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Preface

This book is the result of many decades of formulating, solving, and teaching about
energy balance climate models (we call them EBMs). Both authors have used earlier
versions of the material in graduate courses in the atmospheric and neighboring
sciences.The book is designed to appeal to many types of students or readers, including
atmospheric scientists, oceanographers, geologists (especially paleoclimatologists
and paleooceanographers), mathematicians, physicists, engineers, environmental
scientists, and those interested in impacts, such as hydrologists and economists. While
the book delves deeply into the mathematical details of EBMs, many readers can skip
the technical details of model solutions and proofs and jump to the results that are
usually presented graphically. One of our aims is to provide a rigorous study of the
subject, while teaching students some of the methods of classical mathematical physics
that are often neglected in the traditional curriculum. Problems are included at the
ends of most chapters to hone the skills of students in these methods. Another aim is
to engage the mathematics and physics (and other) communities in climate modeling,
especially the side of it that might appeal to those readers.There aremanymathematical
problems remaining to be solved in this subfield of climate science, and we hope those
inclined will think of taking a few of them on.
The popularity of EBMs has been going up and down over the decades since they were

introduced by Budyko and Sellers in the late 1960s. In the 1970s, they were in favor,
but as general circulation models (GCMs) began to improve significantly, EBMs were
often dismissed as too crude. But over time EBMs were recognized as important tools
in the hierarchy ofmodels. AsGCMs includemore andmore processes and components
(biology, carbon cycle, cryosphere, etc.) the output of their simulations becomes even
more difficult to comprehend. EBMs and other simplified schemes can help to sort out
some key processes in the system.
In introducing the subject to many readers with little climate science experience, we

have endeavored to be conservative in our presentation of EBMs and their applications.
Similar to climate models at all levels of complexity, EBMs are pretty blunt instruments.
EBMs can provide insight by clarifying some of the cause-and-effect issues in the climate
system. In some cases such as perturbations of the surface temperature field due to small
changes in greenhouse gases (GHGs) or the Earth’s orbital elements, they can be surpris-
ingly helpful even to a quantitative extent. As with any model, the most important step
is to ask the appropriate question.The EBMs provide a unique learning environment for
seeing how simplified models can be solved by using applied mathematics. Many EBM
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formulations are found to be linear systems with all their general properties available
to us. We can not only solve the problem in terms of well-known functions but we can
also probe the structures withmodes and frequency components that strictly numerical
approaches do not readily provide. Valuable stores of intuition can be accumulated from
linear thinking on the way to the nonlinear world.
We approach the hierarchy of models from a global perspective, then turn to increas-

ing resolution in space and time, also in the complexity of the geography. This is done
in a stepwise fashion, starting first with global averages. Next comes zonal symmetry
but with horizontal dependence to the solar heating in steady state, then time depen-
dence. Next, we consider a zonally symmetric planet with a homogeneous global surface
upon which is imposed seasonal heating. After developing two-dimensional solutions
on the bare planet, we break the homogeneous spherical symmetry with the land–sea
geography of today or of ancient times. Temporally, we begin with steady state and later
introduce the decay of anomalies, the periodic seasons, and eventually random fluctu-
ations of the surface temperature field. In cases of high symmetry, analytical solutions
and analyses using familiar functions give insight into how things work when the sym-
metries are relaxed one at a time. The style of the book is that of a physicist rather than
a mathematician, although we hope to retain the mathematician’s attention with mini-
mal offence. We do not hesitate to use shortcuts such as the Dirac delta function. Our
treatment of stochastic matters is likewise in physics style.
An interesting aspect of the climate system is how timescales of radiative relaxation

(a month over land, a few years over a mixed-layer ocean) contrast with those of the
weather anomalies (few days) that occur especially in the mid-latitudes.This wide sepa-
ration of temporal scales allows us to make stochastic EBMs, that is, linear models with
sluggish response to white noise forcing. Stochastically driven EBMs provide a whole
family of models that can be solved completely and examined in detail. Often, the EBM
framework can be used to illustrate a technique such as in estimation of faint determin-
istic signals in a noisy climate system. We devote a whole chapter to this and related
problems.
We have both moved on long ago from the study of EBMs in our primary research

interests, but we return to them again and again because of their intrinsic aesthetic
appeal.
A book like this one could not have been completed without the help ofmany students

and collaborators. We list here many who collaborated with us in this endeavor over
the years to whom we are grateful: Steve Baum, Thomas L. Bell, Robert Cahalan, Petr
Chyèk, JamesCoakley, Robert Chervin,ThomasCrowley,MarcGenton, CharlesGraves,
Gabi Hegerl, Louis Howard, Jian-Ping Huang, William Hyde, Philip B. James, Lai-Yung
(Ruby) Leung,Wan-Ho Lee, Rai-Qing Lin, JohnMengel, David Pollard, Haydee Salmun,
Stephen H. Schneider, Sam (S. S. P.) Shen, David Short, BruceWielicki, QigangWu,Wei
(Julia) Wu. Kelin Zhuang.
Others who perhaps did not publish with us on EBMs, but who have influenced

us through private conversations or encouragements include Al Arking, David Atlas,
Eric Barron, Kenneth P. Bowman, M. I. Budyko, Alex Dessler, Andrew Dessler, Robert
Dickinson, Tsvi Gal-Chen, Lev S. Gandin, Michael Ghil, Georgi Golitsyn, L. D. Danny
Harvey, Klaus Hasselmann, Isaac Held, John Imbrie, Igor Karol, C. E. Leith, Richard
S. Lindzen, Kuo-Nan Liou, John Nielsen-Gammon, Richard Peltier, Alan Robock,
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Joe Smagorinsky, William D. Sellers, Richard Somerville, Peter H. Stone, Max Suarez,
Warren Washington, Manfred Wendisch, Robert Watts, Ping Yang, and many others.
We also thank Texas A&M University, College Station, Texas, USA, and Seoul

National University, Seoul, Korea, for allowing us the time and resources to write this
book.We are especially grateful to our families who endured the long process of getting
this book together.

Seoul, Korea, 2017 Kwang-Yul Kim
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1

Climate and Climate Models

The global climate system consists of a large number of interacting parts. The material
components and their sub-members include the following:

1) the atmosphere and its constituents such as free molecules and radicals of different
chemical species, aerosol particles, and clouds;

2) the ocean waters and their members such as floating ice, dissolved species including
electrolytes and gases as well as undissolved matter such as of biological origin and
dust;

3) the land components with characteristics such as snow and ice cover, permafrost,
moisture, topographical features and vegetation with all its ramifications.

The space–time configuration of abstract fields that are used to characterize prop-
erties of interest (such as temperature, density, and momentum) attributed to these
components and their sub-members vary with time and position and each exhibits
its own spectrum of time and length scales. Heat (or more formally, enthalpy) fluxes,
moisture, and momentum fluxes pass from one of these material components to
another, sometimes through subtle mechanisms. Determination of whether and
how these constituent parts combine to establish a statistical equilibrium may seem
challenge enough, but the climate dynamicist also seeks to understand how the system
responds to time-dependent changes in certain control parameters such as the Sun’s
brightness, or the chemical composition of the atmosphere. Although we have been
at it for many decades now, the grand problem is still far too complicated to solve
at the desired level of accuracy (no bias) and precision (error variance) even though
preliminary engineering-like calculations are being used routinely in scenario/impact
studies because policymakers must (should!) make use of even tentative information in
their deliberations (IPCC, 2007, 2013).
Serious attempts at quantitative climate theories can be said to have begun in the late

1960s, although some very clever attempts predate that by decades (see Weart, 2008).
The theory of global climate is emerging from its infancy but it hardly constitutes a set
of principles that can be converted into reliable numerical forecasts of climate decades
ahead or that can be unequivocally used in explaining the paleoclimatic record. How-
ever, some valuable insights have been gained and many problems can be cast into the
form of conceptual frameworks that can be understood. We now have an idea of which
of the components are important for solving certain idealized problems, and indeed, in
some cases, it appears that the problems can be made comprehensible (but not strictly
quantitative) with models employing only a few variables.

Energy Balance Climate Models, First Edition. Gerald R. North and Kwang-Yul Kim.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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The field of climate dynamics is vast, embracing virtually every subfield of the geo-
sciences (even “pure” physics, chemistry, and biology) from the quantum mechanics
of photons being scattered, absorbed, and emitted by/from atmospheric molecules in
radiative transfer processes to the study of proxies such as tree-ring widths and isotopic
evidence based on fossilized species deposited and buried long ago in sediments deep
below the ocean’s floor. The in-depth coverage of these subfields is generally presented
in the traditionally separate course offerings of curricula in the geosciences. This book
is concerned with the integration of this array of material into a composite picture of the
global climate system through simplified phenomenological models. The approach will
be to pose and examine some problems that can be solved or analyzed with the classi-
cal techniques of mathematical physics. Throughout we attempt to use these analytical
methods, but will introduce and use numerical methods and simulations when neces-
sary. However, our main strategy will be to idealize the physical problem in such a way
as to render it solvable or at least approachable, then compare or draw analogies either
to the real world or to the results of solving amore believablemodel – hardly a foolproof
procedure but likely to be instructive. In short, we hope to get at the heart of some cli-
mate problems in such a way that the reader’s intuition for the composite system can be
developed and more informed approaches can be taken toward the solution of specific
problems.
The energy balance climate models (EBCMs) generally deal with an equation or a set

of coupled equations whose solution yields a space–time average of the surface temper-
ature field. Unfortunately, the solutions cannot usually describe the temperature field
above the boundary layer of the atmosphere except in rare circumstances.This is a severe
limitation, leaving us with only partial answers tomany questions we would like to pose.
On the other hand, we are blessed with many reasons supporting the importance of the
surface temperature field:
1) Space–time averages of surface temperature are easily estimated and many instru-

mental records provide good data, not just contemporarily, but over the last century.
2) Space–time averages of surface temperature data are close to being normally dis-

tributed, making them easy to understand and treat. This is not so for precipitation
and some other variables. Moreover, the larger the space–time scale, the more infor-
mation frompoint sources can be combined into the average, resulting in a reduction
in the random measurement errors on the mean estimates.

3) The time series of space–time averages of surface temperature is particularly simple,
resulting in applicability of autoregressive behavior of order unity in many cases.

4) Nearly all paleoclimate indicators provide information about the surface tempera-
ture, extending the data base that can be used in testing.There are never enough data
to check and adjust models, especially complex numerical models. Paleoclimatology
can potentially provide more data that can be used to understand climate models.

5) As we will show, the surface temperature is also the easiest variable to model, espe-
cially for large area and time averages. It becomes more difficult as the space–time
scales in the problem decrease. In this book, we will start with the largest space and
time scales and find that there is a natural progression of estimates from the largest to
the smallest space–time scales. Moreover, averaging over large scales reduces some
errors in models as well as in measurements.

6) Most of the externally applied perturbations to the climate system that are of interest
are directed at large spatial and temporal scales. This happens to be the case for the
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four best known perturbations: greenhouse gases, volcanic dust veils, anthropogenic
aerosols, and solar brightness. It is intuitively appealing (as well as motivated by
physics, as we shall see) that the large space–time scale perturbations result primar-
ily in the same large space–time scales of thermal response patterns in the climate
system.

7) The study of energy balance models is cheap. This can be a factor when questions
are posed from paleoclimatology, for example. Big models are simply too expensive
to experiment with in the first trials. With the speed up of modern computers, many
paleoclimate problems can be examined with general circulation models (GCMs),
but not every one of them.

8) The study of exoplanets has become important in recent years.The habitable zone of
a planet’s orbital and atmospheric/oceanic dynamical/chemical parameters may fall
into the purview of energy balance models.

9) Finally, the surface temperature is important for societal well-being and it is easily
grasped, although the idea of large space–time scales is less easily identifiable and
appreciated by the average person.

Unfortunately, as soon as we go above the near-surface environment, the mathemati-
cal difficulties of solving the climate problem even for the temperature becomes orders
of magnitude more difficult. Also, for all its importance, precipitation cannot be solved
by simplemodels because it depends too sensitively on the circulation of the atmosphere
(and the ocean).

1.1 Defining Climate

Before proceeding, wemust define what wemean by climate. As an illustrative example,
we restrict ourselves at first to the global average surface temperature. Our definition
is abstract and not strictly an operational one unless certain (reasonable but, unfor-
tunately, unverifiable) conditions are fulfilled. When we examine records of globally
averaged temperature at the Earth’s surface we find that it fluctuates in time. Figure 1.1
shows a century-long record of both annual and global averages (estimates of these, to
be more precise) and, except for a possible upward slope, we find departures from the
mean linear trend that persist over a few years or even decades.
Consider an abstraction of the real system. We borrow from the discipline of time

series analysis (which may have originated in the subdiscipline of theoretical physics
called statistical mechanics) the concept of an ensemble.1 By this, we mean to con-
sider a segment of a record of some quantity versus time (e.g., the record of estimates
of annual-mean and global-average temperatures in Figure 1.1) as a single realization
drawn from an infinite number of statistically equivalent (imagined or hypothetical)
manifestations of the record. It is presumed that all the realizations are generated from
the same physical process (imagine a large number of Earths rattling along but each with
slightly different initial conditions set long before the beginning of our “observation”
record) for temperature distribution, winds, and so on, but otherwise all the externally
imposed conditions such as the Sun’s brightness and atmospheric composition are the

1 Ensemble: a group of items viewed as a whole rather than individually.



4 1 Climate and Climate Models

Mean global and annual temperatures

0.6

0.4

0.2

−0.2

−0.4

1900 1920 1940 1960 1980 2000
Year

ΔT

Figure 1.1 Time series of thermometer-based global average temperatures from the website of
Goddard Institute for Space Studies: www.giss.nasa.gov. The units are in Kelvin and the temperature
values are “anomalies” or deviations from a long-term mean (1951–1980). (Goddard Institute for Space
Studies (NASA) (2017).)

same for all the “toy” Earths).The construction of an ensemble is strictly a mathematical
convenience, as it allows for ease of computation of moments of the statistical distribu-
tions. It is our belief that the realizations form time series that are stationary (defined
more precisely below) and that long-term averages of quantities are equivalent to aver-
ages across the ensemble members. The advantage of this scheme is that the ensemble
provides us with a framework that makes thinking about the problem easier and it facil-
itates computation of statistical quantities. Also, from a practical point of view this is
exactly the way we generate the model climate from a series of simulations from a big
climate model (GCM).
The idea of studying a fluctuating system by examining the statistics of individual real-

izations is called the frequentist approach. One can perform statistical tests similarly by
asking the probability of occurrence of an event by looking at many realizations of the
process. In this book, we will assume the frequentist method is sufficient.
To illustrate the idea, consider a climate that is characterized by a single variable, its

temperature2 T(t). The ensemble average of the temperature at time t is

⟨T(t)⟩ ≡ lim
N→∞

1
N

N∑
i=1

T (i)(t), (1.1)

where the superscript i is an index labeling the ith realization. We imagine calling upon
some kind of algorithm that generates realizations for us on command. In the following,
we will see how this can be done in a simplified statistical model driven by uncorrelated
random numbers.The ensemble of realizations is to have the same statistics (moments)
as the real process.We then average over a large number (N) of these to form ⟨T(t)⟩.The
brackets are defined by the above averaging operation ⟨⋅⟩ (taken in the limit of N → ∞,

2 As always in this book, unless otherwise indicated, we refer to the air temperature a few meters above the
land surface, ground or over water, the temperature of the surface level water itself. We will normally use
units of Kelvin, but occasionally we will use ∘C.
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but practical experience with GCM simulations suggests that 5–10 is enough for many
purposes).
Often in geophysical problems, a long-term temporal mean is equivalent to the

ensemble mean:

⟨T(t)⟩ ≈ lim
TA→∞

1
TA ∫

t+TA∕2

t−TA∕2
T (i)(t′) dt′. (1.2)

A relation like this holds for so-called ergodic systems. Roughly speaking, an ergodic
system is one for which the physical timescales are bounded (more precision on this
shortly). Now that we have the concept of ensemble averaging in mind, we can compute
the second moment of T(t):

⟨T(t)2⟩ ≡ lim
N→∞

1
N

N∑
i=1

(T (i)(t))2. (1.3)

We could also define the probability density function (pdf ) of the temperature at time t
as p(T(t)). We would have

⟨T(t)2⟩ ≡ ∫
∞

−∞
T(t)2p(T(t)) dT(t), (1.4)

and, for the nth moment,

⟨T(t)n⟩ ≡ ∫
∞

−∞
T(t)np(T(t)) dT(t). (1.5)

The variance is a centered moment

var T = 𝜎
2
T = ⟨(T − ⟨T⟩)2⟩. (1.6)

We can also consider the covariance between the temperature at time t and at another
time t′. This is defined as

covar(T(t),T(t′)) = ⟨(T(t) − ⟨T(t)⟩)(T(t′) − ⟨T(t′)⟩)⟩. (1.7)

We can think of a bivariate pdf , p(T(t),T(t′)), in this case. A time series is said to be sta-
tionary if the mean and variance are independent of t and if covar(T(t),T(t′)) depends
only on the time difference |t − t′|. These statements mean effectively that there is no
preferred origin along the t-axis (at least up to the second moments). In this case, we
can write

covar(T(t),T(t′)) = 𝜎
2
T𝜌(𝜏), (1.8)

where 𝜌(𝜏) is called the lagged autocorrelation function3 at lag 𝜏 ≡ |t − t′|. Note that,
by this definition, 𝜌(0) = 1 and 𝜌(𝜏) = 𝜌(−𝜏). Figure 1.2 shows the lagged autocorrela-
tion function for the data in Figure 1.1 (actually, it is the autocorrelation function of the
residuals after detrending the data from Figure 1.1 with a straight regression line). The
autocorrelation time is the integral of 𝜌(𝜏) over all lags (≈ 3.5 years).

 ≡ ∫
∞

0
𝜌(𝜏) d𝜏. (1.9)

3 Strictly speaking, this is called wide-sense stationarity because it only considers moments of up to the
second order. If the time series elements are normally distributed, this is enough.
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Figure 1.2 Autocorrelation function for the residuals about a linear regression line of the GISS global
average surface temperatures. The abscissa is in lagged years. The decay of the autocorrelation
indicates the lack of correlation over time. In this case, the autocorrelation function falls to 1/e in about
3.5 years. (Goddard Institute for Space Studies (NASA) (2017).)

Later, we will see how simple models of the system can reproduce curves very similar
to that in Figure 1.1 with the added possibility of interpretation of the underlying pro-
cesses. Here we can get a better idea of what an ergodic system is: the autocorrelation
time should be finite. From a practical point of view, it must be short compared to the
total length of the time series under consideration.
Instead of real data, we can also generate a time series that resembles a real climate

variable. This illustration based on a simple time series algorithm should help in under-
standing themeaning of some of the above definitions. Figure 1.3 shows five realizations
of a time series generated from the stochastic process defined by

Tn = 𝜆Tn−1 + 𝛾Zn−1, (1.10)

where Tn is the temperature at time n, a discrete time index (such as an annual aver-
age temperature), and Zn is a random number (variate) that at each time (drawing or
innovation) takes on a value from a normal distribution with mean zero and standard
deviation unity (statisticians indicate this by Zn ∼ N(0, 1)); each drawing is statistically
independent of the previous one. The constants 𝜆 and 𝛾 have values (arbitrarily chosen
here for cosmetic purposes) 0.8 and 0.05, respectively. In Figure 1.3, the heavy line is
the average across the five realizations. If there were a large number of realizations in
this process, we would find the average approaching the x-axis (i.e., ⟨Tn⟩N → 0 as N →
Large). More formally, the standard deviation of the individual points along the heavy
curve approaches zero as 𝜎T∕

√
N , where 𝜎T is the standard deviation of the variate Tn,

and N is the number of realizations in the ensemble. The process (1.10) that relates the
nth value of Tn as proportional to the (n − 1)th plus a random normally distributed dis-
turbance is called an autoregressive process of order one or AR1. This particular type of
stochastic process is common in geophysical processes such as temperature field evolu-
tion. Higher-order autoregressive processes give weights to more distant values in the
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Five realizations of a random time series

100 120 140 160 180 200
Step

Figure 1.3 Five realizations from a time series generated from the AR1 algorithm
Tn = 0.8Tn−1 + 0.05Zn−1, where Tn is a “model temperature” at the nth time step, and Zn is a random
number taken from a normal distribution with mean zero and standard deviation unity. The heavy line
is the ensemble average across the five realizations. In this example, the realizations are started at
n = 1 with T1 = 0. The values from n = 100 to 200 are shown. The graphic shows how averaging over
only five realizations smooths the time series, diminishing excursions from the mean (=0 here). An
observed temperature time series is similar to a single realization.

past than just the last one. Although we will deal with a number of stochastic models in
this book, wewill find it unnecessary to go beyond the first-order autoregressive process.
We now understand what is meant by a stationary univariate climate. By climate

change, we mean that some moment, typically, the ensemble mean, is subject to a tem-
poral or secular change. For example, the time series in Figure 1.1 appears to have a
secular drift upward of about 0.6–0.8K per century, and over the last half of the twenti-
eth century, even steeper. Another possibility is that the systemmight experience a step
function shift in forcing, leading to a climate change from one statistical steady state to
a different one after a suitable waiting period (more on this idea in later chapters). As
we will see later, the term forcing implies an externally imposed imbalance of the plane-
tary energy budget. Such forcings might be time dependent, for example, linear secular
increase, abrupt increase (step function), and pulse (delta function).

1.2 Elementary Climate System Anatomy

The vertical structure of the Earth’s atmosphere divides nicely into layers each hav-
ing distinct properties. The layers are conveniently separated according to the slope of
temperature profile with respect to the altitude. The troposphere lies between the sur-
face and the tropopause which in the US Standard Atmosphere is at about 10 km, see
Figure 1.4. The layer between 10 km and about 32 km is called the lower stratosphere
and the part between 32 km and the next slope discontinuity above is the stratosphere,
which is bounded above by the stratopause. In this book, we will confine our attention
mainly to the troposphere.
The air above the ground flows with horizontal scales ranging from roughly 1000 km

to even larger scales. As it rubs against the surface, turbulence occurs, resulting in a
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Figure 1.4 The US Standard Atmospheric Profile (solid line). The tropopause is the altitude of the
temperature slope discontinuity at 10 km on this graph. The US Standard Atmosphere is an average
around the globe. The level of the tropopause here is characteristic of the mid-latitudes. In the tropics,
it lies at about 18 km.

90°N

90°S

60°

60°

30°

30°

0° 30°E 150°E 180° 120° 90° 60° 30°W 0°150°W60° 90° 120°

Eq.

90°N

150

150

150

75
150

100
250

150

500
250

500

100

50

100
75

75 25

50 25 10

25

50
25

75

75 75
25

50

50

100

50

25

50

50 10

100

150

250
500100

150100

250

7550
100

50

50 75

25

25 75
75

50

50 25

50

100
75

50

25

25

25

90°S

60°

60°

30°

30°

Eq.

Figure 1.5 March mixed-layer depths (meters) based on a temperature criterion of 0.5 ∘ C (difference
from the temperature at the surface). The ocean’s upper layer is well mixed by the action of wind
stirring the water. The mixed-layer depth varies by location. It tends to be deeper at higher latitudes
and shallow in the tropics. (Taken from Levitus (1982): NOAA Professional Paper, Figure 95a.)

boundary layer near the surface of depth 1–2 km, consisting of well-mixed air. At night,
the boundary layer shrinks to a fraction of its daytime depth; then, as the Sun rises, it
swells back to its maximum depth of 1–2 km, depending on season and location (see
Figure 1.5).
The ocean is complicated, but for our simple-model considerations we will take the

top 50m (sometimes up to 100m) to be the wind-driven mixed layer that is expected to
be vertically homogenized over a period of days (see Figure 1.6) and note the tendency
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Figure 1.6 Growth and decay of the mixed layer and seasonal thermocline from November 1989 to
September 1990 at the Bermuda Atlantic Time-series Station (bats) at 31.8∘N 64.1∘W. Data were
collected by the Bermuda Biological Station for Research, Inc. Note that pressure in decibars is nearly
the same as depth in meters. (Reproduced with kind permission of Robert Stewart.)

for shallow, mixed layers in the tropics and deeper ones in the higher latitudes.The tem-
perature of the ocean is then nearly constant in that upper layer. The temperature falls
off from the bottom of the mixed layer to its value (usually around 4 ∘C, the temper-
ature at which sea water has its maximum density) at very deep levels (approximately
several kilometers) approximately exponentially. The e-folding depth of the tempera-
ture profile is called the thermocline, typically around 500–800m, depending on season
and location (Figure 1.6). The ocean below the mixed layer becomes important when
time-dependent perturbations are imposed on timescales longer than a few years. We
consider that problem in Chapter 10.

1.3 Radiation and Climate

1.3.1 Solar Radiation

The climate of the Earth is ultimately controlled by the energy output of the Sun and the
Earth’s orbital elements (see Figure 1.7 for calculations of past values or impacts of the
orbital elements, based on Berger, 1978b):

1) The mean annual Earth–Sun distance, currently 149 597 870 700m. This defines 1
astronomical unit (AU) in planetary astronomy.

2) The eccentricity of the orbit, presently 0.0167 varying between nearly circular value
of 0.005 up to 0.06 with a period of roughly 100 ky. See Figure 1.7, which is based
on calculations by Berger (1978b). There is little or no effect of eccentricity on the
annual, globalmean because of Kepler’s second law of equal areas of the orbital sweep
being equal for equal time intervals. In otherwords, when the orbiting Earth is closest
to the Sun, it is moving faster around its cycle than when it is near aphelion.
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Figure 1.7 The temporal variations of the orbital elements. Upper: Eccentricity (dimensionless); the
present value is 0.016. Middle: Obliquity (∘) is the tilt angle of the Earth’s spin axis from a perpendicular
to the orbital plane (the ecliptic plane); the present value of the obliquity is 23.5∘. Lower: Precession
(solar radiation flux density at 65∘N in W m−2). This latter shows the variation of this radiation flux
density at a latitude thought to be important in forming an ice sheet in North America. (Berger
(1978b). © American Meteorological Society. Used with permission.)

3) The angle of the spin axis to a perpendicular to the plain of the orbit, called the obliq-
uity, which varies from its present value of 23.5∘ to between 22.1∘ and 24.5∘. The
obliquity varies roughly sinusoidally with a period of about 41 ky. Larger obliquity
leads to a larger swing of the seasonal surface temperatures. Zero obliquity leads to
a perpetual equinox. Obliquity also has a small influence on the annual mean insola-
tion; large obliquity leads to a slight warming of the annual mean with a north–south
symmetrical, hemispherical minimum in lower latitudes.

4) The seasonal phase of perihelion, which is the point or calendar time of year on the
orbit closest to the Sun along the Earth’s elliptical path. The time of equinox shifts
slowly through the calendar year owing to two effects: the precession of the spin axis
like a top, with period about 26 ky (today the star Polaris sits above the North Pole,
but it moves from that position over time, and this has been documented from com-
paring with ancient astronomers). The equinoxes also precess because of an actual
rotation of themajor axis of the elliptical figure around the Sun.The two effects cause
the calendar date of perihelion to cycle over a 22 ky period. Today, perihelion occurs
on December 21, but 11 ky ago it occurred on June 21. The result is a 6% difference
in summertime insolation4 at latitude 65∘N between summers today and those 11 ky
ago. Northern Hemisphere summers would have been warmer (and winters cooler)
over continental interiors back then.

4 Insolation is the amount of radiation flux per unit surface area impinging on the Earth at a particular
latitude and time of year. Units: Wm−2.
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5) The chemical composition of the atmosphere. As is by nowwell accepted, the amount
of CO2 and other greenhouse gases in the atmosphere controls the mean annual
temperature of the planet, whereas the aforementioned three effects tend mostly
to control the seasonality and/or the latitudinal distribution of the insolation. The
changes in CO2 over the last 800 ky are correlated strongly with the time series of
temperatures in Antarctica (Lüthi et al., 2008).

The Sun’s luminosity affects the global climate system through the so-called total solar
irradiance or TSI (the amount of radiant energy passing through a unit area perpendic-
ular to the line joining the Earth and the Sun averaged through the year to eliminate
the small (∼3%) variation of the Earth–Sun distance due to its slightly elliptical orbit). A
number of artificial satellites have been launched over the last four decades for deliver-
ing estimates of the TSI. Techniques for analyzing these data have now been perfected
sufficiently to provide unbiased estimates of the TSI’s average value and its variability for
the purposes of climate research. Figure 1.8 shows a graph ofmeasurements from a com-
bination of radiometers aboard a sequence of satellites since themid-1970s.Much of the
high-frequency part of the variation can be attributed to the passage of sunspots across
the face of the Sun as it rotates with a period of about 25 days.The longer term trends are
consistent with a weak quasi-periodicity of 11 years commensurate with the solar cycle
of the frequency (number per year) of appearance of sunspots. The amplitude of the
oscillation (at least over the few cycles observed during the satellite era) is about 0.1%.
Themost modern estimate of the absolute magnitude of the TSI is 𝜎

⊙
≈ 1360.45Wm−2.

This value is somewhat smaller than the average shown in Figure 1.8 as the value quoted
here is based on a recent highly reliable calibration (Kopp and Lean, 2011; Coddington
et al., 20165). It is not yet clear whether the Sun’s output varies on longer time scales.
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Figure 1.8 Time series of the TSI (total solar irradiance) over the last three solar cycles. The TSI is the
radiation energy flux density (in W m−2) reaching the top of the atmosphere. It is averaged through the
year as the Earth passes around its elliptical orbit. The upper curve (points) are newly calibrated and
reconciled data for the TSI from a variety of instruments over the satellite era (W m−2). The lower curve
is the monthly count of sunspots. (Reproduced with kind permission of Kopp (2017).)

5 Coddington et al. (2016) present explanations and graphics clarifying how the sunspots and facula (bright
zones around the dark sunspots) compete in modulating the TSI.
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A longstanding conjecture is that the Sun was less bright during the Maunder Mini-
mum, a period of about a century starting in 1650AD, in which there were essentially
no sunspots (Eddy, 1976). So far no compelling evidence for the validity of this attrac-
tive conjecture has been published. Over ultralong time scales it is strongly suggested
by astrophysical theory that the solar constant should have steadily increased by about
30% over the last 4.7 × 109 years, Gough (1981).
The Sun radiates approximately as a blackbody whose temperature is about 5770K

over most of the emission spectrum as seen in Figure 1.9. The distribution of the radia-
tion by wavelength is important in determining howmuch of the radiation penetrates to
various depths in the atmosphere before being absorbed or scattered. Very short wave-
length radiation (X-rays, extreme UV, etc.) are absorbed in the upper atmosphere, while
UV of shorter wavelength than 273 nm (nm = nanometers) is absorbed by ozone (O3)
in the stratosphere (Pierrehumbert, 2011).
Figure 1.9 (modified from Gray et al., 2010) shows the distribution of solar flux as a

function ofwavelength.Most of the radiation power is in the visible part of the spectrum,
but a large part is also in the near infrared (𝜆 > 800 nm = 800 ×10−9 m). Disposition of
the solar radiation entering the top of the atmosphere is as follows: 23% is reflected back
to space by clouds and particles suspended in the air, 4% is reflected back to space by the
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Figure 1.9 Spectral irradiance from the Sun (black line). Spectral irradiance means the Sun’s rays are
decomposed into wavelengths in order to reveal how different wavelength bands are disposed of by
the Earth’s atmosphere. The black and gray long-dashed smooth curve is the distribution of incoming
radiation from an imaginary black body whose temperature is 5770 K, which is a rather good model for
the Sun’s radiation. The solid black curve indicates the actual radiation from the Sun. It differs some
from the blackbody especially in the ultraviolet and shorter wavelengths. The dotted lines indicate the
absorption of sunlight as a function of wavelength by the clear atmosphere as seen from the ground
(h = 0). The attenuation is cut off by atmospheric gases for wavelengths below about 270 nm. Other
absorption due to molecular interactions occurs in the infrared. (Gray et al. (2010). Reproduced with
permission of American Geophysical Union.)
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surface; 23% is absorbed by water vapor, clouds, dust, and ozone, and 47% is absorbed at
the surface. About 30% of the total is reflected back to space (planetary albedo) and the
rest goes into heating the system. Recent research suggests that the UV radiation varies
appreciably more over the 11-year cycle than the TSI and that this variation can lead to
a faint 11-year cycle in some climate variables (Haigh, 2010).
Figure 1.9 shows the total column absorption by the atmosphere as a function of wave-

length as the gray-dotted line. The spectrum of absorptivity is very complicated to say
the least.The interplay between the incoming and outgoing radiation and this spectrum
along with the atmosphere’s dynamic reaction to it is a key ingredient in determining
the vertical structure of the atmospheric column of air at a point at the surface and
ultimately in determining the horizontal movements in the system components as well.

1.3.2 Albedo of the Earth–Atmosphere System

The climate system only makes use of the solar radiation that is absorbed by the
Earth–atmosphere combination. The unused fraction of the solar radiation flux
reflected by the system back to space (referred to as the planetary albedo, averaged over
the globe, through the diurnal and annual cycles) is governed by a number of factors,
several of which are dynamically determined within the system. Artificial satellite-based
instruments providing estimates of the albedo of the Earth–atmosphere system have
been conducted since the mid-seventies. Trenberth et al. (2009, always subject to
updates) summarize the current status of the Earth Radiation Budget estimates and
the associated errors (see also Loeb et al., 2009; Loeb and Wielicki, 2014). Figure 1.10
shows the flows of energy entering from space in the visible part of the spectrum and its
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apportionment into different flows in the Earth–atmosphere system. We can estimate
the planetary albedo from the data in the figure (102∕341 ≈ 0.30).

1.3.3 Terrestrial Infrared Radiation into Space (The IR or Longwave Radiation)

Besides measuring the albedo6 of the planet in small latitude–longitude boxes, satellite
observatories also provide estimates of the outgoing infrared radiation fluxes at the top
of the atmosphere. These are typically also for month-long averages but over 10∘ × 10∘
boxes. It is possible to find a relationship of the outgoing radiation with the surface
temperature by a comparison of the two data sets as shown in Figure 1.11.This suggests
that, for many rough calculations, the outgoing infrared flux leaving the top of the
atmosphere can be approximated by a linear relationship7 with slope 1.90Wm−2 ∘C−1.
Analysis of 10 years of data from the Nimbus 6 and Nimbus 7 satellites in mid-latitudes
yields essentially the same relationship as with the Earth Radiation Budget Experiment
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Figure 1.11 Density plot of outgoing infrared radiation flux versus surface temperature taken from
satellite data. The radiation data from different locations and seasons against the local
month-averaged temperature at the surface for the same actual month when the satellite data were
collected. Darker shading indicates greater frequency of occurrence. These data are for the entire sky,
that is, cloudy portions are not omitted. Note that the curve and its slope are lower than that of a
blackbody curve (dashed curve). The linear radiation law due to Budyko is subject to many
shortcomings, but as a tool it has proven useful in energy balance models. (Graves et al. (1993).
Reproduced with permission of Wiley.)

6 Strictly speaking the satellite-based radiometer measures solar-reflected radiation as a function of the
angles involved and these data are converted to values on a grid.
7 The tropical latitudes (not shown here) actually exhibit a negative correlation with local surface
temperature because clouds (convection) tend to migrate to the hottest points on the surface. This clustering
of clouds at surface hot spots leads to a decrease of outgoing radiation in these regions because the intense
convection leads to high cloud tops that are cool and radiate less than a clear area would. In energy balance
models, this is somewhat compensated by the fact that the albedo is increased where the clouds are more
concentrated.
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(ERBE) data (see Graves et al., 1993). Furthermore, the low-frequency filtered part of
the terrestrial radiation to space (periods between 1 and 10 years) also yield essentially
the same regression slopes. This presumably means that the relationship between IR
and surface temperature holds for slow climate changes as well as the faster seasonal
cycle (see the intercomparison of GCM results for sensitivity by Cess et al., 1990). It is
important to realize that the relationship between outgoing IR and surface temperature
is not a result of simple radiative-transfer calculations but is an empirical relationship
between the equilibrium ground temperature and the outgoing radiation flux. The
atmospheric column undergoes convective overturning adjustments in establishing the
relationship (see Chapters 3 and 4). Despite the encouraging results just mentioned,
this technique of obtaining the slope of the linear regression line is subject to a variety of
errors. For example, the outgoing radiation from latitude to latitude and/or from season
to season at a point might be very different from that occurring during a secular change
in forcing. Hence, use of the linear infrared radiation rule (attributed to Budyko, 1968;
who, having no satellite data, came upon the rule using radiative-transfer calculations)
may be very convenient in our calculations, but the strict numerical values are not to
be taken literally.
Convective adjustment happens automatically in the atmospheric column because

the shape of the atmospheric profile derived without convection is unstable to over-
turning if the vertical profile of the temperature is determined solely by the radiative
heating and cooling (so-called radiative equilibrium; see Chapter 3). Incidentally, con-
vective adjustment leads to the global average constant lapse rate of about 6.5 K km−1

in the troposphere. Referring to Figure 1.10, if we try to account for the unreflected
239Wm−2 fraction of radiation energy out of 341Wm−2 initially delivered to the top
of the atmosphere (per unit area of the spherical Earth) by the Sun, we find that the
energy flux density bifurcates taking a variety of paths through the Earth–atmosphere
system before the 239Wm−2 is finally returned to space. For example, much of the solar
radiation absorbed by the surface (161Wm−2) is released from and cools the surface by
thermals (or dry convection) and evapotranspiration, which includes the flux of water
vapor from the biosphere. Both processes deposit the heat energy in sensible form in the
atmosphere above, warming it. Huge amounts of energy are radiated from the surface
(396Wm−2), most of which is absorbed in the atmosphere and radiated back down as
well as upward (333Wm−2), rewarming the surface.The sky actually warms our faces as
we stand outside on a hot day. Finally, the heat-induced radiation trickles out the top of
the atmosphere to space.The various components thus come to a statistical equilibrium
(fluctuating, but statistically stationary in time). For the seasonal cycle, the equilibrium
is cyclic and the statistical term for it is cyclostationary. For an EBM example of its use,
see Kim and North (1997).

1.4 Hierarchy of Climate Models

Climatemodels fit into a hierarchy8 that we believe is helpful to understanding the com-
plete system. At the low end of the model hierarchy are the global average planetary

8 One of the earliest and best review papers discussing the hierarchy of climate models is that of Schneider
and Dickinson (1974). Isaac Held makes a strong case for a hierarchical approach in Held (2005).
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models to be discussed in the next chapter. In these global models, the climate consists
of a single variable, the surface temperature. As we will see in the next few chapters,
some global average models will include a vertical dependence, so that the climate con-
sists of a single function of altitude.The hierarchy is topped off by the GCMs. Each long
run can be considered a detailed realization of an artificial climate system including all
the weather-scale fluctuations. In keeping with this view, we might consider a string of
actual data about the Earth’s global average temperature as a single realization taken
from an imaginary ensemble of such realizations.The currently most sophisticated sys-
tem models couple the circulation of the atmosphere with that of the ocean and other
components such as the biosphere and the cryosphere (ice parts such as glaciers, sea
ice, and permafrost). Part way along are the models that omit the slower components
and concentrate on the circulation and thermodynamic indices of the atmosphere. We
will have cause to discuss these models frequently, as they provide artificial realizations
of the faster part of the climate system and they are especially helpful in understanding
the relation of simpler model ideas to the greater system.

1.4.1 General Circulation Models (GCMs)

General Circulation Models (GCMs) have evolved from the numerical weather forecast
models of the 1950s. Those short-range forecasting models have stood the test of time
day in and day out over this period.The upgrading of numerical methods and the imple-
mentation of improved representation of the physical components and mechanisms
have led to steady improvement of their forecasting performance and their ability to
simulate, with reasonable certainty, the evolution ofmostmiddle-latitude storm systems
that are so important in transporting heat and other quantities across latitude circles. In
addition, much of the variability of the climate system originates in these disturbances.
A short-term weather forecast does not depend much on tiny trends of imbalance in

the overall energy balance such as might occur at the top of the atmosphere owing to
solar brightness changes or a trend of CO2 amounting to 0.0014% per day. Not much
happens owing to such an imbalance in a day or two. To make a climate simulation
model, one has to go back to the fundamentals and include accurate radiative trans-
fer modules in the computer code to take these seemingly tiny effects into account.
Over decades, they matter. Today’s models still struggle to properly include aerosols
and clouds in their radiation budgets. These are known problems. There may very well
exist problems we do not yet know about.
Following the pioneering numerical experiment by Phillips (1956) on modeling the

atmosphere’s general circulation with one of the original digital computers, modeling
groups began to respond. The leaders included Kasahara, Washington, Smagorinsky,
Manabe, Arakawa, and Leith (see the book by Donner et al., 2011). The first climate
models in the 1960s were run at mean annual solar distribution over the planet (no sea-
sons) and a surface that was composed of dry land partially covered with moist surface
and an ocean with wet surface. Among many pioneering studies, a particularly influ-
ential one was conducted by Manabe and Wetherald (1975). The model included very
simple geography (land alternating with ocean at 60∘ longitude segments). There were
no seasons and the ocean was a simple wet surface. The vertical structure consisted
of nine layers and the horizontal resolution (grid-box size) was approximately 500 km.
Water substance in the atmosphere was computed as vapor and was allowed to evap-
orate from the surface when conditions were right, and then carried by the simulated
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Figure 1.12 Time evolution of two runs from a very early general circulation model (GCM) with
different initial conditions (one cold the other warm) by Manabe and Wetherald (1975). The globally
averaged (mass-weighted) temperature of the atmosphere in the two runs eventually settles down to
approximately the same statistical steady state. (Manabe and Wetherald (1975). © American
Meteorological Society. Used with permission.)

winds; the model produced its own precipitation. Relative humidity was computed as
fluxes of water into and out of grid boxes as warranted. Interestingly, the relative humid-
ity near the surface remained rather steady through the integrations of climate change.
The model was initialized in a cold state and a separate run was made with an initial
warm state (Figure 1.12) and both solutions evolved to the same statistical steady state
fluctuating endlessly but essentially randomly about a constant mean; that is, it contin-
ued to fluctuate but the statistics of the fluctuations formed a stationary time series.
Moreover, the latitudinal dependence of the temperature distribution looked qualita-
tively similar to that of the annual average for the planet Earth. Surely, the authors were
pleased with this very remarkable result, and the age of climate simulation was thus
launched.
Emboldened,Manabe andWetherald, and other fledgling GCM groups, proceeded to

double the CO2 in the model atmosphere from 300 to 600 ppm. The resulting globally
averaged surface temperature increased by 2.93∘, a result eerily close to the value of the
most modern simulations nearly 40 years later.The latitudinal and vertical dependences
of the temperature change are given in Figure 1.13. Note the cooling in the stratosphere,
a finding that still holds in simulations from the most recent high-resolution models.
The cooling of the lower stratosphere during CO2-forced warming at the surface is also
a rather simple consideration of energy balances in the vertical layers of the atmosphere
that we will discuss in Chapter 4.

1.4.2 Energy Balance Climate Models

This book focuses on the low end of the climate model hierarchy because it is a good
entry point for those wanting to learn about climate models, but also because the
nomenclature and many concepts introduced at this level apply all the way up the
hierarchy. Our primary focus is the class of so-called EBCMs (sometimes they are
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Figure 1.13 Change of temperature (∘C) after reaching equilibrium from a change due to doubling
CO2, based on the 1975 GCM (same as in the previous figure). The stippled areas indicate negative
changes. Note the appearance of a very interesting phenomenon: the cooling of the lower
stratosphere. (Manabe and Wetherald (1975). © American Meteorological Society. Used with
permission.)

referred to simply as energy balance models or EBMs). EBMs were introduced by
Budyko (1968) and Sellers (1969) independently and they are often justly referred to as
the Budyko–Sellers models. There was also an earlier paper by the astrophysicist (Öpik,
1965) that used an EBMwith ice cover.Their first papers brought to light the possibility
that a modest lowering (a small percentage) of the TSI would lead to an expansion of
the polar ice caps from their present area of a about 5% of the Earth’s surface area to a
complete covering of the planet by an ice sheet. This alarming finding called attention
to the potential fragility of the Earth’s climate and it sparked the explosion of climate
modeling research that followed. At first, the interest was not so much in the effects of
increasing CO2, but with solar brightness changes, the effect of screening of sunlight
by volcanic dust veils, and anthropogenic aerosols. Also, there was the possibility of
explaining the ice ages.
As GCMs began their remarkable ascent, in parallel, EBMs were subjects of experi-

mentation by many groups and individuals. Held and Suarez (1974) studied the Budyko
model and improved on it. Using a method inspired by Chýlek and Coakley (1975),
North (1975a; 1975b) solved analytically the latitude-dependent ice cap model similar
to the Budyko and Sellers versions but with a constant thermal diffusion coefficient.The
stability of the solutions was investigated numerically by Ghil (1976) and Gal-Chen and
Schneider (1976); also, analytically by Cahalan andNorth (1979) andNorth et al. (1979),
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Golitsyn and Mokhov (1978). Many other references can be found in the early review
article by North et al. (1981).
The essence of the EBMs is their conceptual simplicity, despite some of the rather

involved mathematical methods required to solve them. We favor the analytical solu-
tion, not only because it is more elegant but also because such methods often lead to
a deeper understanding. Often in this book and elsewhere in the literature, some less
mathematically inclined readers can grasp the conceptual basis of a model and skip
directly to the graphs that capture the solutions, with the comfort that the curves are
backed up by an analytical or an uncontroversial straightforward numerical solution.
There are many shades to the word “skip” here.

1.4.3 Adjustable Parameters in Phenomenological Models

All EBMs contain empirical parameters such as the slope and intercept of Budyko’s
infrared radiation rule or the thermal diffusion coefficient in latitudinally dependent
models. Asmore independent variables are included, the number of such empirical coef-
ficients increases. The beauty of the approach is that the model’s use of phenomenolog-
ical coefficients keeps the approach close to the large-scale observations. The downside
is that we have departed from first principles, and we cannot know how such a coeffi-
cient might change as the climate changes. In the case of GCMs, the analog is the grid
resolution: as the grid is made finer, or as more physical processes are included, there
is more physical realism, but inevitably more parameters are needed. The values of the
coefficients have to be “tuned” to fit what little data there are. It is often instructive to
“back off” and view the system with less resolution (in its broadest sense).
With EBMs, there are two approaches:

1) Use as few empirical or phenomenological coefficients as possible to see if the main
features of the model are robust. This would be important in early tests of a hypoth-
esis where one is not interested in quantitative results over qualitative features. The
advantage of this approach is to keep the number of free parameters as small as
possible: the idea of parsimony, often discussed in fitting models in the statistical
literature.9 As we proceed in the story, we will try at each stage to tell what value is
added (or lost) by the addition of a new phenomenological parameter.

2) One is interested in quantitative results in, for example, the detection of faint sig-
nals (such as the response of the surface temperature of the Earth to the solar cycle
of brightness). Here one might introduce more than the minimal number of phe-
nomenological parameters in order to establish a base state from which a perturbed
solution is required. In this case, one might sacrifice parsimony of the number of
freely adjustable coefficients in order to obtain the best value of the perturbed climate
as possible within the EBM framework.

Cautionary Note: It is extremely tempting to add to a simple EBM. Do it at extreme
risk. Depending on the problem you are addressing, you might be overfitting, that is,
adding a new parameter which can be adjusted to get whatever result you wish. Such an
addition could “explain” a certain phenomenon, but it is not likely to be unique.

9 For example, see p. 223 of Montgomery et al. (2001).
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1.5 Greenhouse Effect and Modern Climate Change

Thegreenhouse effect has become a prototype of climate change studies. Solar radiation
passes essentially unaltered through the atmosphere to the surface where about half of
it is absorbed. Some absorption also occurs in the atmosphere, warming the local sur-
roundings; in the troposphere, convection spreads this heat energy (enthalpy) from its
top to its bottom. Heat (enthalpy) leaves the surface as infrared radiation, sensible heat
flux (e.g., thermals or dry convection), and latent heat flux (heat that is removed from
the surface by evaporation, then released aloft as sensible heat in cloud formation), all
heating the troposphere. The heated troposphere radiates toward the surface as well as
upward toward outer space.The eventual radiation to space is from colder material than
that at the surface, the rate being that corresponding to a 255K blackbody. The result is
a surface temperature some 30 ∘C above what it would have been for a non-absorbing
atmosphere. The ever-lurking question of what happens as the concentrations of cer-
tain trace gases such as carbon dioxide and methane increase exponentially over the
next century will be discussed in Chapter 4.

1.6 Reading This Book

We expect readers from many disciplines to read or at least peruse this book. The pri-
mary audience is likely to be from the climate science community, which covers many
subfields from meteorology, oceanography, atmospheric chemistry, paleoclimatology,
and other geosciences. But in addition we hope to interest readers from physics, applied
mathematics, statistical sciences, economics, and engineering. The models are rich in
interesting problems,many remaining unsolved.Wehave chosenmostly to exploit prob-
lems in which standard low-level theoretical physics is employed, but there are forays
into stochastic processes and more modern methods. We generally take the method
of old-fashioned mathematical physics and some mathematically inclined readers may
occasionally shudder at our glossing over mathematical technicalities.We hope our sins
of omission lead others to be inspired to clean up after us. In our opinion, the field of
climate science could benefit from the entry of mathematically, statistically, and physi-
cally talented innovators. As you read these chapters, you should find many intriguing
problems to work on.
The following is a summary of the topics with help on what can be skipped on first

reading.
• The book really begins in Chapter 2 in which most of the methods of the rest of the

book are presented in the context of the model for the globally averaged temperature.
In Chapter 2, themean annual temperature of the planet is determined from themost
elementary principles of radiation balance at the top of the atmosphere. We find how
the planetary temperature returns to its equilibrium state if perturbed andwe proceed
to see how it responds to periodic disturbances. We can also see how the variations
of planetary climate can be modeled by taking the fluctuating weather as a driving
force, tickling the more sluggish response of the temperature field. This allows us to
see how anoisy system like climate can be predictable.Wewill also see how the system
responds to external forcings such as imposed imbalances such as changes in the solar
brightness or changes in greenhouse gases.
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• Chapters 3 and 4 can be skipped by many readers as, to some extent, they are a diver-
sion from Chapter 2 and the later chapters. But they explain in some detail a few
idealized models of the vertical structure of the atmosphere (radiative equilibrium
and radiative-convective equilibrium in a gray atmosphere), and how that structure
changes with perturbations. Chapter 4 gives a detailed look at the spectra of infrared
radiation, the heart and soul of the greenhouse effect, without much mathematics.
An online calculator is used to compute the effect of doubling CO2 when no feedback
mechanisms are in play. Then a detailed discussion of feedbacks is presented. Both
of these chapters stand by themselves. Chapter 4 should interest many readers who
might not be interested in other parts of the book, as it purports to show exactly how
the rather subtle greenhouse effect actually works.

• Chapter 5 resumes the study of the surface temperature, but now it considers the lat-
itudinal dependence of the surface temperature as modeled by diffusion of thermal
energy (macroturbulent heat conduction) across latitude belts. As with Chapter 2, it
delves into the aspects of steady-state models. The upshot is a model solution devel-
oped into a series of Legendre polynomials whose coefficients are temperature mode
amplitudes corresponding to decreasing latitudinal space scales. It is shown that a
satisfactory solution involves only the first two Legendre modes, indexed 0 and 2. A
derivation of the poleward transport of heat as a function of latitude is provided with
a comparison with data.

• Chapter 6 extends the previous chapter to incorporate time dependence, including
the seasonal cycle. A derivation of the insolation function is presented, revealing its
dependence on the orbital elements: eccentricity, obliquity, and precession.The inso-
lation and model solutions again involve Legendre polynomial modes. Each thermal
mode has a characteristic decay time scale. Smaller spatial scales lead to shorter time
scales. There is a discussion of a heuristic connection between the random fluctua-
tions of the mid-latitude storm systems and the transport of thermal energy as being
diffusive in ensemble average. Also brief attention is given to numerical techniques.

• Chapter 7 introduces the nonlinear ice-cap feedback mechanism and finds an analyt-
ical solution to it for the one-dimensional models. The examination reveals multiple
solutions for a particular set of external controls (such as solar brightness or CO2
concentration). The nonlinear ice-cap model is a marvelous example of how bifur-
cations (in the popular literature: tipping points) can appear in these simple model
structures. Mathematicians and theoretical physicists might find ways of extending
some of these results.

• Chapter 8 begins a new class of models with two horizontal dimensions. This leap in
dimension is achieved by allowing the local heat capacity of the air–land–ocean col-
umn to have a position dependence over the planet. The effective heat capacity over
ocean (mixed layer) is about two orders of magnitude larger than that over land. Sea
ice cover is somewhere in between.The spherical harmonic basis set is introduced to
span the globe. With essentially no further changes, the model delivers the seasonal
cycle surprisingly accurately over the globe. Because the Earth’s land–sea geography is
so complex (shorelines), one must resort to numerical solutions on the sphere. Read-
ers with less interest in the mathematical details can read the first few pages and skip
to the graphics.

• Chapter 9 extends the previous chapter by introducing white noise forcing to sim-
ulate weather fluctuations. Without any new parameters from the previous chapter,
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the model shows the geographical dependence of the temperature variance. More-
over, even the correlation lengths and their frequency dependence come out of the
solutions. Again, less mathematically inclined readers can read the first pages and
skip to the figures.

• Chapter 10 returns to the problem of how the ocean delays and suppresses the
response to time-dependent forcings, starting with a single mixed-layer slab. More
complicated systems are treated, including slabs below the mixed layer. The problem
of the response to periodic forcing at the surface is solved for vertically diffused heat.

• Thebook ends (Chapters 11 and 12) with a few applications of EBMs. Chapter 11 cov-
ers some estimation problems in climate science, such as the uncertainty of estimating
global averages of surface temperature drawn from a finite number of dispersed point
sources of information and the detection of faint signals in the climate system. In both
cases, the EBMs are used to help understand the procedures involved in the estima-
tion processes. In fact, they fare rather well against their bigger cousins.

• Chapter 12 surveys the use of EBMs in the pursuit of solutions of a variety of paleo-
climate problems. Paleoclimatologists can see how simple EBMs can be used to treat
some of these problems after they peruse the relevant earlier chapters and Chapters
8 and 9. First the faint Sun paradox is considered, then glaciations in deep time (the
late Paleozoic) and the initiation of glaciation on Antarctica and Greenland. Finally,
progress in understanding the glaciations of the Pleistocene is discussed briefly.

1.7 Cautionary Note and Disclaimer

Everyone reading this book should recognize that climatemodels are pretty blunt instru-
ments and this especially holds for EBMs. We should think of the EBMs (others, too)
as analogies to the climate system. They give us insight into the dominant features of
this incredibly complex field of interacting components and help guide us to implement
better models and/or more-relevant observing systems. It should be no surprise that
after 40 years of this endeavor, the sensitivity to climate forcing is not known to better
than about ±50%. All models, no matter how complicated, have adjustable parameters
that are used to fit the climate data we have in our hands. Different models use dif-
ferent parameterizations to do this fitting. Yet when the different models are advanced
into the next century, their solutions for changes diverge from one another alarmingly
(∼ ±50%). Aside from our lack of knowledge of the effects of human intervention (or
lack thereof ) in changing the radiation budget by altering CO2 or aerosol concentra-
tions, the problems seem to be centered on our lack of understanding of the climate
feedback mechanisms, which are discussed in many parts of this book. Often the blame
is placed on the lack of resolution of the numerical grids or lack of inclusion of enough
physical processes. But as soon as a finer grid ormore physical processes are introduced,
evenmore parameters have to be inserted and adjusted to fit almost the same amount of
data.Theprocess of improving themodels often leads to a phenomenon knownby statis-
ticians as overfitting, wherein there are too many adjustable parameters for the number
of available uncorrelated observations. The different GCM simulation groups naturally
use different parameterizations to arrive at their final candidate model to be entered in
the beauty contest. There is a multiplicity of ways to achieve a better goodness of fit.
Different groups achieve their best results in different ways. It is an oversimplification
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to say the whole problem lies in the phenomenological coefficients. For example, there
is freedom to choose exactly which and how many physical processes to include (or
remove) to achieve a better match with available data. When conditions change into
the future, the solutions diverge from one another. The great economist John Maynard
Keynes once said something to the effect that “it is better to have a rough idea of the
truth than a very precise estimate of an untruth.” Another sage (C. E. Leith, a pioneer
in climate modeling and theory) once said something to the effect of “1.1 or 1.0?” “Non-
sense, this is climate science, they are equal to one another.” It is not an excuse to delay
action. As in medical research, decisions have to be made based on incomplete data sets
(sampling errors). We press on sometimes a bit too hurriedly, but the process is surely
self-correcting over time.
A final caution about EBMs. EBMs appear to work for the surface-temperature field.

Some simple versions can be applied for a layered atmosphere or ocean, but the real
value is at the surface where the radiation budget and pretty simple statistical and ther-
modynamical considerations dominate. As the focus lifts above the surface (or boundary
layer), a host of new mechanisms are invoked. For example, at the surface, the response
to a stimulating heating imbalance decays away in space a finite distance from the source.
But above the boundary layer, such a disturbance can result in changes of local buoy-
ancy and wavelike anomalies in density will radiate away from the source.We have been
removed from the EBM world. We end these introductory remarks by cautioning the
reader that our simple models are always highly idealized and might be best thought of
as analogs to the climate system. “They are to be taken seriously, but not literally.”10

Notes on Further Reading

Excellent descriptions of the climate system can be found in such books as Hartmann
(2016) and Neelin (2011). The stratosphere and above are described in Andrews et al.
(1987). Elementary accounts of the oceans are given in Picard andEmery (1990).The role
of the Sun in the Earth’s climate is nicely described at a beginners level in the book by
Haigh andCargill (2015).The articles in the volume edited byArcher and Pierrehumbert
(2010) provide further historical material.

Exercises

1.1 Compute the emitted radiation of a black body whose temperature is 300K in
Wm−2. What is the total emitted radiation for a spherical black body the size of
the Earth (radius 6000 km)?

1.2 Compute the same based on the graph in Figure 1.11.

1.3 In Figure 1.10, the energy rates are balanced at the top of the atmosphere. Show
that a similar balance occurs at the surface.

10 This statement was made to GRN by the late Stephen Schneider in the 1980s.
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1.4 Find the heat capacity at constant pressure for a columnof air at sea level. Take the
air pressure to be 105 Pa, leading to a mass of P∕g ≈ 104 kg. Now use the specific
heat of dry air (≈ 1000 J kg−1 K−1). Finally, if the whole column of air responds
“rigidly” (i.e., the change is independent of altitude). Using the value of the radia-
tion damping coefficient B, compute the relaxation time in days (andmonths) for
this case.Would it be reasonable to use a mass less than that of the whole column
for the diurnal cycle or the seasonal cycle?

1.5 Using the same approach as in the previous problem, compute the effective heat
capacity and radiative relaxation time in months for a column of mixed layer of
ocean water that has a depth of 50m. How might this contrast in heat capacities
for a square meter over land versus over ocean affect the seasonal cycle of the
surface temperature field?

1.6 A certain random process has an autocorrelation function, 𝜌(𝜏) = e−a𝜏 . What is
the autocorrelation time of this process? How does your answer compare with the
so-called e-folding scale of the autocorrelation function, that is, 𝛼𝜏e-folding = 1?

1.7 A very simple climate model is defined by the energy balance

C dT(t)
dt

= −BT(t),

where C and B are constants, t is time, and T(t) is the temperature departure
from equilibrium. Find the time-dependent solution for a given initial condition,
T(0) = T0.

1.8 In the presence of some noise, the simple climate model in Problem 1.7 can be
written as

C dT(t)
dt

+ BT(t) = f (t),

where f (t) is assumed to be a normally distributed white noise time series with
mean zero and variance 𝜎2. Write the equation above as an AR1 process, that is,

Tn = 𝜆Tn−1 + 𝛾Zn−1, Tn = T(nΔt), Zn ∼ N(0, 1)

by determining the coefficients 𝜆 and 𝛾 .

1.9 Let Xi ∼ N(𝜇, 𝜎2), i = 1, 2,… ,N , be random variables with an identical normal
distributionwithmean𝜇 and variance𝜎2. Show thatY = (X1 + X2 + · · · + XN )∕N
has a normal distribution with mean 𝜇 and standard deviation 𝜎∕

√
N .

1.10 According to Planck’s law, radiation is determined by

B
𝜈
(T) = 2h𝜈3

c2(eh𝜈∕kT − 1)
, 𝜈 = c∕𝜆,
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where 𝜆 is wavelength, 𝜈 is frequency, and the constant values are defined by

h = 6.626 × 10−34 J s ∶ Planck’s constant,
k = 1.381 × 10−23 J K−1 ∶ Boltzmann’s constant,
c = 2.990 × 108 m s−1 ∶ speed of light.

(The program “planck.f” can be found at the authors’ (KYK) website.)
(a) Compute the radiation function for the wavelength range of (0, 2.0 μm) using

temperature, 5770, 6000, and 7000 K. Plot the radiation functions in one plot.
(b) According to Wien’s law, the wavelength at which the maximum radiation is

reached is given by

𝜆maxT = const.

This constant is approximately 2900. Plot, the location of maximum radiation
for the four temperature in part (a).

1.11 For this exercise, use the following files: t2m.data (2 m air temperature),
insol.data (solar irradiance at TOA), nswt.data (net shortwave radiation at TOA),
nsws.data (net shortwave radiation at surface), nlwt.data (net longwave radiation
at TOA), and nlws.data (net longwave radiation at surface). These are the global
averaged values for the period 1979–2015 (total of 813 points) derived from the
NCEP/NCAR reanalysis product. (These files can be found at the author’s (KYK)
website.)
(a) Calculate the average albedo of the Earth.
(b) How much of the solar irradiance reaches the surface?
(c) What is the linear relationship between 2m air temperature and net longwave

radiation at the top of atmosphere (TOA)?
(d) What is the linear relationship between 2m air temperature and net longwave

radiation at the surface? Explain your result.
(e) How does the mean magnitude of net longwave radiation at TOA compare

with the mean magnitude of net shortwave radiation at TOA? How do you
interpret the result?
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2

Global Average Models

2.1 Temperature and Heat Balance

Most textbooks on elementary physics and astronomy introduce estimates of the
temperatures of the planets using the equality of the planet’s solar absorption and its
emitted radiation flux densities.1 Usually, the textbook starts with the planet radiating
as a blackbody according to the Stefan–Boltzmann T4 law.
This is a convenient way to introduce this remarkable law. Stefan was the first to

find the T4 dependence by observations in the laboratory and Boltzmann was the first
to show that it follows theoretically from the second law of thermodynamics. Many,
especially older, modern physics textbooks tell this story (e.g., Richtmyer et al., 1955). It
is noted in the planetary climate problem that the temperature is not that of the planet’s
surface, but some “radiation” or “emission” temperature associated with an emission
level usually located high in the planet’s atmosphere (for the Earth, this altitude is of
the order of 5–10 km). One can use a simple model to explain why this is necessary.
Some gases in the atmosphere are good absorbers/emitters of infrared radiation, but
essentially transparent in the visible. Since the air substance is cooler aloft, the radiation
temperature is lower than the surface temperature.
For the Earth, a linear rule devised by Budyko (1968) and his colleagues, based

on detailed radiative transfer calculations (of that era), provides a reasonably good
approximation relating the outgoing infrared radiation to the surface temperature at
least over the thermal range of interest. This rule is the basis of much of the modeling
in this book. These models are called energy balance climate models (EBCMs), or
simply energy balance models (EBMs, which we will adopt). Some authors have called
them heat balance models, and they are also routinely referred to as “toy climate
models.” This class of climate models milks as much as possible about the climate
solely on the basis of the thermodynamics in the problem, pretty much ignoring
atmospheric dynamics except in very gross parameterizations.The success of the EBMs
is remarkable if we do not ask too much of them. The beauty of the models is the few
phenomenological (adjustable, based on data) parameters utilized in their construction.

1 A flux density is the rate of passage of a vector quantity through an infinitesimal window whose area is
projected onto the direction perpendicular to the flow. For example, 𝜌v is mass flux density, where 𝜌 is
density and v is the vector wind. The units are those of the quantity (e.g., kg m−2 s−1). Other examples
include moisture flux density, q𝜌v, where q is the water vapor per kilogram of air; momentum flux density,
𝜌vivj, where i and j are Cartesian components; and radiation energy flux density, Ecr̂, where r̂ is a unit vector
along the direction of the beam, c is the velocity of light, and E is the radiation energy per unit volume.

Energy Balance Climate Models, First Edition. Gerald R. North and Kwang-Yul Kim.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.



28 2 Global Average Models

Hence, themodels are kept very close to observational information.They fall into a class
known as semiempirical models or phenomenological models. They are just a peg above
“conceptual” models in the model hierarchy. As with regression analysis in statistics,
one must be careful not to introduce more parameters than absolutely necessary for
the problem at hand – we must be “parsimonious” with our fudge factors.2
The crudest of these models are the globally and seasonally averaged models that are

to be treated in this chapter. We will refer to them as global models. In this case, the
climate of our toy planet consists of only one variable, the global average temperature.
After a couple of chapters on vertical structure,3 we will rejoin in Chapter 5 the study of
the surface temperature with each chapter, then include more detail as we explore just
how far we can go with such a simplified picture of our climate system. For example,
Chapter 5 includes the extension to latitude dependence. Chapter 6 allows for time
dependence, but only for very simplified geographies. Later chapters introduce more
complications such as two horizontal dimensions and simplifiedmodels of fluctuations.
Each chapter then includes more geographical, geometrical, or temporal detail that will
require the addition of more mathematical apparatus. It is hoped that readers can learn
about mathematical methods in physics while enjoying the exploration of toy climate
models.

2.1.1 Blackbody Earth

In this chapter, we examine globally and seasonally averaged climate models. We
consider the globally averaged temperature as the “climate” of the planet. If the Earth
were a blackbody with respect to radiation in the infrared portion of the spectrum,
we would expect that the radiation energy per unit time per unit surface area to
space would be given by the Stefan–Boltzmann law, 𝜎SB ⋅ T4

R, where the subscript R
indicates that the temperature is the “radiation temperature” and it is in kelvin; 𝜎SB is
the Stefan–Boltzmann constant, 0.56687 × 10−7 Wm−2K−4. TR is an area average and
it has been assumed that T4

R ≈ T
4
R, where the overline indicates (global) area average.

The global average temperature fluctuates on all timescales, but we want an average of
this in the early parts of this chapter. We imagine a long record or time series of global
averages and we average along the record to get a mean climate.
Alternatively, we could imagine a large number of identical Planet Earths simulta-

neously, but started with randomized initial conditions, and we could average across
their records, a technique called ensemble averaging. Records of the individual identical
planets are called the ensemble members. The ensemble average is implied by TR
throughout this section.
The global average temperature TR is determined by the (long-term) balance of the

rate of solar energy absorbed by the Earth and the rate at which energy is emitted to
space by the Earth–atmosphere system.The amount absorbed per unit time is given by
𝜎
⊙

ap𝜋R2
e , where 𝜎

⊙
is the total solar irradiance (known as the solar constant in older

literature) (≈1360Wm−2), ap is the planetary average coalbedo4 (≈0.70) and Re is the

2 Fudge factors are a slang and sarcastic expression indicating the authors’ distaste for the use of too many
adjustable parameters in modeling. We shall draw attention to these from time to time in this book. See for
example, Montgomery et al. (2001).
3 Some readers only interested in the surface temperature models may wish, after this chapter, to skip
directly to Chapter 5.
4 The coalbedo is 1 minus the albedo.
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Earth’s radius.The amount of energy emitted to space per unit time is the Earth’s surface
area times the Stefan–Boltzmann constant. The balance occurs when the temperature
satisfies

4𝜋R2
e𝜎SBT

4
R = 𝜋R2

e𝜎⊙ap (2.1)

or

TR ≈
(
𝜎
⊙

4
ap

𝜎SB

) 1
4

. (2.2)

Using the values indicated, we compute a value of about 255K for the global average
temperature. As expected, this is well below the measured value of 287K.

2.1.2 Budyko’s Empirical IR Formula

On the basis of radiative transfer estimates, Budyko (1968) suggested the empirical
terrestrial radiation formula

I
.
= A + B ⋅ (T − 273), (2.3)

where the “
.
=” sign means that it is a statistical or regressional relationship, I is the

outgoing radiation to space from the top of the atmosphere inWm−2, T is in kelvins (we
include the −273 in the formula to appear the same as in earlier literature) and A and B
are empirical coefficients that can be computed from real atmospheric conditions or
estimated from satellite data. We shall take them from satellite data to be

A = 218 Wm−2
, (2.4)

B = 1.90 Wm−2 K−1 (2.5)

(see Chapter 1). Figure 2.1 shows a plot of satellite-observed data of infrared radiation
to space for various surface temperatures. These temperature data are collected con-
temporaneously and cospatially with the infrared data coming from different locations
(latitudes) and different seasons.
The values in Figure 2.1a were derived from the data without regard or correction

made for the presence or absence of clouds. In other words, cloud effects are included
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Figure 2.1 Density plots of month-average infrared radiation to space measured by satellite versus the
same month’s surface temperature at the same location. (a) Same as in Figure 1.11, repeated here for
comparison: infrared data density versus surface temperature (∘C) for the whole sky, including cloudy
areas. (b) IR versus T (∘C) pixels (picture elements) for which there are no clouds, hence the label “clear
sky.” (Figure modified from Graves et al. (1993) (© American Geophysical Union, with permission).)
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in some sense. Figure 2.1b had the cloudy pixels (picture elements) removed from the
data set prior to averaging and therefore that graph is labeled “clear sky.”The relationship
in the clear sky data is more linear and exhibits tighter fit to the straight line. The slope
of the “all sky” case is noticeably lower (Graves et al., 1993).
The way these data were used to obtain A and B is crude, and we should be aware

of this as we proceed. Note that a Taylor expansion of the Stefan–Boltzmann formula
about 273K (0 ∘C) gives the first two terms,

ABB = 314.9 Wm−2
, (2.6)

BBB = 4.61 Wm−2 ∘C−1
. (2.7)

Slightly different values are obtained if we choose to expand about T = 255K which is
convenient in some problems. For now, let us take (2.3) literally and proceed, but this
serves as a first reminder to us of the fact that EBMs are in some sense “schematic.”The
global average temperature computed with the empirical values of A and B formulas
instead of the blackbody formula is 16.7 ∘C to be compared with the observed value
of 14.4 ∘C. Why the dramatic improvement over the blackbody calculation? Instead of
radiation to space upwelling directly from the surface, sensible and latent heat, leaves
the surface, warming the air above at the expense of the surface temperature. The air
above consists of slabs of radiatively active substances, these radiating upward toward
space and downward toward the ground. The temperature of the air decreases on the
average as we go vertically (as we will demonstrate in the next chapter), hence the
radiation eventually emitted to space is from colder slabs of matter than the Earth’s
surface. Hence, the radiating temperature is about 255 K but the surface temperature
is some 30 ∘C warmer.

A + B ⋅ (Teq − 273) = Qap; (2.8)

Teq =
Qap − A

B
+ 273 (2.9)

with Q = 𝜎
⊙
∕4.

2.1.3 Climate Sensitivity

It is interesting to ask how the global average temperature Teq(Q) changes if the solar
constant is changed by 1%. We define the sensitivity parameter 𝛽

⊙
by

𝛽
⊙
≡ Q

100
dT
dQ

=
𝜎
⊙

100
dT
d𝜎

⊙

. (2.10)

For the model just presented,

𝛽
IR
⊙

= (A + B ⋅ (T − 273))
100 ⋅ B

=
Qap

100 ⋅ B
, (2.11)

where the superscript, IR, indicates that the model includes only infrared radiative
effects (e.g., ap does not depend on T). The above gives a value of 𝛽IR

⊙
= 1.25∘, which

means that the global average temperature would change ±1.25∘ for a ±1% change in
the solar constant. This formula gives us an idea of how sensititive 𝛽

⊙
is to the value of

B. For example, the blackbody Earth at 15 ∘C gives

𝛽
BB
⊙

= 0.63 K. (2.12)
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Absorbing layers in the atmosphere, as indicated by the reduced value of B or the
decreased slope of the IR(T) versus T in Figure 2.1, lead to an increased sensitivity to
external forcing.

2.1.4 Climate Sensitivity and Carbon Dioxide

Amore modern definition of equilibrium climate sensitivity (when the system is started
in equilibrium or steady state and we wait for equilibrium to be established after the
perturbation is applied) is for the doubling of CO2 in the atmosphere. We can modify
the parameter A in Budyko’s radiation formula (2.3) to account for changes in CO2
concentration. For this, we refer to a paper by Myhre et al. (1998) in which accurate
radiation transfer computer codes are used to calculate the change in outgoing IR due
to changes in CO2 concentration. We may write the formula as

ΔA = −5.35 ln
[CO2]t

[CO2]0
(Wm−2), (2.13)

where the subscripts denote the value of CO2 concentration at time t and at time 0.5
For doubling CO2 we find ΔA = −5.35 ln 2 = −3.71Wm−2.
The perturbation to the energy balance leads to the response

(ΔT)2×CO2
= −ΔA

B
∼ 2.0 K. (2.14)

Note that if we had used BBB, the value for the blackbody Earth, the sensitivity would
be less than half this value. This is because there are positive feedbacks in the model
that uses Budyko’s formula for the IR. These feedback mechanisms cause the empiri-
cal value of B to be smaller for the Budyko global-average model. The most obvious of
them is the water vapor. Water vapor is a strong greenhouse gas. As we increase the
temperature, the absolute humidity of the air in the column will increase. This auto-
matic operation of the climate system results in the positive feedback.6 Note that the
coefficients in Budyko’s IR formula are computed using monthly averages. During the
month-long averaging period, the atmospheric column has time to equilibrate the water
vapor in the column. The subject of climate feedbacks will be introduced in Section 2.4
and discussed in more detail in Chapter 6.
The Myhre et al. (1998) paper gives simple forms for other greenhouse gases such as

CH4 and N2O.

2.2 Time Dependence

When a time-dependent imbalance (a forcing) exists between the incoming and outgo-
ing rates of energy, we can expect the surface temperature field to respond. The rate of

5 Myhre et al. (1998), use a very accurate “line-by-line” (or high spectral resolution) radiative transfer code
to obtain this formula.
6 Current general circulation models (GCMs) used in the Intergovernmental Panel on Climate Change
(IPCC) Report Number 5 (2013) suggest that the average value across about 20 GCMs from about that many
countries currently operating around the world is about (ΔT)2×CO2

= 3.0 ± 1.5 K. This means that our EBM
is somewhat less sensitive than most GCMs. This discrepancy is likely to be related to a difference in
feedback mechanisms, probably involving the treatment of clouds. Such an active mechanism is outside the
purview of EBMs.
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change of temperature is proportional to the difference in incoming and outgoing flux
densities.

C dT
dt

= −A − B ⋅ (T − 273) + Qap, (2.15)

where C is the effective heat capacity per unit area on the sphere.7 Let us take our toy
planet to consist of a uniform thin shell whose radius is that of the Earth. The thickness
and composition of the shell will determine the heat capacity per unit area over the
sphere. A closer analog to the Earth is one where the heat capacity depends strongly
on position. The effective heat capacity per square meter is pretty small over land for
seasonal or monthly timescales because the heat energy does not penetrate much into
the solid ground and large over ocean surfaces. This is primarily because the ocean’s
stirring in the first few tens of meters mixes the heat energy to those depths and leads
to a relatively large heat capacity. In the later chapters, we will see how the ocean’s
heat capacity depends on the Fourier frequency composition of the forcing. At longer
timescales of disturbance, the heat penetrates even further below and the adjustment
time is elongated even more.
For the present class of idealized problems, we will take the value of C to be uniform

over the Earth and to have a value equal to about half the heat capacity at constant
pressure of the column of dry air over a square meter (∼ 107J K−1 ÷ 2). Later we will see
why this seems to be an appropriate value over land and we will also consider the case
of a mixed-layer ocean that has a value of C about 60 times larger.
Now imagine that the temperature T(t = 0) is out of equilibrium. The differential

equation (2.15) has a solution

T(t) = Teq + (T(0) − Teq)e−t∕𝜏0 (2.16)

that can be demonstrated by substitution into (2.15).The decay time constant is given by
𝜏0 = C∕B.The perturbed climate relaxes to the equilibrium solutionwith a decay time of
𝜏0, which, for the all-land planet, is about 2.5 × 107s ≈ 30 days as shown in Figure 2.2. It
is easy to see why this happens. If T(0) > Teq, there is more radiation energy flux density
to space than the amount absorbed from the Sun.This means that A + B ⋅ (T − 273)will
be greater than Qap and therefore the planet will cool until equilibrium is established. If
the initial condition is that T(0) < Teq, the temperature will increase until the inequality
no longer holds. Note that the adjusting temperature does not overshoot the equilibrium
mark.This property is characteristic of EBMs. It would not happen above the boundary
layer of the atmosphere.

2.2.1 Frequency Response of Global Climate

A standard tool in analyzing a linear system8 is to consider the response of the system to
periodic forcing. In particular, if we force the systemwith a sinusoidal heating variation,
we want to know the amplitude and phase of the sinusoidal response as a function of
forcing frequency and the other parameters in the system. At low frequencies, we should
see the response expected from a static perturbation, but at higher frequencies, we can
expect a diminished amplitude of response.

7 The heat capacity is the proportionality constant between a heat influx
ΔH(t) = (−A − B ⋅ (T − 273) + Qap)Δt over the interval Δt and the response CΔT(t).
8 A linear system is one for which the response amplitude is a linear function of the strength of the forcing.
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Figure 2.2 Exponential decay of an anomaly of the global average temperature as computed by a
globally and annually averaged EBM. The initial temperature is T(0) = 40 ∘C and the equilibrium
temperature is Teq = 14 ∘C as indicated by the horizontal dashed line. The solid curve is the solution as
a function of time for the case 𝜏0 = 30 days.

Suppose the global system is forced away from its equilibrium by a sinusoidal heat
source

H(t) = Hf cos 2𝜋ft , (2.17)

where H(t) is the amount of the heating perturbation per unit area per unit time and f
is the frequency of the oscillating heat source. For intuitive purposes, we could think of
the Sun as a variable star.Wewill follow a familiar engineering practice of using complex
notation for the oscillating quantities. This is facilitated by the notation

H(t) = Re{Hf ei2𝜋ft}, (2.18)

where Re{⋅} indicates the real part of the complex number in the curly brackets. The
departure of the temperature from its static equilibrium value satisfies the forced linear
equation

C
dTf (t)
dt

+ BTf(t) = Hf ei2𝜋ft
. (2.19)

We proceed by insertion of the trial solution Tf (t) = Tf ei2𝜋ft , with Tf a complex number
whose complex phase indicates the phase lag of the climate behind the forcing, and it
does not depend on time. After canceling the exponentials, we have as a solution

Tf =
Hf∕B

2𝜋if 𝜏0 + 1
, (2.20)

where 𝜏0 = C∕B as before is the relaxation time of the system.Themodulus or amplitude
of the response at frequency f is

|Tf | = Hf∕B√
1 + (2𝜋f 𝜏0)2

; (2.21)
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and the phase lag (in radians) is given by

𝜙f = arctan 2𝜋f 𝜏0. (2.22)

These relations are shown in Figure 2.3. Note that in the high-frequency limit,

f ≫ 1∕2𝜋𝜏0; (2.23)

the phase lag approaches 𝜋∕2 (one quarter cycle).
Note that in the foregoing, we found a solution that worked, but what about the initial

condition? That part (the so-called particular or transient solution) will decay away as
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Figure 2.3 Response of global average
temperature to sinusoidal forcing at
different frequencies. (a) Phase lag 𝜙f
as a function of frequency of the driver
amplitude (|Tf|∕|Tmax

f
|). The phase lag

approaches 𝜋∕2 (quarter cycle) as the
frequency is increased to high levels
compared to 1∕𝜏0. (b) The amplitude
squared of the response, normalized to
unity at f = 0. (c) Amplitude squared
plotted (log–log) versus frequency, f in
units of 𝜏−1

0 . The log–log slope of −2
for high frequencies indicates an f−2

power law regime. For an all-land
planet, 𝜏0 is about a month and for an
all-ocean planet 𝜏0 is a few years.
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T(0)e−t∕𝜏0 just as in the previous section. After several multiples of 𝜏0, the solution will
converge on the periodic one studied above.

2.2.2 Forcing with Noise

Now consider the situation where the system is forced from its static steady state by a
noise term.9 This is quite plausible considering that fluctuations of such quantities as
weather and/or cloudiness as well as other perturbations to the energy budget occur at
timescales that are short compared to 𝜏0:

𝜏Z ≪ 𝜏0. (2.24)

The equation governing the response is given by

C dT(t)
dt

+ BT(t) = Z(t), (2.25)

where Z(t) is a random or stochastic function with a short autocorrelation time
(compared to 𝜏0). In this chapter, we will adopt a discrete time variable rather
than a continuous one in order to avoid certain difficulties at short timescales (see,
e.g., Gardiner, 1985). The time variable will then be t0, t1,… , tN−1, with intervals
tn+1 − tn = Δt. Reformulating the differential equation above in (approximate) finite
difference form,10 we have

Tn+1 = 𝜆Tn + zn; (2.26)

where Tn = T(tn), 𝜆 = 1 − Δt∕𝜏0, and zn = Δt F(tn)∕C. We may specify that 0 ≤ 𝜆 < 1.
Note that zn depends explicitly on Δt; a fact that leads to difficulties in the continuous
time formulation. We specify that the forcing zn have zero ensemble mean11 and that it
is white noise (no correlation from one time step to the next):

⟨zn⟩ = 0; (2.27)
⟨znzm⟩ = 𝜎

2
z 𝛿mn; (2.28)

where 𝛿mn = 1, if n = m, otherwise zero.12 First consider the homogeneous problem
with zn ≡ 0. In this case,

Th
n+1 = 𝜆Th

n . (2.29)

We can try the solution Th
n = an, where the superscript h denotes the homogeneous

solution, after which we find that a = 𝜆. For a given initial condition T0, we find

Th
n = T0𝜆

n
, (2.30)

9 The idea of noise forcing in a climate model comes from Hasselmann (1976).
10 Begin with the difference equation: ΔT

Δt
= − Tn

𝜏0
+ Fn. Rearranging, we have

Tn+1 =
(
1 − Δt

𝜏0

)
Tn + FnΔt.

Then set 𝜆 = 1 − Δt
𝜏0
.

11 The ensemble mean or expectation value of a random variable (called a variate, denoted by r) is denoted
by the angle brackets ⟨r⟩ (if the range of the sum includes m).
12 The symbol 𝛿nm is the Kronecker delta symbol, 𝛿mn = 0 if m ≠ n and 𝛿mn = 1 if m = n. It has the useful
property that

∑
nfn𝛿nm = fm.
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with

𝜆 = 1 − Δt
𝜏0

. (2.31)

We can use the formula xn = exp (n ln x) to form

𝜆
n = exp

{[
ln

(
1 − Δt

𝜏0

)]
n
}

≈ exp
(
−nΔt

𝜏0

)
= exp

(
− t
𝜏0

)
; (2.32)

where we used the formula ln (1 + 𝜖) ≈ 𝜖 for small 𝜖 (i.e.,Δt∕𝜏0 ≪ 1) to obtain the result

lim
Δt→0

Th
n = T0e−t∕𝜏0 . (2.33)

The last formula for the decay of an anomaly agreeswith our earlier result derived from
the continuous form of the differential equation. Next consider the nonhomogeneous
case (particular solution). We introduce the integrating factor 1∕𝜆n+1:

Tn+1

𝜆n+1 −
Tn

𝜆n =
zn

𝜆n+1 . (2.34)

The left-hand side has the interesting form xn+1 − xn. If we sum this difference over the
index n from 0 to N − 1, we obtain

(x1 − x0) + (x2 − x1) + (x3 − x2) + · · · + (xN − xN−1) = xN − x0, (2.35)

where xn = Tn∕𝜆n, as all the intermediate terms cancel out. Now summing from 0 to
N − 1 on (2.34) and afterward multiplying through by 𝜆N yields

TN = T0𝜆
N + 𝜆

N
N−1∑
n=0

zn𝜆
−(n+1)

. (2.36)

It is comforting to note that the ensemble average of a decaying anomaly ⟨TN⟩ is precisely
the same as the homogeneous solution decay T0𝜆

N , as ⟨zn⟩ = 0.
Next consider the properties of the temperature for N ≫ 𝜏0∕Δt (this means that all

knowledge of initial conditions, T0, has died away); we refer to this limit as climatology.
First we note that ⟨TN⟩ → 0, as we have subtracted the mean (Teq) already. We say that
TN is the departure from the mean or the anomaly. The lagged covariance is then

⟨TN TN+l⟩ = 𝜆
2N+l

N−1∑
n=0

N+l−1∑
m=0

⟨znzm⟩𝜆−(m+1)−(n+1)

= 𝜆
2N+l 𝜎2

z

𝜆2

N−1∑
n=0

(𝜆−2)n

= 𝜆
2N+l 𝜎2

z

𝜆2
1 − 𝜆−2N

1 − 𝜆−2
; (2.37)

where, in the last formula, we used the summation formula for a finite-length geometric
series

N−1∑
n=0

xn = 1 − xN

1 − x
. (2.38)

The formula (2.37) may be simplified for large N as

⟨TN TN+l⟩ ⇒ 𝜎
2
ss𝜆

l (climatology limit) (2.39)
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with

𝜎
2
ss =

𝜎2
z

1 − 𝜆2
=

𝜎2
z

1 − (1 − Δt
𝜏0
)2

≈
𝜎2

z

1 − 1 + 2Δt
𝜏0

, (2.40)

≈
𝜏0

2Δt
𝜎
2
z (2.41)

which is the variance in the limit of climatology. Hence, we find that the temperature
approaches a stationary time series for N ≫ 𝜏0∕Δt and the lagged autocorrelation

𝜌(m) ≡ ⟨TN TN+m⟩
𝜎
2
ss

(2.42)

= 𝜆
m
, (2.43)

where m = 𝜏∕Δt is the lag in discrete steps of interval Δt. The formula for 𝜌(m) takes
exactly the same form as the decay of an anomaly where 𝜏 is the lag in temporal units.
For small Δt, we can write

(
1 − Δt

𝜏0

) 𝜏

Δt

⇒ e−
𝜏

𝜏0 , as Δt → 0. (2.44)

This last statement suggests that in the limit of small steps, the decay of the lagged
autocorrelation is exponentially decaying. The lagged autocorrelation (as opposed to
the lagged covariance) is particularly interesting as it does not depend on the strength
(or variance) of the noise forcing, zn, in this linear problem.

