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Dedicated to

Henry J. Landau,

who has set the standard for excellence and creativity in
harmonic analysis and its applications.



ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide
the engineering, mathematical, and scientific communities with significant develop-
ments in harmonic analysis, ranging from abstract harmonic analysis to basic appli-
cations. The title of the series reflects the importance of applications and numeri-
cal implementation, but richness and relevance of applications and implementation
depend fundamentally on the structure and depth of theoretical underpinnings. Thus,
from our point of view, the interleaving of theory and applications and their creative
symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of cre-
ative cross-fertilization with diverse areas. The intricate and fundamental relation-
ship between harmonic analysis and fields such as signal processing, partial differ-
ential equations (PDEs), and image processing is reflected in our state-of-the-art
ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing, geo-
physics, pattern recognition, biomedical engineering, and turbulence. These areas
implement the latest technology from sampling methods on surfaces to fast algo-
rithms and computer vision methods. The underlying mathematics of wavelet theory
depends not only on classical Fourier analysis but also on ideas from abstract har-
monic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish with the scope and interaction that such a host of
issues demands.

vii



viii ANHA Series Preface

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications

Digital signal processing Sampling theory
Fast algorithms Spectral estimation

Gabor theory and applications Speech processing
Image processing Time-frequency and time-scale analysis

Numerical partial differential equations Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the devel-
opment of mathematics, on the understanding of many engineering and scientific
phenomena, and on the solution of some of the most important problems in mathe-
matics and the sciences. Historically, Fourier series were developed in the analysis
of some of the classical PDEs of mathematical physics; these series were used to
solve such equations. In order to understand Fourier series and the kinds of solu-
tions they could represent, some of the most basic notions of analysis were defined,
e.g., the concept of “function.” Since the coefficients of Fourier series are integrals,
it is no surprise that Riemann integrals were conceived to deal with uniqueness
properties of trigonometric series. Cantor’s set theory was also developed because
of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this latter
process leads to the Fourier analysis associated with correlation functions in filter-
ing and prediction problems, and these problems, in turn, deal naturally with Hardy
spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal pro-
cessing, whether with the fast Fourier transform (FFT), or filter design, or the adap-
tive modeling inherent in time-frequency-scale methods such as wavelet theory. The
coherent states of mathematical physics are translated and modulated Fourier trans-
forms, and these are used, in conjunction with the uncertainty principle, for deal-
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ing with signal reconstruction in communications theory. We are back to the raison
d’être of the ANHA series!

University of Maryland John J. Benedetto
College Park Series Editor



Preface

The chapters in these Volumes 3 and 4 have at least one author who spoke at the
February Fourier Talks during the period 2002–2013 or at the workshop on Phase-
less Reconstruction that immediately followed the 2013 February Fourier Talks.
Volumes 1 and 2 were limited to the period 2006–2011.

The February Fourier Talks (FFT)

The FFT were initiated in 2002 and 2003 as small meetings on harmonic analysis
and applications, held at the University of Maryland, College Park. There were no
FFTs in 2004 and 2005. The Norbert Wiener Center (NWC) for Harmonic Analysis
and Applications was founded in 2004 in the Department of Mathematics at the
university, and, since 2006, the FFT has been organized by the NWC. The FFT
has developed into a major annual conference that brings together applied and pure
harmonic analysts along with scientists and engineers from universities, industry,
and government for an intense and enriching 2-day meeting.

The goals of the FFT are the following:

• To offer a forum for applied and pure harmonic analysts to present their latest
cutting-edge research to scientists working not only in the academic community
but also in industry and government agencies;

• To give harmonic analysts the opportunity to hear from government and indus-
try scientists about the latest problems in need of mathematical formulation and
solution;

• To provide government and industry scientists with exposure to the latest research
in harmonic analysis;

• To introduce young mathematicians and scientists to applied and pure harmonic
analysis;

• To build bridges between pure harmonic analysis and applications thereof.

xi



xii Preface

These goals stem from our belief that many of the problems arising in engineer-
ing today are directly related to the process of making pure mathematics applicable.
The Norbert Wiener Center sees the FFT as the ideal venue to enhance this process
in a constructive and creative way. Furthermore, we believe that our vision is shared
by the scientific community, as shown by the steady growth of the FFT over the
years.

The FFT is formatted as a two-day single-track meeting consisting of 30-min
talks as well as the following:

• Norbert Wiener Distinguished Lecturer Series;
• General Interest Keynote Address;
• Norbert Wiener Colloquium;
• Graduate and Postdoctoral Poster Session.

The talks are given by experts in applied and pure harmonic analysis, including
academic researchers and invited scientists from industry and government agencies.

The Norbert Wiener Distinguished Lecture caps the technical talks of the first
day. It is given by a senior harmonic analyst, whose vision and depth through the
years have had profound impact on our field. In contrast to the highly technical day
sessions, the Keynote Address is aimed at a general public audience and highlights
the role of mathematics, in general, and harmonic analysis, in particular. Further-
more, this address can be seen as an opportunity for practitioners in a specific area
to present mathematical problems that they encounter in their work. The conclud-
ing lecture of each FFT, our Norbert Wiener Colloquium, features a mathematical
talk by a renowned applied or pure harmonic analyst. The objective of the Norbert
Wiener Colloquium is to give an overview of a particular problem or a new chal-
lenge in the field. We include here a list of speakers for these three lectures.

Distinguished Lecturer

• Ronald Coifman
• Ingrid Daubechies
• Ronald DeVore
• Richard Kadison
• Peter Lax
• Elias Stein
• Gilbert Strang

Keynote Address

• Peter Carr
• Barry Cipra
• James Coddington
• Nathan Crone
• Mario Livio
• William Noel
• Steven Schiff
• Mark Stopfer
• Frederick Williams

Colloquium

• Rama Chellappa
• Margaret Cheney
• Charles Fefferman
• Robert Fefferman
• Gerald Folland
• Christopher Heil
• Peter Jones
• Thomas Strohmer
• Victor Wickerhauser

In 2013, the February Fourier Talks were followed by a workshop on phaseless
reconstruction, also hosted by the Norbert Wiener Center and intellectually in the
spirit of the FFT.
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The Norbert Wiener Center

The Norbert Wiener Center for Harmonic Analysis and Applications provides a
national focus for the broad area of mathematical engineering. Applied harmonic
analysis and its theoretical underpinnings form the technological basis for this area.
It can be confidently asserted that mathematical engineering will be to today’s math-
ematics departments what mathematical physics was to those of a century ago.
At that time, mathematical physics provided the impetus for tremendous advances
within mathematics departments, with particular impact in fields such as differential
equations, operator theory, and numerical analysis. Tools developed in these fields
were essential in the advances of applied physics, e.g., the development of the solid
state devices, which now enable our information economy.

Mathematical engineering impels the study of fundamental harmonic analysis
issues in the theories and applications of topics such as signal and image process-
ing, machine learning, data mining, waveform design, and dimension reduction into
mathematics departments. The results will advance the technologies of this millen-
nium.

The golden age of mathematical engineering is upon us. The Norbert Wiener
Center reflects the importance of integrating new mathematical technologies and
algorithms in the context of current industrial and academic needs and problems.

The Norbert Wiener Center has three goals:

• Research activities in harmonic analysis and applications;
• Education—undergraduate to postdoctoral;
• Interaction within the international harmonic analysis community.

We believe that educating the next generation of harmonic analysts, with a strong
understanding of the foundations of the field and a grasp of the problems arising in
applications, is important for a high level and productive industrial, government,
and academic workforce.

The Norbert Wiener Center website: www.norbertwiener.umd.edu.

The Structure of the Volumes

To some extent the four parts for each of these volumes are artificial placeholders
for all the diverse chapters. It is an organizational convenience that reflects major
areas in harmonic analysis and its applications, and it is also a means to highlight
significant modern thrusts in harmonic analysis. Each part includes an introduction
that describes the chapters therein.
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Part IX consists of two chapters, that are as distinctive as their FFT authors are
distinguished. GILBERT STRANG spoke at FFT 2012 and ROBERT S. STRICHARTZ

spoke at FFT 2002, our first FFT; and their two chapters comprise Part I.
STRANG goes deeply into the analysis of the well-known factorization A = LPU

of an invertible n× n matrix A, where L is lower triangular, U is upper triangular,
and P is a unique permutation matrix. Recall that an n× n permutation matrix is
defined by the condition that it has the entry 1 in each row and in each column and
is 0 for all other entries. Natural adjustments of A = LPU lead to the Wiener–Hopf
form A =UPL and the Bruhat decomposition A =U1πU2.

The Wiener–Hopf form is a natural matricial formation of Wiener–Hopf’s method
to solve systems of integral equations, as well as certain systems of partial differ-
ential equations arising in mathematical physics. The basic technique of Wiener
and Hopf comes down to defining two complex functions Φ+ and Φ−, where Φ+

(respectively, Φ−) is analytic in the upper (respectivelylower) half-plane; and U
(respectively, L) is the analogue of Φ+ (respectively, Φ−).

The factorization, A = LPU , for an n× n matrix A, can be viewed classically
in terms of an interpretation of the Gaussian elimination method of solving n lin-
ear equations in n unknowns. Strang’s main results deal with elimination on banded
doubly infinite matrices. His insights are pivotal (sic) and magisterial, and his exam-
ples are truly enlightening.

BELLO, LI, AND STRICHARTZ outline a Hodge-de Rham theory of k-forms (k =
0,1,2) on a Sierpiǹski carpet. A wonderful aspect of this paper is that Strichartz’
two co-authors were undergraduates at the time of the research, and were part of
Strichartz’ now famous Research Experience for Undergraduates (REU) program
sponsored by the National Science Foundation (NSF).

The Sierpiǹski carpet is a fractal and the authors approximate it by a sequence of
graphs, use classical Hodge-de Rham theory on each graph, and take the limit.

The interplay of mathematical and computational tools is labyrinthine and fasci-
nating. The Sierpiǹski carpet, SC, itself is defined in terms of similarity maps, Fj, of
contraction ratio 1/3. It is the analogue in R

2 of the 1/3-Cantor set. However, SC is
a connected set, as well as being compact with Lebesgue measure 0. Further, it cuts
the plane into infinitely many disjoint parts. There is a natural way to associate a
sequence of graphs, Γm, to {Fj}∞j=1, and ultimately to define the associated de Rham
complex for each m. Then, there is extensive experimentation and the definition of
0-, 1-, and 2-forms on the SC and the analysis of the corresponding Laplacians. For

example, the Laplacian −Δ (m)
0 for the 0-form is exactly the graph Laplacian of Γm

with specified weights on the vertices and edges—all very heady-stuff, quite like de
Rham’s challenges to the lofty Alps.

Part of analysis, some of which is open-ended and important, is the character-
ization of the spectra of the Laplacian on k-forms. Some of the fascination is the
tantalizing possible relationship with the role of Laplacians on graphs with regard
to current interest in dimension reduction as related to “big data.”



The Algebra of Elimination

Gilbert Strang

Abstract Elimination with only the necessary row exchanges will produce the tri-
angular factorization A = LPU , with the (unique) permutation P in the middle. The
entries in L are reordered in comparison with the more familiar A = ̂P̂L̂U (where
̂P is not unique). Elimination with three other starting points 1, n and n, n and n, 1
produces three more factorizations of A, including the Wiener–Hopf form UPL and
Bruhat’s U1πU2 with two upper triangular factors.

All these starting points are useless for doubly infinite matrices. The matrix has
no first or last entry. When A is banded and invertible, we look for a new way
to establish A = LPU . The key is to locate the pivot rows (we also find the main
diagonal of A). LPU was previously known in the periodic (block Toeplitz) case
A(i, j) = A(i+b, j+b), by factoring a matrix polynomial.

Keywords Factorization · Elimination · Banded matrix · Infinite matrix · Bruhat ·
Wiener · Hopf

1 Introduction

The “pedagogical” part of this chapter presents the LPU factorization of an invert-
ible n by n matrix A :

A = LPU = (lower triangular)(permutation)(upper triangular).

The reader may feel that everything has been said about the algebra of elimination,
which produces L,P, and U . This is potentially true. But who said it, and where, is
not easy to discover. I hope you will feel that some of this is worth saying again.

G. Strang (�)
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: gilstrang@gmail.com

c© Springer International Publishing Switzerland 2015 3
R. Balan et al. (eds.), Excursions in Harmonic Analysis, Volume 3,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-3-319-13230-3 1

gilstrang@gmail.com


4 Gilbert Strang

The LPU form that algebraists like best (with P in the middle instead of the more
practical A = ̂P̂L̂U) is the least familiar within SIAM.

Once started in this direction, factorizations continue to appear. If elimination
begins at the last entry Ann and works upward, the result is UPL. Those are new
factors of A, and there must be relations to the original L,P, and U that we do not
know. More inequivalent forms A = U1πU2 and A = L1π L2 come from starting
elimination at An1 and at A1n. You may be surprised that the all-time favorite of
algebraists is Bruhat’s U1πU2 : hard to comprehend (but see Sect. 4).

The more original part of this chapter extends A = LPU to banded doubly infinite
matrices. What makes this challenging is that elimination has no place to begin. A11

is deep in the middle of A, and algebra needs help from analysis. The choice of pivot
appears to depend on infinitely many previous choices. The same difficulty arose for
Wiener and Hopf, because they wanted A = UL and singly infinite matrices have no
last entry Ann. This was overcome in the periodic (block Toeplitz) case, and in Sect.
6 we go further.

2 The Uniqueness of P in A = LPU

Theorem 1. The permutation P in A = LPU is uniquely determined by A.

Proof. Consider the s by t upper left submatrices of A and P. That part of the mul-
tiplication A = LPU leads to a = � pu for the submatrices, because L and U are
triangular :

[

a ∗
∗ ∗

]

=

[

� 0
∗ ∗

] [

p ∗
∗ ∗

] [

u ∗
0 ∗

]

gives a = � pu. (1)

The submatrix � is s by s and u is t by t. Both have nonzero diagonals (therefore
invertible) since they come from the invertible L and U . Then p has the same rank
as a = � pu. The ranks of all upper left submatrices p are determined by A, so the
whole permutation P is uniquely determined [7, 8, 14].

The number of 1’s in p is its rank, since those 1’s produce independent columns
(they come from different rows of P). The rule is that Pik = 1 exactly where the rank
of the upper left submatrices aik of A increases :

rank aik = 1+ rank ai−1,k−1 = 1+ rank ai−1,k = 1+ rank ai,k−1. (2)

In words, row i is dependent on previous rows until column k is included, and col-
umn k is dependent on previous columns until row i is included. When A = LPU is
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constructed by elimination, a pivot will appear in this i, k position. The pivot row
i(k) for elimination in column k will be the first row (the smallest i) such that (2)
becomes true. Since by convention rank pi0 = rank p0k = rank ai0 = rank a0k = 0,
the first nonzero in column 1 and in row 1 of A will determine Pi1 = 1 and P1k = 1.

In case the leading square submatrices aii are all nonsingular, which leads to
rank (aik) = min (i, k), rule (2) puts all pivots on the diagonal : Pii = 1. This is the
case P = I with no row exchanges and A = LU .

Elimination by columns produces the same pivot positions (in a different
sequence) as elimination by rows. For elimination with different starting points,
and also for infinite matrices, rule (2) is to be adjusted. Determining P so simply
from (1) is all-important.

We describe below how P can jump when A changes smoothly.

3 The Algebra of Elimination : A =LPU= ̂P̂L ̂U

Suppose elimination starts with A11 �= 0, and all leading submatrices akk are invert-
ible. Then we reach A = LU by familiar steps. For each j > 1, subtract a multiple
� j1 of row 1 from row j to produce zero in the j, 1 position. The next pivot position
2, 2 now contains the nonzero entry det (a22)/det (a11) : this is the second pivot.

Subtracting multiples � j2 of that second row produces zeros below the pivot in
column 2. For k = 1, . . . ,n, the kth pivot row becomes row k of U . The k, k pivot
position contains the nonzero entry det (akk)/det (ak−1,k−1). For lower rows j > k,
subtracting a multiple � jk of row k from row j produces zero in the j, k position.
Then the “magic of elimination” is that the matrix L of multipliers � jk times the
matrix U of pivot rows equals the original matrix A. Suppose n = 3 :

A = LU

⎡

⎣

row 1 of A
row 2 of A
row 3 of A

⎤

⎦ =

⎡

⎣

1 0 0
�21 1 0
�31 �32 1

⎤

⎦

⎡

⎣

row 1 of U
row 2 of U
row 3 of U

⎤

⎦ . (3)

The third row of that LU multiplication correctly states that

row3 of U = (row3 of A)− �31(row1 of U)− �32(row2 of U). (4)

Now we face up to the possibility of zeros in one or more pivot positions. If
akk is the first square upper left submatrix to be singular, the steps must change
when elimination reaches column k. A lower row i(k) must become the kth pivot
row. Based on the current matrix, we have an algebraic choice and an algorithmic
choice :
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Algebraic

Choose the first row i(k) that is not already a pivot row and has a nonzero entry
in column k (to become the kth pivot). Subtract multiples of this pivot row i(k) to
produce zeros in column k of all lower nonpivot rows. This completes step k.

Note

For A = LPU, the pivot row i(k) is not moved immediately into row k of the current
matrix. It will indeed be row k of U , but it waits for the permutation P (with Pi(k),k =
1) to put it there.

Algorithmic

Choose any row I(k) that is not already a pivot row and has a nonzero entry in
column k. Our choice of I(k) may maximize that pivot entry, or not. Exchange this
new pivot row I(k) with the current row k. Subtract multiples of the pivot row to
produce zeros in column k of all later rows.

Note

This process normally starts immediately at column 1, by choosing the row I(1) that
maximizes the first pivot. Each pivot row I(k) moves immediately into row k of the
current matrix and also row k of U .

The algebraic choice will lead to A = LPU and the algorithmic choice to
A = ̂P̂L̂U. If the choices coincide, so I(k) = i(k), the multipliers will be the same
numbers—but they appear in different positions in L and ̂L because row I(k) has
been moved into row k. Then ̂P = P and ̂U =U and ̂L = P−1LP from the reordering
of the rows. It is more than time for an example.

Example 1. The first pivot of A is in row i(1) = 2. The only elimination step is to
subtract � times that first pivot row from row 3. This reveals the second pivot in row
i(2) = 3. The order of pivot rows is 2,3,1 (and during LPU elimination they stay in
that order!) :

A =

⎡

⎣

0 0 3
1 a b
� �a+2 �b+ c

⎤

⎦

L−1
→

⎡

⎣

0 0 3
1 a b
0 2 c

⎤

⎦ = PU. (5)
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The permutation P has 1’s in the pivot positions. So its columns come from the
identity matrix in the order 2, 3, 1 given by i(k). Then U is upper triangular :

⎡

⎣

0 0 3
1 a b
0 2 c

⎤

⎦ =

⎡

⎣

0 0 1
1 0 0
0 1 0

⎤

⎦

⎡

⎣

1 a b
0 2 c
0 0 3

⎤

⎦ = PU. (6)

The lower triangular L adds � times row 2 of PU back to row 3 of PU . That entry
L32 = � recovers the original A from PU : the factorization is complete.

A =

⎡

⎣

1 0 0
0 1 0
0 � 1

⎤

⎦

⎡

⎣

0 0 3
1 a b
0 2 c

⎤

⎦ = L(PU) = LPU. (7)

Back to algebra.

Consider A = ̂P̂L̂U with no extra row exchanges : I(k) = i(k). Then ̂P and ̂U are the
same as P and U in the original A = LPU . But the lower triangular ̂L is different
from L. In fact P̂L = LP tells us directly that ̂L = P−1LP. This reordered matrix ̂L is
still lower triangular. It is this crucial property that uniquely identifies the specific
L that is constructed by elimination. Other factors L can enter into A = LPU , but
only the factor produced by elimination is “reduced from the left” with P−1LP also
lower triangular.

The uniqueness of this particular L is illustrated by an example with many possi-
ble L’s in A = LPU :

A =

[

0 1
1 a

]

=

[

1 0
� 1

] [

0 1
1 0

] [

1 u
0 1

]

provided a = �+u. (8)

Row 2 must be the first pivot row. There are no rows below that pivot row; the
unique “reduced from the left” matrix is L = I with �= 0. (And P−1IP = I is lower
triangular as required.) To emphasize : All nonzero choices of � are permitted in
A = LPU by choosing u = a− �. But that nonzero entry � will appear above the
diagonal in P−1LP. Elimination produced �= 0 in the unique reduced factor L.

The difference between L and ̂L in A = LPU and A = P̂LU can be seen in the 3
by 3 example. Both L and ̂L = P−1LP come from elimination, they contain the same
entries, but these entries are moved around when P comes first in A = P̂LU .
Example (Continued). ̂L comes from elimination when the pivot rows of A are
moved into 1, 2, 3 order in ̂A = (invP)A :

̂A =

⎡

⎣

1 a b
� �a+2 �b+ c
0 0 3

⎤

⎦

̂L
−1

→

⎡

⎣

1 a b
0 2 c
0 0 3

⎤

⎦ = U.
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We subtracted � times row 1 from row 2, and ̂L adds it back :

̂L =

⎡

⎣

1 0 0
� 1 0
0 0 1

⎤

⎦ .

This agrees with (7) after the reordering P−1LP. The nonzero entry is still below
the diagonal, confirming that the L chosen earlier is “reduced from the left.” No
elimination steps were required to achieve zeros in the 3, 1 and 3, 2 positions, so
̂L31 = ̂L32 = 0. In terms of the original A rather than the reordered ̂A, ̂Ljk = 0 when
i( j)< i(k).

To summarize :

A = LPU has a unique P, and a unique L reduced from the left. The permutation
in A = ̂P̂L ̂U is not unique. But if we exchange rows only when necessary to avoid
zeros in the pivot positions, ̂P will agree with P and ̂U =U . The lower triangular ̂L
in this better known form is P−1LP.

Elimination by Column Operations

To anticipate factorizations that are coming next, it is valuable (and satisfying) to
recognize that “column elimination” is equally valid. In this brief digression, multi-
ples of columns are subtracted from later columns. The result will be a lower trian-
gular matrix Lc. Those column operations use upper triangular matrices multiplying
from the right. The operations are inverted by an upper triangular matrix Uc. The
quick way to see all steps is to transpose A, factor as usual by row operations, and
transpose back.

When the pivot columns come in the natural order 1, 2, 3, elimination by columns
produces A = LcUc. This is identical to A = LU from row operations, except that the
pivots now appear in Lc. When we factor out the diagonal matrix D of pivots, the
uniqueness of L and U (from rows) establishes the simple link to Lc and Uc from
columns :

A = LcUc = (LcD−1)(DUc) = LU. (9)

In our 3 by 3 example, the first pivot (nonzero entry in row 1) is in column
k(1) = 3. Then the second pivot (nonzero in the current row 2) is in column k(2) = 1.
Column operations clear out row 2 in the last pivot column k(3) = 2 :

A =

⎡

⎣

0 0 3
1 a b
� �a+2 �b+ c

⎤

⎦

U−1
c→

⎡

⎣

0 0 3
1 0 b
� 2 �b+ c

⎤

⎦ = LcPc. (10)
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The permutation Pc has the rows of the identity matrix in the order 3, 1, 2 given
by k(i). Then Lc is lower triangular :

⎡

⎣

0 0 3
1 0 b
� 2 �b+ c

⎤

⎦ =

⎡

⎣

3 0 0
b 1 0

�b+ c � 2

⎤

⎦

⎡

⎣

0 0 1
1 0 0
0 1 0

⎤

⎦ = LcPc. (11)

The constantly alert reader will recognize that k(i) is the inverse of i(k). The per-
mutation Pc must agree with P by uniqueness. The factorization A = LcPcUc is com-
pleted when Uc undoes the column elimination by adding a times column 1 back to
column 2 :

A =

⎡

⎣

0 0 3
1 0 b
� 2 �b+ c

⎤

⎦

⎡

⎣

1 a 0
0 1 0
0 0 1

⎤

⎦ = (LcPc)Uc = LcPcUc. (12)

This matrix Uc is “reduced from the right” because Pc Uc P−1
c is still upper

triangular. Under this condition the factors in A = LcPcUc are uniquely determined
by A.

When Pc moves to the right, we can do extra column exchanges for the sake of
numerical stability. If | a |> 1 in our example, columns 1 and 2 would be exchanged
to keep the multiplier below 1.

In the 2 by 2 example, elimination using columns would move the nonzero entry
from U (earlier) into Lc (now) :

[

0 1
1 a

]

=

[

1 0
a 1

] [

0 1
1 0

] [

1 0
0 1

]

= LcPcUc. (13)

To summarize :

Column elimination can produce different triangular factors from row elimina-
tion, but L still comes before ̂U . In production codes, the practical difference would
come from the time to access columns instead of rows.

4 Bruhat Decomposition and Bruhat Order

Choosing the 1,1 entry as the starting point of elimination seems natural.
Probably the Chinese who first described the algorithm [13, 22] felt the same.
A wonderful history [11] by Grcar describes the sources from antiquity and then
Newton’s “extermination” algorithm. (In lecture notes that he didn’t want published,
Newton anticipated Rolle and Gauss.) But an algebraist can prefer to start at (n, 1),
and a hint at the reason needs only a few words.

A = LPU is built on two subgroups (lower triangular and upper triangular) of
the group GLn of invertible n by n real matrices. There is an underlying equivalence
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relation : A∼B if A= LBU for some triangular L and U . Thus GLn is partitioned into
equivalence classes. Because P was unique in Theorem 1, each equivalence class
contains exactly one permutation (from the symmetric group Sn of all permutations).
Very satisfactory but not perfect.

Suppose the two subgroups are the same (say the invertible upper triangular
matrices). Now A ∼ B means A = U1BU2 for some U1 and U2. Again GLn is par-
tioned into (new) equivalence classes, called “double cosets.” Again there is a single
permutation matrix π in each double coset from A =U1πU2. But now that the origi-
nal subgroups are the same (here is the obscure hint, not to be developed further) we
can multiply the double cosets and introduce an underlying algebra. The key point
is that this “Bruhat decomposition” into double cosets U πU succeeds for a large
and important class of algebraic groups (not just GLn).

Actually Bruhat did not prove this. His 1954 note [3] suggested the first ideas,
which Harish-Chandra proved. Then Chevalley [5] uncovered the richness of the
whole structure. George Lusztig gave more details of this (ongoing!) history in his
lecture [16] at the Bruhat memorial conference in Paris.

One nice point, perhaps unsuspected by Bruhat, was the intrinsic partial order of
the permutations π . Each π is shared by all the matrices U1πU2 in its double coset.
We might expect the identity matrix π = I to come first in the “Bruhat order” but
instead it comes last. For a generic n by n matrix, the permutation in A=U1πU2 will
be the reverse identity matrix π = J corresponding to (n, . . . ,1). Let me connect all
these ideas to upward elimination starting with the n, 1 entry of A.

The first steps subtract multiples of row n from the rows above, to produce zeros
in the first column (above the pivot An1). Assume that no zeros appear in the pivot
positions along the reverse diagonal from n, 1 to 1, n. Then upward elimination ends
with zeros above the reverse diagonal :

⎡

⎢

⎣

∗©
∗© ∗

∗© ∗ ∗

⎤

⎥

⎦ =

⎡

⎢

⎣

1

1

1

⎤

⎥

⎦

⎡

⎢

⎣

∗© ∗ ∗
∗© ∗
∗©

⎤

⎥

⎦ = JU2. (14)

The upward elimination steps are taken by upper triangular matrices. Those are
inverted by an upper triangular U1 (containing all the multipliers). This generic case
has produced A =U1JU2.

At stage k of Bruhat elimination, the pivot row is the lowest row that begins with
exactly k− 1 zeros. Then that stage produces zeros in column k for all other rows
that began with k−1 zeros. These upward elimination steps end with a matrix πU2,
where the permutation π is decided by the order of the pivot rows. The steps are
inverted by U1, so the product U1πU2 recovers the original A and gives its Bruhat
decomposition.

In the Bruhat partial order, the reverse identity J comes first and I comes last.
The permutations P in A = LPU , from elimination that starts with A11, fall naturally
in the opposite order. These orders can be defined in many equivalent ways, and this
is not the place for a full discussion. But one combinatorial definition fits perfectly
with our “rank description” of the pivot positions in Eq. (2) :
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In the Bruhat order for LPU decomposition (elimination starting at A11), two permutations
have P≤ P′ when all their upper left s by t submatrices have rank (pst)≥ rank (p′st).

Example 2. An =

[

1/n 1

1 0

]

has Pn =

[

1 0

0 1

]

but in the limit A∞ =

[

0 1

1 0

]

= P∞. Here

Pn < P∞.

The rank of the upper left 1 by 1 submatrix of An drops to zero in the limit A∞.
Our (small) point is that this semicontinuity is always true : ranks can drop but not
rise. The rank of a limit matrix never exceeds the limit (or lim inf) of the ranks.
The connection between rank and Bruhat order leads quickly to a known conclusion
about the map P(A) from A in GLn to P in Sn :

Theorem 2. Suppose An = LnPnUn approaches A∞ = L∞P∞U∞ and the permutations
Pn approach a limit P. Then P≤P∞ in the Bruhat order for LPU (reverse of the usual
Bruhat order for the π’s in U1πU2).

Roughly speaking, A∞ may need extra row exchanges because ranks can drop.

5 Singly Infinite Banded Matrices

Our first step toward new ideas is to allow infinite matrices. We add the requirement
that the bandwidth w is finite : Ai j = 0 if | i− j |> w. Thus A is a “local” operator.
Each row has at most 2w+1 nonzeros. Each component in the product Ax needs at
most 2w+1 multiplications.

To start, assume that no finite combination of rows or of columns produces the
zero vector (except the trivial combination). Elimination can begin at the 1,1 posi-
tion and proceed forever. The output is a factorization into A = LPU . Those three
factors are banded, but L and U are not necessarily bounded.

An example will show how far we are from establishing that L and U are
bounded. A is block diagonal and each block Bk of A factors into LkUk with Pk = I :

Bk =

[

εk −1

1 0

]

=

[

1 0

ε−1
k 1

][

εk −1

0 ε−1
k

]

= LkUk. (15)

If εk approaches zero in a sequence of blocks of A, the pivots εk and ε−1
k approach

zero and infinity. The block diagonal matrices L and U (with blocks Lk and Uk) are
unbounded. At the same time A is bounded with bounded inverse :

The blocks in A−1 are B−1
k =

[

0 1

1 −εk

]

.

To regain control, assume in the rest of this section that A is Toeplitz or block
Toeplitz. This time invariance or shift invariance is expressed by Ai j = A j−i. The
scalars or square blocks Ak are repeated down the kth diagonal. It would be hard
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to overstate the importance of Toeplitz matrices. They can be finite or infinite—in
many ways doubly infinite is the simplest of all.

Examples will bring out the intimate link between the matrix A and its symbol
a(z), the polynomial in z and z−1 with coefficients Ak. Suppose A is tridiagonal
(w = 1) :

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

5 −2

−2 5 −2

−2 5 •
• •

⎤

⎥

⎥

⎥

⎥

⎥

⎦

corresponds to a(z) =−2z−1 +5−2z.

With z = eiθ , the symbol a(eiθ ) becomes 5− 4cos θ . This is positive for all θ ,
so A is positive definite. The symbol factors into a(z) = (2− z)(2− z−1) = u(z)�(z).
The singly infinite matrix factors in the same way (and notice U before L) :

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2 −1

2 −1

2 −1

•

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2

−1 2

−1 2

−1 •

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= UL. (16)

This was a spectral factorization of a(z), and a Wiener–Hopf factorization
A =UL.

When elimination produces A = LU by starting in the 1,1 position, the result is
much less satisfying : L and U are not Toeplitz. They are asymptotically Toeplitz
and their rows eventually approach the good factors UL.

One key point is that A =UL does not come from straightforward elimination—
because an infinite matrix has no corner entry Ann to start upward elimination. We
factored a(z) instead.

Another key point concerns the location of the zeros of u(z) = 2− z and �(z) =
2− z−1. Those zeros z = 2 and z = 1/2 satisfy | z |> 1 and | z |< 1 respectively.
Then L and U have bounded inverses, and those Toeplitz inverses correspond to
1/�(z) and 1/u(z) = 1/(2− z) = 1

2 +
1
4 z+ 1

8 z2 + · · ·.
If we had chosen the factors badly, u(z) = 1− 2z and �(z) = 1− 2z−1 still

produce a = u� and A =UL :

A =

⎡

⎢

⎢

⎢

⎢

⎣

1 −2

1 −2

1 −2

•

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

1

−2 1

−2 1

−2 •

⎤

⎥

⎥

⎥

⎥

⎦

= UL. (17)

The formal inverses of U and L have 1,2,4,8, . . . on their diagonals, because the
zeros of u(z) and �(z) are inside and outside the unit circle—the wrong places.
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Nevertheless U in (17) is a useful example. It has x=
(

1, 1
2 ,

1
4 , . . .

)

in its nullspace :
Ux = 0 because u

(

1
2

)

= 0. This is a Fredholm matrix because the nullspaces of U
and UT are finite-dimensional. Notice that UT = L has nullspace = {0} . The Fred-
holm index is the difference in the two dimensions :

index (U) = dim (nullspace of U) − dim (nullspace of UT)

index (L) = 1−0.
The index of L in (17) is −1; the two nullspaces are reversed. The index of the
product A =UL is 1−1 = 0. In fact A is invertible, as the good factorization shows :

Ax = b is solved by x = A−1b = L−1(U−1b). (18)

The key to invertibility is a(z) = u(z)�(z), with the correct location of zeros to make
U and L and thus A = UL invertible. The neat way to count zeros is to use the
winding number of a(z).

Theorem 3. If a(z) = Σ Akzk starts with A−m z−m and ends with AM zM, we need
M zeros with | z |> 1 and m zeros with | z |< 1 (and no zeros with | z |= 1). Then
a(z) = u(z)�(z) and A =UL and those factors are invertible.

The matrix case is harder. A is now block Toeplitz. The Ak that go down diag-
onal k are square matrices, say b by b. It is still true (and all-important) that
complete information about the operator A is contained in the matrix polynomial
a(z) = Σ Akzk. The factorization of a(z) remains the crucial problem, leading as
before to A = UL. Again this achieves “upward elimination without a starting
point Ann.”

The appropriate form for a matrix factorization is a product up� :

a(z) = u(z)p(z)�(z)withp(z) = diag(zk(1), . . . ,zk(b)).

The polynomial factor u(z) gives the banded upper triangular block Toeplitz matrix
U . The third factor �(z) is a polynomial in z−1 and it produces L. The diagonal
p(z) yields a block Toeplitz matrix P. (It will be a permutation matrix in the doubly
infinite case, and we reach A = UPL.) The diagonal entry zk( j) produces a 1 in the
jth diagonal entry of the block Pk of P.

Example 3. Suppose the up� factorization of a(z) has �(z) = I :

a(z) =

[

z−1 0

1 z

]

=

[

1 0

z 1

][

z−1 0

0 z

][

1 0

0 1

]

. (19)

For doubly infinite block Toeplitz matrices, this gives A =UPL with L = I. Then A
is invertible. But for singly infinite matrices, the first row of UPL is zero. You see
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success in rows 3–4, 5–6, . . . which are not affected by the truncation to this singly
infinite UPL with L = I :

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0

0 1

0 0

1 0

1 0

0 1

0 0

1 0

1 0

0 1

0 0

1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

0 0

0 0

0 1

1 0

0 0

0 0

0 0

0 0

0 1

1 0

0 0

0 0

0 0

0 0

0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

1 0

0 0

0 1

1 0

0 0

0 0

1 0

0 0

0 1

1 0

0 0

0 0

1 0

0 0

0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

rows 3−4 of A

rows 5−6 of A.

The missing nonzero in row 1 comes from the entry z−1 in p(z). Invertibility of
A in the singly infinite case requires all the exponents in p(z) to be k( j) = 0. Those
“partial indices” give the dimensions of the nullspaces of A and AT (here 1 and 1).
Invertibility in the doubly infinite case only requires Σ k( j) = 0. In both cases this
sum is the Fredholm index of A (here 0), equal to the winding number of det a(z).

The matrix factorization a(z) = u(z)p(z) �(z) has a long and very distinguished
history. The first success was by Plemelj [19] in 1908. Hilbert and G.D. Birkhoff
contributed proofs. Wiener and Hopf found wide applications to convolution equa-
tions on a half-line, by factoring A into UL when P = I. The algebraic side was
developed by Grothendieck, and the analytic side by the greatest matrix theorist of
the twentieth century : Israel Gohberg. My favorite reference, for its clarity and its
elementary constructive proof, is by Gohberg, Kaashoek, and Spitkovsky [10].

In the banded doubly infinite case, a bounded (and block Toeplitz) inverse only
requires that a(z) is invertible on the unit circle : det a(z) �= 0 for | z |= 1. Then
a = up� and the reverse factorization into �pu give A = UPL and A = LPU with
invertible block Toeplitz matrices. P and P are permutations of the integers.

All these are examples of triangular factorizations when elimination has no start-
ing point. We presented them as the most important examples of their kind—when
the periodicity of A reduced the problem to factorization of the matrix polynomial
a(z).

6 Elimination on Banded Doubly Infinite Matrices

We have reached the question that you knew was coming. How can elimination get
started on a doubly infinite matrix ? To produce zeros in column k, −∞< k <∞, we
must identify the number i(k) of the pivot row. When that row is ready for use, its
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entries before column k are all zero. Multiples � ji of this row are subtracted from
lower rows j > i, to produce zeros below the pivot in column k of PU . The pivot
row has become row i(k) of PU , and it will be row k of U .

Clearly i(k)≤ k+w, since all lower rows of a matrix with bandwidth w are zero
up to and including column k. So the submatrix C(k) of A, containing all entries Ai j

with i≤ k+w and j≤ k, controls elimination through step k. Rows below k+w and
columns beyond k will not enter this key step : the choice of pivot row i(k).

We want to establish these facts in Lemma 1 and Lemma 2 :

1. The nullspaces N(C) and N(CT) are finite-dimensional : Infinite
matrices with this Fredholm property behave in important ways like finite matri-
ces.

2. The index −d of C(k), which is dim N(C)−dim N(CT), is independent of k.
3. In the step from C(k−1) to C(k), the new kth column is independent of previous

columns by the invertibility of A. (All nonzeros in column k of A are included
in rows k−w to k +w of C(k).) Since index (C(k)) = index (C(k− 1)), the
submatrix C(k) must contain exactly one row i(k) that is newly independent of
the rows above it. Every integer i is eventually chosen as i(k) for some k.

4. Let B(k) be the submatrix of C(k) formed from all pivot rows i( j), j≤ k. Elimi-
nation can be described non-recursively, in terms of the original matrix. We have
removed the lowest possible d rows of C(k) to form this invertible submatrix
B(k). Those d nonpivot rows are combinations of the rows of B(k). Elimination
subtracts those same combinations of the rows of A to complete step k. (The
example below shows how these combinations lead to L−1, where recursive
elimination using only the pivot row (and not all of B) leads directly to L.)
The figure shows the submatrix C(k). Removing the d dependent rows leaves
the invertible submatrix B(k).

5. When elimination is described recursively, the current row i(k) has all zeros
before column k. It is row i(k) of PU . The multipliers � ji will go into column i
of a lower triangular matrix L, with Lii = 1. Then A = LPU with Pk, i(k) = 1 in
the doubly infinite permutation matrix P. The pivot row becomes row k of the
upper triangular U .



16 Gilbert Strang

We may regard “fact 5” as the execution of elimination, and “facts 1, 2, 3, 4” as the
key steps in selecting the pivot rows. Our whole argument will rest on the stability
of the index, not changing with k. This fact is familiar when A is a finite matrix! If C
is an m by n submatrix of rank r, its index is n−m (this is the difference in nullspace
dimensions n− r and m− r). When a new row and column increase m and n by 1,
their difference is unchanged.

Lemma 1 extends that rule to banded infinite Fredholm matrices.

Lemma 1. C(k) is a Fredholm matrix and its index is independent of k.

Proof. The invertible operator A is Fredholm with index dim N(A) −
dim N(AT) = 0− 0. We are assuming that A is invertible on the infinite sequence
space �2(Z). Key point : Perturbation by a finite rank matrix like D, or by any com-
pact operator, leaves index = 0. Therefore A and AT have equal index 0:

A =

[

C(k) D(k)

0 E(k)

]

and A′ =

[

C(k) 0

0 E(k)

]

For banded A, the submatrix D(k) contains only finitely many nonzeros (thus A−A′

has finite rank). Now we can separate C from E :

A′ =

[

C(k) 0

0 I

][

I 0

0 E(k)

]

=

[

I 0

0 E(k)

][

C(k) 0

0 I

]

.

These two commuting factors are Fredholm since A′ is Fredholm [8]. The indices of
the two factors are equal to the indices of C(k) and E(k). Those indices add to index
(A′) = index (A) = 0.

Now change k. Since C(k−1) comes from C(k) by deleting one row and column,
the index is the same. Strictly speaking, the last row and column of C(k) are replaced
by (. . . ,0,0,1). This is a finite rank perturbation of C(k): no change in the index.
And the index of this matrix diag (C(k−1), 1) equals the index of C(k−1).

Marko Lindner showed me this neat proof of Lemma 1, which he uses to define
the “plus-index” and “minus-index” of the outgoing and incoming singly infinite
submatrices A+ and A− of A. These indices are independent of the cutoff position
(row and column k) between A− and A+. The rapidly growing theory of infinite
matrices is described in [4, 15, 21].

Lemma 2. There is a unique row number i(k), with | i− k |≤ w, such that

row i(k) of C(k−1) is a combination of previous rows of C(k−1)

row i(k) of C(k) is not a combination of previous rows of C(k).

Proof. By Lemma 1, the submatrices C(k) all share the same index −d. Each
submatrix has nullspace = {0}, since C(k) contains all nonzeros of all columns
≤ k of the invertible matrix A. With index −d, the nullspace of every C(k)T has
dimension d. This means that d rows of C(k) are linear combinations of previous
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rows. Those d rows of C(k) must be among rows k−w+ 1, . . . ,k +w (since the
earlier rows of C(k) contain all nonzeros of the corresponding rows of the invertible
matrix A).

C(k) has one new row and column compared to C(k− 1). Since d is the same
for both, there must be one row i(k) that changes from dependent to independent
when column k is included. In C(k−1), that row was a combination of earlier pivot
rows. In A, we can subtract that same combination of earlier rows from row i(k).
This leaves a row whose first nonzero is in column k. This is the kth pivot row.

Notice that this pivot row was not constructed recursively (the usual way). This
row never changes again, it will be row i(k) of the matrix PU when elimination
ends, and it will be row k of U . The example below shows how the d dependencies
lead to L−1.

Let A(k− 1) denote the doubly infinite matrix after elimination is complete on
columns < k of A. Row i(k) of A(k− 1) is that kth pivot row. By subtracting mul-
tiples � ji of this row from later non-pivot rows, we complete step k and reach A(k).
This matrix has zero in columns ≤ k of all d rows that are combinations of earlier
pivot rows. The multipliers are � ji = 0 for all rows j > k+w, since those rows (not
in C(k)) are and remain zero in all columns ≤ k.

Each row is eventually chosen as a pivot row, because row k−w of C(k) has all
the nonzeros of row k−w of A. That row cannot be a combination of previous rows
when we reach step k; it already was or now is a pivot row. The bandwidth w of the
permutation P (associated with the ordering i(k) of the integers) is confirmed.

This completes the proof of facts 1, 2, 3, 4 and A = LPU .

Theorem 4. Each banded invertible doubly infinite matrix factors into A = LPU.

Toeplitz example with diagonals−2, 5,−2 (now doubly infinite). The correct choice
of pivot rows is i(k) = k for all k. The invertible upper left submatrix B(k− 1) has
5 along its diagonal. The matrix C(k− 1) includes also the dependent row k below
(here w = 1 and d = 1). To see the dependency, multiply rows k−1, k−2, k−3, . . .
by 1

2 , 1
4 , 1

8 , . . . and add to row k:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

5 −2

−2 5 −2

−2 5 −2

0 0 −2 5 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

→
k−1

k

⎡

⎢

⎢

⎢

⎢

⎢

⎣

5 −2

−2 5 −2

−2 5 −2

0 0 0 4 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(20)

Row k of A has become row k of PU (also row k of U , since P = I). The matrix
L−1 that multiplies A to produce PU has those coefficients 1, 1

2 , 1
4 , . . . leftward

along each row. Then its inverse, which is L, has 1,− 1
2 , 0, 0, . . . down each column.

This was nonrecursive elimination. It produced the pivot row . . ., 0, 4, −2, 0, . . .
by solving one infinite system. We can see normal recursive elimination by using
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this pivot row to remove the −2 that still lies below the pivot 4. The multiplier in L
is − 1

2 .
Suppose we make the incorrect pivot choice i(k) = k−1 for all k. That gives P =

doubly infinite shift. It leads to an LPU factorization of A that we don’t want, with
L = (A)(inverseshift) and P = (shift) and U = I. This lower triangular L has −2, 5,
−2 down each column. (To maintain the convention Lii = 1, divide this L by−2 and
compensate with U =−2I.)

Recursively, this looks innocent. We are using the −2’s above the diagonal to
eliminate each 5 and −2 below them. But when the singly infinite submatrix in (20)
loses its last row . . . , −2, 5 (and becomes lower triangular with −2 on its diagonal
instead of 5), it is no longer invertible. The vector

(

. . . , 1
4 ,

1
2 ,1

)

is in its nullspace.
The correct choice had bidiagonal L and U as in (16).

In the language of Sect. 5, this lower triangular matrix has roots at 2 and 1
2 .

It cannot have a bounded inverse. The misplaced root produced that vector in the
nullspace.

Theorem 5. The nonzero entries of P, L, U lie in bands of width 2w :

Pik = 0 if | i− k |> w

Lik = 0 if i− k > 2w (and if i < k)

Uik = 0 if k− i > 2w (and if k < i).

Proof. For finite matrices, the rank conditions (2) assure that Pik = 1 cannot happen
outside the diagonal band | i− k |≤ w containing all nonzeros of A. Then

A = LPU gives L = AU−1P−1 = AU−1P
T
.

The factor U−1PT cannot have nonzeros below subdiagonal w, since U−1 is upper
triangular. Then L cannot have nonzeros below subdiagonal 2w.

Similarly the matrices PTL−1 and A are zero above superdiagonal w. So their
product U = PTL−1A is zero above superdiagonal 2w.

For infinite matrices, the choice of row i(k) as pivot row in Lemma 2 satisfies
| i− k |≤ w. Thus P again has bandwidth w. The entries � ji multiply this pivot row
when it is subtracted from lower rows of C(k). Since row k+w is the last row of
C(k), its distance from the pivot row cannot exceed 2w.

Pivot rows cannot have more than 2w nonzeros beyond the pivot. So when they
move into U with the pivot on the diagonal, U cannot have nonzeros above super-
diagonal 2w.

The extreme cases are matrices with all nonzeros on subdiagonal and
superdiagonal w. These show that the bands allowed by Theorem 5 can be attained.
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7 Applications of A = LPU

In this informal final section, we comment on the doubly infinite A = LPU and a
few of its applications.

7.1 If A is a block Toeplitz matrix, so that A(i, j) = A(i+ b, j + b) for all i and
j, then L, P, and U will have the same block Toeplitz property. The multi-
plication A = LPU of doubly infinite matrices translates into a multiplication
a(z) = �(z) p(z)u(z) of b by b matrix polynomials. Our result can be regarded
as providing a new proof of that classical factorization.
This new proof is non-constructive because the steps from original rows (of
A) to pivot rows (of PU) require the solution of singly-infinite systems with
matrices B(k). The constructive solution of those systems would require the
Wiener-Hopf idea that is itself based on a(z) = u(z) p(z)�(z) : a vicious circle.

7.2 Infinite Gram–Schmidt. From the columns a1, . . ., an of an invertible matrix
A we can produce the orthonormal columns q1, . . ., qn of Q. If each qk is a
combination of q1, . . . ,qk−1,ak, then each ak is a combination of q1, . . . ,qk.
This means that A is factored into Q times an upper triangular matrix R. The
question is how to start the process when A is doubly infinite.
Notice that QTQ = I leads to ATA = (QR)T(QR) = RTR. This is a special LU
factorization (Cholesky factorization) of the symmetric positive definite matrix
ATA. The factors RT and R will have the same main diagonal, containing the
square roots of the pivots of ATA (which are all positive).
If A is doubly infinite and banded, so is ATA. Then its factorization in the sec-
tion “Elimination on Banded Doubly Infinite Matrices” produces RTR. The
invertible submatrices B(k) in the proof share the main diagonal of ATA. All
their inverses are bounded by ‖ (ATA)−1 ‖. No permutation P is needed to reach
the triangular factor R.
Now Q = AR−1 has orthonormal columns qk. Each qk is a combination of the
original a j, j ≤ k. Q is banded below its main diagonal but not above—apart
from the exceptional cases when R has a banded inverse.

7.3 Theorem 1 came from the observation that the upper left submatrices of A, L,
P, U satisfy a = � pu. With doubly infinite matrices and singly infinite sub-
matrices, this remains true. The ranks of diagonal blocks A+ and A− are now
infinite, so we change to nullities. But as the block diagonal example in Sect. 5
made clear, L and U and their inverses may not be bounded operators. At this
point the uniqueness of P comes from its construction (during elimination) and
not from Theorem 1.

7.4 In recent papers we studied the group of banded matrices with banded inverses
[23–25]. These very special matrices are products A = F1 . . . FN of block diag-
onal invertible matrices. Our main result was that A = F1F2 if we allow blocks
of size 2w, and then N ≤Cw2 when the blocks have size ≤ 2. The key point is
that the number N of block diagonal factors is controlled by w and not by the
size of A. The proof uses elimination and A can be singly infinite.
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We have no proof yet when A is doubly infinite. It is remarked in [23] that A =
LPU reduces the problem to banded triangular matrices L and U with banded
inverses. We mention Panova’s neat factorization [18] of P (whose inverse is
PT). With bandwidth w, a singly infinite P is the product of N < 2w parallel
exchanges of neighbors (block diagonal permutations with block size ≤ 2).
A doubly infinite P will require a power of the infinite shift matrix S, in addition
to F1 . . . FN . This power s(P) is the “shifting index” of P and | s |≤w. The main
diagonal is not defined for doubly infinite matrices, until the shifting index
s(A) = s(P) tells us where it ought to be. This agrees with the main diagonal
located by de Boor [bi : 006].

7.5 For singly infinite Fredholm matrices the main diagonal is well defined. It is
located by the Fredholm index of A. When the index is zero, the main diagonal
is in the right place. (Still A may or may not be invertible. For a block Toeplitz
matrix invertibility requires all partial indices k( j) to be zero, not just their
sum.)
The proof of Lemma 1 showed why the Fredholm indices of the incoming A−
and outgoing A+ are independent of the cutoff position (row and column k).
When A is invertible, that “minus-index” and “plus-index” add to zero. The
connection to the shifting index was included in [23].

Theorem 6. The shifting index of a banded invertible matrix A (and of its per-
mutation P) equals the Fredholm index of A+ (the plus-index).
Check when A is the doubly infinite shift matrix S with nonzero entries Si, i+1 = 1.
Then P coincides with S and has shifting index 1 (one S in its factorization into
bandwidth 1 matrices). The outgoing submatrix A+ is a singly infinite shift with
(1,0,0, . . .) in its nullspace. Then AT

+x = 0 only for x = 0, so the Fredholm index
of A+ is also 1.
A deep result from the theory of infinite matrices [20, 21] concerns the Fredholm
indices of the limit operators of A.

7.6 I would like to end with a frightening example. It shows that the
associative law A(Bx) = (AB)x can easily fail for infinite matrices. I always
regarded this as the most fundamental and essential law! It defines AB (by com-
position), and it is the key to so many short and important proofs that I push
my linear algebra classes to recognize and even anticipate a “proof by moving
the parentheses.”
The example has Bx = 0 but AB = I. And 0 = A(Bx) = (AB)x = x is false.

A =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1 •
0 1 1 •
0 0 1 •
0 0 0 •

⎤

⎥

⎥

⎥

⎥

⎦

B =

⎡

⎢

⎢

⎢

⎢

⎣

1 −1 0 •
0 1 −1 •
0 0 1 •
0 0 0 •

⎤

⎥

⎥

⎥

⎥

⎦

x =

⎡

⎢

⎢

⎢

⎢

⎣

1

1

1

•

⎤

⎥

⎥

⎥

⎥

⎦

(21)

This is like the integral of the derivative of a constant. A is an unbounded opera-
tor, the source of unbounded difficulty. A direct proof of the law A(Bx) = (AB)x



The Algebra of Elimination 21

would involve rearranging series. Riemann showed us that without absolute
convergence, which is absent here, all sums are possible if an → 0.
This example has led me to realize that grievous errors are all too possible with
infinite matrices. I hope this paper is free of error. But when elimination has no
starting point (and operator theory is not developed in detail), it is wise to be
prepared for the worst.
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Type Fractals

Jason Bello∗, Yiran Li, and Robert S. Strichartz†

Abstract We outline a Hodge-de Rham theory of k-forms (for k = 0,1,2) on two
fractals: the Sierpinski Carpet (SC) and a new fractal that we call the Magic Carpet
(MC), obtained by a construction similar to that of SC modified by sewing up the
edges whenever a square is removed. Our method is to approximate the fractals by
a sequence of graphs, use a standard Hodge-de Rham theory on each graph, and
then pass to the limit. While we are not able to prove the existence of the limits,
we give overwhelming experimental evidence of their existence, and we compute
approximations to basic objects of the theory, such as eigenvalues and eigenforms
of the Laplacian in each dimension, and harmonic 1-forms dual to generators of 1-
dimensional homology cycles. On MC we observe a Poincare type duality between
the Laplacian on 0-forms and 2-forms. On the other hand, on SC the Laplacian on 2-
forms appears to be an operator with continuous (as opposed to discrete) spectrum.
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1 Introduction

There have been several approaches to developing an analogue of the Hodge-de
Rham theory of k-forms on the Sierpinski gasket (SG) and other post-critically
finite (pcf) fractals ([1, 8–14, 16, 17]). In this chapter we extend the approach in
[1] to the Sierpinski carpet (SC) and a related fractal that we call the magic carpet
(MC). These fractals are not finitely ramified, and this creates technical difficulties
in proving that the conjectured theoretical framework is valid. On the other hand, the
structure of “2-dimensional” cells intersecting along “1-dimensional” edges allows
for a nontrivial theory of 2-forms. Our results are largely experimental, but they lead
to a conjectured theory that is more coherent than for SG.

The approach in [1] is to approximate the fractal by graphs, define k-forms and
the associated d, δ , Δ operators on them, and then pass to the limit. In the case of
SC there is a natural choice of graphs. Figure 1 shows the graphs on levels 0, 1,
and 2.

Fig. 1 The graphs approximating SC on levels 0,1, and 2

SC is defined by the self-similar identity:

SC =
∞
⋃

j=1

Fj(SC)

where Fj is the similarity map of contraction ratio 1/3 from the unit square to one
of the eight of the nine subsquares (all except the center square) after tic-tac-toe
subdivision. We define the sequence of graphs

Γm =
∞
⋃

j=1

Fj(Γm−1)

with the appropriate identification of vertices in Fj(Γm−1) and Fk(Γm−1). Note that a
hole in SC on level m does not become visible on the graph until level m+1, but it

will influence the definition of 2-cells. We denote by E(m)
0 the vertices of Γm. A 0-

form on level m is just a real-valued function f (m)
0 (e(m)

0 ) defined on e(m)
0 ∈ E(m)

0 . We

denote the vector space of 0-forms by Λ (m)
0 . The edges E(m)

1 of Γm exist in opposite

orientations e(m)
1 and −e(m)

1 , and a 1-form (element of Λ (m)
1 ) is a function on E(m)

1
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satisfying

f (m)
1 (−e(m)

1 ) =− f (m)
1 (e(m)

1 ).

By convention we take vertical edges oriented upward and horizontal edges oriented
to the right. We denote by Em

2 the squares in Γm that bound a cell Fω(SC), where
ω = (ω1, ...,ωm) is a word of length m, ω j = 1,2, ...,8 and Fω = Fω1 ◦Fω2 ◦ ...◦Fωm .
Thus an element em

2 of Em
2 consists of the subgraph of Γm consisting of the four

vertices {Fω(e0
0) : e0

0 ∈ E(0)
0 }. In particular, there are eight elements of E(1)

2 , even

thought the central square is a subgraph of the same type. In general #E(m)
2 = 8m,

and we will denote squares by the word ω that generates them. A 2-form is defined

to be a function f (m)
2 (ω) on E(m)

2 .
The boundary of a square consists of the four edges in counterclockwise orien-

tation. With our orientation convention the bottom and right edges will have a plus
sign and the top and left edges will have minus sign. We build a signum function to

do the bookkeeping: if e(m)
1 ⊆ e(m)

2 then

sgn(e(m)
1 ,e(m)

2 ) =

⎧

⎪

⎨

⎪

⎩

+1 top and right

−1 bottom and left

0 e(m)
1 is not a boundary edge of e(m)

2 .

It is convenient to define sgn(e(m)
1 ,e(m)

2 ) = 0 if e(m)
1 is not a boundary edge of e(m)

2 .

Similarly, if e(m)
1 is an edge containing the vertex e(m)

0 , define

sgn(e(m)
0 ,e(m)

1 ) =

⎧

⎪

⎨

⎪

⎩

+1 e(m)
0 is top and right

−1 e(m)
0 is bottom and left

0 e(m)
0 is not an endpoint of e(m)

1 .

It is easy to check the consistency condition

∑
e(m)

1 ∈E(m)
1

sgn(e(m)
0 ,e(m)

1 )sgn(e(m)
1 ,e(m)

2 ) = 0 (1)

for any fixed e(m)
0 and e(m)

2 , since for e(m)
0 ∈ e(m)

2 there are only two nonzero sum-
mands, one +1 and the other -1.

We may define the de Rham complex

0→Λ (m)
0

d(m)
0−−→Λ (m)

1

d(m)
1−−→Λ (m)

2 → 0

with the operators

d(m)
0 f (m)

0 (e(m)
1 ) = ∑

e(m)
0 ∈E(m)

0

sgn(e(m)
0 ,e(m)

1 ) f (m)
0 (e(m)

0 ) (2)
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(only two nonzero terms) and

d(m)
1 f (m)

1 (e(m)
2 ) = ∑

e(m)
1 ∈E(m)

1

sgn(e(m)
1 ,e(m)

2 ) f (m)
1 (e(m)

1 ) (3)

(only four nonzero terms). The relation

d(m)
1 ◦d(m)

0 ≡ 0 (4)

is an immediate consequence of (1).
To describe the δ operators and the dual de Rham complex we need to choose

inner products on the spaces Λ (m)
0 , Λ (m)

1 , Λ (m)
2 , or what is the same thing, to choose

weights on E(m)
0 , E(m)

1 , E(m)
2 . The most direct choice is to weight each square e(m)

2
equally, say

μ2(e
(m)
2 ) =

1
8m ,

making μ2 a probability measure on E(m)
2 . Note that we might decide to renormalize

by multiplying by a constant, depending on m, when we examine the question of the
limiting behavior as m→ ∞. For the weighting on edges we may imagine that each
square passes on a quarter of its weight to each boundary edge. Some edges bound
one square and some bound two squares, so we choose

μ1(e
(m)
1 ) =

⎧

⎪

⎨

⎪

⎩

1
4 ·8m if e(m)

1 bounds one square
1

2 ·8m if e(m)
1 bounds two squares.

(5)

For vertices we may again imagine the weight of each square being split evenly
among its vertices. A vertex may belong to 1, 2, 3, or 4 squares, so

μ0(e
(m)
0 ) =

k
4 ·8m (6)

if e(m)
0 lies in k squares.
The dual de Rham complex

0←Λ (m)
0

δ (m)
1←−−Λ (m)

1

δ (m)
2←−−Λ (m)

2 ← 0

is defined abstractly by δ (m)
1 = d(m)∗

0 and δ (m)
2 = d(m)∗

1 where the adjoints are defined
in terms of the inner products induced by the weights, or concretely as

δ (m)
1 f (m)

1 (e(m)
0 ) = ∑

e(m)
1 ∈E(m)

1

μ1(e1)

μ0(e0)
sgn(e(m)

0 ,e(m)
1 ) f (m)

1 (e(m)
1 ), (7)
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δ (m)
2 f (m)

2 (e(m)
1 ) = ∑

e(m)
2 ∈E(m)

2

μ2(e2)

μ1(e1)
sgn(e(m)

1 ,e(m)
2 ) f (m)

2 (e(m)
2 ). (8)

There are one or two nonzero terms in (8) depending on whether e(m)
1 bounds one or

two squares. In (7) there may be 2, 3, or 4 nonzero terms, depending on the number

of edges that meet at the vertex e(m)
0 . The condition

δ (m)
1 ◦δ (m)

2 = 0 (9)

is the dual of (4).
We may then define the Laplacian

−Δ (m)
0 = δ (m)

1 d(m)
0

−Δ (m)
1 = δ (m)

2 d(m)
1 +d(m)

0 δ (m)
1

−Δ (m)
2 = d(m)

1 δ (m)
2

(10)

as usual. These are nonnegative self-adjoint operators on the associated L2 spaces,
and so have a discrete nonnegative spectrum. We will be examining the spectrum
(and associated eigenfunctions) carefully to try to understand what could be said in

the limit as m→∞. Also of particular interest are the harmonic 1-forms H
(m)

1 , solu-

tions of −Δ (m)
1 h(m)

1 = 0. As usual these can be characterized by the two equations

d(m)
1 h(m)

1 = 0 δ (m)
1 h(m)

1 = 0,

and can be put into cohomology/homology duality with the homology generating
cycles in Γm. The Hodge decomposition

Λ (m)
1 = d(m)

0 Λ (m)
0 ⊕δ (m)

2 Λ (m)
2 ⊕H

(m)
1 (11)

shows that the eigenfunctions of −Δ (m)
1 with λ �= 0 are either d(m)

0 f (m)
0 for f (m)

0 an

eigenfunction of −Δ (m)
0 , or δ (m)

2 f (m)
2 for f (m)

2 an eigenfunction of −Δ (m)
2 with the

same eigenvalue. Thus the nonzero spectrum of−Δ (m)
1 is just the union of the−Δ (m)

0

and −Δ (m)
2 spectrum.

The irregular nature of the adjacency of squares in Γm, with the associated vari-
ability of the weights in (6) and (5) , leads to a number of complications in the

behavior of −Δ (m)
2 . To overcome these complications we have invented the fractal

MC, that is obtained from SC by making identifications to eliminate boundaries.
On the outer boundary of SC we identify the opposite pairs of edges with the same
orientation, turning the full square containing SC into a torus. Each time we delete a
small square in the construction of SC we identify the opposite edges of the deleted
square with the same orientation. We may think of MC as a limit of closed surfaces
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of genus g = 1+(1+ 8+ ...+ 8m−1), because each time we delete and “sew up”
we add on a handle to the torus. This surface carries a flat metric with singularities
at the corners of each deleted square (all four corners are identified). It is not diffi-
cult to show that the limit exists as a topological space, because the identifications
made at level m are all points that are very close to each other, distance 3−m in the
Euclidean metric. The metric structure of MC is more complicated. If we consider
the geodesic metric, the approximation on level m has diameter (2/3)m, because we
can use diagonal zig-zag lines to take advantage of the identifications that lead to the
singular points to connect all vertices with a sequence of 2m edges of size 3−m. Thus
it would appear that we should renormalize the metric at level m by multiplying by
(3/2)m in order to obtain a metric structure in the limit. The exact nature of this
metric structure remains to be investigated. Whether or not the analytic structures
(energy, Laplacian, Brownian motion) on SC can be transferred to MC remains to
be investigated. Our results give overwhelming evidence that this is the case.

We pass from the graphs Γm approximating SC to graphs Γ̃m approximating MC
by making the same identifications of vertices and edges. The graph Γ̃1 is shown
in Fig. 2.

Fig. 2 Γ̃1 with 6 vertices labeled v j , 16 edges labeled e j , and 8 squares labeled s j

Each square has exactly four neighbors (not necessarily distinct) with each edge
separating two squares. For example, in Fig. 2, we see that s2 has neighbors s1, s3,
and s7 twice, as e2 and e8 both separate s2 and s7. There are two types of vertices,
that we call nonsingular and singular. The nonsingular vertices (all except v5 in
Fig. 2) belong to exactly four distinct squares and four distinct edges (two incoming
and two outgoing according to our orientation choice). For example, v1 belongs to
squares s1, s3, s6, and s8 and has incoming edges e3 and e14 and outgoing edges
e1 and e4. Singular vertices belong to 12 squares (with double counting) and 12
edges (some of which may be loops). In Fig. 2 there is only one singular vertex, v5.
It belongs to squares s1, s3, s6, and s8 counted once and s2, s4, s5, and s7 counted
twice. In Fig. 3 we show a neighborhood of this vertex in Γ̃2, with the incident
squares and edges shown.

The definition of the de Rham complex for the graphs Γ̃m approximating MC is
exactly the same as for Γm approximating SC. The difference is in the dual de Rham
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Fig. 3 A neighborhood in Γ̃2 of vertex v5 from Fig. 2

complex, because the weights are different. We take μ̃2(e
(m)
2 ) = 1/8m as before, but

now μ̃1(e
(m)
1 ) = 1

2·8m because every edge bounds two squares. Finally

μ̃0(e
(m)
0 ) =

⎧

⎪

⎨

⎪

⎩

1
8m if e(m)

0 is nonsingular
3

8m if e(m)
0 is singular

because e(m)
0 belongs to four squares in the first case and 12 squares in the second

case. After that the definitions are the same using the new weights.
Explicitly, we have

−Δ̃ (m)
2 f (m)

2 (e(m)
2 ) =

⎛

⎜

⎝2( ∑
e(m)′

2 ∼e(m)
2

f (m)
2 (e(m)

2 )− f (m)
2 (e(m)′

2 ))

⎞

⎟

⎠ (12)

(exactly four terms in the sum), the factor 2 coming from μ̃2(e
(m)
2 )/μ̃1(e

(m)
1 ). Except

for the factor 2 this is exactly the graph Laplacian on the 4-regular graph whose

vertices are the squares in Ẽ(m)
2 and whose edge relation is e(m)′

2 ∼ e(m)
2 if they have

an edge in common (double count if there are two edges in common).

The explicit expression for −Δ (m)
0 is almost as simple:

−Δ̃ (m)
0 f (m)

0 (e(m)
0 ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
2 ∑

e(m)′
0 ∼e(m)

0

( f (m)
0 (e(m)

0 )− f (m)
0 (e(m)′

0 )) if e(m)
0 is nonsingular

1
6 ∑

e(m)′
0 ∼e(m)

0

( f (m)
0 (e(m)

0 )− f (m)
0 (e(m)′

0 )) if e(m)
0 is singular.

Note that there are four summands in the first case and 12 summands in the second
case (some may be zero if there is a loop connecting e(m)

0 to itself in the singular
case). We expect that the spectra of these two Laplacians will be closely related,
aside from the multiplicative factor of 4. We may define Hodge star operators from
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Λ (m)
0 to Λ (m)

2 and from Λ (m)
2 to Λ (m)

0 by

∗ f (m)
0 (e(m)

2 ) =
1
4 ∑

e(m)
0 ⊆e(m)

2

f (m)
0 (e(m)

0 ) (13)

and

∗ f (m)
2 (e(m)

0 ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
4 ∑

e(m)
2 ⊇e(m)

0

f (m)
2 (e(m)

2 ) if e(m)
0 is nonsingular

1
12 ∑

e(m)
2 ⊇e(m)

0

f (m)
2 (e(m)

2 ) if e(m)
0 is singular.

(14)

Note that we do not have the inverse relation that ∗∗ is equal to the identity in either
order. Nor is it true that the star operators conjugate the two Laplacians. However,
they are approximately valid, so we can hope that in the appropriate limit there
will be a complete duality between 0-forms and 2-forms with identical Laplacians.
Nothing remotely like this valid for SC.

It is also easy to describe explicitly the equations for harmonic 1-forms. The

condition d(m)
1 h(m)

1 (e(m)
2 ) = 0 is simply the condition that the sum of the values

h(m)
1 (e(m)

1 ) over the four edges of the square is zero (with appropriate signs). Sim-

ilarly the condition δ (m)
1 h(m)

1 (e(m)
0 ) = 0 means the sum over the incoming edges

equals the sum over the outgoing edges at e(m)
0 . Those equations have two redun-

dancies, since the sums ∑
e(m)

2 ∈E(m)
2

d(m)
1 f (m)

1 (e(m)
2 ) and ∑

e(m)
0 ∈E(m)

0

δ (m)
1 f (m)

1 (e(m)
0 ) are auto-

matically zero for any 1-form f (m)
1 . Thus in Λ̃ (1)

1 there is a 4-dimensional space of
harmonic 1-forms, and in general the dimension is 2g, which is exactly the rank of
the homology group for a surface of genus g. It is easy to identify the homology
generating cycles as the edges that are identified.

The remainder of this chapter is organized as follows: In Sects. 2, 3, and 4 we
give the results of our computations on SC for 0-forms, 1-forms, and 2-forms. In
Sect. 5 we give the results for 0-forms and 2-forms on MC. In Sect. 6 we give the
results for 1-forms on MC. We conclude with a discussion in Sect. 7 of all the results
and their implications. The website [25] gives much more data than we have been
able to include in this chapter, and also contains all the programs used to generate
the data.

2 0-Forms on the Sierpinski Carpet

The 0-forms on SC will simply be continuous functions on SC, and we can restrict

them to the vertices of Γm to obtain 0-forms on Γm. The Laplacian −Δ (m)
0 is exactly

the graph Laplacian of Γm with weights on vertices and edges given by (6) and (5).
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Thus
−Δ (m)

0 f (m)
0 (x) = ∑

y∼x
c(x,y)( f (x)− f (y)) (15)

with coefficients show in Fig. 4

Fig. 4 Coefficients in (15)

The sequence of renormalized Laplacians

{−rmΔ (m)
0 } (16)

for r ≈ 10.01 converges to the Laplacian on functions [3, 5–7, 19].

In Table 1 we give the beginning of the spectrum {λ (m)
j } for m = 2, 3, 4 and the

ratios λ (3)
j /λ (2)

j and λ (4)
j /λ (3)

j . The results are in close agreement with the compu-
tations in [7] and [6], and suggest the convergence of (16).

Table 1 Eigenvalues of −Δ (m)
0 for m = 2, 3, 4 and ratios

m = 2 Multiplicity m = 3 Multiplicity m = 4 Multiplicity λ (3)
j /λ (2)

j λ (4)
j /λ (3)

j

0.0000 1 0.0000 1 0.0000 1
0.0414 2 0.0041 2 0.0004 2 0.1001 0.0999
0.1069 1 0.0109 1 0.0011 1 0.1024 0.1002
0.2006 1 0.0204 1 0.0020 1 0.1017 0.0999
0.2635 2 0.0272 2 0.0027 2 0.1031 0.1002
0.2720 1 0.0284 1 0.0028 1 0.1044 0.1003
0.3927 2 0.0414 2 0.0041 2 0.1053 0.1001
0.4260 1 0.0449 1 0.0045 1 0.1055 0.1002
0.4490 1 0.0472 1 0.0047 1 0.1051 0.1001
0.5276 1 0.0560 1 0.0056 1 0.1062 0.1004
0.6375 2 0.0673 2 0.0067 2 0.1055 0.1002
0.6700 1 0.0696 1 0.0069 1 0.1038 0.0997
0.8405 2 0.0976 2 0.0099 2 0.1161 0.1014
0.8713 1 0.1009 1 0.0102 1 0.1158 0.1008
0.9102 1 0.1069 1 0.0109 1 0.1175 0.1024
0.9336 1 0.1103 1 0.0112 1 0.1181 0.1019
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The convergence of (16) would imply that lim
m→∞

rmλ (m)
j = λ j gives the spectrum

of the limit Laplacian −Δ0 on 0-forms on SC. In particular the values {rmλ (m)
j } for

small values of j (depending on m) would give a reasonable approximation of some
lower portion of the spectrum of −Δ0. To visualize this portion of the spectrum we

compute the eigenvalue counting function N(t) = #{λ j ≤ t} ≈ #{rmλ (m)
j ≤ t} and

the Weyl ratio W (t) = N(t)
tα . In Figure we display the graphs of the Weyl ratio using

the m = 1,2,3,4 approximations, with value α determined from the data to get a
function that is approximately constant. As explained in [6], we expect α = log8

logr ≈
0.9026, which is close to the experimentally determined values. This is explained
by the phenomenon called miniaturization as described in [7]. Every eigenfunction

u(m)
j of Δ (m)

0 reappears in miniaturized form u(m+1)
k of Δ (m+1)

0 with the same eigen-

value λ (m+1)
k = λ (m)

j , so in terms of Δ (m)
0 we have rm+1λ (m+1)

k = r(rmλ (m)
j ). We

can in fact see this in Table 1. In passing from level m to level m+1, the number of
eigenvalues is multiplied by 8, so we expect to have N(rt)≈ 8N(t), and this explains
why α = log8

logr is the predicted power growth factor of N(t). We also expect to see an
approximate multiplicative periodicity in W (t), namely W (rt)≈W (t). It is difficult
to observe this in our data, however. We also mention that miniaturization is valid
for all k-forms (k =0, 1, 2) on SC and MC. This is most interesting for 0-forms and
2-forms on MC as discussed in Sect. 5.

