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Preface

The Mechanics of Generalized Continua is an established research topic since the
end of the 1950s–early 1960s of the last century. The starting point of this
development was the monograph of the Cosserat brothers, published in 19091 , and
some previous works of such famous scientists like Lord Kelvin, Duhem, Helm-
holtz among others. All these contributions were focussed on the fact that in a
continuum one has to define translations and rotations independently (or in other
words, one has to establish force and moment actions independently as it was done
by Jakob Bernoulli and Euler). At the same time the continuum was not modeled
as an infinite number of continuously distributed points with properties like the
mass, but as an infinite number of continuously distributed infinitesimal small
bodies with properties like the mass.

The reason for the revival in the mid of 1950s of the last century was that some
effects of the mechanical behavior of solids and fluids could not be explained by
the available classical continuum models. Examples of this are the turbulence of a
fluid or the behavior of solids with a significant and very complex microstructure.
Since the suggested new models fulfill all requirements from Continuum Ther-
momechanics (the balance laws were formulated and the general representation of
the constitutive equations were given) the scientific community was satisfied for a
while. At the same time real applicative developments were missed.

Indeed, for practical applications the developed models were not useful. The
reason for this was the gap between the formulated constitutive equations and the
possibilities to identify the material parameters. As is often the case one had much
more parameters compared to classical models, but no facilities to measure all
properties. In addition, computational progress and available machines in these
times were limited.

During the last ten years the situation has drastically changed. More and more
researches emerged, being kindled by the partly forgotten models. Now one has
available much more computational possibilities and very complex problems can
be simulated numerically. In addition, with the increased attention paid to a large

1 E. et F. Cosserat: Cosserat, F.: Théorie des Corps Déformables, Hermann Editeurs, Paris, 1909
(Reprint, Gabay, Paris, 2008).
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number of materials with complex microstructure and a deeper understanding of
the meaning of the material parameters (scale effects) the identification becomes
much more well founded. Thus we have contributions describing the micro- and
macro-behavior, new existence and uniqueness theorems, the formulation of multi-
scale problems, etc., and now it is time to ponder again2 the state of matter and to
discuss new trends and applications.

The main focus in this book will be directed on the following items:

• Modeling and simulation of materials with significant microstructure;
• Generalized continua as a result of multi-scale models;
• Multi-field actions on materials resulting in generalized material models; and
• Comparison with discrete modeling approaches.

This book contains selected papers submitted to the Second Trilateral Seminar
Generalized Continua as Models for Materials With Multi-scale Effects or Under
Multifield Actions, which held at the Leucorea (Lutherstadt Wittenberg, Germany)
from September 26 upto 30, 2012.3 Special thanks to Andreas Kutschke who took
all duties connected with realization of the Seminar. In addition, we kindly
acknowledge Dr. Christoph Baumann and Benjamin Feuchter (Springer Publisher)
for the support of the book project. Last but not least it should be mentioned that
the Seminar was sponsored by grants of the French National Center for Scientific
Research (CNRS), the German Research Foundation (DFG) AL341/41-1, and the
Russian Foundation for Basic Research 12-01-91260RFG.

Magdeburg, December 2012 Holm Altenbach
Paris Samuel Forest
St. Petersburg Anton Krivtsov

2 There were two proceedings within the last years which should be mentioned here: Gérard A.
Maugin, Andrei V. Metrikine (Eds) Mechanics of Generalized Continua - One Hundred Years
After the Cosserats, Springer, 2010 (Advances in Mechanics and Mathematics, Vol. 21) and
Holm Altenbach, Gérard Maugin, Vladimir Erofeev (Eds) Mechanics of Generalized Continua,
Springer, 2011 (Advanced Structured Materials, Vol. 7).
3 The First Trilateral French–German–Russian Seminar held also in Lutherstadt Wittenberg
(Germany) August 9–11, 2010.
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Shells and Plates with Surface Effects

Holm Altenbach and Victor A. Eremeyev

Abstract The through-the-thickness integration procedure applied to a three-
dimensional (3D) slender body leads to exact two-dimensional (2D) equations of
plates and shells, see [36]. The procedure can be considered as a specific homoge-
nization technique which results in a 2D generalized media—the non-linear theory
of shells of Cosserat type. Within this theory the shell is described as a deformable
surface each point of which has 3 translational and 3 rotational degrees of free-
dom similar to the 3D Cosserat continuum [15]. Below we discuss the through-the-
thickness integration procedure applied to the non-classical problem of the theory
of surface elasticity [21]. The theory can be applied to modeling of surface effects
which are important in mechanics of nanostructured materials [11, 55]. Applying
the through-the-thickness integration procedure we reduce 3D equations to 2D ones.
The effective (apparent) stiffness properties of the shell are changed in comparison
with the classical models of shells. Some examples of a plate bending are discussed
taking into account surface effects.

H. Altenbach
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2 H. Altenbach and V. A. Eremeyev

1 Introduction

Structures, which have a size of several μm and more, as usual are modeled
within continuum mechanics taking into account only the properties of the bulk
material. This statement is valid for any continuum theory—for the classical con-
tinuum mechanics in Cauchy’s sense, Cosserat or micropolar theory and non-local
theories among others. Special two-dimensional theories for plates and shells or
one-dimensional theories for rods and beams can be introduced with the help of the
through-the-thickness integration procedure or the through-the-cross-section inte-
gration procedure, respectively.

With respect to new technological developments an increasing miniaturization of
devices and structural elements must be considered. Because of the changing surface-
volume ratio in comparison with the classical sizes of the devices and structural
elements the effects related to the surface phenomena have a significant influence on
the mechanical behavior and should be taken into account. Here the possibilities to
take into account these effects are demonstrated on plate- and shell-like structures.

1.1 Examples of Surface Phenomena

The influence of surface phenomena in deformable solid bodies is widely presented
in the literature, see for example [6]. The main phenomena can be summarized as it
follows:

• The development of nanotechnologies extends the field of application of the clas-
sical or non-classical theories of plates and shells towards the new thin-walled
structures.

• In general, modern nanomaterials have physical properties which are different
from the bulk material.

• The classical linear elasticity can be extended to the nanoscale by implementation
of the theory of elasticity taking into account the surface stresses, cf. [11, 55].

• In particular, the surface stresses are responsible for the size-effect, that means the
material properties of a specimen depend on its size. For example, Young’s mod-
ulus of a cylindrical specimen increases significantly, when the cylinder diameter
becomes very small [7, 9, 32, 39].

• The surface stresses are the generalization of the scalar surface tension which is a
well-known phenomenon in the theory of capillarity.

The surface stresses which are the reason for the surface phenomena have influence
on the following items:

• phase transitions (nucleation, crystal growth, etc.),
• fracture (Griffith criterion, effective surface energy density, line tension as a energy

of a dislocation core),
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• mechanics of porous media (nanoporous materials can be made stiffer than
non-porous counterparts by surface modification) and

• other problems (surface diffusion, surface waves).

In various publications one reports on the changes of the mechanical properties in
dependence on the size. Experimental results about the increasing Young’s modulus
with the decreasing size of nanowires made of ZnO are presented by Chen et al. [7].
Similar effects are described by Cuenot et al. [9] and Jing et al. [32] in the case
of bending of nanobeams made of Ag and Pb. In [12] the behavior of nanoporous
materials is discussed. In dependence on the size of the pores the material properties
increase or decrease.

Taking into account only the elastic material behavior surface effects can be
modeled within the classical theory of elasticity which was founded and influenced
by French scientists in the 18th/19th century. The following contributions considering
surface effects should be mentioned:

• First investigations of surface phenomena were initiated by Laplace [35], Young
[58] and Gibbs [18].

• A modern treatise taking into account the surface stresses is given, for example, in
the publications [21, 43, 44, 51]. Residual surface stresses are considered in [20,
24–26, 34, 53, 57].

• The treatment by the Finite Element Method or other numerical realizations is
discussed in [27, 29–31].

For further reading about the history and the different approaches to modeling of the
surface energy effects we recommend the reviews [11, 16, 41, 44, 47, 48, 55].

1.2 Basic Three-Dimensional Equations of Elasticity
with Surface Effects

Let us summarize briefly the governing equations of the theory of elasticity with
surface stresses in the sense of [21]. The reference configuration of the shell-like
elastic body with surface stresses is shown in Fig. 1. The following equilibrium and
boundary equations can be introduced

• Lagrangian equilibrium equation

∇X · P + ρf = 0, (1)

• Equilibrium conditions on the upper and lower surfaces

(n · P − ∇S · S)|ΩS
= t, (2)
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X
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i3

t

t t S

n

Fig. 1 Elastic body with surface effects

• Boundary conditions
u|Ωu

= 0 , n · P|Ωf
= t . (3)

Here P is the first Piola-Kirchhoff stress tensor, ∇X the 3D nabla operator, ∇S the
surface (2D) nabla operator, S the surface stress tensor of the first Piola-Kirchhoff
type acting on the surfaces ΩS, u = x − X the displacement vector, x and X are
the position-vectors in the initial and actual configurations, respectively, f and t the
body force and surface load vectors, respectively, and ρ the density. We assume
that the part of the body surface Ωu is fixed, while on Ωf surface stresses S are
absent. Equation (2) is the so-called generalized Young-Laplace equation describing
the surface tension in solids.

The boundary-value problem (1)–(3) should be complemented by constitutive
relations. For the bulk material we use the relation

P =
∂W

∂∇Xx
,

where W is the strain energy density. In the theory of Gurtin and Murdoch [21] the
tensor S is similar to the membrane stress resultants defined as follows

S =
∂U

∂F
,

where U is the surface strain energy density and F = ∇Sx the surface deformation
gradient.

In the case of residual stresses we assume that W and P possess the properties

W(I) = 0, P(I) = 0,
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while there exist residual (initial) surface energy and surface stresses that is

U(A) = U0 �= 0, S(A) = S0 �= 0,

where I and A ≡ I − N ⊗ N are the 3D and the surface unit tensors, respectively. In
other words, we assume that the reference placement for the bulk material is natural
one while for the attached on ΩS membranes we assume the non-natural reference
placement.

1.3 Linearized Relations

In the case of infinitesimal strains of an isotropic body we have the following
constitutive equations:

• For the stresses in the bulk material the Hooke law is valid

P = 2με+ λI trε, (4)

where λ and μ are the Lamé elastic moduli.
• For the surface stresses one can assume

S = S0 + CS : e + S0 · ∇Su, (5)

Here the first part is related to the residual stresses, the second is similar to Hooke’s
law with the elasticity tensor CS, the last part has the origin in the linearization of
the surface Piola–Kirchhoff stress tensor.

In the case of initial uniform surface tension we have S0 = pA and

S = pA + 2μSe + λSA tre + p∇Su, (6)

where p is the initial surface tension, λS and μS are the surface elastic moduli called
also the surface Lamé moduli.

The linearized strain-displacement relations are given as it follows

ε =
1

2

[
∇u + (∇u)T

]
, e =

1

2

[
∇SvS · A + A · (∇SvS)T

]
(7)

with
vS = u

∣∣
ΩS

.

The first Eq. (7) is valid for the bulk material, the second one for the surface contri-
butions.
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The number of material parameters is doubled in comparison with the classical
isotropic case: instead of two we have now four. The requirement of the positive
definiteness of the strain energy yields restrictions for λ, μ and λS, μS (see, for
example, [2] and [28])

μ > 0, 3λ+ 2μ > 0; μS > 0, λS + μS > 0. (8)

Note that S0 is an arbitrary second-order tensor, in general.

2 Two-Dimensional Theories of Nanosized
Plates and Shells

The theory of elasticity with surface stresses was applied to the modifications of
the two-dimensional theories of nano-sized plates and shells in [1, 3–5, 10, 14,
19, 22, 23, 37–39, 54, 57, 59], where various theories of plates and shells are
formulated. The approaches can be classified, for example, by the starting point of
the derivation. This can be the well-known three-dimensional continuum mechanics
equations. In contrast, one can introduce à priory a two-dimensional deformable
surface which is the basis for a more natural formulation of the two-dimensional
governing equations. This so-called direct approach should be supplemented by the
theoretical or experimental determination of the material parameters included in the
constitutive equations.

Here we use the general theory of shells presented in [8, 15, 36] for the
modification of the constitutive equations taking into account the surface stresses. We
show that both the stress and the couple stress resultant tensors may be represented
as a sum of two terms. The first term is the volume stress resultant while the second
one determined by the surface stresses and the shell geometry. In the linear case this
modification reduces to the add of new terms to the elastic stiffness parameters. The
influence of these terms on the shell bending stiffness is discussed. We show that the
surface elasticity makes the shell more stiffer in comparison with the shell without
surface stresses.

2.1 Basic Equations of the 6-Parametric
Elastic Shell Theory

The kinematics of the shell can be presented in the actual configuration by the
position-vector r and a triad of three orthogonal vectors dk

{r(q1,q2, t); dk(q1,q2, t)}; dk · dm = δkm, k,m = 1, 2, 3,
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Fig. 2 Actual configuration
of the shell

i3

i1

i2

r 1
2

d1

r2

d2 n
d3

r1

where δkm is the Kronecker symbol, see Fig. 2. For the reference configuration one
has the position-vector R and the triad Dk

{R(q1,q2); Dk(q1,q2)}; Dk · Dm = δkm.

Here q1, q2 are the Gaussian coordinates used for both configurations.
The quality of any continuum theory (three- or lower dimensional) depends

significantly on the correct formulation of the corresponding constitutive equations
that is in the case of elastic material the strain energy function. Let us assume

W = W(F, Q, ∇SQ) (9)

with
F

�
=∇Sr, Q

�
= Dk ⊗ dk ,

∇S(. . .)
�
= Rα∂(. . .)/∂qα .

The base vectors are defined as

Rα · Rβ = δαβ, Rα · N = 0, Rα = ∂R/∂qα , α,β = 1, 2 .

Q is an orthogonal tensor called the microrotation tensor, and N is the unit normal
to the surfaceΩ in the reference configuration. After application of the principle of
the frame indifference W takes the form

W = W(E,K) (10)

with the strain measures which are given by
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E
�
= F · QT − A, K

�
=

1

2
Rα ⊗

(
∂Q
∂qα

· QT
)

×
. (11)

Here (. . .)× denotes the vectorial invariant of the second-order tensor. In particular,
for a diad it is given by

(a ⊗ b)× = a × b.

The Lagrangian equilibrium equations are formulated as it follows

∇S · T + q = 0, ∇S · M +
[
FT · T

]
× + c = 0. (12)

The force and the moment tensors T and M can be computed from

T
�
=
∂W
∂E

· Q, M
�
=
∂W
∂K

· Q . (13)

They are the resultant tensors of the first Piola-Kirchhoff type on the deformable
surface, while q and c are the external surface force and moment vectors, respec-
tively. The equilibrium equations (12) are the exact consequence of three-dimensional
equilibrium equations, see [8, 36]. Within the framework of the theory the approxi-
mation error is localized in the constitutive equation (10) only. The strain measures
E and K are work-conjugate to the respective stress measures.

2.2 Plates and Shells with Surface Stresses

Applying the through-the-thickness integration technique described in [36] to
shell-like bodies with surface stresses, we obtain the following 2D constitutive equa-
tions for nano-sized plates and shells, see [1]:

T∗ = T + TS , M∗ = M + MS , (14)

where

• T,M are classical resultant tensors given by

T =

∫
G · Pdζ , M = −

∫
G · P × zdζ (15)

with ∫
(. . .)dζ =

∫h+

h−

(. . .)dζ

and
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• TS,MS are the resultant tensors induced by surface stresses S± acting on the shell
faces Ω±

TS = G+S+ +G−S− , (16)

MS = −
h

2
[G+(S+) × z+ −G−(S−) × z−] .

Here z is the base reference deviation and G ≡ −N × (A − ζ∇SN) × N is the
geometrical tensor, G ≡ det(A − ζ∇SN) is the geometric scale factor defined in
[36], ζ is the coordinate along the unit normal N in the reference placement, G± =
G

∣∣
ζ=±h/2, and h is the shell thickness, see Fig. 3.

3 Linear Theory of Plates with Surface Stresses

The theory can be significantly simplified for plates and infinitesimal strains. In this
case the shell strain energy density is given by

2W = α1tr2E‖ + α3tr
(

E‖ · ET‖
)

+ α4N · ET · E · N

+β1tr2K‖ + β3tr
(

K‖ · KT‖
)

+ β4N · KT · K · N
(17)

with E‖ = E · A and K‖ = K · A. αi and βi are elastic parameters

α1 = Cν, α3 = C(1 − ν), α4 = αsC(1 − ν) ,

β1 = Dν, β3 = D(1 − ν), β4 = αtD(1 − ν)
(18)

with

C =
Eh

1 − ν2
, D =

Eh3

12(1 − ν2)
.

E and ν are Young’s modulus and Poisson’s ratio of the bulk material, αs and αt

are dimensionless coefficients, while h is the shell thickness. αs is similar to the
shear correction factor introduced by Reissner [45] (αs = 5/6) and Mindlin [40]
(αs = π2/12). The value αt = 7/10 was proposed in [42].

Considering the surface stress tensors S± we assume p = 0 in (6). So we have

S± = λ±
SAtre± + 2μ±

Se± ,

2e± = ∇u± · A + A · (∇u±)T ,
(19)

u± = u
∣∣
ζ=±h/2. For the sake of simplicity we consider the symmetric case with

λ±
S = λS and μ±

S = μS. Taking into account (19) we obtain the stiffness parameters



10 H. Altenbach and V. A. Eremeyev

R

i2

i1

i3

X
1

N

N

2
N

Fig. 3 Geometry (reference configuration) of the shell-like body

for the plate with surface stresses, see [4, 14]

α1 = Cν + 2λS , α3 = C(1 − ν) + 4μS ,
β1 = Dν + h2λS/2 , β3 = D(1 − ν) + h2μS ,
C∗ = C+ 4μS + 2λS,
D∗ = D+ h2μS + h2λS/2 .

(20)

C∗ and D∗ are the effective in-plane and bending stiffness of the plate with surface
stresses. C∗ > C and D∗ > D, i.e. the plate with surface stresses is stiffer. α4 and
β4 do not depend on λS and μS.

As an example let us consider a nanoplate made of aluminium. Using the data
presented in [11] the dependenceD∗ versus the plate thickness h is shown in Fig. 4.
Here μ = 34.7 GPa, ν = 0.3, λS = −3.48912 N/m, μS = 6.2178 N/m, where μ is
the shear modulus. For these values of λS and μS the influence of the surface stresses
is significant if h ≤ 20 nm.

0

1

2

3

0 10 20 30 40 50

, nm

Fig. 4 Bending stiffness versus plate thickness
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4 Viscoelastic Case

In most of contributions on the surface stresses the elastic medium is considered.
On the other hand, dissipative processes in the vicinity of the surface are observed.
These surface phenomena are related to the higher mobility of molecules near the
surface, surface imperfections, absorbates, etc., see e.g. [50]. As a special case of
inelastic behavior the surface viscoelasticity exists for both liquids and solids. The
experimental methods of the surface viscoelasticity are different than in the case of
bulk material, in general. One can use various types of microscopies, light scattering,
etc., see e.g. [13, 17, 33, 49, 52, 56]. For the description of the surface dissipation
of nanosized beams, Ru [46] proposed the one-dimensional constitutive law that is
similar to the model of the standard viscoelastic solids. In [5] we extended Ru’s
model to the case of two-dimensional surface stresses.

The simplest case of analyzing viscoelastic material behavior is based on the
correspondence principle. This principle states that if an elastic solution is known,
the corresponding viscoelastic solution can be obtained by substituting the elastic
quantities in the Laplace transforms of the unknown functions. In other words, one
can use the solution of the boundary-value-problem (BVP) for the elastic material
behavior as the solution of BVP for the viscoelastic material but given in terms
of Laplace transforms. According to this principle we use the results of 3D to 2D
reduction procedure for the elastic shell-like body [4].

Let us introduce the Laplace transform

f(s) =

∞∫

0

f(t)e−stdt.

Applying the Laplace transform to the viscoelastic constitutive equations at the
surface we obtain the relation

S = 2sμS(s)e + sλS(s)(tr e)A, (21)

which coincides formally with the surface Hooke law (6) but with two surface relax-
ation functions μS(t) and λS(t). In addition, we establish the constitutive equations
for the shell considering viscoelastic behavior in the form, see [5]

T =

t∫

−∞
[C1(t− τ)ε̇(τ) + C2(t− τ)Atr ε̇(τ)] dτ+ Γγ⊗ N,

M = −

t∫

−∞
[D1(t− τ)κ̇(τ) +D2(t− τ)Atr κ̇(τ)] dτ× N,
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where ε, κ, and γ are the surface strain measures expressed via the translation and
rotation vectors w and ϑ by

ε =
1

2

(
∇Sw · A + A · (∇Sw)T

)
,

κ =
1

2

(
∇Sϑ · A + A · (∇Sϑ)T

)
,

γ = ∇S(w · N) − ϑ.

The relaxation functions are given by

C1(t) = 2C22 + 4μS(t), C2(t) = C11 − C22 + 2λS(t),

D1(t) = 2D22 + h2μS(t), D2(t) = D33 −D22 +
h2

2
λS(t),

C11 =
Eh

2(1 − ν)
, C22 =

Eh

2(1 + ν)
,

D22 =
Eh3

24(1 + ν)
, D33 =

Eh3

24(1 − ν)
, Γ = kμh,

E = 2μ(1 + ν), ν =
λ

2(λ+ μ)
.

E and ν are the Young modulus and Poisson ratio of the bulk material, Γ is the
transverse shear stiffness, and k the transverse shear correction factor. The tangential
and bending relaxation functions are given by

C =
Eh

1 − ν2
+4μS(t)+2λS(t), D =

Eh3

12(1 − ν2)
+
h2

2
[2μS(t) + λS(t)] . (22)

Let us note that the surface stresses do not influence the transverse shear stiffness.

5 Conclusions

In this paper we discussed the two-dimensional equilibrium equations for plates
and shells taking into account the surface stresses. We presented the expressions for
effective stiffness parameters of plates and shells. In particular, the bending stiffness
is bigger for the shells with surface stresses than for shells without surface elasticity.
Elastic case is extended to viscoelastic behavior.
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Nicolas Auffray

Abstract Because of its strong physical meaning, the decomposition of a symmetric
second-order tensor into a deviatoric and a spheric part is heavily used in contin-
uum mechanics. When considering higher-order continua, third-order tensors natu-
rally appear in the formulation of the problem. Therefore researchers had proposed
numerous extensions of the decomposition to third-order tensors. But, considering
the actual literature, the situation seems to be a bit messy: definitions vary according
to authors, improper uses of denomination flourish, and, at the end, the understanding
of the physics contained in third-order tensors remains fuzzy. The aim of this paper
is to clarify the situation. Using few tools from group representation theory, we will
provide an unambiguous and explicit answer to that problem.

1 Introduction

In classical continuum mechanics [28, 29], only the first displacement gradient is
involved and all the higher-order displacement gradients are neglected in measuring
the deformations of a body. This usual kinematical framework turns out not to be rich
enough to describe a variety of important mechanical and physical phenomena. In
particular, the size effects and non-local behaviors due to the discrete nature of matter
at a sufficiently small scale, the presence of microstructural defects or the existence
of internal constraints cannot be captured by classical continuum mechanics [2, 18,
24]. The early development of higher-order (or generalized) continuum theories of
elasticity was undertaken in the 1960s and marked with the major contributions of [5,
19–21, 26]. For the last two decades, the development and application of high-order
continuum theories have gained an impetus, owing to a growing interest in modeling
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and simulating size effects and non-local behaviors observed in a variety of materi-
als, such as polycrystalline materials, geomaterials, biomaterials and nanostructured
materials (see, e.g., [7, 17, 22]), and in small size structures. In order to take into
account size-effects, the classical continuum mechanics has to be generalized. To
construct such an extension there are, at least, two options:

• Higher-order continua:
In this approach the set of degrees of freedom is extended; a classical example is
the micromorphic theory [6, 11, 20];

• Higher-grade continua:
In this approach the mechanical state is described using higher-order gradients of
the displacement field; a classical example is the strain-gradient theory [19].

In the following section the linear formulation of micromorphic and strain-gradient
theory we will be detailed. The aim is to anchor the analysis that will be made on
third-order tensors into a physical necessity for the understanding of those models.

2 Some Generalized Continua

2.1 Micromorphic Elasticity

Let us begin with the micromorphic approach. In this theory the set of degrees of
freedom (DOF) is extended in the following way

DOF = {u,χ
∼
} ; (u,χ

∼
) ∈ R

3 × ⊗2
R

3,

where ⊗kV stands for the k-th order tensorial power of V. In this formulation the
second-order tensor χ

∼
is generally not symmetric. This micro-deformation tensor

encodes the generally incompatibility deformation of the microstructure. As a con-
sequence, the set of primary state variables (PSV) now becomes

PSV = {u⊗ ∇,χ
∼

⊗ ∇},

where ∇ is the classical nabla vector, i.e.

∇T =

(
∂

∂x

∂

∂y

∂

∂z

)

It can be observed that, despite being of higher-degree, the obtained model is still a
1st-grade continuum. The model is defined by the following set of strain measures:

• ε
∼

= ε(ij) is the strain tensor;
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• e
∼

= u⊗ ∇ − χ
∼

is the relative strain tensor;

• κ� = χ
∼

⊗ ∇ is the micro-strain gradient tensor;

where the notation (..) indicates symmetry under in parentheses permutations. The
first strain measure is the classical one and is, as usually, described by a symmetric
second-order tensor. The relative strain tensor measures how the micro-deformation
differs from the displacement gradient, this information is encoded into a non-
symmetric second-order tensor. Finally, we have the third-order non-symmetric
micro strain-gradient tensor. By duality the associated stress tensors can be defined:

• σ
∼

= σ(ij) is the Cauchy stress tensor;

• s
∼

= sij is the relative stress tensor;

• S� = Sijk is the double-stress tensor.

If we suppose that the relation between strain and stress tensors is linear, the following
constitutive law is obtained:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ
∼

= A≈ : ε
∼

+ B≈ : e
∼

+ C
�

∴ κ�
s
∼

= B≈
T : ε

∼
+ D≈ : e

∼
+ E

�
∴ κ�

S� = C
�

T : ε
∼

+ E
�

T : e
∼

+ F≈
∼

∴ κ�

The behavior is therefore defined by

• three fourth-order tensors having the following index symmetries: A(ij) (lm) ;

B(ij)lm ; Dij lm;
• two fifth-order tensors having the following index symmetries:C(ij)klm ;Eijklm;
• one sixth-order tensor having the following index symmetries: Fijk lmn,

where . . indicates symmetry under block permutations.

2.2 Strain-Gradient Elasticity

In the strain-gradient elasticity the set of degrees of freedom is the usual one, but the
primary state variables are extended to take the second gradient of u into account:

PSV = {u⊗ ∇,u⊗ ∇ ⊗ ∇}

We therefore obtain a second-grade continuum defined by the following set of strain
measures:

• ε
∼

= ε(ij) is the strain tensor;

• η
�

= ε
∼

⊗ ∇ = η(ij),k is the strain-gradient tensor.
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By duality, we obtain the related stress tensors:

• σ
∼

= σ(ij) is the Cauchy stress tensor;

• τ� = τ(ij)k is the hyper-stress tensor.

Assuming a linear relation between these two sets we obtain:

⎧⎪⎨
⎪⎩
σ
∼

= A≈ : ε
∼

+ C
�

∴ η
�

τ� = C
�

T : ε
∼

+ F≈
∼

∴ η
�

The strain-gradient and hyperstress tensors are symmetric under permutation of their
two first indices. The constitutive tensors verify the following index permutation
symmetry properties:

C(ij) (lm) ; M(ij)(kl)m ; A(ij)k (lm)n

2.3 Synthesis

Those two models are distinct but under the kinematic constraint χ
∼

= u⊗ ∇ strain-

gradient elasticity is obtained from the micromorphic model. In the first case, the
micro strain-gradient is element of:

Tijk = {T�|T� =

3∑
i,j,k=1

Tijkei ⊗ ej ⊗ ek}

Assuming that we are in a 3D physical space, Tijk is 27-dimensional and constructed
as Tijk = ⊗3

R
3. For the strain-gradient theory, strain-gradient tensors belong to the

following subspace of Tijk:

T(ij)k = {T�|T� =

3∑
i,j,k=1

Tijkei ⊗ ej ⊗ ek, Tijk = Tjik}

which is 18-dimensional and constructed as1
T(ij)k = (R3 ⊗SR

3)⊗R
3. Therefore,

as it can be seen, the structure of the third-order tensors changes according to the
considered theory.

Facing this kind of non-conventional model, a natural question is to ask what kind
of information is encoded in these higher-order strain measures. In classical elasticity
the physical content of symmetric second-order tensors is well-known through the

1 The notation ⊗S indicates the symmetric tensor product.
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physical meaning of its decomposition into a deviatoric (distorsion) and a spheric
(dilatation) part. But the same result for third-order tensors is not so well-known, and
its physical content has to be investigated. In the literature some results concerning
the strain-gradient tensors can be found, but the situation seems to be fuzzy. In
mechanics,2 third-order tensor orthogonal decomposition was first investigated in
the context of strain-gradient plasticity. According to the authors and the modeling
assumptions the number of components varies from 2 to 4. In the appendices of [25]
the authors introduced a first decomposition of the strain-gradient tensors under an
incompressibility assumption, and expressed the decomposition into the sum of 3
mutually orthogonal parts. This decomposition was then used in [7, 8]. In [17] the
situation is analyzed more in depth, and a decomposition into four parts is proposed.
In some other works, it is said that strain-gradient can be divided into two parts.
Therefore the following questions are raised:

• What is the right generalization of the decomposition of a tensor into deviatoric
parts ?

• In how many orthogonal parts a third-order tensor can be split in a irreducible
way ?

• Is this decomposition canonical ?

The aim of this paper is to answer these questions. These points will be investigated
using the geometrical language of group action.

3 Harmonic Space Decomposition

To study the orthogonal decomposition of third-order tensors, and following the
seemingly work of Georges Backus [3], an extensive use of harmonic tensors will
be made. This section is thus devoted to formally introduce the concept of harmonic
decomposition. After a theoretical introduction, the space of third-order tensors iden-
tified in the first section will be decomposed into a sum of harmonic tensor spaces.
This O(3)-irreducible3 decomposition is the higher-order generalization of the well-
known decomposition of T(ij) into a deviatoric (H2) and spherical (H0) spaces.

3.1 The Basic Idea

Before studying decomposition of third-order tensors, let us get back for a while on
the case of second-order symmetric ones. It is well known that any T(ij) ∈ T(ij)
admits the following decomposition:

2 In field of condensed matter physics this decomposition is known since, at least, the 70’ [15].
3 O(3): the orthogonal group, i.e. the group of all isometries of R

3 i.e. if Q ∈ O(3) det(Q) ± 1
and Q−1 = QT .
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T(ij) = H2
(ij) +

1

3
H0δij = φ(H2

(ij),H
0),

where H2 ∈ H
2 and H0 ∈ H

0 are, respectively, the 5-D deviatoric and 1-D spheric
part of T(ij) and are defined by the following formula:

H0 = Tii ; H2
(ij) = T(ij) −

1

3
H0δij

In fact φ, defined by the expression (3.1), is an isomorphism between T(ij) and the

direct sum of H
2 and H

0

T(ij)
∼= H

2 ⊕ H
0

The main property of this decomposition is to be O(3)-invariant, or expressed in
another way the components (H0, H

∼
2) are covariant with T

∼
under O(3)-action, i.e.

∀Q
∼

∈ O(3), ∀T
∼

∈ T(ij), Q
∼

T
∼

Q
∼

T = φ(Q
∼

H
∼

2Q
∼

T , H0)

Irreducible tensors satisfying this property are called harmonic. By irreducible we
mean that those tensors can not be split into other tensors satisfying this property. In
a certain way harmonic tensors are the elementary gears of the complete tensor. Let
now give a more precise and general definition of this decomposition.

3.2 Harmonic Decomposition

The O(3)-irreducible decomposition of a tensor is known as its harmonic decomposi-
tion. Such a decomposition is well-known in group representation theory. It allows to
decompose any finite order tensor into a sum of irreducible ones [3, 14, 30]. Consider
a n-th order tensor T belonging to T then its decomposition can be written [14]:

T =
∑
k,τ

Hk,τ,

where the tensors Hk,τ are components4 of the irreducible decomposition, k denotes
the order of the harmonic tensor embedded in H and τ separates the same order
terms. This decomposition defines an isomorphism between T and a direct sum of
harmonic tensor spaces H

k [10] as

4 To be more precise, Hk,τ is the embedding of the τth irreducible component of order k into a n-th
order tensor.
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T ∼=
⊕
k,τ

H
k,τ

but, as explained in [12], this decomposition is not unique. Alternatively, the O(3)-
isotypic decomposition, where same order spaces are grouped, is unique:

T ∼=

n⊕
k=0

αkH
k,

where αk is the multiplicity of H
k in the decomposition, i.e. the number of copies

of the space H
k in the decomposition. Harmonic tensors are totally symmetric and

traceless. In R
3, the dimension of their vector space dim H

k = 2k+1. For k = 0 we
obtain the space of scalars, k = 1 we obtain the space of vectors, k = 2 we obtain
the space of deviators, and for k > 2 we obtain spaces of k-th order deviators. The
family {αk} is a function of the tensor space order and the index symmetries. Various
methods exist to compute this family [1, 14, 30]. In R

3 a very simple method based
on the Clebsch-Gordan decomposition can be used.

In the next section this construction is introduced. It worths noting that we obtain
the harmonic structure of the space under investigation modulo an unknown isomor-
phism. The construction of an isomorphism making this decomposition explicit is
an ulterior step of the process. Furthermore, according to the nature of the sought
information, the explicit knowledge of the isomorphism might by unnecessary. As
an example, the determination of the set of symmetry classes of a constitutive tensor
space does not require such a knowledge5 [16, 23].

3.3 Computation of the Decomposition

The principle is based on the tensorial product of group representations. More details
can be found in [1, 14]. The computation rule is simple. Consider two harmonic tensor
spaces H

i and H
j, whose product space is noted G

i+k := H
i ⊗ H

j. This space,
which is GL(3)-invariant, admits the following O(3)-invariant decomposition:

G
i+j =

i+j⊕

k=|i−j|

H
k

For example, consider H
1
a and H

1
b two different first-order harmonic spaces. Ele-

ments of such spaces are vectors. According the above formula the O(3)-invariant
decomposition of G

2 is:

5 Even if some authors explicitly construct this isomorphism [10, 13] this step is useless.
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G
2 = H

1
a ⊗ H

1
b = H

2 ⊕ H
� 1 ⊕ H

0

In this decomposition, the space indicated with the � superscript contains pseudo-
tensors, also known as axial-tensors i.e. tensors which change sign if the space
orientation is reversed. Other elements are true tensors, also known as polar, and
transform according to the usual rules.

As an example, the tensorial product of two spaces of vectors generates a second-
order tensor space. The resulting structure is composed of a scalar (H0), a vector (H�1)
and a deviator (H2). The vector part corresponds to the pseudo-vector associated
with the matrix antisymmetric part. This computation rule has to be completed by
the following properties [14]:

Property 2.1. The decomposition of an even-order (resp. odd-order) completely
symmetric tensor, i.e. invariant under any index permutation, only contains even-
order (resp. odd-order) harmonic spaces.

Property 2.2. In the decomposition of an even-order (resp. odd-order) even-order
(resp. odd-order) components are polar and odd-order axial (resp. even order).

3.4 Structure of Third-Order Strain Measures
of Generalized Continua

These techniques can now be applied to the third-order tensors involved in the micro-
morphic and the strain-gradient elasticity model.

Micromorphic Elasticity

Let us begin with the space Tijk used in the micromorphic theory to model the
micro-strain gradient κ�. As Tijk

∼= ⊗3
R

3, we have Tijk
∼= H

1 ⊗ H
1 ⊗ H

1. Using

the Clebsch-Gordan rule:

Tijk
∼= H

1 ⊗ H
1 ⊗ H

1

∼= (H2 ⊕ H
�1 ⊕ H

0) ⊗ H
1

∼= H
3 ⊕ 2H

�2 ⊕ 3H
1 ⊕ H

�0

Therefore Tijk decompose into:

Name H
3: 3rd-order deviator H

�2: Pseudo-deviator H
1: Vector H

�0: Pseudo-scalar

Dimension 7 5 3 1
Multiplicity 1 2 3 1
Total 7 10 9 1
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And if we sum the dimension of all irreducible spaces the 27-D of Tijk is
retrieved.

Strain-Gradient Elasticity

Now consider the space T(ij)k used in strain-gradient theory to model the strain-

gradient η
�

. As T(ij)k
∼= (R3 ⊗S R

3) ⊗ R
3, we have T(ij)k

∼= (H�2 ⊕ H
0) ⊗ H

1.

Using the Clebsch-Gordan rule:

T(ij)k
∼= H

3 ⊕ H
�2 ⊕ 2H

1

Therefore T(ij)k decompose into:

Name H
3: 3rd-order deviator H

�2: Pseudo-deviator H
1: Vector H

�0: Pseudo-scalar

Dimension 7 5 3 1
Multiplicity 1 1 2 0
Total 7 5 6 0

And if we sum the dimension of all irreducible spaces the 18-D of T(ij)k is retrieved.

Analysis

Therefore, and despite what can be read in the literature, there is no spherical part in
the decomposition of an element of T(ij)k. This worths being emphasized because
in the micromorphic approach tensors do have such a component. Therefore, in order
to avoid any misunderstanding, it is important to use the vocabulary in an appropriate
way. Furthermore the use of a correct generalization of the harmonic decomposition
to higher-order tensors provides useful information on the associated constitutive
law. For example:

• the number of isotropic moduli associated to the isotropic related constitutive
tensor (with great symmetry);

• the number and the dimension of eigenspaces of the related isotropic related con-
stitutive tensor;

• the structure of anisotropy classes of the associated constitutive law [23];
• etc.

For the dimension of the isotropic symmetric constitutive law6

Theorem 2.1. If T ∼=
⊕n
k=0 αkH

k then dim (End
O(3)
S (T)) =

∑n
k=0

αk(αk+1)
2 ,

6 The demonstration of theses theorems will be provided in a paper currently under redaction.
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where End
O(3)
S (T) means the space of self-adjoint isotropic endomorphism of T.

For the next property we need to introduce the following definition.

Definition 2.1. Let L be a self-adjoint endomorphism of T. The eigensignature of
L, noted ES(L), is defined as the concatenation of the dimension of the eigenspaces
of L.

For example, if we consider C≈ an isotropic elasticity tensor we have:

ES(C≈) = {51}

as an isotropic elasticity tensor possesses two eigenspaces: one 5-dimensional and a
unidimensional. The eigensignature of an operator contains both the number of its
eigenspaces and theirs dimension.

Theorem 2.2. If T ∼=
⊕n
k=0 αkH

k then for almost all L ∈ End
O(3)
S (T) ; ES(L) =

�nk=0{αk�{2k+ 1}}

in which � indicates the concatenation operator, and the notation α�{x} indicates that
α copies of x should be concatenated. The direct application of these results to our
concern gives:

Theory Third-order tensor Number of isotropic moduli ES

decomposition of the associated the sixth-order tensor

Micromorphic H
3 ⊕ 2H

�2 ⊕ 3H
1 ⊕ H

�0 11 {752331}

Strain-gradient H
3 ⊕ H

�2 ⊕ 2H
1 5 {7532}

Now the questions are (from a practical point of view):

1. How explicitly construct an associated isomorphism ?
2. Is this isomorphism canonical ?
3. Is there any mechanical meaning of that decomposition ?

In the following section, attention will restricted to the space of strain-gradient
tensors.

4 Construction of the Isomorphism

As shown in the previous section:

T(ij)k
∼= H

3 ⊕ H
�2 ⊕ H

1,a ⊕ H
1,b

It can be observed that any strain-gradient tensor contains 2 vectors in its decom-
position. This fact is important since if the composition contains at least two har-
monic components of the same order the isomorphism is not uniquely defined [12].
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This indeterminacy will only concern the vector components since H3 and H�2 are
uniquely defined. Therefore there is a degree of freedom in the definition of the
vectors contained in the decomposition.

In fact, this situation also occurs in classical elasticity. The vector space of elas-
ticity tensors can be decomposed as follows [3, 4, 10]

Ela ∼= H
4 ⊕ H

2
a ⊕ H

2
b ⊕ H

0
a ⊕ H

0
b

In this decomposition the two scalar parts are the elastic isotropic coefficients and
therefore the isotropic moduli are not uniquely defined. This results in multiple ways
to choose those coefficients: Young modulus & Poisson’s ratio, Lamé constants,
shear modulus & bulk modulus, and so on. . ..

Therefore any construction is possible, but among them at least two are more
natural since they give a physical meaning to the harmonic decomposition. The first
one consists in splitting T(ij)k into a fully symmetric part and a remainder one before
proceeding to the harmonic decomposition.

4.1 1st Decomposition: Stretch- and Rotation-Gradient

This approach is summed-up by the following diagram:

where Sym, Asym and H respectively stand for the symmetrization, anti-symmetri-
zation and the harmonic decomposition processes. T(ij)k is first split into a full
symmetric tensor and an asymmetric one:

T(ij)k = Sijk +
1

3
(εjklRli + εiklRlj)

The space of full symmetric third-order tensors is 10-dimensional meanwhile the
space of asymmetric one is 8-dimensional, those spaces are in direct sum. In the
strain-gradient literature [20] the complete symmetric part S(ijk), defined:

S(ijk) =
1

3
(T(ij)k + T(ki)j + T(jk)i)
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is the stretch-gradient part of T(ij)k. Meanwhile the remaining traceless non-symme-
tric part Rij:

Rij = εipqT(jp)q

is the the rotation-gradient part of T(ij)k. In the couple-stress model, which is
a reduced formulation of the strain-gradient model, only this tensor is taken into
account in the mechanical formulation.

In terms of group action, it is important to note that this decomposition7 is
GL(3)-invariant,8 and that each component is GL(3)-irreducible. In other terms,
this decomposition of the strain-gradient into two “mechanisms” (stretch-gradient
and rotation-gradient) is preserved under any invertible transformation. Under O(3)-
action each part can further be decomposed in irreducible components by removing
their different traces:

• S(ijk) splits into a third-order deviator (dim H
3 = 7) and a vector (dim H

1
a = 3);

• Rij splits into a pseudo-deviator (dim H
�2 = 5) and a vector (dim H

1
b = 3).

Stretch-gradient tensors:
The space S(ijk) is isomorphic to H

3 ⊕ H
1∇str. The structure of this decomposition

shows that this isomorphism is unique. Doing some algebra we obtain

S(ijk) = H(ijk) +
1

5

(
V∇str
i δ(jk) + V∇str

j δ(ik) + V∇str
k δ(ij)

)

with

V∇str
i = S(pp)i =

1

3
(Tppi + 2Tipp) ;

H(ijk) = S(ijk) −
1

5

(
V∇str
i δ(jk) + V∇str

j δ(ik) + V∇str
k δ(ij)

)

In this formulation V∇str is the vector part of the stretch gradient tensor.
Rotation-gradient tensors:
The space Rij is isomorphic to H

�2 ⊕ H
1∇rot. The structure of this decomposition

shows that this isomorphism is unique. Doing some algebra we obtain

Rij = H(ij) + εijpV
∇rot
p

with

V∇rot
i =

1

2
εipq(Rpq − Rqp) =

1

2
(Tppi − Tipp) ;

H(ij) = Rij −
1

2
εijpV

∇rot
p =

1

2
(Rpq + Rqp)

7 This decomposition is sometimes known as the Schur decomposition.
8 GL(3) is the group of all the invertible transformations of R

3, i.e. if F ∈ GL(3) then det(F) 	= 0.
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In this formulation V∇rot is the vector part of the rotation gradient tensor, and is
embedded in the third-order tensor in the following way:

T(V∇rot)ijk =
1

3

(
−V∇rot

i δ(jk) − V∇rot
j δ(ik) + 2V∇str

k δ(ij)

)

Synthesis:
This decomposition can be summed-up in the following Matryoshka doll fashion9:

T(ij)k =
(
H

3 ⊕ H
1
s

)
|GL(3)

⊕
(
H

�2 ⊕ H
1
r

)
|GL(3)

The decomposition into the in-parenthesis terms is preserved under any invertible
transformation, and if this transformation is isometric the harmonic components
are further more preserved. For a strain-gradient tensor this decomposition has the
following meaning. Strain-gradient tensor encodes two orthogonal effects: stretch-
gradient and rotation-gradient. These effects are canonically defined and preserved
under invertible changes of variables. The harmonic decompositions of these ele-
mentary effects correspond to their decomposition in spherical harmonics. This con-
struction has a meaning for any elements of T(ij)k.

4.2 2nd Decomposition: Distortion- and Dilatation-Gradient

Aside from this first construction, which was based on the algebra of third-order ten-
sor, other constructions can be proposed. The following one is based on the derivation
of the harmonic decomposition of a symmetric second-order tensor. As a consequence
this construction has a physical meaning only for tensors constructed in this way.

So the first step is to decompose a second-order symmetric tensor into its deviatoric
and its spherical part:

Tij = H2
ij +

1

3
H0δij

Such as

H0 = Tpp ; H2
ij = Tij −

1

3
H0δij

9 Another layer can be introduced in this decomposition if one consider also in-plane isometries.
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Using the Clebsch-Gordan rule in the following way

H
n ⊗ ∇ ∼= H

n ⊗ H
1 ∼=

n+1⊕

k=|n−1|

H
k

we obtain
H

2 ⊗ ∇ = H
3 ⊕ H

�2 ⊕ H
1
∇dev ; H

0 ⊗ ∇ = H
1
∇sph

In a certain way we have

T(ij)k = T(ij) ⊗ ∇ =
(
H

3 ⊕ H
�2 ⊕ H

1
∇dev

)
|H2⊗∇ ⊕

(
H

1
∇sph

)
H0⊗∇

But conversely to the decomposition (4.1) the in-parenthesis terms are not GL(3)-
invariant. The first in parenthesis block is the distortion-gradient part of the strain-
gradient meanwhile the last one is the dilatation-gradient.

As H3 and H�2 are uniquely defined their expressions are the same as before.
Therefore attention is focused on the vector parts, doing some algebra we obtain:

V
∇sph
i = Tppi ; V∇dev

i =
2

3

(
Tipp −

1

3
Tppi

)

For V∇sph the result is direct, for V∇dev we have:

Sym (Hij,k) = Sijk −
1

9
(δijTppk + δkiTppj + δjkTppi)

Therefore,

V∇dev
k = Sym(Hij,k)δij = Siik −

1

9
(5Tppk) =

1

3
(Tppk + 2Tkpp) −

5

9
(Tppk)

=
2

3

(
Tkpp −

1

3
Tppk

)

Those vectors are embedded into the third-order tensor in the following way:

T(V∇sph)ijk =
1

3
V

∇sph
k δij;

T(V∇dev)ijk =
1

5

(
V∇dev
i δ(jk) + V∇dev

j δ(ik) + V∇dev
k δ(ij)

)
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4.3 Synthesis

If elements of T(ij)k are considered as gradient of a symmetric second-order tensors,
their O(3)-irreducible decompositions, can be defined in, at least, two ways. The first
construction is the more general one and is based on the algebra of T(ij)k, meanwhile
the second is constructed from the algebra of T(ij). Comparing the two decompo-

sitions, it appears that higher-order terms (H3 and H
�2) are identical, whereas the

vector parts are linear combination of each others. These results give an insight of
the physical information encodes by H3 and H�2

H3:

• Its is generated by a part of the distortion gradient;
• Its elements encode a part of the stretch-gradient effect.

H2:

• Its is generated by a part of the distortion gradient;
• Its elements encode a part of the rotation-gradient effect.

On the other hand the non uniqueness of the definition of the vector components
shows that (Stretch- and rotation-gradient) and (Distortion- and Dilatation-gradient)
are entangled phenomena. As, for example, the dilatation-gradient generates both
stretch- and rotation-gradient components. Using this approach some physical based
simplified strain-gradient elasticity models can be proposed.

Theory Harmonic decomposition Tijk Dimension Isotropic moduli

Strain gradient H
3 ⊕ H

2 ⊕ 2H
1 18 5

Distortion-gradient H
3 ⊕ H

2 ⊕ H
1
∇dev 15 3

Stretch-gradient H
3 ⊕ H

1∇str 10 2
Rotation-gradient H

2 ⊕ H
1∇rot 8 2

Dilatation-gradient H
1
∇sph 3 1

Therefore

V∇str = V∇dev +
5

9
V∇sph ; V∇rot =

1

3
V∇sph −

3

4
V∇dev

and conversely

V∇sph =
4

3
V∇rot + V∇str ; V∇dev =

1

9
(4V∇str −

20

3
V∇rot)

The harmonic decomposition had been studied using two different but comple-
mentary constructions. In the context of strain-/stress-gradient [9] theories, these
vector parts are related to differential operators acting on second-order symmetric
tensors. To that aim, we consider T

∼
∈ T(ij)k such that
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∃D
∼

∈ T(ij)|T
∼

= D
∼

⊗ ∇

and we can define two vectors : ∇(tr(D
∼
)) and div(D

∼
). The first vector is the same as

V∇sph and second is:

Vdiv =
3

2
V∇dev +

1

3
V∇sph =

1

3
V∇str −

2

3
V∇rot

The irreducible vector parts of the harmonic can be expressed as a linear combination
of these vectors. This is interesting because of their physical meaning. For strain-
gradient elasticity, V∇sph is the gradient of the infinitesimal volume variation δV ,
meanwhile V∇dev is the strain divergence [27]. For the stress-gradient elasticity
1
3 V∇sph represents the gradient of the isostatic pressure p, and V∇dev is proportional to
the volumic forces f. Those vectors have, both for strain and stress gradient elasticity,
a clear physical meaning.

Strain-gradient Stress-gradient

V∇sph ∇δV 3∇p

V∇dev 2
3

(
div(ε

∼
)− 1

3 ∇δV
)

2
3

(
f −∇p

)

V∇str 1
3

(
∇δV +2div(ε

∼
)
)

∇p + 2
3 f

V∇rot 1
2

(
∇δV −div(ε

∼
)
)

1
2

(
3∇p − f

)

Appendix

In this appendix the explicit decompositions of T� are provided.

Affine Decomposition

Let be defined the following subspace of third-order tensors

S3 = {T|T =

3∑
i,j,k=1

Tijkei ⊗ ej ⊗ ek, Tijk = Tjik} (1)

which is an 18-dimensional vector space.
In order to express the strain gradient T� as a second-order tensor, we consider the

tensor product of the orthonormal basis vectors of second-order symmetric tensors
with the one of classical vector.
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T̂
∼

= ψ(T�) = T̂αkêα ⊗ ek, 1 � α � 6, 1 � k � 3 (2)

with

êα =

(
1 − δij√

2
+
δij

2

)
(ei ⊗ ej + ej ⊗ ei) 1 � α � 6 (3)

With the orthonormal basis (3), the relationship between the matrix components T̂αk
and Tijk is specified by

T̂αk =

{
Tijk if i = j,√

2Tijk if i 	= j;
(4)

Therefore for T� we obtain the following matrix representation:

[T�] =

⎛
⎜⎜⎜⎜⎜⎜⎝

T111 T112 T113
T221 T222 T223
T331 T332 T333√

2T121
√

2T122
√

2T123√
2T131

√
2T132

√
2T133√

2T231
√

2T232
√

2T233

⎞
⎟⎟⎟⎟⎟⎟⎠

We can now construct the explicit matrix decomposition of T�.

• Stretch-gradient tensor:

[T�(S�)] =

⎛
⎜⎜⎜⎜⎜⎜⎝

S1 S4 S5

S7 S2 S6

S8 S9 S3√
2S4

√
2S7

√
2S10√

2S5
√

2S10
√

2S8√
2S10

√
2S6

√
2S9

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T111
1

3
(T112 + 2T121)

1

3
(T113 + 2T131)

1

3
(T221 + 2T122) T222

1

3
(T223 + 2T232)

1

3
(T331 + 2T133)

1

3
(T332 + 2T233) T333

√
2

3
(T112 + 2T121)

√
2

3
(T221 + 2T122)

√
2

3
(T123 + T321 + T213)

√
2

3
(T113 + 2T131)

√
2

3
(T123 + T321 + T213)

√
2

3
(T331 + 2T133)

√
2

3
(T123 + T321 + T213)

√
2

3
(T223 + 2T232)

√
2

3
(T332 + 2T233)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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• Rotation-gradient tensor:

As a second-order tensor:

[R
∼
] =

⎛
⎝
T123 − T132 T223 − T232 T233 − T332
T131 − T113 T231 − T123 T331 − T133
T112 − T121 T122 − T221 T132 − T231

⎞
⎠

and embedded into T�:

[T�(R
∼
)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2R3 −2R5

−2R1 0 −2R6

−2R2 −2R4 0
√

2R3
√

2R1
√

2R7√
2R5 −

√
2(R7 +R8)

√
2R2√

2R8
√

2R6
√

2R4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −
2

3
(T121 −T112) −

2

3
(T131 −T113)

−
2

3
(T122 −T221) 0 −

2

3
(T232 −T223)

−
2

3
(T133 −T331) −

2

3
(T233 −T332) 0

√
2

3
(T121 −T112)

√
2

3
(T122 −T221)

√
2

3
(2T123 −T132 −T231)

√
2

3
(T131 −T113)

√
2

3
(2T132 −T123 −T231)

√
2

3
(T133 −T331)

√
2

3
(2T231 −T132 −T123)

√
2

3
(T232 −T223)

√
2

3
(T233 −T332)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Harmonic Decomposition

• Vector part of the stretch-gradient tensor:

As a vector:

[V∇str] =

⎛
⎜⎜⎜⎜⎜⎝

V∇str
1 =

1

3
(3T111 + (T221 + 2T122) + (T331 + 2T133))

V∇str
2 =

1

3
(3T222 + (T332 + 2T233) + (T112 + 2T121))

V∇str
3 =

1

3
(3T333 + (T113 + 2T131) + (T223 + 2T232))

⎞
⎟⎟⎟⎟⎟⎠

and embedded into T�:
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[T�(V∇str)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

5
V∇str

1
3

15
V∇str

2
3

15
V∇str

3

3

15
V∇str

1
3

5
V∇str

2
3

15
V∇str

3

3

15
V∇str

1
3

15
V∇str

2
3

5
V∇str

3

3
√

2

15
V∇str

2
3
√

2

15
V∇str

1 0

3
√

2

15
V∇str

3 0
3
√

2

15
V∇str

1

0
3
√

2

15
V∇str

3
3
√

2

15
V∇str

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

• Third-order deviator of any strain gradient tensor:

We have the following relations:

⎧⎪⎪⎨
⎪⎪⎩

H3
111 +H3

122 +H3
133 = 0

H3
222 +H3

112 +H3
233 = 0

H3
333 +H3

223 +H3
113 = 0

Therefore ⎧⎪⎪⎨
⎪⎪⎩

H3
133 = −H3

111 −H3
122

H3
112 = −H3

222 −H3
233

H3
223 = −H3

333 −H3
113

Hence we got seven independent components H3
111,H3

122,H3
222,H3

233,H3
333,H3

113
and H3

123, leading to the embedding

[T�(H�
3)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H3
1 −(H3

2 +H3
5) H3

6

H3
4 H3

2 −(H3
3 +H3

6)

−(H3
1 +H3

4) H3
5 H3

3

−
√

2(H3
2 +H3

5)
√

2H3
4

√
2H3

7√
2H3

6

√
2H3

7 −
√

2(H3
1 +H3

4)√
2H3

7 −
√

2(H3
3 +H3

6)
√

2H3
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

H3
1 = H3

(111) =
1

5
(2T111 − (T221 + 2T122) − (T331 + 2T133))

H3
2 = H3

(222) =
1

5
(2T222 − (T332 + 2T233) − (T112 + 2T121))
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H3
3 = H3

(333) =
1

5
(2T333 − (T113 + 2T131) − (T223 + 2T232))

H3
4 = H3

(122) =
1

15
(−3T111 + 4(T221 + 2T122) − (T331 + 2T133))

H3
5 = H3

(233) =
1

15
(−3T222 + 4(T332 + 2T233) − (T112 + 2T121))

H3
6 = H3

(113) =
1

15
(−3T333 + 4(T113 + 2T311) − (T223 + 2T322))

H3
7 = H3

(123) =
1

3
(T123 + T321 + T213)

• Vector part of the rotation-gradient tensor:

As a vector:

[V∇rot] =

⎛
⎜⎜⎜⎜⎜⎝

V∇rot
1 =

1

2
((T221 − T122) + (T331 − T133))

V∇rot
2 =

1

2
((T332 − T233) + (T112 − T121))

V∇rot
3 =

1

2
((T113 − T311) + (T223 − T322))

⎞
⎟⎟⎟⎟⎟⎠

and embedded into T�:

[T�(V∇rot)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2

3
V∇rot

2
2

3
V∇rot

3

2

3
V∇rot

1 0
2

3
V∇rot

3

2

3
V∇rot

1
2

3
V∇rot

2 0

−

√
2

3
V∇rot

2 −

√
2

3
V∇rot

1 0

−

√
2

3
V∇rot

3 0 −

√
2

3
V∇rot

1

0 −

√
2

3
V∇rot

3 −

√
2

3
V∇rot

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

• Second-order pseudo-deviator of any strain gradient tensor:

As a second-order tensor:
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[H
∼

2] =

⎛
⎜⎜⎜⎜⎜⎝

1

3
(2H2

4 +H2
5) H2

1 H2
2

H2
1

1

3
(H2

5 +H2
3) H2

3

H2
2 H2

3 −
1

3
(H2

4 + 2H2
5)

⎞
⎟⎟⎟⎟⎟⎠

With

H2
1 =

1

2
((T223 −T232)+(T131 −T113));H

2
2 =

1

2
((T233 −T332)+(T112 −T121))

H2
3 =

1

2
((T331 −T313)+(T122 −T221));H

2
4 =

1

3
(2T123 −T132 −T231)

H2
5 =

1

3
(2T231 − T132 − T123)

and embedded in T�:

[T�(H
∼

2)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2

3
H2

2 −
2

3
H2

1

−
2

3
H2

3 0
2

3
H2

1

2

3
H2

3 −
2

3
H2

2 0

−

√
2

3
H2

2

√
2

3
H2

3

√
2H2

4√
2

3
H2

1

√
2(H2

4 +H2
5) −

√
2

3
H2

3

−
√

2H2
5 −

√
2

3
H2

1

√
2

3
H2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Interpretation in Terms of Gradient

• Dilatation-gradient vector:

As a vector:

[V∇sph] =

⎛
⎜⎝
V

∇sph
1 = T111 + T221 + T331

V
∇sph
2 = T112 + T222 + T332

V
∇sph
3 = T113 + T223 + T333

⎞
⎟⎠

and embedded in T�:
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[T�(V∇sph)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3
V

∇sph
1

1

3
V

∇sph
2

1

3
V

∇sph
3

1

3
V

∇sph
1

1

3
V

∇sph
2

1

3
V

∇sph
3

1

3
V

∇sph
1

1

3
V

∇sph
2

1

3
V

∇sph
3

0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3
(T111 + T221 + T331)

1

3
(T112 + T222 + T332)

1

3
(T113 + T223 + T333)

1

3
(T111 + T221 + T331)

1

3
(T112 + T222 + T332)

1

3
(T113 + T223 + T333)

1

3
(T111 + T221 + T331)

1

3
(T112 + T222 + T332)

1

3
(T113 + T223 + T333)

0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

• Distortion-gradient vector:
As a vector:

[V∇dev] =

⎛
⎜⎜⎜⎜⎜⎝

V∇dev
1 =

2

9
(2T111 + (3T122 − T221) + (3T133 − T331))

V∇dev
2 =

2

9
(2T222 + (3T233 − T332) + (3T121 − T112))

V∇dev
3 =

2

9
(2T333 + (3T131 − T113) + (3T232 − T223))

⎞
⎟⎟⎟⎟⎟⎠

and embedded in T�:

[T�(V∇dev)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

5
V∇dev

1 −
3

10
V∇dev

2 −
3

10
V∇dev

3

−
3

10
V∇dev

1
3

5
V∇dev

2 −
3

10
V∇dev

3

−
3

10
V∇dev

1 −
3

10
V∇dev

2
3

5
V∇dev

3

9
√

2

20
V∇dev

2
9
√

2

20
V∇dev

1 0

9
√

2

20
V∇dev

3 0
9
√

2

20
V∇dev

1

0
9
√

2

20
V∇dev

3
9
√

2

20
V∇dev

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Continuum Modelling of Shear-Coupled
Grain Boundary Migration

Stéphane Berbenni, Bhasker Paliwal and Mohammed Cherkaoui

Abstract The deformation accommodation mechanisms associated to grain bound-
aries (GBs) significantly affect the mechanical behavior of nano-polycrystals. Among
these mechanisms, stress-induced GB migration is now seen to compete or interplay
with other intra-granular and GB mechanisms in a wide range of temperatures. A
complete micromechanics-based model is here proposed using the concepts of con-
tinuum thermodynamics and kinematics to derive a new constitutive model able
to describe stress-induced GB migration. Like non diffusive phase-transformations,
stress-induced GB migration can be considered on the thermodynamics point of view
of conservative nature (diffusionless but thermally activated) until high temperature
with respect to melting point. Here, in the framework of continuum micro-mechanics
which should be easily implemented in a polycrystalline model, we will first describe
the micromechanical framework: the kinematics and the thermodynamics associated
with additive mechanisms including plastic deformation in the bulk crystals, GB
migration and GB sliding. For the sake of illustration of the present general theory,
we will focus on planar bi-crystals and only perfect shear-coupling GB migration
situations of [001] symmetric tilt GBs in Cu. Numerical examples and responses of
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the micromechanical model are given for these bi-crystals considering both isotropic
and anisotropic elasticity. These ones are fed by computer-aided MD simulations for
which deformation mechanisms are identified.

1 Introduction

“Shear-coupled” grain boundary (GB) migration is now seen to compete or interplay
with other intra-granular GB mechanisms in a wide range of temperatures [1, 2].
In nanocrystalline (NC) metals, it now becomes challenging to understand stress-
induced GB migration because this is thought to enhance grain growth at low tem-
peratures, which is important for making stable structural materials for engineering
applications. In these materials, the interplay of GB migration with other possible
GB deformation mechanisms like GB sliding [3] becomes very complex due to
the high GB volume fraction. The mechanism of stress-induced shear-coupled GB
migration at room temperature is today well identified by a shear deformation accom-
panying GB migration for symmetric (coincident) tilt GB (here denoted STGB) but
less for general non symmetric GB. This new deformation mechanism is different
from strain-induced GB migration studied for recrystallization phenomena. The latter
essentially comes from spatially heterogeneous intra-crystalline dislocation densities
in the vicinity of GB.

Theoretical studies [4] as well as molecular dynamics (MD) simulations using the
EAM potential for Cu bicrystals with STGB [1, 2, 5] show that stress-induced GB
migration is characterized by a shear “coupling factor” (or shear deformation usually
denoted β) which is defined by the ratio of the shear displacement parallel to the
GB plane to the GB propagation normal to its plane. This coupling factor is purely
geometric and depends on the tilt GB misorientation. “Shear-coupled” GB migration
was recently analyzed by [1, 2] using the “Frank-Bilby” equation [6–8]. Due to the
high resolved shear stresses required to move STGB [1, 2, 5, 9], it is expected that
GB migration would play a key role in the understanding of inverse Hall-Petch effect
in addition to GB sliding or GB dislocation nucleation-propagation-absorption.

Due to the complexity of atomistic mechanisms in the case of general GB, we will
limit the present study to the constitutive behavior of Cu STGB undergoing shear-
coupled migration. For Cu [001] STGB, two shear deformation modes associated
to <110> and <100> crystallographic directions linked to two coupling factors
(resp. negative and positive) were observed using MD simulations and confirmed
experimentally by [10]. In particular, a dual temperature dependent behavior for cer-
tain misorientations (around 53◦) may be observed at finite temperatures. According
to [1], a transition exists above 800 K, where the shear-coupled GB migration may
be interrupted by occasional sliding events. Between these sliding events, the GB
plane continues to move accompanied by shear. This suggests that pure GB sliding
occurs through atomistic mechanisms that preserve GB character. At medium and
low temperatures, shear-coupled GB migration has a stick slip stress versus time
characteristic response which can be retrieved by atomistic simulations [11, 12].
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The objective of the present contribution is to provide a complete micromechanics-
based constitutive model using the concepts of continuum mechanics to describe
shear-coupled GB migration in bi-crystals. Kinematics and thermodynamics asso-
ciated with different additive dissipative mechanisms will be introduced in Sect. 2.
Here, shear-coupled GB migration will be considered as a shear process in the local
coordinates associated to grain boundary plane that can be described in linearized
kinematics by an eigenstrain (or plastic strain jump at the discontinuity GB sur-
face) similarly to deformation twinning [13]. To illustrate the present theory, Sect. 3
will focus on bi-crystals with plane GB and pure shear-coupled GB migration sit-
uations without sliding in addition to intra-crystalline plastic deformation. It will
be derived that the shear “coupling factor” β is related to plastic strain jump at the
GB surface through an “orientation tensor” characterized by GB surface dislocation
Burgers vector and slip plane. In Sect. 4, numerical examples and MD simulations
will be restricted to the shear responses of three Cu STGB exhibiting shear-coupled
GB migration with absence of bulk intra-crystalline plasticity (because crystal sizes
are lower or equal to 10nm). In these situations, atomic scale deformation mecha-
nisms are well identified using the concept of “displacement shift complete” (DSC)
dislocations [14, 1] or “disconnections” [15]. These interfacial defects will be intro-
duced in the constitutive framework and a discussion about the role of stress-induced
GB migration coupled with anisotropic elasticity on stress-strain characteristics is
provided in the light of the micromechanics-based model. Section 5 concludes and
sketch some perspectives for the applicability of the present bi-crystal constitutive
framework in mean field polycrystalline modeling involving NC materials and/or
deformation twinning.

Throughout the paper, a “,” indicates a spatial differentiation, a superposed dot
a particle time derivative (or rate). “[A]” denotes the jump of a bulk field “A” at a
discontinuity surface such that [A] = AII − AI to be consistent with Fig. 1, where
I and II are both crystals forming a bicrystal (crystal II being the consumed crystal
during interface motion). “〈A〉” denotes the average of a bulk field A across the

interface defined by 〈A〉 =
1

2

(
AII+AI

)
. The Einstein summation convention is also

used throughout the paper.

2 Continuum Modeling

2.1 Kinematics

Following [16–18], the particle velocity vector jump at the internal discontinuity
surface (GB) denoted hereafter S can be decomposed as follows (Fig. 1)

[vi] = [vi]
(1) + [vi]

(2) , (1)
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Fig. 1 Schematic representation of grain boundary (GB) migration and sliding (kinematics). [vi] =
vi

II −vi
I denotes the jump of vi at the interface (GB plane) oriented by unit normal vector ni from

crystal I to crystal II

where
[vi]

(1) = − [ui,j]njωN (2)

is the particle velocity jump due to normal GB propagation assuming linearized
kinematics [19, 16] and [vi]

(2) is the part of particle velocity jump at the discontinuity
surface due to tangential GB sliding.

In Eq. (2), [ui,j] represents the jump of displacement gradient or total distortion at
the discontinuity surface S.ωN is the GB normal velocity and ni is the unit normal
vector to the GB plane oriented from I towards II (Fig. 1). According to Fig. 1, the
particle velocity jump contains a tangential part v‖ and a normal one v⊥ as follows

[vi] = v‖ti + v⊥ni, (3)

where v‖ reads
v‖ = βωN + vs (4)

In Eq. (4), vs = [vi]
(2)
ti is the tangential velocity due to GB sliding. Furthermore,

β is a purely geometric parameter that can be identified as the “coupling factor”
following the terminology used by [4]. Using Eq. (2),β can be identified as a function
of the interfacial jump of displacement gradient through the following expression

β = − [ui,j]njti (5)

It is noteworthy that Eq. (5) was postulated by [4] without any direct link to
continuum-based kinematics like in the present contribution.

2.2 Thermodynamics

The mechanical dissipation D in the body V is defined as the difference between the
power of the applied forces denoted Pext and the rate of change of the stored energy Φ̇
(time derivative of the Helmholtz free energy), which corresponds under isothermal
and quasi-static evolutions to the time derivative of the elastic energy [20, 21]
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D = Pext − Φ̇ (6)

Neglecting the excess interfacial energy effects at GB in Eq. (6), Φ is given by

Φ =

∫

V

1

2
σijε

e
ijdV , (7)

where σij and εeij are respectively the Cauchy stresses and the elastic strains.
The power of external forces is defined as

Pext =

∫

∂V

σijnjvidV , (8)

where nj is the unit outward normal vector at a point of the external boundary of
V denoted ∂V and vi is the material velocity at this point.