2.2.3 Predictability from Initial Conditions

Consider the evolution of a state T0 = T(0) toward climatology. To what extent can we
say with any certainty what a single member of the ensemble of evolving trajectories will
be? A reasonable way of expressing our knowledge of the confinement of an individual
trajectory to a narrow band of possibilities is to look at the spreading of a bundle of
trajectories as they leave a common initial state (North and Cahalan, 1981). Next we
examine this issue for the simple linear model with noise forcing.
We seek the variance about the ensemble mean at step N . This can be written as

⟨(TN − T0𝜆
N )2⟩ = 𝜆

2N
N−1∑
n=0

N−1∑
m=0

⟨znzm⟩𝜆−(n+1)𝜆−(m+1)
. (2.45)

Using the relation (2.28), we can collapse the double sum to a single one:

⟨(TN − T0𝜆
N )2⟩ = 𝜆

2N
𝜎
2
z

N−1∑
n=0

𝜆
−2n−2 = 𝜆

2N−2
𝜎
2
z

N−1∑
n=0

(𝜆−2)n
. (2.46)

The last sum is of a finite geometrical series, see (2.38). This allows us to rearrange the
terms to

⟨(TN − T0𝜆
N )2⟩ = 𝜎2

z

1 − 𝜆2
(1 − 𝜆

2N ); (2.47)

leading to our final result:

⟨(TN − T0𝜆
N )2⟩ = 𝜎

2
ss(1 − 𝜆

2N ). (2.48)
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The last formula says that the spread of the bundle of subensemble members with initial
conditionT = T0 is initially zero, but as time evolves from the initial condition, it fills out
to a constant width (see Figures 2.4 and 2.5).The thickness of the bundle is a measure of
predictability conditioned on the value of the initial anomaly. The negative of the loga-
rithmof the ratio of thewidth of the bundle at time stepN to thewidth in the climatology
range (N → ∞) is related to the information content of the bundle as it evolves (Leung
and North, 1990; see also Kleeman, 2011; Roulston and Smith, 2002).The characteristic
time for filling out the thickness toward its saturation value occurs in half the time as the
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Figure 2.4 Heavy Line: The decay of mean climate (global average temperature) toward the
steady-state climate from an anamoly of two times the standard deviation. Dashed curves enclose
shading of the envelope of the standard deviation of individual ensemble members about the mean
decay curve. Units in the vertical are in standard deviations of the reference climate. Units on the
abscissa are autocorrelation times for the reference climate, in time steps N. In this case, 𝜏0 = 0.5. The
Δt for the numerical integration was 𝜏0∕500 = 0.5∕500 = 1∕1000.
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Figure 2.5 (a) Two realizations (ensemble members) of numerically computed decays from an initial
anomaly of two times the standard deviation of climatology. The model parameters are the same as in
the previous figure. (b) A single realization with T0 = 0. The model parameters are the same as in the
previous figure and (a). Note the widening of the envelope of extremes as time progresses. This is
equivalent to the loss of predictability with evolution to climatology.
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characteristic time of decay toward equilibrium13 (climatological mean) ≈ 𝜏0. This has
implications about the decay of information in a forecast. Figure 2.4 shows the decay of
the subensemblemean solutionwith an envelope that denotes the spread (𝜎Tn

) of the pdf
(probability density function) about themean. Figure 2.5a shows a bundle (or ensemble)
of two realizations computed numerically evolving from the same initial condition (in
this specific example, two times the climate standard deviations from themean climate).
Figure 2.5b shows a single realization where the initial condition is T0 = 0. Here we
see the width of the envelope of variability grow from zero to saturation just as in the
previous figures. We can see from the figures that we have information in two ways:

1. The departure of the ensemble mean from zero; if this separation is large, we can see
a large signal-to-noise ratio.

2. The thickness of the bundle is also a measure of how well the spread is constrained.

When the spread is narrow we know a lot, when it is wider, we know less. We see from
the formula and the figures that the spread quickly fills out (in half a decay time) to the
climatological width. Note that in Figure 2.5b there is predictability even though the
signal-to-noise ratio is zero. A measure of predictability or a “skill score” needs to take
both features into account. For example, once the decay to the climatological mean and
its width is that of climatology, we say the predictability is zero.
In forecasting, there are three simple methods:

1. Persistence: tomorrow will be the same as today.
2. Climatology: tomorrow will be that of the climatological long-term average.
3. Finally, there is damped persistence where one exponentially relaxes the initial

condition toward the climatological mean with the relevant time constant. This
latter is the case for the autoregressive model of order one that we have developed
for the global average climate model (van den Dool, 2007).

The skill of modern forecasting tools is measured relative to a reference no-brainer
forecast, which can be any of the three simple methods listed. Perhaps the best measure
of predictability is the transinformation (see Leung and North, 1990 and Kleeman, 2011
for derivations). A formula for the transinformation for the simple AR1 process of this
section is given by

I(T ,T0) = −1
2
log (1 − e−2t∕𝜏0). (2.49)

This function starts at +∞ at t =0, and decays toward zero with a characteristic time of
𝜏0∕2.

2.2.4 Probability Density of the Temperature

We ask about the pdf for the temperature generated by the stochastic model (2.26)
whose solution is given by (2.36). Recall that zn in (2.36) is to be a normally distributed
variate with individual zn independent of one another. Since TN is a linear combination
of these normally distributed variables, it can be shown14 that it is itself a normally

13 This make use of 𝜆2n → e−2t∕𝜏0 as t and 𝜏0 become large compared to Δt.
14 The proof follows quickly from use of the moment generating function: M(t) = ⟨etX⟩, for details see any
book on probability theory, for example, Bulmer (1979).
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distributed variate. In fact, if the series in (2.36) has many terms, then TN will be
normally distributed even if zn were not normally distributed by the central limit
theorem (assuming the variance is finite; an example that does not qualify is the Cauchy
distribution f (T) ∝ 1∕(1 + T2)).

2.3 Spectral Analysis

We have now examined the response of the simple linear system to sinusoidal forcing
in time, and we have also seen how the system behaves under noise forcing. There is a
connection to these two subjects. First consider the noise, zn; n = … ,−2,−1, 0, 1, 2,….
We can transform the noise time series into its Fourier representation:

z̃(f ) =
∞∑

n=−∞
zn e2𝜋ifn

. (2.50)

The inverse of the Fourier transformation is

zn = ∫
fN

−fN

z̃(f )e−2𝜋ifn df , (2.51)

where fN = 1∕2N is the highest frequency resolved by the discrete time steps.This is like
an ordinary Fourier series that is discrete in frequency and continuous in time, except
that here the continuous function is in the frequency domain and the discrete is in the
time domain. The function z̃(f ) is continuous on the finite interval (−fN , fN ), while the
time sequence is discrete and runs in integer steps from minus infinity to plus infinity.
The basis functions for the decomposition are

𝜓n(f ) = e2𝜋ifn
. (2.52)

These basis functions are orthonormal15:

∫
1
2

− 1
2

𝜓
∗
n (f )𝜓m(f )df = 𝛿nm. (2.53)

The completeness relation16 is
∞∑

n=−∞
𝜓

∗
n (f )𝜓n(f ′) = 𝛿(f − f ′), (2.54)

where 𝛿(f − f ′) is the Dirac delta function.17

15 Orthonormal means that the functions are orthogonal as in the next equation and they are normalized
such that the coefficient of 𝛿nm in the next equation is unity.
16 Completeness implies that there are enough orthogonal functions in the basis to represent the functions
of interest as a series of components. An example of completeness is when one wishes to expand a vector in
three dimensions: it takes all three basis vectors i, j, and k to represent a vector in three dimensions. It can be
shown that the completeness relation guarantees that there are enough basis vectors. However, rigorous
proof of completeness for an arbitrary basis set is usually rather difficult. Fortunately, this is not a problem
for the basis sets we will encounter in this book.
17 The Dirac delta function is a sharp spike at the location where its argument is zero. It has the remarkable
property ∫ b

a f (x)𝛿(x − x′) dx = f (x′); x′ ∈ (a, b). It can be represented in many different ways, but a simple

one is 𝛿(x) = limn→∞
1

n𝜋

(
sin nx

x

)2
.
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2.3.1 White Noise Spectral Density

Now take the zn to be an infinitely long discrete sequence of independent normally
distributed random variables (so-called white noise) with mean zero (⟨zn⟩ = 0) and
standard deviation unity (𝜎z = 1). Consider the transform (2.50) as a continuous
random function on the interval (− 1

2
,
1
2
). Clearly, ⟨z̃( f )⟩ = 0 as ⟨zn⟩ is also zero. The

covariance of z̃( f ) can be computed by taking ⟨z̃∗( f )z̃( f ′)⟩ using (2.51). The steps
are a little tricky here because the math needs to take into consideration singularity
problems, but we can quote the result

⟨z̃∗(f )z̃(f ′)⟩ = 𝜎
2
z 𝛿(f − f ′). (2.55)

The delta function whose argument is ( f − f ′) tells us that the covariance of z̃( f ) with
itself evaluated at a different frequency vanishes; as f → f ′, the covariance becomes
infinite. This turns out to be a useful and powerful property of all stationary time series
(those for which the mean and variance are constant with n and the lagged covariance
depends only on lag). The coefficient of the delta function, 𝜎2

z is called the spectral
density for white noise. Note that it is a constant function of frequency, a key property
of white noise.

2.3.2 Spectral Density and Lagged Correlation

The spectral density, ST ( f ), of a stationary process T(t) is defined as

⟨T̃∗( f )T̃( f ′)⟩ ≡ ST ( f )𝛿( f − f ′). (2.56)

We can now find an interesting relationship between the spectral density and the lagged
covariance function, R𝓁 , where 𝓁 is the lag:

R𝓁 = ⟨TnTn−𝓁⟩. (2.57)

Note that as the time series is stationary, R𝓁 does not depend on n.
We start by taking the Fourier transform (abbreviated FT) of R𝓁 :

∞∑
𝓁=−∞

⟨TnTn−𝓁⟩e2𝜋i𝓁f
. (2.58)

Next insert the FT for each quantity inside the brackets:
∑
𝓁

∫ ∫ ⟨T̃∗( f ′)T̃( f ′′)⟩ exp (2𝜋i(nf ′ − nf ′′ − 𝓁f ′ + 𝓁f ′′))df ′ df ′′ , (2.59)

and each integral runs from − 1
2
to 1

2
. Next carry out the sum over 𝓁:

∫ ∫ ⟨T̃∗( f ′)T̃( f ′′)⟩ exp (2𝜋in( f ′ + f ′′))𝛿( f − f ′′)df ′ df ′′ . (2.60)

Now do the integral over f ′′:

∫ ⟨T̃∗( f ′)T̃( f )⟩e2𝜋in(f −f ′) df ′ . (2.61)

Now substitute the definition of the spectral density (2.56):

∫ ST ( f )𝛿( f − f ′)e2𝜋in(f −f ′) df ′ = ST ( f ). (2.62)
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This last is our desired result, that is, the FT of the lagged correlation coefficient is the
spectral density for a stationary process. A similar result holds for the continuous time
case. This important result for the spectral density can be stated as follows:

ST (f ) =
∞∑

𝓁=−∞
⟨TnTn−𝓁⟩e2𝜋i𝓁f

. (2.63)

2.3.3 AR1 Climate Model Spectral Density

We can now examine the spectral density of the noise-forced linear global climate
model. Here we are interested in the large N limit after the initial conditions have
decayed away and we are left with the climatological regime. As a starting point, we
recall that the AR1 climate model has as its lagged correlation coefficient R𝓁 = 𝜆|𝓁|
(see (2.43)). The magnitude sign in the exponent indicates that the lagged correlation
function is an even function of 𝓁 (plus or minus lags lead to the same correlation). To
obtain the spectral density, we must take the FT (following Papoulis, 1984, p. 290):

∞∑
𝓁=−∞

𝜆
|𝓁| e2𝜋if 𝓁 =

−1∑
𝓁=−∞

𝜆
−𝓁 e2𝜋if 𝓁 +

∞∑
𝓁=0

𝜆
𝓁 e2𝜋if 𝓁 (2.64)

=
−1∑

𝓁=−∞
(𝜆−1 e2𝜋if )𝓁 +

∞∑
𝓁=0

(𝜆 e2𝜋ifl)𝓁 . (2.65)

Now use the formulas for geometric series:
−1∑

n=−∞
xn = 1

x − 1
= 1

𝜆−1e2𝜋if − 1
, (2.66)

∞∑
n=0

𝑤
n = 1

1 −𝑤
= 1

1 − 𝜆e2𝜋if
. (2.67)

Next add them up and rearrange:

ST (f ) =
1 − 𝜆2

1 + 𝜆2 − 2𝜆 cos 2𝜋f
. (2.68)

The last formula is graphed in Figure 2.6. Compare this with the continuous time
case (Figure 2.3c). The minus 2 power law holds over a wide range, but fails at high
frequencies near f = 1

2
, the highest frequency available in a discrete time (Δt = 1)

model. This highest available frequency is actually 1
2Δt

more generally. It is called the
Nyquist frequency. See Papoulis (1984), or most any book on time series analysis,
especially one including spectral analysis.

2.3.4 Continuous Time Case

In the continuous time case, we have the governing equation (2.25). To solve this
equation, we must use the continuous Fourier transform on the infinite domain in
space as well as time. Some properties of continuous white noise follow:

⟨Z(t)⟩ = 0; ⟨Z(t)Z(t′)⟩ = 𝜎
2
Z𝛿(t − t′); (2.69)
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Figure 2.6 Log–log graph of the spectral density for a discrete time AR1 climate model. In this model,
the EBM is modeled as an AR1 process. In this case, the global climate is driven by a white noise
forcing, imitating weather. Note that the EBM filters out the high frequencies of the driving force (white
noise) which has a flat spectrum.

the Fourier transformation (FT) of the time series is

T̃( f ) = ∫
∞

−∞
T(t)e2𝜋ift dt; (2.70)

and the inverse FT:

T(t) = ∫
∞

−∞
T̃( f )e−2𝜋ift df . (2.71)

Applying the FT to (2.25), we find

(B − 2𝜋ifC)T̃( f ) = Z̃( f ). (2.72)

Rearranging and taking expectations:

⟨T̃∗( f )T̃( f ′)⟩ = 𝜎
2
Z𝛿( f − f ′)

B2 + 4𝜋2C2f f ′
. (2.73)

Finally,

ST ( f ) =
𝜎
2
Z∕B2

1 + 4𝜋2𝜏20 f 2
. (2.74)

Finally, you can now see the reason for plotting in Figure 2.3c. The spectral density
for the global average temperature (in this model) is the response to white noise. White
noise delivers sinusoidal forcing at all frequencies with the same amplitude, but random
phases (remember the white noise has a flat spectral density or variance spectrum).
The spectral density tells us how the variance of the fluctuations is distributed across
frequencies. It is intuitively appealing to think of the response spectral density to be
a “filtered” product of the white noise spectrum by the filter (1 + 4𝜋2𝜏20 f 2)−1. This
filter removes the high-frequency components of the noise forcing being fed into the
response.
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2.4 Nonlinear Global Model

2.4.1 Ice-Albedo Feedback

Water vapor feedback is probably the most important feedback mechanism for the
global climate.18 There are several others including cloud feedback and lapse rate
feedback. Another important one is the ice-albedo feedback mechanism.We envision a
zonally symmetric ice cap centered at the North Pole.When the polar ice sheets expand,
they cause the planet to be more reflective to sunlight, thereby reducing ap. In fact, to
“close” the system we make the coalbedo just a function of global temperature, ap(T).
This leads us to the nonlinear energy balance equationwith only one dependent variable:

C dT(t)
dt

= −A − B ⋅ (T(t) − 273) + Qap(T(t)). (2.75)

Equilibrium solutions occur when the left-hand side is set to zero.

A + B ⋅ (Teq − 273) = Qap(Teq). (2.76)

What are reasonable forms for ap(T)? For largeT , the coalbedowill be that of an ice-free
Earth and therefore it will have a value of about 0.70, whereas, when the planetary
average temperature is below freezing, the planet will be iced over and its coalbedo will
be close to 0.35. A convenient way to parameterize such a function is with the hyperbolic
tangent, which is unity for large argument and minus unity for large negative argument.

ap(T) = ai +
1
2
(af − ai)(1 + tanh 𝛾(T − Tref)), (2.77)

where Tref is the transition temperature from ice albedo to ice-free albedo, ai is the
coalbedo for ice-covered surface, af for an ice-free surface, and 𝛾 is a parameter that
controls how steep the transition is in going from the ice-covered range to the ice-free
range. Figure 2.7 shows a graph of ap(T) for several values of 𝛾 .
The energy balance (2.76) is a nonlinear transcendental equation whose roots give

the solutions Teq. A convenient way to proceed is to solve the equation for Q and find
the values of Teq that correspond to these values of solar constant.

Q = (A + B ⋅ (Teq − 273))∕ap(Teq). (2.78)

One can find the roots of this equation by plotting

A + B ⋅ (T − 273) and Qap(T − 273)

as functions of T on the same graph (Figure 2.8). The intersections of these curves
are the steady-state solutions satisfying the energy balance equation. Note that as A is
reduced (analogous to increases in greenhouse gases), the intercept of the straight line
is reduced, making the temperature corresponding to the uppermost root increase.
Similarly, increasing the total solar irradiance Q causes the dashed curve to be amplified
and again the temperature of the uppermost root to increase. As the solar constant
is decreased, roots I and II merge together at a critical point and there remains only
one root corresponding to the ice-covered Earth. Similarly if A is increased (equivalent

18 The definition of equilibrium climate sensitivity is slightly ambiguous because the different feedback
mechanisms can have very different timescales. For example, water vapor feedback is usually associated with
weather timescales (<1 month), while glacial ice feedback may take centuries to equilibrate.
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Figure 2.7 Three coalbedo models ap(T), each with a different “abruptness” of the sensitivity of ice
extent to T shown as a function of global average temperature. The solid line represents a very abrupt
transition to total ice cover, while the others are less abrupt. The abruptness is controlled by the
parameter 𝛾 . The steepest curve is for 𝛾 = 1, the intermediate case is 𝛾 = 0.2, and the weakest case is
for 𝛾 = 0.1.
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Figure 2.8 The steady-state solutions can be found by plotting A + B(T − 273) (the straight line)
versus Qap(T − 273) (the curved, dashed line). The three roots, I, II, and III are indicated by the
intersections of the two curves where steady state occurs. Root I corresponds (roughly) to the present
climate, root II is an intermediate (shown in the text to be unstable), and root III is a snowball Earth,
completely ice covered.

to lowering the concentration of a greenhouse gas), the same thing happens with a
resulting snowball Earth.
A solution curve is plotted in Figure 2.9 as a function of the control parameter Q. This

graph is called the operating curve. Note that with the nonlinear model, the situation is
muchmore complicated (and interesting) than in the simple linear case.There are three
solutions for a fixed value of Q over a small range, labeled I–III. Solution I corresponds
roughly to the present climate of the Earth, while III corresponds to an ice-covered
planet (the so-called deep-freeze solution). The intermediate solution, II, is strange, as
it has the peculiar property that the global temperature decreases as the solar constant
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Figure 2.9 A plot of Q = 𝜎
⊙
∕4 versus T for the nonlinear model (curved line), called the operating

curve. The vertical dashed line is the present value of Q. Roots I, II, and III represent steady-state
climates. The uppermost root I corresponds roughly to the present climate, and the lowest root III is an
ice-covered planet solution. Values of the constants are A = 218 W m−2, B = 1.90 W m−2 K−1, ai = 0.70,
ai = 0.38, and 𝛾 = 1. The intermediate partially ice-covered planet solution has the peculiar property
that as the Sun is brightened, the planet becomes cooler. Note that if we start on branch III and
increase the TSI (Q(Teq), we have to go all the way to nearly 500 W m−2 before we get to a jump up to
the ice-free planet (branch I). Then we have to slip back down to our present climate. This is a problem
called the faint Sun paradox. Another problem is that if we start at the present climate I and lower the
TSI or equivalently encounter a mega-volcano that keeps on erupting and screening sunlight, we
could drop to the dreaded snowball Earth!

is increased (increasing the solar constant is equivalent to shifting the dashed line to
the right). This oddity is resolved in the next section.
Can you imagine how Mikhail Budyko and/or William Sellers might have felt when

they (independently) discovered this bizarre behavior that if the solar constant is
lowered just a few percentage points, the planet might ice over? Their simultaneous
discoveries came in the late 1960s, based on one-dimensional climate models that we
will treat in Chapters 5 and 7. In the present chapter, we see that such exotic effects can
even be found in the simplest of EBCMs.

2.4.2 Linear Stability Analysis: A Slope/Stability Theorem

Consider a climate whose equilibrium temperature Teq is a solution of (2.76), corre-
sponding to a certain value of the solar parameter Q0. Let the initial condition be away
from equilibrium, T(0) ≠ Teq. The time dependence of the temperature will be an
evolving solution of (2.75). We denote the temperature of the perturbed state as

T(t) = Teq + 𝛿T(t). (2.79)
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For the rest of this section, we consider 𝛿T(t) to be small so that second orders (in
powers of 𝛿T) and higher can be neglected compared to the first order. Then

C d
dt

𝛿T(t) ≈ [−B + Qa′
p(Teq)]𝛿T(t). (2.80)

An alternative expression to that in the brackets can be found by differentiating the
expression defining the equilibrium condition (2.76) with respect to Q (considering Q
to be a function of Teq; i.e., the functional dependence is the operating curve):

−ap
dQ
dTeq

= [−B + Qa′
p(Teq)], (2.81)

which allows us to write
d
dt

𝛿T(t) = −𝜆eq𝛿T(t); (2.82)

where

𝜆eq =
ap(Teq)

C
dQ
dTeq

. (2.83)

The solution to this homogeneous linear problem is

𝛿T(t) = 𝛿T(0)e−𝜆eqt
. (2.84)

Positive 𝜆eq leads to solutions that decay to the local equilibrium solution. Similarly,
negative 𝜆eq leads to unstable solutions that run away from the local equilibrium
solution exponentially.19 The only factor in the definition of 𝜆eq that can change sign
is the slope dQ∕dTeq of the operating curve. If the local slope is positive, the solution
at that point will be stable, otherwise it will be unstable. This result is known as the
slope-stability theorem.

2.4.3 Relaxation Time and Sensitivity

Another interesting point to be made here is that the size of 𝜆eq determines the
relaxation time for the linearized model including ice-albedo feedback. When dTeq∕dQ
is large (e.g., near the doubling-back point or bifurcation point), the relaxation time
(=1∕𝜆eq) will be long. Similarly, a linearized model forced by noise near a bifurcation
will have large climate variance and long autocorrelation times (also =1∕𝜆eq). In fact,
we have

T = 1∕𝜆eq. (2.85)

The latter is an important property as it relates the autocorrelation time T of the
present fluctuating climate to its sensitivity

T = 100C
ap(Teq)Q0

𝛽
⊙
, (2.86)

where 𝛽
⊙
is the sensitivity parameter (2.4), a result that is independent of the variance

or “strength” of the forcing noise, 𝜎2
F .This tells us that themore sensitive the climate, the

longer will be its response time and the longer will be its autocorrelation time. Turned

19 This elegant proof was transmitted to author GRN by Robert Dickinson in a letter ca. 1976.
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Figure 2.10 Schematic of an operating curve with a bifurcation where the slope → ∞. The amplitude
of the fluctuations increases and the autocorrelation time (same as the relaxation time for simple
models) becomes larger as one approaches the bifurcation. (Crowley and North (1988). Reproduced
with permission of AAAS.)

around, we find that the longer the characteristic time, the more sensitive the climate is
to external perturbations.Moreover, if the forcing is held fixed (weather-induced noise),
the amplitude will increase for an increasing sensitivity. The aforementioned relation is
a special case of the so-called fluctuation–dissipation theorem (Leith, 1975; North et al.,
1993). Figure 2.10 shows a schematic of such a march toward the bifurcation as the total
solar irradiance is decreased. A final note is that there is nothing special here about the
linear IR formula. It could have had a form I(T) and our results would still hold with the
substitution B = dI∕dT .

2.4.4 Finite Amplitude Stability Analysis

In some cases, such as in the zero and one-dimensional models, one can carry the
stability analysis even further by constructing a potential function or Lyapunov function
for the problem; that is, we can find a function F(T) called the potential function
such that the time derivative of the temperature is proportional to its gradient in the
temperature coordinate:

dT
dt

= − 1
C

dF
dT

. (2.87)

For the zero-dimensional model, we can find the potential function by direct integration
(see North et al., 1979):

F(T) = AT + 1
2

BT2 − Q∫
T

0
ap(T ′) dT ′

. (2.88)

This potential function for global-averaged models is sketched in Figure 2.11.
A useful property of the potential function is that it is always decreasing along solution
trajectories as the climate relaxes after a perturbation. This is easily demonstrated
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Figure 2.11 The potential function for the global model. The extrema represent equilibrium climates.
The value of 𝛾 in this figure is 0.9 in order to deepen the minimum (as an aid in visualization) at I;
otherwise, the parameter values are the same. Steady-state solutions at minima are stable (or
metastable, meaning they may eventually be unstable for large enough flexions as in I). The extremum
at II is unstable as is shown in the text.

(using the chain rule and the potential function):

dF
dt

= dF
dT

dT
dt

= −C
(
dT
dt

)2

. (2.89)

The significance of the last step is that one can conduct a qualitative analysis of the
stability problem even for finite-amplitude perturbations. Relative minima correspond
to stable solutions and relative maxima correspond to unstable solutions, as is easily
verified by considering a small perturbation away from such extrema. One learns how
large a finite perturbation needs to be to push the systemover the hill II in Figure 2.11 out
of the shallow minimum I representing the present climate and into the deep minimum
III corresponding to the deep freeze.Wewill leave to later chapters the question of noise
forcing the nonlinear systems. One can be tantalized, however, by the possibility that
noise forcing can eventually kick a solution fluctuating about I in the figure over the hill
at II and into the deep freeze. How long does this take for reasonable noise forcing?

2.4.5 Potential Function and Noise Forcing

Equation (2.25) can be written as
dT
dt

+ 1
C

dF
dT

= 𝜎ZZ(t), (2.90)

a form known as a Langevin equation (e.g., Gardiner, 1985). The variance of the noise
is normalized as follows:

⟨Z(t)Z(t′)⟩ = 𝜎
2
Z𝛿(t − t′). (2.91)

Physically, this system is the same as the (one-dimensional) equation of motion of a
particle being disturbed by noise with T replaced by the particle’s velocity. This is the
analogy with Brownianmotion when the potential function F(T) is a quadratic function
of T (i.e., it is the drag force on the particle and it is proportional to T). When the
potential function has a cup-shaped minimum as in Figure 2.11, and near a particular
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minimum, the particle (climate state) is trapped if the noise is not too strong. If the
potential function can be locally approximated by a parabola, the state will be a random
variable that is normally distributed as was argued for the Langevin equation earlier in
this chapter. To the extent that the neighborhood of the minimum is skewed, we can
expect non-normal statistics for the temperature random variable.
To go further with this class of problems, one must turn to some fancy methods.

One approach makes use of the Fokker–Planck equation (FPE) (e.g., Hasselmann,1976;
Gardiner, 1985).20 We will state some results with at best hueristic proofs (see Gardiner,
1985, for more complete discussions). The FPE is a governing equation for the pdf as
it evolves with time. A few examples for the linear system are shown in Figures 2.4
and 2.5 for the case in which F(T) is parabolic, which occurs when the Langevin
equation is linear. In solving those equations, we found the trajectories for individual
ensemble members and studied their statistical properties. We were able to deduce that
if the noise forcing is normally distributed, the solutions are also normally distributed
about the decaying relaxation curve. We were also able to deduce that the bundle of
subensemble members saturated at the width of climatology.
The FPE provides a means to examine the time evolution of a pdf directly instead of

looking at individual ensemble members. Suppose the PDF is given by f (T , t) and at all
times

∫
∞

−∞
f (T , t) dT = 1, for all time. (2.92)

The theory applies when the ensemble members satisfy Langevin equation:
dT
dt

= g(T) + h(T)Z(t), (2.93)

where, in our particular linear model case, g(T) = − T
𝜏0
and h(T) = 𝜎Z

C
.

But what about the case of the nonlinear model with noise forcing represented by
(2.90)? The FPE reads as follows:

∂f
∂t

= − ∂
∂T

(g(T)f (T , t)) + 1
2

∂2

∂T2
(h2(T)f (T , t)). (2.94)

The factor g(T) is called the drift coefficient and h(T) is known as the diffusion coefficient.
The first governs the motion of the center of the distribution as it shifts with time, while
the second causes the ensemble members to diffuse apart from one another. Consider
the linear-noise-forced climate model first. Then g(T) = T

𝜏0
and h(T) = 𝜎Z

C
. In the linear

case, the FPE reads as

∂f
∂t

= 1
𝜏0

∂
∂T

Tf (T , t) +
𝜎
2
Z

2C2
∂2

∂T2
f (T , t). (2.95)

First, consider the steady state, that is, ∂f
∂t

= 0.The steady-state solution is labeled fss(T).
Then we can integrate once to obtain

BTfss(T) +
𝜎
2
Z

2C
dfss
dT

= constant. (2.96)

20 Hasselmann (1976) is probably the first to mention the FPE in connection with the climate problem.
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Take the constant to be zero. As we will see presently, this is equivalent to taking the
origin to be at Tss = 0 and centered at the minimum of fss(T). We have df0

dT
|||T=Tss

= 0.
Now divide through by f0 and multiply through by dT :

dfss
fss

= − 2C2

𝜎
2
Z𝜏0

T dT . (2.97)

Finally, integrating and rearranging, we have

fss(T) = K e
− C2

𝜎
2
Z 𝜏0

T2

. (2.98)

This tells us that the steady-state solution for the FPE is just the normal distribution.
Earlier in this chapter, we studied the case of the noise-forced global model in

which an ensemble of trajectories evolve from a sharp initial condition (refer again to
Figures 2.4 and 2.5). The probability density distribution function for this initial state is

f (T , t = 0) = 𝛿(T − Tinit). (2.99)

As the distribution evolves, the mean (and mode) value of f (T , t) drifts toward T = Tss,
the steady-state mean, and the variance inflates slowly to 𝜎ss, the steady-state or
climatological variance.The steady-state distribution has variance= 𝜏0𝜎

2
Z∕(2C2). This is

very reminiscent of the thermalization of a collection of molecules as they relax toward
the Maxwell–Boltzmann distribution of molecular velocities in the kinetic theory of
gases. In the same vein, one thinks of the entropy of such an ensemble in going from
a state of very high information content to one approaching its maximum value. In
the case of climate prediction, it is information that is lost as the ensemble slowly
relaxes toward climatology where there is no predictive power (or information content)
remaining. Climatology here refers to no information in terms of relative entropies.
The problem becomes more interesting when the potential function is not simply

quadratic. For example, consider the upper minimum in the potential function F(T)
in Figure 2.11. A Langevin equation of this potential function would be nonlinear and
it opens questions about how long such a state can remain trapped in the shallow bowl
identified with the present climate. How largemust the variance of the noise be and how
long would it take to cause the climate state to jump out of the upper minimum and fall
into the dreaded “deep freeze”?This problem is similar to the problem of tunneling that
is famous in quantum theory for explaining α-particle radioactivity.
There is a large literature on the FPE in physics (this book may be among the few to

mention it in the climate science literature). The equation is generally hard to solve for
nontrivial cases, so the investigator must resort to numerical methods. It is comforting
that most analyses of large-scale temperatures are normally distributed, suggesting that
we are not near an ugly threshold, but theremay be cases in dynamical meteorology that
one is near the threshold for a so-called catastrophe (e.g., the phenomenon of blocking).
The mathematics of stochastic processes is difficult because of the mathematical

pathologies associated with white noise at small intervals. We have skirted around
these by using continuous time descriptions only when such singularities are absent
or unimportant. These peculiar problems are of no interest in climate because the
white noise in question has a finite autocorrelation time (few days). We also avoided
the problems by using discrete steps in the time domain such as monthly or annual
averages.
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2.4.6 Relation to Critical Opalescence

Critical Opalescence refers to a phenomenon observed in phase transitions. It was
first explained by the Polish physicist in Smolochowski (1906). As a system is near a
critical point such as droplets about to freeze spontaneously at −40 ∘C, fluctuations
that are large in amplitude and in spatial scale occur as the system is gradually taken
over by the bifurcation in Gibbs energy at the point of freezing. The Gibbs energy
function looks somewhat like in Figure 2.11 (see Figure 9.3 in Callen, 1985). When
this happens, the two minima in Figure 2.11 merge together forming a very broad
minimum before merging into a single minimum. The system in the intermediate
state just at the bifurcation will exhibit large fluctuations. There are many laboratory
illustrations in video form of critical opalescence that can be viewed on the Internet.
The term opalescence comes from the reflected light that suddenly flashes just at the
phase transition. Another historical note is that in 1910, Einstein published a paper on
the subject related to the effect of the blue sky being the result of fluctuations high in
the atmosphere that are necessary for the blue color to be observed below. The point
here is that as a control parameter leads to the solution approaching a bifurcation,
fluctuations become very large. The phase transition is very similar to the bifurcation
encountered in the ice cap model. See the schematic in Figure 2.10.

2.5 Summary

This chapter has been about an idealized planet whose climate is described by a single
number, its temperature T . The equilibrium temperature is determined by the balance
of radiation absorbed from the Sun and that emitted by the Earth to space. Radiation
to space is taken to be a linear function of the surface temperature that turns out to
be a pretty good approximation over the range of interest. Climate forcing in this case
means an action that disturbs the balance of radiation at the top of the atmosphere. If
the climate is disturbed and then left free, it will return exponentially to equilibrium (or
more precisely, steady state) with a time constant 𝜏0 that is about 30 days if the Earth
were all-land and perhaps a few years if the Earth were covered by a mixed-layer only
ocean.The equilibrium sensitivity of climate can be defined as the change of temperature
for a change of 1% in the total solar irradiance or for more commonly a doubling of CO2.
The doubling experimentmust be carried out from a steady state to the new steady state.
For an all-land or all mixed-layer ocean planet this adjustment to the new steady state is
comparable to the autocorrelation or relaxation time. For the real planet, the deep ocean
coupling and its timescale(s) have to be reckoned with.
Since weather fluctuations are of timescale of a few days, they can be considered

white noise in the energy balance wherein the shortest timescale operating for an
all-land planet is about 1 month. This order-of-magnitude gap in timescales allows
us to ignore many details of the weather’s influence on the statistics of large-scale
climate fluctuations. When we introduce white noise in the energy balance, we can find
solutions to the linear problem that turn out to be the familiar first-order autoregressive
(AR1) models. All the properties such as the autocorrelation time, spectral density, and
predictability characteristics can be derived in simple forms. The relaxation time and
the autocorrelation times are the same, 𝜏0. Equilibrium climate sensitivity and variance
are proportional to the relaxation time, 𝜏0.
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Some nonlinear global models with ice cap feedback can be solved analytically.
In this case, three distinct solution branches are found as a function of the control
parameter, the total solar irradiance. One corresponds to the present climate, another
is an ice-covered or “snowball” Earth, and a third is intermediate. The latter proves to
be unstable as the slope of that branch is negative, violating the stability criterion of the
slope stability theorem, which will be proved in Chapter 7. The nonlinear model can
also be studied analytically for finite amplitude anomalies by introducing a potential
function.The FPE is introduced and discussed briefly as a means of solving for the time
dependence of the probability distribution of an anomaly in nonlinear models.

Suggestions for Further Reading

Chapter 3 of Pierrehumbert (2011) emphasizes physics in a comprehensive discussion
of global average models for both the Earth and the other planets. Percival and Walden
(1993) present a complete picture of Fourier spectral analysis. Mathematical methods
are covered in Arfken and Weber (2005). Papoulis (1984) covers random variables as
needed by electrical engineers (and climate scientists).
Fourier analysis is a beautiful subject only touched upon in the most operational way

in this book. The books by Körner (1989) and Gasquet andWitomski (1991) do not cut
corners as we have done so many times in this text. These books cover the convergence
properties of Fourier series and their cousins (Legendre, Hermite, etc.) and in so doing
take us through some of the darkest and deepest corners of mathematical analysis and
the role of Fourier analysis in the great history of analysis. Körner’s index contains no
entry for delta function, G & W only refer to Dirac’s impulse function. Neither book
needs delta functions for their proofs. Some say “the operational methods work well
until they don’t.”
Information theory is covered in the books by Kullback (1968) and Cover andThomas

(1991).

Exercises

2.1 Linearize the Stefan–Boltzmann law in the form
𝜎SBT4

R
.
= A + B(TR − 288),

where 𝜎SB is the Stefan–Boltzmann constant and TR is the radiation temperature
in kelvins. Compare the resulting A and B with those in (2.4) and (2.5).

2.2 (a) Assuming that the Earth is a black body, what would be the equilibrium tem-
perature of the Earth for the current value of solar irradiance?

(b) Show that 𝛽BB = 0.70 at the equilibrium temperature in part (a).

2.3 Show that the solution of

C dT
dt

+ A + B(T − 273) = Qap

is given by
T(t) = Teq + (T(0) − Teq)e−t∕𝜏

, 𝜏 = C∕B,
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where Teq is the equilibrium temperature, that is, dTeq∕dt = 0. Determine the
equilibrium temperature Teq.

2.4 Let us consider a simple one-dimensional EBM in the form

C dT
dt

+ BT = Z(t),

where Z(t) is a white noise time series with variance 𝜎2
Z . Show via Fourier trans-

form (FT) of the governing equation that T̃(f ), the Fourier transform of T(t), is
given in the form

(B − i2𝜋fC)T̃( f ) = Z̃( f ),

and the spectral density function of T(t) is given by

ST (f ) =
𝜎
2
Z∕B2

1 + 4𝜋2𝜏2f 2
, 𝜏 = C∕B.

2.5 Let us consider a one-dimensional nonlinear EBM:

C dT
dt

= −A − B(T − 273) + Qap,

where the coalbedo ap(T) is a function of T .
(a) Show that a small perturbation from equilibrium temperature 𝛿T = T − Teq

satisfies the linearized equation

C d
dt

𝛿T ≈ [−B + Qa′
p(Teq)]𝛿T ,

where the equilibrium temperature satisfies

A + B(Teq − 273) = Qap(Teq).

(b) Show from the result in part (a) that the following equations should be satisfied:

−ap(Teq)
dQ
dTeq

= −B + Qa′
p(Teq).

Further, show that

d
dt

𝛿T = −𝜆eq𝛿T , 𝜆eq =
ap(Teq)

C
dQ
dTeq

.

2.6 Let us consider a one-dimensional linear energy balance equation

C dT
dt

+ A + BT = Qap(T).

(a) Show that
dT
dt

= − 1
C

dF
dT
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yields an implicit solution (potential function)

F(T) = AT + 1
2

BT2 − Q∫
T

0
ap(T ′)dT ′

.

(b) Show that

dF
dt

= −C
(
dT
dt

)2

.

What does this relationship mean in terms of the temporal change in the
potential function?
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3

Radiation and Vertical Structure

Theaverage vertical temperature profile of the atmosphere in steady state depends upon
a balance of the divergence of the energy flux densities at each level of the atmosphere.
In this chapter,1 we deal with global averages, but we retain the vertical dimension, z.
In vector notation, the divergence of a vector flux density in one (vertical) dimension is
simply

∇ ⋅ F⃗ =
dFz

dz
. (3.1)

Flux density F⃗(r) is a vector indicating the direction andmagnitude of the flow of energy
per unit area perpendicular to that same vector in units Wm−2. The energy flux densi-
ties include those of radiative transfer and of flux densities of sensible and latent heat by
vertical atmospheric motions. Because of the global averaging, there is no contribution
from horizontal transports. Basic to the derivation of this profile is an understanding of
the interaction of radiation with matter.This chapter is no substitute for a full course on
radiative transfer, and readers are referred to themany excellent books on the subject for
detailed treatments (see the suggested reading notes at the end of the chapter). Here we
restrict ourselves to introducing and developing the minimal tools needed for the solu-
tion of a few key problems, that, although very idealized, provide a heuristic basis for the
establishment of the vertical temperature profile. In particular, we focus our attention on
a cloudless air column in which no scattering or absorption of visible and near infrared
radiation energy occurs in the atmosphere. All interaction of the Earth–atmosphere sys-
tem with sunlight occurs at the ground where some radiation energy is absorbed and
some is reflected out to space. We will further specify that in the infrared portion of the
electromagnetic spectrum (wavelengths in the range 0.750–200 μm), the atmosphere is
gray; that is, its absorptivity (and equivalently2 its emissivity) are constant as a function
of radiation frequency. We will find that this is sufficient detail to recover many qual-
itative aspects of the vertical structure of the Earth’s atmosphere in radiative balance.
Our simple model in this chapter ignores clouds and their interaction with radiation
altogether.

1 Reminder: This chapter is not essential for understanding the EBMs of Chapters 5 onwards. The same is
true of Chapter 4.
2 The emissivity of a substance and its absorptivity for an infinitesimal segment of a given wavelength band
are equal (Kirchoff’s law). If the equality were not true, there would be a violation of the laws of
thermodynamics.

Energy Balance Climate Models, First Edition. Gerald R. North and Kwang-Yul Kim.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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These idealizations will lead us to an analytical solution for the vertical structure of
an atmosphere in radiative equilibrium3 with no vertical or horizontal transfer of heat
by conduction, air motions, or release of latent heat. This solution has some peculiar
features that compel us to delve further into the problem. In particular, the solution has
a much warmer ground temperature (the skin temperature) than the air just above it.
This discontinuity means the layer near the ground is unstable. Moreover, even if there
were no discontinuity at the ground, the air temperature profile is unstable to convec-
tion, as its lapse rate exceeds the criterion for instability. We could partially mend the
problem by adding vertical heat conduction that can be used to remove the disconti-
nuity at the surface, but it does not cure the instability to convection. Finally, we pass
to the radiative–convective models for a gray atmosphere. In our treatment, the effects
of convection are imitated by an instantaneous adjustment of the temperature profile
to a standard lapse rate such that no unstable layers are allowed to develop. The most
delicate aspect in solving these models is application of the boundary conditions at the
top and bottom of the atmosphere.
As with the many models treated in this book, the gray, nonscattering atmosphere

should be thought of as a heuristic model of the vertical temperature profile because
its differences from the real world are significant. Nevertheless, it constitutes a first
approximation to a real atmosphere and it has the advantage of a step-by-step approach
revealing, one at a time, the complications that must be dealt with in a more realistic
simulation. Many more realistic radiative–convective models have been developed and
studied numerically over the last four decades (e.g., the classic papers by Ramanathan
and Coakley, 1978; and Manabe and Strickler, 1964). These radiative–convective
models attempt to account for atmospheric scattering and absorption of solar radia-
tion, cloud interactions with the radiation field, and the wavelength dependencies of
the interactions. Such models have been the source of many important preliminary
estimates of the effects of various greenhouse gases and aerosol particles. In addition,
radiative–convective models serve as a laboratory for the development and testing of
fast numerical schemes that eventually wind up in general circulation models.

3.1 Radiance and Radiation Flux Density

The study of radiative transfer in a continuous medium requires careful definitions of
the fields involved. The concepts of radiance and radiant energy flux density will be
introduced first along with some explicit representations using an approximation due to
Eddington. Our treatment is not complete; only the concepts needed in solving for the
radiative transfer parameters and the temperature profile in a plane-parallel stratified
medium transparent to visible radiation and gray4 in the infrared will be introduced.

3 Radiative equilibrium refers to an atmospheric state in which the temperature profile is determined by the
flow of radiant energy and, in turn, the radiative energy flux densities are determined by the atmosphere’s
freely adaptable thermal and (usually fixed) composition profile. The profiles of radiation energy flux
densities and temperature are in steady state. In this model, there are no vertical flux densities of
atmospheric sensible or latent heat content.
4 Gray atmosphere in the infrared means that there is no wavelength dependence on the absorption
(=emissivity) in that portion of the electromagnetic wave spectrum.
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Figure 3.1 Illustration of the spectral radiance of radiation. Radiation is emitted from the point P in a
cone in the direction ŝ that passes through the plane surface that is normal to the unit vector n̂. The
center of the cone as it intersects the plane surface is the tip of the position vector r⃗. At the point r⃗
where beam’s center passes through the plane, its cross section is a circle whose area is d2A

⊥
. The

beam intersects the plane surface with an ellipse of area d2A. The solid angle subtended by the cone is
d2Ω. Both points P and r⃗ are referred to a fixed origin not shown.

Following Wendisch and Yang (2012), consider a pencil of radiation passing through
a surface depicted in Figure 3.1 as the flat plane (but it need not be flat, merely flat in
an infinitesimal neighborhood of the intersecting beam). We may think of the plane as
being at the disposal of the observer, that is, it may be oriented at the will of the observer.
The diverging beam intersects the plane with infinitesimal elliptical area d2A centered at
the point r⃗, where ŝ is a unit vector pointing along the direction of the pencil of radiation.
The infinitesimal area d2A

⊥
is perpendicular to the beam.This beam is emerging from a

point P (whose tail is at the origin and whose head is located at the point in question) far
away (P is below and at the tail of the vector r⃗ in Figure 3.1) from the head of the vector
r⃗. The intersection of the beam and the surface is d2A. Note that d2A ≥ d2A

⊥
. In fact,

(ŝ ⋅ n̂)d2A = cos 𝜃 d2A = d2A
⊥
. (3.2)

The radiation is emitted from the originating point P into a cone of solid angle d2Ω.
When it reaches the surface denoted by its perpendicular unit vector n̂, it fills the
infinitesimal area d2A on the surface.
The energy passing through the infinitesimal area of the surface d2A along the unit

vector ŝ into the cone corresponding to d2Ω in time dt in the frequency interval (𝜈, 𝜈 +
d𝜈) is

d6E
𝜈
= I

𝜈
(P, ŝ) cos 𝜃 d2A d2Ω d𝜈 dt. (3.3)

The coefficient I
𝜈
(P, ŝ) is called the spectral radiance.5 It represents the radiant energy

per unit area of the reference surface per unit of solid angle into which it is sent. The
qualifier spectral refers to the fact that it is per unit frequency 𝜈 of the source. We can
think of it as

I
𝜈
(P, ŝ) =

d6E
𝜈

cos 𝜃 d2A d2Ω d𝜈 dt
. (3.4)

Note the importance of the factor cos 𝜃. It indicates the radiant energy per unit area
of the surface, not of the beam’s cross-sectional area perpendicular to the beam.

5 In some books, the term intensity is used instead of radiance.
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For definiteness, consider an example form for I
𝜈
(P, ŝ) that is especially useful in

vertically stratified atmospheres (use Cartesian coordinates, (x, y, z), z upward, with
corresponding unit vectors (î, ĵ, k̂)):

IEdd
𝜈

(P, ŝ) = I0𝜈(z) + I1𝜈(z)k̂ ⋅ ŝ. (3.5)

The reference plane we have chosen is the horizontal x–y plane elevated a distance z
above the ground. Here the spatial dependence is denoted by the point r⃗ and is in the
coefficients I0𝜈(z) and I1𝜈(z) at the level z. By symmetry, there is no x or y dependence
of IEdd

𝜈
. The angular dependence is explicitly given in the coefficient k̂ ⋅ ŝ = cos 𝜃, where

𝜃 is the zenith angle. We have used the superscript Edd, since this is only a two-term
truncation of an infinite series in powers of k̂ ⋅ ŝ, or better yet, degrees of Legen-
dre polynomials6: In𝜈(z)Pn(cos 𝜃). The one-term truncation is known as Eddington’s
approximation, which we will employ here. Note that 𝜃 = cos−1(k̂ ⋅ ŝ) is the zenith
angle of the ray directed along ŝ. The term in the expansion proportional to k̂ ⋅ ŝ takes
into account the anisotropy of the spectral radiance field to the lowest order. Such an
up–down anisotropy is crucial in describing the thermal-radiative heating and cooling
of a stratified atmosphere.
The flux density, F

𝜈
(P), is the total radiation energy flowing across unit area perpen-

dicular to the unit vector k̂ per unit time. Note that F
𝜈
, (P) depends explicitly on the

point in space (in this case the level, z) in question as well as the orientation of a ref-
erence direction, k̂. Let the infinitesimal surface element d2A

⊥
be oriented at an angle

𝜃 = cos−1(n̂ ⋅ ŝ) to the area element d2Awith perpendicular unit vector n̂.The projection
factor for d2A onto d2A

⊥
is cos 𝜃. We are led to

F
𝜈
(P) = ∫Ω

I
𝜈
(P, ŝ) (k̂ ⋅ ŝ) d2Ωs. (3.6)

To illustrate the flux concept in a concrete example, consider the Eddington form
given above. First, we list the values of some useful solid angle integrals:

∫4𝜋 d2Ωs = 4𝜋, ∫∩d2Ωs = 2𝜋,

∫∪ d2Ωs = 2𝜋, ∫4𝜋(ŝ ⋅ k̂)d2Ωs = 0,

∫∩(ŝ ⋅ k̂)d2Ωs = 𝜋, ∫∪(ŝ ⋅ k̂)d2Ωs = −𝜋,

∫4𝜋(n̂ ⋅ ŝ)odd d2Ωs = 0, ∫4𝜋(n̂ ⋅ ŝ)(ŝ ⋅ m̂)d2Ωs =
4𝜋
3

n̂ ⋅ m̂,

(3.7)

where k̂ is a unit vector in the vertical (z) direction, ∩ stands for the upper hemisphere
(0 ≤ 𝜃 ≤ 𝜋∕2); ∪ stands for the lower hemisphere (𝜋∕2 ≤ 𝜃 ≤ 𝜋); and n̂ and m̂ are arbi-
trary constant unit vectors. The flux density for the Eddington spectral radiance (3.5)
with respect to an infinitesimal area parallel to the x–y plane at level z is

FEdd
𝜈

(P) = 4𝜋
3

I0𝜈(z). (3.8)

It is often convenient in stratified-atmosphere applications to find the upward contri-
bution to the flux separately from the downward part. This is achieved by integrating

6 More about Legendre polynomials in Chapter 5.
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the spectral radiance over the upper hemisphere in the solid angle integration and the
lower hemisphere separately. In the Eddington approximation (defined in (3.5)), wemay
write as follows:

F↑
𝜈 (z) = 𝜋I0𝜈(z) +

2𝜋
3

I1𝜈(z), (3.9)

F↓
𝜈 (z) = 𝜋I0𝜈(z) −

2𝜋
3

I1𝜈(z). (3.10)

The equations for F↑
𝜈 (z) and F↓

𝜈 (z) (or equivalently I0𝜈(z) and I1𝜈(z)) are the two depen-
dent variables in the problem. When the series is truncated at the first order in powers
of cos 𝜃, it is called the two-stream approximation for the radiation field.7 Higher-order
approximations take more powers into account but necessarily involve more equations
that we would have to deal with.

3.2 Equation of Transfer

In this section, we introduce the equation of radiation energy transfer describing how
the spectral radiance is modified as radiation passes through the atmosphere. We pro-
ceed by finding how the radiance is diminished by absorption and scattering out of the
beam and how it can be augmented by emission and scattering into the direction of
the beam.

3.2.1 Extinction and Emission

Consider the beam of radiation along a direction ŝ and for an increment of distance 𝛿s.
In the process of passage over this distance, an amount of radiation will be removed in
proportion to the amount entering an infinitesimal cylindrical volume whose axis is the
segment 𝛿s, the length of the segment 𝛿s itself, and an extinction coefficient 𝜅ext

𝜈
that

depends on the medium:

𝛿Iext
𝜈

= −𝜅ext
𝜈

I
𝜈
𝛿s. (3.11)

In general, 𝜅ext
𝜈

will consist of two additive parts, one due to scattering and one due to
absorption.Moreover,𝜅ext

𝜈
will be proportional to a linear combination of the densities of

the scatterers and absorbers along the segment 𝛿sweighted by their individual extinction
coefficients.
In addition to losses of spectral radiance along the path, there can be sources of spec-

tral radiance. In the same cylindrical volume element whose axis is the segment 𝛿s,
radiation energy can be added to the beam through emission or scattering of radiation
energy into the beam that would otherwise have been moving in some other direction.
The augmentation is also proportional to the length of the segment 𝛿s,

𝛿Iaug𝜈 = +𝜅aug
𝜈 J

𝜈
𝛿s, (3.12)

where J
𝜈
is called the source function and 𝜅

aug
𝜈 is a coefficient proportional to the sum

of densities of individual source particles and molecules and their individual source

7 A derivation of a slightly different form of the two stream approximation can be found in Houghton (1986).
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strengths. We are now in position to write an equation governing the evolution of the
spectral radiance of the radiation along the path.

dI
𝜈

ds
= −𝜅ext

𝜈
I
𝜈
+ 𝜅

aug
𝜈 J

𝜈
. (3.13)

Not all gases absorb or emit radiation in the infrared spectral range. In fact, in the
real atmosphere O2, N2, and Ar do not absorb in the infrared portion of the spectrum.
The radiatively active molecular species are H2O, CO2, CH4, O3, and some other trace
gases found in the natural atmosphere. Some of thesemolecules (especially H2O) scatter
incoming solar radiation as well. Cloud particles also absorb strongly in the infrared and
scatter in the visible. Aerosol particles can absorb but their more important roles are in
scattering solar radiation and in their roles in cloud droplet nucleation.

3.2.2 Terrestrial Radiation

The important special case is that for which scattering can be neglected. This might
hold approximately for the infrared portion of the spectrum in the lower atmosphere
in the absence of cloud particles. In such a case, we assume the molecules in a volume
element are in thermal equilibrium with respect to molecular collisions and that they
are continuously emitting radiation according to Planck’s law. In this case,

(𝜅aug
𝜈 J

𝜈
)thermal = 𝜅

ext
𝜈

B
𝜈
(T), (3.14)

where the Planck radiation function is given by

B
𝜈
(T) = 2h𝜈3

c2(eh𝜈∕(kT) − 1)
, (3.15)

and

T = Kelvin temperature; (3.16)
h = Planck’s constant = 6.626 × 10−34 J s; (3.17)
k = Boltzmann’s constant = 1.381 × 10−23 J K−1; (3.18)
c = Speed of light in vacuum = 3.00 × 108 m s−1. (3.19)

Figure 3.2 shows the distribution of radiation over different frequencies in terahertz
(1012 cycles s−1) for three different source temperatures. An important formula8 to keep
in mind is

∫
∞

0
B
𝜈
(T)d𝜈 =

𝜎SBT4

𝜋
≡ B(T), (3.20)

where the Stefan–Boltzmann constant is 𝜎SB= 5.670 × 10−8 Wm−2K−4. Note that in the
emission case, the coefficients for absorption and emission are the same, a consequence
of one of Kirchoff’s laws for a substance in thermodynamic equilibrium –which holds in
the troposphere, but might not in the upper atmosphere where atmospheric molecular

8 After a change of variable, the integral can be solved by reducing it to ∫ ∞
0

x3 dx
ex−1

= 𝜋4

15
.
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Figure 3.2 Planck’s radiation function B
𝜈
(T) (×1014) in J/m2 versus frequency (in units of 1012 cps) for

T = 280, 300, 320 K. The abscissa is in terahertz (1012 cycles s−1).

number densities are small.9 In the plane-parallel case, the function B(T) is a function
of height z, as the temperature is; it will occasionally be expressed as B(z).Thus, we have
the emission rate is tightly controlled by the local temperature of the emitting substance.
In a steady-state, stratified atmosphere, 𝜅

𝜈
is a function of z. This allows us to make a

convenient change in the coordinate measuring distance along the path.The differential
optical path length is defined by

d𝜏
𝜈
= −𝜅

𝜈
ds. (3.21)

The sign convention is chosen such that the larger ds the more attenuation of the beam
d𝜏 along the path.

dI
𝜈

d𝜏
𝜈

= I
𝜈
− B

𝜈
. (3.22)

This equation governs the evolution of I
𝜈
along a specific path, perhaps at an angle 𝜃 to

the vertical.

3.3 Gray Atmosphere

Recalling that our goal is to derive the properties of a gray atmosphere in
thermal–radiative equilibrium, we specialize the problem to the case of a gray
atmosphere. A gray atmosphere is one in which the absorptivity (=emissivity by
Kirchoff’s laws on systems in radiative–thermal equilibrium10) 𝜅

𝜈
is independent

of frequency 𝜈. The gray property is far from true in the real atmosphere and the

9 Local thermodynamic equilibrium (LTE) depends on the rate of collisions of the molecules compared to
the rate of absorption and emission of photons. If collisions are not frequent enough, the upper quantum
levels may not be populated to an equilibrium level. It need not concern us in the models considered in
this book.
10 A system without this property can be shown to violate the second law of thermodynamics.
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approximation is made mainly for mathematical convenience. We will consider a more
realistic dependence11 on frequency of absorption/emission in Chapter 4. Once the
gray approximation is adopted, we have d𝜏

𝜈
= d𝜏 and in (3.22) we can drop the 𝜈

dependence in 𝜏
𝜈
. Then we can integrate over all 𝜈 to obtain

dI
d𝜏

= I − B(𝜏), (3.23)

where B(𝜏) = 𝜎T4(𝜏)∕𝜋 is given by (3.20). We remind the reader that our problem as
we have posed it does not consider atmospheric scattering or absorption of the solar
radiation except for the portion that is absorbed by the ground. The portion that is not
absorbed by the ground, the surface albedo, is reflected directly back to space.The albedo
as seen from above the atmosphere in our model is equal to the surface albedo.

3.4 Plane-Parallel Atmosphere

Consider next specialization to the case of a plane-parallel atmosphere. All properties
are strictly a function of z, the distance above the ground. We will restrict ourselves to
the thermal emission case treated earlier. We neglect scattering of radiation out of or
into the beam.
We define the optical depth at level z in the gray atmosphere as

𝜏 = ∫
∞

z
𝜅(z′)dz′. (3.24)

By tradition, the optical depth is defined to increase as we descend into the atmosphere
from above along the local zenith. Then a small increment of optical path d𝜏 along a
direction ŝ is related to the corresponding optical depth increment by

d𝜏 = (k ⋅ ŝ)d𝜏 = d𝜏 cos 𝜃, (3.25)

where 𝜃 is the zenith angle. For the plane-parallel thermal emission atmosphere, wemay
now write

cos 𝜃 dI
d𝜏

= I(𝜏) − B(𝜏). (3.26)

This is a tremendous simplification of the problem, but we still have to worry about the
angular integrations involving the zenith angle 𝜃. Here is where the Eddington approx-
imation comes in. The only vertical dependence in what follows occurs through the
𝜏-dependence. Hence, we will use 𝜏 instead of z as the vertical independent variable. At
the top of the atmosphere (TOA), (𝜏 = 0) and at the bottom of the atmosphere, (𝜏 = 𝜏∗),
the optical thickness of the whole atmosphere. We may think of the optical thickness as
being caused primarily by water vapor whose concentration has a typical scale height of
1–2 km (the atmospheric boundary layer). Similar to pressure, optical depth is a mono-
tonically decreasing function of z (Figure 3.3).

11 Pierrehumbert derives and discusses approximation methods for rough estimations of infrared radiation
transfer that are convenient in examination of planetary atmospheres. Pierrehumbert (2011).



3.5 Radiative Equilibrium 65

Figure 3.3 Schematic diagram of the
plane-parallel atmosphere. The vertical
distance from the surface is indicated by z and
the direction of a ray is indicated by the unit
vector ŝ. The zenith angle of the ray is 𝜃. The
shading of layers is used to indicate that the
medium is optically thinner as z increases.

z
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θ

3.5 Radiative Equilibrium

The equation for radiative transfer along a ray in a plane-parallel atmosphere is given by
(3.26). In order to obtain upward and downward fluxes, we must consider upper- and
lower-hemisphere solid-angle integrations over the solutions of (3.26). The ultimate
question we wish to ask is what is the temperature profile of the atmosphere governed
by the above system – the solution is contained inside the function B[T(z)] (= 𝜎T(z)4).
If we find B[T(z)] as a function of z (or equivalently 𝜏 , given the vertical distribution
of absorptivity), we invert it to obtain T as a function of z. In addition to finding the
solution to (3.26), we must impose boundary conditions at the top and bottom of the
atmospheric column. Also, we must force the vertical temperature structure to be in
radiative equilibrium at each level. This last means the net local heating rate must
vanish by a cancelation of the net rates of radiation flux absorbed and emitted in a thin
slab. This condition can be expressed in terms of the flux passing into and out of an
infinitesimally thin horizontally oriented slab.
In our model (actually, the model dates to Schwarzschild (1906), also described in

Houghton (1986) and the history is summarized in Goody and Yung, 1989), the ground
acts like a blackbody in the infrared, radiating upward a flux density

F↑
surf = F↑(𝜏∗) = 𝜋B(T∗), (3.27)

where T∗ is the ground temperature and 𝜏∗ represents a point just above the ground
(perhaps a few millimeter). The surface temperature is determined by a balance of radi-
ation flux densities. No conduction of heat to the air or evaporative cooling is allowed
in this model. The absorbed solar radiation is Qap, where Q is the total solar irradiance
(TSI)12 divided by 4 and ap is the (planetary) coalbedo which has the nominal value of
0.68 as in the last chapter.

𝜋B(T∗) = Qap + F↓(𝜏∗). (3.28)

Consider next the equation of transfer (3.26) at an arbitrary level z and referred to an
arbitrary direction, ŝ. Using k̂ ⋅ ŝ = cos 𝜃:

(cos 𝜃) d
d𝜏

[I0(𝜏) + I1(𝜏) cos 𝜃] = I0(𝜏) + I1(𝜏) cos 𝜃 − B(𝜏), (3.29)

12 The Solar Irradiance or 𝜎
⊙
is the amount of radiant energy from a parallel beam sunlight reaching a

perpendicular 1m2 surface at the TOA and averaged through the annual cycle. Its current value is
1340Wm−2. In earlier literature, the TSI was referred to as the solar constant.
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where we have inserted the Eddington approximation for I and we have dropped the
subscript 𝜈 because we are treating a gray atmosphere. It is convenient to consider
solid angle integrals with respect to d2Ω over the last equation. In fact, one method
of proceeding is to multiply by powers of cos 𝜃 and then performing the integrals. In
this way, we obtain separate differential equations for I0(z) and I1(z). Applying a few of
the integration formulas in (3.7), we obtain the two basic formulas for the Eddington
approximation: the first is a straightforward integral over all solid angles (4𝜋) of (3.29);
in the second, we firstmultiply (3.29) through by cos 𝜃, then integrate over 4𝜋 steradians,
again using (3.7):

1
3
d
d𝜏

I1(𝜏) = I0(𝜏) − B(𝜏); (3.30)

d
d𝜏

I0(𝜏) = I1(𝜏). (3.31)

This pair of equations would determine I0(𝜏) and I1(𝜏) if T(𝜏) (or equivalently B(𝜏)) were
specified. But we want to solve the problem wherein the temperature adjusts itself to be
in steady-state equilibriumwith the radiation field. In order to close the system, we need
to impose the condition of thermal equilibrium. This is the statement that no net heat
per unit time is deposited in any infinitesimally thin slab. In otherwords, the upward and
downward flux density of energy leaving an infinitesimally thin slab must be zero at all
times (note that upward and downward flux densities of photons crossing a horizontal
plane do not cancel, as each is a stream of photons that interact with matter, and that
the flux density is defined with respect to a unit upward vector n̂ = k̂). This condition is
given by

d
d𝜏

(F↑ − F↓) ∝ d
dz

(F↑ − F↓) = 0, (3.32)

as otherwise therewould be removal or augmentation of either the upward or downward
flux density and such a perturbation would induce a change in the temperature of the
local medium. According to (3.9) and (3.10), this means

dI1(𝜏)
d𝜏

= 0. (3.33)

The set (3.30), (3.31), and (3.33) represent three first-order differential equations for
the three unknown functions of z: I0(z), I1(z), and B(T(z)). It is useful at this point to
summarize the assumptions and approximations that led us to this state.

• The atmosphere is clear to solar radiation; all absorption and/or reflection takes place
at the ground.

• In gray atmosphere with no clouds in the infrared: 𝜏
𝜈
→ 𝜏, I

𝜈
→ I.

• Layers of atmosphere are gray thermal radiators: (𝜅aug
𝜈 J

𝜈
) → 𝜅B(T).

• Plane-parallel stratified atmosphere: I(P, ŝ) → I(z, cos 𝜃).
• The Eddington approximation for the IR: I(z, cos 𝜃) = I0(z) + I1(z) cos 𝜃.
• The divergence of net (upward plus downward) radiation flux densities has to vanish

to assure steady state.

These statements allow us to find the functional formof the solution butwith integration
constants that will await evaluation:

I1(𝜏) = c1 = constant. (3.34)
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According to (3.30), we have

I0(𝜏) = B(𝜏). (3.35)

Then according to (3.31), we have
d
d𝜏

I0(𝜏) = c1, (3.36)

or

I0(𝜏) = c1𝜏 + c0, (3.37)

where the integration constants c1 and c0 must be chosen to satisfy the boundary con-
ditions at the TOA. First, no infrared is entering the atmosphere from above:

at TOA: 𝜏 = 0, F↓(𝜏 = 0) = 0. (3.38)

Second, flux density of radiation energy leaving the TOA must equal the rate of solar
radiation absorbed per unit perpendicular area by the system:

at TOA: 𝜏 = 0, F↑(𝜏 = 0) = Qap. (3.39)

Applying (3.38) and (3.10) yields the integration constant

c0 =
2
3

c1. (3.40)

Using the second TOA condition leads to

c0 =
Qap

2𝜋
, (3.41)

and

c1 =
3
4

Qap

𝜋
. (3.42)

Now that we have the two constants, we write the solution in the interior (0 ≤ 𝜏 ≤ 𝜏∗).

I0(𝜏) = B(𝜏) =
Qap

2𝜋
⋅
(3
2
𝜏 + 1

)
; (3.43)

I1(𝜏) =
3
4

Qap

𝜋
; (3.44)

and the solution for the flux densities:

F↑(𝜏) =
Qap

2
⋅
(3
2
𝜏 + 2

)
; (3.45)

F↓(𝜏) = 3
2

Qap

2
𝜏. (3.46)

One can check that these satisfy the upper boundary conditions.
Next we turn to the surface properties (lower boundary conditions).The surface radi-

ates upward and absorbs energy from the Sun and from the downwelling thermal radi-
ation from the layers of atmosphere above.

𝜋B∗ = Qap + F↓(𝜏 = 𝜏∗). (3.47)
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We then find that

B∗ =
Qap

𝜋
⋅
(
1 + 3

4
𝜏∗

)
=

𝜎T4
∗

𝜋
, (3.48)

where B∗ is the blackbody radiation upward coming directly from the hot surface and 𝜏∗
is the optical depth taken just above the surface. It is also the total optical depth of the
column of air above. This last is an expression for the surface temperature, T∗.
An interesting peculiarity is that the temperature at the surface is not the same as that

at the bottom of (but still inside) the atmosphere.

𝜋B∗ − 𝜋B(𝜏∗) = 𝜎T4
∗ − 𝜎T4

air =
Qap

2
. (3.49)

The formula (3.43) gives the radiative equilibrium temperature T as a function of alti-
tude 𝜏 or equivalently z.The positive difference (3.49) shows that there is a discontinuity
between the temperature just above ground and that of the actual ground. The ground
is always warmer than the adjacent air in a system whose atmosphere is governed solely
by radiative equilibriumwithout any other agent for vertical heat transport.The expres-
sions (3.43)–(3.46), combined with the ground results (3.48) and (3.49), constitute the
solution of the radiative equilibrium problem as we have posed it so far. It is important
to note that the surface temperature as revealed by B∗ is an increasing function of 𝜏∗, the
total optical thickness of the atmosphere. This is our first encounter with the so-called
greenhouse effect.

3.6 Simplified Model for Water Vapor Absorber

Next consider the case of a gray atmosphere with 𝜅(z) an exponential function. We pre-
tend that the absorbing substance is gray water vapor

𝜅(z) = 𝜅0e−z∕Hw , (3.50)

where the scale height Hw can be taken to be about 1.6 km (this varies with latitude on
the real Earth).

𝜏(z) = ∫
∞

z
𝜅(z) dz = 𝜅0Hwe−z∕Hw . (3.51)

The total optical depth is 𝜏∗ = 𝜅0Hw. Note further that
d𝜏
dz

= − 𝜏

Hw
; or 𝜏 = 𝜏∗ e−z∕Hw . (3.52)

We differentiate B(𝜏) in the Stefan–Boltzmann law and in (3.43) to obtain
dB(𝜏)
d𝜏

= 4B(𝜏)
T

dT
dz

dz
d𝜏

=
3Qap

4𝜋
. (3.53)

After rearrangements,
dT
dz

= − 3T
4Hw

𝜏

(3𝜏 + 2)
, (3.54)

which is a compact form for the lapse rate in the radiative equilibrium atmosphere as a
function of 𝜏 . As 𝜏 → 0, dT

dz
→ 0. Figure 3.4 shows the dependence of 𝜅0 as a function of
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Figure 3.4 A simple model for the absorptivity of water vapor (horizontal axis) as a function of altitude
(vertical axis). Altitude z in km versus absorptivity 𝜅(z) = 𝜅0 e−z∕Hw for optical depth 𝜏∗ = 1.20, scale
height of water vapor Hw = 1.6 km, 𝜅(0) = 𝜏∗Hw.

z for our simplified water vapor model with 𝜏∗ = 1.20. The dependence is exponential
with a height scale of 1.6 km. Other parameters are indicated in the figure caption.
Consider the vertical dependence of temperature for this model. Figure 3.5 shows a

plot (dashed line) of the temperature (K) versus height z for the same model parame-
ters.We adjusted 𝜏∗ to get a reasonable surface temperature. Several interesting features
are apparent in Figure 3.5. There is a discontinuity in the temperature at the ground.
Other aspects of the solution differ from the real atmosphere. For example, the slope
of the curve is very negative and is much larger than the dry adiabatic lapse rate,13
Γd = 10K km−1; the dry adiabat is shown as a thin straight line in the figure.This means
the lower atmosphere is unstable to adiabatic convective overturning up to about 2.2 km
where the slope equals that of the adiabat. In the real atmosphere, heat will be trans-
ferred from the surface to the lowest layers of air by convection. In addition, there will be
evaporation contributing to the surface energy budget. Hence, to make our model more
realistic, we must add some vertical convection process that adjusts the surface temper-
ature downward and fills out the temperature profile until it becomes stable. Combining
the radiative and convective/conductive vertical heat transfer in an equilibrium calcu-
lation of the temperature profile is the subject of the rest of this chapter.
The vertical dashed line in Figure 3.5 is at the brightness temperature of Tb= 255K.

Note that Tb = (Qap∕𝜎)
1
4 in order to maintain a balance of incoming and outgoing flux

densities. If one were looking down at the atmosphere from above, one would infer that
the level of intersection with the temperature profile to be a characteristic level of the

13 By convention the lapse rate is the negative of dT∕dz.



70 3 Radiation and Vertical Structure
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Figure 3.5 Depiction of altitude z versus radiative equilibrium temperature (K) (dashed curve) for
𝜏∗ = 1.20, Hw = 1.5 km, Qap = 238 W m−2. The ground temperature is indicated by the big dot at
298 K. Note the discontinuity between the temperature just above the surface and that at the surface.
The vertical thin-dashed line is the brightness temperature (255 K) that intersects the thermal profile at
0.91 km. The thin straight line is a dry adiabat, indicating that the profile is unstable up to about 2.2 km.

emission. In this case it is 0.91 km, which is well below the 1.6 km characteristic height
of the water vapor absorptivity profile, which is the e-folding length of the function I0(z).
But the upward flux density has a contribution from I1(z) = + 3Qap

4𝜋
as well and this low-

ers the characteristic level of emission. A more important factor is the strong negative
vertical gradient of temperature in the boundary layer. Upward flux density is not just
the concentration of emitters but is proportional to T4(z) as well.
Given the radiative equilibrium solution, we examine the effective values of A and B

we obtain.This gives some insight into the IR formula discussed in the first two chapters.
A useful approximation in analytical calculations comes from linearizing B(T) to form

𝜋B(T) = 𝜎T4
K ≈ A0 + B0T , (3.55)

where

A0 = 314.9 W m−2; (3.56)
B0 = 4.61 W m−2(∘C)−1; (3.57)
T = TK − 273.2 = Celsius Temperature; (3.58)

as it is a reasonable approximation over the range of interest in climate problems.
Figure 3.6 shows the approximation over the range ±30∘C.
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Figure 3.6 Comparison of the Stefan–Boltzmann form 𝜎T4 (solid curve) with the linear form
A0 + B0(TK − 273.2) (dashed line).
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Figure 3.7 (a) Altitude z versus flux density of downward radiation F↓(z); (b) altitude z versus flux
density of upward radiation F↑(z). Both figures are for the gray water vapor absorber in radiative
equilibrium. Note the change of horizontal scale in the two panels.

Figure 3.7 shows the upward and downward flux densities. Note that the slopes are the
same for each (see 3.45 and 3.46), keeping the net flux density divergence zero (propor-
tional to net heating rate).The upward flux density is Qap = 238Wm−2 greater than the
downward fluxdensity (Figure 3.7).Theoutgoing flux density at theTOA isQap, which is
the rate of absorbed incoming radiation at the surface. We see that the ground not only
receives the Qap = 238Wm−2, but in addition the 214Wm−2, as seen in Figure 3.7b.
This is the reason for the higher temperature of the surface.
The empirical values (as measured from satellites) of A and B are around 202Wm−2

and 1.90Wm−2 (∘C)−1. If we use the formula connecting B∗ to Qap = F↑(𝜏 → 0), we find
that

ARE =
A0

1 + 3
4
𝜏∗

, (3.59)

BRE =
B0

1 + 3
4
𝜏∗

. (3.60)
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Taking 𝜏∗ = 1.20, we obtain values of ARE = 165.7 Wm−2 and BRE = 2.43Wm−2(∘C)−1,
both improvements over the blackbody values, but far from the empirical values. There
is a further reduction in BRE if we take into account the upward convection of heat by
the atmosphere as will be seen later.
The linear results for ARE and BRE are based upon the ground temperature derived

from the radiative equilibrium model. In this model, we adjusted the optical thickness
(𝜏∗ = 0.25) so that the ground temperature agreed with observations (287K). There are
many things wrong with this model. Aside from the assumption that the atmosphere
is gray and does not absorb or scatter sunlight, we have neglected heat transport to
the air by contact with the surface. First, we have neglected the cooling of the surface
by evaporation and heat conduction, both of which are enhanced by turbulence. Both
processes deposit the heat in the boundary layer and above through convective over-
turning. Radiative equilibrium is impossible in the real lower atmosphere because the
temperature profile above the ground is too steep (falls off too rapidly) for convective
stability. Thus the hot surface in contact with adjacent air just above will also lead to
intense convection until the discontinuity is removed (Table 3.1).

3.7 Cooling Rates

In our simple model, the heating rate is given by

q↑(z) = dF↑

dz
= 3

4
Qap

d𝜏
dz

= 3
4

Qap
𝜏∗

Hw
e−z∕Hw , (3.61)

and it is the same as the cooling rate q↓(z) in equilibrium. The heating rate q↑(z) in this
case is just proportional to the total optical thickness of water vapor 𝜏∗ and it falls off
exponentially with height. Inmore complicatedmodels, one often expresses the heating
rate in terms of degrees per day. For this, we need the density of the air, 𝜌(z) = 𝜌0e−z∕H

with 𝜌0 = 1.2 kgm−3, Hw = 1.6km, H ∼ 10 km, and the specific heat of air at constant
pressure, cp = 1004 J kg−1 K−1.

dT
dt

= 3
4

Qap
𝜏∗

𝜌0cpHw
e−

(
1

Hw
− 1

H

)
z
. (3.62)

Table 3.1 Coefficients of the infrared linear radiation rule
under different conditions.

Blackbody A0 = 314.9Wm−2

B0 = 4.61Wm−2 ∘C−1

All sky (satellite) AAS = 202Wm−2

BAS = 1.90Wm−2 ∘C−1

Clear sky (satellite) ACS = 230Wm−2

BCS = 2.26Wm−2 ∘C−1

Radiative equillibrium ARE= 165.7Wm−2

BRE= 2.43Wm−2 ∘C−1

Nominal values used in this book A= 190Wm−2

B = 2.00Wm−2 ∘C−1
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Figure 3.8 The cooling rate (K day−1) as a function of altitude as computed for the radiative
equilibrium model for gray water vapor. In this figure, the scale height of water vapor is Hw = 1.6 km.

Figure 3.8 shows the cooling rate in kelvins per day as given in (3.62). Note that the
scale height for the cooling rate Hq is

1
Hq

= 1
Hw

− 1
H
, (3.63)

which is dominated by the smaller Hw, the scale height of the absorber/emitter. The
cooling rate is offset exactly by the heating rate in radiative equilibrium and is found by
taking the vertical derivative of F↓(z).

3.8 Solutions for Uniform-Slab Absorbers

In this section, we treat the particular case of a uniform slab of absorptivity imitating the
boundary layer of thickness Hw = 1.6 km and 𝜅0 = 0.75.The optical depth as a function
of z in this case is given by

d𝜏 = −𝜅0 dz ; z < Hw (3.64)

or

𝜏 = 𝜅0(Hw − z) ; z < Hw, (3.65)

and 𝜏 = 0 for z ≥ Hw. The optical thickness of the atmosphere is

𝜏∗ = 1.20, (3.66)

the same as in the previous section.
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The solutions for the radiance components are given by

IRE1 (z) = 3
4

Qap

𝜋
; for all z, (3.67)

IRE0 (z) =

⎧⎪⎪⎨⎪⎪⎩

(
3
2
𝜅0(Hw − z) + 1

) Qap

2𝜋
; 0 < z < Hw,

Qap

2𝜋
; z > Hw.

(3.68)

By use of the formulas of the last section, we obtain a solution for the radiative-
equilibrium temperature profile, and it is shown in Figure 3.9a.
The temperature profile is given by

TRE(z) =

⎧⎪⎪⎨⎪⎪⎩

(Qap

2
− A0

)
1

B0
, z ≥ Hw,

((3
2
𝜅0(Hw − z) + 1

) Qap

2
− A0

)
1

B0
, 0 < z < Hw.

(3.69)

Note that just above surface,

TC(z → 0+) =
(

Qap

(3
4
𝜏∗ +

1
2

)
− A0

) 1
B0

. (3.70)

But at the material surface,

TC(z = 0) = T∗ =
(

Qap

(3
4
𝜏∗ + 1

)
− A0

) 1
B0

, (3.71)
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Figure 3.9 An illustration of the error in using the linear radiation law of Budyko versus the blackbody
law B(T(z)) = 𝜎T4∕𝜋 in uniform slab solutions. (a) Using the conversion from B(T(z)) = 𝜎T4∕𝜋. (b) The
case where we use instead the linear rule 𝜎T4 = A0 + B0(T − 273). In both cases, 𝜅0 = 0.75, 𝜏∗ = 1.20.
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with 𝜏∗ = 𝜅0Hw and using the subscript C to denote Celsius temperature. These forms
show that the discontinuity at the surface is

ΔTC =
Qap

2B0
. (3.72)

The temperature T above and at the surface do not depend on Hw.The only dependence
is on the optical thickness, 𝜏∗. Also the gap, ΔT , is independent of 𝜏∗. The lapse rate of
temperature in the slab for the linear case (3.69) is 29K km−1 (Figure 3.9b), whichmeans
this atmospheric profile is extremely unstable. For the nonlinear case, the lapse rate at
the surface is 28K km−1 and at z = 1km it is 19 km−1. The largest difference is for the
temperature above the boundary layer. In the nonlinear case (see Figure 3.6), it is 214K
the same as in the exponential 𝜅0 case of the previous section, whereas for the linear
case (231K), the departure from the tangent point (273K) is too large for the correct
upper air value (see Figure 3.6).

3.9 Vertical Heat Conduction

Nextwe consider somemodels with vertical heat conduction.This is still a simplification
over the case of convection which occurs in the real atmosphere, but this class of mod-
els has some intermediate properties that serve to illustrate the bridge between radiative
equilibrium atmospheres and those with realistic vertical heat transfer that involves tur-
bulent convection. We introduce a vertical heat conduction presumably caused by eddy
processes. This is, of course, simplistic but it can be set up in such a way as to keep the
problem linear and thus it will help us to understand a few additional points without
resort to heavy use of the computer. Such a formulation does not take into account the
stability of the atmosphere, conduction merely acts here to carry heat vertically from
the hot ground and lower layers up into the layers aloft.
Consider a vertical heat flux density due to conduction (eddy diffusion).14

qcond = −K dT
dz

, (3.73)

where K is a down-gradient heat conduction coefficient, sometimes called the thermal
conductivity15 which will be taken here as a constant independent of z. For equilibrium,
the vertical derivative of the heat flux should be balanced by the vertical derivative of
the radiation energy flux.

− d
dz

(
K dT

dz

)
+ d

dz
(F↑ − F↓) = 0. (3.74)

14 A better choice would be to use the gradient of potential temperature rather than the gradient of
conventional temperature. We ignore this here, as we will only be interested in qualitative effects near the
ground in this section.
15 The thermal conductivity K is not the molecular thermal conductivity, but rather a macroscopic
coefficient whose mode of transport is eddy motions of the fluid atmosphere, in contrast to the molecular
case where the transport is effected by individual molecular collisions. So-called eddy diffusion or
conductivity in an unstable stratified layer is orders of magnitude larger than in the molecular case.
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This last is readily integrated from z to ztop, where ztop refers to the top of the optically
active part of the atmosphere, to yield

−K d
dz

T(z) + 4𝜋
3

I1(z) = Qap, (3.75)

where the right-hand side comes from evaluation of the left at z → ztop. Here we have
imposed the conditions that at z → ∞, F↓ → 0 and the upward fluxmust exactly balance
the total solar flux absorbed per unit area per unit time, Qap.
The system of equations governing the flow of heat upwards via radiation and thermal

conduction are as follows:
d
dz

T(z) = 4𝜋
3K

I1(z) −
Qap

K
; (3.76)

d
dz

I0(z) = −𝜅(z)I1(z); (3.77)

d
dz

I1(z) = −3𝜅(z)
(

I0(z) −
A0 + B0T(z)

𝜋

)
; (3.78)

where 𝜋B(T) = (A0 + B0T) is used in (3.78). The error in the approximation over the
range of interest is shown in Figure 3.6.The balance of flux divergences (material heating
and radiance) is expressed by (3.76). The second and third equations in the aforemen-
tioned hold for the radiance field. These last three equations are to be solved simulta-
neously on the interval from z = 0 to z = +∞ subject to the boundary conditions that

F↑(z ≥ ztop) = Qap, (3.79)
F↓(z ≥ ztop) = 0. (3.80)

In terms of I0(z = ztop) ≡ Itoa0 and I1(z = ztop) ≡ Itoa1 , these become

Itoa0 + 2
3

Itoa1 =
Qap

𝜋
, (3.81)

Itoa0 = 2
3

Itoa1 , (3.82)

or

Itoa0 = 1
2

Qap

𝜋
, (3.83)

Itoa1 = 3
4

Qap

𝜋
. (3.84)

One more boundary condition must be imposed, namely, the surface energy balance.
This takes the form

𝜋B∗ = Qap + K dT
dz

||||z=0
+ F↓(z = 0+), (3.85)

with

F↓(z = 0+) = 𝜋I0(0) −
2𝜋
3

I1(0). (3.86)

This surface boundary condition informs the system that the Earth’s surface is a
black radiator and that all the outgoing radiation originates there. Note that in contrast
with the radiative equilibrium situation, we now have a vertical heat-transfer term
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proportional to the vertical temperature gradient at the surface. The system is posed
as three linear differential equations for three unknowns (I0, I1,T) with two boundary
conditions at the top (ztop) and one at the bottom (z = 0). In general, the coefficients
in the system of differential equations are functions of z. In the following, we illustrate
this by solving for a special case.

3.9.1 K > 0

Solutions can be obtained for the mixed radiative conduction problem. In this section,
we consider the special case of a uniform slab of optically gray material analogous to
water vapor which is z1 = Hw thick and lying just infinitesimally above the surface. For
graphical display purposes, we choose Hw = 1.6 km. In this case,

𝜅(z) =
{

𝜅0, z ≤ z1,
0, z > z1.

