1, form
the state matrix

Γ
n×K

= [|γ0〉, |γ1〉, ..., |γK−1〉]. (5.58)

Analogously, the measurement vectors |μi 〉 form the measurement matrix

M
n×K

= [|μ0〉, |μ1〉, . . . , |μK−1〉]. (5.59)

In particular, the measurement matrix allows us to express the resolution of the
identity

∑

i∈A |μi 〉〈μi | = IH, in the compact form

M M∗ = IH. (5.60)

The specification of the source by the state matrix Γ is sufficient in the case of
equally likely symbols. With generic a priori probabilities qi we can introduce the
matrix of weighted states [3]

̂Γ = [|γ̂0〉, |γ̂1〉1, . . . , |γ̂K−1〉
]

, (5.61)

where |γ̂i 〉 = √
qi |γi 〉.

5.7 State and Measurement Matrices with Mixed States ⇓

The state and the measurement matrices can be extended to mixed states but their
introduction is less natural because the density and the measurement operators are
not presented in a factorized form as in the case of pure states.

With pure states, the density operators have the factorized form ρi = |γi 〉〈γi | and,
with standard notation, ρi = γiγ

∗
i , where the states γi = |γi 〉 must be considered as

column vectors. In the general case, the density operators do not appear as a product
of two factors, but can be equally factorized in the form

ρi = γiγ
∗
i , i = 0, 1, . . . , K − 1 (5.62)
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where the γi become matrices of appropriate dimensions (and not simply column
vectors). As we will see soon, if n is the dimension of the Hilbert space and hi is the
rank of ρi , the matrix γi can be chosen of dimensions n ×hi . It must be observed that
such factorization is not unique, and also the dimensions n × hi are to some extent
arbitrary, because hi has the constraint rank(ρi ) ≤ hi ≤ n. However, the minimal
choice hi = rank(ρi ) is the most convenient (and in the following we will comply
with this choice).

Similar considerations hold for themeasurement operators Qi ,which,with unitary
rank, have the factored form Qi = |μi 〉〈μi |, but alsowith rank hi > 1 can be factored
in the form

Qi = μiμ
∗
i (5.63)

where the factors μi are n × hi matrices. Further on, we will realize (see Kennedy’s
theorem and its generalization in Sect. 5.11) that in the choice of the measurement
operators it is not restrictive to assume that hi be given by the same rank of the
corresponding density operators.

By analogy with the pure states and with the measurement vectors, the factors γi

will be called state factors and the factorsμi measurement factors (this terminology
is not standard and is introduced for the sake of simplicity). The factorization will
be useful in various ways; first of all because, if the rank hi is not full (hi < n), it
removes the redundancy of the operators, by gathering the information in an n × hi

rectangular matrix, instead of an n × n square matrix, and also because it often
makes it possible to extend to the general case some results that are obtained with
pure states.

5.7.1 How to Obtain a Factorization

The factorization of a density operator was developed in Sect. 3.11 in the context of
the multiplicity of an ensemble of probabilities/states. Here the factorization is seen
in a different context and, for clarity, some considerations will be repeated.

Consider a generic density operator ρ of dimensions n × n and rank h, which is
always a PSD Hermitian operator. Then a factorization γ γ ∗ can be obtained using
its reduced EID (see Sect. 2.11 and Proposition3.5)

ρ = Zh D2
h Z∗

h =
h

∑

i=1

d2
i |zi 〉〈zi | (5.64)

where D2
h = diag[d2

1 , . . . , d2
h ] is an h × h diagonal matrix containing the h pos-

itive eigenvalues of ρ and Zh = [|z1〉 · · · |zh〉] is n × h. Letting Dh =
√

D2
h =

diag[d1, . . . , dh], we see immediately that

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_3
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γ = Zh Dh (5.65)

is a factor of ρ.
From the EID (5.64) it results that the density operator is decomposed into the sum

of the elementary operators d2
i |zi 〉〈zi |, where d2

i has the meaning of the probability
that the quantum system described by the operator ρ be in the state |zi 〉, exactly in the
form in which the density operator has been introduced (see (3.7)). Then the factor
γ turns out to be a collection of h vectors

γ = [d1 |z1〉, . . . , dh |zh〉] (5.66)

where the |zi 〉 are orthonormal (as taken from a unitary matrix Z of an EID).7

Reconsidering the theory developed in Sect. 3.11, we find that γ is a minimum
factor of ρ and, more specifically, a minimum orthogonal factor.

Example 5.1 Consider the Hilbert space H = C
4, where we assume as basis

|b1〉 =

⎡

⎢

⎢

⎢

⎣

1
2
1
2
1
2
1
2

⎤

⎥

⎥

⎥

⎦

, |b2〉 =

⎡

⎢

⎢

⎢

⎣

1
2

− i
2

− 1
2
i
2

⎤

⎥

⎥

⎥

⎦

, |b3〉 =

⎡

⎢

⎢

⎢

⎣

1
2

− 1
2

1
2

− 1
2

⎤

⎥

⎥

⎥

⎦

, |b4〉 =

⎡

⎢

⎢

⎢

⎣

1
2
i
2

− 1
2

− i
2

⎤

⎥

⎥

⎥

⎦

.

From this basis we build the density operator

ρ = 1

3
|b1〉〈b1| + 2

3
|b2〉〈b2| =

⎡

⎢

⎢

⎢

⎢

⎣

1
4

1
12 − i

6 − 1
12

1
12 + i

6
1
12 + i

6
1
4

1
12 − i

6 − 1
12

− 1
12

1
12 + i

6
1
4

1
12 − i

6
1
12 − i

6 − 1
12

1
12 + i

6
1
4

⎤

⎥

⎥

⎥

⎥

⎦

which has eigenvalues
{ 2
3 ,

1
3 , 0, 0

}

and therefore has rank h = 2. Its reduced EID
ρ = Zh D2

h Z∗
h is specified by the matrices

Zh =

⎡

⎢

⎢

⎢

⎣

i
2

1
2

− 1
2

1
2

− i
2

1
2

1
2

1
2

⎤

⎥

⎥

⎥

⎦

D2
h =

[ 2
3 0
0 1

3

]

Z∗
h =

[

− i
2 − 1

2
i
2

1
2

1
2

1
2

1
2

1
2 .

]

Now, to obtain a factor γ of ρ we use (5.65), which gives the 4 × 2 matrix

7 Another way to obtain a factorization is given by Choleski’s decomposition (see Sect. 2.12.5).

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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γ = Zh

√
D2 =

⎡

⎢

⎢

⎢

⎣

i
2

1
2

− 1
2

1
2

− i
2

1
2

1
2

1
2

⎤

⎥

⎥

⎥

⎦

⎡

⎣

√

2
3 0

0
√

1
3

⎤

⎦ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

i√
6

1
2
√
3

− 1√
6

1
2
√
3

− i√
6

1
2
√
3

1√
6

1
2
√
3
.

⎤

⎥

⎥

⎥

⎥

⎥

⎦

As regards the factorization of the measurement operator, say Q = μμ∗, similar
considerations hold, provided that the operator Q is known. However, in quantum
detection Q is not known and it should be determined by optimization. In this context
the unknown may become μ, then giving Q as μμ∗ and the factorization is no more
required.

5.7.2 State and Measurement Matrices

The definition of these matrices can be extended to mixed states by expressing the
density operators and the correspondingmeasurement operators through their factors.
The state matrix Γ is obtained by juxtaposing the factors γi , intended as blocks of
columns of dimensions n × hi

Γ
n×H

= [

γ0, γ1, . . . , γK−1
]

(5.67)

where the number of columns H is given by the global number of the columns of
the factors γi

H = h0 + h1 + · · · + hK−1.

We can make explicit Γ bearing in mind that each factor γi is a collection of hi kets
(see (5.66)). For example, for K = 2, h0 = 2, h1 = 3 we have

Γ = [γ0, γ1] = [|γ01〉, |γ02〉, |γ11〉, |γ12〉, |γ13〉] (5.68)

where |γ0i 〉 are the kets of γ0 and |γ1i 〉 are the kets of γ1.
Analogously, the measurement matrix M is obtained by juxtaposing the factors

μi , intended as blocks of columns

M
n×H

= [

μ0, μ1, . . . , μK−1
]

. (5.69)

Even the resolution of the identity (5.60) is extended to mixed states. In fact,

M M∗ =
∑

i∈A
μiμ

∗
i =

∑

i∈A
Qi = IH. (5.70)
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Clearly, these last definitions are the most general and include the previous ones
when the ranks are unitary (hi = 1 and H = K ).

Also the definition of thematrix of weighted states, given by (5.61) for pure states,
can be extended to mixed states [3], namely

̂Γ = [

γ̂0, γ̂1, . . . , γ̂K−1
] = [√

q0γ0,
√

q1γ1, . . . ,
√

qK−1γK−1
]

, (5.71)

where the weighted states can be obtained as a factorization of weighted density
operators, namely ρ̂i = qiρi = √

qiγi
√

qiγ
∗
i = γ̂i γ̂

∗
i .

5.7.3 Probabilities Expressed Through Factors

In quantum decision, probabilities can be computed from the factors γi andμi of the
density operators and of the measurement operators. Recalling the expression of the
transition probabilities, given by (5.15), we obtain explicitly

pc( j |i) = Tr[Q j ρi ] = Tr[μ jμ
∗
j γiγ

∗
i ]. (5.72)

Analogously, from (5.16) we obtain the correct decision probability

Pc =
∑

i∈A
qi Tr[Qi ρi ] =

∑

i∈A
qi Tr[μiμ

∗
i γiγ

∗
i ]. (5.73)

In the evaluation of these probabilities it is convenient to introduce the matrix
of mixed products

B
H×H

:= M∗ Γ =
⎡

⎢

⎣

b0,0 · · · b0,K−1
...

. . .
...

bk−1,0 · · · bK−1,K−1

⎤

⎥

⎦
, bi j := μ∗

i γi (5.74)

where dim bi j = hi × h j . Then, using the cyclic property of the trace, we find

pc( j |i) = Tr[b∗
j i b ji ], Pc =

∑

i∈A
qiTr[b∗

i i bii ]. (5.75)

Finally, it must be observed that state and measurement factors are not uniquely
determined by the corresponding operators. In fact, if γi is a factor of ρi , also γ̃i =
γi Z , where Z is any matrix with the property Z Z∗ = Ihi , is a factor of ρi , as follows
from γ̃i γ̃

∗
i = γi Z Z∗γ ∗

i = γi γ ∗
i = ρi . However, the multiplicity of the factors

has no influence on the computation of the probabilities, as can be verified from the
above expressions.
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Problem 5.9 �� From the following normalized states of H = C
4

|γ1〉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2√
13
2√
13
2√
13
1√
13

⎤

⎥

⎥

⎥

⎥

⎥

⎦

|γ2〉 =

⎡

⎢

⎢

⎢

⎣

1
2
1
2
1
2
1
2

⎤

⎥

⎥

⎥

⎦

|γ3〉 =

⎡

⎢

⎢

⎢

⎣

1
2

− i
2

− 1
2
i
2

⎤

⎥

⎥

⎥

⎦

|γ4〉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2√
13

− 2i√
13

− 1√
13

2i√
13

⎤

⎥

⎥

⎥

⎥

⎥

⎦

|γ5〉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1√
13

− 2i√
13

− 2√
13

2i√
13

⎤

⎥

⎥

⎥

⎥

⎥

⎦

form the density operators

ρ1 = 3

4
|γ1〉〈γ1| + 1

4
|γ2〉〈γ2|, ρ2 = 3

4
|γ3〉〈γ3| + 1

8
|γ4〉〈γ4|1

8
|γ5〉〈γ5|

and find their minimum factors γ1 and γ2. Find also factorizations in which the
matrices γ1 and γ2 have the same dimensions.

Problem 5.10 � Consider the transition probabilities given by (5.72). Prove that,
if γi is replaced by γi Z , with Z Z∗ = Ih , and μ j by μ j W , with W W ∗ = Ih , the
transition probabilities do not change.

Problem 5.11 �� Prove that the measurement matrix M defined by (5.59) and
its generalization to mixed states (5.69), allows us to express the resolution of the
identity in the form M M∗ = IH.

5.8 Formulation of Optimal Quantum Decision

The viewpoint for the Optimal QuantumDecision is the following: the a priori proba-
bilities and the constellation (of pure states or of mixed stated) are assumed as given,
whereas the measurement operator system is unknown and should be determined
to meet the decision criterion, given by the maximization of the correct decision
probability.

Then, considering the general expression of the correct decision probability, given
by (see (5.16))

Pc =
∑

i∈A
qiTr[ρi Qi ]

the optimal measurement operators Qi must be determined from

max{Qi }

K−1
∑

i=0

qi Tr[ρi Qi ]. (5.76)

If the operators are expressed through their factors (see (5.62) and (5.63)), (5.76)
becomes
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max{μi }

K−1
∑

i=0

qi Tr[γiγ
∗
i μiμ

∗
i ]. (5.77)

Finally, if the states are pure, we have the simplification

max{|μi 〉}

K−1
∑

i=0

qi Tr[|γi 〉〈γi |μi 〉〈μi |] = max{|μi 〉}

K−1
∑

i=0

qi |〈γi |μi 〉|2. (5.78)

In the last relation we have used the identity (2.37) over the trace, Tr[A|u〉〈u|] =
〈u|A|u〉, with A = |γi 〉〈γi | and |u〉 = |μi 〉.

5.8.1 Optimization as Convex Semidefinite
Programming (CSP)

Starting from the Hilbert space H on which the quantum decision is defined, it is
convenient to introduce the following classes (Fig. 5.8):

• the class B of the Hermitian operators defined on H,
• the subclass B0 of the PSD Hermitian operators,
• the classM of the K -tuples Q = [ Q0, . . . , QK−1 ], Qi ∈ B of Hermitian opera-
tors,

• the subclassM0 ofM consisting of the K -tuples Q, whose elements Qi are PSD
Hermitian, Qi ∈ B0, and, globally, resolve the identity onH, that is,

∑

i Qi = IH.

K–tuples of Hermitian operatorsHermitian operators

B

B0

•Xopt

Tr(·)•
X

Tr(·)
M

M0
Mott

•Qopt

Tr(·) Jmax

J(·)
J(·)

•
Q

R

0

Fig. 5.8 Classes in the quantum decision for the determination of optimal measurement operators.
On the right, the class M formed by the K -tuples of Hermitian operators and the subclass M0
constituted by systems of measurement operators Q; in M0 the functional J (Q) is defined, which
has a maximum Jmax when Q becomes optimal. On the left, the classBof the Hermitian operators
X and the subclass B0 of the positive semidefinite X ; in general Tr(X) ≥ Jmax, but for particular
X = Xopt it results Tr(Xopt) = Jmax

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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In other words, each K -tuple Q ∈ M0 identifies a valid measurement operator
system.

With these premises, the problem of the optimal decision can be treated in the frame-
workof convex programming. Starting from the data specifiedby theweighteddensity
operators

ρ̂i = qiρi , i = 0, . . . , K − 1, (5.79)

we must determine a measurement operator system Q ∈ K0 that maximizes the
quantity

J (Q) =
K−1
∑

i=0

Tr[ρ̂i Qi ], Q ∈ M0. (5.80)

We are dealing with a problem of convex semidefinite optimization because the K -
tupleQmust be found on a convex set: in fact, given two K -tuplesP andQ ofM0 and
given anyλwith 0 < λ < 1, it can be easily shown that the convex linear combination
λP + (1− λ)Q is still formed by a K -tuple ofM0. Therefore, by definition,M0 is a
convex set. Within such set, it results:

Proposition 5.3 The functional J (Q), which gives the correct decision probability
Pc, in M0 admits the maximum

Jmax = max
Q∈M0

J (Q) = J (Qopt).

This maximum gives the maximum of the correct decision probability, Pc,max =
Jmax = J (Qopt), and Qopt is by definition an optimal system of measurement oper-
ators.

This proposition will be proved in Appendix section “Proof of Holevo’s Theorem”.

5.9 Holevo’s Theorem

The following theorem, stated by Holevo in (1972) [4], completely characterizes the
optimal solution, and is probably one of the most important results of the theory of
quantum decision in the last decades.

Theorem 5.1 (Holevo’s Theorem) In a K -ary system characterized by the weighted
density operators ρ̂i = qiρi , the measurement operators Qi are optimal if and only
if, having defined the operator

L =
K−1
∑

i=0

Qi ρ̂i , (5.81)
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it follows that the operators L − ρ̂i are PSD, that is,

L − ρ̂i ∈ B0 (5.82)

and, for each i = 0, . . . , K − 1,

(L − ρ̂i )Qi = 0H. (5.83)

Holevo’s theorem, which will be proved in Appendix section “Proof of Holevo’s
Theorem”, determines the conditions that must be verified by an optimal system of
measurement operators Qopt, but does not provide any clue on how to identify it.

An equivalent form of Holevo’s theorem, but, as we will see, more appropriate for
numerical computation, has been proved by Yuen et al. [5] and, recently, in a detailed
form, by Eldar et al. [3]. The result is obtained by transforming the original problem
into a dual problem, according to a well-known technique of linear programming.

Theorem 5.2 (Dual theorem) In a K -ary system characterized by the weighted
density operators ρ̂i = qiρi , the measurement operators Qi are optimal if and only
if there exists a PSD operator, X ∈ B0, such that Tr[X ] is minimal,

Tmin = min
X∈B0

Tr[X ] (5.84)

and for every j = 0, . . . , K − 1 the operators X − ρ̂ j are PSD, X − ρ̂ j ∈ B0. The
optimal operators Qi satisfy the conditions

(X − ρ̂i )Qi = 0H. (5.85)

The minimum obtained for Tr[X ] coincides with the requested maximum of J (Q)

Tmin = Jmax = Pc,max. (5.86)

Notice that the conditions imposed on the operators for optimality X − ρ̂i are
the same as those indicated in Holevo’s theorem, imposed on operators X − ρ̂i . To
understandwhy the dual theorem leads to a lower computational complexity, suppose
that the Hilbert space be of finite dimensions n. In Holevo’s theorem we must look
for a K -tuple of Hermitian operators Qi , for a total of K n2 unknowns; instead, in the
dual theorem we must look for the Hermitian matrix X , for a total of n2 unknowns.

Example 5.2 Wewant to check that the projectors Q0 and Q1, evaluated in Sect. 5.3
with Helstrom’s theory, satisfy the conditions of Holevo’s theorem. For K = 2, the
operator (5.81) becomes, bearing in mind the resolution constraint of the identity
Q0 + Q1 = I ,

L = Q0ρ̂0 + Q1ρ̂1 = (I − Q1)ρ̂0 + Q1ρ̂1 = ρ̂0 + Q1D
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where D = ρ̂1 − ρ̂0 is the decision operator introduced in Helstrom’s theory (see
(5.20)). The conditions (5.83) give

Q1DQ0 = 0, Q0DQ1 = 0

which are mutually equivalent. We can verify them using the expressions (5.25) and
(5.24), and the orthonormality. We obtain

Q1DQ0 =
∑

ηk>0

|ηk〉〈ηk |
∑

m

ηm |ηm〉〈ηm |
∑

ηh<0

|ηh〉〈ηh | = 0.

The conditions (5.83) become

L − ρ̂0 = Q1D ≥ 0, L − ρ̂1 = −Q0D ≥ 0.

We have
Q1D =

∑

ηh>0

|ηh〉〈ηh |
∑

m

ηm |ηm〉〈ηm | =
∑

ηh>0

ηh |ηh〉〈ηh |

which is PSD because ηh > 0 and |ηh〉〈ηh | are elementary projectors. Analogously,
it can be proved that −Q0D ≥ 0.

5.10 Numerical Methods for the Search
for Optimal Operators

As already said, only in some particular cases the problem of the determination of
the optimal measurement operators and of the maximum correct decision probability
has closed-form solutions. In the other cases, we either restrict ourselves to search for
near-optimal solutions, with the SRMmeasurements, or we must resort to numerical
computation. As we are dealing with problems of convex programming, which fall
under a very general class of problems, we can use existing very sophisticated soft-
ware packages, like LMI (linear matrix inequalities) and CSP (convex semidefinite
programming), both operating in the MatLab© environment [6, 7].

5.10.1 The MatLab Procedure Cvx

The use of this procedure is conceptually very simple. For the application of Holevo’s
theorem, in the general case, all it takes is to provide, as input data, the K weighted
density operators ρ̂i , with the constraints
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Qi ≥ 0, i = 0, . . . , K − 1,
K−1
∑

i=0

Qi = I

and to request as output the K measurement operators Qi that maximize

J (Q) =
K−1
∑

i=0

Tr[ρ̂i Qi ].

Resorting to the dual theorem reduces the computational complexity. Inputting
the ρ̂i , with the constraints

X − ρ̂i ≥ 0, i = 0, . . . , K − 1

the user asks for the operator X of minimal trace. From X we obtain the optimal
measurement operators as solutions of the equations (X − ρ̂i )Qi = 0. Clearly, the
computation is simplified because the search is limited to the single operator X .

We write the MatLab procedure in the binary case, which is easily extended to
an arbitrary K .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% cvx procedure applied to Holevo’s theorem

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cvx_begin SDP

variable Q0(dim, dim) hermitian

variable Q1(dim, dim) hermitian

maximize(trace(Q0*R0+Q1*R1))

subject to

Q0>0;

Q1>0;

Q0==eye(dim)-Q1;

cvx_end

Pc_Holevo=trace(Q0*R0+Q1*R1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% cvx procedure apply to the dual problem

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cvx_begin SDP

variable Q(dim, dim) hermitian

minimize(trace(Q))

subject to

Q>R0;
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Q>R1;

cvx_end

Pc_dual=trace(Q);

5.10.2 Example

We input the weighted density operators

ρ̂0 = 1

2

⎡

⎢

⎢

⎣

0.29327 0.29327 0.29327 0.17788
0.29327 0.29327 0.29327 0.17788
0.29327 0.29327 0.29327 0.17788
0.17788 0.17788 0.17788 0.12019

⎤

⎥

⎥

⎦

ρ̂1 = 1

2

⎡

⎢

⎢

⎣

0.23558 0.24519i −0.22596 −0.24519i
−0.24519i 0.26442 0.24519i −0.26442
−0.22596 −0.24519i 0.23558 0.24519i
0.24519i −0.26442 −0.24519i 0.26442

⎤

⎥

⎥

⎦

.

the “Holevo” procedure gives as output

Pe = 0.009316144.

Q0 =

⎡

⎢

⎢

⎣

0.502788 0.259735 0.247032 −0.0141425
0.259735 0.278855 0.259735 0.256145
0.247032 0.259735 0.502788 −0.0141425

−0.0141425 0.256145 −0.0141425 0.715569

⎤

⎥

⎥

⎦

Q1 =

⎡

⎢

⎢

⎣

0.497212 −0.259735 −0.247032 0.0141425
−0.259735 0.721145 −0.259735 −0.256145
−0.247032 −0.259735 0.497212 0.0141425
0.0141425 −0.256145 0.0141425 0.284431

⎤

⎥

⎥

⎦

The “dual” procedure gives as the output

Pe = 0.009316139

X =

⎡

⎢

⎢

⎣

0.263349 0.138595 0.0314089 0.0971245
0.138595 0.264951 0.138595 −0.0387083
0.0314089 0.138595 0.263349 0.0971245
0.0971245 −0.0387083 0.0971245 0.199034

⎤

⎥

⎥

⎦
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Hence we find the same minimum error probability, as expected (the Helstrom
procedure gives Pe = 0.00936141). Thenegligible differences are due to the different
way of numerical computations.

5.11 Kennedy’s Theorem

Holevo’s theorem has general validity, because it is concerned with optimal decision
in a system specified through density operators,which does not rule out the possibility
that the statesmay be pure. Instead, Kennedy’s theorem [8] is about a system inwhich
there is a constellation of K pure states

|γ0〉, |γ1〉, . . . , |γK−1〉. (5.87)

Theorem 5.3 (Kennedy’s theorem) In a K -ary system specified by K pure states
|γ0〉, . . . , |γK−1〉, the optimal projectors (which maximize the correct decision prob-
ability) are always elementary, that is, they have the form

Qi = |μi 〉〈μi |, i = 0, 1, . . . , K − 1 (5.88)

where the measurement vectors |μi 〉 must be orthonormal.

The theorem is proved in Appendix section “Proof of Kennedy’s Theorem”.

5.11.1 Consequences of Kennedy’s Theorem

With Kennedy’s Theorem the search for the optimal decision is substantially simpli-
fied, as it is restricted to the search for K orthonormal measurement vectors

|μ0〉, |μ1〉, . . . , |μK−1〉

from which the optimal projectors are built, using (5.88). The simplification lies in
the fact that, instead of searching for K matrices, it suffices to search for K vectors.

Example 5.3 In the binary case, we have seen that the optimal projectors are given
by (5.34), where both Q0 and Q1 are elementary projectors. In addition, |μ0〉 and
|μ1〉 are orthonormal.

From now on, the Hilbert space H will be assumed of finite dimension n, even
though, in the applications to quantum communications systems, the dimensions
become infinite (n = ∞). When the decision is made starting from K pure states, a
fundamental role is played by the subspace generated from the states
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U = span(|γ0〉, |γ1〉, . . . , |γK−1〉) ⊆ H. (5.89)

The dimension of this space, r = dimU, is equal to K if the states |γi 〉 are linearly
independent (not necessarily orthonormal), and lower than K if the states are linearly
independent; so, in general

r = dimU ≤ K ≤ dimH = n.

In any case, it is very important to observe that:

Proposition 5.4 It is not restrictive to suppose that the measurement vectors |μi 〉
belong to the space generated by the states

|μi 〉 ∈ U (5.90)

because any component of the |μi 〉 belonging to the complementary U⊥ has no
influence on the decision probabilities.

In fact, if we decompose |μ j 〉 into the sum

|μ j 〉 = |μ′
j 〉 + |μ′′

j 〉, |μ′
j 〉 ∈ U, |μ′′

j 〉 ∈ U⊥

the transition probabilities become

pc( j |i) = |〈μ j |γi 〉|2 = |〈μ′
j |γi 〉|2

where 〈μ′′
j |γi 〉 = 0 as |μ′′

j 〉 ∈ U⊥ is orthogonal to |γi 〉 ∈ U.
Proposition5.4 is illustrated in Fig. 5.9, where it is evidenced that the states and

themeasurement vectors belong to the common subspaceU. In harmonywith Propo-
sition5.4, we have:

Proposition 5.5 For the measurement operators, the resolution of the identity can
be substituted by the resolution of the generalized identity

Fig. 5.9 The measurement
vectors |μ j 〉 belong to the
subspace U generated by the
constellation of the states
|γi 〉

H

UU⊥

• |γi
• |μ j
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K−1
∑

i=0

|μi 〉〈μi | = PU (5.91)

where PU is the projector of H onto U.

For the proof of this proposition see Sect. 3.7.2. A consequence of the (5.90) is
the following:

Proposition 5.6 The measurement vectors are given by a linear combination of the
states

|μi 〉 =
K−1
∑

j=0

ai j |γ j 〉, (5.92)

where the coefficients ai j are in general complex.

Proposition 5.7 With decision from pure states, the transition probabilities become

pc( j |i) = |〈μi |γ j 〉|2 (5.93)

and the correct decision probability is given by

Pc =
K−1
∑

i=0

qi |〈μi |γ j 〉|2. (5.94)

5.11.2 Applications of Kennedy’s Theorem to Holevo’s
Theorem

In a decision starting from pure states, the optimal measurement vectors must satisfy
Holevo’s theorem with Qi = |μi 〉〈μi | and ρ̂i = qi |γi 〉〈γi |. Then, assuming that the
|μi 〉 belong to the same subspace U of the states, the geometry relative to the two
vector systems is determined by the inner products

bi j = 〈μi |γ j 〉, i, j = 0, 1, . . . , K − 1. (5.95)

Assuming that the |μi 〉 form an orthonormal basis ofU (Fig. 5.10), the inner product
bi j can be seen as the projection of |γi 〉 along the axis |μ j 〉. We observe also that the
bi j have the important probabilistic meaning

pc( j |i) = |bi j |2.

Using the mixed inner products bi j , from Holevo’s theorem we obtain:

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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|μ0

|μ1

|μ2

|μi

|γ j

bi j

U

Fig. 5.10 Coordinate systems of U done by the measurement vectors |μi 〉 and meaning of the
mixed inner product bi j = 〈γ j |μi 〉

Corollary 5.1 In a K -ary system with a constellation of pure states |γ0〉, . . . , |γK−1〉,
the optimal measurement vectors |μi 〉 must verify the conditions

(q j bi j b
∗
j j − qi bii b

∗
j i )|μi 〉〈μ j | = 0, ∀i,∀ j (5.96a)

K−1
∑

j=0

q j b j j |μ j 〉〈γ j | − qi |γi 〉〈γi | ≥ 0, ∀i. (5.96b)

Relation (5.96a) allows us to write the following conditions on the inner products

q j bi j b
∗
j j − qi bii b

∗
j i = 0 (5.97)

which can be seen as a nonlinear systemof (K −1)K/2 equations in the K 2 unknowns
bi j . We can add to this other equations derived from the Fourier expansion of the
states |γi 〉 with basis |μ j 〉 (see (2.51)), which assumes the form

|γi 〉 =
K−1
∑

j=0

(〈μ j |γi 〉)|μ j 〉 =
K−1
∑

j=0

b ji |μ j 〉.

Then, expressing the inner products 〈γi |γ j 〉, which we assumed as known, we obtain
the relations

K−1
∑

k=0

b∗
ki bk j = 〈γi |γ j 〉 (5.98)

which constitute the (K + 1)K/2 equations.
In principle, we can try to solve this nonlinear system, which admits solutions if

the states are linearly independent, and eventually we can verify whether, with these
solutions, even the conditions (5.96b) are verified. However, we can see that even in

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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the binary case the search for an exact solution turns out to be rather complicated.
We could proceed in numerical form, but in this case it is more convenient to adopt
the method derived from the geometric interpretation, as we are going to illustrate.

5.11.3 Geometric Interpretation of Optimization

We consider the subspace U generated by the states |γi 〉 in which an orthogonal
system of coordinate has been introduced, made of the measurement vectors |μ j 〉.
The correct decision probability can be expressed in the forms

Pc =
K−1
∑

i=0

qi pc(i |i) =
K−1
∑

i=0

qi |bii |2

where bi j are the inner products (5.95). If such products are real numbers, we can
define the angle θi between |γi 〉 and |μi 〉 from

sin2θi = 1 − b2i i

and then the error probability can be written as

Pe = 1 − Pc =
K−1
∑

i=0

qi sin
2 θi .

The angles θi are illustrated in Fig. 5.11 for K = 2.

Fig. 5.11 Angles between
measurement vectors and
states

|μ0

|μ1

|γ0

|γ1

θ0

θ1
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To minimize Pe we must rotate the constellation of the vectors |γi 〉 around the
respective axes |μi 〉 until a minimum is reached.

This optimization technique has recently been used by the scientists of JPL
because it makes it possible to obtain useful results even in the presence of ther-
mal noise [9–11].

5.11.4 Generalization of Kennedy’s Theorem

Recently [3], Kennedy’s theorem has been partially extended to mixed states and
precisely:

Theorem 5.4 In a system specified by K density operators ρ0, . . . , ρK−1, the opti-
mal measurement operators Qi (maximizing the correct decision probability) have
rank not higher than that of the corresponding density operators

rank(Qi ) ≤ rank(ρi ), i = 0, 1, . . . , K − 1. (5.99)

The connection with the original theorem can be understood considering the
consequences on the factors of the operators. If hi = rank(ρi ), the corresponding
factor γi is an n × hi matrix and the measurement factor μi has dimensions n × h̃i ,
with h̃i ≤ hi = rank(ρi ), but it is not restrictive to suppose that it has the same
dimensions n × hi as γi (and so we will suppose in the following). In particular, if
the ranks are unitary, the factors become kets, γi = |γi 〉 andμi = |μi 〉, as established
by Kennedy’s theorem.

Also the considerations made on the subspace U generated by the states (see
(5.89) and Proposition5.4) can be generalized. It must be remembered that the state
factors are a collection of kets ofH and the state matrix Γ collects these kets. Then
the subspace U is generated according to

U = span {kets of Γ } = Im Γ

and Proposition5.4 is extended by saying that it is not restrictive to suppose that the
kets of the measurement vectors |μi 〉 belong to the space generated by the states

Imμi ⊆ U. (5.100)

5.12 The Geometry of a Constellation of States

We continue with the study of decision, investigating the geometry generated by the
states in the Hilbert space. The basic tools used herein are the eigendecomposition
(EID) and the singular value decomposition (SVD). We will refer to pure states, and
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only at the end of this section the concepts will be extended to mixed states. Also,
we refer to equal a priori probabilities, which imply that qi = 1/K ; to get general
results the states should be replaced by weighted states.

5.12.1 State Matrix and Measurement Matrix

In Sect. 5.7.2 we introduced the state matrix Γ and the measurement matrix M ,
which, with pure states, result in

Γ
n×K

= [|γ0〉, |γ1〉, ..., |γK−1〉], M
n×K

= [|μ0〉, |μ1〉, ..., |μK−1〉].

With these matrices, the problem of decision becomes: given the state matrix Γ , find
the measurement matrix M . We have seen that the measurement vectors are given
by a linear combination of the states (see (5.92)), that is,

|μi 〉 =
K−1
∑

j=0

ai j |γ j 〉 ; (5.101)

this combination in matrix terms can be written as

M
n×K

= Γ A, A
K×K

= [ai j ]. (5.102)

At this point, the problem is already simplified, because it is sufficient to search for
the coefficient matrix A, which is K × K and therefore of smaller dimensions than
the dimensions n × K of the measurement matrix (where n can become infinite).

It will be useful to compare the matrix expression (5.102) with the following:

M
n×K

= C
n×n

Γ
n×K

, C
n×n

= [ci j ] (5.103)

which, differently from the linear combination (5.102), gives the relation

|μi 〉 = C |γi 〉, (5.103a)

in which the single vector |γi 〉 is transformed to the vector |μi 〉, with same index i .

Example 5.4 We write explicitly relations (5.102) and (5.103) in the binary case
with the purpose of showing how to deal with composite matrices, whose entries are
vectors instead of scalar elements.
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The matrices Γ and M in an n-dimensional Hilbert space, where the kets must
be considered as column vectors of size n, are

Γ = [|γ1〉, |γ2〉] =
⎡

⎢

⎣

γ11 γ12
...

...

γn1 γn2

⎤

⎥

⎦
, M = [|μ1〉, |μ2〉] =

⎡

⎢

⎣

μ11 μ12
...

...

μn1 μn2

⎤

⎥

⎦
.

For K = 2 relation (5.102) becomes

M
1×2

= Γ
1×2

A
2×2

→ [|μ1〉, |μ2〉] = [|γ1〉, |γ2〉]
[

a11 a12
a21 a22

]

(5.104a)

and more explicitly

M
n×2

= Γ
n×2

A
2×2

=
⎡

⎢

⎣

μ11 μ12
...

...

μn1 μn2

⎤

⎥

⎦ =
⎡

⎢

⎣

γ11 γ12
...

...

γn1 γn2

⎤

⎥

⎦

[

a11 a12
a21 a22

]

. (5.104b)

The different dimensions, as appearing in the two writings above, are justified as
follows: in (5.104a) the kets are regarded a single objects of dimensions 1 × 1,
whereas in (5.104b) they become 1 × n column vectors.

For K = 2 relation (5.103) becomes

M
1×2

= C
1×1

Γ
1×2

→ [|μ1〉, |μ2〉] = C [|γ1〉, |γ2〉] (5.105a)

and more explicitly

M
n×2

= C
n×n

Γ
n×2

→
⎡

⎢

⎣

μ11 μ12
...

...

μn1 μn2

⎤

⎥

⎦ =
⎡

⎢

⎣

c11 · · · c1n
...

. . .
...

cn1 · · · cnn

⎤

⎥

⎦

⎡

⎢

⎣

γ11 γ12
...

...

γn1 γn2

⎤

⎥

⎦ (5.105b)

Now in (5.105a) the matrix C must be regarded as a single object of dimension 1×1,
and in fact, using this interpretation, it gives explicitly the relation

|μ1〉 = C |γ1〉, |μ2〉 = C |γ2〉

in agreement with (5.103a).

Problem 5.12 � Write the relations of Example 5.4 using the results of Helstrom’s
theory.
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5.12.2 Matrices of the Inner Products and of the Outer
Products

From the state matrix Γ = [|γ0〉, |γ1〉, . . . , |γK−1〉] two matrices can be formed

G
K×K

= Γ ∗ Γ, T
n×n

= Γ Γ ∗. (5.106)

ThematrixG, calledGram’s matrix, is thematrix of inner productswith elements

Gi j = 〈γi |γ j 〉 (5.107)

while the matrix T gives the sum of the K outer products

T =
K−1
∑

i=0

|γi 〉〈γi |. (5.108)

These statements can be verified indicating with γri the r th element of the column
vector |γi 〉, and performing the operations indicated in (5.106). As T is the sum of
elementary operators in the Hilbert space H, also T can be considered an operator
of H, which is sometimes called Gram’s operator (see [12]).

The matrices (5.106) have the following properties:

(1) they are Hermitian semidefinite positive,
(2) both have the same rank as the matrix Γ ,
(3) they have the same eigenvalues different from zero (and positive).

Let us prove (3). If λ is an eigenvalue of G, it follows that G|v〉 = λ|v〉, where |v〉 is
the eigenvector. Then, multiplying this relation by Γ we have

Γ G|v〉 = Γ Γ ∗Γ |v〉 = T Γ |v〉 = λΓ |ν〉

hence T |u〉 = λ|u〉 with |u〉 = Γ |v〉. Then λ is also an eigenvalue of T with
eigenvector Γ |v〉. Analogously, we can see that if λ �= 0 is an eigenvalue of T with
eigenvector |u〉, we have that λ is also an eigenvalue of G with eigenvector Γ ∗|u〉.

The properties (1), (2), and (3) have obvious consequences on the EID of G and
of T . Indicating with r the rank and with σ 2

1 , . . . , σ 2
r the positive eigenvalues, we

obtain

T = UΛT U∗ =
r

∑

i=1

σ 2
i |ui 〉〈ui | = UrΣ

2
r U∗

r (5.109a)

G = V ΛG V ∗ =
r

∑

i=1

σ 2
i |vi 〉〈vi | = VrΣ

2
r V ∗

r (5.109b)
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where

• U is a n × n unitary matrix,
• {|ui 〉} is an orthonormal basis ofH formed by the columns of the matrix U ,
• ΛT is an n × n diagonal matrix whose first r diagonal elements are the positive
eigenvalues σ 2

i , and the other n − r diagonal elements are null,
• V is an K × K unitary matrix,
• {|vi 〉} is an orthonormal basis of CK formed by the columns of V ,
• ΛG is an K × K diagonal matrix whose first r diagonal elements are the positive
eigenvalues σ 2

i and the other n − r diagonal elements are null,
• Ur and Vr are formed by the first r columns of U and V , respectively,
• Σ2

r = diag[σ 2
1 , . . . , σ 2

r ].
In (5.109) appear both the full form and the reduced form of the EIDs (see Sect. 2.11).

5.12.3 Singular Value Decomposition of Γ

Combining the EIDs of Gram’s operator T and of Gram’s matrix G we obtain the
SVD of the state matrix Γ . The result is (see [13])

Γ = UΣV ∗ =
r

∑

i=1

σi |ui 〉〈vi | = UrΣr V ∗
r (5.110)

where U , V , Ur , Vr , and Σr are the matrices that appear in the previous EIDs, Σ is
an n × K diagonal matrix whose first r diagonal elements are given by the square
root σi of the positive eigenvalues σ 2

i of T and G and the other diagonal elements
are null.

Before discussing and applying the above decompositions, let us develop a couple
of examples.

Example 5.5 Consider a binary system (K = 2) on H = C
4, where the two states

are specified by the matrix

Γ = 1

2

⎡

⎢

⎢

⎣

1 1
−1 1
1 −1

−1 1

⎤

⎥

⎥

⎦

.

The matrices G and T become respectively

G = Γ ∗Γ =
[

1 − i
2

i
2 1

]

T = Γ Γ ∗ = 1

4

⎡

⎢

⎢

⎣

2 −1 − i 1 + i 0
−1 + i 2 −2 1 + i
1 − i −2 2 −1 − i
0 1 − i −1 + i 2

⎤

⎥

⎥

⎦

.

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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The eigenvalues of G are σ 2
1 = 3/2 and σ 2

2 = 1/2 and the corresponding EID is

G = V ΛG V ∗ with V = 1

2

[

−1 1

1 1

]

, ΛG = Σ2
r =

[

3
2 0

0 1
2

]

which coincides with the reduced EID, because r = K = 2. The eigenvalues of T
are σ 2

1 = 3/2, σ 2
2 = 1/2, σ3 = σ4 = 0 and the corresponding reduced EID is

T = UrΣ
2
r U∗

r with Ur =

⎡

⎢

⎢

⎢

⎣

0 1
1√
3

0

− 1√
3
0

1√
3

0

⎤

⎥

⎥

⎥

⎦

, U∗
r =

[

0 1√
3

− 1√
3

1√
3

1 0 0 0

]

,

Σ2
r =

[

3
2 0

0 1
2

]

.

The reduced SVD of Γ is: Γ = UrΣr V ∗, where the factors are specified above.

Example 5.6 Consider a constellation composed by two coherent states with real
parameters ±α (see Sect. 3.2.2)

|γ1〉 = | − α〉, |γ2〉 = |α〉, |γ1〉, |γ1〉 ∈ G, α ∈ R

which, as well known, must be defined on an infinite-dimensional Hilbert space.
The purpose of the example is to show that, in spite of the infinite dimensions,
eigenvalues and eigenvectors can be developed in finite terms (at least for the parts
that are connected to the following applications).

The expressions of the two states are (see (3.4))

|γ1〉 =
∞
∑

n=0

e−α2/2 (α)n

√
n! |n〉, |γ2〉 =

∞
∑

n=0

e−α2/2 (−α)n

√
n! |n〉 (5.111)

an so the corresponding matrix becomes

Γ = [|γ1〉, |γ2〉] =
∞
∑

n=0

e−α2/2

√
n! [αn, (−α)n]|n〉 (5.112)

and has dimensions ∞ × 2. We can easily see that these two vectors are linearly
independent and therefore the rank of Γ is r = K = 2.

Gram’s matrix is 2 × 2 and becomes

G =
[〈γ1|γ1〉 〈γ1|γ2〉
〈γ2|γ1〉 〈γ2|γ2〉

]

=
[

1 γ12
γ12 1

]

(5.113)

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_3
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where (see (7.10)) γ12 = e−2α2
, whereas Gram’s operator T is infinite dimensional

and has a rather complicated expression, that can be obtained from (5.111) developing
the outer products as follows:

T = |γ1〉〈γ1| + |γ2〉〈γ2|.

The eigenvalues of G are given by the solution of the equation

det(G − λ I ) = (1 − λ)2 − γ 2
12 = 0

and therefore we have, with the notation of (5.113)

σ 2
1 = 1 + γ12, σ 2

2 = 1 − γ12 (5.114)

and the normalized eigenvectors are

|v1〉 =
[

1√
2
1√
2

]

, |v2〉 =
[

1√
2

− 1√
2

]

.

In this way, we have performed the spectral decomposition of G in the form (5.109b)
with

V = 1√
2

[

1 1
1 −1

]

, ΛG =
[

σ 2
1 0
0 σ 2

2

]

.

The spectral decomposition of T , given by (5.109a), requires the computation of the
eigenvectors |u1〉, |u2〉which are of infinite dimension. In principle, such computation
can be done, but it is very complicated, and so the vectors, for now, are left indicated
in a nonexplicit form.

The singular value decomposition of Γ results in

Γ = σ1|u1〉〈v1| + σ2|u2〉〈v2|

where the singular values are σ1,2 = √
1 ± γ12.

5.12.4 Spaces, Subspaces, Bases, and Operators

In the above decompositions several spaces and subspaces come into play. The ref-
erence environment is the Hilbert space H, which is assumed of dimension n. We
then have the subspace generated by the states

U = span(|γ0〉, |γ1〉, . . . |γK−1〉)

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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of dimension r , which is also the subspace where the measurement vectors |μi 〉
operate (see Fig. 5.9). The unitary operator

U
n×n

= [ |u1〉, . . . , |un〉] : H → H

provides with its n columns an orthonormal basis for H, while its first r columns,
corresponding to the non-null eigenvalues σ 2

i , form a basis for the subspace U

U = span(|u1〉, . . . , |ur 〉) ⊆ H.

These r eigenvectors were collected in the matrixUr that appears in the reduced EID
of T (see (5.109a)); the remaining n − r eigenvectors |ur+1〉, . . . , |un〉 generate the
complementary space U⊥. Then the following resolutions are found

n
∑

k=1

|uk〉〈uk | = U U∗ = IH,

r
∑

k=1

|uk〉〈uk | = Ur U∗
r = PU (5.115)

where PU is the projector on U. Analogously, the unitary operator (K × K matrix)

V = [ |v1〉, . . . , |vK 〉] : C
K → C

K

provides with its K columns a basis for CK , while its first r columns provide a basis
for an r -dimensional subspace V of CK .

span(|v1〉, . . . , |vr 〉) = V ⊆ C
K .

We obtain the resolutions

K
∑

k=1

|vk〉〈vk | = V V ∗ = IK ,

r
∑

k=1

|vk〉〈vk | = Vr V ∗
r = PV. (5.116)

The state matrix defines a linear transformation8

Γ : C
K → H

because it “accepts” at the input a ket |v〉 ∈ C
K and produces the ket Γ |v〉 ∈ H.

The image of Γ is
im Γ = U.

8 The term operator, in practice represented by a squarematrix, is reserved to linear transformations
from one space to the same space.
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H
C
M

U
V

• |γi
• |μ j

|ui •
• |v

|u • • |vi

|ui vi|

|vi ui|

Fig. 5.12 Spaces and subspaces generated by a constellation of states. In red and green the tran-
jectors

Analogously, the adjointmatrixΓ ∗ : H → C
K operates on a ket |u〉 ∈ H and returns

the ket Γ ∗|u〉 ∈ C
K . The image of Γ ∗ is: im Γ ∗ = V. The connection between C

K

and H is made by the elementary operators |ui 〉〈vi | appearing in the SVD (5.110).
These operators transform a ket |v〉 of CK to the ket

|ui 〉〈vi |v〉 = ki |ui 〉 ∈ H, with ki = 〈vi |v〉

and, because they provide a transfer (from C
K to H and from H to C

K ), they are
named “transjectors” in [14] (Fig. 5.12).

Analogously, the connection betweenH and CK is done by the elementary oper-
ators |vi 〉〈ui | of the SVD (5.110).

5.12.5 The Geometry with Mixed States

All the above considerations, referring to pure states, can be extended in a rather
obvious way to mixed states with some dimensional changes. The starting point is
the matrix of the states, which now collects the factors γi of the density operators ρi

Γ
n×H

= [

γ0, γ1, . . . , γK−1
]

(5.117)

where the number of the columns H = h0 + h1 + · · · hK−1 is given by the total
number of columns of the state factors γi . As we have seen in (5.68), this matrix can
be considered as a collection of H kets ofH, which generate the subspace U, whose
dimension r is always given by the rank of Γ .

Gram’s operator has the expressions

T
n×n

= Γ Γ ∗ =
K−1
∑

i=0

γiγ
∗
i =

K−1
∑

i=0

ρi (5.118)
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and therefore can be directly evaluated from the ρi , without finding their factoriza-
tions. Its dimensions remain n × n. Instead, Gram’s matrix becomes H × H and has
the structure

G
H×H

= Γ ∗ Γ =
⎡

⎢

⎣

γ ∗
0 γ0 . . . γ ∗

0 γK−1
...

. . .
...

γ ∗
K−1 γ0 . . . γ ∗

K−1 γK−1

⎤

⎥

⎦ (5.119)

where the γ ∗
i γ j are not ordinary inner products, but matrices of dimensions hi ×h j .

Finally, the subspace V becomes of dimensions H ≥ K . This part concerning
mixed states will be further developed in Chap. 8.

5.12.6 Conclusions

We have seen that a constellation of states (or of state factors) gathered in the matrix
Γ , can be defined on the Hilbert space H and, more precisely, on its subspace U,
generating several operators.

It remains to evaluate the measurement matrix M identifying the measurement
operators. To get specific results we must state the objective, which, in the context of
quantum communications, is the maximization of the correct decision probability.
An alternative objective, which brings to a suboptimal solution, is to minimize the
quadratic error between the states and the corresponding measurement vectors. This
technique, called square root measurement (SRM), will be seen in the next chapter.

5.13 The Geometrically Uniform Symmetry (GUS)

The set of the states (constellation) can have a symmetry that facilitates its study and
its performance evaluation.Thekindof symmetry that allows for these simplifications
is called geometrically uniform symmetry (GUS) and is verified in several quantum
communications systems, like the quantum systems obtained with the modulations
PSK and PPM and all the binary systems.9

5.13.1 The Geometrically Uniform Symmetry with Pure States

A constellation of K pure states

{|γ0〉, |γ1〉, . . . , |γK−1〉}

9 The interest of the GUS is confined to the case in which the a priori probabilities are equal
(qi = 1/K ).

http://dx.doi.org/10.1007/978-3-319-15600-2_8
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Fig. 5.13 Constellation of
states with the geometrically
uniform symmetry in the
complex plane C. The
reference state is |γ0〉 = 1
(the complex number 1) and
the symmetry operator is
S = eiπ/4 |γ0

|γ 1

|γ
7

π/4

has the geometrically uniform symmetry when the two properties are verified:

(1) the K states |γi 〉 are obtained from a single reference state |γ0〉 in the following
way

|γi 〉 = Si |γ0〉, i = 0, 1, . . . , K − 1 (5.120a)

where S is a unitary operator, called symmetry operator;
(2) the operator S is a K th root of the identity operator in the sense that

SK = IH. (5.120b)

An elementary example of constellation that verifies the GUS is given by the K roots
of unity in the complex plane, as shown in Fig. 5.13 for K = 8.

In the presence of the GUS, the specification of the constellation is limited to
the reference state |γ0〉 and to the symmetry operator S. In addition, it simplifies
the decision, because, as we shall see for the optimal decision, we can choose the
measurement vectors with the same symmetry as the states, that is,

|μi 〉 = Si |μ0〉, i = 0, 1, . . . , K − 1. (5.121)

In the next chapter we will verify that the PSK and PPM systems have the GUS.
Here we limit ourselves to the binary case.

5.13.2 All Binary Constellations Have the GUS

Aconstellation of two arbitrary states, |γ0〉 and |γ1〉, is always geometrically uniform,
with symmetry operator S defined by [14]
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S = IH − 2
|w〉〈w|
〈w|w〉 (5.122)

where |w〉 = |γ1〉 − |γ0〉 if the two states have inner product X := 〈γ0|γ1〉 real.
In this case S is a “reflector,” which reflects a state with respect to the hyperplane
(bisector) determined by the vectors |γ0〉 and |γ1〉. It can be verified from definition
(5.122) that S is unitary and S2 = IH (see problems).

If the inner product X is complex, X = |X |eiφ , we modify |γ1〉 as |γ̃1〉 = e−iφ |γ1〉
and apply (5.122) to the states |γ0〉 and |γ̃1〉, which have a real inner product. This
does not represent any restriction because |γ1〉 and |γ̃1〉 differ by a phase factor and
therefore represent the same physical state.

5.13.3 The GUS with Mixed States

The definition of GUS is now extended to mixed states. A constellation of K density
operators

{ρ0, ρ1, . . . , ρK−1}

has the geometrically uniform symmetry when the following two properties are ver-
ified:

(1) the K operators ρi are obtained from a single reference operator ρ0 as

ρi = Siρ0 (Si )∗, i = 0, 1, . . . , K − 1 (5.123)

where S is a unitary operator called symmetry operator;
(2) the operator S is a K th root of the identity operator

SK = IH. (5.123b)

This extension is in harmony with the fact that with pure states the density operators
become ρi = |γi 〉〈γi |. In addition, with the factorization of the density operators,
ρi = γiγ

∗
i , relation (5.123) gives

γi = Si γ0, i = 0, 1, . . . , K − 1 (5.124)

which generalizes (5.120a). In the context of optimal decision [3] we will prove
that the same symmetry is transferred to the measurement operators, and also to the
measurement factors, namely,

μi = Siμ0, i = 0, 1, . . . , K − 1. (5.125)
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5.13.4 Generalizations of the GUS

The GUS can be generalized in two ways. We limit ourselves to introducing the two
generalizations in the case of pure states. In the first generalization [3], we have L
reference states |γ01〉, . . . , |γ0L〉, instead of a single state |γ0〉, and the constellation
is subdivided into L subconstellations generated by a single symmetry operator S in
the form |γik〉 = Si |γ0k〉. An example of modulation that has this kind of composite
GUS is theQuadratureAmplitudeModulation (QAM),whichwill be seen inChap.7.

In the second type of generalization [14], we have K distinct symmetry operators
Si , made up of K unitary matrices forming a multiplicative group, and each state of
the constellation is generated in the form |γi 〉 = Si |γ0〉 from a single reference state
|γ0〉.10

5.13.5 Eigendecomposition of the Symmetry Operator

The EID of the symmetry operator S plays an important role in the analysis of
Communications Systems having the GUS. We give the two equivalent forms of
EIDs of S (see Sects. 2.10 and 2.11)

S =
k

∑

i=1

λi Pi , S = Y Λ Y ∗ =
n−1
∑

i=0

λi |yi 〉〈yi | (5.126)

where {λi , i = 1, . . . , k} are the distinct eigenvalues of S, {Pi , i = 1, . . . , k} form
a projector system, that is, with Pi Pj = δi j Pi , Y is an n × n unitary matrix, and
Λ = diag[λ1, . . . , λn] contains the nondistinct eigenvalues. In general, the distinct
eigenvalues λi have a multiplicity ci ≥ 1.

Considering that S is a unitary operator, theλi have unitary amplitude and, because
SK = IH, the eigenvalues have the form

λi = W ri
K , 0 ≤ ri < K (5.127)

where WK := ei2π/K and ri are integers. Now, in the second EID, collecting the
elementary projectors |y j 〉〈y j | with a common eigenvalue, we arrive at the form

S =
K−1
∑

i=0

W i
K Yi Y ∗

i (5.128)

10 In the literature [3] the set of the states that satisfy (5.120) is called cyclic state set, whereas
the term geometrically uniform symmetry indicates the general case, which is obtained with a
multiplicative group of unitary matrices.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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where Yi are n × ci matrices, with ci the multiplicity of λi = W i
K . Note that the

projectors are given by Pi = Yi Y ∗
i .

Example 5.7 In the PSK the symmetry operator is given by

S = diag[W k
K , k = 0, 1, . . . , K − 1]. (5.129)

As S is diagonal, its EID is immediately found as S = In S I ∗
n , with In the identity

matrix. For example, for K = 3 and n = 6, we have tree distinct eigenvalues

Λ = diag[1, W3, W 2
3 , 1, W3, W 2

3 ]

and the EID results in

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 W3 0 0 0 0
0 0 W 2

3 0 0 0
0 0 0 1 0 0
0 0 0 0 W3 0
0 0 0 0 0 W 2

3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Now, to obtain the form (5.128), we must collect in the matrices Yi the eigenvectors
corresponding to the eigenvalues W i

3. Thus

Y0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0
0 0
0 0
0 1
0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Y1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
1 0
0 0
0 0
0 1
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Y2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
0 0
1 0
0 0
0 0
0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

5.13.6 Commutativity of S with T

An important property with GUS, proved in Appendix section “Commutativity of
the Operators T and S”, is given by:

Proposition 5.8 Gram’s operator and the symmetry operator of the GUS commute

T S = ST . (5.130)

This leads to the simultaneous diagonalization (see Theorem2.4) of T and S, stated by

T = U Σ2 U∗, S = UΛU∗. (5.131)

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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Note that, in general, the eigenvalues of the symmetry operator are multiple and
then the diagonalization of S is not unique (see Theorem2.3 of Sect. 2.11). This
multiplicity will be used to find useful simultaneous decompositions, as will be seen
at the end of Chap. 8.

Problem 5.13 �� Prove that the quantum states of H = C
4

|γ0〉 = 1

2
[1,−1, 1,−1]T, |γ1〉 = 1

2
[1, 1,−1, 1]T

verify the GUS for a binary transmission. Find the symmetry operator S, verify that
S has the properties of a symmetry operator and that |γ1〉 is obtained from |γ0〉 as
|γ1〉 = S |γ0〉.
Problem 5.14 � Find the EID of the symmetry operator S of the previous problem.

Problem 5.15 �� Prove that the two quantum states of H = C
4

|γ0〉 = 1

2
[1,−1, 1,−1]T, |γ1〉 = 1

2
[1, 1,−i, 1]T

verify the GUS for a binary transmission, and find the corresponding symmetry
operator S. Note that in this case the inner product X := 〈γ0|γ1〉 is complex.

5.14 Optimization with Geometrically Uniform Symmetry

In the general case ofweighteddensity operators the geometrically uniformsymmetry
(GUS) is established by the condition

ρ̂i = Si ρ̂0 (Si )∗, i = 0, 1, . . . , K − 1. (5.132)

In such case, the search for the optimal measurement operators is simplified because
the data are restricted to the reference operator ρ̂0 and to the symmetry operator S,
and in addition the search can be restricted to the measurement operator Q0 only.

5.14.1 Symmetry of the Measurement Operators

The GUS is transferred also to the measurement operators, according to

Proposition 5.9 If the weighted density operators have the GUS, established by
(5.132), it is not restrictive to suppose that also the optimal measurement operators
have the GUS, with the same symmetry operator, namely

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_8
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Qi = Si Q0 S−i, i = 0, 1, . . . , K − 1. (5.133)

Proof Holevo’s theorem ensures that there exists a system of optimal measurement
operators Q = Qopt ∈ M0 that maximizes the functional J (Q) defined by (5.80).
The point here is to prove that from this system, which does not necessarily enjoy
the GUS, another system can be obtained Q̃ ∈ M0 that enjoys the GUS and has the
same properties as the original system. To this end, we define

Q̃0 = 1

K

K−1
∑

i=0

S−iQi Si , Q̃i = Si Q̃0S−i , i = 1, . . . , K − 1.

We soon verify that the new operators are PSD. In addition

K−1
∑

i=0

Q̃i = 1

K

K−1
∑

i=0

K−1
∑

j=0

Si− j Q j S−(i− j) = 1

K

K−1
∑

j=0

K−1
∑

k=0

Sk Q j S−k

where the periodicity of the symmetry operator S is used. Then

K−1
∑

i=0

Q̃i = 1

K

K−1
∑

k=0

Sk
K−1
∑

j=0

Q j S−k = 1

K

K−1
∑

k=0

Sk S−k = IH.

We conclude that the new operators Q̃i are legitimate measurement operators. We
have also

J (Q̃) =
K−1
∑

i=0

Tr[ρ̂i Q̃i ] =
K−1
∑

i=0

Tr[Si ρ̂0 Q̃0S−i ]

=
K−1
∑

i=0

Tr[ρ̂0 Q̃0] = KTr[ρ̂0)Q̃0]

= Tr

[

ρ̂0

K−1
∑

i=0

S−i Qi Si

]

=
K−1
∑

i=0

Tr[Si ρ̂0S−i Qi ] = J (Q)

so that even the new measurement operators are optimal. �

We must observe also that, choosing measurement operators that enjoy the GUS,
for the maximum correct decision probability we simply have

Pcmax = J (Qopt) = KTr[ρ̂0Q0,opt] (5.134)

where Q0,opt (to be found) identifies the optimal measurement operator system.
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5.14.2 Holevo’s Theorem with GUS

From the previous results, Holevo’s theorem becomes:

Theorem 5.5 (Holevo’s theoremwith GUS) In a K -ary system characterized by the
weighted density operators ρ̂i = qiρi , that enjoy the GUS according to (5.132), the
optimal measurement operators Qi can be chosen with the same GUS, according to
(5.133). Then the reference operator Q0 produces a system of optimal operators if
and only if, having defined the operator

L =
K−1
∑

i=0

Si Q0ρ̂0S−i , (5.135)

we have that the operator L−ρ̂0 is PSD and verifies the condition (L−ρ̂0)Q0 = 0H.
We also have that S commutes with L.

In fact, the operator L is obtained by (5.83) substituting the symmetry expressions
(5.132) and (5.133). We can also verify that

L = Si L S−i for every integer i (5.136)

from which we obtain, in particular, that S and L commute. From (5.136) we can
prove that, if L − ρ̂0 is PSD, so are L − ρ̂i , and that, if (L − ρ̂0)Q0 = 0H, also
(L − ρ̂i )Qi = 0H, so that all the conditions of Holevo’s theorem are verified.

Even the dual theorem is simplified taking the following form [15]:

Theorem 5.6 (Dual theorem with GUS) In a K -ary system characterized by the
weighted density operators ρ̂i = qiρi that enjoy the GUS with symmetry operators
S, a measurement operator system {Qi } that enjoy the GUS is optimal if there exists
a PSD operator X with the properties: (1) X ≥ ρ0, (2) X S = S X, and (3) Tr[X ] is
minimal. The operator Q0 that generates the optimal operators satisfies the condition
(X −ρ̂0)Q0 = 0H and the minimum obtained forTr[X ] coincides with the requested
maximum of J (Q).

In the assumed conditions we have in fact that X = Si X S−i for every i . Thus
X − ρ̂i = Si (X − ρ̂0)S−i is PSD and (X − ρ̂i )Qi = Si (X − ρ̂0)S−i = 0H, in such
a way that the conditions of the theorem dual to Holevo’s theorem are satisfied.

Note that, in the presence of GUS, the quantum source and the optimal decision
become completely specified by the symmetry operator S and by the reference oper-
ators ρ0 and Q0 (or by their factors γ0 and μ0). This has a consequence also in the
simplification of convex linear programming (CSP).
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5.14.3 Numerical Optimization with MatLab©

In the presence of GUS, referring to Theorem5.6, the input data are reduced to the
weighted density ρ̂0 and to the symmetry operator S. The constraints to be applied
are

X − ρ̂0 ≥ 0, X S = SX

and the requested output is the operator X of minimal trace.
In MatLab the use of the cvx procedure seen in Sect. 5.10 becomes

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% cvx procedure applied to the dual problem with GUS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cvx_begin

variables X(dim)

minimize(trace(X))

subject to

X>rho0;

X*S==S*X;

cvx_end

Applications of this simplified procedure to Quantum Communications systems will
be seen in Chaps. 7 and 8.

5.15 State Compression in Quantum Detection

Quantumdetection is formulated in ann-dimensional (possibly infinite)Hilbert space
H, but in general, the quantum states and the corresponding measurement operators
span an r -dimensional subspace U of H, with r ≤ n. Quantum detection could be
restricted to this subspace, but the operations involved are redundant for r < n, since
the kets inU have n components, as the other kets ofH. It is possible and convenient
to perform a compression from the subspace U onto a “compressed” space U, where
the redundancy is removed (kets are represented by r components). We will show
that in the “compressed” space the quantum detection can be perfectly reformulated
without loss of information, and some properties become simpler than in the original
(uncompressed) Hilbert space H [16].

State compression has some similarity with quantum compression, which will
be developed in Chap.12 in the framework of Quantum Information Theory. Both
techniques have the target of representing quantum states more efficiently, but state
compression does not consider the information content (entropy) of the states and is
based only on geometrical properties.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_8
http://dx.doi.org/10.1007/978-3-319-15600-2_12
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Before proceeding it is convenient to recall the dimensions, which have a funda-
mental role in this topic:

• n: dimension of the Hilbert space H,
• K : size of the alphabet,
• r : common rank of Γ , G, and T and dimension of the compressed space H.

• pure states Γ
n×K

, G
K×K

, T
n×n

, (5.137a)

• mixed states Γ
H×K

, G
H×H

, T
n×n

, (5.137b)

where H = h0 + · · · hK−1 with hi the number of columns of the factors γi and μi .
We will refer to mixed states since they represent the general case and the most

interesting one with compression.

5.15.1 State Compression and Expansion

To find the compression operation (and also the expansion) we rewrite the SVD of
the state matrix Γ , given by (5.110)

Γ
n×H

= U Σ V ∗
r = Ur Σr V ∗

r =
r

∑

i=1

σi |ui 〉〈vi | (5.138)

where U = [|u1〉, . . . , |un〉] is an n × n unitary matrix, Vr = [|v1〉, . . . , |vr 〉] is an
r × r unitary matrix, Σ is an n × r diagonal matrix whose first r diagonal entries
σ1, . . . σr are the (positive) singular values, and the other diagonal entries are zero,
Σr = diag{σ1, . . . σr } is r × r diagonal, Ur = [|u1〉, . . . , |ur 〉] is formed by the first
r columns of U . We also recall that Ur gives the projector operator onto U as (see
(5.115))

r
∑

i=1

|ui 〉〈ui | = Ur U∗
r = PU. (5.139)

In the r -dimensional subspace U the kets |u〉 have n components, as in the rest of
H, but it is possible to compress each |u〉 ∈ U into a ket |u〉, with r ≤ n components,
without loss of information. The key remark is that for a ket |u〉 of U the projection
coincides with the ket |u〉 itself

PU |u〉 = |u〉, ∀ |u〉 ∈ U. (5.140)

Considering (5.139) we can split the identity (5.140) into the pair
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|u〉 = U∗
r |u〉, |u〉 = Ur |u〉 ∀|u〉 ∈ U

where the first relation represents a compression, with compressor U∗
r , and the

second an expansion, with expander Ur . The compressor U∗
r generates the r -

dimensional subspace

U := U∗
r U = {|u〉 = U∗

r |u〉, |u〉 ∈ U}

and the expander Ur restores the original subspace as U = Ur U. In particular the
compressed Hilbert space is given by

H := U = U∗
r U. (5.141)

Compression and expansion are schematically depicted in Fig. 5.14.
Now, all the detection operations in the original Hilbert spaceH can be transferred

into the compressed space U (here we mark compressed objects with an overline, as
U). In the transition from U onto U the geometry of kets is preserved (isometry). In
fact, if |u〉, |v〉 ∈ U and |u〉, |v〉 ∈ U are the corresponding compressed kets, we find
for the inner products: 〈u|v〉 = 〈u|PU|v〉 = 〈u|v〉. In U the state matrix becomes

Γ
r×r

= U∗
r

r×n

Γ
n×r

(5.142)

and collects the compressed states γ i = U∗
r γi . From Γ we can restore Γ by expan-

sion, as Γ = Ur Γ . Analogously, for the measurement matrix we find M = U∗
r M

H

H: original Hilbert space

U: subspace spanned by state constellation

PU =Ur U∗
r : projector onto U

U∗
r : compressor

Ur: expander

H :=UH=U =U∗
r U: compressed Hilbert space

U

• |γi

• |u

PU projector

• |ū

U∗
rUr

|ui •

Fig. 5.14 The geometry for quantum compression: passage from the subspace U to the “com-
pressed” space U= U∗

r U, where U∗
r is the compressor. U gives the compressed Hilbert space H
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and M = Ur M . For the density operators ρi = γiγ
∗
i and the measurement operators

Πi = μiμ
∗
i the compression/expansion give

ρi
r×r

= U∗
r ρi Ur , ρi

n×n

= Ur ρi U∗
r

Π i
r×r

= U∗
r Πi Ur , Πi

n×n

= Ur Π i U∗
r . (5.143)

Note that, while Ur U∗
r gives the projector PU, U∗

r Ur gives the identities

Ur U∗
r = PU, U∗

r Ur = Ir . (5.144)

In fact U∗
r Ur = ∑r

i=1 |ui 〉〈ui |, where |ui 〉 are orthonormal.

5.15.2 Properties in the Compressed Space

We review some properties in the compressed space, starting from the corresponding
properties in the original Hilbert space.

Gram operator. The Gram operator T := Γ Γ ∗ acting on the original Hilbert space
H has dimension n × n. In the compressed Hilbert space H it becomes

T
r×r

= U∗
r Ur Σ2

r U∗
r Ur = Σ2

r , (5.145)

and therefore the compressed Gram operator is always diagonal. On the other hand,
theGrammatrixG := Γ ∗ Γ does not change:G = G. In fact, compression preserves
inner products (see Property (1) in the next subsection).

Probabilities. The relation giving the transition probabilities is exactly preserved
in the transition to the compressed space, namely (see Problem5.16)

p( j |i) = Tr[Π j ρi ] = Tr[Π j ρi ]. (5.146)

Hence the relation for the probability of a correct detection

Pc =
K−1
∑

i=0

qiTr[Πi ρi ] =
K−1
∑

i=0

qiTr[Π i ρi ]. (5.147)

This result is very important: it states that, once obtained the compressed operators,
for the evaluation of the system performance, it is not required to return back
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to the original uncompressed space. This conclusion is particularly important in
the optimization with convex semidefinite programming (CSP), where the numerical
evaluations can be completely carried out in the compressed space.

5.15.3 Compression as a Linear Mapping

Relation (5.144) defines a linear mapping connecting the subspace U to the com-
pressed space H

U∗
r : ρ ∈ U → ρ ∈ H. (5.148)

This mapping has several interesting properties:

(1) the compressor U∗
r preserves inner products11: 〈x |y〉 = 〈x |y〉, |x〉, |y〉 ∈ U,

(2) the compression preserves the PSD condition: ρ ≥ 0 → ρ ≥ 0,
(3) the compression is trace preserving: Tr[ρ] = Tr[ρ].
(4) the compression preserves the quantum entropy: S(ρ) = S(ρ) (see Chap.12).

We prove statement (1). If |x〉, |y〉 ∈ U, we get 〈x |y〉 = 〈x |Ur U∗
r |y〉 = 〈x |PU|y〉,

where PU|y〉 = |y〉 by the fundamental property (5.140). Hence 〈x |y〉 = 〈x |y〉.
Similar is the proof of statement (2). The proof of (3) and (4)will be seen in Sect. 12.6.

A final comment. In the context of quantum channels, which will be seen in
Sect. 12.8, a compressionmappingmay be classified as a noiseless quantum channel.
This is essentially due to the fact that compression is a reversible transformation.

5.15.4 State Compression with GUS

The GUS is preserved in the compressed space (see Problem5.17 for the proof).

Proposition 5.10 If the states γi have the GUS with generating state γ0 and sym-
metry operator S, then the compressed states γ i have the GUS with generating state
γ 0 = U∗

r γ0 and symmetry operator S = U∗
r S Ur .

The simultaneous diagonalization ofT and S seen inProposition5.10 is also useful
to establish other properties related to the GUS. In fact, by choosing the compressor
U∗

r from the common eigenvector matrices U as in Eq. (5.131), we find the further
properties:

Proposition 5.11 With the simultaneous diagonalization the compressed symmetry
operator becomes diagonal, with diagonal entries formed by the first r diagonal
entries of the matrix Λ.

11 An operator from one space to another space is called isometric if it preserves norms and inner
products [17].

http://dx.doi.org/10.1007/978-3-319-15600-2_12
http://dx.doi.org/10.1007/978-3-319-15600-2_12
http://dx.doi.org/10.1007/978-3-319-15600-2_12
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In fact, decomposing Λ in the form diag[Λr ,Λc], where Λr is r × r and Λc is
(n − r) × (n − r), we get

S = U∗
r U Λ U∗ Ur = [Ir 0]

[

Λr 0
0 Λc

] [

Ir

0

]

= Λr .

Proposition 5.12 With the simultaneous diagonalization the compressed Gram
operator is simply given by

T = diag[K ρ0(i, i), i = 1, . . . , r ]

where ρ0(i, i) are the diagonal entries of the compressed generating density operator
ρ0.

In fact, T = ∑K−1
i=0 S

i
ρ0 S

−i
, where S is diagonal. Then, the i, j entry is given by

T (i, j) =
K−1
∑

k=0

S
k
(i, i) ρ0(i, j) S

−k
( j, j).

In particular, considering that S is unitary diagonal, the diagonal entries are

T (i, i) =
K−1
∑

k=0

S
k
(i, i) ρ0(i, i) S

−k
(i, i) = K ρ0(i, i)

and the evaluation can be limited to these diagonal entries, since T is diagonal (see
(5.145)) (in general ρ0 is not diagonal).

5.15.5 Compressor Evaluation

The leading parameter in compression is the dimension of the compressed space
r , which is given by the rank of the state matrix Γ , but also by the rank of the Gram
matrix G and of the Gram operator T . For the evaluation of the compressor we can
use the reduced SVD of Γ , or the reduced EID of G and of T . In any case, for the
choice, it is important to have in mind the dimensions of these matrices shown in
(5.27).

With pure states, where often the dimension n of the Hilbert space is greater than
the alphabet size K and the kets of Γ are linearly independent, r is determined by
the alphabet size K and the EID of the Grammatrix, of dimension K × K , becomes
the natural choice.

With mixed states the choice depends on the specific application. In several cases
of practical interest, n may be very large, so that the decompositions represent a very
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hard numerical task. But, in the presence of GUS, the computational complexity
can be reduced, using the commutativity of the Gram operator T with the symmetry
operator S. This will be seen in detail in the next chapters in correspondence with
the specific applications (see the last two sections of Chap. 8).

Problem 5.16 �� Prove that the evaluation of the transition probabilities in the
compressed space is based on the same formula as in the uncompressed space, that is,

p( j |i) = Tr[Π j ρi ] = Tr[Π j ρi ].

Hint: Use orthonormality relationship U∗
r Ur = Ir , where Ir is the r × r identity

matrix.

Problem 5.17 ��� Prove Proposition5.10, which states that the GUS is preserved
after a compression. Hint: Use orthonormality relationship U∗

r Ur = Ir , where Ir is
the r × r identity matrix.

Problem 5.18 �� Consider the state matrix of H = C
4

Γ = 1

2

⎡

⎢

⎢

⎣

1 1
−1 1
1 −1

−1 1

⎤

⎥

⎥

⎦

Find the compressor U∗
r and the compressed versions of the state matrix Γ and of

the Gram operator T .

Problem 5.19 �� Consider a binary transmission where the quantum states are
specified by the state matrix of the previous problem. Apply Helstrom’s theory with
q0 = 1/3 to find the probability of a correct decision Pc. Then apply the compression
and evaluate Pc from the compressed states.

Problem 5.20 �� Consider the binary constellation of Problem5.13, where we
determined the symmetry operator S. Find the compressorU∗

r showing, in particular,
that the compressed symmetry operator S is diagonal.

Appendix

Proof of Holevo’s Theorem

We refer to the classes introduced at the beginning of Sect. 5.8 and illustrated in
Fig. 5.8. We start by proving Proposition5.3. The setM of the K -tuples of Hermitian
operators is closed with respect to addition and multiplication by a real number (the
sum of two Hermitian operators and the product of a Hermitian operator by a real

http://dx.doi.org/10.1007/978-3-319-15600-2_8
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scalar are Hermitian operators), so it is in fact a real (Kn2)-dimensional vector space.
In such a space, the operation

(P, Q) =
K−1
∑

i=0

Tr[Pi Qi ], P, Q ∈ M,

enjoys the property (P, Q) = (Q, P), a consequence of the cyclic property of the
trace, as well as of the property (P, P) ≥ 0 with (P, P) = 0, only if P is formed by
null operators. Therefore, we are dealing with an operation of inner product and so
M is a Hilbert space. In this space, the subset M0, formed by the K -tuples of PSD
operators and resolving the identity, is closed and bounded, and therefore compact.
From the classicalWeierstrass theorem, in such a set, the continuous functional J (Q)

admits a maximum.
We now move on to Holevo’s theorem, proving that the conditions indicated are

sufficient conditions for maximization. Let Q = [Q0, . . . , QK−1] ∈ M0, where
the Qi satisfy the conditions (5.83) and (5.82), and let P = [P0, . . . , PK−1] be an
arbitrary K -tuple ofM0. Then, recalling the definition of L given by (5.81)

K−1
∑

i=0

Tr[Pi ρ̂i ] = Tr[L] +
K−1
∑

i=0

Tr[Pi (ρ̂i − L)]

=
K−1
∑

i=0

Tr[Qi ρ̂i ] −
K−1
∑

i=0

Tr[Pi (L − ρ̂i )].

On the other hand, because the trace of the product of PSD operators is nonnegative,
for every i we have Tr[Pi (L − ρ̂i )] ≥ 0 and J (P) ≤ J (Q). Therefore, the system Q
is optimal and the sufficiency of the hypothesis of Holevo’s theorem is proved.

We can also prove that the definition of L and the condition (5.82) imply the
condition (5.83). In fact, we can write

0 = Tr[L] −
K−1
∑

i=0

Tr[Qi ρ̂i ] =
K−1
∑

i=0

Tr[Qi (L − ρ̂i )].

As all the terms of the last sum are nonnegative, it must be Tr[(L − ρ̂i )Qi ] = 0 for
every i , then (L − ρ̂i )Qi = 0H.

The necessity of the conditions of Holevo’s theorem is based on continuity con-
siderations. Let Q ∈ M0 be an optimal system and let U jk , j, k = 0, . . . , K − 1 be
operators such that

K−1
∑

j=0

U∗
jmU jn = δmn IH.
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Then, having defined the operators Pj = S∗
j S j , with

S j =
K−1
∑

k=0

U jk Q1/2
k ,

it is easy to verify that P = [P0, . . . , PK−1] ∈ M0 and, from the optimality of Q, it
must be J (P) ≤ J (Q).

We now appropriately particularize the operators U jk , j, k = 0, . . . , K − 1,
imposing that U j j = IH for j = 2, . . . , K − 1, and

[

U00 U01
U10 U11

]

= exp

(

ε

[

0H −A∗
A 0H

])

with ε > 0 arbitrarily small and A arbitrary linear operator. Finally, we suppose that
all the other operators U jk be null. We then verify that

[

U00 U01
U10 U11

]∗ [

U00 U01
U10 U11

]

=
[

IH 0H
0H IH

]

so that the operators U jk satisfy the above conditions. The operators Pj , j =
2, . . . , K − 1 coincide with the operators Q j , while, neglecting the infinitesimals ε2

and those of higher order, we obtain

U00 = U11 = IH, U01 = −εA∗, U10 = εA

S0 = Q1/2
0 − εA∗Q1/2

1 , S1 = Q1/2
1 + εAQ1/2

0

and eventually

P0 = Q0 − ε(Q1/2
1 AQ1/2

0 + Q1/2
0 A∗Q1/2

1 )

P1 = Q1 + ε(Q1/2
0 A∗Q1/2

1 + Q1/2
1 AQ1/2

0 ).

It follows that

J (P) − J (Q) =
K−1
∑

j=0

Tr[ρ̂ j (Pj − Q j ]

= Tr[ρ̂0(P0 − Q0)] + Tr[ρ̂1(P1 − Q1)]
= ε Tr[(ρ̂1 − ρ̂0) (Q1/2

1 AQ1/2
0 + Q1/2

0 A∗Q1/2
1 )]

= ε Tr[Q1/2
0 (ρ̂1 − ρ̂0)Q1/2

1 A + Q1/2
1 (ρ̂1 − ρ̂0)Q1/2

0 A∗].
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As the coefficient of ε must be null to ensure that the difference be non positive for
every value of the arbitrary operator A, it must be Q1/2

0 (ρ̂1 − ρ̂0)Q1/2
1 = 0H or,

equivalently, Q0(ρ̂1 − ρ̂0)Q1 = 0H. As the reasoning can be repeated for every
couple of indexes i and j , it follows that it must be Qi (ρ̂ j − ρ̂i )Q j = 0H, that is,
Qi ρ̂ j Q j = Qi ρ̂i Q j . Summing both sides with respect to i , we obtain for every j ,
ρ̂ j Q j = L Q j , coinciding with (5.83). At this point, it should be proved that the
operators L − ρ̂ j are PSD. For a rigorous (and very technical) proof of the result,
please refer to [3].

Proof of Kennedy’s Theorem

Kennedy’s theorem (Theorem5.3) can be derived in a generalized form from
Holevo’s theorem. We recall that this requires in the first place that the operators
L − ρ̂i be PSD for every i . If we assume that the eigenvalues of the operators ρ̂i span
over the entire Hilbert space H, the operator L is positive definite and has rank n.
From the optimality conditions of Holevo’s theorem

(L − ρ̂i )Qi = 0H,

we have first of all that, if |y〉 belongs to the image of the operator Qi , that is, if there
exists |x〉 ∈ H such that |y〉 = Qi |x〉, then (L − ρ̂i )|y〉 = 0, and |y〉 belongs to the
null space of the operator L − ρ̂i . We then have that the image of Qi is a subspace
contained in the null spaceN(L − ρ̂i ) of L − ρ̂i , therefore its dimension, coinciding
with the rank of Qi , is not greater than the dimension of the null space N(L − ρ̂i )

and this yields the inequality

rank(Qi ) ≤ dim(N(L − ρ̂i )) = n − rank(L − ρ̂i ).

From the subadditivity of the rank, i.e., from rank(A + B) ≤ rank(A) + rank(B),
letting A = L − ρ̂i and B = ρ̂i , we obtain n = rank(L) ≤ rank(L − ρ̂i )+ rank(ρ̂i ),
which, substituted in the above inequality, yields rank(Qi ) ≤ rank(ρ̂i ).

Let us now consider the special case in which we have n pure states |γi 〉, linearly
independent, generating the n-dimensional space H, so that the operators ρ̂i have
rank 1. Then the optimal measurement operators Qi must have rank not greater than
1, and therefore either be null, or have the form Qi = |μi 〉〈μi |. As it must be

n−1
∑

i=0

Qi =
n−1
∑

i=0

|μi 〉〈μi | = IH,

the vectors |μi 〉 cannot be null and must be linearly independent. Furthermore, as,
for every j ,
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|μ j 〉 =
n−1
∑

i=0

|μi 〉〈μi |μ j 〉

from the comparison of the two sides, we obtain 〈μi |μ j 〉 = δi j and the measurement
vectors are orthonormal.

Commutativity of the Operators T and S

Let us prove Proposition5.10. Using (5.120a) in the definition of Gram’s operator
(5.108) and remembering that S is a unitary operator, so that S∗ = S−1, we obtain

T =
K−1
∑

i=0

|γi 〉〈γi | =
K−1
∑

i=0

Si |γ0〉〈γ0|S−i

hence

T S =
K−1
∑

i=0

Si |γ0〉〈γ0|S−i+1 = SS−1
K−1
∑

i=0

Si |γ0〉〈γ0|S−i+1

= S
K−1
∑

i=0

Si−1|γ0〉〈γ0|S−i+1 = S
K−1
∑

k=0

Sk |γ0〉〈γ0|S−k = S T

where in the last step we exploited the periodicity of Si with respect to i .
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Chapter 6
Quantum Decision Theory: Suboptimization

6.1 Introduction

In the previous chapter we have seen that optimization is very difficult, and exact
solutions are only known in few cases (binary systems and systems where the state
constellation have the geometrically uniform symmetry, GUS). To overcome the
difficulty, suboptimization is considered.

In quantum communications the most important suboptimal criterion is based
on the minimization of the quadratic error between the states and the measurement
vectors, known by the acronym LSM (least squares measurements), and also SRM
(square root measurements), because its solution is based on the square root of an
operator.

From a historical point of view, we must start from quantum SRM (square root
measurement), introduced byHausladen and other authors in 1996 [1], who proposed
as measurement matrix M = T −1/2Γ , where T is Gram’s operator and T −1/2 is its
inverse square root. With this choice, the quantum decision is not in general optimal,
but it gives a good approximation of the performance (“pretty good” is the judgment
given by the authors and very often echoed in the literature).

The quantum least squares measurements (LSM) were subsequently developed
by Eldar and Forney, in two articles [2, 3], deserving particular attention, because
they formalize the whole problem in a very clear and general way, establishing a
connection between the LSM and other types of measurements. In particular, they
proved that the LSM technique produces the same results as the SRM technique,
and precisely that the optimal measurement matrix (which minimizes the quadratic
error) can be obtained both from Gram’s operator and from Gram’s matrix in the
following way.

M0 = T − 1
2 Γ = Γ G− 1

2 . (6.1)

An important result is concerned with the SRM in the presence of GUS, which gives
the optimal decision for pure states, allowing the exact evaluation of the error
probability. Recently [4, 5], the SRM technique has been systematically applied to

© Springer International Publishing Switzerland 2015
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the performance evaluation ofmost popular quantumcommunications systems. From
a computational viewpoint, the SRM can be improved with the technique of quantum
compression [6], which has been introduced at the end of the previous chapter.

Organization of the Chapter

The SRM technique is mainly based on the SVD of the state matrix Γ and on the
EID of the Gram matrix G and of the Gram operator T , developed in Sect. 5.12
of the previous chapter. For this reason these decompositions are recalled before
developing the SRM.

The SRM for pure states is developed in Sects. 6.2 and 6.3 and extended to mixed
states in Sect. 6.4. In Sects. 6.5 and 6.6 the SRM is developed assuming that the state
constellations have the GUS.

In Sect. 6.7 the SRM technique is combined with the compression technique,
showing the advantage of working in a compressed space, mainly in the presence
of GUS. Finally, in Sect. 6.8 the quantum Chernoff bound is introduced as a further
technique of suboptimization in quantum detection.

Recall from the Previous Chapter

For convenience we reconsider the main matrices and the related decompositions
seen in Sect. 5.12 of the previous chapter, which are useful to SRM.

• State and measurement matrices

pure states Γ

n×K

= [|γ0〉, |γ1〉, . . . , |γK−1〉] , M
n×K

= [|μ0〉, |μ1〉, . . . , |μK−1〉].

mixed states Γ
n×H

= [γ0, γ1, . . . , γK−1] , M
n×H

= [μ0, μ1, . . . , μK−1].

Relations
M = Γ A , M = C Γ. (6.2)

In particular, the second relation gives

|μi 〉 = C |γi 〉 or μi = C γi . (6.2a)

Singular value decomposition of Γ

Γ = UΣV ∗ =
r

∑

i=1

σi |ui 〉〈vi | = UrΣr V ∗
r (6.3)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5


6.1 Introduction 253

• Gram’s matrix and Gram’s operator

pure states G
K×K

= Γ ∗ Γ , T
n×n

= Γ Γ ∗ (6.4a)

mixed states G
H×H

= Γ ∗ Γ , T
n×n

= Γ Γ ∗ (6.4b)

Relations

pure states Gi j = 〈γi |γ j 〉 , T =
K−1
∑

i=0

|γi 〉〈γi | (6.5a)

mixed states Gi j = γ ∗
i γ j , T =

K−1
∑

i=0

ρi . (6.5b)

Eigendecompositions

T = UΛT U∗ =
r

∑

i=1

σ 2
i |ui 〉〈ui | = UrΣ

2
r U∗

r (6.6a)

G = V ΛG V ∗ =
r

∑

i=1

σ 2
i |vi 〉〈vi | = VrΣ

2
r V ∗

r . (6.6b)

6.2 Square Root Measurements (SRM)

6.2.1 Formulation

Considering the equivalence between LSM and SRM, we find it convenient to intro-
duce the topic in the sense of LSM, but we will use the more consolidated acronym
SRM.

In the case of pure states, the measurement vectors |μi 〉 are chosen with the
criterion of making the differences between the states and the measurement vectors,
|ei 〉 = |γi 〉 − |μi 〉, as “small” as possible (Fig. 6.1), and more specifically we look

Fig. 6.1 In the LSM method
the quadratic average of the
“errors” |ei 〉 = |γi 〉 − |μi 〉 is
minimized

|μi

|γ i

|ei
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for the measurement vectors |μi 〉 that minimize the quadratic error

E =
K−1
∑

i=0

〈ei |ei 〉 =
K−1
∑

i=0

(〈γi | − 〈μi |)(|γi 〉 − μi 〉)

with the constraint of resolution of the identity

M M∗ =
K−1
∑

i=0

|μi 〉〈μi | = IH → PU (6.7)

where IH can be replaced by PU (see Proposition 5.5).
Introducing the difference between the state matrix and the measurement matrix:

E = [|e0〉, |e1〉, . . . , |eK−1〉] = Γ − M , the quadratic error can be written in the
form

E = Tr[E∗E] = Tr[E E∗] . (6.8)

We observe that if the vectors |γi 〉 were orthonormal, the minimum of E, satisfying
the constraint (6.7), would be trivially |μi 〉 = |γi 〉, 1 ≤ i ≤ K , which yields E = 0.

The above can be extended to mixed states, for which the error is considered
between the state factors and themeasurement factors, ei = γi −μi , and the quadratic
error is still given by (6.8). In any case we assume equiprobable symbols, that is,
with equal a priori probabilities, qi = 1/K , but the SRMmethod can be extended to
generic a priori probabilities qi substituting the states |γi 〉 with the weighted states√

qi |γi 〉 (see [2]).
As we will see, the SRM method always leads to explicit results and, in general,

provides a good overestimation of the error probability.

6.2.2 Computation of the Optimal Measurement Matrix

Now we search for the optimal measurement matrix, M = M0, that minimizes the
quadratic error E. Even though in quantum communications the states are always
independent and so the rank of the state matrix is r = K , for greater generality (and
for the interest that the general case will have with the extension of the method to
mixed states), we suppose that Γ has a generic rank r . We obtain:

Theorem 6.1 The measurement matrix M that minimizes the quadratic error E with
the constraint (6.7), is given by

M0 =
r

∑

i=1

|ui 〉〈vi | = Ur V ∗
r , (6.9)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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that is, by the sum of the r transjectors |ui 〉〈vi | seen in the (reduced) SVD of the state
matrix Γ . The minimum quadratic error is

Emin =
K−1
∑

i=0

(1 − σi )
2 ,

where σi are the square roots of the eigenvalues (i.e., the singular values) of the
Gram operator and of the Gram matrix (see (6.6)).

Note that here we indicate as optimum the measurement matrix giving the min-
imum square error (representing the “best” solution in this context). In general this
does not provide the optimum decision, which minimizes the error probability.

Proof Wefollow the demonstration by [2]with some simplification. In the expression
(6.8) of the quadratic error we take explicitly the tracewith respect to the orthonormal
basis |ui 〉, seen in the EID of Gram’s operator in the previous chapter (see (5.109a)).
In this way we find

E = Tr[E E∗] =
n

∑

i=1

〈ui |E E∗|ui 〉 =
n

∑

i=1

〈di |di 〉 (6.10)

where
|di 〉 := E∗|ui 〉 = (Γ − M)∗|ui 〉 . (6.10a)

Let us now consider the reduced SVD of Γ ∗ (see (6.3))

Γ ∗ = VrΣr U∗
r =

r
∑

i=1

σi |vi 〉〈ui |

which gives Γ ∗|ui 〉 = σi |vi 〉. Now, letting

|ai 〉 = M∗|ui 〉 , i = 1, . . . , r (6.11)

(6.10a) becomes |di 〉 = (Γ − M)∗|ui 〉 = σi |vi 〉 − |ai 〉 and the i th component of the
quadratic error results in

Ei = 〈di |di 〉 = σ 2
i 〈vi |vi 〉 + 〈ai |ai 〉 − σi 〈vi |ai 〉 − σi 〈ai |vi 〉

= σ 2
i + 1 − σi 〈vi |ai 〉 − σi 〈ai |vi 〉 .

The minimum of Ei is reached when the quantity σi 〈vi |ai 〉 + σi 〈ai |vi 〉 is maximum.
Because of the constraint |〈vi |ai 〉| ≤ 1, this quantity is maximum when |ai 〉 = |vi 〉,
that is, when (6.11) becomes |vi 〉 = M∗|ui 〉 for an appropriate M = M0. From this
relation, (6.9) follows.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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6.2.3 Consequences of the Result

From the expression (6.9) of the optimal measurement matrix, it can be soon verified:

Corollary 6.1 If the states |γi 〉 are linearly independent, that is, if the rank of Γ

is r = K , the optimal measurement vectors result orthonormal, 〈μi |μ j 〉 = δi j ,
and therefore the corresponding measurement operators Qi = |μi 〉〈μi | constitute a
projector system.

In fact, let us consider the (optimal) Gram’s matrix of the measurement vectors

M∗
0 M0 =

K−1
∑

i=0

|vi 〉〈ui |
K−1
∑

j=0

|u j 〉〈v j | =
K−1
∑

i=0

|vi 〉〈vi | = IK

where (5.116) has been used. To conclude, it suffices to observe thatGram’s matrix of
the measurement vectors M has as elements the inner products 〈μi |μi 〉 (see (5.107)).

In addition, we find what was anticipated by (6.1):

Corollary 6.2 The optimal measurement matrix M0 = Ur V ∗
r can be calculated

also from the expressions

M0 = Γ (Γ ∗Γ )
−1/2 = Γ G−1/2 (6.12a)

M0 = (Γ Γ ∗)−1/2
Γ = T −1/2Γ (6.12b)

where G−1/2 and T −1/2 are the inverse square roots of G and T that are obtained
from the corresponding reduced EIDs in the following way

G−1/2 = Vr Σ−1
r V ∗

r , T −1/2 = Ur Σ−1
r U∗

r . (6.13)

For example, the proof of (6.12a) is carried out using the expression G−1/2 intro-
duced above, and the reduced SVD of Γ . We obtain

Γ G−1/2 = UrΣr V ∗
r VrΣ

−1
r V ∗ = Ur V ∗

r = M0

where we took into account that V ∗
r Vr = Ir and that ΣΣ−1

r = Ir .

On the inverse square roots. In (6.13) we have formally introduced the inverse
square roots G−1/2 and T −1/2 of G and of T . To obtain these roots we start from
the corresponding reduced EIDs and we operate on the common diagonal matrix

Σ2
r = diag[σ 2

1 , . . . , σ 2
r ], taking its inverse square rootΣ−1

r = diag[1/σ1, . . . , 1/σr ],
where the σ 2

i are all positive, and therefore there are no indeterminacy problems.
In general, G−1/2 and T −1/2 should be intended as pseudoinverses (according to
Moore–Penrose formula [7, 8]). The Moore–Penrose pseudoinverse is based on the
full EID (not reduced) UΛU∗, by taking the reciprocal of each nonzero element on

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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the diagonal, leaving the zeros in place. Here we prefer to use the reduced EID,
where the diagonal matrix is regular and has no problem for its inversion. In any case
note that the inversion can bring about some surprising result. For example, it can be
verified that the relation T −1/2T 1/2 = Ur U∗

r does not yield, in general, the identity
IH, but it gives the projector PU = Ur U∗

r and only if r = K one actually produces
the identity IH.

The path followed so far to introduce the inverse square roots, based on the
reduced EIDs, is slightly unusual; in fact, the EIDs are normally considered full, and
this entails the complication of having to introduce several diagonal matrices [2].

Problem 6.1 Prove that T −1/2T 1/2 does not yield, in general, the identity IH, but
the projector PU = Ur U∗

r . Only if r = K one actually produces the identity IH.

Problem 6.2 		 Consider the following state matrix of H = C
4

Γ =

⎡

⎢

⎢

⎢

⎢

⎣

1
2

1
2

− 1
2

1
2

1
2 − 1

2

− 1
2

1
2

⎤

⎥

⎥

⎥

⎥

⎦

Find the inverse square root G−1/2 and T −1/2 based on the two approaches: (1) the
Moore–Penrose pseudoinverse and (2) the reduced EID.

6.3 Performance Evaluation with the SRM Decision

With the SRMmethod, we have seen that the optimal measurement matrix has three
distinct expressions

M0 = Ur V ∗
r = T −1/2Γ = Γ G−1/2 . (6.14)

The first expression is bound to the reduced SVD of the measurement matrix Γ ,
while the other two are obtained from the reduced EIDs of T and G, respectively.

From the measurement matrix, which collects the measurement vectors |μi 〉, the
measurement operators can be computed as Qi = |μi 〉〈μi | and from these the
performance of the quantum system. The transition probabilities result in

pc( j | i) = Tr[ρi Q j ] = |〈μ j |γi 〉|2 (6.15)

and the correct decision probability (with equiprobable symbols)

Pc = 1

K

K−1
∑

i=0

|〈μi |γi 〉|2. (6.16)
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We now discuss the three possible methods, expressing them in a form suitable
for computation.

6.3.1 Method Based on the SVD of the State Matrix

The optimal measurement matrix, evaluated according to the expression

M0 = Ur V ∗
r , (6.17)

can be obtained directly from the reduced SVDof the statematrix, which has the form
(see (5.110)): Γ = UrΣr V ∗

r . Therefore, in this expression it suffices to suppress the
diagonal matrix to obtain the optimal measurement matrix. This is the most direct
method as it does not require to calculate the inverse root square of a matrix.

6.3.2 Method Based on Gram’s Operator

Let us start from Gram’s operator,

T = Γ Γ ∗ =
K−1
∑

i=0

|γi 〉〈γi | , (6.18)

which is a positive semidefinite Hermitian operator (see Sect. 2.10.4). Then it is
possible to define its square root, using the EID (5.109a), which is, in the reduced
form, T = Ur Σ2

r U∗
r and gives

T − 1
2 = Ur Σ−1

r U∗
r (6.19)

from which we obtain the optimal measurement matrix as

M0 = T − 1
2 Γ. (6.20)

At this point we observe that (6.20) falls into the form (5.103), that is, M = C Γ ,
and then the measurement vectors are simply obtained according to

|μi 〉 = T − 1
2 |γi 〉 (6.21)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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from which we get the elementary measurement operators as

Qi = |μi 〉〈μi | = T − 1
2 |γi 〉〈γi |T − 1

2 . (6.22)

6.3.3 Method Based on Gram’s Matrix

We start from Gram’s matrix

G
K×K

= Γ ∗ Γ =
⎡

⎢

⎣

〈γ0|γ0〉 . . . 〈γ0|γK−1〉
...

. . .
...

〈γK−1|γ0〉 . . . 〈γK−1|γK−1〉

⎤

⎥

⎦ (6.23)

which is obtained by computing the inner products 〈γi |γ j 〉. We then evaluate the
reduced EID, which has the form

G = VrΣ
2
r V ∗

r (6.24)

where the diagonal matrix Σ2
r is the same as the one appearing in the previous EID.

From this we compute the inverse square root

G− 1
2 = VrΣ

−1
r V ∗

r (6.25)

and then we obtain the optimal measurement matrix as

M0 = Γ G− 1
2 . (6.26)

This form is of the type (5.102), that is, M = Γ A, which expresses in a compact form
the fact that the (optimal) measurement vectors are given by a linear combination of
the states, that is,

|μi 〉 =
K−1
∑

j=0

ai j |γ j 〉 .

Now, as A = G−1/2 and therefore ai j = (G−1/2)i j , the measurement vectors result
explicitly in

|μi 〉 =
K−1
∑

j=0

(G−1/2)i j |γ j 〉 . (6.27)

The transition probabilities are computed from the mixed inner products bi j =
〈μi |γ j 〉, which define the K × K matrix B = M∗Γ (see (5.74)). Now, from (6.24)
and (6.25) we have

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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B := M∗Γ = G−1/2Γ ∗Γ = G−1/2G = G1/2 . (6.28)

Then the matrix of the mixed inner products becomes simply G1/2 and since
pc( j |i) = |bi j |2 we have

pc( j | i) =
∣

∣

∣(G
1
2 )i j

∣

∣

∣

2
(6.29)

from which we obtain the correct decision probability with equiprobable symbols

Pc = 1

K

K−1
∑

i=0

∣

∣

∣(G
1
2 )i i

∣

∣

∣

2
. (6.30)

Example 6.1 Consider a binary system (K = 2) onH = C
4, in which the two states

are specified by the matrix

Γ = [|γ1〉, |γ2〉
] = 1

2
√
13

⎡

⎢

⎢

⎢

⎣

5 1
3 − 2 i 3 + 2 i

1 5

3 + 2 i 3 − 2 i

⎤

⎥

⎥

⎥

⎦

(6.31)

which has rank r = K = 2. The reduced SVD of Γ becomes: Γ = UrΣV ∗
r , where

Ur = 1

2

⎡

⎢

⎢

⎢

⎣

1 1

1 −i

1 −1

1 i

⎤

⎥

⎥

⎥

⎦

, Σr =
⎡

⎣

√

18
13 0

0
√

8
13

⎤

⎦ , V = Vr = 1√
2

[

1 1

1 −1

]

.

