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Generalized Riemann Problems
in Computational Fluid Dynamics

Numerical simulation of compressible, inviscid, time-dependent flow is a major
branch of computational fluid dynamics. Its primary goal is to obtain accurate
representation of the time evolution of complex flow patterns, involving inter-
actions of shocks, interfaces, and rarefaction waves. The generalized Riemann
problem (GRP) algorithm, developed by the authors for this purpose, provides
a unifying “shell” that comprises some of the most commonly used numerical
schemes for such flows. This monograph gives a systematic presentation of
the GRP methodology, starting from the underlying mathematical principles,
through basic scheme analysis and scheme extensions (such as reacting flow or
two-dimensional flows involving moving or stationary boundaries). An array of
instructive examples illustrates the range of applications, extending from (sim-
ple) scalar equations to computational fluid dynamics. Background material
from mathematical analysis and fluid dynamics is provided, making the book
accessible to both researchers and graduate students of applied mathematics,
science, and engineering.
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Preface

Computational fluid dynamics (CFD) is a relatively young branch of fluid dy-
namics, the other two being the experimental and the theoretical disciplines.
Its rapid development was enabled by the spectacular progress in high power
computers, as well as by a matching progress in numerical schemes.

The starting point for the formulation of CFD schemes is the governing
equations. In fact, the term “fluid dynamical equations” is much too general
and indeed ambivalent. In practice there exist numerous models of such equa-
tions. They reflect a variety of stipulations on the nature of the flow, such as
compressibility, viscosity, or elasticity. They also involve various effects such
as heat conduction or chemical reactions. A large portion of these models do not
fall, mathematically speaking, under the category of “hyperbolic conservation
laws,” which is the subject matter of this monograph. We refer the reader to
the book by Landau and Lifshitz [75] for a general survey of fluid dynamical
models.

In this monograph we are concerned with time-dependent, inviscid, com-
pressible flow, which is studied primarily in the “quasi-one-dimensional” ge-
ometric setting. This leads to a system of partial differential equations ex-
pressing the conservation of mass, momentum, and energy. There are various
approaches to the numerical resolution of this system, such as the classical
method of characteristics or the “artificial viscosity” scheme. Our focus here is
on finite-difference approximations of the type referred to as “conservation law
schemes.” In the quasi-one-dimensional setting they are practically equivalent
to “finite-volume schemes.” At present, these schemes are the commonly pre-
ferred choice, since they are robust by virtue of their shock-capturing capability,
and they may be readily extended to more than one space variable.

Rather than constructing a particular scheme, we try here to develop a
methodology aimed at the derivation of high-resolution, second-order schemes,

xv



xvi Preface

all of which extend the basic (first-order) Godunov scheme. It is based on the
“heart of the matter,” the analysis of the generalized Riemann problem (GRP).
This problem is an extension of the classical Riemann problem (RP) of fluid dy-
namics, which is the initial value problem in which data consist of two constant
states separated by a discontinuity at the origin. Loosely speaking, the corre-
sponding GRP is defined by replacing those two states by constant-gradient
states, also having a jump at the origin.

This monograph is devoted primarily to a mathematical introduction to con-
servation law schemes and to the development of the basic GRP methodology.
However, we have also included (Part II) a number of applications to more rep-
resentative cases of “scientific computing.” Although these examples are not
“algorithmically heavy,” they serve to illustrate the kind of extensions (geomet-
ric or physical) that are invariably required for realistic CFD simulations.

Our collaboration on the GRP methodology began some twenty years ago.
Over all these years we have benefited from numerous discussions with col-
leagues and students who helped us shape the method, its goals, and its presen-
tation. Their ideas led oftentimes to joint work, as is witnessed by the biblio-
graphic list. It is with real pleasure that we acknowledge their contribution to
this monograph.

The preparation of this monograph was a demanding task to which we de-
voted considerable time and effort over the past few years. Throughout that
time we have enjoyed the insights offered to us by A. Chorin, A. Birman, J.-P.
Croisille, and O. Igra; their help is gratefully acknowledged. Special credit is
due to J. Li whose participation was instrumental in shaping our treatment of
(2-D) scalar conservation laws. Validation experiments are an important part
of CFD research, and in that, as well as in other aspects, the cooperation of
K. Takayama and other colleagues of the Shock Wave Research Center, To-
hoku University, is gratefully acknowledged. Our thanks and appreciation are
due to our colleague U. Feldman who set up the computer system used in the
calculations and typesetting for this monograph.

Finally, it is with deep gratitude that we acknowledge the (silent) participa-
tion of our wives, Ofra and Linda, in this endeavor. Book writing invariably
involves hard labor; their understanding and encouragement were instrumental
in seeing it through to its successful conclusion.



1
Introduction

This monograph deals with the generalized Riemann problem (GRP) of math-
ematical fluid dynamics and its application to computational fluid dynamics. It
shows how the solution to this problem serves as a basic tool in the construction
of a robust numerical scheme that can be successfully implemented in a wide
variety of fluid dynamical topics. The flows covered by this exposition may be
quite different in nature, yet they share some common features; they all belong
to the class of compressible, inviscid, time-dependent flows. Fluid dynamical
phenomena of this type often contain a number of smooth flow regions sepa-
rated by singularities such as shock fronts, detonation waves, interfaces, and
centered rarefaction waves. One must then address various computational is-
sues related to this class of fluid dynamical problems, notably the “capturing”
of discontinuities such as shock fronts, detonation waves, or interfaces; reso-
lution of centered rarefaction waves where flow gradients are unbounded; and
evaluation of flow variables in irregular computational cells at the intersection
of a moving boundary surface with an underlying mesh.

From the mathematical point of view, the various systems of equations gov-
erning compressible, inviscid, time-dependent flow phenomena may all be char-
acterized as systems of “(nonlinear) hyperbolic conservation laws.”

Hyperbolic conservation laws (in one space variable) are systems of time-
dependent partial differential equations. The most common problem associated
with such systems is the initial value problem (henceforth IVP), which is the
following: Given the values of the unknown functions at time t = 0 (as functions
of the space variable x ∈ R), use the equations to determine the evolution in
time of those functions. When the unknown functions are defined over the whole
real line R, one often refers to the IVP as the “Cauchy Problem.” In contrast,
when the unknown functions are defined only over a finite interval D ⊆ R,
suitable “boundary conditions” must be imposed at the endpoints of D. From

1



2 1. Introduction

the physical point of view the latter is clearly the more realistic case. Thus,
for example, D can represent a pipe of finite length, in which one studies the
evolution (in time) of flow variables subject to the system of fluid dynamical
equations. In this case, the boundary conditions consist of influx and outflux
requirements imposed on the pressure, velocity, etc. at the edges of the pipe.

The solutions to the problems considered here possess one common fun-
damental property, that of “finite propagation speed”; that is, the waves travel
at finite speeds. Mathematically speaking, when a change in the initial data is
confined to the neighborhood of some point A, it is “felt” by the solution at
any other point B only after a certain amount of time, an amount that depends
on the distance between the points. It is precisely this feature that allows the
construction of “conservation law schemes” for the (numerical) approximation
of the solutions.

Although this monograph focuses on the resolution of compressible, invis-
cid flow problems, and the construction of suitable conservation law schemes,
an effort is made to place the treatment in the broader (theoretical and nu-
merical) perspective of hyperbolic conservation laws. However, the necessary
background material from physics is also included. We refer the reader to the
classical book by R. Courant and K. O. Friedrichs [30] for a thorough discussion
of the mathematical aspects of compressible flow. This book also discusses in
detail the derivation of the flow equations from the underlying physical conser-
vation laws. For mathematical treatments of hyperbolic conservation laws, we
refer to the books by Courant and Hilbert [31], Evans [36], Hörmander [63],
Lax [75], and Smoller [103].

To simplify the discussion, we consider primarily the associated Cauchy
problem, thus avoiding the further mathematical complications introduced by
boundary conditions. Naturally, when dealing with real flow examples, bound-
ary conditions will be needed, and the ways in which they are introduced into
the numerical scheme will be explained.

The origin of the subject matter of this monograph can be traced back some
forty years, to the early days of computational fluid dynamics. It can best be
described by the opening sentence to Section 12.15 of the book by Richtmyer
and Morton [96]: “In 1959, Godunov described an ingenious method for one-
dimensional problems with shocks.”

Godunov’s method, as much as it was recognized for its novelty and robust-
ness, suffered from some significant drawbacks. It was Bram van Leer, some
twenty years later, who, in an important breakthrough [112], has shown how
to modify Godunov’s original construction and, indeed, has made it possible
to implement the method as the most efficient tool (to date) in this area of
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computational fluid dynamics. In the simpler case of a scalar conservation law,
these ideas will be explained in Chapter 3.

The monograph is divided into two parts, Part I (Basic Theory) and Part II
(Numerical Implementation). Part I (Chapters 2–6) deals with the more basic
aspects (theoretical and numerical) of systems of conservation laws and the
development of the GRP method. Part II (Chapters 7–10) is devoted to several
extensions (physical and geometric) of the GRP method for computational fluid
dynamics. A more detailed discussion of the contents will follow. The reader
will also find a brief summary at the beginning of each chapter.

In writing this monograph we have aimed at a wide readership, consisting
not only of graduate students and researchers in applied mathematics but also
of those working in various areas of physics and engineering. Yet, we have at-
tempted to maintain a solid level of mathematical rigor. Notions such as “weak
solutions” and “convergence of a scheme” are carefully introduced (Chapter 2)
in suitable functional settings. We believe that, given the current mathematical
level of modern numerical analysis, such concepts ought to be familiar to anyone
working in this field. In particular, theorems related to the convergence of
the Godunov scheme (in the scalar case) are proved in all mathematical detail
(Section 2.2 and Appendix B). In this context we introduce (and compare
numerically) some of the “classical” discrete schemes of hyperbolic equations,
such as the Lax–Friedrichs and the Lax–Wendroff schemes. At the same time,
our main objective in Chapters 2 and 3 is the introduction of the “high-resolution
GRP scheme,” by way of the Riemann and generalized Riemann problems. We
refer to LeVeque [81] for introductory material on finite-difference schemes for
conservation laws and to Richtmyer and Morton [96] for the general theory of
finite-difference methods (primarily linear theory). A comprehensive survey of
the convergence properties of finite-difference schemes to scalar conservation
laws can be found in Godlewski and Raviart [54].

In Chapter 4 we introduce systems of conservation laws. The first section
outlines the general mathematical background and can be skipped on first read-
ing, as it is of a more mathematical nature. The physical systems of interest,
those representing the basic conservation laws of compressible, inviscid flow in
the “quasi-one-dimensional” setting, are introduced in the second section. This
section is self-contained; the analysis of centered rarefaction waves, as well
as the Rankine–Hugoniot shock conditions and the solution to the Riemann
problem, is discussed in detail.

Chapter 5 is devoted to the analysis of the GRP in the context of the systems
considered in Section 4.2. In Section 5.1 we study the solution to the linear
GRP, which is the core of the GRP method. Given linear initial distributions
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of the flow variables on the two sides of a jump discontinuity, we determine
their instantaneous time derivatives (at that singularity). Van Leer’s idea to use
this solution for the refinement of Godunov’s scheme is implemented in the
development of the GRP scheme in Section 5.2.

Chapter 6 is devoted to an investigation of the GRP scheme for fluid dynam-
ics. Numerical results are compared to analytical or asymptotic solutions for a
variety of wave interaction problems.

In Chapter 7 we introduce, in rather general terms, the operator-splitting
method of Strang. It enables us to extend the GRP algorithm to two-dimensional
(2-D) settings, while retaining its second-order accuracy. Chapter 8 deals with
further geometric extensions, such as (one-dimensional) “tracking” of singu-
larities and (2-D) moving boundaries.

In Chapter 9 we consider a reacting flow system. The basic set of conservation
laws is augmented by a chemical reaction-rate equation, thus providing a simple
model of combustion. The GRP algorithm is applied to this extended system.

As a concluding (numerical) example for this monograph, we consider in
Chapter 10 a case of wave interaction with a segment of decreasing cross-
sectional area in a two-dimensional duct. The major (GRP) numerical ap-
proaches developed in Chapters 5, 7, and 8, namely the quasi-1-D approxi-
mation and the fully 2-D scheme, are applied to this case. A comparative study
of the two solutions sheds light on the nature of the fluid dynamical interaction,
as well as on the nature of the quasi-1-D approximation.

Finally, a comment about the numbering system in this book. For the reader’s
convenience, all theorems, remarks, definitions, claims, etc. within each chap-
ter are sequentially numbered. Thus, for example, Remark 2.22 comes after
Definition 2.21 and is followed by Example 2.23.
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2
Scalar Conservation Laws

This chapter introduces the basic concepts of the present monograph. In
Section 2.1 we review the general theory of (nonlinear) scalar conservation
laws and introduce the fundamental notions of weak solutions and Rankine–
Hugoniot jump conditions. In Section 2.2 we introduce the basic ideas of
discrete approximations, such as accuracy and convergence.

2.1 Theoretical Background

In this chapter we overview the basic details concerning the simplified model
of scalar conservation laws. This means that we are looking for the solution
u(x, t) of the Cauchy problem for a single partial differential equation of the
type

∂

∂t
u + ∂

∂x
f (u) = 0, x ∈ R, t > 0, (2.1)

u(x, 0) = u0(x), x ∈ R. (2.2)

The solution u(x, t) as a function of the space variable x ∈ R is sought for all
nonnegative time values. The function f (u) is assumed to be smooth (namely,
continuously differentiable at least as many times as needed in the analysis).

The term “conservation law” stems from the following argument. Integrating
Equation (2.1) over a rectangle 0 ≤ t ≤ T , x1 ≤ x ≤ x2, one gets
∫ x2

x1

u(x, T ) dx −
∫ x2

x1

u0(x) dx = −
∫ T

0
f (u(x2, t)) dt +

∫ T

0
f (u(x1, t)) dt.

(2.3)

Thinking of u(x, t) as “mass density” (per unit length) we see that the in-
tegral

∫ x2

x1
u(x, t)dx expresses the total mass in [x1, x2] at time t , whereas

7



8 2. Scalar Conservation Laws

∫ T
0 f (u(x, t))dt , for any fixed x , can be interpreted as the “mass flux” to the right

at the point x over the time interval [0, T ]. Thus, Equation (2.3) may be viewed
as a “balance equation,” stating that the gain in total mass in [x1, x2] equals
the net flux into the interval through its boundary points x1 and x2. Accord-
ingly, we call f (u) the “flux function.” In particular, if we let [x1, x2] expand to
R = (−∞,∞), and we assume that the fluxes diminish to zero [e.g., if f (0) = 0
and u(x1, t), u(x2, t) vanish as x1 →−∞, x2 →+∞], Equation (2.3) reduces
to

∫ ∞

−∞
u(x, t) dx =

∫ ∞

−∞
u0(x) dx, 0 ≤ t ≤ T . (2.4)

Clearly, this equation expresses the conservation (in time) of the total mass over
the real axis. We refer the reader to LeVeque [81], where Equation (2.1) serves
as a model for traffic flow.

A rigorous treatment of the problem (2.1), (2.2) should include a specifica-
tion of the set of “admissible functions,” i.e., the appropriate differentiability
requirements needed to make sense out of the equation. In particular, it seems as
if a “natural” requirement is that the partial derivatives ut , ux exist (and are con-
tinuous) at all points (x, t) ∈ R× (0,∞). However, this is not so, and indeed
one of the basic features of conservation laws (both from the mathematical and
the physical points of view) is the fundamental role played by discontinuous
solutions. In the physical context, they manifest themselves as “shock waves”
or “material interfaces.” In this chapter we introduce the basic mathematical
notions developed in the search for a systematic way in which such discontin-
uous functions can serve as solutions of (2.1), (2.2)–so-called weak solutions.
The purpose here is to outline the main ideas and arguments of the theory, and
the reader is referred to Evans [36] for more comprehensive presentations.

We start by looking at the simple case f (u) = au, where a �= 0 is a real
constant. Equation (2.1) takes now the form of the (constant-speed) advection
equation,

ut + aux = 0, (2.5)

for which the solution is easily seen to be the “traveling wave”

u(x, t) = u0(x − at), x ∈ R, t ≥ 0. (2.6)

In this case the “initial profile” u0(x) propagates unmodified at a speed a. This
“constant-speed propagation” can be seen even more clearly if we note that
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Equation (2.5) can be reformulated as

D

Dt
u(x, t) = 0 along

dx

dt
= a. (2.7)

The notation D
Dt u(x, t) introduced in (2.7) designates the “total derivative” (also

referred to as the “Lagrangian” or “convective” derivative), namely, the deriva-
tive d

dt u (x(t), t), where x = x(t) is any line in the family of straight lines
satisfying the equation d

dt x(t) = a.

Definition 2.1 The lines satisfying

d

dt
x(t) = a (2.8)

are called the “characteristic lines” associated with Equation (2.5).

Thus we can rephrase the aforementioned observation by saying that the
solution is constant along characteristic lines.

Remark 2.2 In the more general case where a = a(x, t) in (2.5), one can still
define the family of characteristic curves by (2.8), namely, d

dt x(t) = a(x(t), t).
Individual curves are uniquely determined by giving the initial point x(0) = x0.
As before, we verify the validity of Equation (2.7), where D

Dt is now the derivative
along the characteristic curve, implying that u is constant along such a curve.
However, as is known from the theory of ordinary differential equations, the
existence of the characteristic curves for all t ≥ 0 is not guaranteed in this case.
This is easily seen, for example, in the case a(x, t) = x2 (try the curve passing
through x0 = 1, t0 = 0).

Let us now go back to the nonlinear problem (2.1), (2.2). Assuming that u
is a smooth (that is, in our case, continuously differentiable) solution, we can
write the equation in the form

ut + f ′(u)ux = 0. (2.9)

We see that here f ′(u) plays the role of the coefficient a in (2.5), and as in (2.7)
we get the invariance of the value of u along “characteristic curves,” namely,

D

Dt
u(x, t) = 0 along

dx

dt
= f ′(u). (2.10)

However, there is a fundamental difference between the characteristic curves
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Figure 2.1. Characteristic curves in the nonlinear case.

in the linear case [a = a(x, t)] and those of the nonlinear case at hand. Indeed,
in the linear case these curves are determined uniquely by a(x, t) and do not
depend on the solution function u. However, in the situation given in (2.10) the
slopes f ′(u) of these curves depend on the solution u itself! Thus, referring
to the notation in Figure 2.1, the characteristic curve passing through (x1, 0)
initially has a slope f ′(u0(x1)). Its slope at later times is given by f ′(u(x(t), t)).
However, it follows from (2.10) that u = constant = u0(x1) along this curve,
so that the slope is constant and equal to f ′(u0(x1)).

We conclude that in the nonlinear case the characteristic curves must be
straight lines, at least as long as the solution exists and is smooth. Observe that
in the linear case characteristics are straight lines only if a = constant .

Consider now another point x2, where the initial value is u0(x2). The charac-
teristic (straight) line through this point has slope f ′(u0(x2)) and it carries the
constant value u = u0(x2). However, as we see from Figure 2.1, if x2 > x1 and
f ′(u0(x2)) < f ′(u0(x1)), the two straight lines will intersect at some t = t > 0.
At the point of intersection (x, t) we cannot expect the existence of a smooth
(in fact, even continuous) solution, as the two constant values, u0(x1) and
u0(x2), carried by the characteristic curves to that point, are in conflict. Note
that this “breakdown in finite time” of the smooth solution does not depend
on the smoothness of the initial function u0(x). From the preceding discus-
sion, we can even assume that u0(x) is infinitely differentiable and compactly
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supported (that is, vanishes outside of a finite interval) and still face the same
situation [by assigning to two points x1 < x2 values u0(x1), u0(x2) such that
f ′(u0(x1)) > f ′(u0(x2)].

Weak Solutions and Jump Conditions

We are thus led to one of the most fundamental aspects of the theory (and its
practical application), namely, the inclusion of “discontinuous solutions” as
members of the family of admissible solutions. Although this is forced on us
in the nonlinear case, there is a natural need for such an extension even in the
linear case. For example, we would like to refer to the traveling wave (2.6) as
solving Equation (2.5) (a = constant) even when u0(x) is a “step function”
(say u0(x) = 1 for x < 0 and u0(x) = 0 for x ≥ 0).

The basic clue to the method that will allow us to activate such a generaliza-
tion of the concept of a solution may be found in the derivation of the “balance
equation” (2.3). As explained there, this equation is obtained by integrating (2.1)
over the rectangle QT

x1,x2
= [x1, x2]× [0, T ]. This can also be written as

∫

R

∫ ∞

0
(ut + f (u)x )χT

x1,x2
(x, t) dx dt = 0,

(2.11)

χT
x1,x2

(x, t) =





1 if (x, t) ∈ QT
x1,x2

,

0 if (x, t) /∈ QT
x1,x2

.

The modern theory of partial differential equations has taken this integrated
version of the equation one step further, replacing the discontinuous function
χT

x1,x2
(x, t) by a smooth “test function” φ(x, t). This is the well-established

procedure of defining “solutions in the sense of distributions” (see Evans [36]).
In our case the family of test functions is C1

0 , that is, the class of functions
φ that are continuously differentiable and vanish outside of some rectangle
QT
−N ,N (where T and N depend on φ). Assuming that u is a smooth solution

of (2.1), multiplying the equation by a test function φ(x, t), and integrating by
parts over R× [0,∞], we obtain

∫

R

∫ ∞

0
(uφt + f (u)φx ) dx dt +

∫

R

φ(x, 0)u0(x) dx = 0. (2.12)

The crucial idea in the introduction of discontinuous (henceforth called “weak”)
solutions is to reverse the procedure leading up to (2.12), by viewing the latter
as defining the solution. The rigorous definition is the following:
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Definition 2.3 The bounded function u(x, t) is called a “weak solution” (some-
times also a “distribution solution”) to the IVP (2.1), (2.2) if the equality (2.12)
holds for every φ ∈ C1

0 .

Example 2.4 The “moving step” u(x, t) = u0(x − at) [see (2.6)], where
u0(x) = 1 for x < 0 and u0(x) = 0 for x ≥ 0, is a weak solution to (2.5). The
verification is left to the reader as an easy exercise. One should carry out the
double integration (2.12) separately in the regions x < at and x > at.

As already noted, Equation (2.12) is satisfied by any smooth solution to
(2.1), (2.2). Conversely, in the following claim we show that if a weak solution
u is a smooth function then it satisfies (2.1), (2.2). In other words, the set of
smooth solutions of (2.1), (2.2) is identical to the set of smooth weak solutions.
Moreover, any weak solution u that is continuous in a rectangle satisfies the
balance equation (2.3) in that rectangle. Thus, the fundamental balance equation
(2.3) is recovered from Equation (2.12) under the sole requirement of continuity
of u.

In addition to the space C1
0 of test functions we shall make frequent use of

the space C1 of continuously differentiable functions [in (x, t)]. In contrast to
the concept of “weak solution” (where u is only assumed to be bounded), we
refer to a C1 solution of (2.1), (2.2) as a “classical solution.”

Claim 2.5

(a) If u ∈ C1 is a weak solution to (2.1), (2.2) then it is a classical solution.
(b) If u(x, t) is a weak solution [satisfying (2.12)] that is continuous in a

rectangle QT
x1, x2

then u satisfies the balance equation (2.3) in QT
x1, x2

.

Proof
(a) First, take in (2.12) any test function φ that vanishes identically near

t = 0. Equation (2.12) then reads
∫

R

∫ ∞

0
(uφt + f (u)φx ) dx dt = 0 (2.13)

and since u ∈ C1 (hence also f (u) ∈ C1) we can integrate in (2.13) by parts.
Since φ vanishes near t = 0, for sufficiently large x, t, the boundary terms
vanish and (2.13) yields

∫

R

∫ ∞

0
(ut + f (u)x )φ dx dt = 0. (2.14)
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Thus, the continuous function v(x, t) = ut + f (u)x satisfies

∫

R

∫ ∞

0
v(x, t)φ(x, t) dx dt = 0,

for all test functions φ “supported” in the half-plane t > 0.1 It is well known
that this implies that v ≡ 0 in R× [0,∞), so that u satisfies (2.1). Now take any
φ ∈ C1

0 and integrate by parts in (2.12). Since ut + f (u)x = 0 by the foregoing
argument, we obtain

∫

R

(u0(x)− u(x, 0))φ(x, 0) dx = 0. (2.15)

Since φ(x, 0) can be chosen as an arbitrary smooth and compactly supported
function on R, we conclude that u(x, 0)− u0(x) ≡ 0, so that (2.2) is satisfied.

(b) Note that if u ∈ C1 then it satisfies (2.1) by (a); hence (2.3) is obtained
by integration. The point here is that we want to establish the validity of (2.3)
for weak solutions that are only continuous, in which case Equation (2.1) has
no classical meaning. The reader may skip the following proof on first reading.

Let k0 be a large integer so that 1/k0 < min
[

1
2 T, 1

3 (x2 − x1)
]
. Let {φk}∞k=k0

⊆
C1

0 be a sequence of test functions approximating χT
x1,x2

in the following sense:

(i) φk(x, t) ≡ 1 for (x, t) ∈ QT−1/k
x1+1/k,x2−1/k, k = k0, k0 + 1, . . . .

(ii) φk(x, t) ≡ 0 outside the rectangle QT
x1, x2

, k = k0, k0 + 1, . . . .

(iii) ∂
∂t φk(x, t) ≤ 0 in QT

x1, x2
, k = k0, k0 + 1, . . . , ∂

∂x φk(x, t) ≥ 0 for x ∈[
x1, x1 + 1

k

]
, and ∂

∂x φk(x, t) ≤ 0 for x ∈ [x2 − 1
k , x2
]

(see Appendix B
in Evans [36] for the construction of such functions).

Now, write (2.12) with φ = φk . Since ∂
∂x φk , ∂

∂t φk vanish in QT−1/k
x1+1/k,x2−1/k ,

we get

∫∫

�k

(
u
∂

∂t
φk + f (u)

∂

∂x
φk

)
dx dt +

∫ x2−1/k

x1+1/k
u0(x) dx

+
∫ x1+1/k

x1

φk(x, 0)u0(x) dx +
∫ x2

x2−1/k
φk(x, 0)u0(x) dx = 0, (2.16)

where �k = QT
x1,x2

\ QT−1/k
x1+1/k, x2−1/k .

1 Recall that supp g(x, t), the “support” of a C1 function g defined in R × [0,∞), is by definition
the closure of the set {(x, t), g(x, t) �= 0}. Thus, g ∈ C1

0 if and only if supp g is bounded. If
g ∈ C1

0 , supp g ⊆ R× (0,∞), then g vanishes near t = 0.
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Let M = max
{|u(x, t)| , (x, t) ∈ QT

x1, x2

}
. Clearly,

∣∣∣∣

∫ x1+1/k

x1

∫ T

0
u
∂

∂t
φk dx dt +

∫ x2

x2−1/k

∫ T

0
u
∂

∂t
φk dx dt

∣∣∣∣

≤ M

[∫ x1+1/k

x1

(∫ T

0

∣
∣
∣
∣
∂φk

∂t

∣
∣
∣
∣ dt

)
dx +

∫ x2

x2−1/k

(∫ T

0

∣
∣
∣
∣
∂φk

∂t

∣
∣
∣
∣ dt

)
dx

]
≤ 2M

k
,

which tends to 0 as k →∞. However, by the same reasoning,
∣
∣
∣
∣

∫ x2−1/k

x1+1/k

∫ T

T−1/k
(u(x, t)− u(x, T ))

∂

∂t
φk(x, t) dx dt

∣
∣
∣
∣

≤ |x2 − x1| ×max {|u(x, t)− u(x, T )| , x1 ≤ x ≤ x2, T− 1/k ≤ t ≤ T },

which tends to 0 as k →∞, owing to the uniform continuity of u in QT
x1,x2

. We
obtain therefore

lim
k→∞

∫ ∫

�k

u
∂

∂t
φk dx dt = lim

k→∞

∫ x2

x1

u(x, T )
∫ T

T−1/k

∂

∂t
φk dt dx

= −
∫ x2

x1

u(x, T ) dx .

Similarly,

lim
k→∞

∫ T

0

∫ x1+1/k

x1

f (u)
∂

∂x
φk dx dt

= lim
k→∞

∫ T

0
f (u(x1, t))

∫ x1+1/k

x1

∂

∂x
φk dx dt =

∫ T

0
f (u(x1, t)) dt,

lim
k→∞

∫ T

0

∫ x2

x2−1/k
f (u)

∂

∂x
φkdx dt = lim

k→∞

∫ T

0
f (u(x2, t))

∫ x2

x2−1/k

∂

∂x
φk dx dt

= −
∫ T

0
f (u(x2, t)) dt,

lim
k→∞

∫ x1+1/k

x1

φk(x, 0)uo(x) dx = lim
k→∞

∫ x2

x2−1/k
φk(x, 0)u0(x) dx = 0.

Inserting all these limits in (2.16) we obtain the balance equation (2.3). ��

We have thus shown that the notion of a weak solution leads to the balance
equation (2.3). However, the real interest (and applicability) of this notion lies
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Figure 2.2. A jump discontinuity of a weak solution.

in the fact that it leads to considerably more general formulations of the balance
equation. In particular, it extends the validity of the equations to domains where
the solution has jump discontinuities. We shall not attempt at utmost generality
but rather content ourselves with the following situation (which is illustrated in
Figure 2.2).

Let� ⊆ R× [0,∞) be a bounded domain with a piecewise smooth bound-
ary � (i.e., � consists of finitely many continuously differentiable segments).
Assume further that u is a weak solution that has the following structure: There
exists a smooth curve C, which intersects �, dividing it into two subdomains
�1,�2. We assume that u is continuous in each of the two subdomains, up to the
boundary. This means that u attains continuous boundary values on C, when the
latter is approached from either side. However, the boundary values obtained
that way need not be equal. In other words, u may experience a jump discon-
tinuity across C. A suitable modification of the proof of Claim 2.5(b) (which
is not difficult but will not be discussed here in detail) yields the following
claim.

Claim 2.6 Let �, u be as described in the foregoing, and let u be a weak
solution [satisfying (2.12)]. Then

∮

�

− u(x, t) dx + f (u(x, t)) dt = 0. (2.17)
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Remark 2.7

(a) Note that if u ∈ C1 in � then (2.17) is obtained simply by integrating (2.1)
over � and using Green’s theorem.

(b) When � = QT
x1, x2

, Equation (2.17) reduces to the balance equation (2.3)
[with u(x, t) replaced by u0(x) along the portion of � that lies on the
x axis]. Thus, Equation (2.3) is valid even when u has a jump discontinuity
across a curve C that intersects the rectangle.

(c) Clearly, Claim 2.6 can be generalized further by assuming that � is in-
tersected by finitely many smooth curves C1, C2, . . . , across which u has
jump discontinuities. However, we shall not need this more general claim.

Claim 2.6 entails important consequences concerning the possible slopes
of a curve C carrying a jump discontinuity of a weak solution u. To illustrate
the situation, consider first the “moving step” function as in Example 2.4. The
curve C is then given by the straight line x = at . Suppose that we try another
weak solution u(x, t) = u0(x − bt) [to (2.5)], so that u has a jump discontinuity
across x = bt . Invoking a rectangle as in Remark 2.7(b) we obtain b = a. (The
simple verification is left to the reader.) Thus, in the case of the linear equation
(2.5), the jump discontinuities of a weak solution are forced to move at the
characteristic speed of dx

dt = a.
We now turn to the study of jump discontinuities of weak solutions to the

general nonlinear equation (2.1). If C: x = x(t) is a curve, across which u is
discontinuous, it can actually be viewed as the trajectory of a moving discon-
tinuity. Its slope x ′(t) is then the speed of propagation of the discontinuity. As
we have seen earlier, the discontinuity propagates at characteristic speed in the
linear case. We shall see now that the situation is very different in the nonlinear
case. So, consider again the situation in Figure 2.2, where u is a weak solution
satisfying (2.12), continuous in �1, �2, with a discontinuity along the smooth
curve C: x = x(t). Let �1, �2 be the two parts of the boundary of �, separated
by C. Writing Equation (2.17) separately for the two subdomains �1, �2, we
obtain
∫

�1

−u(x, t) dx + f (u(x, t)) dt +
∫

C
−u1(x, t) dx + f (u1(x, t)) dt = 0,

(2.18)
∫

�2

−u(x, t) dx + f (u(x, t)) dt +
∫

−C
−u2(x, t) dx + f (u2(x, t)) dt = 0.

In (2.18) we have denoted by u1, u2 the boundary values of u, as attained by
approaching the discontinuity curve C from �1, �2, respectively. Observe that
the closed curves �1 ∪ C and �2 ∪ (−C) are traversed counterclockwise.
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Now, as noted earlier (Claim 2.6) the balance equation (2.17) is valid when
applied to the boundary � = �1 ∪ �2 of �. Thus, we have also

∮

�

−u(x, t) dx + f (u(x, t)) dt = 0. (2.19)

Comparing (2.18) and (2.19) we conclude
∫

C
[u2(x, t)− u1(x, t)] dx − [ f (u2(x, t))− f (u1(x, t))] dt = 0. (2.20)

However, Equation (2.20) can be applied to any arbitrarily small part of C by
the same argument. Hence the integrand in (2.20) must vanish identically.

These considerations lead us to one of the most fundamental facts concerning
the speed of propagation of discontinuities.

Corollary 2.8 (Rankine–Hugoniot jump condition) Let C: x = x(t) be a
smooth trajectory traced out by a jump discontinuity of the weak solution
u(x, t). Then, for every t, the speed S = dx

dt is given by

S = [ f (u)] (t)

[u] (t)
, (2.21)

where [u](t)=u2(x(t), t)− u1(x(t), t), [ f (u)] (t)= f (u2(x(t), t))−
f (u1 (x(t), t)) are the jumps of u, f (u), respectively, across the discontinu-
ity at time t.

Proof When expressed as a function of t , the integrand in (2.20) is
[u](t) · x ′(t)− [ f (u)] (t), which must vanish identically, as noted above. ��

Remark 2.9 We emphasize the fact that the jump condition (2.21) had been
obtained in the fluid dynamical context (Courant and Friedrichs [30]) much
before the concept of a weak solution was introduced. Indeed, it is based on
“conservation considerations,” which are also at the root of our treatment, which
derives from the balance equations (2.3) or (2.17).

Definition 2.10 A moving discontinuity satisfying the Rankine–Hugoniot
condition is called a “shock wave” [for the weak solution u(x, t)].

Shocks, Rarefaction Waves, and Entropy

Remark 2.11 Observe that in the linear case f (u) = au it was noted in the
foregoing that S = a. Thus, shock waves must move at characteristic speeds.
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. .

Figure 2.3. Characteristics for initial step function in Burgers’ equation.

However, as we shall see in the next example, the situation is generally very
different in the nonlinear case.

Example 2.12 (Burgers’ equation) The simplest example for a nonlinear equa-
tion is given by the flux f (u) = 1

2 u2. The resulting equation

ut +
(

1
2 u2
)

x = 0 (2.22)

is known as the Burgers’ equation [22].
Suppose we take as initial condition the step function u0(x) as in Example 2.4.

Then, as in the linear case, we can verify that a corresponding weak solution is
given by a moving step u(x, t) = u0(x − St) [see Figure 2.3(a)]. However, the
Rankine–Hugoniot condition (2.21) is easily seen to enforce a speed given by,

S = [ f (u)] (t)

[u] (t)
=

1
2 (1− 0)

1− 0
= 1

2
. (2.23)

Thus, as is seen in Figure 2.3(a), the weak solution u(x, t) involves a shock
wave moving at a speed S = 1

2 , while the characteristic straight lines (see (2.10)
and Figure 2.1) are “running into it” as time increases, from the left and from
the right.

Consider now the same problem (2.22), but with the initial values of u0(x)
interchanged, so that u0 = 1 (resp. 0) for x > 0 (resp. x < 0). Clearly, the
moving step u0(x − St), S = 1

2 is still a weak solution of the equation, but the
layout of the characteristic lines is very different, as is seen in Figure 2.3(b).

In particular, in the case shown in Figure 2.3(b) there is a whole sector,
namely, 0 < x < t , that is unattained by any characteristic line emanating from
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the initial line t = 0 (x axis). This situation is remedied when we consider the
following alternative solution.

Example 2.13 (Burgers’ equation–rarefaction wave) As in the preceding
discussion, consider Equation (2.22) with initial data as in Figure 2.3(b). Let
the function u(x, t) be defined by

u(x, t) =






0 if x ≤ 0,
x
t if 0 < x ≤ t,

1 if x > t .

(2.24)

It is a straightforward verification (left to the reader) that u(x, t) of (2.24) is
indeed a weak solution satisfying (2.12) with f (u) = 1

2 u2 [simply carry out the
space–time integration in (2.12) separately over the three regions indicated in
(2.24)]. The field of characteristic lines (of slopes f ′(u) = u) is now as displayed
in Figure 2.4, and in particular there is no void region as in Figure 2.3(b).
Note also the important fact that the jump discontinuity of the initial function
u0(x) at x = 0 is diffused instantaneously and for t > 0 the solution u(x, t) is
continuous.

Definition 2.14 The solution (2.24) is called a “centered rarefaction wave” to
the equation.

It is now easy to see how centered rarefaction waves are encountered also as
weak solutions of the more general conservation law (2.1), (2.2). In fact, assume
that f (u) is strictly convex [meaning that f ′′(u) ≥ µ > 0 or that f ′(u) is strictly
increasing with u]. Consider again the initial value problem where u0(x) is a

Figure 2.4. Rarefaction wave solution for Burgers’ equation.
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step function such that

u0(x) =
{

uL, x < 0,

uR, x > 0,
(2.25)

where uL < uR are two constants. The foregoing discussion in the case of
Burgers’ equation [ f (u) = 1

2 u2] can now be applied directly to the case at
hand. Thus, in addition to a single possible jump (“rarefaction shock”) we have
the centered rarefaction wave solution given by

u(x, t) =






uL, x ≤ f ′(uL)t,

λ, along dx
dt = f ′(λ), uL ≤ λ ≤ uR,

uR, x ≥ f ′(uR)t .

(2.26)

Recall (see the discussion following (2.10)) that in this case all characteristic
curves are straight lines carrying constant values of u, with f ′(u) as the slope.

The verification that (2.26) satisfies (2.12) is left to the reader. Observe that
although u(x, t) is continuous except at the singular point (0, 0), it is not a C1

function; it is readily checked that along the “acoustic lines” x = f ′(uR)t and
x = f ′(uL)t (the “head” and “tail” lines of the rarefaction wave, respectively),
the derivatives ux , ut undergo a jump discontinuity. Thus, u is not a “classical”
solution of (2.1).

The term “rarefaction,” inspired by the analogous situation in compressible
fluid flow (see Chapter 4), comes from the fact that the “density u” at each
fixed time level t > 0 “rarefies” from the high value u = uR for x > f ′(uR)t
continuously to the low value u = uL at x < f ′(uL)t . In contrast, the discontin-
uous solution represented in Figure 2.3(b) by the moving step u0(x − St) can
be labeled as a “rarefaction shock.” Thus, the introduction of the concept of a
“weak solution,” which was meant to overcome the difficulty of nonexistence
of a smooth solution to the conservation law (while retaining the property of the
balance equation), has now led us to the problem of nonuniqueness, namely, the
existence of several possible weak solutions for the same initial data. We there-
fore need some “selection rule” to pick out a unique weak solution, considered
to be the most appropriate one. From the physical viewpoint, based on the anal-
ogous fluid dynamical situation, the rarefaction shock solution is a nonphysical
one, whereas the “physically correct” solution is the centered rarefaction wave.
In these physical considerations, the nonphysical solution is shown to violate
the basic entropy law of thermodynamics. It is a remarkable fact that, in the
context of the scalar conservation law, we have a fully mathematical analog of
the “entropy selection rule,” which guarantees uniqueness of the weak solution
and in particular forces the centered rarefaction wave as the unique solution in
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the situation discussed here. Unfortunately, these considerations do not easily
generalize to the case of systems of nonlinear hyperbolic equations, and we will
not make much use of them in this monograph. So, for the sake of complete-
ness, we defer a more detailed discussion of this topic to Appendix A. However,
one aspect of the entropy rule (indeed, one possible formulation of it), the Lax
entropy condition, is of importance in our treatment and is described next.

Recall [see Figure 2.1 and the discussion following (2.10)] that shock waves
(namely, jump discontinuities) are forced by characteristic lines of different
slopes “running into each other” as time increases. In such a case a discontinuity
of the solution is inevitable. However, the case of the centered rarefaction wave
shows that if the characteristic lines emanating from the initial line (t = 0)
are “spreading out,” then a rarefaction shock can be replaced by a “rarefaction
fan,” thus avoiding a discontinuity. These considerations lead us to the following
definition.

Definition 2.15 Let C: x = x(t), a ≤ t ≤ b, be a smooth trajectory traced out
by a jump discontinuity of the weak solution u(x, t) [to Equation (2.1)]. We say
that the (Lax) entropy condition is satisfied along C, if for any t ∈ [a, b],

f ′ (u+(x(t), t)) < S(t) = dx

dt
< f ′ (u−(x(t), t)) . (2.27)

Observe that instead of the notation employed in Corollary 2.8, we have used
here the notation

u±(x(t), t) = lim
x→x(t)±

u(x, t)

to indicate the values attained by u on the two sides of C.
As is seen from (2.9), (2.10) the two values of f ′ in (2.27) give the slopes

of the characteristic lines on either side of the discontinuity. The two inequal-
ities in (2.27) can therefore be summarized by saying that as time evolves,
the discontinuity moves faster than the characteristic lines ahead of it and is
slower than those trailing it (see Figure 2.5). Note in particular that whereas the
Rankine–Hugoniot condition (2.21) is symmetric (the indices “1” and “2” can
be interchanged) this is not true in the case of (2.27) where the signs “+” (ahead
of the wave) and “−” (behind the wave) have definite meanings and cannot be
interchanged.

We have remarked earlier that the slopes f ′(u) may be viewed as “sonic
speeds,” corresponding to the speed of a “signal of magnitude u.” (This termi-
nology is inspired by the fluid dynamical case, as we shall see later.) Thus, the
entropy condition can be rephrased to say that the “discontinuity is supersonic
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Figure 2.5. A jump discontinuity satisfying the entropy condition.

with respect to the medium ahead of it, but subsonic with respect to the medium
behind it.”

Example 2.16 In the case of the Burgers’ equation (Example 2.12), the
“forward-facing step” [Figure 2.3(a)] generates a discontinuity that moves at
the speed S = 1

2 and satisfies the entropy condition. In contrast, the “rarefac-
tion shock,” which results from the “backward-facing step” [Figure 2.3(b)],
and which also moves at the same speed, is clearly in violation of the entropy
condition.

Remark 2.17 Given Equation (2.22) and initial data as in Figure 2.3(b), the
reader can easily verify that the function

u(x, t) =






1, x > 3
4 t,

1
2 ,

1
4 t < x < 3

4 t,

0, x < 1
4 t,

is also a weak solution consisting of two consecutive rarefaction shocks, whereas
the solution depicted in Figure 2.3(b) consists of a single one. Continuing in
the same fashion, a weak solution to this initial data can be constructed as a se-
quence of arbitrarily many “small rarefaction shocks,” with an ever decreasing
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jump per shock. In fact, when the number of shocks goes to infinity this pro-
cedure produces the correct “centered rarefaction wave” solution (shown in
Figure 2.4), which conforms to the entropy condition.

For the general theory of existence and uniqueness of “entropy-satisfying
weak solutions” to the conservation law (2.1), (2.2) we refer the reader to the
books by Smoller [103], Godlewski and Raviart [54], Hörmander [63], and
Serre [101].

The Riemann Problem

As we shall see in Section 2.2, the elementary solutions discussed in the pre-
ceding subsection are fundamental in the numerical treatment of conservation
laws. It is therefore useful to formalize this situation as follows.

Definition 2.18 (Riemann problem) The “Riemann problem” for the conser-
vation law (2.1) is the IVP subject to the initial data (2.25), where uL, uR are
constants.

We can summarize this discussion by saying that the “entropy-satisfying”
solution to the Riemann problem for (2.1), when f (u) is strictly convex, consists
of a shock wave (moving at speed S = f (uR)− f (uL)

uR−uL
) when uL > uR, whereas for

uL < uR it is a centered rarefaction wave. The solution is self-similar; namely,
it depends only on the ratio x/t . For future reference we denote this solution by
R( x

t ; uL, uR). When the solution is a shock wave, it moves either to the left or to
the right, according to the sign of S = f (uR)− f (uL)

uR−uL
. When it is a centered rarefac-

tion wave, it propagates to the right (resp. to the left) when the initial jump satis-
fies the additional relation 0 < f ′(uL) < f ′(uR) (resp. f ′(uL) < f ′(uR) < 0).
However, in the case of a rarefaction wave there is a third possibility, which we
refer to as the “sonic case,” where f ′(uL) ≤ 0 ≤ f ′(uR). Here the line x = 0
is contained within the rarefaction fan, coinciding with the characteristic line
that moves at zero speed. It then carries the value u = umin, i.e., the value of u
at the minimum point of f (u) (where f ′(umin) = 0).

In all these cases the following corollary is evident.

Corollary 2.19 The range of values attained by the Riemann solution R( x
t ;

uL, uR) is contained in [uL, uR] [rarefaction as in (2.26)] or consists of the
values uL, uR (shock). In particular, the waves issuing from x = 0 move at
speeds that do not exceed (in absolute value) max

(| f ′(uL)|, | f ′(uR)|).
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This is in fact a special case of a general property of solutions to scalar
conservation laws, as stated in the following theorem.

Theorem 2.20 Let f (u) be continuously differentiable (not necessarily
convex), and let u0 ∈ L∞(R). Then the initial value problem (2.1), (2.2) has
a unique weak solution u(x, t) satisfying the entropy condition. This solution is
defined for all x ∈ R, t ≥ 0 and has the following properties:

(i) Maximum–Minimum Principle. For every t ≥ 0,

sup
x∈R

u(x, t) ≤ sup
x∈R

u0(x), inf
x∈R

u(x, t) ≥ inf
x∈R

u0(x).

(ii) Continuity in L1
loc(R). For every fixed X > 0, the function t → u(·, t) is

continuous from [0,∞) into L1(−X, X ). In particular, the initial condition
(2.2) is satisfied in the sense that, for all X > 0,

∫ X

−X
|u(x, t)− u0(x)| dx → 0 as t → 0.

(iii) L1 Contraction Property. If the initial data u0, v0 ∈ L1(R) ∩ L∞(R) and
u(x, t), v(x, t) are the corresponding weak solutions, then, for every t ≥ 0,

∫

R

|u(x, t)− v(x, t)| dx ≤
∫

R

|u0(x)− v0(x)| dx .

For a proof of this theorem we refer to Hörmander [63] and Godlewski and
Raviart [54].

For the purpose of conservation law schemes, in particular the GRP scheme
considered in the following chapters, we shall make frequent use of the value
u∗ = R(0; uL, uR), that is, the (constant) value of the solution to a Riemann
problem along the line x = 0. Clearly

u∗ =






uL for a right wave,

uR for a left wave,

umin if x = 0 is a sonic point,

(2.28)

where it is assumed that f (u) is strictly convex.
Observe that f ′(u∗) > 0 (resp. f ′(u∗) < 0) if the wave moves to the right

(resp. to the left), whereas f ′(u∗) = 0 at a sonic point.
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2.2 Basic Concepts of Numerical Approximation

The basic idea in the construction of approximate solutions to (2.1), (2.2) is that
of time discretization. One defines a sequence of times 0 = t0 < t1 < t2 < · · ·
and seeks functions U n(x), n = 0, 1, 2, . . . , that should approximate the exact
solution u(x, tn) at these times. For simplicity we shall henceforth assume a fixed
time step	t > 0, so that tn = n	t, n = 0, 1, 2, . . . . A suitable discrete analog
of Equation (2.1) is used to determine U n+1(x), assuming that U j (x), 0 ≤ j ≤
n, are already known. In this setting, time derivatives may be approximated
by expressions like 	t−1

[
U n+1(x)−U n(x)

]
. Thus we need to find expres-

sions to approximate the action of x-derivatives on U n(x). If U n(x) is indeed
known for all x ∈ R, we may think again of 	x−1 [U n(x +	x)−U n(x)],
where 	x > 0 is some fixed increment, as approximating d

dx U n(x). However,
in our context such an approximation is not realistic, since in general U n(x) will
be a discontinuous and nonmonotonic function. So we restrict ourselves to a
discretized version of this idea. For simplicity, let us take equally spaced points
x j = j	x,−∞ < j <∞. The function U n(x) is then represented by its val-
ues at the grid points U n

j = U (x j , tn). The way in which the values
{
U n

j

}∞
j=−∞

are interpolated in determining the values U n(x), x /∈ {x j
}∞

j=−∞, is fundamen-
tal for the class of high-resolution methods discussed in this monograph (as
well as many others). We shall come back to this discussion later on. How-
ever, to illustrate the basic principles of the underlying finite-difference method,
let us first consider (as we did in Section 2.1) the case of the linear equation
ut + aux = 0.

Here are four different ways in which
{
U n+1

j

}∞
j=−∞ can be derived from the

known values
{
U n

j

}
j :

(a) The “backward”-difference scheme

U n+1
j −U n

j

	t
= −a

U n
j −U n

j−1

	x
. (2.29)

(b) The “forward”-difference scheme

U n+1
j −U n

j

	t
= −a

U n
j+1 −U n

j

	x
. (2.30)

(c) The Lax–Friedrichs scheme

U n+1
j − 1

2

[
U n

j+1 +U n
j−1

]

	t
= −a

U n
j+1 −U n

j−1

2	x
. (2.31)
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(d) The Lax–Wendroff scheme

U n+1
j −U n

j

	t
= −a

U n
j+1 −U n

j−1

2	x
+ a2

U n
j+1 − 2U n

j +U n
j−1

	x2

	t

2
. (2.32)

Observe that in the first three schemes the left-hand side approximates the
derivative ut while the right-hand side approximates−aux . In the Lax–Wendroff
scheme the left-hand side approximates ut + 1

2	t utt , while the right-hand side
approximates −aux + 1

2	t a2uxx . Note that for smooth solutions the relation
utt = a2uxx follows from ut = −aux by differentiation with respect to t . In
other words, all four schemes are “consistent” with the equation ut + aux = 0.
To make this notion (as well as that of “accuracy” of the scheme) precise, we
shall now introduce some widely used conventions.

First, we set k = 	t and take 	x = 	t
λ

, where λ > 0 is given (and fixed).
Thus, k is the only “small parameter” in the scheme. Next, we use the symbolic
writing U n+1 = Hk (U n) to denote any of these schemes. Here U n, U n+1 are
the sequences

{
U n

j

}∞
j=−∞,

{
U n+1

j

}∞
j=−∞, respectively, and Hk is the associated

linear operator. In other words, we observe that the sequence U n
j is transformed

linearly to U n+1
j , and we denote by Hk the corresponding map. The map Hk

differs from one scheme to the other and depends on the parameter k. Now
let u(x, t) be the exact solution to the equation, and let un = {u(x j , tn)

}∞
j=−∞

be the sequence of its values at the spatial grid points for t = tn . Clearly, it
is generally not true that un+1 = Hk(un), for any of the preceding schemes.
However, “consistency” means here that this last equality is approximately
satisfied, whereas “accuracy” measures the error involved in this approximation.
As a matter of fact, the definition of accuracy is not limited to the linear case
at hand. In Section 3.1 we shall refer to it in the context of discrete schemes
approximating solutions of the general conservation law (2.1). In this case the
discrete algorithm U n+1 = Hk(U n) is in general not linear (replacing U n by
2U n , for example, will not produce a result of 2U n+1). However, we are still
interested in measuring the “truncation error” committed by Hk , when applied to
the exact solution un = {u(x j , tn)

}∞
j=−∞. We therefore formulate our definition

of accuracy in this more general setting ( f (u) = au will take us back to the
present case).

Definition 2.21 Let u(x, t) be a smooth solution to the conservation law ut +
f (u)x = 0 and let U n+1 = Hk(U n) be an approximating scheme. We say that
Hk is accurate of order p ≥ 1 if, with un = {u(x j , tn)

}∞
j=−∞,

un+1 − Hk(un) = O
(
k p+1
)
, k → 0. (2.33)
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Remark 2.22 Observe that the notion of consistency is built into (2.33) in the
following way:

Define Fk(un) = un − Hk(un). Then (2.33) can be rewritten as

un+1 − un + Fk(un) = O
(
k p+1
)

(2.34)

and dividing by k we have

un+1 − un

k
+ 1

k
Fk(un) = O

(
k p
)
, k → 0. (2.35)

Since u(x, t) is an exact solution, un+1−un

k approximates ut (at t = tn), and
therefore 1

k Fk(un) should be an approximation for f (u)x (at t = tn), as k → 0.
This last conclusion is commonly referred to as the “consistency” of the scheme
Hk(un) = un − Fk(un) with the differential equation. Suppose that u(x, t) is a
smooth function satisfying (2.33) and assume that

−un + Hk(un)+ kaux (x j , tn) = O
(
k p+1
)

as k → 0. (2.36)

Inserting (2.34) into (2.36) we obtain

un+1 − un

k
+ aux (x j , tn) = O

(
k p
)

as k → 0, (2.37)

so that by letting k → 0 we get ut + aux = 0.

Example 2.23 For the backward-difference scheme (2.29) we replace U n
j by

u(x, t), U n+1
j by u(x, t + k), and U n

j−1 by u(x −	x, t). Assuming u to be a
smooth solution of ut + aux = 0 and using Taylor expansion we get

u(x, t + k) = u(x, t)+ kut (x, t)+ O(k2)

= u(x, t)− kaux (x, t)+ O(k2)

= u(x, t)− λa [u(x, t)− u(x −	x, t)]+ O(k2)+ O(	x2)

= Hku(x, t)+ O(k2),

where

Hk u(x, t) = (1− λa)u(x, t)+ λau(x −	x, t), (2.38)

and we have absorbed O(	x2) into O(k2) in view of 	x = λ−1k.

We conclude that the scheme is first-order accurate [p = 1 in (2.33)].
The reader can prove similarly that both the forward-difference and the
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Lax–Friedrichs schemes are of first-order accuracy, whereas the Lax–Wendroff
scheme is of second-order accuracy.

Convergence

The major question that poses itself in connection with discretized schemes is
that of convergence (as k → 0) of the “approximate solution”

{
U n

j

}
to a (weak)

solution of the differential equation. To illustrate the situation, we take as before
the linear equation

ut + aux = 0, u(x, 0) = u0(x). (2.39)

Example 2.24 (Non convergence for large λ > 0) Assume a > 0 and take
the backward-difference scheme (2.29). Using (2.38) the reader can verify easily
(say, by induction) that

U n
j =

n∑

l=0

(n

l

)
(λa)l(1− λa)n−lU 0

j−l . (2.40)

The initial values
{
U 0

j

}∞
j=−∞ are computed from the given initial function

u0(x). A common choice is to define U 0
j as the average of u0(x) over the interval

of size 	x centered at x j , that is,

U 0
j =

1

	x

∫ x
j+ 1

2

x
j− 1

2

u0(x) dx, xr = r	x . (2.41)

If we take the initial step function

u0(x) =
{

1, x ≤ 0,

0, x > 0,
(2.42)

we have by Example 2.4 the weak solution

u(x, t) = u0(x − at). (2.43)

For the corresponding approximation we get from (2.41)

U 0
j =






1, j < 0,
1
2 , j = 0,

0, j > 0,

(2.44)
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and from (2.40), along with simple facts about the binomial coefficients,
we get

n∑

j=0

U n
j =

n∑

j=0

n∑

l=0

(n

l

)
(λa)l(1− λa)n−lU 0

j−l

= 1

2

n∑

j=0

(
n

j

)
(λa) j (1− λa)n− j +

n∑

j=0

n∑

l= j+1

(n

l

)
(λa)l(1− λa)n−l

= 1

2
+

n∑

l=0

l
(n

l

)
(λa)l(1− λa)n−l = 1

2
+ λna,

so that

	x
n∑

j=0

U n
j =

	x

2
+ nka. (2.45)

In analogy with the interpretation of U 0
j , we think of U n

j as approximating the
mean value of u(x, nk) in the interval (x j− 1

2
, x j+ 1

2
). Thus, the sum in (2.45)

should be compared with the integral

∫ (n+ 1
2 )	x

−	x
2

u(x, nk) dx =
∫ (n+ 1

2 )	x

−	x
2

u0(x − ank) dx

=
∫ (n+ 1

2 )	x−ank

−	x
2 −ank

u0(x) dx .

Now fix t > 0 and take nk = t . As k → 0 and because λ = k
	x is fixed, we

have 	x → 0 and the limit of the last integral can be evaluated as

∫ 	x
2 +t( 1

λ
−a)

−	x
2 −at

u0(x) dx →
{

at, λ−1 ≥ a,
1
λ

t, λ−1 < a.
(2.46)

However, from (2.45), as k → 0,

	x
n∑

j=0

U n
j → at. (2.47)

We conclude that
∣∣∣
∣∣

∫ (n+ 1
2 )	x

−	x
2

u(x, t) dx −	x
n∑

j=0

U n
j

∣
∣∣
∣∣
→ 0, as k → 0 (2.48)
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(with nk = t and λ = k
	x ) if and only if

λa ≤ 1. (2.49)

Clearly, convergence “in the mean” is a very reasonable way of requesting that
the sequence

{
U n

j

}∞
j=−∞ should approximate the exact solution u(x, nk). Since

the step function (2.42) represents only one possible initial datum, we can only
derive a necessary condition for convergence from the foregoing discussion.
First, we formalize the convergence in the mean as follows.

Definition 2.25 Fix T > 0. We say that
{
U n

j

}∞
j=−∞ converges to the solution

u(x, t) in L1
loc(R) at fixed time t if, for any [α, β] ∈ R,

lim
k→0

(nk=t)

[ β

	x ]∑

j=[ α
	x ]

∫ x j+1/2

x j−1/2

∣
∣U n

j − u(x, t)
∣
∣ dx = 0 (2.50)

for any 0 ≤ t ≤ T .2 ([z] is the integer satisfying z − 1 < [z] ≤ z for any z ∈ R.)

Our conclusion (2.48) can now be restated as follows.

Corollary 2.26 Let a>0. Then (2.49) is a necessary condition for the backward-
difference scheme to converge in L1

loc(R) to the solution of (2.39).

Definition 2.27 The condition (2.49) is called the CFL (Courant–Friedrichs–
Lewy) condition associated with Equation (2.39) and scheme (2.29).

Since λ = k
	x , the CFL condition can be written as

k ≤ 	x

a
. (2.51)

It therefore forces a necessary restriction on the size of the time step k =
	t , relative to the cell size 	x , for convergence to take place. Later in this
section we shall have a geometric interpretation of this condition, in terms of
the characteristic lines of the equation. Note that the condition refers not only to
the equation but also to the particular scheme used to approximate it. Although
it plays a fundamental role in the theory of linear equations, it serves only
as a guideline in the nonlinear case (via linearization). Because our primary
objective here is the treatment of the nonlinear case, we shall make little use

2 L1
loc (R) consists of functions that are integrable over any finite interval.
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of the general theory related to the CFL condition, and we refer the reader to
Richtmyer and Morton [96] for a thorough discussion of this topic.

As we shall see throughout this monograph, the backward-difference scheme
(2.29) (for a > 0!) plays a fundamental role in the development of accurate
high-resolution schemes. The first step in this development is taken in the fol-
lowing theorem, proving the sufficiency of the CFL condition for convergence
in L1

loc(R). Some knowledge of the binomial distribution is needed in the proof,
which the reader may skip on first reading.

Theorem 2.28 Consider the equation ut + aux = 0, a > 0, and assume that
the initial function u0(x) = u(x, 0) is uniformly bounded. Then, under the CFL
condition (2.49) the backward-difference scheme (2.29) converges in L1

loc(R),
that is, in the sense of Definition 2.25.

Proof In view of (2.6), (2.40), and (2.41) we can write, with nk = t ,

[ β

	x ]∑

j=[ α
	x ]

∫ x j+1/2

x j−1/2

∣∣U n
j − u(x, t)

∣∣ dx

=
[ β

	x ]∑

j=[ α
	x ]

∫ x j+1/2

x j−1/2

∣∣∣∣∣

n∑

l=0

(n

l

)
(λa)l(1− λa)n−l

[
U 0

j−l − u0(x − at)
]
∣∣∣∣∣

dx

≤
n∑

l=0

(n

l

)
(λa)l(1− λa)n−l pl , (2.52)

where

pl =
[ β

	x ]∑

j=[ α
	x ]

∫ x j+1/2

x j−1/2

∣∣U 0
j−l − u0(x − at)

∣∣ dx, (2.53)

and where we have used the identity

n∑

l=0

(n

l

)
(λa)l(1− λa)n−l = 1.

We note that n	x = nk
λ
= t

λ
≤ T

λ
, so that the numbers pl , 0 ≤ l ≤ n, are uni-

formly bounded by

|pl | ≤ 2

β+	x∫

α− T
λ
−	x

|u0(x)| dx, 0 ≤ l ≤ n.
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Recall that the “Law of Large Numbers” (see Feller [45, Vol. I, Section VI-4])
states that the binomial distribution bn,l =

( n
l

)
(λa)l(1− λa)n−l is “concen-

trated around l = λan,” or, more precisely, that for any ε > 0

lim
n→∞

∑

|l−λan|>nε

bn,l pl = 0. (2.54)

Thus, going back to (2.52), (2.53), we obtain for any ε > 0

lim
k→0

(nk=t)

[ β

	x ]∑

j=[ α
	x ]

∫ x j+1/2

x j−1/2

∣
∣U n

j − u(x, t)
∣
∣ dx ≤ lim

n→∞
(nk=t)

∑

|l−λan|≤nε

bn,l pl . (2.55)

But if |l − λan| ≤ nε, we have |( j − l)	x − (x j − at)| ≤ nε	x ≤ T
λ
ε, so

pl ≤
[ β

	x ]∑

j=[ α
	x ]

∫ x j−l+1/2

x j−l−1/2

∣
∣U 0

j−l − u0(x)
∣∣ dx

+ sup
0<h≤ T

λ
ε

∫ β

α− T
λ

|u0(y + h)− u0(y)| dy. (2.56)

Given δ > 0 we can choose ε > 0 sufficiently small so that the second term on
the right-hand side of (2.56) is smaller than δ

2 . (This follows from elementary
properties of functions in L1(R); simply approximate u0 in L1 by a smooth
function.) As for the first term in the right-hand side of (2.56), recall from (2.41)
that U 0

j−l is the average value of u0(x) over [x j−l−1/2, x j−l+1/2]. Thus, if u0(x)
is smooth, U 0

j−l = u0(y j−l) for some y j−l in the interval and, since

u0(y j−l)− u0(x) =
∫ y j−l

x
u′0(ξ ) dξ

we get

[ β

	x ]∑

j=[ α
	x ]

∫ x j−l+1/2

x j−l−1/2

∣∣U 0
j−l − u0(x)

∣∣ dx ≤ 	x
∫ β

α− T
λ

∣∣u′0(y)
∣∣ dy,

which is smaller than δ
2 (for 0 ≤ l ≤ n) if	x is small. If u0 is not smooth, it can

be approximated (in L1) by a smooth function, so that the same result holds.
We conclude that sup|l−λan|<nε pl can be made arbitrarily small by taking

ε, 	x sufficiently small. From (2.55) we now get

lim
k→0

(nk=t)

[ β

	x ]∑

j=[ α
	x ]

∫ x j+1/2

x j−1/2

∣
∣U n

j − u(x, t)
∣∣ dx = 0,

which proves our theorem. ��
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Figure 2.6. Geometric (characteristic) interpretation of the backward-difference
scheme, ut + aux = 0. The CFL condition implies that the intersection is between x j−1

and x j .

The backward-difference scheme has a simple geometric interpretation. Con-
sider the grid (x j , tn) as in Figure 2.6.

As mentioned earlier, the approximating values
{
U n

j

}
are associated with

the points (x j , tn). If the CFL condition (2.49) holds, then the characteristic
line x ′(t) = a, issuing from (x j , tn+1), intersects the line t = tn at the point
x̄ = λax j−1 + (1− λa)x j ∈ [x j−1, x j ]. If we use the linear interpolation

U n(x̄) = λaU n
j−1 + (1− λa)U n

j (2.57)

then the backward-difference scheme (2.29) states simply that

U n+1
j = U n(x̄),

which just expresses the fact that the corresponding exact solution is constant
along a characteristic line. We can summarize this discussion as follows.

Summary 2.29 (The backward-difference scheme as exact solution of
approximate initial data) The values

{
U n+1

j

}∞
j=−∞ as obtained by the

scheme (2.29) (a> 0), subject to the CFL condition (2.49), are the exact values
ũ(x j , tn+1), where ũ(x, t) satisfies the equation ũt + aũx = 0, subject to the
initial condition ũ(x, tn) = U n(x). The function U n(x) is the piecewise linear
(continuous) function obtained by interpolating the values

{
U n

j

}∞
j=−∞ at the

grid points
{
(x j , tn)

}∞
j=−∞.
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Definition 2.30 (Upwinding) We say that the backward-difference scheme
(2.29), with a > 0, is an “upwind scheme,” meaning that the values

{
U n+1

j

}∞
j=−∞

are obtained from
{
U n

j

}∞
j=−∞ by following the characteristic lines of the

equation.

We now suggest yet another interpretation of the backward-difference
scheme. This one, as in the preceding discussion, will also be based on an
exact solution of the equation, subject to approximate initial data. However,
now we take U n(x) as the piecewise-constant function defined by

U n(x) = U n
j , x j−1/2 < x < x j+1/2, −∞ < j <∞. (2.58)

We can make the following claim.

Claim 2.31 Solve the equation ˜̃ut + a ˜̃ux = 0, subject to the initial condition
˜̃u(x, tn) = U n(x) as in (2.58). Then the values U n+1

j , as determined by the
backward-difference scheme (2.29), satisfy

U n+1
j = 1

	x

x j+1/2∫

x j−1/2

˜̃u(x, tn+1) dx, (2.59)

provided the CFL condition (2.49) holds.

Proof The CFL condition implies that the “moving step” solution (2.6) satisfies

˜̃u(x j+1/2, t) = U n
j , tn ≤ t ≤ tn+1, −∞ < j <∞. (2.60)

It follows from the balance equation (2.3) that

x j+1/2∫

x j−1/2

˜̃u(x, tn+1) dx = U n
j 	x − a

[
U n

j −U n
j−1

]
k,

and, by k = λ	x ,

1

	x

x j+1/2∫

x j−1/2

˜̃u(x, tn+1) dx = (1− λa)U n
j + λaU n

j−1 = U n+1
j . (2.61)

��



2.2. Basic Concepts of Numerical Approximation 35

Observe that although ũ(x, t) (in Summary 2.29) and ˜̃u(x, t) (in Claim 2.31)
satisfy the same differential equation, they are actually different since the initial
data U n(x), used to interpolate the discrete values

{
U n

j

}∞
j=−∞, are different for

the two cases. In the case of ũ(x, t) the initial function U n(x), and hence ũ(x, t),
are continuous, and U n+1

j is taken as the approximate (pointwise) “upwind”
value. In contrast, in the case of ˜̃u(x, t), the initial function U n(x) is piecewise
constant, and hence is in general discontinuous, and the value U n+1

j is taken as
the average of the ensuing solution ˜̃u(x, tn+1) over (x j−1/2, x j+1/2).

Recall that, for the nonlinear conservation law ut + f (u)x = 0, the solution
can develop discontinuities even when subject to very smooth initial data. In
this case, therefore, the pointwise upwinding approach expressed by ũ(x, t),
based on continuous interpolation, does not seem appropriate. In contrast, the
“averaging” approach, based on the balance equation (2.3) applied to piecewise-
constant initial data, can be readily generalized to the nonlinear case. It is this
approach, first suggested by Godunov [56], that will serve as the basis of the
GRP method discussed in the next chapter.

Remark 2.32 Note that none of the schemes (2.30)–(2.32) (i.e., the forward-
difference, Lax–Friedrichs, and Lax–Wendroff schemes) are amenable to an
interpretation based on characteristic values (“upwinding” as in Definition 2.30)
or averaging in the sense of Godunov (as in Claim 2.31). Nonetheless, all these
schemes [including (2.29)] are “conservative” in the sense that

∞∑

j=−∞
U n+1

j =
∞∑

j=−∞
U n

j

(when the values U n
j vanish sufficiently fast as | j | → ∞). This is of course

consistent with the conservation property (2.4). However, in this monograph we
shall not make much use of this conservation property.

Remark 2.33 We refer the reader to Godlewski and Raviart [54] for a proof
of the following: The Lax–Friedrichs scheme (2.31) and the Lax–Wendroff
scheme (2.32) converge to the solution of ut + aux = 0 (a > 0), in the sense
of Definition 2.25, subject to the CFL condition (2.49); however, the forward-
difference scheme (2.30) fails to converge, no matter how small λ = k

	x is.

Except for a few examples, we shall not make use of these schemes in the
present monograph.



3
The GRP Method for Scalar Conservation Laws

This chapter introduces the GRP method in the context of the scalar conservation
law ut + f (u)x = 0. We start in Section 3.1 with the classical first-order (con-
servative) “Godunov Scheme,” which leads naturally to its second-order GRP
extension. Section 3.2 contains a number of numerical (one-dimensional) ex-
amples, for linear and nonlinear equations, illustrating the improved resolution
obtained by the GRP method. In Section 3.3 we extend the GRP methodology
to the two-dimensional scalar conservation law ut + f (u)x + g(u)y = 0. Ana-
lytical and numerical results are compared for simple as well as complex wave
interactions.

3.1 From Godunov to the GRP Method

In this section we discuss the GRP method, aimed at a high-resolution numerical
approximation of the solution to a conservation law of the form (2.1). We always
assume that f (u) is strictly convex: f ′′(u) ≥ µ > 0. It is shown that this method
is a natural analytic extension to the Godunov (upwind) scheme. This latter
scheme has been extensively studied in Section 2.2, in the context of the linear
convection equation. We start here by studying this scheme in the nonlinear case.

As in Section 2.2, we take a uniform spatial grid x j = j	x ,−∞ < j <∞,
and uniformly spaced time levels tn+1 = tn + k, t0 = 0. As before, we refer to
the interval (x j−1/2, x j+1/2) as “cell j” and to x j±1/2 as its “cell boundaries.”
Given the approximating functions U 1(x), . . . ,U n(x), a numerical scheme con-
sists in constructing U n+1(x), approximating u(x, tn+1). The functions U n(x)
are piecewise constant (Godunov) or piecewise linear (GRP). Their averages
over cell j are denoted by U n

j .
Our starting point is the balance equation (2.3), to be used over the rectangle

[x j−1/2, x j+1/2]× [tn, tn+1]. Since U n
j ,U

n+1
j are supposed to be the average

36
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values of the approximating function over “bottom” and “top” respectively, the
discrete version of (2.3) should be

U n+1
j = U n

j − λ
(

f n+1/2
j+1/2 − f n+1/2

j−1/2

)
, (3.1)

where λ = k
	x and f n+1/2

j+1/2 is an approximation for the average flux 1
k

∫ tn+1

tn
f
(
u(x j+1/2, t)

)
dt.

Definition 3.1 The term f n+1/2
j+1/2 is called the “numerical flux” at the boundary

x j+1/2 over the time interval [tn, tn+1].

Clearly, once the numerical fluxes are known, the numerical scheme is fully
determined. We refer the reader to the books by LeVeque [81] and Godlewski
and Raviart [54] for surveys of many existing schemes.

In this monograph we adapt the approach suggested by Godunov [56] as
mentioned at the end of Section 2.2. In the present nonlinear case it can be
described as follows: Take the function U n(x) as piecewise constant, with

U n(x) = U n
j , x j−1/2 < x < x j+1/2. (3.2)

Let ũ(x, t) be the weak solution to (2.1) for t ≥ tn , subject to initial data U n(x)
at t = tn . Now evaluate the numerical flux as

f G, n+1/2
j+1/2 = 1

k

∫ tn+1

tn

f
(
ũ(x j+1/2, t)

)
dt, −∞ < j <∞, (3.3)

where the superscript “G” refers to the fact that this is the numerical flux
associated with the Godunov method.

The main idea in the application of (3.1) (with f n+1/2
j+1/2 = f G, n+1/2

j+1/2 ) is that if
k is sufficiently small then

ũ(x j+1/2, t) = constant, t ∈ [tn, tn+1], (3.4)

so that (3.3) is easily evaluated. The reader should observe that this is in full
agreement with the linear case [ f (u) = au, a > 0] as discussed in Claim 2.31,
where f G, n+1/2

j+1/2 = aU n
j .

To give a more precise meaning to (3.4), we set

Mn = sup
−∞< j<∞

∣∣U n
j

∣∣ <∞, (3.5)

and let k = 	t satisfy the “CFL condition” (compare Definition 2.27)

k · max
|u|≤Mn

∣∣ f ′(u)
∣∣ < 	x . (3.6)
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Figure 3.1. Wave pattern for piecewise-constant initial data.

Observe that near every cell boundary x j+1/2 the solution ũ(x, t) is a “Riemann
solution” R

( x−x j+1/2

t−tn
; U n

j ,U
n
j+1

)
(see Definition 2.18) associated with the initial

data U n
j , U n

j+1 (see Figure 3.1). It follows from Corollary 2.19 that the speeds
of all waves emanating from the points x j+1/2, −∞ < j <∞, are bounded by

Sn = max
|u|<Mn

∣∣ f ′(u)
∣∣ . (3.7)

The CFL condition (3.6) therefore entails the following important conclusion.

Corollary 3.2 (Validity of “local Riemann solutions”) Under the CFL con-
dition (3.6), a wave issuing from (x j+1/2, tn) does not reach any other cell
boundary (xl+1/2, t) within the time interval [tn, tn+1].

Remark 3.3 Note that in the case f (u) = au the CFL condition (3.6) coincides
with (2.49).

Remark 3.4 Observe that (see Figure 3.1) the waves issuing from neighboring
cell boundaries x j±1/2 may interact during the time interval [tn, tn+1]. However,
since the speeds of all resulting waves are still bounded by Sn [Equation (3.7)],
they do not reach the opposite cell boundary.

The preceding remark and Corollary 3.2 imply, in particular, that when (3.6)
is fulfilled, the solution ũ(x j+1/2, t) satisfies, for every −∞ < j <∞,

ũ(x j+1/2, t) = R(0; U n
j ,U

n
j+1), tn ≤ t ≤ tn+1, (3.8)

so that the numerical flux is given by

f G, n+1/2
j+1/2 = f

(
R(0; U n

j ,U
n
j+1)
)
, (3.9)
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and the balance equation (2.3) yields

1

	x

∫ x j+1/2

x j−1/2

ũ(x, tn+1)dt = U n
j − λ
(

f G,n+1/2
j+1/2 − f G,n+1/2

j−1/2

)
. (3.10)

In the linear case f (u) = au, a > 0, we get f G, n+1/2
j+1/2 = aU n

j , so that
Equation (3.1) yields the upwind scheme as in Definition 2.30 and Claim 2.31.

Definition 3.5 (The Godunov Scheme) The scheme given by

U n+1
j = U n

j − λ
[

f
(
R(0; U n

j ,U
n
j+1)
)− f

(
R(0; U n

j−1,U
n
j )
)]
,

U 0
j =

1

	x

∫ x j+1/2

x j−1/2

ũ0(x) dx, (3.11)

λ = k

	x

is called the “Godunov scheme” for the approximation of the conservation
law (2.1).

It is important to note that by (3.10), (3.11) the value U n+1
j is the average,

over cell j , of the exact solution ũ(x, tn+1), subject to the initial data U n(x) at
t = tn [as in (3.2)]. In fact, this property singles out the Godunov scheme: It
is fully determined by the requirement that the sequence of updated values
{U n+1

j }∞j=−∞ consists of the averaged (over computational cells) of the exact
solution ũ(x, tn+1). This is true because the balance equation (2.3) of the con-
servation law (2.1) is satisfied by ũ(x, t).

The first and most fundamental question to be asked about the Godunov
scheme (as well as any other approximating scheme) concerns its convergence
to the exact weak solution of (2.1), (2.2). In Example 2.24 and Theorem 2.28 we
have seen that, in the linear case f (u) = au, the CFL condition (3.6) is a neces-
sary and sufficient condition for convergence in L1

loc(R) (see Definition 2.25).
As observed already in Section 2.2, the idea of convergence in L1

loc(R) is very
reasonable, especially when dealing with discontinuous solutions. It allows for
phenomena common to numerical approximation, such as oscillations or “spu-
rious waves,” as long as they tend to zero in the mean as the grid is refined
(k = 	t → 0), over any fixed finite interval.

Considering the convergence properties of the Godunov scheme in the case
of a nonlinear flux function f (u), we can cite the following theorem.

Theorem 3.6 Let u0(x) ∈ L1(R) ∩ L∞(R) and assume further that u0(x) is
a function of finite total variation. Let u(x, t) be the unique entropy solution
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to (2.1), (2.2), and let {U n
j } −∞< j<∞

n≥0
be obtained by the Godunov scheme (3.11).

Then, under the CFL condition (3.6), {U n
j } converges to u(x, t) in L1

loc(R) (see
Definition 2.25).

The proof of this theorem is presented in Appendix B, where we recall the
notion of total variation of a function and its discrete approximation. This notion
is of basic significance in the study of scalar conservation laws.