In Fig. 5, 6, and 7 we show graphs of selected eigenfunctions on levels 2, 3,
4. We only display those whose eigenspaces have multiplicity one. The conver-
gence is visually evident. To quantify the rate of convergence we give the values of

‖ f (m)
j |

E
(m−1)
0

− f (m−1)
j ‖2

2 in Table 2. Here the L2 norm on E(m−1)
0 is defined by

‖ f‖2
2 = ∑

e(m−1)
0 ∈E(m−1)

0

μ0(e
(m−1)
0 )| f (e(m−1)

0 )|2

and we normalize the eigenfunctions so that ‖ f (m−1)
j ‖2

2 and ‖ f (m)
j |

E
(m−1)
0

‖2 = 1. In

Fig. 8 we show the graph of the weyl ratio of eigenvalues of the 0 forms on different
levels.

Fig. 5 Graph of eigenfunction of 4th eigenvalue on 0 forms of level 2, 3, and 4
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Fig. 6 Graph of eigenfunction of 5th eigenvalue on 0 forms of level 2, 3, and 4

Fig. 7 Graph of eigenfunction of 8th eigenvalue on 0 forms of level 2, 3, and 4

Table 2 Values of ‖ f (m)
j |

E
(m−1)
0

− f (m−1)
j ‖2

2, from level 3 to level 2 and level 4 to level 3 for

eigenspaces of multiplicity one

Number of Eigenvalue m = 2 m = 3 m = 4 Level 3 to level 2 Level 4 to level 3
1 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.1069 0.0109 0.0011 0.0001 0.0000
5 0.2006 0.0204 0.0020 0.0006 0.0001
8 0.2720 0.0284 0.0028 0.0003 0.0001
11 0.4260 0.0449 0.0045 0.0009 0.0001
12 0.4490 0.0472 0.0047 0.0013 0.0001
13 0.5276 0.0560 0.0056 0.00 0.0001
16 0.6700 0.0696 0.0069 0.0161 0.0004
19 0.8713 0.1009 0.0102 0.8818 0.0004
20 0.9102 0.1069 0.0109 0.8755 0.0001
21 0.9336 0.1103 0.0112 0.9226 0.0003
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Fig. 8 Weyl ratio of SC 0-forms on level 1, 2, 3, 4 with α = 0.9026

3 1-Forms on the Sierpinski Carpet

The 1-forms onΓm are functions on the edges ofΓm, with f (m)
1 (−e(m)

1 )=− f (m)
1 (e(m)

1 )

if −e(m)
1 denotes the edge e(m)

1 with opposite orientation. If L denotes any oriented

path made up of edges, we may integrate f (m)
1 over L by summing:

∫

L
d f (m)

1 = ∑
e(m)

1 ⊆L

f (m)
1 (e(m)

1 ). (17)

In particular, if f (m)
1 = d f (m)

0 then

∫

L
d f (m)

0 = f (m)
0 (b)− f (m)

0 (a) (18)

where b and a denote the endpoints of L.

The Hodge decomposition splits this spaceΛ (m)
1 of 1-forms into three orthogonal

pieces.

Λ (m)
1 = d(m)

0 Λ (m)
0 ⊕δ (m)

2 Λ (m)
2 ⊕H

(m)
1 (19)
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The map d(m)
0 : Λ (m)

0 → Λ (m)
1 has the 1-dimensional kernel consisting of constants,

and the map δ (m)
2 :Λ (m)

2 →Λ (m)
1 has zero kernel. A dimension count shows

dimH
(m)

1 = 1+8+ ...+8m−1 =
8m−1

7
. (20)

The Laplacian −Δ (m)
1 respects the decomposition, with

−Δ (m)
1 (d(m)

0 f (m)
0 ) = d(m)

0 (−Δ (m)
0 f (m)

0 ) = d(m)
0 δ (m)

1 (d(m)
0 f (m)

0 )

−Δ (m)
1 (δ (m)

2 f (m)
2 ) = δ (m)

2 (−Δ (m)
2 f (m)

1 ) = δ (m)
2 d(m)

1 (δ (m)
2 f (m)

2 )

−Δ (m)
1 |

H
(m)

1
= 0.

(21)

Although we may write −Δ (m)
1 = d(m)

0 δ (m)
1 +δ (m)

2 d(m)
1 , in fact (21) is more informa-

tive. In particular, it shows that the spectrum of −Δ (m)
1 is just a union of the nonzero

eigenvalues of −Δ (m)
0 and the eigenvalues of −Δ (m)

2 , together with 0 with multiplic-
ity given by (20). As such, it has no independent interest, and we will not present
a table of its values. Also, when we discuss later the question of renormalizing in
order to pass to the limit as m → ∞, we will want to use a different factor for the
two terms.

The main object of interest is the space H
(m)

1 of harmonic 1-forms. We note that
the dimension given by (20) is exactly equal to the number of homology generating
cycles, one for each square deleted in the construction of SC up to level m. Thus the
integrals

∫

γ j

h(m)
1 (22)

as γ j varies over the cycles and h(m)
1 varies over a basis of H

(m)
1 give a cohomol-

ogy/homology pairing.

Conjecture 3.1 1 For each m, the matrix (22) is invertible.

If this conjecture is valid (we have verified it for m ≤ 4) then we may define a

canonical basis h(m)
k of H

(m)
1 by the conditions

∫

γ j

h(m)
k = δ jk. (23)

We are particularly interested in the consistency among these harmonic 1-forms
as m varies. The cycles at level m contain all the cycles from previous levels and, in
addition, the 8(m−1) cycles around the level m deleted squares. Thus we can order the

cycles consistently from level to level. Also, a 1-form f (m)
1 in Λ (m) can be restricted

to a 1-form in Λ (m−1) by defining

R f (m)
1 (e(m−1)

1 ) =
∫

e(m−1)
1

f (m)
1 ,
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in other words summing the values of f (m)
1 on the three level m edges that make

up e(m−1)
1 . Thus we may compare the Λ (m−1)

1 1-forms h(m−1)
k and Rh(m)

k for values
of k where γk is a level m− 1 cycle. If these are close, we may hope to define a

harmonic 1-form on SC by lim
m→∞

h(m)
k . Note that Rh(m)

k will not be a harmonic 1-form

in H
(m−1)

1 . It is easy to see that the equation d(m)
1 h(m)

k = 0 and the fact that (22)

is zero for all the level m cycles implies (by addition) d(m−1)
1 Rh(m)

k = 0. However,

there is no reason to believe that δ (m−1)
1 Rh(m)

k should be zero.
For a graphical display of the numerical data we computed for some of the func-

tions h(m)
k with k = 1 and their restrictions see website [25]. (We rounded the deci-

mal expansions and multiplied by 104 so that all values are integers.) The condition

d1h(m)
k (e(m)

2 ) = 0 says that the sum of h(m)
k on the four edges of the square (with

appropriate± signs) vanishes, or equivalently, the sum on the bottom and right edge
equals the sum on top and left edge. A similar condition gives (23). The condition

δ1h(m)
k (e(m)

0 ) = 0 says that the weighted sum of h(m)
k on the incoming edges at the

vertex e(m)
0 equals the weighted sum on the outgoing edges, with weights given in

Fig. 4 .

To quantify the rate of convergence, we give in Table 3 the values of ‖h(m−1)
k −

Rh(m)
k ‖2, where we use an L2 norm on E(m−1)

1 .

Table 3 Values of ‖h(m−1)
k −Rh(m)

k ‖2

k 1 2 3 4 5 6 7 8 9

||h(2)k −Rh(1)k || 0.0303

||h(3)k −Rh(2)k || 0.0197 0.0292 0.0383 0.0292 0.0383 0.0383 0.0292 0.0383 0.0197

||h(4)k −Rh(3)k || 0.0140 0.0206 0.0224 0.0206 0.0224 0.0224 0.0206 0.0224 0.0206

Another observation is that the size of h(m)
k tends to fall off as the edge moves

away from the cycle γk. This is not a very rapid decay, however.
Since 1-forms are functions on edges, it appears difficult to display the data

graphically. However, there is another point of view, of independent interest, that

would enable us to “see” harmonic 1-forms graphically. Note that if f (m)
0 is a har-

monic function, then d0 f (m)
0 is a harmonic 1-form. This is not interesting globally,

since the only harmonic functions are constant. But it is interesting locally, and we

can obtain harmonic 1-forms by gluing together 1-forms d0 f (m)
0 for different func-

tions f (m)
0 that are locally harmonic. We consider harmonic mappings taking values

in the circle R/Z. Such a mapping is represented locally by a harmonic function

f (m)
0 , but when we piece the local representations globally the values may change

by an additive integer constant. The additive constant will not change d0 f (m)
0 , so this

will be a global harmonic 1-form. Again, adding a global constant to f (m)
0 will have

no effect on d0 f (m)
0 . Thus, for each basis element h(m)

k we can construct a harmonic
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mapping f (m)
k by setting it equal to 0 at the lower left corner of SG, and then inte-

grating using (18) to successively extend its values to vertices at the end of an edge
where the value at the other endpoint has been determined. For each of the cycles

γk we can find “cut line” so that the function f (m)
k is single valued away from the

cut line, and only satisfies the equation δ (m)
1 d(m)

0 f (m)
k (e(m)

0 ) = 0 at the vertices e(m)
0

along the cut line if we use different values across the cut line.
Another fundamental question is the behavior of the restriction of a harmonic

1-form to a line segment. Suppose that L is a horizontal or vertical line segment
of length one in SC (of course shorter line segments are also of interest, but the

answers are expected to be the same). We regard h(m)
k on L as a signed measure on

L via (17). Do we obtain a measure in the limit as m → ∞? If so, is it absolutely
continuous with respect to Lebesgue measure on L? In terms of the restriction of

the harmonic mapping f (m)
k to L (we choose L to avoid the cut line), these questions

become: is it of bounded variation, and if so is it an absolutely continuous function?
Of course we can’t answer these questions about the limit, but we can get a good

sense by observing the approximations. In Fig. 9 we graph the restrictions of h(m)
k

to L in some cases as m varies. For a quantitative approach to the first question we
compute the total variation of the approximations. The results are show in Table 4.
Note that in this figure and all subsequent graphs of restrictions of 1-forms to lines,
we are displaying the graphs of running totals starting at the left end of the interval.
Thus in the limit we would hope to get a function of bounded variation (or perhaps
even an absolutely continuous function) whose derivative is a measure on the line.

Of course the same questions are of interest for 1-forms that are eigenfunctions of

the Laplacian. In Fig. 10, 11 and Table 5 we give the analogous results for d(m)
0 f (m)

0

and δ (m)
2 f (m)

2 where f (m)
0 and f (m)

2 are eigenforms for the Laplacians −Δ (m)
0 and

−Δ (m)
2 .

4 2-Forms on the Sierpinski Carpet

In principle, we should think of 2-forms on SC simply as measures. In the Γm

approximation we have 8m squares in E(m)
2 , and our 2-forms f (m)

2 assign values
to these squares, which may be identified with the m-cells in SC that lie in these
squares. It is not clear a priori what class of measures we should consider; the sim-
plest choice is the set of measures absolutely continuous with respect to the standard
self-similar measure μ .

The Laplacian −Δ (m)
2 on Λ (m)

2 is quite different from other Laplacians consid-
ered here or elsewhere. In fact, it is the sum of a difference operator and diagonal

operator. For a fixed square e(m)
2 ∈ E(m)

2 we have

d(m)
1 δ (m)

2 f (m)
2 (e(m)

2 ) = ∑
e(m)

1 ⊆e(m)
2

sgn(e(m)
1 ,e(m)

2 )δ (m)
2 f (m)

2 (e(m)
1 )
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Fig. 9 Restrictions of h(m)
k to L with m = 2,3

Table 4 Total variation of SC harmonic one forms along horizontal lines at level 1, level 2 and
level 3

Level 1 Level 2 Level 3

Line 1

Form 1 0.00 0.00 0.00
Form 2 0.4522 0.4522 0.4522
Form 3 0.1442 0.1442 0.1442
Form 4 0.0478 0.0478 0.0478

Line 2

Form 1 0.3678 0.3678 0.3678
Form 2 0.2057 0.2188 0.2188
Form 3 0.82 0.82 0.82
Form 4 0.0741 0.0741 0.0741

Line 3

Form 1 0.3678 0.3678 0.3678
Form 2 0.0741 0.0741 0.0741
Form 3 0.82 0.82 0.82
Form 4 0.2057 0.2188 0.2188

Line 4

Form 1 0.00 0.00 0.00
Form 2 0.0478 0.0478 0.0478
Form 3 0.1442 0.1442 0.1442
Form 4 0.4522 0.4522 0.4522
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Fig. 10 Restrictions of d(m)
0 f (m)

0 to L

where the sum is over the four edges of the square. However, δ (m)
2 f (m)

2 (e(m)
2 ) depends

on the nature of the edge e(m)
1 , which may bound one or two squares:

δ (m)
2 f (m)

2 (e(m)
1 ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

4sgn(e(m)
1 , ẽ(m)

2 ) f (m)
2 (ẽ(m)

2 )

if e(m)
1 bounds only ẽ(m)

2

2
(

sgn(e(m)
1 , ẽ(m)

2 ) f (m)
2 (ẽ(m)

2 )+ sgn(e(m)
1 , ˜̃e(m)

2 ) f (m)
2 ( ˜̃e(m)

2 )
)

if e(m)
1 bounds ẽ(m)

2 and ˜̃e(m)
2 .

(24)
Let N(e(m)

2 ) denote the number of squares adjacent to e(m)
2 in Γm (2, 3, or 4). Then

−Δ (m)
2 f (m)

2 (e(m)
2 ) = d(m)

1 δ (m)
2 f (m)

2 (e(m)
2 )

= 4
(

4−N(e(m)
2 )

)

f (m)
2 (e(m)

2 )+2 ∑
ẽ(m)

2 ∼e(m)
2

(

f (m)
2 (e(m)

2 )− f (m)
2 (ẽ(m)

2 )
)

(25)
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Fig. 11 Restrictions of δ (m)
2 f (m)

2 to L

Table 5 Total variation of d(m)
0 f (m)

0 and δ (m)
2 f (m)

2 along horizontal lines at level 2 and level 3

D Level 1 Level 2 Level 3

Line 1

Form 1 0.8845 0.8845 0.8845
Form 2 0.5010 0.6201 0.6348
Form 3 0.6758 0.8093 0.8203
Form 4 0.7538 0.7538 0.7826

Line 2

Form 1 0.4588 0.4588 0.4588
Form 2 0.5010 0.7970 0.8178
Form 3 0.3688 0.4376 0.4484
Form 4 0.5387 0.5387 0.5454

Line 3

Form 1 0.4588 0.4588 0.4588
Form 2 0.5010 0.7970 0.8178
Form 3 0.3688 0.4376 0.4484
Form 4 0.5387 0.5387 0.5454

Line 4

Form 1 0.8845 0.8845 0.8845
Form 2 0.5010 0.6201 0.6348
Form 3 0.6758 0.8093 0.8203
Form 4 0.7538 0.7538 0.7826

DEL Level 1 Level 2 Level 3

Line 1

Form 1 0.1319 0.1319 0.1319
Form 2 0.0663 0.1232 0.1289
Form 3 0.1701 0.1701 0.1701
Form 4 0.0849 0.1584 0.1660

Line 2

Form 1 0.1960 0.1960 0.1960
Form 2 0.0658 0.1849 0.19
Form 3 0.0861 0.0861 0.0861
Form 4 0.0284 0.0754 0.0819

Line 3

Form 1 0.1960 0.1960 0.1960
Form 2 0.0658 0.1849 0.19
Form 3 0.0861 0.0861 0.0861
Form 4 0.0284 0.0754 0.0819

Line 4

Form 1 0.1319 0.1319 0.1319
Form 2 0.0663 0.1232 0.1289
Form 3 0.1701 0.1701 0.1701
Form 4 0.0849 0.1584 0.1660
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Note that
−D(m)

2 f (m)
2 (e(m)

2 ) = ∑
ẽ(m)

2 ∼e(m)
2

(

f (m)
2 (e(m)

2 )− f (m)
2 (ẽ(m)

2 )
)

is exactly the graph Laplacian for the cell graph on level m of SC. This Laplacian
was first studied in [19], and it was proved in [5] that when appropriately normal-
ized it converges to the essentially unique self-similar Laplacian on SC. This was
used as the basis for extensive numerical investigations in [6]. In other words, if

f (m)
2 (e(m)

2 ) =
∫

e(m)
2

f0dμ for some function f0 in the domain of the Laplacian on SC,

then lim
m→∞

rmD(m)
2 f (m)

2 = c(Δ f0)dμ for r ≈ 10.01.

However, according to (25) we have

−Δ (m)
2 = M(m)−D(m)

2 , (26)

where M(m) is the operator of multiplication by the function φm given by

φm = 4
(

4−N(e(m)
2 )

)

.

Note that φm takes on values 0, 4, 8. If we were to renormalize M(m) by multiply-
ing by rm the result would surely diverge. In other words, if there is any hope of

obtaining a limit for a class of measures, it would have to be lim
m→∞

(−Δ (m)
2 ) without

renormalization. Of course the sequence of functions {φm} does not converge, so
it seems unlikely that we could make sense of lim

m→∞
(M(m)). Thus, although M(m) is

clearly the major contributor to the sum (26), both operators must play a role if the
limit is to exist.

We compute the distribution of the three values of N(e(m)
2 ) as e(m)

2 varies over

the 8m squares of level m. Let n(m)
3 and n(m)

4 denote the number of squares with N

value 3 and 4, and n(m)
2a and n(m)

2b denote the number with N = 2, with neighbors on

opposite sides (n(m)
2a ) or adjacent sides (n(m)

2b ). In fact, n(m)
2b = 4 since this case only

occurs at the four corners of SC. If e(m−1)
2 is in one of those cases we may compute

the N values on the eight subsquares as shown in Fig. 12 .

Fig. 12 Values of N on subsquares. The neighboring edges are marked by a double line
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This gives us the recursion relation

⎛

⎜

⎜

⎜

⎝

n(m)
2a

n(m)
2b

n(m)
3

n(m)
4

⎞

⎟

⎟

⎟

⎠

= A

⎛

⎜

⎜

⎜

⎝

n(m−1)
2a

n(m−1)
2b

n(m−1)
3

n(m−1)
4

⎞

⎟

⎟

⎟

⎠

for A =

⎛

⎜

⎜

⎝

2 2 1 0
0 1 0 0
6 4 5 4
0 1 2 4

⎞

⎟

⎟

⎠

and so
⎛

⎜

⎜

⎜

⎝

n(m)
2a

n(m)
2b

n(m)
3

n(m)
4

⎞

⎟

⎟

⎟

⎠

= Am−1

⎛

⎜

⎜

⎝

4
4
0
0

⎞

⎟

⎟

⎠

.

We also note that (1111) is a left eigenvector of A with eigenvalue 8 (in other words
column sums are 8), and this implies

n(m)
2a +n(m)

2b +n(m)
3 +n(m)

4 = 8m

as required. We also observe that
(

1063
)T

is the right eigenvector with eigenvalue
8, so asymptotically

⎛

⎜

⎜

⎜

⎝

n(m)
2a

n(m)
2b

n(m)
3

n(m)
4

⎞

⎟

⎟

⎟

⎠

∼ 8m

⎛

⎜

⎜

⎝

.1
0
.6
.3

⎞

⎟

⎟

⎠

as m→ ∞.

Thus the operator M(m) has eigenvalues 0, 4, 8 with multiplicities approximately
3

10
8m,

6
10

8m,
1

10
8m.

The spectrum of the operator −Δ (m)
2 is quite different. Table 6 shows the entire

spectrum for m = 1, 2 and the beginning of the spectrum for m = 3, 4.
In Fig. 13 we give a graphical display of these spectra. In Fig. 14 we show the graphs
of some of the early eigenfuction on levels 2, 3, 4.

The data suggests that there may be a limit

−Δ2 = lim
m→∞

(−Δ (m)
2 ) (27)

for a class of measures, perhaps L2(dμ). The limit operator would be a bounded,
self-adjoint operator that is bounded away from zero, hence invertible. The spectrum
would be continuous (or a mix of discrete and continuous) with support on a Cantor
set.

We can give some explanations as to why we might expect the following types
of limits:

δ2 = lim
m→∞

(

8
3

)m

δ (m)
2 (28)
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Table 6 Eigenvalues of −Δ (m)
2 for m =1, 2, 3, 4

Number of eigenvalues m = 1 m = 2 m = 3 m = 4
1 2.0000 0.9248 0.5101 0.4505
2 2.2929 0.9497 0.5102 0.4505
3 2.2929 0.9497 0.5102 0.4505
4 3.0000 0.9789 0.5104 0.4505
5 3.0000 1.3068 0.5290 0.4511
6 3.7071 1.3506 0.5291 0.4511
7 3.7071 1.3506 0.5291 0.4511
8 4.0000 1.3989 0.5292 0.4511
9 1.5764 0.61 0.4604

10 1.6355 0.64 0.4604
11 1.6355 0.64 0.4604
12 1.7134 0.67 0.4604
13 1.8573 0.6554 0.4614
14 1.9559 0.6557 0.4614
15 1.9559 0.6557 0.4614
16 2.0000 0.6561 0.4614
17 2.0593 0.9248 0.5101
18 2.0593 0.9280 0.5102
19 2.0786 0.9280 0.5102
20 2.1187 0.9332 0.5102
21 2.1910 0.9395 0.5102
22 2.2301 0.9443 0.5102
23 2.2929 0.9450 0.5102
24 2.2929 0.9450 0.5102

2.3272 0.9497 0.5102
26 2.3272 0.9497 0.5102
27 2.3990 0.9527 0.5103
28 2.4422 0.9544 0.5103
29 2.5000 0.9623 0.5103
30 2.5000 0.9690 0.5103
31 2.5391 0.9690 0.5103
32 2.5391 0.9755 0.5104

Table 7 Values of ‖ f (m)
j |

E
(m−1)
2

− f (m−1)
j ‖2

2, from level 3 to level 2 and level 4 to level 3 for

eigenspaces of multiplicity one

number m = 2 m = 3 m = 4 3to2 4to3
1 0.9248 0.5101 0.4505 0.0726 0.0196
4 0.9789 0.5104 0.4505 0.0532 0.0190
5 1.3068 0.5290 0.4511 0.11 0.0114
8 1.3989 0.5292 0.4511 0.0670 0.0106
9 1.5764 0.61 0.4604 0.1709 0.0334
12 1.7134 0.67 0.4604 0.1591 0.0317
13 1.8573 0.6554 0.4614 0.2796 0.0243
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Fig. 13 Weyl ratio for spectra of SC 2 forms with α=1.2

d1 = lim
m→∞

(

3
8

)m

d(m)
1

which are consistent with (27). Suppose f2 = f dμ for a reasonable function f ,

and define f (m)
2 (e(m)

2 ) =
∫

e(m)
2

f dμ . Then f (m)
2 (e(m)

2 ) is on the order of 8−m. In the

definition of δ (m)
2 f (m)

2 in (24) we note that when e(m)
1 bounds only one square,

δ (m)
2 f (m)

2 (e(m)
1 ) is also on the order of 8−m, so multiplying by (8/3)m gives a value

on the order of 3−m, which is reasonable for a measure on a line segment L contain-

ing e(m)
1 . On the other hand, if e(m)

1 bounds two squares, then the sgn function has

opposite signs so (8/3)mδ (m)
2 f (m)

2 (e(m)
1 ) is close to zero. If we assume the function

f is continuous then the limit in (28) will give a measure on L equal to 4 f |Ldt on
the portion of L with squares on only one side, and zero on the portion of L with
squares on both sides.

Next suppose the f1 is a measure on each line L in SC that has

| f1(e
(m)
1 )| ≤ c3−m. (29)

Fix a square e(m)
2 on level n, and write it as a union of 8m−n squares on level m. We

want to define

d1 f1(e
(n)
2 ) = lim

m→∞

(

3
8

)m

∑
e(m)

2 ⊆e(n)2

d(m)
1 f (m)

1 (e(m)
2 ). (30)



Hodge-de Rham Theory of K-Forms on Carpet Type Fractals 45

Fig. 14 Graphs of early eigenfunctions of SC 2 forms on level 2, 3, 4

Does this make sense? Because of the cancellation from the sgn function on opposite

sides of an edge, ∑
e(m)

2 ⊆e(n)2
d(m)

1 f (m)
1 (e(m)

2 ) is just the measure of the boundary of e(n)2

decomposed to level m. This boundary is the union of the four edges e(n)1 on the
outside of the square, the four edges around the inner deleted square on level n+1,
and in general the 4 · 8k−1 edges around the 8k deleted squares on level n+ k, for
k ≤ m−n.( see Fig. 15 for m = n+2)
Using the estimate (29) we have

∣

∣

∣

∣

∣

∣

∣

(

3
8

)m

∑
e(m)

2 ⊆e(n)2

d(m)
1 f (m)

1 (e(m)
2 )

∣

∣

∣

∣

∣

∣

∣

≤ 4c

(

3
8

)m (

1
3n +

8
3n+1 +

82

3n+2 + ...+
8m

3m

)

≤ c.
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Thus the terms on the right side of (30) are uniformly bounded, so it is not unrea-
sonable to hope that the limit exists.

Fig. 15 Edges in sum for m = n+2

5 0-Forms and 2-Forms on the Magic Carpet

The vertices Ẽ(m)
0 of Γ̃m split into singular Ẽ(m)

0s and nonsingular vertices Ẽ(m)
0n . Let

Vm = #Ẽ(m)
0 , Sm = #Ẽ(m)

0s , and Nm = #Ẽ(m)
0n . Then Sm = 1+ 8+ 82 + ...+ 8m−1 =

(8m − 1)/7, since each time we remove a square and identify its boundaries we
create a single singular vertex. To compute the other two counts, we note that each
of the 8m squares has 4 vertices, and singular vertices arise in 12 different ways,
while nonsingular vertices arise in 4 different ways. Thus

12Sm +4Nm = 8m

Solving for Nm we obtain

Nm =
4∗8m +3

7
,Vm =

5∗8m +2
7

.

Asymptotically, one-fifth of all vertices are singular.

The Laplacian −Δ̃ (m)
0 given by (1) has Vm eigenvalues, starting at λ0 = 0 cor-

responding to the constants. In Table 8 we give the beginning of the spectrum for
m = 1,2,3,4 along with the ratios from levels 3 to 2 and 4 to 3.

We note that the ratios are around r = 6...., so we expect

−Δ̃0 = lim
m→∞

rm
(

−Δ̃ (m)
0

)

to define a Laplacian on MC. At present there is no proof that MC has a Laplacian,
so our data is strong experimental evidence that −Δ̃0 exists. What is striking is that
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Table 8 Beginning of the spectrum of −Δ̃ (m)
0 and ratios

λ1 λ2 λ3 λ4 λ2/λ3 λ3/λ4

0.0000 0.0000 0.0000 0.0000
1.5000 0.2877 0.0458 0.0071 6.2809 6.4099
1.7047 0.4458 0.0734 0.0114 6.0699 6.4402
2.5000 0.4458 0.0734 0.0114 6.0699 6.4402
2.5000 0.4496 0.0764 0.0120 5.8860 6.3642
3.1287 0.8333 0.1449 0.0230 5.7521 6.2957

0.8595 0.1538 0.0244 5.5870 6.2971
0.8595 0.1538 0.0244 5.5870 6.2971
0.9862 0.1645 0.07 5.9938 6.4006
1.0967 0.1854 0.0289 5.9150 6.4218
1.1838 0.2175 0.0346 5.4441 6.2913
1.3014 0.2386 0.0372 5.4555 6.4138
1.3014 0.2386 0.0372 5.4555 6.4138
1.5000 0.2684 0.0420 5.5881 6.3862
1.5000 0.2684 0.0420 5.5881 6.3862
1.5000 0.2701 0.0428 5.5541 6.3056
1.5793 0.2849 0.0454 5.5438 6.2771
1.5793 0.2877 0.0458 5.4898 6.2809
1.6912 0.3407 0.0552 4.9636 6.1695
1.7047 0.3869 0.0626 4.4058 6.1772
1.8770 0.3922 0.0633 4.7861 6.1940
1.8913 0.3922 0.0633 4.8228 6.1940
1.9661 0.4169 0.0685 4.7164 6.0849
1.9661 0.43 0.0705 4.5462 6.1319

r < 8, in contrast to the factor of≈ 10.01 for SC. Since the measure renormalization
factor is 8m for both carpets, we conclude that the energy renormalization factor for
MC would have to be less than one. In Euclidean spaces or manifolds, this happens
in dimensions greater than two. Note that the unrenormalized energy on level m
would be

Ẽ(m)( f0) =
1

2∗8m ∑
e(m)

1 ∈Ẽ(m)
1

|d0 f0(e
(m)
1 )|2,

so ˜E (m) = rmẼ(m) means that the graph energy ∑
e(m)

1 ∈Ẽ(m)
1

|d0 f0(e
(m)
1 )|2 is multiplied

by (r/8)m before taking the limit.
In Fig. 16 we show the graphs of selected eigenfunctions on levels 2, 3, 4. Again

we quantify the rate of convergence as in the case of SC by giving in Table 9 the

values of ‖ f (m)
j |

Ẽ
(m−1)
0

− f (m−1)
j ‖2

2.

We give similar data for the spectrum of−Δ̃ (m)
2 defined by (12). In order to make

the comparison with Table 8 clear, we give Table 10 the eigenvalues of −Δ̃ (m)
2 mul-

tiplied by 0.3221 and ratios. In Table 11 we show quantitative rates of convergence.
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Fig. 16 Graphs of selected eigenfunctions of MC 0 forms on levels 2, 3, 4

Table 9 Values of ‖ f (m)
j |

Ẽ
(m−1)
0

− f (m−1)
j ‖2

2

number of eigenvalues m = 2 m = 3 m = 4 3 to 2 4 to 3
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.2877 0.0458 0.0071 0.0000 0.0000
5 0.4496 0.0764 0.0120 0.0001 0.0000
6 0.8333 0.1449 0.0230 0.0002 0.0000
9 0.9862 0.1645 0.07 0.0004 0.0000
10 1.0967 0.1854 0.0289 0.0008 0.0000

In Fig. 17 we show graphs of eigenfunctions. In Fig. 18 we show graphs of ∗ f (m)
0

when f (m)
0 is an eigenfunction in Fig. 16, and in Fig. 19 we show graphs of ∗ f (m)

2

when f (m)
2 is an eigenfunction in Fig. 17. In Fig. 20 and 21, we give the Weyl ratios

of the eigenvalues of the 0 forms and 2 forms.
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Because miniaturization holds we expect a value α = log8
logr ≈

log8
log6 . We have renor-

malized the eigenvalues as {rmλ (m)
j }, with the expectation that in the limit as m→∞

we obtain eigenvalues of −Δ̃0 and −Δ̃2 on MC.

Table 10 Eigenvalues of −Δ̃ (m)
2 multiplied by 0.3221 and ratios

m = 1 m = 2 m = 3 m = 4 λ2/λ3 λ3/λ4

0.0000 0.0000 0.0000 0.0000
1.2885 0.2841 0.0463 0.0071 6.1409 6.4749
2.1054 0.4449 0.0721 0.0112 6.1710 6.4514
2.1054 0.4449 0.0721 0.0112 6.1710 6.4514
2.5770 0.4889 0.0776 0.0119 6.2970 6.5040
3.8655 0.9193 0.1504 0.0232 6.1139 6.4904
4.3371 0.9553 0.1580 0.0244 6.0455 6.4640
4.3371 0.9553 0.1580 0.0244 6.0455 6.4640

0.9653 0.1623 0.03 5.9494 6.4158
1.0110 0.1792 0.0283 5.6430 6.3393
1.2077 0.2192 0.0345 5.5097 6.3554
1.2135 0.2226 0.0356 5.4505 6.32
1.2135 0.2226 0.0356 5.4505 6.32
1.2885 0.2679 0.0418 4.8091 6.4058
1.5007 0.2679 0.0418 5.6010 6.4058
1.5562 0.2699 0.04 5.7662 6.3573
1.5562 0.2841 0.0452 5.4771 6.2923
1.6334 0.2878 0.0463 5.6757 6.2202
1.7959 0.3541 0.0560 5.0715 6.3241
1.9528 0.3946 0.0628 4.9493 6.2829
1.9528 0.3969 0.0630 4.9204 6.3040
2.0288 0.3969 0.0630 5.1118 6.3040
2.0840 0.4358 0.0693 4.78 6.2886
2.1054 0.4410 0.0712 4.7737 6.1952
2.1054 0.4410 0.0712 4.7737 6.1952
2.1700 0.4449 0.0721 4.8774 6.1710
2.1700 0.4449 0.0721 4.8774 6.1710
2.3521 0.4529 0.0728 5.1929 6.2232
2.3579 0.4847 0.0770 4.8648 6.2915
2.4038 0.4889 0.0776 4.9172 6.2970
2.4038 0.4971 0.0796 4.8356 6.2415
2.4760 0.4971 0.0796 4.9807 6.2415
2.4760 0.5364 0.0870 4.6156 6.1657
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Table 11 Values of ‖ f (m)
j |

Ẽ
(m−1)
2

− f (m−1)
j ‖2

2

Number of eigenvalues m = 2 m = 3 m = 4 3 to 2 4 to 3
1 0 0 0 0 0
2 0.2205 0.0359 0.0055 0.0006 0.0001
5 0.3794 0.0602 0.0093 0.0012 0.0002
6 0.7135 0.1167 0.0180 0.0051 0.0003
9 0.7492 0.19 0.0196 0.0056 0.0004
10 0.7846 0.1391 0.0219 0.0018 0.0004
11 0.9373 0.1701 0.0268 0.0350 0.0011

Fig. 17 Graphs of selected eigenfunctions of MC 2 forms on levels 2, 3, 4
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Fig. 18 Graphs of ∗ f (m)
0 when f (m)

0 is an eigenfunction in Fig. 16

6 1-Forms on the Magic Carpet

We indicate briefly how the theory differs from SC. We have the analogs of (17), (18)

and (19), but the dimension count is different because δ̃ (m)
2 also has a 1-dimensional

kernel, namely the constants. There are exactly 2 ·8m edges, since each edge is the
boundary of exactly two squares, so

dimH
(m)

1 = 2 ·8m−8m− 5 ·8m +1
7

+2 =
2 ·8m +12

7
.

On the other hand, the surface approximating MC on level m has genus g = (8m +
6)/7, and the cycles generating the homology are in one-to-one correspondence with
the horizontal and vertical identified edges. The analog of Conjecture 3.1 is true, in
fact it is a well-known result in topology.

In Fig. 22, 23, and 24 we show the values of h(2)1 , h(3)1 and the restriction of h(3)1

to Ẽ(2)
1 where γ1 is the top and bottom horizontal line. There are some surprising
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Fig. 19 Graphs of ∗ f (m)
2 when f (m)

2 is an eigenfunction in Fig. 17

features of these 1-forms that may be explained by symmetry. Let RH denote the
horizontal reflection and RV the vertical reflection about the center. Note that RHγ1 =

−γ1 because the orientation is reversed, while RV γ1 = γ1. Since −h(m)
1 (RHx) and

h(m)
1 (RV x) are harmonic 1-forms with the same integrals around cycles as h(m)

1 , it

follows by uniqueness that −h(m)
1 (RHx) = h(m)

1 (x) and h(m)
1 (RV x) = h(m)

1 (x). This

implies that h(m)
1 vanishes identically along the cycle consisting of the vertical edges

of the large square, and indeed any square that is symmetric with respect to RH .

Certain other vanishings of h(m)
1 are accidental to the level m, and do not persist
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Fig. 20 Weyl ratio of MC 0 forms eigenvalues

α

α

α

α

α

α

α

α

Fig. 21 Weyl ratio of MC 2 forms eigenvalues
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when m increases. For example, every cycle of level m contains just a single edge,
so vanishing of the integral forces vanishing on the edge. Sometimes this has a ripple
effect. For example, consider the region in the top center of the level 2 graph show in
Fig. 25, where the horizontal symmetry has been used in labeling edges. We obtain

the equation 2a+b = 0 from the equation d̃(2)
1 h̃(2)1 = 0 on the small square, and the

equation 2c+ b = 0 from
∫

γ h̃(2)1 = 0 on the cycle along the top of the big square.

Finally, the equation a+ c− b = 0 comes from δ̃ (2)
1 h̃(2)1 = 0 at the indicated point.

These yield a = b = c = 0 that we see in Fig. 22, 23 and 24.

Fig. 22 Values of h(2)2

To quantify the rate of convergence we give in Table 12 the values of ‖h(m)
k −

Rh(m)
k ‖2 analogous to Table 3.

7 Discussion

We consider first SC. In Sect. 1 we defined the operators d(m)
0 , d(m)

1 , δ (m)
1 , δ (m)

2 , Δ (m)
0 ,

Δ (m)
1 , Δ (m)

2 on the graphs Γm approximating SC. In light of the computational results
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Fig. 23 The restriction of Rh(3)2 to Ẽ(1)
1 where γ1 is the top and bottom horizontal line

reported in Sects. 2, 3, and 4 we may speculate on how it may be possible to pass to
the limit as m→ ∞ to obtain corresponding operators on SC.

The simplest case to consider is d0. We note that (2) is consistent from level to
level without renormalization. In other words, if f0 is any continuous function on
SC whose restriction to any line segment in SC is of bounded variation, then

d0 f0(Lab) = f0(b)− f(a), (31)

where Lab is a horizontal or vertical line segment joining a to b, defines a measure
on all such line segments with

d0 f0(e
(m)
1 ) = d(m)

0 f (m)
0 (e(m)

1 ) (32)

where f (m)
0 = f0 restricted to E(m)

0 . This does not settle the question of what is the
most suitable domain for the space of 0-forms f0, and then what the corresponding
space of 1-forms will be the range under d0.

The renormalization of Δ (m)
0 suggested in (16) requires that we renormalize δ (m)

1
also by the factor of rm, and so we would like to define

δ1 f1(x) = lim
m→∞

rmδ (m)
1 f (m)

1 (x) (33)
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Fig. 24 The restriction of RRh(4)2 to Ẽ(1)
1 where γ1 is the top and bottom horizontal line

Fig. 25 A figure of the region in the top center of the level 2 graph where the horizontal symmetry
has been used in labeling edges
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Table 12 Values of ‖h(m)
k −Rh(m)

k ‖2

Number 1 2 3 4 5 6 7 8 9 10

||h(2)k −Rh(1)k || 0.1549 0.4647

||h(3)k −Rh(2)k || 0.1476 0.1581 0.2419 0.2039 0.2419 0.2669 0.2669 0.2419 0.2039 0.2419

||h(4)k −Rh(3)k || 0.1485 0.1349 0.1452 0.1468 0.1452 0.1458 0.1458 0.1452 0.1468 0.1452

for x∈⋃

m
E(m)

0 , with f (m)
1 = f1 restricted to E(m)

1 and δ (m)
1 given by Ṫo make sense of

this we need to find a precise domain for the 1-forms f1 so that the limit exists and

is a continuous function on the dense set
⋃

m
E(m)

0 , so that δ1 f1 extends to a function

on SC. Then we would want to characterize the range of δ1. We would specifically
like to have the domain of δ1 contain the range of d0, so that

Δ0 = δ1d0

might be defined directly without limits. The results of [5] would then imply that this
Laplacian must agree, up to a constant multiple, with any other symmetric Laplacian
defined on functions on SC.

The numerical evidence reported in Sect. 2 gives very strong support for the exis-
tence of −Δ0 as the limit in (16). The spectrum behaves well, and Table 2 indicates
convergence of the eigenfunctions (note that we only computed changes in eigen-
functions coming from eigenvalues of multiplicity one because it is easier to make
sure we are comparing the same eigenfunctions; once we normalize the eigenfunc-
tion to have L2 norm equal to one, it is uniquely determined up to a ± sign). So we
have strong evidence that the limit in (33) exists when f1 = d1 f0 for f0 an eigenfunc-
tion, and hence any linear combination of eigenfunctions. This does not, of course,
give any “generic” space of 1-forms for which δ1 f1 exists. Because the factors of

8m in the definitions 6 and 5 of the weights in (7), only the sizes of f (m)
1 (e(m)

1 ) can
create decay, and under the assumption that the measures comprising f1 are abso-
lutely continuous, this would only create a decay rate of 3−m, not nearly enough
to compensate for rm in (33). In other words, it is only cancellation of positive and
negative terms that can lead to the existence of the limit in (33).

The situation for 2-forms is discussed in Sect. 4 The evidence is not as clearcut,
but the suggestion is that−Δ2 may exist as a nonrenormalized limit, while δ2 and d1

require renormalization factors 8/3 and 3/8. We would then still have d1d0 = 0 and
δ1δ0 = 0 because (4) and (9) hold on each level, not because of limits of nonzero
terms tending to zero. If this is correct, the spectrum of −Δ2 would not be discrete,
and most likely would be entirely continuous.

For 1-forms, we would expect the Hodge decomposition (11) on the approximate
levels to converge to a Hodge decomposition

Λ1 = d0Λ0⊕δ2Λ2⊕H1 (34)
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for the appropriate spaces Λ0,Λ1,Λ2 of forms on SC, where H1 denotes the har-
monic 1-forms, with

−Δ1 =

⎧

⎪

⎨

⎪

⎩

d0δ1 on d0Λ0 or an appropriate subspace

δ2d1 on δ2Λ2 or an appropriate subspace

0 on H1.

For example, any L2 0-form may be written

f0 =∑
k

ck( fk)0

where {( fk)0} is an orthonormal basis of 0-eigenforms with

−Δ0( fk)0 = λk( fk)0,

where

∑
k

|ck|2 = ‖ f0‖2
2 < ∞. (35)

However, to define −Δ0 f0 in L2 via

−Δ0 f0 =∑
k

λkck( fk)0

we need the condition

∑
k

λ 2
k |ck|2 < ∞, (36)

which is stronger than (35).

On the other hand, {λ−
1
2

k d0( fk)0} is an orthonormal set of 1-forms, since

< d0( fk)0,d0( fk)0 >1=< ( fk)0,δ1d0( fk)0 >0= λk,

and this might be considered an orthonormal basis for the d0Λ0 part of the Hodge
decomposition. But if

f1 =∑
k

ckλ
− 1

2
k d0( fk)0,

then to define δ1 f1 via

δ1 f1 =∑
k

ckλ
− 1

2
k δ1d0( fk)0 =∑

k

ckλ
1
2

k ( fk)0

we would require

∑
k

|ck|2λk < ∞,
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a condition intermediate between (35) and (36). This would also allow us to define

−Δ1 f1 = d0δ1 f1 =∑
k

ckλ
1
2

k d0( fk)0

as an L2 1-form.
The situation for the δ2Λ2 part of the Hodge decomposition would be similar,

except that we would have a spectral resolution rather than an infinite series of
eigenfunctions, and because the operator −Δ2 is presumably bounded, we would
not encounter different conditions to define δ2 f2 and −Δ2 f2.

What can be said about H1? The evidence presented in Sect. 3, in particular

Table 3, suggests that limits of sequences of 1-forms in H
(m)

1 will exist and give us
1-forms in H1, namely

hk = lim
m→∞

h(m)
k

where h(m)
k is defined by the cohomology/homology duality (23), keeping the cycle

γk the same at all large enough levels m. In particular we would have
∫

γ j

hk = δ jk

as γ j ranges over all homology generating cycles at all levels. By taking finite linear
combinations we would get 1-forms with prescribed integrals over cycles, provided
all but a finite number of integrals are zero. A more challenging question is whether
there is a reasonable class of harmonic 1-forms expressible as infinite linear combi-
nations of {hk}.

The evidence presented in Figs. 9, 10 and 11 and Tables 4 and 5 supports the
conjecture that all our 1-forms restrict to measures on line segments. For harmonic
1-forms it seems almost certain that the measures are absolutely continuous. This
appears to hold in all cases.

Next we consider MC. The results reported in Sect. 5 strongly support the con-
jecture that Laplacians −Δ̃0 and −Δ̃2 exist in the limit, and have the identical spec-
trum (up to a constant). Unfortunately, we are not able to get a good estimate of the
Laplacian renormalization factor r, other than to say it is approximately equal to 6.
The definition (31) and (32) for d0 is the same as for SC, and similarly (33) would
presumably define δ1 with the MC value of r. In this case we would also define d1

without renormalization,

d1 f1(e
(k)
2 ) = lim

m→∞
d(m)

1 f (m)
1 (e(k)2 ),

where d(m)
1 is defined by (3), and f (m)

1 is the restriction to E(m)
1 of f1. Indeed the limit

in (33) exists trivially because d(m)
1 f (m)

1 (e(k)2 ) is constant for m≥ k. This follows by
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induction from the identity

d(k+1)
1 f (k+1)

1 (e(k)2 ) = d(k)
1 f (k)1 (e(k)2 ). (37)

To see why (37) holds we note that e(k)2 splits into 8 (k+ 1)-cells. Now the edges
of these smaller cells come in two varieties, those that partition the edges bounding

e(k)2 and pairs of interior edges. But each pair includes opposite orientations, so the

sum of f (k+1)
1 over the pair is zero. This of course uses the fact that the central edges

in MC are identified in pairs, so nothing like this is true for SC.
The renormalization factor for −Δ̃2 would then have to be the renormalization

factor defining δ2,

δ2 f2(e
(k)
1 ) = lim

m→∞
rmδ (m)

2 f (m)
2 (e(k)1 ). (38)

Since δ (m)
2 f (m)

2 (e(k)1 ) involves the difference between the f2 measure of “thicken-
ings” of the edge on either side, it seems difficult to explain why the limit (38)
should exist, or for what class of 2-forms.

It is rather simple to understand how to obtain the Hodge *-operators on 0-forms
and 2-forms on MC as renormalized limits of 13 and 14. Indeed we should define

∗ f0 = lim
m→∞

∗8m f (m)
0

and
∗ f2 = lim

m→∞
∗8m f (m)

2

If f0 is continuous on MC then ∗ f0 = f0dμ , where μ is the standard measure on

MC with μ(e(m)
2 ) = 8−m for every m-cell e(m)

2 , since ∗ f (m)
2 (e(m)

2 ) simply averages f0

over the four vertices of e(m)
2 . Similarly, if f2 = gdμ for some continuous function

g, then ∗ f2 = g because ∗ f (m)
2 (e(m)

0 ) averages g over a small neighborhood of e(m)
0 .

In particular we have ** equal to the identity in both directions.
It seems plausible that the *-operations should conjugate the two Laplacians,

at least up to a constant multiple. Our data strongly supports this conjecture. The
eigenvalues match well when multiplied by an experimentally determined constant.
We don’t have any intuitive explanation for this particular constant, however. The
graphs of the eigenfunctions seem qualitatively similar, and so do the graphs of the
*-operators at level m applied to eigenfunctions. Thus we have evidence for Poincaré
duality on MC. Since MC is a limit of surfaces without boundary (but with singular
points for the geometry) this is perhaps not surprising.

The apparent fact that the Laplacian renormalization factor r is small than 8 (the
measure renormalization factor) has important implications. In Euclidean space this
property only appears in dimensions higher than two. In particular, if it were possi-
ble to define an energy ε on MC so that −Δ̃0 is derived from ε and μ by the weak
formulation

∫

(−Δ̃0 f )gdμ = E ( f ,g),
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then functions of finite energy would not necessarily be continuous. Also the value
of α in the Weyl ratio will be greater than one.

For 1-forms on MC we also expect a Hodge decomposition (34). The operator
d0 intertwines −Δ̃0 on Λ0 with −Δ̃1 on the d0Λ0 portion of Λ1, and similarly δ2

intertwines −Δ̃2 on Λ2 with −Δ̃1 on the δ2Λ2 portion of Λ1. Note that d0 annihi-
lates constants and δ2 annihilates μ , so the spectrum of −Δ̃1 consists exactly of the
nonzero portions of the spectra of−Δ̃0 and−Δ̃2 together with the 0-eigenspace H1.
Because the eigenvalues of −Δ̃2 and−Δ̃1 are proportional by a nontrivial factor, we
do not see the eigenspaces doubling in multiplicity.

The story for the space of harmonic 1-forms H1 on MC is almost identical to SC,
except the homology is different so the total number arising at each level is different.

A different approach to onstructing a Laplacian on functions on MC by using a
Peano curve is given in [20].

It should be possible to define a Hodge *-operator from 1-forms to 1-forms as a
limit of such operators on the graph approximations. We have not been successful
in carrying this through.
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Part X
Applications and Algorithms in the

Physical Sciences



One of the many ways in which harmonic analysis distinguishes itself among
other areas of modern mathematics is through the emphasis placed on algorithm
development and the connections that it builds with applied sciences. This phe-
nomenon goes back to Joseph Fourier, whose main motivation for introducing
what we know as the Fourier transform, was his work on heat flow and thermal
conduction. Other prominent examples of these interactions include the role of
Radon transform in Magnetic Resonance Imaging, the impact of Kaczmarz algo-
rithm on Computed Tomography, and the role played by the Phase Problem in X-ray
crystallography—all rewarded with Nobel Prizes. The continuation of these trends
is certain, as is illustrated by the selection of four excellent chapters devoted to
state-of-the-art applications of recent developments in harmonic analysis.

An example of such a fundamental connection to applied sciences is the concept
of Laplace transform, which is treated in the first chapter. NAIL A. GUMEROV and
RAMANI DURAISWAMI present a detailed analysis of the spherical harmonic rota-
tion coefficients, together with new, fast, and stable recursive algorithms for their
computation. Spherical harmonics form an orthonormal basis for the space of square
integrable functions on the unit sphere. As such, they have many practical applica-
tions, ranging from computation of electron configurations in quantum mechanics,
providing solutions for many fundamental equations in mathematical physics, to
applications in geostatistics and astrophysics. Detailed description of the involved
algorithms is provided and illustrated with numerical examples.

BRIAN O’DONNELL, ALEXANDER MAURER, and ANTONIA PAPANDREOU-
SUPPAPPOLA give an excellent overview of the role of modern time-frequency sig-
nal processing techniques in molecular biology. Highly localized waveform analysis
and parameter estimation are the main tools used to detect and analyze variations in
the profiles of antibodies to discriminate between pathogens. When combined with
the recent developments in measuring expression levels for large numbers of genes,
proteins, or peptides, these methods become a powerful tool with such possible
applications, as diagnosis of infectious diseases before they become symptomatic.

Harmonic analysis inspired representations of 3D objects are treated in the
third chapter of this part. Efficient visualization of complex 3D phenomena plays
an important role in such diverse fields as computer graphics, X-ray crystallog-
raphy, or magnetic resonance imaging. DAVID A. SCHUG, GLENN R. EASLEY,
and DIANNE P. O’LEARY analyze novel geometric multiscale representation sys-
tems called shearlets, and demonstrate the advantages arising from including direc-
tional information in the multiresolution analysis, over classical wavelet techniques.
Resulting 3D edge detection algorithms are carefully studied and compared with
traditional 2D methods.

In the final chapter, SHERRY E. SCOTT introduces the readers to the rich field
of fluid dynamics and its many interactions with wavelet theory. This gives us a
better understanding of the role played by novel mathematical models in analysis
and monitoring of Earth’s climate and weather. The key notion in this presentation
is the concept of ergodicity defect—a value that captures the deviation of a system
from ergodicity, and which can serve as a diagnostic tool in a variety of geoscience
applications.



Biosequence Time–Frequency Processing:
Pathogen Detection and Identification

Brian O’Donnell, Alexander Maurer, and Antonia Papandreou-Suppappola

Abstract Diagnostic information obtained from antibodies binding to random pep-
tide sequences is now feasible using immunosignaturing, a recently developed
microarray technology. The success of this technology is highly dependent upon
the use of advanced algorithms to analyze the random sequence peptide arrays and
to process variations in antibody profiles to discriminate between pathogens. This
work presents the use of time–frequency signal processing methods for immunosig-
naturing. In particular, highly-localized waveforms and their parameters are used to
uniquely map random peptide sequences and their properties in the time–frequency
plane. Advanced time–frequency signal processing techniques are then applied for
estimating antigenic determinants or epitope candidates for detecting and identify-
ing potential pathogens.

Keywords Random-sequence peptide microarray · Epitope · Pathogen · Immunosig-
naturing · Time–frequency processing · Detection · Identification

1 Introduction

1.1 Signal Processing of Biological Sequences

The area of bioinformatics is mainly involved with the management of biological
information using computer technology and statistics. Signal processing for molec-
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ular biology, on the other hand, encompasses the development of algorithms and
methodologies for extracting, processing, and interpreting information from biolog-
ical sequences [1–6]. Intelligent use of signal processing algorithms can provide
invaluable insight into the structure, functioning, and evolution of biological sys-
tems. For example, complex assays to determine functional activities of analytes
or peptide chips to manifest key residues for protein binding can provide a wealth
of information on underlying biological systems. However, in each of these cases,
appropriately designed processing is required to robustly extract the most relevant
information. Images of array fluorescence are enhanced to improve the estimation
of gene reactivity, while gene expression classification performance is increased by
including biological and experimental variability in the algorithm design [4].

Genomics and proteomics, in general terms, study the functions and structures
of genomes and proteomes, respectively. Genomes, which are genetic material of
organisms encoded in deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), and
proteomes, which are expressed proteins in given organisms, provide discrete infor-
mation, represented in sequences of unique elements [7, 8]. More specifically, DNA
are biomolecules that are represented as letter sequences of precise orderings of four
nucleobases; the different orderings correspond to patterns that influence the forma-
tion and development of different organisms. Similarly, proteins are biomolecules
represented as sequences of unique orderings of 20 linked amino acids, with each
amino acid represented by a letter of the alphabet. DNA and protein sequence analy-
sis requires significant processing of the discrete gene orderings in order to identify
intrinsic common features or find gene variations such as mutations [9, 10]. One
genome analysis application is gene sequence periodicity as regions of genetic repe-
tition have been shown to correlate with functionally important genes [11, 12]. Gene
periodicity has been analyzed using spectral methods [13–16]; such methods have
also been used to estimate variations in base pair frequencies between organisms
as they can indicate phylogenic origin from the species genome. Time–frequency
signal processing methods such as wavelet transforms have also been used in gene
sequencing such as to characterize long range correlations or identify irregularities
in DNA sequences [14, 17, 18].

Signal processing methods have also been used for sequence alignment, or
arranging sequences to identify regions of similarity due to functional, structural,
or evolutionary relationships between the sequences [19, 20]. As thousands of
organisms have been sequenced completely, and many more have been partially
sequenced, searching for these similarities requires a vast number of computations.
There are many algorithms designed to perform these searches including dynamic
programming algorithms such as Smith–Waterman and BLAST, correlation based
methods, Bayesian approaches, and time–frequency (TF) based methods [10, 21–
28]. Computational alignment tools based on dynamic programming such as the
Smith–Waterman algorithm is guaranteed to find all similarity matches, but it runs
slowly [21]. Other tools, such as BLAST [22, 23], are widely made available for
database similarity searching as they were developed to provide a fast approach of
approximating the complete alignment found by dynamic programming algorithms.
BLAST runs very quickly, around an order of magnitude faster than the complete
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alignment algorithms, and finds most significant alignments under most circum-
stances. However, it tends to miss alignments for queries with repetitive segments.
Correlation based methods map DNA or amino acid sequences to real or complex
numbered sequences and use sequence correlation to achieve a match in similarity
[26]. The algorithm can be implemented fast using the fast Fourier transform; how-
ever, errors increase when aligning sequences of longer lengths. We have recently
developed a TF based method that first uniquely maps sequences to highly-localized
Gaussian waveforms in the TF plane and then uses the matching pursuit decompo-
sition (MPD) algorithm to perform alignment [28–30]. The alignment approach is
compared to other approaches and shown to perform well with repetitive segments
in real time without preprocessing.

In addition to gene sequencing, microarray analysis has also played a significant
role in the extraction and interpretation of genomic information. Microarrays can
provide measurements of expression levels of large numbers of genes. For example,
peptide microarrays have been used to study binding properties and functionality
of different types of protein–protein interactions and provide insight into specific
pathogens [31–35]. Peptide microarrays are a relative new application for biologi-
cal signal processing. The technology to create assays using single peptide chains
has been around for a while in the form of the enzyme linked immunosorbent assay
(ELISA) [36]. In recent years, as the cost of printing many peptide clusters onto a
single substrate has been dropping, tens or hundreds of thousands of peptide clusters
can be reasonably printed on a single array. In addition to being able to construct
large-scale peptide arrays to detect specific diseases, another important aspect is the
robust interpretation and analysis of the extracted data in order to establish rela-
tionships between peptide sequences and binding strengths. Some recent analysis
approaches include support vector machine (SVM) modeling methods [37], compu-
tational alignment approaches [38], and statistical tools such as t-test and analysis
of variance linear regression [39–41].

1.2 Signal Processing Challenges: Random-Sequence Microarrays

The recently developed immunosignaturing technology uses microarrays with
random-sequence peptides to associate antibodies to a pathogen or infectious agent,
in a patients blood sample [32, 42–49]. The immunosignatures can potentially pro-
vide pre-symptomatic diagnosis for infectious diseases [35, 44, 48]. The large num-
ber of peptide sequences on each microarray, and the attraction of the ability to
diagnose as many pathological ailments as possible, renders a challenging problem
in signal processing. This is further complicated by the fact that, in general, training
data is not available. Current processing methods include statistical tests [45] and
supervised classification and learning methods such as support vector machines [43,
48]. Recently, we have developed adaptive learning methodologies for unsupervised
clustering integrated with immunosignature feature extraction approaches [50–52].

This work develops new algorithms for analyzing and processing random pep-
tide sequences in the TF plane in order to recognize pathogens from variations in
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antibody profiles without any prior information. Given immunosignaturing random-
sequence peptide microarray data for an individual, the task is to detect and identify
the binding sites of antibodies for target antigens. These binding sites, or linear epi-
topes, are short continuous subsequences of the peptide sequence that correspond
to the part of an antigen that is recognized by the antibodies [32, 53, 54]. Detect-
ing which peptides bind to which antibodies by identifying the corresponding anti-
body subsequence binding sites using immunosignaturing data is very useful as one
dataset contains localized information on multiple pathogens [52]. As a result, the
detection and identification algorithms can be used to characterize antibody speci-
ficity for the molecular recognition of the immune system or for deciphering molec-
ular mechanisms for various diseases.

2 Random Sequence Peptide Microarrays

Immunosignaturing is a microarray-based technology that uses random peptide
sequences to provide a comprehensive profiling of a person’s antibodies [42, 44, 55].
It has been shown that a person’s antibody profile, about 109 different antibodies in
the blood at a given time, is a sensitive indicator of the person’s health status. Part
of the body’s response to a foreign pathogen is to create antibodies which identify
and aid in the destruction of that pathogen. Pathogen detection and determination
is possible due to a uniquely identifying amino acid sequence on its exterior called
an antigen. The antibodies created in response to the pathogen are designed to only
bind to that specific antigen sequence, or one that is very similar. As the antibod-
ies amplify when the host is exposed to an infectious agent, the amplified antibody
response enables monitoring a disease upon infectivity. Rather than trying to iden-
tify an antibody by designing a microarray specific to a pathogen, the concept of
immunosignaturing is to identify an entire immune response. This is achieved by
printing an array with many different random peptides, so that small subsets of pep-
tide sequences are similar enough to antigen sequences of specific pathogen anti-
bodies to bind to them.

The immunosignaturing technology has been developed by the director and
researchers of the Center for Innovations in Medicine (CIM) at the Biodesign Insti-
tute at Arizona State University [56]. In particular, the random-peptide microarray
data used for algorithm demonstration in this work was provided by CIM. Informa-
tion on the technology, such as a description of the equipment, arrays, and a tech-
nological overview, can be found at http://www.immunosignature.com.
The immunosignaturing technology currently employs slides spotted with peptides,
resulting in microarrays with 330,000 peptide sequences (330k chip). The peptides
sequences are 20 amino acids long and a random number generator is used to gener-
ate the specific peptide sequences. Other than cysteine that is used as the C-terminal
amino acid, all natural amino acids are included in the peptide sequence generation.
As a result, the peptide sequences are random and not related to any naturally occur-
ring peptide sequence; however, the sequence on each spot on the slide is known.

http://www.immunosignature.com
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This ensures that the peptide array is not designed to monitor one specific disease or
a set of diseases. Array peptides are designed to fluoresce in proportion to an anti-
body binding strength when light of a specific frequency is shined on them. Peptides
with attached antibodies are expected to fluoresce more brightly than the those not
related to the antigen. Multiple identical peptides are printed within a predefined
circular area on the array; after the sample is given sufficient time to bind, the array
is washed and then illuminated. An image of the fluorescing array is taken, and
the median fluorescence value of the pixels in each circular area is calculated and
recorded. The resulting data used for analysis is the peptide sequence of amino acids
and its corresponding median fluorescence value at each array spot. Using the data
from the whole array, the problem is to detect the highly fluorescing peptides and
identify the corresponding underlying pathogens.

This is not a simple detection and identification problem; processing can be com-
plicated by the fact that there are additional macromolecules in blood samples that
can also bind to peptides due to hydrogen bonding, electrostatic interactions, and
van der Waals forces [57]. The concept of adding a large number of random peptides
on the array is novel as more pathogens can be detected on a single patient. However,
the large number of sequences to process also increases the number of sequences
that are close in structure to more than one pathogen’s antigen. Antibodies bind with
enough variability that trends across multiple peptides must be used. However, a sig-
nificant difficulty in finding these trends is that only a subsequence of the peptide
which binds to the antibody is responsible for the binding, and within that subse-
quence there can be one or two peptides which have little or no effect on the binding
strength. Determining which peptide subsequences are responsible for that binding
must be determined using multiple peptides with similar sub-sequences [44, 45].

3 Time–Frequency Processing of Peptide Sequences

The novel signal processing algorithms presented in this work aim to improve
pathogen detection and identification performance when using immunosignaturing
random peptide sequences. Toward this end, advanced signal processing method-
ologies are exploited to first map amino acid sequences to unique and highly TF
localized waveforms and then use matched TF representations to identify specific
peptide sub-sequences.

3.1 Mapping Peptide Sequences to Time–frequency Waveforms

The biosequence-to-waveform mapping considered must provide a unique wave-
form in the TF plane for each peptide sequence. When deciding on appropriate
waveforms to use in the mapping, the waveform parameters and properties must be
selected to ensure uniqueness in peptide representation and robustness in matched
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correlation-based processing, respectively. Following the scheme we adopted in
[28], Gaussian waveforms are selected for mapping as they are the most localized
waveforms in both time and frequency [58]. A basic Gaussian waveform g(t) is first
obtained as

g(t) =
1

(πσ2)1/4
e−t2/(2σ2), t ∈ (−Tg/2,Tg/2) , (1)

with unit energy and centered at the origin in the TF plane. The parameter σ2 affects
the waveform’s duration Tg and spread in frequency. When this waveform is time-
shifted by nT and frequency-shifted by kF ,

gn,k(t) = g(t−nT )e j2πkF(t−nT ), t ∈ (nT −Tg/2,nT +Tg/2) (2)

for integer n and k, the resulting Gaussian waveform is highly-localized at the TF
point (nT,kF). Note that the time shift step T > Tg and the frequency shift step F ,
and thus σ2 in (1), are chosen to ensure that the spacing between the time–frequency
shifted Gaussian waveforms is compact and the waveforms are nonoverlapping.

For the biosequence-to-waveform mapping, the time shift and frequency shift are
used to uniquely represent properties of the amino acids in the peptide sequence.
Each of the 20 possible different amino acids in a peptide sequence can be charac-
terized by a unique one-letter code, as shown in the first two columns of Table 1.
For the mapping, 20 possible frequency shifts kF , k = 1, . . . ,20, in Eq. (2) are used
to represent the 20 different types of amino acids, as shown in the third column of
Table 1. The position of the amino acid in the peptide sequence is mapped to the
time shift parameter nT in (2). Considering a peptide sequence of length N = 20
amino acids, N time shifts are needed to represent the peptide sequence; the num-
ber of time shifts is the same as the length of the sequence. A TF representation of
all possible Gaussian waveforms needed to map peptide sequences of length N = 10
amino acids is demonstrated in Fig. 1a.

Considering a peptide sequence p[n]=αn, n = 1, . . . ,N, of N amino acids
α1, α2, . . . , αN−1, αN , the mapping function f [{αn}]= k is used to identify the one-
letter code representing the amino acid αn and its corresponding frequency shift
kF from Table 1. Note that the range of the mapping function f [{·}] is the set of
positive integers, k = 1, . . . ,20; the domain of the function consists of the one-letter
codes from Table 1. Using this mapping function, the resulting waveform that is
used to map peptide sequence p[n] is given by

gpept(t) =
N

∑
n=1

gn, f [{αn}](t; p) =
N

∑
n=1

g(t−nT )e j2π f [{αn}]F(t−nT ) . (3)

The duration of the overall waveform gpept(t) is N T +Tg.
An example of a peptide sequence of length N = 10 is given by ARVHHKHVVE;

its corresponding TF representation is shown in Fig. 1b. The waveform in (3) used
to map this sequence is a linear combination of ten TF-shifted Gaussian waveforms.
Ten unique time shifts are used in the mapping; the frequency shifts are not unique
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Table 1 Frequency mapping of 20 amino acids

Amino One-letter Mapped
acid code frequency

Alanine A 20F
Arginine R 19F
Asparagine N 18F
Aspartic acid D 17F
Cysteine C 16F
Glutamic acid E 15F
Glutamine Q 14F
Glycine G 13F
Histidine H 12F
Isoleucine I 11F
Leucine L 10F
Lysine K 9F
Methionine M 8F
Phenylalanine F 7F
Proline P 6F
Serine S 5F
Threonine T 4F
Tryptophan W 3F
Tyrosine Y 2F
Valine V F

since the same amino acid can occur multiple times in a peptide sequence. It follows
that there is only one Gaussian waveform at each time shift but (possibly) multi-
ple Gaussian waveforms at different frequency shifts; a peptide sequences does not
necessarily consist of all possible 20 amino acids. For the example of the length
ten peptide sequence ARVHHKHVVE in Fig. 1b, and using the mapping in (3) and
the information from Table 1, α1α2α3α4α5α6α7α8α9α10 =ARVHHKHVVE and
f [{α1}]=20, f [{α2}]=19, f [{α3}]= f [{α8}]= f [{α9}]=1, f [{α4}]= f [{α5}]= f [{α7}]
=12, f [{α6}]=9, and f [{α10}]= 15. Specifically, the three histidine (H) amino acids
in the sequence are represented in Fig. 1(b) by the three Gaussian waveforms at the
same frequency shift 12F and different time shifts, 4T , 5T , and 7T , respectively.

3.2 Processing Waveforms of Mapped Peptide Sequences

The peptide sequence mapping in Eq. (3) results in a linear combination of nonover-
lapping Gaussian signals in the TF plane. A linear epitope or small continuous seg-
ment of the peptide sequence can be used as an antigenic determinant to a pathogen’s
antibodies. Identifying epitopes can be seen as searching for potential subsequences
that are either repeated very often or are frequently repeated with significant binding
strength on the microarray. After waveform mapping, the detection and identifica-
tion problem of epitopes or repeated subsequences over a large number of peptide
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Fig. 1 Time–frequency representation of Gaussian mapped waveforms a for peptide sequences of
10 amino acids in length; b for amino acid sequence ARVHHKHVVE; c for the same sequence with
any substitution in the 4th amino acid position, ARV-HKHVVE; d for the same sequence with any
substitutions in the 4th and 5th amino acid positions, ARV--KHVVE

sequences on a microarray becomes an estimation problem of the matched Gaus-
sian waveform parameters representing the amino acids in the epitope. As a result,
epitope waveform parameter (EpiWP) estimation can be performed using matched
signal expansion algorithms, such as the MPD [59]. Specifically, identifying repeti-
tions in the sequences maps to estimating matched parameters in the waveforms.

The MPD is an iterative algorithm that can decompose a waveform into a lin-
ear combination of weighted dictionary waveforms. The dictionary waveforms are
formed by TF shifting a basis waveform that is selected to be well-matched to the
analysis waveform. The MPD can be applied to the EpiWP estimation problem
using the Gaussian waveform in (1) as the dictionary basis signal. Then the epitope
mapped waveform to be decomposed and the MPD dictionary waveforms are in the
form of (3). In particular, mapped epitope candidate (MEpiC) waveforms are formed
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by considering possible amino acid subsequences from the peptide sequences. Using
the MPD to decompose an MEpiC waveform results in a small set of MPD features
that uniquely characterize the MEpiC waveforms; those features are then searched
over all mapped peptide sequences on the microarray. A suitably derived metric for
the number of peptide sequences identified to have the matched MEpiC waveform
can then be used to indicate whether the epitope candidate could be related to an
epitope of the antibodies of a particular pathogen.

Assuming an epitope of length L, the MEpiC waveform gepit(t) is given by Equa-
tion (3) with N replaced by L, the length of the epitope.1 At each iteration, the
MPD identifies a single TF shifted Gaussian waveform from the MEpiC wave-
form. This is accomplished by finding the best match between each of the mapped
amino acids forming the MEpiC waveform gepit(t) and possible mapped amino acids
gpept,n, f [{αn}](t) forming the peptide waveform. The MPD requires L iterations to
find a match of the MEpiC waveform within the mapped peptide waveforms. At
the start of the MPD algorithm, the best matched dictionary waveform between the
MEpiC waveform and the mapped peptide amino acid waveforms is obtained as

g(1)n1, f [{αn1}]
(t) = argmax

n

∫

gepit(t) gpept,n, f [{αn}](t) dt , (4)

where g(1)n1, f [{αn1}]
(t) is a Gaussian waveform centered at time shift n1 T and fre-

quency shift f [{αn1}]F , and n1 is the value of n that yields the maximum correla-
tion value in (4) after the first iteration. At the �th iteration, �= 2, . . . ,L, the residual
MEpiC waveform is given by

r(�)epit(t) = gepit(t)−
�−1

∑
m=1

g(m)
nm, f [{αnm}]

(t) .

The best matched dictionary waveform between the residual MEpiC waveform and
the mapped peptide waveform is given by

g(�)n�, f [{αn�}]
(t) = argmax

n

∫

r(�)epit(t) gpept,n, f [{αn}](t) dt . (5)

The discrete value n� is the sequence position index n that yields the maximum
correlation value in (5) at the �th iteration. Note that, there are no correlation coef-
ficients to consider in the expansion as the Gaussian waveforms are normalized to
have unit energy. The algorithm iteratively continues until L iterations, when there
are no more matches left between the MEpiC waveform and the mapped peptide

1 Note that the same notation, αn, is used to denote amino acids in peptide sequences and amino
acids in epitope sequences, which are subsequences of the peptide sequences. The specific type of
sequence, peptide or epitope, is differentiated, when needed, using the notation gpept(t) and gepit(t),
respectively.
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waveform. After L iterations, the decomposed mapped peptide waveform is given by

g̃(t) =
L

∑
�=1

g(�)n�, f [{αn�}]
(t)+ r(L+1)

epit (t) . (6)

The matched MEpiC waveform components are given by the summation term in

the right-hand side of Eq. (6); the unmatched ones are in the residue r(L+1)
epit (t). The

Gaussian waveform matching can then be used to obtain an epitope identification
metric in terms of the energy of the decomposed Gaussian waveform components.
The metric, for a candidate epitope, is given by

sepit =

∫

∣

∣

∣

L

∑
�=1

g(�)n�, f [{αn�}]
(t)

∣

∣

∣

2
dt. (7)

Note that, each mismatch between the MEpiC waveform and the matched peptide
waveform decreases the matching metric by one as the energy of the decomposed
term also decreases by one.

The MPD algorithm can also be used for matching MEpiC waveforms which
model biologically relevant substitutions. The matching is performed using the same
MPD algorithm with a modification to the MEpiC waveforms. This is demonstrated
in Fig. 1c and d for the length ten sequence ARVHHKHVVE represented in the TF
plane in Fig. 1b. In Fig. 1c, the same sequence is considered but with a substitution
allowed by any amino acid in the forth position. The effect on the MEpiC waveform
is to include a Gaussian waveform at each frequency shift at the forth position (or
time shift); this implies that any mapped peptide waveform is matched to the MEpiC
waveform at the forth time-shift. The same sequence but with two substitutions in
the forth and fifth amino acid positions is demonstrated in Fig. 1d.

4 Epitope Waveform Parameter Estimation

The epitope waveform parameter estimation algorithm consists of three main steps.
During the first step, the candidate epitope and peptide amino acid sequences are
mapped to Gaussian waveforms, following the discussion in Section 3.1. During
the second step, the peptide sequences are down selected by first preprocessing the
peptide sequences, and then applying some selection criteria and thresholding; the
reduced number of peptides after selection are the ones most likely to have been
bound to by antibodies. The third step performs the epitope waveform parameter
estimation using the MPD-based matching approach discussed in Section 3.2. The
steps are summarized in Fig. 2.
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Fig. 2 Block diagram depicting the algorithm for epitope waveform parameter (EpiWP) estimation

4.1 Peptide Selection Method

Preprocessing

Peptide array data from individual disease samples are median normalized to
account for the different binding times required. Some samples require longer time
to bind fully to the array before the sample solution is rinsed off.