As described in the kinematics part (Sect. 2.1), the strains and stresses are dis-
continuous across the moving interface. Consequently, the elastic energy density

ϕ =
1

2
σijε

e
ij present in Eq. (7) is also discontinuous through the moving disconti-

nuity surface S. Applying the transport theorem for growing discontinuity surface S
to Eq. (7), Φ̇ is given by

Φ̇ =

∫

V

ϕ̇dV −

∫

S

[ϕ]ωNdS. (9)

In Eq. (9), the first volume term containing ϕ̇ can be easily computed using
εij = εeij + ε

p
ij as follows

∫

V

ϕ̇dV =

∫

V

σij

(
ε̇ij − ε̇

p
ij

)
dV . (10)

The second term of Eq. (9) which contains [ϕ] is defined as

[ϕ] =
1

2

(
σIIij

(
εIIij − ε

pII
ij

)
− σIij

(
εIij − ε

pI
ij

))
. (11)

This expression is much simplified in the case of linear homogeneous elastic prop-
erties and using the usual symmetries of the homogeneous elastic stiffness tensor
Cijkl as follows

[ϕ] =
〈
σij

〉 [
εij − ε

p
ij

]
. (12)
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Thus, the expression for Φ̇ is obtained using Eqs. (9)–(11)

Φ̇ =

∫

V

σij

(
ε̇ij − ε̇

p
ij

)
dV −

∫

S

[ϕ]ωNdS. (13)

The expression of external power Pext can be obtained after simplifications from
Eq. (8)

Pext =

∫

V

σijε̇ijdV −

∫

S

〈
σij

〉
[εij]ωNdS+

∫

S

〈
σijnj

〉
[vi]

(2)
dS. (14)

By comparing Eqs. (13) and (14), the total dissipation D of the system is positive
and reads according to Eq. (6)

D =

∫

V

σijε̇
p
ijdV −

∫

S

(〈
σij

〉
[εij] − [ϕ]

)
ωNdS+

∫

S

〈
σijnj

〉
[vi]

(2)
dS. (15)

For homogeneous elastic properties, Eq. (12) can be applied so that Eq. (15) simplifies
into

D =

∫

V

σijε̇
p
ijdV −

∫

S

〈
σij

〉 [
ε
p
ij

]
ωNdS+

∫

S

〈
σijnj

〉
[vi]

(2)
dS. (16)

The first term in Eq. (15) is the classic bulk dissipation due to crystallographic slip
evolution in crystals without surface of discontinuity. The second term in Eq. (15)
is due to the propagation of surface discontinuities and can be related to shear-
coupled GB migration. The associated driving force on the discontinuity surface
S is given by [ϕ] −

〈
σij

〉
[εij] for heterogeneous elastic solids and simplifies into

−
〈
σij

〉 [
ε
p
ij

]
for homogeneous elastic ones. This driving force can be related to the

energy-momentum tensor Plj = ϕδlj−σijui,l introduced by [22] through the jump
relationship [Plj]nj =

(
[ϕ] −

〈
σij

〉
[εij]

)
nl for heterogeneous elastic solids. The

last term in Eq. (15) or Eq. (16) is due to a possible incoherent interface authorizing
tangential GB sliding (see Eq. (4).).

In the following, we first highlight the application of the continuum kinemat-
ics and thermodynamics frameworks to stress-induced shear-coupled GB migration.
From the continuum mechanics viewpoint, GB is here considered as a continuously
distributed dislocation (in the sense of collective continuum defects) for both LAGB
and HAGB. In Sect. 16.3, the transport of GB dislocations is fully examined consid-
ering a bicrystal with planar GB and average mechanical fields in each crystal.
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3 Shear-Coupled GB Migration with Infinite Plane Grain
Boundaries

3.1 Dissipation and Transport Equations

In this part and in the rest of the paper, interfacial sliding will be disregarded, and
we only focus on stress-induced motion of discontinuity surfaces like GB, assuming
they are coherent interfaces. This means that only the first two terms of Eq. (15) are
considered. This situation corresponds to “perfect shear-coupling” GB migration as
defined in [4]. Thus, for planar bi-crystalline systems, such as the one represented in
Fig. 2, Eq. (15) yields

D

V
= fσIijε̇

pI
ij + (1 − f)σIIij ε̇

pII
ij +

(
[ϕ] −

〈
σij

〉
[εij]

)
ḟ, (17)

where f is the current volume fraction of crystal I. If crystal I moves into crystal II,
ḟ describes the rate of growth of the thickness of crystal I due to normal motion. In
the particular case of homogeneous elasticity, [ϕ]−

〈
σij

〉
[εij] should be replaced by

−
〈
σij

〉 [
ε
p
ij

]
in Eq. (17). Furthermore, the overall strain (resp. stress) evolution are

given by the following transport equations (see also [23]) involving the strain (resp.

stress) jump
[
εij

]
(resp.

[
σij

]
) for the plane discontinuity surface S

Ėij =
1

V

∫

V

ε̇ijdV −
1

V

∫

S

[
εij

]
ωNdS = fε̇Iij + (1 − f)ε̇IIij −

[
εij

]
ḟ, (18)

Σ̇ij =
1

V

∫

V

σ̇ijdV −
1

V

∫

S

[
σij

]
ωNdS = fσ̇Iij + (1 − f)σ̇IIij −

[
σij

]
ḟ. (19)

From Eq. (18) and assuming homogeneous elasticity, the overall plastic strain rate
reads

Fig. 2 Bicrystal configura-
tion for shear-coupled GB
migration with infinite planar
interface (GB plane). Here,
the consumed grain (crystal
II) is chosen as the reference
lattice
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Ė
p
ij =

1

V

∫

V

ε̇
p
ijdV −

1

V

∫

S

[
ε
p
ij

]
ωNdS = fε̇

pI
ij + (1 − f)ε̇

pII
ij −

[
ε
p
ij

]
ḟ (20)

For an infinite plane discontinuity surface and considering heterogeneous elasticity,
the strain concentration equations (given an applied overall strain for instance) are
detailed in [24]. The calculations give the following general expressions for εIij and

εIIij

εIij = AIijklEkl − (1 − f)Gijkl
[
σ
p
kl

]
,

εIIij = AIIijklEkl + fGijkl
[
σ
p
kl

]
,

(21)

where Eij are the overall homogeneous strains, AIijkl, A
II
ijkl are respectively the

strain concentration tensors for crystals I and II, Gijkl is a strain influence tensor
which depends on the anisotropic elastic constants in crystals I and II. In Eq. (21),[
σ
p
ij

]
is defined by [

σ
p
ij

]
= CIIijklε

pII
kl − CIijklε

pI
kl . (22)

AIijkl, A
II
ijkl,

[
σ
p
ij

]
and Gijkl are given in [24]. The strain jump [εij] can be easily

derived from Eq. (21). In addition, the effective (overall) elastic moduli Ceff
ijkl of the

bicrystal can be computed using Eq. (21) together with
[
σ
p
ij

]
= 0 and the static

averaging rules. The complete expressions of the effective elastic moduli Ceff
ijkl are

given elsewhere [24].

In Eq. (17), the term
(
[ϕ] −

〈
σij

〉
[εij]

)
ḟ (general case) or −

〈
σij

〉 [
ε
p
ij

]
ḟ (for

homogeneous elasticity) has to be expressed. These terms characterize the intrin-
sic dissipation per unit volume due the shear-coupled GB migration mechanism. In
the following, the link between continuum-based GB dislocation density and the cou-
pling factor β is recalled using the continuum dislocation density tensor introduced
by [25] and [26].

3.2 GB Dislocation Densities and β Coupling Factor

In the continuum dislocation theory [25–27], the dislocation density tensor αhi is
defined as the Curl of the incompatible elastic distortion βeji (i.e. the elastic incom-

patible part of the displacement gradient ui,j = βji = βeji + β
p
ji in the linearized

theory) as follows
αhi = ∈hljβeji,l, (23)

where ∈hlj is the permutation tensor. According to the Frank-Bilby theory of surface
dislocations [6–8], the plastic distortion jump (or eigendistortion) due to the GB
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dislocations (which is a continuum description of discrete GB defects present at the
atomic scale and responsible for GB migration) can be obtained from the expression
of surface dislocation densities [8, 28] defined as follows

αShi = ∈hlj
[
βeji

]
nl = ∈hlj

(
βeIIji − βeIji

)
nl. (24)

Applying the 1st order Hadamard compatibility relation [19] at the discontinuity

surface (i.e. ∈hlj
[
βji

]
nl = ∈hlj

(
βIIji − βIji

)
nl = 0) , Eq. (24) yields

αSij = −∈jkl
[
β
p
li

]
nk. (25)

Assuming tl a given unit vector in the boundary plane (of unit normal nm) in Fig. 3
and wj a unit vector such as wj = ∈jmnnmtn, then the resultant Burgers vec-
tor of dislocation lines cut by tl is Bi = αSijwj . Using Eq. (25), ∈jkl∈jmn =
δkmδln − δknδlm and nntn = 0, it comes

Bi = −
[
β
p
li

]
tl. (26)

The plastic distortion jump
[
β
p
li

]
results from plastic accommodation due the motion

of gliding surface dislocation embodied by αSij. This formalism was first applied to
martensitic transformations by [8] and later by [2] for “shear-coupled” GB migration.
If crystal II is consumed during the motion of crystal I into crystal II then crystal
II will be considered as the reference lattice. This is similar to a parent phase in
martensitic transformations as described in [8]. Thus,

[
β
p
li

]
= −βligl, (27)

where li and gl are unit vectors defined with respect to the reference crystal (see
Fig. 3) so that the interface dislocations can be considered for LAGB as discrete
distributions of straight dislocations parallel to a unit vector. For HAGB, the interface
dislocations are general surface dislocations. Eq. (27) characterizes a simple shear
of magnitude β defined as the “coupling factor” by [4] during perfect shear-coupled
GB migration (i.e. without sliding). This β factor was already identified in Sect. 2.1

Fig. 3 Definition of surface dislocation Burgers vector Bi with respect to reference crystal II. li is
a unit vector in the direction of the Burgers vector, and gi represents the unit normal to the gliding
plane of the surface dislocation
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without making any reference to the surface dislocation concept like in the present
section.

Here, li gives the direction of the Burgers vector content Bi such that Bi = Bli,
where B is its magnitude, and gi represents the unit normal to the gliding plane of
the GB dislocations, such as Eqs. (26) and (27) give

Bi = βligltl = Bli. (28)

From the last equation, the relationship between B and β is found

β =
B

gltl
(29)

In the case of STGB with a tilt axis direction given by the unit vector

pj = ∈jmnlmgn = ∈jmntmnn,

simple geometric considerations using Fig. 3 gives the expression of the coupling
factor

β =
B

llnl
. (30)

This relationship is consistent with [1]’s work through their Eq. (21). In this section,

the most important is the expression of
[
ε
p
ij

]
, the symmetric part of

[
β
p
ji

]
, which

reads from Eq. (27) [
ε
p
ij

]
= −R̃ijβ (31)

with

R̃ij =
1

2
(ligj + gilj) . (32)

R̃ij is defined as the “orientation tensor” associated to the shear deformation (or slip)
of magnitude β coupled to GB migration. From the previous definitions of li and gj
in Fig. 3, R̃ij and

[
ε
p
ij

]
are traceless (i.e. ˜Rkk = 0) so that the induced plastic strain

due to shear-coupled GB migration is incompressible.

3.3 Thermodynamic Driving Forces

From Eq. (17), the total dissipation per unit volume can be rewritten in the following
general form

D

V
= Fi (Ekl,Σkl,Xj) Ẋi, (33)
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where Fi are the driving forces associated to internal variablesXi. These ones depend
on the overall strains Eij or stresses Σij and on the three internal variables Xj
(i.e. εpIij , εpIIij , f). In this problem, the three driving forces FεpI , FεpII , Ff associated

respectively to εpIij , εpIIij , f (describing three independent inelastic processes) are
listed below using Eq. (17)

FεpI = fσIij,
FεpII = (1 − f)σIIij ,
Ff = [ϕ] −

〈
σij

〉
[εij] ,

(34)

where σIij,σ
II
ij ,

〈
σij

〉
, [ϕ] and [εij] can be computed using Eq. (21). In the case of

homogeneous elasticity without intra-crystalline slip, Ff simply becomes

Ff = −
〈
σij

〉 [
ε
p
ij

]
=

〈
σij

〉
R̃ijβ = τ̃β following Sect. 3.2, where τ̃ is the driving

resolved shear stress on the surface dislocation gliding plane associated to
[
ε
p
ij

]
, R̃ij

is the orientation tensor previously defined in Sect. 3.2 and β is the shear coupling
factor.

In the thermo-mechanics of plasticity [29, 21], the critical forces (corresponding to
“threshold stresses” for the previous irreversible processes) are needed to complete
the theory. The considered constitutive expressions for the critical forces and the
kinetics law must be chosen with respect to a positive dissipation per unit volume in
Eq. (33).

3.4 Critical Forces and Bi-Crystal’s Overall Behavior

If the critical forces for intra-crystalline plastic deformation in both crystals εpIij ,

ε
pII
ij , f, here denoted FC

εpI
, FC
εpII

, are higher than their respective corresponding
driving forces and only the critical force for shear-coupled GB migration denoted
FCf is reached by Ff then

FεpI < F
C
εpI

,

FεpII < F
C
εpII

,

Ff = FCf

(35)

In the case of homogeneous elasticity, the last equation in Eq. (35) reduces to τ̃ = τ̃C
for a given shear coupling factor β, where τ̃C is the critical shear stress resolved on
the surface dislocation gliding plane. When Ff reaches FCf (or when τ̃ reaches τ̃C in
the case of homogeneous elasticity) in Eq. (35), the GB migration flux is given by
the expression of ḟ for an infinite GB plane as follows

ḟ =
1

V

∫

S

ωNdS =
ωNS

V
=
ωN

L
, (36)
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where L is the total length of the deformed bicrystal in the normal direction to the
GB.

The overall Hooke’s law together with Eqs. (18), (19), (36) give the following
constitutive relationship between the overall stress and strain rates

Σ̇ij = Ceff
ijkl

(
Ėkl +

ωN

L

(
[εkl] − Seff

klmn [σmn]
))

, (37)

where [σij] and [εij] are provided by Eq. (21) depending on homogeneous stress or
strain conditions prescribed at the boundary of the bicrystal. Thus, for heterogeneous
elastic bicrystals, Eq. (37) also writes

Σ̇ij = Ceff
ijkl

(
Ėkl − Ė

peff
kl

)
, (38)

where Ėpeff
ij is the effective (overall) plastic strain rate due to shear-coupled GB

migration defined as

Ė
peff
ij = −

ωN

L

(
[εij] − Seff

ijkl [σkl]
)

. (39)

If homogeneous elasticity is assumed, the constitutive law simplifies into

Σ̇ij = Cijkl

(
Ėkl +

[
ε
p
kl

] ωN
L

)
, (40)

which gives, using Eq. (31) in the case, where crystal II is consumed,

Σ̇ij = Cijkl

(
Ėkl − R̃klβ

ωN

L

)
. (41)

Following recent experimental data [30], stress-driven shear-coupled GB migration
exhibits a temperature dependence indicating that a thermally-activated process is
at the origin of the shear-coupled GB migration. It is noteworthy that recent efforts
were made to capture the kinetics law for the GB migration process at finite temper-
atures and strain rates by [11]. However, the accurate determination of the kinetics
parameters for the three investigated Cu STGB will need specific simulation methods
(parallel-replica dynamics, nudged elastic band methods) which are out of the scope
of the present study.

Equation (38) shows that once GB migration is active for a given normal velocity
ωN (which also depends on the applied velocity to the bicrystal), the instantaneous
stress decrease due to induced plastic strain is dependent on the effective elastic
moduli Ceff

ijkl (or Cijkl in the case of homogeneous elasticity), the GB character

(through R̃ij andβ) and the bicrystal finite size L. The calculation of ḟ (or equivalently
the volume fraction increment dictated by the stepwise normal GB motion at each
GB migration event) will be specified and discussed in Sect. 4 (for 0 and 500 K
temperatures) with application to particular [001] Cu STGB (coincident GB). For
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the latter, the atomistic mechanisms and collective steps when GB migrates are
known following appropriate vectors of the “displacement shift complete” (DSC)
lattice [1, 14].

4 Application to Cu [001] Symmetric Tilt Grain
Boundaries (STGB)

4.1 Shear Modes

Following [1, 2, 11], we considered [001] STGB in cubic metals like Cu (f.c.c. metal).
GB are generally characterized by five angles. Four angles are set up by choosing
the tilt axis and the GB plane is a particular mirror plane of the bi-crystal containing
the tilt axis. The misorientation angle θ is defined as the tilt angle between the [100]
directions of both crystals in the counterclockwise direction, with 0 < θ < π/2 due
to the four-fold symmetry around the tilt axis. Hence, the GB plane lies along the
bisector between the [100] directions like in Fig. 4.

Following [2], two mappings for the Burgers circuit allows two possible Bi and
two associated “coupling modes” to be defined. The first “coupling mode” called the
<100> mode (or “mode I”) is such that li is parallel to the cube direction [010] of
the reference lattice (crystal II) and the Frank-Bilby dislocation slip planes are (100)
[2]. The slip plane is represented to the left of the GB normal in Fig. 4. For small θ
(LAGB), the expressions for Bi and the associated dislocation density can be resolved
by a discrete distribution of single lattice dislocations of Burgers vectors bi = aL
[010], where aL is the lattice parameter. For LAGB, the critical stress is proportional
to the glide component of the Peach-Koehler force required to initiate the collective
glide of the arrays of GB dislocations [10]. There are two kinds of LAGB: either for
small θ or for θ close to π/2 (i.e.ϕ = π/2 − θ near 0). The latter corresponds to the
GB “mode II” migration (<110> mode), where li is parallel to the direction

[
1 1̄0

]

Fig. 4 Definition of the misorientation angle θ for [001]-type tilt boundaries. Two Burgers vectors
Bi with directions given by unit vectors li are possible which correspond to two different mappings
for Burgers circuit. The normal directions to the slip planes are given by unit vectors gi. Angles θ
and ϕ are linked each other by ϕ = π/2 −θ
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of the reference lattice (crystal I) and the associated resolved single dislocations are
of type Bi = aL/2

[
11̄0

]
. In this case, the Frank-Bilby surface dislocation glides

along (110) planes, which is represented to the right of the GB normal in Fig. 4.
For HAGB, the discrete distributions of single dislocations can not be resolved

anymore [31] and only the “Frank-Bilby equation” (Eq. (25)) is here used for these
STGB. As established by [2], the Frank-Bilby equation (FBE) introduced in Sect. 3.2
provides two feasible solutions for [001] STGB and their continuous GB dislocation
density.

These two solutions (as functions of θ) correspond to Burgers vectors either paral-
lel to the [010] (denoted as Bi <100> for “mode I”) or parallel to the [11̄0] (denoted
as Bi <110> for “mode II”). Here, [010] and [11̄0] are crystallographic directions
respectively defined in the crystal II and crystal I. For GB “mode I” migration, the
consumed grain is crystal II (reference lattice) such as ḟ � 0, whereas for “mode II”
migration, crystal I (reference lattice) is consumed with ḟ � 0. Under simple shear
loading, these two coupling modes compete with each other, and the transition from
one mode to the other occurs at a critical misorientation angle θ which depends on
temperature (see Fig. 8 in [1]). Note that as the temperature drops, the θ range of
“mode II” expands and it may be the only active coupling mode for all values of
θ at T = 0 K. The invoked reason is that the activation of “mode I” requires the
breaking of the mirror symmetry due to equivalent row translations by lattice vectors
1/2[001] and 1/2[001̄]. This symmetry can only be broken at finite temperatures,
where ledges and other defects may form easily. This issue was also checked using
the gamma-surfaces associated to both modes at 0 K by [1].

Thus, due to the complexity of atomistic mechanisms in the case of general GB, we
here limit atomistic investigations to study the constitutive behavior associated with
the STGB shear-coupled migration. For this case, MD simulations are conducted for
three Cu [001] STGB with misorientation angles θ = 77.32◦, 53.13◦, 28.07◦ which
show the well-identified temperature dependent shear-coupling <100> and <110>
modes linked to two characteristic coupling factors β (resp. positive and negative).
According to [1], the coupling factor β depends on θ and on the “coupling modes”
as follows

β<100> = 2 tan

(
θ

2

)
,

β<110> = −2 tan
(ϕ

2

)
, (42)

where ϕ =
π

2
− θ. The atomistic MD simulations which are shown in Sect. 4.2

will first provide the shear stress response, the temperature dependent shear coupling
mode as a function of the GB character, the critical shear stresses (or “peak stresses”),
the stress accommodation due to shear (shear stress drop during GB migration) and
the saw-tooth behavior (stick slip character). Second, the results of the developed
micromechanics-based model regarding elastic slopes and shear stress drops will
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be discussed in Sect. 4.3. The roles of GB character, bicrystal size and cubic elastic
anisotropy will be studied in Sect. 4.3.

4.2 Molecular Dynamics (MD) Simulations

In this subsection, a few “flat” Cu [001] STGB, namely Σ41(540) (θ = 77.32◦),
Σ5(210) (θ = 53.13◦), Σ17(410) (θ = 28.07◦), were studied at 0 K and at 500 K
temperatures using the EAM interatomic potential provided by [32] for Cu. Note that
in the work of [1], where MD simulations were performed under simple shear loading
at 800 K, the first two STGB display “mode II” migration, and the last one displays the
“mode I” (see Table 3.1 in [1]). However, all of them display the “mode II” (<110>
mode) at 0 K as can be inferred from the plots in the Fig. 8 of [1]. Here, each bi-crystal
with [001] STGB is created using the coincident site lattice (CSL) model by placing
the first crystal on the top of the other using the following procedure (Fig. 5). The tilt
axis (x3-axis) is along [001] direction. The horizontal plane (x1,x3) corresponds to
the GB plane, and [100] directions for crystals I and II makes an angle θ. The gap
between the two crystals is set to about 2 Angström before it is subjected to energy
minimization. Several initial configurations are also tested by shifting the upper
grain with respect to the lower along the (x1) direction so as to obtain the lowest
energy state of a GB configuration after atomic relaxation. The energy minimization

Fig. 5 Schematic figure of
the computational atomistic
unit cell box with coordinate
axes and periodic boundary
conditions. L is the total
length in the normal direction
(as defined in the text) to the
GB plane for dynamic atoms
subjected to shear
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Table 1 Elastic shear moduli obtained by the MD results and by the present micromechanical
model accounting for anisotropic elasticity for Σ41(540), Σ5(210), Σ17(410) [001] STGB

Effective elastic shear moduli (GPa) Σ41(540) Σ5(210) Σ17(410)

Atomistic simulations 25.4 35.6 57.4
Present model (anisotropic) 25.7 39.5 61.8
Voigt-Reuss-Hill average (isotropic) 47.8 47.8 47.8

The isotropic Voigt-Reuss-Hill average is also given for comparisons

is performed with the LAMMPS simulator1 using a conjugate gradient method. Each
Cu crystal for simulations is approximately cubic shaped, and the simulation block for
the bicrystal contains between 30000–45000 atoms with periodicity in the (x1) and
the (x3) directions. After optimization, the relaxed structure is subjected to constant
shear strain rate loading as follows. The simulation block (Fig. 5) is sandwiched
between the top and the bottom layer (along the (x2) axis) of thickness about 2 times
the potential cut-off distance. These two layers do not participate in computing data
from the simulations and serve only to impose simple shear loading. The bottom
block is held fixed and the constant shear velocity v0 = v‖ = ĖL is applied on
the top part of the block in the (x1) direction, where Ė is the constant shear strain
rate (Ė = 108s−1) and L is the simulation block length containing unconstrained
atoms. Here, two different values were chosen to keep initial crystal characteristic
sizes lower or equal to 10nm to mimic nanocrystals, namely L = 12.2 nm and
L = 20 nm. The time step is 1 fs. These simulations are conducted at 0.001 K and at
500 K, and the overall stress tensor was computed using the standard virial expression
averaged over all dynamic atoms. The GB position was also tracked from the common
neighborhood analysis (CNA) computation. The CNA value for atoms in f.c.c. lattice
is 1 and for atoms forming GB structural units it is 5 [33, 34].

4.3 Discussion of the Continuum Model and Comparisons
with MD Results

The micromechanics-based approach is applied to the three previously investigated
Cu bi-crystals with [001] STGB. The motivation to study Cu bi-crystals lies in the
fact that they exhibit a strongly anisotropic elastic behavior characterized by the

following anisotropic coefficient a =
2C44

C11 − C12
= 3.26. The cubic elastic moduli

for Cu are taken as C11 = 170 GPa, C12 = 122.5 GPa and C44 = 76 GPa. These
elastic constants are given by [32] and were used by these authors to validate the
EAM potential for Cu. In this paper, the application of the micromechanics-based
theory is mainly focused on the effect of elastic anisotropy on the shear stress-strain
curves before and at the first shear-coupled GB migration event (Fig. 6).

1 LAMMPS Molecular Dynamics Simulator; http///lammps.sandia.gov/.



Continuum Modelling of Shear-Coupled Grain Boundary Migration 57

Fig. 6 Schematic representation of the shear stress versus shear strain curve and the quantitative
values predicted by the micromechanical model: elastic slopes and shear stress drops. The critical
shear stress (also called “peak stress”) is obtained by MD simulations

For homogeneous isotropic elastic properties, the isotropic elastic coefficients for
Cu are obtained using the classic “Voigt-Reuss-Hill average” model [35]. This model
gives μ = 47.8 GPa (isotropic elastic shear modulus) and ν = 0.345 (Poisson ratio).
The isotropic shear modulus is reported on Table 1 for comparisons with the effective
elastic shear moduli μeff derived for general elastic anisotropy [24]. The numerical
values for elastic moduli are computed in both crystals using the cubic symmetry
for Σ41(540) (θ = 77.32◦), Σ5(210) (θ = 53.13◦), Σ17(410) (θ = 28.07◦) that can
be used to derive the effective elastic moduli for the three investigated bi-crystals.
We find for f = 1 − f (initial elastic slope) that the effective elastic shear moduli
(Table 1) are in good agreement with the atomistic simulations at 0 K and at 500 K.
In contrast, we remark that the classic isotropic assumption obtained from “Voigt-
Reuss-Hill average” is sometimes far from the atomistic results for the studied Cu
[001] STGB, which means that the simple elastic isotropic assumption is not realistic
for the present application. The mechanical responses given by the micromechanical
model can be enriched by the critical forces FCf or the critical resolved shear stresses
on the GB slip plane τ̃C in Eq. (35) directly obtained from the peak stresses (or
critical shear stresses τC) of the atomistic results (see Sect. 4.2). These peak stresses
resulted from simple shear performed at an applied material velocity v‖ parallel to
the GB plane (Fig. 5).

Second, we focus on the analysis of shear stress drops in the light of the micro-
mechanical approach after the first GB migration event, i.e. for f = 1 − f in the
constitutive model assuming isotropic elasticity or fully anisotropic elasticity in both
crystals. Following MD results detailed in [24], we start by the analysis of first shear
stress drops when the “mode II” (<110>mode) is activated at 0 K for the three GBs
and at 500 K for Σ41(540) and Σ5(210). Then, the model is applied to the case when
the “mode I” (<100>mode) is activated at 500 K for Σ17(410). Lastly, the model is
applied to understand the origin of bi-crystal size effects on stress drops at 0 K for
the three STGBs.

As seen from atomistic simulations, “mode II” is a dominating shear mode
especially at 0 K for the three GBs. According to Fig. 4, li and gi are defined so
that the <110> mode (“mode II”) is characterized by
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lini = giti = − cos
(ϕ

2

)
= − cos

(
π

4
−
θ

2

)

which gives

li =

(
sin

(
π

4
−
θ

2

)
, − cos

(
π

4
−
θ

2

)
, 0

)

and

gi =

(
− cos

(
π

4
−
θ

2

)
, − sin

(
π

4
−
θ

2

)
, 0

)

and R̃ij from Eq. (32). Since crystal I is the parent grain, only crystal II undergoes

plastic deformation, thus
[
ε
p
ij

]
= ε

pII
ij = −R̃ijβ. When the critical shear stress is

reached, shear-coupled GB migration is active. Then, time integration of Eq. (38)
during the first shear-coupled GB migration event yields

Σ̇ijδt = Ceff
ijklĖklδt+

hN

L

(
Ceff
ijkl [εkl] − [σij]

)
. (43)

From atomistic results, the step timeδt for each single shear-coupled GB migration
event is a few ps. This time scale is out of the scope of continuum mechanics for
which GB migration is seen as instantaneous. In Eq. (43), the strain and stress jumps
(resp. [εij] and [σij]) can be computed using Eq. (21) for homogeneous stress or
strain boundary conditions. These jumps depend on the elastic properties of both
crystals and depend on R̃ij and β. In Eq. (43), hN denotes the normal step height
during stepwise GB motion (at the first GB migration event) which corresponds to the
characteristic step height due to GB disconnection loop nucleation [15]. In the case
of “mode II”, the GB plane moves down (negative motion with respect to the (x2)
axis in Fig. 5) to a new position when τC is reached for which the activation energy
for GB migration is overcome. At this point, the second term in Eq. (43), that contains
the strain and stress jumps, hN and the effective elastic moduli, is responsible for
shear stress drop when migration is active. Without trying to determine the complete
activation energy profile for the three studied STGB, the transition from an unstable
state to a metastable state associated with the dissipative GB migration event is then
described by a normal step heighthN. This characteristic distancehN is also linked to
the DSC lattice vector following for coincident (CSL) GB. The DSC (“displacement
shift complete”) lattice is the largest lattice including all the sites of the lattices of
both crystals. According to [14, 1], the disconnection step height hN is linked to
the DSC lattice spacing. Thus, the expression of the disconnection step height hN
depends on the GB character (through θ) and on the lattice parameter aL. For the
<110> mode, hN is negative and is given by [1]

hN
<110> = −

aL√
2

cos
(ϕ

2

)
, (44)
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Table 2 Normal step height hN average values obtained by Eq. (44) (theory) compared to MD
results for Cu Σ41(540), Σ5(210), Σ17(410) [001] STGB

hN (nm) for <110> mode Σ41(540) Σ5(210) Σ17(410)

Atomistic simulations (average values) −0.255 −0.248 −0.220
Theory (for present model) −0.254 −0.242 −0.219

where aL = 0.3615 nm for Cu. The numerical values obtained for hN from MD
simulations are computed by averaging the different GB position steps. The compar-
isons between these values and the theoretical ones given by Eq. (44) are provided
in Table 2 and show a very good agreement.

Here, the shear-coupled GB migration event is assumed instantaneous at the
continuum mechanics time scale so that during the stepwise GB motion ΔEij =

Ėijδt = 0 in Eq. (43), thus

ΔΣij =
hN

L

(
Ceff
ijkl [εkl] − [σij]

)
. (45)

Assuming linear isotropic homogeneous elasticity, Eq. (45) simplifies into

ΔΣij = −2μ
hN

L
βR̃ij (46)

since ˜Rkk = 0 (see Sect. 3.2).
In the following, the tensor to matrix convention is used. The pairs of subscripts

ij and kl are converted to single subscripts as follows: 11→ 1, 22→ 2, 33→ 3, 23
and 32→ 4, 13 and 31→ 5, 12 and 21→ 6. For simple shear parallel to GB plane
in the (x1) direction as performed in the MD simulations (Fig. 5), the shear stress
increment is obtained from Eq. (45) as follows

ΔΣ6 =
hN

L

(
Ceff

62 [ε2] + Ceff
64 [ε4] + Ceff

66 [ε6]
)

(47)

since [σ6] = 0. Thus, the strain concentration equations (Eq. (22)) are here applied.
For isotropic elasticity, Eq. (46) simply yields

ΔΣ6 = −μ
hN

L
βR̃6 (48)

with R̃6 = l1g2 + g1l2 = cos
(π

2
− θ

)
.

The present micromechanics-based model is able to describe the shear stress drop
magnitude in the stick-slip behavior (Fig. 6). The shear stress drop magnitude can
be defined as the absolute value of the shear stress increment |ΔΣ6| obtained from
Eq. (47) or Eq. (48). The stick-slip behavior is dependent on the grain boundary char-
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Table 3 Shear stress drop magnitudes (in MPa) obtained by the MD results at 0 and 500 K and by
the micromechanical model with anisotropic and isotropic elastic formulations for Cu Σ41(540),
Σ5(210), Σ17(410) [001] STGB with L = 12.2 nm

|ΔΣ6| (MPa) for L = 12.2 nm Σ41(540) (0K,500K) Σ5(210) (0K,500K) Σ17(410) (0K)

Atomistic simulations 100 417 1080
Present model (anisotropic) 127 603 1024
Present model (isotropic) 216 506 485

acter (through θ), the effective elastic properties of the bicrystal, the lattice parameter
(through hN) and the bicrystal finite size L. The numerical values regarding shear
stress drop magnitudes for Σ41(540) (θ = 77.32◦), Σ5(210) (θ = 53.13◦), Σ17(410)
(θ = 28.07◦) are reported in Table 3 both from atomistic results and from the micro-
mechanical approach (either Eq. (47) for anisotropic elasticity or Eq. (48) for isotropic
elasticity). The β<110> coupling factors are respectively −0.222, −0.667, −1.200
for Σ41(540), Σ5(210), Σ17(410). The quantitative comparisons reported in Table 3
give reasonable agreement with the atomistic results in the case of anisotropic elastic-
ity for the three investigated STGB. In this case, the relative errors with respect to MD
results appear to be quite acceptable. Conversely, the isotropic elasticity assumption
give unrealistic results which are far from the MD results especially for Σ41(540)
STGB, where the relative error reaches ∼120 %. The results show that the isotropic
elastic assumption may only be relevant for the particular case of Σ5(210) STGB,
where both fully anisotropic and isotropic elastic formulations give similar values.

Another example, where the micromechanical approach can be applied, is the
specific Cu Σ13 (320) (θ = 67.4◦) STGB investigated by [11]. In this case, the shear
stress drop magnitude obtained by the authors using atomistic simulations at 0 K with
L = 6 nm was found to be ∼450 MPa [11]. Taking into account anisotropic elasticity
(Eq. (47)) and the fact that the “mode II” is active at 0 K (Eq. (44)), the present model
gives |ΔΣ6| = 573 MPa, which represents a relative error of ∼27 %.

For Cu Σ17 (410) STGB, “mode I” occurs at 500 K according to MD results [24].
In this <100> mode, Bi (or li) forms an angle θ/2 counterclockwise with respect
to ni (Fig. 4) such that

lini = giti = cos

(
θ

2

)
, li =

(
− sin

(
θ

2

)
, cos

(
θ

2

)
, 0

)
,

gi =

(
cos

(
θ

2

)
, sin

(
θ

2

)
, 0

)
.

Here, crystal II is the parent grain and only crystal I undergoes plastic deformation,

thus
[
ε
p
ij

]
= −ε

pI
ij = −R̃ijβ, where R̃ij is given by Eq. (32). In this case, the first

shear stress drop obtaind by MD simulations is ∼300 MPa. The micromechanical
model can also be applied in the same way to the “mode I” observed at T = 500 K.
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Table 4 Shear stress drop magnitudes (in MPa) obtained by the MD results and by the micro-
mechanical model with anisotropic and isotropic elastic formulations for Cu Σ41(540), Σ5(210),
Σ17(410) [001] STGB with L = 20 nm at 0 K

|ΔΣ6| (MPa) for L = 20 nm Σ41(540) Σ5(210) Σ17(410)

Atomistic simulations (0 K) 60 244 641
Present model (anisotropic) 78 368 624
Present model (isotropic) 132 309 296

In this case, the theoretical hN value is now positive and is given by [1]

hN
<100> =

aL

2
cos

(
θ

2

)
. (49)

Using Eq. (47) (elastic anisotropy), we obtain |ΔΣ6| = 322 MPa, which represents a
relative error of ∼7 %.

It looks clear that the large discrepancies sometimes observed between the atom-
istic results and the model with the isotropic elastic assumption are mainly due to a
poor estimate of the effective elastic shear modulus and the strains in both crystals.

Bicrystal size effect is observed in atomistic results on shear stress drop magnitude
for Σ41(540), Σ5(210), Σ17(410). The results of the micromechanical model for
L = 20 nm are given in Table 4 (for both isotropic and anisotropic formulations).
Overall, the bicrystal size effect is well reproduced for both STGB in the case, where
anisotropic elasticity is accounted for, especially for Σ41(540) and Σ17(410). Even
though the micromechanical approach supposes mean strain and stress fields in both
crystals (no intracrystalline shear stress fluctuations along the normal axis (x2) to
the GB plane), it is found that the bicrystal size effect (characterized by the internal

length scale L) on the shear stress drop magnitude scales with
hN

L
.

Here, hN is fixed for a given STGB because it is linked to the lattice para-
meter aL in Eq. (44). Following Eq. (47) and the fact that the terms Ceff

62 [ε2] +

Ceff
64 [ε4] + Ceff

66 [ε6] are not length scale dependent, the stress drop magnitude ratio
|ΔΣ6|L=12.2nm

|ΔΣ6|L=20nm
=

20

12.2
∼ 1.64 is in good agreement with the one obtained by

atomistic simulations for Σ41(540), Σ5(210) and Σ17(410) which are respectively
1.67, 1.71 and 1.68 from Tables 3 and 4.

5 Conclusions

A new micromechanics-based model was investigated to describe shear-coupled GB
migration in bicrystals. Both MD simulations (at 0 and 500 K) and a micromechan-
ical model assuming Frank-Bilby GB dislocations were applied to three Cu [001]
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STGB: Σ41(540) (θ = 77.32◦), Σ5(210) (θ = 53.13◦), Σ17(410) (θ = 28.07◦).
The critical shear stresses for shear-coupled GB migration can be obtained by MD
simulations. The role of Cu elastic anisotropy on the stick-slip features of shear-
coupled migration has been observed on the shear stress-strain curves. These ones
have been analyzed in the light of the micromechanical model. In this paper, both
formulations including heterogeneous and homogeneous elasticity have been devel-
oped. It has been shown that the elastic shear moduli obtained by MD simulations
are captured by the micromechanics-based model when heterogeneous elasticity
is accounted for. Furthermore, the trends regarding shear stress drops during first
shear-coupling GB migration event at 0 K and 500 K are well described by the
micromechanical approach especially when anisotropic elasticity is considered in
the formulation. The model may also be extended to various strain rates and tem-
peratures assuming the shear-coupling modes can be easily identified by atomistic
simulations. Interestingly, for very low velocities up to 5 m/s, the shear stress drop is
not very sensitive to shear rates [11]. Advanced atomistic methods dedicated to the
kinetics of shear-coupled migration should be developed to improve the constitutive
kinetics law at finite temperatures for shear-coupled GB migration. It could also be
interesting to compare/predict the experimental results although overall stress/strain
curves are seldom reported. As some perspective, the present constitutive and compu-
tational framework developed for bi-crystals with shear-coupled GB migration will
be applied to study stress-induced twin boundary migration and will be incorporated
in polycrystalline continuum models.
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Buckling of Nonlinearly Elastic Plates
with Microstructure

Svyatoslav Derezin

Abstract In the framework of the general nonlinear plate theory we consider a
buckling problem for an elastic plate with incompatible plane strains generated by
continuous distributions of edge dislocations and wedge disclinations as well as
other sources of residual stress (non-elastic growth or plasticity). In contrast to the
Föppl-von Kármán model the plane strains are not supposed to be small. To explore
buckling transition of such kind of structures, the problem is reduced to a system of
nonlinear partial differential equations with respect to the transverse deflection of the
plate and the embedded metrics coefficients, which naturally leads to the non-trivial
plate shapes that are seen even in the absence of any external forces. In the case
of very thin plate (membrane) that doesn’t resist bending we present several exact
solutions for the axially-symmetric domains.

1 Introduction

The problem of plate buckling due to the presence of single dislocations of different
types dates back to the work of Eshelby and Stroh [1]. Their study was continued in
[2], with a single wedge disclination (removed or inserted sector in the terminology
of [2]) being considered.

Later on Seung and Nelson [3] published a milestone paper on defects in crys-
talline membranes, where they generalized the continuum theory of dislocations to
include buckling transition and solved exactly the disclination problem in the inex-
tensional limit (Fig. 1). In order to do so, they used the Föppl-von Kármán plate
model [4, 5] as was originally proposed in [1]. The work of Seung and Nelson is
becoming more and more important in the contemporary graphene era.
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Fig. 1 Buckling of a graphite
membrane with a single
positive disclination

The question if it really makes sense to include torsional and couple-stress com-
ponents in the equilibrium equations as in [6–9] is still open. In this chapter we
deal only with the geometrical side of the problem, assuming that the equilibrium
equations are satisfied identically, which means the complete relaxation of stresses
(zero-stress in the classical setting or some special stress states in the framework of
more advanced theory [6–9]).

A rigorous mathematical analysis of the Föppl-von Kármán plates containing
incompatible strains was performed in [10]. An application of residual stresses in
the Föppl-von Kármán plate to the problem of morphogenesis and biological growth
was initiated in [11]. In [12] the Föppl-von Kármán model was applied to study
fingerprint patterns as the result of a buckling instability in the basal cell layer of the
fetal epidermis.

For modern applications of controllable buckling to thin-film electronics and
residual stress measurement, see [13–16]. The strain-induced effects in the electronic
structure of graphene are of great importance for the strain engineering. The buckling
mechanism has been expected to be a new way to fabricate microscale devices or
operate microstuctures.

The chapter is organized as follows. In Sect. 2 we present a planar nonlinear
continuum theory of dislocations and disclinations following [17, 18]. In Sect. 3 we
explain the buckling process in a nonlinear plate. In general, the problem can be
reduced to a system of nonlinear partial differential equations with respect to the
transverse deflection of the plate and the embedded metrics coefficients. In Sect. 4
we find explicitly the buckled form of nonlinear membrane with distributed edge
dislocations using for this purpose the incompatibility conditions of the first order. In
Sect. 5 we discuss in details the problem related to buckling of a membrane containing
distributed wedge disclinations, which leads to the Monge-Ampère equation with a
non-trivial right hand side. In Sect. 6 we draw some conclusions and give perspectives
for the future work.

In the whole chapter we employ a version of tensor analysis used, for example, in
[19, 20], where the first index always indicates differentiation, that allows to perform
lengthy calculations.
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2 Planar Nonlinear Continuum Theory of Dislocations
and Disclinations

The mathematical theory of dislocations appeared for the first time in the work of
Volterra [21]. He analyzed the behavior of linear elasticity solutions in multiply
connected domains.

The continuum theory of translational dislocations was initiated mainly by the
works of Kondo [22], Bilby et al. [23], and Kröner [24]. It is based on the notion of
the elastic body as a differential-geometric manifold with definite properties. Modern
expositions on continuum theory of dislocations in the framework of multiplicative
elastoplasticity can be found in [25–27].

Later on [20, 28] there appeared the continuum theory of disclinations (rotational
dislocations). Continuous distribution of disclinations in 3D is hampered by the fact
of non-commutativity of finite rotations. In [29] continuum theory of disclinations
was applied to model phase transformations.

Let ω be a 2D domain, r and R be the planar position vectors in the reference
and actual configurations respectively, F = ∇R = rαRα be the planar deforma-
tion gradient (distortion tensor). ∇ = rα(∂/∂qα) is the two-dimensional gradient
operator with respect to some curvilinear coordinates q1,q2 in the reference config-
uration. Here and below the Greek indices take the values 1, 2. Consider the problem
of determining the position R(r) by a given smooth and single valued field of F. In
a simply connected domain the solution may be written in terms of line integrals

R(M) =

M∫

M0

dr · F + R(M0). (1)

The integral in (1) does not depend on the path of integration connecting an initial
point M0 with a final point M iff the following compatibility condition (of the first
order) is fulfilled

∇ · (e · F) = 0. (2)

Here, e = eαβrαrβ is the 2D permutation tensor.
In the case of multiply connected domain (Fig. 2) the position vector in (1) is

determined, in general, not uniquely, which means that dislocations of translational
type can exist in the body, each of these is characterized by the Burgers vector

bN =

∮

γN

dr · F (N = 1, 2, . . . ,N0). (3)

Here, γN is a simple closed contour (the Burgers circuit) around the axis of theNth
dislocation. The total Burgers vector of a discrete set ofN0 dislocations is given by



68 S. Derezin

Fig. 2 Integration in a multiply connected domain

B =

∮

γ0

dr · F, (4)

where γ0 is a contour enclosing the lines of all N0 dislocations.
In the case of plane deformation, only edge dislocations are possible and their

axes are orthogonal to the plane q1q2.
The discrete set of dislocations can be replaced by a continuous one if we again

consider the domainω as simply connected and allow the space inside the dislocation
hole shrink to zero along with multiplication the number of dislocations. Then, the
integral in (4) may be transformed using the Green formula

B =

∫∫

ω0

∇ · (e · F)ds. (5)

Here,ω0 is a planar domain bounded by the contour γ0.
Relationship (5) makes it possible to introduce the density of continuously dis-

tributed edge dislocations α (a vectorial quantity in 2D).

B =

∫∫

ω0

αds. (6)

It means that the compatibility condition (2) is now replaced by

∇ · (e · F) = α. (7)

Equation (7) may be treated as the incompatibility condition of the first order. In
Cartesian coordinates q1 = x1, q2 = x2 it has, for example, the following form

∂F21

∂x1
−
∂F11

∂x2
= α1,

∂F22

∂x1
−
∂F12

∂x2
= α2. (8)



Buckling of Nonlinearly Elastic Plates with Microstructure 69

Let us now introduce the metric tensor of the deformed configuration G and the
connection coefficients Γν

αβ making use of the formulae

G = F · FT = Gαβrαrβ = Gαβrαrβ, (9)

∂Rβ

∂qα
= Γν

αβRν,
∂Rβ

∂qα
= −Γ

β
ανRν. (10)

From (9), (10) it follows that Ricci’s lemma holds

∇μGαβ =
∂Gαβ

∂qμ
− Γν

μαGνβ − Γν
μβGαν = 0. (11)

Here, ∇μ is the covariant derivative with respect to Γ ν
αβ.

The formulae (9)–(11) give us possibility to interprete the deformed configuration
of an elastic body with dislocations as a metrically connected space V2 [30].

Incompatibilty equation (7) now reads as

S· ·ν
αβ =

1
2
eαβα

ν, (12)

where S· ·ν
αβ is the torsion tensor of É. Cartan [31]

S· ·ν
αβ = Γν

[αβ] =
1
2
(Γν

αβ − Γν
βα). (13)

Let us consider the problem of specification the distortion F with the metric tensor
G and the dislocation density vectorα being given. We use for this purpose the polar
decomposition of F

F = U · A, U = G1/2, (14)

where U is the left stretch tensor (symmetric, positive-definite), A is the rotation
tensor (properly orthogonal).

Under conditions of plane deformation A has the following representation

A = (E − i3i3) cosχ+ e sinχ+ i3i3, (15)

where E denotes the 3D identity tensor. Equation (15) means that the fibers rotate
around the axis of i3, orthogonal to the plane q1q2, and χ is the angle of rotation.
According to [17, 18] χ satisfies the following equation
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∇χ = ψ, ψ = I
−1/2
2 [U · (∇ · e · U) − α0 · G] , (16)

I2 = detU =
1
2
(tr2G − trG2), α0 = αμrμ.

Once again, the solution to (16) may be given in terms of line integrals

χ(M) =

M∫

M0

ψ · dr + χ(M0). (17)

The integral in (17) does not depend on the path (in a simply connected domain) iff

∇ ·
[
I
−1/2
2 e · U · (∇ · e · U)

]
− ∇ ·

(
I
−1/2
2 e · G · α0

)
= 0. (18)

Geometrically (18) is equivalent to the demand that the Gaussian curvature R of the
Riemann-Cartan manifold V2 should vanish.

In a multiply connected domain (17) provides a single valued solution χ only up
to a cyclic integral defined by

θM =

∮

γM

ψ · dr. (19)

The quantity θM is called the Frank vector of Mth disclination. In the case of
plane deformation only wedge disclinations are possible.

The total Frank vector of a set ofM0 disclinations

Θ =

M0∑
M=1

∮

γM

ψ · dr =

∮

γ0

ψ · dr (20)

can be transformed into a surface integral in the case of continuous distribution of
these

Θ =

∫∫

ω0

∇ · (e ·ψ)dσ. (21)

Formula (21) serves as a definition for the density of wedge disclinations β

Θ =

∫∫

ω0

βdσ. (22)

The disclination density (a scalar quantity in 2D) satisfies the incompatibility
condition of the second order
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∇ · (e ·ψ) = β (23)

or

∇ ·
[
I
−1/2
2 e · U · (∇ · e · U)

]
− ∇ ·

(
I
−1/2
2 e · G · α0

)
= β. (24)

Geometrically (24) means that in the presence of distributed dislinations the Gaussian
curvature R is proportional to the density of wedge disclinations

R = I
−1/2
2 β. (25)

In the linear elasticity this fact is known [20, 32] in the form

i3 · Ink ε · i3 = ∇ · e · α+ β (26)

or in Cartesian coordinates

∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

− 2
∂2ε12

∂x1∂x2
=
∂α2

∂x1
−
∂α1

∂x2
+ β. (27)

Here, εαβ are the components of the linear strain tensor ε, Ink ε = ∇ × (∇ × ε)T
is the incompatibility tensor.

3 Escape in the Third Dimension

The stresses due to distributed defects in the case of plane deformation of nonlinearly
elastic material were found in [18]. The particular advantage of slender bodies makes
it possible to consider relaxation of stresses by the escape in the third dimension
(Fig. 3).

Here w is used to denote the transverse deflection of the plate. Then

R∗ = R +wi3, (28)

and

Fig. 3 Buckling of the plate
due to the relaxation process
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G∗ = ∇R∗ · ∇R∗T = ∇R · ∇RT + ∇w∇w = G + ∇w∇w. (29)

From (29) we have
G = G∗ − ∇w∇w. (30)

Substituting now (30) into (24) written in terms of the embedded metric coeffi-
cients G∗

αβ and the transverse deflection w we get a general form of geometrical
equation that determine the bent form of the plate. It is quite lengthy and will not be
presented here. In Sect. 5 a particular case of nonlinear membrane with distributed
wedge disclinations will be studied in details.

4 Buckling of a Flat Membrane with Distributed
Dislocations

The interesting fact about dislocations is that it is possible to solve problems directly
appealing to the first order incompatibility condition (7). Mathematically it means
that, when the disclination density vanishes, the incompatibility condition of the
first order (7) may be considered in a way as a first integral for the incompatibility
condition of the second order (24).

Let us introduce the polar coordinates r, ϕ and the corresponding vector basis
er, eϕ in the plane of a circular membrane of radius r0 and assume that the edge
dislocations are distributed with the density α0 = αϕ(r)eϕ, which contains only
the azimuthal component. The distortion tensor will be sought in the form that cor-
responds to the axisymmetric bending of the membrane [33]

F = F1(r)erer + F2(r)eϕeϕ + F3(r)eri3. (31)

The incompatibility condition of the first order (7) reads then as

dF2

dr
+
F2 − F1

r
= αϕ(r). (32)

This equation has the following solution (under the condition F · FT = E)

F1 = cosη(r), F2 = 1, F3 = − sinη(r), (33)

where η(r) satisfies
cosη(r) = 1 − rαϕ(r). (34)

Solution (33) describes the membrane buckling which results in the release of
residual stresses caused by dislocations. Although there is no displacement field with
the distributed dislocations in the general case, in this special case, when α · i3 = 0,
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Fig. 4 Buckling of a mem-
brane with distributed disclo-
cations

it is possible to find the normal membrane deflection w = R∗ · i3 from the relation
F∗ · i3 = ∇R∗ · i3. Using (33) and taking that w(r0) = 0, we get

w(r) =

∫r0

r

√
2ραϕ(ρ) − ρ2α2

ϕ(ρ)dρ. (35)

If αϕ(r) = α is a constant function, then (35) gives the following exact solution

w(r) =
1

2α

[
(1 − αr)

√
2αr− α2r2 − arcsin(αr− 1)

]
+ C, (36)

whereC corresponds to the boundary conditionw(r0) = 0. The buckled form of the
membrane is presented in Fig. 4.

5 Buckling of a Flat Membrane with Distributed
Disclinations

Substituting (30) into (24) and assuming α0 = 0 we obtain the following equation
in the membrane limit (when G equals the 2D identity tensor)

[w,w] =
[
1 − (∇w)2

] 3
2
β, (37)

[w,w] = (Δw)2 − tr(∇∇w · ∇∇w). (38)

Here, [w,w] is the Monge-Ampère operator. In Cartesian coordinates x1, x2 it has a
usual representation

[w,w] =
∂2w

∂x2
1

∂2w

∂x2
2

−
( ∂2w

∂x1∂x2

)2
.

In the case of the Föppl-von Kármán theory [3, 34] we have in the membrane
limit1

[w,w] = β. (39)

1 Seung and Nelson [3] deduced this equation in the inextensional limit.
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(a) (b)

Fig. 5 a Positive disclinations; b Negative disclinations

This type of equation according to the general theory [35] gives no direct way of
taking into account negative β.

Let the domain occupied by the plate, the distribution of wedge disclinations β
and the transverse deflection w be axially-symmetric. Then Eq. (37) admits exact
integration. We assume in addition the usual zero-slope condition in the center of the
membrane: w ′(r)|r=0 = 0.

Under such conditions for a constant positive β we obtain

w(r) =
1

β

√
β2r2 + 4β−

1√
2β

log

∣∣∣∣∣
√

2β+
√
β2r2 + 4β√

2β−
√
β2r2 + 4β

∣∣∣∣∣ − C, (40)

whereas for a constant negative β

w(r) =
1

β

√
β2r2 + 4β+

1√
−2β

arctan

√
β2r2 + 4β√

−2β
− C, (41)

the constantC in both cases is furnished by vanishingw(r) on the outer radius r = r0
of the plate.

For negative β the solution exists only in some part of the circular disk, where
r �

√
−4/β (Fig. 5). The reason lies deeply in the topology of surfaces with negative

Gaussian curvature. Being fixed on the outer radius the circular membrane can’t be
anymore a simply connected surface with everywhere negative Gaussian curvature
(like a saddle point surface).

6 Conclusions

In the present chapter we gave some theoretical background and presented a few
exact solutions for the buckling problem of a thin nonlinear plate containing contin-
uously distributed fields of edge dislocations and wedge disclinations. As a particular
application we have chosen the membrane model, because it allows to explore the
geometrical side of the problem. The difficult challenge that still remains is to find
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how non-axially-symmetric buckled regimes appear. The first attempt was done in
[36] for the case of a single negative disclination. In the case of the Föppl-von Kármán
plate model a rigorous stability analysis of the influence of distributed disclinations
was performed numerically in [37].

It is interesting also to take into account couple-stress and strain gradient effects.
For this purpose one can use, for example, a nonlinear model from [38], where a
simple version of strain gradient elasticity, proposed in [39], was combined with the
Föppl-von Kármán approach.
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Material Symmetry Group and Consistently
Reduced Constitutive Equations of the Elastic
Cosserat Continuum

Victor A. Eremeyev and Wojciech Pietraszkiewicz

Abstract We discuss the material symmetry group of the polar-elastic continuum
and related consistently simplified constitutive equations. Following [1] we extent the
definition of the group proposed by Eringen and Kafadar [2] by taking into account
the microstructure curvature tensor as well as different transformation properties of
polar and axial tensors. Our material symmetry group consists of ordered triples of
tensors which make the strain energy density of the polar-elastic continuum invariant
under change of the reference placement. Within the polar-elastic solids we discuss
the isotropic, hemitropic, orthotropic, transversely isotropic and cubic-symmetric
materials and give explicitly the consistently reduced representations of the strain
energy density.

1 Introduction

Mechanics of Micropolar Continua (also called Cosserat Continua or Polar Continua)
was first summarized in 1909 by the Cosserat brothers in their centurial book [3] but
without consideration of the constitutive equations. In the books by Eringen [4, 5],
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Nowacki [6] and Eremeyev et al. [7] various constitutive equations of the micropolar
elastic continuum were considered and widely discussed. The Cosserat continuum
model is frequently used for description of complex media such as composites,
foams, cellular solids, lattices, masonries, particle assemblies, magnetic rheological
fluids, liquid crystals, etc. For characterizations of material behaviour of micropolar
continua a great role plays the material symmetry group. The group for the non-
linear micropolar continuum was first characterized by Eringen and Kafadar [2].
They discussed all density-preserving deformations and all microrotations of the
reference placement of the micropolar continuum that cannot be experimentally
detected. In terms of members of the group definitions of the simple micropolar
solid and the simple micropolar fluid were given.

In [1] we extended the definition of the material symmetry group proposed by
Eringen and Kafadar [2]. We considered the polar-elastic material characterized by
the strain energy densityW and introduced the following modifications:

1. At each material point the strain energy density W, satisfying the principle of
material frame-indifference, depends explicitly not only on the natural Lagrangian
stretch E and wryness Γ tensors, but additionally upon the microstructure curva-
ture tensor B of the undeformed placement as the parametric tensor. The necessity
of using these three fields in W was shown in [8]. The tensor B appears natu-
rally during change of the reference placement. The case B �= 0 corresponds to
non-uniform distribution of directors in the reference placement. In [2] the simi-
lar strain measures were used in W, but the referential mass density ρκ and the
microinertia tensor Jκ were introduced as the parametric quantities inW.

2. Considering invariance properties of W we take into account that E is the polar
tensor, but Γ and B are the axial tensors which change their signs under inversion
transformation (mirror reflection) of 3D space. Eringen and Kafadar [2] did not
take into account that their Γ was the axial tensor. As a result, difference between
the orthogonal tensors and the proper orthogonal tensors considered as members
of our material symmetry group leads to additional essential reduction of W.

3. Our material symmetry group Gκ consists of the ordered triple of tensors: the
unimodular P, the orthogonal R, and the second-order L one. These tensors appear
from transformation of E, Γ and B under an arbitrary change of the reference
placements of the micropolar body. The transformation properties of B are quite
different from those of Jκ.

As a result of these modifications, the material symmetry group Gκ in [1] does not
coincide with the group introduced in [2].

In this paper we consider the consistently reduced constitutive equations of the
non-linear anisotropic elastic micropolar solids. In addition to [1] we present the
lists of additional joint invariants of W describing the orthotropic and transversely
isotropic micropolar solids.
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2 Basic Relations of the Cosserat Continuum

Let the micropolar body B deform in the three-dimensional (3D) Euclidean physical
space E which translation vector space isE. The finite deformation of the polar-elastic
body B can be described by the mapping from the reference (undeformed) placement
κ(B) = Bκ ⊂ E to the actual (deformed) placement, γ(B) = Bγ = χ(Bκ) ∈ E.

In κ(B) the position x ∈ E of the material particle X ∈ B is given by the vector
x ∈ E relative to the origin o ∈ E of an inertial frame (o, ia), where ia ∈ E,
a = 1, 2, 3, is a right-handed triple of orthonormal vectors. Orientation of X ∈ B in
E is fixed by the right-handed triple of orthonormal directors ha ∈ E.

In γ(B), χ = γ ◦ κ

−1, the position y ∈ Bκ of the same material particle X ∈ B

becomes defined by the vector y ∈ E taken here relative to the same origin o ∈ E. The
orientation of X becomes fixed by the right-handed triple of orthonormal directors
da ∈ E.

As a result, the finite deformation of the polar-elastic body is described by the
following two smooth mappings:

y = χ(x) = x + u(x), da = Q(x)ha, (1)

where u ∈ E is the translation vector and Q = da ⊗ ha ∈ Orth+ is the proper

orthogonal microrotation tensor, Q−1 = QT , det Q = +1. Two independent fields
u(x) and Q(x) describe translational and rotational degrees of freedom of the polar-
elastic continuum.

The natural Lagrangian relative stretch and wryness (or change of the microstruc-
ture orientation) tensors E and Γ are defined according to [8] as

E = QTF − I, Γ = −
1

2
E : (QTGrad Q). (2)

Here F = Grad y, det F > 0, is the classical deformation gradient tensor taken
relative to Bκ, I is the identity (metric) tensor of the space E, E = −I × I is the
3rd-order skew permutation tensor with × the vector product, while the double dot
product : of two 3rd-order tensors A, B represented in the base ha is defined as
A : B = AamnBmnb ha ⊗ hb.

The wryness tensor Γ can also be expressed in the equivalent forms, see [8],

Γ = −
1

2
ha × (ha QTGrad Q) = QTCF − B, (3)

where B and C are the respective microstructure curvature tensors of the polar con-
tinuum in the reference and actual placements defined by

B =
1

2
ha × Grad ha, C =

1

2
da × grad da, (4)

with the operator gradbeing taken in the deformed placement Bγ.
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In what follows B and C play an important role because they characterize the non-
uniform distribution of directors ha and da in the reference and actual placements,
respectively. In particular, if ha are constant in space then B = 0. Tensors B and C
can be used instead of ha and da as primary quantities. Indeed, ha and da can be
found from B and C, respectively, if some compatibility conditions in terms of B and
C are fulfilled. The compatibility condition for B follows from

bk,s = bs,k + bs × bk, (5)

where bk = Bik, and indices after comma denote differentiation with respect to

Cartesian coordinates in the reference placement x1, x2, x3, for example bs,k =
∂bs

∂xk
.

The compatibility condition for C follows from the relation similar to (5) but the
vectors ck = Cik are differentiated with respect to Cartesian coordinates in the
actual placement ys.

The material behaviour of the micropolar (hyper)elastic continuum is described
by the strain energy densityWκ per unit volume of the undeformed placement Bκ.
The density Wκ satisfying the principle of material frame-indifference takes the
reduced form

Wκ = Ŵκ(E, Γ; x, B). (6)

We call the polar-elastic continuum homogeneous if there exists a reference place-
ment Bκ such thatWκ does not depend on x and materially uniform ifWκ does not
depend on B or B ≡ 0.

Definition of the material symmetry group is based on invariance of Wκ under
change of the reference placement. Let us introduce another reference placement
κ∗(B) = B∗ ∈ E of B, in which the position x∗ ∈ B∗ ofX ∈ B is given by the vector
x∗ relative to the same origin o ∈ E and its orientation is fixed by three orthonormal
directors h∗a. Let P = Grad x∗, det P �= 0, be the deformation gradient tensor
transforming dx into dx∗, and R ∈ Orth be the orthogonal tensor transforming ha

into h∗a, so that
dx∗ = Pdx, h∗a = Rha. (7)

In what follows all fields associated with deformation relative to the reference place-
mentB∗ will be marked by the lower index ∗. We obtain the following transformation
relations, see [1] for details:

F = F∗P, Q = Q∗R, (8)

E∗ = QT∗ F∗ − I = REP−1 + RP−1 − I
= R(E + I)P−1 − I,

(9)

B∗ = (det R)RBP−1 − L, Γ∗ = (det R)RΓP−1 + L, (10)
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where

L = RZP−1, Z = −
1

2
E : (R Grad RT). (11)

Let us note that the form of elastic strain energy densityWκ of the micropolar body
at any particleX ∈ B depends upon the choice of the reference placement, in general.
Particularly important are sets of reference placements which leave unchanged the
form of the energy density. Transformations of the reference placement under which
the energy density remains unchanged we call here invariant transformations. Knowl-
edge of all such invariant transformations allows one to precisely define the fluid, the
solid, the liquid crystal or the subfluid as well as to introduce notions of isotropic or
anisotropic hyper-elastic continua. Similar approach is used in classical continuum
mechanics and in non-linear elasticity in [9, 10].

The elastic strain energy densityW∗ relative to the changed reference placement
B∗ depends in each point x∗ ∈ B� on the stretch tensor E∗, the wryness tensor Γ∗,
and also upon the structure curvature tensor B∗. This dependence may, in general,
be different than that of Wκ(E, Γ; x, B). However, the strain energy of any part of
the polar-elastic continuum should be conserved, so that

∫

Pκ

Wκ dvκ =

∫

P∗

W∗ dv∗ (12)

for any part of the micropolar body Pκ ⊂ Bκ corresponding to P∗ ⊂ B∗, because
the functions Wκ and W∗ describe the strain energy density of the same deformed
state of Pγ ⊂ Bγ = χ(Pκ) = χ∗(P∗), where χ∗ is the deformation function from
B∗ to Bγ.

Changing variables x∗ → x in the right-hand side integral of (12) we obtain

∫

P∗

W∗[E∗(x∗), Γ∗(x∗); x∗, B∗(x∗)]dv∗ =

∫

Pκ

| det P|W∗[E∗(x), Γ∗(x); x, B∗(x)]dvκ.

Thus, from (12) it follows thatW∗ and Wκ are related by

| det P|W∗(E∗, Γ∗; x, B∗) = Wκ(E, Γ; x, B).

Here E∗, Γ∗, and B∗ are expressed as in (9) and (10).
From physical reasons invariant transformations of the reference placement should

preserve the elementary volume of Bκ. Hence, the tensor P should belong to the
unimodular group for which | det P| = 1.

The assumption that the constitutive relation is insensitive to the change of the
reference placement means that the explicit forms of the strain energy densitiesWκ

andW∗ should coincide, that is
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Wκ(E, Γ; x, B) = Wκ(E∗, Γ∗; x, B∗).

In other words, this means that one may use the same function for the strain energy
density independently on the choice of Bκ or B∗, but with different expressions for
stretch and wryness tensors as well as for the microstructure curvature tensor. In
what follows we not always explicitly indicate that all the functions depend also on
the position vector x and W is taken relative to the undeformed placement Bκ.

Using (9) and (10) we obtain the following invariance requirement for W under
change of the reference placement:

W(E, Γ; B) = W[REP−1 + RP−1 − I, (det R)RΓP−1 + L; (det R)RBP−1 − L].
(13)

The relation (13) holds locally, i.e. it should be satisfied at any x and B, and the
tensors P, R, L are treated as independent here. As a result, the local invariance
of W under change of the reference placement is described by the triple of tensors
(P, R, L).

In what follows we use the following nomenclature:
Orth = {O : O−1 = OT , det O = ±1}—the group of orthogonal tensors;
Orth+ = {O : O ∈ Orth, det O = 1}—the group of rotation tensors;
Unim = {P : P ∈ E⊗ E, det P = ±1}—the unimodular group;
Lin = {L ∈ E⊗ E}—the linear group.
Here Orth and Unim are groups with regard to multiplication, and Lin is the

group with regard to addition.

3 Definition of the Material Symmetry Group

Following [1] and using (13) we give the following definition:

Definition 5.1. By the material symmetry group Gκ at x and B of the polar-elastic
continuum we call all sets of ordered triples of tensors

X = (P ∈ Unim, R ∈ Orth, L ∈ Lin), (14)

satisfying the relation

W(E, Γ; B) = W
[
REP−1 + RP−1 − I, (det R)RΓP−1 + L; (det R)RBP−1 − L

]

(15)
for any tensors E, Γ, B in domain of definition of the function W.

The set Gκ is the group relative to the group operation ◦ defined by

(P1, R1, L1) ◦ (P2, R2, L2) =
[
P1P2, R1R2, L1 + (det R1)R1L2P−1

1

]
.
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In terms of members of Gκ the polar-elastic fluids, solids, liquid crystals, and
subfluids can be conveniently defined, see [1] for details.

In what follows we restrict ourselves to the polar-elastic solids which are defined
as follows:

Definition 5.2. The micropolar elastic continuum is called the polar-elastic solid
at x and B if there exists a reference placement Bκ, called undistorted, such that the
material symmetry group relative to Bκ is given by

Gκ = Rκ ≡ {(P = O, O, 0) : O ∈ Oκ ⊂ Orth} . (16)

The group Rκ is fully described by a subgroup Oκ of orthogonal group Orth.
Invariance requirement of W leads here to finding the subgroup Oκ such that

W (E, Γ; B) = W
[
OEOT , (det O)OΓOT ; (det O)OBOT

]
, ∀ O ∈ Oκ. (17)

4 Consistently Simplified Forms of the Strain
Energy Density

Let us discuss consistently simplified forms ofW corresponding to some particular
cases of anisotropic micropolar solids. We begin from the isotropic material.

Definition 5.3. Isotropic material. The polar-elastic solid is called isotropic at x
and B if there exists a reference placement Bκ, called undistorted, such that the
material symmetry group relative to Bκ takes the form

Gκ = Sκ ≡ {(P = O, O, 0) : O ∈ Orth} . (18)

This definition means that the strain energy density of the polar-elastic isotropic
solid satisfies the relation

W (E, Γ; B) = W
[
OEOT , (det O)OΓOT ; (det O)OBOT

]
, ∀ O ∈ Orth.

Scalar-valued isotropic functions of a few 2nd-order tensors can be expressed by
the so-called representation theorems in terms of joint invariants of the tensorial argu-
ments, called also the integrity basis, see [11, 12]. Decomposing the non-symmetric
tensors E, Γ and B into their symmetric and skew parts,
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E = ES + EA, ES =
1

2
(E + ET), EA =

1

2
(E − ET),

Γ = ΓS + ΓA, ΓS =
1

2
(Γ + ΓT), ΓA =

1

2
(Γ − ΓT),

B = BS + BA, BS =
1

2
(B + BT), BA =

1

2
(B − BT),

we represent the strain energy density as the function of three symmetric and three
skew tensors,

W = W(ES, EA, ΓS, ΓA; BS, BA). (19)

The integrity basis for the proper orthogonal group is given by Spencer, see Table
1 in [11] or Table II in [12]. For the proper orthogonal group there is no difference
in transformations of the axial and polar tensors. It is not the case if one considers
transformations using the full orthogonal group. Since ΓS, ΓA, BS, BA are the axial
tensors, not all invariants listed in [11, 12] are absolute invariants under orthogonal
transformations, because some of them change sign under non-proper orthogonal
transformations. Such invariants are called relative invariants [12]. Examples of rel-
ative invariants are tr ΓS, tr Γ3

S, tr ESΓS, tr ESBS, etc. This gives us the following
property ofW:

W(ES, EA, ΓS, ΓA; BS, BA) = W(ES, EA, −ΓS, −ΓA; −BS, −BA). (20)

Using the representations given by Zheng [13], we present the lists of absolute
and relative polynomial invariants for the polar-elastic isotropic solid in Table 1. In
this case there are 119 invariants. They constitute the so-called irreducible integrity
basis. The strain energy density of the polar-elastic isotropic solid is given by any
scalar-valued function of these invariants satisfying (20).