An important ingredient in the proof of Theorem 3.6 is that the Godunov
scheme satisfies a “maximum principle,” in analogy with the case of the exact
solution (see Theorem 2.20). In our case it has also a practical significance, as it
permits us to replace in the CFL condition (3.6) the (usually unknown) maximal
value Sn by the initial value S0, which is easily available in most typical cases.
We therefore state and prove the maximum principle as follows.

Claim 3.7 (“Maximum principle for the Godunov scheme”) Given the
scheme (3.11), and using the notation (3.5), we have

Mn+1 ≤ Mn ≤ · · · ≤ M0. (3.12)

Proof According to (3.1) and (3.3) U n+1
j is an average (over cell j) of the

exact solution ũ(x, tn+1), subject to initial data ũ(x, tn) = U n(x). Thus, by the
maximum principle for an exact solution (Theorem 2.20),

Mn+1 = sup
j

∣∣U n+1
j

∣∣ ≤ sup
x
|ũ(x, tn+1)| ≤ sup

x
|ũ(x, tn)| = sup

j

∣∣U n
j

∣∣ = Mn.

(3.13)
��

We shall not develop here the mathematical theory of numerical schemes.
The reader is referred to Godlewski and Raviart [54] for an extensive survey.
We emphasize that there are almost no results concerning the convergence of
schemes approximating systems of equations, and this is particularly true for the
system of equations governing compressible inviscid flow, at which this mono-
graph is primarily aimed. Furthermore, even in the case of a scalar conservation
law in one space dimension [such as (2.1)], the existing proofs pertain mostly
to the case of a first-order scheme (such as the Godunov scheme), whereas we
are concerned with the GRP method, which is of second-order accuracy.

This method may be introduced as follows: We consider again the balance
equation (2.3). However, we now assume that at t = tn the initial distribution
is linear in each cell j . This seemingly modest modification of (3.2), pro-
posed by van Leer [112], proved to be the most crucial ingredient in all further
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developments. Retaining the notation U n
j for the average cell values, we there-

fore assume that

U n(x) = U n
j + (x − x j )s

n
j , x j−1/2 < x < x j+1/2, (3.14)

where sn
j is the slope of the linear segment U n(x) in cell j . Note that at cell

boundaries x j+1/2 we have in general a jump discontinuity in the values of U n(x)
(namely, between U n

j + 	x
2 sn

j and U n
j+1 − 	x

2 sn
j+1) and also in the values of the

slopes (sn
j , s

n
j+1).

Let ũ(x, t), tn ≤ t ≤ tn+1, be the weak solution to (2.1), subject to initial data
ũ(x, tn) = U n(x) [as in (3.14)]. The values ũ(x j+1/2, t) at cell boundaries now
depend on t , even for t − tn small, in contrast to the previous (Godunov) case,
as given in (3.8). This is of course because now U n(x) is not constant on either
side of x j+1/2, so we cannot expect a Riemann solution there. It follows that in
the present case the difference scheme (3.1) can only be written with numerical
fluxes f n+1/2

j+1/2 that are only approximately equal to 1
k

∫ tn+1

tn
f
(
ũ(x j+1/2, t)

)
dt.

Specifically, we assume now that the numerical fluxes f n+1/2
j+1/2 satisfy

f n+1/2
j+1/2 − f n+1/2

j−1/2 =
1

k

∫ tn+1

tn

[
f
(
ũ(x j+1/2, t)

)− f
(
ũ(x j−1/2, t)

)]
dt+ O

(
k3
)
,

−∞ < j <∞. (3.15)

We now define the new averages U n+1
j , −∞ < j <∞, by

U n+1
j = U n

j − λ
(

f n+1/2
j+1/2 − f n+1/2

j−1/2

)
. (3.16)

Combining (3.14) and (3.15) with the balance equation (2.3) for ũ(x, t) over
[x j−1/2, x j+1/2]× [tn, tn+1] we get, from (3.16),

U n+1
j = 1

	x

∫ x j+1/2

x j−1/2

ũ(x, tn) dx

− 1

	x

∫ tn+1

tn

[
f
(
ũ(x j+1/2, t)

)− f
(
ũ(x j−1/2, t)

)]
dt+ O

(
k3
)

= 1

	x

∫ x j+1/2

x j−1/2

ũ(x, tn+1) dx + O
(
k3
)
, −∞ < j <∞. (3.17)

Note that for the special initial data (3.2) Equations (3.15), (3.17) were satis-
fied with no truncation error [see (3.11)]. In terms of Definition 2.21 we now
conclude that the scheme (3.16) is of second-order accuracy (p = 2).

The foregoing derivation was based on the hypothesis (3.15). To study its
validity we prove the following claim.
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Claim 3.8 Let ũ(x, t) be smooth in x ∈ [x j−1/2, x j+1/2] and t ≥ tn. Then (3.15)
is satisfied with

f n+1/2
j+1/2 = f

(
ũ(x j+1/2, tn)

)+ k

2

∂

∂t
f
(
ũ(x j+1/2, tn)

)
(3.18)

[namely, f n+1/2
j+1/2 = the linear approximation (in t) of f

(
ũ(x j+1/2, t)

)
evaluated

at the midpoint tn+1/2 = tn + k
2 ].

Proof This is a direct consequence of Taylor’s theorem and the fact that λ =
k/	x = constant. To simplify notation, we introduce the functions

g j+1/2(t) = f
(
ũ(x j+1/2, t)

)
, −∞ < j <∞.

Writing

g j+1/2(t) = g j+1/2(tn+1/2)+ g′j+1/2(tn+1/2) (t − tn+1/2)

+ 1

2
g′′j+1/2(tn+1/2) (t − tn+1/2)2 + O

(
k3
)
, tn ≤ t ≤ tn+1,

we obtain by integration
∫ tn+1

tn

[
g j+1/2(t)− g j−1/2(t)

]
dt = [g j+1/2(tn+1/2)− g j−1/2(tn+1/2)

]
k

+ 1

24

[
g′′j+1/2(tn+1/2)− g′′j−1/2(tn+1/2)

]
k3

+ O
(
k4
)
. (3.19)

However, g′′j+1/2(tn+1/2)− g′′j−1/2(tn+1/2) = O(k) and by (3.18)

g j+1/2(tn+1/2)− g j−1/2(tn+1/2) = f n+1/2
j+1/2 − f n+1/2

j−1/2

+ 1

8

[
g′′j+1/2(tn)− g′′j−1/2(tn)

]
k2 + O

(
k3
)

= f n+1/2
j+1/2 − f n+1/2

j−1/2 + O
(
k3
)
.

Inserting these relations in (3.19) yields (3.15) ��

Remark 3.9 It is clear from the proof that we could replace (3.18) by any
other expression that approximates, up to O(k2), the value f

(
ũ(x j+1/2, tn+1/2)

)
,

such as

f n+1/2
j+1/2 = f

(
ũ(x j+1/2, tn)+ k

2

∂ ũ

∂t
(x j+1/2, tn)

)
. (3.20)
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Figure 3.2. Wave pattern for the GRP algorithm. Ln
j (x) = U n

j + (x − x j )sn
j .

Although Claim 3.8 is of a formal value (as the solution ũ(x, t) is generally
not smooth), it provides the guideline to the construction of the GRP numerical
fluxes. Because of the fundamental importance of this construction in the present
monograph, we shall first list the technical steps, then follow with a detailed
discussion.

Construction 3.10 (GRP algorithm) Given the piecewise-linear distribu-
tion U n(x) (3.14) and	t = k such that λ = k

	x satisfies the CFL condition
(3.6) [with Mn = supx∈R

|U n(x)|], construct U n+1(x) (which should ap-
proximate ũ(x, tn + k)) as follows.

Step 1. At every cell boundary x j+1/2 evaluate U n(x) on the two sides by

U n
j+1/2,± = lim

δ→0+
U n(x j+1/2 ± δ) =

{
U n

j+1 − 	x
2 sn

j+1,
′′+′′,

U n
j + 	x

2 sn
j ,

′′ −′′ .
Then determine the Riemann solution

U n
j+1/2 = R

(
0; U n

j+1/2,−,U
n
j+1/2,+

)
. (3.21)

Note that, as in (2.28),

U n
j+1/2 =






U n
j+1/2,− wave moves right, f ′

(
U n

j+1/2

)
> 0,

U n
j+1/2,+ wave moves left, f ′

(
U n

j+1/2

)
< 0,

umin if x j+1/2 is a sonic point,

f ′
(

U n
j+1/2,−

)
≤ 0 ≤ f ′

(
U n

j+1/2,+
)

.

(3.22)



44 3. The GRP Method for Scalar Conservation Laws

Step 2. Determine the instantaneous time derivatives ∂ ũ
∂t (x j+1/2, tn) by

∂ ũ

∂t
(x j+1/2, tn) =






− f ′
(

U n
j+1/2

)
sn

j if f ′
(

U n
j+1/2

)
> 0,

− f ′
(

U n
j+1/2

)
sn

j+1 if f ′
(

U n
j+1/2

)
< 0,

0 if U n
j+1/2 = umin.

(3.23)
Then compute the approximate solution and numerical flux
[see (3.18)] at the midpoint (x j+1/2, tn+1/2) by

U n+1/2
j+1/2 = U n

j+1/2 +
k

2

∂ ũ

∂t
(x j+1/2, tn),

(3.24)

f n+1/2
j+1/2 = f

(
U n

j+1/2

)+ k

2
f ′
(
U n

j+1/2

) ∂ ũ

∂t
(x j+1/2, tn).

Step 3. Evaluate the new cell averages as in (3.16),

U n+1
j = U n

j − λ
(

f n+1/2
j+1/2 − f n+1/2

j−1/2

)
, −∞ < j <∞, (3.25)

and the new slopes by

U n+1
j+1/2 = U n

j+1/2 + k
∂ ũ

∂t
(x j+1/2, tn), −∞ < j <∞,

(3.26)

sn+1
j = 1

	x

(
U n+1

j+1/2 −U n+1
j−1/2

)
.

The construction of the algorithm is not yet complete. We shall later sup-
plement it [see (3.28)] by a suitable “slope limiter,” which ensures certain
monotonicity properties of the new profile U n+1(x) (see Figure 3.4 below).
However, we shall first make a few comments concerning this algorithm.

The basic hypothesis underlying the GRP construction is that the wave pat-
tern associated with the solution ũ(x, t) can be fully determined (for sufficiently
small k = 	t) by the Riemann solutions of Step 1 [see (3.21)]. Of course, as has
already been observed, a shock wave issuing from x j+1/2 will not be (in general)
self-similar. In other words, its trajectory will not be of constant slope. This is
in contrast to the characteristic lines (comprising a centered rarefaction wave),
which in the scalar case are always straight lines. However, the assumption
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here is that at each cell boundary x j+1/2 the solution ũ(x, t) consists of a single
wave (shock for U n

j+1/2,− > U n
j+1/2,+, centered rarefaction otherwise), where

instantaneous features at x = x j+1/2, t = tn (i.e., slopes of a shock trajectory
or head and tail characteristics of a rarefaction) are completely determined by
the Riemann solution R

( x−x j+1/2

t−tn
; U n

j+1/2,−,U
n
j+1/2,+

)
. Also, the solution ũ on

the two sides of the shock, or inside and outside a centered rarefaction wave, is
smooth, with a jump discontinuity across a shock trajectory or jump disconti-
nuities of the derivatives across the head and tail characteristics of a centered
rarefaction wave [compare the discussion following (2.26)].

In fact, in the present case (a scalar conservation law with a strictly convex
flux function) this assumption can be proved for the unique entropy solution.
Observe that by the maximum principle (Theorem 2.20), the CFL condition
implies, as in the case of the Godunov scheme, that a wave issuing from a
cell boundary x j+1/2 is limited (for t ∈ [tn, tn + k]) to the neighboring cells
j, j + 1, not reaching their opposite boundaries x j+3/2, x j−1/2. In particu-
lar, the solution ũ(x j+1/2, t), tn ≤ t ≤ tn+1, is not affected by the disconti-
nuities at xl+1/2, l �= j , and is therefore a smooth function of t . Its derivative
∂ ũ
∂t (x j+1/2, tn) should be interpreted as the limiting value of ∂ ũ

∂t (x j+1/2, t), t > tn ,
as t → tn . If the wave moves to the right, the segment (x j+1/2, t), tn < t < tn+1,
is contained, along with (x, tn), x j < x < x j+1/2, in the same “domain of
smoothness” of ũ(x, t); hence ũ(x, t) is a classical solution there, satisfying
ũt (x, t) = − f ′ (ũ(x, t)) ũx (x, t). A similar consideration applies to the case
where the wave moves to the left. If x j+1/2 is a sonic point, the line x = x j+1/2

is characteristic, carrying the constant value ũ(x j+1/2, t) = umin. We obtain
therefore all three cases of Equation (3.23).

The evaluation of the numerical fluxes (3.24) follows the second-order
approximation given by (3.20), where ũ(x j+1/2, tn) = U n

j+1/2 is the limiting
value (as t → tn) of ũ(x j+1/2, t), t > tn . The same linear approximation of
ũ(x j+1/2, t) serves to determine the new slopes in (3.26).

Remark 3.11 (Accuracy of the slope computation) As in Claim 3.8, assume
that ũ(x j+1/2, t) is smooth in [x j−1/2, x j+1/2]× [tn, tn+1]. Then

U n+1
j±1/2 = ũ(x j±1/2, tn+1)− 1

2
ũt t (x j±1/2, tn) · k2 + O

(
k3
)

= ũ(x j , tn+1)± ũx (x j , tn+1) · 	x

2

+ 1

8
ũxx (x j , tn+1) ·	x2 − 1

2
ũt t (x j±1/2, tn) · k2 + O

(
k3
)
.
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Thus

sn+1
j = 1

	x

(
U n+1/2

j+1/2 −U n+1/2
j−1/2

)
= ũx (x j , tn+1)+ O

(
k2
)
,

which is, naturally, less accurate than the computation of the cell averages U n+1
j

[see (3.15) and (3.16)].

Remark 3.12 (Zero slopes in GRP computation) Observe that when the
slopes sn

j are set to zero for all cells j and at every time level tn , the GRP
computational scheme naturally reduces to the Godunov scheme.

Remark 3.13 (Stationary shocks) If the Riemann solution R
( x−x j+1/2

t−tn
;

U n
j+1/2,−,U

n
j+1/2,+

)
yields a stationary shock along x = x j+1/2, it means (by the

Rankine–Hugoniot jump condition) that f
(
U n

j+1/2,,−
) = f
(
U n

j+1/2,+
)
,

U n
j+1/2,− > U n

j+1/2,+. The shock speed is given by

σ (t) = f
(
ũ+(x(t), t)

)− f
(
ũ−(x(t), t)

)

ũ+(x(t), t)− ũ−(x(t), t)
,

where x(t) is the shock trajectory [x(tn) = x j+1/2, x ′(t) = σ (t)] and ũ− (resp.
ũ+) is the value behind (resp. ahead of) the shock, u± (x(tn), tn) = U n

j+1/2,±.
Thus,

σ ′(t)
∣∣
t=tn

=
− f ′
(

U n
j+1/2,+

)2
sn

j+1 + f ′
(

U n
j+1/2,−

)2
sn

j

U n
j+1/2,+ −U n

j+1/2,−
,

and the value of ∂ ũ
∂t (x j+1/2, tn) is determined according to whether±σ ′(tn) > 0.

The last technical step in the description of the GRP algorithm is con-
cerned with a modification of the slope sn+1

j . In the language common to
numerical schemes, it is a “postprocessing” step applied to the new results{
U n+1

j , sn+1
j

}
−∞< j<∞.

It is a basic rule in all GRP calculations (also in the case of systems later
on) that the new averages U n+1

j , as determined by (3.25), are never modified.
Their values are obtained by the approximate implementation of the balance
equation, which is viewed here as the basis of our methodology. However, the
slopes are less accurately computed, using a discrete differentiation procedure
(3.26). We can illustrate the need for a “postprocessing intervention” in their
values by the following example (see Figure 3.3).
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..

Figure 3.3. First GRP time-integration cycle of a moving step.

Example 3.14 Let the initial data be U 0
j = 1 (resp. U 0

j = 0) for j ≤ 0 (resp.

j > 0), and let f (u) = 1
2 u2, so that the solution is a shock wave moving at speed

1
2 (see Example 2.12), ũ(x, t) = u0(x − 1

2 t). If we use a time step k = 	t , it is
easy to see that

U 1
j =






1, j ≤ 0,
1
2λ, j = 1,

0, j > 1.

The corresponding computed slopes s1
j satisfy

s1
j =






0, j ≤ 0,

− 1
	x , j = 1,

0, j > 1.

Thus, if we are to retain all slopes s1
j , the approximating function U 1(x) in the

cell j = 1 should be

U 1(x) = 1

2
λ− x −	x

	x
= 1+ 1

2
λ− x

	x
,

	x

2
< x <

3

2
	x . (3.27)

Thus, U 1( 3
2	x−) = 1

2 (λ− 1), which is negative. This is in contradiction with
the “moving step” character of the exact (weak) solution.

From the mathematical point of view, the modification of the slopes
{
sn

j

}∞
j=−∞

is needed for the control of the total variation of the approximating solution,
in analogy with the total variation properties of the exact (weak) solution. We
refer the reader to Godlewski and Raviart [54] for details.
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The modification of the slopes used in our GRP methodology is implemented
as follows.

Construction 3.15 (GRP “slope limiter”) Given the computed slopes sn+1
j

[as in (3.26)], set the final slope values s̄n+1
j to be

s̄n+1
j = 1

	x
minmod

[
2(U n+1

j+1 −U n+1
j ), 2(U n+1

j −U n+1
j−1 ), 	x sn+1

j

]
,

(3.28)
where, for any three real numbers a, b, c,

minmod [a, b, c] =






σ min (|a|, |b|, |c|) , if σ = sgn (a)
= sgn (b) = sgn (c),

0, otherwise.

Geometrically speaking, our limiter reflects the minimal change (of sn+1
j )

needed to obtain the following “five-point monotonicity” (see Figure 3.4): If{
U n+1

j−1 ,U
n+1
j ,U n+1

j+1

}
form a monotonic sequence, then so do the five values

{
U n+1

j−1 ,U
n+1
j − 	x

2 s̄n+1
j ,U n+1

j ,U n+1
j + 	x

2 s̄n+1
j ,U n+1

j+1

}
. IfU n+1

j ≥ max
(
U n+1

j±1

)

or U n+1
j ≤ min

(
U n+1

j±1

)
we set s̄n+1

j = 0. Thus, at extremal points the slopes

are set to zero, whereas elsewhere it is ensured that (in the case of U n+1
j−1 ≤

U n+1
j ≤ U n+1

j+1 )

U n+1
j ≥ max(U n+1

j−1/2,±), U n+1
j ≤ min(U n+1

j+1/2,±).

Remark 3.16 (Convergence of the GRP Scheme) The convergence of the
first-order Godunov scheme was stated in Theorem 3.6. At the time of writing

Figure 3.4. The “slope limiter” is a five-point rule.
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this monograph, a similar convergence result has not yet been established for
the GRP scheme. The main obstacle for a convergence proof lies in the rather
weak slope limiter as given in (3.28). It allows for a nonmonotonic behavior of
the set of value

U n+1
j−1 ,U

n+1
j−1/2,−,U

n+1
j−1/2,+,U

n+1
j ,U n+1

j+1/2,−,U
n+1
j+1/2,+,U

n+1
j+1 (3.29)

(see Figure 3.4). Replacing Equation (3.28) by the more restrictive limiter

s̄n+1
j = 1

	x
minmod

[
(U n+1

j+1 −U n+1
j ), (U n+1

j −U n+1
j−1 ),	x sn+1

j

]
(3.30)

is easily seen to lead to the monotonicity of (3.29). However, virtually all
GRP computations presented in this monograph have been performed us-
ing the algorithm (3.28). Numerical experience has shown that it leads to
sharper resolution of discontinuities [i.e., there is more “dissipation” built
into (3.30)].

We refer to [18], [57], [79], [85], [95], [113], and [121], where the conver-
gence properties of various upwind second-order schemes are considered. In all
these works additional hypotheses are imposed on the schemes (in terms of their
numerical fluxes and monotonicity algorithms). In particular, the monotonicity
of (3.29) is always assumed. Note also the negative result in [120], concerning
the nonconvergence of certain Godunov-type second-order schemes (at least
for some initial data).

3.2 1-D Sample Problems

In this section we present numerical solutions to scalar conservation laws,
linear and nonlinear, in one space dimension. The initial data considered are
sufficiently simple, so that the exact solutions can be computed and compared
to the finite-difference approximations. Two pairs of schemes were chosen for
the sample problems, one pair of first-order schemes and one pair of second-
order schemes. The idea is to demonstrate the difference between the first-
order Godunov scheme (3.11) and its natural second-order extension – the
GRP scheme (Construction 3.10). Then, for the sake of comparison, we use an-
other typical scheme in each class. We selected the (first-order) Lax–Friedrichs
scheme and the (second-order) Lax–Wendroff scheme.

3.2.1 The Linear Conservation Law

The equation to be considered here is

ut + ux = 0, u(x, 0) = u0(x). (3.31)
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According to (2.6), the exact solution is given by the “traveling wave” u(x, t)=
u0(x − t).

First-Order Schemes

We shall use the following pair of first-order schemes:

(a) The Godunov scheme, which in this case (since a > 0) is identical to the
backward-difference scheme (2.29), as explained in Claim 2.31.

(b) The Lax–Friedrichs (LF) scheme, which in this case is given by (2.31).

In all the computations of this section we take constant (fixed) space and
time steps, 	x and k = 	t , respectively. Their ratio λ = k

	x satisfies the CFL
condition (2.51), namely, λ ≤ 1.

Two initial profiles u0(x) are considered, the first having smooth periodic
data, and the second having step function data. These problems have been
chosen for two reasons: (i) One of them has smooth data, and the other has
discontinuous data (i.e., only a weak solution exists). (ii) Both problems are
defined on R, yet can be solved numerically on some finite interval x1 < x < x2,
producing the same finite-difference solution that would have been obtained on
an unbounded interval of x . The smooth initial data are

u0(x) = sin4(πx). (3.32)

This is a periodic function with a period L = 1, so that at time t = 1, u0(x) has
propagated exactly through one period. The numerical solution is performed
with periodic boundary conditions. Figure 3.5 shows the results of such a com-
putation, using a coarse grid of	x =1/9 and a refined grid with	x =1/17. The
constant ratios are λ = 0.7500 and λ = 0.7391, respectively (corresponding to
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0.8
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Godunov 
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. .

Figure 3.5. First-order integration of ut + ux = 0, with initial data u0(x) = sin4(πx).
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Figure 3.6. First-order integration of ut + ux = 0, with unit step-function initial data.

integration by 12 and 23 time steps, respectively). This example was calculated
by Liu and Tadmor [87] using their second-order centered difference scheme.

As is evident from Figure 3.5, both finite-difference approximations are
rather far from the exact solution, with a smaller error in the finer grid com-
putation. Furthermore, the Godunov scheme clearly produces more accurate
results than the LF scheme.1 This can be interpreted as indicating that although
both schemes are first-order accurate, the Godunov solution is less “smearing”
than the LF one and therefore more accurate.

For the step function case, the function is u0(x)= 1 for x < x0 and u0(x)= 0
for x > x0 (see Example 2.4). The numerical integration is performed in the
range 0 < x < 1 until a time t = 0.4, with λ = 0.5. The boundary conditions
for the time interval 0 < t < 0.4 are u(0) = 1, u(1) = 0. Two grids were used,
a coarse grid with 	x = 0.04 (20 time steps) and x0 = 0.22 and a fine grid
with	x = 0.02 (40 time steps) and x0 = 0.21. Referring to the exact solution,
we note that the discontinuity is positioned at a mid-cell point at the initial
time, as well as at the final time. The datum in cell x j = x0 is U 0

j = 0.5, in
accordance with Definition 3.5 of the Godunov scheme. Again, we observe in
Figure 3.6 that the Godunov scheme produces more accurate results than the
LF scheme. It is also noted that both coarse and fine grid solutions seem to
approximate the moving step quite accurately in the mean; i.e., the numerical
values are symmetrically distributed about the step, and, moreover, the sharp
step is “spread” over about 8 cells in the first grid and over about 12 cells in
the second. The width of the “step-spreading” appears to be proportional to√

N , where N is the number of time integration cycles. This spreading effect is

1 We refer the reader to Godlewski and Raviart [54, Chapter 3.2] for a discussion of “numerical
viscosity.” This viscosity is “maximal” in the case of the LF scheme.
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typical of a linear conservation law. In the case of a nonlinear conservation law,
a moving shock discontinuity is usually spread over a constant number of cells.
Such a finite-difference approximation is referred to as a “captured shock.”

We recall that for the Godunov scheme the “convergence in the mean” has
been proved in Theorem 2.28. A similar result also can be proved for the LF
scheme (see Godlewski and Raviart [54]).

Second-Order Schemes

Turning to second-order schemes, our primary interest is GRP, but for com-
parison we also consider the Lax–Wendroff (LW) scheme (2.32). It is readily
verified from Equation (2.32) that if u0(x) is of compact support in R, then∑

j U n+1
j = ∑ j U n

j . This means that the LW scheme is conservative, although
not upwind (see Remark 2.32).

The GRP scheme, by contrast, is both upwind and conservative. It is given
by adapting Construction 3.10 to the case f (u)= u. Thus, the Riemann solution
is simply a moving step solution, so that

U n
j+1/2 = R

(
0; U n

j+1/2,−,U
n
j+1/2,+

) = U n
j+1/2,−. (3.33)

It follows from Equation (3.23) that

∂ ũ

∂t
(x j+1/2, tn) = −sn

j = −
1

	x

(
U n

j+1/2,− −U n
j−1/2,+

)
; (3.34)

hence, as in Equation (3.24),

U n+1/2
j+1/2 = U n

j+1/2 −
k

2
sn

j , (3.35)

f n+1/2
j+1/2 = U n+1/2

j+1/2 . (3.36)

The resulting GRP scheme is, as in Equation (3.25),

U n+1
j = U n

j − λ(U n+1/2
j+1/2 −U n+1/2

j−1/2 ). (3.37)

Finally, the new slopes sn+1
j are obtained as follows [see Eq. (3.26)]:

U n+1
j+1/2 = U n

j+1/2 − ksn
j , (3.38)

sn+1
j = 1

	x

(
U n+1

j+1/2 −U n+1
j−1/2

)
. (3.39)

The slopes sn+1
j are further subjected to the monotonicity algorithm given by

Construction 3.15.
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Figure 3.7. Second-order integration of ut + ux = 0, with initial data u0(x)= sin4(πx).

The sample problems considered here are the same two problems previ-
ously used for the first-order schemes, including the same grids and time step
specifications.

The second-order results for the periodic case are given in Figure 3.7, where
a comparison between GRP and LW schemes is shown. We notice a significant
improvement relative to the first-order results in Figure 3.5, and it is also evident
that the convergence with grid refinement is faster in the second-order case than
in the first-order one. On the whole, the GRP values are closer to the exact
solution than are the LW values. Furthermore, the LW results have a significant
phase-shift error, whereas the GRP results do not.

How does the monotonization algorithm affect the GRP results? In
Figures 3.7(a) and 3.7(b) we show the GRP results that were subject to the
slope limiter given in Construction 3.15. The LW scheme, however, does not
include any monotonization or slope limiting algorithm. For comparison, we
therefore repeated the GRP computation without applying the monotonization



54 3. The GRP Method for Scalar Conservation Laws

algorithm, and the results are shown in Figures 3.7(c) and 3.7(d). Clearly, the
GRP points near the peak (where slope limiting is most effective) are now
higher, indicating that indeed the limiting algorithm is required to suppress
peak-forming tendencies. We also note on Figures 3.7(c) and 3.7(d) that some
GRP and LW points have u < 0. These “undershoot” values are in violation of
the Maximum–Minimum Principle (Theorem 2.20). Slope limiting eliminates
such violation by a second-order scheme and is hence mandatory to comply
with the Maximum–Minimum Principle. We note that the Godunov scheme
is in agreement with that principle (as stated in Claim 3.7), and the results in
Figure 3.5 are evidence to that property.

We now turn to the step-function problem, identical to that considered in
the first-order scheme. In particular, we use the same λ, 	x , and final time.
As is clearly visible in Figures 3.8(a) and 3.8(b), the “shock-captured” solution
obtained here is similar to that of the first-order scheme already discussed
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Figure 3.8. Second-order integration of ut + ux = 0, with unit step-function initial
data.
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(Figure 3.6). However, the discontinuity is more sharply resolved by the second-
order schemes, with the sharpest (and most accurate) results obtained by the
GRP. Here the jump in U n

j is spread over about three cells, both in the coarse-
grid and in the fine-grid computations.

Again, for comparison we repeated the two cases without the GRP mono-
tonization constraint, and the results are shown in Figures 3.8(c) and 3.8(d). The
GRP now produces some “overshoot” and “undershoot” values near the step.
The indispensability of monotonization has thus been amply demonstrated, and
in subsequent GRP computations we shall no longer consider the nonmono-
tonization option.

It is also interesting to notice the nature of the LW solution. No monotoniza-
tion is applied in this scheme, and indeed the numerical solution develops
pronounced oscillations behind the shock, which is also a typical feature for
this scheme when it is extended to the fluid dynamical equations.

3.2.2 The Burgers Nonlinear Conservation Law

Here we consider the Burgers [22] equation,

ut + ( 1
2 u2)x = 0 , u(x, 0) = u0(x). (3.40)

As explained in Section 2.1, in the case of smooth initial data the solution to
this equation is obtained by the invariance of u(x, t) along characteristic lines
[see Equation (2.10) and the subsequent discussion]. When characteristic lines
intersect, a smooth solution no longer exists, and from that time on only a
(weak) solution, with shocks that obey the jump condition (2.21), is possible.
In the case of the Burgers equation [see Example 2.12 and Equation (2.22)]
the characteristic speed is dx

dt = u, and the speed of a shock wave is given
by S = 1

2 (uL + uR), where the left and right values at the shock discontinuity
uL, uR must obey the inequality uL ≥ uR.

Two initial value problems are considered. The first has the smooth periodic
data

u0(x) = sin(2πx), (3.41)

and the second is a moving step problem (or a Riemann problem), having the
initial data u0(x)= 1 for x ≤ x0 and u0(x)= 0 for x > x0. Both problems have
exact solutions, which, for the simple initial data considered here, are readily
calculated by using the previously mentioned characteristics construction. Both
problems are defined on R, yet, with appropriate boundary conditions, they
can be solved numerically on some bounded interval [x1, x2] of R, yielding the
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same finite-difference solution that would have been obtained on R. We note that
Liu and Tadmor [87] have considered a similar IVP, with the (periodic) initial
data u0(x) = 1+ 1

2 sin(πx). The reader is also referred to Yang and Przekwas
[122] for a survey of many other schemes applied to the Burgers equation.

First-Order Computation

Here we use the same two first-order schemes (Godunov and Lax–Friedrichs)
previously considered in the context of the linear sample problems. The
Godunov scheme is given by (3.11). The Lax–Friedrichs scheme, however, for
a general flux function f (u) (see Smoller [103], Godlewski and Raviart [54],
and LeVeque [81]) is given by

U n+1
j = 1

2

(
U n

j +U n
j−1

)− λ
2

(
f (U n

j+1)− f (U n
j−1)
)
, (3.42)

where the Burgers equation scheme is obtained by taking f (u) = 1
2 u2. In our

computations (both first and second order) we take fixed values for k and 	x ,
so that the ratio λ = k

	x satisfies the CFL condition (3.6). In fact, we take k
such that the left-hand side in (3.6) is approximately equal to 1

2	x .
In the case of smooth initial data, the equation is solved in the domain [0,1]

with periodic boundary conditions. The computational cell size is 	x = 1
22 .

The results are displayed as a time sequence in Figure 3.9, which compares the
finite-difference solutions with the exact solution obtained by the method of
characteristics. Prior to shock formation, in Figure 3.9(b), the solution is smooth
and displays the expected steepening in the interval where ∂x u(x, t) < 0. The
smooth solution breaks down at the moment t = 1/2π , where the slope at
x = 0.5 becomes unbounded, as readily derived by taking the limit

lim
ε→0

ε

sin(2π (0.5− ε)) = lim
ε→0

ε

2πε
= 1

2π
,

which corresponds to the point where the characteristic line emanating from
(x, t) = (0.5− ε, 0) intersects the line x = 0.5. The solution at the breakdown
time is shown in Figure 3.9(c). Beginning at this time the jump discontinuity
at x = 0.5 gradually increases, reaching a maximal value (between u = −1
and u = 1) at t = 0.25 [see Figure 3.9(d)]. This is the moment at which the
characteristic lines emanating from the extremal points (x, t)= (0.50± 0.25, 0)
reach the discontinuity point (x, t) = (0.50, 0.25). We also observe that by
the jump condition for the Burgers equation the speed of propagation of a
shock discontinuity [uL, uR] is S = 0.5(uL+uR), which vanishes owing to the
symmetry of (u, t) about x = 0.5. The shock discontinuity at x = 0.5 is thus a
standing shock.
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Figure 3.9. First-order integration of ut + ( 1
2 u2)x = 0, with initial data u0(x) =

sin(2πx).
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At later times (t > 0.25), the jump [u] at the shock discontinuity decreases
progressively from its maximal value of [u] = uL−uR = 2, as clearly visible
in Figures 3.9(d)–3.9(f). Can this observation be explained by theoretical
consideration? Indeed, it can be explained using the concepts of energy and dis-
sipation. Let the “energy measure” of u(x, t) be the finite integral
E(t)= ∫ a+1

a
1
2 [u(x, t)]2 dx, where 0 ≤ a ≤ 1 is a constant. The periodicity of

u(x, t) in x implies that E(t) is independent of a. Now, multiply the Burgers
equation by u(x, t), obtaining ( 1

2 u2)t + ( 1
3 u3)x = 0, and integrate the resulting

equation over an interval [a, a + 1]. Interchanging the order of x integration
and time derivative, we obtain ∂t E(t) = 0 [since u(x, t) is periodic in x]. This
means that the Burgers equation preserves the energy measure over time, which
seems to agree with the finite-difference solution prior to the shock formation.
After shock formation, however, this result is clearly in disagreement with both
the exact and the numerical solutions. Indeed, this equation may not be inte-
grated over an interval containing a shock discontinuity, while disregarding the
jump in u(x, t) there. A correct way to perform the integration when a shock
is present is to choose a =− 0.5, so that the integration will extend from the
right side of the shock at x =− 0.5 to the left side of the shock at x = 0.5. The
resulting rate of dissipation is then given by

∂t E(t) = −2

3

[
u3

L − u3
R

]
, (3.43)

and since uL = −uR > 0 the energy E(t) is decreasing in time, as is also
evident by observing the evolution of the solution from t = 0.25 [Figure 3.9(d)]
to t = 1 [Figure 3.9(f)]. This clearly demonstrates the dissipation effect of a
shock wave in the solution to the Burgers equation.2

We now turn to the step-function example, the initial data being u0(x) = 1
for x < x0 and u0(x) = 0 for x > x0 (see Example 2.4), where x0 is the initial
position of the discontinuity. The numerical integration is performed in the
range 0 < x < 1, with boundary conditions u(0) = 1, u(1) = 0. Two grids
were used: (i) a coarse grid with 	x = 0.04 and an initial (mid-cell) position
x0 = 0.22 and (ii) a fine grid with 	x = 0.02 and an initial (mid-cell) position
x0 = 0.11. In both grids we chose a constant λ = k/	x , having the value
λ = 0.5, and the integration was performed to time t = 0.8, so that the step
propagates through the same distance as in the linear case.

As is clearly observed in Figure 3.10, the Godunov scheme approximates
the moving step to a considerably higher level of accuracy and resolution than

2 See Smoller [103] for a more general discussion of the L2 decay of solutions to the scalar
conservation law (2.1).
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Figure 3.10. First-order integration of ut + ( 1
2 u2)x = 0, with unit step-function initial

data.

the LF scheme. In particular, the Godunov scheme captures the shock over
about three cells, versus nine cells in the LF scheme. It is also noted that these
cell numbers are virtually unchanged by grid refinement (for constant time).
Comparing this feature to the linear case (Figure 3.6), where the “discontinuity
spreading” increases with grid refinement, we interpret this as a “stabilization”
effect typical of shock capturing in the nonlinear case. As will be shown in
subsequent chapters, an analogous relation exists in the case of the fluid dynam-
ical equations between a captured contact discontinuity (“linearly degenerate”
wave) and a captured shock wave.

Second-Order Computation

Our primary interest here is the GRP scheme given by Construction 3.10 while
taking f (u)= 1

2 u2. The slopes sn+1
j are further subjected to the monotonicity al-

gorithm given by Construction 3.15. For comparison we take the Lax–Wendroff
scheme, which in the case of Equation (2.1) generalizes (2.32) as

U n+1
j = U n

j −
λ

2

[
f n

j+1 − f n
j−1

]+ λ
2

2

[
gn

j+1/2 − gn
j−1/2

]
, (3.44)

where λ = k
	x . The first-order term (in λ) in (3.44) approximates k (Ut )n

j with

f n
j±1 = f (U n

j±1),

and the second-order term approximates k2

2 (Utt )n
j . The second time-derivative

is based on the identity utt = g(u)x , g(u) = f ′(u) f (u)x , obtained by dif-
ferentiating the scalar conservation law ut + f (u)x = 0. Its finite-difference
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approximation is then given by

(Utt )n
j =
[
gn

j+1/2 − gn
j−1/2

]
/	x,

gn
j±1/2 = ± f ′

(
1

2
(U n

j +U n
j±1)

)[
f n

j±1 − f n
j

]
.

(3.45)

For the reader’s convenience we recall the GRP algorithm (Construction 3.10)
in the special case f (u) = 1

2 u2.

(I) Given the values

U n
j+1/2,± =






U n
j+1 −	x

2 sn
j+1, “+ ”,

U n
j +	x

2 sn
j , “− ”,

(3.46)

we let U n
j+1/2 be the solution to the corresponding Riemann problem.

Explicitly, it is given by

U n
j+1/2 =






max
(|U n

j+1/2,−|, |U n
j+1/2,+|

)·sgn
(
U n

j+1/2,− +U n
j+1/2,+

)
,

if U n
j+1/2,− > U n

j+1/2,+,

min
(|U n

j+1/2,−|, |U n
j+1/2,+|

)·sgn
(
U n

j+1/2,−
)
,

if sgn
(
U n

j+1/2,−
)·sgn
(
U n

j+1/2,+
) ≥ 0,

0, if U n
j+1/2,− < 0 < U n

j+1/2,+,
(3.47)

and of course U n
j+1/2 = U n

j+1/2,− if U n
j+1/2,− = U n

j+1/2,+.

(II) The instantaneous time derivatives
(
∂ ũ
∂t

)n
j+1/2

= ∂ ũ
∂t (x j+1/2, tn) are now

given by

(
∂ ũ

∂t

)n

j+1/2

=






−U n
j+1/2 · sn

j , if U n
j+1/2 > 0,

−U n
j+1/2 · sn

j+1, if U n
j+1/2 < 0,

0, if U n
j+1/2 = 0,

(3.48)

and the numerical fluxes are given by

f n+1/2
j+1/2 = f

(
U n

j+1/2

)+ k

2
U n

j+1/2 ·
(
∂ ũ

∂t

)n

j+1/2

,

so that

U n+1
j = U n

j − λ
(

f n+1/2
j+1/2 − f n+1/2

j−1/2

)
.



3.2. 1-D Sample Problems 61

(III) The new values at the cell boundaries are given by

U n+1
j+1/2 = U n

j+1/2 + k

(
∂ ũ

∂t

)n

j+1/2

,

and the new slopes are updated by

sn+1
j = 1

	x

(
U n+1

j+1/2 −U n+1
j−1/2

)
.

(IV) Finally, the computed slopes sn+1
j are modified by the slope limiter (3.28).

The same two sample problems are considered here as for the first-order
schemes already discussed, with identical data, boundary conditions, grids, and
final times.

The time sequence results for the periodic case are shown in Figure 3.11.
How do the second-order results compare to the first-order ones (Figure 3.9)?
The GRP approximation is generally very close to the exact solution, which is
a considerable improvement relative to the Godunov approximation. The LW
scheme produces fairly accurate results, although less accurate than those of
the GRP. As in the smooth linear case (Figure 3.7), the LW scheme is char-
acterized by overshoots near extremal points, notably in Figures 3.11(c) and
3.11(d). It is particularly interesting to compare the GRP formation of the
“N-wave” [Figures 3.11(d)–3.11(f)] with the corresponding Godunov results
[Figures 3.9(d)–3.9(f)]. The GRP points are considerably closer to the exact
solution than those of the Godunov scheme, notably near the shock. For still
higher order schemes (not considered in this monograph), we refer to Liu and
Tadmor [87, Section 5], where a similar periodic case (for the Burgers equa-
tion) was computed by a third-order, nonoscillatory, central scheme. They used
80 mesh points (per period), whereas only 22 were used in the present GRP
calculation.

Turning to the step-function example, having the same data as in the first-
order case, we show the results in Figure 3.12 at t = 0.8. As in the linear case
(Figure 3.8), the LW scheme produces significant oscillations behind the step,
indicating that this feature of the scheme is not suppressed by the nonlinearity
of the scalar conservation law. By comparing the GRP and the Godunov ap-
proximations (Figure 3.12), it is evident that the improvement in accuracy takes
place only near the shock discontinuity. The GRP results are a near-perfect ap-
proximation to the step, with only (the inevitable) single point representing the
average value of 0.5 at the mid-cell x = 0.62 or x = 0.61, where the exact jump
is positioned. This demonstrates the high-resolution feature of GRP, which also
characterizes the fluid dynamical GRP scheme.
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Figure 3.11. Second-order integration of ut + ( 1
2 u2)x = 0, with initial data u0(x) =

sin(2πx).
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Figure 3.12. Second-order integration of ut + ( 1
2 u2)x = 0, with unit step-function initial

data.

3.3 2-D Sample Problems

Consider the two-dimensional extension of the (1-D) scalar conservation law
(2.1), leading to the following Cauchy problem for u = u(x, y, t):

∂

∂t
u + ∂

∂x
f (u)+ ∂

∂y
g(u) = 0, (x, y) ∈ R

2, t > 0, (3.49)

u(x, y, 0) = u0(x, y), (x, y) ∈ R
2. (3.50)

The theory for this IVP is as complete as for the 1-D case (see Theorem 2.20).
Briefly, if f (u) and g(u) are continuously differentiable and u0 is uniformly
bounded then there exists a unique “entropy” solution for all t > 0. This solution
satisfies the Maximum–Minimum Principle and also the properties of L1

loc con-
tinuity and L1 contraction, as expressed in Theorem 2.20 (ii) and (iii) (with an
interval of integration replaced by a rectangle). We refer the reader to Hörmander
[63] and to Godlewski and Raviart [54, Section 2.5] for full details of the proof
(as well as a definition of “entropy” in the multidimensional scalar case).

The important point in our examples is the “self-similarity” of solutions,
which is a consequence of uniqueness; if the initial function u0 is constant along
rays emanating from the origin [i.e., depends only on the direction arctan( y

x )],
then the solution u(x, y, t) is “self-similar” in the sense that it depends only on
( x

t ,
y
t ). In the 1-D case this corresponds to the Riemann problem (see Defini-

tion 2.18 and subsequent discussion). However, in the 2-D case this restriction
still allows a great variety of initial value problems; taking u0 to be constant in
(finitely many) sectors in the (x, y) plane, with vertices at (0, 0), always leads
to a self-similar solution.

Studying Equation (3.49) is of interest because it serves as a model for the
2-D fluid dynamical case. In particular, the 2-D setting allows for a variety of
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wave interactions, as we shall see in this section. A finite-difference approx-
imation of the 2-D equation (3.49) is obtained by using a sequence of 1-D
conservation law schemes, integrating the equation alternately in the x or y
directions. This approach is commonly referred to as the “operator-splitting”
method. It enables us to apply the methodology introduced in Section 3.1 to
the 2-D case. In Part II we shall discuss its extension to multidimensional flow
problems. Here we demonstrate that this approach correctly produces 2-D so-
lutions to (3.49), (3.50), by applying a sequence of (the 1-D) Godunov or GRP
schemes to a “split” form of (3.49).

We start this section with an outline of the operator-splitting method and then
proceed with a detailed study of three sample equations, obtained by specifying
the flux functions and a variety of initial data in (3.49), (3.50). The first equation
is the linear conservation law f (u) = g(u) = u, with an “oblique step” initial
data u0(x, y)= h(x + y + 1), where h(w) is the Heaviside function, defined as

h(w) =
{

1 for w < 0,

0 for w > 0.

In this case, the IVP [(3.49), (3.50)] becomes “one dimensional” when trans-
formed by rotating (x, y) through an angle of π/4, enabling a comparison with
the corresponding 1-D case.

The second equation is the nonlinear, two-dimensional, Burgers equation,
f (u)= g(u)= u2/2, where we first take the same initial data as in the previous
linear case. As before, this leads to a situation where the one-dimensional
equation is “rotated” through an angle of π/4 and we can compare the results
with those of the corresponding 1-D case. Next we consider four different cases
with initial data that are constant in sectors of the (x, y) plane. None of these
sectors, however, is a half-plane. Thus, although the solutions are “self-similar”
[depending on ( x

t ,
y
t )] they are certainly not “one dimensional” as in the rotated

case. The initial discontinuities (lying along straight rays emanating from the
origin) give rise to waves that interact with each other, leading to complex wave
structures. These structures are then studied, both analytically and numerically.

The third equation, along with its special (sectorial) initial data, is due to
Guckenheimer [59], with fluxes given by f (u) = u2/2, g(u) = u3/3. The self-
similar solution (which can be obtained analytically) is surprisingly rich in wave
interactions. These wave interactions are analogous to phenomena encountered
in compressible fluid dynamics (Mach stems, triple points, formation of contact
discontinuities, etc.). This problem, for which full analytic details are available,
constitutes a significant and valuable test case in the study of multidimensional
numerical schemes.
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The Operator-Splitting Method

Consider the following system obtained by “splitting” (3.49) into the two one-
dimensional equations:

∂

∂t
u + ∂

∂x
f (u) = 0, (3.51i)

∂

∂t
u + ∂

∂y
g(u) = 0. (3.51ii)

Loosely speaking, the system (3.51) is taken to mean that the evolution of an ini-
tial state u0 by (3.49) over a short time interval	t can be approximated by evolv-
ing u0 first subject to (3.51i) (over time	t), obtaining a state u1, then evolving
u1 in accordance with (3.51ii) again over time 	t . Let H x

	t , H y
	t , and H	t

denote finite-difference approximation operators for the integration by a time
step	t of (3.51i), (3.51ii), and (3.49), respectively (compare Definition 2.21).
Then, as shown by Strang [105], the operator sequence

H	t = H x
	t/2 H y

	t H x
	t/2 (3.52)

is a second-order-accurate finite-difference approximation to (3.49), provided
this is true for the 1-D operators H x

	t , H y
	t . We remark, however, that Strang’s

analytic arguments are valid only for a smooth solution u(x, y, t). Thus, when
u(x, y, t) contains discontinuities, the accuracy of “shock-capturing” finite-
difference solutions reflects the applicability and accuracy of the operator-
splitting method. We refer to Section 7.2 for a more detailed discussion of
this topic.

Two additional topics to consider here are the issue of stability and the
numerical boundary conditions. These are given in the following remarks.

Remark 3.17 (The CFL condition) This condition [see Definition 2.27 and
Equation (3.6)] is necessary for numerical stability, and we adapt it to the present
(two-dimensional) case by requiring that it holds separately with respect to each
of the split one-dimensional equations (3.51) and to the corresponding finite-
difference scheme. Thus, the 2-D CFL condition is

µx,n
CFL = max

i, j

{
f ′(U n

i, j )
}
	t/	x < 1, (3.53)

µy,n
CFL = max

i, j

{
g′(U n

i, j )
}
	t/	y < 1, (3.54)

µCFL = max
n

{
µx,n

CFL , µ
y,n
CFL

}
, (3.55)
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where (i, j) denotes a cell of dimensions	x ×	y in the (x, y) plane, centered
at (i	x, j	y). Then U n

i, j is the discrete value approximating u(x, y, t) in that
cell at time level t = tn = n	t . In practice, the CFL ratio µCFL is computed
according to (3.53), (3.54) at each time level and then the maximum value
over all time levels is retained. In simple examples such as those considered
here, however, the value of µCFL is readily determined a priori, owing to the
maximum-minimum principle.

Remark 3.18 (Treatment of the numerical boundary conditions) The Ca-
uchy problem (3.49), (3.50) is solved in the entire (x, y) plane. Our finite-
difference approximation, by contrast, is naturally computed in a finite domain,
so that suitable boundary conditions have to be imposed on its boundaries. In
the simple examples considered here, where the exact solution is known, the
exact solution is prescribed on the domain boundary. However, even then the
finite-difference integration in boundary cells is not perfectly accurate, so that
we exclude the boundary zones from the presented results by showing them in
a smaller subdomain.

The Linear Conservation Law

Here we consider (3.49), (3.50), with f (u)= g(u)=u and initial data u0(x, y) =
h(x + y + 1). Let us now perform a transformation to Cartesian coordinates
(ξ, η) obtained by a π/4 rotation of (x, y):

ξ = x/
√

2 + y/
√

2 ,

η = −x/
√

2 + y/
√

2 .
(3.56)

The transformed equation [with v(ξ, η, t) = u(x, y, t)] is

∂

∂t
v +

√
2
∂

∂ξ
v = 0, (3.57)

v(ξ, η, 0) = v0(ξ, η) = h(
√

2 ξ + 1). (3.58)

Clearly, (3.57), (3.58) is a Cauchy problem in one space dimension, with a
moving step solution (with speed of propagation

√
2 ). For the numerical com-

putation we use the domain [−2 ≤ x ≤ 2, −2 ≤ y ≤ 2], which is divided into
a grid of 52× 52 square cells. A constant time step 	t = 0.025 is used, cor-
responding to µCFL = 0.325. The integration is performed to final time t = 1;
i.e., the step moves through a distance 	ξ = √2 . The initial conditions were
U 0

i, j = 0 in cells (i, j) with center point ξi, j > −
√

2 /2 and U 0
i, j = 1 when

ξi, j < −
√

2 /2. In the cells having ξi, j = −√2 /2 we set U 0
i, j = 1

2 , since they
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Figure 3.13. First-order integration (Godunov) of ut + ux + uy = 0. Initial data
u0(x, y) = h(x + y + 1). 	x = 	y = 1

13 ; 	t = 0.025.

are (diagonally) bisected by the discontinuity. Two schemes are used, the (first-
order) Godunov scheme and the (second-order) GRP scheme. Both schemes
are applied according to the split sequence (3.52). The numerical results at time
level t = tn are denoted by U n

i, j .
The results obtained by the Godunov scheme are presented in two graphical

formats (see Figure 3.13). The first is a U -level map, obtained by linear inter-
polation between cell-centered values (the cell-averages U n

i, j ). These lines are
shown both at the initial time t = 0 and at the final time t = 1 in Figure 3.13(a).
They are shown in a half-size subdomain, thereby avoiding the effects of
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Figure 3.14. Second-order integration (GRP) of ut + ux + uy = 0. Initial data
u0(x, y) = h(x + y + 1). 	x = 	y = 1

13 ; 	t = 0.025.

numerical boundary conditions (see Remark 3.18). The second presentation
is a one-dimensional distribution along the diagonal x = y, where we show the
distributions at t = 0 and at t = 1 [Figure 3.13(b)]. The results obtained by the
GRP scheme are presented in an identical format (see Figure 3.14).

In the first-order solution (Figure 3.13) the discontinuity seems to propagate
at the correct speed, but it is captured at a rather low resolution. The “diagonal
slice” distribution in Figure 3.13(b) shows that the discontinuity is spread over
about nine cells. The second-order solution (GRP) (see Figure 3.14) shows a def-
inite improvement in resolution. Referring to the distribution in Figure 3.14(b),
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we see that the discontinuity is spread over three cells. This is a significantly
enhanced resolution relative to the first-order scheme.

How do these results compare with the 1-D moving step in Section 3.2 ?
Consider the case with 	x = 1/25 in Figure 3.6(a) and Figure 3.8(a). In those
the step moves through a distance of 10 computational cells, while in the present
2-D case the step traverses 13 cells along the diagonal. In the corresponding 1-D
and 2-D cases, the discontinuity is spread over the same number of cells: 9 in the
Godunov solution and 3 in the GRP solution. This is a significant observation, as
it indicates that (at least in this simple case where the solution is one dimensional
in the ξ coordinate) the quality of “discontinuity capturing” is not degraded by
the 2-D operator splitting.

The Nonlinear Burgers Equation

First we consider (3.49), (3.50), with the flux functions f (u)= g(u)= u2/2 and
the same initial data as in the previous case, u0(x, y) = h(x + y + 1). Using
the transformation (3.56), we obtain [with v(ξ, η, t) = u(x, y, t)]

∂

∂t
v +

√
2
∂

∂ξ
(v2/2) = 0, (3.59)

v(ξ, η, 0) = v0(ξ, η) = h(
√

2ξ + 1), (3.60)

so the speed of propagation of the oblique shock in this case is dξ
dt =

√
2 /2, i.e.,

half the speed of the moving step in the linear case. The final time here is taken
as t = 2, twice that of the previous case. Thus the shock propagates through the
same distance of 13 computational cells. In all other aspects the present case
is computed in the same way as the linear one. In particular, the same spatial
domain (and subdomain) is retained, with the same mesh size 	x = 	y = 1

13 ,
time step 	t = 0.025, and µCFL = 0.325.

The results are presented in Figure 3.15 for the Godunov scheme and in
Figure 3.16 for the GRP scheme. The most conspicuous feature is that the shock
here is spread over about 1 cell, as opposed to 9 or 3 cells in the linear case.
Comparing this observation to the corresponding 1-D problems in Figure 3.10
and Figure 3.12, we find that the shock is resolved over the same thickness in
both the 1-D and the 2-D cases. As in the previous linear problem, this finding
confirms that our operator splitting preserves the same level of resolution as
that of the 1-D scheme used in the split sequence (3.52). Also, as already noted
in the 1-D case, here too the nonlinear shock discontinuity is more sharply
captured than the linear discontinuity.

Next, using the same flux functions f (u) = g(u) = u2/2, we study four
different cases, in all of which the initial data are constant in sectors of the (x, y)
plane. Thus, u(x, y, 0) = u0(θ ), where θ = arctan( y

x ) is the angle between the
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Figure 3.15. First-order integration (Godunov) of ut + (u2/2)x + (u2/2)y = 0. Initial
data u0(x, y) = h(x + y + 1). 	x = 	y = 1

13 ; 	t = 0.025.

vector (x, y) and the positive x-axis. The exact (self-similar) solutions of these
cases (at time t = 1) are shown schematically in Figure 3.17.

Case A

As a first case, we take the initial data

u0(θ ) =
{

1, 0 < θ < π
2 ,

−1, otherwise,
(3.61)
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Figure 3.16. Second-order integration (GRP) of ut + (u2/2)x + (u2/2)y = 0. Initial
data u0(x, y) = h(x + y + 1). 	x = 	y = 1

13 ; 	t = 0.025.

which produces the two-dimensional rarefaction wave pattern shown in
Figure 3.17(a). The initial data (3.61) clearly imply that outside of a large disk
the solution consists of two rarefaction waves, emanating from {x > 0, y = 0}
and {x = 0, y > 0}. It can be shown (Li, Yang, and Zhang [83], Ben-Artzi,
Falcovitz, and Li [14]) that these waves do not interact inside the disk. The
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Figure 3.17. Exact solutions at t = 1 of 2-D Burgers equation with sectorial initial
data.

entropy solution at t = 1 is therefore given by

u(x, y, 1) =






1, x > 1 and y > 1,

−1, x < −1 or y < −1,

y, x > y and − 1 < y < 1,

x, y > x and − 1 < x < 1.

(3.62)

The finite-difference computation was performed in the (x, y) domain
[−3, 3]× [−3, 3], which was divided into a grid of 600× 600 (square) cells,
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Figure 3.18. U -level curves for the 2-D Burgers equation at t = 1 for Case A.

where the exact (self-similar) solution was specified on the domain boundaries.
According to Remark 3.18, the numerical solution is displayed in the subdomain
[−1.5, 1.5]× [−1.5, 1.5] (i.e., a region of 300× 300 cells). The integration was
performed from t = 0 to t = 1, with a time step 	t = 0.005, corresponding to
a CFL ratio of µCFL = 0.5. The computation results are shown in Figure 3.18(a)
for the Godunov scheme and in Figure 3.18(b) for the GRP scheme, as U -
level plots at the equally spaced levels UL = −1+ 0.2 L , L = 0, 1, . . . , 10
(the head and tail values, however, were modified to ±0.999 instead of ±1, to
enable an interpolation for the head and tail U -level lines).

Comparing the exact solution (3.62) [see Figure 3.17(a)] to the numerical
solution, we consider separately the “1-D” regions away from the diagonal x = y
and the “corner” region near x = y where the x-facing and y-facing rarefaction
waves intersect. In the 1-D regions, the GRP solution is quite accurate, showing
slightly displaced level lines only at the head and tail edges. The Godunov
solution, however, shows a much larger “outward” displacement of the head
and tail lines. This observation demonstrates the improved accuracy of the
GRP scheme at the head and tail regions where the gradients (ux or uy) are
discontinuous.

Turning to the corner region near x = y, we note that although the GRP
solution reproduces quite well the exact pattern of the 2-D rarefaction wave
[Figure 3.17(a)], the Godunov solution is more rounded at the corner points
where the x-facing and y-facing (1-D) rarefaction waves intersect. This is a
genuinely two-dimensional effect, demonstrating the higher “dissipativity” of
the Godunov scheme.
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Figure 3.19. U -level curves for the 2-D Burgers equation at t = 1 for Case B.

Case B

The initial data here are obtained by reversing the sign of u0 in the previous
case:

u0(θ ) =
{
−1, 0 < θ < π

2 ,

1, otherwise.
(3.63)

These data produce the stationary shock wave pattern shown in Figure 3.17(b).
The numerical computation was conducted just as in the previous case, and the
results are shown in Figure 3.19(a) for the Godunov scheme and in
Figure 3.19(b) for the GRP scheme. This is a rather trivial example, since
both schemes reproduce the standing shock pair accurately, and it serves to
demonstrate that this known capability of the Godunov and GRP schemes is
unaltered by the two-dimensional splitting.

Case C

The third case has the initial data

u0(θ ) =






−1, 0 < θ < π
2 ,

1, π
2 < θ < θ0,

0, θ0 < θ < 2π,

(3.64)

where π < θ0 <
3π
2 satisfies tan θ0 = 2 (so that the jump between 1 and 0 lies
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Figure 3.20. U -level curves for the 2-D Burgers equation at t = 1 for Case C.

along y = 2x , x < 0). Thus, at time t > 0, outside of a large disk we have three
shocks (in the (x, y) plane):

(a) a shock along y = − 1
2 t moving at speed − 1

2 (in the y direction),
(b) a standing shock along x = 0, y > 0, and
(c) a shock at 2x − y = 1

2 t (for x sufficiently negative).

The exact (entropy) solution is the two-dimensional shock wave pattern
shown in Figure 3.17(c) (see Li, Yang, and Zhang [83] and Ben-Artzi et al.
[14]). Shocks (a) and (c) “interact” with shock (b), which results in an extension
of the latter to the segment {x = 0, − 1

2 < y < 0}. The numerical results are
shown in Figure 3.20(a) for the Godunov scheme and in Figure 3.20(b) for the
GRP scheme. Note the sharper resolution of shock (c) in the GRP solution.

Case D

The fourth case has the initial data

u0(θ ) =






−1, 0 < θ < π
2 ,

1, π
2 < θ <

3π
4 ,

0, 3π
4 < θ < 2π.

(3.65)

As before we start by looking at the solution in the (x, y, t) frame, outside
of a large disk. Clearly, as in the previous case, we have the two shocks (a)
and (b) [see Figure 3.17(d)]. However, instead of the third shock we have now
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Figure 3.21. Numerical solutions of 2-D Burgers equation at t = 1 for Case D.

a rarefaction wave that propagates parallel to the line x + y = 0. The exact
solution at t = 1 is the two-dimensional wave pattern shown in Figure 3.17(d).
The rarefaction wave interacts with shock (b), forming the curved branch (I)
between (0, 2) and (−1/4, 1/4). The latter point is then connected to the point
(−1/2,−1/2) by a straight shock segment (II) (see Ben-Artzi, et al. [14]). The
numerical results are shown in Figure 3.21(a) for the Godunov scheme and in
Figure 3.21(b) for the GRP scheme. Note the rounding of the “shock wedge”
at (−1/2,−1/2) in both solutions.

The Guckenheimer Equation

In this case, due to Guckenheimer [59], the conservation law and the initial data
are

∂

∂t
u + ∂

∂x
(u2/2)+ ∂

∂y
(u3/3) = 0, (3.66)

u(x, y, 0) = u0(θ ) =






0 in sector 0 < θ < 3π
4 ,

1 in sector 3π
4 < θ <

3π
2 ,

−1 in sector 3π
2 < θ < 2π,

(3.67)

where θ = arctan( y
x ) as before [see also Figure 3.22(a)]. Unlike the previous

two equations, the flux functions here are not identical. Moreover, the function
g(u) = u3/3 is nonconvex, and as we shall see below, this produces a solution
with a “sonic shock.” Note that in this case the solution to the Riemann problem
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Figure 3.22. The Guckenheimer structure for ut + (u2/2)x + (u3/3)y = 0.



78 3. The GRP Method for Scalar Conservation Laws

(and likewise to the generalized Riemann problem) associated with (3.51ii)
needs to be modified, taking into account the nonconvexity of g(u). In the
present case this modification of (3.22), (3.23) is rather simple (see Godlewski
and Raviart [54, Section 2.6 and Remark 2.2 in Section 3.2]).

Consider the (self-similar) exact solution (see Guckenheimer [59], Zhang
and Zhang [125], Li, Yang, and Zhang [83], and Ben-Artzi et al. [14]) of (3.66),
(3.67), shown in Figure 3.22(b). Referring to this figure, we notice that outside
of a large disk, the solution consists of the following three shocks:

(a) a shock emanating from the line y = 0 (x > 0), moving at speed 1/3 in the
positive y direction (note that g(u) = u3/3 is concave on [−1, 0]),

(b) a standing shock along x = 0 (y < 0), and
(c) a shock emanating from the line x + y = 0; the self-similar analysis

(Guckenheimer [59], Ben-Artzi, Falcovitz, and Li [14]) shows that at t > 0
this line is given by x + y = (5/6)t .

The interaction of these three shocks in a disk around (0, 0) gives rise to a
very complex wave structure. At time t = 1 it can be described as follows
[see Figure 3.22(b)]: The shock (b) extends to a segment of the positive y-axis
given by 0 ≤ y ≤ b, b = 0.2823057. At the point (0, b) it bifurcates into a
CRW that has a tail characteristic coinciding with a sonic shock, across which
the solution u(x, y, 1) jumps from −1 to the value ṽ = 0.6087418. Then u in-
creases across the rarefaction from ṽ to 1, and it is constant along each (straight)
characteristic line. The rarefaction wave modifies shock (c) in a fashion similar
to that of the curved shock in the previous example of the Burgers equation
(Case D). Note that the head characteristic of the CRW carries the value u = 1.
It intersects the shock (c) at the point (x0, y0) given by

x0 =
5
6 − b

2− b
, y0 =

5
6 + b

6

2− b
.

The tail characteristic (sonic shock) intersects the shock (a) at the point
(ξ̃ , 1

3 ), where ξ̃ = 0.3519610. The result of the interaction between the CRW
and the shock (c) leads, as already noted, to a “bending” of the latter, forming
a shock branch y = y(x) connecting (x0, y0) to (ξ̃ , 1

3 ). It can be determined by
solving an ordinary differential equation (Ben-Artzi, Falcovitz, and Li [14]).

Thus, we obtain a wave pattern that includes a shock wave bifurcating into
a CRW and a sonic shock that serves as a tail characteristic of the CRW. It
intersects with the other two shocks at the triple point (ξ̃ , 1

3 ). This wave pattern
provides for a good test of finite-difference schemes.

Two numerical tests were performed, one using the Godunov scheme and
the other with the GRP scheme. The computation domain was the square
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[−1 ≤ x ≤ 1, −1 ≤ y ≤ 1], which was divided into 320× 320 square cells.
The time step was 	t = 0.003125 (i.e., µCFL = 0.5 since max|u| = 1 and
f ′(u)= u, g′(u)= u2), and the computation was performed to final time t = 1.
The boundary conditions were specified by calculating the exact solution on the
outer segments of boundary cells (see Remark 3.18). This is possible as long
as the domain boundary is intersected only by the three shocks (a), (b), and (c),
which according to Figure 3.22(b) is still true at t = 1.

,
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Figure 3.23. U -level curves for the Guckenheimer equation at t = 1.
ut + (u2/2)x + (u3/3)y = 0. Initial data in Figure 3.22(a).



80 3. The GRP Method for Scalar Conservation Laws

The results are shown in the subdomain [−0.05 ≤ x ≤ 0.60, 0 ≤ y ≤ 0.65]
[see Figure 3.23(a) for the Godunov scheme and Figure 3.23(b) for the GRP
scheme]. Recall that inside the rarefaction fan u is constant along the (straight)
characteristic lines, so that numerical U -level curves approximate the fan struc-
ture. The U -level sequence

UL =
{
−1+ 0.2L , L = 0, . . . , 8,

0.60874, 0.68295, 0.76366, 0.86089, 1, L = 9, . . . , 13
(3.68)

is designed to show the shock fronts and the rarefaction fan. The five levels
L = 9, . . . , 13 correspond to the tail, head, and three inner characteristic lines
of the rarefaction fan [as shown in Figure 3.22(b)]. To enable interpolation at
the lowest and highest U levels, they were slightly shifted to−0.990 and 0.997,
respectively. For comparison of the exact and numerical solutions, we represent
the exact solution [Figure 3.22(b)] by discrete “marker points” situated on shock
fronts, as shown in Figure 3.23. Additional marker points are located at points
(x, y) inside the rarefaction fan, where the exact solution takes on the same
values UL, L = 9, . . . , 13 as given by (3.68).

Our primary observation with respect to the numerical solution is that both
finite-difference schemes, applied according to the operator splitting (3.52),
produce a correct approximation to this complex 2-D wave-interaction pattern
(Figure 3.23). The GRP solution agrees quite well with the exact one, whereas
the Godunov solution shows a nearly equal agreement for the shock fronts, but
a lesser agreement in the rarefaction fan. In this centered fan, the characteristic
line that coincides with the sonic shock front corresponds to a constant value
of u = ṽ, and it is one of the U -level lines plotted (L = 9). In the GRP solution
this line is seen very near the sonic shock front [Figure 3.23(b)], whereas in the
Godunov case its standoff distance is perceptibly higher [Figure 3.23(a)]. The
captured sonic shock is represented by the cluster of level lines L = 0, . . . , 9
(since the jump across this shock is from u =U0 to U9). At the other end of the
rarefaction fan, the head characteristic line is plotted with U13 = 0.997 (close
to the exact value of U13 = 1, for a clear U -level interpolation). In the Godunov
solution this line extends well beyond the exact solution, whereas in the GRP
solution it agrees well with the exact marker points. The rarefaction fan is the
only region of the solution where u(x, y, 1) varies smoothly with a nonzero
gradient. Hence, these observations indicate that in such regions the (second-
order-accurate) GRP scheme produces considerably smaller errors than the
(first-order-accurate) Godunov scheme. We observe that the bifurcation point
(0, b) and the triple point (ξ̃ , 1

3 ), resulting from the two-dimensional setting, are
well replicated by both schemes.



4
Systems of Conservation Laws

In this chapter we review the basic facts concerning systems of conservation
laws (“nonlinear hyperbolic systems”). The general theory is discussed in
Section 4.1, and in Section 4.2 we specialize to the Euler system of equa-
tions of inviscid, compressible, nonisentropic flow, the subject matter of this
monograph. The presentation at this stage is restricted to quasi-one-dimensional
flow in the Eulerian and Lagrangian frameworks. The Riemann problem, which
plays an important role in this monograph, is introduced and discussed in detail.

4.1 Nonlinear Hyperbolic Systems in One Space Dimension

A system of (in general nonlinear) conservation laws in one space dimension
is given by

∂

∂t
u+ ∂

∂x
F(u) = 0, x ∈ R, t ≥ 0, (4.1)

where

u(x, t) =






u1(x, t)
...

um(x, t)






is a vector of m unknown functions and

F(u) =






F1(u1, . . . , um)
...

Fm(u1, . . . , um)






(the flux function) is a smooth vector function from R
m → R

m .
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In what follows we shall use boldface notation v to denote (real) m-vectors
(or vector functions). For notational convenience we refer to v as a column
vector so that its transpose vT is a row vector vT = (v1, . . . , vm).

As in the scalar case (namely, m = 1; see Section 2.1) the equation (4.1) is
supplemented by giving the initial condition

u(x, 0) = u0(x), x ∈ R. (4.2)

From the discussion in Section 2.1 we know that smooth global (i.e., defined for
all t ≥ 0) solutions cannot be expected, in general, even for very regular initial
data. Indeed, the main thrust of the theory was concerned with the formation of
singular, discontinuous weak solutions. Clearly, these observations hold true in
the case of systems. In fact, we shall see that the situation is further complicated
by interaction of “discontinuity waves” associated with different “families.”

Unlike the case of a scalar conservation law, where the theory of the IVP
(2.1), (2.2) is fairly complete (see Theorem 2.20), for a system there are almost
no theoretical results of a general character. Instead, there have been many de-
tailed studies of special cases, related to suitably restricted initial data u0(x).
In what follows we shall outline these solutions, leading finally to the solu-
tion of the Riemann problem for systems. We refer the reader to Lax [75],
Hörmander [63], and Evans [36] for comprehensive accounts of the existing
theory.

Characteristic Curves and Centered Rarefaction Waves

We begin by studying the case of smooth solutions to the system (4.1). In this
case we can use the chain rule to rewrite (4.1) as

∂

∂t
u+ A(u)

∂

∂x
u = 0, (4.3)

where

A(u) =
(
∂Fi

∂u j

)

1≤i, j≤m

is the Jacobian matrix F′(u). Recall that in the scalar case, we saw [see Equa-
tion (2.10)] that a “distinguished” family of curves, namely, the characteristic
curves, had the property of carrying constant values of the solution u(x, t).
Trying to look for a similar behavior in our case, we proceed as follows.

Let lT (u) be a left eigenvector of A(u), so that

lT (u) · A(u) = λ(u) lT (u).
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We assume that λ(u), lT (u) are continuous functions of u (at least in some
domain D ⊆ R

m). Taking the scalar product of Equation (4.3) with lT (u), we get

lT (u) · [ut + λ(u)ux ] = 0 (4.4)

(we assume that the solution u(x, t) takes values in D). We now single out
certain curves.

Definition 4.1 A curve x = x(t) is called characteristic for (4.1) or (4.3) [and
relative to a given solution u(x, t)] if its slope is an eigenvalue of A(u(x, t)),

dx

dt
= λ(u(x, t)). (4.5)

Remark 4.2 We emphasize that, in contrast to the linear case, the character-
istic curves depend on the solution u(x, t). This corresponds to the scalar case
[see Equation (2.10) and the discussion following it], where f ′(u) is the only
“eigenvalue.”

Using the total-time-derivative notation introduced in (2.7), we can rewrite
(4.4) as

lT (u) · D

Dt
u = 0 along

dx

dt
= λ(u(x, t)), (4.6)

which should be compared with Equation (2.10). Unlike for the scalar case,
Equation (4.6) does not mean that u(x, t) must be constant along a characteristic
curve. However, it forces limitations on the value of u on such a curve. In other
words, if the values of u(x, t) are assigned along a curve x = x(t), and if this
curve is characteristic with respect to these values [i.e., x ′(t) = λ(u(x, t)], with
a corresponding eigenvector lT (u(x, t)), then (4.6) is an extra condition that must
be satisfied. This condition will play an important role in the fluid dynamical
context (see Section 4.2), where it is referred to as the characteristic relation.

In a somewhat more specialized situation, we can actually consider solutions
that are constant along curves. We look at families of such curves covering
domains in the (x, t) plane. Let � be a domain contained in the half-plane
x ∈ R, t ≥ 0. Let φ(x, t) be a smooth function (i.e., at least continuously dif-
ferentiable) defined in�, so that φx �= 0. Let I ⊆ R be the range of values taken
on by φ in �. Thus the curves

Lc ≡ {φ(x, t) = c} , c ∈ I,

form a family of smooth curves covering � (see Figure 4.1).



84 4. Systems of Conservation Laws

Figure 4.1. A simple wave.

A solution u(x, t) of (4.3), defined in �, is constant along any curve Lc,
c ∈ I , if there exists a smooth function w(y), y ∈ I , such that

u(x, t) = w(φ(x, t)), (x, t) ∈ �. (4.7)

Inserting this in (4.3) we get

ut + A(u) · ux = w′φt + A(w(φ(x, t))) · w′φx = 0 (4.8)

(note thatw is an m-(column) vector). We now assume further thatw′(y) �= 0. It
follows from (4.8) thatw′(φ(x, t)) is an eigenvector of the matrixA(w(φ(x, t))),
for all (x, t) ∈ �. The slope dx

dt = − φt

φx
of Lc (c = φ(x, t)) is the corresponding

eigenvalue of A(w(c)) and hence is constant along Lc. In other words, all
the curves Lc are straight lines and characteristic with respect to the solution
u(x, t).

Summary 4.3 Let u(x, t) be a smooth solution to (4.3) and assume that u =
w(c) along any curveφ(x, t) = c ((x, t) ∈ �), wherew(c) is a vector depending
smoothly on c and such that d

dcw(c) �= 0. Then necessarily the curves φ(x, t) =
c are straight lines and characteristic (in�). (Such a solution is called a “simple
wave” solution.)

Example 4.4 (A centered rarefaction wave) Consider the case that � is a
sector, � = {(x, t), t > 0, µ1 ≤ x

t ≤ µ2
}
, and let φ(x, t) = x

t , so that φ is
constant along rays emanating from the origin. A solutionu(x, t) that is constant
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Figure 4.2. A centered rarefaction wave.

along these rays can be written as u(x, t) = w( x
t ). Equation (4.8) becomes in

this case

A(w(y))w′(y) = yw′(y), y = x

t
∈ [µ1, µ2]. (4.9)

In particular, the rays x
t = y, µ1 ≤ y ≤ µ2, are characteristic curves. For each

curve the slope y = x
t is an eigenvalue of A(w( x

t )).

Definition 4.5 If a solutionw(y) to (4.9) exists (for y ∈ [µ1, µ2]) we say that the
corresponding solution u(x, t) = w( x

t ) is a centered rarefaction wave (CRW),
connecting the “right state” ur = w(µ2)1 to the “left state” ul = w(µ1) (see
Figure 4.2).

It is seen from (4.9) that for a CRW w′(y) is the eigenvector associated with
the eigenvalue y. The existence of such an eigenvector, depending smoothly on
y, is guaranteed if y is an isolated simple eigenvalue. We shall not go here into
a more detailed study of the dependence of eigenvalues and eigenvectors on
parameters; instead, we refer the reader to Evans [36, Chapter 11]. However,
we cite the following definitions and fundamental facts.

Definition 4.6 (Strict hyperbolicity) The system (4.1) [or (4.3)] is strictly
hyperbolic if, for every vector v ∈ R

m , the matrix A(v) has m real and distinct

1 A given vector in Rm is often referred to as a “state,” a term that is inspired by fluid dynamics
(see next section).
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(simple) eigenvalues

λ1(v) < λ2(v) < · · · < λm(v) (4.10)

with a corresponding complete set of eigenvectors r1(v), r2(v), . . . , rm(v).

In this case, the functions λk(v) and rk(v), k = 1, . . . ,m, can be taken as
smooth functions in R

m . Throughout the rest of this section, we assume that
our system is strictly hyperbolic.

Definition 4.7 (k-centered rarefaction wave) We say that the CRW of Defi-
nition 4.5 is a k-centered rarefaction wave if, for some k ∈ {1, . . . ,m}, we have
[using the notation in (4.10)]

y = λk(w(y)), µ1 ≤ y ≤ µ2. (4.11)

Clearly, the existence of a k-CRW depends on the (simultaneous) solvability
of Equations (4.9) and (4.11). Using the smoothness of λk(v) and differentiating
(4.11) with respect to y we get, by the chain rule,

1 = d

dy
λk(w(y)) = ∇λk(v)

∣∣v=w(y) · w′(y) . (4.12)

However, from (4.9) we infer that w′(y) = α(y)rk(w(y)), where α(y) �= 0 is
continuous. Inserting this in (4.12) we see that ∇λk · rk cannot vanish. Hence
we have the following corollary.

Corollary 4.8 A necessary condition for the existence of a k-CRW is that the
kth right eigenvector can be chosen so that

∇λk(v) · rk(v) = 1. (4.13)

Remark 4.9 Condition (4.13) is known as the condition of “genuine nonlinear-
ity” of the “kth characteristic family.”

Assuming condition (4.13), suppose that a right state ũ ∈ R
m is given, so that

λk(ũ) = µ,µ1 ≤ µ ≤ µ2. The system of ordinary differential equations

w′(y) = rk(w(y)), w(µ) = ũ, (4.14)

has, in view of the basic existence and uniqueness theorem for ordinary dif-
ferential equations, a unique smooth solution defined for y in a small interval
containing µ. By (4.12) the scalar function λk(w(y)) is linear in this interval
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Figure 4.3. States Connected to ũ by a k-CRW, λk(ũ) = µ. (I) ũ is a right state: w(y) ∈
R−k ⇒ λk(w(y)) < µ. (II) ũ is a left state: w(y) ∈ R+k ⇒ λk(w(y)) > µ.

and since λk(w(µ)) = µ we obtain the identity λk(w(y)) = y in the interval. In
particular, we get:

Corollary 4.10 Given a right state ũ such that λk(ũ) = µ, there exists some
δ > 0 such that the one-parameter family w(y), µ− δ ≤ y ≤ µ, with w(y)
given by (4.14), consists of all left statesul that can be connected to ũby a k-CRW.