Ranking Based on Peptide Selection Criteria

As the number of microarray random peptide sequences, Mp, is very large for effi-
cient processing, the peptide sequences need to be ranked according to some peptide
selection criteria, and then a selected smaller number of peptides, Ms, can be used
as input to the EpiWP estimation algorithm. One peptide selection criterion is based
on fluorescent intensity levels; the peptides with the highest fluorescent intensity
levels, or levels above some background fluorescent intensity threshold are selected
as they correspond to the peptides that bind to the antibodies. For some datasets,
it is possible for antibodies to bind weakly to peptides that do not have the highest
fluorescence values. As a result, a different peptide selection criterion is needed for
these datasets. The criterion is based on finding correlations or dependence between
multiple datasets; the fluorescent intensity levels from multiple datasets can be com-
pared in order to select peptides with high fluorescence values relative to the com-
parison data.
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Fig. 3 Histogram plots for the monoclonal antibody mAb1 using values of a fluorescence and b
correlation. Top plots process all peptide sequences; bottom plots process only peptides with the
exact epitope subsequence

The second peptide selection criterion is applied using Pearson’s correlation
coefficient between the fluorescent intensity levels of the array peptides and a binary
indicator vector. Assuming D microarray datasets for comparison, with Mp peptides
per microarray dataset, the correlation coefficient for the mth peptide, m = 1, . . . ,Mp,
at microarray d̃, is computed as

rd̃,m =

D

∑
d=1

(

fld,m− fl̄m
)

(

bd̃,d − (1/D)
)

(

D

∑
d=1

(

fld,m− fl̄m
)2

)1/2 (

D

∑
d=1

(

bd̃,d − (1/D)
)2

)1/2
, (8)

where fld,m is the fluorescent intensity of the mth peptide of the dth array,

fl̄m =
1
D

D

∑
d=1

fld,m ,

is the fluorescence sample mean of the mth peptide across all D microarray datasets,
and bd̃,d is 1 if d̃ = d and 0 otherwise.

One example of a monoclonal antibody for which a different peptide selection
criterion can give different estimation results is mAb1. For this monoclonal anti-
body, using the fluorescent intensity peptide selection criterion demonstrates that
the antibodies bind weakly to the peptides relative to background binding and can-
not be detected at any threshold. In particular, there are many peptides with high
fluorescent intensity that do not bind to the mAb1 antibody. This is illustrated in
Fig. 3a, where the figure on the top is a histogram of all of the 330k fluorescent
intensity levels on the array, while the figure on the bottom is a histogram of just the
fluorescent intensity levels of peptides which contain a subsequence of the mAb1
epitope. For this dataset, as there are peptides with higher fluorescent intensities
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than most of the peptides with the mAb epitope, the fluorescent intensity selection
criterion fails to provide correct epitope estimates. On the other hand, if the corre-
lation value peptide selection criterion is applied, epitope estimation performance
is improved. This is demonstrated in Fig. 3b, where there are a cluster of epitope
sequence peptides with correlation values approaching 1. These sequences will be
kept after thresholding, and there will be a higher percentage of peptides with epi-
tope subsequences when correlation is used as the ranking metric compared to when
fluorescence is used as the ranking metric. Note that an epitope subsequence is four
or more contiguous amino acids from the epitope and that the fluorescent intensity
levels in Fig. 3a were logarithmically transformed to improve visualization.

Thresholding

Depending on the peptide selection criterion, thresholding is used to keep Ms �Mp

peptide sequences as input to the epitope estimation. A background fluorescent
intensity threshold is used with the fluorescent intensity criterion. With the corre-
lation coefficient criterion, the correlation coefficient values rd̃,m of the mth peptide,

m = 1, . . . ,Mp, on the d̃ array in (8) are first ranked in descending order and then
compared to some threshold.

4.2 Epitope Estimation Algorigthms

The epitope candidate sequences are derived from the remaining P peptide array
sequences obtained after applying the selection method in Section 4.2. There are
three different methods considered for epitope waveform parameter (EpiWP) esti-
mation, resulting in the detection and identification of the epitope candidate sequences.
The epitope candidate sequences for the EpiWP-1 estimation method include all
possible subsequences of length L adopted from the peptide microarray sequences.
The epitope candidate sequences for the EpiWP-2 estimation method include all
subsequences of length L from the peptide array sequences, together with the sub-
sequences formed by allowing for a single amino acid substitution (by any other
type of amino acid). The epitope candidate sequences for the EpiWP-3 estimation
method include all subsequences of length L from the peptide array sequences,
together with the subsequences formed by allowing for two adjacent amino acid
substitutions.

The main steps of the estimation algorithm are summarized in Algorithm 1.
Using the down-selected Ms peptide sequences, the MPD is used to compare the
peptide sequences to Me epitope candidate sequences. The overall matching score
uses the metric in (7) and the number of peptide sequences that include each
of the Me epitope candidate sequences. Algorithm 2 finds the maximum match
between two sequences with dissimilar lengths. The two sequences are peptide array
sequence of length N and the epitope candidate sequence of length L, where N > L.
The algorithm first maps both sequences to Gaussian waveforms and then uses the
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MPD to perform the matching. The number of maximum matches found using Algo-
rithm 1 is recorded, and epitope candidate sequences are sorted in descending order
according to the number of peptides they were found in. The epitope candidate
sequences that occur most frequently are the top epitope estimates.

Algorithm 1 Matches Between Peptides and Epitope Candidate Sequences
for i = 1 to Ms do

for j = 1 to Me do
Run Algorithm 2 on the ith peptide and jth epitope candidate sequences
Record the number of maximum matches for each epitope candidate sequence

end for
end for

Algorithm 2 Maximum Match Between Two Sequences
for n = 1 to N−L+1 do

Map peptide sequence p[m], m = n, . . . ,n+L−1, onto TF waveforms gpept(t)
Map epitope candidate sequence e[l], l = 1, . . . ,L, onto TF waveforms gepit(t)
Perform MPD using gpept(t) and gepit(t) to find score sepit

end for

4.3 Evaluation of Epitope Estimation

In order to evaluate the performance of the random-sequence peptide microarray
with the EpiWP estimation method for identifying antibody epitopes, data sets for
eight monoclonal antibodies (mAbs) were acquired. The mAbs used have known
epitopes that were used to probe the microarray. Monoclonal antibodies are used in
the evaluation, instead of blood samples from patients, as the mAbs bind to a single
linear epitope selected for high specificity for the antigen [44, 60–63]. On the con-
trary, epitopes for most diseases are not known; even if the epitope for a single strain
of a disease is known, it may not be known for the specific strain of the analyzing
sample. The mAb random-sequence peptide microarray data were provided by CIM
[56]; each microarray sample consists of 330,000 peptide sequences (330k chip).
Although this is a large number of sequences on the array, only a small percentage
of the sequences bind to different mAbs.

Table 2 provides a list of the eight mAbs used to demonstrate epitope waveform
parameter estimation. The known epitope of each mAb is provided in the second
column of this table. The last column provides the estimated epitopes with varying
lengths. The EpiWP estimation method performed well for all but the monoclonal
antibody mAb5 epitope. Based on this result, the mAb epitope estimation perfor-
mance is about 88 % accurate.
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Table 2 Epitope estimates for eight monoclonal antibodies

Name Full Estimated
epitope epitope

mAb1 NAHYYVFFEEQE YVFFEEQE

mAb2 QAFDSH AFDSH

mAb3 EEDFRV EDFRV

mAb4 RHSVV RHSVV

mAb5 SDLWKL –

mAb6 AALEKD ALEKD

mAb7 DYKDDDDK KDGD

mAb8 YPYDVPDYA YDAPE

Fig. 4 Top epitope estimates using estimation method EpiWP-1 for antibody a mAb1 (true epitope
NAHYYVFFEEQE) and b mAb4 (true epitope RHSVV)

For most of the monoclonal antibody samples, the EpiWP-1 estimation method
performs well in estimating the true epitope. Two examples of this are for estimat-
ing the epitopes of mAb1 and mAb4. The true epitope of mAb1 is NAHYYVFFEEQE;
using EpiWP-1 finds YVFFEEQE as the epitope. Similarly, the epitope for mAb4 is
RHSVV; EpiWP-1 estimates epitope RHSVV. The top results for these two epitopes
are shown in Fig. 4a and b. In some of monoclonal antibodies, an obvious substi-
tution but not the exact epitope is found. This is demonstrated in Fig. 5a and b for
mAb8 with true epitope YPYDVPDYA. The EpiWP-1 estimation method results in
candidate epitopes YDAPE and PYDAP. Allowing one amino acid substitutions as
in estimation method EpiWP-2, the candidate epitopes are -YDAP and YDAP-. One
way to interpret this is that YDAP is the most important portion of the epitope to
binding.
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Fig. 5 Top epitope estimates for mAb8 (true epitope YPYDVPDYA) using estimation method a
EpiWP-1 and EpiWP-2

4.4 Comparison with Existing Epitope Identification Methods

Existing sequence alignment approaches [10, 21–26, 64] can potentially be used
for the epitope estimation problem, in order to find similarities between peptide
and epitope sequences. However, most of these approaches were optimized for very
long amino acid sequencers and not for short-length peptide sequences [65]. An
approach for finding a motif or pattern among the peptides is a direct sequence
analysis approach that compares peptide sequences to epitope sequences based on
their primary structure. This was demonstrated in [65] using data obtained using
phage display technology; the scoring used for this approach is similarity between
the sequences. Other approaches use pattern graphs, combinatorics for motif find-
ing, exhaustive length and substitution analysis, and optimization methods to find
motifs by maximizing scoring functions [66–74]. A most recent statistical based
approach arranges peptides in position specific scoring matrices and computes their
mean value for each position; a threshold value is then used to identify positions
where the mean differs significantly [75].

Directly applied to immunosignaturing, a method called GuiTope was presented
in [47] for mapping random-sequence peptides to protein sequences. The method is
based on using a scoring matrix and a local alignment approach that compares simi-
larity results using a score threshold. Using GuiTope, monoclonal antibody epitopes
were estimated with about 74–81 % accuracy when aligning to a limited protein
library.

5 Efficient Implementation of Epitope Estimation

The aforementioned pathogen detection and identification methods need to be
repeated tens to hundreds of thousands of times to scan through all necessary peptide
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sequences when estimating a single epitope. Therefore, for this method to be use-
ful, it is very important to decrease the runtime of the epitope estimation algorithm.
When implemented, the algorithm spends most of its time computing the multiplica-
tion in Eq. (5). The inner product computational step involves sample multiplication
and summation of all products. Reducing the number of multiplications can drasti-
cally decrease the algorithm’s runtime, as discussed next.

Reducing Number of Multiplications

To increase code efficiency, the time domain waveforms described in Section 3.1 can
be constructed by selecting relevant parameters T , F , and σ2 so that the Gaussian
waveforms are close together in TF but are nonoverlapping. While the Gaussian
waveforms are theoretically nonzero across all time, setting T = 3σ2 and fixing the
time–bandwidth product to be T F = 1, is sufficient for the accuracy required in this
application. The resulting Gaussian waveforms can also be sampled at Nyquist to
minimize the number of samples needed to uniquely represent each frequency shift.

Frequency Domain Implementation of Epitope Estimation Method

Even after taking steps to reduce the number of time domain multiplications, it is
still more efficient to represent the waveforms in the frequency domain, where each
waveform is sampled once at the location of all the frequency shifts. Because the
Gaussian waveforms in the dictionary are nonoverlapping, each of the frequency
domain samples will either be a 1 or a 0.

Eliminating all Multiplications

For the EpiWP-1 estimation method, the multiplications in Eq. (5) can be eliminated
simply by counting the number of Gaussian waveforms, in each epitope amino acid
and peptide amino acid waveform pairs, that occur at the same TF location. When
matched in the TF plane, a maximum matching score is obtained when all waveform
pairs share the same TF support. The frequency domain implementation should still
be used as this is the implementation with the smallest number of samples.

6 Conclusions

This work presented advanced signal processing approaches to analyze immunosig-
nature biosequences. Immunosignaturing technology uses random sequence pep-
tide microarrays to assess health status by associating antibodies from a biological
sample to immune responses. The immunosignature processing requires the detec-
tion and identification of antibody epitopes from the microarray peptide sequences
to discriminate between pathogens and diagnose diseases. This is achieved by
first mapping characteristics of peptide and epitope sequences to parameters of
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highly-localized Gaussian waveforms in the time–frequency plane. After down-
selecting the large number of sequences from a microarray, time–frequency based
matching methods are used to estimate epitope candidates corresponding to spe-
cific pathogens. The performance of the novel epitope detection and identifica-
tion method is demonstrated using eight monoclonal antibodies. The candidate
sequences that resulted in a stronger response for one antibody over the others,
corresponded well with the actual epitope sequences that generated the monoclonal
antibodies.
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Wavelet–Shearlet Edge Detection and
Thresholding Methods in 3D

David A. Schug, Glenn R. Easley and Dianne P. O’Leary

Abstract Edge detection in images is well studied, but using full three-dimensional
information to display volumes from 3D-imaging devices or to perform pixel-level
tracking of moving objects from a sequence of frames in a movie is less well under-
stood. In this work, we study the interplay between 3D wavelet–shearlet edge detec-
tion and thresholding in accomplishing these two tasks. We find that a simple thresh-
olding algorithm, modeling the edge image as a sum of two distributions, is very
effective.

Keywords Wavelet edge detector · Shearlet edge detector · Image thresholding ·
3D volume display · 3D tracking

1 Introduction

The identification of distributed discontinuities, such as edges or surface boundaries,
is an important problem in computer vision and image processing. Edge classifica-
tion is based on estimating the gradient norm at each pixel, but the complication
comes in filtering noise. One of the most well-known and successful methods for
identifying edges is due to Canny [2], but this is a single-scale algorithm.
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The advantages of using a multiscale approach for edge detection have widely
been acknowledged since [5] and [6]. It has been shown that extending such methods
to include multiple directions on multiple scales can greatly improve results [1, 7,
10]. A particular approach using the multiscale and multidirectional representation
known as the shearlet representation has shown particular promise [11].

In this work, we continue our investigation [8] of extending some of these
multiscale and multidirectional methods into three dimensions (3D). In particular,
we focus on wavelet, shearlet, and hybrid combinations. The hybrid combinations
improve efficiency by realizing that many 3D datasets encountered in practice may
not exhibit complex curvilinear discontinuity structures in all three dimensions, and
thus the full generality of 3D shearlets may not be needed.

One important application of edge detection on 3D objects is to better represent
or visualize the data, for example, data from X-ray or MRI scans. Yet our original
motivation for these 3D extensions has been to apply these techniques to motion
video by viewing the third dimension as the component obtained by stacking the
individual images. Using the edge/surface detections in this case, we can use this
information to precisely track objects within a few pixels of their true position [8].

An important component in these algorithms is to threshold, retaining only nom-
inated edge points that are above a magnitude considered to be background noise.
Sometimes these thresholds can be preset to values for a given class of expected
images and noise levels. However, in this work we will extend common 2D thresh-
olding techniques and propose a simple new method to find the appropriate thresh-
olding value based directly on the data .

This chapter is organized as follows. In the Section 2, the 3D edge detection
problem and the basics of the proposed multiscale and multidirectional methods
are given. Demonstrations of the advantages of a shearlet approach over a wavelet
approach are also shown. The Section 3 describes three thresholding algorithms
and shows the experimental results based on using them on a sequence of moving
targets. Concluding remarks follow in the Section 4.

2 Three-Dimensional Edge Detection

Detecting changes such as edges or surface changes in 3D data has many important
applications. One of these is the ability of the collection of edge intensities to be
used to visualize the content of a given image data I := [0,1]3 → [0,1]. Specifically,
we may loosely define the collection of edges as

E =
{

t ∈ [0,1]3 : |∇I(t)| ≥ h
}

, (1)

the set of points for which the magnitude of the gradient of I is above a scalar thresh-
old h∈ (0,1]. This characterization of edges, however, is only suitable for noise free
images I. To deal with noise, one solution is to prefilter the image to remove the
noise before using this characterization. This prefiltering can be done by applying
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a Gaussian filter ga = exp(−(x2 + y2 + z2)/2a2) dependent on a which determines
the filter’s noise dampening properties. This methodology is highly successful if the
optimal parameter a can be found for the particular image of interest.

By framing this methodology in the form of a wavelet transform, Mallat et al.
[5, 6] related a to the scale parameter of the transform. Specifically, the continuous
wavelet transform of an image I is given by

Wψ I(a,τ) = 〈I,ψMa,τ〉 , (2)

where Ma = aI3, I3 is the 3× 3 identity matrix, τ ∈ R
3, and a > 0. The analysis

functions
ψMa,τ(t) = |detM|− 1

2ψ(Ma
−1(t− τ)) τ ∈ R

3 (3)

are well localized waveforms that can decompose images I ∈ L2(R3) so that

I =
∫

R3
〈I,ψMa,τ〉ψMa,τ dτ . (4)

By setting ψ to be ∇g1, the first derivative of a Gaussian wavelet, the above
edge detection methodology corresponds to the detection of the local maxima of
the wavelet transform of I for a particular scale a. Further more, this framework
allows one to develop an efficient and effective detection scheme by knowing how
the magnitude of the wavelet transform behaves at location points corresponding to
edges (see [8] for details).

We have found this approach to be very successful for many image data sets,
as we shall demonstrate. However, when the data has sharp curvilinear elements or
edges that change with complicated orientations, the wavelet transform is not effec-
tive in isolating such features. For such cases, a multidirectional representation is
needed. To deal with these problems, we have developed an edge detection scheme
using the shearlet representation.

2.1 The Shearlet Representation

The shearlet representation is essentially a multidirectional extension of the wavelet
representation. Its unique spatial frequency tiling is achieved through the action of
shearing matrices that give the transform its name. Shearlets are constructed by first
restricting the subspace of L2(R3) to be L2(P1)

∨ = { f ∈ L2(R3) : supp ̂f ⊂ P1},
where P1 is the horizontal pyramidal region in the frequency plane:

P1 = {(ν1,ν2,ν2) ∈ R
3 : |ν1| ≥ 2,

∣

∣

∣

∣
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We define the shearlet group to be

Λ1 =

{

(M(1)
as1s2,τ) : 0≤ a≤ 1

4
,−3

2
≤ s1 ≤

3
2
,−3

2
≤ s2 ≤

3
2
,τ ∈ R

2
}

where

M(1)
as1s2 =

⎛

⎝

a −a1/2s1 −a−1/2s2

0 a1/2 0
0 0 a1/2

⎞

⎠ .

The shearlet analyzing functions defined on L2(P1)
∨ are given by

ψ(1)
as1s2τ(t) = |detM(1)

as1s2 |−
1
2ψ(1)((M(1)

as1s2)
−1(t− τ)). (5)

In order for any function in L2(P1)
∨ to be decomposed by these analyzing func-

tions, the following conditions and assumptions on ψ(1) need to be satisfied [4]. For
ν = (ν1,ν2,ν3) ∈ R

3,ν1 �= 0, the function ψ(1) should be such that

ψ̂(1)(ν) = ψ̂(1)(ν1,ν2,ν3) = ψ̂1(ν1)ψ̂2

(

ν2

ν1

)

ψ̂2

(

ν3

ν1

)

. (6)

The function ψ1 ∈ L2(R) should satisfy the Calderón condition

∫ ∞

0
|ψ̂1(aν)|2

da
a

= 1 for a.e. ν ∈ R

with supp ψ̂1 ⊂
[

−2,− 1
2

]

∪
[

1
2 ,2

]

and ‖ψ2‖L2 = 1 with supp ψ̂2 ⊂
[

−
√

2
4 ,

√
2

4

]

. If

these assumptions are met, then

f (t) =
∫

R3

∫ 3
2

− 3
2

∫ 3
2

− 3
2

∫ 1
4

0
〈 f ,ψ(1)

as1s2τ〉ψ
(1)
as1s2τ(t)

da
a4 ds1 ds2 dτ (7)

for all f ∈ L2(P1)
∨.

The shearlet analyzing functions ψ(1)
as1s2τ in the frequency domain are given by

ψ̂(1)
as1s2τ(ν1,ν2,ν3) = aψ̂1(aν1)ψ̂2(a

− 1
2 (
ν2

ν1
− s1))ψ̂2(a

− 1
2 (
ν3

ν1
− s2))e

−2πiν ·τ . (8)

Because of the particular support constraints given, this means each function ψ̂(1)
as1s2τ

has support described by the elements (ν1,ν2,ν3) such that for a given s1, s2, and

ν1 ∈
[

− 2
a ,−

1
2a

]

∪
[

1
2a ,

2
a

]

, ν2 needs to satisfy
∣

∣

∣

ν2
ν1
− s1

∣

∣

∣ ≤
√

2
4 a

1
2 , and ν3 needs to

satisfy
∣

∣

∣

ν3
ν1
− s2

∣

∣

∣ ≤
√

2
4 a

1
2 . Such points end up describing a pair of hyper-trapezoids

that are symmetric with respect to the origin with orientation determined by slope
parameters s1 and s2. These hyper-trapezoids become elongated as a→ 0.
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Since the analyzing functions ψ(1)
as1s2τ only decompose elements in L2(P1)

∨, we
form complementary analyzing functions supported on the complementary pyrami-
dal regions. Specifically, we define

P2 = {(ν1,ν2,ν2) ∈ R
3 : |ν2| ≥ 2,

∣

∣

∣

∣

ν1

ν2

∣

∣

∣

∣

≤ 1 and

∣

∣

∣

∣

ν3

ν2

∣

∣

∣

∣

≤ 1}

and

P3 = {(ν1,ν2,ν2) ∈ R
3 : |ν3| ≥ 2,

∣

∣

∣

∣

ν2

ν3

∣

∣

∣

∣

≤ 1 and

∣

∣

∣

∣

ν1

ν3

∣

∣

∣

∣

≤ 1}.

We also define

Λ2 =

{

(M(2)
as1s2,τ) : 0≤ a≤ 1

4
,−3

2
≤ s1 ≤

3
2
,−3

2
≤ s2 ≤

3
2
,τ ∈ R

2
}

where,

M(2)
as1s2 =

⎛

⎝

a1/2 0 0
−a1/2s1 a −a−1/2s2

0 0 a1/2

⎞

⎠ .

Likewise, we define

Λ3 =

{

(M(3)
as1s2,τ) : 0≤ a≤ 1

4
,−3

2
≤ s1 ≤

3
2
,−3

2
≤ s2 ≤

3
2
,τ ∈ R

2
}

where,

M(3)
as1s2 =

⎛

⎝

a1/2 0 0
0 a1/2 0

−a1/2s1 −a1/2s2 a

⎞

⎠ .

By defining ψ(2) and ψ(3) as ψ̂(2)(ν) = ψ̂(2)(ν1,ν2,ν3) = ψ̂1(ν2)ψ̂2

(

ν1
ν2

)

ψ̂2

(

ν3
ν2

)

and ψ̂(3)(ν) = ψ̂(3)(ν1,ν2,ν3) = ψ̂1(ν3)ψ̂2

(

ν1
ν3

)

ψ̂2

(

ν2
ν3

)

, the analyzing functions

ψ( j)
as1s2τ(t) = |detM( j)

as1s2 |−
1
2ψ( j)((M( j)

as1s2)
−1(t− τ)), (9)

for j = 2,3 decompose the subspaces L2(P2)
∨ and L2(P3)

∨, respectively. Since
the union of L2(P1)

∨, L2(P2)
∨, and L2(P3)

∨ forms the space L2(R3) minus the
functions whose frequency supports are contained in [−2,2]3, we can obtain a com-
plete decomposition of L2(R3) by adding analyzing functions that can decompose
these elements. This is done by using an appropriate bandlimited window function
ϕ and forming the analyzing functions ϕτ(t) = ϕ(t− τ).

The shearlet representation consists of the collection of analyzing functions

{ψ( j)
as1s2τ}3

j=1 and ϕ restricted to the appropriate groups, but for simplicity of
notation we will drop the superscript. Examples of the spatial frequency hyper-
trapezoidal regions for these atoms are shown in Fig. 1.
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Fig. 1 Three-dimensional spatial frequency representations (four disjoint domains for each) of
shearlet atoms for three different choices of scales and shearing parameters

We denote S H ψ f (a,s1,s2,τ) to be 〈 f ,ψas1s2τ〉. We are able to design an edge
detection routine by using the following result [4] that characterizes the asymptotic
decay as a→ 0 for edge point locations.

Theorem 1. [4] Let Ω be a bounded region in R
3 with boundary ∂Ω and define the

function B to be the characteristic function over Ω . Assume that ∂Ω is a piecewise
smooth two-dimensional manifold. Let γ j , j = 1,2, . . . ,m be the separating curves
of ∂Ω . Then we have

1. If τ /∈ ∂Ω , then

lim
a→0+

a−NS H ψB(a,s1,s2,τ) = 0 for all N > 0.

2. If τ /∈ ∂Ω \∪m
j=1γ j and (s1,s2) does not correspond to the normal direction of

∂Ω at τ , then

lim
a→0+

a−NS H ψB(a,s1,s2,τ) = 0 for all N > 0.

3. If τ /∈ ∂Ω \∪m
j=1γ j and (s1,s2) corresponds to the normal direction of ∂Ω at τ

or τ ∈∪m
j=1γ j and (s1,s2) corresponds to one of the two normal directions of ∂Ω

at p, then
lim

a→0+
a−1S H ψB(a,s1,s2,τ) �= 0.
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4. If τ ∈ γ j and (s1,s2) does not correspond to the normal directions of ∂Ω at τ ,
then

|S H ψB(a,s1,s2,τ)| ≤Ca
3
2 .

This result allows us to use the concepts developed in [11] for 2D to be extended
to obtain a 3D shearlet edge detection algorithm. Details of the algorithm are given
in [8].

2.2 Visualization

An edge map of a 3D dataset is particularly useful for visualizing complex objects
by taking advantage of the ability of an alpha map to give some transparency to the
detected surfaces [9]. In this section, we demonstrate the capability of the wavelet
and shearlet edge detection schemes to be used for visualization.

For implementation, we use the thresholding technique called hysteresis to deter-
mine the true edge intensity magnitudes. Specifically, hysteresis uses two diferent
thresholds tlow and thigh to help distinguish true edges, even if the magnitude of
the gradient is somewhat below the value h specified in (1). A pixel is identified as
a strong edge pixel if its intensity gradient magnitude is greater than thigh. A pixel
is also marked as part of an edge if it is connected to a strong edge and its gradi-
ent magnitude is larger than tlow and larger than the magnitude of each of its two
neighbors in at least one of the compass directions (N–S, E–W, NE–SW, NW–SE).
This 2D hysteresis is applied to the 3D intensity magnitudes M on a slice by slice
basis.

Assuming the magnitudes M of the gradient intensities are normalized, thigh is

given as ηM for some η > 0 where M denotes the mean of M and tlow is given as
ρthigh for some ρ < 1.

We illustrate these techniques on two examples.
In the first example, we added white Gaussian noise with a standard deviation

of 0.1 to the 3D Shepp-Logan Phantom dataset. In this case, we set η = 4.1 and
ρ = 0.45. Figures 1, 2, 3, and 4 show the results. The 3D shearlet edge detector
gives a higher quality rendering of edge information.

Fig. 2 Data for the 3D phantom experiment: images of slices through main axis
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Fig. 3 Results for the 3D phantom experiment with hysteresis filtering : images of slices. Top:
results of wavelet-based edge detection. Bottom: corresponding results for shearlet-based edge
detection

Fig. 4 Results for the 3D phantom experiment with hysteresis filtering: 3D display. Top: results of
wavelet-based edge detection. Bottom: corresponding results for shearlet-based edge detection
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In the second example, we added a white Gaussian noise with a standard devia-
tion of 0.2 to a spherical harmonic of order 2 and degree 6 with a shading applied. In
this case, we set η = 4.3 and ρ = 0.45. Figures 5, 6, and 7 show the results. Again,
the shearlet-based edge detector gives a better reconstruction.

Fig. 5 Data for the 3D spherical harmonic experiment: images of slices through main axis

Fig. 6 Results for the 3D spherical harmonic experiment with hysteresis filtering: images of slices
through main axis. Top: results of wavelet-based edge detection. Bottom: corresponding results for
shearlet-based edge detection

3 Thresholding the Results of Edge Detectors

In this section, we study the use of various edge detection algorithms and various
thresholding algorithms in determining edges in a noisy sequence of images.

3.1 The Eight Edge Detection Algorithms

We used several edge detection algorithms: 2D and 3D versions of the Canny,
wavelet, and shearlet edge detectors, as well as hybrid wavelet (shearlet) edge detec-
tors that combine the results of 2D slices in the xy, xt, and yt directions. We used
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Fig. 7 Results for the 3D spherical harmonic experiment with hysteresis filtering: 3D display. Top:
results of wavelet-based edge detection. Bottom: corresponding results for shearlet-based edge
detection

MATLAB’s implementation of the 2D Canny algorithm in edge.m. The other algo-
rithms are described in detail in [8] and the MATLAB implementations are available
at https://www.cs.umd.edu/users/oleary/software/.

Note that the Canny algorithm returns a 0-1 image, so thresholding cannot be
applied.

3.2 The Three Thresholding Algorithms

The thresholding algorithms were one taken from Gonzales [3, p. 406], Otsu’s
method as implemented in MATLAB’s graythreshold.m, and a method that
we developed.

Gonzales determines the threshold iteratively. He sets the threshold halfway
between the mean of the pixels currently labeled “black” and those labeled “white.”
The iteration terminates when the change in mean is less than a specified tolerance.
In the figures, this method is referred to as the “global” method.

Otsu’s method aims to choose the threshold to minimize the sum of the vari-
ance among pixels labeled “black” and the variance among pixels labeled “white,”

https://www.cs.umd.edu/users/oleary/software/
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weighted by the proportions of pixels in each group. We applied it frame-by-frame
to the norm-squared of the gradient estimate from the edge detector.

Our method assumes that in an edge image, an overwhelming number of pixels
should be labeled “black.” Therefore, we set the threshold to three times the standard
deviation of the pixel values. We applied it separately to the three components of the
gradient estimate from our edge detector, and it is referred to as the “stat” method
in the figures.

Frame 5 Frame 15

Frame 20 Frame 25

Fig. 8 Frames 5, 15, 20, and 25 from the movie with shading and no noise

3.3 Tests on Moving Objects

To test our algorithms, we generated a 30-frame movie containing seven wedges
translating and rotating at different velocities. We added shading and noise to make
the problem more difficult. Several frames of the movie (with shading but no noise)
are shown in Fig. 8. We display the results of our algorithms on frame 20.

No noise, no shading: Figs. 9, 10, and 11

In this case, edge detection is rather easy, and all of the algorithms do well, although
the 3D wavelet version tends to broaden the edges due to motion.
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2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 9 Results of edge detection on movie with no noise using the global thresholding algorithm

2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 10 Results of edge detection on movie with no noise using the Otsu thresholding algorithm

Noise with shading: Figs. 12, 13, and 14

The Canny algorithm breaks down when noise (standard deviation of 2) is added
(using MATLAB default parameters). The Gonzales threshold is again too small for
the wavelet algorithms, but with the other two threshold algorithms, the 2D and 3D
wavelets continue find all seven wedges. Although the 3D has considerable broad-
ening, it finds all of the wedge edges more reliably.
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2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 11 Results of edge detection on movie with no noise using the stat thresholding algorithm

2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 12 Results of edge detection on movie using the global thresholding algorithm. Standard
deviation of the noise is equal to 0.2 relative to white pixels

Increased noise with shading: Figs. 15, 16, and 17

When the standard deviation of the noise is increased to 4, it is hard to find the
wedges in the output of the 2D wavelet, but the seven wedges are somewhat visible
in the 3D wavelet-based results.



100 David A. Schug, Glenn R. Easley and Dianne P. O’Leary

2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 13 Results of edge detection on movie using the Otsu thresholding algorithm. Standard devi-
ation of the noise is equal to 0.2 relative to white pixels

2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 14 Results of edge detection on movie using the stat thresholding algorithm. Standard devia-
tion of the noise is equal to 0.2 relative to white pixels

Results for the spherical harmonic example: Figs. 18 and 19

For comparison with Figs. 6 and 7, we applied our algorithms to the results for the
spherical harmonic example. As seen in Figs. 18 and 19, the trends persist. The Otsu
algorithm does not produce good results. The global algorithm allows too much
noise. The stat algorithm is a little too conservative in declaring edges but produces
good results.
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2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 15 Results of edge detection on movie using the global thresholding algorithm. Standard
deviation of the noise is equal to 0.4 relative to white pixels

2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 16 Results of edge detection on movie using the Otsu thresholding algorithm. Standard devi-
ation of the noise is equal to 0.4 relative to white pixels

4 Conclusion

We have developed 2D and 3D wavelet, shearlet, and hybrid combination based
edge detection algorithms. Our investigation focused on combining edge detectors
with different thresholding methods to improve the ability to differentiate image
features from the background in the presence of noise. The value of a particular
method is dependent on the nature of the problem being considered. For rigid sta-
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2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 17 Results of edge detection on movie using the stat thresholding algorithm. Standard devia-
tion of the noise is equal to 0.4 relative to white pixels

Fig. 18 Results of edge detection on shearlet results from spherical harmonic example. Top: global
thresholding. Middle: Otsu algorithm. Bottom: stat thresholding. Compare with the bottom row of
Fig. 6
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Fig. 19 Results of edge detection using the 3D shearlet version on the spherical harmonic example.
Top: global thresholding. Bottom: stat thresholding. Otsu results are unusable in this case. Compare
with Fig. 7.

tionary image features, the 2D and 3D methods perform equally well. When features
change scale and orientation rapidly with a curvilinear description, the 3D shearlet
method has been shown to perform better as seen in the visualization of the phantom
and spherical harmonic examples. For dynamic image features that change location
and orientation rapidly over time, 3D methods have a distinct advantage. Each 3D
method incorporates significant horizontal, vertical, and time gradient information
over a fixed window of neighboring image slices. Visually, this means that each
edge image feature has additional thickness because neighboring directional gra-
dients are accumulated. In terms of tracking, this feature is in fact beneficial. As
the noise level increases, 2D methods do not account for the neighboring intensity
changes and show a degraded performance.

The proposed 3D thresholding methods are efficient to implement so that they
can be used as components to a tracking algorithm. On average our stat method
performed the best on most cases. For shaded stationary objects the wavelet methods
combined with Otsu are adequate. However, for shaded dynamic image features, the
3D Shearlet detection combined with stat thresholding seemed to perform the best.
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Recursive Computation of Spherical Harmonic
Rotation Coefficients of Large Degree

Nail A. Gumerov and Ramani Duraiswami

Abstract Computation of the spherical harmonic rotation coefficients or elements
of Wigner’s d-matrix is important in a number of quantum mechanics and math-
ematical physics applications. Particularly, this is important for the fast multipole
methods in three dimensions for the Helmholtz, Laplace, and related equations, if
rotation-based decomposition of translation operators is used. In these and related
problems related to representation of functions on a sphere via spherical harmonic
expansions computation of the rotation coefficients of large degree n (of the order of
thousands and more) may be necessary. Existing algorithms for their computation,
based on recursions, are usually unstable, and do not extend to n. We develop a new
recursion and study its behavior for large degrees, via computational and asymp-
totic analyses. Stability of this recursion was studied based on a novel application
of the Courant-Friedrichs-Lewy condition and the von Neumann method for sta-
bility of finite-difference schemes for solution of PDEs. A recursive algorithm of
minimal complexity O

(

n2
)

for degree n and FFT-based algorithms of complexity
O

(

n2 logn
)

suitable for computation of rotation coefficients of large degrees are
proposed, studied numerically, and cross-validated. It is shown that the latter algo-
rithm can be used for n � 103 in double precision, while the former algorithm was
tested for large n (up to 104 in our experiments) and demonstrated better perfor-
mance and accuracy compared to the FFT-based algorithm.
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1 Introduction

Spherical harmonics form an orthogonal basis for the space of square integrable
functions defined over the unit sphere, Su, and have important application for a num-
ber of problems of mathematical physics, interpolation, approximation, and Fourier
analysis on the sphere. Particularly, they are eigenfunctions of the Beltrami operator
on the sphere, and play a key role in the solution of Laplace, Helmholtz, and related
equations (polyharmonic, Stokes, Maxwell, Schroedinger, etc.) in spherical coor-
dinates. Expansions of solutions of these equations via spherical basis functions,
whose angular part are the spherical harmonics (multipole and local expansions),
are important in the fast multipole methods (FMM) [1–5].

The FMM for the Helmholtz equation as well as other applications in geostatis-
tics require operations with expansions which involve large numerical values of the
maximum degree of the expansion, p. This may reach several thousands, and the
expansions, which have p2 terms, will have millions of coefficients. For the FMM
for the Helmholtz equation, such expansions arise when the domain has size of the
order of M ∼ 100 wavelengths, and for convergence we need p ∼ O(M). These
large expansions need to be translated (change of the origin of the reference frame).
Translation operators for truncated expansions of degree p (p2 terms) can be repre-
sented by dense matrices of size

(

p2
)2

= p4 and, the translation can be performed
via matrix vector product with cost O

(

p4
)

. Decomposition of the translation oper-
ators into rotation and coaxial translation parts (the RCR-decomposition: rotation-
coaxial translation-back rotation) [5, 6] reduces this cost to O

(

p3
)

. While transla-
tion of expansions can be done with asymptotic complexity O

(

p2
)

using diagonal
forms of the translation operators [2], use of such forms in the multilevel FMM
requires additional operations, namely, interpolation and anterpolation, or filtering
of spherical harmonic expansions, which can be performed for O

(

p2 log p
)

opera-
tions. The practical complexity of such filtering has large asymptotic constants, so
that

(

p3
)

methods are competitive with asymptotically faster methods for p up to
several hundreds [7]. So, wideband FMM for the Helmholtz equation for such p
can be realized in different ways, including [8] formally scaled as O

(

p2 log p
)

and
[9], formally scaled as O

(

p3
)

, but with comparable or better performance for the
asymptotically slower method.

Rotation of spherical harmonic expansions is needed in several other applica-
tions (e.g., [25], and is interesting from a mathematical point of view, and has deep
links with group theory [19]. Formally, expansion of degree p can be rotated for the
expense of p3 operations, and, in fact, there is a constructive proof that this can be
done for the expense of O

(

p2 log p
)

operations [5]. The latter is related to the fact
that the rotation operator (matrix) can be decomposed into the product of diago-
nal and Toeplitz/Hankel matrices, where the matrix-vector multiplication involving
the Toeplitz/Hankel matrices can be performed for O

(

p2 log p
)

operations using
the FFT. There are two issues which cause difficulty with the practical realization
of such an algorithm. First, the matrix-vector products should be done for O(p)
matrices of sizes O(p× p) each, so for p∼ 102−103 the efficiency of the Toeplitz
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matrix-vector multiplication of formal complexity O(p log p) per matrix involving
two FFTs is not so great compared to a direct matrix-vector product, and so the
practical complexity is comparable with O

(

p2
)

brute-force multiplication due to
large enough asymptotic constant for the FFT. Second, the decomposition shows
poor scaling of the Toeplitz matrix (similar to Pascal matrices), for which renormal-
ization can be done for some range of p, but is also algorithmically costly [10].

Hence, from a practical point of view O
(

p3
)

methods of rotation of expansions
are of interest. Efficient O

(

p3
)

methods are usually based on direct application of
the rotation matrix to each rotationally invariant subspace, where the the rotation
coefficients are computed via recurrence relations. There are numerous recursions,
which can be used for computation of the rotation coefficients (e.g. [11–14], see
also the review in [15]), and some of them were successfully applied for solution
of problems with relatively small p (p � 100). However, attempts to compute rota-
tion coefficients for large p using these recursions face numerical instabilities. An
O

(

p3
)

method for rotation of spherical expansion, based on pseudospectral projec-
tion, which does not involve explicit computation of the rotation coefficients was
proposed and tested in [15]. The rotation coefficient values are however needed in
some applications. For example for the finite set of fixed angle rotations encountered
in the FMM, the rotation coefficients can be precomputed and stored. In this case
the algorithm which simply uses the precomputed rotation coefficients is faster than
the method proposed in [15], since brute force matrix-vector multiplications do not
require additional overheads related to spherical harmonic evaluations and Fourier
transforms [15], and are well optimized on hardware.

We note that almost all studies related to computation of the rotation coefficients
that advertise themselves as “fast and stable”, in fact, do not provide an actual
stability analysis. “Stability” then is rather a reflection of the results of numeri-
cal experiments conducted for some limited range of degrees n. Strictly speaking,
all algorithms that we are aware of for this problem are not proven stable in the
strict sense—that the error in computations is not increasing with increasing n.
While there are certainly unstable schemes, which “blow up” due to exponential
error growth, there are some unstable schemes with slow error growth rate O(nα)
at large n.

In the present study, we investigate the behavior of the rotation coefficients of
large degree and propose a “fast and stable” O

(

p3
)

recursive method for their com-
putation, which numerically is much more stable than other algorithms based on
recursions used in the previous studies. We found regions where the recursive pro-
cesses used in the present scheme are unstable as they violate a Courant-Friedrichs-
Lewy (CFL) stability condition [16]. The proposed algorithm manages this. We
also show that in the regions which satisfy the CFL condition the recursive com-
putations despite being formally unstable have a slow error growth rate. Such con-
clusion comes partially from the well-known von Neumann stability analysis [17]
combined with the analysis of linear one-dimensional recursions and partially from
the numerical experiments on noise amplification when using the recursive algo-
rithm. The proposed algorithm was tested for computation of rotation coefficients of
degrees up to n = 104, without substantial constraints preventing their use for larger
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n. We also proposed and tested a non-recursive FFT-based algorithm of complexity
O

(

p3 log p
)

, which despite larger complexity and higher errors than the recursive
algorithm, shows good results for n � 103 and can be used for validation (as we did)
and other purposes.

2 Preliminaries

2.1 Spherical Harmonic Expansion

Cartesian coordinates of points on the unit sphere are related to the angles of spher-
ical coordinates as

s = (x,y,z) = (sinθ cosϕ,sinθ sinϕ,cosθ) , (1)

We consider functions f ∈ L2 (Su) of bandwidth p, means expansion of f (θ ,ϕ) over
spherical harmonic basis can be written in the form

f (θ ,ϕ) =
p−1

∑
n=0

n

∑
m=−n

Cm
n Y m

n (θ ,ϕ) , (2)

where orthonormal spherical harmonics of degree n and order m are defined as

Y m
n (θ ,ϕ) = (−1)m

√

2n+1
4π

(n−|m|)!
(n+ |m|)!P|m|n (cosθ)eimϕ , (3)

n = 0,1,2, ...; m =−n, ...,n.

Here Pm
n (μ) are the associated Legendre functions, which are related to the Legen-

dre polynomials, and can be defined by the Rodrigues’ formula

Pm
n (μ) = (−1)m(

1−μ2)m/2 dmPn (μ)
dμm , n = 0,1,2, ..., m = 0,1,2, ... (4)

Pn (μ) =
1

2nn!
dn

dμn

(

μ2−1
)n
, n = 0,1,2, ...

The banwidth p can be arbitrary, and the fact that we consider finite number of har-
monics relates only to computations. We also note that different authors use slightly
different definitions and normalizations for the spherical harmonics. Our definition
is consistent with that of [3]. Some discussion on definitions of spherical harmonics
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and their impact on translation relations can also be found there. Particularly, for
spherical harmonics defined as

˜Y m
n (θ ,ϕ) =

√

2n+1
4π

(n−m)!
(n+m)!

P|m|n (cosθ)eimϕ , (5)

n = 0,1,2, ...; m =−n, ...,n,

Y m
n (θ ,ϕ) = εm˜Y m

n (θ ,ϕ) , (6)

where

εm =

{

(−1)m, m � 0,
1, m < 0.

(7)

Hence one can expect appearance of factors εm in relations used by different authors.

2.2 Rotations

There are two points of view on rotations, active (alibi), where vectors are rotated in
a fixed reference frame, and passive (alias), where vectors are invariant objects but
the reference frame rotates and so the coordinates of vectors change. In the present
chapter we use the latter point of view, while it is not difficult to map the relations
to the active view by replacing rotation matrices by their transposes (or inverses).

An arbitrary rotation transform can be specified by three Euler angles of rotation.
We slightly modify these angles to be consistent with the rotation angles α,β ,γ
defined in [5]. Let ix, iy, and iz be the Cartesian basis vectors of the original reference
frame, while ̂ix,̂iy, and ̂iz be the respective basis vectors of the rotated reference
frame. Cartesian coordinates of̂iz in the original reference frame and iz in the rotated
reference frame can be written as

̂iz = (sinβ cosα,sinβ sinα,cosβ ) , (8)

iz = (sinβ cosγ ,sinβ sinγ ,cosβ ) .

Figure 1 illustrates the rotation angles and reference frames. Note that

Q−1 (α,β ,γ) = QT (α,β ,γ) = Q(γ ,β ,α) , (9)

where Q is the rotation matrix and superscript T denotes transposition. We also note
that as β is related to spherical angle θ , so its range can be limited by half period
β ∈ [0,π], while for α and γ we have full periods α ∈ [0,2π) , γ ∈ [0,2π).

Let us introduce the Euler rotation angles, αE ,βE , and γE , where general rotation
is defined as rotation around original z axis by angle αE followed by rotation around
about the new y axis by angle βE and, finally, by rotation around the new z axis by
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Fig. 1 Rotation angles α ,β , and γ defined as spherical angles (β ,α) of the rotated z-axis in the
original reference frame and sperical angles (β ,γ) of the original z-axis in the rotated reference
frame

angle γE , then angles α,β ,γ are simply related to that as

α = αE , β = βE , γ = π− γE . (10)

Note that in [5], the Euler angles were introduced differently (α = π −αE , β =
βE , γ = γE ), so formulae obtained via such decomposition should be modified if
the present work is to be combined with those relations. Elementary rotation matri-
ces about axes z and y are

Qz (αE) =

⎛

⎝

cosαE sinαE 0
−sinαE cosαE 0

0 0 1

⎞

⎠ , Qy (βE) =

⎛

⎝

cosβE 0 −sinβE

0 1 0
sinβE 0 cosβE

⎞

⎠ . (11)

The standard Euler rotation matrix decomposition Q=Qz (γE)Qy (βE)Qz (αE) turns
to

Q = Qz (π− γ)Qy (β )Qz (α) . (12)

More symmetric forms with respect to angle β can be obtained, if we introduce
elementary matrices A and B as follows

A(γ) =

⎛

⎝

sinγ cosγ 0
−cosγ sinγ 0

0 0 1

⎞

⎠ = Qz

(π
2
− γ

)

, (13)

B(β ) =

⎛

⎝

−1 0 0
0 −cosβ sinβ
0 sinβ cosβ

⎞

⎠ = Qz

(π
2

)

Qy (β )Qz

(π
2

)

,

which results in decomposition

Q(α,β ,γ) = A(γ)B(β )AT (α) . (14)
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The property of rotation transform is that any subspace of degree n is transformed
independently of a subspace of a different degree. Also rotation around the z axis
results in diagonal rotation transform operator, as it is seen from the definition pro-
vided by Eq. (3). So, the rotation transform can be described as

̂Cm′
n =

n

∑
m=−n

T m′m
n (α,β ,γ)Cm

n , T m′m
n = e−im′γHm′m

n (β )eimα , (15)

where ̂Cm′
n are the expansion coefficients of function f over the spherical harmonic

basis in the rotated reference frame,

f (θ ,ϕ) =
p−1

∑
n=0

n

∑
m=−n

Cm
n Y m

n (θ ,ϕ) =
p−1

∑
n=0

n

∑
m′=−n

̂Cm′
n Y m′

n

(

̂θ , ϕ̂
)

= ̂f
(

̂θ , ϕ̂
)

. (16)

Particularly, if Cm
n = δνm, where δνm is Kronecker’s delta, we have from Eqs (15)

and (16) for each subspace

Y ν
n (θ ,ϕ) = eiνα

n

∑
m′=−n

Hm′ν
n (β )e−im′γY m′

n

(

̂θ , ϕ̂
)

, ν =−n, ...,n. (17)

It should be mentioned then that the matrix with elements T m′m
n (α,β ,γ), which

we denote as Rot(Q(α,β ,γ)) and its invariant subspaces as
Rotn(Q(α,β ,γ), is the Wigner D-matrix in an irreducible representation of the
group of rigid body rotations SO(3) [18], [19] (with slight modifications presented
below). Particularly, we have decompositions

Rotn (Q(α,β ,γ))=Rotn (Qz (π− γ))Rotn (Qy (β ))Rotn (Qz (α)) (18)

= Rotn (A(γ))Rotn (B(β ))Rotn (A(−α)) .

Since Qy (0) and Qz (0) are identity matrices (see Eq. (11)), then corresponding
matrices Rot(Qy (0)) and Rot(Qy (0)) are also identity matrices. So, from Eqs (18)
and (15) we obtain

Rotn (Qz (α)) = Rotn (Q(α,0,π)) =
{

(−1)m′ Hm′m
n (0)eimα

}

, (19)

Rotn (Qy (β )) = Rotn (Q(0,β ,π)) =
{

(−1)m′ Hm′m
n (β )

}

,

where in the figure brackets we show the respective elements of the matrices. Since
Rotn (Qy (0)) is the identity matrix, the latter equation provides

Hm′m
n (0) = (−1)m′ δm′m. (20)

Being used in the first equation (19) this results in

Rotn (Qz (α)) = Rotn (Q(α,0,π)) =
{

eimαδm′m
}

, (21)



112 Nail A. Gumerov and Ramani Duraiswami

which shows that

Rotn (A(γ)) = Rotn

(

Qz

(π
2
− γ

))

=
{

eimπ/2e−imγδm′m

}

. (22)

We also have immediately from Eq. (15)

Rotn (B(β )) = Rotn (Q(0,β ,0)) =
{

Hm′m
n (β )

}

. (23)

The rotation coefficients Hm′m
n (β ) are real and are simply related to the Wigner’s

(small) d-matrix elements (dm′m
n (β ) , elsewhere, e.g. [20]),

dm′m
n (β ) = (−1)m′−mρm′m

n ×
min(n−m′,n+m)

∑
σ=max(0,−(m′−m))

(−1)σ cos2n−2σ+m−m′ 1
2β sin2σ+m′−m 1

2β
σ !(n+m−σ)!(n−m′ −σ)!(m′ −m+σ)!

, (24)

but slightly different due to the difference in definition of spherical harmonics and
rotation matrix. In this expression we defined ρm′m

n as

ρm′m
n =

[

(n+m)!(n−m)!(n+m′)!(n−m′)!
]1/2

. (25)

Explicit expression for coefficients Hm′m
n (β ) can be obtained from Wigner’s for-

mula,

Hm′m
n (β ) = εm′εmρm′m

n

min(n−m′,n−m)

∑
σ=max(0,−(m′+m))

(−1)n−σ hm′mσ
n (β ) , (26)

where

hm′mσ
n (β ) =

cos2σ+m+m′ 1
2β sin2n−2σ−m−m′ 1

2β
σ !(n−m′ −σ)!(n−m−σ)!(m′+m+σ)!

, (27)

and symbol εm′ is defined by Eq. (7). Note that summation limits in Eq. (26) can
look a bit complicated, but this can be avoided, if we simply define 1/(−n)! = 0 for
n = 1,2, ... (which is consistent with the limit of 1/Γ (−n) for n = 0,1, ..., where Γ
is the gamma-function), so

Hm′m
n (β ) = εm′εmρm′m

n

∞

∑
σ=−∞

(−1)n−σ hm′mσ
n (β ) . (28)

The Wigner’s (small) d-matrix elements are related to Hm′m
n (β ) coefficients as

dm′m
n (β ) = εm′ε−mHm′m

n (β ) , (29)

which can be checked directly using Eqs (24) and (26), and symmetries (30).
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2.3 Symmetries

There are several symmetries of the rotation coefficients, from which the following
are important for the proposed algorithm

Hm′m
n (β ) = Hmm′

n (β ) , (30)

Hm′m
n (β ) = H−m′,−m

n (β ) ,

Hm′m
n (π−β ) = (−1)n+m′+mH−m′m

n (β ) ,

Hm′m
n (−β ) = (−1)m′+mHm′m

n (β ) .

The first symmetry follows trivially from Eq. (26), which is symmetric with
respect to m′ and m.

The second symmetry also can be proved using Eq. (26) or its analog (28). This
can be checked straightforward using ε−m′ = (−1)m′εm′ and replacement σ = σ ′ −
m′ −m in the sum. The third symmetry (30) can be also obtained from Eq. (28)
using sin 1

2 (π−β ) = cos 1
2β , ε−m′ = (−1)m′εm′ and replacement σ = n−σ ′ −m in

the sum. The fourth symmetry follows simply from Eq. (28). It is not needed for
β ∈ [0,π] but we list it here for completeness, as full period change of β sometimes
may be needed.

2.4 Particular Values

For some values of m′,m, and n coefficients Hm′m
n can be computed with minimal

cost, which does not require summation (26). For example, the addition theorem for
spherical harmonics can be written in the form

Pn (cosθ) =
4π

2n+1

n

∑
m′=−n

Y−m′
n (θ2,ϕ2)Y m′

n (θ1,ϕ1) , (31)

where θ is the angle between points on a unit sphere with spherical coordinates
(θ1,ϕ1) and (θ2,ϕ2). From definition of rotation angles α,β ,γ , we can see then

that if (θ1,ϕ1) =
(

̂θ , ϕ̂
)

are coordinates of the point in the rotated reference frame,

which coordinates in the original reference frame are (θ ,ϕ) then (θ2,ϕ2) = (β ,γ),
since the scalar product of radius-vectors pointed to

(

̂θ , ϕ̂
)

and (β ,γ) (the iz in the

rotated frame, Eq. (8)) will be cosθ (the z-coordinate of the same point in the orig-
inal reference frame). Comparing this with Eq. (17) for ν = 0 and using definition
of spherical harmonics (3) and (4), we obtain

Hm′0
n (β ) = (−1)m′

√

(n−|m′|)!
(n+ |m′|)!P

|m′|
n (cosβ ), (32)
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since the relation is valid for arbitrary point on the sphere. Note that computation
of normalized associated Legendre function can be done using well-known stable
recursions and standard library routines are available. This results in O

(

p2
)

cost of

computation of all Hm′0
n (β ) for n = 0, ..., p−1, m′ =−n, ...,n.

Another set of easily and accurately computable values comes from Wigner’s
formula (26), where the sum reduces to a single term (σ = 0) at n = m. We have in
this case

Hm′n
n (β ) = εm′

[

(2n)!
(n−m′)!(n+m′)!

]1/2

cosn+m′ 1
2
β sinn−m′ 1

2
β . (33)

2.5 Axis Flip Transform

There exist more expressions for Hm′m
n (β ) via finite sums and the present algorithm

uses one of those. This relation can be obtained from consideration of the axis flip
transform. A composition of rotations which puts axis y in position of axis z and
then performs rotation about the z axis, which is described by diagonal matrix fol-
lowed by the inverse transform is well-known and used in some algorithms. The flip
transform can be described by the following formula

Qy (β ) = Qz

(

−π
2

)

Qy

(

−π
2

)

Qz (β )Qy

(π
2

)

Qz

(π
2

)

, (34)

which meaning is rather obvious from geometry.
From Eq. (13) we have

Qy

(π
2

)

= Qz

(

−π
2

)

B
(π

2

)

Qz

(

−π
2

)

, (35)

Qy

(

−π
2

)

= QT
y

(π
2

)

= Qz

(π
2

)

B
(π

2

)

Qz

(π
2

)

.

Using the same equation one can express Qy (β ) via B(β ) and obtain from Eqs (34)
and (35)

B(β ) = Qz

(π
2

)

B
(π

2

)

Qz (β )B
(π

2

)

Qz

(π
2

)

. (36)

The representation of this decomposition for each subspace n results in

Rotn (B(β )) = Rotn

(

Qz

(π
2

))

Rotn

(

B
(π

2

))

× (37)

Rotn (Qz (β ))Rotn

(

B
(π

2

))

Rotn

(

Qz

(π
2

))

.
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Using expressions (21) and (23), we can rewrite this relation in terms of matrix
elements

Hm′m
n (β ) =

n

∑
ν=−n

eim′π/2Hm′ν
n

(π
2

)

eiνβHνm
n

(π
2

)

eimπ/2. (38)

Since Hm′m
n (β ) is real, we can take the real part of the right hand side of this relation,

to obtain

Hm′m
n (β ) =

n

∑
ν=−n

Hm′ν
n

(π
2

)

Hmν
n

(π
2

)

cos
(

νβ +
π
2

(

m′+m
)

)

, (39)

where we used the first symmetry (30). Note also that the third symmetry (30)
applied to Hm′m

n (π/2) results in

Hm′m
n (β ) = Hm′0

n

(π
2

)

Hm0
n

(π
2

)

cos
(π

2

(

m′+m
)

)

+ (40)

2
n

∑
ν=1

Hm′ν
n

(π
2

)

Hmν
n

(π
2

)

cos
(

νβ +
π
2

(

m′+m
)

)

.

2.6 Recursions

Several recursions for computation of coefficients Hm′m
n (β ) were derived from the

invariancy of differential operator ∇ [13], including the following one, which was
suggested for computing all Hm′m

n (β )

bm
n Hm′,m+1

n−1 =
1− cosβ

2
b−m′−1

n Hm′+1,m
n − (41)

1+ cosβ
2

bm′−1
n Hm′−1,m

n − sinβam′
n−1Hm′m

n ,

where n = 2,3, ..., m′ =−n+1, ...,n−1, m = 0, ...,n−2, and

am
n = a−m

n =

√

(n+1+m)(n+1−m)

(2n+1)(2n+3)
, n � |m| . (42)

am
n = 0, n < |m| ,

bm
n = sgn(m)

√

(n−m−1)(n−m)

(2n−1)(2n+1)
, n � |m| n < |m|, (43)

sgn(m) =

{

1, m � 0
−1, m < 0

. (44)
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This recursion allows one to get
{

Hm′,m+1
n

}

from
{

Hm′m
n

}

. Once the value for m =

0, Hm′0
n , is known from Eq. (32) for any n and m′ all coefficients can be computed.

The cost of the procedure is O
(

p3
)

as n is limited by p−1 (to get that Hm′0
n should

be computed up to n = 2p−2). The relation was extensively tested and used in the
FMM (e.g. [21]), however, it showed numerical instability p � 100.

From the commutativity of rotations around the axis y,

Qy (β )Q′
y (0) = Q′

y (0)Qy (β ) , Q′
y (β ) =

dQy

dβ
. (45)

one may derive a recurrence relation [5]. For the nth invariant rotation transform
subspace, the relation (45) gives

Rotn (Qy (β ))Rotn
(

Q′
y (0)

)

= Rotn
(

Q′
y (0)

)

Rotn (Qy (β )) . (46)

Differentiating the r.h.s. of (28) w.r.t β and evaluating at β = 0 we get

dHm′m
n (β )
dβ

∣

∣

∣

∣

∣

β=0

= cm′−1
n δm,m′−1 + cm′

n δm,m′+1, (47)

cm
n =

1
2
(−1)msgn(m) [(n−m)(n+m+1)]1/2 , m =−n−1, ...,n. (48)

Using (19), relation (46) can be rewritten as

n

∑
ν=−n

Hm′ν
n (β )(−1)ν

dHνm
n (β )
dβ

∣

∣

∣

∣

β=0
=

n

∑
ν=−n

dHm′ν
n (β )
dβ

∣

∣

∣

∣

∣

β=0

(−1)ν Hνm
n (β ) . (49)

Using Eq. (47) we obtain the recurrence relation for Hm′,m
n (β )

dm−1
n Hm′,m−1

n −dm
n Hm′,m+1

n = dm′−1
n Hm′−1,m

n −dm′
n Hm′+1,m

n , (50)

dm
n =

sgn(m)

2
[(n−m)(n+m+1)]1/2 , m =−n−1, ...,n. (51)

This recurrence is used as the basis of the stable algorithm obtained in this paper.
In contrast to the recurrence (41), (50) relates values of rotation coefficients Hm′m

n
within the same subspace n. Thus, if boundary values for a subspace are provided,
all other coefficients can be found.

3 Bounds for Rotation Coefficients

It should be noticed that the (2n+1)× (2n+1) matix Hn (β ) = Rotn (B(β )) with
entries Hm′m

n (β ), m′,m=−n, ...,n is real, unitary, and self-adjoint (Hermitian). This
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follows from
[Hn (β )]2 = In, Hn (β ) = HT

n (β ) , (52)

where In is (2n+1)× (2n+1) identity matrix. Particularly, this shows that the norm
of matrix Hn (β ) is unity and

∣

∣

∣Hm′m
n (β )

∣

∣

∣ � 1, n = 0,1, ..., m′,m =−n, ...,n. (53)

While bound (53) is applicable for any values of β ,n,m and m′, we note that in
certain regions of the parameter space it can be improved.

3.1 General Bound

To get such a bound we note that due to the third symmetry (30) it is sufficient
to consider β in range 0 � β � π/2. The first and the second symmetries (30)
provide that only nonnegative m can be considered, m � 0, and also m′ from the
range |m′|� m. The latter provides m+m′ � 0, m′ � m, and n−m′ � n−m. Hence
in this range Eq. (26) can be written in the form

Hm′m
n (β ) = εm′εmρm′m

n

n−m

∑
σ=0

(−1)n−σ hm′mσ
n (β ) , (54)

where hm′mσ
n (β )� 0, and we can bound

∣

∣

∣Hm′m
n (β )

∣

∣

∣ as

∣

∣

∣Hm′m
n (β )

∣

∣

∣ � ρm′m
n

n−m

∑
σ=0

hm′mσ
n (β ) (55)

� ρm′m
n (n−m+1)hm′ms

n (β ) ,

where
hm′ms

n (β ) = max
0�σ�n−m

hm′mσ
n (β ) . (56)

In other words s is the value of σ at which hm′mσ
n (β ) achieves its maximum at given

β ,n,m and m′.
Note then that for n = m we have only one term, σ = 0, the sum (54), so s = 0

and in this case
∣

∣

∣Hm′m
n (β )

∣

∣

∣ reaches the bound (55), as it also follows from Eqs (27)

and (33). Another simple case is realized for β = 0. In this case, again, the sum has
only one nonzero term at σ = n−m and

hm′m,n−m
n (0) =

δm′m

(n−m)!(n+m)!
. (57)
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While exact value in this case is
∣

∣

∣Hm′m
n (0)

∣

∣

∣= δm′m (see also Eq. (20)), bound (55) at

s = n−m provides
∣

∣

∣Hm′m
n (β )

∣

∣

∣ � (n−m+1)δm′m, which is correct, but is not tight.

To find the maximum of hm′mσ
n (β ) for β �= 0 and n−m > 0 (so, also n−m′ > 0)

we can consider the ratio of the consequent terms in the sum

rm′mσ
n (β )=

hm′m,σ+1
n (β )
hm′mσ

n (β )
=

(n−m′ −σ)(n−m−σ)
t2 (σ +1)(m′+m+σ +1)

, t = tan
β
2
, (58)

where parameter t is varying in the range 0 < t � 1, as we consider 0 < β � π/2.
This ratio considered as a function of σ monotonously decay from its value at σ = 0
to zero at σ = n−m (as the numerator is a decaying function, while the denomi-
nator is a growing function (n−m′ � n−m). So, if rm′m0

n (β ) � 1 then the maxi-
mum of hm′mσ

n (β ) is reached at σ = 0, otherwise it can be found from simultaneous

equations rm′ms
n (β ) > 1, rm′m,s+1

n (β ) � 1. To treat both cases, we consider roots of
equation rm′mσ

n (β ) = 1, which turns to a quadratic equation with respect to σ ,
(

n−m′ −σ
)

(n−m−σ) = t2 (σ +1)
(

m′+m+σ +1
)

. (59)

If there is no real nonnegative roots in range 0 � σ � n−m then s = 0, otherwise
s should be the integer part of the smallest root of Eq. (59), as there may exist only
one root of equation rm′mσ

n (β ) = 1 in range 0 � σ � n−m (the largest root in this
case is at σ > n−m′ � n−m). So, we have

σ1 =
2n+2t2−

(

1− t2
)

(m+m′)−
√

D

2(1− t2)
, (60)

D =
(

m−m′)2
+ t2 (

2
(

2n2−m2− (m′)2)+ t2(m+m′)2 +4(2n+1)
)

.

This shows that D � 0, so the root is anyway real. Note also that t = 1 (β = π/2)
is a special case, since at this value equation (59) degenerates to a linear equation,
which has root

σ1 =
(n−m′)(n−m)− (m+m′+1)

2(n+1)
, (t = 1) . (61)

Summarizing, we obtain the following expression for s

s =

{

[σ1] , σ1 � 0
0, σ1 < 0,

(62)

where [] denotes the integer part, σ1 (n,m,m′, t) for t �= 1 is provided by Eq. (60),
and its limiting value at t = 1 is given by Eq. (61). Equations (55) and (27) then
yield

∣

∣

∣Hm′m
n (β )

∣

∣

∣ �
ρm′m

n (n−m+1)cos2s+m+m′ β
2 sin2n−2s−m−m′ β

2

s!(n−m′ − s)!(n−m− s)!(m+m′+ s)!
. (63)
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3.2 Asymptotic Behavior

The bounds for the magnitude of the rotation coefficients are important for study of
their behavior at large n, as at large enough n recursions demonstrate instabilities,
while direct computations using the sums becomes difficult due to factorials of large

numbers. So, we are going to obtain asymptotics of expression (63) for
∣

∣

∣Hm′m
n (β )

∣

∣

∣

at n → ∞. We note then that for this purpose, we consider scaling of parameters
m,m′, and s, i.e. we introduce new variables

μ =
m
n
, μ ′ =

m′

n
, ξ =

s
n
, (64)

which, as follows from the above consideration, are in the range 0 � μ � 1, −μ �
μ ′ � μ , 0 � ξ � 1− μ . The asymptotics can be constructed assuming that these
parameters are fixed, while n→ ∞.

Note now that Eq. (63) can be written in the form

∣

∣

∣Hm′m
n (β )

∣

∣

∣ � (n−m+1)
[

Cs
n−mCs

n−m′C
m+m′+s
n+m Cm+m′+s

n+m′

]1/2
× (65)

cos2s+m+m′ 1
2
β sin2n−2s−m−m′ 1

2
β ,

where

Cl
q =

q!
l!(q− l)!

, (66)

are the binomial coefficients. Consider asymptotics of Cbn
an , where a and b are fixed,

0 < b < a, and n→ ∞. Using the inequality, valid for x > 0, (e.g. see [22])

√
2π exp

(

2x+1
2

lnx− x

)

< x! <
√

2π exp

(

2x+1
2

lnx− x+
1

12x

)

. (67)

We can find that
Cbn

an <Cabn−1/2eλabn, (68)

where
λab = a lna−b lnb− (a−b) ln(a−b) , (69)

and the constant Cab is bounded as

Cab �
√

a
2πb(a−b)

e1/12. (70)

Using this bound in Eq. (65) and definition (64), we obtain
∣

∣

∣Hm′m
n (β )

∣

∣

∣ �Ceλn, (71)
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where C is some constant depending on μ ,μ ′,and ξ , while for λ we have the fol-
lowing expression.

λ =
1−μ

2
ln(1−μ)+

1−μ ′

2
ln

(

1−μ ′
)

+
1+μ

2
ln(1+μ)+ (72)

1+μ ′

2
ln

(

1+μ ′
)

−ξ lnξ −
(

μ+μ ′+ξ
)

ln
(

μ+μ ′+ξ
)

−

(1−μ−ξ ) ln(1−μ−ξ )−
(

1−μ ′ −ξ
)

ln
(

1−μ ′ −ξ
)

+

(

μ+μ ′+2ξ
)

lncos
1
2
β +

(

2−μ−μ ′ −2ξ
)

lnsin
1
2
β .

Relation between ξ and other parameters for n→∞ follows from Eqs (60)–(62),

ξ =
2−

(

1− t2
)

(μ+μ ′)−
√
Δ

2(1− t2)
+O

(

n−1) , t �= 1, (73)

ξ =
1
2

(

1−μ ′
)

(1−μ)+O
(

n−1) , t = 1,

where the discriminant can be written in the form

Δ =
(

2−
(

1− t2)(

μ+μ ′
))2−4

(

1− t2)(1−μ)
(

1−μ ′
)

. (74)

Since Δ � 0 and 4
(

1− t2
)

(1−μ)(1−μ ′) � 0 this results that the principal term
ξ � 0. The residual O

(

n−1
)

does not affect bound as the asymptotic constant can
be corrected, while the principal term can be used in λ in Eq. (72). So, λ then is a
function of three parameters, λ = λ (μ ,μ ′;β ) .

Bound (71) is tighter than (53) when λ < 0, as it shows that for n→∞ the rotation
coefficients in parameter region λ (μ ,μ ′,β ) < 0 become exponentially small. This

region of exponentially small
∣

∣

∣Hm′m
n (β )

∣

∣

∣ at fixed β is bounded by curve

λ
(

μ ,μ ′;β
)

= 0. (75)

In Fig. 2 computations of log
∣

∣

∣Hm′m
n (β )

∣

∣

∣ at different β and large enough n (n = 100)

are shown. Here also the boundary curve (75) is plotted (the curve is extended by
symmetry for all β and μ and μ ′, so it becomes a closed curve). It is seen, that it

agrees with the computations and indeed,
∣

∣

∣Hm′m
n (β )

∣

∣

∣ decays exponentially.
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Fig. 2 Magnitude of rotation coefficients, log10

∣

∣

∣Hm′m
n (β )

∣

∣

∣ at n = 100 and different β . The solid

bold curves show analytical bounds of exponentially decaying region determined by Eq. (75). The
dashed curves plot the ellipse, Eq. (92), obtained from asymptotic analysis of recursions for large n

4 Asymptotic Behavior of Recursion

Consider now asymptotic behavior of recursion (50), where coefficients of recursion
dm

n do not depend on β . First, we note that this relation can be written in the form

km′
n

(

Hm′+1,m
n −Hm′−1,m

n

)

− lm′
n

(

Hm′+1,m
n +Hm′−1,m

n

)

= (76)

km
n

(

Hm′,m+1
n −Hm′,m−1

n

)

− lm
n

(

Hm′,m−1
n +Hm′,m+1

n

)

,

where

km
n =

1
2

(

dm−1
n +dm

n

)

, lm
n =

1
2

(

dm−1
n −dm

n

)

. (77)

At m �= 0 and large n and n− |m| , m = nμ , asymptotics of coefficients dm
n can be

obtained from Eq. (51),

km
n = sgn(μ)

(

1−μ2)1/2 1
2n−1

[

1+O(n−1)
]

, (78)

lm
n =

1
4

sgn(μ)
μ

(1−μ2)1/2

[

1+O(n−1)
]

.
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Hence, asymptotically relation (76) turns into

(1−μ ′2)1/2
(

Hm′+1,m
n −Hm′−1,m

n

)

2h
−
μ ′

(

Hm′+1,m
n +Hm′−1,m

n

)

4(1−μ ′2)1/2
(79)

=
sgn(μ)
sgn(μ ′)

⎡

⎣

(1−μ2)1/2
(

Hm′,m+1
n −Hm′,m−1

n

)

2h
−
μ

(

Hm′,m+1
n +Hm′,m−1

n

)

4(1−μ2)1/2

⎤

⎦ ,

where h = 1/n. Let us interpret now Hm′m
n as samples of differentiable function

Hn (μ ′,μ) on a (2n+1)× (2n+1) grid on the square (μ ′,μ) ∈ [−1,1]× [−1,1]
with step h in each direction, Hn (m′/n,m/n) = Hm′m

n . In this case relation (79) cor-
responds to a central difference scheme for the hyperbolic PDE

sgn(μ)
(

1−μ2)1/2 ∂Hn

∂μ
− sgn

(

μ ′
)(

1−μ ′2
)1/2 ∂Hn

∂μ ′
− (80)

1
2

[

sgn(μ)
μ

(1−μ2)1/2
− sgn

(

μ ′
) μ ′

(1−μ ′2)1/2

]

Hn = 0,

where Hn is approximated to O(h) via its values at neighbouring grid points in each
direction,

Hn
(

μ ′,μ
)

=
1
2

(

Hn
(

μ ′ −h,μ
)

+Hn
(

μ ′+h,μ
)

+O(h)
)

=

1
2

(

Hn
(

μ ′,μ−h
)

+Hn
(

μ ′,μ+h
)

+O(h)
)

. (81)

Note then Kn (μ ′,μ) defined as

Kn
(

μ ′,μ
)

=
(

1−μ ′2
)1/4 (

1−μ2)1/4
Hn

(

μ ′,μ
)

, (82)

satisfies

sgn(μ)
(

1−μ2)1/2 ∂Kn

∂μ
− sgn

(

μ ′
)(

1−μ ′2
)1/2 ∂Kn

∂μ ′
= 0. (83)

Let us introduce the variables ψ = arcsinμ and ψ ′ = arcsinμ ′, and

Gn(ψ ′,ψ) = Kn(μ ′,μ), −π
2
�ψ,ψ ′� π

2
. (84)

In this case μ = sinψ, (1−μ2)1/2 = cosψ and similarly, μ ′ = sinψ ′, (1−μ ′2)1/2 =
cosψ ′. So in these variables Eq. (78) turns into

sgn
(

ψ ′) ∂Gn

∂ψ ′ − sgn(ψ)
∂Gn

∂ψ
= 0. (85)
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Fig. 3 The characteristics of equations (85) and (80). The shaded area shows the region for which
the rotation coefficients should be computed as symmetry relations (30) can be applied to obtain
the values in the other regions

Due to symmetry relations (30), we can always constrain the region with μ � 0
(0 � ψ � π/2), so sgn(ψ) = 1. So, we have two families of characteristics of this
equation in this region,

ψ ′+ψ =C+, 0 � ψ ′ � π
2

; ψ ′ −ψ =C−, −π
2
� ψ ′ � 0, (86)

which are also characteristics of equation (80) for ψ = arcsinμ , ψ ′ = arcsinμ ′.
Figure 3 illustrates these characteristics in the (ψ,ψ ′) and the (μ ,μ ′) planes. It is
interesting to compare these characteristics with the results shown in Fig. 2. One
can expect that the curves separating the regions of exponentially small values of
the rotation coefficients should follow, at least qualitatively, some of the character-
istic curves. Indeed, while Hn (μ ′,μ) according to Eq. (82) can change along the
characteristics (the value of Kn (μ ′,μ) should be constant), such a change is rather

weak (proportional to
(

1−μ ′2
)1/4 (

1−μ2
)1/4

, which cannot explain the exponen-
tial decay). However, we can see that the boundaries of the regions plotted at differ-
ent β partly coincide with the characteristics (e.g. at β = π/4 this curve qualitatively
close to characteristic family C− at μ ′ < 0, but qualitatively different from the char-
acteristic family C+ for μ ′ > 0; similarly the curve β = 3π/4 coincides with one of
characteristics C+ for μ ′ > 0, while characteristics of family C− are rather orthog-
onal to the curve at μ ′ < 0). As Eq. (85) should be valid for any β this creates a
puzzle, the solution of which can be explained as follows.