Further simplifications are possible if we neglect the explicit dependence ofW on
B, that is if we assume thatW = W(E, Γ). The integrity basis of two non-symmentric
tensors under the orthogonal group contains 39 members, see Ramezani et al. [14],
where these invariants are listed and the corresponding constitutive equations are
proposed. Kafadar and Eringen [15] constructed the list of independent invariants.
Table 1 contains the invariants of [14] and of [15] as well as additional joint invariants
of E, Γ and B. According to [15], the isotropic scalar-valued functionW = W(E, Γ)
is expressible in terms of 15 invariants

W = W(I1, I2, . . . , I15), (21)

where Ik are given by

I1 = tr E, I2 = tr E2, I3 = tr E3,
I4 = tr EET , I5 = tr E2ET , I6 = tr E2ET2,
I7 = tr EΓ, I8 = tr E2Γ, I9 = tr EΓ2,
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Table 1 119 invariants in W in the case of polar-elastic isotropic solid

Agencies Invariants

ES tr ES tr E2
S tr E3

S

EA tr E2
A

ES , EA tr ESE2
A tr E2

SE2
A tr E2

SE2
AESEA

ΓS tr ΓS tr Γ2
S tr Γ3

S

ΓA tr Γ2
A

ΓS , ΓA tr ΓSΓ2
A tr Γ2

SΓ2
A tr Γ2

SΓ2
AΓSΓA

BS tr BS tr B2
S tr B3

S

BA tr B2
A

BS ,BA tr BSB2
A tr B2

SB2
A tr B2

SB2
ABSBA

ES ,ΓS tr ESΓS tr E2
SΓS tr ESΓ2

S tr E2
SΓ2

S

ES , BS tr ESBS tr E2
SBS tr ESB2

S tr E2
SB2

S

ΓS , BS tr ΓSBS tr Γ2
SBS tr ΓSB2

S tr Γ2
SB2

S

ES , ΓS , BS tr ESΓSBS

EA , ΓA tr EAΓA

EA , BA tr EABA

ΓA , BA tr ΓABA

EA ,ΓA , BA tr EAΓABA

ES , ΓA tr ESΓ2
A tr E2

SΓ2
A tr E2

SΓ2
AESΓA

ES , BA tr ESB2
A tr E2

SB2
A tr E2

SB2
AESBA

ΓS , EA tr ΓSE2
A tr Γ2

SE2
A tr Γ2

SE2
AΓSEA

ΓS , BA tr ΓSB2
A tr Γ2

SB2
A tr Γ2

SB2
AΓSBA

BS , ΓA tr BSΓ2
A tr B2

SΓ2
A tr E2

SΓ2
ABSΓA

BS , EA tr BSE2
A tr B2

SE2
A tr B2

SE2
ABSEA

ES , ΓS , EA tr ESΓSEA tr E2
SΓSEA tr ESΓ2

SEA tr ESE2
AΓSEA

ES , ΓS , ΓA tr ESΓSΓA tr E2
SΓSΓA tr ESΓ2

SΓA tr ESΓ2
AΓSΓA

ES , ΓS , BA tr ESΓSBA tr E2
SΓSBA tr ESΓ2

SBA tr ESB2
AΓSBA

ES , BS , EA tr ESBSEA tr E2
SBSEA tr ESB2

SEA tr ESE2
ABSEA

ES , BS , ΓA tr ESBSΓA tr E2
SBSΓA tr ESB2

SΓA tr ESΓ2
ABSΓA

ES , BS , BA tr ESBSBA tr E2
SBSBA tr ESB2

SBA tr ESB2
ABSBA

ΓS , BS , EA tr ΓSBSEA tr Γ2
SBSEA tr ΓSB2

SEA tr ΓSE2
ABSEA

ΓS , BS , ΓA tr ΓSBSΓA tr Γ2
SBSΓA tr ΓSB2

SΓA tr ΓSΓ2
ABSΓA

ΓS , BS , BA tr ΓSBSBA tr Γ2
SBSBA tr ΓSB2

SBA tr ΓSB2
ABSBA

ES , EA , ΓA tr ESEAΓA tr ESE2
AΓA tr ESEAΓ2

A

ES , EA , BA tr ESEABA tr ESE2
ABA tr ESEAB2

A

ES , ΓA , BA tr ESΓABA tr ESΓ2
ABA tr ESΓAB2

A

ΓS , EA , ΓA tr ΓSEAΓA tr ΓSE2
AΓA tr ΓSEAΓ2

A

ΓS , EA , BA tr ΓSEABA tr ΓSE2
ABA tr ΓSEAB2

A

ΓS , ΓA , BA tr ΓSΓABA tr ΓSΓ2
ABA tr ΓSΓAB2

A

BS , EA , ΓA tr BSEAΓA tr BSE2
AΓA tr BSEAΓ2

A

BS , EA , BA tr BSEABA tr BSE2
ABA tr BSEAB2

A

BS , ΓA , BA tr BSΓABA tr BSΓ2
ABA tr BSΓAB2

A
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I10 = tr Γ, I11 = tr Γ2, I12 = tr Γ3,
I13 = tr ΓΓT , I14 = tr Γ2ΓT , I15 = tr Γ2ΓT2.

Taking into account thatW = W(E, Γ) is an even function with respect to Γ, because
in our case the group Sκ contains the reflection −I,W becomes also the even function
with respect to some invariants,

W(I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13, I14, I15)

= W(I1, I2, I3, I4, I5, I6, −I7, −I8, I9, −I10, I11, −I12, I13, −I14, I15). (22)

ExpandingW into the Taylor series relative to E andΓ, and keeping up to quadratic
terms, we obtain the approximate polynomial representation of (22),

W = w0 + a1I1 + b1I
2
1 + b3I

2
10 + b4I4 + b5I2 + b7I11 + b8I13

+O(max(‖E‖3, ‖Γ‖3)), (23)

where w0, a1, b1, . . . ,b8 are material constants.
We may also consider the representation of W which takes the form of sum of

two scalar functions each depending on one strain measure,

W = W1(E) +W2(Γ). (24)

The form (24) was used for example in [14] in order to generalize the classical neo-
Hookean and Moony-Rivlin models to the polar-elastic solids. Using [16] we obtain
the following representation ofW:

W = W̃1(I1, . . . , I6) + W̃2(I10, . . . , I15), (25)

where W̃2 has the property

W̃2(I10, I11, I12, I13, I14, I15) = W̃2(−I10, I11, −I12, I13, −I14, I15). (26)

Expanding (25) with (26) into the Taylor series and keeping up to quadratic terms in
E and Γ,W takes the form (24) with

W1 = w0 + a1I1 + b1I
2
1 + b4I4 + b5I2, W2 = b3I

2
10 + b7I11 + b8I13.

If in the definition (18) we use only the proper orthogonal tensors then the resulting
constitutive equations correspond to the hemitropic polar-elastic continuum.

Definition 5.4. Hemitropic material. The polar-elastic solid is called hemitropic
at x and B if there exists a reference placement Bκ, called undistorted, such that the
material symmetry group relative to Bκ takes the form
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Gκ = S+
κ ≡ {

(P = O, O, 0) : O ∈ Orth+}
. (27)

The strain energy density of the hemitropic polar-elastic solid satisfies the relation

W (E, Γ; B) = W
(

OEOT , OΓOT ; OBOT
)

, ∀ O ∈ Orth+. (28)

The hemitropic polar-elastic solid is insensitive to the change of orientation of the
space. In the case of reduced strain energy densityW = W(E, Γ) the representation
ofW is given by (21), but the property (22) does not hold, in general. Obviously, the
polar-elastic isotropic solid is also hemitropic.

Definitions (18) and (28) are somewhat similar to the corresponding definition of
the isotropic polar-elastic solid proposed by Eringen and Kafadar [2]. However, the
properties (22) or (26) do not follow from the definition used in [2].

Definition 5.5. Orthotropic material. The polar-elastic solid is called orthotropic
at x and B if the material symmetry group for some reference placement Bκ takes
the form

Gκ = {(P = O, O, 0)} : O = {I, −I, 2e1 ⊗ e1 − I, 2e2 ⊗ e2 − I, 2e3 ⊗ e3 − I},
(29)

where O are orthogonal tensors performing the mirror reflections and rotations of
180◦ about three orthonormal vectors ek.

Obviously, the polar-elastic isotropic solid is also orthotropic. Thus, the invariants
given in Tables 1 enter the representation of the strain energy density of the polar-
elastic orthotropic solid. The additional list of 60 absolute and relative invariants for
the polar-elastic orthotropic solid, which are responsible for the orthotropic proper-
ties, is presented in Table 2. Therefore, the full list of Tables 1 and 2 contains 179
invariants.

Definition 5.6. Transversely isotropic solid. The polar-elastic solid is called trans-
versely isotropic at x and B with respect to a direction described by e if the material
symmetry group for some reference placement Bκ takes the form

Gκ = {(P = O, O, 0)} : O = {I, −I, O(ϕe), ∀ ϕ}, (30)

where O(ϕe) = (I − e ⊗ e) cosϕ + e ⊗ e + e × I sinϕ is the rotation tensor with
the rotation angle ϕ about the unit vector e.

167 invariants for the polar-elastic transversely isotropic solid are presented in
Tables 1 and 3.

Definition 5.7. Cubic symmetry. The polar-elastic solid is called cubic-symmetric
at x and B if the material symmetry group for some reference placement Bκ takes
the form
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Table 2 Additional 60 invariants in W in the case of polar-elastic orthotropic solid

Agencies Invariants

ES tr VES tr V2ES tr VE2
S tr V2E2

S

EA tr VE2
A tr V2E2

A tr V2E2
AVEA

ES , EA tr VESEA tr V2ESEA tr VE2
SEA

ΓS tr VΓS tr V2ΓS tr VΓ2
S tr V2Γ2

S

ΓA tr VΓ2
A tr V2Γ2

A tr V2Γ2
AVΓA

ΓS , ΓA tr VΓSΓA tr V2ΓSΓA tr VΓ2
SΓA

BS tr VBS tr V2BS tr VB2
S tr V2Γ2

S

BA tr VB2
A tr V2B2

A tr V2B2
AVBA

BS , BA tr VBSBA tr V2BSBA tr VB2
SBA

ES , ΓS tr VESΓS

ES , BS tr VESBS

ΓS , BS tr VΓSBS

EA , ΓA tr VEAΓA tr VE2
AΓA tr VEAΓ2

A

EA , BA tr VEABA tr VE2
ABA tr VEAB2

A

ΓA , BA tr VΓABA tr VΓ2
ABA tr VΓAB2

A

ES , ΓA tr VESΓA tr V2ESΓA tr VE2
SΓA

ES , BA tr VESBA tr V2ESBA tr VE2
SBA

ΓS , EA tr VΓSEA tr V2ΓSEA tr VΓ2
SBA

ΓS , BA tr VΓSBA tr V2ΓSBA tr VΓ2
SBA

BS , ΓA tr VBSΓA tr V2BSΓA tr VB2
SΓA

BS , EA tr VBSEA tr V2BSEA tr VB2
SEA

Table 3 Additional 48 invariants in W in the case of polar-elastic transverse isotropic solid

Agencies Invariants

ES e · ESe e · E2
Se

EA e · E2
Ae

ES , EA e · ESEAe e · E2
SEAe e · EAESE2

Ae

ΓS e · ΓSe e · Γ2
Se

ΓA e · Γ2
Ae

ΓS , ΓA e · ΓSΓAe e · Γ2
SΓAe e · ΓAΓSΓ2

Ae

BS e · BSe e · B2
Se

BA e · B2
Ae

BS , BA e · BSBAe e · B2
SBAe e · BABSB2

Ae

ES ,ΓS e · ESΓSe

ES , BS e · ESBSe

ΓS , BS e · ΓSBSe

EA , ΓA e · EAΓAe e · E2
AΓAe e · EAΓ2

Ae

EA , BA e · EABAe e · E2
ABAe e · EAB2

Ae

ΓA , BA e · ΓABAe e · Γ2
ABAe e · ΓAB2

Ae

ES ,ΓA e · ESΓAe e · E2
SΓAe e · ΓAESΓ2

Ae

ES , BA e · ESBAe e · E2
SBAe e · BAESB2

Ae,
ΓS , EA e · ΓSEAe e · Γ2

SEAe e · EAΓSE2
Ae

ΓS , BA e · ΓSBAe e · Γ2
SBAe e · BAΓSB2

Ae

BS , ΓA e · BSΓAe e · B2
SΓAe e · ΓABSΓ2

Ae

BS , EA e · ESEAe e · E2
SEAe e · EAESE2

Ae
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Gκ = {(P = O, O, 0)} : (31)

O = {I, −I, e1 ⊗ e1 ∓ e1 × I, e2 ⊗ e2 ∓ e2 × I, e3 ⊗ e3 ∓ e3 × I},

where O are orthogonal tensors performing the mirror reflections and rotations of
90◦ about three orthonormal vectors ek.

Here we have discussed the structure of the strain energy density of micropolar
elastic solids under finite deformations. Within the linear micropolar elasticity the
explicit structure of stiffness tensors was presented is [17] for 14 symmetry groups,
see [4].

5 Conclusions

We have discussed here the new definition of the material symmetry group Gκ of
the non-linear polar elastic continuum. The group Gκ consists of an ordered triple of
tensors which make the strain energy density invariant under change of the reference
placement. Reduced forms of the constitutive equations for the polar-elastic solids
are given for several particular cases of material symmetry groups.

Acknowledgments The first author was supported by the DFG grant No. AL 341/33-1 and by the
RFBR with the grant No. 12-01-00038.
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Nonlinear Localized Strain Waves in a 2D
Medium with Microstructure

Vladimir I. Erofeev, Vladimir V. Kazhaev and Igor S. Pavlov

Abstract A two-dimensional model of the crystalline (granular) medium is
considered that represents a square lattice consisting of elastically interacting
particles, which possess translational and rotational degrees of freedom. In the
long-wavelength approximation the partial derivatives equations have been derived
that describe propagation of longitudinal, transverse and rotational waves in such a
medium. In the field of low frequencies, when the rotational degree of freedom of
particles can be neglected, the obtained nonlinear three-mode system degenerates into
a two-mode system. Analytical dependencies of the velocities of elastic waves and the
nonlinearity coefficients on the sizes of particles and the parameters of interactions
between them have been found for both nonlinear models. Due to these dependencies,
numerical estimations of the nonlinearity coefficients are performed. The two-mode
system is shown to be reduced by the multi-scale method to Kadomtsev–Petviashvili
evolutionary equation for transverse deformation, which has a soliton solution. For
some crystals with a cubic symmetry it is found out, whether soliton is steady and
what kind of polarity it has.

1 Introduction

As a rule, adequate description of wave processes in a structurally-heterogeneous
material necessitates consideration of some scale levels, which interact with each
other on account of internal connections [1]. The following scales are usually
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distinguished: atomic or microlevel (characteristic sizes are angstroms and nanome-
ters), mesolevel (from 10−8–10−6 m), and macrolevel (larger than 10−6 m).

Mental breaking of a material into parts is restricted by some limit consisting in a
qualitative change of physical properties on a given scale level, i.e. in this case a size
effect [2, 3] arises. There are materials, where qualitative changes occur gradually, but
in crystal solids this limit is expressed rather accurately and takes place in the field of
nanometers. During studying of wave processes in materials, the size effects start to be
shown, when the characteristic spatial scale of effect (for example, length of an elastic
or electromagnetic wave) becomes comparable with the characteristic spatial scale
of a material—the size of grain, the lattice period, etc. In process of accumulation of
knowledge about microstructure of a material there arises a transition to new level of
knowledge—a theory is created that enables one to explain mechanical behavior of a
material from new positions. It is necessary to emphasize that in this case real values
of “microscales” of a medium can lie in the field of both microns and nanometers
or angstroms. However, with the viewpoint of methodology of theoretical research,
smallness of some scales in comparison with other ones is more important than their
absolute values.

In the mathematical simulation of microstructured media, two approaches can be
distinguished. The first approach consists in the passage from atomic-level models
to mesoscale models and is based on the laws of quantum theory. In this case, the
medium is considered as a discrete system of particles coupled by the interaction
forces determined from the first principles [4]. This approach allows one to under-
stand the nature of physical laws and to explain the origin of some properties having
no substantiation in the classical theory.

The second approach means passing from description of a medium on a macrolevel
to mesoscale models. The continuum-phenomenological method of modeling of
microstructured media is related to this approach. This method lies at the boundary
of mechanics and physics of solid-state. It consists in improvement of the classical
models of media by including qualitatively new characteristics inherent in actual
discrete structures [1, 5, 6]. At present, structurally-heterogeneous materials are fre-
quently simulated by the generalized micropolar theories of the Cosserat continuum
type [7–9]. These theories involve a large number of material constants, which have
to be determined experimentally. The relationships between these quantities and the
material structure are not always clear. Besides, there is an alternative—the method
of structural modeling, according to which a certain minimum volume is separated
in the bulk material—a representative structural element that is capable of reflecting
the main features of the macroscopic behavior of the given material [1, 10–12]. In
this method, a nanocrystalline material is represented by a regular or quasi-regular
lattice, with small-size bodies possessing internal degrees of freedom (rather than
material points) occupying the lattice sites. The role of these bodies can be played
by domains, grains, fullerenes, nanotubes, or clusters consisting of nanoparticles.
Advantages of the structural modeling consist in a clear relationship between the
structure of a medium and its macroparameters, as well as in possibility of purpose-
ful design of materials with the given properties, and shortcomings are absence of
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universality of modeling procedure and complexity of the accounting of nonlinear
and nonlocal effects of interparticle interactions.

Construction of mechanical and mathematical models is a base of research of the
dynamic (wave) phenomena [13] in both natural and artificial materials possessing
unique properties. It should be noted that an adequate description of this or that wave
process in the certain structured material necessitates a corresponding mathematical
model. For example, in [14] it was shown that in the field of high frequencies the
accounting of rotation motions of particles is necessary, in a low-frequency range it
is enough to use the equations of the classical theory of elasticity, which considers
particles as material points and does not take into account rotation of particles, and,
at last, in the intermediate area, the equations of the second-order gradient theory of
elasticity should be used, which do not contain rotations of particles in an explicit
form, but the sizes of particles influence on factors of these equations.

In this work, the nonlinear differential equations describing propagation of
longitudinal, transverse and rotational waves in the two-dimensional crystal (gran-
ular) medium are derived by the method of structural modeling. After that, in the
field of low frequencies, when the rotational wave does not propagate, the received
three-mode set of equations degenerates into the two-mode model corresponding to
the continuum “with the restricted rotation of particles” [5]. Due to application of
the method of structural modeling, analytical dependencies of the linear and non-
linear macroparameters of the medium on sizes of the particles and on parameters
of interactions between them have been established, and numerical estimates of the
nonlinearity parameters have been performed both for the complete (three-mode)
system and for the reduced (two-mode) model. Using the multi-scale method, the
two-mode system is reduced to Kadomtsev–Petviashvili evolutionary equation with
respect to transverse deformation. This equation has a soliton-type solution. Differ-
ent variants of behavior of a plane solitary wave are analyzed, depending on initial
conditions of Kadomtsev–Petviashvili equation and its factors that depend on the
microstructure parameters of the considered medium.

2 Discrete Model

We consider a square lattice (Fig. 1), the sites of which are occupied by
homogeneous round particles (granules) having mass M and diameter d. In the initial
state, the centers of mass of the particles are located in lattice sites, and the distance
between them is a. The lattice sites N are enumerated using the subscripts (i, j). Each
particle has three degrees of freedom: displacements uij(t) andwij(t) of the center
of mass along axes x and y, respectively, and the angle of rotationϕij(t) with respect
to an axis passing through the center of mass of a particle (Fig. 2). The kinetic energy
of the cell is as follows:

Ti,j =
M

2

(
u̇2
i,j + ẇ2

i,j

)
+
J

2
ϕ̇2
i,j, (1)
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Fig. 1 A square lattice con-
sisting of round particles

where J = Md2/8 = MR2 is the moment of inertia about the axis passing through

its mass center and R = d
/√

8 is the radius of gyration of the particle. The dots

denote derivatives with respect to time.
Since we consider only small deviations of particles from equilibrium positions,

their force and moment interactions can be described by a power potential. In the
harmonic approximation, the interaction potential is a quadratic form of the variables
of the system state. The potential energy per cell is equal to the potential energy of a
particle located at site N and interacting with its neighbors and can be described by
the following expression:

UN

(
Δnrq

k,ϕ,Δnrϕ
)

=

2∑
k,s=1

∑
n,r,l,m

∂2U

∂
(
Δnrqk

)
∂ (Δlmqs)

Δnrq
kΔlmq

s

+
∑
n,r,l,m

∂2U

∂ (Δnrϕ) ∂ (Δlmϕ)
ΔnrϕΔlmϕ

+

2∑
k=1

∑
n,r,l,m

∂2U

∂
(
Δnrqk

)
∂ (Δlmϕ)

Δnrq
k Δlmϕ

+

2∑
k=1

∑
n,r

∂2U

∂
(
Δnrqk

)
∂ϕ
Δnrq

kϕ+
∂2U

(∂ϕ)2
ϕ2.

Here
{
qkij

}
=

{
q1
ij, q

2
ij

}
= {uij, wij} are the components of the displacement

vector of the center of mass for a particle located at the site with subscripts (i, j),

Δnrq
k =

(
qki+nj+r − qkij

) /
a is the relative variation of interparticle distances,

Δnrϕ =
(
ϕi+nj+r −ϕij

) /
a is the relative variation of the particle orientation

angles, and n = ±1, r = ±1 are the subscripts determining the spatial positions of
the neighboring particles. The second-order derivatives of the potential energy are
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Fig. 2 Schematic for force interactions between the particles and kinematics

the constants of quasi-elastic interactions of the particles and represent the elements
of force matrices of the crystalline structure [15]. In phenomenological theories,
the material constants are assumed to be known from experiments. Their relation
to the geometric structure and interaction parameters in the crystal lattice is gener-
ally unclear. From the general energy considerations and the symmetry conditions,
only certain restrictions on their values [5] can be derived. The proposed structural
approach makes it possible to find explicit relationships between the force matrix
elements and lattice parameters.

For structural modeling of crystalline media, an equivalent force scheme is
introduced as a system of rods or springs that incorporates the transmission of forces
and moments between the structural elements [10–12] instead of a field description
of the interaction of the particles. For convenience, the round particles are replaced
by inscribed polygons, the shape of which repeats that of the cell. The springs sim-
ulating the interactions between particles are considered anchored at the vertices of
polygons.

In the present paper, a spring model is used for modeling. Displacements of the
granules are assumed to be small compared to the size of the elementary cell of the
lattice. The particle N is supposed to interact directly with eight nearest neighbors in
the lattice. The mass centers of four of them are on horizontal and vertical lines (these
particles are called particles of the first coordination sphere), while the mass centers
of the other four neighboring particles lie along diagonals (particles of the second
coordination sphere). The potential energy per cell of the square lattice produced by
its interaction with eight neighbors is described by

UN =
1

2

(
4∑
n=1

K0

2
D2

0n +

8∑
n=1

K1

2
D2

1n +

8∑
n=1

K2

2
D2

2n +

4∑
n=1

K3

2
D2

3n

)
, (2)



96 V. I. Erofeev et al.

where Dln (l = 0, 1, 2, 3) are extensions of arbitrary enumerated springs of four
types, which connect a particle with its neighbors. The central springs having rigid-
ityK0, together with the non-central springs with rigidityK1 define interaction forces
of extension/compression of the material, whereas the springs with K1 transmit also
moments to particle rotation. The diagonal springs with rigidityK2 characterize force
interactions of the granules of shear deformations in the material. The springs pos-
sessing rigidity K3 model interactions with the particles of the second coordination
sphere. For convenience of further calculations, we shall assume that points of con-
nection of springs K0 are located in the centers of the particles, whereas ones of the
springsK1,K2 andK3 lie in the vertices of a square that is entered in a circumference
and has a sideh = d/

√
2 (Fig. 2). Equation (2) contains additional factor 0.5 because

the potential energy of the spring is equal to the sum of the potential energies of two
particles, which are connected by this spring.

We shall calculate expressions for extensions of the springs,Dln, supposing that
quantities Δui ∼ Δwi ∼ Δuj ∼ Δwj ∼ aε, Δϕi ∼ Δϕj ∼ ε3/2, and Φi ∼

√
ε are

small, where Δui = ui,j−ui−1,j, Δuj = ui,j−ui,j−1,Φi = (ϕi−1,j +ϕi,j)
/

2

� π
/

2, and ε � 1 is a measure of cell deformation. After substitution of these

expressions into (2) we shall make up Lagrange function L = Ti,j − Ui,j for the
particle with number (i, j) to an accuracy of terms of order ε5/2. Thus, only geometri-
cal nonlinearity is taken into account in this model. Then, using Lagrange equations
of the second kind it is possible to obtain differential-different equations describing
dynamics of the considered lattice. However, the continuum approximation of the
proposed model will be considered in this chapter.

3 Continuum Approximation

For a comparison of the structural model of the medium with the well-known models
of a deformable solid, it is expedient to pass from the discrete description to a
continuous description. In the case of the long wavelength perturbations, for which

a
/
Λ � 1 (Λ is the characteristic spatial deformation scale), the discrete variables i

and j can be replaced by the continuous variables x = ia and y = ja, and the functions
uij (t),wij (t), ϕij (t) can be interpolated by the fields of displacements u(x, y, t),
w(x, y, t) and microrotations ϕ (x,y,t), respectively.

Depending on the order of approximation, it is possible to consider various
continuous models. In the first approximation the following Lagrangian of the con-
sidered medium with microstructure yields:

L =
M

2

(
u2
t +w2

t + R2ϕ2
t

)
−
M

2
[c2

1(u
2
x +w2

y) + c2
2(w

2
x + u2

y)

+ R2c2
3(ϕ

2
x +ϕ2

y) + s2(uxwy + uywx) + 2β2(wx − uy)ϕ+ 2β2ϕ2
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+ α1(u
3
x +w3

y) + α2(u
3
y +w3

x + u2
xuy + uxu

2
y +w2

xwy +wxw
2
y

− u2
xwx − u2

ywx − u2
xwy − uyw

2
y − uyw

2
x − uxw

2
y)

− 2α2(uxuy(wx +wy) +wxwy(ux + uy)) + α3(uxw
2
x + u2

ywy)

+ α4(wxwyϕ− uxuyϕ+
1

2
(w2
x − u2

x +w2
y − u2

y)ϕ) (3)

+ α5(uyϕ
2 +wxϕ

2) + α6(uxϕ
2 +wyϕ

2) + α7(uxwxϕ+ uywyϕ)].

Using Lagrangian (3), a set of nonlinear differential equations describing the
dynamic processes in a 2D crystalline medium with non-dense packing of the parti-
cles is derived in agreement with Hamilton’s variational principle:

utt = c2
1uxx + c2

2uyy + s2wxy − β2ϕy +
1

2

∂F1

∂x
+

1

2

∂F2

∂y
,

wtt = c2
2wxx + c2

1wyy + s2uxy + β2ϕx +
1

2

∂F3

∂x
+

1

2

∂F4

∂y
,

R2ϕtt = R2c2
3(ϕxx +ϕyy) + β2(uy −wx) − 2β2ϕ− F5. (4)

Here, the following notation has been introduced: ci (i = 1, 2, 3) are the velocities
of propagation of longitudinal, transverse, and rotational waves, respectively, s is the
coefficient of linear coupling between the longitudinal and transverse deformations
in a material, β is the dispersion parameter. Dependencies of the coefficients of
equations (4) on the force constants K0, K1, K2, and K3, the lattice period a and grain
size h = d/

√
2 (d is a diameter of the particle) have the following form [14]:

c2
1 =

a2

M

(
K0 + 2K1 +

2(a− h)2

(a− h)2 + h2
K2 + K3

)
,

c2
2 =

a2

M

(
2h2

(a− h)2 + h2
K2 + K3

)
, (5)

c2
3 =

a2h2

2MR2

(
K1 +

a2

(a− h)2 + h2
K2

)
,

s2 =
2a2

M
K3, β2 =

2a2

M

(
h2

(a− h)2 + h2
K2

)
.

Moreover, the nonlinearity functions contain in the right-hand sides of Eqs. (4):

F1 = 3α1u
2
x + α2(2uxuy + u2

y − 2uxwx − uxwy −w2
y) + α3w

2
x

− 2α2(uywx + uywy +wxwy) − α4(uyϕ+ uxϕ) + α6ϕ
2 + α7wxϕ,

F2 = α2(3u
2
y + u2

x + 2uxuy − 2uywx −w2
y −w2

x) + 2α3uywy



98 V. I. Erofeev et al.

− 2α2(uxwx + uxwy +wxwy) − α4(uxϕ+ uyϕ) + α5ϕ
2 + α7wyϕ,

F3 = α2(3w
2
x + 2wxwy +w2

y − u2
x − u2

y − 2uywx

− 2uxuy + uxwy) + 2α3uxwx + α4(wyϕ+wxϕ) + α5ϕ
2 + α7uxϕ,

F4 = 3α1w
2
y + α2(w

2
x + 2wxwy − u2

x − 2uywy − 2uxwy) + α3u
2
y (6)

− 2α2(uxuy + uxwx + uywx) + α4(wxϕ+wyϕ) + α6ϕ
2 + α7uyϕ,

F5 = α4

(
wxwy − uxuy +

1

2
(w2
x − u2

x +w2
y − u2

y)

)

+ 2α5(uyϕ+wxϕ) + 2α6(uxϕ+wyϕ) + α7(uxwx + uywy),

where αi (i = 1,...,7) are the nonlinearity coefficients depending on the microstruc-
ture parameters:

Mα1 =
K2

r4
a3(a− h)h2 +

K3

4(a− h)
a3, Mα2 =

K3

4(a− h)
a3,

Mα3 = K0a
2 + K1

a3

a− h
+
K2

r4
a3(a− h)(a2 − 2ah− h2) −

K3a
3

4(a− h)
,

Mα4 =
2a2hK3

a− h
, Mα5 =

K3

(a− h)2
a2h2, (7)

Mα6 = K1
ah2

a− h
+ K2

ah2

r4
(2h− a)(5ah− 2h2 − a2) +

K3

(a− h)2
a2h2,

Mα7 = K1
2a2h

a− h
+

2a3h

r4
K2

(
5h2 − 5ah+ a2

)
.

Here r =

√
(a− h)2 + h2 is the initial length of the springs with rigidityK2 (Fig. 2).

Equations (4) describe the dynamics of a crystalline (granular) medium
accounting for local interactions of the grain, and coincide with the dynamic equa-
tions of the 2D anisotropic Cosserat continuum consisting of centrally-symmetric
particles [5]. Such equations differ from the equations of the classical theory of
elasticity by the additional equation for the microrotation wave. In the continuous
approach, this equation follows from the conservation law of moment of momentum
(or angular momentum), if the internal moments of the particles of the medium are
introduced into the consideration.

4 Approximation of the Second-Order Gradient Theory
of Elasticity

Theoretical estimates [14] and experimental data [16] show that rotational waves
in solids exist in the high-frequency range (>109–1011 Hz), where it is quite diffi-
cult, with a technical point of view, to carry out acoustic experiments. Nevertheless,
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information about microstructure of the medium can be received even by means of
acoustic measurements on rather low frequencies (106–107 Hz), when the rotational
waves do not propagate in a medium. Therefore we will consider low-frequency
approximation of Eqs. (4), in which the microrotations of the particles of the medium
are not independent and are determined by a displacement field. The inter-relationship
between the microrotations ϕj and displacements u and w can be found from the
third Eq. (4) by the method of stepwise approximations. In the first approximation

ϕ (x, t) ≈ 1

2
(uy −wx) . (8)

This relationship between the rotations of the particles of the medium and a vorticity
of a displacement field, is a characteristic feature of the Cosserat pseudo-continuum
model (continuum with the restricted rotation of the particles) [5]. Taking account of
Eq. (8) leads to the “freezing” of the rotational degree of freedom. Thus, excitations,
which are caused by the microrotations, do not propagate in the medium, but they
influence on propagation of the longitudinal and transverse waves. In this case, the
Lagrange function L takes on the simpler form:

L =
M

2

(
u2
t +w2

t +
R2

4
(uyt −wxt)

2

)

−
M

2

[
c2

1(u
2
x +w2

y) + c2
2(w

2
x + u2

y) +
R2

4
c2

3((uxy −wxx)
2

+ (uyy −wxy)2) + s2(uxwy + uywx) −
β2

2
(wx − uy)2 (9)

+ α1(u
3
x +w3

y) − α2(u
2
xwy + uxw

2
y + 2uxuywy + 2uxwxwy)

+ γ1(u
3
y +w3

x − uyw
2
x − u2

ywx) + γ2(uxu
2
y +w2

xwy)

+ γ3uxw
2
x + γ4u

2
ywy + γ5(u

2
xuy +wxw

2
y − u2

xwx − uyw
2
y)

− (2γ5 + γ6)uxuywx − (2γ5 + γ7)uywxwy

]
.

Here

γ1 = α2 +
α5 − α4

4
, γ2 = α2 +

α6

4
−
α4

2
, γ3 = α3 +

α6

4
−
α7

2
, (10)

γ4 = α3 +
α6

4
+
α7

2
, γ5 = α2 −

α4

4
, γ6 =

1

2
(α6 − α7) , γ7 =

1

2
(α6 + α7) .

In contrast to the classical case, in Lagrangian (9), there are terms containing
second-order derivatives from the field of displacements. The terms uyt and wxt
take into account the contribution of the rotational motions to the kinetic energy,
and the terms with spatial derivatives uxy,wxx, etc. describe the contribution to the
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potential energy of the stresses provided by bending of the lattice. The nonlinear dif-
ferential equations describing the propagation and interaction of the longitudinal and
transverse waves in the nanocrystalline medium in the low-frequency approximation
have the form:

utt − c2
1uxx −

(
c2

2 −
β2

2

)
uyy −

(
s2 +

β2

2

)
wxy

=
R2

4

∂

∂y

[
∂2

∂t2
(uy −wx) − c2

3Δ (uy −wx)

]
+

1

2

∂H1

∂x
+

1

2

∂H2

∂y
, (11)

wtt −

(
c2

2 −
β2

2

)
wxx − c2

1wyy −

(
s2 +

β2

2

)
uxy

= −
R2

4

∂

∂x

[
∂2

∂t2
(uy −wx) − c2

3Δ (uy −wx)

]
+

1

2

∂H3

∂x
+

1

2

∂H4

∂y
.

Here, the symbol Δ means the 2D Laplacian Δ = ∂2/∂x2 + ∂2/∂y2,
H1, 2, 3, 4 are the nonlinearity functions:

H1 = 3α1u
2
x − 2α2

(
uxwy +

1

2
w2
y + uywy +wxwy

)

+ γ2u
2
y + γ3w

2
x + 2γ5(uxuy − uxwx) − (2γ5 + γ6)uywx,

H2 = −2α2uxwy + γ1(3u
2
y −w2

x − 2uywx) + 2γ2uxuy + 2γ4uywy

+ γ5(u
2
x −w2

y) − (2γ5 + γ6)uxwx − (2γ5 + γ7)wxwy,

H3 = −2α2uxwy + γ1(3w
2
x − u2

y − 2uywx) + 2γ2wxwy + 2γ3uxwx

+ γ5(w
2
y − u2

x) − (2γ5 + γ6)uxuy − (2γ5 + γ7)uywy,

H4 = 3α1w
2
y − 2α2

(
uxwy +

1

2
u2
x + uxuy + uxwx

)

+ γ2w
2
x + γ4u

2
y + 2γ5(wxwy − uywy) − (2γ5 + γ7)uywx.

Equations such as Eqs. (11) are usually called equations of the second-order
gradient theory of elasticity [17], as the terms with spatial fourth-order derivatives
take into account the coupled stresses arising at the translational displacements of the
particles. It should be noted that, in spite of absence of microrotations in Eqs. (11), the
coefficients of these equations changed because of influence of microstructure—in
the considered low-frequency approximation, the transverse wave velocity is dimin-
ished by quantity β2/2, and the parameter s2 increases by the same quantity.
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5 The Problem of Parametric Identification

The real-world problem of identification of the Cosserat continuum (see Eqs. (4)) is
still actual for a lot of heterogeneous materials that are suitable for application of
this model [18]. However, even in the simplest case of the elastic isotropic Cosserat
continuum, there are rather few reliable results, confirmed by different researchers,
concerning determination of model parameters. The further proposed procedure of
estimating of macroparameters of the medium, which is based on the method of
structural modeling, is intended for solving this problem.

Among velocities of propagation of translational waves in a square lattice
consisting of round particles there are three independent quantities—in accordance
with number of elasticity constants of the second order (C11, C12 and C44) in Lame
equations of the classical theory of elasticity for media with cubic symmetry [19]:

ρutt = C11uxx + C44uyy + (C12 + C44)wxy,

ρwtt = C44wxx + C11wyy + (C12 + C44)uxy.

From comparison of these equations with Eqs. (11), which factors depend on the
sizes of the particles, it is possible to receive the following relationships:

c2
1 =

C11

ρ
, c2

2 =
2C44 − C12

ρ
, s2 =

2C12

ρ
, β2 =

2(C44 − C12)

ρ
. (12)

It should be noted that the equality c2
2 = β2 + s2/2 follows both from (12) and from

(5). Taking into account that C11 − C12 = 2ρv2 [19], where ρ is the density of the
medium, v is the transverse wave velocity in the crystallographic direction 〈110〉

v2 = (2c2
1 − s2)/4, (13)

Equations (12) will be rewritten in the form [20]:

C11 = ρc2
1, C12 = ρ(c2

1 − 2v2), C44 = ρ(c2
1 + c2

2 − 2v2)/2. (14)

Formulas (14) show, how to determine effective moduli of elasticity of the nanocrys-
talline medium using acoustic measurements. Due to equations (12)–(14), it is pos-
sible to use freely any set of basis quantities: (c1, c2, s), (c1, c2, v) or (C11, C12,
C44). In particular, starting from known constants of elasticity of the second order,
we come to the following expressions of parameters of interparticle interactions:
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K1

a
=

1

2 + K

[
C11 − C12 − 2 (C44 − C12)

(
1

p
− 1

)2
]

, (15)

K2

a
= (C44 − C12)

(
1 +

(
1

p
− 1

)2
)

,
K3

a
= C12,

where K = K0/K1 is the relation between the central and noncentral interactions,
p = h/a = d/a

√
2 is the relative size of the particle.

Relations (5) depending on the values of microstructure parameters were
analyzed in details in [14] and chap. 3 of monograph [1]. As a result of the analysis,
using known experimental data ρ,C11,C12 andC44 (at normal temperature) [21], the
wave velocities c1,c2,c3, parametersβ and s, and also modeling parameters of power
interactions between particles are calculated for some cubic crystals. The calcula-
tions were carried out for K = 10 (the central interactions dominate) and d/a = 0.9.
In this work by means of equalities (15) we will estimate factors of nonlinearities
(7) (see Table 1) which dependencies on microstructure parameters K and p, and the
elasticity constants of the second order have the following appearance:

ρα1 =
1 − p

(1 − p)2 + p2
(C44 − C12) , ρα2 =

C12

4(1 − p)
,

ρα3 =
K(1 − p) + 1

(2 + K)(1 − p)

[
C11 − C12 − 2 (C44 − C12)

(1 − p)2

p2

]

+(C44 − C12)
(1 − p)(1 − 2p− p2)

((1 − p)2 + p2)p2
,

ρα4 =
2pC12

1 − p
, ρα5 =

p2C12

(1 − p)2
, (16)

ρα6 =
1

2 + K

[
(C11 − C12)

p2

1 − p
− 2 (C44 − C12) (1 − p)

]

+(C44 − C12)
(2p− 1)(5p− 2p2 − 1)

(1 − p)2 + p2
,

ρα7 =
2

2 + K

[
(C11 − C12)

p

1 − p
− 2 (C44 − C12)

1 − p

p

]

+2 (C44 − C12)

(
5p2 − 5p+ 1

)

p((1 − p)2 + p2)

From (16) it follows that, if p → 0, as shown in work [11], the Cauchy relation
C12 = C44 is valid and, as a result

α2 → C12

4ρ
, α3 → K + 1

(2 + K)ρ
(C11 − C12),
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Table 1 Structural parameters for crystals with cubic symmetry

Structural parameters Crystals
LiF NaF NaBr

Density (kg/m3) ρ 2600 2800 3200

Elasticity constants (109 N/m2) C11 113.00 97.00 32.55
C12 48.00 25.60 13.14
C44 63.00 28.00 13.26

Wave velocities (m/s) c1 6593 5890 3190
c2 5477 3295 2045
v 3536 3571 1741
c3 5659 2896 1092

Coefficient of linear coupling s 6076 4276 2866
between the longitudinal and
transverse deformations (m/s)

Dispersion parameter (m/s) β 3396 1309 274

Parameters of force interactions K0/a 46.01 58.19 16.11
between the particles (109 N/m2) K1/a 4.601 5.819 1.611

K2/a 19.897 3.183 0.159
K3/a 48.00 25.60 13.14

Nonlinearity coefficients in the α1 16.60 6.87 2.85
original model (106 m2/s2) α2 12.69 6.29 2.82

α3 −34.75 0.38 −4.91
α4 64.63 32.00 14.37
α5 56.65 28.01 12.58
α6 62.55 30.92 13.17
α7 0.90 6.49 1.73

Nonlinearity coefficients in the γ1 10.68 5.29 2.37
two-mode model (106 m2/s2) γ2 −3.98 −1.99 −1.07

γ3 −19.56 4.87 −2.49
γ4 −18.66 11.36 −0.76
γ5 −3.46 −1.71 −0.77
γ6 30.83 12.22 5.72
γ7 31.72 18.70 7.45

and all the other nonlinearity factors tend to zero. For p = 1/2 the Cauchy relation
is not valid and

α1 = (C44 − C12)/ρ, α2 = C12/2ρ, α3 = (C11 + 2C12 − 3C44)/ρ,

α4 = 2C12/ρ, α5 = C12/ρ,

α6 =
C11 + C12 − 2C44

2(2 + K)ρ
, α7 =

C11 + 3C12 − 4C44

2(2 + K)ρ
.
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Here α3 does not depend on the parameter of interparticle interactions K = K0/K1,
and any of nonlinearity coefficients does not tend to zero.

Numerical estimates of the nonlinearity factors presented in Table 1 show that
only parameters γ2 and γ5 are negative for all considered crystals, whereas factors
α3, γ3 and γ4 can be both positive and negative. In the three-mode model, parameter
α4 is the greatest for all considered materials, and parameter γ7 has maximal values
in the two-mode one. For the certain material γ7 exceeds the smallest absolute value
of a factor γi up to 11 times, and for parameters αi this ratio is greater—up to 72
times. Besides, some αi can even surpass a square of the longitudinal wave velocity,
c2

1, that proves importance of the accounting of the nonlinear terms.

6 Kadomtsev–Petviashvili Evolutionary Equation
for the Two-Mode Model

We shall consider propagation of localized strain waves in a medium, depending on
parameters of its microstructure. For this purpose, we introduce new coordinates and
time ξ = x − vt, η =

√
εy, τ = εt; u =

√
εu, w = w in Eqs. (11). So, these

equations take on the form:

√
εv2 ∂

2u

∂ξ2
− 2ε

√
εv
∂2u

∂ξ∂τ
−

√
εc2

1
∂2u

∂ξ2
− (c2

2 −
β2

2
)ε

√
ε
∂2u

∂η2
− (s2 +

β2

2
)
∂2w

∂ξ∂η

√
ε

=
R2

4

√
ε
∂

∂η

[
v2 ∂

2

∂ξ2

(
ε
∂u

∂η
−
∂w

∂ξ

)
− 2εv

∂2

∂ξ∂τ

(
ε
∂u

∂η
−
∂w

∂ξ

)

− c2
3

(
∂2

∂ξ2
+ ε

∂2

∂η2

)(√
ε
∂u

∂η
−
∂w

∂ξ

)]
+

1

2

∂H1

∂ξ
+

1

2

∂H2

∂η
, (17)

v2 ∂
2w

∂ξ2
− 2εv

∂2w

∂ξ∂τ
−

(
c2

2 −
β2

2

)
∂2w

∂ξ2
− εc2

1
∂2w

∂η2
−

(
s2 +

β2

2

)
ε
∂2u

∂ξ∂η

= −
R2

4

∂

∂ξ

[
v2 ∂

2

∂ξ2

(
ε
∂u

∂η
−
∂w

∂ξ

)
− 2εv

(
ε
∂u

∂η
−
∂w

∂ξ

)

− c2
3

(
∂2

∂ξ2
+ ε

∂2

∂η2

)(√
ε
∂u

∂η
−
∂w

∂ξ

)]
+

1

2

∂H3

∂ξ
+

1

2

∂H4

∂η
.

As various terms of Eqs. (17) have different orders of smallness, we shall consider
some approximations step-by-step.

Approximation of ε0-order has the form:

(
v2 −

(
c2

2 −
β2

2

))
∂2w

∂ξ2
= 0, hence,

v2 = c2
2 −

β2

2
. (18)
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Approximation of
√
ε-order: (v2 − c2

1)
∂2u

∂ξ2
−

(
s2 +

β2

2

)
∂2w

∂ξ∂η
= 0, therefore,

∂u

∂ξ
=
s2 + β2/2

v2 − c2
1

∂w

∂η
. (19)

Approximation of ε-order:

− 2εv
∂2w

∂ξ∂τ
− εc2

1
∂2w

∂η2
−

(
s2 +

β2

2

)
ε
∂2u

∂ξ∂η

= −
R2

4

∂

∂ξ

[
v2 ∂

2

∂ξ2

(
ε
∂u

∂η

)
− 2εv

(
−
∂w

∂ξ

)

− c2
3

(
ε
∂2

∂η2

)(
−
∂w

∂ξ

)]
+ 3γ1

∂w

∂ξ

∂2w

∂ξ2
. (20)

After entering the designation
∂w

∂ξ
= U in Eq. (20) and taking into account

expressions (18) and (19), Eq. (20) is reduced to the following equation:

2vUξτ + q1(U
2)ξξ +

R2

4
q2Uξξξξ + q3Uηη = 0, (21)

where

3γ1

2ε
= q1,

2c2
2 − 2c2

3 − β2

2ε
= q2, c2

1 +
(2s2 + β2)2

4(c2
2 − c2

1) − 2β2
= q3. (22)

We will introduce designations: U/U0 = W, ξ/ξ0 = X, τ/τ0 = T , η/η0 = Y.
If to put U0 = 1 and η0 = ξ0, then W = U and, in terms of new variables, Eq. (22)
yields:

2
∂2U

∂X∂T
+
q1

v

τ0

ξ0

∂2(U2)

∂X2
+
R2

4v
q2
τ0

ξ3
0

∂4U

∂X4
+ q3

τ0

vξ0

∂2U

∂Y2
= 0. (23)

We choose scales ξ0 and τ0 so, that the last coefficient in Eq. (23) would be equal
to 1:

τ0

ξ0
=
v

q3
.

If to take in this relation ξ0 = R/2, then Eq. (23) is transformed into well-known
Kadomtsev–Petviashvili equation
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Fig. 3 The plane localized
strain wave [22]

2
∂2U

∂X∂T
+
q1

q3

∂2(U2)

∂X2
+
q2

q3

∂4U

∂X4
+
∂2U

∂Y2
= 0. (24)

This equation has a solution in the form of a plane solitary strain wave (soliton)
(Fig. 3):

U(θ) = Asch−2(θ/Δ), (25)

where θ = X − kY − V T is the wave phase. The amplitude of soliton, As, and its
width Δ are determined by relations:

As =

∣∣∣∣∣
3q3(k

2 − 2V)

2q1

∣∣∣∣∣ , (26)

Δ = 2

√∣∣∣∣
q2

q3(k2 − 2V)

∣∣∣∣.

It should be noted that product

AsΔ
2 =

∣∣∣∣
6q2

q1

∣∣∣∣ =

∣∣∣∣∣
2c2

2 − 2c2
3 − β2

γ1

∣∣∣∣∣

is the constant for each material.
The plane solitary wave (25) is known to be stable, if q2/q3 > 0, and it is

unstable with respect to transverse perturbations, when q2/q3 < 0 [22]. In this case,
Kadomtsev–Petviashvili equation has an other precise solution [23]:

U(X, Y, T) =
6q2

q1

∂2

∂X2
ln [1 + exp(2qθ) + exp(2p(θ+ψ) (27)

+ A exp((q+ p)θ+ pψ) cos kY] .

Here p and q are integration constants,
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Fig. 4 The plane wave modulated in the transverse direction [22]

θ = X− (1 +
2q2

q3
q2)T , ψ = −4p

q2

q3
(p2 − q2)T ,

A =
4
√
pq

p+ q
, k = (q2 − p2)

√
−3q2

q3
.

Formula (27) describes a periodic chain of two-dimensional solitary strain waves
(Fig. 4). If q2/q3 < 0, i.e. the condition of soliton instability with respect to trans-
verse perturbations takes place, the plane solitary wave (25) plotted in Fig. 3 will
be transformed into Eq. (27). Polarity of solitons (25) and (27) depends on sign of
expression q1/q2. The solitons have a positive polarity (this case is represented in
Figs. 3 and 4), when q1/q2 > 0, and their polarity is negative, if q1/q2 < 0.

Let us analyze obtained from (27) dependencies of coefficients q1/q2 and q2/q3
on the macroparameters of the medium:

q1

q2
=

3γ1

2c2
2 − 2c2

3 − β2
, (28)

q2

q3
=

(2c2
2 − 2c2

3 − β2)(2c2
2 − 2c2

1 − β2)

ε(2c2
1(2c

2
2 − β2) − 4c4

1 + (2s2 + β2)2)
. (29)

From (10) and (7) follows that

γ1 = α2 +
α5 − α4

4
=
K3

M

(
a3

4(a− h)
+

a2h2

4(a− h)2
−

a2h

2(a− h)

)

=
K3a

2(a2 − 3ah+ 3h2)

4M(a− h)2
> 0.

Thus, q1/q2 > 0 for c2
2 > c

2
3 + β2/2, and q1/q2 < 0 for c2

2 < c
2
3 + β2/2.
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Table 2 Existence of stable plane solitons of deformations and their polarity in some cubic crystals

Crystal LiF NaF NaBr

Sign of q2/q3 + + −

Sign of q1/q2 − + +

Stable solitons of plane deformation and their polarity no

Fig. 5 A 2D soliton without
plane front (T= 0)

Fig. 6 Spreading of the 2D
soliton (T= 5)

According to the data presented in Table 1, we will determine signs of
expressions q1/q2 and q2/q3. Existence and polarity of steady plane solitons of
deformations for the media with such parameters as for cubic crystals of LiF, NaF,
and NaBr depend on signs of these expressions and are presented in Table 2.

If to take as an initial condition for Kadomtsev–Petviashvili equation a 2D soliton
without plane front (Fig. 5), i.e. perturbation in the form

U0(X, Y) = 12sech2
(
X− 32

4

)
sech(Y − 8), (30)

and to carry out numerical simulation by means of the semi-implicit pseudo-spectral
scheme [24] with parameters: 256×64 is dimension of a grid,ΔX = 0.25 is a length
of a step along X-axis, ΔY = 0.25 is a length of a step along Y -axis, ΔT = 0.003
is a length of a step along T -axis, then an other behavior of the solitary wave will
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be observed. In fact, the peak of excitations (30) moves forward (along X-axis) and
simultaneously spreads along Y -axis. Eventually, the amplitude of excitation grows
till a certain value (A = 7.1) near the boundaries, spreading aside and moving
forward, that leads to appearance of the crosswise structures (Fig. 6).

7 Conclusions

The nonlinear mathematical model of the two-dimensional crystalline (granular)
medium with a non-dense packing of the particles possessing two translational and
one rotational degrees of freedom, has been elaborated in this work. In the field of low
frequencies the obtained set of equations is reduced to the two-mode set, linear parts
of which equations coincide with a two-dimensional analog of the classical Lame
equations for media with cubic symmetry. But even in this case, the effect of the
medium microstructure is still left in the form of the relationship between the macro-
scopic characteristic parameters of the medium and the micromodel parameters.

Analytical dependencies of the elastic and rotational wave velocities and the non-
linearity factors on the sizes of particles and the parameters of interactions between
them have been found. The velocities of elastic waves along the various crystallo-
graphic directions can be measured experimentally without any difficulties, but it is
rather complicated or even, sometimes, impossible to determine from experiments
the rotational wave velocity, the threshold frequency of this wave and the factors
of nonlinear interactions between the waves of various types. For this reason, the
estimates of these quantities can be very useful that are obtained by the following
way. First, due to obtained expressions (5) for the experimentally measured veloc-
ities of elastic waves depending on the microstructure parameters of the material,
inverse relationships (15) are derived, and then they are used for calculation of other
macroparameters of the medium. In this work, by such a way the factors of nonlinear
interactions of complete three-mode set (7) and two-mode model of the medium
with the restricted rotation of particles (10) are calculated. Some of these factors are
shown to be negative, whereas the other ones can exceed a square of the longitudinal
wave velocity.

In its turn, the two-mode system is reduced by the multi-scale method to
Kadomtsev–Petviashvili evolutionary equation with respect to shear deformation,
which has a solution in the form of plane soliton. Due to the method of structural
modeling used in this work, it is shown that in the crystal medium with parameters as
for NaBr, the plane soliton is unstable with respect to two-dimensional perturbations,
in NaF-crystal the soliton has a positive polarity, and in LiF-crystal it has a negative
polarity.

Acknowledgments The research was carried out under the financial support of the RFBR (grants
Nr. 12-08-90032-Bel-a, 10-08-01108-a).



110 V. I. Erofeev et al.

References

1. Potapov, A.I. (ed.): Introduction to Micro- and Nanomechanics: Mathematical Models and
Methods. Nizhny Novgorod Technical State University (2010) (in Russian)

2. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements.
Nanotechnology 11(3), 139–147 (2000)

3. Lauke, B.: On the effect of particle size on fracture toughness of polymer composites. Compos.
Sci. Technol. 68, 3365–3372 (2008)

4. Maksimov, E.G., Zinenko, V.I., Zamkova, N.G.: Ab initio calculations of the physical properties
of ionic crystals. Phys. Usp. 47, 1075–1099 (2004)

5. Eringen, A.C.: Microcontinuum Field Theories-1: Foundation and Solids. Springer, New York
(1999)

6. Lisina, S.A., Potapov, A.I.: Generalized continuum models in nanomechanics. Doklady Phys.
53(5), 275–277 (2008)

7. Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Librairie Scientifique A, Hermann
et Fils, Paris (1909, Reprint, 2009)

8. Maugin, G.A., Metrikine, A.V. (eds.): Mechanics of Generalized Continua: One Hundred Years
After the Cosserats. Springer, New York (2010)

9. Altenbach, H., Maugin, G.A., Erofeev, V.I. (eds.): Mechanics of Generalized Continua.
Springer, Berlin, Heidelberg (2011)

10. Li, C., Chou, T.-W.: A structural mechanics approach for the analysis of carbon nanotubes. Int.
J. Solids Struct. 40, 2487–2499 (2003)

11. Pavlov, I.S., Potapov, A.I., Maugin, G.A.: A 2D granular medium with rotating particles. Int.
J. Solids Struct. 43(20), 6194–6207 (2006)

12. Pavlov, I.S., Potapov, A.I.: Structural models in mechanics of nanocrystalline media. Doklady
Phys. 53(7), 408–412 (2008)

13. Erofeyev, V.I.: Wave Processes in Solids with Microstructure. World Scientific Publishing,
New Jersey (2003)

14. Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Acoustic identification of nanocrystalline media. J.
Sound Vib. 322(3), 564–580 (2009)

15. Born, M., Kun, H.: Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford (1954)
16. Gross, E., Korshunov, A.: Rotational oscillations of molecules in a crystal lattice of organic

substances and scattering spectra. J. Exp. Theor. Phys. 16(1), 53–59 (1946) (in Russian)
17. Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics. Blackie Academic and Pro-

fessional, London (1995)
18. Pelevin, A., Lauke, B., Heinrich, G., Svistkov, A., Adamov, A.A.: Algorithm of constant def-

inition for a visco-elastic rubber model based cyclic experiments, stress relaxation and creep
data. In: Heinrich, G., Kaliske, M., Lion, A., Reese, S. (eds.) Constitutive Models for Rubber,
vol. 1. CRC Press, Boca Raton (2009)

19. Tucker, J.W., Rampton, V.W.: Microwave Ultrasonics in Solid State Physics. North-Holland
Publishing Company, Amsterdam (1972)

20. Pavlov, I.S.: Acoustic identification of the anisotropic nanocrystalline medium with non-dense
packing of particles. Acoust. Phys. 56(6), 924–934 (2010)

21. Frantsevich, I.N., Voronov, F.F., Bakuta, S.A.: Elastic Constants and Elasticity Moduli of Metals
and Nonmetals. Reference Book Frantsevich, I.N. (ed.) Naukova Dumka, Kiev (1982) (in
Russian)

22. Porubov, A.V.: Amplification of Nonlinear Strain Waves in Solids. World Scientific, Singapore
(2003)

23. Pelinovsky, D.E., Stepanyants, YuA: Self-focusing instability of plane solitons and chains of
two-dimensional solitons in positive-dispersion media. J. Exp. Theor. Phys. 77(4), 602–609
(1993)

24. Press, W.H., Teukolsky, S.L., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The
Art of Scientific Computing. Cambridge University Press, Cambridge (1992)



Cosserat Anisotropic Models of Trabecular
Bone from the Homogenization of the
Trabecular Structure: 2D and 3D Frameworks
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Abstract Cosserat models of trabecular bone are constructed in 2D and 3D
situations, based on micromechanical approaches to investigate microstructure-
related scale effects on the macroscopic properties of bone. The effective mechanical
properties of cancellous bones considered as cellular solids are obtained thanks to
the discrete homogenization technique. The cell walls of the bone microstructure are
modeled as Timoshenko thick beams. An anisotropic micropolar equivalent contin-
uum model is constructed, the effective mechanical properties of which are identified.
Closed form expressions of the equivalent properties are obtained versus the geo-
metrical and mechanical microparameters, accounting for the effects of bending,
axial, and transverse shear deformations; torsion is additionally considered for a 3D
geometry. The classical and micropolar effective moduli and the internal flexural and
torsional lengths are identified versus the micropolar material constants. The stress
distribution in a cracked bone sample is computed based on the effective micropolar
model, highlighting the regularizing effect of the Cosserat continuum in comparison
to a classical elasticity continuum model.
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1 Introduction

There are two major forms of bone tissue at the macroscopic level, compact or
cortical bone, and cancellous or trabecular bone. The location of these bone types
in the femur is illustrated in Fig. 1; cortical or compact bone is a dense material with
a specific gravity of almost two in humans and sligthly over two in cattle; it forms
most of the outer shell of a whole bone, a shell of variable thickness.
In mechanical terms, bone is a complex hierarchical material in which different
geometrical features occur over several length scales that can be classified as follows:
a) The nanoscale represents a single fiber and crystals, b) the microscale represents
the random network of trabecular bone composed of random struts or plates), and c)
the macroscale represents the whole bone, which includes both trabecular (porous)
and cortical (solid) bone types. These structural levels are illustrated on Fig. 2.
Cancellous bone generally exists only within the confines of the cortical bone cov-
erings; it is also called trabecular bone because it is composed of short struts of bone
material called trabeculae. The connected trabeculae give cancellous bone a spongy

Fig. 1 Longitudinal section of the femur illustrating cancellous and cortical bone types [7]

Fig. 2 Multi-scale aspects of bone structure [14]
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appearance, and it is consequently often called spongy bone. Trabecular bone is
very complex due to its randomness and spatial heterogeneity. In order to simplify
the forthcoming analysis, one can choose to represent bone as having an idealized
periodic microstructure: in this contribution, we model bone as having a periodic
prismatic structure in a two dimensional context. This work addresses the modeling
of trabecular bone as hexagonal periodic structures, considering successively 2D and
3D geometries.
Bone is a strongly heterogeneous material with microstructural features, requiring
generalized continuum mechanics theories when the macroscopic length scale (iden-
tified as the smallest length scale of the deformation pattern) becomes comparable
or smaller than the typical microstructural length scale, such as the size of trabeculae
in cancellous bone. Especially, the classical assumption inherent to classical elas-
ticity is no more valid under such conditions, which occur in zones of high stress
and strain gradients, for instance in the vicinity of cracks or within a bone prosthe-
sis region. Although there have been many continuum models of bone developed
over the last two decades on the basis of classical elasticity [3, 44], those models
ignore microstructure-related scale effects on the macroscopic mechanical proper-
ties. Consequently, they do not provide a complete description of the mechanical
behavior when the microstructural size of bone approaches the macroscopic length
scale. Such microstructural effects are most pronounced near bone–implant inter-
faces and in areas of high strain gradients. This issue is presently investigated by
studying generalized continuum mechanics theories which account for the influence
of microstructure-related scale effects on the macroscopic properties of bone.
In the class of micropolar models developed in this contribution, independent rota-
tional degrees of freedom are considered in addition to the translational degrees of
freedom (the displacement vector), in the form of a microrotation vector field. This
entails that the material can transmit couple stresses in addition to tractions; those
couple stresses develop internal work in the variation of microcurvatures, defined as
the spatial gradients of the microrotation, a second order tensor. From a historical per-
spective, the Cosserat Brothers, who introduced the concept bearing their name [6],
developed the theory of non-symmetric elasticity, and further developments emerged
in the sixties [11, 31, 32]. Based on the generalized continuum theory established
by the Cosserat brothers about 100 years ago, a general theory of Cosserat contin-
uum coined the micropolar theory was formulated in [10–13], adequate for materials
possessing microstructures, such as bones, but also for granular composites, amor-
phous metals/ceramics, polymers. This theory can well explain the discrepancies
between experiments and the classical theory of elasticity in cases when the effects
of material microstructures are known to contribute significantly to the body’s over-
all deformation, for example, in materials with a granular microstructure such as
human bones [24, 26, 40]. A special case of Cosserat theory is the couple-stress the-
ory, in which the microrotation and macrorotation coincide, [23]. Micropolar theory
assumes that the interaction between continuum particles through a surface element
dAoccurs not only through a force vector (FidA) but also through a moment vector
(MidA). This establishes the “force-stress” tensor expressed as force per unit area,
σij, and the “couple-stress” tensor expressed as moment per unit area, mij, from the
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Euler- Cauchy equilibrium principle. In terms of kinematics, material particles have
additional rotational degrees of freedom ϕi allowing to better capture the behav-
ior of heterogeneous materials like bone, which have microstructural dimensions
comparable to the size of specimen.
The existence of couple stress has been first evidenced by Yang and Lakes (1981),
who measured the effect of the size of a bone specimen on the apparent stiffness of
cortical bone in quasi-static torsion; they further obtained the characteristic length
scales for torsion and bending for cortical bone in the context of couple stress theory.
As an example, bone trabeculae are modelled as isotropic micropolar materials in
[25]. Lakes and co-workers conducted a series of experiments on bone and other
cellular materials, in which they observed a stiffening effect in such materials in
bending and in torsion [36]( Lakes, 1987) and a tougher notched bone [24] than
expected from classical Cauchy-type elasticity. Those last authors found that Cosserat
elasticity provides better predictions of the response of bone than classical elasticity
theory. [43] represented the trabeculae as beam elements in a lattice structure in
which the lattice elements are rigidly interconnected to each other, for the purpose
of bone remodeling. The microstructure was then embedded in the continuum in
the context of the couple stress theory. The issue of application of higher-order
continuum theories to mechanical analysis of bone (both cortical and cancellous) has
further been addressed by [15], who analysed a simplified two-dimensional bone-
prosthesis configuration using a micropolar-based FE formulation. The stress and
strain intensities they calculated at the bone-prosthesis interface are different from
those predicted by classical elasticity. In addition, [16] identified the micropolar
elastic constants of cancellous bone in the context of micromechanical analyses. In
this approach, it is assumed that at the microscopic level the bone tissue is an isotropic,
Cauchy-type elastic material, whereas cancellous bone behaves as a homogeneous,
anisotropic micropolar-type continuum at the macroscopic level. The effective elastic
constants for the micropolar continuum were determined from the response of a bone
specimen, whose microstructure was obtained from micro-CT scans.
This work focuses on the modeling of the micropolar elastic response of trabecular
bone using 2D and 3D geometric models successivly.

2 Two-Dimensional Anisotropic Cosserat Bone Model
from Lattice Homogenization

We adopt the viewpoint of trabecular bone as a cellular solid consisting of a quasi
periodical lattice of cells having an hexagonal topology, the cell walls being modeled
as thick beams. The characteristics of many periodic cellular structures are discussed
in detail in the well-known contribution of [20], wherein the equivalent mechanical
properties of honeycomb lattices are derived by analyzing strain and stress states in
unit cells through the application (in most cases) of beam theory. Taking bending
as the sole deformation mechanism, [19] derived the in-plane elastic constants for
regular honeycombs with cell walls of uniform thickness; their normalized results



Cosserat Anisotropic Models of Trabecular Bone from the Homogenization 115

are consequently independent of the honeycomb relative density. Taking bending
and stretching as the main deformation mechanisms, [46] also developed a model to
study the in-plane elastic properties of honeycombs. Considering the transverse shear
as an additional deformation mechanism, [41, 49] obtained the closed form in-plane
elastic constants of regular honeycombs. Taking bending, stretching and hinging the
deformation mechanisms, [28] theoretically analyzed the in-plane elastic constants
of honeycombs. The normalized in-plane elastic constants of honeycombs generally
depend on the honeycomb relative density [41, 49, 50], because the axial stretch-
ing/compression and transverse shear play an important role in the deformation.
A two-dimensional micropolar continuum model equivalent to the initial lattice is
next constructed relying on discrete homogenization, and its mechanical properties
are identified versus the microbeams geometry and mechanical behavior.

2.1 Discrete Homogenization of Bone Microstructure

The adopted beam model includes transverse shear, which is necessary for thick
beams. In a local coordinate systems attached to each beam element, the normal
(tension) force adopts the expression

N b = AEs

L

(
eb. (uE − uO)

)
(1)

The transverse force is given by

T b
t = 12Es Iz

L3(1 + �y)

(
eb⊥. (uE − uO) − L

2
(φO + φE )

)
(2)

The moments at both extremities of the beam are expressed as:

M O(b) = 6Es Iz

L2(1 + �y)

(
−eb⊥. (uE − uO)

)

+ Es Iz

L(1 + �y)

(
(4 + �y)φO + (2 − �y)φE

)

M E(b) = 6Es Iz

L2(1 + �y)

(
−eb⊥. (uE − uO)

)

+ Es Iz

L(1 + �y)

(
(2 − �y)φO + (4 + �y)φE

)
(3)

with the non-dimensional factor �y = 12Es Iz/Gsκs L2 vanishing when transverse
shear is neglected, eb the unit director for each beam, and eb⊥ the transverse unit
vector.
The coefficients Es , Gs are respectively the young’s modulus and shear modulus of
the beam material, A, L are respectively, the cross-sectional area and the length of
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Fig. 3 Kinematic and static parameters of a beam element

the beam, Iz is the second moment of area of the beam cross-section, and κs is the
shear correction factor.
Those expressions of the resultant forces and moments are next involved in the
homogenization of the initially discrete lattice towards an equivalent continuum.
The discrete homogenization method is a mathematical technique to derive the equiv-
alent continuous medium behaviour of repetitive discrete structures. This technique
is inspired from the homogenization of periodic media developed thirties years ago
by [1, 35, 39] and more recently applied by Warren and Byskhov (2002) and [33].
It has also been combined with the energy method by [38] and applied to discrete
homogenization. Note that Cosserat models and micropolar type theories have been
obtained from discrete particle models, for instance by [5, 34, 42].
The kinematic and static variables for any beam in the lattice are represented in the
local coordinate system associated to the Timoshenko beam element in Fig. 3.
The discrete homogenization method consists in assuming asymptotic series expan-
sions of both the node displacements, tension, moments and external forces versus
a small parameter labelled ε, defined as the ratio of a characteristic length of the
basic cell to a characteristic length of the lattice structure. Those expansions are
then inserted into the equilibrium equation, conveniently expressed in weak form.
The balance equation of the nodes, forces-displacement relations and the moment-
rotation relations of the beams are developed by inserting those series expansions
and by using Taylor’s expansion of finite differences. The discrete sums are finally
converted in the limit of a continuous density of beams into Riemann integrals,
thereby highlighting continuous stress and strain measures. The calculations may be
done for a quite general truss and closed form expressions of the effective (homoge-
nized) properties are obtained from the effective compliance of rigidity matrix. The
method has given rise to implementation into dedicated software. It has been recently
applied to calculate the equivalent mechanical properties of auxetic lattices giving
rise to negative Poisson’s ratio [9].
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The displacement difference �Ubεbetween the extremity and origin node of each
beam is expressed by a Taylor series development as

�Ubε = uε(E(b)) − uε(O(b)) = ε

(
u

ER(b)

1

(
λε
)− u

OR(b)

1

(
λε
)+ ∂u0 (λε)

∂λi
δib
)

+ ε2
(

u
ER(b)

2

(
λε
)− u

OR(b)

2

(
λε
))

= ε�Ub
1 + ε2�Ub

2 (4)

with δi the shift factor for nodes belonging to a neighboring cell and λ the curvilinear
coordinate of the points within the lattice.
The asymptotic expansion of nodal microrotation φεn is limited to the first order in
ε; it is defined successively at the origin and extremity of each beam as

φO(b)ε = φ
OR(b)

0 + εφ
OR(b)

1 ; φE(b)ε = φ
ER(b)

0 + ε

(
∂φ0

∂λi
δib + φ

ER(b)

1

)
(5)

The expressions of the asymptotic expansions of the normal and transverse efforts,
and the moment at the beam extremities based on a Timoshenko beam model versus
the kinematic nodal variables are successively written as

N bε = Esη
(

eb.
(
ε�Ub

1 + ε2�Ub
2

))
= εN b

1 + ε2 N b
2 (6)

with the first and second order relative displacement given in (7.4).
The transverse force is expressed similarly as
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and the moments are expressed at both ends on two orders versus ε as:

MO(b)ε = ε2 M O(b)
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M O(b)
2 = Esη

3Lb

2
(
1+ Esη2

(Gsκs)

)
(
−eb⊥.�Ub

2

)
+ Esη

3
(
Lb
)2

12
(

1 + Esη2

(Gsκs )

)
((

4 + Esη
2

(Gsκs)

)
φ

OR(b)

1

+
(

2 − Esη
2

(Gsκs)

)
φ

ER(b)

1 +
(

2 − Esη
2

(Gsκs)

)
∂φ0

∂λi
δib
)

(9)

M E(b)
1 = Esη

3Lb

2
(

1 + Esη2

(Gsκs )

)
(
−eb⊥.�Ub

1

)
+ Esη

3
(
Lb
)2

12
(

1 + Esη2

(Gsκs )

)

((
2 − Esη

2

(Gsκs)

)
φ

OR(b)

0 +
(

4 + Esη
2

(Gsκs)

)
φ

ER(b)

0

)

M E(b)
2 = Esη

3Lb

2
(
1 + Esη2

(Gsκs)

)
(
−eb⊥.�Ub

2

)
+ Esη

3
(
Lb
)2

12
(

1+ Esη2

(Gsκs )

)
((

2 − Esη
2

(Gsκs)

)
φ

OR(b)

1

+
(

4 + Esη
2

(Gsκs)

)
φ

ER(b)

1 +
(

4 + Esη
2

(Gsκs)

)
∂φ0

∂λi
δib
)

The constitutive behavior of the equivalent anisotropic micropolar continuum is
obtained in the present 2D context in matrix format as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx

σy

σxy

σyx

mxz

myz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
[

[A] [B]
[C] [D]

]

⎧⎪⎪⎪⎪⎪⎪⎨
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εx

εy

εxy

εyx

κxz

κyz
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(10)

This constitutive law can further be simplified basing on symmetry properties of
the studied lattices: it has indeed been shown that for centro-symmetrical lattices,
the pseudo-tensors [B] and [C] vanish [9]. Focusing herewith on such lattices, the
previous constitutive equation then implies that the vectors μi

1 and Si
2 should vanish;

this leads to an important simplification of the stress and couple stress vectors
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=
∑

b∈BR

(
1

2

(
M E(b)

2 − M O(b)
2

))
δib

with N b
1 , T b

t1, and, Mn
2 , respectively, the first order normal and transverse effort and

the second order moment. Those expressions still involve the unknown displacements
un

1, un
2and rotations φn

0 , φn
1 (this defines the so called localization problem over the

representative cell), which are determined for all nodes and as a last step by solving
the equilibrium equations in translation and rotation.