We conclude that the trajectory R−k in R
m , consisting of the vectors w(y),

µ− δ ≤ y ≤ µ, contains the left states “close” to ũ that can be connected to ũby
a k-CRW. Similarly, the trajectory R+k consisting of vectors w(y) on the “other
side,”µ ≤ y ≤ µ+ δ, represents those right states ur that can be connected via
a k-CRW to ũ, which now serves as a given left state. We denote by Rk the
union of R−k and R+k (see Figure 4.3).

Remark 4.11 The previous discussion is of a “local” character. Only states
“close” to ũ are considered for possible connection to ũ by a k-CRW. Clearly,
the question of “global” connections by such waves depends on a careful study
of the global properties of solutions of (4.14) and is beyond the scope of this
monograph.

Weak Solutions and Jump Discontinuities

So far, we have dealt with nonlinear waves for which the solution u(x, t) is
continuous (note, however, that for a CRW the solution is not continuous



88 4. Systems of Conservation Laws

at t = 0). But as in the scalar case, we cannot avoid here the inclusion of
weak solutions that admit discontinuities. The treatment of such solutions runs
parallel to what has already been done in the scalar case.

We start by rewriting Equation (4.1) as a balance equation, in analogy with
Equation (2.3). Thus, in a rectangle x1 ≤ x ≤ x2, 0 ≤ t ≤ T , we have

x2∫

x1

u(x, T ) dx −
x2∫

x1

u0(x) dx = −
T∫

0

F(u(x2, t)) dt +
T∫

0

F(u(x1, t)) dt, (4.15)

which justifies the term “flux” for F(u). Let C1
0 be the set of test functions as

in (2.12).

Definition 4.12 The bounded (vector) function u(x, t) is called a “weak solu-
tion” to the IVP (4.1), (4.2) if, for any test function φ(x, t) ∈ C1

0 ,

∫

R

∞∫

0

(uφt + F(u)φx ) dt dx +
∫

R

φ(x, 0)u0(x) dx = 0. (4.16)

Basically, one can repeat the arguments in the proof of Claim 2.5 to show
that if u ∈ C1 is a weak solution then it is a classical solution. Furthermore,
every weak solution u defined in a domain � with smooth boundary �, which
has finitely many jump discontinuities along smooth curves, satisfies (see
Claim 2.6)

∮

�

−u(x, t) dx + F(u(x, t)) dt = 0. (4.17)

A case of particular interest is that of a shock wave, namely, a weak solution
that is smooth on the two sides of a smooth curve C , across which it experiences
a jump discontinuity. Following the argument leading to Corollary 2.8 we get:

Corollary 4.13 (The Rankine–Hugoniot jump condition) Let C: x = x(t)
be a smooth trajectory traced out by a jump discontinuity of the weak solution
u(x, t). Let u±(x(t), t) = limx→x(t)± u(x, t) be the limiting values of u(x, t) as
x approaches x(t) from either side of the discontinuity. Then the speed S = x ′(t)
satisfies, for every t,

F(u+(x(t), t))− F (u−(x(t), t)) = S
[
u+(x(t), t)− u−(x(t), t)

]
. (4.18)
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The system (4.18) consists of m algebraic conditions that must be satisfied, at
any time t , by the 2m components of u±(x(t), t). Note that the speed S = x ′(t)
is scalar, meaning that the (vector–valued) jumps u+(x(t), t)− u−(x(t), t) and
F (u+(x(t), t))− F (u−(x(t), t)) must be collinear. In particular, in contrast to
the scalar case, for systems with m > 1 any two constant states u± cannot
necessarily be connected by a shock discontinuity2 moving at a constant speed.
Indeed, given a fixed state ũ ∈ R

m (which, to fix the ideas, we can take as u+),
the states u− that can be connected to it by such a discontinuity should satisfy
the m equations (4.18). Since the speed S is also unknown, we have m equations
for the m + 1 unknowns u−, S, which should allow, roughly speaking, a one-
parameter family of solutions (at least close to ũ). These considerations can be
made more rigorous as follows.

We seek solutions to the m equations

F(u)− F(ũ) = S(u− ũ), (4.19)

where the unknowns are u, S. We are looking for solutions u close to ũ. By
Taylor’s theorem, it follows from (4.19) that

A(ũ) · (u− ũ)− S(u− ũ) = O
(‖u− ũ‖2

)
. (4.20)

As u approaches ũ, the normalized vector (u− ũ)/‖u− ũ‖ approaches a unit
eigenvector of A(ũ), say vk(ũ), while S approaches the corresponding eigen-
value λk(ũ), 1 ≤ k ≤ m. We shall therefore look for solutions u(y) of (4.19)
having the form

u(y) = ũ+ yrk(ũ)+
∑

j �=k

α j (y)r j (ũ), (4.21)

where the eigenvectors ri (ũ) are as in Definition 4.6, y varies in a small interval
around y = 0, and α j (y), α′j (y) vanish at y = 0. Fixing y �= 0 we let v =∑

j �=k
α j (y)r j (ũ) be the unknown vector in the (m−1)-dimensional subspace V

spanned by
{
r j (ũ)
}

j �=k . The unknown speed S is assumed to be close to λk(ũ).
Thus, letting

Φy(v, S) = F(ũ+ yrk(ũ)+ v)− F(ũ)− S
[
yrk(ũ)+ v

]

makes Equations (4.19) equivalent to

Φy(v, S) = 0. (4.22)

2 Recall that “rarefaction shocks” were excluded in the scalar case only on the basis of entropy
considerations; see the discussion preceding Example 2.13.
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Observe that, for a fixed y (near 0), Φy is a mapping from a neighborhood
of (0, λk(ũ)) in R

m into R
m (recall that v ranges in V , an (m−1)-dimensional

subspace). Its Jacobian matrix is given by

DΦy(v, S)0,λk (ũ) = [Ak(ũ+ yrk(ũ))− λk(ũ)I,−yrk(ũ)] . (4.23)

We have used Ak to denote the restriction of A to the (m−1)-dimensional sub-
space V . The eigenvalue λk(ũ) is simple (by assumption of strict hyperbolicity),
with a corresponding eigenvector rk(ũ). Thus, for a sufficiently small y and S
close to λk(ũ), the restriction Ak (ũ+ yrk(ũ))− λk(ũ)I to V is of rank (m−1).
Indeed, Ak(ũ)− λk(ũ)I maps V onto V . It follows from (4.23) (and the fact that
rk(ũ) /∈ V ) that, for every sufficiently small y �= 0,

rank DΦy(v, S)0,λk (ũ) = m,

so that there exists a unique solution (v, S), near (0, λk(ũ)), to (4.22). This
solution varies smoothly with y, so that the coefficients α j (y) in (4.21) are
smooth functions of y near y = 0 and so is the shock speed S(y). Indeed, it can
be shown, using (4.20), (4.21), that α j (y) = O(y2); hence α′j (0) = 0, j �= k. In
view of (4.21) this is consistent with the fact that rk(ũ) is tangent to the curve
u(y) at y = 0.

We refer the reader to Evans [36, Section 11.2] for a more detailed construc-
tion of the solutions to the jump equations (4.19). The preceding argument can
be repeated for k = 1, . . . ,m. We can therefore summarize as follows.

Summary 4.14 Given a state ũ ∈ R
m, there exists a small neighborhood Cũ ⊆

R
m of ũ, having the following property: The set

U = {u ∈ Cũ, u is a solution to (4.19), for some speed S}

can be represented as a union of smooth curves,

U =
m⋃

k=1

Pk,

such that Pk passes through ũ and is tangent there to rk(ũ) (see Figure 4.4).

As in the case of the CRW, we can parametrize each curve Pk, k = 1, . . . ,m,
as

Pk = {uk(y), λk(ũ)− δ < y < λk(ũ)+ δ} , (4.24)
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Figure 4.4. States connected to ũ by a jump discontinuity satisfying the Rankine–
Hugoniot condition.

for some small δ > 0, so that uk(λk(ũ)) = ũ. Furthermore, we scale y so that

u′k(y)
∣∣

y=λk (ũ) = rk(ũ). (4.25)

The corresponding speeds S = Sk(y) are also smooth functions satisfying

F(uk(y))− F(ũ) = Sk(y)
(
uk(y)− ũ

)
, λk(ũ)− δ < y < λk(ũ)+ δ,

(4.26)

and such that Sk(λk(ũ)) = λk(ũ).
We note that in view of (4.14) and (4.25) the trajectories Rk and Pk, k =

1, . . . ,m, are tangent at ũ [i.e., at y = λk(ũ)]. In the case of the CRW we have
seen that only the part R−k [namely, y < λk(ũ)] represents left states that may
be connected to ũ (as a right state) by means of a CRW. Similarly, we shall see
next that only “one-half” of Pk consists of left states that can be connected to
ũ (as a right state) by means of a moving discontinuity satisfying an additional
“entropy condition.”

Entropy Conditions, Shock Waves, and Contact Discontinuities

Fix 1 ≤ k ≤ m and consider the curve Pk ⊆ Cũ as in (4.24). In what follows,
we simplify notation (along Pk) by settingAk(y) = A(uk(y)). We also continue
to use µ = λk(ũ) [see (4.14)]. Differentiating Equation (4.26) with respect to y
we get

(
Ak(y)− Sk(y)I

)
u′k(y) = S′k(y)

(
uk(y)− ũ

)
, (4.27)
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and a second differentiation yields
(
Ak(y)− Sk(y)I

)
u′′k (y)+ A′k(y)u′k(y) = 2S′k(y)u′k(y)+ S′′k (y)

(
uk(y)− ũ

)
.

(4.28)

Taking y = µ in (4.28) yields, in view of (4.25) and Sk(µ) = µ,
(
A(ũ)− µI)u′′k (µ)+ A′k(µ)rk(ũ) = 2S′k(µ)rk(ũ). (4.29)

We shall now apply analogous treatment to the k-CRW curve Rk , which is
given by Equation (4.14). By writing wk for w and setting Rk(y) = rk(wk(y)),
Equation (4.9) takes the form [note Equation (4.11)]

A(wk(y))Rk(y) = yRk(y).

Differentiating this equation, we obtain

(
A(wk(y))− yI

)
R′k(y)+ d

dy
[A(wk(y))]Rk(y) = Rk(y), (4.30)

and setting y = µ in this equation leads to

(
A(ũ)− µI)R′k(µ)+ d

dy
[A(wk(y))]y=µ rk(ũ) = rk(ũ). (4.31)

Subtracting (4.31) from (4.29) yields
(
A(ũ)− µI)(u′′k (µ)− R′k(µ)

) = [2S′k(µ)− 1
]
rk(ũ). (4.32)

[Note that A′k(µ) = d
dy [A(wk(y))]y=µ since the curves Pk :uk(y) and Rk :wk(y)

have the same tangent vector rk(ũ) at y = µ.] Let lTk (ũ) be the left (row) eigen-
vector of A(ũ), corresponding to λk(ũ). Taking the scalar product of (4.32) with
lTk (ũ) annihilates the left-hand side, so that, since lTk (ũ) · rk(ũ) �= 0,3

2S′k(µ) = 1. (4.33)

Remark 4.15 Observe that the equality (4.33) relies on the choice of parametri-
zations (4.11), (4.25) for the curves Rk, Pk , respectively. Indeed, the latter spec-
ifies the scaling only at λk(ũ). What is important here is that the tangent vectors
coincide at this point [and are equal to rk(ũ)]. Recall (Corollary 4.8) that con-
dition (4.13) is needed for this normalization on the rarefaction side.

We can now turn to a study of the jump discontinuity as y varies in the interval
[λk(ũ)− δ, λk(ũ)+ δ], as in (4.24). As we have seen (Summary 4.14), for every

3 Note that if j �= k, lTk (ũ) · A(ũ)r j (ũ) = λk (ũ)lTk (ũ) · r j (ũ) = λ j (ũ)lTk (ũ) · r j (ũ); hence lTk (ũ) ·
r j (ũ) = 0, j �= k.
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y in the interval the state ũ, taken as a right state, can be connected to uk(y)
(left state) by means of a discontinuity moving at a uniform speed S = Sk(y)
and satisfying the Rankine–Hugoniot condition (4.26). Such a discontinuous
solution is certainly a weak solution in the sense of Definition 4.12. However, in
analogy with the scalar case we shall see that not all solutions are “admissible.”
We distinguish two cases, the first in which the kth characteristic family is
genuinely nonlinear (see Remark 4.9) and the second, where in contrast to
(4.13), we have identically

∇λk(v) · rk(v) ≡ 0, v ∈ R
m . (4.34)

Definition 4.16 When (4.34) holds identically in R
m , we say that the kth char-

acteristic family is linearly degenerate.

Proposition 4.17 Assume that the kth characteristic family is genuinely non-
linear, satisfying identically (4.13). Then the left states uk(y) ∈ Pk, connected
to the right state ũ by means of a discontinuity moving at speed Sk(y), can be
divided into two families, for sufficiently small δ > 0:

(i) λk(ũ)− δ < y < λk(ũ), in which case

λk(uk(y)) < Sk(y) < λk(ũ); (4.35)

(ii) λk(ũ) < y < λk(ũ)+ δ, in which case

λk(uk(y)) > Sk(y) > λk(ũ). (4.36)

Proof Using (4.13), (4.25) we see that

d

dy
λk(uk(y))y=λk (ũ) = ∇λk(ũ) · rk(ũ) = 1,

whereas by (4.33), S′k(λk(ũ)) = 1
2 . Thus, if δ > 0 is sufficiently small,

0 < S′k(y) < λ′k(y), λk(ũ)− δ < y < λk(ũ)+ δ. (4.37)

Since Sk(λk(ũ)) = λk(ũ), the inequalities (4.35), (4.36) follow directly from
(4.37). ��

Since Sk(µ) = µ = λk(ũ), we can use the strict hyperbolicity (Definition 4.6)
and reduce δ > 0 (if needed), so that (4.36) is further supplemented by

λk−1(uk(y)) < Sk(y) < λk+1(ũ) (4.38)

for y in the interval. The two cases in Proposition 4.17 may then be represented
as in Figure 4.5. We note that in Case (i) [Figure 4.5(a)] the trajectory of the
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.

.

Figure 4.5. Shock admissibility conditions.

discontinuity “separates” the characteristic lines of the kth family, exactly as in
the scalar case of a “rarefaction shock,” depicted in Figure 2.3(b).4 However,
in Case (ii) [Figure 4.5(b)] the characteristic lines (of the kth family) “run”

4 Inspired by the fluid dynamical terminology, where the characteristic values λk express “sonic”
speeds, we might say that in this case the shock is “supersonic” with respect to the left state
uk (y) but “subsonic” with respect to the right state ũ.
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into the trajectory of the discontinuity as t increases. Based on our experience
with the scalar case (see the discussion preceding Definition 2.15) we view
only the discontinuities in Case (ii) as “admissible.” As in the scalar case,
they are inevitable, formed by the “forward” intersection of characteristic lines
propagating in the regions where the solution is smooth.

Definition 4.18 (The Lax entropy condition for admissible shocks) The Lax
entropy condition consists of the inequalities (4.36), (4.38).

Discontinuities satisfying the Lax entropy condition are called “admissible
k-shocks.”

Thus, admissible shocks correspond to the part

P+k = {uk(y), λk(ũ) < y < λk(ũ)+ δ}

on Pk . At y = λk(ũ), its tangent is rk(ũ) [see (4.25)]. It therefore connects
smoothly (i.e., with continuously varying slope) to the curve R−k [parametrized
by λk(ũ)− δ < y < λk(ũ)] of the left states that can be connected to the right
state ũ by a k-CRW (see Corollary 4.10 and Figure 4.3). We group together
these two parts as follows.

Definition 4.19 (The “interaction curve”) Let ũ ∈ R
m be given, withλk(ũ) =

µ, 1 ≤ k ≤ m. The curve

I r
k (ũ) =

{
R−k , µ− δ < y < µ,

P+k , µ < y < µ+ δ,
is called the “(right) kth interaction curve” for ũ. It consists of all left states
uk(y), sufficiently close to ũ, that can be connected to ũ by a k-CRW (y < µ)
or an admissible k-shock (y > µ). The part P+k , representing the admissible
shocks, is called the (kth) “Hugoniot curve” associated with ũ (as a right state).
Similarly, I l

k(ũ), the “left kth interaction curve”, consists of all right states
sufficiently close to ũ that can be connected to it (as a left state) by a k-CRW
or an admissible k-shock.

Remark 4.20 Observe that the part P−k of Pk , corresponding to valuesµ− δ <
y < µ, represents the right states uk(y) that can be connected to the left state ũ
by an admissible k-shock. This is clear from the inequalities (4.35).

We conclude that if the kth characteristic family is genuinely nonlinear
[satisfying (4.13)], the curve I r

k (ũ) gives a representation of left states connected
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to ũ by a “k-wave” (CRW or admissible shock). We now turn to the linearly
degenerate case, in which (4.34) is identically satisfied.

Remark 4.21 It turns out that in the conservation laws modeling fluid flow, the
dichotomy “genuinely nonlinear” or “linearly degenerate” is highly prevalent.
This will be seen in the discussion of compressible fluid flow (Claim 4.30).

Proposition 4.22 Assume that the kth characteristic family, 1 ≤ k ≤ m, is
linearly degenerate, so that (4.34) is identically satisfied. Let ũ ∈ R

m be given,
with µ = λk(ũ). Then the curve Pk [see (4.24)] of states uk(y) satisfying (4.26)
is determined as follows.

The function uk(y) satisfies Equation (4.14), namely,

u′k(y) ≡ rk(uk(y)), µ− δ < y < µ+ δ, (4.39)

whereas the speed Sk(y) of the discontinuity is constant and equal to the kth
characteristic eigenvalue,

Sk(y) ≡ µ = λk(ũ), µ− δ < y < µ+ δ. (4.40)

In particular, the characteristic speed λk(uk(y)) ≡ constant = λk(ũ) (see
Figure 4.6) along Pk.

Figure 4.6. A contact discontinuity. The trajectory of the discontinuity is parallel to the
characteristic lines (kth family).
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Proof Let uk(y) be the unique solution to (4.39), which exists if δ > 0 is suffi-
ciently small [see the paragraph following (4.14)]. We have

d

dy
λk(uk(y)) = ∇λk(v)

∣
∣v=uk (y) · u′k(y) = ∇λk(v)

∣
∣v=uk (y) · rk(uk(y)) = 0,

(4.41)

where the last equality follows from (4.34).
Thus, λk(uk(y)) = µ, µ− δ < y < µ+ δ. Now,

F(uk(y))− F(ũ) =
y∫

µ

d

ds
F(uk(s)) ds

=
y∫

µ

A(uk(s))u′k(s) ds =
y∫

µ

A(uk(s))rk(uk(s)) ds (4.42)

=
y∫

µ

λk(uk(s))rk(uk(s)) ds = µ
y∫

µ

u′k(s) ds = µ(uk(y)− ũ
)
.

Thus, indeed, uk(y) satisfies Equation (4.26), with Sk ≡ µ. By the uniqueness
of the curve Pk (Summary 4.14) we conclude that the trajectory traced out by
uk(y) coincides with Pk . ��

Definition 4.23 (A contact discontinuity) Assume that the kth characteristic
field is linearly degenerate. A jump discontinuity between ũ and uk(y), moving
at speed Sk(y) = λk(ũ), is called a k-contact discontinuity.

Remark 4.24 Observe that since the kth characteristic lines run parallel to the
contact discontinuity (Figure 4.6), the Lax entropy condition (4.36), (4.38) is not
satisfied. Thus, a contact discontinuity represents a weak solution satisfying the
Rankine–Hugoniot jump condition (4.26), but it is not an admissible shock.

This difference is also reflected in the fact that the contact discontinuity is
“symmetric,” namely, uk(y) and ũ can be interchanged as right and left states,
respectively [with the same speed Sk(y) for the discontinuity]. This is not the
case for an admissible shock. Indeed, in the latter case, if we take uk(y) ∈ P+k as
the right state and ũ as the left state, then the jump condition (4.26) is still valid.
However, the Lax entropy condition is violated [as in Figure 4.5(a)]; hence it
is an inadmissible shock solution.

In the fluid dynamical context of compressible flow the contact discontinuity
corresponds to a “material interface” – a discontinuity moving at “particle
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speed” and separating two states of different densities, but equal velocities and
pressures.

Remark 4.25 Note that although Equations (4.14) and (4.39) are identical, they
represent two entirely different structures. In the former, the solution w(y),
y = x/t , traces out a CRW as y varies (so it is a single wave). In the latter,
every y represents a state, uk(y), that can be connected to ũ by a single wave
(contact discontinuity).

The Riemann Problem

As in the scalar case (see Definition 2.18) the simplest (nontrivial) IVP for (4.1)
is of particular significance.

Definition 4.26 (The Riemann problem) The “Riemann problem” (RP) for
the system of conservation laws (4.1) is the IVP subject to the initial data

u0(x) = uL (x < 0), u0(x) = uR (x > 0),

where uL, uR are constant states.

In Section 3.1 we have seen the fundamental role played by the (scalar)
Riemann problem in the GRP approach. In the next chapter we shall see that a
similar role is played by the RP in the case of compressible fluid dynamics.

There is a major difference between the solution of the RP in the scalar case
and that of systems. In the former we have seen (see the discussion following
Definition 2.18) that, assuming the strict convexity of f (u), there exists a unique
“entropy” solution for every two given states uL, uR. This cannot be repeated
in the case of systems. Recall that we are always assuming that the system
satisfies the hypothesis of strict hyperbolicity (Definition 4.6) and that every
characteristic family is either genuinely nonlinear (Remark 4.9) or linearly
degenerate (Definition 4.16). The basic reason for the difference between the
scalar and the system cases (with regard to the RP) is that the interaction curves
for given states ũ (Definition 4.19) can be defined only locally, namely, only
for states u sufficiently close to ũ. Such states (viewed as left states) can be
connected to ũ (viewed as a fixed right state) by a fan of m waves, associated
with the m characteristic families. The exact statement is as follows.

Theorem 4.27 (Solution to the RP) Let uR ∈ R
m be given. Then there exists

a small neighborhood CuR of uR, having the following property: For every
v ∈ CuR the Riemann problem for (4.1), with initial data (uL = v,uR) has a
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Figure 4.7. The solution to the Riemann problem.

unique solution u(x, t) = w( x
t ) (x ∈ R, t > 0). This solution consists of m

waves �1, �2, . . . , �m. The wave �k(1 ≤ k ≤ m) is an admissible shock, a
contact discontinuity, or a CRW associated with the kth characteristic family
(see Figure 4.7).

Before proving the theorem, let us consider the structure of the solution
u(x, t). First it is stated that it is constant along straight rays emanating from the
origin. We refer to such a solution as “self-similar.” This self-similarity is natural
in view of the self-similarity of Equation (4.1) and the special initial data for the
RP. In other words, the RP is invariant [both (4.1) and the initial data] under any
rescaling x ′ = αx , t ′ = αt (α > 0) of the space and time coordinates. Second,
the solution consists of sectors (“wedges”) in the (x, t) half-plane (t > 0), in
which it assumes constant values u1, . . . ,um+1 (u1 = v,um+1 = uR) connected
by waves �1, . . . , �m . The wave �k (1 ≤ k ≤ m), connecting uk,uk+1 belongs
to exactly one of the following three types:

(i) admissible (“entropy”) shock,
that is, a jump discontinuity moving at speed Sk such that

F(uk+1)− F(uk) = Sk(uk+1 − uk)

and such that the entropy conditions (4.36), (4.38) are satisfied, with

uk+1 = uk(y),uk = ũ;

(ii) contact discontinuity,
that is, a jump discontinuity satisfying (4.40), with

uk+1 = uk(y),uk = ũ and Sk = λk(uk); or

(iii) CRW wk(y) as in Definition 4.5, with

µ1 ≤ y ≤ µ2, µ1 = λk(uk), µ2 = λk(uk+1). (4.43)
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An important observation is that any two adjacent waves �k, �k+1, 1 ≤ k ≤
m − 1, do not interact with each other. Indeed, the speed of �k is Sk [in cases
(4.43) (i) and (ii)] or λk(uk+1), the fastest moving characteristic of the CRW. By
the entropy conditions (4.36) and (4.38) we have Sk < min(λk(uk), λk+1(uk+1)).
The eigenvalue λk+1(uk+1) is the speed of the slowest moving characteris-
tic of �k+1, if it happens to be a CRW. If �k+1 is a contact discontinuity,
then Sk+1 = λk+1(uk+1) [see (4.40)]. Finally, if �k+1 is a shock wave, then
the entropy condition (4.36) yields Sk+1 > λk+1(uk+2) > λk(uk). The last in-
equality follows from (4.10), assuming that |uk − uk+2| is small (as all values
are in the neighborhood of uR). We have therefore obtained a stable pattern
of noninteracting self-similar waves �1, . . . , �m , where �k+1 is faster than
�k , k = 1, . . . ,m − 1. Note that we have made use here of the two parts
[(4.36), (4.38)] of the entropy condition.

We can now turn to the proof of Theorem 4.27. Geometrically speaking,
the proof relies on the fact that the interaction curves I r

k (ũ), k = 1, . . . ,m (see
Definition 4.19), can serve as a “coordinate system” in a neighborhood of ũ in
the “phase space” R

m .

Proof (of Theorem 4.27) Given a state uR, we can find a small neighborhood
CuR ⊆ R

m of uR having the following property:
For every v ∈ CuR the interaction curves I r

k (v), k = 1, . . . ,m (see Defini-
tion 4.19), exist and, for any 1 ≤ k ≤ m, the curve I r

k (v) comprises all possible
states (in CuR ) that can be connected as left states to the right state v by means of
a k-CRW, an admissible k-shock, or a k-contact discontinuity (see Figure 4.8).

Figure 4.8. A neighborhood of a state uR “covered” by interaction curves, and their
parametrization.
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Along the curve I r
m(uR) we use a parameter ym , so that ym = 0 at uR. In

other words, this is the parameter y of Definition 4.19 (with ũ = uR, k = m)
shifted by µ. Next, for every um ∈ I r

m(uR) we use a parameter ym−1 along the
curve I r

m−1(um), so that ym−1 = 0 at um (see Figure 4.8). Note that if u1
m,u

2
m

are two different points on I r
m(uR), the tangent vectors to the curves I r

m−1(u1
m)

and I r
m−1(u2

m) are, respectively, rm−1(u1
m) and rm−1(u2

m) [see (4.25)]. Since both
of them are close to rm−1(uR), the curves I r

m−1(u1
m), I r

m−1(u2
m) do not intersect

in the small neighborhood CuR . We continue in this fashion. The last step is to
parametrize, for every u2 ∈ I r

2 (u3), the curve I r
1 (u2) by means of a parameter

y1, which vanishes at u2. The tangent to this curve at u2 is r1(u2) [which
is close to r1(uR)]. We may summarize this construction by saying that for
every y = (y1, . . . , ym) ∈ R

m , in a small neighborhood of y = 0, we find a
point u1 = Φ(y) ∈ CuR [going through the sequence in which um corresponds
to ym on I r

m(uR), um−1 to ym−1 on I r
m−1(um), . . . ]. Clearly, the rows of the

Jacobian matrix DyΦ(y) at y = 0 are r1(uR), . . . , rm(uR), so that the matrix
is nonsingular. The Implicit Function Theorem now implies that a small ball
Bδ = {y ∈ R

m, ||y|| < δ} is mapped (one-to-one) unto a small neighborhood
of uR, contained in CuR . This concludes the proof of our theorem, since any
point u1 = Φ(y) (y ∈ Bδ) is connected to uR by a sequence (resulting from the
construction) um+1 = uR,um, . . . ,u2, so that uk and uk+1 are, respectively, the
left and right states of a k-wave, �k, k = 1, 2, . . . ,m. ��

Remark 4.28 In analogy with the scalar case [see the discussion following
Equation (2.26)] it can be shown that the solution constructed in Theorem 4.27
is a weak solution in the sense of (4.16). Note, however, that it is not a clas-
sical solution; in addition to the jump discontinuities, the derivatives (but not
the solution itself) are not continuous at the two extreme characteristics of
a CRW.

4.2 Euler Equations of Quasi-1-D, Compressible, Inviscid Flow

We consider here the time-dependent flow of a compressible, inviscid fluid
moving through a duct of variable cross section. The flow is assumed to be
quasi-one-dimensional (quasi-1-D); namely, at any given time t the flow is
uniform over every cross section of the duct (but, of course, may vary from one
cross section to another). Thus, for a duct as depicted in Figure 4.9, we let r
be a spatial coordinate along the main axis. Our hypothesis is then that all flow
quantities (density, pressure, velocity, etc.) depend only on (r, t).

Certainly, in many cases this is just a simplified model approximating a more
realistic two- (or three-) dimensional flow, based on a physical assumption that
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D

Figure 4.9. Quasi-1-D flow in a duct.

the flow varies primarily along the duct axis. However, there are three cases of
substantial physical significance, in which the model is exact:

(A) Planar flow, sometimes referred to as “one-dimensional” flow. Here the
whole flow is aligned with one direction, say the x axis. All flow quantities
depend only on x (which is now the “r coordinate”), in addition to the
time t . The velocity vector has only an x component u(x, t).

(B) Cylindrical flow. In this case the flow is symmetric about a fixed axis, say
the z axis. The coordinate r is now r = (x2 + y2)1/2 and all flow quantities
are functions of (r, t). The velocity v(x, y, z, t) satisfies v(x, y, z, t) =
r−1u(r, t)(x i+ yj) (where i, j,k are the unit vectors along the x, y, z axes,
respectively). Observe that the duct can now be taken as a sector λ1x <
y < λ2x, 0 ≤ λ1 < λ2, x ≥ 0.

(C) Spherical flow. In this case the flow is symmetric about a fixed center O,
the origin. The coordinate r is now the distance (x2 + y2 + z2)1/2 and the
velocity is radial, namely, v(x, y, z, t) = r−1u(r, t)(x i+ yj+ zk).

The Flow Equations

We now turn to the equations governing our quasi-1-D flow. They express the
three basic physical laws governing the flow: conservation of mass, conserva-
tion of momentum (or, alternatively, Newton’s second law), and conservation of
energy. These laws are most easily derived by a “control volume” (or “integral”)
approach: One considers a fixed mass of fluid and applies the conservation laws
to it. As is usually the case, we assume that there are no external forces (such as
gravity or electromagnetic) so that the only existing force is due to the hydro-
dynamic pressure. We shall give here a brief outline of the derivation and refer
the reader to fluid dynamics books, such as those by Chorin and Marsden [28],
Courant and Friedrichs [30], or Landau and Lifshitz [74], for a detailed deriva-
tion of the equations. The reader is also advised to consult these monographs
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for closely related topics, such as the isotropic character of the hydrodynamic
pressure (which makes it a scalar function) or basic thermodynamic facts con-
cerning entropy, internal energy, and their dependence on pressure and density
(“equation of state”). In the course of our presentation of the equations, we shall
only refer briefly to these facts.

Let A(r ) be the cross-sectional area of the duct at r . Clearly, A(r ) ≡ 1 for
planar flow, A(r ) = r for cylindrical flow, and A(r ) = r2 for spherical flow.
There are three unknown functions. The velocity u(r, t), which is the (scalar)
component along the r axis, the density (mass per unit volume) ρ(r, t), and
the total specific energy (per unit mass) E(r, t). The energy E consists of the
kinetic energy (per unit mass) 1

2 u2 and the internal (thermodynamic) energy
e, so E = 1

2 u2 + e. A basic thermodynamic postulate in the derivation of the
equations is that the hydrodynamic pressure p is a function p = p(e, ρ). We
refer to this function as the equation of state of the fluid. The resultant force on
a given volume D of the fluid is then−∫

∂D pn dσ = −∫D ∇ p dτ,where ∂D is
the boundary of D, dσ is the surface element, dτ is the volume element, and n
is the outward (unit) normal to ∂D. The preceding equality follows by Stokes’
theorem. Similarly, the work done by the pressure on the fluid (per unit time)
is −∫D ∇ · (pv) dτ, where v is the velocity vector. Note also that the outflux
(per unit time) across ∂D, for any quantity ψ (in our case ψ = ρ or ψ = ρE),
is
∫
∂D ψ(v · n) dσ . We can now take D as the segment r1 ≤ r ≤ r2 of the duct

(see Figure 4.9). Incorporating these considerations into the balance equations
for mass, momentum, and energy, and letting r2 − r1 go to zero, we obtain the
conservation equations in differential form:

(i) ∂
∂t ρ + A−1 ∂

∂r [Aρu] = 0 (conservation of mass),

(ii) ∂
∂t (ρu)+ A−1 ∂

∂r [Aρu2]+ ∂p
∂r = 0 (conservation of momentum), (4.44)

(iii) ∂
∂t (ρE)+ A−1 ∂

∂r [A(ρE + p)u] = 0 (conservation of energy),

where the equation of state p = p(e, ρ) is given.
Let us inspect the structure of Equations (4.44) in light of the general frame-

work given by (4.1). In our case m = 3 and we can write the system (4.44) as

∂

∂t
U+ A−1 ∂

∂r

[
AF(U)

]+ ∂

∂r
G(U) = 0, (4.45)

U =



ρ

ρu
ρE



 , F(U) =



ρu
ρu2

(ρE + p)u



 , G(U) =



0
p

0



 .
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Writing

U =



u1

u2

u3





we have readily

F(U) =







u2

u2
2

u1

u2u3
u1
+ u2

u1
p




 , G(U) =






0

p

0





 , (4.46)

where

p = p(e, ρ) = p

(
2u1u3 − u2

2

2u2
1

, u1

)
,

so that F and G are indeed functions of U, the vector of unknown functions.
However, the presence of the function A(r ) means that the system (4.45) cannot
be cast in the form (4.1) [i.e., A−1(AF(U))r cannot, in general, be written as
(F̃(U))r for some F̃]. However, this is possible in the planar case A(r ) ≡ 1. We
record it for future use (using again “x” for the spatial coordinate):

∂

∂t
U+ ∂

∂x
[F(U)+G(U)] = 0. (4.47)

We conclude that the study of solutions of (4.45) must be carried out in
its special context.5 However, we shall see that the basic observations and
results developed for the general case (4.1) can be adapted here with minor
modifications. From a “physical” point of view, this is possible because A(r )
varies “slowly” near any point r = r0, since it is continuously differentiable (an
assumption that we retain throughout this section). Thus, the physical features
near that point (such as the wave pattern, characteristics, discontinuities, etc.)
are “close” to those of (4.47).

Eigenvalues and Characteristic Equations

Differentiation of the middle term in (4.45) yields

∂

∂t
U+ ∂

∂r
[F(U)+G(U)]+ A−1 A′F(U) = 0. (4.48)

5 Note that in the cylindrical and spherical cases the coordinate r is restricted to nonnegative
values, and suitable boundary conditions must be imposed at the “singularity” r = 0.
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Using the representation (4.46) we could now proceed in parallel to the derivation
of (4.6), finding the eigenvalues [of the Jacobian of F(U)+G(U) with respect
to U] and the associated characteristic relations. However, it turns out to be
easier, in our case, to replace the three unknown functions (components of U)
by the three functions ρ, u, S, where S = S(e, ρ) is the entropy.6 We recall that
the function S may be defined (see Courant and Friedrichs [30, Chapter I]) by
the first law of thermodynamics; it asserts that in an “infinitesimal” reversible
process, the change in internal energy of a fixed element of an ideal fluid is equal
to the heat absorbed by the element and the work done on it by the pressure
force. Thus, with τ = 1/ρ,

de = T d S − p dτ, (4.49)

where T is the temperature and T d S = d Q is the absorbed heat.7 When Equa-
tion (4.49) is incorporated into our flow setup, we must keep in mind that it
applies to fixed mass elements. Thus, time derivatives must be taken along
“particle paths” dr

dt = u. If we denote such derivatives as D
Dt = ∂

∂t + u ∂
∂r (later

on we shall see the important role played by such derivatives in the Lagrangian
framework), we can write (4.49) as

De

Dt
= T

DS

Dt
− p

Dτ

Dt
. (4.50)

Note that with this notation Equation (4.44)(iii) can be written as

D

Dt
(ρE)+ ∂

∂r
(pu)+ ρE

∂u

∂r
+ A−1 A′(ρE + p)u = 0. (4.51)

Equation (4.44)(i) can be written as

Dρ

Dt
+ ρ ∂u

∂r
+ A−1 A′ρu = 0, (4.52)

so that, multiplying it by E and subtracting the result from (4.51) we have

ρ
D

Dt
E + ∂

∂r
(pu)+ A−1 A′ pu = 0. (4.53)

6 It is known (Evans [36, Chapter 11]) that a transformation (even smooth) of the unknown
variables is in general not admissible, as it leads to wrong jump conditions across discontinuities.
It is allowed, however, in domains where the solution is smooth, as we assume here.

7 Mathematically speaking, we can consider 1
T as an “integrating factor” for the form de + pdτ ,

so that 1
T (de + pd( 1

ρ
)), with p = p(e, ρ), is a total differential of a function of (e, ρ).
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Similarly, writing (4.44)(ii) as

D

Dt
(ρu)+ ρu

∂u

∂r
+ ∂p

∂r
+ A−1 A′ρu2 = 0 (4.54)

and subtracting from it (4.52) (multiplied by u) we get the following form of
the momentum equation:

ρ
Du

Dt
+ ∂p

∂r
= 0. (4.55)

Using E = e + 1
2 u2 and (4.55) in (4.53) we get

ρ
De

Dt
+ p

∂u

∂r
+ A−1 A′ pu = 0. (4.56)

However, from (4.52), with τ = 1/ρ, we obtain

p
Dτ

Dt
= − p

ρ2

Dρ

Dt
= p

ρ

(
∂u

∂r
+ A−1 A′u

)
, (4.57)

and so the energy equation (4.56) takes the form

ρ
De

Dt
+ ρp

Dτ

Dt
= 0, τ = 1

ρ
. (4.58)

Comparing this equation with (4.50) we conclude finally that the energy equation
(4.44)(iii) is equivalent to8

D

Dt
S = 0. (4.59)

In summary, Equations (4.52), (4.55), and (4.59) form an equivalent system
to (4.44), which expresses the basic conservation laws. We should keep in mind,
however, that this equivalence holds only in domains of smooth flow. The new set
of unknown functions is now (ρ, u, S). Hence in the momentum equation (4.55)
the pressure p is interpreted as a function of the two thermodynamic variables
ρ, S and

∂p

∂r
=
(
∂p

∂ρ

)

S

∂ρ

∂r
+
(
∂p

∂S

)

ρ

∂S

∂r
. (4.60)

8 This means that the flow is “adiabatic,” namely, that every mass element retains its entropy as
long as it undergoes only a slow, reversible process, and, in particular, as long as the flow is
smooth.
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The term
(
∂p
∂ρ

)
S
, expressing the rate of change of pressure with respect to density,

at fixed entropy, is of prime significance in the study of compressible fluid
flow. A basic hypothesis is that it is positive. (Physically, it means simply that
compressing a fluid element, without allowing for heat exchange across its
boundary, leads to increased pressure.) Thus, we can define a thermodynamic
function c = c(ρ, S) > 0 by

c2 =
(
∂p

∂ρ

)

S

. (4.61)

The function c is the “speed of sound” [at (ρ, S)], a term that will be clarified
in the following. Grouping together Equations (4.52), (4.55), and (4.59), and
noting (4.60) and (4.61) in the second one, we can write the system (in domains
of smooth flow) as

∂

∂t




ρ

u
S



+






u ρ 0
c2

ρ
u 1

ρ

(
∂p
∂S

)

ρ

0 0 u




 · ∂

∂r




ρ

u
S



+ A−1 A′




ρu
0
0



 =



0
0
0



 .

(4.62)

We can now proceed as in the derivation of (4.4). First, it is easily seen that the
eigenvalues of the matrix

A(ρ, u, S) =






u ρ 0
c2

ρ
u 1

ρ

(
∂p
∂S

)

ρ

0 0 u




 . (4.63)

are given by

λ1(ρ, u, S) = u − c, λ2(ρ, u, S) = u, λ3(ρ, u, S) = u + c, (4.64)

with corresponding (left) eigenvectors

lT1 =
[

c

ρ
,−1,

1

ρc

(
∂p

∂S

)

ρ

]

, lT2 = [0, 0, 1], lT3 =
[

c

ρ
, 1,

1

ρc

(
∂p

∂S

)

ρ

]

.

(4.65)

The characteristic curves corresponding to the slopes λ1, λ3 are labeled, respec-
tively, as C−,C+. Those corresponding to λ2 are labeled as C0. Note that the
C0 curves are trajectories traced out by fluid particles. They are referred to as
“particle paths.” Taking the product of each of the eigenvectors with (4.62) we
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get the characteristic equations as in (4.6). Using again the notation of total time
differentiation [see (2.7)] we can write these equations as follows:

(i) c
ρ

dρ
dt − du

dt + 1
ρc

(
∂p
∂S

)

ρ

d S
dt = −A−1 A′uc along C− :

dr

dt
= u − c,

(ii) DS
Dt = 0 along C0 :

dr

dt
= u, (4.66)

(iii) c
ρ

dρ
dt + du

dt + 1
ρc

(
∂p
∂S

)

ρ

d S
dt = −A−1 A′uc along C+ :

dr

dt
= u + c.

It is common to write the characteristic equations in “total differential” form
(see, e.g., Courant and Friedrichs [30, Section 34]). In doing so we note that in
view of (4.61), we can write

c

ρ

dρ

dt
+ 1

ρc

(
∂p

∂S

)

ρ

d S

dt
= 1

ρc

dp

dt
,

so that (4.66) yields

(i) 1
ρc dp ± du = −A−1 A′uc dt along C± :

dr

dt
= u ± c,

(4.67)
(ii) d S = 0 along C0 :

dr

dt
= u.

Remark 4.29 (Adiabatic character of the flow) As pointed out in the foot-
note to (4.59), the entropy remains invariant along particle paths (i.e., dr

dt = u),
as long as the flow is smooth. Hence, along these lines the pressure p = p(ρ, S)
varies only with the density, and invoking (4.61) we get

dp = c2 dρ along
dr

dt
= u. (4.68)

This equation is equivalent to (4.67)(ii).

Finally, we examine the hyperbolic character of our system, in light of the
general Definition 4.6.

Claim 4.30 The system (4.44) [or, equivalently, (4.62)] is strictly hyperbolic.
Theλ1, λ3 characteristic families are genuinely nonlinear (Remark 4.9) whereas
the λ2 family is linearly degenerate (Definition 4.16).

Proof The assumption c > 0 means that the eigenvalues satisfy λ1 < λ2 < λ3

[see (4.64)], in compliance with (4.10). The right eigenvectors of A
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[Equation (4.63)] are given by

r1 =




ρ

c
−1
0



 , r2 =






1
c2

(
∂p
∂S

)

ρ

0
1




 , r3 =





ρ

c
1
0



 . (4.69)

We compute

∇ρ,u,Sλ1 · r1 =
[

−
(
∂c

∂ρ

)

S

, 1,−
(
∂c

∂S

)

ρ

]

· r1 = −ρ
c

(
∂c

∂ρ

)

S

− 1 ≤ −1,

where we have imposed the plausible thermodynamic assumption that the speed
of sound increases with density, at a fixed entropy [compare to the analogous
assumption on the pressure, prior to (4.61)]. Thus, we can normalize r1 so that
it satisfies (4.13). A similar argument applies to λ3, r3. For r2 we have

∇ρ,u,Sλ2 · r2 = [0, 1, 0] · r2 ≡ 0,

so it satisfies (4.34) and hence is linearly degenerate. ��

Remark 4.31 Note that except for the planar case (A′ ≡ 0) the system is not
in strict conservation form [see the discussion following (4.46)]. The con-
cepts of hyperbolicity in the claim refer to the Jacobian matrix F′(U)+G′(U),
or, equivalently, to the matrix A(ρ, u, S) [see (4.63)]. This matrix determines
(locally) the main features of the flow. In other words, given initial values of
the flow at t = 0, the flow evolves, near a point r = r0 and for a short time,
approximately as it would in the planar case (4.47). In particular, this matrix
determines the interaction curves (Definition 4.19) of the system and thus the
local, short-time wave pattern (shocks, centered rarefaction waves, and contact
discontinuities). It is only at later times that the “geometric” factor (associated
with A′ �= 0) comes into play, and the interaction of waves deviates from the
planar case.

We note that in all cases the characteristic families split into two groups. The
linearly degenerate one (C0) consists of “particle paths,” namely, trajectories in
the (r, t) plane satisfying dr

dt = u. The genuinely nonlinear families C± consist
of trajectories satisfying dr

dt = u ± c and hence the waves are propagating at
speeds ±c relative to the particle paths. Physically, these waves can be viewed
as “traveling ripples” of pressure, caused by the compressive effect of particles
moving at different velocities, as expressed by (4.67)(i). In other words, these
are the characteristics of the system obtained by linearizing (4.62) that represent
the propagation of “infinitesimal pressure waves.” It justifies the terminology
“sound waves” that is often used in this context and the role of c as the “speed
of sound” (Landau and Lifshitz [74]).
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Isentropic Flow

A special case of considerable interest is a flow in which the entropy is uniform
(in space) and constant (in time), that is, S(r, t) ≡ S0. We refer to this flow as
an “isentropic flow.” Note that, in general, the flow is adiabatic as long as it is
smooth [see (4.59)], so that S is conserved along particle paths. Thus, assuming
that the entropy is initially uniform, it remains constant as long as the flow is
smooth.

In the case of an isentropic flow the third equation in (4.62) is automatically
satisfied and can be left out. The system then reduces to

∂

∂t

[
ρ

u

]
+
[

u ρ
c2

ρ
u

]

· ∂
∂r

[
ρ

u

]
+ A−1 A′

[
ρu
0

]
=
[

0
0

]
. (4.70)

The eigenvalues are u ± c and the characteristic relations (4.66)(i),(iii) can be
written as [see also (4.67)(i), where dp = c2dρ]

c

ρ
dρ ± du = −A−1 A′ uc dt along C± :

dr

dt
= u ± c. (4.71)

Note that c2 = ( ∂p
∂ρ

)
S is now a function of ρ alone. In the special case of planar

flow (A′ = 0) the relations (4.71) can be integrated to yield

R±(ρ, u) =
ρ∫

ρ0

c(β)

β
dβ ± u = constant along C± :

dr

dt
= u ± c.

(4.72)

The functions R±(ρ, u) are called the “Riemann invariants” of the flow. They
serve as very useful tools in solving initial value problems of isentropic flow
(Courant and Friedrichs [30, Sections 37 and 38]).

Weak Solutions and Jump Conditions

The definition of a weak solution to the system (4.45) follows the procedure of
Definition 4.12. If we take a test function φ(r, t) ∈ C1

0 , a weak solution U(r, t)
to (4.45) must satisfy

∫

R

∞∫

0

{
A(r ) [Uφt + (F(U)+G(U))φr ]+ A′(r )G(U)φ

}
dt dr

+
∫

R

A(r )φ(r, 0)U0(r ) dr = 0, (4.73)
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where U0(r ) = U(r, 0). This definition is formally obtained by multiplying
(4.45) by Aφ and integrating by parts. Note that if the coordinate r is restricted
(say, r ≥ 0 as in the cylindrical or spherical cases), then the integration in r is
accordingly restricted, and φ(r, t) vanishes near the endpoints of the r -domain.

We can now proceed to study jump discontinuities of the solution U(r, t). If
� is a domain in the (r, t) plane and � = ∂� (as in Figure 2.2) we obtain, as in
Claim 2.6 and (4.17),
∮

�

A(r ) [−U(r, t) dr + (F(U)+G(U)) dt]−
∫∫

�

A′(r )G(U) dr dt = 0.

(4.74)

Note that the fact that the system (4.45) is not in conservation form is reflected
in the presence of the term A′(r )G(U) in (4.73), (4.74).9 Using the setup of
Figure 2.2 we see that

∫∫

�

A′(r )G(U) dr dt =
∫∫

�1

+
∫∫

�2

A′(r )G(U) dr dt

(although U is discontinuous across C). Letting C : r = r (t), we set

U±(r (t), t) = lim
r→r (t)±

U(r (t), t),

[U] (t) = U+(r (t), t)− U−(r (t), t),

[F(U)] (t) = F(U+(r (t), t))− F(U−(r (t), t)),

[G(U)] (t) = G(U+(r (t), t))−G(U−(r (t), t)).

Following the derivation of (2.20) we get

∫

C

A(r (t))
{
[U] (t)r ′(t)− [F(U)+G(U)] (t)

}
dt = 0. (4.75)

We conclude, as in Corollary 2.8, that the speed σ (t) = r ′(t) of the discontinuity
satisfies the Rankine–Hugoniot jump condition,

[F(U)+G(U)] (t) = σ (t) [U] (t). (4.76)

9 This term appears only in the momentum equation and has the form A′(r )p. It constitutes a
“geometric source” term for the motion of the fluid. Assuming p > 0, this term is positive (resp.
negative) in a diverging (resp. converging) duct.
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Thus, we obtain a jump condition that is identical to (4.18). In other words,
because it “ignores” the variable cross section, the resulting speed σ is equal
to the one obtained in the planar case (4.47) (note that the flux here is F+G).
Heuristically, this can be explained by the fact that the jump condition (4.76)
concerns a narrow domain, bounded by the cross sections at r (t)± ε (small
ε > 0). The variation of the area A(r ) in this domain can be taken as small,
converging to the planar case as ε → 0.

In view of Claim 4.30 and the general Definition 4.23, the discontinuity
associated with the eigenvalue λ2 = u [see (4.64)] is a contact discontinuity,
which coincides with the particle path C0. When it separates two constant
states U±, we infer from (4.40) that the velocity u is uniform on the two sides
u± = σ . Inserting this in the Rankine–Hugoniot condition (4.76) and using the
explicit form (4.45) of F,G, we get

σ (ρ+ − ρ−) = σ (ρ+ − ρ−),

σ 2(ρ+ − ρ−) = σ 2(ρ+ − ρ−)+ p+ − p−, (4.77)

σ (ρ+E+ − ρ−E−) = σ [(ρ+E+ + p+)− (ρ−E− + p−)] .

We conclude that p+ = p−, whereas ρ+ − ρ− is arbitrary. Thus, the velocity
and pressure are continuous across C0, whereas the jump in density is arbitrary.
These facts justify the term “material interface,” which is used sometimes to
describe this discontinuity. The interface travels at the “particle” (or “fluid”)
speed and separates two regions that carry equal pressures but differ in densities.
No mass is crossing over from one side to the other, so they can be regarded as
two separate materials.

The discontinuities associated with the eigenvalues λ1,3 = u ± c are shock
waves, since the families are genuinely nonlinear (Claim 4.30). They are des-
ignated, following Definition 4.18, as 1-shocks and 3-shocks. The Lax entropy
condition for a 3-shock implies, by (4.36) [see Figure 4.5(b)],

u− + c− > σ3 > u+ + c+. (4.78)

Because c is the speed of sound relative to the fluid, u + c is the speed of acoustic
waves in the (r, t)-frame. The inequalities (4.78) express the very fundamental
fact concerning admissible shocks, namely, that they are supersonic with respect
to the “front” (preshock) state and subsonic with respect to the “back” (post-
shock) state. (See the shock σ3 in Figure 4.10.) Clearly, the same conclusion ap-
plies to the case of 1-shocks. However, the inequality u+ − c+ < σ1 < u− − c−
(see the shock σ1 in Figure 4.10) now means σ1 − u− < −c−, σ1 − u+ > −c+,
so that the acoustic wave moving to the left at speed (relative to the fluid) −c−
(resp. −c+) is slower (resp. faster) than the shock. Thus, the shock is super-
sonic with respect to the state on its left, which is now regarded as the “front”
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Figure 4.10. Right-facing (σ3) and left-facing (σ1) shocks.

(preshock) state. This is expressed by saying that 1-shocks “face left” whereas
3-shocks “face right.” We note also that the fluid crosses the shock trajectory
from “front” to “back.” Indeed, we have σ3 > u+, whereas by the entropy con-
dition (4.38) σ3 > u− (see Figure 4.10). The same conclusion holds in the case
of 1-shocks. Note that these conclusions hold regardless of the signs of the
speeds σ1, σ3. Both can be positive or negative (or the speeds can even be zero,
in which case the shocks are stationary).

The jump conditions (4.76) for 1- and 3-shocks can be further developed, so
as to give more specific algebraic expressions for the Hugoniot curves (i.e., the
“shock” part of the interaction curve; see Definition 4.19). Such expressions
are basic in the study of compressible fluid dynamics (and the GRP method).
We shall present them later in the chapter, following the introduction of the
Lagrangian framework.

Lagrangian Coordinates

The Lagrangian representation of the flow is based on the flow map, that is,
on tracking particles as they move about. This means that each particle is
assigned a fixed set of parameters that uniquely characterize it at any time.
These parameters are called the “Lagrangian coordinates” of the particle. They
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can serve as a substitute of the standard underlying coordinate system (the
“Eulerian” system) as long as the flow is sufficiently well “organized” (e.g.,
no two particles collide). In many cases, a natural choice for the Lagrangian
coordinates of a particle is the set of its (Eulerian) coordinates at t = 0. How-
ever, in our case of quasi-1-D flow there exists an alternative definition of the
Lagrangian coordinate, which will prove to be instrumental in the solution of
generalized Riemann problems.

Definition 4.32 The Lagrangian coordinate ξ of the particle initially located
(t = 0) at r is given by

ξ =
r∫

r0

A(s)ρ(s, 0) ds, (4.79)

where r0 is a fixed point in the initial domain.

The coordinate ξ is therefore (see Figure 4.9) the total mass initially enclosed
in the duct section r0 ≤ s ≤ r (or r ≤ s ≤ r0 with a negative sign, if r < r0).
Since by assumption particle paths issuing from two different points r1 �= r2 do
not intersect each other, the transformation r → ξ (r, t) and its inverse ξ (r, t) →
r are well defined at all later times. The trajectory t → r (ξ, t) is the particle
path starting at r (ξ, 0) [which is the r related to ξ by (4.79)]. Thus,

∂

∂t
r (ξ, t) = u(r (ξ, t), t). (4.80)

Also, the mass enclosed between any two particle paths r (ξ, t) and r (ξ +	ξ, t)
is constant in time and equal to its initial value 	ξ . Thus,

	ξ =
r (ξ+	ξ,t)∫

r (ξ,t)

A(s)ρ(s, t) ds.

Dividing by 	ξ and letting 	ξ → 0 we obtain

1 = A(r (ξ, t)) · ρ(r (ξ, t), t) · ∂
∂ξ

r (ξ, t),

namely,

∂

∂ξ
r (ξ, t) = [A(r (ξ, t))ρ(r (ξ, t), t)]−1 . (4.81)
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Let Q denote any flow variable (such as density or pressure) that is a function
Q = Q(r, t). By changing r = r (ξ, t) it becomes a function Q = Q(r (ξ, t), t)
of the Lagrangian coordinate and time. For simplicity we shall persist with the
notation Q = Q(ξ, t), while indicating clearly (especially in differentiations)
which variables are being used.

By (4.80), (4.81) the Lagrangian time derivative satisfies

∂

∂t
Q(ξ, t) = ∂

∂t
Q(r, t)

∣
∣
∣
∣
r=r (ξ,t)

+ u(ξ, t)
∂

∂r
Q(r, t)

∣
∣
∣
∣
r=r (ξ,t)

(4.82)

and is identical to the “total time derivative” D
Dt introduced earlier [see the para-

graph preceding Equation (4.50)]. Thus, we can write the flow equations in terms
of the basic variables τ = 1

ρ
, u, and E by simply recalling Equations (4.52),

(4.53), and (4.55) and using (4.81), (4.82). We obtain the system

∂

∂t
V+ ∂

∂ξ
(AΦ(V))+ A

∂

∂ξ
Ψ(V) = 0,

(4.83)

V =



τ

u
E



 , Φ(V) =



−u

0
pu



 , Ψ(V) =



0
p
0



 ,

where it is understood that all flow variables, as well as the coordinate r , are
functions of ξ, t . In particular, A = A(r (ξ, t)). This system is equivalent to the
basic system (4.45). As in the Eulerian case, we can replace the energy equation
(in regions of smooth flow) by ∂

∂t S(ξ, t) = 0 [see (4.59)]. Doing so, and carrying
out the differentiations in (4.83), we get, parallel to (4.62),

∂

∂t




τ

u
S



+ A






0 −1 0

−c2τ−2 0
(
∂p
∂S

)

ρ

0 0 0




 · ∂

∂ξ




τ

u
S



+ ∂A

∂ξ




−u

0
0



 =



0
0
0



 .

(4.84)

The eigenvalues of the system are now µ1 = −Aρc, µ2 = 0, µ3 = Aρc. As in
Claim 4.30, the µ1, µ3 families are genuinely nonlinear whereas the µ2 family
is linearly degenerate. In fact, the acoustic “impedance” g = ρc is the speed
of sound relative to the fluid in the planar Lagrangian frame (A ≡ 1). The
µ1, µ3 characteristic curves are, respectively, the sound waves propagating in
the±ξ directions. Theµ2 characteristics (ξ = constant) are the particle paths.
There is no need to derive the characteristic relations anew from (4.84), as they
are already given in total differential form by Equations (4.67). Retaining the
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notation A′ = d
dr A(r )

∣∣
r=r (ξ,t)

, we obtain

dp ± g du = −A−1 A′guc dt along
dξ

dt
= ±Ag, g = ρc. (4.85)

Remark 4.33 The definition of a weak solution can be based on the system
(4.83), as a substitute to (4.45). However, it is not at all evident that the resulting
discontinuous waves (shocks or contact discontinuities) are those obtained from
the Eulerian frame by the transformation ξ = ξ (r, t). In fact, as the case of
vt + vvx = 0 and (v2)t + 2

3 (v3)x = 0 (obtained by multiplying the first by v)
shows, algebraic manipulation of a nonlinear equation may lead to different
waves and jump conditions. However, the Lagrangian and Eulerian frames are
indeed equivalent, as is shown in Wagner [116].

Shock Waves – Detailed Study of the Jump Condition

The considerations following the jump condition (4.76) led us to some im-
portant conclusions concerning the nature of flow discontinuities. The density
undergoes a jump across a contact discontinuity, whereas pressure and velocity
remain continuous. In particular, there is no mass flux across such a discon-
tinuity. However, mass is moving from front to back across 1- and 3-shocks.
The entropy condition implies that the shock is supersonic (resp. subsonic) with
respect to the front (resp. back) state. In the following paragraphs we shall study
the jump conditions, as well as the characteristic relations throughout centered
rarefaction waves, in more detail. The formulas derived here will serve as the
basis for the solution of the Riemann and generalized Riemann problems.

Note first that the jump condition (4.76) is independent of the variable cross
section A(r ). Using the basic form (4.45) it can be written in terms of the three
algebraic relations

(i) σ (ρ+ − ρ−) = ρ+u+ − ρ−u−,

(ii) σ (ρ+u+ − ρ−u−) = ρ+u2
+ + p+ − (ρ−u2

− + p−), (4.86)

(iii) σ (ρ+E+ − ρ−E−) = (ρ+E+ + p+) u+ − (ρ−E− + p−) u−.

To fix the ideas, we assume that “+” and “−” denote, respectively, the
front (preshock) and back (postshock) states (corresponding to a 3-shock as
in Figure 4.10, with σ = σ3). Let v± = u± − σ be the velocities of the fluid
relative to the shock. It is then easy to see that Equations (4.86) take the form

(i) ρ+v+ = ρ−v−
(ii) ρ+v2

+ + p+ = ρ−v2
− + p−, (4.87)

(iii)
[
ρ+
(
e+ + 1

2v
2
+
)+ p+

]
v+ =
[
ρ−
(
e− + 1

2v
2
−
)+ p−

]
v−,
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where e = E − 1
2 u2 is the specific internal energy. These equations have a clear

physical meaning: They express the balance of mass, momentum, and energy
in a reference frame moving with the discontinuity. Since v+ = u+ − σ < 0,
the quantity M = −ρ+v+ > 0 is the mass flux across the shock front (from the
preshock to the postshock state) per unit time and unit area.

Remark 4.34 The jump condition can be written in Lagrangian coordinates,
using the notion of a weak solution to Equation (4.83). If σL = ξ ′(t) is the shock
speed, the first condition yields

σL(τ+ − τ−) = −A(u+ − u−) = −A(v+ − v−)

(A = A(r (ξ (t), t))). By the first equation in (4.87) this reduces to

σL = AM. (4.88)

In view of Definition (4.79) of the coordinate ξ , the equality (4.88) is easily
understood; the shock speed is simply the total amount of mass crossing the
shock front in unit time.

We now proceed as in Proposition 4.17, with regard to 3-shocks (associated
with C+ characteristics). Given a state (ρ+, p+, u+), viewed as a preshock state,
we search algebraic expressions for the locus of all possible left states (ρ−, p−,
u−) that can be connected by an admissible 3-shock. To relate it to the general
theory presented in Section 4.1, we might say that we look for explicit expres-
sions for uk(y), as in Proposition 4.17(ii). It turns out that in our case, the param-
eter y is replaced by a thermodynamic quantity, most commonly the density ρ.

It is more convenient to use the form (4.87) for the jump conditions. Also,
we shall use ρ and τ = 1/ρ interchangeably. Combining (4.87)(i),(ii) we get,
by Mτ± = −v±,

(i) M = p+ − p−
v+ − v− ,

(ii) −M2 = p+ − p−
τ+ − τ− , (4.89)

(iii) (p+ − p−)(τ+ − τ−) = −(v+ − v−)2

and

(p+ − p−)(τ+ + τ−) = −(v2
+ − v2

−). (4.90)

Using (4.87)(iii) in (4.90) we obtain

p+ − p−
2

(τ+ + τ−) = i+ − i−,
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where i = e + pτ is the enthalpy, so that

p+ + p−
2

(τ− − τ+) = e+ − e−. (4.91)

Note the similarity between (4.91) and (4.49) by setting d S = 0 in the latter.
The shock transition is thus formally equivalent to an adiabatic process between
(τ+, e+) and (τ−, e−), at an average pressure (p+ + p−)/2.

From Equations (4.89) [either (ii) or (iii)] we infer that either p− > p+ and
ρ− > ρ+ or p− < p+ and ρ− < ρ+. We intend to show, on the basis of the
entropy condition, that the second case (i.e., that for which the postshock state
has lower pressure and density) must be excluded. To this end we make the
physically plausible hypothesis that along the Hugoniot curve the speed of
sound c = c(ρ, p) increases as ρ (or, equivalently p) increases.

Claim 4.35 The entropy condition (4.78) is satisfied only ifρ− > ρ+, p− > p+.

Proof Suppose to the contrary that ρ− < ρ+, p− < p+. Then by hypothe-
sis c− = c(ρ−, p−) < c+ = c(ρ+, p+). Since M > 0 we have u− < u+ by
(4.89)(i). Thus, u− + c− < u+ + c+, contradicting (4.78). ��

From the general discussion in Proposition 4.17 we know that only “one-
half” of the curve representing all states (ρ−, p−, u−) satisfying (4.89), (4.91)
[with a fixed right state (ρ+, p+, u+)] actually qualifies as the “Hugoniot curve”
of admissible states. It corresponds to P+3 in Definition 4.19. In view of
Claim 4.35 the Hugoniot curve consists of states for which ρ− > ρ+, p− > p+.
These states satisfy (4.91), where e− = e(τ−, p−) is obtained by solving (for e)
the equation of state p = p(e, ρ). Under very general thermodynamical as-
sumptions the relation (4.91) actually defines a smooth decreasing and convex
curve in the (τ, p) plane. We refer the reader to Courant and Friedrichs [30]
for a comprehensive treatment of this topic. It should be noted that (4.91) is
purely thermodynamic. Strictly speaking, it represents the “projection” of the
Hugoniot curve (which includes velocities) on the thermodynamic plane (τ, p).
We summarize as follows:

Summary 4.36 For a fixed state (τ+, p+) the equation

H (τ, p) = p+ + p

2
(τ − τ+)+ e(τ, p)− e(τ+, p+) = 0 (4.92)

defines a smooth, monotonically decreasing, convex curve in the (τ, p) plane.
It represents all thermodynamic states (τ, p) satisfying the Rankine–Hugoniot
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Figure 4.11. The thermodynamic Hugoniot curve P+3 , left states connected to (τ+, p+)
by a 3-shock.

jump conditions relative to (τ+, p+). In particular, if (τ+, p+) is the right state,
the part P+3 {τ < τ+, p > p+} is the Hugoniot curve of all admissible left
(postshock) states [connected to (τ+, p+) by a 3-shock; see Figure 4.11].

Remark 4.37 The lower part of the graph H = 0 in Figure 4.11 is also mean-
ingful in this context. If we designate (τ+, p+) as a left state, then it comprises
all right states (τ, p) connected to (τ+, p+) by a 3-shock (see Remark 4.20).
Since (4.92) is purely thermodynamic, it applies also to 1-shocks. In other
words, renaming (τ+, p+) as (τ−, p−) the part P+3 is identical to P+1 , the locus
of all right states (τ, p) connected to the left state (τ−, p−) by an admissible
1-shock.

The entropy S increases along P+3 , as τ decreases (and p increases). In fact,
this is another (physical) aspect of the “entropy condition,” which asserts that
the entropy of admissible postshock states is higher than that of the preshock
state.

Proposition 4.38 Let p = p(τ ) represent the curve P+3 . Then the entropy
S(τ ) = S(p(τ ), τ ) satisfies

(i) d S
dτ < 0, τ < τ+,

(4.93)
(ii) d S

dτ

∣∣
τ=τ+ =

d2 S
dτ 2

∣∣∣
τ=τ+

= 0.
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Proof In terms of differentials along P+3 , the relation (4.92) can be written as

2 de + (τ − τ+) dp + (p + p+) dτ = 0,

and from the general relation (4.49) we get

2T d S + (p+ − p) dτ + (τ − τ+) dp = 0.

Equation (4.93)(i) now follows by dp
dτ < 0. We also get S′(τ ) = 0 at τ = τ+.

Differentiating once more we have

2T S′′(τ )+ 2T ′(τ )S′(τ )+ (τ − τ+)p′′(τ ) = 0;

hence S′′(τ )τ=τ+ = 0. ��

The admissible part P+3 of H = 0 is, strictly speaking, the projection of the
full Hugoniot curve (Definition 4.19) on the subspace (τ, p) of the thermo-
dynamic variables. We shall still need the “velocity” part of the curve. Since
either τ or p can serve as parameters, we shall display it in the (u, p) plane. As
before, we consider the case of a 3-shock, σ = σ3. Since M > 0, we obtain,
from (4.89)(i) and p− > p+,

u− > u+ (4.94)

(recall that v± = u± − σ ). We now use (4.89)(iii) to get

u− = u+ + [(p− − p+)(τ+ − τ−)]1/2 . (4.95)

Inserting τ− as a function of p− [using (4.92)] we obtain a curve u = u+ + φ3(p)
(Figure 4.12), which represents the velocity behind an admissible 3-shock as a
function of the postshock pressure [given a right preshock state (ρ+, p+, u+)].
Combining this curve with P+3 of Figure 4.11 we obtain the “full” Hugoniot
curve for the 3-shock.

Remark 4.39 (Hugoniot for 1-shocks) Unlike the thermodynamic part of the
Hugoniot curve (see Remark 4.37), the u–p Hugoniot depends on direction.
In other words, for a 1-shock, the postshock relative velocity v+ = u+ − σ
is positive [see Figure 4.10 and the discussion following Equation (4.78)], so
M = −ρ+v+ < 0 (which simply means that the fluid crossing the shock is
moving from left to right). The equations (4.89)–(4.91) are still valid, with the
roles of “±” states now reversed; the “+” is the postshock state, while the “−”
is the preshock state. For admissible 1-shocks we therefore have p+ > p−,
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Figure 4.12. The 3-Hugoniot curve in the (u, p) plane. (u+, p+) is the preshock state.

ρ+ > ρ−, and u+ < u− [by (4.89)(i)]. In particular, if we fix (τ+, p+) (now as a
right postshock state) the lower part of the curve H = 0 (Figure 4.11) is the locus
of all states (τ, p) connected (as preshock states) to (τ+, p+) by an admissible
1-shock. As was noted in Remark 4.37, if (τ+, p+) is renamed (τ−, p−) and
taken as a left (preshock) state, the upper part of H = 0 (denoted as P+3 in
Figure 4.11) serves again as the locus of admissible postshock states connected
to it by a 1-shock. However, the expression for u+ [instead of (4.95)], where
“+” is still the right state, is now

u+ = u− − [(p− − p+)(τ+ − τ−)]1/2 , (4.96)

and expressing τ+ in terms of p+, we obtain the curve u = u− − φ1(p)
(Figure 4.13) representing the velocity behind an admissible 1-shock as a func-
tion of pressure.

Figure 4.13. The 1-Hugoniot curve in the (u, p) plane. (u−, p−) is the preshock state.
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Remark 4.40 It is worth observing (see Figures 4.12 and 4.13) that in all cases
(1- or 3-shocks) we have u− > u+ for admissible shocks.

We know from the general theory (Summary 4.14 and Proposition 4.17) that
admissible postshock states form one-parameter families. In general, this is true
only for “small” jumps. However, in the case of compressible fluid flow, this
is true for arbitrary jumps, provided only that the thermodynamic assumptions
leading to the existence of the curve H = 0 [see Equation (4.92)] are valid. As we
shall see later, this is true in particular for the important class of perfect gases.
Furthermore, under the assumptions leading to Summary 4.36 the Hugoniot
curves can be parametrized by any one of the flow variables, including the
shock speed. This is stated as follows:

Proposition 4.41 Given a preshock state (ρ0, p0, u0), any admissible postshock
state (ρ1, p1, u1) is fully determined either by one of the variables ρ1, p1, u1 or
by the corresponding shock speed σ .

Proof We may suppose that the shock is a 3-shock, in which case (ρ0, p0, u0) =
(ρ+, p+, u+). From Summary 4.36 and Equation (4.95) we see that indeed any
of the values ρ−, p−, u− fully determines the other two. Furthermore, we have
by (4.86)(i)

σ3 = ρ+u+ − ρ−u−
ρ+ − ρ− .

Assume now that σ3 is given. Then we know v+ = u+ − σ3 and hence M =
−ρ+v+. According to (4.89)(ii), −M2 is the slope of the segment connecting
(τ+, p+) to the point (τ−, p−) ∈ P+3 (see Figure 4.11). However, the convexity
of P+3 implies that the slope uniquely determines the point (τ−, p−) and hence
also the velocity u−. ��

Centered Rarefaction Waves

The Rankine–Hugoniot jump condition (4.76) turned out to be independent of
the variation in cross-sectional area [see the discussion following (4.76)]. This
however is not the case with centered rarefaction waves; the cross-sectional
area A(r ) plays a significant role in determining their structure. Indeed, un-
like the case of a shock, where the speed is determined by the limiting values
of the flow variables, the CRW represents a “full structure” of characteristic
curves fanning out of a common center. In the strict conservation form, as dis-
cussed in Section 4.1, the characteristic curves are straight lines, each carrying
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constant values of all components of the solution (see Definition 4.5). In our
context of quasi-1-D flow, this applies only to planar flow (see Remark 4.31).
In the more general case [A′(r ) �= 0] the planar case serves as a limiting
(“asymptotic”) part of the solution, for infinitesimally short time. In other
words, the instantaneous values of the flow variables at the center are deter-
mined by the planar approximation. The characteristic curves emanating from
the center then bend, modified by the cross-sectional area variation. The flow
variables evolve along each curve, subject to the characteristic relations (4.66),
(4.67).

We note that the treatment of a CRW, as given in Definition 4.5, was based on
the fact that it connects two constant states, ur and ul. If, however, the “head” or
“tail” characteristic curve (the extreme curves of the CRW fan) propagates into
a nonuniform region, its slope varies according to Equation (4.64). In particular,
all characteristic curves in the CRW become curvilinear and the solution is no
longer self-similar. This observation is valid even in the planar case. As we shall
see in Chapter 5, the treatment of the “non-self-similar” CRW is fundamental
in the solution of the generalized Riemann problem.

We shall study only the planar case here [Equation (4.47)], deferring the
quasi-1-D case to Section 5.1. Thus, we may invoke the general theory of
Section 4.1 and study in detail the features of a 1-CRW. Recall that in view of
Claim 4.30 both λ1 and λ3 characteristic families are genuinely nonlinear, thus
enabling CRW solutions.

As in the shock case, we use “+” and “−” to indicate, respectively, right and
left states. They are now separated by the CRW fan, which consists of straight
C− characteristics (see Figure 4.14). As in Definition 4.7, we let y be the
slope of the line C y

−, u− − c− ≤ y ≤ u+ − c+. All flow variables are constant

Figure 4.14. A planar 1-CRW. It is necessarily isentropic.
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along C y
−, and we denote them as u(y), ρ(y) . . . . In particular, u(u± − c±) =

u±, c(u± − c±) = c±, and in general

y = u(y)− c(y), u− − c− ≤ y ≤ u+ − c+. (4.97)

The particle paths C0 are also depicted in Figure 4.14. They intersect the C y
−

curves transversally, since their slopes at the point of intersection are u(y) >
u(y)− c(y). The flow within the CRW (outside of the singularity at 0) is smooth,
so that by (4.67)(ii) the particle paths are adiabatic, carrying constant values of
the entropy S. Since, by assumption, the entropy is uniform along the extreme
characteristic lines y = u± − c± (being adjacent to constant states), it is uniform
throughout the CRW. We have therefore established the following:

Claim 4.42 A planar CRW (connecting two constant states) is isentropic. In
particular, the entropies of the two constant states are equal.

This observation enables us to fully resolve the CRW. Let S be the constant en-
tropy. Then c2 = ( ∂p

∂ρ

)
S

is a function of ρ. Any characteristic curve C+ traverses
the CRW and can be parametrized by y, designating its point of intersection with
C y
−. The density ρ(y) along C+ determines c(y). Implementing Equation (4.72)

we obtain

R+ (ρ(y), u(y)) ≡
ρ(y)∫

ρ−

c(ρ)

ρ
dρ + u(y) = k, u− − c− ≤ y ≤ u+ − c+,

(4.98)

where k is a constant. It can be determined by using either endpoint y =
u± − c±,

k = u− = u+ +
ρ+∫

ρ−

c(ρ)

ρ
dρ (1-CRW). (4.99)

If u+ < u− we must have ρ+ > ρ−, but then c+ = c(ρ+) > c− = c(ρ−) and
u+ − c+ < u− − c−, which contradicts the assumed structure of the CRW (see
Figure 4.14). Furthermore, we may apply the same considerations to any sector
of the CRW, corresponding to y1 ≤ y ≤ y2, which is also a CRW. We obtain
therefore, u(y2) ≥ u(y1), whereas p(y2) ≤ p(y1) and ρ(y2) ≤ ρ(y1). Thus, we
have the following corollary.

Corollary 4.43 Across the CRW (in the direction of particle paths) the velocity
increases whereas density and pressure decrease.
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Figure 4.15. A 1-CRW in Lagrangian representation. The C+ curves are hyperbolas
within the CRW.

This corollary justifies the terminology “rarefaction wave,” inasmuch as the
fluid “rarefies” as it moves across the wave. (Observe that the “±” in (4.72)
refer to the two different Riemann invariants and should not be confused with
the “±” used here to designate the two constant states. Here we are using the
Riemann invariant R+, which is constant along C+.) Of course, a more explicit
relation between u(y) and ρ(y) can be obtained only when we have a more
explicit equation c = c(ρ). This will be done in the following for the case of a
perfect (polytropic) gas.

Finally, we note that once u(y), ρ(y), and c(y) are determined by (4.98), they
are the constant values of the solution along the line x = yt .

We conclude the treatment of a planar CRW by studying its represen-
tation in Lagrangian coordinates. Specializing to a 1-CRW, we recall [see
Equation (4.84)] that the slopes of the C− characteristic lines are −g = −ρc
[since A(r ) ≡ 1]. In particular, all slopes are negative (see Figure 4.15). By
definition, the particle paths are vertical lines ξ = constant , whereas the C+
characteristic curves satisfy dξ

dt = g. Here the slopes −g play a role analogous
to that of y in the preceding case. In particular,−g = ξ/t throughout the CRW,
and the equation for the C+ curves becomes dξ

dt = − ξ

t ; hence ξ t = constant.
We summarize in the following claim.

Claim 4.44 Consider a 1-CRW for planar flow, in the Lagrangian framework.
Then the C− characteristic lines are given by

ξ = −gt, g+ ≤ g ≤ g−
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(necessarily g− = ρ−c− ≥ g+ = ρ+c+). The C+ curves are the hyperbolas

C+ : ξ t = k, k < 0,

where k = −g−1
− ξ 2

− if the curve intersects ξ = −g−t at (ξ−,−g−1
− ξ−).

We shall return to the study of non-self-similar centered rarefaction waves
in Section 5.1.

The Riemann Problem (RP) for Planar Flows

The system (4.47) of the equations governing planar flow is in conservation
form and is thus subject to the general framework discussed in Section 4.1. In
particular, one can study the Riemann problem associated with the system (see
Definition 4.26).