Then, from (6.17) we get the optimal measurement matrix

M0 = Ur V ∗ = 1

2

⎡

⎢

⎢

⎢

⎣

1 1

1 −i

1 −1

1 i

⎤

⎥

⎥

⎥

⎦

1√
2

[

1 1

1 −1

]

= 1

2
√
2

⎡

⎢

⎢

⎣

2 0
1 − i 1 + i
0 2

1 + i 1 − i

⎤

⎥

⎥

⎦

. (6.32)

The measurement vectors become then

|μ1〉 = 1

2
√
2

⎡

⎢

⎢

⎣

2
1 − i
0

1 + i

⎤

⎥

⎥

⎦

, |μ2〉 = 1

2
√
2

⎡

⎢

⎢

⎣

0
1 + i
2

1 − i

⎤

⎥

⎥

⎦
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and their orthonormality can be verified, in particular 〈μ1|μ2〉 = 0, in agreement
with Corollary 6.1. We can now compute the transition probabilities from (6.15),
that is, pc( j | i) = |〈μ j |γi 〉|2. We obtain the matrix

pc =
[

25
26

1
26

1
26

25
26

]

(6.33)

from which we have that the error probability with equiprobable symbols results in
Pe = 1 − Pc = 1

26 .
We leave it to the reader to verify that the other two performance evaluation

methods, based on the reduced EIDs of G and of T , lead to the same results found
with the SVD of Γ .

Problem 6.3 		 Consider the state matrix Γ given by (6.31) of Example 6.1.
Check that the methods based on the EIDs of G and T give the same transition
probabilities as obtained with the SVD of Γ .

Problem 6.4 		 With the data of the previous problem, find the relations

μ1 = C γ1 , μ2 = C γ2.

These relations are somewhat intriguing since they lead to think that μ1 depends
only on γ1 and not on γ2 and μ2 only on γ2. Explain why not.

6.3.4 Properties of the SRM

We have seen that the operators of the SRM can always be calculated in a rather
simple manner for any constellation of states |γi 〉 and therefore for any quantum
communications system. This is already a first advantage. It remains to understand
whether the SRM are optimal or close to optimal. It has been proved by Holevo
in 1979 [9] that the SRM are asymptotically optimal, in the sense that they become
optimal in practicewhen the averagenumber of photons is large enough. Furthermore,
these measurements become optimal when the constellation of the states enjoys the
geometrically uniform symmetry (GUS) (see below).

Another advantage of the SRM regards their practical implementation. In fact,
receivers based on the SRM have already been implemented (in 1999), using QED
cavities [10].
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6.4 SRM with Mixed States

The SRM method is normally used for decision in the presence of pure states, but
recently [11] this method was extended to systems described by density operators
(mixed states), allowing for the evaluation of the performance of quantum commu-
nications systems even in the presence of thermal noise.

The technique behind this generalization, consisting in passing from pure states
to density operators, is the usual factorization of the density operators

ρi = γiγ
∗
i

which allows us to proceed in basically the same way as seen with pure states, using
the following correspondence

state |γi 〉 → state factor γi

measurement vector |μi 〉 → measurement factor μi

whose consequences are summarized in Table6.1. As done with pure states, we keep
the hypothesis of equiprobable symbols.

Table 6.1 The SRM method with pure states and with mixed states

Operation Pure states Mixed states

Density operators ρ0, . . . , ρK−1

States/factor states |γ0〉, . . . , |γK−1〉 γ0, . . . , γK−1

State matrix Γ = [|γ0〉, . . . , |γK−1〉] Γ = [γ0, . . . , γK−1]
Gram’s matrix G = Γ ∗ Γ = [〈γi |γ j 〉

]

G = Γ ∗ Γ = [

γ ∗
i γ j

]

Gram’s operator T = Γ Γ ∗ =
K−1
∑

i=0

|γi 〉〈γi | T = Γ Γ ∗ =
K−1
∑

i=0

γi γ
∗
i

Measurement vectors/factors |μi 〉 = T − 1
2 |γi 〉 μi = T − 1

2 γi

Measurement matrix M = T − 1
2 Γ = Γ G− 1

2 M = T − 1
2 Γ = Γ G− 1

2

Mixed product matrix B = M∗ Γ = [〈μi |γ j 〉
] =

G1/2
B = M∗ Γ = [

μ∗
i γ j

] = G1/2

Measurement operators Qi = |μi 〉〈μi | Qi = μi μ∗
i

Transition probabilities
p( j |i)

|〈μ j |γi 〉|2 = |b ji |2 Tr[μ j μ
∗
j γi γ

∗
i ] = Tr[b∗

j i b ji ]

Correct decision probability Pc
1

K

K−1
∑

i=0

|bii |2 1

K

K−1
∑

i=0

Tr[b∗
i i bii ]
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6.4.1 Discussion of the Method

Having obtained the factors γi of the density operators ρi , we form the state matrix

Γ
n×H

= [

γ0, γ1, . . . , γK−1
]

(6.34)

where H is the total number of columns, and from this we obtain Gram’s operator
(see (5.118)) and Gram’s matrix (see (5.119))

T
n×n

= Γ Γ ∗ , G
H×H

= Γ ∗ Γ.

Theorem 6.1 and the subsequent corollaries still hold, so the optimal measurement
matrix can be calculated from three distinct expressions

M0 = Ur V ∗
r = T −1/2Γ = Γ G−1/2 . (6.35)

The first expression is bound to the reduced SVD of the measurement matrix Γ ,
while the other two are obtained from the reduced EIDs of T and G.

From M0 = [

μ0, μ1, . . . , μK−1
]

we get the measurement factors μi and, from
these, the measurement operators Qi = μiμ

∗
i . The relation giving the mixed product

matrix B = [bi j ] = [μ∗
i γ j ] still holds

B = M∗ Γ = G1/2. (6.36)

Finally, we obtain the transition probabilities and the correct decision probability
from (5.75)

pc( j |i) = Tr[b∗
j i b ji ] , Pc =

∑

i∈A
qiTr[b∗

i i bii ]. (6.37)

where now bi j is the i, j block of the matrix G1/2.

Example 6.2 Let us consider Problem 5.9 of the previous chapter, where starting
from two density operators ρ0 and ρ1 of H = C

4, we found the factors γ0 of
dimensions 4 × 2 and γ1 of dimensions 4 × 3. From these factors, the 4 × 5 state
matrix is formed

Γ = [

γ0, γ1
] =

⎡

⎢

⎢

⎣

−0.54117 −0.02018 −0.47937 −0.06934 0.03124
−0.54117 −0.02018 i 0.51339 0.0 i 0.02917
−0.54117 −0.02018 0.479370 −0.06934 −0.03124
−0.33238 0.09857 −i 0.51339 0.0 −i 0.02917

⎤

⎥

⎥

⎦

.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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From Γ we obtain the 4 × 4 Gram’s operator

T = Γ Γ ∗ =

⎡

⎢

⎢

⎣

0.52885 0.29327 + i 0.24519 0.06731 0.17788 − i 0.24519
0.29327 − i 0.24519 0.55769 0.29327 + i 0.24519 −0.08654

0.06731 0.29327 − i 0.24519 0.52885 0.17788 + i 0.24519
0.17788 + i 0.24519 −0.08654 0.17788 − i 0.24519 0.38462

⎤

⎥

⎥

⎦

and the 5 × 5 Gram’s matrix

G = Γ ∗ Γ =

⎡

⎢

⎢

⎢

⎢

⎣

0.98906 0.0 −i 0.10719 0.07505 −i 0.00609
0.0 0.01094 −i 0.06096 0.00280 −i 0.00346

i 0.10719 i 0.06096 0.98673 0.0
0.07505 0.00280 0.00962
i 0.00609 i 0.00346 0.0 0.0 0.00365

⎤

⎥

⎥

⎥

⎥

⎦

.

The four eigenvalues of T are all positive and precisely

1.04854 0.941288 0.101754 0.0647906

and it can be verified that G has the same positive eigenvalues (the fifth eigenvalue
of G is null).

As T has full rank, its inverse square root must be intended in the ordinary sense,
and results in

T −1/2 =

⎡

⎢

⎢

⎣

6.55880 −3.71728 − i 3.44423 −0.73775 + i 1.90902 −1.85711 + i 2.39197
−3.71728 + i 3.44423 8.04954 −3.71728 − i 3.44423 0.66455
−0.73775 − i 1.90902 −3.71728 + i 3.44423 6.55880 −1.85711 − i 2.39197
−1.85711 − i 2.39197 0.66455 −1.85711 + i 2.39197 6.11094

⎤

⎥

⎥

⎦

.

From T −1/2 we obtain the measurement factors

μ0 = T −1/2γ0 =

⎡

⎢

⎢

⎣

0.48977 + i 0.01653 −0.25565 − i 0.26963
0.54077 −0.00921

0.48977 − i 0.01653 −0.25565 + i 0.26963
0.47493 0.60823

⎤

⎥

⎥

⎦

μ1 = T −1/2γ1 =

⎡

⎢

⎢

⎣

−0.02278 − i 0.49923 −0.40600 + i 0.18138 0.09726 − i 0.40602
0.50687 0.48486 − i 0.07894 −0.45743

−0.02278 + i 0.49923 −0.44257 − i 0.04322 0.09726 + i 0.40602
−0.49203 0.26908 − i 0.04381 0.29679

⎤

⎥

⎥

⎦

.

Finally, from (6.37) we obtain the transition probabilities pc( j |i), whose matrix is

pc =
[

0.986242 0.013758
0.01084 0.013758

]
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hence, with equiprobable symbols, we have

Pc = 0.986242 Pe = 0.013758.

Computation of Pe from the eigenvalues (Helstrom). Having considered a binary
case,we knowhow to compute the optimal projectors according toHelstrom’s theory,
which is based on the eigenvalues of the decision operator D = 1

2 (ρ1 − ρ0). The
eigenvalues of D become

{−0.977483, 0.977145, 0.00422318,−0.00388438}

So, applying (5.22), we obtain

Pc = 0.981368 Pe = 0.018632

and we realize that the SRM gives an underestimate of the error probability.

6.5 SRM with Geometrically Uniform States (GUS)

The geometrically uniform symmetry (GUS) has been introduced in Sect. 5.13. Now,
it is evident that the GUS on a constellation of states leads to a symmetry also on
the measurement vectors, with remarkable simplifications, but the most important
consequence is that, with pure states, the SRM method in the presence of GUS
provides the optimal decision (maximizing the correct decision probability), as will
be seen toward the end of this section.

6.5.1 Symmetry of Measurement Operators
Obtained with the GUS

In Proposition 5.9 we have seen that if the state constellation has the GUS, also the
optimal measurement operators have the same symmetry. We now prove that this
property also holds for the measurement operators obtained with the SRM, which
are not optimal in general. 1

1 It is useful to recall that we call optimal the measurement operators obtained with the maximiza-
tion of the correct decision probability, while the measurement operators obtained with the SRM
minimize the quadratic error between the measurement vectors and the state vectors.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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In Proposition 5.8 we have seen that the Gram operator T and the symmetry
operator S commute and therefore they are simultaneously diagonalizable

T S = S T ⇐⇒ T = UΛT U∗ , S = UΛSU∗. (6.38a)

Then, also the powers of T and of S are simultaneously diagonalizable and therefore
commute

T α = UΛα
T U∗ , Sβ = UΛ

β
SU∗ ⇐⇒ T α Sβ = Sβ T α. (6.38b)

In particular T − 1
2 commutes with Si for every i

T − 1
2 Si = Si T − 1

2 , i = 0, 1, . . . , K − 1 . (6.39)

Then, combining (6.21) with (6.39) we obtain

|μi 〉 = T − 1
2 |γi 〉 = T − 1

2 Si |γ0〉 = Si T − 1
2 |γ0〉 .

The above result can be formulated as follows:

Theorem 6.2 If a constellation of states |γi 〉 has the GUS with symmetry operator
S, also the measurement vectors obtained with the SRM have the GUS with the same
symmetry operator, namely

|μi 〉 = Si |μ0〉 , i = 0, 1, . . . , K − 1 (6.40)

where
|μ0〉 = T − 1

2 |γ0〉 . (6.40a)

Thus, from (6.40), all themeasurement vectors can be obtained from the reference
vector |μ0〉. This property is then transferred to the measurement operators Qi with
the usual rules.

6.5.2 Consequences of the GUS on Gram’s Matrix

When the states have the GUS, Gram’s matrix becomes circulant and the SRM
methodology can be developed to arrive at explicit results.

We recall that a matrix G = [Gi j ] of dimensions K × K is called circulant if its
elements depend only on the difference of the indexes, modulo K , that is, they are
of the type

Gi j = ri− j (mod K ). (6.41)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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For example for K = 4 we have the structure

G =

⎡

⎢

⎢

⎣

r0 r1 r2 r3
r3 r0 r1 r2
r2 r3 r0 r1
r1 r2 r3 r0

⎤

⎥

⎥

⎦

and the elements of the rows are obtained as permutations of those of the first row.
Therefore, a circulant matrix is completely specified by its first row, which for con-
venience we will call circulant vector.

Now, from (5.120) it results that the inner products

Gi j = 〈γi |γ j 〉 = 〈γ0|(S∗)i S j |γ0〉
= 〈γ0|S j−i |γ0〉 = ri− j (mod K )

depend upon the difference i − j (mod K ), so ensuring that Gram’s matrix is (Her-
mitian) circulant with circulant vector

[r0, r1, . . . , rK−1] = [1, 〈γ0|S|γ0〉, . . . , 〈γ0|SK−1|γ0〉].

The EID of a circulant Gram’s matrix is expressed through the matrix of the DFT
(Discrete Fourier Transform), given by

W[K ] = 1√
K

⎡

⎢

⎢

⎢

⎣

1 10 1−1 . . . 1−(K−1)

1 W −1
K W −2

K . . . W −2(K−1)
K

...
...

1 W −(K−1)
K W −2(K−1)

K . . . W −(K−1)(K−1)
K

⎤

⎥

⎥

⎥

⎦

(6.42)

where WK = ei2π/K . From the orthonormality condition

K−1
∑

s=0

1

K
W rs

K = δr0 (6.43)

it can be verified that the columns of W[K ]

|wp〉 = 1√
K

[

W −p
K , W −2p

K , . . . , W −p(K−1)
K

]T
, p = 0, 1, . . . , K − 1 (6.44)

form an orthonormal basis of CK , i.e., 〈wp|wq〉 = δpq .

Theorem 6.3 A circulant Gram’s matrix G = [Gi j ] = [ri− j (mod K )] has the fol-
lowing EID

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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G = W ∗ΛW =
K−1
∑

p=0

λp|wp〉〈wp| with W := W[K ] (6.45)

where the eigenvalues are given by the DFT of the circulant vector

λp =
K−1
∑

q=0

G0q W −pq
K =

K−1
∑

q=0

rq W −pq
K (6.45a)

and Λ = diag [λ0, λ1, . . . , λK−1].
The theorem is proved in Appendix section “On the EID of a Circulant Matrix”.

6.5.3 Performance Evaluation

From Theorem 6.3 we soon find the square roots

G± 1
2 =

K−1
∑

p=0

λ
± 1

2
p |wp〉〈wp| = W ∗Λ± 1

2 W (6.46)

whose elements are given by

(G± 1
2 )i j = 1

K

K−1
∑

p=0

λ
± 1

2
p W −p(i− j)

K . (6.46a)

We can then evaluate the transition probabilities from (6.29), where the element i j
is computed from (6.46a); thus

pc( j |i) =
∣

∣

∣

1

K

K−1
∑

p=0

λ
1
2
p W −p(i− j)

K

∣

∣

∣

2
, i, j = 0, 1, . . . , K − 1 (6.47)

in particular, the diagonal transition probabilities are found to be all equal

pc(i |i) =
⎡

⎣

1

K

K−1
∑

p=0

λ
1
2
p

⎤

⎦

2

(independent of i) (6.47a)

and therefore the correct decision probability (6.30) becomes explicitly

Pc =
⎡

⎣

1

K

K−1
∑

p=0

λ
1
2
p

⎤

⎦

2

. (6.48)
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The measurement vectors |μi 〉 are obtained as linear combination of the states
(see (6.27)), but considering that they have the GUS, their evaluation can be limited
to the reference vector, given by

|μ0〉 =
K−1
∑

j=0

(G−1/2)i j |γ j 〉. (6.49)

In conclusion, when Gram’s matrix G is circulant, to evaluate the measurement
vectors and their performance, it suffices to compute their eigenvalues, given simply
by the DFT of the first row of G. This methodology will be applied to PSK and PPM
modulations in the next chapter.

6.5.4 Optimality of SRM Decision with Pure
States Having the GUS

We now prove that the SRM decision, when the states have the GUS, realizes the
minimum error probability.

Proposition 6.1 When the constellation of pure states verifies the GUS, the SRM
becomes optimum, achieving the minimum error probability.

For the poof we use Holevo’s theorem, in the version given by Corollary 5.1.With
equiprobable symbols, the first conditions of Holevo’s theorem result from (5.97)

bi j b∗
j j − bii b∗

j i = 0 , ∀i,∀ j (6.50)

where bi j = 〈μi |γ j 〉 are the mixed products. Their matrix is given by (see (6.28))

B = G1/2 = W ∗Λ1/2W

and it is symmetric. Its elements bi j depend only upon the difference i − j , as
indicated also by (6.46a), and then they can be expressed in the form

bi j = f ( j − i) with b∗
i j = f (i − j) .

Therefore, from (6.50) it follows f ( j − i) f ∗(0) − f (0) f ( j − i) = 0, which is
verified because f (0) is real.

For a proof of the second condition, we address the reader to [2].

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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6.5.5 Helstrom’s Bound with SRM

In Sect. 5.13 we have seen that a binary constellation always satisfies the GUS, and
hence the SRM gives the optimal decision. Then with the SRM approach we have to
obtain the Helstrom bound.

In the binary case the state matrix is Γ = [|γ0〉, |γ1〉] and Gram’s matrix is

G = Γ ∗ Γ =
[

1 X
X∗ 1

]

, X := 〈γ0|γ1〉.

and in general is not circulant because X∗ �= X and hence we cannot apply the
approach based on the DFT.

We evaluate the square roots of G by hand. Assuming that G1/2 has the form2

G1/2 =
[

a b
b∗ a

]

we find the conditions
a2 + |b|2 = 1 , 2ab = X

which give

a2 + |X |2
4a2 = 1 → a4 − 1

4
|X |2 = 0.

The solution is

a = 1√
2

√

1 +
√

1 − |X |2

and

b = X

2a
= X√

2|X |
√

1 −
√

1 − |X |2 = eiβ√
2

√

1 −
√

1 − |X |2

where β = arg X . As a check

G1/2G1/2 =
[

1 X
X∗ 1

]

= G.

From G1/2we have the correct decision probability from (6.30) as

Pc = 1

2

[

|(G1/2)00|2 + |(G1/2)00|2
]

= 1

2

[

1 +
√

1 − |X |2
]

that is, the Helstrom bound.

2 The assumption that the diagonal elements are equal is in agreement with a Sasaki’s et al. [12]
theorem, which states that in a optimal decision the square root of the Gram matrix must have all
the diagonal elements equal.

http://dx.doi.org/10.1007/978-3-319-15600-2_5


6.5 SRM with Geometrically Uniform States (GUS) 271

Next we evaluate the optimal measurement vectors. Considering that det G1/2 =
√

1 − |X |2, the inverse of G1/2 is

G−1/2 = 1
√

1 − |X |2
[

a −b
−b∗ a

]

.

Using the identities

1

1 − |X | ± 1

1 + |X | = √
2

√

1 ± √

1 − |X |2
√

1 − |X |2

we find (with β = arg X )

G−1/2 = 1

2

[ 1
1−|X | + 1

1+|X | eiβ( 1
1−|X | − 1

1+|X | )

e−iβ( 1
1−|X | − 1

1+|X | )
1

1−|X | + 1
1+|X |

]

which gives the measurement matrix as M = Γ G−1/2.
When the inner product is real the Gram matrix turns out to be circulant and

the approach based on the DFT can be applied to get the Helstrom bound (see
Problem 6.5).

Table 6.2 The SRM method in general, and with geometrically uniform symmetry (GUS)

Operation General case With GUS

Constellation of states |γ0〉, . . . , |γK−1〉 |γi 〉 = Si |γ0〉
State matrix Γ [|γ0〉, . . . , |γK−1〉] [|γ0〉, . . . , SK−1|γ0〉]
Gram’s matrix G = Γ ∗ Γ

[〈γi |γ j 〉
] [〈γ0|S j−i |γ0〉

] = W ∗ΛW

Gram’s operator T = Γ Γ ∗
K−1
∑

i=0

|γi 〉〈γ j |
K−1
∑

i=0

Si |γ0〉〈γ0|S−i

Measurement vectors |μi 〉 = T − 1
2 |γi 〉 |μ0〉 = T − 1

2 |γ0〉 ,

|μi 〉 = Si |μ0〉
Measurement matrix M T − 1

2 Γ = Γ G− 1
2 T − 1

2 Γ = Γ W ∗Λ− 1
2 W

Mixed product matrix B M∗ Γ = G
1
2 G

1
2 = W ∗Λ 1

2 W

Transition probabilities pc( j |i) |〈μ j |γi 〉|2 = |bji|2
∣

∣

∣

1

K

K−1
∑

p=0

λ
1
2
p W −p(i− j)

K

∣

∣

∣

2

Correct decision probability Pc = 1

K

K−1
∑

i=0

|bii|2 Pc =
⎡

⎣

1

K

K−1
∑

p=0

λ
1
2
p

⎤

⎦

2
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Summary of the SRM Method

Table6.2 summarizes the computation procedure of the SRM method, on the left in
the general case, and on the right in the presence of GUS.

Problem 6.5 		 Apply the SRM approach to find the optimal decision in a binary
system with equiprobable symbols and with a real inner product X .

6.6 SRM with Mixed States Having the GUS

We have seen that the (GUS) can be extended from pure states to density operators,
with the condition

ρi = Siρ0 (Si )∗ , i = 0, 1, . . . , K − 1. (6.51)

This extension entails, for the factors, the relation

γi = Si γ0 , i = 0, 1, . . . , K − 1

and the same symmetry is transferred to the measurement operators,

Qi = Si Q0 (Si )∗ , i = 0, 1, . . . , K − 1 (6.52)

as well as to the measurement factors

μi = Siμ0 , i = 0, 1, . . . , K − 1.

With the SRM method in the presence of GUS, the performance evaluation
becomes simpler, as already seen with the pure states, but some complication arises,
due to the fact that Gram’s matrix is not circulant, but block circulant [4]. However,
we can still manage to formulate the computation based on the DFT, arriving at
results explicit enough.

Relation (6.35) still holds, in particular

M0 = T −1/2Γ = Γ G−1/2

so that we have two possible approaches.

6.6.1 Gram Operator Approach

This approach is based on the evaluation of the inverse square root T −1/2 of the
Gram operator T , and the reference measurement operator is given by (see (6.40a))
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Q0 = T −1/2 ρ0 T −1/2. (6.53)

Proposition 6.2 The transition probabilities with mixed states having the GUS can
be obtained from the reference density operator and the inverse square root of the
Gram operator as

pc( j |i) = Tr
[

Si− j ρ0 S−(i− j) Q0

]

(6.54)

with Q0 given by (6.53). The correct decision probability is given by the synthetic
formula

Pc = Tr
[

(ρ0 T −1/2)2
]

. (6.55)

In fact,

pc( j |i) = Tr[ρi Q j ] = Tr
[

Si ρ0 S−i S j Q0 S− j
]

= Tr
[

Si− j ρ0 S−(i− j) Q0

]

.

Then, using (6.53), we obtain

Pc = Tr
[

ρ0T −1/2ρ0 T −1/2
]

= Tr
[

T −1/2ρ0T −1/2ρ0

]

and (6.55) follows at once.

6.6.2 Gram Matrix Approach

With the Gram matrix it is less trivial to get useful results, because they need the
EID of the symmetry operator, given by (5.128)

S =
K−1
∑

i=0

W i
k Pi ,

where Pi are projectors. The Gram matrix is formed by the blocks of order h0

Gi j = γ ∗
i γ j = γ ∗

0 S j−iγ0 =
K−1
∑

k=0

W k( j−i)
K γ ∗

0 Pkγ0 = 1

K

K−1
∑

k=0

W k( j−i)
K Dk (6.56)

where
Dk := Kγ ∗

0 Pk γ0. (6.57)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Then we find that the (i, j) block of G has the structure

Gi j = ri− j (mod K ). (6.58)

Since Gi j depends only on the difference ( j − i) mod K , the matrix G turns out
to be block circulant, with blocks of the same order hk = h0. Then one can extend
what seen with pure states in Sect. 6.5.3, operating on the blocks, instead of on the
scalar elements, to get the explicit factorization of G, namely3

G = W(h0) D W ∗
(h0)

where D = diag[D0, . . . , DK−1] and W(h0) is the K h0 × K h0 block DFT matrix

W(h0) = 1√
K

⎡

⎢

⎢

⎢

⎣

1 1 1 . . . 1
1 W −1

K W −2
K . . . W −2(K−1)

K
...

...

1 W −(K−1)
K W −2(K−1)

K . . . W −(K−1)(K−1)
K

⎤

⎥

⎥

⎥

⎦

⊗ Ih0 . (6.59)

As a consequence, the diagonal blocks are given as the DFT of the first block row
of G, namely

Dk =
K−1
∑

s=0

W −ks
K G0s . (6.60)

Now we have to find the square root of G and this can be done as seen with pure
states, but acting on blocks instead of on scalars. We find

G1/2 = W(h0) D1/2 W ∗
(h0)

where
D1/2 = diag[D1/2

0 , . . . , D1/2
K−1].

In particular, the (i, j) block is given by

(G1/2)i j = 1

K

K−1
∑

k=0

W k( j−i)
K D1/2

k . (6.61)

Note that we have found the alternative expressions (6.57) and (6.60) for the
diagonal blocks Dk , where the first is based on the EID of the symmetry operator.

3 This is not a standard EID, because the diagonal blocks Di are not diagonal matrices.
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This EID is used in the proof, but we can use the alternative expression (6.57) to
avoid its evaluation (which may be difficult).

To summarize:

Proposition 6.3 With the GUS the (i, j) block of the Gram matrix can be written in
the forms

Gi j = γ ∗
i γ j = γ ∗

0 S j−iγ0 = 1

K

K−1
∑

k=0

W k( j−i)
K Dk (6.62)

where the matrices Dk of order h0 are Hermitian PSD given by

Dk =
K−1
∑

i=0

γ ∗
0 γi W

−ki
K . (6.63)

The (i, j) block of the matrix G1/2 is given by relation (6.61).

Now, using expression (6.61), one can obtain the transition probabilities from
(6.37) with bi j = (G1/2)i j . For the correct decision probability one finds

Pc = Tr

[

1

K

K−1
∑

k=0

D1/2
k

]2

. (6.64)

The reference measurement factor μ0 can be obtained as in (6.29), that is,

μ0 =
K−1
∑

j=0

(G−1/2)i jγ j . (6.65)

Remark on optimality. Differently from the case of pure states, the SRM method
with GUS is not optimal in general with mixed states. In fact, for optimality, the
further condition is required for the reference factors [11]

b00 = μ∗
0γ0 = α I (6.66)

where I is the identity matrix, and α a proportionality constant. Note that b00 =
(G1/2)00. As we will see, the PSK and PPM systems verify the GUS even in the
presence of noise, but do not verify the further condition (6.66), hence the SRM
method is not optimal.

Application to generalized GUS. The above theory of SRM for mixed states with
GUS can be used for pure states having the first form of generalized GUS introduced
in Sect. 5.13.4. This possibility will be applied in Sect. 7.11 to Quantum Communi-
cations systems using the QAM modulation.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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Problem 6.6 	 Write explicitly the blockDFTmatrix, definedby (6.59), for K = 4
and h0 = 2 and prove that it is a unitary matrix.

Problem 6.7 		 Prove in general that the block DFT matrix, defined by (6.59), is
a unitary matrix.

Problem 6.8 			 Extend Theorem 6.3 on circulant matrices to block circulant
matrices.

Problem 6.9 		 To check the fundamental formulas of the SRMwith mixed states
having the GUS, consider the following degenerate case of reference state factor in
a quaternary system

γ0 = 1√
3
[|β0〉, |β0〉, |β0〉]

where |β0〉 is an arbitrary pure state, and the symmetry operator S generates the
other state factor in the form γi = Si γ0, i = 1, 2, 3. Find the correct decision
probability Pc.

6.7 Quantum Compression with SRM

The techniqueof compression seen at the endof the previous chapter, for the reduction
of redundancy in quantum states, can be applied to the detection based on the SRM.
In practice, quantum compression is useful in numerical computations because it
reduces the size of the matrices. For instance in quantum communications using the
PPM format the computational complexity may become huge and the compression
allows us to get results otherwise not reachable.

We recall that compression preserves theGUS and thereforewe can apply the very
efficient technique that combines the SRMwith theGUS, after the state compression.

We now review the main simplifications achieved with the application of the
compression to the SRM.

6.7.1 Simplification with Compression in the General Case

We first recall that all the detection probabilities can be evaluated in the compressed
space exactly as in the uncompressed space, as stated by relations (5.146) and (5.147).
Also, in the compressed space, the Gram operator is always diagonal (see (5.145)).

It is also convenient to recall the dimensions of the quantities involved in the
compression. We refer to mixed states, from which we have the case of pure states
as a particularization. Before compression the dimensions are

γi

n×hi

μi

n×hi

Γ
n×H

M
n×H

G
H×H

T
n×n

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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where H = h0 + · · · + hK−1 with hi the rank ρi . After compression we have

γ i

r×hi

μi

r×hi

Γ
r×K

M
r×K

G
H×H

T
r×r

.

The case of pure states is obtained by setting

hi = 1 , H = K .

6.7.2 Simplification of Compression in the Presence of GUS

The GUS is preserved in the compressed space, as stated by Proposition 5.10.
The main property in the presence of GUS is that the Gram operator T commutes

with the symmetry operator S, that is, T and S becomes simultaneously diagonaliz-
able, as stated by

T = U Σ2 U∗ , S = U Λ U∗. (6.67)

This allows us to establish simple formulas for both T and S, as in Propositions 5.11
and5.12.A sophisticated technique tofind avery useful simultaneous diagonalization
is descried at the end of Chap.8.

Problem 6.10 		 Solve Problem 6.3 introducing compression.

6.8 Quantum Chernoff Bound

We have seen that the SRM is a suboptimal method that gives an upper bound
of the error probability in a quantum communications system. Another suboptimal
method is given by the quantum Chernoff bound, which recently received a great
attention, especially for Gaussian quantum states [13], as a simple mean to estimate
the performance of quantum discrimination [14–16].

The Chernoff bound is usually employed in Telecommunications and Probability
Theory to establish an upper bound to the error probability [17] or more in general
to bound the probability that a random variable exceeds a certain quantity, based
on the knowledge of the characteristic function or of the moments of the random
variable. The extension of the Chernoff bound to quantum systems, leading to the
quantum Chernoff bound, is considered in several works [13–16, 18], employing the
bound as a tool to estimate the error probability in the discrimination of quantum
states, both for single-mode and for multi-mode states. The Chernoff bound can be

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_8
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seen also as a distance measure between operators. The Chernoff distance has been
investigated, for example, in [14–16] and related to other distiguishability measures,
such as fidelity.

In a recent paper [19]Corvaja has compared theChernoff bound, andother bounds,
with the SRM bound in terms of both performance and complexity.

6.8.1 Formulation

The quantum Chernoff bound has the limitation that it can be applied only to binary
quantum systems. For the binary case, where the states are described by the density
operators ρ0 and ρ1, the quantum Chernoff bound states that error probability can
be bounded by the expression

Pe ≤ 1

2
inf

0≤s≤1
Tr

[

ρs
0ρ

1−s
1

]

(6.68)

where s is a real parameter. Therefore, the bound requires the evaluation of the
fractional power of operators (in practice of a square matrix) for all the values of the
minimization parameter s. This is obtained with an eigendecomposition of the kind

ρi = Ui ΛiU
∗
i −→ ρs

i = Ui Λs
i U∗

i . (6.69)

Although in general the bound requires the minimization with respect to the real
value s, when the Gaussian states have the same covariance matrix or the same
thermal noise component and no relative displacement (see Chap.11), the optimum
is attained for s = 1/2. In this case the square root of the density operators must be
evaluated and the bound becomes

Pe ≤ 1

2
Tr

[√
ρ0

√
ρ1

]

. (6.70)

In the comparison reported in [19] it is shown that for mixed states the SRM
solution provides a tighter bound than the Chernoff bound in the binary case, with a
comparable numerical complexity. Moreover, the SRM has the advantage that it can
be applied also to the general K -ary case.

Problem 6.11 		 Consider the binary system specified by the pure states

|γ0〉 = 1√
13

[5, 3 − 2i, 1, 3 + 2i]T , |γ1〉 = 1

2
√
13

[1, 3 + 2i, 5, 3 − 2i]T.

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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Check that: (1) Hestrom’s theory gives Pe = 1/26 , (2) the Chernoff bound gives
Pe = 25/338.

Appendix

On the EID of a Circulant Matrix

Let us prove Theorem 6.3. To this end, consider the matrix

Z := W ∗G with W = W[K ]. (6.71)

From inspection of the structure of the element Zi j of Z and bearing in mind the
condition (6.41), we have

Zij = 1√
K

K−1
∑

t=0

W it
K Gtj = 1√

K

K−1
∑

t=0

W it
K r j−t (mod K )

= 1√
K

(
j

∑

t=0

W it
K r j−t +

K−1
∑

t= j+1

W it
K rK+ j−t

)

.

Letting k = j − t in the first summation, and k = K + j − t in the second, we have

Zi j = 1√
K

(
j

∑

k=0

W i( j−k)
K rk +

K−1
∑

k= j+1

W i(K+ j−k)
K rk

)

= 1√
K

K−1
∑

k=0

W i( j−k)
K rk = 1√

K
W ij

K

K−1
∑

k=0

W −ik
K rk

= 1√
K

W ij
K λi

where (see (6.45a))

λi := 1√
K

K−1
∑

k=0

W −ik
K rk .
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From the above result we infer that the matrix Z can be written in the form

Z = ΛW ∗. (6.72)

Then, to obtain (6.45) from (6.71) and (6.72), it suffices to recall that W is unitary,
then W ∗ = W −1.
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Chapter 7
Quantum Communications Systems

7.1 Introduction

The quantum decision theory, developed in the previous two chapters, is now applied
to quantum communications systems where the nature of the states that carry the
information is specified. A constellation of K quantum states, to which to commit
a symbol belonging to a K-ary alphabet, corresponds, in the classical version, to a
K-ary modulation format. We still consider states that operate at optical frequencies
(optical quantum systems), because at radio frequencies quantum phenomena are not
appreciable. In practice, the quantum states are usually treated as coherent states of
a coherent monochromatic radiation emitted by a laser. For these states there exists
a universal model, proposed by Glauber, that will be introduced in the next section.

Also squeezed states as a candidate carrier for quantum communications are
considered. Squeezed light is an efficient form of optical radiation, which is obtained
from a laser radiation in several ways, mainly based on parametric amplifiers.

In this chapter, we shall first examine binary systems, presenting the quantum
versions of the OOK (on–off keying) and 2PSK (phase-shift keying) modulations.
Then we shall move to multilevel systems, and examine the quantum versions of the
QAM (quadrature amplitude), PSK, and PPM (pulse position) modulations. All the
above-mentioned systems will be examined in the absence of thermal noise, which,
instead, will be considered in the next chapter. Thus, in this chapter, the scheme
of Fig. 7.1 will be followed, in which the channel is ideal and the received state is
directly given by the transmitted state. As already observed, neglecting thermal noise
does not mean that the analysis will be done in the absence of noise; because we shall
take into account the fact that quantum measurements are affected by an intrinsic
randomness, corresponding, in the classical model, to shot noise.

Organization of the Chapter

The next two sections deal with the definition and properties of coherent states
and how to provide a constellation of coherent states. Section 7.5 develops the the-
ory of classical optical systems where the decision is based on photon counting.

© Springer International Publishing Switzerland 2015
G. Cariolaro, Quantum Communications, Signals and Communication Technology,
DOI 10.1007/978-3-319-15600-2_7
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classic
source

quantum
coder

An

Alice

ideal
channel

| An quantum
measure

| An

Bob

decision
m An

Fig. 7.1 Quantum communications system for digital transmission. {An} is a sequence of classical
symbols of information that Alice conveys into a sequence of quantum states {|γAn 〉}. Bob, in each
symbol period, performs a quantum measurement to argue, from the result m of the measurement,
which symbol was transmitted

The subsequent sections, from Sects. 7.9 to 7.13, develop the specific quantum com-
munications system with the modulation format listed above.

In the two final sections, we will develop quantum communications with squeezed
states with a comparison of the performance with that obtained with coherent states.

As explained in Chap. 4, only digital systems will be considered. For binary sys-
tems, we shall use the general theory of binary optimization, essentially Helstrom’s
theory, developed in Sect. 5.4. For multilevel systems, for which an explicit opti-
mization theory is not available, we shall use the square root measurements (SRM)
decision developed in Chap. 6 and, when convenient, we compare SRM results with
the ones obtained with convex semidefinite programming (CSP).

7.2 Overview of Coherent States

A general model of the quantum state created by an electromagnetic field at a cer-
tain (optical) frequency is given by a coherent quantum state according to Glauber’s
theory. This model is now formulated in detail in a form suitable to deal with quan-
tum communications systems, but without entering in theoretical considerations.
In Chap. 11 coherent states will be fully developed in the framework of quantum
information as continuous quantum states and also as Gaussian quantum states.

7.2.1 Glauber’s Representation

The coherent radiation emitted by a laser is modeled as a coherent state. It has been
demonstrated [1–3] that the coherent states of a single mode can be represented
in a Hilbert space of infinite dimensions, through an orthonormal basis {|n〉, n =
0, 1, 2, . . .}, where the states are called number states, because |n〉 contains exactly
n photons. They are also called number eigenstates and Fock states.

To this basis, the number operator is associated, which is defined by

N =
∞
∑

n=0

n|n〉〈n. (7.1)

http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_6
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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Then N has eigenvectors |n〉 with eigenvalues n and the spectrum of N is given by
the set of naturals, σ(N) = {0, 1, 2, . . .}.

In this mathematical context, a generic coherent state (or Glauber state) is
expressed as follows:

|α〉 = e− 1
2 |α|2

∞
∑

n=0

αn

√
n! |n〉. (7.2)

where α is a complex amplitude whose meaning is

|α|2 = average number of photons in the state |α〉. (7.3)

Therefore, according to (7.2), to each point α of the complex plane C, a coherent
state is associated whose physical meaning is given by (7.3). Thus, the more α moves
away from the origin of C, the higher becomes the photonic intensity associated to
the state |α〉.

The set of coherent states will be indicated by

G = {|α〉, α ∈ C} : coherent states (7.4)

and then the notation |α〉 ∈ G will be used to distinguish one of these specific kets
from the other numerous kets that we will meet. It is interesting to observe that letting
α = 0 in (7.2) we obtain

|α〉α=0 = |n〉n=0 (7.5)

that is, with α = 0 we obtain the state |0〉 of the Fock basis, called ground state.

Remark The notations of Quantum Mechanics are powerful, but sometimes subtle.
In this context, it is important to distinguish the complex number α ∈ C from the
coherent state |α〉 ∈ G, which is a ket of the infinite dimensional Hilbert space H,
generated by the basis { |n〉|n = 0, 1, 2, . . . }. The fundamental relation (7.2) is a
mapping C → G, where G ⊂ H. For instance, α = 3 − i4 ∈ C is mapped onto the
coherent state |3 − i4〉 ∈ G, whose full expression is

|3 − i4〉 = exp

[

−1

2
|3 − i4|2

] ∞
∑

n=0

(3 − i4)n

√
n

|n〉.

7.2.2 Link with Poisson’s Regime

To find the relationship between the representation of a coherent state |α〉 ∈ G and
Poisson’s regime, we set up a quantum measurement (Fig. 7.2) with the number
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Fig. 7.2 Quantum
measurement in a Hilbert
space of the coherent state
|α〉 with an observable given
by the number operator N .
The elementary projectors
|n〉〈n| are formed by the
number states |n〉

N
m ∈ (N)

H •
|

|n n|

operator N , interpreted as an observable (see Sect. 3.6). The outcome m of the
measurement gives the number of photons of the quantum system in the state |α〉.
Then the probability that the measurement gives the outcome m = i turns out to be

P[m = i|α] = |〈i|α〉|2 =
∣

∣

∣

∣

∣

∞
∑

n=0

e− 1
2 |α|2 αn

√
n! 〈i|n〉

∣

∣

∣

∣

∣

2

=
∣

∣

∣

∣

e− 1
2 |α|2 αi

√
i!
∣

∣

∣

∣

2

= e−|α|2 |α|2i

i! .

(7.6)

Therefore,

P[m = i|α] = e−Nα
(Nα)i

i! with Nα = |α|2. (7.7)

It can also be verified that the average of m is

E[m|α] = 〈α|N |α〉 = |α|2 = Nα. (7.8)

In conclusion, the outcome of the measurement m is a Poisson random variable with
average Nα = |α|2.

7.2.3 Degree of Superposition of Coherent States

It is important to evaluate the degree of superposition of two distinct coherent states
|α〉 and |β〉, within the geometry given by the inner product. We have

Proposition 7.1 The inner product of two coherent states is given by

〈α|β〉 = e− 1
2 (|α|2+|β|2−2α∗β). (7.9)

Hence two distinct coherent states are never orthogonal (Fig.7.3).

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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Fig. 7.3 Two distinct coherent states are never orthogonal: 〈α|β〉 
= 0

In fact, from (7.2) we have

〈α|β〉 =e− 1
2 (|α|2+|β|2)

∞
∑

m=0

∞
∑

n=0

(α∗)mβn

√
m!n! 〈m|n〉

=e− 1
2 (|α|2+|β|2)

∞
∑

m=0

(α∗β)m

m! = e− 1
2 (|α|2+|β|2)eα∗β.

and (7.9) follows �

The (quadratic) degree of superposition of two states is expressed by

|X|2 := |〈α|β〉|2 = e−|α−β|2 , |α〉, |β〉 ∈ G (7.10)

where X = 〈α|β〉.

7.2.4 Tensor Product of Coherent States ⇓

The tensor product of two or more coherent states will be particularly relevant to
PPM modulation and in general for vector modulations.

Let |α〉 be the tensor product of two coherent states

|α〉 = |α1〉 ⊗ |α2〉 , |α1〉, |α2〉 ∈ G.

Then, for each of the two factors, the previous result holds: To the state |αi〉 a Poisson
variable mi can be associated, with average E[mi| αi] = |αi|2. The global number of
photons m associated to the composite state |α〉 is given by the sum of the two random
variables m = m1 + m2, where m1 and m2 are statistically independent. Therefore,
m is again a Poisson variable with average E[m| α] = E[m1| α1] + E[m2| α2] =
|α1|2 +|α2|2. This result can be easily generalized to the tensor product of N Glauber
states

|α〉 = |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αN 〉
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and we find, in particular, that the total number of photons m = m1 + m2 + · · · mN

associated to the composite state |α〉 is still a Poisson variable with average given by

E[m| α] = |α1|2 + |α2|2 + · · · + |αN |2. (7.11)

7.2.5 Coherent States as Gaussian States ∇

In Chap. 11, in the framework of continuous quantum variables, coherent states will
be defined as eigenkets of the annihilator operator, acting in an infinite dimensional
bosonic Hilbert space H. Then, from this abstract definition, the infinite dimensional
representation (7.2) is obtained. An alternative representation is considered in the
so-called phase space, where a quantum state, pure or mixed, is represented by its
Wigner function W (x, y), a real function of two real variables, having properties
similar to the joint probability density of two continuous random variables. Thus we
pass from an infinite dimensional Hilbert space H to the two-dimensional real space
R

2, with notable advantages.
The Wigner function W (x, y) allows us to define Gaussian quantum states, as the

quantum states having as Wigner function the Gaussian bivariate form

W (x, y) = 1

2π
√

det V
exp

[

−1

2

V22(x − q)2 + V11(y − p)2 − 2V12(x − q)(y − p)

det V

]

(7.12)

where Vij are the covariances and q , p are the mean values (det V = V11V22 −
V 2

12). Hence a Gaussian state is completely specified by the mean vector and by the
covariance matrix

X̄ =
[

q
p

]

, V =
[

V11 V12
V12 V22

]

. (7.13)

To emphasize this property, a Gaussian state in general represented by a density
operator is symbolized as ρ(X̄, V ).

We shall see that a coherent state |α〉 is a special case of Gaussian states with the
simple specification

X̄ =
[

q
p

]

=
[�α

α

]

, V =
[

1 0
0 1

]

= I2. (7.14)

Then the Wigner function of a coherent state results in

W (x, y) = 1

2π
exp

[

−1

2

(

(x − q)2 + (y − p)2
)

]

(7.15)

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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Fig. 7.4 Contour level of
the Wigner function W (x, y)
of a pure coherent state |α〉
(in red). The mean vector
(q̄, p̄) = (�α,α) gives the
center of the contour

and in the x, y plane it is often represented by a contour level obtained by the equation
W (x, y) = L, where L > 0 is a reference level. For a coherent state, this contour is
a circle centered at (q, p), as shown in Fig. 7.4.

Problem 7.1 � Prove that the inner product X = 〈α|β〉 of two coherent states is
real if and only if arg α − arg β = 0 or arg α − arg β = ±π .

Problem 7.2 �� The map (7.2) gives for any α ∈ C a coherent state |α〉. Given
|α〉 is it possible to find the complex number α?

Problem 7.3 �� Examine the effect of the introduction of a phasor z = eiϕ into
the complex parameter α that identifies the state |α〉, that is, evaluate |eiϕα〉.
Problem 7.4 ��� Let |α〉 = |α1〉⊗|α2〉be a two-mode coherent states. The number
of photons mi associated to each component state is a Poisson variable with mean
Λi = |αi|2. Considering that m1 and m2 are statistically independent (see Sect. 3.10),
prove that the total number of photons m = m1 + m2 is a Poisson variable.

Hint: use the characteristic function given by (4.23).

7.3 Constellations of Coherent States

We recall that the target of a quantum communications system is the transmission of
a sequence of classical symbols {An} through a sequence of quantum states {|γAn〉},
which in practice are often coherent states. Thus, in general, with a K-ary alphabet
A = {0, 1, . . . , K − 1}, Alice must be able to prepare a constellation of K coherent
states

S = {|γ0〉, |γ1〉, . . . , |γK−1〉} (7.16)

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_4
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to realize the c → q mapping

An ∈ A → |γAn〉 ∈ S,

which must be bijective. This operation may be called quantum encoding.
Now a problem to investigate is the choice of the constellation, of course, with

the purpose of realizing a high-performance quantum transmission system. One way
to decide about the choice, as we shall see in this section, is to get the “inspiration”
from the optical transmission systems that we shall briefly call classical systems.
This approach has also the advantage of allowing us a comparison between the
performances of two kinds of systems, classical and quantum.

In Sect. 4.4, we have seen that optical communications use two kinds of mod-
ulations, incoherent and coherent; but in the present context, the right comparison
is with classical coherent modulations which make use just of a coherent radiation
emitted by a laser, as done in quantum communications. A classical K-ary coherent
modulation, in general nonlinear, is specified by K complex waveforms

γ0(t), γ1(t), . . . , γK−1(t) (7.17)

of duration limited1 to the signaling interval [0, T ], with the rule that if An ∈ A is
the nth source symbol, the modulator forms a signal with complex envelope2 [4]

c(t) = γAn(t) 0 ≤ t < T .

With a sequence of symbols {An}, the complete expression of the complex envelope
becomes

c(t) =
+∞
∑

n=−∞
γAn(t − nT) , (7.18)

from which a real modulated signal is obtained as

v(t) = � c(t) ei2πνt (7.19)

where ν is the carrier optical frequency. The comparison between a classical modu-
lator and a quantum encoder is depicted in Fig. 7.5.

To proceed from the classical system, characterized by the waveforms γi(t), i ∈
A, to the quantum system with coherent state constellation |γi〉, i ∈ A, we must
“remove” in some way the time dependence, which is not present in coherent states.
For some kinds of modulations the solution is straightforward; for others, it is less
obvious.

1 Some classical coherent modulations use a duration greater than one symbol period.
2 See Sect. 4.7 for the definition of complex envelope.

http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_4
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Fig. 7.5 Comparison of a classical modulator (left) with a quantum encoder

7.3.1 State Constellations from Scalar Modulations

In some modulations, like PSK and QAM, the waveforms (7.17) are of the form

γi(t) = γi h(t) , i ∈ A = {0, 1, . . . , K − 1}, (7.20)

where h(t) is a real pulse; for example, rectangular between 0 and T , and γi are com-
plex numbers. The complex envelope c(t) of the modulated signal is then produced
by an encoder, mapping the symbols i ∈ A into the complex symbols γi, and by an
interpolator with impulse response h(t). The resulting complex envelope becomes

c(t) =
+∞
∑

n=−∞
Cn h(t − nT) , (7.21)

where {Cn} is the sequence of complex symbols obtained by the mapping An = i →
Cn = γi (Fig. 7.6).

In this way, a constellation of complex symbols is identified

C = {γ0, γ1, . . . , γK−1} , γi ∈ C (7.22)

from which one can form the constellation of coherent states

S = {|γ0〉, |γ1〉, . . . , |γK−1〉} , |γi〉 ∈ G (7.23)

that are in a one-to-one correspondence with the constellation of complex symbols
C (Fig. 7.7).

Fig. 7.6 Scheme of a classical scalar modulator. The encoder maps the source symbols An ∈ A

into the complex symbols Cn ∈ C. The interpolator maps the complex symbols into the complex
envelope c(t)
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Fig. 7.7 Constellation of complex symbols C and corresponding constellation of coherent states
S: each complex symbol γ ∈ C is mapped into a coherent state |γ 〉 ∈ G

7.3.2 State Constellations from Vector Modulations ⇓

The previous procedure, consisting in directly creating the constellation of coherent
states from the constellation of symbols, is not always possible, because in general
the K waveforms (7.17) cannot be expressed in the form (7.20). To remove the time
dependence, we can proceed in the following way [4]. We take a basis of functions,
h1(t), . . . , hN (t), orthonormal in the interval [0, T), where, in general, N ≤ K , and
we expand the waveforms (7.17) on this basis, namely

γi(t) =
N
∑

j=1

γij hj(t) , i = 0, 1, . . . , K − 1 (7.24a)

where the coefficients are given by

γij =
∫ T

0
γi(t) h∗

j (t) d t , j = 1, . . . , N . (7.24b)

The vectors of the complex coefficients

γi = (γi1, . . . , γiN ) , i = 0, 1, . . . , K − 1 (7.25)

uniquely identify the waveform γi(t).
The classical modulator can be implemented as in Fig. 7.8, where the encoder

makes the map

An = i ∈ A → Cn = γi ∈ C
N
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Fig. 7.8 Scheme of a classical vector modulator. The encoder maps the source symbols An ∈ A

into a vector of complex symbols Cn = [Cn1, . . . , Cni, . . . , CnN ]T. The bank of interpolators maps
the vectors Cn into the complex envelope c(t)

with

Cn = [Cn1, . . . , CnN ] , γi = [γi1, . . . , γiN ].

Then from the vector Cn, a bank of interpolators forms the complex envelope c(t) of
the modulated signal, as

c(t) =
∞
∑

n=−∞

N
∑

i=1

Cni hi(t − nT). (7.26)

This generalizes the scalar modulation, which is obtained with N = 1.
The general procedure just described allows us to identify a constellation of com-

plex vectors {γi, i = 0, . . . , K − 1} with γi ∈ C
N . Now, to introduce the coherent

states, we must consider a composite Hilbert space, given by the tensor product
H = H0 ⊗ H0 ⊗ · · · ⊗ H0 of N equal Hilbert spaces H0. In this composite space,
the states become the tensor product of coherent states and, through (7.25), to each
symbol i ∈ A the tensor product of coherent states is associated

|γi〉 = |γi1〉 ⊗ |γi2〉 ⊗ · · · ⊗ |γiN 〉 (7.27)

that, with i varying in A, forms the desired constellation of coherent states. In the
context of continuous variables of Chap. 11, the tensor product of N coherent states
(7.27) is called N-mode coherent state.

An example in which we use this method of forming a composite constellation
of coherent states will be seen in PPM modulation developed in Sect. 7.13 (see also
Problem 7.5).

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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7.3.3 Construction of a Symmetric Constellation

An innovative way to obtain a state constellation is based on the geometrically uni-
form symmetry (GUS), introduced in Sect. 5.13. To this end, it is sufficient finding a
unitary operator S having the property of a symmetry operator S

SK = IH (7.28)

that is, S must be a K th root of the identity operator. Then, fixing an arbitrary state
|γ0〉 ∈ H, one gets a K-ary constellation of states as

|γi〉 = Si |γ0〉 , i = 0, 1, . . . , K − 1. (7.29)

More generally, one can fix an arbitrary density operator ρ0 acting on the Hilbert
space H to get a constellation of density operators as (see (5.123))

ρi = Si ρ0 (Si)∗ , i = 0, 1, . . . , K − 1. (7.30)

In this way, we can generate infinitely many constellations having the very useful
property represented by the GUS. After the choice of S and of the reference state
|γ0〉 or ρ0, one achieves “interesting practical properties” for the quantum commu-
nications system based on the corresponding constellation. A nontrivial problem is
finding a unitary operator with the property (7.28), especially in the case of infinite
dimensions, as is for coherent states.

Problem 7.5 �� Show that the PPM must be considered a vector modulation. Find
explicitly the waveform γi(t) and the vector γi of the coefficients.

Problem 7.6 �� The n-DFT matrix W[n] is unitary and has the property W n[n] =
In. Then it allows for the construction of n-ary constellations in H = C

n. Find a
quaternary constellation using S = W[4] and reference state |γ0〉 = [1, 1, 0, 0]T.
Also prove that the four states are linearly independent.

7.4 Parameters in a Constellation of Coherent States

In the previous section, we have investigated how to form interesting constellations
of coherent states for quantum communications systems. In this section, we want to
clarify how a given constellation format can be parametrized to modify the photonic
flux therein, expressed, e.g., in terms of the number of signal photons per symbol. In
fact, we are interested in the evaluation of the system performance in a given range
of this parameter.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Note that the constellation of coherent states S given by (7.23) can be structured
in matrix form as

Γ = [|γ0〉, |γ1〉, . . . , |γK−1〉] (7.31)

and becomes the state matrix. In practical modulation formats (that will be considered
further on), the states of S are always independent (in the sense of vector spaces),
and then the state matrix has always full rank, i.e., rank(Γ ) = K . From the state
matrix, we obtain the Gram’s matrix, a K × K matrix formed by the inner products
between the couples of states

G = Γ ∗Γ = [〈γi|γj〉
]

, |γi〉, |γj〉 ∈ G

that can be calculated using (7.9). Also G has always full rank and, because the states
are not orthogonal, all the entries of G are different from zero.

Even in the N-dimensional case, when the states are given by the tensor product
of N component states (see (7.27)), to calculate the state superposition, we evaluate
the inner products

〈γi|γj〉 = 〈γi1|γj1〉 〈γi2|γj2〉 · · · 〈γiN |γjN 〉. (7.32)

In this relation we have borne in mind that the inner product of states, given by
a tensor product, is obtained as a product of the inner products of the component
states (see relation (2.100)). Each of the inner products of the component states is
evaluated from (7.9).

7.4.1 Number of Signal Photons in a Constellation

From (7.8) we have that the average number of photons associated to the coherent
state |γ 〉 ∈ G is given by the squared norm of the complex amplitude γ

Nγ = |γ |2.

In a constellation of coherent states, we introduce the signal photons per symbol.
To this end, we observe that the generic symbol of the constellation, C ∈ C, must
be considered as a random variable with probability P[C = γ ], γ ∈ C, and also
the average number of photons NC associated to C becomes a random variable; the
statistical average of NC ,

Ns = E[NC] =
∑

γ∈C
P[C = γ ]Nγ =

∑

γ∈C
P[C = γ ]|γ |2, (7.33)

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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defines the average number of photons per symbol, briefly number of signal photons
per symbol. Now, given the one-to-one correspondence A = i ⇔ C = γi, the
probability of these two events turns out to be equal to the prior probability qi.
Therefore, we have

Ns =
∑

i∈A
qi|γi|2 (photons/symbol).

In particular, with equally likely symbols, the number of signal photons per symbol
becomes

Ns = 1

K

∑

i∈A
|γi|2 = 1

K

∑

γ∈C
|γ |2. (7.34)

Finally, remembering that, with equiprobable symbols, there are log2 K bit/symbol,
we find that the number of signal photons per bit is given by

NR = Ns

log2 K
(photons/bit). (7.35)

⇓ We have seen above that in an N-dimensional constellation C, whose states
are N-mode coherent states, |γ 〉 = |γ1〉 ⊗ |γ2〉 ⊗ . . . ⊗ |γN 〉, the average number of
photons associated to the composite state |γ 〉 results in (see (7.11))

Nγ = |γ1|2 + |γ2|2 + · · · + |γN |2 (7.36)

where γ = [γ1, γ2, . . . , γN ]. Consequently, the number of signal photons per symbol
must be evaluated according to

Ns =
∑

γ∈C
P[C = γ ] Nγ (7.37)

with Nγ given by (7.36), and the sum is extended to the N-dimensional constellation.
Of course, with equiprobable symbols we have P[C = γ ] = 1/K and the number of
signal photons per bit is still given by (7.35).

Sensitivity of a receiver. In telecommunications an important parameter is the sen-
sitivity, which is defined as the minimum value of a parameter of the receiver that
guarantees a given value of the error probability Pe, typically Pe = 10−9. In optical
communications (classical or quantum), the parameter is often given by the number
of photons per bit NR. Thus we say, e.g., that a quantum receiver has the sensitivity
of NR = 11.5 photons/bit.
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7.4.2 Scale Factor and Shape Factor of a Constellation

The constellation (7.22) of complex symbolsC, from which we can directly obtain the
constellation (7.23) of coherent states S, contains a scale factor linked to the photonic
intensity, but modulation formats are usually specified in a normalized form. In the
evaluation of a system’s performance, it is worthwhile to underline this aspect by
expressing the symbols γi in the form γ̄iΔ, where γ̄i are normalized symbols and Δ

is the scale factor. Then it is convenient to introduce a normalized constellation

C0 = {γ̄0, γ̄1, . . . , γ̄K−1}

from which one obtains the scaled constellation as C = {γ̄0Δ, γ̄1Δ, . . . , γ̄K−1Δ}
and hence the constellation of coherent states as

S = {|γ̄0Δ〉, |γ̄1Δ〉, . . . , |γ̄K−1Δ〉}.

The scale factor appears in the number of signal photons per symbol, given by (7.34),
which can be written in the form

Ns = 1

K

∑

γ∈C
|γ |2 = Δ2 1

K

∑

γ̄∈C0

|γ̄ |2 = μKΔ2 (7.38)

where

μK := 1

K

∑

γ̄∈C0

|γ̄ |2 (7.39)

is a characteristic parameter of the constellation, which we call shape factor. For
example, in the PSK modulation, the normalized constellation consists of K points
on the unit circle

C0 = {ei2πm/K | m = 0, 1, . . . , K − 1}

whereas the scaled constellation is given by K points on the circle of radius Δ

C = {Δ ei2πm/K | m = 0, 1, . . . , K − 1}.

In this case, the shape factor is μK = 1. An example where μK 
= 1 is given by the
QAM modulation.
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7.4.3 Summary of Constellation Formats

To conclude these two sections on constellations of coherent states, it is convenient
to recall that the target of a quantum communications system is the transmission
of a classical information, encoded in a classical symbol sequence {An}, through a
sequence of quantum states {|γAn〉}, as illustrated in Fig. 7.1. Thus, a key operation is
the c → q mapping An → |γAn〉. This finally explains why we have constellations
in both classical and quantum domain.

Here, we wish to summarize the constellations introduced above which are all
useful to proceed on. Starting from a symbol alphabet, which was indicated in the
form A = {0, 1, . . . , K − 1}, we have introduced:

• a constellation of normalized complex symbols C0 = {γ̄0, γ̄1, . . . , γ̄K−1},
• a constellation of scaled complex symbolsC = {γ0, γ1, . . . , γK−1}, with γi = γ̄0Δ,

where Δ is a scale factor,
• a constellation of coherent states S = {|γ0〉, |γ1〉, . . . , |γK−1〉}, where |γi〉 is the

coherent state uniquely determined by the scaled complex symbol γi, according
to relation (7.2).

Note that C0 and C live in the field of complex numbers C, while S lives in the infinite
dimensional Hilbert space H.

Problem 7.7 �� ∇ Find the shape factor μk of the 16-QAM constellation (see
Fig. 7.28).

7.5 Theory of Classical Optical Systems

We want to compare the performance of a quantum communications system with that
of the corresponding classical communications system, i.e., not based on quantum
measurements, but on an optical detection (see semiclassical detection in Chap. 4).

In the formulation of the transmitter and the receiver, it is convenient to introduce
two distinct schemes: One working at the level of instantaneous optical power and
the other one working on the complex envelope. In fact in the semiclassical theory of
an optical system, both the optical power and the complex envelope must be jointly
considered, as remarked in Sect. 4.7.

7.5.1 Scheme for Instantaneous Optical Powers

We recall that a monochromatic radiation at the optical frequency ν can be modeled
as an instantaneous optical power, which is formed by the energy quanta of size hν

and has the impulsive expression

http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_4
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Fig. 7.9 Scheme of a classical modulator and demodulator for the instantaneous optical power. In
the figure, the initial encoder An → Cn and the final decoder ̂Cn → ̂An are omitted

p(t) =
∑

k

(hν) δ(t − tk) (7.40)

where the arrival instants {tk} are represented by a doubly stochastic Poisson process,
specified by its random intensity λ(t).

Referring to digital systems, the information to be transmitted is first conveyed in
a sequence of symbols {An} , An ∈ {0, 1, . . . , K −1} and then, for convenience, in a
sequence of complex symbols {Cn} belonging to a given (normalized) constellation
C0. Then the first part of the transmitter is an encoder, which provides the map
An → Cn. The task of a digital modulator is to modify the laser beam in each
symbol period (nT , nT + T) in dependence of the symbol Cn falling in this period.3

If there are no further processing, as we suppose, the output of the modulator gives
the instantaneous transmitted power pT (t), as shown in Fig. 7.9.

In the receiver, the incoming instantaneous power pR(t), an attenuated version of
pT (t), is combined with the instantaneous power pL(t) of a local laser tuned at the
same frequency ν as the laser in the transmitter (homodyne detection) or at a different
frequency (etherodyne detection). The task of the demodulator is the production of
two distinct instantaneous powers pa(t) and pb(t) to feed two photon counters, which
count the photon numbers in each symbol period as

na = 1

hν

∫ nT+T

nT
pa(t) d t , nb = 1

hν

∫ nT+T

nT
pb(t) d t.

The reason of this double path is due to the fact that na and nb are real (integer) and
the receiver has to give an estimated version {̂Cn} of the complex sequence {Cn}.

In the case of binary systems, where the symbols Cn are real, the double path is
not necessary and the detection is based only on a single photon counting. In the
following, for brevity, we will consider only homodyne detection.

3 The practical implementation of this operation will be seen in Sect. 9.2.

http://dx.doi.org/10.1007/978-3-319-15600-2_9
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7.5.2 Scheme for Complex Envelopes

In an optical system, the complex envelope V (t) (denoted by cv(t) in Sect. 4.7)
contains all the information useful both for the signal analysis and the statistical
analysis. In fact from V (t), we can obtain the signal v(t), present in the form of
electric field, as

v(t) = �V (t) ei 2π ν t . (7.41)

Also, the average power P(t) is proportional to |V (t)|2 and, by appropriate normal-
ization of the electric field, it can be directly written as

P(t) = |V (t)|2 . (7.42)

On the other hand, the average power is connected to the instantaneous power, mod-
eled as a doubly stochastic filtered Poisson process, through Campbell’s theorem
according to

P(t) = E[p(t)|λ] = (hν) λ(t) , (7.43)

where E[·|λ] denotes the conditional expectation “with a given λ(t).” This holds for
the powers pT (t), pR(t), pa(t), and pb(t) in the scheme of Fig. 7.9. The fundamental
remark is that from the complex envelope V (t), we can obtain the intensity λ(t)
which gives the full statistical description of the doubly stochastic Poisson processes
involved.

At the level of complex envelope, the modulator scheme is essentially the one
anticipated in Fig. 7.6, where, starting from the complex sequence {Cn}, the complex
envelope of the modulated signal is obtained with an interpolator according to (7.21),
that is,

VT (t) =
+∞
∑

n=−∞
CnV0 h(t − nT) (7.44)

where V0 is the amplitude of the carrier produced by the laser. This corresponds to
the transmitter instantaneous power pT (t).

The scheme of the demodulator is extremely simple. To the incoming complex
envelope VR(t), corresponding to the received instantaneous power pR(t), the ampli-
tude VL is added for the upper path and the amplitude i VL to the lower path to
get

Va(t) = VR(t) + VL, Vb(t) = VR(t) + i VL (7.45)

as shown in Fig. 7.10.

http://dx.doi.org/10.1007/978-3-319-15600-2_4
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Fig. 7.10 Scheme of a classical modulator and demodulator for the complex envelopes

In the following, we make the assumption that the interpolator impulse response
h(t) is unitary in (0, T), so that VT (t) is simplified as

VT (t) = C0 V0, 0 < t < T . (7.46)

Correspondingly (7.45) become

Va(t) = C0 VR + VL, Vb(t) = C0 VR + iVL (7.47)

where VR is the amplitude of the received carrier.

7.5.3 Scheme for Signals. Quadrature Modulator

The scheme for the complex envelope is sufficient for the analysis of an optical
system. Now we consider the scheme for the signal, which is more detailed and may
have interest for the implementation of the system.

Signals are obtained from complex envelopes according to relation (7.41). Letting
Cn = An + iBn, from (7.44); we find that the modulated signal results in

vT (t) = �
+∞
∑

n=−∞
(An + iBn) h(t − nT) V0 e i 2πνt

=
+∞
∑

n=−∞
[AnV0 h(t − nT) cos 2πν t − BnV0 h(t − nT) sin 2πν t] . (7.48)

The interpretation of these relations leads to the scheme of Fig. 7.11, called quadra-
ture modulator. The carrier VT cos 2πνt is produced by a laser tuned at the fre-
quency ν and the quadrature carrier −VT sin 2πνt is obtained by shifting the carrier
VT cos 2πνt.
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Fig. 7.11 Implementation of a coherent optical system based on a quadrature modulator. On the
left the transmitter and on the right the homodyne receiver

With the simplification of (7.46), (7.48) gives

vT (t) = A0V0 cos 2πνt − B0V0 sin 2πνt , 0 < t < T . (7.49)

At reception, the modulated signal becomes

vR(t) = A0VR cos 2πνt − B0VR sin 2πνt , 0 < t < T , (7.50)

and the constant complex envelopes VL and i VL give

� VLei 2π ν t = VL cos 2πνt , � i VLei 2π ν t = −VL sin 2πνt.

These carriers are provided by a local laser, tuned with the transmission laser (homo-
dyne reception). Finally, (7.47) gives for 0 < t < T

va(t) = � [C0VR + VL] ei2πνt = (A0VR + VL) cos 2πνt − B0VR sin 2πνt

vb(t) = � [C0VR + i VL)] ei2πνt = A0VR cos 2πνt − (B0VR + VL) sin 2πνt.
(7.51)

These signals feed the photon counters.

7.5.4 Photon Counting and Detection

The count in the interval (0, T ] yields two values, na and nb, from which a decision
must be taken on the transmitted symbol C0; na and nb are conditioned Poisson
variables and therefore characterized by their averages n̄a(C0) := E[na|C0] and
n̄b(C0) := E[nb|C0], the condition being “given a transmitted symbol C0.” These
averages are obtained dividing the corresponding energies in a symbol period T by
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the quantum hν. Considering that the complex envelopes are constant in (0, T), we
have Ea = PaT = |Va|2T and Eb = PbT = |Vb|2T , and then

n̄a(C0) = H|C0 VR + VL|2 = H
[

(A0VR + VL)2 + (B0VR)2
]

n̄b(C0) = H|C0 VR + i VL|2 = H
[

(A0VR)2 + (B0VR + VL)2
]

(7.52)

where H = T/(hν).
At this point, we assume that the local carrier has an amplitude VL much greater

than VR, which allows us to get the following approximations

n̄(A0) = H(2A0VRVL + V 2
L ) , n̄(B0) = H(2B0VRVL + V 2

L ), (7.53a)

where now the upper counting depends only on A0 and the lower counting only on B0.
The averages can be expressed in “numbers” by letting NL = HV 2

L and NR = HV 2
R

to get

n̄(A0) = 2
√

NL NR A0 + NL , n̄(B0) = 2
√

NL NR B0 + NL. (7.53b)

The numbers of photons na and nb can be decomposed as

na = n̄(A0) + ua = A0 U0 + NL + ua

nb = n̄(B0) + ub = B0 U0 + NL + ub
, U0 := 2

√

NL NR (7.54)

where

• U0 A0 and U0 B0 are the useful signals,
• NL is a bias,
• ua and ub are the shot noises.

We compose for convenience the two countings into a complex one to get

z0 = na + inb = C0 U0 + NL + i NL + ua + iub (7.55)

which is the standard form of the “signal at the decision point” in a quadrature
modulator. Note that

n̄(C0) := n̄(A0) + i n̄(B0) = C0 U0 + NL(1 + i) , C0 ∈ C0

generates a constellation of “received values”, with center the point NL(1 + i) of the
complex plane C. The constellation is illustrated in Fig. 7.12 in the case of 8-PSK.
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Fig. 7.12 Constellation of
“received values” in the
complex plane of optical
8-PSK. The points of the
constellations are given
by NL(1 + i) + U0 ei 2πk/8 ,

k = 0, 1 . . . , 7

NL

NL

NL +U0NL +U0

7.5.5 Correct Decision Probability

In principle, it is possible to evaluate the correct decision probability Pc = P[̂C0 = C0]
from the statistical description of the integer random variables na and nb. These vari-
ables can be considered statistically independent, and therefore described by two
conditioned Poisson distributions pna(k|A0) and pnb(k|B0), which in turn are speci-
fied by their averages n̄(A0) and n̄(B0) given by (7.53). The preliminary step is the
choice of the decision regions {R(γ )|γ ∈ C0}, which has to form a partition of the set
of integer pairs {(k1, k2)|k1, k2 = 0, 1, 2, . . .}. Then we have the decision criterion

̂C0 = γ if (na, nb) ∈ R(γ ). (7.56)

Correspondingly, the transition probabilities are given by

p(γ ′|γ ) := P[Ĉ0 = γ ′| C0 = γ ]
∑

(k1,k2)∈R(γ ′)
pna(k1|�γ ) pnb(k2|γ ) (7.57)

and the correct decision probability, with equally likely symbols, by

Pc = 1

K

∑

γ∈C
p(γ |γ ). (7.58)

The decision regions should be optimized to maximize Pc.
This procedure will be applied in the next chapter (Sect. 8.6) to a specific case

(a BPSK system). In general, it is cumbersome and does not give readable results
because only numerical evaluations are possible. The alternative is the Gaussian
approximation, where it is assumed that the photon numbers na and nb are inde-
pendent Gaussian random variables. This allows us to simplify the analysis and to
arrive at very simple results.

Note that na and nb are Poisson random variables and it may appear to be strange
that discrete random variables, described by (mass) probability distributions, are

http://dx.doi.org/10.1007/978-3-319-15600-2_8
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approximated by continuous random variables, described by probability densities.
The approximation does not work in counting, but in the evaluation of the transition
probabilities and of the error probability. In Sect. 8.6, we will compare the exact
evaluation of probabilities, obtained with the Poisson statistics, and the approximate
evaluation, obtained with the Gaussian assumption. We will see that the Gaussian
approximation gives a very accurate evaluation of the exact probabilities. This con-
clusion holds in general in the presence of a strong photonic intensity [5] (here
ensured by the assumption VL � V0).

With the Gaussian approximation, na and nb become specified by their conditional
means n(A0) := E[n|A0] and n(B0) := E[nb|B0] and by their variances σ 2(A0) =
n(A0) and σ 2(B0) = n(B0). For the latter, a further simplification4 can be introduced
by neglecting in (7.53) 2A0

√
NR NL and 2B0

√
NR NL with respect to NL , so that

they become equal, σ 2
n := σ 2(B0) = σ 2(B0) = NL , and independent of the symbols.

Then their joint probability density results in

fna(a|A0) fnb(a|B0) = 1

2πσ 2
n

exp

[

− (a − n(A0))
2 + (b − n(B0))

2

2σ 2
n

]

= 1

σn
φ

(

a − n(A0)

σn

)

1

σn
φ

(

b − n(B0)

σn

)

. (7.59)

The decision regions {R(γ ) | γ ∈ C0} become a partition of the complex plane. Then
the transition probabilities are given by

pc(γ
′|γ ) := P[Ĉ0 = γ ′| C0 = γ ] =

∫

R(γ
′
)

fna(a|�γ ) fnb(a|γ ) da db. (7.60)

The correct decision probability Pc, with equally likely symbols, is still given
by (7.58).

The above probabilities depend only on the SNR, which results in

Λ = U2
0

σ 2
n

= 4 NR (7.61)

and is related to the number of signal photons contained in the received power
PR = V 2

R . In fact, considering that VR(t) = C0 VR, the received power is given by
PR = |C0|2V 2

R , and therefore the number of signal photons associated to the symbol
C0 is |C0|2HV 2

R = |C0|2 NR. This can be related to the number of signal photons
per symbol Ns as (see (7.34))

Ns = 1

K

∑

γ∈C0

|γ |2 NR = μK NR (7.62)

4 This simplification is not possible for the means given by (7.53) because they represent the useful
signal. Otherwise the information on symbols would be lost.

http://dx.doi.org/10.1007/978-3-319-15600-2_8
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where μK is the shape factor of the constellation (see (7.39)). Then Λ = 4 Ns/μK .
As we will see, in the cases of interest, with an optimized choice of the decision
region, the error probability is a function of the SNR Λ expressed by function Q(x)
(see Problem 7.8).

The above theory on classical optical systems is quite long and contains a lot of
relations, but the net result for the evaluation of the performance is extremely simple.

Proposition 7.2 In a classical optical system, where the local carrier has an ampli-
tude VL much greater than the received carrier amplitude VR, the shot noise may
be considered Gaussian. With equally likely symbols and optimized decision regions
{R(γ ), γ ∈ C0}, the minimum error probability turns out to be a simple function of
the SNR

Λ = 4Ns

μK
(7.63)

expressed through the complementary normalized Gaussian distribution Q(x). In
(7.63) Ns is the number of signal photons per symbol and μK is shape factor of the
constellation.

Problem 7.8 � Consider the 4-QAM (which is equivalent to 4-PSK) where the
normalized constellation is C0 = {γ = ±1 + ±i} and the constellation of received
values is given by

{(±1 + ±i)U0 + (1 + i)NL}.

Find the optimal decision regions and prove that the minimum error probability Pc

is given by Pc = 1 −
(

1 − Q(
√

Λ)2
)

with Λ = 4NR.

7.6 Analysis of Classical Optical Binary Systems

In classical optical systems, the transmitted symbol C0 has in general a complex
format; but in the binary case, without restrictions, we can assume a real format.
Then the general schemes of the previous section (Figs. 7.9, 7.10, and 7.11) are
simplified because the double path is reduced to a single path.

For the sake of comparison with other schemes, it is convenient to express the
system performance (error probability) in terms of the average number of photons
per bit NR, which is given in general by

NR = q0 NR(0) + q1 NR(1) , q0 + q1 = 1

where qi = P[A0 = i] are the a priori probabilities and NR(i) = E[n|A0 = i] the
average number of photons associated to the symbol A0 = i. Usually we will consider
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equiprobable symbols, so that the average number of photon per bit becomes

NR = 1

2
NR(0) + 1

2
NR(1). (7.64)

In the following analysis, we will use the notations for signals and complex
envelopes:

• v0(t) V0 optical carrier at the transmitter,
• vT (t) VT (t) transmitted optical signal,
• vR(t) VR(t) received optical signal,
• vL(t) VL local optical carrier at the reception.

We assume that the channel is ideal, so that

vR(t) = vT (t).

7.6.1 Binary System with Incoherent Detection
(OOK Modulation)

In the classical formulation, a monochromatic wave at frequency ν emitted by a laser
can be represented by a sinusoidal signal

v0(t) = V0 cos 2πνt (7.65)

where the amplitude V0 gives the optical power as (see Sect. 7.5)

P = V 2
0 . (7.66)

The simplest optical communications system uses amplitude modulation (OOK)
and incoherent detection, as shown in Fig. 7.13. The OOK modulator is a special
case of the general modulator of Fig. 7.10 with the encoding mapping the identity,
A0 → C0 = A0, which gives the modulated signal

vT (t) = �C0 V0 ei 2πν t = A0 V0 cos 2πνt , 0 < t < T .

In practice, in the symbol period (0, T) the transmitter associates a zero field to the
symbol A0 = 0 and the field V0 cos 2πνt to the symbol A0 = 1.

Figure 7.14 shows a sequence of binary symbols and the corresponding modulated
signal. This is obtained by amplitude modulating the laser beam of frequency ν or,
more simply, by switching on and off the laser itself according to the source symbol
to be transmitted. At the receiver, a photodetector transforms the incident field into an
electrical current from which a photon counting can be obtained, as seen in Sect. 4.8.

http://dx.doi.org/10.1007/978-3-319-15600-2_4


306 7 Quantum Communications Systems

t

vT (t)
0 0 1 0 1 1 0 1

V0

Fig. 7.13 A realization of a binary sequence and corresponding OOK signal

on–off
modulator

A0 vT (t) photon
counter

vR(t) n

laser

v0(t)

Fig. 7.14 Binary optical system with amplitude on–off modulation and uncoherent detection

Considering that with the transmission of the symbol A0 = 0, the number of
photons is null, n = 0, in (7.64) we have NR(0) = 0, and therefore

NR = 1

2
NR(1).

At reception the photon count receiver uses the decision criterion

̂A0 =
{

0 if n = 0
1 if n ≥ 1,

(7.67)

where n is the number of photons counted in a symbol period. Then, with the trans-
mission of the symbol A0 = 0, we always have a correct decision

Pe(0) = 0. (7.68a)

When A0 = 1 the number of arrivals n is a Poisson variable with average NR(1), and
therefore with (conditioned) distribution

pn(k|1) = e−NR(1) NR(1)k

k! , k = 0, 1, . . .
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and we have an error when n = 0, which occurs with probability

Pe(1) = pn(0|1) = e−NR(1) = e−2NR . (7.68b)

The average error probability in the classical system is therefore

Pe,classical = 1

2
e−2NR (7.69)

where equally likely symbols are assumed.
In optical communications this probability is called the quantum limit [6] or shot

noise limit, and it is the optimum for any detection that does not exploit the coherence
property of the optical beam. Notice, in fact, that in this classical context the decision
criterion (7.67) is optimal (see Problem 5.4). The receiver scheme is called direct
detection of the incident light pulses. The main advantage of this approach is its
simplicity. In particular, phase and frequency instabilities of the laser source are
well tolerated. Moreover, at the receiver direct detection is used and phase sensitive
devices are avoided.

7.6.2 Quantum Interpretation of Photon Counting in OOK

The above scheme, known as on–off keying (OOK) modulation, has a simple quan-
tum equivalent, employing the coherent states |0〉 and |α〉, with α > 0, where the
photon counting can be treated as a quantum measurement with not optimal mea-
surement operators.

The quantum measurement realized by the photon counter is obtained with the
elementary projectors |n〉〈n|, where |n〉 is the number state (see Fig. 7.2), and the
outcome of the measurement is given by the number of photons n. The transition
probabilities in the measurement are

p(i|α) = P[n = i|α] = e−|α|2 |α|2i

i! , p(i|0) = P[n = i|0] = δi0.

The alphabet of the measurement is then M = {0, 1, 2, . . .}, and it is different from
the alphabet A = {0, 1} of the source (see Sect. 5.2). To find the global perfor-
mance, we must introduce a decision criterion consisting in the partitioning of M
into two decision regions M0 and M1 to obtain two global measurement operators
(see Sect. 5.2.3). The optimal partition is M0 = {0} and M1 = {1, 2, . . .} (Fig. 7.15)
and so we have the global projectors

Q0 = |0〉〈0| Q1 =
∞
∑

n=1

|n〉〈n|. (7.70)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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quantum
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A0∈A
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Fig. 7.15 Quantum interpretation of the decision made via a photon counter in an OOK system.
The outcome of quantum measurement is given by the number of photons n present in the state |α〉
or |0〉. The decision converts the measurement alphabet M= {0, 1, 2, . . .} into the binary alphabet
A= {0, 1}, thus realizing a binary channel

The global transition probabilities, from (5.15), are pc(0|0) = Tr[ρ0 Q0] and
pc(0|1) = Tr[ρ1 Q0], where ρ1 = |α〉〈α| and ρ0 = |0〉〈0|. Then

pc(0|0) = 〈0|0〉〈0|0〉 = 1

pc(0|1) = 〈α|Q0|α〉 = |〈α|0〉|2 = e−|α|2 = e−2NR . (7.71)

The performance is lower than that of the quantum version of the OOK, which
will be seen in Sect. 7.9, because the projectors (7.70) are suboptimal. We recall,
in fact, that with pure states, the optimal measurement operators must be elemen-
tary with measurement vectors arranged symmetrically with respect to the coherent
states (Fig. 7.16); whereas (7.70) Q1 has infinite rank and Q0 is elementary with
measurement vector |μ0〉 coinciding with the state |0〉.

|2
number states

|1|3···

···
|0

ground state

|γ1

α

|μ0

|μ1

|0
ground state

|γ1

θ

θ

π/2

α

Fig. 7.16 Decision with a photon counter (left) and optimal decision

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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7.6.3 Binary System with Coherent Detection
(BPSK Modulation)

A more sophisticated scheme of classical optical communications uses binary phase-
shift keying (BPSK) modulation (Fig. 7.17). The BPSK modulator is a special case
of the general modulator of Fig. 7.10 with the encoding mapping

A0 → C0 = eiA0 π =
{

+1 A0 = 0

−1 A0 = 1

which gives the modulated signal

vT (t) = � C0 V0 e i 2π ν t = V0 cos(2πνt + A0π) , 0 < t < T (7.72)

where V0 is the amplitude of the carrier v0(t) = V0 cos 2πνt. Figure 7.18 shows
a sequence of binary symbols and the corresponding BPSK signal, which in the
interval (nT , nT + T) is given by V0 cos(2πνt + An π).

BPSK with Homodyne Detection

Since the modulated signals vR(t) = vT (t) for different symbols have the same optical
energy, and hence the same photon counting, direct detection cannot discriminate
between them. Then the receiver adds to the incoming field vR(t) = VR cos(2πνt +
An π) the field VL cos 2πνt, generated by a “local” laser tuned at the same frequency
as v0(t), to get the signal

phase
modulator

A0 vT (t)
Σ

vR(t) photon
counter

v(t) n

laser local
laser

v0(t) =V0 cos2πνt vL(t) =VL cos2πνt

Fig. 7.17 Scheme of a binary coherent optical system with BPSK modulation. The receiver is called
homodyne because the frequency of the local laser is the same as the frequency of modulation carrier

t

vT (t)
0 0 1 0 1 1 0 1

V0

Fig. 7.18 A realization of a binary sequence and corresponding BPSK signal
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t

Pv (t)

0 T 2T 3T 4T 5T

0 0 1 0 1 1

Fig. 7.19 Example of the optical power PR(t) after the introduction of the local carrier in a homo-
dyne receiver

v(t) = VR cos (2πνt + A0π) + VL cos (2πνt) . (7.73)

As in Sect. 7.5.4, we assume that the local carrier has an amplitude VL much
greater than that of the received signal, VL � V0. Since cos (2πνt + A0π) =
cos A0π cos 2πνt, the power becomes

Pv(t) = (VR cos πA0 + VL)2 = V 2
R + V 2

L + 2VRVL cos A0π (7.74)

which is illustrated in Fig. 7.19 for a sequence of source symbols. Applying this
power to a photon counter, we obtain a number of arrivals n in a symbol period,
which can be decomposed in the form

n = n̄(A0) + u

where n̄(A0) = E[n|A0] is the useful signal and the fluctuation u is the shot noise.
Now, from the theory of semiclassical detection developed in the previous section,
the number of signal photons is given by the photonic intensity Pv(t)/hν integrated
over (0, T), and therefore it results in

n̄(A0) = H
(

V 2
L + V 2

R + 2VRVL cos πA0

)

= NL + NR + U0 cos πA0 (7.75)

where NL + NR = H(V 2
L + V 2

R ) is a bias term, U0 = 2
√

NLNR, and U0 cos πA0 is
the symbol-dependent part. The variance, coinciding with the average, is

σ 2
n (A0) = NL + NR + U0 cos πA0 ∼= NL, (7.76)

where the approximation follows from the hypothesis VL � V0. In conclusion, the
decision on the transmitted symbol A0 is made on the value

n = NL + NR + U0 cos(πA0) + u. (7.77)



7.6 Analysis of Classical Optical Binary Systems 311

At this point we introduce the Gaussian approximation, where it is assumed
that the photon number n is a Gaussian random variable and hence specified by the
mean n̄(A0) and by the variance σ 2(A0) = NL , which is independent of the symbol
A0. As seen in the previous section, the Gaussian assumption allows us to simplify
the analysis and to arrive at a very simple result.

By choosing the decision rule as

̂A0 =
{

1 n ≤ NL + NR

0 n > NL + NR
(7.78)

we obtain the error probability

Pe = Q

(

U0

σn

)

= Q
(√

Λ
)

, (7.79)

where the SNR is given by Λ = U2
0/σ 2

n = 4 NR. Note that NR = NR(0) = NR(1)

gives the number of signal photons per bit. In conclusion, the error probability in the
classical BPSK with homodyne receiver is given by

Pe,classical = Q
(
√

4NR

)

. (7.80)

This error probability is known as the standard quantum limit. The result is in
agreement with Proposition 7.2.

Comparison with incoherent detection (OOK) shows that the performances of the
homodyne detection are better, as illustrated in Fig. 7.20, where the error probability
Pe is plotted versus the average number of signal photons per bit NR. On the other
hand, the implementation of an efficient homodyne scheme implies some complica-
tions, in that it requires the presence of a local laser that must be accurately tuned in
frequency and phase with the source laser.

BPSK with Superhomodyne Reception

We suppose that at the reception we have available a laser (local oscillator) producing
a radiation vL(t) with the same amplitude, frequency and phase of the carrier at the
transmitter, that is,

vL(t) = VL cos (2πνt) with VL = V0. (7.81)

This local carrier is added to the received modulated signal, yielding (Fig. 7.21)

v(t) = V0 cos (2πνt + A0π) + V0 cos (2πνt)

=
{

2V0 cos (2πνt) A0 = 0

0 A0 = 1.
(7.82)
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Fig. 7.20 Comparison of
error probability Pe versus
average number of signal
photons per bit NR in
classical binary optical
systems

OOK

homodyne

superhomodyne

0 1 2 3 4 5 6 7 8 9 10
10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

NR

Pe

Then the number of signal photons in a symbol period becomes

Nv(0) = 4PRT

hν
, Nv(1) = 0. (7.83)

Using a photon counter, the decision is based on the number of arrivals n by the rule

̂A0 =
{

1 if n = 0

0 if n > 0.
(7.84)

Then, similarly to relation (7.69), we get the error probability

Pe,classical = 1

2
Pe(0) = 1

2
e−Nv(0) (7.85)

The interesting thing is that the number of signal photons per bit at the reception,
i.e., before adding the carrier, is NR = PR T/(hν) and it is equal to one fourth of
Nv(0), so that the relation (7.85) becomes

Pe,classical = 1

2
e−4NR (7.86)

which represents the super quantum limit [6]. So we have a great improvement over
the homodyne detection, as shown in Fig. 7.20; because the power introduced by
the local oscillator creates a more favorable situation for a correct decision. But the
implementation of superhomodyne is very difficult in that it requires the presence of
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t

vR(t)
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V0

t

vL (t) VL=V0

t

v(t)
2V0

Fig. 7.21 Signals in classical BPSK superhomodyne reception

a local laser that must be accurately tuned with the source laser, not only in frequency
and phase but also in amplitude.

Problem 7.9 ��� The error probability in classical homodyne BPSK has been
evaluated assuming equiprobable symbols. When the symbols are not equiprobable
the number of signal photons per bit NR is still independent of the symbols and gives
the SNR as Λ = 4NR. The only change is in the evaluation is the decision element,
given for equiprobable symbol by (7.78), as

̂A0 =
{

1 n ≤ S

0 n > S

where S is the threshold to be optimized.
Find the optimal decision threshold and prove that the minimum error probability

is given by

Pe = q1 Q

(√
Λ + 1

2
√

Λ
log

q1

q0

)

+ q0 Q

(√
Λ − 1

2
√

Λ
log

q1

q0

)

. (7.87)
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7.7 Quantum Decision with Pure States

In a K-ary quantum communications system, in the absence of thermal noise, we use
the quantum decision theory developed in the previous two chapters, limited to pure
states. We recall the main ideas and the available methods.

The source (Alice) is characterized by a constellation of coherent states S =
{|γ0〉, |γ1〉, ..., |γK−1〉}, which can be collected in the state matrix

Γ
n×K

= [|γ0〉, |γ1〉, ..., |γK−1〉] (7.88)

where n is the dimension of the underlying Hilbert space (n may be infinite, and it
really is infinite in Glauber’s representation). The specification of the source requires
also the definition of the prior probabilities qi = P[A0 = i] = P[C0 = γi], but usually
throughout the chapter we shall assume equiprobable symbols qi = 1/K .

The goal is to find an optimal system of measurement operators Qi, i ∈ A , that
is, minimizing error probability. Kennedy’s theorem (Theorem 5.3) states that, with
pure states, the optimal measurement operators must be elementary, i.e., in the form
Qi = |μi〉〈μi|. We can then limit our search to the measurement vectors, specified
by the measurement matrix

M
n×K

= [|μ0〉, |μ1〉, . . . , |μK−1〉]. (7.89)

These vectors are given as a linear combination of the states, as established by the
relation

M = Γ A (7.90)

where A is a K × K complex matrix.
Kennedy’s theorem states also that the optimal measurement vectors |μi〉 must

be orthogonal, and therefore the corresponding measurement operators Qi =
|μi〉〈μi|, i ∈ A must form a system of projectors. Unfortunately, Kennedy’s the-
orem, as well as Holevo’s theorem, do not provide explicit solutions. To compute
optimal solutions, we could resort to the numeric programming methods outlined
in Sect. 5.8, but, luckily enough, we can get help from the geometrically uniform
symmetry (GUS), which is verified in the majority of quantum communications
systems. In fact, square root measurement (SRM) decision, which is, in general,
suboptimal, with pure states and in the presence of GUS becomes optimal (see
Sect. 6.5.4). It is then appropriate to explicitly recall the SRM methodology, that
gives good results even in the absence of GUS.

From the measurement vectors, we calculate the transition probabilities p(j|i) =
|〈μj|γi〉|2 and then the probability of correct decision.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_6
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7.7.1 Recall of SRM Approach

We summarize the main steps of the SRM theory developed in Sect. 6.3.
Starting from the constellation of K coherent states C = {|γ0〉, . . . , |γK−1〉}, we

evaluate in sequence

(1) Gram’s matrix of the inner products G = [〈γi|γj〉|], i, j = 0, 1, . . . , K − 1,
calculated according to (7.9). In the cases of interest, the matrix G, which is
K × K , has rank K .

(2) The spectral decomposition (EID) of G

G = V ΛGV ∗ =
K−1
∑

i=0

σ 2
i |vi〉〈vi| . (7.91)

From this EID we find the eigenvalues σ 2
i and the orthonormal basis {|vi〉}.

(3) The square roots of G

G± 1
2 = V Λ

± 1
2

G V ∗. (7.92)

(4) The transition probabilities according to (see (6.29))

pc(i|j) =
∣

∣

∣

(

G
1
2
)

ij

∣

∣

∣

2
(7.93)

and the error probabilities (with equiprobable symbols)

Pe = 1 − 1

K

K−1
∑

i=0

∣

∣

∣

(

G
1
2
)

ii

∣

∣

∣

2
. (7.94)

(5) The measurement vectors as linear combination of the states according to

M = Γ G
1
2 → |μi〉 =

K−1
∑

j=0

(

G− 1
2
)

ij|γj〉. (7.95)

With geometrically uniform symmetry (GUS). If the states |γi〉 have the GUS,
Gram’s matrix becomes circulant and its EID is given by

G = W[K] ΛG W ∗[K] =
K−1
∑

i=0

σ 2
i |wi〉〈wi|, (7.96)

where the vectors |wi〉 are the columns of the DFT matrix W[K]

http://dx.doi.org/10.1007/978-3-319-15600-2_6
http://dx.doi.org/10.1007/978-3-319-15600-2_6
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|wi〉 = 1√
K

[

W −i
K , W −2i

K , . . . , W −i(K−1)
K

]T

, i = 0, 1, . . . , K − 1 (7.97)

and the eigenvalues are given by the DFT of the first row [r0, r1, . . . , rK−1] of the
matrix G

λi = σ 2
i =

K−1
∑

k=0

rk W −ki
K , rk = 〈γ0|γk〉. (7.98)

The square roots of G have elements

(

G± 1
2
)

ij = 1

K

K−1
∑

p=0

λ
± 1

2
p W −p(i−j)

K (7.99)

and in particular the diagonal elements are all equal. Therefore, the error probability
is simply given by

Pe = 1 −
∣

∣

∣

(

G
1
2
)

00

∣

∣

∣

2
. (7.100)

7.8 Quantum Binary Communications Systems

We develop the analysis of a quantum binary system, in which the information is
carried by two coherent states. In this section, we assume that the constellation of the
two states be generic; whereas, in the subsequent sections, two specific modulation
formats will be developed (OOK and BPSK).

In the binary case, the optimal decision can be obtained in explicit form by
Helstrom’s theory and also by the geometric approach, seen in Sect. 5.4. With
equiprobable symbols, we can also use the SRM method, which provides an optimal
decision (see Sect. 6.5).

7.8.1 Binary Systems with Coherent States

To implement a Quantum Communications binary system, the transmitter (laser) is
placed in one of two distinct coherent states |γ0〉 , |γ1〉 ∈ G, which can be collected
in the state matrix Γ = [|γ0〉, |γ1〉] . The geometry is completely specified by the
inner product X := 〈γ0|γ1〉, which can be calculated explicitly from (7.9).

The optimal decision is based on two measurement operators Q0 and Q1, with
Q0 + Q1 = I , which, by Kennedy’s theorem (see Sect. 5.11), must be in the form
Q0 = |μ0〉〈μ0| e Q1 = |μ1〉〈μ1|, and therefore are identified by two measurement

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_6
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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vectors |μ0〉 and |μ1〉, which form the measurement matrix

M opt = [|μ0〉, |μ1〉].

Still by Kennedy’s theorem, the two measurement vectors must be orthogonal,
〈μ0|μ1〉 = 0, so that the quantum measurement is always projective.

7.8.2 Recall of Helstrom’s Theory and of Geometric Approach

We briefly recall the theory of optimal binary decision developed in Sects. 5.3 and
5.4. The results of this theory are completely specified by the a priori probabilities
q0 and q1 and by the (quadratic) superposition degree of the states |X|2 = |〈γ0|γ1〉|2,
which can be calculated in explicit form from (7.9), obtaining

|X|2 = e−|γ0−γ1|2 . (7.101)

The optimal measurement matrix is related to the state matrix as M = Γ A where
the matrix A is given explicitly by (5.39).

The error probability, known as the Helstrom bound, is given by

Pe = 1

2

(

1 −
√

1 − 4q0q1|X|2
)

. (7.102)

Case of Equiprobable Symbols

When the symbols are equiprobable, which is the case of main interest, we have a
few simplifications. The matrix A becomes

A = 1

2

⎡

⎣

1√
1+|X| + 1√

1−|X|
1√

1+|X| − 1√
1−|X|

1√
1+|X| − 1√

1−|X|
1√

1+|X| + 1√
1−|X|

⎤

⎦ . (7.103)

The error probability is simplified as

Pe = 1
2

[

1 −
√

1 − |X|2
]

. (7.104)

Problem 7.10 �� Prove that with the optimization the a posteriori probabilities
q(i|i) := P[A0 = i|Â0 = i] are equal and coincide with the correct decision proba-
bility Pc.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Problem 7.11 � Prove that in a binary system with equiprobable symbols, the
error probability can be expressed as function of NR(0), NR(1), and of the relative
phase of the complex parameters γ0 and γ1. that determine the coherent states.

7.9 Quantum Systems with OOK Modulation

The constellation consists of the states (Fig. 7.22)

|γ0〉 = |0〉 , |γ1〉 = |Δ〉 ∈ G (7.105)

where |0〉 is the ground state and the state |Δ〉 is determined by the number Δ which
is not restrictive to assume real and positive. The quadratic superposition of the two
states is |〈0|Δ〉|2 = e−Δ2

. The number of signal photons associated to the symbol
A0 = 0 is NR(0) = 0, while the one associated to the symbol A0 = 1 is NR(1) = Δ2.
The number of signal photons per bit is then

NR = 1
2 NR(0) + 1

2 NR(1) = 1
2 NR(1)

and the quadratic superposition of the two states can be written in the meaningful
form

|X|2 = e−2NR .

From (7.104), we obtain that the error probability of the OOK quantum system
with equiprobable symbols becomes

Pe = 1
2

[

1 −
√

1 − e−2NR

]

. (7.106)

Δ
•

0
•

|Δ
••

|0

ground state

C

H

Fig. 7.22 Constellation of symbols and states in OOK modulation
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The evaluation of the measurement vectors does not exhibit any specific simpli-
fication in (7.103), where now the inner product X can be expressed in the form
X = e−NR .

7.9.1 Comparison with Classical OOK Optical Systems

The classical OOK system was developed in Sect. 7.6.1, where we found that the
error probability, with equiprobable symbol, is given by

Pe,classical = 1
2 e−2NR . (7.107)

The comparison between the Pe,classical of the classical receiver, given by (7.107),
and the Pe of the quantum receiver, given by (7.106), is shown in Fig. 7.23 as a
function of the average number of photons per bit NR. The asymptotic behavior of
(7.106) becomes (by the approximation 1 − √

1 − x � 1
2 x for x small)

Pe = 1
4 e−2NR NR � 1

classical OOK

quantum OOK
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100
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Fig. 7.23 Comparison of quantum and classical OOK
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Fig. 7.24 Symmetric binary channel realized by the quantum optimal decision and asymmetric
binary channel realized by photon count decision

that is, one half of the classical case. Thus we not have a great improvement in quan-
tum OOK with respect to classical OOK (in error probability a relevant improvement
is expressed in decades). The sensititvities in the two kinds of OOK are

NR = 9.668 photons/bit , NR,classical = 10.015 photons/bit.

Another comparison is between the channels realized by the two kinds of receiver:
With the quantum receiver (optimized with equiprobable symbols) we obtain a sym-
metric channel, notwithstanding that the constellation is unbalanced, while, with
the receiver based on photon count, the channel turns out to be very asymmetric
(Fig. 7.24).