2.2 Effective Micropolar Properties of Bone Modeled
as a Hexagonal Lattice

The general anisotropic hexagonal unit cell of two-dimensional honeycomb under
consideration is pictured in Fig. 4; it consists of three beams, a vertical beam of
length h and two inclined beams of length l. The vertical beams have elastic and
shear moduli Es1 and Gs1, respectively, while the two inclined beams have elastic
and shear moduli Es and Gs , respectively. The dimensionless parameters θ and
α = h/ l are descriptors of the cell shape, as well as the aspect ratio of the cell walls
η = t/ l, a parameter determining the relative density or area fraction of the solid
phase. The lattice is called re-entrant when the angle θ between the two inclined
beams relative to the horizontal is negative (see Fig. 5b). When this angle takes the
value 30◦, the classical hexagonal lattice is obtained. When θ < 0,

(
θ ∈ [−π

2
π
2

])
, an

auxetic lattice [9, 21] having a negative Poisson’s ratio is obtained. Regular unit cells
correspond to the specific geometrical parameters α=1 and θ = 30◦ and anisotropic
unit cells correspond to all other values.

Fig. 4 General anisotropic unit cell for two dimensional honeycomb models. The geometrical
descriptors are the cell angle (θ), the vertical cell length (h), the inclined cell length (l), and the
wall thickness (t)
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Fig. 5 Representative unit cell of the investigated lattices: (a) hexagonal lattice, (b) re-entrant
lattice (θ < 0)

Table 1 connectivity array
for the 2D hexagonal lattice

Beam 1 2 3

O(b) 2 1 1
E(b) 1 2 2
δ1 0 1 0
δ2 0 0 1

The representative unit cell is easily identified for the hexagonal lattice (Fig. 5).
The periodicity vectors (norm of Y1 and Y2 in the Cartesian basis) share a common
length given by L1 = L2 =

√
(l cos θ)2 + (h + l sin θ)2; the other features of the

lattice are collected in the connectivity Table 1.
The homogenization scheme provides the effective mechanical properties (classical
and micropolar moduli) versus the geometrical and micromechanical parameters
of the considered bone microstructure. The reader is referred to [9] for a detailed
exposition of the method. In the general anisotropic case, the relative density is
computed in terms of η, α and θ by

ρ∗

ρs
= 1

2

η (α + 2)

cos θ (α + sin θ)
(12)

For negative cell angles, the geometrical constraint h ≥ 2l sin θ is required in order
to maintain a hexagonal geometry.
After calculations, we extract the effective homogenized moduli of the hexagonal
lattice from the equivalent stiffness matrix, expressed versus the dimensionless para-
meters η, α, θ , κs , and κs1 and the elastic and shear moduli of the solid cell walls Es ,
Es1, Gs1, and Gs as follows:
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Gsκs
− Esη2

Gsκs

)
(St + α)

,

E∗
2 = (St + α) Es Es1η

3

(
C2

t Es1 + C2
t Es Es1η2

Gsκs
+ Es1η2 + 2Esη2α − C2

t Es1η2
)

Ct

,

G∗
12 = (St + α) Es Es1η

3Ct(
Esη

2α2C2
t Es1

Gsκs
+ α2 Es1C2

t + 2Es Es1η
2αC2

t
Gs1κs1

+ 2α3C2
t Es

+ 2Es1η
2αSt + Es1η

2 + α2 Es1η
2 − Es1η

2α2C2
t

)
,

ν∗
12 = −

(
Esη

2

Gsκs
− η2 + 1

)
St C2

t(
C2

t Esη2

Gsκs
− C2

t η2 + C2
t − Esη2

Gsκs
− 1
)

(St + α)

,

ν∗
21 =

(
Esη

2

Gsκs
− η2 + 1

)
St (St + α) Es1

(
C2

t Es Es1η2

Gsκs
+ Es1C2

t + Es1η2 + 2Esη2α − C2
t Es1η2

) ,

D11 = 1

12

Esη
3l2Ct

α + St
, D22 = 1

12

l2 Esη
3 Es1 (α + St )

(2Esα + Es1) Ct
. (13)

with the trigonometric functions Ct = cos θ and St = sin θ therein.
Because of the variation in trabecular architecture even at constant density, two
geometries of trabecular bone corresponding to θ = 30◦ and 60◦ are considered,
with the geometrical parameter α = 0.5. The scaling behaviour of the equiva-
lent elastic moduli versus the relative densities from 0.01 to 0.4 for both trabec-
ular geometries is calculated, as pictured in Fig. 6 (properties of both vertical and
inclined members are the same; Es = Es1, Gs = Gs1, andκs = κs1). Here and in the
sequel, the ratio of the effective properties to the bulk value is recorded; considering
Gs = 0.5 ∗ Es/ (1 + νs), with Poisson’s ratio νs = 0.3. The results show that
the Young’s and shear moduli of trabecular bone strongly depend on the relative
density; they both express as a power law function of the relative density, with expo-
nents approximately equal to 2.9 for the tensile effective moduli and about 2.8 for
the effective shear modulus.

3 Numerical Determination of the Effective Micropolar
Rigidities

In a 2D plane stress situation, the stress tensor has four independent components
σx , σy , σxy , σyx and the couple stress tensor (or moment per unit area) has two
components mxz , myz . The deformation and micro-curvature components express
versus the displacement gradients and micro-rotations as
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Fig. 6 Variation of the elastic and shear moduli of trabecular bone versus the relative density.
α = 0.5.

εx = ∂u/∂x , εy = ∂v/∂y, εxy = ∂v/∂x − φ, εyx = ∂u/∂y + φ

κxz = ∂φ/∂x , κyz = ∂φ/∂y (14)

In the Cosserat theory, the rotation φ is an independent field, whereas in the couple-
stress theory it is related to displacement gradients as in classical elasticity (it is
equal to the local rigid rotation), φ = (∂v/∂x − ∂u/∂y) /2. As a result, in the
couple-stress theory, the strain tensor εi j is symmetrical with components defined as
εxy = εyx = (∂v/∂x + ∂u/∂y) /2.
The equilibrium in translation and rotation, ignoring body forces and body moments,
writes as the set of equations

∂σx/∂x + ∂σyx/∂y = 0, ∂σxy/∂x + ∂σy/∂y = 0,

∂mxz/∂x + ∂myz/∂y + σxy − σyx = 0. (15)
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The last Eq. (15), implies that the shear stress σxy differs from σyx ; [30] suggested
then resolving σxy and σyx into a symmetric part σS and an anti-symmetric part σA.

σS = (σxy + σyx
)
/2, σA = (σxy − σyx

)
/2. (16)

The symmetric part of the shear stress produces the usual shear strain εxy , while
the anti-symmetric part tends to produce a local rigid rotation. Thus, the constitutive
equation can be expressed in the following uncoupled form (for a centrally symmetric
unit cell structure) as ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σx

σy

σS

mxz

myz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
[

A 0
0 D

]
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εx

εy

εxy

κxz

κyz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(17)

with

A =
⎡
⎣

A11 A12 0
A12 A22 0
0 0 A66

⎤
⎦ , D =

[
D11 0
0 D22

]
. (18)

Matrix A contains the classical moduli, while matrix D contains the micropolar
moduli relating the two couple stress components to the corresponding curvatures.
The numerical homogenization technique consists in determining the overall effec-
tive mechanical properties (couple-stress moduli and characteristic lengths) over a
representative unit cell of trabecular bone, relying on a finite element discretization
of the unit cell geometry. Each cell wall is modeled with a three-node beam element
(element type B22 in ABAQUS), endowed with bending, stretching and shearing
deformation mechanisms. An earlier study by [45] showed that using such a beam
element to model each cell wall is sufficient for convergence.
We consider here a unit cell of trabecular bone with geometrical parameters given
from [18] as: α = h/ l = 0.5; η = t/ l = 0.25; l = 1 mm; θ = 60◦ (Fig. 7). The bulk
mechanical properties of the unit cells wall representative of the behavior of human
femur [20] are taken as Es = 12000 MPa; νs = 0.3.
Since the trabecular bone unit cell is cut out of an infinite structure, it that can be
regarded as periodic, thus spatially periodic boundary conditions should be applied
to ensure that the predicted properties of the unit cell are representative of those of
the macroscopic structure. The boundary surfaces of the unit cell must always appear
in parallel pairs; the displacements on a pair of parallel opposite boundary surfaces
can be written as

uk+
i = ε̃i j xk+

j + u∗
i

uk−
i = ε̃i j xk−

j + u∗
i (19)
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Fig. 7 Geometrical model
of an elementary cell of
trabecular bone

where indices “k+” and “k−” identify the kth pair of two opposite parallel boundary
surfaces of a repeated unit cell. Note that u∗

i is the same at the two parallel boundaries
(periodicity), thus the difference between the above two equations gives

uk+
i − uk−

i = ε̃i j (xk+
j − xk−

j ) = ε̃i j�xk
j (20)

with ε̃i j the macroscopic (average) strains of the unit cell. Since the quantities �xk
j

are constants for each pair of the parallel boundary surfaces, with specified ε̃i j , the
right-hand side in Eq. (20) becomes constant. The constraint equations are applied
as nodal displacement constraint equations, instead of giving Eq. (19) directly as
boundary conditions.
The main purpose of this section is to determine the effective constitutive constants
of the couple-stress continuum from the unit cell response of trabecular structure.
We design different boundary conditions for the determination of the independent
components of the constitutive (rigidity) constants over a unit cell domain � (Fig. 7)
with boundary ∂�. Without loss of generality, the thickness in z-direction is set to
unity. In each case, we force the unit cell to bear the designed specific deforma-
tion {εx εy εxyκxz κyz}T and compute numerically the total elastic strain energy
Udiscrete stored in the unit cell under the corresponding boundary conditions. The
numerical procedure used here is similar to [2]: the total strain energy stored in the
unit cell is equated with the energy of an equivalent homogeneous couple-stress
continuum, thus

Udiscrete = Ucontinuum = V

2

[
εi j Ai jklεkl + κi j Di jklκkl

]
(21)
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where V = |�| is the volume of the unit cell. The strain energy Ucontinuum stored in
the effective homogeneous couple-stress continuum can be obtained by the prescribed
strain/stress fields.
In order to evaluate the components of the couple-stress stiffness tensors A and D
for the unit cell, we conduct the following six elementary tests:
The first four tests are constructed to determine the stiffness matrix A.
Test 1- Horizontal uniaxial extension test for A11: We apply the following unit strain
to the unit cell

εx = 1, εy = εxy = 0, κxz = κyz = 0, in � (22)

The corresponding boundary conditions are

u = x , v = 0, on ∂� (23)

It gives A11 = 2Udiscrete/V
Test 2- Vertical uniaxial extension test for A22: Applying the unit strain to the unit
cell

εx = εxy = 0, εy = 1, κxz = κyz = 0, in � (24)

The corresponding boundary conditions are

u = 0, v = y, on ∂� (25)

It gives A22 = 2Udiscrete/V
Test 3- Biaxial extension test for A12: one applies the unit strain to the unit cell

εx = εy = 1, εxy = 0, κxz = κyz = 0, in � (26)

The corresponding boundary conditions are

u = x , v = y, on ∂� (27)

It yields A12 = (2Udiscrete/V − A11 − A22) /2
Test 4- Shear test for A66: the following unit strain is applied to the unit cell

εx = εy = 0, εxy = 1, κxz = κyz = 0, in � (28)

The corresponding kinematic boundary conditions are

u = y/2, v = x/2, on ∂� (29)

It yields A66 = 2Udiscrete/V
The displacement and stress distributions within the trabecular bone unit cell for
the above four tests under the corresponding displacement boundary conditions are
shown in Figs. 8, 9, 10 and 11.
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Fig. 8 Displacement and stress distributions due to horizontal uniaxial extension

Fig. 9 Displacement and stress distributions due to vertical uniaxial extension

The values of A11, A12, A22, A66 computed through the above numerical analyses
(from elastic strain energy) are summarized in Table 2, showing a good agreement
is obtained with those calculated by discrete homogenization.
In order to evaluate the components of the stiffness matrix D, the following two
bending tests are performed:
Test 5- Bending test for D11: for an enforced uniform curvature κxz applied to the
boundary, the corresponding kinematic boundary conditions write

u |∂� = −xy, v
∣∣y=0 = x2/2 (30)

which gives D11 = 2Udiscrete/V − E∗
1 y2, when κxz = 1.
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Fig. 10 Displacement and stress distributions due to biaxial extension

Fig. 11 Displacement and stress distributions due to shearing

with
E∗

1 = A11
(
1 − ν∗

12ν
∗
21

)
, ν∗

12 = A12/A22, ν∗
21 = A12/A11 (31)

Test 6- Bending test for D22: for an imposed uniform curvature κyzapplied to the
boundary, the corresponding kinematic boundary conditions write

u |x=0 = −y2/2, v |∂� = xy (32)

which gives D22 = 2Udiscrete/V − E∗
2 x2, when κyz = 1.

with
E∗

2 = A22
(
1 − ν∗

12ν
∗
21

)
(33)
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Table 2 The couple-stress elastic constants and characteristics lengths of trabecular bone
unit cell

Discrete homogenization Finite element simulation

A11 (MPa) 212.7 215.0
A12 (MPa) 698.3 745.0
A22 (MPa) 3547.4 3743.2
A66 (MPa) 407.5 427.8
D11(N) 5.7 4.7
D22(N) 21.3 17.5
E∗

1 (MPa) 75.2 66.5
E∗

2 (MPa) 1255.0 1161.5
ν∗

12 0.197 0.199
ν∗

21 3.28 3.47
lGx (μm) 59.0 52.5
lGy (μm) 114.0 101.0
lEx (μm) 402.7 397.4
lEy (μm) 100.8 95.0

Fig. 12 Displacement and stress distributions due to bending (κxz)

The displacement and stress distributions of the trabecular bone unit cell for the last
two bending tests under the corresponding displacement boundary conditions are
shown in Figs. 12 and 13.
For the planar orthotropic couple-stress model considered in this work, there are four
characteristics lengths which are defined by the following expressions in terms of
the engineering constants [2, 37]
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Fig. 13 Displacement and stress distributions due to bending (κyz)

lGx =
√

D11

4A66
, lGy =

√
D22

4A66

lEx =
√

(1 + ν∗
21)D11

2E∗
1

, lEy =
√

(1 + ν∗
12)D22

2E∗
2

(34)

The components of the effective couple-stiffness tensors and micropolar elastic con-
stants of trabecular bone evaluated by discrete homogenization and FE simulation
are compared in Table 2.
It is shown that the homogenized properties are representative of the bone architecture
overall behavior, since they approximate the simulated values with a good accuracy
(the relative variation is at most 15%).

4 Applications to Bone Fracture

Simulations of a square bone sample including a crack are performed, using the pre-
viously obtained homogenized anisotropic micropolar model (Fig. 14). The results
are compared to those obtained by a classical four node finite element called CPS4
within the Abaqus environment. The principal directions of orthotropy are supposed
to be aligned with the fiber directions within the selected bone sample, which by
definition coincide with the X and Y directions of the representative volume ele-
ment (the unit cell). The geometrical and mechanical parameters of the unit cells of
trabecular bone are taken as in Sect. 3.
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Fig. 14 Applied loading and boundary conditions of the 2D bone specimen with bone fracture
(left). Zoom of the material specimen on two hexagonal unit cells (right)

The specimen dimensions correspond to 1mm width and 1 mm height. The effective
material properties calculated by the discrete homogenization technique are summa-
rized in the following matrix:

[K ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

212.7 698.3 0 0 0 0
698.3 3547.4 0 0 0 0
0 0 436.2 378.8 0 0
0 0 271.6 543.4 0 0
0 0 0 0 5.7 0
0 0 0 0 0 21.3

⎤
⎥⎥⎥⎥⎥⎥⎦

(35)

A horizontal crack representing 14% of the total specimen width is introduced to
represent longitudinal fracture (Fig. 14). The bottom edge of the specimen (1 ×
1 mm2) is simply supported in Y-direction (the corner node at the origin is fixed),
and the top edge is submitted to a uniaxial displacement magnitude equal to 0.25
mm in the vertical direction. This corresponds to an induced vertical traction of
magnitude 420 MPa.
A stress concentration occurs for both models close to the crack tip, a well-known
fact in the field of fracture mechanics [4]. However, the amplitude of the peak stress
is significantly reduced when the Cosserat continuum model is employed; the per-
centage of reduction is evaluated for each stress component (and each mesh size) in
Table 3. It reaches up to 50% for the fine mesh, a value in agreement with the amount
of reduction of the stress concentration factor obtained for sharp cracks using a linear
isotropic Cosserat behavior in [24].
We observe from the isovalues of the two in-plane displacement components, U1 and
U2 (Fig. 15) a more diffuse displacement field when Cosserat model is employed,
in comparison to Cauchy continuum, for which steep stress gradients are obtained.
This confirms the regularizing effect of the Cosserat continuum model.
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Table 3 Comparison of peak stress values for the two models (Cauchy and micropolar)

Cosserat finite CPS4 finite % of stress reduction

element element (Abaqus)
SCauchy−SCosserat

SCauchy
× 100

S11 S12 S22 S11 S12 S22 S11 S12 S22

Coarse 28 63 752 41 133 752 31.7 52.6 0
Medium 81 148 902 156 206 1096 48.1 28.2 17.7
Fine 112 213 1038 227 350 1396 50.7 39.2 25.6

U1U1

U2U2

(a) (b) 

(c) (d) 

Fig. 15 Displacement distribution. (a), (c) correspond to Cosserat finite element results and (b),
(d) correspond to the classical four node finite element. Fine mesh (1188 elements)

In the next section a 3D micropolar effective continuum model of trabecular bone
is constructed using asymptotic homogenization of 3D discrete media considering
axial, shear, flexural and torsional deformations of the cell struts. The overall mechan-
ical behavior of trabecular bone in a 3D geometry is analyzed in the consequence.
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5 Three-Dimensional Anisotropic Effective Behavior
of Cancellous Bone

A general 3-D anisotropic hexagonal lattice with horizontal struts of lengths L and
h (lengths of in-plane struts) and vertical struts of length Lv (out-of-plane), both
endowed with circular cross-section of diameter d, is considered (Fig. 16). This
geometry is representative of the unit cell of vertebral bone, as advocated in [22].
The whole lattice is generated from the repetition of the unit cell shown in Fig. 16
thanks to three periodicity vectors defined in the Cartesian basis. The considered
hexagonal unit cell is composed of five beams; three horizontal beams b1, b2, and
b3 and the vertical beams b4 and b5. The horizontal beams b2 and b3 have the same
length L and are inclined by the angle θ with the horizontal direction, while b1 has
length h. The two vertical beams b4 and b5 have the same length Lv. The connectivity
Table 4 gives the numbering of beams and nodes within the chosen representative
unit cell.
The relative density of the general 3D anisotropic hexagonal is computed in terms
of the geometrical parameters L , h, Lv, r and θ as

ρ∗

ρs
= 1

2

πr2 (h + 2L + 2Lv)

L Lv cos θ (h + L sin θ)
(36)

Since each beam is in self-equilibrium, we choose to define the efforts at node E
(efforts at node O are opposite), which is considered as the end node. Using the local

Fig. 16 General anisotropic
unit cell for 3D hexagonal
models. The geometric para-
meters include the cell angle
θ , the in-plane strut lengths
(L , h), and the vertical length
Lv. Right picture: topology
of the 3D hexagonal unit cell
with the periodicity vector

Table 4 Connectivity array
for the 3D hexagonal lattice

Beam 1 2 3 4 5

O(b) 1 2 2 1 2
E(b) 2 1 1 1 2
δ1 0 1 0 0 0
δ2 0 0 1 0 0
δ3 0 0 0 −1 −1
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coordinate systems for each member element, the normal (tension) force receives
the expression

Fx2p = AEs

L
(ex . (uE − uO)) (37)

The transverse force Fy2p is given by

Fy2p = 12Es Iz

L3(1 + �y)

(
ey . (uE − uO) − L

2
(ez . (φO + φE ))

)
(38)

Similarly, the transverse force Fz2p is given by

Fz2p = 12Es Iy

L3(1 + �z)

(
ez . (uE − uO) + L

2

(
ey . (φO + φE )

))
(39)

The moments express at both extremities of the member express as follows: for the
moments about the x’-axis (twist in y’-z’ plane), the load-displacement relationship
is very similar to axial loading, viz

Mx1p = Gs J

L
(ex .(ϕO − ϕE )); Mx2p = Gs J

L
(ex .(ϕE − ϕO)) (40)

The bending moments about the y’-axis write

My1p = 6Es Iy

L2(1 + �z)
(ez . (uE − uO))

+ Es Iy

L(1 + �z)

(
ey . ((4 + �z)φO + (2 − �z)φE )

)

My2p = 6Es Iy

L2(1 + �z)
(ez . (uE − uO))

+ Es Iy

L(1 + �z)

(
ey . ((2 − �z)φO + (4 + �z)φE )

)
(41)

The bending moments about the z’-axis express as

Mz1p = 6Es Iz

L2(1 + �y)

(−ey . (uE − uO)
)

+ Es Iz

L(1 + �y)

(
ez .
(
(4 + �y)φO + (2 − �y)φE

))

Mz2p = 6Es Iz

L2(1 + �y)

(−ey . (uE − uO)
)

+ Es Iz

L(1 + �y)

(
ez .
(
(2 − �y)φO + (4 + �y)φE

))
(42)
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with the non-dimensional factors �y = 12Es Iz/Gs Akys L2 and �z = 12Es Iy/

Gs Akzs L2, vanishing when transverse shear can be neglected (hence a Bernoulli
beam model is recovered), Iy and Iz are the second moments of area of the member
cross-section, kys and kzs are the transverse shear correction factors, and J is the
torsional modulus, which is identical to the polar moment of inertia of the circular
cross-sectional area.
The asymptotic expansions of the previous expressions of normal, transverse efforts,
and moments at the beam extremities in the framework of 3D Timoshenko beams
versus the kinematic nodal variables are performed and they are next involved in the
homogenization of the initially discrete lattice towards an equivalent 3D micropolar
continuum.
The constitutive equations for the equivalent anisotropic micropolar continuum are
obtained in 3D matrix format as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

σxy

σyx

σyz

σzy

σzx

σxz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [A]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ux

∂x
∂uy

∂y
∂uz

∂z
∂uy

∂x
− φz

∂ux

∂y
+ φz

∂uz

∂y
− φx

∂uy

∂z
+ φx

∂ux

∂z
− φy

∂uz

∂x
+ φy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mxx

myy

mzz

mxy

myx

myz

mzy

mzx

mxz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [D]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φx

∂x
∂φy

∂y
∂φz

∂z
∂φy

∂x
∂φx

∂y
∂φz

∂y
∂φy

∂z
∂φx

∂z
∂φz

∂x

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(43)

where, according to the orthotropic nature of the problem, the matrix representation
of [A] is

[A] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0 0 0 0
A21 A22 A23 0 0 0 0 0 0
A31 A32 A33 0 0 0 0 0 0
0 0 0 A44 A45 0 0 0 0
0 0 0 A54 A55 0 0 0 0
0 0 0 0 0 A66 A67 0 0
0 0 0 0 0 A76 A77 0 0
0 0 0 0 0 0 0 A88 A89
0 0 0 0 0 0 0 A98 A99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(44)

The curvature tensor [D] in (43) has the same structure.



Cosserat Anisotropic Models of Trabecular Bone from the Homogenization 135

The present 3D micropolar model substantiates both the classical and micropolar
material constants. The micropolar shear constant κ couples the rotation of particles
to shear stresses; if κ = 0 (coupling number (N ) = 0) the Cauchy stress does
not depend on the rotational degree of freedom. The limit κ → ∞ is a condition
energetically admissible, similar to “incompressibility” in classical elasticity, and
corresponds to N = 1 (upper bound) which is called “couple stress theory”. The
modulus γ sets the intensity of couple stresses and is proportional to the characteristic
lengths for bending and torsion, quantities lb and lt respectively. In Cauchy solids,
the internal characteristic length is of the order of the atomic distance and moments
of forces and consequently does not produce any macroscopic effect. However, in
microstructured solids such as hard biological tissues having a cellular structure
where an intrinsic internal length at least of the order of microns may be detected,
couple stresses may influence the macroscopic behavior. In the limit situation γ = 0,
Cauchy elasticity is recovered. The characteristic lengths for bending and torsion are
next identified from the homogenized stiffness matrix [A] relating stresses to strains
and curvature tensor [D] relating couple stresses to curvatures as

l2
b12

= D99

2 (A45 + A44)
; l2

b21
= D66

2 (A54 + A55)
; l2

b23
= D55

2 (A67 + A66)
;

l2
b32

= D88

2 (A76 + A77)
; l2

b31
= D77

2 (A89 + A88)
; l2

b13
= D44

2 (A98 + A99)
; (45)

l2
t12

= D99 + D98

A44 + A45
; l2

t21
= D66 + D67

A54 + A55
; l2

t23
= D55 + D54

A66 + A67
;

l2
t32

= D88 + D89

A76 + A77
; l2

t31
= D77 + D76

A88 + A89
; l2

t13
= D44 + D45

A98 + A99
.

One additional micropolar constant, the coupling number N, determines the strength
of the micropolar behavior; it is calculated for the three planes x-y, y-z and x-z as

N 2
12 = A44 − A45

2A44
; N 2

21 = A55 − A54

2A55
; N 2

23 = A66 − A67

2A66
; N 2

32 = A77 − A76

2A77
;

N 2
31 = A88 − A89

2A88
; N 2

13 = A99 − A98

2A99
. (46)

We choose h/L = 0.5,a value for trabecular bone given by [17]. Hence, a combina-
tion of h/L = 0.5and Lv/L = 1 is used to simulate the anisotropic trabecular bone.
We consider all struts (trabeculae) with identical cross-section geometry of diameter
d = 0.25 mm and strut lengths L = 1mm (Miller and Fuchs, 2005). The mechanical
parameters of the trabeculae building structure are: Gs = 0.5 ∗ Es/ (1 + νs), with
Poisson’s ratio νs = 0.3 [48]. The shear correction coefficient is kys = kzs = 9/10.
We plot the calculated homogenized effective elastic properties obtained for trabec-
ular bone versus the geometrical parameter θ (Figs. 17, 18 and 19) with a range of
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Fig. 17 Effective elastic moduli E∗
1 , E∗

2 , and E∗
3 of trabecular bone plotted versus the geometrical

parameter θ

Fig. 18 Effective in-plane Poisson’s ratios of trabecular bone plotted versus angle θ

variation chosen in the interval [10◦, 80◦], supported by [27], who scanned specimens
of vertebral trabecular bone using microcomputed tomography.
The elastic (E∗

1 andE∗
2 ) and shear moduli (G∗

12, G∗
23, and G∗

13) exhibit a power law
dependency on the relative density (Fig. 20), and transverse shear has a clear impact
on those scaling laws.
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Fig. 19 Effective shear moduli G∗
12, G∗

23, and G∗
13 of trabecular bone plotted versus angle θ

Fig. 20 Effective elastic and shear moduli of trabecular bone versus the relative density
ρ∗/ρs . θ = 30◦

The coupling number and the ratio of the characteristic internal micropolar lengths for
bending and torsion, quantities lb and lt , to the characteristic unit cell size 2L cos (θ)

are plotted to assess the strength of the micropolar effect (Figs. 21 a–d).
It appears that those ratio reach values close to unity and higher than unity for lb31, lt31,
clearly indicating that micropolar effects indeed impact the continuum behavior.
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Fig. 21 (a), (b), (c) Ratio of the characteristic micropolar lengths in bending and torsion to the unit
cell size of trabecular bone and (d) Micropolar coupling number plotted versus the angle θ

6 Conclusion

A micromechanical approach of microstructural effects of trabecular bone has been
developed. As a main novelty, a Cosserat anisotropic continuum model has been
developed from the discrete homogenization of a quasi periodical lattice model of
the cancellous bone microstructure, whereby the effective mechanical properties of
bone are directly related to the lattice micro-geometry and micromechanical elastic
properties. The cell walls of this cellular material are modeled as linear elastic Tim-
oshenko beams, accounting for the transverse shear occurring in thick beams in the
regime of high bone density. The first stiffness tensor and the second couple stress
stiffness tensor have been evaluated, allowing in turn the identification of the microp-
olar (non classical) constants of cancellous bone (in addition to the classical moduli),
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including internal flexural lengths. The equivalent moduli have been recorded versus
the geometrical descriptors of the unit cell. A planar linear Cosserat finite element
model of a cracked bone sample has been developed on the basis of the constructed
effective Cosserat continuum, in order to illustrate the microstructural effects on the
macroscopic response of cancellous bone. The FE analysis of the cracked configu-
ration evidence an important reduction of the stress concentration in the vicinity of
the crack; this feature reflects the trabecular architecture of cancellous bone and the
regularizing effect of the employed Cosserat elasticity model. The effective microp-
olar properties obtained from discrete homogenization are in good agreement with
corresponding rigidities provided by FE simulations over a unit cell.
Such micromechanically based enhanced continuum models developed at the
mesoscopic scale pave the way towards realistic simulations of the mechanical
response of complete bone structures submitted to complex loadings.
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Electro-Thermo-Elastic Simulation of Graphite
Tools Used in SPS Processes

Stefan Hartmann, Steffen Rothe and Nachum Frage

Abstract In the range of field-assisted sintering technology or spark plasma sinter-
ing all materials in the testing machine undergo very large temperature changes. The
powder material, which has to be sintered, is filled into a graphite die and mechan-
ically loaded by a graphite punch. The heat is produced by electrical induction and
the cooling process is performed by conduction and radiation. Both the heating and
the cooling process are very fast. In order to understand the process of the highly
loaded graphite parts, experiments, modeling and computations have to be carried
out. On the thermal side the temperature-dependent material properties such as heat
capacity and heat conductivity have to be modeled. Since the heat capacity is not
independent of the Helmholtz free-energy a particular consideration of the free-
energy is carried out. On the other hand, the temperature changes of the electrical
resistivity and the material properties of the graphite tool must be taken into con-
siderations. Accordingly, the material properties of “Ohm’s law” must be modeled
as well. The fully coupled system comprising the electrical, thermal and mechanical
field are solved numerically by a monolithic finite element approach. After the spatial
discretization using finite elements one arrives at a system of differential-algebraic
equations which is solved by means of diagonally implicit Runge-Kutta methods.
Issues and open questions in the numerics are addressed and problems in modeling
a real application are discussed.
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1 Introduction

The numerical treatment of powder compaction processes requires the experimental
basis, appropriate constitutive models and sophisticated algorithms both for the pow-
der and the tools itself. In field-assisted sintering technology (FAST) the mechanical
and thermal loads are applied more or less in parallel. An overview of the technical
development of FAST-processes can be found in [1–4]. In the literature there exists
only few attempts to model the whole thermo-electro-mechanical problem. In the
work of [5] the SPS-process (spark plasma sintering) is modeled without powder to
study the thermal and the electrical field together with a small strain thermoelasticity
relation for the tooling system. Wang et al. [6] investigated the electrical, tempera-
ture and stress fields in order to evaluate stress gradients in the fully densed sample
(copper and alumina). In this study the electrical current is treated as a constant.
Differently, [7] modelled the time dependence of the electrical current by the use
of experimental recorded current for a specific experiment. In [8] a PID control for
the closed loop control of the current is added to achieve a prescribed temperature
path. In this investigation temperature and stress gradients for a fully densed alumina
and copper sample are analyzed. Wang et al. [9] studied the effect of different die
sizes, heating rates and pressures on the temperature and stress distribution inside a
alumina sample, the tooling system and on the resulting microstructure. Maizza et al.
[10] investigated the influence of moving punch on the temperature. He emphasizes
the reliability of the model predictions highly depend on the correct modeling of the
contact resistances. Cincotti et al. [5] compared simulation results to measured tem-
perature, voltage and displacement data including electric and thermal resistance as
a function of temperature and applied mechanically load. Recently two articles also
dealing with the densification process are published, [11, 12]. Since the temperature
in the powder, and, accordingly the final material properties of the sintering process,
is essentially influenced by the graphite tools (given by the die, where the powder is
encapsulated, and the punches treating the mechanical loads to compress the powder),
the investigation of the die/punch system in view of the temperature and stress distri-
bution is of principle interest. Moreover, the heat is applied using electrical induction
so that the temperature and stress distribution during the processes are coupled. Since
the applied temperatures vary within a large range, most of the material parameters
depend on the temperature itself so that the final initial boundary-value problem is
a coupled system represented by the equilibrium conditions, heat equation and the
electrical field equation. In view of the investigations in [13] inertia effects are not
considered because the investigated temperature-rates are not as fast enough to take
resulting phenomena into account. Moreover, the investigated temperature are below
the phase transition effects in the graphite tools and the powder material (copper or
alumina).

In this article we assume in the first instance thermo-elasticity for small strains and
a instationary non-linear heat equation. Particularly, small strain thermo-elasticity is
seemingly well understood, see for example, [13, 14]. However, frequently some
terms are neglected by intuition or by the assumption of small rates or small
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temperature changes. These assumptions are not always applicable, particularly not
in FAST-processes. In this case the graphite tools have temperature-dependent prop-
erties, such as a temperature-dependent heat-capacity, directly influencing the form of
the free-energy and the thermo-mechanical coupling term. Moreover, the well-known
effect of a temperature-dependent electrical resistivity influences the evolution of
the electrical potential. In this article, we propose some experiments determining
the temperature-dependent material properties first. These experiments are given
by purely thermal agencies to determine the heat expansion, the heat capacity, the
heat conductivity and the electrical resistivity. All these quantities are more or less
temperature-dependent. Particularly, the heat capacity influences directly the repre-
sentation of the free-energy. Thus, aspects of the modeling are touched as well. On
the basis of these properties phenomenological models are developed and calibrated
to the experimental data.

Since the entire problem is coupled, all practical applications have to be com-
puted numerically. Here, use is made of the finite element method. In [15] coupled
problems are discussed within the method of vertical lines. This procedure, well-
known as a solution technique for partial differential equations, makes use of two
subsequent steps, namely the spatial and the temporal discretization. In our case the
spatial discretization using finite elements yields a system of differential-algebraic
equations, or, shortly, a DAE-system. In other words, ordinary differential equations
are coupled with algebraic equations. In this context, the differential part of the
DAE-system results from the discretized instationary non-linear heat equation and
the algebraic parts stem from the discretized equilibrium equations and the stationary
charge equation, see for general remarks [16]. These systems are frequently solved
using a Backward-Euler scheme or a trapezoidal rule (Crank-Nicholson procedure)
for the differential part resulting from the fact that the numerical solution of DAEs
are commonly not known in the finite element literature. In this article, high-order
stiffly accurate diagonally-implicit Runge-Kutta methods (SDIRK-methods), see, for
example, [17, 18], are applied having the side-product of an efficient step-size con-
trol technique. The reason for this stems from the application of embedded SDIRK
methods.

The notation in use is defined in the following manner: geometrical vectors are
symbolized by lower case bold-faced letters a and second order tensors A by bold-
faced Roman letters. Furthermore, we introduce matrices at global level of the finite
element procedure symbolized by bold-faced italic letters A.

2 Constitutive Modeling and Initial Boundary-Value Problem

Before developing a constitutive model for the graphite material, the mechanical,
thermal and electrical properties are discussed. The elasticity parameters are deter-
mined using ultrasound measurements, [19, 20], leading to the Young’s modulus
E = 11500 N/mm2 and the Poisson-ratio ν = 0.2. The temperature-dependence
of the elasticity parameters cannot be provided. Moreover, any viscous effects or
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remaining deformations are, currently, not known, i.e. measured. Thus, a model
of linear thermo-elasticity is assumed. Moreover, any viscous effects or remaining
deformations are not taken into considerations. Thus, a model of thermo-elasticity
is assumed. The heat expansion is measured to be nearly temperature-independent
within the measured range of temperature, see Fig. 1a. According to the assumption
that the thermal strains are purely volumetrical,

EΘ = ϕ(Θ(x, t))I (1)

(pure volumetric heat expansion), Fig. 1a suggest the linear function

ϕ(Θ) = αΘϑ = αΘ(Θ−Θ0), (2)

where αΘ is the heat expansion coefficient, ϑ(x, t) = Θ(x, t) −Θ0 the temperature
difference, Θ0 the reference temperature, and Θ the absolute temperature. The heat
expansion coefficient is given by αΘ = 4.55 × 10−6 1/K (here, use is made of
a Unitherm 1252 ultra high temperature dilatometer). Further measurements are
carried out using a Netzsch Laserflash-device LFA 457 to determine the temperature-
dependent heat conductivity, see Fig. 2a. The heat capacity at constant pressure is
provided by the manufacturer of the material and the mathematical representation is
shown in Fig. 2b.

In order to obtain a more or less reasonable curvature, even outside the range of
experimental data, the functions

κΘ(Θ) = b1e
−b2Θ + b3e

−b4Θ (3)

cΘ(Θ) = d1 + d2Θ+ d3 tanh(d4Θ− d5) (4)

are chosen. The parameters are identified with
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Fig. 1 Heat expansion and electrical conductivity in dependence of the temperature of graphite.
(a) Heat expansion, (b) Electrical conductivity
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Fig. 2 Heat conductivity and heat capacity in dependence of the temperature. (a) Heat conductivity,
(b) Heat capacity
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and d5 = 0.9431.
In Fig. 1b the model response of the data for the electrical conductivity in depen-

dence of the temperature provided by the manufacturer is shown as well, which is
modeled by

κϕ(Θ) = c1e
−c2Θ − c3e

−c4Θ (5)

with

c1 = 1.69×105 S

m
, c2 = 2.168×10−4 1

K
, c3 = 1.661×105 S

m
, c4 = 2.089×10−3 1

K
.

The mechanical constitutive equations are applied as follows. First of all, a depen-
dence of the mechanical material parameters on the electrical current and the tem-
perature is not assumed. These properties have not been available so far. For a first
instance thermo-elasticity is assumed. There, it is common to prescribe a specific
free-energy function and calculate the heat capacity, or to define the heat capacity
constant (commonly contradicting the choice of the specific free-energy), or to make
use of the experimentally determined heat capacity and to integrate those equations to
obtain the specific free-energy. Here, use is made of the latter concept. Thus, the case
of thermo-elasticity has to be recapped. Since we assume small strains, the linearized
strain tensor E(x, t) = (grad u(x, t)+grad T u(x, t))/2 is introduced. u(x, t) defines
the displacement field, where x symbolizes the spatial coordinate and t defines the
time. As it is common, the strain tensor is decomposed into a mechanical EM and a
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thermal part EΘ,
E = EM + EΘ, (6)

with EΘ given in Eq. (1). In view of the subsequent development the strain-rates are
required, i.e. the mechanical strain-rate reads

ĖM = Ė − ĖΘ = Ė − αΘΘ̇I with ĖΘ = αΘΘ̇I. (7)

In the following, it is assumed that the free-energy ψ(EM,Θ) can be decomposed
into one part ψM(EM) depending only on the mechanical-based deformation, and
another part ψΘ(Θ) resulting from the temperature effects

ψ(EM,Θ) = ψM(EM) +ψΘ(Θ). (8)

In the case of linear thermo-elasticity

ρψM(EM) =
K

2
(tr EM)2 +GED

M · ED
M (9)

defining the mechanical part of the specific free-energy (isotropic linear elasticity
relation), where K symbolizes the bulk modulus, G the shear modulus, and ρ(x) the
mass density. For the given Young’s modulus E and the Poisson-ratio ν the bulk and
shear moduli are

K =
E

3(1 − 2ν)
= 6389N/mm2, G =

E/

2(1 + ν)
= 4792N/mm2,

respectively.

Remark 8.1. The elastic constants might be depend on the temperature. However, the
experimental results for the underlying material are still an open issue. Accordingly,
as a first attempt temperature-independent bulk and shear moduli are assumed. This
also addresses the form of the classically simple form of the specific free-energy
function. �

tr A = a k
k defines the trace and AD = A − 1/3(tr A)I denotes the deviator

operator of a second order tensor A. tr EM is interpreted as the volumetric mechanical
strains resulting from the interpretation that for the isothermal, small strain theory
εV := tr E = tr (grad u) = div u holds, where εV represents the volumetric strain.
The thermal part of the free-energy is unknown so far and is related to the heat
capacity.

The Clausius-Duhem inequality (CDI) is assumed to guarantee thermo-mechanical
consistence, which reads

− ė+Θṡ+
1

ρ
T · Ė −

1

Θ
q · g � 0. (10)
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e(x, t) is the specific internal energy, s(x, t) the specific entropy, q(x, t) the heat flux
vector, and g(x, t) = gradΘ(x, t) the temperature gradient, see [21]. Additionally,
it is assumed that there exists a relation between the specific internal energy e and
the free-energy ψ, the total temperature Θ and the specific entropy s by

e = ψ+Θs (11)

implying
ė = ψ̇+ Θ̇s+Θṡ. (12)

Inserting this relation and the time-derivative of the free-energy

ψ̇ =
∂ψ

∂EM
· ĖM +

∂ψ

∂Θ
Θ̇ =

dψM

dEM
· ĖM +

dψΘ

dΘ
Θ̇ (13)

into the CDI (10) yields the inequality

− ψ̇− Θ̇s+
1

ρ
T · Ė −

1

Θ
q · g � 0 (14)

i.e.

−
dψM

dEM
· ĖM −

dψΘ

dΘ
Θ̇− sΘ̇+

1

ρ
T · (ĖM + ĖΘ) −

1

Θ
q · g =

=

(
1

ρ
T −

dψM

dEM

)
· ĖM −

(
s+

dψΘ

dΘ
−
αΘ

ρ
T · I

)
· Θ̇−

1

Θ
q · g � 0, (15)

where in addition to Eq. (7)2 the decomposition (7)1 is taken into consideration.
Using tr T = T · I, the strain-energies (9) and ψΘ(Θ) yield for arbitrary processes
the classical potential relations for the assumption of a small strain thermo-elastic
material

T = ρ
dψM

dEM
= K(tr EM)I + 2GED

M = K(tr E − 3αΘϑ)I + 2GED (16)

s = −
dψΘ

dΘ
+
αΘ

ρ
(tr T) = −

dψΘ

dΘ
+

3αΘK

ρ
(tr E − 3αΘϑ) (17)

Furthermore, (1/Θ)q · g � 0 has to be satisfied, which, frequently, is modeled by
Fourier’s model

q = −κΘ(Θ)g = −κΘ(Θ)gradΘ, (18)

where κΘ(Θ) � 0 represents the temperature-dependent heat conductivity. Thus,
all constitutive assumptions are explained, only the thermal part of the specific free-
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energy function, ψΘ(Θ), is unknown so far and has to be determined by the heat
capacity cΘ.

In the following, the coupled partial differential equations required for computing
boundary-value problems must be derived. First of all, the elasticity relation (16)
has to be inserted into the balance of linear momentum (here the inertia terms are
neglected)

div T + ρk = 0, (19)

where ρk is the specific volume force (k represents the acceleration of gravity).
Second, the balance of energy must be considered

ė = −
1

ρ
div q + rϕ + p. (20)

p defines the stress power describing the coupling term

p =
1

ρ
T · Ė =

dψM

dEM
· Ė = (K(tr E − 3αΘϑ)I + 2GED) · Ė, (21)

i.e. it represents a heat source for the heat equation resulting from the mechani-
cal behavior. rϕ symbolizes a volumetrically distributed heat source caused by the
electrical current, see Eq. (30).

It is common, to exchange the internal energy e in the instationary non-linear heat
equation (20) by the rate of the specific internal energy (12). Using Eqs. (7), (13),
(16) and (17) leads to

ρψ̇ = ρ
dψM

dEM
· (Ė − αΘΘ̇I) + ρ

dψΘ

dΘ
Θ̇ = T · Ė − ρ

(
αΘ(tr T) −

dψΘ

dΘ

)
Θ̇

= T · Ė − ρsΘ̇. (22)

It follows that the instationary non-linear heat equation, see Eqs. (20) and (12), reads

ρΘṡ = −div q + ρrϕ. (23)

The time-derivative of the specific entropy s in Eq. (17),

ṡ =

(
9Kα2

Θ

ρ
+

d2ψΘ

dΘ2

)
Θ̇+

3αΘK

ρ
(tr Ė), (24)

can be inserted now,

ρ

(
−

d2ψΘ

dΘ2
−

9Kα2
Θ

ρ

)
ΘΘ̇ = div (κΘ(Θ) gradΘ) + ρrϕ − 3αΘK(tr Ė)Θ. (25)
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This is the analytically exact form of the instationary heat equation in thermo-
elasticity without any further assumptions to reduce its complexity. The mathematical
structure is as follows

ρcΘ(Θ)Θ̇ = div (κΘ(Θ) gradΘ) + ρrϕ − γ(Ė,Θ) (26)

which is coupled with the local balance equation (19) and the elasticity relation (16).
Obviously, the typical assumption of a constant specific heat capacity

cΘ(Θ) = −

(
d2ψΘ

dΘ2
−

9Kα2
Θ

ρ

)
Θ (27)

is not valid anymore, see Fig. 2b, and it occurs a thermo-elastic coupling (production)
term

γ(Ė,Θ) = 3αΘKΘ(tr Ė), (28)

which is commonly not considered due to the fact that it is very small. In view of the
heat capacity (4) the thermal part of the specific free-energy in Eq. (27) one obtains

d2ψΘ

dΘ2
= −

1

Θ
d1 − d2 −

d3

Θ
tanh(d4Θ− d5) +

9Kα2
Θ

ρ
. (29)

However, the second term is analytically non-integrable. Of course, it is possible to
generate a power series around Θ0, but this is not the scope of the article and is not
necessary within the whole approach. It must be remarked that for a temperature-
dependent heat expansion or more sophisticated constitutive models it is hard to
obtain a consistent relation between the specific free-energy and the heat capacity.
Another possibility is to assume a free energy ψΘ(Θ) reflecting the experimental
data. The advantage is that one has only to carry out two differentiation steps. How-
ever, one has to know a priorily the course of the curve of the second derivative
ψ′′

Θ(Θ), which does not simplify the problem. In the case of small strain thermo-
elasticity the proposed approach has no influence although there is no analytical
expression. However, for models of internal variables or in the case of large strains
there is a discrepancy, which commonly is overcomed by assuming ψΘ(Θ) and
letting cΘ constant being a rough approximation. In the case of large temperature
changes, however, this is a very rough assumption. The remaining coupling term
results from the heat generation by the electrical current, which is described by the
volumetrical heat source rϕ, called Joule-heating, in Eq. (26),

rϕ =
1

ρ
e · j =

1

ρ
κϕ(Θ)gradϕ(x, t) · gradϕ(x, t), (30)

where the electrical field e(x, t) = −gradϕ(x, t) is related to the electrical poten-
tial ϕ(x, t) and the electrical current j(x, t) = κϕ(Θ)e(x, t) reflects Ohm’s law.



152 S. Hartmann et al.

κϕ(Θ), see Eq. (5), defines the electrical conductivity. In other words, there is a cou-
pling between the electrical potential ϕ(x, t) in electrostatics and the conservation
of charge

div j(x, t) = 0, i.e. div (κϕ(Θ)gradϕ) = 0, (31)

(assumption of a stationary electrical current, see [16, 22, 23] for further reading
as well). In conclusion, there is a coupling of the three partial differential equations
(19), (26) and (31). The non-linearities result from the temperature-dependence of the
material parameters and the boundary-conditions such as convection and radiation.

3 Time-Adaptive Monolithic Finite Element Approach

In the following, the coupled equations mentioned above, i.e. the equilibrium con-
ditions (19), with the thermo-elasticity relation (16), the instationary non-linear heat
equation (25), i.e. (26), using the abbreviations (27), (28) and (30), and the station-
ary current equation (31), are treated within finite elements. Here, use is made of the
method of vertical lines, where in the first step the spatial discretization is carried
out using the finite element discretization, see [15]. In the second step the temporal
discretization is performed applying stiffly accurate diagonally implicit Runge-Kutta
methods.

The weak formulation of Eq. (19) is derived by multiplying the partial differential
equation with virtual displacements, integrating over the volume and applying the
divergence theorem

∫
V

T · δE dV −

∫
A

t · δu dA−

∫
V
ρk · δu dV = 0, (32)

where δE(x) = (grad δu(x) + grad Tδu(x))/2 defines the virtual strain tensor, i.e.
the symmetric part of the gradient of the virtual displacements δu(x). In this context
it has to hold δu(x) = 0 on the boundary Au of the material body, where the
displacements are prescribed, A = Aσ ∪ Au, u(x, t) = qu(t) on Au (Dirichlet
boundary conditions). t(x, t) = T(x, t)n(x, t) defines the stress vector on the surface
Aσ, where n represents the surface normal. t(x, t) = qt(x, t) on Aσ define the
Neumann boundary conditions. V stands for the volume of the material body.

In the case of the instationary non-linear heat equation (26) the derivation is
similar. First, the heat equation is multiplied with the virtual temperatures δΘ(x),
integrated over the volume, and the divergence theorem is applied,

∫
V
ρcΘ(Θ)Θ̇δΘ dV =

∫
A
qδΘ dA−

∫
V
κΘ(Θ)gradΘ · grad δΘ dV

+

∫
V

(ρrϕ − γ(Ė,Θ))δΘ dV , (33)
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see [24–26]. Analogously to the mechanical field problem, the virtual temperature
has the property δΘ = 0 on AΘ, i.e. the surface where the temperatures are known,
Θ(x, t) = Θ(x, t) on AΘ (Dirichlet boundary conditions). Furthermore, on the
boundary Aq the heat transport q = −q · n is prescribed, q(x, t) = q(x, t) on
Aq,A = AΘ ∪Aq. In the case of convection the linear model q(Θ) = h(Θ−Θref)
and for radiation the non-linear boundary condition q(Θ) = σε(Θ4 − Θ4∞ ) are
considered, where σ symbolizes the Stefan Boltzmann constant and ε the emissivity.

The equation of electrostatics (31) can be treated similar to the heat equation
because it has the same mathematical structure. In this context one obtains

∫
V
κϕ(Θ)gradϕ · grad δϕ dV =

∫
A
j δϕ dA (34)

where δϕ represents the virtual electrical potential and j the electrical current den-
sity. Analogously, δϕ = 0 on Aϕ, i.e. the surface where the electrical potential
is prescribed, ϕ(x, t) = ϕ(x, t) on Aϕ (Dirichlet boundary conditions). Further-
more, on the boundary AJ the electrical current density j = −j · n is prescribed,
j(x, t) = j(x, t) on AJ, A = Aϕ ∪AJ.

The equation of electrostatics to compute thermoelectric coupling effects can
be found in several publications. In Seifert et al. [27] a one dimensional model is
solved by Mathematica to compute the thermoelectric behavior of Peltier coolers. In
the work of Pérez-Aparicio et al. [28] a three-dimensional, non-linear fully coupled
thermoelectric finite element simulation is carried out in order to simulate Peltier
coolers. They included the Seebeck, Peltier, Thompson, and Joule effect in their
analysis. The finite element method is combined with a Monte Carlo simulation
for a material sensitivity analysis. Palma et al. [29] used a modified Fourier law
yielding a hyperbolic heat equation for the simulation of micro-devices under rapid
transient effects. They simulated thermoelectric material with a non-linear dynamic
finite element formulation. Munir et al. [30] simulated the current and temperature
distributions to find out temperature and current gradients in axial and radial direc-
tion for a SPS-process. In the underlying article, however, the field is coupled to
mechanical and thermal influences.

The spatial discretization makes use of shape functions for the displacements, the
temperature and the electrical potential. This leads to the linear system of equations
(in two unknowns)

Kuu(t) + KuΘΘ(t) = ru(t), (35)

where u(t)∈ R
nu are the unknown nodal displacements and Θ(t)∈ R

nΘ the
unknown nodal temperatures. Ku symbolizes the mechanical stiffness matrix of lin-
ear elasticity and KuΘ the stiffness matrix resulting from the heat expansion. The
right-hand side contains the prescribed Dirichlet- and Neumann boundary conditions
and a term coming from the reference temperature Θ0. The weak form of the heat
equation (33) can be treated in a similar manner, see, for example, [25], yielding the
system of ordinary differential equations
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Table 1 Material parameters of the materials in a FAST-process

Material cΘ κΘ κϕ αΘ ρ E ν

mm2/(s2K) tmm/(s3K) 10−3A/(Vmm) 1/K t/mm3 MPa –

Copper cΘ,Cu(Θ) κΘ,Cu(Θ) κϕ,Cu(Θ) 1.6 × 10−5 8.92 × 10−9 120 000 0.3
Alumina cΘ,Al(Θ) κΘ,Al(Θ) 1 × 10−8 8.5 × 10−6 3.7 × 10−9 350 000 0.22
(Al2O3)
Graphite cΘ(Θ) κΘ(Θ) κϕ(Θ) 4.55 × 10−6 1.85 × 10−9 11500 0.2

The material functions κΘ(Θ), κϕ(Θ), and cΘ(Θ) are given in Eqs. (3), (4) and (5)

CΘ(t,Θ)Θ̇(t) = rΘ(t, u̇,Θ,Φ). (36)

CΘ ∈ R
nΘ×nΘ represents the temperature-dependent heat capacity matrix and

rΘ ∈ R
nΘ contains the right-hand side of Eq. (33), i.e. the heat conduction and the

terms resulting from the boundary conditions and the heat source of the electrical
potential. The coupling results from Joule heating, i.e. it depends on the nodal values
of the electrical potential Φ(t). Analogously, the charge equation (34) leads in its
discretized form to

Kϕ(t,Θ)Φ(t) = rϕ(t,Θ), (37)

where the “stiffness matrix” Kϕ ∈ R
nϕ×nϕ is temperature-dependent caused by

the electrical conductivity. Φ(t)∈ R
nϕ are the unknown nodal values of the elec-

trical potential. Equations (35), (36) and (37) represent a DAE-system, where the
algebraic part results from the mechanical equilibrium conditions (35) and the equa-
tion of electrostatics (37) and the differential part stems from the instationary heat
equation (36). According to a number of publications use is made of stiffly accurate
diagonally implicit Runge-Kutta methods (SDIRK-methods) having the advantage
to be of higher order and to have time-adaptivity for free by a local error esti-
mation using embedded schemes, see for their basic ideas [17, 18, 31], in the
context of constitutive modeling with evolutionary-type [32–35] and for further
problems [25, 36, 37]. The application of SDIRK-methods yields in each stage
(points in time in the interval tn to tn+1) a coupled system of non-linear equations,
which can be solved by any kind of non-linear equation solver. In the examples
below the Newton-Raphson and the Newton-Raphson-Chord method are applied, see
[38, 39].

4 Simulations

In the following the application of SDIRK-methods is investigated. Here, a real
process occurring in field assisted sintering is studied and the problems concerned
are worked out. For these computations the material parameters are compiled in
Table 1. The material functions for copper and alumina are listed in the appendix.
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Fig. 3 Mesh (linear hexahedral elements with nu = 27722, nΘ = 9907, and nϕ = 9588
unknowns) and geometry. a Geometry in mm, b Mesh and evaluation points in xy-plane
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Fig. 4 Boundary conditions. a Mechanical field, b Thermal field, c Electrical field

In Fig. 3 the geometry of a die/punch system is shown, where the rectangular
region close to the center contains the compacted powder material. In this context
it has to be mentioned that not the compaction process itself is treated, but “only”
the temperature evolution in the die/punch/powder system is studied. The boundary
conditions are shown in Fig. 4 for the displacements/forces, temperatures/heat fluxes,
and electrical potential/electrical current at the surfaces.Θs is the surface temperature
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Fig. 5 Measured electrical current taken from the FAST-machine used as boundary condition. a

Prescribed electrical current (I =

∫
A

j · n dA), b Measured and simulated temperature evolution in

point 5 (Θ0 = 273 K)

of the graphite tools, Θw the water temperature and h the heat transfer coefficient
(h = 0.88 t/(s3K),Θw = 295.15K). This represents a very rough modeling of
the cooling channels in the steel parts adjacent to the upper graphite surface. In
view of radiation the classical model is chosen having the Boltzmann constant σ =
5.6704 × 10−12t/(s3K4) and the emissivity of ε = 0.8. The temperature of the
chamber wall is supposed to beΘ∞ = 303.15 K. Since the chamber is under vacuum,
convection on the lateral surfaces is not taken into consideration.

From the testing machine one obtains the data of the electrical current prescribed
at the upper surface, see Fig. 5a for the smoothed response. In Fig. 5b the temperature
response for copper powder is depicted, see for the chosen material [40], showing
that the temperature at point 5 is underestimated, see Fig. 3. The heating rate in the
experiment is Θ̇ = 50 K/min. The reason of this can be seen for the absence of
heat reflection in the machine’s chamber, which leads to a larger surface temper-
ature, and the inaccurate modeling of the convection at the upper surface, where
the adjacent steel parts with the water cooling channels are located. However, more
pronounced seems to be the influence of the electrical contact conditions between
steel and graphite, graphite-graphite and graphite-powder, as reported in [10, 41, 42],
which is not modeled. Particularly, an imperfect contact changes the resistivity and,
accordingly, the heat generation. First attempts using a commercial finite element
program confirms this behavior, which is not shown here.

The comparison of electrically conducting and non-conducting material (copper
powder and a ceramic powder (alumina)) yields the fact that the electrically insulating
powder increases the heat in the graphite tool, see Fig. 6a, which is obvious since the
electrically conducting cross-section is smaller for ceramic powder than for metal
powder. However, the temperature inside the die is homogenously distributed as
indicated in Fig. 6b.
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Fig. 6 Comparison of electrical conducting and non-conducting copper and ceramic powder. a
Comparison between copper and ceramic powder in point 1, b Temperature for ceramic powder at
the four corners 1–4, see numbering in Fig. 3b
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Fig. 7 Step-size behavior using various time-integrator. a Backward-Euler method with step-size
control using the number of iterations, b Method of Ellsiepen (2nd order) and Cash (3rd order)
using embedded methods

In view of the numerical treatment using time-adaptive SDIRK-methods, the
classical Backward-Euler scheme is chosen as a first choice. Using this procedure a
common adaptive scheme makes use of the number of Newton-Raphson iterations
to estimate the step-size. If the number of iterations is less than 5, the step-size
is increased. However, if one looks at the step-size behavior in Fig. 7a, an appro-
priate computational time cannot be obtained (we terminated the computation due
to an excessive computational amount). Thus, a time-adaptive second-order and
third-order SDIRK-method of Ellsiepen, see [32, 43], and [44], are applied lead-
ing to much larger time increments. Accordingly, reasonable computational costs
are obtained. However, there are a number of step-size rejections resulting from
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Fig. 8 Heat conductivity and heat capacity of copper in dependence of the temperature. a Thermal
conductivity, b Heat capacity

the non-smoothness of the prescribed electrical current function. It seems that the
second-order method of Ellsiepen is better than the third order method of Cash.
Furthermore, it turns out that a Newton-Raphson-Chord method, see [38, 39], is
much more efficient (approximately 10–15 % of the computational time) than using
a Newton-Raphson method. However, an starting vector estimation for the Newton-
Raphson method is always required, see in this context [38].

5 Conclusions

The modeling of electro-thermo-mechanical structures is done on the basis of all
possible experimental data, i.e. the temperature-dependent heat capacity, heat con-
ductivity and electrical conductivity as well as the elasticity parameters are obtained
and modeled. It turns out that the boundary conditions and the contact conditions
between the tools have a significant influence on the accuracy of the prediction,
which have to be taken into consideration in future applications. The numerical treat-
ment of the resulting coupled system of differential-algebraic equations is carried
out using high-order and time-adaptive schemes. The application of second-order
time-integration method using embedded SDIRK-methods yields a sufficient fast
computation, particularly, if time-adaptivity is chosen, a starting vector estimation
is applied and the Newton-Raphson-Chord method is considered. In this case fast
computations are possible even for highly non-linear input data.
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Appendix

In the numerical studies the copper is used in the die system. For this the
temperature-dependent heat capacity and conductivity are measured, see Fig. 8. The
heat capacity at constant pressure of copper is measured with a Netzsch DSC 204 F1
Phoenix apparatus, which uses the Differential Scanning Calorimetry, see Fig. 8b. The
thermal diffusivity a(Θ) of copper is measured with a Netzsch Laserflash LFA 457
and subsequently the thermal conductivity is computed by κΘ(Θ) = a(Θ)ρcΘ(Θ),
see Fig. 8a. For both quantities a linear temperature dependence is assumed,

κΘ,Cu(Θ) = −78.3347 × 10−3 W/(mK2)Θ+ 433.173W/(mK) (38)

cΘ,Cu(Θ) = 82.2141 × 10−3 J/(kgK2)Θ+ 373.728J/(kgK2) (39)

which fit very well with experimental data. The properties of alumina and the elec-
trical conductivity of copper are taken from the literature, see [30]. The investigated
temperature range in this publication is between 300 K and 1300 K.

κΘ,Al(Θ) =
65181330.4 +Θ

−669628.8 + 8175.85Θ
in W/(mK), (40)

cΘ,Al(Θ) =
7770.25Θ

249.4 +Θ
+

790.15

249 +Θ
+ 0.008Θ in J/(kgK), (41)

κϕ,Al = 10−8A/(Vm) (42)

κϕ,Cu(Θ) = (5.5 + 0.038Θ) × 109 in A/(Vm) (43)
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The Use of Moment Theory to Describe the
Piezoelectric Effect in Polar and Non-Polar
Materials
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Abstract It is well known that the properties of polar and non-polar piezoelectric
materials are different. For example, the polar piezoelectric materials (ferroelectrics)
possess spontaneous polarization, while for non-polar materials such behavior can-
not be observed. However, in the classical linear theory of piezoelectricity there
is no qualitative difference between polar and non-polar materials. According to
the classical theory the only difference between them consists in the fact that the
piezoelectric moduli of polar materials are much greater than those of non-polar
materials. The objective of our investigation is to describe piezoelectricity taking
into account the qualitative peculiarities of polar and non-polar materials. Starting
from the consideration of microstructure of piezoelectric materials we propose two
theories of piezoelectricity based on the equations of micro-polar continuum. The
first theory describes the piezoelectric effect in polar materials. This theory is based
on the model of complex particle possessing a non-zero dipole moment and having
seven degrees of freedom. The second theory describes the piezoelectric effect in
non-polar materials. This theory is based on the model of an unit cell which has a
non-zero quadrupole moment and zero dipole moment. Under certain simplifying
assumptions both theories can be reduced to the classical theory of piezoelectricity.
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1 Introduction

There exist many crystals having piezoelectric properties. The piezoelectric proper-
ties reveal themselves as a result of the influence of electromagnetic fields on matter.
Piezoelectric materials can be divided into two classes: polar and non-polar piezo-
electrics. For example, LiGaO2, Li2GeO3, CdTe, BaTiO3, PZT , Pb5Ge3O3 are
polar piezoelectrics, and α − HIO3, KH2PO4, TeO2, Bi12GeO20, Bi12SiO20,
β − ZnS, α − SiO2 are non-polar piezoelectrics. The qualitative difference of
properties of polar and non-polar piezoelectric materials consists in the fact that in
contrast to non-polar piezoelectrics the polar piezoelectric materials (ferroelectrics)
have non-zero dipole moment unit volume, i. e. they possess spontaneous polariza-
tion. However, in the classical theory of piezoelectricity [1, 2] based on the equations
of electrostatics and symmetric theory of elasticity, as well as in the improved theory
of piezoelectricity [3] based on the equations of electrostatics and non-symmetric
(moment) theory of elasticity, there is no qualitative difference between polar and
non-polar materials. According to the classical theory the only difference between
polar and non-polar materials is that the piezoelectric moduli of polar materials
are much greater than those of non-polar materials. The most known approaches
which allow us to take into account the electric microstructure and permanent elec-
tric polarization are developed in [4–6]. We consider the method of description of
piezoelectricity which allows us to take into account the qualitative peculiarities of
polar and non-polar materials. This method was proposed by P. A. Zhilin (see [7,
8]). The main ideas of the method are to consider the microstructure of piezoelec-
tric materials and use the equations of micro-polar continuum. By another method,
but also taking into account the microstructure of materials, the theories of polar
piezoelectrics are constructed in [9–12]. The theory of micromorphic thermoelastic
continua taking into account electromagnetic effects is considered in [13]. On the
basis of this theory the different aspects of theories of micromorphic piezoelectricity,
micromorphic thermopiezoelectricity and magneto-electro-elasticity are discussed in
[14–17]. In the case of non-polar materials the microstructure approach to description
of piezoelectric effects is also of interest because it allows us to take into account elec-
tric quadrupoles [18]. We propose two theories of piezoelectricity. The first theory
describes the piezoelectric effect in polar materials, and the second one describes the
piezoelectric effect in non-polar materials. We show that under certain simplifying
assumptions both theories are reduced to the classical theory of piezoelectricity.

2 Polar Piezoelectric Materials

2.1 Model of the Dipole Particle

We consider the medium with particles that are neutral dipoles. The neutral dipole
is a pair of charges q+ = q and q− = −q separated by a distance. The dipole can
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Fig. 1 The electric dipole

move and rotate in space, and also change its value, i. e. it can stretch and compress.
The reference position of the dipole (see Fig. 1) is characterized by the following
quantities. Radius-vectors R+

0 and R−
0 determine the positions of charges q+ and q−

correspondingly, vector l0 determines the relative position of the dipole charges, and
radius-vector r0 determines the position of dipole center. When passing to the actual
position the charges q+ and q− move to the points determined by radius-vectors
R+ and R− correspondingly, the dipole center moves to the point determined by
radius-vector r. Vector l determining the relative position of the charges of dipole
in the actual configuration is equal to R+ − R−. The quantities characterizing the
displacements of the dipole center and dipole charges are determined as

u = r − r0, u+ = R+ − R+
0 , u− = R− − R−

0 . (1)

Let us introduce the dipole moments in the reference and actual positions and
denote them by d0 and d, correspondingly:

d0 = ql0 = q(R+
0 − R−

0 ), d = ql = q(R+ − R−). (2)

In addition, let us introduce the polarization vector p equal to change in dipole
moment and the scalar quantity ξ being the relative change in absolute value of
dipole moment:

p = d − d0, |d| = |d0|(1 + ξ). (3)

After simple transformations we obtain the following formula for p:

p = p1 + p2, p1 = ξd0, p2 = ϕ× d0, (4)
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where ϕ is the rotation vector of the dipole. Equation (4) is obtained under the
assumption of smallness of rotation and extension of the dipole. This assumption is
justified because we consider the linear theory.

Now we write the expression for the rate of energy change due to the influence of
electric field on the dipole:

ė = F+ · v+ + F− · v− . (5)

Here F+ and F− are forces acting on the positive charge and negative charge, cor-
respondingly; v+, v− are the velocities of these charges. Using the known formula
for force acting on a charged particle we have F = qE, where E is the electric field
vector. Let us perform the following transformations:

ė = q+ E(R+) · u̇+ + q− E(R−) · u̇−

= q
(
E(R+) − E(R−)

) · u̇ + qE(R+) · 1

2q
ṗ + qE(R−) · 1

2q
ṗ

= d0 · (∇E) · u̇ + E · ṗ.

Using Eq. (4) we calculate the time derivative of the polarization vector

ṗ = ξ̇d0 + ϕ̇× d0. (6)

Thus, the rate of energy change has the form

ė = d0 · (∇E) · u̇ + (d0 × E) · ϕ̇+ (d0 · E) ξ̇. (7)

2.2 Spontaneous and Piezoelectric Polarization
of the Medium

Now we introduce the density of the spontaneous polarization Ps of a continuous
medium

Ps = lim
ΔV→0

∑
k∈ΔV d0k

ΔV
. (8)

We define the density of the piezoelectric polarization Pp as a limit of the ratio

Pp = lim
ΔV→0

∑
k∈ΔV pk

ΔV
= P

p
1 + P

p
2 , (9)

where
P

p
1 = ξPs, P

p
2 = ϕ× Ps. (10)
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Thus, vector Pp is a sum of the piezoelectric polarizations of different nature. Vector
P

p
1 is concerned with the change in absolute value of dipole moment, and vector

P
p
2 is concerned with the rotation of dipole moment. These vectors are mutually

orthogonal.
Using Eqs. (9), (10) we write the analogue of Eq. (7) for continuous medium

Ė = Ps · (∇E) · u̇ + (Ps × E) · ϕ̇+ (Ps · E) ξ̇. (11)

We suppose the effect of electric field to be an external action. There are two ways
to calculate the power of this external action. On the one hand, the power of external
actions per unit volume of continuous medium is equal to ρF · u̇ +ρL · ϕ̇, where ρF
is the body force, ρL is the body moment. On the other hand, the power of external
actions is equal to that part of the rate of energy change Ė which depends on the
velocities u̇ and ϕ̇. Thus, we obtain

ρF · u̇ + ρL · ϕ̇ = Ps · (∇E) · u̇ + (Ps × E) · ϕ̇. (12)

Comparing the left-hand and the right-hand sides of Eq. (12) we conclude that the
coefficient of u̇ on the right-hand side of the equation can be associated with a body
force and the coefficient of ϕ̇ on the right-hand side of the equation can be associated
with a body moment:

ρF = Ps · ∇E, ρL = Ps × E. (13)

Thus, the physical meaning of the first two terms on the right-hand side of Eq. (11) has
been determined. The last term can be associated with the quantity Q characterizing
the energy supply from an external source:

Q = (Ps · E)ξ̇. (14)

2.3 Equations of Polar Piezoelectric Medium

In view of expressions (13) for the body force and moment, the equations of motion
of the polar piezoelectric medium in the linear approximation are written as

∇ · τ−
1

2
∇ × q + Ps · ∇E = ρü, (15)

∇ × m + q + Ps × E = ρJ · ϕ̈. (16)

Here τ is the symmetric part of stress tensor, q is the vector characterizing the
antisymmetric part of stress tensor, m is the vector characterizing the antisymmetric
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part of moment stress tensor, ρ is the mass density in the reference configuration and
J is the inertia tensor per unit mass.