The role played by the RP in all aspects of fluid dynamics is indeed remark-
able. It was initiated by Riemann in his pioneering work on mathematical fluid
dynamics (see Courant and Friedrichs [30, Chapter III, Section 80] and histor-
ical comments there). Since the early times of computational fluid dynamics it
served as a cornerstone in the construction of discrete schemes (Godunov [56],
Glimm [49], and references in Godlewski and Raviart [55]). As we shall see in
Chapter 6 (and, in fact, have already seen in Chapter 3) the Riemann problem is
accepted as a universal tool in measuring the efficiency and accuracy of various
numerical schemes. In the field of physical fluid dynamics it is better known
as the “shock tube” problem. It is extensively used in the analysis of a wide
variety of experiments (see the Handbook of Shock Waves [16]).

The theory developed in Section 4.1 allows us to conclude that, given two
sufficiently close states UR,UL there exists a unique, self-similar solution to
the IVP (4.47) [or, equivalently, to (4.62), with A ≡ 1], subject to the initial data

U(x, 0) =
{
UL, x < 0,

UR, x > 0.
(4.100)

We denote this solution by R( x
t ;UL,UR). It consists in general of three waves

�1, �2, �3. In view of Claim 4.30, �1 and �3 can be either admissible shocks or
centered rarefaction waves. �2 is necessarily a contact discontinuity. The flow
between any two adjacent waves is uniform. For suitably chosen initial data,
one or two waves may be absent.

It is our intention to develop in more detail the solution to the RP in the context
of planar flow. As a rule, the RP can now be solved for quite general initial data
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Figure 4.16. A schematic solution to the RP for planar flow.

(not necessarily close) as long as the equation of state is not “pathological.”
By this we mean that, in addition to the thermodynamical assumptions un-
derlying Summary 4.36, the “Interaction Curves”, as given in Summary 4.45
below, remain convex for a large range of pressures and densities. However,
a comprehensive discussion of this topic is beyond the scope of this mono-
graph, and we refer the reader to Godlewski and Raviart [55] and references
therein.

As a starting point in our treatment, we recall that the variables p, u are
continuous across a contact discontinuity [see (4.77)]. It follows that p =
p∗, u = u∗ are constant in the whole sector between the waves �1 and �3 (see
Figure 4.16). The basic idea is then to locate u∗, p∗ as the common point of the
u–p interaction curves (see Definition 4.19) for the states UR,UL.

Recall that the part P+3 of the curve H (τ, p) = 0 (see Summary 4.36) is the
locus of all left states (τ, p) connected to the right state (τ+, p+) by an admissible
3-shock. The lower part of that curve (τ > τ+) is not the lower part of the 3-
interaction curve (see Remark 4.37). Indeed, the lower part of the interaction
curve (Definition 4.19) consists of the left states (τ, p) connected to (τ+, p+)
by a 3-CRW. Thus, in view of Claim 4.42, it is simply the isentropic curve
S(p, τ ) = S(p+, τ+) (restricted to τ ≥ τ+) through the point (τ+, p+) in the
(τ, p) thermodynamic plane. We can refer to this full curve as the “projection”
of the (right) 3-interaction curve on the (τ, p) plane. We note that in view of the
general theory [see Equation (4.25)] the joint curve has a continuous tangent at
(τ+, p+).10

10 Observe that in our case, by Proposition 4.38, the curve is actually C2 at (τ+, p+).
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Turning now to the representation of the interaction curve in the (u, p) plane,
we repeat the same procedure, patching together the “shock” part [projection
of the full Hugoniot curve on the (u, p) plane] and the “rarefaction” part. Spe-
cializing now to the 1-interaction curve we obtain the shock part from (4.96)
(see Figure 4.13) and the rarefaction part from (4.98). For future reference we
summarize as follows.

Summary 4.45 Given a left state (τ−, p−, u−), of entropy S− = S(p−, τ−), let
I l
1 be its (left) 1-interaction curve, consisting of all right states that can be

connected to it by an admissible 1-shock or a CRW. Then its projection on the
(u, p) plane is given by

u =






u− − φ1(p) = u− − [(p− − p)(τ − τ−)]1/2 , p > p−,

u− −
ρ∫

ρ−

c(β)
β

dβ, p < p−.

(4.101)

In the top line τ is determined from p by the implicit relation H (τ, p) = 0
[through (τ−, p−); see (4.92) and Remark 4.37] and in the bottom line c = c(ρ)
and ρ = ρ(p) along the isentropic curve S(p, τ ) = S−.

We obtain in the same way the curve I r
3. It is the locus of all left states con-

nected to the right state (τ+, p+, u+) by a 3-wave (admissible shock or CRW).
Combining (4.95) and the Riemann invariant R−(ρ, u) [see Equation (4.72)]
gives its projection on the (u, p) plane [in analogy with (4.101)]:

u =






u+ + φ3(p) = u+ + [(p − p+)(τ+ − τ )]1/2 , p > p+,

u+ +
ρ∫

ρ+

c(β)
β

dβ, p < p+.

(4.102)

Note that by (4.95), (4.96) the curves are symmetric with respect to u = u±.11

We refer to Figure 4.17 where both curves are schematically shown.
In view of the foregoing discussion, the solution to the RP is a straightforward

matter.

11 Basically, this follows from the Galilean invariance of the flow equations. By translation we may
assume u± = 0, and then the reflection x →−x, u →−u transforms a 1-wave to a 3-wave
and vice versa.
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Figure 4.17. u − p representation of I l
1, I r

3 interaction curves. The parts p > p± rep-
resent shocks.

Construction 4.46 (Solution to the RP–planar flow) Let the right and left
states UR and UL, respectively, be given. In the (u, p) plane construct the
curves

I r
3 with respect to the right state UR,

I l
1 with respect to the left state UL.

Let (u∗, p∗) be their point of intersection in the (u, p) plane. Then the solution
to the RP with initial data U(x, 0) as in (4.100) is depicted in Figure 4.16,
where

�2 is a contact discontinuity moving at speed u∗,
�1 is an admissible 1-shock (resp. 1-CRW) if p∗ > pL (resp. p∗ < pL),
�3 is an admissible 3-shock (resp. 3-CRW) if p∗ > pR (resp. p∗ < pR),

The pressure p = p∗ is uniform in the sectorial region between �1 and �3.
The density ρ∗L is uniform in the sectorial region [�1, �2], and is determined
by the respective interaction curve in the (τ, p) plane from the knowledge
of UL and p∗. If �1 is a shock, use Proposition 4.41; if �1 is a CRW, use
the fact that (ρL, pL) and (ρ∗L, p∗) are isentropic. Similarly, ρ∗R is uniform
in the sectorial region [�2, �3], and is likewise determined from the state
UR and the wave �3.
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and both;

Figure 4.18. Solutions to the Riemann problem.

In Figure 4.18 we present two possible solutions of Riemann problems based
on the preceding analysis.

Remark 4.47 The analysis of the RP presumes the intersection of I l
1 and I r

3

[in the (u, p) plane]. As has been observed earlier, the general theory does
not necessarily guarantee such an intersection, if the states UR and UL are not
sufficiently close. We shall see shortly that this question can be fully resolved
in the case of a perfect gas.

Remark 4.48 (The RP in Lagrangian coordinates) The planar RP in Lagra-
ngian coordinates is the IVP for the system (4.83), where A ≡ 1 and

V(ξ, 0) =
{
VL, ξ < 0,

VR, ξ > 0.
(4.103)

In view of Definition 4.32 [and Equation (4.79) there, with r0 = 0], ξ = ρRr
(resp. ξ = ρLr ) for r > 0 (resp. r < 0). The features of the solution, including
its self-similar character, are then readily obtained from Construction 4.46. It
is further simplified by the fact that the contact discontinuity (the wave �2)
coincides with the line ξ = 0 and carries the constant (and equal on both sides)
values u = u∗, p = p∗. Thus, the wave �1 necessarily propagates into the do-
main {ξ < 0}, whereas �3 propagates into the domain {ξ > 0}. Note further
that in this case the CRW has a simple form as in Claim 4.44.

Perfect (γ-Law) Gas

The most common equation of state for gases is that of a perfect gas (see Landau
and Lifshitz [74]), sometimes also referred to as a polytropic gas (see Courant
and Friedrichs [30]). In addition to serving as a common model in physics, it
is used almost exclusively in the investigation of advanced numerical methods
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for fluid dynamics. In terms of the specific internal energy e and the density ρ,
the pressure is given by

p = (γ − 1)ρe, (4.104)

where γ > 1 is a constant that depends on the gas.12 Furthermore, in such gases
one has e = cvT , where T is the temperature, so that the first law of thermo-
dynamics (4.49) can be explicitly integrated. Regarding now p as a function of
(ρ, S) [see (4.60)] we can write

p = A(S)ργ , (4.105)

where A(S) is a function of entropy given by

A(S) = exp

(
S

cv

)
. (4.106)

We refer to Courant and Friedrichs [30, Chapter I, Sections 3 and 4] for a
detailed discussion of this topic.

Owing to the form (4.105) of the isentropic curves, the term “γ -law gas” is
also used for perfect gases.

It follows from the definition (4.61) that the speed of sound is given explicitly
by

c2 = γ p

ρ
, (4.107)

and the Riemann invariants for isentropic flow [see (4.72)] take the form

R±(ρ, u) = 2

γ − 1
c ± u. (4.108)

Next, we can find explicit expressions for the Hugoniot curve. To do this it
is convenient to introduce a constant µ such that

µ2 = γ − 1

γ + 1
. (4.109)

Inserting (4.104) in (4.92) we find

2µ2 H (τ, p) = (τ − µ2τ+)p − (τ+ − µ2τ )p+. (4.110)

Recall (Summary 4.36) that when (τ+, p+) is a preshock state, all possible post-
shock states (τ, p) are given by H (τ, p) = 0, with p > p+, τ < τ+. Inserting

12 More specifically, γ = 1+ R
λcv

, where R is the universal constant of gases, λ is the molecular
weight of the gas, and cv is its specific heat at constant volume. Typically, γ = 5/3 for a
monatomic gas, and γ = 7/5 for a diatomic gas. (See Fermi [46] for a detailed account.)
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this in (4.95), we find the explicit form for the projection of the Hugoniot curve
of a 3-shock on the (u, p) plane,

u = u+ + φ3(p) = u+ + (p − p+)

√
(1− µ2)τ+
p + µ2 p+

. (4.111)

Using (4.107) this can also be written as

u = u+ + c+
γ p+

· (p − p+)

[
1+
(
γ + 1

2γ

)
p − p+

p+

]−1/2

(4.112)

and similarly, by (4.96) for a 1-shock,

u = u− − φ1(p) = u− − (p − p−)

√
(1− µ2)τ−
p + µ2 p−

, (4.113)

which, in analogy with (4.112), can be written as

u = u− − c−
γ p−

· (p − p−)

[
1+
(
γ + 1

2γ

)
p − p−

p−

]−1/2

, (4.114)

where now (τ−, p−, u−) is the preshock state, and p > p−, τ < τ−.
Note that if ρ+, p+ and ρ, p are isentropic then the corresponding speeds of

sound satisfy

c

c+
=
[

p

p+

] γ−1
2γ

.

The general expressions (4.101), (4.102) for the (u, p) interaction curves can now
be rewritten in explicit algebraic form, by combining the expressions (4.108)
for the Riemann invariants and Equations (4.111)–(4.114). For later reference,
we summarize as follows:

Summary 4.49 Given a left (resp. right) stateUL= (τL, pL, uL) [resp.UR =
(τR, pR, uR)], with entropy SL and speed of sound cL (resp. SR, cR), let I l

1

and I r
3 be the corresponding left and right interaction curves, as in Sum-

mary 4.45. Then their projections on the (u, p) plane are given by

u =






uL − cL
γ pL
· (p − pL)

[
1+
(
γ+1
2γ

)
p−pL

pL

]−1/2
, p ≥ pL,

uL −
(

2
γ−1

)
cL ·
[(

p
pL

)γ−1
2γ − 1

]
, p ≤ pL,

(4.115)
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for the I l
1 interaction curve and by

u =






uR + cR
γ pR
· (p − pR)

[
1+
(
γ+1
2γ

)
p−pR

pR

]−1/2
, p ≥ pR,

uR +
(

2
γ−1

)
cR ·
[(

p
pR

)γ−1
2γ − 1

]
, p ≤ pR,

(4.116)

for the I r
3 interaction curve.

The projections of the interaction curves on the (τ, p) plane are given by

τ =






τL
pL+µ2 p
p+µ2 pL

, p ≥ pL,

τL

(
pL

p

)1
γ

, p ≤ pL,

(4.117)

for the I l
1 interaction curve and by

τ =






τR
pR+µ2 p
p+µ2 pR

, p ≥ pR,

τR

(
pR

p

)1
γ

, p ≤ pR,

(4.118)

for the I r
3 interaction curve.

The interaction curves I l
1, I r

3 intersect the zero pressure line at the points
ul = uL +

(
2
γ−1

)
cL and ur = uR −

(
2
γ−1

)
cR, respectively. These points have a

clear meaning. For example, when a 1-CRW propagates into a state (τL, pL, uL),
the velocity ul is the maximum velocity attained by the rarefied gas, when the
tail pressure (at the back state) vanishes. Inspection of the expressions for the
interaction curve shows clearly that they do not intersect (at a nonnegative
pressure) if and only if ur > ul. In view of Construction 4.46 we conclude that
this is also the only case in which the Riemann problem is not solvable. We can
summarize this as follows.

Corollary 4.50 Given left and right states, UL and UR, respectively, as in
Summary 4.49, the planar Riemann problem (4.47), (4.100) for a γ -law gas is
solvable in all cases, except for the case where ur > ul.

Remark 4.51 The solution to the RP in this case consists of solving a pair
of nonlinear algebraic equations. Note that if the variable p is replaced by
ζ = p

γ−1
2γ , the rarefaction parts of the interaction curves are transformed into

linear relations between u and ζ . In Appendix C we describe in detail an efficient
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“Riemann solver,” where this fact is exploited. Because of the basic role played
by the Riemann problem in many modern numerical methods, the literature
concerning efficient Riemann solvers (for perfect as well as general gases) is
very rich. We refer the reader to the papers by Alcrudo and Garcia-Navarro [1],
Chorin [25], Dai and Woodward [35], Garcia-Navarro, Hubbard, and Priestley
[47], Saurel, Larini, and Loraud [99], Schulz-Rinne [100], Teng [109], and Yang
and Przekwas [122], as well as to Toro’s book [111] and references therein.

Another interesting phenomenon in connection with the Hugoniot curve of
a perfect gas is related to its “high end,” namely, when the pressure increases to
infinity. From Equation (4.110) we see that if, along the curve H (τ, p) = 0, we
let p

p+
go to infinity, the ratio τ

τ+
tends to µ2. We therefore have the following

conclusion.

Corollary 4.52 (An “infinite shock”) As the pressure increases to infinity
along the Hugoniot curve of a perfect gas, the “compression ratio” ρ

ρ+
ap-

proaches the limiting value γ+1
γ−1 .



5
The Generalized Riemann Problem (GRP)

for Compressible Fluid Dynamics

This chapter is concerned with the main topic of the monograph, namely, the
solution of the GRP for quasi-1-D, inviscid, compressible, nonisentropic, time-
dependent flow. In Section 5.1 we formulate the problem and study its solution
in the Lagrangian and Eulerian frames. In particular, we state and prove the
main ingredient in the GRP method, Theorem 5.7. A weaker form of this the-
orem leads to the “acoustic approximation” (Proposition 5.9). Summary 5.24
gives a step-by-step description of the GRP analysis. In Section 5.2 we present
the GRP methodology for the construction of second-order, high-resolution
finite-difference (or finite-volume) schemes. Starting out from the (first-order)
Godunov scheme, we present the basic (E1) GRP scheme. It is based on the
acoustic approximation and constitutes the simplest second-order extension of
Godunov’s scheme. This is followed by a presentation of the full array of GRP
schemes (as well as MUSCL). Generally speaking, the presentation in this
chapter follows closely the GRP papers [7] and [10].

5.1 The GRP for Quasi-1-D, Compressible, Inviscid Flow

In Section 4.2 we studied the Euler equations (4.45) governing the quasi-1-D
flow in a duct of variable cross section. We emphasized in particular the role of
the Riemann problem (“shock tube problem”), namely, the IVP subject to initial
data (4.100). As we shall see in this chapter, the solution to the Riemann problem
is a basic ingredient in the numerical resolution of the flow. It was observed that
in the planar case (4.47) of uniform cross-sectional area this solution is “self-
similar” and is readily obtained by solving a pair of algebraic equations (see
Construction 4.46 and Figure 4.16). In the important special case of a perfect
gas this procedure is further simplified, as seen in Appendix C. The simplicity
of the solution is conducive to the selection of a numerical scheme based on

135
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the Riemann problem solution.1 However, as already noted in Section 3.2,
such a scheme (“Godunov’s scheme”) yields poor results in the resolution of
singularities, even in the scalar case. It was further demonstrated there that the
resolution is greatly improved when switching to piecewise-linear data, thus
leading to the generalized Riemann problem. Turning back to the quasi-1-D
system (4.45), we noted in Remark 4.31 that it is not in strict conservation form.
In particular, one cannot expect here a self-similar solution to the Riemann
problem, implying that it cannot be reduced to an algebraic problem, as in
the planar case. Thus, in dealing with the general case, we have to resort to
further analysis of the problem, even in the case of initial data as in (4.100)
(see Glimm, Marshall, and Plohr [53] in this case). Replacing the piecewise-
constant by piecewise-linear initial data brings about a dramatic improvement
in the numerical results. This has been observed in Section 3.2 in the scalar
case and was first established for the fluid-dynamical case in the pioneering
work of van Leer (see van Leer [112]). We shall therefore concentrate in this
section on the IVP for the system (4.45), with initial data that are linear on the
two sides of the singularity, across which both the functions and their slopes
may experience a jump. The term “generalized Riemann problem” (GRP) has
been attached to this problem (see Section 3.1 and Ben-Artzi and Falcovitz [7])
and we shall employ it henceforth.

The analytic treatment of the GRP given here relies on some basic theoretical
results, which we now proceed to describe. We refer the reader to Harabetian
[60] and to Godlewski and Raviart [55] and references therein for detailed
analysis.

Structure of the Solution to the GRP

Let U(r, t) be the solution to the GRP, namely, the IVP for the system (4.45),
subject to the initial data

U(r, 0) = U0(r ) =
{
UL + rU′L, r < 0,

UR + rU′R, r > 0,
(5.1)

where UR,U′R,UL,U′L are constant vectors.

Remark 5.1 The location of the initial discontinuity at r = 0 was selected
for notational convenience. Clearly, in the case of cylindrical or spherical
coordinates, where r = 0 is a geometric singularity, this location must be shifted
to r �= 0, with obvious modifications.

1 We refer to Godlewski and Raviart [55] for further simplifications based on approximate solu-
tions to the Riemann problem, such as the “Roe scheme.”
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. .

Figure 5.1. The solutions to the GRP (a), and its associated RP (b).

The initial structure of the solution U(r, t) is determined by the limiting
values (at r = 0±) UR, UL. We therefore associate with the GRP its “limiting
planar problem.”

Definition 5.2 The “associated Riemann problem” [to the GRP with initial
data (5.1)] is the Riemann problem [for the planar system (4.47)] subject to the
piecewise-constant initial data

UA
0 (r ) =

{
UL, r < 0,

UR, r > 0.
(5.2)

In accordance with the notation introduced following (4.100) we denote by
UA(r, t) = RA

(
r
t ;UL,UR

)
the solution to the associated problem, and we retain

the notation “r” for the spatial coordinate (instead of “x” used in Section 4.2
for the planar case). Observe that UA is self-similar, depending only on the
direction r

t .
A schematic description ofU(r, t) andUA(r, t) is given in Figures 5.1(a) and

5.1(b) respectively. Note that Figure 5.1(b) is identical to Figure 4.16, except
for the superscript “A”. It should be emphasized that the solutions are shown
only for a short time t , following the “disintegration” of the initial discontinuity
at r = 0. The waves (in terms of type and initial strength) emanating from that
discontinuity are completely determined by the limiting values UR, UL and the
planar solution UA. This is due to the fundamental property of “finite propaga-
tion speed”; the solution at a point (r, t) depends only on a finite interval of the
initial data.2 As (r, t) approaches (0, 0), this interval shrinks to the point r = 0,
and U(r, t) “approaches” UA(r, t). In general, the solution U(r, t) consists of
three waves �1, �2, �3,3 in tandem with the three planar waves �A

1 , �
A
2 , �

A
3

(Figure 5.1). Whereas �2 and�A
2 are always contact discontinuities, the waves

2 This interval, referred to as the “domain of dependence” of (r, t), consists of all points that can
be attained by tracing waves from (r, t) “backward” to the initial line t = 0.

3 In special cases one or two waves are missing and can be referred to as waves of “zero strength.”
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�i , and�A
i (i = 1, 3) are either shocks or centered rarefaction waves. The type

(shock or CRW) of �i is identical to that of �A
i . Furthermore, in the shock case

(�3, �
A
3 in Figure 5.1) the initial speeds (slopes) and initial jumps of all flow

variables are identical. In the case of a CRW the head and tail characteristics
(of�1, �

A
1 in Figure 5.1) emanate from r = 0 with equal slopes. For any charac-

teristic C− within the fan �1, approaching the origin with limiting slope µ (see
Figure 5.1), there is a matching characteristic CA

− in �A
1 of (constant) slope µ.

Recall that the flow variables along C− are not constant. However, the limiting
values of the flow variables along C−, as t → 0, are equal to the correspond-
ing (constant) values of these variables along CA

−. Finally, the solution U(r, t)
in the regions between the three waves is smooth and approaches, along any
direction r = µt , the corresponding value of UA, which is constant along the
full ray r = µt, t > 0. For future reference we record this fact in the following
equation:

lim
t→0+

U(µt, t) = UA(µt, t) = RA(µ;UL,UR), −∞ < µ <∞. (5.3)

The smoothness of U(r, t) (between waves) implies in particular that the wave
trajectories (discontinuities, characteristics) are smooth curves.

The solution U(r, t) can be represented by an asymptotic expansion in terms
of r, t . However, for the purpose of this monograph we shall need only the
first-order terms of this expansion.4 More explicitly, we need the following
definition.

Definition 5.3 (The linear GRP) Given the initial data (5.1), let U(r, t) be the
solution to the GRP. The linear GRP is the following: Evaluate the limiting
value

(
∂

∂t
U
)

0

= lim
t→0+

∂

∂t
U(0, t). (5.4)

The rest of this section will be devoted to a detailed discussion of the solution
to the linear GRP.

Remark 5.4

(a) As we shall see in the course of the solution, our method is equally applicable
to the evaluation of the directional derivative

(
∂

∂t
U
)

α

= lim
t→0+

d

dt
U(r = αt, t), −∞ < α <∞. (5.5)

4 Note that the “zero-order” term is given by Equation (5.3).
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As indicated here, this means that we obtain the full first-order perturbation
built into U(r, t), with respect to the associated UA(r, t). This will be im-
portant in the application of the GRP numerical method to general “moving
grids.”

(b) The evaluation of the directional derivatives (5.5) given in this section can
be extended to higher order derivatives, using the same methodology. This
is not done here since the entire numerical treatment in this monograph is
based solely on the linear GRP, combining the simplicity of the algorithm
with its high-resolution capability.

The Linear GRP in Lagrangian Coordinates – Setup
and Statement of the Main Theorem

Defining the Lagrangian coordinate ξ as in (4.79), we replace the system (4.47)
by (4.83). In particular, the three unknown flow variables V = (τ, u, E) now
replace those of the Eulerian representation U = (ρ, ρu, ρE), where τ = 1/ρ.
Recall [see the discussion following (4.84)] that the Lagrangian formulation
leads to certain simplifications in the structure of the solution to the GRP. The
most significant is the fact that the contact discontinuity carries a constant value
of ξ . Thus, taking r0 = 0 so that ξ = 0 at the initial discontinuity ensures that
the contact discontinuity �2 stays along ξ = 0 for t > 0. The wave pattern for
the solution to the GRP in (ξ, t) coordinates [analogous to the one depicted in
Figure 5.1(a)] is schematically given in Figure 5.2.

Observe that the limiting values VL, VR are related to UL, UR, respectively,
as indicated previously. The linear initial data (5.1) are replaced by the linear

Figure 5.2. Structure of the solution to the GRP in Lagrangian coordinates.
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(in ξ ) initial data

V(ξ, 0) = V0(ξ ) =
{
VL + ξ V′L, ξ < 0,

VR + ξ V′R, ξ > 0.
(5.6)

This is justified as follows. Let Q be any flow variable (say, Q = ρ or Q = u).
The initial value Q(r, 0) is linear (say, for r > 0) and using (4.81) we get

∂

∂ξ
Q(ξ, 0)

∣
∣
∣
∣
ξ=0+

= [A(0)ρR]−1 ∂

∂r
Q(r, 0)

∣
∣
∣
∣
r=0+

. (5.7)

In this equation we are using ∂
∂ξ

∣
∣
ξ=0+, ∂

∂r

∣
∣
r=0+ to denote the one-sided (from

the right) derivatives and ρR = ρ(0+, 0) to denote the value of the density in
UR [i.e., the limiting value of ρ(r, 0) as r → 0+]. Clearly, if Q(r, 0) is linear,
Q(ξ, 0) is generally not linear (in ξ ). However, the solution to the linear GRP,
as we shall see, depends only on the limiting slopes ∂

∂ξ
Q(ξ, 0)

∣∣
ξ=0±. Thus, we

are justified in assuming that V0(ξ ) is given by (5.6), where the relation of U′R
to V′R is obtained from (5.7). Similarly, the left-hand-side derivatives are given
by

∂

∂ξ
Q(ξ, 0)

∣∣∣∣
ξ=0−

= [A(0)ρL]−1 ∂

∂r
Q(r, 0)

∣∣∣∣
r=0−

, (5.8)

for any flow variable Q. Note that the cross-sectional area A(r ) is assumed to
be continuous (and even continuously differentiable) at all points, including
r = 0.

We denote by V(ξ, t) the solution to the GRP (in Lagrangian coordinates)
subject to the initial data (5.6). The associated Riemann solution (Definition 5.2)
VA(ξ, t) = RA

(
ξ

t ;VL,VR
)

is obtained as in Remark 4.48. As in the Eulerian
case, the solution VA is the “limit of V” as t → 0 [see (5.3)]. In particular, it
will be useful to denote by V∗L , V

∗
R the (constant) values of the solution along

the two sides of the contact discontinuity (compare Figure 4.16)

V∗L = VA(0−, t), V∗R = VA(0+, t). (5.9)

Clearly, in the case of the pressure and the velocity p∗L = p∗R = p∗ and u∗L =
u∗R = u∗.

The linear GRP in this framework is transformed into the problem of eval-
uating the instantaneous time derivatives

(
∂

∂t
V
)∗
= lim

t→0+
∂

∂t
V(0, t) (5.10)
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Table 5.5. Notation for the linear GRP in Lagrangian coordinates

Symbol Definition

VL,VR limV(ξ, 0) as ξ → 0−, 0+

V′L, V
′
R

∂

∂ξ
V(ξ, 0) for ξ < 0, ξ > 0

RA

(
ξ

t
;VL,VR

)
Lagrangian solution of the associated RP

V∗, V∗L , V
∗
R RA

(
0;VL,VR

)

(ρ∗L, ρ
∗
R, . . . for discontinuous variables)

(
∂

∂t
V
)∗

lim
t→0+

∂

∂t
V(0, t)

(
for discontinuous variables:

(
∂

∂t
ρ

)∗

L

,

(
∂

∂t
ρ

)∗

R

. . .

)

(
∂

∂ξ
V
)∗

R

lim
t→0+

lim
ξ→0+

∂

∂ξ
V(ξ, t)

(
∂

∂ξ
V
)∗

L

lim
t→0+

lim
ξ→0−

∂

∂ξ
V(ξ, t)

(
∂

∂t
V
)

R

lim
ξ→0+

lim
t→0+

∂

∂t
V(ξ, t)

(
∂

∂t
V
)

L

lim
ξ→0−

lim
t→0+

∂

∂t
V(ξ, t)

λ
A′(0)

A(0)
= 1

A(0)

d

dr
A(r )

∣∣∣∣
r=0

= rate of change of cross-sectional area

along the contact discontinuity ξ = 0. As already noted in Remark 5.4, the
determination of all other directional derivatives [and in particular

(
∂
∂t U
)
0

along
r = 0, as in (5.4)] will then be an easy matter. Clearly, for discontinuous variables
(such as density) we must distinguish sides, using the obvious notation

(
∂

∂t
ρ

)∗

L

= lim
t→0+

∂

∂t
ρ(0−, t),

(
∂

∂t
ρ

)∗

R

= lim
t→0+

∂

∂t
ρ(0+, t). (5.11)

In Table 5.5 we summarize the notation needed in the solution of the linear
GRP. This notation is also indicated in Figure 5.2. The Riemann solution
RA
(
ξ

t ;VL,VR
)

refers to the Lagrangian solution. Observe also that although
V = (τ, u, E), the notation applies equally to all other flow variables, for
example

(
∂
∂t p
)∗

, etc.
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Remark 5.6 The order in which the limits in t and ξ are taken is important.
Thus,

(
∂
∂t V
)
R

is obtained by evaluating first the time derivative at t = 0 (and
ξ > 0) and then letting ξ → 0. In particular,

(
∂
∂t V
)
R

can be evaluated directly

from the initial data, using the system (4.83). However,
(
∂
∂t V
)∗

can only be
evaluated in the context of the full solution of the linear GRP. Similarly,

(
∂
∂ξ
V
)∗
R

is obtained by taking the ξ derivative on the right side of the contact discontinuity
(at t > 0) and then letting t → 0.

The main ingredient in the solution of the linear GRP and, indeed, the fun-
damental building block of the GRP method, is the following theorem.

Theorem 5.7 (Main theorem of linear GRP) Let
(
∂u
∂t

)∗
and
(
∂p
∂t

)∗
be the time

derivatives of the velocity and pressure along the contact discontinuity, evalu-
ated at t = 0+. These derivatives are determined by a pair of linear equations

aL

(
∂u

∂t

)∗
+ bL

(
∂p

∂t

)∗
= dL,

aR

(
∂u

∂t

)∗
+ bR

(
∂p

∂t

)∗
= dR.

(5.12)L

(5.12)R

The coefficients depend on the equation of state,5 and in addition

aL, bL, dL depend on λ, V∗L , VL, V′L (see Claim 5.17) and

aR, bR, dR depend on λ, V∗R, VR, V′R (see Claim 5.18).

All six coefficients can be explicitly evaluated from the indicated data, as will
be seen in the course of the proof. (See Corollary 5.15 and Corollary 5.20 in
the case of a γ -law gas.)

Because the proof of the theorem is rather long, we break it up into several
steps, terminating in Claims 5.17 and 5.18. For the reader’s convenience we
include in Summary 5.24 a general layout of the various steps.

Remark 5.8

(a) Note that equations (5.12)L,R are coupled only through the dependence of
all six coefficients on the associated Riemann solution V∗. Apart from that,
the “left” (resp. “right”) coefficients aL, bL, dL (resp. aR, bR, dR) depend
only on the “left-side” (resp. “right-side”) initial data.

5 More specifically, on the isentropic curve (5.28) and the Hugoniot curve (5.50).
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(b) The cross-sectional area A(r ) and hence also the Lagrangian coordinate
ξ are arbitrary up to a constant factor, which means that V′L, V′R are only
determined up to this factor. In the formulas this is balanced by suitable
multiplication by A. Mathematically speaking, it means that we could use
the normalization A(0) = 1. However, we refrain from doing that for the
following two reasons: (i) to retain the “dimensional correctness” of for-
mulas such as those appearing in Proposition 5.9 below and (ii) to facilitate
the translation of the formulas to the actual GRP numerical algorithm as
presented in Section 5.2 (where obviously the cross-sectional area varies
from one node to the other).

The proof of Theorem 5.7 requires some preparations, most notably the
treatment of a CRW in the GRP setting. This will be done in the next subsections.
However, before dealing with the general case, let us specialize to the “acoustic
case.”

The Acoustic Case

Assume that the initial flow variables are all continuous at ξ = 0 so that VL =
VR, but we allow jumps in their slopesV′L �= V′R. Clearly, the associated Riemann
solution is now constant:

VA(ξ, t) ≡ VL = VR;

hence, according to (5.3) the GRP solution V(ξ, t) is continuous at ξ = t = 0.
It follows that the initial wave pattern of V(ξ, t) does not contain a jump dis-
continuity (shock or contact), nor does it contain a CRW. The “waves” em-
anating from the origin are therefore just characteristic curves C−, C+ as in
Figure 5.3 (the curve C0 coincides with the particle path ξ = 0). These curves

Figure 5.3. The “acoustic case” VL = VR, V′L �= V′R.
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are characterized as “sound waves” (see Remark 4.31), justifying the terminol-
ogy “acoustic case” used here. In view of (4.85) their slopes are −A(0)gL =
−A(0)ρLcL (for C−) and A(0)gR = A(0)ρRcR (for C+), where cL, cR are the
initial speeds of sound (in the Eulerian frame), as r → 0−, 0+, respectively.
When viewed from the side of the contact discontinuity, these slopes are, respec-
tively, −A(0)g∗L and A(0)g∗R. Of course, these values are equal to the previous
ones, since V∗ = VL = VR. However, we retain the two-sided notation (such
as gL, g∗L, gR, g∗R, which are all equal) in the formulas. This will enable us to
use them in the numerical application based on the acoustic case (see Con-
struction 5.38) where VL �= VR, but their difference is sufficiently “small” (see
Remark 5.11). We shall see later (Remark 5.21) that the coefficients depend
continuously on VL, VR.

Proposition 5.9 (The acoustic case–Lagrangian framework) Assume VL =
VR,V′L �= V′R. Then the coefficients in Equations (5.12)L,R are given by

aL = 1, bL = (g∗L)−1 = (ρ∗Lc∗L)−1,

dL = −(g∗L)−1gL
{

A(0)[gLu′L + p′L]+ λuLcL
}
,

(5.13)
aR = −1, bR = (g∗R)−1 = (ρ∗Rc∗R)−1,

dR = −(g∗R)−1gR
{

A(0)[gRu′R − p′R]+ λuRcR
}
.

In particular, the coefficients in (5.12)L,R depend only on the initial data
(including the speed of sound).

Note that the derivatives in dL, dR are the ξ derivatives (conforming with
the notation V′L, V

′
R). Using (5.8) we get, for example,

u′L = A(0)−1ρ−1
L

∂

∂r
u(r, 0)

∣∣∣∣
r=0−

.

Proof (of Proposition 5.9) Since u, p are continuous across the line ξ = 0, the
same holds true for their time derivatives ∂u

∂t ,
∂p
∂t . They are therefore continuous

in the full domain between C− and C+ (see Figure 5.3) and approach, respec-
tively,

(
∂u
∂t

)∗
,
(
∂p
∂t

)∗
as (ξ, t) → (0, 0) in this domain. In view of the second

equation in (4.83) the derivative ∂p
∂ξ

is also continuous in this domain and ap-

proaches the value A(0)
(
∂p
∂ξ

)∗ = − ( ∂u
∂t

)∗
as (ξ, t) → (0, 0). The pressure is also

continuous across C−; hence the same is true for its derivative dp
dt (along C−).

Using the chain rule, we can express this derivative in two ways, approaching
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C− from either side. For t → 0+, we record separately the two limiting values
of the slope as −A(0)gL and −A(0)g∗L, obtaining

(
∂p

∂t

)∗
− A(0)g∗L

(
∂p

∂ξ

)∗
=
(
∂p

∂t

)

L

− A(0)gL p′L. (5.14)

The flow is isentropic along ξ = constant [see (4.59)] so that [in view of (4.61)]

(
∂p

∂t

)

L

= c2
L

(
∂ρ

∂t

)

L

= −g2
L

(
∂τ

∂t

)

L

= −g2
L (Au)′L , (5.15)

where in the last step we have used the first equation in (4.83). We now observe
that, by (4.81),

(Au)′L =
d

dξ
[A(r (ξ, 0))u(ξ, 0)]ξ=0− = λρ−1

L uL + A(0)u′L, (5.16)

and inserting this in (5.15) yields

(
∂p

∂t

)

L

= −λgLcLuL − A(0)g2
Lu′L. (5.17)

Using (5.17) and A(0)
(
∂p
∂ξ

)∗
= − ( ∂u

∂t

)∗
in (5.14) we get

g∗L

(
∂u

∂t

)∗
+
(
∂p

∂t

)∗
= −A(0)g2

Lu′L − A(0)gL p′L − λgLcLuL,

which is identical to (5.12)L with aL, bL, dL as in (5.13).
The values of aR, bR, dR in (5.13) are obtained in exactly the same way

(or by using the previous argument for the transformed setting r →−r, ξ →
−ξ, u →−u, and p → p). ��

Remark 5.10 Once the time derivative
(
∂p
∂t

)∗
is known, the time derivatives

for the density are given by

(
∂ρ

∂t

)∗

L,R

= (c∗)−2
L,R

(
∂p

∂t

)∗
. (5.18)

The density is evidently continuous across ξ = 0 when VL = VR. However,
Equation (5.18) will be used in the more general setting as discussed in the
paragraph preceding Proposition 5.9.
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Remark 5.11 As we shall see in Section 5.2, the acoustic case [i.e., the coeffi-
cients as given in (5.13)] is fully adequate for the numerical simulation of practi-
cally all compressible flow problems. The versions of the GRP method based on
this observation (labeled E1 and L1; see Remarks 5.38 and 5.40) combine sim-
plicity with accuracy in resolving sharp flow discontinuities (“high-resolution”
property).

Resolution of a CRW in the Lagrangian Framework

We now turn back to the general setting of the linear GRP (5.10) and assume
that the wave pattern is as in Figure 5.2. In particular, the �1 wave is a CRW.
Whereas the associated Riemann solution RA

(
ξ

t ;VL,VR
)

is self-similar (so that
all characteristic curves in the CRW are straight lines carrying constant values
of V), the CRW in the GRP setting is curvilinear [compare Figures 5.1(a) and
(b)]. The values of V vary along each characteristic curve. However, in view
of (5.3), they converge at the singularity to the corresponding values of the
associated solution.

Our first objective is to study the (nonzero) directional derivatives of the
flow variables inside the CRW at the singularity. As will be seen later, this
constitutes the main technical step in the proof of Theorem 5.7. We start out
by “mapping” the CRW in terms of “characteristic coordinates.” This is done
as shown in Figure 5.4. The CRW consists of C− characteristic curves fanning
out of the origin and C+ transversal curves. Their slopes (and characteristic
relations) are given by Equation (4.85). The structure of the associated CRW
is described in Claim 4.44. In particular, the slopes of corresponding C− char-
acteristic curves coincide at the singularity; these limiting slopes range from
−A(0)gL = −A(0)ρLcL at the leading (head) curve to−A(0)g∗L = −A(0)ρ∗Lc∗L

Figure 5.4. Characteristic coordinates in a 1-CRW.
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at the tail curve.6 We parametrize the C− curves by the normalized slopeβ = g
gL

,

so that β = 1 along the leading curve whereas β = β∗ = g∗L
gL
≤ 1 along the tail

curve. The transversal family of characteristic curves C+ is parametrized by
assigning to each curve a value α that is the ξ coordinate of its point of inter-
section with the leading C− curve (β = 1). In particular, the C+ curve at the
singularity degenerates to a single point and carries the value α = 0. In anal-
ogy with “polar coordinates” at the center, this degenerate curve still carries
all values of β ∈ [β∗, 1] (the center in polar coordinates carries all the angular
values in [0, 2π ]). Fixing a small negative value ᾱ < 0, we conclude that the
“triangular” sector � of the CRW shown in Figure 5.4 is “mapped” onto the
rectangle [in the (α, β) plane]

D = {(α, β), ᾱ ≤ α ≤ 0, 0 < β∗ ≤ β ≤ 1
}
. (5.19)

The coordinates (ξ, t) in � can be expressed in terms of α and β,

ξ = ξ (α, β), t = t(α, β), (α, β) ∈ D. (5.20)

These functions are smooth, but they are not one-to-one, of course, since
ξ (0, β) = t(0, β) = 0 for all β∗ ≤ β ≤ 1. In the case of the associated Riemann
problem, explicit expressions can easily be deduced from Claim 4.44. Indeed,
the C− curves are straight lines satisfying ξ = −A(0)gLβt , whereas the C+
curves are hyperbolas satisfying ξ t = −A(0)−1g−1

L α
2, so that

ξ = αβ1/2, t = −A(0)−1g−1
L αβ

−1/2, (α, β) ∈ D. (5.21)

In the general case, the expressions (5.21) are the leading terms (in powers of α)
in the transformations (5.20), which can therefore be rewritten as

ξ (α, β) = αβ1/2 + ε(α, β)α2, (α, β) ∈ D,
(5.22)

t(α, β) = −A(0)−1g−1
L αβ

−1/2 + η(α, β)α2, (α, β) ∈ D,

where ε(α, β) and η(α, β) are smooth functions in D.
These arguments may now be extended to all flow variables defined in the

CRW. Thus, if Q = Q(ξ, t) stands for such a variable (say, Q = ρ or Q = u),
we can substitute for ξ, t the expressions (5.22), so that Q = Q(α, β) becomes a
smooth function of (α, β) ∈ D. It should be emphasized that in general Q(ξ, t)
is not even continuous at (ξ, t) = (0, 0), as it may approach different limiting

6 Recall that the values at the singularity are determined by RA
(
ξ
t ;VL,VR

)
and range from VL at

the head to V∗L at the tail. We shall always assume that g∗L > 0.
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values along different C− curves. However, this is resolved in the (α, β) rep-
resentation, where two different C− curves correspond to two different β : β1

and β2. As α→ 0, they approach different points (0, β1), (0, β2), carrying dif-
ferent limiting values Q(0, β1), Q(0, β2) of any flow variable Q. Note finally
that the relation (5.3) between the solution to the GRP and the associated Rie-
mann solution implies that the limiting values Q(0, β), β∗ ≤ β ≤ 1, are iden-
tical in both solutions for any flow variable Q.

In the associated solution, all flow variables are uniform along C− curves,
namely, Q(α, β)≡ Q(0, β), ᾱ ≤ α ≤ 0, and in particular ∂

∂α
Q(α, β) |α=0 = 0.

This (directional) derivative expresses the initial variation of Q(α, β) in the di-
rection of C− (corresponding to the normalized slope β) as it emanates from the
singularity. In the GRP case it does not generally vanish. In fact, the evaluation
of ∂

∂α
Q(α, β) |α=0 is essential to our treatment of the linear GRP and the proof

of Theorem 5.7, as was already indicated.
To simplify notation we shall write ∂

∂α
Q(0, β) for ∂

∂α
Q(α, β) |α=0 when

there is no risk of confusion.
It is instructive at this point to see how Equations (5.22) can be formally

justified. In fact, at every point in the CRW the cross-sectional area A can be
expressed as a function Ã(α, β),

Ã(α, β) = A(r (ξ, t)) = A(r (ξ (α, β), t(α, β))).

At ξ = 0, Ã(0, β) ≡ A(0). The equations (4.85) for the characteristic directions
can be written as

(i)
∂ξ

∂α
= −g Ã

∂t

∂α
,

(5.23)

(ii)
∂ξ

∂β
= g Ã

∂t

∂β
.

Differentiating the first equation with respect to β and the second with respect
to α, and noting that at α = 0, ∂t

∂β
(0, β) = ∂ Ã

∂β
(0, β) = 0 we obtain

2g(0, β) · ∂
∂β

(
∂t

∂α
(0, β)

)
+ ∂g

∂β
(0, β) · ∂t

∂α
(0, β) = 0.

By definition g(0, β) = gLβ and ∂t
∂α

(0, 1) = −A(0)−1g−1
L . Hence ∂t

∂α
(0, β) =

−A(0)−1g−1
L β

−1/2, so that ∂ξ
∂α

(0, β) = β1/2, by (5.23)(i). This establishes (5.22)
by Taylor’s theorem.

The key result in the GRP treatment of the CRW is that, if we single out the
velocity u(α, β), its derivative ∂u

∂α
(0, β) can be readily determined. This is stated

in the following proposition. We refer to Table 5.5 for some of the notation used
here.
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Proposition 5.12 Consider the CRW as in Figure 5.4, parametrized by (α, β) ∈
D [see (5.19)]. Let a(β) = ∂u

∂α
(0, β), β∗ ≤ β ≤ 1. Then there exists a function

H (β) such that

d

dβ
a(β)+ H (β) = −1

2
λA(0)−1g−1

L β
−1/2 d

dβ
[u(0, β)c(0, β)] . (5.24)

The function H (β) depends only onVL and on the associated Riemann solution.
Furthermore, if the state ahead (in our case to the left) of the CRW is isentropic,
in the sense that S′L = 0 (where S is the entropy) then H (β) ≡ 0 forβ∗ ≤ β ≤ 1.
The relation (5.24) is supplemented by the initial condition

a(1) = u′L + g−1
L p′L (5.25)

to yield a unique solution a(β). (See Corollary 5.15 for explicit expressions in
the case of a γ -law gas.)

The proof given here follows Ben-Artzi and Falcovitz [10] and is rather
technical. The reader may skip it on first reading.

Proof As in (5.23), we rewrite the characteristic relations (4.85) in terms of
(α, β), so that [note that A′ = d

dr A(r ), and then substitute r = r (ξ (α, β), t(α, β))
to get Ã′(α, β)))]

(i)
∂p

∂α
− g

∂u

∂α
+ ( Ã )−1

Ã′guc
∂t

∂α
= 0,

(5.26)

(ii)
∂p

∂β
+ g

∂u

∂β
+ ( Ã )−1

Ã′guc
∂t

∂β
= 0.

Differentiate the first equation with respect to β and the second with respect
to α and then evaluate the difference at α = 0 (where of course ∂t

∂β
≡ 0). This

leads to

2g(0, β)a′(β)+ ∂g

∂α
(0, β)

∂u

∂β
(0, β)+ a(β)

∂g

∂β
(0, β)

− λ ∂t

∂α
(0, β)

∂

∂β
[u(0, β)c(0, β)g(0, β)] = 0 (5.27)

[note that ∂
∂β

[ (
Ã
)−1

Ã′
] ≡ 0 at α = 0 since Ã(0, β)−1 · Ã′(0, β) ≡ A(0)−1

A′(0)]. To establish (5.24) we need to express ∂g
∂α

(0, β) in terms of a(β) [and
flow variables of the associated solution at (0, β)]. Observe that ∂p

∂α
(0, β) is

readily available in these terms, in view of (5.26)(i). However, the CRW is not
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isentropic, so g is not only a function of p but also of the entropy S. We therefore
proceed as follows.

Let (ρI , pI ) be any state given by its density and pressure. The thermody-
namic states isentropic to this state can be parametrized by p. In particular, the
variable g = ρc can be expressed as a function

g = G(p; ρI , pI ) (5.28)

along this curve. The function G is a smooth function of p, ρI, pI.
Given any point (α, β) in the CRW, the entropy is invariant along the particle

path ξ = ξ (α, β). We can therefore take the initial value

ρI = ρ0(ξ (α, β)) = ρ(ξ (α, β), 0), pI = p0(ξ (α, β)) = p(ξ (α, β), 0)

to obtain, at time t = t(α, β),

g(α, β) = G(p(α, β); ρ0(ξ (α, β)), p0(ξ (α, β))). (5.29)

In view of (5.22) (and the notation in Table 5.5) we have

∂

∂α
ρ0(ξ (α, β))

∣∣∣∣
α=0

= ρ ′L · β1/2,

and similarly for p0. Differentiating (5.29) with respect to α and setting α = 0
yields

∂g

∂α
(0, β) = Gp (p(0, β); ρL, pL) · ∂p

∂α
(0, β)+ I (β) · β1/2,

(5.30)
I (β) = GρI (p(0, β); ρL, pL) · ρ ′L + G pI (p(0, β); ρL, pL) · p′L.

Clearly I (β) depends only on the equation of state (more specifically on G), the
values p(0, β) obtained from the associated Riemann solution, and the initial
values ρL, ρ

′
L, pL, p′L ahead of the CRW.

Using (5.26)(i) we can rewrite (5.30) as

∂g

∂α
(0, β) = G p (p(0, β); ρL, pL)

[
g(0, β)a(β)

− λ ∂t

∂α
(0, β)g(0, β)u(0, β)c(0, β)

]
+ I (β)β1/2, (5.31)
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and inserting this in (5.27) yields

2g(0, β)a′(β)+ F(β)a(β)+ H̃ (β)

= λ ∂t

∂α
(0, β)

{
∂

∂β
[g(0, β)u(0, β)c(0, β)]+ G p (p(0, β); ρL, pL)

× ∂u

∂β
(0, β)g(0, β)u(0, β)c(0, β)

}
, (5.32)

where

F(β) = ∂g

∂β
(0, β)+ G p (p(0, β); ρL, pL) g(0, β)

∂u

∂β
(0, β),

(5.33)
H̃ (β) = I (β)

∂u

∂β
(0, β)β1/2.

We claim that F(β) ≡ 0. Indeed, by (5.26)(ii), taken at α = 0, we have

∂p

∂β
(0, β) = −g(0, β)

∂u

∂β
(0, β).

However, the CRW in the associated Riemann solution is isentropic; hence
g(0, β) = G (p(0, β); ρL, pL) and we get

F(β) = ∂g

∂β
(0, β)− G p (p(0, β); ρL, pL)

∂p

∂β
(0, β) ≡ 0. (5.34)

Using the same consideration and noting that ∂t
∂α

(0, β) = −A(0)−1g−1
L β

−1/2,
the right-hand side of (5.32) becomes

−λA(0)−1g−1
L β

−1/2

{
∂

∂β
[u(0, β)c(0, β)g(0, β)]− ∂g

∂β
(0, β) u(0, β)c(0, β)

}

= −λA(0)−1β1/2 ∂

∂β
[u(0, β)c(0, β)] , (5.35)

where we have used g(0, β) = gLβ. Incorporating (5.34), (5.35) in (5.32) we
obtain (5.24), with

H (β) = (2gLβ)−1 H̃ (β) = 1

2
g−1

L β
−1/2 I (β)

∂u

∂β
(0, β). (5.36)

Now, if S′L = 0, the initial entropy S0 satisfies S0(ξ )− SL = O(ξ 2); hence the
isentropic curves through (ρ0(ξ ), p0(ξ )) and (ρL, pL) differ by O(ξ 2). In par-
ticular, for all values p close to pL,

G (p; ρL, pL)− G (p; ρ0(ξ ), p0(ξ )) = O(ξ 2),
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and taking ξ = ξ (α, β), p = p(0, β), we have

G (p(0, β); ρL, pL)− G (p(0, β); ρ0(ξ (α, β)), p0(ξ (α, β))) = O(α2),

(5.37)

where we have used (5.22) to replace ξ = O(α). Taking theα derivative of (5.37)
at α = 0 we get

I (β) = GρI (p(0, β); ρL, pL) ρ ′L + G pI (p(0, β); ρL, pL) p′L ≡ 0
(
when S′L = 0

)
; (5.38)

hence H (β) ≡ 0 by (5.36).
Finally, we obtain (5.25) by the chain rule, (4.83), and (5.22),

a(1) = ∂u

∂α
(0, 1) = u′L ·

∂ξ

∂α
(0, 1)+

(
∂u

∂t

)

L

· ∂t

∂α
(0, 1)

= u′L +
(
−A(0)

∂p

∂ξ

)

L

· (− A(0)−1g−1
L

) = u′L + g−1
L p′L. ��

Remark 5.13 Notice the role played here by the entropy S. The CRW in the as-
sociated solution is isentropic, so g(0, β) = G (p(0, β); ρL, pL), and Q(α, β) =
Q(0, β) for every flow variable Q. However, in our case, if S′L = 0, we have
H (β) ≡ 0. Nevertheless, if a(1) �= 0 then still, in view of (5.24) (even in the
planar case λ = 0) a(β) �= 0 and in particular, by (5.26)(i), ∂p

∂α
(0, β) �= 0.

Remark 5.14 Equation (5.24) expresses the “decoupled” dependence of a(β)
on the “thermodynamic” data H (β) (vanishing if S′L = 0) and the “geometric”
right-hand side (vanishing in the planar case or more generally if λ =
A′(0)A(0)−1 = 0).

Explicit Formulas for the (Lagrangian) GRP in the γ-Law Case

In the case of a perfect (γ -law) gas [see (4.104), (4.105)] we can obtain fully
explicit formulas for the CRW.

In view of (4.105)–(4.107), the function G of (5.28) takes the form

g = gI

(
p

pI

) γ+1
2γ

= (γ pIρI )1/2

(
p

pI

) γ+1
2γ

. (5.39)

Since g(0, β) = gLβ, we easily obtain

p(0, β) = pLβ
2γ
γ+1 , ρ(0, β) = ρLβ

2
γ+1 , c(0, β) = cLβ

γ−1
γ+1 . (5.40)
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The Riemann invariant R+ [see (4.108)] is constant throughout the (isentropic)
CRW in the associated solution, so that

u(0, β) = uL + 2

γ − 1
cL − 2

γ − 1
c(0, β) = uL + 2cL

γ − 1

(
1− β γ−1

γ+1

)
.

(5.41)

From the definition of I (β) in (5.30) and (5.39) it follows that

I (β) =
[

1

2
cLρ

′
L −

1

2cL
p′L

]
· β; (5.42)

hence, by (5.36) and (5.41),

H (β) = 1

2ρL(γ + 1)

[
1

cL
p′L − cLρ

′
L

]
· β γ−3

2(γ+1) . (5.43)

The right-hand side of (5.24) can be evaluated explicitly using (5.40), (5.41):

−1

2
λA(0)−1g−1

L β
−1/2 d

dβ
[u(0, β)c(0, β)]

= −1

2

λA(0)−1

(γ + 1)ρL

{
[(γ − 1)uL + 2cL]β−

γ+5
2(γ+1) − 4cLβ

γ−7
2(γ+1)

}
. (5.44)

Incorporating (5.43) and (5.44) in (5.24) we obtain the following explicit formula
for a(β).

Corollary 5.15 In the case of a γ -law gas, the function a(β) = ∂u
∂α

(0, β) of
Proposition 5.12 is given by

a(β) = a(1)+ 1

gL(3γ − 1)

[
c2

Lρ
′
L − p′L

] (
β

3γ−1
2(γ+1) − 1

)

− λA(0)−1

ρL(γ − 3)
[(γ − 1)uL + 2cL]

(
β

γ−3
2(γ+1) − 1

)

+ 4λA(0)−1cL

ρL(3γ − 5)
·
(
β

3γ−5
2(γ+1) − 1

)
, γ �= 5

3
, 3. (5.45)

We refer to Ben-Artzi and Falcovitz [10, Equations (3.21) and (3.22)] for
the exceptional cases γ = 5

3 , 3.

Concluding the Treatment of the CRW

In the preceding subsections we established the general expression (5.24) for
the directional derivative a(β) = ∂u

∂α
(0, β) and then derived its explicit form
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for a γ -law gas. Once a(β) is known, all other directional derivatives are
readily available. In the following corollary we collect these facts. We use
ρ = J (p; ρI , pI ) for the function representing all states (ρ, p) isentropic to a
given state (ρI , pI ). This is related to the analogous expression (5.28) for g by
G = ρc = J · ( ∂ J

∂p

)−1/2
.

Corollary 5.16 (Directional derivatives in a CRW) Using notation as in
Proposition 5.12, we have

∂p

∂α
(0, β) = gLβ

[
a(β)+ λA(0)−1g−1

L u(0, β)c(0, β)β−1/2
]
,

∂ρ

∂α
(0, β) = [JρI (p(0, β); ρL, pL) · ρ ′L + JpI (p(0, β); ρL, pL) · p′L

]
β1/2

+ c(0, β)−2 ∂p

∂α
(0, β). (5.46)

Proof The expression for ∂p
∂α

follows by combining (5.26)(i) with (5.22). The
one for ∂ρ

∂α
is obtained from ρ(α, β) = J (p(α, β); ρ0(ξ (α, β)), p0(ξ (α, β))) as

in (5.30). ��

In the case of a γ -law gas, we have

ρ = J (p; ρI , pI ) = ρI

(
p

pI

) 1
γ

, (5.47)

and explicit expressions can be derived for ∂p
∂α

and ∂ρ

∂α
by using (5.40), (5.41),

and (5.45).

Time Derivatives of p, u on the Interface – Proof
of the Main Theorem

We are now in a position to prove the main theorem of this section, Theorem 5.7.
We assume that the solution is as shown in Figure 5.2 and treat separately the
coefficients in (5.12)L and (5.12)R. The notation employed here is that used
already and in Table 5.5. This applies in particular to the function a(β) as in
Proposition 5.12.

Claim 5.17 (The coefficients aL, bL, dL) Equation (5.12)L holds with

aL = 1, bL =
(
g∗L
)−1
, dL = −

(
gLg∗L
)1/2

A(0)a(β∗)− λu∗c∗L. (5.48)
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Proof The flow in the region ξ (α, β∗) ≤ ξ ≤ 0 (i.e., between the tail charac-
teristic of the rarefaction wave and the contact discontinuity) is smooth. Using
the chain rule at (α, β∗) and then letting α→ 0 we obtain

∂p

∂α
(0, β∗) =

(
∂p

∂t

)∗
∂t

∂α
(0, β∗)+

(
∂p

∂ξ

)∗

L

∂ξ

∂α
(0, β∗). (5.49)

By (4.83) we have A(0)
(
∂p
∂ξ

)∗
L = −

(
∂u
∂t

)∗
and by (5.22)

∂ξ

∂α
(0, β∗) = (β∗)1/2 , ∂t

∂α
(0, β∗) = −A(0)−1g−1

L

(
β∗
)−1/2

.

Also, by (5.46),

∂p

∂α
(0, β∗) = gLβ

∗
[
a(β∗)+ λA(0)−1g−1

L u∗c∗L
(
β∗
)−1/2
]
.

Incorporating these equations in (5.49) and noting β∗ = g−1
L g∗L we obtain (5.48).

��

We now turn to the treatment of the coefficients in (5.12)R. Two difficulties
are encountered here. First, all flow variables are discontinuous across the shock.
Second, the state behind the shock is not uniform, since the initial data are not
uniform. The flow in the two regions separated by the shock is smooth, and
so is the shock trajectory. For clarity, we shall denote by Q+(ξ, t) the value
of the flow variable Q (Q = ρ, u, etc.) in the region ahead of the shock (i.e.,
the region between �3 and the positive ξ axis in Figure 5.2) while retaining
the notation Q(ξ, t) for the values behind the shock (i.e., between �3 and the
contact discontinuity ξ = 0). We parametrize the shock trajectory �3 as ξ (θ ),
t(θ ), with (ξ (0), t(0)) = (0, 0). Along this curve we can simplify the notation
of the flow variables on the two sides in an obvious way,

Q (θ ) = Q (ξ (θ ), t(θ )), Q+(θ ) = Q+(ξ (θ ), t(θ )).

The shock relation (4.102) can be written here as

u(θ ) = u+(θ)+� (p(θ ); ρ+(θ ), p+(θ )) (5.50)

[since p(θ ) ≥ p+(θ ), � = φ3 of (4.102)]. According to (4.88), (4.89) the shock
speed σ = ξ ′(t) = ξ ′(θ )

t ′(θ) can be expressed as

σ (θ ) = A(θ )
p(θ)− p+(θ )

u(θ)− u+(θ )
, A(θ) = A (r (ξ (θ ), t(θ))) , (5.51)
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and the derivative d f
dθ can be expressed as

d f

dθ
=
(
σ (θ )

∂ f

∂ξ
+ ∂ f

∂t

)
· t ′(θ ) (5.52)

for any function f = f (ξ, t). Clearly, if f (ξ, t) = Q(ξ, t) the derivatives ∂Q
∂ξ
, ∂Q
∂t

in (5.52) are evaluated behind the shock [i.e., at ξ = ξ (θ )−, t = t(θ)+] and
similarly for Q+(ξ, t).

The assertion of the next claim is that the coefficients aR, bR, dR of (5.12)R

are obtained by differentiating (5.50).

Claim 5.18 (The coefficients aR, bR, dR) Equation (5.12)R holds true with
coefficients aR, bR, dR, which depend only on the following: the initial data
VR, V′R to the right of the discontinuity, the function � of (5.50), and the values
p∗, u∗, ρ∗R obtained in the solution of the associated Riemann problem.

Detailed expressions for aR, bR, dR are given in the following [Equation
(5.58)] for the general case, as well as Equation (5.62) for the special case of a
γ -law gas].

Proof We consider the function � as a function of three variables, � = �
(p; ρI , pI ) [compare (5.28)]. Differentiating (5.50) with respect to θ and using
(5.52) we get

∂u

∂t
+ σ (θ )

∂u

∂ξ
= ∂u+

∂t
+ σ (θ)

∂u+
∂ξ

+�p (p(θ ); ρ+(θ), p+(θ)) ·
[
∂p

∂t
+ σ (θ )

∂p

∂ξ

]

+�ρI (p(θ); ρ+(θ ), p+(θ )) ·
[
∂ρ+
∂t

+ σ (θ )
∂ρ+
∂ξ

]

+�pI (p(θ ); ρ+(θ ), p+(θ)) ·
[
∂p+
∂t

+ σ (θ )
∂p+
∂ξ

]
. (5.53)

Inspecting Figure 5.2 and using the notation in Table 5.5 we see that as θ → 0
we have the following limits:

∂p

∂t
→
(
∂p

∂t

)∗
,

∂u

∂t
→
(
∂u

∂t

)∗
,

(5.54)
∂p

∂ξ
→
(
∂p

∂ξ

)∗
,

∂u

∂ξ
→
(
∂u

∂ξ

)∗

R

,
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and, for Q+ = p+, u+, ρ+,

∂Q+
∂t

→
(
∂Q

∂t

)

R

,
∂Q+
∂ξ

→ Q′
R . (5.55)

Furthermore, using Equations (4.83) and (5.18), we have

A(0)

(
∂p

∂ξ

)∗
= −
(
∂u

∂t

)∗
,

A(0)

(
∂u

∂ξ

)∗

R

=
(
∂τ

∂t

)∗

R

− u∗
(
∂

∂ξ
A(r (ξ, 0))

)∗

R

(5.56)

= − (g∗R
)−2
(
∂p

∂t

)∗
− λ (ρ∗R

)−1
u∗.

Note that we have used, as in Remark 5.6,
(
∂

∂ξ
A(r (ξ, 0))

)∗

R

= lim
t→0+

A′(r (0, t))

A(r (0, t))
· ρ(0+, t)−1 = λ (ρ∗R

)−1
.

However,
(
∂ρ

∂t

)

R

= −ρ2
R

(
∂τ

∂t

)

R

= −ρ2
R
∂

∂ξ
[Au]ξ=0+

= −ρ2
R

[
λρ−1

R uR + A(0)u′R
]

[compare (5.15)],
(
∂p

∂t

)

R

= c2
R

(
∂ρ

∂t

)

R

(5.57)

= −g2
R

[
λρ−1

R uR + A(0)u′R
]

[compare (5.17)],
(
∂u

∂t

)

R

= −A(0)p′R.

We can now let θ → 0 in (5.53) and use these relations to get

[1 + A(0)−1σ (0)�p
(

p∗; ρR, pR
)] (∂u

∂t

)∗

+
[
−A(0)−1σ (0)

(
g∗R
)−2 −�p

(
p∗; ρR, pR

)] (∂p

∂t

)∗

= [σ (0)− ρ2
R A(0)�ρI

(
p∗; ρR, pR

)− g2
R A(0)�pI

(
p∗; ρR, pR

)]
u′R

+ [−A(0)+ σ (0)�pI

(
p∗; ρR, pR

)]
p′R + σ (0)�ρI

(
p∗; ρR, pR

)
ρ ′R

+ λ
{

A(0)−1σ (0)
(
ρ∗R
)−1

u∗ − ρRuR�ρI

(
p∗; ρR, pR

)

− g2
Rρ

−1
R uR�pI

(
p∗; ρR, pR

)}
. (5.58)
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The limiting speed σ (0) is identical to that of the associated solution, and by
(5.51) we have

σ (0) = A(0)
p∗ − pR

u∗ − uR
. (5.59)

This concludes the proof of the claim, and indeed, the proof of Theorem 5.7. ��

Remark 5.19 Observe that in view of (5.58) dR is linear in u′R, p′R, ρ ′R and
λ = A′(0)A(0)−1, and can be written as

dR = Luu′R + L p p′R + Lρρ
′
R + Lλ · λ, (5.60)

where Lu , L p, Lρ , Lλ depend on VR, V∗R and the equation of state (in terms
of �). Specializing to a γ -law gas we have, by (4.111),

� (p; ρI , pI ) = (p − pI )

√
1− µ2

ρI (p + µ2 pI )
, µ2 = γ − 1

γ + 1
, (5.61)

and carrying out the differentiations in (5.58) we get the following explicit
expressions.

Corollary 5.20 (The coefficients aR, bR, dR for a γ-law gas) In the γ -law
case we have from (5.58)–(5.61), with σ (0) as in (5.59) and dR as in (5.60),

aR = 2− 1

2

p∗ − pR

p∗ + µ2 pR
,

bR = −A(0)−1σ (0)(g∗R)−2 − A(0)σ (0)−1(aR − 1),

Lu = σ (0)+ A(0)

2
ρR(u∗ − uR)+ (A(0)gR)2σ (0)−1

[
1+ µ2(p∗ − pR)

2(p∗ + µ2 pR)

]
,

(5.62)
L p = −

(
2+ µ

2

2

p∗ − pR

p∗ + µ2 pR

)
A(0),

Lρ = −
(

p∗ − pR

2ρR

)
A(0),

Lλ = A(0)−1σ (0)u∗(ρ∗R)−1 + uRρ
−1
R (u∗ − uR)

×
[

g2
R

(
1

p∗ − pR
+ µ

2

2
· 1

p∗ + µ2 pR

)
+ ρR

2

]
.

Remark 5.21 (The “acoustic limit” VL = VR) When VL = VR the solution
of the associated Riemann problem is constant and V∗ = VL = VR. The shock
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speed σ (0) is replaced by the characteristic slope A(0)gR. Invoking these facts
in (5.62) we obtain the coefficients aR, bR, dR of the acoustic case (5.13) (multi-
plied by a factor of −2). Similarly, in this case β∗ = 1 and a(β∗) = a(1), as in
(5.25). The coefficients aL, bL, dL of (5.48) are then identical to those of (5.13).

Conclusion of the Linear GRP in the Lagrangian Case

The linear GRP in the Lagrangian coordinates, as posed in (5.10), is now fully
solved. Indeed, the derivatives

(
∂p
∂t

)∗
,
(
∂u
∂t

)∗
are determined by Theorem 5.7. The

time derivatives of the density on the two sides of the contact discontinuity are
then obtained by

(
∂ρ

∂t

)∗

R

= (c∗R)−2

(
∂p

∂t

)∗
,

(
∂ρ

∂t

)∗

L

= (c∗L)−2

(
∂p

∂t

)∗
. (5.63)

(We refer to Figure 5.2 and Table 5.5 for notation.)
The solution to the linear GRP in Eulerian coordinates (see Proposition 5.26)

also requires knowledge of the ξ derivatives at the contact discontinuity.
The ξ derivatives of p, u on the two sides of the discontinuity are evaluated

as in (5.56):

A(0)

(
∂p

∂ξ

)∗
= −
(
∂u

∂t

)∗
,

(5.64)

A(0)

(
∂u

∂ξ

)∗

R

= −(g∗R)−2

(
∂p

∂t

)∗
− λ(ρ∗R)−1u∗

[and an analogous expression for
(
∂u
∂ξ

)∗
L]. The remaining derivatives are

(
∂ρ

∂ξ

)∗
R,

(
∂ρ

∂ξ

)∗
L. Here we face a difficulty, since these ξ derivatives do not appear (directly)

in the basic system of equations (4.83). We therefore resort to the method em-
ployed in the proof of Claim 5.18.

Claim 5.22 (ξ derivatives of ρ at the contact discontinuity) Assume again
the wave pattern of Figure 5.2. Using the notation of Table 5.5 we can ex-
press the derivatives

(
∂ρ

∂ξ

)∗
L,
(
∂ρ

∂ξ

)∗
R as follows:

(
∂ρ

∂ξ

)∗

L

= (β∗)−1/2 ∂ρ

∂α
(0, β∗)+ A(0)−1(g∗L)−1(c∗L)−2

(
∂p

∂t

)∗
, (5.65)
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where ∂ρ

∂α
(0, β) is given in (5.46) and β∗ = g∗L

gL
, and

(
∂ρ

∂ξ

)∗

R

= [−(ρ∗R)2 A(0)2σ (0)−3 − 3(c∗R)−2σ (0)−1
] (∂p

∂t

)∗

+ 3(ρ∗R)2 A(0)σ (0)−2

(
∂u

∂t

)∗
+ 3(ρ∗R)2 A(0)2σ (0)−2 p′R +

(
ρ∗R
ρR

)2

ρ ′R

+ [−g2
R A(0)3(ρ∗R)2σ (0)−3 − 3A(0)σ (0)−1(ρ∗R)2

]
u′R

+ ρ∗Rσ (0)−1
{
ρ−1

R uRρ
∗
R

[−g2
R A(0)2σ (0)−2 − 1

]− 2u∗
}
λ, (5.66)

where σ (0) is given by (5.59).

Proof By the chain rule [compare (5.49)], we have

∂ρ

∂α
(0, β∗) =

(
∂ρ

∂t

)∗

L

∂t

∂α
(0, β∗)+

(
∂ρ

∂ξ

)∗

L

∂ξ

∂α
(0, β∗),

from which (5.65) follows by solving for
(
∂ρ

∂ξ

)∗
L and noting (5.22) and (5.63).

To establish (5.66) we recall the parametric notation introduced in the para-
graph preceding (5.50) and the jump relation (4.89)(iii). This relation can be
written as

(p(θ)− p+(θ ))(τ+(θ)− τ (θ )) = (u(θ)− u+(θ ))2. (5.67)

Differentiating with respect to θ according to (5.52) and setting θ = 0 we get,
in view of (5.54), (5.55),

[
σ (0)

((
∂p

∂ξ

)∗
− p′R

)
+
(
∂p

∂t

)∗
−
(
∂p

∂t

)

R

]
(τR − τ ∗R)

+
[
σ (0)

(
τ ′R −
(
∂τ

∂ξ

)∗

R

)
+
(
∂τ

∂t

)

R

−
(
∂τ

∂t

)∗

R

]
(p∗ − pR)

= 2(u∗ − uR)

[
σ (0)

((
∂u

∂ξ

)∗

R

− u′R

)
+
(
∂u

∂t

)∗
−
(
∂u

∂t

)

R

]
. (5.68)

We now make the following substitutions:

(
∂p

∂ξ

)∗
,

(
∂u

∂ξ

)∗

R

by (5.56),

(
∂p

∂t

)

R

,

(
∂u

∂t

)

R

,

(
∂τ

∂t

)

R

by (5.57).
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Also, by (5.63),
(
∂τ
∂t

)∗
R
= −(g∗R)−2

(
∂p
∂t

)∗
, and by (4.89), (5.59),

σ (0) = A(0)
p∗ − pR

u∗ − uR
, σ (0)2 = A(0)2 p∗ − pR

τR − τ ∗ . (5.69)

Inserting these substitutions in (5.68) and solving for
(
∂τ
∂ξ

)∗
R = −(ρ∗R)−2

(
∂ρ

∂ξ

)∗
R

we obtain (5.66). ��

Equations (5.65), (5.66) are more complicated than (5.64). However, in the
acoustic case they can be considerably simplified.

Claim 5.23 (ξ derivatives of ρ at the contact discontinuity – acoustic case)
In the acoustic case (see Proposition 5.9) we have, instead of (5.65), (5.66),

(
∂ρ

∂ξ

)∗

L

= (g∗L)−1

[
ρ2

Lu′L + gLρ
′
L + λA(0)−1ρLuL + A(0)−1(c∗L)−2

(
∂p

∂t

)∗]
,

(
∂ρ

∂ξ

)∗

R

= (g∗R)−1

[
−ρ2

Ru′R + gRρ
′
R − λA(0)−1ρRuR − A(0)−1(c∗R)−2

(
∂p

∂t

)∗]
.

(5.70)

Proof Using the same reasoning as in (5.14) we get

(
∂ρ

∂t

)∗

L

− A(0)g∗L

(
∂ρ

∂ξ

)∗

L

=
(
∂ρ

∂t

)

L

− A(0)gLρ
′
L.

Since
(
∂ρ

∂t

)

L

= c−2
L

(
∂p

∂t

)

L

,

(
∂ρ

∂t

)∗

L

= (c∗L)−2

(
∂p

∂t

)∗
,

we have by (5.17)

(c∗L)−2

(
∂p

∂t

)∗
− A(0)g∗L

(
∂ρ

∂ξ

)∗

L

= −λρLuL − A(0)ρ2
Lu′L − A(0)gLρ

′
L,

which yields (5.70) for the left derivative. The right derivative is handled
similarly. ��

All ξ and t derivatives of flow variables (at the singularity) are now accounted
for. As a first step in their evaluation, we solve the associated Riemann problem
and determine the values V∗ = RA(0;VL,VR) (including discontinuous values
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such as ρ∗L, ρ
∗
R). The second step is the solution of the linear GRP [see (5.10)],

namely, finding all (instantaneous) time derivatives at the singularity. The third
step completes the treatment by providing for all ξ derivatives there. For the
reader’s convenience we summarize here the procedure involved in the second
and third steps. The first step, that of solving the Riemann problem, is given
in Construction 4.46 and Appendix C. Recall that notation used below is that
introduced in Table 5.5.

Summary 5.24 (Solving the linear GRP in Lagrangian coordinates)

(I) Find the derivatives
(
∂u
∂t

)∗
,
(
∂p
∂t

)∗
as in Theorem 5.7.

γ -law gas: Explicit formulas are given in Corollary 5.15 and Corollary
5.20.

(II) Evaluate
(
∂ρ

∂t

)∗

L
,
(
∂ρ

∂t

)∗

R
by (5.63), and evaluate

(
∂u
∂ξ

)∗

L
,
(
∂u
∂ξ

)∗

R
,
(
∂p
∂ξ

)∗

by (5.64).

(III) Determine
(
∂ρ

∂ξ

)∗

L
,
(
∂ρ

∂ξ

)∗

R
by (5.65), (5.66) [or (5.70) in the acoustic

case].
(IV) In the acoustic case the coefficients in Theorem 5.7 are given in (5.13)

and do not depend on the equation of state. (See also Remark 5.21.) In
this case Equations (5.65), (5.66) are replaced by (5.70).

Remark 5.25 Our formulas were based on the hypothesis that the wave pattern
for the GRP is as in Figure 5.2. All other possibilities can be easily derived from
these formulas by simple “reflections.” For example, if the wave �3 is a CRW,
we obtain the coefficients aL, bL, dL, from Proposition 5.12 and Claim 5.17 by
reflecting ξ →−ξ , t → t , u →−u and leaving unchanged the thermodynamic
variables (so that −uR replaces uL but u′R comes instead of u′L).

The Linear GRP in the Eulerian Framework

We are now in a position to address the (Eulerian) linear GRP as stated in
(5.4). Indeed, having the ξ and t derivatives at our disposal, we can obtain any
directional derivative by the chain rule. This applies in particular to the line
r = 0, when represented as a curve in the (ξ, t) plane, r (ξ, t) = 0.

We distinguish three typical cases as depicted in Figure 5.5. All three corre-
spond to the wave pattern assumed in Figure 5.2.

The line r = 0 is represented in the (ξ, t) plane by a curve ξ = ξ (t), ξ (0) = 0.
To find its functional form we simply differentiate the identity r (ξ (t), t) = 0 to
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obtain by (4.80), (4.81)

ξ ′(t) = −A(0)ρ(ξ, t)u(ξ, t), ξ (0) = 0. (5.71)

We basically distinguish two cases:

(a) The “nonsonic” case is when the line r = 0 is not “included” in a CRW.
This corresponds to Figures 5.5(a) and (b).

(b) The “sonic” case is when the line r = 0 is tangent (at r = t = 0) to a
characteristic curve within a rarefaction fan, such as Figure 5.5(c).

In the setup of Figure 5.5, the instantaneous values behind the shock �3

(at t = 0+) are included in V∗R (see Table 5.5), whereas those behind the CRW
(�1) are included in V∗L . According to (5.3) the limiting values of the solution
to the GRP along r = 0, as t → 0, are given by

U0 = lim
t→0+

U(0, t) = RA(0;UL,UR). (5.72)

. .

Figure 5.5. Possible Eulerian GRP solutions for the wave pattern of Figure 5.2.
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By the discussion preceding (5.3) we also know that the position of r = 0 (near
t = 0) relative to the waves�1, �2, �3 is fully determined by the solution to the
associated Riemann problem. In particular (always assuming the wave pattern
of Figure 5.5), the line r = 0 is nonsonic if either u∗ − c∗L < 0 (the full CRW
propagates into the region r < 0) or uL − cL > 0 (it propagates into the region
r > 0). Since the shock speed σE (in Eulerian coordinates) is given by

σE = ρRuR − ρ∗Ru∗

ρR − ρ∗R
[see (4.86)], we infer that the line r = 0 is situated between the contact discon-
tinuity �2 and the shock �3 [as in Figure 5.5(a)] if u∗ < 0 < σE and so on.

Taking Q = Q(r, t) to be any flow variable (such as p or u) we denote [as
in (5.72)]

Q0 = lim
t→0+

Q(0, t).