7.10 Quantum Systems with BPSK Modulation

In the BPSK quantum system, the symbol A0 = 0 (phase ϕ = 0) is encoded into a
coherent state |Δ〉 with a given amplitude Δ and the symbol A0 = 1 (phase ϕ = π )
into the coherent state | − Δ〉 (Fig. 7.25)

|γ0〉 = |Δ〉 , |γ1〉 = | − Δ〉 ∈ G. (7.108)

Δ
•

−Δ
•

|Δ
••

|−Δ

C

H

Fig. 7.25 Constellation of symbols and states in 2-PSK modulation
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Obviously, the number of signal photons associated to the two states is equal

NR(0) = NR(1) = |Δ|2 = NR

and the (quadratic) superposition degree of the two states becomes

|X|2 = e−|Δ−(−Δ)|2 = e−4|Δ|2 = e−4NR

which yields the error probability

Pe = 1

2

[

1 −
√

1 − e−4NR

]

. (7.109)

Compared to the quantum OOK modulation, we have an improvement, because the
term at the exponent 4NR in place of 2NR.

7.10.1 Comparison with Classical BPSK Optical System

The classical BPSK system was developed in Sect. 7.6.2, where we found that the
error probability, with equiprobable symbols, is given by

Pe,classical = Q
(
√

4NR

)

(7.110)

where Q(x) is the normalized complementary Gaussian distribution. The Fig. 7.26
shows the comparison between the Pe of the classical homodyne receiver and the Pe

of the quantum receiver.
In this case, the improvement is relevant. For instance for NR = 5 photons per

bit, we have Pe = 0.515 10−9 and Pe,classical = 0.387 10−5, and the improvement is
of the order of four decades! The sensititvities in the two kinds of BPSK are

NR = 4.837 photons/bit , NR,classical = 8.913 photons/bit.

Generic a Priori Probabilities

Usually we consider equally probable symbols, but it may be interesting to see the
comparison when the a priori probabilities q0 and q1 = 1 − q0 are different.

In both quantum and classical BPSK we have NR(0) = NR(1) and then the
number of signal photons per bit NR = q0NR(0) + q1NR(1) is independent of q0. In
the classical BPSK, the error probability is given by (7.87) of Problem 7.9, that is,
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Fig. 7.26 Comparison
between quantum and
classical BPSK (with equal a
priori probabilities)

classical BPSK

quantum BPSK
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Pe,classical = q1 Q

(

√

4NR + 1

2
√

4NR
log

q1

q0

)

+ q0 Q

(

√

4NR − 1

2
√

4NR
log

q1

q0

)

.

(7.111)
In the quantum BPSK (7.109) becomes

Pe = 1

2

[

1 −
√

1 − q0q1e−4NR

]

. (7.112)

The comparison is shown in Fig. 7.27. Note in particular that for NR = 0 in both
systems the error probability becomes Pe = q0, so that it reduces with q0 and also
for NR > 0 it is reduced when q0 becomes smaller. This may lead to think that
the performance of a quantum BPSK improves when the a priori probabilities are
unbalanced. This is not true because the performance of a system is given not only
by the error probability, but also by the entropy and by the capacity (see Chap. 12).
With q0 = 1

2 the entropy H of a binary source is H = 1 bit per symbol, while with
q0 = 0.01 the entropy is reduced to H = 0.08 bit per symbol.

http://dx.doi.org/10.1007/978-3-319-15600-2_12
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Fig. 7.27 Comparison
between quantum and
classical BPSK with non
equiprobable symbols. The
error probability Pe is
reduced when q0 becomes
smaller
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7.11 Quantum Systems with QAM Modulation

Quadrature amplitude modulation (QAM) is one of the most interesting format in
radio frequency (RF) transmission, and can also be proposed for coherent optical
modulation (classical system) and for quantum modulation.

QAM is the first example of multilevel modulation we are considering, with typ-
ically K = L2 levels, that is, K = 4, K = 9, K = 16, and so on. For this format,
the optimal quantum detection is not available, and suboptimal solutions must be
adopted. We will apply the SRM technique which gives a good overestimate of the
error probability [7], with a check by convex semidefinite programming (CSP).

7.11.1 Classical and Quantum QAM Formats

The alphabet of QAM modulation consists of a constellation of K = L2 equally
spaced points on a square grid of the complex plane, which can be defined starting
from the L–ary balanced alphabet

AL = {−(L − 1) + 2(i − 1)| i = 1, 2, . . . , L} with L = 2, 3, 4, . . .
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Δ

−Δ

−3Δ

3Δ
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Fig. 7.28 Constellation of 16-QAM with scale factor Δ

In particular

A3 = {−2, 0,+2}
A4 = {−3,−1,+1,+3}
A5 = {−4,−2, 0,+2,+4}.

The K-ary QAM constellation is then formed by the complex numbers

C = {Δ(u + iv)| u, v ∈ AL}

where Δ is the scale factor and 2Δ gives the spacing of symbols in the constellation,
with Δ real and positive. Figure 7.28 illustrates the constellation for L = 4 (16-
QAM). Notice that the 4-QAM, obtained with L = 2, is equivalent to the 4-PSK,
which will be developed in the next section.

To obtain the constellation of the coherent states in quantum QAM it suffices to
assign to each symbol γ of the constellation C the corresponding coherent state |γ 〉.
Then the constellation of the coherent states becomes

S = {|γuv〉 = |Δ(u + iv)〉 ∣∣ u, v ∈ AL
}

.

For example, for the 16-QAM, where L = 4 and A4 = {−3,−1,+1,+3}, we have
the following coherent states listed in lexicographic order (see Sect. 2.13)

u = −3 v = −3 |γ0〉 = |γ−3,−3〉 = |Δ(−3 − 3i)〉
u = −3 v = −1 |γ1〉 = |γ−3,−1〉 = |Δ(−3 − i)〉
u = −3 v = +1 |γ2〉 = |γ−3,+1〉 = |Δ(−3 + i)〉

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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u = −3 v = +3 |γ3〉 = |γ−3,+3〉 = |Δ(−3 + 3i)〉
u = −1 v = −3 |γ4〉 = |γ−1,−3〉 = |Δ(−1 − 3i)〉

...
...

u = +3 v = −3 |γ12〉 = |γ+3,−3〉 = |Δ(3 − 3i)〉
u = +3 v = −1 |γ13〉 = |γ+3,−1〉 = |Δ(3 − i)〉
u = +3 v = +1 |γ14〉 = |γ+3,+1〉 = |Δ(3 + i)〉
u = +3 v = +3 |γ15〉 = |γ+3,+3〉 = |Δ(3 + 3i)〉

7.11.2 Performance of Quantum QAM Systems

We consider the decision based on the SRM method, recalled in Sect. 7.7.1. We start
from the construction of Gram’s matrix G, whose elements are the inner products

〈γuv|γu′v′ 〉 = 〈Δ(u + iv)|Δ(u′ + iv′)〉.

Remembering (7.9), we get

〈γuv|γu′v′ 〉 = exp{− 1
2Δ2[(u′ − u)2 + (v′ − v)2 − 2i(u′v − v′u)]}

u, v, u′, v′ ∈ AL. (7.113)

The only problem in building the Gram matrix G is the ordering of the four-index ele-
ments in a standard (bidimensional) matrix. To this end, we can use the lexicographic
order indicated above.

The main point of the SRM technique is the spectral decomposition of G, accord-
ing to (7.91), namely,

G = V ΛGV ∗ =
K−1
∑

i=0

σ 2
i |vi〉〈vi|

which identifies the eigenvalues σ 2
i and the orthonormal basis |vi〉, i = 1, 2, . . . , K ,

and also the square roots G± 1
2 = V Λ

± 1
2

G V ∗. We can then compute the transition
probabilities from (7.93) and the error probability from (7.94), that is,

p(j|i) = |(G 1
2 )ij|2 , Pe = 1 − 1

K

K−1
∑

i=0

[

(G
1
2 )ii

]2
. (7.114)
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As usual, the performance is evaluated as a function of the number of signal
photons per symbol Ns, given in general by (7.34). For the QAM we find

Ns = 1

K

K−1
∑

i=0

|γi|2 = 1

K

∑

u∈AL

∑

v∈AL

|γuv|2

= 1

K
Δ2

∑

u∈AL

∑

v∈AL

(u2 + v2) = 2L

K
Δ2

∑

u∈AL

u2

= 2L

K
Δ2

L
∑

i=1

[−(L − 1) + 2(i − 1)]2.

The result is5

Ns = 2

3
(L2 − 1)Δ2 = 2

3
(K − 1)Δ2 (7.115)

so that the shape factor (7.39) of the QAM constellation is given by

μK = 2

3
(K − 1). (7.115a)

For example, for the 16-QAM we have Ns = 10Δ2 and μK = 10.
Finally, from Ns, we get the number of signal photons per bit as

NR = Ns/ log2 K .

Remark As noted above, the 4-QAM may be viewed as a 4-PSK, for which an exact
(non-numerical) evaluation of the SRM is possible. This exact evaluation can be used
as a test to check the numerical accuracy of higher order QAM.

7.11.3 An Alternative Evaluation Using the Generalized GUS

The QAM modulation has not the ordinary GUS, but it verifies the first form of gener-
alized GUS introduced in Sect. 5.13, where there are L reference states |γ0〉, . . . , |γL〉,
instead of a single state |γ0〉, and the K-ary constellation is subdivided into L subcon-
stellations generated by a common symmetry operator S in the form |γik〉 = Si|γk〉,
k = 1, . . . , L, i = 0, 1, . . . , K/L − 1.

5 Using the identities [8]

n
∑

i=1

i = 1

2
n(n + 1) ,

n
∑

i=1

i2 = 1

6
n(n + 1)(2n + 1).

.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Fig. 7.29 Constellation of 16-QAM and its decomposition into four 4-PSK constellations

In particular, the 16-QAM constellation can be decomposed into 4-PSK constel-
lations, as shown in Fig. 7.29. The reference states are the states belonging to the first
quadrant of the complex plane, namely

|γ0〉 = |Δ(1 + i)〉 , |γ1〉 = |Δ(3 + 3i)〉 , |γ2〉 = |Δ(3 + i)〉 , |γ3〉 = |Δ(1 + 3i)〉.
(7.116)

The symmetry operator is the rotation operator of 4-PSK, S = R(π/2), which allows
us to generate all the other states of the 16-QAM by rotating the reference states
into the other three quadrants. In fact, if we consider the state vector of the reference
states γ̃0 = [|γ0〉, |γ1〉, |γ2〉, |γ3〉] and apply the rotation operator in the form

Γ̃ = [γ̃0, Sγ̃0, S2γ̃0, S3γ̃0]

we obtain a 16×16 Gram matrix G̃ = Γ̃ ∗Γ̃ , which contains the same inner products
of the Gram matrix of the previous approach. But, for the different ordering, G̃ turns
out to be block circulant.
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At this point, although we are dealing with pure states, we can represent the 16
states through four density operators, ρ0, ρ1, ρ2, and ρ3, where ρ0 collects the four
reference states with a fictitious probability 1/4, that is,

ρ0 = γ0 γ ∗
0 = 1

4 (|γ0〉〈γ0| + |γ1〉〈γ1| + |γ2〉〈γ2| + |γ3〉〈γ3|)

and the other density operators are obtained by the GUS relation

ρi = Si ρ0 S−i , i − 1, 2, 3.

Hence we can apply the theory of the SRM with GUS for mixed states (see
Proposition 6.3), which requires the evaluation of the matrices (where now K
becomes L)

Dk =
L−1
∑

i=0

γ ∗
0 γiW

−ki
L (7.117)

and of their square roots D1/2
k , where in the present case L = 4. Finally, one gets the

the correct decision probability as

Pc = Tr

[

1

L

L−1
∑

k=0

D1/2
k

]2

.

This new approach gives exactly the same performance that we find with the
previous SRM approach where the generalized GUS was not considered, with the
advantage of a reduced computational complexity. In the specific case of 16-QAM,
the evaluation is confined to the square roots of 4 × 4 matrices, instead of the square
root of a 16 × 16 matrix.

The technique developed for the 16-QAM can be applied to constellations of any
order. In particular, the constellation of 64-QAM can be decomposed into 16-PSK
constellations, and the evaluation of the square roots is still confined to 4×4 matrices,
instead of the square root of a 64 × 64 matrix.

7.11.4 Performance of the Classical Optical QAM System

The scheme of modulation and demodulation falls under the general classical scheme
of Fig. 7.11. We have seen that the signal at the decision point is (see (7.55))

z = C0 U0 + ua + i ub

where C0 = A0 + i B0 is the transmitted symbol, U0 is the amplitude, ua and ub are
statistically independent Gaussian noises with null average and the same variance σ 2

u .

http://dx.doi.org/10.1007/978-3-319-15600-2_6
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Fig. 7.30 Decision regions
for the 16-QAM system
constellation

U0−
U0|

To calculate the error probability, we must choose the decision regions on the
complex plane. With equiprobable symbols, the optimal decision regions are found
in a straightforward way, as illustrated in Fig. 7.30 for the 16-QAM. In particular for
the inner symbols of the constellation, the decision regions are squares with sides of
length 2U0, centered in the corresponding symbols. Using the procedure outlined in
Sect. 7.5, one obtains the following expression for the error probability [9]

Pe,classical = 1 −
[

1 − 2

(

1 − 1

L

)

Q

(

U0

σu

)]2

(7.118)

where Q(x) is the normalized complementary Gaussian distribution.
The result depends on the cardinality K = L2 and on the SNR ratio Λ = U2

0/σ 2
u ,

which can be expressed as a function of the average number of photons per symbol
Ns (see (7.63)), that is,

Λ = 4Ns

μK
with μK = 2

3
(K − 1). (7.119)

This result is in agreement with the conclusions of Proposition 7.2.
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7.11.5 Comparison of Quantum and Classical QAM Systems

We are now able to compare the two QAM systems: The classical optical version,
in which the error probability is given by (7.118) and the quantum optical version,
in which Pe is evaluated numerically from (7.114) by the SRM procedure. In both
cases, the parameters are the number of levels K = L2 and the number of signal
photons/symbol Ns.

The comparison, made in Fig. 7.31 for K = 16 and K = 64, shows the clear
superiority of the quantum QAM system with respect to the classical one. For instance
in 16-QAM with Ns = 50 photons/symbols we find Pe,classical = 1.161 10−5, while in
the quantum system Pe = 1.546 10−9; in 64-QAM with Ns = 200 photons/symbol
we find Pe,classical = 2.231 10−5 and Pe = 4.674 10−9. In both cases the improvement
obtained with the quantum system is of about four decades.

In Fig. 7.32 the 16-QAM is compared to the 64-QAM as a function of the number
of signal photons per bit NR. The sensitivity at Pe = 10−9 is NR = 12.783 photons/bit
in 16-QAM and NR = 36.035 photons/bit in 64-QAM.

7.11.6 Comparison of CSP and SRM Evaluation

The QAM format does not have the GUS, and therefore the SRM approach does not
give the minimum error probability. For this reason, we have evaluated the minimum
error probability also by convex semidefinite programming, implemented in MatLab
by the CVX procedure, which gives (numerically) this minimum. The results of the
two approaches are shown in the following table for the 16-QAM
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Fig. 7.31 Comparison of quantum and classical 16–QAM and 64–QAM
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Fig. 7.32 Error probability
of quantum QAM versus the
number of signal photons per
bit NR

64 QAM

16 QAM

0 5 10 15 20 25 30 35 40 45 50
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

NR

Pe

Ns Pe with CSP Pe with SRM
0.1 0.86919 0.884949
0.5 0.764902 0.784679
1 0.675115 0.690197

1.5 0.597074 0.608958
2.5 0.461457 0.467108
4.5 0.239407 0.240096
6.5 0.0913599 0.0910951
9.5 0.0188974 0.0188975

The two evaluations are very close, especially for large values of Ns, and cannot be
distinguished in a log plot (recall that in the evaluation of Pe, decades are relevant,
not decimals),

The conclusion is that the SRM approach is recommended also for the QAM (for
the other formats the SRM gives the minimum of Pe).

7.12 Quantum Systems with PSK Modulation

Also PSK (phase-shift keying) modulation is one of the best known and most often
used formats at radio frequency and at optical frequencies. The BPSK = 2-PSK
format has been already seen in Sect. 7.10 as a special case of quantum binary systems.
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Quantum K-ary PSK systems were analyzed by several authors and in particular
by Kato et al. [7], using the SRM technique. In this case, the constellation of the
states enjoys the geometrically uniform symmetry and then the SRM technique gives
an optimal quantum receiver.

7.12.1 Classical and Quantum PSK Format

The constellation of the PSK modulation consists of K points uniformly distributed
along a circle of the complex plane

C = {Δ W m
K | m = 0, 1, . . . , K − 1} (7.120)

where the scale factor Δ is given by the radius of the circle and WK = ei2π/K . The
constellation is illustrated in Fig. 7.33 for some values of K .

In the quantum version, the states are obtained by simply associating to every
complex symbol γ of the constellation (7.120) the corresponding coherent state,
which is given by

|γm〉 = |Δ W m
K 〉 = e− 1

2 Δ2
∞
∑

n=0

(Δ W m
K )n

√
n! |n〉 , m = 0, 1, . . . , K − 1. (7.121)

In this constellation, all the coherent states have the same number of signal photons
given by

K=4 K=8 K=16

K=32 K=64 K=128

Fig. 7.33 Constellations of PSK modulation
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Ns = Δ2. (7.122)

Constellation (7.121) enjoys the GUS, that is, it satisfies the conditions (5.120a)
and (5.120b) for an appropriate unitary operator S. In this case S is obtained from
the rotation operator, which is defined as

R(φ) := exp(iφN)

where N is the number operator given by (7.1). Specifically we have

S = R
(2π

K

)

= exp
( i2π

K
N
)

= W N
K . (7.123)

The GUS property is verified for all constellations of Gaussian states generated
by the rotation operator, as we will prove in Sect. 11.20. In Problem 7.9 we propose
a specific proof for the PSK constellations where the key is that the operator R(φ)

rotates a coherent state |α〉 in the form (see 11.20)

R(φ) |α〉 = |eiφα〉 , (7.124)

and the result is again a coherent state. In other words, the class of coherent states is
closed under rotations.

7.12.2 Performance of Quantum PSK Systems

For the decision we apply the SRM, which gives an optimal result. Then, for the
performance evaluation, we follow the procedure described in Sect. 7.8.3, taking
into account that the PSK constellation satisfies the GUS.

The generic element p, q of Gram’s matrix G = [Gpq] is the inner product Gpq =
〈γp|γq〉 obtained from (7.9) with α = ΔW p

K and β = ΔW q
K , namely,

Gpq = exp[−Δ2(1 − W q−p
K )] , p, q = 0, 1, . . . , K − 1. (7.125)

As predicted (by the GUS), the element p, q depends only on the difference q−p; and
therefore Gram’s matrix becomes circulant. The eigenvalues are obtained computing
the DFT of the first row of Gram’s matrix, that is,

λi =
K−1
∑

k=0

G0k W −ki
K (7.126)

and the corresponding eigenvectors are given by the columns of the DFT matrix

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_11


334 7 Quantum Communications Systems

|wi〉 = 1√
K

[

1, W −i
K , W −2i

K , . . . , W −(K−1)i
K

]T

.

Thus the matrices G± 1
2 are obtained from (7.99), where the element i, j is given by

(G± 1
2 )ij = 1

K

K−1
∑

p=0

λ
± 1

2
p W (j−i)p

K .

The measurement vectors are computed as linear combination of the states accord-
ing to (7.95), i.e.,

|μi〉 =
K−1
∑

j=0

(

G− 1
2
)

ij|γj〉.

Finally, the error probability with equiprobable symbols is simply

Pe = 1 − 1

K2

(

K−1
∑

i=0

√

λi

)2

. (7.127)

Therefore, to calculate Pe it suffices to evaluate the eigenvalues according to (7.126)
and to apply (7.127). As usual, Pe can be expressed as a function of the number of
signal photons per symbol Ns, given by (7.122), and of the number of levels K . In
fact, the Gram matrix G depends only on Δ2 = Ns and K , and so is for the square root
of G and subsequent relations. This conclusion is in agreement with Proposition 7.2.

7.12.3 Performance of Classical PSK Systems and Comparison

The classical optical PSK system falls into the general model of quadrature modu-
lation (with homodyne receiver) seen in Sect. 7.5. The signal at the decision point
becomes

z0 = C0 U0 + ua + iub

where C0 is the transmitted symbol, C0 ∈ C0 = {W i
K | i = 1, . . . , K}, ua and ub

are independent zero-mean Gaussian components with the same variance σ 2
u . At this

point, we introduce the count parameters, recalling that

U0 = (2VRVL)H σ 2
u = H V 2

L

and that in this case the number of signal photons contained in the received power is

NR = Ns = H V 2
R .
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So the SNR becomes

Λ = U2
0

σ 2
u

= 4Ns

the shape factor μK being unitary.
To find the error probability, we must partition the complex plane into K decision

regions. Even in this case, with equiprobable symbols, such regions are easily found,
as illustrated in Fig. 7.34 for the 8-PSK, and then we apply the general relation (7.60).
Given the nature of the constellation, it is convenient to do a coordinate change in
the probability density, from Cartesian to polar coordinates. The exact computation
is only known for K = 2 and K = 4 and it yields (see (7.80))

K = 2 Pe,classical = Q(2
√

Ns)

K = 4 Pe,classical = 1 −
[

1 − Q(
√

2Ns)
]2

(7.128)

where we recall that for K = 4 the PSK coincides with the QAM. For K > 4 the
exact computation is not known, and we resort to the inequality [10, Chap.10]

Pe,classical < P′
e = exp

(

−1

2

U2
0

σ 2
u

sin2 π

K

)

= exp
(

−2Ns sin2 π

K

)

. (7.129)

The comparison between the classical and the quantum system has been done in
Fig. 7.26 for the 2-PSK. The comparison of 4-PSK and 8-PSK is done in Fig. 7.35,
where the error probability is plotted as a function of the number of signal photons per
symbol Ns. Even in this case we notice a striking superiority of the quantum system.
For instance in 4-PSK with Ns = 10 photon/symbol we find Pe = 1.030 10−9

and Pe,classical = 7.742 10−6 ; in 8-PSK with Ns = 30 photon/symbol we find Pe =
1.166 10−8 and Pe,classical = 7.742 10−6. In both cases, the improvement of the
quantum system is of several decades.

Fig. 7.34 Decision regions
in 8-PSK
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Fig. 7.35 Comparison of quantum and classical 4-PSK and 8-PSK
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Fig. 7.36 Error probability of quantum PSK versus the number of signal photons per bit NR

Figure 7.36 compares quantum 4-PSK and quantum 8-PSK as a function of the
number of signal photons per bit NR. The sensitivity at Pe = 10−9 is NR = 5.001
photons/bit in 4-PSK and NR = 11.402 photons/bit in 8-PSK.
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Problem 7.12 � � � Prove that the operator S defined by (7.123) is the symmetry
operator of the K-PSK modulation.

Problem 7.13 � Find explicitly the formula for the error probability Pe of quantum
4-PSK system, with the target to show that Pe depends only on Δ2 = Ns.

7.13 Quantum Systems with PPM Modulation

Pulse position modulation (PPM) is widely adopted in free space optical transmission,
and is a candidate for deep-space transmission, also in quantum form [11, 12].

The analysis of a quantum PPM system has been done in a famous article [4]
by Yuen, Kennedy and Lax, who found the optimal elementary projectors using an
algebraic method developed “ad hoc” for this kind of modulation. Here we shall
propose an original method based on the SRM and on the property of quantum PPM
of verifying the GUS [13]. It seems odd that such property has not been remarked
by other authors; because, on one hand, it is very intuitive, and, on the other hand, it
makes it possible to directly achieve the same optimal result.

7.13.1 Classical PPM Format

In the classical version, the symbol period T is subdivided into K parts with spacing
T0 = T/K , obtaining K “positions.” Then, to the symbol i ∈ A = {0, 1, . . . , K − 1}
the waveform is associated consisting of a rectangle in the ith position iT0 of the
symbol period

γi(t) =
{

Δ iT0 < t < (i + 1)T0
0 elsewhere

i = 0, 1, . . . , K − 1 (7.130)

where Δ > 0 is the scale factor (see Fig. 4.12). But, we will adopt the specular format

γi(t) =
{

Δ (K − 1 − i)T0 < t < (K − i)T0
0 elsewhere

i = 0, 1, . . . , K − 1 (7.131)

where the ith position becomes (K −1− i)T0 instead of iT0, as illustrated in Fig. 7.37
for K = 4. The reason of this choice is due to the fact that it simplifies the formulation
of the symmetry operator in the quantum version.

To waveforms (7.131), K binary words can be associated of length K

γi = [γi,K−1, . . . , γi,1, γi,0] , i = 0, 1, . . . , K − 1

http://dx.doi.org/10.1007/978-3-319-15600-2_4
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Fig. 7.37 Realization of transmitted symbols and corresponding optical power in classic 4-PPM
modulation

where γij = Δδij. For example, for K = 4 the words are

γ0 = [

0 0 0 Δ
]

γ1 = [

0 0 Δ 0
]

γ2 = [

0 Δ 0 0
]

γ3 = [

Δ 0 0 0
]

.

As outlined in Problem 7.5, it can be verified that PPM modulation is a special
case of vector modulation seen in Sect. 7.3.2.

7.13.2 Quantum PPM Format

We have seen in Sect. 7.3.2 that the quantum formulation of a vector modulation
must be done over a composite Hilbert space, given by the tensor product H =
H0 ⊗ H0 ⊗ · · · ⊗ H0 of K equal Hilbert spaces H0, into each of which Glauber’s
representation must have been introduced, and the states are given by the tensor
product of K coherent states and become K–mode Gaussian states.

In the specific case of PPM, the states become

|γi〉 = |γi,K−1〉 ⊗ · · · ⊗ |γi,1〉 ⊗ |γi,0〉 , i = 0, 1, . . . K − 1 (7.132)

with

|γij〉 =
{ |Δ〉 i = j

|0〉 i 
= j
(7.132a)

where |Δ〉 is a coherent state with parameter Δ, and |0〉 is the “ground state”. For
example, for K = 4 we have the four states

|γ0〉 = |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |Δ〉 |γ1〉 = |0〉| ⊗ 0〉 ⊗ |Δ〉 ⊗ |0〉
|γ2〉 = |0〉 ⊗ |Δ〉 ⊗ |0〉 ⊗ |0〉 |γ3〉 = |Δ〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉. (7.133)
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7.13.3 Geometrically Uniform Symmetry (GUS) of PPM

As we shall see in Sect. 11.20, the constellations of Gaussian states generated by
the rotation operator R(φ) verify the GUS, also in the K–mode. This is the case
of K-ary PPM. But the parameter φ becomes a K × K Hermitian matrix and the
exponential defining R(φ) becomes difficult to handle. Here we prefer finding directly
the symmetry operator S, and in Chap. 11 we will prove that S can be expressed by
the K–mode rotation operator.

The symmetry operator S of the quantum PPM format (7.132) can be defined as
follows: S is an operator of the composite Hilbert space H that causes a shift to the
left by one position (modulo K) of the factors of the tensor product of the states,
moving the first factor to second position, the second to third , and the K th factor to
first. For example, for K = 4, the action of S is as follows

S|γi3〉 ⊗ |γi2〉 ⊗ |γi1〉 ⊗ |γi0〉 = |γi2〉 ⊗ |γi1〉 ⊗ |γi0〉 ⊗ |γi3〉. (7.134)

Then, going on with K = 4, with the states of (7.113) we can see that, starting from
the state |γ0〉 = |0〉⊗|0〉⊗|0〉⊗|Δ〉, the other states can be obtained in the following
way:

S |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |Δ〉 = |0〉 ⊗ |0〉 ⊗ |Δ〉 ⊗ |0〉 = |γ1〉
S2|0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |Δ〉 = |0〉 ⊗ |Δ〉 ⊗ |0〉 ⊗ |0〉 = |γ2〉
S3|0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |Δ〉 = |Δ〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 = |γ3〉

while the application of S4 brings back to the initial state, and therefore S4 = IH.
The considerations we just made “in words” can be translated to “formulas,” but

this is not so simple, because the symmetry operator S is not separable, but it operates
between the K factors of the composite Hilbert space H = H⊗K

0 . For the symmetry
operator, the following result applies, recently demonstrated in [13].

Proposition 7.3 Let n be the dimension of the component Hilbert spaces H0, and
therefore N = nK is the dimension ofH⊗K

0 . Then the symmetry operator of the K-ary
PPM has the following expression

S =
n−1
∑

k=0

wn(k) ⊗ IL ⊗ w∗
n(k), (7.135)

where ⊗ is Kronecker’s product, wn(k) is a column vector of length n, with null
elements except for one unitary element at position k, and IL is the identity matrix of
order L = nK−1. �

For example, for n = 2 and K = 3 (3-PPM) we have

http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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w2(0) =
[

1
0

]

, w2(1) =
[

0
1

]

, I4 =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

and therefore from (7.135)

S = w2(0) ⊗ I4 ⊗ w∗
2(0) + w2(1) ⊗ I4 ⊗ w∗

2(1)

=
[

1
0

]

⊗

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

⊗ [

1 0
]+

[

0
1

]

⊗

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

⊗ [

0 1
]

and, developing the products, we obtain the 16×16 matrix (remember that the tensor
product for matrices becomes Kronecker’s product, see Sect. 2.13)

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (7.136)

We leave it to the reader to check that, using the properties of Kronecker’s product
of Sect. 2.13, from (7.135) we obtain that the matrix S has dimensions nK × nK , it is
unitary, and has the property SK = InK .

For later use it is important to evaluate explicitly the EID of the symmetry operator
S in the form (5.128)

S =
K−1
∑

i=0

W i
K Yi Y∗

i (7.137)

where the columns of the matrices Yk are formed by the eigenvectors corresponding
to the eigenvalues λi = W i

K . The explicit evaluation of such eigenvectors is long and

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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cumbersome, and is developed in [13], using the fact that for the PPM the operator
S is a permutation matrix. The important thing is that this evaluation can be done
“analytically” for every n and K , without resorting to numeric evaluation, which
could be prohibitive for high values of N = nK . For example, for K = 4, n = 2, the
eigenvalues 1, W4, W 2

4 , W 3
4 have multiplicities respectively 6, 3, 4, and 3, and the

corresponding eigenvectors form the matrices

Y0 Y1 Y2 Y3
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 0 0 1

2 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 1
2 0 0

0 0 1√
2

0 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 1√
2

0 0 0

0 0 0 0 0 1
2

0 0 0 0 1
2 0

0 0 0 0 0 1
2

0 0 0 0 0 1
2

0 1 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
− i

2 0 0

− 1
2 0 0

0 − i
2 0

i
2 0 0
0 0 0
0 − 1

2 0
0 0 − i

2
1
2 0 0
0 1

2 0
0 0 0
0 0 1

2
0 i

2 0
0 0 i

2

0 0 − 1
2

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 − 1

2 0 0

0 1
2 0 0

0 0 − 1
2 0

0 − 1
2 0 0

− 1√
2

0 0 0

0 0 1
2 0

0 0 0 − 1
2

0 1
2 0 0

0 0 1
2 0

1√
2

0 0 0

0 0 0 1
2

0 0 − 1
2 0

0 0 0 − 1
2

0 0 0 1
2

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
i
2 0 0

− 1
2 0 0

0 i
2 0

− i
2 0 0

0 0 0
0 − 1

2 0
0 0 i

2
1
2 0 0
0 1

2 0
0 0 0
0 0 1

2
0 − i

2 0
0 0 − i

2

0 0 − 1
2

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

7.13.4 Performance of Quantum PPM Systems

Considering that the PPM states have the GUS, the SRM gives an optimal detection,
then, in performance evaluation, the same results will have to be found as those of
Yuen et al. [4] with a different methodology.

Applying the method summarized in Sect. 7.7.1, about the SRM detection in the
presence of GUS, the performance evaluation is articulated as follows. Gram’s matrix
G has as element i, j the inner product Gij = 〈γi|γj〉, where now the states |γi〉 are
composite. We recall that the inner product of two states, each generated by the tensor
product of K component states, is given by the product of the K inner products of
the component states, that is,

〈γi|γj〉 = 〈γi0|γj0〉 〈γi1|γj1〉 . . . 〈γiK−1|γjK−1〉. (7.138)

Then, from (7.9), we get
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〈γi|γj〉 =
{

1 i = j

e−|Δ|2 i 
= j.
(7.139)

For example, in the case K = 4 the inner product 〈γ0|γ2〉 results in

〈γ0|γ2〉 = 〈Δ|0〉 〈0|0〉 〈0|Δ〉 〈0|0〉
= e− 1

2 |Δ|2 1 e− 1
2 |Δ|2 1 = e−|Δ|2 .

We observe that the same energy E is associated to all symbols, and, according
to (7.132), to each composite state the same signal photons are associated, given by

Ns = |Δ|2 = number of signal photons/symbol. (7.140)

Therefore Gram’s matrix becomes

G =

⎡

⎢

⎢

⎢

⎣

1 |X|2 . . . |X|2
|X|2 1 . . . |X|2

...
. . .

|X|2 |X|2 . . . 1

⎤

⎥

⎥

⎥

⎦

where |X|2 is the quadratic superposition degree of the component states (X = 〈γiγj〉,
i 
= j), given by

|X|2 = |〈Δ0|2 = e−|Δ|2 = e−Ns〉.

Notice that G is a circulant matrix, as a consequence of the GUS.
Considering the GUS, the eigenvalues of G are given by the DFT of the first row

[1, |X|2, . . . , |X|2], and therefore

λi =
K−1
∑

k=0

G0k W −ki
K = 1 + |X|2

K−1
∑

k=1

W −ki
K .

Recalling the orthogonality condition

K−1
∑

k=0

W −ki
K =

{

K i = 0

0 i 
= 0
(7.141)

we have

λi =
{

1 + (K − 1)|X|2 i = 0

1 − |X|2 i = 1, . . . , K − 1.



7.13 Quantum Systems with PPM Modulation 343

The square roots of G become

G± 1
2 =

K−1
∑

i=0

λ
± 1

2
i |wi〉〈wi|.

The transition probabilities are computed from (7.93) and result in

pc(i|j) = 1

K2

∣

∣

∣

K−1
∑

p=0

λ1/2
p W −p(i−j)

K

∣

∣

∣

2 = 1

K2

∣

∣

∣λ
1/2
0 + λ

1/2
1

K−1
∑

p=1

W −p(i−j)
K

∣

∣

∣

2

and, from (7.141),

pc(j|i) =

⎧

⎪

⎨

⎪

⎩

K−2
(

λ
1/2
0 − λ

1/2
1

)2
i 
= j

K−2
(

λ
1/2
0 + (K − 1)λ

1/2
1

)2
i = j

(7.142)

where

λ0 = 1 + (K − 1)|X|2 , λ1 = 1 − |X|2 , with |X|2 = e−Ns .

The error probability is computed from (7.94) and becomes

Pe = 1 − 1

K2

(
√

1 + (K − 1)|X|2 + (K − 1)
√

1 − |X|2
)2

(7.143)

in perfect agreement with the results of [4].
Finally, the measurement vectors are obtained from (7.95), namely,

|μi〉 =
K−1
∑

j=0

aij|γj〉 , aij =

⎧

⎪

⎨

⎪

⎩

K−2
(

λ
−1/2
0 − λ

−1/2
1

)2
i 
= j

K−2
(

λ
−1/2
0 + (K − 1)λ

−1/2
1

)2
i = j.

7.13.5 Performance of Classical PPM Systems

We use the notations

• A0 transmitted word,
• B0 received word,
• ̂A0 decided word.
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Let us consider, for simplicity, the case K = 4 with the standard (non specular)
format and with a unitary scale factor (Δ = 1), in which the possible transmitted
words A0 are

γ0 = [

1 0 0 0
]

, γ1 = [

0 1 0 0
]

γ2 = [

0 0 1 0
]

, γ3 = [

0 0 0 1
]

. (7.144)

With a photon counter, the symbol 0 is always received correctly, whereas the symbol
1 may be received as 0, with an error probability e−Ns . Then we have five possible
received words: the four correct words (7.144) and the wrong word

[

0 0 0 0
]

, and
we have to decide to which correct word the wrong word should be associated.
The optimum criterion (with equiprobable symbols) is to associate the wrong word
[

0 0 0 0
]

to whatever correct word, for example to γ0 (Fig. 7.38).
Then the decision criterion becomes

̂A0 = γ0 if B0 = [

1 0 0 0
]

or B0 = [

0 0 0 0
]

̂A0 = γ1 if B0 = [

0 1 0 0
]

̂A0 = γ2 if B0 = [

0 0 1 0
]

̂A0 = γ3 if B0 = [

0 0 0 1
]

and we can get an error only in the last three cases, each with probability e−Ns . Thus,
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Fig. 7.38 Channel and decision criterion of a classical 4-PPM. A0 is the transmitted word, B0 the
received word, and̂A0 the decided word
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Pe,classical = 1

4
[Pe(γ1) + Pe(γ2) + Pe(γ3) + Pe(γ4)]

= 1

4
[0 + e−Ns + e−Ns + e−Ns ] = 3

4
e−Ns .

The general result is

Pe,classical = K − 1

K
e−Ns . (7.145)

7.13.6 Comparison in the Binary Case

For binary quantum PPM, from (7.143) we get

Pc = 1

4

[
√

1 − |X|2 +
√

1 + |X|2
]2 = 1

2

[

1 +
√

1 − |X|4
]

where |X|4 = e−2Ns = e−2NR , with NR = Ns the number of signal photons per bit.
The error probability is therefore

Pe = 1

2

[

1 −
√

1 − e−2NR

]

, (7.146)

the same result found for the OOK format (see (7.106)).
Instead, in the classical case, from (7.145) we have Pe,classical = 1

2 e−NR . The com-
parison of these results is shown in Fig. 7.39.

7.13.7 Comparison in the K-ary Case

In the quantum case, the error probability is given by (7.143), which can be rewritten
in the form

Pe = K − 1

K2

[

K − (K − 2)(1 − |X|2) + 2
√

(1 − |X|2)(1 + (K − 1)|X|2)
]

where the superposition degree |X|2 can be expressed as a function of the number of
signal photons per symbol Ns, or of the number of signal photons per bit NR

|X|2 = e−Ns = e−NR log2 K .

In the classical case the error probability is given by (7.145).
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Fig. 7.39 Comparison of quantum and classical 2-PPM
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Fig. 7.40 Comparison between quantum and classical 8-PPM and 64-PPM in terms of number of
signal photons per symbol Ns

The comparison between the two systems is illustrated for the 8-PPM and
64-PPM in Fig. 7.40 as a function of the number of signal photons per symbol
Ns. Even in this case we notice a striking superiority of the quantum system.
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Fig. 7.41 Error probability
of quantum PPM as a
function of the number of
signal photons per bit NR
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For instance in 8-PPM with Ns = 10 photon/symbol we find Pe = 3.660 10−9

and Pe,classical = 3.972 10−5; in 64–PPM with Ns = 10 photon/symbol we find
Pe = 3.421 10−9 and Pe,classical = 4.469 10−5. In both cases the improvement of the
quantum system is of several decades.

In Fig. 7.41 the error probability of the quantum PPM is plotted as a function of
the number of signal photons per bit NR for four values of K . We realize that quantum
PPM receivers have an extraordinary sensitivity, specifically

2-PPM NR = 9.66849 photons/bit
4-PPM NR = 5.10889 photons/bit
8-PPM NR = 3.54713 photons/bit
16-PPM NR = 2.75561 photons/bit
32-PPM NR = 2.27708 photons/bit
64-PPM NR = 1.95665 photons/bit
128-PPM NR = 1.72722 photons/bit
256-PPM NR = 1.55486 photons/bit
512-PPM NR = 1.42072 photons/bit
1024-PPM NR = 1.31332 photons/bit
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7.14 Overview of Squeezed States

Up to now we have considered Quantum Communications based on coherent states.
In these last two sections, we consider the promising possibility to use squeezed
states.

We have seen that a coherent state |α〉 is completely determined by a complex
parameter α. A squeezed state, and more precisely, a squeezed-displaced state, say
|z, α〉 may be seen as a generalization of a coherent state, because of the dependence
on two complex parameters, the displacement α and the squeeze factor z = reiθ .
In particular, setting z to zero, the squeezed-displaced state gives back the coherent
state

|0, α〉 = |α〉 ∈ G. (7.147)

This simple property allows us to say that, using squeezed states in quantum commu-
nications with appropriate parameters, the performance cannot be worse than with
coherent states. As we shall see, the squeeze factor z allows us to control the photon
statistic in such a way that, by choosing z in an appropriate range, we get a con-
siderable improvement of the system performance. This opportunity has been long
recognized [14].

The theory of squeezed-displaced states will be formulated in Sect. 11.15 in
the context of continuous variables, where it is shown that they represent the most
general form of Gaussian states. In this section, we give the essential properties of
squeezed states that are needed for Quantum Communications.

We shall use the following notations

• |z, α〉: squeezed-displaced state
• |0, α〉 = |α〉: coherent state
• |z, 0〉: squeezed state or squeezed vacuum state.

7.14.1 Definition and Properties of Squeezed-Displaced States

Squeezed states live in the same Hilbert space as coherent states, that is an infinite
dimensional Hilbert space where the Fock basis has been introduced. Squeezed-
displaced states are the result of two distinct operations applied to the vacuum state:
A squeezing and a displacement. They may be specified by the Fock expansion,
whose Fourier coefficients result in

|z, α〉n =
√

n!
μ

(

β

μ

)n

Hn

(

μν

β2

)

exp

(

−1

2
|β|2 − β2 ν∗

2μ

)

. (7.148)

where Hn(x) are the polynomials (of degree �n/2�)

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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Hn(x) :=
�n/2�
∑

j=0

1

(n − 2j)!j! xj. (7.149)

and

μ = cosh r , ν = sinh r exp(i θ) , β = μα − να∗. (7.149a)

The deduction of (7.148) from the operations of squeezing and displaciment is made
in Sect. 11.15.6

The class of squeezed-displaced states has two special subclasses, which are
obtained for z = 0 (absence of squeezing) and for α = 0 (absence of displacement).
In the first case we have coherent states with coefficients (see (7.2))

|0, α〉n = e− 1
2 |α|2 αn

√
n! (7.150)

In the second case we have squeezed vacuum states with coefficients

|z, 0〉n = √
sechr

∞
∑

n=0

√
(2n)!

2nn! λn|2n〉 λ = tanh r eiθ (7.151)

that is, the state |z, 0〉 is given by a linear combination of even photon number states,
which means that the probability that the state contains an odd number of photons is
zero.

7.14.2 Statistics of Squeezed-Displaced States

The probability distribution of the number of photons in a squeezed state is obtained
by squaring the Fourier coefficients (7.148), that is,

pn(i) := P[n = i] = ||z, α〉i|2 (7.152)

This distribution is illustrated in Fig. 7.42 for α = 3 and four values of r with θ = 0.
Note that for r = 0, absence of squeezing, pn(i) becomes a Poisson distribution, but
in general it may be far form the Poisson shape, and sometimes this is classified as
sub-Poissonian statistic. Under certain conditions, this statistics may be controlled
acting on the squeeze factor [14].

The mean photon number in a squeezed-displaced state is given by [4]

6 The Fock expansion of squeezed-displaced states was first established by [4], who expressed the
Fourier coefficients in terms of Hermite polynomials Hn(x). The equivalent formulation in terms
of the polynomials Hn(x) appear to be more direct.

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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Fig. 7.42 The probability distribution of photon number in squeezed-displaced states, pn(i) =
P[n = i

∣

∣ |(α, r)〉], for α = 3 and different values of r

n̄|z,α〉 = |α|2 + sinh2 r (7.153)

and the variance of the photon number is given by [15]

σ 2
n|z,α〉 = |α|2

[

e−2r cos2 θ + e2r sin2 θ
]

+ 1

2
sinh2 2r. (7.154)

Clearly these parameters, illustrated in Fig. 7.43, confirm the non-Poissonian statistic,
because the mean and the variance are different.
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Fig. 7.43 Mean photon number n̄ and variance σ 2
n in squeezed-dispaced states versus the squeeze

factor r for three values of |α|2
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7.14.3 Degree of Superposition of Squeezed-Displaced States

The most important parameter for Quantum Communications is given by the inner
product, which must be studied in detail.

Proposition 7.4 The inner product of two squeezed-displaced states was evaluated
by Yuen [4, Eq.3.25] and reads

〈z1, α1z0, α0 = A− 1
2 exp

[

−A
(|β1|2 + |β0|2

)− 2β1β
∗
0 + B β∗2

1 − B∗β2
0

2A

]

(7.155)

where

zi = rie
iθi , i = 0, 1

μi = cosh(ri) , νi = sinh(ri)e
iθi (7.155a)

βi = μiαi − νiα
∗
i

A = μ0μ
∗
1 − ν0ν

∗
1 , B = ν0μ1 − μ0ν1

To study this complicate expression, we begin with remarking the dependence on
the displacements αi and on the squeeze factors zi: The parameters β0 and β1 depend
on both, while all the other parameters depend only on the squeeze factors. We can
write (7.155) as

〈z1, α1|z0, α0〉 = A− 1
2 exp

⎡

⎣−
1
∑

i=0

1
∑

j=0

(

aij αiαj + bij αiα
∗
j + dij α∗

i α∗
j

)

⎤

⎦

having at the exponent a bi-quadratic structure in α0, α1, α∗
0 , and α∗

1 , whose coeffi-
cients aij, bij, dij depend only on the squeeze factors.

For α0 = α1 = 0 (absence of displacement), (7.155) gives

〈z1, 0|z0, 0〉 = A− 1
2 = (μ0μ

∗
1 − ν0ν

∗
1 )−

1
2

= (cosh r0 cosh r1 − sinh r0 sinh r1ei(θ0−θ1))−
1
2

which is in agreement with the expression obtained in [16] for the inner product of
two squeezed vacuum states

〈z1, 0|z0, 0〉 = √

sech r sech r0
/
√

1 − ei(θ0−θ) tanh r tanh r0. (7.156)
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For z0 = z1 = 0 (absence of squeezing) we get A = 1, B = 0, βi = αi, and then

〈0, α1|0, α0〉 = exp

[

−1

2

(

|α1|2 + |α0|2 − 2α1α
∗
0

)

]

which is the formula we got for the inner product of two coherent states (see (7.9)).

7.14.4 Squeezed-Displaced States as Gaussian States

As said above, squeezed-displaced states are the most general Gaussian states. The
state |z, α〉 depends on two complex parameters

z = r eiθ , α = Δ ei ε. (7.157)

We examine in detail the Wigner function W (x, y) of the state (7.157), which
is completely determined by the mean value and by the covariance matrix (see
Sect. 7.2.5). Now, in |z, α〉 the squeezing part does not give any contribution to the
mean value, so we have

[

q
p

]

=
[�α

α

]

=
[

Δ cos ε

Δ sin ε

]

. (7.158)

On the other hand the covariance matrix of the displacement component is the iden-
tity, so that the covariance matrix depends only on the squeeze factor as

V =
[

V11 V12
V12 V22

]

=
[

cosh2 r + sinh2 r + cos θ sinh 2r sin θ sinh 2r
sin θ sinh 2r cosh2 r + sinh2 r − cos θ sinh 2r

]

.

(7.159)

Considering that det V = 1, the Wigner function results in

W (x, y) = 1

2π
exp

{

−1

2

[

V22
(

x − q
)2 + V11

(

y − p
)2 − 2V12

(

x − q
)(

y − p
)

]

}

.

(7.160)

A convenient representation of W (x, y) in the x, y plane is given by a contour level,
which represents the curve given by the relation W (x, y) = L, with L > 0 real. In
general, these curves are tilted ellipses as shown in Fig. 7.44. The ellipses have the
common center given by the displacement α, and the main axis is tilted by the angle
1
2θ . The lengths of the main axis and of the minor axis are proportional to e2r and to
e−2r , respectively, and so they are independent of the squeeze phase θ .
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Fig. 7.44 Contour level of the Wigner function W(x,y) (in red) of a squeezed-displaced state |z, α〉
with z = r eiθ and α = Δ eiε . The mean vector (q̄, p̄) = (Δ cos ε,Δ sin ε) gives the displacement
amount and determines the center of the elliptic countour. The main axis of the ellipse is tilted with
respect to the x axis of the angle 1

2 θ0

7.14.5 Constellations of Squeezed-Displaced States with GUS

In Sect. 11.20, we will prove that the application of the rotation operator R(φ) to a
squeezed-displaced state |z, α〉, with z = r eiθ and α = Δeiε, gives back the new
squeezed-displaced state

R(φ)|z, α〉 = |ze i 2φ, αe i φ〉 = |re i (2φ+θ),Δe i (φ+ε)〉

that is, with the modification of squeeze factor z → ze i 2φ and of the displacement
α → αe i φ . In other words, the class of squeezed-displaced states is closed under
rotations.

The above properties allow us to construct K-ary PSK constellations having the
GUS, using as symmetry operator S = R(2π/K). If |z0, α0〉 is a reference squeezed-
displaced state, the constellation has the form

S = {Sk |z0, α0〉 = |z0e i 2k 2π/K , α0e i k 2π/K 〉 , k = 0, 1, . . . , K − 1}. (7.161)

Figure 7.45 shows two 8-PSK constellations having the GUS with coherent states
and squeezed-displaced states. The circles and the ellipses around the states represent
the contour levels of the Wigner function of each state; the eccentricity of the ellipse
depends only the squeeze factor r.

As seen for coherent states the GUS will allow us to find an optimal detection
(minimum error probability) with the SRM approach.

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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1
2 θ0

Fig. 7.45 8-PSK constellations of coherent states (left) and of squeezed-displaced states (right)
with the GUS. In both constellations the reference state has a real and positive displacement (α = Δ,
ε = 0). The squeeze phase of the reference state is θ0 and the corresponding ellipse is tilted of 1

2 θ0

7.15 Quantum Communications with Squeezed States

In this section, we evaluate the performance (error probability) in quantum com-
munications systems where the information carrier is given by squeezed-displaced
states instead of coherent states. We consider only PSK communications systems7;
and therefore it is natural to choose constellations having the GUS. Then, for a given
modulation order K , we have to choose a reference state of the constellation, |z0, α0〉,
because the other states are generated through the rotation operator, as indicated in
(7.161).

In the choice of the reference state |z0, α0〉 , where z0 = r0 eiθ0 , without restriction
we can assume α0 real and positive. This parameter, together with r0, determines the
average number of photons contained in the state, which is given by

n|z0,α0〉 = |α0|2 + sinh2 r0. (7.162)

This number is very important because, in a PSK constellation with equally likely
symbols, it also gives the average number of signal photons per symbol Ns. Now,
choosing r0 as a parameter that quantify the squeezing amount, it remains to choose
the squeeze phase θ0 and this will be done by taking θ0 that minimizes the error
probability.

Considering that the performance of PSK essentially depends on the quadratic
superposition between the states of the constellation

|X|2 = |〈r0eiθ0 , α0|r1eiθ1 , α1〉|2

7 Recently also the PPM with squeezed-displaced states has been considered [17].
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Fig. 7.46 Square of the inner product X = 〈α0, r0eiθ0 |α1, r1eiθ1 〉, represented by − log10 |X|2,
for a BPSK constellation. On the left, the plot is versus the amplitude α0 of the displacement for
coherent states (red) and for squeezed-displaced states with r0 = 0.9 and two values of θ0. On the
right, the plot is versus θ0 with r0 = 0.9 and two values of α0

it is important to learn how |X|2 depends on squeeze and displacement parameters.
This is considered in Fig. 7.46 for the BPSK, where r1eiθ1 = r0ei(θ0+2π) and α1 =
α0eiπ . On the left of the figure |X|2 is plotted versus α0 for coherent states (red curve)
and also for squeezed-displaced states for a fixed value of r0 and two values of θ0.
It is remarkable the great improvement obtained with squeezed states, especially
at the increase of the displacement amount α0. The right of the figure shows the
strong dependence of |X|2 on the squeeze phase θ0 and hence the importance of an
appropriate choice of this parameter.

7.15.1 BPSK with Squeezed States

The BPSK constellation of squeezed-displaced states is obtained from (7.161) with
K = 2, namely

S = {|r0eiθ0 , α0〉, |r0eiθ0 ei2π , α0eiπ }〉. (7.163)

For the evaluation of the error probability we can apply Helstrom’s theory (see
(7.102)), which gives, with equally likely symbols,

Pe = 1

2

(

1 −
√

1 − |X|2
)

. (7.164)

Thus, the only parameter needed is the quadratic superposition |X|2 between the
two states of the constellation. We have seen that |X|2 is a function of r0, α0, and θ0.
Now, fixing r0 and α0, we have the number of signal photons per symbol Ns as

Ns = |α0|2 + sinh2 r0. (7.165)

and we choose the squeeze phase θ0 that achieves the minimum error probability.
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Fig. 7.47 BPSK system with squeezed-displaced states. On the left, the error probability Pe versus
the squeeze phase θ0 for three values of the number of signal photons per symbol Ns. All the curves
have a minimum for θ0 = π . On the right, the optimal BPSK constellation where the ellipse of the
reference state is tilted of θ0 = π/2 because the optimal squeeze phase is θ0 = π

In Fig. 7.47 the error probability is plotted versus θ0 for three values of Ns. Clearly,
the minimum of Pe is obtained for θ0 = π , which means that in optimal BPSK
constellation the ellipses appear to be vertically tilted, as shown at the right of the
figure.

Finally, in Fig. 7.48 we compare the error probability Pe versus Ns obtained with
coherent states and squeezed-displaced states. It is remarkable that the performance
of the BPSK is highly improved with the presence of squeezing.
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Fig. 7.48 Error probability Pe versus the number of signal photons per symbol Ns in 4-PSK. The
dark curve refers to coherent states, while the colored curves refer to squeezed-displaced states
with different values of the squeeze factor r0 and optimal squeeze phase θ0 = −π/2. The curve do
not start at Ns = 0, because Ns = |α0|2 + sinh2 r0 and for Ns < sinh2 r0 there is no room for the
displacement α0
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7.15.2 4-PSK with Squeezed States

The 4-PSK constellation of squeezed-displaced states is obtained from (7.161) with
K = 4, namely S = {|zi, αi〉}, where

zi = z0e i 2k 2π/4 , αi = α0e i k 2π/2 , i = 0, 1, 2, 3. (7.166)

Considering that the constellation has the GUS, for the evaluation of the error prob-
ability we apply the SRM approach, which turns out to be optimum. From Sect. 7.7
we recall that the evaluation of Pe using the SRM is obtained as follows:

(1) Evaluation of the inner products

Gpq = 〈zp, αp|zq, αq〉 , p, q = 0, 1, 2, 3.

(2) Evaluation of the eigenvalues λi = ∑3
k=0 G0k W −ki

4 , and finally

Pe = 1 −
(

1

4

3
∑

i=0

√

λi

)2

. (7.167)

Also in this case Pe is a function of r0, α0, and θ0 and the number of signal photons
per symbol Ns is still given by (7.165). Again, we choose r0 and α0 as parameters
and we search for the squeeze phase θ0 that gives the minimum error probability.

In Fig. 7.49 the error probability is plotted versus θ0 for three values of Ns. Clearly,
the minimum of Pe is obtained for θ0 = −π/2, which means that in the optimal
4-PSK constellation the reference ellipse is tilted of 1

2θ0 = −π/4, as shown on the
right of the figure (see Fig. 7.45).
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Fig. 7.49 4-PSK system with squeezed-displaced states. On the left, the error probability Pe versus
the squeeze phase θ0 for three values of the number of signal photons per symbol Ns All the curves
have a minimum for θ0 = −π/2. On the right the optimal 4-PSK constellation; the ellipse of the
reference state is tilted by 1

2 θ0 = −π/4 because the optimal squeeze phase is θ0 = −π/2
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Fig. 7.50 Error probability Pe versus the number of signal photons per symbol Ns in 4-PSK. The
dark curve refers to coherent states, while the colored curves refer to squeezed-displaced states
with different values of the squeeze factor r0 and optimal squeeze phase θ0 = −π/2. The curve do
not start at Ns = 0, because Ns = |α0|2 + sinh2 r0 and for Ns < sinh2 r0 there is no room for the
displacement α0

Finally, in Fig. 7.50 we compare the error probability Pe versus. Ns obtained with
coherent states and with squeezed-displaced states. We realize that also the 4-PSK
is highly improved with the presence of squeezing.

7.15.3 Conclusions

In this chapter, we have considered coherent states as the standard carrier for data
transmission in quantum communications systems. On the other hand, in this last
section, we have seen the possibility of a huge improvement using squeezed light,
but we have limited the analysis only to the systems 2PSK and 4PSK for the rea-
son that squeeze technique is not promising for the immediate future because of
losses and excess noise present in this technique and because of the complexity and
power required. However, quantum optics is making rapid progress so that quantum
communications with squeezed states merits a special attention.
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Chapter 8
Quantum Communications Systems
with Thermal Noise

8.1 Introduction

The analysis of Quantum Communications systems developed in the previous chapter
ignored thermal noise, sometimes called background noise. In this chapter we will
consider such noise, which in practical Quantum Communications is always present,
although it is neglected by most researchers, at least nowadays.

The general scheme of quantum data transmission seen in Sect. 5.2 is reconsidered
in Fig. 8.1, with the purpose of evidencing the parameters that apply in the presence
of thermal noise.

At transmission Alice “prepares” the quantum system H in one of the coherent
states |γi 〉, i ∈ A, as in the previous chapter. These states are pure (“certain”), but the
thermal noise, which originates in the receiver and may be conventionally ascribed
to the quantum channel, removes the “certainty” of the states |γi 〉, and therefore
they must be described by density operators. Then, if the transmitted state is |γi 〉,
at reception Bob finds the “noisy” density operator ρ(γi ), with nominal state |γi 〉,
whose expression will be seen in the next sections.

Unfortunately, the analysis and especially the optimization in the presence of ther-
mal noise becomes very difficult, and the reason is due to the representation through
density operators, whose mathematical structure is intrinsically nonlinear, while in
the classical case thermal noise is simply represented as an additive Gaussian noise.

The chapter begins with the quantum representation of thermal noise, where the
density operators are expressed as a continuum of coherent states. This representation
is formulated in a Hilbert space with infinite dimensions, but to get a numerical
evaluation the density operators are approximated by matrices of finite dimensions,
so that the quantum decision theory seen in Chaps. 5 and 6 can be applied.

For the optimization of the measurement operators, explicit results are available
only for binary systems and are provided by Helstrom’s theory, which holds also in the
presence of noise. For multilevel Quantum Communications systems we can apply
the numerical optimization, and especially the square root measurement (SRM),
which is suboptimal but gives a good approximation of the system performance.

© Springer International Publishing Switzerland 2015
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classical
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quantum
encoder
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quantum
channel
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measurement

ρ(γAn )

Bob

decision
m An

Fig. 8.1 Quantum Communications systems in the presence thermal noise: Alice produces pure
states |γAn 〉 and Bob receives noisy states ρ(γAn ) and performs a quantum measurement to argue
which symbol was transmitted

We will also develop the theory of classical (or semiclassic) optical systems to
provide a comparison with the corresponding Classical Communications systems.
As already seen in the previous chapter in the absence of thermal noise, also in the
presence of thermal noise, Quantum Communications systems perform better than
classical counterparts.

Some of the topics developed in this chapter are original and represent an advanced
research. Among them, the SRM method applied to mixed states and the analysis
in the presence of noise of QAM, PSK, and PPM quantum systems [1, 2]. In some
numerical computations we will find it convenient to use the compression technique
introduced at the end of Chap. 5, and also this approach is new.

Organization of the Chapter

Sections 8.2–8.4 deal with the representation of noisy coherent states, according to
Glauber’s theory [3, 4], whose environment is given by an infinite dimensional Hilbert
state. The approximation to finite dimension, needed for numerical computations,
is considered with great detail to ensure an acceptable evaluation of the system
performance, which in practice is always given by the error probability.

Section 8.5 formulates the theory of classical optical communications in the pres-
ence of thermal noise starting from the theory developed in the absence of thermal
noise in Chap. 7. This theory is used in the subsequent sections to compare classical
and quantum systems.

Section 8.6 checks the validity of the Gaussian approximation, usually adopted in
classical detection theory.

Section 8.7 develops the general theory of Quantum Communication systems in
the presence of thermal noise, which is applied from Sect. 8.8 to the end of the chapter
to the specific communications systems (OOK, QAM, PSK, and PPM) considered
in the previous chapter in the absence of thermal noise.

A special attention is paid to PPM systems, where the numerical methods
encounter serious computation problems because their complexity increases expo-
nentially with the order of modulation. In Sect. 8.12 the performance is evaluated
with the methods used for the other systems, while in Sect. 8.13 we apply the state
compression, which allows us to reach ranges of performance not possible with the
other methods.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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8.2 Representation of Thermal Noise

The environment in which thermal noise is represented is an infinite dimensional
Hilbert space, where the Fock basis {|n〉, n = 0, 1, 2, . . .} of the number states is
introduced, the same considered in Sect. 7.2 for the representation of coherent states.
It is convenient to recall the expression of these states, namely

|α〉 = e− 1
2 |α|2

∞
∑

n=0

αn

√
n
|n〉 (8.1)

where α is a complex parameter that specifies the coherent state |α〉. This represen-
tation is just the tool used to specify the density operator which accounts for the
presence of thermal noise.

8.2.1 Glauber’s Theory on Thermal Noise

The environment is a resonant cavity in thermal equilibrium at a given absolute
temperature T0, where the description of the electromagnetic field in the cavity, for
a given fixed mode, is given by the density operator [3, 4]

ρth = 1

πN

∫

C

exp
(

−|α|2
N

)

|α〉〈α| dα (8.2)

where |α〉 is the coherent state defined in (8.1) and the integration is done with
respect to the complex variable α.1 The integrand has a bidimensional Gaussian
profile (Fig. 8.2) with a dispersion determined by the number of thermal photons N.
The parameter N, already introduced in Chap. 4, is defined by

N = 1

exp (hν/kT0) − 1
(8.3)

with h Plank’s constant, k Boltzmann’s constant, ν the frequency of the specific
mode, and T0 the absolute temperature of the cavity. The interpretation of N is
average number of thermal photons associated to the mode; as done in Sect. 4.7.3,
N will be called number of thermal photons. For instance, if the cavity is at the

1 More specifically, letting α = x + iy, the integration must be interpreted in the form

∫

C

f (α) dα =
∫ +∞

−∞

∫ +∞

−∞
f (x + iy) dx dy.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_4
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Fig. 8.2 Gaussian integrand
of the density operator in the
presence of only thermal
noise

complex plane

ambient temperature (T0 = 290 K) and the system works at optical frequencies, say
at ν = 2 1014 Hz, corresponding to λ = 1.5 µm, one gets

hν = 1.3 10−19J kT0 = 4 10−21J N = 7.8 10−15 .

The state described by the density operator ρth is called thermal state and rep-
resents a fundamental notion in the theory of continuous variables (see Sect. 11.9).
According to (8.2), ρth is given by a linear combination of a continuum of coherent
states |α〉. Considering the expression (8.1) of the coherent state |α〉, one can develop
ρth as a function of the eigenstates (Fock states) |n〉 of the number operator N , giving

ρth =
∞
∑

n=0

Nn

(N + 1)n
|n〉〈n| . (8.4)

We briefly describe how the expansion (8.4) is obtained. Substituting the coherent
state (8.1) in (8.2) we get a double summation, say in m and n, where the mixed terms
(m �= n) have the same expression as the odd moments of a Gaussian random variable
with zero mean, which are zero. Then, continuing with a single summation we arrive
at (8.4) (see Problem 8.1).

One can easily check, with the measurement setup seen in Sect. 7.2 and illustrated
in Fig. 7.2, that the average of the outcome m of such measurement is given by (see
(3.45) and Problem 8.2)

E[m|ρth] = Tr(ρth N ) = N . (8.5)

Hence, the parameter N has actually the meaning of average number of photons
due to the thermal noise. One can also verify, considering the standard quantum
measurement of counting, that the probability that the outcome of the measurement
m be the integer k, is given by the geometrical distribution (see Problem 8.1)

http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_3
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pm(k|ρth) = Nk

(N + 1)k
, k = 0, 1, 2, . . . (8.6)

From (8.4) it follows that ρth has the following (diagonal) matrix representation
in the Fock basis

ρth → R = [Rmn] with Rmn = δmn
Nn

(N + 1)n
. (8.7)

8.2.2 Signal in the Presence of Thermal Noise

If, in addition to the thermal noise, a coherent signal with complex envelope γ is
present, the global statistical description is again given by a density operator with
the Gaussian structure (8.2), but modified in the form

ρ(γ ) = 1

πN

∫

C

exp
(

−|α − γ |2
N

)

|α〉〈α| dα (8.8)

where the center of the Gaussian profile, which in the absence of signal is given
by the origin of the complex plane, is displaced by the quantity γ (Fig. 8.3). The
meaning of this parameter is

Nγ := |γ |2 = number of signal photons (8.9)

while N preserves the meaning of number of thermal photons.
As in the case of pure noise, the operator ρ(γ ) can be expressed in terms of the

eigenstates |n〉 of the number operator. The expansion is given by [5]

Fig. 8.3 Gaussian integrand
of the density operator in the
presence of both signal and
thermal noise

complex plane
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ρ(γ ) =
∞
∑

m=0

∞
∑

n=0

Rmn(γ ) |m〉〈n| (8.10)

where the coefficients have the expression: for m ≤ n

Rmn(γ ) = Nn

(N + 1)n

√

m!
n!
(

γ ∗

N

)n−m

exp
(

− |γ |2
N + 1

)

L(n−m)
m

(

1 − |γ |2
N

)

(8.10a)

while for m > n one uses the Hermitian symmetry Rnm(γ ) = R∗
mn(γ ). In (8.10a),

L(n−m)
m (x) is the generalized Laguerre polynomial of degree m and of parameter

n − m, which is given by

L(n−m)
m (x) =

m
∑

k=0

(−1)k (2m − n)!
(n − m − k)!(n − k)! xk . (8.10b)

As we can see, differently from the case of pure noise, now the density operator
ρ(γ ) is no more diagonal.

One can check, with the quantum measurement recalled above, that the average
of the outcome of the measurement m is

E[m|ρ(γ )] = |γ |2 + N = Nγ + N, (8.11)

with the clear meaning of global average number of photons. The variance results
in (see Sect. 8.5)

σ 2
n (ρ(γ )) = Nγ + 2Nγ N + N(N + 1) . (8.12)

Moreover, we find that the probability that the measurement’s outcome m be the
integer k is given by the Laguerre distribution

pn(k|ρ(γ )) := P[m = k|ρ(γ )] = Rkk(γ ) = 〈k|ρ(γ )|k〉

= N k

(N + 1)k+1 exp

(

− Nγ

N + 1

)

Lk

(

− Nγ

N(N + 1)

)

(8.13)

where Nγ = |γ |2 and Lk(x) = L(0)
k (x) is the ordinary Laguerre polynomial. The

Laguerre distribution has been illustrated in Fig. 4.24.
In conclusion, the photon counting in a quantum system described by the density

operator ρ(γ ) is given by a Laguerre random variable, and only in the absence of
thermal noise (γ = 0) it does become a Poisson random variable. One can reach the
same conclusion with a classical formulation (see Sects. 4.7 and 8.5).

Remark Note that in the perspective of quantum channels, developed in Chap. 12, the
parameter γ may be regarded as the signal bearing the information, which becomes

http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_12
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the signal state |γ 〉 after the c → q mapping γ → |γ 〉, and finally is transformed
into the noisy signal state ρ(γ ) by the q → q mapping |γ 〉 → ρ(γ ).

Nomenclature. The operator ρ(γ ) given by (8.8) will be called Glauber density
operator, corresponding to the nominal coherent state |γ 〉, which in turn is specified
by the complex symbol γ . One can check that the operator ρth, given by (8.4), is the
Glauber density operator, corresponding to the ground state, that is, ρth = ρ(0). We
always say “in the presence of thermal noise”, not abbreviated as “in the presence of
noise”, to recall that also in the absence of thermal noise, the noise is always present
in the form of shot noise, because of the uncertainty of the outcomes in quantum
measurements.

Problem 8.1 
 
 
 Starting from the integral representation (8.2) of the density
operator ρth, find the Fock representation (8.4). Hint: use polar coordinates.

Problem 8.2 
 Organize a quantum measurement with the system in the state ρth
defined by (8.2). The outcome m should have the geometrical distribution pm(k|ρth)

given by (8.6).

Problem 8.3 
 Prove (8.5), that is, E[m|ρth] = Tr(ρth N ) = N, where ρth is the
density operator of thermal noise given by (8.4) and N is the number operator.

Problem 8.4 

 Representations (8.8) and (8.10) on thermal noise hold for γ �= 0
and N > 0. Find and discuss the representations in the degenerate cases γ = 0
(absence of signal) and N = 0 (absence of noise).

8.3 Noisy Coherent States as Gaussian States ∇

In Sect. 7.2.5 we have seen that a pure coherent state |γ 〉 is a Gaussian state with
mean value and covariance matrix given by

X̄ =
[�γ

�γ

]

, V =
[

1 0
0 1

]

= I2 . (8.14)

Also a noisy coherent state ρ(γ ) turns out to be Gaussian with the same mean vector,
but with the covariance matrix modified as

V = (1 + 2N)

[

1 0
0 1

]

(8.15)

where N is the number of thermal photons. In Fig. 8.4 it is compared the contour
level (see Sect. 7.2) of the Wigner function of a noisy coherent state ρ(γ ) and of the
corresponding pure state |γ 〉.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7


368 8 Quantum Communications Systems with Thermal Noise

q x
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α

pure coherent state (N = 0)
noisy coherent state (N = 0.33)

Fig. 8.4 Contour level of the Wigner function W (x, y) of a pure coherent state |α〉 (in red) and of
noisy coherent state ρ(|α〉) (in green). The mean vector (q̄, p̄) = (�α,�α) gives the center of the
countour. The variances σ 2 = 1 and σ 2 = 1 + 2N, respectively, are proportional to the radius of
the circles

8.3.1 The Channel as Additive–Noise Gaussian Channel

In Quantum Information a channel is called Gaussian if it maps a Gaussian state into
a Gaussian state. This is the case of the channel that we are considering in Quantum
Communications systems, where at the input we have the noiseless coherent state
|γ 〉 and at the output the noisy coherent state ρ(γ ), both being Gaussian.

We now see how this specific Gaussian channel should be formulated in the family
of Gaussian channels (Fig. 8.5). In Sect. 12.8 we shall see that, in the single bosonic
mode, a Gaussian channel is specified by a triplet (S, B, d), where S and B are real
2 × 2 matrices and d is a vector in R

2. The mean value X̄ and the covariance matrix
V of the input state ρ(X̄ , V ) are transformed by the Gaussian channel, as follows

X̄ → S X̄ + d, V → SV ST + B . (8.16)

The matrix B is the noise parameter. For B = 0 the Gaussian channel is noiseless,
while for B �= 0 it becomes noisy. In particular, in an additive-noise channel, S and
B have the simple forms

S =
[

1 0
0 1

]

= I2, B = N0

[

1 0
0 1

]

, N0 > 0 (8.17)

additive-noise

channel

N

|γ ρ(γ)

pure state mixed state

Fig. 8.5 A pure Gaussian state |γ 〉 is sent through an additive noise channel specified by the
number of thermal photons N. At the output the noisy state is still Gaussian, but becomes mixed
and described by a density operator ρ(γ )

http://dx.doi.org/10.1007/978-3-319-15600-2_12
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while d = 0. This channel does not modify the mean value, but only and the covari-
ance matrix as

V → V + B = (1 + N0) I2 . (8.18)

Thus we find (8.15), with N0 = 2N, where N is the number of thermal photons in
ρ(γ ).

In conclusion, the channel we are considering in Quantum Communications sys-
tems in the presence of thermal noise is an additive noise Gaussian channel, specified
by the matrices (8.17).

8.4 Discretization of Density Operators

In a quantum transmission with coherent states in the presence of thermal noise the
constellation

ρi = ρ(γi ), i = 0, 1, . . . , K − 1 (8.19)

is formed by Glauber density operators defined by (8.8). To proceed, one must approx-
imate this expression, which gives each ρi as a linear combination of a continuum of
coherent states, with a finite expression, given by the matrix representation (8.10),
but limited to a finite number n of terms, that is,

ρ(γ ) �
n−1
∑

h=0

n−1
∑

k=0

Rhk(γ ) |h〉〈k| := R(γ ) . (8.20)

In such a way, the infinite dimensional density operator is approximated by a square
matrix R(γ ) = [Rhk(γ )] of finite dimension n × n.

8.4.1 Spectral Decomposition (EID) and Factorization

The finite representation (8.20) can be elaborated through the EID. Considering that
ρ is Hermitian and positive semidefinite, and that these properties also hold for its
approximation, the EID of R can be expressed in the forms

R = Z Λρ Z∗ =
h
∑

i=1

d2
i |zi 〉〈zi | = ZhDh Z∗

h (8.21)
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where

• h ≤ n is the rank of R,
• Z is an n × n unitary matrix, which forms with its columns the orthonormal basis

{|zi 〉},
• Λρ is an n × n diagonal matrix whose first h diagonal elements are the positive

eigenvalues d2
i and the other n − h diagonal elements are zero,

• Zh is a h × n matrix, which collects the first h columns of Z ,
• Dh is a h × h diagonal matrix with diagonal elements d2

i .

The meaning of the eigenvalues is obtained from the definition of density operator,
specifically, d2

i gives the probability that the quantum system be in the state |ui 〉.
Letting2

β = Zh

√

Dh (8.22a)

where Dh = diag[d1, . . . , dh], one gets

ρ � R = β β∗ (8.22b)

which gives the factorization of the density operator (see Sect. 5.7), approximated
by the matrix R. In such a way, from the K density operators ρi one gets so many
state factors βi .

Example 8.1 We want to find the EID and the factorization of a Glauber density
operator ρ(γ ) making appropriate checks on the accuracy. We consider the following
data

γ = 1.41421 → Nγ = γ 2 = 2.0 N = 0.2.

The real value of γ implies that the matrix R is real. With n = 11 we find the 11×11
matrix

R =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.15740 0.18549 0.15458 0.10518 0.06198 0.03266 0.01572 0.00700 0.00292 0.00115 0.00043
0.18549 0.24484 0.22589 0.16857 0.10810 0.06159 0.03186 0.01518 0.00674 0.00281 0.00111
0.15458 0.22589 0.22905 0.18659 0.12982 0.07981 0.04433 0.02258 0.01067 0.00472 0.00197
0.10518 0.16857 0.18659 0.16513 0.12424 0.08224 0.04897 0.02665 0.01341 0.00629 0.00278
0.06198 0.10810 0.12982 0.12424 0.10073 0.07161 0.04564 0.02650 0.01418 0.00706 0.00330
0.03266 0.06159 0.07981 0.08224 0.07161 0.05453 0.03713 0.02297 0.01306 0.00689 0.00340
0.01572 0.03186 0.04433 0.04897 0.04564 0.03713 0.02695 0.01774 0.01070 0.00598 0.00312
0.00700 0.01518 0.02258 0.02665 0.02650 0.02297 0.01774 0.01239 0.00793 0.00469 0.00258
0.00292 0.00674 0.01067 0.01341 0.01418 0.01306 0.01070 0.00793 0.00537 0.00335 0.00195
0.00115 0.00281 0.00472 0.00629 0.00706 0.00689 0.00598 0.00469 0.00335 0.00221 0.00136
0.00043 0.00111 0.00197 0.00278 0.00330 0.00340 0.00312 0.00258 0.00195 0.00136 0.00087

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

2 In Sect. 5.7 the factor of a density operator was denoted by γ , but here this symbol denotes the
complex number determining the density operator ρ(γ ). Thus, in this chapter the factor is denoted
by β.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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The rank of this matrix is surely 11, as follows from the eigenvalues evaluated with
a great accuracy

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0.8333264138373294
2 0.13884015974224564
3 0.023018143481200053
4 0.003692051210944246
5 0.0005318568489146765
6 0.00006324572935641604
7 5.936804006779007 10−6

8 4.292297763228036 10−7

9 2.2892724563994347 10−8

10 8.158936327309927 10−10

11 1.4844074185916688 10−11

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The trace of R, given by the sum of the eigenvalues, results in 0.99947826060,
which is very close to 1, which confirms a very good approximation (we recall that
the trace of the original density operator is exactly unitary).

At this stage we fix an “accuracy” to neglect the very small eigenvalues; for
instance the accuracy 0.001 leads to take only the four eigenvalues:

[

0.83333 0.13884 0.02302 0.00369
]

.

This implies assigning to the matrix a virtual rank h = 4. With this choice of h we
get the second form of spectral decomposition indicated in (8.21). The matrix Zh is
formed by the first four columns of the matrix Z and results in

Zh =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.36788 0.52044 −0.52202 −0.43077
0.52027 0.36793 0.00115 0.31205
0.52026 −0.00011 0.36969 0.30091
0.42479 −0.30054 0.30048 −0.13492
0.30037 −0.42492 −0.00173 −0.35518
0.18997 −0.40303 −0.27097 −0.21395
0.10968 −0.31018 −0.38948 0.07896
0.05862 −0.20719 −0.37374 0.30469
0.02931 −0.12426 −0.28995 0.38433
0.01382 −0.06831 −0.19473 0.34854
0.00618 −0.03489 −0.11720 0.26102

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

while the diagonal matrix Dh becomes

Dh =

⎡

⎢

⎢

⎣

0.83333 0.00000 0.00000 0.00000
0.00000 0.13884 0.00000 0.00000
0.00000 0.00000 0.02302 0.00000
0.00000 0.00000 0.00000 0.00369

⎤

⎥

⎥

⎦

.
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Finally, from Zh and Dh we get the factor β of dimensions 11 × 4

β = Zh

√

Dh =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.33583 0.19392 −0.07920 −0.02617
0.47493 0.13710 0.00017 0.01896
0.47493 −0.00004 0.05609 0.01828
0.38778 −0.11199 0.04559 −0.00820
0.27420 −0.15833 −0.00026 −0.02158
0.17342 −0.15017 −0.04111 −0.01300
0.10012 −0.11558 −0.05909 0.00480
0.05351 −0.07720 −0.05670 0.01851
0.02676 −0.04630 −0.04399 0.02335
0.01261 −0.02545 −0.02954 0.02118
0.00564 −0.01300 −0.01778 0.01586

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

8.4.2 Approximation Criteria

In the EID and in the previous factorizations we have two approximations:

• the approximation R of the density operator ρ by a finite number n of terms,
• the approximation of the true rank n of the matrix R by the virtual rank h, which

allows us to find the approximate factor ˜β of ρ of dimensions n × h.

For both approximations we need to establish a criterion that guarantees a given
accuracy.

For the first approximation the trace criterion seems to be more appropriate. We
recall that a density operator has always unitary trace and that Tr[ρ] = 1 represents
also the normalization condition of the Laguerre distribution pn(k|γ ), which gives
the meaning of the diagonal elements (see (8.13)). Hence, only if Tr[R] gives a value
close to one, the approximation is satisfactory, and, having fixed an accuracy ε, the
number of terms n = nε must be calculated according to the condition

Tr[R] =
nε−1
∑

k=0

Rkk =
nε−1
∑

k=0

pn(k|γ ) ≥ 1 − ε.

Of course, nε depends on Nγ and on N, and also on ε. For instance, with Nγ = 10
and N = 0.1 we find that in order to achieve the accuracy ε = 0.00001, nε = 32
terms are needed.

For the second approximation one can use the reconstruction criterion, based on
the square error between the matrix R and its “reconstruction” ˜β˜β∗, where both R
and ˜β˜β∗ are n × n matrices, with n previously evaluated. Hence, having fixed the
accuracy ν, we evaluate the virtual rank nν = h such that

mse(R − ˜β˜β∗) ≤ ν

where mse denotes the square error, given by the square moduli of the elements,
divided by the number of elements n2. For instance, with Nγ = 10 and N = 0.1 we
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Table 8.1 Values of nε and nν as a function of Nγ and N that ensure the accuracy ε = ν = 10−5

Nγ → 0.5 1.0 5 10 15 25

nε nν nε nν nε nν nε nν nε nν nε nν

N = 0.001 7 2 10 2 21 2 31 2 40 2 57 2

N = 0.01 7 3 9 3 20 2 30 2 39 2 55 2

N = 0.1 9 4 11 4 22 4 32 4 41 4 57 4

N = 1.0 21 12 24 12 38 11 51 11 62 10 81 10

N = 2.0 33 18 36 18 52 17 66 17 78 16 99 16

N = 3.0 45 24 49 24 67 23 83 22 97 21 121 20

find that, to achieve the accuracy ν = 0.00001, nν = 4 is needed, so that the factor
˜β has dimensions nε × nν = 32 × 4.

Table 8.1 gives the values of nε and nν required to achieve the accuracy ε = ν =
10−5 for several values of Nγ and of N.

The accuracy is related to the range of error probability Pe we want to explore, e.g.,
to evaluate Pe ∼ 10−2 an accuracy of 10−3 is sufficient, but to evaluate Pe ∼ 10−8

the accuracy should become 10−9. Thus we get the rule of thumb in the choice of
the parameters ν and ε

ν = ε = 1

10
Pe. (8.23)

Alternative discretization. The discretization seen above is based on the matrix
representation of the density operator. An alternative discretization, considered at
JPL of NASA [6], is based on the subdivision of the integration of the density operator
given by (8.8) into a finite number of regions of the complex plane. This discretization
procedure, which gives results very close to the previous ones, is outlined in Appendix
section “Alternative Discretization”.

8.5 Theory of Classical Optical Systems with Thermal Noise

To compare the performance of a Quantum Communications system with that of the
corresponding Classical Communications system we reconsider the theory of optical
detection developed in Sect. 7.5 in the absence of thermal noise. The presence of ther-
mal noise complicates such a theory, but the final result is quite simple. Essentially,
the thermal noise modifies the arrival distribution, which changes from the Poisson
form to a Laguerre form.

8.5.1 Classical Optical Decision with Thermal Noise

We follow closely the theory of optical decision in the absence of thermal noise
developed in Sect. 7.5 by introducing the modifications due to the presence of such

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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optical
modulator

Cn VT (t) VR(t)

Σ

VL

Σ

cηa

Va(t)

Σ

i VL

Σ
cηb

Vb(t)
V0

Fig. 8.6 Scheme of a classical modulator and demodulator for the complex envelopes with thermal
noise at receiver

noise. Then we reconsider the scheme for the complex envelope of Fig. 7.10, which
becomes as in Fig. 8.6, where {Cn} is the sequence of complex symbols to be trans-
mitted, V0 is the amplitude of the carrier produced by the transmitter laser, and VL

is the amplitude of the carrier of the receiver laser. Now, at the receiver, the outputs
of the two paths are given by (see (7.47))

Va(t) = C0 VR + VL + cηa . Vb(t) = C0 VR + i VL + cηb . (8.24)

where cηa and cηb are the complex envelopes of the thermal noises. Relations (8.24)
hold in the symbol period (0, T ) for the detection of the zeroth symbol C0; Va(t)
and Vb(t) are constant in this period according to the simplifications made in the
previous chapter.

The presence of thermal noise modifies the statistics of photon arrivals, as shown
in the theory of semiclassical detection of Sect. 4.7. The numbers of arrivals na and
nb in a symbol period become Laguerre random variables and therefore governed by
the Laguerre distribution

pn(k|γ ) = N k

(N + 1)k+1 exp

(

− Nγ

N + 1

)

Lk

(

− Nγ

N(N + 1)

)

. (8.25)

where Nγ = |γ |2 is the number of signal photons and N is the number of thermal
photons. We recall that the conditional mean and variance of a Laguerre random
variable are given by

n(γ ) = Nγ + N, σ 2
n (γ ) = n(γ ) + 2NγN + N2 . (8.26)

In particular, the structure of the variance emphasizes the difference with respect
to the Poisson distribution, where average and variance coincide. Both relations
(8.25) and (8.26) hold for the arrival numbers na and nb. Also, in the presence of
thermal noise, we can use the Gaussian approximation, which holds better than
in the absence of thermal noise (see Sect. 8.6). Then the performance is completely
determined by the signal-to-noise ratio (SNR), which in the absence of thermal noise
is given by (see Sect. 7.5.5)

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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Λ = U 2
0

σ 2
n

== 4 Ns

μK

where U0 is the amplitude of the useful signal, σ 2
n is the common variance of na and

nb, Ns is the number of signal photons per symbol, and μK is the shape factor of the
constellation. Now, the SNR must be modified according to the Laguerre statistics.
From (8.26) we see that the average is increased by the term N, but this is only a
bias and does not modify the amplitude of the useful signal U0 with respect to the
Poissonian case. The only relevant modification comes from the variance, which is
increased. With the homodyne detection, where the amplitude of the local carrier is
much larger than the one of the received signals (VL � VR)), one gets Nγ � N and
hence

σ 2
Laguerre � σ 2

Poisson (1 + 2N) with σ 2
Poisson = Nγ . (8.27)

In conclusion, the performance of a classical optical system in the presence of
thermal noise is evaluated in the same way as in the absence of such noise, by
simply increasing the variances by the factor (1 + 2N). Consequently, we have a
deterioration of the SNR.

Proposition 8.1 The performance of a Classical Communication system in the pres-
ence of thermal noise can be obtained from the performance established in the
absence of thermal noise by decreasing the SNR in the form

Λth = 4Ns

μK

1

1 + 2N
= Λ

1

1 + 2N
(8.28)

where Λ is the SNR in the absence of thermal noise and N is the number of thermal
photons.

We recall that in the cases of interest, with equally likely symbols and optimized
decision regions, the minimum error probability turns out to be a simple function
of the SNR expressed through the complementary normalized Gaussian distribution
Q(x).

8.5.2 Alternative Deduction from Glauber’s Representation

The semiclassical theory just recalled gives the same results as the quantum theory,
as we shall see now with the photon counting.

Let us consider a quantum system specified by a Glauber density operator ρ(γ )

with nominal state |γ 〉 and number of thermal photons N. Now, setting up a quantum
measurement with the elementary operators |k〉〈k|, where |k〉 are the number states
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N
n

H •ρ(γ)

|k k|

N=
∞

∑
k=0

|k k|

Fig. 8.7 Quantum measurement in a Hilbert space, prepared in the noisy state ρ(γ ), with the
number operator N as observable. The elementary projectors |k〉 〈k| are formed by the number
states |k〉. The outcome of the measurement is the photon number n

(Fig. 8.7), one gets as result an integer random variable n, having distribution (see
(8.25) and (8.10))

pn(k|ρ(γ )) := P[n = k|ρ(γ )] = 〈k|ρ(γ )|k〉 = Rkk = pn(k|γ ) . (8.29)

Hence, we find the same result as in the semiclassical theory.
This alternative deduction of Laguerre distribution deserves a comment. In

Sect. 4.7 we have seen the conceptual and mathematical difficulties to prove that
the photon counting in the presence of thermal noise has a Laguerre distribution.
Here, with the tools of Quantum Mechanics, the deduction is immediate; in particu-
lar, the powerful synthesis of the Glauber representation should be recognized.

8.6 Check of Gaussianity in Classical Optical Detection

We have seen that in the presence of thermal noise the number of photons arriving in
a symbol period has a Laguerre distribution, which depends on the number of signal
photons Nγ and on the number of thermal photons N. In the absence of thermal
noise, N = 0, the distribution degenerates to a Poisson distribution. In the literature,
see, e.g., [7], it is customary, “in the presence of a strong photonic intensity”, to
make the Gaussian approximation, which allows us to simplify the analysis and
to get very simple results. The tendency to Gaussianity was already realized in the
implementation of a photon counter at the end of Chap. 4.

We have adopted the Gaussian approximation in the previous chapter in the eval-
uation of performance of classical optical systems and we apply this approximation
also in the present chapter. However, it remains to establish, in a quantitative form,
the meaning of “a strong photonic intensity”. In this section, we give an answer to
this problem and we will arrive at the conclusion that the Gaussian approximation
works very well also with a “moderate photonic intensity”. To obtain a simple and
clear formulation, we consider the homodyne detection in a BPSK system in the
presence of thermal noise, but including in the formulation also the case of absence
of thermal noise.

http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_4
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8.6.1 Exact Evaluation of Probabilities

We consider the classical BPSK with a homodyne receiver and a final photon counting
in the presence of thermal noise. Referring to the semiclassical theory the number of
photons n = n(A0) has a Laguerre distribution with mean and variance, respectively,

n(A0) = Nγ (A0) + N, σ 2
n (A0) = Nγ (A0) + 2Nγ (A0)N + N(N + 1) (8.30)

where A0 is a binary symbol. On the other hand, the homodyne receiver gives the
signal power V0 + V 2

L + 2V0VL cos π A0, which can be converted to “numbers” by
multiplying by H = T/hν. Thus we have

Nγ (A0) = NR + NL + 2
√

NR NL cos π A0 (8.31)

where

• NR = H V 2
0 is the (average) number of signal photons/bit,

• NL = H V 2
L is the (average) number of photons introduced by the local carrier,

• Nγ (A0) is the global average due to the received power and to the local carrier
(the thermal noise gives the contribution N to the average number of photons).

In the binary case we have two distinct Laguerre distributions, pn(k|1) and
pn(k|0), which are illustrated in Fig. 8.8 for N = 0.3, Nγ (1) = 10, and Nγ (0) = 25.

The first step is the evaluation of the optimal decision regions, which have the
forms R(1) = {0, 1, . . . , So − 1} and R(0) = {So, So + 1, So + 2, . . .}. The optimal
threshold So is an integer determined by the conditions pn(k|1) > pn(k|0) for
k ∈ R(1) and pn(k|0) ≥ pn(k|1) for k ∈ R(0). In the case of Fig. 8.8 the threshold
is So = 12. Then we have the cross-transition probabilities as

pn(k|1)

pn(a|0)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

↑
SoR(1) R(0)

10 k

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
0 5 15 20 25 30 35 40

0

0.05

0.1

0.15

0.2

•

•

•
• •

•

•

•
•

•
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Fig. 8.8 Laguerre distributions pn(k|1) and pn(k|0)of photon counting in BPSK and corresponding
optimal decision regions R(1) and R(0)
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p(0|1) = P[n ≥ So|A0 = 1] =
∞
∑

k=So−1

pn(k|1)

p(1|0) = P[n < So|A0 = 0] =
So
∑

k=0

pn(k|0).

Note that p(0|1) = 1 − p(1|1) = 1 −∑So−1
k=0 pn(k|1) so that in any case we have

an evaluation in finite terms. The error probability (with equally likely symbols) is
then given by

Pe = 1
2 p(0|1) + 1

2 p(1|0) . (8.32)

8.6.2 Gaussian Approximation

In the Gaussian approximation the probability distributions pn(k|A0) are replaced
by the probability densities

fn(a|A0) = 1

σn(A0)
φ

(

a − n(A0)

σn(A0)

)

, A0 = 0, 1

which are illustrated in Fig. 8.9.
Considering that n(0) > n(1) we denote the threshold in the form

S = n(1) + β [n(0) − n(1)] with 0 < β < 1 .

fn(a|1) fn(a|0)
So

↑
SoR(1) R(0)

−10 −5 0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

a

Fig. 8.9 Gaussian probability densities fn(a|1) and fn(a|1) A0 = 0, 1, 2 and corresponding
optimal decision regions R(1) and R(0). The optimal threshold is determined by the condition
fn(So|1) = fn(So|1)
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Then the cross-transition probabilities are given by

pGauss(1|0) = Q
(

β Λ
1/2
0

)

, pGauss(0|1) = Q
(

(1 − β)Λ
1/2
1

)

(8.33)

where Λ0 and Λ1 are the SNRs

Λ0 = [n(0) − n(1)]2

σ 2
n (0)

, Λ1 = [n(0) − n(1)]2

σ 2
n (1)

. (8.34)

The error probability becomes

Pe,Gauss = 1
2 Q
(

β Λ
1/2
0

)

+ 1
2 Q
(

(1 − β)Λ
1/2
1

)

(8.35)

and it depends on the threshold S through the parameter β. The optimal threshold So is
determined by the condition fn(So|1) = fn(So|0) and its evaluation is cumbersome
because the variances are different. We find that So is determined by the following
value of β

βo = 1

c − 1

{

[

c + c − 1

2Λ0
log c

]1/2

− 1

}

, c := σ 2
n (0)

σ 2
n (1)

= Λ1

Λ0
. (8.36)

8.6.3 Asymptotic Behavior of the Gaussian Approximation

We now introduce the condition NL � NR,N in the above relations. The numbers
Nγ (A0) become

Nγ (0) = NL(1 + NR/NL + 2
√

NR/NL) → NL

Nγ (1) = NL(1 + NR/NL − 2
√

NR/NL) → NL .

Analogously, we find

σ 2
n (A0) → NL(1 + 2N), c → 1

and also

lim
c→1

βo = lim
c→1

1

c − 1

{

[

c + c − 1

2Λ0
log c

]1/2

− 1

}

= 1

2
.

In the SNR we have n(0) − n(1) = 4
√

NR NL and

Λ0 = 16NR NL

σ 2
n (0)

→ 16NR

1 + 2N
, Λ1 = 16NR NL

σ 2
n (1)

→ 16NR

1 + 2N
.



380 8 Quantum Communications Systems with Thermal Noise

In conclusion, the asymptotic error probability is

Pe,as. = Q( 1
2Λ

1/2
0 ) = Q(Λ1/2) with Λ = 4NR

1 + 2N
(8.37)

which is the expression used both in the absence (Chap. 7) and in the presence of
thermal noise (present chapter).

Note that the asymptotic cross-transition probabilities become equal and given by
the error probability pas(0|1) = pas(1|0) = Pe,as.

8.6.4 Numerical Evaluation

We have seen the exact probabilities p(0|1), p(1|0), and Pe, their Gaussian approxi-
mations pGauss(0|1), pGauss(1|0), and Pe,Gauss, and the asymptotic form of the latter.
In all the three cases the probabilities can be evaluated from the parameters

NR, NL , N .

We have systematically evaluated the exact error probability versus NL for fixed
values of NR and N and compared it with the Gaussian approximation and the
asymptotic Gaussian approximation. An example of evaluation is shown in Fig. 8.10
for NR = 3.0 and N = 0.3. Note that the exact error probability has a jumping
behavior due to the discrete choice of threshold So. The asymptotic value is reached
at about NL = 25, but considering that a precise value as Pe = 3.123 10−3 has not
a practical interest and Pe = 3 10−3 is sufficient for the applications, we see that the
value obtained with NL = 10 is a good approximation.

asymptotic valueP e

0 5 10 15 20 25 30 35 40 45 50
0 10−3

1 10−3

2 10−3

3 10−3

4 10−3

5 10−3

NL

Fig. 8.10 Error probability in BPSK versus NL for NR = 3.0 and N = 0.3. In red the exact value
and in green the Gaussian approximation

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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asymptotic value

0 5 10 15 20 25 30 35 40 45 50
0 10−4

0.5 10−4

1 10−4

1.5 10−4

2 10−4

2.5 10−4

3 10−4

0 5 10 15 20 25 30 35 40 45 50
0 10−4

0.5 10−4

1 10−4

1.5 10−4

2 10−4

2.5 10−4

3 10−4

P e

NL

Fig. 8.11 Error probability in BPSK versus NL for NR = 3.0 and N = 0 (absence of thermal
noise). In red the exact value and in green the Gaussian approximation

We have also made evaluations in the absence of thermal noise, that is, with
N = 0, where the Laguerre distribution becomes a Poisson distribution. An example
is shown in Fig. 8.11. In this case, the jumping behavior of the exact error probability
is more evident and the asymptotic value is reached with about NL = 50. Also
in this case the conclusion is that the asymptotic Gaussian approximation given
by (8.37) represents a very good estimation of the error probability in Classical
Communications systems.

A Numerical Example

NL Pe Pe,Gauss Pe,as.

10 0.000792231 0.0812565 0.0126737
30 0.0813477 0.0400633 0.0126737
50 0.0400787 0.0298845 0.0126737

150 0.0184381 0.0187132 0.0126737
170 0.0173542 0.0180197 0.0126737
190 0.0164959 0.0174692 0.0126737

8.7 Quantum Communications Systems with Thermal Noise

We reconsider the general scheme of a Quantum Communications system in the
presence of thermal noise shown in Fig. 8.1, where Alice “prepares” the quantum
system H in one of the coherent states |γi 〉, i ∈ A, as in the previous chapter, but
now Bob receives the “noisy” Glauber density operator ρ(γi ), with nominal state
|γi 〉. The expression of ρ(γi ) is obtained from (8.8) with γ = γi
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ρi = ρ(γi ) = 1

πN

∫

C

exp

(

−|α − γi |2
N

)

|α〉〈α|dα . (8.38)

As seen above, these operators have infinite dimensions, but they are approximated
by square matrices Ri of finite dimensions n×n. With this approximation, we operate
in an n-dimensional Hilbert space (isomorphic to C

n). To simplify the notation, the
finite-dimensional approximating matrices will be denoted by the same symbol as
the density operators, that is, by ρi .

Before proceeding it is convenient to recall the several constellations involved in
the analysis, summarized in Sect. 7.4.3:

• constellation of normalized complex symbols C0 = {γ̄0, γ̄1, . . . , γ̄K−1},
• constellation of Δ–scaled complex symbols C = {γ0, γ1, . . . , γK−1}, with γi =

γ̄0Δ,
• constellation of coherent states S = {|γ0〉, |γ1〉, . . . , |γK−1〉}.

To the above we now add the
• constellation of density operators

Sρ = {ρ0, ρ1, . . . , ρK−1} with ρi = ρ(γi ) (8.39)

which collects the possible noisy states seen by Bob.

8.7.1 Quantum Decision in the Presence of Thermal Noise

Now we assume as known the constellation of the density operators Sρ and apply the
decision theory developed in Chaps. 5 and 6, more specifically, the part concerning
mixed states, which is now briefly recalled.

For each of the n × n matrix ρi , we evaluate the factor βi of dimensions n × hi ,
where hi is the rank of ρi . From these factors, regarded as blocks of hi columns, we
form the state matrix

Γ
n×H

= [β0, β1, . . . , βK−1
]

(8.40)

where the number of columns H is given by the global number of the factor columns
H = h0 + h1 + · · · + hK−1. In such a way, the states seen by Bob are described
by the constellation of density operators (8.39), as well as by the state matrix (8.40).
The source specification is completed by the prior probabilities qi = P[An = i] =
P[Cn = γi ]; but for simplicity in this chapter, we suppose equally likely symbols,
that is, qi = 1/K .

The target is to find the optimal measurement operators Qi , i ∈ A (which min-
imize the error probability). The generalized Kennedy’s theorem (see Sect. 5.11)
states that, in the case of mixed states, the optimal measurement operators can be
factored in the form Qi = μi μ∗

i , where the measurement factors μi have the same

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_6
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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dimensions N × hi as the corresponding state factors βi . Hence, one constructs the
measurement matrix

M
n×H

= [μ0, μ1, . . . , μK−1
]

(8.41)

which is constrained by the completeness condition (5.70). For the evaluation of
probabilities we calculate the mixed product matrix

B = [bi j ] = M∗ Γ = [μ∗
i β j ] .

Then one gets the transition probabilities and the correct decision probability as (see
(5.75))

pc( j | i) = Tr
[

b∗
j i b ji

]

, Pc = 1

K

K−1
∑

i=0

Tr
[

b∗
i i bii
]

. (8.42)

We recall that the explicit optimal solution is only known for binary systems
(Helstrom’s theory), while for multilevel systems (K ≥ 3) to get optimal solutions
one has to use numeric programming techniques, convex semidefinite programming
(CSP), or the square root measurement (SRM); the latter gives suboptimal results
but with a fair approximation of the minimum error probability.