We introduce the electric induction vector D by the relation

D = ε0E + Pp, (17)

where ε0 is the permittivity of free space. Using Eqs. (9), (10) we rewrite Eq. (17) in
the form

D = ε0E + ξPs +ϕ× Ps. (18)

In view of Eq. (18) the equation of electrostatics

∇ · D = 0 (19)

takes the form
∇ · [

ε0E + ξPs +ϕ× Ps
]

= 0. (20)

According to Eq. (20) the Cauchy–Green relation between D and E adopted in the
classical theory of piezoelectricity is unnecessary in the theory under consideration
and it should be replaced by the Cauchy–Green relation between ξ and the projection
of E on Ps. This is one of the essential differences between the micro-polar theory
of piezoelectric medium and the classical theory of piezoelectricity.

Now we formulate the energy balance equation

ρU̇ = τ · · ġ − q · θ̇− m · γ̇+ ∇ · h + Q, (21)

where h is the heat flow vector, Q is the rate of energy supply from an external source,
g is the strain tensor, θ and γ are the strain vectors connected with the rotational
degrees of freedom:

g =
1

2

(
∇u + ∇uT

)
, θ = ϕ−

1

2
∇ × u, γ = ∇ ×ϕ. (22)

In order to obtain the Cauchy–Green relations we use the method developed by
P. A. Zhilin [7, 8]. We represent τ, q and m in the form

τ = τe + τf, q = qe + qf, m = me + mf, (23)

where τe, qe, me are the elastic (independent of strain rate) parts of the force and
moment stresses, and τf, qf and mf are the dissipative parts of these stresses. In
view of Eq. (23) and the expression for the rate of energy supply (14) the energy
balance equation (21) can be rewritten in the form
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ρU̇ = τe · · ġ − qe · θ̇− me · γ̇+ (E · Ps) ξ̇

+ ∇ · h + τf · · ġ − qf · θ̇− mf · γ̇. (24)

Let us introduce two scalar quantities ϑ and H satisfying the equation

ϑḢ = ∇ · h + τf · · ġ − qf · θ̇− mf · γ̇, (25)

and call them the temperature and entropy, correspondingly. The following consti-
tutive equation can be used for the heat flow vector h:

h = k∇ϑ, (26)

where k is the heat-conduction coefficient of the medium. Substituting Eq. (26) into
Eq. (25) we obtain the heat conduction equation

kΔϑ− ϑḢ = −τf · · ġ + qf · θ̇+ mf · γ̇. (27)

The terms on the right-hand side of Eq. (27) characterize the heat production con-
nected with the dissipative processes.

Using Eq. (25) we rewrite the energy balance equation (21) in the form

ρU̇ = τe · · ġ − qe · θ̇− me · γ̇+ (E · Ps) ξ̇+ ϑḢ . (28)

Hence U = U (g,θ,γ, P, ξ, H ), from Eq. (28) we obtain the Cauchy–Green rela-
tions

τe =
∂ρU

∂g
, qe = −

∂ρU

∂θ
, me = −

∂ρU

∂γ
,

E · Ps =
∂ρU

∂ξ
, ϑ =

∂ρU

∂H
.

(29)

Let us represent the internal energy as the positive defined quadratic form

ρU =
1

2
g · · C(g) · · g +

1

2
θ · C(θ) · θ+

1

2
γ · C(γ) · γ+

1

2
C(ξ)ξ2

+
1

2
C(H )H 2 + θ · C(θg) · · g + γ · C(γg) · · g + ξC(ξg) · · g (30)

+ H C(H g) · · g + γ · C(γθ) · θ+ ξC(ξθ) · θ+ H C(H θ) · θ
+ ξC(ξγ) · γ+ H C(H γ) · γ+ C(ξH )ξH .

Substituting Eq. (30) into the Cauchy–Green relations (29) we get the constitutive
equations
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τe = C(g) · · g + θ · C(θg) + γ · C(γg) + C(ξg)ξ+ C(H g)H ,

−qe = C(θg) · · g + C(θ) · θ+ γ · C(γθ) + C(ξθ)ξ+ C(H θ)H ,

−me = C(γg) · · g + C(γθ) · θ+ C(γ) · γ+ C(ξγ)ξ+ C(H γ)H , (31)

E · Ps = C(ξg) · · g + C(ξθ) · θ+ C(ξγ) · γ+ C(ξ)ξ+ C(ξH )H ,

ϑ = C(H g) · · g + C(H θ) · θ+ C(H γ) · γ+ C(ξH )ξ+ C(H )H .

In order to close the set of equations (15), (16), (20), (22), (23), (27), (31) the
constitutive equations for the dissipative parts of force and moment stresses τf, qf,
mf should be formulated.

2.4 The Simplest Theory of Polar Medium

Now we neglect the inertia of rotation and the moment interactions, i. e. we suppose
that J = 0 and m = 0. Then the equation of the angular momentum balance (16)
takes the form

q = −Ps × E. (32)

Substituting Eq. (32) into the equation of momentum balance (15) we obtain

∇ · τ+
1

2
∇ × (Ps × E) + Ps · ∇E = ρü. (33)

Let us neglect the dissipative and thermal effects. Then in view of Eq. (32) the con-
stitutive equations (31) take the form

τ = C(g) · · g + θ · C(θg) + C(ξg)ξ,

Ps × E = C(θg) · · g + C(θ) · θ+ C(ξθ)ξ, (34)

E · Ps = C(ξg) · · g + C(ξθ) · θ+ C(ξ)ξ,

where index e of tensor τ is left out since the dissipative part of this tensor is equal
to zero. In view of the relation between anglesϕ and θ the expression (18) takes the
form

D = ε0E + ξPs + θ× Ps +
1

2
(∇ × u) × Ps (35)

and the equation of electrostatics (20) is written as

∇ ·
[
ε0E + ξPs + θ× Ps +

1

2
(∇ × u) × Ps

]
= 0. (36)
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Thus, the set of equations (33)–(36) represents the formulation of the simplest theory
of polar piezoelectric medium. Here the basic variables are the displacement vector
u, the shear vector θ and the quantity ξ characterizing the dipole deformation.

2.5 Comparison with the Classical Theory

To compare Eqs. (33)–(36) with the equations of classical theory of piezoelectricity
we should obtain the relations between τ, D and g, E. In order to do this we solve
the system of second and third equations in (34) with respect to θ and ξ. Then
we substitute the obtained expressions into the first equation in Eqs. (34) and into
Eq. (35). As a result we get

τ = C · · g − E · M, D = M · · g + ε · E −
1

2
Ps × (∇ × u) , (37)

where C is the stiffness tensor; M is the tensor of piezoelectric moduli; ε is the
permittivity tensor. Tensors C, M, ε can be expressed in terms of the material tensors
introduced above by the sufficiently complicated formulas.

Comparison of the constitutive equations (37) and the corresponding constitutive
equations of the classical theory [1, 2]

τ = C · · g − E · M, D = M · · g + ε · E (38)

reveals that the constitutive equations forτ are the same and the constitutive equations
for D differ by the additional term which depends on the curl of displacement vector
in the case of the micro-polar theory.

The equation of motion (33) differs from the classical equation of motion

∇ · τ+ ρF = ρü, τ = τT (39)

by the presence of two terms modelling the effect of the electric field. The equation
of electrostatics has the same form (19) in both theories.

3 Non-Polar Piezoelectric Materials

3.1 Model of the Unit Cell of Crystal Lattice

We consider the crystal lattice with unit cells consisting ofN ions which have charges
qi (see Fig. 2). In the reference configuration the position of mass center of the cell
is determined by the radius-vector r, the positions of ions are determined by the
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Fig. 2 Arbitrary unit cell of
crystal lattice

radius-vectors ri = r + bi, where the radius-vectors bi determine the positions of
ions relative to the mass center of the cell.

Let us introduce the electrical characteristics of the unit cell: the total charge q,
the dipole moment d and the quadrupole moment Q, which are calculated by the
formulas

q =
∑

i

qi, d =
∑

i

qibi, q =
1

2

∑
i

qibibi. (40)

Note that the definition of the quadrupole moment (40) is not standard. Usually
another definition of quadrupole moment is introduced, namely

Q∗ =
∑

i

qi(3bibi − b2
iI), (41)

where I is the unit tensor. In crystals the total charge of the unit cell is equal to zero
whereas the dipole moment d and the quadrupole moment Q can be zero or non-zero
depending on the type of material. It is known that if the total charge and the dipole
moment are equal to zero then the quadrupole moment does not depend on the point
with respect to which it is calculated. This is true for both definitions of quadrupole
moment.

To describe the kinematics of the unit sell we introduce the displacement vectors
of ions ui. Further all displacements are supposed to be small and the following
representation for ui is used:

ui = u +ϕ× bi + ξi. (42)

Here u is the displacement vector of the center of the unit cell, ϕ is the vector of
small rotation of the unit cell as a rigid body, ξi are variables characterizing the
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deformation of the unit cell. We suppose the ion displacements associated with the
deformation of the unit cell to be much less than the ion displacements connected with
the movement of the cell as a rigid body. In other words, we assume that |ξi| � |u|

and |ξi| � |ϕ× bi|. Let us introduce the polarization vector p:

p =
∑

i

qi(ϕ× bi + ξi). (43)

In view of Eq. (40) the formula (43) can be reduced to the form

p = pr + pd, pr = ϕ× d, pd =
∑

i

qiξi. (44)

Here pr is the polarization due to the rotation of the unit cell, and pd is the polarization
due to the deformation of the unit cell.

Now we write the expression for the rate of the energy change due to the work of
the electric field on the ions of unit cell:

ė =
∑

i

qiE(ri) · vi, (45)

where vi = u̇i is the velocity vector of the ion with the number i. Assuming that
the electric field slowly varies over distances comparable with the characteristic
dimensions of the unit cell we use the expansion of vector E in a Taylor series.
Keeping the first three terms in the Taylor series we have

E(ri) ≈ E(r) + bi · ∇E +
1

2
bibi · · ∇∇E. (46)

Using Eqs. (42), (46) we reduce the expression for the rate of energy change (45) to
the form

ė ≈ (d · ∇E + Q · · ∇∇E) · u̇ +
(
d × E + 2Q · ×∇E

) · ϕ̇+ E · ṗd. (47)

The formula (47) is derived in view of the fact that the total charge of the unit cell is
equal to zero, and also |ξi| � |u| and |ξi| � |ϕ× bi|.

3.2 Polarization of Continuous Medium

Now we write the analogue of Eq. (47) for the continuous medium. In order to pass
from the discrete model to the corresponding continuum model we use standard line
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of reasoning based on symmetry properties of the crystal lattice and the long-wave
approximation. The description of the method can be found in [19]. Application of
this method in the case when the rotational motion and moment interaction are taken
into account is discussed in [20]. Thus, the continuous analogue of Eq. (47) is

Ė ≈ (Ps · ∇E + Q · · ∇∇E) · u̇ +
(
Ps × E + 2Q · ×∇E

) · ϕ̇+ E · Ṗ
p

. (48)

Here the parameters of the medium Ps (volume density of spontaneous polarization)
and Q (volume density of the quadrupole moments) are

Ps = lim
ΔV→0

∑
k∈ΔV dk

ΔV
, Q = lim

ΔV→0

∑
k∈ΔV qk

ΔV
, (49)

and the volume density of piezoelectric polarization Pp being one of the basic
variables is introduced by the formula

Pp = lim
ΔV→0

∑
k∈ΔV pdk

ΔV
. (50)

We suppose the electric field to be an external factor. The power of external actions
per unit volume is equal to ρF · u̇ + ρL · ϕ̇. The corresponding power of the electric
field action is equal to that part of the rate of energy change Ė which depends on the
translational velocity u̇ and the angular velocity ϕ̇. Thus, we obtain

ρF · u̇ + ρL · ϕ̇ = (Ps · ∇E + Q · · ∇∇E) · u̇ +
(
Ps × E + 2Q · ×∇E

) · ϕ̇. (51)

Comparing the left-hand and the right-hand sides of Eq. (51) we conclude that the
coefficient of u̇ on the right-hand side of the equation can be associated with a body
force and the coefficient of ϕ̇ on the right-hand side of the equation can be associated
with a body moment:

ρF = Ps · ∇E + Q · · ∇∇E, ρL = Ps × E + 2Q · ×∇E. (52)

In the case of non-polar piezoelectrics Ps = 0 and the expressions (52) take the
simpler form

ρF = Q · · ∇∇E, ρL = 2Q · ×∇E. (53)

The last term in Eq. (51) can be associated with the quantity Q characterizing the
energy supply from an external source that cannot be expressed in terms of the power
of external forces and moments:

Q = E · Ṗ
p

. (54)
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3.3 Equations of Non-Polar Piezoelectric Medium

In view of the expressions for external force and moment (53) the equations of motion
of the non-polar piezoelectric medium in the linear approximation take the form

∇ · τ−
1

2
∇ × q + Q · · ∇∇E = ρü, (55)

∇ × m + q + 2Q · ×∇E = ρJ · ϕ̈. (56)

Introducing electric induction vector D by means of Eq. (17) we write the equation
of electrostatics (19) as

∇ · [
ε0E + Pp

]
= 0. (57)

Starting from the energy balance equation in the form of Eq. (21) and using the
line of reasoning similar to those which were held in the case of polar medium we
obtain the heat conduction Eq. (27) and the reduced energy balance equation

ρU̇ = τe · · ġ − qe · θ̇− me · γ̇+ E · Ṗ
p

+ ϑḢ . (58)

Note that Eq. (58) is derived in view of the expression (54) for the rate of energy
supply from an external source. The Cauchy–Green relations which follow from
Eq. (58) are

τe =
∂ρU

∂g
, qe = −

∂ρU

∂θ
, me = −

∂ρU

∂γ
, E =

∂ρU

∂Pp , ϑ =
∂ρU

∂H
. (59)

The internal energy is assumed to be the positive defined quadratic form

ρU =
1

2
g · · C(g) · · g +

1

2
θ · C(θ) · θ+

1

2
γ · C(γ) · γ

+
1

2
Pp · C(P) · Pp +

1

2
C(H )H 2 + θ · C(θg) · · g + γ · C(γg) · · g

+ Pp · C(Pg) · · g + H C(H g) · · g + γ · C(γθ) · θ+ θ · C(θP) · Pp

+ H C(H θ) · θ+ Pp · C(Pγ) · γ+ H C(H γ) · γ+ H C(H P) · Pp.
(60)

Substituting Eq. (60) into the Cauchy–Green relations (59) we get

τe = C(g) · · g + θ · C(θg) + γ · C(γg) + Pp · C(Pg) + C(H g)H ,

−qe = C(θg) · · g + C(θ) · θ+ γ · C(γθ) + C(θP) · Pp + C(H θ)H ,

−me = C(γg) · · g + C(γθ) · θ+ C(γ) · γ+ Pp · C(Pγ) + C(H γ)H , (61)
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E = C(Pg) · · g + θ · C(θP) + C(Pγ) · γ+ C(P) · Pp + C(H P)H ,

ϑ = C(H g) · · g + C(H θ) · θ+ C(H γ) · γ+ C(H P) · Pp + C(H )H .

In order to close the set of equations (22), (23), (27), (55)–(57), (61) the constitutive
equations for the dissipative parts of force and moment stresses τf, qf, mf should
be formulated.

3.4 Comparison with the Classical Theory

To compare the theory stated above with the classical theory of piezoelectricity we
leave out the thermal effects and moment interactions and neglect the inertia of
rotation. Since μ = 0, J = 0 the angular momentum balance equation (56) takes the
form

q = −2Q · ×∇E. (62)

In view of Eq. (62) the momentum balance equation (55) is reduced to the form

∇ · τ+ Q · ∇∇ · E = ρü. (63)

In view of the foregoing assumptions the constitutive equations (61) can be rewritten
as

τ = C(g) · · g + θ · C(θg) + Pp · C(Pg),

−q = C(θg) · · g + C(θ) · θ+ C(θP) · Pp, (64)

E = C(P) · Pp + C(Pg) · · g + θ · C(θP),

where indices e of tensor τ and vector q are left out because the dissipative part
of these tensors are equal to zero. Further two versions of the simplified theory are
considered.

Variant 1. We suppose that the shear strainθ is equal to zero, but the corresponding
part of the stress tensor determined by vector q is a finite quantity. Then the constitu-
tive equations (64) take the simpler form. In view of Eq. (17) the obtained constitutive
equations can be reduced to Eq. (38) where tensors C, M, ε are expressed in terms
of the material tensors introduced above. Thus the first variant of the simplified the-
ory is the set of equations of piezoelectricity (19), (38), (63) which differs from the
classical one only by the term Q ·∇∇ ·E in the equation of motion (63). Substituting
the first equation in Eq. (38) into Eq. (63) we obtain

∇ · (C · · g) − ∇E · ·M + Q · ∇∇ · E = ρü. (65)
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In the case of long-wave processes the contribution of the term Q · ∇∇ · E is small
compared to the contribution of the term ∇E·· M. However, in the case of short-wave
processes the contribution of the term Q · ∇∇ · E can be significant.

Variant 2. The case when θ �= 0 is considered. By the simple transformations in
view of Eqs. (17), (62) the constitutive equations (64) are reduced to the form

τ = C · · g − E · M + N · · ∇E, D = M · · g + ε · E − ε · ·∇E. (66)

Here tensors C, M, N, ε, ε can be expressed in terms of the material tensors
introduced above by the complicated formulas. It is easy to see that the constitutive
equations (66) differ from the classical ones by the terms containing ∇E. Now it is
impossible to quantify the contribution of these terms since to determine the tensors
N and ε the physical experiments should be carried out. However, it is clear that
in the case of short-wave processes the relative contribution of the terms containing
∇E is greater than in the case of long-wave processes.

4 Conclusion

Above two micro-polar theories of piezoelectricity based on the continuum with
internal degrees of freedom are considered. One of these theories describes the polar
piezoelectric materials, and the other describes the non-polar materials. In contrast to
the classical theory where the constitutive equations establish the relations between
the electric field vector E and the electric induction vector D, in the proposed micro-
polar theories the constitutive equations relate the electric field vector E and the
polarization vector Pp. It is proved that under certain simplifying assumptions the
proposed theories of piezoelectricity pass into the quasi-classical ones. The quasi-
classical theories differ from the classical theory of piezoelectricity by the presence of
additional terms of piezoelectric nature in the equations of motion and the constitutive
equations.
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Description of Thermal and Micro-Structural
Processes in Generalized Continua: Zhilin’s
Method and its Modifications

Elena Ivanova and Elena Vilchevskaya

Abstract The method of description of thermal and micro-structural processes,
developed by P.A.Zhilin is discussed. The main idea of the method consists of trans-
formation of the energy balance equation to a special form called the reduced equation
of energy balance. This form is obtained by separation of the stress tensors into elastic
and dissipative components and introduction of quantities characterizing the physical
processes associated with neglected degrees of freedom. As a result the energy bal-
ance equation is divided into two or more parts, one of them is the reduced equation
of energy balance, and the rest have a sense of heat conduction equation, diffusion
equation, equation of structural transformations, etc. We discuss the applicability of
this method to generalized continua, in particular, to media with rotational degrees
of freedom and media with microstructure. Comparative analysis of various modifi-
cations of Zhilin’s method, differed in the way of temperature, entropy and chemical
potential introduction, is carried out.

1 Introduction

The idea of generalized continua goes back to the work of the Cosserat brothers [6].
The main idea of generalized continua is to consider extra degrees of freedom for
material points in order to be able to better model materials with microstructure in the
framework of continuum mechanics. Many developments have been reported since
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the seminal work of the Cosserat brothers (see [8, 13, 18, 25, 26] and references
therein). One of the most fundamental references on the theory of polar media is
the paper written by Kafadar and Eringen [9, 14], where the nonlinear Cosserat
medium of a general type is considered. The more recent developments can be seen
in [4, 7, 10, 21, 24] and references therein. Due to the effort of Eringen and his
contemporaries Cosserat’s theory appreciably evolved, however, after a time the
interest in studying of the Cosserat 3D-continuum began to wane. One of the reasons
was that the attempts to determine the additional elastic moduli experimentally were
not successful. At the same time the effect of these constants is so small that in fact
the Cosserat theory of elasticity does not provide any improvement in comparison
with the classical theory of elasticity.

At the beginning of XXI century a new method of describing of various inelastic
processes in solids and multicomponent mixtures by means of the Cosserat con-
tinuum was proposed by P. A. Zhilin (see original papers [1, 30–33] and books
[34, 35] based on these papers). One of the key ideas of the method consists in
the separation of force and moment stresses into elastic and inelastic (dissipative)
components. To describe the inelastic processes associated with phase transitions
and structural transformations, plastic flow, dynamics of bulk solids, dynamics of
granular media, fragmentation and defragmentation of materials, particle diffusion,
chemical reactions, etc. it is important to introduce the additional state variables
such as temperature, entropy, chemical potential and particle distribution density. In
fact, the introduction of these quantities in continuum mechanics should be consid-
ered as an attempt to take into account the microstructural processes at the macro
level by means of some integral characteristics. Zhilin’s method tolerates various
modifications of the definitions of entropy and chemical potential as well as other
state variables being quantities that cannot be measured. In this paper we consider
different ways of introduction of such quantities and carry out their comparative
analysis.

The paper is organized as follows. In Sect. 2, in order to describe structure modi-
fications, we introduce the density of particle distribution as an independent charac-
teristic and recall the basic balance equations for the spatial distribution. Following
Zhilin [32, 34] in Sect. 3 we rewrite the energy balance equation in a special form
called the reduced equation of energy balance. This form is obtained by separa-
tion of the stress tensors into elastic and dissipative components and introduction of
quantities characterizing the physical processes associated with neglected degrees of
freedom. As a result the energy balance equation is divided into two or more parts,
one of them is the reduced equation of energy balance, and the rest have a sense
of heat conduction equation, equation of structural transformations, etc. Section 4
aims at comparison of Truesdell’s and Zhilin’s methods of constitutive equations
derivation and provides some constitutive equations for the dissipative part of stress
tensors. In Sect. 5 we discuss in details the different ways of the entropy and chemical
potential introduction and compare these approaches in Sect. 6.
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2 Balance Equations for Cosserat Continuum with
Microstructure

The majority of the researches were focused on the fact that in a continuum one
has to define translations and rotations independently (or in other words, one has to
establish force and moment actions as it was done by Euler). Therefore one sym-
metric stress tensor is not enough to represent the response of the continuum on the
external loading. As a result two independent laws of motion appear: the balance
of momentum and the balance of angular momentum. Another internal degree of
freedom which can be considered explicitly is the distribution of the particle density.
Considering this quantity independently of mass density allows to take into account
media microstructure changes due to its fragmentation or particle diffusion. Further
we formulate the balance equations for a continuum with angular degrees of freedom
and microstructure.

Let us choose an inertial reference system and observe the volume V (control
volume) fixed in the reference system and containing some amount of body-points.
It is assumed that a body-point occupies zero volume and has both translational and
angular degrees of freedom. To derive dynamical equations of the continuum we
apply the spatial description. Let vector r determine a position of some point of
space. We denote a mass density of the material medium in the point of space by
ρ(r, t), a velocity field by v(r, t), fields of rotation tensor and angular velocity vector
of the body-point by Q(r, t) and ω(r, t).

The local form of the mass conservation law can be written as:

δρ

δt
+ ρ ∇ · v = 0. (1)

Here δ/δt is the material derivative, ∇ denotes the nabla operator.
In addition to the mass density we introduce a particle density n(r, t) as an inde-

pendent variable. Such differentiation is important, for example, when the material
tends to fragmentation, as in this case the mass is preserved, but the number of par-
ticles changes. In other words considering the particle density as an independent
characteristic corresponds to introducing an additional degree of freedom which
accounts for structural changes. As a result an additional balance equation for the
new variable has to be formulated. This equation can be written by analogy to Eq. (1)
with a source term. Thus, the particle balance equations takes the form [1, 35]

δn

δt
+ n∇ · v = χ. (2)

Here χ is the rate of particle production per unit volume.
From combination of Eqs. (1) and (2) it follows that

δz

δt
= −

χ(r, t)

n(r, t)
, z ≡ ln

(
ρ(r, t)n0(r)
ρ0(r)n(r, t)

)
, (3)
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where n0(r) and ρ0(r) are reference distributions of densities of particles and mass.
To formulate the rest of the balance equations we assume that the kinetic energy

of the substance K in the control volume V is an additive function of mass, and thus
can be written in terms of a kinetic energy mass density κ

K =

∫

V

ρ κ dV.

Then, following [32, 35], we postulate that κ is a quadratic form of translational and
angular velocities of the body-point

κ =
1

2
v · v + v · B · ω +

1

2
ω · C · ω, (4)

where B = Q · B0 · QT and C = Q · C0 · QT are the mass densities of the inertia
tensors of the body-point. B0 and C0 are the inertia tensors in the reference state per
unit mass. Q is a rotation tensor. It relates to ω by the equation:

dQ(r, t)

dt
= ω(r, t) × Q(r, t)

Then the linear momentum is defined by expression

K1 =

∫

V

ρ K1 dV, K1 =
∂κ

∂v
= v + B · ω, (5)

where K1 is the mass density of momentum.
The angular momentum calculated relative to the origin is defined as:

K2 =

∫

V

ρ K2 dV, K2 = r × K1 + L, (6)

where

L ≡ ∂κ

∂ω
= v · B + C · ω (7)

is the mass density of the dynamic spin.
Euler’s first dynamical law momentum balance equation for the control volume

V bounded by smooth surface Σ within the spatial description may be written

d

dt

∫

V

ρ K1 dV =

∫

V

ρ F dV +

∫

Σ

(Tn − ρ n · vK1) dΣ, (8)
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where d/dt is the total time derivative, F is an external force per unit mass, Tn is a
stress vector acting upon an elementary surface, n is normal to this surface.

The local form of Euler’s first dynamical law is:

ρ
δ

δt
K1 = ∇ · T + ρ F, (9)

where T is the Cauchy stress tensor (Tn = n · T).
Euler’s second dynamical law (the equation for balance of the angular momentum)

within spatial description is as follows:

d

dt

∫

V

ρ K2 dV =

∫

V

ρ (r × F + L) dV +

∫

Σ

(r × Tn + Mn − ρ n · vK2) dΣ, (10)

where L is an external moment per unit mass, Mn is a moment acting upon a surface
with the normal n.

Using Euler’s first dynamical law one can obtain the local form for Euler’s second
dynamical law for a generalized continuum

ρ
δ

δt
K2 = ∇ · M + T× + ρ L, (11)

where M is a couple tensor introduced in analogy to the stress tensor, T× is a vector
invariant of a second rank tensor. For the dyad ab it is defined by (ab)× = a × b.
The material derivative of the angular momentum has the form:

δ

δt
K2 = v × K1 +

δ

δt
L = v × B · ω +

δ

δt
L (12)

The first law of thermodynamics (the energy balance equation) states that there
is a function of state U (called internal energy) satisfying the equation

d

dt
(K+U) = Ne +Q, (13)

where Ne is the power of external forces, Q is the energy supply from external
sources per unit time.

The definition of internal energy is less formal than that of the kinetic energy. As
a matter of fact, the internal energy is the energy of motion on degrees of freedom
which are ignored in the model under consideration. Indeed, the momentum balance
equation and the angular momentum balance equation are obtained by choosing the
kinetic energy as a quadratic form of translational and angular velocities correspond-
ing to the translational and rotational degrees of freedom. Other degrees of freedom
that are ignored in the kinetic energy are taken into account by means of the internal
energy. As a rule the sense of the internal energy depends on the mathematical model
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used for description of the system. For example, in classical equilibrium thermody-
namics the internal energy of the ideal gas is an additive function of the number of
particles and proportional to the temperature [19, 23]. In statistical thermodynamics
the internal energy is determined by the elastic interactions of the particles, and for
the ideal gas it is equal to zero [16]. The difference between the approaches can not
give the cause for doubts about their correctness. The fact is that the internal energy
is a quantity that cannot be measured, and so there are no physical experiments which
let us know what the internal energy of the system under consideration is.

Usually in many continuum mechanics applications the internal energy is an
additive function of the mass [20, 27, 29]. Here we intend to take into account the
structure changes in the media caused by a change of the number of particles in the
medium. Therefore we suppose that the internal energy is an additive function of
the number of particles [32], and we will study the consequences of our supposition.
Thus we accept

U =

∫

V

nu dV,

where u is the specific internal energy.
The power of external forces and coupled forces can be represented in the follow-

ing form:

Ne =

∫

V

ρ (F · v + L · ω) dV +

∫

Σ

(Tn · v + Mn · ω) dΣ (14)

The energy supply per unit time is determined by the adding (moving away) of
new particles to the control volume and by the heat supply per unit timeQ which is
the sum of the heat supply per unit time directly in the volume V and through the
boundary of volume Σ

Q =

∫

V

nqdV −

∫

Σ

n · h dΣ−

∫

Σ

n · v(ρ κ+ nu)dΣ,

where q is the energy supply per unit time into the particles of the medium, h is the
heat flow.

Taking into account Gauss’ theorem and balance laws (1), (2), (9) and (11) one
can obtain the local form of energy balance equation1

n
δu

δt
= nu

δz

δt
+ TT··(∇v + I × ω) + MT··∇ω − ∇ · h + nq, (15)

where I is a unit tensor. However such a form of the energy balance equation is not
that good since it is not clear on which arguments the internal energy depends. In

1 Details are presented in E.N. Vilchevskaya. Appendix: Formula calculus in [35].
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the following section we will transform (15) to obtain the so-called reduced energy
balance equation.

3 Transformation of the Energy Balance Equation

Let us consider Eq. (15). The right-hand side of this equation contains the power of
forces and moments. A part of this power leads to the change of the internal energy.
The remaining part of the power is partly conserved within the body as heat and is
partly emanated into external medium. In order to separate these parts let us introduce
the following decomposition

T = −(pe + pf)I + τe + τf, M = Me + Mf, tr τe = tr τf = 0, (16)

where the quantities with the index “e” are independent of velocities. These quantities
always affect the internal energy. The quantities with the index “f” account for an
internal friction. These quantities may have an influence on the internal energy but
only by means of additional parameters like entropy or chemical potential. Taking
(16) into account we rewrite the energy balance equation in the form:

n
δu

δt
= nu

δz

δt
− pe∇ · v + τT

e··(∇v + I × ω) + MT
e··∇ω

−∇ · h + nq− pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω

(17)

The part of the power of forces and moments that does not depend on velocities
can be represented as:

τT
e··(∇v + I × ω) + MT

e··∇ω = fT
1 ··δE
δt

+ MT
e··δF
δt

+
1

2
fT
2 ··δQ
δt

(18)

fT
1 = −

(
τe + Me · FT

)
· E-T, fT

2 =
(

MT
e · F − τe

)
× × Q,

where the strain measure F and the deformation gradient E are determined by:

∇Q = F × Q, E = I − ∇u (19)

u is a displacement field. From the mass balance it follows that

∇ · v =
ρ

ρ0

δ σ

δt
, σ =

ρ0

ρ
(20)

and as a result the energy balance equation takes the form:
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n
δu

δt
= nu

δz

δt
− pe

ρ

ρ0

δ σ

δt
+ fT

1 ··δE
δt

+ MT
e··δF
δt

+
1

2
fT
2 ··δQ
δt

−∇ · h + nq− pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω

(21)

A transformation of the underlined terms is not as formal as the above ones. In
order to state the full form of the reduced equation of the energy balance we need
to define the concepts of temperature, entropy and chemical potential that will be
discussed later.

4 Constitutive Equations

There are several methods of the constitutive equations derivation in continuum
mechanics. We start with comparing Zhilin’s method with one of the best known and
widely used methods—the method of Truesdell.

Truesdell’s method [29] is based on the combined use of the first and second laws
of thermodynamics. The essence of this method is as follows. The second law of ther-
modynamics is written in the form of the Clausius–Duhem inequality. Then some
thermal terms, namely the rate of heat supply per unit volume and divergence of the
heat flow, are excluded from the inequality by means of the energy balance equation.
As a result the so-called reduced dissipation inequality is obtained. It must be satis-
fied for all processes occurring in the medium. Since neither the external mechanical
actions nor the heat supply from external sources are included in the reduced dissipa-
tion inequality this inequality imposes restrictions to the constitutive equations. In the
case of an elastic medium the reduced dissipation inequality allows us to obtain the
Cauchy–Green relations for the stress tensor, moment stress tensor and temperature,
and imposes restrictions to the choice of the constitutive equation for heat flow vec-
tor. After substituting the Cauchy–Green relations into the energy balance equation
and performing some mathematical transformations the heat conduction equation is
obtained. This equation relates the temperature and entropy, divergence of the heat
flow vector and the terms characterizing the rate of heat supply per unit volume. The
heat conduction equation closes the system of equations of coupled problem of ther-
moelasticity. If a medium possesses inelastic properties then the reduced dissipation
inequality does not allow us to obtain the constitutive equations in the formal way
and only makes it possible to eliminate those constitutive equations which contradict
the second law of thermodynamics in the form of the Clausius–Duhem inequality.
Thus other methods of the constitutive equations obtaining should be used, for exam-
ple, the method of rheological models or the method of theory of media with fading
memory. At the same time the statement of the heat conduction equation in the form
that is obtained in the problem of thermoelasticity is an open question.

The basic idea of Zhilin’s method is to transform the energy balance equation into
a special form. During this transformation the stresses are represented as a sum of
elastic and dissipative components, the temperature and entropy are introduced, and
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the energy balance equation is divided into two equations. One of them is the reduced
energy balance equation which contains the internal energy, the elastic components
of stress tensor and moment stress tensor, and also temperature and entropy. Another
equation is the heat conduction equation which contains temperature and entropy,
the dissipative components of stress tensor and moment stress tensor, the divergence
of the heat flow vector, and the terms characterizing the rate of heat supply per unit
volume. In contrast to the reduced dissipation inequality, the reduced energy balance
equation used in Zhilin’s method allows us to obtain the Cauchy–Green relations
for the temperature and the elastic component of the stress tensor in the case of
an inelastic medium. Note that by Zhilin’s method the Cauchy–Green relations are
obtained without use of the second law of thermodynamics, which is used only for
the formulation of the constitutive equations for the dissipative components of stress
tensors and heat flow vector. In addition, Zhilin’s formulation of the second law of
thermodynamics differs from the Clausius–Duhem inequality and represents the set
of two inequalities [32, 35].

h · ∇ϑ � 0, δ = −pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω � 0, (22)

where ϑ is the temperature measured by a thermometer. This formulation is more
restrictive than the Clausius–Duhem inequality [28], which follows from Zhilin’s
formulation.

The first inequality expresses the intuitive condition that heat flows in the direction
of the negative gradient of temperature and imposes restriction of the constitutive
equation for heat flow vector. The second one can be associated with the statement
that the dissipative forces and moments can not perform a positive work and imposes
restriction of the constitutive equations for the dissipative components of stress ten-
sors. According to Zhilin [1, 30–35] the components of stress tensors connected
with inelastic behavior and internal dissipation can be related with antisymmetric
tensors. Bellow we give some examples of constitutive equations for the dissipative
components of stress tensors.

To describe the inelastic behavior of solids, for example, plasticity and dynamics
of granular media Zhilin proposed [30–35] the following constitutive equations

pf = 0, τf = I × t, Mf = 0, (23)

where vector t is determined by analogy with the Coulomb dry friction and takes the
form

t = k |n · τe · n|σ(n · τe · n)
2ω− ∇ × v
|2ω− ∇ × v|

, ω �= 1

2
∇ × v. (24)

Here k > 0 is the parameter of friction, and the function σ(n · τe · n) is determined
as follows

σ(n · τe · n) =

{
1, n · τe · n < 0,
0, n · τe · n � 0.

(25)
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The unit vector n in Eq. (24) is found by tensor τe as a solution of the problem

n · τe · m = max, ∀ n, m : |n| = |m| = 1, n · m = 0. (26)

The solution of problem (26) is unique. This fact is proved in [30, 35]. It is easy to see
that the constitutive equations (23), (24) satisfy the second law of thermodynamics
in the form of Eq. (22). Indeed,

τT
f · · (∇v + I ×ω) ≡ 2t ·

(
ω−

1

2
∇ × v

)
. (27)

Hence, in view of Eqs. (24), (25) and the fact that k > 0 we have

τT
f · · (∇v + I ×ω) = k |n · τe · n|σ(n · τe · n) |2ω− ∇ × v| � 0. (28)

All aforesaid relates to the case of sliding. If there is no sliding, i.e. the condition
2ω = ∇ × v is satisfied, then vector t is found from the equations of motion. To
be exact, by using the equation of the angular momentum balance vector t can be
excluded from the equation of the momentum balance. Note that if there is no sliding,
the friction force is conservative and there is no energy dissipation. In this case the
constitutive equations (23) also satisfy the second law of thermodynamics in the form
of Eq. (22).

In [32, 35] Zhilin noted that in many cases Coulomb dry friction can be replaced
by viscous friction, i.e. instead of Eq. (24) we can use the constitutive equation

t = k

(
ω−

1

2
∇ × v

)
, (29)

where k > 0 is the coefficient of viscous friction.
To describe the behavior of a two-component micropolar medium Zhilin proposed

[1, 34, 35] the constitutive equations for inelastic components of stress tensors which
contain both symmetric and antisymmetric parts. The first component of this medium
is a viscous fluid and the second one is a solid-liquid component consisting of fibres.

The constitutive equations for the fluid component are

p′
f = 0, τ′

f = 2μ · · D + t′ × I, M′
f = 0, (30)

where

D =
1

2

(
∇v1 + ∇vT

1 −
2

3
(∇ · v1)I

)
. (31)

Vector t′ is a vector of viscous friction which depends on the particle distribution
density of the solid-liquid component:
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t′ = η2 μ1 ·
(
ω−

1

2
∇ × v1

)
. (32)

The first term in Eq. (30)2 is a standard term for a viscous fluid. The second
term in Eq. (30)2 characterizes friction due to the presence of a solid-liquid
component.

The constitutive equations for the solid-liquid component are

p′′
f = 0, τ′′

f = t′′ × I, M′′
f = m′′ × I, (33)

where vectors t′′ and m′′ are

t′′ = η2 μ2 ·
(
ω−

1

2
∇ × v2

)
, m = − η2 μ3 (∇ ×ω) . (34)

The tensors of viscous friction coefficients must satisfy the relations

∀ a, b, c with c = −cT : a · ·μ · · a � 0, b · μ1 · b � 0, μ3 � 0,

a · ·μ = μ · · a, c · ·μ = 0, I · ·μ = 0, b · μ1 = μ1 · b.

(35)

The inelastic components of stress tensors are responsible for the conversion of
mechanical energy into heat. In accordance with Zhilin’s constitutive equations the
transfer of energy into heat is associated with the motion by rotational degrees of
freedom, i. e. by those degrees of freedom for which there are no elastic interactions.
Note that the classical model of viscous fluid is constructed similarly: the pressure is
assumed to be elastic and depends on the mass density (or volume strain, that is the
same) whereas the viscous stresses are determined by the deviatoric part of the stress
tensor and depend on the deviatoric part of the strain tensor. Thus, in this model
of fluid the dissipation of mechanical energy occurs by degrees of freedom without
elastic interactions. It is not possible within the framework of classical continuum
to implement this principle in relation to the solid where elastic interactions are
described by a symmetric stress tensor. The use of a generalized continuum allows
us to associate mechanical energy dissipation with the degrees of freedom for which
there is no elastic interactions, namely the rotational degrees of freedom which cor-
respond to the moment stress tensor and the antisymmetric parts of the stress tensor.

5 Different Ways of Entropy and Chemical Potential
Introduction

Usually the concepts of temperature, entropy, internal energy and chemical potential
are supposed to be well-known. However, in fact there are no satisfactory definitions
for them in continuum mechanics. The problem is that it is impossible to prove
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that the temperature as it is introduced in thermodynamics or in statistical physics
coincides with the temperature definition as it is used in continuum mechanics. A
situation with the definition of variables that cannot be measured such as the entropy,
internal energy or chemical potential is even more complicated. Such quantities are
characteristics of a mathematical model and they are necessary for obtaining some
relations connecting measurable quantities. Consequently, the preference of this or
that definition is determined by specific features of problems under consideration.

In fact, the entropy is introduced as an attempt to take into account a dependence
of the internal energy on the velocities of the ignored degrees of freedom. There
are different ways of entropy introduction (see [3, 5, 17, 22] for example) and it
is difficult to say unambiguously which of them is more preferable. A new ther-
modynamical quantity—chemical potential is introduced to describe a change of
density of particles. As usual in thermodynamics the chemical potential is defined
as the derivative of the internal energy with respect to the number of particles [12,
23]. However there exist other definitions of the chemical potential. For example,
Baierlein [2] proposed to introduce the chemical potential by describing its properties
instead of explaining the chemical potential by relating it to an energy change. These
ideas have a further development in [11]. Zhilin [32] suggested a new concept of the
chemical potential as a conjugate variable to the number of particles. Its definition is
given by means of pure mechanical arguments, which are based on using a special
form of the energy balance equation.

Further different ways of the entropy and chemical potential introduction based
on the method developed by Zhilin [34, 35] are considered.

5.1 Variant 1

Let us introduce the temperatureϑ(r, t) and entropy η(r, t) by the following equation:

nq− ∇ · h − pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω = nϑ
δη

δt
(36)

The above given definition brings about a few remarks. First, the temperature ϑ is
considered to be some characteristic of the medium that is measured by a thermome-
ter, and the entropy η related to one particle is introduced as a quantity conjugate
with the temperature. Second, since we suppose that the internal energy is an addi-
tive function of the number of particles then it is assumed that the entropy is also
an additive function of the number of particles. Note that this definition of entropy
is different from the definition used, for example, in classical thermodynamics or
physics, where an inequality is introduced. In particular, the proposed definition
does not coincide with the concept of an equilibrium process. The Eq. (36) is the
heat conduction equation, i.e. equation describing a non-equilibrium process.

Accounting for (36) one may rewrite the Eq. (21) in the form:
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n
δu

δt
= nu

δz

δt
− pe

ρ

ρ0

δ σ

δt
+ fT

1 ··δE
δt

+ MT
e··δF
δt

+
1

2
fT
2 ··δQ
δt

+ nϑ
δη

δt
(37)

It is seen that the internal energy is a function of the following arguments

u = u(z, σ, η, E, F, Q) (38)

Note that from (38) and (47) it follows that

u =
∂u

∂z
(39)

In thermodynamics the derivative of the internal energy with respect to the number of
particles is usually called chemical potential [12, 23]. Introduction of the temperature
and entropy by (36) means that a role of the chemical potential can be played by the
internal energy.

Let us show that the variable z can be excluded from the arguments of the internal
energy. Indeed from (39) it follows that

u = u∗(σ, η, E, F, Q)
ρ0

n0
exp z ⇒ u =

ρ

n
u∗, (40)

where u∗ is a mass density of the internal energy. It should be noted that the last
equation is only valid, if there are no massless particles in the system.

Insertion of (39) into (37) gives

ρ
δu∗
δt

= −
pe

σ

δ σ

δt
+ nϑ

δη

δt
+

(
E−1 · τT

e + E−1 · F · MT
e

) ··δE
δt

+ MT
e··δF
δt

+
1

2

(
(MT

e · F − τe)× × Q
)T ··δQ

δt

(41)

From the reduced energy balance equation one can derive the Cauchy-Green relations

pe = −
∂ ρ0 u∗
∂ σ

, ϑ =
1

σn

∂ ρ0 u∗
∂η

, σ Me =
ρ0 ∂u∗
∂F

, (42)

στe = −
ρ0 ∂u∗
∂E

· ET −
ρ0 ∂u∗
∂F

· FT

and constrains which the internal energy has to satisfy

(
∂u∗
∂E

)T

··E +

(
∂u∗
∂F

)T

··F = 0,

(
∂u∗
∂E

)T

··(A · E) +

(
∂u∗
∂Q

)T

··(A · Q) +

(
∂u∗
∂F

)T

··(A · F − F · A) = 0,

(43)

where A is an arbitrary antisymmetric tensor.
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Note that the function ρ0 u∗ is independent of z. It means that only the constitutive
equation for the temperature depends on the distribution density of the particles. The

heat conduction equation depends on n only by means of nϑ
δη

δt
, and the chemical

potential does not appear in any equation.
Considering function ρ0 u∗ implies that we assume that the internal energy is an

additive function of mass. In this case it is natural to assume that the entropy is also
additive by mass. Thus instead of (36) we can introduce the temperature and entropy
η∗ by means of

ρq∗ − ∇ · h − pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω = ρ ϑ
δη∗
δt

(44)

Then the reduced equation of the energy balance has the form

ρ
δu∗
δt

= −
pe

σ

δ σ

δt
+ ρ ϑ

δη∗
δt

+
(

E−1 · τT
e + E−1 · F · MT

e

)
··δE
δt

(45)

+ MT
e··δF
δt

+
1

2

(
(MT

e · F − τe)× × Q
)T ··δQ

δt

All Cauchy-Green relations (42) are still valid except the one for the temperature,
which now has the form

ϑ =
∂u∗
∂η∗

(46)

It is seen that the heat conduction equation (44) as well as the constitutive equations
(42) do not depend on the particle density. Thus the influence of the mechanical
and thermal processes on the change of the particle distribution can be taken into
account only by means of the source term in the particle balance equation (2). So the
stress-strain state and the temperature conditions can affect the changes of particle
distribution density since the source term in the particle balance equation can depend
on all these factors. Hence, this method of temperature and entropy introduction can
be used to describe the structure transformations and phase transitions which occur
without the release or absorption of heat and are not accompanied by significant
changes in the mechanical and thermodynamical characteristics but only leads to
changes in other physical characteristics such as, for example, electrical or magnetic
properties.

5.2 Variant 2

An alternative form of the reduced energy balance equation makes use of the particle
balance equation. We insert (3) into (21) and obtain
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n
δu

δt
= −pe

ρ

ρ0

δ σ

δt
+ fT

1 ··δE
δt

+ MT
e··δF
δt

+
1

2
fT
2 ··δQ

δt

−χu− ∇ · h + nq− pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω

(47)

and as a result the source term in the particle balance equation χ appears in the energy
balance equation.

Now let us define the temperature and entropy by the equation

− χu− ∇ · h + nq− pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω = nϑ
δη

δt
(48)

and investigate the consequences. This equation differs from (36) only due to the term
χu standing for the energy supply per unit time caused by the structural transitions
of the medium. Then the reduced energy balance equation takes the form

n
δu

δt
= −

pe

σ

δ σ

δt
+

(
E−1 · τT

e + E−1 · F · MT
e

) ··δE
δt

+MT
e··δF
δt

+
1

2

(
(MT

e · F − τe)× × Q
)T ··δQ

δt
+ nϑ

δη

δt

(49)

Thus the internal energy is a function of the following independent arguments

u = u(σ, η, E, F, Q) (50)

and the Cauchy-Green relations are

pe = −n σ
∂u

∂ σ
, ϑ =

∂u

∂η
, σ Me = n

∂u

∂F
, (51)

τe = −n
∂u

∂E
· ET − n

∂u

∂F
· FT

The constraints for the internal energy u are the same as they were in Variant 1
for u∗.

Note that now the internal energy does not play role of the chemical potential
as it was in Variant 1. At the same time the heat conduction equation (48) has
a term connected with particle distribution changes and this term depends on the
internal energy. Thus, this method of introduction of temperature can be used to
describe the structure transformations and phase transitions accompanied by the
release or absorption of heat. Note that the first and second variants of derivation
of the constitutive equations and the heat conduction equation are correct both in
the case when the mass density and the particle distribution density are independent
quantities and in the case when they are linearly related (i.e. when the source term
in the particle balance equation is equal to zero).



194 E. Ivanova and E. Vilchevskaya

5.3 Variant 3

Let us assume that some part of the underlined terms in (21) is responsible for the
change in the number of particles. Therefore, instead of Eq. (36) we will use a more
general equation containing an additional term that accounts for structural transitions.
We denote

nq− ∇ · h − pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω = nϑ
δη

δt
+ ψ

δn

δt
(52)

Analogous to the temperature and entropy, n and ψ appear in Eq. (52) as the conju-
gate variables. Equation (52) is the combined equation of structural transitions (e.g.,
fragmentation) and heat conduction.

Substituting Eq. (52) into (21) after some transformation we obtain the reduced
energy balance equation in the form

δ(nu)

δt
=
pe + nu

ρ

δ ρ

δt
+ fT

1 ··δE
δt

+ MT
e··δF
δt

+
1

2
fT
2 ··δQ
δt

(53)

+ nϑ
δη

δt
+ ψ

δn

δt

It is significant that such a form of the reduced energy balance equation is valid only
if the mass density and the density of particle distribution are independent variables.

From Eq. (53) there follow the Cauchy-Green relations

pe = ρ2 ∂

∂ρ

(
nu

ρ

)
, ϑ =

1

n

∂(nu)

∂η
, ψ =

∂(nu)

∂n
, (54)

Me =
∂(nu)

∂F
, τe = −

∂(nu)

∂E
· ET −

∂(nu)

∂F
· FT

From Eq. (54)3 it is seen that ψ is a chemical potential. Similar expressions to (54)3
are given in the classical textbooks [15, 19, 20, 23].

Note that Eq. (52) characterizes only overall influence of the entropy and chemical
potential on the internal energy. To clarify their roles in the considered processes it
is necessary to split Eq. (52) into two equations: the heat conduction equation and
the equation of structural transitions.

nϑ
δη

δt
+Q = nq1 − ∇ · h1 − p1∇ · v + τT

f ··(∇v + I × ω) + MT
f ··∇ω, (55)

ψ
δn

δt
−Q = nq2 − ∇ · h2 − p2∇ · v (56)

Where the following decompositions are used
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h = h1 + h2, q = q1 + q2, pf = p1 + p2 (57)

The equivalence of Eqs. (52) and (55) is determined by the presence of the undefined
quantity Q characterizing the rate of energy exchange in the processes of the heat
conductivity and the structural transitions.

The definition (55) given above brings about a necessity to formulate constitutive
equations for all new quantities: hi, qi, pi (i = 1, 2) and Q. The following cir-
cumstances have to be taken into account. First, suppose that the expression for the
internal energy u and the source term χ are given. Then we have two equations for
n and ψ—the particle balance equation, and Cauchy-Green relation relating these

quantities. It means that the term ψ
δn

δt
in the equation of structural transformations

is determined. Therefore the constitutive equations for h2,q2,p2 and Q can not be
independent. Second, arbitrarily given constitutive equations for h2,q2,p2 and Q
together with the equation of structural transitions and corresponding Cauchy-Green
relation determines the quantitiesn and ψ. Then the particle balance equation allows
us to determine the source term χ. Finally a third variant exists. We can arbitrarily
choose the constitutive equations for h2,q2,p2,Q and χ, but in this case there is no
freedom in choosing internal energy.

Introduction of the chemical potential as an independent variable is necessary to
describe the diffusion processes and chemical reactions as well as the structure trans-
formations and phase transitions which are accompanied by the release or absorption
of heat and occur at a constant temperature.

6 Discussion

The investigation carried out shows that the mass density and particle density can be
considered as independent variables without the chemical potential introduction. In
some cases the role of the chemical potential can be played by the internal energy
or the source term in the particle balance equation. Of course there is no reason to
say that there is no necessity for the chemical potential introduction in general. The
preference of this or that approach is determined by specific features of the problems
under consideration. For example, if experimental data allow us to formulate the con-
stitutive equation for the quantityQ characterizing the rate of energy exchange in the
processes of the heat conductivity and the structural transitions, then the third variant
of unmeasurable parameters introduction looks more preferable. In the opposite case
an approach based on smaller amount of the constitutive equations should be chosen.
The first and the second approaches require only the source term χ specification and
do not impose any constraints on the internal energy definition. Thus they are easier
in this sense, but of course a number of problems stays beyond the consideration.

Also it is important to lay stress on the fact that the equations of structural transi-
tions and heat conduction (44), (48) and (52) define not only the entropy and chemical
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potential but also the internal energy. Thus all these quantities should be introduced
simultaneously.
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Hierarchical Architecture and Modeling of
Bio-Inspired Mechanically Adaptive Polymer
Nanocomposites

Rasa Kazakevic̆iūtė-Makovska and Holger Steeb

Abstract This work is concerned with a new class of polymer nanocomposites with
tailored mechanical properties. Such materials can reversibly switch their mechani-
cal stiffness by up to three orders of magnitude in response to biomedically relevant
chemical stimuli. The architecture of the new synthetic polymer nanocomposites
was inspired by the dermis of sea cucumbers and their mechanically adaptivity and
exceptional high reinforcement property are potentially suitable for use in biomedi-
cine. According to the current literature, the mechanical morphing of these polymer
nanocomposites is a result of changing nanoparticle interactions and it is described in
the framework of two mechanical models, viz. the percolation model applies to a stiff
(unstimulated) state and the Halpin-Kardos model describes a soft (stimulated) state.
In this work, a new model is proposed to describe the reinforcement and adaptivity
effects in such nanocomposites within a single theory. The change from the stiff to
soft states and back is modulated by a single scalar parameter that describes the extent
of stimulus. The essence of the new model lies in physically based modifications of
the classical percolation theory applied to the evolution of the network formed by
cellulose whisker nanoparticles, which are responsible for the stress-transfer in this
class of polymer nanocomposites.

1 Introduction

Typical engineered materials are passive, i.e., they are unable to adapt their mechanical
properties in response to chemically or biologically relevant stimuli. A new generation
of synthetic materials that would possess such properties could be useful for many
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applications ranging from biomedicine to space engineering, and nature offers many
exciting ways to create such adaptive materials [1].

In recent studies, attention has been drawn to amazing self-defending skin of
many echinoderms like sea cucumbers [2–6]. Their inner dermis is composed of
rigid collagen nanofibres embedded in a viscoelastic matrix of fibrillin microfibres.
In the face of danger, the sea cucumber secretes certain macromolecular chemicals
that activate transient interactions between the nanofibres and this facilitates a change
of the dermal stiffness.

Drawing inspiration from the sea cucumber’s self-defense mechanism, novel poly-
mer nanocomposites have been designed that can adapt their mechanical properties
in response to chemical stimuli in a similar fashion [7]. The first such nanocompos-
ites have been developed using cellulose nanofibres that were embedded in a matrix
formed from either an ethyleneoxide-epichlorohydrin (EO-EPI) copolymer or from
polyvinyl acetate (PVAc) [7] and the degree of interaction between the nanofibres
was modulated by a water-based solvent. In the following years, next generations
of polymer nanocomposites having this property have been designed and studied
experimentally [8–12].

All polymer nanocomposites of this new class of stimuli-responsive materials can
reversibly switch their mechanical stiffness by up to three orders of magnitude in
response to the relevant stimuli [7, 8, 12]. According to the current literature, the
mechanical morphing of these nanocomposites is a result of changing nanoparticle
interactions and it is described in the framework of two mechanical models, viz.
the percolation model applies to a stiff (unstimulated) state and the Halpin-Kardos
model that applies to a soft (stimulated) state [7–12].

In this work, a new model is proposed to describe the reinforcement and adaptivity
effects of these polymer nanocomposites within a single theory. The change from
stiff to soft states and back is modulated by a single scalar parameter, which describes
the extent of stimulus. The essence of the proposed model lies in a physically based
modification of the classical percolation theory applied to the evolution of the network
formed by the cellulose whisker nanoparticles that are responsible for the stress-
transfer in this class of polymer nanocomposites. The applicability of the proposed
approach is illustrated by a comparison of the experimentally determined storage
modulus with model predictions for different polymer nanocomposites with varying
filler extent. It is shown that the basic concept of the new model may naturally
be extended to the analysis of rheological and thermal properties of the examined
nanocomposites. Finally, an attempt is made to adopt the proposed approach to
description of the mechanically adaptive materials in the non-linear domain.

2 Native and Synthetic Stiffness-Changing Nanocomposites

Holothuroids, also known as sea cucumbers, are marine animals living in all oceans of
the world [3, 5, 6]. They have the unique and fascinating self-defending skin. Recent
studies [3–6] have proved that the major constituent of the dermis of Cucumaria
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frendosa and other sea cucumber species is a network of 10–14 nm microfibrils
that surrounds and penetrates bundles of collagen fibrils. This network is immersed
in a viscoelastic matrix of fibrillin microfibers. At the sign of danger, sea cucum-
ber secretes certain soluble macromolecule chemicals that trigger the formation of
transient interactions between the nanofibres [2, 4]. This facilitates, in a matter of
seconds, the rapid and reversible change of the stiffness of inner dermis by regulating
the interactions among collagen fibrils with a change in tensile modulus by a factor
of 10 (5–40 MPa). Although the mechanism for the ability to alter the stiffness of
dermis is not well understood, there are currently several competing models for this
biomaterial (for a review, see [5, 6]).

The hierarchical architecture and the nanocomposite structure of the dermis of
sea cucumbers (sketched in Fig. 1) have been an inspiration for the development
of synthetic nanocomposites that can adapt their mechanical properties in response
to chemical stimuli. Although such possibility was discussed in 2000 by Trotter
et al. [3], only in 2008, Capadona and his colleagues [7] did a significant work in
engineering the biological model, i.e. the sea cucumber dermis. These authors devel-
oped two synthetic nanocomposites in that interactions between the rigid fillers can be
switched “on” and “off” in response to a chemical stimulus. To mimic the sea cucum-
ber dermis structure, they used the low-modulus 1:1 ethyleneoxide/epichlorohydrin
copolymer (EO-EPI) in place of a viscoelastic matrix of fibrillin microfibrils found
in the native material. Instead of collagen fibrils, cellulose nanofibers were used
as rigid filler. The interactions among these nanofibers are controlled by hydrogen
bonding between surface hydroxyl groups and hence these interactions may be con-
trolled by chemical stimuli. The second developed nanocomposite [7] was based on
the poly(vinyl acetate) (PVAc) as a soft polymer matrix with cellulose nanofibers as
rigid filler. It should be noted that unlike in the biological material, where the soft
state is the “relaxed” natural state, in this men-made model the “unstimulated” state
is the stiff state (see Fig. 1).

Fig. 1 Picture of sea cucum-
ber in the stiff and soft states
and schematic representation
of the architecture of its der-
mis in the two states (adopted
from Shanmuganathan [7, 8,
10])
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Fig. 2 Reinforcement and adaptivity effects in polymer nanocomposites at small strains

To illustrate the stiffness-changing property of the developed synthetic materials,
Capadona et al. [7] compared experimentally determined values for the tensile storage
modulus of the EO-EPI/whisker nanocomposites with varying amount of filler. Their
results show that these nanocomposites are stiff in the dry state due to whisker-
whisker interactions resulting in a percolated network of fillers. Water used as a
chemical stimulus disrupts the hydrogen bonding between the cellulose whiskers
within the polymer matrix and dissociates the fillers from each other. In effect, the
nanocomposites soften and the tensile storage modulus decreases by a few order. The
switching effect was also found to be reversible with the re-dried samples showing
modulus close to the original value in dry state. For illustration of this mechanisms,
their main experimental results are summarized in Fig. 2.

Following Capadona et al. [7], new stiffness-changing polymer nanocomposites
have been developed using different polymer matrices, filler sources, and combina-
tion of one or more stimuli [8–12]. This new class of polymer nanocomposites is
currently referred to as mechanically adaptive material [8]. In comparison to more
familiar polymer nanocomposites such as carbon black or silica filled elastomers [13–
16], they are characterized by the exceptionally high reinforcement property and the
adaptivity effect. These two effects need to be modeled with a view to gain insights
into the structure-property relationships in these materials.

3 Models of Nanofiber Composites and Reinforcement
Effect

Mechanically adaptive polymers considered in Sect. 2 belong to the very large class
of materials known as nanocomposites [17–20]. The macroscopic properties of a
composite material reinforced with nanofillers are determined by various factors,
such as [21–23]
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• the composition and characteristics of each component,
• the geometry of filler and the filler dispersion,
• the filler-filler and filler-matrix interactions and possibly
• the modification of characteristics of the matrix itself.

These parameters have the important influence on final properties of the polymer
nanocomposite and they are strongly interconnected. Therefore, it is problematic to
draw conclusions on relative influences of the individual parameters.

A wide array of theoretical and modeling strategies including effective medium
approaches, percolation theory, scaling, and micromechanical analyses has been
applied toward achieving predictive and microscopic understanding of nanocompos-
ite properties (see reviews [15, 16, 21]). Many of these models have been successfully
applied in analysis of the reinforcement effect in carbon black or silica filled elas-
tomers. However, their hierarchical architecture and reinforcement mechanisms are
very different from that observed in the nanocomposites discussed in Sect. 2.

Two models of composite materials have been used in analysis of mechanically
adaptive polymer nanocomposites [7–12]. The first one takes into account the rein-
forcement effect due to the presence of rigid inclusions (fibres) in a soft polymeric
matrix without considering either filler-filler or filler-matrix interactions. This mean
field approximation forms the basis of the Halpin-Kardos model that correctly pre-
dicts the composite behavior containing randomly oriented fibers [15, 16, 23]. Within
this model, the polymer composite is assumed to be equivalent to many layers of uni-
directional plies oriented at various angles to give a quasi-isotropic composite. The
mechanical properties of each ply are derived from the micromechanical equations
of Halpin-Tsai [15, 23].

The second model used in analysis of polymer nanocomposites is based on the
consideration of filler-filler interactions and the percolation concept [24] well adapted
to describe a percolating network of cellulose whiskers. In this approach, the whiskers
are assumed to be linked by strong hydrogen bonds. The interactions between cel-
lulose nanofibers induce the mechanical percolation of the fibers, and mechanical
properties of the polymer nanocomposite can be predicted following the method of
Ouali et al. [25]. In effect, the tensile elastic modulus E of the composite is given by
the following empirical mixture rule

E =
(1 − 2ξ+ ξυ)EmEr + (1 − υ)ξE2

r

(υ− ξ)Em + (1 − υ)Er
. (1)

The subscriptsm and r refer to the soft (matrix) and rigid (filler) phase, respectively,
and υ corresponds to the volume fraction of filler (rigid phase). The adjustable para-
meter ξ involved in this model corresponds to the volume fraction of the percolating
rigid phase, i.e., the volume fraction of filler that participates in load (stress) trans-
fer. With υc being the critical volume fraction of the rigid phase at the percolation
threshold and β the corresponding critical exponent, ξ is given by the following rule
[7, 8]
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ξ = υ

(
υ− υc

1 − υc

)β

, υc � υ < 1 , (2)

and ξ = 0 for 0 � υ < υc. In general, β = 0.4 and for a 3D network the critical
volume fraction υc depends on the aspect ratio L/d of the nanofiber as [7, 8]

υc = Ar−1, r ≡ L/d . (3)

In application to the cellulose whisker based polymer nanocomposites, the coefficient
A is set to 0.7 and the aspect ratio r depends on the source of whiskers [17, 19, 20].

It has been shown in [7, 8] that the reinforcement in the unstimulated (dry)
state of the mechanically adaptive nanocomposites follows the percolation model
as described by relations (1)–(3). It was concluded that the stress-transfer process
is dominated by the formation of a continuous network of cellulose whiskers and
strong interactions (hydrogen bonding) between them. It has been further observed
that the behavior of the same nanocomposites in the stimulated (wet) state is correctly
predicted by the Halpin-Kardos model based on a mean field approach, which does
not account for the interactions between filler nanoparticles. This is well illustrated
by the results shown in Fig. 3.

It follows that the mechanical morphing of this class of nanocomposites is a
result of changing nanoparticle interactions and it is described in the framework of
two different composite models. This situation, however, is not satisfactory from
the theoretical point of view because two different constitutive models are needed
to describe two states or phases of the same polymer nanocomposite, i.e. for the
modeling the adaptivity effect. A more direct approach to this problem is proposed
in Sect. 4.

Fig. 3 Comparison of data
with predictions according to
two different models
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4 Evolution of Percolating Network and Adaptivity Effect

According to the percolation type theory, the tensile elastic modulus E of a polymer
nanocomposite may be expressed in the following general form

E = E (Em,Er,υ, ξ) (4)

with percolation parameter ξ being a function of the volume fraction of rigid phase
υ and it depends in parametric form on the critical volume fraction υc, that is ξ =
ξ (υ;υc).

According to the micromechanical analysis [7–9], the stiffness-changing prop-
erty or adaptivity effect in whisker-based polymer nanocomposites is mainly due to
the percolation network formed by whisker nanoparticles. This network is entirely
responsible for the stress transfer in the dry or unstimulated state of the nanocompos-
ite. In the wet or stimulated state of the nanocomposite, the interactions between the
nanoparticles in the network are partially or entirely broken by water or an alternative
stimulating fluid. This physical micromechanism may be built into the macroscopic
model by a single order parameter z with z = 0 corresponding to unstimulated state
and z = 1 in the fully stimulated state. The scalar variable z is a measure of the
stimulus extent and it enters the macroscopic theory only through the law for the
percolation parameter ξ, which now takes the following general form

ξ = ξ (υ, z;υc) , 0 � z � 1 . (5)

The parameter ξ represents at macroscopic level the stress-transfer in the percolation
network of whisker nanoparticles with the value given by formula (2) in the unstim-
ulated state and ξ = 0 in the fully stimulated state. This suggests the simple special
form of the general law (5), namely,

ξ = ξ (υ, z;υc) = (1 − z)ξA(υ;υc),

ξA(υ;υc) ≡ υ

(
υ− υc

1 − υc

)β

, 0 � z � 1 , (6)

and ξ = 0 for 0 � υ < υc . Moreover, the law for the tensile modulus may be
assumed in the Takayanagi-Ouali form (1).

The applicability of these simple modifications of the classical percolation-type
theory to describe the adaptivity effect in the considered class of polymer nanocom-
posites is illustrated in Fig. 4. The theoretical results shown in this figure have been
obtained using the classical expression (1) for the elastic modulus of nanocomposite
and the proposed modification (6) of expression (2) for the percolation parameter.
The Takayanagi series-parallel model for the elastic modulus as given by (1) consists
in a mixing rule between the two limits of the classical series and parallel models,
better known as Reuss and Voigt models [15, 16]. Accordingly, it may be consid-
ered as a special case of the general mixture rule [21], which may be used to derive
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Fig. 4 Comparison of data
with predictions according
to proposed model of the
adaptivity effect

the more accurate expression of form (4) for the nanocomposite modulus. However,
these possibilities are not considered in this work due to lack of experimental data.

5 Dynamic Moduli of Nanocomposites

In order to obtain a better correlation of the hierarchical architecture and the
macroscopically observed behavior of mechanically adaptive nanocomposites, it is
necessary to experimentally characterize and theoretically model their viscoelastic
properties. In the linear range, Dynamic Mechanical Analysis (DMA) is the most
universal technique used for the rheological characterization of polymer nanocom-
posites [13, 14]. From the measured complex modulus E∗, not only the storage and
loss moduli, E

′
and E

′′
, are determined but also the creep compliance and relaxation

moduli may be derived through the use of equivalence principles.
The development of linear viscoelastic models for the mechanically adaptive

polymers may be based on the three-phase material concept presented in Sect. 4
for the analysis of the elastic modulus of polymer/whisker nanocomposites. The
basic idea is very simple: one has only to replace the elastic moduli Em and Er

in the general expression (4) by the corresponding complex moduli E∗
m and E∗

r for
the polymer matrix and the reinforcing filler. In effect, the complex modulus E∗ of
the nanocomposite is obtained in the form

E∗ = E
′
+ iE

′′ ≡ E (E∗
m,E∗

r,υ, ξ) . (7)

In the special case, when the complex modulus (7) is assumed in the Takayanagi-
Ouali form (1), the storage modulus E

′
and the loss modulus E

′′
of the polymer
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nanocomposite deduced from (7) are given by

E
′
=

(AC+ BD)E
′
r − (BC−AD)E

′′
r

C2 +D2
,

E
′′

=
(BC−AD)E

′
r − (AC+ BD)E

′′
r

C2 +D2
, (8)

where

A = (1 − 2ξ+ υξ)E
′
m + (1 − ξ) ξE

′
r,

B = (1 − 2ξ+ υξ)E
′′
m + (1 − ξ) ξE

′′
r,

C = (υ− ξ)E
′
r + (1 − ξ) ξE

′
r,

D = (υ− ξ)E
′′
r + (1 − ξ) ξE

′′
r. (9)

These expressions follow directly from the separation of the real and imaginary
parts of the complex modulus (7). They appear to take quite complex form and their
calculations require the knowledge of the storage and loss moduli for both a polymer
matrix and rigid filler particles.

In the relevant literature [7, 8], a more direct approach is generally adopted, i.e.,
the formula (1) for the elastic modulus of the nanocomposite is simply used for
the calculation of the storage modulus of the same material. It is now clear that the
two possible approaches are not equivalent for the mechanically adaptive nanocom-
posites with notable rheological properties, but they coincide for the purely elastic
behavior. The differences between the two possibilities in modeling the rheologi-
cal properties of the mechanically adaptive nanocomposites may be illustrated with
simple examples. Figure 5 shows the comparison of the storage modulus calculated
from expression (8) with the values obtained from expression (1) for the elastic mod-
ulus. It is seen that the computed values are close to each other implying that these
particular polymer nanocomposites are nearly perfectly elastic in the wide range of
temperature and filler content.