The initial slope ξ ′(0) of the curve ξ (t) is then obtained from (5.71),

ξ ′(0) = −A(0)ρ0u0. (5.73)

We now consider Q = Q(ξ, t) in the Lagrangian framework and take its partial
derivative along the line r = 0 [which is represented by ξ = ξ (t)]. The limiting
values of these derivatives at the initial point (0, 0) are determined according to
the location of the line r = 0. In the nonsonic case, this line lies between two
waves, or to the left or right [as in Figure 5.5(a)] of all the three. We denote by
∂0

t Q, ∂0
ξ Q those limiting derivatives:

∂0
t Q = lim

t→0+
∂

∂t
Q(ξ, t)

∣∣∣∣
ξ=ξ (t)

,

(5.74)

∂0
ξ Q = lim

t→0+
∂

∂ξ
Q(ξ, t)

∣∣∣∣
ξ=ξ (t)

.

For example, in the situation displayed in Figure 5.5(a) (r = 0 to the right of�3),

∂0
t Q =

(
∂

∂t
Q

)

R

, ∂0
ξ Q = Q′

R,

whereas in the case of Figure 5.5(b) (r = 0 between �2 and�3),

∂0
t Q =

(
∂

∂t
Q

)∗

R

, ∂0
ξ Q =

(
∂

∂ξ
Q

)∗

R

(see Table 5.5).
The solution to the linear GRP (5.4) is now straightforward. Since U(0, t) =

U(ξ (t), t), we have, by the chain rule, the following:
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Proposition 5.26 (The linearGRP inEulerian coordinates – nonsonic case)
The solution

(
∂
∂t U
)
0

to the linear GRP in the nonsonic case is given by the chain
rule,

(
∂

∂t
U
)

0

= ∂0
t U− A(0)ρ0u0 ∂

0
ξ U. (5.75)

The derivatives in the right-hand side of (5.75) are obtained as in Summary 5.24.

We are now left with the sonic case, as in Figure 5.5(c). Here uL − cL < 0 <
u∗ − c∗L, so that the line r = 0 is tangent (at t = 0) to a characteristic contained in
the rarefaction fan. In the language of the characteristic coordinates introduced
for the analysis of the CRW [see the discussion preceding (5.19)] we can identify
the line r = 0 with a smooth trajectory α(t), β(t), so that (α(0), β(0)) = (0, β0),
β∗ ≤ β0 ≤ 1. The limiting slope (at t = 0) of the characteristic C− associated
with β is u(0, β)− c(0, β), so that the tangency of r = 0 to the β0 characteristic
implies

u(0, β0) = c(0, β0).7 (5.76)

The chain rule formula (5.75) is clearly meaningless here. Using the notation
introduced in the paragraph following (5.22), we can represent the solution
throughout the CRW as U(α, β). In particular, along r = 0, the solution U(0, t)
can be expressed as U(α(t), β(t)) and differentiated at t = 0.

Proposition 5.27 (The linear GRP in Eulerian coordinates – sonic case) As-
sume the wave pattern of Figure 5.5(c) and let r = 0 be represented in the
characteristic framework by (α(t), β(t)), where β0 satisfies (5.76).

The solution
(
∂
∂t U
)
0

to the linear GRP in this case is given by

(
∂

∂t
U
)

0

= ∂

∂α
U(0, β0) · α′(0)+ ∂

∂β
U(0, β0) · β ′(0), (5.77)

where

α′(0) = −A(0)gLβ
1/2
0 , (5.78)

β ′(0) = 1

2
β

1/2
0 A(0)

[
∂(ρc)

∂α
(0, β0)− ∂(ρu)

∂α
(0, β0)

]
. (5.79)

The derivatives ∂
∂β
U(0, β0) are obtained from the associated Riemann solu-

tion RA(µ;UL,UR) [see (5.3)] or its Lagrangian equivalent VA(ξ, t) [where

7 This equality explains the term “sonic case”; the material velocity coincides with the sonic
speed.
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β corresponds to the C− characteristic ξ (t) = −A(0)gLβt]. In the case of a
γ -law gas use Equations (5.40) and (5.41).

The derivatives ∂
∂α
U(0, β0) are obtained in the process of the resolution of

the CRW (Proposition 5.12 and Corollary 5.16). In the case of a γ -law gas see
Remark 5.28 later in this subsection.

Proof Equation (5.77) follows from the chain rule, and it remains to prove (5.78),
(5.79). Regarding t(α, β) as a function along (α(t), β(t)) we have the obvious
identity t = t(α(t), β(t)). Differentiating at t = 0 and using (5.22) we get

1 = ∂t

∂α
(0, β0) · α′(0)+ ∂t

∂β
(0, β0) · β ′(0) = −A(0)−1g−1

L β
−1/2
0 α′(0),

which proves (5.78). The proof of (5.79) is considerably more intricate and the
reader may skip it on first reading.

The line r = 0 is represented by ξ = ξ (t) = ξ (α(t), β(t)), so by (5.22)

ξ ′(t) = ∂ξ

∂α
α′(t)+ ∂ξ

∂β
β ′(t)

= [β(t)1/2 + 2α(t)ε(0, β)
]
α′(t)+ 1

2
α(t)β(t)−1/2β ′(t)+ O(t2), (5.80)

whereas from (5.71) we have

ξ ′(t) = −A(0)ρ(α(t), β(t)) u(α(t), β(t)),

so that

ξ ′(t) = −A(0)

{
(ρu)(0, β0)+ ∂(ρu)

∂α
(0, β0) · α(t)

+ ∂(ρu)

∂β
(0, β0) · (β(t)− β0)

}
+ O(t2). (5.81)

However, the characteristic relation (5.26)(ii), evaluated for the associated
Riemann solution (i.e., along the degenerate C+ characteristic α = 0), in
conjunction with (5.76), yields8

c(0, β0)2 ∂ρ

∂β
(0, β0)+ ρ(0, β0)c(0, β0)

∂u

∂β
(0, β0) = c(0, β0)

∂

∂β
(ρu)(0, β0) = 0.

(5.82)

8 The CRW for the associated solution is isentropic, so that

∂p

∂β
(0, β) = c(0, β)2 ∂ρ

∂β
(0, β).
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Therefore (5.81) can be rewritten as

ξ ′(t) = −A(0)

{
(ρu)(0, β0)+ ∂(ρu)

∂α
(0, β0) · α(t)

}
+ O(t2)

= −A(0)

{
(ρc)(0, β0)+ ∂(ρu)

∂α
(0, β0) · α(t)

}
+ O(t2). (5.83)

Comparing zero-order terms in (5.80) and (5.83) we capture again (5.78), since
g(0, β0) = gLβ0. For first-order terms we have

2ε(0, β0)α′(0)2 + α′(0)β ′(0)β−1/2
0 + β1/2

0 α′′(0)

= −A(0)
∂(ρu)

∂α
(0, β0) · α′(0). (5.84)

Similarly, differentiating the identity t(α(t), β(t)) = t and retaining first-order
terms we have

2η(0, β0)α′(0)2 + A(0)−1g−1
L β

−3/2
0 α′(0)β ′(0)− A(0)−1g−1

L β
−1/2
0 α′′(0) = 0.

(5.85)

Combining (5.84) and (5.85) we can eliminate α′′(0) to obtain

2α′(0) [A(0)gLβ0η(0, β0)+ ε(0, β0)]+ 2β−1/2
0 β ′(0) = −A(0)

∂(ρu)

∂α
(0, β0).

(5.86)

It remains to evaluate the expression in the square brackets in (5.86). To this
end we use Equation (5.23)(i) along (α(t), β(t)). Once again we expand up to
first-order terms and we use Ã(α(t), β(t)) = A(0) to get, by (5.22),

β(t)1/2 + 2α(t)ε(0, β0) = −A(0)g(0, β0)
[−A(0)−1g−1

L β(t)−1/2

+ 2α(t)η(0, β0)]− A(0)
∂g

∂α
(0, β0)

×
[

A(0)−1g−1
L β

−1/2
0 α(t)

]
+ O(t2).

Using g(0, β0) = gLβ0 and equating first-order terms we get

2 [A(0)gLβ0η(0, β0)+ ε(0, β0)] = − ∂g

∂α
(0, β0)g−1

L β
−1/2
0 .

Inserting this expression in (5.86) and noting (5.78) we obtain (5.79). ��
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Remark 5.28 (γ-law gas) In the case of a γ -law gas the α derivatives in (5.79)
are obtained by combining Equations (5.40), (5.41), and (5.47) and Corollaries
5.15 and 5.16. The value ofβ0, obtained from (5.76) in conjunction with (5.41), is

β0 =
[
γ − 1

γ + 1

(
uL

cL
+ 2

γ − 1

)] γ+1
γ−1

. (5.87)

We have concluded the treatment of the linear GRP in all cases. As in the
Lagrangian case (Summary 5.24), we include a short summary.

Summary 5.29 (Solving the linear GRP in Eulerian coordinates)
(I) Obtain the Lagrangian solution (namely, ξ and t derivatives at the

contact discontinuity) as in Summary 5.24.
(II) Determine the various (initial) speeds of the waves �1, �2, �3 in Eu-

lerian coordinates. In the case depicted in Figures 5.2 and 5.5, these
are (see Table 5.5 for notation)

uL − cL and u∗ − c∗L for the head and tail C− characteristics of �1,

u∗ for the speed of the contact discontinuity �2,

σE = ρRuR − ρ∗Ru∗R
ρR − ρ∗R

for the shock �3.

(III) Locate the line r = 0 relative to these waves and use the associated
Riemann solutionRA

(
r
t ;UL,UR

)
[see (5.3)] to obtain the initial values

U0 = lim
t→0+

U(0, t).

(IV) If the line r = 0 is not contained in a CRW (nonsonic case) evaluate
the derivative

(
∂
∂t U
)
0

as in Proposition 5.26.
(V) If the line r = 0 is contained in a CRW (sonic case) evaluate the deriva-

tive
(
∂
∂t U
)
0

as in Proposition 5.27.

Remark 5.30 (The “acoustic case”) We emphasize [see Summary 5.24(IV)]
that in the acoustic case the time derivatives

(
∂u
∂t

)∗
,
(
∂p
∂t

)∗
are readily available

(Proposition 5.9). It then follows [Summary 5.24(II) and (III)] that the full
solution to the linear GRP in Lagrangian coordinates is reduced to simple
algebraic expressions. In particular, these expressions do not depend on the
equation of state.
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Remark 5.31 (Directional derivatives) Note that the preceding discussion
enables us to find the directional derivatives in any desired direction (instead of
r = 0). In a nonsonic direction, one simply applies Equation (5.75), replacing
the direction ξ ′(0) = −A(0)ρ0u0 by any other direction [expressed in (ξ, t)
coordinates]. Compare this also with Remark 5.4(a).

5.2 The GRP Numerical Method for Quasi-1-D,
Compressible, Inviscid Flow

The previous section dealt with the solution to the linear GRP. Given initial
piecewise-linear data, we can find the value of the solution [to the system
(4.45)] and its time derivative at the singularity. In this section we show how to
implement this solution in the design of a suitable numerical scheme, and in
fact a group of such schemes.

The schemes presented here range from the very basic one (Definition 5.37),
which is just a straightforward, easy-to-implement, extension of the classical
Godunov scheme, to the “full GRP” scheme (Definition 5.41), which requires
the full power of the analysis presented in Section 5.1. However, we emphasize
that, in all cases, the schemes are based on explicit formulas, derived on the basis
of the Riemann solution and the equation of state. For a γ -law gas, these formu-
las are given in detail in Section 5.1. Once these formulas are incorporated into
the numerical fluxes, the schemes prove to be robust and no intricate postpro-
cessing procedures are needed (except for a simple “slope limiter”, described
in the final paragraph of this section). This claim will be amply demonstrated in
Chapter 6 and by the numerical examples discussed in Part II of this monograph.

The basic methodology has already been introduced in Section 3.1. We take
a uniform spatial grid9 r j = j	r , −∞ < j <∞, and uniformly spaced time
levels tn+1 = tn + k, t0 = 0. We refer to the interval (r j−1/2, r j+1/2) as “cell j”
and to its endpoints as the “cell boundaries.”

At the time level tn , the solution to (4.45) in cell j is approximated by an
average Un

j . In analogy with Equation (3.1) we advance the averages
{
Un

j

}
j

to
the next time level by a general (“quasi-conservative”) scheme

Un+1
j = Un

j −
	t

(	v) j

[
A(r j+1/2)Fn+1/2

j+1/2 − A(r j−1/2)Fn+1/2
j−1/2

]

− 	t

	r

[
Gn+1/2

j+1/2 −Gn+1/2
j−1/2

]
, (5.88)

9 The fixed mesh size is taken here for convenience and can be modified to allow for nonuniform
grids. Also, if the coordinate r is restricted (say, r ≥ 0 in the spherical case), the same restrictions
apply to the discrete grid.
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where

(	v) j =
r j+1/2∫

r j−1/2

A(r ) dr

is the volume of the duct segment in cell j . The scheme (5.88) is a “finite-
volume” scheme. It is obtained by integrating the quasi-conservation law (4.45)
[after multiplication by A(r )] over the space–time rectangle (r j−1/2, r j+1/2)×
(tn, tn+1). The integral

r j+1/2∫

r j−1/2

A(r )U(r, tn) dr

is approximated by Un
j (	v) j , and similarly for t = tn+1. The integral

r j+1/2∫

r j−1/2

A(r )
∂

∂r
G(U(r, t)) dr

is approximated by (	v) j

	r

[
G
(
U(r j+1/2, t)

)−G
(
U(r j−1/2, t)

)]
. The “side” in-

tegrals

tn+1∫

tn

A(r j±1/2)F
(
U(r j±1/2, t)

)
dt,

tn+1∫

tn

G
(
U(r j±1/2, t)

)
dt

are then approximated, respectively, by

A(r j±1/2)Fn+1/2
j±1/2, Gn+1/2

j±1/2, (5.89)

which need to be determined. In fact, their evaluation in terms of the data{
Un

j

}
j
10 is what is commonly referred to as the “design of a scheme.”

Definition 5.32 The terms Fn+1/2
j±1/2, Gn+1/2

j±1/2 are called the “numerical fluxes” for
the quasi-conservative scheme (5.88).

In the rest of this section we follow closely the presentation in Section 3.1. In
particular, we shall always assume that the ratio k

	r satisfies the CFL condition

10 As in Chapter 3, we refer here only to “explicit” schemes.
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in the sense of Corollary 3.2 and Remark 3.4. However, in the case at hand (and
in the case of virtually any hyperbolic system of physical interest) there exists
no simple bound on the “maximal wave speed” [analogous to (3.7)]. Thus, the
restriction on the size of k

	r cannot be accomplished as in (3.6). Instead, we
shall always assume that the CFL condition is satisfied in the sense that no
wave issuing from a singularity r j+1/2 at time t = tn reaches the adjacent cell
boundaries r j−1/2, r j+3/2 during the time interval (tn, tn + k). In practice, this is
achieved by inspecting all such waves at time t = tn and taking their maximal
speed Sn . Since (generally speaking) the wave speeds vary in time, an additional
“safety” factorµCFL<1 is added to make up for a possible growth of the maximal
speed. This factor is then labeled “CFL ratio”, and the next time step kn is set to
be kn = µCFL · 	r

Sn
. For notational simplicity we omit henceforth the dependence

of k on n, and we write kn = k.11

The Godunov Scheme

Given the initial data U0(r ) = U(r, 0), we define the initial set of cell averages
by

U0
j =

1

(	v) j

r j+1/2∫

r j−1/2

A(r )U0(r ) dr, −∞ < j <∞. (5.90)

Next we assume that the cell averages
{
Un

j

}
j are known and determine the

numerical fluxes in (5.88). To this end we assume that the cross-sectional area
is “locally uniform” in cells j−1, j, j+1. The system (4.45) is then trans-
formed into the “planar” one (4.47), near the cell boundaries r j±1/2. We fur-
ther assume that the flow distribution is piecewise (or “cellwise”) constant,
being equal to Un

j throughout cell j (at time t = tn). These assumptions im-
ply that, owing to the CFL condition, the solution in the time interval (tn,
tn + k) consists of a “sequence of Riemann problems.” Each cell boundary
r j+1/2 carries an initial discontinuity, separating two constant states UL = Un

j ,
UR = Un

j+1 [see (4.100)]. Translating the point r = r j+1/2 to the origin, and us-
ing the notation introduced in Section 4.1 [see the paragraph following (4.100)],
we conclude that the solution along the line r = r j+1/2 is constant and equal to
R(0;Un

j ,U
n
j+1). The CFL restriction on k prevents the waves emanating from

r j+1/2 from reaching either r j−1/2 or r j+3/2, as seen in Figure 5.6.

11 Note that all numerical examples in Chapter 3, as well as those of Chapter 6, are indeed
performed with a fixed time step k. This facilitates the use of such examples as test cases for
various schemes.
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Figure 5.6. Structure of the solution for Godunov’s scheme.

The situation now is completely analogous to that of the scalar conserva-
tion law. Indeed, integrating the system (4.47) over the space–time rectangle
(r j−1/2, r j+1/2)× (tn, tn + k) we see that the average, over cell j , of the solu-
tion at time t = tn+1 is exactly given by the formula for Un+1

j in the following.

Definition 5.33 (The Godunov scheme) Given the initial distribution{
U0

j

}
−∞< j<∞, determine successively (for n = 1, 2, . . . ) the cell averages by

Un+1
j = Un

j −
k

(	v) j

[
A(r j+1/2)FG,n+1/2

j+1/2 − A(r j−1/2)FG,n+1/2
j−1/2

]

− k

	r

[
GG,n+1/2

j+1/2 −GG,n+1/2
j−1/2

]
, −∞ < j <∞, (5.91)

where the numerical fluxes satisfy

FG,n+1/2
j+1/2 = F

(
R(0;Un

j ,U
n
j+1)
)
, −∞ < j <∞,

(5.92)
GG,n+1/2

j+1/2 = G
(
R(0;Un

j ,U
n
j+1)
)
, −∞ < j <∞,

with F(U), G(U) as in (4.45).

Remark 5.34 It should be emphasized that in light of our assumptions con-
cerning the local uniformity of the cross-sectional area and cellwise constant
distribution of the flow variables at t = tn , the formula (5.91) is the only pos-
sible choice. Indeed, the exact solution along r = r j+1/2 is then given by
R(0;Un

j ,U
n
j+1), for a suitably short time. Integrating (4.45) over cell j , between

t = tn and t = tn+1, leads to (5.91) for the cell average of the exact solution
[compare (3.10)].
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The Basic GRP Scheme

We have seen in Section 3.1 that (at least in the context of scalar conservation
laws) the approximate solutions obtained by the Godunov scheme are quite
adequate. This is true even in regards to the “capturing” of jump discontinuities.
However, the excessive “dissipativity” of the scheme tends to “spread out”
discontinuities (compare Figures 3.10 and 3.12) and to “clip out” extremal
points (compare Figures 3.5 and 3.7). These numerical effects are even more
pronounced in the case of systems, as we shall see in Chapter 6.

The remedy suggested in Section 3.1 was based on the fundamental observa-
tion by van Leer [112]: Replace the cellwise-constant distribution of variables
at time t = tn by a “piecewise-linear” distribution, thus achieving second-order
accuracy [see (3.15) and Claim 3.8]. At the same time, maintaining the “upwind”
character of the scheme as in (5.88) enables the accurate capturing of jump dis-
continuities. Following this line of thought, we now assume, as in (3.14), that
the flow variables are linearly distributed in each cell, so that at time t = tn

Un(r ) = Un
j + (r − r j )Ln

j , r j−1/2 < r < r j+1/2. (5.93)

At the cell boundaries r j±1/2 we therefore allow a jump of both the variables
and their gradients, as in Figure 5.7. The problem is once again to determine the
numerical fluxes (5.88). Furthermore, if we assume that all slopesLn

j vanish and
the cross-sectional area is (locally) uniform, we are reduced to the Godunov
setup and we require that the fluxes coincide with those of the Godunov scheme
(5.92).

The reasoning employed in the case of the Godunov scheme can be imple-
mented here. The CFL condition implies that during the time interval (tn, tn + k)
the exact solution U(r, t) to the system (4.45), subject to initial data Un(r ), is
not affected (along the line r = r j+1/2) by waves issuing from the neighboring
discontinuities at r j−1/2, r j+3/2. Shifting r = r j+1/2 to r = 0 (see Remark 5.1)
and the time tn to t = 0, we see that the solution U(r j+1/2, t), tn ≤ t ≤ tn+1, is

Figure 5.7. Distribution of flow variables at time t = tn (GRP setup).
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that of the GRP where, as in (5.1),

UL = Un
j +

	r

2
Ln

j , UR = Un
j+1 −

	r

2
Ln

j+1,
(5.94)

U′L = Ln
j , U′R = Ln

j+1.

Unlike the case of the Godunov scheme, where the waves emanating from the
discontinuities propagate along straight lines (see Figure 5.6), these waves are
now typically as shown in Figure 5.1(a). The solution U(r j+1/2, t) cannot be
obtained exactly and we must resort to appropriate approximations. The basic
guideline here is to maintain the second-order accuracy, as in (3.15).

With an eye to a simple second-order extension of the Godunov scheme, we
now try to design numerical fluxes based on the GRP solution. It should be anal-
ogous to the algorithm developed in the scalar case (Construction 3.10). It will
be assumed that the CFL condition is satisfied and the ratio k

	r
= constant.

As in (3.21), the first step is the evaluation of the “instantaneous” values
of the solution U(r, t) at the jump discontinuities (r j+1/2, tn). These values are
obtained, in accordance with (5.3), as Riemann solutions related to the values
of Un(r ) at the cell boundaries. Designating these values as

Un
j+1/2,− = Un

j +
	r

2
Ln

j , Un
j+1/2,+ = Un

j+1 −
	r

2
Ln

j+1 (5.95)

[these are UL, UR in (5.94)] and using the notation of (5.3), we get

Un
j+1/2 = lim

t→tn+
U(r j+1/2, t) = RA

(
0;Un

j+1/2,−,U
n
j+1/2,+

)
. (5.96)

Next we examine the meaning of “second-order accuracy” in the present
context. As was the case in Definition 2.21 and (3.15), this notion is applicable
only in regions of smooth flow.12 Suppose that Ũ(r, t) is smooth in a neigh-
borhood of the rectangle [r j−1/2, r j+1/2]× [tn, tn+1]. Then the functions F(Ũ),
G(Ũ) are smooth in the rectangle and may be compared to the numerical fluxes

12 The restriction to smooth flows is because we measure the “truncation” error in “pointwise”
terms, as in the proof of Claim 3.8. It can be relaxed if “integral” norms are used to measure
this error. To a large extent, however, the conclusions concerning the accuracy of the scheme
are norm independent.
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Fn+1/2
j+1/2, Gn+1/2

j+1/2. The scheme is second-order accurate if

A(r j+1/2)Fn+1/2
j+1/2 − A(r j−1/2)Fn+1/2

j−1/2 =
1

k

tn+1∫

tn

[
A(r j+1/2)F(Ũ(r j+1/2, t))

− A(r j−1/2)F(Ũ(r j−1/2, t))
]

dt + O(k3),

Gn+1/2
j+1/2 −Gn+1/2

j−1/2 =
1

k

tn+1∫

tn

[
G
(
Ũ(r j+1/2, t)

)−G
(
Ũ(r j−1/2, t)

)]
dt + O(k3).

(5.97)

Claim 3.8 and its proof can be repeated here verbatim.

Claim 5.35 (Second-order accuracy) Let Ũ(r, t) be smooth, and let Fn+1/2
j+1/2,

Gn+1/2
j+1/2 be the corresponding numerical fluxes. Then the scheme (5.88) is second-

order accurate if

Fn+1/2
j+1/2 = F

(
Ũ(r j+1/2, tn)

)+ k

2

∂

∂t
F
(
Ũ(r j+1/2, tn)

)
,

(5.98)

Gn+1/2
j+1/2 = G

(
Ũ(r j+1/2, tn)

)+ k

2

∂

∂t
G
(
Ũ(r j+1/2, tn)

)
.

Turning back to the setup of piecewise-linear data, we letUn(r ) [as in (5.93)]
approximate the smooth flow Ũ(r, tn). We need to express the right-hand sides
of (5.98) in terms of Un(r ), which does not seem to be an easy task. However,
taking in (5.95)

Un
j = Ũ(r j , tn), Ln

j =
∂

∂r
Ũ(r j , tn), (5.99)

we have by Taylor’s theorem

Un
j+1/2,± = Ũ(r j+1/2, tn)+ B±(r j+1/2, tn) · k2, (5.100)

where B±(r, t) are smooth functions. The same conclusion applies therefore to
the Riemann solutions Un

j+1/2 [see (5.96)] and we conclude that

Un
j+1/2 − Un

j−1/2 −
[
Ũ(r j+1/2, tn)− Ũ(r j−1/2, tn)

] = O(k3). (5.101)

The handling of ∂
∂t Ũ(r j+1/2, tn) is the central goal of the numerical aspect of this

monograph. It leads us naturally to the linear GRP as posed in Definition 5.3. In
fact, given the linear distribution (5.94) on the two sides of the discontinuity at
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r = r j+1/2, the results of Section 5.1 (see Summary 5.29) allow us to determine
the time derivative of the evolving solution. However, the algebraic calculations
can be considerably reduced by turning to the acoustic case. Indeed, by (5.100)
the limiting values Un

j+1/2,± differ from Ũ(r j+1/2, tn) only by an O(k2) term,

whereas the slopes Ln
j , L

n
j+1 differ from ∂

∂r Ũ(r j+1/2, tn) by an O(k) term. It
follows that the evolution of the time derivatives based on the acoustic approx-
imation [Proposition 5.9 and Summary 5.24(IV)] entails only an O(k) smooth
error relative to the exact time derivative. If the acoustic approximation of the
time derivative is designated by

(
∂
∂t U

ac
)n

j+1/2
, the foregoing remarks yield

(
∂

∂t
Uac

)n

j+1/2

−
(
∂

∂t
Uac

)n

j−1/2

= O(k2). (5.102)

Inspecting the right-hand sides of (5.98) we see that the time derivatives are
multiplied by k; hence, as in (5.101), the differences between values at the two
cell boundaries r j±1/2 are again O(k3). These observations may therefore be
summarized in the following key statement for the GRP method.

Theorem 5.36 (Numerical fluxes for the basic GRP scheme) Consider the
piecewise-linear distribution Un(r ) as in (5.93). At the point r j+1/2 define the
values Un

j+1/2 as the Riemann solution (5.96) and
(
∂
∂t U

ac
)n

j+1/2
as the acoustic

time derivative, based on the linear profiles (5.94) (see Construction 5.39 in the
following). Define the numerical fluxes by

Fn+1/2
j+1/2 = F

(

Un
j+1/2 +

k

2

(
∂

∂t
Uac

)n

j+1/2

)

,

(5.103)

Gn+1/2
j+1/2 = G

(

Un
j+1/2 +

k

2

(
∂

∂t
Uac

)n

j+1/2

)

.

Using these fluxes in (5.88), we find that the resulting scheme is of second-order
accuracy.

Definition 5.37 The scheme presented in Theorem 5.36 is the basic GRP
scheme, and we label it the E1 scheme.

Remark 5.38 (The E1 scheme as a generalization to Godunov’s scheme)
Godunov’s scheme serves as the foundation of the E1 scheme. As has been ob-
served in Sections 3.1 and 3.2 (and will be further demonstrated in Chapter 6)
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it carries the main burden of the “upwinding.” As a result, it serves as the basis
for the “shock-capturing” capability of the scheme. The refinement involved in
the E1 scheme contributes (as has already been amply illustrated in Sections 3.2
and 3.3) to the high resolution (i.e., “sharpness”) of the captured discontinuities.

Inasmuch as “computation time” is considered, the construction of the time
derivatives

(
∂
∂t U

ac
)n

j+1/2
(which we recall later in Construction 5.39 for the

reader’s convenience) adds, in practical cases, only 2–5% to the time required
for the computation of the Riemann solution Un

j+1/2. Note that no information
concerning the equation of state is needed for the time derivatives. A further
simplification can obviously be achieved by replacing the exact Riemann solu-
tion (5.96) by an “approximate” one (see Footnote 1 in Section 5.1).

Note in particular that if the slopes Ln
j , L

n
j+1 vanish, then Un

j+1/2,+ = Un
j+1,

Un
j+1/2,− = Un

j . If, in addition, A′(r j+1/2) = 0, then
(
∂
∂t U

ac
)n

j+1/2
= 0 and, by

(5.92),

Fn+1/2
j+1/2 = FG,n+1/2

j+1/2 , Gn+1/2
j+1/2 = GG,n+1/2

j+1/2 . (5.104)

In fact, because of (5.100) the choice (5.96) for Un
j+1/2 as the Riemann solution

can be replaced, say, by 1
2

(
Un

j+1 + Un
j

) = Ũ(r j+1/2, tn)+ O(k2), without los-
ing the second-order accuracy expressed in (5.101). However, the reducibility
(5.104) to Godunov’s scheme is then lost.

We recall the simple steps required in the evaluation of
(
∂
∂t U

ac
)n

j+1/2
, using

the simplified notation of (5.94). It should be emphasized that, unlike the conti-
nuity assumptionVL = VR in Proposition 5.9, we have here in generalUL �= UR.
This is the reason for keeping the two-sided notation in (5.13). Evidently, the
result for

(
∂
∂t U

ac
)n

j+1/2
based on Proposition 5.9 will only approximate the exact

derivative ∂
∂t U(r j+1/2, tn), within an O(k) error bound, as already discussed. At

the same time, in view of Remark 5.38, we retain the Riemann solutionUn
j+1/2 as

in (5.96). The full wave pattern at the singularity is determined by this Riemann
solution. This includes the type and initial speeds of all three waves �1, �2, �3

(see Figure 5.1). As in (5.72) we introduce U0 = Un
j+1/2 for the limiting values

along r = r j+1/2 and U∗L, U∗R (see Table 5.5) for the limiting values along the

contact discontinuity �2. We recall that λ = A′(r j+1/2)
A(r j+1/2) and the initial Lagrangian

derivatives used in (5.13) are obtained from the Eulerian ones U′L, U′R via (5.7).
To keep the notation in the following construction in line with the foregoing
notation, we take r j+1/2 as the location of the singularity (replacing r = 0 in
the context of Section 5.1).
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Construction 5.39 (The acoustic time derivative
(
∂
∂t U

ac
)n

j+1/2)

U0 = Un
j+1/2 = RA (0;UL,UR) (see (5.96)).

U∗L, U
∗
R = limiting values on the two sides

of the contact discontinuity �2.

The full wave pattern is determined by the Riemann solutionRA (µ;UL,UR).

(A) If the line r = r j+1/2 is to the right of �3 [as in Figure 5.5(a)] or to
the left of �3, the derivative

(
∂
∂t U

ac
)n

j+1/2
is simply determined from the

initial data by (4.45).
(B) Suppose that the line r = r j+1/2 is between �1 and �3 (on either side

of the contact discontinuity �2). Both �1 and �3 are now viewed as
characteristics C− and C+ (see Figure 5.3). The initial slopes of C−
(viewed from its two sides) are uL − cL, u∗ − c∗L, whereas those of C+
are uR + cR, u∗ + c∗R.

(C) Denote by
(
∂Q
∂r

)n
L
,
(
∂Q
∂r

)n
R

the initial slopes in cells j, j+1, respectively
[these are the components of Ln

j , L
n
j+1, respectively, in (5.94)]. Define

the set of coefficients in (5.13) by

aL = 1, bL = (g∗L)−1,

dL = −(g∗L)−1

[
cLgL

(
∂u

∂r

)n

L

+cL

(
∂p

∂r

)n

L

− λuLcLgL

]
,

aR = −1, bR = (g∗R)−1,

dR = −(g∗R)−1

[
cRgR

(
∂u

∂r

)n

R

−cR

(
∂p

∂r

)n

R

+ λuRcRgR

]
,

where

λ = A′(r j+1/2)

A(r j+1/2)
.

Obtain the time derivatives
(
∂u
∂t

)∗
,
(
∂p
∂t

)∗
along the contact discontinuity

(Theorem 5.7) by solving the pair of linear equations

aL

(
∂u

∂t

)∗
+ bL

(
∂p

∂t

)∗
= dL,

aR

(
∂u

∂t

)∗
+ bR

(
∂p

∂t

)∗
= dR,
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and then
(
∂ρ

∂t

)∗

L

= (c∗L)−2

(
∂p

∂t

)∗
,

(
∂ρ

∂t

)∗

R

= (c∗R)−2

(
∂p

∂t

)∗
.

(D) Evaluate the ξ derivatives at the contact discontinuity as in
Summary 5.24:

A(r j+1/2)

(
∂p

∂ξ

)∗
= −
(
∂u

∂t

)∗
,

A(r j+1/2)

(
∂u

∂ξ

)∗

R

= −(g∗R)−2

(
∂p

∂t

)∗
− λ(ρ∗R)−1u∗,

A(r j+1/2)

(
∂u

∂ξ

)∗

L

= −(g∗L)−2

(
∂p

∂t

)∗
− λ(ρ∗L)−1u∗.

A(r j+1/2)

(
∂ρ

∂ξ

)∗

L

= (g∗L)−1

[
ρL

(
∂u

∂r

)n

L

+ cL

(
∂ρ

∂r

)n

L

+ λρLuL + (c∗L)−2

(
∂p

∂t

)∗]
,

A(r j+1/2)

(
∂ρ

∂ξ

)∗

R

= (g∗R)−1

[
−ρR

(
∂u

∂r

)n

R

+ cR

(
∂ρ

∂r

)n

R

− λρRuR − (c∗R)−2

(
∂p

∂t

)∗]
. (5.105)

(E) As in Proposition 5.26 define

[
∂0

t U, ∂
0
ξ U
] =






[(
∂
∂t U
)∗

L
,
(
∂
∂ξ
U
)∗
L

]
if r = r j+1/2 is between �1 and �2,

[(
∂
∂t U
)∗

R
,
(
∂
∂ξ
U
)∗

R

]
if r = r j+1/2 is between �2 and �3,

and evaluate finally [see (5.75)]
(
∂

∂t
Uac

)n

j+1/2

= ∂0
t U− A(r j+1/2)ρ0u0∂

0
ξ U. (5.106)

(The acoustic case is always “nonsonic”.)

Remark 5.40 (L1 scheme) This construction describes the E1 scheme. For a
numerical approximation in the Lagrangian framework, the process is even
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simpler; the evaluation of the time derivatives in step (C) of the construction
suffices to construct the numerical fluxes. Indeed, the grid lines ξ = constant
now coincide with the contact discontinuities issuing from all boundaries.

In both cases, the E1 and L1 schemes constitute the simplest extensions of
the Godunov scheme that combine second-order accuracy with high-resolution
properties in capturing discontinuities. The majority of the numerical examples
in Chapter 6 are carried out using these schemes, where only a few grid points
with large jumps are treated by the E∞ algorithm.

The E∞ and L∞ Schemes, Intermediate Schemes, and MUSCL

In Theorem 5.36 we defined the numerical fluxes based on the acoustic approx-
imation. However, starting from the piecewise-linear distribution (5.93) we can
evaluate, by means of the full solution to the linear GRP, the exact time deriva-
tive
(
∂
∂t U
)n

j+1/2
. This procedure corresponds to that described in Summary 5.29

for the determination of
(
∂
∂t U
)
0
.13 Equation (5.103) for the numerical fluxes is

then replaced by

Fn+1/2
j+1/2 = F

(

Un
j+1/2 +

k

2

(
∂

∂t
U
)n

j+1/2

)

,

(5.107)

Gn+1/2
j+1/2 = G

(

Un
j+1/2 +

k

2

(
∂

∂t
U
)n

j+1/2

)

.

Definition 5.41 (E∞ scheme) The scheme (5.88), with numerical fluxes given
by (5.107), is called the E∞ Scheme.

As in Remark 5.40, there is a corresponding L∞ scheme; the fluxes are then
obtained as in the first step of Summary 5.29 (detailed in Summary 5.24).

The reason for the indices in labeling the E1 and E∞ schemes lies in the order
(in k) in which the numerical fluxes are evaluated. In E∞, they are obtained from
the exact solution to the linear GRP, and no approximation is involved [once the
linear distributionsUn(r ) are given]. In contrast, in the case of E1, the numerical

13 In this case Construction 5.39 is modified as follows:

(a) Steps (C) and (D) for the evaluation of the Lagrangian solutions are now performed as in
Summary 5.24(I)–(III).

(b) In the sonic case Equation (5.106) is replaced by Equations (5.77)–(5.79).
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fluxes are based on the time derivative
(
∂
∂t U

ac
)n

j+1/2
, which approximates the

exact solution to the linear GRP only within O(k). By this convention, if the
computed time derivative approximates the exact one

(
∂
∂t U
)n

j+1/2
within O(k2)

error, we refer to the resulting scheme as an E2 scheme. Such an approximation
results if the acoustic approximation is replaced by the assumption that the
waves �1, �3 are always shocks satisfying the Rankine–Hugoniot condition,
which means that a CRW is replaced by a “rarefaction shock.” This assumption
and the resulting approximation is the one used by van Leer [112] in his pioneer-
ing work.14 Bram van Leer named his Lagrangian scheme “MUSCL” (Mono-
tonic Upstream-centered Scheme for Conservation Laws). In Appendix D we
show that the MUSCL scheme is in fact an L2 scheme. In particular, we derive
there the MUSCL expressions for the approximation of the time derivatives(
∂
∂t V

∗)n
j+1/2

(see Table 5.5), namely, the time derivatives along the contact
discontinuity.

Updating the Slopes

Once the numerical fluxes Fn+1/2
j+1/2, Gn+1/2

j+1/2 have been determined, the new aver-
ages
{
Un+1

j

}
j
at t = tn+1 are obtained by (5.88). To construct the new piecewise-

linear profiles Un+1(r ) [see (5.93)] it is necessary to determine the new slopes
Ln+1

j . This is done in exactly the same way as in the scalar case (Step 3 of
Construction 3.10). Thus, let

(
∂
∂t U

app
)n

j+1/2
be the approximation to the time

derivative of the solution to the linear GRP (which is
(
∂
∂t U

ac
)n

j+1/2
in the E1

scheme and is
(
∂
∂t U
)n

j+1/2
in the E∞ scheme). We set

Un+1
j+1/2 = Un

j+1/2 + k ·
(
∂

∂t
Uapp

)n

j+1/2

, (5.108)

Ln+1
j = 1

	r

(
Un+1

j+1/2 − Un+1
j−1/2

)
. (5.109)

In particular, we observe that the solution to the linear GRP plays a double
role. First, it is used in the evaluation of the numerical fluxes (at “half time
step” t = tn + k

2 ), and second, it serves to determine the new values Un+1
j+1/2 at

cell boundaries, from which the slopes Ln+1
j are obtained.

14 Actually, van Leer’s scheme was Lagrangian, and therefore it corresponds to an L2 scheme. In
his work, the Eulerian profile was obtained by “remapping” the Lagrangian grid back into the
Eulerian one.
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Remark 5.42 Second-order accuracy is achieved even if the updated slopes
are derived from the updated cell averages, for example,

Ln+1
j = 1

2	r

(
Un+1

j+1 − Un+1
j−1

)
.

However, our point here is that the GRP solution is used not only to get the nu-
merical fluxes (and thus Un+1

j by the conservation laws) but also,

independently, the cell-boundary values Un+1
j+1/2. This suggests the interpre-

tation that, in the GRP approach, not only the new cell averages but also the
new slopes are based on a direct discretization of the underlying differential
equations.

Concluding the GRP Algorithm

We can now sum up the GRP algorithm, which is a second-order, upwind, finite-
difference scheme for the system (4.45) governing quasi-1-D, compressible flow.
Referring to this system, we have the vector of unknown flow variables

U =



ρ

ρu
ρE



 .

At the cell boundaries
{
r j+1/2
}

we obtain the values
{
Un

j+1/2

}
by solving

the (planar) Riemann problem (5.96). Next we evaluate the “instantaneous”
time derivatives

(
∂
∂t U

app
)n

j+1/2
. A detailed description of their evaluation in the

acoustic case (E1) is given in Construction 5.39. The necessary modification for
the E∞ scheme (the full solution to the linear GRP) is then given in Footnote 13.
Following the evaluation of

{
Un

j+1/2

}
and the corresponding time derivatives,

the numerical fluxes are given by

Fn+1/2
j+1/2 = F

(

Un
j+1/2 +

k

2

(
∂

∂t
Uapp

)n

j+1/2

)

,

(5.110)

Gn+1/2
j+1/2 = G

(

Un
j+1/2 +

k

2

(
∂

∂t
Uapp

)n

j+1/2

)

,

and the new values
{
Un+1

j

}
are given by (5.88). The new cell boundary values{

Un+1
j+1/2

}
are determined according to (5.108) and the new slopes

{
Ln+1

j

}
by

(5.109).
Finally, the slopes in all cells are subjected to a “slope-limiter” algorithm,

without ever changing the average values
{
Un+1

j

}
. The fact that slope-limiting is
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indispensable has already been demonstrated in Chapter 3 (see Example 3.14).
The final slopes of the “primitive” variables ρ, p, u15 are determined by the
GRP “slope limiter” given in Construction 3.15. The slopes of all other flow
variables required in the GRP algorithm (on both sides of cell boundaries r j+1/2)
are determined from their functional dependence on (ρ, p, u).

15 This was the practice followed in all the examples of Chapter 6. Numerical experiments have
shown, however, that applying the “slope-limiter” restriction to other sets of flow variables (e.g.,
S, p, u) did not produce any noticeable change in the results.



6
Analytical and Numerical Treatment of Fluid

Dynamical Problems

Here the fluid dynamical theory and GRP schemes of Chapters 4 and 5 are
applied to one-dimensional test cases. The problems are aimed primarily at
demonstrating the capabilities of the scheme, but they are also revealing of
nontrivial fluid dynamical phenomena that arise even at the relatively simple
one-dimensional settings considered here. In Section 6.1 we treat a shock tube
problem, using several scheme options to solve it. An interesting class of fluid
dynamical problems is that of wave interactions, to which Section 6.2 is devoted.
We selected four different cases in this class, shock–shock, shock–contact,
shock–rarefaction, and rarefaction–contact interactions. In each case the GRP
solution is compared to either an exact one or to a solution of a Riemann
problem that approximates the exact one in some “asymptotic” sense. In the
remainder of the chapter we employ the quasi-one-dimensional (“duct flow”)
scheme, solving three different problems, comparing each numerical solution
to the corresponding exact one. Section 6.3 treats a spherically converging flow
of cold gas, and Section 6.4 is devoted to the flow induced by an expanding
sphere. Finally, in Section 6.5 we present a detailed treatment of the steady
flow in a converging–diverging nozzle, obtained numerically as a large-time
solution by the GRP scheme.

The notation for the fluid dynamical variables here is identical to that of
Chapters 4 and 5.

6.1 The Shock Tube Problem

A shock tube problem is a particular type of Riemann problem, having two
initial states that comprise quiescent fluids of different pressures and densities,
separated by a diaphragm. This problem serves as an idealized model of the
flow commencing upon the burst of a diaphragm that separates a high-pressure

184
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(“driver”) gas from a low-pressure (“driven”) gas in a shock tube (see Shock
Wave Handbook [16]). Following the survey article by Sod [104], the shock
tube problem with the data proposed by Sod has become a standard test case
for the evaluation of numerical schemes. We selected this problem as a basic
demonstration of the GRP fluid dynamical scheme presented in Chapter 5.
The initial value problem is solved here in the two frameworks discussed
in Chapter 5 – Eulerian and Lagrangian – as well as in a hybrid Eulerian–
Lagrangian system.

The data of Sod’s shock tube problem (at t= 0) consist of a left state
[ρ, p, u]L = [1, 1, 0] for x < 50 and a right state [ρ, p, u]R = [0.125, 0.100, 0]
for x > 50, with a perfect gas of γ = 1.40 on both sides. The resulting IVP is
a Riemann problem with an initial discontinuity located at x = 50. Its (self-
similar) solution consists of three waves (compare Construction 4.46):

(a) a right-propagating shock wave moving along the line x = 1.752156 t ,
(b) a contact discontinuity moving along the line x = 0.9274526 t , and
(c) a left-propagating CRW with head and tail characteristics given, respec-

tively, by x = − 1.183216 t , x = − 0.6514463 t .

At the contact discontinuity the (continuous) velocity and pressure are[u∗, p∗]=
[0.9274526, 0.3031302], and the densities on either side are ρ∗L= 0.4263194,
ρ∗R= 0.2655737 (see Figure 4.16).

In the numerical simulation the spatial domain is 0 ≤ x ≤ 100, which is
divided into equal-length cells of	x = 1. The boundary conditions are u= 0 at
the domain endpoints, which implies that the only nonvanishing flux component
there is the pressure term in the momentum flux. The computation is performed
in the time interval [0, 20], with a constant time step	t chosen so thatµCFL< 1.1

Two numerical solutions are calculated in each case, one with the
Godunov (first-order-accurate) scheme and the other with the GRP (second-
order-accurate) scheme. For both schemes the results are presented as spatial
distributions of velocity and density, with the numerical solution plotted as
discrete points, and the corresponding exact solution shown as solid lines.

Consider first the Eulerian case, with a time step	t = 0.20, which produces a
valueµCFL ≈ 0.45. Both Godunov and GRP results are shown in Figure 6.1. The
most noticeable feature here is the dramatic improvement of the second-order
solution relative to the first-order one. It is particularly interesting to note that the
improved accuracy of the GRP solution is not merely in smooth regions of the

1 As in Definition 2.27 this is a restriction on the ratio 	t
	x , namely, µCFL = Smax	t

	x < 1, where
Smax is the maximum wave speed in absolute value. Compare (3.6) and the discussion following
Definition 5.32.



186 6. Fluid Dynamical Problems

solution.

solution.

Figure 6.1. Eulerian solution of shock tube flow at t = 20 (100 cells).

flow (the rarefaction wave) but also at flow singularities – the shock and contact
discontinuities and the gradient discontinuities at the head and tail points of the
rarefaction wave. This property of the numerical scheme is commonly referred
to as a “high-resolution” capability, which is taken to mean that singular flow
features are “sharply resolved” by the finite-difference approximation. From an
analytic point of view, this capability is evidence to an “optimal” combination
of the second-order-accurate scheme with the mandatory “limiter” [see the
discussion following Equations (5.110)] that effectively reduces the scheme to
a first-order level of accuracy at points of discontinuity.

The Lagrange scheme follows directly from the basic Lagrangian analysis
of the generalized Riemann problem presented in Summary 5.24. Thus, each
cell interface (grid point) follows the particle path and hence coincides with the
contact discontinuity, and we have un

i+1/2 = u∗, un+1/2
i+1/2 = u∗ + 	t

2

(
du
dt

)∗
, where

here “i + 1/2” refers to the Lagrangian grid point ξi+1/2 [see Equation (4.79)].
We remark that the only nonzero flux terms at a Lagrange cell interface are the
pressure-related flux components of the momentum and energy equations [see
Equations (4.83)].
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The Lagrangian computation was performed with identical initial data and
boundary conditions; the only difference is the time step, which was reduced to
	t = 0.160, producingµCFL ≈ 0.43. Both Godunov and GRP results are shown
in Figure 6.2. As in the Eulerian case, we notice a remarkable improvement of
the second-order solution relative to the first-order one. It is also interesting to
compare the two solutions – the Eulerian and the Lagrangian – which differ
only in the choice of coordinates (and, consequently, grid and finite-difference
scheme). Clearly, the Eulerian solution is superior in accuracy to the Lagrangian
one in all features but for the sharper resolution of the contact discontinuity in
the Lagrangian case. This may be interpreted as indicating the significance of
grid spacing. In the Eulerian case the grid spacing is uniform, whereas the
Lagrangian grid points are attached to (moving) “material points.” Conse-
quently, fluid compression produces narrower cells, whereas fluid expansion
produces wider cells. For example, inspection of Figure 6.1 and 6.2 shows that
the rarefaction wave is spread over 23 cells in the Eulerian case, compared to
16 cells in the Lagrangian case.

Because this sample problem shows dependence on the coordinate type
and the corresponding finite-difference scheme, could a better performance be

solution.

solution.

Figure 6.2. Lagrangian solution of shock tube flow at t = 20 (100 cells).
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obtained with an “intermediate” type of grid? Specifically, we refer to the so-
called ALE (arbitrary Euler Lagrange) grid option, where grid points move at
an arbitrary (time-dependent) velocity (Hirt and Amsden [62]). The ALE grid
in our sample problem is chosen to maintain a sharp contact discontinuity, by
specifying the grid point initially at x = 50 (the initial position of the discon-
tinuity) as a Lagrangian point. Thus, this midpoint maintains the separation
between the left-state and the right-state fluids at all times. The grid points on
the left side and on the right side are assigned velocities designed to maintain
a uniformly spaced grid on either side. These moving grid points are neither
“Eulerian” nor “Lagrangian”; they are in fact “hybrid” (i.e., “ALE”) points.
The fluxes at these points are readily obtained from the full GRP analysis (see
Remark 5.31).

The ALE time step was the same as that of the Lagrangian computation,
producing nearly the same value of the CFL ratio (	t = 0.160 andµCFL ≈ 0.43).
Indeed, the results in Figure 6.3 do show an “intermediate” accuracy level
between the Eulerian and the Lagrangian cases. In particular, we note that the
tail of the rarefaction wave is better resolved in the ALE solution than in the
Lagrangian solution, but not as well as in the Eulerian solution.

solution.

solution.

Figure 6.3. ALE solution of shock tube flow at t = 20 (100 cells).
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In summary, we have demonstrated that the Eulerian GRP scheme, with a re-
latively modest grid (of 100 cells), produces quite an accurate high-resolution
solution of a typical shock tube problem. The improvement relative to the
Godunov scheme is dramatic, which demonstrates the significant progress
achieved by increasing the order of accuracy from first to second order. We
also take notice of the dependence of the numerical solution on the coordinate
type and the related grid. The quality of the Lagrangian solution is lower than
that of the corresponding Eulerian solution, with the ALE scheme producing a
solution of intermediate quality.

Remark 6.1 As in the ALE approach referred to here, one can use the full
GRP analysis to “track” various singularities (shock, contact discontinuity, edge
characteristics of a rarefaction wave, etc.) in the flow. We refer to Section 8.2
for further details.

6.2 Wave Interactions

The interaction between a pair of single waves (taken here as one-dimensional
shock, CRW, or contact discontinuity) is a problem of fundamental theoretical
and practical significance in fluid dynamics. For a theoretical introduction to
the fluid dynamics of wave interaction we refer the reader to the classical
book by Courant and Friedrichs [30, Chapter III, Section D]. Although here
our interest is naturally focused at the theoretical and numerical aspects of the
topic, we point out that analysis of wave interactions is motivated by the need
to understand related phenomena in diverse applications, such as shock tubes,
shock tunnels, and internal combustion engines. In our consideration of various
wave interaction cases, we point out that each case (in a sense to be explained in
the following) may be related to a respective “asymptotic Riemann problem.”

The initial data for the shock tube problem considered in Section 6.1 consist
of two adjacent constant states [UL,UR]. They lead to a self-similar solution,
which in general comprises three waves emanating from the discontinuity. The
next natural step would be the consideration of the IVP for which the initial
data consist of three constant states [UL,UM,UR] [see Figure 6.4(a)]. In general,
each discontinuity would lead to three waves, and the resulting wave structure
would evolve into a complex pattern because of wave interactions. In this section
we assume therefore that the initial data are selected so as to produce a single
wave emanating from each one of the two discontinuities.2 This is always

2 In other words, we consider a reduced set of three-state IVPs, namely, IVPs producing two single
waves. In current publications, “wave interaction” commonly refers to interactions of two single
waves (see, e.g., Shock Wave Handbook [16, Chapter 7]).
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. . .

Figure 6.4. Wave interaction – A schematic description.

possible since a particular Riemann problem may be designed to produce just
a single wave (see discussion and Footnote 3, following Definition 5.2). To fix
ideas, consider the procedure for selectingUL, given the “middle” stateUM. Let
the left wave [see Figure 6.4(a)] be a k-wave (k = 1, 2, 3). Using the notation
introduced for “interaction curves” (see Section 4.2, Summary 4.45) we see that
UL lies on the curve I r

k , namely, the curve representing all left states connected
to the right state UM by a k-wave. To be more specific, we shall henceforth
denote this curve by I r

k(UM). Similarly, if the right wave is a k-wave, then UR

lies on the curve I l
k(UM), which represents all right states connected to the left

state UM by a k-wave. Equivalently, in this case UM lies on the curve I r
k(UR).

Considering the wave interaction in terms of a time evolution, we refer to the
(x, t) diagram in Figure 6.5 (where for simplicity the incident waves are taken
as sharp jumps – shocks or contact discontinuities). The interaction takes place
(“abruptly”) at the point where the two trajectories intersect, which we shall
always take as (x, t) = (0, 0). The waves �1, �2, �3 emanating from that point
have the same pattern as a solution to a Riemann problem [compare Figures 4.16

Figure 6.5. Schematic (x, t) diagram of the interaction of two-waves.
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and 5.1(b)]. Indeed, at (x, t) = (0, 0) the entire flow profile reduces to the single
discontinuity [UL,UR], as also shown in Figure 6.4(b), where it is appropriately
labeled a “Riemann problem.” The postinteraction flow depicted in Figure 6.4(c)
thus corresponds to a profile of the waves�1, �2, �3 in Figure 6.5, taken at some
fixed time t > 0. Summarizing the case where each of the interacting waves is
a sharp jump, we see that the IVP always reduces to a Riemann problem3 at
(x, t)= (0, 0); it may be solved as such, and, in particular, the solution is self-
similar relative to the origin [see Equation (4.100) and the discussion around it].

We now turn to the case where one of the waves (or even both) is a CRW, and
we designate by “wave front” the extreme (head or tail) characteristics bound-
ing the CRW on either side. The interaction then commences at (x, t)= (0, 0)
where the earliest intersection between the two wave fronts takes place.
Obviously, this is also the moment at which the length of the intermediate state
UM in the flow profile just vanishes. In this case the flow profile at t = 0 includes
(in addition to the extreme states UL, UR) segments of continuous variation
(within the CRW) and thus does not correspond to a Riemann problem, and its
solution at t > 0 is non-self-similar.

It is instructive to consider the Riemann problem [UL,UR] obtained by
eliminating the middle state UM. Loosely speaking, its self-similar solution is
related to the full foregoing wave interaction in some “asymptotic” sense. It
is shown that at large times t > 0, the full interaction solution approaches the
corresponding Riemann solution. However, owing to some “fine features” of
the solution to the interaction IVP that persist for all times, the convergence
to the Riemann solution is only in some “overall” sense. The analysis of such
situations, sometimes referred to as “perturbed” Riemann problems, is known
as stability analysis. There are no rigorous results in this direction for the case
of nonisentropic, compressible flow [i.e., the system (4.47)], but we refer to Liu
[86] for the analysis of a simpler case.

As for the numerical solution, we use the same (Eulerian) GRP scheme
employed in Section 6.1. Moreover, as in that case, the computation domain
is taken to be wide enough so that the waves emanating from the considered
interaction do not reach the domain endpoints. We then impose the respective
state (UL or UR) as the state defining the flux at those endpoints. Additionally,
in all the wave interactions studied here we assume that the fluid is a perfect
gas with γ = 1.4.

In the rest of this section we deal with four cases of wave interaction. The
first two involve only discontinuous waves (shocks and contacts), and the other

3 In a two-wave IVP the (x, t) trajectories do not necessarily intersect, in which case the IVP is
not a wave-interaction problem.
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two involve a CRW. In Subsection 6.2.1 we consider the physically common
case of shock transition through a contact discontinuity, and in Subsection 6.2.2
the interaction is between two 3-shocks. An interaction between a 3-shock and
a 1-CRW is then presented in Subsection 6.2.3, followed by the interaction of
a 3-CRW and a contact discontinuity in Subsection 6.2.4.

6.2.1 Shock–Contact Interaction

Here we consider the physically common case of shock wave interaction with
a contact discontinuity. We take the left wave to be a 3-shock, while the right
wave is a contact discontinuity. Let the three states [UL,UM,UR] be as in
Figure 6.4(a). Then UL lies on the shock branch of I r

3(UM), and [UM,UR]
is a contact discontinuity (i.e., ρM �= ρR while the pressure and velocity are
continuous across this surface). When crossing the contact discontinuity from
left to right, the density may either increase or decrease, and we select the
latter case. As we shall see in a moment, the interaction will then produce a
“transmitted” 3-shock and a “reflected” 1-CRW. We specify the shock by the
postshock pressure pL/pM= 5, and the contact discontinuity by ρR/ρM= 0.3.
Using the Rankine–Hugoniot jump conditions for a perfect gas (Summary 4.49)
gives the initial states

UL = [ρ, p, u]L = [2.8182, 5, 1.6064],

UM = [ρ, p, u]M = [1, 1, 0], (6.1)

UR = [ρ, p, u]R = [0.3, 1, 0].

The exact solution to this wave interaction (at t = 0+) is readily obtained by
solving the Riemann problem having the initial data [UL,UR]. This solution
(recall Construction 4.46) is obtained by the intersection of the interaction
curves I l

1(UL), I r
3(UR) in the (u, p) plane, as depicted graphically (to true scale)

in Figure 6.6. This figure also shows that UL lies on the shock branch of I r
3(UM)

and that the (u, p) values of UM and UR coincide. However, since the densities
ρM �= ρR, the curves I r

3(UM), I r
3(UR) are different. The stateUL is situated in the

(u, p) plane above I r
3(UR); consequently, the intersection point (u∗, p∗) is ob-

tained on the rarefaction branch of I l
1(UL). The Riemann solution thus consists

of a (left-facing) 1-CRW and a (right-facing) 3-shock. The velocity and pre-
ssure at the contact discontinuity are (u∗, p∗)= (2.059973, 3.301911), and the
corresponding densities on either side are ρ∗L= 2.095325, ρ∗R= 0.6711996.
In obtaining this solution we have followed the procedure described in
Appendix C.
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Figure 6.6. Riemann problem for the shock–contact interaction (γ = 1.4). Left state:
3-shock with pL= 5. Middle state [ρ, p, u]M = [1, 1, 0]. Right state [ρ, p, u]R =
[0.3, 1, 0].

Another representation of this wave interaction is the (true-scale) wave dia-
gram shown in (Figure 6.7). The “incident” shock moves at speed σL= 2.490.
When the shock passes through the contact surface at t = 0, the flow splits
into a 1-CRW (facing left), a contact discontinuity, and a 3-shock (compare
Figure 4.16). The speeds of the extreme characteristic lines of the 1-CRW
(shown in Figure 6.7) are 0.0304085292 (head) and 0.325695142 (tail), and the
3-shock moves at speed σ3= 3.72482334.

We now turn to the numerical solution of this two-shock interaction, using
the same (Eulerian) GRP scheme as previously used in Section 6.1. We choose

5  4  3

1 2

Figure 6.7. Wave diagram of the shock–contact interaction. 1 – “Incident” 3-shock,
2 – contact discontinuity, 3 – “transmitted” 3-shock, 4 – contact discontinuity, 5 –
“reflected” 1-CRW.
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Figure 6.8. Initial data for shock–contact interaction. Solid line – exact data; points –
GRP (50 cells shown).
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the initial time as ti= − 10, so that the initial data are as follows:

U(x,−10) =






UL = [ρ, p, u]L = [2.8182, 5, 1.6064], x < xL,

UM = [ρ, p, u]M = [1, 1, 0], xL < x < xR,

UR = [ρ, p, u]R = [0.3, 1, 0], xR < x,

(6.2)

where the left and right discontinuities are at xL= −10σL= −24.90 and
xR= 0, respectively.

The grid occupies the interval [−40, 100] and is divided into 70 cells of
length 	x = 2 each. The integration was performed from t = ti=−10 to the
final time t = 20 with a constant time step	t = 0.20, corresponding to the CFL
ratio µCFL ≈ 0.49. In accordance with the schematic description in Figure 6.4,
the exact and numerical results are displayed at the initial time (ti= −10) in
Figure 6.8,4 at the interaction moment (t = 0) in Figure 6.9, and at the postin-
teraction time (t = 20) in Figure 6.10. In each case the results are displayed
over a subinterval of length 100 (50 cells), containing the relevant wave pattern
(i.e., bounded by the initial states UL,UR).

At the interaction moment t = 0 the exact distribution is simply the two-
state jump [UL,UR], with the discontinuity at (x, t)= (0, 0). The computed
distribution agrees quite well with the exact one, considering the relatively
coarse grid (Figure 6.9).

The postinteraction results (Figure 6.10), are shown at a moment where the
entire wave pattern is resolved by merely 38 cells. It is remarkable that the
GRP scheme resolves this wave structure so accurately, considering the relative
coarseness of the grid.

6.2.2 Shock–Shock Interaction

In this case both waves are 3-shocks; that is, UL lies on the shock branch of
I r
3(UM), while UR lies on the shock branch of I l

3(UM). Observe that this also
implies thatUM lies on the shock branch of I r

3(UR). For both shocks the preshock
state is on the right, so we select the right state as the quiescent state

UR = [ρ, p, u]R = [1, 1, 0].

The first shock (“right wave”) is then obtained by specifying a postshock pres-
sure of pM= 5; across the second shock (“left wave”) the pressure jumps tenfold

4 Since xL does not coincide with a grid point, the values in the cells containing it are appropriately
interpolated. This is done for all wave-interaction cases here.
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Figure 6.9. Shock–contact interaction. Shock and contact merge at (x, t)= (0, 0). Solid
line – exact solution; points – GRP (50 cells shown).

to pL= 50. Using the Rankine–Hugoniot jump conditions for a perfect gas
(Summary 4.49), we find that the postshock states are given by

UM = [ρ, p, u]M = [2.8182, 5, 1.6064],
(6.3)

UL = [ρ, p, u]L = [10.744, 50, 5.0386].
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Figure 6.10. Shock–contact postinteraction results at t = 20. Solid line – exact solution;
points – GRP (50 cells shown).

Recall that with respect to the state UM the left shock is supersonic whereas
the right shock is subsonic [see the discussion following Equation (4.78)]. The
latter is therefore overtaken by the former. At that moment the flow profile is
reduced to the single jump discontinuity [UL,UR], that is, to a Riemann problem
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Figure6.11. Riemann problem for the shock–shock interaction. Right state [ρ, p, u]R =
[1, 1, 0], γ = 1.4; first shock: pM= 5; second shock: pL= 50.

[as in Figure 6.4(b)]. The exact solution to this wave interaction is thus obtained
by solving the corresponding Riemann problem.

The solution to a Riemann problem (recall Construction 4.46) is obtained
by the intersection of the interaction curves I l

1(UL) and I r
3(UR) in the (u, p)

plane, as shown (to true scale) in Figure 6.11. Additionally, this figure shows
the two-shock process leading to the initial data (6.3): UM is on the shock
branch of I r

3(UR), and UL is on the shock branch of I r
3(UM). The state UL

is situated in the (u, p) plane above I r
3(UR); consequently, the intersection

point (u∗, p∗) is obtained on the rarefaction branch of I l
1(UL). The solution

to this Riemann problem thus consists of a (left-facing) 1-CRW and a (right-
facing) 3-shock. In obtaining this solution we have followed the procedure
described in Appendix C. The velocity and pressure at the contact discontinuity
are (u∗, p∗)= (5.5059, 38.509), and the corresponding densities on either side
are ρ∗L= 8.9161, ρ∗R= 5.2136.

Another representation of this wave interaction is the (true-scale) wave dia-
gram shown in Figure 6.12. The right and left shocks move at speeds σR= 2.490
and σL= 6.259, respectively. The latter overtakes the former at t = 0, and as
already discussed, the flow then splits into a 1-CRW (facing left), a contact
discontinuity, and a 3-shock. The speeds of the extreme characteristic lines of
the 1-CRW (shown in Figure 6.12) are 2.486 (head) and 3.047 (tail), and the
3-shock moves at speed σ3= 6.813.

We now turn to the numerical solution of this two-shock interaction, using
the GRP scheme. We choose the initial time as ti= − 9, so that the initial data
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2 1

35  4

Figure 6.12. Wave diagram of the shock–shock interaction. 1 – Right “incident”
3-shock; 2 – left “incident” 3-shock; 3 – “transmitted” 3-shock; 4 – contact discon-
tinuity, 5 – “reflected” 1-CRW.

are as follows:

U(x,−9) =






UL = [ρ, p, u]L = [10.744, 50, 5.0386], x < xL,

UM = [ρ, p, u]M = [2.8182, 5, 1.6064], xL < x < xR,

UR = [ρ, p, u]R = [1, 1, 0], xR < x,

(6.4)

where the left and right jump discontinuities are positioned at xL= −9σL=
−56.3299 and xR= −9σR= −22.4098.

The grid occupies the interval [−100, 140] and is divided into 120 cells of
length	x = 2 each. The integration was performed from t = ti= −9 to the final
time t = 18 with a constant time step 	t = 0.125, corresponding to the CFL
ratio µCFL ≈ 0.48. In accordance with the schematic description in Figure 6.4,
the exact and numerical results are displayed at the initial time (ti= −9) in
Figure 6.13, at the interaction moment (t = 0) in Figure 6.14, and at the post-
interaction time (t = 18) in Figure 6.15. In each case the results are displayed
over a subinterval of length 100 (50 cells), containing the relevant wave pattern
(i.e., bounded by the initial statesUL,UR). Note that this choice is suggested by
the fact that in the present case all wave speeds are positive (see Figure 6.12).

At the interaction moment t = 0 the exact distribution is simply the two-
state jump [UL,UR], with the discontinuity at (x, t)= (0, 0). The computed
distribution agrees quite well with the exact one, considering the relatively
coarse grid (Figure 6.14).

The postinteraction results (Figure 6.15) are shown at a moment where the
entire wave pattern is resolved by merely 40 cells. It is remarkable that the
GRP scheme resolves this wave structure so accurately, considering the relative
coarseness of the grid.
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Figure 6.13. Initial data for shock–shock interaction. Solid line – exact data; points –
GRP (50 cells shown).



6.2. Wave Interactions 201

0

1

2

3

4

5

6

-50 0 50

0

10

20

30

40

50

-50 0 50

0

2

4

6

8

10

12

-50 0 50

Figure 6.14. Shock–shock interaction. Shocks merge at (x, t)= (0, 0). Solid line –
exact solution; points – GRP (50 cells shown).



202 6. Fluid Dynamical Problems

0

1

2

3

4

5

6

30 50 70 90 110 130

0

10

20

30

40

50

30 50 70 90 110 130

0

2

4

6

8

10

12

30 50 70 90 110 130

Figure 6.15. Shock–shock postinteraction results at t = 18. Solid line – exact solution;
points – GRP (50 cells shown).
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Figure 6.16. Diagram of the interaction of a 3-shock and a 1-CRW.

6.2.3 Shock–CRW Interaction

The former two examples dealt with the interaction between a pair of sharp
discontinuities (shock–contact, shock–shock), resulting in a self-similar wave
pattern. In the present case we consider the interaction between a 3-shock (facing
right) and a 1-CRW (facing left), as depicted schematically in Figure 6.16.
This interaction produces a non-self-similar solution (see the discussion at the
beginning of this section).

As before, the two waves are specified by the postwave pressure. Assuming
pM= ρM= 1, we take the pressure behind the shock as pL= 5 and the pressure
behind the CRW as pR= 1/5. Using the shock and rarefaction relations for a
perfect gas (Summary 4.49) gives the initial data at time t = ti=−10:

U(x,−10) =






UL = [ρ, p, u]L = [2.8182, 5.0, 1.6064], x < xL,

UM = [ρ, p, u]M = [1, 1, 0], xL< x < xR,

UR = [ρ, p, u]R = [0.31676, 0.2, 1.2152], xR< x .

(6.5)

The shock speed is σL= 2.4900, and the speed of the head of the CRW is
−√γ pM/ρM= −1.1832. The initial discontinuities are thus positioned at xL=
−10σL= −24.900 and xR= 11.832.

At (x, t)= (0, 0) the left shock intersects the head characteristic of the CRW.
The flow profile at t = 0 consists of a constant left state UL (x < 0) and a
smoothly varying right state, with limiting value at x = 0+ of UM. Referring
to the discussion of the GRP in Section 5.1, we infer that the wave pattern for
t > 0 consists of a shock discontinuity (which is the only wave in the Riemann
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Figure 6.17. Riemann problem for shock–rarefaction interaction. Zero state
[ρ, p, u]0 = [1, 1, 0], γ = 1.4. Right shock: pL= 5. Left rarefaction: pR= 1/5.

solution for initial data [UL,UM]). This wave separates two regions of smooth
flow, as shown in Figure 6.16.

We observe, however, that the solution to the three-state IVP (6.5) should
approach at large times the solution to the Riemann problem corresponding
to the initial data [UL,UR]. The procedure for obtaining the Riemann solu-
tion has already been discussed in the preceding subsections and is presented
graphically (to true scale) in Figure 6.17, which also shows the shock branch
of I r

3(UM) on which UL lies and the rarefaction branch of I l
1(UM) on which

UR lies. The intersection point of the interaction curves I l
1(UL) and I r

3(UR)
is (u∗, p∗) = (2.8819, 1.4527). The waves �1 and�3 resolving the initial dis-
continuity [UL,UR] are a 1-CRW and a 3-shock (same type as the respective
interacting waves). The corresponding densities on either side of the contact
discontinuity are ρ∗L= 1.1656, ρ∗R= 1.0647.

The GRP numerical solution of the IVP (6.5) was performed in the wide
computation domain [−50, 400], which was divided into a grid of 450 equal
cells. The time integration proceeded from ti= −10 to the final time t = 100
in constant steps of 	t = 0.125, resulting in a CFL ratio of µCFL= 0.54.

The initial data are shown in Figure 6.18. The early time evolution, corre-
sponding to t = −2, (i.e., just before the start of the interaction), is displayed in
Figure 6.19. Here we clearly see the shock discontinuity approaching the head
of the CRW. From this time on, we consider the postinteraction solution. Here
we examine the solution at the time sequence t = 10, 20, 50, 100. Qualitatively,
the evolution of the numerical solution is as shown in Figure 6.16.
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Figure 6.18. Initial data for shock–CRW interaction. Middle state [ρ, p, u]M =
[1, 1, 0]. Perfect gas (γ = 1.4). 3-shock: pL= 5. 1-CRW: pR= 1/5. Solid line – exact
data; points – GRP (60 cells).
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Figure 6.19. Shock–CRW results at preinteraction time t = −2. Middle state
[ρ, p, u]M = [1, 1, 0]. Perfect gas (γ = 1.4). 3-shock: pL= 5. 1-CRW: pR= 1/5. Points
– GRP (60 cells).
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To inspect its asymptotic behavior, we plot in Figure 6.20 the exact
Riemann solution corresponding to the initial data [UL,UR] at t = 0. At this
relatively early time (t = 10) we see that the disparity between the two solu-
tions is rather large. In Figure 6.21 we display density profiles for the time
sequence t = 10, 20, 50, 100. The results exhibit an asymptotic convergence to
the Riemann solution. However, in the IVP solution there is no contact disconti-
nuity. Rather, the steep variation in density observed near the Riemann contact
is due to a fluid layer of smoothly varying entropy generated by the shock as it
passed through the CRW.

6.2.4 CRW–Contact Interaction

In Subsection 6.2.1 we considered the case of shock–contact interaction. Here
we take up the analogous case of CRW–contact interaction.

Let the left wave, which initially separates the states [UL,UM], be a 3-CRW
[see Figure 6.4(a)], while the right wave is a contact discontinuity separating
the states [UM,UR], with ρM>ρR. It is known (Courant and Friedrichs [30,
Section 79]) that the interaction in this case produces a left-facing compression
wave and a right-facing rarefaction wave. Specifically, we assume the following
initial data for the time t = ti= −10:

U(x,−10) =






UL = [ρ, p, u]L = [0.42317, 0.3,−0.93484], x < xL,

UM = [ρ, p, u]M = [1, 1, 0], xL< x< xR,

UR = [ρ, p, u]R = [0.3, 1, 0], xR< x .

(6.6)

The initial discontinuities are positioned so that the interaction will commence
at (x, t) = (0, 0); that is, xL= −10× 1.1832= −11.832 and xR= 0.

As in the case of the CRW–shock interaction, it will prove instructive to
consider the “asymptotic Riemann problem” having initial data [UL,UR]. The
interaction curves for this case are shown (to true scale) in Figure 6.22. The inter-
section of I l

1(UL) and I r
3(UR) produces the contact values (u∗, p∗)= (−1.2083,

0.43585) and the corresponding left and right densities ρ∗L= 0.55173, ρ∗R=
0.16577. We note that the states UM and UR are represented by the same (u, p)
point. Yet, since ρM �= ρR the respective interaction curves I r

3(UM), I r
3(UR) are

different. In fact, because of this difference, the intersection point between
I r
3(UR) and I l

1(UL) lies on the rarefaction branch of the former and on the shock
branch of the latter. The solution to this Riemann problem thus consists of a
1-shock (facing left) and a 3-CRW (facing right).
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Figure 6.22. Interaction of CRW with a contact discontinuity. Middle state: [ρ, p, u]0 =
[1, 1, 0], γ = 1.4. Right state: [ρ, p, u]R = [0.3, 1, 0]. 3-CRW: [ρ, p, u]L =
[0.42317, 0.3,−0.93484].

Approximate Analysis of the Interaction

Consider the interaction as depicted qualitatively in the (x, t) wave diagram of
Figure 6.23. At the beginning of the interaction (x, t)= (0, 0), the flow profile
consists of a smoothly varying CRW (x < 0) and a quiescent state UR (x > 0).

transmitted rarefaction

shock wave

extrapolated particle path contact discontinuity

compression wave

Figure 6.23. CRW–contact interaction schematic.
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Recalling the discussion of the GRP in Section 5.1, we infer that the contact
discontinuity persists for t > 0. In fact, it will separate two regions of smoothly
varying flow, at least for some short time t > 0. We wish to understand the
gradual evolution of the flow toward the aforementioned “asymptotic Riemann
solution.” To this end we invoke some approximate analytic reasoning, since an
exact solution is not available.5 When ρR<ρM the interaction produces a left-
facing compression wave and a right-facing rarefaction wave. The compression
wave evolves into a sharp shock wave, forming at some time tc> 0. In the
following, the analytic arguments supporting this claim are briefly outlined.

Referring to Figure 6.23, we let Cµ
+ denote a characteristic line within the

CRW, having a slope µ= uµ + cµ, where µ, uµ, cµ are constant along Cµ
+

up to its intersection with the head characteristic Ch
− of the reflected wave. It

then extends (as a curved line) and intersects the contact surface at a point Aµ.
We assume that as the extended part of Cµ

+ traverses the interaction zone, it
does not intersect a shock front, so that the entropy Sµ= SM is constant on
the entire line Cµ

+. Denote by Q1, Q2, respectively, the left and right values
of any flow variable at the point Aµ. The velocity and pressure are continuous
across the contact; that is, u1= u2, p1= p2. But c1 �= c2, ρ1 �= ρ2, and by the
isentropic assumption, S1= SM, S2= SR (however, S1 �= S2). Invoking the γ -

law isentropic relations, c1/cM = (p1/pM)
γ−1
2γ , c2/cR = (p2/pR)

γ−1
2γ , and using

pM= pR, we infer that

c1/cM = c2/cR, cM/cR=
√
ρR/ρM. (6.7)

Now, recall that the Riemann invariants R± are constant along C± in isentropic
regions [see Equation (4.108)]. We apply these relations three times: First,
R− = 2

γ−1 cµ − uµ= 2
γ−1 cM is uniformly constant in the CRW up to the inter-

section with Ch
−[compare (4.99)]; second, Rµ+ = 2

γ−1 cµ + uµ= 2
γ−1 c1 + u1 is

constant along Cµ
+ up to the point Aµ; third, R A

− = 2
γ−1 c2 − u2= 2

γ−1 cR is con-

stant along the characteristic curve Cµ
− on the right side of the contact surface.

Solving these equations for u1 (which is equal to u2), and using (6.7), we get

u1 = 2

1+√ρR/ρM
uµ. (6.8)

Since ρR<ρM (6.8) implies that |u1|> |uµ|, which must bring about a com-
pression wave, as explained by the following reasoning. Let C0 be a particle
path starting at (x, ti), xL< x < 0 (Figure 6.23), and let this particle complete

5 The method of characteristics can produce an accurate solution, but it has to be “tailor fitted” to
the specific features of this case – a rather complex undertaking.
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Figure 6.24. CRW–contact interaction. Initial data. Middle state: [ρ, p, u]0 = [1, 1, 0],
γ = 1.4.UL: [ρ, p, u]L = [0.42317, 0.3,−0.93484].UR: [ρ, p, u]R = [0.3, 1, 0]. Solid
line – initial data; points – GRP (40 cells shown).
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its passage through the CRW and continue unaffected by the interaction. If we
take µ= uL + cL (the tail characteristic of the CRW), Equation (6.8) implies
that the extrapolated straight part of C0 (shown in Figure 6.23 as a dashed line)
intersects the contact discontinuity since |u1|> |uµ|. Evidently, such intersec-
tion is impossible and will indeed be avoided by the formation of a compression
wave between C0 and the contact trajectory. Similarly, the contact discontinuity
accelerates away from the fluid on its right, thereby producing a right-facing
rarefaction wave. These wave-generating effects are analogous to those of an
accelerated piston moving into, or away from, the adjacent fluid (Courant and
Friedrichs [30, Sections 43 and 49]).