(3.87)

When K > 0 and in the same range of z, 𝜅0 > 0, analytical solutions are possible but
they are very complicated requiring pages of formulas from Mathematica, such that it
is not instructive to pursue them here. The book by Liou (1992) has a section in which
this case is treated numerically.
Some approximate solutions can be obtained, as most of the water vapor absorbed is

in the boundary layer. Let usmake some drastic assumptions that will allow us to extract
analytical solutions. First assume that the boundary layer containing all the absorber is
very thin and that it is well stirred within.This means the temperature is essentially con-
stant in the boundary layer, which we will call the slab. Above the slab, the atmosphere
is transparent to infrared radiation, 𝜅0 = 0, and heat can be transported vertically only
by thermal diffusion (same as thermal conductivity mathematically). The requirement
of steady state requires that

d
dz

K
(
dT
dz

+ Γ
)

= 0, (3.88)

where we have introduced an average adiabatic lapse rate Γ. Integrating twice leads to

T(z) =
(C1

K
− Γ

)
z + C2, (3.89)

where C1 and C2 are integration constants. Note that if the thermal conductivity K is
very large, the temperature has the slope of the adiabatic lapse rate.

3.10 Convective Adjustment Models

Since the lapse rates of radiative equilibrium solutions are always unstable near the sur-
face, we expect convective overturning to occur carrying heat energy into the layers well
above the boundary layer.The last section gives us an idea how this works. Consider the
case where we approximate the boundary layer as a thin slab wherein all the infrared
absorption occurs. We approximate the convection as conduction with K very large. As
seen in the previous section, this means the temperature profile will relax to the adia-
batic profile (which we take to be 6.0 K km−1, a value chosen to reflect the contribution
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from latent heat release). After steady state is established and the adiabatic profile is
filled out, there is no further heat transfer by the convection because if there were, there
would be no way to radiate the heat convected to space from these layers.The absorbed
solar radiation quickly heats the boundary layer and the radiation energy emerges only
from the top of the boundary layer. Above the boundary layer, the radiance compo-
nents I0(z) =

Qap

𝜋
and I1(z) =

3
4

Qap

𝜋
are constant and satisfy the boundary conditions at

the TOA: F↑ = Qap and F↓ = 0. At the surface, we assume the ground temperature is
equal to the slab temperature because of the large mixing in the slab. The absorption of
solar radiation is Qap in the slab–ground system. Figure 3.10 shows a schematic of the
solution.
Figure 3.11, taken from the classic paper by Manabe and Strickler (1964), shows

how in an isotherm hot and cold profiles relax to equilibrium. On the left, the profile
relaxes to a pure radiative equilibrium, while on the right, the relaxation is to a
radiative convective equilibrium. It is interesting that the characteristic relaxation time
in each figure is about 1 month. The Manabe–Strickler model includes the detailed
spectral properties of the infrared spectrum and also includes solar scattering and
absorption of the solar incoming radiation. Additionally, the heating due to O3 in the
stratosphere is included. It is a remarkable fact that both the radiative equilibrium and
the convective-adjustment models (by eye) have relaxation times of about 30 days. It is
comforting that our global average models with atmosphere only use this characteristic

z (km)

20

T profile for slab with convection

Tropopause

15

10
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−80 −60 −40 −20 20 40
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Figure 3.10 The temperature profile for a moist slab of air in a thin planetary boundary layer
(nominally 1.6 km, but here thinner). There is no infrared absorber above the slab, only thermal
convection or very large thermal conduction that leads to a linear adiabatic profile (dashed line). The
radiative equilibrium temperature profile (−54 ∘C) would hold aloft above the intersection with the
adiabat. The intersection determines the tropopause height in this simple model. In this figure,
𝜅0 = 0.90.
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Figure 3.11 Relaxation to an equilibrium profile in a very detailed radiative convective model by
Manabe and Strickler (1964). The profiles indicate the time evolution from a cold and a hot isothermal
atmosphere. On the left is a relaxation to a pure radiative equilibrium model, while on the right the
model includes convective adjustment. (©Amer. Meteorol. Soc., with permission.)

time of 1 month (independently). Using our results from Chapter 2, we might infer that
the sensitivity of radiative equilibrium and convective adjustment models are identical.

3.11 Lessons from Simple Radiation Models

Wehave seen that, for some simple cases, we can find analytical solutions for gray atmo-
spheres. In the case of pure radiative equilibrium (no thermal fluxes other than radiation
transfer), these solutions provide the equilibrium temperature profile. In these cases, the
profile is always unstable to convection.We can amend the solution to allow convection
by applying what is known as a convective adjustment. In this chapter, we found the
steady-state solutions for radiative–convective equilibrium when the radiation absorp-
tion is confined to a thin planetary boundary layer where the water vapor absorber is
assumed to be confined. We did not examine the case of other greenhouse cases nearly
all of which arewellmixed throughout the global atmosphere. In the case of carbon diox-
ide, for example, the altitude at which radiation to space effectively occurs over a scale
height is in the neighborhood of the tropopause. But water vapor is the dominant green-
house gas and our model gives us some insights into its influence on the atmospheric
profile.
The models solved in this chapter are essentially linear, especially when we make the

linear approximation, IR = A0 + B0T . It is very interesting that, in these cases, the equi-
librium ground temperature is a linear function of the TSI 4Q and also the optical depth
of the absorber 𝜏∗. And as the total outgoing radiation flux to space in equilibriummust
equal Qap, we find that the outgoing flux must be proportional to the ground tempera-
ture.

Qap = IR =
A0 + B0(TC)
1 + 3

4
𝜏∗

, (3.90)
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or

TC =
Qap ⋅ (1 +

3
4
𝜏∗) − A0

B0
, (3.91)

and for 𝜏∗ = 1.20, we obtain

BRE = 2.43 W m−2 K −1. (3.92)

The value of B is very important as the sensitivity of global average temperature to exter-
nal perturbations is inversely proportional to B. This last value is to be compared with
the value between 1.90Wm−2 K −1 (all sky) and 2.20Wm−2 K −1 (clear sky only) based
upon a regression of the outgoing IRmeasured from satellites and the seasonal cycle and
different geographical locations. The lower empirical value is derived from the whole
sky, including clouds and the larger value comes from data wherein the cloudy pixels
are removed. Of course, in most of this book, we choose to use the “nominal” value of
2.00Wm−2 K −1. Reduction of the blackbody value of B by a factor of ∼ 0.53 suggests
that even the presence of some optical thickness increases the sensitivity of climate to
external perturbations. The additional enhancement of the radiative equilibrium sensi-
tivity to that of the empirical value range is probably due to a combination of water vapor
and lapse rate feedback. Climate feedbacks to sensitivity will be discussed in Chapter 4.
Let us consider one final problem in this chapter. Suppose the temperature is increased

by 1.0 ∘C by increasing Qap appropriately. Then according to the Clausius–Clapeyron
equation16 for the vapor pressure of water, such an increase in temperature would
increase the amount of water vapor in the boundary layer by 7%. This would lead to an
increase of 𝜏∗ by the same percentage to a value of 1.284. The additional water vapor
in this simple radiative equilibrium model (see Figure 3.5) would lead to an increase in
temperature of 3.1 K, with an increase of the effective level of emission to 1.01 km for
the same brightness temperature of 255K. As we will see in Chapter 4, the increase due
to doubling CO2 is about 1.0 K. If the current model were correct, we might expect an
additional increase of 3.1 K due to the water vapor feedback in the boundary layer, a
rather large value compared to some more accurate estimates we will find in Chapter
4. Conventional wisdom suggests a value closer to 1.0 K for water vapor feedback to be
added to the 1.0 K from direct forcing. Strictly speaking, the two feedbacks do not add
so simply as we will also see in Chapter 4. The strength of this and other feedbacks is
one of the several important foci of climate research today.

3.12 Criticism of the Gray Spectrum

While very educational, the gray spectrum for greenhouse gases such as water vapor
gives some incorrect impressions. Figure 3.12 comes from a radiative transfer model in
which there are no clouds and no greenhouse gases except water vapor. The abscissa is
the wave number (�̃� = 1

𝜆
= 𝜈

c
with the speed of light, c = 3 × 108 m s−1), in units of cm−1,

a traditional way of displaying infrared spectra. The atmosphere in this model is not in

16 The Clausius–Clapeyron equation is des
es

= L
R

dT
T2 ≈ 0.0692, where es is the saturation vapor pressure, T is

temperature (here, 280K); dT is the change in temperature (here, 1 K); L is latent heat of water
(2.50 × 106 J kg−1); and R is the gas constant for water vapor (461.5 J K−1 kg−1).
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Figure 3.12 The outgoing spectral radiance of water vapor (black zig-zag line) as a function of wave
number (�̃� = 1

𝜆
= 𝜈

c
with the speed of light, c = 3 × 108m s−1) as seen from space looking down from

70 km as modeled by the MODTRAN radiative transfer code (details in Chapter 4). There are no other
greenhouse gases in the atmosphere in this simulation. In this case, the ground temperature is set at
300 K, with temperature decreasing vertically at a prescribed lapse rate for the tropics. Thick, smooth,
gray lines are blackbody curves at 300, 280, and 260 K. (This figure was constructed from the calculator
found on the website: http://geoflop.uchicago.edu/forecast/docs/Projects/modtran.orig.html.)

thermal equilibrium with the solar input. It simply shows the outgoing radiation in a
case where the ground is at 300K and the temperature decreases linearly in the vertical.
We will discuss the MODTRAN code in the next chapter. Returning to Figure 3.12, we
see three smooth curves along with the very irregular outgoing radiation.The radiation
from about 800 cm−1 to about 1250 cm−1 originates almost at the ground with a bright-
ness temperature of about 295K.This interval of wave numbers is called thewater vapor
window, as there is practically no absorption or emission from water molecules in this
range. Above 1200 cm−1, the brightness temperature is much colder indicating that the
emission is occurring at a higher level in the atmosphere.The same occurs at wave num-
bers below about 700 cm−1and below 400 cm−1. It appears that the emission is at about
255K, a temperature near the tropopause, and well above the boundary layer.
This is hardly the picture we painted earlier in the chapter where, with the gray atmo-

sphere, the emission level was at about 0.91 km above the ground, and in the radiative
equilibrium case, it corresponded to an emission temperature of 255K. In the real atmo-
sphere, of course, this is the temperature in the neighborhood of the tropopausewhich is
at about 10 km in mid-latitudes and as high as 18 km in the tropics.This warming of the
atmosphere between the boundary layer top and the tropopause in the real world is due
to convection of heat (latent and sensible) by air parcels that are lifted from near the sur-
face to height where the air is stable to dry as well as moist adiabatic perturbations. But
even this convection and warming cannot fill the upper troposphere with water vapor
because most of it will condense and fall out as precipitation. Only very tiny amounts of
water vapor can survive to the tropopause. Something more must be at work to make
an outgoing spectrum as shown in Figure 3.12.



82 3 Radiation and Vertical Structure

The answer to this problem lies in the very uneven spectrum of water vapor. It turns
out that the spectrum is a series ofmillions of discrete lines all across the infrared portion
of the spectrum. When averaged over a small interval (the version of MODTRAN used
here averages over intervals of 2 cm−1), the absorptivity or emissivity appears to be finite,
but the tinier the interval, the more one is able see the gaps between lines. It turns
out that even small concentrations of water vapor (a few molecules per million of air
molecules) well above the boundary layer can absorb significant amounts of infrared
radiation. This can lead to brightness temperatures corresponding to very cold parts of
the atmosphere. Hence, the concentration changes of carbon dioxide and water vapor
high in the atmosphere can play a significant role in driving climate change and in pro-
viding feedback due to the response of water vapor to the initial driver.

3.13 Aerosol Particles

Another gross omission in our treatment of the vertical properties of the atmosphere
is our neglect of aerosol17 particles. These particles pose one of the most difficult unre-
solved problems in climate science. Their main influence is in their interaction with the
incoming solar radiation. They include such important species as cloud particles (both
liquid water and ice), cloud condensation nuclei, dust, organic debris from decaying
leaves and other biogenic sources, minerals airborne from deserts and ancient lake beds
(playas), soot, air pollution from factory chimneys or transportation devices, electrolyte
solutions with solutes such as sulfur, and nitrogen oxides. Most of the particles tend to
be spherical or nearly so, exceptions being dust, ice, andminerals.Many are hydrophilic,
with adsorbed water encasing nuclear material. The size of these hydrophilic particles
depends on the relative humidity of the local environment. All of the particles inter-
act with sunlight either scattering or absorbing. Spherical particles scatter mainly, but
some absorb especially if they have a carbonaceous nucleus inside. Clear water spheres
(including many nonspherical species) have a characteristic size parameter, the ratio
of the circumference of the particle to the wavelength of the light being considered
x =

(
2𝜋r
𝜆

)
. Large particles (x ≫ 1) scatter light primarily in the forward direction (e.g.,

when the Sun shines on a dark cloud, it indicates that the water droplets are large);
another example is that you can see through amacroscopic water object (the light passes
directly to your eye). Small cloud particles (x ≪ 1) scatter in all directions (Rayleigh scat-
tering) scatter isotropically (e.g., white clouds). In addition to themany texts on radiation
transfer in the atmosphere, the book by Pierrehumbert (2011) is strong in physical rea-
soning in its examination in both the visible and infrared radiation interacting with the
atmosphere and its constituents and especially with the climate problem in mind.
A further even more inscrutable problem with aerosol particles is their interaction

with clouds.We know that aerosol particles (mostly salt) over the oceans are larger than
those over land.The number density of aerosol particles is larger over land.This leads to
clouds that are rather different over ocean than over land.The cloud particles over ocean
are larger and the number density is smaller. Scattering of sunlight by oceanic clouds will

17 Strictly speaking the atmosphere is an aerosol analogous to a colloidal suspension such as milk or coffee.
The aerosol particles are the particles that are suspended in the air.
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be different from those over land. How will climate change factor in this matter? It may
be yet another subtle feedback process that we do not yet fully understand.
In this book, we will not consider aerosol particles directly in our further modeling

efforts. Aerosol particles will only be included as given information in the coalbedo of
the atmospheric column.

Notes for Further Reading

Some recently published books on radiative transfer in the atmosphere include Coakley
and Yang (2014), Wendisch and Yang (2012), Petty (2006), and Liou (2002). The classics
include Goody and Yung (1989) and Chandrasekhar (1960). Pierrehumbert (2011)
covers approximation methods for simplified atmospheric modeling of the Earth and
the other planets.

Exercises

3.1 The average distance of the Sun from the Earth is RS = 1.496 × 108 km and the
radius of the Earth isRE = 6.370 × 103 km.Assuming that the Earth’s orbit around
the Sun is a circle, calculate the solid angle representation of the Earth’s surface
exposed to the Sun’s radiation.

3.2 Consider a beam of radiation in an arbitrary direction ŝ from the center of a unit
sphere as depicted in Figure 3.13. The magnitude of the radiation is unity (=1) in
all directions. Calculate the total amount of radiation in the vertical direction k̂
using spherical geometry, and confirm that

∫4𝜋
(ŝ ⋅ k̂) d2Ω = 𝜋.

3.3 Show by integration in spherical coordinates that

∫∩
(ŝ ⋅ k̂)odd d2Ω = 0 and ∫4𝜋

(ŝ ⋅ k̂)(ŝ ⋅ n̂) d2Ω = 4𝜋
3

k̂ ⋅ n̂.

Figure 3.13 Figure for Exercise 2. k̂

ŝ
θ

ϕ
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3.4 Show by using solid angle integration formulae that

F↑
𝜈 (z) = 𝜋I0𝜈(z) +

2𝜋
3

I1𝜈(z) and F↓
𝜈 (z) = 𝜋I0𝜈(z) −

2𝜋
3

I1𝜈(z).

3.5 Given the Planck radiation function defined by

B
𝜈
(T) = 2h𝜈3

c2(eh𝜈∕(kT) − 1)
,

show that

∫
∞

0
B
𝜈
(T)d𝜈 = 𝜎T4

𝜋
.

How is the Stefan–Boltzmann constant defined?

3.6 Derive (3.30) and (3.31) from (3.29).

3.7 Show (3.45) and (3.46) by proving (3.43) and (3.44).

3.8 Show for the radiative equilibrium model that

T(z) =
( (3𝜏 + 2)Qap∕4

𝜎

) 1
4

.

3.9 Based on the radiative equilibrium model, what would be the temperature just
above the surface?Whatwould be the difference between the surface temperature
and air temperature just above the surface, that is, ΔT = T∗(𝜏 → t∗)? Use Q =
365Wm−2, ap = 0.7, and 𝜏∗ = 1.2.

3.10 In the radiative equilibrium model, determine the altitude in kilometers of the
brightness temperature. What would be the height where the atmospheric col-
umn becomes stable?
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4

Greenhouse Effect and Climate Feedbacks

4.1 Greenhouse Effect without Feedbacks

In Chapter 3, we examined the vertical distribution of temperatures in the atmosphere
for some very simplified atmospheric models.1 In particular, we made the assumption
that the spectral dependence of the absorption of infrared radiation by gases in the atmo-
sphere were “gray,” that is, they had no dependence on wavelength. In this chapter, we
consider a more realistic absorption spectrum of the gases in the atmosphere. It will be
seen that the details of the spectral dependence of the infrared absorption are important
in the perturbation of the radiative balance by changes in the concentration of green-
house gases (GHGs) such as water vapor, carbon dioxide, ozone, and methane.

4.2 Infrared Spectra of Outgoing Radiation

The infrared absorption spectrum of polyatomic molecules is complicated because
such molecules have many internal natural (resonant) frequencies in the infrared
frequency range. Typically, for a GHG, there are thousands of such lines (classically
speaking, the differences between quantum energy levels represent resonant frequen-
cies) across the infrared band of frequencies. It is conventional in infrared spectroscopy
to use wavenumber instead of frequency. Wavenumber, denoted �̃�, is proportional to
frequency:

�̃� = 𝜈

c
= 1

𝜆
, (4.1)

where 𝜆 is wavelength, 𝜈 is frequency (Hz), and c is the speed of light. The wavenumber
is usually expressed in units of cm−1. More than a century of laboratory and theoretical
research on molecular absorption spectra have resulted in a very detailed understand-
ing of the relevant parameters such as line intensities and the pressure and temperature
dependencies of line widths. The main constituents of the atmosphere N2, O2, and Ar
do not absorb appreciably in the infrared because the two diatomic molecules (being
composed of an identical pair of atoms) do not have a permanent dipole moment
and the Ar atom has no modes of rotation or vibration in the infrared. Electronic
transitions as opposed to vibrational and rotational transitions are at much higher

1 As with the previous chapter, this one can be skipped without loss of continuity to the one-dimensional
EBMs of the next chapter. However, some readers might want to read Section 4.6 on climate feedbacks.

Energy Balance Climate Models, First Edition. Gerald R. North and Kwang-Yul Kim.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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frequencies (e.g., in the visible or ultraviolet). The presence of a dipole moment allows
the electromagnetic field to couple directly to the molecule’s mechanical motions and
transfer energy to the internal mechanical modes of the molecule corresponding to
the associated natural frequencies. The H2O molecule has a strong permanent electric
dipolemoment allowing it to respond very efficiently to a passing electromagnetic wave.
Of all the greenhousemolecules, only H2O has pure rotational bands, whereas the other
triatomics combine vibration and rotation.This strong absorption by the H2Omolecule
makes it dominant in the blockage of infrared radiation in the atmosphere. Even a
few parts per million by volume (ppm) are enough to render the upper troposphere
essentially opaque in some portions of the spectrum.
Carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone (O3), do not

have permanent dipole moments but they can have induced moments and this can
lead to absorption of infrared radiation in the region where vibrational frequencies
predominate.2 When a molecule is excited into a higher vibrational mode, it has many
rotational frequencies available. This can lead to a large variety of resonant frequencies
where efficient transfer of energy occurs. Other important trace gases including chlo-
roflourocarbons (CFCs) can have many resonant frequencies connected with rotation
and vibration. These are the most familiar GHGs. Strictly speaking, the frequencies of
these modes are the differences of the initial and final energy levels associated with the
quantum states (ΔE = h𝜈 = hc�̃�, where h is Planck’s constant). The infrared frequency
band includes the mixed natural modes associated with both vibrational and rotational
quantum states. Many of the emission/absorption frequencies of interest to us are from
mixed vibrational and rotational transitions. Inmany cases, the discrete lines are spaced
from one another at equal intervals of Δ�̃�, so simplicity of the spectral patterns and
their direct association with molecular structure led historically to the use of frequency
as opposed to wavelength. The use of wavenumber is because a century ago the
wavelength 𝜆 could be measured very accurately with fine gratings and interferometry,
but the speed of light was not known as accurately as today; hence, the spectra could
be expressed in terms of a dependent variable that was very well measured, and the
patterns of the spectra could be related to the underlying physics of molecules.
To appreciate the complexity of molecular spectra, Figure 4.1 shows the absorption

lines from water vapor from 100 to 1500 cm−1, an interval that spans the infrared range
of interest here. The upper panel shows all the lines, while the lower panel is a kind
of microscopic view of the lines between just 400 and 500 cm−1. As shown, the lines
are of very narrow width compared to 1 cm−1 (pure rotational lines without external
broadening influences may be as narrow as 5 × 10−4 cm−1, corresponding to natural
lifetimes of the order of 103 s. This latter is of interest in astrophysics wherein very low
density gas clouds are studied.). In the Earth’s atmosphere where pressures are high,
molecules striking the absorbing gas molecules shorten the lifetime of a state over its
natural lifetime and cause the lines to broaden3 (so-called pressure broadening). Hence,

2 Discussions of molecular spectroscopy can be found in the books by Coakley and Yang (2014), Andrews
et al. (1987), and Goody and Yung (1989).
3 The uncertainty principle of quantum mechanics yields an estimate. We cannot know the exact energy of
transition because of the relation ΔEΔt ≥ h

2𝜋
, where ΔE = hΔ𝜈. Here Δt is the “lifetime” of the initial

quantum state, but it could be shortened by a collision. If Δt is less, then ΔE will be larger. In terms of
wavenumber �̃�, we have Δ�̃� = 1∕cΔt. The broadening of a spectral line has been studied for roughly a
century. Good treatments can be found in Goody and Yung (1989) and Pierrehumbert (2011).



4.2 Infrared Spectra of Outgoing Radiation 87

200 600 800 1000 1200 1400

−30

−25

−20

400 420 440 460 480 500
−28

−26

−24

−22

−20

572 lines

Wavenumber (cm−1)

lo
g

1
0
 i
n

te
n

s
it
y
 (

c
m

−1
 m

o
l−1

 c
m

2
)

lo
g

1
0
 i
n

te
n

s
it
y
 (

c
m

−1
 m

o
l−1

 c
m

2
)

H2O

H2O

400

Wavenumber (cm−1)

Figure 4.1 Illustration of the complexity of infrared radiation absorption spectral features. The
abscissa is the wavenumber ((wavelength)−1) in the traditional units of inverse centimeters (cm−1). The
ordinate indicates the intensity of the absorption in units (shown in the figure) but in logarithmic form.
The upper panel shows a line absorption spectrum for water vapor across most of the infrared band.
The lower panel shows a sub-band of spectral lines for water vapor between 400 and 500 cm−1. This
sub-band includes 572 lines. (These figures have been modified from the website spectralcalc.com.)

radiative transfer computer algorithms have to take atmospheric pressure (equivalent
to altitude of the molecular absorber/emitter above sea level) into account. Molecular
motions toward and away from the observer also cause a Doppler shift in frequency,
which also gives a temperature dependence to the line width.
It is interesting to see how the line densities (number of lines per unit cm−1) and their

intensities of both H2O and CO2 vary in different wavenumber bands of the infrared.
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Figure 4.2 The difference between the water vapor and carbon dioxide absorption spectra in the
important band between 400 and 500 cm−1. Line spectra of H2O (a) and CO2 (b) in the spectral range
400–500 cm−1. This is the “far infrared” region of the infrared spectrum. Although there are more CO2
lines in this interval, notice that the intensity or emissivity of the H2O lines is stronger by roughly four
orders of magnitude. Note the large irregularity of the H2O spectrum due to its dominance by pure
rotational lines in contrast to the CO2 spectrum which is composed of many equally spaced lines due
to the mix of combined vibration–rotation transitions. (These figures have been downloaded and from
the website spectralcalc.com.)

First consider the “far infrared” interval of 400–500 cm−1 as shown in Figure 4.2
taken from the website spectralcalc.com. Figure 4.2a shows spectral lines of H2O and
Figure 4.2b shows those of CO2. The vertical extent of the lines show the absorption
strength (∝ absorption cross section) of the line on a log10 scale. The same holds for
Figure 4.2b.The distribution of line spacing and line strengths of H2O are very irregular
owing to the many complicated rotational modes of the water vapor molecule. By
contrast, those of CO2 are very orderly and many of the lines are equally spaced from
one another owing to the dominance of pure vibrational transitions in which no change
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occurs in the rotational state. The intensities have smooth rounded envelopes, giving
the appearance of families of processes. There are about three times as many lines
in this band for CO2 than for H2O but the line strength is approximately five orders
of magnitude larger for the H2O lines, attributable to the permanent electric dipole
moment of that molecule. In this far-infrared region of the spectrum, water vapor is
dominant in the absorption and emission of infrared radiation.
Figure 4.3 shows the lines for the range 600–700 cm−1. This is the region we have

designated as the “CO2 ditch” where the molecules of CO2 dominate the emission to
space. The “ditch” is clearly identifiable in the satellite observations shown in Figure 4.4
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Figure 4.3 The difference between the water vapor and carbon dioxide absorption spectra in the
important band between 600 and 700 cm−1. Line spectra of H2O (a) and CO2 (b) in the spectral range
600–700 cm−1. This interval spans the “CO2 ditch” region where CO2 has its major impact on outgoing
infrared radiation flux density. Note the more comparable line strengths in this region, but also that
there are spectral lines for CO2 that are two orders of magnitude higher. (These figures have been
downloaded and adapted from the website spectralcalc.com.)
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Figure 4.4 Data that emphasize the ability to compute radiative transfer with high spectral resolution
to space for an atmosphere that is cloudless and for which the water vapor profile has been measured
simultaneously from balloon measurements. Even before 1970, scientists had a very good means of
computing this spectrum and measuring it from a satellite-based instrument. Spectrum of infrared
radiance at the satellite (the upper solid line of data) taken in 1970 by the IRIS (infrared interferometer
spectrograph) on board the Nimbus 3 satellite. The lower spectrum is the theoretically calculated
expected spectrum. The flight is over the Gulf of Mexico on a cloudless overpass. The lower curve is a
theoretical calculation of the expected spectrum, after knowing the temperature profile from in situ
data. The data curve has been displaced upward by 0.2 × 10−5 W cm−1 sr−1. (Conrath et al. (1970).
Reproduced with permission of Wiley.)

(more about this figure in the following). We see in Figure 4.3 that the water vapor line
strengths are comparable for both gases, but the line density of the CO2 is two orders of
magnitude over that of the H2O. Understanding this band is crucial for understanding
the greenhouse effect for the Earth’s atmosphere.
For completeness, we show one more pair of panels, this time in the band

800–900 cm−1 shown in Figure 4.5. This is in the atmospheric window portion of
the infrared spectrum. Note that there are only 192 H2O lines in this panel, while there
are 5454 lines in the CO2 case. The line strengths are comparable. Together, there is
very little absorption in this range of wavenumbers. It is right to call it a “window
region.” Actually, there is a continuum of absorption in the water vapor spectrum (not
shown here), in which two molecules in close proximity interact with a photon. The
effects of such a “three-body” collision are usually weak, but in the case of the window
regions, it can be important (see details in Chapter 4 of Pierrehumbert, 2011). So the
window is actually a bit hazy.
With the advent of the high speed computer, radiation transfer programs have been

improved to the point that under ideal conditions such as no clouds or aerosols, we can
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Figure 4.5 Line spectra of H2O (a) and CO2 (b) in the spectral range 800–900 cm−1. This figure is in the
spectral range of the “water vapor window” of the infrared. Both the CO2 and the H2O line strengths
are weaker, and it is especially as the line density of H2O is also so weak that the “window” description
holds. (These figures have been downloaded and adapted from the website spectralcalc.com).

compute the spectrum of outgoing radiation to space with high accuracy if we know
the profiles of humidity and temperature. Satellite observations with high-resolution
infrared spectrometers have also verified the calculations. Figure 4.4 shows a remark-
able indication of our ability to compute spectra based on radiative transfer calculations
in 1970 (Conrath et al., 1970). The observed spectrum is displaced upward in the figure
to make the comparison with the calculated spectrum easier. The giant “ditch” feature4
between about 500 and 800 cm−1 is due to the absorption of upwelling infrared thermal

4 One of us (GRN) wondered from where he had come up with the term “ditch.” In reviewing the literature
in the final stages of this book, he came across the term in Pierrehumbert (2011). Obviously, he had
forgotten its origin.
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radiation by CO2 molecules followed by radiation from these same molecules upward
but at lower emission temperature.The emission temperature in the deepest part of the
ditch is at about 220K, roughly the temperature of the tropopause in the tropics. This
very cold part of the tropical troposphere is key to understanding the greenhouse effect.
This figure should convince anyone that we really are able tomeasure spectra from space
and we can also calculate the upwelling radiance to very high accuracy when the tem-
perature and humidity profiles are specified (in this case, by radiosonde measurements
from a site in the Gulf of Mexico at a time when no clouds were present). If scientists
could calculate spectra this well in 1970, it is no stretch of the imagination to say we can
do even better today. Clouds and aerosols present other problems.

4.2.1 Greenhouse Gases and the Record

It might be well at this point to show the GHG increases over the last few hundred years.
It is an accepted fact that the trace GHGs are increasing at an approximately exponential
rate, and that the nearly certain source of the increase is anthropogenic. Figure 4.6 shows
the increase of carbon dioxide in the atmosphere over the last few hundred years as
inferred fromexamination of air bubbles embedded in datable layers found inGreenland
ice cores. Instrumental records beginning in the late 1950s confirm the trend that started
at the beginning of the industrial revolution, nominally ca. 1769AD at the time James
Watt patented his steam engine.

4.2.2 Greenhouse Gas Computer Experiments

In this section, we use an early version of the radiative transfer program MODTRAN
that is available to the public. A simplified version of it is available in the form of a calcu-
lator at the website: http://climatemodels.uchicago.edu/modtran/, developed by David
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Figure 4.6 Carbon dioxide gas concentrations over the last 1000 years as measured from three ice
cores from Law Dome in Antarctica. (Adapted from Oak Ridge National Laboratory cdiac.ornl.gov/
trends/co2/graphics/lawdome.gif.)
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and Jeremy Archer. The program allows the user to select a specific latitude belt (in
our case, the tropics) as well as sky conditions (in our examples to follow, clear with no
precipitation or clouds). The user can specify the (uniform) tropospheric mixing ratios
of methane and carbon dioxide. Ozone’s climatological profile can be scaled up or down
by a constant factor. The surface temperature can be given but once entered into the
calculator, the vertical dependence of temperature is constrained to the climatological
profile at the latitude belt chosen (in this section, tropical). The program then assigns a
vertical distribution of the GHGs, temperature, and air density appropriate to the lati-
tude and mixing ratios of the GHGs as specified by the user. The vertical distribution of
water vapor is adjusted to be in equilibrium with the climatological temperature profile
as given in the calculator model (either fixed relative humidity or fixed vapor pressure).
We chose the clear-sky tropics for our example because the tropical tropopause is very
high (∼18 km), causing very cold temperatures at its highest points (≈195K) with an
average lapse rate of nearly 10K km−1. Figure 4.7 shows the vertical dependence used
by the calculator model for the clear-sky tropics. These conditions give a maximum
greenhouse effect. A number of other minor GHGs are included in the standard
program (such as N2O, CH4, and the CFCs) and are fixed at climatological profiles.
Figure 4.8 shows the spectrum of outgoing radiation (Wm−2 cm) as a function

of wavenumber (cm−1). This first case includes all GHGs at or near their present
concentrations. The infrared flux is for the clear sky in the tropics. Incidentally, all
computations are conducted in this version of MODTRAN with spectral resolution5

of 2 cm−1. If there were no carbon dioxide (or other GHGs) in the atmosphere, the
spectrum would be the dark gray curve denoting blackbody radiation at 300K. Also
shown in light gray is the blackbody curve for an emission temperature of 220K. The
large negative departure (the “ditch”) between wavenumbers 600 and 800 cm−1 is due
to the presence of CO2. Notice that the emission around 680 cm−1 is at an emission
temperature near 220K, a temperature about 25K warmer than that of the tropopause
in the tropics (see Figure 4.8). The “spike” in the center (located at 667.4 cm−1) of the
band is due to a very strong narrow feature in the CO2 absorption/emission spectrum.
The reason for the spike is discussed in the following.
There are a number of interesting features besides the main CO2 ditch in Figure 4.8.

For example, there is another, but smaller, ditch at about 1100 cm−1 due to the GHG
ozone (O3). Note that the emission surrounding the ozone ditch from around 800 to
about 1200 cm−1 hugs the dark gray 300K emission spectrum for a blackbody whose
surface is at 300K, the surface temperature specified in this simulation.This broad band
of strong emission to space is called the “atmospheric window,” a range of wavenumbers
where water vapor and other GHGs have almost no absorptivity so that the radiation in
this band comes almost directly from the Earth’s 300K surface (this gets blocked by
intervening clouds, if any are present, and this can be important). Left of the main CO2
ditch is a wide band of emission that comes from cooler emission temperatures. This
mainly comes from layers of water vapor in the boundary layer (the lowest 1–2 km of air
where turbulent eddies dominate and most water vapor resides) and well above it. The

5 The most accurate calculations are the so-called line-by-line codes (LBL). These take into account each
individual line, and its width and concentration along the path (variation with altitude). Such calculations
are important for benchmarking approximate radiative transfer codes such as MODTRAN and testing
against measurements, but LBL codes are too consumptive of computer time to be used directly in climate
model calculations.
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Figure 4.7 Vertical profile of the temperature in the clear-sky tropics used in this exercise and
specified in the MODTRAN calculator model based on the website: http://geoflop.uchicago.edu/
forecast/docs/Projects/modtran.orig.html. (Data from http://geoflop.uchicago.edu/forecast/docs/
Projects/modtran.orig.html.)
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Figure 4.8 Outgoing infrared spectrum for the Earth’s tropical clear-sky atmosphere with all
greenhouse gases present. The abscissa is wavenumber in cm−1, while the ordinate is W m−2 cm. The
dark gray curve is the emission spectrum expected for a 300 K blackbody radiator and the light gray
line is for a 220 K emitter. (Adapted from calculations based on the website: http://geoflop.uchicago
.edu/forecast/docs/Projects/modtran.orig.html.)
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same holds for wavenumbers beyond 1200 cm−1, except that methane also plays a role
there. The main point of Figure 4.8 is that the total contribution of all GHGs (including
water vapor) reduces the outgoing radiation from that of a blackbody at 300K by about
60Wm−2.
As a second example, consider the planet with only one GHG, CO2, at a nominal

concentration of 375 ppm. Figure 4.9 shows this case wherein the same conditions as
Figure 4.8 apply (temperature at the surface, 300K, tropical clear sky), except that there
are no other GHGs (including H2O). We see the CO2 ditch clearly but no other promi-
nent features. Consider the bottom of the ditch. The bottom of the ditch follows the
220K blackbody curve, except for the spike in its center. Why 220K? This is because
the tropopause temperature is at this level in this particular simulation. As shown in
Figure 4.7, the temperature in the troposphere falls off nearly linearly from the sur-
face (300K) to the tropopause (195K), then begins to increase steeply in the lower
stratosphere. As we increase the concentration in the air column, the level at which
the emission to space occurs rises. As this level rises, the emission temperature is low-
ered until the tropopause is reached. This explains the tilted, flat bottom of the ditch.
The spike is due to a very strong CO2 emission line (actually a convergence of many
strong lines caused by a folding back and covering of a family of lines) at the center of
the ditch. The emission level of this narrow band is well above the level correspond-
ing to neighboring wavelengths in the ditch and it hits the tropopause when the CO2
concentration reaches a mere 25 ppm. As the concentration of CO2 in the air column
increases, the spike’s emission level increases; but being in the stratosphere, the corre-
sponding emission temperature actually goes down. In other words, the growing spike
tends to cool the atmospheric column as the concentration is increased.The decrease in
outgoing radiation is not at the tilted flat bottom of the ditch but rather in the “wings”
of the ditch.
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Figure 4.9 Graph of the spectrum of an atmosphere with CO2 as the only greenhouse gas. (Adapted
from calculations based on the website: http://geoflop.uchicago.edu/forecast/docs/Projects/modtran
.orig.html.)
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Figure 4.10 shows the result of doubling the concentration of CO2 from 375 to
750 ppm in the case where no other GHGs are present. The range of wavenumbers
focuses on the band of wavelengths covering the ditch in order to see more clearly the
changes in the outgoing spectrum. As the CO2 concentration is doubled, the flat portion
of the ditch is relatively unaffected, but the wings of the ditch are clearly deepened
to a small extent. Basically, the wings radiate from a lower layer in the atmosphere,
and as the CO2 concentration is increased, the level at which emission occurs is at a
higher altitude. The changes in the wings seem tiny, but the integral over the ditch (and
small contributions elsewhere) reveal (the Chicago website simulator tells us) that the
infrared radiation is reduced by 4.4Wm−2.
We show one more experiment where low concentrations of CO2 are doubled twice

as shown in Figure 4.11. Again the range of wavenumbers in the figure spans the CO2
ditch. In this case, the emission from the ditch decreases with CO2 doublings. This
decrease limits the outgoing radiation and in order to restore radiative balance for the
planet, the surface temperature must increase. As the doublings occur, the emission
reduction spreads all across the ditch including both its floor and the wings. This is to
be contrasted with the higher initial concentrations experiment of Figure 4.10. We can
now explain the reversal of change in the floor of the ditch compared to the wings. In
the lower concentration cases, the brightness temperature is well below the tropopause
(except for the tiny spike in the very center of the ditch where the very strong absorption
feature lies). As the concentration is increased, the strong absorption spike at the center
becomes shallow (the spike grows), but the floor of the ditch deepens because the
radiation to space is originating from higher and cooler layers of the troposphere.When
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Figure 4.10 The outgoing infrared spectrum in the range 550–770 cm−1 at mixing ratios of CO2 at
375 ppm (black) and doubled to 750 ppm (gray). The dark dotted curve is the emission spectrum
expected for a 300 K blackbody radiator and the light dotted line is for a 220 K emitter. (Adapted from
calculations based on the website: http://geoflop.uchicago.edu/forecast/docs/Projects/modtran.orig
.html.)
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Figure 4.11 Another CO2 doubling experiment but with the base at a concentration of 80 ppm. The
outgoing infrared spectrum in the range 550–770 cm−1 at mixing ratios of CO2 at 40 ppm (black),
80 ppm (dark), and 160 ppm (light). The upper dotted line is the emission spectrum expected for a
300 K blackbody radiator and the lower dotted line is for a 220 K emitter. (Adapted from calculations
based on the website: http://geoflop.uchicago.edu/forecast/docs/Projects/modtran.orig.html.)

the concentration becomes large enough, the brightness temperature actually reaches
a minimum and even turns around as the level of last radiation enters the inverted
temperature profile of the lower stratosphere. It is interesting that the brightness tem-
perature never falls to 195K, which is the minimum temperature as seen in Figure 4.7.
This is because the distribution of radiation origins in the continuous vertical profile
is from a “smear” or integrated aggregate of infinitesimal levels and its effective value is
never at the actual minimum of the distribution. We can illustrate this by considering
a narrow band around 680 cm−1, which is just to the right of the spike in the ditch.
We can use the output from the Chicago website to compute the upwelling radiation
at this wavenumber (actually a 2 cm−1 band) for a CO2 concentration of 160 ppm at
each altitude, starting from the ground. The result is shown in Figure 4.12. The curve
is dominated by the temperature profile (cf. Figure 4.7), but notice that the curve
approaches the emission level of temperatures warmer than the minimum reached at
the tropopause. Figure 4.12 shows the absorptivity times the density.This quantity mul-
tiplied by the Planck distribution function is evaluated for the local temperature. The
curve in Figure 4.12 was computed from the equation for the upwelling radiation flux
at the Chicago website, based on the two-stream approximation (see Chapter 3). This
profile is the amount of absorption that would take place from a beam of spectral width
2 cm−1 and centered at 680 cm−1 pointed downward at zenith. Note that the absorption
and emission rates are related by the proportionality factor of the Planck distribution at
the local temperature. The absorption rate of Figure 4.12 shows a peak at an altitude of
about 16 km and it has a vertical width of about 5 km.This absorption layer is called the
Chapman layer for this process. The thickness of the Chapman layer gives us an idea of
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Figure 4.12 The upwelling radiation flux at 680 cm−1 versus altitude for a CO2 concentration of
160 ppm. Note that the radiation at the top of the atmosphere (40 km here) is larger than that
corresponding to the minimum in upwelling radiation at about 18 km. (Adapted from calculations
based on the website: http://geoflop.uchicago.edu/forecast/docs/Projects/modtran.orig
.html.)

the vertical averaging that takes place in absorption and emission. Note that this is in
contrast with the Chapman layer of a cloud top where the layer is only of the order of a
meter.6
So far, we have kept the surface temperature fixed; that is, we have not forced the

incoming absorbed rate to balance the outgoing. Keeping the vertical profile rigid while
simultaneously increasing the temperature at every altitude of the entire column ren-
ders an increase in the total outgoing radiation rate to space. This procedure brings the
tropics into balance. In this way, we can restore the radiation balance at the top of the
atmosphere (TOA), at the same time increasing the surface temperature. Strictly speak-
ing, we must heat the tropics more than this, because some of the heat in the tropical
columnmust be passed to mid-latitudes through the usual transports conducted by the
general circulation of the atmosphere/ocean system.
To do the climate change experiment properly, we must cover the entire globe,

simultaneously including the horizontal transport of heat. When we adjust the ground
temperature, we must hold the water vapor mixing ratio fixed7 to avoid feedbacks,
because if only relative humidity were held fixed, we would increase the concentration

6 The mean free path for absorption of a photon in a cloud of droplets of radius r0 ∼ 5.0 μm is (n𝜋r20)
−1,

where the number density of droplets is n ∼ 200cm−3. This estimate leads to about 1 m for the optical depth
in a cloud.
7 Actually, the MODTRAN code used here has some water vapor above about 12 km but it is held fixed
during any changes.
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of water vapor and therefore induce an additional greenhouse warming – called a
positive feedback. Considering the tropics in isolation, we can iteratively change the
ground temperature incrementally until the outgoing radiation is restored to the value
it had when CO2 was at 375 ppm. After this adjustment, we find that the required
temperature increase is about 1.10K, a value within a small percentage of the global
average change found in LBL calculations (Myhre et al., 1998). Section 4.6 considers
feedbacks in the climate system.
We can consider a few more cases to improve our insight into the changing green-

house effect due to doubling CO2. First consider the MODTRAN simulation when
clouds are present (but still no other GHGs, which is slightly absurd as clouds are made
of water droplets). The result is that for cloudy atmospheres in the tropics, we simply
replace the broadband ground emission in Figure 4.8 with the temperature at cloud
top – the ditch remains unaltered. In other words, the cloud tops in most cases are
much lower than the emission level of the CO2. The change in surface temperature to
restore the outgoing radiation to its lower CO2 concentration is left unchanged from
the cloud-free case if we assume that the changes in the temperature aloft are carried
all the way through the clouds to the ground. We can use MODTRAN in another
series of experiments with summer and winter middle-latitude conditions. Perusing
these cases (with no GHGs other than CO2) reveals very little difference from the
tropical case. We conclude that given the approximations inherent in MODTRAN,
the change in temperatures will be between 0.9 and 1.1K for a doubling of CO2
from 375 to 750 ppm, and as the dependence on CO2 mixing ratio is logarithmic,
we can expect the doubling effect to be about the same for doubling from any base
level.8

4.3 Summary of Assumptions and Simplifications

We have conducted some thought experiments leading us to believe that the increase
in global average temperature due to a doubling of CO2 is about 1.0 (±0.1)∘C. We have
cautioned that the physicalmodel and the approximations to it are pretty rough but have
pedagogical value. We have to be careful not to apply the quantitative result to the real
world without reviewing the assumptions that went into our calculation.

1. We used clear-sky-only in the calculations.While the presence of fixed (in their frac-
tional coverage and altitudes), clouds (cloud tops are below the emission levels of
both CO2 and water vapor) would not have an appreciable effect on the response to
doubling CO2. Unfortunately, the assumption of “fixed” is not likely to hold. Cloud
feedback processes are among the most challenging problems facing the climate sci-
ence community. Much of the difficulty stems from the fact that many cloud pro-
cesses are at smaller or comparable scales to the grid spacing of our climate models.
But clouds are also hooked to the larger scales of the general circulation of the atmo-
sphere, for example, the mid-latitude storm belts that might be undergoing secular
change with global warming.

8 Some authors prefer to start with preindustrial levels of 250 ppm.
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2. Following the Chicago website, we adjusted the temperature “rigidly” up the whole
column when we changed the surface temperature. This is probably not what actu-
ally happens in the air column. The lapse rate profile might change as the surface
temperature is raised and this is likely to lower the response. This effect is called the
lapse-rate feedback and it is probably weak but negative.

3. In increasing the temperature to compensate for the reduced outgoing radiation,
we ignored the fact that the atmospheric column will now hold more water vapor
because of the strong dependence of saturation vapor pressure on air temperature.
The Clausius–Clapeyron equation suggests that a 1.0 K increase of temperature
leads to about 7% increase in water vapor concentration. That relative humidity is
roughly constant is supported by climatology and model simulations. This positive
feedback is likely to be strong, possibly increasing the response by a factor of 2.
Lapse rate and water vapor feedback are anti-correlated, but water vapor appears to
be much stronger based on climate model simulation studies. See Held and Soden
(2000, 2006).

4. Other known feedbacks such as those due to snow and ice cover are also ignored.
These are positive feedbacks but are thought to be smaller than the combination of
water vapor, lapse rate, and cloud feedbacks. Some studies suggest that transport of
water vapor poleward from the tropics influences the sensitivity in the higher lati-
tudes (Roe et al., 2015).

5. As the CO2 increases, changes in the temperature of the stratosphere will occur along
with those of the troposphere. Generally, to maintain balance of air layers in the
stratosphere, the temperature there will have to decrease during greenhouse warm-
ing below. This comes about because convection mixes the air in the troposphere,
but the stratospheric layers are not coupled to the troposphere through convection.
Basically, the stratosphere does not know the troposphere is warming as regards con-
vective overturning, so the cooling in the stratosphere due to increased CO2 leads to
a lowering of stratospheric temperatures.

6. We ignored the rest of the planet. Middle and higher latitudes may have quite differ-
ent sensitivities to GHG concentrations. If the tropics exhibit the largest sensitivity,
this will have to be mixed with that of less-sensitive latitude belts.

7. There are likely to be slow feedbacks in the system that alter the composition of the
atmosphere, including itsGHGs.These feedbacksmay take decades or even centuries
to kick in, as permafrost is melted or GHGs are released from sources deep in the
oceans and terrestrial biosphere.

8. A final consideration is that the differential of radiation as a function of wavenumber
across the ditch for an increased concentration of CO2 depends on the height of the
tropopause on the year,month, or even the day of the occurrence.This is one source of
variability of the sensitivity of climate.We could also askwhether a steadily increasing
altitude of the tropopause due to global warming represents an additional feedback
in the system.

While the exercises presented above are instructive, we cannot end the discussion at
this point.The only way to accurately simulate the response to CO2 is through a general
circulation model (GCM) of the atmosphere. This is a formidable task given that many
of the important processes are not yet well represented in the models.
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4.4 Log Dependence of the CO2 Forcing

This section provides a heuristic derivation of the log dependence of radiative forcing
on CO2 concentration.9 From Figure 4.10, we see that the effect of doubling CO2 is
to lower the emission to space from the intervals (550, 640) and (700, 770) results in
decreasing the radiation flux density to space, while the radiation flux density to space
increases in the interval (640, 700). The eye tells us that the net result is a decrease in
the emission to space. It appears that the emission elevation is raised to levels of lower
temperatures for wavenumbers on the outer wings of the “CO2 ditch,” but the opposite
holds in the center of the ditch, except for the sharp spike in the center. This suggests
a very simple explanation for the concentration dependence.
First, we have to acknowledge the fact that the line widths actually depend on the

local temperature and total pressure. We ignore this effect here. The justification might
be found in Figure 4.3 which shows that in the wavenumber interval between 600 and
700 cm−1 (we call it theCO2 ditch), there aremore than 32 000CO2 lines, suggesting that
there are more than 600 within the resolution of MODTRAN (2.0 cm−1) or a spacing of
the order of 0.003 cm−1. Figure 3.18 of Goody and Yung (1989) shows that at 0.5 bar of
pressure the half width is about 0.025 cm−1, or about eight times the spacing between
spectral lines. This suggests considerable overlap of the line widths and therefore we
might be able to neglect the temperature dependence of the upward flux for a fixed
elevation of emission.This is equivalent to saying the bandwidth of 2 cm−1 is effectively
saturated. Our key assumption is that the elevation of emission (Chapman level10) is key
to determining the changes due to changes in CO2.11
Consider the (well-mixed) number density, nco2 (z) of CO2 at height z:

nco2 (z) = nco2 (0)e
−z∕H . (4.2)

Assume that the emission to space for a particular 1-cm−1 wavenumber band occurs at
the level ze which is (effectively) equivalent to optical depth 𝜏co2 = 1, defined by

1 = ∫
∞

ze
𝜀co2nco2(z) dz ⇒ ze = −H ln (𝜀co2Hnco2 (0)), (4.3)

where 𝜀co2 is the band-averaged emissivity/absorptivity (∝ cross section) of a CO2
molecule and H is the atmospheric scale height. The last equation leads to

Δze = −H𝜀co2 ln

[
nco2(later)
nco2 (now)

]
. (4.4)

Now consider the change in upward radiative flux density for such a change in emis-
sion level corresponding to a lower temperature. Using R = 𝜎SBT4,

ΔR
R

= 4ΔT
T

, (4.5)

9 Hueristic might be a euphemism here. A similar derivation with more detailed considerations can be
found in Huang and Shahabadi (2014).
10 This level is known as the Chapman layer. It is an estimate of the effective altitude where the radiation is
emitted. See several passages in Goody and Yung (1989).
11 Key issues about the validity of our approximation are discussed in Chapter 4 of Pierrehumbert (2011).
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where ΔT is the change of emission temperature at one optical depth from the TOA.
The temperature in the troposphere is given by

T(z) = T(0) − Γz, (4.6)

where T(0) is the ground temperature. Then the change of the emission temperature is
related to the change in emission level, ΔTe = −ΓΔze and

ΔTe = −4𝜀co2ΓH
Δze
T

. (4.7)

Finally,

ΔR
R

= −
4𝜀co2ΓH

T
ln

[
nco2 (later)
nco2 (now)

]
. (4.8)

This result would hold for the upward flux of a single 1-cm−1 width band (such as with
MODTRAN), indexed as i. Each band will have a different Ri, Ti, and perhaps (𝜀co2 )i.
But the factor containing i dependence lies to the left of the logarithmic factor, the latter
having no i dependence. Hence, as we sum the contributions from individual bands, the
log dependence on CO2 concentration remains.

ΔR =

[∑
i

(4𝜀co2ΓHR
T

)
i

]
ln

[
nco2 (later)
nco2 (now)

]
. (4.9)

More complicated LBL calculations such as those by Myhre et al. (1998) also lead to
the same logarithmic behavior. As noted by the same authors, other gases might exhibit
different behavior. The logarithmic behavior might result from the very heavy line den-
sity of CO2 lines in the ditch area, but other gases may exhibit line spectra with more
separation compared to their line widths. Then the dependence might be more due to
the temperature and pressure dependence of widths of the lines (see many useful dis-
cussions by Goody and Yung, 1989).

4.5 Runaway Greenhouse Effect

Having devoted so much space to understanding radiation transfer in the atmosphere
and the effects of various forcings on climate change, we would be remiss if we did not
mention the “runaway greenhouse effect.” The idea has been explored for many years
and many studies have been included into the literature. The question is what happens
as the planet is warmed continuously by some forcing which is often proxied by the
outgoing IR flux (which, in steady state, is equal to the total solar absorbed flux density).
As the planetwarmsup, the oceans evaporatemorewater into the atmosphere.This adds
a strong positive feedback to the heating. Is there a point, as the heating is turned up, at
which all the oceans simply evaporate leaving a very hot planet? Could the transition be
catastrophic12 as with the (modeled) runaway snowball Earth?

12 Here catastrophic is used in the mathematical sense that the solution jumps to another branch of the
operating curve.
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These questions are important in the search for life (especially higher life forms
such as multicellular species)13 outside our own solar system – the exoplanets. We
have already discussed the ice-covered Earth in our discussions of ice-cap models in
Chapter 2. Although crude, our modeling suggests that there is an outer radius of the
Earth’s orbit outside of which no advanced-life forms are likely to be possible because
of the total ice coverage. As the planet is brought nearer to the Sun, we have to wonder
if there might be a runaway greenhouse effect, which happens to be the plausible
situation with Venus. The zone between these two limits is called the habitable zone
(see Hart, 1979). There are many other factors that determine the habitable zone such
as bounds on the obliquity that if too large can cause huge ice age cycles, perhaps even
total ice-overs – very hazardous.
To get a crude idea how the runaway greenhouse works, consider the radiative-

equilibrium solution to the gray atmosphere case that was discussed in the preceding
chapter. The ground temperature in that model (see 3.48 in the preceding chapter) is
given by

T4
∗ =

Qap

𝜎

(
1 + 3

4
𝜏∗

)
, (4.10)

where the subscript “∗” indicates the ground level values, and 𝜎 is the Stefan–Boltzmann
constant. If our gray atmosphere were a volatile one on a planet with liquid and water
vapor in equilibrium (with no spectral windows because it is really gray in this simplified
scheme), then the optical depth at the ground is a function of temperature. To see how
this works qualitatively, rearrange the preceding equation:

𝜎T4
∗

1 + 3
4
𝜏∗(T∗)

= Qap. (4.11)

Take the infrared absorbing (gray) gas to be water vapor. In addition, consider that
the total optical thickness is proportional to the water vapor pressure at the surface. We
can see qualitatively that the LHS of the last equation viewed as a curve would be hump
shaped because for small T∗ it rises from zero, and for large T∗ the denominator will
increase because of its strong (nearly) exponential dependence (Clausius–Clapeyron
equation). To find the solution, simply plot the LHS versus T∗ along with a given con-
stant value of Qap as in Figure 4.13. The result is a root (in this example) below 300K.
There is a second root to the right, but this one surely represents an unstable climate
solution, indicating a case where the steady-state ground temperature decreases as the
solar brightness increases. Note also that a numerical solution found by the method
of starting with an initial value and marching forward in time steps will never find the
unstable solutions. Instead, the solutions found by this method will simply become very
large as the bifurcation point (top of the hump) is passed. As the control parameter Qap
is increased, we eventually reach the top of the hump and above that value there is no
solution. Presumably, the temperature races to ∞ (actually, until the oceans run dry).
This is the runaway greenhouse.

13 Some experts on exoplanetary life claim that there may be microbes, but not likely multicellular forms,
the latter being much more vulnerable to hazard.
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Figure 4.13 The ordinate is the left-hand side of Eq. (4.11) whose roots determine Qap(T∗), and the
abscissa is the equilibrium ground temperature T∗ in kelvins. The flat line is for a particular value of Qap.

Weaver and Ramanathan (1995) find a way to incorporate the window of the water
vapor spectrum and proceed to develop an analytical (approximate) solution to the win-
dow problem. Theirs is a simplified model commensurate with the spirit of this book.
They begin by defining a fraction of the area under the Planck function:

𝛽 =
∫ 𝜆2
𝜆1

B
𝜆
(T) dT

∫ ∞
0 B

𝜆
(T) dT

. (4.12)

The derivation goes through similarly to the previous one except for the modification:

T4
∗ =

Qap

𝜎

(
2 + 3

2
𝜏∗

)
(
2 + 𝛽

3
2
𝜏∗

) . (4.13)

Following the same procedure as the preceding, we find that if 𝛽 > 0, for large 𝜏∗, its
dependence cancels out and there is no hump yieldingmultiple solutions or a bifurcation
(leading to a catastrophe). The runaway greenhouse effect is eliminated by the presence
of the (clear!) window.
In a paper following the same procedure, Pujol and North (2003) find analytical

solutions to problems with several box-shaped or stepwise hazy windows. In this
way, they find analytical solutions for cases that imitate H2O (hazy window) and CO2
(stepwise hazy window) in the outgoing radiation flux densities to space. Figure 4.14a
shows the five infrared bands. Gray atmospheres in this work use mass absorption
coefficients independent of wavelength in the individual hazy bands. The water vapor
is assumed to be saturated in the atmospheric column. The solutions are more com-
plicated because there have to be distinct 𝛽s for each of the hazy (nonzero absorbing)
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Figure 4.14 (a) The semi-gray model absorption coefficients indicating the step-function changes
across the infrared spectrum. (b) The ordinate is the solar absorbed energy density (W m−2) and the
abscissa is the surface temperature (K). In this depiction, the ordinate is the independent variable. The
curve labels the partial pressure (Pa) of CO2 for the cases listed across the top of the figure. These
solutions do show a catastrophic runaway greenhouse effect. (Figure modified from two figures in the
paper by Pujol and North, 2003. Figures originally generated in the paper by coauthor GRN © Tellus A,
permission not required.)

windows. Figure 4.14b shows the results. When both carbon dioxide and water vapor
are included in this kind of model, the runaway greenhouse returns in dramatic form
with catastrophic jumps in the surface temperature as the solar absorbed flux density
is increased past a threshold that depends on the amount of CO2.
Results from amodel withmore sophisticated radiative transfer ingredients are shown

in Figure 4.15 based on the work of Kasting (1988). Kasting reviews a series of models
evaluated by himself and others.Most of themodels generally indicate a runaway green-
house effect. However, the qualitative features of the results depend sensitively on the
parameter values and the choice of processes used for the still-simple models. Whether
a runaway greenhouse effect is possible for the Earth or is part of Venus’s history seems
to depend sensitively on whether CO2 or other GHGs are included with the water vapor,
whether thewater vaporwindow is clear or hazy, aswell as how the convection is treated.
Fully three-dimensional models are surely called for, but simpler models can be useful
in determining what is important in the problem.

4.6 Climate Feedbacks and Climate Sensitivity

In this section, we continue the discussion on global average models, but with emphasis
on the important concept of feedbacks in the system. In Chapter 2, we introduced
the semiempirical global average climate model based on the balance of fluxes (rate
per unit surface area and per unit time) of incoming absorbed solar energy and the
outgoing infrared energy. Empirical data were used to parameterize the outgoing
radiation rate at the TOA, (I = A + BT) and the absorbed solar flux (Qap), where A
(218Wm−2), B (1.90Wm−2 ∘C−1), and ap are empirical constants based on satellite
data, T is the surface temperature in ∘C, and Q is the total solar irradiance divided by
4. We found that the coefficients A and B differ dramatically from the blackbody values
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Figure 4.15 The ordinate Seff is the total solar irradiance divided by its current value. The abscissa is the
surface temperature in K. Depicted are the Early Earth with Seff = 70% of its present value, the Earth
now at the value unity, Early Venus at about 1.4, and Venus now at 1.9. Tcr denotes the temperature at
which all the oceans have been evaporated dry. Note that in steady state Seff = FIR∕FS, where FIR is the
outgoing radiation flux density and FS is the value of the net incident flux density. There is a break in
the abscissa between 700 and 1300 K where the curve is flat. This schematic graphic was made from
information in Kasting (1988). (Kasting (1988). Reproduced with permission of Elsevier.)

(A0 = 314.9Wm−2, B0 = 4.61Wm−2K−1). Because the sensitivity to increasing the TSI
by 1% is given by (A + BT0)∕(100B), where T0 is the present global average temperature,
the value of the damping coefficient B is a key parameter determining the sensitivity to
external perturbations to the energy balance. Here we are assuming that the sensitivity
to any external perturbation that is essentially of global scale will have the same response
structure.We gained some insight in Chapter 3 that the introduction of a “gray” column
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Figure 4.16 (a) Diagram of a planet with ice cap and (b) the global temperature dependence of the
global coalbedo for different values of the smoothing parameter, 𝛾 . The solid line is for a case of a
near-delta function shift as function of global temperature. The dashed curves are two different cases
where the transition is smoother. See Section 2.4 for details. The coalbedo function is defined in (2.79).
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of air would increase the global average surface temperature and in Chapter 4 we found
that if the CO2 concentration were doubled with all other variables held constant (water
vapor, temperature lapse rate, snow/ice cover, etc.) the increase in temperature would be
approximately 1.00 ± 0.10K. But when the Earth is warmed by a change in CO2 concen-
tration or a change in total solar irradiance, such further influences as changes in water
vapor or snow/ice cover area are invoked. Some of these features alter the energy balance
along with the direct forcing (Figure 4.16). We call these invoked perturbations climate
feedbacks. The techniques were first used in the climate change context by Hansen et al.
(1984) and Schlesinger (1986). The review article by Roe (2009) presents a historical
overview of feedback formalism, which comes originally from electrical engineering.

4.6.1 Equilibrium Feedback Formalism

The energy balance at the TOA can be (crudely) expressed as follows:
I(T ,G, FI

1, FI
2,…) = S(Q, FS

1 , FS
2 ,…), (4.14)

where T is the surface temperature (in kelvin), G is the concentration of some test
GHG, FI

1 or FS
1 is some measure of the water vapor in the column of air appropriate

to either I or S, FI,S
2 is the average vertical lapse rate of temperature in the air column,

FI,S
3 represents the parameters associated with clouds, and FI,S

4 is the snow/ice area on
the surface. If some control parameter such as Q or G is changed, we expect the system
to re-equilibrate after some suitably long adjustment time; hence, the term “equilibrium
sensitivity” is used in the perturbation. We consider only infinitesimal perturbations
such as 𝛿Q or 𝛿G with the infinitesimal response 𝛿T .
Next consider a perturbation in whichQ is held fixed andG is changed by a prescribed

amount, say 100%.

BBB𝛿T + ∂I
∂G

𝛿G +
∑

n

∂I
∂FI

n

∂FI
n

∂T
𝛿T =

∑
k

∂S
∂FS

k

∂FS
k

∂T
𝛿T , (4.15)

where BBB = ∂I
∂T

= 4𝜎T3|T=273K = 4.61 W m−2 K−1. Gathering the coefficients of 𝛿T
onto the left-hand side, and then dividing through by this factor, we find

𝛿T =
− ∂I
∂G

BBB −
∑

k
∂S
∂FS

k

∂FS
k

∂T
+
∑
n

∂I
∂FI

n

∂FI
n

∂T

𝛿G, (4.16)

or

𝛿T =
−
( ∂I
∂G

𝛿G
)
∕BBB

1 −
∑

n

(
∂S
∂FS

n

∂FS
n

∂T
− ∂I

∂FI
n

∂FI
n

∂T

)
∕BBB

. (4.17)

Finally,14 in its simplest form,

𝛿T = 1
1 − f

(𝛿T)no feedback
2×CO2

, (4.18)

14 The formalism used in this section comes from the standard study of feedbacks in electrical circuitry. It
was introduced in the climate sensitivity problem by Stone, see Stone & Risbey (1990). Our notation and
normalization follow those of this reference.
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where f = f1 + f2 + · · · with the individual terms being associated with the different
feedback mechanisms. The factor 1

1−f
is called the gain.

The numerator of the last expression is the amount of response to doubling CO2 in
the absence of any feedbacks. Its nominal value is 1.00 ± 0.1 K. The definitions of the fn
are implicit in the previous formula. Note that the fn are dimensionless numbers whose
magnitude is less than unity. f cannot be larger than or equal to unity because the quo-
tient would diverge. A negative sign for the quotient would imply an unstable initial
climate state (the slope-stability theorem of Chapter 2).

4.7 Water Vapor Feedback

Wecan use our empirical rules on outgoing radiation to estimate fw the bulkwater vapor
feedback that includes lapse rate feedback. From Figure 2.1, a reasonable nominal value
for the slope of I(T) ≈ A + B ⋅ (T − 273) for cloud pixels eliminated (the so-called “clear
sky”) is B = 2.26Wm−2 K−1. In this case, all the other feedbacks are held fixed. To get
fw, we need to divide 2.35 (=4.61 − 2.26) by 4.61, yielding

f1 ≈ 0.51, (4.19)

in this very simple model. The water vapor feedback is then a positive feedback or an
amplifier of the direct response by a factor of 2. Water vapor is probably the largest
feedback term in the denominator of the feedback equation (4.18). Note that in this
estimate of fw, we neglected the contribution of water vapor to the solar absorbed part
of the system. Since water vapor does absorb some sunlight, we might expect this pos-
itive addition to the sum of feedback factors would add even more to the magnitude
of the positive feedback. The magnitude of the water vapor feedback is probably the
best known of the climate feedback mechanisms. The interpretation is simply that as
the temperature is increased by direct forcing, the air column will hold more waterva-
por from the Clausius–Clapeyron equation of thermodynamics. Moreover, it appears
to be an established empirical fact that the relative humidity stays approximately con-
stant as climate is forced to change. Simulations of forced climate change with large
GCMs also indicate that relative humidity remains roughly constant.The upshot of this
is that the water vapor feedback represents a doubling of the response to the direct
forcing.
Lapse rate feedback refers to the possibility that the lapse rate of the temperature in the

air columnmight change in response to a directly forced heating.The reason thismatters
is that the imbalance occurs primarily at a level very high in the tropical troposphere. If
the columnwarms “rigidly,” that is, the slope of the temperature versus height curve does
not change as result of thewarming, then therewould be no lapse rate feedback. It seems
likely that lapse rate feedback is negative, but the finding of the empirical curve in Figure
2.1b suggests that, when combined, the slope of the I(T) versus T curve (2.26Wm−2)
for clear skies includes both water vapor as well as lapse rate feedbacks. Curves similar
to that in Figure 2.1b can also be computed from GCM output and a similar slope is
found (see Cess et al., 1990).
Although we have been able to estimate the water vapor feedback to probably ±10%,

obtaining an accurate value is very important as it is the largest feedback, and because
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Figure 4.17 The daily global average temperature as simulated by Terra Blanda, a version of the CCM0
GCM but with no ocean, no topography, and no seasons. The simulation starts as with water vapor,
precipitation, and cloud, then suddenly the soil moisture is no longer allowed to evaporate after
year 15. A sudden spike (shock) is followed by decay to a cooler climate with no clouds. The resulting
planet is about 15 K cooler, presumably because of the lack of water-related feedbacks. (North et al.
(1993). Reproduced with permission of Springer.)

of its peculiar role in the feedback equation (4.18). Note the strong nonlinear ampli-
fication that would occur if the first feedback is large. For example, suppose the water
vapor feedback where f1 is 0.8 (sensitivity= 5.0 K) instead of 0.5 (sensitivity 2.0 K).Then,
adding a small feedback f2 = 0.1 leads to total response of 10K as opposed to 2.5 K.
In other words, the closer the first feedback f values are to unity, the more influence
the later ones, although small, will have on the total response. See Held and Soden
(2000, 2006).
As an example of how the climate adjusts from a moist surface planet to one with no

evaporation permitted, Figure 4.17 shows a time series of daily global average tempera-
tures for such a planet (North et al., 1993).

4.8 Ice Feedback for the Global Model

In Chapter 2, we examined the global average climate problem in detail. In particular,
we considered the problemof a temperature-dependent planetary coalbedo ap(T)where
Teq is the equilibrium global average temperature. The energy balance equation is writ-
ten as follows:

A + BTeq = Qap(Teq). (4.20)

Now imagine introducing a steady perturbation (forcing) ΔF to the energy balance,
holding Q fixed. When this is done, the energy balance adjusts by a change in the tem-
perature:

BΔTeq = Qa′
pΔTeq + ΔF . (4.21)
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Figure 4.18 The variation of feedback parameter fice as the temperature is lowered in the simple
icecap coalbedo models of Figure 2.8 of Chapter 2. The solid curve represents a model whose global
coalbedo is nearly a step function as the global average temperatures goes through freezing point.
The long-dashed curve is for a case where the transition to ice cover is milder in terms of the global
coalbedo, and the short-dashed curve even more so. The solid black line denotes unity, the value for
which the bifurcation in the solution occurs. These curves show how the feedback factor fice increases
with increasing ice cap until the planet is iced over.

Recall that B = BBB − Bw, where BBB corresponds to the damping of outgoing radiation
from a blackbody and Bw is the offsetting contribution (defined here as positive) from
water vapor. Then,

ΔTeq =
(ΔTeq)ΔF

f =0

1 − Bw

BBB
− Q

a′
p

BBB

, (4.22)

where the numerator is the change in temperature when there are no feedbacks and
fw = Bw

BBB
= 0.51 and fice = Q

a′
p

BBB
.

We can find the value of a′
p(Teq) from Chapter 2 by differentiating:

a′
p =

𝛾

2
(af − ai)sech

2(𝛾Teq). (4.23)

Figure 4.18 shows the variation of fice as a function of global average temperature for
three ice-cap coalbedo models as discussed in Chapter 2; see also the three curves in
Figure 4.16b. The sharpest transition is for 𝛾 = 1, shown by the solid curve. The next
sharper curve occurs for 𝛾 = 0.2 shown by the long-dashed curves, and finally, the
mildest transition (short dashes) is shown for 𝛾 = 0.1. Notice how rapidly the feedback
factor rises as the planet’s temperature is lowered toward the jump-off at 0 ∘C. The
solid black line is included to indicate the point of divergence of the feedback (in the
absence of any other feedback mechanisms).

4.9 Probability Density of Climate Sensitivity

Before considering the other feedbacks, let us look next at the effects on probability den-
sity of sensitivity of our uncertain knowledge of f . Suppose f has a probability density
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function (pdf)

P(f ) df = 1√
2𝜋𝜎

e−
(f −f )2

2𝜎2 df , (4.24)

where f is mean (nominally 0.5 if water vapor were the only contributor) of the density
distribution of f .The distribution of f can be thought of as a lack of knowledge or it may
be that f varies randomly over time with an unknown timescale but with a definite PDF
whose standard deviation is 𝜎. Given this uncertainty in our knowledge of the value of
f , we would like to know how this translates into our lack of knowledge of sensitivity.
This is a standard problem in the theory of probability (e.g., Papoulis, 1984). In our

case,

g = 1
1 − f

. (4.25)

Given a random variable f distributed as P(f ), what is the density distribution of a func-
tion g = g(f )? In the case of a univariate problem, the form is particularly simple:

g(f ) = 1
1 − f

; f (g) =
g − 1

g
, (4.26)

Pg(g) dg = Pf(f (g))
||||
df
dg

|||| dg =
Pf (f (g))|||

dg
df
|||

dg, (4.27)

or in our case,

Pg(g) dg = Pf(f (g))(1 − f )2dg =
Pf (f (g))

g2
dg. (4.28)

Figure 4.19a shows two normal distributions with mean 0.5 and standard deviations
0.1 (solid curve) and 0.2 (dashed curve). Figure 4.19b shows how the two distributions
in f become distorted into distributions of 𝛿T . Clearly, the broader distribution in f is
more distorted. Two things are apparent, the transformed distributions are skewed, and
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Figure 4.19 (a) Illustration of the normal probability density functions of the feedback coefficient f for
two values of standard deviation, 𝜎f = 0.1 (solid) and 𝜎f = 0.2 (dashed). The mean value is f = 0.5.
(b) Illustration of the probability density functions of the response given the probability density
function of the feedback coefficient f (previous figure) for two values of standard deviation, 𝜎f = 0.1
(solid) and 𝜎f = 0.2 (dashed). The mean value is f = 0.5.
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Figure 4.20 This plot shows how a small increment of f can lead to a large increment of g(f ) = 1
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The mean of the normal distribution on the abscissa is 0.7 and the standard deviation is 0.1. Note that
the portion intersected by df is smaller than the portion dg which projects onto the ordinate. The
curvature of the function g(f ) leads to a distortion (positive skewness) of the density function
portrayed on the ordinate.

the mode is lowered from 2.26 to about 1.86 in the narrower distribution and 1.59 in the
wider distribution. Because the distribution in f spreads beyond f = 1, the computation
of the mean and higher moments diverges. Besides the mode being reduced, the tail
becomes fatter, indicating that extremely large sensitivities are possible because of our
uncertainty in the value of f and this has led to some concern because of our lack of
precise knowledge of the feedbacks in the climate system. Further insight can be gained
by viewing Figure 4.20, where it is shown directly how an infinitesimal portion of the
probability in f , Pf(f ) df is mapped into a corresponding probability in g, Pg(g) dg. See
Andronova and Schlesinger (2001) and Roe and Baker (2007).

4.10 Middle Atmosphere Temperature Profile

As seen in the previous section and from Figure 1.4, the stratospheric profile is quite dif-
ferent from the tropospheric one.The linear tropospheric thermal profile is caused by a
combination of radiative and convective adjustments to a radiative–convective equi-
librium. The troposphere is to a large extent well mixed. Above the tropopause, the
temperature (Figure 1.4) up to about 45 km has a negative lapse rate (inversion). The
giant thermal maximum occurring above that is due mainly to the dissociation of O3 by
ultraviolet solar incoming radiation. When the loose O atom rapidly recombines with
the abundant O2 molecules nearby, the energy release is by collisions with neighbor-
ing molecules resulting in local increases of temperature. Eventually, the profile comes
to a radiative equilibrium balancing this heating with the cooling due to the net locally
emitted (infrared) radiation. The lower stratosphere is then nearly uncoupled from the
tropospheric mixing due to convection ending at the tropopause. Above this level, for
many kilometers, the profile is stable and in radiative equilibrium.There are two impor-
tant consequences for us to consider in climate change scenarios.
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4.10.1 Middle Atmosphere Responses to Forcings

One might ask why the observed cooling in the stratosphere occurs while the surface
temperature is increasing as CO2 concentration is increasing. The answer lies in
Figure 4.21a, which shows the cooling rate (K per day) due mainly from CO2 in the
range centered at 50 km. Likewise, the heating rate in the same range of heights is
dominated by O3 dissociation and recombination. Areas left of the heating must equal
areas right of the cooling to maintain equilibrium. While increasing concentration
of CO2 induces warming at the Earth’s surface, the heating in Figure 4.21b does not
change. But CO2 concentrations are increasing. To counter the increased imbalance of
the increased cooling, the temperature must decrease in the lower stratosphere (due to
excess cooling). A key element in this argument is that the air above the tropopause is
dynamically uncoupled from that below it (Figure 4.22).
Another important change in the stratosphere occurs as CO2 is increased gradually

over time.The result of the slight cooling in the stratosphere has an effect on the surface
temperature.This is called the stratospheric adjustment process. It is neatly explained in
the IPCCThird Assessment Report (TAR) appendix which can be found at http://www
.ipcc.ch/ipccreports/tar/wg1/258.htm. It is also discussed in the paper by Ramanathan
and Coakley (1978) and many papers following. The sequence that occurs goes as fol-
lows. First the stratosphere cools rapidly because of the elevated effective level of emis-
sion of CO2 in the stratosphere. Remember there is little or no coupling between the
troposphere and the stratosphere.We note that the adjustment time of the tropospheric
profile (see Figure 3.11) is of the order of a month over land or years over ocean. Most
studies consider the surface to be ocean and it is therefore held fixed as the ocean sur-
face does not change much over a few weeks or even months. The slight cooling of the
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Figure 4.21 Heating and cooling rates up to 100 km. (a) Cooling rates (K per day) due to net infrared
emissions. (b) Heating rates due mostly to solar absorption processes. Note the huge effects of cooling
by ozone in the 50 km range (a) and the heating in the same altitudes by O3 (b). During
greenhouse-induced climate change the magnitude of cooling increases as CO2 concentration
increases, while the heating rates are essentially unchanged. (London (1980). US Department of
Transportation.)
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Figure 4.22 Time series of measurements of decreasing temperatures in the lower stratosphere
(the separate curves indicate an envelope of measurements from different data sources) and rising
temperatures at the Earth’s surface. (a) The dashed curves influencing the peaks in the stratospheric
curve are volcanic eruptions by (left) Agung, (middle) El Chichon, and (right) Pinatubo. (b) The volcanic
influence is to cool the surface. (Solomon and Dahe (2007). Reproduced with permission of Nature.)

stratosphere changes the energy budget of the surface. In the natural adjustment time of
the troposphere, a new equilibrium is established. The steps are spelled out in cartoon
form in Figure 4.23. The exact alteration of climate sensitivity due to the stratospheric
adjustment process is difficult to pin down and is currently a subject of study in the
modeling community. We presume in this book, given our level of approximation, that
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Figure 4.23 Steps to incorporate the stratospheric adjustment to a forcing change due to GHG
increase. Schematically, the vertical is height and the abscissa is temperature. In these steps, the
dashed line is the original profile before perturbation. Step a: The initial state, wherein an imbalance is
induced at the tropopause due to the increase of infrared flux downward. The tropospheric
temperature is held fixed at this stage, as the adjustment in the stratosphere is fast compared with that
below. Step b: The lower stratosphere cools because of the increase in GHG there. Steps c and d: The
surface and troposphere are now warm and equilibrium is restored. Steps d and e: The
surface–troposphere equilibrate to end the process. (Stocker (2013). Reproduced with permission of
Cambridge University Press.)



4.11 Conclusion 115

it is negligible, but this may prove to be erroneous as future research may reveal. Using
the Chicago website referred to in this chapter, we find that the change at the TOA for
doubling CO2 from 400 ppm, we find a lowering of upward flux by 3.23Wm−2, whereas
at 18 km height (taken to be the tropopause in the tropics), we find a decrease of upward
flux to be 4.58Wm−2. In other words, the change at the TOA where we usually define
“forcing,” is different from that at the tropopause. The stratosphere does have a role of
the order of 1.3Wm−2. Our use of the online calculator is likely to be deficient for such
an estimate. Realistic research focusing on these adjustments and their effects have to
be conducted in the interior works of a GCM.

4.11 Conclusion

TheEarth’s surface temperature has been rising steadily over the last century.Most of the
potential drivers of climate change (volcanic activity, solar brightness variability, scatter-
ing and absorbing atmospheric aerosols, and GHG concentration increases) have been
examined in great detail in recent years. We now have moderately good estimates of
the strengths and time dependencies of these drivers and although much needs to be
done in substantiating these assertions, virtually all have been eliminated except for the
increasing influence of GHGs (although there is a renewed effort to estimate the size
of the warming influence of black carbon aerosols, see Bond et al., 2013) as well as the
role of aerosols in general including their effect on clouds. The importance of the GHG
driver is also consistent with paleoclimate evidence. We have shown a series of peda-
gogical computer experiments that provide estimates of the response in the tropics to
doubling the CO2 concentration while excluding all feedbacks. These experiments can
be repeated by the reader by going to the Chicago website. While virtually all experts on
the radiative aspects of climate sciencewould agreewith the valueswe have obtained, we
have to acknowledge thatmany additional physical effects will come into play alongwith
intensification of any of the primary drivers. Some of these additional physical effects
(feedbacks) are likely (at the time of this writing) to amplify the response to CO2 dou-
bling to a value perhaps as much as four times.
One more important effect not considered here is the time dependence of the

response.The illustrations used here were from one equilibrium climate state to another
equilibrium state.The Earth system has a number of effective heat-storage components
that have varying effective heat capacities. Among these are the atmospheric column
with a response time of about a month, the oceanic mixed layer with a response time
of a few years, continental glaciers with centuries of response time, and finally the deep
ocean which communicates with the surface waters through small passageways that
limit the flow of heat toward the deeper parts. Many parcels of the deep ocean water
have not touched the surface in 800 years. The upshot of this is that while climate
sensitivity is an important index for comparing one atmospheric model with another,
the global system has many interlocking parts that cause the response of the surface to
be delayed in its full response by perhaps hundreds of years. This means that even if we
were to stop or reverse the rate of GHGs entering the atmosphere, the reversal of the
response is likely to be delayed by these sluggish and nearly inaccessible components.
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Notes for Further Reading

Many books cover infrared spectra, but Goody and Yung (1989) and Pierrehumbert
(2011) are especially recommended.
The history of the runaway greenhouse problem is too long to relate in detail here, but

a few important references include Simpson (1927a, 1927b), Ingersoll (1969), Lindzen
et al. (1982), Nakajima et al. (1992),Weaver and Ramanathan (1995), and Kasting (1988)
paper.
The habitable zone is discussed by Kasting (2010), Ward and Brownlee (2003) as well

as Hart (1978, 1979), who gave it the name. Another book about the history of life on
our planet is by Ward and Kirschvink (2015).
The feedback calculus introduced in this chapter comes from electrical engineering.

It seems to come first into climate science by way of Schlesinger (1986), who gives a
thorough description and applies it to climate forcing and feedback. The probability
distribution of climate sensitivity is introduced by Andronova and Schlesinger (2001),
and nicely described by Roe and Baker (2007).

Exercises

Use the Chicago website to answer the following questions.

4.1 Use the default values for CO2, O3, andwater vapor scales and tropical atmosphere
with no clouds or rain. Maintain the view from 70 km looking down. Describe
qualitatively the outgoing spectrum of infrared radiation. What is the total flux
density of radiation energy to space? Double the concentration of CO2 and deter-
mine the new value of outgoing radiation flux density. Restore the radiative balance
by adjusting the Ground T offset upward (by trial and error). How much is the
change in tropical ground temperature to achieve the balance?

4.2 Continue the experiment of 4.1, butwith a change in cloudiness. First, use theAlto-
stratus Cloud Base 2.4 km Top 3.0 km setting. By what amount does the upward
flux at 70 km change?What happens in the water vapor window?What happens to
the “ditch”? Double the CO2 and compare the change in equilibrium temperature
in this cloudy case.

4.3 Return to the clear tropical atmosphere with present CO2. Now change the Trop.
Ozone (pp.) to 0. What happens to the outgoing radiation flux? Restore the tropo-
spheric ozone and change the Strat. Ozone Scale from 1.0 to 0. What happens to
the total outgoing radiation flux density? Now restore the equilibrium by adjusting
the surface temperature. How much warming is due to the stratospheric ozone?

4.4 Repeat these experiments but at middle latitudes in summer.

4.5 How accurate are these procedures for estimating climate sensitivity?

4.6 How is water vapor treated in this calculator? You can check this by changing
the ground temperature and looking at Show Raw Model Output. Scroll down to
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the table that shows the profiles of various gases. How might you estimate water
vapor feedback by adjusting water vapor according to keeping the relative humid-
ity constant? You can expect specific humidity to increase by 7% for each kelvin of
increase.
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5

Latitude Dependence

We turn now to the latitude dependence of the surface temperature in the
one-horizontal-dimension energy balance model (EBM) and the main factors
that govern its shape.The satellite data indicate that there is far more net solar radiation
absorbed combined with cooling to space by infrared radiation in tropical latitudes than
in the polar regions. In order to maintain steady state, there must be some mechanism
in the atmosphere/ocean system that transports heat poleward. In the 1960s, there
were pioneering papers written independently by Budyko (1968, 1969) and Sellers
(1969) that considered EBMs that employed simplified mechanisms for the transport
depending only on the mean-annual zonally averaged surface temperature. These
papers drew the attention of a number of investigators who proceeded to build simple
EBMs for climate studies (see the suggested readings at the end of this chapter). In the
spirit of these earlier studies, this chapter introduces a diffusive heat transport device
that lends itself to study by the same kinds of analytical methods already familiar from
Chapter 2. As in every chapter in this book, we stress the importance of analytical
solutions, not only because of their aesthetic appeal but also for the additional insight
provided in such procedures. Another reason is that the phenomenological parameters
introduced are explicit. The unnecessary resort to numerical solutions to simplified
climate models can result in the inadvertent inclusion of hidden adjustments to make
model solutions conform to the investigator’s wishes. Of course, it is often the case that
the numerical solution is the only resort, especially with more complex models. The
problem of communicating the procedures in numerical modeling is receiving atten-
tion throughout the community because it is very difficult to compare or reproduce
calculations from different research groups (see, e.g., Irving, 2016; Stevens, 2015).
The first step is to introduce the spherical coordinate system in preparation for

the simplest one-parameter model for transport of heat across latitude circles:
macroscopic-thermal conductivity or diffusion. The same techniques as in Chapter 2
are used in reconciling the balance of heat energy fluxes, but this time, the rate of energy
deposition per unit area in a latitude belt of infinitesimal width (the divergence of
horizontal heat flux) must be balanced with the difference between solar absorbed and
infrared terrestrial radiation to space for each latitude belt simultaneously.The resulting
energy balance can be expressed as a second-order ordinary differential equation for
surface temperature with latitude as the dependent variable. The system is constrained
by a zero horizontal flux condition at the poles (boundary conditions). These two
conditions fix the arbitrary constants inherent in the solution of a second-order
differential equation. The homogeneous part of this linear system is readily identified

Energy Balance Climate Models, First Edition. Gerald R. North and Kwang-Yul Kim.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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with Legendre’s equation and the complete system can be solved using Legendre
polynomials (LPs), which, for completeness, are described in the chapter. Retention
of only a few Legendre modes suffices for many applications. Once the solutions are
obtained, it is possible to enumerate all the properties of such climate systems and
compare them with observational data.
The chapter proceeds with a simple introduction to the latitude dependence of the

solar insolation. Some extreme transport conditions (none and infinite) are studied and
compared to the actual observed zonally and annually averaged surface temperatures.
Diffusive heat transport is introduced in spherical coordinates, followed by a deriva-
tion and discussion of the LPs. This allows a complete solution to this class of prob-
lems when the coefficients are constants. Some attention is devoted to a solution with
just two Legendre modes. This solution appears to be a very good approximation for
latitude-dependent models when forced at very large scales, such as solar irradiance
changes or long-lived greenhouse gas (GHG) changes. The two-mode model is shown
to provide a very good fit to the poleward transport of heat as derived from satellite data.
After a few applications to specific forcings,1 such as a ring of heating, the problem of
polar amplification due to ice cap feedback is discussed in its linear form.