8.7.2 CSP Optimization with Mixed States

In Sect. 5.10 we have seen the numerical optimization based on convex semidefinite
programming (CSP) for pure states. This optimization can also be used for a con-
stellation of mixed states. Here we give the MatLab implementation (CVX) for a
constellation of K = 16 mixed states:

cvx_begin SDP

variable X(dim, dim) hermitian

minimize(trace(X))

subject to

X>rho0; X>rho1; ... ; X>rho15;

cvx_end

copt=cvx_optval

t=(copt);t=trace(X)

Pe=1.0-t

This procedure will be applied in Sect. 8.9 for QAM and, with a specific version, for
PPM in the final sections.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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8.7.3 SRM Decision with Mixed States

We summarize the fundamental steps to evaluate the Quantum Communications
performance with the SRM method, developed in Sect. 6.3.

From the state matrix (8.40) we evaluate the Gram operator

T
n×n

= Γ Γ ∗ =
K−1
∑

i=0

βiβ
∗
i =

K−1
∑

i=0

ρi (8.43)

and the Gram matrix
G

H×H
= Γ ∗ Γ = [β∗

i β j ] . (8.44)

From Theorem 6.1 and the subsequent corollaries, the measurement matrix that min-
imizes the square error has three distinct expressions

M0 = Ur V ∗
r = T −1/2Γ = Γ G−1/2 . (8.45)

The first one is related to the reduced SVD of the state matrix Γ , while the other two
are obtained from the reduced EID of T and of G, respectively.

At this point it is important to remark the differences with respect to the decision
with pure states. With mixed states the dimension of the Gram operator is still n ×n,
where n is the dimension of the Hilbert space, theoretically infinite, but in practice
determined by the accuracy we assume to approximate the density operators. The
dimension H × H of the Gram matrix G is determined by the “virtual” rank of
the density operators. Without restriction we may suppose that the ranks are equal,
hi = h0, and hence the size of the matrix G, consisting of K ×K blocks of dimensions
h0 × h0, results in H = K h0.

If n > H we use the Gram operator approach, otherwise, the Gram matrix
approach.

Gram Matrix Approach

(1) Evaluate the reduced EID G = VrΣ
2
r V ∗

r .
(2) Find the inverse square root G−1/2 = VrΣ

−1
r V ∗

r .

(3) Subdivide the matrices G±1/2 into blocks
(

G± 1
2
)

i j of dimensions hi × h j .

(4) Evaluate the measurement matrix as M = Γ G−1/2.
(5) Considering that B = G−1/2, evaluate the transition probabilities from (8.42),

with bi j given by (G−1/2)i j .

The computational complexity of the whole procedure is concentrated in the EID of
the H × H Gram matrix.

Gram Operator Approach

(1) Evaluate the reduced EID T = UrΣ
2
r U∗

r .
(2) Find the inverse square root T −1/2 = UrΣ

−1
r U∗

r .

http://dx.doi.org/10.1007/978-3-319-15600-2_6
http://dx.doi.org/10.1007/978-3-319-15600-2_6
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(3) Find the measurement vectors as μi = T −1/2βi , where βi are the factors of the
density operators.

(4) Evaluate the transition probabilities and the correct decision probability from
(8.42), where bi j = μ∗

jβi .

The computational complexity of the whole procedure is concentrated in the EID of
the n × n Gram operator.

8.7.4 SRM in the Presence of GUS

We recall from Sects. 5.13 and 6.6 that the geometric uniform symmetry (GUS) with
mixed stated implies the existence of a unitary operator (symmetry operator) S with
the property SK = IH and that the constellation Sρ of K density operators can be
obtained by the reference operator ρ0 according to

ρi = Siρ0 S−i , i = 0, 1, . . . , K − 1 . (8.46)

The factors verify the symmetry conditions in the form

βi = Si β0, μi = Siμ0, i = 0, 1, . . . , K − 1 . (8.47)

With the GUS the SRM method is simplified, as in the case of pure states, with some
complications because the Gram matrix G, instead of circulant, is block circulant.

Given the reference state vector β0 (or the reference density operator ρ0), and the
symmetry operator S, the correct decision probability Pc is evaluated as follows.

Gram Operator Approach (see Proposition 6.2):

(1) Evaluate the inverse square root T −1/2 of T .
(2) Evaluate the reference measurement operator as Q0 = T −1/2 ρ0 T −1/2.
(3) Evaluate the transition probabilities as pc( j |i) = Tr

[

Si− j ρ0 S−(i− j) Q0
]

.
(4) The correct decision probability is obtained as

Pc = Tr [ρ0 T −1/2]2 . (8.48)

The computational complexity is confined to the evaluation of T −1/2.

Gram Matrix Approach (see Proposition 6.3):

(1) Evaluate the matrices of dimension h0 × h0

Dk =
K−1
∑

i=0

β∗
0 βi W −ki

K , βi = Si β0 . (8.49)

(2) Evaluate by EID the square roots D1/2
k .

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_6
http://dx.doi.org/10.1007/978-3-319-15600-2_6
http://dx.doi.org/10.1007/978-3-319-15600-2_6
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(3) Evaluate the (i, j) block of G1/2 as

(G1/2)i j = 1√
K

K−1
∑

k=0

W k( j−i)
K D1/2

k .

(4) Evaluate the transition probabilities as pc( j |i) = Tr
[

(G1/2)∗j i (G1/2) j i

]

.

(5) The correct decision probability is given by

Pc = Tr

(

1

K

K−1
∑

k=0

D1/2
k

)2

. (8.50)

The computational complexity is confined to the evaluation of the square roots D1/2
k .

Remark With mixed states, also in the presence of GUS, the decision obtained with
the SRM in general is not optimal.

8.8 Binary Systems in the Presence of Thermal Noise

In the quantum decision theory developed in Sect. 5.3 we have seen the optimization
of a quantum binary system (Helstrom’s theory), which is valid also for mixed states.
We briefly recall this theory assuming equally likely symbols (q0 = q1 = 1

2 ):

(1) We start from the EID of the decision operator

D = 1

2
[ρ(β1) − ρ(β0)] =

∑

k

ηk |ηk〉〈ηk | (8.51)

where ηk are the eigenvalues and |ηk〉 the corresponding eigenvectors,
(2) The two optimal measurement operators are given by the sum of the elementary

projectors |ηk〉〈ηk |, and specifically

Q0 =
∑

ηk<0

|ηk〉〈ηk |, Q1 =
∑

ηk>0

|ηk〉〈ηk | (8.52)

(3) The maximum correct decision probability is obtained as the sum of the positive
eigenvalues according to

Pc = 1

2
+
∑

ηk>0

ηk → Pe = 1

2
−
∑

ηk>0

ηk . (8.53)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Using the expansion of ρ(γ ) given by (8.10), for the decision operator D one gets
the following matrix representation[Dmn] of D

Dmn = 1

2
[Rmn(γ1) − Rmn(γ0)], m, n = 0, 1, 2, . . .

To proceed we need to approximate this matrix to finite dimensions n × n according
to the criterion developed in Sect. 8.4.

8.8.1 Application to BPSK Modulation

The constellation of scaled symbols results in

γ0 = −α γ1 = α.

To get the error probability we evaluate the matrix representation of the decision
operator D limited to a finite number n of terms.

Let us consider an explicit example with the following data

q0 = q1 = 1
2 , N = 0.2, α = 1 → Ns = 1.

The evaluation of the matrix D is limited to 30 × 30 terms and here we write only
the upper left portion

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.000 0.302 0.000 0.086 0.000 0.013 0.000 0.001 0.000 0.000
0.302 0.000 0.219 0.000 0.058 0.000 0.009 0.000 0.001 0.000
0.000 0.219 0.000 0.117 0.000 0.030 0.000 0.005 0.000 0.001
0.086 0.000 0.117 0.000 0.053 0.000 0.013 0.000 0.002 0.000
0.000 0.058 0.000 0.053 0.000 0.021 0.000 0.005 0.000 0.001
0.013 0.000 0.030 0.000 0.021 0.000 0.008 0.000 0.002 0.000
0.000 0.009 0.000 0.013 0.000 0.008 0.000 0.003 0.000 0.001
0.001 0.000 0.005 0.000 0.005 0.000 0.003 0.000 0.001 0.000
0.000 0.001 0.000 0.002 0.000 0.002 0.000 0.001 0.000 0.000
0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000

.

.

.
. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The corresponding eigenvalues result in

[λ1, λ2, λ3, . . .] = [−0.4063, 0.4063,−0.05621, 0.05621,−0.00581, 0.00581, . . .]

with an alternation of positive and negative values. The error probability Pe is found
by summing the positive eigenvalues, according to (8.53)

Pe = 1

2
−
∑

ηk>0

ηk � 0.031118.
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Fig. 8.12 Error probability in BPSK system as a function of Ns for some values of N. Comparison
between the SRM method and Helstrom optimal decision. For N = 0 the values coincide because
SRM method becomes optimal

In the absence of thermal noise (N = 0) the error probability would be Pe = 0.00460,
and we see that the presence of thermal noise with N = 0.2 leads to a worsening in
Pe by one decade.

The error probability is shown in Fig. 8.12 as a function of the number of signal
photons per symbol Ns for some values of the number of thermal photons N. Note
that for N = 0 the density operators degenerate to the form ρ(±α) = | ± α〉〈±α|
and the evaluation can be done in exact form according to (7.109), that is,

Pe = 1
2

[

1 −
√

1 − e−4Ns

]

. (8.54)

Figure 8.12 also shows the error probability obtained with the SRM method, which
is not optimal with mixed states, but it gives a good approximation.

Classical BPSK System and Comparison

The performance of a classical optical BPSK system, in the absence of thermal noise,
has been evaluated in Sect. 7.10. With a homodyne receiver we found that the signal
at the decision point has the form given by (7.77), that is,

V0 + U0 cos(π A0) + u

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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where V0 is a bias term, U0 is the useful amplitude, cos(π A0) = ±1, and u is the
shot noise, which, with a strong local carrier, may be considered Gaussian. In the
same section we also evaluated the signal-to-noise ratio Λ = 4NR = 4Ns , which
gave the expression Q(

√
4Ns) for the error probability.

According to the theory of Sect. 8.5, for the evaluation of the error probability in
the presence of thermal noise it is sufficient to decrease the SNR according to (8.28)
of Proposition 8.1, where the decreasing is due to the passage from the Poisson regime
to the Laguerre regime. In such a way one gets

Pe,classic = Q

(

Λ
1

1 + 2N

)

= Q

(

4Ns

1 + 2N

)

. (8.55)

This result gives the error probability as a function of the parameters Ns and N

considered for the quantum BPSK system, and thus it allows for a comparison, which
is shown in Fig. 8.13. One can realize the clear superiority of quantum systems also
in the presence of thermal noise, mainly for low values of the number of thermal
photons N.
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Fig. 8.13 Error probability in BPSK system as a function of Ns for some values of N. Black lines
refer to the quantum system, green lines to the classical homodyne system
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8.8.2 Application of OOK Modulation

The constellation of scaled symbols is

γ0 = 0 γ1 = α

where the coherent state |γ0〉 = |0〉 is the ground state and the corresponding density
operator is obtained from (8.2); we find a diagonal matrix representation (see (8.4))
with elements

Rmn(0) = (1 − v)vnδmn, v = N/(N + 1).

For the state |α〉 with α �= 0 the matrix is not diagonal and must be calculated from
(8.10a). Apart from the difference due to the presence of the ground state, the error
probability is calculated as in the previous case.

For instance, with

q0 = q1 = 1
2 , N = 0.2, α = √

2 → Ns = 1
2 Nα = 1

the error probability results in Pe =� 0.1046, while in the absence of thermal noise
(N = 0) we would have Pe = 0.03506.

Figure 8.14 shows the error probability Pe as a function of the number of signal
photons per symbol Ns for some values of N. Note that also in this case with N = 0
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10−7
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10−3
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Fig. 8.14 Error probability in OOK system as a function of Ns for some values of N
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the evaluation can be done in a closed form from (7.2) of the previous chapter, that is,

Pe = 1

2

[

1 −
√

1 − e−2Ns

]

. (8.56)

One can realize that also for the OOK the quantum system is superior to the cor-
responding classical system, but in a less relevant form with respect to the BPSK
system.

Comment. As said above, apart from the binary case, no general solutions are avail-
able for the optimization of Quantum Communications systems, for which we will
develop suboptimal techniques. The results obtained with the binary case are useful
to test the approximations achieved with the suboptimal techniques.

8.9 QAM Systems in the Presence of Thermal Noise

The quantum QAM (quadrature amplitude modulation) systems have been analyzed
in Sect. 7.11 with pure states, that is, in the absence of thermal noise, whereas now
they are analyzed with density operators, that is, in the presence of background
noise. To evaluate the performance we use the SRM method extended to the density
operators. As the QAM constellation does not enjoy the uniform geometry, we cannot
use the simplifications that such symmetry implies.

From Sect. 7.11 we recall that the constellation of the QAM modulation is con-
stituted by K = L2 points equally spaced on a square grid of the complex plane,
defined through the L-ary alphabetAL = {−(L−1)+2(i−1)| i = 1, 2, . . . , L} with
L = 2, 3, 4, . . .. The K -ary QAM constellation of scaled symbols is then formed by
the complex numbers

C = {γuv = Δ(u + iv)| u, v ∈ AL}

where Δ is a scale factor. The constellation of the 16-QAM system that will be
analyzed here in the presence of noise, is illustrated in Fig. 8.15.

Fig. 8.15 Constellation of
the 16-QAM with scale
factor Δ

Δ

−Δ

−3Δ

3Δ

Δ 3Δ−Δ−3Δ

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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To evaluate the performance in the absence of thermal noise, we started from the
Gram matrix G, whose elements are the inner products 〈γuv|γu′v′ 〉, u, v, u′, v′ ∈ AL

(see (7.113)). Having computed the eigenvalues and eigenvectors of G, we calculated

the square root G
1
2 , and hence the error probability according to

Pe,0 = 1 − 1

K

K−1
∑

i=0

[

(G
1
2 )i i

]2
. (8.57)

The performance was evaluated as a function of the number of signal photons per
symbol, which for the QAM with equiprobable symbols results in

Ns = 2

3
(L2 − 1)Δ2 = 2

3
(K − 1)Δ2 (8.58)

with a shape factor μK = 2
3 (K − 1).

In the presence of thermal noise we have to consider a constellation of K = L2

Glauber density operators

ρuv = ρ(Δ(u + i v)), u, v ∈ AL

which does not verify the GUS. We apply the SRM method recalled in Sect. 8.7.
For the evaluation of the error probability one can use both the Gram operator and
the Gram matrix, choosing the one requiring a lower computational complexity. In
the numerical evaluation, the main problem is to handle the approximations in an
appropriate form. In this modulation format, the number of signal photons associated
to the symbol γ = γuv, given by Nγ = |(u + iv)Δ|2, is not uniform and varies from
Nγ = 2Δ2 for the inner symbols to Nγ = 2(L − 1)2Δ2 for the corner symbols.
Then the reduced dimensions of the Hilbert space n = nε must be chosen based on
the maximum

Nγ,max = 2(L − 1)2Δ2

and, assuming Ns as the fundamental parameter to express the final result (recall that
Δ2 can be expressed in terms of Ns using (7.115)). For the choice of nε we must
bear in mind that

Nγ,max = 3[(L − 1)2/(L2 − 1)] Ns = 3(L − 1)/(L + 1) Ns .

In particular, in the 16-QAM we have Nγ,max = 1.8Ns .
We give a numerical example to illustrate the dimensions of the various matrices.

With Ns = 4 and N = 0.1 we obtain Nγ,max = 7.2 and, choosing nε = 40, an

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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accuracy ε = 10−7 is ensured. The matrices ρi � Ri are 40 × 40, and are factored
in the form βiβ

∗
i , where the factors βi are 40 × 8. The dimensions are

βi
40×118

T
40×40

G
118×118

.

Therefore, it is more convenient to calculate T −1/2 instead of G±1/2. With these
choices we find the following diagonal transition probabilities

• inner states : 0.87575 • side states : 0.91650 • corner states : 0.94777

and the error probability results in Pe = 0.08587.
We have applied systematically the SRM approach to evaluate the error proba-

bility Pe in the 16-QAM, following the procedure indicated above. The results are
illustrated in Fig. 8.16, where Pe is shown as a function of the number of signal
photons per symbol Ns for some values of the number of thermal photons N. In
particular, we find that the shape of the function for N = 0 (absence of noise) is in
perfect agreement with the results of the previous chapter with pure states. To ensure
an accuracy of ε = 10−7, the Hilbert space has been chosen with a dimension of
n = nε = 130.

The same figure shows a comparison of the performance of the quantum receiver
with the classical homodyne receiver, for which the evaluation has been done consid-
ering the degradation of the signal-to-noise ratio according to (8.28). The advantage
of the quantum receiver, which in absence of noise is about 3 dB, quickly decreases
with increasing noise quantified by the parameter N.

8.9.1 Comparison of CSP and SRM Evaluation

The SRM approach used above does not give the minimum error probability. For
this reason with have evaluated the minimum error probability by the convex semi-
definite programming (CSD), implemented in MatLab by the CVX procedure (see
Sect. 8.7.2), which gives (numerically) this minimum. The results of the two evalu-
ation are compared in Fig. 8.17 for the 16-QAM, where the error probability Pe is
plotted as a function of the number of signal photons per symbol Ns for a few values
of the number of thermal photonsN. We realize that the SRM gives an overestimation
of Pe, which may be acceptable in practice.
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Fig. 8.16 Error probability in 16-QAM versus Ns for some values of N. Black lines refer to quantum
detection and green lines to classical homodyne detection
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Fig. 8.17 Comparison of error probability in 16-QAM versus Ns for some values of N. Black lines
refer to CVX evaluation and red lines to SRM evaluation
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8.10 PSK Systems in the Presence of Thermal Noise

The PSK (phase shift keying) quantum systems have been studied in Sect. 7.12 with
pure states. Now they will be analyzed with density operators, which account for the
presence of thermal noise.

From Sect. 7.12 we recall that the scaled constellation of the PSK modulation
consists of K points uniformly distributed on a circle of the complex plane

C = {Δ W m
K | m = 0, 1, . . . , K − 1} (8.59)

where the scale factor Δ is given by the radius of the circle and WK = ei2π/K . We
have also seen that the constellation satisfies the geometrically uniform symmetry
(GUS) with symmetry operator

S = exp

(

i2π

K
N

)

= exp(WK N ) (8.60)

where N is the number operator. This allowed us to establish that the SRM method
with pure states (absence of thermal noise) is optimal and then the minimal error
probability can be easily obtained using the Gram matrix approach. Specifically, (see
(7.126) and (7.127)) we calculate the eigenvalues as the DFT of the first line of the
Gram matrix, from which we obtained the minimal error probability.

In the presence of thermal noise we have the constellation of Glauber density
operators

ρm = ρ(Δ W m
K ), m = 0, 1, . . . , K − 1

which verifies the GUS with symmetry operator given by (8.60).
The BPSK modulation in the presence of noise has been considered in Sect. 8.8,

where the performance obtained by Helstrom’s method, which is optimal (the only
approximation regards the truncation of the density operators with a matrix of finite
dimensions), has been compared with that of the SRM method (see Fig. 8.12). For
K ≥ 3 no optimal measurement operators are exactly known, therefore we apply
the SRM method generalized to include the density operators. In a PSK quantum
system, differently from the QAM, the treatment of approximations in the numerical
evaluation is simpler because the number of signal photons associated to the symbols
γ is the same over the whole constellation, that is, Nγ = Δ2 = Ns . In addition, the
PSK constellation verifies the GUS, then we can use the simplifications implied by
such symmetry, seen in Sect. 8.7.3.

Based on the required accuracy, we choose the dimension n × h0 of the reference
factor γ0. Then we have

γ0
n×h0

T
n×n

G
K h0×K h0

Dk
h0×h0

.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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where Dk are the matrices defined by (8.49). We shall see that it is convenient to
adopt the Gram matrix approach, which requires doing the EID of the Dk to compute
their square root, and eventually we compute the transition probabilities and the error
probability.

8.10.1 4-PSK Modulation

We illustrate a specific example of evaluation, and we then discuss the performance
in general and make a comparison with the classical 4-PSK system.

Example 8.2 We assume the following data

Ns = 4.0 Δ = √Ns = 2.0 N = 0.2 .

With the accuracy ε = 10−7 we must approximate the dimensions for the density
operator ρ0 with n = 60. With this accuracy we have a virtual rank of h0 = 9 and
we obtain a factor β0 of dimensions n × h0 = 60 × 9. Therefore, T has dimensions
n × n = 60 × 60 while G has dimensions H × H = 36 × 36. But the EIDs of these
matrices are not required and it is sufficient to take the EID of the matrices Dk which
have dimensions 9 × 9.

The transition probabilities result in

pc =

⎡

⎢

⎢

⎣

0.98758 0.00602 0.00039 0.00602
0.00602 0.98758 0.00602 0.00039
0.00039 0.00602 0.98758 0.00602
0.00602 0.00039 0.00602 0.98758

⎤

⎥

⎥

⎦

and so
Pc = 0.98758 Pe = 0.01242 .

As one can see, the diagonal probabilities are equal, in agreement with the fact that
the PSK verifies the GUS. However, the “further” condition (6.66) is not verified for
the optimality (see Problem 8.5).

Following the lines indicated in the examples, we have systematically calculated
the error probability as a function of the number of signal photons per symbol Ns =
Δ2 = 2NR for some values of the noise parameter N (Fig. 8.18). We have verified
that for a very small value ofN as 0.00002, the results practically coincide with those
obtained in the absence of noise.

Comparison with the Classical 4-PSK System

Figure 8.18 shows the shape of the error probability in the classical 4-PSK system,
obtained with the same thermal noise parameters. To this end, we applied the the-
ory developed in Sect. 8.5.1, relative to the quadrature modulation. We recall from
the previous chapter (see Sect. 7.12), that in the absence of thermal noise the error

http://dx.doi.org/10.1007/978-3-319-15600-2_6
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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Fig. 8.18 Error probability in 4-PSK as a function of the number of signal photons per symbol Ns
for some values of the number of thermal photons N. Black lines refer to the quantum system and
green lines to the classic homodyne system

probability in the 4-PSK system results in Pe = Q(
√

Λ), where the signal-to-noise
ratio is Λ = 4Ns . To obtain the error probability in the presence of thermal noise it
is sufficient to change such ratio according to (8.28). We then have

Pe,classic = Q

(
√

4Ns

1 + 2N

)

. (8.61)

The comparison in the figure shows the superiority of the quantum system with
respect to the classical one, especially for low levels of thermal noise; with increasing
N this superiority weakens.

8.10.2 8-PSK Modulation

Let us start out with an example.

Example 8.3 We assume the following data

Ns = 9.0 Δ = √Ns = 3.0 N = 0.2 .
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To guarantee the accuracy of the previous example we must choose n = 64 (multiple
of 8), and h0 = 9, which involves a factor β0 of dimensions n × h0 = 64 × 9 and
then the dimensions of β become: n × H = 64 × 72. Therefore, T has dimensions
64×64, whereas G has dimensions 72×72. The matrices Dk have dimensions 9×9,
and so their EID is not a problem.

Developing the computation, we find that the transition probabilities result in

pc =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.95698 0.02148 0.00002 0.00000 0.00000 0.00000 0.00002 0.02148
0.02148 0.95698 0.02148 0.00002 0.00000 0.00000 0.00000 0.00002
0.00002 0.02148 0.95698 0.02148 0.00002 0.00000 0.00000 0.00000
0.00000 0.00002 0.02148 0.95698 0.02148 0.00002 0.00000 0.00000
0.00000 0.00000 0.00002 0.02148 0.95698 0.02148 0.00002 0.00000
0.00000 0.00000 0.00000 0.00002 0.02148 0.95698 0.02148 0.00002
0.00002 0.00000 0.00000 0.00000 0.00002 0.02148 0.95698 0.02148
0.02148 0.00002 0.00000 0.00000 0.00000 0.00002 0.02148 0.95698

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and then
Pc = 0.95698 Pe = 0.04302 .

Even in this case the diagonal probabilities are equal, but the “further” optimality
condition (6.66) is not verified, therefore, the SRM method gives an overestimate of
the minimal error probability.

Along the lines of the example, the error probability has been computed as a
function of the number of signal photons per symbol Ns = Δ2 = 3 NR for some
values of the number of thermal photons N (Fig. 8.19). We have verified that for a
very small value ofN, as 0.00002, the results practically coincide with those obtained
in the absence of noise, according to (7.127).

Comparison with the Classical 8-PSK

Figure 8.19 shows also the shape of the error probability of the classical 8-PSK
system. This is calculated bearing in mind (7.129) of the previous chapter, that is,
Pe < P ′

e = exp
(−2Ns sin2 π/K

)

, holding in the absence of thermal noise, and
modifying the signal-to-noise ratio in the usual way, i.e.,

Pe,classic < P ′
e = exp

(

− 2Ns

1 + 2N
sin2 π

K

)

(8.62)

which with K = 8 gives a good approximation.
As in the previous case, the comparison shows the superiority of the quantum

system with respect to the classical one, especially for low levels of the thermal
noise.

Problem 8.5 

 Check that the further condition (6.66), that is, μ∗
0β0 = α I , is not

verified in 4-PSK with the data of Example 8.1.

http://dx.doi.org/10.1007/978-3-319-15600-2_6
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_6
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Fig. 8.19 Error probability in 8-PSK as a function of the number of signal photons per symbol Ns
for some values of the number of thermal photons N. Continuous lines refer to the quantum system
and dashed lines to the classic homodyne system

8.11 PPM Systems in the Presence of Thermal Noise

We now examine PPM (pulse position modulation) systems in the presence of thermal
noise. We point out that this subject is currently being investigated for the potential
application of this modulation format to deep-space transmission [6, 8]. The present
treatment is the result of a recent research [2] and is very detailed.

Symbolism and Dimensions

The formalization required for the quantum PPM, in the framework of a composite
Hilbert space, requires a thorough attention to symbolism and dimensions of the
various entities, which we list below for a general K -ary system:

n dimension of the component Hilbert spaces H0,
N = nK dimensions of the composite Hilbert space H = H⊗K

0 ,
h rank of the component density operators ρ0 and ρ1,
H = hK rank of the composite density operators ρi ,
r = K H = K hK rank of the state matrix Γ .
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8.11.1 Formulation

From Sect. 7.13 of the previous chapter we recall that a K -ary quantum PPM sys-
tem must be defined on a Hilbert space H given by the tensor product H⊗K

0 of K
equal Hilbert spaces H0, where the coherent state associated to the symbol i has the
composite form

|βi 〉 = |βi,K−1〉 ⊗ · · · ⊗ |βi,1〉 ⊗ |βi,0〉, i = 0, 1, . . . K − 1 (8.63)

with |βi j 〉 = |Δ〉 for i = j and |βi j 〉 = |0〉 for i �= j , where |Δ〉 is the coherent
state with real parameter Δ, and |0〉 is the “ground state”. For example, for K = 4
we have the four states listed in (7.133). We recall that all the states have the same
number of signal photons per symbol, given by

Ns = Δ2 .

In the presence of thermal noise the representation must be done in terms of
density operators, so that to the symbol i we associate the operator

ρi = ρi,K−1 ⊗ · · · ⊗ ρi,1 ⊗ ρi,0, i = 0, 1, . . . K − 1 (8.64)

with

ρi j =
{

ρ(Δ) i = j

ρ(0) i �= j
(8.64a)

where ρ(Δ) is the density operator given by (8.1), and ρ(0) is the density operator
corresponding to the “ground state”, given by (8.2). For example, for K = 4 we
obtain the four composite density operators

ρ0 = ρ(0) ⊗ ρ(0) ⊗ ρ(0) ⊗ ρ(Δ)

ρ1 = ρ(0) ⊗ ρ(0) ⊗ ρ(Δ) ⊗ ρ(0)

ρ2 = ρ(0) ⊗ ρ(Δ) ⊗ ρ(0) ⊗ ρ(0)

ρ3 = ρ(Δ) ⊗ ρ(0) ⊗ ρ(0) ⊗ ρ(0) .

We now consider the factorization of the composite density operators ρi , required
to apply the various decision methods. We have the following important result (see
Appendix section “Proof of Proposition 8.2 on Factorization”).

Proposition 8.2 Let

ρ0 = β0 (β0)∗, ρ1 = β1 (β1)∗

be the factorizations of the component density operators. Then the factorizations of
the composite operators, ρi = βi β∗

i , turn out to be given by the factors

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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βi = βi,K−1 ⊗ · · · ⊗ βi,1 ⊗ βi,0, i = 0, 1, . . . K − 1 . � (8.65)

Notice the perfect symmetry of expressions (8.63), (8.64) and (8.65).

8.11.2 Computation of the Dimensions and the Matrices

The numeric evaluation of the performance requires moving from infinite-dimensi-
onal operators to finite-dimensional matrices, and this is not so obvious in PPM
because the operators are given by tensor products. It is then appropriate to observe
that:

Proposition 8.3 If A is an operator with (matrix) representation AA obtained with
a basis A and B is an operator with representation BB obtained with a basis B, then
the representation of the operator obtained with the tensor product, A ⊗ B, is given
by Kronecker’s product (see Sect.2.13.3) of the two matrices, AA ⊗ BB. We remind
also that, if AA and BB have dimensions, respectively, m A × n A and m B × nB, the
dimensions of AA ⊗ BB become m A m B × n A nB.

The extension of these properties to an arbitrary number of factors is straightfor-
ward. �

Then the representation of the composite density operators (8.63) can be obtained
as follows. The component operators ρ(Δ) and ρ(0), are approximated by n × n
matrices of appropriate dimensions

ρ(Δ) � R(Δ)
n×n

, ρ(0) � R(0)
n×n

(8.66)

where R(Δ) = [Rmn(Δ)] is given by (8.10) and R(0) = [Rmn(0)] by (8.7); R(0)

is a diagonal matrix. In other words, with the approximation (8.66) we choose the
dimension n of the component Hilbert spaces H0. From Proposition 8.3 the matrix
representation of the ρi results in

Ri = Ri,K−1 ⊗ · · · ⊗ Ri,1 ⊗ Ri,0, i = 0, 1, . . . K − 1 (8.67)

with

Ri j =
{

R(Δ) for i = j

R(0) for i �= j .

In (8.67) we have the Kronecker product of K matrices and, with the approximation
(8.66), we have dimensions dim(Ri ) = nK ×nK , where N = nK gives the dimension
of the composite space H = H⊗K

0 .

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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Table 8.2 Dimensions and ranks in quantum K -PPM (N = nK , H = hK )

Parameter Symbol Dimensions Rank

Elementary factors β0, β1 n × h h

Elementary density
operators

ρ0, ρ1 n × n h

Composite factors βi N × H = nK × hK H = hK

Composite density
operators

ρi N × N = nK × nK H = hK

State matrix Γ N × KH = nK × KhK r = KH = KhK

Gram operator T N × N = nK × nK KH = KhK

Gram matrix G KH × KH =
KhK × K hK

KH = KhK

For the factorization we apply Proposition 8.2, which states that it suffices to find
the factorization of the component matrices

R(Δ) = β1 β1∗
, R(0) = β0 β0∗

where β1 is computed through the EID, while for β0 we have directly β0 = √
R(0)

because R(0) is diagonal. In general, the dimensions of the elementary factors β0 and
β1 are n×n and n×h0, where h0 is the rank of R(Δ), but, profiting from the fact that
these dimensions have a degree of freedom (see Sect. 8.4), it is expedient to adopt the
same dimensions n × h for both elementary factors. In practice, n and h are chosen
simultaneously with the criterion of the trace based on a predetermined accuracy.
With this choice we obtain the dimensions and the (virtual) ranks summarized in
Table 8.2.

8.11.3 Computational Complexity and Method Comparison

The above listed dimensions exhibit an exponential increase with the order K of
the PPM modulation, and this causes a very serious problem of computational com-
plexity. In Glauber’s representation, it is mandatory to make an accurate choice of
the finite dimension n of the component Hilbert spaces H0 to ensure an adequate
approximation for the elementary density operators. Such value of n depends on the
number of signal photons Ns = Δ2, which in turn depends on the error probability
range Pe that we want to examine for the evaluation. For the sake of clarity, consider
the following tables, regarding the 4-PPM system with a number of thermal photons
equal to N = 0.05.

• Pe � 10−2 → Ns � 3 → n � 10 N = nK � 104

• Pe � 10−3 → Ns � 4.5 → n � 15 N = nK � 5 104

• Pe � 10−4 → Ns � 6.5 → n � 20 N = nK � 16 104

• Pe � 10−5 → Ns � 8 → n � 30 N = nK � 81 104
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From this we deduce that, while the dimension n of the component spaces stays
within relatively small values, the dimension N = nK of the composite space grows
very quickly up to huge values (tens of thousands) for the matrices that must be stored
and processed. At this point, to reach interesting ranges of Pe, we must compare the
various methods available to identify the method ensuring the minimum computa-
tional complexity. To this end, an important role is played by the GUS, which, as we
have seen, is verified by the PPM.

To understand the role of dimensions N and r , it is essential to have an idea of
the practical limits in the main numerical tools, i.e., EID and CSP. In our experi-
ence with standard personal computers, we have found that EID can be efficiently
implemented up to the order of three thousand. On the other hand, the available CSP
implementations, as the LMI (Linear Matrix Inequality) Toolbox and the CVX, both
implemented in MatLab, require the introduction of “data” (complex matrices) and
“conditions” that, in our experience can be limited to matrices of order up to three
hundred. Thus, as an indication for a discussion, we write

NEID = 3 000 NCSP = 300 . (8.68)

Optimal Approach

This approach is available for:

• pure states (N = 0), for any order K , already used in the previous chapter,
• mixed states for K = 2 according to Helstrom’s theory, which requires an N × N

EID,
• CSP, considering the GUS of PPM, with at the input the reference density operator

ρ0 of dimensions N × N and the symmetry operator S (see below).

SRM Approach

This approach is always applicable, for each order K , both with pure states and with
mixed states. Two possible modes are given:

• through Gram’s operator, which requires one EID of an N × N matrix,
• through Gram’s matrix, which requires K EIDs of H × H matrices.

As H � N , we should use the second option, with a limit of H � 3000.

Comparison with the Classical Optical PPM

Decision in a classical PPM system is based on photon counting. Such counting,
in the presence of thermal noise, has a Laguerre distribution (see Sect. 8.5.2). The
corresponding error probability has been computed by Helstrom et al. [4] (chap. 6)
and results in

Pe,classic = 1

K

K
∑

i=2

(−1)i
(

K

i

)

exp

[

− (1 − N)i−1 − Ni−1

(1 − N)i − Ni
Ns

]

. (8.69)

http://dx.doi.org/10.1007/978-3-319-15600-2_6
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Notice that in the absence of thermal noise (N = 0), (8.69) degenerates to

Pe,classic = K − 1

K
e−Ns . (8.70)

found in the previous chapter (see (7.145)).

8.11.4 Application to SRM Decision in the Presence of GUS

In the previous chapter (Sect. 7.13) we have seen that the PPM format enjoys the
Geometrically Uniform Symmetry (GUS) with symmetry operator S defined by
(Sect. 7.135), that is,

S =
n−1
∑

k=0

wn(k) ⊗ InK−1 ⊗ w∗
n(k) , (8.71)

where wn(k) is a column vector of length n with i th element δik, i = 0, . . . , K − 1.
Considering the presence of the GUS we can apply the two procedures outlined

in Sect. 8.7.3: the Gram operator approach, where the correct decision probability is
given by

Pc = Tr [ρ0 T −1/2]2 .

and the Gram matrix approach, where Pc is given

Pc = 1

K
Tr
[{

K−1
∑

k=0

D1/2
k

}2 ]

.

8.12 PPM Performance Evaluation (Without Compression)

In this section, we evaluate the PPM performance using the more efficient available
methods without resorting to the state compression. Due to the huge computational
complexity, in 3-PPM we are able to apply the SRM approach and partially the CSP,
and in 4-PPM only the SRM approach.

8.12.1 Performance of 2-PPM

In 2-PPM in the presence of noise no numerical problems are encountered because
the dimensions are relatively small. The optimal performance can be evaluated with

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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Helstrom’s method, while the SRM method turns out to be suboptimal. In Helstrom’s
method, the decision operator must be built

D = ρ1 − ρ0

where ρ0 = ρ(Δ) ⊗ ρ(0) and ρ1 = ρ(0) ⊗ ρ(Δ), and its eigenvalues must be
computed.

Example 8.4 We now want to compare Helstrom’s and SRM methods for the values
of Ns = 2.0, 4.0 and 6.0 and the thermal noise parameter N. To ensure an accuracy
of 10−8 in the approximation of the elementary density operators, n = 20 and h = 5
must be chosen. Then the composite operators ρ0 and ρ1 have dimensions N × N
with N = 202 = 400 and the virtual rank results in H = 52 = 25. The numeric
evaluation yields the following results for the Pe

Helstrom
Ns = 2.0 0.01746593348035197
Ns = 4.0 0006038940756354361
Ns = 6.0 0.000038232537391658106

SRM
0.02176673057747613
0.000739329477730144
0.00004720917345124587

Following the formulation of the example, the two methods have been systemati-
cally compared, and the results are as shown in Fig. 8.20, where the error probability
Pe is plotted as a function of the number of signal photons per symbol Ns for some
values of N. As can be seen, the SRM method provides a slight overestimate of the
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Fig. 8.20 Error probability in 2-PPM as a function of the number of photons per symbol Ns for some
values of the number of thermal photons N. Comparison between Helstrom’s method (optimal) and
SRM method (suboptimal)
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error probability; the overestimate factor is only in the order of 1.3–1.4, and therefore
quite acceptable for an error probability.

8.12.2 Performance of Quantum 3-PPM and Comparison
with Classical System

With K = 3 only the SRM method is available and partially the CSP (see below).
For an efficient evaluation it is convenient to take into account the fact that the
PPM format verifies the GUS, and the SRM evaluation is done using Gram’s matrix
following the method of Sect. 8.11.4. To obtain an error probability in the order of
10−5 we must choose as parameters (see Table 8.2):

• n = 40, h = 8,

and therefore N = n3 = 403 = 64 000, H = 83 = 512, values that take to the limit
the evaluation power of a very good PC.

The results are shown in Fig. 8.21, which gives the error probability in 3-PPM
as a function of Ns , for some values of N. The same figure shows also the error
probability of a classical 3-PPM system using a photon counter; this probability is
calculated using Helstrom’s formula (8.69). We can observe the clear advantage of the
quantum system over the classical one, especially for low values of the thermal noise
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Fig. 8.21 Error probability in 3-PPM as a function of the number of signal photons per symbol Ns
for some values of the number of thermal photons N. Black lines refer to the quantum system and
green lines to the classic homodyne system
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Fig. 8.22 Error probability in 3-PPM as a function of the number of signal photons per symbol Ns
for N = 0.1. The continuous line refers to the SRM method (suboptimal) and the partial dashed
lines to the optimal numerical method based on CSP

parameter N. For example, with Ns = 6 and N = 0.05 with the quantum 3-PPM we
obtain Pe = 10−4, whereas with the classical 3-PPM, we get Pe = 4.3 10−3.

With 3-PPM it is possible to use (partially) the evaluation based on CSP, which
provides an optimal evaluation, and then make a comparison with the SRM method,
which is suboptimal. The comparison is shown in Fig. 8.22, which gives the error
probability in 3-PPM as a function of Ns for N = 0.1, and confirms the “pretty
good” approximation of the SRM method. The comparison is only partial (up to
about Ns = 1.5) and is obtained with density matrices 150 × 150, using the LMI
toolbox of MatLab; this optimal evaluation requires processing times of a few hours
for each point.

8.12.3 Performance in 4-PPM

With K = 4, for the direct evaluation only the SRM method is available, and it
is not possible to implement the optimal evaluation based on CSP. The parameters
required by the SRM method have already been anticipated above and give the results
illustrated in Fig. 8.23, which shows the shape of the error probability as function
of Ns for some values of N. The same figure also shows the error probability of a
4-PPM system obtained using a photon counter (classical decision); for the evaluation
of this probability one can use (8.69). Even for 4-PPM the superiority of the quantum
system over the classical one is quite evident.
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Fig. 8.23 Error probability in 4-PPM versus Ns for some values of N. Black lines refer to quantum
detection and green lines to classical photon-counter detection

8.13 PPM Performance Evaluation Using State Compression

In the previous section we have seen that numeric evaluation of the performance in
the presence of thermal noise is limited to low orders (K ≤ 4), that is, to 3-PPM and
to 4-PPM. In particular the CSP method is only partially applicable to 3-PPM.

In this section, we will see how the numerical evaluation can be improved by the
state compression, allowing us to explore a range of the performance not possible
otherwise.

8.13.1 Recall: Methodology and Benefits of State Compression

State compression was introduced at the end of Chap. 5, Sect. 5.5, and reconsidered in
Sect. 6.7 in the context of SRM. The philosophy of compression is the possibility to
remove the redundancy of quantum states passing from the original Hilbert space H
to a “compressed” Hilbert space H of smaller dimension. In the K -ary PPM we have
dim H = N = nK and dim H = r . In the compressed space the quantum detection
is achieved exactly in the same way as in the original Hilbert space. Particularly
attractive is the compression when the constellation of states has the GUS, and this
is the case of PPM.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_6
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For the moment, suppose to know the compressor U∗
r , which allows for the passage

from the original Hilbert space to the compressed space as H = U∗
r H. Then all

operators and matrices can be transferred into the compressed space and used therein
for the quantum detection. We recall in particular

• the factors βi and μi are compressed as

β i = U∗
r βi , μi = U∗

r μi

• the operators ρi and Qi are compressed as

ρi = U∗
r ρi Ur , Qi = U∗

r Qi Ur

• the Gram operator T and the symmetry operator S are compressed as

T = U∗
r T Ur , S = U∗

r S Ur

and both become diagonal.
• the correct decision probability can be evaluated in the compressed space as

Pc =
K−1
∑

i=0

qi TrQiρi , qi = 1/K .

Now we consider the problem of the compressor evaluation. In general, the natural
procedure for the evaluation of the compressor U∗

r is the SVD of the state matrix Γ ,
which here has the dimension N × H = nK × hK , so that it is exceedingly large
and the SVD represents a very hard numerical task. But, in the presence of GUS,
we have an alternative derived from the commutativity of the Gram operator T with
the symmetry operator S. This property in used in Appendix section “Simultaneous
Diagonalization of S and T ” to get the procedure outlined below for the compression
evaluation.

We have seen that in PPM the EID of S = US Λ U∗
S is known in closed form.

The eigenvalues in Λ are multiple so that the EID is not unique and we use the
commutativity T S = S T to find from the consequent simultaneous diagonalization

T = U Σ2 U∗, S = U Λ U∗ (8.72)

the convenient unitary matrix U and then the compressor U∗
r . The procedure is

articulated in the following steps [9]:

(1) We assume that, possibly after a reordering, the multiple eigenvalues in Λ occur
contiguously on the diagonal. Then Λ has the block diagonal form

Λ = diag[λ1 I1, . . . , λk Ik] (8.73)
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where λi are the k distinct eigenvalues of S and Ii are identity matrices of size
given by the multiplicity of λi (recall from Sect. 5.13 that λi has the form W ui

k ,
where ui are integers).

(2) The matrix V := U∗
S T US is block diagonal with diagonal blocks Vi of the same

order as Ii in (8.73), which are given by

Vi =
K−1
∑

k=0

λi
k Ii (U

∗
S ρ0US)i iλ

−i
k Ii = K (U∗

S ρ0US)i i (8.74)

(3) Find the EID Vi = XiΣ
2
i X∗

i of the blocks Vi to get the factorization V =
XΣ2 X∗ with Σ2 = diag[Σ2

1 . . . , Σ2
k ] and X = diag[X1, . . . , Xk].

(4) From X we get the diagonalization (8.72) of T with U = US X .
(5) The compressor U∗

r is given by the first r rows of U∗ = X∗ US .

In this procedure the computational complexity is confined to the EIDs of the blocks
Vi of size � N/K .

8.13.2 Application of State Compression to SRM

In the SRM detection the measurement matrix M is given by the two equivalent
expressions M = T −1/2 Γ and M = Γ G−1/2.

This gives two alternative approaches which are important to explore an efficient
computation.

Gram operator approach. In the case of GUS the reference measurement operator
is given by

Q0 = T −1/2 ρ0 T −1/2

and the correct detection probability by

Pc = Tr
[

(ρ0T −1/2)2
] compression−−−−−−→ Pc = Tr

[

(ρ0T
−1/2

)2
]

where T is diagonal and therefore no EID is required for the evaluation of T
−1/2

.

Gram matrix approach. The matrix G is block circulant and its decomposition is
related to the discrete Fourier transform (DFT). We subdivide the Gram matrix into
blocks Gi j = β∗

i β j of size H × H and we evaluate the matrices

D j =
K−1
∑

i=0

G0i W − j i
K .

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Then, the correct detection probability is given by

Pc = 1

K
Tr
[{

K−1
∑

j=0

D1/2
j

}2 ]

.

The evaluation of Pc requires finding the square roots D1/2
j of the matrices D j of

dimension H × H with H = hK .

8.13.3 Application of State Compression to CSP

We consider the dual problem with GUS, stated by Theorem 5.6. which can be sum-
marized as

Proposition 8.4 Let ρ0 be the reference density operator and let S be the symme-
try operator. Then, the optimization requires finding a PSD Hermitian operator X
satisfying the conditions: (1) X ≥ ρ0, (2) X S = SX, and (3) Tr[X ] is minimum.

The “dual problem” can be transferred to the compressed space, with a dimension
reduction from N to r , where the minimum trace Tr[X ] gives the maximum correct
decision probability. In the compressed space we have the further improvement: the
symmetry operator S is diagonal, with the form S = diag [λ1 I1, . . . , λs Is], where
λi are the distinct eigenvalues of S and the size of the identity matrix Ii is given by
the multiplicity of λi . This implies that X becomes block diagonal with blocks Xi

of dimensions as Ii (see [10]).

8.13.4 State Compression in PPM: Numerical Problems

We have seen that the compression enables us to replace the matrices of order N con-
cerned with quantum detection (density and measurement operators, Gram operator,
optimization operator and symmetry operator) with compressed matrices of order r .

To understand the role of dimensions N and r , it is essential to have an idea of
the practical limits in the main numerical tools, i.e., EID and CSP. As done in the
previous section, as an indication for a discussion, we assume the limits

NEID = 3 000 NCSP = 300 .

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Compressor Evaluation

This seems to be the bottleneck of the compression theory, but the limit N = NEID =
3 000 is substantially high. Moreover, as seen above, it can be improved in the
presence of GUS, where the simultaneous diagonalization allows for the compressor
evaluation through EIDs of size N/K . So, the limit is increased according to N/K =
NEID and we find: N = 6 000 for K = 2, N = 12 000 for K = 4, etc.

SRM Approach

We have two possibilities, via Gram matrix and via Gram operator, and in both cases
we have to perform the EID to find the square root.

We have seen that the Gram matrix does not change with the compression, G = G,
and the size is r = K H . So, in general we have the limit K H = NEID, which gives
for the density range H = 1 500 for K = 2, H = 750 for H = 4, etc. But, with the
GUS the EIDs (of the matrices E j ) have size H . Hence, the limit becomes H = NEID
for any K .

The direct EID of the Gram operator has the limit N = NEID, but it can be
compressed to the size K H = r and becomes diagonal. Thus, no EID is required
after the compression and the limit is given by compressor evaluation.

CSP Approach

In the presence of GUS the data are reduced to a single density operator (ρ0, see
Proposition 8.4) and the limit becomes N = NCSP = 300 for all K . In the presence
of both GUS and compression the data is the compressed density operator ρ0, which
has size r = K H . The limit becomes r = K H = NCSP = 300. Hence: H = 150 for
K = 2, H = 75 for K = 4, etc. Also the condition that the compressed optimization
operator is block diagonal reduces the computational complexity. In conclusion, it
is convenient to use the latter opportunity.

8.13.5 Performance Evaluation

For given accuracies ε and ν, the sizes n and H increase with the number of signal
photons/symbol Ns , which in turn depends on the range of the error probability Pe

we want to explore. To fix the ideas we give the following table, where we have
chosen as number of thermal photons N = 0.05 and the accuracies with the rule
ε = ν = Pe/10.

3-PPM

Pe Ns n N = nK h H = hk r = K H
10−1 3 5 125 2 8 24
10−2 5 10 103 3 27 81
10−3 7 15 1.2103 3 27 81
10−4 8 20 8103 4 64 192



8.13 PPM Performance Evaluation Using State Compression 413

4-PPM

Pe Ns n N = nK h H = hk r = K H
10−1 3 5 625 2 16 64
10−2 5 10 104 3 81 273
10−3 7 15 5 104 3 81 273
10−4 8 20 16 104 4 256 1024

We realize that, while the dimension n of the basic space can be confined to
moderately small values, the dimension N of the composite space is considerably
huge. On the other hand, the dimension of the compressed space r = K hK is confined
to smaller values.

Now, a fundamental remark to reduce the computational complexity is that the
PPM verifies the GUS, as shown in [2], where the expression of the symmetry
operator S and its EID are obtained. The presence of GUS improves the limit of
the dimension N of the compressor evaluation according to N = NEID K , that is
N = 9 000 for the 3-PPM and N = 12 000 for the 4-PPM.

Following the above tables we see that we can use the SRM-Gram matrix approach
to evaluate Pe down to 10−5 for the 3-PPM and down to 10−4 for the 4-PPM. On the
other hand, the direct evaluation with CSP is limited to a small range: Pe ≥ 10−2 for
the 3-PPM and Pe ≥ 10−1 for the 4-PPM. But with the compression these limit are
considerably improved: Pe ≥ 10−4 for the 3-PPM and Pe ≥ 10−3 for the 4-PPM.

Practical Software Implementation

The results of the numerical evaluation of the error probability Pe for 3-PPM are
depicted in Fig. 8.24. In the absence of thermal noise (N = 0) a closed-form expres-
sion of the minimum Pe is known from Helstrom’s theory. In the presence of thermal
noise (N = 0.05 and N = 0.1) the solid lines represent the suboptimal Pe obtained
by SRM and evaluated as in the previous section. The evaluation of the optimal error
probability leads to results confined to a limited range of Ns (up to 1.5), as evidenced
by the stars (
). This is due to the aforementioned numerical limitations. The eval-
uation has been extended to a more significant range (denoted by full dots) using
the GUS of PPM. But a dramatic simplification of numerical complexity, is obtained
with the compression techniques, which reduces the dimensions of the involved
matrices and enables one to perform the optimization with block diagonal matrices
of reduced size. Provided that data, i.e., the compressed matrix ρ0, is loaded, few
line of self-explanatory code are sufficient, specifically

cvx_begin
variables X(dim)
minimize(trace(X))
subject to

X>rho0;
X*S==S*X;

cvx_end
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Fig. 8.24 Error probability in 3-PPM versus the number of signal photons per symbol Ns for 3
values of the number of thermal photons N. Solid lines refer to SRM detection, stars (
) and bullets
(•) to optimal detection. For N = 0 SRM detection coincides with optimal detection
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Fig. 8.25 Error probability in 4-PPM versus the number of signal photons per symbol Ns for 3
values of the number of thermal photons N. Solid lines refer to SRM detection and points to optimal
detection. For N = 0 (absence of thermal noise) SRM detection coincides with optimal detection
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Similar remarks hold for the error probability of 4-PPM depicted in Fig. 8.25,
where the direct application of the optimization is limited to a very small range and
considerably extended with the compression.

Inspection on the two figures confirms that the SRM gives a “pretty good” eval-
uation of the quantum PPM performance.

8.14 Conclusions

We have seen the possibility to transfer quantum detection operations into a com-
pressed space, where the redundancy of quantum states and measurement operators
is completely removed. The quantum system performance, e.g., the probability of
correct detection, can be evaluated in the compressed space without returning back
to the original Hilbert space. In the compressed space most of the properties are
improved and, in particular, some operators become diagonal. In the presence of
a strong redundancy, the numerical evaluations are facilitated, in such a way that
it is possible to explore ranges of the performance evaluation not possible without
compression. Perhaps, also a physical realization of the quantum detection may be
improved with the compression technique, provided that an optical compressor is
realizable.

Appendix

Alternative Discretization

An alternative discretization of a Glauber density operator is based on the subdivision
of the integration region in (8.8) into a finite number K of regions of the complex
plane, namely,

Ak with
K
⋃

k=1

Ak = C . (8.75)

In such a way, one gets the discrete approximation of the density operator

ρ(γ ) �
K
∑

k=1

hk |αk〉〈αk | (8.76)

where

hk = 1

πN

∫

Ak

exp

(

−|α − γ |2
N

)

dα
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and |αk〉 are the Glauber coherent states with complex parameter αk ∈ Ak . This
integral gives the probability of the state |αk〉

P[s = |αk〉] = hk . (8.77)

The normalization of the probability is verified because the volume determined by
the Gaussian profile is unitary

1

πN

∫

C

exp
(

−|α − γ |2
N

)

dα = 1 . (8.78)

To arrive at a finite form, the Glauber states in (8.76) are approximated by a finite
number N of terms, that is,

|αk〉 = e− 1
2 |αk |2

N−1
∑

n=0

αn
k√
n! |n〉 .

Partition strategy. The partition of the complex plane C into the regions Ak can be
done in several ways. The strategy that will be considered here is:

(1) partition C into a finite number L circular rings centered on the nominal state
|γ 〉

Di =
{

r2
i−1 ≤ |α − γ |2 < r2

i

}

, i = 1, 2, . . . , L

with r0 = 0 and rL = ∞.
(2) subdivide the i th ring into ki equal parts

Aip =
{

2π

ki
(p − 1) ≤ arg(α − γ ) <

2π

ki
p

}

, p = 1, 2, . . . , ki

where for convenience we use the double subscript i p instead of k,
(3) choose the state |αi p〉, with αi p given by the barycenter of the region Aip,
(4) assume the condition that the states are equally likely.

With such a procedure the number of states is K = k1 + · · · kL and the volume
determined by the ring Di results in

vi = 1

πN

∫

Di

exp
(

−|α − γ |2
N

)

dα

= 1

πN

∫ 2π

0
dφ

∫ ri

ri−1

dr r e−r2/N (8.79)

= 1

2

(

e−r2
i−1/N − e−r2

i /N
)
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which is subdivided into ki equal parts, so that the equal probability condition is

vi

ki
= 1

K
with K = k1 + k2 + · · · + kL .

By imposing such a condition, the radii of the circular rings can be evaluated by the
recurrence

ri =
√

−N log
(

e−r2
i−1/N − ki/N

)

, i = 1, . . . , L

letting r0 = 0 and rL = ∞.
Finally, the barycentric radius of the ring Di results in

rb
i =

√
N
(

e−r2
i−1/N − e−r2

i N
)

√
π
(

erf
(

ri/
√
N
)

− erf
(

ri−1/
√
N
))

where erf is the error function. In such a way, the coherent state |αi p〉 is identified
by the complex number

αi p = γ + rb
i eφi p , φi p = 2π

ki
p .

The number of states in this approximation of the density operator is given by the
total number of subdivisions K = k1 + · · · + kL .

Example 8.5 We consider two examples of subdivision shown in Fig. 8.26. In both
cases the subdivision is into L = 4 rings and the inner ring is not subdivided and

γ

α3,5

γ

α3,7

Fig. 8.26 Examples of subdivision in circular rings for the discretization of a Glauber density
operator
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is associated to the nominal state |γ 〉. In the first example, the 3 outer rings are
subdivided into 5 parts, and we get K = 16 global subdivisions, while in the second
example they are respectively subdivided into 5 , 7 and 9 parts with K = 22 global
subdivisions.

number of rings: L = 4 number of rings: L = 4

subdivisions of rings: 1, 5, 5, 5 subdivisions of rings: 1, 5, 7, 9

global subdivisions: K = 16 global subdivisions: K = 22.

We complete the evaluation in the first subdivision, assuming

N = 0.2 Ns = 2.0 .

With N = 11 we find the matrix

R̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.15696 0.18636 0.15597 0.10627 0.06254 0.03284 0.01572 0.00696 0.00288 0.00113 0.00042
0.18636 0.24576 0.22704 0.16979 0.10909 0.06222 0.03217 0.01530 0.00676 0.00280 0.00109
0.15597 0.22704 0.22990 0.18741 0.13065 0.08054 0.04485 0.02290 0.01084 0.00479 0.00199
0.10627 0.16979 0.18741 0.16562 0.12463 0.08265 0.04937 0.02697 0.01363 0.00643 0.00285
0.06254 0.10909 0.13065 0.12463 0.10082 0.07162 0.04570 0.02661 0.01431 0.00716 0.00337
0.03284 0.06222 0.08054 0.08265 0.07162 0.05431 0.03688 0.02280 0.01298 0.00688 0.00341
0.01572 0.03217 0.04485 0.04937 0.04570 0.03688 0.02657 0.01737 0.01044 0.00583 0.00304
0.00696 0.01530 0.02290 0.02697 0.02661 0.02280 0.01737 0.01198 0.00758 0.00444 0.00243
0.00288 0.00676 0.01084 0.01363 0.01431 0.01298 0.01044 0.00758 0.00502 0.00308 0.00176
0.00113 0.00280 0.00479 0.00643 0.00716 0.00688 0.00583 0.00444 0.00308 0.00197 0.00117
0.00042 0.00109 0.00199 0.00285 0.00337 0.00341 0.00304 0.00243 0.00176 0.00117 0.00072

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

As done in Example 8.19, we perform the factorization choosing the accuracy
0.001 to neglect the very small eigenvalues. In such a way we get the 11 × 4 factor

γ = Zh Dh =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.33675 0.19320 0.07563 0.02214
0.47623 0.13659 −0.00015 −0.01598
0.47623 −0.00004 −0.05355 −0.01550
0.38884 −0.11157 −0.04355 0.00685
0.27495 −0.15774 0.00022 0.01825
0.17389 −0.14962 0.03924 0.01109
0.10039 −0.11515 0.05644 −0.00395
0.05366 −0.07692 0.05419 −0.01563
0.02683 −0.04614 0.04207 −0.01983
0.01265 −0.02537 0.02828 −0.01807
0.00565 −0.01296 0.01704AP20 −0.01361

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The comparison with the results of Example 8.19 shows that the numerical val-
ues are very close (the difference is of the same order of magnitude as the chosen
accuracy).



Appendix 419

Proof of Proposition 8.2 on Factorization

We exploit the rule of mixed products (ordinary products and Kronecker’s products)
seen in Sect. 2.13, Eq. (2.104). For example, for K = 4 and i = 2 this rule yields

ρ2 = ρ(0) ⊗ ρ(α) ⊗ ρ(0) ⊗ ρ(0)

= (γ 0 γ 0∗
) ⊗ (γ 1 γ 1∗

) ⊗ (γ 0 γ 0∗
) ⊗ (γ 0 γ 0∗

)

= (γ 0 ⊗ γ 1 ⊗ γ 0 ⊗ γ 0)(γ 0 ⊗ γ 1 ⊗ γ 0 ⊗ γ 0)∗

from which
ρ2 = γ2 γ ∗

2 with γ2 = γ 0 ⊗ γ 1 ⊗ γ 0 ⊗ γ 0

and it is evident how the general result (8.65) can be obtained.

Simultaneous Diagonalization of S and T

We outline a procedure for finding the simultaneous diagonalization (8.72) start-
ing from an arbitrary EID S = US Λ U∗

S of the symmetry operator and using the
commutativity TS = ST.

(1) We assume that, possibly after a reordering, the multiple eigenvalues in Λ occur
contiguously on the main diagonal. Then Λ has the block diagonal form

Λ = diag[λ1 I1, . . . , λk Ik] (8.80)

where λi are the distinct eigenvalues of S and Ii are identity matrices of size
given by the multiplicity of λi .

(2) Since S commutes with T , it follows USΛU∗
S T = T USΛU∗

S and ΛU∗
S T US =

U∗
S T USΛ, so that Λ commutes with V = U∗

S T US .
(3) Partition the matrix V = [ Vi j ] according to the partition (8.80) of Λ. Then,

from ΛV = V Λ we get λi Vi j = λ j Vi j and Vi j does not vanish only if i = j .
One concludes that V is block diagonal, V = diag[V1, . . . , Vk], with blocks Vi

of the same order as Ii in (8.80).
(4) Since V is PSD, each block Vi is PSD. Then, we perform the EID of the

blocks Vi = XiΣ
2
i X∗

i and we get the diagonalization V = XΣ2 X∗ with
Σ2 = diag[Σ2

1 . . . , Σ2
k ] and X = diag[X1, . . . , Xk].

(5) By reversing the previous unitary transformations we get the diagonalization T =
US V U∗

S = US XΣ2 X∗U∗
S and, remembering that Xi X∗

i = Ii , the simultaneous
diagonalization S = USΛU∗

S = US XΛX∗U∗
S . Thus, we get (8.72) with U =

US X .

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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Note that SUS = USΛ and U∗
S S = ΛU∗

S (see point 1). Then

V = U∗
S T US =

m−1
∑

k=0

U∗
S Skρ0(S∗)kUS =

m−1
∑

k=0

ΛkU∗
S ρ0USΛ−k .

Since V and Λ are block–diagonal

Vi =
m−1
∑

k=0

λi
k Ii (U

∗
S ρ0US)i iλ

−i
k Ii = (U∗

S ρ0US)i i (8.81)

and the block Vi coincides with the i th diagonal block of U∗
S ρ0US .
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Chapter 9
Implementation of QTLC Systems

9.1 Introduction

Optical communications appear as a natural evolution of digital radio frequency
(RF) communications. This evolution implied a change of the frequency range of the
carrier from about 109 Hz for radio and microwave communications to about 1015

Hz for optical communications (see also Sect. 4.4). The major advantage in using
optical frequencies is related to the possibility of utilizing the enormous bandwidths
available in the optical spectrum. Of course, owing to the very small wavelengths
involved, a completely different technology was needed for the development of opti-
cal communications.

A fundamental role in optical technology has been played by the invention of
laser around 1960. This component is a high-powered, almost monochromatic and
very directive source, whose advent suggested the possibility of its use in long-
distance optical transmissions. Indeed, the high directivity of this new source allows
huge antenna gains. On the other hand, the hope related to the advent of the laser
appeared somewhat cooled down by the presence of the atmospheric turbulence, a
phenomenon caused by interaction of the light with the atoms. The development of
optical fibers enabled the experimenters to use a waveguided channel, practically
insensitive to interferences with the surrounding environment. This fact gave new
impetus to optical communications, with a wide range of practical applications in
the field of terrestrial communications.

Another fundamental difference between radio and optical communications arises
from the fact that at optical frequencies it is not possible the use of antennas extracting
an electrical signal from the electromagnetic field and only detectors sensitive to
the field intensity, as photodetectors, are available. Fortunately, the development of
photodetection devices as the avalanche photodetectors (APD) combined with the
high energy of laser beammade possible the combination of the simplest modulation
(intensity modulation) with the direct detection of the signal energy. This approach,
not possible at radio frequency, has been largely utilized in terrestrial fiber optics.
Moreover, usual means of the radio frequency communications as phase modulation

© Springer International Publishing Switzerland 2015
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and coherent detection can be employed in optical communications to improve the
performances of the direct detection.

9.1.1 The System Model

The first optical communication systems mimicked the well-known radio frequency
techniques. This gave rise to classical optical systems as incoherent detection and
homodyne detection. These systems are perfectly adequate to the needs of the optical
communications as long as the received field is so large that the quantum effects are
negligible. On the other hand, in applications as deep space communications, the
received field may be so weak that quantum effects dominate and a clear advantage
is obtained using quantum detection approaches. Moreover, in other applications as
quantum key distribution, the use of weak fields with quantum detection becomes
essential to guarantee the security of the transmission.

As we have seen in the previous chapters, the block diagram of a point-to-point
optical communications system is by no means different from the standard model
and is given by the cascade of a transmitter, a physical channel, and a receiver.

The optical transmitter is composed of the cascade of an optical source,
a modulator, and a coupling device adapting the beam to the optical transmission
medium. The source (a laser) generates an electromagnetic field in the optical range.
The modulator, on the basis of the digital information to be transmitted, modifies a
parameter (usually the amplitude or the phase) of the electromagnetic field.

The physical transmission channel may be the free space or an optical fiber. On
the choice of the medium is based a rough classification into guided and unguided
optical transmission systems.

Finally, the optical receiver is the cascade of a coupling device, a demodulator,
and a photodetector. The demodulating device, if any, combines the received optical
field with a locally generated field. The photodetector converts the optical signal into
an electric signal for the postdetection processing.

The main difference between free space and guided transmission systems resides
in the coupling approach of the laser beam to the optical medium. In free space
systems (Fig. 9.1) at the transmitter side an optical antenna focuses the field into
a narrow beam. At the receiver side, another optical antenna refocuses the electro-
magnetic beam, possibly spread by the medium, into the detection surface (see also
Sect. 4.4.5). In optical fiber transmissions (Fig. 9.2) the couplings laser–fiber and
fiber–detector are realized via fiber connections, adapters, or optical lenses.

laser
beam

focalizer

free space

focalizer detector

Fig. 9.1 Scheme of quantum optical system in the free space

http://dx.doi.org/10.1007/978-3-319-15600-2_4
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laser

optical fiber

detector

Fig. 9.2 Scheme of quantum optical guided system

9.1.2 Outline of the Chapter

In Sect. 9.2 we present the basic components of optical communication systems,
namely, laser, modulators, beam splitters, and photodetectors. In particular, we give
their models both from the classical and the quantum point of view. In Sect. 9.3,
the major classical optical communication schemes (direct detection and homodyne
detection) are presented with their quantum equivalent models.The limits of classical
optical communications (shot noise limit and standard quantum limit) are introduced.
In Sect. 9.4 the most popular binary quantum communication schemes are presented,
starting from the Kennedy and the Sasaki–Hirota receivers. Particular attention is
devoted to the analysis and interpretation of the Dolinar receiver, that attains the
Helstrom bound. In Sect. 9.5 recent evolutions toward suboptimal K -ary systems
are presented. In particular, multidisplacement receivers for K -PSK and K -QAM
are outlined. Finally, some results on possible implementations of PPM receivers are
presented.

Advice to the reader. Some topics of this chapter imply the knowledge of the con-
tinuous variables, whose fundamentals are developed in Chap.11. Then, we strongly
recommend the reader to revisit the present chapter after an adequate comprehen-
sion of some topics of Chap.11, as bosonic operators and displacement and rotation
transformations.

9.2 Components for Quantum Communications Systems

As noted in the introduction, the main components of the optical communication
systems are the laser and the photodetector. Other components, asmodulators, lenses,
and mirrors, are used in order to improve the communication performances through
modulation and demodulation techniques.

In this section, a summary description of the main components of the transmitter
and the receiver of quantum communications systems is given.

http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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9.2.1 Laser

The key component of all quantum communications systems is the laser, that pro-
vides the physical carrier for the information transmission. For a detailed analysis of
principles and applications the reader may see for instance [1].

From a physical point of view, the laser is a narrow band optical amplifier with
amplification provided by an active medium excited by an external source of energy
(the pump in the technical jargon). As in many electrical oscillators, optical oscil-
lation arises as a combined effect of the spontaneous photon emission of the active
medium and of the feedback provided by an optical cavity. In order that the oscilla-
tion may start, the pump power must be above a threshold assuring that the gain of
the active medium is greater than the loss. Moreover, the length of the cavity must
be matched to the natural laser wavelength.

From a classical point of view, the radiation produced by a laser can be modeled
as an electromagnetic wave with electric field

E(r, t) = E0[ α(r, t)ei2πνt + α∗(r, t)e−i2πνt ]p(r, t) (9.1)

originating as a single mode solution of the wave equation into the cavity and
propagating in the external space along some direction z, with optical frequency ν.
The vector p(r, t) takes into account the field polarization. The complex amplitude
α(r, t) can be written as

α(r, t) = α0(r)eiφ(r,t), (9.2)

where φ(r, t) is the time and space-dependent phase. In the simplest case, known as
Gaussian beam, the amplitude α0(r) has circular symmetry in the plane orthogonal
to the propagation axis z and is given by

α0(r) = α0

z + iz0
exp

(

− i(x2 + y2)

2(z + iz0)

)

, r = (x, y, z), (9.3)

where α0 and z0 are real constants. The corresponding intensity is

I (r) = α2
0

z2 + z20
exp

(

− z20(x2 + y2)

z2 + z20

)

. (9.4)

This beam has the nice property that its shape remains unchanged in reflection and
diffraction.

The field (9.1) may be put in the form

E(r, t) = [ x1(r, t) cos(2πνt) + x2(r, t) sin(2πνt)]p(r, t), (9.5)
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where the quadrature components x1 and x2 are in evidence. It can be proved that x1
and x2 have the same properties of the position q and the momentum p of a mechan-
ical harmonic oscillator (see Sect. 11.3). Then, from a quantum point of view, after
a suitable normalization, the components x1 and x2 are substituted by two quan-
tum observables q and p satisfying the canonical correlation condition [ q, p ] = 2i.
Equivalently, α(r, t) and its conjugate are substituted by the bosonic operators a
and a∗ satisfying the correlation condition [ a, a∗ ] = 1 and operating in the Fock
space. The formalization of these ideas will be seen in the context of continuous
variables (Chap. 11), where the radiation emitted by a laser is modeled as a coherent
state.

9.2.2 Beam Splitter

The beam splitter is a partially transmitting mirror (Fig. 9.3) which combines two
optical beams impinging orthogonally on the mirror surface. In the case of fiber
links, the device with the same role is called fiber combiner or fiber coupler, and it
is usually obtained by fusing together the core of two fiber patches.

The classical model of the beam splitter, known from the nineteenth century, is as
follows. We assume that the input beams have the same frequency and amplitudes α

and β. Then the output beams α′ and β ′ are related to α and β by the relations

α′ = √
1 − τα + √

τβ

β ′ = √
τα − √

1 − τβ (9.6)

where phases have been neglected for simplicity. Since

|α′|2 + |β ′|2 = |α|2 + β|2, (9.7)

the device is lossless. The meaning of the parameter τ is apparent. If β = 0, one gets
|α′|2 = (1−τ)|α|2 and |β ′|2 = τ |α|2. Then τ is the fraction of the power transmitted

Fig. 9.3 Beam splitter with
the input kets |α〉 and |β〉 and
the output kets |α′〉 and |β ′〉

|β |α

|α

|β

http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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through the mirror and is called the transmissivity of the beam splitter. If the device
introduces losses due to absorption and scattering, the previous equation becomes

|α′|2 + |β ′|2 = (1 − L)(|α|2 + β|2). (9.8)

On the other hand values of L below 10−4 have been achieved, so that in a first
approximation losses may be neglected.

For a detailed analysis of the quantum model of the beam splitter in the context
of continuous variables the reader is referred to Sect. 11.17.5. Here we confine us to
observe that the Heisenberg representation of the input–output relations of the beam
splitter is obtained by the classical model by substituting the field amplitudes with
the annihilation operators corresponding to the beams, namely,

a′ = √
1 − τa + √

τb

b′ = √
τa − √

1 − τb (9.9)

where a and b are the annihilation operators of the input beams and a′ and b′ are the
annihilation operators of the output beams.

Note that in the quantum model the presence of both beams is mandatory to
correctly describe such a two-input two-output device. Indeed, if we ignore the
annihilator b, we would have for instance [ a′, a′∗ ] = (1 − τ)[ a, a∗] = (1 − τ) in
contradiction with the bosonic commutation rule. Taking into account b one gets

[ a′, a′∗ ] = (1 − τ)[ a, a∗ ] + τ [ b, b∗ ] = 1 (9.10)

and the commutation relation is satisfied.

In the Schrödinger representation corresponding to the Heisenberg representation
(9.9) (see Sect. 3.4) in the case of coherent states, the beam splitter transforms the
input joint state |α〉 ⊗ |β〉 to the output joint state |α′〉 ⊗ |β ′〉 with

|α′〉 = |√1 − τα + √
τβ〉

|β ′〉 = |√τα − √
1 − τβ〉 (9.11)

in perfect analogy with the classical interpretation.
One of the most important application of the beam splitter in optical technique

is the approximate realization of the quantum displacement. If we apply to the
second input the coherent state |γ 〉 = |β/

√
τ 〉, the coherent state at the first output

becomes

|√1 − τα + γ 〉 (9.12)

http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_3
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|α
=

|α + γ
D(γ)

|α

displacement

|α + γ

|γ

Fig. 9.4 Approximate realization of a displacement through a beam splitter (the second output of
the beam splitter is not used)

approximating |α + γ 〉 = D(γ )|α〉 as τ → 0 (Fig. 9.4). Then, a displacement of
amplitude γ may be obtained, at least approximately, with a beam splitter of low
transmissivity τ driven at the second input by a high level coherent state |β/

√
τ 〉.

The theory of the beam splitter, formulated as a two-mode unitary operator, will
be seen in Sect. 11.17.

9.2.3 Modulators

Essentially, we have phase modulators and amplitude modulators, which provide the
relations

|ψ〉 → |eiφ ψ〉 , |ψ〉 → |A ψ〉. (9.13)

The corresponding graphical representation is illustrated in Fig. 9.5. The amplitude
modulators are obtained with attenuation (A < 1).

In quantum transmission systems, intensity andphasemodulationmaybeobtained
by exploiting electro-optical properties of particular crystals, in which the refractive
index depends on the intensity of the electric field applied to the material. Then, the

|ψ

phase
modulator

|eiφ ψ |ψ

amplitude
modulator

|Aψφ A

Fig. 9.5 Graphical representation of phase and amplitude modulators

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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phase of the output beam may be modulated by varying an electric voltage applied
to the device.

Different mechanisms are used to modify the refractive index of the crystal.
Electro-optic modulators exploit the so-called Pockels cells, waveguide made of
nonlinear crystal material which can be considered equivalent to voltage-controlled
waveplates. The variable electric voltage drives the phase delay induced to the optical
beam traveling through the modulator.

Depending on the direction of the applied electric field, the type and the orientation
of the nonlinear crystal, the phase delay may be different in the two direction of
the polarization axes. The result is a polarization modulation. With the addition of
polarizers at the input and output of the modulator, the change in the polarization
leads to a variation of the amplitude of the output beam.

An alternative configuration, very common in fiber modulators and in integrated
devices, employs this mechanism in a Mach–Zehnder interferometer. An input
waveguide is split into two paths, i.e. the two arms of the interferometer, and then
recombined into an output waveguide. The variable electric voltage is applied on one
of these paths, resulting in an optical index modulation of one arm. The interference
at the output waveguide builds the phase or intensity modulation of the beam.

Simplifying the model, the relation between the input and output beam power of
an intensity modulator can be expressed as

Iout = τ Iin

[

1 + cos

(

π

Vπ

V + Φ

)]

(9.14)

where Iin is the input intensity, Iout is the output intensity, Vπ is the half-wave voltage,
that is the voltage required for inducing a phase change of π , and V is the modulation
voltage. The coefficients τ and Φ describe a transmissivity and a phase term which
take into account for losses and a mismatch between the two interferometer arms.

In the case of phase modulators, the phase variation obtained at the output is given
by the affine equation

φ = π

Vπ

V + Φ (9.15)

which involves the half-wave voltage Vπ and the correction coefficient Φ.
Other type of modulators use analogous acousto-optical effects. Exploiting a

piezoelectric transducer attached to the crystal, a sound wave is generated to provide
a periodic refractive index grating. The traveling optical beam undergoes Bragg
diffraction and propagates in a slightly different direction, enabling the possibility
to build intensity (on–off) switching.
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9.2.4 Photodetectors

While the other components of the optical transmission systems (laser, modula-
tor and demodulator, transmitting and receiving antennas, and channel) have direct
counterparts in a radiofrequency system, the detection in optical communications is
performed almost exclusively by a photodetector, which is a very peculiar component
of the optical technology, exploiting the photoelectric effect explained in quantum
terms by Einstein in 1905.

The photodetection is the result of an interaction process between light andmatter.
Roughly speaking, a single photon in the optical beam releases an electron in the
photosensitivematerial,which generates a pulse of electric current, converting optical
power into an electric quantity. Before conversion, the electrons released by the
photoelectric effect may be subjected to a multiplication procedure in which each
electron generates a random number of secondary electrons.

From the classical point of view, the model may be the following. At the input,
we get the instantaneous power

p(t) =
∑

k

(hν) δ(t − tk)

where the instants tk are the arrivals of a doubly stochastic Poisson process with
intensity λ(t) (see Fig. 4.28). The current produced by the photodetection can be
modeled as a filtered and marked Poisson process, as discussed in Sects. 4.6 and 4.7,
namely

i(t) =
∑

k

gk i0(t − tk), (9.16)

where i0(t) is the current pulse generated by a single electrons satisfying the condition

∫ ∞

0
i0(t)dt = e (9.17)

with e electric charge of the electron. The coefficients gk are independent and iden-
tically distributed random variables giving the number of electrons generated by the
photon arrived at time tk . They may take into account the random gain (if any) of
the photomultiplication or the loss of photons in the material, caused by reflection
and spreading, or both. In the first case the random variables gi have mean G > 1,
called the photomultiplication gain. In the second case gk are binary random variable,
whose mean η gives the photodetection efficiency.

The intensity λ(t) of the Poisson process is proportional to the area A of the
photodetector and to the intensity J (t) = |α(t)|2 of the electric field. In digital
communications applications, λ(t) turns out to be a random process, depending on
the transmitted symbol. Then, the model of the photon arrivals is a doubly stochastic
Poisson process.

http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_4
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Among practical impairments to the ideal behavior of the photodetectors, a role
is played by the so-called dark current due to spontaneous emission of electrons in
the photosensitive material. This is taken into account by a constant term λ0 added
to the useful intensity λ(t).

In the decision process, the current (9.16) is integrated on the interval, say (0, T ],
corresponding to a symbol slot, giving the quantity under decision

Q =
∫ T

0
i(t)dt =

n
∑

k

gk

∫ T

0
i0(t − tk)dt = e nT , (9.18)

where nT gives the electrons counting, i.e., the random number of electrons emitted
in the slot symbol by the photodetector. The general statistics of nT for a filtered
and marked doubly stochastic Poisson process has been discussed in Chap. 4 (see
also Fig. 4.28 for the detail of counting starting from the instantaneous power and
current). On the value of the detected charge Q, depending on the particular symbol
transmitted, is based the decision process of the digital transmission scheme.

In the quantum communications applications the aim of the photodetector is
limited in general to detect the presence of a positive number of photons in the
optical beam, formulated as a quantum state |ψ〉. Thus a photodetector plays the
role of counting the photons present in a given state |ψ〉 (Fig. 9.6). As discussed in
Sect. 7.9.3, from a quantum point of view it must discriminate the vacuum state |0〉
from a coherent state

|α〉 = e−|α|2/2
∞
∑

n=0

αn

√
n! |n〉. (9.19)

The ideal quantum model of the detector reduces to a simple von Neumann mea-
sure with measurement operators (see (7.70))

Q1 =
∞
∑

n=1

|n〉〈n| , Q0 = |0〉〈0| = I − Q1 (9.20)

Pc
|ψ n

Fig. 9.6 Graphical symbol of a photon counter. The output n gives the number of photons present
in the state |ψ〉

http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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detecting 0 if and only the input state is |0〉. The resulting conditional probabilities
are given by

p(0|0) = 〈0|Q0|0〉 = 1 , p(1|1) = 〈α|Q1|α〉 = 1 − e−|α|2/2. (9.21)

If reduced efficiency and dark current are taken into account, the measurement
operators becomes (see Problem 9.1)

Q1 = e−μ
∞
∑

n=0

(1 − η)n |n〉 〈n| , Q0 = I − Q1 (9.22)

whereμ = λ0T is the average number of dark current electrons and η is the detection
efficiency. The quantum state |0〉 is guessed if no dark electrons are present (with
probability e−μ) and, for any n , n photons are missed (with probability (1 − η)n).
Note that in this case the measurement operators are POVM and not von Neumann
projectors.

It must be noted that in any case the measurement performed by the photodetector
is destructive in that, after the detection, the field is completely absorbed.

Problem 9.1 �� Consider the model of a photon counter where the dark current
and the nonunitary efficiency are taken into account. Prove that the measurement
operators are given by (9.22).

9.3 Classical Optical Communications Systems

9.3.1 Incoherent Detection

The simplest optical communication system uses amplitude modulation and inco-
herent detection (see Sect. 7.9). The transmitter associates a zero field to the binary
symbol 0 and the field

v(t) = V0 cos 2πνt , 0 < t < T (9.23)

to the binary symbol 1, where T is the symbol period. This is obtained by amplitude
modulating the laser beam of frequency ν or, more simply, by switching on and off
the laser itself according to the source symbol to be transmitted. At the receiver, a
photodetector transforms the incident field into an electrical current, as discussed in
Sect. 9.2.4.

In the absence of thermal noise, if the transmitted symbol is 0, the number of
photons detected is zero; otherwise, it is a Poisson random variable n with mean
value n proportional to V 2

0 . An error may happen if and only if the symbol 1 is
transmitted and the number of detected photons is 0. Then, the error probability
turns out to be

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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Pe = 1

2
e−n (9.24)

where equally likely symbols are assumed. For the sake of comparison with other
schemes it is convenient to express the error probability in terms of the average
number of photons per bit NR , given by NR = 1

2n. Then

Pe = 1

2
e−2 NR . (9.25)

The received scheme is called direct detection of the incident light pulses. The
main advantage of this approach is its simplicity. In particular, phase and frequency
instability of the laser source is well tolerated. Moreover, at the receiver direct detec-
tion is used and phase-sensitive devices are avoided.

This scheme, known as on–off keying (OOK) modulation, has a simple quantum
equivalent, employing the coherent states |0〉 and |α〉. As shown in Sect. 9.2.4, the
photodetector can be modeled by a von Neumann measurement with projectors
Q0 = |0〉 〈0| e Q1 = I − |0〉 〈0|. The cross transition probabilities are

p(1|0) = Tr[|0〉 〈0| Q1] = 0 , p(0|1) = Tr[|α〉〈α|Q0] = e−|α|2 (9.26)

so that the error probability becomes Pe = 1
2 e

−|α|2 . In terms of average number of
photons per bit NR , with equiprobable symbols one gets NR = |α|2/2, so that we
find again

Pe = 1

2
e−2NR . (9.27)

This result is known as the quantum limit (or shot noise limit) and is the optimum
for any detection that does not exploit the coherence property of the optical beam.

9.3.2 Coherent Homodyne Detection

A more sophisticated scheme of classical optical communication uses binary phase
shift keying (BPSK) modulation (see Sect. 7.10.2). The laser beam is applied to a
π -phasemodulator driven by the binary symbol source. As a consequence, the optical
field at the receiver assumes one of the values

v(t) = V0 cos(2πνt + A0π) (9.28)

depending on the source symbol A0 ∈ A = {0, 1}.
Since the signals for different symbols have the same optical energy, direct detec-

tion cannot discriminate between them. In the coherent homodyne detection scheme
the receiver sums to the field a high level field VL cos 2πνt with the same frequency

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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as v(t) but with larger amplitude (VL � V0) generated by a local laser. The global
field

V0 cos(2πνt + A0 π) + VL cos 2πνt = (V0 cos A0π + VL) cos 2πνt (9.29)

applied to a photodetector produces a number of electrons which is a Poisson random
variable with mean and variance proportional to

V 2
L + V 2

0 + 2 cos A0π V0VL = V 2
L + V 2

0 + 2 B0 V0VL (9.30)

where

B0 = cos A0π =
{

+1 A0 = 0

−1 A0 = 1.
(9.30a)

Then, having subtracted the bias termV 2
L +V 2

0 independent of the symbol, one obtains
the useful signal proportional to 2 B0 V0VL . As the amplitude VL of the local laser
field increases, an approximate Gaussian characterization of signal and noise may
be adopted, so that the receiver must discriminate between two signal proportional
to 2 B0 V0VL with Gaussian noise having variance

√

V 2
L + V 2

0 + 2 B0 V0VL ≈ VL . (9.31)

This can be obtained by a threshold decision device [2], that is, a device which
sets a threshold and estimates the received symbol depending on whether the mea-
sured signal is above or below such a threshold. With equiprobable symbols the
optimal threshold is 0 and the error probability becomes (see homodyne receiver in
Sect. 7.10.2)

Pe = Q(2V0) = Q(
√

4NR), (9.32)

where Q(x) is the Gaussian complementary distribution and NR is the average num-
ber of photons per bit. This error probability is known as the standard quantum
limit.

Comparison with incoherent detection shows that the performances of the homo-
dyne detection are largely better. On the other hand the implementation of an efficient
homodyne scheme implies some complications, in that it requires the presence of a
local laser that must be accurately tuned in frequency and phase with the source laser.

9.4 Binary Quantum Communications Systems

The simplest quantum communication systems use binary schemes in which Alice
associates to the symbol A0 of a classical binary source, A0 ∈ {0, 1}, with prior
probabilities q0 and q1, two coherent quantum states |γ0〉 and |γ1〉 and Bob performs

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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a measurement on the system by using two measurement operators Q0 and Q1. The
most common choices are |γ0〉 = |0〉 and |γ1〉 = |β〉 for the On–Off Keying (OOK)
scheme (see Fig. 7.22) and |γ0〉 = |−β〉 and |γ1〉 = |β〉 for the Binary Phase Shift
Keying (BPSK) scheme (see Fig. 7.25).

For the sake of comparison with practical systemswe begin by reviewing the ideal
detection approach leading to the Helstrom bound. Next we consider in detail the
OOKwith direct detection and the BPSKwith Kennedy’s detection. Particular atten-
tion will be given to the Dolinar’s receiver which promises to achieve the optimum
performance, i.e., the Helstrom bound.

9.4.1 Recall of Helstrom’s Theory

We reconsider the general theory of binary detection developed in Sect. 5.4.2
according to the geometric approach. The state vectors are written in terms of an
appropriate orthonormal basis {|u0〉, |u1〉} as

|γ0〉 = cos θ |u0〉 + sin θ |u1〉 , |γ1〉 = cos θ |u0〉 − sin θ |u1〉 (9.33)

where cos 2θ = 〈γ0|γ1〉 = X is the superposition coefficient assumed to be real. The
orthonormal measurement vectors are written as

|μ0〉 = cosφ|u0〉 + sin φ|u1〉 , |μ1〉 = − sin φ|u0〉 + cosφ|u1〉. (9.34)

Then the transition probabilities p( j |i) := P[ Â0 = j |A0 = i] are given by

p(0|0) = cos2(φ − θ) , p(1|1) = sin2(φ + θ) (9.35)

and the correct detection probability turns out to be

Pc = q0|〈μ0|γ0〉|2 + q1|〈μ1|γ1〉|2 = q0 cos
2(φ − θ) + q1 sin

2(φ + θ). (9.36)

Here the angle θ is given through the superposition coefficient X , while the angle φ

is unknown and is evaluated by optimization. We have seen that the angle φ giving
the maximum of Pc satisfies the conditions

sin 2φ = 1

R
sin 2φ , cos 2φ = q0 − q1

R
cos 2θ (9.37)

where R = √

1 − 4q0q1X2. The correspondingoptimal correct decisionprobability is

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Pc = 1

2
(1 + R) = 1

2

(

1 +
√

1 − 4q0q1X2

)

, (9.38)

i.e., the Helstrom bound.
We have also seen (see Problem 7.10) that the a posteriori probabilities

q(i | j) := P[A0 = i | Â0 = j] corresponding to the optimal decision are related
to the correct decision probability by

q(0|0) = q(1|1) = Pc. (9.39)

In other words, the measurement modifies the a priori probabilities in the sense that,
independently of the measurement result, the symbol guessed acquires a posteriori
probability coinciding with the probability of correct decision.

Finally, we note that the measurement vectors are entangled linear combinations
of the state vectors. Unfortunately, since in practice only photodetectors and phase-
sensitive devices are available, the optimal measurement vectors are very hard to
be implemented experimentally. So, for a long time suboptimal approaches have
been investigated and experimented and only recently experiments demonstrating
the feasibility of the optimal measurement have been accomplished.

9.4.2 Kennedy’s Receiver

In 1973 Kennedy [3] proposed a very simple quantum receiver for the Binary Phase
Shift Keying (BPSK). The received quantum state (|β〉 or |−β〉) is applied to one of
the inputs of a beam splitter with high transmissivity τ . To the other input of the beam
splitter a quantum state |β〉 is applied, produced by a local laser tuned in frequency
and phase with the laser of the transmitter. The corresponding displacement D(β)

changes the possible input states into |γ0〉 = |0〉 and |γ1〉 = |2β〉, according to an
approach called nulling technique. Then, as in the OOK receiver, one applies to
the displaced state the photodetection with measurement projectors P0 = |0〉 〈0| and
P1 = 1 − P0. The resulting error probability turns out to be

Pe = q1Tr(|γ1〉 〈γ1| P0) = q1e
−4|β|2 , (9.40)

or, with equally likely symbols and in terms of the average number of photons per
bit

Pe = 1

2
e−4NR . (9.41)

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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|B0 β
Pc

|B0 β+β

photon
counter

nT = 0 → Â0 = 0

nT ≥ 1 → Â0 = 1

nT

decision

Â0

local
laser

|β

displacement D(|β )

Fig. 9.7 Scheme of Kennedy’s receiver. The displacement is obtained with a beam splitter feeded
by the received state |B0 β〉 and the state |β〉 produced by a local laser. The received state takes one
of the two values |±β〉 and, after the displacement, the values |0〉 and |2β〉, respectively. B0 is the

binary symbol B0 = cos A0π =
{+1 A0 = 0

−1 A0 = 1

The transmitter uses aπ phasemodulator driven by the input symbol. The receiver
uses a local laser generating the coherent state |β〉 to be added to the input coherent
state by a beam splitter realizing the displacement D(α). The scheme of the system
is depicted in Fig. 9.7.

The feasibility of the Kennedy receiver has been demonstrated (see f.i. [4]). The
main difficulties in the implementation are related to the presence of two lasers,
the source laser and the local one, whose frequencies, phases, and levels must be
accurately tuned. As a matter of fact, most practical demonstrations use a single
laser source from which both the optical beam and the local beam simulating the
useful carrier are derived through a beam splitter.

The performance of the Kennedy’s receiver is presented in Fig. 9.8 in comparison
with the performance of the OOK scheme and Helstrom’s bound. The relations used
are

Pe,OOK = 1
2 e−NR

Pe,Kennedy = 1
2 e−4NR

Pe,Helstrom = 1
2

[

1 −
√

1 − e−4NR

]

where NR is the average number of photons per bit. The error probability plotted
versus NR shows that the Kennedy’s receiver outperforms the OOK direct receiver,
but is overperformed by the Helstrom’s bound.

On the other hand, the Kennedy receiver does not outperforms the standard quan-
tum limit of the homodyne detection forweek signals (NR < 0.4). But also for greater
values of the number NR of the received photons the performance of Kennedy’s
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Fig. 9.8 Comparison of OOK, Kennedy’s receiver, and Helstrom’s bound in terms of error proba-
bility versus the average number of photons NR

receiver in practical experiments is inferior to the standard quantum limits. Indeed,
impairments of the photodetector, as reduced quantum efficiency and dark current,
has relevant negative effects on the error probability [5].

9.4.3 Improved Kennedy’s Receiver

Improvements to Kennedy’s receiver have been suggested in recent years by Takeoka
and Sasaki [5]. The basic idea is to apply to the input state a displacement |ε〉 with
ε chosen in such a way that the error probability is minimized. The quantum states
|β〉 and | − β〉 are displaced into the states |γ1〉 = |ε + β〉 and |γ0〉 = |ε − β〉. The
error probability becomes

Pe = q1Tr(|γ1〉 〈γ1| P0) + q0Tr(|γ0〉 〈γ0| P1)

= q1e
−(ε+β)2 + q0(1 − e−(ε−β)2). (9.42)

(For the sake of simplicity we assume that β and ε are real). By nulling the deriva-
tive with respect to ε, we find that the displacement ε0 minimizing Pe satisfies the
transcendental equation
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Fig. 9.9 Comparison of Kennedy’s receiver, improved Kennedy’s receiver, and Helstrom’s bound
in terms of error probability versus the average number of photons NR

q1
q0

= ε − β

ε + β
e4βε. (9.43)

In Fig. 9.9 the performance of the Kennedy receiver and of the improved Kennedy
receiver are compared with the Helstrom bound. The relations used are

Pe,Kennedy = 1
2 e−4NR

Pe,Kennedy improved = 1
2

[

1 + e−(ε0+√
NR) − e−(ε0−√

NR)
]

Pe,Helstrom = 1
2

[

1 −
√

1 − e−4NR

]

where NR = β2 is the average number of photons per bit. For large values of β, the
improvement obtained by optimizing the displacement ε appears to be negligible.
On the other hand, as β goes to 0, the improved Kennedy’s receiver approximates
the Helstrom’s bound very well and outperforms the standard quantum limit also
for weak signals. This has an important consequence in the interpretation of the
optimum Dolinar’s receiver. The feasibility of the improved Kennedy’s receiver has
been recently demonstrated by Wittmann et al. [6].

Further light improvements [5] can be obtained if the input state is subjected to
a displacement D(ε) and to a squeezing Z(r) (to be jointly optimized) before the
photodetection.
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9.4.4 Dolinar’s Receiver

In 1973 Dolinar [7] proposed an adaptive measurement scheme, based on a combina-
tion of photon counting and feedback control, that precisely achieves the Helstrom
bound. However, since the scheme requires a very precise control of an optical–
electrical loop, only in 2007 Dolinar’s idea has obtained a satisfactory practical
implementation [4, 8].

In order to give some insight on Dolinar’s approach, we consider the problem of
discriminating between the states given by multiple copies

|α0〉 = |α〉 ⊗ · · · ⊗ |α〉 , |α1〉 = | − α〉 ⊗ · · · ⊗ | − α〉 (9.44)

in the tensorial product Hilbert space H⊗n where H is the Hilbert space spanned
by the single copies |α〉 and | − α〉. Of course, Helstrom’s theory assures that the
optimum receiver gives the Helstrom’s bound

P(n)
c = 1

2

(

1 +
√

1 − 4q0q1X2n

)

, (9.45)

with X = |〈α|−α〉|, so that |〈α0|α1〉| = Xn . On the other hand, the optimal mea-
surement vectors in H⊗n derived according to the Helstrom’s theory are entangled
vectors difficult to be realized experimentally. However, Acin et al. [9] have shown
that the optimum can be achieved by adaptive local measurements on the single
copies, each one taking into account the results of the previous measurements (for
greater details see [10]).

Confining ourselves to the case n = 2, assume that the optimum measurement
has been performed on the first state with correct decision probability P(1)

c given
by (9.45) with n = 1. Moreover, assume that as a consequence of the measurement
state |α〉 has been guessed. Then, as discussed above, the a posteriori probabilities
of |α〉 and | − α〉 become q ′

0 = P(1)
c and q ′

1 = 1 − P(1)
c . If we perform an optimum

measurement on the second state on the basis of the probabilities q ′
1 and q ′

0 and with
corresponding new measurement vector, after the measurement we get the correct
result with probability

P(2)
c = 1

2

(

1 +
√

1 − 4(1 − P(1)
c )P(1)

c X2

)

= 1

2

(

1 +
√

1 − 4q0q1X4

)

. (9.46)

The same result is obtained if the state guessed after the firstmeasurement is |−α〉. By
iterating the reasoning, the result can be generalized to n-copies states. The process
can be considered as a feedback-assisted detection, in that the measurement on each
copy is chosen on the basis of the result of the previous measurements.

These considerations can be applied to BPSK coherent states |β〉 and |−β〉when
they correspond to wavepackets having temporal extent of duration T . In this case,
the mode can be thought as a sequence of shorter and weaker modes of duration T/n,
namely,
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|β〉 =
∣

∣

∣

∣

β√
n

〉

⊗ · · · ⊗
∣

∣

∣

∣

β√
n

〉

(9.47)

with an analogous decomposition for |−β〉. Moreover, as n increases and the average
number of photons per copy goes to zero, as shown above, the optimal Helstrommea-
surement on each copy may be conveniently approximated by an improved Kennedy
receiver, i.e., a displacement followed by a photon detection.

The multiple-copy approach discussed above is mimicked by the Dolinar’s
receiver. Let be

ψ(t) = ±ψei2πνt , 0 ≤ t ≤ T (9.48)

the input fields corresponding to the coherent states | ± β〉. At the detector from the
input field a time-varying field generated by a local laser is subtracted. The envelope
of this local field is chosen between either u0(t) or u1(t), accordingly to the value of
z(t), a binary signal with possible values 0 and 1, giving the provisional decision at
time t . Then, depending on the value of z(t), the optical signal at the photon counter
has enveloped either±ψ −u0(t) or±ψ −u1(t). The decision signal z(t) is assumed
changing at any photon arrival at the counter.

The mathematical problem is to choose the functions u0(t) and u1(t) that
maximize the correct detection probability P[z(T ) = a], where a is the source
symbol and z(T ) is the final decision. The problem has been solved by Geremia [11]
on the basis of the dynamic programming optimality principle.

A simpler proof based on a semiclassical analysis given by Assalini et al. [10] is
sketched here, under the preliminary assumption that the subtracted envelopes are
opposite, namely u1(t) = −u0(t). Provided that the transmitted symbol is a = 0
and consequently the received envelope is β, the process z(t) can be interpreted as
a telegraph process [12] alternately driven by non-homogeneous Poisson processes
with rates

λ(t) = |β − u0(t)|2 , μ(t) = |β + u0(t)|2. (9.49)

Defined the conditional probability p0(t) = P[z(t) = 0|a = 0] and Nt,Δt the number
of arrivals in the interval [t, t + Δt)

p0(t + Δ) = P[z(t) = 0, Nt,Δt = 0|a = 0] + P[z(t) = 1, Nt,Δt = 1|a = 0] + o(Δt)

= P[Nt,Δt = 0|z(t) = 0]p0(t) + P[Nt,Δt = 1|z(t) = 1](1 − p0(t)) + o(Δt)

= [ 1 − λ(t)Δt ]p0(t) + μ(t)Δt (1 − p0(0)) + o(Δt).

Hence the differential equation

p′
0(t) = μ(t) − [ λ(t) + μ(t) ]p0(t) (9.50)
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follows. In a similar way can be shown that p1(t) = P[z(t) = 1|a = 1] satisfies
the same differential equation, so that the probability of correct decision satisfies the
differential equation

P ′
c(t) = q0 p′

0(t) + q1 p′
1(t) = μ(t) − [ λ(t) + μ(t) ]Pc(t) (9.51)

independent of the symbol probabilities q0 and q1. If we impose

Pc(t) = 1

2

[

1 +
√

1 − 4q0q1e−4β2t

]

(9.52)

coinciding with Helstrom’s bound, a simple algebra shows that the differential equa-
tion is satisfied by setting

u0(t) = β
√

1 − 4q0q1e−4β2t
, 0 < t < T . (9.53)

This gives the control optical signal achieving Dolinar’s bound.
A conceptual scheme of Dolinar’s receiver is depicted in Fig. 9.10. An amplitude-

modulated local laser produces the optical beam with complex envelope u0(t) to be
added or subtracted to the input beam. The choice between ±u0(t) is performed by

|B0 β

displacement D(ut eiπzt )

Pc
|B0β +ut

photon
counter

zt ⊕1
on click

nt zT = 0 → Â0 = 0

zT = 1 → Â0 = 1

zt ∈ {0,1}

decision

Â0

local
laser

eiπ zt

π

A

|ut

Fig. 9.10 Scheme of Dolinar’s receiver: note that zt ⊕ 1 represents a change of 0 and 1 at every
click. zt represents the provisional symbol estimation. At the end of the symbol period, the final
decision zT is taken
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a π phase modulator driven through a feedback control by the photon arrivals at the
photodetector.