Consider the nature of the foregoing approximation by taking (instead of Cµ
+)

a characteristic curve C L
+ starting at (x, ti ), with x < xL (see Figure 6.23). With

xL − x taken to be sufficiently large, C L
+ intersects the shock front prior to its in-

tersection point with the contact trajectory. Clearly, the former analysis cannot
apply at this point since the entropy is not constant along C L

+. Thus, the contact
velocity u1 obtained by (6.8) for the tail characteristic differs from the large-time
velocity at the contact surface. Yet, it may be a reasonable approximation to
that velocity. For example, in the present case the large-time velocity is presum-
ably that obtained from the “asymptotic Riemann solution” u∗ = −1.208341.
By (6.8) we obtain u1= −1.208026, with a relative error of about 0.0003. This
indicates that the analytic approximation is reasonably accurate in the present
case.

Numerical (GRP) Solution

We now turn to the numerical solution of the CRW–contact interaction,
using the same GRP scheme employed in the previous cases. The grid occupies
the interval [−250, 250] and is divided into 250 cells of length 	x = 2 each.
The initial data are as given in (6.6). The constant time step is	t = 0.4, and the
integration is performed from ti= −10 to the final time t = 100 (275 integration
steps), with the corresponding value of the CFL ratio µCFL≈ 0.63.

The initial profiles are shown in Figure 6.24, along with the exact data.
In Figure 6.25 we show the profiles obtained at the beginning of the interaction
(t = 0), and also the initial data for the corresponding “asymptotic Riemann
problem” [UL,UR] (to which we refer to in the following as the “Riemann
solution”). At time t = 10 (Figure 6.26) there is already an extremal point
in the velocity and density profiles, indicating an incipient formation of the com-
pression wave. This trend becomes more pronounced at t = 20 (Figure 6.27).

The full formation of the compression/shock wave is evident in Figure 6.28,
where a time sequence of density profiles is shown. Clearly, the density peaks
at a point that approaches the contact discontinuity of the Riemann solution.
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Figure 6.25. CRW–contact interaction. Middle state: [ρ, p, u]0 = [1, 1, 0], γ = 1.4.
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Figure 6.26. CRW–contact interaction. t = 10. Middle state: [ρ, p, u]0 = [1, 1, 0],
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Figure 6.27. CRW–contact interaction. t = 20. Middle state: [ρ, p, u]0 = [1, 1, 0],
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To the left of the peak (corresponding to the fluid on the left side of the contact
surface) we see a left-facing compression wave, which steepens and seems to
have fully developed into a shock wave at t = 100. On the right side, the density
profile spreads out, approaching at the latest time shown (t = 100) the CRW of
the Riemann solution. Here the GRP method clearly demonstrates the capability
of capturing a gradually forming shock wave.

Notwithstanding the apparent convergence to the Riemann solution
(Figure 6.28), there are some fine differences between the IVP and Riemann
solution that persist for all times. Consider in particular the fluid between the
contact discontinuity and the shock front. In the Riemann solution the contact
discontinuity corresponds to the resolution of the initial discontinuity [UL,UR],
whereas in the IVP it evolves “isentropically” from the contact discontinuity
[UM,UR]. Furthermore, a layer of smoothly varying entropy is obtained in the
IVP solution owing to the gradual formation of the shock. This gradual density
distribution (seven points) appears in the GRP solution at late times (t ≥ 50)
as a captured contact discontinuity (Figure 6.28), which agrees well with the
densities on either side of the contact in the Riemann solution. We attribute this
agreement to the rather small entropy jump across the shock (relative magnitude
≈0.001). In cases of different initial data the “fine features” disagreement may
become conspicuous.

6.3 Spherically Converging Flow of Cold Gas

The former examples in this chapter involved only planar flow. Here we consider
a duct flow with spherical symmetry, governed by Equations (4.45), with cross-
sectional area A(r )= r2. This unique problem has been proposed by Noh [94] as
a test case having an exact (self-similar) solution. The initial conditions consist
of a spherically converging flow of a “cold” (zero-pressure) perfect gas with
γ = 5/3, having finite density and uniform velocity:

U(r, 0) = [ρ, p, u]o = [1, 0,−1], 0 ≤ r. (6.9)

The solution consists of an expanding spherical shock (starting from the origin
at t = 0). The fluid behind the shock is quiescent with uniform pressure p− and
density ρ−. The pressure jumps across the shock front from its zero preshock
value to p−; thus it is an “infinite shock” as discussed in Corollary 4.52. The
density ratio is therefore ρ−/ρ+ = (γ + 1)/(γ − 1) = 4. The pressure ahead
of the shock is zero; hence the (spherical) velocity retains its initial value −1.
The density, however, increases by (isentropic) spherical compression. If we
denote the (constant) shock speed by σ3, the mass flux through the shock front is
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σ3ρ− = (σ3 + 1)ρ+. It follows that σ3 = 1/3. To find the density profile ahead
of the shock (i.e., r ≥ t/3) we observe that the fluid located at point r at time t
was initially at the point r + t . This implies that the compression ratio is

(
r+t

r

)2
;

hence

ρ(r, t) = (1+ t/r )2, r ≥ t

3
. (6.10)

In particular, at the shock front r = t/3, we find ρ+ = 16; hence ρ− = 64.
The uniform pressure behind the shock is obtained from Equation (4.89)(i),
(p+ − p−)/(u+ − u−) = σ3ρ−; hence p− = 64/3. The exact profiles are shown
as solid lines in Figure 6.29.

The computation is performed with the GRP scheme for duct flows
(Chapter 5), in the interval [0< r < 100], which is divided into a grid of 100
equal cells. The boundary conditions are zero velocity at the origin (r = 0) and
the exact solution given by (6.10) at the outer boundary r = 100. A constant time
step	t = 0.25 is assumed, and the integration is performed up to t = 225. The
corresponding CFL ratio is µCFL= 0.31.

The results are shown in Figure 6.29, where the distributions of the flow
velocity, pressure, and density are shown along with the exact solution. The
agreement with the exact solution is very good, with discrepancies occurring
primarily for the density distribution near the origin. This error is due to the
“startup” of the captured shock near the origin, where the numerical dissipation
generates an entropy higher than the exact value. At the final time the shock
wave is very sharply resolved, with the postshock flow variables close to the
exact values. It is also interesting to note, in this unique problem, that the GRP
method can correctly capture a shock wave of infinite intensity.

For further numerical studies of Noh’s problem by the GRP method, we
refer to Ben-Artzi and Birman [6] and to Birman et al. [17]. An extensive
adaptive-mesh computational analysis of this problem was recently performed
by Gehmeyr, Cheng, and Mihalas [48], with results quite similar to those ob-
tained here.

6.4 The Flow Induced by an Expanding Sphere

When a spherical surface, initially at the origin, expands at a constant speed
s into a quiescent compressible fluid, a spherically expanding shock wave is
formed. The shock moves at a constant speed σ3 > s. This problem has been
studied by Taylor [108] in terms of the self-similar fluid dynamical equations for
a spherically symmetric flow. As in the former example, the numerical solution
here is also obtained by the GRP scheme for a (spherical) duct flow. In this case,
however, a new feature is introduced – the boundary condition at the expanding
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spherical surface, which is treated by employing a moving grid. The fluid is
a perfect gas with γ = 1.4, having the uniform initial state U0 = [ρ, p, u]0 =
[1.4, 1, 0] and s= 1. The corresponding value of the shock speed is σ3 = 1.328.

Taylor [108] has shown that the (self-similar isentropic) flow in the region
between the surface and the shock is governed by a pair of ordinary differential
equations for the fluid velocity and the speed of sound as functions of the sim-
ilarity coordinate r/t . These equations are derived from the first two equations
in (4.45) with A(r ) = r2 (and assuming that the flow variables are functions of
r/t for st ≤ r ≤ σ3t). The exact solution is obtained by integrating these equa-
tions, requiring that at the spherical surface the fluid velocity equals s and that
across the shock front (the constant speed of which, σ3, is not a priori known)
the Rankine–Hugoniot jump conditions hold.

The solution by the GRP scheme makes use of the ALE capability
(see Sections 6.3 and 8.2). The initial conditions are U(r, 0) = U0, with a grid
extending initially from r = 0 to r = 140 and divided into 40 equal cells. The
leftmost grid point (corresponding to the spherical surface) moves at the con-
stant velocity of s= 1, while the rightmost point is stationary; all intermediate
grid points move at a linearly interpolated velocity, keeping the (shrinking) grid
intervals uniform at all time levels.

Special attention is given to the leftmost cell; its left boundary coincides
with the expanding surface and the fluxes there cannot be obtained by solving
a standard GRP. This is a typical situation in high-resolution computations,
where moving boundaries (or complex geometric settings in multidimensional
cases) make it necessary to deal in much greater detail with a small number of
“special” cells, compared to the “standard” treatment accorded to the bulk of
the mesh.

Let U = [ρ, p, u] and 	U = [	ρ,	p,	u] be, respectively, the average
state and linear variation in the leftmost cell. Thus, the state attributed to the left
endpoint isU− 1

2	U. However, the expanding surface forces a velocity s at that
point, which in general is different from u − 1

2	u. We regard this situation as an
IVP with initial discontinuity at that point. Employing the notation of Section 6.2
(see Figure 6.6) we let I r

3(U− 1
2	U) be the interaction curve (namely, the

ensemble of all left states connected to the right state U− 1
2	U by a 3-wave).

We then take the state U∗ ∈ I r
3(U− 1

2	U) so that u∗ = s. The density ρ∗ and
pressure p∗ are thereby uniquely determined. We take the state U∗ as constant
at that point throughout the time interval [tn, tn+1], and we determine the fluxes
accordingly. At the rightmost grid point we take the quiescent state U0 as the
solution to the local GRP, assuming that for the time interval considered, the
shock will not reach that point. The time integration is performed with a constant
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time step	t = 0.5, which corresponds to a CFL ratio of µCFL= 0.686, up to the
final time t = 100.

The results shown in Figure 6.30 display a very good agreement with the
exact solution, considering that the fluid in the region between the surface and
the shock is resolved by merely 33 cells. It is noted that the shock wave is
sharply captured, which is of special interest since shocks in spherical flow
computation are generally less sharp than in planar flow.

In this self-similar flow the shock wave is of constant intensity, so that even
though the flow between the surface and the shock front is not uniform, the
entropy is. We therefore show (in Figure 6.30) the profile of S = p/ργ , and
indeed it is nearly uniform behind the shock front. The increase in entropy near
the spherical surface is a “starting error” of the captured shock computation,
which typically arises when a shock wave passes through a jump discontinuity
or departs from a “piston-like” surface (as in the present case).

6.5 Converging–Diverging Nozzle Flow

In the former two examples we considered a special case of duct flow, namely,
one-dimensional, spherically symmetric flow. The present example is also a
duct flow, but it is different from the former two cases in several aspects. The
quasi-one-dimensional flow here takes place in a duct where A(r ) is a nonmono-
tonic function; it serves as an approximate model to the fully two-dimensional
flow in a nozzle of finite width (a comparison between the one-dimensional
and the two-dimensional solutions of flow in a duct will be considered in
Chapter 10 of this monograph). Moreover, since in most cases we are con-
cerned with a steady compressible flow in such nozzles, our example is formu-
lated as an IVP with boundary conditions designed to produce a steady flow
at large times. Our presentation starts with a brief outline of one-dimensional
steady flow in nozzles. We then specify a particular nozzle geometry and two
cases of boundary conditions. In each case the exact steady solution is com-
pared to the numerical (GRP) solution, and a strikingly good agreement is
found.

A converging–diverging duct (the so-called Laval nozzle) is widely used for
achieving steady supersonic flow in a variety of systems such as rocket motors
and wind tunnels. The simplest analytic model for compressible flow in a Laval
nozzle is the quasi-one-dimensional duct flow approximation (see Section 4.2).
For a duct of finite lateral extent, this approximation is widely recognized as a
basic “engineering model” for nozzle flow analysis, particularly when the flow
is steady. The steady duct flow is governed by a system of ordinary differential
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Figure 6.30. Flow variables in the fluid surrounding an expanding sphere. Perfect gas
(γ = 1.4), [u, p, ρ]0 = [0, 1, 1.4]. Sphere expansion speed s= 1. Solid line – exact
solution; points – GRP (40 points shown).
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equations [derived from (4.45)] that is readily integrated. For a comprehensive
account of the steady one-dimensional theory we refer the reader to Shapiro
[102, Chapter 5] or Liepmann and Roshko [84, Chapter 5]. In the following
we present two cases of steady, quasi-one-dimensional nozzle flow of a perfect
gas with a polytropic index γ = 1.4, which are compared to the large-time
solution of the corresponding IVP, with suitably defined boundary conditions
at the nozzle inlet and exit planes.

Nozzle Geometry and Steady Flow

Here we consider a steady flow in a converging–diverging nozzle, which oc-
cupies the interval 0 ≤ r ≤ 1 and has a smooth cross-sectional area function6

A(r ) given by the following expression:

A(r ) =






Ain exp
[−log(Ain) sin2(2πr )

]
, 0 ≤ r ≤ 0.25,

Aex exp
[−log(Aex) sin2

( 2π(1−r )
3

)]
, 0.25 ≤ r ≤ 1,

(6.11)

Ain = A(0) = 4.8643, Aex = A(1) = 4.2346

(see the symmetric nozzle contour in Figures 6.31–6.34). It is noted that the
function A(r ) for the converging part of the nozzle is different from A(r ) of
the diverging part. The two contour parts are joined smoothly at the throat
(r = 0.25), where A(r )= 1, A′(r )= 0, but A′′(r ) is discontinuous.

From the theory of steady duct flow of a perfect gas (Shapiro [102, Chapter 5],
Liepmann and Roshko [84, Chapter 5]) it follows that the Mach number M(r )=
u(r )/c(r ) is fully determined by A(r ) through the algebraic relation7

[A(r )]2 = 1

[M(r )]2

[
2

γ + 1

(
1+ γ − 1

2
[M(r )]2

)](γ+1)/(γ−1)

. (6.12)

Furthermore, one can specify two arbitrary constants (“stagnation” pressure
and density) p0 and ρ0 so that the steady flow profiles in the nozzle are given

6 The values of the inlet and exit cross-sectional area Ain and Aex correspond to a steady isentropic
(shock-free) flow, where the inlet Mach number is Min= 0.12 and (assuming a supersonic flow
in the diverging part of the nozzle) the exit Mach number is Mex= 3.

7 This relation is restricted to smooth (isentropic) choked flows, meaning that the flow at the throat
(point of minimal cross-sectional area) is sonic (M = 1).
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by

p(r ) = p0

(
1+ γ − 1

2
[M(r )]2

)− γ

γ−1

,

ρ(r ) = ρo

(
1+ γ − 1

2
[M(r )]2

)− 1
γ−1

, (6.13)

u(r ) = M(r )
√
γ p(r )/ρ(r ),

as long as the flow is smooth (shock free). This is shown by the solid lines in
Figures 6.31 and 6.32. In fact, in this case we note that fixing p0, ρ0, there is
only one possible value for the exit pressure p(1), which is given by (6.13).

Now, it turns out that one can obtain, for fixed values of p0, ρ0, another
class of steady state solutions; they consist of two intervals of smooth flow,
separated by a steady (left-facing) shock wave (see the solid lines in Figs. 6.33–
6.34). This set of solutions is obtained by specifying the exit pressure p(1)
within a certain range of values. Expressions (6.12) and (6.13) remain valid in
the smooth region upstream of the shock (i.e., between the inlet r = 0 and the
stationary shock). The pressure jump across the shock then serves to adjust the
downstream pressure profile to its specified exit value p(1).8

Two cases are considered here. In both we take p0= ρ0= 1 and A(r ) as in
(6.12).

(A) A smooth flow where p(1)= 0.0272237 is obtained from (6.13) by taking
r = 1 in (6.12), leading to M(1)= 3.

(B) Setting p(1)= 0.4 leads to a discontinuous steady-state solution, as shown
by the solid lines in Figures 6.33 and 6.34. The location of the shock is
r = 0.76986, and the pressure at the shock jumps from p− = 0.044707 to
p+ = 0.36548. Observe that, in compliance with the previous discussion,
the profiles of the steady flow upstream of the shock are identical to those
of the smooth flow in this interval.

It is also interesting to notice the discontinuity in M ′(r ) and p′(r ) at the throat
(r = 0.25), caused by the discontinuity in A′′(r ) there.

8 Physically speaking, this corresponds to a “matching” requirement p(1) = pb between p(1) and
the “background pressure” pb, which is the pressure of the ambient gas outside the nozzle exit
(Shapiro [102, Chapter 5], Liepmann and Roshko [84, Chapter 5]). This matching is possible
when pb is not lower than the value corresponding to a shock wave at the exit (in our example
pb= 0.28131). At lower background pressure the flow throughout the nozzle is shock free and
supersonic in the diverging part of the nozzle. In that case M(1)= 3 and p(1) �= pb.
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Figure 6.31. Large-time flow in Laval nozzle. First-order (Godunov) solution.
p0= 1; pb= 0.02722. Nominal (isentropic) Mex= 3. Solid line – steady solution;
points – Godunov (22 cells).
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Figure 6.32. Large-time flow in Laval nozzle. Second-order (GRP) solution.
p0= 1; pb= 0.02722. Nominal (isentropic) Mex= 3. Solid line – steady solution;
points – GRP (22 cells).
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Figure 6.33. Large-time flow in Laval nozzle. First-order (Godunov) solution.
p0= 1; pb= 0.4. Nominal (isentropic) Mex= 3. Solid line – steady solution; points –
Godunov (22 cells).
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Figure 6.34. Large-time flow in Laval nozzle. Second-order (GRP) solution.
p0= 1; pb= 0.4. Nominal (isentropic) Mex= 3. Solid line – steady solution; points –
GRP (22 cells).
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The Finite-Difference Solution

We seek a finite-difference solution to the IVP for the flow in the duct (6.11),
with boundary conditions designed to produce a flow that approaches a steady
state at large times. The initial data are discontinuous, as in a Riemann problem
with the discontinuity at the throat point,

U(r, 0) =
{
UL = [ρ0, p0, 0], r < 0.25,

UR = [ρ0(pb/p0)1/γ , pb, 0] r > 0.25,
(6.14)

where pb is the value designated for p(1) at the steady-state solution [as in the
preceding cases (A) and (B)]. Note that in both initial states the velocity is zero;
in UL the values of pressure and density are those specified at the inlet (r = 0),
and in UR the pressure has the value specified at the exit (r = 1). Both UL and
UR lie on the same isentropic curve.

The boundary conditions are instrumental in obtaining a finite-difference
solution that at large times approximates the exact steady flow in the nozzle. The
main idea is to obtain the numerical fluxes at the boundary points as solutions
to a suitable GRP, analogous to the treatment of regular (“internal”) grid points.
This is done by specifying a virtual initial state for the GRP at each boundary
point, that is, at r = 0− just “outside” the inlet, and at r = 1+ just “outside”
the exit.

Consider first the inlet boundary point r = 0. Let Min be the steady-flow
Mach number at the inlet point [by (6.12) Min=M(0)= 0.12]. The steady-flow
variables at the inlet are then given by

pin = p0

(
1+ γ − 1

2
M2

in

)− γ

γ−1

,

ρin = ρ0

(
1+ γ − 1

2
M2

in

)− 1
γ−1

, (6.15)

uin = Min

√
γ pin/ρin.

Denote, respectively, by U1 and 	U1 the average state and linear variation in
the cell adjacent to the inlet point (which we appropriately label as 1/2). Let
U1/2,− = [ρin, pin, uin], U1/2,+ = U1 − 1

2	U1. The GRP at this point is then
set up with the initial data

U(r, 0) =
{
U1/2,−, r < 0,

U1/2,+ + r (	U1/	r ) , r > 0,
(6.16)
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where the corresponding initial slopes are taken as zero for the left state (1/2,−)
and (	U1/	r ) for the right state (1/2,+).

Turning to the exit boundary condition, let the adjacent cell be designated
as N . LetUN+1/2,− = UN + 1

2	UN ,UN+1/2,+ =
[
ρN+1/2,−, pb, uN+1/2,−

]
. The

GRP at the exit point N+1/2 is then set up with the initial data

U(r, 0) =
{
UN+1/2,− + (r − 1) (	UN/	r ) , r < 1,

UN+1/2,+, r > 1.
(6.17)

In analogy to the inlet point, the initial slopes are zero for the right state and
(	UN/	r ) for the left state. The only specified boundary condition here is the
value of “background pressure” pb imposed on the pressure p(1); the density
and velocity are simply extended by continuity across the boundary.

For the finite-difference computations, we deliberately selected a coarse grid,
where the interval [0 ≤ r ≤ 1] was divided into 22 equal cells. The integration
was conducted with a time step 	t = 0.009, up to final time t = 18. This was
done for the two previously specified cases (A) and (B), both producing ap-
proximately the same value of µCFL= 0.55. In choosing the final time, we took
notice of the nozzle “time of flow” tof, that is, the time taken by a fluid particle
to traverse the nozzle from inlet to exit at the steady flow. In case (A) we calcu-
lated from the exact solution tof= 1.31, whereas in case (B) we found tof= 1.74
(apparently because of the lower velocity downstream of the shock). Thus, the
final computation time is t > 10× tof, implying that a steady flow regime has
probably been established in the nozzle by that time. Indeed, continuing the
finite-difference computation for longer final time has produced flow profiles
that were virtually identical to those obtained at t = 18.

Turning to the results for case (A), we first consider the Godunov scheme
computation (Figure 6.31). Here the overall agreement with the exact solution
is fairly good, except for the pressure in the interval 0 ≤ r ≤ 0.25. In that
interval, where the steady flow is subsonic, the computed pressure is overvalued
whereas the Mach number is nearly correct. In the language of steady flow,
this implies that the computed stagnation pressure is overvalued. The only
explanation we can propose for this is the simple statement that the large error
is due to performing a first-order computation with a coarse grid. (Indeed, with
a grid of 66 cells and 	t = 0.003, the error decreased substantially, and the
pressure profile became monotonically decreasing.)

When the computation of case (A) was repeated using the GRP scheme
(Figure 6.32), a strikingly good agreement with the exact solution was ob-
tained. This is a clear demonstration of the improved accuracy obtained by up-
grading the scheme level of accuracy from first to second order. These results
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are particularly interesting, because in the converging part of the nozzle the flow
is resolved by only 6 cells (more precisely 5.5), whereas the cross-sectional area
ratio is about 4.9. We also note the discontinuity in flow gradient at the throat,
which is well reproduced by the GRP solution.9

For case (B) (Figures 6.33 and 6.34), the most conspicuous feature here
is that upstream of the shock wave the computed solutions are identical to
the respective case (A) solutions. In the diverging part of the nozzle, the flow
between the throat and the shock is resolved by a coarse grid of 12 cells. Good
agreement is obtained by the Godunov scheme (Figure 6.33) and even better
agreement is obtained by the GRP computation (Figure 6.34). The pressure
profiles obtained by either scheme comply well with the exit boundary condition
pb= 0.4.

Notice that the shock in case (B) is captured with perfect “sharpness”
(although not perfect accuracy). Obviously, this feature is related to the fact
that here we are dealing with a steady flow and hence a standing shock.
The Godunov or GRP schemes treat standing shocks particularly well, since at
the cell interface separating the preshock and postshock states, the solution of
the corresponding Riemann problem would be the exact shock wave if the states
at the adjacent cells were accurately computed. This is not the case here, because
the numerical error in smooth regions of the flow is generally nonvanishing.
However, the error associated with the (second-order-accurate) GRP method is
smaller than the respective error of the (first-order-accurate) Godunov method.
Hence the former method replicates the exact solution better than the latter.

9 It is noted that the flow variables at the cell whose midpoint coincides with the throat (r = 0.25)
cannot approximate the values of the exact profiles with second-order accuracy, since the gradi-
ents of the exact solution are discontinuous at that point.
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7
From the GRP Algorithm to Scientific Computing

The GRP algorithm was developed in Part I and tested against a variety of an-
alytical examples. The next challenge is to adapt it to the needs of “Scientific
Computing,” that is, to implement it in the simulation of problems of phys-
ical significance. This is a formidable task for any numerical algorithm. The
problems encountered in applications usually are multidimensional and involve
complex geometries and additional physical phenomena. In this chapter we first
describe in more detail some of these problems, as a general background for the
following chapters. We then proceed to the main goal of the chapter, namely,
the upgrading of the GRP algorithm (which is essentially one dimensional) to
a two-dimensional, second-order scheme. To this end we recall (Section 7.2)
Strang’s method of “operator splitting” and then (Section 7.3) apply it to the
(planar) fluid-dynamical case. Although the method can be further extended to
the three-dimensional case, we confine our presentation to the two-dimensional
setup, which serves in our numerical examples (Chapters 8 and 10).

7.1 General Discussion

In Part I we studied the mathematical basis of the GRP method. We also consid-
ered a variety of numerical examples for which analytic (or at least asymptotic)
solutions were available. This provided us with some measure of the accuracy of
the computational results, and helped identifiy potential difficulties (such as the
resolution of contact discontinuities). In the absence of any rigorous results con-
cerning the convergence of the profiles to the exact solutions (at least in the case
of systems–which is our main objective here), such test cases play a very im-
portant role in the construction of any numerical algorithm. To estimate the im-
provement achieved by this second-order scheme, we have systematically com-
pared it to its first-order counterpart, the Godunov scheme (of which the GRP

235
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method is a natural extension, as noted in Sections 3.1 and 5.2). Although both
schemes were quite successful in capturing the general features of wave patterns,
the sharpness with which various discontinuities were resolved was substan-
tially improved, thus justifying the transition from the first-order to the second-
order scheme. However, the entire treatment of Part I (Section 3.3 excepted)
was confined to the one-dimensional (or quasi-1-D) setting. Indeed, the very
foundation of the Godunov (hence also the GRP) approach is the solution of the
Riemann problem, which is of a one-dimensional nature. In contrast, the vast
majority of physical or fluid-dynamical problems of interest deal with two- or
even three-dimensional settings. Thus, the first step to be taken is the conversion
of the GRP algorithm of Section 5.2 into a multidimensional scheme. The funda-
mental idea is that of “operator splitting,” which has already been used in Section
3.3. It allows the construction of a multidimensional scheme by using alternately
one-dimensional solvers (“sweeps”) in directions parallel to the coordinate axes.
Strang [105] has found a way of constructing such a scheme, which, in addition,
is second-order accurate when this is true for its one-dimensional “factors.” This
is therefore exactly what we need to implement a second-order-accurate multi-
dimensional scheme based on the (1-D) GRP solver. Section 7.2 is devoted to
a discussion of Strang’s method, in a rather general setting of time-dependent
partial differential equations. In Section 7.3 we specialize to the case of two-
dimensional compressible flow in the Cartesian plane. In principle, the method
can be further extended to three-dimensional problems. However, since our
examples (Chapters 8 and 10) are limited to the two-dimensional case we prefer
to confine our discussion to this case. The flow equations are “natural candi-
dates” for the operator-splitting method. Indeed, the spatial part decomposes as
a sum of derivatives in the x and y directions (“divergence form”), so that the
one-dimensional solvers bring us right back into the framework of Section 5.2.
Invoking Strang’s general construction we therefore obtain a second-order two-
dimensional scheme. It enables us to solve flow problems in rectangular do-
mains, with sides that are parallel to the coordinate axes. However, the vast
majority of compressible flow problems of physical interest cannot be rep-
resented in the rectangular framework. Indeed, these problems often involve
complex (stationary or moving) boundaries. If we imagine a Cartesian (rect-
angular) computational grid, the cells intersected by such a boundary assume
irregular shapes. The resulting problem is (at least) twofold, involving, first,
the geometric handling of those irregular cells and, second, the adaptation of the
two-dimensional scheme in this case. This topic will be taken up in Chapter 8.

Problems of physical interest involve, in many cases, various significant
mechanisms beyond the basic conservation laws of mass, momentum, and
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energy. Since this monograph deals only with nonlinear hyperbolic systems,
which possess the property of “finite propagation speed” of waves, diffusive
effects such as heat conduction or viscosity are excluded. Nonetheless, we deal
in Chapter 9 with “reacting flows.” The fluid in this case is subject to a chemical
reaction that changes its composition, thus also changing its equation of state.
Our model is perhaps the most elementary one, in which the fluid is a mixture
of two species, “burnt” and “unburnt,” and an exothermic reaction converts the
unburnt component to the burnt one. This is a basic model for combustion,
sufficient to describe “detonations” but not “deflagrations”; the latter involve a
decrease of pressure and density in the burnt products and require effects such as
heat conduction for their study. The basic building block in the numerical reso-
lution of the reacting-flow system will again be a 1-D GRP solver, which deals
with the coupled equations of compressible flow and chemical reaction. Indeed,
the implementation of the 1-D GRP solver, either through spatial splitting or
the addition of unknowns and equations, is a unifying theme in the handling of
applications in this monograph.

Our final Chapter 10 deals with the (numerical) comparison of quasi-1-D
and fully 2-D computations for a flow in a nozzle. The quasi-1-D approach was
presented in Section 4.2 as a possible approximation to a flow that is nearly
uniform on each cross section. Using the full capability of 2-D calculations, as
developed in Chapter 8 (including the handling of rigid curvilinear boundaries
by the MBT method; Section 8.3), we can try and validate this assumption.
The test case studied in Chapter 10 illustrates the limitations of the quasi-1-D
hypothesis.

7.2 Strang’s Operator-Splitting Method

We consider here a solution ψ to an evolution equation of the type

∂

∂t
ψ = c[ψ]. (7.1)

Here ψ(x, y, t) is a smooth function in the spatial coordinates (x, y) ∈ R
2 and

time t ∈ [0,∞). The operator c[ψ] is a general nonlinear differential operator
that may depend on x, y, t as well as on ψ, ψx , ψy, ψxx , . . . (various spatial
derivatives of ψ), but of course not on ψt . This dependence is in general non-
linear but smooth (as a function of all its variables). We now assume further
that

c[ψ] = a[ψ]+ b[ψ], (7.2)
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where a[ψ], b[ψ] are operators of the same type as c[ψ]. No further restrictions
are imposed on a, b. In particular, a, b need not commute (a[b[ψ]] �= b[a[ψ]]
in general). We now describe a method due to Strang [105], allowing us to obtain
a second-order-accurate approximation to (7.1), when such approximations are
already available for the “simpler” equations ψt = a[ψ], ψt = b[ψ].

We first address the notion of “order of accuracy” (see Definition 2.21) for
the case at hand. To this end, we use the common notation

∂αψ =
(
∂

∂x

)α1
(
∂

∂y

)α2

ψ,

where α = (α1, α2) is a “double index” of nonnegative integers, α1, α2 =
0, 1, 2, . . . , and in particular ψ = ∂ (0,0)ψ . The operators a, b, c are func-
tions of (x, y, t) and {∂αψ ;α ∈ J }, where J is a finite set of double indices,
common to all three of them. For simplicity we designate this dependence as
a(∂αψ, x, y, t), suppressing J , where there is no risk of confusion. We indicate
by zα the argument corresponding to ∂αψ in the functional expressions.

Example 7.1 In Equation (3.49) we have a(ψ) = − ∂
∂x f (ψ), b(ψ) =

− ∂
∂y g(ψ).

Differentiating Equation (7.1) with respect to t and using the chain rule
we get

ψt t =
(
∂

∂t

)2

ψ = ∂

∂t
c (∂αψ, x, y, t) = ct (∂αψ, x, y, t)+

∑

α∈J

∂c

∂zα
· ∂
∂t
∂αψ

= ct (∂αψ, x, y, t)+
∑

α∈J

∂c

∂zα
· ∂α [c (∂αψ, x, y, t)

]
, (7.3)

where in the last step we have again used Equation (7.1). Note that ∂c
∂zα

is
evaluated at (∂αψ, x, y, t).

We now fix a time step k = 	t > 0 and consider a discrete scheme Ck acting
on functions of (x, y, t). The scheme is assumed to be “consistent” with Equa-
tion (7.1) in the sense that if ψ(x, y, t) is a smooth solution then Ckψ(x, y, t)
approximates ψ(x, y, t + k) . More precisely, as in Definition 2.21, we say that
Ck is second-order accurate if

ψ(x, y, t + k)− Ckψ(x, y, t) = O(k3) as k → 0.1 (7.4)

1 This equality means that, for any fixed t , a suitable norm [in (x, y) ] of the left-hand side tends
to zero as k3, when k → 0. Smoothness is needed if a pointwise norm is used. Compare with
Footnote 12 in Section 5.2.
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Taylor’s theorem yields, in conjunction with (7.1) and (7.3),

ψ(x, y, t + k) = ψ(x, y, t)+ kψt (x, y, t)+ k2

2
ψt t (x, y, t)+ O(k3)

= ψ(x, y, t)+ kc (∂αψ, x, y, t)+ k2

2

{
ct (∂αψ, x, y, t)

+
∑

α∈J

∂c

∂zα
· ∂α [c (∂αψ, x, y, t)

]
}
+ O(k3). (7.5)

We now compare (7.4) and (7.5). Like the operator c, the discrete approxima-
tion Ck may also depend explicitly on time (in addition to ∂αψ, x, y) and we
make this explicit by writing Ck = Ck(t). The condition (7.4) for second-order
accuracy can now be written as

Ck(t)ψ(x, y, t) = ψ(x, y, t)+ kc (∂αψ, x, y, t)+ k2

2

{
ct (∂αψ, x, y, t)

+
∑

α∈J

∂c

∂zα
· ∂α [c (∂αψ, x, y, t)

] }+ O(k3). (7.6)

Let us now suppose that Ak(t) [resp. Bk(t)] is a second-order-accurate scheme
for ψt = a (∂αψ, x, y, t) [resp. ψt = b (∂αψ, x, y, t)]. Then Equation (7.6) is
satisfied with Ck(t) replaced by Ak(t) [resp. Bk(t)] and c replaced by a
[resp. b].

Before stating Strang’s result we clarify the meaning of the time dependence
of Ck(t). It is related to the explicit dependence of c (∂αψ, x, y, t) on the last
variable t . Thus Equation (7.6) yields

Ck

(
t + k

2

)
ψ(x, y, t) = ψ(x, y, t)+ kc

(
∂αψ(x, y, t), x, y, t + k

2

)

+ k2

2

{
ct

(
∂αψ(x, y, t), x, y, t + k

2

)
+
∑

α∈J

∂c

∂zα

× ∂α
[

c

(
∂αψ(x, y, t), x, y, t + k

2

)]}
+ O(k3).

(7.7)

Observe that the time step here is k; it is used as the index labeling Ak , Bk , Ck .
Also, the arguments in ∂c

∂zα
are
(
∂αψ(x, y, t), x, y, t + k

2

)
. We can now state

the following theorem by Strang [105].
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Theorem 7.2 Let Ak, Bk be, respectively, second-order-accurate approxima-
tions for ψt = a[ψ], ψt = b[ψ]. Then the product

Ck(t) = B k
2

(
t + k

2

)
Ak(t)B k

2
(t) (7.8)

is a second-order approximation to ψt = c[ψ], where c satisfies (7.2).

Proof The proof is just a computation aimed at verifying (7.6). We apply (7.6)
first to Akψ̃ , with ψ̃(x, y, t) = B k

2
(t)ψ(x, y, t), and then to B k

2
(t)ψ . For no-

tational simplicity, we omit the arguments (x, y, t) of ψ, ψ̃, ∂αψ , and ∂αψ̃ .
Then

Ak(t)B k
2
(t)ψ = ψ̃ + ka

(
∂αψ̃, x, y, t

)+ k2

2

{
at
(
∂αψ̃, x, y, t

)+
∑

α∈J

∂a

∂zα

× ∂α [a (∂αψ̃, x, y, t
)]
}
+ O(k3) = ψ + k

2
b (∂αψ, x, y, t)

+ k2

8

{
bt (∂αψ, x, y, t)+

∑

α∈J

∂b

∂zα
· ∂α [b (∂αψ, x, y, t)

]}

+ k

{
a (∂αψ, x, y, t)+

∑

α∈J

∂a

∂zα
· (∂αψ̃ − ∂αψ)

}

+ k2

2

{
at (∂αψ, x, y, t)+

∑

α∈J

∂a

∂zα
· ∂α [a (∂αψ, x, y, t)

] }

+ O(k3). (7.9)

Observe that in the first equality the arguments of ∂a
∂zα

(like those of a)

are
(
∂αψ̃, x, y, t

)
, whereas in the second equality the arguments, for both

∂a
∂zα

and ∂b
∂zα

, are (∂αψ, x, y, t). We have, by ψ̃ = B k
2
(t)ψ , ∂α

(
ψ̃ − ψ) =

k
2∂
α [b (∂αψ, x, y, t)]+ O(k2), and inserting this in (7.9) and collecting terms

we get

Ak(t)B k
2
(t)ψ = ψ + k

{
1

2
b (∂αψ, x, y, t)+ a (∂αψ, x, y, t)

}

+ k2

2

{
1

4
bt (∂αψ, x, y, t)+

∑

α∈J

(
1

4

∂b

∂zα
+ ∂a

∂zα

)

× ∂α [b (∂αψ, x, y, t)
]+ at (∂αψ, x, y, t)

+
∑

α∈J

∂a

∂zα
· ∂α [a (∂αψ, x, y, t)

] }+ O(k3). (7.10)
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Finally, applying B k
2

(
t + k

2

)
to (7.10) we obtain

Ck(t)ψ = B k
2

(
t + k

2

)
Ak(t)B k

2
(t)ψ

= ψ + k

{
1

2
b (∂αψ, x, y, t) + a (∂αψ, x, y, t)

}
+ k2

2

{
1

4
bt (∂αψ, x, y, t)

+
∑

α∈J

(
1

4

∂b

∂zα
+ ∂a

∂zα

)
∂α
[
b (∂αψ, x, y, t)

]+ at (∂αψ, x, y, t)

+
∑

α∈J

∂a

∂zα
· ∂α [a (∂αψ, x, y, t)

]
}
+ k

2
b

(
∂αψ + k∂α

[
1

2
b (∂αψ, x, y, t)

+ a (∂αψ, x, y, t)

]
, x, y, t + k

2

)
+ k2

8

{
bt

(
∂αψ, x, y, t + k

2

)

+
∑

α∈J

∂b

∂zα
· ∂α
[

b

(
∂αψ, x, y, t + k

2

)]}

+ O(k3)

= ψ + k {a (∂αψ, x, y, t)+ b (∂αψ, x, y, t)}

+ k2

2

{
at (∂αψ, x, y, t) + bt (∂αψ, x, y, t)+

∑

α∈J

(
∂a

∂zα
+ ∂b

∂zα

)

× ∂α [a (∂αψ, x, y, t)+ b (∂αψ, x, y, t)
]}+ O(k3), (7.11)

which confirms the claim of the theorem in view of (7.6) (with c= a+ b ). ��

In typical applications to fluid dynamics, as well as to practically all equa-
tions of physical origin, the operators a, b, c do not depend explicitly on time;
they model phenomena that are invariant under a translation t → t + β, β =
constant of the time scale. We shall henceforth assume that this is the case,
so that the approximation operators Ak, Bk, Ck are also independent of t .
The statement of Theorem 7.2 can then be simplified to say that if Ak, Bk are
second-order accurate, then so is Ck = B k

2
Ak B k

2
. In fact, we can go a little

further in this case.

Corollary 7.3 If Ak, Bk, Ck are independent of t , then the approximation

C̃2k = B k
2

Ak Bk Ak B k
2

(7.12)

is second-order accurate.
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Proof Clearly C2
k = B k

2
Ak B k

2
B k

2
Ak B k

2
is second-order accurate. Indeed, apply-

ing Ck to Equation (7.4) we have ψ(x, y, t + 2k)− C2
kψ(x, y, t) = O(k3). The

point is that we want to replace the middle term B k
2
B k

2
by Bk . But the second-

order accuracy of Bk yields, as for C2
k , Bkψ(x, y, t)− B2

k
2
ψ(x, y, t) = O(k3),

which implies that
(
C2

k − C̃2k
)
ψ = O(k3). ��

Remark 7.4 The same method of “grouping together” the middle terms B k
2
B k

2

can be repeated, thus leading to the following approximating scheme for the
solution ψ(x, y, t + nk):

C̃nk ψ(x, y, t) = B k
2

(Ak Bk)n−1Ak B k
2
ψ(x, y, t). (7.13)

This means that, apart from initial and final applications of B k
2
, the scheme

consists of alternating applications of Ak and Bk , thus reducing its overall
complexity. In fact, this is the scheme used in Section 3.3, where Ak, Bk, Ck

correspond, respectively, to H x
	t , H y

	t , H	t [see Equation (3.52)].

Remark 7.5 Observe that C̃nk is slightly “nonsymmetric” with respect to the
alternating operators Ak, Bk . In fact, there are a large variety of schemes, con-
structed from Ak, Bk , that retain second-order accuracy. An example that can
easily be verified by the reader is given by the symmetrized form

˜̃Ck = 1

2
(Ak Bk + Bk Ak) . (7.14)

Note that the approximation
(˜̃Ck
)n

requires 4n applications of either Ak or Bk ,
roughly twice as many as needed for C̃nk .

We refer to Strang [105], Gottlieb [58], and Teng [109] for more detailed
discussions of such schemes.

Definition 7.6 (“Split scheme”) An “operator-splitting method” is any method
used to construct an approximating scheme to ψt = c[ψ] = a[ψ]+ b[ψ] us-
ing schemes associated with the simpler problems ψt = a[ψ], ψt = b[ψ]. A
scheme constructed by this method is referred to as a “split scheme.”

The terms “fractional step method” or “time-splitting method” are also used by
some authors.

In the treatment of 2-D fluid dynamical problems (using conservation laws)
a natural “splitting” is obtained by taking a, b to be the one-dimensional
(x or y) terms. This has already been done in Section 3.3 [see Example 7.1
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and Equation (3.51). In our 2-D extension of the GRP method we always use
this “dimensional” splitting. The 1-D approximating schemes are those pre-
sented in Section 5.2. A more detailed discussion of this methodology is given
in Section 7.3. The split scheme used in our treatment is always of the type C̃nk

[see (7.13)]. It has the advantage of being purely “multiplicative”, that is, it does
not involve any addition of operators such as in (7.14). Thus, its (linearized)
stability condition can be inferred from the corresponding conditions for the x
and y schemes (compare Remark 3.17 in Section 3.3). It turns out to be less
restrictive than that of scheme (7.14). We refer to Strang [105] for a further
discussion of this topic.

The most important issue related to the construction of an approximating
scheme is naturally that of its convergence to the exact solution in a suit-
able norm (see, e.g., Definition 2.25 in Section 2.2). In the case of a split
scheme, its convergence is not obvious even when the two components Ak, Bk

converge to the respective exact solutions. Take, for example, the case of the
scalar equation (3.49), and let the split scheme H	t be given by (3.52) [namely,
(7.13)], where each of the components H x

	t , H y
	t is the Godunov scheme. In

view of Theorem 3.6 in Section 3.1, each component converges to the respec-
tive one-dimensional equation in (3.51). The fact that the split scheme H	t

(which is clearly only first-order accurate) indeed converges to the exact (en-
tropy) solution to (3.49) follows from the work of Crandall and Majda [32, 33].
Since not much is known concerning the convergence of 1-D second-order-
accurate schemes, we can expect less for a scheme like (7.13), even in the scalar
case.

We conclude this general treatment by pointing out the connection between
split schemes and “product formulas.” Indeed, the scheme (7.13) consists of
an “alternating” product of operators approximating (for “short time”) the so-
lutions of ψt = a[ψ], ψt = b[ψ]. One can then ask what happens if these
approximations are replaced by the exact solutions of the two equations. As an
example, consider the simple case of a system of ordinary (constant coefficient)
differential equations,

d

dt
ψ = (A + B)ψ, ψ(0) = ψ0, (7.15)

where ψ(t) ∈ R
n and A, B are real n × n matrices. As is well known, the so-

lution is given byψ(t) = exp[t(A + B)]ψ0. In contrast, the alternating product
of the solution operators for A, B, using k = t

n , is

Cnψ0 =
[

exp

(
t

n
A

)
exp

(
t

n
B

)]n

ψ0.
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If AB �= B A, then Cnψ0 �= ψ(t). However, the well-known theorem by Lie
states that Cnψ0 → ψ(t) as n →∞, for every fixed t . There are also theorems
generalizing this “product formula.” We refer to Chorin et al. [27] for a general
survey of such results.

The structure of the split scheme (7.13) can be described in terms of two
steps. First, the full solution operator is represented as (a limit of) a product
of “short-term” solution operators of the two “partial” equations. Second, the
short-term operators are replaced by suitable approximations. This description
illustrates the difficulty involved in proving the convergence of the scheme.

7.3 Two-Dimensional Flow in Cartesian Coordinates

We consider here a split scheme for the numerical integration of the Euler
equations of compressible, inviscid flow in the (x, y) plane. The “natural” di-
mensional splitting is used, whereby the equations are integrated alternately in
the x and y directions. This has already been done in Section 3.3, in the case
of a scalar conservation law.

The Euler equations governing the flow are derived from the three basic
conservation laws (mass, momentum and energy), as in Section 4.2. We have
two components (u, v) of velocity, so that the planar system (4.47) is now
replaced by

∂

∂t
U+ ∂

∂x
H(U)+ ∂

∂y
L(U) = 0,

U =






ρ

ρu
ρv

ρE




 , H(U) =






ρu
p + ρu2

ρuv
(ρE + p)u




 , L(U) =






ρv

ρuv
p + ρv2

(ρE + p)v




 ,

U(x, y, 0) = U0(x, y). (7.16)

The flow variables ρ (density), p (pressure), and E (total energy per unit mass)
are all functions of x, y, t , as are the two velocity components. The total energy
is given by E = e + 1

2 (u2 + v2), where e is the specific internal energy. An
equation of state p = p(ρ, e) is given. In the majority of numerical applications
(certainly those used as “test cases”) the equation of state is assumed to be that
of a perfect (γ -law) gas [see Equation (4.104)].

The Euler equations (7.16) cover a very rich panoply of fluid dynami-
cal phenomena. Wave interactions lead to complex patterns involving triple
points, Mach stems, and more (see Courant and Friedrichs [30]). We recall
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that this complexity was manifested even in the case of a scalar equation [see
Equation (3.66)] with relatively simple (sector-wise constant) initial data.

The notion of a weak solution can be defined in the case of Equations (7.16),
in analogy with the quasi-1-D case [see Equation (4.73)]. This leads to “jump
conditions” across “surfaces of discontinuity,” which are now moving curves in
the (x, y) plane. These jump conditions are identical to the Rankine–Hugoniot
condition [Equation (4.76)] when expressed in terms of the normal (to the sur-
face) components of the velocity. From the mathematical viewpoint, very little
is available in terms of rigorous results for solutions of the Euler system. This
is true even for “Riemann-type” IVPs, namely, when the initial data are sector-
wise constant (as in the scalar case of Section 3.3). Fortunately, numerical
simulations have been very successful in reproducing laboratory experiments
in a variety of nontrivial cases (e.g., Hillier [61], Falcovitz, Alfandary, and
Ben-Dor [38], Sasoh, Maemura, Hirataka, Falcovitz, and Takayama [98], Igra,
Falcovitz, Meguro, Takayama, and Heilig [66], Igra, Falcovitz, Reichenbach,
and Heilig [67]).

We now turn to the split scheme for (7.16). As in the general treatment of
Section 7.2, we construct separate schemes for the two equations,

∂

∂t
U+ ∂

∂x
H(U) = 0, (7.17)

∂

∂t
U+ ∂

∂y
L(U) = 0, (7.18)

where U(x, y, 0) = U0(x, y) is given. Observe that in the “x system” (7.17) the
third equation (for v) can be written as

vt + uvx = 0, (7.19)

by making use of the first equation ρt + (ρu)x = 0. Thus, the y component
of the velocity is “passively” convected in the x direction, with speed u. The
system can be viewed as a planar compressible system to which an “unknown”
v is added and advected along the particle paths dx

dt = u. We shall encounter a
similar extension in Chapter 9, where the added unknown is a “mass fraction”
of unburnt gas. Even though such an extension remains very close to (4.47),
the (three-component) system of planar flow, there are certain points that need
to be clarified. We do this next, before resuming the description of the two-
dimensional split scheme.

The Linear GRP for a Planar System with Advection

The system (7.17) conforms to the general abstract setting (4.1), so that the ana-
lytical framework of Section 4.1 is applicable to its study. However, its analysis
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can be practically reduced to that of the planar system (4.47). This is done
by separating the equation for ρv from the other three equations. To do this we
need to modify the energy equation, since E = e + 1

2 (u2 + v2) depends on v.
Note that by using the equation for ρv and its alternative form (7.19) we get

∂

∂t
(ρv2)+ ∂

∂x
(ρv2u) = v

[
∂

∂t
(ρv)+ ∂

∂x
(ρvu)

]

+ ρv
[
∂v

∂t
+ u

∂v

∂x

]
= 0, (7.20)

which implies that in the energy equation we can substitute E x = e + 1
2 u2 for

E . Thus, defining

Ux = (ρ, ρu, ρE x )T , Hx (Ux ) = (ρu, p + ρu2, (ρE x + p)u)T , (7.21)

we can rewrite the system (7.17) as

∂

∂t
Ux + ∂

∂x
Hx (Ux ) = 0. (7.22)

∂

∂t
(ρv)+ ∂

∂x
(ρuv) = 0. (7.23)

The system (7.22) is independent of v and is in fact identical to the planar system
(4.47). Its eigenvalues are [see (4.64)]

λ1 = u − c, λ2 = u, λ3 = u + c, (7.24)

and the procedure of solving its Riemann problem is given in Construction 4.46.
The solution to the linear GRP is outlined in Summary 5.29. Equation (7.23)
is tied to the system (7.22) through the velocity field u. When written in the
form (7.19) it yields the eigenvalue λ4 = u, whereby the equation serves as its
characteristic relation, as in the abstract setting of Equation (4.6).

Remark 7.7 Observe the full analogy between Equations (4.59) and (7.19).
Repeating the proof of Claim 4.30 we see that the λ4 family is also linearly
degenerate. Since λ2 = λ4 the full system (7.17) is “doubly linearly degenerate.”

In accordance with the discussion following Equation (4.77), the jumps of
v can take place only across a contact discontinuity. The solution for v in the
context of the linear GRP [to the system (7.17)] is thus reduced to the scalar case,
as in Construction 3.10. We summarize these considerations in the following
corollary. Note that for simplicity we omit the dependence on y (that serves as
a parameter in the treatment of Equation (7.22)).
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Corollary 7.8 [RP and the linear GRP for the system (7.17)] Let the initial
data U(x, 0) be given by

U(x, 0) =
{
UL + xU′L, x < 0,

UR + xU′R, x > 0,
(7.25)

where UL, UR, U′L, UR are constant (four-component) vectors.
Let U(x, t) be the solution to (7.17) and let [see Equations (5.3) and (5.4)]

U0 = lim
t→0+

U(0, t),

(
∂

∂t
U
)

0

= lim
t→0+

∂

∂t
U(0, t).

Then:

(I) The values Ux
0 ,
(
∂
∂t U

x
)
0

are derived from the planar system (7.22), namely,
Construction 4.46 (for Ux

0) and Summary 5.29 [for
(
∂
∂t U

x
)
0

].
(II) Let u∗ be the initial speed of the contact discontinuity. We have, by (7.19),

(
v0,

(
∂v

∂t

)

0

)
=
{

(vL, −uLv
′
L), if u∗ > 0,

(vR, −uRv
′
R), if u∗ < 0.

(7.26)

Note that if u∗ = 0 then v is discontinuous across x = 0, but the flux ρvu∗

vanishes.

The Split Scheme for (7.16)

The numerical simulation is always performed on a rectangular grid{
x j+1/2, yk+1/2

}
j,k . For simplicity we assume a fixed mesh size, x j+1/2 −

x j−1/2 = 	x , yk+ 1/2 − yk−1/2 = 	y. As in the 1-D case (Section 5.2) we take
the grid lines x = x j+1/2, y = yk+1/2 to be the lines of jump discontinuities
(for flow variables and their slopes). The computational cell (x j−1/2, x j+1/2)×
(yk−1/2, yk+1/2) is labeled as “cell ( j, k).” It is centered at (x j , yk) = 1

2 (x j−1/2 +
x j+1/2, yk−1/2 + yk+1/2). At time tn , the average values Un

j,k are given, as well

as the constant slopes (Ux )n
j,k ,
(
Uy
)n

j,k . Given a time step	t , we let Ax
	t , B y

	t

be the GRP schemes for (7.17), (7.18) respectively. As already noted, the scheme
Ax
	t approximates the system (7.22), (7.23) while B y

	t approximates the analo-
gous system in the y direction. Each of them can be selected to be of the E1

(Definition 5.37) or the E∞ type (Definition 5.41), or any other intermediate
scheme. In each direction the scheme uses the cell averages and the slopes in
that direction as the initial data for a 1-D computation.

Let us discuss the numerical procedure in some more detail. The implemen-
tation of Ax

	t is carried out row by row, fixing k and “sweeping” over j , and
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Figure 7.1. Setup for the Euler split scheme.

then repeating the process with k replaced by k + 1. Thus, in cell ( j, k) (see
Figure 7.1) the only numerical fluxes needed at this stage areHn+1/2

j−1/2,k,H
n+1/2
j+1/2,k ,

corresponding to the two vertical sides. The fluxes corresponding to the three
components Hx (Ux ) [see (7.21)] are computed, in view of Corollary 7.8, by the
1-D GRP algorithm [Equation (5.110)]. Next, the values vn+1/2

j±1/2,k are obtained
as in (7.26), and the numerical fluxes for ρuv are evaluated by

(ρuv)n+1/2
j±1/2,k = (ρu)n+1/2

j±1/2,k v
n+1/2
j±1/2,k .

Equation (7.17) is now discretized as

Ũn+1
j,k = Un

j,k −
	t

	x

(
Hn+1/2

j+1/2,k −Hn+1/2
j−1/2,k

)
. (7.27)

Additionally, the new x slopes
(
Ũx
)n+1

j,k
are obtained by the 1-D procedure,

including the appropriate application of the slope limiter [see Equations (5.108)
and (5.109)].

The “intermediate” cell averages Ũn+1
j,k serve as initial data for the application

of B y
	t . Observe that the slopes

(
Ũy
)n

j,k
must be subjected to the monotonicity

requirement with respect to the new averages Ũn+1
j,k . Doing this we obtain the

slopes
(
Ũy
)n+1

j,k
and the y scheme B y

	t can be invoked to get the updated averages

Un+1
j,k and slopes (Ux )n+1

j,k ,
(
Uy
)n+1

j,k
.

The full scheme approximating (7.16) is given by

C	t = B y
	t Ax

	t . (7.28)

This scheme is of the type (7.13). As noted in Remark 7.4 we must apply
Ax
	t B y

	t
2

initially at t = 0 and B y
	t
2

at the end of the integration (T = n	t).
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The Split Scheme and Conservation Form

The full (2-D) system is in conservation form. This means that it can be recast
in the form of a balance equation, analogous to Equation (2.3). Integrating over
a space–time box [x1, x2]× [y1, y2]× [t1, t2] we get

y2∫

y1

x2∫

x1

[U(x, y, t2)− U(x, y, t1)] dx dy = −
t2∫

t1

y2∫

y1

[H(U(x2, y, t))

− H(U(x1, y, t))] dy dt −
t2∫

t1

x2∫

x1

[L(U(x, y2, t))− L(U(x, y1, t))] dx dt.

(7.29)

In designing the numerical scheme for the one-dimensional cases we have
always been guided by the principle of “conservative differencing,” namely,
compliance with the balance equation [see Equations (3.1) and (5.88)]. Imposing
the same principle on the two-dimensional equation (7.29), with

[x1, x2]× [y1, y2]= [x j−1/2, x j+1/2]× [yk−1/2, yk+1/2] and [t1, t2]= [tn, tn+1],

we should seek numerical fluxes Hn+1/2
j±1/2,k , Ln+1/2

j,k±1/2 (referring to the setup in
Figure 7.1) such that

Un+1
j,k − Un

j,k = −
	t

	x

(
Hn+1/2

j+1/2,k −Hn+1/2
j−1/2,k

)
− 	t

	y

(
Ln+1/2

j,k+1/2 − Ln+1/2
j,k−1/2

)
.

(7.30)

This discrete scheme seems to be consistent with (7.28), where the x step Ax
	t is

given by (7.27), with a similar expression for B y
	t . However, in the case of (7.28),

the step B y
	t uses the intermediate values Ũn+1

j,k ,
(
Ũy
)n+1

j,k
as the initial data in

the one-dimensional second step leading to Un+1
j,k . Thus, the one-dimensional

steps Ax
	t , B y

	t use different initial data [in cell ( j, k)] while carrying out the
computation in the time interval [tn, tn+1]. This is not what is “naturally” ex-
pected of the numerical fluxes in (7.30). In general when these fluxes are all
derived from the same discrete data (at time t = tn) we say that the scheme is of
the “finite-volume” class (see Kröner [72]). This means that the valuesUn

j,k can
be regarded as volume averages, rather than point values, and the scheme (7.30)
serves as a discrete analog to the integral (“balance”) equation (7.29) rather than
the differential system (7.16). Thus, for (7.30) to be a “finite-volume” scheme
we need to compute Hn+1/2

j±1/2,k , Ln+1/2
j,k±1/2 on the basis of the data Un

j,k , (Ux )n
j,k ,
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(
Uy
)n

j,k
. The general discussion of Section 7.2 has shown that in this case the

resulting finite-difference approximation is only first-order accurate. We there-
fore lose the great advantage built into the second-order-accuracy approach,
namely, the considerable improvement in wave resolution.

Finally, it should be noticed that even though the GRP split scheme (7.28),
(7.30) as described here is not “finite volume,” it certainly remains “conserva-
tive”; taking a computational domain large enough so that the numerical fluxes
vanish on its boundary, we obtain, from (7.30),

∑

j,k

Un+1
j,k =

∑

j,k

Un
j,k . (7.31)

Remark 7.9 A basic issue that arises in the use of split (rectangular) schemes is
their compatibility with problems that are radially symmetric or, more generally,
involve large variations in directions that are not aligned with the coordinate
axes. For example, this is the case when one is trying to compute the flow in a
“radial shock tube” where, initially, there are two different constant states (of
the same gas) separated by a circle. In this case the solution retains the radial
symmetry and can be accurately computed by the quasi-1-D scheme. However,
it is possible to resolve the same problem using a split scheme like (7.28) on
a Cartesian mesh. This poses a problem right at the initial stage: How does
one assign values (density, pressure, etc.) to the boundary mesh cells, divided
between the two states? This can be done in a variety of ways (e.g., averaging
by area ratio or assigning the values of one state to the complete cell). The 2-D
calculation is certainly sensitive to the choice of initial data. However, once a
“suitable” choice is made, this calculation fits surprisingly well to the accurate
quasi-1-D result. We refer the reader to Ben-Artzi, Falcovitz, and Feldman [13]
and Birman, Har’el, Falcovitz, Ben-Artzi, and Feldman [17] for detailed studies
of such test cases. The second reference actually employs a 3-D split (GRP)
scheme to study the problem considered in Section 6.3 of this monograph.



8
Geometric Extensions

This chapter addresses one of the most central issues of computational fluid
dynamics, namely, the simulation of flows under complex geometric settings.
The diversity of these issues is briefly outlined in Section 8.1, which points
out the role played by the present extensions: the (1-D) “singularity tracking”
and the (2-D) “moving boundary tracking” (MBT) schemes. Section 8.2 deals
with the first extension, and Section 8.3 is devoted to an outline of the second
one. In the former we present the scheme methodology and refer to GRP papers
for examples. In the latter, the basic principles of the method are presented, and
we refer to [39] for more algorithmic details. Finally, an illustrative example of
the MBT method shows how an oval disk is “kicked-off” by a shock wave.

8.1 Grids That Move in Time

In Part I of this monograph we dealt with finite-difference approximations to
the quasi-1-D hydrodynamic conservation laws, where the underlying grid was
fixed and equally spaced in the majority of cases. In our two-dimensional nu-
merical extension (Section 7.3) we restricted the treatment to a Cartesian (rect-
angular) grid. Naturally, finite-difference approximations assume their simplest
form on such grids, and the motivation for seeking geometric extensions comes
primarily from physical applications.

In the 1-D setting, a geometric extension is typically needed when it is
desired to “track” special singularities of the flow. Such a “singularity track-
ing” extension is considered in Section 8.2, where selected flow singularities
(shock, material interface, contact, and gradient discontinuity) are tracked as
special (moving) grid points. More generally, in the context of the GRP method-
ology one can treat grid points having an arbitrary law of motion, thus allowing
for a “dynamically changing” grid. This has already been done in the ALE

251
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computation of the shock tube problem (Section 6.1), as well as in the expand-
ing sphere problem (Section 6.4). In these cases the motion of grid points was
designed to maintain computational cells of uniform size, thus contributing to
the overall numerical accuracy. It should be noted that although this capability
arises naturally from the GRP analysis, which provides the full range of direc-
tional derivatives (see Remark 5.31), it is not the case for most conservation
law schemes, which are based on a fixed (Eulerian) or material (Lagrangian)
grid.

In the multidimensional case there exists a rich variety of fluid dynamical
problems involving time-changing geometry caused by “moving boundaries”
(e.g., pistons in various machines). Furthermore, even fixed boundaries, (i.e.,
rigid wall surfaces) require complex grid geometries if they are not aligned with
(Cartesian) coordinate directions. The numerical simulation of fluid flows in
such “extended geometries,” involving time-changing grids and “front track-
ing,” has become a highly demanding technological endeavor. We refer to
Richtmyer and Morton [96, Chapter 13], Chern et al. [24], Glimm et al. [50, 51,
52], Tabak [106], and references therein for such treatments. In the context of
the present monograph, however, our aim is to focus on some basic principles
of geometric extensions, and our scope of presentation will be far narrower.

A full multidimensional realization of the 1-D “tracking” idea is extremely
complex and probably impossible to achieve in general geometric settings.
Our two-dimensional extension, presented in Section 8.3, is thus restricted to
tracking of regular curves, which move so that the relative fluid velocity is
tangential to them (in other words, no fluid crosses the moving curve). The
motion of the curve is imposed as a known boundary condition; it may also be
stationary, enabling the treatment of arbitrary rigid boundaries. For a detailed
description of the MBT method, with particular emphasis on its geometrical
aspects, we refer to Falcovitz, Alfandary, and Hanoch [39].

As was already noted, the (1-D) extension presented in Section 8.2 draws
on the analytic features of the GRP solution. However, the treatment of moving
boundaries in Section 8.3 is practically independent of the particular finite-
difference method.

8.2 Singularity Tracking

Consider quasi-one-dimensional flow in a duct of varying cross section, which
is governed by the Euler equations (4.45). Its GRP numerical integration was
described in Section 5.2, using a fixed (Eulerian) spatial grid, or a grid moving
with the fluid (Lagrangian; see Remark 5.40). We now seek to extend the scheme
to the case where the grid points are allowed to move arbitrarily with respect
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to the Eulerian coordinate r . In so doing we draw on the GRP analytic solution
of directional derivatives as described in Remark 5.31.

Let  t = {r |a(t) ≤ r ≤ b(t)} be a moving segment of the flow for which
endpoints a(t), b(t) trace out smooth trajectories. Using the equality

d

dt

∫

 t

A(r )U(r, t) dr =
∫

 t

A(r )
∂

∂t
U(r, t) dr + b′(t)A(b(t))U(b(t), t)

− a′(t)A(a(t))U(a(t), t),

(8.1)

and expressing A(r ) ∂
∂t U(r, t) in terms of spatial derivatives by (4.45), we get

d

dt

∫

 t

A(r )U(r, t) dr = −
[
(F(U)−!U) A(r )

]b(t),t

a(t),t
−
∫

 t

A(r )
∂

∂r
G(U) dr,

(8.2)

where !(a(t), t) = a′(t), !(b(t), t) = b′(t).
Identifying  t = [r j−1/2(t), r j+1/2(t)] with a single cell of the grid (which

varies in time), we let !n+1/2
j±1/2 = r ′j±1/2(tn+1/2) denote the mean velocity of the

cell endpoints. We can now set up a finite-difference approximation to (8.2) as
follows:

Un+1
j = (	v)n

j

(	v)n+1
j

Un
j −

	t

(	v)n+1
j

{[
(F(U)−!U) A

]n+1/2

j+1/2

−
[
(F(U)−!U) A

]n+1/2

j−1/2
− 1

2

[
G(U)n+1/2

j+1/2 −G(U)n+1/2
j−1/2

]

×
(

An+1/2
j+1/2 + An+1/2

j−1/2

)}
, (8.3)

where

(	v)n
j =
∫ r j+1/2(tn )

r j−1/2(tn )
A(r ) dr

is the volume of cell j at time t = tn , and An+1/2
j+1/2 = A(r j+1/2(tn+1/2)). Let

Dn
j+1/2 denote the directional derivative along the trajectory r j+1/2(t) [i.e.,

Dn
j+1/2(Q) = ∂Q

∂t + r ′j+1/2(t) ∂Q
∂r ], evaluated at (r, t) = (r j+1/2(tn), tn). The

values at half time step t = tn+1/2 are then evaluated as follows: Let the half-
time-step state be approximated as in the linear GRP by

Un+1/2
j+1/2 = Un

j+1/2 +
	t

2
Dn

j+1/2(U). (8.4)



254 8. Geometric Extensions

The half-time-step fluxes in (8.3) (again evaluated to within second-order accu-
racy; see Remark 3.9) are then expressed as

Fn+1/2
j±1/2 = F

(
Un+1/2

j±1/2

)
,

Gn+1/2
j±1/2 = G

(
Un+1/2

j±1/2

)
.

(8.5)

Assume further that the half-time-step speed!n+1/2
j+1/2 is known (i.e., as when the

motion of the tracked point is externally imposed; other cases will be considered
later). The new coordinates of moving grid points are thus given by

rn+1
j+1/2 = rn

j+1/2 +	t!n+1/2
j+1/2, (8.6)

and hence the cell volumes (	v)n+1
j are also known. This completes the evalu-

ation of all variables needed in (8.3).
In this integration scheme, not only may the grid spacings (rn

j+1/2 − rn
j−1/2)

change “dynamically,” but their (spatial) order may change too. This will be
the case, for example, when there is a fixed “underlying” grid while some
moving grid points are assigned to a contact discontinuity, a shock, or a C±
characteristic curve. There are two aspects to the algorithm required in such
cases. One is organizational, which consists in updating the information related
to the (spatial) order of grid points and cells. The other is a “cell-merging”
procedure, intended to avoid computation by (8.3) of a “small” cell, which
would bring the time step down to unacceptable values. Thus, when a moving
grid point approaches a fixed grid point, producing a cell of size smaller than
some preassigned value, that cell is “merged” with the adjacent one, resulting
in a bigger combined cell. The new values computed by (8.3) for the “merged
cell” are then assigned to the two “constituent” cells.

We now resume the discussion of the grid point speed !n+1/2
j+1/2. We proceed

according to the type of singularity at that point, as follows:

(a) The simplest case is when r j+1/2(t) is an imposed smooth function (inde-
pendent of the solution to the fluid-dynamical equations). We then have
!

n+1/2
j+1/2 = r ′j+1/2(tn+1/2). The moving grid points in some test cases of

Chapter 6 were treated this way (see Sections 6.1 and 6.4).
(b) When r j+1/2(t) is assigned to a contact discontinuity, !n+1/2

j+1/2 = u∗j+1/2 +
	t
2

(
∂u
∂t

)∗
j+1/2

. (See Theorem 5.7 and Claims 5.17 and 5.18. Here the grid
point j + 1/2 corresponds to the point r = 0 in the treatment of Section 5.1.)

(c) When a C± characteristic curve is tracked, the point speed is !n+1/2
j+1/2 =

(u ± c)n+1/2
j+1/2. These values, in turn, are obtained by adding to (u ± c)n

j+1/2

the term 	t
2 Dn

j+1/2(u ± c), where Dn
j+1/2 is now the directional derivative

along C± (see Remarks 5.4 and 5.31).
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(d) When r j+1/2(t) is a shock trajectory, we proceed as follows: Let Un+1/2
j+1/2

denote the half-time-step state behind the shock, evaluated as in (8.4) by
taking the directional derivative on the postshock side. Assuming a 3-shock,
we let the half-time-step state ahead be

(
Un+1/2

j+1/2

)
+ =
(
Un

j+1/2

)
+ +

	t

2
Dn

j+1/2(U)+,

where the time derivative ahead of the shock is evaluated from (4.45), using
the linear data in cell j+1 at time t = tn [see also Equation (5.57)]. Then,
to within second-order accuracy, the speed of the shock is given by the jump
condition [as in (4.89)]

!
n+1/2
j+1/2 = u+ + τ+ p − p+

u − u+
,

where u and p are taken from Un+1/2
j+1/2, and u+, τ+, p+ are taken from

(
Un+1/2

j+1/2

)
+.

As previously mentioned, the moving grid points in Sections 6.1 and 6.4
were treated as in case (a) here. Option (b) is used for tracking either a contact
discontinuity or a material interface (see Ben-Artzi and Birman [4] for the latter
case). The tracking of characteristic curves [option (c)] is typically used to better
resolve discontinuities in flow gradients across the head or tail characteristics
of a rarefaction wave. And finally, option (d) is used to track shock waves. We
refer to Falcovitz and Birman [41], where diverse test cases employing grid
scheme of options (a)–(d) (and combinations thereof) are presented.

8.3 Moving Boundary Tracking (MBT)

In Section 7.3 we presented a basic “numerical extension” to the GRP method,
whereby a two-dimensional computation was obtained by operator splitting
on a Cartesian grid. Here we consider a further expansion of the scope of
fluid-dynamical problems, where a “geometric extension” of the grid is intro-
duced, aimed at treating curved moving (or stationary) boundary lines. Gen-
erally speaking, there are two different approaches to the construction of such
grids. In the first approach the grid is “body-fitted” to the boundary line, whereas
in the second the boundary line is treated as a separate geometric entity, cutting
across a fixed underlying mesh. The MBT method (Falcovitz et al. [39]) belongs
to the second category, and before presenting it in detail we briefly review the
cardinal features of each approach.
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Body-fitted grid generation is analogous to covering a floor in a room
bounded by curved walls with tiles, using tiles of various shapes. The resulting
grid usually requires an irregular (nonrectangular) connectivity (as for grids
used by finite-element methods). When the boundary moves, the grid deforms
“elastically” with it, so as to maintain the shape and size of all cells within an
acceptable range. For example, a grid of this type was used in the simulation
of the gas dynamics within an internal combustion engine by Wierse [119]. In
this case, entire cell layers had to be periodically added or deleted to avoid ex-
cessive cell stretching or compression (caused by reciprocating piston motion).
We observe that although the implementation of the boundary condition at the
moving surface is simple in this type of grid, the treatment of the entire “dynam-
ically” changing mesh is quite complex. It involves algorithms that typically
require specific “tuning” for each problem, resulting in a nonrobust computa-
tional scheme.

Consider now the second approach of “moving boundary tracking” where
the flow is approximated on a fixed Eulerian grid. Here the finite-difference
computation of the flow at interior cells is unaffected by the moving boundary.
The entire scheme, therefore, consists only of the algorithms needed to integrate
the conservation laws in the cells intersected by the moving boundary line. In
our presentation of the MBT method we show that its basic principles can be
formulated at a modest level of complexity. This scheme is also robust, requiring
no heuristic “tuning” tailored to particular applications. It is noted, however, that
like any other algorithm of this family, the MBT is “geometrically intensive.”
By this we mean that it involves a good deal of geometrical analysis concerning
the “monitoring” of a moving boundary relative to an underlying grid.

Let us first clarify the meaning of “tracking” in regards to the present MBT
scheme. Given the flow profiles at time level t = tn [which includes the bound-
ary curve location!(tn)], the new location!(tn+1) is explicitly determined and
is totally unrelated to the details of the flow field evolving from t = tn to
t = tn+1. In particular, this includes the special case of a rigid wall [in which
!(tn) ≡ ! is a fixed curve]. However, tracking an “internal boundary” such as
a shock front, the motion of which constitutes an integral part of the solution,
lies outside the scope of the method presented here.

As for the case of a material interface, it is strictly speaking analogous to a
shock front in that its motion is derived as part of the overall solution. However,
in various computational approaches, notably the CEL (Coupled Eulerian–
Lagrangian) method due to Noh [93], two adjacent fluids are described by
different frames, one being Lagrangian while the other is Eulerian. In this case
the material interface is the boundary of the “Lagrangian” side. Its motion
between t = tn and t = tn+1 is then fully determined (to first-order accuracy)
by the Lagrangian velocity field at t = tn and is imposed on the Eulerian side
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as an external condition. It is thus admissible as a “moving boundary” (for the
Eulerian calculation) in the sense of the MBT scheme. In particular, a rigid body
of fixed mass immersed in a compressible fluid and moving under the action
of the pressure exerted by the fluid constitutes a reduced case of the previously
cited CEL method. In the following, we shall consider a simple problem of
this type, where a rigid elliptic disk lying on flat ground is “kicked up” by an
incident shock wave.

8.3.1 Basic Setup

Here we introduce the fundamental concepts of the MBT scheme, assuming
a simplified geometric setting. Some additional aspects related to the general
algorithm are briefly discussed in the following subsection. We start our descrip-
tion of the scheme by a presentation of the geometric setup and then follow with
an outline of the finite-difference scheme.

Referring to the schematic display in Figure 8.1, we see that the boundary line
is specified as a single closed polygon, or as the union of several closed polygons,
with the fluid occupying the domain exterior to them. Every such polygon is non-
self-intersecting. Additionally, the polygons are free to move about the (x, y)
plane, including entering or exiting the (rectangular) computational domain, as
long as they do not intersect each other.

BA

E

x

y

C

Polygon  No. 1

Polygon  No. 2
Polygon  No. 3

D

Polygon  No. 4

Figure 8.1. Boundary polygons and underlying Cartesian grid.
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Several types of cells are formed by the intersection between boundary poly-
gons and the grid. Cell A is uncut by any polygon and is completely filled with
fluid. We then refer to it as a “regular cell.” Cell D, however, is completely cov-
ered by a polygon and contains no fluid, so it is labeled a “covered cell.” The
three cells B, C, and E are intersected by the boundary line and are consequently
referred to as “boundary cells” (the term “cut cells” is also used in the literature).
We now observe that a boundary cell may be intersected by more than one poly-
gon (as is the case of cell C), and a side of a boundary cell may also be intersected
by two different polygons (see cell C again), or by two different segments of the
same polygon (see cell E). These observations point out that the calculation of
fractional areas and side lengths in boundary cells is algorithmically difficult.
This is further complicated by the fact that the configuration is not static.

Our finite-difference scheme should provide an approximation to the flow
evolving over a time interval [tn, tn+1], taking into account the geometric effects
of the moving boundary in boundary cells. This is achieved by extending the
balance equation (7.29) to a control volume that consists of a single grid cell
intersected by the moving boundary line. The resulting balance equation leads
to a finite-difference approximation of the hydrodynamic conservation laws in
boundary cells, extending the split scheme (7.30).

Before considering the balance equation in this case let us focus on the bound-
ary cell geometry, referring to the cell [x j−1/2, x j+1/2]× [yk−1/2, yk+1/2] shown
in Figure 8.2. The control volume boundary is of a “mixed” type, meaning that it
consists of whole or partial sides of the regular cell, complemented by segments
of the (moving) boundary line. This structure varies over the time interval
[tn, tn+1]. In Figure 8.2, we show the initial (t = tn), intermediate (tn < t < tn+1),
and final (t = tn+1) configurations. It is assumed that the vertices of the polyg-
onal line move at constant (given) velocities over the time interval. This in

Figure 8.2. Cell ( j, k) intersected by a moving boundary.
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turn determines the position of the line !(t) at any given time [tn ≤ t ≤ tn+1].
In particular, it follows that the location Y (t), where !(t) intersects the side
x = x j+1/2 of the cell, can be expressed as a function of t . Assume for simplicity
(as is the case in Figure 8.2) that Y (t) remains on the same side during the entire
time interval. We take Yn+1/2 = 1

	t

∫ tn+1

tn
Y (t) dt and regard it as an average lo-

cation of the intersection of the moving line with that side. Similarly, referring
again to Figure 8.2, we take the average location on the side y = yk+1/2 as

Xn+1/2 = 1

	t

∫ tn+1

tn

X (t) dt.