5.1 Spherical Coordinates

Since most of the models in this book endeavor to describe the surface temperature of
the Earth (Chapters 3, 4 and 10, being the exceptions), we will be continually required
to work on the surface of a sphere. We adopt the conventional spherical coordinates:

x = r sin 𝜗 cos𝜑; (5.1)
y = r sin 𝜗 sin𝜑; (5.2)
z = r cos 𝜗. (5.3)

In our case, r = Re. The angle 𝜗 is the polar angle (same as colatitude) and 𝜑 is the
longitude. Figure 5.1 shows a diagram defining the spherical coordinates. It is conve-
nient to use 𝜇 ≡ cos 𝜗 = sin(latitude) instead of 𝜗 to designate latitude. An area ele-
ment on the sphere is d2A = r2 sin 𝜗 d𝜗 d𝜑 = −r2 d𝜑 d(cos 𝜗). Then ignoring the sign,
d2A = r2 d𝜑 d𝜇. The variable 𝜇 is proportional to z (see 5.3) in the Cartesian system; it
is also the projection of r̂ onto the polar axis for the Earth, where r̂ is the unit vector
from the center of the sphere to the point on the surface in question. In this chapter, we
are concerned with zonally symmetric models; that is, there is no 𝜑 dependence to the
problems. In this case, the area element in question is a zonal strip or belt around the
Earth (cf. Figure 5.2).The area of the strip is d2Astrip = 2𝜋R2

e d𝜇.The use of the coordinate
𝜇 is particularly useful as area averages over zonal belts are easily computed:

f = 1
Δ𝜇∫Δ𝜇

f (𝜇) d𝜇. (5.4)

Functions of latitude will be labeled as functions of 𝜇, that is, f (𝜇). Note that at the
North pole 𝜇 = 1 and at the equator, 𝜇 = 0 and at the South pole, 𝜇 = −1. At latitude
30∘N, 𝜇 = 1∕2, which incidentally means that half the Earth’s area lies between ±30∘.

1 We remind the reader that the term “forcing” indicates an imposed imbalance on the radiation budget at
the top of the atmosphere.
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Figure 5.1 The spherical coordinate system. The polar angle
is 𝜗, with its complement the latitude 𝜃 (= 90∘ − 𝜗). The
longitude is given by 𝜑.

x

y

z

�r

ϕ

ϑ

Figure 5.2 A zonal strip or narrow latitude
belt on the sphere. The small shaded box
has area r2 sin𝜗 d𝜗 d𝜑. The corresponding
zonal strip has area d2A = −2𝜋r2 d(cos 𝜗).
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5.2 Incoming Solar Radiation

Since the Earth’s surface is not perpendicular at all latitudes to the incoming solar beam,
the amount of radiation power per unit local surface area at an instant in time is not
simply 𝜎

⊙
; rather, it is reduced by a factor of the cosine of the local instantaneous zenith

angle that depends upon the time of day, time of year, and latitude. In this chapter we
are interested in the mean annual energy/area/time reaching the top of the atmosphere
averaged through the local day at a given latitude, sin−1

𝜇. We postpone the derivation
of this function so that we can get right to work with the climate problem, presenting
here the approximate result:

Sm.a.(𝜇) ≈
1
4
(5 − 3𝜇2). (5.5)

We will also occasionally be interested in the distribution at equinox,

Seqnox =
4
𝜋

√
1 − 𝜇2. (5.6)

These functions, by convention, are normalized such that

1
2 ∫

1

−1
S(𝜇) d𝜇 = 1. (5.7)
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The radiation flux (Wm−2) reaching the strip of the Earth–atmosphere system (after
averaging through the day) is QSm.a.(𝜇) d𝜇 (the factor common to all terms in the energy
budget, 𝜋R2

e , has been omitted). The total energy absorbed by the strip is this factor
multiplied by the local coalbedo of the Earth–atmosphere system am.a.(𝜇). Now we can
compute the planetary coalbedo used in the last two chapters:

ap ≡ 1
2 ∫

1

−1
am.a.(𝜇)Sm.a.(𝜇)d𝜇. (5.8)

From satellite data, we find that am.a.(𝜇) ≈ 0.68 − 0.20(3𝜇2 − 1)∕2 (North and Coakley,
1979; the most up-to-date values come from Graves et al., 1993) . The reason for this
peculiar way of grouping the terms will be evident in the next few sections. Strictly
speaking, the coalbedo and the sunlight (insolation) functions should be multiplied
together and then averaged through the annual cycle instead of the way it has been
done here.

5.3 Extreme Heat Transport Cases

Before proceeding to specific parametric forms for the horizontal heat transport in the
system, consider the case of a planet with no horizontal heat transport. We simply bal-
ance the heat absorbed with the heat radiated outward by the Earth–atmosphere system
for each strip

A + BT(𝜇) = QS(𝜇)a(𝜇) (no cross-latitude heat transport). (5.9)

Note that we have applied the Budyko radiation rule in every latitude belt; that is,
we have used the same empirical coefficients A and B as in Chapter 2. Figure 5.3
shows the steep temperature profile one gets for the no-heat transport case (the
heavy solid-gray curve in the figure) compared with Northern Hemisphere (NH) data
(short-dashed curve in the figure). Consider next the case of infinitely efficient heat
transport (analogous to the electrostatic potential of a perfect conductor).This extreme
makes the planet isothermal. The temperature will be the same as the global average
but uniform over the globe as indicated by the long-dashed horizontal line in the figure.
Also shown in Figure 5.3 is the approximately parabolic form of the true Earth’s zonally
averaged temperature that lies in between these two cases. Note that, in all cases,
the global average temperature is the same. We will see later that this is because the
heat-transport term in the energy balance is a divergence, and the area integral (d𝜇)
from pole to pole (combined with the boundary conditions) of such a term always
vanishes.

5.4 Heat Transport Across Latitude Circles

Next, we seek a modification of the last EBM that allows for the divergence of heat from
the strip due to finite horizontal transport. This must be of the form

divergence = (heat energy leaving the strip per unit time)∕(area of the strip).
(5.10)
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Figure 5.3 Illustration of the model-computed temperature versus the cosine of the polar angle 𝜇

(note: 𝜇 = 0 at the equator, unity at the pole) for two extremes of heat transport: none (solid line) and
infinite (long-dashed line). In between is a curve (short dashed) similar to the Earth’s actual
temperature. Note that infinite heat transport is analogous to a perfect conductor in electrostatics,
while the zero transport case is simply proportional to the solar heating rate.

Note that, in this formula, we canceled out the factor “per unit longitudinal length of the
strip” in the numerator and denominator. By this last step, we have effectively assumed
that the planet is uniform around latitude belts. For a flux vector in the 𝜗 direction,
F⃗ = F

𝜗
(𝜗)�̂�, and the divergence in spherical coordinates is given by

∇ ⋅ F⃗ = 1
Re sin 𝜗

(
∂
∂𝜗

sin 𝜗F
𝜗

)
(5.11)

= − 1
Re

(
∂
∂𝜇

√
1 − 𝜇2F

𝜗

)
. (5.12)

In the last equation, we used the chain rule,
d
d𝜗

= d𝜇
d𝜗

d
d𝜇

= −
√
1 − 𝜇2 d

d𝜇
. (5.13)

In order to proceed, we need an expression or rule for the flux of poleward heat trans-
port. The simplest such form is taken up in the following section.

5.5 Diffusive Heat Transport

In a paper published in 1969, Sellers proposed a model for the heat transport that was
diffusive. The diffusion coefficient contained the sum of three terms: (i) oceanic heat
transport, (ii) sensible heat transport, and (iii) latent heat transport. The last included a
nonlinear form because of the strong temperature dependence of evaporation rate. In
the treatment here, we lump all three mechanisms into one with a constant diffusion
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coefficient whose value is chosen to best fit the latitude dependence of the observed
zonally averaged temperatures. A good analog would be the conduction of heat on a
spherical shell with a given thermal conductivity, or the current density of electrical
charge on a spherical shell with a constant resistivity.
Consider the form of heat conduction on the surface of the sphere. Such an expression

would have the flux density of heat across a plane interface proportional to the local
gradient of temperature (often referred to as diffusive heat transport):

q⃗heat = −D∇T , (5.14)

where D is a kind of macroturbulent thermal conductivity. Note that q⃗heat is the amount
of heat energy per unit time passing across a unit length of longitudinal distance. To get
the heat transported across a full latitude circle one must multiply by the circumference
of the latitude circle.We cancel the 2𝜋 factor that is common to all terms.Thedivergence
of the heat flux is

∇ ⋅ q⃗heat = −∇ ⋅ (D∇T), (5.15)

or in our zonally symmetric case,

heat flux divergence = d
d𝜇

(
D ⋅ (1 − 𝜇

2)dT
d𝜇

)
, (5.16)

where we have used the expression for the gradient

(∇)
𝜗
T = −

√
1 − 𝜇2

Re

dT
d𝜇

. (5.17)

In the last equation, we have introduced a thermal conductivity D that has absorbed into
it two factors ofRe. In general,Dmight be a function of latitudeD(𝜇), but for nowwe take
it to be a constant independent of𝜇. Nowwe canwrite our complete (time-independent)
mean annual EBM with diffusive heat transport:

− d
d𝜇

(
D ⋅ (1 − 𝜇

2)dT(𝜇)
d𝜇

)
+ A + BT(𝜇) = QS(𝜇)a(𝜇). (5.18)

This is a second-order differential equation in 𝜇 and to specify its solution uniquely we
must satisfy certain conditions at the two endpoints of the interval −1 < 𝜇 < 1. These
constitute the boundary conditions for the problem.2 In the present case, the boundary
conditions are to be that no heat flux enters the poles:

D
√
1 − 𝜇2 dT

d𝜇
||||𝜇→±1

= 0. (5.19)

Often we will deal with a planet that is symmetric between the two hemispheres, in
which case, we can take the interval on 𝜇 to be (0, 1) with the boundary conditions

D
√
1 − 𝜇2 dT

d𝜇
||||𝜇=0,1 = 0, North–South symmetric planet. (5.20)

2 An alternative approach is to note that the homogeneous solution of the energy balance equation (5.18) is
the Legendre function (Kamke, 1959), T (h)(𝜇) = E P

𝜈
(𝜇) + F Q

𝜈
(𝜇) with constant coefficients E and F to be

determined by boundary conditions and the index 𝜈 is a function of parameters B and D and not necessarily
an integer. North (1975a) solves the problem using this method, but we do not pursue it in this book,
because the approach using LPs is simpler and they lead to a modal interpretation.



5.6 Deriving the Legendre Polynomials 125

Before proceeding, we need to look at a set of special functions that will be useful
throughout the text.

5.6 Deriving the Legendre Polynomials

In this section,3 we introduce the LPs that form a very simple example of eigenfunctions
that can be used as a basis set in series expansions. The mathematics problem is the
following: consider the nontrivial (i.e., not identically zero) functions Pn(𝜇) that satisfy

− d
d𝜇

(
(1 − 𝜇

2)
dPn(𝜇)
d𝜇

)
= 𝜆nPn(𝜇), (5.21)

together with the boundary conditions
√
1 − 𝜇2

dPn(𝜇)
d𝜇

||||𝜇→±1
= 0, (5.22)

for some 𝜆n not equal to zero.We have introduced the index n = 0, 1,… to indicate that
theremay be countably infinitelymany functions Pn(𝜇) that satisfy the above conditions.
The floating parameter 𝜆n corresponding to each function Pn(𝜇) is called its eigenvalue.
The above formulation is a special case of a much more general class of relations

known as eigenvalue problems; for example,

fn(𝜇) = 𝜆nr(𝜇)fn(𝜇), (5.23)

subject to boundary conditions 𝛼fn(𝜇 = a, b) + 𝛽f ′n(𝜇 = a, b) = 0. As can be seen in
(5.23), r(𝜇) = 1 in our case. The object  is to be a member of a class of differential or
integral operators. Later we will return to a broader class of transport operators. In
particular,

 = d
d𝜇

{
p(𝜇) d

d𝜇

}
+ q(𝜇), (5.24)

leads to a class of eigenvalue problems known as the Stürm-Liouville problems. They
have the following remarkable property:

∫
b

a
f ∗n (𝜇)fm(𝜇)r(𝜇) d𝜇 =

𝛿nm

Nn
, (5.25)

where
√

Nn is the normalization factor for fn(𝜇), and if the functions q(𝜇) and r(𝜇) are
positive definite, it can be proved that the eigenvalues are all positive. The more general
form of the Stürm–Liouville problem comes up again in Chapter 8. To find out if such
functions Pn(𝜇) exist, let us try the series expansion

Pn(𝜇) =
∞∑

m=0
c(n)m 𝜇

m
. (5.26)

3 On first reading, some readers may wish to jump to the next section. The technique used here is a
common approach to solving such equations as can be found in many reference books on mathematical
methods for engineers and physicists.
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The superscript indicates the series of coefficients c(n)m will depend upon the index n as
well as m. Substituting, we find

∑
m=1

d
d𝜇

(1 − 𝜇
2)c(n)m m𝜇

m−1 +
∑
m=0

𝜆nc(n)m 𝜇
m = 0. (5.27)

After differentiating and changing the dummy summation index, we can rearrange the
terms to obtain

∑
k=0

{[(k + 1)(k + 2)]c(n)k+2 − [k(k + 1) − 𝜆n]c
(n)
k }𝜇k = 0. (5.28)

If this is to be true for any value of 𝜇, the coefficient must vanish term by term, hence
we have the following recursion relation:

c(n)m+2 =
[ m(m + 1) − 𝜆n

(m + 1)(m + 2)

]
c(n)m . (5.29)

This means that if we know c(n)0 , we can compute all the even coefficients in the series.
In fact, the entire even part of the series is proportional to this number. The same goes
for c(n)1 and the entire odd part of the series.We have two independent solutions, one for
the even-termed entries and one for the odd:

Pn(𝜇) =
∑

m even
c(n)m 𝜇

m +
∑

m odd
c(n)m 𝜇

m
. (5.30)

The c(n)0 and the c(n)1 are arbitrary constants at our disposal in satisfying all the constraints.
Now consider the convergence of the series (5.26). For large m, {m(m + 1) ≫ 𝜆n}, we
have

||||||
c(n)m+2

c(n)m

||||||
∼ 1. (5.31)

This means that the series will diverge unless something drastic happens. The way to
prevent the divergence catastrophe is first to set c(n)0 = 0 for n odd and set c(n)1 = 0 for n
even.This will allow us to set 𝜆n such that the series cuts off and becomes a finite degree
polynomial. The prescription is 𝜆n = n(n + 1); the series will continue up to the term
m = n, after which c(n)n+2 and all succeeding terms will vanish (whether n is even or odd).
We can now generate the first few LPs. First, P0(𝜇) = c(0)0 that we take to be unity.Then

P2(𝜇) = c(2)0 + c(2)2 𝜇
2
, (5.32)

and c(2)2 = −3c(2)0 from the recursion relation. The overall coefficient c(2)0 is arbitrary as it
will be for every Pn(𝜇). The convention is to fix this normalization by requiring that

Pn(1) = 1. (5.33)

This means that

P2(𝜇) =
1
2
(3𝜇2 − 1). (5.34)
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5.6.1 Properties of Legendre Polynomials

The LPs4 are a set of polynomials in 𝜇 that are mutually orthogonal:

∫
1

−1
Pn(𝜇)Pm(𝜇) d𝜇 = 2

2n + 1
𝛿nm, (5.35)

where 𝛿mn is the Kronecker delta that is unity if n = m and zero otherwise. As noted
in the previous section, Pn(1) = 1 and Pn(−1) = (−1)n. Pn(𝜇) with n odd (even) are odd
(even) functions consisting only of odd (even) powers of 𝜇. In fact, they can be derived
by defining P0(𝜇) ≡ 1, then finding a a first-order polynomial that is orthogonal to it
with P1(𝜇 = 1) = 1; this leads to

P1(𝜇) = 𝜇. (5.36)

Using this rule, we can generate the entire family of LPs.
Following is a list of the first few LPs:

P0(𝜇) = 1, (5.37)
P1(𝜇) = 𝜇, (5.38)

P2(𝜇) =
1
2
(3𝜇2 − 1), (5.39)

P3(𝜇) =
1
2
(5𝜇3 − 3𝜇), (5.40)

P4(𝜇) =
1
8
(35𝜇4 − 30𝜇2 + 3). (5.41)

Graphs of the first few LPs are shown in Figure 5.4a.
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Figure 5.4 (a) Plots of the first five Legendre polynomials, P0(𝜇) = 1, P1(𝜇) = 𝜇,… , P4(𝜇). The order of
the polynomial n is equal to its number of zeros on the interval, −1 ≤ 𝜇 ≤ 1. (b) Plots of the first five
Legendre functions of the second kind Q0(𝜇),Q1(𝜇),Q2(𝜇), Q3(𝜇), and Q4(𝜇). Each function has one
more zero than its index. Note that the Legendre functions of the second kind, Qn(𝜇), have logarithmic
singularities at the poles.

4 In this section we list only a few of the properties of these special functions. Many more properties and
relations can be found in various books on mathematical methods in physics and/or engineering.
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5.6.2 Fourier–Legendre Series

We can make use of the orthogonality property of the LPs (5.35) to expand a function
f (𝜇) into a Fourier–Legendre series:

f (𝜇) =
∞∑

n=0
fnPn(𝜇), (5.42)

and the coefficients fn can be calculated by multiplying each side by Pm(𝜇) and
integrating

∫
1

−1
f (𝜇)Pm(𝜇)d𝜇 = fm

2
2m + 1

, (5.43)

or

fn = 2n + 1
2 ∫

1

−1
f (𝜇)Pn(𝜇)d𝜇. (5.44)

This is very similar to an ordinary Fourier series except that instead of the basis functions
being sin(n𝜋𝜇) and cos(n𝜋𝜇), they are Pn(𝜇). Similar to the Fourier case, the LPs are
oscillatory. We are now in a position to expand our temperature field T(𝜇) into a series
of LPs5

T(𝜇) =
∞∑

n=0
TnPn(𝜇). (5.45)

Also similarly to the Fourier series case, for functions that have discontinuities or
discontinuous derivatives, the series can be expected to converge very slowly.

5.6.3 Irregular Solutions

Occasionally, one encounters a need for the irregular solutions to Legendre’s equation.
These solutions, the Legendre functions of the second kind, are divergent at the poles
and can normally be excluded in diffusion problems on the whole sphere. But in certain
problems, such as an expansion on a finite-width latitude belt, there is no reason to
exclude them and a solution might then be of the form

T(𝜇) = AnPn(𝜇) + BnQn(𝜇), (5.46)
where Pn(𝜇) are the LPs discussed in previous sections and the Qn(𝜇) are the Legendre
functions of the second kind. While we do not wish to derive their explicit forms here,
we list the first few to get an idea how they behave:

Q0(𝜇) =
1
2
ln 1 + 𝜇

1 − 𝜇
, (5.47)

Q1(𝜇) =
1
2
𝜇P2(𝜇) ln

1 + 𝜇

1 − 𝜇
− 1, (5.48)

Q2(𝜇) =
1
2
ln 1 + 𝜇

1 − 𝜇
− 3

2
P1(𝜇), (5.49)

Q3(𝜇) =
1
6

(
3
2
𝜇(3 − 5𝜇2) ln 1 + 𝜇

1 − 𝜇
+ 4 − 15𝜇2

)
. (5.50)

5 The convergence and completeness properties of these infinite series representations on a finite interval
are nearly identical to those of the Fourier series.
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In numerical solutions to equations such as Legendre’s on the whole interval [−1, 1], one
must be careful to apply the boundary conditions such that a small contribution from
the irregular solution does not enter, leading to a divergence at the poles. The first few
Qn(𝜇) are shown in Figure 5.4b.

5.7 Solution of the Linear Model with Constant Coefficients

First note that the series representation of T(𝜇) satisfies the polar boundary conditions
term by term. The polar boundary conditions eliminate the Qn(𝜇), which otherwise
would have to be included.6 This is important as it means that we can truncate the series
at a finite level without fear of our approximation failing to satisfy the boundary condi-
tions. Now insert the series into the energy balance equation to obtain∑

n

[
(Dn(n + 1) + B)TnPn(𝜇) + A𝛿n0

]
= QS(𝜇)a(𝜇). (5.51)

Now multiply through by Pm(𝜇) and integrate from −1 to 1. After making use of the
orthogonality relation, we obtain

∑
n

[
(Dn(n + 1) + B)Tn

2𝛿mn

2n + 1
+ 2A𝛿n0𝛿m0

]
= 2

2m + 1
QHm, (5.52)

where

Hm = 2m + 1
2 ∫

1

−1
S(𝜇)a(𝜇)Pm(𝜇)d𝜇, (5.53)

are called the heating components. Because of the Kronecker deltas in the sum, we can
find

Tn =
QHn − A𝛿n0

n(n + 1)D + B
. (5.54)

This represents an analytical solution to the problem, as T(𝜇) can now be recomposed
from the coefficients Tn using (5.45). Note that T0 is the global average temperature
as H0 is the integral of S(𝜇)a(𝜇). Figure 5.5 indicates symbolically the terms in the
Fourier–Legendre expansion.

5.8 The Two-Mode Approximation

We can get a rough idea how well the model works by comparing with the Northern
hemisphere zonally and annually averaged surface air temperature taken from Hart-
mann (1994). From the data, we find that

T0 = 288 K (nominally 15∘C), (5.55)
and T2 = −30 K. (5.56)

6 For example, if only a broad latitude belt is to be considered, the irregular solutions Qn(𝜇) would have to
be included for completeness.
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Figure 5.5 The first three terms of an expansion of T(𝜇) into Legendre polynomials. This is a case
where there is North–South symmetry.

We take the coalbedo from a fit to satellite data (Graves et al., 1993): a0 = 0.68, a2 =
−0.24; similarly, A = 219 Wm −2 and B = 2.00Wm−2 K−1. We can compute the mean
annual solar insolation for the NH: H0 = 0.70,H2 = −0.53,H4 = 0.061.

T(𝜇) ≈ T0 + T2P2(𝜇), (5.57)

with

T0 =
QH0 − A

B
, (5.58)

T2 =
QH2

6D + B
, (5.59)

and for comparison

T4 =
QH4

20D + B
. (5.60)

T0 is set by the global energy balance. We can compute D by solving (5.59), as we are
given T2 from the data. We find

D = 1
6

(QH2

T2
− B

)
≈ 0.67 Wm−2 ∘C−1

. (5.61)

This gives the desired parabolic dependence of T(𝜇) on 𝜇.
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We can calculate the dimensionless quantity

D∕B ≈ 0.34; (5.62)

hence, using Re = 6368 km,

𝓁 =
√

D
B

Re = 0.58Re ≈ 3700 km (5.63)

is a fundamental length scale in the problem.
Figure 5.6 shows a graph of the two-mode solution just calculated:

T(𝜇) ≈ T0 + T2P2(𝜇), (5.64)

and on the same graph, the data are plotted as the dashed line. Including
model-calculated T4 = 1.30K does not improve the fit. In fact, a best fit comes
from a value closer to −4K. Nevertheless, the fit in Figure 5.6 is quite good, con-
sidering the simplicity of the model, especially considering that the same value of
D = 0.67Wm−2 K−1 is used in each hemisphere. The origins of the error at the T4 level
are ambiguous, as it could be attributed to a latitude dependence to either or several of
D,A, or B. Introducing such dependencies would involve more adjustable parameters,
and the choice of which to include or exclude would not be unique (for a discussion of
this, see North, 1975b). For many purposes, it is probably best to leave the truncation
at n = 2. A heuristic perusal of Figure 5.6 suggests that the errors in the tropics might
be attributable to tropical clouds along the Intertropical Convergence Zone (ITCZ), or,
less likely, bright subtropical deserts. The cold temperatures at the South pole might be
attributable to the very high albedo and/or elevation of the surface.
The small values ofT4 fromboth the data and the constant-diffusion-coefficientmodel

calculation indicate that the Fourier–Legendre series is converging rapidly. This makes
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Figure 5.6 Illustration of the level of agreement at large spatial scales of the two-mode EBM with the
observations. The solid line denotes the pole-to-pole solution of the two-mode model-computed
temperature (K) versus 𝜇, where 𝜇 ≡ cos 𝜗 = sin(latitude). The dashed curve indicates zonally
averaged Northern Hemisphere surface air temperature taken from data in a graph in Hartmann
(1994). The black-dashed curve shows the temperature curve with the T4 (from Hartmann’s data)
mode added. Values for the temperature amplitudes are T0 = 288.3 K, T2 = −30 K, and T4 = −4 K. The
diffusive model yields a much smaller value of T4 = +1.30 K. (Data from Hartmann (1994).)
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Figure 5.7 Radiation components for the zonal averages of the year-long average 2010 data (Loeb
and Wielicki, 2014; Loeb et al., 2009).

sense considering the smooth parabolic-like zonal averages of the heating and cooling
components.
The zonal average estimates for the year-long averages for the year 2010 of the radi-

ation components: absorbed solar radiation, terrestrial infrared radiation flux to space,
and the net radiation are shown in Figure 5.7. Note the dip in absorbed solar radiation at
about 𝜇 ≈ 0.1–0.2 in the NH. This is attributable to the deep, bright convective clouds
in the NH tropics where the ITCZ resides just north of the equator in the Pacific most
of the year. There is a corresponding reduction in the outgoing infrared radiation flux
density due to emission from the high cold cloud tops in the ITCZ.This is only for 1 year
of observational data and other years may show slight differences.
As a further check on the two-mode approximation, consider the model’s representa-

tion of the components just discussed: outgoing terrestrial radiation and solar absorbed
radiation as a function of 𝜇. These are shown in Figure 5.8. In Figure 5.8a, the absorbed
solar radiation data (zonally and annually averaged for the year 2010) from (Loeb and
Wielicki, personal communication, 2013) are shown as the dashed line. The solid curve
is the two-mode approximation for the solar absorbed radiation energy, the latter makes
use of the mean annual solar insolation QSm.a.(𝜇) and the coalbedo a(𝜇) with the prod-
uct expanded into LPs, retaining only terms for n = 0, 2. As already discussed, we can
expect the simple model to fail in the neighborhood of 𝜇 ≈ 0.1 in the NH where the
bright, deep convection of the ITCZ is seated north of the equator most of the year.
From Figure 5.8, the absorbed flux fits well at the South pole, but the error discussed
regarding Figure 5.6 might be more likely due to the infrared error (see Figure 5.8b).
Lindzen and Farrell (1977) argue that the flattened temperature curve (refer to

Figure 5.6, long-dashed curve) seen in the tropics is because of increased heat transport
in the tropics, basically an infinite diffusion coefficient leading to isothermal tropics.
Such a model does fit the temperature profile better, but at the expense of adding an
additional parameter, the latitude of the edge of the tropics. The latter is a piece of
information we know rather well, so this approximation is attractive. In the presence of
an interactive ice cap, this model has solutions that lower the value of solar brightness
for which the ice-covered Earth occurs. We will return to this feature in Chapter 7.
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Figure 5.8 Fits of the two-mode model to the absorbed (a) and emitted (b) by the Earth–atmosphere
system. The curved or dashed line are data from the year 2010 and the parabolic curves are based on
the two-mode climate model. The vertical axes are energy fluxes in units of W m−2 and the abscissa
(dimensionless) is cos𝜗 = sin (latitude), where 𝜗 is the polar angle. Disagreement in tropical latitudes
in (a, b) are clearly associated with clouds of the Intertropical Convergence Zone (ITCZ).

5.9 Poleward Transport of Heat

As suggested in the previous sections, the Earth–atmosphere system transports heat
poleward because of the excess net radiation heating in the tropics and the deficiency in
the poleward regions. In the simple diffusive model of this chapter, this is accomplished
by the down-gradient flow of heat toward the poles. In the real world, the heat transport
is accomplished by several factors. In the atmosphere, there is the overturning of the
Hadley cell in the tropics; in themid-latitudes, the strong equatorward thermal gradient
leads to strong vertical shear (via the thermal wind condition), and hence large eddies
(mid-latitude weather systems) generated by instabilities that we take to be simulated
by the diffusive mechanism (at least in some kind of ensemble average). Poleward heat
transport is more complicated in the oceans where the land–sea geography and bottom
topography combine tomake basin-wide gyres with swift currents capable of heat trans-
port and that generate eddies that canmove heat energy. In addition, the ocean currents
are driven not only by diffusive eddies but by the sinking of cold saline surface waters in
the North Atlantic sector. Sinking also occurs off the coasts of Antarctica (see Huang,
2009). Figure 5.9 shows estimates of the net annualized radiation at the top of the atmo-
sphere (Trenberth and Caron, 2001). From the data in Figure 5.9, one can estimate the
poleward flux (per unit of longitude) of heat by noting from the energy balance that

div F
𝜗
= Rnet = F↑ − F↓ (data). (5.65)

The total poleward flux per unit length of circumference is

1
sin 𝜗

d
d𝜗

(sin 𝜗F
𝜗
) = Rnet; (5.66)

sin 𝜗F
𝜗
|𝜗0 = ∫

𝜗

0
sin 𝜗Rnet d𝜗; (5.67)
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Figure 5.9 Estimates of net annualized radiation at the top of the atmosphere from satellite data
1984–1989. The two-mode model is represented by the dashed line while the solid gray line is from
observational estimates. (Data from Trenberth and Caron (2001).)

F
𝜗
(𝜗) = 1

sin 𝜗 ∫
𝜗

0
sin 𝜗Rnet d𝜗. (5.68)

The total poleward heat transport, FH , crossing the entire latitude circle at 𝜗 is found by
integrating around the latitude circle or, in the zonally symmetric case, by multiplying
by the circumference of the latitude belt 2𝜋Re sin 𝜗:

FH(𝜗) = 2𝜋Re ∫
𝜗

0
sin 𝜗Rnet d𝜗. (5.69)

Observed data forRnet as shown in Figure 5.7 can be inserted into the last formula (5.69).
The result of the calculation is shown as the dashed curve in Figure 5.10. The solid line
is the two-mode curve for the heat flux given by

F2mH = 2𝜋ReD ⋅
(√

1 − 𝜇2
)2 dT

d𝜇
= 6𝜋ReD𝜇 ⋅ (1 − 𝜇

2)T2, (5.70)

where, in the last equation, we used T(𝜇) = T0 + T2P2(𝜇), with dT∕d𝜇 = −3T2𝜇.
Figure 5.10 suggests that the two-mode approximation provides a very good represen-

tation of the data for poleward heat transport in both hemispheres. This is particularly
interesting considering that the heat is transported by three mechanisms: (i) transport
by the world oceans, (ii) transport of sensible heat exchanged with the atmosphere and
the surface, and (iii) transport of latent heat from evaporation at the surface and con-
densation at roughly the atmospheric boundary layer or above.

5.10 Budyko’s Transport Model

In 1968, Budyko proposed an interesting form for the heat flux divergence. He assumed
that heat would leave a latitude belt (per unit area per unit time) by an amount
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Figure 5.10 Illustration of the level of agreement in large-scale total poleward transport of heat from
pole to pole for the two-mode EBM despite the huge differences in the geography of the two
hemispheres. Poleward transport of heat derived from radiation budget data of Trenberth and Caron
(2001) based on 4 years of ERBE data (1984–1988). The dashed curve represents the transport derived
from the satellite observations and the solid line is based on the two-mode approximation to the
surface temperature field with diffusive transport. The thermal diffusion coefficient is
D = 0.67W m−2 (∘C)−1. (Trenberth and Caron (2001). ©American Meteorological Society. Used with
permission.)

proportional to the difference between the local temperature of the strip and the global
average

𝛾(T(𝜇) − T0), (5.71)

instead of the diffusion form. If we compare Budyko’s model in two-mode formwith the
two-mode approximation to the diffusivemodel, we find that they are identical as North
(1975b) pointed out:

−D d
d𝜇

(1 − 𝜇
2) d
d𝜇

[T0 + T2P2(𝜇)] = 6DT2P2 = 6D[T(𝜇) − T0]. (5.72)

In other words, 𝛾 = 6D in the two-mode approximation, and the two transport parame-
terizations are equivalent. It is also possible to show that if D has a latitude dependence,
it is equivalent to the constant D case in the two-mode approximation (North, 1975b).
Budyko’s model is interesting because it leads to an algebraic EBM as compared to

the differential equation generated by the diffusive model. This makes the model very
simple to solve (algebraically!). It can be stated that

𝛾(T(𝜇) − T0) + A + BT(𝜇) = QS(𝜇)a(𝜇). (5.73)

Integrating on 𝜇 from −1 to 1 leads to the same equation as in Chapter 2 for the global
average temperature T0. Then one can easily solve for T(𝜇), giving us the equivalent
of the two-mode approximation for the latitude dependence. Differences arise as one
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allows a(𝜇) to have a discontinuity at say an ice sheet edge. Diffusion handles such situ-
ations nicely by a smoothing effect at such a discontinuity, but the Budykomodel gives a
discontinuity in the temperature field proportional to the ice sheet discontinuity in a(𝜇).
The next section shows how the diffusive model handles a ring-of-heat source around a
latitude circle. The Budyko model would handle it quite differently.

5.11 Ring Heat Source

If a ring of heat source is distributed around a latitude circle, the temperature will be
elevated in the latitudinal band covering the line source.This is an easy problem to solve
using LPs (Salmun et al., 1980). The anomaly in temperature is governed by the energy
balance:

−D d
d𝜇

(1 − 𝜇
2) d
d𝜇

G(𝜇, 𝜇0) + BG(𝜇, 𝜇0) = 𝛿(𝜇 − 𝜇0). (5.74)

We can expand

𝛿(𝜇 − 𝜇0) =
∞∑

n=0

2n + 1
2

Pn(𝜇)Pn(𝜇0), (5.75)

and we quickly arrive at

G(𝜇, 𝜇0) =
∞∑

n=0

(2n + 1
2

) Pn(𝜇)Pn(𝜇0)
n(n + 1)D + B

. (5.76)

We can extend our analysis to a general heat source distribution, h(𝜇), by expanding
as follows:

h(𝜇) =
∞∑

n=0
hnPn(𝜇), (5.77)

so that

ΔTh(𝜇) =
∞∑

n=0

hnPn(𝜇)
n(n + 1)D + B

(5.78)

=
∞∑

n=0
∫

1

−1
d𝜇′h(𝜇′)Pn(𝜇′)

(2n + 1
2

) Pn(𝜇)
n(n + 1)D + B

(5.79)

= ∫
1

−1
G(𝜇, 𝜇′)h(𝜇′)d𝜇′

. (5.80)

Hence, the response to a steady general latitudinal distribution of heat source is the inte-
gral of the function h(𝜇′) weighted by the function G(𝜇, 𝜇′). It is therefore of interest to
know G(𝜇, 𝜇′), which is an example of a Green’s function. An example of the response to
a ring heat source is shown in Figure 5.11. The solid gray line is for the series represent-
ing G(𝜇, 𝜇′) to be truncated at n = 300, while the gray-dashed curve represents a more
severe truncation at n = 30.This is typical of Fourier as well as Fourier–Legendre series
wheremany terms are required to fit a curve snugly in the neighborhood of a pointwhere
there is a discontinuity or a discontinuous derivative (as in this case). Green’s functions
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Figure 5.11 Temperature responses to a heat source consisting of a latitudinal ring whose strength is
1 W m−2 (in the Northern Hemisphere only; odd terms are retained). Shown are responses to a ring
located at 𝜇 = 0.4. The solid line is the solution for n = 300 for which a cusp at the heat source is
shown at the delta function heat source, 𝜇0 = 0.4. The solution for n = 30 is also shown as the dashed
line indicating that the convergence for this perturbation is very slow.

are discussed in almost any book on mathematical physics or engineering (e.g., Arfken
and Weber, 2005).

5.12 Advanced Topic: Formal Solution for More General
Transports

The simple case of constant diffusion is not likely to hold, as we will see later, because
transport mechanisms vary by latitude on the Earth. Consider the general EBM defined
by

T(𝜇) + A = QS(𝜇)a(𝜇), (5.81)

where  is a linear operator with certain desirable properties that will come out below.
If the operator is a differential operator, some boundary conditions may be required as
well. A linear operator is one that has the following property:

(𝛼h(𝜇) + 𝛽g(𝜇)) = 𝛼h(𝜇) + 𝛽g(𝜇), (5.82)

where 𝛼 and 𝛽 are arbitrary constants. We can ask about the eigenfunctions and eigen-
values of , which are defined by

fn = 𝜆n fn, (5.83)

plus boundary conditions if necessary. We will require that the eigenvalues 𝜆n be
discrete, real, and positive.7 These requirements impose constraints on the type of

7 This will be true if the operator  is symmetric (or, in the complex case, Hermitian). Symmetric here
means that (f ,g) = (g,f ) with f , g, and  real.
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operators  that qualify. When these conditions are met, we can enjoy the use of
expansions such as

T(𝜇) =
∑

n
Tn fn(𝜇), (5.84)

as it can be shown that the fn(𝜇) are orthogonal

∫ fn(𝜇) fm(𝜇)d𝜇 = 0, if m ≠ n. (5.85)

In fact, the functions can be normalized so that they are also orthonormal.

∫ fn(𝜇) fm(𝜇)d𝜇 = 𝛿mn. (5.86)

The model will be solved by inserting the series into the energy balance equation and
finding

Tn =
Qhn − An

𝜆n
, (5.87)

where

hn = ∫ S(𝜇)a(𝜇) fn(𝜇) d𝜇, (5.88)

and similarly for An.
Generally, it is expected that the modes will not look very different from the LPs. For

example, a simple case such as the smoothly varying diffusion coefficient is expected to
produce eigenfunctions that merely distort the locations of zeros from the usual loca-
tions for LPs.

5.13 Ice Feedback in the Two-Mode Model

Ice feedback is especially important in paleoclimate problems where large ice sheets
exist and their growth has a substantial effect on sensitivity as already noted in the 0-D
model. In this section, we consider the two-mode diffusive model. We do this by main-
taining zonal symmetry and retaining only two Legendremodes.The edge of the zonally
symmetric ice cap is denoted by 𝜇s and it is hooked to the−10∘ (mean annual) isotherm.
In other words,

T(𝜇s) = Ts = −10∘ C; ice cap edge condition. (5.89)

In the two-mode model this constraint is expressed as

Ts ≡ T0 + T2P2(𝜇s), (5.90)

where

T0 =
Qh0(𝜇s) − A

B
, (5.91)

and

T2 =
Qh2(𝜇s)
6D + B

. (5.92)
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Since we are considering the sensitivity of the climate to GHG concentrations, we take
the control variable to be A in the outgoing radiation rule: I = A + BT . In the case of
carbon dioxide, the relation is

ΔA = −5.3 (Wm−2)Δ(ln [CO2]). (5.93)

If we change the concentration of GHGs, we change the latitude of the ice cap edge in
response, owing to the change in the latitude distribution of temperature. Thus we can
think of 𝜇s to be a function of the control variable A. In terms of solving the problem, it
is better yet to reverse the independent versus dependent variables and think of A(𝜇s)
as the dependent variable, letting 𝜇s be the control variable in the algebra to follow, then
re-inverting to 𝜇s(A).
In changing the GHG concentration, we hold the total solar irradiance Q, constant.

We can write the latitude dependence of T(𝜇) in the two-mode model as

T(𝜇) =
Qh0(𝜇s)

B
−

A(𝜇s)
B

+
Qh2(𝜇s)P2(𝜇)

6D + B
. (5.94)

By evaluating T(𝜇) at 𝜇 = 𝜇s and using (5.89), we obtain a formula for A(𝜇s) explicitly.

A(𝜇s) = Qh0 − BTs +
B

6D + B
Qh2P2, (5.95)

where we have suppressed the arguments of h0, h2, and P2, each of which is to be evalu-
ated at 𝜇s. The sensitivity can be obtained from

dT0

dA
= − 1

B

(
1 − Q

h′
0

A′

)
, (5.96)

where the primes indicate derivative with respect to 𝜇s.
For doubling CO2 with no feedbacks, the change in T0 is

(ΔT0)f =0 = −ΔA
B0

, (5.97)

where B0 = 4.61Wm−2K−1, the blackbody damping coefficient. Using this in (5.96) and
rearranging, we have

(ΔT0)2× = (ΔT0)f =0

(
1 − Q

h′
0

A′

)
. (5.98)

If the second term in parentheses is small, we have

(ΔT0)2× ≈
(ΔT0)f =0

1 + Q h′
0

A′

, (5.99)

which means fice ≈ −Q h′
0

A′ . Figure 5.12 shows plots of A(𝜇s) (a) and fice (b) for the case of
B = B0 = 4.61Wm−2K−1. This latter gives us the value of fice in the presence of no other
feedbacks. As fice crosses the dashed horizontal line denoting fice = 1 in Figure 5.12b
and the maximum in Figure 5.12a, there is a transition to an ice-covered planet, as dis-
cussed for the 0-Dmodel. Note that, as we would expect, the feedback factor for ice caps
increases as the ice cap gets larger.The value of fice in the range of 0.8 ≤ 𝜇s ≤ 1.0 is from
0.26 to 0.15.
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Figure 5.12 Illustration of the extreme
behavior of climate sensitivity to the
location of the ice cap edge, 𝜇s. In fact,
the feedback factor fice exceeds unity
(catastrophe) when the ice cap crosses
the half-covered threshold. (a) A plot of
A(𝜇s) and (b) a plot of the ice cap
feedback factor as a function of 𝜇s, the
sine of the latitude of the ice cap edge.
Both plots are for the radiation
damping coefficient corresponding to
a blackbody, B0 = 4.61 W m−2 K−1.

5.14 Polar Amplification through Ice Cap Feedback

Climate data over the last half century indicate that the northern polar regions are
warming faster than the middle latitudes as well as the tropics. We explore here what
happens in the two-mode energy balance climate model (EBCM). First, it is clear that
if the warming is caused by a perturbation of A in the outgoing radiation formula, and,
if A and D, the thermal diffusion, have no dependence on latitude, the response of the
temperature is confined to that of the forcing, namely, the global average mode. This
latter result comes from examination of (5.91) and (5.92) with 𝜇s held fixed and noting
that A does not occur in (5.92). This means there is no polar amplification in this linear
EBCM. Polar enhancement would be indicated in the second Legendremode amplitude
T2. Recall that P2(𝜇) =

1
2
(3𝜇2 − 1) determines the equator-to-pole temperature differ-

ence as well as the curvature of the zonally averaged temperature as a function of sine
of the latitude.
But the T2 mode can be affected by the ice cap feedback via the change in 𝜇s in (5.92).

From that equation, we find

𝛿T2 =
Q

6D + B
dh2

d𝜇s

d𝜇s

dA
𝛿A. (5.100)
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Figure 5.13 Change in mode two
amplitude T2 for a doubling of CO2
(𝛿A = 4.0 W m−2) for a blackbody Earth
(i.e., the damping coefficient of the
outgoing radiation is
B0 = 4.61 W m−2 ∘C−1. Note that 𝜇s = 1,
corresponds to no ice cap. If water vapor
feedback is used (the value of
B = 2.00 W m−2 ∘C−1), the magnitude of
the value of 𝛿T2 increases about a factor
of 3 to about −1.0 K.
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The nominal value of T2 for equilibrium is of the order of −30 ∘C. Hence, for the
chosen parameters for coalbedo over ice and ice-free areas, the perturbation in T2 is
rather small (∼ −0.32K) according to Figure 5.13. On the other hand, if we includewater
vapor feedback (i.e., using B = 2.00Wm−2 K−1), this perturbation is about a factor of 3
larger, 𝛿T2 ≈ −1.0 K.Hence, if water vapor feedback is engaged simultaneously the effect
of ice feedback is three times as large. As discussed in Chapter 4, the inclusion of more
feedbacks is not strictly additive but nonlinear through the following formula:

(ΔT)w/feedback =
(ΔT)no feedback

1 − fwv − fice
. (5.101)

We will return to ice cap feedback in Chapter 8, where we will solve the full nonlinear
1-D model analytically.

5.15 Chapter Summary

The zonally symmetric, steady-state, latitude-dependent EBCM can be expressed
mathematically as a second-order ordinary differential equation subject to boundary
values of zero heat flux density into the poles. The single dependent variable is the
zonally averaged surface temperature field T(𝜇) where 𝜇 is the sine of the latitude or
cosine of the polar angle. On the range of latitudes, the surface temperature is assumed
to be governed by a damping term (BT(𝜇)) due to outgoing radiation flux density,
a diffusive transport mechanism, and a source or forcing term on the right-hand
side, all of which amount to a nonhomogeneous, ordinary second-order differential
equation. In addition, the source term is given by the mean annual solar insolation
function of the latitude, which is modulated by the coalbedo (or energy flux density of
solar absorption).
We were able to find a general solution to the problem for T(𝜇) as posed in the form

of an infinite series of LPs, Pn(𝜇). But it turns out that a truncation of the series includ-
ing only the P0(𝜇) = 1 and P2(𝜇) =

1
2
(3𝜇2 − 1) modes provides a remarkably good fit

to the zonally averaged mean annual data. The relevant coefficients turned out to be
T0 = 288K (15 ∘C) and T2 = −30 ∘C, which lead to satisfactory fits to the data – at least
good enough considering the level of our model’s realism regarding transport of heat,
and so on. In order to obtainT2, we needed to adjust the diffusion parameter to a value of
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0.67Wm−2 ∘C−1. This last operation amounts to tuning the curvature of the parabolic
fit of the model’s temperature to that of the observations as a function of 𝜇.
Once we have the two-modemodel, we can calculate various quantities that serve as a

partial check on our assumptions. For example, it is no surprise that themodeled outgo-
ing radiation fits rather well except in the ITCZ, where a narrow band of clouds departs
from parabolicity. Likewise, the parabola fits the absorbed solar radiation tolerably well.
It is very interesting that the poleward heat fluxes in both hemispheres can be derived
from the satellite data and fit almost perfectly to the two-mode model with the same
value of D in both hemispheres.
Because the LPs are the eigenfunctions of the damped diffusion operator (left-hand

side of the energy balance equation), inhomogeneous terms (those on the right-hand
side) will only excite a response in the samemodes (eigenfunctions) as themodes exhib-
ited in the forcing terms. We found that with a ring of heat around the planet, many
higher modes (values of the index n) are needed to represent the response because of
the large number of modes required to represent such latitudinally narrow features in
the heating function.

5.15.1 Parameter Count

As we increase the dimension of our climate model, we always run into the need for
new parameters. In this chapter, we encountered the thermal diffusion coefficient, D.
This allowed us to fit the surface temperature versus latitude rather well, except possibly
in the tropics, where we argue the discrepancy is with clouds in the ITCZ. With this
single new parameter, we were able to predict the latitudinal form of the poleward heat
transport in each hemisphere.

Notes for Further Reading

Besides the articles by Budyko (1969) and Sellers (1969), the review article by Schneider
and Dickinson (1974) and the paper by Chýlek and Coakley (1975) induced one of the
authors of this book (GRN) into climate science with North (1975a, 1975b). Virtually
simultaneously and independently came the papers by Held and Suarez (1974) and Ghil
(1976). The review article by North et al. (1981) covers much of the early science of
EBMs. The articles in the volume edited by Archer and Pierrehumbert (2010) provide
further historical material.

Exercises

5.1 Assuming that the solar constant does not change in time and is given by 𝜎
⊙
=

1360Wm−2, calculate the total amount of insolation reaching the zonal band of
width d𝜗 centered at latitude 𝜗 at any given time t. Assume the equinox condition
with the Sun directly above the equator. On the basis of your answer, show that
the total amount of insolation received by the Earth is 𝜋R2

E𝜎⊙.

5.2 On the basis of your calculation in Exercise 5.1, calculate the equinox distribution
of solar radiation as a function of 𝜇 = cos 𝜗.
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5.3 Modify Exercise 5.2 to address the insolation distribution functionwhen the Sun’s
declination angle is 𝛿.

5.4 Suggest how themean annual insolation distribution function can be determined
by using the insolation distribution function obtained in Exercise 5.3. Calculate
the mean annual insolation distribution numerically by assuming the declination
angle varies uniformly between 𝛿 ∈ [−23.5∘, 23.5∘] throughout the year.

5.5 Show that the mean-annual and equinox insolation distribution functions as
given by

Sm.a.(𝜇) =
1
4
(5 − 3𝜇2) and Seqnox =

4
𝜋

√
1 − 𝜇2

yield 1 (unity) when averaged over 𝜇 ∈ [−1, 1].

5.6 Given the annual mean albedo in the form
am.a.(𝜇) = 0.68 − 0.10(3𝜇2 − 1),

calculate the planetary albedo ap.

5.7 The LPs can be determined by using the recursion formula
(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x).

Starting from P0(x) = 1 and P1(x) = x, determine the LPs up to order n = 5.
Determine the general form for the eigenvalues 𝜆n.

5.8 Let us assume that the LP of order n can be defined as

Pn(𝜇) =
∞∑

m=0
c(n)m 𝜇

m
,

where the LP satisfies the second-order differential equation

− d
d𝜇

(
(1 − 𝜇

2)
dPn(𝜇)
d𝜇

)
= 𝜆nPn(𝜇)

together with the boundary condition
√
1 − 𝜇2

dPn(𝜇)
d𝜇

||||𝜇=±1 = 0.

Show that the expansion coefficients satisfy

[(k + 1)(k + 2)]c(n)k+2 − [k(k + 1) − 𝜆n]c
(n)
k = 0.

5.9 Using the result in Exercise 5.7, verify that the expansion coefficients c(n)m in

Pn(𝜇) =
∑
m=0

c(n)m 𝜇
m

satisfy the following:

[(m + 1)(m + 2)]c(n)m+2 − [m(m + 1) − 𝜆n]c
(n)
m .
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5.10 Show that for n = 0,… , 4 that

∫
1

−1
P2

n(x) dx = 2
2n + 1

.

5.11 Let us assume that the mean-annual insolation distribution and coalbedo are
given as functions of 𝜇 (sine of latitude) as

Sm.a.(𝜇) =
1
4
(5 − 3𝜇2), and am.a.(𝜇) = 0.68 − 0.12(3𝜇2 − 1).

Write the annually averaged coalbedo-weighted insolation distribution function
in terms of the Legendre polynomials, i.e.,

Sm.a.(𝜇) am.a.(𝜇) =
∑

n
cnPn(𝜇).

5.12 Using the results in Problem 11, solve the 1-D EBM with a constant diffusion
coefficient (D = 0.67Wm−2 K−1):

A + BT(𝜇) − d
d𝜇

(
D(1 − 𝜇

2)dT(𝜇)
d𝜇

)
= QS(𝜇)a(𝜇), Q =

𝜎
⊙

4
.

5.13 Let us consider the ring heat source problem

−D d
d𝜇

(
(1 − 𝜇

2) d
d𝜇

)
T ′(𝜇 + BT ′(𝜇)) = h(𝜇),

where h(𝜇) is the heat source as a function of 𝜇 (sine of latitude) and the prime
indicates that T ′(𝜇) is departure from the equilibrium. This problem is often
solved by using the so-called Green’s function technique. Green’s function G(𝜇, 𝜈)
satisfies the differential equation

− d
d𝜇

(
D(1 − 𝜇

2)dG(𝜇, 𝜈)
d𝜇

)
+ BG(𝜇, 𝜈) = 𝛿(𝜇 − 𝜈).

Show then that the solution of the heat source problem is given by

T ′(𝜇) = ∫
1

−1
G(𝜇, 𝜈)h(𝜈) d𝜈.

5.14 The ice-feedback model can be written as

A(𝜇s) = Qh0(𝜇s) − B(T0 + T2P2(𝜇s)) +
B

6D + B
Qh2(𝜇s)P2(𝜇s),

where h0 is the latitude of the ice boundary, h0(𝜇s) and h2(𝜇s) are the expan-
sion coefficients for Sm.a.(𝜇s) evaluated at the latitude 𝜇s, and A(𝜇s) is the
temperature-independent component of the longwave radiation to space. Show
that

dT0

dA
= − 1

B

(
1 − Q

h′
0

A′

)
, h′

0 = dh0∕d𝜇s, A′ = dA∕d𝜇s.
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6

Time Dependence in the 1-D Models

In Chapter 5, we found that time-independent, zonally symmetric models can be cast
into the form of a linear differential equation in the latitude variable with zero-flux
boundary conditions at the poles. In the case of a latitude-independent thermal diffu-
sion coefficient, the system can be solved with Legendre polynomials. In this chapter,
we extend this procedure to the case of time dependence. Such an extension allows
for idealized seasonal-cycle simulations for the zonally symmetric planet. Introducing
time dependence necessarily requires some kind of effective heat capacity for the col-
umn of air–land or air–ocean medium. When we take the planet to have a homoge-
neous surface and constant diffusion coefficient, we also specify that the heat capacity
is not spatially dependent, that is, it is a constant. An all-land planet is one for which
the heat capacity is characteristic of a land surface. This means it takes a value calcu-
lated from a fraction (nominally half ) of the mass of a column of air. This leads to a
time constant C∕B of about 1 month. This is our new phenomenological coefficient for
Chapter 6.
The time-dependent models are amenable to analytical solution for uniform plan-

ets (constant D and C). Model solutions are in the form again of Legendre polynomial
modes, each having a characteristic decay time with larger scales (low Legendre index)
having longer relaxation times, and smaller scales, shorter times. The seasonal cycle of
latitude-dependent insolation has a very simple form when truncated at the few-mode
level. Legendre polynomials of index 0, 1, and 2 describe the latitude dependence of the
seasonal cycle of insolation, except, of course, for the discontinuous derivative near the
poles, which is necessary to describe the onset of perpetual night or day and the appro-
priate latitudes and times of year.This insolation formula allows us to obtain very simple
expressions for the dependence of insolation on obliquity, precession of the equinoxes,
and eccentricity. The seasonal cycle simulations also give us an idea about the lag of
seasonal response to the driving seasonal heating cycle.
Later in the chapter, we return to the stochastic nature of climate forcing (presum-

ably due to weather instabilities) by showing how the random walk of heated parcels
is approximately imitated by diffusion in an ensemble average. This analysis relates the
mean square of the parcel’s velocity and relaxation time to the diffusion coefficient of
the ensemble.

Energy Balance Climate Models, First Edition. Gerald R. North and Kwang-Yul Kim.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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A short section is added to show how one might go about solving one-dimensional
problems via finite difference methods. The appendices to the chapter give derivations
of the insolation functions.

6.1 Differential Equation for Time Dependence

Consider the problem of a time-dependent one-dimensional climate system for a planet
whose surface is uniformly land or ocean. The energy balance model for constant coef-
ficients is as follows:

C ∂T
∂t

− D ∂
∂𝜇

(1 − 𝜇
2) ∂T

∂𝜇
+ A + BT = QS(𝜇, t)a(𝜇, t), (6.1)

where 𝜇 is the sin(latitude), t is time, T(𝜇, t) is the latitude and time-dependent temper-
ature field, S(𝜇, t) is the insolation function possibly allowing for a seasonal cycle, a(𝜇, t)
is the coalbedo, which is a function of latitude and possibly time dependent;Q is the total
solar irradiance divided by 4 = 𝜎

⊙
∕4, A,B, and D are phenomenological coefficients as

defined in Chapter 5, and C is an effective heat capacity. As discussed in Chapter 2, this
means a timescale of about 30 days (𝜏0 = C∕B) for an all-land planet and a few years for a
planet covered with amixed-layer ocean.This amounts to using the heat capacity of half
a column of air (at constant pressure) for the all-land case and that of 50–100m of water
for the mixed-layer ocean case. In the latter, we assume the ocean below is uncoupled
with the mixed layer.
We expand the time-dependent temperature field into Legendre polynomials:

T(𝜇, t) =
∑

n
Tn(t)Pn(𝜇). (6.2)

Note that each coefficient Tn(t) is a function of t. After inserting the series, multiplying
through by Pm(𝜇) and integrating as before we obtain an ordinary differential equation
for the Tn(t):

C
dTn(t)
dt

+ 𝛿n0 A + (n(n + 1)D + B)Tn(t) = QHn, (6.3)

where

Hn(t) =
2n + 1

2 ∫
1

−1
S(𝜇, t)a(𝜇, t)Pn(𝜇) d𝜇. (6.4)

It is important to note that none of the terms in the array indicated by (6.3) is coupled to
any of the others. In other words, for the equation dependent on mode number n there
is no other mode index, say m ≠ n, that is referred to in the equation indexed by n.

6.2 Decay of Anomalies

Consider first the case where S(𝜇, t) and a(𝜇, t) are set at their mean annual values as
in Chapter 5. We can examine the behavior of the climate as it is perturbed away from
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Figure 6.1 This figure illustrates that large spatial scales (low Legendre index) have longer time
constants than for small spatial scales. Shown is a bar chart with relaxation times for various Legendre
modes for the homogeneous planet with n in terms of 𝜏0 = C∕B = 1 month. In this case,
D = 0.67 W m−2 ∘C, B = 2.00 W m−2 ∘C, so that D∕B = 0.34 (dimensionless).

steady state. We have the solution to the initial-value problem:

Tn(t) = T (ss)
n + (Tn(0) − T (ss)

n )e−t∕𝜏n , (6.5)

where T (ss)
n is the solution to the time-independent (steady-state) problem given above

and

𝜏n = C
n(n + 1)D + B

=
𝜏0

n(n + 1)(D∕B) + 1
. (6.6)

Each mode Tn(t) has its own characteristic time 𝜏n. Note that the characteristic times
fall off rapidly as a function of n as shown in Figure 6.1. This agrees with our intuition
that larger spatial scales have longer characteristic (adjustment) times.We will establish
a similar result for the autocorrelation times later in noise-driven models.

6.2.1 Decay of an Arbitrary Anomaly

An arbitrary distribution of thermal anomaly will decay in time according to a super-
position of the modes just discussed. For example, an initial distribution of anomaly
(departure from equilibrium) whose shape is T ′(𝜇, 0) will decay according to

T ′(𝜇, t) =
∞∑

n=0
T ′

n(0)Pn(𝜇)e−t∕𝜏n . (6.7)

For example, consider an initial shape rendered by a steady ring of heat source
(Chapter 5) at a specific latitude as given by (5.11) and shown in Figure 5.11. The
solid line in Figure 6.2 shows such a steady-state anomaly located at 𝜇 = 0.6 (37∘N). If
suddenly the heat source is switched off, the distribution will decay according to (6.7).
The figure shows stages of the decay at 0.25𝜏0, 0.5𝜏0, 0.75𝜏0, and 1.00𝜏0. We see that the
higher modes, those rendering the cusp-like peak, are lost quickly leaving behind only
the smoother long-lived modes.
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Figure 6.2 Decay of a symmetric (between the hemispheres) initial distribution (solid line) after times
0.25𝜏0, 0.5𝜏0, 0.75𝜏0 and 𝜏0 (dashed lines). The model parameters are as earlier and the sum is
truncated at n = 200. The steady-state response has a discontinuous derivative at the ring’s latitude.
Its Fourier–Legendre series is very slowly converging, and this indicates that much power resides in
higher-mode indices. These modes decay quickly leaving behind a smoother latitudinal profile as the
temperature relaxes toward the old steady-state solution (zero here).

6.3 Seasonal Cycle on a Homogeneous Planet

Wecan begin the study of the seasonal cycle by placing the solar heating distribution as a
forcing on the right-hand side of the energy-balance equation. The heating distribution
can be written for a circular orbit as follows:

S(𝜇, t) ≈ 1 + S11 cos 2𝜋tP1(𝜇) + (S20 + S22 cos 4𝜋t)P2(𝜇), (6.8)

where S11 = −0.797, S20 = −0.477, and S22 = 0.147 (see Figure 6.3). The subscripts
denote the Legendre index first, then seasonal time harmonic second. A derivation
for this heating distribution function is sketched in the appendix to this chapter. But
for now we can observe some important properties. The mean annual version can be
quickly recovered by averaging from 0 to 1 year in t,

Sma = 1 + S20P2(𝜇), (6.9)

which is the formula used earlier in Chapter 5. The main part of the seasonal cycle is
carried by the coefficient of the P1(𝜇) term. Note that it is antisymmetric between the
hemispheres (recall the identity P1(−𝜇) = −P1(𝜇)). The seasonal forcing is largest near
the poles (P1(±1) = ±1). Another interesting feature captured by this representation is
that along the equator (𝜇 = 0) there are two maxima (see Figure 6.3). This is the effect
of the Sun crossing the equator twice each year at the equinoxes. Table A.6.1 shows
the coefficients for some higher terms in the expansion for the present elliptical orbit
of the Earth. Figure 6.4 shows the seasonal insolation when only modes 0, 1, and 2
are included.This figure indicates that retention of only these three modes captures the
most important features of the insolation. Figure 6.5 shows how in the tropics there are
two peaks as one passes through the year. The figure shows that for −0.1 ≤ 𝜇 ≤ 0.1 the
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Figure 6.3 Contour diagrams of the seasonal forcing S(𝜇, t) or insolation. The vertical axis is cosine of
colatitude, 𝜇; the horizontal axis is time, t in years and t = 0 corresponds to summer solstice for the
Northern Hemisphere. The units of the contour plot is for the present elliptical orbit forcing through
the Legendre mode 4 and time harmonic 2. The seasonal cycle of S(𝜇, t) for the present elliptical orbit
with eccentricity 0.016 (a) and the seasonal cycle for the same heating, but for a circular orbit (b). The
value of time equal to zero in the Northern Hemisphere winter solstice.

semiannual harmonic is strong.These three modes are able even to capture the passage
of the Sun over the equator twice per year. Away from the equator, the seasonal har-
monic dominates. Figure 6.6 shows latitudinal time sections of the forcing. The dashed
lines show the forcing for zero eccentricity.
We can express the seasonal dependence of insolation as

S(𝜇, t) =
N∑

n=0

K∑
k=0

[ank cos 2𝜋kt + bnk sin 2𝜋kt]Pn(𝜇). (6.10)

If we take the coalbedo, diffusion coefficient, and heat capacity to be constants indepen-
dent of season and latitude, we can write equations for the mode responses:

C d
dt

Tn(t) + [Dn(n + 1) + B]Tn(t)

= Qa0

2∑
k=0

[ank cos 2𝜋kt + bnk sin 2𝜋kt], (6.11)
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Figure 6.4 Seasonal cycle of S(𝜇, t) for the present orbital obliquity 𝛿 when only the Legendre modes
0, 1, and 2 are retained along with mean annual, annual harmonic, and semiannual harmonic. The time
span is over 2 years in units of years with the origin at northern winter solstice. The latitudinal
coordinate 𝜇 runs from the South pole (𝜇 = −1) to the North Pole (𝜇 = +1). The semiannual harmonic
captures the passage of the Sun over the equator twice a year in this image.
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Figure 6.5 Seasonal cycle of S(𝜇, t) in the tropics (±5.7∘) for the present orbital obliquity 𝛿 when only
the Legendre modes 0, 1, and 2 are retained along with mean annual, annual harmonic, and
semiannual harmonic. This graphic shows the tropical variation with two maxima per year caused by
the S22 term. Note the change in vertical scale from the previous figure. The time span is over 2 years in
units of years with the origin at northern winter solstice. Note that the details of polar day and night
are missed in this truncation, but the semiannual harmonic captures the passage of the Sun over the
equator twice a year.
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Figure 6.6 This figure illustrates the effect of eccentricity on the seasonal cycle of zonal average
temperatures for an all-land planet. Shown is the modeled seasonal cycle (retaining Legendre modes
0, 1, and 2) of temperatures for the bare planet for present orbital parameters (solid curves) at selected
latitudes: 𝜇 = ±0.6 (36.9N/S), ±0.4 (23.6N/S), ±0.2 (11.5N/S), ±0.1 (5.7N/S), and 0 (Equator). The dashed
curves are for the corresponding circular orbit (e = 0).

where a0 is the constant coalbedo. To simplify the algebra. we employ complex notation
(superscript c indicates a complex variable) and the complex Fourier series:

Tn(t) =
∑

k=0,1,2
Tc

nk e2𝜋ikt . (6.12)

Inserting this into the governing mode equations:

C d
dt

( 2∑
k=0

Tc
nk e2𝜋ikt

)
+ [Dn(n + 1) + B]

( 2∑
k=0

Tc
nk e2𝜋ikt

)

= Qa0

2∑
k=0

Sc∗
nk e2𝜋ikt

. (6.13)
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To recover the physical mode amplitudes,

|Tnk| =
√

(Tc
nk)∗Tc

nk , (6.14)

whereas the phase lag behind the forcing is

𝜙nk = arctan
ℑ(Tc

n)
ℜ(Tc

n)
. (6.15)

The complex Sc
nk are related to the real Fourier coefficients as follows:

Sc
nk = ank + ibnk . (6.16)

After a time (≫ 𝜏0 = C∕B), the transients die out and we are left with the repeating
steady-state solutions. First, consider the time-independent parts:

Tc
00 =

Qa0 − A
B

; (6.17)

Tc
20 =

Qa0Sc
20

6D + B
. (6.18)

Next, consider the seasonal harmonic terms:

Tc
01 =

Qa0Sc∗
01

2𝜋iC + B
; (6.19)

Tc
11 =

Qa0Sc∗
11

2𝜋iC + 2D + B
; (6.20)

Tc
21 =

Qa0Sc∗
21

2𝜋iC + 6D + B
; (6.21)

and finally, the semiannual terms:

Tc
02 =

Qa0Sc∗
02

4𝜋iC + B
; (6.22)

Tc
12 =

Qa0Sc∗
12

4𝜋iC + 2D + B
; (6.23)

Tc
22 =

Qa0Sc∗
22

4𝜋iC + 6D + B
. (6.24)

In each case, we can compute the amplitude

|Tc
nk| =

Qa0|Sc
nk|√

[n(n + 1)D + B]2 + 4𝜋2k2C2
, (6.25)

with phase lag

𝜙nk = arctan
(

2𝜋kC
n(n + 1)D + B

)
. (6.26)

It is interesting to evaluate these quantities for the all-land planet. Using typical val-
ues of the parameters, A = 210Wm−2, B = 1.90W (m−2 K−1), D = 0.15 B, a0 = 0.70, we
find T0 = 14.7∘ C, |T1| = 69.1 K, 𝜙1 = 25 days, T20 = −31K, |T22| = 8.1 K, C = 30 days.
While the phase lag is approximately correct for an all-land planet, the amplitude of
both harmonics is larger than observed values for the Northern Hemisphere by a factor
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Figure 6.7 Illustration of the lag of zonal-average seasonal temperatures behind the forcing for the
all-land planet. Shown is a contour plot (solid contours) of seasonal temperature response for the
circular orbit insolation in dashed contours superimposed on the forcing to show the lag between
heating and response. For a mixed-layer all-ocean planet where the response time is several years, the
lag will be close to 𝜋∕2 radians or 0.25 year.

of about 4 (Northern Hemisphere zonal averages). These large amplitudes are due to
the absence of ocean surface in the zonal averages. In the Northern Hemisphere, the
land fraction is about 60% and in the Southern Hemisphere, the fraction is 80%. We
will attempt to remedy this situation in Chapter 8 by introducing land–sea geography.
Figure 6.7 shows the forcing for a circular orbit and the response superimposed in solid
line contours. Note the lag of about a tenth of a year in the response. There is also a dis-
placement poleward of the maximum response from the heating. Figure 6.8 indicates
the response through time at some selected latitudes, this time including the effects of
the eccentric orbit.

6.4 Spread of Diffused Heat

Since EBMs make use of diffusion as a mechanism to transport heat poleward in the
atmosphere/ocean system, it is useful to see how diffusion is related to random walk
processes. Random walk means that the progress (root mean square average distance
from the point of origination) of a passive scalar is the sum of a large number of steps.
Let YN be the random variable denoting the displacement after N steps. We can write

YN =
N∑

n=1
Xn. (6.27)

Themean over an ensemble of such randomwalks is 0, becausewe assume the individual
steps have mean 0, that is,

⟨YN⟩ =
N∑

n=1
⟨Xn⟩ = 0. (6.28)
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Figure 6.8 EBM solutions for the seasonal cycle of T(𝜇, t) for the all-land planet with present orbital
parameters at selected latitudes: 𝜇 = ±0.6 (36.9N/S), ±0.4 (23.6N/S), ±0.2 (11.5N/S), ±0.1 (5.7N/S) and
0 (equator).

The variance of YN can be calculated if all the Xn are uncorrelated and have equal
variance:

𝜎
2
YN

= N𝜎
2
X . (6.29)

The standard deviation of YN is proportional to the square root of the number of steps.
Now consider the one-dimensional damped diffusion equation

∂T
∂t

= D
C

∂2T
∂x2

− T
𝜏0
; 𝜏0 =

C
B
. (6.30)

It is convenient to solve this equationwith Fourier transforms.T(x, t) can be represented
as follows:

T(x, t) = 1
2𝜋 ∫

∞

−∞
Tk(t)eikx dk. (6.31)

We can write the second spatial partial derivative as follows:

∂2T
∂x2

= − 1
2𝜋 ∫

∞

−∞
k2Tk(t)eikx dk. (6.32)

The inverse Fourier transform is

Tk(t) = ∫
∞

−∞
T(x, t)e−ikx dx. (6.33)
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We can insert the other terms.

1
2𝜋 ∫

∞

−∞

(
Ṫk +

D
C

k2Tk +
Tk

𝜏0

)
eikx dk = 0. (6.34)

The integrand must vanish for every wave number.

Ṫk =
(
−k2 D

C
− 1

𝜏0

)
Tk . (6.35)

The solution to this first-order homogeneous linear equation for wave number k is

Tk(t) = Tk(0)e−(1∕𝜏0+k2D∕C)t . (6.36)

If the initial distribution is peaked at x = 0, that is, T(x, 0) = T0𝛿(x), then Tk(0) = T0, a
constant. The inverse Fourier transformation

T(x, t) =
T0e−t∕𝜏0

2𝜋 ∫
∞

−∞
e−k2Dt∕C eikx dk (6.37)

gives (from tables or MATHEMATIC A)

T(x, t) =
T0e−t∕𝜏0

2𝜋

√
𝜋C
Dt

e−Cx2∕4Dt
,

=
T0

2𝜆dd

√
𝜏0

𝜋t
exp

(
− x2

4𝜆2dd t∕𝜏0

)
e−t∕𝜏0 , (6.38)

where we have used the now familiar length scale 𝜆dd =
√

D∕B and 𝜏0 = C∕B to make
the notation more compact and to see the variables x and t proportional to their natural
scales, 𝜆dd and 𝜏0. We see that except for the overall damping factor e−t∕𝜏0 , the solution
spreads like a bell-shaped curve with standard deviation

𝜎(t) = 𝜆dd
√
2t∕𝜏0. (6.39)

The interpretation is that heat spreads symmetrically away from a point-concentrated
initial anomaly a distance that is comparable to the damped diffusive length scale 𝜆dd in
about one characteristic time 𝜏0. This is shown in Figure 6.9, wherein the spatial units
are proportional to 𝜆dd and temporal units are proportional to 𝜏0.

6.4.1 Evolution on a Plane

This section generalizes the treatment to two horizontal dimensions on the infinite x–y
plane. We begin by including diffusion in two Cartesian dimensions:

D
(

∂2

∂x2
+ ∂2

∂y2

)
T − BT = C ∂T

∂t
. (6.40)

This time we use the two-dimensional Fourier transform pair (in the two spatial
dimensions):

T(r, t) = 1
(2𝜋)2 ∫

∞

−∞
Tk(t)eik⋅r d2k; Tk(t) = ∫

∞

−∞
T(r, t)e−ik⋅r d2r, (6.41)
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Figure 6.9 Temporal evolution of a point pulse of heat at the origin at time equal to 0. Horizontal
distance in units of 𝜆dd, temporal span in units of 𝜏0.

where the two-dimensional vectors r = (x, y) and k = (kx, ky) have been introduced. Fol-
lowing the steps from the subsection 6.4, we find

T(r, t) =
T0e−t∕𝜏0

(2𝜋)2 ∫ ∫ e−k2Dt∕C eik⋅r d2k, (6.42)

where k2 = k2
x + k2

y , and the integration limits (−∞,∞) have been suppressed. We pro-
ceed by using polar coordinates in the k = (kx, ky) plane.Wewrite k ⋅ r = k r cos 𝜃 where
𝜃 is the angle between the vectors r and k, and d2k = k dk d𝜃.

T(r, t) =
T0 e−t∕𝜏0

(2𝜋)2 ∫
∞

0
e−k2Dt∕C

(
∫

2𝜋

0
eikr cos 𝜃 d𝜃

)
k dk. (6.43)

We proceed by considering first the portion of the double integral into its 𝜃 part
(enclosed in parentheses): This angular integral is well known (it is a special case,
n = 0, of Bessel’s integral (see Whittacker and Watson, 1962 p. 362; or other books on
mathematical physics)):

∫
2𝜋

0
eikr cos 𝜃 d𝜃 = 2𝜋J0(kr), (6.44)

where J0(⋅) is the Bessel function.The resulting integral can also be solved (e.g., MATH-
EMATICA), yielding the rather unsurprising answer:

T(r, t) =
T0 e−(t∕𝜏0)

4𝜋𝜆2dd(t∕𝜏0)
exp

(−(r∕𝜆dd)2

4(t∕𝜏0)

)
. (6.45)

Note that in this compact form r is expressed proportional to the damped diffusion
length scale 𝜆dd and t is always found proportional to the global timescale 𝜏0. We have
found exactly what we found in one dimension: a delta function point expanding into a
2-D Gaussian shape, further expanding its disk width in a time 𝜏0 that is about

√
2𝜆dd

in radius. The volume under the Gaussian surface also diminishes by the factor e−t∕𝜏0

owing to the damping from infrared radiation to space.
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6.5 Random Winds and Diffusion

Next consider the one-dimensional energy-balance equation in which heat is advected
by a wind field that for simplicity has no x-dependence.

∂T
∂t

+ 𝑣(t) ∂T
∂x

+ T
𝜏0

= 0. (6.46)

Once again, look at the component of the wave number k

Ṫk =
(
−ik𝑣(t) − 1

𝜏0

)
Tk . (6.47)

This is a first-order linear equation and can be solved using the usual integrating factor:

Tk(t) = Tk(0)e−t∕𝜏0 exp
(
−∫

t

0
ik𝑣(t′)dt′

)
. (6.48)

Let 𝑣(t) be a stationary random function of time. The ensemble average of a random
quantity is denoted by ⟨𝑣(t)⟩. Let the ensemble average vanish; stationarity demands
that ⟨𝑣(t1)𝑣(t2)⟩ = 𝑣

2
0𝜌𝑣(|t1 − t2|) with 𝜌

𝑣
(0) = 1. This means that Tk(t) will have mean

zero and be stationary as well. Finally, we assume that 𝑣(t) is a Gaussian random field. In
other words, our wind field is similar to a random eddy field that carries heat one way
or another depending on the vagaries of such a wind field. Note, however, that we have
not permitted the wind to be a function of position. This makes our wind field a rather
peculiar one: at a point in time it is everywhere pointed in the same direction, until the
next instant, when it suddenly switches direction and magnitude the same everywhere.
The case of the wind field that is variable in space as well as time is more difficult to
solve. Rather than going into the complexities involved in that, we proceed with what
we have.
Consider the series expansion of the second exponential factor, exp

(
− ∫ t

0 ik𝑣(t′)dt′
)
.

The first three terms are

1 − ik ∫
t

0
⟨𝑣(t′)⟩dt′ − k2

2! ∫
t

0 ∫
t

0
⟨𝑣(t′)𝑣(t′′)⟩dt′dt′′ + · · · . (6.49)

The second term vanishes because ⟨𝑣(t)⟩ = 0. In fact, all the odd powered terms vanish.1
We turn to the third term after running the integrals from time−Ω toΩ instead of 0 to t.
This symmetry helps in analyzing the result.

1 − k2

2! ∫
Ω

−Ω ∫
Ω

−Ω
⟨𝑣(t′)𝑣(t′′)⟩dt′ dt′′ = 1 − k2

2!
𝑣
2
0 ∫

Ω

−Ω ∫
Ω

−Ω
𝜌
𝑣
(|t1 − t2|)dt1 dt2.

(6.50)

The double integral can be computed by a transformation of variables from dt1 dt2 to
a one-dimensional integral. Referring to Figure 6.10, as the integrand only depends on
𝜏 , the integration is best done by summing slabs that are at a 45∘ angle (along which
|𝜏| = |t1 − t2|) to the horizontal.The length of the slab can be found from the hypotenuse
of the right isosceles triangle whose lower edge has length 2Ω − 𝜏 . We can show this

1 It is a property of stationary Gaussian random fields that ensemble averages of lagged odd powers vanish.
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Figure 6.10 Geometry for a two-dimensional integral over a lag covariance function for a stationary
process: ⟨𝑣(t1)𝑣(t2)⟩ = 𝑣

2
0𝜌𝑣(|t1 − t2|). Since 𝜌

𝑣
only depends on |𝜏|, we can find the integral by

summing the diagonal infinitesimal strip whose width is d𝜏∕
√

2. The value of 𝜏 in the lower-right
corner is 2Ω and its value in the upper-left corner is −2Ω. The quantity to be summed is the length of

the diagonal strip (
√

2(2Ω − |𝜏|)) times 𝜌
𝑣
(𝜏). The integral becomes ∫ 2Ω

−2Ω(2Ω − |𝜏|)𝜌
𝑣
(𝜏)d𝜏 . (Redrawn

from original figures in Papoulis (1984).)

last by noting that the same side has length Ω − t1 where t1 is evaluated at the point
the hypotenuse intersects the line t2 = −Ω. At that point, t1 − t2 = 𝜏 = t1 + Ω, or t1 =
𝜏 − Ω. Using Ω − t1 = Ω − 𝜏 + Ω we finally arrive at the width of the lower side of the
triangle to be 2Ω − 𝜏 . The length of the slab is

√
2(2Ω − |𝜏|). The width of the slab is

dt1∕
√
2 = d𝜏∕

√
2; the two square roots cancel to leave us with

∫
Ω

−Ω ∫
Ω

−Ω
𝜌
𝑣
(|t1 − t2|) dt1 dt2 = ∫

2Ω

−2Ω
(2Ω − |𝜏|)𝜌

𝑣
(𝜏) d𝜏, (6.51)

where 𝜌
𝑣
(𝜏) is the autocorrelation function for the magnitude of the lag 𝜏 = |t1 − t2|.

Note that 𝜌
𝑣
(0) = 1 and 𝑣

2
0 is the variance of the velocity field. We specify that the inte-

gration time 2Ω is very long compared to the autocorrelation time 𝜏
𝑣
that we take to be

a in Figure 6.11. This means that the kernel (nearly an isosceles triangle of base width
2a and height unity) of the integral is concentrated near 𝜏 = 0 and the integral is∼ 2Ωa,
which is

≈ 1 − 𝑣
2
0𝜏𝑣

k2

2!
(2Ω) ≈ e−

𝑣
2
0𝜏𝑣
2

k2t . (6.52)

After replacing 2Ω by t to regain the original notation, we can now identify

D ≡ 𝑣
2
0𝜏𝑣 ∼ (Length)2 (Time)−1, (6.53)

τ

ρ(τ)

2Ω − |τ |

−a a

Figure 6.11 Depiction of how a short autocorrelation
time leads to an estimate of a double integral related to
second moments. (Redrawn from original figures in
Papoulis (1984).)
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which gives us a handy formula for the diffusion coefficient in terms of the variance of the
wind speed and its autocorrelation time. The last expression is reminiscent of the form
of (6.36). Note that the units of D are (length)2(time)−1, when the diffusion equation is
set with the coefficient of ∂T

∂t
set to unity. When the approximations above are valid, we

can think of diffusion equations as being the equations describing the ensemble averages
of (damped) random walk equations. Basically, the approximation is that the winds are
white noise (𝜏

𝑣
∼ 3 days) compared to our averaging times. All timescales, including

relaxation time of a column of air (∼30 days), and forcing functions such as the seasonal
cycle (few months), must be long compared to the weather–noise timescale (few days).
This suggests the following:⟨

𝑣(t) ∂T
∂x

⟩
≈ D ∂2

∂x2
⟨T⟩. (6.54)

When this approximation is valid, we can safely think of the EBCM equation as
an equation for the ensemble average of T(r, t). Note that there is a residual whose
ensemble average is zero. Later, we will use this residual as a noise driver of climate
fluctuations.

6.6 Numerical Methods

6.6.1 Explicit Finite Difference Method

We start with the energy-balance equation:
∂T
∂t

= ∂
∂𝜇

D(𝜇) ∂
∂𝜇

T − T
𝜏0

+ q(𝜇), (6.55)

where

D(𝜇) = D0
1
C
(1 − 𝜇

2) =
𝜆
2
dd

𝜏0
(1 − 𝜇

2), (6.56)

q(𝜇) =
Q0

C
S(𝜇)a − A

C
. (6.57)

The coefficient in (6.56) was constructed bymultiplying numerator and denominator by
B, then using 𝜆2dd = D∕B and 𝜏0 = C∕B. We start with a grid from −1 to 1, divided into
J equal segments. More details on the grid are presented in the following. The centered
finite difference form for the derivative is

∂T
∂𝜇

≈ 1
Δ𝜇

(
Tj+ 1

2
− Tj− 1

2

)
. (6.58)

The derivative of D(𝜇) ∂T
∂𝜇 is then

∂
∂𝜇

(
D(𝜇) ∂T

∂𝜇

)
≈ 1

(Δ𝜇)2
(D+

j Tj+1 − (D+
j + D−

j )Tj + D−
j Tj−1), (6.59)

where

D±
j = D

(
𝜇j ±

1
2
Δ𝜇

)
. (6.60)
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To step forward in time, we have the following algorithm (in the explicit finite difference
case):

Tn+1
j = Tn

j + s(D+
j Tn

j+1 − (D+
j + D−

j )T
n
j + D−

j Tn
j−1)

− Δt
𝜏0

Tn
j + Δt q(𝜇j), (6.61)

where the important parameter s is given by

s = Δt
(Δ𝜇)2

. (6.62)

Next, we must make sure our solution enforces the Neumann boundary conditions,
implying that no net heat flux enters the infinitesimal latitude circles surrounding the
poles:

√
1 − 𝜇2 ∂T

∂𝜇
||||𝜇=−1,1 = 0. (6.63)

The fact that the time-dependent version of the equation has a regular singular point at
the pole poses a problem because as noted earlier, small numerical errors will lead to
erroneous encroachment by the irregular solutions (Qn(𝜇)). This does not turn out to
be a serious problem as we will see. The most straightforward way of representing the
equation in finite difference form is to break the interval −1 ≤ 𝜇 ≤ 1 into J intervals,
𝜇1 = −1,… , 𝜇J+1 = 1. Similarly, the time is discretized in steps of Δt.
Deferring discussion of the boundary points, we see that the term on the left is the

value ofT at timen + 1,while all the terms on the right are to be evaluated at the previous
time n. This is very convenient because we presumably have knowledge of the field at
time n. For example, if we start at time n = 0, we know the initial profile of the field.This
process allows us to evaluate it at n = 1 and so on. Such an algorithm is very appealing
intuitively as it feels likewe are solving the equation just as nature does it. Note that there
is a problem at the end points for the reason that when j = 1, the RHS contains the value
Tn
0 and when j = J , it contains the value Tn

J+1. Hence, we must use the aforementioned
algorithm only for 2 ≤ j ≤ J − 1. Had the boundary conditions been of the Dirichlet type
where the values of the field are specified at the boundaries, we could merely specify the
values of Tn

1 and Tn
J .

Enforcing the Neumann boundary conditions is a little tricky as the straightforward
implementation of the thinking above leads toT1 = T2 andTJ = TJ−1.We can get around
this by using a centered difference of width 2Δt for these points. We introduce fictitious
points just outside the range,T0, andTJ+1.Then the boundary conditions read as follows:

Tn
2 − Tn

0

2Δt
= 0;

Tn
J+1 − Tn

J−1

2Δt
= 0. (6.64)

We compute the outside points using the explicit algorithm, but then force T2 to equal
the lower outside value T0 and likewise TJ−1 is forced to be TJ+1.
The curves in Figure 6.12 show an example of implementation of this kind of algorithm

for 𝜏0 = C∕B = 1,N = 20,Δ𝜇 = 1∕10,Δt = 𝜏0∕100 = 0.01, sD = D(𝜇)Δt∕(Δ𝜇)2 = 0.32,
where we have modified the definition of the parameter s to include D(𝜇), that is, sD =
D(𝜇)s, thereby allowing the stability parameter to be a function of latitude. The forcing
is q(𝜇) = −A + QS(𝜇)a(𝜇). The initial condition for the integration is T(𝜇, 0) = 10.0 ∘C.



6.6 Numerical Methods 161

−1.0 −0.5 0.0 0.5 1.0
−40

−20

0

20

40

T vs μ

μ

Figure 6.12 Sequence of the evolution toward steady state where the forcing is the usual
−A + QS(𝜇)a(𝜇). The initial condition is flat with T(𝜇) = 10 ∘C. The time step is 0.05, which is 1/20 of
the relaxation time, 𝜏0. The individual graphs are at t = 10, 20, 40, 80,160, 320, and 640 steps. In this
case, 𝜏0 = C∕B = 1 month,Dmax = 0.67W m−2 (∘C)−1,N = 20,Δ𝜇 = 1∕20, s = DmaxΔt∕(Δ𝜇)2 = 3.2. An
additional run (not shown) of length 3000 steps showed no change.