Of course the problems of tuning in frequency and phase the lasers encountered
in Kennedy’s receiver stay on. Another difficulty arises in amplitude modulating
the local laser in such a way that the local envelope (9.53) is obtained. Finally, the
unavoidable delays introduced by the optical–electrical feedback control may greatly
reduce the performance of the system. As a consequence, the implementation of the
optimal receiver out of the laboratories appears to be at present a very difficult task.

9.4.5 The Sasaki–Hirota Receiver

Sasaki and Hirota have shown [13] that in principle it is possible to achieve the
Helstrom bound by considering the problem in the two-dimensional Hilbert space
spanned by the states | − α〉 and |α〉.

Since to the input state it may be applied a displacement |α〉 as in the Kennedy
receiver, we may consider as input states |0〉 and |2α〉. It may be easily verified that
the states

|η1〉 = |0〉 , |η2〉 = 1√
1 − X2

(|2α〉 − X |0〉) (9.54)

with X = 〈0|2α〉 (α is assumed to be real) form an orthonormal basis of the Hilbert
space H0 spanned by |0〉 and |2α〉. Then, consider the operator

U (θ) = cos θ(|η1〉 〈η1| + |η2〉 〈η2|) + sin θ(|η1〉 〈η2| − |η2〉 〈η1|). (9.55)

A simple algebra shows that U (θ)U∗(θ) = |η1〉 〈η1| + |η2〉 〈η2| coincides with the
identity operator inH0, so that U (θ) is a unitary operator inH0. The Sasaki–Hirota
approach assumes that the unitary operatorU (θ) is applied to the displaced state (|0〉
or |2α〉) and that the transformed state is subjected to a von Neumann measurement
with projectors

Q1 = |η1〉 〈η1| , Q2 = |η2〉 〈η2| . (9.56)

If the error probability is computed and optimized with respect to the angle θ , the
Helstrom bound is achieved. For greater mathematical details see [11, 13].

Note that, while the measurement state |η1〉 = |0〉 is a coherent state, |η2〉 is not.
On the other hand, since 〈0|η2〉 = 0, it is innocuously substitutes the measurement
operator |η2〉 〈η2| with

∞
∑

n=1

|n〉 〈n| (9.57)
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and the detection may be realized in the Glauber space with an ideal photodetec-
tor. On the contrary, the unitary operator U (θ) is not Gaussian (see Chap. 11), so
that it is not realizable with usual linear optics and requires nonlinear unpractical
components [13].

9.5 Multilevel Quantum Communications Systems

In spite of the fact that K -ary quantum systems can in principle achieve greater
capacity than binary systems, only recently attention has been paid to implementable
receivers for K -ary quantum communications with K > 2. Indeed, simple modula-
tions as K -PSQ, QAM, and PPM have been frequently considered from a theoretical
point of view but practical receivers are very difficult to be realized. In this section,
we present some recent ideas concerning possible suboptimal receivers, in particular
for K -PSK and PPM quantum systems.

9.5.1 Multiple PSK and QAM Quantum Systems

The coherent states of a K -PSK constellation are

|αk〉 = |α0e
i2πk/K 〉 , k = 0, . . . , K − 1 (9.58)

and may be written as |αk〉 = Sk |α0〉 with S = ei2π N/K , where N is the number
operator (see Sect. 7.12.1). As shown above (see also [14]), this constellation enjoys
geometrical uniform symmetry so that the SRM derived by the Gram matrix is
optimal. However, the optimalmeasurement vectors turn to be entangled and difficult
to realize. Similar considerations hold for QAM systems.

In [15], a suboptimal receiver for K -ary quantum systems is suggested based
on suitable combinations of beam splitters, displacements, and photodetectors and
following the ideas lying behind the Kennedy and Kennedy-improved detectors.
Since the extensions to K > 3 appear intuitive, we confine ourselves to the case
K = 3 (with possible states |α0〉, |α1〉 and |α2〉) and follow the scheme of Fig. 9.11.
The input state is applied to a beam splitter with transmissivity τ . The first output of
the beam splitter is displaced by a displacement D(−√

1 − τα0), the second one by
a displacement D(−√

τα1). The displaced states enter two photodetectors. Provided
that the input state is |αi 〉, the outputs of the beam splitter are given by|b1〉 =
|√1 − ταi 〉 and |b2〉 = |√ταi 〉 and the output of the displacements are |c1〉 =
|√1 − τ(αi − α0〉 and |c2〉 = |√τ(αi − α1〉. In conclusion, we have the following
states in correspondence with the possible input state

http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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Fig. 9.11 Scheme of a ternary quantum system. C0 is the transmitted complex (random) symbol
and |C0〉 the corresponding quantum state

|α0〉 → |0〉 ⊗ |√τ(α0 − α1)〉
|α1〉 → |√1 − τ(α1 − α0)〉 ⊗ |0〉
|α2〉 → |√1 − τ(α2 − α0)〉 ⊗ |√τ(α2 − α1)〉. (9.59)

Denoting by (i, j), i, j ∈ {0, 1} the output of the photodetectors, the transition
probabilities p(i, j |αk) can be computed. For instance, if the input state is |α1〉, the
probability that the first detector does not detect photons is e−(1−τ)|α1−α0|2 , while the
probability that the second detectors does not detect photons is 1, so that

p(0, 0|α1) = e−(1−τ)|α1−α0|2 .

On the basis of the transition probabilities, one computes the optimum decision rule
minimizing the error probability. Of course, this error probability depends on the
transmissivity τ . Then a second optimization with respect to τ may be performed.
The resulting error probability outperforms the standard quantum limit. Better per-
formances can be achieved if, as in the improved Kennedy receiver, the nulling
displacements | − α0〉 and | − α1〉 are substituted by optimized displacements [15].

Further improvements are possible by suitably squeezing the signals after the
displacements [16].

9.5.2 Pulse Position Modulation Systems

A quantum modulation scheme that enjoys large popularity owing to its simplicity
is the pulse position modulation (PPM) scheme. In this scheme, a K -ary classical
symbol with alphabet {0, . . . , K − 1} is encoded into the position of a coherent state
|α〉 in a sequence of K − 1 null states. The natural environment for such modulation
is the tensor Hilbert space H⊗K

0 , where H0 is the Fock space. The possible states
are the tensor states
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|α0〉 = |α〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 · · · |αK−1〉 = |0〉 ⊗ |0〉 ⊗ · · · ⊗ |α〉.

The corresponding modulation technique is very simple and requires only the
switching of the source laser.

The symmetry of the constellation is clear, even though it is by no means trivial
to evaluate the symmetry operator in the Hilbert spaceH⊗K

0 [17]. The optimal error
probability (see Sect. 7.12.4) turns out to be

Pe = K − 1

K 2

(
√

1 + (K − 1)p + √

1 − p
)2

(9.60)

where p = e−|α|2 is the probability that the state |α〉 is not detected. The optimal
measurement, coinciding with the SRM, enjoys the same symmetry of the states but
is strongly entangled and appears very difficult to implement.

Note that in the K -PPM scheme each of the K symbols is carried by a state with
average number of photons given by |α|2. The number of photons per bit is given bt
NR = |α|2/ log2 K and the error probability in terms of number of photons per bit
is given by (9.60) with

p = e−NR log2 K .

Several suboptimal measurements have been proposed. The simplest idea is to
measure the single pulses with direct detection. In the absence of impairments in the
photodetector, the error happens only when the single nonzero state is not detected,
so that, guessing at random the symbol, the error probability is

Pe = K − 1

K
p.

A more sophisticated approach [18], known as conditionally nulling receiver,
uses the following adaptive decision strategy. During the first signaling slot, a nulling
state |−α〉 is added. If the photodetector does not detect a photon, one provisionally
decides for |α0〉, then the photodetection continues without nulling and the decision
is maintained unless some photon is detected in the subsequent slots. If some photon
is detected in the first interval, the hypothesis |α0〉 is discarded and the procedure
is iterated. The error probability is computed recursively. For K = 2, one gets
P(2)
e = p2/2 because error occurs if and only if the state is |α1〉 and two pulses are

undetected. For K > 2, no error occurs if the state is |α0〉, whereas in any other case
(with probability K/(K − 1)) error may occur if the nulling pulse in the first slot
and the subsequent pulse are missed or if the nulling pulse is detected and an error
happens in the remaining K − 1 slots. In conclusion, the recursive relation

P(K )
e = K − 1

K
[ p2 + (1 − p)P(K−1)

e ]

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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follows. In closed form one gets [19]

P(K )
e = 1

K
[(1 − p)K − 1 + K p].

Slight performance improvements are obtained applying a nonexact (and opti-
mized) nulling pulse as in the improved Kennedy’s receiver [20]. The algorithm of
the conditionally nulling receiver ismimicked applying a constant displacement D(ε)

with ε �= −α in place of the nulling operation. A numerical optimization of the value
of the displacement shows an improvements in the performance, as demonstrated in
the experimental test reported in [21].

Further performance enhancements can be obtained by considering different dis-
placement εi in place of the nulling operations in the slots i = 0, . . . , M − 1, which
in general may depend on all the outcomes in the previous measurements, rather than
only the last o ne.

The general structure of such a receiver is an adaptive scheme with local mea-
surement in each Fock space H0 optimized upon all the previous outcome. Each
local measurement implements a binary discrimination between the ground state |0〉
and the coherent state |α〉, which may be performed with direct detection, Kennedy
or Dolinar schemes depending on the design limitations or constraints.

Due to the binary outcome of each localmeasurement, the overall receiver strategy
can be described with a binary tree, where each node corresponds to a measurement
and each edge to an outcome. The binary tree is covered from the root node to the
final one following the path dictated by the outcomes, performing the measurement
defined in the node that come across.

Since the total number of the measurement employed grows exponentially in the
cardinality K of the alphabet, a global optimization of the measurement parameter
may be really demanding. However, the required numerical optimization may be
lightened using a dynamic programming approach [22].

The adaptive receiver shows an improvement in the performance due to the greater
flexibility of the binary discrimination scheme employed and the more general mea-
surement sequencing, whichmay depend upon all the previous partial outcomes. The
improvement is seen for all the alphabet cardinalities K , and in particular for K = 2
this receiver precisely reaches the Helstrom bound of the error probability [22].
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Part III
Quantum Information



Chapter 10
Introduction to Quantum Information

10.1 Introduction

The theory of quantum information arose in the 1970s and enjoyed an increment of
the activity in the last two decades (see history below). Its subject is the informa-
tion processing with quantum states. What is interesting is that in several cases, the
quantum information processing can have a great advantage with respect to classical
information processing and its features often find no correspondence in the clas-
sical counterparts. The main examples of quantum information processing are the
quantum computer, which can factorize a large number exponentially more effi-
ciently than the classical computer, quantum communications, which allows for
the improvement of performance of optical communications (as widely seen in Part
II of this book), quantum key distribution (QKD), which makes personal commu-
nications to be secure under whatever eavesdropping, and quantum teleportation,
which can transfer quantum states to a remote party without an actual transfer of
physical particles.

Quantum Information exhibits two forms, discrete and continuous; so that we
have discrete quantum information, based on discrete variables, and continuous
quantum information, based on continuous variables. The best known example of a
discrete variable is the quantum bit or qubit, which has been introduced and discussed
in Chap. 3. The best known example of continuous variables is provided by the
quantized harmonic oscillator, which represents the fundamental tool in quantum
optics and is the basis for the introduction of coherent states and more generally
of Gaussian states. For this reason, the fundamentals of continuous variables and
Gaussian states, not developed before, will be developed in detail in the next chapter.

An important remark is that most operations in quantum information processing
can be carried out both with discrete and with continuous variables (this last possi-
bility is a quite recent discovery). The comparison of these two possibilities should
be made upon practical considerations and, more specifically, on how robustly can
we manipulate quantum states. The common environment is ultimately given by
light. As known, the manipulation of qubits and their combination is technically
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difficult because it is based on the single-photon technique with the problem of the
presence of undesired multiple photons. On the other hand, the generation and the
manipulation of coherent and Gaussian states are more robust and in fact most of
the experiments of quantum information processing are done with Gaussian light
[1]. This explains why quantum information with continuous variables has been a
very hot topic in the recent years. Note that in this context “Gaussian states” may
be considered a synonym of “continuous variables” because in quantum information
processing continuous variables are almost always represented by Gaussian states.

Organization of Part III

First of all, we have to explain why, in the organization of this book, we have
developed quantum communications before quantum information. In principle,
quantum information comes before quantum communications since quantum
communications may be viewed as an application of the principles of quantum
information Theory. One reason is historical. In fact, it is well known that classi-
cal communications came several years before the classical Information theory and
also quantum communications were developed before quantum information theory.
But the true reason is considering that quantum mechanics is a very difficult dis-
cipline (Nobel laureate Feynman said); our specific choice in the organization of
this book is the study of quantum communications with a minimum knowledge of
quantum mechanics. But at this point, we ask the reader to improve this knowledge
to achieve an adequate comprehension of quantum information. In other words, the
level of difficulty in this part is higher than in Part II. We give two examples to explain
the difference between the two parts.

In the fundamentals of Chap. 3, to represent mixed states, we have introduced
the density operator and its decomposition into elementary projectors weighted by
a probability distribution. This minimal notion was sufficient to develop adequately
quantum optical communications, also in the presence of thermal noise. Now, for the
theory of continuous variables, a more sophisticated representation for the density
operator ρ is required, given by specific functions in the phase space (characteristic
and Wigner functions). These functions allow for the important classification of
quantum states: By definition, a quantum state ρ is Gaussian if its characteristic and
Wigner functions have a Gaussian multivariate form. The representation of quantum
states in the phase space will be the main topic of Chap. 11.

A second example is given by the phenomenon of entanglement, which was for-
mally introduced at the end of Chap. 3. Entanglement is one of the most important
properties of Quantum Mechanics and in particular of quantum information, showing
an extraordinary departure from classical mechanics. It is a fundamental resource in
quantum information processing for the manipulation of both quantum and classical
information. Therefore, entanglement should be developed in great detail. This will
be done at the end of this chapter.

The specific organization of this part (Part III) is the following. In Chap. 11, we
develop the fundamentals on continuous variables while the fundamentals of dis-
crete variables are not necessary because they are elementary and already developed.
The primary tools for analyzing continuous-variable quantum information processing

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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are Gaussian states and Gaussian transformations. As said above, Gaussian states
are continuous-variable states that have a representation (characteristic and Wigner
functions) in terms of Gaussian functions, and Gaussian transformations are those
that take Gaussian states to Gaussian states. In addition to offering an easy descrip-
tion in terms of Gaussian functions, Gaussian states and transformations are of great
practical relevance.

In Chap. 12 we will develop quantum information theory, which is another topic
preliminary to quantum information processing. Classical information theory is a
mathematical discipline, born in the field of telecommunication in 1948 thanks to
Shannon [2]. Its purpose is mainly: (1) To define information mathematically and
quantitatively, (2) to represent information in an efficient way (data compression) for
storage and transmission, and (3) to ensure information protection (encoding) in the
presence of noise and other impairments. Since information is essentially encoded in
a physical system, and quantum mechanics is the most accurate representation of the
physical world, it is natural to ask what are the limits set by Quantum Mechanics to
information processing. This is developed by Quantum Information Theory, which
is intrinsically richer and challenging than classical information theory, because of
its intriguing resources, such as entanglement.

Having acquired these foundations, in the final chapter (Chap. 13), we will be
ready to develop the main applications on quantum information both with discrete
and continuous variables.

As a guide, we suggest the reader to revisit quantum communications (Part II)
with the new perspective gained in this part.

Organization of this chapter. The organization of the present chapter is the
following. In the next section, we will give the chronological history of quantum
communications with the main exciting discoveries of the last 50 years. This allow
us to appreciate the extraordinary activity of the research community around the
world, arriving at today’s hot topics. The rest of the chapter is concerned with the
development of entanglement and other preliminary topics, not sufficiently consid-
ered before.

A Few Milestones in Quantum Information

1963: Seminal papers on coherent states (Glauber, Nobel Prize 2005)

1970: Quantum money (Wiesner)

1970: (mid 70s) Public key criptography (Difiie and Hellman, and Merkle)

1973: Holevo bound, one bit per qubit.

1973: Kennedy receiver

1973: Dolinar receiver

1976: Quantum detection and quantum estimation (Helstrom)

1977: RSA public key cryptosystem (Rivest, Shamir and Adleman)

1982: Computing with quantum mechanical systems (Feynman, Nobel Prize 1965)

1982: No-cloning theorem (Wotters and Zurek)

http://dx.doi.org/10.1007/978-3-319-15600-2_12
http://dx.doi.org/10.1007/978-3-319-15600-2_13
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1984: BB84 protocol (Bennett, Brassard)

1990: Unified theory of Gaussian states (Ma and Rhodes)

1991: Entangled-based QKD (Ekert)

1992: B1992 protocol (Bennett)

1992: Superdense coding (Bennett and Wiesner)

1993: Teleportation (Bennett et al.)

1994: Quantum algorithms for factorization in polynomial time (Shor)

1995: Qubit (Schumacher)

1996: Quantum error correcting codes (Shor)

1996: Sasaki–Hirota receiver

1997: HSW theorem (Schumacher and Westmoreland, Holevo)

1998: Transmission through a noisy quantum channel (Barnum, Nielsen,

Schumacher)

1999: Entanglement-assisted classical capacity (Bennett, Shor, Smolin, Thapliyal)

2004: Private capacity (Cai and Yeung, Devetak)

2008: Quantum Internet (Winter)

10.2 Partial Trace and Reduced Density Operators

The partial trace is a fundamental operation to handle composite quantum systems
since it allows one to extract operators of component systems. Let A and B be two
quantum systems forming the composite system A B, described by the Hilbert spaces
H = HA ⊗ HB . Such a system is often called bipartite system and is pictorially
illustrated in Fig.10.1.

The partial trace over the system B can be defined by two items [3]:

(1) For elementary operators as

TrB[|a1〉〈a2| ⊗ |b1〉〈b2|] = |a1〉〈a2| Tr[|b1〉〈b2|] (10.1)

where |a1〉,|a2〉 are arbitrary kets of HA and |b1〉, |b2〉 are arbitrary kets of HB .
The operation on the right hand side of (10.1) is the ordinary trace operation,
giving

Tr[|b1〉〈b2|] = 〈b1|b2〉 . (10.1a)

(2) It is extended to arbitrary operators by linearity, that is,

TrB[c1 O1 + c2 O2] = c1 TrB[O1] + c2 TrB[O1] , c1, c2 ∈ C (10.1b)

where O1 and O1 are arbitrary operators of H.
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Fig. 10.1 Construction of a
bipartite system AB by the
tensor product ⊗ and
separation of component
systems A and B by the
partial trace

A

B

AB

B

A
TrB

TrA

bipartite system component systemscomponent systems

The operation defined by (1) and (2) is called the partial trace over the system B.
Analogous is the definition of the partial trace over the system A. Note that, while
the application of the ordinary trace gives a scalar quantity, the application of the
partial trace over B gives an operator of A and the application of the partial trace
over A gives an operator of B.

The partial trace is usually applied to density operators. If ρ is a density operator
of H, one can “extract,” or “trace out,” from ρ the two operators

ρA = TrB[ρ] , ρB = TrA[ρ] (10.2)

which are called reduced density operators.
To see how the definition works in the evaluation of the reduced operators (10.2)

we use matrix representations to get:

Proposition 10.1 Let ρ be a density operator of the bipartite systemH = HA ⊗HB

and let ρ(a1, a2, b1, b2) be a matrix representation of ρ, where a1, a2 refers to a basis
of HA and b1, b2 to a basis of HB. Then the matrix representations of the reduced
operators are given by

ρA(a1, a2) =
∑

b

ρ(a1, a2, b, b) , ρB(b1, b2) =
∑

a

ρ(a, a, b1, b2) . (10.3)

Proof We express ρ in terms of its matrix representation

ρ =
∑

a1,a2

∑

b1,b2

|a1〉 ⊗ |b1〉ρ(a1, a2, b1, b2)〈a2| ⊗ 〈b2|

=
∑

a1,a2

∑

b1,b2

ρ(a1, a2, b1, b2)|a1〉〈a2| ⊗ |b1〉〈b2|

where {|a〉} is a basis ofHA and {|b〉} is a basis ofHB , and we have applied the mixed-
product law (see (2.104)) (A⊗B)(C⊗D) = (AC)⊗(BD) to (|a1〉⊗|b1〉)(〈a2|⊗〈b2|).
Then application of (10.1) gives

TrB[ρ] =
∑

a1,a2

∑

b1,b2

ρ(a1, a2, b1, b2)|a1〉〈a2| Tr[|b1〉〈b2|)]

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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where Tr[|b1〉〈b2|] = δb1b2 . Thus we find that the matrix representation of the reduced
operator ρA = TrB[ρ] reads as in (10.3). �

∇ For the pure states, using the Schmidt decomposition (see Proposition 10.3),
we find:

Proposition 10.2 If |ψ〉 is a pure state of H = HA ⊗ HB, the reduced density
operators over B is given by

ρA = TrB[|ψ〉〈ψ |] =
∑

i

d2
i |eA

i 〉〈eA
i | (10.4)

where di are the Schmidt coefficients and {|eA
i 〉} are orthonormal kets of HA. The

corresponding state of HA is pure if and only if the state |ψ〉 is separable. If the state
|ψ〉 is entangled, the “reduced” state is always mixed.

10.2.1 Bell States

These important states are defined in a two-qubit system, where H = HA ⊗ HB

with HA = HB = C
2. Let {|0〉A, |1〉A} and {|0〉B, |1〉B} be the bases of A and B,

respectively. Then the four Bell states are defined by

|Φ+〉 = 1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) = 1√

2
(|00〉 + |11〉)

|Φ−〉 = 1√
2
(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B) = 1√

2
(|00〉 − |11〉)

|Ψ +〉 = 1√
2
(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B) = 1√

2
(|01〉 + |10〉)

|Ψ −〉 = 1√
2
(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B) = 1√

2
(|01〉 − |10〉)

(10.5)

where we have written also the abbreviated form.
Now we consider the density operator, e.g., of the first Bell state. We find

ρ = |Φ+〉〈Φ+| = 1
2

[|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B
] [

A〈0| ⊗ B〈0| + A〈1| ⊗ B〈1|]

= 1
2

[|0〉A ⊗ |0〉B A〈0| ⊗ B〈0| + |0〉A ⊗ |0〉B A〈1| ⊗ B〈1|
+ |1〉A ⊗ |1〉B A〈0| ⊗ B〈0| + |1〉A ⊗ |1〉B A〈1| ⊗ B〈1|]

where the mixed-product law gives

ρ = 1
2

[|0〉A A〈0| ⊗ |0〉B B〈0| + |0〉A A〈1| ⊗ |0〉B B〈1|
+ |1〉A A〈0| ⊗ |1〉B B〈0| + |1〉A A〈1| ⊗ |1〉B B〈1|] .
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Now, tracing out the second qubit and considering the orthonormality of the second
basis, we find

ρA = TrB[ρ] = 1
2

[|0〉A A〈0| + |1〉A A〈1| = 1
2 IHA

where we have used the completeness of the first basis. Note that this reduced density
operator corresponds to a mixed state because Tr[ρ2

A] = 1
2 < 1.

Note that the Bell state is given in the Schmidt form and the evaluation of the
reduced operator would be immediate after Proposition 10.2, considering that the
Bell state is maximally entangled with Schmidt coefficients d1 = d2 = 1/

√
2.

10.3 Overview of Entanglement

Entanglement is one of the most important properties of quantum mechanics, and in
particular of quantum information. As seen in Chap. 3, it occurs in composite systems
as a consequence of the superposition principle and of the fact that the reference space
is given by the tensor product of the Hilbert space of the component systems. If the the
subsystems are spatially separated, the so-called nonlocality properties are verified,
showing an extraordinary departure from the classical mechanics.

There are several problems related to entanglement. The first problem lies in recog-
nizing the absence or the presence of this intriguing phenomenon, that is, recognizing
whether a given state of the composite system is separable or entangled. This is a
challenging question still open. Let us consider the case of a quantum system com-
posed by two subsystems A and B, usually called bipartite system, described by the
Hilbert space H = HA ⊗ HB . A state ρ of H is said separable if it is given as a
convex combination of product states, namely

ρ =
∑

k

pk ρ A
k ⊗ ρB

k (10.6)

where pk ≥ 0,
∑

k pk = 1, and ρ A
k , ρB

k are states of HA and HB respectively,
Otherwise the state is said entangled. A second problem is the measure of the entan-
glement amount, that is, a quantitative criterion to evaluate how much a given state is
entangled, running from zero (separable state) to a maximum (maximally entangled
state). Other problems are concerned with the practical entanglement generation and
its preservation in quantum operations. All these problems are challenging and must
be treated differently in dependence of the nature of the quantum state: continuous
or discrete, finite or infinite dimensional, and pure or mixed.

Here we give a brief overview of the topic, suggesting the reader to consult the book
by Nielsen and Chuang [3] for the entanglement with discrete variables, the review
article by Ferraro et al. [4] for entanglement with continuous variables (Gaussian
states), the paper by Schumacher for entanglement in noisy channels [5].

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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10.3.1 Bipartite Pure States

The presence of entanglement can be easily established in the case of pure states.
Consider for simplicity a finite-dimensional composite Hilbert spaceH = HA⊗HB ,
where HA and HB have dimensions m and n, respectively, and let {|bA

r 〉} and {|bB
s 〉}

be orthonormal bases of the component systems. Then, a basis of H is given by
{|bA

r 〉 ⊗ |bB
s 〉 , r = 1, . . . , m; s = 1, . . . , n} and a state of H has the following

Fourier expansion

|ψ〉 =
m

∑

r=1

n
∑

s=1

crs |bA
r 〉 ⊗ |bB

s 〉 , crs ∈ C (10.7)

with crs the Fourier coefficients.
The presence of entanglement in the state (10.7) is established by the following

decomposition

Proposition 10.3 (Schmidt decomposition) A general bipartite pure state can be
expressed in the form

|ψ〉 =
K

∑

k=1

dk |eA
k 〉 ⊗ |eB

k 〉 (10.8)

where
∑

k d2
k = 1, and {|eA

k 〉} and {|eB
k 〉} are orthonormal kets of HA and HB,

respectively.

The coefficients di are called the Schmidt coefficients and the number of the di

different from zero is called the Schmidt rank of |ψ〉. From Schmidt’s decomposition
(which is unique), one can see that the bipartite state |ψ〉 is separable if and only if
one of the Schmidt coefficients dk is unitary and all the others are zero. In fact, if
this is the case, say for k = k0, one has

|ψ〉 = |eA
k0

〉 ⊗ |eB
k0

〉

so that the bipartite state is given by the tensor product of two states. Otherwise, the
state is entangled and it is maximally entangled when all the Schmidt coefficients dk

are equal.

Proof The coefficients crs forms an m × n matrix C , to which we can apply the
singular-value decomposition (see Sect. 2.12, Theorem 2.8) to get C = U DV , where
U and V are unitary and D is a diagonal matrix containing the singular values
{d1, . . . , dK }. Then

crs =
∑

k

urk dk vks

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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and
|ψ〉 =

∑

r,s

∑

k

urk dk vks |bA
r 〉 ⊗ |bB

r 〉 =
∑

k

dk |eA
k 〉 ⊗ |eB

k 〉

where
|eA

k 〉 =
∑

r

urk |bA
r 〉 , |eB

k 〉 =
∑

s

vks |bB
s 〉 .

Note that, because of normalization and orthonormality the coefficients are normal-
ized as

∑

r,s |crs |2 = 1 and
∑

k d2
k = 1.

Example 10.1 (Bell states). Bell states are maximally entangled states. To see why
they are entangled, consider in particular the state

|Φ+〉 = 1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) = 1√

2
(|00〉 + |11〉)

and note that it can be written in the form (10.7) with the matrix C given by

C = 1√
2

[

1 0
0 1

]

.

Then it is already given in the form of Schmidt’s decomposition

|Φ+〉 =
1

∑

k=0

dk |k〉A ⊗ |k〉B

with d0 = d1 = 1/
√

2, so that the state |Φ+〉 is maximally entangled. The same
conclusion holds for the other Bell states.

10.3.2 An Entropic Separability Criterion for Pure State ∇

We have seen that a pure bipartite state is separable if and only if its Schmidt rank
is unitary and, on the opposite, it is maximally entangled if its Schmidt coefficients
are all equal (to 1/

√
K ). The Schmidt decomposition has an interesting and useful

interpretation in terms of quantum entropy. To see this, we consider the density
operator of the given pure state, expressed in terms of the Schmidt decomposition
(10.8), specifically

ρ = |ψ〉〈ψ | =
K

∑

k=1

d2
k |eA

k 〉 ⊗ |eB
k 〉〈eB

k | ⊗ 〈eA
k | .
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The partial traces extract the density operators

ρA =
K

∑

k=1

d2
k |eA

k 〉 ⊗ 〈eA
k | , ρB =

K
∑

k=1

d2
k |eB

k 〉 ⊗ 〈eB
k | . (10.9)

Next, consider the quantum entropies of the two reduced density operators. These
entropies are equal and given by1

S(ρA) = S(ρB) = −
K

∑

k=1

d2
k log2 d2

K .

Considering that 0 ≤ S(ρA) ≤ log2 K with the minimum 0 when the pure state is
separable and the maximum when the state is maximally entangled, the entropy S(ρA)

can be considered as a measure of entanglement. This measure has the advantage to
be used also for infinite dimensional state, as Gaussian states (see Sect. 11.19).

10.3.3 Separability Criterion Based on Fourier Expansion

We reconsider the Fourier expansion (10.7) of a bipartite pure state ofH = HA⊗HB

|ψ〉 =
∑

r

∑

s

crs |bA
r 〉 ⊗ |bB

s 〉 , crs ∈ C (10.10)

where now r, s may range also to infinite. If the Fourier coefficients crs can be
factored as

crs = cA
r cB

s ∀r, s (10.11)

the bipartite state is separable. Thus we have the simple criterion of separability

Proposition 10.4 If the Fourier expansion (10.10) of a pure bipartite state verifies
condition (10.11), the state is separable as |ψ〉 = |ψA〉 ⊗ |ψB〉, where |ψA〉 =
∑

r cA
r |bA

r 〉 and |ψB〉 = ∑

s cB
s |bB

s 〉.
The main advantage of this criterion, besides simplicity, is that it can be applied

also with infinite dimensions and in particular to multimode Gaussian states (see
Sect. 11.19).

1 The quantum entropy of a state ρ will be introduced in Sect. 12.4 and defined as S(ρ) =
− Tr[ρ log2 ρ]. It can be calculated from the eigenvalues λk of ρ as S(ρ) = − ∑

k λk log2 λk
and it is constrained as 0 ≤ S(ρ) ≤ log2 K . Note that in (10.9) d2

k are the eigenvalues of both ρA
and ρB .

http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_12
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10.3.4 Bipartite Mixed States

We have seen that the problem of the separability of pure states, having finite dimen-
sions, is completely dominated by Schmidt’s decomposition. Despite the efforts, a
general solution in the case of mixed states has not be found yet. Most of the criteria
proposed so far are generally only necessary for separability. For an overview of these
criteria, we suggest reference [4], where the authors arrive at the conclusion that for
the quantification of entanglement, no satisfactory measure is known at present for
arbitrary mixed states.

Problem 10.1 ��� To check Schmidt’s decomposition consider a finite-dimensional
bipartite system with HA = C

2 and HB = C
4 , where the coefficient matrix C is

2 × 4. Suppose that the matrix has the form

C =
[

c11 c12 c13 c14
c21 c22 c23 c24

]

=
[ 1

4
1
4

1
4 β

1
4

1
4

1
4

√

5
8 − β2

]

where β is a parameter. Find the values of β, if any, which correspond to a separable
state and to a maximally entangled state.

10.4 Purification of Mixed States

A mixed state described by a density operator can be represented as a pure state
provided that the quantum environment is appropriately enlarged. The procedure
to get the new representation is called purification and plays a fundamental role in
Quantum Information.

We start from a density operator ρ A of a quantum system A. The enlargement
is obtained by introducing a copy R of the system A to form the joint system AR,
where the pure state |ψAR〉 is defined, such that

ρ A = TrR[|ψAR〉〈ψAR |] . (10.12)

In words, the pure state |ψAR〉 reduces to ρ A, when we look at the system A alone.

Proposition 10.5 Let ρ A be a density operator of A and let

ρ A =
∑

i

σ 2
i |ai 〉〈ai | (10.13)

be its EID. Then a purification of ρ is given by the composite state

|ψAR〉 =
∑

i

σi |ai 〉 ⊗ |ri 〉 (10.14)
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A purification
ρ

TrR

| AR AR | ρ

R

basis
{|ai

basis
{|ri

| AR = i σi|ai riΣ

ψ ψ

ψ

Fig. 10.2 A mixed state represented by the density operator ρ of the system A is purified with the
help of a companion system R, which gives an orthonormal basis. The purification gives a pure
state |ψAR〉〈ψAR | ∈ HA ⊗ HA. The partial trace with respect to R gives the original state ρ

where {ri } is a basis of R. Then the original density operator is related to the com-
posite state as in (10.12).

Note that in general, by construction, the purified state |ψAR〉 is entangled (see
Schmidt decomposition). It is not entangled if the original state ρ is pure.

The proof of the proposition is immediate

TrR[|ψAR〉〈ψAR |] =
∑

i

∑

j

σiσ j TrR[|ai 〉 ⊗ |ri 〉〈a j | ⊗ 〈r j |]

=
∑

i

∑

j

σiσ j TrR[|ai 〉〈a j | ⊗ |ri 〉〈r j |]

=
∑

i

∑

j

σiσ j |ai 〉〈a j | ⊗ Tr[|ri 〉〈r j |]

=
∑

i

∑

j

σiσ j |ai 〉〈a j |δi j

=
∑

i

σ 2
i |ai 〉〈a j | = ρ A .

The procedure to get the pure state |ψAR〉 ∈ HA ⊗HR from the density operator
ρ and recovery of ρ from |ψAR〉 is illustrated in Fig. 10.2.
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Chapter 11
Fundamentals of Continuous Variables

Symbols and Terminology

In the topic of this chapter the literature presents a plethora of terms, notations, and
normalizations. To avoid confusion we follow closely a recent paper by Weedbrook
et al. [1]

:= equal by definition
IH identity operator ofH
In identity matrix of size n
A∗ adjoint of operator A

or conjugate transpose of matrix A
AT transpose of matrix A
E[m] expectation of the random variable m
E[m|ψ] conditional expectation with condition given by the state |ψ〉

Single Mode

H bosonic Hilbert space
q and p position and momentum operators (quadrature opera-

tors)
a and a∗ annihilator and creation operators (bosonic operators)
N = a∗ a number operator
|n〉 , n = 0, 1, 2, . . . number states or Fock states
BF := {|0〉, |1〉, |2〉, . . .} Fock basis

N-Mode

HN = H⊗N bosonic Hilbert space
AB = [A1, B1, . . . , AN , BN ] interlace of row vectors A and B
qi and pi quadrature operators of the i th mode
q = [q1, . . . , qN ]T vector of position operators
p = [p1, . . . , pN ]T vector of momentum operators
qp = [q1, p1, . . . , qN , pN ]T vector of quadrature operators

© Springer International Publishing Switzerland 2015
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Y = [q1, . . . , qN , p1, . . . , pN ]T vector of quadrature operators
ai and a∗

i annihilator and creation operators of i th mode
a = [a1, a2, . . . , aN ]T (column) vector of annihilator operators
a� = [a∗

1 , a∗
2 , . . . , a∗

N ]T (column) vector of creation operators
|n〉i , n = 0, 1, 2, . . . number states or Fock states of i th mode
BF (N ) Fock basis (see (11.68))

Ω = diag [Ω1, . . . ,ΩN ], Ωi =
[

0 1
−1 0

]

Functions and Operators

F ordinary Fourier transform
Fs symplectic Fourier transform
Fc complex Fourier transform
D(ξ), ξ ∈ C

N , D(u, v), u, v ∈ R
N Weyl operator

D(λ), λ ∈ C
N ,D(x, y), x, y ∈ R

N Fourier transform of Weyl operator
χ(ξ), ξ ∈ C

N , χ(u, v), u, v ∈ R
N Wigner characteristic function

W (λ), λ ∈ C
N , W (x, y), x, y ∈ R

N Wigner function
w(λ), λ ∈ C

N , w(x, y), x, y ∈ R
N normalized Wigner function

DN (α), α ∈ C
N N-mode displacement operator

RN (φ), φ Hermitian matrix N-mode rotation operator
Z N (z), z symmetric matrix N-mode squeeze operator
S 2N × 2N real matrix symplectic matrix
S operator ofH⊗N symmetry operator

The special symbol a� is introduced to denote the column vector of the N creation
operators. The reason is that, in our conventions, a∗ is the conjugate transpose of the
column vector a and therefore it denotes a row vector.

11.1 Introduction

The fundamentals introduced in Chap. 3 were essentially the four postulates of
Quantum Mechanics and the main tools were provided by the algebra of operators,
as the eigendecomposition (EID) and sometimes the singular value decomposition
(SVD). However all was limited to discrete variables, because we assumed the bases
consisting of finite or enumerable sets of vectors, the operator EID having a finite or
enumerable spectrum, and quantum measurements having a finite set (alphabet) of
possible outcomes. This formulation was sufficient considering that in the subsequent
chapters we developed digital Quantum Communications, but Quantum Information
makes use of both discrete and continuous variables. In this chapter we extend the
above fundamentals to the continuous case, where the sets become a continuum,
typically given by the set of real numbers R. The extension is by no means trivial and
requires an audacious and often presumptuous use of mathematics. In this extension
we follow Dirac [2], who proceeds in a “parallel form” considering, for each topic,
first the discrete and then the continuous case.

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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The physical environment for the development of continuous variables is
provided by the harmonic oscillator, which represents a very simple and general
model, both in Classical and in Quantum Mechanics. It provides the basis for the
theory of the electromagnetic field, in which the electromagnetic radiation is repre-
sented as a combination of harmonic oscillators. Also, it is the basis to the description
of many physical systems and in particular subatomic particles. The theory of har-
monic oscillators is formulated in terms of two continuous variables, called canonical
variables, the position and the momentum of a particle. This holds for both the clas-
sical harmonic oscillator and the quantum harmonic oscillator, but in the latter the
variables become Hermitian operators. Alternative continuous variables are given
by the annihilator and the creation operators, called bosonic variables. In the theory
of the harmonic oscillator, we also encounter the coherent states, the states we have
extensively used in Quantum Communication systems of Part II, without knowing
their definition but with the expedient of using their properties. Coherent states are
simply defined as the eigenkets of the annihilator operator and in this chapter they
are fully developed.

Canonical and bosonic variables are modeled in an infinite dimensional Hilbert
space and their study encounters several difficulties. A simplification is obtained
by transferring the representation of canonical and bosonic variables into a simpler
environment, the phase space, where continuous-variable quantum states are fully
represented by the Wigner function or by the equivalent characteristic function, both
complex functions of two real variables. The passage from an infinite dimensional
Hilbert space to a two-dimensional real space is quite remarkable. The Wigner and the
characteristic functions allow for the introduction of Gaussian states and Gaussian
transformations. Gaussian states are continuous-variable states that have a represen-
tation in terms of Gaussian functions, and Gaussian transformations are those that
send Gaussian states to Gaussian states. In addition to offering an easy description
in terms of Gaussian functions, Gaussian states and transformations are of great
practical relevance and represent the main tool of Quantum Information processing
based on continuous variables, with applications to quantum computation, quantum
cryptography, and quantum communications. Coherent states are notable examples
of Gaussian states, but in this chapter we will see several other examples of Gaussian
states.

So far we have considered continuous variables in the single mode, but the
most interesting applications, in particular the ones based on the entanglement, are
concerned with continuous variables in the multimode, where the Hilbert space is
obtained by N replicas (tensor product) of the space of the single mode. Thus canon-
ical and bosonic variables become N -tuples of canonical and bosonic variables and
the phase space becomes 2N -dimensional. The extension of the theory of continuous
variables to the multimode represents the main complication of the chapter.

Quantum Information with continuous variables is a hot topic and in the literature
one may find several recent contributions. Perhaps the first place to start for an
overview of continuous-variable quantum information is the recent review article by
Weedbrook et al. (2012) [1]. This article will be the main reference of the chapter.
Another review article is by Braunstein and van Loock (2005) [3]. Furthermore, there
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is also the recent review by Andersen et al. (2010) [4], and the books by Braunstein
and Pati (2003) [5] and by Cerf et al. (2007) [6]. On Gaussian quantum information
specifically there is the review article by Wang et al. (2007) [7], the lecture notes by
Ferraro et al. (2005) [8], and the overview by Olivares (2011) [9]. An overview of
Gaussian entanglement is presented in the review of Eisert and Plenio (2003) [10].

11.1.1 Organization of the Chapter

In Sect. 11.2 we will develop the mathematical fundamentals (bases, eigende-
composition, matrix representations) of continuous variables and we will review
Postulate 3 on quantum measurements letting the possible outcomes be a continuum.
Section 11.3 deals with the theory of the harmonic oscillator with the introduction
of canonical and bosonic variables.

In the following chapters we proceed more abstractly, sometimes we find it con-
venient to introduce the concepts starting from the single mode, but more often we
give directly definitions and properties for the N mode. Section 11.5 introduces the
quadrature and the bosonic operator, globally called field operators.

Sections 11.6 and 11.7 introduce the main definitions (Weyl operator, characteris-
tic and Wigner functions) in the general N -mode, including the definition of Gaussian
states. Sections 11.8 and 11.9 develop in detail the general definitions in the single
mode.

Section 11.10 introduces Gaussian transformations in the N -mode, which are then
developed in Sects. 11.15 and 11.16 in the single mode.

Sections 11.17–11.19 are dedicated to Gaussian transformations and Gaussian
states in the two-mode.

The final section deals with the geometrically uniform symmetry (GUS) inside
the class of Gaussian states. This symmetry was applied in Part II in the performance
evaluation of Quantum Communications systems.

The main difficulty of the chapter is due to the fact that the single mode is not
sufficient to develop Quantum Information with continuous variables, and in fact
the most important quantum phenomenon, the entanglement, requires at least the
two-mode. Therefore the multimode is developed.

11.2 From Discrete to Continuous in Quantum Mechanics

In Quantum Mechanics formulation of Chaps. 2 and 3 we have considered some
fundamentals, as bases, eigendecompositions, measurements and operators, in the
discrete case. In this chapter, for a full development of Quantum Information, we
extend the above fundamentals to the continuous case, where the sets become a con-
tinuum, typically given by the set of real numbers R. As remarked in the introduction,
the extension is by no means simple and requires a non trivial mental alignment.

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_3
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Formally the passage from discrete to continuous is based on two simple replace-
ment rules, namely:

(1) Replace summations by integrals

∑

b∈B

f (b) →
∫

B
db f (b). (11.1)

(2) Replace Kronecker’s δab with Dirac’s delta function δ(a − b).1

These rules must be applied everywhere. In particular, for the product of two matrices,
say A = BC , which is defined, as usual, by the entry relation, the replacement takes
the form

ars =
∑

t∈T

brt cts → ars =
∫

T
dtbrt cts (11.3)

where T is the range set of the index t . In the trace evaluation, using a matrix
representation [art] of an operator A, the replacement is

Tr[A] =
∑

t∈B

att = → Tr[A] =
∫

T
dt att . (11.4)

11.2.1 Discrete and Continuous Bases in Hilbert Space

Discrete bases in Hilbert space H were introduced in Sect. 2.7. We now rewrite the
definition and properties in a form that is more convenient for the extension to the
continuous case. A discrete basis is a set of kets of H, B = {|b〉, b ∈ B}, where the
range B is a discrete set. A continuous basis is a set of kets of H, B = {|b〉, b ∈ B},
where the range set B is a continuum. The corresponding bras 〈b| are obtained as
the adjoint of the kets |b〉.

The properties of a discrete or of a continuous basis can be unified through the
replacement rule as follows:

(1) B consists of orthonormal kets

〈b|b′〉 = δbb′ → 〈b|b′〉 = δ(b − b′) , b, b′ ∈ B (11.5a)

1 We suppose that the reader be familiar with this generalized function, introduced by Dirac [2]
just in this context. Here we briefly summarize the fundamental properties. The Dirac δ function is
introduced by the punctual property δ(x − x0) = 0 if x 	= x0 and by the integral property (sifting
property)

∫ +∞

−∞
f (x)δ(x − x0) dx = f (x0) (11.2)

where f (x) is an arbitrary continuous function. In particular, when f (x) = 1, the sifting property
gives

∫ +∞
−∞ δ(x − x0) dx = 1, which states that δ(x − x0) has unitary area.

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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where δbb′ is the Kronecker delta and δ(b−b′) is the delta function. This property
states also that the kets are normalized.

(2) B provides a resolution of the identity (completeness)

∑

b∈B

|b〉〈b| = IH →
∫

B
db |b〉〈b| = IH. (11.5b)

To see how these properties work in the continuous case, we prove that every ket |x〉
of H can be expanded in the form

|x〉 =
∫

B
db x(b) |b〉 with x(b) = 〈b|x〉. (11.6)

In fact, by left multiplying (11.6) by 〈b′| one gets

〈b′|x〉 =
∫

B
db x(b) 〈b′|b〉 =

∫

B
db x(b) δ(b′ − b) = x(b′) (11.7)

where the sifting property (11.2) of the delta function has been used.

11.2.2 Eigensystem of Hermitian Operators. Observables

We recall the concepts of eigenvalues and eigenvectors (eigenkets) introduced in
Sect. 2.6. An eigenvalue a of a given operator A is a complex number such that a
vector |a〉 ∈ H exists, different from zero, satisfying the following relation (eigen-
value equation)2

A|a〉 = a|a〉 |a〉 	= 0. (11.8)

The ket |a〉 is called eigenket corresponding to the eigenvalue a. The set of all the
eigenvalues is called spectrum of the operator A and denotedσ(A). The interpretation
of the eigenvalue Eq. (11.8) is illustrated in Fig. 11.1.

Here we are only interested in Hermitian operators and we recall from Sects. 2.8
and 2.10 the properties:

(a) All the eigenvalues of a Hermitian operator are real.
(b) The eigenkets corresponding to distinct eigenvalues are orthogonal.

2 We use the convention to indicate with a single letter the operator (A), the eigenvalue (a), and
the eigenket (|a〉). Another economic convention, used by Dirac [2], is a for the operator, a′ for the
eigenvalue and |a′〉 for the eigenket.

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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A
|a a |a

Fig. 11.1 Interpretation of an eigenvalue a and of an eigenket |a〉 of a linear operator A. The
definitions are the same in the discrete and in the continuous cases

(c) If the eigenvalues are distinct (without multiplicity), the set of the corre-
sponding eigenkets allow for the construction of an orthonormal basis A =
{|a〉, a ∈ σ(A)}.

The critical point is given by item (c), where the spectrum σ(A) may be an enumer-
able set (discrete) and also a continuum. In the previous chapters we have considered
only the discrete case and mainly the case of a finite spectrum and we have developed
important applications, such as the Spectral Decomposition Theorem in Sect. 2.10
and the quantum measurements in Sect. 3.6. But some important Hermitian opera-
tors, related to dynamical variables, have a continuous spectrum. With a continuous
spectrum properties (a) and (b) can be easily proved, but the proof of completeness,
required for the construction of an orthonormal basis, is in general an impossible task
[11].3 To overcome this difficulty the expedient (not a solution) is the introduction
of a definition: the Hermitian operators having a complete set of eigenvectors are
called observables.

In conclusion, we will proceed with observables, so that the existence of a com-
plete basis is ensured. Of course the basis must be handled in two distinct forms,
depending on the nature (discrete or continuous) of the spectrum.

Example of an Observable with a Continuous Spectrum

The reference mechanical system, introduced in Sect. 3.4, is given by a particle of
mass m constrained to move in one direction in a potential V (q), where q is the
coordinate of the particle. According to Classical Mechanics, the total energy of this
system is given by the sum of kinetic and potential energies

H = 1

2
m v2 + V (q) = 1

2

p2

m
+ V (q) (11.9)

where v is the velocity, p = m v is the momentum, and V (q) is a real function of the
position coordinate q. In particular, in the harmonic oscillator, which will be seen
in Sect. 11.3, the potential has the form V (q) = 1

2 mω2q2, where ω is the (angular)
frequency of the oscillator. In any case, the energy is expressed in terms of two

3 Dirac, in his celebrated book [2], claimed that there is no available mathematics for solving this
problem.

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_3
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dynamical variables: the momentum p and the coordinate (position) q, which both
may be any real number, p, q ∈ R.

To treat this system according to the rules of Quantum Mechanics, we have to
replace the dynamical variables with Hermitian operators (observables), say p
and q. Then the Hamiltonian is given by

H = 1

2

p2

m
+ V (q). (11.10)

Note that also H is a Hermitian operator (observable), as can be easily verified in the
general case (11.10), and in particular in the case of the harmonic oscillator, where,
with m = 1, the Hamiltonian reads H = (p2 + ω2q2)/2.

The specification of the operators describing the physical system, as p, q, and
H , is not sufficient in Quantum Mechanics, but it also needs the specification of the
algebra the operators must obey. In this specific case the algebra is noncommutative,
as stated by the following commutation relation of the operators p and q:

[q, p] = i � IH (11.11)

where [q, p] = qp − pq is the commutator and � is the reduced Plank constant. As
usual in Quantum Mechanics, in this kind of relations the identity is usually omitted,
that is, [q, p] = i �. This noncommutativity will lead to the quantization of the
energy and represents a remarkable difference with respect to Classical Mechanics,
where p and q commute.

The evaluation of the eigensystem of this quantum system starts just from the
commutation relation (11.11) and gives the following result:

Proposition 11.1 In the reference mechanical system the position and the momen-
tum operators, q and p, are observables obeying the commutation relation (11.11).
They have a continuous spectrum, σ(q) = σ(p) = R and the eigenkets are generated
from their ground states, |0〉q and |0〉p, as

|x〉 = e−i x p/� |0〉q , |y〉 = ei yq/� |0〉p . (11.12)

For the proof see [11], where it is shown that σ(q) = σ(p) = R.

11.2.3 Quantum Measurements with Observables

In Chap. 3 quantum measurements have been formulated by Postulate 3, where it
was assumed that the possible results belong to a finite set M, called alphabet. This
is the case of interest for Quantum Communications, where nowadays only digital
transmissions are considered. But, in the framework of Quantum Information, we
have to extend quantum measurements to the continuous case.

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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B
m ∈ σ(B)

H •
|

|b b|

elementary
projectors

observable

m: outcome of the
measurementψψ

Fig. 11.2 Quantum measurement with an observable B when the system is in the state |ψ〉 of the
Hilbert space H. The elementary projectors |b〉〈b| are obtained from the eigenkets |b〉 of B. The
range of the possible outcomes is given by the spectrum σ(B) of the observable B

For the extension we follow the viewpoint of observables, as done by Dirac [2] in
his original formulation of Quantum Mechanics (see also [11]). As a matter of fact,
an observable provides, not only the representations of kets and operators, but also
the formulation of quantum measurements, as shown in Fig. 11.2.

In Sect. 3.6 we saw that in a measurement with an observable B, having a dis-
crete spectrum σ(B),when the system is in the state |ψ〉, the probability that the
measurement yield the value m = b is given by (see Sect. 3.29)

P[m = b|ψ] = |〈ψ |b〉|2 , b ∈ σ(B). (11.13)

If the outcome is m = b, after the measurement the system falls into the eigenstate
(see Sect. 3.31) |ψpost 〉 = |b〉. The complex function 〈ψ |b〉 is called probability
amplitude.

In conclusion, the outcome of the measurement is a discrete random variable m,
conditioned by the state |ψ〉, with alphabet M = σ(B). The statistical description of
m is given by the mass distribution function pm(b|ψ) = |〈ψ |b〉|2, b ∈ σ(B). This
is really a mass distribution function, because pm(b|ψ) ≥ 0 and the normalization
is ensured by the basis property (11.5b). In fact

∑

b∈σ(B)

pm(b|ψ) =
∑

b∈σ(B)

|〈ψ |b〉|2 =
∑

b∈σ(B)

〈ψ |b〉〈b|ψ〉

= 〈ψ |IH|ψ〉 = 〈ψ |ψ〉 = 1.

When the observable has a continuous spectrum, σ(B) = R, the outcome of
the measurement becomes a continuous random variable m ∈ σ(B). If the system
before the measurement is in the state |ψ〉, the probability that the measurement yield
a value m in the infinitesimal interval (b, b + db) is given by

P[m ∈ (b, b + db)|ψ] = |〈ψ |b〉|2 db. (11.14)

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_3
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If the outcome is m = b, after the measurement the system falls into the eigenstate
|ψpost 〉 = |b〉. The complex function 〈ψ |b〉 is called probability amplitude.

In conclusion, the continuous random variable m is described by the probability
density function

p m(b|ψ) = |〈ψ |b〉|2 , b ∈ σ(B). (11.15)

Note that the function defined by (11.15) really behaves as a probability density
function, being non negative and normalized to unity. The normalization follows
from the basis property (11.5b). In fact

∫

R

db p m(b|ψ) =
∫

R

db |〈ψ |b〉|2 =
∫

R

db 〈ψ |b〉〈b|ψ〉
= 〈ψ |IH|ψ〉 = 〈ψ |ψ〉 = 1.

In the discrete case the statistical average (quantum expectation) of the random
variable m can be easily obtained from the observable as (see 3.43)

E[m|ψ] = 〈ψ |B|ψ〉 := 〈B〉. (11.16)

This relation holds also in the continuous case. In fact, the expectation of a continuous
random variable with probability density function p m(b|ψ) = |〈ψ |b〉|2 is given by
[12]

E[m|ψ] =
∫ +∞

−∞
db b p m(b|ψ) =

∫ +∞

−∞
db b |〈ψ |b〉|2

where we can write |〈ψ |b〉|2 = 〈ψ |b〉〈b|ψ〉. Then, considering the eigenvalue equa-
tion b|b〉 = B|b〉 and the completeness (11.5b), one gets

E[m|ψ] = 〈ψ |B
{∫ +∞

−∞
db |b〉〈b|

}

|ψ〉 = 〈ψ |B|ψ〉.

Relation (11.16) can be easily generalized to an arbitrary function f (m) of the
random variable m and in particular to the moments.

Example 11.1 To remark the difference between the discrete and the continuous case
we give two examples of quantum measurements in the same system, the harmonic
oscillator (see Sect. 11.3). In the first one the observable B is the number operator
N , which has the discrete spectrum σ(N ) = {0, 1, 2, . . .}. Assuming that the system
is in a coherent state |ψ〉 = |α〉, the mass distribution is given by (see (7.7))

pm(b|α) = e−Nα
N b

α

b! , b = 0, 1, 2, . . . (11.17)

that is, a Poisson distribution with average E[m|α] = Nα = |α|2.

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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Fig. 11.3 Examples of statistical descriptions in quantum measurements. On the left, the outcome
is a discrete random variable m obtained with the observable N , the number operator, when the
quantum system is in a coherent state |α〉; the description is given by Poisson mass probability
distribution pm(b|α). On the right, the outcome is a continuous random variable m obtained with the
observable q, the position operator, when the quantum system is in a Fock state |n〉; the description
is given by the probability density p m(b|n) given by (11.18). The figures are obtained with α = 4.0
and n = 3

In the second example the observable B is the position operator q of the harmonic
oscillator, whose spectrum is σ(q) = R (see Sect. 11.3). Assuming that the system
is in the Fock state |n〉, the probability density is given by [11]

p m(b|n) = K√
π 2n n! H2

n (K b) e−K 2 b2
, b ∈ R (11.18)

where K is a constant of the oscillator and Hn(x) are the Hermite polynomials.
The mass probability distribution (11.17) and the probability density function

(11.18) are illustrated in Fig. 11.3.

11.3 The Harmonic Oscillator

The harmonic oscillator represents a very simple and general model, both in classical
and in quantum mechanics. It is on the basis of the theory of the electromagnetic
field, in which the electromagnetic radiation is represented as a combination of
harmonic oscillators. Also, it is the basis to the description of many physical systems
and in particular subatomic particles. To further stress the importance of this topic
we observe that the main fundamentals of Quantum Information with continuous
variables developed in this chapter are based upon the quantum harmonic oscillator.

11.3.1 The Classical Model

We reconsider the reference model introduced in Sect. 3.4, given by a particle of mass
m constrained to move in one direction in a potential V (q), where q is the coordinate
of the particle. The energy/Hamiltonian of this system is given by

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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H = 1

2

p2

m
+ V (q) (11.19)

where p is the momentum of the particle. In the harmonic oscillator the energy is
explicitly given by

H = 1

2
(p2 + ω2 q2) (11.20)

where ω is the angular speed, related to the restoring force of the particle, and the
mass is assumed as unitary.

The equations of motion are obtained from the Hamiltonian as [11]

d q

d t
= ∂ H

∂p
= p ,

d p

d t
= −∂ H

∂q
= −ω2 q. (11.21)

Then, by combination of (11.21) one finds

d2 q

d2 t
= −ω2 q

whose solution is

q(t) = q(0) cos ω t + [p(0)/ω] sin ω t

p(t) = −ω q(0) sin ω t + p(0) cos ω t
(11.22)

where q(0) and p(0) are the values of the dynamic variables at time t = 0. An
example of time evolution of q(t) and p(t) is shown in Fig. 11.4.

As we have seen, the evolution calculation is very simple, but it can be further
simplified by the introduction of the new conjugate variables

a = 1√
2ω

(ωq + ip) , a∗ = 1√
2ω

(ωq − ip) (11.23)

which allow us to decouple the original equations (11.21). In fact, we get

t

q(t)

p(t)

Fig. 11.4 Coordinate and momentum in a harmonic oscillator with q(0) = 1 and p(0) = 1.8
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da

d t
= −i ω a ,

da∗

d t
= i ω a∗ (11.24)

which in practice is a single equation. Now the solution is immediate and given by

a(t) = a(0) e−iω t . (11.25)

It is easy to verify that with the new variables, the energy (11.20) becomes

H = ω2 a a∗. (11.26)

The introduction of the variables a and a∗ seems a simple trick, but has an impor-
tant consequence in the quantum version.

11.3.2 The Quantum Mechanical Model

As seen in general in Sect. 11.2, the passage from the classical to the quantum mechan-
ical model, is obtained by replacing the scalar variables p and q with Hermitian
operators (observables) p and q, which we indicate with the same symbol4 used for
the classical variables. Thus the Hamiltonian becomes

H = 1

2
(p2 + ω2q2) (11.27)

which is itself a Hermitian operator. But we have to add the commutation relation

[q, p] = i � IH (11.28)

which represents the relevant difference with respect to the classical model, where
q and p commute.

All these operators are independent of time, according to the Schrödinger pic-
ture. For the evaluation of the dynamic evolution we apply Postulate 2 of Quantum
Mechanics, formulated in Sect. 3.4, giving the Schrödinger equation

i �
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 (11.29)

where |ψ(t)〉 is the state (wave function) of the oscillator at time t . Considering that
the Hamiltonian H is time-independent, the solution of the Schrödinger equation is
given by (3.15)

4 In general we denote the operators with uppercase letters, but for the operator p and q the lowercase
is used almost everywhere in the literature. The same is for annihilator and creator operators a∗ and a.

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_3
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|ψ(t)〉 = exp

[

−i
H

�
(t − t0)

]

|ψ(t0)〉

= exp

[

−i
p2 + ω2q2

2�
(t − t0)

]

|ψ(t0)〉
(11.30)

and the temporal evolution results in

U (t − t0) = exp

[

−i
p2 + ω2q2

�
(t − t0)

]

, t > t0 . (11.31)

The equations of motion are identical in form to the classical equations in Hamiltonian
form, given by (11.21), that is,

d q

d t
= ∂ H

∂p
= p ,

d p

d t
= −∂ H

∂q
= −ω2 q (11.32)

and the solution is, by (11.22)

q(t) = q cos ω t + [p/ω] sin ω t

p(t) = −ω q sin ω t + p cos ω t
(11.33)

where q and p are the operators in the Schrödinger picture.

11.3.3 Annihilation and Creation Operators

The decoupling variables a and a∗ of the classical oscillator become the operators

a = 1√
2ω

(ωq + ip) , a∗ = 1√
2ω

(ωq − ip) (11.34)

from which one gets the position and momentum operators as

q =
√

�

2ω
(a∗ + a) , p = i

√

�ω

2
(a∗ − a). (11.35)

For the reason we shall see below, a is called annihilation operator and a∗ cre-
ation operator. They are not Hermitian and like p and q, do not commute. Their
commutation relation can be obtained from (11.28) and is simply given by

[a, a∗] = IH. (11.36)
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The Hamiltonian can be expressed in terms of a and a∗ as

H = 1
2 �ω(aa∗ + a∗a) = �ω(a∗a + 1

2 IH) (11.37)

where (11.36) has been used.
The equations of motion (11.24) seen for the variables a and a∗ hold also for the

operators a and a∗ [11].

11.3.4 Number Operator and Number States. Fock Basis

The number operator is defined as

N = a∗a (11.38)

and it clearly is a Hermitian operator (observable). The corresponding eigenvalue
equation is

N |n〉 = n|n〉 (11.39)

where the eigenket |n〉 are called number states and also Fock states.
From the above statements we find:

Proposition 11.2 The number operator N is an observable with the following eigen-
system: the eigenvalues n are all the nonnegative integers and the eigenvectors (num-
ber states) verify the recurrences

a |0〉 = 0 (11.40a)

a |n〉 = √
n|n − 1〉 , n ≥ 1 (11.40b)

a∗ |n〉 = √
n + 1|n + 1〉 , n ≥ 0 . (11.40c)

All the number states can be generated from the zero state (ground state) as

|n〉 = (a∗)n

√
n! |0〉 . � (11.41)

Proof For the proof we follow Dirac [2]. Starting from the commutation condition
(11.36), we find [a, a∗a] = a and [a∗, a∗a] = −a∗, that is, Na = a(N − IH) and
Na∗ = a(N + IH). Then, considering the eigenvalue equation (11.39), one gets the
recurrences

Na |n〉 = (n − 1) |n〉 , Na∗ |n〉 = (n + 1) |n〉 . (11.42)
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We recall that N is PSD and therefore its eigenvalues must be real and nonnegative,
n ≥ 0. On the other hand, Eq. (11.42) show that if n is an eigenvalue of N , also n −1
and n+1 are. If we assume that an eigenvalue n may be not integer, repeated iterations
of the above procedure would lead to negative eigenvalues with contradiction on the
PSD of N . In conclusion, the n’s are all the nonnegative integers.

Now, provided that |n〉 is a normalized eigenvector of N with eigenvalue n, the
first of (11.42) states that a|n〉 is an eigenvector (not unnecessarily normalized) of
N with eigenvalue of n − 1. Then, denoting by |n − 1〉 the normalized eigenvector
with eigenvalue n − 1, we can write a|n〉 = cn|n − 1〉, where cn follows from the
normalization, that is,

|cn|2 = |cn|2 〈n − 1|n − 1〉 = 〈n|a∗a|n〉 = 〈n|N |n〉 = n

so that, neglecting an irrelevant phasor, cn = √
n. Then we get in particular a|0〉 = 0.

Thus (11.40a) and (11.40b) are proved. In a similar way we can prove the recursion
(11.40c).

The number operator N is an observable and therefore it generates a complete
and orthonormal basis {|n〉 , n = 0, 1, 2, . . .}, formed by the number states. This
basis, usually called Fock basis, will play a fundamental role in this chapter in the
representation of continuous variables.

11.3.5 Energy Quantization. Interpretation of N, a, and a∗

From (11.37) the Hamiltonian H is expressed in terms of the number operator N as

H = �ω
(

N + 1
2 IH

)

. (11.43)

Hence the eigenvalue equation of the Hamiltonian operator, H |e〉 = e|e〉, can be
solved using the eigensystem of N , given by Proposition 11.2. In particular, the
energy eigenvalues are given by

en = �ω
(

n + 1
2

) = hν
(

n + 1
2

)

, n = 0, 1, 2, . . . (11.44)

where ν = ω/(2π) is the oscillation frequency, and h = 6.262 10−34 J s is Planck’s
constant (not reduced). Notice that the fundamental eigenstate has energy e0 =
hν/2 > 0 and that the eigenstates are equally spaced by hν, the same energy as
that found for light quanta. The value of hν is very small at optical frequencies,
therefore the phenomenon of energy quantization is not perceived at a macroscopic
level. The energy quantization, which is a consequence of the commutation condition
[a, a∗] = IH, becomes fundamental at subatomic level, where it allows for the
unification of the particle and wave properties of light. In this case the quanta are
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called photons. But this theory applies more generally to the family of particles
called bosons.5

According to Dirac’s interpretation, a harmonic oscillator at the eigenstate |n〉
describes a system of n identical independent quanta, each of which has energy hν.
In particular the state |0〉 has no quanta and therefore is called vacuum state and also
ground state, although it has a positive energy e0 = 1

2 hν.
Proposition 11.2 justifies the term number operator for N because a measure-

ment with this observable yields the eigenvalues 0, 1, 2, . . ., which represent the
number of quanta in the wave. Also, a∗ is a creation operator because, if the oscil-
lator is in the state |n〉 with n quanta, its application generates the state |n + 1〉 with
n + 1 quanta. Analogously, the annihilation operator gives the state |n − 1〉 with
n − 1 quanta.

11.4 Coherent States

In Part II we have seen the fundamental role played by the class of coherent states,
G = {|α〉 |α ∈ C}, in Quantum Communications. However, till now, we have applied
coherent states using their properties, but we have not investigated their definition
and formulation. Now we are ready to do this, after the development of the theory
of harmonic oscillator and in particular the introduction of the bosonic operators.
In fact, the definition is: a coherent state |α〉 is an eigenstate of the annihilator
operator a with eigenvalue α

a |α〉 = α|α〉. (11.45)

In Sect. 11.9 we shall see that coherent states allow an alternative definition as the
transformation of the vacuum state through the Weyl operator.

11.4.1 Fock Representation

We prove that the Fock representation of a coherent state is given by

|α〉 =
∞
∑

n=0

e− 1
2 |α|2 αn

√
n! |n〉 (11.46)

5 By definition bosons are particles which obey Bose–Einstein statistics, in contrast with fermions
which obey Fermi–Dirac statistics. Bosons may be elementary, like photons, or composite, like
mesons. A celebrated boson is Higg’s boson, recently (2012) discovered at CERN in Geneva.
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where {|n〉 , n = 0, 1, 2, . . .} is the complete orthonormal basis formed by the number
states (Fock basis). For the proof we consider the series expansion of |α〉 in the Fock
basis

|α〉 =
∞
∑

n=0

fn |n〉 , fn = 〈n |α〉

where fn are the Fourier coefficients. To get these coefficients we use the conjugate of
relation (11.40c) of Proposition 11.2, which gives the recursive formula

√
n + 1 〈n+

1|α〉 = 〈n|a|α〉 = α 〈n|α〉. This allows us to express fn = 〈n|α〉 in terms of the
ground state |0〉 as

fn = 〈n|α〉 = αn

√
n! 〈0|α〉. (11.47)

Finally, the normalization of coherent states gives

1 = 〈α|α〉 =
∞
∑

n=0

| fn|2 = |〈0|α〉|2
∞
∑

n=0

|α|2n

n! = |〈0|α〉|2e|α|2

so that, choosing a null phase, we get 〈0|α〉 = e− 1
2 |α|2 , and (11.46) follows at once.

11.4.2 Coherent States as Complete Nonorthogonal Basis

The coherent states are not orthogonal. In fact, in Proposition 7.1 starting from Fock
expansion (11.45) we have seen that the inner product of two coherent states is given
by

〈α|β〉 = e− 1
2 (|α|2+|β|2−2α∗β) → |〈α|β〉|2 = e−|α−β|2 (11.48)

which shows that 〈α|β〉 	= 0 also for α 	= β. However, they form a complete basis,
that is, with the property

1

π

∫

C

dα |α〉 〈α| = IH (11.49)

where the integration is over the complex plane C and dα must be intended as

dα d�α . (11.49a)

The proof of completeness is based on the identity

∫

C

dα (α∗)nαm = πn!δnm (11.50)

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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which can be proved by letting α = |α|eiθ and evaluating the integral. Then, using
(11.50) and (11.45), we find

∫

C

dα |α〉 〈α| = π

∞
∑

n=0

|n〉 〈n| = π IH

where the last passage is a consequence of the completeness of Fock basis.
The use of coherent states as a complete basis is extremely useful and find several

applications [13, 14]. In particular they allow for the expansion of quantum states and
operators in the sense seen in Sect. 11.2 with continuous bases. Also, they provide
useful representations of density operators, as we shall see in Sect. 11.7.

11.5 Abstract Formulation of Continuous Quantum
Variables

The theory of continuous quantum variables is usually developed in the framework of
a tensor product of N identical Hilbert spaces,HN = H⊗N , which is the environment
of N quantized radiation modes of the electromagnetic field, corresponding to N
harmonic oscillators [1, 2]. We shall follow this line in the general definitions, but
for clarity we often introduce the concepts for a single mode with a subsequent
extension to the N -mode.

Normalization. With reference to the theory of harmonic oscillator, hereafter we
introduce the following normalization:

particle mass m = 1, angular speed ω = 1, reduced Planck constant � = 2.

In these normalizations we follow Weedbrook et al. [1], but in the literature we
frequently find other normalizations, e.g., in Wang et al. [7] the reduced Planck
constant is set to � = 1 and in Braustein and Van Lock [3] to � = 1

2 . The choice of
normalization has a consequence in several relations and in particular in commutation
relations.

The identity operator IH in often set to 1, especially in commutation relations.
Hereafter we will follow this convention.

11.5.1 Single-Mode Hilbert Space

Continuous quantum variables may be viewed as an abstract version and a general-
ization of the states seen in the harmonic oscillator. The environment is an infinite
dimensional Hilbert space H, where the coordinate (or position) operator q and
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the momentum operator p (quadrature variables) are introduced. These operators
verify the commutation relation (11.28), which, after the normalization � = 2 and
the omission of the identity, reads as

[q, p] = 2 i , [p, q] = −2 i. (11.51)

The Hamiltonian (11.27) becomes

H = 1
2 (q2 + p2). (11.52)

From the quadrature operators the annihilation and the creation operators (bosonic
operators) are introduced as (see (11.34))

a = 1

2
(q + i p) , a∗ = 1

2
(q − i p) (11.53)

whose commutation relation is still given by (11.36), that is,

[a, a∗] = 1 , [a∗, a] = −1. (11.54)

The inverse relations read

q = a + a∗ , p = i(a∗ − a). (11.55)

From a and a∗ one gets the number operator as

N = a∗ a (11.56)

which is an observable whose eigenkets |n〉 , n = 0, 1, 2, . . . are called number states
or Fock states. We recall that the Fock states provide a countable orthonormal basis,
BF = {|0〉, |1〉, |2〉, . . .}, which has a fundamental importance in the representation
of continuous quantum variables. The properties of Fock states are established in
Proposition 11.2 and here they are summarized:

a|0〉 = 0 , a|n〉 = √
n |n − 1〉 for n ≥ 1, (11.57a)

a∗|n〉 = √
n + 1 |n + 1〉 for n ≥ 0, (11.57b)

with the important relation

|n〉 = (a∗)n

√
n! |0〉 (11.58)

which establishes that all number states can be generated from the vacuum state |0〉.
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It is worth noting how the commutation relations are usually written in the algebra
of continuous quantum variables. Letting

B =
[

B1
B2

]

=
[

a
a∗
]

, X =
[

X1
X2

]

=
[

q
p

]

(11.59)

and, considering that [a, a] = 0, [q, q] = 0 and [p, p] = 0, relations (11.54) and
(11.51) are respectively written in the symplectic form

[Bi , B j ] = Ωij , [Xi , X j ] = 2i Ωij , i = 1, 2 (11.60)

where
[

Ω11 Ω12
Ω21 Ω22

]

=
[

0 1
−1 0

]

. (11.61)

11.5.2 N-Mode Hilbert Space

In the N -mode bosonic space the environment is given by the tensor product of N
identical infinite-dimensional Hilbert spaces, HN := H⊗N , where a pair of quadra-
ture operators (qk, pk) are introduced for each mode. The kth mode annihilation and
creation operator are then defined as

ak = 1
2 (qk + i pk) , a∗

k = 1
2 (qk − i pk). (11.62)

The inverse relations are

qk = ak + a∗
k , pk = i(a∗

k − ak). (11.63)

The rules are the same seen for the single mode, e.g., a∗
k |n〉k = √

n + 1|n + 1〉k ,
where |n〉k is the number state in the kth mode. The operators of different modes
commute and therefore

[qi , q j ] = [pi , p j ] = 0 , [qi , p j ] = 2i δij

[ai , a j ] = [a∗
i , a∗

j ] = 0 , [ai , a∗
j ] = δij.

(11.64)

The commutation relations can be written in the symplectic form (11.60), namely

[Bi , B j ] = Ωij , [Xi , X j ] = 2i Ωij , i, j = 1, . . . , 2N (11.65)
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with the notations

B = [B1, B2, . . . , B2N−1, B2N ]T = [a1, a∗
1 , . . . , aN , a∗

N ]T

X = [X1, X2, . . . , X2N−1, X2N ]T = [q1, p1, . . . , qN , pN ]T := q p
T (11.66)

and

Ω := diag [Ω1, . . . ,ΩN ] , Ωi =
[

0 1
−1 0

]

. (11.67)

Globally the four variables for each mode are redundant and the development of the
theory could proceed with only bosonic variables or with only quadrature variables.
However, both will be useful for several reasons (manipulation, interpretation and
so on).

In the bosonic space HN the Fock basis becomes N -mode and can be written in
the form

BF (N ) = {|n1〉1|n2〉2 · · · |nN 〉N , n1, n2, . . . , nN = 0, 1, 2, . . .} (11.68)

where |ni 〉i are the Fock states in the i th mode.

Problem 11.1 � Prove relation (11.58), which states that all the number states |n〉
can be obtained from the ground state |0〉.

11.6 Phase Space Representation: Preliminaries

In a bosonic Hilbert space a state is represented in general by a density operator
ρ; in particular when ρ is a projector (ρ2 = ρ) the state becomes pure and can be
written in the form ρ = |ψ〉〈ψ |, with |ψ〉 a point of the Hilbert space HN . In any
case, a density operator acting in HN can be conveniently represented by a quasi-
probability density, called Wigner function. This is a real function defined in the
real space R

2N , which is called phase space.6 It represents a powerful tool for its
capability of representing a density operator, which may be infinite dimensional, by
a simple real function of a finite number of variables.

In the formulation of phase space representations the first step is the introduction
of the Weyl operator, from which one gets the (Wigner) characteristic function and
finally the Wigner function. All these quantities are defined in terms of the exponential
operator, which therefore plays a fundamental role and is now examined in detail.
Also the Fourier transform (FT) enters in these definitions and it will be convenient
to investigate which form of the FT to adopt for the reason that a convenient form
may simplify results and improve their interpretation.

6 A more abstract definition of phase space is given in terms of the symplectic group Sp (2N , R),
which is related to the Lie groups [15], but in our formulation we will not make use of this sophis-
ticated concept.
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11.6.1 Exponential Operator Identities

The exponential of an arbitrary operator A has the same definition as in the scalar
case

eA :=
∞
∑

n=0

1

n! An . (11.69)

The main difference with respect to the scalar case arises when the exponent consists
of two or more noncommuting operators. Here we give two important identities,
proved in Appendix Section “Proof of Baker–Campbell–Hausdorff Identity”.

Proposition 11.3 (Baker–Hausdorff formula) For any two operators H and K such
that their commutator [H, K ] := H K − K H commutes with both of them, the
following identity holds:

eH+K = eK eH e
1
2 [H,K ] if [[H, K ], H ] = [[H, K ], K ] = 0. (11.70)

Proposition 11.4 (Baker–Campbell–Hausdorff formula) For two arbitrary opera-
tors H and K the following identity holds:

ex H K e−x H =
∞
∑

n=0

xn

n! Dn (11.71)

with
D0 = K , Dn = [H, Dn−1] for n ≥ 1. (11.71a)

Identity (11.71) is explicitly written as

ex H K e−x H = K + x[H, K ] + x2

2! [H, [H, K ]] + x3

3! [H, [H, [H, K ]]] + · · ·
(11.71b)

where we note the presence of nested commutators.

11.6.2 Exponential of a Matrix and Related Functions

The general definition (11.69) plays a central role for the definition of other functions
of an operator and of a square matrix, as trigonometric and hyperbolic functions. The
specific expansions are
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cos A =
∞
∑

n=0

(−1)n 1

(2n)! A2n , cosh A =
∞
∑

n=0

1

(2n)! A2n

sin(A) =
∞
∑

n=0

(−1)n 1

(2n + 1)! A2n+1 , sinh A =
∞
∑

n=0

1

(2n + 1)! A2n+1 (11.72)

and the relations are

eiA = cos A + i sin A , eA = cosh A + sinh A

cosh A = 1
2

(

e A + e− A
)

, sinh A = 1
2

(

e A − e− A
)

cosh A = cos(iA) , i sinh A = sin(iA).

(11.73)

All these definitions and relations for operators and matrices are exactly the same as
for the corresponding scalar functions. In particular for a finite-dimensional square
matrix A it is possible to find the expression of a function of the matrix in terms of the
matrix elements. To this end the general solution is based on the eigendecomposition
approach seen in Chap. 2. The general expressions are somewhat complicated as
emphasized by the simple case of a 2 × 2 matrix (see Problem 11.2)

exp

[

a b
c d

]

= e
1
2 (a+d−Δ)

2Δ

⎡

⎣

d − a + Δ + (a − d + Δ) eΔ 2b
(

eΔ − 1
)

2c
(

eΔ − 1
)

a − d + Δ(d − a + Δ)eΔ

⎤

⎦

where Δ = √
a2 − 2da + d2 + 4bc. Of course, we have simplifications in special

cases, in particular when A is diagonal or antidiagonal. Here we give a few simple
cases which will be used in the phase space representation:

exp

[

a 0
0 d

]

=
[

ea 0
0 ed

]

exp

[

0 b
b 0

]

=
[

cosh b sinh b
sinh b cosh b

]

exp

[

0 b
−b 0

]

=
[

cos b sin b
− sin b cos b

]

exp

[

0 i b
i b 0

]

=
[

cos b i sin b
i sin b cos b

]

cosh

[

0 b
b 0

]

=
[

cosh b 0
0 cosh b

]

sinh

[

0 b
b 0

]

=
[

0 sinh b
sinh b 0

]

.

(11.74)

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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11.6.3 Review of the Fourier Transform

We review in detail the different forms of defining the FT. Finally, we will make
a specific choice that will be used to introduce the forms of FTs (symplectic and
complex) for the single and for the multimode. This specific choice is uncommon,
but it allows us to obtain simplifications for several statements.

The One-Dimensional FT

The one-dimensional FT of a complex function of a real variable f (t), t ∈ R (often
called “signal”) can be defined in several equivalent forms in dependence of two real
parameters (α, β). The general form is (see [16], [17, Chap. 5])

F(x) =
√

|β|
(2π)1−α

∫

R

dt f (t) eiβx t (11.75a)

where the integration is over the real set R, f (t) is the “signal” and F(x) is the FT;
x is a real variable as t . The inverse Fourier transform is

f (t) =
√

|β|
(2π)1+α

∫

R

dx F(x) e−iβx t . (11.75b)

Hence the FT can be defined in infinitely many ways by choosing different pairs
(α, β).7 In this chapter we will make the choice α = 0 and β = 1, which gives the
symmetric forms

F F(x) = 1√
2π

∫

R

dt f (t) eixt (11.76a)

F−1 f (t) = 1√
2π

∫

R

dx F(x) e−ixt . (11.76b)

By definition a signal f0(t) is an eigenfunction of the FT with eigenvalue λ if

f0(t)
F−−−−−−→ F0(x) = λ f0(x).

7 According to Wolfram [18] the common choices for {α, β} are: {0, 1} as default of Mathematica
and in modern physics, {1,−1} in pure mathematics and systems engineering, {−1, 1} in classical
physics, and {0,−2π} in signal processing.

The choice in Weedbrook et al. is α = −1, β = −1. The choice of Cahill and Glauber [14] for
the introduction of the complex FT is {0,−2}; this choice has the advantage that the complex FT
coincides with its inverse.
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The possible eigenvalues are given by the fourth roots of unity, namely λ =
{1,−1, i,−i} (see [17]). Note that if f0(t) is an eigenfunction according to the
choice (11.76), it is not an eigenfunction in the general case of (11.75) with β 	= 1.

11.6.4 Fourier Transform for the Single Mode

According to the choice (11.76) the ordinary two-dimensional FT is

F F(x, y) = 1

2π

∫

R

du
∫

R

dv f (u, v) ei(xu+yv) (11.77)

where the bilinear form in the exponential can be expressed as

x u + y v = [x, y]
[

u
v

]

.

The symplectic FT is obtained with

[x, y] Ω

[

u
v

]

= [x, y]
[

0 1
−1 0

] [

u
v

]

= xv − yu (11.78)

giving

Fs Fs(x, y) = 1

2π

∫

R

du
∫

R

dv f (u, v) ei(xv−yu).

Thus the ordinary and the symplectic FTs are related as Fs(x, y) = F(−y, x).
Finally, the complex FT is obtained from the symplectic FT by the introduction

of the complex variables

ξ = u + iv , λ = x + iy

so that the bilinear form (11.78) becomes xv − yu = (λ∗ξ − λξ∗)/2 to get

Fc Fc(λ) = 1

2π

∫

C

dξ f (ξ) e(λ∗ξ−λξ∗)/2 (11.79)

where the integration is over the complex plane C and dξ must be intended as
dξ d�ξ . We may see the substantial equivalence of Fs and Fc: the symplectic FT
may be viewed as the real version of the complex FT.

The FTs introduced above for the single mode are summarized in Table 11.1
together with their inverses.
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Table 11.1 Fourier transforms for the single mode

Type Operator Formula

Ordinary 2D Fourier transform F F(x, y) = 1
2π

∫

R
du
∫

R
dv f (u, v) ei(xu+y,v)

Inverse F−1 f (u, v) = 1
2π

∫

R
dx
∫

R
dy F(x, y) e−i(xu+yv)

Symplectic Fourier transform Fs Fs(x, y) = 1
2π

∫

R
du
∫

R
dv f (u, v) ei(xv−yu)

Inverse F−1
s f (u, v) = 1

2π

∫

R
dx
∫

R
dy Fs(x, y) e−i(xv−yu)

Complex Fourier transform Fc Fc(λ) = 1
2π

∫

C
dξ f (ξ) e(λ∗ξ−λξ∗)/2

Inverse F−1
c f (ξ) = 1

2π

∫

C
dλ Fc(λ) e−(λ∗ξ−λξ∗)/2

11.6.5 Fourier Transforms for the N-Mode

We now extend the previous definitions to the N -mode, where the “signal” and the
FT become 2N -dimensional, say f (u, v), u, v ∈ R

N , and F(x, y), x, y ∈ R
N . In

this notation the arguments are given by two vectors of length N instead of a single
vector of length 2N to simplify the relation between the symplectic and the complex
FT. Specifically we let

x = [x1, . . . , xN ]T ∈ R
N , y = [y1, . . . , yN ]T ∈ R

N

u = [u1, . . . , uN ]T ∈ R
N , v = [v1, . . . , vN ]T ∈ R

N

xy = [x1, y1, . . . , xN , yN ]T ∈ R
2N

uv = [u1, v1, . . . , uN , vN ]T ∈ R
2N

λ = [λ1, . . . , λN ]T = x + i y ∈ C
N

ξ = [ξ1, . . . , ξN ]T = u + iv ∈ C
N .

(11.80)

The relation between the real vectors and the complex vectors is provided by the
following relations, where Ω is the 2N × 2N matrix defined by (11.67):

ixy
T Ω uv = 1

2 [λ∗ ξ − ξ∗ λ]. (11.81)

For the proof see Problem 11.3.
The ordinary 2N -dimensional FT is simply obtained from the two-dimensional

FT by considering that at the exponential we have to find a scalar quantity, so that
the form i(xu + yv) becomes i(xuT + yvT).

For the symplectic FT at the exponential we have to introduce the interlace of
arguments and the 2N × 2N matrix Ω , specifically
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Table 11.2 Fourier transforms for the N -mode

Type Operator Formula

Ordinary 2D Fourier
transform

F F(x, y) = 1
(2π)N

∫

RN du
∫

RN dv f (u, v) ei(xu+yv)

Inverse F−1 f (u, v) = 1
(2π)N

∫

RN dx
∫

RN dy F(x, y) e−i(xuT+yvT)

Symplectic Fourier
transform

Fs Fs(x, y) = 1
(2π)N

∫

RN du
∫

RN dv f (u, v) ei(xyTΩ uv)

Inverse F−1
s f (u, v) = 1

(2π)N

∫

RN dx
∫

RN dy Fs(x, y) e−i(xyTΩ uv)

Complex Fourier
transform

Fc Fc(λ) = 1
(2π)N

∫

CN dξ f (ξ) e(λ∗ξ−λξ∗)/2

Inverse F−1
c f (ξ) = 1

(2π)N

∫

CN dλ Fc(λ) e−(λ∗ξ−λξ∗)/2

Fs Fs(x, y) = 1

(2π)N

∫

RN
du
∫

RN
dv f (u, v) exp

[

i xy
T Ω uv

]

where xy and uv are column vectors of length 2N obtained as the interlacing of
vectors x, y and u, v, respectively.

With the introduction of the complex vectors (of length N ) ξ = u + iv and
λ = x + iy and use of identity (11.81), from the symplectic FT one gets the N -mode
complex FT as

Fc Fc(λ) = 1

(2π)N

∫

CN
dξ f (ξ) exp[ 1

2 (λ∗ξ − λξ∗)]. (11.82)

The FTs for the N -mode are summarized in Table 11.2 together with their inverses.

Problem 11.2 �� Using the general definition of the exponential of a matrix, find
explicitly the exponential of a 2 × 2 matrix.

Problem 11.3 �� Prove relation (11.81) linking the complex vectors and the real
vectors defined by (11.80). Note that the entries of the matrix Ω can be written in
the form

Ω2(h−1)+r,2(k−1)+s = δhk(δr,s−1 − δr−1,s) = δhk εrs , h, k = 1, . . . , N r, s = 1, 2

where

εrs =

⎧

⎪

⎨

⎪

⎩

1 r = 1, s = 2

−1 r = 2, s = 1

0 otherwise .
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11.7 Phase Space Representation: Definitions
for the N-Mode

In this section we introduce the fundamental definitions of the phase space, given
by the characteristic function and by the Wigner function in the general case of N -
mode. The usefulness of these functions stems from the fact that, despite the infinite
dimension of the Hilbert space modeling the harmonic oscillator, they give repre-
sentations in the phase space that depend only on 2N real variables, or, equivalently,
on N complex variables. In particular the Wigner function is the quantum analog to
the classical joint probability density function of 2N random variables.

In the definitions we will use both the real and the complex form. In general the
complex form allows us to express the formulas more compactly, while the real form
may be useful in the deduction of the results.

11.7.1 The Weyl Operator

The Weyl operator (also called displacement operator) is defined as

D(ξ) := exp
[

ξTa� − ξ∗ a
]

, ξ ∈ C
N (11.83)

where a = [a1, . . . , aN ]T is the column vector collecting the N annihilation opera-
tors, a� = [a∗

1 , . . . , a∗
N ]T is the column vector collecting the N creation operators, ξ

is a column vector containing N complex variables and ξ∗ is a row vector. Explicitly
the exponent is given by

ξTa� − ξ∗
i a =

N
∑

i=1

(ξi a∗
i − ξ∗

i ai ). (11.83a)

The Weyl operator is unitary and verifies the properties

D(ξ) = D∗(ξ) = D−1(ξ) = D(−ξ) (11.84)

and in particular for ξ = 0 it gives the identity, D(0) = IHN .
The real form is obtained by letting ξ = u + i v and using the relations (11.62),

giving the bosonic operators in terms of quadrature operators. The expression is,
after use of identity (11.81),

D(u, v) = exp
[

i q p
T Ω uv

]

, u, v ∈ R
N (11.85)

where q p is the vector collecting the 2N quadrature operators in interlaced form.
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11.7.2 Characteristic and Wigner Functions

The (Wigner) characteristic function of a density operator ρ acting in the bosonic
space HN is defined by the trace

χ(ξ) := Tr[ρ D(ξ)] = Tr
[

ρ exp
(

ξTa� − ξ∗ a
)]

, ξ ∈ C
N . (11.86)

The Wigner function is defined as the complex Fourier transform of the charac-
teristic function, namely8

W (λ) := 1

(2π)N

∫

CN
dξ χ(ξ) exp

[ 1
2 (λ∗ξ − λξ∗)

]

, λ ∈ C
N . (11.87)

Both χ(ξ) and W (λ) represent a density operator by functions of N complex vari-
ables. Note that they depend on ρ and a although this dependence is not indicated in
the symbols.9

The characteristic function χ(ξ) can be straightforwardly recovered from the
Wigner function through the inverse FT, namely

χ(ξ) = 1

(2π)N

∫

CN
dλ W (λ) exp

[

−1

2
(λ∗ξ − λξ∗)

]

, ξ ∈ C
N . (11.88)

From (11.86) and (11.88) we have the properties

χ(0) = Tr[ρ] = 1 ,
1

(2π)N

∫

CN
dλ W (λ) = 1. (11.89)

The density operator ρ can be recovered from the characteristic function χ(ξ) as

ρ = 1

π N

∫

CN
dξχ(ξ)D∗(ξ) (11.90)

known as Glauber’s inversion formula [20]. It can also be recovered from the Wigner
function as

ρ = 1

π N

∫

CN
dλW (λ)D∗(λ) (11.91)

whereD(λ) is the complex FT of the Weyl operator. The proof of (11.90) and (11.91)
will be seen in the next section for the single mode.

The above definitions are given in terms of the bosonic operators contained in the
column vectors a and a�. As seen for the Weyl operator, the characteristic and the

8 This definition is quite different from the original one given by Wigner [19].
9 Some authors, e.g., Ferraro et al. [8], use the notations χ[ρ](ξ) and W [ρ](λ) to indicate the
dependence on ρ.
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Wigner functions can be expressed in terms of the quadrature operators contained in
the column vectors q and p. Letting

ξ = u + iv , λ = x + iy , u, v, x, y ∈ R
N

and using the relation (11.81) we obtain the real form of the two functions. The
characteristic function becomes

χ(u, v) = Tr[ρ D(u, v)] = Tr
[

ρ exp
[

i q p
T Ω uv

]

]

(11.92)

and the Wigner function is expressed as the symplectic FT of the characteristic
function as

W (x, y) = 1

(2π)N

∫

RN
du
∫

RN
dv χ(u, v) exp

[

i xy
T Ω uv

]

. (11.93)

The inversion formulas (11.90) and (11.91), giving the density operator from the
characteristic and Wigner functions, can be written in real forms in terms of χ(u, v)
and W (x, y).

11.7.3 Statistical Description Provided by the Wigner Function

The Wigner function W (λ), and also its inverse Fourier transformχ(ξ), is particularly
suitable for describing the effect of quantum observables that may arise from quantum
mechanics and classical statistics. Note that the normalized Wigner function

w(λ) := 1

(2π)N
W (λ) (11.94)

has the property
∫

CN
w(λ) dλ = 1. (11.95)

Then w(λ) behaves partly as a classical probability density, which allows one to
calculate measurable quantities such as mean values and variances in a classical
like fashion. But, in contrast to a classical probability density, the Wigner function
possesses some disappointing features, due to Quantum Mechanics nature, as it can
become negative. For this reason it is called quasi-probability density.10

In the N -mode bosonic space, the statistical description of each mode is concerned
with the quadrature operators qi and pi , which are observables with a continuous
nature. Now, the general statistical description would be obtained in the framework of

10 The term used in Quantum Mechanics is quasi-probability distribution, but the reference to a
probability density seems to be more appropriate.
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simultaneous measurements seen in Sect. 3.8.2, in this case applied to the observables
qi and pi , but the noncommutativity of these operators leads to the impossibility of
a simultaneous quantum measurement.11

11.7.4 Mean Vector and Covariance Matrix

In the N -mode we have a vector of 2N quadrature operators

X := q p = [q1, p1 . . . , qN , pN ]T. (11.96)

In general the statistical description of 2N random variables is given by a multivariate
density or a multivariate characteristic function, which in Quantum Mechanics are
provided respectively by the N -mode Wigner and Wigner characteristic functions
(with the disappointing features discussed above). The moments of different orders
can be calculated from the characteristic function, by derivation, and from the Wigner
function, by integration, as in Probability Theory. But here we shall use the trace
formula:

〈O〉 = O := Tr[ρO]

where O is an observable, ρ is the density operator of the quantum system and
〈O〉 = O is the quantum average.12

Now, in preparation of Gaussian states, we deal with the means and the covari-
ances. The mean vector of (11.96) is given by

X = 〈X〉 = Tr[ρX ]. (11.97)

The natural way to define the covariance matrix is

R =
〈

ΔXΔXT
〉

= Tr[ρΔXΔXT] (11.98)

where ΔX := X −〈X〉 = X − X . As we shall see, this matrix is not symmetric, and
in the context of continuous variables it is usual to define another covariance matrix
V , which, by construction, turns out to be symmetric. The elements of V are defined
through the anticommutator {,} as

11 In a recent interesting overview paper by Paris [21] it is discussed how simultaneous quantum
measurements can be formulated in an enlarged Hilbert space.
12 We recall that the terms used in Quantum Mechanics are sometimes relaxed. In a quantum
measurement with an observable O , when the system is in the state ρ, the outcome is a random
variable m, whose expectation (average) is given by E[m|ρ] = Tr[ρO]. But this is often called the
“average of the observable” O , which leads to think that O is random, whereas it is a nonrandom
Hermitian operator, while the randomness is confined to the outcome of the measurement.

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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Vij = 1

2
〈{ΔXi ,ΔX j }〉 = 1

2
〈ΔXi ΔX j + ΔX j ΔXi 〉 (11.99)

where the symmetry is ensured by the anticommutator, which verifies the condition
{ΔX j ,ΔXi } = {ΔXi ,ΔX j }. The relation between the two covariance matrices is
given by

R = V + i Ω. (11.100)

This relation is developed and proved for the single mode in Problem 11.4, where,
using the commutation relation (11.51), we find

[

V11 V12
V21 V22

]

=
[

R11 R12
R21 R22

]

− i

[

0 1
−1 0

]

which can be written in the form (11.100).
The diagonal elements of the covariance matrix give the variances of the positions

and momentums and must verify the uncertainty principle, that is,

V2i−1,2i−1V2i,2i = R2i−1,2i−1 R2i,2i ≥ 1 , i = 1, 2, . . . , N (11.101)

while the nondiagonal elements are not constrained. However, Simon et al. [15, 22]
proved the more stringent condition

V + i Ω ≥ 0 (11.102)

where also the nondiagonal elements are constrained.
Another form of covariance matrix is defined starting from the quadrature opera-

tors ordered in the form [qT, pT] = [q1, . . . , qN , p1, . . . , pN ]T, giving the 2N ×2N
matrix

Y =
[

Yqq Yqp

Ypq Ypp

]

:=
[〈ΔqΔq〉 〈ΔqΔp〉
〈ΔpΔq〉 〈ΔpΔp〉

]

. (11.103)

This matrix contains the same entries as the matrix V , but permuted. The relation is

V = Π Y ΠT (11.104)

where Π is a permutation matrix (defined in Proposition 11.11). The form Y has the
advantage to express the uncertainty in a simpler way (see Sect. 11.12.3),

11.7.5 Definition of Gaussian States

Gaussian states are defined in terms of the characteristic and Wigner functions, which
should have a multivariate Gaussian form and hence they are completely specified
by the mean vector and the covariance matrix. This is in perfect analogy with the
classical definition of Probability Theory for Gaussian random vectors.
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Definition 11.1 An N -mode bosonic state with mean X = q p and covariance matrix
V is a Gaussian quantum state if its characteristic and Wigner functions have respec-
tively the following real form13:

χ(u, v) = exp
[

− 1
2 uv

T
(

Ω V ΩT
)

uv − i(Ωq p)Tuv
]

, (u, v) ∈ R
2N (11.105a)

W (x, y) =
exp
[

− 1
2 (xy − q p)TV −1(xy − q p)

]

(2π)N
√

det V
, (x, y) ∈ R

2N . (11.105b)

As we shall see, the most important states in the contest of continuous variables
turn out to be Gaussian. The main property of Gaussian states lies on the extremely
simple specification given by the pair (X , V ). For this reason, a Gaussian state
specified by a density operator is often indicated in the form ρ(X , V ).

Now, we develop Definition 11.1 in the single mode, where the mean vector is
q p = [q, p]T and the covariance matrix V is 2 × 2. Considering that

− 1

2
uv

T (Ω V ΩT) uv − i(Ωq p)Tuv

= −1

2
[u, v]

[

0 1
−1 0

] [

V11 V12
V12 V22

] [

0 −1
1 0

] [

u
v

]

− i
[

q p
]

[

0 1
−1 0

] [

u
v

]

= −1

2
(V11v2 + V22u2 − 2V12uv) − i(qv − p u),

the characteristic function turns out to be

χ(u, v) = exp

[

−1

2
(V11v2 + V22u2 − 2V12uv) − i(q v − p u)

]

. (11.106)

The Wigner function W (x, y), which is the symplectic FT of χ(u, v), turns out
to be

W (x, y) = 1

2π
√

det V
exp

[

−1

2

V22(x − q)2 + V11(y − p)2 − 2V12(x − q)(y − p)

det V

]

(11.107)

where det V = V11V22 − V 2
12.

11.7.6 Summary of State Representations

We have seen two equivalent representations of a state ρ in the phase space: the char-
acteristic function χ(ξ) and the Wigner function W (λ). Each representation provides

13 We do not consider the complex form because it is rather cumbersome.
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Fig. 11.5 Connections between the representations of a quantum state ρ. In principle all the con-
nections in the graph are possible, but we have represented only the more direct ones

the full information on the given state ρ in the sense that it allows the recovery of
the state. Moreover, it is possible to link each representation. We summarize these
ideas, as illustrated in Fig. 11.5. The characteristic function χ(ξ) is obtained through
the Weyl operator by definition (11.86) and the recovery of ρ by Glauber’s inversion
formula (11.90). The Wigner function W (λ) is linked to the characteristic function
χ(ξ) by the complex FT according to (11.87). From the Wigner function one can
obtain directly the density operator ρ through the FT of the Weyl operator D(λ)

using inversion formula (11.91).
There are several other representations of a density operator, such as the

P-representation, the R-representation, and the Q-representation (for a complete
review see [7]). Here we mention the P-representation, which has found widespread
application in Quantum Optics. It is based on the completeness of the coherent states
(see Sect. 11.4, Eq. (11.49)) and reads as

ρ =
∫

C

dα |α〉 〈α |P(α). (11.108)

The function P(α) in (11.108), called the P-representation of ρ, has properties similar
to the ones of the Wigner function. Sinceρ is Hermitian, P(α)must be real. Moreover,
since Trρ = 1, it must satisfy the normalization condition

∫

C
dα P(α) = 1, but the

condition P(α) ≥ 0 is not guaranteed everywhere. The same happens for the Wigner
function.

Finally, we note that for the important class of Gaussian states the representation
(or specification) is simply given by the pair (X , V ), from which we can calculate
χ(ξ) and W (λ), and then reconstruct the density operator.