124 Nail A. Gumerov and Ramani Duraiswami

Fig. 4 The sign of coefficients Hm′m
n and modified coefficients ̂Hm′m

n , Eq. (87), at β = π/4. Positive
sign (white) is assigned to coefficients which magnitude is below 10−13

Hm′m
n (β ) considered as a function of m′ oscillates with some local frequency

ωn (μ ′,μ ,β ). In the regions where this frequency is small, the transition from
the discrete relation (79) to the PDE (80) is justified. However at frequencies
ωn (μ ′,μ ,β ) ∼ 1 the PDE is not valid. Such regions exist, e.g., if Hm′m

n (β ) =
(−1)m′

̂Hm′m
n (β ) , where ̂Hm′m

n oscillates with a low frequency. For example, Eqs
(33) and (7) show that for 0 < β < π the boundary value Hm′n

n (β ) is a smooth func-
tion of μ ′ for μ ′ < 0, while it cannot be considered as differentiable function of μ ′
for μ ′ > 0. On the other hand, this example shows that the function ̂Hm′n

n (β ) has
smooth behavior for μ ′ > 0 and a differential equation can be considered for this
function. Equations (76) and (79) show that for function ̂Hm′m

n one obtains the same
equation, but the sign of sgn(μ ′) should be changed. Particularly, this means that if
this is the case then characteristics of the family C+ can be extended to the region
−π/2 � ψ ′ � 0, while the characteristics of the family C− can be continued to the
region 0 � ψ ′ � π/2. Of course, such an extension must be done carefully, based
on the analysis, and this also depends on the values of β , which plays the role of a
parameter. Figure 4 illustrates the signs of function Hm′m

n (β ) and

̂Hm′m
n (β ) =

{

εm′ε−mHm′m
n (β ) , m < m′

ε−m′εmHm′m
n (β ) , m � m′ . (87)

It is seen that ̂Hm′m
n is a “smoother” function of m′ and m (for 0< β < π/2; this is not

the case for π/2 < β < π; for those values we use the third symmetry relation (30).
Also note that for m�m′ the function ̂Hm′m

n coincides with dm′m
n due to relation (29).

This enables determination of the boundary curve separating oscillatory and
exponentially decaying regions of ̂Hm′m

n . Indeed, at m′ = 0, m � 0 the boundary
value (32) and the first symmetry (30) provides that ̂H0m

n (β ) is proportional to
the associated Legendre function Pm

n (cosβ ). Function Pm
n (x) satisfies differential
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equation
(

1− x2) d2w
dx2 −2x

dw
dx

+

[

n(n+1)− m2

1− x2

]

w = 0, (88)

which for
y(x) =

(

1− x2)1/2
w(x), (89)

at large n and m = μn turns into

d2y
dx2 = n2q(x)y, q(x) =−1− x2−μ2

(1− x2)2 , (90)

An accurate asymptotic study can be done based on the Liouville-Green or
WKB-approximation [23], while here we limit ourselves with the qualitative obser-
vation, that q(xμ) = 0 at 1− x2

μ − μ2 = 0, which is a “turning” point, such that
at μ2 > 1− x2

μ we have q(x) > 0 which corresponds to asymptotically grow-
ing/decaying regions of y (the decaying solution corresponds to the associated Leg-
endre functions of the first kind, which is our case). Region μ2 < 1−x2

μ corresponds
to q(x) < 0 and to the oscillatory region. The vicinity of the turning point can be
studied separately (using the Airy functions) [23], but it should be noticed imme-
diately that the local frequency ω ∼ n

√−q is much smaller than n at |q| � 1, so
function ̂Hm′m

n is relatively smooth on the grid with step h = n−1 in the vicinity of
this turning point. Hence, for the characteristic C− passing through the turning point

μ =
√

1− x2
μ =

√

1− cos2β = sinβ at μ ′ = 0 (ψ ′ = 0)

C− = ψ ′ −ψ
∣

∣

ψ ′=0 =−ψ =−arcsinμ =−β , 0 � β � π/2. (91)

(similarly, characteristic C+ can be considered, which provides the boundary curve
for the case π/2 � β � π). We note now that curve ψ ′ −ψ = −β in (μ ,μ ′) space
describes a piece of ellipse. Using symmetries (30) we can write equation for this
ellipse in the form

(μ+μ ′)2

4cos2 1
2β

+
(μ−μ ′)2

4sin2 1
2β

= 1. (92)

The ellipse has semiaxes cos 1
2β and sin 1

2β , which are turned to π/4 angles in the
(μ ,μ ′). This ellipse is also shown in Fig. 2, and it is seen that it approximates the
regions of decay obtained from the analysis of bounds of the rotation coefficients.

More accurate consideration and asymptotic behavior of the rotation coefficients
at large n can be obtained using the PDE and the boundary values of the coefficients
(32) and (33). Such analysis, however, deserves a separate paper and is not presented
here, as the present goal is to provide a qualitative picture and develop a stable
numerical procedure.
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5 Stability of Recursions

Now we consider stability of recursion (50), which can be used to determine the
rotation coefficients at m � 0 and |m′| � m for 0 � β � π as for all other values
of m and m′ symmetries (30) can be used. This recursion is two dimensional and,

in principle, one can resolve it with respect to any of its terms, e.g. Hm′+1,m
n , and

propagate it in the direction of increasing m′ if the initial and boundary values are
known. Several steps of the recursion can be performed anyway and there is no sta-
bility question for relatively small n. However, at large n stability becomes critical,
and, so the asymptotic analysis and behavior plays an important role for establishing
of stability conditions.

5.1 Courant-Friedrichs-Lewy (CFL) Condition

Without any regard to a finite difference approximation of a PDE recursion (50) can
be written in the form (76), which for large n takes the form (79). The principal term
of (76) for n→ ∞ here can be written as

Hm′+1,m
n −Hm′−1,m

n = c
(

Hm′,m+1
n −Hm′,m−1

n

)

, c =
km

n

km′
n
. (93)

An analysis of a similar recursion, appearing from the two-wave equation is pro-
vided in [16], which can be also applied to the one-wave equation approximated
by the central difference scheme. If we treat here m′ as an analog of time, m as an
analog of a spatial variable, and c as the wave speed (the grid in both variables has
the same step Δm = Δm′ = 1), then the Courant-Friedrichs-Lewy (CFL) stability
condition becomes

|c|� 1. (94)

Note now that from definitions (77) and (51) we have

k0
n = 0, k−m

n =−km
n , km

n � km+1
n , m = 1, ...,n−1. (95)

The CFL condition is satisfied for any m � |m′|, m′ �= 0. This is also consistent with
the asymptotic behavior of the recursion coefficients (78), as

c2 ∼ 1−μ2

1−μ ′2
, (96)

which shows that in region μ ′2 � μ2 we have Eq. (94). Note that the CFL condition
for the central difference scheme includes only the absolute value of c so, indepen-

dent of which variable Hm′+1,m
n or Hm′−1,m

n the recursion (93) is resolved the scheme
satisfies the necessary stability condition (CFL). This means that within the region
m � |m′| the scheme can be applied in the forward or backward directions, while
some care may be needed for passing the value m′ = 0.
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This analysis shows also that if recursion (93) will be resolved with respect to

Hm′,m+1
n or Hm′,m−1

n in region m� |m′| then the recursion will be absolutely unstable,
as it does not satisfy the necessary condition, which in this case will be |1/c| � 1
(as the recursion is symmetric with respect to m and m′). Figure 5 (chart on the left)
shows the stable and unstable directions of propagation. Under “stable” we mean
here conditional or neutral stability, as the CFL criterium is only a necessary, not
sufficient, condition.

5.2 Von Neumann Stability Analysis

The von Neumann, or Fourier, stability analysis is a usual tool for investigation
of finite difference schemes of linear equations with constant coefficients (original
publication [17], various applications can be found elsewhere). Despite the recursion
we study is linear; it has variable coefficients. So, we can speculate that only in
some region, where such variability can be neglected, and we can perform several
recursive steps with quasiconstant coefficients, can such an analysis give us some
insight on the overall stability. As the recursion (50) can be written in the form (76),
the asymptotic behavior of the recursion coefficients (78) shows that the assumption
that these coefficients are quasiconstant indeed is possible in a sense that many grid
points can be handled with the same value of coefficients, as they are functions of
“slow” variables μ and μ ′, but regions μ→ 1 and μ ′ → 1 are not treatable with this
approach, as either the coefficients or their derivatives become unbounded. Hence,
we apply the fon Neumann analysis for 1−μ and 1−μ ′ treated as quantities of the
order of the unity.

Equation (79) then can be written in the form

Hm′+1,m
n −Hm′−1,m

n − a
n

(

Hm′+1,m
n +Hm′−1,m

n

)

= (97)

c
(

Hm′,m+1
n −Hm′,m−1

n

)

− b
n

(

Hm′,m+1
n +Hm′,m−1

n

)

,

where a,b, and c are coefficients depending on μ and μ ′ and, formally, not depend-
ing on m and m′ (separation to “slow” and “fast” variables typical for multiscale
analysis), for μ � 0

a =
μ ′

2(1−μ ′2)
, b =

sgn(μ ′)μ
2(1−μ ′2)1/2 (1−μ2)1/2

, c = sgn
(

μ ′
)

(

1−μ2

1−μ ′2

)1/2

.

(98)
Now we consider perturbation ηm′,m

n of coefficients Hm′,m
n and their propagation

within the conditionally stable scheme above. As the true values of Hm′,m
n satisfy

Eq. (97), the perturbation satisfies the same equation. Let η̂m′
n (k) be the Fourier

transform of ηm′,m
n with respect to m at layer m′, where k is the wavenumber (the

kth harmonic of ηm′,m
n is η̂m′

n (k)eikm). Then Eq. (97) for the k-th harmonic takes the
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Fig. 5 On the left are shown unstable and conditionally stable directions of propagation for the
recursion (93) based on the Courant-Friedrichs-Lewy (CFL) criterion. On the right are shown the
stencils for the recursive algorithm in the shaded region. The nodes with white discs are the initial
values of the recursion computed using Eqs (32) and (105)

form

η̂m′+1
n − η̂m′−1

n − b
n

(

η̂m′+1
n + η̂m′−1

n

)

=

(

2icsink−2
b
n

cosk

)

η̂m′
n . (99)

This is a one-dimensional recurrence relation, with well established stability analy-
sis. Particularly, one can consider solutions of type η̂m′

n = (λn)
m′ , which after inser-

tion into Eq. (99) results in the characteristic equation

(

1− a
n

)

λ 2
n −

(

2icsink−2
b
n

cosk

)

λn−
(

1+
a
n

)

= 0, (100)

with roots

λ±n =
icsink− b

n cosk±
√

(

icsink− b
n cosk

)2
+1−

(

a
n

)2

1− a
n

. (101)
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If |csink|< 1 then for n→ ∞ we have

∣

∣λ±n
∣

∣ ∼
(

1+
a
n

)

[

1∓ 2b
n

cosk

(

1− c2 sin2 k+
c2 sin2 k cosk
√

1− c2 sin2 k

)]1/2

(102)

�
(

1+
1
n

[

a+ |b|
(

1+
c2

4
√

1− c2

)])

.

In the asymptotic region near |csink| = 1, since |c| � 1, we also have |cosk| � 1.
So, denoting |csink| = 1− n−1c′ and expanding λ±n from Eq. (101) at n → ∞ we
obtain

∣

∣λ±n
∣

∣∼
(

1+
1
n

(

a+ c′
)

)

. (103)

Note then that for certain k the recursion appears to be unstable, since |a| � |b| in
region |μ ′|< μ . However, in both cases described by Eq. (102) and (103) the growth
rate is close to one. So if we have some initial perturbation of magnitude ε0 we have
after n steps (which is the maximum number of steps for propagation from m′ = 0
to m′ = n) error ε satisfies

ε � ε0 |λn|n ∼ ε0

(

1+
C
n

)n

∼ ε0eC. (104)

Here C is some constant of order of 1, which does not depend on n, so despite the
instability the error should not grow more than a certain finite value, ε/ε0 � eC.

6 Algorithms for Computation of Rotation Coefficients

We present below two different and novel algorithms for computation of the rota-

tion coefficients Hm′,m
n . The recursive algorithm is more practical (faster), while the

Fast Fourier Transform (FFT) based algorithm has an advantage that it does not use
any recursion and so it is free from recursion related instabilities. Availability of
an alternative independent method enables cross-validation and error/performance
studies.

6.1 Recursive Algorithm

The analysis presented above allows us to propose an algorithm for computation
of the rotation coefficients based on recursion (50). Note that this recursion, in a
shortened form, is also valid for the boundary points, i.e. it holds at m = n where

one should set Hm′,n+1
n = 0 (this appears automatically as also dn

n = 0). Using this
observation one can avoid some extra work of direct computation of the boundary
values (33), which, however, is also not critical for the overall algorithm complexity.
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In the algorithm coefficients Hm′m
n are computed for each subspace n independently

for m and m′ located inside a triangle, i.e. for values m = 0, ...,n, m′ = −m, ...,m.
Angle β can take any value from 0 to π .

1: If n = 0 set H00
0 = 1. For other n = 1, ..., p−1 consider the rest of the algorithm.

2: Compute values H0,m
n (β ) for m= 0, ...,n and H0,m

n+1 (β ) for m= 0, ...,n+1 using
Eq. (32) (one can replace there m′ with m due to symmetry). It is instructive to
compute these values using a stable standard routine for computation of the
normalized associated Legendre functions (usually based on recursions), which
avoids computation of factorials of large numbers. A standard Matlab function
serves as an example of such a routine.

3: Use relation (41) to compute H1,m
n (β ), m = 1, ...,n. Using symmetry and shift

of the indices this relation can be written as

b0
n+1H1,m

n =
b−m−1

n+1 (1− cosβ )
2

H0,m+1
n+1

−
bm−1

n+1 (1+ cosβ )
2

H0,m−1
n+1 −am

n sinβH0,m
n+1. (105)

4: Recursively compute Hm′+1,m
n (β ) for m′ = 1, ...,n−1, m = m′, ...,n using rela-

tion (50) resolved with respect to Hm′+1,m
n

dm′
n Hm′+1,m

n = dm′−1
n Hm′−1,m

n −dm−1
n Hm′,m−1

n +dm
n Hm′,m+1

n , (106)

which for m = n turns into

Hm′+1,m
n =

1

dm′
n

(

dm′−1
n Hm′−1,m

n −dm−1
n Hm′,m−1

n

)

. (107)

5: Recursively compute Hm′−1,m
n (β ) for m′ =−1, ...,−n+1, m =−m′, ...,n using

relation (50) resolved with respect to Hm′−1,m
n

dm′−1
n Hm′−1,m

n = dm′
n Hm′+1,m

n +dm−1
n Hm′,m−1

n −dm
n Hm′,m+1

n , (108)

which for m = n turns into

Hm′−1,m
n =

1

dm′−1
n

(

dm′
n Hm′+1,m

n +dm−1
n Hm′,m−1

n

)

. (109)

6: Apply the first and the second symmetry relations (30) to obtain all other values
Hm′m

n outside the computational triangle m = 0, ...,n, m′ =−m, ...,m.

Figure 5 (right) illustrates this algorithm. It is clear that the algorithm needs O(1)

operations per value of Hm′,m
n . It also can be applied to each subspace independently,

and is parallelizable. So, the complexity for a single subspace of degree n is O
(

n2
)

,
and the cost to compute all the rotation coefficients for p subspaces (n = 0, ..., p−1)
is O

(

p3
)

. It also can be noticed that for computation of rotation coefficients for all
subspaces n = 0, ..., p−1 the algorithm can be simplified, as instead of computation
of H0,m

n and H0,m
n+1 for each subspace in step 2, H0,m

n can be computed for all n =
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1, ..., p (m = 0, ...,n) and stored. Then the required initial values can be retrieved at
the time of processing of the nth subspace.

6.2 FFT Based Algorithms

6.2.1 Basic Algorithm

We propose this algorithm based on Eq. (17), which for α = 0 and γ = 0 takes the
form

f m
n

(

ϕ̂;β , ̂θ
)

=
n

∑
m′=−n

Fm′m
n

(

β , ̂θ
)

eim′ϕ̂ , (110)

f m
n

(

ϕ̂;β , ̂θ
)

= Y m
n

(

θ
(

ϕ̂,β , ̂θ
)

,ϕ
(

ϕ̂,β , ̂θ
))

,

Fm′m
n

(

β , ̂θ
)

= (−1)m′

√

2n+1
4π

(n−|m′|)!
(n+ |m′|)!P

|m′|
n (cos ̂θ)Hm′m

n (β ) .

Here we used the definition of the spherical harmonics (3); θ
(

ϕ̂,β , ̂θ
)

and ϕ
(

ϕ̂,β ,
̂θ
)

are determined by the rotation transform (13) and (14), where we set α = 0 and

γ = 0. The rotation matrix Q is symmetric (see Eq. (9))
⎛

⎝

x
y
z

⎞

⎠ =

⎛

⎝

−cosβ 0 sinβ
0 −1 0

sinβ 0 cosβ

⎞

⎠

⎛

⎝

x̂
ŷ
ẑ

⎞

⎠ . (111)

Using relation between the Cartesian and spherical coordinates (1), we obtain

sinθ cosϕ = −cosβ sin ̂θ cos ϕ̂+ sinβ cos ̂θ , (112)

sinθ sinϕ = −sin ̂θ sin ϕ̂,
cosθ = sinβ sin ̂θ cos ϕ̂+ cosβ cos ̂θ .

This specifies functions ϕ
(

ϕ̂,β , ̂θ
)

and θ
(

ϕ̂,β , ̂θ
)

, 0 � ϕ < 2π, 0 � θ � π.

Now, let us fix some ̂θ , such that cos ̂θ is not a zero of the associated Legendre

function Pm
n (x) at any m = 0, ...,n. Then for a given β function f m

n

(

ϕ̂ ;β , ̂θ
)

is

completely defined as a function of ϕ̂ , while β , ̂θ ,m, and n play a role of parameters.
The first equation shows then that this function has a finite Fourier spectrum (2n+1
harmonics). The problem then is to find this spectrum (Fm′m

n ), which can be done
via the FFT, and from that determine Hm′m

n (β ) using the last relation (110). The
complexity of the algorithm for subspace n is, obviously, O

(

n2 logn
)

and for all
subspaces n = 0,1, ..., p−1 we have complexity O

(

p3 log p
)

.
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6.2.2 Modified Algorithm

The problem with this algorithm is that at large n the associated Legendre functions
(even the normalized ones) are poorly scaled. Analysis of Eq. (90) shows that to
have coefficients Fm′m

n of the order of unity parameter ̂θ should be selected as close
to π/2 as possible. On the other hand, this cannot be exactly π/2 as in this case

P
|m′|
n (0) = 0 for odd values of n+ |m′|. The following trick can be proposed to fix

this.
Consider two functions g(1)mn (ϕ̂ ;β )= f m

n (ϕ̂ ;β ,π/2) and g(2)mn (ϕ̂;β )= ∂ f m
n

(

ϕ̂ ;

β , ̂θ
)

/∂ ̂θ
∣

∣

∣

̂θ=π/2
. The first function has spectrum

{

Fm′m
n (β ,π/2)

}

, while the sec-

ond function

{

∂Fm′m
n

(

β , ̂θ
)

/∂ ̂θ
∣

∣

∣

̂θ=π/2

}

. Note that P
|m′|
n (cos ̂θ) is an even func-

tion of x̂ = cos ̂θ for even n+ |m′|, and an odd function of x̂ = cos ̂θ for odd values

of n+ |m′|. In the latter case x = 0 is a single zero and ∂Fm′m
n

(

β , ̂θ
)

/∂ ̂θ
∣

∣

∣

̂θ=π/2
is

not zero for odd n+ |m′| (its absolute value reaches the maximum at x̂ = 0), while it
is zero for even n+ |m′|. Hence,

gm
n (ϕ̂ ;β ) = g(1)mn (ϕ̂;β )+ γ m

n g(2)mn (ϕ̂;β )

=

[

f m
n (ϕ̂;β , ̂θ)+ γ m

n
∂
∂ ̂θ

f m
n (ϕ̂;β , ̂θ)

]

̂θ=π/2
, (113)

where γm
n �= 0 is an arbitrary number, has Fourier spectrum

Gm′m
n (β ) = Hm′m

n (β )Km′m
n , (114)

where, for m′ = 2k−n, k = 0, ...,n,

Km′m
n = (−1)m′

√

2n+1
4π

(n−|m′|)!
(n+ |m′|)!P

|m′|
n (0),

while, for m′ = 2k−n−1, k = 1, ...,n

Km′m
n =−(−1)m′

√

2n+1
4π

(n−|m′|)!
(n+ |m′|)!γ

m
n (n+

∣

∣m′∣
∣)(n−

∣

∣m′∣
∣+1)P

|m′|−1
n (0),

The values for odd n+ |m′| come from the well-known recursion for the associated
Legendre functions (see [22]),

d
dx

Pm
n (x) =

(n+m)(n−m+1)√
1− x2

Pm−1
n (x)+

mx
1− x2 Pm

n (x) , (115)



Stable Computation of Large Degree Spherical Harmonic Rotations 133

(note P−1
n (x) =−P1

n (x)/(n(n+1))), which is evaluated at x̂ = 0 :

d

d̂θ
P
|m′|
n (cos ̂θ)

∣

∣

∣

∣

̂θ=π/2
= − d

dx̂
P
|m′|
n (x̂)

∣

∣

∣

∣

x̂=0

= −(n+
∣

∣m′∣
∣)(n−

∣

∣m′∣
∣+1)P

|m′|−1
n (0) . (116)

Note also that P
|m′|
n (0) can be simply expressed via the gamma-function (see [22])

and, so Km′m
n can be computed without use of the associated Legendre functions. The

magnitude of arbitrary constant γm
n can be selected based on the following observa-

tion. As coefficients Hm′m
n (β ) at fixed β large n asymptotically behave as functions

of m/n and m′/n we can try to have odd and even coefficients Km′m
n and Km′+1,m

n to
be of the same order of magnitude. We can write this condition and the result as

√

(n−|m′|)!
(n+ |m′|)! ∼

√

(n−|m′|−1)!
(n+ |m′|+1)!

γm
n (n+

∣

∣m′∣
∣+1)(n−

∣

∣m′∣
∣), (117)

and γm
n ∼ 1/n. Now, we can simplify expression (113) for gm

n . It is sufficient to
consider only positive m, since for negative values we can use symmetry (30), while
for m = 0 we do not need Fourier transform, as we already have Eq. (32). Using
definitions (110) and (3), we obtain

∂ f m
n

∂ ̂θ
= (−1)m

√

2n+1
4π

(n−m)!
(n+m)!

eimϕ ×
[

dPm
n (x)
dx

∂ cosθ
∂ ̂θ

+ imPm
n (x)

∂ϕ
∂ ̂θ

]

x=cosθ
. (118)

Differentiating (112) w.r.t. ̂θ and taking values at ̂θ = π/2

∂ cosθ
∂ ̂θ

∣

∣

∣

∣

̂θ=π/2
=−cosβ ,

∂ϕ
∂ ̂θ

∣

∣

∣

∣

̂θ=π/2
=

sinβ sinϕ
sinθ

. (119)

We also have from relations (112) at ̂θ = π/2

x=cosθ=sinβ cos ϕ̂, cosϕ=−cosβ cos ϕ̂√
1− x2

, sinϕ=− sin ϕ̂√
1− x2

. (120)

Using these relations and identity (115), we can write
[

dPm
n (x)
dx

∂ cosθ
∂ ̂θ

+ imPm
n (x)

∂ϕ
∂ ̂θ

]

x=cosθ
= (121)

−(n+m)(n−m+1)cosβ
Pm−1

n (x)√
1− x2

+meiϕ sinβ
Pm

n (x)√
1− x2

.
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Hence, function gm
n (ϕ̂;β ) introduced by Eq. (113) can be written as

gm
n (ϕ̂;β ) = (−1)m

√

2n+1
4π

(n−m)!
(n+m)!

eimϕ × (122)

[

Pm
n (x)− γm

n

(

(n+m)(n−m+1)cosβ
Pm−1

n (x)√
1− x2

−meiϕ sinβ
Pm

n (x)√
1− x2

)]

,

It may appear that x=±1 can be potentially singular, but this is not the case. Indeed,
these values can be achieved only when β = π/2 (see the first equation (120)). But
in this case, we can simplify Eq. (122), as we have cosβ = 0,

√
1− x2 = |sin ϕ̂ | ,

and so

eiϕ = cosϕ+ isinϕ =−cosβ cos ϕ̂√
1− x2

− i
sin ϕ̂√
1− x2

=−isgn(sin ϕ̂) , (123)

eimϕ = (−isgn(sin ϕ̂))m ,

and Eq. (122) takes the form

gm
n

(

ϕ̂ ;
π
2

)

=

√

2n+1
4π

(n−m)!
(n+m)!

[isgn(sin ϕ̂)]m
(

1− iγm
n m

sin ϕ̂

)

Pm
n (cos ϕ̂). (124)

Note that this expression has a removable singularity at sin ϕ̂ = 0. Indeed for
m � 2 we have Pm

n (cos ϕ̂)∼ sinm ϕ̂ , while for m = 1 we have

P1
n (x)√
1− x2

∣

∣

∣

∣

x→±1
=−dPn

dx
(±1) =−n(n+1)ε±n, (125)

where symbol εm is defined by Eq. (7). So,

gm
n

(

πk;
π
2

)

=

{

γ1
n (−1)k+1 1

2

√

2n+1
4π n(n+1), m = 1,

0, m � 2.
(126)

Hence, the modified algorithm is based on the equation

gm
n (ϕ̂ ;β ) =

n

∑
m′=−n

Gm′m
n (β )eim′ϕ̂ , (127)

where function gm
n (ϕ̂ ;β ) can be computed for equispaced values of ϕ̂ sampling the

full period. The FFT produces coefficients Gm′m
n (β ) from which Hm′m

n (β ) can be
found using Eq. (114).
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7 Numerical Experiments

The algorithms were implemented in Matlab and tested for n = 0, ...,10000.

7.1 Test for Recursion Stability

First we conducted numerical tests of the algorithm stability. Note that the depen-
dence on β comes only through the initial values, which are values of coefficients
for layers m′ = 0 and m′ = 1. Hence, if instead of these values we put some arbitrary
function (noise) then we can measure the growth of the magnitude of this noise
as the recursive algorithm is completed. For stable algorithms it is expected that
the noise will not amplify, while amplification of the noise can be measured and
some conclusions about practical value of the algorithm can be made. Formally the
amplitude of the noise can be arbitrary (due to the linearity of recursions), however,
to reduce the influence of roundoff errors we selected it to be of the order of unity.

Two models of noise were selected for the test. In the first model perturbations

ηm′,m
n at the layers m′ = 0 and m′ = 1 were specified as random numbers distributed

uniformly between−1 and 1. In the second model perturbations were selected more
coherently. Namely, at m′ = 0 the random numbers were non-negative (distributed
between 0 and 1). At m′ = 1 such a random distribution was pointwise multiplied by
factor (−1)m. The reason for this factor is that effectively this brings some symmetry

for resulting distributions of ηm′,m
n for m′ > 0 and m′ < 0. Figure 6 shows that in the

first noise model the overall error (in the L∞ norm) grows as ∼ n1/4, while for the
second noise model the numerical data at large enough n are well approximated
by ε = ε0n1/2. Note that the data points shown on this figure were obtained by
taking the maximum of 10 random realizations per each data point. On the right
hand side of Fig. 6 are shown error distributions for some random realization and
some n (n = 100, the qualitative picture does not depend on n). It is seen that for the

first noise model the magnitude of ηm′,m
n is distributed approximately evenly (with

higher values in the central region and diagonals m′ = ±m). For the second noise
model the distribution is substantially different. The highest values are observed in
the boundary regions m′ ≈ ±n and m ≈ ±n with the highest amplitudes near the
corners of the computational square in the (m,m′) space.

The behavior observed in the second noise model can be anticipated, as the
scheme is formally unstable, the absolute values of coefficients a and b (see Eq.
(98)) grow near the boundaries of the computational domain and a fast change of
these coefficients near the boundaries requires some other technique for investi-
gation of instabilities than the method used. Smaller errors and their distribution
observed in the first noise model are more puzzling, and we can speculate about
some cancellation effects for random quantities with zero mean appearing near the
boundaries, and to the variability of coefficients a,b, and c in Eq. (98), so that the
stability analysis is only approximate. What is important that in all our tests with dif-
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Fig. 6 The chart on the left shows amplification of the noise in the proposed recursive algorithms
for two noise models. The charts on the right show distributions of the noise amplitude for some
random realization at n = 100

ferent distributions of initial values of ηm′,m
n we never observed exponential growth.

The maximum growth rate behaved at large n as nα , α ≈ 1/2. Hence, for n ∼ 104

one can expect the errors in the domain of two orders of magnitude larger than the
errors in the initial conditions, which makes the algorithm practical. Indeed, in dou-
ble precision, which provides errors ∼ 10−15 in the initial values of the recursions,
then for n = 104 one can expect errors ∼ 10−13, which is acceptable for many prac-
tical problems. Of course, if desired the level of the error can be reduced, if needed,
using e.g. quadruple precision, etc.

7.2 Error and Performance Tests

The next error tests were performed for actual computations of Hm′,m
n . For small

enough n (n∼ 10) one can use an exact expression (26) as an alternative method to
figure out the errors of the present algorithm. Such tests were performed and abso-
lute errors of the order of 10−15, which are consistent with double precision roundoff
errors were observed. The problem with sum (26) is that at large n it requires com-
putation of factorials of large numbers, which creates numerical difficulties. While
computation of factorials and their summation when the terms have the same sign
is not so difficult (e.g. using controlled accuracy asymptotic expansion), the prob-
lem appears in the sums with large positive and negative terms. In this case to avoid
the loss of information special techniques of working with large integers (say, with
thousand digits) should be employed. This goes beyond the present study, and we
used different methods for validation than comparing with these values.
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Another way is to compute Hm′,m
n (β ) is based on the flip decomposition, i.e. to

use one of the equations (38)–(40). In this decomposition all coefficients are “good”
in terms that complex exponents or cosines can be computed accurately. These for-
mulae require the flip rotation coefficients, Hm′m

n (π/2), which should be computed

and stored to get Hm′,m
n (β ) for arbitrary β . Note that these relations also hold for

β = π/2, which provides a self-consistency test for Hm′m
n (π/2). Despite the sum-

mations in (38)–(40) requires O(n3) operations per subspace n and are much slower
than the algorithms proposed above, we compared the results obtained using the
recursive algorithm for consistency with Eq. (38) and found a good agreement (up
to the numerical errors reported below) for n up to 5000 and different β including
β = π/2.

One more test was used to validate computations, which involve both recursions
and relation (40). This algorithm with complexity O

(

n2
)

per subspace was pro-

posed and tested in [24]. Their coefficients Hm′m
n (π/2) were found using the present

recursion scheme, which then were used only to compute the diagonal coefficients
Hmm

n (β ) and Hm,m+1
n (β ) at arbitrary β . The recursion then was applied to obtain all

other coefficients, but with propagation from the diagonal values, not from H0,m
n (β )

and H1,m
n (β ). Motivation for this was heuristic, based on the observation that O(1)

magnitudes are achieved on the diagonals and then they can decay exponentially
(see Fig. 2), so it is expected that the errors will also decay. The tests for n up to
5000 showed that such a complication of the algorithm is not necessary, and both
the present and the cited algorithms provide approximately the same errors.

In the present study as we have two alternative ways to compute Hm′m
n (β ) using

the recursive algorithm and the FFT-based algorithm, we can use self-consistency
and cross validation tests to estimate the errors of both methods.

Self consistency tests can be based on relation (52). In this case computed
Hm′m

n (β ) were used to estimate the following error

ε(0)n (β ) = max
m,m′

∣

∣

∣

∣

∣

n

∑
ν=−n

Hm′ν
n (β )Hνm

n (β )−δmm′

∣

∣

∣

∣

∣

, n = 0,1, ... (128)

We also found the maximum of ε(0)n (β ) over five values of β = 0,π/4,π/2,3π/4,π
for the recursive algorithm and for two versions of the FFT-based algorithms. For
the basic FFT-based algorithm we used ̂θ = π/2−ξ/n, where ξ was some random
number between 0 and 1. For the modified algorithm, which has some arbitrary
coefficient γm

n we used γm
n = 1/n, which, as we found provides smaller errors than

γm
n = 1 or γm

n = 1/n2 and consistent with the consideration of magnitude of the
odd and even normalization coefficients (see Eq. (117)). The results of this test
are presented in Fig. 7. It is seen that while at small n the error is of the order
of the double precision roundoff error, at larger n it grows as some power of n. The
error growth rate at large n for the recursive algorithm is smaller and approximately

ε(0)n ∼ n1/2, which is in a good agreement with the error growth in the noise model
#2 discussed above. For the FFT-based algorithms the error grows approximately as
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Fig. 7 Self-consistency error test of the recursive and FFT-based algorithms validating that the
symmetric matrix of rotation coefficients is unitary

ε(0)n ∼ n3/2, so it can be orders of magnitude larger than in the recursive algorithm,
while still acceptable for some practical purposes up to n∼ 103. Such growth can be
related to summation of coefficients of different magnitude in the FFT, which results
in the loss of information. Comparison of the basic and the modified FFT-based
algorithms show that the errors are approximately the same for the both versions,
while the error in the basic algorithm can behave more irregularly than that in the
modified algorithm. This can be related to the fact that used values of ̂θ at some
n were close to zeros of the associated Legendre functions, and if this algorithm
should be selected for some practical use then more regular way for selection of ̂θ
should be worked out.

The second test we performed is a cross-validation test. In this case we computed
the difference

ε(1)n (β ) = max
m,m′

∣

∣

∣H
m′m(FFT )
n (β )−Hm′m(rec)

n (β )
∣

∣

∣ , n = 0,1, ... (129)

We also measured and compared the wall clock times for execution of the algorithms
(standard Matlab and its FFT library on a standard personal computer). Results of
these tests are presented in Fig. 8. First we note that both FFT-based algorithms
showed large errors for n ˜ 2300 and failed to produce results for larger n. This can
be related to the loss of information in summation of terms of different magnitude,
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Fig. 8 The maximum of absolute difference in the rotation coefficients Hm′m
n computed using the

recursive and the FFT-based (modified) algorithms as a function of n at two values of β (left). The
center and the right plots show wall-clock times for these algorithms and the ratio of these times,
respectively (standard PC, Matlab)

as it was mentioned above. On the other hand the recursive algorithm was produc-
ing reasonable results up to n = 10000 and there were no indications that it may not
run for larger n (our constraint was the memory available on the PC used for the
tests). So the tests presented in the figure were performed for n � 2200. It is seen
that the difference is small (which cross-validates the results in this range), while

ε(1)n (β ) grows approximately at the same rate as the error ε(0)n for the FFT-based
algorithms shown in Fig. 7. Taking into account this fact and numerical instability
of the FFT-based algorithms we relate it rather to the errors in that algorithms, not
in the recursive algorithm. We also noticed that the FFT-based algorithm at large
n produces somehow larger errors for β = π/2 than for other values tried in the
tests. In terms of performance, it is seen that both, the recursive and the FFT-based
algorithm are well-scaled and O

(

n2
)

scaling for large enough n is acieved by the
recursive algorithm nicely. The FFT-based algorithm in the range of tested n can be
several times slower. The ratio of the wall-clock times at n > 100 is well approxi-
mated by a straight line in semi-logarithmic plots, which indicates logn behavior of
this quantity, as expected.

8 Conclusion

This chapter first presented a study of the asymptotic behavior of the rotation coef-
ficients Hm′m

n (β ) for large degrees n. Based on this study, we proposed a recursive
algorithm for computation of these coefficients, which can be applied independently
for each subspace n (with cost O

(

n2
)

) or to p subspaces (n = 0, ..., p− 1) (cost
O

(

p3
)

). A theoretical and numerical analysis of the stability of the algorithm shows
that while the algorithm is weakly unstable, the growth rate of perturbations is small
enough, which makes it practical for computations for relatively large n (the tests
were performed up to n = 104, but the scaling of the error indicates that even larger
n can be computed). Alternative FFT-based algorithms of complexity O

(

n2 logn
)

per subspace n were also developed and studied. Both the FFT-based and recur-
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sive computations produce consistent results for n � 103. In this range the recursive
algorithm is faster and produces smaller errors than the FFT-based algorithm.
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Analyzing Fluid Flows via the Ergodicity Defect

Sherry E. Scott

Abstract The ergodicity defect, a relatively new approach for analyzing fluid flows,
is presented. The technique combines tools and concepts from ergodic theory and
wavelet theory, and we briefly consider this theoretical background. The ergodicity
defect provides a measure of the complexity of individual fluid particle trajectories
and this measurement is used to identify Lagrangian coherent structures in the flow.
Results for both idealized and realistic ocean flows are compared and contrasted
with other methods for identifying coherent structures. Other possible applications
for the technique are also discussed.

Keywords Lagrangian coherent structures (LCS) · Ergodicity · Dynamical systems
· Fluid flows · Wavelets

1 Introduction

Coherent structures such as gyres and eddies play an important role in the behavior
and dynamics of ocean flows. For example, these structures can either aid or pre-
vent the transport of biomass and enhance or impede the exchange and mixing of
materials. Much of our understanding of these key structures (and the overall ocean)
comes from data collected along the path of devices such as floats and drifters that
move with the ocean flow, i.e., from Lagrangian data. Dynamical systems tools and
theory allow us to use these trajectory paths to delineate the coherent structures that
develop in the flow. Coherent structures determined in this manner are known as
Lagrangian coherent structures (LCS) and although several methods for detecting
LCS are known, no one method addresses all cases and issues such as the quantifi-
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cation of the transport [5]. In this correspondence we consider a technique called
the ergodicity defect [21, 24] for analyzing the dynamics of the flow and identifying
the LCS. We also discuss other possible uses of the technique in geosciences related
problems.

1.1 Background and Notation

Given a map T on a probability space (M,β ,μ), a set A ∈ β is T -invariant if
A = T−1(A) and the map T is said to be measure μ preserving if for all A ∈
β , μ(T−1(A)) = μ(A). Such a system is ergodic if the only T -invariant subsets A
are such that μ(A) = 0orμ(A) = 1. Throughout the paper, a fluid flow is treated as
a dynamical system (M,β ,μ ,T ) where T is μ-preserving and μ is the Lebesgue
measure. More specifically, we are interested in trajectories of a dynamical system
(M,β ,μ ,T ) in discrete time, i.e.,

xi+1 = T (xi), (1)

where x denotes a vector in R
d . We work primarily in R

1 and R
2 and assume a

periodic domain. Thus, in R
1, M is a unit circle, μ is the length function, and T is

a length preserving map and in R
2, M is a torus, μ is the area function, and T is

an area preserving map. We also assume that for a given fluid flow u(x, t), the fluid
particle trajectories with initial position x0 at time t0, denoted as x(t;x0, t0) satisfy

dx
dt

= u(x, t) . (2)

We use the standard notation ‖ f‖ to denote the L2 norm of a function f , i.e.,
‖ f (x)‖2 =

∫

M f 2(x)dx and we denote the inner product by 〈,〉, i.e., < f ,g >=
∫

f gdx is the inner product of functions f and g. The indicator function on a set
A (also known as the characteristic function) is given as χA(x). For example, the
indicator function on the unit interval [0,1) can be given as follows

χ[0,1)(x) =
{

1 if x ∈ [0,1)
0 else .

Proving that any given system is ergodic is usually a very difficult task, however
there are several definitions that may make the task more tractable [27]. One stan-
dard way of viewing ergodicity is in terms of Birkhoff’s characterization which, as
did much of the work on ergodicity, originated in Boltzmann’s hypothesis concern-
ing the equality of time averages and space averages [19]. By Birkhoff’s characteri-
zation, if T is a measure-preserving map on a probability space (M,β ,μ), then T is
ergodic, if and only if, for all f ∈ L1(μ)

lim
n→∞

1
n

n

∑
r=1

f (T r(x)) =
∫

M
f (x)dμ a.e. , (3)
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where the left hand side of (3) gives the time average of f and the right hand side
is the space average of f . In this way, ergodic maps T are characterized via the
equality of the time average (along the trajectories of T ) and the space average of
integrable functions f on the space [2, 9, 13, 30]. Throughout this chapter, for any
function f and map T on M, the space average of f is denoted as f , i.e.,

f (x) =
∫

M
f (x)dx ,

and the time average is indicated as f ∗, so that

f ∗(x,T ) = lim
N→∞

1
N

N

∑
r=1

f (T rx) ,

gives the time average of f along the trajectory T r(x) starting at the point x.
In the definition of ergodicity defect we use Birkhoff’s characterization of ergod-

icity and we view the function f as the way in which the underlying system is being
observed or analyzed. In this work, we choose wavelets as the analyzing functions
and we take the time average of wavelets along a (fluid particle) trajectory of the
flow. More specifically, as an intuition building step, we use the Haar father wavelets
as the analyzing functions and define the ergodicity defect as the difference between
the time average and the space average. Wavelets allow us to analyze in terms of
how the trajectories sample the space when considered at different spatial resolu-
tions. However, in this presentation, this scaling analysis aspect is not the focus, and
instead, we average over a range of scales of interest. The use of wavelets in our
fluid flow analysis follows a rich history of wavelet theory in the geosciences and
ocean related issues, e.g., see [18].

1.2 Motivation

The ergodicity defect utilizes the premise that in order to investigate the complexity
of flows, one can consider the complexity of their trajectories, where this complex-
ity is measured in terms of ergodicity, i.e., how the trajectory samples the region of
interest. In [24], the desire is to distinguish maps and flow fields in terms of their
deviation from ergodicity; however, here, the goal is to analyze the coherent struc-
tures in a given fluid flow. This idea of analyzing a flow via chaotic advection dates
back several decades, e.g., see [1]. It is known that standard approaches based on
an Eulerian (fixed time) perspective such as eyeballing the vector field cannot dis-
tinguish cases of differing trajectory complexity [8] and tracking these features by
satellite altimetry gives ambiguous results [5]. But, the importance of Lagrangian
studies in the ocean suggest that an approach based on analyzing the complexity of
flows and their trajectories in terms of ergodicity may be more appropriate.

For a given flow, every initial point has a trajectory and every trajectory has an
ergodicity defect value. The ergodocity defect value indicates the complexity of the
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trajectory and distinguishing the different trajectories according to these complexi-
ties helps to identify structures in the flow.

To fix ideas, let us consider the conceptual illustration given in Fig. 1 that shows a
flow with a stable (attracting) manifold, and unstable (repelling) manifold, a hyper-
bolic trajectory and two other trajectories that veer away from the hyperbolic tra-
jectory and lie on different sides of the stable manifold. The areas of attracting or
repelling material have trajectories whose complexity (ergodicity defect value) is
similar to the hyperbolic trajectory, and trajectories on different sides of the man-
ifolds have different behavior and hence different defect values. In this manner, a
color or grayscale map of the relative complexity of the trajectories, i.e., a map of
more complex versus less complex trajectories, reveals different regions of distinct
behavior and the coherent structures which accompany these regions.

Fig. 1 Trajectories for stable and unstable manifold intersecting at the hyperbolic trajectory

Other schemes such as the Mix-Norm and the finite time Lyapunov exponents
(FTLE) approach are aimed at addressing similar issues of analyzing LCS and in
[5] an operator theory method is used. Hyperbolic and stable/unstable manifolds are
key in determining the LCS barriers and transport pathways, and the FTLE method
provides numerical estimates of the stable/unstable manifolds by measuing the max-
imum rate of separation between a fluid particle trajectory and its nearby neighbors
[7]. There are also other uses for such measures and diagnostics, e.g., the authors
of [14] propose an algorithm for the design of an optimal sampling strategy using
ergodicity and Fourier basis functions instead of wavelets. Similarly the ergodicity
defect can be applied in these settings.

The discussion is organized as follows. First, a brief background and motivation
are considered. In the Section 2, the ergodicity defect is discussed and then in Sec-
tion 3, the application of the ergodicity defect technique is applied to a few examples
and the ergodicity defect results are compared to other methods. In the last section,
other possible ocean flow related uses of the ergodicity defect are proposed.
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2 Ergodicity Defect (ED)

Since an ergodic system satisfies the requirement that the time average is equal to the
space average, we consider the difference between the time average and the space
average to obtain a value that captures the deviation of a system from ergodicity.
We call this value the ergodicity defect of the system. In this section, we first give
general definitions for the ergodicity defect of a flow. These general definitions are
intended for use in comparing flows according to their deviation from ergodicity
when the identity map is taken as the worse case scenario. That is, as the identity
map does not move any points, the technique is normalized so that the identity map
is the “least ergodic.”

Definition 1. The ergodicity defect of a map T with respect to a function f
is given as

d( f ,T ) = ω( f )[
∫

( f ∗(x,T )− f )
2
dx], (4)

where ω( f ) is a normalization factor chosen such that d( f , I) = 1, where I is the
identity.

Note that with this normalization, the defect values range from 0 to 1 with 1 denoting
a flow that deviates the most from being ergodic—like the identity map—and 0
denoting an ergodic map, i.e., a map for which the time averages and space averages
are equal.

If we have a finite family of functions F = { fn}N
n=1, then we can consider the

ergodicity defect of T with respect to the family F as follows.

Definition 2. The ergodicity defect of a map T with respect to a family
of functions F = { fn}N

n=1 is expressed as:

d(F,T ) = ω(F)[
N

∑
n=1

∫

( f ∗n (x,T )− fn)
2
dx], (5)

where ω(F) is the normalization factor such that d(F, I) = 1.

We choose a basis as our analyzing functions in order to obtain a good representation
of the overall behavior of the flow. More specifically, we take a wavelet basis and
we start with the Haar father wavelet. However, note that the Haar mother wavelet
or other wavelets can also be used, e.g., see [23].

In R
1, the Haar father wavelet, or Haar scaling function, is the indicator function

on [0,1), i.e., χ[0,1)(x) and the Haar mother wavelet ψ is given as a difference of
two indicator functions, i.e., ψ(x) = χ[1/2,1)(x)− χ[0,1/2)(x). If we denote the Haar
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scaling function as φ , we have that φ(x) = χ[0,1)(x) and ψ(x) = φ(2x−1)−φ(2x).
By taking the dyadic dilations and translations of φ , we obtain the Haar scaling
functions at scale s as follows.

φ (s)
j (x) = φ(2sx− ( j−1)) j = 1, ...,2s . (6)

If we think in terms of the phase space or the domain of interest, then the Haar
scaling functions at scale s correspond to a dyadic equipartition of the phase space

in which the support of each wavelet φ (s)
j is a set in the partition—specifically an

interval of length 1/2s. Thus, the time average φ (s),∗
j gives the average time the

trajectory resides in the jth interval/set in the partition and the space average is the

measure of that set, i.e., the space average φ (s)
j is 1/2s.

One-Dimensional (1D) Haar Ergodicity Defect

Using the family of dilations and translations of the Haar scaling function at a fixed

scale s, {φ (s)
j }, and j = 1, ...2s, the Haar ergodicity defect at scale s of the map T is

given as

dχ(s,T ) =
2s

2s−1

2s

∑
j=1

[

∫

(φ (s),∗
j (x,T )− 1

2s )
2

dx] , (7)

where the index χ denotes that the scaling function φ is χ[0,1) and the normalization

factor ω(s) is 2s

2s−1 .

If the domain of interest is in R
d , d ≥ 2, then there is an appropriate collection of

mother wavelets and the wavelet basis is usually denoted as {ψm,n}(m,n)∈Z×Z where
m is the dilation index and n is the translation index. For a torus in R

2, the scaling
functions of the Haar partition at scale s can be given as

φ (s)
i1i2

(x,y) = φ (s)
i1

(x)φ (s)
i2

(y), i1, i2 = 1 . . .2s ,

where φ (s)
i is given by (6). In 2D, the Haar scaling functions at scale s correspond

to an equipartition of the phase space into 22s squares of area 1/22s and we have the
following Haar defect in 2D.

Two-Dimensional (2D) Haar Ergodicity Defect

Using the family of dilations and translations of the Haar scaling function at fixed

scale s, φ (s)
i1i2

(x,y) = φ (s)
i1

(x)φ (s)
i2

(y) and i1, i2 = 1 . . .2s, the Haar ergodicity defect at
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scale s of a map T (on a domain in R
2), is given as

dχ(s,T ) =
4s

4s−1

2s

∑
i1,i2=1

[
∫

(φ (s),∗
i1i2

(x,T )− 1
22s )

2

dx], (8)

where the normalization factor ω(s) is 4s

4s−1 .

The ergodicity defect at scale s is computed numerically by taking the domain of
interest and mapping it onto a unit square and then partitioning the square into
22s squares of edge length 2−s and area 2−2s. Note that in this computation the
domain of interest can be an arbitrary region in space, which is then mapped to the
unit square. A sample of points {xi} are taken from a trajectory x(t,(x0, t0)) where

(x0, t0) are the initial conditions, so that the time average φ (s),∗
i1i2

is the number average

of points Ni1,i2 from {xi} that lie in the support of φ (s)
i1i2

.

Ergodicity Defect for an Individual Trajectory

The ergodicity defect formulas given thus far are designed to capture the deviation
of systems or flows from ergodicity. In order to determine the LCS in the flow [21],
we apply the ergodicity defect to each individual trajectory x(t,(x0, t0)) as follows

dχ(s;x0, t0) =
2s

∑
i1,i2=1

[(φ (s),∗
i1i2

(x0,T )−
1

22s )
2

]. (9)

Or computationally we have

dχ(s;x0, t0) =
22s

∑
j=1

[(
Nj(s)

N
− 1

22s )
2

], (10)

where N is the total number of sample points taken from the trajectory and Nj(s) is
the number of points that lie inside the jth square that serves as the support for the
jth wavelet.

3 Some Results for ED and Other Similar Metrics

As mentioned in the background section, there are a considerable number of other
metrics for identifying LCS. We consider in this section two such methods—the
finite time Lyapunov exponent (FTLE) and the correlation dimension. FTLE is a
frequently used method that is based on the separation rate of nearby trajectories.
The correlation dimension is a fractal dimension method which is more commonly
used in a time series setting. In [6], the correlation dimension of a set of points
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{xi} is computed by covering the domain with adjacent squares of edge length s and
counting the number of points Nj that lie inside the j-th square, so that for a total of N
sample points, the distribution function F(s) is estimated as F(s) = 1

N2 ∑ j[Nj(s)]2.
Then the correlation dimension c is computed as the slope of the log-log plot of
F(s) versus s for small s and large N. The correlation dimension takes values vary-
ing from 0 to 2 with 0 corresponding to a stationary point, 1 corresponding to a
smooth 1D curve and 2 corresponding to a curve that fills the 2D area. Note that
the correlation dimension values are opposite the values of the ergodicity defect,
which is 0 for a curve that samples well and 1 for a stationary point. Also, for the
correlation dimension it is necessary to assume that the distribution function F(s)
obeys a power law of the form F(s)∼= sc, but the ergodicity defect requires no such
assumption.

For both the ergodicity defect and the correlation dimension computations, we
seed the domain and track the path of each particle trajectory. Then we map the
sampled domain to the unit square and partition the square into squares of edge
length 2−s for each s. Next we compute a complexity value for each trajectory and
assign the value to its initial position. Finally we grayscale or color code the domain
using the complexity values assigned to each initial position. The correlation dimen-
sion gives a single value for a range of scales s while the ergodicity defect gives a
value at each scale s. In order to compare the two techniques, we average the defect
values over a range of scales and we refer to this value as dmean.

For our first flow example, we consider a quasiperiodic Duffing oscillator flow
as an illustration of a double gyre flow. This flow is a 2D time-dependent fluid flow
which satisfies (2) and is given by the equations

u =−y (11)

v =−x− εx(cos(ν1t)+ cos(ν2t))+
x3

a2 (12)

where a = 1, ν1 =
3π
2 , v2 = ν1

√
5−1
2 , and ε = 0.25. The Duffing oscillator has two

elliptic regions and one hyperbolic trajectory at the origin. There is a pair of sta-
ble and unstable manifolds emanating from the origin. The velocity field at t = 0
is given in the top panel of Fig. 2 with the stable manifold indicated by attracting
arrows and the unstable manifold indicated by repelling arrows. In the bottom panel
of Fig. 2, are grayscale results of computations of the correlation dimension c (left)
and mean ergodicity defect dmean (right) for the right half (x > 0) of the domain. By
using trajectories computed in forward time with integration time Tint =

8π
ν2

, the sta-
ble manifold is correctly identified by the maximizing ridge of the ergodicity defect
dmean field and the minimizing ridge of the correlation dimension c-field. For refer-
ence, the stable manifold is also highlighted here with a dotted curve obtained from
a direct evolution method. Similarly the unstable manifold can be identified using
trajectories computed in backward time. Also, observe that the stationary center for
the gyre is also detected by both methods as a compact solid color area with small
c-values and large dmean values.
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Fig. 2 Duffing oscillator flow; bottom panel: c on left, dmean on right

In a numerical example with the flow field generated by the Regional Ocean
Modeling System (ROMS) [26], see Fig. 3, the simulated eddy is captured by the
correlation dimension (left) and ergodicity defect (right) as abrupt shade changes on
both sides of the manifold. Similarly, the stationary center is detected as a cluster of
small c-values and large dmean values.

Fig. 3 Numerically generated ROMS flow c on left and dmean on right

Finally, if we compare the ergodicity defect and the FTLE method for simulated
trajectories that are randomly spaced, Fig. 4 suggests the possible advantages that
the defect (on the left) may have over the commonly used FTLE method (middle
and right panels). For example, the defect results are more clear and less noisy than
the FTLE results [7, 25]. In this case, the FTLE computation of the separation rates
is more difficult since the trajectories are not evenly spaced. This example illustrates
the challenges of the FTLE method with data that is not numerically simulated but
from in situ drifters, which do not move in a uniform arrangement or with drifter
data that may be sparse in some areas. On the other hand, for each computation the
ergodicity defect uses the individual trajectory and does not require trajectories in a
uniform or particular arrangement.
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Fig. 4 LCS from randomly spaced trajectories—(left panel) d (middle) FTLE using the Lekien
and Ross (2010) method (right) conventional FTL (darkest color = stable manifold)

4 Future Work, Other Fluid Flow Aspects

In this last section, we briefly explore some future 3D work for flows and a few
other possible applications for the ergodicity defect as a diagnostic for signals and
flows. So far we have only considered 2D examples, but a natural 3D analog of the
Haar ergodicity defect for individual trajectories can be given as:

dχ(s;x0, t0) =
23s

∑
j=1

[(
Nj(s)

N
− 1

23s )
2

], (13)

where the domain is partitioned into cubes of side length s. As with the 2D case,
time snapshots are taken of the flow, and in the 3D case, this is done for each initial
fixed depth (z) level. With this 3D formula for the ergodicity defect, we aim to
investigate the 3D structures in ocean flows. For example, in ongoing work with D.
Rivas at CICESE on an upwelling flow off the coast of Oregon, preliminary results
indicate a definite difference between the 2D and 3D defect analysis along the coast.
These results suggest that the 3D defect reveals structure or behavior in the flow that
the 2D defect misses and this agrees with the idea that there is significant vertical
movement along the coast that produces more 3D sampling in that area than can be
observed from only the 2D analysis. More and finer resolution work is in progress
to investigate the underlying structures and their effects.

Other possible applications of the ergodicity defect can be used to inform (1)
data assimilation techniques, (2) deployment or sampling strategies for data collect-
ing devices and (3) optimal use of data for estimating flow properties. For example,
the ergodicity defect could possibly be used as a diagnostic for determining when
to stop assimilating data from the trajectory of a particular device and some pre-
liminary results with E. Spiller at Marquette University using the particle filter data
assimilation method indicate the feasibility of this idea. For deployment or sam-
pling strategies, the idea is to use the ergodicity defect and similar measures to
decide where to deploy drifters for optimal sampling of the flow, e.g., see [14]. The
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ergodicity defect as a diagnostic for how to best use the data for estimating flow
properties can be illustrated by a toy double gyre example having a cold core and
a warm core. Trajectories that get caught inside these cores give biased readings,
e.g., too low or too high, however using the defect to distinguish these trajectories
and properly weigh their measurements can help offset this biased estimation of the
temperature from the data, see [23].

5 Summary

Drawing from ergodic and wavelet theory, the ergodicity defect technique captures
the complexity of flows and distinguishes their trajectories in terms of deviation
from ergodicity. The ergodicity defect measurements of a flow’s trajectories are used
to identify the Lagrangian coherent structures in the flow. These structures impact
the flow’s overall behavior especially with regards to the transport and exchange
of materials. The ergodicity defect allows for a choice of analyzing functions to
be used and because each computation only requires an individual trajectory the
defect appears to be more amenable to realistic, nonuniform, and sparse data. In
this manner, the erogodicity defect offers advantages in a practical or applications
setting. The ergodicity technique can also serve as a diagnostic tool in a variety of
other applications in geosciences related problems.
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Part XI is devoted to three fundamentals, one might say elementary-to-state, and
devilishly difficult problems in Gabor or time-frequency analysis.

In the first chapter of this part, HEIL AND SPEEGLE give the current state of
the HRT conjecture. The conjecture was posed by Heil, Ramanathan, and Topiwala
in 1996, and, as noted by Bourgain, working on HRT could become “addictive.”
The HRT conjecture asserts that finite Gabor systems in L2(R) are linearly indepen-
dent. What could be more straightforward than verifying (or not) that a finite set,
{MbTag}, of translates Ta and modulates Mb(x) = e2πibx of a given g ∈ L2(R)\{0},
is linearly independent! In fact, before getting into the subtleties of HRT, the authors
tease the reader by pointing out that finite wavelet systems in L2(R) are often lin-
early dependent. Along with the subtleties of HRT, the authors give an expert exposi-
tion of known results about HRT. This is all fascinating, and the addiction continues.

Actually, a significant portion of the chapter (Sect. 5) deals with the “relation
(or lack thereof)” between the HRT conjecture and the comparably tantilizing Zero
Divisor Conjecture.

As basic as the HRT conjecture is, in the next chapter, SALIANI begins with a
comparably innocent looking topic: the study of linear independence of {Tkψ j : k ∈
Z, j = 1, ...,m}. Intricacies arise almost immediately. First if ψ ∈ L2(R), then {Tkψ}
is linearly independent in L2(R). Then there is a big step forward with the theorem:
{Tkψ} is �2-linearly independent if and only if the Fourier transform periodicity
function,

pψ(ξ ) = ∑
k∈Z

|ψ̂(ξ − k)|2,

is positive a.e. The “only if” part is based on a theorem by Kislyakov, whose proof
relies on a theorem of Vinogradov. And at the heart of it is the celebrated theorem
of Menchoff (1942): Every measurable function becomes a function with uniformly
convergent Fourier series after a modification on a set of arbitrary small measure.
Saliani has established herself as an international authority in this area; and her
chapter exhibits this expertise in her description of her own results as well as her
perspective on some recent contributions by others.

Besides the deepest results about principal shift invariant subspaces (one ψ), a
significant part of her chapter is devoted to analogous problems in dealing with finite
sets, {ψ1, ...,ψm}. It is a marvelous state of the art exposition.

In the final chapter of this part, DAI AND SUN outline their spectacular solution
of the abc-problem for Gabor frames. This problem is not to be confused with the
abc-conjecture in arithemetic-geometry, that deals with finding integer or rational
solutions to multivariable polynomial equations. Dai and Sun consider the Gabor
system,

G = G (χ[0,c),aZ×bZ) = {e−2πinbtχ[0,c)(t−ma) : (m,n) ∈ Z×Z}.

The abc-problem is to characterize the triples (a,b,c) of positive numbers a,b,c
for which G is a frame for L2(R). Dai and Sun have solved this problem! Their
solution is not for the faint of heart, but their presentation herein is an ideal summary
and outline of their systematic high-level series of steps. As a preliminary step, the



problem can be reformulated to deal only with a and c. The analysis begins with
a characterization of all pairs (a,c) in terms of infinite matrices depending on said
pairs and used by others to address the problem. And then the fun begins going
from the infinite matrix characterization to the specific values of a and c for which
the Gabor system is a frame. The ride is intricate and worth the price! An exciting
epilogue is a new sampling theorem depending on these ideas.
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known as the linear independence of time–frequency shifts conjecture), and dis-
cusses its relationship with a longstanding conjecture in algebra known as the zero
divisor conjecture.
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1 Introduction

The building blocks of Gabor and wavelet systems are translations (or time shifts):

Tag(x) = g(x−a), where a ∈ R;

modulations (or frequency shifts):

Mbg(x) = e2πibx g(x), where b ∈ R;
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and dilations:
Drg(x) = r1/2g(rx), where r > 0.

Gabor systems employ the compositions

MbTag(x) = e2πibxg(x−a),

which are called time–frequency shifts, while wavelet systems use the compositions

DrTag(x) = r1/2g(rx−a),

which are called time-scale shifts.
Explicitly, a Gabor system has the form

G (g,Λ) = {MbTag}(a,b)∈Λ ,

where Λ is an index set contained in R
2, while a wavelet system is

W (g,Γ ) = {DrTag}(a,r)∈Γ ,

where Γ ⊂R× (0,∞). Typically we are interested in constructing Gabor systems or
wavelet systems that are bases or frames for L2(R). In this caseΛ orΓ will be count-
able index sets. However, the “local” properties of Gabor and wavelet systems (by
which we mean the properties of finite subsets) are often of key interest. In particu-
lar, given any set of vectors in a vector space, one of the first and most fundamental
questions we can ask about this set is whether it is finitely linearly independent,
i.e., whether every finite subset of the collection is linearly independent. It is known
that there exist nontrivial functions g ∈ L2(R) and finite sets Γ such that the finite
wavelet system W (g,Γ ) is linearly dependent. It is not known whether there exist
nontrivial functions g ∈ L2(R) and finite sets Λ such that the finite Gabor system
G (g,Λ) is linearly dependent. The HRT Conjecture is that finite Gabor systems are
indeed linearly independent.

In this chapter we will give a short report on the current status of the HRT con-
jecture, and also comment on its relation to a longstanding conjecture in algebra
known as the Zero Divisor Conjecture. We begin in Section 2 with some examples
that illustrate that finite wavelet systems can be linearly dependent. We formulate
the HRT Conjecture in Section 3, and in Section 4 we review some of the main
partial results related to linear independence of time–frequency shifts that are cur-
rently known. Finally, in Section 5 we discuss the relationship between the HRT
conjecture and the zero divisor conjecture.

2 Linear Dependence of Time-Scale Shifts

The fact that wavelet systems can be linearly dependent is the starting point for
the construction of compactly supported wavelet bases through a multiresolution
analysis. The first step in the construction of a compactly supported wavelet via this
method is actually the construction of a compactly supported scaling function. A
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scaling function is a function ϕ ∈ L2(R) that satisfies a refinement equation of the
form

ϕ(x) =
N

∑
k=0

ckϕ(2x− k)

and additionally is such that {ϕ(x− k)}k∈Z is an orthonormal system in L2(R).
While the integer translates of a scaling function are orthonormal, and hence linearly
independent, if we rewrite the refinement equation as

ϕ =
N

∑
k=0

2−1/2ck D2Tkϕ,

then we see that the refinement equation is a statement that the collection of time-
scale shifts

{DrTaϕ}(a,r)∈Γ
with

Γ = {(0,1)} ∪ {(k,2) : k = 0, . . . ,N}
is linearly dependent. Here is an example.

Example 1. The Haar wavelet is

ψ = χ[0, 1
2 ]
− χ[ 1

2 ,1]
.

Haar proved directly in [13] that
{

D2n Tkψ
}

k,n∈Z,

which today we call the Haar system, is an orthonormal basis for L2(R). Of course,
since the Haar system is a collection of orthonormal functions, it is finitely lin-
early independent. However, if we wish to construct the Haar system using the
modern framework of multiresolution analysis, we first begin by constructing the
corresponding scaling function. For the Haar system, the scaling function is the box
function

ϕ = χ[0,1].

This function satisfies the refinement equation

ϕ(x) = ϕ(2x) + ϕ(2x−1).

Consequently, the set of three functions
{

ϕ, D2ϕ, D2T1ϕ
}

is linearly dependent. Once we have the scaling function, the machinery of multires-
olution analysis tells us that the wavelet

ψ(x) = ϕ(2x) − ϕ(2x−1)
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can be used to generate an orthonormal basis for L2(R).

For a detailed description of what a multiresolution analysis is and how it leads
to a wavelet orthonormal basis, we refer to [15, Chap. 12] or [7].
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Fig. 1 The Daubechies D4 scaling function (top), and the corresponding wavelet W4 (bottom)

Here is a modern example of a compactly supported scaling function.

Example 2. The Daubechies D4 scaling function is the function that satisfies the
refinement equation

D4(x) = 1+
√

3
4 D4(2x) + 3+

√
3

4 D4(2x−1)

+ 3−
√

3
4 D4(2x−2) + 1−

√
3

4 D4(2x−3). (1)

It can be shown that there is a unique (up to scale) compactly supported function
D4 ∈ L2(R) that satisfies this refinement equation. This function, which is continu-
ous and supported in the interval [0,3] is illustrated in Fig. 1. It is not obvious from
the picture, but it is true that the integer translates {D4(x− k)}k∈Z are orthonormal.
The scaling function D4 generates a multiresolution analysis, and because of this it
follows that the wavelet

W4(x) = 1−
√

3
4 D4(2x) − 3−

√
3

4 D4(2x−1)

+ 3+
√

3
4 D4(2x−2) − 1+

√
3

4 D4(2x−3)
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can be used to generate an orthonormal basis for L2(R). Specifically, the wavelet
system

{

D2n TkW4
}

k,n∈Z

is an orthonormal basis for L2(R). However, the point we are making here is that
the refinement Eq. (1) implies that the finite collection of time-scale shifts

{

D4, D2D4, D2T1D4, D2T2D4, D2T3D4
}

is linearly dependent.

3 Gabor Systems and the HRT Conjecture

Now we turn to Gabor systems. We will need to employ the Fourier transform,
which for an integrable function g we normalize as

ĝ(ξ ) =
∫ ∞

−∞
g(x)e−2πiξx dx.

The Fourier transform extends to a unitary operator that maps L2(R) onto itself.
We have the following relations between translation, modulation, and the Fourier
transform:

(Tag)
∧
= M−aĝ and (Mbg)

∧
(ξ ) = Tbĝ.

Although translations and modulations do not commute, we have

MbTag(x) = e2πibxg(x−a) and TaMbg(x) = e2πib(x−a)g(x−a),

and therefore
TaMbg = e−2πiabMbTag. (2)

We can easily show that if we only consider translations alone, then we will
always obtain linearly independent collections. To see why, let g ∈ L2(R) be non-
trivial (not zero a.e.) and let a1, . . . ,aN be any distinct points in R. If

N

∑
k=1

ck g(x−ak) = 0 a.e.,

then by applying the Fourier transform we obtain

N

∑
k=1

ck e−2πiakξ ĝ(ξ ) = 0 a.e.
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However, ĝ is not the zero function, so this implies that

N

∑
k=1

ck e−2πiakξ = 0 a.e.

Multiplying through by e2πia1ξ we obtain

m(ξ ) = c1 +
N

∑
k=2

ck e−2πi(ak−a1)ξ = 0 a.e.

But m is a nonharmonic trigonometric polynomial, and therefore can be extended
to an analytic function on the complex plane. An analytic function cannot vanish on
any set that has an accumulation point without being identically zero. Hence m(ξ ) =
0 for every ξ , which implies that c1 = 0. Iterating, we obtain c2 = · · ·= cN = 0.

Similarly, any finite set of modulations of g is linearly independent. However, as
soon as we combine translations with modulations, the situation becomes much less
clear. In particular, if we fix a finite Gabor system

{

Mbk Tak g : k = 1, . . . ,N
}

and we assume that
N

∑
k=1

ck Mbk Tak g = 0 a.e., (3)

then all that we obtain by applying the Fourier transform is that

N

∑
k=1

ck Tbk M−ak ĝ = 0 a.e.

In view of the commutation relation in Eq. (2), we can rewrite this as

N

∑
k=1

cke2πiakbk M−ak Tbk ĝ = 0 a.e.,

which is an equation of exactly the same nature as Eq. (3). The Fourier transform
yields no simplification here.

At first glance, this may seem to be only a minor stumbling block—surely
another approach, perhaps another transform, will show that Gabor systems are
finitely linearly independent. Yet this most basic question about a set of vectors
in L2(R) remains unanswered today. The following conjecture, today known as the
Linear Independence of Time–Frequency Translates Conjecture or the HRT Conjec-
ture, first appeared in print in [18].

Conjecture 1 (HRT Conjecture). If g in L2(R) is not the zero function and Λ =
{

(ak,bk) : k = 1, . . . ,N
}

is a set of finitely many distinct points in R
2, then

G (g,Λ) =
{

Mbk Tak g : k = 1, . . . ,N
}
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is linearly independent.

Various partial results on this conjecture are known (we will discuss these in
Section 4). However, even the following very restricted version of the conjecture
is open as of the time of writing. Here S (R) denotes the Schwartz class of all
infinitely differentiable functions which, along with all of their derivatives, have
faster than polynomial decay at infinity.

Conjecture 2 (HRT Subconjecture). If g ∈S (R)\{0}, then

{

g(x), g(x−1), e2πixg(x), e2πi
√

2xg(x−
√

2)
}

(4)

is linearly independent.

We observe that the set of functions that appears in Eq. (4) is the Gabor system
G (g,Λ) where

Λ =
{

(0,0), (1,0), (0,1), (
√

2,
√

2)
}

. (5)

4 Partial Results

We will briefly list some of the main partial results that are currently available on the
HRT Conjecture. These are approximately ordered chronologically, but due to vastly
differing time lengths from research to publication, this particular ordering should
not be interpreted as anything other than a convenience for presentation purposes.
Further, no attempt has been made to state all partial results from every paper, nor
to state them precisely; this list simply serves as a brief summary of the literature
on Conjecture 1. A few of the results below extend to systems in L2(Rd), but for
the most part there are substantial obstacles in moving to higher dimensions. For
a discussion of why this is so, we refer to the survey paper [14] (that paper also
presents context, motivation, and related results that are not discussed here).

The paper [18] which originally presented the HRT conjecture included the fol-
lowing results.

• G (g,Λ) is independent if g is compactly supported, or just supported within a
half-line [a,∞) or (−∞,a].

• G (g,Λ) is independent if g(x) = p(x)e−x2
, where p is a polynomial.

• G (g,Λ) is independent if N ≤ 3.

• If A is a 2× 2 invertible matrix with |det(A)| = 1, and z ∈ R
2, then G (g,Λ) is

independent for all nontrivial g if and only if G (g,A(Λ)+ z) is independent for
all nontrivial g.

• If G (g,Λ) is independent, then there exists an ε > 0 such that G (g,Λ ′) is
independent for all Λ ′ = {(a′k,b′k) : k = 1, . . . ,N} such that |ak − a′k| < ε and
|bk−b′k|< ε for k = 1, . . . ,N.



166 Christopher Heil and Darrin Speegle

• If G (g,Λ) is independent, then there exists an ε > 0 such that G (h,Λ) is inde-
pendent for all ‖h−g‖2 < ε .

Since the set of compactly supported functions is dense in L2(R), if Λ is a fixed
finite set then by applying the final perturbation result listed above it follows that
there exists an open, dense subset U of L2(R) such that G (g,Λ) is linearly inde-
pendent for all g ∈U .

Linnell proved in [22] that

• G (g,Λ) is independent if Λ is a finite subset of a translate of a full-rank lattice
in R

2, i.e., if Λ ⊂ A(Z2) + z where A is an invertible 2× 2 matrix (with any
nonzero determinant) and z ∈ R

2.

In particular, any set of three points in R
2 is contained in a translate of a full-rank

lattice, so this gives another proof that G (g,Λ) is independent if N ≤ 3. However,
four points in R

2 need not be contained in a translate of a full-rank lattice. In par-
ticular, the set of points Λ given in Eq. (5) is not contained in any translate of any
full-rank lattice.

In [6], Christensen and Lindner obtain

• estimates of the frame bounds of a finite Gabor system G (g,Λ).

In principle, sufficiently strong estimates of the frame bounds of finite Gabor sys-
tems could be combined with the perturbation theorems in [18] to yield a proof of
the HRT conjecture. Unfortunately, the results of [6] do not seem to be conducive
for advancing this type of approach. A short introduction to frame theory can be
found in [16].

Rzeszotnik, in an unpublished work, proved that

• G (g,Λ) is independent if

Λ =
{

(0,0), (1,0), (0,1), (
√

2,0)
}

.

This set Λ , like the one given in Eq. (5), is not contained in any translate of a full-
rank lattice in R

2. On the other hand, the points in this set Λ lie on two parallel
lines, while the four points in Eq. (5) do not.

An equivalent formulation of the HRT conjecture is that if c1, . . . ,cN are not all
zero, then the kernel of the operator

T =
N

∑
k=1

ckMbk Tak

is {0}, or, in other words, 0 is not an eigenvalue of T. This suggests that it would
be interesting to investigate the spectrum of such a linear combination of time–
frequency shift operators. Now, if T had a nonzero eigenvalue λ , then for some
nonzero function g we would have

T g =
N

∑
k=1

ckMbk Tak g = λg.
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Setting a0 = b0 = 0 and c0 =−λ , it follows that

N

∑
k=0

ckMbk Tak g = 0,

and hence 0 is an eigenvalue of the operator S = ∑N
k=0 ckMbk Tak , which is simply

another finite linear combination of time–frequency shift operators. Consequently,
we can restate the HRT conjecture in terms of eigenvalues as follows.