There are 20 intervals in 𝜇 from pole to pole, and the time step is 1
100

of the relaxation
time 𝜏0.Thefigure shows a sequence of profiles after 10, 20, 40, 80, 160, 320, and 640 time
steps. The last is nearly indistinguishable from the 320 time-step case. The solutions in
this case are smooth and stable after integration to 3.20 relaxation times. Advancement
to 3000 steps (30 relaxation times) indicates no change.We infer stability of the solution.
If we increase the time step by a factor of 10 to 0.1𝜏0, we run into trouble. This case is

shown in Figure 6.13 starting from the same initial condition.The stability parameter sD

−1.0 −0.5 0.0 0.5 1.0
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Figure 6.13 The smooth line represents the approximate solution after 300 time steps where the
approximate solution seems to have settled down to the correct answer. But if the integration
continues to 425 steps, one encounters the spiky line indicating numerical instability. In this case,
𝜏0 = C∕B = 1 month,Dmax = 0.67W m−2 (∘C)−1,N = 20,Δ𝜇 = 1∕10,Δt = 𝜏0∕10 = 0.1, s =
DmaxΔt∕(Δ𝜇)2 = 3.2.
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increases to 3.20. In the integration, everything goes well until time step 400 in which
a small ripple occurs at the equator. By time step 425, the instability is full blown and
propagating from the equator toward the poles. The reason for this peculiar behavior
is that the explicit method is unstable when the time steps are too large compared to
the spatial increment. For the diffusion equation, the condition can be made quantita-
tive: the solution will be unstable if sD = DmaxΔt∕(Δ𝜇)2 ≥ 0.5. Since D(𝜇) is largest at the
equator, the instability breaks out there first as indicated in the figure.The physical inter-
pretation of the instability is that for diffusion or random walk processes, information
propagates an rms distance 𝜎

𝜇
=
√
2D0Δt. Turning this around, we have Δt ∼ 𝜎2

𝜇
∕2D0;

if Δt in the numerical integration is larger than the time for propagation of information
in the continuous exact solution, we can expect instability of the numerical procedure.
A similar limitation occurs in the integration of wavelike (hyperbolic) equations with
wave motion entering as the propagation mechanism (Δx = cΔt, c= wave speed).
The finite difference algorithm as noted above in (6.61) is not the only one that is

accurate with errors of order (Δt,Δ𝜇2).The next subsection considers some alternatives
that have different numerical stability properties.

6.6.2 Semi-Implicit Method

An intermediate method is often used in practice. It is simply the weighted average of
the explicit and implicit algorithms:

Tn+1
j = Tn

j + 𝜆

[
s(D+

j Tn
j+1 − (D+

j + D−
j )T

n
j + D−

j Tn
j−1) −

Δt
𝜏0

Tn
j

]

+(1 − 𝜆)
[

s(D+
j Tn+1

j+1 − (D+
j + D−

j )T
n+1
j + D−

j Tn+1
j−1 ) −

Δt
𝜏0

Tn+1
j

]

+Δt qn
j , (6.65)

with 0 ≤ 𝜆 ≤ 1.
One has to gather the coefficients of Tn+1 and place them onto the left-hand side.The

coefficient matrix has to be inverted to obtain Tn+1. The result is
∑

k
jkTn+1

k = −𝜆s(D+
j Tn

j+1 − (D+
j + D−

j )T
n
j + D−

j Tn
j−1) +

(
1 − 𝜆

Δt
𝜏0

)
+ Δt qn

j ,

where is a large matrix with j and k spatial indices. The matrix has to be inverted to
find the next time-step values as a function latitude as indicated by the index j: Tn+1

j .
Fortunately, the matrix  is usually sparse (most entries are zero), and very fast algo-
rithms are available. A special case that is commonly used is for 𝜆 = 0.5, which is called
the Crank–Nicolson scheme. Stability properties can be found in books on numerical
analysis, but experience shows that use of this method allows larger time steps before
instability sets in. Semi-implicit algorithms are commonly used in numerical solution
of general circulation models.
In the finite difference solution to more complicated models treating dynamics of the

flows as well as radiation, and so on, it is found to be advantageous to treat some terms
on the RHS of the equation with one semi-implicit weighting and other terms with dif-
ferent weightings. These are called splitting methods. Again, they are commonly used
in numerical solutions of climate models.
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6.7 Spectral Methods

6.7.1 Galerkin or Spectral Method

An alternative to the finite differencemethods is to write an approximate solution to the
field as a series of (usually) orthogonal functions

T(𝜇, t) ≈
N∑

n=0
Tn(t)𝜙n(𝜇), (6.66)

where N is some finite cutoff to the series. A rather obvious choice for the 𝜙n for this
class of problems is the Legendre polynomials, 𝜙n(𝜇) ≡ Pn(𝜇). In the present case, this
renders the problem trivial as thePn(𝜇) are the eigenfunctions of

d
d𝜇
(1 − 𝜇2) d

d𝜇
.Theprob-

lem becomes nontrivial if the diffusion coefficient depends on 𝜇. Such an EBM may be
written as

∂T
∂t

= ∂
∂𝜇

D(𝜇) ∂
∂𝜇

T − T
𝜏0

+ q(𝜇), (6.67)

with the usual Neumann boundary conditions at the poles. If T =
∑

Tn(t)Pn(𝜇) is
inserted and each side is multiplied by Pm(𝜇) and integrated from pole to pole with
respect to 𝜇, we obtain

Ṫm =
N∑

n=0
DmnTn −

2Tn

(2n + 1)𝜏0
𝛿mn + qn, (6.68)

where

Dmn = −2m + 1
2 ∫

1

−1
Pm(𝜇)

d
d𝜇

(
D(𝜇)

dPn(𝜇)
d𝜇

)
d𝜇

= 2m + 1
2 ∫

1

−1
P′

m(𝜇)D(𝜇)P′
n(𝜇) d𝜇. (6.69)

Now the problemhas been reduced to a set ofN first-order coupled ordinary differential
equations for the time-dependent coefficients Tn(t). The coupling matrix is symmetric,
hence in this case we can even find its eigenvectors and conduct a stability analysis.
From discussions earlier in this chapter, it is easy to relate the eigenvalues to relaxation
times for the eigenmodes of the problem. The numerical integration will be unstable if
the time constant for the highest eigenmode retained (Nth) is shorter than the time step
employed in the time-stepping algorithm. In other words, the criterion encountered in
the explicit scheme comes up again unless special precautions are taken.
Other basis sets are possible besides the Legendre polynomials. For example, one

might try a Fourier series

T(𝜇 = cos 𝜗, t) =
N∑

n=0
an(t) cos n𝜗, 0 ≤ 𝜗 ≤ 𝜋. (6.70)

This choice is equivalent to the use of Chebyshev polynomials.Thismethod is successful
in the present one-dimensional case but requires considerablework and extra discussion
when applied to the case of two horizontal dimensions. One advantage is that transfor-
mations from grid points to components an and vice-versa can be accomplished via fast
Fourier transform.
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6.7.2 Pseudospectral Method

A complication arises in the spectral method if one of the coefficients is space depen-
dent, for example, B = B(𝜇). Then,

Ṫm =
N∑

n=0
DmnTn −

N∑
n=0

BmnTn + qn (6.71)

with

Dmn =
2m + 1

2 ∫
1

−1
Pm(𝜇)

d
d𝜇

(
D(𝜇)

dPn(𝜇)
d𝜇

)
d𝜇

= −2m + 1
2 ∫

1

−1
P′

m(𝜇)D(𝜇)P′
n(𝜇)d𝜇, (6.72)

and

Bmn ≡ 2m + 1
2C ∫

1

−1
Pm(𝜇)B(𝜇)Pn(𝜇)d𝜇

= 2m + 1
2C

N∑
l=0

Bl ∫
1

−1
Pm(𝜇)Pl(𝜇)Pn(𝜇)d𝜇

=
N∑

l=0
BlClmn, (6.73)

where

Clmn = ∫
1

−1
Pl(𝜇)Pm(𝜇)Pn(𝜇)d𝜇, (6.74)

and the Clmn are known as interaction coefficients. They can be tabulated or gener-
ated from recurrence relations. It is important to notice how many are necessary in
a high-resolution simulation. For example, in a GCM simulation the truncation level
might be 15 or 42 typically.This means there are 3375 or 74 088 coefficients that have to
be stored in a lookup table. Some storage savings can be gained by noting that most of
the interaction coefficients are 0. However, when the problem is elevated to two dimen-
sions on the sphere, it becomes truly formidable. One way to get around it is to use a
so-called pseudospectral method.
In the pseudospectral method, we transform back and forth between a grid point rep-

resentation and the spectral representation.The grid point representation for the sphere
involves use of the Gaussian quadrature method of numerically estimating integrals. An
integral may be estimated by the sum

∫
1

−1
f (x)dx ≈

N∑
i=1

𝑤i f (xi), (6.75)

where the 𝑤i are weights associated with each term and the xi are unequally spaced
but specified points along the axis. The xi and 𝑤i are optimal for a given level N .
Gaussian integration2 of order N has the property that it integrates a (2N − 1) degree

2 Gaussian integration is discussed in most books on numerical analysis, for example, Stoer and Bulirsch
(2002). In addition, many derivations can be found online.
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Figure 6.14 Plot of P10(x) (solid gray curve) with zeros at xi . Also a plot of 2∕((1 − x2
i )[P

′
N(xi)]2) (heavy

black U-shaped curve) with vertical thin black lines corresponding to the value of the weights at the
roots xi of P10(xi) = 0. The ordinate values of the intersections are the weights. The graph is only shown
for 𝜇 > 0, as all the functions are even.

polynomial exactly. The abscissas xi are the ith zero of PN (x) and the weights 𝑤i are
2∕((1 − x2

i )[P
′
N (xi)]2). As an example, Figure 6.14 shows a plot of P10(x) (solid gray line)

along with a plot of 2∕(1 − x2
i )[P

′
N (xi)]2 (black line) with heavy points on the dashed

line corresponding to the value of the weights at the roots xi of P10(xi) = 0. Next, the
quantities Dmn and Bmn are calculated by

Dmn = −2m + 1
2

N∑
i=1

𝑤iP′
m(xi)D(xi)P′

n(xi); (6.76)

Bmn =
2m + 1
2C

N∑
i=1

𝑤iPm(xi)B(xi)Pn(xi). (6.77)

The next time step may now be evaluated:

ΔTn

Δt
=

N∑
m=1

(Dnm − Bmn)Tn + qn, (6.78)

where the ratio on the LHS stands for time advancement by some ODE algorithm such
as Runge–Kutta. When the new set Tn are computed, we can reevaluate T(xi, t + Δt)
by

T(xi, t + Δt) =
N∑

n=0
Tn(t + Δt)Pn(xi). (6.79)

The procedure delineated in (6.76)–(6.79) can be repeated as many times as necessary
as long as the employed ODE algorithm is stable.
Studies have shown that the pseudo-spectral method pays over the interaction coef-

ficient method when the number of stored coefficients exceeds a few tens of thousands.
Since this is rather quickly exceeded in GCM calculations, the pseudospectral method
is commonly used in numerical simulations.
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6.8 Summary

This chapter has introduced time into the energy balance models. The first result is that
for the linear zonally symmetricmodels, we find that if a climate is perturbed from equi-
librium and then released, it relaxes back to its steady-state solution.The relaxation can
be characterized as a sum of contributions from relaxationmodes, each having an expo-
nential decay with large scales having longer relaxation times than smaller ones. The
zonally symmetric planet can also be solved for its seasonal cycle. It is remarkable that
the solar insolation can be represented for many purposes as a sum of terms involving
only the Legendre modes 0, 1, and 2. The largest part of the circular orbital insolation
is controlled by Legendre mode of index 1, which is antisymmetric on the globe and
driven by a single annual cycle sinusoid in time. The Legendre mode of index 2 also
has a non-negligible contribution in the semiannual cycle representing the passage of
the Sun over the equator twice per year. These simple facts allow the seasonal cycle to
be solved for this configuration. We can readily study the major effects on insolation
of changing orbital parameters. The amplitude of the annual cycle is much too large if
the zonally symmetric planet is considered to be all-land and too small if all-ocean. We
postpone the study of land–sea distribution until Chapter 8.
Next in the chapter was a study of how a patch of heat deposited in a small area spreads

laterally to larger circular areas in a time roughly that of the characteristic time of the
global model, 𝜏0 = C∕B to a radius of the characteristic length 𝜆dd =

√
D∕B. The spread

has an exponentially damped (time constant 𝜏0) Gaussian shape with standard devia-
tion proportional to

√
time. It was also shown that if the diffusion term is replaced by

a random-wind advection term, the ensemble result will be the same as diffusion. If the
autocorrelation time of the velocity field is short compared to other times, such as 𝜏0,
in the problem, then the ensemble average of this term is essentially the diffusion term.
This is very close to the Brownian motion problem solved by Einstein in 1904.
The chapter concludes with a study of how 1-DEBMs can be solved by finite difference

methods. In particular, an explicit problem is worked through in some detail with an
illustration of how the procedure becomes unstable if the time step exceeds a certain
threshold depending on the characteristic time and length scales of the EBM. Basically,
the time stepmust be shorter than the spreading time across a grid box in the horizontal
direction.
The appendix to the chapter provides some derivations of the orbital dependence of

the insolation function.

6.8.1 Parameter Count

We have introduced the time dimension, which means we must now have an effective
heat capacity that cannot be calculated from first principles. For the all-land planet and
at frequencies around 1/year, our guess is to take it to be 1/2 the heat capacity of the air
column’s mass at constant pressure. This neglects the heat capacity of soil. We are also
neglecting the topography, where atop mountains, the effective heat capacity might be
less. For an all-ocean planet we take the effective heat capacity to be that of the ocean’s
mixed layer. It depends on position, especially latitude, but we take it to be constant. So
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for the latitude-only model we have introduced one new parameter, but we have learned
a lot about how the seasonal cycle works for a uniform planet.

Notes for Further Reading

Papoulis (1984) is an excellent book on random processes and spectral analysis writ-
ten mainly for electrical engineers. It is rather compact, but comprehensive. Numeri-
cal methods for partial differential equations are covered in Ames (1992) and Fletcher
(1991). Multigridmethods for solving partial differential equations are covered in Hack-
busch (1980) and Briggs et al. (2000) and applied to EBMs by Bowman and Huang
(1991), Huang and Bowman (1992), and Stevens and North (1996). Mars has no ocean,
so a constant heat capacity can be used on the (approximately) homogeneous planet. A
one-dimensional model with a zonally symmetric seasonal cycle was used successfully
by James and North (1982). Much more can be found about the Martian climate as well
as the other planets in Ingersoll’s recent book on planetary climates Ingersoll (2015).
Planetary climates are covered at a higher level of physics by Pierrehumbert (2011).

Exercises

6.1 Given the time-dependent, one-dimensional energy balance model

C ∂T
∂t

− D ∂
∂𝜇

(
(1 − 𝜇

2) ∂T
∂𝜇

)
+ A + BT = QS(𝜇, t)a,

where A,B,C,D, and coalbedo a are constants, derive the basic timescale and spa-
tial scale of the model by nondimensionalizing the model.

6.2 Consider the time-dependent, one-dimensional model of the previous exercise,
where the parameters,A,B,C,D, and a are constants. Let the solution of the energy
balance model be denoted as follows: T(𝜇, t) = Ts. An external forcing is applied
at time t = t0 so that the temperature field is perturbed into the form T(𝜇, t0) +
T ′(𝜇, t0). The external forcing disappears instantaneously (delta function in time).
(a) Derive the governing equation for T ′(t). (b) Solve the governing equation to
obtain the solution for T ′(t).

6.3 Consider next the same one-dimensional model as before with the same constant
parameters. Let the solar distribution function be decomposed as follows:

S(𝜇, t) =
∑

n
Sn(t)Pn(𝜇) = Re

( N∑
n=0

M∑
m=0

Smnei2𝜋mtPn(𝜇)

)
,

where Re(⋅) denotes the real part of its argument. Solve the energy balance model
for T(𝜇, t).
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6.4 Show that the solution of the one-dimensional damped diffusion equation

∂T
∂t

= D
C

∂2T
∂x2

− T
𝜏0
,

with the initial condition T(x, 0) = T0𝛿(x) is given by

T(x, t) =
T0

2𝜆d

√
𝜏0

𝜋t
exp

(
− x2

4𝜆2dt∕𝜏0

)
e−t∕𝜏0 ,

where 𝜏0 = C∕B and 𝜆d =
√

D∕B.

6.5 A semi-implicit algorithm for a time-dependent, one-dimensional energy balance
model is given by

Tn+1
j = Tn

j +𝑤

[
s(D+

j Tn
j+1 − (D+

j + D−
j )T

n
j + D−

j Tn
j−1) −

Δt
𝜏0

Tn
j

]

+ (1 −𝑤)
[

s(D+
j Tn+1

j+1 − (D+
j + D−

j )T
n+1
j + D−

j Tn+1
j−1 ) −

Δt
𝜏0

Tn
j

]
,

where

D±
j = D(𝜇j ± Δ𝜇∕2), s = Δt∕(Δ𝜇)2

and j and n denote a point in space and time, respectively. This equation can be
rewritten as∑

k
MjkTn+1

k =
∑

k
Ljkn + Δtqn

j .

Determine the matrices Mjk and Ljk explicitly.

6.6 Consider a time-dependent, one-dimensional energy balance model in the form

C ∂T
∂t

− ∂
∂𝜇

[
D(𝜇) ∂T

∂𝜇

]
+ B(𝜇)T = q(𝜇),

where C represents the constant heat capacity and D(𝜇) = D0(1 − 𝜇2). Set up the
solution procedure using the spectral method. Use the Legendre polynomials as
basis functions.

P
A

B

i

j

k

Figure 6.15 Diagram for Exercise 6.7.
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6.7 In Chapter 5, the insolation distribution function was determined by using spher-
ical geometry. Consider the situation depicted in Figure 6.15. (a) Determine the
normal vector at point A(r̂) and at point B(r̂s) in terms of the longitude, latitude,
and declination angle, and unit vectors i , j, and k. Then, calculate the cosine of the
angle between the two vectors. (b) Determine the range of longitude for which the
Sun is visible. (c) Based on your answers for (a) and (b), determine the total amount
of insolation received at the surface when the solar constant is 𝜎

⊙
.

6.9 Appendix to Chapter 6: Solar Heating Distribution

This chapter made use of the solar heating (insolation) function S(𝜇, t), which is the
amount of radiant energy per unit time per unit surface area averaged through the day
reaching the top of the atmosphere. In this appendix, we present a short derivation of
this function, as its development into Legendre functions in latitude and sinusoids in
time helps to understand the excitation of these modes in the response field under dif-
ferent orbital conditions. The appendix is organized as follows. First the derivation of
S(𝜇, t) is given, followed by a discussion of how the orbital elements enter the mode
amplitudes. Figure 6.16 shows an octant of the Earth’s surface with a given point r̂ sin-
gled out for our attention. The North Pole lies in the z direction, and hence the point r̂
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r̂·r̂s = cos δ cos ϕ sin ϑ + sin δ cos ϑ

r̂s = cos δ î + sin δ k̂

r̂ = cos ϕ sin ϑ î + sin ϕ sin ϑ ĵ + cos ϑk̂

δ

Figure 6.16 An octant of the Earth’s surface showing a unit vector toward the Sun r̂s, lying in the z–x
plane. A given point on the Earth’s surface is designated r̂. The North Pole is along the z-axis. The local
time of day at point r̂ is proportional to 𝜑. The declination 𝛿 is the angle the Sun makes with a
perpendicular to the equatorial plane (the x–y plane here) for a given day of the year, 𝛿 = cos−1k̂ ⋅ r̂s.
The declination depends on the tilt of the Earth’s axis with respect to a perpendicular to the plane of
the ecliptic (the obliquity) and the time of the year.
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will rotate uniformly around the z-axis in the course of a day. As the day passes, 𝜑 will
vary linearly from 0 to 2𝜋. At a given time of day, 𝜑(t0), the amount of solar power per
unit area deposited at r̂ is given by the solar constant 𝜎

⊙
times the cosine of the angle

between zenith direction r̂ and the line joining the Sun and the Earth r̂s. In other words,
r̂ ⋅ r̂s𝜎⊙. We define the solar vector r̂s to lie in the x − z plane. Using the Cartesian unit
vectors î, ĵ, and k̂, we may write

r̂ = cos𝜑 sin 𝜗î + sin𝜑 sin 𝜗ĵ + cos 𝜗k̂ , (6.80)
r̂s = cos 𝛿î + sin 𝛿k̂, (6.81)

where 𝛿 is the angle the solar vectormakes with the equatorial plane (x–y plane). Clearly,
𝛿 depends on the time of the year. We readily compute

r̂ ⋅ r̂s = cos 𝛿 cos𝜑 sin 𝜗 + sin 𝛿 cos 𝜗. (6.82)

To obtain the diurnal average of the solar power at r̂ per unit area, we must integrate
r̂ ⋅ r̂s through the daylight hours (the range of 𝜑 for which r̂ ⋅ r̂s ≥ 0) and divide by the
length of thewhole day (2𝜋). Dawn and dusk can be defined as±H , the roots of r̂ ⋅ r̂s = 0.

cosH = − tan 𝛿 cot 𝜗. (6.83)
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Figure 6.17 Half length of daylight in radians as a function of time of the year (t) and the polar angle 𝜗

for obliquity 𝛿0 = 35∘ and eccentricity e = 0. When the half day H = 𝜋, it indicates perpetual daylight.
The obliquity is chosen to be 35∘ (as opposed to its present value of 23.47∘) for illustration.
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Figure 6.18 Graphic of the seasonal cycle of
heating energy flux at the top of the
atmosphere for a circular orbit and obliquity
𝛿0 = 23.47∘ as a function. The function is
normalized by the total solar irradiance Q.
(a) The three mode (T0, T1, T2) insolation
function. (b) The exact solution as described in
Appendix A. A larger value of obliquity (∼ 25∘)
is used to illustrate the polar day and night
characteristics in the figure.
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Thehalf day is shown in Figure 6.17.The formula can now be written for the solar power
per unit area averaged through the day,

𝜎(𝜗, 𝛿) = 𝜎

2𝜋
(2 cos 𝛿 sin 𝜗 sinH + 2H sin 𝛿 cos 𝜗), (6.84)

where 𝜎 differs slightly from the total solar irradiance (because it is not annualized).
Because of the elliptical orbit,

𝜎 = 𝜎
⊙

r20
r2
, (6.85)

where r is the Earth–Sun distance at the given time of year and r−20 is the annual average
of r−2. Figure 6.18 shows the seasonal cycle of insolation function for a circular orbit.

6.9.1 The Elliptical Orbit of the Earth

The Sun lies at the focus of an ellipse that constitutes the Earth’s trajectory over the year
(Figure 6.19). Using the Sun as the origin of a polar coordinate system with 𝜆 as polar
angle in the ecliptic plane (celestial longitude), we can write

r = ke
1 − e cos(𝜆 − 𝜆0)

, (6.86)

where e is the eccentricity (presently e ≈ 0.0167),

k = a
e
(1 − e2), (6.87)
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Earth
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Eccliptic

plane

Sun
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k̂

r̂s

r̂ecl

Figure 6.19 Diagram of the Earth’s orbit illustrating the orientation of various unit vectors. The vector
k̂ points out along the North polar axis. The vector r̂ is the position vector of a given point on the
Earth’s surface. The declination on a given day is the angle between k̂ and r̂s, that is, cos 𝛿 = k̂ ⋅ r̂s. The
unit vector r̂ecl is perpendicular to the plane of the Earth’s orbit (the ecliptic plane). The unit vector r̂s
points from the Earth’s center to the Sun. The angle 𝜆 is the celestial longitude.

and a−2 is very nearly the average of r−2 (to fourth order in powers of e). The value of
𝜆0 determines the time of year of the closest approach of the Earth to the Sun (perihe-
lion). If we arbitrarily choose that 𝜆 = 0 at winter solstice (≈December 22 in the present
epoch), then at present 𝜆0 ≈ 0, as perihelion occurs at present within a few weeks of
(Northern Hemisphere) winter solstice. However, 𝜆0 increases linearly through 2𝜋 in a
time of 22 000 years, leading to a passing of perihelion through the seasons with a period
of 22 000 years.
In what follows, we can take 𝜆0 to be fixed and consider the time dependence of 𝜆. If

the Earth’s orbit were circular, 𝜆 would be linear with time:

𝜆circ − 𝜆0 = 2𝜋t. (6.88)

Since the Earth’s orbit is really elliptical, we must use the conservation of angular
momentum to compute 𝜆(t). This is expressed as r2 d𝜆∕dt = constant. After some
manipulation, it can be shown that, to the first order in powers of e,

𝜆(t) − 𝜆0 = 2𝜋t − 2e sin 2𝜋(t − t0). (6.89)

6.9.2 Relation Between Declination and Obliquity

The obliquity or tilt of the Earth’s orbit is the angle between k̂ and r̂ecl or k̂ ⋅ r̂ecl = cos 𝛿0.
At present, this angle is about 23.47∘.The declination on a given day is the angle between
k̂ and r̂s, that is, cos 𝛿 = k̂ ⋅ r̂s. With some straightforward geometry, we can show that

sin 𝛿 = − sin 𝛿0 cos(𝜆 − 𝜆0). (6.90)

6.9.3 Expansion of S(𝝁, t)

Consider now the expansion of S(𝜇, t) into a series of Pn(𝜇) and sin 2𝜋nt, cos 2𝜋nt, the
latter being a Fourier series as the function is strictly periodic in t (units of years here).

S(𝜇, t) =
K∑

k=0

N∑
n=0

(ank cos 2𝜋kt + bnk sin 2𝜋kt)Pn(𝜇). (6.91)
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Table 6.1 Fourier–Legendre coefficients for the
present distribution of incident solar radiation
S(𝜇, t) =

∑
(ank cos 2𝜋kt + bnk sin 2𝜋kt)Pn(𝜇).

n k ank bnk

0 0 1.0001 0.0000
1 0.0327 0.0067
2 0.0006 0.0003

1 0 0.0000 0.0000
1 −0.7974 −0.0054
2 −0.0261 −0.0052

2 0 −0.4760 0.0000
1 −0.0180 −0.0026
2 0.1486 −0.0022

4 0 −0.0444 0.0000
1 −0.0029 0.0000
2 0.0909 −0.0012

a) The coefficients are zero for odd values of n
greater than one. t = 0 corresponds to the
Northern Hemisphere winter solstice.

In principle, the coefficients ank , bnk can be computed numerically from (6.84) and
(6.83); however, the main seasonal driving term can be computed analytically:

b11 = 0 + O(e), (6.92)
a11 = −2 sin 𝛿0 + O(e). (6.93)

Furthermore, it can be shown that

ank , bnk = 0 for n ≥ 3, n odd. (6.94)

Table 6.1 presents the first few coefficients for the present orbital parameters. Trun-
cating the series at N = 2 and K = 2 is an excellent approximation for many purposes.
Note that the a01 is due to the eccentric orbit. In fact, a01 ≈ 2e, where the present eccen-
tricity is about 0.016. More numerical values of orbital changes can be found in North
and Coakley (1979).
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7

Nonlinear Phenomena in EBMs

Most of the energy balance models (EBMs) we have considered so far have been
essentially linear. This allowed us the luxury of using the well-known methods of
classical theoretical physics that have been developed over the last few centuries. Linear
systems have many great advantages including the decomposition of fields into modes
that in many cases are orthogonal, but even systems with non-orthogonal modes can
be handled. Linear models can also be analyzed in very elegant forms when statistical
noise drives the system, as we will see in Chapter 9. Linear systems described by partial
differential equations in space and time often have symmetries that can be exploited
as well. Large classes of these linear systems can be classified and their properties can
be studied in great detail and generality. In particular, if the homogeneous problem
is translationally invariant in time (e.g., no time-dependent coefficients), we can use
Fourier methods. If in space, the geometry is simple such as translationally invariant
along the line, or in the infinite plane, or rotationally on a spherical surface, we can
make use of many established results. In many of these high-symmetry cases, our
forebears have developed an encyclopedic archive of special functions that can be used.
If no such symmetries are evident in the problem, we still can use numerical methods
to find the modes, their shapes, time constants, and so on. For example, the type of
equation most commonly encountered in this book is the damped diffusion equation
with nonhomogeneous driving terms. A prototype is

C ∂T
∂t

= ∇ ⋅ D∇T − BT + drivers. (7.1)

Similar equations occur in electricity and magnetism, heat transfer, particle and molec-
ular diffusion, as well as in many other fields. In this equation, C∕B is a linear-decay
timescale,

√
D∕B is a length scale, and so on. When the drivers are set to zero, the

initial anomaly field decays to zero, spreading and smoothing as it decays. Typically,
large spatial scales have longer decay times than small spatial scales. If the coefficients
are time independent, the dynamical decay modes can be found and usually they form
a basis set into which the solution field and the drivers can be expanded. Modes found
in the drivers will excite response modes in the solution field. In particular, frequency
components appearing in the drivers will appear as energy (in our case, variance) in the
responses at the very same frequencies.
Another class of problems encountered in the climate system involves a second time

derivative on the left-hand side of the last equation. In this case, the response modes are
wavelike. If B = 0, the waves are not damped; if B > 0, the waves are damped.There can

Energy Balance Climate Models, First Edition. Gerald R. North and Kwang-Yul Kim.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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also be both a second and a first time derivative (an example is waves on a string, set in
an air-resistantmedium), the first derivative being a damper as well as the B term. Other
than an occasional mention, we will not deal with wave equations in this book, although
there are some excellent sources for that fascinating subject (e.g., Pedlosky, 2003) .
There are a few nonlinear problems that are amenable to analytical solutions in the

EBM world. One obvious example is the 𝜎T4 form in blackbody radiation rules. This
one turns out to be a mild nonlinearity not of much interest here, but it can be handled
easily in the context of the potential function discussed in Chapter 2. This nonlinearity
does not produce new solutions or alter the stability characteristics of the solutions we
have already found. Another nonlinear issue arises when we consider the ice–albedo
feedback mechanism. This particular mechanism leads to the same multiple-solution
structure studied in Chapter 2, but there are a couple of new twists that we would like to
elaborate on here. Another nonlinear problem of interest to EBM modelers (especially
those working in vertical atmospheric profiles and other planets) is that of the runaway
greenhouse which we considered in Chapter 4.
When more than one steady-state solution can exist for the same values of the

parameters, we are always interested in the stability of such steady states. We will solve
this problem for the one dimensional zonally symmetric planet in this chapter.

7.1 Formulation of the Nonlinear Feedback Model

Consider a north–south symmetric planet with no zonal features. We let the coalbedo
a depend on 𝜇 (cosine of the polar angle) along with a discontinuity at the ice-cap edge,
𝜇s (see Figure 7.1):

a(𝜇, 𝜇s) = (0.68 − 0.241P2(𝜇)) ×
⎧⎪⎨⎪⎩

1.00, |𝜇| < |𝜇s|;
0.75, |𝜇| = |𝜇s|;
0.50, |𝜇| > |𝜇s|.

(7.2)
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μ

Figure 7.1 Shapes of the coalbedo as a function of sine of latitude, 𝜇, in a solid line for the ice-cap
edge at 𝜇s = 0.80 and in a dashed line at 𝜇s = 0.90.
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The smooth 𝜇 dependence multiplying the step function mimics a zenith angle depen-
dence and comes from satellite data (Graves et al., 1993). The steady-state temperature
field, T(𝜇), is governed by the heat conduction equation

−D d
d𝜇

(1 − 𝜇
2)dT
d𝜇

+ A + BT = QSm.a.(𝜇)a(𝜇, 𝜇s), (7.3)

where D is a thermal diffusion coefficient; other symbols are as before. We require
application of the boundary conditions:

√
1 − 𝜇2 dT

d𝜇
||||𝜇→0,1

= 0. (7.4)

The equatorial boundary condition ensures symmetry, the polar condition states that no
heat flux enters the poles. The necessity for the latter is, of course, just a consequence
of our using the polar coordinate system. Basically, it forces only the regular solution
of the energy balance equation at the pole. The function Sm.a.(𝜇) is the mean annual
distribution of sunlight at the top of the atmosphere which is given approximately by

Sm.a.(𝜇) ≈ 1 − 0.477P2(𝜇). (7.5)

It is normalized, so that

∫
1

0
S(𝜇)d𝜇 = 1. (7.6)

Legendre polynomials are the eigenfunctions of the diffusion operator,

− d
d𝜇

(1 − 𝜇
2) d
d𝜇

Pn(𝜇) = n(n + 1)Pn(𝜇), (7.7)

with eigenvalues 𝜆n = n(n + 1), n = 0, 2,… Note that only evenly indexed modes are
retained because of the north–south symmetry. Since they form a complete basis set,
we can use them to express the temperature field

T(𝜇) =
∞∑

n=0,2,…
TnPn(𝜇), (7.8)

with

Tn = (2n + 1)∫
1

0
T(𝜇)Pn(𝜇)d𝜇, n even (7.9)

as

∫
1

0
Pn(𝜇)Pm(𝜇)d𝜇 = (2n + 1)𝛿nm, n even. (7.10)

Also define

Hn(𝜇s) ≡ (2n + 1)∫
1

0
Pn(𝜇)S(𝜇)a(𝜇, 𝜇s)d𝜇. (7.11)

After inserting (7.8) into (7.3), multiplying through by Pm(𝜇) and integrating from
0 to 1, we find

[m(m + 1)D + B]Tm = QHm(𝜇s) − A𝛿m,0. (7.12)
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Figure 7.2 The solid curve is the sine of the latitude of the ice-cap edge, 𝜇s as a function of the solar
irradiance Q(𝜇s). The vertical thin line indicates the present value of the total solar irradiance (÷4),
340 W m−2. Note that there are three roots for this operating curve, I near the present climate,
𝜇s = 0.88, II at 𝜇s = 0.26, and III for an ice-covered planet at 𝜇s = 0.

Wemay now solve for Tm and reconstruct T(𝜇) by use of (7.8).

T(𝜇) =
∞∑

n=0,2,…

QHn(𝜇s)Pn(𝜇) − A𝛿n,0

[n(n + 1)D + B]
. (7.13)

The problem is not yet solved, however, as we have not found the value of 𝜇s. This is
done by enforcing the Budyko condition that the temperature at the ice-cap edge is
−10 ∘C. In other words,

T(𝜇s) = Ts = −10 ∘C. (7.14)

By evaluating (7.13) at 𝜇 = 𝜇s, we get an identity which constitutes a relation between
Q and 𝜇s. We can plot Q(𝜇s) as in Figure 7.2.

Q(𝜇s) =
A + BTs∑

n
Hn(𝜇s)Pn(𝜇s)

n(n+1)D∕B+1

. (7.15)

In the calculation that went into Figure 7.2, we included only the first two terms in the
sum in the denominator of (7.15). Values of the parameters for the calculations were
D = 0.67 (from Chapter 5), af = 0.68 − 0.241P2(𝜇), ai = af∕2,A = 208Wm−2 (from
Graves et al., 1993), B = 2.00Wm−2 K −1.

7.2 Stürm–Liouville Modes

The differential equations we have encountered so far are amenable to solution by
expansion into space–time modes. Usually, the time modes are simply the Fourier
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Series amplitudes (harmonics). These amplitudes are often spatial modes whose graphs
have more zero crossings the higher their index. There is a general class of these modes
is called the Stürm-Liouville system. Consider the eigenvalue equation:

− d
dx

(
p(x)

d𝜓n(x)
dx

)
+ q(x)𝜓n(x) = 𝜆n𝑤(x)𝜓n(x); p(x), 𝑤(x) > 0, (7.16)

where q(x) is a continuous function on the interval. The interval of the domain can be
taken to be symmetric: −a ≤ x ≤ a with boundary conditions:

𝛼
(+)
𝜓n(a) + 𝛽

(+)
𝜓

′
n(a) = 0, (7.17)

𝛼
(−)
𝜓n(−a) + 𝛽

(−)
𝜓

′
n(−a) = 0, (7.18)

where𝜓 ′
n(⋅) indicates the derivative evaluated at the argument in parentheses.The eigen-

values 𝜆n are bounded from below. To show this, multiply (7.16) by 𝜓n(x) and integrate
by parts. The first term of the LHS becomes

−∫
a

−a
𝜓n(x)

d
dx

(
p(x)

d𝜓n(x)
dx

)
dx

= 𝜓n(x)p(x)
d𝜓n(x)
dx

||||
a

−a
+ ∫

a

−a
p(x)𝜓 ′

n(x)2 dx. (7.19)

The first term after the equal sign vanishes because of the boundary conditions and the
second term is positive definite. We may write

𝜆n ∫
a

−a
𝑤(x)𝜓2

n (x)dx = ∫
a

−a
q(x)𝜓2

n (x)dx + ∫
a

−a
p(x)𝜓2

n (x)dx ≥ 0 (7.20)

and 𝑤(x), p(x) > 0, and we assume q(x) ≥ 0 (as q(x) is the infrared radiative damping
function in the EBMs, usually taken to be the positive constant coefficient B). All three
integrals are positive, thus we have 𝜆n ≥ 0. If the function q(x) is negative over part of
the interval, the 𝜆n will still be bounded from below, but not necessarily by a positive
bound.1

7.2.1 Orthogonality of SL Modes

To prove orthogonality, begin with (7.16) and multiply through by 𝜓m(x). Rewrite the
result with m interchanged with n. Now integrate both equations by parts from −a to a.
The LHS of the two are identical. This means we can subtract them to obtain

(𝜆n − 𝜆m)∫
a

−a
𝑤(x)𝜓n(x)𝜓m(x)dx = N2

norm,n𝛿nm, (7.21)

where the coefficient N2
norm,n is in case the functions are not normalized. They can be

normalized by dividing 𝜓n(x) by Nnorm,n. Once the modes 𝜓n(x) are normalized, they
form an orthonormal set. For the Legendre polynomials,𝑤(x) = 1, p(x) = (1 − x2). Note
that the Legendre polynomials are not normalized with respect to integration from −1
to 1, but rather their scale is set by the condition Pn(±1) = (±1)n for historical reasons.

1 The function q(x) plays the role of the potential function in the steady-state Schrödinger equation. In that
case, it could be negative over part of the interval, for example, the square well. In quantum mechanics, the
energy levels are all bounded from below, otherwise we might fall into a bottomless pit.
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Other important special functions such as the Hermite polynomials and Bessel func-
tions utilize a weight function,𝑤(x) ≠ 1. We will encounter such a situation in Chapter
9 where the weight function 𝑤(x) is related to the land–sea distribution on the planet.
We will soon encounter distinct modes that have the same eigenvalue. In that case,

we say there is an 𝓁-fold degeneracy, where 𝓁 is the number of distinct modes with
that same eigenvalue. Two or more modes with the same eigenvalue have the property
(easily shown by insertion in the eigen-equation) that 𝛼𝜓 (𝜆)

n (x) + 𝛽𝜓
(𝜆)
m (x) is also an

eigenfunction with eigenvalue (𝛼 + 𝛽)𝜆 where 𝜆 is the eigenvalue common to the two
eigenfunctions. Knowing this, we can form two linear combinations (choices of 𝛼 and 𝛽)
that are mutually orthogonal and properly normalized. In this case, we can choose
𝛼 = 1∕

√
2 and 𝛽 = ±1∕

√
2. Or

𝜙1 =
1√
2
(𝜓n + 𝜓m), (7.22)

𝜙2 =
1√
2
(𝜓n − 𝜓m), (7.23)

where 𝜙1 and 𝜙2 are the new orthonormal modes that have been orthonormalized.

7.3 Linear Stability Analysis

Once we have found that there are multiple solutions for the climate for a given value
of the solar constant, we are obliged to examine the stability2 of the solutions.3 In this
chapter, we first examine the linear stability of the solutions and find a slope-stability
theorem analogous but not identical to that in Chapter 2. Next we construct and
examine the potential function[al] for the one-dimensional problem. Consider now the
EBM defined by

∂I(𝜇, t)
∂t

− ∂
∂𝜇

[
D(𝜇)(1 − 𝜇

2) ∂I(𝜇, t)
∂𝜇

]
+ I(𝜇, t) = QS(𝜇)a(𝜇, 𝜇s), (7.24)

where we have set C = 1 to simplify the notation. Also, we have used I(𝜇, t) =
A + BT(𝜇, t) as our dependent variable, which simplifies the algebra in what follows.
Note that this change means that the diffusion coefficient is different from the one
where T is an dependent variable, that is, D(𝜇) = DT∕B, where the subscript T indicates
the case where T is the independent variable. This difference will have no effect on our
stability analysis, as is the case where we have set C = 1. We have the ice-line constraint
from Budyko,

I(𝜇s) = Is > 0, (7.25)

2 There are several studies of stability of the solutions. For example, Budyko (1969) argued that the negative
slopes should indicate a violation of the second law of thermodynamics. Others include Ghil (1976) and a
more general study by Cahalan and North (1979). The proof given here follows that in North et al. (1981).
3 The proof of the slope-stability theorem is rather involved such that some readers may wish to skip directly
to the punch line (7.47) and Figure 7.3.
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where Is = A + B ⋅ (−10 ∘C) and subject to the usual north–south symmetric boundary
condition

D(𝜇)
√
1 − 𝜇2 dI

d𝜇
||||𝜇=0,1 = 0. (7.26)

We are including a 𝜇-dependence in D(𝜇) > 0 to make the results as general as possible.
As in Chapters 5 and 6 and the previous section of this chapter, we expand I(𝜇, t) into
the eigenfunctions of the total convergence-of-flux operator of (7.24). It is an example
of a Stürm–Liouville System, whose properties were outlined in the previous section.{

− d
d𝜇

D(𝜇)(1 − 𝜇
2) d
d𝜇

+ B
}

fn(𝜇) = 𝓁nfn(𝜇), (7.27)

where the fn(𝜇) are the Stürm–Liouville orthonormal eigenfunctions of degree n, and
the eigenvalues 𝓁n are real and positive. We define

hn(𝜇s) ≡ ∫
1

0
S(𝜇)a(𝜇, 𝜇s) fn(𝜇)d𝜇. (7.28)

The linear stability analysis begins by assuming the temperature field is perturbed by
a small amount 𝛿I(𝜇, t):

I(𝜇, t) = Ieq(𝜇) + 𝛿I(𝜇, t), (7.29)

and the ice cap is similarly perturbed.

𝜇s(t) = 𝜇0 + 𝛿𝜇s(t). (7.30)

The equilibrium values satisfy

𝓁nIeqn = Qhn(𝜇0), (7.31)∑
n

Ieqn fn(𝜇0) = Is. (7.32)

Inserting the small departure definitions and retaining only the linear terms, we have
d
dt

𝛿In + 𝓁n𝛿In = Qh′
n(𝜇0)𝛿𝜇s, (7.33)

where h′
n(𝜇0) indicates the derivative of hn(𝜇s) evaluated at 𝜇s = 𝜇0 where 𝜇0 is the value

of 𝜇s at equilibrium. Next, we use the relation

Is =
∑

n
In(𝜇s) fn(𝜇 = 𝜇s),

with the constraint 𝛿Is = 0 to find

𝛿Is =
∑

n
fn𝛿In +

(∑
n

Ieq
n f ′n

)
𝛿𝜇s = 0, (7.34)

where we have now suppressed the argument of fn to mean its value at 𝜇0 and f ′n ,
indicating the derivative of fn(𝜇) evaluated at 𝜇0.
The last expression becomes

𝛿𝜇s = −

(∑
k

fk𝛿Ik

)(∑
m

Ieqm f ′m

)−1

. (7.35)
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In the last formula and in what follows, we suppress the argument 𝜇0.Wemay substitute
the last equation into (7.33) and after making the small-departure assumption that

𝛿In(t) = 𝛿In e−𝜆t , (7.36)

as in Chapter 2, we find the eigenvalue problem
∑

m
Mnm𝛿Im = 𝜆𝛿In, (7.37)

where

Mnm = 𝓁n𝛿nm + 𝛾 fn fm, (7.38)

with

𝛾 = QΔaS(𝜇0)

(∑
k

Ieqk f ′k

)−1

. (7.39)

To obtain the last equation, we assumed that a(𝜇, 𝜇s) is a step functionwith discontinuity
Δa > 0 at 𝜇 = 𝜇s,

h′
n = (Δa)S(𝜇0) fn. (7.40)

The stability of the system is determined by the sign of the eigenvalues 𝜆. Because Mmn
is real and symmetric, all eigenvalues are real and bounded from below.4 If the lowest
eigenvalue is negative, the system is unstable; 𝛿T(t) grows exponentially in time. By
casting the eigenvalue problem into a different form, we can determine the sign of
the lowest root. From this point in the proof, all arguments are suppressed with the
understanding that the function in question is to be evaluated at 𝜇 = 𝜇0.
To determine this sign, we rearrange (7.37) and use (7.38) to obtain

(𝓁n − 𝜆)𝛿In = −𝛾 fn

∑
m

fm𝛿Im. (7.41)

Dividing this expression by (𝓁n − 𝜆), multiplying by fn, and summing over n we obtain

1 = −𝛾
∑

n

( f 2n
𝓁n − 𝜆

)
. (7.42)

This relation is a transcendental equation that is satisfied for certain discrete values of 𝜆,
the stability eigenvalues. By further rearrangement, we arrive at the sign of the lowest
eigenvalue. Using the definition of 𝛾 , we find

∑
n

( f 2n
𝓁n − 𝜆

+
Ieqn f ′n

QΔaS(𝜇0)

)
= 0, (7.43)

which, with the equilibrium condition, becomes
∑

n

(ΔaS(𝜇0) f 2n
𝓁n − 𝜆

+
hn f ′n
𝓁n

)
= 0. (7.44)

4 This result is a well-known property of real symmetric matrices.
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Since

d
d𝜇0

Is = 0 = d
d𝜇0

[
Q
∑

n

hn fn

𝓁n

]
, (7.45)

this leads to
∑

n

hn f ′n
𝓁n

= − 1
Q2

dQ
d𝜇0

Is −
∑

n

h′
n fn

𝓁n
. (7.46)

Finally, substituting (7.46) into (7.44) we obtain
dQ
d𝜇0

= 𝜆
Q2

Is

∑
n

ΔaS(𝜇0) f 2n
𝓁n(𝓁n − 𝜆)

. (7.47)

Figure 7.3 shows a plot of the LHS and the function on the RHS as functions of the
stability parameter 𝜆. Intersections of the curve and the horizontal line indicate roots
of the equation above and are therefore the eigenvalues corresponding to the stability
problem. If all roots are positive, the climate corresponding to 𝜇0 is stable. However,
if even one root is negative, the climate at that point on the operating curve will be
unstable. We see from the graph that as long as the slope of the operating curve (𝜇s vs
Q) is positive, the climate will be stable. But if the dashed line falls below the horizontal
axis (meaning there is a negative slope of the operating curve), the left-most root in the
figurewill become negative, indicating instability.This is referred to as the slope-stability
theorem. Note that it differs from the case treated in Chapter 2 in which the operating
curve T versus Q was used to calculate the slope. In the one-dimensional model, the
slope must be calculated from the 𝜇s versus Q curve.

5 10 15 20

–2

2

4

RHS(λ)
Roots for stability analysis

λ

Figure 7.3 Schematic graph of the left-hand side of the stability equation versus the right right-hand
side, where (Q2∕Is)ΔaS(𝜇0)f 2

n are taken to be positive quantities for all n. The 𝓁n are taken to be the
eigenvalues for a constant diffusion coefficient model (n(n + 1)D + B). Intersections of the horizontal
line (nominally dQ∕d𝜇0) with the continuous curves represent roots of the system and therefore
eigenvalues 𝜆m,m = 0, 2, 4,…. The horizontal line will lie above the abscissa so long as the slope of
the operating curve is positive. All these positive roots imply stability. When the slope of the operating
curve is negative (horizontal dashed line below the 𝜆-axis), there will be one root 𝜆dd which is
negative, leading to instability.
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Another proof of the slope-stability theorem somewhat simpler in complexity than
that presented here is given by Shen and North (1999). The most general proof is by
Cahalan and North (1979). Drazin and Griffel (1977) examined the solutions in the case
where the hemispheresmight not be constrained to be symmetric. Since the length scale
is short compared to the circumference of the planet, an ice cap in one hemisphere
cannot feel the effect of an ice cap in the other. Indeed, they found this to be the case by
careful numerical solution of the problem (using the “shooting method” in which one
fits the polar condition in one hemisphere and adjusts the ice cap in the other by trial
and error until a match is made). Our proof of the slope-stability theorem would not
hold in such a situation, as for some solutions the ice-cap size in one hemisphere is not
the same size as that in the other.
One wonders what the stability conditions would be if there is nontrivial geography as

in the next chapter. This problem has not been addressed to our knowledge except inci-
dentally during numerical solutions in paleoclimatology. We do not even have a proof
as yet for the case of a perturbation of the ice-cap edge that has wave number above
zero for the homogeneous planet case. Such proofs await the creative efforts of others.

7.4 Finite Perturbation Analysis and Potential Function

In analogy to the potential function analysis of Chapter 2, we present here its general-
ization to the case of one-dimensional climate models (North et al., 1979). In this case,
we must deal with a functional instead of a function, as the potential will depend on
the function T(𝜇) at each point in the interval 0 < 𝜇 < 1. We can best describe what is
meant by a functional by directly proceeding with our example. Consider the integral

F[T] = ∫
1

0
d𝜇

[1
2

D(1 − 𝜇
2)T2

𝜇
+ R(T) − QS(𝜇)G(T , 𝜇)

]
, (7.48)

where for the sake of compactness we have introduced subscripts for partial derivatives
T
𝜇
= dT∕d𝜇,

R(T) = ∫
T

I(T ′)dT ′
, (7.49)

G(T , 𝜇) = ∫
T

a(𝜇,T ′)dT ′
. (7.50)

Here we have chosen to write a(𝜇, 𝜇s) as a function of 𝜇 and T , for example,

a(𝜇,T) = (a0 + a2P2(𝜇))
(
𝜃(T(𝜇) − Ts) +

1
2
𝜃(Ts − T(𝜇))

)
, (7.51)

where 𝜃(y) is the unit step function,

𝜃(y) =
{
0, if y < 0,
1, if y ≥ 0. (7.52)

Note that as

∫
𝜖

−𝜖
𝛿(y′ − y) dy′ = 𝜃(y); then

d𝜃(y)
dy

= 𝛿(y). (7.53)
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Consider the functional for an arbitrary small variation 𝛿T(𝜇); that is, T(𝜇) is replaced
by T(𝜇) + 𝛿T(𝜇) to form F[T] + 𝛿F[T]. After subtracting F[T], we have

𝛿F[T] = ∫
1

0
d𝜇 [D(1 − 𝜇

2)T
𝜇
(𝛿T(𝜇))

𝜇
+ R′(T)𝛿T(𝜇) + QS(𝜇)G′(T)𝛿T(𝜇)],

(7.54)

where we used only the first-order terms in Taylor expansions of R and G in 𝛿T . Now
noting that

𝛿(T
𝜇
) = (𝛿T)

𝜇
, (7.55)

we integrate the first term above by parts (endpoint contributions vanish) to obtain

𝛿F[T] = ∫
1

0
d𝜇 [−(D(1 − 𝜇

2)T
𝜇
)
𝜇
+ R′(T) + QS(𝜇)G′(T)]𝛿T(𝜇), (7.56)

where the prime denotes differentiation with respect to T . If the functional F[T] is to be
stationary for an arbitrary but small variation 𝛿T(𝜇), it must vanish. Since the functional
form of 𝛿T(𝜇) is arbitrary, the quantity in brackets in the integrand above must vanish.
The latter is just the expression for the energy balance equation. In other words, our
functional is a quantity which is a local extremum when the energy balance equation is
satisfied.
It is easier to visualize the functional F[T] in spectral form, T =

∑
Tnfn(𝜇). In the

spectral form, we may think of F as an ordinary function of the variables T0,T2,…;
an infinite number of variables. An extremum of F(T0,T2,…) may be expressed as
∂F∕ ∂Tn = 0 for all n.
Substitution of the spectral form into the definition of the functional F[T] leads to

F(T0,T2,…) =
∑

n

1
2
𝓁nT2

n − M(T0,T2,…), (7.57)

where

M(T0,T2,…) = Q∫
1

0
S(𝜇)(T − Ts)[af𝜃(T − Ts) + ai𝜃(Ts − T)]d𝜇. (7.58)

For simplicity, we have taken af and ai, the values of coalbedo over ice-free and
ice-covered surfaces, to be constants. It is understood that T =

∑
Tnfn(𝜇) is to be

substituted for T in the last expression.
The condition that the ∂F∕ ∂Tn vanish simultaneously leads to

𝓁nTn = Q∫
1

0
S(𝜇)fn(𝜇)[af𝜃(T(𝜇) − Ts) + ai𝜃(Ts − T(𝜇))]d𝜇,

= Qhn(𝜇s), (7.59)

which takes us back to the slope-stability theorem.

7.4.1 Neighborhood of an Extremum

Consider a particular extremum (steady state) centered at the point

T (0)
0 ,T (0)

2 ,… .
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Nearby (in function space), we may write T(𝜇) = T (0) + 𝜙(𝜇), or the deviation may be
written in terms of its spectral components 𝜙0, 𝜙2,…. Expanding F[T] about the local
extremum, we obtain

F(T0,T2,…) = F0 +
∑

n

(
∂F
∂Tn

)
0
𝜙n +

1
2
∑
n,m

(
∂2F

∂Tn ∂Tm

)
0
𝜙n𝜙m + · · · , (7.60)

where the subscript zero denotes evaluation at the extremum. The terms linear in 𝜙n
vanish because ∂F∕ ∂Tn vanishes at the extremum. Up to the terms considered, F is
locally a quadratic in 𝜙n. The matrix elements,

Nnm =
(

∂2F
∂Tn ∂Tm

)
0

(7.61)

are the structure constants for the quadratic geometric surface, F(T0,T2,…). If all
eigenvalues of Nnm are positive, the surface is concave upward; if one or more of the
eigenvalues are negative, the surface is locally a saddle point. We proceed to show that
these eigenvalues are the stability eigenvalues studied earlier.
First note that if the temperature field is allowed to be a function of time, then by

following the approach for the zero-dimensional models, we have

Ṫn = −
(

∂F
∂Tn

)
; (7.62)

that is, the time derivative is given by the gradient in this multidimensional space. For
infinitesimal departures from steady state, we set Tn(t) = Teq

n + 𝜙n e−𝜆t above, expand
about 𝜙n = 0, and obtain

−𝜆𝜙n = −
∑

m

(
∂2F

∂Tn ∂Tm

)
0
𝜙m, (7.63)

−𝜆𝜙n = −
∑

m
Nnm𝜙m. (7.64)

The latter equation concludes the proof that the local geometrical structure constants
of F(T0,T2,…) yield the stability eigenvalues for that particular steady state. The last
equation is the analog of the simple zero-dimensional equation (2.90) in Chapter 2.
Finally, as a conclusion to this section, consider the time behavior of the value of

F(T0,T2,…) when the point (T0,T2,…) is governed by the time-dependent energy
balance equation

dF
dt

=
∑

n

∂F
∂Tn

Ṫn, (7.65)

dF
dt

= −
∑

n
(Ṫn)2, (7.66)

where we inserted the equation of motion. This latter result is the multidimensional
analog of (2.91) in Chapter 2. It has a corresponding interpretation: initial departures
of the state (T0,T2,…) from a local extremum of F lead to a trajectory of the system
point such that F decreases.The point will continue down the gradient of F until a local
extremum is found. Clearly, saddle points are unstable—if perturbed infinitesimally,
the system point can leak out into some neighboring basin.



7.5 Small Ice Cap Instability 187

7.4.2 Relation to Gibbs Energy or Entropy

Solutions of the energy balance equation satisfy a minimum principle reminiscent
of Gibbs energy in thermodynamics (when pressure and temperature are held fixed).
If we take the negative for F[T], it might be interpreted as the maximum of entropy
production. Then the extremum condition would be somewhat like Prigogine’s theory
of nonequilibrium thermodynamic states (Prigogine, 1968). Golitsyn and Mokhov
(1978) showed that the linear climate models satisfy Prigogine’s conditions. The idea is
tantalizing, but has so far not been satisfactorily implemented in general terms.

7.4.3 Attractor Basins—Numerical Example

It is possible to work out in some detail an example illustrating the concept of the
potential surface for a two-mode model. In this case, the functional F becomes the
truncated version of (7.57). The function M is

M(T0,T2) = Q∫
𝜇s

0
S(𝜇′)(T0 + T2P2 − Ts)af d𝜇′

+ Q∫
1

𝜇s

S(𝜇′)(T0 + T2P2 − Ts)ai d𝜇′
, (7.67)

where, in the two-mode model, the ice edge can be expressed in terms of T0,T2:

𝜇s =
1√
3

(
1 +

2(Ts − T0)
T2

) 1
2

. (7.68)

Together with the other terms in (7.57), we have enough information to plot the
surface corresponding to F(T0,T2) as a contour diagram in the T0,T2 plane. We
choose the parameters such that there is a cusp: Q = 340Wm−2, A = 220Wm−2,
B = 1.90Wm−2 K−1, af = 0.68, ai = 0.38, D∕B = 0.30. The operating curve for this
system is shown in Figure 7.4a. This choice of parameters leads to five solutions labeled
a, b, c, d, and e. The potential surface is mapped in (b) with the steady-state points indi-
cated. It can be clearly seen thatd is a saddle point corresponding to an unstable solution.
Figure 7.4c and d shows successively higher resolution focusing on the right-hand basin.
The higher resolution shows that there are two distinct minima: a and c with a saddle
point b.The ice-free solution a corresponds to a very shallowminimum and a very small
but finite agitation would push it over the hill (b) into the deeper (more-stable) basin c.
The relative minima in a purely dissipative system such as those we are studying here

are isolated points called attractors. It is possible to map out the attractor basins for this
class of problems as illustrated by the two-mode approximation with the basins shown
in Figure 7.4.

7.5 Small Ice Cap Instability

Consider the operating curve in Figure 7.5.This two-mode operating curve has five equi-
librium solutions for Q = 340Wm−2. Because of the slope-stability theorem, only the
ones with positive or zero slope are stable. The cusp at the top of the graph is magnified
in the right-hand panel as the solid line. To illustrate the sensitivity of the cusp, we can
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Figure 7.4 Potential function for a two-mode, one-dimensional nonlinear climate model. (a) The
operating curve indicating five solutions (labeled a, b, c, d, e) for Q = 340 W m2. (b) A coarse resolution
plot of the potential function in the T0, T2 plane. (c) and (d) Successively higher resolution around the
right-hand basin which turns out to have two local minima. The relative minima are stable climate
states, the saddle points correspond to unstable states. Further discussion in the text.

vary the coalbedo of ice cover. According to Figure 7.6 (take the solid curve parameters),
the operating curve has a negative slope for values of 𝜇s > 0.89, which corresponds to
a latitude of about 63∘. The negative slope of the operating curve implies that polar ice
caps whose radius is smaller than about 25–37∘ on a great circle will be unstable. This
point is worth examining more closely as it may have implications for paleoclimate
and for future climates. For example, the Antarctic ice cap is of about this size and the
seasonal sea ice in the North Pole area is also of roughly this size. Is it on the verge of
unstable collapse if the planet is heated slightly by the greenhouse effect? Moreover,
did it form suddenly? What parameters control the size of the least stable ice cap?
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Figure 7.5 An operating curve with
five equilibrium solutions for
Q = 340 W m−2. In this illustration,
the D∕B = 0.30, A= 210 W m−2;
B =1.90 W m−2 K−1, and the coalbedo
is taken to be flat as function of
latitude with af = 0.68 and ai = 0.38.
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Figure 7.6 Illustration of the sensitivity of the cusp’s shape to small changes in the coalbedo of ice:
The solid curve is for the same values as in Figure 7.5 (af = 0.68, ai = 0.38). The long-dashed (leftmost)
curve is for dark ice (ai = 0.42), while the rightmost curve is for bright ice (ai = 0.30).
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7.5.1 Perturbation of an Exact Ice-Free Solution

Let us imagine a situation where we are on the ice-free branch of the solution and slowly
lower the solar constant until we are at Q = 340 W m−2. Our solution will constitute
a point on the upper branch of Figure 7.6. The model is linear in the (infinitesimal)
neighborhood of this solution as there is no ice cap. Using the parameters of Figures 7.5
and 7.6, we find that the temperature is given by

Ta(𝜇) = 11.2 − 20.7P2(𝜇). (7.69)

At every point, the temperature is above −10 ∘C (Figure 7.7). At the pole, the temper-
ature is −9.5 ∘C, which is close to the critical value. Consider next the effect of adding a
heat source centered at the pole whose density is q(𝜇) (W m−2). Let the departure from
the ice-free solution be T ′(𝜇). It satisfies

−D d
d𝜇

[
(1 − 𝜇

2)dT ′

d𝜇

]
+ BT ′ = q(𝜇). (7.70)

This equation can be solved by use of Legendre polynomial series on the sphere, but it
is more instructive to look at the solution on the plane tangent to the pole where solu-
tions in closed form can be obtained. Let r be the plane polar coordinate corresponding
to the distance from the pole. And let H(r) be the response function to the thermal
perturbation q(r). Then H(r) satisfies

1
r
d
dr

[
r d
dr

H(r)
]
− H(r)

𝜆
2
dd

= −
q(r)
D

, (7.71)

where the length scale is defined as 𝜆dd =
√

D∕B.
For a small patch of ice (diameter≪ 𝜆dd), the solution5 is

H(r) ≈ 1
D

K0

(
r
𝜆dd

)
∫

r0

0
r′q(r′)dr′, r > r0, (7.72)

where r0 is the radius of the ice patch and K0(z) is the zero-order modified Bessel
function which is pictured as the solid curve of Figure 7.8. This particular Bessel
function looks like a decaying exponential and in fact has the asymptotic form
K0(z) ∼ (𝜋∕2z)1∕2e−z for large z. The important point is that the influence of the small
patch extends from its edge a distance the order of 𝜆dd. It is hardly surprising that stable
ice caps smaller than about 𝜆dd in radius did not exist in model solutions.
Imagine the no-icecap solution to be in place; this state’s temperature (−9.5 ∘C) is

above the critical value (−10 ∘C). Now “by hand,” we add a small ice patch at the pole.
The patch as a source of cooling has an influence a distance ∼ 𝜆dd away from the pole.
If the albedo of the ice is high enough, the patch can pull the temperature down below
critical over a distance comparable to 𝜆dd. This means that two solutions can exist, one
with no ice and another with a patch no smaller than approximately 𝜆dd. This is the
underlying meaning of the small ice cap instability. More details can be found in North
(1984).

5 The exact solution can be found by the Green’s function technique. It is given in North (1984).
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Figure 7.7 Plot of the temperature near the pole as function of 𝜇, the cosine of the polar angle in the
case where the temperature at the pole is just above the critical value of −10 ∘C. The value of the curve
Ta(𝜇) = 11.2 − 20.7P2(𝜇); at the pole, this yields Ta(1) = −9.5 ∘ C. What happens if a small patch of ice
is placed at the pole?
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Figure 7.8 Graph of the modified Bessel function K0(z) (solid line) as a function of z and an asymptotic
approximation,

√
(𝜋∕2z)e−z (dashed line). The K0(z) Bessel function is the response to a point source in

plane polar coordinates. The figure shows that it is nearly proportional to ze−z for large z. It partially
answers the question posed in the previous figure.

7.5.2 Frequency Dependence of the Length Scale

Next consider the solution to a small scale source in the heating problem, when the
strength of heating has a sinusoidal time dependence: q(r, t) = q0(r)e2𝜋if0t . Then we
should use the time-dependent version of the energy balance equation:

C ∂H(r, t)
∂t

− D1
r
d
dr

[
r d
dr

H(r, t)
]
+ BH(r, t) = +q(r, t). (7.73)
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By the assumption that H(r, t) has the same sinusoidal dependence as q(r, t), we find the
same result except that 1∕𝜆2dd is replaced by

1
𝜆′2dd

= 1
𝜆
2
dd

(1 + 2𝜋if0𝜏0), (7.74)

or its magnitude is
|||||
𝜆
′
dd

𝜆dd

|||||
∼ 1√

1 + (2𝜋f0𝜏0)2
. (7.75)

To see the r dependence of the solution, we plot themagnitude ofK0(r∕𝜆′dd) in Figure 7.9.
We see that the characteristic length scale is strongly dependent on the frequency of the
forcing as the forcing frequency is raised to 1∕𝜏0. Over this interval of frequency, the
length scale shrinks by a factor of 2. It continues to shrink toward zero as the frequency
is increased. The magnitude of the K0 Bessel function decreases similarly to an expo-
nential as a function of distance from the origin, but the real and imaginary parts of the
function oscillate as dampened pulses diffuse away from the origin.
An application of the shortened length scale for oscillating point sources is in the

seasonal cycle. In this case, over land 𝜏0 is about 1/12 year and f = 1 year−1; hence with
respect to a land surface, the seasonal cycle is very low frequency and the low frequency
limit is a reasonable approximation. On the other hand, over ocean, 𝜏0 is about 5 years
and f = 1 year−1, hence, we are far from the low frequency limit over oceans. The
consequence is that in seasonal cycle applications the reach or fetch of a seasonally
oscillating source is only a fraction of its low frequency or static value. During the
seasonal cycle, the oceans and land surfaces have different lags behind the heating. The
above considerations mean that a neighboring lagging ocean surface has an influence

Low frequency limit
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Frequency dependence of length scale

Figure 7.9 Solid line: The magnitude of the complex modified Bessel function K0(r∕𝜆′dd) as a function

of r, where 𝜆
′
dd = 𝜆dd∕

√
1 + 2𝜋 f0𝜏0 for 𝜆dd = 1.0 and f0 = 0 (the low frequency limit). The dashed line

indicates how the length scale is shortened for higher frequency forcing. In this latter case, f0𝜏0 = 1.
The length scale tends to zero as the frequency increases further.
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far inland into a continent. But the influence of the land temperatures on neighboring
ocean surfaces extends only a fraction of that distance off the shore. A larger study of
the frequency dependence of the length scale can be found in North et al. (2011).
One caveat about the small ice cap instability is its sensitivity to the parameters

chosen. Even tiny changes in the parameters of the model can cause it to appear or not
in the operating curve. One might conclude that it is an artifact of such a simple model.
However, it might be indicative of phenomena that do actually occur in the climate
system. The fact that it is so sensitive to the parameter values suggests that it might
be there at some times in history and not at others depending on the environment at
the time.

7.6 Snow Caps and the Seasonal Cycle

The latitude of the steady-state snow line varies through the seasons following roughly
the freezing line. By steady state of course, we mean the ensemble average over many
seasonal cycles as before. We postpone the issue of the snow-line realizations in the
presence of climate fluctuations. The seasonal progression of the snow line and its
modification under changed external forcing conditions has important consequences
as we will see. A very important issue is whether snow lingers through the summer at
a given location, say the pole. If this does happen, there is the possibility of growing an
ice sheet if there is persistent snow over land.
First consider an all-ocean planet. In this situation, the seasonal cycle is small and the

polewill remain below freezing all year round.TheArcticOceanmay be an analog to this
case and it is interesting to note that there is perennial sea ice at the North Pole and that
this may be suggestive of a small ice cap poised for abrupt removal under the influence
of a warm forcing such as the greenhouse effect or low frequency changes in oceanic
conditions. Removal of perennial sea ice at the North Pole would have negligible direct
thermal effects on the planet but it might cause profound changes in the circulation of
the Arctic Ocean and consequently the formation of deep water in the North Atlantic.
Next consider an all-land planet. It is easy to show that, in this case, with the present

obliquity (tilt of the Earth’s spin axis with respect to the ecliptic plane) the summers are
very hot at the poles (exceeding 30 ∘C). Hence, for the all-land planet there will be no
persistent snow at the poles and the planet is much too hot for a small ice cap summer
solution.

7.7 Mengel’s Land-Cap Model

An interesting intermediate case is that of a symmetrical cap of land at the pole
surrounded by open ocean (Mengel et al., 1988).The analog of this case is the continent
of Antarctica whose size is about the size of an annual cycle length scale in the simple
climate models.
As an introduction to problems with partial land and sea geographies, consider a

planet with a disklike island centered at the pole.The rest of the planet is ocean covered.
If the solar irradiance is in a certain range, the temperature will fall below freezing
in winter in which case the albedo will become higher in the snow-covered areas.
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This is a model that still has only one horizontal dimension, the latitude. The way of
implementing the land–sea contrast is to introduce an effective heat capacity C(𝜇) that
is small over land and large over ocean. This means the coefficient of the ∂T∕ ∂t term
has a strong discontinuity at the land cap’s edge. Solving this boundary value problem
analytically is not likely to be possible; hence, one must resort to numerical methods.
Other problems include how to handle the heat capacity when an area of ocean surface
is ice covered. In this initial study, this latter effect has been ignored.
Mengel et al. (1988) used an expansion of the temperature field into Legendre modes.

Because of the discontinuity in albedo and heat capacity, many modes (29) had to be
retained in the expansion, but experiments with half that many did not reveal different
results. Details of the methodology can be found in the paper.
Figures 7.10 and 7.11 show results of numerical calculations for such a zonally

symmetric planet.The figure shows that for warm values of the solar constant, the snow
line retreats rapidly to the pole in spring and reappears in fall, moving well out into
the ocean areas in winter. In other words, we have a snow-free summer over the land
cap. However, as the solar constant is lowered, an abrupt transition occurs to a climate
configuration with persistent snow throughout the summer. This transition is a form
of the small ice cap instability but is more complicated than the simple static ice cap
studied earlier in this chapter. It is clearly affected by the seasonality and the geography.
The smallness of the land cap makes it possible for the oceanic influence to stretch
all the way to the pole, keeping summers marginally cool enough to support ice in
summer if the snow albedo is present. On the basis of this model finding (and it persists
in general circulation model (GCM) simulations), one might expect that the transition
to full glaciation on Antarctica might have been rather sudden as the parameters
passed slowly over the critical point. Of course, in reality, it was not the changing solar
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Figure 7.10 Illustration of the extreme sensitivity of the seasonal cycle of the snow line to solar
brightness when a bifurcation (tipping point is near). Shown is a plot of the seasonal variation of the
snow line for a land-cap planet (analogous to Antarctica) for two neighboring values of normalized
solar constant. The shaded area indicates land area. The ordinate is the latitude 𝜙 in degrees and the
abscissa is time t in years. The origin is at NH winter solstice. (Mengel et al. (1988). Reproduced with
permission of Springer.)
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Figure 7.11 Similar to Figure 7.10, except that the variable plotted is the temperature at the pole.
Shown is a plot of the seasonal variation of the polar temperature as a function of time of the year. The
shaded area indicates land area. It shows the temperature region above freezing. The origin is at
winter solstice. The values of total solar irradiance for this pair of curves coincides with those of
Figure 7.10. (Mengel et al. (1988). Reproduced with permission of Springer.)

constant that induced the Antarctic transition but some other parameter (continental
drift) acting in a similar way. We will return to this paleoclimate question in Chapter 8.
An example of counterintuitive behavior can be found in Figure 7.12. Here the model

was initialized on one side of the bifurcation but the parametric conditions were on the
other side.The relaxation to the seasonal cycle appropriate to the parametric conditions
did not occur with the linear timescale of a few years, but actually took tens of years.
This is because the solution and parametric conditions were very close to a bifurcation
where nonlinear effects are dominant. This is a problem often ignored in climate
simulation experiments. For example, we may well have already passed the bifurcation
for sea ice-free summers in the Arctic, but the planet is still adjusting to this condition.
Similar long-delayed adjustments may be underway in Greenland and Antarctica.
The work of Mengel et al. (1988) (see Figure 7.12) was extended by Lin and North

(1990) to several other geographies (see also, Huang and Bowman, 1992). The tech-
niques used by these authors were also different and that might be interesting for some
readers. Lin used the Fourier harmonic technique to solve for the steady seasonal
cycle. This turned out to be more efficient. The nonlinearity was taken into account
by iteration. First, Lin demonstrated that she could repeat Mengel’s work for a disklike
land mass centered at the pole. She investigated how the bifurcation occurs as it is
expressed in an operating curve, shown here in Figure 7.13. Using the same method,
Lin investigated the case of a planet with a polar ocean but several cases of zonally
symmetric bands of land configurations. Figure 7.14 shows an example of a band of land
configuration where the land surface lies between 50∘ and 75∘ latitude. In this case, as
indicated in Figure 7.14, there are two bifurcations, one with an ice-free Arctic Ocean
as well as snow-free land for warmest values of solar irradiance. As the solar irradiance
is lowered to 0.9316 of the present value, the former ice-free polar ocean exhibits
summer ice cover, and the land surface is nearly snow free for most of the summer.
Finally, at solar irradiance 0.9255, the entire polar area is ice covered year round.
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Figure 7.12 Substantial modification of the relaxation time to the steady-state seasonal cycle by the
nearness of a bifurcation (tipping point). Shown is a plot of the time series for two realizations of the
model for initial conditions near a singularity or bifurcation in the solution. (a) Initially the model is set
to be in the icy pole case, but suddenly the solar constant is switched to the ice-free pole case. The
time constant for the transition in this case is of the order of 43 years, but it is sensitive to the initial
condition. (b) The opposite case where the solution is initially for the ice-free pole, but the total solar
irradiance is suddenly switched to the icy pole value. This time the adjustment takes about 120 years.
(Mengel et al. (1988). Reproduced with permission of Springer.)

The Mengel-like experiment has also been examined in a GCM (the Genesis Model
of the early 1990s) by Crowley and Baum (1993). They used a geography from the
Carboniferous period which was similar to the continent at the pole configuration in
the Mengel et al. (1988) work (Figure 7.15).

7.8 Chapter Summary

The chapter began with a discussion of the ease of studying linear systems compared
to the difficulty of dealing with nonlinear systems. Hence, it is wise to work linear
problems when possible. In many cases, when nonlinearity is small, one can get by with
such an approximation. On the other hand, the great power garnered from experience
based on linear methods fails spectacularly when the nonlinear effects are large enough



7.8 Chapter Summary 197

18

16

14

12

10

8

6

N
o
rt

h
 P

o
le

 t
e
m

p
e
ra

tu
re

 i
n
 J

u
n
e
 (

°C
)

4

2

0
A′

C′

B′

C B

–2

–4

–6
1.0797 1.0798

Normalized solar constant (Q/Q0)
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Figure 7.15 Bifurcation in the operating curve for the Genesis GCM with a Carboniferous land/sea
distribution that is roughly comparable to a land mass centered at the South Pole. Both EBM and GCM
show summer snow lines that have a discontinuous break at a certain value of the solar constant
(shown here as Q∕Q0, the ratio to its value in the Carboniferous period. (Crowley and Kim (1994).
Reproduced with permission of AAAS.)

to cause bifurcations in steady-state solutions especially when parameter conditions
bring the solution very near to a bifurcation or other form of singularity.
The first problem taken up in the chapter was the nonlinear ice-cap problem where

one finds three and sometimes five solutions depending sensitively on parameter
values. An interesting problem consists in finding the stability of steady-state solutions.
It turns out that with ice-cap models, the stability of a solution depends on the sign
of the slope of the operating curve at the solution point. This is the point that depicts
the polar ice-cap edge’s latitude versus the solar irradiance. If the ice cap increases with
increasing solar irradiance, the solution is unstable, a result anticipated heuristically by
Budyko. The nonlinear ice cap’s stability properties can also be studied by means of the
potential function introduced in Chapter 2, only this time it must be multidimensional
(usually, infinitely so).
The idea of a length scale suggests an explanation for the cusp-like behavior of the

operating curve near small ice-cap sizes. It turns out that because a tiny patch of
high-albedo material such as snow can induce cool surface air over large regions. If the
albedo change is large enough even for a small patch, the surrounding region up to a
radius of the length scale can become below freezing. Hence, ice caps can form.
The chapter closes with a seasonal model with a mix of land and sea surface. It

requires a new addition to EBCMs, the position-dependent effective heat capacity.
Position-dependent heat capacity is to be explored in more detail in Chapter 8. This
addition keeps the model linear but it was introduced here to solve an interesting
seasonal model, the Mengel model, which includes a strong nonlinear albedo feedback,
owing to the high albedo of seasonal snow cover. The first model explored is one with a



Exercises 199

cap of land centered at the pole analogous to Antarctica. The model solutions are for a
steadily repeating seasonal cycle that includes a snow line hooked to the freezing point.
The model solutions indicate a strong bifurcation at a particular value of total solar
irradiance. The seasonal cycle warmer than a critical value of the control parameter
leads to snow-free summers over the polar land cap. Values lower than the critical value
lead to snow cover large enough to cover the polar continent.
A second model by Lin and North (1990) expands the work to include more

geographical configurations including zonally symmetric bands of land. Again
interesting bifurcations are found with even more richness of behavior. This effect
brings to mind a theory for how glaciers or ice sheets might initiate. When the control
parameter is below critical, the summers are perpetually snow covered, allowing the
accumulation of ice as the temperature never goes above freezing. Another effect
discovered in these models is an explicit demonstration that relaxation times near
one of these bifurcations can exceed decades, departing by an order of magnitude
from the linear timescales of EBCMs. There were a number of experiments on the
two-dimensional model (Chapter 8) with realistic geography with nonlinear snow/ice
albedo feedback Hyde et al. (1990), which will be discussed in Chapter 12.

Notes for Further Reading

There are many books on nonlinear systems, but a particularly good one is that by
Drazin (1992).

Exercises

7.1 On the basis of (7.11), find the closed form for Hn(𝜇s) as a function of 𝜇s for n = 0
and n = 2.

7.2 On the basis of your answer in Exercise 7.1, determine the insolation for which
the ice-cap edge is at 𝜇 = 𝜇s. Use A = 208Wm−2, B = 2.00Wm−2 (∘C)−1, and
D = 0.67.

7.3 Consider a time-dependent, one-dimensional energy balancemodel with unit heat
capacity C in the form

∂I
∂t

− ∂
∂𝜇

(
D(𝜇)(1 − 𝜇

2) ∂I
∂𝜇

)
+ I = QS(𝜇)a(𝜇, 𝜇s),

where I = A + BT(𝜇, t) is the outgoing radiation flux density, which is a function
of latitude and time, D(𝜇) is the latitude-dependent diffusivity and a(𝜇, 𝜇s) is the
coalbedo depending on both latitude and the latitude of the ice-cap edge. Assume
further that[

− ∂
∂𝜇

(
D(𝜇)(1 − 𝜇

2) ∂
∂𝜇

)
+ 1

]
𝜙n(𝜇) = 𝜆n𝜙n(𝜇),
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namely, there exist orthonormal eigenfunctions 𝜙n(𝜇) and eigenvalues 𝜆n
satisfying

∫
1

0
𝜙n(𝜇)𝜙m(𝜇)dx = 𝛿nm, 𝜙0(𝜇) = 1.

Then, the outgoing radiation field can be expanded in terms of eigenfunctions
𝜙n(𝜇), that is,

I(𝜇, t) =
∑

n
In𝜙n(𝜇).

Solve the energy balance model to determine the radiation (and therefore the tem-
perature) as a function of 𝜇, in closed form. Find the equilibrium solution for a
given ice-cap-edge location 𝜇s = 𝜇0.

7.4 In Exercise 7.3, imagine that the equilibrium infrared radiation to space, I(𝜇, t), is
perturbed by a small amount 𝛿I(𝜇, t); that is

I(𝜇, t) = Ieq(𝜇, t) + 𝛿I(𝜇, t).

As a result of this perturbation, the latitude of the ice-cap edge changes slightly by
an amount 𝛿𝜇s, that is,

𝜇s = 𝜇0 + 𝛿𝜇s.

(a) Show that the perturbed temperature, to a first-order approximation, satisfies
d
dt

𝛿In(t) + 𝜆n𝛿In(t) = Qh′
n(𝜇0)𝛿𝜇s(t).

(b) Show that the perturbation of the ice-cap edge is determined to be

𝛿𝜇s(t) = −

(∑
k
𝜙k(𝜇0)𝛿Ik(t)

)(∑
m

Ieqm 𝜙
′
m(𝜇0)

)−1

.

7.5 In Exercise 7.4, a linearized equation for a small temperature departure, 𝛿I(𝜇, t),
for a one-dimensional nonlinear model is shown to satisfy

d
dt

𝛿In + 𝜆n𝛿In = Qh′
n(𝜇0)𝛿𝜇s(t),

where

hm(𝜇s) = ∫
1

0
S(𝜇)a(𝜇, 𝜇s)𝜙m(𝜇) d𝜇

and the coalbedo is defined as a step function with a jump Δa > 0

a(𝜇, 𝜇s) = a0 + a2Pn(𝜇) − (Δa)H(𝜇 − 𝜇s),

where

H(x) =
{
0, for x < 0,
1, for x ≥ 0. (7.76)
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Assume a solution of the form

𝛿In(t) = 𝛿In(0)e−𝜆t ,

show that
∑

n

Δa S(𝜇0)𝜙2
n(𝜇0)

(𝜆n − 𝜆)
+

((hn(𝜇0) − (A∕Q))𝛿n0)𝜙′
n(𝜇0)

𝜆n
= 0.

7.6 Show that
(a)

d
d𝜇0

Is = 0 = d
d𝜇0

[
Q
∑

n

hn(𝜇0)𝜙n(𝜇0)
𝜆n

]
.

(b)
∑

n

hn(𝜇0)𝜙′
n(𝜇0)

𝜆n
= − 1

Q2
dQ
d𝜇0

Is −
∑

n

h′
n(𝜇0)𝜙n(𝜇0)

𝜆n
.

(c)
dQ
d𝜇0

= 𝜆
CQ2

Is

∑
n

Δa S(𝜇0)𝜙2
n(𝜇0)

𝜆n(𝜆n − 𝜆)
.

7.7 Plot the right-hand side of Exercise 7.6(c), and find the solutions as a function of
the value and sign of the left-hand side (dQ∕d𝜇0). Interpret the result in terms of
the stability of the solution 𝛿In(t) = 𝛿In(0)e−𝜆t .
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8

Two Horizontal Dimensions and Seasonality

In this chapter, we consider climate models with a latitude and longitude dependence.
This suggests that we find an appropriate basis set for expansions on the sphere. The
basis set most often used in this kind of application is the set of spherical harmonics,
which are derived in Section 8.3.

8.1 Beach Ball Seasonal Cycle

The Beach Ball Model1 (North and Coakley, 1979), referred to as BBM, is an intermedi-
ate model that falls between one- and two-dimensional energy balance models (EBMs).
In this section, we sketch a summary of results of the BBM as a kind of bridge to the
full two-dimensional models that will follow. This chapter suggests that extending the
EBCM to two horizontal dimensions might be a worthwhile effort. We call it the BBM
because it takes the land and ocean borders to be along meridians.The zonally averaged
seasonal cycles of the two hemispheres are quite different because the NH has about
40% land and the SH has only 20% land. The plan is to do one model for the NH, fix-
ing the free parameters, then turn to the SH using the same parameters, but different
geography, as a test.
When modeling the NH, we take the whole planet to be 40% covered by a single con-

tinent with borders pole-to-pole along meridians. The NH model consists of modeling
both ocean- and land-seasonal cycles with a longitudinal heat transport term, propor-
tional to the difference between the land temperature at that latitude and time of the
year and the corresponding ocean temperature. These terms couple the equations for
the land temperature (at that latitude and time of year) to that of the ocean. To compare
with data for the NH model, we reflect the NH observed fields across the equator, but
lagging the time by 6months in the opposite hemisphere. In Chapter 6, we found simple
expressions for the seasonally dependent insolation function. We also know that Leg-
endre modes 0 and 2 fit the mean annual climate (for either NH or SH, Chapter 5). The
main difference between the two hemispheres then comes in the response amplitude
and phase lag in the Legendre mode 1, T11 sin(2𝜋t − 𝜙11)Pn(𝜇), where t is time, with
values 0 and 1 at winter solstice, 𝜇 = sin(latitude), and 𝛿0 is the present obliquity (tilt of
the rotation axis with respect to the orbital plane). The orbit is assumed to be circular
in this exercise.

1 This name was coined and given to GRN by the late Prof. Lev S. Gandin, then at the Main Geophysical
Observatory, Leningrad, USSR.

Energy Balance Climate Models, First Edition. Gerald R. North and Kwang-Yul Kim.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 8.1 Observed zonally averaged surface temperatures of the symmetrized (dots) and the
representation of the surface temperatures obtained with the 00, 11, and 20 modes (solid curves). The
mode labels are: first digit is the Legendre index, the second digit is the harmonic (0 = mean annual,
1 = annual harmonic). (North and Coakley (1979). © American Meteorological Society. Used with
permission.)