Matrix representations. There is another important representation, not in the phase
space, given by the matrix representation with the Fock basis

ρnm = 〈n|ρ|m〉 , |m〉, |n〉 ∈ BF (N ). (11.109)
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From ρnm we can obtain the original operator ρ using the reconstruction formula
(2.33). Note that in the general N -mode the Fock basis BF (N ) consists of composite
Fock states, that is, |n〉 = |n1〉1 · · · |nN 〉N (see (11.68)).

The matrix representation ρnm can be obtained directly from the characteristic
function χ(ξ). In fact, from (11.90) one gets

ρnm = 1

π N

∫

C

dξχ(ξ)D∗
mn(ξ) (11.110)

where Dmn(ξ) is the matrix representation of D(ξ), which is explicitly given by
Proposition 11.7. Analogously from (11.91) one gets

ρnm = 1

π N

∫

C

dλW (λ)D∗
mn(λ) (11.111)

where D∗
mn(λ) is explicitly given by Proposition 11.8.

11.7.7 Simplifications with Pure Gaussian States

In the case of a pure state |ψ〉 the above relations hold with ρ = |ψ〉〈ψ | and with
a few simplifications. In particular, in the definition of the characteristic function
(11.86) one can use the identity (2.37) on the trace to get

χ(ξ) = 〈ψ |D(ξ)|ψ〉 = 〈ψ |ea∗ ξ−ξ∗ a |ψ〉. (11.112)

We recall that a pure state ρ has unitary rank and Tr[ρ2] = 1 (see Sect. 3.3.2). The
latter property leads to the following condition for the characteristic function of a
pure state (see Problem 11.6):

1

π N

∫

CN
dξ |χ(ξ)|2 = 1. (11.113)

The evaluation of this integral with χ(ξ) given by (11.105a) leads to the following
result (see Problem 11.7):

1

π N

∫

CN
dξ |χ(ξ)|2 = (det V )−1/2. (11.114)

Hence we find that a Gaussian state is pure if and only if the determinant of its
covariance matrix is unitary.

Problem 11.4 �� Prove the relation (11.100) between the covariance matrices R
and V in the single mode.

Problem 11.5 �� Compare conditions (11.101) and (11.102) in the single mode.

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_3


11.7 Phase Space Representation: Definitions for the N -Mode 499

Problem 11.6 ��� ∇ Prove condition (11.113), which states that the characteristic
function χ(ξ) refers to a pure state.
Hint Use the Fock expansion of the pure state and Proposition 11.9.

Problem 11.7 ��� ∇ Evaluate the integral (11.114) using Williamson’s theorem
(Theorem 11.2).

11.8 Phase Space Representations in the Single Mode

The general definitions of the previous section introduced for the N -mode apply in
particular to the single mode. In this passage the general formulas do not change
their form, but we get a few simplifications considering that the domains change as
C

N → C and R
2N → R

2. This allows us to get explicit results in an easier way.
The arguments become scalar variables related by λ = x + iy and ξ = u + iv, and
relation (11.81), linking the complex forms to the real forms, becomes explicitly (see
(11.78))

i(xu − yv) = 1
2 (ξλ∗ − λξ∗)

so that only the real forms will get a new shape, with the light difference in the
complex form due to the simplification a� → a∗.

Thus the Weyl operator for the single mode reads as

D(ξ) = eξ a∗−ξ∗ a , ξ ∈ C (11.115)

and its real form becomes

D(u, v) = ei(v q−u p) , (u, v) ∈ R
2. (11.116)

The characteristic function becomes

χ(ξ) = Tr[ρD(ξ)] = Tr
[

ρ eξ a∗ −ξ∗ a
]

, ξ ∈ C (11.117)

and its real form reads as

χ(u, v) = Tr[ρD(u, v)] = Tr
[

ρ ei(v q−u p)
]

, (u, v) ∈ R
2. (11.118)

The Wigner function becomes

W (λ) = 1

2π

∫

C

dξ χ(ξ) e(ξλ∗−ξ∗λ)/2 , λ ∈ C (11.119)
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and its real form reads as

W (x, y) = 1

2π

∫

R2
du dvχ(u, v) ei (−xu +yv) , (x, y) ∈ R

2. (11.120)

11.8.1 Normal-Ordered Characteristic Function

In the single mode the Weyl operator (11.115) can also be written with the separation
of the exponent as

D(ξ) = e− 1
2 |ξ |2 eξa∗

e−ξ∗a . (11.121)

In fact, using the commutation relation (11.54) with H = a∗ ξ and K = ξ∗a, we
find [H, K ] = |ξ |2 IH. Then we can apply the exponential identity (11.70) to get
(11.121).

With the form (11.121) the characteristic function reads as

χ(ξ) = e− 1
2 |ξ |2

χN (ξ) , ξ ∈ C (11.121a)

where
χN (ξ) = Tr

[

ρeξa∗
e−ξ∗a

]

(11.121b)

is called the normal-ordered characteristic function. “Normal-ordered” is a general
term meaning that the operator consists of factors where the left factors involve only
creation operators and the right factors involve only annihilator operators. This form
will be introduced systematically in Sect. 11.13.

We recall that the trace in the Fock space is explicitly given by

χ(ξ) =
∞
∑

n=0

〈n|ρ ea∗ ξ−ξ∗ a |n〉 = e− 1
2 |ξ |2

∞
∑

n=0

〈n|ρ χN (ξ) |n〉 . (11.122)

11.8.2 Explicit Results in the Single Mode

We now establish a few identities for the single mode, using relations (11.57a), that is,

a|0〉 = 0 , a|n〉 = √
n |n − 1〉 for n ≥ 1.

We start from a specific example: the evaluation of ar |3〉, where a is the annihilator
and |3〉 is the three-photon Fock state. We find
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a0|3〉 = |3〉 , a|3〉 = √
3|2〉 , a2|3〉 = a

√
3|2〉 = √

3 · 2|1〉
a3|3〉 = a

√
3 · 2|1〉 = √

3 · 2 · 1 |0〉 , a4|3〉 = a
√

3 · 2 · 1 |0〉 = 0.

Now, it is easy to prove by induction the following general result:

Proposition 11.5 For any pair of natural integers n, r

ar |n〉 =
{√

n(n − 1) · · · (n − r + 1) |n − r〉 n ≥ r

0 n < r.
(11.123)

Note that (11.123) can be written in the binomial form

ar |n〉 =
√

r !
(

n

r

)

|n − r〉 , n, r = 0, 1, 2, . . . (11.123a)

without conditions because
(k

r

) = 0 for r > k.
Analogously, using (11.57b), that is, a∗|n〉 = √

n + 1 |n + 1〉 for n ≥ 0, we find

(a∗)r |n〉 = √(n + 1)(n + 2) · · · (n + r)|n + r〉. (11.124)

In particular, we get the important identity

(a∗)n|0〉 = √
n! |n〉. (11.125)

A third identity is related to the Weyl operator.

Proposition 11.6 For the exponential of the annihilator operator a the following
identity holds:

|n, β〉 := e β a |n〉 =
n
∑

r=0

μnr βr |n − r〉 (11.126)

where |n〉 are the Fock states, β ∈ C, and

μnr =
√

1

r !
(

n

r

)

= 1

r !

√

n!
(n − r)! , n, r = 0, 1, 2, . . . . (11.126a)

In particular we have

|0, β〉 = eβa |0〉 = |0〉. (11.126b)
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Note that (11.126) defines a class of states (kets) |n, β〉 which depend on the
complex parameter β, and gives the Fock expansion of the kets.

11.8.3 Fock Representations

The Fock representation of an operator A is given by the matrix representation
obtained with the Fock basis BF = {|n〉 , n = 0, 1, 0, . . .}, that is, Amn = 〈m|A |n〉.

The Fock representations of the Weyl operator D(ξ) and of its FT D(λ), defined
respectively by

Dmn(ξ) = 〈m|D(ξ)|n〉 , Dmn(λ) = 〈m|D(λ)|n〉, (11.127)

are useful to get explicit results in the phase space. They can be evaluated in terms
of the generalized Laguerre polynomials L(β)

n (x). These polynomials have several
properties [23], and in particular they form an orthonormal class, as stated by

∫ ∞

0
e−x xβ L(β)

n (x) L(β)
m (x) dx = Γ (β + n + 1)

n! δmn. (11.128)

Proposition 11.7 The Fock representation of the Weyl operator (11.121), given by

Dmn(ξ) = 〈m|D(ξ)|n〉 = e− 1
2 |ξ |2〈m| eξa∗

e−ξ∗a |n〉, (11.129)

can be expressed in the form

Dmn(ξ) = e− 1
2 |ξ |2

√

n!
m! ξm−n L(m−n)

n (|ξ |2). (11.130)

where L(m−n)
n (x) is the generalized Laguerre polynomial.

The proof is given in Appendix Section “Proof of Fock Representation of Weyl
Operator (Proposition 11.7)”. The expression of Dmn(λ) is very close to the expres-
sion of Dmn(ξ), as recently proved [24]:

Proposition 11.8 The Fock representation Dmn(λ) of the FT of the Weyl operator
is given by

Dmn(λ) = (−1)min(m,n)Dmn(λ). (11.131)

In words: Dmn(λ) and Dmn(ξ) have the same expression apart from a sign. Another
interpretation of (11.131) is that Dmn(ξ) is an eigenfunction of the complex FT
with eigenvalue ±1.

Finally, we note the following property (proved in Appendix Section“Proof of
Proposition 11.9 on the Orthogonality of the Dmn”):
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Proposition 11.9 The functions Dmn(ξ), m, n = 0, 1, 2, . . ., giving the Fock repre-
sentation of the Weyl operator, are orthogonal functions in C, specifically

1

π

∫

C

dξ D∗
mn(ξ) Drs(ξ) = δmrδns . (11.132)

The same property holds for the functions Dmn(λ) (see Problem 11.9).

Problem 11.8 ��� Prove Glauber’s inversion formula (11.90) in the single mode.
Hint: use Fock representation and the orthogonality of the Dmn (see Proposition 11.9)

Problem 11.9 � Using the orthogonality of the functions Dmn(ξ) given by (11.132),
prove the orthogonality of the functionsDmn(λ), the Fourier transform of the Dmn(ξ).

11.9 Examples of Continuous States in the Single Mode

In this section we evaluate the characteristic and the Wigner functions of few ele-
mentary single-mode quantum states, with the purpose of testing the Gaussianity.

11.9.1 The Vacuum State ρ = |0〉 〈0|

The vacuum state is given by the zero Fock state |0〉 with density operator ρ = |0〉 〈0|.
We evaluate, using (11.122), the normally ordered characteristic function

χN (ξ) =
∞
∑

n=0

〈n|eξa∗
e−ξ∗a |0〉 〈0 |n〉 = 〈0|eξa∗

e−ξ∗a |0〉 .

Considering that (see (11.126)) e−ξ∗a |0〉 = |0〉 and 〈0|eξa∗ = 〈0|, we get

χN (ξ) = 1 → χ(ξ) = e− 1
2 |ξ |2 = e− 1

2 (u2+v2). (11.133)

Then, we find that the vacuum state is Gaussian with zero mean and covariance
matrix given by the identity

q p =
[

q
p

]

=
[

0
0

]

, V = I =
[

1 0
0 1

]

.

The characteristic and Wigner functions of the vacuum state (in real form) are shown
in Fig. 11.6.
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Fig. 11.6 Characteristic function and Wigner function of the vacuum state |0〉

11.9.2 Single-Photon State ρ = |1〉〈1|

We apply (11.122) to evaluate the normally ordered characteristic function of single-
photon state ρ = |1〉〈1|. We find

χN (ξ) =
∞
∑

n=0

〈n|eξa∗
e−ξ∗a |1〉〈1 |n〉 = 〈1|eξa∗

e−ξ∗a |1〉. (11.134)

Next we evaluate e−ξ∗a |1〉 using Proposition 11.6 with n = 1 to get e−ξ∗a |1〉 =
|1〉 − ξ∗ |0〉. Analogously, 〈1|eξa∗ = 〈1| + ξ 〈0|. Hence (11.134) becomes

χN (ξ) = (〈1|eξa∗
)(e−ξ∗a |1〉) = (〈1| + ξ 〈0|)(|1〉 − ξ∗ |0〉)

= 1 − |ξ |2.

In conclusion the characteristic function is

χ(ξ) = e− 1
2 |ξ |2(1 − |ξ |2) = e− 1

2 (u2+v2)(1 − u2 − v2) (11.135)

and therefore the one-photon state is not Gaussian.
The characteristic and Wigner functions of the single-photon number state are

shown in Fig. 11.7. Note in particular that the Wigner function in some regions of
the phase space is negative.
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Fig. 11.7 Characteristic function and Wigner function of a single-photon number state |1〉
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11.9.3 General Results for the Fock States

The characteristic function of the general Fock state ρ = |n〉 〈n| can be calculated as
above “by hand” for any n, but the evaluation becomes cumbersome as n increases.
The procedure is simplified if we use Proposition 11.7, where the Fock representation
of the Weyl operator is defined and evaluated. By comparison, we find immediately
that the characteristic function of the pure state |ψ〉 = |n〉 is given by (see (11.129))

χn(ξ) = e− 1
2 |ξ |2〈n| eξa∗

e−ξ∗a |n〉 = Dnn(ξ) (11.136)

that is, by the nth diagonal element of the matrix representation of the Weyl operator.
Hence from Proposition 11.7 we get

χn(ξ) = e− 1
2 |ξ |2 Ln(|ξ |2).

where Ln(x) = L(0)
n (x) is the ordinary Laguerre polynomial.

In Sect. 11.8, Proposition 11.8, we have seen that the FT Dmn(λ) of Dmn(ξ) is
given by (−1)min(m,n) Dmn(λ). On the other hand, the Wigner function is the FT
of χn(ξ). Hence, from (11.136) we find Wn(λ) = (−1)n Dnn(λ). In other words
the Wigner function Wn(λ) of the number states is an eigenfunction of the Fourier
transform with eigenvalues 1 or −1. To summarize

Proposition 11.10 For the number state |n〉 the characteristic function and the
Wigner function are respectively

χn(ξ) = e− 1
2 |ξ |2 Ln(|ξ2|)

Wn(λ) = (−1)n χn(λ) = (−1)ne− 1
2 |λ|2 Ln(|λ|2)

(11.137)

where Ln(x) = L(0)
n (x) is the ordinary Laguerre polynomial of order n.

We realize that the number states |n〉are not Gaussian for n > 0. The characteristic
and Wigner functions of the five-photon number state are shown in Fig. 11.8.

11.9.4 Coherent States

The theory of coherent states was developed in Sect. 11.4, where they were defined
as eigenstates of the annihilation operator a, that is, by the eigenvalue equation
a |α〉 = α|α〉. Now we consider an alternative definition: a coherent state |α〉 is a
transformation of the vacuum state |0〉 obtained with the Weyl operator D(α) (in
this context called displacement operator). Then, using the expression (11.121) for
D(α), one gets
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Fig. 11.8 Characteristic function and Wigner function of the five-photon number state |5〉
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Fig. 11.9 Characteristic function and Wigner function of a coherent state |α〉

|α〉 = D(α) |0〉 = e− 1
2 |α|2 eα a∗

e−α∗ a |0〉 . (11.138)

To prove the equivalence it is sufficient to show that both definitions lead to the same
Fock representation given by (11.46) (see Problem 11.1).

Now we consider the characteristic function. Above we have seen that the vac-
uum state is Gaussian with covariance matrix given by the identity and zero mean
value. On the other hand a coherent state |α〉 is obtained from the vacuum by trans-
formation (11.138). In Sect. 11.10 we shall see that such transformation preserves
the Gaussianity with the same covariance as the vacuum state (V = I ) but different
mean values, given by (q, p)T = (α,�α)T. Hence the characteristic function and
the Wigner function are respectively (Fig. 11.9)

χ(u, v) = e− 1
2 (u2+v2)+i(qv−pu)

W (x, y) = 1

2π
e− 1

2

[

(x−q)2+(y−p)2)
]

.
(11.139)

The quadrature operators have noise variance equal to one, i.e., Vq = Vp = 1, and,
according to (11.101), this is the minimum variance reachable symmetrically by
position and momentum operators. Pictorially, this symmetric behavior is represented
by a contour plot consisting of circles in the x-y plane (see Fig. 11.15).
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11.9.5 Thermal States

The thermal states can be defined through their characteristic function14

χ(ξ) = e− 1
2 (2N+1)|ξ |2 (11.140)

whereN ≥ 0 is a parameter called number of thermal photons in Chap. 8. These states
are very important because every Gaussian state can be decomposed into thermal
states (see Proposition 11.13 of the next section). They were applied in Chap. 8 to
take into account for the presence of thermal noise in Quantum Communications
systems.

The density operator corresponding to the characteristic function (11.140) can
be evaluated by Glauber’s inversion formula (11.90) or by formula (11.110) giv-
ing the matrix representation of ρ. But, considering that the characteristic function
has the form χ(ξ) = f (|ξ |2), it is convenient to use the more direct formula (see
Problem 11.11)

ρmn = δmn

∫ ∞

0
dx e− 1

2 x f (x) Ln(x) (11.141)

with f (x) = exp(− 1
2 (2N + 1)x), so that

ρmn = δmn

∫ ∞

0
dx e−(N+1)x Ln(x)

where we can use the integral [25, p. 809]
∫∞

0 e−bx Ln(x) dx = (b − 1)n/bn+1 to
get

ρmn = δmn
Nn

(N + 1)n+1 .

Hence, the Fock expansion of the density operator reads as

ρth =
∞
∑

n=0

Nn

(N + 1)n+1
|n〉 〈n| (11.142)

which establishes that thermal states have a geometrical distribution with mean N

(see (8.4)).
In conclusion, thermal states are Gaussian states with zero mean and covariance

matrix V = (2N + 1)I2.

Problem 11.10 ��� ∇ Thermal states are defined as the bosonic states that max-
imize the von Neumann entropy for a fixed energy. Prove this statement using
Lagrange multipliers.

14 Thermal states are defined as the bosonic states that maximize the von Neumann entropy for a
fixed energy, as pointed out by Weedbrook et al. [1].

http://dx.doi.org/10.1007/978-3-319-15600-2_8
http://dx.doi.org/10.1007/978-3-319-15600-2_8
http://dx.doi.org/10.1007/978-3-319-15600-2_8
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Problem 11.11 �� Prove that, if the characteristic function χ(ξ) depends only on
|ξ |2, say χ(ξ) = f (|ξ |2), the reconstruction formula (11.110) of Proposition 11.7)
is simplified as

ρnm = δmn

∫ ∞

0
dx e− 1

2 x f (x) Ln(x) (11.143)

where Ln(x) is the ordinary Laguerre polynomial.

Problem 11.12 �� Consider the alternative definition of a coherent state given by
(11.138). Show that the Fock representation of |α〉 is still given by (11.46).

11.10 Gaussian Transformations and Gaussian Unitaries

In this section we restart the theory on continuous variables in the general N -mode
and we will consider quantum transformations or quantum operations, which map
the state of the system ρ into a new state ρ̃

ρ → ρ̃ = Φ(ρ). (11.144)

As we shall see in the next chapter (Sect. 12.8), a quantum transformation defines
a quantum channel, which refers in general to an open quantum system. In closed
quantum systems the map (11.144) is provided by a unitary transformation according
to

ρ → ρ̃ = U ρ U∗ (11.145)

in agreement with Postulate 3 of Quantum Mechanics.

Definition 11.2 A quantum transformation is Gaussian when it transforms Gaussian
states into Gaussian states.15 When the Gaussian operation is performed according
to the unitary map (11.145) it is called Gaussian unitary.

It can be shown [1] that Gaussian unitaries are generated in the form U =
exp(−iH/2), where H is a Hamiltonian, which are second-order polynomials in
the field operators q p or in the bosonic operators a and a�. The application of such
unitaries to the annihilators a = [a1, . . . , aN ]T leads to a transformation called
Bogoliubov transformation, and, in terms of quadrature operators q p, to a sym-
plectic transformation.

Below we shall see that the two kinds of transformations are equivalent and we
shall find their relation. Also,we shall prove that they are really Gaussian transfor-
mations, which modify the mean vector and the covariance in the form

15 Note the strong analogy with the theory of stochastic processes in linear systems, where the
Gaussianity is preserved.

http://dx.doi.org/10.1007/978-3-319-15600-2_12
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X → S X + d , V → S V ST (11.146)

where X = q p, S is a 2N × 2N real matrix, and d ∈ R
2N . This is the key result

because it allows us to specify a Gaussian transformation in terms of the parameters
(S, d), which “live” in the phase space R

2N .

11.10.1 Definition of Bogoliubov and Symplectic
Transformations

Definition 11.3 An N -mode Bogoliubov transformation has the form16

a → U∗ a U = E a + F a� + y (11.147)

where E , F are N × N complex matrices and y ∈ C
N . The conditions of preserving

the commutation relations (11.65) are

E E∗ − F F∗ = IN , E FT = F ET. (11.148)

Definition 11.4 An N -mode symplectic transformation has the form

q p → S q p + d (11.149)

where S is a 2N × 2N real matrix and d ∈ R
2N . The condition of preserving the

commutation relations (11.65) is

S Ω ST = Ω. (11.150)

A matrix S that verifies this condition is called symplectic.

The conditions (11.148) and (11.150) will be developed below in the single mode.
For the general case they will be proved in Appendix section “About Symplectic

16 It is important to remark that, for convenience, some shorthand notations are used in the algebra
of matrices of operators. In fact, a, a� and z are N ×1, E and F are N × N , so that E a + F a� + y is
N ×1. Then, U∗a U must be N ×1, and its correct interpretation is given by the column vector [26]

U∗a U =
⎡

⎢

⎣

U∗a1 U
.
.
.

U∗aN U

⎤

⎥

⎦ .

Also, the identity operator is often omitted; in particular, y should be completed as y ⊗ IH =
[y1 IH , . . . , yN IH ]T.
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and Bogoliubov Transformations”. In the same appendix we also find the relations
between the parameters of the two transformations.

Proposition 11.11 The triplet (E, F, y) of a Bogoliubov transformation and the
pair (S, d) of a symplectic transformation are related as

S = Π

[(E + F) �(−E + F)

�(E + F) (E − F)

]

Π T , d = Π

[y
�y

]

(11.151)

where Π is the 2N × 2N permutation matrix whose entries are Πij = 1 for (i, j) =
(2k − 1, k) and for (i, j) = (2k, N + k) for k = 1, . . . , N, and Πij = 0 otherwise.
Relations (11.151) are easily inverted considering that Π Π T = I2N .

We give explicitly the permutation matrices for the first two orders:

N = 1 Π =
[

1 0
0 1

]

, Π T =
[

1 0
0 1

]

,

N = 2 Π =

⎡

⎢

⎢

⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥

⎥

⎦

, Π T =

⎡

⎢

⎢

⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥

⎥

⎦

.

A symplectic transformation, q p → S q p + d, acting on the phase space R
2N ,

corresponds to a unitary operator, say US,d .

Proposition 11.12 The unitary operator US,d , related to the symplectic transfor-
mation q p → S q p + d, can be written in the form

US,d = D(α) US , d = Π [α,�α]T (11.152)

where the unitary operator US provides the map q p → S q p and the Weyl operator

D(α) = exp(αTa� − α∗ a) provides the map q p → q p + d. The displacement

α ∈ C
N is related to the displacement d ∈ R

2N by d = Π [α,�α]T.

In fact, we prove that the action of the Weyl operator gives

D∗(α) a D(α) = a + α IH. (11.153)

To this end we use the exponential identity (11.71) with x = 1, H = a∗ α − α∗ a,
and K = a, and consider that [H, K ] = α[a, a∗] = α IH. Therefore the nested
commutators Dn in (11.71) are zero, and thus we obtain D∗(α) a D(α) = a + α,
where, as usual, the identity is omitted. The relation between α and d is given by
(11.151).

In Appendix section “Proof of the Gaussianity Preservation
Theorem (Theorem 11.1)” we shall prove the following fundamental statement:
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Theorem 11.1 (Gaussianity preservation theorem) Both Bogoliubov and symplec-
tic transformations are Gaussian. They modify the mean vector q p := X and the
covariance matrix according to

q p → S q p + d , V → S V ST. (11.154)

11.10.2 Williamson’s Theorem and Thermal Decomposition

Multimode Gaussian states can be studied with a unified approach using Williamson’s
Theorem, which provides a powerful tool for the interpretation and also the generation
of Gaussian states. The theorem is concerned with a very interesting decomposition
of the covariance matrix, which, together with the mean value, completely specified
a Gaussian state.

Theorem 11.2 (Williamson) An N-mode covariance matrix V can be decomposed
in the form

V = Sw V ⊕ ST
w , V ⊕ = diag [σ 2

1 , σ 2
1 , . . . , σ 2

N , σ 2
N ] (11.155)

where Sw is a 2N ×2N symplectic matrix and the σ 2
i are positive real values, called

the symplectic eigenvalues of V . The decomposition is unique up to a permutation
of the element of V ⊕.

The evaluation of the symplectic spectrum {σ 2
1 , . . . , σ 2

N } can be carried out from
the standard eigenspectrum of the matrix i Ω V . In fact, this matrix is Hermitian and
its eigenspectrum has the form {±σ 2

1 , . . . ,±σ 2
N }.

The symplectic decomposition (11.155) provides a powerful way to handle the
properties of Gaussian states. In particular the uncertainty principle can be rewritten
in the simple form [1]

V > 0 , V ⊕ ≥ I2N → σ 2
i ≥ 1. (11.156)

From Williamson’s theorem we find also:

Proposition 11.13 An arbitrary N-mode Gaussian state can be generated by the
tensor product of N single-mode thermal states, with covariance matrix

Vk =
[

σ 2
k 0
0 σ 2

k

]

= σ 2
k I2

and number of thermal photons Nk = 1
2 (σ 2

k − 1).
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In fact, we have seen in Sect. 11.9 that a single-mode thermal state is zero mean
and specified by a covariance matrix σ 2 I2, which is related to the average photon
number by N = 1

2 (σ 2 − 1). Now, the N -mode Gaussian states with the diagonal
covariance matrix V ⊕, given by (11.155), can be written in the form17

ρth (0, V ⊕) = ρ(0, σ 2
1 I2) ⊗ · · · ⊗ ρ(0, σ 2

N I2). (11.157)

The Gaussian state with covariance matrix V is generated from ρth (0, V ⊕) in the
form

ρ(0, V ) = US ρth (0, V ⊕) U∗
S (11.158)

where US is the unitary operator corresponding to the symplectic transformation
provided by the matrix Sw of decomposition (11.155). A non zero-mean Gaussian
state is generated by introducing in (11.158) an appropriate displacement operator.

From the above relations the determinant of the covariance matrix can be expressed
in terms of the symplectic eigenvalues as

det(V ) = σ 4
1 · · · σ 4

N . (11.159)

In fact, recalling that the product of the (ordinary) eigenvalues of a matrix is given
be the determinant (see (2.46)), we have det(i Ω V ) = (−1)N σ 4

1 · · · σ 4
N , where

det(i Ω V ) = det(i Ω) det(V ) = (−1)N det(V ).
A single-mode thermal state with number of thermal photons N = 1

2 (σ 2 − 1)

degenerates to the vacuum state |0〉 when N = 0 → σ 2 = 1. Then Proposi-
tion 11.13 gives:

Proposition 11.14 An N-mode Gaussian state becomes pure when det(V ) = 1,
that is, when all its symplectic eigenvalues are unitary. It can be generated from the
tensor product of the ground states of each mode.

This statement is in agreement with the conclusion of Sect. 11.7.7.

11.11 Gaussian Transformations in the N-Mode

We recall the notations: T for transpose, ∗ for complex conjugate of a number, trans-
pose conjugate of a vector and of a matrix, and for the adjoint of an operator, � for
the conjugate of a vector. Then for a column vector of length N we have

17 In general, if a covariance matrix has the block diagonal form V = diag [V1, V2], the state
ρ(0, V ) is factored in the form ρ(0, V1 ⊗ V2) = ρ(0, V1) ⊗ ρ(0, V2). This identity can be proved,
e.g., using reconstruction formula (11.90).

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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x =

⎡

⎢

⎢

⎣

x1
.
.
.

xN

⎤

⎥

⎥

⎦

, xT = [

x1, . . . , xN
]

, x∗ = [

x∗
1 , . . . , x∗

N

]

, x� =

⎡

⎢

⎢

⎣

x∗
1
.
.
.

x∗
N

⎤

⎥

⎥

⎦

= (x∗)T.

In the literature we find a plethora of forms for the Gaussian unitaries in single-
mode, in two-mode and in the general N -mode. Here we follow the unified form
developed by Ma and Rhodes [26] for the N -mode. This form, using appropriate
matrix notations, turns out to have extremely similar algebraic properties as that of
the single mode.

There are only three fundamental Gaussian unitaries, which are specified by the
following unitary operators18:
(1) N -mode displacement operator

DN (α) := eαTa� −α∗ a , α = [α1, . . . , aN ]T ∈ C
N (11.160)

which is the same as the Weyl operator (11.83).
(2) N -mode rotation operator

RN (φ) := ei a∗φ a , φ N × N Hermitian matrix . (11.161)

(3) N -mode squeeze operator19

Z N (z) := e
1
2

[

(a∗ z a�−aT z∗ a)
]

, z N × N symmetric matrix . (11.162)

Combination of these operators allows us to get all Gaussian transformations. The
corresponding Gaussian states are typically generated by applying these transforma-
tions to replicas of vacuum states and/or of coherent states.

We now list the most popular operators encountered in the literature, obtained as
special cases of the fundamental unitary operators:

18 The notations used at the exponentials ensure a “scalar” combination of the bosonic operators.
For instance in the displacement operator we have explicitly

αTa� − α∗ a =
∑

i

(αi a∗
i − α∗ ai ).

19 The squeeze operator is usually denoted by the letter S, but this is in conflict with the notation
used for the symplectic matrix encountered in symplectic transformations.
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• single-mode and two-mode displacement operators

D(α) = eα a∗ −α∗ a := D(a, α)

D2(α1, α2) = eα1a∗
1+α2a∗

2−α∗
1 a1−α∗

2 a2 = D(a1, α1) D(a2, α2).
(11.163)

• single-mode rotation operator, given by (11.161) with φ a real number

R(φ) = ei φa∗ a . (11.164)

• N -mode rotation operator, RN (φ) with the matrix φ having the property
RN (Nφ) = IH; it is used to express the symmetry operator of the GUS (see
Sect. 11.20.2).

• beam splitter, given by a two-mode rotation operator (11.161) with φ the
Hermitian matrix

φ =
[

0 −iβ
iβ 0

]

→ R2(φ) = eβ(a∗
1 a2−a2 a∗

1 ) (11.165)

in agreement with definition of [1, 7].
• single-mode squeeze operator, given by (11.161) with z = reiθ a complex num-

ber
Z(z) = e

1
2 [z a∗a∗−z∗a a]. (11.166)

• two-mode squeeze operator, given by (11.161) with the symmetric matrix20

z =
[

0 z12
z12 0

]

→ Z2(z) = e
1
2 ( z12a∗

1 a∗
2−z∗

12a1a2). (11.167)

Other forms of the 2 × 2 squeeze matrix z will be seen in Sect. 11.18 with the beam
splitter.

11.11.1 Evaluation of Bogoliubov and Symplectic
Transformations

The development of Gaussian transformations obtained with the fundamental opera-
tors is left to the problems. The convenient technique is to develop first the Bogoliubov

20 In the literature we find slightly different definitions. For instance, for the squeeze operator in the
single mode: in [7] Z(z) = exp[−z∗a1a2 + z a∗

1 a∗
2 ] with z = reiθ , in [1] Z(z) = exp[ 1

2 r(a1a2 −
a∗

1 a∗
2 )] wit z = r , and in [27] Z(z) = exp[z∗a1a2 − z a∗

1 a∗
2 ] with z = reiθ . In the two-mode: in

[28] Z2(z) is given by (11.167), with z12 = −2rei2θ .
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transformation using the BCH identity and then the symplectic transformation using
Proposition 11.11. Note that the BCH identity must be used in the form of N “scalar”
relations

ex H ak e−x H =
∞
∑

n=0

xn

n! Dn(k) , k = 1, . . . , N (11.168)

where D0(k) = ak and Dn(k) = [H, Dn−1(k)] for n ≥ 1. The results are the
following.

The displacement operator gives

D∗
N (α) a DN (α) = a + α.

Then, the symplectic matrix is the identity S = I2N and the displacement vector
d = Π [α,�α]T.

The rotation operator gives

R∗
N (φ) a RN (φ) = ei φ a. (11.169)

The symplectic matrix S is expressed by trigonometric functions of the matrix φ.
Specifically,

Srot (φ) = Π

[

cos φ − sin φ

sin φ cos φ

]

ΠT , drot =
[

0
0

]

. (11.170)

To find the Bogoliubov transformation corresponding to the squeeze operator, a
preliminary step is the polar decomposition z = reiθ of the squeeze matrix (see
Theorem 2.7), where the matrix r is obtained as the square root of the PSD matrix
z z∗ and the matrix eiθ is obtained as r−1z. Then the Bogoliubov transformation is
given by21

Z∗(z) a Z(z) = cosh r a + sinh r eiθ a� (11.171)

which is a special case of (11.147) with E = cosh r , F = sinh reiθ , and y = 0.
Hence the symplectic matrix is

Ssq (reiθ ) = Π

[

cosh r + sinh r cos θ sinh r sin θ

sinh r sin θ cosh r − sinh r cos θ

]

ΠT (11.172)

while dsq = 0. In particular for θ = 0 the symplectic matrix becomes

Ssq(r) = Π

[

er 0
0 e−r

]

ΠT. (11.173)

21 Notations as sinh reiθ should be intended as (sinh r) (eiθ ).

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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11.11.2 Combination of the Fundamental Unitaries

The three fundamental unitaries can be combined in several ways to get new Gaussian
unitaries.

Given two Gaussian unitaries U1 and U2, the cascade of U1 followed by U2
gives the Gaussian unitary U12 = U2 U1. For the Bogoliubov transformation of the
cascade, using (11.147) twice, we find: if (Ei , Fi , yi ) is the triplet corresponding to
Ui , the triplet (E12, F12, y12) corresponding to U12 is given by

E12 = E2 E1 + F2 F∗
1 , F12 = E2 F1 + F2 E∗

1 , y12 = E2 y1 + F2 y∗
1 + y2. (11.174)

Analogously, for the pair (S12, d12) of the symplectic transformation, using the rela-
tion X → SX + d (see (11.149)), we find:

S12 = S2 S1 , d12 = S1 d1 + d2. (11.175)

Note that in a cascade combination one can switch the order of operators with
appropriate change in the parameters, as illustrated in Fig. 11.10

DN (α) Z N (z) = Z N (z) DN (β) β = cosh r α − sinh reiθ α∗ (11.176a)

Z N (z) RN (φ) = RN (φ) Z N (z0) z0 = e−iφz e−iφT
(11.176b)

DN (α) RN (φ) = RN (φ) DN (β) β = e−iφ α. (11.176c)

The proof can be done by operating directly with the Gaussian unitaries, by imposing
the condition of the form Ũ1Ũ2 = U1U2. In alternative one can use (11.174) or
(11.175) (see Problem 11.19).

For the rotation operator we find

RN (φ1) RN (φ2) = RN (φ3). (11.177)

where the “phase” φ3 is uniquely determined by the relation ei φ3 = ei φ1 ei φ2 . Note
that in general RN (φ1) RN (φ2) 	= RN (φ1+ φ2), while the equality holds if and only if

ZN(z) DN( ) = DN( ) ZN(z)

RN( ) ZN(z) = ZN(z0) RN( )

RN( ) DN( ) = DN( ) RN( )

Fig. 11.10 The order of fundamental Gaussian unitaries can be inverted with appropriate modifi-
cation of the parameters, as indicated by (11.176a), (11.176b) and (11.176c)
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the Hermitian matrices φ1 andφ2 commute. Note the relevant case RN (φ0) RN (φ0) =
RN (2φ0). For the proof the key is given by Theorem 2.5, which states that a unitary
operator U can always be written in the form U = ei φ , with φ a Hermitian operator.

11.11.3 The Most General Gaussian Unitary

The importance of the fundamental unitaries lies in the following:

Theorem 11.3 The most general Gaussian unitary is given by the combination of
the three fundamental Gaussian unitaries DN (α), Z N (z), and RN (φ), cascaded in
any arbitrary order, that is,

Z N (z) DN (α) RN (φ) , RN (φ) DN (α) Z N (z), etc.

The proof of this statement is easily found for the single mode by applying the
singular-value decomposition to the 2 × 2 symplectic (real) matrix S (see [1] and
Appendix section “The Most General Gaussian Unitary in the Single Mode”). For
the general multimode the proof can be obtained using the Lie algebra. Specifically,
Ma and Rhodes [26], generalizing a previous result obtained for the single mode [29,
30], proved that a unitary operator e−iH/2, where H is a general N -mode quadratic
Hamiltonian, can be written in the form

U = ei γN Z N (z) DN (α) RN (φ) (11.178)

where ei γN is a phase factor (which is irrelevant for the state generation). On the
other hand we can apply the switching rules (11.176) to change the order of the
fundamental unitaries in (11.178), with appropriate modifications of the parameters.
In other words, (11.178) can be written in six distinct orders.

It is important to remark that a Gaussian unitary is equivalent to the symplectic
map (11.149) acting on the phase space (R2N ,Ω), specified by the pair (S, d).
As stated in Proposition 11.12, the Gaussian unitary can always be written in the
form US,d = DN (α)US , where US corresponds to the map q p → Sq p and the
displacement operator DN (α) in the phase space provides the translation q p →
q p + d. By Theorem 11.3 US can be written as the cascade combination

US = Z N (z) RN (φ) or US = RN (φ) Z N (z).

11.11.4 Summary of Gaussian Transformations

The specification of a Gaussian transformation in the bosonic N -mode Hilbert space
is provided by a unitary operator U , having the property (Gaussian unitary) that, if
ρ = ρ(X , V ) is a Gaussian state, also U ρ U∗ is a Gaussian state.

http://dx.doi.org/10.1007/978-3-319-15600-2_2


518 11 Fundamentals of Continuous Variables

Bogoliuvov transformationsGaussian unitaries

symplectic transformations

D( ) Z(z)

R( )

U (E,F,y)

(S,d)

(I,I,α) (Esq,Fsq,0)

(Erot,Frot,0)

(I,ddisp) (Ssq,0)

(Srot ,0)

Fig. 11.11 Classes of Gaussian unitaries and related classes of Bogoliuvov and symplectic trans-
formations. The small ellipses indicate the three basic Gaussian transformations

The application of the annihilation operator a to the Gaussian unitary in the
form U∗ a U gives the Bogoliubov transformation (11.147), specified by the triplet
(E, F, y) (Fig. 11.11). From the Bogoliubov transformations one gets the corre-
sponding symplectic transformation (11.149), specified by the pair (S, d). The two
kinds of transformations are equivalent to each other and in fact there is a one-to-
one correspondence between the triplet (E, F, y) and the pair (S, d), as stated by
Proposition 11.11. Theorem 11.1 ensures that both Bogoliubov and symplectic trans-
formations are Gaussian and gives a simple relation between the parameters of the
input and output Gaussian states.

In Theorem 11.3 we have seen that the three fundamental Gaussian unitaries
(displacement, rotation, and squeezing) cover the whole class of Gaussian unitaries
in the sense that their combination, in an arbitrary order, gives the most general
Gaussian unitaries.

Problem 11.13 � Prove that the Bogoliubov transformation generated by the
N -mode displacement operator is given by

D∗
N (α) a DN (α) = a + α.

Then evaluate the corresponding symplectic matrix.

Problem 11.14 ��� Prove that the N -mode rotation operator (11.161) produces
the Bogoliubov transformation

RN (φ) a RN (φ) = ei φ a.
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Problem 11.15 �� Write explicitly the symplectic matrix of a two-mode rotation
operator in the two cases of matrix φ

φ =
[

φ0 0
0 φ0

]

, φ =
[

0 φ0
φ0 0

]

(φ0 real ).

Hint: use identities (11.74) for the exponential and the expressions of Π and Π T

given after Proposition 11.11.

Problem 11.16 ��� Prove that the N -mode squeeze operator produces the Bogoli-
ubov transformation

Z∗
N (z) a Z N (z) = cosh r a + sinh r eiθ a�, (11.179)

where the symmetric matrix z is written in the polar form z = r ei θ .

11.12 N-Mode Gaussian States

Williamson’s theorem states that all Gaussian states can be obtained from thermal
states through Gaussian unitaries. On the other hand, we have seen that all Gaussian
unitaries can be obtained as cascade combination of the three fundamental unitaries
(displacement, rotation, and squeezing). By elaboration of these ideas we shall see
that the most general Gaussian states can be generated from thermal noise by appli-
cation of the three fundamental Gaussian unitaries. For pure states the result is much
simpler in that the rotation can be dropped.

11.12.1 The Most General Mixed Gaussian State

The proof of Theorem 11.3 on the most general Gaussian unitary is obtained using
the Lie algebra related the bosonic Hilbert space H⊗N . The search for the most
general Gaussian state requires to work both in the Hilbert space and in the phase
space.

We have seen that the specification of a Gaussian state is given by the pair (X , V ),
where the mean vector X and the covariance matrix V can be handled separately.
According to Proposition 11.13, the application of Williamson’s theorem gives the
so called thermal decomposition of a Gaussian state, as

ρ(0, V ) = US ρth (0, V ⊕) U∗
S (11.180)

where US is the unitary operator corresponding to the symplectic matrix Sw of decom-
position (11.155) and
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ρth (0, V ⊕) = ρ(0, σ 2
1 I2) ⊗ · · · ⊗ ρ(0, σ 2

N I2). (11.181)

A non zero-mean Gaussian state is generated by introducing in (11.180) an appropri-
ate displacement operator. In conclusion, by combination of the previous statements:

Theorem 11.4 The most general N-mode Gaussian state is generated from thermal
state (11.181) by application of the three fundamental unitaries as

ρ(d, V ) = DN (α) RN (φ) Z N (z) ρth (0, V ⊕) Z∗
N (z) R∗

N (φ) D∗
N (α) (11.182)

where the order DN (α) RN (φ) Z N (z) can be arbitrarily changed with suitable mod-
ification of the arguments.

In (11.182) the vector d ∈ R
2N is related to the vector α ∈ C

N as stated by
Proposition 11.12, that is, d = Π [α,�α]T.

11.12.2 The Most General Pure Gaussian State

Theorem 11.4 holds in general for mixed states. For pure states, where all the sym-
plectic eigenvalues are unitary, the thermal state degenerates to the product of N
replicas of the vacuum state |0〉, say |0N 〉, and then ρ(d, V ) = |ψ(d, V )〉〈ψ(d, V )|,
with

|ψ(d, V )〉 = DN (α) RN (φ) Z N (z) |0N 〉.

But we can invert the order of the squeezing and the rotation with the change z →
eiφ z eiφT

, where, after the change, RN (φ)|0N 〉 = |0N 〉. In conclusion:

Corollary 11.1 The most general N-mode pure Gaussian state is obtained from the
N replica |0N 〉 of the vacuum as

|ψ(d, V )〉 = DN (α) Z N (z) |0N 〉. (11.183)

In words, the most general N -mode Gaussian pure state is a squeezed–displaced
state (or a displaced–squeezed state). This result is important for Quantum Com-
munications, where the information carrier is provided by Gaussian states, so that
the most general analysis of a Quantum Communications system can be limited to
squeezed–displaced states.

To emphasize the generation of pure Gaussian states we introduce the following
notations:

• |α〉 = DN (α) |0N 〉: displaced (or coherent) state
• |z〉 = Z N (z) |0N 〉: squeezed state
• |α, φ〉 = RN (φ) DN (α) |0N 〉: displaced–rotated state
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• |z, α〉 = DN (α) Z N (z) |0N 〉: squeezed–displaced state
• |z, α, φ〉 = RN (φ) DN (α) Z N (z) |0N 〉: squeezed–displaced–rotated state,

where the order of the terms refers to the generation, e.g., “squeezed–displaced”
means that first the squeeze operator is applied and then the displacement operator.

Using these terms we can say that the class of squeezed–displaced states coin-
cides with the class of pure Gaussian states, as established by Corollary 11.1. In
particular, it is easy to see that a squeezed–displaced–rotated |z, α, φ〉 is a squeezed–
displaced state with the following modification of the arguments (see Theorem 11.8):

|z, α, φ〉 =
∣

∣

∣eiφz eiφT
, α eiφ

〉

.

In words, the rotation is absorbed by the squeezing and displacement.

11.12.3 Covariance Matrix of an N-Mode Gaussian State

A general procedure to evaluate the covariance matrix of the Gaussian state |z, α〉 =
DN (α) Z(z)|0N 〉 is based on Gaussian preservation theorem (Theorem 11.1), which
states that a symplectic transformation with matrix S modifies the covariance matrix
as V → S V ST. Considering that the covariance matrix of the vacuum state is the
identity I2N , we find

V = Sdisp Ssq I2N ST
sq ST

disp = Ssq ST
sq (11.184)

where the displacement DN (α) does not give any contribution because Sdisp = I2N .
The symplectic matrix Ssq is given by (11.172) and the covariance matrix can be
written in the form (see (11.104) and [26])

V = Π

[

Yqq Yqp

Y T
qp Ypp

]

ΠT (11.185)

where

Yqq = 1

2

[

cosh 2r + sinh 2r eiθ + cosh 2rT + sinh 2rT e−iθT
]

Ypp = 1

2

[

cosh 2r − sinh 2r eiθ + cosh 2rT − sinh 2rT e−iθT
]

Yqp = 1

2i

[

− cosh 2r + sinh 2r eiθ + cosh 2rT − sinh 2rT e−iθT
]

(11.185a)
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satisfying
YqqYpp = IN + Y 2

qp . (11.186)

When the squeeze matrix is real and symmetric: z = z∗ ≥ 0, that is, eiθ = e−iθ and
r = rT = (z2)1/2, we have

Yqp = 0 , YqqYpp = IN (11.187)

and the N -mode Gaussian state is a minimum uncertainty state in the sense of
(11.187).

11.13 Normal Ordering of Gaussian Unitaries ⇓

In Quantum Mechanics a product of operators is usually said to be normal-ordered
(also called Wick-ordered) when all creation operators are to the left of all annihilation
operators in the product. The process of putting a product into normal order is called
normal ordering. In Sect. 11.8 we saw an example of normal ordering related to
the single-mode Weyl operator. In this section we extend this ordering to N -mode
Gaussian unitaries in a complete general form, following Ma and Rhodes [26]. These
authors used a very sophisticated approach based on Lie algebra for the deduction of
the general result. An alternative approach is developed in the book by Louisell [11].

The usefulness of the normal ordering is mainly related to the generation of
quantum states from the vacuum state |0N 〉 and it is based on the property that, if U
is an exponential operator of the form U = exp[ f (a, a�) a], where f (a, a�) is an
arbitrary function of the bosonic operators a and a�, then

exp[ f (a, a�) a] |0N 〉 = |0N 〉. (11.188)

In words, when U acts on the vacuum state, it can be replaced by the identity. For
the proof of (11.188) it is sufficient to expand the exponential and then apply the
identity ak

i |0〉 = 0 to each mode (see (11.57)).

Notation. The normally ordered form of a product f (a, a∗) of annihilation and
creation operators is denoted by : f (a, a∗) :. It denotes an operator coinciding with
f (a, a∗) but ordered in such a way that the creation operators appears at the left
of the annihilation operators. The normally ordered form is obtained by repeated
applications of the identity a a∗ = 1 + a∗a. For instance: a∗aa∗ = a∗(1 + a∗a) =
a∗ + a∗a∗a. Hence : a∗aa∗ := a∗ + a∗a∗a.
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11.13.1 Ordering of the Most General Gaussian Unitary

We have seen that the most general Gaussian unitaries is given by the cascade com-
bination of the three fundamental unitaries. The normal-ordered form of a rotated–
displaced–squeezed unitary reads as

Z N (z) DN (α) RN (φ) = K0 B(α, a) C(a) F(α, a) (11.189)

where
K0 := | det S|1/2 exp

[

− 1
2 (α∗α + αT T ∗α)

]

∈ C (11.189a)

and

B(α, a) := exp
[

αT ST a� + 1
2 a∗ T a�

]

C(a) :=
∞
∑

n=0

: [a∗(S ei φ − IN ) a]n :
n! : : over all ordered terms

F(α, a) := exp
[

−(αTT ∗ + α∗) eiφ a − 1
2 aTeiφT

T ∗eiφ a
]

(11.189b)

with z, S, and T the N × N matrices

z = reiθ , S = sech r , T = tanh r eiθ . (11.189c)

When we are interested in other permutations of the unitaries we can apply the
switching rules (11.176) to get the corresponding ordered form. Here we develop
the squeezed–displaced unitary DN (α) Z N (z), which is obtained from (11.189) by
dropping the rotation operator and switching the order of squeeze and displacement.
Then we get

DN (α) Z N (z) = K0 B(β, a) C(a) F(β, a) (11.190)

where
β := cosh r α − sinh reiθ α∗

K0 := | det S|1/2 exp
[

− 1
2 (β∗β + βT T ∗β)

] (11.190a)

and
B(β, a) := exp

[

βT ST a� + 1
2 a∗ T a�

]

C(a) := exp[a∗ log(S) a]
F(β, a) := exp

[

−(βTT ∗ + β∗) a − 1
2 aT T ∗ a

]

.

(11.190b)

Note that property (11.188) holds for both C(a) and F(β, a).
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11.13.2 Fock Expansion of the Most General
Pure Gaussian State

The most general pure Gaussian state is given by

|z, α〉 = DN (α) Z N (z) |0N 〉 (11.191)

where |0N 〉 is the N -mode vacuum state. The Fock expansion reads as

|z, α〉 =
∞
∑

n=0

|z, α〉n|n〉 (11.192)

where the Fourier coefficients are given by

|z, α〉n := 〈n|DN (α) Z N (z) |0N 〉. (11.193)

In (11.192) the summation is over all the N -tuples n = (n1, . . . , nN ) of nonnegative
integers and |n〉 = |n1〉1 ⊗ · · · ⊗ |nN 〉N := |n1〉1 · · · |nN 〉N are the Fock numbers in
the N -mode.

The Fock expansion allows us to get an explicit form of the quantum state and
the Fourier coefficients are seen as probability amplitudes. Specifically

pn(k) := P[n1 = k1, . . . , nN = kN ] =∣∣ |z, α〉k

∣

∣

2 (11.194)

gives the joint probability of the presence of k1 photons in the first mode, of k2
photons in the second mode, etc.

For the evaluation of the Fock expansion it is convenient to adopt the normal-
ordered form (11.190) together with property (11.188). In fact, in (11.190b) both
C(a) and F(β, a) are normal-ordered so that (11.191) gives

|z, α〉 = K0 B(β, a) |0N 〉 = K0 exp
[

αT ST a� + 1
2 a∗ T a�

]

|0N 〉 (11.195)

where K0 is a complex constant. Thus we only need to develop the exponential
operator B(β, a). The expansion of this exponential leads to a multivariate form of
the type

B(β, a) =
∞
∑

n=0

b(n1, . . . , nN )(a∗
1)n1 · · · (a∗

N )nN (11.196)

where, to each power of the creator operators we can apply the identity (11.125),
that is, (a∗)n|0〉 = √

n!|n〉, to get from (11.191)
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|z, α〉 = K0

∞
∑

n=0

b(n1, . . . , nN )
√

n1! · · · nN ! |n1〉 · · · |nN 〉 (11.197)

which gives the Fock expansion of a general N -mode Gaussian state.
It remains to find the coefficients in (11.196). A general solution may be the

following: in the expression of B(β, a) we replace the creators by complex variables,
say a∗

i → ui , so that B(β, u) becomes a generating function. Hence we can apply
the Taylor expansion to B(β, u) to capture the coefficients as

b(n1, . . . , nN ) = 1

n1! · · · nN !
∂n1+···+nN B(β, u)

∂un1
1 · · · ∂unN

N

∣

∣

∣

u1=0,...,uN =0
.

This holds in the general case. As we shall see, in the specific cases, the generating
function can be related to well known generating functions, as the ones of Laguerre
and Hermite polynomials, thus achieving synthetic results.

We have presented the application of the normal-ordered form of Gaussian uni-
taries in the general N -mode. In the following sections the theory will be applied to
the single mode and to the two-mode.

11.14 Gaussian Transformations in the Single Mode

In this section we develop for the single mode the Gaussian transformations intro-
duced in Sect. 11.11, arriving at more specific results. We note that, having followed
the unified form of Ma and Rhodes, the expressions for the single mode are practically
identical to the ones of the N -mode, with slight simplifications.

As an exercise, a few results established for the general N -mode are re-established
for the single mode.

11.14.1 Bogoliubov and Symplectic Transformations

In the single mode the Bogoliubov transformation (11.147) takes the form

ã = U∗ a U = E a + F a∗ + y (11.198)

where E , F , and y are complex scalars. The commutation condition (11.148) reads as

|E |2 − |F |2 = 1. (11.199)

(see Problem 11.17 for a proof).
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The symplectic transformation (11.149) becomes explicitly

[

q̃
p̃

]

=
[

S11 S12
S21 S22

] [

q
p

]

+
[

d1
d2

]

(11.200)

and the commutation condition (11.150) becomes

S Ω ST =
[

0 det S
− det S 0

]

=
[

0 1
−1 0

]

with det S = 1.
To find the relations between the parameters of the two transformations, in

(11.198) we express the bosonic operators a and a∗ in terms of the quadrature
operators q and p, using (11.55), and we write the complex variables in the form
E = E1 + iE2, F = F1 + iF2, and y = y1 + iy2. Then we find

q̃ + i p̃ = (E1 + i E2)(q + i p) + (F1 + i F2)(q − i p) + y1 + i y2

and hence
q̃ = (E1 + F1) q + (−E2 + F2) p + y1

p̃ = (E2 + F2) q + (E1 − F1) p) + y2,
(11.201)

which can be written in the symplectic form (11.200) with

S =
[(E + F) �(−E + F)

�(E + F) (E − F)

]

, d =
[

y1
y2

]

. (11.202)

11.14.2 Williamson’s Theorem and Thermal Decomposition

For the single-mode, Williamson’s theorem reads as

Theorem 11.5 (Williamson) A single-mode covariance matrix can be decomposed
in the form

V = Sw σ 2 I2 ST
w = σ 2 Sw ST

w (11.203)

where σ 2 is the symplectic eigenvalue of V .

Explicitly, with

V =
[

v11 v12
v12 v22

]

, Sw =
[

s11 s12
s21 s22

]
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the theorem states

σ 2SwST
w = σ 2

[

s2
11 + s2

12 s11s21 + s12s22

s11s21 + s12s22 s2
21 + s2

22

]

=
[

v11 v12
v12 v22

]

. (11.204)

The symplectic condition for Sw gives

SwΩST
w =

[

0 s11s22 − s12s21
s12s21 − s11s22 0

]

=
[

0 1
−1 0

]

= Ω

which leads to the condition det(Sw) = s11s22 − s12s21 = 1. The symplectic eigen-
value σ 2 is given by the positive (ordinary) eigenvalue of the matrix iΩV and results

in σ 2 =
√

v11v22 − v2
12 = √

det(V ).
Now we can check that the matrix Sw is given by

Sw = σ−1 V 1/2. (11.205)

Then, in general, to find Sw we have to evaluate the eigendecomposition V =
U Λ U∗, which gives V 1/2 = U Λ1/2 U∗.

As an example, consider the covariance matrix of a squeezed state, given by
(11.238). In this case it is immediate to find that σ = 1 and

Sw =
[

er 0
0 e−r

]

.

11.14.3 Fundamental Gaussian Unitaries
and Transformations

From the general definitions of Sect. 11.11 one gets:

(1) single-mode displacement operator

D(α) = eα a∗−α∗ a , α ∈ C. (11.206)

(2) single-mode rotation operator

R(φ) = ei φa∗ a , φ ∈ R. (11.207)

(3) single-mode squeeze operator

Z(z) = e
1
2

[

z(a∗)2−z∗ a2
]

, z = reiθ ∈ C. (11.208)
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The combination of these operators allows us to get the most general single-mode
Gaussian transformations.

As seen in Proposition 11.12, the displacement operator U = D(α) provides
the Bogoliubov transformation

D∗(α) a D(α) = a + α, .

The parameters of the symplectic map are

Sdisp =
[

1 0
0 1

]

, ddisp =
[α

�α

]

. (11.209)

Hence the displacement operator does not change the covariance matrix.
The rotation operator provides the Bogoliubov transformation (see Problem

11.18)
R∗(φ) a R(φ) = ei φ a (11.210)

and the symplectic map q p → Srot q p with

Srot (φ) =
[

cos φ − sin φ

sin φ cos φ

]

, drot =
[

0
0

]

. (11.211)

From the squeeze operator with z = rei θ one gets the Bogoliubov transforma-
tion (see Appendix section “Squeezed States. Proof of Bogoliubov Transformation
(11.171)”)

Z∗(z) a Z(z) = cosh r a + sinh reiθ a∗ (11.212)

and the symplectic matrix is

Ssq (reiθ ) =
[

cosh(r) + cos(θ) sinh(r) sin(θ) sinh(r)

sin(θ) sinh(r) cosh(r) − cos(θ) sinh(r)

]

(11.213)

while dsq = 0. In particular for θ = 0 the symplectic matrix is

Ssq(r) =
[

er 0
0 e−r

]

. (11.214)

11.14.4 The Most General Single-Mode Gaussian Unitary

Theorem 11.3 gives for the single mode:

Theorem 11.6 The most general Gaussian unitary in the single mode is given by
the combination of the three fundamental Gaussian unitaries D(α), Z(z), and R(φ),
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cascaded in an arbitrary order. Thus there are six possibilities: D(α) Z(z) R(φ),
Z(z) D(α) R(φ), etc.

In Appendix section “The Most General Gaussian Unitary in the Single Mode”
we give a specific proof for the single mode, based on the SVD, which allows us to
prove that the most general 2 × 2 symplectic matrix can be decomposed in the form

S = Srot (θ) Ssq(r) Srot (φ). (11.215)

Problem 11.17 � Prove in the single bosonic mode condition (11.148), which
states that the commutation relation is preserved after a Bogoliubov transformation.

Hint Use the bilinearity of the commutator

[u1 H1 + u2 H2, v1 K1 + v2 K2] = u1v1[H1, K1] + u1v2[H1, K2] + u2v1[H2, K1] + u2v2[H2, K2]
(11.216)

where ui , v j are complex numbers and Hi , K j are operators.

Problem 11.18 �� Prove that the rotation operator (11.207) produces the Bogoli-
ubov transformation (11.210).

Problem 11.19 �� Prove that a squeezing followed by a displacement is equivalent
to a displacement followed by a squeezing with the change of the displacement
amount indicated in (11.176).

11.15 Single-Mode Gaussian States and Their Statistics

The general theory of the previous sections is particularized to the single mode with
the target to find explicit results.

11.15.1 The Most General Gaussian State in the Single Mode

Theorem 11.4 formulates the most general Gaussian state in the N -mode. For the
single mode the theorem is simplified as follows:

Theorem 11.7 Any one-mode Gaussian state can be generated from the thermal
state ρth (N) := ρ(0, σ 2) by a squeezing Z(z) followed by a displacement D(α)

ρ = D(α) Z(z) ρth (N) Z∗(z) D∗(α) (11.217)

where N is the number thermal photons and σ 2 = 2N + 1 is the variance of the
thermal state.
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For the proof we start from the general form of Theorem 11.4, where, considering
that the order of the fundamental operators is arbitrary, we choose rotation followed
by squeezing, followed by displacement, to get

ρ = D(α) Z(z) R(φ) ρth (N) R∗(φ) Z∗(z) D∗(α) := ρN(z, α).

Next we prove that the presence of the rotation is irrelevant (in the single mode).
To see this, we consider the last relation in the phase space, where it modifies the
covariance matrix of the thermal state σ 2 I2 in the form (recall that Sdisp(α) is the
identity)

V = Ssq(z) Srot (φ) σ 2 I2 ST
rot (φ) ST

sq(z)

where Srot (φ) ST
rot (φ) = I2 and therefore V = Ssq(z) σ 2 I2 ST

sq(z). In words, the
rotation is absorbed by the thermal state. The above result with the thermal state
replaced by the vacuum state, is in agreement with Corollary 11.1:

Corollary 11.2 The most general single-mode pure Gaussian state is a squeezed–
displaced state.

|z, α〉 = D(α) Z(z) |0〉. (11.218)

With z, α ∈ C one can generate the whole class of pure Gaussian states.

11.15.2 Generality on Pure Gaussian States in the Single
Mode

For convenience we recall the symbols introduced in Sect. 11.12, rewritten for the
single mode:

• |α〉 = D(α) |0〉: displaced (or coherent) state
• |z〉 = Z(z) |0〉: squeezed state
• |α, φ〉 = R(φ) D(α) |0〉: displaced–rotated state
• |z, α〉 = D(α) Z(z) |0〉: squeezed–displaced state
• |z, α, φ〉 = R(φ) D(α) Z(z)|0〉: squeezed–displaced–rotated state,

We want to find explicit results for each class of states, as the Fock representation,
the mean value and the covariance matrix. We can do this for the class of squeezed–
displaces states, which includes the other classes, but sometimes we prefer to begin
with the simplest cases.

For the Fock expansion we use the general theory developed in the previous
section, starting from the normal-ordered form, which reads for the single mode as

D(α) Z(z) = K0 B(β, a) C(a) F(β, a) (11.219)

where α and z = reiθ are complex scalars,
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β = cosh r α − eiθ sinh r α∗ , λ = eiθ tanh r

K0 = (sech r)1/2 exp
[

− 1
2 (|β|2 + β2λ)

] (11.219a)

and
B(β, a) := exp

[

β sech r a∗ + 1
2λ(a∗)2

]

C(a) := exp[log(eiθ sinh r) a∗a]
F(β, a) := exp

[

−(βλ∗ + β∗) a − 1
2λ∗ a2

]

.

(11.219b)

To find the Fourier coefficients |z, α〉n it is sufficient to get the expansion of the
operator B(β, a), which in the single mode has the form

B(β, a) = exp
[

β sech r a∗ + 1
2λ(a∗)2

]

=
∞
∑

n=0

b(n) (a∗)n . (11.220)

The Fourier coefficients are then given by

|z, α〉n = K0 b(n)
√

n!.

The explicit form of (11.220) will be seen starting from for the particular cases and
finally for the general case.

From the Fourier coefficients one gets the statistical parameters of interest, such as
the probability distribution of the photon number, given by pn(i)|z, α〉 :=∣∣ |z, α〉i

∣

∣

2

and the average photon number, given by the two expressions

n̄|z, α〉 = 〈z, α|a∗a|z, α〉 =
∞
∑

n=0

i pn(i)|z, α〉. (11.221)

From the symplectic transformation generated by the Gaussian unitary one obtains
the symplectic matrix S and then the mean and the covariance matrix using (11.146).

11.15.3 Coherent States

The coherent states |α〉 , α ∈ C are generated from the vacuum state |0〉 by application
of the displacement operator (see Sect. 11.9.4), that is,

|α〉 = D(α) |0〉 = eα a∗−α∗a |0〉 . (11.222)

Using the normal-ordered form of D(α), we can seen that the Fock representation
has Fourier coefficients
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|α〉n = e− 1
2 |α|2 αn

√
n! |n〉 (11.223)

and that the photon number has a Poisson distribution with mean n̄|α〉 = |α|2. The
distribution has been shown in Fig. 4.17.

We suggest the reader to evaluate (11.223) using the above general theory.

11.15.4 Rotated States and Displaced–Rotated States

The rotation operator applied to the vacuum state gives back the vacuum state

R(φ) |0〉 = ei a∗ a |0〉. (11.224)

The rotation operator applied to a coherent state gives (see (11.210))

|α, φ〉 = R(φ) |α〉 = R(φ)D(α)|0〉 = |eiφα〉.

The new state is still a coherent state identified by the complex number ei φα. Thus
the Fock representation is given by (11.223) with α replaced by eiφα.

A phase rotation changes the covariance matrix in the form

V → Srot (φ) V ST
rot (φ)

where the symplectic matrix Srot (φ) is given by (11.170). But with a coherent state
at the input (having V = I2), the covariance does not change.

11.15.5 Squeezed States

Squeezed states have a fundamental role in the framework of continuous variables
and therefore they will be seen in detail. The application of the squeeze operator
to the vacuum state generates the squeezed vacuum state, briefly squeezed state,
according to

|z〉 = Z(z) |0〉 = e
1
2 (z(a∗)2−z∗ a2) |0〉 (11.225)

where z = reiθ ∈ C is the squeeze factor.
The evaluation of the Fock representation of the state |z〉 was developed by Yuen

[31]. Here we follow the above general theory, which requires to find the expansion
of B(β, a) = exp[βsech ra∗ + 1

2 λ(a∗)2 with α = β = 0. We easily get

http://dx.doi.org/10.1007/978-3-319-15600-2_4
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Fig. 11.12 Probability distribution of photon number in vacuum squeezed states, pn(i) = P[n =
i
∣

∣ z], for two real values of the squeeze factor z

B(0, a) = e
1
2 λ(a∗)2 =

∞
∑

n=0

λn

2nn! (a
∗)2n

so that b(2n) = λn/(2nn!) and b(2n + 1) = 0. Then

|z〉2n = √
sech r

√
(2n)!

2nn! λn λ = eiθ tanh r (11.226)

so that the squeezed state |z〉 is given by a linear combination of even photon number
states. The photon statistics is described by the probability distribution

pn(2i) = P[n = 2i |z] = sech r
(2i)!

(2i i !)2 tanh2i r

pn(2i + 1) = P[n = 2i + 1|z] = 0,

(11.227)

as illustrated in Fig. 11.12.

11.15.6 Squeezed–Displaced States

We finally develop the general single-mode Gaussian states, given by

|z, α〉 = D(α) Z(z) |0〉 = eα a∗−α∗ae
1
2 (z(a∗)2−z∗ a2) |0〉 (11.228)

where now z := reiθ is a scalar. The Fock representation of a squeezed–displaced
state was evaluated by Yuen in a seminal paper [32], where the Fock coefficients are
expressed by the Hermite polynomials Hn(x), specifically22

22 Yuen considered the state D(α) Z(−z) |0〉 instead of D(α) Z(z) |0〉.
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| − z, α〉n = 1√
μ n!

(

ν

2μ

)n/2

Hn

(

β√
2μν

)

exp

(

−1

2
|β|2 + ν∗

2μ
β2
)

(11.229)

where

μ = cosh r , ν = sinh r exp(i θ) , β = μα − να∗. (11.229a)

Here, following our general formulation, we obtain the alternative expression for
the Fock coefficients

|z, α〉n =
√

n!
μ

(

β

μ

)n

Hn

(

μν

β2

)

exp

(

−1

2
|β|2 − β2 ν∗

2μ

)

(11.230)

where Hn(x) are the polynomials (of degree �n/2�)

Hn(x) :=
�n/2�
∑

j=0

1

(n − 2 j)! j ! x j . (11.231)

The proof of (11.230) is given in Appendix section “Alternative to Yuen’s Formula
for Squeezed–Displaced States”. The advantage of the new formulation is that the
polynomials Hn(x) are simpler than the Hermite polynomials Hn(x).

The photon number distribution of the state (11.228) is given by pn(i) =∣∣ |z, α〉i
∣

∣

2

and it was illustrated in Fig. 7.42. Note that for r = 0, absence of squeezing, pn(i)
becomes a Poisson distribution. For α = 0, absence of displacement, the distribution
becomes (11.227), in agreement with the property Hi (0) = 0 for i odd.

The mean photon number in a displaced squeezed state is given by [31, 39]

n̄|z,α〉 = |α|2 + sinh2 r (11.232)

with a clear separation of the contribution of the displacement and of the squeezing.

About the polynomials. The Hermite polynomials Hn(x) are universally known,
but also the polynomials Hn(x), defined by (11.231), are known in field of discrete
probability distributions [33] since they are related to the so called Hermite distri-
bution. The Hermite distribution is defined starting from two independent Poisson
variables X and Y with means a and b. The probability distribution of the random
variable Z = X + 2Y , which defines the Hermite distribution, is given by

P[Z = n] = e−a+b
�n/2�
∑

j=0

an−2 j b j

(n − 2 j)! j ! = e−a+banHn

(

b

a2

) j

.

Note that here the polynomials Hn(x) appear in a probability distribution, while in
(11.230) they express an amplitude distribution.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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Problem 11.20 �� Prove that in a cascade of three symplectic transformations
X̃i = Si Xi + di , i = 1, 2, 3, the covariance matrix at the output is given by

V123 = S3S2S1V0ST
1 ST

2 ST
3

where V0 is the covariance matrix at the input.

Problem 11.21 � � � Prove that the covariance matrix of a squeezed–displaced–
rotated state |z, α, φ〉 is given by

Vsq,rot (z, φ) =
[

cosh(2r) + cos(2φ + θ) sinh(2r) sin(2φ + θ) sinh(2r)

sin(2φ + θ) sinh(2r) cosh(2r) − cos(2φ + θ) sinh(2r)

]

.

(11.233)

11.16 More on Single-Mode Gaussian States

In the previous section we have seen that the class of Gaussian states coincides with
the class of squeezed–displaced states. Then the general pure Gaussian state |z, α〉
depends on two complex parameters

z = reiθ , α = Δ ei ε. (11.234)

By particularization of these parameters we get the subclasses

• z = 0, α = 0: the vacuum state
• z = 0, α 	= 0: the coherent states
• z 	= 0, α = 0: the squeezed vacuum states.

The class of single-mode mixed states depends on a further parameter, σ 2 = 2N+1,
where N is the number of thermal photons present in the state. For convenience, we
will call these mixed states noisy squeezed–displaced states.

In this section we investigate these states more in depth because they represent
the carriers of information in Quantum Communications systems.

11.16.1 Covariance Matrix and Wigner Function

We examine in detail the covariance matrix V and the Wigner function W (x, y) of
a general Gaussian state |z, α〉. Now, in |z, α〉 the squeezing part does not give any
contribution to the mean value, so we have

[

q
p

]

=
[α

�α

]

=
[

Δ cos ε

Δ sin ε

]

. (11.235)
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On the other hand the covariance matrix of the displacement component is the iden-
tity, so that the covariance matrix is simply given by V = Ssq (z)ST

sq (z), specifically
(see Problem 11.22)

V =
[

V11 V12
V12 V22

]

=
[

cosh 2r + cos θ sinh 2r sin θ sinh 2r
sin θ sinh 2r cosh 2r − cos θ sinh 2r

]

.

(11.236)

Considering that det V = 1, the Wigner function, given by (11.107) for the single
mode, results in

W (x, y) = 1

2π
e
− 1

2

[

V22(x − q)2 + V11(y − p)2 − 2V12(x − q)(y − p)
]

(11.237)

with q , p given by (11.235) and the Vij given by (11.236).
A convenient representation of the Wigner function W (x, y) in the x, y plane is

given by a contour plot, which represents the curves of equal levels, given by the
relation W (x, y) = L , with L real. In general, these curves are tilted ellipses, as
shown on the left of Fig. 11.13. The ellipses have the common center given by the
displacement α, and the main axis is tilted by the angle 1

2θ . The lengths of the main
axis and of the minor axis are proportional to e2r and to e−2r , respectively, and so
they are independent of the squeeze phase θ (see Problem 11.21).

Absence of squeeze phase. With θ = 0 we obtain a great simplification. The
covariance matrix becomes

1
2

x

y

u

v

x

y

ε ε

Fig. 11.13 On the left. Contour plot of the Wigner function W (x, y) of a general Gaussian state
|z, α〉 with z = r eiθ and α = Δ eiε . The mean vector (q, p) = (Δ cos ε,Δ sin ε) gives the
displacement amount and determines the center of the elliptic countours. The main axis of the
ellipse is tilted with respect to the x-axis of the angle 1

2 θ , independently of the displacement. On
the right. Contour plot of the Wigner function W (x, y) with a zero squeeze phase (θ = 0)
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V =
[

cosh2 r + sinh2 r 0
0 cosh2 r − sinh2 r

]

=
[

e2r 0
0 e−2r

]

. (11.238)

Then in the contour plot of the Wigner function the ellipses turn out to be horizontally
displayed, as shown on the right of Fig. 11.13.

11.16.2 Uncertainty Principle

The Uncertainty Principle states that the variances Vq = V11 and Vp = V22 of the
canonic variables q and p are constrained as

Vq Vp ≥ 1. (11.239)

For a pure Gaussian state, considering that det V = V11V22 − V 2
12 = 1, we have

Vq Vp = 1 + V 2
12 = 1 + sin2 θ cosh2 2r.

This is in agreement with the uncertainty principle stated by (11.186) in the N -mode.
Then, in general, a Gaussian state (squeezed–displaced state or simply squeezed state)
has different noise variances, Vq = cosh 2r + cos θ sinh 2r and Vp = cosh 2r −
cos θ sinh 2r , and also their product Vq Vp is not the minimum established by the
Uncertainty Principle. This is illustrated in Fig. 11.14, where Vq , Vp and Vq Vp are
plotted as a function of r for three different values of θ (recall that the variances do
not depend on the displacement α).

For θ = 0 (squeezed state with z = r real as on the right of Fig. 11.13) the noise
variances are still different, Vq = e2r and Vp = e−2r , but their product keeps the
minimum uncertainty Vq Vp = 1.

θ=0
θ= /8
θ= /4

Vq

Vp

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

r

θ=0

θ= /8

θ= /4

VqVp

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

r

π 
π π 

π 

Fig. 11.14 Squeezed states have different noise variances Vq = V11 and Vp = V22. The product
Vq Vp keeps to the minimum uncertainty Vq Vp = 1 when the squeeze phase θ = 0, while Vq Vp > 1
for θ 	= 0
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Fig. 11.15 Countour plot of
the Wigner function of the
vacuum state |0〉 and of a
coherent state |α〉

x

y

vacuum state

coherent state

Finally for z = 0, corresponding to displaced states or to the vacuum state, the
covariance matrix is the identity and therefore the position and the momentum have
variance equal to one, Vq = Vp = 1, that is, the minimum variance established by
the Uncertainty Principle. In the phase space these states have a contour plot given
by circles, as shown in Fig. 11.15.

11.16.3 Noisy Gaussian States

Above we have considered pure Gaussian states, generated from the vacuum state.
For mixed Gaussian states, generated from a thermal state with a given number of
thermal photons N, as stated by Theorem 11.7, we have the same classification as
for pure Gaussian states, starting form the most general mixed state ρN(z, α), which
will be called noisy squeezed–displaced state.

The covariance matrix V of a noisy state is obtained by multiplying the covariance
matrix of the corresponding pure state by the factor σ 2 = 2N + 1, so that

V = (2N + 1)

[

cosh 2r + cos θ sinh 2r sin θ sinh 2r
sin θ sinh 2r cosh 2r − cos θ sinh 2r

]

. (11.240)

A useful interpretation of noisy states is to think that they are pure states corrupted
by noise, as in Classical Communications. To this end the adequate model is a
quantum channel, just called additive-noise Gaussian channel. Channels are open
systems, which will be considered in Sect. 12.8. Now, if we send a pure Gaussian
state |z, α〉 with covariance matrix Vin through an additive-noise Gaussian channel
specified by the number of thermal photons N, at the output the state is still Gaussian
and the covariance matrix becomes (2N + 1)Vin , that is, we find the state denoted
above by ρN(z, α) (Fig. 11.16).

We realize that in the phase space the effect of noise is simply an increase of the
variances with a consequent increase of the uncertainty. In the contour plot of the

http://dx.doi.org/10.1007/978-3-319-15600-2_12
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additive–noise

channel

N

|(z, ) ρN(z, )

pure state mixed state

Fig. 11.16 A pure Gaussian state |z, α〉 is sent through a Gaussian channel specified by the number
of thermal photons N. At the output the state is still Gaussian but becomes the mixed state ρN(z, α)

x

y
pure Gaussian state

x

y
noisy Gaussian state

Fig. 11.17 Contour plot of a pure Gaussian state |z, α〉 and of a noisy Gaussian state ρN(z, α).
The effect of noise is to increase the axes of the ellipses

Wigner function the noise increases the axes of the ellipses, as shown in Fig. 11.17
in the general case of a squeezed–displaced state.

Problem 11.22 � Prove that the covariance matrix of the single-mode Gaussian
state |z, α〉 is given by (11.236).

Problem 11.23 �� Consider the Wigner function W (x, y) of a general Gaussian
state given by (11.237) and introduce the change of coordinate (see the left of
Fig. 11.13)

x = u cos 1
2θ − v sin 1

2θ , y = u sin 1
2θ + v cos 1

2θ

which provides a rotation of the angle 1
2θ . Prove that the new Wigner function W̃ (u, v)

is obtained with the covariance matrix

V =
[

e2r 0
0 e−2r

]

.

In words, the rotation of 1
2θ removes the squeeze phase in z = re i θ .
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11.17 Gaussian States and Transformations
in the Two-Mode

The general theory for the N -mode developed in Sects. 11.10–11.12 is applied to
the two-mode. The application will be not systematic as done for the single mode,
but it is limited to a few important cases, in particular to evidence the presence of
entanglement, not possible in the single mode.

11.17.1 The Fundamental Gaussian Unitaries
in the Two-Mode

We write explicitly the fundamental unitaries.
The two-mode displacement operator is

D2(α) = eα1a∗
1+α2a∗

2−α∗
1 a1−α∗

2 a2 = D(α1) D(α2) , α = [α1, α2]T

so it is given by the product of two single-mode displacement operators, each one
acting separately on the corresponding mode.

The two-mode rotation operator is specified by a 2 × 2 Hermitian matrix φ and
reads explicitly as

R2(φ) = ei (a∗
1φ11a1+a∗

1φ12a2+a∗
2φ21a1+a∗

2φ22a2)

where φ21 = φ∗
12. This operator will be considered in the case of the beam splitter.

The two-mode squeeze operator is specified by a 2 × 2 symmetric matrix z and
reads explicitly as

Z2(z) = e
−1

2

{

[a∗
1 , a∗

2 ]
[

z11 z12
z12 z22

] [

a∗
1

a∗
2

]

− [a1, a2]
[

z∗
11 z∗

12
z∗

12 z∗
22

] [

a1
a2

]}

.

The Bogoliubov and symplectic transformations corresponding to the fundamen-
tal operators are obtained by the general formulas of the N -mode, but in the general
case their explicit form becomes cumbersome for the presence of exponentials of
matrices (see Sect. 11.6.2). Then we will develop only the cases of interest.
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11.17.2 Caves–Schumaker Two-Mode Squeezed–Displaced
States

According to Corollary 11.1 the most general pure Gaussian states in the two-mode
is a squeezed–displaced state |z, α〉, obtained by the two-mode vacuum state |02〉 =
|0〉1 |0〉2 as

|z, α〉 = D2(α) Z2(z) |0〉1 |0〉2 (11.241)

where z is a 2 × 2 symmetric matrix. Here we develop the case usually considered
in the literature as two-mode squeeze operator [8, 28, 34], where the matrix z has
the simple form

z =
[

0 z0
z0 0

]

→ Z2(z0) = e
1
2 (z0 a∗

1 a∗
2−z∗

0a1a2) (11.242)

where z0 = r0 eiθ0 with r0, θ0 ∈ R. Then the Gaussian unitary (11.241) becomes

D(α1)D(α2)Z2(z0) = eα1a∗
1−α∗

1 a1 eα2a∗
2−α∗

2 a2) e
1
2 (z0 a∗

1 a∗
2−z∗

0a1a2) (11.243)

and the squeezed–displaced state is generated in the form

|z0, α〉 := D(α1)D(α2)Z2(z0) |0〉1 |0〉2 . (11.244)

The covariance matrix of the state (11.244) is given by (see Problem 11.25)

V =
[

cosh 2r0 I2 cos θ0 sinh 2r0 Y2 + sin θ0 sinh 2r0 W2
cos θ0 sinh 2r0 Y2 + sin θ0 sinh 2r0 W2 cosh 2r0 I2

]

(11.245)

where

W2 =
[

0 1
1 0

]

, Y2 =
[

1 0
0 −1

]

.

In particular, for θ0 = 0 we find

V =
[

cosh 2r0 I2 sinh 2r0 Y2
sinh 2r0 Y2 cosh 2r0 I2

]

.

The Fock representation of the state (11.244) was evaluated by Caves et al. [28],
who obtained the following expression for the Fock coefficients:

|z0, α〉n1,n2 = K0
1

q!u p
12un1−p

1 un2−p
2 Lq−p

p

(

−u1u2

u12

)

(11.246)
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where Lq−p
p (z) are the generalized Laguerre polynomials, p = min(n1, n2), q =

max(n1, n2) and

K0 = sech r0 exp
[

− 1
2 (|β1|2 + |β2|2 + 2β1β2λ)

]

β1 = cosh r0 α1 − eiθ0 sinh r0 α∗
1 , β2 = cosh r0 α2 − eiθ0 sinh r0 α∗

2

u1 = sech r0 β2 , u2 = sech r0 β1 , u12 = λ = eiθ0 tanh r0.

(11.246a)

A simpler formula can be obtained following the general theory of Sect. 11.13,
based on the the normal-ordered form of the operator (11.243). In this form the
parameters of interest are K0 and

B(β, a) = eL with L = sech r0(β1a∗
2 + β2a∗

1) + λ a∗
1a∗

2 . (11.247)

Then we get the following expression of the Fock coefficients (see Appendix Section
“Proof of Fock Expansion (11.248) of Caves–Schumaker States”)

|z0, α〉n1,n2 = K0

√

n1!n2!un1
1 un2

2 Ln1n2

(

u12

u1u2

)

(11.248)

where Ln1n2(x) are the polynomials

Ln1n2(x) :=
min(n1,n2)
∑

k=0

1

(n1 − k)!(n2 − k)!k! xk . (11.248a)

From the Fock coefficients one gets the distribution

pn1,n2(i1, i2) := P[n1 = i1, n2 = i2] =∣∣ |z0, α〉n1,n2

∣

∣

2 (11.249)

giving the probability of the presence of i1 photons in the first mode and of i2
photons in the second mode. This distribution is illustrated in Fig. 11.18 with θ0 = 0
for α1 = 3, α2 = 3 and r0 = 1.5.

About the polynomials. Here too, we have a competition between the celebrated
Laguerre polynomials Lq−p

p (x) and the polynomials Ln1n2(x), practically unknown.
In the theory of discrete probability distributions [33] the polynomials Ln1n2(x)

are related to bivariate Poisson distributions, which are defined starting form three
independent Poisson variables Y1, Y2, Y3 with means λ1, λ2, λ3. Then we let X1 =
Y1 + Y3, X2 = Y2 + Y3 and the bivariate Poisson distribution is defined as the
probability P[X1 = n1, X2 = n2], which is given by

P[X1 = n1, X2 = n2] = exp (−λ1 − λ2 − λ3) λ
n1
1 λ

n2
2 Ln1n2

(

λ3

λ1λ2

)

.
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Fig. 11.18 Probability
distribution pn1,n2 (i1, i2) of
pairs of photon numbers
(n1, n2) in a two-mode
squeezed–displayed state,
for α1 = 3, α2 = 3 and
r = 1.5

i1

i2

pn1 ,n2 (i1,i2)

But here the polynomials Ln1n2(x) express a probability distribution, while in
(11.248) they express a probability amplitude.

11.17.3 Einstein–Podolsky–Rosen (EPR) States

A very important class (also for historic reasons) of two-mode states is obtained by
omitting the displacement in the previous class of states, that is,

|z0〉epr := Z2(r) |0〉1 |0〉2 = e
1
2 (z0 a∗

1 a∗
2−z∗

0a1a2) |0〉1 |0〉2 z0 = r0eiθ0 (11.250)

which are known as Einstein-Podolsky–Rosen (EPR) states.
The covariance matrix of the EPR states is the same as that of squeezed–displaced

states (see (11.245)). The parameters to evaluate the Fock representation are obtained
from (11.247) and read

K0 = sech r0 =
√

1 − tanh2 r0

B(0, a) = eL with L = λ a∗
1a∗

2 λ = eiθ0 tanh r0.

(11.251)

The expansion of the exponential is immediate and gives

B(0, a) =
∞
∑

n=0

(λ a∗
1 a∗

2)n

n! .

Hence the Fock expansion of EPR states is
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Fig. 11.19 Probability
distribution pn1,n2 (i1, i2) of
pairs of photon numbers
(n1, n2) in a two-mode
squeezed state, for r = 1.6.
The pairs have the same
photon number in each mode

i1

i2

pn1 ,n2 (i1,i2)

|z0〉epr = K0 B(0, a) |0〉2 =
√

1 − |λ|2
∞
∑

n=0

λn|n〉1|n〉2 |λ| = tanh r0 ∈ (0, 1).

(11.252)

The statistical description of photon numbers is

pn1n2(i1, i2) = (1 − |λ|2) |λ|2i1 δi1i2 . (11.253)

Hence, we have a diagonal distribution, which means that in the EPR states the
photon numbers in the two modes are always equal. This is illustrated in Fig. 11.19.

11.17.4 Fock Expansion of a General Two-Mode Gaussian
State ⇓

We mention the possibility of evaluating the Fock representation of a two-mode
Gaussian state, given by

|z, α〉 = D2(z)Z2(α)|0〉2 (11.254)

where in general z = rei θ is an arbitrary 2 × 2 symmetric matrix. Then the squeeze
operator takes the general form

Z2(z) = exp
[

1
2 [a∗

1 , a∗
2 ] z [a∗

1 , a∗
2 ]T − 1

2 [a1, a2] z∗ [a1, a2]T
]

. (11.255)

Using the normal-ordered form of the unitary D2(z)Z2(α) (see (11.195)) the state
becomes

|z, α〉 = K0 B(α, a)|0〉2 (11.256)
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where
K0 = | det S|1/2 exp

[

− 1
2 (α∗α + αT T ∗α)

]

∈ C

B(α, a) := exp
[

αT ST a� + 1
2 a∗ T a�

]

.

with

S := sech r =
[

s11 s12
s21 s22

]

, T := tanh z = tanh r ei θ =
[

t11 t12
t21 t22

]

.

For the explicit evaluation we have to find the polar decomposition of the squeeze
matrix z, given by reiθ , where r = √

z z∗ and eiθ = z r−1 (see Theorem 2.7). Hence,
the preliminary step is the evaluation of the square root r of z z∗, using the EID, say
z z∗ = Udiag[σ 2

1 , σ 2
2 ]U∗, where the eigenvalues are real and nonegative because

z z∗ is PSD. Then r = Udiag [σ1, σ2]U∗. Next, we can evaluate the matrices S and
T as

S = Udiag [sech σ1, sech σ2]U∗ , T = Udiag [tanh σ1, tanh σ2]U∗ ei θ .

Then the scalar K0 is given by

K0 = | det S|1/2e− 1
2
(|α1|2+|α2|2+t11α

2
1+t12α

2
2+(t12+t21)α1α2

)

(11.257)

and the operator B(α, a) reads as

B(α, a) = eu1a∗
1+u2a∗

2+u12a∗
1 a∗

2+v1(a∗
1 )2+v2(a∗

2 )2
(11.258)

where

u1 = s11α1 + s21α2 , u2 = s22α2 + s12α1 , u12 = 1
2 (t12 + t21)

v1 = 1
2 t11 , v2 = 1

2 t22. (11.259)

To proceed we have to distinguish the following cases: (a) u12 	= 0, v1 = v2 = 0,
(b) u12 = 0, and (c) u12 	= 0, v1, v2 	= 0. In the solution to problems we develop the
three cases.

Problem 11.24 �� Prove that the symplectic transformation of the Gaussian uni-
tary (11.243) for θ = 0 is given by

Ssq (z0) =
[

cosh r0 I2 sinh r0 Y2
sinh r0 Y2 cosh r0 I2

]

, Y2 :=
[

0 1
−1 0

]

. (11.260)

Problem 11.25 �� Prove that the covariance matrix of the state (11.244) is given
by (11.245).

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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Problem 11.26 ��� Develop the Fock expansion of the general two-mode
Gaussian state (11.254), considering the three case listed above.

11.18 Beam Splitter

The beam splitter is one of the most important components in Classical and Quantum
Optics. Its implementation was described in Sect. 9.2. Here we develop the quantum
theory.

11.18.1 The Quantum Model

A beam splitter can be modeled by a two-mode rotation operator obtained with the
phase matrix

φbs =
[

0 −iβ
iβ 0

]

→ R2(φbs ) := eβ(a∗
1 a2−a2 a∗

1 ) (11.261)

where β determines the transmissivity and the reflectivity given by τ = cos2 β and√
1 − τ = sin β respectively (for τ = 1

2 the beam splitter is said to be balanced).
We can use the general relation (11.169) to get the corresponding Bogoliubov trans-
formation, namely

ã = eiφbs a = exp

[

0 β

−β 0

]

a = ubs (β) a (11.262)

where (see (11.74))

ubs (β) := exp

[

0 β

−β 0

]

=
[

cos β sin β

− sin β cos β

]

. (11.262a)

The corresponding symplectic matrix is obtained using Proposition 11.11 and
reads (see Problem 11.27) as

Sbs (β) =
[

cos β I2 sin β I2
− sin β I2 cos β I2

]

= ubs (β) ⊗ I2. (11.263)

Relation (11.263) has been obtained from the general relation (11.169).

http://dx.doi.org/10.1007/978-3-319-15600-2_9


11.18 Beam Splitter 547

11.18.2 The Beam Splitter as Two-Input–Two-Output Device

We apply at the input of the beam splitter a general two-mode Gaussian state |z, α〉
(Fig. 11.20).

We know that at the output the state
∣

∣z′, α′〉 is still Gaussian, but we want to find
the new parameters. To this end we consider the generation of the input state |z, α〉
from the vacuum |02〉, that is, applying a squeezing Z2(z) followed by a displacement
D2(α0), as shown in Fig. 11.21. The beam splitter, modeled by R2(φbs ), can be moved
at the beginning of the cascade and finally dropped because R2(φbs )|02〉 = |02〉. The
change of parameters (z, α) → (z′, α′) is provided by relations (11.176), which
give the output state

∣

∣z′, α′〉 with

z′ = eiφbs z eiφT
bs = ubs (β) z uT

bs (β) , α′ = eiφbs α = ubs (β) α. (11.264)

|z,in
pu

t

|z ,
ou

tp
ut

Fig. 11.20 Beam splitter with input a two-mode Gaussian state |z, α〉 and output a new two-mode
Gaussian state

∣

∣z′, α′〉. Note that the states may be entangled (not separable)

Z2(z)
|02 D2( ) R2( bs)

|z,
beam splitter

|z ,

R2( bs)
|02 Z2(z ) D2( )

|z ,

Z2(z )
|02 D2( )

|z , z = ei bs zei T
bs

= ei bs

Fig. 11.21 Evaluation of the response of a beam splitter to a general two-mode Gaussian state.
The input state |z, α〉 is generated from the vacuum |02〉 with the application of the unitary Z2(z)
followed by D2(α); the beam splitter is modeled by a two-mode rotation operator R2(φbs ) with
phase matrix given by (11.261). To evaluate the output state

∣

∣z′, α′〉, the rotation operator is moved
at the beginning of the cascade and finally dropped, because R2(φbs )|02〉 = |02〉
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Thus the beam splitter modifies both the squeezing and the displacement parameters.
To get a more explicit result we suppose that the input state is the

Caves–Schumacher squeezed–displaced state considered above, where the squeeze
matrix z has the form of (11.242). Then we find

Input Output

State |z, α〉 ∣

∣z′, α′〉

Squeeze matrix z =
[

0 z0
z0 0

]

, z0 = r0eiθ0 z′ =
[

z0 sin 2β z0 cos 2β

z0 cos 2β −z0 sin 2β

]

Displacement α =
[

α1
α2

] [

α′
1

α′
2

]

=
[

α1 cos β − α2 sin β

α1 sin β + α2 cos β

]

Note that the average numbers of photons in the two modes at the input are given
by

n1 = sech 2(r0) + |α1|2 , n2 = sech 2(r0) + |α2|2 (11.265)

and are modified by the beam splitter as (see Problem 11.28)

n′
1 = cos2(β) n1 + sin2(β) n2 + Δn sin 2β

n′
2 = sin2(β) n1 + cos2(β) n2 − Δn sin 2β

(11.266)

where

Δn =  [(α2 sin(β) + α1 cos(β))(α2 cos(β) − α1 sin(β))∗
]

(11.266a)

while the global number does not change

n′
1 + n′

2 = n1 + n2. (11.266b)

11.18.3 The Beam Splitter as One-Input–Two-Output Device

In several applications the beam splitter is used as one-input–two-output device in the
sense that the second input is not activated. The trick to preserve the above quantum
model is to feed the first input with a single-mode state |z, α〉 and the second input
with the ground state |0〉2, so that globally we have the two-mode state |z, α〉 ⊗ |0〉2
(Fig. 11.22).

To find the input–output relation we can still use the approach of Fig. 11.21 with
the replacements

z =
[

z11 z12
z12 z22

]

→
[

z0 0
0 0

]

, α =
[

α1
α2

]

→
[

α0
0

]
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Fig. 11.22 Beam splitter as
one-input–two-output
device. At the first input
there is a single-mode
Gaussian state |z0, α0〉; the
second input is nullified with
the ground state |0〉2. The
output is a two-mode
Gaussian state

∣

∣z′, α′〉

| 0, 0

| ,

|0 2

so that the two-mode operators degenerate as Z2(z) → Z(z0) ⊗ IH, D2(α0) →
D(α0)⊗ IH, where Z(z0) and D(α0) are single-mode. Then the input–output relation
(11.264) becomes

z′ = ubs (β)

[

z0 0
0 0

]

uT
bs (β) = z0

[

cos2 β − cos β sin β

− cos β sin β sin2 β

]

α′ = ubs (β)

[

α0
0

]

=
[

α0 cos β

α0 sin β

] (11.267)

where the output
∣

∣z′, α′〉 represents a quite general two-mode squeezed–displaced
state.

Problem 11.27 � Prove that the symplectic matrix of the beam splitter is given by
(11.263).

Problem 11.28 ��� Consider the beam splitter with a Caves-Schumacher state at
the input. Prove that the average numbers of photons in the two modes are given by
(11.265) at the input and by (11.266) at the output.

11.19 Entanglement in Two-Mode Gaussian States

Two-mode Gaussian states are usually entangled, that is, in general |z, α〉 cannot be
expressed as the tensor product of two single-mode states. In this section we consider
the EPR states, as the most venerable example of continuous-variable entangled
states, and then we develop a test of separability based on the Fock expansion.
Finally, we will see that the beam splitter may act as an entangler.

11.19.1 Entanglement in EPR States

We consider, as an example of the entropic evaluation of the entanglement measure,
the EPR states (see (11.252))
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|z〉epr =
∞
∑

n=0

f (n) |n〉1 ⊗ |n〉2 , f (n) :=
√

1 − |λ|2 λn, λ = tanh |z0|.

From this Fock expansion we form the corresponding density operator

ρepr = |z〉epr 〈z|epr =
∞
∑

m,n=0

f (m) f ∗(n)|m〉1 ⊗ |m〉2 2〈n| ⊗ 1〈n|.

Then, tracing out with respect to mode 2, we find the mode 1 density operator

ρepr,1 =
∞
∑

n=0

| f (n)|2|n〉1 1〈n|

where | f (n)|2 = (1 − |λ|2) |λ|2n , which represents a thermal state (see Sect. 11.9.5)
with number of thermal photons given by N = |λ|2/(1 − |λ|2).

Considering that the thermal state has the maximum von Neumann entropy, we
conclude that the EPR states are maximally entangled (according to the entropic
measure of entanglement) [8].

11.19.2 Separability Tests for Two-Mode Pure Gaussian States

A general two-mode Gaussian state is given by

|z, α〉 = D2(α)Z2(z)|0〉2 (11.268)

where the displacement operator is always separable as D2(α) = D(α1)D(α2), while
Z2(z) is separable when the squeeze matrix z is diagonal, say

z =
[

z1 0
0 z2

]

(11.269)

giving
|z, α〉 = |z1, α1〉 ⊗ |z2, α2〉 (11.270)

where the factors |zi , αi 〉 are single-mode Gaussian states. This allows us to formu-
late a trivial test of separability for two-mode Gaussian states, which can be easily
extended to the N -mode. However, the condition of a diagonal squeeze matrix is not
a necessary condition, as we will see now.

We consider the separability criterion of Proposition 10.4, which is based on
the Fourier expansion of the given bipartite state. In the bosonic space the natural
expansion is given by the Fock expansion. Now, in Sect. 11.17.4, we have seen that
the Fock expansion can be obtained starting from the expression

http://dx.doi.org/10.1007/978-3-319-15600-2_10
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|z, α〉 = K0 eL |0〉2 , |0〉2 = |0〉1|0〉2 (11.271)

where we have used the normal ordered form of the unitary D2(α)Z2(z). In (11.271)
K0 is a complex scalar and the exponent has the form

L = u1a∗
1 + u2a∗

2 + u12a∗
1a∗

2 + v1(a
∗
1)2 + v2(a

∗
2)2. (11.272)

where the coefficients u and v depend on the matrix z and on the displacement
α = [α1, α2]T. In particular the coefficient u12 depends only on the squeeze matrix
z through the hyperbolic tangent, specifically

u12 = 1
2 (t12 + t21) with T = (tanh r) ei θ =

[

t11 t12
t21 t22

]

.

Now the separability criterion is just based on this coefficient. In fact if and only if

u12 = 1
2 (t12 + t21) = 0 (11.273)

the exponential becomes separable and the two-mode Gaussian state turns out to be

|z, α〉 = K0 eu1a∗
1+v1(a∗

1 )2 |0〉1 ⊗ eu2a∗
2+v2(a∗

2 )2 |0〉2. (11.274)

It can be shown that the factors in (11.274) are single-mode Gaussian states, say
∣

∣z′
1, α

′
1

〉

and
∣

∣z′
2, α

′
2

〉

, whose parameters can be calculated from the two-mode para-
meters z and α.

We now see an application of this criterion in a beam splitter.

11.19.3 The Beam Splitter as an Entangler

The possibility of using the beam splitter as an entangler has been long recognized
[35, 36]. Here we give a simple example to illustrate this possibility.

We consider the beam splitter driven by two single-mode squeezed–displaced
states, |z1, α1〉 and |z2, α2〉, which may be regarded as a separable two-mode
squeezed–displaced state

|z, α〉 = |z1, α1〉 ⊗ |z2, α2〉.

The output of the beam splitter gives the state
∣

∣z′, α′〉 with the squeeze matrix z′ =
ubs z uT

bs , where ubs is the beam splitter matrix defined by (11.262a). Considering

that z =
[

z1 0
0 z2

]

=
[

r1eiθ1 0
0 r2eiθ2

]

, we find
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z′ =
[

z1 cos2 β + z2 sin2 β cos β sin β(z2 − z1)

cos β sin β(z2 − z1) z2 cos2 β + z1 sin2 β

]

.

For the evaluation of the matrix T := tanh r ′ eiθ ′
we need the polar decompo-

sition r ′ eiθ ′
of the output squeeze matrix z′. Following the procedure outlined in

Sect. 11.17.4, we first evaluate the square root r ′ of the PSD matrix

z′ z′∗ =
[

r2
1 cos2 β + r2

2 sin2 β cos β(r2
2 − r2

1 ) sin β

cos β(r2
2 − r2

1 ) sin β r2
2 cos2 β + r2

1 sin2 β

]

.

This matrix has eigenvalues σ 2
1 = r2

1 and σ 2
2 = r2

2 and hence r ′ = √
z′ z′∗ is simply

obtained by replacing r2
1 and r2

2 with their square roots r1 and r2 in z′ z′∗, that is,

r ′ =
[

r1 cos2 β + r2 sin2 β cos β(r2 − r1) sin β

cos β(r2 − r1) sin β r2 cos2 β + r1 sin2 β

]

.