6 Temperature Dependent Moduli of Nanocomposites

The next step in characterizing and modeling the mechanically adaptive nanocom-
posites must necessarily be concerned with thermal effects. From an experimental
point of view, DMA temperature sweep tests provide the best thermal characteri-
zation of this and other classes of polymeric materials. The representative results
taken from the literature are reproduced in Fig. 6a and 7a. They show the storage
modulus and the loss factor for dry polymer/whisker nanocomposites as a function
of temperature for different whisker content.
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Fig. 5 Comparison of data
with predictions according to
viscoelastic model

The simplest approach to model thermal effects in the mechanically adaptive
nanocomposites may again be based on the three-phase model with the modification
that the respective moduli of polymer matrix and whisker nanoparticles depend in
known or experimentally determined way on temperature. In Sect. 4, all quantities
and relations are defined at the reference temperature, usually the room temperature.
Assuming that these relations are valid at any temperature θ, the elastic modulus of
polymer composite is obtained as

E (θ) = E (Em (θ) ,Er (θ) ,υ, ξ) (10)

with percolation parameter ξ given by the general rule (5). Here Em (θ) and Er (θ)
are the temperature dependent elastic moduli of the polymer matrix and whisker
nanoparticles, respectively. In the particular case of the Takayanagi-Ouali model,
this general assumption yields

E (θ) =
(1 − 2ξ+ ξυ)Em (θ)Er (θ) + (1 − υ)ξ (Er (θ))2

(1 − υ)Er (θ) + (1 − υ)Em (θ)
(11)

with (6) as the associated, temperature independent law governing the evolution of
the percolation parameter.

The same approach may be used for the temperature dependent complex modulus
E∗ (θ) of polymer composite from which the storage and loss moduli, E

′
(θ) and

E
′′
(θ), may be deduced as in Sect. 5.
Figures 6b and 7b show the storage modulus and the loss factor computed by this

approach for the polymer nanocomposite for which the measured data are shown in
Fig. 6a and 7a. There are a few possible reasons of observed differences between data
and computed values. First of all, no temperature dependent data are available for
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Fig. 6 DMTA temperature
sweep tests: Comparison of
data (a) with model predic-
tions (b)

(a)

(b)

the cellulose whisker used as filler in this nanocomposite. Accordingly, the constant
value given in [7, 8] was assumed for the calculation, but obviously this is a very
rough approximation. Moreover, these discrepancies may indicate limitations of the
adopted approach.

The problem with verification of this theoretical concept lies in lack of the required
data. For the mechanically adaptive nanocomposites, DMA temperature sweeps data
have been published but not separately for the polymer matrix and whisker nanopar-
ticles. Moreover, to model the temperature dependency of the adaptivity property of
these materials, such data are required for both dray and swollen states.
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Fig. 7 DMTA temperature
sweep tests: Comparison of
data (a) with model predic-
tions (b)

(b)

(a)

7 Non-Linear Effects

The behavior of mechanically adaptive polymer nanocomposites in the nonlinear
domain is obviously highly complex, and the constitutive modeling of this behavior
is challenging because there are no experimental data available so far. An adequate
constitutive model for this class of materials must account for (1) the evolution of
reinforcement effect with strains for every specified kind and amount of filler, (2) the
coupling between the extent of stimulus and the strain level, and (3) possible vari-
ations in the architectural structure of percolating network at different deformation
levels.

The first step in the formulation of non-linear constitutive model may be based
on the transformation of a nonlinear problem into a sequence of linear ones by
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using an approximation of the linear correspondence between the tangent modulus
of composite (estimated by the tangent slope of stress-strain curve along the load
path) and the tangent modulus of matrix and fillers. In the non-linear domain, elastic
or not, the stress-strain relation for the neat (pure) polymer and the rigid phase (filler)
may be written in the rate form as

σ̇ = Dm (ε, . . .) ε̇, σ̇ = Dr (ε, ...) ε̇ , (12)

respectively. HereDm (ε, . . .) andDr (ε, . . .) are the corresponding tangential mod-
uli along the loading path and the superimposed dot stands for time derivative. The
basic idea of incrementally linear models is to write the stress-strain relation for a
nanocomposite in the same rate form

σ̇ = D (ε, . . .) ε̇ (13)

with the tangential modulusD (ε, . . .) assumed to be given by relations of the same
form as for the linear theory. That is, the tangential modulus of the nanocomposite
is obtained from (1) by replacing the elastic moduli by the corresponding tangential
moduli

D (ε, . . .) = D [Dm (ε, . . .) ,Dr (ε, . . .) , ϑ, ξ] . (14)

In the first approximation, the percolation parameter ξ may also be assumed in the
same form as in the linear theory, that is, in the form (2). The relations (12)–(14)
determine the incrementally linear constitutive model for the polymer nanocomposite
from the know tangential moduli for the soft (matrix) and rigid (filler) phases. If the
rigid phase may be assumed to be linearly elastic, then its tangential modulus is
simply equal the value of the elastic modulusDr (ε, . . .) = Er and it is independent
of the strain.

A particular form of the non-linear constitutive law (12) for the neat polymer
may be derived from the experimentally determined stress-strain curve using the
methodology presented in [26] for another class of materials. Such a law is needed in
the derivation of the tangential modulus as given by formula (14). However, for the
analysis of data, we do not need to assume any theory of neat polymers because the
tangential modulus may be estimated from the slope of measured stress-strain curve
along the loading path such as shown in Fig. 8a. The calculations based on the simple
model described above may then be compared with the data for nanocomposites filled
with different amount and type of fillers. The representative results of such analysis
are shown in Fig. 8b. The comparison of theoretical results based on the same concept
with data for the dry and swollen nanocomposite is shown in the Fig. 9.

It is not surprising that there are observed certain differences between theoretical
results and data for both the reinforcement and adaptivity effects. Actually, this
analysis provides a experimental verification of the applicability in the non-linear
domain of micromechanical assumptions adopted in the linear theories. In particular,
it still remains to experimentally determine the dependency of both effects on the
extent of deformation.
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Fig. 8 Non-linear behav-
ior of neat and filled poly-
mer nanocomposites in dry
(unstimulated) state: Mea-
sured stress-strain curves (a)
and comparison of experimen-
tal and computed tangential
moduli (b)

(a)

(b)

8 Discussion

The theoretical approach presented in this work is entirely based on the currently
accepted micromechanisms of the reinforcement and adaptivity effects of cellu-
lose based polymer nanocomposites. According to the literature [7–9], the dynamic
mechanical behavior of these materials is achieved through a nanocomposite archi-
tecture in which rigid, high-aspect-ratio cellulose whisker nanoparticles are randomly
dispersed in a soft, viscoelastic polymer matrix. The stiffness of such nanocompos-
ites is regulated by controlling nanoparticle interactions that form the percolation
network responsible for the stress transfer in the composite. Through chemical stim-
uli, reinforcing cellulose network can be disrupted resulting in a dramatic stiffness
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(a)

(b)

Fig. 9 Non-linear behavior of filled polymer nanocomposites in dry (unstimulated) and wet (stim-
ulated) states: Measured stress-strain curves (a) and comparison of experimental and computed
tangential moduli (b)

reduction even in the polymer nanocomposite comprising small amount of whiskers.
Moreover, the original stiffness is restored when the composites are dried.

In the proposed model, the described micromechanism is represented by the evo-
lution law for the parameter representing the volume fraction of percolating network.
This law depends in a parametric way on the extent of stimulus that regulates the
level of the stress-transfer in the mechanically adaptive polymer nanocomposite and
hence its stiffness. The illustrative calculations based on this concept and the compar-
ison with experimental data from literature support the conclusion that the stiffness
change in the considered polymer nanocomposites is due to the mechanism of altered
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whisker–whisker interactions rather than other effects that govern the reinforcement
in elastomeric materials [15, 16, 21] and shape memory polymer nanocompos-
ites [27]. However, no direct physical evidence for these mechanisms has yet been
reported in the literature (see the discussion in [9]). Recent studies using Raman
spectroscopy [9, 12] has attempted to clarify this issue but with limited success.

Finally, one has to note that even less is known on the physical mechanisms
governing the adaptivity property of native materials such as sea cucumbers’ skin. In
fact, there are two different ideas suggested in the literature regarding the mechanism
of skin’s stiffening [3, 4], but no model has been proposed so far. It may be concluded
that the new class of native and synthetic materials discussed in this paper has been
already extensively studied from biological, chemical, and physical point of view.
But there remains much to be done in the theoretical modeling of these materials.
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Justification of the Bending-Gradient Theory
Through Asymptotic Expansions

Arthur Lebée and Karam Sab

Abstract In a recent work, a new plate theory for thick plates was suggested where
the static unknowns are those of the Kirchhoff-Love theory, to which six components
are added representing the gradient of the bending moment [1]. This theory, called
the Bending-Gradient theory, is the extension to multilayered plates of the Reissner-
Mindlin theory which appears as a special case when the plate is homogeneous.
This theory was derived following the ideas from Reissner [2] without assuming
a homogeneous plate. However, it is also possible to give a justification through
asymptotic expansions. In the present paper, the latter are applied one order higher
than the leading order to a laminated plate following monoclinic symmetry. Using
variational arguments, it is possible to derive the Bending-Gradient theory. This could
explain the convergence when the thickness is small of the Bending-Gradient theory
to the exact solution illustrated in [3]. However, the question of the edge-effects and
boundary conditions remains open.

1 Introduction

The classical theory of plates, known also as Kirchhoff-Love plate theory is based
on the assumption that the normal to the mid-plane of the plate remains normal
after transformation. This theory is also the first order of the asymptotic expansion
with respect to the thickness [4]. Thus, it presents a good theoretical justification
and was soundly extended to the case of periodic plates [5, 6]. It enables to have
a first-order estimate of the macroscopic deflection as well as local stress fields.
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In most applications the first-order deflection is accurate enough. However, this
theory does not capture the local effect of shear forces on the microstructure because
shear forces are one higher-order derivative of the bending moment in equilibrium
equations (Qα = Mαβ,β).

Because shear forces are part of the macroscopic equilibrium of the plate, their
effect is also of great interest for engineers when designing structures. However,
modeling properly the action of shear forces is still a controversial issue. Reissner
[2] suggested a model for homogeneous plates based on a parabolic distribution of
transverse shear stress through the thickness (Reissner-Mindlin theory). This model
performs well for homogeneous plates and gives more natural boundary conditions
than those of Kirchhoff-Love theory. Thus, it is appreciated by engineers and broadly
used in applied mechanics. However, the direct extension of this model to laminated
plates raised many difficulties.

Two main path were followed for deriving models suitable for laminated plates:
axiomatic approaches and asymptotic approaches.

In asymptotic approaches, a plate model is derived directly from the full 3D
formulation of the problem, assuming the thickness of the plate goes to zero. In
these approaches, the asymptotic expansion method plays a central role. As already
mentioned, the leading order leads to Kirchhoff-Love plate theory [4–6]. Hence one
needs to seek higher orders for bringing out the effect of shear forces. However, in
the cases of laminated plates, this procedure does not lead to Reissner-Mindlin plate
theory [7, 8].

In axiomatic approaches, 3D fields are assumed a priori and a plate theory is
derived using integration through the thickness and variational tools. The reader can
refer to the following reviews [9–12]. Most suggestions leading to Reissner-Mindlin-
like theories show discontinuous transverse shear stress through the thickness or
are limited to some geometric configurations (orthotropy or cylindrical bending
for instance). In this field, these limitations even led to the suggestion of “layer-
wise” models which give more satisfying results but are much more numerically
intense than Reissner-Mindlin theory [12, 13]. Finally, let us point out that the
theory suggested by Reissner [2] is usually considered as an axiomatic approach
since the parabolic transverse shear stress distribution of the stress was derived with-
out asymptotic arguments. Consequently, some work took literally this distribution
and applied it to laminated plates. Like in many unsuccessful axiomatic approaches
this led to discontinuous displacement fields and raised an unjustified suspicion over
the original work.

Revisiting the approach from Reissner [2] directly with laminated plates, Lebée
and Sab [1, 3] showed that the transverse shear static variables which come out
when the plate is heterogeneous are not shear forces Qα but the full gradient of the
bending momentRαβγ = Mαβ,γ. Using conventional variational tools, they derived
a new plate theory—called Bending-Gradient theory—which is actually turned into
Reissner-Mindlin theory when the plate is homogeneous. This new plate theory is
seen by the authors as an extension of Reissner’s theory to heterogeneous plates
which preserves most of its simplicity. It was applied to the cylindrical bending of
carbon fibers laminated plates and compared to exact solutions in [3]. Very good
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agreement for the transverse shear distribution as well as in-plane displacement was
pointed out and convergence with the slenderness was observed.

Originally designed for laminated plates, the Bending-Gradient theory was also
extended to in-plane periodic plates using averaging considerations such as Hill-
Mandel principle and successfully applied to sandwich panels [14, 15] as well as
space frames [16].

Because the derivation of the Bending-Gradient theory followed the ideas from
Reissner [2], one can argue that it is basically an axiomatic approach. However, it is
the intention of the present paper to demonstrate that there is a close link between
the derivation of the Bending-Gradient theory and the asymptotic expansion method.
Since the Bending-Gradient is turned into the Reissner-Mindlin theory when the
plate is homogeneous, this link will be also demonstrated for the original work from
Reissner [2].

In order to derive the Bending-Gradient theory through asymptotic expansions, we
first set in Sect. 2 the 3D problem, its symmetries and the asymptotic expan-
sions framework. For the sake of simplicity we choose the constitutive material
and the loadings of the plate such that the bending moment is fully uncoupled with
the membrane stress. Then in Sect. 3 we perform the standard resolution of the aux-
iliary problems and conclude that bringing out transverse shear effects through this
approach is not satisfying. Then in Sect. 4 we derive the Bending-Gradient theory
using variational considerations.

2 The Asymptotic Expansion Framework

In this section, the asymptotic expansion framework is set in the special case of
a laminated plate. This procedure was established by Sanchez-Palencia [17] for
linear dynamics of 3D continuum. It starts with the definition of the 3D problem
of the laminated plate which is under consideration. Then this problem is scaled in
order to separate the in-plane and the out-of-plane variables and we assume that the
fields follow an expansion depending on a small parameter: the inverse of the plate
slenderness. Finally, the equations are gathered for each order of this parameter.

2.1 Notations

Vectors and higher-order tensors, up to sixth order, are used in the following. When
using short notation, several underlining styles are used: vectors are straight under-
lined, u− . Second order tensors are underlined with a tilde: M

∼
and K

∼
. Third order

tensors are underlined with a parenthesis: R
�

and Γ
�

. Fourth order tensors are dou-
bly underlined with a tilde: D

∼∼
and s

∼∼
. Sixth order tensors are doubly underlined

with a parenthesis: h
��

and I
��

. The full notation with indices is also used. Then
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we follow Einstein’s notation on repeated indices. Furthermore, Greek indices
α,β, δ,γ = 1, 2 denotes in-plane dimensions and Latin indices i, j,k, l = 1, 2, 3, all
three dimensions. The transpose operation T• is applied to any order tensors as fol-
lows:

(
Ta

)
αβ...ψω = aωψ...βα. Three contraction products are defined, the usual

dot product (a− · b− = aibi), the double contraction product (a
∼

: b
∼

= aijbji) and
a triple contraction product (a

�
··· a� = aαβγaγβα). The derivation operator ∇− is

also formally represented as a vector: a
∼

· ∇− = aij∇j = aij,j is the divergence and
a
∼

⊗∇− = aij∇k = aij,k is the gradient. Here ⊗ is the dyadic product.

2.2 The 3D Problem

The laminated plate occupies a domainΩt = ωL×]−
t

2
,
t

2
[ whereωL is the middle

surface of the plate (its typical size is L) and t its thickness. The boundary of the
plate, ∂Ωt , is decomposed into three parts:

∂Ωt = ∂Ωlat ∪ ∂Ω+
3 ∪ ∂Ω−

3

with ∂Ωlat = ∂ωL×] −
t

2
,
t

2
[ and ∂Ω±

3 = ωL ×
{

± t
2

}
. (1)

The plate is fully clamped on its lateral boundary, ∂Ωlat, and is submitted to the
same distributed and purely transverse force f− = f3(x1, x2)e−3 both on its upper and

lower boundaries ∂Ω+
3 and ∂Ω−

3 .
The fourth-order stiffness tensor C

∼∼

t (x3) characterizing the elastic properties of

the constituent material at every point x− = (x1, x2, x3) of Ωt is introduced. We
assume the following monoclinic symmetry: C t3αβγ = C tα333 = 0. In addition, C

∼∼

t

does not depend on (x1, x2) and is an even function of x3 to ensure full uncoupling
between in-plane and out-of-plane problems. Thus, the constitutive equation writes
as:

σ
∼

t
(
x−
)

= C
∼∼

t (x3) : ε
∼

t
(
x−
)

(2)

where σ
∼

t =
(
σtij

(
x−
))

is the stress tensor and ε
∼

t =
(
εtij

(
x−
))

is the strain tensor at

point x−. The tensor C
∼∼

t follows the classical symmetries of linear elasticity and is
positive definite.

The full 3D elastic problem, P3D, is to find in Ωt a displacement vector field
u−
t , a strain tensor field ε

∼

t and a stress tensor field σ
∼

t such that the static conditions

(SC3D,t):

SC3D,t :

{
σ
∼

t · ∇− = 0 on Ωt (3a)

σ
∼

t · (±e−3

)
= f− on ∂Ω±

3 , (3b)
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the kinematic conditions (KC3D,t):

KC3D,t :

{
ε
∼

t = u−
t ⊗s∇− on Ωt (4a)

u−
t = 0 on ∂Ωlat (4b)

and the constitutive law (2) are satisfied. Here,
(
e−1, e−2, e−3

)
is the orthonormal basis

associated with coordinates (x1, x2, x3) and • ⊗s∇− denotes the symmetric part of the
gradient operator.

2.2.1 Variational Formulation of the 3D Problem

The strain and stress energy density w3D and w∗3D are respectively given by:

w3D (
ε
∼

)
=

1

2
ε
∼

: C
∼∼

t : ε
∼
, w∗3D (

σ
∼

)
=

1

2
σ
∼

: S
∼∼

t : σ
∼

(5)

They are related by the following Legendre-Fenchel transform:

w∗3D (
σ
∼

)
= sup
ε
∼

{
σ
∼

: ε
∼

−w3D (
ε
∼

)}
(6)

The kinematic variational approach states that the strain solution ε
∼

t of P3D is the

one that minimizes P3D among all kinematically compatible strain fields:

P3D (
ε
∼

t
)

= min
ε
∼
∈KC3D,t

{
P3D (

ε
∼

)}
(7)

where P3D is the potential energy given by:

P3D (
ε
∼

)
=

∫
Ωt
w3D (

ε
∼

)
dΩt −

∫
ωL

(
f− · u−+ + f− · u−−)

dωL (8)

and u−
± = u−(x1, x2, ±t/2) are the 3D displacement fields on the upper and lower

faces of the plate.
The static variational approach states that the stress solution σ

∼

t of P3D is the one

that minimizes P∗3D among all statically compatible stress fields:

P∗3D (
σ
∼

t
)

= min
σ
∼

∈SC3D,t

{
P∗3D (

σ
∼

)}
(9)

where P∗3D is the complementary potential energy given by:
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P∗3D (
σ
∼

)
=

∫
Ωt
w∗3D (

σ
∼

)
dΩt (10)

2.2.2 Effect of Symmetries

For the sake of simplicity, we chose the 3D plate problem such that only flexural part
is involved and no membranal part.

The 3D problem P3D is skew-symmetric through a planar symmetry with respect
to the mid-plane of the plate (known also as “mirror symmetry” in laminates engi-
neering) because C

∼∼

t is an even function of only x3. This means that, when applying
the transformation x3 → −x3 the problem remains unchanged but the boundary con-
dition (3b) changes its sign. Consequently the in-plane displacement utα (x1, x2, x3)
is an odd function of x3 and the out-of-plane displacement ut3 (x1, x2, x3) is an
even function of x3. Similarly, the in-plane stress σtαβ (x1, x2, x3) and transverse
compression σt33 (x1, x2, x3) are odd functions of x3 and the transverse shear stress
σtα3 (x1, x2, x3) is an even function of x3.

In terms of resultants and averaged displacements, the integration through the
thickness of utα and σtαβ vanish and then the plate problem will be purely flexural.
Of course, this result affects also the asymptotic expansion procedure and enables
many simplifications.

2.3 Scaling

Once the 3D problem is set, we scale it for clearly separating the in-plane variables
(which are related to macroscopic problems) and the out-of-plane variable (which
is related to microscopic perturbations). Hence, L is the typical scale of the in-plane
variables (e.g. the span and also the wavelength of the loadings). We introduce the
following change of variable Yα = L−1xα for the in-plane variable where Yα ∈ ω.
The domainω is the scaled mid-plane of the plate. Moreover we define z = t−1x3 for

the out-of-plane variable, z ∈]−
1

2
,

1

2
[. Consequently, we define the small parameter

as: η=t/L.
Based on this change of variables, the fourth-order elasticity tensor can be

rewritten as:
C
∼∼

t (x3) = C
∼∼

(
t−1x3

)
= C

∼∼
(z) (11)

where C
∼∼

is a function of z. In the following, double-stroke fonts denote fields which
are only function of the local variable z (i.e. localization fields).

The distributed forces are classically scaled the following way (see [4, 5, 18]):

f−(x1, x2)= η2
F3 (Y1,Y2)

2
e−3

(12)
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Similarly, in the following, fields with capital letters are only function of (Y1,Y2)
(i.e. macroscopic fields).

Furthermore, from the fields of the 3D problem (u−
t , ε

∼

t ,σ
∼

t) we define the non-
dimensional fields (u− , ε

∼
,σ

∼
) as follows:

⎧⎨
⎩
u−
t (x1, x2, x3) = Lu− (x1/L, x2/L, x3/t) = Lu− (Y1,Y2, z)
ε
∼

t (x1, x2, x3) = ε
∼

(x1/L, x2/L, x3/t) = ε
∼

(Y1,Y2, z)
σ
∼

t (x1, x2, x3) = σ
∼

(x1/L, x2/L, x3/t) = σ
∼

(Y1,Y2, z)
(13)

The derivation rule for those functions is:

∇− =

(
d

dx1
,
d

dx2
,
d

dx3

)

= L−1
(
∂

∂Y1
,
∂

∂Y2
, 0

)
+ t−1

(
0, 0,

∂

∂z

)
= L−1∇− Y + t−1∇− z . (14)

We will also use the variational formulation of the 3D problem. Hence we provide
here the scaled variational formulation. The set of statically compatible fields can be
rewritten as:

SC3D :

⎧⎨
⎩
σ
∼

· ∇− (Y,z) = 0 on Ω, (15a)

σ
∼

· (±e−3

)
=
η2

2
F3e−3 on ∂Ω±

3 , (15b)

where ∇− (Y,z) = ∇− Y +
1

η
∇− z . The kinematically compatible fields becomes (KC3D):

KC3D :

⎧⎨
⎩
ε
∼

= u− ⊗s∇− (Y ,z)
onΩ, (16a)

u− = 0 on ∂ω×] −
1

2
, +

1

2
[ (16b)

Then the potential energy is rewritten as:

P3D (
ε
∼

)
= tL2

∫
ω

(〈
w3D (

ε
∼

)〉
− η

u+
3 + u−

3

2
F3

)
dω (17)

where 〈•〉 is the integration through the thickness: 〈•〉 =

∫ 1
2

−1
2

• dz. The complemen-

tary energy becomes also:

P∗3D (
σ
∼

)
= tL2

∫
ω

〈
w∗3D (

σ
∼

)〉
dω (18)
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Now, C
∼∼

,ω and F3 being fixed, the homogenization problem is to find a consistent

approximation of the solution of the 3D problem P3D (2–4) assuming η is small.

2.4 Expansion

The asymptotic expansion method [17, 19] will be used to provide a formal justifi-
cation of the Bending-Gradient theory. The starting point of the method is to assume
that the solution to (2–4) can be written as a series in power of η in the following
form:

⎧⎨
⎩
u− = η−1u−

−1 + η0u−
0 + η1u−

1 + · · ·
ε
∼

= η0ε
∼

0 + η1ε
∼

1 + · · ·
σ
∼

= η0σ
∼

0 + η1σ
∼

1 + · · ·
(19)

where p = −1, 0, 1, 2 . . . and u−
p , ε

∼

p and σ
∼

p are functions of (Y1,Y2, z) which follow
the same parity as the 3D solution (Sect. 2.2.2). The series are started from the order
η0 for σ

∼
and ε

∼
, and from the order η−1 for u− . Then, the expansion (19)—taking into

account the change of variable—must be inserted in the equations (2–4) and all the
terms of the same order ηp must be identified.

2.4.1 Statically Admissible Fields

The 3D equilibrium equation, σ
∼

t · ∇− = 0 on Ωt , becomes:

L
(
σ
∼

t · ∇−
)

= η−1
(
σ
∼

0·∇− z
)

+η0
(
σ
∼

0·∇−Y +σ
∼

1·∇− z
)

+···=0.

Identifying all the terms of the above series to be zero, it is found:

σ0
i3,3 = 0 (20)

for the order η−1,
σ
p

iα,α+σp+1

i3,3 = 0 (21)

for the order ηp with p � 0. The derivation •,i is performed without ambiguity
with respect to (Y1,Y2, z). The boundary condition, σ

∼

t · e−3 = ±f− on ∂Ω±
3 , gives the

following equations:

σ
p

i3

(
Y1,Y2, ±1

2

)
= 0 (22)
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for the order p � 0 and p 	= 2. When p = 2 we have:

σ2
α3

(
Y1,Y2, ±1

2

)
= 0 and σ2

33

(
Y1,Y2, ±1

2

)
= ±1

2
F3 (Y1,Y2) (23)

2.4.2 Kinematically Compatible Fields

From the compatibility equation, it is found that the strain rate field can be written
as:

ε
∼

t = Lu− ⊗s∇− =η−2ε
∼

−2 +η−1ε
∼

−1 +η0ε
∼

0+ ··· (24)

with:
ε−2
αβ = 0, ε−2

α3 =
1

2
u−1
α,3 and ε−2

33 = u−1
3,3 (25)

and for all p � −1:

ε
p

αβ =
1

2

(
u
p

α,β+ upβ,α

)
, ε

p

α3 =
1

2

(
u
p+1
α,3 + up3,α

)
and ε

p

33 = u
p+1
3,3 (26)

The boundary condition over ∂Ωlat leads to:

∀p � −1 and ∀ (Y1,Y2) ∈ ∂ω, u−
p = 0. (27)

3 Explicit or Cascade Resolution

Now that the asymptotic expansion framework is set, we detail the explicit reso-
lution which is classically performed (see [5, 7] for instance). Basically it starts
with the derivation of low order displacements which do not generate local strain
but are related to purely macroscopic displacement fields. Then the zeroth-order
equations are gathered. They enable the definition of the first auxiliary problem and
the construction of the well-known Kirchhoff-Love macroscopic plate model. Then
the first-order is solved the same way. Of course it would be possible to carry on the
process any order higher.

3.1 Low Order Displacement Fields

The assumption (19) provides the following equations:

ε
∼

−2 = 0, (28)

and
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ε
∼

−1 = 0, (29)

From (28) it is deduced that u−
−1 is a rigid-body velocity field in z. Moreover, the in-

plane displacement has zero average because of the symmetry condition (Sect. 2.2.2).
Hence:

u−
−1 = U−1

3 (Y1,Y2) e−3. (30)

Using (29) and the boundary conditions (27) it can be found that u−
0 has the

following form:

u−
0 =

⎛
⎜⎝

−zU−1
3,1

−zU−1
3,2

U0
3

⎞
⎟⎠ , (31)

with the boundary conditions:

∀ (Y1,Y2) ∈ ∂ω, U−1
3 = U−1

3,αnα = U0
3 = 0. (32)

wheren− is the outer normal to ∂ω. Note that, sinceU−1
3 is null over ∂ω, its tangential

derivative will be also null over ∂ω, hence only the normal gradient U−1
3,αnα is

required to be explicitly set to zero in this boundary condition.

3.2 Zeroth-Order Plate Model (Kirchhoff-Love)

3.2.1 Zeroth-Order Auxiliary Problem

Gathering equilibrium equation for order -1, compatibility equation, boundary condi-
tions and constitutive equations of order 0 we get the zeroth-order auxiliary problem

for z ∈ [−
1

2
,

1

2
]:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ0
i3,3 = 0 (33a)

σ0
ij = Cijklε

0
kl (33b)

ε0
αβ = zK−1

αβ, ε0
α3 = 1

2

(
u1
α,3 +U0

3,α

)
and ε0

33 = u1
3,3 (33c)

σ0
i3

(
z = ± 1

2

)
= 0 (33d)

where we define the lowest-order curvature as:

K−1
αβ = −U−1

3,αβ (34)
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Solving this problem does not raise difficulty. Using short notation, the displacement
field writes as:

u−
1 = u

∼−

K : K
∼

−1 − zU0
3 ⊗∇−Y +U1

3e−3 (35)

More precisely, the localization related to the curvature is:

uK3αβ = −

[∫z
−1

2

y
C33αβ

C3333
dy

]∗
and uKαβγ = 0 (36)

where [•]∗ denotes the averaged-out distribution: [•]∗ = • − 〈•〉. Finally U1
3 is an

integration constant which will load the next auxiliary problem. (There are no in-
plane integration constants because of the symmetry already invoked with lower
orders.) The stress localization writes as:

σ
∼

0 = s
∼∼

K : K
∼

−1 (37)

where the fourth-order stress localization tensor is:

sKαβγδ = zCσ
αβγδ and sKi3γδ = 0 (38)

and C σ
αβγδ = Cαβγδ − Cαβ33C33γδ/C3333 denotes the plane-stress elasticity

tensor. Hence the plate is under pure plane-stress at this order.
The strain is derived using the local constitutive equation:

ε0
αβ = zK−1

αβ, ε0
α3 = 0 and ε0

33 = −
zC33αβ

C3333
K−1
αβ (39)

This confirms Kirchhoff’s assumption regarding the in-plane strain. The reader’s
attention is drawn to the fact that the out-of-plane strain is not zero, as already men-
tioned in several works [4, 5] in contrast to the original assumption from Kirchhoff.

Hence, for given macroscopic fieldsU−1
3 and its derivatives, the microscopic strain

and stress are fully determined at this order. However, we also need U0
3 and U1

3 for
estimating the displacement field. This requires solving higher-order problems.

At this order, there remains to derive the macroscopic problem which enables the
derivation of U−1

3 .

3.2.2 Macroscopic Problem

The Macroscopic equilibrium is derived integrating the first two components of z×
(21) for p = 0. This gives after integrating by parts over z:

M0
αβ,β−Q1

α = 0 (40)



228 A. Lebée and K. Sab

where the zeroth-order bending moment is defined as:

M0
αβ (Y1,Y2) =

〈
z σ0
αβ

〉
, (41)

and the first-order shear force is:

Q1
α (Y1,Y2) =

〈
σ1

3α

〉
. (42)

It can be easily established that
〈
σ0

3α

〉
= 0 because of the equilibrium (20) and the

boundary condition (22). Therefore, averaging the third component of Eq. (21) for
p = 0 leads to a trivial equation. Using the second order boundary condition (23,
p = 2) and averaging the third component of the first-order equilibrium equation
(21), for p = 1 gives:

Q1
α,α+ F3 = 0. (43)

We obtain also the constitutive equation by plugging the local stress derived in
Eq. (37) into the definition ofM

∼

0. This leads to the well-known Kirchhoff-Love con-
stitutive equation:

M
∼

0 = D
∼∼

: K
∼

−1 where : D
∼∼

=
〈
z2 C

∼∼

σ
〉

(44)

Gathering the preceding results leads to the definition of the Kirchhoff-Love plate
problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M
∼

0 :
(∇− Y ⊗∇− Y

)
+ F3 = 0, on ω (45a)

M
∼

0 = D
∼∼

: K
∼

−1, on ω (45b)

K
∼

−1 = U−1
3 ∇− Y ⊗∇−Y , on ω (45c)

U−1
3 = 0 and

(
U−1

3 ⊗∇−Y
) · n− = 0 on ∂ω (45d)

Finally, solving this macroscopic problem enables the derivation of the macro-
scopic displacement fields U−1

3 . However U0
3 and U1

3 remain unknown.
The well-known limitation of Kirchhoff-Love plate model is that it does not incor-

porate the effect of shear forces. In order to bring out the contribution of transverse
shear, we need to go further in the expansion.

3.3 First-Order Plate Model

3.3.1 First-Order Auxiliary Problem

Gathering equilibrium equation for order 0, compatibility equation, boundary con-
ditions and constitutive equations of order 1 we get the first-order auxiliary problem
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for z ∈ [−
1

2
,

1

2
]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ0
iα,α+σ1

i3,3 = 0 (46a)

σ1
ij = Cijklε

1
kl (46b)

ε1
αβ = 1

2

(
u1
α,β+ u1

β,α

)
, ε1

α3 = 1
2

(
u2
α,3 + u1

3,α

)

and ε1
33 = u2

3,3 (46c)

σ1
i3

(
z = ± 1

2

)
= 0 (46d)

In this auxiliary problem, the zeroth-order displacement field u−
1 (Eq. (35)) and stress

field σ
∼

0 (Eq. (37)) are local fields which depend linearly on K
∼

−1, U0
3,α and U1

3.
Hence, the first-order solution u−

2 (as well as ε
∼

1 and σ
∼

1) will be a linear superposition
of localization fields which depend on the gradient of those macroscopic fields.

The displacement field solution of this problem writes as:

u−
2 = u

�−

K∇ ···
(
K
∼

−1 ⊗∇−Y
)
+ u

∼−

K : K
∼

0 − zU1
3 ⊗∇−Y+U2

3e−3
(47)

where the displacement localization tensor related to the curvature gradient writes
as:

uK∇
αβγδ = −

[∫z
−1

2

(
4Sα3η3

∫y
−1

2

vCσ
ηβγδ dv+ δαβu

K
3γδ

)
dy

]∗

and uK∇
3βγδ = 0 (48)

The first order stress writes as:

σ
∼

1 = s
�∼

K∇ ···
(
K
∼

−1 ⊗∇−Y
)

+ s
∼∼

K : K
∼

0 (49)

where we defined the fifth-order localization tensor as:

sK∇
αβγδη = 0, sK∇

α3βγδ = −

∫z
1
2

yCσ
αβγδ dy and sK∇

33βγδ = 0 (50)

Hence, this order involves only transverse shear effects.

3.3.2 Higher-Order Macroscopic Problem

Exactly as for the zeroth-order, it is possible to derive the macroscopic equilibrium
equation as:

M1
αβ,βα = 0 (51)
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which holds also for higher orders (p � 1). For the constitutive equation, we have
again:

M
∼

1 =
(〈
z σ1
αβ

〉)
= D

∼∼
: K

∼

0 (52)

Finally, U0
3 is solution of the same Kirchhoff-Love problem as with the zeroth-

order case (Eq. (45)), without external loads. Thus the solution is trivially zero every-
where. This is due to the monoclinic symmetry of the local constitutive equation. It
is the analogue of the centro-symmetric assumption in the case of asymptotic expan-
sion of a 3D medium (see [20] for instance). Thus, if we want to capture transverse
shear effects following the asymptotic expansion procedure, we have to go one order
higher. At this order, the macroscopic problem will not be trivial. However, it will
require the derivation of the second gradient of the curvature K

∼

−1 and consequently
the fourth derivative of the deflection. This raises an issue in terms of physical mean-
ing of this variable as well as of numerical implementation.

In contrast, it is remarkable that transverse shear effects are included in the local-
ization field already at this order. Hence we suggest to stop at this order the asymptotic
expansion and switch to variational arguments for deriving the Bending-Gradient
theory.

3.4 Additional Remarks on the Asymptotic Expansion
Approach

Before going further in the derivation of the Bending-Gradient theory, let us point
out some useful remarks regarding the asymptotic expansion procedure.

In the present paper, we performed the asymptotic expansion up to the very next
order after the classical homogenization procedure. However, this formalism has
already been studied up to “infinite order” in other elasticity problems (see [21] for
instance) and convergence results were derived [22]. Those works show that the fully
reconstructed fieldu− is actually a double sum: a sum over orders, as expected because
of the expansion, but also over degrees of derivative of the macroscopic displacement
field. This is also the case in the present plate problem. If we gather all the fields
derived in the cascade resolution we get the following:

u− =

(
U−1

3

η
+U0

3 + ηU1
3 + η

2U2
3 + · · ·

)
e−3

− z
(
U−1

3 + ηU0
3 + η

2U1
3 + · · ·

)
⊗∇−Y

+ η

(
u
∼−

K :
(
K
∼

−1 + ηK
∼

0 + · · · )
)

+ η
2
(
u
�−

K∇ ···
(
K
∼

−1 ⊗∇−Y + · · · )
)

+ · · · (53)
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Assuming that this double sum converges, it is legitimate to define:

U3 =

∞∑
p=−1

ηp+1Up3 (54)

and rewrite the total displacement field as:

u− =
U3

η
e−3 − zU3 ⊗∇−Y + η u

∼−

K : K
∼

+ η
2 u

�−

K∇ ··· K∼ ⊗∇−Y + · · · (55)

where K
∼

= U3∇− Y ⊗∇−Y . This was suggested by Boutin [23] and further justified in
[21]. We have also for the stress field:

σ
∼

= s
∼∼

K : K
∼

+ η s
�∼

K∇ ··· K∼ ⊗∇−Y + · · · (56)

Finally, this reasoning holds also true for the equilibrium equation and we formally
get:

M
∼

:
(∇− Y ⊗∇− Y

)
+ F3 = 0 (57)

where Mαβ =
〈
z σαβ

〉
. Hence, it seems that going higher-order in the asymptotic

expansion only involves higher gradients of the displacement inside the constitutive
equation. However, as already pointed out in these papers, the problem remains ill-
posed as it stands here. Some caution must be taken when considering the constitutive
equation as well as the boundary conditions if one wants to derive a mathematically
sound problem.

First, in order to derive the constitutive equation it seems straightforward to take
directly the elastic energy of the infinite order stress or strain (Eq. (56)) and to truncate
this energy up to a given order afterward. However, this will lead to a non-positive
quadratic form and makes the higher-order problem unstable. Hence, as pointed out
by [21] it is critical to truncate the expansion of the stress or strain before taking the
related energy to ensure positivity.

Second, whereas the boundary conditions are set at each order in the cascade
resolution of the asymptotic expansion (here Eq. (45d) at each order), in the format
presented here, it is not possible to make distinction between orders and then the
problem is not well-posed anymore. Now, variational tools will enable the derivation
of consistent boundary conditions with the choice of macroscopic degrees of freedom.

4 The Bending-Gradient Theory

Keeping in mind the difficulties mentioned regarding the asymptotic expansion, the
Bending-Gradient theory is derived as follows. First, instead of keeping the first
gradient of the curvature as higher-order unknown, we introduce the gradient of the
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bending moment. This will relax the compatibility condition between K
∼

and K
∼

⊗∇−Y .
After this change of variable, we define the stress localization as the truncation of the
infinite order stress. Then we introduce the set of statically compatible macroscopic
fields. Finally, using variational arguments, the kinematics as well as the boundary
conditions of the plate model are derived. Once the plate model is solved, we are
able to reconstruct an approximation of the 3D displacement field.

We select first the bending moment and its gradient instead of the curvature and
its gradient for carrying the energy. Hence we define the bending gradient as:

R
�

= M
∼

⊗∇−Y (58)

Using Kirchhoff-Love constitutive equation and the following change of variable,

R
�

= D
∼∼

: K
∼

⊗∇−Y (59)

it is possible to rewrite the strain and stress localization fields derived with the
asymptotic expansion (Eq. (3)) only in terms ofM

∼
and R

�
:

σ
∼

BG = s
∼∼

M : M
∼

+ηs
�∼

R ···R� (60)

where:
s
∼∼

M = s
∼∼

K : d
∼∼

, s
�∼

R = s
�∼

K∇ : d
∼∼

and d
∼∼

= D
∼∼

−1 (61)

It is easy to check that this stress field satisfies the 3D equilibrium equation (15), as
well as the z = ±1/2 face boundary conditions, up to the order η1. Hence, even if
it does not define properly a restriction of SC3D, it remains a good approximation in
the sense of the asymptotic expansion.

Now, based on the macroscopic equilibrium equations derived through the asymp-
totic expansion and the definition of R

�
, we suggest the following set of statically

compatible fields for the Bending-Gradient theory:

SCBG :

{
R
�

= M
∼

⊗∇−Y (62a)(
i
∼∼

··· R�
)

· ∇−Y + F3 = 0 (62b)

where the shear forces were substituted and we used the following relation:

i
∼∼

··· R� = M
∼

· ∇−Y (63)

where iαβγδ =
1

2

(
δαγδβδ+ δαδδβγ

)
is the identity for in-plane fourth-order

tensors following the symmetries of linear elasticity.
Plugging σ

∼

BG into the complementary energy of the full 3D problem leads to the
following functional:
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P∗BG (
M
∼

,R
�

)
=

∫
ω
w∗KL (

M
∼

)
+ η2w∗BG

(
R
�

)
dω (64)

where the stress elastic energies are defined as:

w∗KL (
M
∼

)
=

1

2
M
∼

: d
∼∼

: M
∼

and w∗BG (
R
�

)
=

1

2
TR
�

··· h�� ··· R� (65)

with:
h
��

=
〈
Ts
�∼

R : S
∼∼

: s
�∼

R
〉

(66)

This sixth-order tensor is the compliance related to the transverse shear of the plate.
It is strictly identical to the one derived in [1]. Let us recall here that it is positive,
symmetric, but not definite. More details about h

��
properties were discussed in [1].

NB: There is no uncoupling in the complementary energy (64) between M
∼

and
R
�

because of the monoclinic symmetry of the local constitutive equation. In the
auxiliary problems, this symmetry enforces the localization related toM

∼
to be purely

in-plane and the one related to R
�

to be pure transverse shear. Hence the cross terms
in the 3D elastic energy vanish.

Now we define the generalized strains as:

χ
∼

=
∂w∗KL

∂M
∼

and Γ
�

=
∂w∗BG

∂R
�

(67)

which leads to the following constitutive equations:

{
χ
∼

= d
∼∼

: M
∼

(68a)

Γ
�

= h
��

··· R� (68b)

Introducing respectively Φαβγ, U3 as Lagrange multipliers of Eqs. (62a) and
(62b) and taking the variations with respect to the static variables leads to the fol-
lowing definition for the strains:

KCBG :

{
χ
∼

= Φ
�

· ∇−Y (69a)

η2Γ
�

=Φ
�

+ i
∼∼

·∇−YU3 (69b)

where bothΦ
�

and Γ
�

are third-order tensors which follows the same index symmetry
asR

�
. Settingη2 =0 in those definitions leads exactly to Kirchhoff-Love strains. Hence,

the Bending-Gradient curvature is slightly different from the one of the asymptotic
expansion and Eq. (69a) rewrites:

χ
∼

= K
∼

+η2Γ
�

·∇−Y (70)
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Namely it is the sum of the conventional curvature and a small correction term which
relaxes this compatibility relation.

Considering the variations of the Lagrangian on the edges leads also to the fol-
lowing clamped boundary conditions:

U3 = 0 and Φ
�

· n− = 0 on ∂ω (71)

Finally we have a well-posed plate theory.
Once the exact solution of the macroscopic problem is derived, it is possible to

reconstruct the local displacement field. We suggest the following 3D displacement
field where U3, Φ

�
are the fields solution of the plate problem:

u−
BG =

U3

η
e−3 − zU3 ⊗∇−Y + η u

∼−

K : χ
∼

+ η
2 u

�−

K∇ ···
(
χ
∼

⊗∇−Y
)

(72)

Defining the strain as ε
∼

BG = S
∼∼

: σ
∼

BG it is possible to check that:

ε
(
u−
BG

)
(Y,z)

− ε
∼

BG =η2
((
δ
∼

⊗su
�−
K∇

)
::

(
χ
∼

⊗∇− 2
Y

)
+zΓ

�
·∇−Y

)
(73)

which shows that the compatibility equation between the reconstructed displacement
field u−

BG and strain localization ε
∼

BG is satisfied up to the η2 order.

5 Conclusion

Finally, we derived a plate model which enables the full description of local 3D
fields (u−

BG, ε
∼

BG and σ
∼

BG) including the effects of transverse shear. Compared to the
classical theory from Reissner [2], we just add four macroscopic variables included
into the generalized rotation Φ

�
and which are related to transverse shear warping.

Contrary to the asymptotic expansions approach or the approach suggested in [21],
our theory does not require the derivation of the first or even the second gradient
of the curvature. Actually, when looking at the definition of strains in Eq. (69), only
the first derivatives of U3 and Φ

�
are involved. Having low-order interpolation is a

serious advantage compared to “strain-gradient-like” approaches given in [7, 21].
Now, let us recall that the derivation of the Bending-Gradient theory through

asymptotic expansions was purely formal. The small parameter η was essentially
used for discriminating between orders. More precisely, the 3D local fields chosen
for the Bending-Gradient theory satisfy the 3D compatibility equation and the 3D
equilibrium equation one order higher than the Kirchhoff-Love fields. However, this
is not a proof of convergence even if the good results in [3] are clearly encouraging.
Especially, it is broadly acknowledged that the boundary have a critical role on that
matter when going in higher orders. This question raises already with asymptotic
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expansions: it was demonstrated that the approximation which is derived in the bulk
is not compatible with the actual 3D boundary condition and can only be fulfilled
weakly (see [24, 25] for a clear illustration in the case of beams and also [26]). In
the case of the Bending-Gradient theory the boundary conditions are different from
the asymptotic expansions and requires further analysis which is out of the scope of
this paper.
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7. Lewiński, T.: Effective models of composite periodic plates: I. Asymptotic solution. Int. J.

Solids Struct. 27(9), 1155–1172 (1991)
8. Sutyrin, V.G., Hodges, D.H.: On asymptotically correct linear laminated plate theory. Int. J.

Solids Struct. 33(25), 3649–3671 (1996)
9. Reddy, J.N.: On refined computational models of composite laminates. Int. J. Numer. Methods

Eng. 27(2), 361–382 (1989)
10. Altenbach, H.: Theories for laminated and sandwich plates. Mech. Comp. Mater. 34(3), 243–

252 (1998)
11. Noor, A.K., Malik, M.: An assessment of five modeling approaches for thermo-mechanical

stress analysis of laminated composite panels. Comput. Mech. 25(1), 43–58 (2000)
12. Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and

shells. Arch. Comput. Methods Eng. 9(2), 87–140 (2002)
13. Diaz Diaz, A.: Un modèle de stratifiés. C. R. Acad. Sci. Ser. IIB Mech. 329(12), 873–879

(2001)
14. Lebée, A., Sab, K.: Homogenization of thick periodic plates: application of the Bending-

Gradient plate theory to a folded core sandwich panel. Int. J. Solids Struct. 49(19–20), 2778–
2792 (2012)

15. Lebée, A., Sab, K.: Homogenization of cellular sandwich panels. C. R. Mécan. 340(4–5),
320–337 (2012)

16. Lebée, A., Sab, K.: Homogenization of a space frame as a thick plate: application of
the Bending-Gradient theory to a beam lattice. Comput. Struct. (accepted). doi:10.1016/j.
compstruc.2013.01.011

17. Sanchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory, Lecture Notes in
Physics, vol. 127. Springer, Berlin (1980)

18. Dallot, J., Sab, K.: Limit analysis of multi-layered plates. Part I: The homogenized Love-
Kirchhoff model. J. Mech. Phys. Solids 56(2), 561–580 (2008)

19. Sanchez Hubert, J., Sanchez-Palencia, E.: Introduction aux méthodes asymptotiques et à
l’homogénéisation: application à la mécanique des milieux continus, Masson, Paris (1992)

20. Triantafyllidis, N., Bardenhagen, S.: The influence of scale size on the stability of periodic
solids and the role of associated higher order gradient continuum models. J. Mech. Phys.
Solids 44(11), 1891–1928 (1996)

http://dx.doi.org/10.1016/j.compstruc.2013.01.011
http://dx.doi.org/10.1016/j.compstruc.2013.01.011


236 A. Lebée and K. Sab

21. Smyshlyaev, V.P., Cherednichenko, K.D.: On rigorous derivation of strain gradient effects in the
overall behaviour of periodic heterogeneous media. J. Mech. Phys. Solids 48(6–7), 1325–1357
(2000)

22. Bakhvalov, N., Panasenko, G.: Homogenisation: averaging processes in periodic media. Kluwer
Academic Publishers, Dordrecht (1989)

23. Boutin, C.: Microstructural effects in elastic composites. Int. J. Solids Struct. 33(7), 1023–1051
(1996)

24. Buannic, N., Cartraud, P.: Higher-order effective modeling of periodic heterogeneous beams.
I. Asymptotic expansion method. Int. J. Solids Struct. 38(40–41), 7139–7161 (2001)

25. Buannic, N., Cartraud, P.: Higher-order effective modeling of periodic heterogeneous beams.
II. Derivation of the proper boundary conditions for the interior asymptotic solution. Int. J.
Solids Struct. 38(40–41), 7163–7180 (2001)

26. Berdichevsky, V.L.: Variational-asymptotic method of constructing a theory of shells. J. Appl.
Math. Mech. 43(4), 711–736 (1979)



Macroscopic Modeling of Size Effects in Foams
Using an Order-Parameter Approach

Bernd Lenhof, Alexander Geringer and Stefan Diebels

Abstract Foams show size effects under mechanical loading. Typically a stiffening
effect in shear experiments is observed if the specimen is reduced in size (smaller is
stiffer). It is documented in several publications that a micro-polar model is able to
describe this effect which is microscopically motivated by the bending stiffness of
the cell walls. In the present contribution a microscopic model of an open-cell foam
is used to generate virtual experimental data. Stiff boundary layer effects are found
under shear loading while tension shows a weakening effect due to the reduced
connectivity of the beams on the free boundary. Using a parameter identification
procedure allows for the determination of the parameters of the micro-polar model
if the focus is laid on the stiffening size effect. Weakening size effects cannot be
predicted by the micro-polar model if a physical interpretation of the rotational
degrees of freedom is preserved. Therefore, an order-parameter approach is chosen
as an alternative on the macro-scale. It is shown in the contribution, that this different
type of macroscopic model allows to describe both types of size effects.

1 Introduction

Open-cell foams are well established engineering materials. Nevertheless, their
mechanical properties are more complex and less understood compared to the
mechanical properties of classical engineering materials like steel.
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Fig. 1 The cubes represent the same continuum model of a foam but for different sizes (height
ratios between the species from left to right 1:2:4). The green area shows the surface of the sub-
cube, inside which certain value is constant, e.g. shear modulus. Outside the sub-cube, the value is
influenced by the boundary. As can be seen in the picture, the depth of boundary influence does not
scale with the cube dimensions

One major difference to classical materials is a size effect that foams show
(cf. Andrews et al. [1, 2], Diebels and Steeb [7], Lakes [12], Onck et al. [14],
Tekoğlu [19], Tekoğlu and Onck [21]). Depending on the size of the specimen,
there is a change in stiffness. A rule of thumb is ‘the smaller the specimen, the larger
the change in stiffness (cf. Fig. 1). Whether the specimen reacts stiffer or weaker
depends on the load case, i.e. small foam specimen show a weakening in tensile tests
and a stiffening in simple shear tests.

Standard Boltzmann continua are not able to reproduce these size effects. Hence,
the continuum theory has to be extended properly. One such well-known extension is
the micro-polar model (also known as Cosserat model [6]). The micro-polar model is
able to reproduce the stiffening behavior in simple shear tests. Unfortunately, it fails
in modeling the weakening in tensile tests (cf. Tekoğlu and Onck [20]). Here, we
introduce an order-parameter model to overcome the drawback of the micro-polar
model, while keeping the number of additional fields small. This model approach has
been successfully used by Steeb and Diebels [16], Diebels et al. [8] and Diebels and
Geringer [9] to model boundary effects in polymers. In difference to the micro-polar
approach, the order-parameter model does not try to capture micro-mechanical details
in terms of additional kinematic degrees of freedom but to model macroscopically
measurable inhomogeneities. It will be shown, that the proposed order-parameter
model is in fact able to model both size effects and is, hence, an alternative to the
micro-polar model.

The contribution consists of 4 sections. In Sect. 2, the equations of the
order-parameter model is thermodynamically consistent derived and compared to
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the micro-polar model. In Sect. 3, the strong form is further developed into the weak
form to obtain, afterwards, the pertinent finite element formulation. Moreover, para-
meter studies and parameter identification for a simple shear test and a tension test
have been carried out which show the viability of the approach. Finally, conclusions
are drawn in Sect. 4.

2 Modeling

Here, the basic equations of the order-parameter model are established. The derivation
follows the line of argumentation of Steeb and Diebels [17]. Their reasoning is
founded on the work of Capriz [5] and Svendsen [18]. Additionally, the pertinent
equations for the micro-polar model are stated. Those equations are not derived,
the interested reader is referred to the work of the Cosserat brothers [6] or Eringen
[10]. However, there is a short comparison of the order-parameter model and the
micro-polar model at the end of this section.

2.1 The Order-Parameter Model

To derive the order-parameter model used in this work, the work by Capriz [5] and
Steeb and Diebels [17] are utilized. As a starting point, the following equations are
stated

ρ̇+ ρ divẋ = 0, (1)

ρẍ − divT − ρb = 0, (2)

ρkξ̈− divS − ρg = 0, (3)

where (1) is the continuity equation on macro-level, (2) is the balance of momentum
on macro-level and (3) is a constitutive equation for the order-parameter which has
the structure of a balance equation. Here, ρ denotes the density of the material, T is
the Cauchy stress tensor, b labels the macroscopic body force, x is a material point
in the actual placement and d

dt = ()̇ indicates the material time derivative. As to the
balance equation for the order-parameter, k is a model function, S is a flux vector,
ρg is a supply term and, finally, ξ represents the order-parameter. As a side note, the
order-parameter is not an additional kinematic quantity, hence, the function k is not
an inertia term.

Going on in the usual way of doing, the local balance equation for the internal
energy density is given in its most general form as (cf. e.g. Hutter and Jöhnk [11])

Γ̇ = Σ− divΦ, (4)
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where Γ is the energy density, Σ denotes the energy supply terms andΦ contains the
energy flux terms. The energy density is, given as

Γ =
1

2
ρẋ · ẋ + ρε+

1

2
ρkξ̇2, (5)

consists of a kinetic part, the internal energy and an additional part due to the order-
parameter. Since the order-parameter is not a kinematic quantity, there is at a first
glance no need to define the related energy density in a kinetic fashion. However, the
term 1

2ρξ̇
2 turns out to be consistent to Eq. (3) (cf. Capriz [5]). The energy supply,

Σ = ρb · ẋ + ρr+ ρgξ̇, (6)

contains the mechanical power from the body forces, a supply from heat radiation r
and an additional part from the supply of order-parameter. Finally, the energy flux,

Φ = −T · ẋ + q − Sξ̇, (7)

consists of the mechanical power due to stresses, a heat flux term and the flux term
of the order-parameter. Insertion of the Eqs. (5)–(7) into (4) leads to

∂

∂t
(ρε+

1

2
ρẋ · ẋ +

1

2
ρkξ̇2) + (ρε+

1

2
ρẋ · ẋ +

1

2
ρkξ̇2) divẋ

= div(T · ẋ) + divSξ̇− divq + ρb · ẋ + ρgξ̇+ ρr. (8)

The repeated use of the balance Eqs. (1)–(3) reduces Eq. (8) to

ρε̇+
1

2
ρk̇ξ̇2 = T : gradẋ + S · gradξ̇− divq + ρgξ̇+ ρr. (9)

In anticipation of the use of the energy balance in the entropy inequality, the
internal energy is replaced in a standard fashion via Legendre transformation with
the Helmholtz free energy. By use of

Ψ = ε− ηθ, (10)

ε̇ = Ψ̇+ η̇θ+ ηθ̇, (11)

where Ψ denotes the Helmholtz free energy, η the entropy and θ the temperature, we
obtain from (9)

ρη̇θ+ divq − ρr = T : gradẋ + S · gradξ̇+ ρgξ̇−
1

2
ρk̇ξ̇2 − ρΨ̇− ηθ̇. (12)

The exploitation of the entropy inequality leads to thermodynamic consistent
constitutive equations. Here, the approach of Coleman and Noll is used. By doing
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this, we still follow the argumentation of Steeb and Diebels [17]. The entropy equality
is given as

d

dt
(ρη) = −divϕ+ ρs+ η̂, (13)

where the entropy production η̂ is introduced as well as the entropy flux ϕ and the
entropy supply s. The entropy flux and the entropy supply will be defined as

ϕ =
q
θ

, (14)

s =
r

θ
. (15)

This definition may be questionable for microstructures. However, an evaluation
of the entropy inequality in the sense of Müller-Liu, which might give a different
definition of the entropy flux and supply, is left for future work. Introduction of the
constitutive equations (14) into (15) and rearrangement leads to

ρη̇θ+ divq − ρr = −
q
θ

gradθ+ η̂. (16)

After a comparison of Eq. (12) with Eq. (16), while keeping in mind that the entropy
production η̂ is always positive, we obtain the Clausius-Duhem inequality

T : gradẋ + S · gradξ̇+ ρgξ̇−
1

2
ρk̇ξ̇2 − ρΨ̇− ηθ̇+

q
θ

gradθ � 0. (17)

The assumption of isothermal processes reduces the Clausius-Duhem inequality to
the Clausius-Planck inequality, which as a consequence only contains mechanical
quantities but no thermal ones,

T : gradẋ + S · gradξ̇+ ρgξ̇−
1

2
ρk̇ξ̇2 − ρΨ̇ � 0. (18)

To obtain pertinent constitutive equations, the Clausius-Planck inequality has to
be evaluated. Suitable process variables are

S = S(E, ξ, gradξ), (19)

while the response functions are

R = R(Ψ, T, S,k). (20)

Due to the concept of equipresence, it is assumed that every response function
depends on all process variable. Hence, it is possible to expand the time derivatives
Ψ̇ and k̇ by means of the chain rule into
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Ψ̇ =
∂Ψ

∂E
: Ė +

∂Ψ

∂ξ
ξ̇+

∂Ψ

∂gradξ
· gradξ̇, (21)

k̇ =
∂k

∂E
: Ė +

∂k

∂ξ
ξ̇+

∂k

∂gradξ
· gradξ̇. (22)

Substitution of these expressions in Eq. 18 leads to

(T − ρ
∂Ψ

∂E
−

1

2
ρ
∂k

∂E
ξ̇2) : Ė + (ρg− ρ

∂Ψ

∂ξ
−

1

2
ρ
∂k

∂ξ
ξ̇2)ξ̇

+(S − ρ
∂Ψ

∂gradξ
−

1

2
ρ

∂k

∂gradξ
ξ̇2) · gradξ̇ � 0. (23)

Out of this equation, the constitutive relations for the Cauchy stress T, the order-
parameter flux S and the order-parameter supply g are obtained as

T = ρ
∂Ψ

∂E
+

1

2
ρ
∂k

∂E
ξ̇2, (24)

S = ρ
∂Ψ

∂gradξ
+

1

2

∂k

∂gradξ
ξ̇2, (25)

ρg = ρ
∂Ψ

∂ξ
+

1

2
ρ
∂k

∂ξ
ξ̇2. (26)

The constitutive equations used in this article are obtained through further assump-
tions. Small strain kinematic is assumed

E =
1

2
(gradu + gradTu), (27)

and the Helmholtz free energy is chosen as a quadratic function of its arguments

ρΨ =
1

2
λ(E : I)2 + μ(ξ)E : E +

1

2
β(ξ− ξ0)

2 +
1

2
βl2op(gradξ)2, (28)

which is closely linked to the respective energy in Steeb and Diebels [17]. The
material parameter λ and the material function μ(ξ) represent the Lamé parameters,
while β and lop are parameters of the microstructure. There is a certain benefit in
using the parameters β and lop as is done here, which becomes clear in Eq. (35).
Using assumptions (27)–(28) in the constitutive relations (24)–(26), the constitutive
equations for the Cauchy stress, the order-parameter flux and the order-parameter
supply are given as

T = (3λ
4
Isph + 2μ(ξ)

4
I) : E +

1

2
ρ
∂k

∂E
ξ̇2, (29)
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S = βl2opgradξ+
1

2

∂k

∂gradξ
ξ̇2, (30)

ρg = β(ξ− ξ0) +
∂μ(ξ)

∂ξ
E : E +

1

2
ρ
∂k

∂ξ
ξ̇2, (31)

where the fourth-order tensors

4
Isph = 1

3 I ⊗ I, (32)

4
I = [I ⊗ I]

23
T (33)

were introduced.
Finally, the model used in the article is reduced to the static case, vanishing

macroscopic body forces, and small strain kinematics. The quadratic term E : E in
the equation of the order-parameter supply (31) is neglected due to the small strain
assumption, the terms including ξ̇2 are neglected due to the static case assumption.
In conclusion, the model becomes

divT = 0, (34)

div gradξ+
1

l2op
ξ =

1

l2op
ξ0, (35)

E =
1

2
(gradu + gradTu), (36)

T = [3λ
4
Isph + 2μ(ξ)

4
I] : E. (37)

For dimensional reasons in Eq. (35), it becomes obvious that lop really
represents an internal length. As can been seen in the equations, the coupling mecha-
nism between macro- and microscale is formulated in the constitutive modeling only
via the material function μ(ξ). Furthermore, the coupling is in one direction only.
Both facts make this model appealing.

So far, nothing has been said about the material functionμ(ξ) itself. The purpose of
the function is to interpolate the shear modulus depending on the order-parameter ξ.
For the sake of simplicity, we assume a linear interpolation between two extreme
values of the shear modulus μ1 and μ2, i.e.

μ(ξ) = (1 − ξ)μ1 + ξμ2. (38)

Due to the construction of (35), we have requirements on the values of ξ0,μ1 and
μ2. Presuming that the boundary values for ξ are either 0 or 1, the values μ1 and μ2
reflect the shear moduli, if the influence of a free or a fixed boundary, respectively,
dominates the shear modulus. Moreover, the value of μ at ξ0 has to match the shear
modulus in case the influence of the boundaries is negligible.
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2.2 The Micro-Polar Model

Without derivation, the equations of the micro-polar model used in this article are
given as

divT = 0, (39)

div gradϕ+
2

l2c
ϕ =

1

l2c

3
E : gradu, (40)

E = gradu +
3
E · ϕ, (41)

T = [3λ
4
Isph + 2μ

4
Isym + 2μc

4
Iskw] : E. (42)

Here,ϕ is the vector of microrotations,
3
E is the third order permutation tensor,

4
Isym

is the fourth order tensor which projects a second order tensor on its symmetric part,
4
Isym =

1

2
(

4
I +

4¯̄I),
4

Iskw is the fourth order tensor which projects a second order tensor

on its skew-symmetric part,
4
Iskw =

1

2
(

4
I −

4¯̄I), and
4¯̄I is the fourth order tensor which

projects a second order tensor on its transpose,
4¯̄I = [(I ⊗ I)

23
T ]

24
T .

2.3 Comparing the Models

There are some differences but also some similarities between the order-parameter
model, Eqs. (34)–(37) and Eq. (38), and the micro-polar model,
Eqs. (39)–(42). A first difference is in the underlying kinematics. While in the order-
parameter model small strain kinematics is assumed, Eq. (36), in the micro-polar
model the microrotations ϕ are introduced into the strain E. Hence, the strain is no
longer a symmetric tensor in the micro-polar model.

Due to the skew-symmetric parts of the strain, the Cauchy stress tensor in the
micro-polar model has skew-symmetric parts too. This is a second difference. In fact,
the constitutive equation for the Cauchy stress tensor is especially extended with the
skew-symmetric part, Eq. (41). In the order-parameter model on the other hand, the
constitutive equation for the Cauchy stress tensor still has no skew-symmetric parts,
but is changed in the way, that the Lamé parameter μ is no longer a constant but a
function of the order-parameter ξ, Eq. (37).

The constitutive equation for the order-parameter model, Eq. (35), and the balance
of moment of momentum in the micro-polar model, Eq. (41), show at least on the
left-hand-side of the equations a structural similarity. Indeed, Capriz [5] showed that
both models can be derived from the same general mathematical setting. However,
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the crucial difference of both equations lies on the right-hand-side. Namely, the
right-hand-side of Eq. (41) is the continuum rotation and, hence, the solution of
the microrotations ϕ becomes the continuum rotation in areas where the influence
from boundary effects vanish. This inherits two consequences. First, the physical
interpretation ofϕ as a rotational vector is strengthened and second, the micro-polar
model is fully coupled. In contrast, the order-parameter model is coupled in only one
direction via the constitutive equation of the Cauchy stress tensor. Moreover, there
is no reason to interpret the order-parameter ξ as a rotation, or, more generally, as a
kinematic quantity at all.

2.4 Interpretation of the Order-Parameter

After the order-parameter has been identified to be not a kinematic quantity, the
question arises, whether there is a physical interpretation for this additional field.
The authors suggest having the explanation of the weakening size effect by Tekoğlu
and Onck [20] in mind, that the order-parameter might be interpreted as a kind of
measure related to the connectivity of the nodes in the microstructure. For a node
on the fixed boundary, an arbitrary value of 6 is assumed representing the clamping
condition.

A simple microstructure is shown on the left of Fig. 2. On the r.h.s. of the sketch,
the structure is fixed and the beam tips cannot move at all. On the top, bottom and the
l.h.s., there are free boundaries and the beam tips have only one kinematic restriction
due to only one neighboring node. Counting the mean number of neighboring nodes
for each node position in z-direction leads to a mean connectivity curve as is shown in
Fig. 2 on the right. As an example, the second node position in Fig. 2 has 4 nodes with
connectivity pcon = 4 and 2 bar tips, one at top and one at bottom, with connectivity
pcon = 1. Hence, the mean value at this position is 3.
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Fig. 2 Simple microstructure and its mean connectivity curve in z-direction
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Fig. 3 Moving average of the connectivity of a real microstructure and the solution of the 1D
order-parameter model for lop = 2 mm and ξ0 = 0.5

For real materials, a similar curve can be obtained by using a moving average
along the z-direction. The result for one such a microstructure is shown on the left of
Fig. 3. On the right of this figure, the result for the 1D order-parameter equation with
lop = 2 mm and ξ0 = 0.5 is shown. Comparing both reveals striking similarities.
Hence, the authors suggest to take the order-parameter in this model as a measure
for the connectivity of the nodes in the microstructure, with ξ = 0 relates to free
boundaries and ξ = 1 to fixed boundaries without any translational or rotational
degree of freedom.

3 Simulation of the Order-Parameter Model

The order-parameter model is well suited for the Finite Element Method as
solving tool. In the following, the pertinent FE formulation of the model is educed
and, furthermore, a parameter study and a parameter identification is presented. The
parameter study will provide insight into how the model parameter effects the results,
the parameter identification will prove the usability of the model.

The simulations have been coded in the open-source C++ program library deal.ii
[3, 4], the parameter identifications were performed with the MATLAB Global Opti-
mization Toolbox [13]. However, if not stated different in the text, Table 1 gives the
parameter values used in the simulations.

Table 1 Default parameter values in the simulations

λ [MPa] μ1 [MPa] μ2 [MPa] lop [mm] ξ0 h:l

28.71 5.5123 23.091 1.2915 0.62249 1:10
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3.1 Finite Element Formulation

To obtain the FE formulation, the weak form of the problem has to be established
first. For a domainΩ with boundary Γ = ∂Ω, we have the primary variables u ∈ U
and ξ ∈ P with U, P proper spaces. The boundary Γ can be split with respect to
the primary variables into two independent Dirichlet and Neumann parts, such that
ΓuD ∪ ΓuN = Γ = Γ

ξ
D ∪ ΓξN and ΓuD ∩ ΓuN = ∅, ΓξD ∩ ΓξN = ∅ holds. The weak form

pertinent to the Eqs. (34)–(37) and (38) reads

au(u, ξ; δ u) = lu(δ u) ∀ δ u ∈ {δ u ∈ U| δ u = 0 on ΓuD }, (43)

aξ(ξ; δ ξ) = lξ(δ ξ) ∀{δ ξ ∈ P| δ ξ = 0 on ΓξD}, (44)

u = gu on ΓuD , (45)

ξ = gξ on ΓξD , (46)

with

au(u, ξ; δ u) =

∫

Ω

grad δ u : T dΩ, (47)

aξ(ξ; δ ξ) =

∫

Ω

(
grad δ ξ · gradξ+

1

l2op
δ ξ ξ

)
dΩ, (48)

lu(δ u) =

∫

ΓuN

δ u · t dΓ , (49)

lξ(δ ξ) =

∫

Ω

1

l2op
δ ξ ξ0 dΩ+

∫

ΓξN

δ ξq dΩ, (50)

where the Cauchy assumption holds, i.e. t = T · n, with n as the normal at the
boundary. Moreover, q is the flux of the order-parameter over the boundary, and

E =
1

2
(gradu + gradTu), (51)

T = [3λ
4
Isph + 2μ(ξ)

4
I] : E, (52)

μ(ξ) = (1 − ξ)μ1 + ξμ2. (53)

A Newton-Raphson scheme has been utilized to solve Eqs. (43)–(46). Therefore,
residuals Ru and Rξ were introduced as

Ru = au(u, ξ; δ u) − lu(δ u), (54)

Rz = aξ(ξ; δ ξ) − lξ(δ ξ). (55)
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The iteration scheme reads then
(

u
ξ

)

k+1
=

(
u
ξ

)

k
+

(
du
dξ

)
, (56)

(
du
dξ

)
=

(
∂Ru
∂u

∂Ru
∂ξ

∂Rξ
∂u

∂Rξ
∂ξ

)−1

k

·
(

Ru
Rξ

)

k
, (57)

where k is the iteration index. To calculate the update, tangent forms with respect to
the Cauchy stress are needed. These are

∂T
∂E

= 3λ
4
Isph + 2μ(ξ)

4
I, (58)

∂T
∂ξ

= 2(μ2 − μ1)
4
I : E. (59)

Finally, the FE formulation is obtained through the approximation of the displace-
ment and order-parameter field as

u(x) =

NVARu∑
l=1

N(u)
l (x)ūl, (60)

ξ(x) =

NVARξ∑
l=1

N(ξ)
l (x)ξ̄l, (61)

where NVARu and NVARξ represent the number of nodal variables of the respective

field, N(u)
l and N(ξ)

l are basis functions associated with each nodal variable ū and ξ̄.
Utilizing the approximations in Eqs. (54)–(57) gives the FE formulation.