Conjecture 3 (Spectral Version of the HRT Conjecture). If

Λ =
{

(ak,bk) : k = 1, . . . ,N
}

is a set of finitely many distinct points in R
2 and c1, . . . ,cN are not all zero, then the

point spectrum of

T =
N

∑
k=1

ckMbk Tak

is empty (i.e., T has no eigenvalues).

Balan proved in [1] that

• the operator T cannot have an isolated eigenvalue of finite multiplicity.

Consequently, if the point spectrum of T is not empty, then it can only contain
eigenvalues of infinite multiplicity, or eigenvalues that also belong to the continuous
spectrum of T. Further results on the spectral properties of T have been obtained by
Balan and Krishtal in [2]. In particular, a consequence of the results of that paper
is that if Λ is the set of four points specified in Eq. (5), then the corresponding
operator T has no isolated eigenvalues.

Linnell’s proof that G (g,Λ) is linearly independent if Λ is a finite subset of a
shift of a full-rank lattice was obtained through the machinery of von Neumann
algebras. In [4],

• a different proof of Linnell’s result was derived through time–frequency meth-
ods.

Interestingly, Demeter and Gautam obtained in [9]

• yet another proof of Linnell’s result, this time based on the spectral theory of
random Schrödinger operators.

Demeter in [8], and Demeter and Zaharescu in [10], focused on the case where
Λ contains four distinct points. These two papers prove that

• G (g,Λ) is independent if #Λ = 4 and Λ is a subset of two parallel lines in R
2.

In particular, this recovers the result by Rzeszotnik that was stated earlier.
One of the results obtained in [18] is that G (g,Λ) is linearly independent if g

has the particular form g(x) = p(x)e−x2
where p is a polynomial. No other results
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related to decay conditions seem to have been obtained until quite recently. In [5] it
is proved that

• G (g,Λ) is linearly independent if

lim
x→∞

|g(x)|ecx2
= 0 for all c > 0,

and

• G (g,Λ) is linearly independent if

lim
x→∞

|g(x)|ecx logx = 0 for all c > 0.

However, the case where |g(x)|ecx → 0 for all c > 0 remains open. Note that while
functions in the Schwartz class S (R) have extremely rapid decay, they need not
decay at an exponential rate.

Benedetto and Bourouihiya also obtained partial results related to decay. They
proved in their paper [3] that

• G (g,Λ) is linearly independent if g is ultimately positive and b1, . . . ,bN are
independent over Q,

and

• G (g,Λ) is linearly independent if #Λ = 4, g is ultimately positive, and g(x) and
g(−x) are ultimately decreasing.

The most recent paper related to the HRT Conjecture of which we are aware is
[12] by Gröchenig. He proves that

• the lower Riesz bound of a finite section of a Gabor frame that is not a Riesz
basis converges to zero, and in many cases this convergence is super-fast.

A Gabor frame that is not a Riesz basis is “globally redundant” in some sense. Even
so, if the HRT Conjecture is true then every finite subset of such a frame must be lin-
early independent. Gröchenig’s result implies that, from a numerical point of view,
such finite subsets rapidly become “nearly dependent” as their size increases. To
quote Gröchenig, this “illustrates the spectacular difference between a conjectured
mathematical truth and a computationally observable truth.”

Finally, although they do not obtain results directly about Conjecture 1, we men-
tion that the papers of Kutyniok [20] and Rosenblatt [24] consider some generaliza-
tions of the conjecture.

5 The Zero Divisor Conjecture

In this section we discuss the relation (or lack thereof) between the HRT conjecture
and the zero divisor conjecture.
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First we review some terminology. Let G be a group (with the group operation
written multiplicatively). The complex group algebra of G is the set of all formal
finite linear combinations of elements of G. We write this as

CG =

{

∑
g∈G

cgg : cg ∈ C with only finitely many cg �= 0

}

.

The natural operation of addition in CG is defined by

∑
g∈G

cgg + ∑
g∈G

dgg = ∑
g∈G

(cg +dg)g,

and we define multiplication in CG by
(

∑
g∈G

cgg

)(

∑
h∈G

dhg

)

= ∑
g∈G

∑
h∈G

cgdhgh = ∑
g∈G

(

∑
h∈G

cgh−1dh

)

g.

All of the above sums are well-defined since only finitely many terms in any sum
are nonzero. More generally, the field C can be replaced by other fields, but we will
restrict our attention here to the complex field.

Suppose that g is an element of G that has finite order n > 1. If we let e denote
the identity element of G and set

α = g− e and β = gn−1 + · · ·+g+ e,

then

αβ = (g− e)(gn−1 + · · ·+g+ e)

= (gn + · · ·+g2 +g) − (gn−1 + · · ·+g+ e)

= gn− e

= 0.

Thus, if G has any nontrivial elements of finite order then CG has zero divisors.
What happens if there are no nontrivial elements of G that have finite order? In
general the answer is unknown, and this is the context of the following Zero Divisor
Conjecture.

Conjecture 4 (Zero Divisor Conjecture). Let G be a torsion-free group (i.e., G con-
tains no elements of finite order other than the identity). If α, β ∈ CG, then

α �= 0 and β �= 0 =⇒ αβ �= 0. ♦

This conjecture is sometimes attributed to Kaplansky (for example, this is the
attribution stated by Wikipedia in the article “Group Ring”). Variants of the conjec-
ture seem to have appeared in the literature over time. Higman proved one version of
the zero divisor conjecture for “locally indicable” groups in 1940 [19]. Two surveys
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of the conjecture published in 1977 are the paper [25] by Snider and Chapter 13
of Passman’s text [23]. According to Snider, Higman’s result was “essentially all
that was known until 1974, when Formanek proved the conjecture for supersolvable
groups” (see [11]). Since then various results have been obtained, but the conjecture
remains open in the generality stated. A survey by Linnell of analytic versions of
the zero divisor conjecture can be found in [21].

There is a natural group associated with time–frequency analysis, the Heisenberg
group H, and therefore we can consider the zero divisor conjecture for the special
case that G = H. There are several versions of the Heisenberg group and many
isomorphic definitions of each of these. For our purposes, it is simplest to consider
the reduced Heisenberg group defined by

H =
{

zMbTa : z ∈ T,a,b ∈ R
}

,

where T is the unit circle in the complex plane, i.e.,

T = {z ∈ C : |z|= 1}.

In other words, with this definition H is the set of all unit modulus scalar multiples of
time–frequency operators. The group operation is simply composition of operators,
which by Eq. (2) follows the rule

(zMbTa)(wMdTc) = zwe−2πiadMb+dTa+c.

The Heisenberg group is noncommutative (but even so, as a locally compact group
it turns out that left and right Haar measure on H coincide, and therefore H is uni-
modular). If we fix any element zMbTa of H, then the nth power of this element has
the form

(zMbTa)
n = wnMnbTna,

where wn is a scalar that has unit modulus. Therefore no element of H other than
the identity I = M0T0 has finite order. Consequently, H is torsion-free.

Since H consists of scalar multiples of time–frequency shift operators, its group
algebra CH is the vector space of all finite linear combinations of time–frequency
shift operators:

CH =

{ N

∑
k=1

ckMbk Tak : N > 0,ck ∈ C,ak ∈ R,bk ∈ R

}

.

The question we wish to answer is whether CH has any zero divisors. So, suppose
that α and β are nonzero elements of CH such that αβ = 0. Since α and β belong
to CH, we can write

α =
M

∑
j=1

z jMb j Ta j and β =
N

∑
k=1

wkMdk Tck ,
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with (a j,b j) �= (a j′ ,b j′) whenever j �= j′, and similarly for (ck,dk). Since α and
β are each nonzero, we can assume without loss of generality that z j and wk are
nonzero complex scalars for every j and k. For simplicity of notation, let t jk be the
nonzero scalar

t jk = z jwke−2πia jdk .

Then we have

αβ =
M

∑
j=1

N

∑
k=1

t jkMb j+dk Ta j+ck = 0. (6)

Many of the values of a j + ck or b j +dk in Eq. (6) may coincide. For convenience,
and without loss of generality, we can assume that the a j and ck are ordered (possibly
with duplicates). That is, we can assume that

a1 ≤ a2 ≤ ·· · ≤ aM and c1 ≤ c2 ≤ ·· · ≤ cN .

Let
I =

{

( j,k) : a j + ck = aM + cN
}

.

Since αβ = 0, for every f ∈ L2(R) we have

∑
( j,k)/∈I

t jkMb j+dk Ta j+ck f (x) + ∑
( j,k)∈I

t jkMb j+dk TaM+cN f (x) = 0 a.e. (7)

Now, if ( j,k) /∈ I, then a j+ck < aM +cN . Since there are only finitely many choices,
if we set

r = max{a j + ck : ( j,k) /∈ I} and s = aM + cN ,

then we have r < s.
Let f ∈ L2(R) be any function that is nonzero everywhere on (−∞,0) and zero

on [0,∞). For example, we could take

f (x) = ex χ(−∞,0)(x).

If r < x < s, then for each ( j,k) /∈ I we have x − a j − ck ≥ 0 and therefore
f (x− a j − ck) = 0. Thus for such x the first summation in Eq. (7) is zero. Con-
sequently, only the second summation in Eq. (7) remains for such x. Simplifying, it
follows that for a.e. x in the interval (r,s) we have

0 = ∑
( j,k)∈I

t jkMb j+dk TaM+cN f (x)

= ∑
( j,k)∈I

t jke2πi(b j+dk)x f (x− s)

= p(x) f (x− s),
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where
p(x) = ∑

( j,k)∈I

t jke2πi(b j+dk)x. (8)

All of the sums above are finite and f (x− s) �= 0 for r < x < s, so this implies that

p = 0 a.e. on (r,s).

But p is a nonharmonic trigonometric polynomial and therefore cannot vanish on
any set of positive measure (indeed, p can have at most countably many zeros).
Therefore, we must have p(x) = 0 for every x ∈ R.

We are tempted to conclude from this that every t jk is zero, but we cannot do
this because some of the values b j +dk may coincide. To deal with this, note that if
( j,k)∈ I then a j = aM and ck = cN . Therefore, if we choose two distinct points ( j,k)
and ( j′,k′) in I, then a j = aM = a j′ . Since (a j,b j) must be distinct from (a j′ ,b j′),
this implies that b j �= b j′ . Consequently there is a unique j0 such that

b j0 = max{b j : ( j,k) ∈ I}.

Similarly, there is a unique k0 such that

dk0 = max{dk : ( j,k) ∈ I}.

Therefore Eq. (8) can be rewritten as

p(x) = t j0k0e2πi(b j0+dk0
)x + ∑

( j,k)∈I,b j+dk<b j0+dk0

t jke2πi(b j+dk)x.

As p is identically zero, this implies that t j0k0 = 0. However, this contradicts the fact
that every t jk is nonzero.

In summary, we have shown that the zero divisor conjecture is true when we take
G to be the Heisenberg group H. We state this formally as a theorem.

Theorem 1. If α and β are nonzero elements of CH, then αβ �= 0.

The proof of Theorem 1 uses an ordering, or indexing, of the elements in the
Heisenberg group. First we ordered the translations and examined the largest pair,
then we ordered the modulations and again examined the largest pair. It will not
be surprising, then, to see that there are general arguments which imply that the
Heisenberg group satisfies the Zero Divisor Conjecture. In fact, we will see below
that Higman’s original work already implies that the Heisenberg group satisfies the
zero divisor conjecture.

A group is said to be locally indicable if each of its nonidentity finitely generated
subgroups maps homomorphically onto Z. A locally indicable group has no non-
trivial elements of finite order. Indeed, if g∈G is an element of finite order, then the
subgroup 〈g〉 generated by g is finite, so there cannot exist a homomorphism from
〈g〉 onto Z.
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Given a homomorphism γ : H → Z, we define the degree of h ∈ H (relative to
γ) to be γ(h). The degree of an element depends on the particular homomorphism
chosen, but in what follows we will not explicitly indicate this dependence. We say
an element of the group ring CH is homogeneous of degree a (relative to γ) if it
can be put in the form ∑k

j=1 c je j, where for each 1≤ j ≤ k we have γ(e j) = a. Any
element of the group ring CH can be written as

P1 + · · ·+Pp, (9)

where each Pi is homogeneous of order ai and a1 < a2 < · · ·< ap.
Here is Higman’s result for locally indicable groups, proved in [19].

Theorem 2 (Higman). If G is a locally indicable group, and if α and β are nonzero
elements of CG, then αβ �= 0.

Proof. Write α = m1g1 + · · ·+mKgK and β = n1h1 + · · ·+nLhL, where m1, . . . ,mK

and n1, . . . ,nK are nonzero complex numbers and g1, . . . ,gK and h1, . . . ,hK are in G.
We proceed by induction on K+L. If K+L = 2, then αβ = m1n1g1h1, which is

not zero since m1n1 �= 0.
Let n > 2 and assume that αβ �= 0 whenever the sum of the number of terms of

α and β is less than n; that is when K+L < n. We will show that αβ �= 0 whenever
K +L = n.

Note that if αβ = 0, then g−1
1 αβh−1

1 = 0 as well, so we may assume without loss
of generality that g1 and h1 are the group identity element. Let H be the subgroup
of G generated by

{g1, . . . ,gK ,h1, . . . ,hL},
and let φ be a homomorphism from H onto Z. Write

α =
r

∑
i=1

Pi and β =
s

∑
j=1

Q j

as in Eq. (9), where the degrees of P1, . . . ,Pr are a1 < · · · < ar and the degrees of
Q1, . . . ,Qs are b1 < · · ·< bs. Since we have assumed that g1 and h1 are the identity,
we have that φ(g1) = φ(h1) = 0. Moreover, since φ is onto, it cannot map every
element of H to zero, and therefore at least one of r or s must exceed one. The
product αβ has the form

αβ = P1Q1 + · · ·+PrQs,

where P1Q1 is homogeneous of degree a1 + b1, PrQs is homogeneous of degree
ar + bs, and the terms not listed have degrees strictly between a1 + b1 and ar + bs.
Since αβ �= P1Q1, it follows that the sum of the number of terms in P1 and Q1 is
less than n. Therefore, by the induction hypothesis, P1Q1 �= 0 and hence αβ �= 0.
��

An easy first example of a group which admits a homomorphism onto Z is ZN ;
one choice of homomorphism is φ(m1, . . . ,mN) =m1. Since every finitely generated
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subgroup of an Abelian group is isomorphic to Z
N ⊕K

i=1Zai , it follows that every
torsion-free Abelian group is locally indicable. In particular, (R,+), the real line
under addition, is locally indicable.

We provide a direct proof that the Heisenberg group is locally indicable. For this
argument, it will be most convenient to represent the Heisenberg group as

H = {(a,b,c) : a,b,c ∈ R},

with product
(a,b,c) · (x,y,z) = (a+ x,b+ y,c+ z+ay).

We gather some basic facts about H in the following lemma.

Lemma 1. Let H denote the Heisenberg group.

(a) (x,y,z)−1 = (−x,−y,−z+ xy).

(b) The commutator H′ = {aba−1b−1 : a,b ∈H} is {(0,0,z) : z ∈ R}, which is iso-
morphic to (R,+).

(c) H′ is the center of H and is a normal subgroup of H.

(d) H/H′ is isomorphic to (R2,+).

Proposition 1. The Heisenberg group H is locally indicable.

Proof. Let G be any finitely generated subgroup of H. We must show that there
exists a homomorphism that maps G onto Z.

Case I: G ⊂ H′. Since H′ is isomorphic to (R,+), this case follows from the local
indicability of (R,+).

Case II: G �⊂ H′. Note that GH′/H′ is a normal subgroup of H/H′, and that H/H′

is isomorphic to R
2. By the Second Isomorphism Theorem, there exists an isomor-

phism
η : G/(G∩H′)→ GH′/H′.

Since G is finitely generated, so is G/(G∩H′), and therefore GH′/H′ is finitely
generated as well. Therefore, since R2 is locally indicable, there is a homomorphism
φ from GH′/H′ onto Z. Consequently, if we let

ψ : G→ G/(G∩H′)

be the natural onto homomorphism, then the composition φ ◦η ◦ψ is a surjective
homomorphism of G onto Z. ��

Corollary 1. If α and β are nonzero elements of CH, then αβ �= 0.

A group is said to be indicable throughout if every subgroup admits a homomor-
phism onto Z. Since H contains R as a subgroup, and there is no homomorphism
from R onto Z, the Heisenberg group is not indicable throughout.
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We remark that arguments similar to the ones above can be used to show that the
affine group also has no nontrivial zero divisors. Even so, as we described in Section
2, time-scale shifts of functions in L2(R) are not necessarily linearly independent.

We have shown that no product of two nontrivial finite linear combinations of
time–frequency shifts operators can be the zero operator. We close with a related,
but simpler, observation.

Lemma 2. The set of time–frequency shift operators

{

MbTa : a,b ∈ R
}

is a finitely linearly independent set in CH. That is, if

Λ =
{

(ak,bk) : k = 1, . . . ,N
}

is a set of finitely many distinct points in R
2 and

N

∑
k=1

ckMbk Tak = 0,

then c1 = · · ·= cN = 0.

Proof. If ∑N
k=1 ckMbk Tak is the zero operator, then

N

∑
k=1

ckMbk Tak f = 0 a.e. (10)

for every function f ∈ L2(R). Yet we know that there are at least some functions that
have linearly independent time–frequency translates. For example, by the partial
results reviewed earlier this is true for every compactly supported function, and for
the Gaussian function. Taking f to be one of these functions, Eq. (10) implies that
c1 = · · ·= cN = 0. ��
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16. Heil C. WHAT IS . . . a frame? Notices Am Math Soc. 2013;60:748–50.
17. Heil C, Walnut DF, Editors. Fundamental papers in wavelet theory. Princeton: Princeton Uni-

versity Press; 2006.
18. Heil C, Ramanathan J, Topiwala P. Linear independence of time-frequency translates. Proc

Am Math Soc. 1996;124:2787–95.
19. Higman G. The units of group-rings. Proc Lond Math Soc. 1940;46(2):231–48.
20. Kutyniok G. Linear independence of time–frequency shifts under a generalized Schrödinger

representation. Arch Math. (Basel) 2002;78:135–44.
21. Linnell PA. Analytic versions of the zero divisor conjecture. In: Kropholler PH, Niblo GA,
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The abc-Problem for Gabor Systems and
Uniform Sampling in Shift-Invariant Spaces

Xin-Rong Dai and Qiyu Sun

Abstract In this chapter, we identify ideal window functions χI on finite intervals
I and time–frequency shift lattices aZ×bZ such that the corresponding Gabor sys-
tems

G (χI ,aZ×bZ) := {e−2πinbtχI(t−ma) : (m,n) ∈ Z×Z}
are frames for L2(R). Also we consider a stable recovery of rectangular signals f in
a shift-invariant space

V2(χI ,bZ) :=
{

∑
λ∈bZ

d(λ )χI(t−λ ) : ∑
λ∈bZ

|d(λ )|2 < ∞
}

from their equally-spaced samples f (t0 + μ),μ ∈ aZ, for arbitrary initial sampling
position t0.

Keywords Gabor frame · Infinite matrix · Uniform stability · Sampling · Shift-
invariant space

1 Introduction

Denote by L2 := L2(R), the space of all square-integrable functions on the real line
R with inner product 〈·, ·〉 and norm ‖ · ‖2. Let G (φ ,aZ×bZ) be the Gabor system
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associated with a window function φ ∈ L2 and a rectangular lattice aZ×bZ,

G (φ ,aZ×bZ) := {e−2πinbtφ(t−ma) : (m,n) ∈ Z×Z}.

We say that G (φ ,aZ×bZ) is a Gabor frame for L2, if there exist positive constants
A and B such that

A‖ f‖2 ≤
(

∑
m,n∈Z

|〈 f ,e−2πinb·φ(·−ma)〉|2
)1/2

≤ B‖ f‖2, f ∈ L2

[6, 8, 13]. Gabor frames have been shown to be important and useful in many mathe-
matical and engineering fields [5, 8, 16, 17, 20–22, 25]. The history of Gabor theory
could date back to the completeness claim in 1932 by von Neumann [31, p. 406],
and the expansion conjecture in 1946 by Gabor [15, Eq. 1.29]. It has been widely
studied in the past three decades, see the landmark paper by Daubechies, Gross-
mann and Meyer [12], the textbook by Gröchenig [16], and the survey by Janssen
[25] and Heil [22].

Given a window function φ , one of fundamental problems in Gabor theory is to
find the range R(φ) of pairs (a,b) such that G (φ ,aZ×bZ) is a Gabor frame for L2.
It has been shown that the range R(φ) is contained in the equilateral hyperbola for
arbitrary window function φ ,

R(φ)⊂ {(a,b) : ab≤ 1}

[4, 10, 24, 29, 32], and it is an open domain for a window function φ in Feichtinger’s
algebra [14]. The range R(φ) is fully known unexpectedly only for very few fam-
ilies of window functions φ , including Gaussian windows, hyperbolic secant win-
dows, two-sided exponential windows, one-sided exponential windows, and totally
positive windows [11, 18, 27, 28, 30, 34, 35].

The Gabor system generated by the ideal window χI (the characteristic function)
on an interval I has received special attention in Gabor theory. The range R(χI)
for the ideal window χI could be arbitrarily complicated as the famous Janssen tie
suggests [19, 26], and it is not open and path-connected [9]. It has been a long
standing problem to find the range R(χI) and study its algebraic and topological
properties.

Recall that for any given interval I, G (χI ,aZ×bZ) is a Gabor frame if and only
if G (χI+d ,aZ× bZ) is a Gabor frame for every d ∈ R. Due to the above shift-
invariance, we may assume that I = [0,c), where c is the length of the interval I.
Then, the range problem for the ideal window on an interval reduces to the so-
called abc-problem for Gabor systems: given a triple (a,b,c) of positive numbers,
determine whether G (χ[0,c),aZ× bZ) is a Gabor frame [7]. In the first part of this
chapter, we report our complete answer to the above abc-problem for Gabor systems
in [9].
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The second topic of this chapter is to identify generators φ , particularly rectan-
gular signal generator χI , and sampling-shift lattices aZ×bZ such that

A‖ f‖2 ≤
(

∑
μ∈aZ

| f (t0 +μ)|2
)1/2

≤ B‖ f‖2, f ∈V2(φ ,bZ) (1)

are satisfied for all t0 ∈ R, where A and B are positive constants, and

V2(φ ,bZ) :=
{

∑
λ∈bZ

d(λ )φ(t−λ ) : ∑
λ∈bZ

|d(λ )|2 < ∞
}

is the shift-invariant space generated by φ . In other words, signals f in the shift-
invariant space V2(φ ,bZ) could be stably recovered from their uniform samples
f (t0 + μ),μ ∈ aZ, for arbitrary initial sampling position t0. For fixed initial sam-
pling position t0, there are lots of literatures on the stability requirement (1) and
robust recovery algorithm, see for instance [2, 3, 37–39, 41]. But for arbitrary initial
sampling position, it is known only for few generators φ , including bandlimited sig-
nals and spline signals [1, 36, 38]. In the second part of this chapter, we consider the
almost equivalence between frame property of the Gabor system G (χI ,aZ×Z/b)
and stability requirement (1) for uniform sampling signals in the shift-invariant
space V2(χI ,bZ).

Notation: For a real number s, we let s+ = max(s,0), s− = min(s,0), !s" be the
largest integer not greater than s, sgn(s) be the sign of s, and s := (· · · ,s,s,s, · · ·)T

be the column vector whose entries take value s. Specially for the window size
parameter c, we let c0 := c−!c" be the fractional part of the window size. For a set
E, we denote by χE the characteristic function on it, by |E| its Lebesgue measure,
and by #(E) its cardinality, respectively. We also denote by gcd(s, t) the greatest
common divisor such that s/gcd(s, t), t/gcd(s, t)∈Z for any given s and t in a lattice
rZ with r > 0. In this chapter, we let

B0 :=
{

(x(λ ))λ∈Z : x(0) = 1 and x(λ ) ∈ {0,1} for all λ ∈ Z
}

contain all binary column vectors taking value one at the origin; �2 := �2(Λ)
be the space of all square-summable vectors z := (z(λ ))λ∈Λ with standard norm
‖ ·‖2 := ‖ ·‖�2(Λ), where Λ is a given index set; and let shift-operators τν ′ ,ν ′ ∈ αZ,
on sequence spaces be defined by

τν ′z := (z(ν+ν ′))ν∈αZ

for z := (z(ν))ν∈αZ and α > 0.

2 Gabor Frames and Infinite Matrices

Given a triple (a,b,c) of positive numbers, it is obvious that G (χ[0,c),aZ×bZ) is a
Gabor frame if and only if G (χ[0,bc),(ab)Z×Z) is. By the above dilation-invariance,
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the frequency-spacing parameter b can be normalized to 1 and then the abc-problem
for Gabor systems reduces to finding out all pairs (a,c) of positive numbers such
that G (χ[0,c),aZ×Z) are Gabor frames.

For pairs (a,c) satisfying either a≥ 1 or c≤ 1, it is known that the Gabor system
G (χ[0,c),aZ×Z) is a Gabor frame if and only if c= 1 and 0< a≤ 1, see for instance
[12, 19, 26] and also Theorem 8. Thus, it remains to consider the abc-problem for
Gabor systems with triples (a,b,c) with

0 < a < 1 < c and b = 1.

Define infinite matrices Ma,c(t), t ∈ R, by

Ma,c(t) :=
(

χ[0,c)(t−μ+λ )
)

μ∈aZ,λ∈Z, t ∈ R. (2)

For fixed t ∈R, the infinite matrix Ma,c(t) in (2) has its rows (respectively columns)
containing !c"+{0,1} (respectively !c/a"+{0,1}) consecutive ones, and its rows
are obtained by shifting one (or zero) unit of the previous row with possible reduc-
tion or expansion by one unit. The above observations could be illustrated from the
example below:

Ma,c(0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .
...

...
...

...
...

...
...

0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 1 0

...
...

...
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where (a,c) = (π/4,23−11π/2).
Infinite matrices Ma,c(t), t ∈ R in (2) have been used by Ron and Shen [33] to

characterize the frame property for the Gabor system G (χ[0,c),aZ×Z) via their
uniform stability on �2,

0 < inf
t∈R

inf
‖z‖2=1

‖Ma,c(t)z‖2 ≤ sup
t∈R

sup
‖z‖2=1

‖Ma,c(t)z‖2 < ∞. (3)

In this chapter, we report a new characterization of frame property for the Gabor
system G (χ[0,c),aZ×Z) via nonexistence of binary solutions x ∈B0 of the follow-
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ing infinite-dimensional linear system

Ma,c(t)x = 2, t ∈ R, (4)

or equivalently Da,c = /0, where

Da,c :=
{

t ∈ R : Ma,c(t)x = 2 for some binary vectors x ∈B0} (5)

is the set of real numbers t such that there exists a binary solution x ∈ B0 to the
linear system (4).

Theorem 1. ([9]) Let 0 < a < 1 < c. Then, G (χ[0,c),aZ×Z) is a Gabor frame if and
only if Da,c = /0.

The necessity in the above theorem has been implicitly used in [19, 26] for their
classifications. For pairs (a,c) of positive numbers satisfying

either c0 := c−!c" ≤ 1−a or c0 ≥ a,

the set Da,c in (5) could be constructed explicitly, cf. Theorem 9.
For any t ∈ R and x ∈B, define

Qa,c(t,x) :=

⎧

⎨

⎩

0 if K(t,x) = /0
sup

{

n ∈ N
∣

∣ [μ ,μ+na)∩aZ
⊂ K(t,x) for some μ ∈ aZ

}

otherwise,

where K(t,x) :=
{

μ ∈ aZ
∣

∣ Ma,c(t)x(μ) = 2
}

. An equivalent formulation of the
empty set property Da,c �= /0 is

2 �∈Ma,c(t)B
0 for all t ∈ R.

A quantitative version of the above equivalent formulation is the maximal length
Qa,c(t) of consecutive twos for vectors in range spaces Ma,c(t)B0, t ∈ R, where

Qa,c(t) = sup
x∈B0

Qa,c(t,x).

Clearly Qa,c(t) = +∞ for any t ∈ Da,c. In [9], we further show that Da,c = /0 if
and only if Qa,c := supt∈R Qa,c(t) is finite. This together with Theorem 1 leads
to the equivalence between frame property of Gabor systems G (χ[0,c),aZ× Z)
and boundedness of the maximal length Qa,c of consecutive twos in range spaces
Ma,c(t)B0, t ∈ R of infinite matrices. More importantly, the quantity Qa,c can be
used to estimate Gabor frame bounds of the Gabor system G (χ[0,c),aZ×Z),

a2!1/a"
4c2(aQa,c +2a+ c+1)2 ‖ f‖2 ≤

(

∑
φ∈G (χ[0,c),aZ×Z)

|〈 f ,φ〉|2
)1/2

≤ (!c"+1)(!c/a"+1)‖ f‖2, f ∈ L2.
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3 Maximal Invariant Sets

Consider binary solutions x ∈B0 of the following infinite-dimensional linear sys-
tem

Ma,c(t)x = 1 (6)

for t ∈ R, and let

Sa,c :=
{

t ∈ R : Ma,c(t)x = 1 for some vector x ∈B0}. (7)

Given t ∈Da,c and binary vector x ∈B0 satisfying Ma,c(t)x = 2, let K be the set of
all λ ∈ Z with x(λ ) = 1, write K = {λ j : j ∈ Z} for a strictly increasing sequence
{λ j}∞j=−∞ with λ0 = 0, and define x∗ := (x∗(λ ))λ∈Z by x∗(λ ) = 1 if λ = λ2 j for
some j ∈ Z and x∗(λ ) = 0 otherwise. One may easily verify that x∗ is a binary
vector in B0 that satisfies (6). Thus Sa,c is a supset of Da,c, i.e.,

Da,c ⊂Sa,c.

Conversely, it is shown in [9] that Da,c can be obtained from Sa,c via certain set
operations,

Da,c =
(

Sa,c∩ (∪!c"−1
λ=1 (Sa,c−λ ))

)

∪
(

Sa,c∩ ([0,(c0 +a−1)+)+aZ)∩ (Sa,c−!c")
)

.

A pivotal observation for the set Sa,c in (7) is that for any t ∈ Sa,c, there is a
unique binary solution xt := (xt(λ ))λ∈Z ∈B0 for the linear system (6). Let λa,c(t)
be the smallest positive integer such that xt(λa,c(t)) = 1 and similarly let λ̃a,c(t) be
the largest negative integer such that xt(λ̃a,c(t)) = 1. Then

τλa,c(t)xt ,τλ̃a,c(t)
xt ∈B0

and
Ma,c(t +λa,c(t))τλa,cxt = Ma,c(t + λ̃a,c(t))τλ̃a,c

xtMa,c(t)xt = 1

by the frequency-shift property

Ma,c(t−λ ′)z = Ma,c(t)τλ ′z for all λ ′ ∈ Z

for infinite matrices Ma,c(t), t ∈ R. This defines maps

Sa,c # t −→ t +λa,c(t) ∈Sa,c and Sa,c # t −→ t + λ̃a,c(t) ∈Sa,c

on the set Sa,c. Our inspection shows that the above two maps on Sa,c can be
extended to piecewise linear transformations Ra,c and R̃a,c on the line R, respec-
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tively, where

Ra,c(t) :=

⎧

⎨

⎩

t + !c" if t ∈ [(c0−a)−,0)+aZ
t + !c"+1 if t ∈ [0,(c0 +a−1)+)+aZ
t if t ∈ [(c0 +a−1)+,(c0−a)−+a)+aZ

(8)

and

R̃a,c(t) =

⎧

⎨

⎩

t−!c"−1 if t ∈ [c− (c0 +a−1)+,c)+aZ
t−!c" if t ∈ [c,c− (c0−a)−)+aZ
t if t ∈ [c− (c0−a)−,c+a− (c0 +a−1)+)+aZ.

(9)

So Sa,c is an invariant set under transformations Ra,c and R̃a,c,

Ra,cSa,c = Sa,c and R̃a,cSa,c = Sa,c, (10)

and it has empty intersection with their black holes,
{

Sa,c∩ ([(c0 +a−1)+,a+(c0−a)−)+aZ) = /0
Sa,c∩ ([c− (c0−a)−,c+a− (c0 +a−1)+)+aZ) = /0.

(11)

More importantly, it is a maximal set that is invariant under the transformation Ra,c

and has empty intersection with its black hole.

Theorem 2. ([9]) Let 0 < a < 1 < c. Then any set E satisfying Ra,cE = E and
having empty intersection with the black hole [(c0 +a−1)+,a+(c0−a)−)+aZ of
the transformation Ra,c is contained in Sa,c.

The maximal invariance property for the set Sa,c is crucial in our study. So we
call Sa,c the maximal invariant set. We remark that the set Da,c in (5) is also invari-
ant under transformations Ra,c and R̃a,c and has empty intersection with their black
holes.

Set c1 := !c"−!(!c"/a)"a. For pairs (a,c) of positive numbers satisfying

either !c"= 1 or c1 ≥ 2a−1 or c1 = 0,

we can apply the maximality in Theorem 2 to construct the set Sa,c explicitly, and
then we can determine whether the corresponding Gabor system G (χ[0,c),aZ×Z)

is a frame for L2, see Theorem 10.

4 Piecewise Linear Transformations

The transformations Ra,c and R̃a,c in (8) and (9) are well-defined as (c0 +a−1)+ ≤
(c0 − a)− + a. They are not measure-preserving on the whole line, but they are
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measure-preserving outside their black holes,
{

|Ra,c(E)|= |E| if E ∩ ([(c0 +a−1)+,(c0−a)−+a)+aZ) = /0
|R̃a,c(E)|= |E| if E ∩ ([c− (c0−a)−,c+a− (c0 +a−1)+)+aZ) = /0.

(12)

In [9], we consider ergodicity of the transformation Ra,c, see [40] for introduction
to ergodic theory of various dynamic systems.

Theorem 3. Let 0 < a < 1 < c and F be a continuous periodic function with period
a. Then

F(t) := lim
n→∞

∑n−1
k=0 f ((Ra,c)

k(t))

n

is well-defined for all t ∈ R. Moreover

F(t) =

⎧

⎨

⎩

1
|Sa,c∩[0,a)|

∫

Sa,c∩[0,a) f (s)ds if t ∈Sa,c and a �∈Q

1
D+1 ∑

D
k=0 f ((Ra,c)

k(t)) if t ∈Sa,c and a ∈Q

f (t0) if t �∈Sa,c,

where D ≥ 0 is a nonnegative integer independent on t ∈Sa,c, and t0 ∈ [(c0 + a−
1)+,(c0−a)−+a)+aZ is the limit of (Ra,c)

n(t) as n→ ∞ for t �∈Sa,c.

Due to the measure-preserving property (12), the transformation Ra,c is noncon-
tractive and its maximal invariant set Sa,c does not directly follow from the Hutchin-
son’s remarkable construction [23]. We observe from the invariance property (10)
and the empty intersection property (11) that

Sa,c ⊂ ∩∞n=0(Ra,c)
n(R)\([(c0 +a−1)+,(c0−a)−+a)+aZ).

In the case that Sa,c �= /0, we show in [9] that the infinite intersection in the above
inclusion can be replaced by finite intersection and the inclusion is indeed an equal-
ity.

Theorem 4. Let 0 < a < 1 < c. Assume that Sa,c �= /0. Then, there exists a nonneg-
ative integer D such that

Sa,c = (Ra,c)
L(R)\([(c0 +a−1)+,(c0−a)−+a)+aZ) for all L≥ D.

Applying Theorem 4 to pairs (π/4,23−11π/2) and (13/17,77/17) leads to the
explicit expression of their corresponding maximal invariant set Sa,c:

Sa,c =
[

18− 23π
4

,11− 7π
2

)

∪
[

12− 15π
4

,5− 3π
2

)

∪
[

6− 7π
4
,17− 21π

4
)+

π
4
Z

for the pair (a,c) = (π/4,23−11π/2), and

Sa,c =
1
17

([2,3)∪ [9,10)∪ [12,13))+
13
17

Z

for the pair (a,c) = (13/17,77/17).
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From Theorem 4, we see that the maximal invariant set Sa,c has its complement
composed by finitely many left-closed right-open intervals, called holes, on one
period a (and hence the maximal invariant set Sa,c is measurable). Therefore, we
may squeeze out those holes and then reconnect their endpoints. This holes-removal
surgery could be mathematically described by the map

Ya,c(t) := sgn(t)|[t−, t+)∩Sa,c|, t ∈ R (13)

on the line in the sense that it is an isomorphism from the maximal invariant set
Sa,c to the line with marks (image of the holes). In Fig. 1 below, we illustrate the
performance of the holes-removal surgery via

aT # aexp(2πit/a) $−→ Ya,c(a)exp
(

−2πiYa,c(t)/Ya,c(a)
)

∈ Ya,c(a)T,

where
(

π/4,23− 11π/2) and (13/17,77/17) are used as pairs (a,c) in the left
and right subfigures, respectively. After performing the holes-removal surgery, it is

Fig. 1 The set aexp(2πiSa,c/a) contains blue arcs in the big circle. The set
aexp(2πi(R\Sa,c)/a) is composed of red dashed arcs in the big circle. The
image Ya,c(a)exp

(

2πiYa,c(R)/Ya,c(a)
)

of the map Ya,c is the small circle. The set
Ya,c(a)exp

(

2πiKa,c/Ya,c(a)
)

is marked with tiny circle, where Ka,c is the set of marks on
the line

shown in [9] that the restriction of the piecewise linear transformation Ra,c onto the
maximal invariant set Sa,c becomes a linear transformation on a line with marks.

Theorem 5. Let 0 < a < 1 < c. Assume that Sa,c �= /0. Then, the following diagram
commutes,

Sa,c
Ra,c−−−−→ Sa,c

Ya,c

⏐

⏐

6

⏐

⏐

6
Ya,c

R/(Ya,c(a)Z) −−−−→
S(θa,c)

R/(Ya,c(a)Z)

(14)
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where θa,c = Ya,c(!c"+1) and

S(θa,c)(z+Ya,c(a)Z) = θa,c + z+Ya,c(a)Z, z ∈ R/(Ya,c(a)Z).

5 Parameterizations of Maximal Invariant Sets

For parameterization of maximal invariant sets Sa,c, we need more detailed infor-
mation on their holes for pairs (a,c) satisfying

0 < a < 1 < c,1−a < c0 < a,!c" ≥ 2 and 0 < c1 < 2a−1. (15)

So in this section, we always assume that the pair (a,c) satisfies the above condition.
One may verify that the transformation R̃a,c is the left-inverse of the transformation
Ra,c outside its black hole and vice versa (hence, the transformations Ra,c and R̃a,c

are one-to-one outside their black holes), i.e.,
{

R̃a,c(Ra,c(t)) = t if t �∈ [c0 +a−1,c0)+aZ
Ra,c(R̃a,c(t)) = t if t �∈ [c− c0,c− c0 +1−a)+aZ.

This, together with the invariance property (10) and the empty intersection property
(11) for the set Sa,c, implies that holes

An := (Ra,c)
n([c− c0,c− c0 +1−a)+aZ), n≥ 0,

obtained from applying the transformation Ra,c to the black hole [c− c0,c− c0 +
1− a) + aZ of the transformation R̃a,c have empty intersection with the maximal
invariant set Sa,c, and that their mutual intersections are contained in the black
hole [c0 +a−1,c0)+aZ of the transformation Ra,c. For the case that Sa,c �= /0, we
further show in [9] that those holes will eventually become the black hole [(c0 +
a− 1)+,a+(c0 − a)−)+ aZ of the transformation Ra,c and hence, the black hole
[c0+a−1,c0)+aZ of the transformation Ra,c and the black hole [c−c0,c−c0+1−
a)+aZ of the transformation R̃a,c are transformable through periodic holes An,0≤
n≤ D, in finite steps. Thus

Sa,c = R\
(

∪D
n=0 (Ra,c)

n([c− c0,c− c0 +1−a)+aZ)
)

by the maximal invariance given in Theorem 2, cf. Theorem 4.
For irrational time-spacing parameter a, An = (Ra,c)

n(c− c0 + 1− a) + [a−
1,0)+aZ,0≤ n≤D, and they have their closure being mutually disjoint. This leads
to a one-to-one correspondence between the maximal invariant set Sa,c and the set
Ka,c of marks on the line. By the commutative diagram (14) for the transformation
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Ra,c, the set of marks is given by

Ka,c = {Ya,c((Ra,c)
n(c− c0 +1−a)), 0≤ n≤ D}+Ya,c(a)Z

= {nYa,c(c− c0 +1−a), 1≤ n≤ D+1}+Ya,c(a)Z.

Thus, the set of marks is completely determined by the number of marks on one
period [0,Ya,c(a)) and the locations Ya,c(c− c0 + 1− a) +Ya,c(a)Z and Ya,c(c0) +
Ya,c(a)Z of two marks associated with black holes [c− c0,c− c0 +1−a)+aZ and
[c0 +a−1,c0)+aZ of transformations R̃a,c and Ra,c, respectively. Using the above
conclusion, we may fully classify the maximal invariant set Sa,c by two parameters
d1 and d2, the numbers of holes in [0,c0 +a−1) and [c0,a), respectively.

Theorem 6. Let (a,c) satisfy (15) and a �∈ Q. Then, Sa,c �= /0 if and only if there
exist nonnegative integers d1 and d2 such that

(d1 +d2 +1)c1− c0 +(d1 +1)(1−a) ∈ aZ, (16)

(d1 +1)(1−a)< c0 < 1− (d2 +1)(1−a),

and
#Ea,c = d1,

where

m =
(d1 +d2 +1)c1− c0 +(d1 +1)(1−a)

a

and

Ea,c =
{

n ∈ [1,d1 +d2 +1]
∣

∣ n(c1−m(1−a))

∈ [0,c0− (d1 +1)(1−a))+(a− (d1 +d2 +1)(1−a))Z
}

. (17)

The nonnegative integers d1 and d2 in Theorem 6 are uniquely determined by the
pair (a,c) of positive numbers by (16) and the assumptions that !c" ≥ 2 and a �∈Q.
The nonnegative integer parameters d1 and d2 in Theorem 6 are indeed the numbers
of holes contained in [0,c0 +a−1) and [c0,a), respectively, and the set of marks is
given by

Ka,c =
{

n(c1−m(1−a))}d1+d2+1
n=1 +(a− (d1 +d2 +1)(1−a))Z.

Finally, we consider the case that the time-spacing parameter a is rational.
Recall for c �∈ gcd(a,1)Z, G (χ[0,c),aZ×Z) is a Gabor frame if and only if both
G (χ[0,c̃),aZ × Z) and G (χ[0,c̃+gcd(a,1)),aZ × Z) are Gabor frames, where
c̃ = !c/gcd(a,1)"gcd(a,1) ∈ gcd(a,1)Z [26]. Therefore, we may consider that

c ∈ gcd(a,1)Z.
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In this case, the set Sa,c is finite union of intervals of length gcd(a,1), and it is
completely determined by its restriction to gcd(a,1)Z. In particular,

Sa,c = Sa,c∩gcd(a,1)Z+[0,gcd(a,1)),

because infinite matrices Ma,c(t), t ∈ R in (2) satisfy

Ma,c(t) = Ma,c(!t/gcd(a,1)"gcd(a,1)).

Let [δ ′,0)⊂ [c0−a,0) and [0,δ )⊂ [0,c0+a−1) be maximal intervals contained in
the complement R\Sa,c of the maximal invariant set Sa,c. In the case that Sa,c �= /0,
at least one of them is equal to zero,

δδ ′ = 0,

and there exist nonnegative integers N ≤ D such that

(Ra,c)
N([c−c0+δ ′,c−c0+1−a+δ )+aZ) = [c0+a−1−δ ,c0−δ ′)+aZ (18)

and
(Ra,c)

D+1(c− c0 +1−a+δ ) ∈ c− c0 +1−a+δ +aZ (19)

[9]. Without loss of generality, let N and D be minimal nonnegative integers satisfy-
ing (18) and (19). In [9], we show that the maximal invariant set Sa,c has its comple-
ment consisting of periodic holes of two different sizes, particularly, these holes are
(Ra,c)

n([c− c0 +δ ′,c− c0 +1−a+δ )+aZ),0 ≤ n ≤ N, of length 1−a+ δ −δ ′,
and (Ra,c)

m([c0+a−1−δ ,c0−δ ′)\[c0+a−1,c0)+aZ),1≤m≤D−N, of length
δ − δ ′. Taking holes-removal surgery described by the map in (13) leads to a line
with marks. More interestingly for the case that one of δ ,δ ′ is nonzero, the maximal
invariant set Sa,c is the union of mutually disjoint intervals of same size,

Sa,c = Ga,c +
[

0,Ya,c(a)/(D+1)
)

,

and the set of marks Ka,c is a cyclic group,

Ka,c = gcd
(

Ya,c(c− c0 +1−a),Ya,c(a)
)

Z=
Ya,c(a)
D+1

Z,

where
Ga,c := {(Ra,c)

n(c− c0 +1−a+δ )}D
n=0 +aZ.

Therefore, the maximal invariant set Sa,c can be recovered from the real line by
putting marks at appropriate positions and then inserting holes of appropriate sizes
at marked positions, even though that augmentation operation is much more deli-
cate and complicated than the hole-removal surgery. Using the augmentation opera-
tion, we can parameterize maximal invariant sets Sa,c via four nonnegative integer
parameters di,1≤ i≤ 4, for rational time-spacing parameter a.
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Theorem 7. Let (a,c) satisfy (15), a ∈Q and c ∈ gcd(a,1)Z. Then Sa,c �= /0 if and
only if the pair (a,c) of positive numbers is one of the following three types:

(1)c0 < gcd(c1,a).
(2)1− c0 < gcd(c1 +1,a).
(3)There exist nonnegative integers d1,d2,d3,d4 such that

0 < Bd := a− (d1 +d2 +1)(1−a) ∈ (D+1)gcd(a,1)Z,

(D+1)c1 +(d1 +d3 +1)(1−a) ∈ aZ,

(d1 +d2 +1)((D+1)c1 +(d1 +d3 +1)(1−a))− (d1 +d3 +1)a ∈ (D+1)aZ,

gcd((D+1)c1 +(d1 +d3 +1)(1−a),(D+1)a) = a,

c0 = (d1 +1)(1−a)+(d1 +d3 +1)Bd/(D+1)+ γ

for some γ ∈ (−min(Bd/(D+1),a− c0),min(Bd/(D+1),c0 +1−a)), and

#Ed
a,c = d1, (20)

where D = d1 +d2 +d3 +d4 +1 and

Ed
a,c =

{

n ∈ [1,d1 +d2 +1]
∣

∣ n((D+1)c1 +(d1 +d3 +1)(1−a))

∈ (0,(d1 +d3 +1)a)+(D+1)aZ
}

. (21)

In the above theorem, a hole of large size at the origin is created for the first two
cases, while a hole of small size is inserted at the origin for the third case. For the
first two cases, no holes of small size have been inserted at any location of marks and
the size of holes inserted is always c0 for the first case and 1−c0 for the second case.
For the third case, the nonnegative integer parameters d1,d2 are indeed the numbers
of gaps of size 1−a+ |γ | inserted in [0,c0 +a−1) and [c0,a), respectively, and the
nonnegative integer parameters d3,d4 are the numbers of gaps of size |γ | inserted in
[0,c0 +a−1) and [c0,a), excluding the one inserted at the origin, respectively.

Using the parametrization of maximal invariant sets Sa,c in Theorems 6 and 7,
we can provide full classification of pairs (a,c) satisfying (15) such that the corre-
sponding Gabor system G (χ[0,c),aZ×Z) is a frame for L2, see Theorem 11.

6 The abc-Problem for Gabor Systems

In this section, we provide a complete answer to the abc-problem for Gabor system
in [9], or equivalently full classification of all pairs (a,c) of positive numbers such
that G (χ[0,c),aZ×Z) are Gabor frames for L2.

We start from recalling some known classifications, see for instance [12, 19, 26].

Theorem 8. Let a > 0 and c > 0. Then, the following statements hold.



190 Xin-Rong Dai and Qiyu Sun

(I) If a > c, then G (χ[0,c),aZ×Z) is not a Gabor frame.
(II) If a = c, then G (χ[0,c),aZ×Z) is a Gabor frame if and only if a≤ 1.
(III) If a < c and a≥ 1, then G (χ[0,c),aZ×Z) is not a Gabor frame.
(IV) If a < c and c≤ 1, then G (χ[0,c),aZ×Z) is a Gabor frame.

By Theorem 8, it remains to consider 0 < a < 1 < c. Applying the new charac-
terization of Gabor frame property in Theorem 1, we take one step forward in our
way to solve the abc-problem for Gabor systems.

Theorem 9. Let 0 < a < 1 < c and set c0 = c−!c". Then the following statements
hold.

(V) If c0 ≥ a and c0 ≤ 1−a, then G (χ[0,c),aZ×Z) is a Gabor frame.
(VI) If c0 ≥ a and c0 > 1− a, then G (χ[0,c),aZ×Z) is not a Gabor frame if and

only if a ∈Q, and either

(1)c0 > 1−gcd(!c"+1,a) and gcd(!c"+1,a) �= (!c"+1)gcd(a,1)
(2)c0 > 1−gcd(!c"+1,a)+gcd(a,1) and gcd(!c"+1,a) = (!c"+1)gcd(a,1).

(VII) If c0 < a and c0 ≤ 1− a, then G (χ[0,c),aZ×Z) is not a Gabor frame if and
only if either

(3)c0 = 0
(4)a ∈Q, 0 < c0 < gcd(!c",a) and gcd(!c",a) �= !c"gcd(a,1)
(5)a ∈Q, 0 < c0 < gcd(!c",a)−gcd(a,1) and gcd(!c",a) = !c"gcd(a,1)

The statement (V) in the above theorem is given in [26, Section 3.3.3.2]. By
Theorems 8 and 9, we may assume that 0 < a < 1 < c and 1−a < c0 < a hereafter.
Applying maximality of the set Sa,c in Theorem 2, we can move one more step
close to answer the abc-problem for Gabor systems.

Theorem 10. Let 0 < a < 1 < c and 1− a < c0 < a. Set c1 := c− c0 − !((c−
c0)/a)"a. Then the following statements hold.

(VIII) If !c"= 1, then G (χ[0,c),aZ×Z) is a Gabor frame.
(IX) If !c" ≥ 2 and c1 > 2a−1, then G (χ[0,c),aZ×Z) is a Gabor frame.
(X) If !c" ≥ 2 and c1 = 2a−1, then G (χ[0,c),aZ×Z) is not a Gabor frame if and

only if a ∈Q, c0 ≤ 1−a+gcd(a,1) and a = (!c"+1)gcd(a,1).
(XI) If !c" ≥ 2 and c1 = 0, then G (χ[0,c),aZ×Z) is not a Gabor frame if and only

if a ∈Q, c0 ≥ a−gcd(a,1) and a = !c"gcd(a,1).

The statement (VIII) in the above theorem can be found in [19, 26]. Using the
parameterization of the maximal invariant set Sa,c in Theorems 6 and 7, we make
last extremely hard move to solve the abc-problem for Gabor systems.

Theorem 11. Let (a,c) satisfy 0 < a < 1 < c,1−a < c0 < a,!c" ≥ 2 and 0 < c1 <
2a−1. Then the following statement holds.

(XII) If a �∈Q, then the Gabor system G (χ[0,c),aZ×Z) is not a Gabor frame if and
only if there exist nonnegative integers d1 and d2 such that
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(a) a �= c− (d1 +1)(!c"+1)(1−a)− (d2 +1)!c"(1−a) ∈ aZ;
(b) !c"+(d1 +1)(1−a)< c < !c"+1− (d2 +1)(1−a); and
(c) #Ea,c = d1, where m = ((d1 + d2 + 1)c1 − c0 +(d1 + 1)(1− a))/a and Ea,c is

given in (17).

(XIII) If a ∈ Q and c ∈ gcd(a,1)Z, then G (χ[0,c),aZ×Z) is not a Gabor frame if
and only if the pair (a,c) satisfies one of the following three conditions:

(1)c0 < gcd(a,c1) and !c"(gcd(a,c1)− c0) �= gcd(a,c1)
(2)1− c0 < gcd(a,c1 +1) and (!c"+1)(gcd(a,c1 +1)+ c0−1) �= gcd(a,c1 +1)
(3)There exist nonnegative integers d1,d2,d3,d4 such that (a) 0 < a− (d1 + d2 +

1)(1− a) ∈ (D+ 1)gcd(a,1)Z; (b) (D+ 1)c1 +(d1 + d3 + 1)(1− a) ∈ aZ; (c)
(d1+d2+1)((D+1)c1+(d1+d3+1)(1−a))−(d1+d3+1)a∈ (D+1)aZ; (d)
gcd((D+1)c1+(d1+d3+1)(1−a),(D+1)a)= a; (e) #Ed

a,c = d1; (f) c0 = (d1+
1)(1− a)+ (d1 + d3 + 1)Bd/(D+ 1)+ γ for some some γ ∈ (−min((a− (d1 +
d2 + 1)(1− a))/(D+ 1),a− c0),min((a− (d1 + d2 + 1)(1− a))/(D+ 1),c0 +
1− a)); and (g) |γ |+ a/((D+ 1)!c"+(d1 + d3 + 1)) �= (a− (d1 + d2 + 1)(a−
1))/(D+1), where D := d1 +d2 +d3 +d4 +1 and Ed

a,c is defined by (21).

(XIV) If a ∈ Q and c �∈ gcd(a,1)Z, then G (χ[0,c),aZ×Z) is a Gabor frame if and
only if both G (χ[0,c̃),aZ×Z) and G (χ[0,c̃+gcd(a,1)),aZ×Z) are Gabor frames,
where c̃ = !c/gcd(a,1)"gcd(a,1).

In the Conclusion (XII) of the above theorem, we insert d1 and d2 holes contained
in intervals [0,c0+a−1) and [c0,a), respectively, and put marks at ∪d1+d2+1

n=1 (n(c1−
m(1−a))+(a− (d1 +d2 +1)(1−a))Z). In Case (6) of the Conclusion (XIII), the
set Ka,c of marks is (gcd(a,c1)− c0)Z and holes inserted at marked positions have
same length c0. In Case (7) of the Conclusion (XIII), the set of marks is given
by Ka,c = (gcd(a,c1 + 1)+ c0− 1)Z and holes inserted are of size 1− c0. In Case
(8) of the Conclusion (XIII), Ka,c = Ya,c(a)Z/(D+1) and holes inserted at marked
positions lmh+Ya,c(a)Z,1 ≤ l ≤ N, have size 1− a+ |γ | for 1 ≤ l ≤ d1 + d2 + 1
and |γ | for d1 + d2 + 2 ≤ l ≤ D, where D = d1 + d2 + d3 + d4 + 1,Ya,c(a) = (a−
(d1 + d2 + 1)(1− a))− (D+ 1)|γ |,m = ((D+ 1)c1 +(d1 + d3 + 1)(1− a))/a and
γ = c0 − (d1 + 1)(1− a)− (d1 + d3 + 1)(a− (d1 + d2 + 1)(1− a))/(D+ 1). The
Conclusion (XIII) can be found in [26].

Combining Theorems 8–11 gives a complete answer to the abc-problem for
Gabor systems. The classification diagram of pairs (a,c) in Theorems 8–11 is pre-
sented below:
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(I) a > c

a < c

(II) a = c

(III) a≥ 1

(IV) c≤ 1

a < 1 < c

(V) c0 ≥ a,c0 ≤ 1−a

(VI) c0 ≥ a,c0 > 1−a

c0 < a,c0 > 1−a

(VII) c0 < a,c0 ≤ 1−a

(VIII) !c"= 1

!c" ≥ 2

0 < c1 < 2a−1

(XI) c1 = 0

(X) c1 = 2a−1

(IX) c1 > 2a−1

a ∈Q

(XII) a �∈Q

(XIII) a ∈ Z/q,c ∈ Z/q

(XIV) a ∈ Z/q,c �∈ Z/q

From Classifications (V)–(IX) and (XII) in Theorems 9–11, it confirms a con-
jecture in [26, Section 3.3.5]: If ab < 1 < bc,ab �∈ Q and c �∈ aQ+Q/b, then
G (χ[0,c),aZ× bZ) is a Gabor frame for L2. This, together with Classification (IV)
in Theorem 8 and the shift-invariance, implies that the range of density parameters
a,b such that G (χI ,aZ×bZ) is a Gabor frame is a dense subset of the open region
Uc := {(a,b) : 0 < a < max(1/b,c)}, where c is the length of the interval I.

7 Uniform Sampling of Signals in a Shift-Invariant Space

We say that {φ(· − λ ) : λ ∈ bZ} generates a Riesz basis if there exist positive
constants A and B such that

A
(

∑
λ∈bZ

|z(λ )|2
)1/2

≤
∥

∥

∥ ∑
λ∈bZ

z(λ )φ(·−λ )
∥

∥

∥

2
≤ B

(

∑
λ∈bZ

|z(λ )|2
)1/2

for all square-summable sequences (z(λ ))λ∈bZ. For the generator χI on an interval
I = [d,c+d), {χI(·−λ ) : λ ∈ bZ} always generates a Riesz basis except that 2 ≤
c/b ∈ Z. Thus, except that 2 ≤ c/b ∈ Z, any signal f in the shift-invariant space
V2(χI ,bZ) can be stably recovered from its equally-spaced samples f (t0 + μ),μ ∈
aZ, for any initial sampling position t0 if and only if infinite matrices Ma/b,c/b(t), t ∈
R, in (2) satisfy the uniform stability (3) on �2, c.f. [2, 39, 41]. Hence, we have the
following almost equivalence between our sampling problem associated with the
box generator χI and the abc-problem for Gabor systems.
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Theorem 12. Let a,b > 0 and I be an interval with length c > 0. Then, except that
2 ≤ c/b ∈ Z, the stability requirement (1) holds if and only if G (χI ,aZ× (Z/b)) is
a Gabor frame for L2.

For the case that I = [d,c + d) with 2 ≤ c/b ∈ Z, the shift-invariant space
V2(χI ,bZ) is not closed in L2 and its closure is the shift-invariant space V2(χI′ ,bZ),
where I′ = [d,b+ d) has length b. Therefore, for the case that I = [d,c+ d) with
2≤ c/b∈Z, any signal f in V2(χI ,bZ) can be stably recovered from equally-spaced
samples f (t0 + μ),μ ∈ aZ, for any initial sampling position t0 ∈ R if and only if
a≤ b. On the other hand, G (χI/b,(a/b)Z×Z) is not a Gabor frame for L2 by The-
orems 8 and 9. This indicates that the equivalence in Theorem 12 does not hold for
the case that 2≤ c/b ∈ Z and a≤ b.
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On Various Levels of Linear Independence
for Integer Translates of a Finite Number
of Functions

Sandra Saliani

Abstract Systems of integer translates arise in the context of approximation the-
ory, wavelet analysis, and in the theory of shift invariant spaces. After a review of
the known properties for integer translates of one square summable function, we
explore various levels of linear independence of integer translates of a finite num-
ber of functions in terms of properties of the associated Gramian matrix. In some
cases, the results are not a straightforward generalization of the case when a single
function is considered.

Keywords Linear independence · Integer translates · Gramian · Shift invariant
spaces

1 Introduction

Let ψ1, . . . ,ψm ∈ L2(R). We denote by Bm the system of all integer translates of
ψ1, . . . ,ψm,

Bm = {Tkψ j, k ∈ Z, j = 1, . . . ,m}, (1)

where Tk is the translation operator, i.e., Tk f (x) = f (x− k), x ∈ R.
The study of linear independence for a system of integer translates has crossed

various theories in analysis over time. Several works in approximation theory focus
on linear independence of compactly supported distributions, such as those of Ron
[12], and Jia and Micchelli [6], just to name a few.

A great impulse to research on this subject is due to the theory of shift invariant
spaces, which investigates closed subspaces of L2(R), closed under integer transla-
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tions. A closed subspace V ⊂ L2(R) is shift invariant if

f ∈V =⇒ Tk f ∈V, for all k ∈ Z.

Shift invariant spaces are always generated by integer translates of some (at
most) countable number of functions, meaning that there is a subset Ψ ⊂ L2(R)
such that V = S(Ψ) = span{Tkψ, ψ ∈ Ψ , k ∈ Z}. If the set Ψ is finite, say
Ψ = {ψ1, . . . ,ψm}, one simply writes S(ψ1, . . . ,ψm), called finitely generated shift
invariant space. If m = 1, S(ψ) is a called a principal shift invariant space.

Several works are devoted to the quest for generating sets with desirable prop-
erties, including linear independence. Among the first, papers by de Boor, DeVore
and Ron [1], and Ron and Shen [13].

All these studies reveal that many properties of a system of translates depend on
properties of an invariant associated to it: the periodization function for principal
shift invariant spaces, the Gramian matrix for nonprincipal. We premise that we use
the Fourier transform defined, for f ∈ L1(R), as f̂ (ξ ) =

∫

R
f (x)e−2πix dx.

Definition 1. The periodization function associated to ψ ∈ L2(R) is the L1(T) func-
tion defined, for a.e. ξ ∈ T, as pψ(ξ ) = ∑k∈Z |ψ̂(ξ − k)|2.

Definition 2. The Gramian associated to functions ψ1, . . . ,ψm ∈ L2(R) is the m×m
matrix G(ξ ) with entries defined, for a.e. ξ ∈ T, as

(G(ξ ))i, j = ∑
k∈Z

ψ̂i(ξ − k)ψ̂ j(ξ − k) = [ψ̂i, ψ̂ j](ξ ), i, j = 1, . . . ,m. (2)

([ψ̂i, ψ̂ j] is called the bracket of ψ̂i and ψ̂ j). Note that each entry is in L1(T). The
Gramian is a.e. Hermitian and positive semidefinite.

Linear independence is crucial in frame theory. Frames were introduced by Duf-
fin and Schaeffer [4].

Definition 3. A sequence (en)n∈Z in a Hilbert space H is called a frame for H if
there exist two real constants A,B > 0 such that, for any x ∈ H

A‖x‖2 ≤ ∑
n∈Z

| 〈x,en 〉 |2 ≤ B‖x‖2.

If only the right hand inequality holds, (en)n∈Z is called a Bessel sequence with
Bessel bound B. If A = B, we call it an A−tight frame and if A = B = 1, we call it
a Parseval frame.

Frames of translates have been intensely studied since the birth of wavelet theory.
The main feature that one looks for in a frame is redundancy, which means linear
dependence, responsible of accurate reconstruction algorithms.

In recent years, different levels of linear independence of translates have been
investigated following general definitions in a separable Hilbert space.

Definition 4. Let (en)n∈Z be a sequence in a separable Hilbert space H. We say that
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(i) (en)n∈Z is linearly independent if every finite subsequence of (en)n∈Z is linearly
independent.

(ii)(en)n∈Z is �2- linearly independent if whenever the series ∑
n∈Z

cnen is convergent

and equal to zero for some coefficients (cn)n∈Z ∈ �2(Z), then necessarily cn = 0
for all n ∈ Z.

(iii)(en)n∈Z isω-independent if whenever the series ∑
n∈Z

cnen is convergent and equal

to zero for some scalar coefficients (cn)n∈Z, then necessarily cn = 0 for all n∈Z.
(iv) (en)n∈Z is minimal if for all k ∈ Z, ek /∈ span{en, n �= k}.

Since we will not always be dealing with unconditionally convergent series,
we order Z = {0,1,−1,2,−2, . . .} as it is usually done with the Fourier series.
For example, convergence of ∑k∈Z ck ek in H means convergence of the sequence
(∑|k|≤n ck ek)n∈Z, in H.

In this context, we can place works by Nielsen and Šikić [9], Šikić and Speegle
[16], Weiss and alt. [5], Paluszyński [10], Šikić and Slamić [15], and Saliani [14].
All these papers deal with a system generated by one function, its properties linked
to those of the periodization function and its zero set. They show, also, as many
questions on various types of linear independence are tightly connected to classical
themes of Fourier analysis, so as to fascinate besides the mere utility.

This work continues the analysis in this direction. After a summary of known
results for the system consisting of one function in Sect. 2, we extend the same type
of results to a finite number of functions in Sect. 3. We explore linear independence
and we show that, differently from the one function case, it is not always achieved.

We then pass to minimality, where a natural extension exists. Finally, we provide
sufficient and necessary conditions for the �2-linear independence, which reduces
to the known characterization for one function, even if it is not a complete charac-
terization for more functions. All these results are matched with examples. Many
questions remain open, and so the picture is not complete.

2 Known Result for Translates of One Function

Let ψ ∈ L2(R). We denote by Bψ the system of all integer translates of ψ , i.e.,

Bψ = {Tkψ, k ∈ Z}.

In this section we recall known results about various type of linear independence
for Bψ . We refer the reader to [5] for many of the proofs, if not stated otherwise.

Theorem 1. Let ψ ∈ L2(R), then the system Bψ is linear independent.
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Theorem 2. The weighted Hilbert space L2(T, pψ) of all 1-periodic functions f :
T→ C satisfying

∫

T

| f (ξ )|2 pψ(ξ ) dξ < ∞,

is isometric to the principal shift invariant space S(ψ).

Theorem 3. The system Bψ is minimal if and only if 1
pψ
∈ L1(T).

Passing to �2-linear independence we have

Theorem 4 ([5],[14]). B is �2-linearly independent if and only if pψ(ξ ) > 0 a.e.
ξ ∈ T.

The proof of the “only if” part in the above result is based on a theorem by Kislyakov
[7, Theorem 4], whose proof relies upon a result by Vinogradov [18]. It extend the
Correction Theorem of Menchoff,

Theorem 5 ([8]). Every measurable function becomes a function with uniformly
convergent Fourier series after a modification on a set of arbitrarily small measure.

Let us recall first some basic notations: U∞ denotes the space of functions f ∈
L∞(T) for which the following norm is finite

‖ f‖U∞ = sup

{∣

∣

∣

∣

∣

∑
n≤k≤m

f̂ (k)ξ k

∣

∣

∣

∣

∣

, n,m ∈ Z, n ≤ m, ξ ∈ T

}

.

Theorem 6. For every f ∈ L∞(T) with ‖ f‖∞ ≤ 1 and every 0 < ε ≤ 1 there exists a
function g∈U∞ with the following properties: |g|+ | f − g| = | f |; |{ξ ∈T, f (ξ ) �=
g(ξ )}| ≤ ε‖ f‖1; ‖g‖U∞ ≤ const(1 + log(ε−1)).

We shall see that the above result is also crucial in the case of more functions (see
Theorem 12).

A further natural refinement of the concept of linear independence is obtained by
�p-linear independence, 1 ≤ p < 2. We provide, after the definition, a result by Šikić
and Slamić which characterizes �p-linear independence in case the periodization
function is bounded. In this result, we can appreciate a further connection between
the properties of the system of integer translates and classical concepts of Fourier
analysis, namely �p-sets of uniqueness.

Definition 5. We say that a sequence (en)n∈Z in a Hilbert space H is �p-linearly
independent, 1 ≤ p < 2, if whenever the series ∑n∈Z cnen is convergent and equal
to zero for some coefficients (cn)n∈Z ∈ �p(Z), then necessarily cn = 0 for all n ∈ Z.

�2-linear independence implies �p-linear independence for 1 ≤ p < 2. Moreover
the latter is linked with the notion of �p-set of uniqueness.

Definition 6. We call a Lebesgue measurable set A ⊂ T an �p-set of uniqueness,
1 ≤ p ≤ 2, if no nonzero function f ∈ L2(T), vanishing almost everywhere in the
complement of A, satisfies the condition ( f̂ (n))n∈Z ∈ �p(Z).
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�2-sets of uniqueness coincides with those of measure zero. So it is to be expected
that �p-sets of uniqueness are linked to �p-linear independence as showed in the
following theorem. Actually in the original formulation the authors assume pψ ∈
L∞(T), when 1 < p < 2, but it can be showed that this hypothesis is unnecessary
in one direction.

Theorem 7 ([15]). Let Zψ = {ξ , pψ(ξ ) = 0} be the set of zeros of pψ . Then the
following hold:

1. Bψ is �1-linearly independent if and only if the set Zψ is an �1-set of uniqueness;
2. Let 1 < p < 2. If the set Zψ is an �p-set of uniqueness, then Bψ is �p-linearly

independent;
3. Assume pψ ∈ L∞(T), and 1 < p < 2. If Bψ is �p-linearly independent, then the set

Zψ is an �p-set of uniqueness.

We can summarize in the following scheme all the relations between the various
types of independence for Bψ and properties of the periodization function:

Bψ is minimal ⇐⇒ 1
pψ

∈ L1(T)

⇓
Bψ is ω-independent

⇓
Bψ is �2-linearly independent ⇐⇒ pψ(ξ ) > 0 a.e.

⇓
Bψ is �p-linearly independent, 1 < p < 2 ⇐= Zψ is a set of �p−uniqueness

⇓
Bψ is �1-linearly independent ⇐⇒ Zψ is a set of �1−uniqueness

⇓
Bψ is linearly independent Always true

3 Translates of a Finite Number of Functions

Letψ1, . . . ,ψm ∈ L2(R), and let Bm the system of all integer translates ofψ1, . . . ,ψm,
as defined in (1). This section is devoted to understanding how various levels of
linear independence for Bm are reflected on the properties of the Gramian matrix
G(ξ ) defined in (2). The role of the zero set Zψ will be played by the set where the
Gramian is not positive definite.

Since we shall deal with eigenvalues and eigenvectors defined for a.e. ξ ∈ T, it
is convenient to recall the following result:

Theorem 8. Suppose that D is a measurable set in R
k and that A(t) is an m × m

Hermitian matrix for t ∈ D. If each element of the matrix is measurable on D, then
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the eigenvalues λ j(t), j = 1, . . . ,m (arranged in increasing order λ1(t) ≤ λ2(t) ≤
. . .λm(t)), are measurable on D, and corresponding eigenvectors Y j(t) may be cho-
sen so that each Y j(t) is measurable on D.

Let A(t) be an m × m Hermitian matrix, defined in a measurable set t ∈ D ⊂ R,
and j = 1, . . . ,m fixed. Any (column) vector measurable function Y j(t), of eigen-
vectors corresponding to the eigenvalue λ j(t), will be called an eigenvector function
(corresponding to the eigenvalue λ j(t).)

In general, we shall say that a matrix (vector) function is measurable, continuous,
polynomial, etc., when each entry of the matrix (vector) possesses the specified
property.

The following identity will be useful in the sequel.
Let c j,k, j = 1, . . . ,m, k ∈ Z, be a sequence of complex numbers. Set, for any

n ∈ Z,
Xn

j (ξ ) = ∑
|k|≤n

c j,k e−2πikξ , ξ ∈ T,

and consider the (column) vector Xn(ξ ) ∈ C
m with entries Xn

j (ξ ), j = 1, . . . ,m.
Then, by a usual periodization technique,

∫ 1

0
Xn(ξ )∗G(ξ )Xn(ξ )dξ = ‖

m

∑
j=1

∑
|k|≤n

c j,kTkψ j ‖2
L2(R). (3)

(Xn(ξ )∗ means the conjugate transpose of Xn(ξ )).
In contrast with m = 1, linear independence of translates of more functions is not

always assured. The equivalent condition stated in the following theorem is obvi-
ously verified when m = 1, since positive definiteness means nonzero.

Theorem 9. The system Bm of all integer translates of ψ1, . . . ,ψm, is linear inde-
pendent if and only if either the set where G(ξ ) is positive definite has positive
measure or none trigonometric polynomial is an eigenvector for G corresponding
to the zero eigenvalue.

Proof. Consider a finite set of non-zero coefficients c j,k ∈C, |k| ≤ n, j = 1, . . . ,m,
such that

‖
m

∑
j=1

∑
|k|≤n

c j,kTkψ j ‖2
L2(R) = 0.

Then, by (3), the vector Xn(ξ ) ∈ C
m with polynomial entries

Xn
j (ξ ) = ∑

|k|≤n

c j,k e−2πikξ , ξ ∈ T,

verifies
∫ 1

0
Xn(ξ )∗G(ξ )Xn(ξ )dξ = 0,

i.e., Xn(ξ )∗G(ξ )Xn(ξ ) = 0 a.e. ξ ∈ T.
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The latter is equivalent to say that the minimal eigenvalue of G(ξ ) is zero a.e.
and X(ξ ) is an eigenvector corresponding to it. �

In the following example we show that there exists a system of translates whose
Gramian has determinant zero a.e., it is infinitely differentiable, but each normed
eigenvector function is not even continuous. It is a modification of an analogue
example in [11].

Example 1. Let S be a perfect, nowhere dense on [0,1] that contains ξ = 0,1, and
which has positive Lebesgue measure. Denote by I j = (a j,b j), j ∈ N, the infinite
sequence of disjoint intervals whose union is the complement of S in [0,1], Sc. For
ξ ∈ I j let θ(ξ ) = (ξ − a j)

−1 + (b j − ξ )−1. Let ψ1,ψ2 ∈ L2(R) such that

ψ̂1(ξ ) = e−θ(ξ )
2

sinθ(ξ )χSc χ[0,1], ψ̂2(ξ ) = e−θ(ξ )
2

cosθ(ξ )χSc χ[0,1],

where, for any set A, χA denotes the characteristic function of A. Then the associated
Gramian is G(ξ ) = 0 for ξ ∈ S, and

G(ξ ) = e−2θ(ξ )2
(

sin2 θ(ξ ) sinθ(ξ )cosθ(ξ )
sinθ(ξ )cosθ(ξ ) cos2 θ(ξ )

)

, for ξ ∈ Sc.