Hence we find the matrix eiθ ′
as (r ′)−1 z′. The matrix tanh r is obtained by replacing

in r ′ its eigenvalues r1 and r2 with tanh r1 and tanh r2, respectively. Finally we have
T = tanh r eiθ ′

, namely

T =
[

ei2θ1 tanh r1 cos2 β + ei2θ2 sin2 β tanh r2 − cos β sin β
[

ei2θ1 tanh r1 − ei2θ2 tanh r2
]

− cos β sin β
[

ei2θ1 tanh r1 − ei2θ2 tanh r2
]

ei2θ2 tanh r2 cos2 β + ei2θ1 sin2 β tanh r1

]

.

From the nondiagonal entries of T we find

u12 = 1
2 (t12 + t21) = − sin β cos β

[

ei2θ1 tanh r1 − ei2θ2 tanh r2

]

which states that the output is entangled for z1 	= z2 and sin β cos β 	= 0. To
summarize:

Proposition 11.15 A beam splitter driven by two squeezed–displaced states pro-
duces at the output a two-mode entangled state. Hence the beam splitter acts as an
entangler.

11.20 Gaussian States and Geometrically Uniform
Symmetry

In this section we investigate the possibility that a constellation of Gaussian states
have the GUS. We consider the problem in a general form.

Let S = {|ψ(p)〉, p ∈ P} be a class of quantum states dependent on a parameter
p. The class is closed with respect to rotations if RN (φ)|ψ(p)〉 ∈ S, where RN (φ)
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is the rotation operator. In words, the class is closed if, given a reference value of the
parameter p0, one can find a value pφ ∈ P , such that

RN (φ)|ψ(p0)〉 = ∣∣ψ(pφ)
〉

. (11.275)

With such a class we can construct constellations of any order K with the GUS
property. In practice, in the single mode we get K -ary PSK constellations, by
choosing an arbitrary reference state |ψ(p0)〉 in S and using as symmetry opera-
tor S = R(2π/K ). In the multimode a relevant application is given by the PPM,
where the “phase” φ becomes an N × N Hermitian matrix with the property
exp(iK φ) = IN , where K is the order of PPM and N is the dimension of the
PPM Hilbert space (see the end of this section).

11.20.1 Rotated Gaussian States

The class of pure Gaussian states is closed with respect to rotations. In fact, we have
seen that the most general pure Gaussian state can be generated in the form (with the
notations introduced in Sect. 11.12.2)

|z, α〉 = DN (α) Z N (z) |0N 〉 , α, z ∈ C
N . (11.276)

In words, |z, α〉 is a squeezed–displaced state. The application of a rotation gives a
squeezed–displaced–rotated state

|z, α, φ〉 = RN (φ) DN (α) Z N (z) |0N 〉. (11.277)

Now we apply relation (11.176c) to get RN (φ) DN (α) = DN (ei φ α) RN (φ). Next
we apply (11.176b) to get RN (φ) Z N (z) = Z N (ei φ z ei φT

) RN (φ). Hence

|z, α, φ〉 = DN (ei φ α) Z N (ei φz ei φT
) RN (φ) |0N 〉

where RN (φ)|0N 〉 = |0N 〉, so that the rotation can be dropped. In conclusion the
rotation modifies the parameters in the form

z = → eiφz eiφT
, α → eiφ α; . (11.278)

Theorem 11.8 The class of squeezed–displaced states is closed under rotations. A
squeezed–displaced–rotated state can be obtained from a squeezed–displaced state
by modification of the squeeze matrix and of the displacement amount as

|z, α, φ〉 =
∣

∣

∣eiφz eiφT
, eiφ α

〉

. (11.279)
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Gaussian

channel

N

| (p) ρN( (p))

pure state mixed state

ψ ψ

Fig. 11.23 A Gaussian state |ψ(p)〉 is sent through an additive-noise Gaussian channel. At the
output the state is still Gaussian but it becomes a mixed state ρN(ψ(p))

11.20.2 Geometrically Uniform Symmetry for Mixed States

The previous result obtained for pure Gaussian states cannot be extended to the whole
class of mixed Gaussian states. In fact the critical point in the proof was the relation
RN (φ)|0N 〉 = |0N 〉, in which the ground state |0N 〉 “absorbs the rotation”. This
property does not hold in the N -mode when the ground state is replaced by a general
thermal state.

To get useful results we have to limit the class of mixed Gaussian states to an
appropriate subclass, obtained in the following way (but this reduced class seems
to be the one of interest for the applications). We suppose that a pure Gaussian
state |ψ(p)〉 of the class S is sent through an additive-noise channel specified by
the number of thermal photons N (see Sect. 12.8). As seen in Sect. 11.16 for the
single mode, at the output the noisy state is still Gaussian but specified by a density
operator ρN(ψ(p)) (Fig. 11.23). We denote by SN = {ρN(ψ(p)), p ∈ P} this
restricted subclass of Gaussian mixed states.

Theorem 11.9 If the class of pure Gaussian states S = {|ψ(p)〉, p ∈ P}, is closed
under rotations, also the class of noisy states SN = {ρN(ψ(p)), p ∈ P}, obtained
at the output of an additive-noise channel, is closed under rotations.23

Proof The mean vector is not modified by an additive-noise channel, while the
covariance matrix is modified as (see Sect. 12.8)24

V → V + 2N I2N .

Let V (pφ) be the covariance matrix corresponding to the rotation of φ in the class
S, so that we have to prove that, if V (pφ) = Srot (φ)V (p0)ST

rot (φ), then

Srot (φ)(V (p0) + 2N I2N )ST
rot (φ) = V (pφ) + 2N I2N .

23 Recently this result was extended to other Gaussian channels, as attenuation channels [37].
24 The restriction in this assumption is that in all the N -modes the average number of photons is
the same. In general, denoting by Ni the average number of photons in the i-mode, the covariance
relation should be modified as

V → V +
N
⊕

i=1

2Ni I2.

http://dx.doi.org/10.1007/978-3-319-15600-2_12
http://dx.doi.org/10.1007/978-3-319-15600-2_12
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In fact Srot (φ)(V (p0) + 2N I2N )ST
rot (φ) = Srot (φ)V (p0)ST

rot (φ) + 2N Srot (φ)

ST
rot (φ), where Srot (φ) verifies the condition Srot (φ)ST

rot (φ) = I2N .

Note that the alternative proof in the bosonic space, based or the relation

R(φ)ρN(|ψ(p0)〉R∗ (φ) = ρN
(∣

∣ψ(pφ)
〉)

is very difficult for the complicated expressions of ψ(p) and of ρN(ψ(p)) (see [32]).
Moreover, expressions of ρN(ψ(p)) are not known explicitly for some classes, e.g.
for squeezed states, and notwithstanding that it is possible to prove that their class is
closed under rotations.

11.20.3 Application to Pulse Position Modulation (PPM)

The application of GUS to the PSK constellation is trivial, being based on the single
mode. The application to PPM is less trivial because in this format the states become
multimode. The symmetry operator S of K -ary PPM was defined in Proposition 7.3
of Sect. 7.13 and works in the Hilbert space H = H⊗K

0 , where H0 has dimension n
and H has dimension N = nK . The expression of S is given by

S =
n−1
∑

k=0

wn(k) ⊗ InK−1 ⊗ wT
n (k), (11.280)

where ⊗ is Kronecker’s product, wn(k) is a column vector of length n, with null
elements except for one unitary element at position k. Then S is a matrix of dimension
N = nK , having the property SK = IN .

Now, it is not immediate to see that S is a rotation operator, that is, of the form
RN (φ) = ei φ , with φ an N × N Hermitian matrix. To find the “phase” φ we use the
EID of S, given by (see Theorem 2.2)

S =
K−1
∑

m=0

λm Pm , λm = ei 2πm/K := W m
K (11.281)

where λm are the K distinct eigenvalues and Pm are K projectors. In this EID the
eigenvalues are known, while the projectors should be evaluated from the expression
(11.280), which defines a complicated permutation matrix. The alternative is the
evaluation through the powers of S, given by

Sk =
K−1
∑

m=0

W mk
K Pm .

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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According to this relation, [S0, S1, . . . , SK−1] turns out to be the DFT of [P0, P1, . . . ,

PK−1]. Thus, taking the inverse DFT one gets

Pm = 1

K

K−1
∑

k=0

W −mk
K Sk

which is easy to evaluate. Next we recall that S is unitary and therefore it can be
written in the form (see Theorem 2.5) S = ei φ . Then, by comparison we find that
the EID of φ is given by

φ =
K−1
∑

m=0

2πm

K
Pm . (11.282)

where the eigenvalues become 2πm/K and the projectors are the same as in the EID
(11.281).

Example 11.2 We give two examples of evaluation:

• n = 3 K = 2

The symmetry operator is

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and the projectors are

P0 = 1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, P1 = 1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 1 0 0 0 −1 0 0
0 −1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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The “phase” matrix is

φ = π

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 1 0 0 0 −1 0 0
0 −1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

• n = 2 K = 4

The symmetry operator is

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

We have evaluated the four 16 × 16 projectors P0, P1, P2, P2 and then the “phase”
matrix, which results in

φ = π

4

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 a∗ 0 −1 0 0 0 a 0 0 0 0 0 0 0
0 a 3 0 a∗ 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 3 0 0 a∗ 0 0 a 0 0 −1 0 0 0
0 −1 a 0 3 0 0 0 a∗ 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 −2 0 0 0 0 0
0 0 0 a 0 0 3 0 0 −1 0 0 a∗ 0 0 0
0 0 0 0 0 0 0 3 0 0 0 a 0 −1 a∗ 0
0 a∗ −1 0 a 0 0 0 3 0 0 0 0 0 0 0
0 0 0 a∗ 0 0 −1 0 0 3 0 0 a 0 0 0
0 0 0 0 0 −2 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 a∗ 0 0 0 3 0 a −1 0
0 0 0 −1 0 0 a 0 0 a∗ 0 0 3 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 a∗ 0 3 a 0
0 0 0 0 0 0 0 a 0 0 0 −1 0 a∗ 3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, a = −1 + i.
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In both cases we have verified (with Mathematica) that ei φ = S and that
ei K φ = IN .

Problem 11.29 ��� Consider the Fock representation of a pure state in the single
mode

|ψ(p)〉 =
∞
∑

n=0

fn(p) |n〉.

Prove that the application of the rotation operator R(φ) to |ψ(p)〉 modifies the Fourier
coefficients as

fn(p) → ei n φ fn(p). (11.283)

Problem 11.30 ��� Apply the statement of the previous problem to prove that the
class of squeezed–displaced states is closed under rotations.

Problem 11.31 � Prove that the class of coherent states is closed with respect to
rotations, using the Fock representation (11.191).

Appendix

Proof of Baker–Campbell–Hausdorff Identity

For the proof of (11.71) we let

E(x) = ex H K e−x H

so that E(0) = K and

E ′(x) = ex H H K e−x H − ex H K H e−x H = ex H [H − K ] e−x H

from which D1 = E ′(0) = [H, K ] and

E ′′(x) = ex H H [H, K ] e−x H − ex H [H, K ] H e−x H = ex H [H, [H, K ]] e−x H .

Hence D2 = E ′′(0) = [H, [H, K ]], and so on. In conclusion, (11.71) is obtained as
the Taylor expansion of E(x).

To prove (11.70), note that, if H and [H, K ] commute, this relation reduces to
ex H K e−x H = K + [H, K ]x . Now, if we let

F(x) := ex H ex K ,
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by derivation we get the differential equation

F ′(x) = Hex H ex K + ex H ex K K

= (H + ex H K e−x H )F(x) = (H + K + [H, K ])F(x)

whose solution is

F(x) = e(H+K )x+[H,K ]x2/2 = e(H+K )x e[H,K ]x2/2

where we take into account the fact that F(0) = I and that functions of the commuting
operator H + K and [H, K ] commute as well. Finally, setting x = 1 gives the
conclusion.

Proof of Fock Representation of Weyl Operator
(Proposition 11.7)

Use of (11.126) in (11.129) gives

Dmn(ξ) = e− 1
2 |ξ |2 〈m, ξ |n, ξ∗〉

= e− 1
2 |ξ |2

m
∑

s=0

n
∑

r=0

μmsμnrξ
s(−ξ∗)r 〈m − s|n − r〉

= e− 1
2 |ξ |2

m
∑

s=0

n
∑

r=0

μmsμnrξ
s(−ξ∗)rδm−s,n−r

(11.284)

where the orthonormality of the Fock states has been used. Then

Dmn(ξ) = e− 1
2 |ξ |2

n
∑

r=0

μm,m−n+rμnrξ
m−n+r (−ξ∗)r

= e− 1
2 |ξ |2

n
∑

r=0

1

(m − n + r)!r !

√

m!n!
(n − r)!(n − r)!ξ

m−n+r (−ξ∗)r

= e− 1
2 |ξ |2

√

n!
m!

n
∑

r=0

m!
(m − n + r)!r !(n − r)!ξ

m−n+r (−ξ∗)r

= e− 1
2 |ξ |2

√

n!
m!

n
∑

r=0

(

m

n − r

)

1

r !ξ
m−n+r (−ξ∗)r .

and (11.130) follows at once.
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Proof of Proposition 11.9 on the Orthogonality of the Dmn

We have to prove that the coefficients Dmn giving the Fock representation of the
Weyl operator are orthogonal functions in C, that is,

I rs
mn := 1

π

∫

C

dξ D∗
mn(ξ) Drs(ξ) = δmrδns . (11.285)

To this end in the integrand we apply relation (11.130) twice to get

D∗
mn(ξ) Drs(ξ) = e−|ξ |2 Z (ξ∗)m−n

ξ r−s L(m−n)
n (|ξ |2)L(r−s)

s (|ξ |2)

where Z = √
n!s!/m!r !. Then we use polar coordinates letting ξ = σ ei φ

D∗
mn(ξ) Drs(ξ) = Z e−σ 2

σm−n+r−sei φ(n−m+r−s)L(m−n)
n (σ 2)L(r−s)

s (σ 2)

and the integral becomes

I rs
mn = Z

1

π

∫ 2π

0
ei φ(n−m+r−s)dφ

∫ ∞

0
e−σ 2

σm−n+r−s L(m−n)
n (σ 2)L(r−s)

s (σ 2) σ dσ

= Z 2δm−n,r−s

∫ ∞

0
e−σ 2

σm−n+r−s L(m−n)
n (σ 2)L(r−s)

s (σ 2) σ dσ

= Z δm−n,r−s

∫ ∞

0
e−σ 2

σ 2(m−n)L(m−n)
n (σ 2)L(m−n)

s (σ 2) 2σ dσ

= Z δm−n,r−s

∫ ∞

0
e−x xm−n L(m−n)

n (x)L(m−n)
s (x) dx

where we can use the orthogonality of the generalized Laguerre polynomials, given
by (11.128) (see also [25, p.8097.414–3]), to get

I rs
mn = Z δm−n,r−s

Γ (m + 1)

n! δn,s =
√

n!s!
m!r !δm−n,r−s

m!
n! δn,s = δmrδns .

About Symplectic and Bogoliubov Transformations

Relations Between the Parameters of the Two Transformations

We prove Proposition 11.11. For brevity we develop the case N = 2, where

a =
[

a1
a2

]

, a� =
[

a∗
1

a∗
2

]

, q =
[

q1
q2

]

, p =
[

p1
p2

]

,
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q p = X =

⎡

⎢

⎢

⎣

X1
X2
X3
X4

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

q1
p1
q2
p2

⎤

⎥

⎥

⎦

, Y =

⎡

⎢

⎢

⎣

Y1
Y2
Y3
Y4

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

q1
q2
p1
p2

⎤

⎥

⎥

⎦

=
[

q
p

]

.

Note that
X = Π Y , Y = Π−1 X = Π X (11.286)

where Π is the 2N ×2N permutation matrix defined in Proposition 11.11 and having
the property Π−1 = ΠT.

It is easier to relate the vector of operators Y to the vectors a and a� because

a = q , �a = p , a� = q , �a� = −p.

Now, we introduce the real and the imaginary parts in the relation ã = E a+ F a�+ y
to get

q̃ + i p̃ = (E + i�E)(q + ip) + (F + i�F) (q − ip) + (y + i�y)

Hence
q̃ = (E + F) q + (−�E + �F) p + y

p̃ = (�E + �F) q + (E − F) p + �y

which can be written in the form

Y = T X + dy (11.287)

where

T =
[(E + F) �(−E + F)

�(E + F) (E − F)

]

, dy =
[y
�y

]

(11.288)

Considering (11.286) and (11.150), relation (11.287) allows us to relate X̃ to X as
X̃ = S X + d with S = Π T ΠT, T = ΠT S Π and d = Π dy . This completes the
proof.

Commutation Conditions

Commutation conditions are given by (11.148) for Bogoliubov transformations and
by (11.150) for symplectic transformations. We first prove (11.148), that is,

E E∗ − F F∗ = I , E FT = F ET. (11.289)
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We write the Bogoliubov relation (11.147) in scalar form

ãi =
∑

k

Eik ak +
∑

l

Fil a∗
l + zi .

Then the Hermitian conjugate becomes

ã∗
j =

∑

r

E∗
jr a∗

r +
∑

s

F∗
js as + z j .

Next, using the bilinearity of the commutator, one gets

ãi , ã∗
j t =

[
∑

k

Eik ak +
∑

l

Fil a∗
l + zi ,

∑

r

E∗
jr a∗

r +
∑

s

F∗
js as + z j

]

=
∑

k,r

Eik E∗
jr [ak, a∗

r ] +
∑

k,s

Eik F∗
js [ak, as]

+
∑

l,r

Fil E∗
jr [a∗

l , a∗
r ] +

∑

l,s

Fil F∗
js [a∗

l , as]

where (see (11.64)) [ak, a∗
r ] = I δk,r , [a∗

l , as] = −I δs,s , [ak, as] = [a∗
l , a∗

r ] = 0.
Hence

[ãi , ã∗
j ] =

∑

k

Eik E∗
jk I −

∑

l

Fil F∗
jl I.

If E E∗ − F F∗ = I the latter expression gives [ãi , ã∗
j ] = I . Analogously we find

[ãi , ã j ] =
∑

k

Eik Fjk I −
∑

l

Fil E jl I

which gives [ãi , ã j ] = 0 as soon as E FT = F ET.
Next we consider the symplectic condition (11.150), that is,

S Ω ST = Ω, (11.290)

and, to establish the equivalence between the two commutation conditions, we prove
that (11.290) implies the first of (11.289). To this end we write (11.290) in terms of
the matrix T , namely

ΠT ΠT ΩΠT TΠT = Ω

that is,

T Ω0 T T = Ω0 with Ω0 = ΠT Ω Π → Ω = Π Ω0 ΠT. (11.291)
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Now we note that for N = 2

Ω =

⎡

⎢

⎢

⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤

⎥

⎥

⎦

, Ω0 =

⎡

⎢

⎢

⎣

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤

⎥

⎥

⎦

.

For N = 3

Ω =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Ω0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Note that in general the matrix Ω0 has the block form

Ω0 =
[

0 IN

−IN 0

]

(11.292)

where IN is the identity matrix of order N . Then condition (11.291) becomes explic-
itly

[(E + F) �(−E + F)

�(E + F) (E − F)

] [

0 IN

−IN 0

] [ (ET + FT) �(ET + FT)

�(−ET + FT) (ET − FT)

]

=
[

0 IN

−IN 0

]

.

With c = u + v and d = u − v we get the four matrix equations

�(d)(cT) − (c)�(dT) = 0 , �(d)�(cT) + (c)(dT) = I

�(c)�(dT) + (d)(cT) = I , �(c)(dT) − (d)�(cT) = 0.

The sum of the first multiplied by i with the second and the sum of the third with the
fourth multiplied by i give, respectively,

i �(d)[(cT) − i (cT)] + (c)[(dT) − i �(dT)] = i �(d) c∗ + (c) d∗ = I

i �(c)[(dT) − i (dT)] + (d)[(cT) − i �(cT)] = i �(c) d∗ + (d) c∗ = I.

Hence

c d∗ + d c∗ = 2I → E E∗ − F F∗ = I.
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Proof of the Gaussianity Preservation Theorem
(Theorem 11.1)

For brevity we let t = uv ∈ R
2N and x = q p, so that the Weyl operator reads as

D(t) = ei xT Ω t . We develop the proof with the following steps:

(1) The symplectic transformation modifies the density operator and the Weyl oper-
ator as

ρ̃ = U∗
S,d ρ US,d , D̃(t) = U∗

S,d D(t) US,d , (11.293)

where t denotes the pairs of vector (x, p) or their interlaced form x p.
(2) Considering that the map for the quadrature operators is x̃ = S x + d, the new
Weyl operator is more explicitly given by

D̃(t) = ei (S x+d)T Ω t . (11.294)

(3) We evaluate the new characteristic function,which is given by

χ̃ (t) = Tr[ρ̃ D(t)] = Tr
[

US,d ρ U∗
S,d D(t)

]

= Tr
[

ρ U∗
S,d D(t) US,d

] = Tr
[

ρ D̃(t)
]

.
(11.295)

(4) We use the Gaussianity of the input state ρ, according to which the characteristic
function is given by

χ(t) = exp
[

− 1
2

(

Ω V ΩT
)

t − i(Ω x̄)Tt
]

. (11.296)

Now we develop the above steps, taking into account the following properties of
the matrices S and Ω (see (11.67) and (11.150):

ΩT = −Ω , STΩS = Ω → STΩ = ΩS−1.

Then (11.294) becomes explicitly

D̃(t) = ei (S x+d)T Ω t = ei (S x)T Ω t eidTΩ t

= ei xT ST Ω t eidTΩ t = ei xT ΩS−1 t eidTΩ t

= D(S−1 t) ei dTΩt

(11.297)

and the new characteristic function (11.295) reads as

χ̃ (t) = Tr
[

ρ D̃(t)
]

= Tr
[

ρ Dx (S−1t) ei dTΩt
]

= χ(S−1t) ei dT Ω t .

(11.298)
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Finally we use the Gaussianity (11.296) for χ(t) to get

χ̃ (t) = χ(S−1t) ei dTΩ t

= exp

[

−1

2
(S−1 t)T

(

Ω V ΩT
)

S−1 t − i(Ω x̄)TS−1 t + i dTΩ t

]

where
(S−1 t)TΩ = tTS−1T

Ω = tTΩ S , ΩT S−1 = ST ΩT

− i(Ω x̄)TS−1 t + i dTΩt = −i
[

x̄TΩT S−1 − dTΩ
]

t

= −i
{

x̄T STΩT + dTΩT
]

}t = −i {Ω(Sx̄ + d)}T .

Hence

χ̃ (t) = exp

[

−1

2

(

tTΩ S V ST ΩT t
)

− i {Ω(Sx̄ + d)}T
]

which is the characteristic function of a Gaussian state with the parameters indicated
in (11.146).

Squeezed States. Proof of Bogoliubov Transformation (11.171)

The relation to develop is

Z∗(z) a Z(z) = e
1
2

(

z∗a2−z b2
)

a e
1
2

(

zb2−z∗ a2
)

, (b = a∗).

We apply BCH formula (11.71) with

x = 1 , H = 1
2 (z∗a2 − z b2) , K = a.

Then

Z∗(z) a Z(z) =
∞
∑

n=0

1

n! Dn

where D0 = K = a and we have the recursion Dn = 1
2 [(z∗a2 − z b2), Dn−1]. We

prove that
D2n = (zz∗)Na , D2n+1 = (zz∗)nz b. (11.299)

In this case the technique is the introduction of the commutation relations

[b, a] = ba − ab = −I , [a, b] = ab − ba = I
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which give

[b2, a] = −2b , [a2, b] = −2a , [b2, b] = 0 , [a2, a] = 0. (11.300)

In fact

[b2, a] = b2a − ab2 = b2a − bab + bab − ab2 = b(ba − ab) + (ba − ab)b = −2b

[a2, b] = a2b − ba2 = a2b − aba + aba − ba2 = a(ab − ba) + (ab − ba)a = 2a.

Then

D1 = 1

2
[(z∗a2 − z b2), a] = 1

2
z∗[a2, a] − 1

2
z[b2, a] = b

and so on. In conclusion

Z∗(z) a Z(z) = a + z a∗ + 1

2! zz∗ a + 1

3! (zz∗)z a∗ + 1

4! (zz∗)2 a + · · · (11.301)

Letting z = r eiθ , the even and odd terms in (11.301) give respectively

E = (1 + 1

2! r2 + 1

4! r4 + · · · ) a = cosh r a

O = (r + 1

3! r3 + 1

5!r
5 · · · )eiθ b = sinh reiθ b

and (11.171) follows.

The Most General Gaussian Unitary in the Single Mode

In the phase space a Gaussian unitary is represented by the pair (S, d) with

S =
[

s11 s12
s21 s22

]

, d =
[

d1
d2

]

. (11.302)

We have to find the most general pair (S, d) with the appropriate constraints. In
(11.302) all the six parameters are real and the displacement has the only constraint
d ∈ R

2. The matrix S should be symplectic, S Ω ST = Ω , which gives the condition
s11s22 − s12s21 = det S = 1. Now it is possible to find which Gaussian unitaries
ensure these conditions. This is provided by the SVD, which gives

S = Srot (θ) Ssq(r) Srot (φ) (11.303)
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where

Srot (θ) =
[

cos θ− sin θ

sin θ cos θ

]

, Ssq(r) =
[

e−r 0
0 er

]

, Srot (φ) =
[

cos φ− sin φ

sin φ cos φ

]

.

It is not easy to get the SVD (11.303).25 We have used Mathematica, calling
{U,Λ, V } = SingularValueDecomposition[S], where

S =
[

a b
c d

]

.

Mathematica gives complicated formulas for the factors, but imposing that S be
real and symplectic (ad − bc = det S = 1), it was possible (with a great effort) to
reduce the formulas in the following form. The singular values are

λ± =
√

A2 ± √
A4 − 4√

2
, A2 = a2 + b2 + c2 + d2

and are each other reciprocal, λ−λ+ = 1. This justifies the structure of the matrix
Ssq(r) with e−r = λ− and er = λ+. The left rotation matrix is

U = Srot (θ) =
[

cos θ − sin θ

sin θ cos θ

]

=
⎡

⎣

f1√
| f1|2+| f2|2

− f2√
| f1|2+| f2|2

f2√
| f1|2+| f2|2

f1√
| f1|2+| f2|2

⎤

⎦

where

f1 = a3 + ab2 − aB + ac2 + 2bcd − ad2 , B :=
√

A4 − 4

f2 = a2c − b2c − Bc + c3 + 2abd + cd2.

The right rotation matrix is

V = Srot (φ) =
[

cos φ − sin φ

sin φ cos φ

]

=
[

T√
T 2+1

− 1√
T 2+1

1√
T 2+1

T√
T 2+1

]

where

T =
a2 − b2 + c2 − d2 +

√

[

(b + c)2 + (a − d)2
] [

(b − c)2 + (a + d)2
]

2(ab + cd)
.

Now we search for the most general Gaussian unitary, starting from (11.303).
We have the cascade of three symplectic transformations, which corresponds to

25 A similar decomposition is given in [38], but not with the explicit evaluation of the factors.



568 11 Fundamentals of Continuous Variables

the cascade of unitaries US = R(θ)Z(r)R(φ). But these unitaries lead to a zero
mean vector and to get a mean vector d we add the displacement operator D(d),
which does not modify the global symplectic matrix. Then we get the cascade U =
D(d)R(θ)Z(r)R(φ). Next we apply the switching condition (11.176b) to get U =
D(d)R(θ)R(φ)Z(ei φr ei φ). Also, in the single mode, R(θ)R(φ) = R(θ + φ). In
conclusion we have

U = D(d)R(φ0)Z(z) (11.304)

where d, φ0 = θ + φ, and z = ei φr ei φ are arbitrary.
On the other hand, use of relations (11.176) allows to get an arbitrary order of the

three fundamental unitaries. This complete the proof of Theorem 11.6.

Two-Mode Squeezed States and EPR States

For the proof of Bogoliubov transformation we write explicitly (11.147) in the
two-mode

U∗a1U = E11a1 + E12a2 + F11a∗
1 + F12a∗

2

U∗a2U = E21a1 + E22a2 + F21a∗
1 + F22a∗

2 .

We recognize that in the first we can apply the BCH identity with

x = 1
2r0 , H = a∗

1 a∗
2 − a1 a2 , K = a1.

Hence

ã1 =
∞
∑

n=0

rn
0

2nn! Dn(1) (11.305)

where D0(1) = a1 and Dn(1) = [a, Dn−1(1)], n ≥ 1. Then, considering that
operators of different modes commute, we find

D1(1) = [A, a1] = a∗
1 a∗

2a1 − a1 a∗
1a∗

2 − a1 a2a1 + a1 a2a1

= a∗
2 a∗

1a1 − a∗
2a1 a∗

1

= a∗
2(a∗

1a1 − a1 a∗
1) = −a∗

2 .

Analogously

D2(1) = [a∗
1a∗

2 − a1a2 − a∗
2 ] = a1(a2a∗

2 − a∗
2a2) = a1

D3(1) = [a∗
1a∗

2 − a1a2a1] = −a∗
2

and in general
D2n(1) = a1 , D2n+1(1) = −a∗

2 .
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Hence (11.305) becomes

ã1 =
∞
∑

n=0

r2n
0

22n(2n)! D2n(1) +
∞
∑

n=0

r2n+1
0

22n+1(2n + 1)! D2n+1(1)

=
∞
∑

n=0

r2n
0

22n(2n)! a1 −
∞
∑

n=0

r2n+1
0

22n+1(2n + 1)! a2.

Alternative to Yuen’s Formula for Squeezed–Displaced States

We begin with the evaluation of the expansion of the state (11.228). The parameters
needed for the expansion are (see Sect. 11.15.2)

β = cosh r α − eiθ sinh r α∗

K0 = (sech r)1/2 exp
[

− 1
2 (|β|2 + β2eiθ tanh r)

]

B(β, a) := exp
[

βsech r a∗ + 1
2 eiθ tanh r (a∗)2

]

= exp
[

u a∗ + v (a∗)2
]

where u = βsech r and v = 1
2 eiθ tanh r . The expansion of the exponential reads as

B(β, a) = exp
[

u a∗ + v (a∗)2
]

=
∞
∑

n=0

b(n) (a∗)n (11.306)

and the Fock coefficients are then given by

|z, α〉n = K0 b(n)
√

n!.

Now we find that the coefficients b(n) of the expansion are explicitly given by

b(n) =
�n/2�
∑

j=0

1

(n − 2 j)! j !un−2 j v j = unHn

( v

u2

)

where Hn(x) is the polynomial defined by (11.231). Considering (11.229a), this
completes the proof of (11.230).

To see the equivalence of formula (11.229) with Yuen’s formula (7.148), we
compare the polynomials Hn(x) with the (physicists’) Hermite polynomials, which
are given by

Hn(x) = n!
�n/2�
∑

m=0

(−1)m

m!(n − 2m)! (2x)n−2m .

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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The comparison gives

Hn(x) = Hn

(

1

2
√−x

)

(−x)n/2

n! .

Using this relation we can see the equivalence.
The polynomials Hn(x) are related to the confluent hypergeometric function 1 F1

as

H2n(x) = 1

n! x−n
1 F1

[

−n; 1

2
;− 1

4x

]

H2n+1(x) = 1

n! x−n−1
1 F1

[

−n; 3

2
;− 1

4x

]

.

Proof of Fock Expansion (11.248) of Caves–Schumaker States

The coefficients b(n1, n2) are obtained from the expansion

eu1t1+u2t2+u12t1t2 =
∞
∑

n1=0

∞
∑

n2=0

b(n1, n2) tn1
1 tn2

2 . (11.307)

The exponential has the following expansion:

eu1t1+u2t2+u12t1t2 =
∞
∑

�=0

1

�! (u1t1 + u2t2 + u12t1t2)
�

=
∑

i jk

1

i ! j !k! (u1t1)
i (u2t2)

j (u12t1t2)
k

=
∑

i jk

1

i ! j !k!ui
1u j

2uk
12 t i+k

1 t j+k
2

where the summation is extended to the naturals i, j, k such that i + j + k = �. With
n1 = i + k and n2 = j + k the coefficients read as

b(n1, n2) =
min(n1,n2)
∑

k=0

1

(n1 − k)!(n2 − k)!k!un1−k
1 un2−k

2 uk
12

un1
1 un2

2

min(n1,n2)
∑

k=0

1

(n1 − k)!(n2 − k)!k!
(

u12

u1u2

)k
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and can be expressed in the form

b(n1, n2) = un1
1 un2

2 Ln1n2

(

u12

u1u2

)

where Ln1n2(x) are the polynomials defined by (11.248a).
In [28] the Fock expansion of the state CS is formulated through the generalized

Laguerre polynomials, which verify the identity

p
∑

j=0

1

j !(n1 − j)(n2 − j)! (−x)− j = Lq−p
p (x)

1

q!(−x)p
. (11.308)

Then we have the relation

Ln1n2(x) = Lq−p
p

(

− 1

x

)

x p

q! .

The polynomial Ln1n2(x) can be also expressed through confluent hypergeometric
function U (a, b, c) as

Ln1n2(x) = 1

n1!n2!
(

− 1

x

)n1

U

(

−n1,−n1 + n2 + 1,− 1

x

)

.
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Chapter 12
Classical and Quantum Information Theory

List of Main Symbols

D(H) class of density operators acting in the Hilbert space H

A alphabet
pA(a), a ∈ A probability distribution over A
A symbol (synonymous: random variable, information source)
A ∼ (A, pA) random variable A generated by the ensemble {A, pA}
AL := (A1, . . . , AL) word of length L
ρA ∼ (A, pA) density operatorρA generated by the ensemble {A, pA}, with

A alphabet of states
ρA ∼ (A, pA)ort density operatorρA generated by the ensemble {A, pA}, with

A orthonormal basis of states
H(A) [H({pA})] classical entropy of A [generated by the distribution {pA}]
S(ρ) [S({pA})] quantum entropy of ρ [generated by the eigenvalues {pA}]
χ({pa, ρa}) = χ(L) Holevo χ of the ensemble L = ({pa, ρa})

12.1 Introduction

Information Theory is a mathematical discipline, born within the field of Telecom-
munications in 1948, with the revolutionary ideas developed by Shannon [1]. Its
purposes are mainly: (1) to define information mathematically and quantitatively, (2)
to represent information in an efficient way (through data compression) for storage
and transmission, and (3) to ensure the protection of information (through encod-
ing) in the presence of noise and other impairments. As Mechanics is conventionally
subdivided into Classical and Quantum Mechanics, also Information Theory has an
analogous subdivision into Classical Information Theory, where the above goals
are accomplished in accordance to the laws of Classical Physics, and Quantum
Information Theory, which is based on quantum mechanical principles. As we

© Springer International Publishing Switzerland 2015
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shall see, Quantum Information Theory is intrinsically richer than its Classical coun-
terpart, because of intriguing resources, such as entanglement, and therefore it is
more interesting and challenging.

The purpose of this chapter is to provide an overview of Quantum Information
Theory starting from Classical Information Theory. As a matter of fact, the quantum
version cannot be developed without a robust preliminary introduction on the clas-
sical version. For this reason, each of the three items listed above will be developed
starting from the classical case. Moreover, there is a deep interplay between the two
disciplines deriving from the fact that the purpose of Quantum Communications is
usually the transmission of classical information through quantum states.

12.1.1 Measure of Information

The information contained in a message, such as a written text, a speech, a music, a
piece of an image, a string of data, is related to its randomness or uncertainty: if a
message is known in advance, it does not bring any information. As a matter of fact,
in its simplest version, the classical theory formulates a source of information as a
random variable A, specified by a probability distribution pA over a given alphabet
A. The classical (or Shannon) entropy of such a source is defined as

H(A) := −
∑

a

pA(a) log2 pA(a) (12.1)

and gives the average information content of the source A. With the choice of the
binary logarithm, in (12.1) the measure of information is expressed in binary digits
or bits.

In the quantum version, the information environment becomes a Hilbert space
H and the source of information lies on quantum states, and, more precisely, the
randomness required for the presence of information is provided by a mixed state.
In this case, the average information content is provided by the quantum (or von
Neumann) entropy, which is defined by

S(ρA) := −Tr[ρA log2 ρA] (12.2)

where ρA is the density operator describing the mixed state. This definition seems to
depart considerably from the classical counterpart H(A), but we shall see that S(ρ)

can be written in the same form as the classical entropy H(A) (the differences being
others).

Now we spend a few words on the measure unit for information. The term bit
denotes a classical notion having two distinct meanings: as a binary system with two
possible states, say 0 and 1, and as a measure unit for information, corresponding
to the information of a binary random variable, where 0 and 1 are equally likely.
The quantum counterpart of the bit (intended as binary system) is the quantum bit
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or qubit. We have seen in Sect. 3.2 that a qubit is a quantum system represented by
a Hilbert space of dimension 2, with an orthonormal basis {|0〉, |1〉}. Then |0〉 and
|1〉 are possible states corresponding to 0 and 1 of the classical bit. The fundamental
difference between the bit and the qubit is that a qubit can be in any state obtained
as a linear combination α|0〉 + β|1〉 with |α|2 + |β|2 = 1, and when a measurement
is performed it gives 0 with probability |α|2 and 1 with probability |β|2.

The qubit, too can be considered as unit of measure, but in a subtler sense related
to the dimensionality in the context of compression. Usually, the compressed space
Hc is given by the tensor product of L qubits. Now, if a quantum state can be correctly
represented in Hc, one says that the state has L qubits. Also the quantum entropy is
expressed in qubit per symbol, but we will reconsider this point in Sect. 12.4 after
we have acquired the concept of quantum entropy.

Finally we discuss the terms classical information and quantum information.
The distinction is not easy although both terms are currently used with the meaning
obtained from the context. In principle, classical information refers to messages,
as text, speech, etc., and the mathematical models are random variables, random
vectors and also random processes. Quantum information refers to quantum states,
as seen above. But in very important cases, as in Quantum Communications (see
Part II of this book), classical information is sent through a quantum system. Then
we encounter conversions of the form “classical” → “quantum” and “quantum” →
“classical”; this will be seen in a precise form in Sect. 12.8.

12.1.2 Compression of Information. Data Compression

In practice, sources of information are often redundant, in the sense that they produce
some messages more frequently than others. On the other hand, the ideal source
(having no redundancy) has a uniform probability distribution over the symbols.
Then the goal is to transform a redundant source into a uniform source to achieve
the minimum amount of bits per message. This operation is called data compression
and also source coding.

The limits of data compression are established by source coding theorems. In these
theorems, the reference model for source coding is represented by an independent
identically distributed (IID) sequence of random variables, say (A1, . . . , AL). The
first Shannon coding theorem states that for L � 1, the minimum number of bits to
represent such a sequence is given by the entropy of the sequence.

The quantum counterpart of an IID sequence is obtained starting from a density
operator ρ ∈ D(H), and is given by the tensor product ρL = ρ⊗L ∈ D(H⊗L). In
this context, the target of data compression is the reduction of the dimensionality.
The dimension is meaningfully expressed by the number of qubits. The minimum
compression rate is established by Schumacher’s noiseless quantum channel coding
theorem, according to which there exists an asymptotically reliable compression
protocol, which represents a state ρ in a space of S(ρ) qubits.

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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The proofs of Shannon’s and Schumacher’s theorems are based on an entropic
application of the law of large numbers and related typical sequences. They establish
asymptotic results (valid for L → ∞) and for this reason the related topic is called
Asymptotic Information Theory.

12.1.3 Reliable Transmission of Information over Noisy
Channels

In the presence of noise, the communication channel distorts the messages and, in
order to counteract this effect, a channel coding is introduced before the transmission.

In the classical case, a source message of a given length L0 is encoded into an
L-long codeword W from a prefixed codebook and sent to the noisy channel, which
provides a stochastic mapping W → W ′ (stochastic for the randomness in noise).
The parameter to optimize is the rate R given by the ratio of the length of the messages
to the length of the codewords. In his second (channel coding) theorem (believed to be
the most important result of Information Theory) Shannon established that, providing
that an appropriate message codebook is selected, there is a threshold, called channel
capacity C , below which any rate R can be achieved with an arbitrarily small error
probability.

In the quantum case, a first goal is to establish an adequate model for a noisy
channel. The problem is that a real system, with the interaction with external impair-
ments that damage the information, is an open system, while the Postulates of Quan-
tum Mechanics consider only closed systems. The solution is to operate with a larger,
composite closed system. As we shall see in Sect. 12.8, the literature has recently
consolidated a satisfactory (and beautiful) model for noisy quantum channels [2]. A
second goal is that the decoding at the receiver side (Bob) be performed by a quan-
tum measurement. This leads to the concept of accessible information Iacc, given
by the maximum amount of information that Bob can gain through any possible
measurement. An upper bound for the accessible information was established by
Holevo in 1973 and is called Holevo-χ or χ -information. The Holevo-χ allows us to
define the so-called product-state capacity and to establish the corresponding cod-
ing theorem, known as Holevo–Schumacher–Westmoreland (HSW) Theorem. But,
differently from the classical case, where the channel capacity is unique, in the
quantum case a noisy channel has various capacities in dependence of the presence
or absence of entanglement. This is presently a hot topic in Quantum Information
Theory.

Organization of the Chapter

In Sects. 12.2 and 12.3, we introduce the fundamental definitions and properties
of Classical Information Theory in adequate probabilistic environments, and in
Sect. 12.4 this is done for Quantum Information Theory.
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In Sects. 12.5 and in 12.6, classical and quantum data compression are developed,
respectively.

Section 12.7 deals with classical channel coding and the fundamental theorem of
Information Theory.

Section 12.8 deals with open systems and quantum channels and Sect. 12.9 with
accessible information and its bound. Finally, Sect. 12.10 deals with quantum channel
coding and capacities.

Throughout the chapter each topic is developed in the simplest case, as is
common practice in Information Theory, e.g., information sources with IID vari-
ables and memoryless channels. The proofs of statements are often omitted, but
adequate references are given.

12.2 Messages of Classical Information

The objects of Information Theory, as messages and symbols, are random quantities
and therefore they are formulated in terms of Probability Theory. We consider only
digital messages, which take values from a countable set, called alphabet. As happens
with written messages (texts), it is convenient to view a message as a sequence of
symbols. Sometimes symbols are collected in words.

We now introduce the statistical description of symbols, words, and infinite
sequences, which in Probability Theory are called random variables, random vectors,
and random processes, respectively.

12.2.1 Symbols as Random Variables

A symbol A may be defined as a finite random variable, which takes values from a
finite-sized alphabet, sayA = {1, . . . , K } orA = {0, 1, . . . , K −1}, with probability

pA(a) := P[A = a] , a ∈ A. (12.3)

The function pA(a) forms a probability distribution and verifies the conditions

∀a ∈ A pA(a) ≥ 0 ,
∑

a∈A
pa(a) = 1. (12.3a)

Then a symbol A is described by the ensemble (A, pA), briefly symbolized as A ∼
(A, pA). We often identify A as an information source.

Binary source. It is the simplest information source: A ∼ (A, pA), whereA = {0, 1}
and pA(0) = q, pA(1) = p, with p + q = 1. The graphical representation is given
in Fig. 12.1.
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Abinary
source A (p+q=1)

p
1

q
0

Fig. 12.1 Graphical representation of a binary source

12.2.2 Words as Random Vectors

An L-length word consists of a sequence of L symbols

AL := (A1, A2, . . . , AL) (12.4)

described by the probabilities

pAL (a1, . . . , aL) = P[A1 = a1, . . . , AL = aL ] , ai ∈ A. (12.5)

In general, the probability distribution of each symbol is not sufficient for the statis-
tical description of a word, but all the joint probabilities (12.5) are needed.

Words with independent symbols. When the L symbols in a word AL = (A1,

. . . , AL) are statistically independent, the joint probabilities (12.5) are factored in
the form

pA1...AL (a1, . . . , aL) = pA1(a1) . . . pAL (aL).

In this case, the statistical description of the component symbols becomes sufficient.

Realizations. It is important to clearly bear in mind the difference between a random
object (here denoted in uppercase) and its realizations (denoted in lower case). For
instance, a binary word of length 3, A3 = (A1, A2, A3) is a random vector, while
a3 = (a1, a2, a3) is a generic realization of A3, which can explicitly take the values
(000), (001), . . . , (111).

Example 12.1 Figure 12.2 shows the tree representation of a binary word of length
3 with P[Ai = 1] = p and P[Ai = 0] = q = 1 − p. From the probabilities of the
realizations indicated in the figure, one can deduce that the symbols are statistically
independent.

12.2.3 Messages as Random Processes

The sequence {A∞} = A1, A2, . . ., where An is the symbol at the normalized time
n, is modeled as a discrete-time random process. The statistical description of {A∞}
is given by all the distributions of the form
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Fig. 12.2 Graphical
representation of a binary
word of length L = 3
consisting of independent
symbols. On the right the
probabilities of each
realization are indicated
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pA(a1, . . . , aL ; n1, . . . , nL) = P[An1 = a1, . . . , AnL = aL ] (12.6)

where L is an arbitrary positive integer, n1, n2, . . . , nL are arbitrary integers and
a1, . . . , aL are values of a same alphabetA. Distributions (12.6) are often abbreviated
in the form p

(

An1, . . . , AnK

)

.
From a message one can extract words of any length. It is easy to prove that the

complete statistical description, given by (12.6), can be limited to words consisting
of L consecutive symbols, say (An, An+1, . . . , An+L−1), that is, by the probabilities
p(An, An+1, . . . , An+L−1) for every initial time n and every length L . When such
probabilities are independent of the time n, the message is said to be stationary. If this
is the case, all the words of length L , as (An, . . . , An+L−1) and (A1, . . . , AL), have
the same statistical description. Hereafter, we will consider only stationary messages.

Note that, by using the definition of conditional probability, the probability of the
word (A1, . . . , AL) can be factored in the form (chain rule)

p(A1, . . . , AL) = p(A1)p(A2|A1) . . . p(AL |A1, . . . , AL−1) (12.7)

where p(|) are conditional probabilities.

Messages with independent symbols. If the symbols of a message are statistically
independent, the probabilities (12.6) are factorized as

p(An, An+1, . . . , An+L−1) = p(An) p(An+1) · · · p(An+L−1) (12.8)

and then the description is limited to the probabilities of each symbol p(An) =
P[An = a].
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12.3 Measure of Information and Classical Entropy

We begin with the evaluation of the amount of information (briefly information) of
a symbol. Then we consider a pair of symbols and finally a sequence of symbols
of arbitrary length. The statistical average (expectation) of the information gives the
entropy.

12.3.1 The Logarithmic Law

We make a few intuitive considerations on a symbol A ∼ (A, pA). A first remark
is that the information does not depend on the nature of the alphabet, but only on
its size. Thus the binary alphabets {0, 1} and {head, tail} are equivalent. A second
remark is that the information is related do the degree of uncertainty of a symbol:
a symbol that occurs with certainty does not carry information and, on the other
hand, a symbol that occurs very seldom carries a lot of information. Technically
speaking, this means that the information i(a) of a specific symbol a (realization of
A) is a function of the probability pA(a), say i(a) = f [p(a)], where f [x] must be
a decreasing function of x with f [x] = 0 when x = 1, that is, when the symbol a
occurs with certainty.

It remains to choose the function f . A convenient choice, made by Nyquist in 1928
[3] and reconsidered by Shannon in his masterpiece, is the logarithmic function1

i(a) := − log2 p(a) (12.9)

shown in Fig. 12.3. The choice of the base 2 logarithm leads to the binary digit (bit)
as the unit of information. Letting p(a) = 1/2 in (12.9) one gets i(a) = 1 bit.
Hereafter, log2 will be simply denoted as “log.”

It can be shown that the logarithm is the only “smooth” function having the
property that the information carried by two independent symbols is the sum of the
information carried separately by the two symbols (see Problem 12.1).

Problem 12.1 �� Consider a pair (A, B) of statistically independent symbols.
Prove that, by imposing the condition i(a, b) = i(a)+ i(b), the unique function f [·]
defining the information i(a) = f [p(a] is the logarithm.

1 Considering that lim p→0+ p log p = 0, the convention is assuming 0 log 0 = 0.
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Fig. 12.3 Information of a
symbol as a function of its
probability. For p = 1

2 the
symbol carries the
information of 1 bit
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12.3.2 Entropy of a Symbol

If in the logarithmic law i(a) = − log p(a) the argument a is replaced by the
(discrete) random variable A, also i(A) becomes a random variable. The statistical
average (expectation) of i(A), that is,

H(A) := E[i(A)] = E[− log p(A)] (12.10)

and explicitly

H(A) =
∑

a∈A
pA(a) i(a) = −

∑

a∈A
pA(a) log pA(a) (12.11)

gives the average information of the symbol A, or entropy of the source A. It is also
called Shannon entropy or classical entropy. The unit of entropy is the bit.

Entropy of a binary source. With A ∈ A = {0, 1}, pA(1) = p, pA(0) = 1 − p,
0 ≤ p ≤ 1, the entropy is given by

H(A) = −p log p − (1 − p) log(1 − p) (12.12)

and is shown in Fig. 12.4 as a function of p = P[A = 1].
One can check that H(A) has its maximum for p = 1/2, where it takes the value

of 1 bit/symbol. Moreover, H(A) is zero for p = 0 and p = 1, in agreement with
the intuitive considerations made above.

The entropy of a K -ary symbol verifies the conditions

0 ≤ H(A) ≤ log K (12.13)
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Fig. 12.4 Entropy H(A) of
a binary symbol A as a
function of the probability
p = P[A = 1]

.2 0.4 0.6 0.0 0 8 1
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which can be articulated in the following properties:

(1) H(A) ≥ 0,
(2) H(A) = 0, if one value of A occurs with probability 1 (almost deterministic

source),
(3) H(A) ≤ log K ,
(4) H(A) = log K if A has equiprobable values (uniform source).

Property (1) is a consequence of the fact that i(a) ≥ 0 (see Fig. 12.3). Property (2)
follows from the fact that the equation p log p = 0, with 0 ≤ p ≤ 1, has the unique
solutions p = 0 and p = 1. For (3) and (4), we use the inequality

loge x ≤ x − 1 , x > 0 (12.14)

where the equality holds only for x = 1.

Notations. A symbol A is specified by an alphabetA and by a probability distribution
pA, which globally forms an ensemble E = (A, pA). Then for the entropy, we
find alternative notations as H(A) = H(E) = H((A, pA)). But, considering that
the entropy only depends on the distribution, frequently we find also the notation
H({pA}).

12.3.3 Classical Entropies in a Bipartite System

Let A and B be two symbols with alphabets of size K and M , respectively, which
are statistically related, e.g., A is the input and B is the output in a communication
channel. For the pair (A, B), which forms a word of length 2, one can consider
several informations and entropies, which are very useful to consolidate the meaning
of the information measure. This multiplicity is due to the fact that for a symbol
pair one has several probability systems: marginal probabilities p(A) and p(B),
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Alice classical
channel

A
Bob

B

Fig. 12.5 Source of information A (Alice) connected to Bob through a classical channel. Alice
sends the symbol A to the channel and at the output Bob receives the symbol B

joint probabilities p(A, B), and conditional probabilities p(A|B), p(B|A). Then we
have the informations i(A), i(B), i(A, B), i(A|B), i(B|A), and the corresponding
entropies H(A), H(B), H(A, B), H(A|B), H(B|A). We focus our attention only
on H(A, B) and H(A|B), having H(B|A) the specular properties of H(A|B).

We first consider the joint information i(A, B) = − log p(A, B), which measures
the total uncertainty one has about the pair (A, B). The corresponding entropy is
given by the expectation H(A, B) = E[i(A, B)], and explicitly

H(A, B) =∑
a

∑

b
p(a, b)i(a, b)

= −∑
a

∑

b
p(a, b) log p(a, b).

(12.15)

Next, suppose that we know the symbol B, then the remaining uncertainty about
the symbol A is given by the conditional information i(A|B) = − log p(A|B). For
the interpretation of this quantity it is convenient to think that Alice transmits the
symbol A through a classical channel and at the output Bob reads the symbol B, as
shown in Fig. 12.5. Then Bob has some uncertainty about the symbol A, given by
i(A|B). The corresponding entropy is H(A|B) = E[i(A|B)] and explicitly

H(A|B) = −
∑

a

∑

b

p(a, b) log p(a|b).

An important property is obtained from the relation between joint and conditional
probabilities: p(A, B) = p(A|B) p(B), which gives i(A, B) = i(A|B) + i(B) and
hence, considering the linearity of expectation,

H(A, B) = H(A|B) + H(B) (12.16)

which reads: the average information on the pair (A, B) is given by the information
on B plus the information on A, when B is known.

For a clear interpretation, two limit cases are particularly useful:

(1) when the symbols A and B are statistically independent, H(A, B) = H(A) +
H(B),

(2) when the knowledge of B implies the full knowledge of A: H(A, B) = H(B),
H(A|B) = 0.
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An important inequality is

H(A|B) ≤ H(A) (12.17)

which states that, on average, the residual uncertainty on A, when B is known, cannot
be greater than the uncertainty on A when B is not known. The proof of (12.17) is
based on the logarithm inequality (12.14).2 As a consequence of (12.17), we have
the other inequality

H(A) ≤ H(A, B). (12.18)

Using the previous results, inequality (12.17) can be articulated as:

(1) H(A|B) ≥ 0,
(2) H(A|B) = 0 if and only if knowledge of B implies full knowledge of A,
(3) H(A|B) ≤ H(A),
(4) H(A|B) = H(A) if and only if A and B are independent.

Moreover, the combination of (12.17) and (12.16) gives H(A, B) ≤ H(A)+ H(B).
Another important entropic quantity in bipartite systems is mutual information,

which will be introduced in Sect. 12.7 in the context of channels.

12.3.4 Informations and Entropies of a Sequence

The information of a sequence (word) of L symbols AL = (A1, . . . , AL) is given by

i(A1, . . . , AL) = − log pAL (A1, . . . , AL)

where pAL are the joint probabilities defined by (12.5). The expectation gives the
entropy of the sequence

H(A1, . . . , AL) = E[i(A1, . . . , AL)].

The chain rule on the joint probabilities, given by (12.7), allows us to write this
entropy in the form

H(A1, . . . , AL) = H(A1) + H(A2|A1) + H(A3|A1 A2) + · · · + H(AL |A1 · · · AL−1)

(12.19)

which generalizes formula (12.16) seen for bipartite systems and has a similar inter-
pretation.

2 An alternative prove is based on the concept of relative entropy (see [4]).
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The entropy of a word satisfies several inequalities. In particular,

H(A1, . . . , AL) ≤ H(A1) + H(A2) + · · · + H(AL) (12.20)

where the equality holds when the symbols in the word are independent.
For an unlimited sequence (random process) {A∞} = A1, A2, A3, . . ., the entropy

is in general infinite and it becomes convenient to introduce the entropy rate

R = lim
L→∞

1

L
H(A1, . . . , AL) (12.21)

which is expressed in bits/symbol. For a stationary process, in which H(An) is
independent of n, using inequality (12.19) we find that the entropy rate verifies the
inequality

R ≤ H(A1) (12.22)

where the equality holds when the symbols of the sequence are independent.

Final Comment

In this section, we have introduced the elementary concepts on information and
entropy in a minimal form. Some entropic quantities, as the relative entropy, have
been omitted. Also important properties, as the concavity of entropy, were not con-
sidered. A good “source of information” to complete the topic is the book by Cover
and Thomas [4].

12.4 Quantum Entropy

In a quantum system described by a Hilbert space H, the information is contained
in quantum states. To understand why, it is convenient to recall the considerations
leading to the concept of mixed states in Sect. 3.3.

12.4.1 Quantum States as Sources of Information

According to Postulate 1 of Quantum Mechanics, a closed quantum system, described
by a Hilbert space, at each time of its evolution, is completely specified by a quantum
state s = |ψ〉 (pure state), but, if the observer only has a probabilistic knowledge of
the system, the state s must be regarded as a random state (mixed state), which can
take its values in a set S = {|ψ1〉, |ψ2〉, . . .}, with probabilities pk := P[s = |ψk〉].
Then we get an alphabet-probability distribution ensemble E(ρ) = (S, p), as seen
for a classical symbol A. We recall that in the evaluation of information the nature of
the alphabet is irrelevant, as it can contain literal symbols as well as quantum states.

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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The ensemble is encoded into a density operator, in the form

E(ρ) = → ρ =
∑

k

pk |ψk〉〈ψk | (12.23)

which contains both the information of the states, through the elementary operators
|ψk〉〈ψk |, and of the probability distribution p. In conclusion, a mixed quantum state
described by a density operator may be viewed as a source of quantum information.
To stress the analogy with the classical case, where a symbol A is a random variable,
described be the ensemble E = (A, pA), we can think of a density operator ρ as
generating a quantum random state |Λ〉, described by an ensemble E(ρ).

However, while an ensemble identifies a unique density operator, from a density
operator one can obtain infinitely many ensembles, even with different cardinalities,
as we saw in Sect. 3.11. An ensemble is also provided by the EID of ρ

ρ = U Λ U∗ =
∑

k

λk |λk〉〈λk | (12.24)

where λk are the eigenvalues and |λk〉 are the corresponding eigenvectors. In fact, the
eigenvalues λk form a probability distribution, with λk ≥ 0 and

∑

k λk = 1, as a direct
consequence of the properties of a density operator: ρ ≥ 0 and Tr[ρ] = 1. Moreover,
the eigenvectors are orthonormal, 〈λi |λ j 〉 = δi j . Then we get the ensemble, written
in compact form

ρ → E⊥(ρ) = ({λk, |λk〉}) (12.25)

where the subscript ⊥ emphasizes the orthonormality of the eigenvectors.
As we shall see now in the evaluation of quantum entropy, only the orthogonal

ensemble E⊥(ρ) obtained by the EID is correct, while the other ensembles E(ρ) will
lead to wrong entropic evaluations.

12.4.2 Definition of Quantum Entropy

The quantum (or von Neumann) entropy refers to a quantum state described by a
density operator ρ, and is defined as

S(ρ) := −Tr[ρ log ρ]. (12.26)

The explicit evaluation of S(ρ) can be done from the EID of ρ, given by (12.24).
Using the definition of a function of an operator (see Sect. 2.12) in (12.26) with
f (z) = −z log z, we get

S(ρ) = Tr[U U∗ f (D)] = Tr[ f (D)] =
∑

k

f (λk)

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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which gives

S(ρ) = −
∑

k

λk log λk . (12.27)

Thus, formally we get the same expression, given by (12.11), as the classical entropy
H(A) of a symbol A. Note that S(ρ) depends only on the probability distribution
provided by the eigenvalues. Relation (12.26) is often written in the form

S(ρ) = H({λk}) (12.27a)

which states that the quantum entropy of the state ρ is given by the entropy of a
classical source with probability distribution {λk}, with λk the eigenvalues of ρ.

Example 12.2 (Qubit states) Consider a qubit system with standard basis {|0〉, |1〉}
and the state given by

ρ0 = 1
2 |0〉〈0| + 1

2 |1〉〈1|.

This expression is just the EID of ρ0, which gives the ensemble E⊥(ρ0) = {( 1
2 , |0〉),

( 1
2 , |1〉} and therefore the quantum entropy is S(ρ0) = 1. This is just the classical

entropy of a symbol, with alphabet {|0〉, |1〉}, where |0〉 and |1〉 are equiprobable.
Next, consider the qubit state (used in the B92 protocol for quantum key distrib-

ution)

ρ1 = 1
2 |0〉〈0| + 1

2 |+〉〈+|

where |+〉〈+| = 1√
2
(|0〉〈0| + |1〉〈1|). Now, if we calculate the classical entropy of

the ensemble E(ρ1) = {( 1
2 , |0〉), ( 1

2 , |+〉)} we find again H(E) = 1 bit. But this is
not the von Neumann entropy because { 1

2 , 1
2 } are not the eigenvalues of ρ1. In fact,

the EID of ρ1 reads

{

λ0 = cos2 π
8 , λ1 = sin2 π

8

}

{|λ0〉 = cos π
8 |0〉 + sin π

8 |1〉 , |λ1〉 = sin π
8 |0〉 − cos π

8 |1〉}

and therefore the quantum entropy is given by

S(ρ1) = − cos2 π
8 log cos2 π

8 − sin2 π
8 log sin2 π

8 � 0.6009 qubits.

This second case allows us to understand a first difference between the classical
and the quantum entropy and more generally between classical and quantum infor-
mation. The difference is due to the fact that classical entropy does not take into
account the geometry of ensembles.
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12.4.3 Properties of Quantum Entropy

Considering that S(ρ) is equal to the classical entropy H({λk}), although expressed
in a different language, we have the following properties (see Sect. 12.3.3):

(1) S(ρ) ≥ 0,
(2) S(ρ) = 0, if and only if the state is pure,
(3) S(ρ) ≤ log K , where K is the rank of ρ,
(4) S(ρ) = log K if and only if ρ = IH/K . This state is called completely mixed

state or chaotic state.
(5) S(ρ) is invariant with respect to unitary transformations.

Property (2): when ρ = |λ〉〈λ| we have P[Λ = |λ〉] = 1, that is the state is known
with certainty. Property (4): if all the eigenvalues ρ are equal, λk = 1/K , from (12.24)
we have ρ = (1/K )

∑

k |λk〉〈λk |, where the sum gives IH by the completeness of
kets |λk〉. Property (5) follows from the fact that ρ and UρU∗, with U unitary, have
the same eigenvalues.

Problem 12.2 �� (Thermal states) A thermal state may be defined as the bosonic
state that maximizes the von Neumann entropy for a given mean number of photons
N [5]. It has the following Fock representation (see Sect. 11.9)

ρth =
∞
∑

n=0

Nn

(N + 1)n+1 |n〉〈n|. (12.28)

Find its quantum entropy.

12.4.4 Entropy of Gaussian States

For an N -mode Gaussian state, the quantum entropy can be easily evaluated starting
from the N symplectic eigenvalues σ 2

k of the covariance matrix V (see Sect. 11.10).
The expression is [6]

S(ρ) =
N
∑

k=1

g(σ 2
k ) (12.29)

where g(x) is the function (Fig. 12.6)

g(x) := (x + 1
2 ) log(x + 1

2 ) − (x − 1
2 ) log(x − 1

2 ).

For the single mode we have one symplectic eigenvalue given by σ 2
1 =√

det V = 2N + 1, where N is the number of thermal photon of the state.

http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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Fig. 12.6 The function g(x) for the evaluation of the quantum entropy of Gaussian states from the
symplectic eigenvalues σ 2

k and the quantum entropy S(ρ) = g(2N+ 1) of a single mode Gaussian
state as a function of the number of thermal photons N

Then, S(ρ) = g(2N + 1). Note that for N = 0, corresponding to a pure Gaussian
state, the quantum entropy is zero.

For multimode Gaussian states, the evaluation of the symplectic eigenvalues is
not so simple [7].

12.4.5 Quantum Entropies in a Bipartite Quantum System

Let A B be a bipartite quantum system described by the Hilbert spaceH = HA⊗HB ,
and let ρAB be a density operator of H, having the “marginal” density operators
ρA = TrB[ρAB] and ρB = TrA[ρAB]. From these operators, we introduce the
following quantum entropies3

S(A, B) = −Tr[ρAB log ρAB] joint quantum entropy of AB,

S(A) = −Tr[ρA log ρA] quantum entropy of A,

S(B) = −Tr[ρB log ρB] quantum entropy of B.

(12.30)

The quantum conditional entropy is defined as the difference

S(A|B) = S(A, B) − S(B) quantum conditional entropy (12.31)

in agreement with the relation H(A|B) = H(A, B) − H(B) seen for classical
entropies. But, while H(A|B) is defined from the corresponding conditional distri-
bution, S(A|B) is not related to a density operator (a conditional density operator
does not exist).

3 The change of notation S(ρAB) → S(A, B), S(ρA) → S(A), etc., are frequently used in the
literature, where the density operator are replaced by the label of the system.
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The main properties of entropies (12.30) and (12.31) are [8]

• S(A, B) = S(A) + S(B) if ρAB = ρA ⊗ ρB (additivity of the quantum entropy
under the tensor product),

• S(A, B) ≤ S(A) + S(B) (subadditivity inequality),
• S(A, B) ≥ |S(A) − S(B)| (triangle inequality).

The novelty is that the quantum conditional entropy S(A|B) may be negative for the
presence of entanglement in contrast with the classical case, where H(A|B) ≥ 0. A
simple example to see this possibility is provided by:

Example 12.3 (Bell state) The Bell state

|ψ〉Bell = 1√
2
(|00〉 + |11〉) (12.32)

is maximally entangled. The corresponding density operator is

ρAB = 1
2 (|00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11|) (12.33)

and therefore
ρA = 1

2 IHA , ρB = 1
2 IHB .

Considering that ρAB corresponds to a pure state, we have S(A, B) = 0, whereas
S(B) = 1 and S(A|B) = −1.

12.4.6 About the Difference Between Classical and Quantum
Entropies

In this paragraph, we wish to explain where the difference between classical and
quantum entropies arises from a bipartite system. In both cases, the entropies depend
only on probability distributions, but there is a deep difference concerning the way
the marginal distributions are derived from the joint distribution.

Let us consider the evaluation of classical entropies, for simplicity in the case of
two symbols with binary alphabets, where we have the ensembles (A × B, pAB),
(A, pA), and (B, pB), with A = B = {0, 1}. The distributions can be displayed in
the form

[

pA(0) pA(1)

pB(0) pAB(0, 0) pAB(0, 1)

pB(1) pAB(1, 0) pAB(1, 1)

]

.

and verify the usual conditions and in particular the marginal laws

pA(i) =
∑

j

pAB(i, j) , pB( j) =
∑

i

pAB(i, j) (12.34)
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where pA is simply obtained by summing the elements of the columns of the matrix of
the joint probabilities pAB . Pictorially, we can describe this operation as a projection
along the columns, which collects and sums the probabilities encountered. The same
consideration holds for the marginal distribution pB , where the projection is along
the rows of the matrix.

In the quantum case, the probability ensembles are obtained from the density
operators ρAB , ρA, and ρB . We must consider this problem in great detail because
it can easily generate confusion. To begin with, suppose that the bipartite operator
ρAB has the decomposition

ρAB =
∑

i

∑

j

qAB(i, j) |ψi 〉 ⊗ |φ j 〉〈ψi | ⊗ 〈φ j | (12.35)

where |ψi 〉 ∈ HA, |φ j 〉 ∈ HB , and qAB is a joint probability distribution having the
meaning qAB(i, j) = P[sAB = |ψi 〉 ⊗ |φ j 〉]. For the marginal operators we find

ρA = TrB[ρAB] =
∑

i

qA(i) |ψi 〉〈ψi |

ρB = TrA[ρAB] =
∑

j

qB( j) |φi 〉〈φi |
(12.36)

where qA(i) = ∑

j qAB(i, j) and qB( j) = ∑

i qAB(i, j). Thus we have obtained
probability distributions that verify conditions (12.34), exactly, as in the classical
case. If we evaluate the quantum entropies with these distributions, we obtain the
same properties as for the classical entropies, and in particular S(A, B) ≥ S(B).

Why? The reason is that in the evaluation of von Neumann entropies the proba-
bility distributions must be obtained as eigenvalues of the density operators, as
seen in the above remark. Now the EID of the bipartite operator has the form

ρAB =
∑

k

λAB(k) |λAB(k)〉〈λAB(k)|

where the |λAB(k)〉 form an orthonormal basis of HAB and are not separable and
may be entangled in general, whereas in (12.35) they are separable. For the marginal
operator ρA = TrB[ρAB], we have to perform a separate EID to get

ρA =
∑

i

λA(i) |λA(i)〉〈λA(i)|

where pA(i) = λA(i) and the kets |λA(i)〉 form an orthonormal basis ofHA, whereas
in (12.36) the kets are not orthonormal in general. Analogous considerations hold
for the EID of ρB . The critical point that makes all the difference is that the EID
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of ρA cannot be obtained by tracing out the EID of ρAB , but must be carried out
independently. Analogous considerations hold for the EID of ρB . In general, we will
find

λA(i) �=
∑

j

λAB(i, j) , λB( j) �=
∑

i

λAB(i, j). (12.37)

Evaluation of EID in a composite quantum system. We recall from Chap. 2 that
the EID of an operator is evaluated on the basis of its matrix representation, which
is assumed to be an ordinary 2D square matrix. But in a composite quantum system
AB described by the Hilbert space HA ⊗ HB the matrix becomes 4D and the EID,
or the equivalent singular value decomposition (SVD), are developed in multilinear
algebra (see, e.g., Kolda, Tamara G.; Bader, Brett W. “Tensor Decompositions and
Application”. SIAM Rev. 51), but the practical evaluation is cumbersome and ulti-
mately not useful. If the operator is separable, ρAB = ρA ⊗ ρB , the EID is obtained
through the ordinary EID of the component operators. What to do in the nonseparable
case? The solution is to represent the 4D matrix ρAB by a 2D matrix through the
lexicographical order (see Sect. 2.13 and the forthcoming example).

12.4.7 Example of Bipartite Quantum System

The example of negative conditional quantum entropy given by the Bell state is too
extreme to understand the paradox due to the presence of entanglement. Now we
consider a more articulated case, where the bipartite density operator consists of a
convex combination of a Bell state and a separable state

ρAB = αρBell + βρsep , α + β = 1

where ρBell is given by (12.33) and

ρsep = (ε|0〉〈0| + μ|1〉〈1|) ⊗ (ε|0〉〈0| + μ|1〉〈1|) , ε + μ = 1.

The parameter α may be regarded as the degree of entanglement, with α = 1 corre-
sponding to maximally entangled and α = 0 to unentangled. The marginal density
operators are given by

ρA = α 1
2 IHA + β(ε|0〉〈0| + μ|1〉〈1|) , ρB = α 1

2 IHB + β(ε|0〉〈0| + μ|1〉〈1|).

The matrix representations are, respectively,4

4 Note the 2D matrix representing ρAB through the lexicographical order.

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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ρAB =

⎡

⎢

⎢

⎣

|00〉 |01〉 |10〉 |11〉
〈00| 1

2α + βε2 0 0 1
2α

〈01| 0 βεμ 0 0
〈10| 0 0 βεμ 0
〈11| 1

2α 0 0 1
2α + βμ2

⎤

⎥

⎥

⎦

ρA = ρB =
[

|0〉 |1〉
〈0| 1

2α + βε 0
〈1| 0 1

2α + βμ

]

.

Inside ρAB and ρA we find the probabilities, e.g., qAB(00) = P[sAB = |00〉] =
1
2α + βε2, qA(0) = P[sA = |0〉] = 1

2α + βε, which form classical probability
distributions as in (12.35) and (12.36). But we have to evaluate the distributions
through EIDs.

The eigenvalues of the matrix ρAB are λ± = 1
2

[

βε2 + βμ2 + α ± √
Δ
]

and

λ3 = λ4 = βεμ, where Δ = α2 + β2(ε2 − μ2), and give the following joint
probability matrix

λAB =
⎡

⎣

1
2

(

βε2 + βμ2 + α + √
Δ
)

βεμ

βεμ 1
2

(

βε2 + βμ2 + α − √
Δ
)

⎤

⎦ . (12.38)

Now, by summing the entries along the columns and the rows, we get the vectors of the
classical marginal probabilities, say λ̃A(i) =∑ j λAB(i, j) and λ̃B =∑i λAB(i, j),
respectively. But the quantum marginal probabilities, obtained as the eigenvalues
of ρA and ρB , are

λA = λB = [ 1
2α + βε , 1

2α + βμ
]

. (12.39)

The difference between classical and quantum marginal probabilities is illustrated
in Fig. 12.7 as a function of the degree of entanglement α. Note that for α = 0
(absence of entanglement), the classical and the quantum probabilities coincide,
while for α = 1 (maximum entanglement) the difference reaches its maximum
value.

Now we can evaluate the quantum entropies S(A, B) and S(B) from the
corresponding (quantum) probabilities, λAB given by (12.38) and λB given by
(12.39), that is,

S(A, B) = −
1
∑

i=0

1
∑

j=0

λAB(i, j) log λAB(i, j) , S(B) = −
1
∑

i=0

λB(i) log λB(i).

Both S(A, B) and S(B) depend on the parameters α and ε. The quantum entropies
are illustrated in Fig. 12.8 as a function of the degree of entanglement α for two
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Fig. 12.7 Comparison of marginal probabilities in the example of a bipartite state as a function of
the entanglement factor α for ε = 1/3. In red the classical probabilities λ̃A(i) obtained as the sum
∑

j λAB(i, j). In green the quantum probabilities λA(i) obtained as eigenvalues of ρA. Note that
for α = 0 (absence of entanglement) classical and quantum probabilities coincide
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Fig. 12.8 Comparison of quantum entropies S(A, B) and S(B) in the example of a bipartite state,
as a function of the entanglement factor α for ε = 1/2 (left) and ε = 1/5 (right). For α = 0 (absence
of entanglement) the entropies are given as in the classical case with S(B) = H(B) = H(A) and
S(A, B) = H(A, B) = 2S(B). For α = 1 (maximum entanglement) S(B) = 1 and S(A, B) = 0

values of ε. Note that for α = 0 (absence of entanglement) the entropies are given
as in the classical case, while for α = 1 (maximum entanglement) S(B) = 1 and
S(A, B) = 0.

12.4.8 About the Bit and the Qubit

Let us consider the discussion made in the introduction about the bit and the qubit
as units of measurement.

In Quantum Information theory, the logarithm of the dimensionality of the
space is the measure of the information content of a system and plays the role
of the logarithm of the size of a codebook in Classical Information Theory [2].
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More specifically, a codebook C = AL with |A| = d contains d L codewords and
log |C| = L log d, so that each codeword is represented by L log d bits. In the quan-
tum case we consider L-long sequences of states of the form |Ψ 〉 = |ψi1〉⊗. . .⊗|ψiL 〉,
where |ψi 〉 ∈ H, so that |Ψ 〉 ∈ H⊗L . If dim H = d, then log dim H⊗L = L log d.
If we call qudit the basic Hilbert space H, then the sequence |Ψ 〉 is represented by
L qudits, or equivalently by 1 qudit/symbol. If the basic Hilbert space is a qubit,
H = Q, with dim Q = 2, the sequence is represented by L qubits, that is by 1 qubit
per symbol.

In these considerations, “bit” and “qubit” are regarded as binary systems, with-
out entering into the information contents of the codewords and of the quantum
sequences. But we may ask what is the minimum number of bit per symbol or qubit
per symbol needed to represent a codeword or a state sequence. The answer is given
by the source coding theorems. Suppose for simplicity that codewords and quantum
sequences are produced in a memoryless way, that is, independently of each other
and with a given probability distribution {pi }. Then, the Shannon entropy is given
by L H(A), with H(A) the entropy of a symbol (determined by the distribution).
Shannon’s source coding theorem states that in the limit (L → ∞), the min-
imum number is given by the entropy H(A), expressed in bit per symbol. In
the quantum case, the probability distribution is encoded in a density operator as
ρ = ∑

i pi |ψi 〉〈ψi | and determines the quantum entropy of a state S(ρ), which
becomes L S(ρ) for the L-long sequence. Schumacher’s source coding theorem
states that in the limit the minimum number is given by a quantum entropy S(ρ),
expressed in qubit per symbol.

12.5 Classical Data Compression (Source Coding)

One of the fundamental problems in Information Theory is the efficient representation
of messages produced by a source of information, which is of interest both for the
storage and the transmission of information. In general, a source produces a redundant
message, as quantified by the entropy, and the problem is the reduction or, even, the
suppression of all the redundancy, thus allowing for a reduction of the message
length.

The first and main result on data compression was stated by Shannon under the
name Noiseless channel coding theorem, where the sender (Alice) and the receiver
(Bob) are connected by an ideal (noiseless) channel, as shown in Fig. 12.9. The
topic is also known as source coding, whereas the coding in the presence of a noisy
connection is known as channel coding, which will be developed in Sect. 12.7.

Shannon’s theorem on source coding is based on a brilliant and imaginative appli-
cation of the law of large numbers and essentially establishes that the length of a
message can be reduced to its entropy, that is, a message m with entropy H(m) can
be represented by a string of H(m) bits.
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Fig. 12.9 Operations in compression and decompression of an information message: ms = source
message, mc = coded message, m̂s = decoded message

12.5.1 IID Classical Source and the Law of Large Numbers

In this topic the reference source is given by a sequence of independent identically
distributed (IID) random variables. To define this source, we start from a random
variable A ∼ (A, pA), where A = {1, . . . , K } is a K -ary alphabet.5 From A, we
form a word AL := (A1, . . . , AL) of random variables by imposing that the Ak are
statistically independent and have the common distribution pA. Then the possible
realizations aL := (a1, . . . , aL) ∈ AL of AL have probability

P[AL = aL ] = pA(a1) · · · pA(aL). (12.40)

The law of large numbers is concerned with the mean m(A) = E[A] of the random
variable A and its estimator is

E(AL) := 1

L

L
∑

n=1

An (12.41)

which is a random quantity with expectation E[E(AL)] = E[A]. The law of large
numbers claims that the mean estimator E(AL) converges to the mean m(A) = E[A]
as L diverges.

Theorem 12.1 (Law of large numbers) In an IID source, the mean estimatorE(AL),
defined by (12.41), converges in probability to the mean m(A) = E[A]:

lim
L→∞E(AL) = m(A) (in probability) (12.42)

that is, for any ε > 0, P[|E(AL) − m(A)| > ε] → 0 as L → ∞.

5 Equivalently, an IID source may be viewed as a stationary random process {A∞} = (A1, A2, . . .)

with independent symbols and therefore completely specified by an ensemble (A, pA), where
pA(a), a ∈ A is the common probability distribution, giving pA(a) = P[An = a] for any n. From
the random process one can extract words of any length, (A1, . . . , AL ), which, by the stationarity
of the random process and the independence of its symbols, turn out to be L-tuples of IID random
variables.
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Remark We have introduced the abbreviations, which we will be often used
hereafter,

AL := (A1, . . . , AL) , aL := (a1, . . . , aL) ∈ AL

to denote, respectively, the sequence generated by the random variable A and a
specific realization of AL . The number of possible realizations is |A|L = K L . In this
context, the IID sequence AL plays the role of sourceword (which will be encoded
into a codeword).

12.5.2 Entropic Application of the Law of Large Numbers

In an IID source, the information of a source word AL is given by

i(AL) = − log[pA(A1) · · · pA(AL)] (12.43)

and the corresponding entropy is given by H(AL) = L H(A).
We apply Theorem 12.1 considering, instead of the mean m(A) = E[A], the

entropy H(A) = E[i(A)]. In this case, the estimator is given by

I(AL) := 1

L
i(A1, . . . , AL) = 1

L

L
∑

n=1

i(An) = − 1

L

L
∑

n=1

log pA(An) (12.44)

whose expectation is E[IL(A)] = H(A). Then we can apply Theorem 12.1 with the
replacements E(AL) → I(AL) and m(A) → H(A) to get:

Theorem 12.2 In an IID source, the entropy estimator I(AL) converges to the
entropy

lim
L→∞ I(AL) = H(A) (in probability). (12.45)

12.5.3 Preview of Shannon’s Protocol

In the asymptotic theory of information, Theorem 12.2 is a central result and estab-
lishes the so-called asymptotic equipartition property, where the set of the possible
sequences emitted by an information source is subdivided into two distinct classes,
called typical sequences and atypical sequences. To introduce these concepts, we
consider an IID binary source, which emits 1 with probability p = P[A = 1] and
0 with probability q = 1 − p. As the length L of the symbol sequence emitted by
the source increases, we expect to see in the sequence approximately L p 1s, and
L q 0s. A realization aL for which this assumption is true is a typical sequence. Its
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probability is given by

p(aL) = pA(a1) · · · pA(aL) � pLpq Lq

and the corresponding information is

i(aL) � −Lp log p − Lq log q = L H(A)

where H(A) is the entropy of the binary source (see (12.12)). By combination of the
above relations, we find

p(aL) � 2−L H(A)

which states two things: (1) the typical sequences are equally likely (uniformly
distributed), and (2) their number is at most 2L H(A) (because the probability of all
the sequences is unitary).

Using the above considerations, it is possible to outline the original protocol
of Shannon for data compression. Since there are at most N � 2L H(A) typical
sequences, it is sufficient to create a codebook, or an index set, of cardinality N ,
where each codeword can be represented by a string of log N � L H(A) bits, that is,
using H(A) bits/symbol. When Alice realizes that a sequence is typical, she encodes
the sequence and sends it to Bob, who knows the codebook and therefore is able to
decompress correctly the codeword. As the length L of the sequence becomes larger,
this procedure works correctly with probability close to one.

We now formalize the concept of typical sequence. We have a classical IID source,
which emits the random sequence AL with realizations aL . The typical sequences
refer to the entropy estimator I(AL), evaluated for each realization aL , that is,

I(aL) = − 1

L
log pA(a1) · · · pA(aL) = − 1

L

L
∑

n=1

log pA(an). (12.46)

Then, I(aL), which is called sample entropy or empirical entropy, is compared with
the entropy H(A).

Definition 12.1 A realization aL is ε-typical if its sample entropy I(aL) is ε-close
to the entropy H(A), that is,

H(A) − ε ≤ I(aL) ≤ H(A) + ε. (12.47)

The ε-typical set A(L)
ε is the set of all ε-typical sequences. Considering (12.46),

relation (12.47) is equivalent to

2−L(H(A)+ε) ≤ p(a1) · · · p(aL) ≤ 2−L(H(A)−ε). (12.48)



12.5 Classical Data Compression (Source Coding) 599

cardinalities

probabilities

|AL |

|A(L)
ε |

|AL |

|A(L)
ε |

|AL|

|A(L)
ε |

P=1

Pε

P=1

Pε

P=1

Pε

L = 5 L = 10 L = 20

L = 5 L = 10 L = 20

Fig. 12.10 Cardinality and probabilities of the ε-typical set for three values of the sequence length
L . The fraction of ε-typical sequences decreases with L . The probability Pε of ε-typical sequences
increases with L

For the typical sequences, it is not difficult to prove [4] the facts illustrated in
Fig. 12.10.

12.5.4 Shannon’s Compression Protocol

A compression or coding protocol CL maps the sourceword AL = (A1, . . . , AL) ∈
AL into binary codeword C L R = (C1, . . . , CL R) of L R bits, and more precisely
of �L R� if L R is not an integer. A decompression or decoding protocol DL maps
the L R bits back into a sequence ÃL = D(C L R) of the original alphabet. Then the
maps have the structure

CL : AL → {0, 1}L R , DL : {0, 1}L R → AL . (12.49)

The protocol is reliable if

DL(CL(AL) = AL (12.50)

and it is asymptotically reliable if the probability of (12.50) approaches one as
L → ∞. The parameter R is called the compression rate and represents the number
of bits/symbol used in the encoding.

Theorem 12.3 (Shannon’s noiseless channel coding) Consider an IID source with
entropy H(A) and a compression rate of R bit/symbol. Then, if R > H(A), there
exists an asymptotically reliable compression protocol. Conversely, if R < H(A)

any compression protocol is not reliable.

The proof is a simple application of the properties of typical sequences [4].
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12.5.5 Source Coding Evolution After Shannon’s Theorem

A different approach to data compression, called zero-error data compression,
exploits variable length encoding, in which short codewords are assigned to the
most frequent symbols and longer codewords to the less frequent ones. A typical
example of variable length coding is given by the Morse telegraph alphabet. A little
later after the proof of the Shannon coding theorem, it was proved that, given a source
with entropy H(A), there exists a variable length uniquely decodable code such that
the average length L of the codewords satisfies the inequality

H(A) ≤ L < H(A) + 1.

The coding procedure, established by Huffman [9], provides a zero-error probability
compression, with compression rate approaching the entropy bound for long symbol
sequences.

12.6 Quantum Data Compression

Quantum data compression is similar to Classical data compression but with a few
relevant differences. The target is to find an encoding protocol that maps the states of a
Hilbert space into a new Hilbert space of reduced dimensionality, with the possibility
of recovering the original states. As in the classical compression, where a sequence
of symbols is considered, in quantum compression a sequence of states, rather than
a single state, is considered. Hence, we start from a Hilbert space H with a given
dimension d = dim H and consider its L-extension H⊗L of dimension d L , where
the source state sequences (quantum sourcewords) are defined, and we map these
sequences into quantum codewords belonging to a new Hilbert space Hc with the
target to get

dc := dim Hc < dim H⊗L = d L . (12.51)

12.6.1 IID Quantum Source

Usually, an IID quantum source is defined starting from a density operator ρ acting
on a Hilbert space H and considering the L-replica ρ⊗L obtained by the tensor
product. Here we prefer an alternative, but perfectly equivalent, approach which is
closer to the classical approach. The given density operator identifies a random state
|A〉, which is described by an ensemble (A, pA), where A = {|1〉, . . . , |K 〉} is an
alphabet of states in H and pA is a probability distribution over A, with the meaning
pA(a) = P[|A〉 = |a〉].
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From the random state |A〉 ∼ (A, pA), we form a sequence of L random states
by the tensor product, namely |AL〉 := |A1〉 ⊗ · · · ⊗ |AL〉 ∈ H⊗L , with |Ai 〉 ∼
(A, pA) and we impose that the kets |Ak〉 be statistically independent. The possible
realizations of random state sequences |AL〉 are |aL〉 := |a1〉 ⊗ · · · ⊗ |aL〉 and have
probability

P[|AL〉 = |aL〉] = pA(a1) · · · pA(aL). (12.52)

We add the assumption that the states of A form an orthonormal basis of H, so
that dim H = |A| = K . This assumption remarks a first difference with respect to
the classical case, where no geometrical property has been assumed for the alphabet
of the symbols.

In the standard approach to define an IID quantum sequence, one starts from
a density operator ρ ∈ D(H) generated by an ensemble (A, pA), where A is an
orthonormal basis of H. Then the density operator reads

ρ =
∑

a∈A
pA(a) |a〉〈a| (12.53)

which represents an EID, with pA(a) the eigenvalues and |a〉 the corresponding
eigenvectors (by the orthonormality of A). In the mixed-state ρ given by (12.53)
pA(a) has just the meaning that |a〉 is present with probability pA(a). Next, consider
the EID of ρ⊗L , which is given by

ρ⊗L =
∑

a1

· · ·
∑

aL

pA(a1) · · · pA(aL) |a1〉〈a1| ⊗ · · · ⊗ |aL〉〈aL |. (12.54)

Again, we can see that in this decomposition the sequences of states have just the
probabilities given by (12.52).

12.6.2 Typical Quantum Sequences and Typical Subspace

In a quantum IID source we have, for the additivity of the quantum entropy under
the tensor product (see Sect. 12.4.4),

S(ρ⊗L) = L S(ρ) = L H(A)

where S(ρ) = H(A) is the classical entropy of the ensemble (A, pA) (for the
orthonormality of the basis A). Now we can proceed as in the classical case with the
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entropic application of the law of large numbers (see (12.45) and Theorem 12.2). We
introduce the estimator of the quantum entropy S(ρ) as

I(|AL〉) := 1

L
i(|A1〉, . . . , |AL 〉) = 1

L

L
∑

n=1

i(An) = − 1

L

L
∑

n=1

log pA(An). (12.55)

Then

Theorem 12.4 In an IID quantum source, the entropy estimator I(|AL〉) converges
to the entropy

lim
L→∞ I(|AL〉) = S(ρ) (in probability). (12.56)

Next, in analogy with the classical case, we introduce the sample entropy as

I(|aL〉) = − 1

L
log pA(a1) · · · pA(aL) = − 1

L

L
∑

n=1

log pA(an). (12.57)

Definition 12.2 A realization |aL〉 of the state sequence |AL 〉 is ε typical if its sample
entropy I(|aL〉) is ε close to the quantum entropy S(ρ), that is,

S(ρ) − ε ≤ I(|aL〉) ≤ S(ρ) + ε. (12.58)

The ε-typical subspace H
(L)
ε is defined as the subspace of H⊗L spanned by all

ε-typical state sequences (Fig. 12.11). �

The dimension of the spaceH⊗L is given by (see (12.51)) dim H⊗L = (dim H)L .
To find the dimension of the reduced space H

(L)
ε , the projector onto the ε-typical

subspace (typical projector) is introduced

Π(L)
ε =

∑

ε-typical

|a1〉〈a1| ⊗ |a2〉〈a2| ⊗ · · · ⊗ |aL〉〈aL | (12.59)

Fig. 12.11 Hilbert space
H⊗L of quantum
sourcewords and ε-typical
subspace H

(L)
ε of quantum

codewords
H

(L)
ε

H⊗L
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where the summation is limited to the ε-typical sequences defined by (12.58). Then

dim H(L)
ε = TrΠ(L)

ε .

12.6.3 Schumacher’s Compression Protocol

Quantum compression is similar to classical compression, with the adequate mod-
ifications. Now, the classical encoding and decoding maps seen in (12.49) take the
form (Fig. 12.12)

CL : H⊗L → H(L)
c , DL : H(L)

c → H⊗L . (12.60)

where H
(L)
c is the compressed Hilbert space (in practice given by the ε-typical

subspace H
(L)
ε ). The compression rate is defined as

R := log dim H
(L)
c

log dim H⊗L
= log dim H

(L)
c

L log d
.

In particular, if H⊗L consists of L qubits (d = 2), the compression rate becomes
R = log dim H(L)/L and allows one to express the dimension of the reduced space
in the form

dim H(L)
c = 2L R

and R reads in qubits/symbol. For the reliability of the protocol, the criterion is based
on the concept of fidelity FL , which compares the decompressed state to the original
state. This parameter verifies the condition 0 ≤ FL ≤ 1 and becomes FL = 1 only
when the two states coincide [8].

Theorem 12.5 (Schumacher’s noiseless quantum channel coding) Consider an IID
quantum source with entropy S(ρ) and rate R. Then, if R > S(ρ) there exists an

CL

H⊗L

ρ

Alice

noisless
channel

H
(L)
c

ρc

DL

H
(L)
c

ρc

Bob

H⊗L

ρ

Fig. 12.12 Quantum compression and decompression. The map CL compresses a state ρ of L log d
qubits (space H⊗L ) into a state ρc of LR qubits (space H

(L)
c ), and the map DL decompresses ρc

into the original state ρ
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asymptotically reliable compression protocol (where FL → 1 as L → ∞).
Conversely, if R < H(A) any compression protocol is not reliable.

The proof is based on an application of the properties of typical sequences.

12.6.4 Difference Between Quantum and State Compression

In the final part of Chap. 5, we have developed the state compression as a repre-
sentation of quantum states in a Hilbert space of reduced dimensionality. Thus the
target was similar to the one of quantum compression developed in this section.
However, the two techniques are completely different because they are based on
different properties of the states. The state compression is based only on the
geometric and algebraic properties of vector spaces (where quantum states live).
The quantum compression is concerned with the statistical properties encoded in
quantum states, whose randomness represents a source of information.

Anyway, it is interesting to remark that state compression preserves information,
as expected by the fact that it is a reversible transformation.

Proposition 12.1 The entropy of a quantum state does not change after a state
compression

S(ρ) = S(ρ) with ρ = U∗
r ρ Ur . (12.61)

Proof Let n = dim H, r = dim H, and let σ(ρ) = {λ1, . . . , λr , 0, . . . , 0} be the
spectrum of ρ, where the last n − r eigenvalues are zero. We have to prove that

σ(ρ) = {λ1, . . . , λr }. (12.62)

Note the zero eigenvalues do not give a contribution to quantum entropy because we
assume 0 log 0 = 0. We start from the reduced EID of ρ, say ρ = Vr Λr V ∗

r and use
the compressor U∗

r to get

ρ = U∗
r ρ Ur = U∗

r Vr Λr V ∗
r Ur = Z Λ Z∗. (12.63)

If we prove that the matrix Z := U∗
r Vr is unitary, then we get that (12.63) is an EID

of ρ with Λr containing the spectrum (12.62) on the diagonal. We have

Z∗ Z = V ∗
r Ur U∗

r Vr = V ∗
r PUVr

where PU = Ur U∗
r is the projector from H onto the compressed space H with

the property PU|u〉 = |u〉, ∀|u〉 ∈ U (see (5.140) and Fig. 5.14). Considering that
the kets of Vr belong to U, we have that PUVr = PU [|v1〉, · · · , |vr 〉] = Vr . Then,
Z∗ Z = V ∗

r Vr = Ir from the orthonormality of the kets Vr = [|v1〉, · · · , |vr 〉], and
Z∗ turns out to be a unitary matrix, and the same applies to Z .

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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12.7 Classical Channels and Channel Encoding

In this section, we consider the transmission of information from Alice to Bob through
a classical noisy channel.

In data compression, the transmission channel is noiseless and therefore preserves
the message and its information. In the presence of noise, the communication channel
distorts the messages and to counteract this effect a channel coding is introduced
before the transmission. While in source encoding the redundancy is removed, in
channel encoding a suitable redundancy is introduced with the target that, although
the message is corrupted, at the reception, the redundancy makes it possible to retrieve
the original message with a small error probability (reliable communication).

The central result will be the second Shannon’s theorem, according to which the
transmission can be made highly reliable, with a probability of error approaching
zero, provided that the information message is appropriately encoded and the trans-
mission rate R is less than the channel capacity C , a parameter that characterizes a
noisy channel. The scenario is illustrated in Fig. 12.13, where Alice wants to transmit
to Bob a message A. The message is mapped into a codeword C by a channel encoder
and sent through a noisy channel. At the channel output, Bob receives the word Ĉ ,
and tries to get an estimate Â of the original message A.

12.7.1 Probabilities and Information in a Discrete Channel

We consider only memoryless channels, which can be defined by a triplet (A,B, pc)

where A and B are respectively the input and output alphabets, while pc are the
transition probabilities pc(b|a) = P[B = b|A = a], a ∈ A, b ∈ B. Figure 12.14
illustrates the graphical representation of a ternary–quaternary channel, together with
the representation of the ternary source.

Given the source probabilities pA(a) and the transition probabilities pc =
pB|A(b|a) one can evaluate the other probabilities in the bipartite system A → B, that
is, pB, pAB, pA|B and then evaluate the corresponding informations and entropies,
seen in Sect. 12.3. Here we introduce a new entropic quantity: the mutual informa-
tion, which finds the following motivation. The target of a channel is the transmission
of the information carried by the symbol A, when Bob reads the received symbol B.
In the ideal case, from B Bob should know A, but in practice (for the presence of

Alice

pA(a)

channel
encoder

A

g(·)

noisy channel
C

pcL(b|a)

decoder
C

d(·)

Bob
A

Fig. 12.13 Communication through a noisy channel
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pc(2|0)

Fig. 12.14 Noisy ternary–quaternary channel driven by a ternary source: A source (or transmitted)
symbol and B received symbol. The source is specified by the prior probabilities pA(a) and the
channel by the transition probabilities pc(b|a)

noise), he has an uncertainty on A. Specifically, i(A) is the a priori uncertainty on
A, while i(A|B) is the a posteriori uncertainty on A, or residual uncertainty, when
b is known. The difference

Δi(A; B) = i(A) − i(A|B) = log
p(A|B)

p(A)
(12.64)

may be regarded as the information transmitted by the channel according to the
budget

a priori uncertainty
︸ ︷︷ ︸

= a posteriori uncertainty
︸ ︷︷ ︸

+ transmitted information
︸ ︷︷ ︸

(12.65)

i(A) i(A|B) Δi(A; B)

The average of Δi(A; B)

I (A; B) = E[Δi(A; B)] = H(A) − H(A|B) (12.66)

is called mutual information of the pair (A, B). Note the symmetry Δi(A; B) =
Δi(B; A), which gives I (A; B) = I (B; A), that is, the mutual informations
of (A, B) and (B, A) are the same. Finally, from inequality (12.17), we have
I (A; B) ≥ 0.

In the ideal case (noiseless channel), all the source information is transmitted by
the channel because H(A|B) = 0, and we have I (A; B) = H(A). In a noisy channel
H(A|B) > 0, and then I (A; B) < H(A) and in (12.66), the conditional entropy
H(A|B) may be regarded as the loss of information due to the presence of noise. For
this reason, H(A|B) is called equivocation and also information loss.

Note the alternative expression of the mutual entropy

I (A; B) = H(A) − H(A|B) = H(B) − H(B|A) = H(A) − H(B) − H(A, B).

(12.67)

Example 12.4 (Binary symmetric channel) This channel is specified by the cross
transition probabilities, which are assumed to be equal pc(0|1) = pc(1|0) = ε, as
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Fig. 12.15 Binary symmetric channel driven by a symmetric source (pA(0) = pA(1) = 1//2).
The mutual information I (A; B) gives also the channel capacity C (owing to the source symmetry)

shown in Fig. 12.15. Assuming that also the a priori probabilities are equal, pA(0) =
pA(1) = 1

2 , the source entropy is H(A) = 1 bit/symbol. The equivocation results
(see Problem 12.3)

H(A|B) = −(1 − ε) log(1 − ε) − ε log ε .

Hence the mutual information in a binary symmetric channel is given by

I (A; B) = H(A) − H(A|B) = 1 + (1 − ε) log(1 − ε) + ε log ε (12.68)

and is illustrated in Fig. 12.15 as a function of ε. Note the extreme cases, ε = 0 and
ε = 1, in which the channel is noiseless and we have I (A; B) = 1. The case ε = 1/2
gives I (A; B) = 0 and corresponds to a useless channel.

12.7.2 Channel Capacity

The mutual information I (A ; B) depends both on the source, through the a priori
probabilities, and on the channel, through the transition probabilities. Now, for a
given channel, we can vary I (A ; B) by changing the a priori probabilities pA. The
maximum that one obtains gives the capacity of the channel.

Definition 12.3 The capacity of a discrete memoryless channel is given by the
maximum of the mutual information taken over all possible a priori distributions:

C = max
pA

I (A ; B). (12.69)

Then, by definition

0 ≤ I (A; B) ≤ C. (12.70)
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For the evaluation of the capacity, it will be convenient to express I (A ; B) =
H(A)− H(A|B) in terms of the a priori distribution and the transition probabilities.
The expression is (see Problem 12.4)

I (A ; B) =
∑

a, b

pA(a) pc(b|a) log
pc(b|a)

∑

a′
pA(a′) pc(b|a′)

. (12.71)

In the evaluation, the channel transition probabilities are assumed as given and we
have to perform the maximization with respect to the a priori probabilities pA. The
problem is far from being easy because the pA have the constraint pA(a) ≥ 0
and

∑

a pA(a) = 1, and in general we do not achieve a closed-form result. Only
in the presence of symmetries, explicit results are obtained. In particular, for the
binary symmetric channel, a symmetry consideration leads to the conclusion that the
capacity is obtained when the source is symmetric, that is, pA(0) = pB(1) = 1/2.
Hence, the formula of the mutual information (12.68), obtained in such condition,
gives the channel capacity of the binary symmetric channel.

12.7.3 Coding in the Presence of Noise

The scenario has been illustrated in Fig. 12.13. The source message is encoded into
codewords of a given length L , which are transmitted by the L-extension of a discrete
channel. The received words are decoded into the original source format. The pres-
ence of noise corrupts the codewords, but if the redundancy introduced by encoding
is sufficiently high, the decoder can recover the original message with a small error
probability. Note that there is a special kind of duality between the source coding
and the channel coding: in the first the redundancy is removed, while in the second
the redundancy is intentionally introduced to make the recovery reliable.

To describe the system, we introduce the following notations:

A ∈ A = {1, . . . , K } symbol (or message) produced by the source,
X L = (X1 X2 . . . X L) ∈ C codeword sent to the channel,
Y L = (Y1Y2 . . . YL) ∈ YL received codeword,
̂A ∈ A decoded symbol (or message).