Fig. 4 Geometry of the
specimen for the simulations
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Fig. 5 Boundary values for the tension test (left) and the simple shear test (right)

3.2 Parameter Study

A simple shear test is utilized to show the effects of the different model parameters.
The tests have been performed with rectangular prisms of different lengths l, heights
h and depths d, cf. Fig. 4. Even though the height and the length are different for
the different specimens, the depth was always equal to the height and the length to
height ratio was kept constant. The pertinent boundary values were as given in Fig. 5,
i.e. the placement is fixed and the order-parameter is set to ξ = 1 at the bottom. At
the top, the displacement in x and z direction equals zero, while the displacement in
y-direction is set to 1 % of the height, i.e. uy = h

100 . The order-parameter is set to
ξ = 0 at the top of the specimens. Note that ξ = 1 at the bottom represents the fully
clamped boundary with maximum local stiffness. But ξ = 0 at the top is inconsistent
with the proposed interpretation of ξ. However, this inconsistency is used only in the
parameter study to elucidate the influence of the parameters more clearly. In later
parameter identification this value is set to ξ = 1 in accordance to the interpretation.
No Dirichlet values were set on the 4 remaining sides. If not stated differently in the
following paragraphs, the geometry and material parameters used were as is given
in Table 1.

First, the size of the specimen has been varied to verify, whether the size effects
are reproduced at all. In Fig. 6 on the left side, the results of simulations of specimens
of height h ∈ {20, 80, 140, 200 mm} are shown. The height to length ratio 1 : 10 has
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Fig. 6 Left order-parameter for specimens of different heights h in [mm]. Right displacement y
for a specimen of height 20 mm and different μ2 values in [MPa] (μ1 = 21 MPa)
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been held constant. The remaining parameter were as in Table 1. As can be seen in
the figure, the size and the shape of the solution ξ near the boundaries are the same
for the different specimens, but the location of the top boundary shifts due to the
different heights. Hence, the height of the specimen does not primarily influence
the boundaries. Nevertheless, if the distance between two boundaries becomes too
small, they will influence each other.

Next, the shear modulus μ2 has been varied. While μ1 = 21 MPa has been
held fixed, μ2 takes the values μ2 ∈ {1, 13, 29, 41 MPa}. The other parameters are
as given in Table 1. As follows from Eq. 38, a change in μ2 influences the whole
material response due to a change in the material stiffness. The influence becomes
larger as ξ → 1. In this example, the bottom boundary (z = 0 mm) is affected by
the value μ2, while the top boundary (z = 20 mm) is affected by μ1. This means, if
μ1 � μ2 holds, then the bottom boundary layer responses stiffer than the bulk and
the top boundary layer responds softer than the bulk. If μ1 � μ2, than the situation
is vice versa. On the right side of Fig. 6, the displacement in shear direction over the
height for different μ2 values is shown. The solution of the order-parameter ξ does
not depend on the value of the shear modulus.

The third parameter investigated is lop. A look at the limits lop → 0 and lop → ∞,
resp., in Eq. 35 reveals, that in the first case, i.e. lop → 0, followsξ = ξ0 in the interior.
In the second case, lop → ∞, it follows that div gradξ = 0. Since, in the general, the
second derivatives in the coordinate directions are not linearly dependent, it follows
further that gradξ = const. This means, the solution of ξ at different values of the
parameter lop is situated between ξ = ξ0 and gradξ = const. The left picture in
Fig. 7 visualizes this result. The figure shows, that the parameter lop has influence on
the shape and the size of the boundary effect.

Finally, the parameter ξ0 has been considered. As the picture on the right of Fig. 7
shows, the parameter allows to control the values of ξ far away from the boundaries.
In fact, ξ = ξ0 holds where the boundary effects are negligible. Hence, the parameter
ξ0, together with the particular choice of the material function of the shear modulus
(38), affects the stiffness of the bulk away from the boundaries. Additionally, the
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Fig. 7 Order-parameter ξ for a specimen of height 20 mm and different lop values in [mm] (left)
and different ξ0 values (right)



Macroscopic Modeling of Size Effects 251

actual choice of ξ0 influences the size of the areas of influence of the boundary
effects. Here, for values ξ0 → 1 the bottom boundary layer disappears, for values
ξ0 → 0 the top boundary layer vanishes.

3.3 Parameter Identification

For the simple shear experiment introduced in the section above, a parameter study
has been carried out for both, the order-parameter model and the micro-polar model.
The pertinent reference data for the parameter identification has been taken from
virtual experiments on a micro-structural model, which has been solved using the
solver RADIOSS [15]. The micro-structural model is set up based on a stochastically
disturbed Weaire-Phelan structure [22]. The parameter λ has been determined by
a separate compression test without investigation of the size effect. This is done,
because the parameter λ is not activated in simple shear. The other parameters have
been identified with a genetic algorithm solver in MatLab [13]. The obtained material
parameters are given in Tables 2 and 3.

Figure 8 shows the progress of μeff obtained from the identified parameters for
specimen with heights between 20 and 160 mm. On the left of the figure, the curves
for the order-parameter model (triangles) and the micro-polar model (+ sign) are
given as well as the reference solutions of the micro-structural model (circles). Both
models, micro-polar and order-parameter, capture the reference solutions well. This
is verified on the right of the figure, where the relative error with respect to the
reference solution is illustrated. The micro-polar model seems to fit the data slightly
better than the order-parameter model. However, the relative error of both models is
of the order 10−3.

Besides the simple shear test, a parameter identification of the order-parameter
model for a tension test has been performed. Here, the height of the specimen has
been varied, h ∈ {40, 80, 160, 220, 320, 420 mm}, while the height to length ratio has
been held constant as 1:1. The parameters λ, α and lop were taken from the simple
shear test, μ1 and μ2 has been identified. Since the micro-polar model is not able to
reproduce the weakening size effect, no parameter identification has been carried out

Table 2 Identified material parameters of the order-parameter model for the simple shear test

λ [MPa] μ1 [MPa] μ2 [MPa] lop [mm] ξ0

28.71 5.5123 23.091 3.2056 0.62249

Table 3 Identified material parameters of the micro-polar model for the simple shear test

λ [MPa] μ [MPa] μc [MPa] lc [mm]

28.71 16.53 12.257 4.323
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Fig. 8 Parameter identification on a simple shear test. Left solution of μeff w.r.t. the identified set
of parameters for specimen heights between 20 mm and 160 mm and a constant height to length
ratio. Right relative error of μeff with respect to the micro-structural solution

Table 4 Identified material parameters of the order-parameter model for the tension test

λ [MPa] μ1 [MPa] μ2 [MPa] lop [mm] ξ0

28.71 2.5 38.5 3.2056 0.62249
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Fig. 9 Parameter identification on a tension test. Left solution of Eeff w.r.t. the identified set of
parameters for specimen heights between 20 mm and 420 mm and a constant height to length ratio
of 1:1. Right relative error of Eeff with respect to the micro-structural solution

for this model. The left picture in Fig. 9 shows the curve for the identified material
parameters, which are given in Table 4. The relative error at the reference points is of
the order 10−3, cf. the right picture of Fig. 9. The example verifies, that the proposed
order-parameter approach is able to model the weakening size effect.
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4 Conclusions

In this contribution, a thermodynamically consistent order-parameter model for
open-cell foams has been proposed which is primarily based on the work of Steeb
and Diebels [17]. The order-parameter model is an extended continuum model. In
more detail, it is a classical Boltzmann continuum extended by one additional scalar
field. For the additional scalar field, the authors suggested to interpret it as a kind
of measure for the connectivity of the nodes in the open-cell foam. A parameter
study has been performed before a parameter identification has been carried out.
The parameter study showed the flexibility of the proposed model with respect to
weakening and stiffening size effects. In fact, the order-parameter model is able to
render both types of size effect. This is of special interest, since micro-polar models,
e.g., lack this feature. Even though micro-polar models can be extended to catch
this phenomenon, it is exactly this what gives the proposed model its main strength.
The order-parameter model shows a simplicity in its equations compared to other
extended continuum models which makes it especially appealing.
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Measuring Material Coefficients of Higher
Gradient Elasticity by Using AFM Techniques
and Raman-Spectroscopy

Christian Liebold and Wolfgang H. Müller

Abstract Experiments on micro-specimens have shown that the deformation behav-
ior of materials can be size dependent. The size dependence is, for example, reflected
in a stiffer elastic response on the sub-microscale. A quantitative understanding of the
size effect is important for the design of micro- and nanosize systems. In our paper
higher-order theories of elasticity are used for the description of the bending behavior
of micro-beams. These include additional material parameters in order to describe
a size effect and they go beyond the limits of the classical Boltzmann continuum.
In particular couple stress and strain gradient theory of linear elasticity are used in
this work as special examples of higher gradient theories. Another objective of the
paper is to determine the length scale parameters by measurements performed with
extremely small cantilever beams. In particular, deflection measurements are per-
formed and force data are recorded for submicron beams made of silicon and silicon
nitride. The tests are performed by using a highly sensitive atomic force microscope.
In addition Raman spectroscopy is used for the same purpose. The obtained data is
fitted to the formulae of higher elasticity for the bending of slender beams and can
be used for evaluation of higher gradient coefficients.

1 Introduction

Experiments have shown that the deformation behavior of materials can be size
dependent at very small scales. An example of a size effect in sub-micron structures is
their stiffer response to external forces. Clearly, knowing and quantifying such effects
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is of great importance during the design phase of micro- and nanosize systems which
includes modeling, e.g., with the finite element method. In order to achieve this, the
material parameters characteristic of the size effect must be known, and these can
only be obtained experimentally. The first observations of a different deformation
behavior at the microscale were found during plastic deformation of some metals
and polymers [14, 27, 29]. Fleck et al. observed an increase in torsional hardening
of thin copper wires by a factor of three as the diameter of the wires decreased
from 170 to 12 μm [13]. Ma et al. observed an increase of indentation hardness of
monocrystalline silver by a factor of more than two as the penetration depth of the
indenter decreased from 2.0 to 0.1 μm [22]. A few years ago Lam et al. observed an
increase of bending rigidity, even in elastically reversible micro-beam bending tests
on epoxy [21]. The bending rigidities were about 2.4 times larger than predicted by
conventional theory as the beam thicknesses decreased from 50 to 12.5 μm. In 2004
and 2005 McFarland et al. measured similar deviations in stiffness of polypropylene
micro-cantilevers bent in the range of linear elasticity [23] and [24].

Conventional mechanics on the basis of the Boltzmann (or Cauchy-) continuum
fails to predict the size effect. Since the Cosserats introduced the idea of “point
couples” [7] in 1909 the so-called micropolar continuum theories of Toupin [30],
Mindlin and Tiersten [25], Koiter [18], Eringen [11] started to develop. A more
detailed history of origin of micropolar theories is given in Altenbach et al. [1]. The
main presumption in the present work is that every material point of a body can be
interpreted as a particle, which is able to undertake a micro-rotation as well as a
macro-translation. With this notion we uncouple the balance of angular momentum
from linear momentum. Indeed, this had been anticipated in the very early days of
mechanics by Euler, Bernoulli, or Lagrange in the middle of the 18th century [31].
The additional degree of freedom is reflected in an extension of the balance laws for
angular momentum of conventional mechanics. It will form the starting point of this
paper. To consider extended strain measures for rotations higher order derivatives
of displacements will be introduced and interpreted as special parts of the strain
gradient. Additional constitutive equations will be required in order to connect the
higher order stress-strain measures. Up to now, different strain gradient theories have
been developed to handle the size effect. Even so-called methods of size effects have
been defined in terms of a better experimental access to these constitutive equations
[20]. One of these methods will be used here and another one will be introduced:
In addition to the determination of bending rigidities by means of force-deflection
measurements on beams of decreasing thickness, Raman spectroscopy will be used
as a tool that, in general, allows for a determination of bending rigidities by means of
force-strain measurements. By taking the second derivatives of displacements into
account these theories contradict the principle of local action and the restriction to
simple bodies, since the finite neighborhood influences the deformation behavior of
the material point.

In absence of strain gradients (e.g., in uniaxial tension tests) Lam et al. have shown
that the elastic behavior of epoxy is independent of the thickness of the specimens,
whereas the same specimens revealed a size effect in simple beam bending tests (and
thus in presence of strain gradients) [21].
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In this paper the size effect of single crystalline silicon and silicon nitride beams
will be investigated experimentally. Simple beam bending tests for determining bend-
ing rigidities are performed following the corresponding experimental method of size
effect. AFM bending experiments as well as Raman spectroscopy reveal strains and
forces acting in and on such beams.

2 Theory

2.1 Balance Laws and Stored Energy Density of Couple
Stress Theory

In this paper the couple stress theory is formulated as a special case of the Cosserat
theory (cf., e.g., [17, 20]). An expression for the stored energy density will be derived
from the extended balances of rational mechanics. In this approach it is assumed that
a material point can be treated like a small rigid body, i.e., a local point but with an
additional degree of freedom, namely rotation. This single point is situated in the
center of mass of the so-called particle. The question if there is a measurable dilata-
tion of the particle will not be examined here. By applying the principle of virtual
work formulae for the deflection, the strain, and the flexural rigidity for a clamped
beam on the basis of the Euler Bernoulli beam theory will be derived. The gener-
alized strain measures for small deformations in a micropolar medium are defined
by two independent fields: displacement ui and micro rotation ϕi . By distinguishing
macroscopic and intrinsic rotations the balance of angular momentum becomes an
independent conserved quantity in terms of superposition of the moment of momen-
tum, x×v, and the spin, s, [11, 31]. This becomes evident when examined in context
with a general form of a balance equation without production terms [26]. Following
the summation convention on repeated indices and applying Gauss’ theorem to the
surface integral the balance of angular momentum reads:

d

dt

total angular momentum︷ ︸︸ ︷∫

M

(
εi jk x jυk + si

)
dm =

flux︷ ︸︸ ︷∮

∂V
nl

(
εi jk x jσlk + μli

)
dA

+

supply︷ ︸︸ ︷∫

V

(
ρεi jk x j fk + ρli

)
dV (1)

εi jk x j
[
ρυ̇k − σlk,l − ρ fk

]
︸ ︷︷ ︸
balance of momentum=0

= [−ρ ṡi + μli ,l + ρli + εiklσkl
]

︸ ︷︷ ︸
balance of spin=0

,

where σkl and μli represent the stress and the couple stress tensor, and fi and li denote

the body forces and the body couples, respectively. The expression
1

2
εiklσkl = ei
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represents the axial vector of the stress tensor and involves the non-symmetric part
of σkl . This term contributes to the balance of spin as a production of spin. Yang et
al. investigated the static case when the moment of couples vanishes [15]:

d

dt

∫

M
εi jk x j skdm =

flux︷ ︸︸ ︷∮

∂V
εi jk x j nlμlkdA +

supply︷ ︸︸ ︷∫

V
ρεi jk x j lkdV

+

production︷ ︸︸ ︷∫

V
εi jk x jεklmσlmdV = 0,

εi jk x j
[
μlk,l + ρlk + εklmσlm

]
︸ ︷︷ ︸

balance of spin=0

+εilkμlk = 0 . (2)

This leads to the symmetry of the couple stress tensor. The total kinetic energy
for the particles, which are considered as rigid bodies, reads in a local formulation:

ρ

2
υiυi = ρ

2
υc

i υ
c
i + ρ

2
ϕ̇lθli ϕ̇i , (3)

where vc is the velocity of the center of mass of the particle, and θli is the (constant)
specific moment of inertia of the particle. The spin of the particle is represented by the
term: ϕ̇lθli = si . We make use of the symmetric part of the gradient of displacements

for small deformations, εi j = 1

2

(
ui , j + u j ,i

)
, and introduce the symmetric gradient

of rotation by:

χi j = 1

2

(
ϕi , j + ϕ j ,i

)
, χi j = −1

4

(
εilkul,k j + ε jlkul,ki

)
(4)

with

ϕl = −1

2
εli j ui , j ,

where ϕl is the rotation vector resulting from a rotation of the gradient of displace-
ments. The non-local character of this higher order strain measure can be realized
by interpreting the second order derivatives of displacements in Eq. (4) as parts of a
Taylor expansion in space which apparently incorporates the behavior of neighbor-
ing particles. By expanding all indices it is straightforward to realize that the trace
of χi j is always zero, i.e., χmm ≡ 0 . This is an important result when dealing with
the corresponding stress measure and new material parameters. The balance of total
kinetic- and the internal energy, u, of the body without radiation reads [12]:
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d

dt

∫

M

(
υc

kυ
c
k

2
+ sk ϕ̇k

2
+ u

)
dm =

flux︷ ︸︸ ︷∮

∂V
nl

(
σlkυ

c
k + μkl ϕ̇k

)
dA

+

supply︷ ︸︸ ︷∫

V
ρ

(
fkυ

c
k + lk ϕ̇k

)
dV

ρu̇ = υc
k

[−ρυ̇c
k + σlk,l + ρ fk

]
︸ ︷︷ ︸

bal. of lin. momemtum=0

+σlkυ
c
k,l + ϕ̇k

[−ρ ṡk + μlk,l + ρlk
]

︸ ︷︷ ︸
balance of spin=−εklmσlm

+μlk ϕ̇k,l .

(5)

The material time derivative

(
1

2
si ϕ̇i

)•
= ṡi ϕ̇i results if a constant specific

moment of inertia for the particle is assumed. Furthermore, by using the vector
of rotation of Eq. (4) it can be shown that only the symmetric part of the stress tensor,

σ S
i j , where σ S

i j = 1

2

(
σi j + σ j i

)
, contributes to the stored energy density. This is due

to the direct coupling of the rotation of the displacement gradients to the field of
rotations. The terms υc

k,l and ϕ̇k,l are approximately transformed into ε̇kl , the strain
rate, and into χ̇kl , the rate of the rotation gradient, respectively. By assuming a lin-
ear relationship in both stress-strain measures and isothermal conditions the stored
energy density, ū = ρu, equals the internal energy density and is given by integration
of Eq. (5):

ū = 1

2
σ S

lkεlk + 1

2
μlkχlk , (6)

For isotropic materials there are two independent material parameters, one for
the spherical and one for the deviatoric part of the symmetric linear strain tensor
(e.g., expressed in terms of the Lamé coefficients λ and μ ≡ G, the latter being the
shear modulus of engineering science). By observing the symmetry of the couple
stress tensor shown in Eq. (2) and the deviatoric character of χi j , only one additional
material parameter, l, is used for connecting the couple stress tensor to the rotation
gradient: μkl = 2Gl2χkl .

2.2 Euler-Bernoulli Beams Within Couple Stress Theory

2.2.1 Differential Equation of the Deflection Curve

The derivation of the deflection and the strain formulae for a bent beam in terms of
the Euler-Bernoulli beam theory is straightforward: For the stress-strain relationship
Hooke’s law is observed. By using the coordinate system shown in Fig. 1 and by
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Fig. 1 Illustration of the quantities and the coordinate system used for simple beam bending

means of the following ansatz for the displacement field according to Euler and
Bernoulli without a pre-deflection w0:

ux = −zw′(x) , uy = 0 , uz = w(x) , (7)

in which a dash denotes a derivative with respect to x , the only non-vanishing com-
ponents of the strain tensor, the stress tensor, the rotation gradient tensor, and the
couple stress tensor read:

εxx = −zw′′(x) , σ S
xx = −Ezw′′(x) ,

χxy = −1

2
w′′(x) , μxy = −Gl2w′′(x) . (8)

This describes a plane strain condition in which the Poisson ratio ν is assumed
as zero. Remarkably, due to the connection of the angle of the plane cross-sections
of the beam to the deflection line by assuming ϕ(x) = w′(x), no additional field
of rotations has to be proposed in Euler-Bernoulli beam theory (in contrast, e.g.,
in Timoshenko beam theory as outlined in [16]). The principle of virtual work for
static deformations demands that the virtual work done by the external forces and
moments equals the variation of the stored energy. By integrating Eq. (6) and by
using the expressions of Eq. (8) the stored energy in variational formulation reads:

δ U = Z
∫ L

0
wIV

δ wdx − Zw′′′
δ w

∣∣∣L
0 + Zw′′

δw′
∣∣∣
L

0
, (9)

where Z is an abbreviation for constants of geometry and material data, more pre-

cisely: Z = E I + 1

2
G Al2. If the so-called material length scale parameter l is equal

to zero, Z turns into the conventional expression E I of Euler-Bernoulli beam theory.
By comparing Eq. (9) to the virtual work done by the external forces and moments:

δ W =
∫ L

0
q(x) δ wdx + V δ w

∣∣∣L
0 + M δ w′

∣∣∣
L

0
, (10)
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the constitutive differential equation for beam bending in couple stress theory within
the framework of the Euler-Bernoulli assumptions reads [19]:

δU = δW ⇒
[

E I + 1

2
G Al2

]
wIV(x) = q(x) , ∀x ∈ (0, L) . (11)

The boundary conditions for forces and moments at the positions x̃ = 0 or x̃ = L
are Zw′′′(x̃) = −V |x̃ and Zw′′(x̃) = M |x̃ , respectively.

2.2.2 Solution for a Clamped Beam

Without distributed forces q(x) the ansatz with four constants:

Zw(x) = 1

6
C1x3 + 1

2
C2x2 + C3x + C4 (12)

allows us to solve the ODE in Eq. (11) of rank four. The constants C1, . . . , C4 are
determined with the following boundary conditions for a clamped beam with a single
load F = V |L at its free end:

Zw′′′(L) = −F = C1 , Zw(0) = 0 = C1 ,

Zw′(0) = 0 = C3 , Zw′′(L) = 0 = C1L + C2 ⇒ C2 = F L ,
(13)

so that the solution for the bending curve, wCS, and the strain in x-direction from
Eq. (8), εCS

xx , derived with Couple Stress (CS) theory in context with the Euler-
Bernoulli assumptions take the form:

wCS(x) = − F(
E I + 1

2 G Al2
)

[
x3

6
− Lx2

2

]
,

εCS
xx = z

F(
E I + 1

2 G Al2
) [x − L] . (14)

The bending rigidity Dh , which is a more or less standard measure of size effect,
is obtained from the relationship between the acting force and the deflection of the
point at where the force acts:

D0

{
1 + 3g

(1 + ν)

(
l2

t2

)}
3wCS(L)

L3 = F ,
Dh

D0
=

{
1 + 3g

(1 + ν)

(
l2

t2

)}
. (15)

The second moment of inertia, I , the area of the cross-sections, A, the Lamé
constant, μ ≡ G = E/(2 + 2ν), and the flexural rigidity, D0 = E I , enter the
equation as well as a correction factor, g = A/(12I ), for a potential trapezoidal
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cross-section of the beam. For trapezoidal cross-sections the second moment of
inertia and the area of the cross-section read:

Itr = t3

36

w2
1 + 4w1w2 + w2

2

w1 + w2
, Atr = w1 + w2

2
t , g = 3

2

(w1 + w2)
2

w2
1 + 4w1w2 + w2

2

,

(16)

with w1 and w2 being the minor and major width. All micro-beams made of sin-
gle crystalline silicon showed a trapezoidal cross-section with known minor and
major width. The correction factor g varied between 1.005 and 1.035 and has neg-
ligible influence. A similar result for Dh , Eq. (15), which can be considered as a
non-standard measure of size effect, results from the relationship between the acting

force and the maximum strain at the fixture

(
εCS

xx (x = 0, z = −g
t

2
)

)
. The deflection

measurements have been performed using AFM techniques and the strain data has
been obtained by Raman spectroscopy. It should be pointed out again that if the mate-
rial length scale parameter l vanishes, the solutions of couple stress theory reduce to
the conventional expressions. Evidently, the normalized bending rigidity in couple
stress theory, Dh/D0, is a function of the inverse of the square of the thickness of
the micro-beam and not a constant as in conventional mechanics. Thus couple stress
theory is capable of predicting a size effect in microstructures.

3 Experimental Apparatus

3.1 Atomic Force Microscopy for Deflection Measurement

Micro-beam bending tests have been performed on a laser-reflective AFM Multi-
view-1000 stage from Nanonics�. The deflection of the fixed AFM glass probe was
observed by a Photo Sensitive Diode (PSD) system by means of a laser beam reflected
from the top of the probe (cp., Fig. 2, top). The lift of the specimen, z, was realized
by a calibrated screw thread driven by piezo-elements. This construction shows a
resolution of about 1.0 nm in z. The deflection of the tip, wtip = z − wbeam, was
superimposed by the deflection of the micro-beam and by the lift of the specimen, z.

The calibration of the PSD data for measuring displacements and forces was per-
formed in two steps. First, by lifting a rigid surface against the tip which connected
the PSD data to the displacements of the tip in a nonlinear manner (see the discussion
below) and, second, by comparing the spring constant of the AFM glass probe to a
well calibrated silicon normal, tested at the Physikalisch Technische Bundesanstalt
(PTB) by lifting the silicon normally to the tip. With a known spring constant, k, the
force F = kwtip could be calculated from the displacement data. The (small) nonlin-
earity could be fully attributed to the way of data conversion stemming from the four
diode surfaces of the PSD from real intensities of the incoming laser light to a single
electrical signal, U , in mV. When collecting the incoming laser light over the whole
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Fig. 2 Schematic of the AFM (top). Pictures through the optical microscope from the above of
some Si- and SiN micro beams (bottom). The dark grey circular spots show the points of application
of the force by the AFM glass probe

range of the possible tip deflections (about 35 μm) the movement of the laser beam
exceeds the geometric limits of the four diode surfaces. The resulting “edge effect”
vanishes only for small tip deflections. Compensation and, consequently, minimiza-
tion of uncertainties became possible by assuming a quadratic target function of the
form:

U (z) = (az + n)z , wbeam = z + nrig

2arig
−

√√√√ n2
rig

4a2
rig

+ U (z)

arig
(17)

for fitting the PSD data for conversion of voltage U to displacement z. The values for
a, n, arig and nrig were taken from the linear regression lines of the different slopes of
the bending behavior (cp., Fig. 3, right), where the subscript “rig” stands for values
taken from the experiments with the tip on a rigid surface.

Measurements Made with an AFM

Experiments have been performed using 17 micro-beams as listed in Table 1. The
deflection behavior wbeam = wbeam(F) as a function of the force data has been
evaluated analytically. The span of the beams was assigned during the experiments
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Fig. 3 Left: Illustration of the points of analysis for determination of the slope of the bending
behavior in a single bending experiment; right: plot of the linear change in these slopes for increasing
z lift

Table 1 List of the tested micro-beams dimensions and measured Young’s moduli in comparison
to literature values

Beam number Material t [μm] Eexp [GPa] Elit [GPa]

1 silicon 6.90 166
2 silicon 6.60 165
3 silicon 2.97 173
4 silicon 2.95 170 169
5 silicon 1.05 170
6 silicon 1.05 173
7 silicon 1.06 174
8 silicon 1.03 171
9 silicon nitride 0.8 375
10 silicon nitride 0.8 383
11 silicon nitride 0.8 300
12 silicon nitride 0.8 243
13 silicon nitride 0.6 260 255a

14 silicon nitride 0.6 208
15 silicon nitride 0.6 308
16 silicon nitride 0.6 249
17 silicon nitride 0.2 294
aEdwards et al. [10]

by controlling the point of the application of the force (see the dark grey spot in
Fig. 2, bottom). All beams showed a thickness to length ratio of less than 1/20.
The values for Young’s modulus of each beam had been calculated from the Euler-
Bernoulli formula of conventional continuum theory. They are plotted in Fig. 4 over
the beam thickness. Some exemplary curves of bending rigidities of the couple stress
theory for selected material length scale parameters are inserted into the diagram.
The dimensions of beams number 1 through 8 were the result of measurements done
by scanning electron microscopy and 3D laser microscopy, whereas the dimensions
of the beams number 9 to 17 were determined by the manufacturer. Each load range
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Fig. 4 Exemplary curves of bending rigidities of the couple stress theory for different values of l
in combination with measurements on silicon (top) and silicon nitride (bottom)

was chosen to be in the elastic region of the material and in the region of small
deflections. The latter was limited by defining the maximum bending angle as [6]:

α = F L2

2E I

180◦
π

� 5◦ (18)

For each of the six groups of thicknesses one deflection-force diagram is presented
in Fig. 5. The error bars stem from the difference between each measurement and
the linear regression line for each of the corresponding micro-beams (Fig. 3, right).
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Fig. 5 Measurements of beam deflections versus load of silicon and silicon nitride micro-beams
no.s 1, 4, 8, 12, 13, and 17

In fact these regression lines were the only regression made for the data in the AFM
experiments.
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3.2 Micro-Raman Spectroscopy for Strain Measurement

Today’s laser technology offers the possibility to make use of the Raman effect and
allows us to determine local strains with a lateral resolution of about one micrometer.
The Raman effect is based on inelastic scattering of incoming mono-chromatic light.
The location of the spectrum of the Raman scattered light, its “frequency,” depends
on the state of strain on and immediately below the surface of the specimen. In this
process the laser light polarizes the molecules of the specimen. The lattice vibrations
(phonons) modulate the frequency of the induced polarization. This, in general, is
known as the Raman effect, which is observable in a highly sensitive spectrometer
(Fig. 6).

The occurrence of the Raman effect is limited to opaque materials. The shift of
the Raman peak ω under presence of strain εkl depends on the structure and the
values of the PDP tensor (Phonon Deformation Potentials Pi jkl ) and can be obtained
from a solution of the following tensorial eigenvalue problem [5]:

det
(
Pi jklεkl − λ δi j

) = 0 , with λ =
(
ω2 − ω2

0

)
≈ 2ω0ω , (19)

where ω0 describes the spectral position of the Raman peak from the unloaded
material. By using so-called Raman selection rules, which describe a relationship
between the crystal orientation of the specimen and the direction of the polarization
of the laser light, the number of unknown eigenvalues of the tensor Eq. (19) can
be reduced [9]. For known phonon deformation potentials p, q, and r for single
crystalline silicon [2], in a constricted polarization configuration, and for a given
uni-directional state of stress the following strain-shift equation holds:

εx ,Raman = 1.4001
ω

ω0
. (20)

Fig. 6 The labeled optical path of the Raman laser (left) and an exemplary Raman peak of silicon
with its Gauss’ approximation (right)
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Several Raman spectra were taken in a back scattering configuration, in which
the Raman laser beam while intruding in z-direction scanned the upper surface in
the x-y-plane of the micro-beam. The scattered Raman peaks related to the loaded
and unloaded micro-beam fixture made of silicon were evaluated numerically by a
Gauss/Lorentz fit with respect to the spectral position and its Full Width at Half Maxi-
mum (FWHM). After this had been done the local strain in x-direction was calculated
by Eq. (20). Although silicon nitride exhibits a very similar strain-shift behavior for
a selected SiN peak at ω0 = 862 cm−1 [28], no single peaks were observed for SiN
because of a 20–50 nm metal coating on the bottom of the specimens, whose spectral
lines dramatically overlapped with the Raman effect of SiN.

As a result of the procedure described in Sect. 3.2, a pronounced decrease in
the measured strain values for decreasing beam thicknesses was observed if the
penetration depth of the laser light was not taken into account. In a first approximation
the penetration depth is given by [8]:

dp = 2.3

2α
, (21)

where α is an absorption coefficient depending upon the material and the wave-
length of the laser in use. For silicon and a wavelength of the Raman laser of about
λLaser = 532 nm the absorption coefficient given in [4] is α = 0.00096 nm−1, and
the corresponding penetration depth of the laser light amounts to dp = 1200 nm. In
a second approximation the mean Raman shift is assumed to be collected at half of
the penetration depth, what gives rise to a correction factor f , which is a function of
the thickness t of the form:

εx ,corr = f (t)εx ,Raman , f (t) = t∣∣t − dp
∣∣ . (22)

Calculated correction factors for different beam thicknesses of several tested sili-
con beams are listed in Table 2 including a comparison to measured correction factors
matching the maximum strain values of conventional Euler Bernoulli beam theory:
εx (x = 0) = −zF L(E I )−1.

Table 2 Evaluation of calculated and measured values for the strain correction function of the
tested micro-beams and their percental aberration

Beam number Material t [μm] f from Eq. 22 f from experiments %

1 silicon 6.90 1.21 1.20 0.83
3 silicon 2.97 1.68 1.71 1.78
4 silicon 2.95 1.69 1.78 5.3
5 silicon 1.05 7 6.3 10
8 silicon 1.03 6.06 4.2 30.7
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4 Discussion and Outlook

Fixed micro-beams made of single crystalline silicon and silicon nitride with thick-
nesses of about 7, 3, 1, 0.8, 0.6 and 0.2μm and a thickness to length ratio of less
than 1/20 have been loaded at their free ends by forces of about 0.1–200μN. Beam
deflections of about 0.05–35μm have been recorded using an AFM system and have
been corrected by a nonlinear regression analysis. The resulting values for Young’s
modulus were in good agreement with the ones from the literature, what speaks in
the favor of the accuracy of the experimental apparatus. For silicon nitride beams
with thicknesses below 1μm it was not possible to confirm the accurate thickness by
scanning electron microscopy or 3D laser microscopy. However, note that a compar-
atively small deviation in the thickness will have a great influence on the calculation
of Young’s modulus. For these beams the thicknesses given by the manufacturer
have been used leading to good agreement with the measured bending behavior. The
impact of a distributed in contrast to a pointwise (theoretical) applied force as well
as the ratio of the thickness to the width was not investigated in detail. The results
suggest the material length scale parameter l of the couple stress theory to be below
200 nm for silicon and below 50 nm for silicon nitride. Some of the single measure-
ments revealed a stiffer elastic bending behavior (e.g., beams no. 7, 9, and 15), which
speaks in favor of an extended theory. The lower limit of detecting l had been shown
to be l > 50 nm. The problem of detecting material length scale parameters below
50 nm will be more influenced by the problem of measuring the exact thickness of
even thinner micro-beams (or nano-beams) than measuring their bending behavior
with the present AFM technique.

In a second type of experiment Raman spectra of several loaded and unloaded
silicon micro-beams have been taken in the vicinity of the fixture to evaluate the
spectral shift of the Raman peak and hence to calculate strain values using Eq. (20).
A correction function to incorporate the penetration depth of the laser light has been
developed. This function corrects measured strain values out of the conventional
Raman theory in comprehension to the lowering effect due to the penetration depth.
The correction factors strongly increase for beams with a thickness close to the
penetration depth, because for this beams the mean Raman shift related to regions
close to the neutral axis inside the bent beam. Table 2 also points to the fact that
the spread of the calculated correction factors for small changes in the underlying
thicknesses strongly increases for beam thicknesses close to the penetration depth.
Together with the standard uncertainty of about 3–6 % of the Raman spectroscope
itself the strain values for silicon micro-beams are too inaccurate for an evaluation
within the present higher order theory. This results in a high percental aberration of
the measured to the calculated correction factors in Table 2 of about 30 % maximum.

The reason for not detecting a size effect for Si and SiN could be attributed to
the simplicity of the micro- or atomic structure, as well as to the tested range of
dimensions of the specimens. It is conceivable that the covalent bonding between
the single atoms of silicon and the undersized dilatation of a silicon or a silicon
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nitride molecule might provide an explanation for treating the inner structure of
these materials as point masses as it is done in conventional theory.

Experiments with micro-beams made of polymethylmethacrylat (PMMA) and
polycrystalline silicon are currently underway. The microstructure of polymers is
more complex and the single molecules show a distinct size and even a shape. In
polycrystalline silicon the grain size is supposed to be the medium for transmitting
the couple stresses.

Acknowledgments The present work is supported by DFG MU 1752/33-1.
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On the Electrostatic Fields in Dielectric
Continua with Self-Similar Properties

Thomas M. Michelitsch and Gérard A. Maugin

Abstract In this note we study the interaction of electromagnetic fields and matter
for hypothetical dielectric materials of linear self-similar (scale free) constitutive
properties. The physical sources of this constitutive behavior are harmonic and scale
free (self-similar) interparticle interactions as introduced recently [10]. We analyze
the continuum field equations and self-similar electrostatic fields. The assumption of
self-similarity leads inevitably to a non-local self-similar (elliptic) Laplacian operator
and, as a consequence, to constitutive relations in the forms of non-local convolutions
with self-similar (in the continuum limit power law) kernels. The present approach
is applicable in different physical contexts such as in mechanics of materials [8],
gravitation (potential) theory, statistical physics [7, 9, 11] and it seems to have
potential to model certain aspects in fluids mechanics (synthetic turbulence).

1 Introduction

In recent years there is an increasing interest in fractal aspects of material properties.
Due to the lack of generally accepted approaches accounting for “fractality”, phe-
nomenological models are highly desirable which take into account the self-similarity
of the constitutive behavior. There is a big deal of literature to model non-local and
fractal aspects by employing fractional calculus by utilizing ad hoc certain fractional
operators, and indeed it has been shown that fractional calculus is a powerful tool to
model for instance non-local elasticity (see e.g. [2, 3, 12] among many others).
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However, in many fractional models the choice of the fractional operators appears
somewhat arbitrary or only little physically motivated. It is often not clear or obvious
whether or not the results of such models are physically meaningful and consistent.
Therefore it is more than ever desirable to have models with a solid physical basis
and which are deduced so to say from first principles without “too many” arbitrary
assumptions on the fractional operators used. If we say “first principles” we mean
that the starting point for such an approach should be a “Laplacian operator” that is
uniquely determined by a variational principle such as Hamilton’s principle from a
potential energy or Lagragian (functional).

In the approach employed in this note which we introduced recently [8–11] (and its
extension to dimensionsn = 1, 2, 3 of the physical space [7]), the only (constitutive)
assumption is a self-similar1 potential energy (functional) from which the equations
of motion (the Laplacian operator) are determined in rigorous manner by application
of Hamilton’s principle. It turns out that the “self-similar Laplacian” obtained in this
way is a fractional operator. The advantage of this procedure is that the fractional
(Laplacian) operator used in the model is physically properly motivated and physical
consistency of the results is ensured in this way. The goal of the present note is to
develop the laws of electrostatics in a dielectric material system with self-similar
interparticle interactions.

The electromagnetic fields on (mass-) fractals, i.e. of the fractal distributions of
matter which is not subject of the present paper has been developed by Tarasov
[13]. In our approach the self-similarity and hence non-locality of the interparticle
interactions determines the constitutive relations and the Laplacian operator and
makes them to non-local fractional operators. In contrast, in the Tarasov approach
interparticle interactions are local. We can say in a sense: the Tarasov approach refers
to “kinematic fractals” and describes phenomena of fractal physical objects with
“conventional” non-fractal local interparticle interactions. In contrast, our approach
refers to “kinetic self-similarity” and “kinetic fractals” describing phenomena of
geometrically non-fractal objects with fractal, self-similar interparticle interactions.
The fractality in our approach can occur for instance in the potential energy, in the
wave number space such as in terms of a fractal dispersion relation in the form of
a Weierstrass-Mandelbrot function [10]. We emphasize that both approaches do not
compete, but complement each other: the approach of Tarasov and our approach refer
simply to different fractal aspects.

For the application of our (mechanically motivated) generalized model [7, 9] to
problems of electrodynamics, we use the following formal correspondence between
mechanical and electrical quantities: dielectric displacement D ↔ stress, electric field
E ↔ (total) strain, electric potential Φ ↔ displacement field, free electric charge
ρf ↔ volume forces. That means a mechanical elastic energy which is expressed in
terms of mechanical displacement fields will be translated by replacing displacements
by electric potentials.

1 The notion of self-similarity used corresponds to the notion of “self-similarity at a point”, see
details in [9].
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The Laplacian of our model (below relations (5), (6)) is uniquely determined

by a self-similar (electric) potential energy density
1

2
V where we assume (the only

assumption in our model) the form

V(x) =
hδ−n+1

4ζ

∫
(Φ(x + r) −Φ(x))2 + (Φ(x − r) −Φ(x))2

rδ+1
dnr (1)

Φ denotes the scalar electric potential. We note that (1) has spatial isotropic
symmetry. Expression (1) converges in the range 0 < δ − (n − 1) < 2 where
n = 1, 2, 3 denotes the dimension of the physical space [7]. The exponent δmeasures
the strengths ∼r−δ of the harmonic interparticle springs acting between particles with
distance r [10]. The exponent r−δ−1 in (1) is due to the fact that in the continuum
limit the number of springs connecting a particle with particles of distance r located
within the volume element dnr scales as ∼r−1dnr. The expression (1) is the spatially
isotropic generalization of the continuum limit of the elastic energy density of a quasi-
continuous linear chain with self-similar harmonic interparticle springs as introduced
in [10] where Φ denotes in the general model a generalized displacement field (in
the electromagnetic context the electric potential). The potential energy stored is the
volume integral of the density (1) which is a non-local bi-linear functional of the
electric potential Φ

V[Φ,Φ] =
1

2

∫
V(x) dnx =

1

2

∫
ρf(x)Φ(x) dnx (2)

where ρf(r) is the density of free electric charges at space point r. Application
of Hamilton’s principle leads to a self-similar Laplacian defined by the functional
derivative of the potential energy functional, namely

Δ(n,δ)Φ(x) := −
δV

δΦ(x)
= −ρf(x) (3)

where we introduced the variation δΦ(r). At the same time (3) defines the Poisson
equation of the self-similar (dielectric) medium. We can determine the self-similar
Laplacian defined by (3) explicitly by using the chain rule for the functional derivative
with respect to the field Φ(x) (see also the Appendix)

δΦ(x)

δΦ(x′)
= δn(x − x′) (4)

which is the continuous analogue to the relation
∂xi

∂xj
= δij. This self-similar Lapla-

cian has then the representations [7]
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Δ(n,δ)Φ(x) =
hδ−n+1

2ζ

∫
{Φ(x + r) +Φ(x − r) − 2Φ(x)}

rδ+1
dnr, 0 < δ−(n−1) < 2

(5)
or equivalently

Δ(n,δ)Φ(x) =
hδ−n+1

ζ

∫
{Φ(r) −Φ(x)}

|r − x|δ+1
dnr, 0 < δ− (n− 1) < 2 (6)

where n = 1, 2, 3 denotes the dimension of physical space. The linear non-local
operator (6) exists in the same range 0 < δ − (n − 1) < 2 as the elastic energy
density (1) and merits to be called Laplacian by its following properties which we have
proved in our recent paper [7]: positive-semidefiniteness (ellipticity), translational
invariance, spatial isotropy and self-adjointness. The spatial isotropy is due to the
choice of the potential energy functional as spatially isotropic.

In this note we confine ourselves on the dimension n = 3 of the physical space.
We evoke the macroscopic Maxwell equations (Maxwell equations in matter). For
an extensive treatment of general aspects of electrodynamics in matter we refer to
standard textbooks such as [4–6]. We use the following notations: ρf denote the
volume density of free electric charges, D the dielectric displacement field, and E the
electric field, respectively. The Maxwell equations in matter have the well known
form (in SI units), e.g. [4–6]

∇ · D = ρf (7)

∇ · B = 0 (8)

∇ × E = −
∂B
∂t

(9)

∇ × H = Jf +
∂D
∂t

(10)

where ∇ = (
∂

∂xi
) denotes the Gradient (Nabla-) operator. In the following section

we elaborate some basic relations of Electrostatics in dielectric material with self-
similar (fractal) interparticle interactions with the approach introduced above.

2 Self-Similar Electrostatics

The results of this section can be fully generalized to other scalar potential-field
theories such as for instance gravitational theory. Let us begin with the general
relations of Electrostatics. We note that these relations are determined by the above

Maxwell equations when we put
∂(·)
∂t

= 0. The Maxwell equations of statics then

reduce to
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∇ · D = ρf (11)

and
∇ × E = 0 (12)

We consider a material with a constitutive law which is such that the relation between
the electric potential Φ and the free electric charge density ρf are connected by a
Poisson equation with the non-local form of the Laplacian (6)

Δ(n=3,δ)Φ(x) = −ρf(x) (13)

where we consider here only the case of n = 3 dimensions of the physical space.
An important observation on the physical consistency of this model is the following:
Since the Laplacian Δ(n,δ) is defined by Hamilton’s variational principle (and not
simply somewhat assumed), the Poisson equation (13) is consistent with the right
hand side of (2).

The Laplacian (6) takes in 3D the form

Δ(n=3,δ)Φ(x) =
hδ−2

ζ

∫
{Φ(r) −Φ(x)}

|r − x|δ+1
d3r, 0 < δ− 2 < 2 (14)

where the exponent δ is forn = 3 restricted within 2 < δ < 4 in order this integral to
exist. We can assume that the constitutive relation between electric field and dielectric
displacement consists in a linear functional relationship

D[E] = ε∗E (15)

where “∗” means here the convolution operation. The dielectric operator ε is to be
determined from the self-similar Laplacian (14) and Gauss law (11) together with
the Poisson equation (13). We use the relation between the electric potential Φ and
the electric field to be purely kinematic (analogue to the relation between total strain
and displacement field), i.e.

E = −∇Φ (16)

where (∇)i =
∂

∂xi
denotes the gradient operator. Relation (16) is a consequence of

the static Faraday’s law (12). We note that constant electric potentials Φ = const

correspond to a zero electric fields E and to zero free charges ρf = 0 according to the
vanishing of (14). To determine the constitutive relation connecting D and E (15),
we use that the Gauss law (11) has to be fulfilled. Thus we can write for (14)

Δ(n=3,δ)Φ(x) = −∇ · D =
hδ−2

(δ− 2)ζ

∫
(x − r) · E(r)

|x − r|δ+1
d3r, 2 < δ < 4 (17)
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which is useful to determine the dielectric displacement field D where E is defined
by (16). Relation (17) is obtained by applying Gauss theorem [7]. We obtain then
for the dielectric displacement field (up to an unimportant rotational field)

D(x) =
hδ−2

(δ− 1)(δ− 2)ζ

∫
|x − r|1−δE(r) d3r, 2 < δ < 4 (18)

This relation is the constitutive law connecting the dielectric displacement D with
the electric field E in terms of a nonlocal linear functional having the nonlocal form

D(x) =

∫
ε(x − r)E(r) d3r (19)

with the dielectric permittivity material function kernel

ε(R) = 1ε(R), ε(R) =
hδ−2

(δ− 1)(δ− 2)ζ
R1−δ > 0, R �= 0, 2 < δ < 4

(20)

which is a self-similar and isotropic diagonal tensor function where 1 denotes the
3 × 3 unity tensor. In the following we refer to as a self-similar dielectricum, a
dielectric medium governed by a material law (20). We observe that (20) is within
the admissible range of δ a positive (diagonal) self-similar tensor where its exponent
δ is restricted in the range −3 < 1 − δ < −1.

2.1 Self-Similar Coulomb Potential

In this subsection we deduce the Coulomb potential generated by a point charge q and
the Coulomb force between two point charges q and Q of distance r in a self-similar
dielectricum.

The Coulomb potential can be represented as a convolution of the electric potential
of a unit point charge g (located in the origin) having the charge density ρf(r) =
qδ3(r) with q = 1. This fundamental potential g which is also called the Green’s
function of electrostatics and is defined by the Poisson equation

Δ(n=3,δ)g(r) = −δ3(r) (21)

where δ3(x) denotes the three dimensional Dirac’s δ-function and Δ(n=3,δ) the self-
similar Laplacian (5) for n = 3. Due to the spatial isotropy of the Laplacian (5),
we can conclude that g = g(r) depends only on r = |r|. The Green’s function g
defined by (21) is the self-similar analogue to the Newtonian 1/r-potential (classical
Coulomb potential). Its physical interpretation is the following: g(r) represents the
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scalar electric potential caused by a unit point charge q = 1 located in the origin
r = 0. The electric potential due to an arbitrary spatial density of free electric charges
ρf has then the form

Φ(r) =

∫
g(r − r′)ρf(r′) d3r′

(22)

To determine the Green’s function g it is convenient to apply Fourier transformation.
Taking into account that plane waves are eigenfunctions of the Laplacian with

Δ(n,δ)e
ik·r = −ω2(k)eik·r (23)

with the dispersion relation determined by

ω2(k) =
hδ−2

ζ

∫
1 − cos k · r

rδ+1
d3r (24)

which has the scaling property [7]

ω2(k) = Akα, 0 < α = δ− 2 < 2 (25)

The constantA = ω2(k = 1) is strictly positive in the admissible range of 0 < α =
δ− 2 < 2 and has explicitly been obtained for n = 1, 3 [7]. In 3D the constant A is
obtained as

A =
2π2hδ−2

ζ(α+ 1)! sin απ
2

> 0, 0 < α = δ− 2 < 2 (26)

In (26) we introduced the faculty function (Γ -function) defined as [1]

z! = Γ(z+ 1) =

∫∞

0
e−ττz dτ, Re(z) > −1 (27)

The Green’s function is hence determined by (n = 3)

g(r) =
1

(2π)3

∫
eik·r

ω2(k)
d3k (28)

We obtain finally the electrostatic Green’s function (self-similar electric potential
due to a unit-point charge) as

g(r) = gα r
α−3, 0 < α = δ− 2 < 2 (29)

and the electric potential is Φ(r) = qg(r) where q = ±1 with an exponent varying
within −3 < α − 3 < −1, i.e having a stronger decay at infinity than the classical
1/r-Coulomb potential. The positive constant gα is obtained in 3D as
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gα =
Γ(2 − α) sin (απ

2 )

2π2A
(30)

or

gα =
ζ

4π4hδ−2
Γ(2 + α)Γ(2 − α) sin2 (

απ

2
) > 0, 0 < α = δ− 2 < 2 (31)

The electric potential of an arbitrary charge distribution ρf is then determined by
the convolution (22) with the kernel of Coulomb potential (28). The electric field of
an arbitrary charge distribution ρf in the self-similar dielelctricum is then given by

E(r) = (3 − α)gα

∫
(r − r′)

|r − r′|5−α
ρf(r′) d3r (32)

2.2 Electric Field of a Unit-Point Charge—Self-Similar Coulomb
Law

The electric field of the point charge q located in the origin r = 0 is then

E = −q∇rg(r) = q(3 − α)gαr
α−5r ∼ rα−4, −4 < α− 4 < −2 (33)

where (3 − α)gα > 0 as 0 < α = δ− 2 < 2 and gα > 0 is given in (31).
Let us consider now the Coulomb force Fc on a point charge Q located at r in the

field of a point charge q located in the origin

Fc(r) = QE(r) = Qq(3 − α)gαr
α−5r = −∇rVc(r) (34)

with the Coulomb potential (energy) of two unit charges q and Q seperated by
distance r

Vc(r) = qQg(r) = qQgαr
α−3, −3 < α− 3 < −1 (35)

It follows that Fc is repulsive (parallel to r) if qQ > 0 and attractive if qQ < 0
just as in traditional electrostatics. The Coulomb force (34) scales however as rα−4

with an exponent in the range −4 < α− 4 < −2.

3 Conclusions

In this note we have deduced the basic electrostatic fields in the framework of a
self-similar dielectric setting. We used our recently developed continuum approach
of material systems with self-similar interparticle interactions [8, 9, 11] which is a
generally applicable field approach for material systems with intrinsic self-similar
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material symmetry. It follows that the self-similarity symmetry of interparticle inter-
actions gives rise to new physical phenomena which are due to the criteria of existence
of the self-similar Laplacian, especially the laws of electrostatics are modified by the
range of existence (convergence) 2 < δ < 4 of the self-similar potential energy den-

sity
1

2
V(x) of Eq. (1) and the self-similar Laplacian (17) in 3D. Further relations of

electrostatics in this self-similar setting can be deduced in a straight-forward manner.
Of special interest would be in this context for instance Eshelby’s inclusion problem
and related subjects. A wide field opens to extend the present approach to electro-
dynamics. An electromagnetic theory including aspects of dynamics of self-similar
continua is currently under development.

Appendix

Functional derivative. The Laplacian (5) is defined as the functional derivative of
the potential energy (1) with respect to the fieldΦ. In order to calculate this functional
derivative we make use of the following property of the functional derivative, so we
have for instance by using the chain rule (4)

δ

δφ(τ)

∫∞

−∞

∫∞

−∞
dτ1dτ2f(φ(τ1),φ(τ1 + τ2))

=

∫∞

−∞

∫∞

−∞
dτ1dτ2

(
∂f

∂φ(τ1)
δ(τ1 − τ) +

∂f

∂φ(τ1 + τ2)
δ(τ1 + τ2 − τ)

)

=

∫∞

−∞
ds

(
∂

∂φ(τ)
f(φ(τ),φ(τ+ s)) +

∂

∂φ(τ)
f(φ(τ− s),φ(τ))

)
.
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Nonlinear Generalizations of the Born-Huang
Model and Their Continuum Limits

Alexey V. Porubov, Eron L. Aero and Boris R. Andrievsky

Abstract One previously developed essentially nonlinear continuum model for a
bi-atomic lattice is examined by comparing with the continuum limit of generalized
Born-Huang model. It is found that these models do not correspond to each other,
while the coefficients of the last model may be evaluated for real bi-atomic crystals.
Some new features of the strain waves in the lattice are revealed on the basis of exact
traveling wave solutions of the generalized Born-Huang model.

1 Introduction

Deep variations in the structure of a crystalline lattice, allows description of the
cardinal, qualitative variations of the cell properties, lowering of potential barriers,
switching of interatomic connections, arising from singular defects and other dam-
ages, phase transitions. Recently an essentially proper structural nonlinear model has
been developed in [1, 2] that treats a continuum approach and a crystal translational
symmetry of the bi-atomic lattice without making a continuum limit of its discrete
model. According to [1, 2], the following variables are introduced in the 1D case:

U =
m1U1 +m2U2

m1 +m2
, u =

U1 −U2
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where a is a period of the lattice, U is a macro-displacement and u is a relative
micro-displacement for the pair of atoms with masses m1, m2. Then the density of
kinetic energy is introduced,

K =
ρU2
t

2
+
μu2
t

2
(1)

where ρ and μ are an average density of the mass of the atoms and a so-called
density of the reduced masses of the pair of the atoms respectively. The internal
density energy Π is suggested in [1, 2] as

Π =
E U2

x + κ u2
x

2
+ (p− SUx)(1 − cos(u)) (2)

where E and κ are the second order macro-and micro-elastic constants, p is an energy
of activation of interatomic connections in the elementary cell, S is the coefficient of
nonlinear striction (re-arrangement of the microstructure under the action of macro-
scopic strains). The term (1−cos(u)) was chosen to take into account a translational
symmetry of the crystalline lattice. It accounts for a strong or essential nonlinearity
allowing transition of atoms in neighboring cells to realize the micro-mechanism
of the cardinal re-arrangement of the structure. The weakly nonlinear models give
rise to only the description of small variations in the position of the atoms around
undisturbed state.

The governing equations are obtained using the variation Hamilton-Ostrogradsky
principle, and the coupled equations for U and u are obtained in the form

ρUtt − E Uxx = S(cos(u) − 1)x, (3)

μutt − κuxx = (SUx − p) sin(u) (4)

The model eqs. (3), (4) possess interesting localized wave solutions describing varia-
tions in the amplitude of the localized defectu as well as simultaneous propagation of
the bell-shaped and kink-shaped defects u due to an influence of an external loading
Ux, see [3–5]. However, the model (3), (4) is based on some suggestions, mentioned
above. These suggestions are given on the basis of physical reasons, but they are
not justified enough. Also the constants E, S, μ, κ and p are not defined for real
bi-atomic materials, and application of the solutions to Eqs. (3), (4) is questionable.
To overcome this difficulty, a comparison may be done with a continuum limit of
the discrete equations accounting for the bi-atomic lattice. A natural candidate is
the familiar Born-Huang model for bi-atomic lattices [6, 7]. However, this model is
linear, and its extension by the nonlinear case is needed. It will be done further in this
paper. It seems that possible correspondence may help to check the suggestions about
the expressions for the energies (1), (2) and to estimate the values of the constants
of the model (3), (4).
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2 Generalization of the Born-Huang Lattice Model

The Born-Huang model accounts for a lattice that is a chain of the atoms of two kinds
interacting with each other. The interaction is modeled by elastic springs with equal
stiffness, see Fig. 1. Consider an elementary cell (marked in Fig. 1) with displacement
ul for the massm1 and displacement vl for the massm2. Two possible elementary
cells are marked in Fig. 1, the choice depends on the mass that is placed ahead, heavier
or lighter. First the Born-Huang model is generalized up to a weakly nonlinear level.
The discrete equations of motion for the elementary cell are written as

m1 ul,tt = C[(vl+1 − ul) − (ul − vl−1)] + P[(vl+1 − ul)
2 − (ul − vl−1)

2],

m2 vl,tt = C[(ul+1 − vl) − (vl − ul−1)] + P[(ul+1 − vl)
2 − (vl − ul−1)

2],

where C and P are the coefficients of the linear and nonlinear stiffness respectively.
The continuum long-wave limit of these equations up to the terms of orderO(a3) is

m1 utt = 2C (v− u) + 4a P(v− u)vx + C a2vxx, (5)

m2 vtt = 2C (u− v) + 4a P(u− v)ux + C a2uxx. (6)

A comparison with the model (3), (4) requires transition to the variables,

U =
m1u+m2v

m1 +m2
, V =

u− v

a
.

that have the same meaning as for the model (3), (4). Then the continuum eqs. (5),
(6) are transformed to the coupled equations for the new variables,

(m1 +m2)Utt − 2a2 CUxx − 4a3 PVVx +
a3 C(m1 −m2)

m1 +m2
Vxx = 0, (7)

x

m1 m2

m1 m2

Fig. 1 Two kinds of establishing elementary cells in bi–atomic Born–Huang lattice. Two choices
of an elementary cell are marked by dashed lines
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m1m2a
2

m1 +m2
Vtt +

a4 Cm1m2

(m1 +m2)2
Vxx + 2a2(C+ 2a PUx)V

+
a3 C(m1 −m2)

m1 +m2
Uxx = 0. (8)

A comparison will be done first between the linearized versions of Eqs. (3), (4)
and (7), (8). Then Eqs. (7), (8) will be compared with the weakly nonlinear limit
of Eqs. (3), (4) resulting from application of the power series expansions of the
trigonometric functions. Finally, an essentially nonlinear extension of Eqs. (7), (8)
will be suggested to compare with Eqs. (3), (4).

3 Comparison of the Models

The linearized equations (3), (4),

ρUtt − E Uxx = 0, (9)

μutt − κuxx = 0. (10)

demonstrate no coupling and no acoustical and optical branches in the dispersion
relation. On the contrary, the Born-Huang model (linearized Eqs. (7), (8)),

(m1 +m2)Utt − 2a2 CUxx +
a3 C(m1 −m2)

m1 +m2
Vxx = 0, (11)

m1m2a
2

m1 +m2
Vtt +

a4 Cm1m2

(m1 +m2)2
Vxx +

a3 C(m1 −m2)

m1 +m2
Uxx = 0, (12)

possesses both branches [6]. Also, one can note that the coefficients in Eqs. (9), (10)
are independent, while they depend on each other in Eqs. (11), (12).

The weakly nonlinear limit of Eqs. (3), (4) is obtained by expanding the trigono-
metric functions and retaining only the first terms in the expansions,

ρUtt − E Uxx = −S uux, (13)

μutt − κuxx = (SUx − p) u. (14)

A comparison with Eqs. (7), (8) may be done using exact traveling wave solutions
depending only on the phase variable θ = x − c t. Two kinds of decoupling are
possible for Eqs. (13), (14). The Eq. (13) may be resolved for Uθ,

Uθ =
S u2 − 2σ

2(E− ρ c2)
, (15)
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and Eq. (14) becomes an equation for finding the function u after substitution of
Eq. (15). Alternatively, Eq. (13) gives rise to the relationship for u,

u =

√
2((E− ρ c2)Uθ − σ)

S
, (16)

while the function U is defined from Eq. (14) after substitution of Eq. (18). In both
cases σ is a constant of integration.

Only the first kind of decoupling is realized for solving Eqs. (7), (8). Thus, Eqs. (7)
yields

Uθ =
2a3PV2 + σ

c2(m1 +m2) − 2Ca2
+

(m2 −m1)C a
3Vθ

(m1 +m2)(c2(m1 +m2) − 2Ca2)
(17)

that is used for derivation of the governing equation for V from Eq. (8). One can note
that the second term in Eq. (17) depends on the difference of the massesmi.

Despite the relationships forUθ for both models are different due to the last term
in Eq. (17), the resulting ordinary differential equations (ODE) for the functions u
and V are similar. Thus, Eq. (14) transforms to the ODE reduction of the modified
Korteweg - de Vries (mKdV) equation,

(uθ)
2 = b1u

4 + b2u
2 + b3,

b1 =
S2

4
(
κ− c2μ

) (
E− c2ρ

) ,b2 = −

(
p(E− c2ρ) + Sσ

)
(
κ− c2μ

) (
E− c2ρ

) ,b3 − const.

while for the generalized Born- Huang model substitution of Eq. (17) into Eq. (8)
results in the same ODE for the function V ,

(Vθ)
2 = q1V

4 + q2V
2 + q3,

but with different coefficients,

q1 =
2a4P2

C2a4 −m1m2c4
,q2 =

2(2aPσC(m1 +m2)c
2 − 2C2a2)

C2a4 −m1m2c4
,q3 − const.

The known solitary wave solution of the mKdV equation is be written for u,

u =
2
√
p

(
c2ρ− E

)
− Sσ

S
sech

⎛
⎝

√
p

(
E− c2ρ

)
+ Sσ

√(
κ− c2μ

) (
E− c2ρ

) (θ− θ0)

⎞
⎠ (18)

while the same solution for V is



288 A. V. Porubov et al.

V =

√
2C2a2 − c2C(m1 +m2) − 2aPσ√

2a2P

sech

(√
2
√

2C2a2 − c2C(m1 +m2) − 2aPσ√
−C2a4 + c4m1m2

(θ− θ0)

)
. (19)

However, the reality of the parameters of the solutions depend on the coefficients
of the equation. The coefficients are independent for the model (13), (14), then
the solution (18) exists, in particular, for σ = 0. It follows from Eq. (15) that Uθ
vanishes at θ → ±∞, and the solitary wave of the moving defect u is accompanied
by the solitary wave of an external loading, or a macro-strain, Uθ. However, the
coefficients of Eqs. (7), (8) do not allow the value of the velocity c at σ = 0 for the
solution (19). It means that the macro-strain waveUθ (17) cannot vanish at infinities,
and a constant external loading is needed to support the localized wave of defects
V in this case. Typical shapes of the wave (17) are shown in Fig. 2 in the form of
a localized wave but with constant negative shift that has a meaning of an external
longitudinal compression. The shape of the wave is not symmetric with respect to
its peak contrary to the symmetric shape of the solution (15). Also a trough appears
ahead or behind the wave depending on the ratio of the masses,mi.

Similarly the essentially nonlinear case may be considered. However, the weakly
nonlinear Eqs. (7), (8) should be extended up to the essential level in the same manner
as Eqs. (3), (4) are reduced up to the weakly nonlinear level, (13), (14). Now we
assume that the nonlinear terms in Eqs. (7), (8) are the “traces” of the expansions
of the trigonometric functions. Then the essentially nonlinear generalization of the
continuum limit of the Born-Huang model is suggested in the form

(m1 +m2)Utt−2a2CUxx−4a3P(1−cosV)x+
a3C(m1 −m2)

m1 +m2
Vxx = 0 (20)

Fig. 2 Solitary wave with a constant shift (shown by dashed line), m1 < m2 (left), m1 > m2
(right)
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m1m2a
2

m1 +m2
Vtt +

a4 Cm1m2

(m1 +m2)2
Vxx

+2a2(C+ 2a PUx) sinV +
a3 C(m1 −m2)

m1 +m2
Uxx = 0.

(21)

Again a comparison is done using exact traveling wave solutions to Eqs. (3), (4)
and Eqs. (20), (21). Two kinds of decoupling are possible for Eqs. (3), (4):

Uθ =
S (1 − cosu) − σ

2(E− ρ c2)

or

u = arccos

(
(ρ c2 − E)Uθ − σ

S
+ 1

)
.

Only the first kind is realized for the generalized essentially nonlinear Born-Huang
model, (20), (21),

Uθ =
a3P(1 − cosV) + σ

c2(m1 +m2) − 2Ca2
+

(m2 −m1)C a
3Vθ

(m1 +m2)(c2(m1 +m2) − 2Ca2)
(22)

The equations both for the functions u and V have the form of the ODE reduction of
the Double Sine-Gordon equation. In particular, substitution of Eq. (22) into Eq. (21)
of the generalized essentially nonlinear Born-Huang model results in

(
m1m2a

2(c2 + C a2)

m1 +m2
−

(m1 −m2)2C2 a6

(m1 +m2)2((m1 +m2)c2 − 2C a2)

)
Vθθ

+ 2a2

(
C+

2AP(4a3P + σ)

(m1 +m2)c2 − 2C a2

)
sinV −

4a4P

(m1 +m2)c2 − 2C a2
sin(2V) = 0.

(23)

The substitution of variable V = 2 arctanW(θ) allows us to convert Eq. (23)
to the form of the mKdV equation for the function W. Then a comparison is done
using already noted solitary wave solution. It turns out that the main deviations in
the solutions are the same as in the weakly nonlinear case. Again the generalized
essentially nonlinear Born-Huang model does not possess the bell-shaped solution
for Uθ without constant shift, σ, while the shape of the wave Uθ is similar to that
shown in Fig. 2.
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4 Conclusions

The essentially nonlinear continuum model (3), (4) and the continuum limit of the
discrete Born-Huang model do not correspond to each other at the linearized, weakly
nonlinear and essentially nonlinear levels. The distinct features of the last model
are the dependence of the profile of the solution on the ratio between the masses
mi of the atoms of the lattice and the need in a shift σ for the existence of the
solution for the macro-strain Uθ needed for propagation of localized defects V .
Therefore, both models similarly describe propagation of localized defects but under
different loading, Uθ ( with or without constant part or a pedestal). The coefficients
in the continuum equations of the generalized Born- Huang model depends on the
interaction forces of the lattice that makes possible their evaluation for real bi-atomic
materials.

However, the essentially nonlinear continuum model (3), (4) corresponds well to
the structural essentially nonlinear model after G. Pouget, G.A. Maugin and M.K.
Sayadi [8, 9] for a one-dimensional atomic chain equipped with rotatory molecular
groups. Therefore, all the solutions obtained in Refs. [3–5] may be successfully
applied in this problem.
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Buckling of Inhomogeneous Circular Plate
of Micropolar Material

Denis N. Sheydakov

Abstract The present research is dedicated to the stability analysis of nonlinearly
elastic highly porous plates. The mechanical properties and behavior of these plates
are described using the model of an inhomogeneous micropolar (Cosserat) medium.
Such approach allows for a more precise modeling and detailed analysis of the
buckling process for constructional elements made of highly porous materials. In the
framework of a general stability theory for three-dimensional bodies, we have studied
the stability of a circular micropolar plate subject to radial compression. It is assumed
that elastic properties of the plate vary through the thickness. Using the linearization
method in a vicinity of a basic state, the neutral equilibrium equations are derived,
which describe the perturbed state of a plate. For a special case of axisymmetric
buckling modes this linearized equilibrium equations are reduced to the system of
three ordinary differential equations. It is also shown that if elastic properties of
a plate are symmetric through the thickness then the stability analysis is reduced
to solving two independent linear homogeneous boundary-value problems for the
half-plate.

1 Introduction

With the increasing number of new structural materials, the problem of stability
analysis for bodies with a microstructure becomes important. One example of such
materials is a porous material. Engineering structures made of porous materials,
especially metal and polymer foams, have different applications in the last decades
[2–4, 6, 9]. The foams are cellular structures consisting of a solid metal (for exam-
ple aluminium, steel, copper, etc.), or polymer (polyurethane, polyisocyanurate,
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polystyrene, etc.) and containing a large volume fraction of gas-filled pores. There
are two types of foams. One is the closed-cell foam, while the second one is the
open-cell foam. The defining characteristic of metal and polymer foams are the very
high porosity: typically, well over 80 %, 90 % and even 98 % of the volume consists
of void spaces.

Constructions made of porous materials are widely used in modern industries with
airspace or automotive applications among others. The reason for this is the advan-
tages of such materials: better density-stiffness ratios in comparison with classical
structural materials, the possibility to absorb energy, etc. As a rule, these construc-
tions have a functionally graded structure. For example, the porous core is quite often
covered by hard and stiff shell, which can be necessary for corrosion or thermal pro-
tection, and optimization of mechanical properties in the process of loading.

2 Initial Strain State of Inhomogeneous Plate

We consider the circular plate of radius r1 and thicknessH, and made of functionally
graded material. The behavior of the plate is described by the model of micropolar
elastic body [1, 5, 8, 10, 13, 19]. For the radial compression (extension) of the plate,
the position of a particle in the strained state is given by the radius vector R [12, 20]:

R = αr, 0 � r � r1,

Φ = ϕ, 0 � ϕ � 2π, (1)

Z = f(z), |z| � H/2,

R = αreR + f (z) eZ. (2)

Here r, ϕ, z are cylindrical coordinates in the reference configuration (Lagrangian
coordinates), R, Φ, Z are Eulerian cylindrical coordinates, {er, eϕ, ez} and
{eR, eΦ, eZ} are orthonormal vector bases of Lagrangian and Eulerian coordinates,
respectively,α is the radial compression ratio, f(z) is some unknown function, which
describe the strain in the thickness direction of the inhomogeneous plate.

In addition, a proper orthogonal tensor of microrotation H is given, which charac-
terizes the rotation of the micropolar medium particle and for the considered strain
has the form

H = er ⊗ eR + eϕ ⊗ eΦ + ez ⊗ eZ. (3)

According to expressions (1) and (2), the deformation gradient C is (hereinafter ′
denotes the derivative with respect to z):

C = grad R = α (er ⊗ eR + eϕ ⊗ eΦ) + f′ez ⊗ eZ, (4)
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where grad is the gradient in Lagrangian coordinates. It follows from relations (3)
and (4) that the wryness tensor L is equal to zero [14, 15]

L × E = −(grad H) · HT = 0

and the stretch tensor Y is expressed as follows

Y = C · HT = α (er ⊗ er + eϕ ⊗ eϕ) + f′ez ⊗ ez. (5)

We assume that the elastic properties of the plate vary through the thickness, and
they are described by the model of physically linear micropolar material, whose
specific strain energy is a quadratic form of the tensors Y − E and L [7, 11]:

W (Y, L) =
1

2
λ(z)tr2 (Y − E) +

1

2
(μ(z) + κ(z)) tr

(
(Y − E) · (Y − E)T

)

+
1

2
μ(z)tr (Y − E)2+

1

2
γ1(z)tr

2L+
1

2
γ2(z)tr

(
L · LT

)
+

1

2
γ3(z)tr L2.