The smallest eigenvalue of G(ξ ) is λ1(ξ ) ≡ 0 for all ξ ∈ T.
As shown in [11], G(ξ ) is infinitely differentiable on T. Moreover, for ξ ∈ Sc,

any normed eigenvector function corresponding to λ1(ξ ) is of the form X1(ξ ) =
(ccosθ(ξ ),−csinθ(ξ )), where the scalar c has modulus 1. So, no matter what
choice of X1(ξ ) is made for η ∈ S, the resulting eigenvector function X1 is dis-
continuous at η .

By the above result it follows that the system is linear independent.

Example 2. Let ψ1,ψ2 ∈ L2(R) such that

ψ̂1(ξ ) = sin(2πξ )χ[0,1], ψ̂2(ξ ) = cos(2πξ )χ[0,1].

Then the Gramian is

G(ξ ) =
(

sin2 (2πξ ) sin(2πξ )cos(2πξ )
sin(2πξ )cos(2πξ ) cos2 (2πξ )

)

, for ξ ∈ T.

The smallest eigenvalue of G(ξ ) is λ1(ξ ) ≡ 0 for all ξ ∈ T, and any normed eigen-
vector function corresponding to λ1(ξ ) is a trigonometric polynomial of the form
X1(ξ ) = (ccos t(2πξ ),−csin(2πξ )), where the scalar c has modulus 1. Hence the
system is not linear independent.

We now pass to show that the nonprincipal shift invariant space S(ψ1, . . . ,ψm) is
isometric to a Hilbert space of square summable (vector) functions, (compare with
Theorem 2).
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Definition 7. The vector-valued weighted Hilbert space L2(G) is defined as the
space of all vector valued 1-periodic measurable functions X : T→ C

m with the
norm

‖X‖L2(G) =

(
∫ 1

0
X(ξ )∗G(ξ )X(ξ )dx

)1/2

=

(
∫ 1

0
‖G(ξ )1/2X(ξ )‖2

Cm dx

)1/2

,

where G(ξ )1/2 denotes the square root of the positive semidefinite Hermitian matrix
G(ξ ). (Of course we should factorize over the subspace of functions of zero norm).

Lemma 1 ([1]). Let g∈ L2(R). Then g∈ S(ψ1,ψ2, . . . ,ψm)
⊥ if and only if [ĝ, ψ̂ j ] =

0 for all j = 1, . . . ,m.

Theorem 10. The space L2(G) is isometric to the space S(ψ1,ψ2, . . . ,ψm).

Proof. Consider the map Jm : L2(G)→ L2(R) defined by

Jm(X) = (
m

∑
j=1

Xj(ξ )ψ̂ j(ξ ))∨, X ∈ L2(G),

where each Xj(ξ ) is the j-th entry of X(ξ ).
The equality

‖X‖2
L2(G) = ‖

m

∑
j=1

Xj(ξ )ψ̂ j(ξ )‖2
L2(R),

shows that Jm is well defined and an isometry.
To show that Jm is onto S(ψ1, . . . ,ψm), we first consider g in the orthogonal space

S(ψ1,ψ2, . . . ,ψm)
⊥. If X ∈ L2(G), we have, by Lemma 1

[ĝ, Ĵm(X)](ξ ) = ∑
k

ĝ(ξ − k)
m

∑
j=1

Xj(ξ ) ψ̂ j(ξ − k) =
m

∑
j=1

Xj(ξ ) [ĝ, ψ̂ j](ξ ) = 0.

This means that Jm(L2(G))⊥ S(g), i.e. Jm(L2(G))⊂ S(ψ1,ψ2, . . . ,ψm).
Conversely, assume there exists a nonzero g ∈ S(ψ1,ψ2, . . . ,ψm) such that, for

all X ∈ L2(G),

0 = 〈g,Jm(X)〉= 〈ĝ, Ĵm(X)〉=
∫ 1

0

m

∑
j=1

Xj(ξ ) [ĝ, ψ̂ j](ξ )dξ .

In particular, it is always possible to take X , with bounded entries Xj such that
Xj(ξ )[ĝ, ψ̂ j](ξ ) = |[ĝ, ψ̂ j](ξ )|, so that X belongs to L2(G), and

0 =
∫ 1

0

m

∑
j=1
|[ĝ, ψ̂ j](ξ )|dξ .

So g ∈ S(ψ1,ψ2, . . . ,ψm)
⊥ and we get the contradiction g≡ 0. �
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Definition 8. Two sequences (en)n∈Z,(vn)n∈Z, in a separable Hilbert space H are
said bi-orthogonal sequences if 〈en,vm 〉 = δn,m for all n,m∈Z. In that case (vn)n∈Z
is called a dual sequence to (en)n∈Z, and vice versa.

In general, if a dual sequence exists, it is not necessarily unique. When the
Hilbert space is H = S(ψ1,ψ2, . . . ,ψm), if functions ψ̃1, . . . , ψ̃m ∈ H are such that
〈 ψ̃l ,Tkψ j 〉 = δ j, j δk,0, then, by a change of variable, the system ˜Bm = {Tkψ̃i, k ∈
Z, i = 1, . . . ,m}, is biorthogonal to Bm. Since H is generated by all Tkψ j, if it exists,
this dual sequence is unique and it is called the canonical dual to Bm.

It is a known fact, see [17], that the existence of a dual sequence is equivalent to
minimality . We can state another equivalent condition which involves the properties
of the Gramian matrix (compare with Theorem 3).

Theorem 11. Bm has a canonical dual if and only if G(ξ ) is a.e. positive definite
and all elements in the main diagonal of G−1(ξ ) are in L1(T).

Proof. Assume first ψ̃1, . . . , ψ̃m ∈ S(ψ1,ψ2, . . . ,ψm) is a a canonical dual of Bm,
and let Xl ∈ L2(G) be the unique vector function such that

̂ψ̃l(ξ ) = Ĵm(Xl)(ξ ) =
m

∑
p=1

Xl
p(ξ )ψ̂p(ξ ), a.e..

By biorthogonality, for all h ∈ Z, and l = 1, . . . ,m,

δh,0 δl, j = 〈 ψ̃l ,Thψ j 〉 =
∫ 1

0

m

∑
p=1

Xl
p(ξ ) [ψ̂p, ψ̂ j](ξ )e2πihξ dξ ,

hence the following identity holds a.e.

Xl(ξ )∗G(ξ )≡ (0, . . . , 1
︸︷︷︸

l−th entry

, . . . ,0) = e∗l .

The matrix A(ξ ) with rows Xl(ξ ) verifies A(ξ )G(ξ ) = I a.e., the identity matrix,
and so G(ξ ) is a.e. positive definite.

Finally, from the equality G−1(ξ )el = Xl(ξ ), we get

∫ 1

0
e∗l G−1(ξ )el dξ =

∫ 1

0
Xl(ξ )∗G(ξ )Xl(ξ )dξ <+∞,

and so each element in the main diagonal of G−1 is in L1(T).
Conversely, the hypotheses guarantee that the rows of G−1, Xl(ξ )∗ = e∗l G−1(ξ ),

l = 1, . . . ,m, are in L2(G), and so we can define

ψ̃l = Jm(X
l) ∈ S(ψ1, . . . ,ψm).
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The biorthogonality then follows by

〈 ψ̃ l ,Tkψ j 〉 =
∫ 1

0

m

∑
p=1

Xl
p(ξ )[ψ̂p, ψ̂ j](ξ )e2πikξ dξ

=
∫ 1

0
e∗l G−1(ξ )G(ξ )e j e2πikξ dξ = δl, j δk,0.

�
Remark 1. For a finitely generated shift invariant space V , the number

�(V ) = min{n ∈ N, ∃ ψ1, . . . ,ψn ∈V, V = S(ψ1, . . . ,ψn)},

is called the length of V , [1], and a set of generators is called a minimal set of
generators if it contains exactly �(V ) elements.

If the Gramian of a finite set {ψ1, . . . ,ψm} is a.e. positive definite, then

esssup
ξ∈T

rk(G(ξ )) = m, (4)

where rk(A) denotes the rank of a matrix A. But the left hand side in (4) denotes also
the minimal number of generators of the finite shift invariant space S(ψ1, . . . ,ψm).
It follows that minimality of translates implies that {ψ1, . . . ,ψm} is a minimal set
of generators for the space generated by their translates. Moreover, a minimal set of
generators is always linear independent.

Example 3. Let ψ1,ψ2,ψ3 ∈ L2(R) be defined by

ψ̂1 = χ[− 1
2 ,

1
2 ]
+ χ[ 1

2 ,
3
2 ]

ψ̂1 = χ[− 1
2 ,

1
2 ]
+ 2χ[ 3

2 ,
5
2 ]

ψ̂1 = χ[ 1
2 ,

3
2 ]
+ 3χ[ 3

2 ,
5
2 ]

Then the associate Gramian is

G(ξ ) =

⎛

⎝

2 1 1
1 5 6
1 6 10

⎞

⎠ , for ξ ∈ T.

Since G(ξ ) is constant, and detG(t) = 25, for all ξ ∈T, it follows that the system
is minimal.

Example 4. Let ψ1,ψ2 ∈ L2(R) such that

ψ̂1(ξ ) = sin(2πξ )χ[0,1] + χ[1,2], ψ̂2(ξ ) = cos(2πξ )χ[0,1].

Then the Gramian is

G(ξ ) =
(

sin2 (2πξ )+1 sin(2πξ )cos(2πξ )
sin(2πξ )cos(2πξ ) cos2 (2πξ )

)

, for ξ ∈ T.



On various levels of linear independence for a finite number of functions 205

The determinant of G(ξ ) is cos2 (2πξ ), hence G(ξ ) is a.e. positive definite in T.
The main diagonal entries of G−1(ξ ) are 1 and tan2(2πξ ) + 1

cos2(2πξ ) . It follows
that the system of translates of ψ1,ψ2 is not minimal.

The following is a natural extension of the result obtained for one function in
[14]. We don’t have a complete characterization for �2-linear independence, but it
should be noted that, when m = 1, the additional hypothesis in 2., about the eigen-
vectors, is always satisfied.

Theorem 12. Let G(ξ ) be the Gramian associated to ψ1, . . . ,ψm ∈ L2(R). Then

1. If G(ξ ) is a.e. positive definite then Bm is �2-linear independent.
2. If G(ξ ) is not positive definite in a set of positive measure E, and there exists

a measurable eigenvector function corresponding to the zero eigenvalue which
agrees with a non-zero trigonometric polynomial a.e. in E, then Bm is not �2-
linear independent.

Proof. Assume G(ξ ) is a.e. positive definite. Let ci,k ∈ C, i = 1, . . . ,m, k ∈ Z, be a
nonzero sequence such that ∑m

i=1∑k∈Z |ci,k|2 < +∞ and

‖
m

∑
j=1

∑
|k|≤n

c j,kTkψ j ‖2
L2(R) −→

n
0.

Now, for j fixed, each Xn
j (ξ ) = ∑|k|≤n c j,k e−2πikξ converges, a.e and in the L2(T)

norm, to a function Xj with Fourier coefficients (c j,−k)k∈Z ∈ �2(Z). If we consider
the vector function X = (X1, . . . ,Xm)

T , it follows from (3) that

∫ 1

0
Xn(ξ )∗G(ξ )Xn(ξ )dξ −→

n
0,

so that
∫ 1

0
X(ξ )∗G(ξ )X(ξ )dξ = 0.

Note that X(ξ ) �= 0 in a set E of positive measure, otherwise all coefficients c j,k

would be zero. The above equality then implies that X(ξ )∗G(ξ )X(ξ ) = 0, for all
ξ ∈ E, and so G is not a.e. positive definite.

Conversely assume G is not a.e. positive definite. Since G(ξ ) is always a.e pos-
itive semidefinite, it means that there exists a measurable set E, |E| > 0, such that
the smallest eigenvalue λmin(ξ ) of G(ξ ) is zero for all ξ ∈ E. Let us denote by X(ξ )
the eigenvector corresponding to λ (ξ ), which agrees with a nonzero trigonometric
polynomial a.e in E. Hence

X(ξ )∗G(ξ )X(ξ ) = 0, a.e. ξ ∈ E.

Since X(ξ ) is a trigonometric polynomial, each entry Xj is a polynomial, say

Xj(ξ ) = ∑
|h|≤p j

a j,h e2πihξ , j = 1, . . . ,m, a.e.ξ ∈ E,
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and adding zero coefficients, if needed, we can always assume p j = p, for all j =
1, . . . ,m.

Note that if |E| = 1 then Bm is obviously not �2-linear independent. So we can
assume |Ec| > 0.

Consider the characteristic function of E, χE . Then g∈U∞ provided by Theorem
6, corresponding to ε = 1/2, is not zero, since otherwise we get the contradiction
|{ξ ∈ T,χE(ξ ) �= 0}| = |E| ≤ |E|

2 ; the support of g is contained in E since |g| ≤
|χE |; and finally ‖g‖U∞ ≤ const(1 + log2) implies that the partial sums of Fourier
series of g, Sng(ξ ), are uniformly bounded in the uniform norm.

Moreover Sng(ξ )→ g(ξ ), a.e. and so

|Sng(ξ )|2X(ξ )∗G(ξ )X(ξ )→n |g(ξ )|2X(ξ )∗G(ξ )X(ξ ), a.e. ξ ∈ T,

but the latter function is identically zero since g(ξ ) = 0 a.e. in Ec and X(ξ )∗G(ξ )
X(ξ ) = 0 a.e. in E.

Hence by the uniform boundedness of Sng(ξ ) and the dominated convergence
theorem it follows that

∫ 1

0
|Sng(ξ )|2X(ξ )∗G(ξ )X(ξ )dξ → 0.

Note that, for big n, each entry in Sng(ξ )X(ξ ) is

∑
|k|≤n

∑
|h|≤p

ĝ(k)a j,h e2πi(k+h)ξ =
n− p

∑
l=−n+ p

∑
|h|≤ p

ĝ(l − h)a j,h e2πilξ

+
n+ p

∑
l=n− p+1

p

∑
h= l−n

ĝ(l − h)a j,h e2πilξ

+
−n+ p−1

∑
l=−n− p

l+n

∑
h=− p

ĝ(l − h)a j,h e2πilξ .

If we set
c j,l = ∑

|h|≤ p

ĝ(l − h)a j,h,

then obviously ∑m
j=1∑l∈Z |c j,l |2 < +∞, and we get by (3) that the following sum

of translates

m

∑
j=1

∑
|l|≤n−p

c j,lTlψ j +
m

∑
j=1

n+ p

∑
l=n− p+1

p

∑
h= l−n

ĝ(l − h)a j,h Tlψ j

+
m

∑
j=1

−n + p− 1

∑
l=−n− p

l + n

∑
h=− p

ĝ(l − h)a j,h Tlψ j

goes to zero in the L2(R) norm, as n→ +∞.
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On the other hand, each tail in the above sum goes to zero in the L2(R) norm, as
n→ +∞. For example, after a change of variable,

∫

R

|
m

∑
j=1

n+ p

∑
l=n− p+1

p

∑
h= l−n

ĝ(l − h)a j,hψ j(x − l)|2 dx

=
∫

R

|
m

∑
j=1

p

∑
k=− p+1

p

∑
h=k

ĝ(k + n − h)a j,hψ j(x − k)|2 dx−→n 0,

for ĝ(k + n − h)→n 0, and the dominate convergence theorem.
Finally we deduce

‖
m

∑
j=1

∑
|l|≤n− p

c j,lTlψ j ‖L2(R) →n 0,

and so Bm is not �2-linear independent. �
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Part XII
RADAR and Communications: Design,

Theory, and Applications



This part contains four chapters devoted to applications of space, time, and fre-
quency signal modeling. The contributions are written by leading experts from
academia and industry.

WIESE together with ROSCA AND CLAUSSEN study the Maximum Likelihood
Estimator for Directions of Arrival in the case of an unknown number of mov-
ing wideband sources. They study a reversible jump particle filter to implement a
Monte Carlo method for computing the posterior distributions associated to multiple
models. The authors use a mixed Bayesian-frequentist approach to deal with model
selection (unknown number of sources) and a nonstationary environment (moving
sources). Their simulations compare the particle filter algorithm performance with
an iterative procedure based on subspace methods with known number of sources.
Using 2000 particles yield a particle filter and kernel based Maximum A Posteriori
estimator with superior performance than of subspace methods.

BRODZIK presents a new design of L polyphase (unit magnitiude) cyclic sequences
of length N (with N/L integer) that are simultaneously Golay, zero correlation zone
(ZCZ), and have all-zero cross-correlation. The design is performed in finite Zak
transform domain and it extends two previous constructions, one by the same author,
the other by Mow. Next the author analyzes the computational complexity of this
algorithm and shows it is of the form N2/L2 +2N.

LEVITAS and NUNN survey the state-of-the-art radar scene in waveform design
and waveform processing. First the authors describe traditional design requirements:
maximizing detection sensitivity (or, equivalently, minimizing the loss), maintaining
required range resolution, minimizing eclipsing by a large discrete or by large dis-
tributed clutter, decreasing Doppler sensitivity, spectral compliance, and generating
multiple uncorrelated codes. Next the authors present examples of traditional codes
and analyze their performance. Specifically they look at linear FM codes, Lewis-
Kretschmer Palindromic P4 codes, nonlinear FM codes, Barker codes, and pseudo-
random noise codes. Then the authors consider more stringent design requirements
accounting for increased clutter background levels, higher spectral occupancy, and
multiple antenna systems (MIMO waveforms).

The last chapter of this part is by STROHMER and WANG , which presents
a compressive sampling based MIMO radar system. The setup assumes multiple
radar returns measured by a multiple-transmit-multiple-receive antenna system. The
authors formulate a regularized least square estimator with a l1-norm penalty of
multiple target return coefficients. They provide probabilistic guarantees of correct
detection. Next the authors analyze the performance of compressive MIMO radars
using Kerdock waveforms. Again they provide probabilistic guarantees of correct
detection. Then the authors consider off-grid errors and perform a sensitivity anal-
ysis. In the last part of the chapter, the authors present numerical examples of the
system performance. Specifically they obtain ROC curves by solving the LASSO
problem for transmit Kerdock waveforms and addditive white Gaussian noise with
variable SNR levels. Their simulations show superior performance of this scheme.



Polyphase Golay Sequences with
Semi-Polyphase Fourier Transform and All-Zero
Crosscorrelation: Construction B

Andrzej K. Brodzik

Abstract A new design of polyphase cyclic sequence sets of size L and sequence
length N = LM, where L,M ∈ Z, that are simultaneously Golay, zero correlation
zone (ZCZ), and have all-zero crosscorrelation, is described. The sequences have a
semi-polyphase Fourier transform with a constant nonzero magnitude at M points
and zero magnitude at (L− 1)M points. The design takes place in Zak space. The
use of Zak space setting enables selection of a desirable Fourier transform zero
placement, reduces computations, and links the Golay sequence design with the
design of perfect sequences.

Keywords Bat chirp · Complementary sequences · Correlation · Discrete chirp ·
Fourier transform · Fourier transform support ·Golay sequences with all-zero cross-
correlation · Perfect sequences · Polyphase · Zak transform · Zak transform support
· Zero correlation zone

1 Introduction

Polyphase or unimodular sequences with good correlation properties have use in
several applications, including, among others, wireless communications, multistatic
radar, and cryptography [11, 12, 14, 18]. In general, design of these sequences is
a difficult combinatorial-analytic task [19, 20]. This difficulty can be mediated by
narrowing focus of investigation to some special cases. These cases include: (1) the
sets of sequences with ideal zero out-of-phase autocorrelation and minimum con-
stant crosscorrelation, called perfect sequence sets (PSS), (2) the sets of sequences
with both auto and crosscorrelation assuming a zero value for delays contained in
the zero correlation zone (ZCZ), called ZCZ sequence sets, and (3) the sets of Golay
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or complementary sequences whose individual autocorrelations add up to an ideal
autocorrelation. In this work we also focus on a special case, on certain sets of
polyphase sequences with all-zero crosscorrelation, and show that they are both
Golay and ZCZ. We treat this case as an integral part of a general sequence design
framework based on the Zak space (ZS) methods, which reduces computations and
links the design with prior constructions [7, 10]. Before describing the results of this
investigation in greater detail, we will formally define some basic terms.

Two N-point complex valued sequences x(0) and x(1) are complementary or Golay,
if their aperiodic autocorrelations, ẑ(0) and ẑ(1), sum up to an ideal aperiodic auto-
correlation [13], i.e.,

ẑ(0)(n)+ ẑ(1)(n) = 0 for all n �= 0, (1)

where aperiodic autocorrelation is given by

ẑ(s)(n) =
N−1−n

∑
m=0

x(s)(m)(x(s))∗(m+n), 0≤ n < N, s = 0,1. (2)

More precisely, two N-point sequences satisfying condition (1) are called an aperi-
odically complementary sequence pair (ACSP). Two generalizations of ACSP are
of interest here. First, the complementarity property can be extended in an obvious
way to an aperiodically complementary sequence set (ACSS) of size T . Second,
ACSPs and ACSSs can be viewed as special cases of periodically complementary
sequence pairs (PCSPs) and periodically complementary sequence sets (PCSSs) [3].
For PCSP a condition analogous to (1) holds, involving periodic autocorrelations,
defined by

z(s)(n) =
1
N

N−1

∑
m=0

x(s)(m)(x(s))∗(m−n), 0≤ n < N, s = 0,1, (3)

where m−n is taken modulo N. ACSSs and PCSSs are linked by the equation

z(s)(n) = ẑ(s)(n)+ ẑ(s)(n−N), 0≤ n < N, 0≤ s < T. (4)

Extending the condition (1) to the doubly general case, we have that every PCSS of
L sequences of length N, {x(0),x(1), ...,x(L−1)}, satisfies the Golay condition

z(0)(n)+ z(1)(n)+ ...+ z(L−1)(n) =

{

L, n = 0,
0, else.

(5)

The Golay condition (5) has convenient ZS and Fourier space (FS) counterparts, i.e.,

L−1

∑
l=0

|Z(l)
L ( j,k)|=

{

L, k = 0, 0≤ j < L,
0, else,

(6)
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and

L−1

∑
l=0

|x(l)(m)|=
√

LN, 0≤ m < N, (7)

respectively, where, N = LM, L,M ∈ Z, x is the discrete Fourier transform (DFT)
of x, and XL is the finite Zak transform (FZT) of x. FZT is a two-dimensional time-
frequency representation of x, closely related to DFT. We will formally introduce
FZT in the next section. We note that the FS Golay condition (7), in contrast with
the time and ZS conditions, (5) and (6), is expressed in terms of sequences rather
than their autocorrelations. As the DFT and the FZT of the sequences considered
here are especially closely linked, the ZS Golay condition (6) provides convenient
means of manipulating the DFT support structure directly by the ZS methods.

Our point of departure in the PCSS design is one of the best known polyphase
sequences, the discrete chirp. Several former results relevant to discrete chirps are
fundamental and need to be recalled here. First, a discrete chirp is N-periodic if its
parameters, the normalized versions of the chirp rate ā and the carrier frequency b̄,
conform to a certain modest restriction [1]. Second, the N-periodicity condition is
equivalent to the ZS support condition for chirps, which specifies when the FZT of a
discrete chirp is semi-polyphase, i.e., with zero or constant nonzero magnitude [5].
Furthermore, a discrete chirp that satisfies the N-periodicity condition has a DFT
with either semi-polyphase or polyphase support, depending on co-primality of ā
and N [4].

It follows from this and from the DFT and FZT conditions for Golay sets, (7) and
(6), that

• A discrete chirp with a semi-polyphase FZT has a polyphase DFT, when
(ā,N) = 1. The discrete chirp is then a perfect sequence called a bat chirp [10].
The set of all N-point bat chirps having identical values of L, M, and b̄, but
distinct ā, the latter satisfying the above co-primality condition, is a PSS.

• Alternatively, a discrete chirp with a semi-polyphase FZT has a semi-polyphase
DFT, when (ā,N) = c �= 1. In this case we call (slightly abusing the language)
the discrete chirp a Golay sequence, or a Golay chirp. The set of all N-point
Golay chirps associated with identical values of L and M, and supported on
appropriately specified nonoverlapping sets of FZT rows, is a PCSS.

This taxonomy is important because while not all polyphase Golay sequences have
a semi-polyphase DFT, those who do have particularly favorable properties.

In [6, 7] a new construction of PCSS, called construction A, was introduced. This
construction is associated with the L×M, M =

√
L, FZT lattice, and is given by a

collection of
√

L bat chirps, appropriately zero-padded in ZS. The construction has
the combined properties of a ZCZ sequence set, all-zero crosscorrelation, highly
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sparse semi-polyphase FZT and DFT, and a high degree of set parameterization,
permitting further sequence specialization.

Here, we describe another special case of PCSS contained in the above taxonomy,
called the construction B. As construction A, this new construction is performed in
ZS and, as construction A, it has the properties of ZCZ sequence set, all-zero cross-
correlation, and highly sparse semi-polyphase FZT and DFT. Unlike construction A,
individual sequences of construction B are given by FZTs of discrete chirps whose
supports are restricted to single rows and whose DFT supports are combs. This spe-
cial FZT and DFT support structure is achieved by appropriately specializing the
ZS support condition. In comparison with the construction A, the construction B
offers a wider choice of dimensions of the FZT lattice, achieves the upper bound on
the product of the |ZCZ| and the sequence set size, and reduces computational com-
plexity of crosscorrelation approximately by a factor log2 N

3 , when compared with

construction A, and by a factor of 2log2 N+1
2+M/L , when compared with direct FS imple-

mentation. These advantages are acquired at the cost of reduced number of available
PCSSs and larger alphabet size. Constructions A and B are the two principal PCSS
constructions for a non-prime N. Several other, special ZS constructions of PCSS
are possible, but will be considered elsewhere.

Former work on Golay sequences is quite extensive. For brevity we will mention
here only a few key contributions directly related to our work: the original Golay
paper [13], an introduction to the periodic codes [3], a similar design obtained by
time domain analysis [17], and our prior ZS construction [6–7]. An extensive bibli-
ography on perfect and Golay sequences is given in [14] and [18].

The content of the chapter is as follows. Section 2 provides overview of FZT. Section
3 introduces the finite chirp. Section 4 describes the construction B and its main
properties. Section 5 compares construction B with relevant prior designs.

2 FZT

Take x to be any N-periodic sequence in C N and set eN(n) := e2πin/N , the N-th root
of unity. The discrete Fourier transform (DFT) of x is

x(m) =
N−1

∑
n=0

x(n)eN(nm), 0≤ m < N. (8)

Suppose for the remainder of this chapter that N = LM, where L and M are positive
integers, and set n = k + rM, m = j + sL, 0 ≤ k,s < M, 0 ≤ r, j < L. Then the
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values of x(m) on a decimated set, say, m = j+0L, are given by

x( j) =
M−1

∑
k=0

eN( jk)
L−1

∑
r=0

x(k+ rM)eL(r j). (9)

The inner sum in (8) is called the finite Zak transform (FZT) of x [22],

XL( j,k) =
L−1

∑
r=0

x(k+ rM)eL(r j). (10)

It follows that computing XL requires M L-point DFTs of the sequences

x(k),x(k+M), ...,x(k+(L−1)M), 0≤ k < M. (11)

For L = N and M = 1 the FZT XN is identical with the DFT of x. For L = 1 and M =
N the FZT X1 is identical with x. The FZT has several applications in mathematics,
quantum mechanics and signal analysis. Both the continuous Zak transform and the
FZT play a major role in the analysis of time–frequency representations, including
ambiguity functions and Weyl-Heisenberg expansions. Here, we will state, without
proofs, only a few basic properties of the FZT. For a more extensive review of Zak
transform theory and a historical background, the reader is referred to [16].

Like the DFT, the FZT is a one-to-one mapping. A signal x can be recovered from
its FZT by the formula

x(k+ rM) = L−1
L−1

∑
j=0

XL( j,k)eL(−r j). (12)

Define the inner product on C L×C M by

〈XL,YL〉=
L−1

∑
j=0

M−1

∑
k=0

XL( j,k)Y ∗
L ( j,k). (13)

We have

||x||2 = 1
L
||XL||2. (14)

Up to a scale factor, the FZT is a linear isometry from C N onto C L×C M . The FZT
is periodic in the frequency variable and quasiperiodic in the time variable, i.e.,

XL( j+L,k) = XL( j,k), (15)

and

XL( j,k+M) = XL( j,k)eL(− j). (16)
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A related property describes the FZT of time and frequency shifts of x. Set y(n) =
x(n−c) and z(n) = x(n)eN(dn), where 0≤ c < M and 0≤ d < L. Then the FZTs of
y and z are given by

YL( j,k) = XL( j,k− c) (17)

and

ZL( j,k) = XL( j+d,k)eN(dk). (18)

Consider the cyclic crosscorrelation of two N-periodic polyphase sequences, x and
y, given by

z(n) = (y) x)n :=
1
N

N−1

∑
m=0

y(m)x∗(m−n), 0≤ n < N, (19)

where m− n is taken modulo N. When y = x, the cyclic crosscorrelation is called
the cyclic autocorrelation. Take XL, YL, and ZL to be the FZTs of x, y, and z in (19),
respectively. Then

ZL( j,k)=
1
N

M−1

∑
l=0

YL( j, l)X∗
L ( j, l− k). (20)

The result of this operation can be viewed as an assembly of L M-point time domain
crosscorrelations performed on frequency slices of the L×M Zak space (ZS) sig-
nals, XL and YL. The ZS correlation formula was previously used to reveal an inti-
mate relationship of PSSs with certain permutation sequences, and resulting in
replacement of the analysis of PSSs with the analysis of permutations [10], and
in our prior work on Golay sequences [7]. The construction of the Golay sequence
set given here can be viewed as an extension of this work.

3 The Finite Chirp

Consider the discrete chirp

x(n) = eL2

(

an2

2

)

eL(bn), 0≤ n < N, (21)

where a is the discrete chirp rate, b is the discrete carrier frequency, and a, b ∈ R.
To compactify expressions, we will use the following normalized chirp parameters,
ā = aK, ¯̄a = aK2 and b̄ = bK, where K = M/L.
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Take n = k+ rM, 0≤ k < M, 0≤ r < L, as in Sec. 2. Then (21) can be expressed as

x(k+ rM) = eN

(

āk2

2
+ b̄Lk+ ¯̄aLkr

)

e

(

¯̄ar2

2
+ b̄r

)

. (22)

We impose two conditions on x(n). First, we require that x(n) be periodic with
period N, i.e.,

x(n+N) = x(n). (23)

Second, we require that XL has a semi-polyphase support, i.e.,

|XL( j,k)|=

⎧

⎨

⎩

A, ( j,k) ∈ supp(XL)⊂ NL×NM,

0, else,
(24)

where A = ||XL||2√
S (XL)

∈ R, S (XL) is the cardinality of the support of XL, and “⊂”

denotes “a proper subset of”.

The periodicity and semi-polyphase support conditions facilitate development of
highly efficient and flexible algorithms for chirp and chirp-like signal processing [1,
4–10].

Both, periodicity and semi-polyphase support, restricts the values of ā, ¯̄a, b̄, and L.

The periodicity condition

ā ∈ Z and
¯̄aL2

2
+ b̄L ∈ Z, (25)

follows directly from (22). The conditions for semi-polyphase support of XL are
somewhat more difficult to obtain. In [5] several conditions of semi-polyphase sup-
port were derived. The most general of these conditions is given by

ā ∈ Z, ¯̄a =
n
d
∈Q and

nL
2

+ b̄L ∈ Z. (26)

Since M ∈ Z, d|L, and hence it follows that the conditions (25) and (26) are equiva-
lent.

Theorem 1. A discrete chirp is periodic iff the FZT of a discrete chirp is semi-
polyphase.
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4 Construction B

In this section a new Zak space construction of polyphase (in time), semi-polyphase
(in FS), ZCZ, all-zero crosscorrelation, cyclic Golay sequence sets (PSZAG) is
described. We begin with a suitable restriction of the ZSC (26).

4.1 Restriction of ZSC

Consider the sequence set

Sγ ,P = {x(γ ,p), p ∈ ZL}, (27)

for some γ ∈ Z, (γ ,M) = P, of polyphase sequences (22), with parameters a and b
given either by

a = γL2/M, b = p/M+L/2M, γ , L, M ∈ Zodd , p ∈ ZL, (28)

or

a = γL2/M, b = p/M, γ , L, M ∈ Z, γM ∈ Zeven, p ∈ ZL. (29)

In either case

ā = γL ∈ Z and
¯̄aL2

2
+bM = (γL2/2+b)M ∈ Z, (30)

and hence the ZSC (26) is satisfied. As will be seen later, since (28–29) is a restric-
tion of ZSC (26), x(γ ,p) is a special case of the finite chirp x, equipped with some
additional desirable properties, however it is not a bat chirp, as (ā,N) = LP �= 1.

Suppose, for convenience, that the following extension of the condition (28) holds:

a = γL2/M, b = p/M+L/2M, γ , L, M, p ∈ Z. (31)

Then (22) can be rewritten as

x(γ ,p) = eM

(

γ
k2

2
+

pk
L

+
k
2

)

eL(pr). (32)

Expression (32) directly accommodates the condition (28), or, with the term k/2
removed, the condition (29). We will use (32), with the understanding that the results
obtained are easily adaptable to sequences conforming to condition (29). The parity
of γ , L, and M will subsequently be considered only when it is necessary.

Taking FZT of (32) yields the following result
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Theorem 2.

X (γ ,p)
L ( j,k) =

⎧

⎨

⎩

Lx(γ ,p)k , ( j+ p) mod L≡ 0,

0, else,
(33)

where x(γ ,p)k = eM(γ k2

2 + pk
L + k

2 ).

Theorem 2 is the principal tool in the analysis of Sγ ,P. In the next subsection, we
will use it to investigate correlation properties of sequences in Sγ ,P.

4.2 Correlation Properties

We investigate auto and crosscorrelation properties of sequences in Sγ ,P. Cross-
correlation of any sequence pair in Sγ ,P is ideal. Individual autocorrelations of
sequences in Sγ ,P are not ideal, however sequences in Sγ ,1 have M-point |ZACZ|,
and the sets Sγ ,1 and S ′

γ ,P (an enlargement of Sγ ,P defined in (41)) are Golay.

Crosscorrelation

The next result follows directly from (33) and the ZS correlation formula (20).

Theorem 3. Any two distinct sequences in Sγ ,P have perfect all-zero cross-
correlation.

Autocorrelation

Using (33) and (20) we can compute the ZS autocorrelation of x(γ ,p) as follows

Z(γ ,p)
L ( j,k)

=
1
N

M−1

∑
l=0

X (γ ,p)
L ( j, l)X (γ ,p)∗

L ( j, l− k)

=

⎧

⎪

⎨

⎪

⎩

L2

N ∑M−1
l=0 eM

(

γ l2

2 + pl
L + l

2

)

eM

(

γ −(l−k)2

2 − p(l−k)
L − l−k

2

)

, j = L− p,

0, else,

=

⎧

⎪

⎨

⎪

⎩

L
M eM

(

γ −k2

2 + pk
L + k

2

)

∑M−1
l=0 eM (γkl) , j = L− p,

0, else,

=

⎧

⎨

⎩

LeM(−γM2

2P2 t2 + pM
PL t + M

2Pt), j = L− p, k = tM
P , t ∈ ZP,

0, else.
(34)
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The inverse FZT of Z(γ ,p)
L yields

z(γ ,p)(k+ rM) =

⎧

⎨

⎩

eM(−γM2

2P2 t2 + pM
PL t + M

2Pt)eL (pr) , k = tM
P , t ∈ ZP,

0, else.

(35)

Specializing the chirp rate factor γ in (35) endows construction B with the next
property.

Theorem 4. Take

(γ ,M) = 1. (36)

Then

z(γ ,p)(k+ rM) =

⎧

⎨

⎩

eL (pr) , k = 0,

0, else,
(37)

and hence the set Sγ ,1 is a ZCZ set with M-point |ZACZ|.

Autocorrelation Sum

Consider again the general case, (γ ,M) = P. From (35)

L−1

∑
p=0

z(γ ,p)(k+ rM)

=

⎧

⎨

⎩

e2P(
−γM

P t2 + t)∑L−1
p=0 ePL(p(rP+ t)), k = tM

P , t ∈ ZP,

0, else,

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

L, r = t = 0,

e2P(
−γM

P t2 + t)∑L−1
p=0 ePL(p(rP+ t)), k = tM

P , t ∈ ZP/{0},

0, else.

(38)

It is apparent that the sum in (38)

L−1

∑
p=0

ePL(p(rP+ t)) = 0 (39)
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iff the condition (36) is satisfied. It follows then that the sum of cyclic autocorrela-
tions of all sequences in Sγ ,1,

L−1

∑
p=0

z(γ ,p)(k+ rM) =

⎧

⎨

⎩

L, r = k = 0,

0, else,
(40)

is an ideal autocorrelation sequence, or, equivalently, by (5),

Theorem 5. The set Sγ ,1 is cyclic Golay.

This result can be extended to a larger set of sequences. Suppose (γ ,M) = P �= 1,
and take

S ′
γ ,P = {x(γ ,p), p ∈ ZPL}. (41)

It follows directly from (38) that the sum

PL−1

∑
p=0

z(γ ,p)(k+ rM) =

⎧

⎨

⎩

PL, r = k = 0,

0, else,
(42)

yields an ideal autocorrelation sequence, and hence

Theorem 6. The set S ′
γ ,P is cyclic Golay.

The sequence sets Sγ ,1 and S ′
γ ,P are two distinct Golay set constructions; Sγ ,1 is

Golay due to restriction on (γ ,M), and S ′
γ ,P ⊃ Sγ ,P is Golay due to inclusion in

the set of certain modulations of Sγ ,P. Moreover, Sγ ,1 is a ZCZ sequence set, while
S ′

γ ,P is not.

4.3 DFT Support

Below we will show that x(γ ,p) is semi-polyphase in the frequency domain. We focus
on sequences satisfying the condition (28) and assume (γ ,M) = 1. The general case
was considered in [4].

We need first to define the quadratic Gauss sum [2], which will be subsequently
used in the derivation. Set

Gn(m) =
n−1

∑
k=0

en(mk2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

m
n

)√
n, n≡ 1 mod 4,

0, n≡ 2 mod 4,

(

m
n

)

i
√

n, n≡ 3 mod 4,

(

n
m

)

(1+ im)
√

n, n≡ 0 mod 4,

(43)
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where
(

m
n

)

is the Jacobi symbol given by the product

(m
n

)

=

(

m
n1

)(

m
n2

)

· · ·
(

m
nl

)

, (44)

n = n1n2 · · ·nl , nk are odd positive primes, not necessarily distinct, m is any integer,

(

m
nk

)

=

⎧

⎨

⎩

1, m is a quadratic residue modulo nk,
−1, m is a quadratic nonresidue modulo nk,
0, nk | m,

(45)

is the Legendre symbol, and
(

m
1

)

= 1.

Now we can proceed with computing the DFT support. Taking the DFT of x(γ ,p)

as an inverse FZT of X (γ ,p)
L in (33) in k, yields

x(γ ,p)( j+ sL)

= L
M−1

∑
k=0

X (γ ,p)
L ( j,k)eN( jk)eM(sk)

=

⎧

⎪

⎨

⎪

⎩

L∑M−1
k=0 eM

(

γ k2

2 + pk
L + k

2

)

eN( jk)eM(sk), j+ p mod L≡ 0,

0, else,

=

⎧

⎪

⎨

⎪

⎩

L∑M−1
k=0 eM

(

γk2+(2s+3)k
2

)

, j+ p mod L≡ 0,

0, else,

(46)

Since the expression in the sum is M-periodic, we have that for j+ p mod L≡ 0,

S1 := L
M−1

∑
k=0

eM

(

γk2 +(2s+3)k
2

)

=
L
2

2M−1

∑
k=0

e2M
(

γk2 +(2s+3)k
)

. (47)

Since (γ ,M) = 1, there is γ ′ ∈ Z such that γγ ′ ≡ 1 mod 2M. Then the Galois con-
jugate [15] of S1
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S′1 =
L
2

2M−1

∑
k=0

e2M
(

γ ′(γk2 +(2s+3)k)
)

=
L
2

2M−1

∑
k=0

e2M
(

(k2 + γ ′(2s+3)k
)

=
L
2

2M−1

∑
k=0

e2M

(

(

k+ γ ′
2s+3

2

)2

− γ ′2
(2s+3)2

4

)

=
L
2

e2M

(

−γ ′2 (2s+3)2

4

) 2M−1

∑
k=0

e2M

(

(

k+ γ ′
2s+3

2

)2
)

=
L
2

e2M

(

−γ ′2 (2s+3)2

4

) 2M−1

∑
k=0

e8M
(

(2k+ γ ′(2s+3))2) . (48)

Since γ ′ is odd, γ ′(2s+3) is odd and hence

S′1 =
L
2

e2M

(

−γ ′2 (2s+3)2

4

) 2M−1

∑
k=0

e8M
(

(2k+1)2)

=
L
4

e2M

(

−γ ′2 (2s+3)2

4

) 8M−1

∑
k=0, k odd

e8M
(

k2)

=
L
4

e2M

(

−γ ′2 (2s+3)2

4

)

{

8M−1

∑
k=0

e8M
(

k2)−
8M−1

∑
k=0, k even

e8M
(

k2)
}

=
L
4

e2M

(

−γ ′2 (2s+3)2

4

)

{

8M−1

∑
k=0

e8M
(

k2)−
4M−1

∑
k=0

e2M
(

k2)
}

(49)

which by (43) is equal to

S′1 =
L
4

e2M

(

−γ ′2 (2s+3)2

4

) 8M−1

∑
k=0

e8M
(

k2) (50)

and, by the inverse mapping,

S1 =
L
4

e2M

(

−γ ′ (2s+3)2

4

) 8M−1

∑
k=0

e8M
(

γk2)

=
L
4

e2M

(

−γ ′ (2s+3)2

4

)(

8M
γ

)

(1+ iγ)
√

8M, (51)

the last equality resulting from evaluation of the quadratic Gauss sum (43).

Inserting (51) into (46) and taking the magnitude of the lhs yields the following
result.
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Theorem 7. [4]

|x(γ ,p)( j+ sL)|=

⎧

⎨

⎩

L
√

M, j = L− p, s ∈ ZM, p ∈ ZL,

0, else,
(52)

and hence x(γ ,p) is semi-polyphase.

Moreover, since

∑
p∈ZL

|x(γ ,p)( j+ sL)|= L
√

M, for all j ∈ ZL and s ∈ ZM, (53)

it follows from (7) that the set Sγ ,1 is cyclic Golay, which reproves (40).

Using arguments similar to the ones given in [4], it can be furthermore shown that
the semi-polyphase property is shared by all sequences in S ′

γ ,P, provided either
condition (28) or (29) holds, but for sequences in Sγ ,P and S ′

γ ,P the DFT support
decreases by P wrt sequences in Sγ ,1. It follows that

∑
p∈ZPL, x∈S ′

γ,P

|x(γ ,p)| (54)

is polyphase and

∑
p∈ZL, x∈Sγ,P

|x(γ ,p)| (55)

is semi-polyphase, and hence, as shown in previous subsection, the cyclic Golay
property holds for Sγ ,1 and S ′

γ ,P, but not for Sγ ,P.

Example 1 Take L = 2, K = M/L∈Z, γ ∈Zodd , b = p/2K, a = 2γ/K, and (γ ,K) =
1. The sequences

x(γ ,p) = e4K
(

γk2 + pk
)

e2(pr), p = 0,1,

form a cyclic Golay pair.
Suppose γ = 1. Then the DFT of x(γ ,p),

x(γ ,p)( j+ sL) =

⎧

⎨

⎩

2(1+ i)
√

Ke4K(−s2), j = L− p,

0, else.
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Some Other Examples of Construction B

Example 2 L×M = 3×3, a = 3γ , γ ∈ {1}, b = p/3+1/2, p ∈ Z3.

Example 3 L×M = 7×5, a = 49γ/5, γ ∈ {1,3}), b = p/5+7/10, p ∈ Z7.

Example 4 L×M = 5×7, a = 25γ/7, γ ∈ {1,3,5}, b = p/7+10/7, p ∈ Z5.

Example 5 L×M = 9×3, a = 27γ , γ ∈ {1}, b = p/9+3/2, p ∈ Z9.

Example 6 L×M = 3×9, a = γ , γ ∈ {1,5,7}, b = p/3+1/6, p ∈ Z3.

For b chosen so that bM ∈ Z, the respective sets of allowed values of γ are {2},
{2,4}, {2,4,6}, {2}, and {2,4,8}.

5 Comparison with Some Prior Constructions

Construction B is related to construction A [7] and to the Mow construction [17].

Comparison with Construction A

In comparison with construction A, construction B has three key advantages and
two disadvantages. The advantages are:

1. FZT lattice tesselation. While construction A is essentially limited to L×M
lattices, where L, M =

√
L ∈ Z, construction B permits all L, M ∈ Z,

2. Upper bound on |ZACZ| × |Sγ ,1|. Construction B achieves the upper bound,
N (compared to N/M for construction A), on the product of |ZACZ| and the
number of sequences in the set (M and L, respectively), and

3. Computational complexity of crosscorrelation. As described in [7], computa-
tion of the crosscorrelation of x and its delayed version, y, includes three stages:
FZT of y, ZS crosscorrelation of x and y, and inverse FZT of the result. For
construction B complexity of the first and the third stage is reduced due to the
special support structure of XL and YL (Theorem 2). The next paragraph shows
these computational stages in detail, both in ZS and in direct FS implementation.

Algorithm

• Off-line

– Compute L×M FZT / N-point DFT of x, yielding XL and x, respectively.

• On-line
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– Compute L×M FZT / N-point DFT of y, yielding

YL( j,k) =

⎧

⎨

⎩

∑L−1
r=0 y(k+ rM)eL(rp), j = p,

0, else.

where 0≤ k < M, and

y(m) =
N−1

∑
n=0

y(n)eN(nm),

where 0≤ m < N.

– Perform ZS / FS crosscorrelation z of x and y, yielding

ZL( j,k) =

⎧

⎨

⎩

1
N ∑M−1

l=0 YL(p, l)X∗
L (p, l− k), j = p,

0, else.

where 0≤ k < M, and

z(m) = y(m)x∗(m),

where 0≤ m < N, respectively.

– Compute the inverse FZT / DFT of the result of previous stage,

z(k+ rM) =
1
L

ZL(p,k)eL(−rp),

where 0≤ k < M, 0≤ r < L, and

z(n) =
1
N

N−1

∑
m=0

z(n)eN(−nm),

where 0≤ m < N.

Since FZT of a sequence in Sγ ,P is supported on a single row of XL, its computation
is reduced to taking the product in (33), x(k+rM)eL(−rp), which requires N multi-
plications. The remaining two stages require M2 and N multiplication, respectively,
with the inverse FZT taken as the outer product of ZL(p,k) and eL(−rp). Overall,
the computational complexity of ZS realization of construction B is

OZS
B = M2 +2N (56)

and of direct FS realization of construction B is

OFS
B = N +2N log2 N, (57)
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which is greater than computational complexity of ZS realization by nearly a factor
of

OFS
B

OZS
B

=
N +2N log2 N

M2 +2N
=

2log2 N +1
2+M/L

≈ log2 N. (58)

To compare ZS realizations of constructions A and B we need to select an appropri-
ate FZT lattice tesselation. For a standard realization of construction A, L = N2/3,
it’s computational complexity is

OZS
A = N2/3 +

2
3

N log2 N, (59)

which is greater than computational complexity of construction B,

OZS
B = N2/3 +2N, (60)

by nearly a factor of

OZS
A

OZS
B

=
N2/3 + 2

3 N log2 N

N2/3 +2N
≈ log2 N

3
. (61)

The Number of PCSSs and the Alphabet Size

Take Φ(n) to be the Euler totient function that counts the number of positive inte-
gers, less or equal n, that are co-prime with n. One disadvantage of construction
B (considering the smaller of the two sets of PCSSs, Sγ ,1) is in the number of
available PCSSs: instead of M!LM distinct sequence sets for each distinct choice of
FZT lattice tesselation parameters, only Φ(M)L sets are available, if trivial opera-
tions, such as constant phase multiplications, are ignored. The factor Φ(M) denotes
the available choices of γ and the factor L, the available choices of p. In the latter
case, observe that insertion of the factor eM(k) into (46), that corresponds to taking
p′ = p+L in (32), permutes the nonzero values of x, but does not change x support
size or structure. Another potential disadvantage of construction B is the number of
phases, N, which is M times greater than the number of phases required for con-
struction A.

Construction A+B

The constructions A and B can be mixed to produce a combined set while retain-
ing all PSZAG properties. The first four properties follow from the construction.
The cyclic Golay property can be derived either from the DFT support results or
directly, from slightly extended autocorrelation computations.
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Example 7 Take L= 5, M = 4, a= L2/M, b= 1/M for a sequence from construction
B, so that

X (0)
L ( j,k) =

⎧

⎨

⎩

LeM( 25k2

4 + k
4 ), j = 4,

0, else,

and X (1)
L is an FZT of a sequence from construction A,

X (1)
L ( j,k) =

⎧

⎨

⎩

L, j = k,

0, else.

It follows from that
supp(x(0)) = {4,9,14,19},

supp(x(1)) = {0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18},
and

z(0)(n)+4 z(1)(n) = 0 for n �= 0.

The factor 4 in the above results from unequal supports and hence unequal magni-
tudes of x(0) and x(1).

Multicolumn Construction

Construction B can be generalized to a multicolumn construction [9], however, in
this case the DFT of x, in general, does not preserve the semi-polyphase property.

Relation to the Mow Result

In [17] Mow proposed a time domain approach for the design of polyphase cyclic
Golay sequence sets with all-zero crosscorrelation. He conjectured that his approach
includes all possible sets of this kind. Both, the construction B given here, and the
construction A described in [7], disprove this conjecture, as they permit the ratio of
sequence length and set size, M, to contain a square, a case explicitly rejected in
[17]. For example, the parameter choices (γ ,L,M) = (1,7,8), (γ ,L,M) = (1,8,24),
(γ ,L,M) = (1,8,4), and (γ ,L,M) = (1,8,8), with a selection of an appropriate
b, all yield PSZAG sequence sets. Constructions B has also the additional advan-
tage in that it is performed in ZS, which provides more insight into the structure
of sequences and more economy of crosscorrelation computation than the Mow
approach.
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Reversible Jump Particle Filter (RJPF) for
Wideband DOA Tracking

Thomas Wiese, Justinian Rosca and Heiko Claussen

Abstract We extend the maximum likelihood method for wideband direction of
arrival (DOA) estimation to the case of an unknown number of moving sources.
The extension is nontrivial because closed-form expressions for the conditional sig-
nal covariance matrices are no longer available. We propose a reversible jump parti-
cle filter (RJPF) based estimation of the source angles, which has been successfully
used in narrowband DOA estimation of moving sources. We discuss added difficul-
ties in DOA estimation compared to frequency retrieval problems. These difficul-
ties are addressed by appropriate modifications of the underlying stochastic model.
Finally, we show how an estimator of the number of sources and their positions
can be constructed from a discrete representation of their posterior probabilities as
provided by the particle filter.

Keywords DOA estimation · Wideband · Particle filter · Reversible jump

1 Introduction

In fields like radar, wireless communications, or speech recognition, one targets the
position or direction of certain objects, e.g., airplanes, cell phones, or speakers, rel-
ative to a reference. This problem is approached by measurements with a sensor
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array of the source signals generated by the objects either actively or passively. To
estimate the directions of arrival (DOA) of the sources, it is sufficient to record
the time differences of arrival of the signals at the sensors of the array. When nar-
rowband signals are emitted, these time differences can be approximated by phase
shifts, which makes the problem computationally tractable. Most successful algo-
rithms for the DOA estimation problem are variants of ESPRIT [23] or MUSIC [24]
that use subspace fitting techniques [28] to compute solutions fast.

Subspace methods for wideband signals infer DOA estimates that fulfill the sig-
nal and noise subspace orthogonality over possibly multiple frequencies, for each
of which the narrowband signal assumption is satisfied. Signal and noise subspaces
are computed from the sample covariance matrix of the measured data. In particular,
coherent subspace methods (CSSM) [29] compute reference signal and noise sub-
spaces by transforming all data to a reference frequency and deriving optimal DOA
estimates with corresponding steering vectors orthogonal to the noise subspace at
the reference frequency. Good initial estimates are necessary for the transformation
to a reference frequency to work [27]. This issue is alleviated by methods like BI-
CSSM or TOPS [13, 32]. A more important drawback of subspace methods, how-
ever, is that their performance degrades with increasing signal correlation amongst
the sources.

Bayesian DOA methods [14] stand in contrast to the above by grounding esti-
mation in a decision theoretic framework, which is mathematically elegant, more
general, and powerful to express the update of beliefs under evidence of new mea-
surements, that is, the posterior probability density function of the DOAs. However,
the increased expressibility comes at the expense of increased computational effort
to calculate a solution.

In our recent work, we presented a particle filter based algorithm, which we
called multiple source tracking (MUST) [31], that can obtain DOA estimates of
possibly correlated sources at lower signal to noise ratios (SNR) compared to sub-
space techniques. Moreover, it can track sources in moving source scenarios that
pose difficulty to outstanding subspace methods.

In this chapter, we extend wideband DOA estimation introduced in [31] to the
case of an unknown number of moving sources by means of a reversible jump par-
ticle filter (RJPF) based estimation of the source angles. Reversible jump Markov
chain Monte Carlo (MCMC) methods were introduced in [8] and have since been
used to generate efficient approximations in Bayesian inference under model uncer-
tainty for the frequency retrieval problem [3, 19], which is related to the DOA prob-
lem, and for narrowband DOA estimation [12].

The estimator of the number of sources and their positions can be constructed
from a discrete representation of their posterior probabilities provided by the particle
filter. In [19] and [31], the estimator of the positions is preceded by a clustering, or
label switching, step. This step increases the efficiency of the estimator as no, or few,
particles need to be discarded. However, in this chapter, we argue that this technique
can lead to biased estimates if either the signals are too correlated or if the angles
between steering vectors for different angles are too small. We present an iterative
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algorithm that approximates a maximum a posteriori (MAP) estimate of all source
angles, simultaneously.

This chapter is arranged in the following order: In the Sect. 2 we define the DOA
problem for a known number of sources and present two possible formulations for
the likelihood function. In Sect. 3, we explore the likelihood function that is obtained
if the nuisance parameters are modeled as random variables. We refer to some fun-
damental detection limits that motivate the use of nonlinear arrays and wideband
methods. Furthermore, our discussion of subspace methods and its limitations pro-
vides some intuition regarding the shape of the likelihood function.

In Sect. 4 we introduce the DOA problem for an unknown number of sources as
a Bayesian model selection problem. We extend the likelihood function to comprise
the unknown number of sources and discuss the influence of the nuisance parameters
on the estimator for the number of sources. Furthermore, we show that the modified
likelihood function provides a better estimator for the number of sources.

In Sect. 5 we provide a particle filter based algorithm for online calculation of the
posterior distributions of the unknown number of sources and their angles of arrival.
Subsequently, in Sect. 6, we present an algorithm that calculates point estimates
of the number of sources and their angles from the discrete representation of the
posterior density function provided by the particle filter. Finally, in Sect. 7, we show
the simulation results that highlight the possible performance gains of a particle
filter over subspace methods for a known and unknown number of sources. We
summarize our results and indicate possible directions of future research in Sect. 8.

2 DOA Estimation for a Known Number of Sources

We consider a linear array of M sensors with distances dm between the mth and
the first sensor, which we take as the reference sensor. These sensors record the
superpositions of unknown wavefronts, for example, acoustic signals, from different
sources located at different directions. We assume that all sources and microphones
are in a plane, hence the problem is two-dimensional. The k sources are located
at angles θ = (θ1, . . . ,θk) with respect to the sensor array axis and transmit nar-
rowband signals with wavelengths λn on n = 1, . . . ,N independent frequencies. If
during one observation period, the complex amplitudes of the signals transmitted in
the nth frequency are given by sn = (s1,n, . . . ,sk,n)

T , the vector xn = (x1,n, . . . ,xM,n)
T

of received signals can be modeled as a circularly symmetric complex Gaussian
random variable

xn ∼NC

(

An(θ)sn, σ2
n I

)

(1)

with receiver noise variance σ2
n and the design matrix An(θ) consisting of steering

vectors an(θκ),κ = 1, . . . ,k with

an(θκ) =
(

1 eiπ sin(θκ )d2/(λn/2) · · · eiπ sin(θκ )dM/(λn/2)
)T

. (2)
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All results and problem formulations in this chapter are in terms of the sines of the
angles as the source angles θκ appear in the likelihood function only through their
sines.

In practice, the N narrowband signals are obtained by transforming real valued
time-domain data into the frequency domain, e.g., by using the windowed discrete
Fourier transform (DFT), and selecting the N positive frequency bins of interest.
Multiple observation periods refer to different positions of the windows. It has been
noted that finite window-length effects give rise to model-mismatch and additional
statistical dependencies among the channels [14]. These effects are neglected here.
Furthermore, when referring to signal correlations, we speak of the statistical depen-
dencies between the coefficients sκ ,n and sκ ′,n for different sources κ ,κ ′ ≤ k at the
same frequency over different observation periods. That is, by use of finite windows,
we may obtain (approximations of) uncorrelated coherent signals.

The full likelihood function for the observed data x = (x1, . . . ,xN) and a known
number of sources can be written as

p(x|k,θ ,s,σ2
n ) =

N

∏
n=1

1
πMσ2M

n
exp

(

−σ−2
n ‖xn−An(θ)sn‖2

)

(3)

where the dependence on k is reflected by the dimension of θ and, thus, the number
of columns of An.

2.1 A Bayesian Approach for the Nuisance Parameters

We briefly present a Bayesian approach for handling the unknown parameters that
appear in the likelihood function (3), i.e., the noise variances σ2

n and the signals
sn. In Bayesian statistics, priors are introduced for all unknown parameters. These
are chosen as a compromise between a minimum of information content and ana-
lytic tractability. In the DOA and frequency retrieval problems, it is common to use
Jeffrey’s uninformative prior

p(σ2
n ) ∝

1
σ2

n
(4)

for the noise variances and the so-called g-prior

sn|k,θ ,σ2
n ∼ NC

(

0,σ2
n δ 2

n (An(θ)HAn(θ))−1) (5)

for the signal amplitudes [3, 12, 14]. The parameter δ 2
n is interpreted as an expected

signal to noise ratio at the nth frequency. In a fully Bayesian approach, δ 2
n is also

modeled as a random variable with its own (hyper-) prior distribution. However, this
parameter is of little importance if the number of sources is known. Therefore, we
postpone a discussion of δ 2

n until Sect. 4.
In the following, we calculate the marginal Bayesian likelihood function p(x|k,θ).

Let s and σ2 denote the collections of the sn and σ2
n for all n. Then, the marginal
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Bayesian likelihood function is given as

p(x|k,θ) =
∫

p(x|k,θ ,s,σ2)p(s,σ2|k,θ)d(s,σ2)

=
∫

p(x|k,θ ,s,σ2)p(s|k,θ ,σ2)p(σ2)d(s,σ2) .
(6)

We first integrate with respect to the signals s. This is done separately for each
frequency n. The g-prior is chosen such that

∫

p(xn|k,θ ,sn,σ2
n )p(sn|k,θ ,σ2

n )dsn

=
det(AH

n An)

(πσ2
n )

M+kδ 2k
n

∫

exp

(

− 1
σ2

n
‖xn−Ansn‖2− 1

(σnδn)2 sH
n AH

n Ansn

)

dsn

=
1

πMσ2M
n (1+δ 2

n )
k exp

(

−σ−2
n xH

n

(

I− δ 2
n

1+δ 2
n

Pn

)

xn

)

(7)

remains a Gaussian distribution. Here, Pn = An(AH
n An)

−1AH
n is the projection onto

the range space of An. We dropped the argument θ for legibility. In a second step,
we integrate over the noise variances σ2

n .
We distinguish two cases: First, we use independent noise variances σ2

n and inte-
grate for each frequency separately. Writing cn = xH

n (I−δ 2
n /(1+δ 2

n )Pn)xn > 0, we
calculate the integral as

∫

p(xn|k,θ ,σ2
n )p(σ2

n )dσ2
n ∝

∫ ∞

0

1
σ2

n

1
σ2M

n
exp(−σ−2

n cn)dσ2
n

= c−M
n (M−1)!

(8)

and, combining over all frequencies, we obtain

− log p(x|k,θ) = NM log

(

N

√

N

∏
n=1

cn

)

+ k
N

∑
n=1

log
(

1+δ 2
n

)

+C (9)

where C is independent of k and θ .
In the second case, we assume that all noise variances σ2

n and the parameters δ 2
n

are equal. We write, with abuse of notation, σ2
n = σ2 and δ 2

n = δ 2. In this case, the
product is under the integral sign and we obtain

∫ N

∏
n=1

p(xn|k,θ ,σ2)p(σ2)dσ2 ∝
∫ ∞

0

1
σ2

1
σ2MN exp

(

−σ−2
N

∑
n=1

cn

)

dσ2

=

(

N

∑
n=1

cn

)−NM

(MN−1)!

(10)
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The negative log-likelihood function now reads

− log p(x|k,θ) = NM log

(

1
N

N

∑
n=1

cn

)

+ kN log
(

1+δ 2)+C (11)

where we changed the scaling factor C to emphasize the similarities between both
cases: If independent noise variances are used for all channels, then the first term in
the likelihood is proportional to the geometric mean of the residual noise energies cn.
If a common noise variance is used, the geometric mean is replaced by the arithmetic
mean. In both cases, the first term describes how well the model fits the data, while
the second term can be interpreted as a penalty for the model complexity (see Sect.
4 for a discussion).

We now further simplify the likelihood function for a common noise variance
and δ 2 value. The average over cn can then be written as

1
N

N

∑
n=1

cn =
1
N

N

∑
n=1

xH
n

(

I− δ 2

1+δ 2 Pn

)

xn

=
1

1+δ 2

(

1
N

N

∑
n=1

xH
n xn +δ 2 1

N

N

∑
n=1

xH
n (I−Pn)xn

)

=
δ 2

1+δ 2

(

Ex

δ 2 +Enoise(θ ,k)
)

(12)

where

Ex =
1
N

N

∑
n=1

xH
n xn and Enoise(θ ,k) =

1
N

N

∑
n=1

xH
n (I−Pn)xn (13)

are the average energy of the received signal and the residual noise, respectively.
Hence, the negative log-likelihood (11) can be written as

− log p(x|k,θ) = NM log

(

Ex

δ 2 +Enoise(θ ,k)
)

+ kN log(1+δ 2)+C′ . (14)

In the remainder of this chapter, we will refer to (14) as the Bayesian likelihood
function.

2.2 Alternative Likelihood—Regularization

In this section, we motivate an alternative to the Bayesian likelihood function (14),
where the g-prior for the source signals is replaced by a more natural, at least in our
view, circularly symmetric Gaussian prior

sn ∼NC(0,τ−1
n I) (15)



Reversible Jump Particle Filter (RJPF) for Wideband DOA Tracking 237

with known precisions τn > 0. This alternative is also concerned with the model
selection problem discussed in Sect 4, where we introduce a penalty parameter that
is easier to interpret than the δ 2 parameter appearing in (14). Moreover, the pos-
sibility to use a weakly informative prior for the source signals (τn > 0) aides in
separating closely spaced sources (see Fig. 1).

Fig. 1 Likelihoods with five microphones, five snapshots, and a single frequency. The top left
image shows the Bayesian likelihood function for two sources located at θ1 = 15 and θ2 = 37
degrees indicated by the dashed lines, while the other images show the profile likelihoods for
different values of the regularization parameter τ

A conditional maximum likelihood (ML) estimator [26] for the angles is obtained
as

θ̂ML = argmax
θ

p(x|k,θ , ŝn(θ)) (16)
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where
ŝn(θ) =

(

An(θ)HAn(θ)+ τI
)−1

AH
n (θ)xn (17)

is the maximum a posteriori estimator of sn given the measurements and the source
locations. Hence, in ML estimation, only the profile likelihood

p(x|k,θ) ∝
N

∏
n=1

exp
(

−σ−2 ‖xn−An(θ)ŝn(θ)‖2
)

(18)

is used. Let ˜Pn = An
(

AH
n An + τnI

)

AH
n denote the regularized projection operator and

˜Enoise =
1
N

N

∑
n=1

xH
n (I− ˜Pn)xn (19)

the corresponding average residual noise energy. The negative log-likelihood func-
tion reads

− log p(x|k,θ) = σ−2N ˜Enoise . (20)

Note that xn|k,θ is still a circularly symmetric Gaussian random variable for each
n under this likelihood function. We call (20) the (negative logarithm of the) profile
likelihood function for x. Figure 1 shows that both likelihood functions are similar
if a flat (improper) prior, τ = 0, is used for the source signals. However, if nonzero
values are used for τ , the two source locations are better separated with the profile
likelihood (see Sect. 3.6 for a discussion).

3 Discussion—Known Number of Sources

The DOA problem has been studied extensively in the literature, often in the guise
of the frequency retrieval problem. We briefly discuss the relationship between both
problems in Sect. 3.1. After that, in Sect. 3.2, we refer to the fundamental limits
regarding the maximal number of angles that can be identified with a given array
of sensors. In Sect. 3.3, we briefly review the MUSIC algorithm, because a sub-
space perspective provides valuable insights into the geometry of the likelihood
function of the DOA problem. Subsequently, in Sects. 3.4 and 3.5, we highlight the
drawbacks of subspace methods in wideband problems or if the source signals are
correlated. Finally, in Sect. 3.6, we draw on the subspace view to explain why the
regularization occurring in the profile likelihood function helps separating closely
spaced sources.
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3.1 Relationship of DOA Estimation to Frequency Retrieval

The DOA problem is closely related to the frequency retrieval problem, where M
samples of a superposition of pure sine waves of unknown frequencies are recorded
at a single sensor [3, 22]. The goal is to estimate the frequencies and, perhaps,
the number of sources. This problem can be transformed into a DOA problem by
interpreting the time samples as distances between microphones and the unknown
frequencies as products of a single frequency with the sine of the source angle.
While in frequency retrieval, one typically records a sufficiently large number of
samples, the equivalent DOA problem consists of a single snapshot and a number
of microphones that equals the number of time samples in the frequency retrieval
problem. In DOA estimation, the number of sensors is typically limited to a small
number and data are recorded during several observation intervals. In contrast to the
former problem, DOA estimation is subject to ambiguities caused by constructive
and destructive interference. This is highlighted in Fig. 2, where likelihood functions
and their marginals are compared for a scenario with two sources.

Fig. 2 Left: marginal likelihood in DOA estimation with five microphones and five snapshots.
Right: marginal likelihood in DOA estimation with 25 microphones and a single snapshot—this
configuration resembles the frequency retrieval problem. The dashed lines indicate the true source
locations
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3.2 Conditions for Identifiability

A preliminary question that needs to be solved before using an algorithm that esti-
mates k angles of arrivals is whether it is feasible. If a uniform linear array (ULA)
of M sensors is used and the sources emit narrowband signals, this question can be
answered affirmatively only if k satisfies the identifiability condition

k ≤ 2rM/(2r+1) (21)

where r is the rank of the sample covariance matrix of the observed signals x [5].
If the source signal covariance matrix has full rank and if enough samples are col-
lected, (21) simplifies to k < M−1.

This condition is of little importance in the frequency retrieval problem, where
the sensors take the role of time-domain samples and where enough samples are
available (M is large). In DOA estimation, however, this constraint is severe as only
few sensors are available.

In [30] it is shown that (21) still applies if the sensors are spaced nonuni-
formly and if the largest distance satisfies dM/(λ/2) < M − 1. On the contrary,
if dM/(λ/2)> M−1, there always exist sets of angles θ and θ̃ and corresponding
source signals s and s̃, for which [17]

A(θ)s = A(θ̃)s̃ . (22)

Thus, one cannot distinguish whether a given set of observations is generated by
sources located at θ or θ̃ . If, however, additional assumptions regarding the statis-
tics of the source signals are made, it is possible to identify more than M sources [2].
Of particular interest are fully augmentable nonuniform arrays with as many integer
numbers of pairs of intersensor spacings (measured in half wavelengths) as possi-
ble [16]. An example for M = 4 is given by the normalized positions {0,1,4,6}. If
M ≤ 4, it is thus possible to separate up to M(M−1)/2−1 source signals using data
augmentation techniques [1]. For M ≥ 5, the maximal number of separable sources
is strictly smaller than M(M−1)/2−1, but still larger than the ULA limit of M−1
sources.

For two sets of wideband sources to be indistinguishable, the ambiguity condi-
tion (22) must be satisfied on all frequencies n = 1, . . . ,N, simultaneously. Hence,
ambiguities are less likely. Furthermore, the use of wideband signals improves the
accuracy of the estimator (the array has a larger aperture at higher frequencies) while
maintaining the identifiability condition dM/(λ/2)≤M−1 at the lowest frequency.
This effect is shown in Fig. 3.
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Fig. 3 Likelihood in DOA estimation with five microphones and five snapshots. Left: single nor-
malized frequencies f1 = 1. Right: three normalized frequencies f1 = 1.0, f2 = 1.5, f3 = 2.0

3.3 Subspace Based Methods

Let us assume that two sources at angles θ1 and θ2 are transmitting at a single
frequency, that s ∼ N (0,Σs), and that receiver noise is negligible. Then, x is a
random vector, distributed according to

x∼N
(

0,A(θ)ΣsA(θ)H)

. (23)

Thus, the measurements x lie in the subspace spanned by the steering vectors a(θ1)
and a(θ2). This subspace is two-dimensional if the identifiability condition (21) is
fulfilled, for example if M≥ 3 and if Σs has full rank. The subspace can be recovered
from the eigenvectors corresponding to nonzero eigenvalues of the sample covari-
ance matrix of the measurements x collected through multiple observation periods.
These eigenvectors span the signal subspace while the eigenvectors with zero eigen-
values span the noise subspace. The identifiability condition ensures that only steer-
ing vectors a(θ) that intersect this subspace correspond to the true angles θ1 and θ2.
If there was another angle θ3 for which a(θ3) intersects the subspace, A((θ1,θ2))
would generate the same range space as A((θ1,θ3)) and source signals could be
found such that (22) is true. Thus, the angles can be recovered by finding those
steering vectors that lie in the signal subspace or, equivalently, that are orthogonal
to the noise subspace.

Let us denote by W the matrix whose columns are the eigenvectors that are in the
noise subspace. Then, the angles θ1 and θ2 fulfill

a(θκ)HW HWa(θκ) = 0 , κ = 1,2 . (24)

In practice, noise is present at the receiver and the subspace can only be approxi-
mately recovered from the eigenvectors of the sample covariance matrix correspond-



242 Thomas Wiese, Justinian Rosca and Heiko Claussen

ing to the largest eigenvalues. One then selects those angles θ that correspond to the
maxima of

1

‖a(θ)HW HWa(θ)‖2 . (25)

This last expression is known as the MUSIC spectrum. One obtains the incoher-
ent MUSIC (IMUSIC) algorithm by calculating the MUSIC spectrum for each fre-
quency, separately, and then finding the angles that correspond to the peaks of the
average MUSIC spectrum.

3.4 Wideband Signals in Subspace Methods

When proceeding to wideband signals, it is no longer possible to apply subspace
methods to the sample covariance matrix of the received signals as there is one
for each frequency. Incoherent subspace methods such as incoherent MUSIC find
source angles that minimize the average of the criterion (25) over all frequencies.
As shown in Fig. 4, coherent subspace methods, such as CSSM and WAVES [6,
29] outperform their incoherent counterpart IMUSIC. These methods form a single
covariance matrix from information over all channels. This is achieved through the
use of focusing matrices [10].

Fig. 4 Probability of simultaneous detection of four sources located at θ1 = 8,θ2 = 13,θ3 = 33,
and θ4 = 37 (degrees). The correlation coefficient ρ is increased from the bold lines to the thin
lines as ρ = 0.0,0.5,0.75,0.9

The parameters used to calculate the detection probabilities of the estimators
shown in Fig. 4 are similar to those used in the DOA literature [6, 29]. Four sources
located at θ1 = 8,θ2 = 13,θ3 = 33, and θ4 = 37 (degrees) emit circularly symmet-
ric signals with unit power at each normalized frequency f1 = 0.8, f2 = 0.9, f3 =
1.0, f4 = 1.1, f5 = 1.2 and during each of 20 observation periods. The amplitudes of
the signals are uncorrelated between different observation periods, but within each
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observation period, the off-diagonal elements of the signal correlation matrix are
set to a factor 0 ≤ ρ ≤ 1. The signals received at the uniform linear array of ten
sensors with half-wavelength spacing with respect to the reference frequency f3 are
corrupted by circularly symmetric white Gaussian noise with power σ2 = 1/SNR
for each sensor and each frequency. For CSSM and WAVES, the focusing matrices
are generated using the true source locations. This is an unrealistic assumption and
significantly improves performance of these methods. It is shown in [27] that CSSM
estimates are biased if the focusing angles are not the true directions of arrival. The
ML estimate is found by evaluating the likelihood function for all possible combi-
nations of the source locations on a regular grid with 100 nodes in each dimension.

As performance criterion we used the detection probability, which is in line with
the cost function one would use to find the MAP estimate of the angles. The sources
are detected correctly if |sinθκ − sin θ̂κ | ≤ 0.07 for all κ = 1, . . . ,4. The curves in
Fig. 4 show the fraction of correct detections from a total of 100 Monte Carlo sim-
ulations with parameters as described above. Note that the ML method suffers to a
much lesser degree from signal correlation than subspace methods. Furthermore, at
low SNR levels, the ML estimator provides a significant performance gain even for
uncorrelated signals (ρ = 0). However, the ML estimation requires solving a non-
linear optimization problem, which is impractical. Therefore, we propose a particle
filter method in Sect. 5 that can be seen as a heuristic to solve this problem.