Let the exposed (fluid-filled) area of this boundary cell at time t be denoted
by�(t), and let the (closed) boundary line of that cell be ∂�(t). We then denote
by ! j,k(t) = ∂�(t) ∩!(t) the “moving boundary” part of ∂�(t), that is, that
part of !(t) which is located within the cell at time t . Following the common
mathematical practice, we take the counterclockwise orientation around ∂�(t),
as shown by the arrows in Figure 8.2. In particular, this determines the direction
of the partial segment! j,k(t), along which we take the length coordinate s. The
other (“static”) part of ∂�(t) is designated as ∂�stat(t), so that

∂�(t) = ∂�stat(t) ∪! j,k(t). (8.7)

Referring to the procedure leading to the balance equation (7.29), we repeat
its derivation in the present “geometrically extended” setting, by integrating the
conservation law (7.16) over the area of �(t):

∫∫

�(t)

(
Ut +H(U)x + L(U)y

)
dx dy = 0 (8.8)

By Green’s theorem we get
∫∫

�(t)

Ut dx dy +
∮

∂�(t)

H(U) dy − L(U) dx = 0. (8.9)

The integral of Ut over �(t) is now expressed as
∫∫

�(t)

Ut dx dy = d

dt

∫∫

�(t)

U dx dy −
∫

! j,k (t)

U
[
V(s) · n(s)

]
ds, (8.10)

where the line integral over ! j,k(t) “compensates” for the change in the area
|�(t)| resulting from the motion of the boundary. Here V(s) is the given velocity
of the moving boundary, and n(s) is the outward-pointing unit normal. The
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product V(s) · n(s) is thus the normal component of the boundary velocity.
By assumption, this component is equal to the normal component of the fluid
velocity (u, v), so that

[
V(s) · n(s)

]
ds = (u, v) · (dy,−dx) = u dy − v dx . (8.11)

Inserting (8.10) and (8.11) into (8.9), and noting (8.7), we get

d

dt

∫∫

�(t)

U dx dy +
∫

∂�stat(t)

H(U) dy − L(U) dx +
∫

! j,k (t)

(
H(U)− uU

)
dy

+
∫

! j,k (t)

(
−L(U)+ vU

)
dx = 0. (8.12)

We can rewrite (8.12) as1

d

dt

∫∫

�(t)

U dx dy +
∫

∂�stat(t)

H(U) dy − L(U) dx

+
∫

! j,k (t)

M(U) dy − N(U) dx = 0, (8.13)

where

M(U) = H(U)− uU =






0
p
0

up




 , N(U) = L(U)− vU =






0
0
p
vp




 . (8.14)

The balance equation (8.13) is now split along the (x, y) directions as follows:

d

dt

∫∫

�(t)

U dx dy +
∫

∂�stat(t)

H(U) dy +
∫

! j,k (t)

M(U) dy = 0, (8.15a)

d

dt

∫∫

�(t)

U dx dy −
∫

∂�stat(t)

L(U) dx −
∫

! j,k (t)

N(U) dx = 0. (8.15b)

Note that this form is analogous to the split system (7.17), (7.18) in the sense
that only the x-flux components H, M are retained in Equation (8.15a), and
likewise only the y-flux components L, N in Equation (8.15b).

1 Observe that the contribution of the moving boundary to the balance relation (8.13) involves only
“pressure terms,” which produce the force exerted by ! j,k (t) on the fluid in �(t), and the work
done by this force.
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Figure 8.3. Cell ( j, k) intersected by a boundary moving in the x direction.

When solving Equations (8.15a), (8.15b) separately, we are obliged to also
“split” the geometry. By this we mean that in the process of solving (8.15a)
we take into account only the x motion of the boundary line, and similarly
for (8.15b). Thus, taking only the x component of the velocity, the boundary
line !(t) moves horizontally, and we denote its position at time t by !x (t).
The situation is now completely analogous to the previous two-dimensional
setup. In particular, the boundary ∂�(t) is now replaced by ∂�x (t), where
∂�x (t) = ∂�x

stat(t) ∪!x
j,k(t) (see Figure 8.3). Similarly, when solving (8.15b)

we take into account only the y component of the motion of !(t).2 Note that
our assumption that the velocity of each vertex of !(t) is constant throughout
the time interval implies that the final position of the boundary line, when the
x and y integration steps have been completed, is identical to!(tn+1). We now
integrate (8.15a), replacing !(t) by !x (t), thus obtaining

∫∫

�x (tn+1)

U dx dy −
∫∫

�x (tn )

U dx dy

= −
tn+1∫

tn

∫

∂�x
stat(t)

H(U) dy dt −
tn+1∫

tn

∫

!x
j,k (t)

M(U) dy dt. (8.16)

Denoting by V n
j,k, V n+1

j,k , Un
j,k, U

n+1
j,k the values of the boundary cell area and

averageU at the two time levels, we recast (8.16) in the form of a finite-difference

2 It is understood that the geometric setup at the beginning of each integration step is identical to
that prevailing at the end of the preceding step. Thus, for a y step beginning at t = tn , following
an x step that ended at t = tn+1, �y (tn) ≡ �x (tn+1), !y (tn) ≡ !x (tn+1), etc.
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approximation,

V n+1
j,k Un+1

j,k − V n
j,kU

n
j,k = −	t

[
An+1/2

j+1/2,k H
n+1/2
j+1/2,k − An+1/2

j−1/2,k H
n+1/2
j−1/2,k

]

−	t
[

Bn+1/2
j,k Mn+1/2

j,k

]
,

Hn+1/2
j±1/2,k = H

(
Un+1/2

j±1/2,k

)
, Mn+1/2

j,k =M
(
Un+1/2

b

)
, (8.17)

where An+1/2
j±1/2,k are the effective lengths for the flux through the sides x =

x j±1/2, and Bn+1/2
j,k is the mean projection of!x

j,k(t) on the side x = x j+1/2. For
the geometric setup in Figure 8.3, they are determined as follows: Let Y x (t) be
the point of intersection of !x (t) with the side x = x j+1/2, and let

(
Y x
)n+1/2 = 1

	t

tn+1∫

tn

Y x (t) dt

be its mean value. We then let

An+1/2
j+1/2,k =

(
Y x
)n+1/2 − yk−1/2. (8.18)

The side x = x j−1/2 is exposed throughout the time interval in this case, so
that An+1/2

j−1/2,k = yk+1/2 − yk−1/2. It is noted that according to these definitions,

An+1/2
j±1/2,k is always positive (or zero).
Turning to the mean boundary projected length Bn+1/2

j,k , we see that it follows
from (8.16) that it is generally given by

Bn+1/2
j,k = 1

	t

tn+1∫

tn

∫

!x
j,k (t)

dy dt. (8.19)

Here, the sign of Bn+1/2
j,k is determined by the orientation of the line integral along

!x
j,k(t); it may therefore be either negative or positive. In the particular setup

of Figure 8.3, Bn+1/2
j,k is equal to the mean “covered” part of side x = x j+1/2

and is thus given by

Bn+1/2
j,k = yk+1/2 −

(
Y x
)n+1/2

. (8.20)

Now, consider the fluid states Un+1/2
j±1/2,k , U

n+1/2
b . The states Un+1/2

j±1/2,k are de-
termined by the solution to the GRP at the cell boundaries ( j ± 1/2, k), as de-
scribed in Section 7.3, with the added assumption that the slopes in the boundary



8.3. Moving Boundary Tracking (MBT) 263

cell are taken as zero. As for the value of Un+1/2
b at the moving boundary, it

requires careful attention and we evaluate it as follows.
At any given point on !x

j,k(t) we consider a “one-dimensional” interaction
problem normal to the boundary. Denoting by u⊥ the normal component of
the fluid velocity, we obtain the state U⊥ = [ρ, ρu⊥, ρE

]T
, in which values of

ρ, u⊥, E are obtained fromUn
j,k . Let now V⊥ be the (imposed) normal velocity

of the boundary !x
j,k(t) at that point. We have thus obtained an interaction

problem as follows. The state U⊥ is taken to be a right state. The state Un+1/2
b

is viewed as being connected to U⊥ by a 3-wave, thus lying on the interaction
curve I r

3 (U⊥) (see Section 6.2, Figure 6.6). Requiring that the normal velocity
in Un+1/2

b be equal to V⊥ fully determines Un+1/2
b (the tangential velocity in

this state is set equal to that of Un
j,k). In fact, this description was confined to a

fixed boundary point at time t , whereas the value of Un+1/2
b requires averaging

over !x
j,k(t) and over the time interval. Note that as a result of the motion of

!x
j,k(t) the normal velocities u⊥, V⊥ vary in time. In contrast, the values Un

j,k

are held fixed throughout the time interval.
The second equation (8.15b) in the y direction is now treated in exactly the

same fashion. The sequencing of the x and y integration steps is done as in (7.28).
The integration time step in (8.17) is naturally limited by the CFL condi-

tion. However, in dealing with a boundary cell, we always impose additional
restrictions on the time step, which are summarized in the following remark.

Remark 8.1 (Time step restrictions for boundary cells) There are two addi-
tional restrictions on the time step for cells intersected by a moving boundary.
One is because boundary cells are reduced in size; the other is related to the
velocity of the boundary.

(1) The CFL condition is	t < µCFL
	x
Smax

, where Smax is the maximal wave speed
andµCFL < 1. Here we take	x to be the (reduced) “x length” of the bound-
ary cell. This length is estimated by 	x = 2V n

j,k/(An
j−1/2,k+An

j+1/2,k),
where An

j±1/2,k are the exposed side lengths at t = tn .
(2) It is required that a covered cell will not become fully exposed over a

single time step (or vice versa), since the MBT scheme cannot handle such
a transition. In other words, when a cell changes status from covered to
regular (or vice versa), it must go (for at least one time level) through the
intermediate status of a boundary cell. This additional restriction is obtained
when Smax in the aforementioned inequality is replaced by the maximal
speed of the boundary line. It is noted, however, that in typical physical
problems the boundary speed is lower than Smax, so that this additional
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restriction is usually satisfied without having to be explicitly imposed. In
fact, computational experience has shown that cells normally change status
over several time steps.

We conclude this presentation with the following remark on uniform flow.

Remark 8.2 (The case of uniform flow) To illustrate the difficulty involved
in dealing with boundary cells, we make the following observation concerning
the MBT algorithm. Suppose that one or several polygons (as in Figure 8.1)
are placed in a uniform flow field, moving with the fluid at the same (uniform)
velocity. Then the MBT algorithm guarantees that (as expected of the exact so-
lution) flow variables in boundary cells retain their constant values for all times.
Even this seemingly elementary property turns out to be nontrivial in the context
of algorithms aimed at treating flows with moving boundaries or interfaces.

8.3.2 Survey of the Full MBT Algorithm

In the preceding subsection the MBT method was presented in the context of
a simple geometric setup. Here we briefly outline the main issues associated
with a general geometric setting. In particular we focus our discussion on the
algorithms for the average side lengths An+1/2

j±1/2,k , Bn+1/2
j,k needed to handle

the full range of situations arising from the intersection of moving boundary
polygons and the underlying grid. In formulating these algorithms, great care
was taken to retain the uniform flow property (Remark 8.2). Our presentation
here is rather brief, and we generally refer to Falcovitz et al. [39] for a more
complete description of the MBT algorithms.

The geometric quantities to be evaluated are V n
j,k , V n+1

j,k , An+1/2
j±1/2,k , and

Bn+1/2
j,k [see (8.17)], as well as An

j±1/2,k , which serve to determine the time
step 	t (see Remark 8.1). The “static” values (at t = tn or t = tn+1) are rela-
tively simple to evaluate, and we need not expound on the algorithms involved.
In determining the average exposed side lengths, the situation is complicated
since the boundary polygons move, and a changing “intersection geometry”
has to be considered. Using the notation �x (t) introduced in Subsection 8.3.1,
and noting the identity

∮

∂�x (t)

dy =
∫

∂�x
stat(t)

dy +
∫

!x
j,k (t)

dy = 0, (8.21)

we get the relation

An+1/2
j+1/2,k − An+1/2

j−1/2,k + Bn+1/2
j,k = 0. (8.22)
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Figure 8.4. Boundary moving one time step in the x direction.

Observe that whereas the side lengths An+1/2
j±1/2,k are taken as positive, the sign of

Bn+1/2
j,k may be either positive or negative. Consequently, only An+1/2

j±1/2,k need
to be determined by the time-averaging procedure.

In the following we illustrate the diversity of situations involved in evaluating
An+1/2

j±1/2,k , by considering some of the “geometric scenarios” shown in Figure 8.4.
Consider the side AD, which is partially exposed (AB) at t = tn and fully
exposed at t = tn+1. We note that its fully exposed status is reached at some
intermediate time tn < ti < tn+1, which is determined by the “sliding” motion
of the intersection point from J to E . All this has to be taken into account in
evaluating the time-averaged length of that side. A similar scenario takes place
for side DM , which starts as fully covered and becomes partially exposed (DL).
Here too, the same intermediate time ti is required in evaluating the average
side length. Obviously, an algorithm that would handle such situations on a
case-by-case basis would be unreasonably complex. Instead, we make use of
the fact that at this stage the boundary moves purely horizontally (in the x
direction). Therefore the projection of each individual side, such as bncn of
the polygonal boundary, on the cell side (AD) is invariant, and it is relatively
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simple to determine its exposed portion (AB). Repeating this procedure for all
boundary sides in regards to their projection on the cell side (AD), we obtain
An+1/2

j+1/2,k as a sum of the individual contributions.
Inspection of Equation (8.17), seems to indicate that all needed geomet-

ric values have been determined. However, referring again to the scenario of
Figure 8.4, we consider the case of boundary cell 1. The numerical fluxes across
side G H (which is fully exposed at t = tn) are determined by the GRP solver
in the usual way (with the slopes in cell 1 set to zero). By contrast, the side
DM is completely covered at t = tn , so that a GRP cannot be solved for that
side. In this situation we apply a “merging” procedure. More specifically, we
modify the geometric setup pertinent to this boundary cell. Whereas �x (tn)
remains as before (i.e., the polygon H I J G), the polygon �x (tn+1) is taken
to be the “merged” polygon H K EG, which comprises not only the exposed
portion of boundary cell 1 but also that of boundary cell 2 (DL E). Thus, the
fluxes through side DL are no longer needed. This scenario arises whenever a
newly exposed boundary cell is formed. Similarly, when an existing boundary
cell becomes fully covered during the time interval [tn, tn+1], the same “merg-
ing” is applied in reverse. Such a case can be envisioned by considering an
interchange of the old and new positions of the boundary line in Figure 8.4, so
that cell 2 becomes fully covered and cell 1 remains a boundary cell of reduced
area.

Another reason for merging of two adjacent boundary cells is to avoid an
excessively small time step (see Remark 8.1). Take for example the situation of
cells 3 and 4 in Figure 8.4. Here the time step would be limited in proportion
to the size of cell 3 at t = tn (ABC). If that restriction is deemed excessive,
we can follow a merging procedure similar to that just used for cells 1 and 2.
For�x (tn),�x (tn+1) we take the polygons N G JcnC , N G Ecn+1 F , respectively,
thus avoiding the restriction of	t by the size of ABC . In all cases where a “pair
merging” of two adjacent cells is performed, and when neither cell becomes
fully covered, the values calculated by (8.17) at time t = tn+1 are assigned to
both cells.

8.3.3 An Example: Shock Lifting of an Elliptic Disk

Here we consider a demonstrative case using the MBT method to calculate
the (2-D) motion of a solid disk immersed in a compressible (inviscid) fluid.
Specifically, we take an elliptic disk that lies at rest on the ground; it is “kicked-
off” by an incident planar shock wave (see Figure 8.5, where the “>” inside the
disk indicates the shock-facing end). The motion of the disk is calculated step
by step with the integration of the fluid-dynamical equations (8.17), using the
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Figure 8.5. Kickoff of an elliptic disk by an Ms = 3 shock in air.

classical equations governing the translation and rotation of a solid (rigid) disk
in two space dimensions. The smooth disk is approximated as a polygon, and
the total force and moment (about the center of the disk) are simply calculated
by summing up the contributions of the fluid pressure on every side. From the
force and moment we determine the velocity of the center point (xc, yc) and the
rotational velocity about that point, assuming that both are constant throughout
the time interval [tn, tn+1]. The displacement (	xq ,	yq ) of each polygon vertex
q from t = tn to t = tn+1 is then obtained as a superposition of the translational
displacement of (xc, yc) and the (finite-angle) rotation about that point. Finally,
we calculate the vertex velocities (uq , vq ) = (xq/	t, 	yq/	t) and assume that
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(in compliance with the MBT scheme) they are also constant throughout the
time interval [tn, tn+1].

The data for the specific example are as follows: The computational domain
is an x, y rectangle of dimensions 100× 20, which is divided into a grid of
200× 40 square cells. The fluid is a perfect gas with γ = 1.4 and initial state
[ρ0, p0, u0, v0] = [1.3, 0.1, 0, 0]. The planar right-facing shock wave (3-shock)
is initially at x = 8, and its intensity is specified by the shock Mach num-
ber Ms = 3. Thus, the postshock state is given by [ρ1, p1, u1, v1] = [5.0143,
1.0333, 0.72926, 0]. The boundary conditions are a rigid wall at the top (y =
20) and bottom (y = 0) planes and the postshock state at the left plane (x = 0).
At the right plane (x = 100) we set up a “nonreflecting” boundary condition
intended to let 3-waves propagate “out” of the computational rectangle, as
follows: Let j, k indicate a cell adjacent to that boundary. We first set the slopes
U′nj,k equal to zero. Then we define the data UL,UR for the Riemann problem
at the boundary point x j+1/2 by UL = Un

j,k and by “continuation” of the flow,
UR = UL.

The disk is taken as an ellipse having major and minor axes a = 6.25 and
b = 2.5, centered at (x, y) = (15, 3) (hence its bottom is 0.5 above the “ground
plane” x = 0, and its leftmost tip is located at x = 8.75, i.e., 0.75 ahead of the
initial shock front). The solid disk has a uniform mass densityρc = 10ρ0, so that
its total mass and moment of inertia are mc = πabρc and Ic = 1

4 mc(a2+b2) ,
respectively. The ellipse is approximated by a sixty-sided polygon, whose ver-
tices (xq , yq ) are given by

(xq , yq ) =
(

15+ a cos

(
2πq

60

)
, 3+ b sin

(
2πq

60

))
, q = 1, 2, . . . , 60.

In Figure 8.5 we see that the asymmetric shock diffraction (due the ground
reflection) causes initial liftoff and rotational motion of the disk. This effect
seems to persist through the entire computation, producing a “tumbling” motion
as shown. The “>” marker helps indicate that by time t = 100 the disk has
rotated by an angle of nearly π .



9
A Physical Extension: Reacting Flow

In this chapter we consider the system of equations governing compressible
reacting flow. The fluid is a homogeneous mixture of two species. The evo-
lution of the flow under the mechanical conservation laws of mass, momen-
tum and energy is coupled to the (continuous or abrupt) conversion of the
“unburnt” species to the “burnt” one. We take the simplest model of such a
reaction, namely, an irreversible exothermic process. The equation of state of
the fluid depends on its chemical composition. The resulting (augmented) sys-
tem is still nonlinear hyperbolic (in the sense of Chapter 4) and is amenable
to the GRP methodology. The basic hypotheses are presented in Section 9.1,
leading to the derivation of the characteristic relations and jump conditions.
In Section 9.2 we describe the classical Chapman–Jouguet model of defla-
grations and detonations, and the Zeldovich–von Neumann–Döring (Z–N–D)
solution is presented in Section 9.3. In Section 9.4 we study the general-
ized Riemann problem for the system of reacting flow. The treatment here
is close to that of the basic GRP case (Section 5.1), but there are significant
differences because of the reaction equation. In Section 9.5 we outline briefly
the resulting GRP numerical scheme and study a physical problem of ozone
decomposition.

So far our physical model of compressible flow was based on the three
conservation laws: those of mass, momentum and energy [see Equations (4.44)].
In the absence of external forces the internal “driving force” of the fluid
motion is the pressure gradient. It is stipulated that, as a basic hypothesis,
two independent thermodynamic variables (commonly taken as the den-
sity ρ and the internal energy e) serve to determine all others (such as the
pressure p, the entropy S, or the temperature T ) by a suitable equation of
state. The first law of thermodynamics [see (4.49)] expresses the dependence

269
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of S on (e, ρ) by

T d S = de + p dτ, τ = 1/ρ (9.1)

(see Footnote 7 in Section 4.2).
There exists a great number of fluid-dynamical situations where various

physical effects (or assumptions) are added to this basic system of compressible
flow, without changing the character of the governing system of equations. In
other words, the (extended or modified) system still belongs to the mathematical
class of “systems of conservation laws,” in the sense of Chapter 4. We mention
two well-known cases included in this class:

(i) The equations of magnetohydrodynamics in plasma physics (and astro-
physics). In this case the (compressible) fluid is a medium with electro-
magnetic properties and Maxwell’s equations are added to the basic con-
servation laws (see Courant and Hilbert [31, Chapter 6] and Richtmyer and
Morton [96, Chapter 12]).

(ii) Shallow-water equations. In this case, the equations of incompressible flow
in a “shallow” (three-dimensional) layer are simplified by the assump-
tion that the velocity field does not depend on the “depth” coordinate and
the pressure is hydrostatic, depending linearly on depth (see Courant and
Friedrichs [30, Chapter I]). This model is widely used in meteorology
(see Alcrudo and Garcia-Navarro [1] and Garcia-Navarro, Hubbard, and
Priestley [47]). In fact, when the equations are written using spherical co-
ordinates, they do not conform exactly to the class of conservation laws, as
the fluxes depend explicitly on the (spatial) coordinates.

These (nonlinear hyperbolic) systems possess a complete set of real eigenvalues
(with corresponding eigenvectors). They all share the fundamental property of
“finite propagation speed,” thus enabling the construction of “local numeri-
cal fluxes” (see Remark 3.4). The Godunov scheme, as well as the full GRP
methodology, can be adapted to the numerical resolution of such systems. In
practice, however, there has only been a very limited amount of work in these
directions.

In this chapter we study an important physical extension, commonly known
as “reacting flow.” It combines the three conservation laws with chemical reac-
tions. The latter are responsible for the gradual or abrupt change of the chemical
composition of the fluid, leading to corresponding changes in the equation of
state. As an example one can think of the decomposition of a mixture of gases
(or even isotopes of the same gas) under sufficiently high pressure. Another pro-
totypical example is the process of (exothermic) combustion, in which the fluid



9.1. The Equations of Compressible Reacting Flow 271

undergoes changes caused by reactive interactions of its constituent species. It
is because of this example that the whole topic is labeled “reacting flow.” In
particular, it covers the phenomena of “deflagrations” and “detonations,” which
will be discussed in Sections 9.2 and 9.3. We refer to Landau and Lifshitz [74,
Chapter 14] for a broader discussion of issues related to combustion. The model
that we discuss here is perhaps the simplest one for “continuous” reaction. It
assumes that the fluid consists of a (homogeneous) mixture of two species,
“burnt” and “unburnt.” Their ratio varies in time (and space) as a result of the
chemical process.

9.1 The Equations of Compressible Reacting Flow

Let 0 ≤ z ≤ 1 be the mass fraction of unburnt gas. Thus z= 1 (resp. z= 0)
represents a completely unburnt (resp. burnt) mixture. In general, the mixture
is assumed to be homogeneous and possesses a single set of thermodynamic
variables ρ, e, p, etc. It undergoes an irreversible chemical reaction, whereby
the fraction of the unburnt component always decreases. This rule is expressed
by the “reaction law” (see Courant and Friedrichs [30, Chapter III, Section 93]),

D

Dt
z = −k(e, ρ, z), (9.2)

where we have used the “total” (or “Lagrangian”) time derivative D
Dt = ∂

∂t +
u ∂
∂x [see Equations (4.50) and (4.82)]. The “reaction rate” function k is assumed

to be non negative and is indeed the rate at which the reaction (i.e., decrease
of z) takes place along the trajectory of a fluid element.

As the mixture composition certainly affects the thermodynamic variables,
we have to modify our previous assumptions. We take (e, ρ, z) as the three
basic (independent) variables, and these are used to determine all other thermo-
dynamic quantities, such as the entropy S = S(e, ρ, z) or the pressure p =
p(e, ρ, z). Some caution must be exercised when applying the basic thermody-
namical relations in this extended setting. Thus, by fixing z, the mixture retains
a fixed ratio of its components and is therefore subject to the first law of thermo-
dynamics (9.1). Since no change of z takes place, this law can be written as

T d Sz= const ≡ T

(
∂S

∂e
de + ∂S

∂ρ
dρ

)
= de + pdτ. (9.3)

In particular ∂S
∂e = 1

T > 0. Solving for e we obtain a dependence e = e(ρ, S, z)
and substituting this in the equation of state p= p(e, ρ, z) we get p= p(ρ, S, z).
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In accordance with (4.61) the speed of sound c is now defined by

c2 =
(
∂p

∂ρ

)

S,z

. (9.4)

Following these preliminaries, we can now write the system of equations
that governs planar reacting flow, namely, the compressible planar flow [as in
Equations (4.47)] of a reacting fluid mixture, subject to the reaction law (9.2):

∂

∂t
U+ ∂

∂x
F(U) = K(U), (9.5)

U =








ρ

ρu
ρ
(
e + 1

2 u2
)

ρz







, F(U) =






ρu

ρu2 + p

ρu
(
e + 1

2 u2
)+ pu

ρzu





, K(U) =









0

0

0

−kρ







.

(9.6)

Observe that the fourth (reaction) equation is written in the quasi-conservative
form

∂

∂t
(ρz)+ ∂

∂x
(ρzu) = −kρ, (9.7)

which follows from (9.2) in view of the first (conservation of mass) equation.
The system (9.5) is not homogeneous; it contains a nonvanishing “source”

termK(U). The situation encountered here is analogous to that of the quasi-one-
dimensional system (4.48). In both cases, dropping the undifferentiated (source)
term leads to a system of conservation laws of the class studied in the general
setting of Section 4.1 [Equation (4.1)]. In the quasi-one-dimensional case, this
reduction led to the planar system of compressible flow (4.47). In the case of
the system (9.5) the reduction yields

∂

∂t
Ured + ∂

∂x
F(Ured) = 0, Ured =

(
ρ, ρu, ρ

(
e + 1

2
u2
)
, ρz red

)T
. (9.8)

This system is completely analogous to (7.17) [or, equivalently, (7.22) and (7.23)];
instead of the transversal velocity component vwe have here the “reduced” mass
fraction z red. These variables satisfy, respectively, Equations (7.19) and [in the
case of (9.8)] z red

t + uz red
x = 0. Both are convected “passively” along the particle

paths dx
dt = u. The eigenvalues of (9.8), hence also of (9.5), are

λ1 = u − c, λ2 = u, λ3 = u + c, λ4 = u, (9.9)
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[compare (7.24)]. The system is therefore “doubly linearly degenerate” (see
Remark 7.7). In particular, the discontinuities of z red can take place only across
contact discontinuities.

Let us now turn back to the reacting flow system (9.5). In this case
Equation (9.2) implies that the mass fraction (of the unburnt component) de-
creases along particle paths. We shall see that as a result the entropy S also varies
along these paths, in contrast to the adiabatic law (4.59), which is valid in regions
of smooth (nonreacting) flow. Note first that the derivation of Equation (4.58)
was based solely on the conservation laws (4.45), namely, the first three equations
in (9.5). We conclude that in the reacting case too,

De

Dt
+ p

Dτ

Dt
= 0, (9.10)

from which we infer, by (9.3),
∂S

∂e

De

Dt
+ ∂S

∂ρ

Dρ

Dt
= 0 (9.11)

(meaning that, for a fixed z, there is no change of entropy along smooth particle
paths). The full variation of entropy is now given by

DS

Dt
= ∂

∂z
S(e, ρ, z)

Dz

Dt
= −k

∂

∂z
S = − f (e, ρ, z), (9.12)

where the right-hand side − f is a thermodynamic function depending on the
equation of state S = S(e, ρ, z) and the reaction rate k. It expresses the change
in entropy of a mixed element of the fluid as it undergoes chemical reaction.

As in the case of nonreacting flow, it is useful to formulate the system (9.5) in
the Lagrangian framework. Since the flow is planar, the Lagrangian coordinate
ξ [see (4.79)] is defined here by

ξ =
x∫

x0

ρ(s, 0)ds. (9.13)

Following the derivation of (4.83) and noting (9.2) we get
∂
∂t V+ ∂

∂ξ
Φ(V) = Ψ(V),

(9.14)

V =






τ
u
E
z




 , Φ(V) =






−u
p

pu

0




 , Ψ(V) =






0
0
0
−k




 ,

where E = e + 1
2 u2. Note that the definition of the Lagrangian coordinate im-

plies that ∂
∂t here is identical to the total derivative D

Dt . In regions of smooth
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flow Equation (9.12) can be exploited in order to simplify (9.14), replacing E
by S, giving

∂
∂t Ṽ+ ∂

∂ξ
Φ̃(Ṽ) = Ψ̃(Ṽ),

(9.15)

Ṽ =






τ
u
S
z





 , Φ̃(Ṽ) =







−u
p

0
0




 , Ψ̃(Ṽ) =






0
0
− f

−k







.

The Characteristic Relations

The last two equations in (9.15) serve as the characteristic equations associated
with the double eigenvalue λ2 = λ4 = u [compare (4.67)(ii)]. The other two
equations can be directly extracted from (9.15) as follows.

If we use p = p(ρ, S, z) as in (9.4) the momentum equation yields

ut + c2ρξ + pS Sξ + pzzξ = 0,

and adding to it suitable multiples of the other equations we get

ut ± ρcuξ ± c

ρ
(ρt ± ρcρξ )± pS

ρc
(St ± ρcSξ )± pz

ρc
(zt ± ρczξ )

= ∓ 1

ρc
(pS f + pzk). (9.16)

The left-hand side of (9.16) is seen to be equal to du
dt ± 1

g
dp
dt along the character-

istic directions C± : dξ
dt = ±g = ±ρc, where g = ρc is the Lagrangian speed

of sound. As for the right-hand side in (9.16), we define the thermodynamic
function

!(e, ρ, z) = pS f + pzk = k

[
∂

∂S
p(ρ, S, z)

∂

∂z
S(e, ρ, z)+ ∂

∂z
p(ρ, S, z)

]

= k(e, ρ, z)
∂

∂z
p(e, ρ, z), (9.17)

so that (9.16) can be written as

gdu ± dp = ∓! along C± :
dξ

dt
= ±g (9.18)

[compare (4.85)]. The role of the function! is further highlighted in the relation

Dp

Dt
= c2 Dρ

Dt
−!, (9.19)
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where, as in (9.10)–(9.12), the total derivatives D
Dt are evaluated along particle

paths.
To prove (9.19) we use the relations (9.4) and (9.17), in conjunction with

equations (9.2) and (9.12), to obtain, with p = p(ρ, S, z),

Dp

Dt
= c2 Dρ

Dt
+ pS

DS

Dt
+ pz

Dz

Dt
= c2 Dρ

Dt
−!.

Comparing (9.19) to the adiabatic relation (4.67), we see that −! expresses
the rate of change of the pressure resulting from the chemical reaction along a
particle trajectory (beyond the adiabatic effect of compression).

The set of characteristic relations can be written in the Eulerian framework,
along the directions given by the eigenvalues λ1, . . . , λ4 [see (9.9)]. We have,
as in (4.67),

g du ± dp = ∓!dt, along
dx

dt
= u ± c, (9.20)

d S = − f dt, dz = −k dt, along
dx

dt
= u. (9.21)

Discontinuities and Centered Rarefaction Waves

In dealing with the discontinuities of solutions to the system (9.5) we first
recall that jumps in z can take place only across contact discontinuities [see the
discussion following Equation (9.8)]. In particular, z is continuous across shocks
associated with the λ1, λ3 families, and consequently there is no change in the
mixture composition across such shocks. In the study of the jump (Rankine–
Hugoniot) conditions we may therefore assume a fixed value of z = z0. The first
three equations in (9.5) are then identical to the planar system1 (4.47) [with p =
p(e, ρ, z0) etc.]. The corresponding jump relations are then given by (4.76), or,
in a more explicit form, by (4.86). The whole treatment of the shock conditions,
leading up to Summary 4.36, can now be repeated verbatim. It should be kept
in mind, however, that the Hugoniot curve H (τ, p) [see (4.92)] depends on the
parameter z0 (which determines the exact composition of the fluid and hence
its equation of state). When the jumps in pressure and density across a shock
front are known, the velocity jump is determined by (4.95) [resp. (4.96)] for a
3-shock [resp. 1-shock].

In the case of a contact discontinuity the pressure and velocity are continuous,
whereas the mass fraction z and the density may undergo jumps.

1 As already observed in the paragraph following (4.76), the presence of source terms such asK(U)
does not affect the Rankine–Hugoniot conditions.
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We now turn to the case of a centered rarefaction wave (CRW). As observed in
Section 4.2 this type of nonlinear wave is associated with theλ1,λ3 characteristic
families. As in the quasi-1-D case (see the discussion preceding Claim 4.42)
we cannot expect (generally speaking) a “self-similar” CRW, owing to the
presence of a nonvanishing K(U) in (9.5). This is still the case even if the CRW
is assumed to connect two constant states. However, the reduced system (9.8)
belongs to the general class of systems studied in Section 4.1 [recall the analogy
with (7.17)]. As observed in the paragraph following (9.8), it decomposes into
a convection equation for z red and a system identical to that of planar flow.
The former implies that z red is constant throughout the CRW (connecting two
constant states). It follows that all other flow variables can be obtained from
the Riemann invariants, as in (4.98). Note that the speed of sound depends
on the (constant) value of z red. For later reference we summarize the above
considerations as follows (see Claim 4.42).

Summary 9.1 A CRW solution of the reduced system (9.8), connecting two
constant states, is self-similar, isentropic, and carries a constant value of z red.
The values of the other flow variables are obtained in terms of the Riemann
invariants of isentropic planar flow (4.98).

As in the case of quasi-1-D flow, the “reduced” CRW is the “limit” (at the
singularity) for the full CRW associated with (9.5). Heuristically, it means that
the effect of the chemical reaction (through changes in z) is vanishing as we
observe the solution closer and closer to the initial interaction (at the singularity).

9.2 The Chapman–Jouguet (C–J) Model

Before dealing with the Riemann and generalized Riemann problems for the
full reacting flow system (9.5), we consider a well-known simplified model, the
Chapman–Jouguet (C–J) model (see Courant and Friedrichs [30, Chapter III,
Section 84]). The basic hypothesis of a continuous “homogeneous coexistence”
of the burnt and unburnt species (represented by the mass fraction z) is sup-
pressed. Instead, it is assumed that the two species are separated by a sharp
discontinuity (shock front).2 Each species has its own equation of state, cor-
responding to the extreme cases of z= 0 (burnt) and z= 1 (unburnt) of the
continuous model. The reaction equation (9.7) is dropped, and the system (9.5)
is replaced by (9.8). However, the two species are governed by two different

2 Formally, this model can be obtained by letting k →+∞ in (9.7), for pressures (or rather
temperatures) beyond a “critical” value. Thus, when the unburnt gas is “ignited”, it is sharply
converted into the fully burnt species.
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equations of state. We designate these equations by p = p(1)(e, ρ) (unburnt) and
p = p(0)(e, ρ) (burnt). Solving for e we have e = e(1)(ρ, p) and e = e(0)(ρ, p)
for the two species. Across a shock front separating the two species, the jump
relations (4.77) are still valid, but the internal energies on the two sides are
given by the respective equations of state. Let us take a fixed unburnt right state
(τ+, p+) as the preshock state. As in Summary 4.36, the set of all (left) burnt
states (τ, p) satisfying the Rankine–Hugoniot jump condition [i.e., connected
to (τ+, p+) by a 3-shock] is represented by the Hugoniot curve

H (0)(τ, p) = (p + p+)

2
(τ − τ+)+ e(0)(τ, p)− e(1)(τ+, p+) = 0. (9.22)

Observe that, as τ → τ+, the pressure p approaches a value pl such that

e(0)(τ+, pl) = e(1)(τ+, p+). (9.23)

Both e(0) and e(1) are increasing functions of pressure. We now add to it the
physically plausible assumption that for any pressure value p, e(1)(τ+, p) >
e(0)(τ+,p). This means that the unburnt species contains “chemical energy,”
which is released in the reaction process. To achieve the inequality (9.23), we
must therefore have pl > p+.

Similarly, taking p = p+ in (9.22) we obtain τ = τl such that

p+(τl − τ+)+ e(0)(τl , p+)− e(1)(τ+, p+) = 0. (9.24)

As before e(1)(τ, p+) > e(0)(τ, p+) for any value of τ . However, e(0) and e(1)

are decreasing functions of τ (since they increase with increasing density), so
that (9.24) yields τl > τ+ [otherwise the left-hand side in (9.24) is negative]. It
follows that the Hugoniot curve (9.22) is as shown in Figure 9.1. In particular,
it does not pass through (τ+, p+), and the portion between (τl , p+) and (τ+, pl)
is omitted. The latter fact is due to the relation (4.89)(ii),

−M2 = p − p+
τ − τ+ , (9.25)

which is satisfied by all admissible left states (τ, p). The omitted portion cor-
responds to

p − p+
τ − τ+ > 0.

In the nonreacting case, the upper and lower parts of the Hugoniot curve
(see Figure 4.11) correspond to interchanged roles of right and left states, as
in Remark 4.37. In the present case, by contrast, the roles played by the two
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Figure 9.1. The C–J Hugoniot curve H (0)(τ, p)= 0: Burnt states connected to an un-
burnt state (τ+, p+) by a detonation or a deflagration front.

parts of the Hugoniot curve are very different. The lower part (τ > τl) is called
the “deflagration branch” of the curve. It represents burnt states for which both
the pressure and the density are lower than those of the unburnt state. This is
in contrast to the nonreacting case where, in view of entropy considerations,
postshock values (of pressure and density) are higher than the preshock ones
(Claim 4.35). Here too, the deflagration states are excluded on the basis of
entropy considerations. In particular, it can be shown that for such states the
shock is subsonic with respect to the unburnt (preshock) state, thus violating
(4.78). We shall not deal any further with this branch and refer to Courant and
Friedrichs [30, Chapter III, Section 88] for a detailed discussion.

The upper part (p > pl) of the Hugoniot curve is the “detonation branch.”
The pressure and the density of any state on this branch are higher than the
respective values of the unburnt state. In this respect this branch “agrees” with
the admissible (postshock) states of nonreacting flow. It therefore serves as a
basic model for the physical phenomenon of detonation, where the chemical
transition is fully completed over an “infinitesimally thin” layer, producing
higher values of pressure and density in the burnt substance (while preserving
mass, momentum and energy). Moreover, under plausible physical hypotheses
on the equation of state it can be shown that the detonation branch is convex
(compare Summary 4.36). It follows that a straight line [in the (τ, p) plane]
emanating from the unburnt state (τ+, p+) meets the detonation branch at ex-
actly two points (or none at all), such as A and B in Figure 9.1. There is one
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exception: The line can be tangent, touching the curve at the point marked as
CJ in Figure 9.1. A straight line like this is called a “Rayleigh line.” By (9.25)
its slope is equal to −M2. Recall that [see (4.88) with A= 1] M is the speed of
the shock in the Lagrangian frame. If σ3 is the speed in the Eulerian frame and
u+ is the velocity (of the unburnt state), then the mass flux across the shock
is M = ρ+(σ3 − u+) > 0. Thus, the slope of the Rayleigh line in the (τ, p)
plane determines the shock speed σ3 [the state (τ+, p+, u+) is held fixed]. In
particular we have the following conclusion, which will be needed in the next
section.

Corollary 9.2 The shock speeds corresponding to the two detonation states on
the same Rayleigh line (such as A and B in Figure 9.1) are identical. The shock
speed at the tangency point CJ is minimal.

Denoting by (τA, pA) and (τB, pB) the states A and B, respectively, and
substituting both of them in (9.22) we get, by subtraction,

pA + p+
2

(τA−τ+)+ e(0)(τA, pA)−
[

pB + p+
2

(τB − τ+)+ e(0)(τB, pB)

]
= 0.

Using (9.25) (with the same M) in this equation we readily obtain

pA + pB

2
(τA − τB)+ e(0)(τA, pA)− e(0)(τB, pB) = 0. (9.26)

This equation has a very simple interpretation. Comparing it to Equation (4.92)
we see that it means that the state A lies on the Hugoniot curve passing through
B (in the burnt gas, where e = e(0)(τ, p) is the internal energy) and vice versa.
Let uA, uB be the velocities at the states A, B respectively. Since state A lies
on the admissible part of the Hugoniot curve through B (see P+3 in Figure 4.11
and Claim 4.35) the entropy condition (4.78) is satisfied, namely,

uA + cA > σ3. (9.27)

However, the state B lies on the inadmissible (lower) part of the Hugoniot curve
through A and the entropy condition (4.78) is violated,

uB + cB < σ3. (9.28)

At the extreme case CJ (Figure 9.1), both points A and B coalesce at CJ, so that

uCJ + cCJ = σ3. (9.29)
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Detonations corresponding to points above CJ, namely, for which the pressure
jump is higher than pCJ − p+, are called strong detonations. Similarly, det-
onations corresponding to points below CJ are called weak detonations (see
Figure 9.1). The detonation corresponding to the point CJ is called a C–J
detonation. We can summarize the above considerations as follows:

Corollary 9.3 The detonation front is

(a) subsonic with respect to the state behind it for a strong detonation;
(b) supersonic with respect to the state behind it for a weak detonation; and
(c) sonic with respect to the state behind it for a C–J detonation.

In particular, weak detonations are in violation of the entropy condition (4.78)
and are therefore inadmissible.

This corollary is known as “Jouguet’s Rule.” We refer to Courant and
Friedrichs [30, Chapter III, Section 88] for a different derivation of this rule
(based on Weyl’s method). Thus, in addition to the full branch of deflagra-
tions, we are also excluding the weak detonations from our admissible class of
jump discontinuities. We should keep in mind, however, that these exclusions
stem from the fact that we have used the simplified C–J model. Physically, the
excluded waves can actually occur when other physical factors (such as heat
conduction) come into play. We refer to Landau and Lifshitz [74, Chapter 14]
for a further discussion of this topic. An interpretation, based on the Z–N–D
solution, of these exclusions will be given in the next section.

We note the special case of a C–J detonation. The shock speed satisfies
(9.29), meaning that the shock trajectory coincides with the characteristic line
dx
dt = uCJ + cCJ. This is a “limiting case” for the entropy condition (4.78), where
the characteristic line does not “run into” the shock front (as t grows) but is
instead tangent to it. If we express the (detonation) Hugoniot curve (9.22) as
p= p(τ ), we have at the CJ point dp

dτ = p−p+
τ−τ+ . However, by (9.22), we have

(pCJ + p+)

2
dτ + (τCJ − τ+)

2
dp + de(0)(τCJ, pCJ) = 0,

which, in view of (9.1), yields (at the CJ state)

TCJ d S + 1

2
[(τCJ − τ+) dp − (pCJ − p+) dτ ] = 0;

hence d S= 0 at the point CJ and the Hugoniot curve there is tangent to the
isentropic curve S(τ, p) = SCJ. The states on this curve, with p < pCJ, are
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those connected to the CJ state by a CRW in the burnt gas (Claim 4.42). Since
the (C–J) shock trajectory itself is a characteristic line, it can serve as the
head characteristic of such a CRW. We have therefore obtained the following
conclusions, where we assume, as before, that the C–J detonation is a 3-shock.

Corollary 9.4 Let (τ, p) be a state of the burnt gas, of entropy S(τ, p) equal
to SCJ and such that p < pCJ. Then it can be connected to the (unburnt) state
(τ+, p+) by a C–J detonation followed by a centered rarefaction wave (associ-
ated with the same eigenvalue λ= u + c).

The Riemann problem in the C–J model deals with the flow evolving from
initial data that consist of a constant unburnt state on the right and a constant
burnt state on the left. The solution procedure is similar to the one discussed
in Construction 4.46. However, in the present case the wave �3 (which is the
detonation separating the burnt and unburnt states) is either a strong detonation
(when p > pCJ) or the combined wave discussed in Corollary 9.4. We shall not
pursue this topic any further and refer to Courant and Friedrichs [30, Chapter III,
Section 90] and Teng, Chorin, and Liu [110] for a detailed discussion.

9.3 The Z–N–D (Zeldovich–von Neumann–Döring) Solution

We now turn back to the full reacting flow system (9.5).
Fix 0 ≤ z ≤ 1 and let (τ+, p+) be a fixed state in the unburnt gas. We define

H (z)(τ, p) = (p + p+)

2
(τ − τ+)+ e(τ, p, z)− e(1)(τ+, p+), (9.30)

where e(1)(τ+, p+) = e(τ+, p+, 1) as in (9.22). If we view the state (τ+, p+) as
a right preshock state, the Hugoniot curve

H (z)(τ, p) = 0 (9.31)

is the locus of (left) postshock states with ratio (1−z)/z of burnt to unburnt
gas, which are connected to (τ+, p+) by a 3-shock (satisfying the Rankine–
Hugoniot jump condition). Thus the chemical composition of the fluid changes
discontinuously across the shock; it is fully unburnt ahead of it but contains
only a fraction z of the unburnt species behind it. The curve (9.22) of the C–J
model corresponds to z= 0, whereas the one with z= 1 is the Hugoniot curve
in the unburnt species. These two, along with an intermediate one (0 < z < 1)
are shown in Figure 9.2. In view of the discussion in the preceding section, we
show only the admissible (detonation) branches of the curves.
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′

Figure 9.2. The Z–N–D solution. The burnt state A (Figure 9.1) is obtained through a
shock front (A′) in the unburnt gas, followed by a reaction zone (A′ → A) lying on the
Rayleigh line.

The equation of the Rayleigh line through A and B (Figure 9.2) is given
by (9.25). It intersects the curve H (1)= 0 at A′, and we denote by (τz, pz) its
point of intersection with H (z)= 0, 0 ≤ z ≤ 1. The speed σ3 = Mτ+ + u+ is
common to all shocks with postshock states (τz, pz), 0 ≤ z ≤ 1 [and preshock
state (τ+, p+)].

Given τz , all other postshock values are uniquely determined, and we denote
them as uz , Sz , etc. The smaller the unburnt fraction z, the smaller the pressure
jump pz − p+. The largest jump is attained at A′ [i.e., (τ1, p1)]. In this case
the shock separates two fully unburnt states. For simplicity we shall henceforth
refer to this shock as an “A′-shock” (Figure 9.2). Note that the entropy condition
(4.78) yields (because the shocks are “strong detonations”; see Corollary 9.3)

uz + cz > σ3 > uz, 0 ≤ z ≤ 1. (9.32)

Consider the A′-shock starting at x = 0 and traveling into the uniform unburnt
state (τ+, p+). It is located at x = σ3t at time t so that z(σ3t, t)= 1. We seek a
special solution to the system (9.5), in the region behind the shock (x ≤ σ3t),
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for which all flow variables depend only on the distance η = x − σ3t . Without
the risk of confusion, we write these variables as functions of a single variable,
u= u(η), p= p(η), etc. A solution of this type is clearly a “traveling wave”,
namely, the profile of each variable moves, unmodified, at speedσ3. In particular,
the profile z(η) is expected to decrease from z(0)= 1 to 0 as η decreases to−∞.

To construct the solution, we start with Equation (9.2). We take for u, e, ρ
their values on the Rayleigh line uz, ez, ρz , which means that for a given z= z(η)
the state (ρ(η), p(η), u(η)) is the one corresponding to z on the Rayleigh line.
Equation (9.2) then reduces to

z′(η)(−σ3 + uz(η)) = −k
(
ez(η), ρz(η), z(η)

)
. (9.33)

Conservation of mass [Equation (4.87)(i)] implies uz − σ3 = −Mτz ; hence
Equation (9.33) can be rewritten as

z′(η) = M−1ρz(η) k
(
ez(η), ρz(η), z(η)

)
, (9.34)

which is an ordinary first-order differential equation for z(η), −∞ < η ≤ 0,
subject to the initial condition z(0)= 1. In particular, z′(η) ≥ 0 and we make
the following assumption:

Equation (9.34) admits a unique solution z(η),−∞ < η ≤ 0.

This solution is monotonic and nondecreasing, and either z(η0)= 0

for some−∞ < η0 < 0, or lim
η→−∞ z(η) = 0.

(9.35)

Using this assumption we proceed to find a “traveling” solution to the first
three equations of (9.5), which can now be written as

−σ3Ũ′(η)+ d
dη F̃(Ũ(η)) = 0, −∞ < η ≤ 0,

Ũ(η) =






ρ(η)
ρ(η)u(η)

ρ(η)
(
e(η)+ 1

2 u(η)2
)




 ,

F̃(Ũ(η)) =






ρ(η)u(η)

ρ(η)u(η)2 + p(η)

u(η)
[
ρ(η)
(
e(η)+ 1

2 u(η)2
)+ p(η)

]





 .

(9.36)
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This system is supplemented by the initial condition

Ũ(0) =






ρ1

ρ1u1

ρ1
(
e1 + 1

2 u2
1

)




 (the state at A′; Figure 9.2).

Integrating (9.36) we obtain the equivalent form

−σ3
[
Ũ(η)− Ũ(0)

]+ F̃(Ũ(η))− F̃(Ũ(0)) = 0. (9.37)

The solution to (9.37) is readily available. Indeed,

Ũ(η) = Ũz(η), (9.38)

namely, the state on the Rayleigh line at z= z(η). The verification of (9.37) is
straightforward: It is the Rankine–Hugoniot jump condition between the states
(τ+, p+) and (τz(η), pz(η)). The speed of this shock is σ3, common to all states
(τz(η), pz(η)) on the Rayleigh line.

Summary 9.5 (The Z–N–D traveling solution) Assuming (9.35), there exists
a solution Ũ(η) = Ũ(x − σ3t),−∞ < η ≤ 0, to the reacting-flow system (9.5).
This solution has the following properties:

(i) Ũ(η) lies on the Rayleigh line (Figure 9.2) for all η.
(ii) Ũ(0) is the state A′ of the unburnt gas.

(iii) The pressure p(η), density ρ(η), and mass fraction z(η) are all monotonic
functions of η, decreasing as η→−∞.

Observe that property (iii) follows from the monotonicity of z(η). As z(η)
decreases, the point (τ (η), p(η)) = (τz(η), pz(η)) moves down the Rayleigh line
(Figure 9.2) from A′ to A.

Definition 9.6 The solution described in Summary 9.5 is called the “Z–N–D
profile.” It is shown in Figure 9.3.

The Z–N–D profile represents the “reaction-mechanism” built into the
reacting-flow system (9.5). It starts with a leading shock in the unburnt gas,
raising the pressure and density to their peak values p1, ρ1 (A′ in Figure 9.2).
There is also a corresponding rise in temperature, which initiates the chemical
reaction, that is, the “ignition” of the unburnt gas. The reactive process that
follows gradually transforms the unburnt species to the burnt one, thereby de-
creasing pressure and density. This whole process takes place on the segment
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Figure 9.3. The Z–N–D profile, p = p(η).

A′A of the Rayleigh line, which is therefore labeled as the “reaction zone” in
Figure 9.2.

We also note that the state B of weak detonation (Figure 9.2) is not accessible
by this mechanism; the gas is already completely burnt at the strong detonation
state A.

Observe that if k in Equation (9.34) is increased, the reaction process is
accelerated and z(η) decreases to 0 at a higher rate. In other words, the reaction
zone becomes narrower and the strong detonation A (in the fully burnt gas) is
attained more quickly. The Z–N–D profile then comes closer to the C–J model
(compare Footnote 2).

Note that the Z–N–D profile is not a solution to the Riemann problem asso-
ciated with (9.5). Indeed, setting t = 0 we see that U(η) solves the IVP for (9.5)
with initial data identical to the Z–N–D profile (which only reiterates the fact
that this profile is a “traveling wave”). In the remaining sections we describe
the GRP solution to the system (9.5). This solution does not rely, of course,
on the Z–N–D profile. In fact, if we resolve numerically a “reacting” Riemann
problem (Section 9.4), the computed solution is found to possess the main
features of that profile.

Finally, we note that there exist no theoretical results concerning the global
existence and uniqueness of solutions to the IVP associated with the system
(9.5). In fact, such results do not exist even in the case of the planar nonreacting
system (4.47), except for certain cases (isentropic flow or initial data “close” to
constant). A detailed discussion of this topic is beyond the scope of this mono-
graph. The local existence of a solution to (9.5), with initial data having a jump
at x = 0, is shown in Ying and Wang [124]. In particular, it is shown there that
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the (local) wave pattern is identical to that of the homogeneous system (9.8),
thus providing a basis to our GRP solution.

A simplified model to the reacting flow system has been proposed in Majda
[88]. It is an extension of Burgers’ equation, adding an unknown that plays the
role of the mass fraction z, with a suitable “reaction mechanism.” A “traveling
wave” solution corresponding to the Z–N–D profile was given in Majda [88],
and a proof of the existence and uniqueness of a solution to the general IVP
was obtained in Levy [82] and Ying and Teng [123]. The paper by Levy [82]
also provides a proof of the convergence to the C–J model (in this simple case)
and a numerical GRP algorithm.

9.4 The Linear GRP for the Reacting-Flow System

The linear GRP for the system (9.5) is stated as in the nonreacting case
(Definition 5.3). The initial data U(x, 0) are piecewise linear with a possible
jump at x = 0,

U(x, 0) =
{
UL + xU′L, x < 0,

UR + xU′R, x > 0,
(9.39)

where UL, UR, U′L, U′R are constant (four-component) vectors. The situation
is somewhat analogous to that of the system (7.17), where the added variable
v is “passively” advected along particle paths. There is, nevertheless, a sub-
stantial difference between Equations (7.19) and (9.2). The unknown v can be
effectively decoupled from the other equations, as in (7.22), (7.23). However,
z varies along a particle path, thus affecting the other flow variables (via the
equation of state). This strong coupling within the system (9.5) is evident in
Equation (9.19) [whereas in the case of (7.17) the adiabatic relation (4.68) remains
unchanged].

The Associated Riemann Problem

The “associated RP” to (9.5), (9.39) (see Definition 5.2) is the Riemann problem
for the reduced system (9.8), subject to the initial data

Ured(x, 0) =
{
UL, x < 0,

UR, x > 0.
(9.40)

Since the system and the initial data are homogeneous, the solution Ured(x, t)
is “self-similar,” depending only on x

t . Employing the same notation as in the
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nonreacting case [see the paragraph following Equation (5.2)], we write

Ured(x, t) = RA
( x

t
;UL,UR

)
. (9.41)

The system (9.8) is analogous to (7.17). The first three equations (conservation
laws) are identical to the planar system (4.47), and the resulting wave structure
is determined in the same way [see Figures 4.16 and 5.1(b)]. In particular, since
z red is invariant along particle paths,

z red(x, t) =
{

zL, x < u∗t,

zR, x > u∗t,
(9.42)

where u∗ is the speed of the contact discontinuity. To obtain the solution
RA
(

x
t ;UL,UR

)
we follow Construction 4.46. The main idea is that the in-

teraction curves I r
3, I l

1 [in the (u, p) plane] intersect at the point (u∗, p∗) (see
Figure 4.18). These curves consist (each) of a “shock branch” and a “CRW
branch,” as in Summary 4.45. Note, however, that in the present case these
curves depend on two different equations of state, namely, p = p(e, ρ, zL)
[resp. p = p(e, ρ, zR)] to the left (resp. right) of the contact discontinuity. The
speeds of sound, needed in the isentropic branch of the interaction curves [the
lower parts in Equations (4.101) and (4.102)] are evaluated as in (9.4), with SL,
zL (resp. SR, zR) for I l

1 (resp. I r
3). Also, the Hugoniot curves in the (τ, p) plane

[hence the upper parts in (4.101) and (4.102)] depend on the values of z.3

Remark 9.7 (γ-law equation of state) A commonly used simple equation of
state, which serves in virtually all numerical test cases of combustion, is that
of a perfect (γ -law) gas. [See (4.104)–(4.106) for the nonreacting case.) In the
present case, the additional dependence on z is introduced as follows:

p = (γ − 1)ρ(e − q0z), γ > 1, q0 > 0, (9.43)

where γ is independent of z. The constant q0 > 0 is the specific chemical energy
contained in the unburnt gas and released in the combustion process. For any
fixed z, the constant q0z is therefore just a “translation” of the “zero level”
of the internal energy. As such, it has no effect on the other thermodynamical
formulas. In particular, the entropy S is a monotonic function of pτ−γ [see

3 Note, however, that this is different from the Hugoniot curve H (z)(τ, p) = 0 in Figure 9.2,
which is related to an unburnt preshock state and does not pass through (τ+, p+). In the present
Riemann problem, the mass fraction z red and hence the composition of the fluid are identical on
the two sides of the shock, implying that the Hugoniot curves pass through (τL, pL), (τR, pR),
respectively.
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(4.105)], which is therefore identical for two isentropic states with the same
z. The speed of sound is given by (4.107), regardless of the value of z. The
whole array of the Hugoniot equations in Summary 4.49 remains intact, since
Equation (4.92) is independent of z. We conclude that the “Riemann solver” of
Appendix C carries over to the present case.

Remark 9.8 A different procedure for the solution of the Riemann problem
in the γ -law case is given in Chorin [26]. Even though z is assumed to satisfy
Equation (9.2) (see Chorin [26, Equation 13f]), the solution to the Riemann
problem is performed using a “C–J model” allowing jumps of z both on the
contact discontinuity and on the shock front. This is not consistent with the
quasi-conservation form (9.7), which permits jump discontinuities of z only
across a contact discontinuity. The continuity of z across the shock front [in the
case of the system (9.5)] is used in a substantial way in the following treatment
of the linear GRP.

Structure of the Solution to the Linear GRP–The Main Theorem

Given the initial data (9.39), let U(x, t) be the solution to (9.5). The linear GRP
consists in finding the limiting values

(
∂

∂t
U
)

0

= lim
t→0+

∂

∂t
U(0, t), (9.44)

as in Definition 5.3.
This problem is solved by a sequence of steps almost identical to those

employed in the nonreacting case (Section 5.1). These steps can be summarized
as follows:

(I) Using the associated RP [(9.8), (9.40)], determine the local wave configu-
ration.

(II) Define the Lagrangian coordinate ξ = ∫ x
0 ρ(s, 0) ds as in (4.79) [with

A(s) ≡ 1]. The system (9.5) is then transformed to [compare (4.83)]

∂
∂t V+ ∂

∂ξ
Φ(V) = K̃(V),

V(ξ, t) =






τ
u

e + 1
2 u2

z




 , Φ(V) =






−u
p

pu

0




 , K̃(V) =






0
0
0
−k




 .

(9.45)
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The line ξ = 0 is the contact discontinuity, and the initial slopes are ob-
tained from (5.7) and (5.8).

(III) Evaluate [see (5.10)]
(
∂u

∂t

)∗
= lim

t→0+
∂

∂t
u(ξ = 0, t),

(
∂p

∂t

)∗
= lim

t→0+
∂

∂t
p(ξ = 0, t),

(9.46)

which are the limiting values of the directional derivatives along the con-
tact discontinuity (across which u, p are continuous).

(IV) The line x = 0 is expressed in the (ξ, t) framework [see (5.71)] and the
solution (9.44) is obtained by the chain rule (Propositions 5.26 and
5.27).

We now proceed to describe these steps in more detail, underlining the mod-
ifications resulting from the additional chemical equation. The wave structure
(determined by the associated RP) is assumed to be that of Figure 5.1. We refer
consistently to the notation introduced in Section 5.1, especially Table 5.5 (see
Figure 5.2). Our presentation here follows Ben-Artzi [3].

The central point is that the derivatives (9.46) can be obtained by solving a pair
of linear equations (compare Theorem 5.7). We state this theorem in full gener-
ality, along with its proof. Subsequently, we remark on the special cases of the
“acoustic approximation” (Corollary 9.10) and the γ -law gas (Summary 9.14).
The reader may wish to skip the proof and proceed directly to Corollary 9.10
and its simple proof.

Theorem 9.9 The derivatives
(
∂u
∂t

)∗
,
(
∂p
∂t

)∗
are determined by a pair of linear

equations

aL

(
∂u

∂t

)∗
+ bL

(
∂p

∂t

)∗
= dL, (9.47)L

aR

(
∂u

∂t

)∗
+ bR

(
∂p

∂t

)∗
= dR. (9.47)R

The coefficients aL, bL, dL (resp. aR, bR, dR) depend on V∗L, VL, V′L (resp.
V∗R, VR, V′R). They also depend on the equation of state (see Footnote 5, in
Theorem 5.7).

Proof We start with aR, bR, dR, employing the notational conventions introduced
prior to the statement of Claim 5.18. The shock trajectory �3 is parametrized
as ξ (θ ), t(θ ), and limiting values ahead and behind the shock front are de-
noted by Q+(θ ), Q(θ ) respectively. The unburnt mass fraction z is continuous,
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z(θ ) = z+(θ ). The shock relation (4.102) yields (see Footnote 3)

u(θ) = u+(θ )+� (p(θ ); ρ+(θ ), p+(θ ), z(θ )) , (9.48)

where the function � = � (p; ρI, pI, zI) is a function of four variables.
Equation (9.48) is now differentiated with respect to θ , using the chain rule
(5.52). The ensuing equation is identical to (5.53), apart from the term

�zI (p(θ); ρ+(θ ), p+(θ ), z(θ )) ·
[
∂z+
∂t

+ σ (θ )
∂z+
∂ξ

]
, (9.49)

which is added to the right-hand side [σ (θ) = p(θ)−p+(θ )
u(θ )−u+(θ ) is the shock speed].

We get Equation (9.47)R by letting θ tend to 0, as in (5.58). To obtain only
t derivatives behind the shock and ξ derivatives ahead of it, the substitutions
(5.54)–(5.57) are invoked. Some minor modifications are needed, as follows:

(i) We set A(0)= 1 and λ= 0 in these formulas.
(ii) In view of (9.19) we have, ahead of the shock,
(
∂p

∂t

)

R

= c2
R

(
∂ρ

∂t

)

R

−!(eR, ρR, zR) = −g2
R

(
∂u

∂ξ

)

R

−!(eR, ρR, zR). (9.50)

(iii) By the same equation, behind the shock,
(
∂u

∂ξ

)∗

R

= −(g∗R)−2

[(
∂p

∂t

)∗
+!(e∗R, ρ

∗
R, zR)

]
.

(iv) The initial derivatives (u′R etc.) in (5.58) are Lagrangian. We use in
Equation (9.51) the Eulerian initial derivatives of (9.39).

The limiting equation takes the form

[
1+ σ (0)�p(p∗; ρR, pR, zR)

] (∂u

∂t

)∗
+ [−σ (0)(g∗R)−2

− �p(p∗; ρR, pR, zR)
] (∂p

∂t

)∗
= [σ (0)− ρ2

R�ρI (p∗; ρR, pR, zR)

− g2
R�pI (p∗; ρR, pR, zR)

]
ρ−1

R u′R+
[−1+σ (0)�pI (p∗; ρR, pR, zR)

]
ρ−1

R p′R
+ σ (0)�ρI (p∗; ρR, pR, zR)ρ−1

R ρ ′R −!(eR, ρR, zR)�pI (p∗; ρR, pR, zR)

+ �zI (p∗; ρR, pR, zR)
[−k(eR, ρR, zR)+ σ (0)ρ−1

R z′R
]

+ σ (0)(g∗R)−2!(e∗R, ρ
∗
R, zR)

(
σ (0) = p∗ − pR

u∗ − uR

)
. (9.51)
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Turning to the wave �1, which is assumed to be a CRW, we adopt the notation
used in Figure 5.4. The eigenvalues of the system (9.45), associated with the
�1, �3 characteristic families, are ±g = ±ρc [see (4.85)]; hence the charac-
teristic coordinates can be introduced as in (5.19)–(5.22) [with A(0)= 1]. The
key ingredient in the treatment of the CRW resides in the fact that the direc-
tional derivative a(β) = ∂u

∂α
(0, β) is obtained by an explicit integration (see

Proposition 9.12). The left-side initial data UL, U′L determine a(1). This pro-
cess amounts to a “propagation” (or “transport”) of the directional derivative ∂u

∂α

from the head to the tail characteristic of the CRW. Assuming a(β∗) is known,
we repeat Equation (5.49) to get

∂p

∂α
(0, β∗) = −g−1

L (β∗)−1/2

(
∂p

∂t

)∗
− (β∗)1/2

(
∂u

∂t

)∗
. (9.52)

Now, the characteristic relation (9.20) (along dx
dt = u − c) yields

∂p

∂α
(0, β∗) = gLβ

∗ ∂u

∂α
(0, β∗)−!(e∗L, ρ

∗
L, zL)

∂t

∂α
(0, β∗)

= gLβ
∗a(β∗)+ g−1

L (β∗)−1/2!(e∗L, ρ
∗
L, zL). (9.53)

Incorporating (9.53) into (9.52) and noting β∗ = g−1
L g∗L we get

(
∂u

∂t

)∗
+ (g∗L)−1

(
∂p

∂t

)∗
= −(gLg∗L)1/2a(β∗)− (g∗L)−1!(e∗L, ρ

∗
L, zL), (9.54)

which establishes Equation (9.47)L. ��

The Acoustic Approximation

The acoustic approximation was discussed in Section 5.1 (Proposition 5.9 and
Remark 5.21). In this case the initial data at the singularity,UL,UR are assumed
to be “close.” The CRW then shrinks to a single characteristic curve, which
entails a substantial simplification of the coefficients as follows.

Corollary 9.10 In the acoustic approximation the coefficients in
Equations (9.47)L,R are given by

aL = 1, bL = (g∗L)−1, dL = −(g∗L)−1
{
cL(gLu′L + p′L)+!(eL, ρL, zL)

}
,

(9.55)

aR = −1, bR = (g∗R)−1, dR = −(g∗R)−1
{
cR(gRu′R − p′R)+!(eR, ρR, zR)

}
,
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where u′L, p′L, u′R, p′R are the Eulerian initial slopes as in (9.39). In particular, the
coefficients depend only on the left-side initial data and the associated Riemann
solution.

Proof We use the method of proof of Proposition 5.9. This means that in (9.52)
we take β∗ = 1 and equate the directional derivatives of p as evaluated on either
side:

(
∂p

∂t

)∗
− g∗L

(
∂p

∂ξ

)∗
=
(
∂p

∂t

)

L

− gL

(
∂p

∂ξ

)

L

. (9.56)

Using
(
∂p
∂ξ

)∗ = −( ∂u
∂t

)∗
and Equation (9.50) (with “L” instead of “R”) in (9.56)

we obtain (9.55) [note that
(
∂p
∂ξ

)
L = ρ−1

L p′L etc.], for aL, bL, dL. The expressions
for aR, bR, dR follow by “reflection,” ξ →−ξ , t → t , u →−u, p → p. ��

Resolution of the Centered Rarefaction Wave

We resume the study of the CRW, assuming the configuration and notation of
Figure 5.4. In particular, the characteristic coordinates (α, β) play an essential
role in this analysis. Our main goal is to obtain an ordinary differential equation
for a(β) = ∂u

∂α
(0, β), β∗ ≤ β ≤ 1, and the method is close to that employed in

the proof of Proposition 5.12. The reader may skip it on first reading.
Recall [Equation (9.42)] that in the solution to the associated Riemann prob-

lem z red= zL throughout the CRW; hence also S red= SL (S = entropy), as there
is no change in chemical composition. Since the limiting values [at (0, β)] of
the GRP solution are identical to those of the associated RP, we have

z(0, β) = zL, S(0, β) = SL, β∗ ≤ β ≤ 1. (9.57)

The coordinates ξ = ξ (α, β), t = t(α, β) are given by (5.22), with A(0)= 1. In an
attempt to imitate the proof of Proposition 5.12, we face the difficulty that z and
hence also S are not constant along particle paths, thus invalidating the crucial
equation (5.29) in the present case. Instead, we now use the three variables p,
S, z to write

g = ρc = G(p, S, z), (9.58)

where c is given in (9.4). Our first step is to obtain expressions for

Sα(0, β) = ∂S

∂α
(0, β) and zα(0, β) = ∂z

∂α
(0, β)

in terms of the thermodynamical functions f [see (9.12)] and k [see (9.2)], which
are expressed here as f (p, S, z), k(p, S, z).
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Proposition 9.11 The functions Sα(0, β), zα(0, β) satisfy

d

dβ

(
β−1/2Sα(0, β)

) = −g−1
L β

−2 f (p(0, β), SL, zL), (9.59)

d

dβ

(
β−1/2zα(0, β)

) = −g−1
L β

−2k(p(0, β), SL, zL), (9.60)

supplemented by the initial conditions

Sα(0, 1) =ρ−1
L S′L + g−1

L f (pL, SL, zL),

zα(0, 1) =ρ−1
L z′L + g−1

L k(pL, SL, zL),
(9.61)

where S′L, z′L are the initial Eulerian slopes (9.39).

Proof We prove for S; the proof for z is identical. Following the convention in
Section 5.1, we use both the notation Q(ξ, t) and Q(α, β) to represent any flow
variable Q throughout the CRW. Equation (9.12) is then written as

∂

∂ξ
S(ξ, t)

∂ξ

∂α
(α, β)− f (p(α, β), S(α, β), z(α, β))

∂t

∂α
(α, β) = ∂

∂α
S(α, β),

and letting α→ 0 we get, by (5.22),

∂S

∂ξ
(0, β)β1/2 + f (p(0, β), SL, zL)g−1

L β
−1/2 = Sα(0, β). (9.62)

Note that, even though ξ (0, β) ≡ 0, the limiting value of ∂S
∂ξ

(α, β), as α→ 0,
depends on β. To evaluate it we use (9.12) once more to get, by differentiation,

∂2S

∂t∂ξ
(ξ, t) = − ∂

∂ξ
f (p, S, z) = − fp

∂p

∂ξ
− fS

∂S

∂ξ
− fz

∂z

∂ξ

= fp
∂u

∂t
− fS

∂S

∂ξ
− fz

∂z

∂ξ
.

Expressing t = t(ξ, β) and multiplying the last equation by ∂t
∂β

we get

∂

∂β

∂S

∂ξ
(ξ, β) = fp

∂u

∂t

∂t

∂β
−
[

fS
∂S

∂ξ
+ fz

∂z

∂ξ

]
· ∂t

∂β
(9.63)

[equality as functions of (ξ, β)]. Fixing β, we now let ξ → 0 (i.e., along a fixed
C− characteristic), getting

∂

∂β

∂S

∂ξ
(0, β) = fp(p(0, β), SL, zL)

∂u

∂β
(0, β). (9.64)
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The other terms in the right-hand side of (9.63) vanish (as ξ → 0) since ∂S
∂ξ

, ∂z
∂ξ

remain bounded in view of (9.62) and the similar equation satisfied by z.
Differentiating (9.62) with respect to β and using (9.64) we have

d

dβ
(β−1/2Sα(0, β)) = fp(p(0, β), SL, zL)

∂u

∂β
(0, β)

+ g−1
L

d

dβ

[
β−1 f (p(0, β), SL, zL)

]

= fp(p(0, β), SL, zL)

[
∂u

∂β
(0, β)+ g(0, β)−1 ∂p

∂β
(0, β)

]

− g−1
L β

−2 f (p(0, β), SL, zL), (9.65)

where g(0, β)= gLβ (by the definition of β). The characteristic relation (9.20),
applied at (0, β), yields ∂u

∂β
(0, β)+ g(0, β)−1 ∂p

∂β
(0, β) = 0, so that (9.59) follows

from (9.65).
The initial condition (9.61) is obtained by taking β = 1 in (9.62) and noting

that the flow is smooth in the sector between the head characteristic β = 1 and
the negative ξ axis, so that ∂S

∂ξ
(0, 1) = lim

ξ→0−
∂S
∂ξ

(ξ, 0) = ρ−1
L S′L. ��

With Sα(0, β), zα(0, β) at our disposal, we can study the transport of a(β) =
∂u
∂α

(0, β) as in Proposition 5.12.

Proposition 9.12 Consider the CRW as in Figure 5.4. Then a(β)= ∂u
∂α

(0, β),
β∗ ≤ β ≤ 1, satisfies

a′(β) = −1

2
g−2

L β
−1/2 d

dβ

[
β−1!(0, β)

]

−1

2
g−1

L β
−1 [GS · Sα(0, β)+ Gz · zα(0, β)]

d

dβ
u(0, β), (9.66)

where the function G is introduced in (9.58), and the derivatives GS = ∂G
∂S ,

Gz = ∂G
∂z are evaluated at (p(0, β), SL, zL), and!(α, β) = !(e(α, β), ρ(α, β),

z(α, β)) [see (9.17)].
Equation (9.66) is supplemented by the initial condition

a(1) = ρ−1
L (u′L + g−1

L p′L), (9.67)

where u′L, p′L are the Eulerian initial slopes [as in (9.39)].
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Proof The characteristic relations (9.20) can be written as

g
∂u

∂α
− ∂p

∂α
= ! ∂t

∂α
,

g
∂u

∂β
+ ∂p

∂β
= −! ∂t

∂β
.

(9.68)

Differentiating the first equation with respect to β and the second with respect
to α, we can eliminate the unknown p by addition. Recall that g(0, β) = gLβ,
so that we have (at α= 0)

2gLβa′(β)+ gLa(β)+ ∂g

∂α
(0, β)

d

dβ
u(0, β) = −g−1

L β
−1/2 d

dβ
!(0, β),

(9.69)

where we have used the expression (5.22) for t(α, β).
To evaluate ∂g

∂α
(0, β) we use (9.58) and the characteristic relation (9.68) to get

∂g

∂α
(0, β) = Gp · ∂p

∂α
(0, β)+ GS · Sα(0, β)+ Gz · zα(0, β)

= Gp
[
gLβa(β)+!(0, β)g−1

L β
−1/2
]+GS · Sα(0, β)+ Gz · zα(0, β),

where Gp, GS, Gz are evaluated at (p(0, β), SL, zL). Incorporating the last
equation in (9.69) we get

2gLβa′(β)+ gL

[
1+ βGp · d

dβ
u(0, β)

]
a(β)+ [!(0, β)g−1

L β
−1/2Gp

+ GS · Sα(0, β)+ Gz · zα(0, β)
] d

dβ
u(0, β) = −g−1

L β
−1/2 d

dβ
!(0, β).

(9.70)

Differentiating the identity g(0, β) = G(p(0, β), SL, zL) and using (9.68) we
have

gL = Gp
d

dβ
p(0, β) = −Gp · gLβ

d

dβ
u(0, β),

so that the coefficient of a(β) in (9.70) vanishes identically. We also have

!(0, β)β−1/2Gp · d

dβ
u(0, β)+ β−1/2 d

dβ
!(0, β)

= −!(0, β)β−3/2 + β−1/2 d

dβ
!(0, β) = β1/2 d

dβ

(
β−1!(0, β)

)
.
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Inserting this relation in (9.70) we obtain (9.66). Equation (9.67) follows from
the chain rule and (5.22) and (9.45), with β = 1,

∂u

∂α
(0, 1) =

(
∂u

∂ξ

)

L

∂ξ

∂α
(0, 1)−

(
∂p

∂ξ

)

L

∂t

∂α
(0, 1)

= ρ−1
L

[
u′L + g−1

L p′L
]
. ��

Remark 9.13 (Solution of the associated RP) As observed earlier, the solu-
tion Ured to the associated RP is isentropic throughout the CRW, with S= SL,
and a constant mass fraction z= zL (hence also a fixed equation of state). Since
g(0, β)= gLβ, the thermodynamic variables p(0, β),ρ(0, β) are evaluated from
the equation of state [as functions of g on the isentropic curve g = G(p, SL, zL)].
The characteristic relation g(0, β) d

dβ u(0, β) = − d
dβ p(0, β) yields u(0, β). See

Equations (5.39)–(5.41) for a γ -law gas.

Conclusion of the Linear GRP

When a(β∗) is known, we have the coefficients in (9.47)L [see (9.54)] and
together with (9.47)R we can solve for the time derivatives

(
∂u
∂t

)∗
,
(
∂p
∂t

)∗
(at the

singularity) in the direction of the contact discontinuity. The time derivatives of
ρ, S, z (on either side of the contact discontinuity) are now evaluated by (9.19),
(9.12), and (9.2), respectively. Next, as in Section 5.1 [see Equation (5.64)] we
need the ξ derivatives on the two sides of the contact discontinuity. By (9.45)
we have

(
∂p
∂ξ

)∗ = −( ∂u
∂t

)∗
, and as in (9.50) we have

(
∂u

∂ξ

)∗

R

= − (g∗R
)−2
[(
∂p

∂t

)∗
+!(e∗R, ρ

∗
R, z∗R)

]
,

with an analogous expression for
(
∂u
∂ξ

)∗
L. The expressions for

(
∂ρ

∂ξ

)∗
L,
(
∂ρ

∂ξ

)∗
R are

more difficult to obtain (compare Claim 5.22) and we refer to Ben-Artzi [3] for
details. These derivatives are easier to get in the acoustic case (see Claim 5.23).

The solution to the linear GRP in the Eulerian framework [see (9.44)] fol-
lows from the Lagrangian solution just described. The line x = 0 is repre-
sented in the (ξ, t) plane as the curve ξ = ξ (t), ξ (0)= 0, satisfying the equation
ξ ′(t)= − ρ(ξ, t)u(ξ, t) [see Equation (5.71)], so that its initial slope is
−ρ0u0. The limiting values ρ0, u0 are obtained from the associated solution
RA
(
0;UL,UR

)
[see Equation (9.41)]. We distinguish two cases:

(a) The curve ξ (t) is not contained in a CRW (nonsonic case). The solution is
obtained by an application of the chain rule, as in Proposition 5.26.
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(b) The curve ξ (t) is contained in a CRW (sonic case). It is then expressed in
terms of the characteristic coordinates, as (α(t), β(t)), and the solution is
obtained as in Proposition 5.27.

It turns out that Propositions 5.26 and 5.27 carry over to the present case without
modification (see Ben-Artzi [3]). Hence, the Eulerian solution to the linear GRP
(9.44) is deduced from the Lagrangian one by exactly the same relations as in
the nonreacting case.

The γ-Law Case

Certain simplifications take place when the equation of state is assumed to be
of the form (9.43).

As already observed in Remark 9.7, the Hugoniot curve does not depend
on z. In particular, the function � in (9.48) does not depend on z and is thus
identical to the function � in the nonreacting case [Equation (5.61)]. Also, as
noted in Remark 9.7, we have c2= γ p

ρ
, so that the function G(p, S, z) of (9.58)

is independent of z. We record the ensuing simplifications.

Summary 9.14 (The γ-law equation of state) When the equation of state is
given by (9.43), the key equations (9.47)L, (9.47)R, are explicitly determined as
follows:

(a) In Equation (9.51), which is the explicit form of (9.47)R, the function � is
given by (5.61). The term containing �z I is therefore eliminated.