Asmotivation, consider the representation of theNHwinter and spring zonal averages
(these correspond also to the summer and fall in the other hemisphere) as depicted in
Figure 8.1. Note the quality of fit of the simple mode structure with only the first three
modes (index 0, 1, 2) in the expansion into Legendre polynomials. Given the expansion
coefficients taken from the data, one can adjust the coupling coefficient between land
areas and sea areas to make an excellent fit as shown by the solid curves in Figure 8.1.2
This tells us that it should be possible to construct a three-mode seasonalmodel that will
fit this data by adjusting the amplitude of the seasonalmode response (Legendremode 1)
to have the appropriate amplitude and phase lag. Note that in this scheme Legendre
modes 0 and 2 are not excited by the sinusoidal time-dependent seasonal cycle of solar
heating because those two modes do not have a time dependence.
The model consists of two dependent variables TL(𝜇) and TW(𝜇), the land and ocean

surface temperatures averaged around the appropriate segments of their latitude belts.
The two energy balance equations are distinguished by the use of CL and CW the heat
capacities over land and ocean. The governing equation for land is

CL
∂T
∂t

− D0
∂
∂𝜇

(1 − 𝜇
2) ∂T

∂𝜇
+ 𝜈

fL
(TL − TW) + A + BTL = QS(𝜇, t)aL(𝜇, t), (8.1)

where the term 𝜈

fL
(TL − TW) indicates that the heat is transferred from ocean to land

proportionally to the difference in those temperatures at the same latitude, but averaged
only over the land fraction (hence, the denominator fL). The ocean equation is similar.
The temperature as seen in Figure 8.1 is

T(𝜇, t) = fLTL(𝜇, t) + fWTW(𝜇, t). (8.2)

2 This introduces a new adjustable parameter to our formulation. We now have three, the diffusion
coefficient, the heat capacity over land, and now the exchange coefficient across the seams of the beachball.
We will be able to drop this parameter when we go to the full two-dimensional geography later in this
chapter.
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The three mode amplitudes are governed by the system of equations:

A + BT0 = QH0, (8.3)

CL,W
dTL,W

1

dt
+ (2D0 + B)TL,W

1 + 𝜈

fL,W
(TL,W

1 − TW,L
1 ) = QH1 (8.4)

and

(6D0 + B)T2 = QH2. (8.5)

By adjusting the value of the land–sea coupling 𝜈∕B to 0.226 and the heat capacity over
land CL = 0.16 year, one brings the amplitude of TL

1 to the observed value of 15.5 K.
Since the phase lag is about a week too long, one can further reduce CL to such a value
that both the amplitude and phase of TL match the data. The ocean amplitude is only
about 3K for a value of CW∕B ≈ 4 years and the phase lag is 3months. Note that for an
infinitely deep ocean the phase lag would be a quarter of a cycle and that happens to be
3months.This says that for our problem of forcing at the 1 year period, this mixed-layer
model responds with a phase lag as though the mixed layer were infinitely deep. The
seasonal cycle amplitude of the land and/or zonal average temperature is insensitive to
the size of CW.
Further experiments with a symmetrized SH show that the same values of these

parameters serve to fit the SH seasonal cycle as well. The BBM is interesting, but
suffers from too many choices about the phenomenological (adjustable) parameters.
Its success in the examples of North and Coakley (1979) are suggestive that a fully
two-dimensional model might just work in simulating the seasonal cycle. Before we
undertake this task, we must introduce basis functions that will be useful on the
two-dimensional plane and then the spherical surface. These steps form the building
blocks and generalize from the Legendre polynomials already considered in previous
chapters.

8.2 Eigenfunctions in the Bounded Plane

Before tackling the sphere it is useful to solve a simpler eigenvalue problem with less
forbidding geometry and with constant heat diffusion coefficient. Imagine our climate
to be the temperature distribution on a flat square whose corners are at (0, 0), (0, 1),
(1, 1) and (1, 0) in the (x, y) plane. The appropriate operator for the heat transport term
(divergence of heat flux) in an EBM is

−∇2 = −
{

∂2

∂x2
+ ∂2

∂y2

}
. (8.6)

We seek the eigenfunctions defined by

−
{

∂2

∂x2
+ ∂2

∂y2

}
𝜙i(x, y) = 𝜆i𝜙i(x, y), (8.7)

subject to boundary conditions that we will take to be zero on the boundaries:

𝜙i(x, 0) = 0, (8.8)
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𝜙i(x, 1) = 0, (8.9)
𝜙i(0, y) = 0, (8.10)
𝜙i(1, y) = 0, (8.11)

where 𝜙i(x, y) is an eigenfunction with index i and 𝜆i is the corresponding eigenvalue.
We proceed by using the method of separation of variables. This consists of making

the assumption that the solution for a particular eigenfunction is factorable into a part
that is a function only of x and a part that is a function only of y:

𝜙i(x, y) = X(x)Y (y). (8.12)

Substituting into (8.7) and dividing by XY we have

X′′(x)
X(x)

+
Y ′′(y)
Y (y)

= −𝜆i. (8.13)

The first term is a function only of x and the second is a function only of y. The only way
these functions can be independent of each other and have this dependence is for each
to be equal to a constant. First consider the x-dependent term:

X′′(x)
X(x)

= −c2, (8.14)

where we have taken the separation constant to be −c2, anticipating that it will need to
be negative. The solution to this class of ODEs is

X(x) = E cos(cx) + F sin(cx), (8.15)

where E and F are arbitrary constants. To fit the boundary conditions, we must have
E = 0. In addition, we must force c to be such that X(1) = 0. This can be accomplished
by setting c = n𝜋 where n = 1, 2, 3, · · ·. We then have

Xn(x) = Fn sin(n𝜋x), (8.16)

where now the index n is used to distinguish the fact that we have a separate function
for each (positive) integer value of n. We can choose the value of Fn to normalize the
functions:

∫
1

0
Xn(x)2 dx = 1, → Fn =

√
2. (8.17)

Consider next the Y (y) equation:

Y ′′(y) = −𝛾2Y (y), (8.18)

where

𝛾
2 = 𝜆i − n2

𝜋
2. (8.19)

By applying the same procedure on the boundaries, we find

𝛾 = m𝜋, m = 1, 2, 3, · · · . (8.20)

This implies

𝜆n,m = (n2 + m2)𝜋2
, m, n = 1, 2, 3, · · · , (8.21)
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where we have replaced the index i by the double index n,m to indicate that actually
two integers are involved in specifying the eigenvalue. After normalizing both eigen-
functions, we have

𝜙n,m(x, y) = 2 sin(n𝜋x) sin(m𝜋y). (8.22)

Note that these eigenfunctions individually satisfy the boundary conditions and they are
orthonormal.

∫
1

0 ∫
1

0
𝜙n,m(x, y)𝜙n′,m′ (x, y) dx dy = 𝛿nn′𝛿mm′ . (8.23)

In addition, the eigenfunctions satisfy a condition known as the completeness relation:
∞∑

m=1

∞∑
n=1

𝜙m,n(x, y)𝜙m,n(x′
, y′) = 𝛿(x − x′)𝛿(y − y′). (8.24)

We note that a two-dimensional problem on a finite domain requires two discrete
indices for its specification. It is interesting that there is a degeneracy in the eigenvalues,
in that two eigenfunctions 𝜙n,m and 𝜙m,n have the same eigenvalue: (n2 + m2)𝜋2. This
degeneracy is traceable to the invariance of the problem under finite rotation about the
domain center by 90∘. Such rotational symmetries always lead to degeneracy of eigen-
values (more than one eigenfunction belonging to the same eigenvalue).
The last two equations imply that an arbitrary reasonably well-behaved (it can have

simple discontinuities) function g(x, y) can be expanded into the eigenfunctions:

g(x, y) =
∞∑

m=1

∞∑
n=1

gn,m𝜙n,m(x, y). (8.25)

Knowing the eigenfunctions allows us to solve many boundary value problems on the
same domain having the same boundary conditions. For example, the EBM-like problem

−∇2T(x, y) + 𝜂
2T(x, y) = g(x, y) (8.26)

(𝜂 is a constant with dimension (length)−1) on the square with the same boundary con-
ditions as above (the edges are in contact with a reservoir held at 0 ∘C) can be solved by
expanding T(x, y) and the heat source g(x, y) into the eigenfunctions, then multiplying
through by 𝜙n,m and integrating over the square. We are left with an equation for each
n and m:[

(n2 + m2)𝜋2 + 𝜂
2]Tn,m = gn,m (8.27)

or

Tn,m =
gn,m

(n2 + m2)𝜋2 + 𝜂2
(8.28)

and finally,

T(x, y) =
∞∑

n=1

∞∑
m=1

( gn,m

(n2 + m2)𝜋2 + 𝜂2

)
2 sin(n𝜋x) sin(m𝜋y), (8.29)

which is the complete solution to the problem. Figure 8.2 shows the first four modal
shapes for the square plate.
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Figure 8.2 Shapes of the eigenmodes (n,m) on a square plate with zero boundary conditions at the
edges. (© Amer. Meteorol. Soc., with permission.)

8.3 Eigenfunctions on the Sphere

8.3.1 Laplacian Operator on the Sphere

The divergence of heat flux for a linear heat conductor with constant thermal conduc-
tivity is the Laplacian operator ∇2. In spherical coordinates, this is

∇2 = 1
R2
e

(
∂
∂𝜇

(1 − 𝜇) ∂
∂𝜇

+ 1
1 − 𝜇2

∂2

∂𝜑2

)
. (8.30)

Consider now the eigenfunctions of the two-dimensional Laplacian operator

−R2
e∇2

𝜙(𝜇, 𝜑) = 𝜆𝜙(𝜇, 𝜑). (8.31)

The functions 𝜙 will have to be indexed as we shall soon see. As before, each eigenfunc-
tion 𝜙 will have an eigenvalue 𝜆 that will also have an index label. Our strategy will be
to assume that 𝜙(𝜇, 𝜑) can be factored into

𝜙(𝜇, 𝜑) = Φ(𝜑)P(𝜇). (8.32)
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We are again using the method of separation of variables. Inserting this form into the
defining equation,

Φ[(1 − 𝜇
2)P′]′ + 1

1 − 𝜇2Φ
′′P = −𝜆ΦP. (8.33)

Dividing through by PΦ leads to

(1 − 𝜇
2)
(
[(1 − 𝜇2)P′]′

P
+ 𝜆

)
= −Φ′′

Φ
. (8.34)

8.3.2 Longitude Functions

Note3 that the left-hand side is a function only of 𝜇 and the right-hand side is a function
only of𝜑.The only way this can be so is if each side is a constant, which we set arbitrarily
equal to m2. First consider the right-hand side:

d2Φ
d𝜑2 + m2Φ = 0. (8.35)

We can now find the solution for Φ(𝜑)

Φm(𝜑) = Am eim𝜑 + Bm e−im𝜑, (8.36)

where Am and Bm are arbitrary constants. Note that in order for Φm(𝜑) to be single
valued, m must be an integer.

8.3.3 Latitude Functions

We turn to the longitude-dependent equation that now becomes

d
d𝜇

(
(1 − 𝜇

2)dP
d𝜇

)
+
(
𝜆 − m2

1 − 𝜇2

)
P = 0. (8.37)

It is clear that P(𝜇) needs an index that indicates it is for the particular integer m. There
is yet to come an index associated with the discretization of 𝜆. Anticipating the result,
we set 𝜆 = n(n + 1).

d
d𝜇

(
(1 − 𝜇

2)
dPm

n

d𝜇

)
+
(

n(n + 1) − m2

1 − 𝜇2

)
Pm

n = 0. (8.38)

When appropriately normalized, these Pm
n (𝜇) are known as the associated Legendre

Functions.
In finding an explicit form for the associated Legendre functions, the first step is to

substitute

Pm
n (𝜇) = (1 − 𝜇

2)m∕2u(𝜇), m > 0. (8.39)

After substituting, we arrive finally at the differential equation for u(𝜇):

(1 − 𝜇
2)u′′ − 2𝜇(m + 1)u′ + (n(n + 1) − m(m + 1))u = 0. (8.40)

3 Readers uninterested in the mathematical derivations may wish to skip directly to Section 8.4 where the
functions on the sphere are described.



210 8 Two Horizontal Dimensions and Seasonality

We proceed as in the last chapter with the assumption that u(𝜇) can be written as a
power series:

u(𝜇) =
∞∑

l=0
al𝜇

l. (8.41)

Similar to what we did earlier, after some manipulation, we arrive at the recursion for-
mula for the coefficients ak :

ak+2 =
[k(k − 1) + 2k(m + 1) − n(n + 1) + m(m + 1)]

(k + 2)(k + 1)
ak . (8.42)

Hence, if a0 and a1 are provided, the rest of the coefficients are determined. As before,
we encounter the divergence problem unless the numerator above cuts off at some level
so that the rest of the terms vanish andu(𝜇) becomes a finite-degree polynomial.Wefind
that this will happen if k = n − m. In other words, n must be an integer larger than or
equal to m. We break up the functions into odd- or even-order polynomials, depending
upon whether n − m is odd or even. When it is even, we choose a1 = 0 and proceed
to have an even polynomial. When n − m is odd, we set a0 = 0 and proceed to have an
odd-order polynomial. We now have a prescription for finding the Pm

n (𝜇). Hence, we
may write

𝜙(𝜇, 𝜑) = (Anmeim𝜑 + Bnm e−im𝜑)Pm
n (𝜇); (8.43)

n = 0, 1, 2, · · · ; m = 0, 1, 2, · · · ; n ≥ m.

By convention, we simplify the notation further by letting m run from −∞ to +∞, then
we can also define the P−m

n (𝜇) ∝ Pm
n (𝜇), and we must then restrict n ≥ |m|. This allows

us to write

𝜙(𝜇, 𝜑) = Anm eim𝜑Pm
n (𝜇); n ≥ |m|. (8.44)

Note that the normalization An0 can be chosen such that

P0
n(𝜇) = Pn(𝜇). (8.45)

It is possible to show by direct substitution into the defining differential equation the
important rule

Pm
n (𝜇) = (−1)m(1 − 𝜇

2)m∕2 dm

d𝜇m Pn(𝜇). (8.46)

If we employ Rodrigues’ formula for the Pn(𝜇),

Pn(𝜇) =
1

2nn!
dn

d𝜇n (𝜇
2 − 1)n, (8.47)

we can show

Pm
n (𝜇) =

(−1)m

2nn!
(1 − 𝜇

2)m∕2 dn+m

d𝜇n+m (𝜇2 − 1)n, (8.48)

which leads to evaluation of the aforementioned proportionality coefficient:

P−m
n (𝜇) = (−1)m (n − m)!

(n + m)!
Pm

n (𝜇). (8.49)
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It is possible to derive an orthogonality relation for the Pm
n (𝜇) when the m values agree:

∫
1

−1
Pm

n′ (𝜇)Pm
n (𝜇) d𝜇 = 2

2n + 1
(n + m)!
(n − m)!

𝛿n′n. (8.50)

8.4 Spherical Harmonics

We define the functions4

Ynm(r̂) =

√
2n + 1
4𝜋

(n − m)!
(n + m)!

Pm
n (𝜇)eim𝜑, (8.51)

where we have used the shorthand notation r̂ to stand for the point on the sphere cor-
responding to (𝜗, 𝜑). From this definition, we can establish

Ynm(r̂) = (−1)mY ∗
nm(r̂). (8.52)

8.4.1 Orthogonality

Normalization and orthogonality conditions are then

∫ ∫4𝜋
Y ∗

n′m′ (r̂)Ynm(r̂) d2Ωr̂ = 𝛿nn′ 𝛿mm′ , (8.53)

where we have used the further shorthand notation d2Ωr̂ = d(cos𝜗) d𝜑, the element
of solid angle on the Earth’s surface. Another important relation is the completeness
relation:

∞∑
n=0

n∑
m=−n

Y ∗
nm(r̂′)Ynm(r̂) = 𝛿(𝜑 − 𝜑

′)𝛿(cos𝜗 − cos 𝜗′). (8.54)

The first few spherical harmonics are

Y00 =
1√
4𝜋

,

Y11 = −
√

3
8𝜋

sin 𝜗 ei𝜑,

Y10 =
√

3
4𝜋

cos 𝜗,

Y1−1 =
√

3
8𝜋

sin 𝜗 e−i𝜑,

4 For spherical harmonics, we use the notation of Jackson (1962), Kelly (2006), and MATHEMATICA.
Some reference books (e.g., Arfken and Weber, (2005); Byron and Fuller, 1992) use the same formula
defining the Ynm but with a factor (−1)m. Yet others, especially in atmospheric sciences, tend to use the sine
and cosine forms instead of eim𝜑.
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Y22 =
1
4

√
15
2𝜋

sin2
𝜗 e2i𝜑,

Y21 = −
√

15
8𝜋

sin 𝜗 cos 𝜗 ei𝜑,

Y20 = −1
2

√
5
4𝜋

(3 cos2𝜗 − 1),

Y2−1 =
√

15
8𝜋

sin 𝜗 cos 𝜗 e−i𝜑,

Y2−2 =
1
4

√
15
2𝜋

sin2
𝜗 e−2i𝜑.

Figure 8.3 shows contourmaps of the real and imaginary parts ofY1m(𝜇, 𝜑),m = −1, 0, 1.

8.4.2 Truncation

The truncation level of an eigenfunction expansion usually can be associated with a level
of smoothing. In the case of a spherical harmonic expansion on the sphere, we have two
indices m and n representing longitudinal and latitudinal levels in the series. There are
good reasons to truncate the series at some value of n, the degree of the spherical har-
monic at the end of the series. This is known as triangular truncation. It is indicated
schematically in Figure 8.4a. Also shown in Figure 8.4b is a truncation known as rhom-
boidal truncation. This latter truncation was used in some early numerical models of
the atmosphere. Nearly all spherical harmonic representations are truncated in the tri-
angular form today.
Figure 8.5 gives a further idea of the way spatial scales are included in a T3 truncation.

Note in the figure the different phasing between the imaginary part in the top row of
components. The vertical column entries at m = 0 are just the Legendre polynomials.

8.5 Solution of the EBM with Constant Coefficients

We are now in a position to solve the energy balance equation on the sphere when the
coefficients are not functions of position. We consider the spherical harmonic series
expansion

T(r̂, t) =
∞∑

n=0

n∑
m=−n

Tnm(t)Ynm(r̂). (8.55)

The energy balance equation reads

C ∂T(r̂, t)
∂t

− D∇2T(r̂, t) + A + BT(r̂, t) = QS(r̂, t)a(r̂, t), (8.56)

where now we have allowed for the possibility of S and a to depend on r̂ and t. Inserting
the Laplace series expansion, we have

C
dTnm(t)

dt
+ [(n(n + 1)D + B]Tnm(t) = QHnm(t) −

√
4𝜋A𝛿n0, (8.57)
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Figure 8.3 Shapes of the real and imaginary parts of the first few spherical harmonics. (a) Re(Y(1,−1);
(b) Im(Y(1,−1)); (c) Re(Y(1,0)); (d) Im(Y(1,0)); (e) Re(Y(1,1)); (f ) Im(Y(1,1)).

where

Hnm(t) = ∫ ∫4𝜋
Y ∗

nm(r̂)S(r̂, t)a(r̂, t) d2Ωr̂. (8.58)

The special case for which the time dependence of S and a is suppressed leads to the
equilibrium solution,

Teq
nm =

QHnm −
√
4𝜋A𝛿n0

n(n + 1)D + B
. (8.59)
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Figure 8.5 Triangular (T3) diagram showing the real part of spherical harmonic patterns in (a) and the
imaginary part in (b) up to T3. The dark shading indicates positive values.

If we perturb the solution from equilibrium, we find the interesting result for uncoupled
exponential decay modes with time constants given by

𝜏nm =
𝜏0

n(n + 1)(D∕B) + 1
= 𝜏n. (8.60)

In other words, the decay time for mode (n,m) depends only on the degree n and not
on the longitudinal wave number m.

8.6 Introducing Geography

In this section, we briefly introduce the geographical input that we will use extensively
later. Consider the possibility that the heat capacity density C depends upon position
on the globe, C(r̂). It is reasonable that C(r̂) depends strongly on whether the surface
type is continental or oceanic. For an all-land planet we have seen that in many applica-
tions, the time constant can be taken to be about 30 days, as that is roughly equivalent
to taking about half of the Earth’s atmospheric mass into account. On the other hand,
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over ocean, heat mixes very quickly (few days) down to a depth of about 80m. This
means that the amount of mass involved is about 60 times as much as in the atmo-
sphere alone. One way to account for geography in these models is to let C(r̂) take on
these drastically differentmagnitudes depending upon the local surface type. Let us take
C∕B = 30 days over land surfaces and C∕B = 5 years over oceanic surfaces. This leads
to a strongly position-dependent step function at the continental borders all around the
spherical surface. A handy way to incorporate this in our formulation is to expand in a
Laplace series

C(r̂) =
N∑

n=0

n∑
m=−n

CnmYnm(r̂), (8.61)

where N is the triangular truncation degree. By not carrying the sum to∞ and truncat-
ing it at a finite level, we have effectively smoothed out some of the sharp edges in the
function – the truncation acts like a smoothing filter, excluding features smaller than
a certain size inversely proportional to N (recall that n is the number of zeros from
pole to pole in Pn(𝜇)). Figure 8.6 shows contour maps of C(r̂) at two different degrees
of truncation. There is some arbitrariness in the way one truncates a Laplace series. In
atmospheric science, there have appeared two truncation conventions: the rhomboidal
and the triangular. The triangular is easiest as it is the one we have used in the previous
sections.

T(r̂) ≈
N∑

n=0

n∑
m=−n

Tn,mYnm(r̂) (8.62)

is known as triangular truncation at degree N or simply TN . Most atmosphere/ocean
climate model simulations cited in the recent Intergovernmental Panel on Climate
Change (IPCC) reports require at least a resolution of T84. Typical weather forecast
models at the time of this writing are at T200+. The advantage of triangular truncation
is that this truncation preserves some of the rotational symmetry properties associated
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Figure 8.6 Contour map of C(r̂) truncated at (a) spherical harmonic degree 11 and (b) degree 22.
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with the spherical harmonics. For example, under a rotation of the spherical coordinate
system, the members of a given m multiplet transform into each other. This is a useful
property as will be seen in a later chapter on fluctuations on the uniform sphere.
An alternative way of truncating the series that has been utilized inmany early general

circulationmodels is the rhomboidal truncation. In this case, we reverse the order of the
summation:

T(r̂) ≈
M∑

m=−M

|m|+M∑
n=|m|

Tn,mYnm(r̂). (8.63)

We call this rhomboidal truncation at level M or simply RM. The two methods of sum-
mation are compared in the diagram in Figure 8.4.The advantage of rhomboidal trunca-
tion has been mostly computational. The length of the columns in the figure are clearly
equal in this scheme and this has been useful in efficiently vectorizing some computer
algorithms in the numerical solutions.

8.7 Global Sinusoidal Forcing

Consider the two-dimensional EBM forced by a sinusoidal forcing function in time by
modifying the outgoing radiation constant term:

A → A − Af ei2𝜋ft . (8.64)

This is similar to a global forcing by such an agent as greenhouse gas forcing, but we will
allow it to be sinusoidal in time. Similarly to an engineer probing a black box, we drive
the electrodes of the box with a sinusoidal forcing and study the response amplitude and
phase lag.We can insert this forcing into our governing equation and as the temperature
responds at the same frequency as the forcing,

T(r̂, t) − T (eq)(r̂) = Tf (r̂)ei2𝜋ft , (8.65)

with Tf (r̂) a complex function of position only. After canceling the common exponential
factor, we have

(2𝜋ifC(r̂) − D∇2 + B)Tf (r̂) = Af . (8.66)

This means that each frequency component of the temperature field is uncoupled from
every other one. On the other hand, we now find that because of the presence of the spa-
tial dependence of C(r̂), the situation is muchmore complicated than in the rotationally
invariant cases studied in previous sections. Inserting the Laplace series for Tf (r̂) and
C(r̂), we obtain

∑
n

∑
m

(
2𝜋if

∑
n′

∑
m′

Cn′m′Yn′m′ (r̂) + n(n + 1)D + B

)
T (f )

nmYnm(r̂) = Af . (8.67)

Now, on multiplying through by Y ∗
n′′m′′ (r̂) and integrating over the sphere, we encounter

some new objects:

Γ(n,m; n′
,m′; n′′

,m′′) ≡ ∫ ∫4𝜋
Ynm(r̂)Yn′m′ (r̂)Y ∗

n′′m′′ (r̂) d2Ωr̂, (8.68)
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the so-called spherical harmonic coupling coefficients. The result is
∑
n′m′

m,n;n′,m′T (f )
n′m′ =

√
1
4𝜋

Af 𝛿n0𝛿m0, (8.69)

where the coupling matrix is given by

m,n;n′,m′ = (B + n(n + 1)D)𝛿nn′𝛿mm′ +
∑

m′′n′′

2𝜋if Cn′′m′′Γ(n,m; n′m′; n′′
,m′′).

(8.70)

In principle, the matrix has an inverse so that, formally,

T (f )
nm =

∑
n′m′

(−1)n,m;n′,m′

√
1
4𝜋

Af 𝛿n0𝛿m0, (8.71)

or, in more compact form,

T (f )
nm = (−1)nm;00

√
1
4𝜋

Af . (8.72)

This is the formal solution to the problem.The matrix has to be computed by first
obtaining C(r̂) from amap of the land–sea geography, then it must be expanded into the
Cnm and finally this must be combined with values of the Γ(n,m; n′,m′; n′′,m′′) (from
readily available tables or computer algorithms). The matrix  also depends on the
driving frequency f . Since the complex element i appears explicitly, the matrix  is a
complexmatrix that has to be inverted on a computer. Once the geography is set, the list
Cnm are fixed once and for all. The Γ(n,m; n′,m′; n′′,m′′) are only computed once and
stored. However, the linear weighting of these in the computation of will depend on
forcing frequency f , requiring that be reinverted for each experiment f .
Once the complex amplitudeT (f )

nm has been computed, wemust recompose the Laplace
series to obtain the complex function Tf (r̂). The magnitude or modulus of this func-
tion tells us the amplitude of the response at the point r̂ on the Earth. The phase of the
complex function at r̂ tells us the phase lag in radians behind the forcing phase.
It is instructive to examine the behavior of the amplitude of the response as a func-

tion of position on the Earth at different forcing frequencies. Figure 8.7 shows response
amplitude maps for four different frequencies (indicated by their periods). The ampli-
tude of the forcing was chosen such that it corresponds roughly to a doubling of CO2
(Af = 5.3 Wm−2). The equilibrium response (f → 0) to this forcing should be about 2∘.
Figure 8.7a indicates that the amplitude is large over the large continental interiors
because the thermal inertia (C(r̂)) is smaller in those locations. As the period of the forc-
ing is increased (Figure 8.7b–d), the amplitude of the response becomes more uniform
over the globe. The relevant parameter is the relaxation time of the particular surface
compared to the period of the forcing. Observe that the length scale in the response field
increases with longer periods of forcing.

8.8 Two-Dimensional Linear Seasonal Model

The two-dimensional model can be formulated as in the previous chapter, only here we
allow for the spatial dependence of thermal diffusion, D(r̂). We make Laplace–Fourier



218 8 Two Horizontal Dimensions and Seasonality

(a)

Amplitude of response

10
10

10

20

10

10
20

3030

1.1

.8

.9

.6

.7

.7

.8

.9 .9

.7

.6

.6

1.4

1.5

1.5

1.6

1.7
1.7

1.5

1.4

1.5
1.5

1.4

.7

1.2

.8

.91.0

1.2

.7

20 20

50

10

20

50

40

60

40

30

10
10

50

10

20

50
30

10

10

2 months 1 year

8 years 24 years

20

Amplitude of response

Amplitude of response Amplitude of response

(b)

(c) (d)

Figure 8.7 Illustration of the response to sinusoidal forcing by CO2 at different periods. Shown are the
contour maps of amplitude of response for a sinusoidal CO2 doubling. All four cases are shown for easy
comparison: (a) Period = 2 months; (b) Period = 1 year; (c) Period = 8 years; (d) Period = 24 years. As
the period of the forcing increases, the spatial pattern of the response increases in scale.

expansions of the quantities
C(r̂) =

∑
nm

CnmYnm(r̂), (8.73)

D(r̂) =
∑
nm

DnmYnm(r̂), (8.74)

a(r̂) =
∑
nm

anmYnm(r̂), (8.75)

S(r̂, t) =
∑

k

∑
nm

S(k)
nmYnm(r̂)ei2𝜋kt

, (8.76)

T(r̂, t) =
∑

k

∑
nm

T (k)
nmYnm(r̂)ei2𝜋kt

, (8.77)
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for insertion into the EBM

C(r̂) ∂
∂t

T(r̂, t) − ∇ ⋅ (D(r̂)∇T(r̂, t)) + A + BT(r̂, t) = QS(r̂, t)a(r̂). (8.78)

This model has been solved (North et al., 1983; Hyde et al., 1989) and the solutions
recovered by the very same technique as in the last chapter except that the model must
be solved separately for each temporal harmonic k. Once the mode amplitudes T (k)

nm,
n ≤ 11; |k| ≤ 2 have been found by inverting the responsematrix for each k, the solution
field can be recomposed from the aforementioned.

8.8.1 Adjustment of Free Parameters

Themodel now has several new parameters whose values must be determined by fitting
to the present seasonal cycle.The diffusion parameter has the form (Mengel et al., 1988)

D(𝜇) = D0(1 + D2𝜇
2 + D4𝜇

4). (8.79)

Different values of the parameters D0,D2, and D4 have been used in different publi-
cations over the years. The function D(𝜇) is plotted in Figure 8.8 with the solid line
representing the thermal conductivity used by Mengel et al. (1988) and Kim and North
(1992) and the short dashed curve is form used by Graves et al. (1993).The long-dashed
line is the constant value used in Chapter 5 in fitting the one dimensional model. The
coefficients D0,D2, and D4 had to be adjusted to give a reasonable fit to the present sea-
sonal cycle. One conjecture is that the diffusion parameter has to be larger in the tropics
to account for the larger vapor pressure of water there and the increased efficiency of
the Hadley cell (Lindzen and Farrell, 1977).
Another problemwith the simulations is that the Arctic Ocean is mostly covered with

sea ice. This has the heat capacity of neither land nor sea. Hence, we must introduce
another step in the step function C(r̂) to account for the fact that sea ice has puddles,
open cracks (leads), and other features that are not easily modeled in the linear form we
have taken. Nevertheless, we attempt to take these into account in the present context
by simply assigning those areas with perennial sea ice to have a value of C(r̂sea ice) = Ci =
Cw∕6.5. This last value came from adjusting its magnitude until the annual harmonic of
the surface temperature field came into agreement with the data.

Figure 8.8 Illustration of the choices of
the latitude dependence of diffusion
coefficient in different models, with the
diffusion parameter D(𝜇) as a function
of sin(latitude). The long-dashed curve
is the choice used in the one-
dimensional model of Chapter 5, the
solid curve is from Mengel et al. (1988)
and Kim and North (1992), and the
short-dashed curve is from Graves et al.
(1993), who took D4 = 0, by adjusting
CL to a smaller value. An alternative not
considered was to give CL a latitude
dependence and keeping D(𝜇) a
constant.
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8.9 Present Seasonal Cycle Comparison

The next three subsections contain discussions on how the model simulates the annual
and semiannual harmonics of the surface temperature field. In these simulations, the
seasonal cycle forcing includes the important semiannual harmonic contribution to the
second Legendre polynomial mode (S02 + S22 cos 4𝜋t)P2(𝜇). This termmakes an impor-
tant contribution especially near the equator over which the Sun passes twice a year.
It also contributes significantly in the polar regions where there is perpetual darkness
in winter and perpetual daylight in summer. The convergence of the Fourier–Laplace
series is slow in the polar regions because of the discontinuous derivative at the lati-
tude of perpetual day (or night). Including this additional term improves the behavior
in those regions.

8.9.1 Annual Cycle

The amplitude of the annual cycle agrees well with the smoothed data as seen in
Figure 8.9. The agreement is especially noteworthy over the two Northern Hemisphere
continents. It is interesting that the data indicate a hint of the Himalayan plateau but the
model has no such feature because no allowance is made in this model for topography.
The agreement is also good in and around Antarctica. The tiny 1K amplitude curves in
the tropics show some conformity with the observations.The overall coincidence of the
contours with the continental boundaries is indicative of the very strong influence of the
land–sea contrast in heat capacity. The phase lag is more sensitive to local geography
and it is not mimicked as well as seen in Figure 8.10. First, the phase lag in the tropics
should be ignored as the annual harmonic is very small in the model and in the data.
The phase lag of about or less than 30 days in the interior of each Northern Hemisphere
continent is very good except for some details. In North America, the 30 days contour
is obviously influenced by the Rocky Mountain chain. There is similar disagreement
that is easily explained over the mountains in South America (both due to shorter lags
over high terrain). A similar high plateau error occurs over the Himalayas. Agreement
over the ocean is moderate, being more extreme in the model regarding the quarter
cycle (90 days) lag. We conclude that the annual cycle is modeled rather well except for
some features that are not expected to be faithfully represented in such a comparison.

8.9.2 Semiannual Cycle

Thefirst thing to notice about the semiannual cycle as shown in Figure 8.11 is how small
it is. This is indicative of the rapid convergence of the Fourier series representing the
seasonal surface temperature field. Over ocean surfaces, it is smaller than 1K except
in polar regions, where, as noted above, it feels the second harmonic forcing from the
polar day/night term. This same day/night forcing of the amplitude over polar regions,
especially Antarctica, leads to large responses over both model and data.

8.10 Chapter Summary

The expansion of EBCMs from one to two dimensions on the spherical surface was first
motivated by a discussion of the BBM, which is a planet with continents whose bor-
ders are pole to pole along meridians. This led to a model that is symmetric across the
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Figure 8.9 Plots illustrating the
agreement of the modeled versus
observed first harmonic of the
seasonal cycle. Shown are contour
plots of the amplitude of the surface
temperature field of the annual
harmonic. (a) From observations as
determined from smoothed data by
truncating the spherical harmonic
expansion at T11. (b) The same as in
(a) except for the two-dimensional
EBCM. Contours are in intervals of 5 K
except for the 1 K curve. (Kim and
North (1992). Reproduced with
permission of Wiley.)
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equator. An EBCMwas concocted that mimicked a symmetrized NH.The effective heat
capacities of land and sea along with a parameter that coupled ocean and land temper-
atures at the same latitudes could be adjusted to form a seasonal cycle of the model that
agreed with the seasonal cycle of observations. The fact that the data could be well rep-
resented by three Legendre polynomial modes (n = 0, 1, 2), where the seasonal cycle is
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Phase of annual cycle

Phase of annual cycle Figure 8.10 Plots featuring the
agreement of the modeled versus
observed first harmonic phase lag of
the seasonal cycle. Shown are
contour plots of the phase lag (days)
of the annual harmonic. (a) From
observations as determined from
smoothed data by truncating the
spherical harmonic expansion at T11.
(b) The same as (a) except for the
two-dimensional EBCM. Note that
over large land masses, the phase lag
is about 1 month while over large
ocean expanses the lag is 2–3
months. (Kim and North (1992).
Reproduced with permission of
Wiley.)

carried only by mode index unity, and that mode was sinusoidal in time suggested that
this simple approach was on the right track. Unfortunately, the BBM required too many
adjustable parameters for it to be useful.
The next step was clearly to try allowing the heat capacity to be a function of posi-

tion on the sphere: C(r̂). Before building the model, we introduced two-dimensional
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Figure 8.11 Contour plot of the
surface temperature field of the
semiannual harmonic. (a) From
observations as determined from
smoothed data by truncating the
spherical harmonic expansion at T11.
(b) The same as (a) except for the
two-dimensional EBCM. The
semiannual harmonic is important in
the tropics and in the polar regions.
In the polar regions, this is the first
correction toward resolving the polar
day and night features. This graphic
also helps to indicate the rapid
convergence of the Fourier series in
time. (Kim and North (1992).
Reproduced with permission of
Wiley.)
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eigenfunctions of the Laplace operator (−∇2), first on a plane square then onto the
sphere, where we encounter the spherical harmonics. Spherical harmonics turn out to
be the modal shapes of the EBCM if the heat capacity function C(r̂) is not a function of
position. When it is a function of position, we must resort to numerical methods. This
has been carried out bymany studies over the last three decades by a number of different
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numerical approaches (North et al., 1983; Hyde et al., 1989; Bowman and Huang, 1991;
Kim and North, 1991; Stevens and North, 1996; North and Wu, 2001; Zhuang et al.,
2014).
The solutions to the two-dimensional model, as shown, were obtained by analyzing

the model and data into mean annual, annual harmonic, and semi-nnual harmonic as
a function of position. The Fourier series of these harmonics converges very rapidly so
that only these few harmonics are necessary to obtain a very good representation of
both model and data. The shape of the annual cycle fits the data extremely well with
large amplitude over land masses and smaller ones over the ocean surfaces. The phase
lag between insulation and response of the annual harmonic is only about 1 month over
the interiors of the large continents and roughly three months over the ocean surfaces.
While some details differ, the gross features of the phase lag are captured. The semian-
nual harmonic amplitude is also in very good agreement with the data with very small
amplitude (< 2K) over most of the globe but larger as one approaches either pole.
The general success of the two-dimensional EBCM suggests that it might be good

enough for some applications in paleoclimatology and others such as designing
observational networks or in detection of climate signals. Given the success of the
two-dimensional EBCM in simulating the seasonal cycle, we push the two-dimensional
EBCM to include random (weather noise) forcing.

Notes for Further Reading

The book by Washington and Parkinson (2005) discusses spherical harmonics in the
context of three-dimensional climate models, as well as numerical methods for general
circulation models. Most books on mathematical physics such as Arfken and Weber
(2005) discuss linear boundary value problems and the use of spherical harmonics and
other special functions.

Exercises

8.1 (a) Show that the eigenvalue problem

− ∂2

∂x2
𝜙n(x) = 𝜆n𝜙n(x), x ∈ [0, 1]

allows a solution in the form

𝜙n(x) = (𝜙c
n(x), 𝜙s

n(x)) = (
√
2 cos 𝜋nx,

√
2 sin𝜋nx).

Determine the corresponding eigenvalue.
(b) Determine the solution of

∂2𝜙(x)
∂x2

= −q(x), x ∈ [0, 1]

with boundary conditions

𝜙(0) = 𝜙(1) = 0.
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8.2 Show that the solution of(
∂2

∂x2
+ ∂2

∂y2

)
𝜓(x, y) = −q(x, y)

with boundary conditions

𝜓(x, 0) = 𝜓(x, 1) = 0, 𝜓(0, y) = 𝜓(1, y) = 0

is given by

𝜓(x, y) =
∑
nm

2Hnm

(𝜋n)2 + (𝜋m)2
sin 2𝜋nx sin 2𝜋my,

where

Hm = ∫
1

0 ∫
1

0
q(x, y)dx dy.

8.3 Prove by deduction that
∑

m

∑
n
𝜓nm(x, y)𝜓mn(x′

, y′) = 𝛿(x − x′)𝛿(y − y′).

8.4 The Poisson equation in spherical coordinates is give by

1
cos 𝜃

(
∂
∂𝜙

(
1

cos 𝜃
∂
∂𝜙

)
+ ∂

∂𝜃

(
cos 𝜃 ∂

∂𝜃

))
𝜓(𝜙, 𝜃) = −q(𝜙, 𝜃),

where 𝜙 is longitude and 𝜃 is latitude. Boundary conditions are given by

∂
∂𝜃

(𝜓(𝜙, 𝜃)) = 0 at 𝜃 = ±𝜋∕2.

Obtain a zonally symmetric solution of the Poisson equation.

8.5 Consider the Laplace equation in spherical coordinates:

1
cos2𝜃

∂2𝜓
∂𝜙2

+ 1
cos 𝜃

∂
∂𝜃

(
cos 𝜃 ∂𝜓

∂𝜙

)
+ ∂

∂r

(
r2 ∂𝜓

∂r

)
= 0,

where 𝜙 is longitude, 𝜃 is co-latitude, and r is radius.
(a) Assuming a separable solution, 𝜓(𝜙, 𝜃, r) = Φ(𝜙)Θ(𝜃)R(r), rewrite the Laplace

equation above in terms of the separable solution.
(b) Let us assume a radial solution in the form R(r) = rn, rewrite the governing

equation in Part (a).
(c) Set up the equation for a zonally symmetric solution. Solve the resulting prob-

lem.
(d) Without the assumption of zonal symmetry, a separable solution of the

equation in Part (b) can be written as 𝜓(𝜙, 𝜃) = Φ(𝜙)Θ(𝜃). Use the result in
Part (c), set up the governing equation for each component of the separable
solution. Obtain the longitudinal component of the solution.
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(e) Let us assert that the solution for the latitudinal component of the equation is
given by

Θ(𝜇) = (1 − 𝜇
2)m∕2 d

mPn(𝜇)
d𝜇m = Pm

n (𝜇),

where Pm
n (𝜇) (0 ≤ m ≤ n) is called the associated Legendre function of order n

and rank m. Prove that the associated Legendre function satisfies latitudinal
component of the Laplace equation.

8.6 Legendre functions are generated by using

Pn(𝜇) =
1

2nn!
dn

d𝜇n (𝜇
2 − 1)n,

which is known as the Rodrigues’ formula. Using the formula, generate the Legen-
dre polynomials up to order 4 (n = 0, 1, · · · , 4).

8.7 For this problem, use the Rodrigues’ formula in Exercise 8.6 and the definition of
associated Legendre functions in Exercise 8.5.
(a) Develop the Rodrigues’ formula for associated Legendre functions.
(b) Show that the associated Legendre functions with a negative rank defined by

P−m
n (𝜇) = 1

2nn!
(1 − 𝜇

2)−m∕2 dn−m

d𝜇n−m (𝜇2 − 1)n,

satisfies

P−m
n (𝜇) = (−1)m (n − m)!

(n + m)!
Pm

n (𝜇).

(c) Using the Rodrigues’ formula in Parts (a) and (b), derive the associated Legen-
dre functions for up to order n = 3.

8.8 Spherical harmonic basis functions are the solutions of Laplace equations in spher-
ical coordinates. As discussed in Exercises 8.4 and 8.5, a most general solution is
given by

Ψ(𝜙, 𝜃, r) = Φ(𝜙)Θ(𝜃)R(r) = A eim𝜙Pm
n (𝜃)rn = AY m

n (𝜙, 𝜃)rn,

where

Y m
n (𝜙, 𝜃) =

√
4𝜋

2n + 1
(n − m)!
(n + m)!

eim𝜙Pm
n (𝜃)

is called the spherical harmonics of order n and rank m. Any horizontal spatial pat-
terns (at the same elevation r) can be decomposed in terms of spherical harmonic
basis functions.
(a) Show that

∇2Y m
n (𝜙, 𝜃) = −n(n + 1)Y m

n (𝜙, 𝜃)

(b) Consider an equilibrium solution of a two-dimensional EBM for a perpetual
January 1 simulation with a constant albedo:

−∇ ⋅ (∇DT(r̂)) + A + BT(r̂) = Q a s(r̂),
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where r̂ is a unit vector pointing from the center of the planet to a point (𝜙, 𝜃)
on the surface, the insolation distribution function s(r̂) is at its perpetual con-
figuration and A,B,D, and a are simply constants. Set up an EBM equation by
using spherical harmonics and obtain a closed-form solution.
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9

Perturbation by Noise

In this chapter, we take up the problem of the climate system’s energy balance disturbed
by noise. The noise term is taken to imitate weather and other small space–time scale
perturbations of the energy balance. First, we consider the basic case of the model with
constant coefficients on the sphere. This starting point is in line with our approach
throughout the book of step-by-step understanding of the convergence toward a more
comprehensive and realistic climate model. The new element in our process is an
attempt to capture the fluctuations of the system about the ensemble mean. The idea
was introduced in Chapter 2 for the global average model. In Section 6.5, we introduced
the idea of fluctuations in the system due to random winds (departures from normal
mean circulations) whose timescales are shorter than the relaxation timescale of a
column of air.There are other physical elements besides the winds, which fluctuate with
such short timescales, for example, areal extent and height of cumulus clouds, passage
of mid-latitude weather systems, water vapor concentration in three dimensions, and
aerosol particle concentrations. Some of these can be lumped on the driver’s side of the
EBM governing equation, while the effects of horizontal heat transport fluctuations are
located in the advection term (divergence of heat flux). If we make the assumption that
the heat advection term can be decomposed,

v(r̂, t) ⋅ ∇T(r̂, t) ≈ −∇ ⋅ D∇⟨T(r̂, t)⟩ − Fnoise(r̂, t), (9.1)

where the angle brackets mean ensemble averaging (or expectation value in the prob-
abilistic sense), and the energy balance climate model (EBCM) surface temperature in
all the previous chapters is now ⟨T(r̂, t)⟩, and Fnoise(r̂, t) is a random field representing
timescales much shorter than the relaxation time, 𝜏0, and spatial scales less than those
of a spherical harmonic of degree 11. These latter would include all the fluctuations we
might associate with “weather.”
Inmost of the treatment in this chapter, we deal with anomalies, that is, the departures

from the ensemble mean at a given point on the sphere, r̂.

T ′(r̂, t) = T(r̂, t) − ⟨T(r̂, t)⟩. (9.2)

We drop the prime hereafter and refer simply to T(r̂, t) as the anomaly.
Our next task (as usual) is to solve some models with ideal geography and then

proceed to more complicated ones.Themodels will have the governing equation we are
accustomed to, except for the noise driver, F(r̂, t) on the RHS. We will be seeking statis-
tical quantities from the solutions to problems such as for a given weather noise forcing,
what is the response in terms of the distribution of variance in the response modes.

Energy Balance Climate Models, First Edition. Gerald R. North and Kwang-Yul Kim.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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9.1 Time-Independent Case for a Uniform Planet

In this section we first consider an imaginary Earth that is spatially uniform with
respect to the time-independent problem dealt with earlier but forced by spatially
dependent noise:

−D∇2T(r̂) + BT(r̂) = Fnoise(r̂), (9.3)

where F(r̂) is spatially white noise and that means it satisfies

⟨Fnoise(r̂)Fnoise(r̂′)⟩ = 𝜎
2
F𝛿(r̂ − r̂′), (9.4)

where 𝛿(r̂ − r̂′) = 𝛿(cos 𝜃 − cos 𝜃′)𝛿(𝜙 − 𝜙′). This kind of random field evaluated at
one point is uncorrelated with the field evaluated at another point even for very tiny
separation distances. In our problem, it means the variability is in the form of eddies
in space that are small compared to the natural length scales in the problem; basically,
the natural length scales are much smaller than 𝜆dd =

√
D∕B, expressed in units of the

Earth’s radius.
We say the forcing is spatially white noise. We can expand the white noise random

forcing field into a Laplace series (i.e., into spherical harmonic components as in
Chapter 8). Note that from here we drop the subscript “noise” to keep the notation
simpler.

F(r̂) =
∞∑

n=0

n∑
m=−n

FnmYnm(r̂), (9.5)

where the Laplace series components Fnm are complex random numbers which we will
take to be normally distributed. Using the orthogonality of the spherical harmonics, we
obtain the inverse to be

Fnm = ∫ ∫4𝜋
Y ∗

nm(r̂)F(r̂)d2Ω. (9.6)

Consider the covariance between these components with different indices. Using the
properties, we find that

⟨FnmF∗
n′m′⟩ = ∫ ∫4𝜋 ∫ ∫4𝜋

⟨F(r̂)F(r̂′)⟩ Ynm(r̂)Y ∗
n′m′ (r̂′)d2Ω d2Ω′. (9.7)

Next substitute the expression for the quantity in angular brackets in (9.4) and the result-
ing expression reduces to

⟨FnmF∗
n′m′⟩ = 𝜎

2
F𝛿nn′𝛿mm′ . (9.8)

This last equation tells us a lot about the covariances between the Laplace components
of spatially white noise. The covariance vanishes unless n = n′ and m = m′. There are
no cross-covariances! Each component Fnm is statistically independent of every other
component. In addition, the variance associated with each component Fnm, 𝜎

2
F , is the

same for every component indexed. For each spherical harmonic degree, n, there are
2n + 1, m components, each of which has the same variance.
White noise is a special case of the more general condition of statistically rotationally

invariant random fields on the sphere. When ensemble averages of the mean and some
second moments of a random field are rotationally invariant on the sphere, it is possible
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to decompose the variance of the random field into a spectrum of variances analogous
to the treatment of a stationary time series where the symmetry or invariance is along
the timeline. We will find that in some cases this can be utilized on the uniform-sphere
models to follow.
Returning to the white noise spatial process we will use to perturb the energy balance,

it is helpful to think of realizations of the white noise field F(r̂). We can generate a
realization of the field by first going to a complex Gaussian random number generator
and pulling out one random number whose variance is 𝜎2

F (square of the sum of the real
and imaginary parts of F) for F00, then repeating this to draw statistically independent
values for F−1,1, F0,1, F1,1 each with exactly the same variance 𝜎

2
F , and so on. We then

take these complex random numbers and enter them in the formula for F(r̂) given by
(9.5). Now turn to the solution for the temperature components. We can expand

T(r̂) =
∞∑

n=0

n∑
m=−n

TnmYnm(r̂) (9.9)

and its inverse,

Tnm = ∫ ∫4𝜋
T(r̂)Y ∗

nm(r̂)d2Ω. (9.10)

By substituting and using the fact that the Ynm(r̂) are the eigenfunctions of −∇2 with
eigenvalue n(n + 1) and then using the orthogonality of the Ynm(r̂), we have

Tnm =

(
1

n(n + 1)𝜆2dd + 1

)
Fnm

B
, (9.11)

with 𝜆dd =
√

D∕B, where we have taken the Earth’s radius to be unity. The Tnm are
complex random numbers and the randomness comes from the factor Fnm. The factor
within the large parentheses weights the (n,m) components of Tnm according to the n
dependence in the denominator. Note that the proportionality factor does not contain
any m dependence.
The covariance between different (n,m) components can be readily calculated:

⟨T∗
nmTn′m′⟩ = 𝜎

2
T (n)𝛿nn′𝛿mm′ ≥ 0, (9.12)

with

𝜎
2
T (n) =

(
1

(n(n + 1)𝜆2dd + 1)2

)
𝜎
2
F

B2 . (9.13)

Note that there is no m dependence. There are two important parameters: 𝜎2
F∕B2

and 𝜆
2
dd. The first governs the overall variance of Tnm, the second determines how the

variance from the white noise forcing is apportioned by the proportionality factor
in (9.11), or more physically the inverse of the operator (−D∇2 + B) (see 9.3) which
operates on F(r̂). The factor in the large parentheses can be thought of as a “filter”
that modifies the input variance, 𝜎2

F∕B2. This filter allows low modes (larger scales) to
pass from the stimulus to the corresponding modes of the response but reduces the
power (or variance) passed to the higher index modes. This filter defines the dynamical
character of the damped diffusion operator. The damped diffusion filter smooths out
the highly erratic (high-mode-index) white noise input.
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The covariance of the temperature field is given by

⟨T(r̂)T(r̂′)⟩ = ∑
n,m

∑
n′,m′

𝛿nm𝛿n′m′𝜎T (n)𝜎T (n′)Ynm(r̂)Y ∗
n′m′ (r̂′). (9.14)

After making use of the Kronecker deltas, we have

⟨T(r̂)T(r̂′)⟩ = ∑
n
𝜎T (n)2

n∑
m=−n

Ynm(r̂)Y ∗
nm(r̂′). (9.15)

Now we can employ a wonderful theorem called the addition theorem for spherical
harmonics.1 The theorem states

n∑
m=−n

Ynm(r̂)Y ∗
nm(r̂′) =

2n + 1
4𝜋

Pn(r̂ ⋅ r̂′). (9.16)

Inserting this result, we find that

⟨T(r̂)T(r̂′)⟩ =
∞∑

n=0

(2n + 1)
4𝜋

𝜎T (n)2Pn(r̂ ⋅ r̂′). (9.17)

This last formula tells us that the covariance of the temperature field with itself depends
only on the opening angle from the Earth’s center between the two points at the
surface. (remember Re = 1 here). The opening angle is simply cos−1(r̂ ⋅ r̂′). This is the
condition for rotational invariance on the sphere. It is hardly a surprise for the case
with constant coefficients, as the operator ∇2 (being a scalar product ∇ ⋅ ∇) is also
rotationally invariant along with all the other terms on the sphere. Figure 9.1a shows an
example of a degree spectrum of the white noise variance as a function of degree n. The
spectrum increases as a function of n because there are (2n + 1) modes for each value
of n. Figure 9.1b shows the responding temperature field utilizing a value of 𝜆dd = 0.30.
Note that the degree spectrum begins to turn over at n = 1 and the growing terms in
the denominator begin to dominate and filter out the high wavenumber stimulus of the
white spatial noise in the numerator.
We cannot ignore the opportunity to draw a parallel with empirical orthogonal

functions (EOFs), which have the property that if a random field is expanded into
these orthogonal functions, the expansion coefficients are statistically independent. We
have just proved (with the help of the spherical harmonic addition theorem) that the
Ynm(r̂) are the EOFs of any random field whose statistics are rotationally invariant on
the sphere. There is nothing empirical here, so a comment is called for. Karhunen and
Loève studied the basis sets of random fields, not just generated from data but from
theoretically generated continuous random fields. The basis sets that do it are now
called the Karhunen–Loève functions. When we use EOFs to reduce the dimension of
an empirical “random” field we call the basis set the EOFs. The EOFs are just the eigen-
vectors of the cross-covariance matrix. For the case of the sphere, the Karhunen–Loève
functions are the eigenfunctions of the kernel CG(r̂ ⋅ r̂′) = ⟨G(r̂)G(r̂′)⟩:

∫ ∫4𝜋
CG(r̂ ⋅ r̂′)Ynm(r̂′)dΩ′ = 𝜆nYnm(r̂), (9.18)

1 This theorem can be found in any quantum mechanics or advanced electricity and magnetism book. An
excellent source is Arfken and Weber (2005). The theorem is often compared to its trigonometric cousin:
sin(𝛼 + 𝛽) = sin 𝛼 cos 𝛽 + sin 𝛽 cos 𝛼.
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Figure 9.1 (a) Illustration of how spatial
white noise that is homogeneous on the
sphere is expressed in terms of the
variance attributable to individual
spherical harmonic components. In the
homogeneous (statistically rotationally
invariant, and spatially white noise) case,
this means that each component has
the same amount of variance analogous
to the spectrum of a stationary white
noise time series. Shown is the chart of
the degree variance for spatially white
noise on the sphere. The ordinate is∑2n+1

m=0 ⟨|Fnm|2⟩ = 𝜎
2
F

∑2n+1
m=0 𝛿nn′𝛿mm′ =

(2n + 1)𝜎2
F . (b) Spectral density of

variance versus degree number n for a
climate model of a uniform Earth with
no time dependence and with length
scale 𝜆dd = 0.30 (a value chosen for
illustrative purposes).
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where 𝜆n is the eigenvalue and is proportional to the variance of the particular EOF
coefficient labeled n. This result can be proved by expanding CG(r̂ ⋅ r̂′) into Legendre
polynomials and using the addition theorem.2 We have the remarkable coincidence
(rotational invariance) in our climate model (with uniform properties) that the KL
functions Ynm(r̂) are also the dynamical normal modes—or in our damped diffusive
problem, the decay modes. This happens in the present case because the rotational
symmetry forces it. The variances associated with the modes of T also do not depend
on the index m, which is a consequence of the rotational invariance as well.
We turn to the n dependence of 𝜎2

T (n,m) (note: there is no m dependence):

𝜎
2
T (n) =

𝜎
2
F∕B2

(n(n + 1)𝜆2dd + 1)2
. (9.19)

The degree variance which includes the variance contributed by longitudinal modes is

Sn = 2n + 1
4𝜋

𝜎
2
F∕B2

(n(n + 1)𝜆2dd + 1)2
, (9.20)

which is shown in Figure 9.1b for 𝜆dd = 0.30. For reference, Figure 9.1a shows the degree
spectrum of the white noise driving force. If 𝜆dd were vanishing, the degree spectrum
would expand into the white noise spectrum in Figure 9.1a. Instead, contributions from

2 A proof can be found in North and Cahalan (1981); the original proof was in the doctoral dissertation of
Obukhov (1947).
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the upper part of the variance index n are shut out by the damped-diffusive operator for
𝜆dd > 0. We call operators like this low-pass filters. In other words, only the low-index
modes from the forcing are passed to the response spectrum of variances.

9.2 Time-Dependent Noise Forcing for a Uniform Planet

Now we admit the heat storage term C dT∕dt to the energy balance equation to permit
time dependence in the problem. We continue with C = constant for a uniform planet.
The noise agent forcing the system will also be white in time as well as in space, keeping
the conditions for rotational invariance on the sphere as well as the conditions of
stationarity for the time series representing the temperature field. The spatial white
noise is quite different from that of planet Earth as, in reality, the conditions for weather
noise would not be rotationally invariant on our planet. Weather noise intensity
(variance) is seasonally dependent and is restricted to a seasonally cycling band in the
middle latitudes of each hemisphere.
We prescribe the noise to be white in time as well as in space.Thismeans the noise has

a very short autocorrelation time (equal to its relaxation time, e.g., over land, 𝜏0 ∼ 30
days) compared to that of actual weather whose characteristic time is a few days. We
might think of the noise here as the fluctuations of middle-latitude weather, which has
an autocorrelation timescale of about 3 days. The mean of the noise function vanishes:

⟨F(r̂, t)⟩ = 0, (9.21)

and its autocovariance function in space–time is given by

⟨F(r̂, t)F(r̂′, t′)⟩ = 𝜎
2
F𝛿(t − t′)𝛿(r̂ − r̂′). (9.22)

Wemust allow the forcing and response (random) fields to be decomposed in frequency
as well as spherical harmonic components. This will be possible as the model forcing as
well as the solution will be a stationary and continuous time series.The time series span
is −∞ < t < ∞. Since the time is continuous (as opposed to jumping in discrete steps),
we are obliged to use the continuous Fourier transform.

F(r̂, t) =
∞∑

n=0

n∑
m=−n

Ynm(r̂)∫
∞

−∞
F̃ f

nm e−2𝜋ift df , (9.23)

T(r̂, t) =
∞∑

n=0

n∑
m=−n

Ynm(r̂)∫
∞

−∞
T̃ f

nm e−2𝜋ift df , (9.24)

where we have used the superscript f to denote the Fourier component corresponding
to frequency f . We also employ a tilde, F̃ f

nm to denote the Fourier-transformed variable
as opposed to the Fourier mirror image, Fnm(t). By substituting and using the fact that
the Ynm(r̂) are the eigenfunctions of ∇2 and then using the orthogonality of the Ynm(r̂),
we have

T̃ f
nm =

F̃ f
nm∕C

2𝜋if 𝜏0 + n(n + 1)𝜆2dd + 1
, (9.25)

and we have, in addition,

⟨(F̃ f
nm)∗F̃ f ′

n′m′⟩ = 𝜎
2
F𝛿( f − f ′)𝛿nn′𝛿mm′ . (9.26)



9.3 Green’s Function on the Sphere: f = 0 235

Because the time is continuous, we need the Dirac delta function, 𝛿( f − f ′) in the
autocovariance of white noise. Just as before, we can write the relations, but now
including frequency:

⟨(T̃ f
nm)∗T̃ f ′

n′m′⟩ = 𝜎
2
T (n,m, f )𝛿( f − f ′)𝛿nn′𝛿mm′ , (9.27)

with

𝜎
2
T (n, f ) =

𝜎
2
F∕B2

4𝜋2𝜏20 f 2 + (n(n + 1)𝜆2dd + 1)2

=
𝜎
2
F𝜏

2
n𝜏

−2
0 B−2

4𝜋2𝜏2n f 2 + 1
≥ 0, (9.28)

where

𝜏n =
𝜏0

1 + n(n + 1)𝜆2dd
. (9.29)

We can now compute the autocovariance of the temperature field evaluated at two
separated points on the sphere r̂ and r̂′ and at two times t and t′. The separations are
lag 𝜏 = |t − t′| and r̂ ⋅ r̂′, the latter being the great circle distance from the two points
on the unit sphere. We start with

⟨T(r̂, t)T(r̂′, t′)⟩ = ∫ ∫ e2𝜋i(tf −t′f ′)
∑
n,m

∑
n′,m′

Ynm(r̂)Y ∗
n′m′ (r̂′)⟨T f

nmT f ′
n′m′⟩df df ′.

(9.30)

After use of the techniques above, including the addition theorem, we obtain for r̂ = r̂′:

CovarT (r̂, 𝜏) =
∞∑

n=0

(2n + 1)
4𝜋 ∫

∞

−∞
𝜎
2
T (n, f )e2𝜋i𝜏f df . (9.31)

Note that the result does not depend on r̂ (all points on this sphere are the same). We
have one more integral to deal with (we can turn to tables or MATHEMATICA):

∫
∞

−∞
𝜎
2
T (n, f )e2𝜋i𝜏f df = ∫

∞

−∞

𝜎
2
F𝜏

2
n𝜏

−2
0 B−2

4𝜋2𝜏2nf 2 + 1
e2𝜋i𝜏f df =

𝜎
2
F𝜏n

2𝜏20B2
e−|𝜏|∕𝜏n . (9.32)

The result to be used in (9.31) is a sum of exponentially decaying terms.The solid curve
in Figure 9.2 shows a log-plot of the sum (2n + 1)𝜏n e−|𝜏|∕𝜏n , using 𝜆dd = 0.64, 𝜏0 = 1
and retaining 10 terms (more terms do not affect the result). The solid curve is the sum,
and the dashed curve is the leading term in the sum.

9.3 Green’s Function on the Sphere: f = 0

Consider the response of the temperature field to a steady heat source located at the
point r̂′. We examine first the time-independent case

−D∇2G(r̂; r̂′) + BG(r̂; r̂′) = 𝛿(r̂ − r̂′), (9.33)

where G(r̂; r̂′) denotes the thermal response field to the point source. The function
G(r̂; r̂′) is called Green’s function for the field. It can be seen by symmetry that it has the
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Figure 9.2 Graphic illustration of the lag covariance between one time and a lagged one both taken
at the same point on the sphere and the dominant contribution from the largest (global) scale. The
condition is for the uniform sphere with a space–time white noise driver. The solid curve shows a
log-plot of the sum (2n + 1)𝜏n e−|𝜏|∕𝜏n using 𝜆dd = 0.64. The solid curve is the sum, and the dashed
curve is the leading term in the sum. Note that at lag zero in both space and time, the variance
diverges.

property that its value depends only on the great circle distance from the source r̂ ⋅ r̂′.
It is especially of interest as the thermal field response to an arbitrary distribution of
heat, say, h(r̂) leads to a thermal anomaly T(r̂) and that anomaly can be related to the
Green’s function in a relatively simple way. According to our definitions,

−D∇2T(r̂) + BT(r̂) = h(r̂). (9.34)

Now expand all the functions into their Laplace series:

G(r̂ ⋅ r̂′) =
∑
nm

GnYnm(r̂′)Y ∗
nm(r̂), (9.35)

T(r̂) =
∑
nm

TnmYnm(r̂), (9.36)

h(r̂) =
∑
nm

hnmYnm(r̂), (9.37)

𝛿(r̂ − r̂′) =
∑
nm

Y ∗
nm(r̂′)Ynm(r̂). (9.38)

The expansion of G(r̂ ⋅ r̂′) comes about by first expanding into Legendre polynomials
Pn(r̂ ⋅ r̂′). The others are conventional expansions that can be checked from definitions.
By the usual insertion and projection of spherical harmonic components,

Gn =
1∕B

n(n + 1)𝜆2dd + 1
, (9.39)

Tnm =
hnm∕B

n(n + 1)𝜆2dd + 1
. (9.40)
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Now consider the thermal anomaly

T(r̂) =
∑
nm

TnmYnm(r̂)

=
∑
nm

hnmYnm(r̂)∕B
n(n + 1)𝜆2dd + 1

=
∑
nm

hnmGnYnm(r̂)

= ∫ G(r̂ ⋅ r̂′)h(r̂′)dΩ′
. (9.41)

The last, which is our desired result, can be obtained by inserting the Laplace series for
the factors in the integrand.

9.4 Apportionment of Variance at a Point

Next consider the fluctuations of the surface temperature at a point. These fluctuations
may be thought of as being composed of contributions from all space and timescales.
For example, consider the uniform earth case (C and D are constant). The Fourier
component corresponding to frequency f of the temperature at point r̂ is given by

T(r̂, f ) =
∑
n,m

T̃ f
n,mYn,m(r̂). (9.42)

The variance at point r̂ and frequency f is given by

⟨T2(r̂, f )⟩ = ∑
n′,m′

∑
n,m

⟨(Tf
n′,m′ )∗Tf

n,m⟩Y ∗
n′,m′ (r̂)Yn,m(r̂)

=
∑

n
𝜎
2
T (n, f )

∑
m

|Yn,m(r̂)|2

=
∑

n
𝜎
2
T (n, f )2n + 1

4𝜋
Pn(1)

=
∑

n
𝜎
2
T (n, f )2n + 1

4𝜋
. (9.43)

The total variance at degree n (including contributions for all m modes of the degree n
level) is

S f
n =

(2n + 1
4𝜋

) 𝜎
2
F∕B2

4𝜋2𝜏20 f 2 + (n(n + 1)𝜆2dd + 1)2
. (9.44)

Figure 9.3 shows the fraction of total variance contained in a given spherical harmonic
of degree n for f = 1∕𝜏0 and f = 3∕𝜏0 as a function of n. As the frequency is increased
from f = 1∕𝜏0 to f = 3∕𝜏0, the power moves to higher-degree indices. This figure is to
be compared with Figure 9.1 where the cases for f = 0 and the case for the integral over
all frequencies (equivalent to the distribution of variance at a point in time).
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Figure 9.3 The distribution of degree variance for a point on the uniform sphere forced by space–time
white noise. (a) The distribution of degree variance Sf

n for f = 1∕𝜏0. (b) Same as (a) except for f = 3∕𝜏0.
In each case, 𝜏0 ≡ 1. Note also that, in each case, the factor (2n + 1) is the number of m modes for a
given degree index n and each has equal variance for the spherically symmetric globe.

9.5 Stochastic Model with Realistic Geography

As in the last chapter, models with a realistic land–sea distribution cannot be solved
analytically. One must turn to numerical methods to obtain solutions.The introduction
of noise as a forcing agent is not too difficult. First of all, the EBCM is basically a linear
system (if we ignore snow and other nonlinear feedbacks) with time-independent
coefficients. This means that the model that simulates the seasonal cycle (Chapter 8)
can be used by simply removing the seasonal driving term and inserting the noise field.
Leung and North (1991) compared a general circulation model (GCM) simulating

climate on a bald, land-covered planet (referred to in Chapter 1 as Terra Blanda) run
at equinox conditions with models of the all land models of the type studied earlier in
this chapter. The two modeling schemes had similar spatial statistics. As an example,
consider the relaxation time for Legendre modes as shown in Figure 9.4. The fit to the
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Figure 9.4 Illustration of the agreement for the characteristic times of individual modes between the
EBM and a GCM (CCM0) both for a uniform planet. Shown is such a plot of 1∕𝜏n as a function of n(n + 1)
for the all-land GCM (points) and the EBCM values (line). Only the global mode is significantly off the
regression line. (Leung and North (1991). © American Meteorological Society. Used with permission.)

relaxation times in GCM and EBCM for a bald planet is remarkable. Note that the
GCM runs were set at equinox conditions and the EBCM is set at mean annual values
(in the linear ECBM, this does not matter!). Moreover, the GCM statistics are hardly
rotationally invariant on the sphere. Because of the featureless geography, its solution
statistics are longitudinally stationary, but not the latitudinal ones. The results of this
study by Leung and North together with the seasonal modeling success of the full EBM
suggests that we might have a chance at modeling the statistics of the response to white
space–time noise forcing.
The linear 2-D EBCM of North et al. (1983), which used the spherical harmonic

basis, and many later versions of it have been solved by various methods including
finite differencing on the spherical surface (Wu and North, 2007), finite differencing
employing multigrid relaxation (Bowman and Huang, 1991; Stevens and North, 1996).
A novel means of solving the model with geography involves using the nonorthogonal
decay modes as a basis set. The first study to attempt including noise with the current
land–sea distribution, this was carried out by Kim and North (1991), who employed
the spherical harmonic basis set (Wu and North, 2007).
We take figures here from the two-dimensional EBCM of Kim and North (1991).This

model employed a simple mixed-layer ocean and the forcing noise was white in space
and time. Note especially that the space–time white noise was uniformly distributed
over the globe in variance and with zero mean. Some later model studies attempted
to apportion the forcing noise to be only in the mid-latitudes, but here we show
only the uniformly distributed case, as otherwise we would have to introduce more
phenomenological parameters. The only adjustable parameter is then the variance of
the noise field, 𝜎2

F . The variance of the temperature field is everywhere proportional
to this variance. We adjust this variance to match the observed variance to that of the
model’s simulated temperature fluctuations. Note that in all cases in this chapter, the
noise-forced EBCM has a mixed-layer (slab) ocean. Low-frequency variability would
be somewhat different in a model with deeper oceanic elements.
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Figures 9.5–9.7 show a sequence of maps of the variance of the surface temperature
field in the observations. The left panels indicate observations and the right panels are
for EBCM simulations. Both fields were smoothed to the same level of T11. The data
and observations were band-pass filtered to include the periods between the limits
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Figure 9.5 Variance of the surface temperature field in the observations (a) and the EBCM simulations
(b). Both fields were smoothed to the same level of T11. The data and observations in Figure 9.5 were
band-pass filtered to include the periods between 2 months and 1 year. The contours are spaced at
0.5 ∘C intervals. (Kim et al. (1996). © American Meteorological Society. Used with permission.)

0.200 0.100

Variance (1–10 years band: OBS) Variance (1–10 years band: EBM)

0.200 0.100

0.100
0.100

0.050

0.2000.1000.050

0.400
0.600

0.600

0.400

0.200

0.100

0.050

0.100 0.100

0.050

0.050

0.100

0.200

0.050

0.100

0.400

1.000

0.600

0.200

0.050

0.100

0.400

1.000

0.400

0.200 0.200

0.400
0.400

0.600 0.600

0.400

0.100

0.200

0.050
0.100

0.400

0.050

(a) (b)

0.200

0.400

0.400

Figure 9.6 Same as the last figure, only the frequency band width is from periods of 1 to 10 years. The
contours are every 0.02 ∘C except for values below 0.100 ∘C (mainly over oceans). (Kim et al. (1996). ©
American Meteorological Society. Used with permission.)



9.5 Stochastic Model with Realistic Geography 241

0.02

0.16

0.04

0.02

0.02
0.02

0.04

0.04

0.02

(a) (b)

0.02

0.02

0.02

0.02

0.06

0.04

0.04

0.020.02

Variance (10–30 years band: OBS) Variance (10–30 years band: EBM)

0.04

0.02 0.02

0.04
0.04 0.04

0.02

0.02

0.04

0.06

0.08 0.10

0.08

0.04

0.02

0.08

0.04

0.02

Figure 9.7 Same as the last figure only the frequency band width is from periods of 10 to 30 years. The
contours are every 0.02 ∘C (values below 0.020 ∘C are mainly over oceans). (Kim et al. (1996).
© American Meteorological Society. Used with permission.)

indicated on the maps. Procedures for the filtering are found in the paper by Kim and
North (1991). It is interesting that once themodel’s free parameters are adjusted (tuned)
to match the variance of the observations in the middle of Asia, the maps come into
reasonable agreement elsewhere, for example 2 ∘C in Antarctica and 0.2 ∘C in South
America (Figure 9.5). As in the seasonal model, the response to high-frequency forcing
is dominated by the land–sea configuration. Note also the influence of the Himalayan
plateau on the observations, but not on the simulated field, which of course has no
topography. Topography is likely to be at work also in northwestern North America.
The agreement in this procedure emphasizes the dominant nature of the geographical
imprint of the land–sea distribution of the surface temperature.
Figure 9.6 is the same as the last figure except that the frequencies lie between periods

of 1 and 10 years. In this figure, we also note the strong effects of the Himalayas and
also a hint of the ENSO pattern in the data, but not, of course, in the mixed-layer ocean
model. Figure 9.7 showing fluctuations having periods between 10 and 30 years shows
some strong indications in the data of sea ice fluctuations around the northern edges
of the continents. There is also a hint of ENSO in the data, but most ENSO is at higher
frequencies than this band permits. Note the overall washing out of the features of the
EBCM simulation in these low-frequency components. A deeper ocean than the mixed
layer shown here would show more continental–oceanic contrast.
Figures 9.8 and 9.9 show the spatial correlation between six fixed points and their

surrounding areas (mid-Asia, Africa, South Pole, mid-Atlantic, equatorial Pacific, West
coast-America). In each case, the correlation decays from the fixed point out to where it
falls off to 1∕e indicated by the heavy line. Features to note are that at high frequencies
(Figure 9.8), the length scales are long over land and short over ocean. Since the ocean
has a timescale of a few years, we are in the high-frequency regime of the oceans in
this band. On the other hand, we are in the low-frequency band for land areas and the
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Spatial corr (2 months–1 years band: OBS) Spatial corr (2 months–1 years band: EBM)

Figure 9.8 Correlation between the surface temperature fluctuations at high frequencies at six fixed
sites with neighboring points. The six fixed sites are mid-Asia, Africa, South Pole, mid-Atlantic,
equatorial Pacific, West coast America. (Kim et al. (1996). © American Meteorological Society. Used with
permission.)

Spatial corr (1–10 years band: OBS) Spatial corr (1–10 years band: EBM)

Figure 9.9 Correlation between the surface temperature fluctuations at a broad band of frequencies
(between periods corresponding to 1 and 10 years) at six fixed sites with neighboring points. The six
fixed sites are mid-Asia, Africa, South Pole, mid-Atlantic, equatorial Pacific, West coast America.
(Kim et al. (1996). © American Meteorological Society. Used with permission.)

autocorrelation distances are larger. This is shown dramatically for the fixed point at
San Francisco where the correlation out to sea is short and inland it is long. The effect
is prominent in both data and model simulation. Note that ENSO is prominent in the
data, but missing completely as expected in the EBCM simulation.
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Figure 9.10 The one-month lagged correlation between the surface temperature at a point on the
map and the same lagged by one month. (Kim et al. (1996). © American Meteorological Society. Used
with permission.)

The situation in Figure 9.9 is quite different. The correlation lengths over the North
Atlantic are too large in the EBCM simulation because of the short timescale of the
mixed-layer model. ENSO dominates all of the tropics in the data, but is absent in
the EBCM. Our last comparison is for the one-month lagged correlation map between
the observations (Figure 9.10a) and the EBCM (Figure 9.10b). In this comparison,
we do find some serious discrepancies although the lags over continental interiors is
pretty good. The transition from land to oceans is quite abrupt in the EBCM upto the
level of about 0.6, while in the data it is smoother to roughly this same value. Also
shown in the paper by Kim et al. (1996) are comparisons of the same statistics as in
Figures 9.6–9.10. (Figures modified from Kim et al. (1996). (© Amer. Meteorol. Soc.,
with permission.))

9.6 Thermal Decay Modes with Geography

In this section,3 we consider an alternativemodal decomposition of the time-dependent
problem with real land–sea geography.The model is linear. We begin with the equation
for departures of the local surface temperature T(r̂, t) from steady state:

C(r̂) ∂T
∂t

− ∇ ⋅ (D(r̂)∇T) + BT = F(r̂, t). (9.45)

Next, insert the exponential time dependence T(r̂, t) = 𝜓(r̂)e−𝜆t .This leads to the eigen-
value problem

(−∇ ⋅ D(r̂)∇ + B)𝜓(r̂, t) = 𝜆C(r̂)𝜓(r̂), (9.46)

3 This section follows Wu and North (2007).
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with the boundary conditions that the solution be finite and without divergence
at the poles. This is called a generalized Stürm–Liouville system because of the
space-dependent factor C(r̂) on the RHS. Under certain conditions, this system yields
a set of eigenfunctions 𝜓n(r̂) corresponding to eigenvalues 𝜆n, n = 0, 1, 2,… (see Horn
and Johnson, 1985). The main conditions are that the domain be finite (the spherical
surface, in this case) and that the operator on the LHS of the last equation be Hermitian.
An operator [r̂] in this context is one in which

∫4𝜋
𝜙(r̂)[r̂]𝜂(r̂)d2Ω = ∫4𝜋

𝜂(r̂)[r̂]𝜙(r̂)d2Ω, (9.47)

which can be demonstrated by using integration by parts or equivalently the
two-dimensional divergence theorem on the spherical surface. Note that the inverse of
the eigenvalues are just the relaxation times for the modes, 𝜓n(r̂).
Themodes𝜓n(r̂) are not orthogonal. Nevertheless, we can form series representations

because of the following relation (which can be derived from the above expressions):

∫4𝜋
𝜓m(r̂)C(r̂)𝜓n(r̂) d2Ω = 𝛿m,n = (𝜓m,C𝜓n), (9.48)

where the inner product notation (𝜓m,C𝜓n) is introduced as a notational simplification.
These steps lead us to

T(r̂, t) =
∑

n
an(t)𝜓n(r̂), (9.49)

with

an(t) = ∫4𝜋
𝜓n(r̂)C(r̂)T(r̂, t)d2Ω = (𝜓n,CT). (9.50)

We can now insert (9.57) into the governing equation to find

ȧn + 𝜆nan = ∫4𝜋
𝜓n(r̂)F(r̂, t)d2Ω = (𝜓n, F). (9.51)

Note the absence of C(r̂) in the integral on the RHS compared to the previous equation.
Here we can see explicitly that if F(r̂, t) is set to zero the amplitude of mode n decays
exponentially with time constant 𝜆−1n .
Returning to the eigenvalue relation, we can use values from the map of C(r̂) in (9.48).

The heat capacity map is represented by 64 (longitude) × 31 (sin(latitude)) plus 2 polar
grid points. Once the heat capacity matrix is formed, one can use standard methods on
(9.48) to recover the eigenvalues, 𝜆n, and the eigenvectors,𝜓n(r̂). Hereafter, we will refer
to the 𝜓n(r̂) as the thermal decay modes (TDMs). We will now examine a few of the
results. First, consider the spectrum of relaxation times, 𝜆−1n , as shown in Figure 9.11.
The dotted curve shows the values that would be obtained from observational data
projected onto the modal shapes. The essential difference between these modes and
the EOF modes (Kim and North, 1992) is that they are spatial physical modes and their
shapes do not depend on frequency as the statistical (EOF) modes do. Also, they are
not strictly orthogonal as are the EOFs. (C(r̂) is the weighting function).
Consider the log–log spectra of relaxation times shown in Figure 9.11. The number

of spectral components is 1986, equal to the number of grid points. The spectrum is
ordered from the longest time at n = 1 to the shortest at n = 1986. The dashed curve
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The dotted line is the spectrum of the estimated autocorrelation timescales calculated by data
projection onto the TDMs. The solid line is the spectrum of theoretical decay timescales from the
tuned model (model parameters in this chapter) with much shorter length scales over the oceans.
(Wu and North (2007). Reproduced with permission of Taylor and Francis.))

shows a smoothed estimate calculated from a model based on the parameterization of
Hyde et al. (1990). It is interesting that there is a sharp fall in the relaxation times at
n = 1282. This represents the transition from the family of oceanic modes with long
timescales to land-dominated modes for n ≥ 1282.The dotted curve in Figure 9.11 is an
estimate of the relaxation time spectrum data. This is done by projecting the observed
data onto the model-calculated eigenmode and calculating the autocorrelation times
from the resulting time series for each decay mode. Note that the “observed” spectrum
is much flatter than the model-generated spectrum (dashed line). One can adjust the
parameter values in D(r̂) as well as B to bring the spectra more into line. Numerical
experimentation shows that the shapes of the decay modes are not significantly affected
by a fairly wide range of choices for these parameters. Given the problemwithmatching
the model to data with respect to one-month lags in Figure 9.10, it is not surprising
that we might need to make adjustments. More details are contained in Wu and North
(2007).
When we examine the oceanic modes (n ≤ 1281), we find that virtually all of the

non-negligible amplitudes are over ocean as shown in Figure 9.12. The lowest modes
shown there have time constants between 0.763 and 0.735 year. Since length scales are
short over this mixed-layer ocean, these response modes as driven by white noise are
virtually white in space as well (no correlation between one point and another on this
sparse grid). Next, turn to the land modes, n ≥ 1282. These modes group themselves
into families according to continental clusters. For example, Figure 9.13 shows four
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𝜏 = 0.763 year; (b) Mode No. 2 with decay time 𝜏 = 0.749 year; (c) Mode No. 3 with decay time 𝜏= 0.746
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are negligible. (Figures originally generated in the paper by coauthor GRN © Tellus A, permission not
required.) (Wu and North (2007). Reproduced with permission of Taylor and Francis.)

modes. Figure 9.13a corresponds to n = 1282, 𝜏 = 0.03277 year. Times for the other
panels (Figure 9.13b–d) are listed in the figure caption. These modes were selected
because they form a family of modes connected with the Eurasian continent. Figure 9.14
shows four modes associated with the North American continent. The modal shapes in
both figures show the familiar “drumhead” patterns of eigenmodes for either wavelike
or diffusive-like systems.

9.6.1 Statistical Properties of TDMs

Wehave already remarked that the TDMs cannot correspond to EOFs because EOFs are
mutually orthogonal, whereas the TDMs are skewed. If the mixed layer were infinitely
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deep, there would be no response to space–time white noise over the oceans and this
would force the TDMs in that limit to be mutually orthogonal.4 Looking at the last two
figures, one is tempted to think along these lines at least for heuristic purposes.
To get an idea about the statistical properties of TDMs refer to (9.50) and (9.51).

First, note that the TDMs are dynamical modes. This means that if certain spatial
mode patterns are present in the forcing, only those mode patterns will be found in
the response. Similarly, if certain temporal frequencies are present in the forcing, only
those frequencies will be found in the response.This follows from the stationarity of the
forcing F(r̂, t) and its response T(r̂, t). But the nonorthogonality of the solutions leads

4 In this case, the boundary condition at the shorelines would be that the temperature (anomaly) has to
be zero.
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time 𝜏 = 0.00952 year; (d) Mode No. 1301 with decay time 𝜏 = 0.00747 year. The mode amplitudes
over the rest of the world are close to zero. (Wu and North, 2007. Reproduced with permission of
Taylor and Francis.)

to a very peculiar property, namely, the dynamical modes are correlated in time. EOFs
are uncorrelated, but EOFs are not dynamical decay modes. Recall that this would have
been the case for the uniform planet where the TDMs are orthogonal and coincide
with the EOFs (this holds as well for the case of the infinitely deep mixed layer).
Another interesting property is that the functions 𝜙n(r̂) ≡ √

C(r̂)𝜓n(r̂) are mutually
orthogonal.

Notes for Further Reading

There are many books on stochastic processes. For an introduction, the nicely written
and inexpensive book by Bulmer (1979) covers the principles of statistics including
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calculus. Somemath techniques for statistics are in the classic by Cramér (19th printing
in 1999). The book by Cramér and Leadbetter (1995) serves as a good introduction to
stochastic processes including vector processes. A useful handbook to consult is that of
Gardiner (1985). Electrical engineering books often have good coverage of stochastic
methods, e.g., Gardner (1989); and the more comprehensive, Papoulis (1984).

Exercises

9.1 Let us consider a time-dependent energy balance model forced by a sinusoidal
forcing:

C ∂T(r̂, t)
∂t

− D∇2T(r̂, t) + A + BT(r̂, t) = F ei𝜔t , (9.52)

where A,B,C,D, and F are all constants.
(a) Let the solution (temperature) of the energy balance model be in the form

T(r, t) =
∑
k, l

Tk,lY l
k(𝜙, 𝜃)e

i𝜔t . (9.53)

Set up the energy balance model for the temperature field given above and
derive the temperature field.

(b) How do the amplitude and the phase of the temperature field depend on the
frequency 𝜔 of forcing?

9.2 Let us consider a time-dependent energy balance model forced by noise:

C ∂T(r̂, t)
∂t

− D∇2T(r̂, t) + A + BT(r̂, t) = F(r̂, t), (9.54)

where A,B,C, and D are all constants.
(a) Let the solution (temperature) of the energy balance model be in the form

T(r̂, t) =
∑

j

∑
k,l

T j
k,lY

l
k(𝜙, 𝜃)e

i2𝜋jt . (9.55)

Set up the energy balance model for the temperature field given above and
derive the temperature field.

(b) Find the phase lag of the temperature field with respect to the noise forcing.

9.3 Find the equilibrium solution of the energy balance model forced by an impulsive
radiative forcing:

C ∂T(r̂, t)
∂t

− D∇2T(r̂, t) + A + BT(r̂, t) = F(r̂, t), (9.56)

where the impulsive radiative forcing is given by

F(r̂, t) =
{

0, for t < 0,
F0, for t ≥ 0. (9.57)

Note that A,B,C,D, and F0 are all constants.

9.4 Let us consider a time-dependent energy balance model forced by an impulsive
radiative forcing:
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(a) Show that the Fourier transform of the impulsive radiative forcing is given by

 (F(r̂, t), t → 𝜔) = ∫
∞

−∞
F(r̂, t)e−i2𝜋𝜔t dt =

F0

2

(
𝛿(𝜔) − i

𝜋𝜔

)
. (9.58)

Hint: F(r̂, t) =
{
0, for t < 0
F0, for t ≥ 0 = lim

𝛼→0

{
0, for t < 0,
F0e−𝛼t, for t ≥ 0. (9.59)

(b) Given the result in Part (a), determine the solution in the form

T(r̂, t) =
∑
𝜔

∑
k,l

T𝜔

k,lY
l
k(𝜙, 𝜃)e

i2𝜋𝜔t . (9.60)

(c) In the limit of 𝜔 → 0, show that the solution is of the form

lim
𝜔→0

T(r̂, t) =
F0

B

(1
2
+ t

)
− A

B
. (9.61)

(d) Determine the lag of the solution as a function of frequency 𝜔. Then, show
that the time-dependent solution approaches the equilibrium solution in
Exercise 9.3.