3.5 Why Subspace Methods Suffer from Correlation

A drawback of subspace methods is their limited robustness for increasing signal
correlation. This can be seen in the following example. Let us select θ1 and θ2 such
that a(θ1) and a(θ2) are orthogonal. Note that for any distinct θ1 and θ2 , this is
approximately true for large M. Furthermore, let the signal covariance matrix be
given by

Σs = σ2
s

(

1 ρ
ρ 1

)

(26)

with 0 � ρ < 1. Then, one can verify that the eigenvalue decomposition of the
covariance matrix Σx of x is given by

U

(

σ2
s (1+ρ)+σ2 0

0 σ2
s (1−ρ)+σ2

)

UH +σ2VV H

where U is given by

U = (2M)−1/2A(θ)
(

−1 1
1 1

)

(27)

and where V is such that the matrix (U V ) is the eigenbasis of Σx. As ρ approaches
one, the second largest eigenvalue of Σx approaches the noise variance σ2, i.e., the
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effective SNR decreases with increasing correlation. This drawback of subspace
methods is mentioned in [11].

3.6 Regularization in the Profile Likelihood

We give an explanation for the effect of regularization of the profile likelihood func-
tion at hand of an example with two closely spaced sources that transmit on a single
frequency. If θ1 and θ2 are close enough that the parametric curve a(θ) can be
approximated by a straight line between a(θ1) and a(θ2), then all combinations
of a(θ̃1) and a(θ̃2) span approximately the same subspace for θ1 ≤ θ̃1, θ̃2 ≤ θ2.
Let P denote the projector onto this subspace. From the eigenvalue decomposition
AH(θ̃)A(θ̃) =U diag(ξ1,ξ2)UH , we can calculate P and P̃ as

P =UUH , P̃ =U diag

(

ξ1

ξ1 + τ
,

ξ2

ξ2 + τ

)

UH . (28)

Thus, the value of the negative log-likelihood (20),

σ−2xH(I− P̃)x = σ−2xH(I−P)x+σ−2xH(P− P̃)x

= σ−2xH(I−P)x+σ−2xHU diag

(

τ
ξ1 + τ

,
τ

ξ2 + τ

)

UHx
(29)

depends on θ̃ only through the eigenvalues ξ1 and ξ2 of AH(θ̃)A(θ̃). One can verify
that these are given by

ξ1(θ̃) = M2 (1+ |cosζ |) , ξ2(θ̃) = M2 (1−|cosζ |) , (30)

where

ζ =
aH(θ̃1)a(θ̃2)

‖a(θ̃1)‖‖a(θ̃2)‖
(31)

is the angle between both steering vectors. As the SNR is decreased, UHx tends
toward a two-dimensional circularly symmetric Gaussian distribution with variance
σ2 and the expected value of the second term in (29) is given by

E

[

σ−2xHU diag

(

τ
ξ1 + τ

,
τ

ξ2 + τ

)

UHx

]

≈ τ
ξ1 + τ

+
τ

ξ2 + τ
. (32)

One can verify that this term is large if the steering vectors are aligned and small
if ζ is large. In conclusion, while the first term of the negative log-likelihood func-
tion (29) does not change as θ̃1 and θ̃2 are varied between θ1 and θ2, the second term
is smaller, i.e., the likelihood is larger, if the distance between θ̃1 and θ̃2 is increased.
Thus, separation of closely spaced sources is simplified by increased regularization
with τ .
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4 DOA Estimation for an Unknown Number of Sources

Throughout the previous sections, we described how estimates for the source posi-
tions can be obtained if the number of sources is known. However, this information
is not always available. In a complete DOA estimation algorithm, this part is referred
to as the tracking part of the algorithm and must be complemented by a detection
or initialization part [15]. Also, this latter part is referred to as a model selection
problem.

In Sect. 4.1, we discuss the Bayesian likelihood function under this new perspec-
tive. In Sect. 4.2, we modify the profile likelihood function in a way that permits
comparison of models with different numbers of sources and with the Bayesian
likelihood function.

4.1 Bayesian Model Selection

We start with the Bayesian likelihood function from (14). If the number of sources
k is unknown, one commonly introduces a truncated Poisson prior distribution,

k|Λ ∼ Poikmax(Λ) (33)

where Pr(k > kmax) = 0. The parameter Λ represents the expected number of
sources, which, in a fully Bayesian framework, is also modeled as a random variable
with a hyperprior [3, 19].

It is not obvious how an ML estimator for both variables, k and θ , can be obtained
from the likelihood function. A possible approach is to find the ML estimate θ̂(k)
for each k ≤ kmax and to use k that minimizes the negative log-likelihood function:

k̂ML = argmin
k

NM log

(

Ex

δ 2 +Enoise(θ̂(k),k)
)

+ kN log(1+δ 2) . (34)

If the Poisson prior is used for the number of sources, one can similarly find a MAP
estimate of k from

k̂MAP = argmin
k

NM log

(

Ex

δ 2 +Enoise(θ̂(k),k)
)

+ kN log(1+δ 2)− k logΛ + logk! (35)

That the data-fit term NM log
(

Ex/δ 2 +Enoise
)

is a decreasing function of k is
compensated by the penalty term kN log(1+δ 2) or kN log(1+δ 2)−k logΛ+ logk!,
respectively. It is known that both terms need to be carefully balanced for an effec-
tive model selection [18]. In a Bayesian framework, this is achieved by varying δ 2,
which represents the expected SNR. This parameter determines by how much the
residual noise energy Enoise needs to be reduced if a source is added such that a more
complex model is preferred.
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The parameter δ 2 has a strong influence on the estimation results [3, 12, 19]
as shown in Fig. 5 (top row). The probability P(kML = k) is plotted for different
values of k and δ 2 for a scenario with two closely spaced sources. The parameters
for this simulation are chosen in Sect. 3.4 except that only two sources at θ1 = 33
and θ2 = 37 (degrees) and a single observation period are used. Figure 5 shows how
many of 1000 Monte Carlo simulations result in the ML estimator (34) k̂ML = k for
0 ≤ k ≤ 4. The curves also show that the weight between the penalty term and the
data-fit term is shifted in a nonmonotonic fashion as δ 2 is increased.

Note that for 0 dB SNR, there exists no δ 2 to balance the data-fit and the penalty
terms such that k = 2 becomes the most likely number of sources (the curve for
k = 2 is always below the curve for k = 1).

It is known that no suitable noninformative prior exists in the context of model
selection problems [19]. Instead a weakly informative conjugate prior (inverse
gamma), δ 2

n ∼ I G (α,β ) , has been proposed, where α = 2 and β is either cho-
sen ad-hoc or estimated by the data, yielding an empirical Bayes method [3, 19].
Still, the hyper-parameter β has a strong influence on the estimation results [20, 21].
Therefore, we introduce a more intuitive penalty parameter for the profile likelihood
function in Sect. 4.2.

4.2 Alternative Profile Likelihood and Model Selection

Recall the profile likelihood function from Sect. 2.2

− log p(x|k,θ) = σ−2N ˜Enoise . (36)

We introduce an additive penalty term to the log-likelihood, in the spirit of the
Akaike information criterion (AIC), to compare models of different orders [18]:

− log p(x|k,θ) = σ−2N ˜Enoise + k . (37)

For the profile likelihood, the noise variance σ2 determines the balance between
the data-fit and the penalty terms. From an algorithmic point of view, it is useful to
rescale the log-likelihood as

− log p(x|k,θ) = γ(˜Enoise/Ex + k ϕ/M) (38)

where γ > 0 determines the steepness of the likelihood function, which is useful
to control particle depletion for the particle filter to be proposed in Sect. 5, and
where ϕ is a normalized penalty parameter. If no source signals are present, the
term Ẽnoise/Ex is reduced by approximately 1/M for each added source. This gives
a rule of thumb to choose ϕ . It is interesting to note that this expression can be
derived by linearization of (34).

As evident from (38) and shown in Fig. 5 (middle row, see Sect. 4.1, for the
simulation parameters and γ = N), an increase of ϕ leads to a larger penalty, i.e., the
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Identifiability of two closely spaced sources

Fig. 5 Probability that the ML estimator for the number of sources equals k (different lines). The
probability that the ML estimator finds the correct number of sources k = 2 is shown by the black,
solid curve. Top row: Bayesian likelihood. Center row: profile likelihood with τ = 0. Bottom row:
profile likelihood with τ = 1
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parameter ϕ has a direct and predictable impact on the model choice. Furthermore,
and in contrast to the Bayesian likelihood, there is a range of parameters ϕ for which
k = 2 is the most probable outcome of the ML estimator (even for 0 dB SNR).

Finally, if a regularization parameter τ = 1 is used, the probability of detecting
the correct number of sources is increased (Fig. 5, bottom row).

5 Moving Sources—A Particle Filter Approximation

In the previous section, we analyzed and constructed a suitable likelihood function
for the DOA problem. For static scenarios, it is relatively straightforward to com-
bine the likelihoods from multiple observation periods into an overall likelihood
function. The difficulty then is to develop an efficient optimization algorithm that
finds the most likely number of sources and angles [25].

However, we are interested in situations where the sources are allowed to move
between observation periods. Furthermore, the position estimates shall be updated
when new observations are available. In this case, no analytic expressions for the
resulting likelihood function can be found. Furthermore, the use of sliding windows
would result in location estimates that lag behind. Classically, adaptive filters are
used to address this issue. These recursively produce position estimates as convex
combinations between a previous location estimate and one that is based on the
current observation. A step size parameter determines the weighting between the
old and the new estimates.

Stochastic adaptive filters, in contrast, do not update point estimates but rather
the complete posterior probability distribution of the source locations. The most
widely known stochastic adaptive filter is the Kalman filter, which needs a linear
Gaussian relationship between the parameters and observations. For non-Gaussian
and/or nonlinear environments as in the DOA problem, particle filters can generate
sample-based approximations of the posterior distribution of the source locations.
An estimator is needed on top of the filter to obtain point estimates (see Sect. 6).

In Sect. 5.1 we briefly introduce particle filters and show how these are used
to solve the DOA problem for a known number of sources. Particle filters have
fast convergence properties under the assumption that a complete description of
the stochastic model is available. In particular, transition probabilities that describe
the motion of the source locations must be available. Particle filters have been suc-
cessfully applied to the narrowband DOA problem in [14], where a time domain
formulation was used and to the wideband DOA problem in [31]. Subsequently, in
Sect. 5.2, we introduce reversible jump particle filters [8] that also provide estimates
for the number of sources. These have also been used for the narrowband DOA and
frequency retrieval problems based on the Bayesian likelihood [3, 12].
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5.1 Particle Filters

A crucial step in adaptive filter design is to choose the correct step size. For stochas-
tic adaptive filters, this problem is solved by introducing a Markovian transition
kernel that describes the stochastic dependence between the source locations of sub-
sequent observation intervals. When the number of sources is known, we propose a
transition kernel of the form

p(θ j(t)|θ j(t−1)) = α pU (θ j(t))+(1−α)pN ((θ j(t)−θ j(t−1))/νθ ) (39)

where pU is a global distribution and pN is a local distribution around the previ-
ous location with scale parameter νθ that adjusts the expected speed of the moving
sources. In our simulations, we use a uniform distribution for sinθκ as pU and a
normal distribution for sinθκ as pN with the endpoints of the interval [−1,1] glued
together.

This combination of local and global proposal densities is known as a small world
proposal density [9] and is an attempt to integrate the initialization/detection part of
an overall DOA estimation algorithm with the tracking part. The authors of [9] give
a precise rule for the selection of α that requires exact knowledge of the posterior
probability density function. However, they argue that α ∈ [10−4,10−1] is a good
rule of thumb.

Let I(t) denote the collection of all measurements up to the current time t ∈ N

and let p(θ |k, I(t)) denote the posterior distribution of the source locations given all
information I(t) under the assumption of a constant and known number of sources k.
At the first observation period, the posterior is proportional to the likelihood. Then,
once new measurements become available, Bayes rule provides a recursive update
formula

p(θ(t)|k, I(t))∝
∫

p(x(t)|k,θ(t)) p(θ(t)|θ(t−1)) p(θ(t−1)|k, I(t−1)) dθ(t−1) .

(40)
Similarly, if

{

(θ i,wi) : i = 1, . . . ,Q
}

is a discrete representation of Q weighted sam-
ples of p(θ(t−1)|k, I(t−1)),

p(θ(t−1)|k, I(t−1)) =
Q

∑
i=1

wiδθ i(θ(t−1)) (41)

where the δθ i are Dirac masses at θ i, then a representation of p(θ(t)|k, I(t)) is
obtained as follows [4]: First, for each particle (θ i,wi) a sample is generated from
the transition kernel,

θ̃ i ∼ p(θ̃ i|θ i) . (42)

In a second step, the weights are updated with the likelihood and normalized,

w̃i =
wi p(x(t)|k, θ̃ i)

∑Q
j=1 w j p(x(t)|k, θ̃ j)

. (43)
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The new samples
{

(θ̃ i, w̃i) : i = 1, . . . ,Q
}

are a discrete representation of
p(θ(t)|k, I(t)). The problem of particle depletion, all weight is concentrated on
a single particle after several iterations, is addressed by introducing an optional
step in which all indices i = 1, . . . ,Q are resampled from the multinomial distri-
bution described by the new weights w̃i. This particle filter is known as a sampling
importance resampling (SIR) filter [4]. To increase efficiency and reduce depen-
dency among particles, this step is only done if the effective number of particles
Qeff = (∑Q

i=1(w
i)2)−1 falls below a threshold Qmin.

The ratio between the scale parameter νθ and the noise variance σ2 determines
the reactivity of the particle filter. That is, if much confidence is put into new mea-
surements (σ2 is small) or if it is assumed that the sources are fast moving (νθ is
large) the influence of the old approximation is reduced.

In practice, it may be advisable to use a larger noise variance in the particle
filter algorithm if the true noise variance is small, as otherwise particle depletion
becomes a problem. In any case, exact knowledge of the noise variance σ2 and the
velocity parameter νθ is seldom available and we propose the following heuristic:
First choose the parameter νθ large enough that the particle filter can track fast mov-
ing sources, thereby keeping the trade-off between steady state estimation accuracy
and tracking capability in mind. Second, use an online adaptation procedure that
reduces, or increases, σ2 if Qeff decreases, or increases, too quickly. We found that
a particle depletion rate of twenty percent per time step is healthy.

5.2 Reversible Jump Particle Filters

If the number of sources k is not known in advance, one extends the particle filter
to generate samples from the joint posterior of k and θ , which is defined over the
union of the setsΘk = {−1≤ sinθκ ≤ 1,1≤ κ ≤ k} for 0≤ k≤ kmax. Note that the
dimension ofΘk depends on k. In theory, it is possible to use the same particle filter
as before, but one needs to ensure that the proportionality constants of the posterior
do not vary across particles of different dimensions before the weights are jointly
re-normalized. Resampling is done for each dimension separately. However, such
an approach wastes resources as the number of particles per dimension is fixed from
the beginning.

RJPFs that is, particle filters that incorporate single reversible jump MCMC
moves [8], are more appealing [12]. These allow for transitions between setsΘk and
Θk′ . Here, we restrict these transitions to moves between sets where |k−k′| ≤ 1 and
we speak of a birth move if the new number of sources k′ equals k+1 and of a death
move if k′ = k−1. The moves can be introduced into the particle filter in the context
of resample moves [7]. These are MCMC steps with a Markov kernel that has the
posterior p(θ(1),k(1), . . . ,θ(t),k(t)|I(t)) as its invariant distribution. Such moves
theoretically require knowledge of the complete past trajectory {k(t ′),θ(t ′) : t ′ ≤ t}
for each particle, which is not practical. Therefore, it is proposed in [7] to approxi-
mate the resampling by only considering the most recent past.
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A transition kernel that has p(k(t),θ(t)|x(t)) as invariant distribution can be
implemented as a mixture of local moves that update θ while leaving k unchanged
and trans-dimensional moves that update k and keep the common parameters in θ
unchanged. For an in-depth description of the reversible jump MCMC method, refer
to [19].

In the following, we propose a resampling step that has been used in [12] and has
p(k(t),θ(t)|x(t)) as invariant distribution. In practice, this means that the posterior
of θ(t) is biased toward the likelihood from the current time step, which is why we
only update k and not θ . The trans-dimensional MCMC step is implemented by first
selecting a birth step with probability bk or a death step with probability dk, where

bk = c min

(

1,
p(k+1)

p(k)

)

, dk = c min

(

1,
p(k)

p(k+1)

)

. (44)

The parameter 0 ≤ c ≤ 0.5 adjusts the frequency of birth and death steps. If a
birth step is selected, a new source angle is generated according to sinϑ ∼U[−1,1]
and inserted into θ at the right place, that is, θ+ = sort{θ ,ϑ}. Then, as in the
ordinary Metropolis–Hastings algorithm, the acceptance probability of the proposal
(k+ 1,θ+) is calculated from the Metropolis–Hastings ratio (see [19], Proposition
1.11)

rbirth((k,θ),(k+1,θ+)) =
dk+1

bk

p(k+1,θ+|x(t))
p(k,θ |x(t))

1
1/2

=
dk+1

bk

p(x(t)|(k+1,θ+))

p(x(t)|(k,θ))

(45)

where the factor 1/2 is due to the uniform distribution on [−1,1] and where the
Jacobian appearing in [8] is, in our case, the identity matrix. The birth move is
accepted with probability

α = min
(

1,rbirth((k,θ),(k+1,θ+))
)

. (46)

The death move is the inverse of the birth move: a source κ ∈ {1, . . . ,k} is randomly
selected and removed from θ . The remaining source angles are denoted θ−. For this
move, the Metropolis–Hastings ratio is given by

rdeath((k,θ),(k−1,θ−)) = rbirth((k−1,θ−),(k,θ))−1 (47)

and the move is accepted with probability

α = min
(

1,rdeath((k,θ),(k−1,θ−))
)

. (48)

The RJPF algorithm is summarized in Algorithm 3.
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Algorithm 3 Reversible Jump Particle Filter
1. Initialize ki ∼ p(ki) and sinθ i

κ ∼U[−1,1] for κ = 1, . . . ,ki and i = 1, . . . ,Q
2. Set weights and calculate the effective number of particles

wi =
p(x(1)|ki,θ i)

∑Q
j=1 p(x(1)|k j,θ j)

Qeff(1) =

(

Q

∑
i=1

(wi)2

)−1

(49)

3. For t = 2, . . ., update the particles according to:

a. Resample θ̃ i ∼ p(θ̃ i|θ i) from the transition kernel for each particle i = 1, . . . ,Q
b. Update weights and calculate the effective number of particles for each i = 1, . . . ,Q:

w̃i =
wi p(x(t)|ki, θ̃ i)

∑Q
j=1 w j p(x(t)|k j, θ̃ j)

Qeff(t) =

(

Q

∑
i=1

(w̃i)2

)−1

(50)

c. Set (wi,θ i) = (w̃i, θ̃ i) for i = 1, . . . ,Q
d. If the number of effective particles is too small, Qeff < Qmin, resample indices ji, i =

1, . . . ,Q from p( ji = �) = w�. Then set (wi,θ i) = (1/Q,θ ji )
e. Decrease the noise variance σ2 by a small amount if the particle depletion ratio 1−

Qeff(t)/Qeff(t−1) is too large and increase σ2 if the ratio is too small
f. For each particle i = 1, . . . ,Q, with probability bki perform a birth step:

i. Propose ϑ according sinϑ i ∼U[−1,1], insert ϑ i into θ i to obtain θ+, and calculate
the Metropolis–Hastings ratio and acceptance probability α i from (45) and (46)

ii. With probability α i, set θ i = θ+ and ki ← ki +1

g. For each particle i = 1, . . . ,Q, if no birth step was performed, do a death step with prob-
ability dki :

i. Randomly select an index κ ∈ {1, . . . ,ki}, remove θ i
κ from θ i to obtain θ−, and

calculate the Metropolis–Hastings ratio and acceptance probability α i from (47)
and (48)

ii. With probability α i, set θ i = θ+ and ki ← ki +1

6 Estimation of the Number of Sources and Their Angles

At each time step, the RJPF provides a discrete representation of the current poste-
rior probability distribution for the number of sources and their angles in the form
of Q particles (ki,θ i,wi), i = 1, . . . ,Q, of the number of sources, their angles, and
weights. The goal of an estimator is to combine the information contained in all
particles into a single estimate of the number of sources and their angles.

In Sect. 6.1, we discuss why this is a difficult problem and why we think that,
in general, location estimates from particles of different dimensions should not be
combined. After that, in Sect. 6.2, we propose a kernel-based method for combined
estimation of the number of sources and their angles.
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6.1 DOA Estimation for Nested Models

The joint estimation problem of the number of sources and their angles is a nested
model choice problem with common parameters. One should, in general, refrain
from estimating common parameters by averaging over all models [18].

An example why this is not advisable is that of two closely spaced sources, which
we already encountered in Sect. 4.1. As shown in Fig. 6, the most likely source loca-
tion of the model with a single source corresponds, approximately, to the mean value
of the two true source locations. Hence, the information contained in the single-
source likelihood function should not be used to improve estimates of either source
in the two-source model.

Fig. 6 Likelihoods in DOA estimation with ten microphones and two closely spaced sources.
Left: likelihood conditioned on the presence of two sources. Right: likelihood conditioned on the
presence of a single source. The dashed lines indicate the true source locations

If a RJPF is used, no particles i = 1, . . . ,Q with ki �= k should be used to gen-
erate an estimator for k source directions. However, this reduces the efficiency of
the filter, because the information contained in the discarded particles is unused.
Therefore, it has been proposed to use particles from different dimensions regard-
less of the possible problems [19]. For well-behaved scenarios, e.g., if the number
of microphones is large or if many independent frequency channels are available,
the steering vectors an(θκ) are approximately orthogonal and the entries θ i

κ ,κ ≤ ki

of a particle i of dimension ki can be associated to the entries of another particle i′

with θ i′
κ ′ ,κ

′ ≤ ki′ and ki′ > ki. That is, the common parameters also have common
values and an estimator could be based on all particles. For such an estimator, how-
ever, one needs to associate the dimensions of particles with lesser dimensions to
those of particles with higher dimensions, i.e., one needs to solve a label switching
problem [19].
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If, as we propose, one estimates k source locations and uses only particles with
ki = k, the label switching problem is reduced, but not removed. For example, if
three sources are present at locations θκ ,1≤ κ ≤ 3, then particles with θ i

1 ≈ θ1,θ i
3 ≈

θ2 and θ i
2 in between θ1 and θ2 are likely to survive several iterations of the particle

filter. Thus, the particle is in fact tracking only two sources and should not be used
for estimating three sources. However, these situations are difficult to detect. In the
following section, we present a kernel based approach that uses only particles that
have all entries close to the true source locations.

6.2 Kernel Based Estimation

In the following, we discuss how the number of sources k and their angles θ can
be estimated using the weighted samples (ki,θ i,wi), i = 1, . . . ,Q of the posterior
distribution from the RJPF. One possible way to estimate the number of sources is
to use the Bayesian MAP estimator

k̂MAP = argmax
k

Q

∑
i=1

wiδki,k (51)

where δki,k denotes the Kronecker delta. In a second step, one calculates the MAP

estimate θ̂MAP using only those particles i = 1, . . . ,Q with ki = k̂MAP. To calculate
the MAP estimate θ̂MAP|k̂MAP, we first need a kernel density estimate of the continu-
ous posterior p(θ |k̂MAP, I(t)). We propose an iterative procedure that approximately
solves the following k̂MAP-dimensional nonlinear optimization problem: Let ψ2 be
the variance of a circularly symmetric Gaussian kernel. Then our goal is to solve

θ̂MAP,k = argmax
θ

Q

∑
i=1

exp
(

−ψ−2
∥

∥sinθ − sinθ i
∥

∥

2
)

wiδk,ki (52)

for k = k̂MAP.
We propose to solve (52) as follows: At each iteration, marginal MAP estimates

are calculated for each source κ = 1, . . . ,k. But instead of using the weights wi,
these are weighted by the product of the kernel functions from all other dimensions
κ ′ �= κ:

θ̂κ = argmax
θκ

Q

∑
i=1

exp
(

−ψ−2
∥

∥sinθκ − sinθ i
κ
∥

∥

2
)

wiδk,ki ∏
κ ′ �=κ

Φ(κ ′, i) . (53)

The weighting function Φ , which is initialized with all ones, is then updated using
the new marginal location estimate

Φ(κ , i) = exp
(

−ψ̃−2
∥

∥sin θ̂κ − sinθ i
κ
∥

∥

2
)

. (54)
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This ensures that only those particles are used that have reliable entries θκ in all
dimensions simultaneously and alleviates the difficulties hinted to in Sect. 6.1. To
find a good balance between the number of particles on which the estimator is based
and the accuracy of the estimator, we use two different kernel variances ψ2 and
ψ̃2 + ψ2. The first variance ψ2 is small so that an MAP estimator is generated
for each marginal (as ψ2 is increased, the estimator resembles the minimum mean
squared error (MMSE) estimator). The second variance ψ̃2 is large to prevent that
the estimator discards too many particles. Algorithm 4 provides a summary.

Figure 7 (top) shows the marginal distributions p(θκ) for the example from sec-
tion “Wideband Signals in Subspace Method” where two pairs of closely spaced
sources are recorded by an array of ten sensors. The peak for the marginal of the
fourth source coincides with that of the marginal for the third source. At the final
stage of the algorithm, the marginals are weighted with the product of the values of
the kernel density functions of the other dimensions. These weighted marginals are
shown in Fig. 7 (center). Those particles for which θ i

4 is close to θ3 have smaller
weights than those particles with θ i

4 close to θ4, as desired. The final location esti-
mate is then generated by fitting the kernel functions to the marginals, as shown in
Fig. 7 (bottom).

Algorithm 4 Iterative kernel-based MAP estimator
1. Initialize Φ(κ , i) = 1 for κ = 1, . . . ,k and i = 1, . . . ,Q
2. Until converged, for κ = 1, . . . ,k do

a. Calculate weight factors w̃i = wi∏κ ′ �=κ Φ(κ ′, i)
b. Calculate marginal estimate for θκ by solving the one-dimensional kernel problem

θ̂κ |k = argmax
θ

Q

∑
i=1

exp
(

−ψ−2
∥

∥sinθ − sinθ i
κ
∥

∥

2
)

w̃iδk,ki (55)

c. Update weights

Φ(κ , i) = exp
(

−ψ̃−2
∥

∥sin θ̂κ − sinθ i
κ
∥

∥

2
)

(56)

We found that the overall estimator for the number of sources and their directions
can be improved if the estimation is performed jointly from

k̂MAP = argmax
k

Q

∑
i=1

exp
(

−ψ−2
k

∥

∥sin θ̂MAP,k− sinθ i
∥

∥

2
)

wiδk,ki (57)

where ψk is such that the integrals over the kernels are the same for each dimension,
i.e.,

ψ−2
k = k

√

(2π)k−1ψ−2
1 . (58)

Of course, this increases the computational load of the algorithm.
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Fig. 7 Top row: marginal densities for source angles as generated from the particle filter. Center
row: weighted marginal densities after Algorithm 4 has been applied to find the source locations.
Bottom row: fitted Gaussian kernel functions that approximately solve (52)

7 Simulations

We first use the same simulation as in Sect. 3.4 to compare the particle filter algo-
rithm performance with the iterative estimator to subspace methods for a known
number of sources (we refer the reader to Sect. 3.4 for the simulation parameters).
The particle filter uses a total of Q = 2000 particles. The transition kernel is a mix-
ture of a uniform distribution on [−1,1] for sinθκ and a normal distribution cen-
tered at sinθκ(t − 1) with standard deviation 0.03. The mixing parameter is set to
α = 0.01. The scaling factor is initially set to γ = N = 5 and increases by 10 % if
1−Qeff(t)/Qeff(t−1)< 0.25 or decreases by 10 % if 1−Qeff(t)/Qeff(t−1)> 0.5.
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Resampling is done if Qeff < 0.2Q. The parameters for the kernel based MAP esti-
mator are set to ψ = 0.02 and ψ̃ = 0.1. Before the first time step, the particles are
initialized according to a uniform distribution for sinθ i

κ , i = 1, . . . ,Q,κ = 1, . . . ,4 .
Figure 8 shows that the performance of the particle filter and the kernel based

MAP estimator is superior to that of subspace methods. Interestingly, at low SNR
values, the particle filter exhibits a higher detection rate than the ML estimator.
This might be explained by the combination of the uniform initialization, the MAP
estimator, and a smoothing effect of the transition kernel, which could lead to a
larger region of attraction of the correct peak of the likelihood.

Estimator performance for simultaneous detection of four sources

Fig. 8 Probability of simultaneous detection of four sources located at θ1 = 8, θ2 = 13,θ3 = 33,
and θ4 = 37 (degrees). The correlation coefficient ρ increases from the thick lines to the thin lines
as follows: ρ = 0.0,0.5,0.75,0.9

In the following, we highlight the capabilities of the RJPF on a second series
of simulations. The simulation parameters are as described in Sect. 3.4 except for
the number of sources and their positions. The total number of sources is varied
(k = 1, . . . ,4) and one of the sources only transmits intermittently. Furthermore, one
source moves with constant velocity and crosses the remaining sources. The SNR is
set to 0 dB in each experiment. The parameters for the particle filter are as before,
except that no mixing is used (α = 0). For the RJPF, this role is assumed by birth
moves, which occur with probability bk = 0.1 for 1≤ k ≤ 5 and with b0 = 1 so that
kmax = 6. For the probability of death moves, we also use dk = 0.1 for 1 ≤ k ≤ 6.
The penalty parameter for the model complexity is set to ϕ = 1.2, that is, slightly
larger than one. In particular, we used the same parameters for all simulations.

The RJPF is compared with an empowered implementation of a CSSM based
tracking method that is based on the 20 most recent observations. The focusing
matrices for the CSSM method are calculated using the true source locations of all
active sources. Before the first appearance of the first source, random values are
chosen for its angle. For the remaining intervals of inactivity, the final location of
the previous activity period is used.
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Fig. 9 Results of reversible jump particle filter (RJPF) and CSSM for tracking a variable number
of sources
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Figure 9 (left column) shows that the RJPF provides reliable estimates of the
number of sources and their positions. Obviously, if two sources are at the same
position, they are indistinguishable and correctly detected as a single source. In
contrast, if CSSM is used with all of the true source angles given as input, erro-
neous estimates result at trajectory crossings (right column) or during outages. The
estimates of the RJPF slightly lag behind the true trajectory. This lag can be reduced
by increasing the standard deviation of the local transition kernel. The reason why
the estimates for CSSM tracking do not show this lag is that the focusing matrices
are generated using the true source locations. Such an assumption is necessary for
generating baseline CSSM results or the CSSM method would not work.

8 Conclusion

Bayesian DOA estimation gives the framework for extensions beyond what has been
achieved with subspace based methods. This chapter extends a prior work using par-
ticle filter concepts to wideband DOA estimation of a variable number of moving
sources. We present a detailed analysis of the DOA problem and highlight diffi-
culties that lie with the Bayesian formulation, in particular regarding the choice of
the δ 2 parameter. We depart from the rigorous Bayesian framework and introduce
the profile likelihood function and corresponding regularization and show that this
approach improves the estimation of the correct number of sources. We also argue
that the label switching problem does not need to be solved in theory. That is, if
enough particles are available one can safely discard all particles that track an incor-
rect number of sources.

Future research will develop RJPFs that automatically adjust some of the model
parameters, most notably the penalty parameter for model complexity. We believe
that this can be achieved by allowing interaction between the estimator and particle
filter, specifically by using information from the estimator to adapt parameters of
the particle filter.
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Menachem Levitas and Carroll Nunn

Abstract This chapter provides a brief overview of the current state-of-the-art in
radar waveforms and waveform processing development. It begins by describing
the first principles of pulse compression, the traditional performance measures, and
some of the waveforms and processing commonly used in existing systems. With
this background as reference, it proceeds to introduce additional spectral and tempo-
ral requirements imposed on waveforms utilized by state-of-the-art radar systems as
results of greater detection sensitivities, more difficult clutter environments, higher
anticipated spectral occupancies, and closer relationship between waveforms and
antenna patterns. It then describes new technological capabilities, both algorithmic
and hardware-related, which make these complex requirements attainable, and pro-
vides several examples of waveforms that meet such requirements.

Keywords Waveform · Matched-filter · Mismatched-filter · Pulse-compression ·
Time-sidelobes · Spectral-compliance · Auto-correlation · Cross-correlation

1 The Time–Bandwidth Product

Due to the Fourier transform relationship of temporal and spectral behavior, the
temporal resolution of a waveform is related to its bandwidth as per the inverse
relation as described in Eq. 1:

σ (t) ∝
1
B
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The corresponding relation between range resolution and bandwidth is given by,

σ (r) =
c ·σ (t)

2
∝

c
2 ·B (2)

In which the letter c represents the speed of light.
The relation between the duration of a pulse, τ , and its corresponding bandwidth,

B, depends on the details of the waveform. When it consists of pure sine wave
modulation, the bandwidth is given by,

B≈ 1
τ

(3)

Whereas, the general relation is given by:

B · τ ≥ 1 (4)

Figure 1 illustrates both cases:

Fig. 1 Time-bandwidth relationship between coded and un-coded pulses

The product, n, of the pulse duration and the pulse bandwidth is called the time-
bandwidth product—see Eq. 5 below. We note that, whereas the pulse duration is
on the order of its temporal resolution in the absence of coding, in the presence of
coding it is larger.

B≈ n
τ
=

1
τc

i.e.B · τ ≈ n (5)

Where, τc =
τ
n , is referred to as the compressed pulsewidth, and represents the

main response width of the processed pulse.

Several considerations influence the time-bandwidth product selection:

1. The bandwidth is determined from the lowest acceptable range resolution
B≥ c

2·δ (r)max
.

2. The product of peak power and pulse duration, which is the energy contained
in the pulse, is partially determined by required detection sensitivity: i.e., the
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pulse energy should be sufficient to support detection sensitivity requirements

E = PT · τ = n ·PT · τc ≥ Emin. (6)

3. Low peak power is desired for practicality of implementation and for low signal
detectability by hostile receivers

PT ≤ PT,max. (7)

The time–bandwidth product, achieved via coding, is used to facilitate the
required trade-off

Time−bandwidth product = n≥ Emin

PT · τc,max
=

Emin · c
PT ·2 ·δ (r)max

. (8)

The processing of a coded pulse is accomplished via temporal convolution (or
its equivalent processing in the frequency domain) against matched or mismatched
filters, and is called ‘Pulse Compression’. Matched filter processing consists of
convolving the pulse waveform against its complex conjugate. Mismatched filter
processing consists of convolving the pulse waveform against a different i.e., mis-
matched code, which may also be matched or mismatched in duration i.e., code
length: See Fig. 2.

Fig. 2 An example of a code and mismatched length filter
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Conventional selection of codes and filters involves several performance consid-
erations, the most common of which includes: minimum peak power loss and main
response broadening, and required peak and integrated time-sidelobe levels. They
are discussed below together with several other performance measures.

2 Traditional Performance Measures From Codes/Filters

The discussion here will focus on several performance requirements in rough order
of importance. It will be noted that the so-called order of importance is very general
and can vary from application to application.

2.1 Maximizing Sensitivity

Detection sensitivity is maximized by maintaining constant signal amplitude, and
by minimizing the loss. The loss is defined in Eq. 9 as the difference in peak signal-
to-noise ratio obtained under matched filter conditions, and under the mismatched
filter implemented.

LossdB = SNRmatched f ilterpeak−SNRmismatched f ilterpeak. (9)

Figure 3 below shows the correlation functions of a certain example code against
its matched filter and against a certain mismatched filter. The right hand plot shows
their corresponding peak SNR responses. Whereas the time-sidelobes achieved via
the mismatched filter are much superior i.e., significantly lower than those achieved
via matched filtering, the loss penalty, i.e., lower peak SNR response, is evident. Part
of the waveform design problem is to achieve required time sidelobe levels without
exceeding the maximum allowed loss.

Fig. 3 Correlation functions of matched and mismatched filters along with mismatched filter loss
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2.2 Maintaining Required Range Resolution

Range resolution is maintained by keeping the peak response broadening within
required levels. Figure 4 shows several filter broadenings that are by-products of
several corresponding mismatched filters when applied to the so-called P4 code,
together with the corresponding peak matched filter response. (The P4 code is a
digital form of the linear FM code which is discussed further below.) To provide
adequate visual comparison of the various broadenings, the peak responses in Fig. 4
are all normalized to unity.

Fig. 4 Peak responses obtained from a matched filtered P4 code, and from several mismatched
filters applied to the P4 code

2.3 Peak and Integrated Time-Sidelobes to Minimize Eclipsing by a
Large Discrete or by Large Distributed Clutter

Unless the time-sidelobe response level at the position of the scatterer is sufficiently
small, a large discrete scatterer placed in the time-sidelobes could eclipse a small
target placed at the peak response. This condition places requirements on the peak
time-sidelobe. Distributed clutter can be sensed from the entire time-sidelobe region
as it adds-up across the sidelobe extent. The need to attenuate such strong distributed
clutter places requirements on the so-called integrated time-sidelobes, which is their
power sum. Figure 5 [1] shows three levels of time sidelobes achieved from a cer-
tain example code using mismatched filters of three different lengths. It is seen that
extremely low time-sidelobes (peak and integrated) can be obtained via long mis-
matched filters. In practical radar systems, a so-called ‘noise-floor’, generated by
imperfect hardware, will prevent the time-sidelobes from going below certain levels.
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The waveform designer will, therefore, be advised not to over-design, since going
beyond a certain time-sidelobe performance level will result in increasing losses and
peak broadenings, without corresponding benefits in terms of lower time-sidelobes

Fig. 5 Code correlation against three mismatched filters of increasing lengths

2.4 Low Doppler Sensitivity

Some radar applications require low Doppler sensitivity i.e., the ability to achieve
detection sensitivity independent of target Doppler. The corresponding waveform
requirement is that the full pulse compression performance be obtained independent
of target Doppler. Some pulse compression codes e.g., the Barker family are very
sensitive to target Doppler and may, therefore, not be suitable for such applications.
On the other hand, other codes linear frequency modulation (FM) are extremely
tolerant to Doppler. Figure 6 (generated by Dr. Lawrence Welch) shows on the left a
three dimensional (3D) diagram which represents the so-called Pseudo-noise (PN)
code ambiguity diagram . Range response is shown along one horizontal axis and
the Doppler response across the other. It is seen that the peak response exists only for
very low Doppler values. If a code of this nature is utilized in conjunction with, e.g.,
very fast closing objects, the signal needs to be channeled across several parallel
filters, in each of which, a different Doppler compensation is to be applied prior to
compression. These parallel filters require additional processing power. The plot on
the right of Fig. 6 (generated by Dr. Lawrence Welch) shows a similar diagram for
the P4 code. Clearly, the peak response of this code is nearly independent of the
target Doppler.
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Fig. 6 Range Doppler ambiguity diagrams

2.5 Spectral Compliance

Certain levels of spectral compliance have always been required of radar codes.
They were specified in terms of far sideband levels and rate of decline across the
transition from the in-band to the side-band regions. Due to the trend of increasing
spectral occupancy, these requirements are now becoming more severe and far more
detailed. We will discuss these separately in later sections of this chapter.

2.6 Multiple Uncorrelated (Orthogonal) Codes

Requirements for multiple uncorrelated codes existed in some past applications.
(The PN codes occasionally referred to also as PRN (for Pseudo Random Noise)
codes fulfilled this requirement. Far more exacting requirements are associated with
state of the art and future systems. Their increased challenge is partially due to their
combination with other requirements and, partially, due to the occasional need to
implement stated levels of partial cross-correlation, resulting in various levels of
pseudo-orthogonality. They will be discussed further below.

2.7 Potential Generation in Real Time

Some codes were utilized in older systems due to their ease of implementation via
analog circuits. Today, with the advent of powerful digital systems and arbitrary
waveform generators, these considerations are no longer relevant.

It is seen that, for a waveform to be capable of meeting the array of potentially
conflicting requirements described above, many degrees of freedom will be needed.
Some of these are supplied by the code itself. A mismatched filter, especially when
mismatched in length, will add more. That is the reason why, in stressing future
applications, one will generally be talking not in terms of codes alone, but in terms
of code/filter pairs.
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3 Some Examples of Traditional Codes and Their Respective
Performances in Conjunction With Matched and Mismatched
Filters

Radar pulse signals can be un-coded, frequency-coded, or phase-coded (see Fig. 7).

Fig. 7 Un-coded, frequency-coded, and phase-coded pulses

In what follows, we describe a number of traditional codes together with their
respective properties. We do not attempt to cover all of the possible traditional codes
and their transmission modulations. For that, extensive literature exists. Here we
merely wish to provide a glimpse into the world of existing codes and to the fact
that each of these codes has fixed characteristics that render it acceptable under
a limited set of circumstances, but not necessarily when the requirements become
diverse and difficult to meet.

3.1 Linear FM Codes

The linear frequency modulated (linear FM, or LFM) code increases, or decreases
the frequency in linear fashion under the pulse envelope, as is shown in Fig. 8.
The LFM codes have been the most popular due to their ease of implementation,
analog processing, and Doppler tolerance. A popular compression scheme has
been traditionally implemented by converting the Radio Frequency (RF) signal to an
acoustic signal equivalent using a suitable transducer, and processing the resulting
acoustic signal via a dispersive, so-called, surface acoustic wave (SAW) device. The
dispersive device provides the required filtering resulting in a compressed signal
that is then converted back to electric signal.

Fig. 8 Linear FM code, compression filtering, and compressed pulse
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The principal characteristics of the LFM signal are as follows: (a) Continuous
waveform, (b) Good Doppler tolerance, (c) Range–Doppler coupling, (d) Easy to
generate and process, (e.) Easy to filter with classical windows, (f.) High matched
filter time-sidelobes, resulting in need to utilize mismatched filters, and (g.) A single
code: i.e., no diverse code family. The Range–Doppler coupling is due to the fact
that the same compressed waveform results from target range displacement as from
a certain corresponding target Doppler speed.

3.2 Lewis-Kretschmer Palindromic P4 Code [2]

The P4 code is a digital code in which the phase of the i’th element is given by
Eq. 10.

φi =

(

45
n

)

(2i−1)2−90(2i−1) . (10)

Where φi are the discrete phases of the expanded transmit pulse in degrees, n is
the transmitted pulse sequence length, and i is the CHIP (change in phase) number
(i = 1 to M)

From the quadratic relationship of the phase to the CHIP number, it is evident
that the P4 code is a digital form of LFM and that, therefore, it shares in the above
LFM properties.

3.3 Nonlinear FM Code [3]: Frequency Varies NonLinearly
in Time

The ability to vary the frequency nonlinearly in time, provides the ability to create
spectral weighting functions that can be designed to provide very low time side-
lobes. The mechanization is illustrated via Fig. 9 below, which shows how the carrier
frequency is swept at such rates so as to provide the spectrum a desired weighting
function. The principal characteristics include: (a.) Continuous waveform, (b.) Abil-
ity to generate low time-sidelobes with short codes, (c.) Doppler tolerance, (d.) Ease
of generation, (e.) Very large peak response broadening, i.e., it requires - sometimes
significantly—broader bandwidth to achieve stated range resolution.

3.4 The Barker Codes [4]

The Barker code family represents a small group of constant-amplitude, bi-phase
codes which have the lowest peak sidelobe level possible. The longest member of
this family has the length of 13 which is not long enough for many applications. Its
principal characteristics are as follows: a. Codes are bi-phase, with peak compressed
value equal to the square of the code’s length n, b. Peak sidelobe level is 1 under
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Fig. 9 Nonlinear frequency modulation process. Clockwise from top left: frequency weighting
function; sweep rates needed to accomplish that; phase vs. time; and compressed pulse

matched filtering (i.e., 1/n2 beneath the peak response), c. Longest known code is
13, d. Doppler sensitivity is high;

The code [+1, +1, +1, -1, +1] is an example that features Barker code length of
5. The matched filter is the same as the code. Figure 10 shows the compressed pulse
in the absence of Doppler shift.

Fig. 10 Compressed form of Barker 5 waveform via matched filter (voltage domain)

Characteristics of this code include:

1. Peak power = 14 dB
2. Peak sidelobe = 0 dB (i.e. 14 dB beneath the peak response)
3. Integrated sidelobes = 8 dB beneath the peak response
4. Root-mean-square (RMS) sidelobes = 17.5 dB beneath the peak response.
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3.5 The Pseudo-Random-Noise (PRN, or PN), or, Maximal Length
Codes [5]

The PN (or PRN) family of codes provides a large number of orthogonal, pseudo-
random, bi-phase codes that are easily generated, on-the-fly, via either analog or
digital means. Their generation process is described in Fig. 11. Their principal char-
acteristics include the following interesting mathematical properties:

1. Codes are Bi-Phase
2. They exist in odd lengths, i.e., 2N−1
3. Large number of orthogonal codes exist
4. The number of 1’s and −1s differ by 1
5. 1/2 the runs are length 1, 1/4 are length 2, 1/8 are length 3, etc.
6. They are generated using a shift register with feedback (see Fig. 11)

Fig. 11 Generation of the PN code family via shift register and a MOD 2 adder

Practical characteristics include the facts that (a) generating these codes on-the-
fly in a live radar eliminates need to store codes in memory, (b) The peak time-
sidelobe power is 1/n beneath the peak, and (c) The codes are very Doppler sensitive.

4 New Radar Waveform Requirements, Derived from
Increasingly More Challenging Performance Requirements
Coupled with More Strenuous Operating Environments

Current, state-of-the-art, and future radar systems are facing ever increasing chal-
lenges and their corresponding performance requirements become correspondingly
more stringent. These, in turn, reflected in corresponding tightening of requirements
on the waveform components of such systems. The following paragraph summarizes
the operational challenges and corresponding waveform requirements.

Decreasing target signal and increasing clutter background levels Together
with ever increasing detection range requirements, the reflected echoes from targets
of interest also become weaker owing to smaller physical sizes of such threats and to



274 Menachem Levitas and Carroll Nunn

stealthier designs. At the same time, competing clutter becomes progressively more
severe, with littoral scenarios becoming predominant for Navy operations and with
urban clutter gaining in prominence. Medium PRF radar waveforms, which are char-
acterized by both range and Doppler ambiguities, will cause strong near-by clutter to
fold together with weak, remote, target echoes, further exacerbating the dynamic-
range and signal stability challenges. The corresponding waveform requirements,
implemented to avoid the eclipsing of remote small targets by large near-by objects,
include ever decreasing peak and integrated time-sidelobe levels. In the presence of
very large competing discrete objects the time sidelobes required are so low, that
they may only be implementable across narrow notches that must be strategically
located relative to the peak response.

Higher spectral occupancy Military RF bands are shrinking due to the ever
growing demand for broader bandwidth imposed by commercial systems. Some
commercial bands due, e.g., to GPS and Wi-Fi, either extend into military bands,
or are, otherwise, located in their immediate proximity. Increasing numbers of mil-
itary RF sensors share the available spectrum and pose mutual interference threats
at the same time that growing detection sensitivity requirements make such mili-
tary sensors more vulnerable to RF interference. As a result, radar and communica-
tions systems are required to operate with greater RF spectral efficiency. To achieve
that, waveforms are required that feature lower spectral sideband and, sometimes,
spectral notching within the instantaneous band (i.e., the so-called, signal in-band),
and/or in the sidebands. Because the spectral environment is dynamically changing,
the numbers, widths, and depths of such spectral notches may need to be varied in
real-time, or in near-real-time.

Multiple-Input-Multiple-Output (MIMO) waveforms The MIMO technology
is growing and is becoming more popular both in radar and in communications. The
application of this technology to radar requires antenna systems to radiate differ-
ent waveforms either on element-to-element, or on sub-array to sub-array basis.
Transition to MIMO technology involves a complex cost/benefit trade-off. Part of
the perceived benefits includes the ability to trace each component of the received
signal to the specific element, or sub-array that generated it. This, in turn allows
the receiver to form digitally both transmit and receive beams, making the radar
doubly digital. Additional advantages include the increasing ability to trade time
vs. energy in spatial sectors of interest, and increased angle measurement accuracy
due to the two-way coherent path available. To provide appropriate signal separa-
tion, however, the various waveforms need to be orthogonal. In some applications
pseudo-orthogonalities of carefully controlled extents are needed. These, in part, are
used to limit voltage standing wave ratios, and, in part, to control the angular width
of the transmit sector.

The means whereby it becomes possible to meet the above waveform require-
ments are discussed in the following section. Section 6 presents pertinent wave-
form examples.
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5 New Emerging Technologies That Help Meet New, More
Stringent, Requirements

New composite requirements from radar waveforms include detailed temporal and
spectral behaviors, subject to stringent loss and peak broadening. Sometimes
they also include Doppler sensitivity constraints and, in some applications, such
requirements need to be met separately for each member of a large orthogonal,
or pseudo-orthogonal, group of codes. Because of this multiplicity of requirements
and, because individual requirements tend to be more challenging than could be met
by previously specified, current known codes, such as those described in Section 3
above, classical codes are often no longer suitable. Fortunately, new technologies
have emerged which make it possible to generate new, custom made, codes of much
higher performance levels than previously available, and to apply such codes to
practical radar systems.

Very significant capabilities in custom code/filter generation have become avail-
able with the advent of practical and powerful optimization techniques and their
custom application to the radar waveform synthesis discipline [6, 7]. These tech-
niques make it possible to generate large numbers of compliant phase codes in rela-
tively short computation time using common desktop personal computers. Further-
more, these phase codes are continuous, rather than quantized, as codes traditionally
were (i.e., bi-phase, quadri-phase or, general polyphase). New hardware advances—
which include powerful, low-cost, multi-bit, floating point, digital computing; deep,
fast, and low-cost, memories; and arbitrary waveform generators make both the
code synthesis and their applications to common radar system both feasible and
practical. Codes can now be computed on-the-fly, or they can be computed off-line
and stored in memory. In that second case, they can be stored in very large numbers
and recovered and implemented in real time.

The fast and flexible code/filter synthesis is essential since exhaustive search is
not possible for anything but short codes of relatively low level of quantization. For
example, an octal code of length 100 is one of something on the order of 1090 pos-
sible combinations. A computer system capable of checking a billion combinations
per second would have checked todate less than 1027 combinations if it had started
when the universe is purported to have been created.

Techniques such as constrained optimization can be used to search for and find
acceptable codes. In doing so, the algorithms do not search for the best overall code,
but for codes that meet or exceed stated sets of requirements. The multiple dimen-
sion space, in which each code or code/filter combination is a point, is dense with
good codes.

There normally exist extremely large numbers of codes that meet any reason-
able combination of requirements, and they are distributed across the entire multi-
dimensional space. All the same, these potential solutions, referred as ‘Local Min-
ima’ of the optimization cost function, represent an extremely small fraction of the
entire space. The optimization techniques seek the best solutions in the neighbor-
hoods of a starting potential solution : hence the name Local Optimization. Similar
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optimization algorithms have been shown to be very effective in antenna pattern
synthesis applications as well.

Each variant of a constrained optimization technique can be formulated as fol-
lows:

Minimize f(x), subject to gi (x)≤ ki for i=1..L. Where, f(x) is a so-called cost, or
objective function, and gi(x) is the i’th component of an L-dimensions constraints
vector. Both the cost function and the constraints vector need to be formulated sep-
arately for each optimization problem. The cost function can include, for example,
the integrated sidelobe levels and various spectral constraints in the sidebands and
in-band. The constraints vector can include the individual sidelobe levels and the
loss associated with the filtered code.

Problems which are couched in this framework can be solved using the methods
found in many references, for example [8].

To illustrate how a code/filter pair with minimum Integrated Sidelobes (ISL) and
with filter losses less than a given constant can be found, we use the following
procedure: Let the n chips of a n element constant amplitude pulse compression
waveform be represented by ci for i= 1..n. Also let the m chips of the mismatched
filter f be represented by fi for i=1..m. In general fi does not have constant ampli-
tude. Next, let Ri(c,f) for i=1..(n+m-1) be the cross correlation of the normalized
code c (the normalization is explicitly part of the function) with the filter f, having
its correlation peak in the first position then

ISL can be expressed via:

ISL(c, f ) =∑
i�=1

(

Ri

R1

)2

. (11)

Similarly, the mismatched filter loss can be expressed as:

Loss(c, f ) =

n
∑

i=1
(cic∗i )

m
∑

i=1
( fi f ∗i )

R2
i

. (12)

Where ci and fi are the respective code and filter components. In the case of
simple constraints configuration, the procedure could consist of minimizing the
ISL(c, f ) subject to the Loss(c, f )≤ L, R1 (c, f ) = 1

6 Examples of Optimal Waveforms Based on Different Sets of
Requirements

This section presents specific examples of code/filter pairs that were synthesized via
the above optimization techniques.
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6.1 Longest Known Barker-Level Code

Figure 12 shows the compressed matched filter response of the longest known
Barker level polyphase code [9]. The code is 77 CHIPs long, which represents
37.7 dB of peak sidelobe level beneath the peak response. This was achieved via
local optimization technique without additional spectral constraints. It has been
subsequently shown elsewhere, by the same author (Carroll Nunn) that significant
spectral performance constraints can be met using the local optimization technique,
when starting with the code in Fig. 12, which result in minor compromises to the
peak and integrated sidelobes. This ability to preserve the good temporal properties
of the code in the presence of significant spectral constraints is generally achieved
via the additional degrees of freedom obtained via the application of appropriate
mismatched filter.

Fig. 12 Autocorrelation function of longest known Barker level code no spectral constraints

6.2 Computation Efficiency of Optimization Algorithm

Figure 13 [7] whose coordinate axes represent peak and integrated sidelobe perfor-
mance contains three spots or regions in Integrated/Peak Sidelobes (ISL/PSL) space
in red, green, and blue. Each region contains 25,000 points, each of which represents
a distinct code, or a code/mismatched filter pair, found via the local optimization
technique. All codes are 32 CHIPs long. All mismatched filters are 64 CHIPs long.
The red region contains the best 25,000 codes optimized for matched filter ISL. The
green represents the ISL optimized mismatched filter performance for the codes in
the red spot. The blue spot represents the best code/mismatched filter pair perfor-
mances achieved when the code and filter are optimized together. About a million
codes or code/mismatched filter pairs were generated per optimization type. This
scatter diagram shows both the performance capability possessed by optimization
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algorithms, and their processing speed which allows so many independent codes to
be computed in reasonable time.

Fig. 13 Scatter diagram for codes demonstrating ability to find large numbers of different codes

6.3 Temporal Waveform Notching

Figure 14 [10] shows a compressed waveform in which a 15 dB time sidelobe notch
has been implemented over a desired interval. Given the available number of degrees
of freedom in the optimization process, it is generally possible to implement narrow
notches that are far deeper than the general time sidelobe levels. The 15 dB notch
makes it possible to detect smaller targets located within the notch of a much larger
target in its immediate vicinity.

Fig. 14 Compressed code with a 15 dB notch in a selected interval of the time sidelobes
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Figure 15 shows the compressed pulse response of a target next to which are three
targets that are around 35 dB smaller. Clearly the targets are completely buried in the
time sidelobes that are around 35 dB RMS beneath the peak response themselves.
When the incoming pulse echo is split into multiple processing paths, processed via
a mismatched filter bank, creating time sidelobe notches, such as the one if Fig. 14,
that are spread across the entire time sidelobe extent, and when the bottom of all
notches are quilted together to generate a much lower synthesized time sidelobe
response, the three targets are exposed as in Fig. 16.

Fig. 15 Pulse compressed via matched filter

Fig. 16 Pulse compressed via a bank of mismatched filters, resulting in 15 dB lower time-sidelobes

6.4 Spectral Compliance Examples

Here we discuss two examples. The first shows a uniform sideband control. The
second shows in-band and sideband spectral notching.
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6.4.1 Control of General Sideband Levels

As was mentioned in this paper, ever increasing spectral occupancy forces sepa-
rate RF systems to operate in the immediate spectral neighborhoods of each other.
This imposes much more strenuous spectral requirements on spectral sidebands.
Figure 17 shows the spectral response of a code without sideband control (blue)
superimposed on an, identical bandwidth, optimized code with careful sideband
control (green). It is seen that, in the case shown, the sidebands are brought nearly
instantly to a level 50 dB beneath peak, and are maintained there.

Fig. 17 Respective spectra of codes with controlled and uncontrolled sideband levels

6.4.2 In-Band and Sideband Spectral Notching

Figure 18a and b [11] show a broad, high range resolution, pulse spectrum which
required notching in specific in-band and sideband places. Notch locations, depths,
and widths were input parameters to the optimization algorithm. Figure 18a shows
the ideal spectrum as produced by a desktop PC. It represents the spectrum gener-
ated by the arbitrary waveform generator as it is fed into the transmitter. Figure 18b
shows the spectrum of the measured transmitter output. It is corrupted to some extent
by the transmitter’s noise, which generally causes the spectral notches and sideband
levels to become less deep. This example shows the performance of an existing
transmitter in which no changes whatever had been made to accommodate the input
spectrum requirements. A higher quality transmitter, or a transmitter with adaptive
equalization loop, could improve the results significantly. It had also been shown
that, through the application of a properly optimized mismatched filter, the range
performance of the compressed pulses had largely been preserved in the face of this
very exacting spectral behavior.
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Fig. 18 Notched main and sideband spectrum a ideal, and b as measured after passage through
unmodified physical transmitter

6.5 Orthogonal Code Families

Figure 19 shows auto and cross-correlation functions for a family of four orthogo-
nal codes. Note the excellent time sidelobe behavior of both the auto correlations
(diagonal figures) and cross correlation functions. Each of the waveforms in ques-
tions was several thousand CHIPs long.

Fig. 19 Matched filter properties of four codes optimized to have −55 dB autocorrelation and
cross-correlation sidelobes
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6.6 Application of Optimization Techniques to Antenna Pattern
Synthesis

Figure 20 [12] shows the pattern of a 15,000 element antenna array in which a 5◦

horizon notch has been incorporated via optimization. The horizon notch extends
5◦ in elevation and 180◦ in azimuth, covering the entire forward hemisphere of the
array. The mainbeam is elevated to approximately 5◦ about the horizon. Using the
local optimization technique, such notches have been computed very quickly and
efficiently for similarly large arrays in the presence of roll, pitch, and yaw, which
rendered the array in asymmetrical positions relative to the Earth’s horizon. The
notches are useful in elevated mainbeam positions as they help to further attenuate
terrain clutter and terrain-based RF interference sources.

Fig. 20 A five degree notch starting 1.85 3 dB beam widths below the main beam. This notch
requires 0.82 dB of insertion loss

6.7 Waveforms and Antenna Patterns Combined: Control of
MIMO Radiating Sector Via Code Families of Appropriate
Degrees of Quasi-Correlation

Figure 21 shows a typical bi-static MIMO based array architecture. The transmit
array contains N elements, each of which transmits a different waveform. When
the waveforms are orthogonal the radiation pattern covers the entire forward hemi-
sphere in a manner that is controlled by the embedded element pattern designed for
this array. The received array, which contains M elements, is shown on the right. (M
is not necessarily equal to N.) The processing of the leftmost element is also shown.
Though not explicitly shown, the same processing occurs behind each element. It is
seen that the signal is split N ways. Each of these N paths is pulse compressed (i.e.,
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filtered) based on a specific member of the N transmitted waveforms. In so doing,
each path extracts the signal emanating from one particular transmit elements. The
outputs from the N channels is fed into a beamformer which form the transmit beam
relative to the part of space being covered. The outputs of these transmit beamform-
ers are then combined across the M to receive elements to form the receive beam.

Fig. 21 A typical MIMO scheme

It is seen that this MIMO scheme is doubly digital in that both transmit and
receive beams are formed digitally upon receiving, which provides the radar an
extraordinary degree of adaptive control. The transmit pattern is governed by the
selection of the transmit waveforms, which demonstrates that in this MIMO appli-
cation both the waveform and array applications become intertwined. By careful
selection of the transmit waveforms, transmit patterns can be formed of desired
directivities anywhere between the maximum full array directivity (represented by
fully correlated waveforms ), and minimum, single element, directivity (represented
by totally uncorrelated waveforms ).
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Adventures in Compressive Sensing Based
MIMO Radar

Thomas Strohmer and Haichao Wang

Abstract While radar has been around for many decades, novel developments in
recent years have led to significant breakthroughs as well as to exciting new math-
ematical challenges. In this chapter, we consider a multiple-input-multiple-output
(MIMO) radar system. Using sparsity as a key ingredient of our approach and tools
from compressive sensing, we derive a mathematical framework for the imaging
of targets in the azimuth-range-Doppler domain. Our analysis comprises uniformly
spaced linear arrays with random waveforms, as well as random sensor arrays with
deterministic waveforms. We also derive results that do not require the “on-the-
grid” assumption often used in compressive sensing radar. Algorithmic aspects and
numerical simulations are presented as well.

Keywords Sparsity · Radar · Compressive sensing ·MIMO · Random sensor arrays
· Convex optimization · Random matrices · Kerdock code

1 Introduction

In recent years, radar systems employing multiple antennas at the transmitter and the
receiver (also referred to as MIMO radar, where MIMO stands for multiple-input
multiple-output) have attracted enormous attention in the engineering and signal
processing community [11, 23, 24]. MIMO radar is supposed to offer a range of
benefits over classical radar. Yet, to be able to rake in those benefits, MIMO radar
should be combined with the recently developed framework of compressive sensing
[15, 28, 31]. Taking advantage of the sparsity of a radar scene via methods based on
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compressive sensing can improve the performance of radar systems under certain
conditions and is therefore of considerable practical interest. This article contains a
partial overview of the results found in [31] and [33], as well as some new results
for compressive SIMO radar “off-the-grid.”

Let us first introduce the basic radar setup. A radar system illuminates a region
of interest in order to detect the location, velocity, and reflectivity of the objects
(targets) in its field of view. We consider the following standard (narrowband) radar
model [30]. Suppose a target located at range r is traveling with constant velocity
v and has reflection coefficient a. Suppose further just for the moment that we have
only one target, one transmitter and one receiver (in which case we cannot detect
direction). After transmitting signal s(t), the receiver observes the reflected signal

y(t) = as(t− τr)e
2πiωvt (1)

where τr = 2r/c is the round trip time of flight, c is the speed of light, ωv ≈−2ω0v/c
is the Doppler shift, and ω0 is the carrier frequency. The basic idea is that the range-
velocity information (r,v) of the target can be inferred from the observed time delay-
Doppler shift (τr,ωv) of s in (1). For only one target this can be done conveniently by
correlating the received signal y with time-frequency shifted versions of the trans-
mitted signal. Since, we are dealing with bandlimited signals, it suffices to consider
discrete signals sampled at a properly chosen rate Δt . It is therefore common prac-
tice to compute

V (τ ,ω) :=∑
l

y(lΔt)s(lΔt − τ)e2πiωl (2)

and then locate the largest value of |V (τ ,ω)| in order to detect the target in the
range-Doppler domain.

In the presence of multiple targets more sophisticated methods are necessary. In
order to resolve azimuth in addition to range and Doppler, we need to employ an
array of antennas. We assume an array of NT transmit and NR receiver antennas
that are colocated (also known as mono-static radar) as illustrated in Fig. 1. A more
detailed description of the setup is postponed to Section 2 The transmit antennas
send simultaneously probing signals, which can differ from antenna to antenna and
can be chosen to our specifications. It is convenient to divide the region of interest
into range-azimuth-Doppler cells corresponding to distance, direction, and velocity,
respectively. Let A be a measurement matrix whose columns correspond to the sig-
nal recorded at each receive antenna from a single unit-strength scatterer at a spe-
cific range-azimuth-Doppler cell. Let x denote a vector whose elements represent
the complex amplitudes of the scatterers. In many cases the radar scene is sparse in
the sense that only a small fraction (often a very small fraction) of the cells is occu-
pied by the objects of interest. In this case most of the entries of x will be zero, but
we do not know which ones, otherwise we would have located the targets already.
With w representing a noise vector, we are faced with the linear system of equations

y = Ax+w, (3)
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TargetsAntennas

Transmit antenna

Receive antenna

Fig. 1 Schematic illustration of the MIMO random array setup: The distance between antennas
and targets is assumed to be large compared to the aperture (i.e., this is the “far-field” scenario).
The transmit antennas as well as the receive antennas are colocated

where y is a vector of measurements collected by the receive antennas over an obser-
vation interval. Typically this system will be underdetermined, which implies that
it will have infinitely many solutions. What comes to our rescue here is the sparsity
of x. While conventional radar processing techniques do not take full advantage of
sparsity of the radar scene, the recent development of compressive sensing provides
us with the possibility to optimally utilize this property [15, 28, 31]. The approach
pursued in this chapter to obtain a sparse solution of (3) is based on the lasso [36],
which gained tremendous popularity in connection with compressive sensing. The
lasso solves

min
x

1
2
‖Ax−y‖2

2 +λ‖x‖1, (4)

where the parameter λ > 0 trades off goodness of fit with sparsity.

2 Problem Setup

We consider a baseband version of a MIMO radar employing NT antennas at the
transmitter and NR antennas at the receiver. We assume for convenience that trans-
mitters and receivers are colocated, cf. Fig. 1. Furthermore, we assume a coherent
propagation scenario, i.e., the element spacing is sufficiently small so that the radar
return from a given scatterer is fully correlated across the array. The arrays and all



288 Thomas Strohmer and Haichao Wang

the scatterers are assumed to be in the same 2-D plane. The extension to the 3-D
case is straightforward.

The array manifolds aT (β ), aR(β ) are given by

aT (β ) =
[

e2πip1β ,e2πip2β , . . . ,e2πipNT β
]T

, (5)

and

aR(β ) =
[

e2πiq1β ,e2πiq2β , . . . ,e2πiqNRβ
]T

, (6)

where the p j’s and q j’s are normalized antenna spacings (distance divided by wave-
length).

The jth transmit antenna repeatedly transmits the signal s j(t), which is assumed
to be a periodic, continuous-time signal of period-duration T seconds and bandwidth
B. We observe the back-scattered signal over a duration T , and since its bandwidth
is B, at each receive antennas we sample the observed signal at a rate of 1/Δs where
Δs ≤ 1

2B . For simplicity, we choose Δs =
1

2B resulting in Ns := 2T B many samples per
period duration1. It is convenient to introduce the finite-length vector s j associated
with s j, via s j(l) := s j(lΔs), l = 1, . . . ,Ns.

Let Z(t;β ,τ , f ) be the NR ×Ns noise-free received signal matrix from a unit
strength target at direction β , delay τ , and Doppler f (corresponding to its radial
velocity with respect to the radar). Then

Z(t;β ,τ , f ) = aR(β )aT
T (β )ST

τ , f ,

where Sτ , f is a Ns × NT matrix whose columns are the circularly delayed and
Doppler shifted signals s j(t− τ)e2πi f t .

We let z(t;β ,τ , f ) = vec{Z}(t;β ,τ , f ) be the noise-free vectorized received sig-
nal. We set up a discrete azimuth-range-Doppler grid {βl ,τ j, fk} for 1 ≤ l ≤ Nβ ,
1 ≤ j ≤ Nτ , and 1 ≤ k ≤ Nf , where Δβ ,Δτ , and Δ f denote the corresponding
discretization stepsizes. Using vectors z(t;βl ,τ j, fk) for all grid points (βl ,τ j, fk)
we construct a complete response matrix A whose columns are z(t;βl ,τ j, fk) for
1 ≤ l ≤ Nβ and 1 ≤ j ≤ Nτ , 1 ≤ k ≤ Nf . In other words, A is a NRNs ×NτNβNf

matrix with columns
Aβ ,τ , f = aR(β )⊗Sτ , f aT (β ). (7)

Assume that the radar illuminates a scene consisting of S scatterers located on S
points of the (βl ,τ j, fk)-grid. Let x be a sparse vector whose non-zero elements are
the complex amplitudes of the scatterers in the scene. The zero elements correspond
to grid points which are not occupied by scatterers. We can then define the radar
signal y received from this scene by

y = Ax+w (8)

1 Actually the received signal will have a somewhat larger bandwidth B1 > B due to the Doppler
effect. Our results could be easily modified to incorporate this increased bandwidth. Since in prac-
tice this increase in bandwidth is small, for convenience we simply assume B≈ B1.
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where y is an NRNs × 1 vector, x is an NτNβNf × 1 sparse vector, and w is an
NRNs×1 complex Gaussian noise vector. Our goal is to solve for x, i.e., to locate the
scatterers (and their reflection coefficients) in the azimuth-delay-Doppler domain.

Remark: The assumption that the targets lie on the grid points, while common
in compressive sensing, is certainly quite restrictive. A violation of this assump-
tion will result in a model mismatch, sometimes dubbed gridding error, which can
potentially be quite severe [8, 16]. Recently some interesting strategies have been
proposed to overcome this gridding error [9, 34]. But these methods, at least in their
current form, are not directly applicable to our setting. We will answer this ques-
tion partially in chapter “Recursive Computation of Spherical Harmonic Rotation
Coefficients of Large Degree.”

As mentioned in the introduction, a standard approach to solve (8) when x is
sparse, is

min
x

1
2
‖Ax−y‖2

2 +λ‖x‖1, (9)

which is also known as lasso [36]. Instead of (9), we will use the debiased lasso.
That means first we compute an approximation Ĩ for the support of x by solving (9).
This is the detection step. Then, in the estimation step, we “debias” the solution by
computing the amplitudes of x via solving the reduced-size least squares problem
min‖AĨxĨ − y‖2, where AĨ is the submatrix of A consisting of the columns corre-
sponding to the index set Ĩ, and similarly for xĨ .

We assume that the locations of the targets are random. To be precise, we assume
that the S nonzero coefficients of x are selected uniformly at random and the phases
of the non-zero entries of x are random and uniformly distributed in [0,2π). We
will refer to this model as the generic S-sparse model. We note that by adopting the
proof techniques developed in [18], it seems very plausible that one can drop the
assumption that the target locations are randomly chosen.

3 Random Waveforms and Deterministic Antenna Arrays

In this section, we assume that the antennas are uniformly spaced in each array,
i.e., p j = dT ( j− 1) in (5) and q j = dR( j− 1) in (6). It is known that the spatial
characteristics of a MIMO radar are closely related to that of a virtual array with
NT NR antennas, whose array manifold is a(β ) = aT (β )⊗ aR(β ). It is known [12]
that the following choices for the spacing of the transmit and receive array spacing
will yield a uniformly spaced virtual array with half wavelength spacing:

dR = 0.5,dT = 0.5NR; (10)

dT = 0.5,dR = 0.5NT . (11)

Both of these choices lead to a virtual array whose aperture is 0.5(NT NR−1) wave-
lengths. This is the largest virtual aperture free of grating lobes. The choices (10)
and (11) will also show up again in our theoretical analysis, see Theorem 1.
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We assume that si(t) is a periodic, continuous-time white Gaussian noise signal
of period duration T seconds and bandwidth B. The transmit waveforms are normal-
ized so that the total transmit power is fixed, independent of the number of transmit
antennas. Thus, we assume that the entries of si(t) have variance 1

NT
.

Theorem 1. Consider y=Ax+w, where A is as defined in (7) and wi ∈C N (0,σ2).
Choose the discretization stepsizes to be Δβ = 2

NRNT
, Δτ = 1

2B and Δ f =
1
T . Let

dT = 1/2,dR = NT/2 or dT = NR/2,dR = 1/2, and suppose that

Nt ≥ 128 and
(

log(NτNβ )
)3 ≤ Nt , (12)

If x is drawn from the generic K-sparse scatterer model with

K ≤ c0NτNR

6log(NτNf Nβ )
(13)

for some constant c0 > 0, and if

min
k∈I

|xk|>
10σ√
NRNt

√

2logNτNf Nβ , (14)

then the solution x̃ of the debiased lasso computed with λ = 2σ
√

2log(NτNf Nβ )

obeys
supp(x̃) = supp(x), (15)

with probability at least

(1− p1)(1− p2)(1− p3)(1− p4), (16)

and
‖x̃−x‖2

‖x‖2
≤ σ

√
12NtNR

‖y‖2
(17)

with probability at least

(1− p1)(1− p2)(1− p3)(1− p4)(1− p5), (18)

where

p1 = e−
(1−

√
1/3)2Nt
2 +NT e−(

√
3/2−

√
2)Nt ,

p2 = 2(NRNT )
−1 +2(NτNRNT )

−1 +2(Nf NRNT )
−1

+6(NτNf NRNT )
−1 +2e−

Nt (
√

2−1)2

4 ,

p3 = NRNT e−
(1−

√
1/3)2Nt
2 , p4 = e−

NRNt
25 ,
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and

p5 = 2(NτNβ )
−1(2π log(NτNβ )+S(NτNβ )

−1)+O((NτNβ )
−2log2).

The proof of the above theorem requires several steps. We need two key esti-
mates, one concerns a bound for the operator norm of A, the other one concerns a
bound for the coherence of A. We start with deriving a bound for ‖A‖op.

Lemma 1. Let A be as defined in Theorem 1. Then

P

(

‖A‖2
op ≤ 2NtNf NRNT

)

≥ 1−NT e−Nt (
3
2−

√
2). (19)

Proof. There holds ‖A‖2
op = ‖AA∗‖op. It is convenient to consider AA∗ as block

matrix
⎡

⎢

⎣

B1,1 B1,2 . . . B1,NR
...

. . .
...