(b) The entropy S can be defined by

S = 1

γ − 1

p

ργ
= ρ1−γ (e − q0z) (9.71)

and the function G of (9.58) is

G(p, S, z) = √γ pρ =
(

γ

(γ − 1)1/γ

)1
2

S−
1

2γ p
γ+1
2γ . (9.72)

In particular, the term involving Gz in (9.66) is eliminated and a(β∗), and
hence the coefficients in (9.54) [which is the explicit form of (9.47)L], can
be explicitly determined (when ! is known).

Note that even though the functions�, G are independent of z, the effect of
the reaction equation still exists owing to the presence of! in Equations (9.51)
and (9.66) and f in (9.59) [which affects Sα(0, β) and hence also a(β)].
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9.5 The GRP Scheme for Reacting Flow

The resolution of the linear GRP leads directly to the GRP numerical method-
ology, as presented in Section 5.2. The procedure is straightforward. At time
t = tn the flow variables (including the mass fraction z) are linearly distributed
in the computational mesh cells, with jumps at the grid points (cell bound-
aries). Using the solution to the linear GRP, we can evaluate the numerical
fluxes, new cell averages, and new slopes, as in Equations (5.108)–(5.110). In
fact, this framework covers a full array of possible schemes. They range from
the very basic (acoustic) scheme (Definition 5.37) to the most accurate one
(Definition 5.41). The latter is based on the exact solution to the linear GRP
(at cell boundaries), whereas the former approximates this solution (retaining
second-order accuracy).

Note that in every GRP scheme all four equations of (9.5) are simultaneously
resolved. In other words, the fourth (reaction) equation is fully coupled to the
first three conservation laws. Alternatively, the two parts can be “decoupled,”
using the operator-splitting method (Section 7.2). To study this approach, it is
perhaps best to consider the system in the Lagrangian framework (9.14). In this
case the operators a, b of Equation (7.2) are given, respectively, by− ∂

∂ξ
Φ and Ψ.

Unlike the two-dimensional case (7.16)–(7.18), where the splitting is “spatial,”
the splitting here is “functional.” Its first part is identical to the reduced system
(9.8), written in Lagrangian coordinates. The second part is just the reaction
equation (9.2); it leaves the flow variables ρ, u, E unmodified while decreasing
z along the particle paths. Formally, by using Strang’s scheme (7.8), we retain
the second-order accuracy for the combined algorithm. However, this algorithm
may lead to nonphysical solutions. Such solutions exhibit the nonuniqueness
built into the structure of weak solutions of the reacting flow system (9.5). They
can be described as follows: Consider the Riemann problem for (9.5), where
the initial data consist of an unburnt state (τ+, p+) on the right and a burnt state
(τA, pA) on the left (see Figure 9.2). As explained in Section 9.3, it is expected
that the evolving solution approaches the Z–N–D profile, which is displayed in
Figure 9.3. However, there exists another possibility, which incorporates the C–J
model. Instead of starting with a leading shock in the unburnt gas (raising the
pressure to pA′ ), this solution starts with a weak detonation, where the gas is fully
burnt upon crossing the shock front, which brings it to the state B (Figure 9.2).
This is then followed by a second shock, in the burnt species, raising the pressure
to pA. Such a trailing shock is possible since the weak detonation is supersonic
with respect to the state behind it [Corollary 9.3(b)]. The solution thus obtained
satisfies all the necessary jump conditions (see Figure 9.7). However, the weak
detonation violates the entropy condition, as already noted. It is therefore labeled
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as a “nonphysical” solution, as opposed to the “physical” one, which approaches
the Z–N–D profile.

The computational algorithm is found to be very sensitive to the details
of the finite-differencing, as demonstrated in the papers by Colella, Majda,
and Roytburd [29] and Ben-Artzi [3]. Numerical tests conducted there show
that even under small variations of the scheme the solution switches from the
physical to the nonphysical one. In particular, the paper by Colella, Majda, and
Roytburd [29] shows that an application of the split scheme, as described here,
generally produces the nonphysical solution. We remark that the coupling of the
reaction equation to the conservation laws is clearly visible in Equation (9.19).
The function !, which has a large value for a high reaction rate k, measures
the deviation from the adiabatic law (4.68). When resolving the system (9.5) by
a split scheme, the first part (conservation laws) ignores the term −!, while
the second part (updating z) does not modify the pressure along a particle path.
Although the overall algorithm is certainly consistent, this decoupling may be
(at least partially) responsible for the appearance of the nonphysical solution
(where the pressure jump across the leading weak detonation is lower than that
of the physical solution). Observe, in addition, that the coupling of the reaction
equation to the conservation laws is evident also in the solution to the linear
GRP, even in the acoustic approximation (see Corollary 9.10).

Example 9.15 (Reacting-flow Riemann problem: Ozone decomposition)
As a numerical example, we take a Riemann problem for the reacting-flow sys-
tem (9.5). The chemical reaction is that of ozone decomposition (an irreversible
exothermic reaction by which ozone is converted into oxygen). The mass frac-
tion z represents in this case the amount of “unburnt” ozone. The initial data
correspond to a “C–J detonation.” In other words, given a constant state of the
ozone as a preshock state (in x > 0), the state for x < 0 is the one marked as
“CJ” in Figure 9.1. It is fully determined by the preshock state and the equation
of state, which we take as a γ -law equation [Equation (9.43)] with γ = 1.4 and
q0= 0.5196× 1010. We are using here cgs units (and K for temperature) for a
realistic experiment. This example was used in Colella, Majda, and Roytburd
[29], where the reader can find more information concerning the physical back-
ground. Our GRP computations follow Ben-Artzi [3].

The “reaction rate” function k in this example is taken to be a simplified
Arrhenius equation,

k = K zH (T − Tc), K > 0, T = p

ρ
, (9.73)
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where H is the Heaviside function,

H (µ) =
{

1, µ > 0,

0, µ < 0.

The constant temperature Tc is a “threshold” (or “ignition”) temperature.
The reaction process takes place only when the gas temperature exceeds this
value. Once started, the reaction rate is proportional to the mass fraction of the
unburnt species z. In the present example we take

K = 0.5825× 1010, Tc = 0.1155× 1010.

It follows from Remark 9.7 that in this case the entropy S(e, ρ, z) is given by
(9.71); hence the functions f [see Equation (9.12)] and ! [see Equation (9.17)]
are given by

f (e, ρ, z) = −K q0ρ
1−γ zH (T − Tc), T = (γ − 1)(e − q0z),

!(e, ρ, z) = −(γ − 1)K q0ρzH (T − Tc).
(9.74)

Recall (Remark 9.7) that q0 is the specific chemical energy “stored” in the
unburnt gas. We conclude from (9.74) that, for fixed values of p, ρ and z, the
function ! increases with the product K q0. By (9.19) and the considerations
above, this function measures the deviation from the adiabatic law. Thus, we
may expect that a split scheme becomes more “problematic” as the product
K q0 is increased. This observation is in agreement with the numerical results
in Colella, Majda, and Roytburd [29].

The initial values for the unburnt state are

p0 = 8.321× 105= 0.821patm, ρ0 = 1.201× 10−3= 0.931ρatm, z0 = 1,

where patm = 1.0135× 106 and ρatm = 1.29× 10−3 are the atmospheric pres-
sure and density, respectively.

The corresponding C–J data are

pCJ = 6.270× 106, ρCJ = 1.945× 10−3, zCJ = 0.

We can now compute the evolving solution, using the GRP scheme. As
explained at the beginning of this section the solution is expected to approach
the Z–N–D profile. Using the notation of Figure 9.3 (with “A” being the C–J
point) the pressure and density at the “spike” A′ are given by

pZND = 9.74987× 106, ρZND = 3.26370× 10−3.
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The speed of the shock (which is equal to the speed of the CJ front in the C–J
model, as they lie on the same Rayleigh line) is σ = 1.088× 105 cm/s and
the width of the Z–N–D reaction zone [say, where p > 0.5(pZND + pCJ)] is
approximately 5× 10−5 cm.

As already mentioned, the GRP algorithm is the one presented in Section 5.2.
However, a word is in order concerning the differencing of the fourth (chemistry)
equation in (9.5). Following the general rule, its discretized form is

(ρz)n+1
j − (ρz)n

j = −
	t

	x

[
(ρzu)n+1/2

j+1/2 − (ρzu)n+1/2
j−1/2

]
−	t [kρ]n+1/2

j ,

where [kρ]n+1/2
j represents an average value of the source term in cell j (over

the time interval [tn, tn+1]). Noting Equation (9.73) we see that the time step
	t should be restricted not only by the CFL condition imposed on the system
of conservation laws (see the discussion following Definition 5.32) but also by
the requirement that the product K	t is sufficiently small. As K increases,
the “stiffness“ of the chemistry equation becomes more pronounced, forcing
a considerable reduction of 	t . (By stiffness we simply mean that explicit
integration of the reaction equation requires a smaller 	t for higher K.) We
shall not address this stiffness issue here; it has been extensively studied in a
variety of numerical investigations, which are not directly related to the present
monograph. Note that if 	x is roughly equal to the size of the reaction zone
(or larger) the computed “spike” of the Z–N–D profile is “absorbed” into one
cell, thus approaching the C–J model. In other words, the numerical computation
displays an “effective reaction rate” (see Footnote 2 in Section 9.2) measured
by K	x .

The GRP calculations have been performed in the spatial domain [0, 5 ×
10−4], which was divided into 100 equal cells of 	x = 5× 10−6. The discon-
tinuity is initially located at x = 50	x . As the leading shock advances, we
“remove” one cell from the left end of the domain and add one cell at the right
end (imposing on it the state [ρ0, p0, u0= 0, z0]), so as to maintain the front
roughly at its initial location. The time step was set to 	t = 5× 10−12, and
the computation was conducted to time t = 5× 10−8, with the results shown
in Figure 9.4. These results clearly display a Z–N–D spike, and the peak values
of ρ and p agree with the previously quoted exact values of ρZND and pZND.
We now repeat the computation, multiplying the cell size and the time step
by 4, that is, 	x = 2× 10−5 and 	t = 2× 10−11, with all other parameters
remaining the same. The results shown in Figure 9.5 clearly display a Z–N–D
spike of a reduced level. This trend continues when we repeat the computation
with a tenfold higher step (relative to the first case); that is, 	x = 5× 10−5

and 	t = 5× 10−11. The results shown in Figure 9.6 resemble closely a C–J
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detonation wave. The values at the front are slightly higher than the corres-
ponding C–J values, and the wave is captured over 1–2 cells (i.e., the shock
and the reaction zone are “smeared” over a comparable interval of 1–2 cells).

We now turn to the case of weak detonation, using a scheme that is closely
related to the above-mentioned functionally split scheme. The data are the
same as in the former case, except that the computation was continued to a
tenfold longer time (t = 10−7). This time was required to produce the “separated
waves” pattern shown in Figure 9.7, where the burn reaction is completed
behind the leading wave, and a second shock trails behind (at lower speed) in
the burnt gas. We refer to Ben-Artzi [3] for more details. This result conforms
to the split-scheme results obtained by Colella, Majda, and Roytburd [29].

Remark 9.16 We refer to Bourgeade [19] for GRP computations of detonations
using a more complicated equation of state (and 2-D configurations). Also, we
refer to Ben-Artzi and Birman [6] for GRP applications in quasi-1-D settings
[as in (4.45)] and where external potentials are added to the chemical reactions.
Such models are extensively studied in astrophysics.



10
Wave Interaction in a Duct – A

Comparative Study

The GRP method was developed (Chapter 5) for compressible, unsteady flow
in a duct of varying cross section. In the case of a planar two-dimensional
duct, the quasi-1-D formulation is taken to be a reasonable approximation of
the actual (2-D) flow. In this chapter we study a duct flow where an incident
wave interacts with a short converging segment, producing interesting wave
structures. An illustrative case is that of a rarefaction wave propagating through
a “converging corridor,” producing (at later times) a complex “reflected” wave
pattern. Such a case is studied (numerically) in this chapter, using (a) the quasi-
1-D approach of Chapter 5 and (b) the full two-dimensional computation as
described in Section 8.3 (with the duct contour taken as a stationary boundary).
The comparison between the two computations reveals some bounds of validity
of the quasi-1-D approximation. We conclude the chapter by listing (Remark
10.1) several articles describing the application of the GRP to diverse fluid-
dynamical problems, including well-known test cases, shock wave reflection
phenomena compared to experimental observation, and even a case where a
“moving boundary” experiment is favorably compared to the corresponding
GRP solution.

Consider a centered rarefaction wave that propagates in a planar duct com-
prising two long segments of uniform cross-sectional area joined by a smooth
converging nozzle. Such processes take place in numerous systems of industrial
and scientific interest, for example in the air intake or the exhaust pipe of an
internal combustion engine, and likewise in turbofan or turbojet engines. In
addition to shedding light on the nature of the interaction between a rarefaction
wave and a converging nozzle, the significance of this case lies in the compar-
ison we make between a full multidimensional solution and the corresponding
quasi-1-D approximation (Section 4.2). This is because the latter (often referred
to as the “duct flow” approximation) is commonly employed as an engineering
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design tool. Hence, studying the bounds of its validity as a simplified approxi-
mation to the full multidimensional solution is highly significant to engineering
design and analysis.

For the multidimensional computation of the wave interaction with a con-
verging nozzle we employ the operator-split 2-D GRP scheme (Section 7.3),
where the duct wall intersects an underlying two-dimensional Cartesian grid,
using the conservation law scheme outlined in Section 8.3.

Inspection of the major physical characteristics of a variety of wave inter-
action flows (Igra, Wang, and Falcovitz [68]) revealed that at large times the
solution produced by the quasi-1-D approximation, especially in the case of
shock waves, was generally close to the full 2-D solution. However, this is not
universally so, and as a specific example of wave interaction where the quasi-1-D
solution and the 2-D solution differ, we consider the case of a 1:10 pressure
ratio rarefaction wave in a fluid assumed to be a perfect gas with γ = 1.4. The
CRW is initially located in the wider part of the duct, and it propagates toward
a (short) converging nozzle of 2:1 cross-sectional area ratio. The initial data are
that of a Riemann problem [Equation (4.100)] designed to produce a 3-CRW. It
consists of two uniform states,

U(r, 0) =
{
UL = [ρL, pL, uL] = [0.27030, 0.1,−1.4016] , r < 1.3 ,

UR = [ρR, pR, uR] = [1.4, 1, 0] , r > 1.3 .

(10.1)

Here we use r as the spatial coordinate along the duct axis as in Section 4.2.
The location of the initial discontinuity (r = 1.3) is just ahead of the converg-
ing segment that occupies the interval 1.6 ≤ r ≤ 2.6. The cross-sectional area
function of the duct A(r ) is given by

A(r ) =






2, r < 1.6 ,

2 exp
[− 1−cos(π (r−1.6))

2 ln 2
]
, 1.6 ≤ r ≤ 2.6 ,

1, r > 2.6 .

(10.2)

We assume that the two-dimensional duct is symmetric and embedded in
the (x, y) plane, so that the x axis, its centerline, coincides with the r axis. The
upper contour of the duct [see Figure 10.2(a)] is thus y(x) = 1

2 A(x). Owing
to the duct symmetry, the 2-D computation is conducted in the upper half of
the duct, embedding it in the (finite) rectangular domain (x, y)∈ [−1.6, 9.4]×
[0, 1], which is divided into a grid of 550× 50 square cells (	x = 	y = 0.02).
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The computation is performed by the MBT method (Section 8.3), where the
duct contour serves as a stationary rigid-wall boundary. A rigid-wall boundary
condition is also imposed at the centerline (y = 0). On the left and right sides
of the computational rectangle we impose “nonreflecting” boundary conditions
(see Subsection 8.3.3), designed to allow waves to pass through these endplanes
(almost) undisturbed. The computation was performed in the time interval [0, 9],
with time steps adjusted (at each integration cycle) to have a nearly constant
CFL coefficient µCFL = 0.7 (see Remark 3.17).

The quasi-1-D computation was conducted in the spatial interval [−1.6, 9.4],
which was divided into a grid of 550 cells of equal length 	r = 0.02. The
cross-sectional area function is A(r ) [given in (10.2)]. The boundary conditions
at either endpoints were of the same nonreflecting type as in the 2-D case.
The computation was performed with time steps adjusted to have the same
µCFL = 0.7 and in the same time interval [0, 9].

We now turn to the results of the 2-D computation, shown as time-sequence
maps of isobars (p = constant) in Figure 10.1. When the right-propagating
rarefaction wave enters the converging nozzle (Figure 10.1 at t = 1.5), the fluid
in the nozzle is set in motion. It gradually evolves into a supersonic expansion
flow in a diverging nozzle, as the fluid is moving from right to left, that is, in
the direction of increasing duct cross-sectional area.1

Inspecting the time sequence of isobars plots (Figure 10.1), we observe that
the entire flow field is progressively adjusting to the presence of a diverging
nozzle in its midst. At time t = 3 the flow overexpands in the nozzle, so that
an upstream-facing oblique shock wave is formed, raising the pressure of the
expanding gas to match the downstream conditions (i.e., the conditions corre-
sponding to UL). This shock is marked by ∗ in Figure 10.1. It becomes more
pronounced at t = 4.5, and at the next plot in the time sequence (t = 6) it
stabilizes near the duct “corner point,” which marks the transition from the
diverging nozzle to the wider duct segment. In addition to pressure matching,
the oblique shock serves to align the velocity of the flow along the diverging
nozzle contour with the downstream duct wall. At this time, we also observe
that another complex shock interaction forms at the centerline (y = 0), aligning
the flow velocity with that boundary line. This latter shock system appears first
as a short normal shock segment at t = 7.5. At the final time t = 9, that shock
has evolved into a full Mach reflection. It exhibits the typical features of that
pattern, namely, an oblique incident shock wave, a Mach stem (normal to the

1 Note that in the initial state UL the flow is already supersonic since uL = −1.947cL; that is,
|uL| > cL.
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Figure 10.1. Isobar map time sequence of CRW interaction with a converging segment.
The ∗ marks shock formation at duct wall. (Duct width here is twice the true size, for
better visibility.)

centerline), a reflected shock wave, and a triple point where all three shock
fronts meet (the downstream slip line starting at the triple point is not observed
on the isobar plot since pressure is continuous across a slip line).

In Figure 10.2 we compare the results of the 2-D and quasi-1-D computa-
tions at the final time t = 9. First we show the 2-D isobars [Figure 10.2(a)]
as in the last frame of Figure 10.1. This is followed by profiles of density,
pressure, and flow Mach number, as functions of the centerline coordinate
[Figures 10.2(b)–(d)]. They are extracted from the 2-D and the quasi-1-D
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Figure 10.2. CRW interaction with a converging segment; comparison of 2-D and quasi-
1-D results at time t = 9. (a) Isobars of 2-D calculation. (b)–(d) Quasi-1-D solution.
Distribution of density, pressure, and flow Mach number (taken as positive).

solutions. The 2-D computation results are shown as dashed lines for the flow at
the centerline and as dash-dot lines for the flow at the duct wall; the quasi-1-D
profiles are shown as solid lines.

It is evident from the comparison (Figure 10.2) that the two solutions are
in close agreement throughout the narrower duct segment (r > 2.6), but they
disagree elsewhere. Also, it is observed that the “transmitted” part of the rarefac-
tion wave propagates almost “one dimensionally” into the narrow part of the
duct (where it naturally agrees well with the corresponding quasi-1-D solution).
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Moreover, it is interesting to observe that at the entrance to the nozzle (r = 2.6),
the flow speed is sonic [M = 1 in Figure 10.2(d)]. The nozzle flow at large times
thus approaches a steady supersonic expansion flow, commencing at a virtual
sonic plane (“nozzle entrance”), which serves to “match” the unsteady rarefac-
tion wave on its right to the steady flow on its left.2

In other words, upon passing through the nozzle, the CRW is “truncated”
into a “transmitted” part and a “reflected” part; the two are separated by a
(nearly) steady flow through the diverging nozzle. With respect to the incident
CRW, the first part corresponds to the sector between the leading characteristic
dr
dt = cR and the “sonic characteristic” dr

dt = u+ c = 0 (which is positioned at
the nozzle entrance r = 2.6). The second part corresponds to the “tail” sector of
the CRW, between the tail characteristic dr

dt = uL+ cL < 0 and an unspecified
inner characteristic (it is “unspecified” since here we focus our attention on the
other parts of the flow field). The region of “nearly steady” flow comprises the
entire diverging nozzle and extends to the left of the shock structure.

Now the source of disagreement between the quasi-1-D and the 2-D solu-
tions is evident. The fluid expands as it (reversely) flows through the nozzle at
supersonic speed, and a full 2-D description of this flow involves an oblique
shock system at the nozzle exit [Figure 10.2(a)], which is poorly approximated
by the cross-section-averaged quasi-1-D solution that relies on a normal shock
for matching the overexpanded supersonic nozzle flow to the pressure ahead.
Moreover, the flow passing through the Mach reflection shock structure is sepa-
rated by the slip line into two streams having distinctly different thermodynamic
properties. Naturally, the 1-D “averaging” of these two streams involves signif-
icant deviations from the 2-D flow field.

It is concluded that although quasi-1-D calculations may generally be ad-
equate as an engineering approximation, a verification by comparison to the
appropriate multidimensional solution is required to make sure that the dis-
agreement between the two remains within acceptable bounds. Our test case
analysis thus brings out the significance of full multidimensional numerical
solutions; the (simpler) quasi-1-D solutions may not always serve as adequate
approximations.

Remark 10.1 (Additional GRP fluid-dynamical studies) We briefly mention
a series of fluid-dynamical studies using various GRP schemes.

2 Recall that under the quasi-1-D approximation for steady compressible flow in a Laval nozzle
([84], [102]), a supersonic flow in the diverging part of the nozzle is possible only when the fluid
enters it (through a minimum-area “throat”) at sonic speed.
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In an early application of GRP (see [42]), a quasi-1-D, spherically symmetric
computation was used to obtain some flow features in the dilute air surrounding
an exploding charge.

A comparative study on various fluid-dynamical schemes, including the 2-D
GRP method, was conducted by Takayama and Jiang [107]; the test cases were
shock reflection from a wedge, at angles just above and just below the transition
from regular to Mach reflection. Another test case (involving, as the former, a
self-similar solution) was the diffraction of a shock wave over an expansive 90◦

corner, studied by Hillier [61] using a 2-D GRP scheme.
Various shock wave studies combined experimental observations of complex

shock interactions with the corresponding computational simulations by the 2-D
GRP scheme. In [67] a time sequence of shock wave interaction with a square
cavity was recorded and compared to GRP solutions. Similar studies are re-
ported in [69] for a shock wave propagating in a branched duct and in [66] for
the passage of a shock wave through a double-bend duct. In all these studies
a remarkably good agreement was obtained between the observed (complex)
shock structures and the corresponding GRP solutions.

Three additional studies involved comparison of experimental observations
and solutions by the MBT method (Section 8.3). A shock wave regularly re-
flected from a wedge was subsequently reflected head-on from the duct endwall
(see [38]), and the ensuing complex wave pattern was computed by representing
the wedge as a rigid (stationary) wall. A nearly one-to-one agreement between
experimental and computed isopycnic lines (ρ = constant) was obtained. The
second study is based on a reduced version of MBT for the flow of gas–granular
aggregates, accounting for both gas–grain and (elastic) grain–grain interactions
[126]. Agreement with a “shock liftoff” experiment of a granular bed mounted
in a vertical shock tube was obtained.

Finally, an experiment involving a truly “moving boundary” setup was con-
ducted by Sasoh et al. [98] in a ram-accelerator facility, where a high-speed
(1 km/s) conical projectile pierced through a thin diaphragm. The experimental
results compared favorably to the corresponding MBT simulation.





Appendix A
Entropy Conditions for Scalar

Conservation Laws

In Definition 2.15 we gave the most practical version of the entropy condition.
It limits admissible shocks to those obtained by the intersection of “forward-
moving” characteristics. These are therefore discontinuities that “cannot be
avoided” or replaced by a rarefaction wave. In this Appendix we give some
further insight into this concept of an “entropy satisfying” weak solution to
(2.1), (2.2).

Our starting point is the physical notion of a “vanishing viscosity solution.”
In general terms, an equation leading to discontinuous solutions [such as (2.1)]
is supplemented by “dissipative terms” (also referred to as “viscous terms”).
In analogy to the physical situation, such terms have a “smoothing effect”
on solutions with large gradients, thus replacing discontinuities by “transition
zones” where the solution varies smoothly, albeit rapidly. As the viscous effects
are diminished, those transition zones shrink to surfaces of zero width, across
which the solution has a sharp jump. Mathematically speaking, the additional
viscous terms are often represented by second-order derivatives with a small
(“vanishing”) coefficient.

To illustrate the situation, we consider the “moving step” problem for
Burgers’ equation (Example 2.12).

Example A.1 (Burgers’ equation – a “viscous shock profile”) Instead of
Equation (2.22), we now consider the “viscous Burgers’ equation”

u(ε)
t +
(

1

2
(u(ε))2

)

x

= εu(ε)
xx , ε > 0, (A.1)

u(ε)
0 (x) = u0(x) =

{
1, x < 0,

0, x > 0.
(A.2)

313
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Equation (A.1) can be linearized by the Cole–Hopf transformation as follows:
Define a new unknown function v(ε)(x, t) by

v(ε)(x, t) = exp

(
− 1

2ε

∫ x

0
u(ε)(y, t) dy

)
(A.3)

(
so that u(ε)(x, t) = −2ε v

(ε)
x (x,t)
v(ε)(x,t)

)
. The reader can verify that v(ε) satisfies the

linear heat equation,

v
(ε)
t = εv(ε)

xx , (A.4)

v(ε)(x, 0) = v(ε)
0 (x) = exp

(
− 1

2ε

∫ x

0
u0(y) dy

)
. (A.5)

When u0(x) is given by (A.2), we get from (A.5)

v(ε)
0 (x) =

{
exp
(− x

2ε

)
, x < 0,

1, x ≥ 0,
(A.6)

and the solution to (A.4) is given by the classical formula for the heat kernel,

v(ε)(x, t) =
∫ ∞

−∞
Gε(x − y, t)v(ε)

0 (y) dy, (A.7)

where Gε(x, t) = (4πεt)−
1
2 exp
(
− x2

4εt

)
. Equation (A.7) can be further written

explicitly [using (A.6)] as

v(ε)(x, t) = (4πεt)−
1
2

{∫ 0

−∞
exp

(
− (x − y)2

4εt
− y

2ε

)
dy

+
∫ ∞

0
exp

(
− (x − y)2

4εt

)
dy

}

= (4πεt)−
1
2

∫ 0

−∞
exp

(
− (x − y)2

4εt

)(
exp
(
− y

2ε

)
+ exp
(
− xy

εt

))
dy,

(A.8)

so that, in view of (A.3),

u(ε)(x, t)

=

0∫

−∞

[
x−y

t

(
exp
(− y

2ε

)+ exp
(− xy

εt

))+ 2y
t exp
(− xy

εt

)]
exp
(
− (x−y)2

4εt

)
dy

0∫

−∞
exp
(
− (x−y)2

4εt

) (
exp
(− y

2ε

)+ exp
(− xy

εt

))
dy

.

(A.9)
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For fixed x ∈ R, t > 0, we are interested in the limit of u(ε)(x, t) as ε → 0.
Observe that if x < 1

2 t then

exp
(− xy

εt

)

exp
(− y

2ε

) → 0 as ε → 0 (for every y < 0 ),

so that in this case

lim
ε→0

u(ε)(x, t) = lim
ε→0

0∫

−∞
x−y

t exp
(
− (x−y)2

4εt

)
exp
(− y

2ε

)
dy

0∫

−∞
exp
(
− (x−y)2

4εt

)
exp
(− y

2ε

)
dy

. (A.10)

Using the classical “steepest descent method” (Evans [36, Section 4.5.2]) we
get

lim
ε→0

u(ε)(x, t) = x − y0

t
, x <

1

2
t, (A.11)

where y0 is the maximum point of exp
(
− (x−y)2

4εt

)
exp
(− y

2ε

)
, namely, y0 =

x − t . We conclude that

lim
ε→0

u(ε)(x, t) = 1, x <
1

2
t. (A.12)

In exactly the same way we get

lim
ε→0

u(ε)(x, t) = 0, x >
1

2
t. (A.13)

Thus, the “vanishing viscosity limit” (i.e., as ε → 0 ) of the solution to (A.1)
yields the moving step (shock) solution of the Burgers’ equation (2.22).

Example A.2 (Burgers’ equation – a “viscous rarefaction wave”) Turning
to the case of a rarefaction wave (Example 2.13), we now need to study the
solution of (A.1) subject to the initial condition

u(ε)
0 (x) =

{
0, x < 0,

1, x > 0,
(A.14)

which yields

v(ε)
0 (x) =

{
1, x < 0,

exp
(− x

2ε

)
, x > 0.

(A.15)
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Instead of (A.8) we get

v(ε)(x, t) = (4πεt)−
1
2

∫ ∞

0
exp

(
− (x − y)2

4εt

)(
exp
(
− xy

εt

)
+ exp
(
− y

2ε

))
dy,

(A.16)

so that

u(ε)(x, t)

=

∞∫

0

[
x−y

t

(
exp
(− xy

εt

)+ exp
(− y

2ε

))+ 2y
t exp
(− xy

εt

)]
exp
(
− (x−y)2

4εt

)
dy

∞∫

0
exp
(
− (x−y)2

4εt

) (
exp
(− xy

εt

)+ exp
(− y

2ε

))
dy

.

(A.17)

For x < 0 we have (if y > 0)

lim
ε→0

exp
(− y

2ε

)

exp
(− xy

εt

) = 0,

so that, as before,

lim
ε→0

u(ε)(x, t) = lim
ε→0

∫∞
0

x+y
t exp

[
− (x−y)2

4εt − xy
εt

]
dy

∫∞
0 exp

[
− (x−y)2

4εt − xy
εt

]
dy

= 0 (x < 0),

(A.18)

since the maximum of the function − (x−y)2

4εt − xy
εt is at y0 = −x .

If 0 < x < t we note that both functions− (x−y)2

4εt − xy
εt and− (x−y)2

4εt − y
2ε (as

functions of y ≥ 0) take their maximal values at y0 = 0, so that we
infer from (A.17)

lim
ε→0

u(ε)(x, t) = x

t
, 0 < x < t. (A.19)

Finally, when x > t , the function− (x−y)2

4εt − xy
εt has no stationary point for y ≥ 0

whereas − (x−y)2

4εt − y
2ε takes its maximum at y = x − t . In this case we obtain

therefore

lim
ε→0

u(ε)(x, t) = x − (x − t)

t
= 1, x > t. (A.20)
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Summary A.3 Inspecting all limits in the preceding examples [(A.12), (A.13),
and (A.18)–(A.20)] we conclude that for both initial conditions (A.2) and (A.14),
the solution to the viscous model (A.1) converges, as ε → 0, to the correct
entropy solution of the Burgers’ equation (2.22), both in the case of a shock
(Example 2.12) and in the case of a centered rarefaction wave (Example 2.13).

We shall not go further into the study of “viscous conservation laws” [when
1
2 u2 as in (A.1) is replaced by a general flux function f (u)] and their limiting be-
havior as ε → 0. We refer the reader to Godlewski and Raviart [55], Hörmander
[64], and Evans [36] for more details. However, our derivation above of the mov-
ing step case for the Burgers’ equation serves to validate the statement made at
the beginning to this Appendix concerning the use of entropy conditions as a
selection rule (among many possible weak solutions) for the unique physically
relevant solution.

We shall now see yet another application of the zero-viscosity methodol-
ogy for the derivation of an entropy condition equivalent to the Lax condition
(Definition 2.15). We shall present it formally in the context of the general
conservation law (2.1).

Take ε > 0 and let [in analogy with (A.1)] u(ε) be the solution to the “viscous
conservation law”

u(ε)
t + f (u(ε))x = ε u(ε)

xx ,
(A.21)

u(ε)(x, 0) = u0(x) .

Under very general conditions on f and u0 [certainly if f ∈ C1(R) and u0 ∈
L∞(R)] the solution u(ε) is classical (in particular u(ε)

t , u(ε)
x , u

(ε)
xx are all con-

tinuous for t > 0). We refer the reader to Godlewski and Raviart [55] and to
Hörmander [64] for details and proofs.

Let U (u) be a strictly convex smooth function of u and let F(u) satisfy

F ′(u) = f ′(u) U ′(u). (A.22)

Multiplying Equation (A.21) by U ′u(ε) we obtain

U
(
u(ε)
)

t
+ F
(
u(ε)
)

x
= εU ′ (u(ε)

)
u(ε)

xx

= ε (U ′ (u(ε)
)

u(ε)
x

)
x
− εU ′′ (u(ε)

)
(u(ε)

x )2. (A.23)

Let φ(x, t) ≥ 0 be a test function supported in R× (0,∞) (in particular,
φ(x, 0) ≡ 0). Multiplying Equation (A.23) by φ and integrating by parts
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[compare (2.12)], we obtain

−
∫

R

∫ ∞

0

[
U
(
u(ε)
)
φt + F

(
u(ε)
)
φx − εU ′ (u(ε)

)
u(ε)

x φx
]

dx dt

= −ε
∫

R

∫ ∞

0
U ′′ (u(ε)

) (
u(ε)

x

)2
φ dx dt. (A.24)

Assume first that u(ε), u(ε)
x are bounded uniformly in ε > 0, over the support ofφ,

and that u(ε) → u as ε → 0. Then, taking the limits in (A.23), as ε → 0, we get

−
∫

R

∫ ∞

0
[U (u)φt + F(u)φx ] dx dt = 0. (A.25)

However, the assumptions leading to (A.25), and in particular that of the uniform
boundedness of u(ε)

x , are too restrictive in typical cases. For example, recall that
we have already seen [Equations (A.12) and (A.13)] that in the case of a moving
step [with u0 as in (A.2)] the sequence u(ε) converges to the discontinuous step,
so that u(ε)

x cannot remain bounded. We note, however, that assuming the total
variation (in x) of u(ε) to be bounded (uniformly in ε > 0) we can still show
that the third term in the left-hand side of (A.24) tends to 0 as ε → 0. Indeed,
in this case

∫
R
|u(ε)

x | dx = total variation of u(ε) (for fixed t). Thus, retaining
the assumption u(ε) → u (boundedly) and the uniform boundedness of the total
variation (in x) of u(ε), and noting that U ′′ > 0 (convexity), we get from (A.24)
the following inequality, which replaces (A.25):

−
∫

R

∫ ∞

0
[U (u)φt + F(u)φx ] dx dt ≤ 0 (A.26)

[for all nonnegative test functions φ(x, t) ].
Note also that multiplying (A.21) by φ and using the same assumptions we
obtain (2.12), so that u(x, t) is a weak solution to (2.1), (2.2), in the sense of
Definition 2.3.

The convex function U (u) is called an “entropy function” and the associated
[via (A.22)] function F(u) is its “entropy flux” (see Lax [76]). It turns out that
the inequality (A.26), when applied to all possible pairs (U, F), characterizes
the unique weak solution that is obtained by the vanishing viscosity method,
namely, as a limit of the solutions u(ε). The reader is referred to Hörmander [64]
and to Godlewski and Raviart [55] for full discussions of these matters. We
also refer to Godlewski and Raviart [55] for a proof of the fact that, if the flux
function f (u) is convex, it suffices to take only one pair of (entropy, entropy flux)
functions in (A.26). In the case of a Riemann problem, when f (u) is not convex,
the structure of the entropy solution is more complicated than that outlined in
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Section 2.1 (see the paragraph following Definition 2.18) and consists of several
waves. We refer the reader to Godlewski and Raviart [55] and to Chorin and
Marsden [28] for a description of the “Oleinik constructions” of these solutions.

Finally, we show how the Lax entropy condition (Definition 2.15) is ob-
tained from (A.26), in the case of the Burgers’ equation (see LeVeque [82,
Example 3.4]).

In this case f (u) = 1
2 u2. Taking U = u2 we have, from (A.22), F(u) = 2

3 u3.
As in the derivation of the balance law [Claim 2.5(b)] we obtain from (A.26),
for every rectangle QT

x1, x2
,

∫ x2

x1

u2(x, T ) dx −
∫ x2

x1

u2(x, 0) dx

+2

3

[∫ T

0
u3(x2, t) dt −

∫ T

0
u3(x1, t) dt

]
≤ 0. (A.27)

If

u(x, t) =
{

ul, x ≤ x(t),

ur, x > x(t),

is a moving step solution, where x(t) = St [S = 1
2 (ul + ur) by the Rankine–

Hugoniot condition], then (A.27) yields, when x1 = 0, x2 = ST ,

ST (u2
l − u2

r)+
2

3
T (u3

r − u3
l ) ≤ 0,

or, by S = 1
2 (ul + ur),

T (ul − ur)

[
2S2 − 2

3
(u2

r + urul + u2
l )

]
= −T

6
(ul − ur)

3 ≤ 0.

Thus a moving step satisfying the entropy condition (A.27) is possible only with
ul > ur.



Appendix B
Convergence of the Godunov Scheme

In this appendix we outline the proof of Theorem 3.6, concerning the conver-
gence of the Godunov scheme (3.11) to the entropy solution of the (nonlinear)
scalar conservation law. As in the case of Theorem 2.28, where convergence
was proved in the linear case, we try to avoid as much as possible the use of
general (more advanced) mathematical facts. Instead, we rely on specific de-
tails pertaining to the Godunov scheme. We refer the reader to Smoller [104]
for Oleinik’s proof of the convergence of the Lax–Friedrichs scheme and to
Godlewski and Raviart [55] for a broader discussion of convergence of discrete
schemes.

Recall that ũ(x, t) is the exact solution of the scalar conservation law subject
to the initial condition ũ(x, tn) = U n(x), where U n(x) is the piecewise constant
function given by (3.2). At the next time level tn+1 = tn + k the function U n+1(x)
is computed as in Definition 3.5. For the sequence of averages

{
U n

j

}∞
j=−∞ we

define the total variation by

T V
(
U n
) =

∞∑

j=−∞

∣∣U n
j+1 −U n

j

∣∣ . (B.1)

Clearly, T V (U n) = T V (U n(x)), where, for any function g(x) vanishing at
infinity, the total variation is defined by,

T V (g) = sup

{ ∞∑

j=−∞

∣∣g(y j+1)− g(y j )
∣∣
}

, (B.2)

and the supremum is taken over all monotonically increasing sequences

320
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{
y j
}∞

j=−∞ ⊆ R . If g(x) ∈ L1 (R) ∩ L∞ (R) it can be shown that

T V (g) = sup
h>0

1

h

∞∫

−∞
|g(y + h)− g(y)| dy.

In particular, our assumption that u0(x) is of finite total variation implies that

T V
(
U 0
) =

∞∑

j=−∞

∣
∣U 0

j+1 −U 0
j

∣
∣ =

∞∑

j=−∞

1

	x

∣
∣∣∣∣∣
∣

x j+1/2∫

x j−1/2

[u0(x +	x)− u0(x)] dx

∣
∣∣∣∣∣
∣

≤ 1

	x

∞∑

j=−∞

x j+1/2∫

x j−1/2

|u0(x +	x)− u0(x)| dx (B.3)

= 1

	x

∞∫

−∞
|u0(x +	x)− u0(x)| dx ≤ T V (u0) <∞.

Our first claim is that the sequence {T V (U n)}∞n=−∞ is nonincreasing.

Claim B.1 For the Godunov scheme,

T V
(
U n+1
) ≤ T V

(
U n
)
, n = 0, 1, 2, . . . .

Proof The solution ũ(x, t) is constant along characteristic (straight) lines
[see (2.10)]. The lines starting at time t = tn from points in cell j have uni-
form slopes f ′(U n

j ). It can be easily seen, by the CFL condition, that all
points in cell j are reached, at time t = tn+1, by characteristic lines emanating
at t = tn from points in cells j − 1, j, j + 1.1 In particular, let (x̃ j+1/2, tn)
be the point lying on the characteristic line through (x j+1/2, tn+1), namely,
x̃ j+1/2 + f ′(U n(x̃ j+1/2)) · k = x j+1/2 [if the point is sonic we get x̃ j+1/2 =
x j+1/2, U n(x̃ j+1/2) = umin as in (2.28)]. All points in cell j are thus reached,
at time t = tn+1, by characteristic lines emanating at t = tn from points in
[x̃ j−1/2, x̃ j+1/2] at time t = tn . The range of values of ũ(x, tn+1) is therefore con-
tained in the interval [min U n(x), max U n(x)], x̃ j−1/2 < x < x̃ j+1/2. Observe
that a section of cell j may be covered by (part of) a rarefaction fan centered,

1 We include points (at most two) that lie on a shock trajectory [starting at (x j±1/2, tn)] and are
reached by two characteristic lines. This case is entirely incorporated in the ensuing argument
and will not be mentioned explicitly.
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say, at x j+1/2 (see Figure 3.1). The values of ũ(x, tn+1) there lie between U n
j

and U n
j+1 and x̃ j+1/2 ≥ x j+1/2.

Note also that by the CFL condition x j−3/2 < x̃ j−1/2 ≤ x̃ j+1/2 < x j+3/2, so
that, for x̃ j−1/2 ≤ x ≤ x̃ j+1/2,

min
(
U n

j , U n
j±1

) ≤ min U n(x) ≤ max U n(x) ≤ max
(
U n

j , U n
j±1

)
.

We conclude that the average U n+1
j satisfies, for some point x̃ j ,

U n+1
j = U n

(
x̃ j
)
, x̃ j−1/2 ≤ x̃ j ≤ x̃ j+1/2. (B.4)

In Equation (B.4) we use the observation that if there is no point x in cell j such
that U n+1

j = ũ(x, tn+1), then U n+1
j is an “intermediate value in a jump”; namely,

there is a shock trajectory passing through (x̄, tn+1), x j−1/2 < x̄ < x j+1/2 , such
that ũ(x̄+, tn+1) < U n+1

j < ũ(x̄−, tn+1). This shock originates necessarily at
one of the cell endpoints, say, x j−1/2, and satisfies

U n
j−1 = ũ(x̄−, tn+1) > U n+1

j > ũ(x̄+, tn+1) = U n
j . (B.5)

We then set x̃ j = x j−1/2 and define U n(x̃ j ) = U n+1
j . This construction yields a

monotonically increasing sequence x̃ j < x̃ j+1,−∞ < j <∞ . We have

T V
(
U n+1
) =

∞∑

j=−∞

∣∣∣U n+1
j+1 −U n+1

j

∣∣∣

=
∞∑

j=−∞

∣∣U n(x̃ j+1)−U n(x̃ j )
∣∣ ≤ T V

(
U n(x)

) = T V
(
U n
)
,

which concludes the proof of the claim. ��

Corollary B.2

T V
(
U n
) ≤ T V

(
U 0
)
<∞.

Next we inspect the variation in time of the approximating sequences{
U n

j

}∞
j=−∞ .

Claim B.3 For any n ≥ p ≥ 0,

∞∑

j=−∞

∣
∣∣U n

j −U p
j

∣
∣∣ ≤ 2λS0(n − p) T V

(
U 0
)
. (B.6)
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Proof In view of the defining equation (3.11), we have
∣∣∣U n+1

j −U n
j

∣∣∣ ≤ λ
∣∣ f
(
R
(
0; U n

j ,U
n
j+1

))− f
(
R
(
0; U n

j−1,U
n
j

))∣∣

≤ λS0

∣∣R
(
0; U n

j ,U
n
j+1

)− R
(
0; U n

j−1,U
n
j

)∣∣ , (B.7)

where in the last step we have used the mean value theorem and (3.7) (to estimate∣∣ f ′(v)
∣
∣ ≤ S0 for |v| ≤ Mn ≤ M0). An easy inspection of the Riemann solution

(2.28) yields
∣∣R
(
0; U n

j ,U
n
j+1

)− R
(
0; U n

j−1,U
n
j

)∣∣ ≤ ∣∣U n
j+1 −U n

j

∣
∣+ ∣∣U n

j −U n
j−1

∣
∣ ,

(B.8)

so that summation over j in (B.7) yields (B.6), when going (n − p) time steps
backward and noting Claim B.1. ��

We can now conclude the proof of Theorem 3.6 as follows. Fix T > 0.
For a given time step k > 0 we extend the sequence of approximating functions
U 0(x),U 1(x), . . . ,U n(x), . . . , nk ≤ T (these functions depend, of course,
on k), so that we get a function defined on the entire strip R× [0, T ] by

Uk(x, t) = U n(x) for t ∈ [nk, (n + 1)k). (B.9)

Thus, Uk(x, t) is piecewise constant in space (with jumps at x j+1/2 = ( j +
1/2)	x, −∞ < j <∞) and in time (with jumps at tn = nk ≤ T, n =
1, 2, . . . ). It takes the constant value U n

j in the rectangle (x j−1/2, x j+1/2)×
[nk, (n + 1)k) (see Figure B.1).

Figure B.1. The piecewise-constant function Uk(x, t).
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The reader should note that our notation is somewhat ambiguous. Indeed, for
different k ′s the functions U n(x) in (B.9), for the same integer n, represent two
different functions (at two different time levels) constructed by the Godunov
scheme using the two different time steps.

Pick any time level τ ∈ [0, T ]. By Claim 3.7 the family {Uk(x, τ )}k>0 (viewed
as a family of functions of the space variable x) is uniformly bounded, and
by Corollary B.2 all total variations of these functions are also uniformly
bounded [by T V (u0), see (B.3)]. Thus, applying Helly’s Selection Theorem
(see Nathanson [92]) we can extract a sequence of time steps, k(1)

i → 0, such
that the corresponding sequence of functions

{
Uk(1)

i
(x, τ )
}∞

i=1 converges at every
x ∈ R, and in L1

loc(R) (see Definition 2.25), to a limit function, which we denote
by v(x, τ ). Picking another value τ̄ ∈ [0, T ], we obtain, by the same argument, a
further subsequence

{
k(2)

i

}∞
i=1 ⊆

{
k(1)

i

}∞
i=1 such that

{
Uk(2)

i
(x, τ̄ )
}∞

i=1 converges

[for all x and in L1
loc(R)] to a limit function v(x, τ̄ ). Because it is a subsequence

of
{
Uk(1)

i

}∞
i=1,
{
Uk(2)

i
(x, τ̄ )
}∞

i=1 clearly converges to v(x, τ ). We can now apply
the familiar “diagonal process” to obtain a sequence ki → 0 such that the cor-
responding functions

{
Uki (x, τl)

}
converge [for every x ∈ R and in L1

loc(R)]
to v(x, τl), where the sequence {τl}∞l=1 is dense in (0, T ). But now we claim
that the sequence

{
Uki (x, t)

}∞
i=1 converges [pointwise and in L1

loc(R)] for every
t ∈ [0, T ]. To this end we first note that, multiplying (B.6) by	x and noting that
λ(n − p)	x = k(n − p) = nk − np, and using the definition of the function
Uk(x, t), we have, with nk ≤ t1 < (n + 1)k, pk ≤ t2 ≤ (p + 1)k,

∞∫

−∞
|Uk(x, t1)−Uk(x, t2)| dx ≤ 2S0 ( |t1 − t2| + k) · T V (u0). (B.10)

Taking t1 = t and t2 = τl , for some index l, and letting k = ki in (B.10), we get

∞∫

−∞

∣∣Uki (x, t)−Uki (x, τl)
∣∣ dx ≤ 2S0 (ki + |t − τl |) · T V (u0). (B.11)

Let ε > 0 be given, and take a finite interval [−X, X ] ⊆ R. Let l be such
that |t − τl | < ε ({τl}∞l=1 is dense in (0, T )). Since

{
Uki (x, τl)

}∞
i=1 converges to

v(x, τl) in L1(−X, X ) we can find an index J = J (ε, l), such that

X∫

−X

∣∣Uki (x, τl)− v(x, τl)
∣∣ dx ≤ ε, i > J. (B.12)

We may further assume that ki < ε for i > J . Inserting all this in (B.11) we
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obtain, for i > J ,

X∫

−X

∣∣Uki (x, t)− v(x, τl)
∣∣ ≤

X∫

−X

{∣∣Uki (x, t)−Uki (x, τl)
∣∣

+ ∣∣Uki (x, τl)− v(x, τl)
∣
∣} dx ≤ (4 · T V (u0)+ 1) ε; (B.13)

hence also, for i > j > J ,

X∫

−X

∣∣Uki (x, t)−Uk j (x, t)
∣∣ dx ≤

X∫

−X

{∣∣Uki (x, t)− v(x, τl)
∣∣

+ ∣∣Uk j (x, t)− v(x, τl)
∣
∣} dx ≤ 2 (4 · T V (u0)+ 1) ε. (B.14)

We conclude that the sequence
{
Uki (x, t)

}∞
i=1 is a Cauchy sequence in

L1(−X, X ) and thus converges to some function v(x, t). Since X was arbitrary,
the function v(x, t) is defined for all x ∈ R and the convergence Uki (x, t) →
v(x, t) is in L1

loc(R). Passing to the limit i →∞ in (B.13) we now have

X∫

−X

|v(x, t)− v(x, τl)| dx ≤ 4 (T V (u0)+ 1) ε, (B.15)

under the assumption |t − τl | < ε. In other words, taking any subsequence
τl j → t and noting that X is arbitrary, we get, from (B.15), 2

v(x, t) = lim
τl j→t

v(x, τl) in L1
loc(R). (B.16)

In other words, for every t ∈ (0, T ) the function v(x, t) is uniquely determined
as a limit of a subsequence of {v(x, τl)}∞l=1. However, by Helly’s theorem, the
sequence

{
Uki (x, t)

}∞
i=1, being uniformly bounded and with uniformly bounded

total variations, possesses a subsequence that converges pointwise and hence
necessarily to v(x, t). Thus, since all converging subsequences have the same
limit function v(x, t), the whole sequence

{
Uki (x, t)

}∞
i=1 converges pointwise

to v(x, t).
We have therefore obtained a limit function v(x, t) of the sequence{

Uki (x, t)
}∞

i=1 in the strip R× [0, T ]. It remains to show that v(x, t) is a weak
solution (see Definition 2.3) and that it satisfies the entropy condition (see
Appendix A), thus ensuring its uniqueness.

2 The reader may notice that in these arguments we have just reproduced the classical proof of
the Arzela–Ascoli theorem [for functions of t valued in L1

loc(R)].
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Recall (Definition 2.3) that to prove that v(x, t) is a weak solution we need
to show that, for every test function φ(x, t) ∈ C1

0 ,

∫

R

∞∫

0

(vφt + f (v)φx ) dx dt +
∫

R

φ(x, 0)u0(x) dx = 0. (B.17)

Fix k = 	t > 0 and let
{
U n

j

}
j,n

be the values determined by the Godunov
scheme (3.10), (3.11) [these are the values taken on by the function Uk(x, t), by
(B.9)]. Let φ j,n = φ(x j , tn) and multiply (3.10) by φ j,n to obtain

φ j,n

(
U n+1

j −U n
j

)
= −λφ j,n

(
f G,n+1/2

j+1/2 − f G,n+1/2
j−1/2

)
. (B.18)

Summing over −∞ < j <∞ we readily obtain

∞∑

j=−∞
φ j,n

(
U n+1

j −U n
j

)
= λ

∞∑

j=−∞
f G,n+1/2

j+1/2

(
φ j+1,n − φ j,n

)
. (B.19)

Recall [see (3.9)] that f G,n+1/2
j+1/2 = f

(
R(0; U n

j ,U
n
j+1)
)

and that [see (2.28)] in all
cases V n

j := R(0; U n
j ,U

n
j+1) is a value that lies between U n

j and U n
j+1. We can

therefore rewrite (B.19) as

∞∑

j=−∞
φ j,n

(
U n+1

j −U n
j

)
= λ

∞∑

j=−∞
f (V n

j )
(
φ j+1,n − φ j,n

)
,

and summing over 0 ≤ n <∞ and multiplying both sides by 	x we get

k	x

{ ∞∑

n=1

∞∑

j=−∞

φ j,n − φ j,n−1

k
U n

j +
∞∑

n=1

∞∑

j=−∞
f (V n

j )
φ j+1,n − φ j,n

	x

}

+	x
∞∑

j=−∞
φ j,0 U 0

j = 0. (B.20)

Observe that these sums are all finite, since φ ∈ C1
0 means that φ j,n vanishes

for large | j |, n.
Returning to the notation Uk [in (B.9)], let us introduce a similar piecewise-

constant function �k,t by

�k,t (x, t) = φ j,n − φ j,n−1

k
if x ∈ (x j−1/2, x j+1/2), t ∈ [nk, (n + 1)k).

(B.21)
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Clearly, since φ ∈ C1
0 , �k,t (x, t) → φt (x, t) uniformly in R× [0, T ] (simply

write the difference in terms of Taylor’s expansion up to second order in t).
Specializing to the sequence k = ki ,

ki	x ·
∞∑

n=1

∞∑

j=−∞

φ j,n − φ j,n−1

k
U n

j =
∫

R

T∫

0

�k,t (x, t)Uki (x, t) dx dt

−−→
ki→0

∫

R

T∫

0

φt (x, t)v(x, t) dx dt, (B.22)

where in the last step we have used Uki → v and Lebesgue’s dominated conver-
gence theorem. We can treat similarly the second sum in (B.20). Indeed, define
piecewise-constant functions

Gk(x, t) = f (Vj )

�k,x (x, t) = φ j+1,n − φ j,n

	x





(x, t) ∈ (x j−1/2, x j+1/2)× [nk, (n + 1)k),

(B.23)

so that

k	x ·
∞∑

n=1

∞∑

j=−∞
f (Vj )

φ j+1,n − φ j,n

	x
=
∫

R

T∫

0

Gk(x, t)�k,x dx dt.

Clearly,�k,x → φx as k → 0 uniformly in R× [0, T ]. However, the value V n
j

is always between U n
j and U n

j+1, so the continuity of f and the convergence
pointwise of Uki to v imply that Gki (x, t) → f (v), pointwise. All functions
Gki (x, t) are uniformly bounded [by f (M0); see Claim 3.7], so, once again by
the dominated convergence theorem, we have

ki	x ·
∞∑

n=1

∞∑

j=−∞
f (V n

j )
φ j+1,n − φ j,n

	x
−−→
ki→0

∫

R

T∫

0

f (v)φx dx dt.

(B.24)

The fact that the last sum in (B.20) converges to
∫

R
φ(x, 0)u0(x) dx as	xi → 0

(note that λ = ki
	xi
= constant and ki → 0 implies 	xi → 0) is left to the

reader as an easy exercise. Inserting the limits (B.22), (B.24), along with the last
observation, in (B.20), yields (B.17); hence v(x, t) is indeed a weak solution.
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Remark B.4 The preceding argument, using the convergence Uki → v in the
proof that v is a weak solution, can be generalized to other schemes. It is then
known as the “Lax–Wendroff theorem.” We refer the reader to the books by
LeVeque [82] and by Godlewski and Raviart [55] for a general statement of
this theorem.

Remark B.5 Strictly speaking, we have proven that v(x, t) is a weak solution
in the strip R× [0, T ]. However, an inspection of our arguments shows that we
could replace [0, T ] by [0,∞), by taking a sequence {Tl}∞l=1 that is dense in
[0,∞). The estimates needed in the proof [most notably (B.11)] hold uniformly
in t ∈ [0,∞). Thus, v(x, t) is actually a weak solution in R× [0,∞).

Finally, it remains to prove that v(x, t) is the (unique) entropy solution to
(2.1), (2.2). In dealing with the Godunov scheme, it is very easy to do the proof
in the context of the “entropy-function entropy-flux” formalism, as given in
(A.26).

So, let "(u) be a strictly convex smooth function, and let F(u) be the asso-
ciated flux, F ′(u) = " ′(u) f ′(u). We need to show that, for all nonnegative test
functions φ ∈ C1

0 ,

−
∫

R

∞∫

0

["(v)φt + F(v)φx ] dx dt ≤ 0. (B.25)

This inequality is satisfied by the solution ũ(x, t), tn ≤ t ≤ tn+1. Let Uk(x, t) be
the piecewise-constant function constructed by the Godunov scheme, as in (B.9).
Repeating the argument in the proof of Claim 2.5(b) (by using the same sequence
of nonnegative test functions) in the rectangle (x j−1/2, x j+1/2)× (tn, tn+1) and
passing to the limit in (B.25) we get [instead of the balance equation (2.3)] the
inequality

x j+1/2∫

x j−1/2

[
"(ũ(x, tn+1))−"(U n

j )
]

dx ≤ −
tn+1∫

tn

[
F(R(0; U n

j ,U
n
j+1))

−F(R(0; U n
j−1,U

n
j ))
]

dt. (B.26)

In this inequality we have already used that ũ(x, tn) ≡ U n
j in cell j and that

ũ(x j+1/2, t) ≡ R(0; U n
j ,U

n
j+1), tn ≤ t ≤ tn+1 [see (3.8)]. Since " is strictly
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convex, we get by Jensen’s inequality

1

	x

x j+1/2∫

x j−1/2

" (ũ(x, tn+1)) dx ≤ "






1

	x

x j+1/2∫

x j−1/2

ũ(x, tn+1) dx






= "
(

U n+1
j

)
, (B.27)

where (3.10) was used in the last step. Thus, the inequality (B.26) can be rewritten
as

"
(
U n+1

j

)−"(U n
j

) ≤ −λ [F (R(0; U n
j ,U

n
j+1)
)− F

(
R(0; U n

j−1,U
n
j )
)]
.

(B.28)

We can now repeat exactly the proof of (B.17), replacing Uk by"
(
Uk
)

and f by

F
[
i.e., f G,n+1/2

j+1/2 by F
(
R(0; U n

j ,U
n
j+1)
)]

to obtain from the discrete inequality
(B.28) the integrated inequality (B.25). This concludes the proof that v is indeed
the (unique) entropy solution to (2.1), (2.2).



Appendix C
Riemann Solver for a γ -Law Gas

Numerous schemes for fluid dynamics (including the GRP scheme) are based on
solving a Riemann problem at cell interfaces, requiring an efficient and robust
algorithm for solving this problem. Here we briefly present a Newton–Raphson
(iterative) algorithm for solving the RP for perfect gases, which typically con-
verges in about three iterations, producing an accurate solution of the RP in the
(u, p) plane.

The Riemann problem is the IVP given in terms of Equation (4.47) sub-
ject to the initial data (4.100). The procedure for solving a RP, as outlined in
Construction 4.46, consists in finding the intersection point (u∗, p∗) of the in-
teraction curves I l

1, I r
3, as depicted in Figure 4.18. The equations we use here

for the (u, p) interaction curves are those given in Summary 4.49, with the

transformation ζ = p
γ−1
2γ , so that in the (u, ζ ) plane the rarefaction branch of

either interaction curve is a straight line, as observed in Remark 4.51. For the
Newton–Raphson iterations we also require the derivative functions (slopes of
the respective interaction curves), which are given by [see Equations (4.115)
and (4.116)]

(
du

dζ

)
=






−
(

2
γ−1

)
cL
ζL
, ζ ≤ ζL,

−
(

2
γ−1

)
cL
ζ

(
ζ

ζL

) 2γ
γ−1 ×
{

1+
(
γ+1
4γ

) [(
ζ

ζL

) 2γ
γ−1 − 1

]}

×
{

1+
(
γ+1
2γ

) [(
ζ

ζL

) 2γ
γ−1 − 1

]}−3/2

, ζ > ζL,

(C.1)
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for the I l
1 interaction curve and by

(
du

dζ

)
=






(
2
γ−1

)
cR
ζR
, ζ ≤ ζR,

(
2
γ−1

)
cR
ζ

(
ζ

ζR

) 2γ
γ−1 ×
{

1+
(
γ+1
4γ

) [(
ζ

ζR

) 2γ
γ−1 − 1

]}

×
{

1+
(
γ+1
2γ

) [(
ζ

ζR

) 2γ
γ−1 − 1

]}−3/2

, ζ > ζR,

(C.2)

for the I r
3 interaction curve.

The solution algorithm starts by “sorting out” the solution branch on each
interaction curve. The idea is to determine in advance the shock/rarefaction
branch on which the intersection point (u∗, p∗) is located. This can be done
by exploiting the monotonicity property of the interaction curves, which is
unaltered by the transformation from (u, p) to (u, ζ ). The idea is depicted
graphically in Figure C.1 for the right interaction curve I r

3. Let uLR be the
velocity value on I l

1 corresponding to the pressure pR (see Figure C.1). If
uLR > uR (as actually seen in Figure C.1) then the intersection value u∗ satisfies
uR < u∗ < uLR. Hence the intersection point (u∗, p∗) lies on the shock branch
of I r

3. In other words, the wave �3 (see Construction 4.46) is a 3-shock. Con-
versely, if uLR < uR, the intersection value u∗ satisfies uLR < u∗ < uR and �3 is a
3-CRW. An analogous procedure is repeated to determine the solution branch
on I l

1. Once we know which branch the solution is located on, the iterations for

Figure C.1. Determination of the shock/rarefaction branch on the right interaction
curve I r

3.
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Figure C.2. Iterative procedure for determining the intersection point between I l
1

and I r
3.

finding (u∗, p∗) are made with the correct shock/rarefaction branch on either
side.

Turning to the actual solution, we start by the “zero iteration,” which is ob-
tained by calculating the intersection of the two rarefaction branches in (u, ζ ).
This is trivial since it consists in finding the intersection point of two straight
lines. We note that this first estimate of (u∗, p∗) is akin to an acoustic approx-
imation [which is obtained as a linear intersection in the (u, p) plane]. When
this approximation is not sufficiently accurate, we proceed as follows.

Denote the solution obtained at the n th iteration by (un, ζ n), with n =
0, 1, 2, . . . (n = 0 being the “zero iteration”). Let un

L , un
R be the velocities at

the points of intersection of ζ = ζ n with the curves I l
1, I r

3, respectively (see
Figure C.2). Then (un+1, ζ n+1) is obtained as the intersection point of the tan-
gent lines to I l

1, I r
3 at (un

L , ζ
n), (un

R , ζ
n), respectively. This iterative procedure is

terminated when |un
L − un

R | is sufficiently small. The last intersection point is
then taken to designate the state (u∗, p∗) at the contact discontinuity resolving
the given Riemann problem.



Appendix D
The MUSCL Scheme

In this appendix we prove the claim made in Section 5.2 that van Leer’s MUSCL
scheme is an L2 scheme (see the discussion following Definition 5.41). As ex-
plained there it means that, given piecewise-linear distributions as in (5.93),
the numerical fluxes Fn+1/2

j+1/2, Gn+1/2
j+1/2 are computed within O(k2) error of the

exact ones (for the linear GRP). This, in turn, will follow if we show that the
time derivatives of flow variables along the contact discontinuity are evaluated
within O(k2) error. This observation brings us back to the main theorem of the
Lagrangian treatment, Theorem 5.7 (Section 5.1). In this context, let us consider
the left coefficients aL, bL, dL, which, in the setup of Section 5.1, were obtained
by the resolution of the CRW (Claim 5.17). For simplicity, we assume planar
symmetry, so that A(0) = 1 and λ = 0 in Equation (5.48). In regions of smooth
flow, the small parameter k of the numerical setting is replaced here by the
small parameter 1− β∗, which measures the jump in (Lagrangian) character-
istic slopes across the CRW [and hence is O(	r )]. Note that, setting β∗ = 1 in
Equation (5.48), we obtain the coefficients for the acoustic (L1) approximation,
as in Remark 5.21 and Construction 5.39. We conclude, therefore, that for an
L2 scheme we need to find an approximate coefficient d̃L such that

∣∣d̃L − dL

∣∣ = O
(
(1− β∗)2

)
, β∗ = g∗L

gL

. (D.1)

By (5.24), we have

a(β∗) = a(1)+ H (1) · (1− β∗)+ O
(
(1− β∗)2

)
, (D.2)
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where, by (5.30) and (5.36),

H (1) = 1

2
g−1

L I (1)
∂u

∂β
(0, 1),

I (1) = GρI (pL; ρL, pL) ρ ′L + G pI (pL; ρL, pL) p′L

(D.3)

(where ρ ′L and p′L are the initial Lagrangian slopes).
The states (ρ(0, β), p(0, β)) are all isentropic with respect to (ρL, pL), owing

to the isentropic character of the CRW in the associated Riemann solution. In
particular, we get the identity

gL = G (pL; ρ(0, β), p(0, β)) , (D.4)

for G as in (5.28). When (D.4) is differentiated with respect to β, we have
at β = 1

0 = GρI (pL; ρL, pL)
∂ρ

∂β
(0, 1)+ G pI (pL; ρL, pL)

∂p

∂β
(0, 1)

= [GρI (pL; ρL, pL)+ c2
L G pI (pL; ρL, pL)

] ∂ρ
∂β

(0, 1),

(D.5)

which implies the vanishing of the expression in square brackets. It follows that

I (1) = (ρ ′L − c−2
L p′L)GρI (pL; ρL, pL) . (D.6)

Invoking the characteristic relation (5.26)(ii), we get by (D.3)

H (1) = −1

2
g−2

L (ρ ′L − c−2
L p′L)GρI (pL; ρL, pL)

∂p

∂β
(0, 1)

= −1

2
ρ−2

L (ρ ′L − c−2
L p′L)GρI (pL; ρL, pL)

∂ρ

∂β
(0, 1)

= −1

2
ρ−2

L (ρ ′L − c−2
L p′L)

d

dβ
G (pL; ρ(0, β), pL)β=1 .

We therefore get, within O
(
(1− β∗)2

)
error,

H (1)(1− β∗) = 1

2
ρ−2

L (ρ ′L − c−2
L p′L) · [G (pL; ρ∗L , pL

)− gL

]
. (D.7)

We now make the following structural assumption on the function G (p; ρI , pI ):

GρI (pL; ρI , pL)ρI=ρL
= 1

2

gL

ρL

= 1

2
cL. (D.8)
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For a perfect (γ -law) gas, this equation is satisfied [see Equation (5.39)]. In
the general case, it means that the isentropic curve p = p (ρ; ρI , pI ) is locally a
power function. We now evaluate −(gLg∗L )1/2 H (1)(1− β∗) from (D.7), noting
(D.8) and using, with τ = 1/ρ,

ρ ′L = −ρ2
L τ
′

L , ρ∗L − ρL = −ρ2
L (τ ∗L − τL)+ O

(
(1− β∗)2

)
.

The following equalities hold within an O
(
(1− β∗)2

)
error:

−(gLg∗L )1/2 H (1)(1− β∗) = 1

4
gL · g−2

L (g2
L τ
′

L + p′L) · gL

ρL

(ρ∗L − ρL)

= −1

4
ρL(g2

L τ
′

L + p′L)(τ ∗L − τL).

(D.9)

However, by (5.25) and the characteristic relation (5.26)(ii) we have, again within
an O
(
(1− β∗)2

)
error,

−(gLg∗L )1/2a(1) = p∗L − pL

u∗L − uL

(u′L + g−1
L p′L). (D.10)

Using (D.9) and (D.10) in (D.2) and noting (5.48) we have

d̃L = −(gLg∗L )1/2
[
a(1)+ H (1) · (1− β∗)] = p∗L − pL

u∗L − uL

(u′L + g−1
L p′L)

− 1

4
ρL(g2

L τ
′

L + p′L)(τ ∗L − τL) = dL + O
(
(1− β∗)2

)
,

(D.11)

so that d̃L satisfies (D.2).
The coefficient d̃L is exactly the coefficient obtained by van Leer [113, Equa-

tion (65)]. As in the acoustic case (Proposition 5.9) we can use the “reflected”
expression d̃R as an approximation to dR, within the same error bound.

Remark D.1 Van Leer obtains d̃L by treating the CRW as a “weak shock”
and using the Rankine–Hugoniot jump conditions between the states VL and
V∗L . This is the reason for the appearance of the term W = p∗L−pL

u∗L−uL
in (D.11);

it is the “shock” speed by (4.89)(ii). From the derivation made here it is clear
that d̃L of (D.11) is by no means the unique possible approximation to dL, within
O
(
(p∗ − pL)2

)
. Following van Leer’s idea, we could use instead the coefficients

in (5.58) and approximate them to within an O
(
(p∗ − pR)2

)
error. In so doing,

we shall need again some information about the equation of state �, which is
equivalent to assumption (D.8).
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Glossary

CRW centered rarefaction wave
IVP initial value problem
MBT moving boundary tracking

Flow Variables and Thermodynamic Quantities (Section 4.2)

S entropy
p pressure
ρ, τ = 1/ρ density and specific volume
c speed of sound
g = ρc “Lagrangian” speed of sound

Coordinates

r spatial (Section 4.2)
x planar (Sections 2.1, 4.1, 4.2)
ξ Lagrangian (Section 4.2)
t time

Riemann and Generalized Riemann Problem

R
(

x
t ;UL,UR

)
Eulerian solution, planar conservation form (Sections 4.1, 4.2)

RA
(

x
t ;UL,UR

)
Eulerian solution, associated Riemann problem (Section 4.2)

R
(
ξ

t ;VL,VR
)

Lagrangian solution, planar conservation form (Section 4.2)
RA
(
ξ

t ;VL,VR
)

Lagrangian solution, associated Riemann problem
(Section 4.2)

V∗, V∗L, V
∗
R contact solution in Lagrangian coordinates (Figure 5.2)
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346 Glossary

(
∂V
∂t

)∗
time derivative along contact at t = 0 (Table 5.5)

U0 RA
(
0;UL,UR

)
in Eulerian coordinates (Section 5.1)(

∂U
∂t

)
0

solution to linear GRP, Eulerian coordinates (Section 5.1)
�1, �2, �3 waves in solution to the GRP (Section 5.1)
RP Riemann problem
GRP generalized Riemann problem
I l
1 interaction curve: all right states connected to a given left state by

1-shock or 1-CRW (Section 4.2)
I r
3 interaction curve: all left states connected to a given right state by

3-shock or 3-CRW (Section 4.2)
1-wave a shock or a CRW associated with the C1 characteristic family (i.e.,

propagating in the −x direction (left-facing wave)) (Section 4.2)
3-wave a shock or a CRW associated with the C3 characteristic family (i.e.,

propagating in the +x direction (right-facing wave)) (Section 4.2)

Functional Spaces

Compactly supported function in R× (0,∞) a function that vanishes
outside some rectangle [−A, A]× [0, T ].

C1
0 continuously differentiable and compactly supported functions

C1 continuously differentiable functions
L1

loc(R) functions integrable on every finite interval in R



Index

acoustic approximation, 143, 158, 162, 168,
176, 178, 291

associated Riemann problem, 137, 140–143,
148, 168

reacting flow, 286

balance equation, see equation, balance
boundary

conditions, 51, 55, 58, 66, 67, 79, 219,
221, 230

conditions, periodic, 50, 56

centered rarefaction wave (CRW), see wave,
centered rarefaction

CFL
condition, see scheme stability
ratio, 66

Chapman–Jouguet (C–J) model,
276–281

CJ point, 278, 280
characteristic

coordinates, 146, 165, 292
curves, 9, 10, 20, 84, 107, 138, 143
equations, 107
k-family, 86, 93, 94–97
linearly degenerate, 93, 96, 108,

109, 115
lines, 9, 18, 30, 33, 34, 55
speed, 16, 17, 96

conservation laws
scalar, see scalar conservation law
system, see system of equations

consistency, see scheme consistency
contact discontinuity, see discontinuity,

contact
cross section

area function, 103, 171, 172, 224
variable, 101, 112, 116, 122, 123, 224

deflagration, 278
detonation, 278–281

C–J, 280, 299
strong, 280
weak, 280, 298

discontinuity
capturing, 52, 59, 69, 180
contact, 97, 99, 112
jump, see jump, discontinuiy
moving, 16, 17

duct flow, see flow, quasi-one-dimensional

entropy
flux, 318
function, 318
Lax condition, 21, 97, 100, 112, 313, 319
solution, 63, 320
thermodynamic, see thermodynamics,

entropy
equation

balance, 8, 11, 16, 17, 34, 88, 247, 252, 258,
259, 260

Burgers, 18, 22, 55, 313, 315, 317, 319
Burgers (2-D), 64, 69
Guckenheimer, 64, 76
linear, 8, 10, 16, 17, 25, 28
nonlinear, 7, 9, 16, 18, 30, 35

equation of state, 103
perfect gas (γ -law), 130, 330
reacting flow (γ -law), 287

Eulerian framework, 103, 116, 162, 168

flow
adiabatic, 106, 108, 110
compressible, 101, 269
cylindrical, 102
inviscid, 101
isentropic, 110, 224
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348 Index

flow (Contd.)
planar, 102, 123
quasi-one-dimensional, 101, 103, 219, 222
reacting, 269, 271
spherical, 102, 218, 219
time-dependent, 101
two-dimensional, 235, 244

flux
convex, 19, 23, 24, 36, 318
function, 8, 81, 88, 318
nonconvex, 76
numerical, 37, 38, 41, 44, 170, 172, 174,

176, 180, 182, 249

generalized Riemann problem, 36, 40, 123,
135, 135, 247

genuine nonlinearity, 86, 95, 108, 109,
112, 115

Guckenheimer equation, see equation,
Guckenheimer

high-resolution scheme, see scheme,
high-resolution

Hugoniot curve, 95, 118, 131
C–J model, 277
reacting flow, 281

hyperbolicity (strict), 85, 98, 108

initial value problem (IVP), 12, 23, 25, 126,
130, 135, 137

interaction
k-curve, 95, 95, 100, 128, 132, 190, 192,

198, 204, 207, 287, 330
of waves, 64, 78, 189, 192, 195, 203, 207,
308

jump
condition, 11, 17, 88, 97, 105, 110, 112,

116, 118, 119
discontinuity, 15–17, 87, 90

Lagrangian coordinates, 113, 125, 288
Laval nozzle, 222
Lax entropy condition, see entropy, Lax

condition
linear GRP, 138, 139, 169, 245

reacting flow, 286

maximum–minimum principle, 24, 40, 54, 63
monotonicity, see scheme, monotonicity

algorithm
moving boundary tracking (MBT), 251, 252,

255
basic setup, 257
boundary line (polygon), 257
full algorithm, 264

moving grid points, 188, 221, 251, 252

moving step, 12, 16, 18, 51, 54, 55, 58, 313

numerical flux, see flux, numerical

operator splitting, 64, 65, 69, 236, 237, 242,
247, 260

particle paths, 107, 109, 114, 123

Rankine–Hugoniot condition, see jump
condition

Rayleigh line, 279, 281
reaction rate, 271, 276, 299
reaction zone, 282, 301
Riemann

invariants, 110, 125, 128, 131, 153
solution, 23, 38, 43, 98, 126, 127, 129
solver, 134, 288, 330

Riemann problem, 23, 82, 98, 126, 191, 247
associated, see associated Riemann

problem
C–J model, 281
generalized, see generalized Riemann

problem
linear GRP, see linear GRP
reacting flow, 286, 298–299

scalar conservation law
1-D linear, 8, 9, 49
1-D nonlinear, 7, 23, 49, 320
2-D nonlinear, 63
linear (2-D), 66

scheme
E1, 146, 176
E∞, 180
L1, 146, 179
L∞, 180
backward-difference, 25, 33, 34
basic GRP, 173, 176
conservative, 35, 247, 250
consistency, 26, 27
convergence, 28, 30, 31, 35, 39, 48, 320
finite-volume, 249
first-order, 27, 50
forward-difference, 25, 35
Godunov, 37, 39, 39, 50, 56, 185, 320, 321
GRP, 24, 35, 43, 52, 60, 185, 191, 219,

221, 222
GRP reacting flow, 298
high-resolution, 31, 61, 177, 180
Lax–Friedrichs, 25, 35, 50, 56
Lax–Wendroff, 26, 35, 52, 59
monotonicity algorithm, 48, 49, 53, 55
MUSCL, 180, 333
order of accuracy, 26, 27, 41
second-order, 27, 52, 59, 236, 238, 239, 241
split, 65
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stability, 30, 33, 34, 37, 65
upwind, 34, 35

shock, 8, 17, 17, 18, 23, 88, 116, 134,
218, 219

capturing, 52, 59, 80, 219, 222, 232, 307
formation, 56, 57, 61, 62, 307
k-admissible, 95, 95, 99, 112, 118, 122
rarefaction, 20, 22, 89, 94
stationary, 46, 56, 57, 61, 62, 74, 75, 225,
232, 307

shock tube problem, 184
simple wave, see wave, simple
singularity tracking, 251, 252
slope (numerical), 41

limiter, 44, 48
new, 44, 52

solution
classical, 12, 88, 101
discontinuous, 8, 82
self-similar, 23, 63, 70, 99, 130, 219
vanishing viscosity, 313
weak, 8, 11, 16–19, 22, 55, 82, 88, 101, 110,

116, 313
sonic

case, 23, 24, 43, 165
speed, 21

speed of sound, 107, 109
system of equations

compressible, inviscid flow, 103
conservation laws, 81, 103
Eulerian, 103, 116

Lagrangian, 115, 116
quasi-1-D, see flow, quasi-one-dimensional
reacting flow, 271
two-dimensional, 244, 245

thermodynamics
density, 103
energy (internal), 103
energy (total), 103
enthalpy, 118
entropy, 105, 119
first law of, 105
pressure, 103
temperature, 105

total derivative, 83
total variation, 40, 318, 320
triple point, 64, 78, 80, 308

wave
centered rarefaction, 17, 19, 19, 20, 23, 71,

73, 75, 78, 80, 84, 122–124, 138, 146,
276, 292, 315

interaction, see interaction, of waves
k-centered rarefaction, 86, 95, 99
self-similar, see solution, self-similar
shock, see shock
simple, 84
traveling, 8, 50, 283

Zeldovich–von Neumann–Döring (Z–N–D),
281–285
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