9.5 (a) Let F(r̂, t) be spatially white noise forcing. Show that its expansion coefficients
satisfy

⟨FnmF∗
n′m′⟩ = 𝜎

2
F𝛿nn′𝛿mm′ . (9.62)

(b) If the noise forcing is white both spatially and temporally, show that the expan-
sion coefficients of F(r̂, t) satisfy

⟨F𝜔

nmF𝜔′∗
n′m′⟩ = 𝜎

2
F𝜎

2
F𝛿nn′𝛿mm′𝛿𝜔𝜔′ , (9.63)

which is the desired relationship.

9.6 Let us consider a time-dependent energy balance model for anomalous tempera-
ture due to a noise forcing:

C ∂T(r̂, t)
∂t

− D∇2T(r̂, t) + A + BT(r̂, t) = F(r̂, t), (9.64)

where F(r̂, t) is white both in space and time (see Exercise 9.5).
(a) Using spherical harmonics and Fourier basis functions, obtain the solution

of the energy balance model forced by spatially and temporally white noise
forcing.

(b) Determine the spectral density function of the temperature response.
(c) Show that

⟨T(r̂, t)T(r̂′, t′)⟩ = ∑
𝜔

∑
n

2n + 1
4𝜋

𝜎
2
T (n, 𝜔)Pn(r̂ ⋅ r̂′). (9.65)

On the basis of the expression above, derive an expression for spatial
covariance ⟨T(r̂, t)T(r̂′, t)⟩ and contemporaneous spatial variance at a point
⟨T(r̂, t)T(r̂, t)⟩, which is essentially an integration of the spectrum 𝜎

2
T (n, 𝜔)

with respect to n and 𝜔.
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(d) Show that

⟨T(r̂, t)T(r̂, t′)⟩ = ∑
n

2n + 1
4𝜋

𝜎
2
F𝜏n

2B2𝜏20
e−|𝜏|∕𝜏n , (9.66)

where

𝜏0 = C∕B, 𝜏n =
𝜏0

1 + n(n + 1)(D∕B)
, and 𝜏 = t − t′. (9.67)

9.7 Let us consider the solution of an energy balance model forced by an arbitrary but
steady forcing:

−D∇2T(r̂) + BT(r̂) = h(r̂). (9.68)

(a) Using the Green’s function method, show that the solution of the energy
balance model above is given by

T(r̂) = ∫Ω′
G(r̂, r̂′)h(r̂′) dr̂′, (9.69)

where the Green’s function G(r̂, r̂′) is the solution of the equation

−D∇2G(r̂, r̂′) + BG(r̂, r̂′) = 𝛿(r̂ − r̂′). (9.70)

(b) Obtain the Green’s function in Part (a) in terms of spherical harmonics.
(c) Using the Green’s function obtained in Part (b), determine the solution of the

given energy balance model.

9.8 Let us consider an energy balance model forced by F(r̂, t):

C(r̂) ∂T(r̂, t)
∂t

− ∇ ⋅ (D(r̂)∇T) + A + BT(r̂, t) = F(r̂, t). (9.71)

Note that the parameters C(r̂) and D(r̂) are now functions of position. Recast the
given energy balance model in a spectral form using spherical harmonics and
Fourier functions as basis sets in space and time, respectively.

9.9 Consider an energy balance model forced by F(r̂, t):

C(r̂) ∂T(r̂, t)
∂t

− ∇ ⋅ (D(r̂)∇T) + A + BT(r̂, t) = F(r̂, t), (9.72)

where the parameters C(r̂) and D(r̂) are now functions of position. Assume that

T(r̂, t) = 𝜓(r̂)e−𝜆t . (9.73)

(a) Rewrite the homogeneous form of the energy balance equation above in terms
of 𝜓(r̂) by using the assumed form of the solution. The resulting equation
should be in the form of an eigenvalue problem. Discuss the orthogonality
properties of the resulting eigenfunctions.

(b) Determine the solution of the given energy balance model in terms of the
eigenfunctions derived in Part (a).
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10

Time-Dependent Response and the Ocean

Understanding and estimating the evolving temporal response of the system due to a
time-dependent forcing are key problems in climate theory. In particular, the layers
of air, land, and water have an effective heat capacity that can delay the response to a
time-dependent stimulus. The column of air above land for forcing frequencies in the
annual cycle range involves only a fraction of the atmospheric column’s heat capacity.
This effect can delay the warmest day of the year from the day of maximum heating
by up to a month. Over open ocean, the same delay can be a whole season or math-
ematically a quarter of a cycle. A quarter cycle delay turns out to be the maximum
when the effective heat capacity is large enough. The reason for the delay difference
is that for the column of air, the relaxation time is small compared to the period of
the periodic forcing. But the mixed-layer of the ocean has an effective heat capacity
that leads to a radiative relaxation time of several years, depending on the depth cho-
sen for its thickness. In a simple linear system of the seasonal cycle, this corresponds
to a high frequency forcing (period of 1 year compared to a relaxation time of sev-
eral years). Land surface response is probably confined to a meter or so into the soil
and this, together with the air column, has a relaxation time of the order of a month
when forced at roughly annual frequencies. A meter or two below the surface, say in
a cave, we find the mean temperatures independent of season – the ground above fil-
ters out signals of period shorter than a few months. Lower frequencies tend to pen-
etrate deeper with an effective depth inversely proportional to the square root of the
frequency.We will explain this in Section 10.2 where a pure diffusive vertical heat trans-
port is employed (valid in homogeneous soil and perhaps in the upper layers of the
ocean).
A good opening example is the response to a sudden spike of forcing such as the

negative spike from the dust veil following a volcanic eruption. This example is often
used in linear analysis and is the so-called impulse/response function or the temporal
Green’s function.1 A second example is the response to an instantaneous doubling
of CO2. This forcing is proportional to the discontinuous Heavyside step function
(0 for t < 0; 1 for t ≥ 0). In addition, we would like to see how the system responds
to a periodic forcing. The latter has application to the seasonal cycle, the solar cycle,
and the response to white noise forcing according to which amplitudes of the Fourier
components of the forcing are spread with variance evenly across all frequencies

1 Many textbooks on mathematical or engineering physics are available that discuss the Green’s function
technique, for example, Arfken and Weber (2005).

Energy Balance Climate Models, First Edition. Gerald R. North and Kwang-Yul Kim.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.



254 10 Time-Dependent Response and the Ocean

(see Chapters 2 and 9). The damped-diffusion dynamics acts as a low-pass filter,
yielding a response more concentrated in the lower frequency bands. The (simplified)
forcing most directly bearing on the climate change problem is the response to a
linear ramp forcing in time, beginning with a “cold start” at t = 0. As discussed
in Chapter 2, this occurs when the concentration of carbon dioxide is increasing
exponentially starting at t = 0. The forcing is linear in time because the forcing due to
the greenhouse effect (Chapter 4) is nearly logarithmic in the concentration of CO2
(see Section 4.10). It is an observed fact that the CO2 concentration is increasing at
a rate of 0.5% year−1. But other greenhouse gases are also increasing at about the
same rate, and it is conventional to take the forcing to be one that is increasing at a
rate of 1.0% year−1, which yields a doubling time of about 70 years. Many general
circulation climate model results are presented for this prototype experiment. In fact,
the so-called transient climate sensitivity is the amount of global average temperature
change from the onset to the time of doubling. All of the models treated in this chapter
are governed by systems of equations that are linear and with time-independent
coefficients. These exercises constitute an approach to linear systems through probing
with some representative forcings followed by examination of the system’s response
characteristics.
In this chapter, we examine a variety of models, each treating thermal participation of

different levels of the ocean in a hierarchy of complexity (a nice early review of transient
models is given by Harvey and Schneider, 1985). Most of the models in the chapter are
for a planet covered completely with ocean, the exception being one (see Section 10.6)
where the full two-dimensional land–sea geographical surface distribution is consid-
ered.The simplest model is one which only considers the mixed layer of the ocean.This
is the layer that is stirred by wind stresses at the ocean–air interface. Its depth depends
on the wind stress and the static stability of ocean at a particular point. It tends to be
deeper in the Southern Hemisphere. According to the same factors, the depth of the
mixed layer depends on season and location, butwewillmostly be concernedwith global
averages and we will use different depths from one exercise to another (mainly because
of the variety of depths used by different authors in the literature). Using time averages
of a month or so, this idealization should hold reasonably well. A similar scheme is often
used in common atmospheric general circulation model (GCM) experiments involving
the seasonal cycle.
As with virtually every chapter in this book, we remind the reader that the models

studied are highly idealized. The ocean models considered here are far from realistic
from the point of view of lateral heat transport, but their level of simplicity is roughly
commensurate with the energy balance models (EBMs) introduced so far in the text. As
with the other chapters, the models have the advantage that the reader can solve or at
least understand the steps involved in detail. There are phenomenological coefficients
(i.e., they are fitted to observations), but nothing is hidden.

10.1 Single-Slab Ocean

We begin with a couple of crude but surprisingly helpful exercises with the single-slab
ocean. First is the response to a Dirac delta function F(t) = −g0𝛿(t), then a step-function
forcing.
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10.1.1 Examples with a Single Slab

Here we have in mind the global surface temperature response to a prototype volcanic
eruption. Such an eruption has to blast material vertically with sufficient thrust to pop-
ulate the stratosphere with debris (hygroscopic gases such as sulfur oxides or nitrous
oxides can attract and adhere water molecules to form electrolyte solutions of sulfu-
ric and sulfurous acid, also nitrous and nitric acids – the resulting aerosol particles
reflect sunlight back to space).The light-reflecting debris can remain in the stratosphere
for several years before coagulating to form larger aerosol particles and settling out
(with some help from stratospheric circulation). The aerosol particles form a thin layer,
inducing a negative forcing that cools the planet.The heating can be taken here as a neg-
ative delta function with its spike at time t = 0. Such a pulse causes a quick depression
of the surface temperature (ideally globally distributed, but often the homogenization
takes less than a year). The depressed temperature leads to a radiation imbalance and
is followed by an exponential-like recharge that depends on the time constant of the
Earth–atmosphere–ocean system.The recovery is long compared to the duration of the
negative spike of forcing.The behavior of the temperature anomaly can be described by
an energy balance equation:

dT
dt

+ T
𝜏

= −
g0
C
𝛿(t), (10.1)

where 𝜏 = C∕B, C is the heat capacity of a column of water whose horizontal cross
section is 1m2, whose thickness is the depth of themixed layer (typically 50–100m), and
B ≈ 2.00Wm−2 K−1 is Budyko’s coefficient of the surface temperature for the outgoing
radiation to space – it is sometimes referred to as the radiation damping coefficient.The
portion of the heat capacity due to the atmospheric column is small compared to that
of the mixed layer and is therefore neglected. This notation has been used often in pre-
vious chapters. To solve the ordinary differential equation, we multiply through by the
integrating factor, et∕𝜏 and rearrange to obtain

d
dt

(
et∕𝜏 T(t)

)
= −

g0
C
et∕𝜏

𝛿(t). (10.2)

Next we integrate each side from 0− to t, noting that T(0−) = 0, where 0− means the
value just infinitesimally below 0:

et∕𝜏T(t) = −
g0
C
, (10.3)

and finally, we have

T(t) =

{
0; if t < 0,

−
g0
C
e−t∕𝜏 ; if t ≥ 0. (10.4)

As t crosses the origin, the temperature abruptly falls by an amount − g0
C
. After the pulse

at t = 0, the temperature “recharges” exponentially to zero as shown in Figure 10.1a.The
mathematical steps for the adjustment from a flat forcing to a higher one of strength go
are almost identical to those just described for the impulse/response. The results are
shown in Figure 10.1b. These experiments with GCMs are standard practice (e.g., Don-
ahoe et al., 2015).
Next we take up the ramp forcing. As already mentioned, the dependence of outgo-

ing terrestrial radiation on CO2 concentration is approximately logarithmic. Hence, if
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Figure 10.1 Illustration of how a global model whose surface consists of a single slab with strong
vertical thermal conductivity, analogous to a mixed-layer ocean, responds to two idealized types of
time-dependent forcing: the (negative) impulse and the step function. Shown are graphs of
adjustment in the two examples. (a) Example of the recovery after a negative pulse such as a volcanic
dust veil of short duration. In this case, the strength of the pulse g0∕C = 1.0 and 𝜏 = C∕B = 1.0. (b)
Example of the adjustment of the global temperature from a flat forcing to a higher one of strength g0.
The values of the parameters are g0∕C = 1.0 and 𝜏 = C∕B = 1.0.

the amount of CO2 is increasing exponentially in time, the increase in radiative forcing
is approximately linear in time. In this section, we imagine the system to be in steady
state with the exponentially increasing CO2 being switched on at time t = 0. Atop the
atmosphere of our all-ocean planet, we express this as

I = A + BT(t) − 𝛾tH(t), (10.5)

where t is time in years, the Heaviside step function is defined by H(t) = 1, t ≥ 0; 0 for
t < 0, and 𝛾 ≈ 4Wm−2/𝜏doub with 𝜏doub the equivalent doubling time for CO2 (conven-
tionally taken to be 70 years).
This case and its response to different radiative-imbalance forcings can be found in

many papers (e.g., Kim et al., 1992, and Watts et al., 1994). This model will serve as a
convenient benchmark for us to compare with more complicated models later in this
chapter. The slab world is defined by its energy balance equation:

Cm
∂Tm(t)
∂t

+ A + BTm(t) = Qap + F↑ + G(t), (10.6)

where Cm is the slab heat capacity per unit horizontal area (Jm−2 K−1) and F↑ is
the net flux density of heat (Wm−2) from the layers below and G(t) is an external
time-dependent heat source applied at the surface (such as 𝛾t in the ramp case). The
slab is assumed to have a high thermal conductivity such that its vertical temperature
profile is homogenized in a short time compared to the radiative relaxation time
(months to years). In the single-slab model, F↑ = 0—there is no responding medium
below the mixed layer. The time constant for relaxation is 𝜏m = Cm∕B ≈ 5 years, for a
representative mixed-layer slab of about 80m thickness.
The departure from steady state for t > 0 is the solution to

dT
dt

+ T
𝜏m

= 𝛾

Cm
t, (10.7)
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where 𝜏m = Cm∕B. We have a first-order linear nonhomogeneous equation to be solved
for T(t). The solution will consist of two parts: a homogeneous solution and a particular
solution

T(t) = Thomog(t) + Tpart(t). (10.8)

A satisfactory particular solution (found by trial and error) is given by

Tpart(t) =
𝛾

B
(t − 𝜏m), (10.9)

which is the same as a Cm = 0 solution except for the time lag 𝜏m. The homogeneous
solution is given by

Thomog(t) = c1 e−t∕𝜏m . (10.10)

The integration constant c1 is to be chosen so as to fit the initial condition, T(0):

T(t) =
(

T(0) + 𝛾

B
𝜏m

)
e−t∕𝜏m

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

homogeneous

+ 𝛾

B
(t − 𝜏m)

⏟⏞⏞⏟⏞⏞⏟

particular

. (10.11)

This partitioning of the solution is useful for physical insight (and for comparison later
with more complex models where a similar trick will be used). Note that the particular
solution aswe have constructed it is the asymptotic form as t becomes large compared to
𝜏m.We could think of the particular solution as the attractor, as the homogeneous solu-
tion always decays away because of the way we have partitioned it. The homogeneous
solution which depends on the initial condition T(0) decays away in a characteristic
time 𝜏m leaving only the particular or asymptotic solution. It is interesting that we have a
familiar characteristic adjustment time 𝜏m for the solution to reach its asymptotic form
(this adjustment structure and characteristic time will vary according to the model’s
complexity).The asymptotic form consists of a straight line corresponding to a slab with
no heat capacity, but lagged by the characteristic time 𝜏m.These curves are illustrated in
Figure 10.2. In the construction of the two terms, we have contrived to have the constant

20 40 60 80 100
t

0.5

1.0

Adjustment to linear ramp forcing

T(t)

Figure 10.2 The response of a slab model’s surface temperature to linear ramp heating (analogous to
exponentially increasing CO2 concentration). Shown are solutions to linear ramp forcing for zero slab
thickness (short dashed) and for a finite thickness of the slab (solid) corresponding to a relaxation time
(Cm∕B) of 25 temporal units. The long-dashed asymptote intersects the origin at the value of 𝜏m. The
long characteristic timescale is for visual convenience. Time is in units of 𝜏m = Cm∕B and the
temperature units are arbitrary.
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Figure 10.3 Illustration of how two GCMs (of the 1990s) respond to ramp forcing. (a) Coupled
ocean–atmosphere simulation of global and hemispherical average temperature for ramp forcing. The
vertical axis is temperature change in kelvins and the abscissa is in years. Taken from Manabe et al.
(1991). ((Manabe et al., 1991). © American Meteorological Society. Used with permission.) (b) Another
coupled ocean–atmosphere simulation of global and hemispherical average temperature for ramp
forcing using the Goddard Institute for Space Studies model. The vertical axis is temperature change in
kelvins and the abscissa is in years. Taken from Russell et al. (1999). Both models relax to the linear
ramp (except for natural variability) in both hemispheres (Russell and Rind (1999). © American
Meteorological Society. Used with permission.)

− 𝛾

B
𝜏m to be canceled at t = 0 by the coefficient of the exponential in the homogeneous

term.This decomposition involving the cancellation strategy holds in some of the more
complex models that have a varying vertical structure below the surface.
Figure 10.3a shows the evolution of global and hemispherical surface temperatures

based on an early version of the Geophysical Fluid Dynamics Laboratory (GFDL) cou-
pled ocean–atmosphere GCM. After the transient dies out, one can trace a straight line
to the time axis (shown as the heavy gray lines in the figure) to find lags of about 20 years
for the global and Southern Hemisphere temperatures, while the Northern Hemisphere
appears to have a lag closer to 15 years (Manabe et al., 1991). Other models, such as the
Goddard Institute for Space Studies (GISS) coupled model of the same era, show simi-
lar behavior (Russell and Rind, 1999) as indicated by Figure 10.3b. In these experiments,
the extrapolation is closer to 10 years for the lags. While these particular GCMs have
evolved since these figures were produced, they indicate that the slabmodel concept of a
decaying transient followed by the ramp of upward temperatures for large-scale surface
temperature averages has some heuristic value.

10.1.2 Eventual Leveling of the Forcing

Next consider the increase of greenhouse gases to end at time t0 followed by a leveling
of the right-hand side of (10.7) to become 𝛾t0∕C where we have dropped the subscript
on the heat capacity of the slab to simplify the notation. For times earlier than t0, the
solution is the same as in the previous section if we continue to use the initial condition
that T(0) = 0. After time t0, the solution can be shown to be

T
>t0 = T(t0)e−(t−t0)∕𝜏m +

𝛾t0
B

(
1 − e−(t−t0)∕𝜏m

)
. (10.12)
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Figure 10.4 Single-slab model solutions
to linear ramp forcing for slab thickness
corresponding to 25 time units (as in
Figure 10.2) until t = t0 = 50 years (twice
the relaxation time 𝜏). After that, the
forcing is flat at its ramp value t = t0. The
horizontal dashed line indicates the point
(t = 50 years) when the ramp switches to
flat forcing.

20 40 60 80 100 120 140
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Response to linear ramp forcing then flat

T(t)

For t ≫ t0, 𝜏 , we see that the solution finally settles down to the constant value of 𝛾t0∕B,
which is just the value of the equilibrium-to-equilibrium change in global temperature
ΔT for a forcing of ΔF = 𝛾t0. Note that the latter is the total accumulated forcing (pro-
portional to the total log of CO2 concentration) in the atmosphere.
Figure 10.4 shows a numerical example of what happens after the forcing ramp is

flattened, starting at t =50 years. The forcing has been raised to a new constant level,
but because of the lag as seen in the second term of (10.11), the temperature has not
caught up with the forcing. The temperature continues to rise until it reaches the
equilibrium-to-equilibrium value associated with a change in forcing from t = 0 until
t = t0. The adjustment after the leveling begins is exponentially damped to the new
level with the same time constant 𝜏 = 𝜏m.
The rise above the dashed line in Figure 10.4 is referred to as the commitment, because

we would be committed to this much additional warming although we have zeroed the
rate of rise of the forcing after time t0.

10.2 Penetration of a Periodic Heating at the Surface

To gain some insight into how heat is transmitted in a layered medium, we next con-
sider a (vertically) thermally diffusive medium. It may seem odd to consider the more
complicated continuous medium before looking at multiple slabs, but the analysis is not
difficult and it helps to understand how the finite slab layers work. We take up first the
case of periodic heating at the surface, because the frequency analysis of such a process
gives an idea how far down the heat is conducted before the next round of cyclical forc-
ing is applied. As usual, we allow the cooling of the surface to obey R↑

IR = A + BT (see
Chapter 2). Homogeneous terrestrial soil is the perfect candidate for this problem. We
use it as a prototype for the ocean. Initially, we imagine a semi-infinite slab of soil (or
ocean) (0 ≥ z > −∞), hence z = 0 is at the surface and z → −∞ is deep in the soil (or
ocean). For simplicity, we take the thermal conductivity k to be constant in space and
time. For the temperature anomaly, T(z, t) (the departure of the temperature from its
steady-state form for no external heating), we can write

c ∂T
∂t

= k ∂2T
∂z2

; z ≤ 0, (10.13)
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where c is the heat capacity of the medium (for seawater it is 4.18 × 106 Jm−3 K−1;
we ignore any density variation with depth), and k, with units WK−1 m−1, is the
(macro)thermal conductivity. The term k∕c has units of m2 s−1 or 8000m2 year−1. The
vertical component of the heat flux density qz in J s−1 m−2 is given by

qz = −k ∂T
∂z

. (10.14)

We will be imposing a sinusoidal forcing (heating) at the surface, z = 0, of g
𝜔
ei𝜔t where

𝜔 is the angular frequency and i =
√
−1. We take the response temperature to be of the

form T(z, t) = T
𝜔
(z)ei𝜔t .

At the top of the ocean, the boundary condition is

−k
∂T

𝜔

∂z

|||||z→0−

=
[
BT

𝜔
− g

𝜔

]
z→0−. (10.15)

Moreover, the lower boundary condition is that T
𝜔
(z)must be finite as z → −∞.

Since the problem is linear with real, constant coefficients, we may take the real part
of the solution we find at the end. The ratio of the imaginary part of the solution to the
real part will be the tangent of the phase lag in radians as a function of z. Inserting this
form, we find

i𝜔cT
𝜔
(z) = kT ′′

𝜔
(z), (10.16)

−kT ′
𝜔
(z)|z→0− = BT

𝜔
(z)|z→0− − g

𝜔
, (10.17)

where, in the last two equations, the prime indicates differentiation with respect to z.
Next we assume the form

T
𝜔
(z) = T̃

𝜔
eaz

, (10.18)

where a is a coefficient (likely complex) to be determined. Substitute this into (10.16)
and (10.17). After noting that

√
i = (e

𝜋

4 , e
5𝜋i
4 ) = ± i + 1√

2
, (10.19)

we find

a = ±(1 + i)
√

𝜔c
2k

. (10.20)

We dismiss the negative choice in the solution (10.20) because it would lead to unac-
ceptable behavior as z → −∞. Finally, we arrive at the complex amplitude:

T̃
𝜔
=

g
𝜔

ka + B
eaz

. (10.21)

Then, with 𝛼 = Re(a) = Im(a) =
√
𝜔c∕2k and |𝛼| = √

𝜔c∕k.Themagnitude of the com-
plex amplitude (after some algebra) is

|T̃
𝜔
(z)| = g

𝜔
e𝛼z

√
B2 +

√
2kc𝜔B + kc𝜔

, (10.22)
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where, in the last step, we substituted for 𝛼. Note that the z dependence is in the numera-
tor, and it indicates that the warming signal is modulated by an exponentially decreasing
function as z → −∞.The characteristic depth of heat penetration 𝜆

𝜔
is inversely propor-

tional to the square root of the angular frequency of the driver.

𝜆
𝜔
=
√

2k
𝜔c

= 𝛼
−1
. (10.23)

Note that the penetration depth is also proportional to the square root of the ther-
mal diffusivity k∕c. Low-frequency components can penetrate deeper than those with
higher frequency. We can get an intuitive idea of how the heat is diffused from the sur-
face toward the depths by looking at how a Gaussian distribution of diffusing substance
spreads in a time t. The distance, d, of the one-standard-deviation width of a spreading
Gaussian is d ∼

√
kt (see Section 6.4). If we replace t by 2𝜋∕𝜔, we find

d ∼
√

2𝜋k
𝜔c

. (10.24)

At z = 0, we find that the amplitude squared (power or variance) can be written as
follows:

|T̃
𝜔
(0)|2 = g2

𝜔

B2 +
√
2kc𝜔B + kc𝜔

. (10.25)

This form has more power at low frequencies and for large 𝜔, it monotonically decays
as 1∕𝜔. Unlike the case of white noise, its integral over all frequencies is not bounded.
In the statistics and engineering literature, it is known as “pink noise” (1∕𝜔s with
0 < s < 2). In reality, the forcing (white noise) is never really constant as 𝜔 → ∞, but
rather it must cut off at some finite frequency. In this book, we usually think of the
white noise drivers as atmospheric weather which has a timescale of a few days. Note
that if there is no cooling to space (B = 0), the power spectrum diverges as 𝜔 → 0. But
note that the numerator, which is constant for z = 0, is proportional to exp((𝜔c∕2k)

1
2 z)

and hence, for z < 0, causes convergence for 𝜔 → ∞.
Figure 10.5 shows the real part of the complex amplitude T̃

𝜔
(z): Figure 10.5a is

the amplitude without the damping factor e𝛼z and Figure 10.5b shows the same but
including the damping factor. In this example, k∕c = 6000m2 year−1 (i.e., below the
surface) leading to a value of 𝜆

𝜔
≈ 44m. We can compute the phase lag by using

B = 2.0Wm−2 (∘C)−1.
In real soil, the medium is not usually homogeneous; hence, both k and the local heat

capacity are z-dependent. Moreover, water in the column of soil can influence both of
these parameters as well. Ignoring these complications for our purposes, we see that
long timescales in the forcing can penetrate deeper in the soil. One might even posit
that the effective heat capacity is proportional to the e-folding length scale, 1∕𝛼, which
depends on the frequency𝜔. Heuristically, the penetration of the daily heating of the soil
ismuch less than that of the annual cycle. Anyonewhohas toured a cavewill find that the
annual cycle of temperatures below ground is very small.We encounter themean annual
temperature instead. A similar effect can be notedwith permafrost. Permafrost ismostly
a few meters below the surface. For this reason, it is the mean annual temperature that
matters at such depths. One could say the high-frequency components of the driving
signal are filtered out by the vertical diffusion process.



262 10 Time-Dependent Response and the Ocean

Phase only

0

−100

−200

−300

−400
−10 −5 0 5 10

(a)

0

−100

−200

−300

−400
−10 −5 0 5 10

Attenuated signal

(b)

Figure 10.5 The nature of
penetration into a thermally diffusive
medium such as soil and roughly a
mixed-layer ocean. Values of the
parameters are chosen to be
characteristic of the ocean with
annual forcing at its surface:
k∕c = 8000 m2 year−1 =
2.54 × 10−4 m2 s−1,
c = 4.18 × 106 J m−3 K−1, B = 2.0
J s−1 m−2 K−1, Ω = 1.99 × 10−7 s−1,
g
𝜔
= 238 W m−2, 𝛼−1 = 50.4 m. (a)

The real part of the temperature
amplitude, T

𝜔
(z), as a function of z (in

units of meters), without the
exponential damping factor e𝛼z . (b)
The same but including the damping
factor.

An application of a more refined ground-heat-conduction model with a knowledge of
the nonhomogeneous properties can be used as a proxy for past surface temperatures
(see, e.g., Pollack and Huang, 2000; NRC, 2006). Proxy data generated from preexisting
boreholes are very noisy, but when many of them are averaged together, the warming
signal is clear.
While the vertical transport of heat in the ocean is hardly a diffusive medium, some of

the intuition gained from the soil case is helpful. The case of upwelling of ocean waters
combined with thermal diffusion gives the best2 vertical model as we will see in this
chapter. Keep inmind that diffusion is amolecular process in which heat energy is trans-
ported bymolecular collisions. Eddies in the fluidmotion also transport heat energy and
we imitate this transport mechanism by diffusion, but the real turbulent stirring process
ismore complicated than diffusion. However, in our oceanmodeling slabs, diffusion and
upwelling are appropriate models consistent with our overall strategy in this book.

10.3 Two-Slab Ocean

In this section, we consider a very simple two-slab model following the work of Gregory
(2000)3 who provides background and motivation for the model. This was also the
same class of model used by Held et al. (2010) to infer the long-term behavior of global
temperatures after CO2 emissions are leveled or even stopped.

Cm
dTm

dt
+ BTm + k(Tm − Td) = +F(t), (10.26)

2 Here “best” means the most consistent with our usual practice with EBMs. Serious oceanographers are
likely to take exception to such a simple approach to dynamics of the ocean.
3 Gregory (2000) used rather different values for his slab thicknesses than we have done. His upper layer has
thickness 150m and his deeper layer is of the order of 2400m. In our case, we choose a thin upper layer,
taken to be 50m and our deep slab layer is down to approximately the thermocline, 50 + 500m. We have
chosen these as illustrations, which demonstrate similar features.
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Cd
dTd

dt
+ k(Td − Tm) = 0. (10.27)

We denote the mixed-layer temperature as Tm and the deeper-layer temperature as
Td. The equation is for the anomaly from equilibrium response to the forcing at the
top of the ocean F(t). The flux density of heat between the two layers is proportional
to their temperature differences with an exchange coefficient k. We can introduce the
two-component vector:

T⃗ = (Tm,Td)T. (10.28)

The homogeneous (differential equation) system can be expressed as follows:

dT⃗
dt

+ ⋅ T⃗ = 0, (10.29)

with

 =

⎛⎜⎜⎜⎜⎝

B + k
Cm

− k
Cm

− k
Cd

+ k
Cd

⎞⎟⎟⎟⎟⎠
. (10.30)

Next, insert T⃗(t) = T⃗ e−𝜆t :

Det( − 𝜆𝟏) = 0. (10.31)

The eigenvalues 𝜆1,2 can be found by solving the resulting quadratic equation for 𝜆.
The inverse 𝜏1,2 = 1∕𝜆1,2 are the decay times for the two eigenvectors. Figure 10.6 shows
the two relaxation times corresponding to the inverse of the eigenvalues as a func-
tion of the exchange coefficient k. When k → 0, the two slabs decouple and the shorter
timescale becomes that of the mixed layer alone, ∼5.0 years, while that of the lower
slab becomes indefinitely large. For large values of k, the larger root tends toward the
relaxation time for both slabs taken together, while the shorter time tends to zero. The
solution corresponding to the lower timescale becomes a singular solution, because if
(10.27) is divided through by k, the time derivative term drops out, reducing the order
of the system by one.
The actual solution for the homogeneous case can be written as a pair of exponentials

that will decay according to themix of the eigenvectors corresponding to the eigenvalues
𝜆1 and 𝜆2.

⎛⎜⎜⎝
Tm(t)

Td(t)

⎞⎟⎟⎠
= C1

⎛⎜⎜⎝
Ê(1)
m

Ê(1)
d

⎞⎟⎟⎠
e−t∕𝜏1 + C2

⎛⎜⎜⎝
Ê(2)
m

Ê(2)
d

⎞⎟⎟⎠
e−t∕𝜏2 , (10.32)

where Ê(1)
m stands for the component of the unit eigenvector 1 (corresponding to 𝜆1)

in the direction of Tm, and so on. The coefficients C1,2 must be found from the initial
conditions Tm(0),Td(0).We refer to the coefficients C1,2 as the eigenmode amplitudes, as
they indicate the strength of the eigen patterns represented by the unit eigenvectors Ê(1,2).
Once the coupling parameter k is fixed, the eigenvector components Ê(i)

m, d are known
constants. Note that the matrix  is not symmetric, and therefore the eigenvectors
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Figure 10.6 The behavior of the eigenvalues as a function of the coupling coefficient between the
two slabs k. The two curves show how the characteristic times (inverses of the eigenvalues) of the two
eigenmodes vary over a wide range of the coupling parameter k. For small values of k, only the upper
layer is active, and the decay time is 3.31 years (that of a 50 m slab) as expected. The other eigenmode
is very large for small k but eventually settles down to approach a value of 36.5 years for large k when
the combination single slab has thickness 550 m.

are not orthogonal, but they still can be used as a basis set in two-dimensional space,
provided they are not parallel. This means the temperature of each slab is a different
linear combination of two exponential decays. For weak coupling, k ∼ 0, this would be
a short decay determined by the radiative decay time added to a component with long
decay corresponding to the situation where there might be a lot of heat stored below
that takes a long time to transfer to the upper layer where it can be radiated to space.
This is the effect referred to as the recalcitrant climate effect (Held et al., 2010) that
might occur after a long period of slow warming due to, say, greenhouse gases followed
by a shutdown or even a leveling of the greenhouse gases. The recalcitrance is the long
time required to release the heat from lower layers to the upper layer, where it can cool
to space. If the coupling to lower layers is weak, the warming due to greenhouse gases
does not reverse itself rapidly.
The eigenvalues are the roots of the quadratic equation derived from the null deter-

minant | − 𝜆𝟏| = 0.

𝜆n(k) = (Bcd + cdk + cmk)∕2cdcm (10.33)

+
(−𝛿n,1 + 𝛿n,2)

2cdcm

√
(Bcd + cdk + cmk)2 − 4Bcdcmk.

The eigenvectors are given by complicated expressions (but easily handled by MATH-
EMATICA as analytical expressions, and numerically as well). It is convenient to use
(normalized) unit vectors, Ê(1,2). These unit vectors are not orthogonal. Hence, it is
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useful to introduce reciprocal vectors, D(1,2), which4 are defined by

Ê(1) ⋅ Ê(1) = 1, Ê(2) ⋅ Ê(2) = 1, (10.34)
D(1) ⋅ Ê(1) = 1, D(2) ⋅ Ê(2) = 1, (10.35)
D(1) ⋅ Ê(2) = 0, D(2) ⋅ Ê(1) = 0. (10.36)

The eigenvectors have been normalized to have unit length, whereas the reciprocal
vectorsD(1,2) are not unit vectors. Next consider the relationship of decay times 𝜏1 and 𝜏2
and the thermal coupling k. Figure 10.6 shows how the decay times (inverse of the eigen-
values) vary as a function of k. The inverses of the eigenvalues are the decay time con-
stants for the eigenmodes. As k → 0, one decay time is infinite and the other approaches
3.31 years, the decay times for the upper mixed-layer slab alone. In this limit, the corre-
sponding eigenvectors are orthogonal as shown in Figure 10.7.The passage of k → 0 is a
singular limit because as the coupling goes to zero, the degree (dimension of the system)
is reduced from two components to one. The result is that one of the timescales of the
eigensystem tends to infinity.
But as k is increased to very large values, we see that the decay time of 𝜏2 becomes

vanishingly small, while the other approaches 36.4 years, the decay time of a 550m sin-
gle, aggregated slab. In this limit, both slabs are tightly coupled and their entire mass
is participating as a unit. As k increases, the eigenvectors become more skewed at an

Angle between E-vectors (degree) vs k
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0 1 2 3 4 5
k

Figure 10.7 Illustration of how the two unit eigenvectors go from being perpendicular at k = 0 to a
limiting larger angle of about 128∘. Parameter values: B = 2.00; Cm∕B = 3.0 years; Cd∕B = 30.0 years.

4 Reciprocal or dual vectors are not found in many recent books. They are more commonly covered by
tensor notation, for example, Arfken and Weber (2005), which would overcomplicate our treatment. An
older but very valuable and inexpensive book is that of Wills (1958). The reciprocal basis set is a set of
vectors used when the basis set of interest is nonorthogonal. As will be seen, reciprocal vectors allow us to
project out the component amplitudes easily.
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Figure 10.8 Diagram of the unit vectors Ê(1) and Ê(2).
At k = 0, the unit vectors are orthogonal but as k
increases, they change direction and are no longer
orthogonal. Note that Ê(2) points in the negative
direction in the left upper quadrant of the (m, d)
plane.

angular separation of ∼128∘ (see Figure 10.7). Figure 10.8 shows how the two unit vec-
tors Ê(1) and Ê(2) rotate as k increases from 0 to large values. Note that Ê(2) points in the
negative direction in the (m, d) plane.
For reference, we list the components of D(1,2) in terms of the Ê(1,2):

D(1)
m =

−Ê(1)
d

det
; D(1)

d =
Ê(2)
m

det
; (10.37)

D(2)
m =

−Ê(2)
d

det
; D(2)

d =
Ê(1)
m

det
; (10.38)

and

det(k) = Ê(1)
d Ê(2)

m − Ê(1)
m Ê(2)

d . (10.39)

Note that det(k) is the cross product of Ê(1) and Ê(2). It vanishes if these two unit vectors
are orthogonal, which is the case as k → 0 (see Figure 10.7).

10.3.1 Decay of an Anomaly with Two Slabs

Consider an anomaly or initial condition where Tm(0) = 1K and Td(0) = 0K. (Note that
this is equivalent to the upper slab being subjected to a delta function heating at time t =
0.) This anomaly will decay according to (10.32) after the constants C1,2 are determined
by the conditions

C1Ê(1)
m + C2Ê(2)

m = 1; C1Ê(1)
d + C2Ê(2)

d = 0. (10.40)

A numerical example is shown in Figure 10.9 and the late part of the decay is shown in
Figure 10.10. In this numerical example, the upper slab has thickness 50m and the lower
slab 500m, as in the previous subsection. We chose a fairly large value of the coupling
parameter k = 2.5 Wm−2 for illustrative purposes. Given this value of k, the character-
istic times (inverse of the eigenvalues) of the eigenmodes are 61.5 and 1.43 years. As the
initial anomaly decays in the upper layer because of the fairly strong coupling, heat is
transferred to the lower layer, which soon heats up to a warmer temperature than the
upper layer. In this case, the cooling of the upper layer to the lower one is more efficient
than the cooling to space. In weaker coupling (e.g., k = 0.2 Wm−2) scenarios, this does
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Figure 10.9 The decay of an initial anomaly of 1 K in the upper slab Tm. The temperature in the upper
slab Tm(t) is shown as the solid curve and the temperature in the lower slab Td(t) is shown as a dashed
curve. Parameter values are cm∕B = 3.31 years, cd∕B = 33.1 years and k = 2.5 W m−2 K−1. Slab
thicknesses are 50 and 500 m. Given this value of k, the characteristic times of the two eigenmodes are
61.5 and 1.43 years.

Figure 10.10 The later portion of the
decay of an initial anomaly of 1 K in
the upper slab Tm. The temperature
in the upper slab Tm(t) is shown as
the solid curve and the temperature
in the lower slab Td(t) is shown as a
dashed curve. Note that the upper
slab has a substantial anomaly even
after many e-folding times of the
single uncoupled slab of the same
thickness.

Decay of unit anomaly in upper slab (solid)

and lower slab (dashed), k = 2.5
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not happen until much later (∼20 years). Figure 10.10 shows a magnification where we
see that both slabs are at nearly 0.02K, even after many characteristic time lengths of
the shorter e-folding time.The lower level is still warmer than the upper even at 50 years
after the initial anomaly is launched.
Using Cm as the heat capacity of the mixed layer, the decay time of an anomaly 𝜏slab =

Cm∕B is related to sensitivity for a one-slab model, as the equilibrium sensitivity to dou-
bling CO2 (see Chapter 2) is proportional to 1∕B. Here we might be including in B
the feedbacks that are working at longer timescales, say, a few years. It is tempting to
speculate that one could estimate the sensitivity by observing the decay time or equiv-
alently the autocorrelation time. Aside from not having a good estimate of the slightly
ambiguous term, Cm, we have to worry about the coupling to the slab below the mixed
layer. The coupling constant k is similar to Cm, in that it is not well known. Figure 10.11
shows several decays for unit anomaly and various values of the coupling parameter k.
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Figure 10.11 The decay curve from a unit anomaly of the upper layer for four values of the coupling k.
The values of k and 1/e timescale values for the curves from the leftmost to the rightmost are
(2.5, 1.48), (1.5, 1.91), (1.0, 2.22), (0.20, 3.01); the units of k are W m−1 K−1, and those of time are years.

In the figure, there are four decay curves that look similar to exponentials (but con-
sist of a linear combination of two of them), whose time constants can be read from
Figure 10.6. From Figure 10.11, we see that for very weak coupling the decay time is
close to 3.31 years, the time for an uncoupled single upper slab. But as k is increased,
the decay time shrinks. The casual observer might think the sensitivity is less than that
inferred by a value of B = 2.00. Lindzen and colleagues (Lindzen, 1994; Lindzen and
Giannitsis, 1998) have used simple models similar to5 those in this chapter to show that,
because of the unknown coupling parameter, we cannot get an unambiguous estimate
of the sensitivity of climate. This seems to be borne out in our model as well.

10.3.2 Response to Ramp Forcing with Two Slabs

In this section, we consider the same model as in the previous section that has a mixed
layer of thickness hm ≈ 50 m (whose effective volumetric heat capacity is Cm).6 Below
this thin layer lies another well-mixed slab whose bottom is at the thermocline. The
thickness of the lower slab is hd ∼ 500mwith effective volumetric heat capacity Cd.This
places the thermocline at about 550m below the surface. In our model, there is no ver-
tical heat transport below the thermocline. Several models of this genre were studied
numerically by Harvey and Schneider (1985).The radiative decay time of the uncoupled
mixed layer is taken to be 3.31 years and that of the lower slab to be 33.1 years. As before,
let the two slabs transfer heat proportional to their temperature difference (warmer to
cooler) with a coupling coefficient k. The surface temperature is T(t) (taken to be the

5 Actually Lindzen’s model is a bit more complicated and perhaps more realistic. It has a mixed layer slab
and below it a thermally diffusive model down to the thermocline with upwelling of cool water transmitted
below it. The two-slab model in our chapter takes the lower portion as a well-mixed slab.
6 It is convenient to consider the volumetric specific heat of water (4.18 × 106 Jm−3 K−1) rather than the
mass specific heat, as in our treatment, the variation of water density with depth is neglected.
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same as that of the mixed layer) with the usual heat flux densities A + BT(t) and Qap.
The governing equations are (10.26) and (10.27).
Next consider obtaining a solution for ramp forcing F(t) = 𝛾t applied to the upper

layer only. The problem can be stated as follows:

d
dt

⎛⎜⎜⎝
Tm

Td

⎞⎟⎟⎠
+

⎛⎜⎜⎝
Tm

Td

⎞⎟⎟⎠
=
⎛⎜⎜⎝
𝛾t∕cm

0

⎞⎟⎟⎠
, (10.41)

with

Ê(1,2) = 𝜆1,2Ê(1,2)
. (10.42)

We can now use
⎛⎜⎜⎝

Tm

Td

⎞⎟⎟⎠
= C1(t)

⎛⎜⎜⎝
E(1)
m

E(1)
d

⎞⎟⎟⎠
+ C2(t)

⎛⎜⎜⎝
E(2)
m

E(2)
d

⎞⎟⎟⎠
. (10.43)

We can now insert (10.43) into (10.41) to find

Ċ1Ê(1) + Ċ2Ê(2) + 𝜆1C1Ê(1) + 𝜆2C2Ê(2) =
(
𝛾t∕cm
0

)
, (10.44)

where the overdot denotes time differentiation. Next, project out the equations for C1(t)
and C2(t) bymultiplying from the left by D(1), then D(2) using (10.34)–(10.36).The result
is two uncoupled ordinary differential equations, each of which is of the same form as
the one-slab problem:

Ċ1 + 𝜆1C1 = D(1)
m

𝛾t
cm

, (10.45)

Ċ2 + 𝜆2C2 = D(2)
m

𝛾t
cm

. (10.46)

We can now solve each of these equations as in the solution of (10.7)–(10.11). The tem-
perature in each slab can now be constructed for a given value of k by inserting C1(t)
and C2(t) into (10.43). Thus each slab’s transient will consist of linear combinations of
exponentials with the characteristic timescales for the eigenmodes.Without solving the
system explicitly, we can conclude that after the transients have been exhausted, the
simulated temperature in each slab gets onto the straight-line ramp.
The procedure just derived for two slabs can be used to solve for n slabs by construct-

ing the eigenvectors and their reciprocal vectors for the n × n matrix . Further, we
can use the technique to solve for any forcing on the right-hand side of the governing
equation. For example, one might consider white noise forcing from above the ocean
surface generated by weather. In this case, we insert for the forcing g

𝜔
ei𝜔t as we have

done already in previous chapters.

10.4 Box-Diffusion Ocean Model

Lebedeff (1988) examined a box-diffusion model in which there is a deep layer below
the mixed layer. The deep layer transports heat by the thermal diffusion mechanism.
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We follow his derivation but omit some detail because of the technical details making
use of the Laplace transform.7
The model has a finite-thickness mixed layer (slab) on top with a continuum below:

Cm
∂Tm

∂t
+ 𝜆Tm − F↑ = F(t), (10.47)

where Tm represents the departure from the steady state of the mixed-layer tempera-
ture, Cm = ch and h is the thickness of the mixed layer (meters), c is the volumetric heat
capacity of seawater (4.18 × 106 Jm−2 K−1), F↑ is the flux density of heat entering the
surface layer from below. In this last equation, 𝜆 is used in place of B to include possibly
other feedbacks such as ice-cap feedback.8

F↑ = ck
∂Td

∂z

|||||z=0

, (10.48)

where k is the (macro)thermal diffusivity of the ocean below the mixed layer (typically,
in the range 1–10m2 year−1)—here the macro-diffusion is considered to be driven by
random eddies. Td(z) is the departure of the ocean temperature below the mixed layer
(z ≤ 0) from its steady-state profile.Wehave denoted the vertical coordinate in the lower
layer as z with the origin at the bottom of the mixed layer and having negative values
below. The temperature in the lower levels is governed by

∂Td(z, t)
∂t

= k
∂2Td(z, t)

∂z2
. (10.49)

The boundary conditions are specified by (10.48) and that

Td(z = 0, t) = Tm(t). (10.50)

We take the “bottom” of the ocean to be insulating. A null heat flux at the bottom of the
layer at z = −h can be expressed as

∂Td

∂z

|||||z=−h

= 0. (10.51)

Lebedeff’s solution for step-function forcing is

Tm(t; 𝜅) = 1 + 1
𝜂 − 1∕𝜂

[
et𝜂2 erfc(𝜂

√
t)∕𝜂 − 𝜂erfc(

√
t∕𝜂)

]
, (10.52)

where9

𝜂 = 1
2𝜅

+
√

1
4𝜅

− 1; 𝜅 = 𝜆h
ck

. (10.53)

7 The Laplace transform is a useful technique for solving linear differential systems, especially in cases
where the initial conditions are known. Descriptions can be found in Arfken and Weber (2005) as well as in
many books on mathematical methods in engineering and physics. A useful compilation of transforms and
their inverses can be found in Abramowitz and Stegun (1964, available on line at http://people.math.sfu.ca/
cbm/aands/intro.htm).
8 We have usually taken a value of B at approximately 2.00 Wm−2. It would be less if some other positive
feedback were included – water vapor feedback is presumably already included in B.
9 The error function is defined as erf(x) ≡ 2√

𝜋
∫ x
0 e−t2 dt and the complementary error function is

erfc(x) ≡ 1 − erf(x) = 2√
𝜋
∫ ∞

x e−t2 dt. Both functions are included in MATLAB and MATHEMATICA.
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Figure 10.12 Graphs of Lebedeff’s solutions to step-function forcing versus time for various values of
the dimensionless parameter k. Dimensionless time, t, is in units of the mixed layer radiation relaxation
time (nominally, a few years). The dimensionless parameter 𝜅 is inversely proportional to the thermal
diffusivity k.

The formula for Tm(t; 𝜅 = 1
4
) is not defined, but Lebedeff provides a solution for this

value of the constant, 𝜂 = 2. Plots for k = 0.1, 1.0 and 10 are shown in Figure 10.12. The
formula for 𝜅 tells us that it is the ratio of two timescales: the time for a particle to
diffuse across a distance of the mixed-layer depth to the radiative relaxation time for
an uncoupled mixed layer: h2∕k ∶ hc∕𝜆. In the numerator, the distance h is diffused in
accordance with

√
kt. We discussed the spread of diffused heat in Section 6.4. Readers

are referred to Lebedeff (1988) for more discussion and details of his solution. In his
paper, he also derives simplified forms for long-term behavior of the solutions. Note
that we have reversed the labels k and 𝜅 in Lebedeff’s paper to be consistent with our
notation elsewhere in this chapter.

10.5 Steady State of Upwelling-Diffusion Ocean

An upwelling-diffusion (UD) ocean is yet another highly simplified model, but slightly
more realistic than the purely diffusive one. It dates back to early works of Robinson and
Stommel (1959) andWalter (1966). Many others have worked on this class of models as
well (e.g., Hoffert et al., 1980; Harvey and Schneider, 1985; Morantine andWatts, 1994;
Watts et al., 1994). One very attractive feature of this model is that a thermocline-like
feature comes out naturally in the solution to the steady-state problem.The level of real-
ism of this model is pretty low (for an up-to-date survey of ocean circulation theories,
see, e.g., Huang, 2013). We adopt the UD model in the same spirit as other schematic
approximations throughout this book.
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The thinking behind the UD model is that throughout the ocean, eddies transport
heat down gradient from the warm water above to the colder waters below. In addition
cold water in the abyss is constantly supplied by downwelling of cold, dense waters in
the polar regions.These volumes of colder and more saline volumes of water sink to the
bottom or in some cases intermediate levels, spreading out horizontally mostly across
the entire world ocean floor. This supply of cold water and its upward displacement of
water above is the reason for the upwelling everywhere. It can also suggest us to make
our lower boundary condition at z → −∞ be at a temperature of ∼0 ∘C or zero differ-
ence from the equilibrium solution when we deal with anomalies.
The local rate of change of thermal energy in the mixed layer is given by the equation:

ch ∂T
∂t

+ A + BT − cwT + ck ∂T
∂z

= Qap + F(t), z = 0; (10.54)

where c is the specific heat of seawater (in per volume units), ch = Cm is the effective
heat capacity per unit horizontal area of the mixed layer, whose thickness is h, F(t) is
an external forcing, and as in Chapter 2, A + BT is the infra-red outgoing radiation to
space,Qap is the absorbed solar radiation flux density. Below themixed layer is the ocean
interior where the energy changes are governed by

h ∂T
∂t

= k ∂2T
∂z2

−𝑤
∂T
∂z

, z < 0, (10.55)

where k and𝑤 are called the vertical diffusivity and the upwelling velocity, respectively.
Note that z = 0 is taken to be at the bottom of the mixed layer. In this formulation k∕c
has dimensions length2/time (m2 year−1) with typical values 2000–6000m2 year−1 The
upwelling velocity per unit heat capacity 𝑤∕c has dimensions length/time (m year−1)
with typical values a few myear−1. These parameters suggest a vertical length scale
𝓁 ∼ k

𝑤
ranging from 400 to 1000m and a timescale 𝜏 ∼ k

𝑤2 ∼ 250 years. The lower
boundary condition is:

T → 0 as z → −∞. (10.56)
In obtaining the solution first consider the steady-state solution for the UD model

with ∂
∂t

→ 0. Equation (10.55) yields after one integration

dT
dz

− 𝑤

k
T = 0, (10.57)

where we have set the integration constant to zero in order to satisfy the boundary con-
dition at z → −∞. Using 𝓁 = k

𝑤
we find

T(z) = T0ez∕𝓁 ; z < 0. (10.58)
This very simplemodel of theworld ocean leads us to a thermoclinewhose characteristic
depth is 𝓁 below the mixed layer.
If the CO2 is suddenly doubled, the asymptotic solution (long times) is

ΔTp = −ΔA
B

ez∕𝓁
, t → ∞, (10.59)

where the subscript “p” stands for particular solution. The transient solution will be
uniform over the all-ocean planet subjected to step-function forcing. Its solution is pre-
sented by Morantine and Watts (1994). They begin by finding the impulse/response
function via a Laplace transform method. The steps in the derivation are more com-
plicated than necessary for this book, but can be found in their paper.
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10.5.1 All-Ocean Planetary Responses

One concern with the box-diffusion model raised by Hoffert and Flannery (1985) is that
due to the response after long times, the entire column of water is heated during ramp
forcing, whereas the UDmodel suggests that only the (effective) mass of water above the
thermocline participates in the long-term (asymptotic) solution. The reason for this is
that the upwelling cool water presses against the downward diffusing warm water and a
match is found at the thermocline.We can find the so-called impulse/response function
(also called Green’s function) by finding the response to a forcing spiked at the origin, the
Dirac delta function, 𝛿(t). As mentioned in the last sections, this is equivalent to finding
the decay of an initial anomaly in the mixed layer.
Watts et al. (1994) summarize several models including the pure diffusion model, the

UD model, and a UD model that includes land masses in much the same way as the
beach-ball model of Chapter 8. In this elegant survey, they used the Laplace transform
method introduced by Lebedeff (1988) to provide analytical solutions. Here we show
one example, the UDmodel for an all-ocean planet.The solution for this model is given
by the following formula (Equation 9 of Morantine and Watts, 1994):

𝜃(𝜏)
R0∕𝜆

= a
tu

tm

(
e(a2−0.25)𝜏erfc(a

√
𝜏)

(a − b)(a2 − 0.25)

)

− b
tu

tm

(
e(b2−0.25)𝜏erfc(b

√
𝜏)

(a − b)(b2 − 0.25)

)
(10.60)

−
0.5tt erf(0.5

√
𝜏)

tu − tt
+

tu − 0.5tt

tu − tt
,

where 𝜃(𝜏) is the departure of the mixed-layer temperature from its initial steady-state
value, 𝜏 is time normalized by the upwelling timescale 𝜏 ≡ t∕tu with tu defined below.
The denominator of the left-hand side of the last equation consists of R0(t), the radiative
forcing of the Earth–atmosphere system (e.g., the imbalance due to a sudden change
[step function] in CO2), 𝜆 is the climate sensitivity parameter,10 typically approximately
2.0Wm−2 K−1. The climate sensitivity parameter is the inverse of the change in global
average temperature per unit of radiative forcing expressed in units, Wm−2 K−1. The
special functions in the formula are the error function, erf(x), and the complementary
error function, erfc(x) defined in Section 10.4. Other terms are defined below starting
with 𝜏 = t∕tu and

a = 0.5tt∕tm +
√
(0.5tt∕tm + 0.5)2 − tu∕tm,

b = 0.5tt∕tm −
√
(0.5tt∕tm + 0.5)2 − tu∕tm,

tu = k∕𝑤2 = upwelling timescale,
tt = 𝜌cku∕𝜆𝑤 = thermocline timescale,

tm = C∕𝜆 = mixed-layer timescale. (10.61)

An example of the response to step-function forcing is shown in Figure 10.13.

10 Watts and Morantine used a value of 2.2Wm−2 K−1, both their value and the one usually used in this
book ignore ice feedback which would lower the value of 𝜆.
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Figure 10.13 Response to the Watts–Morantine upwelling diffusion model to a step-function forcing.
The ordinate is a normalized response in units of the asymptotic solution. The abscissa is time in units
of the mixed-layer-only relaxation time, C∕𝜆. The upper curve (dashed) is the response to a
mixed-layer ocean and the lower curve (solid) is for an upwelling-diffusion model. The parameters are
D = 100 m; k = 3000 m2 year−1; 𝑤 = 4 m year−1, 𝜆 = 2.2 W m−2 K−2 , D here means the depth of the
mixed layer. The time axis in units of the mixed layer response time C∕𝜆 = 6.02 years.

10.5.2 Ramp Forcing

Watts and colleagues also solve the problem with ramp forcing for the global ocean
(no land as with the step-function forcing in the previous section). They approach
the problem in much the same style as we have earlier in this chapter. The particular
solution for the mixed-layer temperature responding to a forcing 𝛾t is

Tp(t) =
𝛾

B
(t − 𝜏m − 𝜏𝓁), (10.62)

where 𝜏m = Cm∕B, 𝜏𝓁 = C𝓁∕B, 𝓁 = k∕𝑤, and C𝓁 = c𝓁 with c in per unit volume units. In
its asymptotic (in time) form, the lag behind the response with no ocean or atmosphere
is the sum of the lag for the mixed layer and the lag associated with the effective heat
capacity of the water between the thermocline and the surface.The transient solution is
muchmore complicated, involving amixture of exponentials, error functions, and so on.
Note the very long adjustment time in Figure 10.13 of the UD ocean compared with the
mixed-layer-only case.The transient or homogeneous solution contains two timescales,
𝜏m and 𝜏m + 𝜏𝓁 . Morantine andWatts (1994) also point out in their discussion that natu-
rally induced changes in𝑤 (the response towhich they give solutions) can cause changes
in the global surface temperature that are as large as the global warming signal.

10.6 Upwelling Diffusion with (and without) Geography

The study by Kim et al. (1992) takes the past studies byMorantine andWatts (1990) and
others (e.g., Wigley and Schlesinger, 1985; Lebedeff, 1988; Morantine and Watts, 1994)



10.6 Upwelling Diffusion with (and without) Geography 275

to include the land–sea geography in the sense of the previous chapters of this book,
namely, the local surface is characterized by its effective heat capacity. The approach is
similar with the starting point being the trial of the particular solution:

Tp = 𝛼(t − 𝜏(r̂) + z∕𝑤)ez∕𝓁
, (10.63)

where 𝜏(r̂) is a lag that depends on the position on the globe. It turns out that 𝓁 = k∕𝑤,
where 𝓁 can be thought of as the depth of the thermocline minus the depth of themixed
layer. By insertion of this last form into the governing equation, we find that 𝜏(r̂) satisfies

−∇ ⋅
(

D(x)
B

∇𝜏(r̂)
)
+ 𝜏(r̂) = 𝜏m(r̂) + 𝜏𝓁(r̂). (10.64)

Over ocean, the terms on the right-hand side sum up to the radiative relaxation time
for the entire thermocline. Over land, these terms add up to the relaxation time of an
effective column of air. These quantities are known from the land–sea geography. This
inhomogeneous equation has the form of the steady-state EBM, but with 𝜏(r̂) as depen-
dent variable. The dependent variable is the response to the source terms on the RHS.
It is damped by the B𝜏(r̂) term and smeared out by the diffusion term. Through this
process of filtering the geography is entered. The solution for lag 𝜏(r̂) will be large over
oceans, small over land, but the hard edges are removed over a length scale of the order
of

√
D∕B. Figure 10.14a shows the lag field 𝜏(r̂) for parameter values 𝑤 = 4myear−1

and k = 4000m2 year−1. As expected, the lag is large over the oceans and small over
land masses. The features are smoothed by the diffusion operator in accordance with
the local length scale

√
D∕B. Figure 10.14b shows a contour map of the asymptotic

form for large values of time after the transients have died out, with the same parame-
ters employing a deep thermocline of about 1100m. Kim et al. (1992) used this deeper
thermocline depth in these experiments to enhance the land–sea contrast of the signal.
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Figure 10.14 (a) Contour map of the lag function 𝜏(r̂) for 𝑤 = 4 m year−1 and k = 4000 m2 year−1

(thermocline at 1100 m). (b) Contour map of the temperature field for the particular solution, Tp(r̂, t)
for the same parameters. These maps are the response without the transient terms to ramp forcing
F(t) = 𝛾t. (Kim et al. (1992). Reproduced with permission of Kim.)
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Figure 10.15 Global average temperature anomaly for a “business as usual” scenario with
𝑤 = 4 m year−1 and k = 2000 m2 year−1. Note that in this case the thermocline is at 600 m (mixed layer
plus the upwelling diffusion component depths = 100 m+𝓁). This simulation includes the land–sea
geography of the previous figure. (Kim et al. (1992). Reproduced with permission of Kim.)

Figure 10.15 shows the global average temperature for a case where the more shallow
thermocline is at 600m.This figure illustrates that the scenario needs to start from rest in
the middle 1700s because of the long timescales associated with the transient relaxation
times. Figure 10.16 shows the anomaly response including both transient and particular
solutions.

10.7 Influence of Initial Conditions

During the adjustment to the particular solution, there is a potentially long period dur-
ing which the initial conditions are important because of the amount of oceanwater that
has to be heated. The common thread in all of these solutions is the separation of the
homogeneous or transient solution from the particular or long-term solution. Recalling
(10.11), we see that in order to make the solution consistent at t = 0, the coefficient c1 in
(10.10) has to contain a term that will cancel the lag term in the particular solution for
the right-hand side to be equal to T(0). This same cancellation trick comes up again in
the UD ocean model for the step function as well as in the ramp-heating cases. In these
cases, the initial condition must involve the profile in the deep ocean as well as just its
value at the surface (see Figure 10.17).
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Figure 10.16 Temporal evolution of the anomaly field under F(t) = 𝛾t for a “business as usual”
scenario. In this case, the thermocline is at 600 m (mixed layer plus the upwelling diffusion component
depths=100 m+𝓁). (Kim et al. (1992). Reproduced with permission of Kim.)

In the case of the all-ocean planet, 𝜏(r̂) is a constant and from the terms in (10.63)
one must cancel the exponential profile (of water mass) which has coefficient 𝜏(r̂) and
the factor (z∕𝑤)ez∕𝓁 . Each of these terms will have a time constant of the order of the
relaxation time of the whole thermocline (approximately few decades). As mentioned
above, Morantine and Watts (1990) show that this has a complicated but closed-form
analytical solution. The transient solution will also contain the timescale of the mixed
layer alone, 𝜏m ∼ a few years.

10.8 Response to Periodic Forcing with Upwelling
Diffusion Ocean

In this section, we sketch the response of the UD Ocean to a periodic forcing at the
surface.The approach is similar to that in Section 10.2, the difference being the inclusion
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Figure 10.17 Vertical shapes of terms in the homogeneous solution that have to decay temporally in
order to satisfy the initial conditions before assuming the asymptotic forms (particular solution) for
various parameter values. (a) For 𝑤 = 4 m year−1, k = 4000 m2 year−1; (b) for 𝑤 = 4 m year−1,
k = 3000 m2 year−1; (c) for 3 m year−1, k = 4000 m2 year−1. Dotted lines are for 𝛼𝜏(r̂)ez∕𝓁 , dashed lines
are for 𝛼(z∕𝑤)ez∕𝓁 , and the solid lines are for the sum of the two. Aside from the response linear in
time, the solid line essentially is a particular solution for F(t) = 𝛾t. (Figure copied from Kim et al. (1992).
Reproduced with permission of Kim.)

of upwelling.The complete details (including land–sea geography) can be found in Kim
andNorth (1992).This problem is important because it allows us to compute the spectral
density of this model system under white noise forcing. We summarize the procedure
here for the all-ocean planet. Toward the end, we quote some results from published
papers that include geography.
The governing equations are the same as in the last section except that the forcing is

now periodic in time.The procedure is similar to that in Section 10.2, but the upwelling
term complicates the analysis. As in that chapter, we are interested in the steady-state
periodic solution as opposed to the transient solutions which die out after several char-
acteristic timescale intervals. We begin with the all-ocean planet. The details of this
section are from Kim and North (1992). As in Section 10.2, we substitute for T(z, t):

T(z, t) = T̃
𝜔
ei𝜔t+(𝜂+i𝜁 )z

, (10.65)

where 𝜔 is the angular frequency of the periodic forcing at the surface, and 𝜂 and 𝜁 are
the real and imaginary parts of the depth dependence in the exponential. After inserting
this form into the governing equations and the boundary conditions, we find a relation
between the parameters 𝜂, 𝜁 , and the angular frequency 𝜔:

i𝜔h +𝑤(𝜂 + i𝜁 ) = k(𝜂 + i𝜁 )2, (10.66)

or equivalently:

𝜔h = −𝑤𝜁 + 2k𝜂𝜁 ; (10.67)
0 = −𝑤𝜂 + k𝜂2 − k𝜁2. (10.68)
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At this point, it is convenient to normalize the variables to characteristic lengths (nom-
inally, the depth of the thermocline):

𝜂
∗ = 𝜂∕(𝑤∕k); 𝜁

∗ = 𝜁∕(𝑤∕k). (10.69)

Following this normalization, we drop the asterisks for simplicity. Then the previous
equations become

−𝜁 (1 − 2𝜂) = 𝜔kh
𝑤2 ≡ �̃�, (10.70)

−𝜂 + 𝜂
2 − 𝜁

2 = 0. (10.71)

Solving for 𝜂, we have a quartic equation with four roots for a given �̃�:

g(𝜂) = 4𝜂4 − 8𝜂3 + 5𝜂2 − 𝜂 = �̃�
2
. (10.72)

Recall that in the case with no upwelling (𝑤 = 0), the penetration decreases as the driv-
ing frequency is increased (𝜂 ∝ 𝜔

−1∕2). Figure 10.18 shows us that when the frequency
(squared) is zero, the penetration depth is at 𝜂 = 1.0 (the thermocline). As the frequency
is increased (dotted line) from 0.5 to 3.0, the penetration depth changes from 1.25 to
about 1.5 times the thermocline depth. In other words, the upwelling term induces quite
a different penetration structure. This result that the effective depth is close to the ther-
mocline might have been anticipated by the lag found in this model for ramp forcing
in (10.62) where the thermocline relaxation time is added to the relaxation time of the
mixed layer.
In the paper byKim andNorth (1992), themodel is developedwith full geography as in

the ramp-warming case of Section 10.6. In that paper, the seasonal cycle is updated with
the newUDocean and themodel is subjected to white noise in space as well as time.The
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Figure 10.18 The characteristic equation g(𝜂) versus 𝜂 in units of thermocline depth. The flat dotted
line is for the normalized frequency squared. (See also Kim et al. (1992). (© American Geophysical
Union, with permission).)
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Comparison of spectral density functions
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Figure 10.19 Spectral density functions of the global average temperatures: thick line, observations
(smoothed using a Parzen window); dashed curves, 90% confidence band of the smoothed spectra;
thin line with circles, response to the (upwelling diffusion model) coupled energy balance model with
noise forcing, white in space and time; thin line with solid squares, linear (the ocean is
mixed-layer-only) energy balance model response to a noise forcing that is white in space and time.
Each spectral density function is normalized such that the area under the curve between the
frequency of 0 and 6 is unity. The frequency 6 (2-month period) is the Nyquist frequency for the
observational data. Both models include the full land–sea geography. (Figure taken from Kim and
North (1992). (© American Geophysical Union, with permission).)

response to the noise forcing is shown in Figure 10.19 in the form of the spectral density.
In constructing model-generated spectral densities, the strength of the forcing variance
is arbitrary. We adjusted that strength to match the spectral density of the observations
in the frequency range from a few decades to a period of a few months. Here we gain
some insight especially whenwe consider low frequencies. At low frequencies, themod-
els only differ by about a factor of 2, the UDmodel having more power as expected than
themixed-layer-onlymodel.TheUDmodel has a penetration of heat only just below the
thermocline even at these very low frequencies. If upwelling is turned off in the infinitely
deep ocean model, the power in this graph would be unbounded at lowest frequencies.
This is a genuine difference between these two model structures.

10.9 Summary and Conclusions

In this chapter, we have considered a variety of oceanic models that are suitable for
energy balance climatemodel (EBCM) studies. Bymoving through a list of models, each
more complicated than the earlier one, we were able to uncover a number of features of
the models that are important for determining whether they might be useful for a par-
ticular application. The simplest of these is the single-slab model. It satisfies the most
elementary first-order linear ordinary differential equationwith purely exponential-type
solutions when it is unforced. There is a single timescale for this model, the radiative
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relaxation time of the slab. If found out of equilibrium, the solution returns to equilib-
riumwith this time constant. If themodel is forced at the top with white temporal noise,
it reveals a spectral density identifiable as classical red noise.
Before going to multiple slabs, we treated the vertically continuous model with ther-

mally diffusive transport of heat energy. If this is the only mechanism of vertical heat
transfer and if the ocean is infinitely deep, we find some rather peculiar properties.
The first is that the equilibrium solution is uniform in the vertical in disagreement with
observations where a cooling of water from the surface to the thermocline is observed at
a few hundred to a thousand meters. Another curious property of this model is that the
depth of the penetration is strongly dependent on frequency of the surface heating.The
penetration is inversely proportional to the square root of the frequency. Hence, low fre-
quencies can penetrate very deep into the ocean, giving rise to a likelihood of very large
power in the spectral density at low frequencies. In fact, if the radiation to space is made
very small, the spectral density diverges at low frequencies. At high frequencies, there
is another catastrophe, namely, the spectral density is of the pink-noise type (∝ 1∕𝜔),
which means it is not integrable – not as bad as white noise, but still not finite.
Numerous investigators have known of this problem for many years. The logical cure

that does not defy the EBCMframework and spirit seems to be to introduce an upwelling
term.Thebasis for such a radical idea is that cool salinewaters in the polar regions down-
well water that is cold compared to the waters above. This dense water slips under the
bulk of the abyssal waters, gradually lifting the waters above at a rate of a fewmeters per
year. This is the so-called UD model. But before taking it up, we showed how models
with two layers work. In this case, the layers are coupled with flux densities that are pro-
portional to the temperature difference. To be consistent with the discussion above, we
introduced an upwelling term as well. The solutions to this class are somewhat like the
single-slab model in that it is often convenient to separate the transient solutions from
the particular solution, which can often be identified as an asymptotic form for large
time. In this way, the problem has two parts. The transient solutions tend to die away,
leaving the asymptotic particular solution to emerge after all the transients have died
out. In the case of several slabs, there are time constants that can be related to each slab,
but as they are coupled, the time constants emerge as the inverses of eigenvalues. Even
if the coupling of the slabs is weak, the long timescales of the deep tend to linger in the
adjustment times, but we will find that the upwelling term limits the deep eigenvalues
to some extent.
Themost commonly desired product of interest throughout themodel hierarchy is the

response to a ramp-like forcing that would result from an exponential increase of CO2.
In this case, up and down through the hierarchy, one finds that after the transients have
died down, the temperatures in the response fall on a straight-line ramp. The response
temperatures lag behind the situation where there is no thermal inertia at the surface.
The lags can often be guessed by knowing the finite slabs or by solving for the contin-
uum solutions. We note one difference right away: the UD model leads to lags in the
asymptotic forms that suggest that the heat capacity of the thermocline might domi-
nate. This is in contrast to the case where the upwelling term is omitted. In that latter
case, the contribution of the very deep layers are more important. In the better-behaved
UDmodels, the asymptotic solutions are not too hard to extract from the equations.The
transient solutions are more difficult to obtain, especially if one seeks analytical forms.
Often, as we have seen in the UD models, the adjustment process to new conditions
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involves warming waters well below the surface and this can take a very long time. Is the
time taken for adjustment onto the ramp tens or hundreds of years? Modern coupled
GCMs suggest that it may be only a few decades until we are well into the ramp regime.
Oncewehave learned how to generate the solutions for theUDmodel for the all-ocean

planet, it is possible to extend it to the case where the land–sea geography is specified
as in the earlier chapters of this book. Solutions are of course dependent on parameter
choice and these are not uniquely determined (the nemesis of all climate models great
and otherwise). One easily sees that in the ramp-like scenarios, the land masses lead
the oceans and the lags are shorter on land as well, both results agreeing with data and
intuitively satisfying. The spectral density of these UD models driven by white noise in
space and time are interesting.They exhibit power at low frequencies, somewhat higher
than comparably generated solutions with a mixed layer. But the power at very low fre-
quencies is not much higher than one might expect. This interesting feature appears to
be limited to the lack of deep penetration of power in these models (contrasting with a
pure diffusion model). If true, this could mean that our current period of global warm-
ing might be forced (as opposed to natural variability driven by noise at the surface) as
many investigators seem to believe.

Exercises

10.1 (a) Determine the complete solution of a one-dimensional EBM with a sudden
impulse forcing

dT
dt

+ T
𝜏

= F0𝛿(t), (10.73)

where 𝛿(t) is the Dirac delta function.
(b) What is the initial temperature T(t = 0+) right after the forcing is applied?
(c) How long does it take for the initial temperature change to be reduced to an

e−1 (1/e) level?

10.2 (a) Obtain the solution of a one-dimensional EBM with a step forcing
dT
dt

+ T
𝜏

= 𝛾

C
H(t). (10.74)

Here 𝜏, 𝛾 , and C are constants, and the Heaviside step function is defined by

H(t) =
{

0, for t < 0,
1, for t ≥ 0. (10.75)

10.3 (a) Obtain the solution of a one-dimensional EBM with a ramp forcing
dT
dt

+ T
𝜏

= 𝛾

C
t, t ≥ 0, (10.76)

where 𝜏, 𝛾 , and C are constants. Assume that T(t = 0) = 0.
(b) Determine the lag between the solution and the linear forcing as time

approaches infinity.
(c) Let us further assert that the forcing levels at a constant value F0 = 𝛾t0∕C at

time t = t0. Find the complete solution of the problem.
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10.4 Let us consider a one-dimensional EBM on top of a diffusive ocean with an infi-
nite depth. Inside the diffusive ocean, temperature changes according to the heat
diffusion equation

C ∂T
∂t

= k ∂2T
∂z2

, (10.77)

where C is heat capacity and k is thermal diffusivity. At the top of the ocean,
energy balance is described as

A + BT + k ∂T
∂z

= Q, at z = 0 (ocean surface), (10.78)

where we essentially ignored the atmospheric column and assumed that the
atmospheric temperature is identical with the surface temperature of the ocean.
(a) Set up an equation together with the boundary condition for anomalous

temperature driven by additional sinusoidal forcing Q = Q
𝜔
ei𝜔t .

(b) Find the solution of the problem in Part (a).

10.5 Let us consider a two-layer EBM in the form

Cm
dTm

dt
+ BTm + k(Tm − Td) = F(t), (10.79)

Cd
dTd

dt
− k(Tm − Td) = 0, (10.80)

where the subscript “m” and “d” denote mixed layer and deeper layer, respec-
tively.
(a) Set up the equation as a system of coupled linear equations.
(b) Let us assume a homogeneous solution of the linear system in Part (a) in the

form T⃗ = A⃗ e−𝜆t . Determine the parameters 𝜆.
(c) Plot the decay timescale (inverse of 𝜆) and the angle between two

eigenvectors as a function of the coupling parameter k. Use ln k ∈
[−2, 2] (equivalently, k ∈ [0.01, 100]).

10.6 Let us consider an energy balance system for a diffusive oceanwith amixed-layer
at the top:

∂Td(z, t)
∂t

= k
∂2Td(z, t)

∂z2
, −h < z < 0, (10.81)

Cm
∂Tm(z, t)

∂t
+ BTm(z, t) − F↑(t), z = 0, (10.82)

where

F↑ = ck
∂Td(z, t)

∂z

|||||z=0

(10.83)

is the flux entering the mixed layer from below. Further, the boundary condition
is written as

∂Td(z, t)
∂z

|||||z=−h

= 0. (10.84)
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Derive the solution for a step forcing F(t) = F0 for t ≥ 0.

10.7 Let us consider an energy balance equation with a slab ocean:

C dT
dt

+ A + BT = Qap + 𝛾t,

where C = 9.7Wyearm−2 ∘C−1 represents the heat capacity of the mixed-layer
ocean which is approximately 70m deep and 𝛾t is a ramp forcing. Find the com-
plete solution.

10.8 Let us consider an ocean whose interior temperature is governed by a diffusive
process:

∂T
∂t

= K ∂2T
∂z2

, −h < z < 0,

∂T
∂z

= 0, z = −h.

(a) Explain the physical meaning of the boundary conditions.
(b) Obtain the solution of the problem.

10.9 Let us consider a UD ocean model in the form
∂T
∂t

= K ∂2T
∂z2

−𝑤
∂T
∂z

, −h < z < 0,

where 𝑤 is the upwelling speed.
(a) Calculate the vertical heat flux density for this model.
(b) Boundary conditions for anomalous temperature are given by

C ∂T
∂t

+ BT + C0

(
K ∂T

∂z
− wT

)
= 𝛾t, z = 0,

K ∂T
∂z

− wT = 0, z = −h,

where the ocean is assumed to be insulated from below. Non-
dimensionalize the governing equation using z∗ = 𝓁z and t∗ = 𝜏t.

(c) Find the complete solution of the problem.

10.10 Let us consider an UD ocean coupled with a two-dimensional EBM as a top
boundary condition:

∂T(r̂, z, t)
∂t

+𝑤
∂T(r̂, z, t)

∂z
= K ∂2T(r̂, z, t)

∂z2
, z ≤ 0,

C ∂T
∂t

+ BT − ∇ ⋅ (D∇T) −𝑤C0T + KC0
∂T
∂z

= F(r, t), z = 0,

T → 0, as z → −∞,

T(r̂, z, t = 0) = T0(r̂, z),
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where r̂ represents a point (𝜃, 𝜙) on the sphere, C is local heat capacity per unit
area, D is local horizontal diffusion coefficient in the atmosphere and the mixed
layer, B is the slope of the best linear!it for the infrared emission to space, 𝑤 is
upwelling speed, K is vertical heat diffusion coefficient, C0 is the heat capacity
of seawater per unit volume, and F(r, t) is radiative forcing.
(a) Show that thermal flux at the bottom of the mixed layer is given by

F↑ = 𝑤C0T − KC0
∂T
∂z

.

(b) Let us consider a ramp forcing F(r, t) = 𝛾tH(t), where H(t) is the Heaviside
step function. Let us consider the particular solution of the problem in the
form

T (p)(r̂, z, t) = 𝛼(𝛾t − 𝜏(r̂) + z∕𝑤)e𝛿z
.

Show that the lag 𝜏(r̂) satisfies

B𝜏(r̂) − ∇ ⋅ (D∇𝜏(r̂)) = C(r̂) + C0(r̂)∕𝛿,

where 𝛼 = 𝛾∕B and 𝛿 = 𝑤∕K
(c) Let us consider the radiative forcing in the form

F(r̂, t) = Ff (r̂)e2𝜋ift
.

Let us consider the solution in the form

T(r̂, z, t) = Rf (r̂) exp(2𝜋if (t − 𝜏(r̂))) exp((𝜂 + i𝜁 )z)
= Tf (r̂)e2𝜋ift e(𝜂+i𝜁 )z

,

where 𝜏(r̂) is the position-dependent temporal lag of the solution, 𝜂 and 𝜁

are constants determining the vertical structure of the solution, and Tf (r̂) is
a complex-valued amplitude. Determine 𝜂 and 𝜁 as a function of f .
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11

Applications of EBMs: Optimal Estimation

11.1 Introduction

An estimator is an algorithm making use of an observation or combination of
observations in order to provide a useful estimate of some system parameter such as
the global average temperature. In order to conduct such a procedure, we have to make
a statistical model of our process. Once we have a statistical model in place, we can
examine it and the estimation procedure to learn several things about the underlying
system parameter. Usually, the estimator is a random variable that has some probability
distribution (pdf ) due to errors in the measurement process or perhaps sampling
error. The following are some questions of interest: (i) does the mean of the pdf of the
estimator coincide with the actual value of the system parameter? If it does, we say the
estimator is unbiased. (ii) What is the variance of the estimator?The square root of this
variance is the standard deviation or root mean square error or RMS error.
EBMs can be of service in some estimation problems. The usefulness of an EBM for a

particular application comes in two forms:
1. Many estimation problems can be evaluated with the assistance of general circula-

tion model (GCM) simulations. In this chapter, we use the EBM to show how a few
of these work in the simpler context. In many cases with the EBM, we are able to
solve the problem analytically or nearly so. This puts aside the issue of whether the
more realistic model actually has a solution or whether it is over-fitted, and so on.
In this application, we can focus on the estimation process from its beginning to
its end without letting the details or mathematical transgressions cloud the picture.
The main point is the understanding of the estimation process in a simple and more
heuristic context. It might be that the lessons learned can be applied withmuchmore
complicated models.

2. There are some estimation problems where it might not be feasible to solve the prob-
lem in the more complicated models because of lack of computing or data resources.
For example, how many fully coupled GCMs have a 10 000 year control run with
which to assess the low-frequency statistical parameters of natural variability? How
can our intuition about such problems be enhanced? To paraphrase a statement by
John Maynard Keynes, “it might be better to have a rough idea of the truth than a
very precise [or satisfying] answer which is wrong.”
In a typical case, there may be many unbiased estimators for a given problem, often

combining lots of measurements, such as areal or temporal averages. Think of the

Energy Balance Climate Models, First Edition. Gerald R. North and Kwang-Yul Kim.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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estimate of the global average temperature. Wemight take gauge (point) measurements
from a number of different stations or perhaps other observing systems (e.g., satellites).
We suspect that if we simply average the data, then these averages might form an
unbiased estimate of the global average temperature. We might ask whether a straight
arithmetic average is actually the best unbiased estimator in terms of its RMS error.
Perhaps some nonuniform weighting would improve the estimate. This general class
of problems is the subject of this chapter. We will apply the method with the help of
the EBM to two different examples: Section 11.3 on estimating the global average tem-
perature; Section 11.4 on detecting faint deterministic signals (such as the greenhouse
warming or episodic cooling by volcanic dust veils) in the climate system.We start with
a simple problem involving two imperfect observations of a heat reservoir.

11.2 Independent Estimators

Consider estimating the temperature of a reservoir with two devices. Let the estimators
T̂1 and T̂2 be unbiased; that is, ⟨T̂1⟩ = ⟨T̂2⟩ = T where T is the true temperature, and ⟨⋅⟩
means ensemble average.
The individual estimators are assumed to be of the form T̂i = T+𝜀i; where the errors

𝜀i, i = 1, 2 are assumed to be random variables taking on different values in each real-
ization of the measurement process.The errors or noise are assumed to have mean zero
when considered over a large number of trials: ⟨𝜀i⟩ = 0, and the covariances of the errors
are given by ⟨𝜀i𝜀j⟩ = 𝜎

2
i 𝛿ij; i, j = 1, 2. The previous expression states that the errors of

the separate devices are assumed to be uncorrelated and that their individual variances
are given by 𝜎

2
1 and 𝜎

2
2 . We assume that these characteristics of the errors are known

beforehand. Our task is to take one realization of the measurement process and obtain
an optimal estimate of the true reservoir temperature. We wish to make maximal use
of the data collected from each device in an appropriate linear combination. The ques-
tion is, what is the appropriate weighting to assign to each measurement? We form the
estimate

T̂ = 𝛼T̂1 + (1 − 𝛼)T̂2, (11.1)

where 𝛼 is a weight to be adjusted to make the mean square error (MSE) the minimum.
The estimator T̂ is clearly unbiased if the individual estimators are. We can form the
MSE for the measurement as

𝜀
2 = ⟨(T̂ − T)2⟩ (11.2)
= (𝜎2

1 + 𝜎
2
2 )𝛼

2 − 2𝛼𝜎2
2 + 𝜎

2
2 . (11.3)

The latter is a quadratic in 𝛼 and is shown in Figure 11.1 for a choice of 𝜎2
1 = 2𝜎2

2 = 1.
The point of this figure is that the MSE is rather insensitive to the choice of 𝛼 so long as
it is near its optimum value.This is an important point to be stressed later in the climate
signal detection exercises.
Theminimum of the quadratic above is easily found, and it yields the familiar and very

important result:

T̂opt =
1
𝜂2

(
T̂1

𝜎
2
1
+

T̂2

𝜎
2
2

)
(11.4)
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Figure 11.1 Error squared 𝜀2 versus weighting 𝛼 for two unbiased estimators.

where

𝜂
2 = 1

𝜎
2
1
+ 1

𝜎
2
2
. (11.5)

The result is easily generalized to include K independent unbiased estimators:

T̂opt =
1
𝜂2

K∑
k=1

T̂k

𝜎
2
k

(11.6)

and

𝜂
2 =

K∑
k=1

1
𝜎
2
k

. (11.7)

An interesting way of expressing these last results is

T̂ (N)
opt = 𝚪 ⋅ T̂, (11.8)

with the column vector T̂ = (T̂1,… , T̂K ) and

𝚪kk′ = 1
𝜂2

𝛿kk′

𝜎k
2 . (11.9)

This last form gives us a convenient way of viewing the optimal estimation procedure
in the form of an optimal filter of the raw data. The filter loads each observation with
a weight inversely proportional to its individual error variance. The factor 1∕𝜂2 assures
the normalization necessary for unbiasedness.
After some algebra, it can be shown that the optimal error variance is just

𝜀
2
opt =

1
𝜂2

= 1∑
k

1
𝜎
2
k

. (11.10)

This shows that adding another device always improves the signal-to-noise ratio indica-
tor no matter how poor its quality.
The derivation presented above required that the individual errors be uncorrelated

with one another. If this were not so, the coordinate axes could simply be rotated to
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the principal axes of the error or noise covariance matrix. Then the entire formalism
goes through as before except in the rotated coordinate system. In climatology, this is
the transformation to the empirical orthogonal function (EOF) basis set, which we will
return to in later sections.
In two dimensions, this is easily spelled out explicitly. Let the covariance matrix of the

noise be given by

Cij = ⟨𝜀i𝜀j⟩. (11.11)

Taking the noise to be distributed bivariate normally, the contours of equal probability
of occurrence of pairs of values of (𝜀1, 𝜀2) are given by (see Thiébaux, 1994):

T2
1

𝜎
2
1
− 2𝜌

T1T2

𝜎1𝜎2
+

T2
2

𝜎
2
2
= constant, (11.12)

which is an ellipse in the (T1,T2) plane. In this two-dimensional case, we can find an
angle 𝜃 to rotate the coordinate axes through, such that the principal axes of the ellipse
coincide with new coordinate axes (T ′

1,T ′
2). In the new coordinate system, T ′

1 and T ′
2 are

uncorrelated. In the case ofK dimensions, the figure is an ellipsoid in theK-dimensional
space and a simple length-preserving rotation can also be used to find the appropriate
coordinate system.This rotation of the coordinate axes is familiar in data analysis as the
transformation from spatial coordinates to the EOF basis set.
The simple derivation of optimal weighting of independent estimators is familiar to

many researchers.The result is very intuitive.We simply weight each estimator inversely
according to its individual error variance.