B∗NR,1
BNR,NR

⎤

⎥

⎦ ,

where the blocks {Bi,i′}NR
i,i′=1 are matrices of size Nt ×Nt . We claim that AA∗ is

a block-Toeplitz matrix (i.e., Bi,i′ = Bi+1,i′+1, i = 1, . . . ,NR− 1) and the individual
blocks Bi,i′ are circulant matrices. To see this, recall the structure of A and consider
the entry B[i,l;i′,l′], i, i′ = 1, . . . ,NR; l, l′ = 1, . . . ,Nt :

B[i,l;i′,l′] = (AA∗)[i,l;i′,l′] =∑
β
∑
τ
∑

f

A[i,l;τ , f ,β ]A[i′,l′;τ , f ,β ] (20)

=∑
β

e j2πdR(i−i′)β
NT

∑
k=1

NT

∑
k′=1

e j2πdT (k−k′)βGk,k′(l, l
′)

Nf

∑
m=1

e j2π(l−l′)Δt mΔ f (21)

=
NRNT−1

∑
n=0

e j2π(i−i′) nNT
NRNT

NT

∑
k=1

NT

∑
k′=1

e j2π(k−k′) n
NRNT Gk,k′(l, l

′)Nf δl−l′ (22)

= NT NRNf

NT

∑
k=1

‖sk‖2δi−i′δl−l′ (23)

where we have used in (22) that Nf =
2B
Δ f

= 2BT . Noting that

Nf

∑
m=1

e j2π(l−l′)mΔtΔ f = Nf δl−l′ ,

we obtain

AA∗ = (NT NRNf

NT

∑
k=1

‖sk‖2)I, (24)
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i.e., AA∗ is just a scaled identity matrix. Since sk is a Gaussian random vector with
sk( j)∼ C N (0,1), Lemma 7 in the appendix yields

P

(

‖sk‖2
2− (E‖sk‖2)

2 ≥ t(t +2E‖sk‖2)
)

≤ e−t2/2, (25)

where we note that E‖sk‖2 =
√

Nt
NT

. We choose t = (
√

2−1)
√

Nt , and obtain, after

forming the union bound over k = 1, . . . ,Nt −1,

P

( NT

∑
k=1

‖sk‖2
2)

2 ≥ 2Nt

)

≤ NT e−Nt (
3
2−

√
2). (26)

The bound (19) now follows from (24).

Next we establish a coherence bound for A.

Lemma 2. Let A be as defined in Theorem 1. Assume that

NτNf ≥
√

Nβ , log(NτNf Nβ )<
Nt

30
. (27)

Then
max

(τ , f ,β ) �=(τ ′, f ′,β ′)

∣

∣〈Aτ , f ,β ,Aτ ′, f ′,β ′ 〉
∣

∣≤ 3NR

√

Nt log(NτNf Nβ ) (28)

with probability at least 1−2(NRNT )
−1−2(NτNRNT )

−1−2(Nf NRNT )
−1−6(NτNf NRNT )

−1.

Proof. We have that
Aτ , f ,β = aR(β )⊗ (Sτ , f aT (β )),

from which we readily compute

〈Aτ , f ,β ,Aτ ′, f ′,β ′ 〉= 〈aR(β ),aR(β ′)〉〈Sτ , f aT (β ),Sτ ′, f ′aT (β ′)〉. (29)

We use the discretization β = nΔβ , β ′ = n′Δβ , where Δβ = 2
NRNT

, n,n′ =
1, . . . ,Nβ , with Nβ = NRNT , and obtain after a standard calculation

〈aR(β ),aR(β ′)〉=
{

NR if n−n′ = kNR for k = 0, . . . ,NT −1,

0 if n−n′ �= kNR,
(30)

and

〈aT (β ),aT (β ′)〉=
{

0 if n−n′ = kNR for k = 1, . . . ,NT −1,

〈aT (β ),aT (β )〉 if n−n′ = 0.
(31)

As a consequence of (30), concerning β ,β ′ we only need to focus on the case n−
n′ = kNR for k = 1, . . . ,NT −1. Moreover, a standard calculation shows that

|〈Sτ , f aT (β ),Sτ ′, f ′aT (β ′)〉|= |〈Sτ−τ ′, f− f ′aT (β ),aT (β ′)〉| (32)
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for τ ,τ ′ = 0, . . . ,Nτ −1, f , f ′ = 0, . . . ,Nf −1, thus we only need to consider |〈Sτ , f
aT (β ),SaT (β ′)〉|. We distinguish several cases.
Case (a) β �= β ′,τ = 0, f = 0: Based on (30) and (31), to bound |〈aR(β ),aR(β ′)〉〈S
aT (β ),SaT (β ′)〉| we only need to consider those n,n′ for which n−n′ is not a mul-
tiple of NR, in which case aT (β ) and aT (β ′) are orthogonal. We have

|〈aR(β ),aR(β ′)〉〈SaT (β ),SaT (β ′)〉| ≤ NR |〈S∗SaT (β ),aT (β ′)〉|. (33)

By Lemma 8 there holds

P

(

|〈S∗SaT (β ),aT (β ′)〉| ≥ tNt

)

≤ 2exp
(

−Nt
t2

C1 +C2t
)
)

(34)

for all 0< t < 1, where C1=
4e√
6π and C2=

√
8e. We choose t=3

√

1
Nt

log(NτNf NRNT )

in (34) and get

P

(

|〈S∗SaT (β ),aT (β ′)〉| ≥ 3
√

Nt log(NτNf NRNT )
)

(35)

≤ 2exp
(

− 9log(NτNf NRNT )

C1 +
3C2√

Nt
log(NτNf NRNT )

)

. (36)

We claim that
9 log(NτNf NRNT )

C1 +
3C2√

Nt
log(NτNf NRNT )

≥ 2log(NRNT ). (37)

To verify this we first note that (37) is equivalent to

9 logNτNf ≥ log(NRNT )(2C1 +
6C2√

Nt

√

log(NτNf Nβ )−9).

Using both assumptions in (27) and the fact that 2C1 +
6C2√

30
−9≤ 9

2 we obtain

9logNτNf ≥ logNβ (2C1 +
6C2√

30
−9)≥ logNβ (2C1 +

6C2√
Nt

√

logNτNf Nβ −9),

which establishes (37). Substituting (37) into (35) gives

P

(

|〈S∗SaT (β ),aT (β ′)〉| ≥ 3
√

Nt log(NτNf NRNT )
)

≤ 2exp
(

−2log(NRNT )
)

.

(38)
To bound max |〈Aτ ,β ,Aτ ,β ′ 〉| we only have to take the union bound over NRNT dif-
ferent possibilities associated with β ,β ′, as τ = 0 and f = 0. Forming now the union
bound, and using (33), yields

P

(

|〈Aτ , f ,β ,Aτ , f ,β ′ 〉| ≤ 3NR

√

Nt log(NτNf NRNT )
)

≥ 1−2(NRNT )
−1. (39)
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Case (b) β �= β ′,τ �= 0, f = 0: We need to consider |〈SτaT (β ),SaT (β ′)〉| where
β = nΔβ , β ′ = n′Δβ , with n− n′ = kNR for k = 1, . . . ,NT − 1. Since the entries
of S are i.i.d. Gaussian random variables, it follows that the entries of SτaT (β )
are i.i.d. C N (0,1)-distributed, and similar for SaT (β ′). Moreover, the fact that
〈aT (β ),aT (β ′)〉 = 0 implies that SτaT (β ) and SaT (β ′) are independent. Conse-
quently, the entries of ∑Nt−1

l=0 (SτaT (β ))l(SaT (β ′))l are jointly independent. There-
fore, we can apply Lemma 10 with t = 3

√
Nt

√

log(NτNRNT ), form the union bound
over the NτNRNT possibilities associated with τ (we do not take advantage of the
fact we actually have only Nτ −1 and not Nτ possibilities for τ) and β ,β ′ (here, we
take again into account property (30)), and eventually obtain

P

(

|〈Aτ , f ,β ,Aτ ′, f ,β ′ 〉| ≤ 3NR

√

Nt log(NτNRNT )
)

≥ 1−2(NτNRNT )
−1. (40)

Case (c) β �= β ′,τ = 0, f �= 0: It is well known that (Tτx)∧ = M−τ x̂. Hence, by
Parseval’s theorem, 〈Tτx,y〉= 〈M−τ x̂, ŷ〉. Since the normal distribution is invariant
under Fourier transform, this case is therefore already covered by Case (b), and we
leave the details to the reader. We get

P

(

|〈Aτ , f ,β ,Aτ , f ′,β ′ 〉| ≤ 3NR

√

Nt log(Nf NRNT )
)

≥ 1−2(Nf NRNT )
−1. (41)

Case (d) β �= β ′,τ �= 0, f �= 0: This is similar to Case (b). The only difference is
that we have NtNf NRNT different possibilities to consider when forming the union
bound (the additional factor Nf is of course due to frequency shifts associated with
the Doppler effect). Thus in this case the bound reads

P

(

|〈Aτ , f ,β ,Aτ ′, f ′,β ′ 〉| ≤ 3NR

√

Nt log(NτNf NRNT )
)

≥ 1−2(NτNf NRNT )
−1. (42)

Case (e) β = β ′: We need to bound |〈M f TτSaT (β ),SaT (β )〉|, where we recall
that SaT (β ) is a Gaussian random vector with variance NT . (We note that a related
case is covered by Theorem 5.1 in [27], which considers 〈M f Tτh,h〉, where h is a
Steinhaus sequence.) Since, each of the entries of Sτ , f aT (β ) and of SaT (β ) is a sum
of NT i.i.d. Gaussian random variables of variance 1/NT , we can write

|〈Sτ , f aT (β ),SaT (β )〉|= |
Nt−1

∑
l=0

e− j2πl f/Nt ḡl−τgl |, (43)

where gl ∼N (0,1). Note that the terms in this sum are no longer all jointly inde-
pendent. But similar to the proof of Theorem 5.1 in [27] we observe that for any τ �=
0 we can split the index set 0, . . . ,Nt −1 into two subsets Λ 1

τ ,Λ 2
τ ⊂ {0, . . . ,Nt −1},

each of size Nt/2, such that the Nt/2 variables e− j2πl f/Nt ḡ(l − τ)g(l) are jointly
independent for l ∈ Λ 1

τ , and analogous for Λ 2
τ . (For convenience we assume here

that Nt is even, but with a negligible modification the argument also applies for odd
Nt ). In other words, each of the sums ∑l∈Λ r

τ e− j2πl f/Nt ḡ(l−τ)g(l),r = 1,2, contains
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only jointly independent terms. Hence, we can apply Lemma 10 and obtain

P

(

∣

∣ ∑
l∈Λ r

τ

e− j2πl f/Nt ḡ(l− τ)g(l)
∣

∣ > t
)

≤ 2exp
(

− t2

Nt/2+2t)

)

(44)

for all t > 0. Choosing t = 3
2

√

Nt log(NtNf NRNT ) gives

P

(

∣

∣ ∑
l∈Λ r

τ

e− j2πl f/Nt ḡ(l− τ)g(l)
∣

∣ >
3
2

√

Nt log(NtNf NRNT )
)

≤ 2exp
(

−
9
4 Nt log(NtNf NRNT )

Nt
2 +3

√

Nt log(NtNRNT )

)

≤ 2exp
(

− 9log(NtNf NRNT )

2+12
√

log(Nt Nf NRNT )

Nt

)

. (45)

Condition (27) implies that 12
√

log(Nt Nf NRNT )

Nt
≤ 5

2 , hence the estimate in (45)
becomes

P

(

∣

∣ ∑
l∈Λ r

τ

e− j2πl f/Nt ḡ(l− τ)g(l)
∣

∣ >
3
2

√

log(NtNf NRNT )
√

Nt

)

≤ 2exp
(

− 9log(NtNf NRNT )

2+ 5
2

)

= 2exp
(

−2log(NtNf NRNT )
)

= 2(NtNf NRNT )
−2. (46)

Using Eq. (43), inequality (46), and the pigeonhole principle, we obtain

P

(

|〈Sτ , f aT (β ),SaT (β )〉|> 3
√

Nt log(NtNf NRNT )
)

≤ 4(NtNf NRNT )
−2, (47)

Combining this estimate with (29) yields

P

(

|〈Aτ , f ,β ,Aτ ′, f ′,β 〉| ≥ 3NR

√

Nt log(NτNf NRNT )
)

≤ 4(NtNf NRNT )
−2, (48)

We apply the union bound over the Nt
2 Nf NT NR different possibilities and arrive at

P

(

max |〈Aτ , f ,β ,Aτ ′, f ′,β 〉| ≤ 3NR

√

Nt log(NτNf NRNT )
)

≥ 1−4(NtNf NRNT )
−1, (49)

where the maximum is taken over all τ ,τ ′,β ,β ′, f , f ′ with τ �= τ ′.

To apply Theorem 1.3 in [5], we need to normalize the columns of A. The fol-
lowing result shows the corresponding bounds for Ã.
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Lemma 3. Let Ã = AD−1, where the entries of the NτNf Nβ ×NτNf Nβ diagonal
matrix are given by D(τ , f ,β ),(τ , f ,β ) = ‖Aτ , f ,β‖2. Under the conditions of Theorem 1
there holds

P

(

‖Ã‖2
op < 6NT Nf

)

≥ 1− p1, (50)

where

p1 = e−
(1−

√
1/3)2Nt
2 +NT e−(

3
2−

√
2)Nt ,

and

P

(

μ
(

Ã
)

≤ 6

√

1
Nt

log(NτNf NRNT )
)

≥ 1− p2, (51)

where

p2 = 2(NRNT )
−1 +2(NτNRNT )

−1 +2(Nf NRNT )
−1

+6(NτNf NRNT )
−1 +2e−

Nt (
√

2−1)2

4 .

Proof. We have

‖Ã‖2
op ≤

‖A‖2
op

maxτ , f ,β ‖Aτ , f ,β‖2
2

. (52)

Recall that
Aτ , f ,β = aR(β )⊗ (Sτ , f aT (β )), (53)

hence ‖Aτ , f ,β‖2
2 = ‖aR(β )‖2

2‖Sτ , f aT (β )‖2
2. Since the entries (Sτ , f aT (β ))k ∼

C N (0,NT ), we have E‖Sτ , f aT (β )‖=
√

Nt , and thus by Lemma 7

P

(√
Nt −‖Sτ , f aT (β )‖2 > t

)

≤ e−
t2
2 , (54)

for all t > 0, hence

P

( 1

‖Sτ , f aT (β )‖2
2

<
1

(
√

Nt − t)2

)

≥ 1− e−
t2
2 , (55)

Choosing t = (1−
√

1/3)
√

Nt in (55) and forming the union bound only over the
NRNT different possibilities associated with β (note that ‖Sτ , f aT (β )‖2 = ‖SaT (β )‖2

for all τ and f ), gives

P

( 1

max
τ , f ,β

‖Aτ , f ,β‖2
2

<
3

NtNR

)

≥ 1−NRNT e−
Nt (1−

√
1/3)2

2 . (56)

The diligent reader may convince herself that the probability in (56) is indeed close
to one under the condition (12). We insert (19) and (56) into (52) and obtain

P

(

‖Ã‖2
op < 6NT Nf

)

≥ 1− e−
Nt (1−

√
1/3)2

2 −NT e−(
3
2−

√
2)Nt . (57)
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which proves (50).
To establish (51) we denote D−1

(τ , f ,β ),(τ , f ,β ) := ‖Aτ , f ,β‖−1
2 and observe that

μ(Ã)≤max
{

D−1
(τ , f ,β ),(τ , f ,β )|(A

∗A)(τ , f ,β ),(τ ′, f ′,β ′)|D−1
(τ ′, f ′,β ′),(τ ′, f ′,β ′)

}

, (58)

where the maximum is taken over all (τ , f ,β ) �= (τ ′, f ′,β ′), Using Lemma 7
and (53) we compute

P

(

‖Aτ , f ,β‖2 >
√

NtNR−
√

NRt
)

≥ 1− e−
t2
2 . (59)

Therefore

P

( 1
‖Aτ , f ,β‖2

<
1√

NtNR−
√

NRt

)

≥ 1− e−
t2
2 , (60)

and thus

P

(

|Ã∗Ã)(τ , f ,β ),(τ ′, f ′,β ′)| ≤
1

(
√

NtNR−
√

NRt)2
|(A∗A)(τ , f ,β ),(τ ′, f ′,β ′)|

)

≥ 1−2e−
t2
2 , (61)

By choosing t = (1−1/
√

2)
√

Nt , we can write (61) as

P

(

|Ã∗Ã)(τ , f ,β ),(τ ′, f ′,β ′)| ≤
2

NtNR
|(A∗A)(τ , f ,β ),(τ ′, f ′,β ′)|

)

≥ 1−2e−
Nt (

√
2−1)2

4 . (62)

Finally, plugging (62) into (58) and using (28) we arrive at

P

(

μ(Ã)≤ 6

√

1
Nt

log(NτNf NRNT )
)

≥ 1− p2, (63)

where

p2 = 2(NRNT )
−1 +2(NτNRNT )

−1 +2(Nf NRNT )
−1

+6(NτNf NRNT )
−1 +2e−

Nt (
√

2−1)2

4

Proof. (of Theorem 1) We first point out that the assumptions of Theorem 1 imply
that the conditions of Lemma 1 and Lemma 5 are fulfilled.

Note that the solution x̃ of (9) and the solution z̃ of the following lasso problem

min
z

1
2
‖AD−1z−y‖2

2 +λ‖z‖1, with λ = 2σ
√

2log(NτNRNT ), (64)

satisfy supp(x̃) = supp(D−1z̃).
We will first establish the claims in Theorem 1 for the system Ãz = y where

Ã = AD−1, z = Dx and then switch back to Ax = y.
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We verify first condition (133). Property (14) and the fact that z = Dx imply that

|zk| ≥
10‖Aτ ,β‖2√

NRNt
σ

√

2log(NτNf Nβ ), for k ∈ S. (65)

Using Lemma 7 we get that

P

(

‖Aτ ,β‖ ≥
√

NRNt − t
)

≥ 1− e−
t2
2 . (66)

Choosing t = 2
10

√
NRNt and combining (66) with (65) gives

|zk| ≥ 8σ
√

2log(NτNf Nβ ), for k ∈ S,

with probability at least 1− e−
NRNt

25 , thus establishing condition (133).
Note that Ã has unit-norm columns as required by Theorem 5. It remains to

verify condition (131). Using the assumption (12), and the coherence bound (51)
we compute

μ2(Ã)≤ 36
1
Nt

log(NτNf NRNT )≤ 36
log(NτNf NRNT )

log3(NτNf NRNT )

=
36

log2(NτNf NRNT )
,

which holds with probability as in (51), and thus the coherence property (131) is
fulfilled.

Furthermore, using (50) we see that condition (13) implies

K ≤ c0NτNR

6log(NτNf NRNT )
≤ c0NτNf NRNT

‖Ã‖2
op log(NτNf NRNT )

with probability as stated in (50). Thus assumption (132) of Theorem 5 is also ful-
filled (with high probability) and we obtain that

supp(z̃) = supp(z). (67)

We note that the relation supp(x̃) = supp(x) holds with the same probability as the
relation supp(z̃) = supp(z) (see Eq. (67)), since supp(z) = supp(x) and multiplica-
tion by an invertible diagonal matrix does not change the support of a vector. This
establishes (83) with the corresponding probability.

As a consequence of (135) we have the following error bound

‖z̃− z‖2

‖z‖2
≤ σ

√
3NRNt

‖y‖2
(68)
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which holds with probability at least
(

1− p1)(1− p2
)

(1− p4)
(

1− p5)−O((NτNβ )
−2log2)

)

,

where the probabilities p1, p2, p4, p5 are as in Theorem 1. Using the fact that z̃=Dx̃,
we compute

1
κ(D)

‖x̃−x‖2

‖x‖2
≤ ‖D(x̃−x)‖2

‖Dx‖2
=
‖z̃− z‖2

‖z‖2
,

or, equivalently,
‖x̃−x‖2

‖x‖2
≤ κ(D)

‖z̃− z‖2

‖z‖2
. (69)

Proceeding along the lines of (54)–(56), we estimate

P
(

κ(D)≤ 2
)

≥ 1−NRNT e−
Nt (1−

√
1/3)2

2 . (70)

The bound (85) follows now from combining (68) with (69) and (70).

4 Deterministic Waveforms and Random Antenna Arrays

In this section, we are considering MIMO radar with random sensor arrays and
deterministic waveforms. Specifically, we will investigate the use of Kerdock codes
as transmission waveforms.

Random sensor arrays have been around for half a century. The pioneering
work [25, 26] by Lo contains a mathematical analysis of important specific char-
acteristics of random arrays, such as sidelope behavior and antenna gain. There is
extensive engineering literature that deals with random arrays in connection with
phased array radar technology, e.g., see [10]. Recently, Carin made an explicit con-
nection between the areas of random sensor arrays and compressive sensing [6].
He has shown that algorithms developed in these two seemingly different areas are
in fact highly interrelated. The setup in [6] is quite different from ours, since the
paper is only concerned with angular resolution (thus transmission waveforms do
not even explicitly enter into the model), while it is often crucial in practice to be
able to estimate range and Doppler as well. Moreover, the theoretical analysis in [6]
follows more an engineering style and places less emphasis on mathematical rigor.
The paper [7] provides interesting results for the angular estimation of stationary
targets. Its setup is similar to that in [6], and quite different from ours, as it does not
deal with waveform design nor with moving targets.

Kerdock codes have been proposed for radar in [17], albeit in the setting of a
single transmit antenna. Kerdock codes are known to perform rather poorly2 even
in the case of single targets as considered in [17]. Only in the setting of mulitple
transmit antennas can Kerdock codes exhibit their enormous potential.

2 This poor performance is caused by Property (ii) in Theorem 2.
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The previous section considers a MIMO radar setting with a very specific (non-
random) choice for the antenna locations, but random waveforms, while the current
section deals with randomly spaced antennas, but very specific, deterministic wave-
forms. At first glance, the difference may appear to be mainly semantic. But in prac-
tice, the second setting has many advantages. From an engineer’s viewpoint random
waveforms have several drawback over properly designed deterministic waveforms:
they are much harder to implement on a digital device (requiring more complicated
hardware, more memory, ...); and they exhibit a larger peak-to-average-power ratio.
On the other hand it makes no difference from the viewpoint of physics or hard-
ware, if we place the antennas at random or at deterministic locations. In particular,
the current section yields some important insights, which cannot be inferred from
the previous section: We obtain a theoretical framework for radar operating with
random antenna arrays, a technique which have been around for half a century; we
show that Kerdock sequences, which are not useful for SISO or SIMO radar3, are
excellent for MIMO radar; our approach allows for waveforms that satisfy a number
of properties which are very desirable in practice, and are not satisfied by random
waveforms.

4.1 Kerdock Codes

In this section, we introduce one particularly useful set of transmission waveforms.
Due to the setup in Section 2 it suffices that we deal with discrete, finite-length
sequences as transmission signals. We briefly review the construction of Kerdock
codes and some of their fundamental properties. There is a long list of properties that
radar waveforms should satisfy. As we will see in this chapter, Kerdock codes fulfill
many of them. Kerdock codes over Z2 (i.e., binary Kerdock codes) were originally
introduced in [20]. In the seminal paper [2] the authors extend Kerdock codes from
Z2 to Z4. By doing so, they uncover many fascinating properties of Kerdock codes
and reveal numerous deep connections between coding theory, discrete geometry
and group theory. In the same paper, the authors also extend Kerdock codes to the
setting of Zp, where p is an odd prime.

Kerdock codes are an example of so-called mutually unbiased bases [32, 39].
Kerdock codes have also been proposed for use in communications engineer-
ing [14, 19]. In [17] the authors suggest the use of Kerdock codes for radar, based on
the peculiar properties of the discrete ambiguity function associated with Kerdock
codes. We emphasize however that for the single transmit antenna radar scenario
Kerdock codes would actually perform rather badly, as discussed after Theorem 2.
It is only in the setting of multiple transmit antennas that Kerdock codes become
useful for radar.

For the remainder of this chapter, we will only be concerned with Kerdock
codes over Zp. Some of the Kerdock codes over Zp, namely those corresponding

3 SISO stands for single-input-single-output radar, and SIMO for single-input-multiple-output
radar (i.e., a radar with one transmit and multiple receive antennas).
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to Desarguesian planes in the language of [2], have also been derived earlier in [22]
and [21]. A simple way to construct these Kerdock codes is via eigenvectors of time-
frequency shift operators. Let p be an odd prime number. For each k = 0, . . . , p−1
we compute the eigenvector decomposition of T1Mk (which always exists, since
T1Mk is a unitary matrix)

U(k)Σ (k)U
∗
(k) = T1Mk, (71)

where the unitary matrix U(k) contains the eigenvectors of T1Mk and the diagonal
matrix Σ (k) the associated eigenvalues4. Furthermore, we define U(p) := Ip. Now,
let uk, j be the jth column of U(k). The set consisting of the p2 + p vectors {uk, j,k =
0, . . . , p; j = 0, . . . , p−1} forms a Zp-Kerdock code. There are numerous equivalent
ways to derive this Kerdock code, but, as pointed out earlier, not all Kerdock codes
over Zp are equivalent (see also the comment following Corollary 11.6 in [2]). But
we will be a bit sloppy, and simply refer to the Kerdock code constructed above as
the Kerdock code.

In the following theorem, we collect those key properties of Kerdock codes that
are most relevant for radar. These properties are either explicitly proved in [2, 17]
or can be derived easily from properties stated in those papers.

Theorem 2. Kerdock codes over Zp, where p is an odd prime, satisfy the following
properties:

(i) Mutually unbiased bases: For all k= 0, . . . , p and all j = 0, . . . , p−1, there holds:

|〈uk, j,uk′, j′ 〉|=

⎧

⎪

⎨

⎪

⎩

1 if k = k′, j = j′,

0 if k = k′, j �= j′,
1√
p if k �= k′.

(ii)Time-frequency “autocorrelation”:
(a) For any fixed ( f , l) �= (0,0) there exists a unique k0 such that

|〈M f Tluk0, j,uk0, j〉|= 1 for j = 0, . . . , p−1, (72)

|〈M f Tluk, j,uk, j〉|= 0 for k �= k0. (73)

(b) For any fixed 0≤ k ≤ p−1, there exist ( fr, lr), r = 1, . . . , p such that

|〈M fr Tlr uk, j,uk, j〉|= 1 for j = 0, . . . , p−1, (74)

(iii)Time-frequency cross-correlation: For all k �= k′ and all f and l there holds:

|〈M f Tluk, j,uk′, j〉| ≤
1
√

p
for j = 0, . . . , p−1. (75)

4 The attentive reader will have noticed that U(0) is just the p× p DFT matrix Fp.
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(iv) Polyphase property (Roots of unity property) in time and in frequency:
For any k = 0, . . . , p−1; j = 0, . . . , p−1, there holds:

uk, j(l) = e2πir/p for some r ∈ {0, . . . , p−1}. (76)

For any k = 1, . . . , p; j = 0, . . . , p−1, there holds:

ûk, j(l) = e2πir/p for some r ∈ {0, . . . , p−1}. (77)

Proof. Property (i) is proved for instance in Lemma 11.3 in [2]. Properties (ii)
and (iii) appear in Theorem 3 of [17]. Statement (76) of property (iv) follows from
the comment right after Corollary 11.6 in [2]. Finally, statement (77) of property (iv)
follows from (71) together with property (3) and the well-known fundamental rela-
tionships

FpTxF∗p = M−x, FpMxF∗p = Tx.

Kerdock codes have been proposed for adaptive radar in [17]. We emphasize
again though that Kerdock codes would not be very effective for a radar system
with a single transmit antenna (SISO or SIMO radar). This can be easily seen as
follows: Assume we only have one antenna that transmits one waveform s. Due to
(74), s is (up to a constant phase factor) equal to M f Tls for some ( f , l). In practice
this ambiguity prevents us from determining the distance and the velocity of the
object, when using Kerdock codes for SISO or SIMO radar.

As a consequence of the aforementioned ambiguity we will not use all of the
Kerdock codes as transmission signals for our MIMO radar, instead we will choose
one code for each index k. The reason is that we need the waveforms to have low
time-frequency cross-correlation, while (75) only holds when k and k′ are different.

Definition 1 (Kerdock waveforms). Let {uk, j,k = 0, . . . , p, j = 0, . . . , p− 1} be a
Kerdock code over Zp. The Kerdock waveforms k0, . . . ,kr, where r < p, are given
by kk = uk, j for some arbitrary j. In other words, for each k = 0, . . . ,r−1 we pick

an arbitrary vector from the orthonormal basis {uk, j}p−1
j=0 .

Note that Kerdock waveforms do not include any unit vectors, since only the first
r unitary matrices U(0), . . . ,U(r−1) are considered and r is strictly less than p (recall
that U(p) = Ip).

4.2 Compressive MIMO Radar and Kerdock Waveforms

Now we are ready to state the main theorem of this section, which illustrates the
usefulness of Kerdock waveforms for compressive sensing based MIMO radar.

Theorem 3. Consider y=Ax+w, where A is defined as in (7) and w j ∈C N(0,σ2).
Assume that the positions of the transmit and receive antennas p j’s and q j’s are
chosen i.i.d. uniformly in [0, NRNT

2 ] at random. Suppose further that each transmit
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antenna sends a different Kerdock waveform, i.e., the columns of the signal matrix
S are different Kerdock waveforms. Choose the discretization stepsizes to be

Δβ =
2

NRNT
, Δτ =

1
2B

, Δ f =
1
T
. (78)

Furthermore, suppose that Δs =
1

2B (i.e., Ns = 2T B) and

max
(

NRNT ,32N3
T logNτNf Nβ

)

≤ Ns, (79)

and also
log2 NτNf Nβ ≤ NT ≤ NR. (80)

If x is drawn from the generic S-sparse scatterer model with

S ≤ c0Nτ
logNτNf Nβ

(81)

for some constant c0 > 0, and if

min
k∈I

|xk|>
8
√

3σ√
NRNT

√

2logNτNf Nβ , (82)

then the solution x̃ of the debiased lasso computed with λ = 2σ
√

2logNτNf Nβ
satisfies

supp(x̃) = supp(x), (83)

with probability at least
1− p1, (84)

and
‖x̃−x‖2

‖x‖2
≤ 5σ

√
3NRNs

‖y‖2
(85)

with probability at least
(1− p1)(1− p2), (86)

where

p1 = 16N−2
τ N−1

R +8N−2
τ N−2

f +4NT N−2
τ N−2

f +4(NτNf )
−1

+4N−3
τ N−3

f N−2
R N−1

T +8N−2
T (NτNf NR)

−3,

and

p2 = 2(NτNf Nβ )
−1(2π log(NτNf Nβ )+K(NτNf Nβ )

−1)

+O((NτNf Nβ )
−2log2).
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Remarks and Discussion of the Theorem:

1. Theorem 3 demonstrates several advantages of the proposed sparsity-based
approach compared to standard methods such as the matched-filter approach
or minimal �2-norm based methods. First of all, unlike other methods (with the
exception of [31]) that aim at target detection and estimation in the azimuth-
range-Doppler domain, our approach provides guaranteed performance under
explicit conditions. In terms of target detection capability, there is no limit on
the dynamical range. A target can be detected as long as its reflection coefficient
exceeds the noise level, see (82). Moreover, the resolution limits are actually
attainable, and not just for one target, but for quite a large number of targets
(as specified in (81)), and furthermore even if a “weak” target is located near a
“strong” target.

2. The relations in (78) can be interpreted as guaranteed achievable resolutions in
the azimuth-range-Doppler domain. The angular resolution Δβ = 2

NRNT
means

that we have a virtual array whose aperture is NRNT
2 (and not just NR +NT ). The

choices Δτ = 1
2B , Δ f =

1
T correspond to the resolutions with respect to range

and Doppler, respectively.
3. We note that a virtual array of size NRNT

2 can also be achieved with a specific uni-
formly interleaved antenna arrangement, see [31]. However, in contrast to [31],
Theorem 3 shows that we do not need to resort to random waveforms, but instead
can employ deterministic waveforms that satisfy a variety of additional desirable
properties.

4. The conditions in (79) and (80) are less straightforward to interpret than con-
dition (78), as they are in part “footprints” of the proof. For instance, we
believe that the factor N3

T in (79) is somewhat artificial and a more sophisti-
cated approach may be able to eliminate or at least reduce that factor. However,
the (in practice rather mild) condition in (79) that the number of samples Ns

should at least be as large as NT NR seems genuine. Moreover, it is not hard to
see that we cannot improve our results by oversampling the received signal (i.e.,
by increasing Ns via setting Δs <

1
2B ), since oversampling would neither improve

the coherence of the matrix, nor provide any new, independent measurements.
5. The conditions in (80) show that we need both NT and NR to be larger than 1,

i.e., we need to have an actual MIMO radar (and not a SISO or SIMO radar)
in order for the theorem to hold. The latter condition NT ≤ NR in (80) is by no
means necessary, but rather makes our computations a little cleaner. We could
change it to, say, NT ≤ 2NR, then the theorem would remain true with a slightly
different probability of success.

6. It may seem that the conditions in (79) and (80) are a bit restrictive. But, in
practice, our method works with a broad range of parameters as the simulations
in Section 6 show.

7. The choice of Kerdock waveforms is by no means necessary. Other waveforms
can give similar result, see Theorem 6.1 in [33].
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Similar to the proof of Theorem 1, the proof of the above theorem requires an
estimate of the bound for the operator norm of A and a bound for the coherence
of A.

Lemma 4. Let A be the matrix in Theorem 3 satisfying (79). Then

P

(

‖A‖2
op ≤ 2Nf N2

RN2
T

)

≥ 1−8N−2
τ N−1

R . (87)

Proof. Since ‖A‖2
op = ‖AA∗‖op, we express the matrix B = AA∗ as block matrix

⎡

⎢

⎣

B1,1 B1,2 . . . B1,NR
...

. . .
...

BNR,1 . . . BNR,NR

⎤

⎥

⎦ ,

where the blocks {B j, j′}NR
j, j′=1 are matrices of size Nt ×Nt .

Via a simple permutation we can turn B into a matrix C with blocks {Cl,l′}Ns
l,l′=1

of size NR×NR, where the ( j, j′)th entry of the block Cl,l′ is defined as

C[l, j;l′ j′] = B[ j,l; j′,l′] = (AA∗)[ j,l; j′,l′] =∑
β
∑
τ
∑

f

A[ j,l;τ , f ,β ]A[ j′,l′;τ , f ,β ]

=∑
β

e2πi(q j−q j′ )β
NT

∑
k=1

NT

∑
k′=1

e2πi(pk−pk′ )β 〈Tlkk,Tl′kk′ 〉
Nf

∑
m=1

e2πi(l−l′)Δt mΔ f

= δl,l′Nf ∑
β

e2πi(q j−q j′ )β
NT

∑
k=1

NT

∑
k′=1

e2πi(pk−pk′ )β 〈Tl−l′kk,kk′ 〉. (88)

From (88) it is easy to see that C is block-diagonal and that all the diagonal-blocks
are identical. So we only have to bound the first block C1,1.

C[1, j;1, j′] = Nf ∑
β

e2πi(q j−q j′ )β
NT

∑
k=1

NT

∑
k′=1

e2πi(pk−pk′ )β 〈kk,kk′ 〉

= Nf

NRNT−1

∑
n=0

e2πi(q j−q j′ )
n

NRNT

NT

∑
k=1

NT

∑
k′=1

e2πi(pk−pk′ )
n

NRNT 〈kk,kk′ 〉.

Define cn = ∑NT
k=1∑

NT
k′=1 e2πi(pk−p′k)

n
NRNT 〈kk,kk′ 〉, then

C1,1 = Nf

NRNT−1

∑
n=0

cnXn,

where Xn is the matrix-valued random variable given by

(Xn) j, j′ = e2πi(q j−q j′ )
n

NRNT
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and therefore ‖Xn‖op = NR.
Note that E(e2πi(pk−pk′ )n) = 0 and |〈kk,kk′ 〉| ≤ 1√

Ns
for k �= k′. Choosing t =

2
√

NT
Ns

√
logNτNRNT in (124) of Lemma 11, we arrive at

P

(

|cn| ≤ NT (1+4

√

NT

Ns

√

logNτNRNT )
)

≥ 1−8NT (NτNRNT )
−2,

then the assumption in (79) implies that 16NT logNτNRNT ≤ Ns, therefore

P

(

|cn| ≤ 2NT

)

≥ 1−8NT (NτNRNT )
−2.

We apply the union bound over the NRNT possibilities associated with n and get

P

(

max |cn| ≤ 2NT

)

≥ 1−8N−2
τ N−1

R ,

which implies that

P

(

‖C1,1‖op ≤ 2Nf N2
RN2

T

)

≥ 1−8N−2
τ N−1

R .

Then the fact that ‖B‖op = ‖C‖op = ‖C1,1‖op will give us the desired conclusion.

Lemma 5. Let A be the matrix in Theorem 3 satisfying (79) and (80). Then

max
(τ , f ,β ) �=(τ ′, f ′,β ′)

∣

∣〈Aτ , f ,β ,Aτ ′, f ′,β ′ 〉
∣

∣≤ 16NR logNτNf NRNT (89)

with probability at least

1−8N−2
τ N−2

f −4NT N−2
τ N−2

f −4(NτNf )
−1−4N−3

τ N−3
f N−2

R N−1
T

−8N−2
T (NτNf NR)

−3.

Proof. We need to find an upper bound for max |〈Aτ , f ,β ,Aτ ′, f ′,β ′ 〉| where the maxi-
mum is taken over (τ , f ,β ) �= (τ ′, f ′,β ′). Recall that Sτ , f = M f TτS. It follows from
the definition that

Aτ , f ,β = aR(β )⊗ (Sτ , f aT (β )),

from which we readily compute

|〈Aτ , f ,β ,Aτ ′, f ′,β ′ 〉|= |〈aR(β ),aR(β ′)〉||〈Sτ , f aT (β ),Sτ ′, f ′aT (β ′)〉|.

We use the discretization β = nΔβ , β ′ = n′Δβ , where Δβ = 2
NRNT

, n,n′ = 1, . . . ,Nβ ,
with Nβ = NRNT .

Since

|〈Sτ , f aT (β ),Sτ ′, f ′aT (β ′)〉|= |〈Sτ−τ ′, f− f ′aT (β ),SaT (β ′)〉|
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for τ ,τ ′ = 0, . . . ,Nτ−1, f , f ′ = 0, . . . ,Nf −1. We can confine the range of values for
τ ,τ ′ to τ ′ = 0,τ = 0, . . . ,Nτ −1 and f , f ′ to f ′ = 0, f = 0, . . . ,Nf −1, then we only
need to estimate |〈Sτ , f aT (β ),SaT (β ′)〉|. We now consider three cases.
Case (i) β �= β ′,τ = 0, f = 0:

By Theorem 4.5 in [18], for any t1 > 0

P

(

|〈aR(β ),aR(β ′)〉| ≥ t1
)

≤ 4exp
(

− t2
1

4NR

)

,

choosing t1 = 2
√

2
√

NR
√

logNτNf NRNT will give us that

P

(

|〈aR(β ),aR(β ′)〉| ≤ 2
√

2
√

NR
√

logNτNf NRNT

)

≥ 1−4(NτNf NRNT )
−2. (90)

Define M := S∗S with entries m jk, then |mk j| = |〈kk,k j〉| ≤ 1√
Ns

for k �= j and

m j j=1. We choose s=2
√

2
√

NT
√

logNτNf NRNT and t=2
√

2
√

NT
Ns

√

logNτNf NRNT

in (123) of Lemma 11 and get

P

(

|〈S∗SaT (β ),aT (β ′)〉| ≤ (2
√

2
√

NT +2
√

2NT

√

NT

Ns
)
√

logNτNf NRNT

)

≥ 1−4(NτNf NRNT )
−2−4NT (NτNf NRNT )

−2,

combined with (90),

P

(

|〈Aτ , f ,β ,Aτ , f ′,β ′ 〉| ≤ 8(
√

NRNT +NT

√

NRNT

Ns
) logNτNf NRNT

)

≥ 1−8(NτNf NRNT )
−2−4NT (NτNf NRNT )

−2.

After taking the union bound over (NRNT )
2 different possibilities associated with

β ,β ′, we will have that

P

(

max |〈Aτ , f ,β ,Aτ , f ′,β ′ 〉| ≤ 8(
√

NRNT +NT

√

NRNT

Ns
) logNτNf NRNT

)

≥ 1−8N−2
τ N−2

f −4NT N−2
τ N−2

f .

A little algebra, using (79) and (80), shows that

8(
√

NRNT +NT

√

NRNT

Ns
)≤ 16NR,

therefore

P

(

max |〈Aτ , f ,β ,Aτ , f ,β ′ 〉| ≤ 16NR logNτNf NRNT

)

≥ 1−8N−2
τ N−2

f −4NT N−2
τ N−2

f . (91)
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Case (ii) β �= β ′,(τ , f ) �= (0,0):

As in case (i), we have β �= β ′, therefore (90) holds. Define C = S∗τ , f S with
entries c jk. From the properties of k j, we have that

|ck j|= |〈M f Tτkk,k j〉| ≤
1√
Ns

for k �= j

and there exists j0 such that |c j0 j0 |= 1 and c j j = 0 for j �= j0. Then

|〈S∗τ , f SaT (β ),aT (β ′)〉| ≤ 1+ |〈C′aT (β ),aT (β ′)〉|,

where C′ is a zero-diagonal matrix which coincides with C at off-diagonal entries.
Clearyl, C′ satisfies the condition for (121) to hold. Choosing t = 4

√
NT√
Ns

√

logNτNf NRNT in (121) of Lemma 11 yields

P

(

|〈S∗τ , f SaT (β ),aT (β ′)〉| ≤ 1+4
NT
√

NT√
Ns

√

logNτNf NRNT |
)

≥ 1−4NT (NτNf NRNT )
−4, (92)

from the assumption that 32N3
T logNτNf NRNT ≤ Ns, together with (90), we will get

P

(

|〈Aτ , f ,β ,Aτ ′, f ′,β ′ 〉| ≤ 4
√

2
√

NR
√

logNτNf NRNT

)

≥ 1−4(NτNf NRNT )
−2−4NT (NτNf NRNT )

−4.

By (80), we deduce logNτNf NRNT ≤ NR. Therefore

P

(

|〈Aτ , f ,β ,Aτ ′, f ′,β ′ 〉| ≤ 4
√

2NR

)

≥ 1−4(NτNf NRNT )
−2−4NT (NτNf NRNT )

−4.

We apply the union bound over NτNf N2
RN2

T possibilities and arrive at

P

(

max |∠Aτ , f ,β ,Aτ ′, f ′,β ′ 〉| ≤ 4
√

2NR

)

≥ 1−4(NτNf )
−1−4N−3

τ N−3
f N−2

R N−1
T . (93)

Case (iii) β = β ′,(τ , f ) �= (0,0):
Note that the matrix C = S∗τ , f S has exactly the same properties as in Case (ii)

above. Following the same argument as we show (92) and applying (122) of Lemma
11 combined with the assumption as in (79) gives us that

P

(

|〈S∗τ , f SaT (β ),aT (β )〉| ≤ 1+4
√

2
NT
√

NT√
Ns

√

logNτNf NRNT

)

≥ 1−8NT (NτNf NRNT )
−4,
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which implies that

P

(

|〈Aτ , f ,β ,Aτ ′, f ′,β ′ 〉| ≤ 2NR

)

≥ 1−8N−3
T (NτNf NR)

−4,

We apply the union bound over the NτNf NRNT possibilities associated with τ , f ,
and β

P

(

max |〈Aτ , f ,β ,Aτ ′, f ′,β 〉| ≤ 2NR

)

≥ 1−8N−2
T (NτNf NR)

−3. (94)

(91), (93), and (94) will give the conclusion.

To apply Theorem 1.3 in [5], we need to normalize the columns of A. We first
have the following result which shows the lower and upper bounds of the norm of
columns of A.

Lemma 6. Let A be defined as in Theorem 3 satisfying (79), then

P

(1
3

NRNT ≤min‖Aτ , f ,β‖2
2 ≤max‖Aτ , f ,β‖2

2 ≤
5
3

NRNT

)

≥ 1−8N−2
τ N−1

R . (95)

Proof. Recall that

‖Aτ , f ,β‖2
2 = ‖aR(β )‖2

2‖Sτ , f aT (β )‖2
2 = NR〈S∗τ , f Sτ , f aT (β ),aT (β )〉
= NR〈S∗SaT (β ),aT (β )〉.

Setting t = 2
√

NT
Ns

√
logNτNRNT in (124) of Lemma 11 yields

P

(

NT (1−4

√

NT

Ns

√

logNτNRNT )≤ |〈S∗SaT (β ),aT (β )〉| ≤

NT (1+4

√

NT

Ns

√

logNτNRNT )
)

≥ 1−8NT (NτNRNT )
−2.

An easy calculation from (79) leads

4

√

NT

Ns

√

logNτNRNT ≤
2
3
,

which indeed implies

P

(1
3

NT ≤ |〈S∗SaT (β ),aT (β )〉| ≤
5
3

NT

)

≥ 1−8NT (NτNRNT )
−2. (96)

Since the above probability does not depend on τ or f , we take all NRNT possibilities
of β and conclude the proof of the lemma.

Corollary 1. Suppose Ã = AD−1 where D is the NτNf Nβ × NτNf Nβ diagonal
matrix defined by D(τ , f ,β ),(τ , f ,β ) = ‖Aτ , f ,β‖2, or in other words Ã is the matrix with



310 Thomas Strohmer and Haichao Wang

unit-norm columns from A. Then

P

(

‖Ã‖2
op ≤ 6Nf NRNT

)

≥ 1−16N−2
τ N−1

R , (97)

and

P

(

μ
(

Ã
)

≤ 48
logNτNf NRNT

NT

)

≥ 1− p3, (98)

where

p3 = 8N−2
τ N−1

R +8N−2
τ N−2

f +4NT N−2
τ N−2

f +4(NτNf )
−1

+4N−3
τ N−3

f N−2
R N−1

T +8N−2
T (NτNf NR)

−3.

Proof. This corollary is a direct consequence of Lemma 4, Lemma 5, and Lemma
6.

Proof. (of Theorem 3) Similar to Theorem 1, the proof follows from Lemma 6,
Corollary 1, and Theorem 5.

5 Off-the-Grid Compressive Sensing Radar

In the previous sections, we have assumed that the targets lie on the grid points,
while common in compressive sensing, is certainly quite restrictive. A violation of
this assumption will result in a model mismatch, sometimes dubbed gridding error,
which can potentially be quite severe [8, 16]. Recently some interesting strategies
have been proposed to overcome this gridding error [9, 34]. But these methods, at
least in their current form, are not directly applicable to our setting.

In this section, we are concerned with the scenario where the targets lie in a
continuous domain. We consider the Doppler-free case, i.e., we are interested in
recovering the angular location and distance of the targets. The approach in this sec-
tion draws heavily from recent results by Candès and Ferndanez-Granda on super-
resolution [4].

Before introducing the main result in this section, we first define the total vari-
ation norm (TV-norm) for measures. The TV-norm of a complex measure ν on a
measurable set Ω is defined to be

|ν |(Ω) = sup ∑
B∈π

|ν(B)|,

where the supremum is taken over all partitions π of the measurable set Ω into a
finite number of disjoint measurable subsets. The TV-norm can be interpreted as
being the continuous analog to the �1 norm for discrete signals.
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The following total variation minimization has been proposed recently in con-
nection with super-resolution problems [4].

min
x̃
‖x̃‖TV s.t. Ax̃ = y (99)

We are going to show that the TV-norm minimization can also be used in grid-
free compressive sensing radar, at least for the SIMO case.

5.1 Off-the-Grid Compressive Sensing SIMO Radar

We first consider SIMO radar. Suppose we have single transmit antenna transmitting
signal

s(t) = ∑
|k|≤ fc

dke j2πkt

and NR receive antennas. If the receive antennas are uniformly spaced with distance
dR = 1

2 (distance divided by wavelength), the array manifold will be

aR(β ) =

⎡

⎢

⎢

⎢

⎣

e j2πq1β

e j2πq2β

...
e j2πqNRβ

⎤

⎥

⎥

⎥

⎦

(100)

where ql = dR(l−1) = l−1
2 .

In this case the sensing matrix A has columns

Aτβ = aR(β )⊗Tτs =

⎡

⎢

⎢

⎢

⎣

e j2πq1βTτs
e j2πq2βTτs

...
e j2πqNRβTτs

⎤

⎥

⎥

⎥

⎦

. (101)

Consequently the equation
Ax = y, (102)

can be written as
⎡

⎢

⎢

⎢

⎣

e j2πq1βTτs
e j2πq2βTτs

...
e j2πqNRβTτs

⎤

⎥

⎥

⎥

⎦

τβ

x =

⎡

⎢

⎢

⎢

⎣

y1

y2
...

yNR

⎤

⎥

⎥

⎥

⎦

, (103)

or, alternatively, we can write for 1≤ l ≤ NR,
[

e j2πqlβTτs
]

τβ
x = yl , (104)
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Since A is a matrix with infinitely many columns, we have that

∑
τβ

e j2πqlβTτsxτβ = yl . (105)

Theorem 4. Suppose we have a single transmit antenna, NR receive antennas, and
that the transmit antenna sends a band-limited signal

s(t) = ∑
|k|≤ fc

dke j2πkt ,

such that the entries of the discrete Fourier transform of d = (dk)|dk|≤ fc are all

nonzero. Assume that the received antennas are uniformly spaced with distance 1
2 .

We take n = 2 fc +1 samples of the received signal from each receive antenna. If the
targets xk = (τk,βk) satisfy the minimum separation condition, i.e.,

|τl − τk| ≥
4.76

n
, or |βl −βk| ≥

4.76
NR

,

for l �= k, then the total variation minimization (99) will recover x exactly.

Remarks:

1. We do not minimize the total variation on the system directly, a Fourier transform
is performed before that.

2. This theorem only concerns the noise free case, the efficiency of the algorithm
with respect to different SNR is demonstrated in the simulation section. A theo-
rem for the noisy case can be derived by adopting the proof techniques in [3].

3. The factor 4.76 is definitely not optimal. We believe this factor should be 1 as
we will see in the simulation section.

Proof. Taking the Fourier transform of (105) gives us that

∑
τβ

e j2πqlβM−τ ŝxτβ = ŷl . (106)

If we define the matrix B with the same dimensions as A such that each column
of B is of the form

⎡

⎢

⎢

⎢

⎣

e j2πq1βM−τ ŝ
e j2πq2βM−τ ŝ

...
e j2πqNRβM−τ ŝ

⎤

⎥

⎥

⎥

⎦

, (107)
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then (103) is equivalent to

⎡

⎢

⎢

⎢

⎣

e j2πq1βM−τ ŝ
e j2πq2βM−τ ŝ

...
e j2πqNRβM−τ ŝ

⎤

⎥

⎥

⎥

⎦

τβ

x =

⎡

⎢

⎢

⎢

⎣

ŷ1

ŷ2
...

ŷNR

⎤

⎥

⎥

⎥

⎦

. (108)

Note that x is the same in both (103) and (108), and we assume x to satisfy the
minimal distance condition in time and azimuth.

We are going to minimize the TV-norm of x such that (108) holds. Similar as
in compressed sensing, in order for the total-variation solution to be exact, it is
sufficient to show the existence of certain dual polynomial. Suppose the vector x
that we want to recover has support T . Then for any W ∈ C

|T | with |v j| = 1, we
want to construct a polynomial q(τ ,β ) in Img(B∗) such that

{

q(τ j,β j) = v j, if (τ j,β j) ∈ T
|q(τ ,β )|< 1, if (τ ,β ) /∈ T

(109)

From the definition of B, the polynomial q(τ ,β ) is of the form

q(τ ,β ) =
NR

∑
l=1

2 fc+1

∑
k=1

clke j2πqlβ e− j2πkτsk (110)

defined on [0,1]× [−1,1], where sk = ŝ( k−1
2 fc+1 ).

After change of variables, we want to construct polynomial

q(τ ,β ) =
NR−1

∑
l=0

2 fc+1

∑
k=1

clkske j2πlβ e− j2πkτ (111)

defined on [0,1]× [−1/2,1/2], where we have used the optimal antenna locations
such that ql =

l−1
2 .

Define the ceiling function -a. to be the smallest integer that is greater than or
equal to a. Denote fβ = -NR−1

2 ..

q(τ ,β )e− j2π fβ β e j2π( fc+1)τ =
NR−1

∑
l=0

2 fc+1

∑
k=1

clkske j2π(l− fβ )β e− j2π(k− fc−1)τ

=

NR−1− fβ

∑
l=− fβ

fc

∑
k=− fc

clkske j2πlβ e j2πkτ ,
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or

q(τ ,β )e− j2π fβ β e j2π( fc+1)τ =

NR−1− fβ

∑
l=− fβ

fc

∑
k=− fc

clkske j2πl(β− 1
2 )e j2πkτ

=−
NR−1− fβ

∑
l=− fβ

fc

∑
k=− fc

clkske j2πlβ e j2πkτ

defined on [0,1]× [0,1].
The fact that sk’s are all nonzero and the following proposition will make sure

that such a polynomial

q̃(τ ,β ) = q(τ ,β )e− j2π fβ β e j2π( fc+1)τ

exists.

Proposition 1. Let T = {r1,r2, . . .} ∈ T
2, where rk = (τk,βk) be a family of points

obeying the minimum distance condition

|τl − τk| ≥
4.76

n
, or |βl −βk| ≥

4.76
NR

.

Assume fτ , fβ ≥ 512. Then for any vector v∈R
T with |vi|= 1, there exists a trigono-

metric polynomial q with Fourier series coefficients supported on

{− fτ ,− fτ +1, . . . , fτ}×{− fβ ,− fβ +1, . . . , fβ}

with the property
{

q(τi,βi) = vi, if (τi,βi) ∈ T
|q(τ ,β )|< 1, if (τ ,β ) /∈ T .

(112)

The proof of Proposition 1 is a general case of Proposition C.1 in [4], where the
authors consider fτ = fβ .

In fact we define
K2D(r) = K1(x)K2(y),

where K1 and K2 are the squares of Fejer kernels defined as the following

K1(t) = [
sin(( fτ

2 +1)πt)

( fτ
2 +1)sin(πt)

]4

and

K2(t) = [
sin((

fβ
2 +1)πt)

(
fβ
2 +1)sin(πt)

]4.
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Then we interpolate the sign pattern using K2D and its derivatives K2D
(1,0) and

K2D
(0,1),

q(r) = ∑
ri∈T

[αiK
2D(r− ri)+β1iK

2D
(1,0)(r− ri)+β2iK

2D
(0,1)(r− ri)]

Following the same technique as for the proof of C.1 in [4] we can show that
there exist coefficient vectors α and β such that q(r) interpolates the values at ri

and the magnitude of q reaches a local maximum at these points, i.e., (112) holds.

We still have to address the question how to solve (99) numerically. In [4] an
approach via semi-definite programming is proposed. While theoretically appealing,
the disadvantange of that approach is the relatively high computational complexity.
Instead, one might prefer to simply choose a fine discretization of the parameter
space and compute an approximate solution to (99) via standard linear program-
ming, where the accuracy depends on the discretization step. The validity of this
simple approach is supported by the analysis in [35]. We adopt this approach also
for the corresponding “off-the-grid” numerical simulations in the next section.

An important open problem is the extension of Theorem 4 to the MIMO case and
in particular to the Doppler case. The challenge in the latter case is that (commuta-
tive) Fourier-analytic methods alone will no longer suffice, as the underlying group
is the (non-commutative) Heisenberg group.

6 Numerical Experiments

In this section, we will illustrate our theoretical results and the associated numerical
algorithms via computer simulations. We use the Matlab Toolbox TFOCS [1] and
choose in TFOCS Auslender and Teboulle’s single-projection method to solve (9).
The main computational costs per iteration of this method are the operations Ax and
A∗y. One can of course set up A explicitly and perform regular matrix multiplica-
tion. But due to the special structure of A, we make the certain observation to take
advantage of FFT to accelerate the computations.

In each experiment, S scatterers are placed randomly on the range-azimuth-
Doppler grid, i.e, the vector x has S entries at random locations along the vector.
White Gaussian noise is added to the composite data vector Ax with variance σ2

determined to produce the specified output signal-to-noise ratio (SNR). The lasso
solution x̂ is calculated with λ as specified in Theorems 1 and 3. The experiment is
repeated 50 times. In each experiment we use an independent noise realization.

The probability of detection Pd and the probability of false alarm Pf a are com-
puted as follows. The values of the estimated vector x̂ corresponding to the true
scatterer locations are compared to a threshold. Detection is declared whenever a
value exceeds the threshold. The probability of detection is defined as the number
of detections divided by the total number of scatterers S. Next the values of the esti-
mated vector x̂ corresponding to locations not containing scatterers are compared to
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the same threshold. A false alarm is declared whenever one of these values exceeds
the threshold. The probability of false alarm is defined as the number of false alarms
divided by n−S, where n is the signal dimension. The probabilities of detection and
false alarm are averaged over the 50 repetitions of the experiment.

The probabilities are computed for a range of values of the threshold to produce
the so-called receiver operating characteristics (ROC; [14, 28, 25]) the graph of Pd

versus Pf a. As the threshold decreases, the probability of detection increases and
so does the probability of false alarm. In practice the threshold is usually adjusted
to achieve a specified probability of false alarm. We note that the probability of
detection increases as the SNR increases and decreases as S, the number of scatterers
increases. We carry out two sets of simulations with different parameters to show
the performance of the algorithms.

The first set of simulations is done to compare the Kerdock waveforms and the
white Gaussian noise waveforms at different SNR levels. When Kerdock waveforms
are used, the locations of the transmit and receive antennas are chosen i.i.d. ran-
domly in [0, NRNT

2 ] (as in Theorem 3). When white Gaussian noise waveforms are
used, we choose dR = 0.5 and dT = 0.5NR as the parameters regarding locations of
the transmit and receive antennas (as one of the cases in Theorem 1). The following
parameters are used: NT = 6,NR = 6,Ns = 37,Nf = 37; Smax = 20 and the actual
number of targets is S = Smax/2,Smax,2Smax. Furthermore, the bandwidth B is cho-
sen to be 5 MHz, thus the sampling rate Δs = 10−7s and T = 37× 10−7s. Yet, we
emphasize that in practice one would choose a much larger value for T . Moreover,
here we consider a single-pulse experiment (as this is also the setting of our theo-
retical framework), whereas in practice one would integrate the received waveforms
over several periods T , thus leading to a considerably better Doppler resolution.
However, the main purpose of the simulations is to validate the theories developed
in this chapter. A truly practical simulation is beyond the scope of this chapter, as it
also would have to incorporate pulse repetition rates and other variables and restric-
tions, which however might in part conceal the essence of our theoretical results.

Figures 2–3 show comparisons between the detection capability of the proposed
methods. Depicted are the probability of detection versus probability of false alarm
for the aforementioned setup.

Figure 4 illustrates the estimation capability of the proposed methods. We depict
the relative �2 error ‖x−x̂‖2

‖x‖2
averaged over 50 trials for different SNR values (ranging

from 0 to 25 dB).
In the second set of simulations, we consider the offgrid SIMO radar. Theorem 4

concerns the noise free case. In this set of simulations, we are going to demonstrate
the efficiency of the algorithm with respect to different SNR. We test our algorithm
in a discrete setting with ρ = 3 times finer stepsize in both range and angle, that is

Δτ ′ = Δτ
ρ and Δβ ′ =

Δβ
ρ . In order to do that, we choose NT = 1,NR = 10,Ns = 11,S =

6,9,12. We choose the factor in the minimum separation condition to be 1, that is for
any two targets, their ranges are separated by Δτ or their angles are separated by Δβ .
Figures 5 and 6 show the detection capability of the proposed method. Depicted are



Adventures in Compressive Sensing Based MIMO Radar 317

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 10

−3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pfa

P
d

Pd vs Pfa,  SNR = 15,  Smax = 20,  N_T = 6,  N_R = 6,  N_s = 37

S=10, Kerdock waveform
S=20, Kerdock waveform
S=40, Kerdock waveform
S=10, random waveform
S=20, random waveform
S=40, random waveform

Fig. 2 ROC comparisons between Kerdock waveforms and random waveforms for different spar-
sity. The SNR level is 15 dB
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Fig. 3 ROC comparisons between Kerdock waveforms and random waveforms for different spar-
sity. The SNR level is 20 dB

the probability of detection versus probability of false alarm for the aforementioned
setup. Figure 7 illustrates the relative �2 error ‖x−x̂‖2

‖x‖2
averaged over 50 trials for

different SNR values (ranging from 15 to 30 dB).
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Fig. 4 Relative mean square error versus SNR for MIMO radar employing Kerdock waveforms
and random waveforms
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Fig. 5 Probability of detection versus probability of false alarm for SIMO radar with ρ = 3 times
finer stepsize using random waveform for different sparsity. The SNR level is 20 dB

Acknowledgements T. Strohmer and H. Wang acknowledge support from the
NSF via grant DTRA-DMS 1042939, and from DARPA via grant N66001-11-1-
4090.



Adventures in Compressive Sensing Based MIMO Radar 319

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pfa

P
d

Pd vs Pfa,  SNR = 25,  N_T = 1, N_R = 10,  N_s = 11

S=6
S=9
S=12

Fig. 6 Probability of detection versus probability of false alarm for SIMO radar with ρ = 3 times
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Fig. 7 Relative mean square error versus SNR for SIMO radar with ρ = 3 times finer stepsize
using random waveform for different sparsity

Appendix A

In this appendix we collect some auxiliary results.



320 Thomas Strohmer and Haichao Wang

Lemma 7. [38, Proposition 34] Let x ∈C
n be a vector with xk ∼ C N (0,σ2), then

for every t > 0 one has

P

(

‖x‖2−E‖x‖2 > t
)

≤ e
− t2

2σ2 . (113)

The following lemma is a rescaled version of Lemma 3.1 in [29].

Lemma 8. Let A ∈ C
n×m be a Gaussian random matrix with Ai, j ∼ C N (0,σ2).

Then for all x,y ∈ C
m with ‖x‖2 = ‖y‖2 =

√
m and all t > 0

P

{

|σ
2

n
〈Ax,Ay〉−〈x,y〉|> tm

}

≤ 2exp
(

−n
t2

C1 +C2t

)

, (114)

with C1 =
4e√
6π and C2 =

√
8e.

For convenience we state the following version of Bernstein’s inequality, which
will be used in the proof of Lemma 10.

Lemma 9 (See e.g. [37]). Let X1, . . . ,Xn be independent random varibles with zero
mean such that

E|Xi|p ≤
1
2

p!K p−2vi, for all i = 1, . . . ,n; p ∈ N, p≥ 2, (115)

for some constants K > 0 and vi > 0, i = 1, . . . ,n. Then, for all t > 0

P

(

∣

∣

n

∑
i=1

Xi| ≥ t
)

≤ 2exp
(

− t2

2v+Kt

)

, (116)

where v := ∑n
i=1 vi.

We also need the following deviation inequality for unbounded random variables.
It is a complex-valued and slightly sharpened version of Lemma 6 in [13]. Our proof
strategy differs at certain steps from that of Lemma 6 in [13] (and our proof is a bit
shorter).

Lemma 10. Let xi and yi, i = 1, . . . ,n, be sequences of i.i.d. complex Gaussian ran-
dom variables with variance σ . Then,

P

(

∣

∣

n

∑
i=1

x̄iyi
∣

∣ > t
)

≤ 2exp
(

− t2

σ2(nσ2 +2t)

)

. (117)

Proof. In order to apply Bernstein’s inequality, we need to compute the moments
E|xiyi|p. Since xi and yi are independent, there holds

E(|xiyi|p) = E(|xi|p)E(|yi|p) = (E(|xi|p))2. (118)

The moments of xi are well-known:

E|xi|2p = p!σ2p, (119)
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hence

(E|xi|2p)2 = (2p!)2(σ2p)2 ≤ 1
4
(2p)!(σ2)2p ≤ 1

2
(2p)!(σ2)2p−2 (σ2)2

2
. (120)

We apply Bernstein’s inequality (116) with K = σ2 and vi =
(σ2)2

2 , i = 1, . . . ,n and
obtain (117).

Lemma 11. Suppose M is an m×m matrix, α and β are two joint independent
random vectors in C

m with zero means and |αk|= |βk|= 1 for k = 1, . . . ,m. If n is a
positive constant, then for any t > 0 and s > 0,

1. if |mk j| ≤ 1√
n for all k, j, then

P

(

|〈Mα,β 〉| ≤ mt
)

≥ 1−4mexp
(

− t2

4 m
n

)

. (121)

and

P

(

|〈Mα,α〉| ≤ 2mt
)

≥ 1−8mexp
(

− t2

2 m
n

)

, (122)

2. if |mk j| ≤ 1√
n for k �= j and m j j = 1, then

P

(

|〈Mα,β 〉| ≤ s+mt
)

≥ 1−4exp
(

− s2

4m

)

−4mexp
(

− t2

4 m
n

)

, (123)

and

P

(

m(1−2t)≤ |〈Mα,α〉| ≤ m(1+2t)
)

≥ 1−8mexp
(

− t2

2 m
n

)

. (124)

Proof. Note that

〈Mα,β 〉=
m

∑
k, j=1

mk jα jβ̄k

=
m

∑
l=1

m

∑
j=1

m j⊕l, jα jβ̄ j⊕l ,

where ⊕ denotes addition modulo m.
Let us first assume that |mk j| ≤ 1√

n .
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Since α and β are jointly independent, then for any l, the entries in ∑m
j=1 m j⊕l, j

α jβ̄ j⊕l are all jointly independent and it is easy to check that E(m j⊕l, jα jβ̄ j⊕l) = 0
and |m j⊕l, jα jβ̄ j⊕l |= |m j⊕l, j|, then Theorem 4.5 in [18] will give

P

(

|
m

∑
j=1

m j⊕l, jα jβ̄ j⊕l | ≤ t
)

≥ 1−4exp
(

− t2

4∑ j |m j⊕l, j|2
)

≥ 1−4exp
(

− t2

4 m
n

)

. (125)

We take all m different choices of l, then

P

(

|
m

∑
l=1

m

∑
j=1

mi⊕l, jα jβ̄ j⊕l | ≤ mt
)

≥ 1−4mexp
(

− t2

4 m
n

)

, (126)

which proves (121).
Now consider

〈Mα,α〉=
m

∑
l=1

m

∑
j=1

m j⊕l, jα jᾱ j⊕l ,

but different from above, the entries in ∑m
j=1 m j⊕l, jα jᾱ j⊕l are no longer all jointly

independent. But similar to the proof of Theorem 5.1 in [27] and Lemma 3 in
[31], we observe that for any l we can split the index set 1, . . . ,m into two sub-
sets T 1

l ,T
2

l ⊂ {1, . . . ,m}, each of size m/2, such that the m/2 variables α jᾱ j⊕l are
jointly independent for j ∈ T 1

l , and analogous for T 2
l . (For convenience we assume

here that m is even, but with a negligible modification the argument also applies for
odd m.) In other words, each of the sums ∑ j∈T r

l
m j⊕l, jα jᾱ j⊕l ,r = 1,2, contains only

jointly independent terms.
So for each l,

P

(

| ∑
j∈T r

l

m j⊕l, jα jᾱ j⊕l | ≤ t
)

≥ 1−4exp
(

− t2

2 m
n

)

, (127)

which implies that

P

(

|∑
j

m j⊕l, jα jᾱ j⊕l | ≤ 2t
)

≥ 1−8exp
(

− t2

2 m
n

)

, (128)

Again, we take all m different choices of l, then

P

(

|
m

∑
l=1

m

∑
j=1

m j⊕l, jα jᾱ j⊕l | ≤ 2mt
)

≥ 1−8mexp
(

− t2

2 m
n

)

, (129)

which proves (122).
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Now let us assume that |mk j| ≤ 1√
n for k �= j and m j j = 1.

〈Mα,β 〉=
m

∑
j=1

m j jα jβ̄ j +
m−1

∑
l=1

m

∑
j=1

m j⊕l, jα jβ̄ j⊕l

=
m

∑
j=1

α jβ̄ j +
m−1

∑
l=1

m

∑
j=1

m j⊕l, jα jβ̄ j⊕l .

Since α and β are joint independent and |α jβ̄ j|= 1,

P

(

|
m

∑
j=1

α jβ̄ j| ≤ s
)

≥ 1−4exp
(

− s2

4m

)

. (130)

Similar to the proof of (126) above, we have that

P

(

|
m−1

∑
l=1

m

∑
j=1

m j⊕l, jα jβ̄ j⊕l | ≤ (m−1)t
)

≥ 1−4(m−1)exp
(

− t2

4 m
n

)

,

together with (130), it follows

P

(

|〈Mα,β 〉| ≤ s+(m−1)t
)

≥ 1−4exp
(

− s2

4m

)

−4(m−1)exp
(

− t2

4 m
n

)

,

which proves (123).
Finally,

〈Mα,α〉=
m

∑
j=1

m j j +
m−1

∑
l=1

m

∑
j=1

m j⊕l, jα jᾱ j⊕l = m+
m−1

∑
l=1

m

∑
j=1

m j⊕l, jα jᾱ j⊕l ,

then (124) results from similar proof as for (122) and the triangle inequality.

Appendix B

We consider a general linear system of equationsΨx = y, whereΨ ∈C
n×m, x ∈C

m

and n≤ m. We introduce the following generic K-sparse model:

• The support I ⊂ {1, . . . ,m} of the K nonzero coefficients of x is selected uni-
formly at random.

• The non-zero entries of sgn(x) form a Steinhaus sequence, i.e., sgn(xk) :=
xk/|xk|,k ∈ I, is a complex random variable that is uniformly distributed on
the unit circle.

The following theorem is a slightly extended version of Theorem 1.3 in [5],
see [31] for its proof.
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Theorem 5. Given y =Ψx+w, whereΨ has all unit-�2-norm columns, x is drawn
from the generic K-sparse model and wi ∼ C N (0,σ2). Assume that

μ(Ψ)≤ C0

logm
, (131)

where C0 > 0 is a constant independent of n,m. Furthermore, suppose

K ≤ c0m
‖Ψ‖2

op logm
(132)

for some constant c0 > 0 and that

min
k∈I

|xk|> 8σ
√

2logm. (133)

Then the solution x̂ to the debiased lasso computed with λ = 2σ
√

2logm obeys

supp(x̂) = supp(x), (134)

and
‖x̂−x‖2

‖x‖2
≤ σ

√
3n

‖y‖2
(135)

with probability at least

1−2m−1(2π logm+Km−1)−O(m−2log2). (136)
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18. Hügel M., Rauhut H, Strohmer T. Remote sensing via �1-minimization. Found Comput Math.
(to appear).

19. Inoue T, Heath RW. Kerdock codes for limited feedback mimo systems. Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing, 2008. p. 3113–6.

20. Kerdock A. Studies of low-rate binary codes (ph.d. thesis abstr.). IEEE Trans Inf Theory.
1972;18(2):316.

21. König H. Isometric embeddings of euclidean spaces into finite-dimensional �p-spaces.
Banach Cent Publ. 1995;34:79–87.

22. Levenstein VI. Bounds on the maximal cardinality of a code with bounded modulus of the
inner product. Soviet Math Dokl. 1982;25:526–31.

23. Li J., Stoica P. MIMO radar with colocated antennas: review of some recent work. IEEE
Signal Process Mag. 2007;24(5):106–14.

24. Li J, Stoica P, editors. MIMO radar signal processing. Wiley; 2009.
25. Lo Y. A mathematical theory of antenna arrays with randomly spaced element. IEEE Trans

Antennas Propag. 1964;12(3):257–68.
26. Lo Y. A probalistic approach to the problem of large antenna arrays. J Res Nat Bur Stand.

1964;68D(5):1011–9.
27. Pfander GE, Rauhut H, Tanner J. Identification of matrices having a sparse representation.

IEEE Trans Signal Process. 2008;56(11):5376–88.
28. Potter LC, Ertin E, Parker JT, Cetin M. Sparsity and compressed sensing in radar imaging.

Proc IEEE. 2010;98(6):1006–20.
29. Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries.

IEEE Trans Inf Theory. 2008;54(5):2210–9.
30. Rihaczek AW. High-resolution radar. Boston: Artech House; 1996. (originally published:

McGraw-Hill, NY, 1969).
31. Strohmer T, Friedlander B. Analysis of sparse MIMO radar. Appl Comput Harmon Anal.

2014;37:361–88.
32. Strohmer T, Heath R. Grassmannian rames with applications to coding and communications.

Appl Comput Harmon Anal. 2003;14(3):257–75.
33. Strohmer T, Wang H. Accurate imaging of moving targets via random sensor arrays and

Kerdock codes. Inverse Prob. 2013;29(2013):085001.
34. Tang G, Bhaskar BN, Shah P, Recht B. Compressed sensing off the grid. Preprint,

[arvix:1207.6053]; 2012.
35. Tang G, Bhaskar BN, Recht B. Sparse recovery over continuous dictionaries: Just discretize.

Asilomar Conference Signals, Systems, Computers, Asilomar; 2013.



326 Thomas Strohmer and Haichao Wang

36. Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Statist Soc Ser B.
1996;58(1):267–88.

37. van der Vaart AW, Wellner JA. Weak convergence and empirical processes. Springer Series
in Statistics. New York: Springer-Verlag; 1996. (With applications to statistics).

38. Vershynin R. Introduction to the non-asymptotic analysis of random matrices. In Eldar CY,
Kutyniok G, editors, Compressed sensing: theory and applications. Cambridge University
Press; 2012.

39. Wootters WK, Fields BD. Optimal state-determination by mutually unbiased measurements.
Ann Phys. 191(2):363–81, 1989.



Applied and Numerical Harmonic Analysis
Consists of 67 Titles
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