The set C of the codewords is called codebook and has the same cardinality as the
source alphabet, |C| = |A| = K ; in general it is given by a small subset of the
L-extension of an alphabet X = {x1, . . . , xN }, often given by the binary alphabet
X = {0, 1}. At the channel output, for the presence of noise, the received word Y L

may be different from the codeword X L and potentially it may be any L-tuple, that
is, Y L ∈ YL . Usually, the channel is the L-extension of a binary symmetric channel,



12.7 Classical Channels and Channel Encoding 609

so that the codewords are given only by K binary L-tuples, while at the channel
output the words may be any binary L-tuple.6

Now we write the relations of each operation in the scheme of Fig. 12.13. The
channel encoder maps, with a one-to-one correspondence, the source symbols onto
the codewords:

x L = g(a) , a ∈ A, x L ∈ C (12.72)

where g(a) is the encoding function. The channel is the L-extension (XL ,YL , pcL)

of a discrete channel (X,Y, pc), where the transition probabilities work as follows
(assuming a memoryless channel)

pcL(yl y2 . . . yL |x1x2 . . . xL) =
L
∏

n=1

pc(yn|xn). (12.73)

The decoder cannot realize the inverse map of (12.72) (becauseYL ⊃ C), but, observ-
ing the received word yL , it makes a decision about the source symbol, according to
a decision function d : YL → A, where

â = d(yL) , yL ∈ YL , â ∈ A . (12.74)

The global system is equivalent to a discrete channel (A,A, pg), where the transi-
tion probabilities pg(a′|a) = P[ Â = a′|A = a] can be calculated from the previous
rules. In particular, we can obtain the error probability as

Pe = P[ Â �= A] = 1 −
∑

a∈A
pg[a|a] pA(a). (12.75)

12.7.4 An Elementary Example

A simple example of channel encoding is obtained by transmitting each source
binary data three times. This is known as a (3,1) repetition code and is illus-
trated in Fig. 12.16. Then the codeword is simply C = (AAA), with codebook
C = {(000), (111)}. Using the 3-extension of a binary symmetric channel, the
dictionary of the received words Y3 consists of all the possible 8 binary triplets. The
transition probabilities of the channel can be calculated using (12.73). For instance,
with the transmission of the codeword x3 = (000), the probability that the received
word is y3 = (001) is given by

6 We continue with the convention of denoting random quantities by upper case, as A and X L , and
their realizations by the corresponding lower case letters, as a and x L .
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Fig. 12.16 Example of channel encoding for the transmission of binary symbols, using the 3-
extension of a binary symmetric channel. The table gives the source alphabet A, the codebook C,
and the set R of the possible words at the channel output. In the graph, at the right hand side, the
decision rule is specified through the curly brackets

pc3(001|000) = pc(0|0)pc(0|0)pc(1|0) = (1 − ε)(1 − ε)ε .

In general, we have

pcL(r |c) = εD(r,c)(1 − ε)L−D(r,c) (12.76)

where D(r, c) is the Hamming distance between the received word r and the code-
word c (given by the number of different bits between the two words).

The decoding function is based on the majority rule with a partition of the dictio-
nary of the received words Y3 into two parts

Y3
0 = {(000), (001), (010), (100)} , Y3

1 = {(101), (110), (011), (111)}
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The rule gives ̂A = i if y3 ∈ Y3
i , i = 0, 1. Then, the error probability is given by

Pe =
∑

ri /∈Ri

pcL(ri |ci )pA(i).

Since we are considering a memoryless channel, the errors occurring in the symbols
of words are statistically independent. Then, by inspection we find

Pe3 = P[̂A �= A] =
(

3

2

)

ε2 (1 − ε) + ε3.

To fix the ideas and to be anchored to the real world, we consider a specific case:
a binary source with equally likely symbols, so that H(A) = 1 bit/symbol and we
suppose that our binary channel allows the transmission of fc = 1000 bit/s with the
error probability ε = 0.1. With these data, we compare the transmission without the
encoding and in the presence of encoding.

In the absence of coding, the information sent to the channel is H ′ = H(A) fc =
1000 bit/s. and at the channel output the error probability is Pe = ε = 0.1, that is,
on average, about one error every ten bits.

Now the introduction of the (3, 1) repetition code allows for the reduction of the
error probability by encoding.

Pe := P[â �= a] =
(

3

2

)

ε2 (1 − ε) + ε3 = 0.028.

with an appreciable improvement. But the penalty to pay is the reduction of the
entropy rate because we repeat the same symbol three times and the channel guar-
antees the error probability ε = 0.1 with a rate of fc = 1000 symbol/s, where now
fc = 3 fs . Hence the entropy rate should be reduced to H ′ ∼= 333 bit/s.

Following this line, we can increase the number of repetitions to improve the
reliability of the transmission with a corresponding reduction of the entropy rate,
according to the paradigm (for L → ∞).

Pe → 0 provided that H ′ = fs H → 0.

This seems the intuitive conclusion. But Shannon established a counter intuitive
conclusion: there exists a channel encoding such that

Pe → 0 provided that H ′ < C ′.

In the above example, C ′ = fc[−ε log ε − (1 − ε) log(1 − ε)] ∼= 529 bit/s, so that
we can realize a completely (asymptotically) reliable transmission (Pe ∼ 0), with
an entropy rate of 529 bit/s.
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12.7.5 The Fundamental Theorem of Information Theory

Theorem 12.6 (The second Shannon theorem) Given a noisy channel with capacity
C and a source with K messages, provided that

1

L
log K < C,

there exists a coding and encoding system that guarantees an arbitrarily small error
probability. Conversely, if

1

L
log K > C

no encoding scheme guarantees arbitrarily small error probability.

The proof of the theorem is based on a very sophisticated coding and decoding
procedure excogitated by Shannon [1], which can be summarized in the following
steps.

1. A third party, say Charlie, on the basis of the channel transition probabilities
pc(y|x) and of a source probability distribution pX (x), computes the joint input–
output distribution pXY (x, y) = pX (c)pc(y|x) with the corresponding joint entropy
H(A, B).

2. For a fixed integer length L and a real number ε > 0, Charlie computes the
joint ε-typical set, i.e., the set of the input and output realizations (x L , yL), such that
the entropy estimator J(x L , yL) satisfies the inequalities

H(X, Y ) − ε ≤ J(X L , Y L) ≤ H(X, Y ) + ε

(see the corresponding Definition 12.1).
3. For each source message a ∈ A, Charlie generates a random codeword x L (a) =

(x1(a), x2(a), . . . , xL(a)) with IID symbols having common probability distribution
pX (x). The K codewords xL(1), . . . , x L(K ) are chosen independently.

4. Charlie sends to Alice and Bob the random code generated at step 3 and the
joint typical set computed at step 2.

5. Alice, on the basis of the message a emitted by the source, sends through the
channel the random codeword x L(a). Note that this word is doubly random, because
of the randomness of both the source symbol a and of the code generated by Charlie.

6. After receiving the word yL emitted by the noisy channel, Bob searches an
input codeword x L(â) such that the pair (x L(â), yL) belongs to the joint typical
set, according to the so-called typical set decoding. If such a codeword exists and
is unique, the corresponding message â is chosen as the decided message. If such a
codeword either does not exist or it is not unique, a random message is chosen.

The brilliant Shannon’s idea resides in the random coding of step 3, that became
a standard paradigm in the evolution of both Classical and Quantum Information
Theory. The philosophy supporting the proof of the theorem is as follows. For any
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Fig. 12.17 Sets in random coding: A source alphabet, XL set of possible input sequences, C
codebook, YL set of possible output sequences, R1 set of received sequences for codeword x L (1),
R2 set of received sequences for codeword x L (2), . . .

realization of the code, the error probability could be evaluated, at least in principle.
Owing to the randomness of the code, the error probability Pe turns out to be a random
variable. The evaluation of the mean error probability Pe is long and cumbersome,
but by no means difficult (see [4]). In particular, it may be shown that if L is large
enough, namely if it satisfies the inequality

1

L
log K < I (X; Y ),

one gets Pe < ε.
Now, if the mean error probability Pe is computed, there exists at least a code

realization with error probability not greater than Pe and, in conclusion, less than ε.
Finally, if Charlie chooses as pX (x) the input probability distribution corresponding
to the maximum of I (X, Y ), i.e., to the capacity C , the proof is complete.

The result can be explained in terms of typical sequences as in Fig. 12.17. For
L large enough there are approximately 2L H(X) distinct typical output sequences
that could be assigned to the source messages as codewords. Then for a uniquely
decodable coding it must be K ≤ 2L H(X). On the other hand, this is not sufficient
to guarantee that distinct typical input codewords produce distinct output words and
we must choose a subset of K typical input words as codewords. To evaluate the
cardinality of this subset consider that, given an input typical sequence x L , for L
large enough the are 2L H(Y |X) output typical sequences. In order that the output
typical words produced by the K codewords cover the set of the 2L H(Y ), we must
have K 2L H(Y |X) ≤ 2L H(Y ), i.e.,

K ≤ 2L[H(Y )−H(Y |X)] = 2L I (X;Y ).
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Note that I (X; Y ) ≤ H(X), so that the condition is more stringent than K ≤ 2L H(X).

Problem 12.3 � Prove that in a binary symmetric channel with cross transition
probability ε and equal a priori probabilities (see Fig. 12.15), the equivocation is
given by

H(A|B) = −(1 − ε) log(1 − ε) − ε log ε.

Problem 12.4 � Prove formula (12.71) giving the mutual information in terms of
the a priori probabilities and the transition probabilities.

12.8 Quantum Channels and Open Systems

In this section, we develop the theory of quantum channels as a preparation for the
reliable transmission of information, which will be formulated in the next section.
In this review, we follow closely a recent paper by Holevo and Giovannetti [2].

Quantum channels are a key part of quantum communication systems. In particular,
consider the following scenario: classical data belonging to a finite-size alphabet A
are transmitted through a physical line which employs a quantum carrier to convey
information (e.g., an optical fiber). In this case it is required that the data are encoded
into quantum states of the carrier and finally the quantum states are mapped back to
the original classical format. This scenario is illustrated in Fig. 12.18.

The initial encoding is formulated as a classical-quantum (c → q) mapping

A → ρA , A ∈ A (12.77)

for each symbol A of the data message. In the decoding stage we find a quantum-
classical (q → c) mapping, which is performed by a quantum measurement using a
projector system or more generally a POVM system {Qb , b ∈ B} with an alphabet
B. In general, B may be different from A, but hereafter we suppose that B = A.
Then the outcome m of the measurement is B = b ∈ A with probability

pB|A(b|a) = Tr
[

ρ′
a Qb

]

, b, a ∈ A. (12.78)

encoding
(c→ q)

A

Alice

quantum
channel
(q→ q)

ρA decoding
(q→ c)

ρA

Bob

B

Fig. 12.18 Environment of a quantum channel. Alice encodes the incoming classical symbol A ∈ A

into a quantum state ρA. The quantum channel transfers ρA reproducing a distorted replica ρ′
A. Bob

decodes ρ′
A into a classical symbol B ∈ B by a quantum measurement
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Fig. 12.19 Unitary representation of a noisy quantum channel through the introduction of ancillary
density operator ρE describing the environment interaction

The central operation in Fig. 12.18 is a q → q mapping

Φ : ρ → ρ′ (12.79)

where ρ = ρA is the input quantum state and ρ′ = ρ′
A is the output quantum state

and represents the quantum channel. In practice the output ρ′ �= ρ because of
the errors introduced by the physical channel, mainly due to noise. The noise can
be classical but also intrinsically quantum, i.e., introduced by the interaction of the
system with the environment. Note that the map Φ in general maps operators to
operators, possibly in a non-unitary way. It describes in fact the dynamics of an
open system, and therefore is not directly covered by the elementary postulates of
Quantum Mechanics (which are concerned with closed or isolated quantum systems,
evolving unitarily). The technique for dealing with open quantum system to regain
Quantum Mechanics postulates consists in adding an ancillary Hilbert space HE to
the input Hilbert space H to describe the environment interaction and assigning to it
an appropriate initial state ρE . In such a way, the composite Hilbert space H ⊗ HE

forms an isolated quantum system, where the evolution is described by a unitary
operator U , as shown in Fig. 12.19. The final output is obtained by tracing out over
E the state of H produced by the unitary operator, that is,

ρ′ = Φ[ρ] = TrE

[

U (ρ ⊗ ρE ) U∗]. (12.80)

This model is very general to include noiseless channels as well as noisy channels,
and also, with some artifacts, the hybrid c → q and q → c transformations seen in
Fig. 12.19 [2]. The model may include also quantum measurements. A noiseless
channel is obtained by omitting the E part and therefore it is simply governed by a
unitary transformation, that is,

ρ′ = Φ[ρ] = U ρ U∗. (12.81)

A noiseless channel is reversible, whereas a noisy channel is not.
A map Φ derived as in (12.80) satisfies the following properties [2, 8]:

A1 Trace preservation: Both the input ρ and the output ρ′ = Φ[ρ] are density
operators and therefore Trρ′ = Trρ = 1.
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A2 Tensor product: The combination of the input state ρ with the environment state
ρE is made by a tensor product.

A3 Convex linear map: The map must verify the condition

Φ
[
∑

i

πi ρi

]

=
∑

i

πi Φ[ρi ] (12.82)

for every probability distribution {πi } and every set {ρi } of density operators.

A4 Complete positivity: An obvious condition comes from the fact that the channel
mapping Φ transforms a quantum state ρ ≥ 0 into a quantum state ρ′ ≥ 0, which
implies the preservation of positivity. But there is a subtle and stronger condition,
called complete positivity, which means that the extension of a channel Φ with the
parallel of an ideal channel I d should be again positive.

The above assumptions are usually abbreviated as completely positivity and trace
preserving (CPTP).

12.8.1 Kraus Representation

Assumptions CPTP allow us to reformulate the mapping (12.80) in the form

ρ′ = Φ[ρ] =
dE
∑

k=1

Vk ρ V ∗
k (12.83)

which is known as a Kraus representation of a noisy quantum channel and also
operation-sum representation. In this expression, the Vk are operators acting on the
input Hilbert space H that verify the completeness condition

dE
∑

k=1

Vk V ∗
k = IH (12.83a)

where dE is the dimension of the environment space HE . The Kraus representation
is not unique, and it becomes important to find minimal representations (the ones
with the minimal dimension dE ).

Note, e.g., that the trace is preserved both in (12.80) and in (12.83), where Trρ′ =
Trρ. Also the positivity is ensured in Kraus representation because ρ ≥ 0 implies
Vk ρ V ∗

k ≥ 0. Less evident is the requirement of complete positivity.
In the case of noiseless channels, Kraus’ representation with dE = 1 gives the

standard relation of closed systems, that is, ρ′ = U ρ U∗.

Example 12.5 (Bit-flip channel) In Sect. 3.12 we have seen that the bit-flip operation
in a qubit system is provided by Pauli’s matrix σx . That operation must be regarded

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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Fig. 12.20 Interpretation of the bit-flip channel with the Bloch sphere. On the left, the sphere
represents the set of all pure states in a qubit system. On the right, the sphere is deformed into an
ellipsoid by the noisy bit-flip channel with p = 0.32. An input pure state ρ = |ψ〉〈ψ | is transformed
into a mixed-state (noisy state)

as a noiseless channel because σx is a unitary operator. In the noisy version. the
channel provides a bit-flip with probability p and leaves the qubit unchanged with
the probability 1 − p. The relation reads

Φ(ρ) = p σx ρ σx + (1 − p) ρ. (12.84)

To verify that this relation describes a quantum noisy channel, it is sufficient to prove
that it is a Kraus operation (12.83) with specific Vk . In fact, with

dE = 2 , V1 = √1 − p I2 , V2 = √
p σx

the general formula (12.83) gives (12.84). It remains to check the completeness
condition (12.83a). We have, recalling that σ 2

x = I2,

V1V ∗
1 + V2V ∗

2 = (1 − p)I2 + pσ 2
x = I2.

The effect of the transit over a noisy bit-flip channel is illustrated in Fig. 12.20
through the Bloch sphere, which is distorted into an ellipsoid, so that an input pure-
state qubit becomes a mixed-state qubit.

Example 12.6 (Depolarizing channel) This channel is a convex combination of the
identity channel I d : ρ → ρ and a completely depolarizing channel, which trans-
forms any ρ into a chaotic state, ρ → (1/d)IH, with probability p; d is the dimen-
sion of the Hilbert space. Then

Φ(ρ) = (1 − p)ρ + p (1/d)IH. (12.85)
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Fig. 12.21 Interpretation of the depolarizing channel with the Bloch sphere. On the left, the sphere
represents the set of all pure states in a qubit system. On the right, the sphere is uniformly contracted
by the depolarizing channel in dependence of the probability p (here p = 0.5). An input pure-state
ρ = |ψ〉〈ψ | is transformed into a mixed-state (noisy state)

The Kraus representation can be obtained for a general finite-dimensional Hilbert
space [2]. In a qubit space, H = Q = C

2, it is obtained using the following relation,
which expresses the identity IH through Pauli’s matrices, given by (3.91), in the
form (see Problem 12.5)

IH = I2 = 1
2

∑

i=0,x,y,z

σi ρ σ ∗
i . (12.86)

The effect of this channel is illustrated in Fig. 12.21 with the Bloch sphere, which is
uniformly contracted in dependence of the probability p. Also in this case an input
pure-state qubit becomes a mixed-state qubit.

12.8.2 Gaussian Channels

Gaussian channels play a fundamental role in quantum-optical communications,
where the information carrier is carried by Gaussian states (coherent and also
squeezed states). By definition a Gaussian channel is a quantum channel that pre-
serves the Gaussianity.

We recall that a Gaussian state in the N bosonic mode is completely specified by
its mean vector X = qp and its covariance matrix V . Then it is sufficient to establish
how these parameters are changed in a general Gaussian channel. We have [2]

Proposition 12.2 In the N bosonic mode, a Gaussian channel is specified by a triplet
(S, B, d), where S and B are real 2N ×2N matrices with the constraint (uncertainty
relation)

B ≥ 1
2 i(Ω − S Ω ST). (12.87)

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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and d is a vector inR2N ; Ω is the 2N ×2N matrix defined by (11.67). The mean value
X = qp and the covariance matrix V of the input state ρ(X , V ) are transformed
by the Gaussian channel, as

X → S X + d , V → S V ST + B. (12.88)

The matrix B is the noise parameter. For B = 0 the Gaussian channel is noiseless,
and therefore governed by a unitary transformation as in (12.81). In this case, the
matrix S becomes symplectic, that is, SΩ ST = Ω , and the relation between the
input and output quadrature operators is governed by a linear unitary symplectic
transformation

qp → qp S + d.

Then we find the relation of a symplectic transformation seen in Sect. 11.10, and
consequently we can classify such transformations as a noiseless channel.

For B �= 0, the Gaussian channel becomes noisy. In this case, the unitary
representation of the quantum channel, given by (12.80), is obtained by modeling
the environment by a multimode bosonic mode, say qpE

, with input–output relations
of the form

qp → qp S + qpE
SE + d , qpE

→ qp M + qpE
ME + dE

where S, SE , M , and ME are real matrices, such that

[

S M
SE ME

]

is a symplectic matrix.

12.8.3 Examples of Gaussian Channels

We illustrate the main examples of Gaussian channels in the single bosonic mode
(N = 1):

Attenuation and amplification channels. The channel matrices S and B have the
forms

S = k

[

1 0
0 1

]

, B =
[

N0 + 1
2 |1 − k2|

]

[

1 0
0 1

]

where N0 ≥ 0 and the parameter k expresses an attenuation for 0 < k < 1 and an
amplification for k > 1.

It can be shown [10] that in the case of attenuation, the environment of the
general scheme of Fig. 12.19 is provided by a beam splitter of transmissivity k
(see Sect. 11.17), driven by a thermal state ρE = ρth with mean photon number

http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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N = N0/(1−k2). In the case of amplification, the environment is provided by a two-
mode squeezing driven by a thermal state with mean photon numberN = N0/(k2−1)

(see Sect. 11.17).

Additive noise channels. The channel matrices S and B have the simple forms

S =
[

1 0
0 1

]

, B = 2N

[

1 0
0 1

]

where N ≥ 0 is the number of thermal photons. The new covariance matrix becomes

V → V + 2N I2.

Problem 12.5 �� Find the Kraus representation of a depolarizing channel in a
qubit system, using identity (12.86).

12.9 Accessible Information and Holevo Bound

In the transmission of classical information through a channel, we have a bipartite
system Alice → Bob, where Alice at the transmission side handles a classical
source A � (A, pA) with pA the a priori probabilities and at the reception side Bob
sees a classical source B � (A, pA|B), with a posteriori probabilities pA|B . The
entropic connection is provided by the mutual information

I (A; B) = H(A) − H(A|B) (12.89)

introduced in Sect. 12.7 (see (12.66)), which quantifies how much information A
and B have in common and can be calculated from the probabilities {pA(a)} and
{pB|A(b|a)} (see (12.66)). The interpretation of the a posteriori probabilities is that
Bob makes

• a correct inference on A = a with probability pB|A(a|a),
• a wrong inference with probability 1 − pB|A(a|a).

This holds both with a classical and with a quantum channel because we are
considering classical information.

In the next section, we will consider the transmission through a noisy channel;
but, as a preliminary, it is important to deal with a noiseless channel to remark the
difference between the classical and the quantum case. In the classical case, Bob has
no problem to get a right inference on the transmitted symbol; since, with a noiseless
channel,

pB|A(b|a) =
{

1 if b = a

0 if b �= a
(12.90)

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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Fig. 12.22 Transmission through a noiseless quantum channel. Alice encodes the incoming clas-
sical symbol A ∈ A into a quantum state ρA. The quantum channel transfers ρA uncorrupted. Bob
decodes ρA into a classical symbol B ∈ B by a quantum measurement

and then

I (A; B) = H(A) (classical case: noiseless channel). (12.91)

We now consider the quantum case with the required detail, continuing with the
assumption of a noiseless channel. The scenario is depicted in Fig. 12.22, where
the source emits a symbol A � (A, pA), and Alice wants to transmit A to Bob. If
the source emits the message A = a, she encodes the message into a quantum state
of some physical system, according to the classical-quantum (c → q) mapping

a → ρa , a ∈ A. (12.92)

Note that for the encoding Alice should have the availability of a constellation of
K distinct density operators {ρ1, ρ2, . . . , ρK }, where K = |A| is the size of the
source alphabet. The scenario is the one we considered in quantum communications
in Chap. 7 (where we assumed pure states instead of density operators).

Since the channel is noiseless, Bob receives exactly ρA and performs a quan-
tum measurement using a POVM system {Qb , b ∈ A} . The outcome B of the
measurement is B = b ∈ A with probability

pB|A(b|a) = Tr[ρa Qb] , b, a ∈ A. (12.93)

Now, can Bob reach a condition (12.90) to get a right inference with certainty on
the symbol transmitted by Alice? The answer is that (12.90) is verified only in very
special cases, which essentially requires that the states be orthogonal. Then to make
a comparison with (12.91), we have

I (A; B) = H(A) (quantum case: noiseless channel, orthogonal states). (12.94)

But in practice, as we have seen in Chap. 7 with coherent states (and also with
squeezed states), the states are never orthogonal, and, although the channel is noise-
less, Bob cannot infer with certainty on the transmitted symbol. This is an important
difference of quantum information transmission with respect to the classical case.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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Then in the quantum case, we have to consider the full expression of the mutual
information I (A; B) = H(A) − H(A|B), which depends on the measurement per-
formed by Bob. But, with the limit imposed by quantum mechanics, Bob should do
his best, as stated by the following definition

Definition 12.4 The maximum of mutual information obtained through any possible
measurement

Iacc := max{POVM} I (A; B) (12.95)

is called accessible information.

But before proceeding we have to study an important entropic quantity.

12.9.1 Holevo Entropy with a Constellation of Quantum State

In a constellation of K quantum states we have the ensemble

L = {(p1, ρ1), . . . , (pK , ρK )} = {pa, ρa}

to which the following entropic quantity can be associated

χ({pa, ρa}) := S(ρ) −
∑

a

pa S(ρa) (12.96)

which is called χ -information or Holevo-χ . In (12.96) ρ is the average density
operator: ρ = E[ρA] =∑a pa ρa .

Holevo-χ has several properties

(1) It depends only on the ensemble L and, for this reason, it is often indicated as
χ(L). In some respects, it can be interpreted as the “entropy of the constellation”.

(2) It is nonnegative, χ(L) ≥ 0, for the concavity of quantum entropy [8].
(3) For pure states, for which S(ρa) = 0, it results

χ({pa, ρa}) = S(ρ). (12.97)

(4) A quantum operation Φ can never increase the Holevo-χ , that is, if L′ =
{(pa, Φ(ρa))}, then χ(L′) ≤ χ(L) (from Lindblad–Uhlmann monotonicity of
quantum relative entropy [11]).

But the most important property is

Theorem 12.7 (Holevo’s bound) For any measurement Bob can do, the mutual
information is limited by the Holevo-χ
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I (A; B) ≤ χ({pa, ρa}). (12.98)

This theorem, proved by Holevo in 1973, is one of the most important results of
quantum information theory. The proof [11] is based on an elegant formulation of
a tripartite system formed by: (1) The source (A, pA), seen as a fictitious quantum
system, (2) the encoder, and (3) the measurement device used by Bob. It is an extra-
ordinary application of several statements: (i) Properties of the quantum entropies,
as the strong subadditivity of the von Neumann entropy, (ii) the fact that quantum
operations can never increase the χ -information, and (iii) the theory of quantum open
system seen in the previous section.

The conditions for the equality in (12.98) are: (1) The density operators ρa

commute (are simultaneously diagonalizable) and (2) Bob perform the POVM mea-
surement with the common eigenbasis of the {ρa} (see Problem 12.8).

Example 12.7 We consider a qubit system where Alice prepares the states

|ψ0〉 = |0〉 , |ψ1〉 = cos θ |0〉 + sin θ |1〉

with probability p0 = p and p1 = 1 − p, respectively, θ being a parameter. Note
that the corresponding density operators are respectively

ρ0 = |ψ0〉〈ψ0| =
[

1 0
0 0

]

, ρ1 = |ψ1〉〈ψ1| =
[

cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]

.

The average density operator is

ρ = p ρ0 + (1 − p) ρ1 =
[

(1 − p) cos2 θ + p (1 − p) cos θ sin θ

(1 − p) cos θ sin θ (1 − p) sin2 θ

]

.

Note that the inner product is 〈ψ1|ψ0〉 = cos θ , so that the states are orthogonal only
for θ = π/2.

The quantum entropies of the two (pure) states are zero, S(ρ0) = S(ρ1) = 0. For
the evaluation of the quantum entropy of the average density operator ρ, we calculate
the eigenvalues which result in

λ± = 1

2

[

1 ±
√

2p2 − 2(p − 1) cos 2θp − 2p + 1

]

.

Then S(ρ) is given by the classical entropy of a binary source with probabilities
{λ−, λ+}

χ({pa, ρa}) = S(ρ) = H({λ−, λ+}).
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Fig. 12.23 Holevo bound as a function of the parameter θ in a qubit system when the states |ψ0〉 and
|ψ1〉 are generated , respectively, with probability p and 1 − p. For each value of p, the maximum
is given by the classical entropy H({p, 1 − p}) and is obtained when the states are orthogonal, that
is, for θ = π/2 (see the inner product |〈ψ0|ψ1〉| as function of θ on the right)

The Holevo bound χ is illustrated in Fig. 12.23 as function of θ for four values of
the probability p. Note that the maximum is obtained for θ = π/2, that is, when
the two states are orthogonal, and in particular that for p = 1/2 the maximum is
given by 1 bit. In correspondence to the maximum, it is possible for Bob to establish
with certainty which state Alice has prepared. For all the other values of θ , the state
orthogonality does not hold and Bob cannot establish with certainty which state Alice
has prepared.

Problem 12.6 � Consider the following ensemble in a qubit system

L : p0 = 1
2 , ρ0 =

[

0.8 0.25
0.25 0.2

]

, p1 = 1
2 , ρ1 =

[

0.1 0.3
0.3 0.9

]

Evaluate the Holevo χ .

Problem 12.7 �� With the ensembleL specified in the previous problem, evaluate
the mutual information, assuming that Bob uses the measurement operators provided
by the Helstrom theory. Then verify the Holevo bound I (A, B) ≤ χ(L).

Problem 12.8 ��� Prove that the Holevo bound holds with the equality sign if (1)
the density operators {ρa} commute, that is, they are simultaneously diagonalizable
and (2) the POVM measurement is performed with the common eigenbasis of the
{ρa}.
Problem 12.9 � Prove that in a constellation of distinct pure states {ρa =
|ψa〉〈ψa | , a ∈ A}, the density operators commute if and only if the states are
orthogonal.
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12.10 Transmission Through a Noisy Quantum Channel

As the subject is very complex and still debated, we will limit ourselves to giving an
overview, without delving into the details of the various formulations.

We now suppose that the quantum channel is noisy (Fig. 12.24) and then we have
to change the target and the methodology. The change with respect to the noiseless
case is that the state received by Bob is distorted according to a quantum operation
Φ, specific of the channel, say

ρ′
A = Φ(ρA). (12.99)

An intuitively obvious remark is that the amount of classical information that Bob
can receive will be reduced with respect to the noiseless case. This is mathematically
proved by Lindblad–Uhlmann monotonicity of quantum relative entropy [11], which
states that a quantum operation Φ can never increase the χ -information, namely
χ({pa, Φ(ρa)}) ≤ χ({pa, ρa}).

Now the problem is to establish the maximum amount of classical information
that can be reliably transmitted through a noisy channel, specified by the quantum
operation Φ. In other words, we have to define and evaluate the classical capacity
of the quantum channel Φ. The answer to this problem is based upon a multiple
use of the noisy channel, similarly to the classical channel encoding. But, while a
classical channel has a unique capacity, for a quantum channel we may define several
capacities, in dependence of the presence or absence of entanglement and of the type
of quantum measurement. Specifically, the capacity of quantum channel may depend
on whether:

• the information to be transmitted is classical or quantum,
• the channel is memoryless or not,
• the encoding uses separable states or entangled states,
• the quantum measurement is individual or collective (global),
• Alice and Bob share or do not share entanglement resources.

Hereafter, we suppose that the information to be transmitted is classical and that the
channel is memoryless.

encoder
A

Alice

noisy quantum
channel

ρA decoder
POVM

Φ(ρA)

Bob

B

Fig. 12.24 Transmission through a noisy quantum channel. Alice encodes the incoming classical
symbol A ∈ A into a quantum state ρA. The quantum channel modifies the state as Φ(ρA). Bob
decodes Φ(ρA) into a classical symbol B ∈ B by a quantum measurement
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12.10.1 General Formulation with Classical Information

We now consider a quite general formulation and introduce the main concepts, as
reliability and achievability, but without arriving at explicit results, which will be
obtained in specific cases.

The scenario is the following: Alice has a classical information source, which
emits a symbol A � (A, pA), and wants to transmit A to Bob. Assume that Φ

represents a qubit channel. Then

• Alice encodes the messages a of A into a quantum state of L qubits: a → ρ
(L)
a ,

where ρ
(L)
a acts in the L-qubit space H⊗L ,

• Alice sends ρ
(L)
a to Bob through L uses of the qubit channel Φ,

• Bob receives the state σ
(L)
a := Φ⊗L(ρ

(L)
a ),

• Bob makes a collective measurement with a POVM system {Qa} in the L-qubit
space H⊗L .

The error probability is

P(L)
e = 1

|A|
∑

a

(

1 − Tr
[

σ (L)
a Qa

])

.

The transmission is reliable if P(L)
e → 0 as L → ∞.

We now proceed with the general formulation of a quantum channel capacity,
following Holevo and Giovannetti [2] The authors begin with the Shannon capacity,
defined as

CShan = max{pa} I (A; B) (12.100)

where I (A; B) is the mutual information and the maximization is performed with
respect to all possible input distribution (This is the same definition of capacity we
gave in Sect. 12.7 for a memoryless discrete classical channel). Then they extend the
definition to the L-block channel as

C (L)
Shan = L CShan (12.101)

where the memoryless nature is reflected by the additive property. The maximization
is now taken over all input joint distributions of the sequence AL , including the
correlated ones.

Then the authors consider the transfer of classical information into a quantum
sequence of separable states, AL → ρa1 ⊗ · · · ⊗ ρaL , and define C (L) as the
Shannon capacity, obtained by maximizing over all possible measurements on H⊗L .
Because of possibly entangled measurements, C (L) may be strictly superadditive,
C (L) > L C (1). Then, the definition of capacity needs a regularization
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Cχ := lim
L→∞

1

L
C (L). (12.102)

Note that, in general, calculations as (12.102) represent a formidable task; but in this
case the result is very simple

Cχ = max{pa} χ({pa, ρa}) (12.103)

where χ({pa, ρa}) is Holevo-χ and the maximum is over all possible input prob-
abilities, with the ρa fixed. Relation (12.103) is the HSW theorem (according to
Holevo himself!). We will come back to this statement below.

12.10.2 Capacity of the Input c → q Channel

We follow closely Holevo and Giovannetti’s paper [2], where they evaluate the
capacity of the c → q quantum channel. The scenario is the following (Fig. 12.25):
The input A � (A, p) is mapped into a fixed family of quantum states {ρa}. If the let-
ters of the message aL = (a1, . . . aL) are transmitted independently of each other, at
the output of the composite channel one has the separable state ρL = ρa1 ⊗· · ·⊗ρaL .
The direct decoding of this sequence (without the presence of a noisy channel)
requires a quantum measurement in H⊗L . Then we have two classical random vari-
ables: The random variable AL at the input (of which aL is realization), and the
random variable ÂL given by the result of the measurement. From these random
variables, we can evaluate the classical mutual information I (AL ; ÂL). Then the

extraction
of

word aL

A = a

Alice

a1

aL

encoder
E1

POVM

ρa1

Bob

B

encoder
EL

ρAL

•
•
•

Fig. 12.25 Evaluation of the capacity of the input c → q channel. If the source of information
emits the message A = a, Alice chooses the word aL = (a1, . . . , aL ), encodes it in the quantum
word ρa1 ⊗ · · · ⊗ ρaL , and sends separately the L factors ρai by L uses of the channel Φ. Bob
decodes the factors ρai by a POVM system
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Shannon capacity C (L) is obtained by maximizing over all the measurements on
H⊗L . Because of possibly entangled measurements, C (L) may be strictly super-
additive, C (L) > L C (1). Then, the definition of capacity needs a regularization, as
in (12.102)

Cq→c := lim
L→∞

1

L
C (L). (12.104)

Again, calculations according to (12.104) are quite challenging in general, because
we have to evaluate C (L) for an arbitrary length and then take the limit. But in this
case, the result is very simple

Theorem 12.8 (HSW theorem I) The capacity of the input c → q channel (12.104)
can be obtained by the maximization of the χ -information

Cq→c({ρa}) = max
pa

χ({pa, ρa}) (12.105)

where the maximization is performed over the probabilities {pa}, with {ρa} fixed.

Note that in this formulation the capacity depends on the input states, as indicated
in the symbol in (12.105).

Example 12.8 (BPSK system) Consider a BPSK system where the input consists of
the two coherent states | ± A〉 of amplitude ±A. In [12, 13] the classical capacity
Cχ defined by (12.105) is calculated. The result is

Cχ = h2(
1
2 (1 + |X |2))

where |X |2 = exp(−4A2) is the quadratic overlap of the two coherent states and

h2(p) = −p log p − (1 − p) log(1 − p) (12.106)

is the classical entropy of a binary source with probabilities (p, 1 − p).

Example 12.9 Consider an input ensemble of pure states in a qubit system L =
{pa, |ψa〉〈ψa |, a = 0, 1}. Then

χ(L) = S(ρ)

where ρ = p0|ψ0〉〈ψ0| + p1|ψ1〉〈ψ1| is the average density operator. For the evalu-
ation of ρ we have to write the pure states explicitly. For simplicity, we assume that
they are given by a real combination of the basis vector; so that they can be written
in the trigonometric form

|ψ0〉 = cos φ|0〉 + sin φ|1〉 , |ψ1〉 = cos β|0〉 + sin β|1〉
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The corresponding density operators are

ρ0 =
[

cos2 φ cos φ sin φ

cos φ sin φ sin2 φ

]

, ρ1 =
[

cos2 β cos β sin β

cos β sin β sin2 β

]

and the average density operator is given by

ρ =
[

cos2 φp0 − cos2 β(p0 − 1) cos φ sin φp0 − cos β sin β(p0 − 1)

cos φ sin φp0 − cos β sin β(p0 − 1) sin2 φp0 − sin2 β(p0 − 1)

]

and the corresponding eigenvalues are

λ± = 1

2

[

1 ±
√

2p2
0 − 2 cos(2(β − φ))(p0 − 1)p0 − 2p0 + 1

]

.

From these eigenvalues we can evaluate the Holevo-χ as χ(L) = S(ρ) =
H({λ−, λ+}) = h2(λ−), where H is the Shannon entropy of a binary source. To
find the capacity we have to maximize with respect to the input probabilities. For
reasons of symmetry, the optimum is obtained with p0 = p1 = 1

2 . Then

ρ =
[

1
2

[

cos2 β + cos2 φ
] 1

4 (sin 2β + sin 2φ)

1
4 (sin 2β + sin 2φ) 1

2

[

sin2 β + sin2 φ
]

]

and

λ± = 1

2

[

1 ±
√

cos2(β − φ)

]

= 1

2
[1 ± |X |]

where X = cos(β − φ) is the inner product of the two pure states.
In conclusion, the capacity of the input c → q channel is given by

Cc→q = h2
( 1

2 [1 − |X |])

where X is the inner product between the input states. Figure 12.26 shows the plot
as a function of |X |.

12.10.3 Product-State Capacity

The simplest approach to transmit classical information over a noisy quantum channel
is similar to the one used in Shannon’s noisy channel coding theorem, that is, a random
classical code is selected according to a given distribution p(x). Alice encodes the
message to be sent into a quantum codeword obtained as the tensor product from an
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Fig. 12.26 Capacity Cc→q of an input qubit source as a function of the superposition parameter
|X | of the input states

alphabet of quantum states and transmits it by multiuse of a noise quantum channel. At
the reception, Bob performs individual POVM measurements and determines in such
a way a conditional probability distribution pY |X (y|x), as in a classical noisy channel.
The corresponding mutual information I (X; Y ) represents an achievable rate. The
classical capacity is obtained by maximization of I (X; Y ) over Alice’s encoding
possible choices and Bob’s possible measurements. The scenario is illustrated in
Fig. 12.27.

We now give the details. Let A � (A, pA) be the information source and let
p(x) be a probability distribution, according to which a codebook of IID words is
generated

code
book

A = a

Alice

x1(A)

xL(A)

encoder
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channel
Φ

ρx1(A) decoder
D1

σx1(A)

Bob

decision
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σxL(A) yL(A)

•
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Fig. 12.27 Evaluation of product-state capacity of a noisy channel. Alice and Bob share a codebook
of L words generated by a probability distribution pX (x). If the source of information emits the
message A = a, Alice chooses the codeword x L (a) = (x1(a), . . . , xL (a)), encodes it in the
quantum word ρx1(a) ⊗ · · · ⊗ ρxL (a), and sends separately the L factors ρxi (a) by L uses of the
channel Φ. Bob receives the corrupted versions σxi (a) and decodes them by a POVM system



12.10 Transmission Through a Noisy Quantum Channel 631

C =
⎡

⎢

⎣

x L(1)
...

x L(L)

⎤

⎥

⎦
=
⎡

⎢

⎣

x1(1) x2(1) · · · xL(1)
...

...
. . .

...

x1(L) x2(L) · · · xL(L)

⎤

⎥

⎦
.

where L is the number of possible messages, that is, L = |A|. The distribution p(x)

and the codebook must be known by both Alice and Bob. If the source emits the
message A = a, Alice chooses the corresponding codeword x L(a) in the codebook
and prepares the quantum codeword with the format

ρx L (a) = ρx1(a) ⊗ ρx2(a) ⊗ · · · ⊗ ρxL (a) (12.107)

where the ρx are density operators to act as input of the quantum channel Φ. The
factors in (12.107) are individually sent to the channel and Bob receives a corrupted
replica of each factor

σxi (a) = Φ(ρxi (a)) , i = 1, 2, . . . , L .

Bob makes L individual measurements using a POVM system {Qi }. These measure-
ments induce the probability distributions

pYi |Xi (yi |xi (a)) = Tr
[

Qyi Φ(ρxi (a))
]

, i = 1, 2, . . . , L

and, considering the independence and the IID, the L-fold conditional distribution
is given by pY1···YL |X1···X L (y1 · · · yL |xi (a) · · · xL(a)) = ∏i pYi |Xi (yi |xi (a)). From
this distribution Bob can evaluate the mutual information I (X; Y ), which depends
on the distribution p(x), on the quantum alphabet {ρx }, on the channel Φ, and on the
POVM system Qyi . For a fixed channel, the maximization over the other parameters
gives the classical channel capacity, also called product-state capacity.

The HSW theorem states that the product-state capacity can be obtained by the
Holevo-χ (see [8, 11, 14]). Note that the procedure is essentially the same as in the
second Shannon theorem.

Theorem 12.9 (HSW theorem II) The product-state capacity can be obtained by
the maximization of the χ -information

C(Φ)prod = max
L

χ(L) (12.108)

over all the input ensembles L = {pa, ρa}.
Example 12.10 Consider the depolarizing qubit channel with relation (see Example
12.6)

Φ(ρ) = (1 − p)ρ + 1
2 p I2
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with the input ensemble of pure states L = {pa, |ψa〉〈ψa |, a = 0, 1}. Then the
output χ results in

χ({pa, Φ(ρa)}) = S(Φ(ρ)) − p0 S(Φ(ρ0)) − p1 S(Φ(ρ1))

where ρ = p0|ψ0〉〈ψ0| + p1|ψ1〉〈ψ1| and

Φ(ρ) = (1 − p) [p0|ψ0〉〈ψ0| + p1|ψ1〉〈ψ1|] + 1
2 p I2.

The eigenvalues of Φ(ρi ) = Φ(|ψi 〉〈ψi |) are independent of the states and given by
1
2 (1 ± p). Therefore

S(Φ(ρi )) = h2(
1
2 (1 − p)) (12.109)

with h2(x) the entropy of a classical binary source given by (12.106).
For the evaluation of Φ(ρ), we have to write the pure-states explicitly. As done

in Example 12.9 we assume that they are given by a real combination of the basis
vector so that they can be written in the trigonometric form

|ψ0〉 = cos φ|0〉 + sin(φ)|1〉 , |ψ1〉 = cos β|0〉 + sin β|1〉.

The corresponding density operators are

ρ0 =
[

cos2 φ cos φ sin φ

cos φ sin φ sin2 φ

]

, ρ1 =
[

cos2 β cos β sin β

cos β sin β sin2 β

]

The average density operator is ρ = p0ρ0 + p1ρ1, which becomes at the channel
output Φ(ρ) = (1 − p)ρ + pI2/2. Explicitly, we find

Φ(ρ) =
[

qp1 cos2 β + 1
2 p + qp0 cos2 φ −q(p0 cos φ sin φ + p1 cos β sin β)

−q(p0 cos φ sin φ + p1 cos β sin β) qp1 sin2 β + 1
2 p + qp0 sin2 φ

]

with p1 = 1 − p0 and q = 1 − p. The corresponding eigenvalues are

λ± =
{

1

2

[

1 ±
√

−(p − 1)2
[−2p2

0 + 2 cos(2(β − φ))(p0 − 1)p0 + 2p0 − 1
]

]}

and the corresponding entropy is S(ρ) = h2(λ−). But we have to find the optimiza-
tion with respect to the input probabilities p0, 1 − p0. Considering the symmetry,
the optimization is obtained with p0 = 1

2 . Then we have the simplifications

Φ(ρ) =
[ 1

4 (p cos 2β + p cos 2φ + 2) 1
4 p(sin 2β + sin 2φ)

1
4 p(sin 2β + sin 2φ) 1

2

[

p sin2 β + p sin2 φ + p
]

]
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Fig. 12.28 Product-state
capacity of a depolarizing
qubit channel as a function
of the probability p. The
relation of the channel is
Φ(ρ) = (1 − p)ρ + 1

2 p I2
and the expression of the
capacity is C(Φ)prod =
1 − h2(

1
2 (1 − p))

0.4 0.6 0.80 0.2 1
0

0.5

1

p

C (Φ)prod

and

λ± = 1

2

[

1 ±
√

p2 X2

]

with X2 = cos2(β − φ) (12.110)

where X = 〈ψ0|ψ1〉 is the inner product. Thus the Holevo-χ obtained with the
optimal input probabilities p0 = p1 = 1

2 is given by

χ = h2(
1
2 (1 − pX)) − h2(

1
2 (1 − p))

where X is the inner product between the input states and p is the probability of the
depolarizing channel. Now, to find the product-state capacity we have to make the
optimization also with respect to the input states. Clearly this leads to the orthogo-
nality of the states, X = 0. Then h2(

1
2 (1 − pX)) = h2(

1
2 ) = 1 bit. In conclusion the

product-state capacity is

C(Φ)prod = 1 − h2(
1
2 (1 − p)).

Figure 12.28 shows the plot of the capacity as a function of the probability p.

12.10.4 A More General Approach with Input Entanglement

The previous scenario depicted in Fig. 12.27 is essentially a classical scheme because
it makes no use of quantum mechanical features such as entanglement. More gen-
erally, we can encode the classical information into a general (possibly entangled)
density operator acting on a composite Hilbert space H⊗L (Fig. 12.29). If ρL(a) is
the quantum codeword corresponding to the message a (in general not given by the
tensor product of L density operators as in the previous scheme), it is assumed [2]
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encoder

E

a channel

Φ⊗L

ρL
a decoder

D

σ L
a b

Alice Bob

Fig. 12.29 General transmission of classical information through L independent uses of a quantum
channel Φ. The information source emits the message a. Alice prepares a composite quantum state
ρL (a) acting on H⊗L (possibly entangled) for input to L independent uses of a noisy quantum
channel Φ. At the output Bob receives a corrupted version σ L

a = Φ⊗L (ρL (a)) and decodes it with
a collective measurement

that each component is individually affected by the same noise channel Φ, producing
the transformation

ρL
a → Φ⊗L [ρL

a ]

where Φ⊗L is the L-fold tensor product of the channel map.7

The corresponding capacity can be defined as

Cχ (Φ⊗L) = max
{pa ,ρL

a }
χ({pa}, {Φ⊗L(ρL

a )})

where the maximum is taken over the ensembles {pa} and {ρL
a }. This capacity gives

the rate of classical bits using blocks of size L and therefore Cχ (Φ⊗L)/L represents
the bit rate per individual use of the channel Φ. Asymptotically one has the capacity

C(Φ) := lim
L→∞

1

L
Cχ (Φ⊗L).

Now, if the additivity holds

Cχ (Φ⊗L) = L Cχ (Φ) (12.111)

7 Intuitively, the tensor product of two channel maps Φ1 and Φ2 acts as the parallel of the two
channels in a composite Hilbert space H1 ⊗ H2. Specifically, one has [2]

Φ1 ⊗ Φ2 = (Φ1 ⊗ I d2) ◦ (I d1 ⊗ Φ2)

where ◦ is the concatenation (Φ1 ◦ Φ2 is obtained by application of Φ2 at the output of Φ1), I d1
and I d2 are the identity channels in H1 and H2, respectively. The interpretation becomes clear
when ρ12 = ρ1 ⊗ ρ2, where

(Φ1 ⊗ Φ2)[ρ1 ⊗ ρ2] = Φ1[ρ1] ⊗ Φ2[ρ2].

Roughly speaking, we can say that in the channel Φ⊗L each “component” of the input state sees
the channel Φ.
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one gets

C(Φ) = Cχ (Φ).

Relation (12.111) is known as the additive conjecture, which has been proved for
several quantum channels, but for some other it does not hold. This is still an open
question, as discussed in [2].

12.10.5 Capacity with Entropy Exchange

The previous scenarios are essentially based on the Holevo-χ , which does not account
for a possible cooperation between the input and output of the quantum noisy channel.
To investigate this opportunity, we need further generalizations.

The new scenario considered in [2] is based on the procedure of purification, as
depicted in Fig. 12.30. Of course, the central role is played by the noisy channel Φ,
which maps the input state ρ = ρA into the output state ρB = Φ(ρA), both acting in
the Hilbert space HA. But the newcomer is a reference system HR , which allows us
to purify ρA as |ψAR〉〈ψAR |. From the theory of purification of Sect. 10.4 we have
that the density operator ρR = TrA|ψAR〉〈ψAR | has the same spectrum as ρA and
hence S(ρR) = S(ρA). Also we have that the transmission of |ψAR〉〈ψAR | through
the channel Φ ⊗ I dR gives at the output the state

ρE R = (Φ ⊗ I dR)(|ψAR〉〈ψAR |).

The above density operator allows us to define the quantum mutual informa-
tion as

I (ρ,Φ) := S(ρR) + S(ρB) − S(ρB R)

A purification
ρ

Φ ⊗ Id
|ψAR ψAR | ρBR

R E

Fig. 12.30 Scenario for entropy exchange. The source A, the reference system R for the purification
of the input state, and the channel environment E form a tripartite system, which is the basis for
the entropy exchange

http://dx.doi.org/10.1007/978-3-319-15600-2_10
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which is formed by: the input entropy S(ρR) = S(ρA), the output entropy S(ρB) =
S(Φ(ρA)), and the joint entropy S(ρB R). We have to recall that the channel includes
also an environment system E , so that we have a tripartite system HA, HR , and
HE . It can be shown that S(ρB R) = S(ρE ). This allows us to define the entropy
exchange

S(ρ,Φ) := S(ρB R) = S(ρE )

and the quantum mutual information can now be written in the meaningful form

I (ρ,Φ) = S(ρA) + S(Φ(ρA)) − S(ρ,Φ). (12.112)

12.10.6 Concluding Remarks

In this last section of the chapter, we have considered the transmission of (classi-
cal) information through a noisy quantum channel. The topic is not concluded, in
agreement with the fact that several questions, related to the definition of quantum
capacity, are still open. A deeper investigation goes beyond the scope of this book.
We have only tried to formulate a few of the many scenarios offered by quantum
information theory, in sharp contrast with classic information theory, where channel
capacity is defined in an unique way.

A further indication that the topic is not consolidated is given by the number of
different formulations we find in the recent literature. Compare, e.g., the seminal
paper by Holevo and Giovannetti [2], the formulation of Datta in [11], the books by
Nielsend and Chuang [8], and the book by Wilde [14].
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Chapter 13
Applications of Quantum Information

Main Acronyms

PTNG Pseudo-random number generation
QRNG Quantum random number generation
LCG Linear congruential generators
QKD Quantum key distribution
DV–QKD QKD with discrete variables
CV–QKD QKD with continuous variables

13.1 Introduction

Besides the problem of reliably transmitting classical information through quantum
means, which is the focus of this book, Quantum Information has seen an impressive
diversity of applications, ranging fromquantumcomputing to quantumcryptography,
and from quantum teleportation to quantum metrology (for an extensive review see
[1]). In this chapter we briefly present some examples of application, with the sole
purpose of illustrating the many potential uses of Quantum Information.

In fact, the inherent randomness in quantummeasurements lends itself to devising
methods for the fast automatic generation of true random numbers with quantum
devices. Similarly, the possibility (granted by Postulate 3) of detecting that some
measurement operation has been performed on a single quantum system by employ-
ing a different measurement on the same system, has opened the way to quantum
cryptography. This constitutes anunconditionally secure replacement for the schemes
that currently lie at the core of many protocols for securing the transmission and stor-
ing of information from a rational attacker. Eventually, we devote a paragraph to the
topic of quantum teleportation, that is, the transfer of an unknown quantum state
between two different locations that is achieved by making use of entanglement and
only transmitting classical information.

© Springer International Publishing Switzerland 2015
G. Cariolaro, Quantum Communications, Signals and Communication Technology,
DOI 10.1007/978-3-319-15600-2_13
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13.2 Quantum Random Number Generation

One of the most striking applications of QuantumMechanics in the field of Quantum
Information is the generation of true random numbers. Random numbers represent a
resource inmanyareas of science and technology.Theyprovide themain ingredient of
Monte Carlo methods and cryptographic protocols. In particular, for what concerns
the former, whenever it is too difficult to solve a problem analytically, numerical
simulations provide the most viable solution.

Regarding cryptographic applications, random numbers are fundamental to the
ciphering of information. At the time of writing, most of the random numbers used
in the cited fields, are obtained by means of pseudo-random number generators
(PRNG). The adjective pseudo stands for false because PRNGs can only mimic
the task of a generator, that is, to yield an identical and independent distribution
of random variables. PRNGs are indeed nothing more that algorithms recursively
executed by computers, which output a number at every operation. Unfortunately,
these numbers seem random if one does not know the initial state, the so-called
seed, of the generator, or if one has not exceeded its period, that is, the number of
times the algorithm can be run before it goes back to outputting the same numbers.
Clearly, when PRNGs are used in cryptography one has to take all the precautions
to prevent a possible eavesdropper from predicting the generated number and then
getting a copy of the key. In addition, a third problem is related to the way RNG
algorithms are often engineered. More in detail, it happens that only after many
years of use some widely employed PRNGs reveal dramatic nonrandom features,
as was the case for the RAND-U generator, which belongs to the class of Linear
Congruential Generators (LCG). In this generator a random number sn is obtained
according to the algorithm sn = (65,539 sn−1)mod231 with the initial state s0 being
an arbitrary seed. The dangerous feature of this generator is that it lacks randomness
in a subtle way: indeed, if one maps consecutive triplets {sn, sn−1, sn−2} in 3D space,
one can see that the numbers mainly fall on parallel planes, as shown in Fig. 13.1.1

It is then clear that PRNGs not only represent a very weak point in cryptographic
protocols but may also be the cause for erroneous results in simulations. Indeed John
Von Neumann, one of the fathers of modern Computer Science and one of the first
to employ random numbers in simulations, pointed out that anyone who attempts to
generate random numbers by deterministic means is, of course, living in a state of
sin.

Now, we will present two recipes showing how Quantum Mechanics can solve
the problem of the generation of random numbers impossible to be forecast in any
way.

1 Citing the paper of Marsaglia [2] the mathematician that was the first to discover this weird
behavior.
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Fig. 13.1 Left Triplets of random numbers produced by employing the Linear Congruential
Generator RAND-U are mapped in the space. Right If the point of sight is conveniently tilted,
one can see that the points have the tendency to distribute along planes, a clear mark of lack of
spatial uniformity

13.2.1 A Discrete Variable Quantum RNG

A solution to the issue of predictability is given by considering a physical quantum
system. The latest step in the technology of random number generation devices is
indeed the quantum random number generation (QRNG). The underlying principle
of a QRNG is the impossibility of predicting the outcome of a measurement on a
quantum system S prepared in a proper state ρS . As a simple example to understand
how a QRNGworks, one can consider a single photon state |1〉 impinging on a 50:50
beam-splitter. Let us suppose that the photon enters through input arm 1, whereas the
unused port 2 carries the vacuum state |0〉. The overall input state is then given by

ψ = |1, 0〉1,2 = |1〉1 ⊗ |0〉2 (13.1)

which is equivalent to

ψ = a∗
1 |0, 0〉1,2 (13.2)

having introduced the field creation operator a∗
1 for the mode of input 1. Considering

that the beam splitter is modeled as a unitary transformation Ub.s(θ) on the field
operators (see Sects. 9.2.2 and 11.18), one has that in the balanced case the field
creation operator transforms according to

http://dx.doi.org/10.1007/978-3-319-15600-2_9
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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a∗
1 = 1√

2

(

i a∗
1 + a∗

4

)

(13.3)

so that the output state is then given by

ψ ′ = 1√
2

(

i |1, 0〉3,4 + |0, 1〉3,4
)

. (13.4)

The stateψ ′ is an entangled state of the modes 3 and 4: the photon is at the same time
in both and none of the output arms of the beam splitter. By placing in front of the two
outputs a pair of single-photon detectors, one realizes the following measurement
operators:

Pno
out = |0〉〈0|out , P

yes
out = |1〉〈1|out (13.5)

which measure, respectively, the absence or the presence of the photon in the respec-
tive output arm with out ∈ {3, 4}. Since the two measurements are independent, after
the interaction of the single photon with the beam-splitter, the detectors perform the
two possible bit-generating measurements

Π0 = Pno
3 ⊗ P

yes
4 , Π1 = Pno

4 ⊗ P
yes
3 . (13.6)

By computing the outcome probability from (13.6) on the state ρS = |ψ ′〉〈ψ ′|,

Tr [Π0ρS] = Tr[Π1ρS] = 1

2
(13.7)

one sees that in a completely unpredictable way, as stated by the Born probability
rule, it is possible to get 0 or 1 with exactly the same probability.

This approachwas suggested and realized for the first time in [3] and it superseded
the first attempts to generate random numbers by employing radioactive sources.
Indeed, by using controllable optical photon sources as LEDs or lasers, one can
easily prepare the state to be measured and fit both the sources and the detectors into
compact and small devices (see for example [4] or [5]).

A drawback of these QRNGs is that they are limited by the count rate of the
single photon counters, which at the present time do not allow one to extract random
numbers at a rate higher than tens of gigabits per second. A way to overcome this
limit is by changing the paradigm from discrete to continuous variables.

13.2.2 A Continuous Variable QRNG

The vacuum state of the electromagnetic field represents a source of entropy which
has recently been employed to extract random numbers. When the quadratures of a
pure vacuum state of the electromagnetic state are measured, one can collect a set
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of unpredictable random variables distributed according to the normal distribution.
This becomes evident when one considers the Wigner function of the vacuum state

W (q, p) = 1

2π
exp

(

−1

2
(q2 + p2)

)

(13.8)

where q and p are the eigenvalues relative to the momentum and position operators,
respectively. When the state is measured along a given quadrature q, the possible
measurement outcomes are distributed as follows:

w(q) =
∫ +∞

−∞
dp W (q, p) = 1√

2π
exp

(

−1

2
q2

)

. (13.9)

In the experiment, quadrature measurements are performed by means of homo-
dyne detection, according to the scheme of Fig. 13.2. A coherent electromagnetic
field, the so called local oscillator is mixed to the vacuum field entering through the
unused port of a 50:50 beam splitter. More specifically, with respect to the single-
photon discrete-variable approach, here the local oscillator is so intense that it can
be treated as a classical field with amplitude α = |α|ei θ , playing the role of a vac-
uum fluctuations amplifier. The mixed fields exiting from the beam splitter outputs
are intercepted by a couple of large bandwidth photodiodes which generate a cur-
rent signal ΔI proportional to the light intensity hitting them. The two currents are
respectively subtracted, so that one is left with a signal whose fluctuations are propor-
tional to the quantum fluctuations of the field Fig. 13.3. In addition, local oscillator
noise of classical origin, which would affect both incoming beams, is thus elimi-
nated. In particular, if we denote by A and B the detectors intercepting the fields
at the output of arms 3 and 4, respectively, we have that the output current of the

local oscillator

Fig. 13.2 Generic scheme to generate random numbers by homodyning the vacuum
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Fig. 13.3 On the left, the fluctuating current signal obtained by subtracting the outputs of the two
photodiodes. On the right, the amplitude distribution of the signal is shown: in order to obtain
numbers with a uniform distribution rather than a Gaussian one, the range of possible outcomes is
split into a series of equal probability intervals. In the example of the picture, one has four possible
intervals, each one with probability 1

4 for a number in the range [0, 4]

setup is proportional to the difference of photon numbers given by the homodyne
measurement operator Δ̂ = n̂ A − n̂B , where n̂ A = a a∗

3 a a3 and n̂B = a a∗
4a a4. By

expressing the output operators as functions of the input ones, and considering the
local oscillator classically, one has explicitly

Δ = n A − nB

= 1
2

(

(α∗ + a a∗
1)(α + a a1) − (a a∗

1 − α∗)(a a1 − α)
)

= 1
2

(

(a a∗
1α) + (a a1α

∗)
)

(13.10)

= 1
2 |α|

(

a a1e
i θ + a a1e

−i θ
)

.

At this point it is easy to see that if the local oscillator is in- (out) phase, θ = 0
(respectively θ = π

2 ), with the field entering at input 1 it is possible to measure its
q (respectively p) quadrature. For example if θ = 0, and the input state at arm 1 is
the vacuum, one will get a ΔI proportional to Δ = √

2|α|q. Random numbers are
then obtained by sampling the ΔI signal with an analog-to-digital converter (ADC).
However, since the quadrature values are normally distributed according to (13.9),
it is necessary to make equal the appearance probability of every number. For this
purpose, a post-processing algorithm splits the range of possible current values into
equal probability intervals, as shown in Fig. 13.3, and then outputs a given number
according to the interval within which the measured value falls. This approach for
random number generation was presented in [6] and for further details see [7].
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13.3 Introduction to Quantum Cryptography

Nowadays, cryptography represents the general instrument for protecting informa-
tion against a rational adversary. Cryptographic algorithms lie at the core of most
security protocols and mechanisms, such as: encryption of data to ensure confiden-
tiality, data authentication to detect forged messages, or integrity protection against
illegitimate modification of messages in transit.

The majority of classic cryptographic algorithms can only offer computational
security, that is, they guarantee that an adversary with limited computational capa-
bilities has a low probability of success in attacking the security protocol within a
reasonable amount of time. Such is the case, for instance, of all public-key cryptog-
raphy, e.g., RSA encryption [8] and DSA signatures [9], as well as most symmetric
schemes, e.g., AES encryption [10], and deterministic hashing, e.g., SHA [11]. If
the amount of computational time that is needed by any adversary to break the
security scheme considerably exceeds the useful life span of the relevant informa-
tion, the scheme can be deemed properly secure. However, such schemes do not
offer long-term protection of secured information from possible future technological
or algorithmic breakthroughs. In particular, some public-key schemes, such as the
above-mentioned RSA and DSA, have already been proven vulnerable to quantum
computing attacks, since Shor’s quantum algorithm [12] allows one to solve the task
of finding the periodicity of a function with limited error probability and in poly-
nomial time. In fact, that task is crucial in solving the integer factorization and the
finite logarithm problems, the hardness of which (for classical computers) ensures
the computational security of RSA and DSA, respectively.

Other classical schemes offer unconditional security (also known as information
theoretic security), where the limit to the success probability of the attacker is no
longer set by his/her computational capabilities, but rather by the information that is
available to him/her. However, this is typically done at the expense of requiring the
legitimate users to preshare a large quantity of secret material, as in the one-time-pad
scheme, where the encrypted message is obtained by summing the secret message
with a random secret key with the same entropy as the message. Alternatively, some
information is required at the legitimate terminals about the attacker channel, as
in designing wiretap coding schemes, and in this case the diversity between the
legitimate and the attacker channel is leveraged to provide the required security.
However, it should be noted that the assumption of knowing the attacker channel is
unrealistic in general, since it cannot rely on any collaboration from the adversary.

By contrast, quantumcryptography canoffer unconditional, information theoretic,
security, as it is based on:

• the inherent randomness in the outcomes of quantum measurements,
• the possibility of statistically bounding the amount of measurements taken by the
adversary, from the statistics of nonorthogonal measurements by the legitimate
parties.

From the above two properties, one can state that there is no such thing as a purely
passive, undetectable attacker in the realm of quantum information.
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Starting from the pioneering work of Wiesner [13] who, as early as 1970 (even
if his paper was only published many years later), set forth the possibility to cre-
ate unforgettable quantum money, quantum counterparts have been subsequently
developed for many cryptographic primitives, such as bit commitment, oblivious
transfer, coin flipping, and random number generation (as was seen in Sect. 13.2.1).
In the following sections, however, we will limit ourselves to describing the quantum
cryptographic primitive that has been the earliest andmost successfully implemented,
that is, quantum key agreement (aka quantum key distribution).

13.4 Quantum Key Distribution (QKD)

A key agreement protocol is a security mechanism upon which two parties, Alice
and Bob, jointly generate a common random variable or string (the key) K ∈ K

that is uniformly distributed and unknown to any other party. Thus, K can securely
be used as a cryptographic key for symmetric algorithms between them, e.g., for
encryption or message authentication. To this purpose Alice and Bob can locally
process separate secret random variables A and B, respectively, at each terminal,
and exchange messages mA, mB over a public and authenticated channel (public
discussion), where all transmissions can be observed, but not forged or altered, by
any third party.

Themost widely known and adopted key agreement scheme is the Diffie-Hellman
protocol [14], which allows for separate and independent generation of the initial
random variables A and B at Alice and Bob, and offers computational security based
on the hardness of the discrete logarithm problem.

On the other hand, information theoretic key agreement schemes offer uncon-
ditional security, but require that some randomness is shared beforehand between
Alice and Bob, that is to say, their initial random variables A and B must be corre-
lated. This can be obtained either by separate noisy observations of the same random
quantity (in the so-called source model), or by generating a random signal at one
end (say, A at Alice) and transmitting it to the other end (say, Bob) through a noisy
channel (in the channel model). However, when such interaction is allowed for the
legitimate terminals, the same must be granted to a generic eavesdropper Eve, who
will therefore have access to a third variable C , itself correlated with A and B.

The performance measure of an information theoretic key agreement scheme is
given by the secret key rate Rk, that is, the information rate (in bit/s) of the final
output key under the asymptotic constraints

P[KA 
= KB] < ε (correctness)

log2 |K| − H(K ) < ε (uniformity) (13.11)

I (K ; C, mA, mB) < ε (secrecy).
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Fig. 13.4 Quantum cryptographic implementation of information theoretic key agreement in the
channel model via a prepare-and-measure QKD system

If the random variables initially available to Alice, Bob, and Eve are symbol
sequences, denoted by An , Bn , and Cn , respectively, generated by a memoryless
source or noisy channel with symbol rate Rs, and joint symbol probability distri-
bution p(A, B, C), it can be shown that the maximum achievable secret key rate
satisfies the bounds

Rs [I (A; B) − min{I (A; C), I (B; C)}] ≤ Rk ≤ Rs min{I (A; B), I (A; B|C)}
(13.12)

Quantum cryptography allows for an effective implementation of information
theoretic key agreement schemes,2 leading to the development of quantum key dis-
tribution (QKD) protocols. In particular, channel model schemes can be imple-
mented through prepare-and-measure protocols as illustrated in Fig. 13.4, while
source model schemes find a proper embodiment in entanglement-based protocols,
as shown in Fig. 13.5.

When considering a quantum environment, the secrecy notion in (13.11) should
be stated in quantum information terms, e.g., by bounding the accessible information
at Eve, as Iacc < ε, since, in general Eve may optimize her measurement after Alice
and Bob have performed their agreement protocol.

Traditionally, QKD protocols are divided into discrete variable (DV-) and con-
tinuous variable (CV-) QKD, according to the nature of the initial random vari-
ables An, Bn and of the quantum states that represent them. In the following, we
shall examine an example of both prepare-and-measure and entanglement-based,
DV-QKD. Eventually, we shall also briefly outline a QKD protocol with continuous
variables.

2 Historically, the first formulation of a QKD protocol [15] preceded that of general information
theoretic key agreement schemes [16].
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Fig. 13.5 Quantum cryptographic implementation of information theoretic key agreement in the
source model via an entanglement-based QKD system

13.4.1 A Discrete-Variable-QKD Prepare-and-Measure
Protocol

In this section we describe a prepare-and-measure protocol for DV-QKD that was
proposed in [17] and is known as efficient BB84. It represents a variation of the
original BB84 protocol, the first to be proposed for DV-QKD in [15], and lends itself
to a compact description and a precise security analysis [18, 19].

Transmission and Detection

According to this protocol, four states |γ +
0 〉, |γ +

1 〉, |γ ×
0 〉, |γ ×

1 〉 ∈ H are used for
transmission along the qubit channel. They are chosen to be pairwise orthogonal
with 〈γ +

0 |γ +
1 〉 = 0 and 〈γ ×

0 |γ ×
1 〉 = 0 and hence make up two distinct bases for H.

The basis B+ = {|γ +
0 〉, |γ +

1 〉} is called the majority basis (or bit basis), and is used
to share a common binary string between the two legitimate terminals, whereas the
minority basis B× = {|γ ×

0 〉, |γ ×
1 〉} (sometimes called phase basis) is used to detect

any eavesdropping on the qubit channel. In fact, if eavesdropping is detected, the
protocol aborts, and the eavesdropped key is discarded.

The transmitter (Alice) generates a sequence of independent–identically distrib-
uted binary symbols {An}with equally likely 0 and 1 and encodes each bit randomly
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and independently into either basis, so that the transmitted state at the nth symbol
period is

|τn〉 =
{

|γ +
An

〉 with probability p

|γ ×
An

〉 with probability 1 − p

for some fixed probability p.
On the other side of the channel, the receiver (Bob) measures each incoming state

|τn〉 with a POVM Mn , that is composed of a pair of orthogonal rank-1 projectors
along the states that make up either basis. In fact, the measurement operators are
chosen randomly and independently at each symbol period, and independently of
the encoding choices made by Alice, with

Mn =
{

{Π+
0 ,Π+

1 } with probability p′

{Π×
0 ,Π×

1 } with probability 1 − p′

where Π+
0 = |γ +

0 〉〈γ +
0 | and analogously for Π+

1 ,Π×
0 ,Π×

1 , and for some fixed p′.
We denote by Bn ∈ {0, 1} the corresponding outcome.

Hence, from (3.29) the channel transition probabilities are

pc(i | j) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∣

∣

∣

〈

γ +
i |γ +

j

〉∣

∣

∣

2
when both Alice and Bob useB+

∣

∣

∣

〈

γ ×
i |γ ×

j

〉∣

∣

∣

2
when both Alice and Bob useB×

∣

∣

∣

〈

γ ×
i |γ +

j

〉∣

∣

∣

2
when Alice usesB+ and Bob usesB×

∣

∣

∣

〈

γ +
i |γ ×

j

〉∣

∣

∣

2
when Alice usesB× and Bob usesB+.

In particular, observe that, due to the orthogonality between states in the same
basis, whenever Alice and Bob choose the same basis they have a correct transition
with probability 1, whereas when the chosen bases differ, there will be a bit error
with probability δ = |〈γ +

0 |γ ×
1 〉|2 = |〈γ +

1 |γ ×
0 〉|2.

Eavesdropping

Now, consider that an eavesdropper (Eve) sitting along the Alice-Bob channel has
observed (measured) each single qubit coming from Alice. Her best chance is to
always use the {Π+

0 ,Π+
1 } measurement operators, as this will give her full informa-

tion on the secret bits that will be shared between Alice and Bob. Let Cn denote the
outcome of her measurement; because of the no-cloning theorem, in order to share
the same information with Bob, she must re-encode it as

|τ̃n〉 = |γ +
Cn

〉

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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and transmit it along the channel to Bob. Whenever both Alice and Bob choose the
majority basis, both measurements by Eve and Bob will yield a correct transition,
and it will be An = Bn = Cn . However, if both Alice and Bob choose the minority
basis, it will be

pCn |An (i | j) =
∣

∣

∣

〈

γ +
i |γ ×

j

〉∣

∣

∣

2

and

pBn |Cn (i | j) =
∣

∣

∣

〈

γ ×
i |γ +

j

〉∣

∣

∣

2
.

By conditioning on Cn , and applying the total probability theorem, we then obtain

pc(i | j) =
1

∑

=0

pBn |AnCn (i | j, )pCn |An (| j)

=
1

∑

=0

pBn |Cn (i |)pCn |An (| j)

= |〈γ ×
i |γ +

0 〉|2
∣

∣

∣

〈

γ +
0 |γ ×

j

〉∣

∣

∣

2 + |〈γ ×
i |γ +

1 〉|2
∣

∣

∣

〈

γ +
1 |γ ×

j

〉∣

∣

∣

2

=
{

δ2 + (1 − δ)2 for i = j

2δ(1 − δ) for i 
= j.

(13.13)

Therefore, when both Alice and Bob choose the minority basis and Eve performs
the measurement and re-encoding on the transmitted qubit using the majority basis,
Alice and Bob will experience a bit error with probability δ′ = 2δ(1 − δ).

Sifting and Eavesdropping Detection

After the transmission is completed, Alice and Bob can share the following infor-
mation along the public channel, that is, by mA and mB

1. In mA, Alice tells Bob the subset of indices NA = {

n | τn ∈ B+}

in which she
used the majority basis;

2. In mB, Bob tells Alice the subset of indices NB = {

n | Mn = {Π+
0 ,Π+

1 }} in
which he used the majority basis;

so that each of them can infer the subset of indices N = NA ∩ NB in which they
have both used the majority basis, and N ′ = N c

A ∩ N c
B in which they have both used

the minority basis. Then:
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• the bits An, Bn for n 
∈ N ∪ N ′ are discarded (sifting);
• the bits An, Bn for n ∈ N are kept undisclosed and will be used to build the secret
key;

• the bits An, Bn for n ∈ N ′ are exchanged byAlice andBob over the public channel,
so that by comparing their values they can detect any errors.

Assume that ntot total qubits have been transmitted, and that Alice and Bob declare
that eavesdropping has been detected if for some n ∈ N ′, An 
= Bn . The probability
that Eve observing all qubits goes undetected is the probability that there are no
errors in all the bits where both Alice and Bob use the minority basis, that is,

Pmd =
ntot
∏

n=1

(

P[n 
∈ N ′] + (1 − δ′)P[n ∈ N ′]) = [

1 − δ′(1 − (p + p′) + pp′)
]ntot .

Choice of the Parameters p′, δ, δ′

So far, we have left the values of parameters p, p′, δ, δ′ unspecified, subject to system
design choices. We will now show that some optimal choice can be made straight
away, with the aim of maximizing the number of bits that can be used to build the
secret key, and at the same time of minimizing the probability that an attack by Eve
goes undetected.

Consider the probability that a particular bit An (and correspondingly, Bn) is used
to build the secret key, called the sifted key rate, which is given by P[n ∈ N ] = pp′.
This is clearly maximized by the choice p = p′ = 1 (always using the majority
basis),which, unfortunately,would eliminate the possibility of detectingEve’s attack,
and yield Pmd = 1. Therefore, a tradeoffmust be sought between increasing the sifted
key rate and the attack detection probability. However, one can notice that for any
fixed value of sifted rate pp′, the value of Pmd is minimized by making the sum
p + p′ as small as possible, that is, by choosing p′ = p, and by maximizing δ′.

As δ′ is a quadratic function of δ, it is easily seen that its maximum is achieved at
δ = 1/2 yielding δ′ = 1/2. Observe that this choice corresponds to having the inner
products

∣

∣

∣

〈

γ +
i |γ ×

j

〉∣

∣

∣ = 1√
2

, i, j = 0, 1 (13.14)

that are obtained by choosing the two bases in a symmetric fashion in the qubit space,
which intuitively justifies our B+,B× notation. For instance, if the information is
encoded into the polarization state τn of a single photon, one may choose horizontal,
vertical, and diagonal polarization states as follows:

γ +
0 = | ↑ 〉, γ +

1 = |→〉, γ ×
0 = |↗〉, γ ×

1 = |↖〉
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Fig. 13.6 Illustration of the tradeoff between the expected length of the sifted key E [ns] and the
missed detection probability Pmd, depending on the value of the probability p of the majority basis.
In the lower right corner an expanded view of the upper right corner, which is typically the region
of practical interest. For instance observe that, with ntot = 104 transmitted qubits, if it is required
to keep Pmd < 10−20, one has to choose p ≤ 0.9, and hence obtain no more than 8 200 sifted bits,
on average

From now on, we will therefore assume that (13.14) holds and p′ = p, thus yielding
the missed detection probability and the expected sifted key length

Pmd =
(

1

2
+ p − 1

2
p2

)ntot
, E [ns] = ntot p

2

where the value of p allows us to trade the sifted key length for the attack detection
capabilities of the scheme. The tradeoff is illustrated in Fig. 13.6.

Note that in this ideal setting the sifted keys A′ = [A′
1, . . . , A′

ns ] = [An]n∈N and
B ′ = [B ′

1, . . . , B ′
ns ] = [Bn]n∈N can be directly used as a secret cryptographic key

pair, since they are identical with unit probability, and provided Pmd is sufficiently
low, any eavesdropping would have been detected with high probability.3

3 A somewhat subtle point should be made here. The security of the protocol does not guarantee
that eavesdropping is unlikely, given that no errors have been detected in the minority basis. Rather,
it states that if eavesdropping takes place, it will be detected with high probability. In symbols, let
E denote the event that eavesdropping has taken place and D the event that no errors have been
detected, we can only upper bound Pmd = P[D|E], but nothing can be said about P[E |D], since
no assumption can be made on the probability of event E which is totally under the control of the
attacker.
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13.4.2 A DV-QKD Entanglement-Based Protocol

In this section we present a QKD protocol which makes use of entangled particles to
share a secret key between two parties. The BBM92 protocol (Fig. 13.7), described
here, was first proposed by Bennett, Brassard and Mermin in [20], as a simpler
version of the Ekert protocol [21].

In the BBM92 scheme the channel consists of a source, called Charlie, that emits
entangled particles and sends them to opposite directions.

The particles are received by two users, Alice and Bob, who perform measure-
ments MA

n and MB
n . Both Alice and Bob choose their measurement operators ran-

domly, independently andwith equal probability between {Π+
0 ,Π+

1 } and {Π×
0 ,Π×

1 }.
Similar to BB84, we have that {Π+

0 ,Π+
1 } and {Π×

0 ,Π×
1 } should be selected sym-

metrically in the qubit space. Usually the bases are chosen to be the Pauli operator,
i.e., Π×

0 = σz and Π+
0 = σx , which satisfy the nonorthogonality condition. After

a sequence of ntot entangled particles are received and measured, Alice and Bob
publicly announce which basis they used for each particle, but not the outcomes of
the measurements. During sifting, Alice and Bob discard the events in which they
measured in different bases, or in which themeasurement failed because of imperfect
detection. The remaining instances, in which bothmeasured in the same basis, should
be perfectly correlated if they actually measured entangled pairs. In order to verify
this, Alice and Bob publicly compare their outcomes An, Bn in a subset n ∈ N ′ of
the undiscarded events. If Alice and Bob find perfect correlation on the tested set N ′,
they can state that the transmission was secure and no eavesdropping was performed,
and keep the remaining An, Bn , n ∈ N = NAB N ′ to produce the secret key K .

Security Proof

In examining the security of the BBM92 protocol, it is interesting to notice that this
protocol bears many analogies to the BB84 presented in the previous section. We
consider themost common attacks, i.e., intercept and resend, and source substitution.
The discussion of the protocol robustness against the former kind of attack is analo-
gous to the one given for the BB84 protocol and we refer to the previous section. The
source substitution attack happens when an eavesdropper Eve sends Alice and Bob

Fig. 13.7 BBM92 scheme.
Alice and Bob: receiving
users. Charlie: source of
entangled particles

Alice Bob

Charlie
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pairs that are somehow entangled with systems available to her. The most general
entangled state Eve can prepare is equal to

|Φ〉 = |11〉|e0〉 + |00〉|e1〉 + |10〉|e2〉 + |01〉|e3〉,

where |1〉 and |0〉 form an orthonormal qubit basis and |e0〉,|e1〉,|e2〉 and |e3〉 are
the states of Eve’s system. We can notice that in general Eve does not even have to
decide her measurements until Alice and Bob have published theirs. Eve’s aim is
to be completely invisible, therefore, if Alice and Bob measure in the B+ basis, in
order that they have fully correlated outcomes, the state |Φ〉 must be an eigenstate
of σ a

z σ b
z with eigenvalue −1. This implies that |Φ〉 must assume the form:

|Φ〉 = |10〉|e2〉 + |01〉|e3〉.

At the same time, if Alice and Bob measure in the B× bases, the state |Φ〉 must be
an eigenstate of σ a

x σ b
x with eigenvalue −1. This further restricts |Φ〉 as follows:

|Φ〉 = (|10〉 − |01〉) |e2〉.

From this, the only Eve’s source that will surely be undetected by Alice’s and Bob’s
test is the one in which Eve’s system is completely uncorrelated with the entangled
particles. Thus, everymeasurement gives her no information about Alice’s and Bob’s
outcomes.

Out of Curiosity

In 1992 there was a heated discussion between Ekert and Bennett, Brassard and
Mermin, about the described protocol. Ekert stated that the security proof must be
based on “non-locality” and “non-reality” tests given by Bell’s theorem. Bennett et
al. demonstrated their protocol without these assumptions using a simpler scheme.
Recently, Vallone et al. [22] proposed a new protocol which uses a simple scheme
as Bennett et al. and bases its security on Bell’s theorem thanks to the use of non-
maximally entangled particles.

13.4.3 Key Processing

In introducing the above protocols, we have ideally supposed that, provided Alice
and Bob choose the same basis and Eve does not interfere, the sharing of a bit through
the quantum channel is error-free. In that case, the sifted keys are also the final secret
keys.

In a more realistic environment, however, distortion introduced by the quantum
channel, temporal or spatial misalignment between the two terminals, and quantum
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noise in the receivermay introduce some errors, even for bits An, Bn with n ∈ N ∪N ′,
and without any attack. This has two potentially fatal consequences:

1. errors An 
= Bn for n ∈ N will propagate to the distilled secret key;
2. errors An 
= Bn for n ∈ N ′ will make Alice and Bob abort the protocol, even in

the absence of an attacker.

The two problems above can be solved with techniques for the processing of random
signals in the classical domain, to yield the final secret keys where both the mismatch
between Alice and Bob’s keys and the information leaked to the attacker have been
removed with high probability.

In the followingweassume that errors in eachbasis are symmetric and independent
across symbols, so that the transformation linking An to Bn for n ∈ N (respectively,
n ∈ N ′) is a binary symmetric channel with error rate ε+ (respectively, ε×).

Information Reconciliation

In order to solve problem 1, techniques similar to traditional forward error correction
coding for the binary symmetric channel can be used, providing they are suit-
ably adapted to the secrecy requirement in the QKD framework. In fact, since the
binary sifted sequence A′ = [A′

1, . . . , A′
ns ] = [An]n∈N , (and the analogous B ′) is

only known after sifting, the redundancy bits that allow error correction must be
transmitted later, along the public classical channel, and can be observed by any
attacker. The amount of redundancy must therefore be kept to a minimum, not for
efficiency reasons, but to limit as far as possible the amount of information that
leaks to an eavesdropper. As is well known, a lower bound on the amount of redun-
dancy that must be transmitted in order to have reliable error correction is given
by r = nsh2(ε

+), with h2(·) denoting the binary entropy function (see Chap. 12)
h2(ε) = −ε log2 ε − (1 − ε) log2(1 − ε).

One possibility is to generate the redundancy bits m′
A by using systematic

encoding for a block channel code, where properly sized blocks taken from the
sifted sequence make up the information words, that is, m′

A = G A′, where A′ and
m′

A are seen as columns vectors, and G denotes the nonidentity portion of the sys-
tematic generating matrix. Thus, upon receiving m̃′

A over the public channel, Bob
can perform minimum distance decoding, that is replace B ′ by

B ′′ = arg min
β∈{0,1}ns

dH([β, Gβ], [B ′, m̃A])

with dH(·, ·) representing the Hamming distance between two binary strings.4

However, typically the public channel is assumederror-free and authenticated (that
is, each message can be verified to actually come from Alice and not having been
altered in transit), so that m̃′

A = m′
A and there is no need to protect the redundancy

bits from channel errors. In this case, it is more efficient in terms of error correction
capability to obtain the redundancy bits as a hash of the sifted sequence, given, for

4 That is, the number of positions at which they differ.

http://dx.doi.org/10.1007/978-3-319-15600-2_12
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instance, through the parity check matrix G ′ of a linear code, yielding m′
A = G ′ A′.

Thus, upon receiving m̃′
A over thepublic channel,Bobcanperformminimumdistance

decoding, that is, replace B ′ by

B ′′ = arg min
β∈{0,1}ns

dH([β, G ′β], [B ′, m̃A]).

The latter approach is currently the most widely used in the QKD literature,
typically by employing LDPC codes (see [23]), especially with stable channels and
long processing blocks, where the code parameters can be precisely tuned to require
an amount of redundancy that is close to the lower bound. On the other hand, when
the channel conditions are varying, and/or shorter blocks need to be used, other ad
hoc solutions are considered that require more interaction between the terminals
along the public channel and intrinsically adapt to the channel conditions (see [19]).

In a symmetric fashion, one can have Alice correct A′ to match Bob’s sifted
sequence B ′ based on a public message mB sent by Bob. Alternatively, one can use
a two-way reconciliation scheme where both Alice and Bob send public messages
and each one partially correct their sifted keys.

Privacy Amplification

The obvious solution to problem 2 above is to allow for some errors in the bits
with n ∈ N ′ without aborting the protocol, as long as the number of errors nerr is
below some specified threshold θ . The threshold is typically chosen depending on
the cardinality of N ′ and the channel error rate.

However, this would introduce a vulnerability in the protocol. It makes it possible
for the eavesdropper to perform a selective intercept and resend attack on a limited,
yet significant, fraction of the qubits shared betweenAlice andBob, by retransmitting
them through an error-free channel. In this way, Eve’s observations may not be
detected, as Alice and Bob will attribute the errors to the channel and tolerate them,
whereas they were actually induced by the eavesdropper measurements.

Therefore, a conservative countermeasure requires Alice and Bob to remove the
partial information thatEvemayhave acquired throughundetectedqubit observations
or by accessing the redundancy transmitted over the public channel for the purpose
of reconciliation. Privacy amplification is the process of removing any information
available to the attacker from the reconciled keys to yield the final secret key K .

This is done through the applicationof a commonhashing function f : {0, 1}ns →
{0, 1} at each reconciled sequence A′′

n and B ′′
n , where  < ns represents the length of

the final key. Clearly, applying the same function allows to maintain correctness. In
fact, since the sequences A′′

n and B ′′
n are supposedly identical with very high proba-

bility, so will be the corresponding outputs KA, KB. On the other hand, compressing
the sequence with a function that is surjective, but not injective, makes it possible to
remove bits that have been learnt by Eve, and the redundancy that has been inserted
for reconciliation purposes, to obtain a key that is as uniform and independent of the
eavesdropper observations as possible.
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Typically, the hash function is simply a multiplication by a matrix F ∈ {0, 1}×ns

on the binary field. Also, a potential eavesdropper knowledge (C, mA, mB) about
the reconciled sequence A′′ = B ′′ can itself be described as a matrix function
M ∈ {0, 1}t×ns . For instance, suppose that Eve has performed selective intercept and
resend so that she knows a subset C ′′ = {A′′

n, n ∈ NE} of the reconciled sequence,
for some NE, and that she has observed the bits m′

A = G A′′ transmitted along the
public channel for reconciliation. Then, we can write

M =
[

INE

G

]

where INE is made of the rows from the ns × ns identity matrix with indices in NE,
and t = r + |NE|.

If the eavesdrop matrix M were known to Alice and Bob, it would in principle
be possible to choose the privacy amplification matrix F to yield a perfectly secret
key. In fact, in this case, since A′′ is uniform over {0, 1}ns (as a consequence of the
fact that An and Bn are assumed to be iid uniform sequences), it can be easily seen
that the final key K is uniform in as {0, 1} and independent of the eavesdropper
observations if and only if the null spaces of F and M satisfy

dimN(M) − dim (N(M) ∩ N(F)) =  . (13.15)

On the other hand, if M is not known, but the value of t is (or can at least be upper
bounded), Alice and Bob can choose the hashing function f randomly after sifting
(so that Eve can not tailor her observations to it) and communicate the choice over
the public channel. It was shown in [24] that the average of the mutual information
in (13.11) over the choice of f can be upper bounded as

I (K ; C, mA, mB, f ) <
1

log 2

1

2ns−t−
(13.16)

by choosing f uniformly within a universal hashing class,5 such as that of all  × ns
binary Toeplitz matrices.

In general, however, it is more realistic to assume that neither the exact position,
nor even the exact amount of the qubits observed by the eavesdropper are known to
the legitimate parties.

Therefore, privacy amplification is usually performed in two steps. First, since the
matrix G of information reconciliation is perfectly known, a matrix F1 ∈ {0, 1}1×ns

5 A classFof functionsmapping the same domain X to the same range Y is called universal hashing
if it maps inputs to outputs “uniformly”, that is,

{

|{ f | f (x) = y}| = |F|/|Y | for all x ∈ X, y ∈ Y

|{ f | f (x1) = f (x2)}| = |F|/|Y | for all x1, x2 ∈ X.
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Fig. 13.8 Minimum amount
of qubits ntot that need to be
transmitted in the efficient
BB84 protocol, as a function
of the quantum BER
(assumed equal on both
bases, ε+ = ε×), for
different target values of the
final secret key length . The
plot is based on an
optimization of the finite key
bound in [18]
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that satisfies (13.15) with F1 replacing F and G replacing M is applied. Then, the
amount of information that is available to Eve from undetected qubit observations
is upper bounded probabilistically in terms of the abort threshold on the number of
detected errors, that is, tub is chosen so that P[nerr < θ |t > tub] is acceptably low.
Eventually, a matrix F2 ∈ {0, 1}×1 chosen randomly from a universal hashing class
is applied so that (13.16) is satisfied with very high probability.

Clearly, in the limit of ntot, |N ′| → ∞ the rate of information that is available
to Eve can be precisely estimated. On the other hand, when ntot is limited (in the
so-called finite key regime) such estimates have a large amount of uncertainty, and
significant margins must be allowed when choosing tub and . Several bounds for 

have been formulated in the finite key regime [18, 19]. Figure13.8 shows a contour
plot of the final key length as a function of the total transmitted qubits and the error
rates in the channel for the efficient BB84 protocol, according to the bound provided
in [18] and for optimal choices of the threshold θ and the majority basis rate p.
Observe that  decreases rapidly following ntot.

13.4.4 A Continuous Variable QKD Protocol

As an example of CV-QKD, we consider the GG02 protocol [25], as introduced
in [26], a prepare-and-measure scheme, which makes use of coherent states with
Gaussian displacements.
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In fact, the transmitter Alice generates a sequence An of iid complex Gaussian
random variables with circular symmetry.6 Then she encodes each variable An into
the coherent state with displacement given by the corresponding realization of An ,
that is,

An = α ⇒ |τn〉 = |α〉.

Alternatively, this can be viewed as encoding �An into the position and �An into
the momentum displacement of |τn〉.

The protocol is based on the fact that the uncertainty principle prevents measuring
both quadratures with full accuracy. On the other side of the quantum channel, Bob
measures either the position or momentum of each incoming state |τn〉, by randomly
and independently choosing each measurement observable as

Mn =
{

q with probability 1/2

p with probability 1/2

and we denote by Bn ∈ R the corresponding continuous-valued outcome.
Thus, Bn will be a Gaussian random variable correlated with either �An of �An

according to whether Mn = q or Mn = p. After the transmission is completed, Bob
tells Alice via the message mB the sequence of measurements {Mn} so that Alice
can sift her sequence and obtain

A′
n =

{

�An if Mn = q

�An if Mn = p.

Themutual information between An (or equivalently A′
n) and Bn is therefore given by

I (A; B) = 1

2
log2

(

1 + σ 2
A

σ 2
0

)

where σ 2
0 represents the fluctuations of the coherent state around its displacement.

The possibility of detecting an intercept and resend attack by Eve lies in the
impossibility for Eve to perform both a position and momentum observation on τn ,
analogously to what was shown for discrete variable protocols.

13.5 Teleportation

Quantum teleportation is one of the many important applications of entanglement. It
allows an unknown quantum state to be transported fromAlice to Bob by transmitting
only classical information. In particular, a qubit can be teleported by using two

6 A complex-valued random variable X is called circular symmetric Gaussian if �X and �X are
independent Gaussian variables with zero mean and the same variance σ 2

X .
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classical bits. Let us consider the simplest example, given by a single qubit in a
generic state unknown to Alice

|ϕ〉C = α|0〉C + β|1〉C. (13.17)

Due to the no-cloning theorem, Alice cannot clone such state and cannot know
all the quantum information by measuring the qubit. Indeed, the parameters α and
β can only be obtained if Alice has many copies of the state |ϕ〉C and performs
several measurements on them. It is important to note that the state |ϕ〉C contains an
infinite amount of classical information, parameterized by the complex (continuous)
parameters α and β.

Quantum teleportation [27] allows Alice to send such qubit by sending Bob only
twobits of classical information. The key resource to achieve such goal is amaximally
entangled state between Alice and Bob. We recall the four Bell states, which are
maximally entangled states forming a basis in the Hilbert space of two qubits

|φ±〉 = 1√
2

(|00〉AB ± |11〉AB) , |ψ±〉 = 1√
2

(|01〉AB ± |10〉AB) . (13.18)

Any Bell state can be used for quantum teleportation. Here we show how to achieve
it with the state |ψ−〉AB. Alice holds the unknown qubit |ϕ〉C and her part of the
entangled state, A. The total state shared by Alice and Bob can be written as

|Ψ 〉CAB = |ϕ〉C ⊗ |ψ−〉AB (13.19)

By expanding the state we obtain

|Ψ 〉CAB = 1√
2

(α|001〉CAB − α|010〉CAB + β|101〉CAB − β|110〉CAB) (13.20)

with the easy notation |001〉CAB ≡ |0〉C ⊗|0〉A ⊗|1〉B . From the definition of the Bell
states, it is possible to show that the following equalities hold

|00〉CA = 1√
2

(|φ+〉 + |φ−〉) , |11〉CA = 1√
2

(|φ+〉 − |φ−〉)

|01〉CA = 1√
2

(|ψ+〉 + |ψ−〉) , |10〉CA = 1√
2

(|ψ+〉 − |ψ−〉) .

Thus the total state can be written in the following form:

|Ψ 〉CAB = 1
2

(|φ+〉CA ⊗ σxσz |ϕ〉B + |φ−〉CA ⊗ σx |ϕ〉B

−|ψ+〉CA ⊗ σz |ϕ〉B − |ψ−〉CA ⊗ |ϕ〉B
)

.
(13.21)

The above equation contains all the information needed to understand quantum
teleportation. To complete the protocol, Alice needs to perform a measurement on
the two qubits C and A. Indeed, she performs a Bell measurement, consisting in a
projective measurement that distinguishes between the four orthogonal Bell states
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{|φ+〉, |φ−〉, |ψ+〉, |ψ−〉}. If she obtains |φ+〉, relation (13.21) indicates that Bob
obtains the state σxσz |ϕ〉B . If she obtains |φ−〉, |ψ+〉 or |ψ−〉, Bob is left with the
state σx |ϕ〉B , σz |ϕ〉B , or |ϕ〉B , respectively. Then Alice communicates to Bob which
state she has measured (since she has four possibilities, two classical bits are suffi-
cient). Bob performs a different unitary transformationU depending on the outcomes
obtained by Alice to recover the input state (unknown to both Alice and Bob). The
operation performed by Bob is summarized in the following table:

Alice outcome Bob Operation (U)

|φ+〉 σzσx
|φ−〉 σx
|ψ+〉 σz
|ψ−〉 11

It is important to underline that the Bell measurement gives no information on
the input state |ϕ〉C and that for any input state Alice has equal probability, 1/4, of
obtaining each of the four Bell states.

In the quantum teleportation protocol (Fig. 13.9), the input quantum state is not
traveling between Alice and Bob: what is “traveling” is the quantum information
contained in the parameters α and β. Indeed, it is worth noticing that the input and
the teleported qubits can be implemented in different physical systems. For instance,
the input qubit can be encoded in the polarization of a photon, while the teleported
qubit can be represented by a two-energy-level atom system. Moreover, there is no

Fig. 13.9 Teleportation environment
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contradiction with the no-cloning theorem: indeed, the unknown state vanishes at
Alice’s side and appears at Bob’s location. Then there is no “cloning” of the input
state.

Finally, even if the collapse of the wave function is instantaneous (at the moment
in which Alice obtains her outcome), Bob’s state immediately collapses to σxσz |ϕ〉B ,
σx |ϕ〉B , σz |ϕ〉B , or |ϕ〉B , a classical communication is necessary between Alice and
Bob to correctly recover the input qubit. Then teleportation does not violate the “no
faster than light” communication principle.

The first experimental demonstrations were performed with photons in Rome and
Vienna in 1997 [28, 29]. Further experiments were realized with coherent states
[30] and nuclear magnetic resonance [31]. Recent experiments reported quantum
teleportation of photons along distances of more than 100km [32, 33].
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Entropy
in a bipartite system, 582
of a sequence, 584
of a symbol, 581

Entropy rate, 585
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370, 419
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Fourier transform, 487–490

complex, 488
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symplectic, 488
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Free-space, 151, 154
FT, see Fourier transform
Functional calculus, 62–65

G
Gaussian approximation, 177
Gaussian bivariate, 286
Gaussian channel, 618

with additive noise, 368
Gaussian density, 163
Gaussian noise, 177
Gaussian state, 286, 367, 452, 465, 495–496,

529–530
definition, 495
noisy, 538
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the most general, 519, 520

Gaussian transformation, 453, 465
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in the two mode, 540
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Mean value in a measurement, 99
Mean vector, 494
Measure of information, 574, 579–585
Measurement alphabet, 185
Measurement factors, 205
Measurement matrix, 204, 222, 252, 254,

383
optimal, 256

Measurement operator, 190
global, 191
optimal, 209
system of, 187, 194, 211

Measurement operator system, 106
Measurement vectors, 94, 106, 197, 216, 259
Measurements with observables, 98, 101
Memoryless channel, 139, 605
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N
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Nielsen, 10
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Null operator, 92
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Number of photons, 80
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Number operator, 282, 364, 395, 472, 477,
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Number states, 80, 85, 282, 477, 482
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Observable, 98, 108, 284, 468–470

continuous, 101
Oliver, 141
OOK modulation, 148, 281, 307, 432

classical, 307, 319
quantum, 318, 390

Open system, 614–620
Operator, 227, 228
Optical channel, 148
Optical communications, 421–423

classical, 133, 146–150, 304–313, 431–
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quantum, 133
Optical detection

semiclassical model, 165
Optical fiber, 148
Optical frequency, 146, 152
Optical power, 146, 151
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average, 146, 298
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Optimization, 11, 133, 190
Optimization of a binary receiver, 192
Orthogonal condition

for projectors, 51
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Outcome of a quantum measurement, 91,
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P
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Pauli’s matrices, 124
Phase space, 286, 465
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Photon counting, 175–178

quantum interpretation, 307
Photons, 479
Pierce, 141
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Planck’s constant, 3, 85, 87, 110
Poisson distribution, 472, 532
Poisson process, 155–158, 165

definition, 155
doubly stochastic, 160, 166, 429
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marked and filtered, 160

Poisson random variable, 156, 284
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Polar decomposition, 65, 515, 545
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Positive operator, 64
Positive semidefinite, 478
Positive semidefinite operator, 48, 64, 83
Postulate 1 of Quantum Mechanics, 78
Postulate 2 of Quantum Mechanics, 87
Postulate 3 of Quantum Mechanics, 92

reformulation with POVMs, 105
with density operators, 95
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Postulate 4 of Quantum Mechanics, 111
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PPM modulation, 134, 147, 281, 338

classical, 337, 343, 403, 406
implementation, 444
quantum, 338, 341, 402, 404
with thermal noise, 399

P-representation, 497

Privacy amplification, 656
Probability amplitude, 471
Probability density, 473
Probability distribution, 82, 92, 473, 577
Product of operators, 34
Projective measurements, 91
Projector, 47

properties, 51
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PSD, see positive semidefinite
Pseudo-random number generation, 640
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classical, 144, 332, 334, 388, 396, 398
implementation, 443
quantum, 144, 332, 333, 387, 396
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with thermal noise, 395
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compression
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Quantum data compression, 600, 604
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Unitary matrix, 44
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V
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Von Neumann, 91
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