(6)
Here λ(z), μ(z) are functions describing the change in the Lamé parameters, κ(z),
γ1(z), γ2(z), γ3(z) are micropolar elastic parameters changing with the thickness
coordinate, E is the unit tensor.

It follows from expressions (3), (5) and (6) that the Piola-type couple stress tensor
G is equal to zero for the deformation of radial compression (1)–(3) of the circular
plate

G =
∂W

∂L
· H =

(
γ1 (tr L) E + γ2L + γ3LT

)
· H = 0

and Piola-type stress tensor D is

D =
∂W

∂Y
· H =

(
λtr (Y − E) E + μ

(
YT − E

)
+ (μ+ κ) (Y − E)

)
· H

= (λs+ χ (α− 1)) (er ⊗ eR + eϕ ⊗ eΦ) +
(
λs+ χ

(
f′ − 1

))
ez ⊗ eZ, (7)

s = 2α+ f′ − 3, χ = 2μ+ κ.

The equilibrium equations of nonlinear micropolar elasticity in absence of mass
forces and moments are written as follows [7, 20]

divD = 0, divG +
(
CT · D

)
× = 0, (8)

where div is the divergence in the Lagrangian coordinates. The symbol × represents
the vector invariant of a second-order tensor:

K× = (Kmnem ⊗ en)× = Kmnem × en
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We assume that there are no external loads on the faces of the plate (z = ±H/2),
and there is no vertical displacement on the middle surface z = 0:

ez · D|z=± H
2

= 0, f (0) = 0 (9)

By solving the boundary problem (8), (9) while taking into account the relations (7)
we found the unknown function f (z):

f (z) =

z∫

0

2(1 − α)λ(x)

λ(x) + 2μ(x) + κ(x)
dx+ z

In the special case, when the pattern of variation for elastic parameters λ, μ, κ is the
same

λ(z) = λ0ξ(z), μ(z) = μ0ξ(z), κ(z) = κ0ξ(z)

the expression for the function f(z) is quite simple:

f (z) = α3z, α3 = 1 +
2λ0(1 − α)

λ0 + 2μ0 + κ0

3 Equilibrium Bifurcation for Inhomogeneous Plate

We assume that in addition to the above-described state of equilibrium for the
inhomogeneous plate, there is an infinitely close equilibrium state under the same
external loads, which is determined by the radius vector R + ηv and microrotation
tensor H − ηH × ω. Here η is a small parameter, v is the vector of additional dis-
placements, ω is a linear incremental rotation vector, which characterizes the small
rotation of the micropolar medium particles, measured from the initial strain state.

The perturbed state of equilibrium for the micropolar medium is described by the
equations [7]:

divD• = 0, divG• +
[
gradvT · D + CT · D•]

× = 0, (10)

where D• and G• are the linearized Piola-type stress and couple stress tensors. In the
case of physically linear micropolar material (6), the following relations are valid
for these tensors [17, 18]:

D• =

(
∂W

∂Y

)•
· H +

∂W

∂Y
· H• =

(
λ (tr Y•) E + (μ+ κ) Y• + μY•T

)
· H

−
(
λtr (Y − E) E + μ

(
YT − E

)
+ (μ+ κ) (Y − E)

)
· H × ω, (11)
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G• =

(
∂W

∂L

)•
· H +

∂W

∂L
· H•

=
(
γ1 (tr L•) E+γ2L• + γ3L•T

)
· H −

(
γ1 (tr L) E + γ2L + γ3LT

)
· H × ω,

(12)

Y• = (gradv + C × ω) · HT, L• = grad ω · HT.

Here Y• is the linearized stretch tensor, L• is the linearized wryness tensor. Linearized
boundary conditions on the faces of the plate (z = ±H/2) are written as follows:

ez · D•|z=± H
2

= 0, ez · G•|z=± H
2

= 0. (13)

We assume that there is no friction at the edge of the plate (r = r1), and con-
stant normal displacement is given. This leads to the following linearized boundary
conditions:

er · D• · eΦ|r=r1
= er · D• · eZ|r=r1

= er · v|r=r1
= 0,

er · G• · eR|r=r1
= eϕ · ω|r=r1

= ez · ω|r=r1
= 0. (14)

We write the vector of additional displacements v and vector of incremental rotation
ω in the basis of Eulerian cylindrical coordinates:

v = vReR + vΦeΦ + vZeZ, ω = ωReR +ωΦeΦ +ωZeZ. (15)

With respect to representation (15), the expressions for the linearized stretch tensor
Y• and wryness tensor L• have the form:

Y• =

(
∂vΦ

∂r
− αωZ

)
er ⊗ eϕ +

1

r

(
∂vR

∂ϕ
− vΦ + αrωZ

)
eϕ ⊗ er

+

(
∂vZ

∂r
+ αωΦ

)
er ⊗ ez +

(
∂vR

∂z
− f ′ωΦ

)
ez ⊗ er

+
1

r

(
∂vZ

∂ϕ
− αrωR

)
eϕ ⊗ ez +

(
∂vΦ

∂z
+ f ′ωR

)
ez ⊗ eϕ (16)

+
∂vR

∂r
er ⊗ er +

1

r

(
∂vΦ

∂ϕ
+ vR

)
eϕ ⊗ eϕ +

∂vZ

∂z
ez ⊗ ez,

L• =
∂ωR

∂r
er ⊗ er +

1

r

(
∂ωΦ

∂ϕ
+ωR

)
eϕ ⊗ eϕ +

∂ωZ

∂z
ez ⊗ ez

+
∂ωΦ

∂r
er ⊗ eϕ +

1

r

(
∂ωR

∂ϕ
−ωΦ

)
eϕ ⊗ er +

∂ωZ

∂r
er ⊗ ez (17)

+
∂ωR

∂z
ez ⊗ er +

1

r

∂ωZ

∂ϕ
eϕ ⊗ ez +

∂ωΦ

∂z
ez ⊗ eϕ.
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According to relations (3)–(5), (11), (12), (15)–(17), the components of the lin-
earized Piola-type stress tensor D• and couple stress tensor G• are written as follows:

er · D• · eR = (λ+ χ)
∂vR

∂r
+
λ

r

(
∂vΦ

∂ϕ
+ vR

)
+ λ

∂vZ

∂z
,

er · D• · eΦ = (μ+ κ)
∂vΦ

∂r
+
μ

r

(
∂vR

∂ϕ
− vΦ

)
+ (λs+ 2μα− χ)ωZ,

er · D• · eZ = (μ+ κ)
∂vZ

∂r
+ μ

∂vR

∂z
−

(
λs+ μ

(
f ′ + α

)
− χ

)
ωΦ,

eϕ · D• · eR =
μ+ κ

r

(
∂vR

∂ϕ
− vΦ

)
+ μ

∂vΦ

∂r
− (λs+ 2μα− χ)ωZ,

eϕ · D• · eΦ = λ
∂vR

∂r
+
λ+ χ

r

(
∂vΦ

∂ϕ
+ vR

)
+ λ

∂vZ

∂z
,

eϕ · D• · eZ =
μ+ κ

r

∂vZ

∂ϕ
+ μ

∂vΦ

∂z
+

(
λs+ μ

(
f ′ + α

)
− χ

)
ωRz,

ez · D• · eR = (μ+ κ)
∂vR

∂z
+ μ

∂vZ

∂r
+

(
λs+ μ

(
f ′ + α

)
− χ

)
ωPi,

ez · D• · eΦ = (μ+ κ)
∂vΦ

∂z
+
μ

r

∂vZ

∂ϕ
−

(
λs+ μ

(
f ′ + α

)
− χ

)
ωR,

ez · D• · eZ = λ
∂vR

∂r
+
λ

r

(
∂vΦ

∂ϕ
+ vR

)
+ (λ+ χ)

∂vZ

∂z
, (18)

er · G• · eR = (γ1 + γ2 + γ3)
∂ωR

∂r
+
γ1

r

(
∂ωΦ

∂ϕ
+ωR

)
+ γ1

∂ωZ

∂z
,

er · G• · eΦ = γ2
∂ωΦ

∂r
+
γ3

r

(
∂ωR

∂ϕ
−ωΦ

)
,

eϕ · G• · eR =
γ2

r

(
∂ωR

∂ϕ
−ωΦ

)
+ γ3

∂ωΦ

∂r
,

er · G• · eZ = γ2
∂ωZ

∂r
+ γ3

∂ωR

∂z
,

ez · G• · eR = γ2
∂ωR

∂z
+ γ3

∂ωZ

∂r
,

eϕ · G• · eΦ = γ1
∂ωR

∂r
+
γ1 + γ2 + γ3

r

(
∂ωΦ

∂ϕ
+ωR

)
+ γ1

∂ωZ

∂z
,

eϕ · G• · eZ =
γ2

r

∂ωZ

∂ϕ
+ γ3

∂ωΦ

∂z
,

ez · G• · eΦ = γ2
∂ωΦ

∂z
+
γ3

r

∂ωZ

∂ϕ
,

ez · G• · eZ = γ1
∂ωR

∂r
+
γ1

r

(
∂ωΦ

∂ϕ
+ωR

)
+ (γ1 + γ2 + γ3)

∂ωZ

∂z
.
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Using expressions (4), (5), (7) and (15), (18), we write the equations of the neutral
equilibrium (10) for the inhomogeneous plate in scalar form:

(μ+ κ)

(
1

r2

∂2vR

∂ϕ2
+
∂2vR

∂z2
−

1

r2

∂vΦ

∂ϕ

)
+ (λ+ μ)

(
1

r

∂2vΦ

∂r∂ϕ
+
∂2vZ

∂r∂z

)

+(λ+ χ)

(
∂2vR

∂r2
+

1

r

∂vR

∂r
−

1

r2
vR −

1

r2

∂vΦ

∂ϕ

)
+

(
μ ′ + κ ′) ∂vR

∂z
+ μ ′ ∂vZ

∂r

+ξ
∂ωΦ

∂z
+ ξ ′ωΦ −

1

r
(λs+ 2μα− χ)

∂ωZ

∂ϕ
= 0,

λ+ χ

r2

(
∂2vΦ

∂ϕ2
+
∂vR

∂ϕ

)
+
λ+ μ

r

(
∂2vR

∂r∂ϕ
+
∂2vZ

∂ϕ∂z

)
+

(
μ ′ + κ ′) ∂vΦ

∂z

+(μ+ κ)

(
∂2vΦ

∂r2
+

1

r

∂vΦ

∂r
−

1

r2
vΦ +

1

r2

∂vR

∂ϕ
+
∂2vΦ

∂z2

)
+
μ ′

r

∂vZ

∂ϕ

−ξ
∂ωR

∂z
− ξ ′ωR + (λs+ 2μα− χ)

∂ωZ

∂r
= 0,

(λ+ χ)
∂2vZ

∂z2
+ (μ+ κ)

(
∂2vZ

∂r2
+

1

r

∂vZ

∂r
+

1

r2

∂2vZ

∂ϕ2

)

+(λ+ μ)

(
∂2vR

∂r∂z
+

1

r

∂vR

∂z
+

1

r

∂2vΦ

∂ϕ∂z

)
+ λ ′ ∂vR

∂r
+
λ ′

r

(
∂vΦ

∂ϕ
+ vR

)

+
(
λ ′ + χ ′) ∂vZ

∂z
+ ξ

(
1

r

∂ωR

∂ϕ
−
∂ωΦ

∂r
−

1

r
ωΦ

)
= 0,

(γ1 + γ2 + γ3)

(
∂2ωR

∂r2
+

1

r

∂ωR

∂r
−

1

r2

∂ωΦ

∂ϕ
−

1

r2
ωR

)

+(γ1 + γ3)

(
1

r

∂2ωΦ

∂r∂ϕ
+
∂2ωZ

∂r∂z

)
+ γ2

(
1

r2

∂2ωR

∂ϕ2
+
∂2ωR

∂z2
−

1

r2

∂ωΦ

∂ϕ

)
(19)

+γ ′
2
∂ωR

∂z
+ γ ′

3
∂ωZ

∂r
+ ξ

(
∂vΦ

∂z
−

1

r

∂vZ

∂ϕ
+

(
α+ f ′

)
ωR

)
= 0,
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γ1 + γ2 + γ3

r2

(
∂2ωΦ

∂ϕ2
+
∂ωR

∂ϕ

)
+
γ1 + γ3

r

(
∂2ωR

∂r∂ϕ
+
∂2ωZ

∂ϕ∂z

)
+ γ ′

2
∂ωΦ

∂z

+γ2

(
1

r2

∂ωR

∂ϕ
+
∂2ωΦ

∂r2
+

1

r

∂ωΦ

∂r
+
∂2ωΦ

∂z2
−

1

r2
ωΦ

)
+
γ ′

3

r

∂ωZ

∂ϕ

+ξ

(
∂vZ

∂r
−
∂vR

∂z
+

(
α+ f ′

)
ωΦ

)
= 0

(γ1 + γ3)

(
∂2ωR

∂r∂z
+

1

r

∂ωR

∂z
+

1

r

∂2ωΦ

∂ϕ∂z

)
+ γ2

(
∂2ωZ

∂r2
+

1

r

∂ωZ

∂r
+

1

r2

∂2ωZ

∂ϕ2

)

+ (γ1 + γ2 + γ3)
∂2ωZ

∂z2
+ γ ′

1
∂ωR

∂r
+
γ ′

1
r

∂ωΦ

∂ϕ
+
γ ′

1
r
ωR +

(
γ ′

1 + γ ′
2 + γ ′3

) ∂ωZ

∂z

+ (λs+ 2μα− χ)

(
1

r

∂vR

∂ϕ
−

1

r
vΦ −

∂vΦ

∂r
+ 2αωZ

)
= 0.

Substitution

vR = VR (r, z) cosnϕ, vΦ = VΦ (r, z) sinnϕ, vZ = VZ (r, z) cosnϕ,

ωR = ΩR (r, z) sinnϕ, ωΦ = ΩΦ (r, z) cosnϕ, ωZ = ΩZ (r, z) sinnϕ,

n = 0, 1, 2, ...

allows us to separate the variableϕ in these equations, reducing the stability analysis
to the solution of homogeneous boundary problem (13), (14) and (19) for a system
of six partial differential equations in the six unknown functions of two variables
r, z.

4 Axisymmetric Buckling Modes

In the special case of axisymmetric perturbations (n = 0) the use of substitution

vR = VR (z) J1 (βr) , vΦ = 0, vZ = VZ (z) J0 (βr) ,
ωR = 0, ωΦ = ΩΦ (z) J1 (βr) , ωZ = 0,

(20)

β = ζm/r1, J1 (ζm) = 0, m = 1, 2, ...

leads to the separation of variable r in the equations of neutral equilibrium and allows
to satisfy the linearized boundary conditions (14) at the edge of the plate.
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By taking into account the relations (20), the linearized equilibrium equations
(19) are written as follows:

(μ+ κ)V ′′
R +

(
μ ′ + κ ′)V ′

R − (λ+ χ)β2VR − (λ+ μ)βV ′
Z−

− βμ ′VZ + θΩ ′
Φ + θ ′ΩΦ = 0,

(λ+ χ)V ′′
Z +

(
λ ′ + χ ′)V ′

Z − (μ+ κ)β2VZ + (λ+ μ)βV ′
R+ (21)

+ βλ ′VR − θβΩΦ = 0,

γ2Ω
′′
Φ + γ ′

2Ω
′
Φ +

[(
α+ f ′

)
θ− γ2β

2
]
ΩΦ − θV ′

R − βθVZ = 0.

Here we use the following notation

θ = λs+ μ
(
α+ f ′

)
− χ.

The linearized boundary conditions on the faces of the plate (13) take the form:

(μ+ κ)V ′
R − μβVZ + θΩΦ = 0, βλVR + (λ+ χ)V ′

Z = 0, Ω ′
Φ = 0. (22)

Thus, in the case of axisymmetric perturbations, the stability analysis of the inhomo-
geneous circular plate is reduced to solving a linear homogeneous boundary-value
problem (21) and (22) for a system of three ordinary differential equations.

5 Symmetric Plate

It is easy to show that if the functions describing the change in the elastic parameters
of the plate through the thickness are even, i.e. λ(z) = λ(−z), μ(z) = μ(−z),
κ(z) = κ(−z), γ1(z) = γ1(−z), γ2(z) = γ2(−z), γ3(z) = γ3(−z), then the boun-
dary-value problem (21), (22) has two independent sets of solutions
[16], [18].
The First set is formed by solutions for which the deflection of a plate is an odd
function of z (symmetric buckling):

VR(z) = VR(−z), VZ(z) = −VZ(−z), ΩΦ(z) = −ΩΦ(−z).

For the Second set of solutions, on the contrary, the deflection is an even function
of z (bending buckling):

VR(z) = −VR(−z), VZ(z) = VZ(−z), ΩΦ(z) = ΩΦ(−z).
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Due to this property of boundary-value problem (21) and (22), for the study of
stability it is sufficient to consider only the upper half of the inhomogeneous plate
(0 � z � H/2). The boundary conditions at z = 0 follows from the evenness and
oddness of the unknown functions VR, VZ, ΩΦ:

(a) for the First set of solutions:

V ′
R(0) = VZ(0) = ΩΦ(0) = 0, (23)

(b) for the Second set of solutions:

VR(0) = V ′
Z(0) = Ω′

Φ(0) = 0. (24)

Thus, in the case of symmetric inhomogeneous plate, the stability analysis is reduced
to solving two linear homogeneous boundary-value problems—(21), (22), (23) and
(21), (22), (24)—for a system of three ordinary differential equations.

6 Conclusion

In the framework of bifurcation approach, the stability of an inhomogeneous circular
plate subjected to radial compression and composed of a micropolar material is stud-
ied. For the physically linear micropolar material, a system of linearized equilibrium
equations (19) is derived, which describes the behavior of the inhomogeneous plate
in a perturbed state. Using special substitution (20) this equations are simplified and
the linearized boundary-value problem is formulated for the case of an axisymmetric
perturbations. Namely, the stability analysis is reduced to solving a linear homoge-
neous boundary problem (21) and (22) for a system of three ordinary differential
equations.

It was also shown that, if the inhomogeneous plate is symmetric with respect
to the middle surface z = 0, then the stability analysis is reduced to solving two
independent linear homogeneous boundary-value problems for the half-plate—(21),
(22), (23) and (21), (22), (24).

For specific micropolar materials all formulated boundary-value problems can be
solved numerically using the same method as in [17] and [18].
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A Theory of Disclination and Dislocation Fields
for Grain Boundary Plasticity

V. Taupin, L. Capolungo, C. Fressengeas, A. Das and M. Upadhyay

Abstract A continuum mechanics model is introduced for a core and structure
sensitive modeling of grain boundary mediated plasticity. It accounts for long range
elastic strain and curvature incompatibilities due to the presence of dislocation and
disclination densities. The coupled spatio-temporal evolution of the crystal defects
is also accounted for by transport equations. Based on atomistic structures, copper
tilt boundaries are modeled with periodic sequences of wedge disclination dipoles.
Their self-relaxation by transport leads to grain boundary configurations with lower
elastic energies, which are compared to molecular statics values. The characteristic
internal length inherent to strain gradient elasticity, which relates the elastic energy
weight of couple-stresses to that of stresses, is chosen to retrieve the elastic energy
obtained by atomistic simulations. This length is found to be lower than interatomic
distances. In agreement with atomistic modeling, couple-stress elasticity is thought
to be relevant for the modeling of highly heterogeneous defect microstructures at
atomic resolution scales only.
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1 Introduction

When decreasing the grain size of polycrystals down to the nanometer range, the con-
siderable gain in yield stress becomes usually counterbalanced by a loss of ductility,
due to restricted dislocation glide inside grains [1]. The mechanisms producing plas-
tic deformation are indeed different from the usual ones in coarse polycrystals. They
mostly involve grain boundaries (GBs), which become the predominant source of
plasticity. Well known examples of these new mechanisms are the shear coupled
boundary migration [2–4], or the emission and glide of dislocations from grain
boundaries [5–8]. Modeling efforts for the description of GBs include atomistic
simulations [2, 5–9], dislocation/disclination-based models [2, 10–14] and mechan-
ical approaches [15–19]. As shown from atomistic simulations, the grain boundary
behavior is core and structure sensitive. Examples are the coupling factors in shear
coupled boundary migration [2], or the free volume of grain boundaries, which is
closely related to the dislocation emission mechanism [20].

Here we propose an original continuum mechanics model of crystal defects, for
a core and structure sensitive description of GBs. By core description, we mean a
continuous description, possibly below interatomic distances, of crystal defects and
their associated elastic energy in the grain boundary area. By structure sensitive mod-
eling, we mean that the crystal defect distributions which will be used to model grain
boundaries must be based on real atomic structures. In addition to dislocations, which
are the well known source of plastic deformation, we introduce disclinations. These
rotation defects were shown to be more appropriate than dislocations for the mod-
eling of high angle tilt grain boundaries [12]. The disclination structural unit model
(DSUM) of grain boundaries, a structure sensitive model [14], is used in this work. In
this model, atomic structural units, which, as revealed by molecular statics, compose
the grain boundary [9], are modeled by equivalent wedge disclination dipoles. The
great advantage of this model lies in the fact that it uses real atomic structures to
define grain boundaries, but does not need to model atoms. Thus, it provides a time
scale transition from atomistic simulations, because it does not need to solve for
atomic vibrations and allows then using much larger and realistic simulation times.
However this model is static. In addition, the DSUM uses discrete defects and is then
singular in the interface plane. Therefore, we propose to set up the DSUM model into
a continuous and dynamic framework. It is to note that even if it is often assumed
that a wedge disclination dipole can be replaced by an equivalent edge dislocation,
because the stress field of wedge disclination dipole with a small arm length is equiv-
alent to that of an edge dislocation, the two kinds of defects are not equivalent. First,
they are different in nature. The disclination is a rotational defect while a disloca-
tion is a translational defect. Further, as discussed in the paper, disclination dipoles
introduce incompatible elastic curvatures which contribute to the elastic energy of
grain boundaries. Dislocations introduce compatible curvatures which are negligible
in this respect. Then, the motion of disclinations leads to the nucleation of disloca-
tions [21]. When modeling grain boundaries as disclination dipoles, we believe that
this dislocation source mechanism will be at the origin of dislocation emission and
absorption at grain boundaries. Such mechanisms have been proposed [22].
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Use is made of a recent elasto-plastic theory of dislocation and disclination fields
[21, 23]. In the latter, a continuous rendition of dislocations and disclinations, as
well as their associated elastic energy is chosen, and plasticity mechanisms can be
described by the coupled transport of dislocation and disclination densities. This
theory is first applied to the self-relaxation of <001> tilt boundaries in copper [24].
Initial grain boundaries will be set up by using wedge disclination dipoles, based on
the DSUM model. The reader is referred to [24] for a detailed description of initial
conditions. Then, the continuous disclination dipoles will be allowed to relax in their
self stress and couple-stress fields, until self-organized structures of lower energy
emerge. The structure of relaxed grain boundaries will be analyzed, by comparison
with atomistic simulations. Particularly, the importance of using a dynamic and
continuous rendition of crystal defects to obtain elastic energies similar to those of
molecular statics will be discussed.

The paper is organized as follows. In Sect. 2 notations are settled. In Sect. 3 the
elasto-plastic theory of dislocation and disclination fields is briefly recalled, with
special reference to the elasto-static theory developed by deWit [25]. In Sect. 4 a
plane edge-wedge model is set up for tilt boundaries. The self-relaxation of <001>
copper tilt boundaries is analyzed in Sect. 5 by comparison with molecular statics
data. Conclusions follow.

2 Notations

A bold symbol denotes a tensor. The symmetric part of tensor A is denoted Asym.
Its skew-symmetric part is Askew. The tensor A.B, with rectangular Cartesian com-
ponentsAikBkj, results from the dot product of tensors A and B, and A ⊗ B is their
tensorial product, with components AijBkl. A : represents the trace inner product
of the two second order tensors A : B = AijBij, in rectangular Cartesian com-
ponents, or the product of a higher order tensor with a second order tensor, e.g.,
A : B = AijklBkl. The cross product of a second-order tensor A and a vector V, the
div and curl operations for second-order tensors are defined row by row, in analogy
with the vectorial case. For any base vector ei of the reference frame:

(A × V)t.ei = (At.ei) × V (1)

(div A)t.ei = div(At.ei) (2)

(curl A)t.ei = curl(At.ei). (3)

In rectangular Cartesian components:

(A × V)ij = ejklAikVl (4)

(div A)i = Aij,j (5)

(curl A)ij = ejklAil,k. (6)
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where ejkl is a component of the third-order alternating Levi-Civita tensor X.
A vector A is associated with tensor A by using its trace inner product with tensor X:

(A)k = −
1

2
(A : X)k = −

1

2
eijkAij. (7)

In the component representation, the spatial derivative with respect to a Cartesian
coordinate is indicated by a comma followed by the component index. A superposed
dot represents a material time derivative.

3 Review of the Elasto-Plastic Theory of Dislocation
and Disclination Fields

In the present framework, it is assumed that the displacement vector u can be defined
continuously at any point of a simply-connected body undergoing elasto-plastic
deformation. Hence, it is required that the displacement field represents a consis-
tent shape change, possibly defined between atoms, below interatomic distance.
Therefore, the total distortion tensor is defined as the gradient of the displacement
U = grad u. As such, it is curl-free:

curl U = 0. (8)

This equation is a necessary condition for the integrability of the displacement u.
Conversely, this equation is sufficient to assure the existence of a single-valued

continuous solution u to the equation U = grad u, up to a constant translation.
Equation (8) is referred to as the compatibility condition for the distortion U. Defining
the strain tensor ε as the symmetric part of the distortion U, the rotation tensorw as
its skew-symmetric part and the associated rotation vectorω as:

ω = −
1

2
w : X =

1

2
curl u, (9)

Eq. (8) becomes:
curl ε+ div(ω)I − gradtω = 0, (10)

where I is the identity tensor. Transposing, then taking the curl of Eq. (10) leads to:

curl curlt ε = 0. (11)

This relation is the classical Saint-Venant compatibility condition for the strain ε.
It is a necessary condition for the integrability of the displacement u. The trace of
Eq. (10) similarly yields a compatibility condition for the rotation vector in the form:

div(ω) = 0. (12)
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At this point, we define the elastic, κe, plastic, κp, and total, κ, curvature tensors as:

κe = grad ωe (13)

κp = grad ωp (14)

κ = grad ω = κe + κp (15)

In the above, the elastic and plastic curvatures (κe,κp) are curl-free and integrable
quantities. In the present theory however, (κe,κp) are not supposed to be curl-free
anymore, i.e., the possibility of a rotational incompatibility is acknowledged. Then
the rotation vectors (ωe,ωp) do not exist, and a non-zero tensor θ such that

θ = −curl κp = curl κe (16)

can be defined. θ is the disclination density tensor, and Eq. (16) is part of the theory
of crystal defects. On the one hand, Eq. (16) means that an incompatible plastic
curvature, κ⊥

p , is associated with the presence of the disclination density θ and, on

the other hand, that the incompatible elastic curvature, κ⊥
e is needed to ensure the

continuity of matter in the presence of this density. To ensure that the incompatible
parts (κ⊥

e ,κ⊥
p) vanish identically throughout the body when θ = 0, Eq. (16) must be

replaced with:
θ = −curl κp⊥ = curl κe⊥, (17)

augmented with the side conditions divκ⊥
e = divκ⊥

p = 0 and κ⊥
e .n = κ⊥

p .n = 0 on
the boundary with unit normal n. These conditions ensure uniqueness of the solution.
The disclination density defined in Eq. (17) is an areal and tensorial rendition of
the rotational incompatibility. The associated point-wise measure of incompatibility
is the Frank vector, i.e. the rotational closure defect of a circuit C, obtained by
integrating the incompatible elastic curvatures along the circuit:

Ω =

∫
C
κ⊥
e .dr (18)

This rotation discontinuity is related to the disclination density by applying Stokes
theorem to the surface S of normal n delimited by the circuit C.

Ω =

∫
S
θ.ndS (19)

The continuity condition for disclinations:

div θ = 0 (20)

follows directly from Eqs. (16), (17). Since the rotation vectors (ωe,ωp) do not exist
in the present theory, the corresponding elastic and plastic distortion tensors Ue and
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Up are also undefined. Substituting the elastic and plastic curvatures (κe,κp), which
now include an incompatible part, for (grad ωe, grad ωp) and using the above
curl-trace procedure, allows splitting Eq. (10) into elastic and plastic components

curl εe = +α+ κte − tr(κe)I (21)

curl εp = −α+ κtp − tr(κp)I. (22)

Equation (22) defines the incompatible plastic strain associated with the Nye’s dislo-
cation density tensorα in the concurrent presence of plastic curvature, while Eq. (21)
specifies the incompatible elastic strain needed to ensure the continuity of matter in
the presence of dislocations and disclinations. Eqs. (21) and (22) are modified forms
of the incompatibility equations curl Ue = −curl Up = α of the theory of dis-
locations [26]. A point-wise measure of the translational incompatibility due to the
presence of dislocations is the Burgers vector. The latter contains a possible contri-
bution from disclinations and reads

b =

∫
C

(εe − (κte × r)t).dr =

∫
S
(α− (θ× r)t).ndS (23)

Note that Eqs. (16) and (21) may be utilized to estimate the disclination and Nye’s
dislocation density tensors from EBSD experiments, respectively [27]. The conti-
nuity condition div α = 0 for dislocations is also modified when disclinations are
present. Taking the divergence of Eq. (21) and defining the twist-disclination vector
Θ as:

Θ = −
1

2
θ : X, (24)

it is found that:
div α+ 2Θ = 0. (25)

This continuity equation implies the existence of geometric interactions between
twist-disclinations (i �= j) and dislocations. As such, it is particularly relevant to
modeling twist boundaries.

In the absence of body forces, the rate form of the momentum and moment of
momentum equations is:

div Ṫ = 0 (26)

div Ṁ + 2Ṫ = 0. (27)

In these relations, the stress tensor T is generally non-symmetric. The skew-
symmetric stress vector, t, defined as t = −1/2T : X, allows balancing the moment
of momentum in the presence of the couple-stress tensor M. A specific free energy
density function is now introduced as follows:

ψ = ψ(εe,κe). (28)
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In addition to elastic strains, ψ contains contributions from the elastic curvatures
when disclinations are present, i.e., when incompatible elastic curvatures exist. Thus,
the body is seen as a continuum containing capable of transmitting stresses and
couple-stresses at nanometer scale. Differentiating Eq. (28), we obtain the following
identification of the stress and couple-stress tensors with the partial derivatives of
the free energy:

ψ̇ =
∂ψ

∂εe
: ε̇e +

∂ψ

∂κe
: κ̇e = T : ε̇e + M : κ̇e. (29)

Owing to the symmetry of the elastic strain rate tensor, only the symmetric part Tsym

of the stress tensor is contributing to the free energy. The elastic constitutive relations
for Tsym and M are consistently chosen in the form suggested in [25]:

Tsym = C : εe + D : κe (30)

M = A : κe + B : εe. (31)

The skew-symmetric part Tskew of the stress tensor is not involved in Eqs. (29) and
(30) and is not constitutively specified. A, B, C and D are tensors of elastic constants.
While the Cijkl and Aijkl constants have dimension of a stress and a stress times a
squared length respectively, Bijkl and Dijkl have dimension of a stress multiplied
by a length. Hence, the relations (30), (31) involve characteristic lengths and have
nonlocal character. Indeed, the tensor D induces stresses due to the inhomogeneity
in rotation over some (short) length scale, while the tensor B gives rise to couple
stresses from inhomogeneity in strain over some other (short) length scale. In the
presence of crystal defects, a general form of the tensors A, B, C and D is derived in
[28], in the case of isotropic elasticity.

In terms of the plastic strain and curvature rates ε̇p and κ̇p, the stress rate and
couple stress rate are:

Ṫsym = C : ({grad u̇} − ε̇p) + D : (grad ω̇− κ̇p) (32)

Ṁ = A : (grad ω̇− κ̇p) + B : ({grad u̇} − ε̇p). (33)

Solving the rate of equilibrium equations (26), (27) involves finding the total strain
rate and curvature rate tensors. As is well-known, the strain tensor is the symmetric
part of the displacement gradient. Similarly, because it is the gradient of the rotation
vector, the curvature tensor also derives from the displacement (see Eqs. (9) and
(15)). Thus the only independent kinematic variable in Eqs. (26) and (27) is the
material velocity vector. Following Mindlin and Tiersten [29], the three additional
independent scalar variables necessary for closure (see e.g. [30]) are the components
of the skew-symmetric part Tskew of the stress tensor. The latter is produced by
the presence of unbalanced couple stresses and ensures the balance of moment of
momentum [29, 31]. Taking the curl of Eq. (27) and eliminating Tskew in Eq. (26),
the latter can be rewritten as a single higher order partial differential equation for the
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total velocity field:

div Ṫ = div Ṫsym + div Ṫskew = div Ṫsym +
1

2
curl div Ṁ = 0. (34)

In terms of the elastic strains and curvatures, Eq. (34) reads:

div (C : ε̇e + D : κ̇e) +
1

2
curl div (A : κ̇e + B : ε̇e) = 0. (35)

Substituting the total and plastic strain and curvature rates to their elastic counterparts
in Eq. (35), we obtain:

div (C : (ε̇− ε̇p)+ D : (κ̇− κ̇p))+
1

2
curl div (A : (κ̇− κ̇p)+ B : (ε̇− ε̇p)) = 0.

(36)
In the presence of stress and couple-stress fields, the dislocation and disclination
densities may be transported (set into motion) with respective velocities Vα and
Vθ. The driving Peach-Köhler-type forces Fα and Fθ acting on these defects are
defined thermodynamically such that the power dissipation due to defect mobility
is not negative [21]. In the simplest possible setting, linear viscosity is assumed and
the dislocation and disclination velocities are taken as:

Vα =
Fα
Bα

=
1

Bα
Tsym.α : X; Vαl =

1

Bα
ejkl

Tij + Tji

2
αik (37)

Vθ =
Fθ
Bθ

=
1

Bθ
Mt.θ : X; Vθl =

1

Bθ
ejklMijθik. (38)

Here, Bα and Bθ are positive drag coefficients. Eqs. (37) and (38) may be applicable
at relatively high loading rate, but they need modification to account for thermally-
activated motion of defects typical at low loading rates. This issue will be discussed
further in Sect. 6. Note that the dislocations are driven by the symmetric part of the
stress tensor, while the disclinations are set into motion by the couple-stress field.
The mobility of disclinations and dislocations produces the plastic curvature and
strain rates:

κ̇p = θ× Vθ (39)

ε̇p =
1

2
(α× Vα + (α× Vα)t). (40)

In turn, κ̇p and ε̇p feed the evolution of the disclination and dislocation densities
through the transport equations

θ̇ = −curl κ̇p (41)

α̇ = −curl ε̇p + κ̇tp − tr(κ̇p)I = −curl ε̇p + sθ. (42)
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Disclinations nucleate from the incompatibility of the plastic curvature rates
in Eq. (41), but an outstanding consequence of Eq. (42) is that dislocations are nucle-
ated not only because the plastic strain rate has an incompatible part, ε̇⊥

p , but also

because a source term, sθ = κ̇tp−tr(κ̇p)I, involving the mobility of the disclinations
is existing. Thus, a wake of dislocations (nucleated or absorbed) is accompanying
the motion of disclinations. Such an important mechanism was postulated in [25]. In
contrast with the dislocations arising from lattice translational incompatibility (the
curl term in Eq. (42)), this wake of dislocations may be seen as systematically con-
tributing to the relaxation of internal stresses in the neighborhood of disclinations
[22, 32].

The rate form of the elasto-plastic theory of crystal defects is then defined by the
set of Eqs. (37)–(42), (36). The unknown fields are the material velocity, dislocation
and disclination density fields.

4 A Plane Edge-Wedge Model

The plane edge-wedge model presented in this section was introduced in [21]. It is
recalled briefly here for completeness. Let us consider a distribution of pure wedge
disclinations. In an orthonormal reference frame (e1, e2, e3), let the disclination ten-
sor be: θ = θ33e3 ⊗ e3, all other components being zero. In this simple setting, the
continuity condition (20) implies: θ33,3 = 0. Thus, the wedge disclination density
θ33 only depends on the coordinates (x1, x2): θ = θ(x1, x2). In component form,
the rotational incompatibility equation (16) reads: θij = −ejklκ

p
il,k = ejklκ

e
il,k.

In the present case, Eq. (16) reduces to:

θ33 = κ
p
31,2 − κ

p
32,1 = κe32,1 − κe31,2. (43)

Hence the only relevant elastic and plastic curvatures are: (κe31,κe32) and (κ
p
31,κp32).

Additionally, we note that: tr(κp) = 0. Thus, the disclination transport equation
(41) is:

θ̇33 = κ̇
p
31,2 − κ̇

p
32,1. (44)

The plastic curvature rate (39) reads, in component form: κ̇pij = ejklθikV
θ
l . Hence,

we find:

κ̇
p
31 = −θ33V

θ
2 (45)

κ̇
p
32 = +θ33V

θ
1 . (46)

Using the constitutive relation (38) for the disclination velocities provides their rela-
tionship with the couple-stresses:

Vθ1 = +
1

Bθ
M32θ33 (47)
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Vθ2 = −
1

Bθ
M31θ33. (48)

Since the trace of the plastic curvature rate tensor is zero, the source term sθ in
the dislocation transport equation (42) feeds only the edge dislocations densities
(α13,α23). Using Eq. (40), it is seen that the motion of these dislocations produces
the plastic strain rate components (ε̇

p
11, ε̇p12, ε̇p21, ε̇p22):

ε̇
p
11 = −α13V

α
2 (49)

ε̇
p
12 = ε̇

p
21 =

1

2
(α13V

α
1 − α23V

α
2 ) (50)

ε̇
p
22 = +α23V

α
1 . (51)

The above relations suggest that out-of-plane motion of the edge dislocations
(α13,α23) is involved in the extension rates (ε̇

p
11, ε̇p22), whereas their glide is respon-

sible for ε̇p12. Consistently, the dislocation transport equation (42) reduces to:

α̇13 = ε̇
p
11,2 − ε̇

p
12,1 + κ̇

p
31 (52)

α̇23 = ε̇
p
21,2 − ε̇

p
22,1 + κ̇

p
32. (53)

Thus, if all other dislocation densities are initially absent, the dislocation distribution
involves only α13 and α23 edge densities. The continuity equation (25) then implies
that this distribution be a plane state: α13 = α13(x1, x2),α23 = α23(x1, x2). The
symmetric “Peach-Köhler” constitutive relation (37) provides the dislocation veloc-
ities in terms of the stress tensor, for both the out-of-plane motion of dislocations:

Vα1 = +
1

Bα
T22α23 (54)

Vα2 = −
1

Bα
T11α13, (55)

and their glide:

Vα1 = +
1

2Bα
(T12 + T21)α13 (56)

Vα2 = −
1

2Bα
(T12 + T21)α23. (57)

The stress and couple-stress components relevant to the present problem are (T11,
T12, T21, T22) and (M31,M32) respectively. Hence the Cosserat rate of momentum
equations (26), (27) reduce to:

Ṫ11,1 + Ṫ12,2 = 0 (58)

Ṫ21,1 + Ṫ22,2 = 0 (59)
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Ṁ31,1 + Ṁ32,2 + Ṫ21 − Ṫ12 = 0, (60)

and the higher order rate of equilibrium equation (34) becomes:

Ṫ
sym
11,1 + Ṫ

sym
12,2 + Ṫskew12,2 = Ṫ

sym
11,1 + Ṫ

sym
12,2 +

1

2
(Ṁ31,1 + Ṁ32,2),2 = 0 (61)

Ṫ
sym
21,1 + Ṫskew21,1 + Ṫ

sym
22,2 = Ṫ

sym
21,1 + Ṫ

sym
22,2 −

1

2
(Ṁ31,1 + Ṁ32,2),1 = 0. (62)

As shown in [21], the elastic tensor B is zero in a plane strain formulation. Thus, the
symmetric stress components write:

T
sym
11 = C1111ε

e
11 + C1122ε

e
22 (63)

T
sym
12 = C1212ε

e
12 + C1221ε

e
21 (64)

T
sym
21 = C2112ε

e
12 + C2121ε

e
21 (65)

T
sym
22 = C2211ε

e
11 + C2222ε

e
22 (66)

with C1212 = C1221 = C2112 = C2121, C1111 = C2222 and C1122 = C2211 in cubic
symmetry. The elasticity tensorC is expressed in the global reference frame because
most of elastic strains are localized in the grain boundary area where the elastic
rotation is null. It is to note that using cubic elasticity in this area is a rather loose
approximation because the crystalline structure is modified. However, as shown in
the next section, good predictions of the elastic energy of grain boundaries can still
be obtained. For convenience, a simplified form of tensor A will be used:

M31 = A3131κ
e
31 (67)

M32 = A3232κ
e
32. (68)

The coefficients Cijkl may be determined from experiments or by atomistic simula-
tions. In the forthcoming simulations, we shall use values for copper, as determined by
molecular dynamics simulations [33]. In addition, we assumeA3131 = A3232 = μl2.
The length l, which weights the contribution of couple-stresses to elastic energy, as
compared to that of stresses, is a characteristic internal length, which enters the
balance of momentum Eq. (36). The value of l should be the order of the smallest
microstructure characteristic size and respect the small strain hypothesis in terms of
curvatures |κij| < 1/l [31]. In the present paper, this value will be calibrated to fit
the elastic energy of grain boundaries obtained by atomistic simulations. Further, we
assume equal viscous drag coefficients Bθ = Bα = B. The mobility of the disclina-
tions might be overestimated by doing so, but this value conveniently allows showing
the features of disclination dynamics in the following. A more accurate value of Bθ
will be derived from grain boundary migration data in future work. Parameter values
for copper are presented in Table 1.
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Table 1 Numerical constants used in the model

b C1212 C1111 C1122 b2B l

0.25nm 27GPa 175GPa 125GPa 0.4 × 10−4 Pa.s 0.15nm

Substituting Eq. (63)–(68) and (ε̇ij − ε̇
p
ij, κ̇ij − κ̇

p
ij) for the elastic strain and

curvature rates in the equilibrium equations (61), (62), one obtains two partial dif-
ferential equations for the material velocity field (v1, v2). The plastic strains and
curvatures and the disclination and dislocation densities are updated by using the
plastic strain and curvature rates (45), (46), (49)–(51), and the transport equations
(44), (52), (53) respectively. The boundary conditions for the equilibrium problem
comprise the prescription of tractions and traction-moments, or/and displacements
and rotations on the surface of the body. The equilibrium equations are solved by
using a Galerkin finite element method, with 16-nodes complete cubic elements for
the interpolation of the material velocity field, and 16 Gauss points for the integration.
The transport equations are solved by using a least-squares finite element scheme
[34] with bilinear elements for the interpolation of dislocation and disclination den-
sities, and four Gauss points for the integration. Note that a cubic element contains
nine bilinear elements such that the material velocity, the dislocation and disclination
densities are discretized at the same nodes in the finite element mesh. Finally, the
disclination and dislocation densities need to be specified on inflow boundaries, but
no condition is required on outflow boundaries.

5 Self-Relaxation of Tilt Boundaries

In all forthcoming simulations, the relaxation of initial configurations will be stopped
when the driving forces for the motion of disclinations and dislocations reach a
limiting value. The common threshold value of 5 MPa/b = 2.1019 Pa/m was used
for both disclinations (in plane and out-of-plane motions) and dislocations. If the
relaxation process was not interrupted, the disclination densities would finally vanish
from the simulation box after annihilation and spreading over a sufficiently long
computation time. This feature originates in the linear viscous drag velocity laws (37),
(38) currently assumed in the model for the mobility of dislocations and disclinations.
The value of the drag coefficient was checked to have an effect solely on the time
needed for relaxation, but does not affect the relaxed structure and energy of grain
boundaries. As already mentioned, a thermally activated law featuring a threshold
stress/couple stress would also alleviate indefinite relaxation in time.

The relaxed structure of a Σ29(520) <001> boundary is shown in Figs. 1–3. We
remind that this grain boundary is made of alternating B and C atomic structural units.
The reader is referred to [24] for details about initial constructions of this bound-
ary with disclination dipoles. A wealth of features emerges from the simulations. A
significant mobility of the disclinations is seen during the relaxation. Their spatial
rearrangement leads to spreading disclination densities and to decreasing values of
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(a) (b) (c)

Fig. 1 Relaxed< 001 > Σ29(520) tilt boundary of misorientation 46.40◦. The simulation box is a
2.25 nm ×15 nm plane containing 9×60 cubic elements for the Galerkin finite element scheme for
equilibrium, and 27 × 180 bilinear elements for the Least-Squares transport scheme. Close-up in
vertical direction for figures a and b. a Color-coded is the disclination density θ33 in rad.m−2 units.
Arrows show the orientation and the magnitude of the net Burgers vector due to edge dislocations.
The maximum length of the Burgers vector corresponds to a density of 9.108m−1. b Trace of total
strain tensor in the deformed mesh (displacements are magnified by a factor 5). c Profiles of elastic
energy density (J.m−3) along white lines L1 (blue diamonds) and L2 (red squares) plotted in Fig. 1a

Fig. 2 Profiles across a disclination dipole (white line L1 in Fig. 1a) in the relaxed < 001 >

Σ29(520) tilt boundary of misorientation 46.40◦ shown in Fig. 1. Energy density (J.m−3) in blue
circle line, stress Tsym11 (Pa) in green triangle line, stress Tsym12 (Pa) in red square line, stress
T
sym
22 (Pa) in purple cross line and elastic curvature {κe32}(rad/m) in blue diamond line
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Fig. 3 Profiles along the grain boundary (white line L3 in Fig. 1a) in the relaxed< 001 > Σ29(520)

tilt boundary of misorientation 46.40◦ shown in Fig. 1. Energy density (J.m−3) in blue circle line,
stress Tsym11 (Pa) in green triangle line, stress Tsym12 (Pa) in red square line, stress Tsym22 (Pa) in
purple cross line and elastic curvature {κe32}(rad/m) in blue diamond line

the Frank vectors, due to partial annihilation. As a result, the relaxed distribution of
disclinations is extended. Further, edge dislocations α13 and α23 are also nucleated
during the process. These dislocations relax the initial stress field through both in-
plane glide and out-of-plane motion, possibly through climb or atom shuffling. The
resulting Burgers vector field is shown in Fig. 1a. As suggested by a rotating pattern
about the disclination dipoles, it is in close correlation with the disclination distribu-
tion. The net overall Burgers vector of the interface area is found to be zero, as could
be expected from the absence of a discontinuity in the elastic strain and curvature
tensors far away from the interface.1 Shown in Fig. 1b, the trace of the total strain
tensor in the deformed mesh reflects the structure of the grain boundary. Remark-
ably, a translational asymmetry of the positive and negative disclinations is observed
along the boundary. The overall structure of the interface area exhibits geometrical
patterns showing clear similarities with the structural units revealed by atomistic
simulations. As shown in Figs. 2 and 3, the elastic strain field shows alternatively
dilatation and contraction of the lattice along the boundary, in patches a few Å wide

1 It is found from Frank’s formula that the separation distance l between the edge dislocations in
a dislocation-made tilt boundary of misorientation 46.40◦ is l = 0.34nm, a distance much too
short to be realistic. Such a result supports the view that a consistent description of high-angle tilt
boundaries should recourse to disclination dipole walls rather than edge dislocation walls.
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Fig. 4 Elastic energy density per unit length of grain boundary obtained by the present model (blue
diamonds). Molecular statics data for copper (red squares) are shown for comparison (points were
digitized from [35])

along the boundary also featuring the presence of negative and positive disclinations,
respectively. This distribution is in good agreement with molecular statics predic-
tions [9]. The tensile stress can reach values as high as 35GPa, i.e., it is on the order
of the shear modulus in copper. Such large values were also reported for the hydro-
static stress in structural units by atomistic simulations [9]. The tensile/compressive
elastic energy is maximum at the interface, and it rapidly decreases within 5 Å, but
remarkably, across the arm length of a disclination dipole, the energy is not at the
highest at the interface but a few Å apart, due to the additional contribution of the
shear stresses to that of curvatures. The shear stress correspondingly reaches 8 GPa.
Between these patches, alternatively negative and positive curvature regions show
up in the dipole interiors and between the dipoles respectively. These curvatures con-
tribute significantly to the total energy of the grain boundary, as evidenced in Fig. 1c.
Most of the elastic energy is localized in a 0.5nm layer across the grain boundary.
The energy density per unit length of boundary is 0.94 J.m−2, a value comparing
rather well with that obtained from molecular statics calculations [35].

The tilt boundary energy is now plotted versus the tilt angle in Fig. 4, and compared
with predictions of atomistic simulations [35]. The boundary energies predicted by
the present model reach the levels obtained from molecular statics calculations and
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display a similar distribution. Such a fit cannot be obtained with discrete disclination
dipoles, because the contribution of defect cores to the energy is overlooked [36].

The only unknown parameter in our simulations is the internal characteristic length
l, which weights the contribution of couple-stresses to the elastic energy in Eqs. (67)
and (68). The measured constant value, which allowed to obtain a reasonable fit
shown in Fig. 4, is l = 0.15nm, lower than a Burgers vector. Such small lengths, or
even smaller, are predicted by lattice-dynamics and molecular dynamics simulations,
and are related to phonon dispersions [37]. In the case of bulk fcc crystals like copper
or aluminum, strain gradient elasticity is then thought to be irrelevant, unless highly
heterogeneous defect microstructures are modeled at a subnanometric resolution
scale, which is the case in the present work.

6 Conclusions

Capitalizing on the powerful tools of differential geometry and the theory of partial
differential equations, the modeling paradigm in this study is to account for lattice
incompatibility in a continuous fashion, focusing on the fields of density of lattice
defects rather than on the atoms themselves. Thus, the elasto-plastic theory of crys-
tal defect fields [21] was used to model grain boundaries in a continuous manner.
The theory accounts for the rotational and translational incompatibility of the lat-
tice associated with the presence of disclinations and dislocations, and describes
the latter by continuous densities. The material displacement, strain and curvature,
are also defined continuously, even at a resolution length scale below interatomic
distance. It is further assumed that, at this scale, the material is capable of trans-
mitting stresses and couple-stresses. Dynamic tilt boundary modeling uses periodic
arrangements of discrete wedge disclination dipoles as initial conditions. The latter
relax by transport in their own couple-stress field into self-organized dislocation-
disclination periodic patterns representing the atomistic structural units. Most of the
elastic energy of the tilt boundary is also localized in this layer. The energy arises
from a tension/compression state in disclination-rich areas, in good agreement with
atomistic observations, and from curvature and shear in areas located within and
between the disclination dipoles.

From the point of view of differential geometry, field modeling is fully appropriate
at length scales below the elementary lattice parameters, and it is rather meaningful
that the predictions on GB energy of a field theory of crystal defects show good
agreement with results from atomistic modeling [35]. A more complete comparison
with atomistic simulations involving field information and boundary structure will
be provided in a forthcoming paper.

Finally, because it avoids resolving in time the atomic vibrations, the present
approach allows using much larger time steps and smaller loading rates than mole-
cular dynamics methods. Therefore, we believe that the present approach has an
interesting potential for further modeling of grain boundaries and grain-boundary
mediated plasticity.
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Material Strain Tensor

Pavel A. Zhilin, Holm Altenbach, Elena A. Ivanova and Anton Krivtsov

Abstract The problem of description of large inelastic deformations of solids is
considered. On a simple discrete model it is shown that the classical concept of
deformations used in continuum mechanics can exhibit serious difficulties due to
reorganizations of the internal structure of materials. The way of construction of
constitutive equations in continuum mechanics aimed to avoid these problems is
proposed. A method of introduction of material strain tensor for the inelastic contin-
uum is suggested. The paper is based on the report: P. A. Zhilin, A. Krivtsov: Point
mass simulation of inelastic extension process. It was prepared for the ICIAM 95
(Third International Congress on Industrial and Applied Mathematics, Hamburg,
Germany, July 3–7, 1995), but not accepted for publication.

1 Introductory Remarks

The conventional continuum mechanics contains [1–3]:

a) the theory of stresses and balance equations,
b) the geometrical theory of deformations and the introduction of strain tensors, and
c) the establishment of constitutive equations (sometimes added by evolution equa-

tions).

P. A. Zhilin–deceased. The original text by P. A. Zhilin (1942–2005) is presented in Sects. 1,
3 and 4 with some explanatory addenda.
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(a)

(b)

Fig. 1 Tension of the system of three interacting particles

Such approach was found by L. Euler (for one-dimensional continua) and by
A. Cauchy (for three-dimensional continuum) in order to describe mechanics of
elastic materials. It is often assumed that the Euler-Cauchy approach can be used for
inelastic materials too. There are many theories of such kind. However, none of them
is able to describe a lot of well established experimental results. By this reason many
experimenters suppose that the Euler-Cauchy approach cannot be used in mechanics
of inelastic materials.1

In this chapter a simple discrete model is used to illustrate these problems arising
for the large inelastic deformations. Then a method of introduction of a material
strain tensor suitable for solution of these problems is presented.

2 Simple Discrete Model of Inelastic Deformation

One of the main problems for the usage of the traditional stress tensors is that for
an inelastic deformation an essential structure reorganization occurs in materials. In
particular the idea of material line can loose its sense because a material particle
can locate itself between the nearest neighboring particles. For illustration2 let us
consider the deformation of the simplest discrete system containing three interacting
particles—see Fig. 1.

Let us describe the interaction between particles using the Morse potential [4]

Π(r) = D
(
e−2α(r−a) − 2e−α(r−a)

)
, (1)

where r is the distance between particles,D is the bond energy, a is the bond length,
α is the interaction parameter. The Morse potential is one of the simplest interaction

1 Among such theories probably the best results in explanation of experimental phenomena are
given by the so-called “deformation theory” of H. Hencky, sometimes much better than the rate
theory can do [13]. As it can be seen from below, there are serious reasons for that.
2 This model was proposed by P. A. Zhilin and analyzed by A. Krivtsov.
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potentials used for the qualitative description of the interaction between atoms. The
corresponding interaction force f(r) can be calculated as

f(r) = −Π ′(r) = 2αD
(
e−2α(r−a) − e−α(r−a)

)
. (2)

For r < a the value of f(r) is positive, which corresponds to repulsion, for r > a
the value of f(r) is negative, which corresponds to attraction, for r = a the force
became zero. Let us introduce the bond strength

f∗ = αD/2, (3)

which is the maximum of the absolute value of the attraction force.
For the system of three particles without external loading there exists the unique

stable equilibrium configuration, that is an equilateral triangle with side length a.
Let us set the loading of the system by quasistatic extension of the triangle along
one of its sides—see Fig. 1a. The corresponding tension forces are shown in the
picture, the absolute value of the forces is denoted by P. While the length r of the
side being extended is less than 2a, the system forms an isosceles triangle, where
the length of the equal sides is a permanently. In fact in this case particle 3 is not
interacting with other two particles—the forces between it and others is equal to zero,
while the force P is determined by interaction between particles 1 and 2 only. The
situation changes drastically, when r exceeds 2a—see Fig. 1b. In this case particle 3
“put itself” between particles 1 and 2. In this case the interaction became more
complex, since the distance between particle 3 and other two particles exceeds an
equilibrium one, therefore an attraction between them appears, increasing the forceP.
The corresponding equations of equilibrium are given in Fig. 1a, b. The stress-strain
diagram, obtained from these equations for αa = 3 is shown in Fig. 2.

The obtained relation P(r) has three extrema. For the soft loading (when the
loading force is set, but not the deformation) the decreasing parts of the diagram
are unstable (the dashed line). In the extrema the dynamic transitions with structure
reorganization are possible (the arrows). Thus, even for such simple model with
purely potential interaction it is quite possible to observe the main features inherent
to stress-strain relation of real materials: yielding, residual deformation, hardening,
loop of hysteresis and so on. The analysis of more complex discrete systems in [5],
which was performed analytically and numerically, shows similar results. The more
degrees of freedom are taken into account the closer these results are to the results
of the nature experiments with real materials.

The main conclusion that follows from this consideration is that due to the inter-
nal structure reorganization such concept as the material line can loose its sense,
and consequently the geometrical definition of deformation looses the sense for the
significant inelastic deformations.
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Fig. 2 Loading diagram for the system of three interacting particles

3 Continuum Description

From the previous section it follows that generally for significant inelastic defor-
mations of materials the strain tensors defined from pure geometrical reasons are
not suitable to be used in the theory of constitutive relations. It is necessary to look
for another approach. Let us describe an idea of possible method of introduction of
a strain tensor for inelastic continua. The starting point is the equation of energy
balance

ρU̇ = τ ·· D + ρs− ∇ ·h, D ≡ (∇v + ∇vT )/2, (4)

where ρ is the material density; U is the specific internal energy (in terms of mass);
τ is the Cauchy stress tensor; D is the stretching tensor; s is the heat supply; h is the
heating-flux vector; v is the velocity vector; ∇ is the vector differential operator in
the actual configuration. The first term in the right side of Eq. (4) is called the power
of stress. Note that here the direct tensor notation in the sense of [7, 8] is used. In
addition, the gradient of a vector (for example, velocity) is introduced as in [7] that
means as the transpose of the quantity defined in most other textbooks.

Let us accept the following definition:

Definition 19.1. The quantity E , on the variation of which the Cauchy stress tensorτ
is producing the work, is called material strain tensor.

From the definition it follows

τ ·· D = τ ·· Ė ⇒ τ ·· (Ė − D) = 0, ∀τ : τ = τT . (5)



Material Strain Tensor 325

The symmetric tensor E must be an objective one, i. e. under superposition of rigid
motions we have to get

E∗ = Q · E · QT , (6)

where E∗ is the tensor E being transformed by the rigid rotation Q (Q · QT = E
with E as the unit tensor), applied to the whole system. The tensors τ and D are also
objective ones:

τ∗ = Q·τ·QT , D∗ = Q·D·QT ⇒ τ∗ ·· D∗ = τ ·· D. (7)

Let us accept that relation (5) remains after addition of the rigid motions

τ∗ ·· D∗ = τ∗ ·· Ė∗. (8)

Then according to Eqs. (7) and (8) we obtain the identity

τ∗ ·· Ė∗ = τ ·· Ė (9)

The substitution of relations (6) and (7) for tensors τ and E in the identity (9) after
some transformations3 gives

τ·E = E ·τ, τ∗ ·E∗ = E∗ ·τ∗. (10)

From Eq. (10) it is seen that the eigenvectors of tensors τ and E are the same. Thus for
any material the tensor τ is an isotropic function of E . It means that the tensor E must
depend on properties of the material and it cannot be found from pure geometrical
considerations. This is clear at least from the fact that the equalities (10) should be
valid also for an anisotropic material.4

Using Eq. (5) let us introduce the symmetric tensor L such as

Ė + L = D (τ ·· L = 0, ∀τ : τ = τT ), (11)

where the symmetric tensor L is not a priori known. L depends on properties of the
material. Let us point out only one possible form of the tensor L

L =ω·E − E ·ω, ωT = −ω. (12)

3 Here it is used: Q̇ · QT—antisymmetric tensor, identity A ·· B·C = A·B ·· C and statement:
A ·· B = 0, ∀A : AT = −A ⇒ BT = B.
4 This statement becomes more evident if we consider the linear theory. Indeed, in the linear theory
the elasticity relations have the form τ = C ·· ε, where C is the stiffness tensor and ε is the
linear strain tensor, which has pure geometrical definition. In the case of an anisotropic material the
principal axis of the tensors ε and C ··ε have different orientations. In our case we have to introduce
an alternative strain tensor E in such way, that it should be coaxial to the tensor C ·· E. It is clear,
that such a strain tensor should by some means take into account the anisotropy of the material.
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Using the objectivity of tensors E and D and equality (11), e.g. taking into account
that

Ė∗ + L∗ = D∗, L∗ =ω∗ ·E∗ − E∗ ·ω∗. (13)

It can be shown that the tensor ω under the superposition of rigid motions must
satisfy the equation

ω∗ = Q·ω·QT − Q̇·QT . (14)

The substitution of the representation (12) for the tensor L in equality (11) gives the
differential equation for the material strain tensor E

Ė +ω·E − E ·ω = D. (15)

Tensors E and ω in (15) are unknown. To find them we have to use additional
(constitutive) equations.

4 Determination of the Material Strain Tensor in some
Particular Cases

Let us find the trace of tensor E by calculating the trace of Eq. (15). Using the identity
ω ·· E = 0 we can obtain

(tr E). = trD = ∇ ·v = −ρ̇/ρ. (16)

Here the continuity equation is applied. The integration of relation (16) gives

tr E = ln(ρ0/ρ) = ln(1 + Δ), (17)

where ρ0 is the density of the undeformed material,Δ is the cubic dilatation. Equality
(16) is correct for all materials. However, the deviator of E essentially depends on
the material properties.

Let us neglect thermal effects. Then the energy balance (4) takes the form

ρU̇ = τ ·· Ė . (18)

Assuming elastic material behavior the internal energy and the stress tensor depend
on strains only, and they are not dependent on the strain rate. According to Eq. (18)
the internal energy of an elastic material has the formU = U(E). The calculation of
the time derivative from the internal energy gives

ρ
∂U

∂E ·· Ė = τ ·· Ė ⇒ τ = ρ
∂U

∂E . (19)
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To fulfil this relation tensor E should be Hencky’s tensor (logarithmic strain
measure—the logarithm of the right kernel of the distortion tensor).

Proof. 5 Indeed, according to [6]

τ = 2
ρ

ρ0
F· ∂W
∂F

, F = (∇r·r∇)−1, (20)

where r is the reference position vector; F is Finger’s strain tensor and W = ρ0U

is the internal energy volume density in the reference configuration. For Hencky’s
tensor H we have [6]

H = ln V, F = V2. (21)

Here V is the right kernel of the distortion tensor. The substitution of relation (21)
in Eq. (20) for the Cauchy stress tensor one can obtain finally

τ = ρ
∂U

∂H
⇒ H = E . (22)

So, for elastic isotropic material the Cauchy stress tensor performs the work on
Hencky’s logarithmic strain measure.6 �
Therefore, according to the definition, which was introduced before, Hencky’s mea-
sure and only it is the material strain tensor for the elastic isotropic material. It is
known that Hencky’s measure is frequently accepted by experimenters as the most
convenient way for description of large deformations.

It can be shown,7 that tensorω is uniquely determined for elastic isotropic mate-
rials and tensors E and ω also can be determined for materials with infinite short
memory, which is good for the description of large plastic deformations.

5 Discussion and Concluding Remarks

Here the original text by P. A. Zhilin, which is used as a basis for this chapter, comes
to an end. In private communications P. A. Zhilin has stated that this approach can
form a basis for an essentially new theory of constitutive equations. In particular, he
has noted that this approach allows to obtain the strain tensor, which for a periodical

5 This proof is suggested by A. Krivtsov, the original proof by P.A. Zhilin unfortunately is lost.
6 This result was obtained by P. A. Zhilin and it was explained in private communications to his
pupils before 1995, however it was not officially published. In 1995 a short paper with this result
was submitted to ICIAM 95 proceedings, however it was rejected. In 1997 a paper by other authors
was published in Acta Mechanica [9], where the same result is presented as obtained for the first
time.
7 Proof of these statements by P. A. Zhilin unfortunately is not preserved.
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twisting (with variable sign) of a rod gives an increase of deformation at each period,
and this is convenient for describing such phenomena as fatigue.

Later the chapter [9] was published, which significantly correlates with the results,
obtained by P. A. Zhilin. In this chapter the use of Hencky’s logarithmic strain is
analyzed and it is proved that this strain measure is the work-conjugate of the Cauchy
stress tensor (the unpublished result by P. A. Zhilin, obtained earlier). Besides, in [9]
it is proved, that H is the only strain measure, the objective corotational rate of which
gives the stretching tensor D. Let us remind that the corotational rate of a tensor A
is defined as8

A ′ = Ȧ +Ω·A − A·Ω, (23)

whereΩ is the spin tensor, characterizing some rotations connected with the defor-
mation process. The geometrical sense of the corotational rate is that it neglects
changes of the tensor A, connected with the rotation Ω. A variety of corotational
rates is used in the literature. The rates differ by the choice of the tensorΩ. In partic-
ular, if Ω = (∇v)A (the vorticity tensor) then (20) gives the Jaumann rate [9, 10].
For many years there was no answer to the question: is the stretching tensor D an
objective corotational rate of any strain tensor. In [9] for the first time it is shown
that such tensor can be only the Hencky logarithmic strain. Moreover, in [9] the
corresponding spin tensor is foundΩlog, called by the authors logarithmic spin, for
which it fulfils that9

H ′ log = Ḣ +Ωlog ·H − H·Ωlog = D, (24)

where (. . .) ′ log is logarithmic rate of H, also introduced in [9]. If now one considers
the equation obtained by P. A. Zhilin (15) for the material strain tensor, then the
application of it to the Hencky logarithmic strain E = H will lead to the conclusion
that the antisymmetric tensor used in (15) is the logarithmic spin:ω =Ωlog.

Let us consider again Eq. (15)

Ė +ω·E − E ·ω = D. (25)

The problem of its solution can be now reformulated as the following: it is necessary
to find such an objective tensor E , corotational rate of which is equal to the stretching
tensor D. In fact, this problem is solved in [9]—there it is proved that such tensor E
is Hencky’s logarithmic strain H, and tensor ω = Ωlog is found as some complex
function10 of tensors E and D [9, 11].

8 Frequently an alternative form of the corotational rate is used, where the difference is in the sign
ofΩ. This is because the definition of the gradient of a vector can be as in this chapter and [7] or
in the transposed form. As a consequence the sign of the spin tensor can differ.
9 This formula for logarithmic rate differs from the one in [9] by the sign ofΩlog (see the previous
footnote).
10 For some particular strain fields (e.g. when all the tensors H are coaxial) the tensor Ωlog is
reduced to the vorticity tensor (∇v)A and logarithmic rate became Jaumann’s rate. However in
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Thus in [9] pure geometrical expressions are obtained for tensors E andω being
determined from Eq. (15). These results became very fruitful, as in the nonlinear
theory of elasticity, as in the theory of elasto-plastic bodies [12–14]. In particular,
later on it is shown [12] that the use of the logarithmic strain and logarithmic spin
(connected by Eq. (15)) allows the correct formulation of the incremental elastic
relations for hypoelastic materials. These incremental relations are widely used in
numerical algorithms. Namely usage of these tensors makes these equations inte-
grable, allowing transition from the incremental of the constitutive equations to the
explicit one. This permits unique notions of hypoelastic and hyperelastic materials.
Beyond the elasticity limit this approach allows to build the theory of elasto-plastic
materials, where the decomposition of the strain tensor in elastic and plastic parts
is not needed [13]. However, together with these successes there remained a lot of
problems in description of inelastic behavior of materials.

The ideas of [9] partially coincides with the ideas of P. A. Zhilin. But this is only
partial coincidence. The essence of P. A. Zhilin’s idea is to introduce such a strain
tensor that

1. the Cauchy stress tensor performs work on this strain tensor;
2. it should be materially objective;
3. this tensor is not necessary a deformation in a classical sense.

The latter means that this tensor is not necessary an isotropic function of the distortion
(deformation gradient) tensor, in particular this strain tensor can depend on the space
symmetry of the material. In the case of elastic isotropic material, according to [9],
the problem of finding this tensor can be solved from purely geometrical means. In
[9] it is stated that the unique solution of Eq. (15) is found. However, this solution is
sought only on the set of classical strain tensors. For strain tensors in Zhilin’s sense
Eq. (15) probably has also another solutions. Let us show it on the example of an
elastic anisotropic material. Tensors E ,ω =Ωlog satisfy Eq. (15) for both isotropic
and anisotropic materials. However, in the case of anisotropic material this solution
contradict the condition of coaxiality of strain and stress tensors (10), which is the
consequence from the material objectivity. In order to fulfill condition (10) tensor E
should have a structure, which depends on the material properties. Thus the idea of
P. A. Zhilin of introduction of the material strain tensor, which should be determined
using the energy balance equation and properties of the considered material, still is
waiting for its development.

Remark 19.1. In his latest works in the area of inelastic media P. A. Zhilin was
using the spatial representation instead of the material one. The results obtained
for the material representation can not be transferred directly to the case of the
spatial representation. From the mathematical point of view the problem became
more complicated since in Eq. (15) the full time derivative is replaced by the material
one. However, the statement of the problem of finding the strain tensor possessing
the specified above properties is possible for the spatial representation as well. We

general case the representation forΩlog is much more complex, which is connected with existence
of two independent rotations—rotation of media and rotation of the main axis of the strain tensor.
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believe that the application of the ideas of this work for the spatial representation
could be the way for construction of inelastic constitutive equations.

Remark 19.2. In the current work an original approach, suggested by P. A. Zhilin, is
presented. The approach is intended for obtaining constitutive equations for the solids
subjected to large inelastic deformations in the case of the material representation,
where the classical strain measures results in serious problems in description of
the material subjected to reorganization of its to internal structure. Alternatively a
space representation can be used, in principle allowing to obtain the constitutive
equations in the considered case using classical strain measures. However, the strain
representation can be used only in the case of 3D bodies. In the theories of shells and
rods, where the differential operators are defined on a surface or on a curve in the
3D space only the material representation can be used. Therefore for the description
of large inelastic deformations of rods and shells the approach by P. A. Zhilin is of
particular interest.

Remark 19.3. 11 It is interesting to note that almost at the same time several groups
had the same idea. The results of Bruhns and co-authors were first presented at the
“International Symposium on Plasticity and Impact Mechanics” IMPLAST 96, held
at New Delhi, India, 11–14 December 1996. The corresponding presentation was
published in the conference book [15]. On this same symposium there was also a
presentation by R.N. Dubey and W.D. Reinhardt, Waterloo, Canada, ([15], pp 79–99)
who treated the same problem.

Remark 19.4. 12 With reference to the last paragraph of the contribution it should
be mentioned that in a different paper [16] also non-corotational rates were taken
into consideration by replacing the general spin tensor Ω by a general asymmetric
second order tensor Ψ. This has led to more general solutions of the problem under
consideration.

Acknowledgments Authors are deeply grateful to O.T. Bruhns for helpful discussions of the final
version of the paper.
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