11.3 Estimating Global Average Temperature

We will follow the method of Shen et al. (1994). The global average T
𝜏
(t) changes over

time and it is smoothed over an interval 𝜏 centered at t (it is a running average):

T
𝜏
(t) = 1

4𝜋∫4𝜋
T
𝜏
(r̂, t)d2Ω, (11.13)

where Ω refers to solid angle, r̂ is a unit vector originating at the Earth’s center and
pointing to a location on the sphere, and

T
𝜏
(r̂, t) = 1

𝜏 ∫
t+𝜏∕2

t−𝜏∕2
T(r̂, t′)dt′. (11.14)

An anomaly at point r̂ is defined by

ΔT
𝜏
(r̂, t) ≡ T

𝜏
(r̂, t) − ⟨T

𝜏
(r̂, t)⟩ (11.15)

and

ΔT
𝜏
(t) ≡ T

𝜏
(t) − ⟨T

𝜏
(t)⟩; (11.16)

and by definition, ⟨ΔT
𝜏
(t)⟩ = 0.
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The global average temperature at time t can be estimated for a given fixed network
of stations {r̂j, j = 1, 2,… ,Nnet}:

̂T
𝜏
(t) =

Nnet∑
j=1

𝑤jT𝜏
(r̂, t), (11.17)

and to ensure unbiasedness:
Nnet∑
j=1

𝑤j = 1. (11.18)

Our estimator is
̂T
𝜏
(t) = 1

4𝜋∫4𝜋
𝑤net(r̂, t)T

𝜏
(r̂, t)d2Ω, (11.19)

where

𝑤net(r̂) ≡ 4𝜋
Nnet∑
j=1

𝑤j 𝛿(r̂ − r̂j), (11.20)

and the MSE is given by

𝜀
2 = ⟨(T

𝜏
− ̂T

𝜏
)2⟩. (11.21)

After multiplying the factors together,

𝜀
2 = ∫4𝜋

d2Ω∫4𝜋
d2Ω′

[
1

(4𝜋)2
− 2

4𝜋

Nnet∑
i=1

𝑤i𝛿(r̂ − r̂i)

+
Nnet∑
i,j=1

𝑤i𝑤j𝛿(r̂ − r̂i)𝛿(r̂′ − r̂j)

]
𝜌
𝜏
(r̂, r̂′) (11.22)

and we have introduced the temporally smoothed covariance
𝜌
𝜏
(r̂′, r̂′′) = ⟨T

𝜏
(r̂′, t)T

𝜏
(r̂′′, t)⟩. (11.23)

To choose the optimal weighting coefficients, we need to use the method of Lagrange
multipliers (e.g., Arfken and Weber, 2005). We minimize the function

J[w]= 𝜀
2[w] − 2Λ

[Nnet∑
j=1

𝑤j − 1

]
, (11.24)

where 2Λ is a Lagrange multiplier.
Next, we take partial derivatives

∂J
∂𝑤i

= 0, i = 1,… ,Nnet (11.25)

and
∂J
∂Λ

= 0. (11.26)

After inserting the expression for 𝜀2 and rearranging, we find
Nnet∑
j=1

𝑤j𝜌𝜏(r̂i, r̂j) − Λ = 1
4∫4𝜋

𝜌
𝜏
(r̂, r̂i)d2Ω, i = 1,… ,Nnet;

Nnet∑
i=1

𝑤i = 1. (11.27)
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Our result is similar to the N thermometer case of the last section. The problem here
is that the temperatures at one location r̂ and another r̂′ are correlated. To proceed,
we need to know how to find variables that are not correlated. Thus the next section
introduces EOFs.

11.3.1 Karhunen–Loève Functions and Empirical Orthogonal Functions

Webegin by noting that 𝜌
𝜏
(r̂′, r̂) = 𝜌

𝜏
(r̂, r̂′) is a real symmetric function.1 Such functions

play an important role inmathematical analysis. Consider, for example, the kernel of the
integral in the eigenvalue problem2:

∫4𝜋
𝜌
𝜏
(r̂, r̂′)𝜓n(r̂′)d2Ω′ = 𝜆n𝜓n(r̂). (11.28)

This equation is in the form of a Stürm–Liouville system (introduced in Chapter 7).The
functions 𝜓(r̂) are the eigenfunctions for integer index n ∶ n = 1,… ,∞ and the 𝜆n > 0
are the (real and positive) eigenvalues. Properties of Stürm–Liouville systems can be
found inmost books onmathematicalmethods for physicists and engineers (e.g., Arfken
and Weber, 2005 and later editions). Additional properties include the orthogonality
relation:

∫4𝜋
𝜓n(r̂)𝜓m(r̂)d2Ω = 𝛿mn, (11.29)

and the completeness relation:
∞∑

n=1
𝜓n(r̂)𝜓n(r̂′) = 𝛿(r̂ − r̂′). (11.30)

The first of these tells us how to expand any reasonably well-behaved function3 on
the sphere into these basis functions. The functions which are the eigenfunctions
of the covariance kernel (11.28) are called the Karhunen–Loève functions (K-LFs).
They form a convenient basis set into which many useful decompositions might be
derived.
Consider developing the function G(r̂) into a series of these basis functions:

G(r̂) =
∞∑

n=1
Gn𝜓n(r̂). (11.31)

The coefficients Gn can be calculated from (11.29):

Gn = ∫4𝜋
G(r̂)𝜓n(r̂)d2Ω. (11.32)

The completeness relation (11.30) assures that any well-behaved function on the sphere
can be represented in the series.

1 TheWikipedia article, Karhunen–Loève Theorem, is particularly good on the K–L functions.
2 Note the similarity of the eigenvector equation for a finite-dimensional symmetric matrix.
3 Here, reasonably well behaved includes functions with discontinuities and discontinuous derivatives. For a
rigorous treatment of convergence in Fourier-like series, see Körner (1989).
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Using these relations, we find that a function such as 𝜌
𝜏
(r̂, r̂′) can be represented as

𝜌
𝜏
(r̂, r̂′) =

∞∑
n=1

𝜓n(r̂)𝜆n𝜓m(r̂′). (11.33)

We can insert this last expression into (11.22) to obtain a matrix equation for the MSE,
𝜀2(w). Inspection of the result reveals that the problem can be cast into the form of a
filter through which data in the form of correlation information can be entered. Shen
et al. (1994) proceed by expanding each EOF, 𝜓n(r̂), into a spherical harmonic4 series:

𝜓i(r̂) =
ntrunc∑
n=1

n∑
m=−n

a(i)
nmY (m)

n (r̂), (11.34)

where ntrunc is a truncation level, typically set at spherical harmonic degree 11 or 15 in
the experiments to be described.
Let us now ask why optimal weighting helps. The key is the understanding of how the

annual averaged surface temperature data are correlated from one location to another.
This was examined in an important paper by Hansen and Lebedeff (1987). Figure 11.2

Figure 11.2 Spatial autocorrelation
diagrams for annually averaged
temperatures at stations separated by
distances s. The solid lines are averages of
the scattered points. The vertical and
horizontal gray lines indicate the 1/e point
and their values on the abscissa. Note that
in the polar and mid-latitudes, the
correlation lengths are about 1500 km.
(Hansen and Lebedeff (1987). © American
Meteorological Society. Used with
permission.)
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4 Spherical harmonics are discussed in Chapter 8.
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shows scatter diagrams of the correlation of the annual averaged surface temperatures
in different latitude belts (the figure concentrates on the polar and mid-latitude belts;
tropical spatial autocorrelations are not well defined, but in general are much longer).
The correlations (on the average) fall off with separation distance to a level 1/e at about
1500 km.5
The tropical temperatures do not follow this scheme. The reason is that in polar and

mid-latitudes, the weather with autocorrelation times of the order of a few days drives
the surface temperature field, which, for large scales, has an autocorrelation time of the
order of weeks to a month over land and much longer over ocean. The conditions are
right for the Langevin approximation used in Chapter 9. However, in the tropics, there
is no weather noise and the dynamics smear out heat very quickly via direct circulations
rather than in a kind of thermal diffusion.
We follow Shen et al. (1994) here to show that a relatively small number of gauges or

sites (∼ 64) are needed to achieve pretty good accuracy for estimating the global aver-
age temperature. Figure 11.3 shows the MSE for several gauge configurations: 4 × 4, 6 ×
4, 9 × 7, a 63 stationwell-dispersed gauge network used byAngell andKorshover (1983);
and finally a 20 × 10 array. The EOFs (or K–LFs) were computed as indicated above
using a spherical harmonic basis truncated at degree 11 using the data itself, and using
the noise-forced 2-D model of Chapter 9. Figure 11.3 shows a graph of the MSE versus
the number of EOF modes retained (M) (the number of terms retained in (11.33)). This
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Figure 11.3 The mean squared error for estimation of the global average temperature as a function of
the total number of spherical harmonic modes retained. (Shen et al. (1994). © American
Meteorological Society. Used with permission.)

5 Longer time averages lead to longer autocorrelation lengths until an upper limit is reached: in the middle
latitudes this can be over 3000 km. See North et al. (2011).
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latter determines the dimension of the matrix problem. Note in the figure that the MSE
levels off at a particular value of M for each network configuration. Coarser networks
require more modes than dense networks.
To be complete, we must mention that the Shen et al. (1994) paper implicitly assumes

that there is no power beyond the truncation level of the spherical harmonic expan-
sion in the data. This is not quite true. But given the snugness of the fit in the figures,
this might not be a bad approximation when the data are smoothed by time averaging
(Figures 11.4 and 11.5).
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Figure 11.4 Plots of the temperature estimate based on only 16 geometrically symmetrically located
gauges (dashed line) together with the best estimate of the data from the UK CRU (Climate Research
Unit) data set. The EOFs used in the optical weighting were based on the UK data. (a) Uniform
weighting. (b) Optimal weighting. (Shen et al. (1994). © American Meteorological Society. Used with
permission.)
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Figure 11.5 Similar to Figure 11.4 except for the 63 well-dispersed Angell–Korshover network. Note
that the agreement is nearly perfect for the optimal weighting case. (Shen et al. (1994). © American
Meteorological Society. Used with permission.)

11.3.2 Relationship with EBMs

So what does this have to do with EBMs? The answer lies in the functional form of
the spatial autocorrelation functions in Figure 11.2. We can compare with Figure 11.6,
where the annually averaged data are from Siberia.The autocorrelation length in the lat-
ter figure is about 50% larger than in Figure 11.2. Both are based on annually averaged
data. The reason for the longer autocorrelation length is that the latter figure is over a
land mass, while the data from Hansen and Lebedeff are mixed over land and ocean.
Ocean correlation lengths for annually averaged data are shown in Figures 9.8 and 9.9.
From Figure 11.7, we can see that over land, where 𝜔𝜏 ∼ 2𝜋∕12 ∼ 0.5, the autocorrela-
tion length r∕𝜆 ∼ 1.8, whereas over ocean, where𝜔𝜏 ∼ 2𝜋 × 5 ∼ 30, and thus r∕𝜆 ∼ 0.5.
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Figure 11.6 Scatter diagram of spatial autocorrelation data from eastern Siberia. The data were
annually averaged. The solid curve is based on the well-known model form rK1(r), where r is the
separation of stations in kilometers, K1(⋅) is the modified Bessel function of the second kind and of
degree unity (see Arfken and Weber, 2005), and the broken line is the average over the sample
estimates. (North et al. (2011). © American Meteorological Society. Used with permission.)
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Figure 11.7 Theoretical (noise-forced EBM-based) spatial autocorrelation for different angular
frequencies 𝜔. The relaxation time for the surface is 𝜏 (typically, a few years for a mixed-layer model)
and 𝜆 is the characteristic length scale for 𝜔 = 0. Over land, the characteristic length (2𝜋∕12 ∼ 0.5) is
roughly twice the low-frequency limit over ocean (2𝜋 × 5 ∼ 30). (North et al. (2011). © American
Meteorological Society. Used with permission.)
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Hence, the autocorrelation length for all-land areas is large, while that over ocean is
smaller, as suggested in both data and models of Figures 9.8 and 9.9.

11.4 Deterministic Signals in the Climate System

The problem of detecting climate signals in the noisy background was first advanced by
Hasselmann (1979), but also seeHasselmann (1993, 1997). In this section, we take on the
problem of detecting a faint signal in the noisy background of the climate system using
a two-dimensional EBM. By signal, we mean a deterministic pattern in space–time—a
response to a forced energy imbalance. The noise here is the natural variability as in
our noise-forced EBMs of Chapter 9 or the natural variability in a GCM simulation.The
statistical model we have in mind is that the data are a linear sum of signal and noise:

D(r̂, t) = 𝛼S(r̂, t) + N(r̂, t). (11.35)

This would be true in the EBM world of a linear-sampled diffusive model driven by
stationary random noise. It appears to be true also for large GCMs if 𝛼S(r̂, t) is small
enough. We have included a coefficient 𝛼 in front of the signal because we usually want
to estimate the strength of the signal. In many applications, we know the space–time
shape of the signal, but we do not know how strong it is. Often, the strength of such a
signal depends on feedback factors that are only poorly known. We begin with a single
signal and its characterization. To begin our discussion consider a sinusoidal wave in
one dimension:

S(t) = s(+) 1√
2
cos𝜔t + s(−) 1√

2
sin𝜔t. (11.36)

The coefficients s(+) and s(−) determine the amplitude and phase of the wave. We can
characterize the signal as a vector in a two-dimensional space:

S = s(+)e1
(+) + s(−)e1

(−), (11.37)

where e(±)
1 are orthogonal unit vectors in the plane. The above result can, of course, be

generalized to any number of dimensions, if, for example, the signal is composed of
many harmonics. For example,

S(t) = s0 +
n=N∑
n=1

(
s(+)n

1√
2
cos n𝜔0t + s(−)n

1√
2
sin n𝜔0t

)
. (11.38)

Then the vector representation of S(t) is

S =
(

s0; s(+)1 , s(−)1 ; s(+)2 , s(−)2 · · ·
)

(11.39)

or

S =
N∑

n=0

(
s(+)n e(+)

n + s(−)n e(−)
n

)
. (11.40)

Hence, if the signal is composed of N harmonics, there will be 2N + 1 coefficients rep-
resenting the amplitude and phase of each, with the exception of the zero-frequency
harmonic which has no phase.
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11.4.1 Signal and Noise

The additive noise can also be decomposed into frequency components (dropping the
awkward (+) and (−) superscripts)

N = n1e1 + n2e𝟐. (11.41)

In this case, the components n1, n2 are random variables and uncorrelated. (If they were
correlated, wewould rotate the axes to new coordinates such that there is no correlation;
that is, in climate, we would use the EOF basis set.) For each realization of the process, a
new value of n1 and n2 must be drawn from a distribution function and the distribution
of n1 and that of n2 are independent. If the same frequency component of noise is added
to that of the signal, we can write

D = (s1 + n1)e1 + (s2 + n2)e2, (11.42)

where we have used D to indicate “data.” It is worth noting that if the noise process is a
stationary time series, the noise from one frequency component to another is uncorre-
lated. Hence, in this simple case, no rotation is required.
In all the applications that follow, we assume the signals are linearly added to one

another and to the natural variability background (the “noise”).We are now in a position
to form some estimators of interesting quantities. For example, an unbiased estimator
of s1 is simply e1 ⋅ D, as ⟨n1⟩ = 0 and thus ⟨e1 ⋅ D⟩ = s1.

11.4.2 Fingerprint Estimator of Signal Amplitude

A common problem in climatology is that we know the waveform of the signal (in the
above example, the frequency and phase) but want to know its strength. In other words,
we know the direction of the signal vector (indicated by the unit vector eS ≡ S∕|S|). An
unbiased estimator of S ≡ |S| is

Ŝrf = eS ⋅ D (11.43)
= eS1D1 + eS2D2 (11.44)

=
s1D1

S
+

s2D2

S
, (11.45)

where the subscript “rf” indicates “raw fingerprint.” In other words, we find the length of
the component of the data vector which lies along the direction of S.The raw fingerprint
estimator has an MSE

𝜀
2
rf =

s21𝜎
2
1 + s22𝜎

2
2

s21 + s22
. (11.46)

The raw fingerprint method is very easy to implement and has attracted some users. On
the other hand, it does not take advantage of the fact that 𝜎2

1 and 𝜎
2
2 might be quite differ-

ent. Hence, wemight want to weigh the information from the two component directions
optimally. The way to do this is presented in the next section.

11.4.3 Optimal Weighting

Consider a two-dimensional case in which we do know the direction of the signal vector
(eS) and the angle 𝜃1 that it makes with the e1 axis.Then we can write for the component
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of S along the e1 axis:

s1 = |S| cos 𝜃1
= S cos 𝜃1
= Se1 ⋅ eS, (11.47)

or

S =
s1

e1 ⋅ eS
. (11.48)

If there were no noise, we could calculate S by first obtaining its component in the e1
direction from data, then dividing by the direction cosine of the known signal vector
and the e1 axis. This means we can form an unbiased estimate of S:

Ŝ(1) =
e1 ⋅ D
e1 ⋅ eS

(11.49)

(note that ⟨Ŝ(1)⟩ = S). Hence, the data vector is to be projected along the 1-axis and
inversely weighted by the direction cosine of the signal vector to the 1-axis. This unbi-
ased estimator of S has an error variance of

𝜀
2
1 =

𝜎
2
1

(e1 ⋅ eS)2
. (11.50)

But we have many statistically independent unbiased estimators of S, one for each com-
ponent direction. The problem has been reduced to the same one as the thermometers
in the reservoir analyzed at the beginning of this section. Hence, the optimal estimator
of S is

Ŝopt =
1
𝛾2

K∑
k=1

(eS ⋅ ek)(ek ⋅ D)
𝜎k2

, (11.51)

=

{
1
𝛾2

K∑
k=1

(eS ⋅ ek)ek

𝜎k2

}
⋅ D, (11.52)

with

𝛾
2 =

K∑
k=1

(eS ⋅ ek)2

𝜎k2
. (11.53)

In the last expression for Ŝopt, we show the data vector D factored out to emphasize that
the procedure is a linear operation or projection of the data vector; hence, the term filter.
Each term in the expression for the filter is an independent estimator for the signal’s
component along EOFk , and each estimator is inversely proportional to the variance 𝜆k ,
as this variance is the eigenvalue of the corresponding EOF.
The matrix form of (11.53) will occur later:

𝛾
2 = eS ⋅

{ K∑
k=1

ekek

𝜆k

}
⋅ eS. (11.54)

The form 𝛾2 is a kind of indicator of the signal-to-noise ratio squared. The numerator
of each term is the projection the signal onto the EOF (ek) squared. The denominator
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is the variance corresponding to the natural variability of that EOF mode. Presumably,
this series converges, but one must consider that the denominator will decrease toward
zero because the EOFs are ordered by the magnitude of the eigenvalues. On the other
hand, the numerator should tend toward zero as well, as the projection of the signals on
the EOFs should diminish as the mode indices increase. The convergence will depend
on the problem being investigated. In the case of signal detection in the climate system,
we will see that the convergence is satisfactory.
Let us recall a few key assumptions. First and foremost, we assumed the linear addi-

tivity of the signal and the noise. This is likely to hold for weak signals that we expect
in climate change problems. We have used the principal component directions of the
natural variability to formulate the problem from the beginning; that is, we chose the
coordinate axes to be the principal axes of the covariance ellipsoid of the noise vec-
tor. We had to assume knowledge of the direction of the signal waveform, and this had
to be based on a model estimate itself. Our job is to estimate its strength given this
information.
The quantity 𝛾2 is an a priori measure of the quality of the procedure, as for a signal

strength of unity, the signal-to-noise ratio is squared. We can use 𝛾2 as computed with
models to tell which vector components are most important in the estimation problem
without really invoking the data.This is very important as we can use our climatemodels
to condition our choice of the subspace within which we can make a reliable estimation
of signal strength without involving the data (cheating).
Consider the error involved in the use of imperfect models in constructing the filter.

The first type of error is in choosing an incorrect fingerprint. In the present context,
this means the vector eS has the wrong direction in the state space. An equivalent state-
ment is that the direction cosines eS ⋅ ei are incorrect. The single constraint is that the
squares of the direction cosines must add up to unity. An incorrect fingerprint can lead
to a bias in the estimation of the signal strength. For this reason, it is well to find ways
to eliminate aspects of the model-predicted signal which may lead to incorrect signal
waveform prediction. This could be done by eliminating certain subspaces of the state
space, but this is probably not a good approach as the EOFs are very irregular functions
over the globe and it is not easy to relate these shapes to the areas that we know are weak
in signal generation. Instead, it might be better to mask off certain regions on the globe,
such as the polar regions where we know the models perform poorly. Once we have
masked off certain areas (with tapered edges), we completely redo the problem includ-
ing the EOFs on the newly masked planet. We do not pursue this possibility further
in this book.
Another type of error comes from the optimal weights as generated frommodels.This

type of error is less egregious than error in the signal waveform. Since the estimator is
composed of K independent estimators which are assumed to be unbiased, the weight-
ing does not introduce a bias. If erroneous, they can lead to a suboptimal estimator.
In addition, they can lead to an underestimation of the theoretical MSE (𝛾2). It turns
out that as the minimum in the MSE as a function of the weights is the minimum of a
multidimensional parabolic surface (actually, the intersection of this parabolic surface
with the plane

∑
i𝑤i = 1), the MSE is not sensitive to the exact choice of the weights

(Δ𝜀2 ∼ (ΔW )2).
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11.4.4 Interfering Signals

Following North and Wu (2001), four signals have been identified for climate signal
detection. These are A, the cooling due to atmospheric aerosols; G, the greenhouse
warming signal; V, the volcanic dust veil episodic cooling; and S, the solar cycle. Con-
sider the case of two signals. If the unit vectors describing them are not orthogonal, we
have to do some additional filtering. Suppose the signals G (the greenhouse gas signal)
and A (the aerosol particle signal) are turned off.Wewant estimates of the amplitudes of
S (the solar change signal) and V (the volcanic dust veil signal). Let us start with S. If the
direction of S and interfering signal V (i.e., their space–time patterns or fingerprints)
are known, we can obtain independent estimates of their strengths by estimating the
components of each which are perpendicular to the other. For example, consider the
component of S which is perpendicular to V:

S
⊥V = (𝟏 − eV eV ) ⋅ S, (11.55)

= S − eV (eV ⋅ S), (11.56)

where eV ≡ V∕|V| is a unit vector alongV. Hence, using this projection procedure (oper-
ator), we can nowproceed to estimate the strength of S

⊥V and therefore find the strength
of S, as S = |S

⊥V |∕
√
1 − (eS ⋅ eV )2. The problem, of course, is that S

⊥V will be shorter
than S with a corresponding loss of performance (signal-to-noise ratio = S ⋅ eV ) in the
procedure.
We can now use the same procedure to find the length of V

⊥S and therefore the length
of V. As a consistency check, we could then proceed to look at the parallel components
if each signal, which, in principle, are now known.

S∥V = eV ⋅ S, (11.57)
V∥S = eS ⋅ V. (11.58)

It is of interest to know the angle between S and V,

𝜃S,V = arccos(eS ⋅ eV ). (11.59)

If the two signals are orthogonal to one another, there is no interference. If there is a
significant alignment or anti-alignment of the two signals, there will be trouble discrim-
inating between them. This condition is known in multiple regression as collinearity.
If the length and direction of the interfering signals are both known, we have an unbi-
ased estimator of the length of S

⊥V , which when divided by
√
1 − (eS ⋅ eV )2 becomes an

unbiased estimator of S. We can optimally combine this with the independent estimate
based upon the parallel component which can be found by first subtracting (the known)
V∥S from the data stream.
Some interesting examples of the angles between signal vectors are given in North

and Stevens (1998) for a narrow band of eight discrete frequencies centered at a period
of one decade. In Table 11.1, we see that most of the combinations of the four signals (in
the narrow frequency band used by North and Stevens) the vectors are reasonably per-
pendicular except for G andA.This latter is hardly a surprise as these two vectors clearly
are nearly anti-collinear expressions of linear global warming from the greenhouse effect
and a similar linear cooling effect due to aerosols.
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Table 11.1 Angles between possible pairs of
signal vectors.

Vector pair Angle (∘)

S ⋅G 77.9
S ⋅ V 88.0
S ⋅ A 101.0
V ⋅ A 84.2
V ⋅ G 93.8
G ⋅ A 153.3

North and Stevens (1998).

11.4.5 All Four Signals Simultaneously

We can cast the problem in the following form:

Tdata
m =

4∑
s=1

𝛼sS
(s)
m + Nm, (11.60)

where the subscript m is an index running over all space–time points in the record. For
instance, in the published papers North and Stevens (1998), and North and Wu (2001),
the numbermay be 100 years (of annual averages)× 36 sites (see Figure 11.8). North and
Wu (2001), used several different space–time combinations.
The problem has been discretized for i = 1, 2,… , 36 stations, and j = 1,… , 100 time

steps (see Figure 11.8). We have introduced the notation S(s)(r̂i, tj), s = 1, 2, 3, 4 for
the four signals. The 𝛼s are the four unknown coefficients that are to be estimated from
the data stream. N(r̂i, tj) is a Gaussian random field denoting the so-called natural
variability. In order to build a set of statistically independent estimators of the 𝛼s, we use
space–time EOFs (we will refer to them as EOFs from here instead of Karhunen–Loéve
functions). These are the eigenvectors of the space–time 3600 × 3600 covariance
matrix:

Kmm′ = ⟨NmNm′⟩. (11.61)

The angular brackets here imply an infinite-member ensemble average. Since we obtain
these EOF basis vectors from very long runs of GCMs (or stochastic EBMs), we can
assume the sampling errors in taking these averages are negligible. The eigenvector
problem is posed as follows:

∑
m′

Kmm′𝜓
(k)
m′ = 𝜆k𝜓

(k)
m , (11.62)

where 𝜓 (k)
m is the kth eigenvector and 𝜆k is the corresponding (positive and real) eigen-

value. In what follows, we assume the 𝜓 (k)
m and the 𝜆k are not random numbers because

of the large number of realizations in determining them. The first step is to expand all
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Locations of 72 detection boxes
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Figure 11.8 Black squares showing the 36 stations used by North and Stevens (1998). Each of the 36
10∘ × 10∘ detection boxes comprised of four 5∘ × 5∘ boxes from the Climate Research Unit (UK) data
set, each of which has 1200 months of data (1894–1993). These boxes were chosen based on where
there was sufficient data, spatial sampling was maximized, and correlation between boxes was
minimized. The sites designated by black disks were added by North and Wu (2001). These latter each
contain 50 years of data. (North and Wu (2001). © American Meteorological Society. Used with
permission.)

quantities in (11.60) into the eigenvectors.

Nm =
∑

k
Ñ (k)

𝜓
(k)
m ; Ñ (k) =

∑
m

Nm𝜓
(k)
m , (11.63)

S(s)
m =

∑
k

S̃(k)
s 𝜓

(k)
m ; S̃(k)

s =
∑

m
S(s)

m 𝜓
(k)
m , (11.64)

Tdata
m =

∑
k

T̃data
k 𝜓

(k)
m ; T̃data

k =
∑

m
Tdata

m 𝜓
(k)
m . (11.65)

To summarize, in what follows, the S(k), S(s)
m , 𝜓

(k)
m , and 𝜆k are not random variables.

Because of sampling error in the actual data record, the quantities Nm, Ñ (k),Tdata
m , T̃data

k
are randomvariables.The Ñ (k)

k are zeromean, normally distributed variates representing
natural climate variability with the property

⟨Ñ (k)Ñ (k′)⟩ = 𝜆k𝛿k,k′ , (11.66)
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which means that when referred to the EOF basis set, the Ñ (k) are uncorrelated from
one component to another. After multiplying (11.60) through with 𝜓

(k)
m and summing

over m we arrive at

T̃data
k =

4∑
s=1

𝛼sS̃
(k)
s + Ñ (k). (11.67)

The last equation indicates that the equations for k = 1,… are statistically independent
of one another.Wewould like tomake estimates of the strength coefficients as a function
of the number of EOFs retained, K . We can make this into a standard regression model
by first normalizing the errors to white noise:

𝜖 = Ñ (k)√
𝜆k

= N̆ = T̆ data
k −

4∑
s=1

𝛼sS̆
(k)

s , (11.68)

where the ̆ implies that the variable is divided by
√
𝜆k . Now we form the MSE and

minimize it with respect to 𝛼s. What we understand by “mean” here is

⟨(⋅)k⟩K = 1
K

K∑
k=1

(⋅)k; (11.69)

K∑
k=1

ss′𝛼
(K)
s′ = ⟨S̆ (k)

s T̆ data
k ⟩K , (11.70)

with

ss′⟨
S̃(k)

s S̃(k)
s′

𝜆k
⟩K = 1

K

K∑
k=1

S̃(k)
s S̃(k)

s′

𝜆k
. (11.71)

Now we can invert the matrix to obtain our estimator:

�̂�
(K)
s =

4∑
s′=1

(−1)ss′⟨S̆ (k)
s′ T̆ data

k ⟩K . (11.72)

It is important to realize that K has to be larger than or equal to 4, otherwise the matrix
 will not have an inverse. As expressed in the conventional notation of unnormalized
variables,

�̂�
(K)
s =

4∑
s′=1

(−1)ss′

K∑
k=1

S̃ (k)
s′ T̃data

k

𝜆k
. (11.73)

This last is our optimal estimator of the four signal strengths. The above derivation is
equivalent to a multiple regression model with four unknown coefficients. The value
of our approach or decomposition is that it provides the solution as a function of the
number of EOFs retained in the analysis as we will see later in the numerical example
from North andWu (2001). If the estimates are stable as the value of K is increased, we
have more confidence in the procedure. This might not always be the case as some of
the series leading up to K terms have 𝜆k in the denominator. This is a problem because
the eigenvectors (EOFs) and their eigenvalues are traditionally arranged in descending
order as a function of k. Hence, 𝜆k is likely to approach zero as k → ∞. This is always a
problem in optimal estimation as can be seen in the simple case of K thermometers.
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11.4.6 EBM-Generated Signals

A persistent problem in detection and attribution problems is to accurately character-
ize the signals. In GCM studies, one can run many realizations of perturbed runs with
only a single forcing applied, then average across the realizations to obtain the signal
fingerprint in space–time. Presumably, the natural variability cancels out and one is left
with the bare signal. In linear EBM studies, one can simply turn off the noise forcing
and the signal will be evident (Figure 11.9). All of the four forcings can be superimposed
because the problem is taken to be linear with no time-dependent coefficients (Figure
11.9d).This is the method used by Stevens and North (1996), North and Stevens (1998),
and North and Wu (2001). The natural variability statistics can be gathered from long
control runs from a GCM (usually a 1000 years or so) or EBM (Stevens calculated EOFs
for a 10 000 year control run).6
Before proceeding, it is useful to show how the North andWu (2001) signals compare

with four realizations of a GCM (HadCM2) (dotted line in Figures 11.10–11.12) of the
same era and observational data (light solid line in the same three figures) which include
natural variability. In the same figures, the heavy solid line represents the evaluation of
the EBM greenhouse signal (reduced by the factor 𝛼G = 0.65 to conformwith our results
shown in this section). Each box in the three figures represents one of the 36 boxes used
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Figure 11.9 The four global average
forcings. The abscissa is time in years. The
ordinate for each panel is watts per meter
square. (a) The solar cycle signal. (b) The
stratospheric aerosol remaining in the
stratosphere following volcanic eruptions.
(c) The greenhouse and tropospheric
aerosol forcing. (d) The sum of all four
forcings globally averaged. (North and
Stevens (1998). © American Meteorological
Society. Used with permission.)

6 There is a huge literature on signal detection and attribution using GCMs for signals as well as natural
variability. Each of the recent Reports of the International Panel on Climate Change (IPCC), The Physical
Science Basis (Working Group I WGI) reports has a chapter on detection and attribution with many
references to the recent literature. Copies of such reports are available at: http://ipcc.ch.
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Figure 11.10 Each panel shows modeled and observed time series from a different observational site
as indicated in Figure 11.8. The greenhouse gas signal from the EBCM (thick solid line) has been
multiplied by 0.65 (in conformity with our detection results). The dotted line is an average across a
four-member ensemble of HadCM2 forced by greenhouse gases (also multiplied by 0.65 to conform
with our detection results). Observational data from Jones are shown by the thin solid line. (North and
Wu (2001). © American Meteorological Society. Used with permission.)

in the analysis (Figure 11.8). Note the natural variability about the heavy black curve,
indicating natural variability (see caption in Fig. 11.10). Also note the agreement of the
(scaled) shape of the EBM curve versus the HadCM2 curve. Note also that if the average
over the four realizations is taken to be the signal used in a detection study, there will
still be a fair amount of noise in the signal pattern. Being satisfied with the space–time
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Figure 11.11 Continued from Figure 11.10. (North and Wu (2001). © American Meteorological Society.
Used with permission.)

pattern as shown in the three figures, in what follows, we will use the EBM to generate
the four signals.
The signals used in the North and Wu (2001) paper were taken from earlier work in

a dissertation by Stevens (1997). We show here a few figures which illustrate the time
dependence of the signals. Figure 11.9 shows the global average signal (actually the aver-
age over the 36 boxes shown as black squares in Figure 11.8. The topmost panel shows
the faint solar signal, the next lower is the stratospheric aerosol signal from volcanic
particles left after eruptions. The sharp dips going backward in time are Mt Pinatubo in
1992, then El Chichon, thenMtAgung.Thenext lower panel shows both the greenhouse
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Figure 11.12 Continued from Figure 11.11. (North and Wu (2001). © American Meteorological Society.
Used with permission.)

gas and tropospheric aerosol signals. Note the anti-collinearity of these two global sig-
nals, making it very difficult to discriminate between them in a detection scheme. The
lowermost panel shows the time dependence of the sum of all four signals.
Figure 11.13 shows the same 36 stations. In this figure, signals are band-pass filtered

in what Stevens called the “solar band,” a frequency band straddling the frequency 1/10
year−1.The squares of the real and imaginary parts of the Fourier frequency components
are shown as columns above the stations.The amplitude is the square root of the sum of
these two parts (site by site). Note that both of the imaginary parts are dominant over
the real parts. This simply means that the phase lag is nearly 𝜋∕2, as expected from a
gradual temporal increase in the signal.The important thing about this figure is that the
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Figure 11.13 The real and imaginary parts squared for the Fourier component of the greenhouse gas
forcing (a) and the tropospheric aerosol forcing (b). The Fourier frequency component is at a period of
one decade. The imaginary part dominates in both upper and lower panels, suggesting that the phase
lag is 𝜋∕2. The important point is that there is considerable asymmetry between the two hemispheres,
suggesting a good possibility of discriminating between the two signals. (North and Stevens (1998). ©
American Meteorological Society. Used with permission.)

two panels show a strong asymmetry between the hemispheres.This asymmetry should
assert some discriminating power between the two signals and help us to distinguish
one from the other in our detection process.

11.4.7 Characterizing Natural Variability

When Stevens selected the 36 boxes of Figure 11.8, he tried to space them so that there
was as little correlation as possible. If there were no correlation, the 36-dimensional
vector with unity in position one and zeroes elsewhere would be the first normalized
EOF, and so on.This suggests that only a small rotation of the natural variability field will
be necessary to generate the EOFs. Itmight alsomean that the procedurewill not be very
sensitive to our choice ofmodel-generated fields to use in our study.Nevertheless, North
andWu (2001) decided to use not only the EBM-generated EOFs but also to use several
(one 1000 year run from the Max Planck Institute (ECHAM1/LSG), two 1000 year runs
fromdifferentGFDLmodels, and one 1000 year run from theHadleyCentre (HadCM2))
GCM-generated sets. We could then compare them to see if there is much difference.
Recall that even if we do not use the best set, we do not bias the result, but our estimate
might be slightly suboptimal with respect to error variance with our estimators. That
comparison will be indicated in the figures to follow in this chapter.
With four signals, it is best to recognize that the problem is equivalent to multiple

regression for the signal amplitudes. The filter formalism we have used so far gets more
complicated because wemustmake sure that for each of the four signals, the other three
have no component parallel to that which is passed through and optimally weighted. On
the basis of standard multiple regression analysis, the optimal estimator for a particular
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�̂�s is given by

�̂�s =
∑

s′

[
(ST ⋅ W ⋅ S)−1

]
ss′S

T WTdata, (11.74)

where s, s′ = (G,A,V , S). In (11.74), the quantity S is a diagonal matrix with diagonal
entries given by the components of the signal vector. The matrix Wmn = 𝜆−1n 𝛿mn is the
inverse space–time lagged covariancematrix of the natural variability in its EOF or diag-
onal form, W = K−1, where K is the covariance matrix. It forms a metric tensor in space
(Hasselmann, 1993; also see the Appendix of North and Wu, 2001).
The formalism leads to a similar expression to that of the single-signal case:

𝛾
2
ss′ =

∑
n

SsnSs′n

𝜆n
. (11.75)

The matrix 𝚪 can be formed as the array of the 𝛾2ss′ ,

𝚪ss′ = 𝛾
2
ss′ . (11.76)

Then the covariance matrix of the estimators �̂�s and �̂�s′ is just

cov(�̂�s, �̂�s′ ) = (𝚪−1)ss′ . (11.77)

11.4.8 Detection Results

The results of the North andWu (2001) paper are compactly summarized in chart form
in Figure 11.14.This graphic shows the results for a total of five experiments, the asterisk
indicating that the estimate is based on 20 tropical stations with 100 year records. The
× symbol indicates the 36 stations and 100 years of data as in the previous figure. The
◊ symbol indicates that the experiment was for 43 stations—20 with 100 years record
and 23 with only 50 years; the △ symbol indicates the experiment was conducted with
72 stations—36 with 50 years record and 36 with 100 years records; ○ is based on 72
stations with 50 years of data (1944–1993). The error bars in the figure represent a 90%
confidence region. If an error bar reaches below the dotted line (zero) the corresponding
𝛼 coefficient is not significant at the 90% level. The clusters labeled GFCLc, GFDLml,
EBCM, ECHAM1/LSG, and HadCM2 are used to indicate that these experiments were
conducted with the EOFs generated from long (usually 1000 years, but 10 000 years for
the EBM).
We can examine each row individually to sort out the main features.The top row rep-

resenting the detection of the solar cycle shows quite a few dips below the dotted line,
indicating that in many experiments it was not significantly different from zero (i.e.,
the zero-amplitude hypothesis could not be rejected). As we scan the different natural
variability choices, we see there is rather good consistency; further, it is the rightmost
experiment with only 50 years of data that is most unstable, which is hardly surprising
because temporally, less data have been included (less than five solar cycles).The green-
house gas (second) row shows very tight error bars and the estimates of the G-signal
strength seem very robust across the different experiments and across the different
choices of natural variability. The volcanic signal (third row) shows wider error bars but
with unanimous statistical significance. There are not that many volcanic events in the
record. Finally, the fourth row showing the aerosol signal strength shows many overlaps
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Figure 11.14 Estimates of signals using natural variability from GFDLc, GFDLml, EBM, MPI, and
HadCM2, and using the EBM-generated signals for G, V,A, and S. This graphic also shows the results for
a total of five experiments. The asterisk indicates that the estimate is based on 20 tropical stations with
100 year records. The × symbol indicates that 36 stations and 100 years of data as in the previous
figure. The ◊ symbol indicates that the experiment was for 43 stations—20 with 100 year records and
23 with only 50 year records; the △ symbol indicates the experiment was conducted with 72
stations—36 with 50 year records and 36 with 100 year records; ○ is based on 72 stations with 50 years
of data (1944–1993). (Figure from North and Wu (2001). (©Amer. Meteorol. Soc., with permission).)

with the zero line and very unstable results across all possible configurations. Each esti-
mate seems to have very precise error bars, but there is strong dependence on all factors.
We would have to conclude that no aerosol signal has been detected.
Next consider the ellipses in Figure 11.15 which represent the different elements of

Γss′ , the covariance of the estimators for signals s and s′. Look first at the upper left
corner. The collinearity of G and A are quite evident across all of the five ellipses in
the box. An error on the small side of G is correlated with a similar small estimate of A.
Note that all the ellipses intersect A = 0, meaning that it fails the significance test. Other
figures in the diagram can be interpreted in a similar way.
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Figure 11.15 Error ellipses of pairs of signals, given five different model prescriptions for the natural
variability: GFDLc (solid line); GFDLml (dotted line); MPI (dashed line); EBM (dashed-dotted line);
HadCM2 (dashed-dotted-dotted line). Here (a), (b), and (c) are EBCM signals for 72 stations, 36 with
100 years of data, 36 with 50 years of data; (d)–(f ) are EBM signals for 72 global sites all with 50 years of
data; (g)–(i) are HadCM2 G and GA and EBM V and S signals for 72 global sites all with 50 years of data.
(Figure from North and Wu (2001). (© Amer. Meteorol. Soc., with permission).)

11.4.8.1 Convergence
In this section, we examine the convergence of the estimation process. Figures 11.16
and 11.17 show the convergence results. The abscissa shows the number of space–time
EOF modes included in the partial sum up to that many terms. The EOFs are arranged
in order of descending variance (eigenvalue). We can see from (1a), (1b), (1c), and (1d)
that all of the series converge. We already know that S and A are unstable statistically.
Panels (1e) and (4e) show this by the irregularity of the amplitude estimate 𝛼s; s = S,G
as a function of EOF number. The estimate of 𝛼A even drops below zero. On the other
hand, the estimates of 𝛼G and 𝛼V are quite stable, both converging consistently to a value
around 0.60.
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Figure 11.16 (1a)–(1e) For solar cycle (S), (2a)–(2e) for greenhouse gas (G), (3a)–(3e) for volcanic (V),
and (4a)–(4e) for aerosol (A) in the case of the 36 global stations over 100 years. The space–time EOF
modes are arranged in order of descending variance (EOFs from 10,000 year EBM control run).
(1a)–(4a) The normalized cumulative fraction of variance of the signal, Σntrunc

n S2
n with Σnall

n S2
n = 1.

(1b)–(4b) indicate the eigenvalue of each spatial–temporal mode; (1c)–(4c) indicate the contributions
to SNR2 = 𝛾2

n = S2
sn from the individual EOF modes; (1d)–(4d) indicate the cumulative 𝛾2 = Σntrunc

n 𝛾2
n .

(1e)–(4e) The cumulative estimate of 𝛼 including EOFs up to ntrunc. (Figure from North and Wu (2001).
(©Amer. Meteorol. Soc., with permission).)

11.4.9 Discussion of the Detection Results

We suggest two reasons that the North and Wu (2001) study yields a somewhat lower
estimate than expected amplitude for G and V as well as the near-zero amplitude for A.
The Appendices of North and Wu (2001) contain a number of interesting tests of the
detection program. For example, Figure 11.18 shows results of a Monte Carlo experi-
ment using the EOFs from the 10,000 year run of the EBM for the natural variability
(EOFs) and all four signals are included with 𝛼s = 1; s = G,V ,A, S. Then 200 of the
EBM 50 year runs are used as “data” inserted into the 72 data sites. In the figure, the
error ellipses for 90% confidence are drawn along with the individual points represent-
ing each run.Note that each ellipse has (1, 1) at its center. In the left panel, the correlation
of G and A is evident. In the right panel the orthogonality is expressed as virtually no
correlation between the errors in V and G.
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Figure 11.17 Continued from the previous figure. (Figure from North and Wu (2001).
(©Amer. Meteorol. Soc., with permission).)
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Figure 11.18 (left) Scatter plot of Monte Carlo studies and 90% error ellipse of detection studies
for the pair of signal G–A for 72 boxes all with 50-yr (1944–93) observational data. In Monte Carlo
studies, the artificial data is constructed by adding 200 50-yr EBCM control run and four EBCM
signals S, G, V, and A. The truncated eigenmode is 500 in the 10 k yr control run of EBCM. (right) Same
as (a) except for pair of signal G–V. (Figure from North and Wu (2001). (©Amer. Meteorol. Soc., with
permission).)
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Figure 11.19 (a) First principal component time series of annual mean climate change signal for
greenhouse-gas-only forcing from EBCM (heavy solid line), HadCM2 GCM (light solid line), and
ECHAM4 GCM (dotted line); (b) same as (a) except for greenhouse-gas-plus-aerosol forcing. (Figure
from North and Wu (2001). (©Amer. Meteorol. Soc., with permission).)

Another interesting test is shown in Figure 11.19. Here, the comparison of the time
dependence of G with that of G + A (V and S are omitted in the experiment), where the
solid line is the EBM signal, the light solid line indicates the GCM HadCM2, and the
dotted line represents the GCM ECHAM4. The EBM signal is very close to those of
the two GCMs. One can notice a very slight difference between the two signals (panels
(a) and (b)) with the aerosols making a slight bend in the G + A curve. The statistical
collinearity is evident in the global average curves. The only difference that can be
used for discrimination between them must be in the inter-hemispheric difference
(presumably there is higher A in the NH. Most GCM simulations have indicated a
larger value of A that cancels part of a larger G. This latter would mean that the data
point would lie in the upper right end of the ellipses in Figure 11.15a,d. In this case, the
“equilibrium sensitivity” would be greater than the nominal 2.3 K that we assume for
the EBM used in this book. We cannot rule out this case as it would lie within the 90%
confidence area of those two panels of Figure 11.15.
Another possible reason for the discrepancy between the EBM detection study

and that of many IPCC GCMs is that the EBM uses only a mixed-layer ocean in its
EBM-generated signal. Compared to a deeper ocean coupling, this would make the
EBM signal larger than the one which might have been generated from a coupled
ocean–atmosphere GCM. The latter would hold down the signal from such a coupled
model as we discussed in Chapter 10.
A final possible criticism of theNorth andWu (2001) study lies in the fact that somany

EOFs are used. Using very large numbers of EOFs often raises a red flag in statistical
studies because their eigenvalues are necessarily close together and this means that they
will “mix” (if the eigenvalues were close together, a linear combination of the associated
eigenvectors is also an eigenvector). But this criticism is false. The (sample) PC time
series associated with a particular EOF are orthogonal by construction and the EOFs
form a good basis set.
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Notes for Further Reading

Surface temperature data sets can be found at the following websites. In many cases,
there are descriptions of how the data are processed and how the estimation procedure
works:
1. The NASA/Goddard Institute for Space Studies (GISS) provides a very accessible

digital as well as graphical (including maps) surface temperature data. http://data
.giss.nasa.gov/gistemp/.

2. The Climate Research Unit (CRU) of the University of East Anglia provides both dig-
ital and colorful graphical information.They also provide a list of publications by Dr.
Philip D. Jones and his colleagues. http://www.cru.uea.ac.uk/cru/data/temperature/.

3. The NOAA/National Climate Data Center (NCDC) website is a little more difficult
to navigate, but it has the data. http://www.ncdc.noaa.gov/temp-and-precip/global-
maps/.

4. NOAA also publishes online the pdfs of annual issues of the Bulletin of the American
Meteorological Society on the State of the Climate for each year starting in 1991; there
is also a decadal review covering 1981–1990. http://www.ncdc.noaa.gov/bams/past-
reports.

Exercises

11.1 (a) Consider two measurements of surface temperature at a location. They are
described as

T̂1 = T+𝜀1 and T̂2 = T+𝜀2,
where T is the true temperature and 𝜀1 and 𝜀1 are measurement errors.
Assume that measurements are unbiased, that is, ⟨𝜀1⟩ = ⟨𝜀2⟩ = 0, and error
variance is given by ⟨𝜀21⟩ = 𝜎

2
1 and ⟨𝜀22⟩ = 𝜎

2
2 . Further assume that the errors

in the two measurements are uncorrelated, that is, ⟨𝜀1𝜀2⟩ = 0. Show that an
unbiased optimal estimator with the least MSE is given by

T̂opt =
1

𝜎
2
1 + 𝜎

2
2
(𝜎2

2 T̂1 + 𝜎
2
1 T̂2).

(b) Show that an unbiased optimal estimator for three independent unbiased
measurements is given by

T̂ = 1
𝜂2

3∑
i=1

T̂i

𝜎
2
i
, 𝜂

2 =
3∑

i=1

1
𝜎
2
i
.

(c) For N independent unbiased measurements, the optimal unbiased estimator
is obtained by minimizing the so-called error functional defined by

E2 = ⟨𝜀2⟩ − Λ

( N∑
i=1

𝛼i − 1

)
,
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where Λ is called a Lagrange multiplier. Show that the optimal unbiased esti-
mator is given by

T̂ = 1
𝜂2

N∑
i=1

T̂i

𝜎
2
i
, 𝜂

2 =
N∑

i=1

1
𝜎
2
i
.

(d) Show that the error variance of the optimal estimator is given by

⟨𝜀2⟩ = 1
𝜂2

.

11.2 Consider twomeasurements, (T̂1, T̂2), of which the errors are correlated. Assume
that error covariance matrix is given by

C = {Cij} =
(
1.0 0.5
0.5 2.0

)
.

(a) Find the principal axes for which two new measurements are uncorrelated.
(b) Show that the two measurements rotated according to the eigenvectors

become uncorrelated.
(c) Determine the optimal unbiased estimator for T̂ based on the two measure-

ments (T̂1, T̂2).

11.3 As discussed in Exercise 11.2, two or more measurements on the surface of the
Earth are typically correlated. Let us consider N measurements of length L of
a variable T(r, t) (say, temperature), r = r1, r2,… , rN , t = 1, 2,… , L. Then, the
covariance matrix of the N measurements is given by

C = {Cij|i, j = 1, 2,… ,N} = {⟨T(ri, t)T(rj, t)⟩|i, j = 1, 2,… ,N}.

The eigenvalues and eigenfunctions of are determined by solving the
Karhunen–Loève equation

Cij ⋅ 𝜙
(n)
j = 𝜆n𝜙

(n)
i ,

where {𝜙(n)
i |i = 1, 2,… ,N} is the nth eigenvector with corresponding eigenvalue

𝜆n. Then, the N measurements can be written as a unique linear combination of
eigenvectors as

T(r, t) =
∑

n
Pn(t)𝜙n(r),

{
𝜙
(n)
i |i = 1, 2,… ,N

}
.

This procedure is called the EOF analysis. The unique amplitude time series,
{Pn(t)}, is often called the it principal component time series; for this reason,
this decomposition is also called the PCA (principal component analysis). The
eigenfunctions are orthogonal to each other and eigenvalues are all positive, as
the covariance matrix is real and symmetric. In addition, the eigenvectors (also
called EOF loading vectors) and PC time series should satisfy the following:

𝜙n(r) ⋅ 𝜙m(r) =
1
N

N∑
i=1

𝜙n(ri)𝜙m(ri) = 𝛿nm (orthogonality),
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Pn(t) ⋅ Pm(t) =
1
L

L∑
t=1

Pn(t)Pm(t) = 𝛼n𝛿nm (uncorrelatedness),

where 𝛼n is a proportionality constant.
(a) Show that the covariance matrix, C, can be written as

Cij = ⟨T(ri, t)T(rj, t)⟩ = ∑
n
𝛼n𝜙n(ri)𝜙n(rj).

(b) Show that the EOF decomposition indeed satisfies the Karhunen–Loève
equation and the proportionality constant 𝛼n = 𝜆n.

(c) Show how you can calculate the PC time series from the eigenfunctions of
the covariance matrix.

11.4 Global average temperature is defined by

T(t) = ∫Ω
T(r, t)dΩ = 1

4𝜋 ∫
𝜋

−𝜋 ∫
2𝜋

0
T(𝜙, 𝜃, t) cos 𝜃 d𝜙 d𝜃,

where Ω denotes the surface of the Earth, and 𝜙 and 𝜃 represent longitude and
latitude of a location r on the surface of the Earth. The factor 4𝜋 is introduced to
properly scale the result.
(a) Let us consider the problem of estimating global average temperature based

on a small number of samples on the surface of the Earth. Set up an optimal
estimation problem based on samples T(ri, t), i = 1, 2,… ,N .

(b) Solve the optimal estimation problem for the weights.

11.5 Consider a noise-forced one-dimensional energy balance model of the form

C dT
dt

+ BT = F
𝜔
ei𝜔t .

(a) Calculate the spectrum of T using the spectrum of noise forcing F .
(b) What is the nature of the spectrum of T when the model is forced by

a white-noise forcing, that is, ⟨|F
𝜔
|2⟩ = 𝜎2, regardless of the frequency

𝜔? Plot the spectrum for ocean and land responses by using 𝜎2 = 1,
B = 2.0Wm−2 (∘C)−1, Cocean=10 years, Cice∕65,Cland = Cocean∕600.

(c) Express the variance of the temperature response in terms of the spectrum of
temperature and in terms of the spectrum of forcing.

(d) Calculate the autocovariance function for the temperature response when
the model is driven by a white-noise forcing. Then, determine the e-folding
timescale of response.

11.6 Consider a signal detection problem, where the normalized signal at two stations
is given in the form

u⃗ = u1ê1 + u2ê2, u⃗ ⋅ u⃗ = (u1ê1 + u2ê2) ⋅ (u1ê1 + u2ê2) = u2
1 + u2

2 = 1,

where (ê1, ê2) are orthogonal unit vectors. Actual data at the two stations are given
by

D⃗ = (𝛼u1 + n1)ê1 + (𝛼u2 + n2)ê2,
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where 𝛼 is the true strength of the signal and (n1, n2) are the natural variabil-
ity at the two stations. Thus, the signal of constant strength is embedded amid
randomly varying natural variability. Further, assume that

⟨n1⟩ = 0, ⟨n2⟩ = 0, ⟨n2
1⟩ = 𝜎

2
1 , ⟨n2

2⟩ = 𝜎
2
2 , ⟨n1n2⟩ = 0,

that is, natural variability at each station hasmean zero and the randomvariability
at the two stations are uncorrelated.
(a) One way to determine the signal strength is to project the normalized signal

on the data set, that is, �̂� = u⃗ ⋅ D⃗. Show that this is an unbiased estimator of
the signal strength. What is the error variance of the signal strength 𝛼?

(b) Note that the estimator in Part (a) is not optimal, as it did not consider that
the magnitude of natural variability differs at the two stations. One way to
account for this is to estimate the signal strength at each station and weigh
the two estimates optimally. Develop an optimal estimator based on this idea.
Calculate the error variance and compare it with that in Part (a).

(c) Show for the signal and mutually uncorrelated noise background (natural
variability) at N stations that

𝑤i =
1
𝜂2

u2
i

𝜎
2
i
, 𝜂

2 =
N∑

i=1

u2
i

𝜎
2
i
, 𝜎

2
i = ⟨n2

i ⟩,
where the signal is determined by

S⃗ = 𝛼

N∑
i=1

uiê1, �̂� =
N∑

i=1
𝑤i

uiDi

uiui
.

11.7 Consider data consisting of four different temporally varying signals on top of
natural variability:

T(m) =
4∑

n=1
𝛼
(n)S(n)(m) + N(m), m = (r, t), r = 1, 2,… , L, t = 1, 2,… ,M,

where S(n) denote different signals, N represents natural variability, and
m = L × M space–time points. Assume that the signals are not necessarily
orthogonal to each other.
(a) Show that this problem can be recast in terms of EOFs of natural variability

in the form

Tk =
4∑

n=1
𝛼
(n)S(n)

k + Nk , k = 1, 2,… ,

where k represents the EOF mode number.
(b) Show that an unbiased estimator for the signal strength can be derived from

each EOF mode equation in Part (a) as

�̂�
(n)
k =

∑
n′

(M−1
k )nn′S(n′)

k Tk .
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12

Applications of EBMs: Paleoclimate

12.1 Paleoclimatology

There are a few areas in paleoclimatology that are particularly well suited for energy
balance modeling. It is important to remember that EBMs as we present them in this
book (except for those considering vertical structures in Chapters 3 and 4) only treat
the surface temperature field. Precipitation and changing ocean circulations are also not
included in these EBMs although they are clearly of interest in paleoclimatology. Fortu-
nately, much of the data coming from empirical studies in paleoclimatology pertain to
the surface temperature. Anything above the surface is out of bounds for us—it requires
a much more sophisticated model to go above the surface or to deal with any transport
phenomena such as the transport of water vapor above the boundary layer.
Before plunging into EBM applications directly, we present a very short summary of

the Earth’s climate history. One of the first problems we encounter is based on sound
theoretical evidence of the lower brightness of the Sun at the time of the formation of
the Earth and through its settlement into a planet with land and ocean surfaces. Accord-
ing to long-accepted astrophysical theory, the Sun was only about 70% as bright as it
is today. Recalling our study of ice-cap models in Chapters 2 and 7, we see that the
evolution of the Earth’s climate was quite different from what these models based on
a monotonically increasing solar brightness and no changes in atmospheric greenhouse
gas might suggest. Bender (2013) and Feulner (2012) review the many theories of how
wemight avoid the “faint Sun paradox,” according towhich the planet could not possibly
get to our present climate by a steadily increasing external forcing.The solutionmust lie
in the atmosphere’s changing composition—perhaps much more powerful greenhouse
gas concentrations came to the rescue—but it would take substantial amount of forcing,
perhaps tens of percent of the equivalent of solar brightness.
Ward and Kirschvink (2015) argue that there were incidences of “snowball Earths”

as early as 2.2Ga1 (the so-called Huronian event). They also argue that these events
might have been instrumental in the beginnings of life on the planet. This first massive
glaciation might have lasted several hundred My.The event was coincident with a large

1 The abbreviation Ga stands for billions of years before the present. The abbreviation Ma stands for
millions of years before the present. We will use Gy and My to indicate intervals of billions or millions of
years, respectively. Similarly for ka and ky with indicate thousands of years.

Energy Balance Climate Models, First Edition. Gerald R. North and Kwang-Yul Kim.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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increase (several bars, one bar of pressure = that of one atmosphere) in O2 in the atmo-
sphere due to oxygenic photosynthesis. There might have been lots of methane in the
atmosphere at that time and it might explain the hot planet preceding the ice event.The
oxygenation of the methane might have cooled the planet sufficiently to cause the col-
lapse to the snowball. Other possibilities include the increase of weathering (removal of
CO2) following accretion of large objects and collisional tectonics (Melezhik, 2006).
There is evidence suggesting that there was another interval when the planet was

totally ice covered several times, later called theNeoproterozoic period (1Ga to 542Ma).
These are also periods thought to include total ice cover (Kirschivink, 1992; Evans, 2000;
Hoffman and Schrag, 2002) . There is a large literature on this subject; several of these
papers tend to confirm the geological dating and resolve issues of global synchronic-
ity for the ice cover. Among these are papers that present pretty sound evidence of
tropical glaciers. Our elementary models suggest that, without wild changes in obliq-
uity, it would be hard to have the tropics covered with ice without the whole globe
so covered. These glaciations might have persisted for tens of My. The Neoproterozoic
glaciations took place after the emergence of life on the planet and one wonders how
organisms might have survived. Warren et al. (2002) propose that thin ice cover over
the oceans might have allowed the passage of enough sunlight to support photosyn-
thesis. Other papers have been concerned with the survival of multicellular organisms
during such inhospitable conditions.
In the Paleozoic era (∼ 500 to 200Ma), there is evidence of numerous large-scale

glaciations (but not snowballs).The continents were going through rearrangements over
this and later periods on time scales of millions of years and these configurations of
land/sea geography are likely to have played a role in the early ice ages. Figure 12.1 sum-
marizes the geological time intervals to be used in the discussion.
At around 50Ma the Earth began to gradually cool (geologically speaking) as shown in

Figure 12.2. This figure, modified from the original found in Zachos et al. (2001), and a
similar modification featured in Chapter 6 of Bender (2013) tell much about the climate
over the last 65Ma. Bender (2013) describes how the 18O record from bottom-dwelling
microbiota can be used to infer global temperatures. On the basis of Figure 12.2, we can
trace a gradual descent fromamuchwarmer (∼12∘Cwarmer at around 50Ma, called the
early Eocene thermal maximum) planetary surface to that at present. The main govern-
ing factor was likely to be CO2 decreases over this time. As time proceeds, the planet
continues to gradually cool until the beginning of the Oligocene epoch (∼34Ma). At
this point in time, there is a sharper rate of cooling which is attributed to the growth of
continent-wide ice in Antarctica. From that point to the present, the planet has a large
(south) polar ice sheet, with Greenland ice coverage likely occurring at the beginning of
the Pliocene. The last million years or so (the Pleistocene) features large excursions in
ice sheets, most of which occur in the Northern Hemisphere.

12.1.1 Interesting Problems for EBMs

• The first problem for EBMs has already come up in Chapter 2 in which we found a
possible ice-covered Earth solution to our global energy balance equation.Theoperat-
ing curve showed that if the solar brightness was dropped by only a small percentage,
the planet would plunge into a deep-freeze state. Of course, the percentage depends
on the details of model parameter choices.
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Figure 12.1 Geological timescale indicating boundaries separating eons, eras, periods, and epochs
along with the times in Ma. Note that the durations of the intervals are not drawn to temporal scale in
this chart. (Data from Bender (2013).)

• The second problem is the effect of the land–sea distribution over deep geological
time scales where, through continental drift, the landmasses have continuously
changed their configurations. It could be that summertime’s warmest temperatures
determine whether snow will linger over the warm season and allow the growth of
an ice field and eventually a large-scale ice sheet. We know that the proximity to the
poles and the shapes of landmasses can alter the summertime temperatures. Could
EBMs tell us when ice sheets should have been present? The seasonal cycle is a key
factor.

• The third concerns the most recent few tens of millions of years during which the
Earth has shifted from a warmer state to one with large continental ice sheets, the
most prominent being Antarctica andGreenland.What were the conditions for these
and what might EBMs have to contribute?

• A fourth has to include the ice sheets that have waxed andwaned over North America
andWestern Europe (but not over Siberia). Observations provide evidence suggesting
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that the glaciations exhibit a regularity and are in stepwith the theoretically calculated
oscillations of orbital elements of our planet. Might EBMs be of use in understanding
the glaciations over the Pleistocene (last few million years), and even the most recent
10 ka, (some authors use 12 ka) called the Holocene?
Not all problems are approachable, not to mention solvable, by EBMs. Atmospheric

chemistry and ocean circulation play roles possibly as important as the changing
land–sea configuration and the associated radiative-energy-balance effects on sum-
mertime temperatures. Sometimes, chemistry and aerosol effects can be inserted into
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an EBM, but even then the problem might not be solved or may not be interesting. For
instance, if atmospheric CO2 increased because of some geological process, the EBM
contribution may be large, but it is not the important aspect of the problem (e.g., why
did CO2 increase?). But if the greenhouse gas and aerosol concentrations are given,
it is straightforward to provide EBM solutions. Long-lived ocean current anomalies
or surface temperature aberrations (e.g., a shift in the Gulf Stream) can be included
by prescribing them, but as yet no one has found a way to include them dynamically
in such a simple model. Unfortunately for the EBM aficionado, the use of a general
circulation model (GCM) may be far more appropriate for such a forcing as they are
likely to excite interesting quasi-stationary wave patterns that affect storm paths (all
this is outside the scope of an EBM). As we found in Chapter 10, we can include some
oceanic effects in EBMs, but to attempt the circulation of the ocean currents is well
beyond the scope of simulation at this level of the model hierarchy. Perhaps the single,
most important advantage for EBMs is to spell out how the seasonal cycle can play a
role in various paleoclimate problems, as the seasonal cycle responds almost linearly to
forcings due to changes in orbital elements, CO2, and aerosol concentrations, as well
as the geographical distribution of land and sea. These concepts have been a common
theme in the many works of Crowley and his colleagues Hyde, Baum, and Short (for a
list of others see the preface of this book.).

12.2 Precambrian Earth

The Earth settled into its present form with an atmosphere including distinctly defined
ocean and landmasses a few billions of years ago.The earliest life forms appeared about
3 billion years ago (see Ward and Kirschivink, 2015). The Sun was not as bright as it is
today. Gough (1981) describes the astrophysical problem as it relates to the history of
the Sun’s luminosity and its radius over the last 4.7 × 109 years that is consistent with
arriving at its present conditions. Gough summarizes the increasing luminosity by the
simple formula

L(t) =
L
⊙

1 + 2
5

(
1 − t

t
⊙

) , (12.1)

where L(t) is the luminosity as a function of time t; L
⊙
is the present luminosity; and

t
⊙
is today. This result has not changed appreciably since Gough’s paper was written

(personal communication with Gough, 2012).
According to Figures 2.9 and 7.2, if the other factors (e.g., CO2) are held fixed and

given that the Sun was dimmer, the Earth should have been frozen over for billions of
years before it might have jumped to an ice-free planet. Then it would have had to tra-
verse the S-shaped control curve, jumping to the ice-free Earth, then cooling (Figures
2.9 and 7.2) to get back to our current climate. This is called the faint Sun paradox,
and was first noted by Sagan and Mullen (1972). Kasting (2010) and Feulner (2012)
discuss the problem and list entries in the literature that attempt to solve it (see also
recent book Kasting (2014)). A popular proposal involved high concentrations of CO2
(e.g., Owen et al., 1979) but this one appears to be inconsistent with recent geological
evidence according to Rosing et al. (2010). A major problem is that if the Earth were
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iced over, it is nearly impossible to see how to get its frozen surface melted without
some extraordinary intervention in the energy balance. Thin cirrus clouds have been
suggested as a solution, but they do not seem to increase the temperature enough to
melt the ice and lower the very high albedo of the ice cover. Bender (2013) presents a
recent review, devoting Chapter 2 of his book to the faint Sun problem. Bender (2013)
agrees with Feulner (2012) that the problem remains unsolved.
In the interval 1Ga to 542Ma, there appear to be several glaciations thatmay have cov-

ered the entire Earth: the “snowball Earth” events. Crowley and Baum (1993) considered
this problem with a number of experiments with the two-dimensional seasonal EBM
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that has been described in Chapter 8. The most interesting application of an EBM to
these glacial events comes fromHyde et al. (2000). In this paper, experiments were con-
ducted with the usual 2-D EBM, but also an ice sheet was included along the lines of that
inDeblonde et al. (1992); Tarasov andPeltier (1997); as derived from the early theoretical
model of Nye (1959). A large landmass concentrated at the pole in the Neoproterozoic
(see Hyde et al., 2000, and Figure 12.3a). The model includes isostatic depression of the
land under the heavy ice sheet.The Sun’s brightness was taken to be 6% lower than today.
Figure 12.3b shows a simulation with this coupled model for a period of 200 000 years.
After about 20 ky, the ice sheet begins to grow in the coupled model, while the model
with no ice sheet dynamics does not grow. The ripples are due to changes in the orbital
elements. It seems that in the coupled model simulation, the ice mass relaxes under its
own weight to spread laterally. If the ice at the terminus is thick enough, it can survive
the summer ablation (provided new ice can be transported into the ablating area). As the
ice spreads, the planetary albedo increases and eventually a threshold is crossed and the
solution plunges to the ice-covered state. The authors experiment over a wide range of
parameters such as precipitation rates (forwhich there is an empirical formula), ice sheet
parameters, and so on. Such a self-spreading ice sheet may be essential for explaining
the Pleistocene glaciations as well.

12.3 Glaciations in the Permian

Figure 12.4 gives an idea of how the continents begin to spread apart after the Per-
mian. There is observational evidence for glaciations during the period 365–260Ma,
Permian. Chapter 5 in Bender (2013) is devoted to ice cover in the time frame 370 to
260Ma (Glacial I), 325 to 310Ma (Glacial II), and 300 to 285Ma (Glacial III), as shown
in the upper level in Figure 12.5 labeled “Overall Gondwana.” Figure 12.6 shows the
polar wander over the whole entire period of the three Glacials.The South Pole is in the
neighborhood of Antarctica (during this period the pole wanders slowly (timescales of
20My) over much of the lower part of the landmass in Figure 12.6 (Frank et al., 2008)).
The glaciations and polar positioning of the landmasses is of interest to EBM model-
ers for two reasons: (i) because the ice–albedo effect is large, there is some evidence of
rapid transitions to large ice cover. (ii)The positioning of the continents at high latitudes
can have dramatic effects on summer temperatures, which if below freezing can lead to
ice-cap growth.

12.3.1 Modeling Permian Glacials

Much of climate change over the long term (tens of millions of years) is governed by
the greenhouse gas concentrations. This is not an especially interesting aspect of the
dynamical behavior of EBMs.The dependence on CO2 concentration is logarithmic (see
(2.13) and surrounding discussion). When CO2 concentration doubles, the global tem-
perature will increase by 2–4K (including feedbacks, and after equilibrium is attained).
If the CO2 concentration is halved, the temperature will correspondingly decrease by
2–4K. Interesting problems for EBMs come up when there is a large change in the sea-
sonal cycle, especially when a landmass moves near the pole. When the landmass is
large and its center is over the pole, summers will be too hot to initiate or sustain an
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ice sheet. The action comes when a landmass is near the pole where the mean annual
surface temperatures will be low enough for freezing to occur, but again the key is for
the summer temperatures to be below freezing.This latter happens if the landmass edge
is near the pole or if there is a field of broken landmasses near the pole. The presence of
smaller-scale water-covered regions can moderate the summer temperatures, keeping
them below freezing. As Pangea breaks up, the chances are good for this to happen.
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A series of studies by Hyde et al. (1990) with a nonlinear (snow/ice–albedo feedback)
two-dimensional EBM including a seasonal cycle consider the importance of continen-
tal size and positioning with respect to the poles. This study does not include ice-sheet
dynamics. There has to be some land near the poles to initiate glaciation. However, the
continent covering the poles cannot be too large, otherwise the summers will be too
warm to allow snow to build up into an annual ice cover. When the continent is smaller,
say 3000 km across, this smaller landmass will allow penetration of the mild maritime
summer to suppress the seasonal cycle in the continental interior. Under these condi-
tions, summers will be mild enough (staying below freezing) to allow the snow to build
up, eventually leading to an ice field or glacier. The upshot is that the actual geography
including shoreline configuration near the pole is important.
An example of conditions that lead to bifurcations (or tipping points) is shown in

Figure 12.7 where Crowley and Baum (1993) considered the continental configuration
near the South Pole around 300Ma. In this study, they used the two-dimensional,
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seasonal EBM similar to the one discussed in Chapter 8. They examined the areas of
ice cover for a continuous range of values of the solar luminosity (we have used the
more modern term total solar irradiance, TSI ÷ 4) from 327 to 333Wm−2. A sharp
bifurcation is found as the ice cap suddenly decreases in area.

12.4 Glacial Inception on Antarctica

The EBMmechanism for the Antarctic glacial-inception case is based on the geological
evidence that Antarctica was once joined to the landmasses of the present Indian
subcontinent and present Australia, making the composite continent very “continental”
(see Figure 12.8a). Note that the (present) Antarctic continent remains at the pole.
Sometime between 80 and 20Ma the landmass of present India separates from present
Antarctica followed by the departure of present Australia (see Figure 12.8b). India
proceeds equatorward and across to the collision that results in the present uplift
known as the Himalayan Mountains. We are interested in the change leading to a
much more maritime Antarctica, wherein the summers at the South Pole would be
cooler (see Figure 7.10 and surrounding discussion). As can be seen in Figure 12.9, the
summer temperature drops dramatically as Australia disassociates with the Antarctic
landmass making each smaller than the combination and much more maritime. The
polar temperature falls to about 2.5 ∘C, but no lower once the influence of the separated
twin is no longer important. It is also possible that small fluctuations could cause
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a jump-over to a larger, more-stable ice cap, see Figure 7.4 and the discussion in
Section 7.4.3.
TheEBM-motivated theory uses the “maritimization” of the continent, combinedwith

the seasonal small ice cap instability (Mengel et al., 1988), enabling hot summers in the
interior to be mitigated to the freezing point and resulting in “rapid” spread to a stable
ice sheet as the main underlying causes of the glacial inception.There are other theories
proposing explanations of the Antarctic glacial inception. One of the most cited is that
of DeConto and Pollard (2003); they use a simplified GCM called the GENESIS model to
simulate the conditions for the glacial inception. They argue in favor of a CO2 decrease
from 4 times to about 2 times the present partial pressure pCO2

over a 10My period.
While our argument is crude compared to the detail of these authors, the decline of
CO2 is roughly what our model requires to initiate glaciation.The argument we advance
is that our solution is essentially the same as that of DeConto and Pollard. In a later
paper, Pollard and DeConto (2005) discuss the small ice cap instability and hysteresis
(see Section 7.5) to interpret their low-resolution GCM results. They do not discuss the
effect of the recession of the Indian subcontinent andAustralia away fromAntarctica, as
their model simulation is set and conducted after these fixed rearrangements following
the separations. The paper by Crowley and North (1988) emphasizing the importance
of the seasonality was published well before the recognition of the importance of CO2
came to the attention of paleoclimatologists. In fact, both changes in seasonality and
the change in CO2 are necessary. Carbon cycle models combined with measurements
give useful information about CO2 levels over geological time (references can be found
in Zhuang et al., 2014).
The 𝛿18O index actually indicates a combination of local temperature (probably at sea

bottom) and total ice volume on the land surfaces. Another index taken from the skeletal
material (CaCO3) is based on the content of the stable isotope 13C relative to its normal
and much more abundant 12C and its incremental change of 𝛿13C index (a measure of
the isotopic deviation from normal and far more abundant 12C).This index is a measure
of the CO2 concentration in the deep ocean. Bender (2013) cites the work of Coxall
et al. (2005) who noted that in the neighborhood of the Eocene–Oligocene boundary
(34Ma), the changes in 18O and 13C are in step, indicating that as the temperature fell, so
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did the amount of dissolved CO2 in the oceans. Some back-of-the-envelope estimates in
Bender (2013) suggest that a 54mdrop in sea level and a fall of 3–4 ∘Care consistentwith
the isotope data. These results seem to be in line with the EBM-based theory (seasonal
change due tomaritimization combined with CO2 decrease), which also agrees with the
GCM results of DeConto and Pollard (2003).
Earlier theories of the glacial inception of Antarctica invoke changes in ocean cir-

culation as the Drake Passage is opened. The argument goes that this effect leads to the
circumpolar circulation of the SouthernOcean and thus leads to the isolation of Antarc-
tica and therefore its cooling. We believe that the arguments and results presented in
Chapter 5, especially those in Section 5.9 and illustrated in Figure 5.10 are pertinent
here. In that discussion, the two-mode approximation provides a near-perfect fit to the
poleward transport of heat, without reference to any circumpolar current. Simplicity
alone suggests that the three components of heat transport (atmospheric sensible heat,
latent heat, and oceanic heat) all combine to give a simple form. Just take the NH as a
hypothesis and the SH as a confirmation. In light of this, it seems difficult to imagine that
the presence or even the intensity of the Circumpolar Current would make a significant
difference.

12.5 Glacial Inception on Greenland

The glaciations of Greenland and Antarctica present interesting problems for paleo-
climatology and EBMs can contribute to understanding these glaciations (North and
Crowley, 1985; Crowley et al., 1986; Crowley and North, 1990). In these studies, cover-
ing the times between 80 and 20My BP, the authors used the rule that summertime
maximum temperatures are the key to initiating glaciation. This concept dates back
many years (e.g., Milankovitch, 1941). As continents drift over geological time, themax-
imum value of summer temperature changes depending on latitude and land–sea dis-
tributions near the poles. As an example, consider the two configurations shown in
Figure 12.10.
Figures 12.10a and 12.10b show the continental configurations for 60 and 40Ma,

respectively. The solid lines depict the contours of the mid-July temperatures as
computed from the EBM (North et al., 1983). In both (a) and (b), poleward of 60∘N,
North et al. (1983) used the value of sea ice over the ocean-covered areas (C(r̂) is taken
to be part way between land and ocean values, to take into account puddling and leads).
Figure 12.11a shows the simulated mid-July temperature changes in Greenland, in
which we see a definite cooling in mid-summer in the interior of Greenland over the
20My change. Figure 12.11b shows the seasonal cycle of the mid-Greenland surface
temperature for various times in the geological past, 100Ma to the present. Two factors
clearly cause the mid-summer temperatures to decline: (i) Greenland’s movement
toward the poles causes the mean annual temperature to fall; (ii) the seasonal cycle
amplitude is diminished because Greenland has become more maritime.
Figure 12.11b suggests that at about 15My, BP the mid-summer temperatures fall

below freezing (see also Figure 12.12). If we combine this finding with the small ice-cap
instability argument, we can envision that at this point, a small ice cap is not possible;
hence, there must be a transition to a finite-sized ice cap. Such an ice cap would cover
all of Greenland. The theory is very simple, and compelling because it gets the timing
right and it calls for a continent-sized ice sheet.
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Figure 12.12 Mid-summer temperatures as simulated with
the 2-D seasonal EBM as a function of time (in Ma).
(Crowley and North (1988). Reproduced with permission of
AAAS.)
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12.6 Pleistocene Glaciations and Milankovitch

Lisiecki and Raymo (2005) used a “stack” of 57 cores well distributed over the ocean
floor to examine 18O isotope variations in benthic2 Foraminifera3 to study global
changes in ice volume and temperature over the last few million years. They found
that roughly 5 million years ago, the ice volume on the planet began making irregular
oscillations with a period close to 41 ky (see Figure 12.13). By 2 million years ago, the
oscillations became more regular at this same period. Figure 12.13 shows the results of
their study which combined 57 globally distributed seafloor cores of data based on 18O
from bottom-dwelling microspecies (benthic foraminifera). The signal is particularly
strong given that so many samples were averaged together. Figure 12.14 shows the
spectral density of the record of ice volume–temperature.4 The record of ice volume
being inferred from such data has a long history. There are now many independent cor-
roborating pieces of evidence such as that from ice cores,5 blown dust (loess6) deposits
whose timings match well with deep-sea core data (Bender, 2013; Bradley, 2015).

2 Benthic refers to bottom dwelling. The term Planktonic refers to dwellers in the surface waters.
3 Foraminifera are members of a phylum or class of amoeboid protists. They have streamers of ectoplasm
that can be used for catching food. Their shell or “test” is made of CaCO3 and is a common sediment on the
sea floor.
4 The 18O record indicates a combination of both deep-water temperature and ice volume.The signal here is
probably dominated by the volume of ice on land.
5 Cores taken from Greenland, Antarctica, and other ice fields provide information over the last
800 000 years about CO2 concentrations, 18O deviations and many other indicators.
6 Loess is a fine mineral dust that is picked up in the wind and deposited elsewhere. During the large
glaciations, winds were stronger owing to greater gradients of surface temperature and the land more arid,
leading to the transport of these materials downwind, where they are finally deposited.
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Figure 12.13 Time series of data from 57 globally distributed 18O taken from the shells of
bottom-dwelling microspecies (benthic foraminifera). The numbers above and below the peaks and
valleys indicate the stage-name of the local extreme event. (Lisiecki and Raymo (2005). Reproduced
with permission of Wiley.)
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TheMilankovitch7 theory of the ice ages (Milankovitch, 1998)8 links the nearly peri-
odic changes in the orbital parameters of the Earth’s motion around the Sun to the
periodic glaciations. It received little attention until the sea cores began to reveal the
clear indication of periodicity of the glaciations, first from Emiliani (1958), culminat-
ing with the Hayes et al. (1976) paper that directly compared the sea core data with
the orbital element variations based on celestial mechanics, essentially confirming the
Milankovitch mechanism as the “pacemaker” of the ice ages. Figure 12.15 shows the
temporal variation of the orbital elements (eccentricity, obliquity, and precession of
the equinoxes) based on calculations conducted by Berger (1978). Figure 12.15 shows
spectra of the insolation at different latitudes and times of year, based upon a time
series of calculated insolation values over the last 468 000 years. Figure 12.15a shows
the spectra of the quantityΔe sinΠ, where e is eccentricity andΠ is the phase of perihe-
lion. Here, the contribution from the obliquity (peaked at period 41 ky) is represented
by the solid line, while that of the precession (periods of 23 and 19 ky) are in dotted
lines.
Figure 12.16 shows the spectra from actual data. Figure 12.16b shows the percent-

age of Cycladophora davisiana over all other radiolaria9 in the time-interval samples.
The presence of species relative to other forms of radiolaria is known to indicate the
temperature near Antarctica.
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Figure 12.15 Solar insolation at different latitudes and seasons calculated over the last 468 000 years.
(a) The parameter Δe sinΠ, where e is eccentricity, Π is the phase of perihelion. (b) Insolation at 55∘S in
winter. (c) The insolation at 60∘N in summer. The peak frequencies are at period 41 ky (obliquity) and
23 ky together with 19 ky for precession. Figure from Hayes et al. (1976). (©Amer. Assoc. Advance. Sci.,
with permission.)

7 Milankovitch (1879–1958), educated as a civil engineer, became chair of applied mathematics at the
University of Belgrade where his main work was started before WWI. He was permitted to work during the
war and afterward returned to his position in Belgrade. He devoted many years to studying the celestial
mechanics of the Earth’s orbital parameters and the possible linkage of these to the great glaciations of the
Pleistocene. He collaborated with Köopen and Wegener.
8 See the volume of papers written in honor of the 125th anniversary of Milankovitch’s birth, Berger et al.
(2005).
9 Radiolaria are single-celled microbes with mineral (mostly silica) outer shells. They take their name from
the spiny shapes of their shells. They have been abundant for over 600Ma. Many images are available online.
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Figure 12.16 Log spectra from two subantarctic deep-sea cores. (a) The surface temperature
estimated from radiolarian assemblages. (b) 18O. (c) The percentage of C. davisiana relative to all other
radiolaria. (Hayes et al. (1976). Reproduced with permission of AAAS.)

12.6.1 EBMs in the Pleistocene: Short’s Filter

The study of EBMs leads to some interesting results for the Pleistocene. We start with
the 2-D seasonal model of North et al. (1983) (see also North and Crowley, 1985). The
model was run with the present TSI, then small percentage changes in the TSI were
used. Ice cover was prescribed when the summer temperature fell below freezing. The
model was iterated until a steady state was found. Figure 12.17 shows that a bifurca-
tion occurs at a value between −1 and −2 ∘C. Below this value, the “ice sheet” extends
completely across the Arctic Ocean and includes Alaska and much of western Canada,
even some of Siberia. This “glaciation” is asymmetric between the Eastern andWestern
hemispheres—there is more ice cover in the Western hemisphere. But the big ice sheet
does not resemble the Laurentide Ice Sheet much. There could be some problems with
the model perhaps due to its poor spatial resolution. Experience with previous nonlin-
ear, one-dimensional models with ice caps (Chapter 7 and especially Figures 7.10 and
7.12, both taken from Mengel et al., 1988) suggest that the transition to extensive ice
cover might be rather rapid.
A comprehensive chapter by Short et al. (1991) shows a number of linear responses

to orbital element changes by the 2-D seasonal model (North et al., 1983) discussed in
Chapter 8. In this section, we present results from this paper. As referred to in the title of
the paper, the responses are the result of filtering the changes in orbital element forcing
through the model being thought of as a “filter.” It is useful to note that the model is
solved for its mean annual solution, its annual harmonic solution, and its semiannual
solution. Then these Fourier components are composed into the complete solution for
the seasonal cycle of the temperature field. But it is interesting to examine the effect on
the Fourier components directly both in the insolation and in the responses.
First consider the latitude dependence of the forcing (perturbation of the insolation

components). Figure 12.18 shows how the insolation as function of latitude changes
for extreme values of the obliquity (a) and for the precession varying from perihelion
to aphelion (b). It is interesting that the insolation in both (a) and (b) show that some
harmonics of the insolation dip to negative values near the equator.
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Figure 12.19 The obliquity effect. Geographic pattern of the change in maximum summer
temperature as the obliquity changes from 22.1∘ (solid) to 24.4∘. (Short et al. (1991). Reproduced with
permission of Elsevier.)

Next consider the geographical distribution of the response inmaximumNH summer
temperatures (∘C) due to a change in obliquity from its known extremes 22.1∘ (solid)
to 24.4∘ (see Figure 12.19). In this case, the eccentricity is set to zero. The continents
are shown with blocklike edges to emphasize the course resolution of the model. The
tropical response in this figure shows a negative response (180∘ out of phase with the
extratropical response). Short et al. (1991) point out that this is in agreementwith results
of core RC24-30 taken in the tropical Atlantic (Imbrie et al., 1992).
Figure 12.20 shows the response pattern of northern summer temperatures as the

summer solstice moves from aphelion to perihelion. Figure 12.21 combines the differ-
ence of extremes for obliquity and maximum eccentricity (0.06). The Southern Hemi-
sphere is also depicted at summer solstice by combining data from the two hemispheres
at six-month intervals into one map.
Next are considerations of how the changes in insolation are filtered into the ther-

mal responses especially over oceans where deep-sea cores are collected. We are always
interested in the maximum summer temperature in this series of simulations. While
the summer temperature field is a linear response to the forcing, the maximum summer
temperature is not a linear function of the forcing because finding the maximum is the
result of finding the root of the equation ∂T∕ ∂t = 0 after we have foundT(𝜇, t), where 𝜇
is the sin(latitude) and t is the time after winter solstice in the repeating seasonal cycle.
In the center, the great continent of Asia where the relaxation timescale is much less
than a year, the response (a) mirrors that of the forcing (b) at each of the orbital signals
(see Figure 12.22).
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temperature as summer solstice moves from aphelion to perihelion with eccentricity at its maximum
value, 0.06 and the obliquity is the present value, 23.25∘. (Short et al. (1991). Reproduced with
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As we look at different points in the Atlantic, the response as filtered from the forcing
(and the maximum found) presents different results from points in the center of a large
continental landmass. Figures 12.22 and 12.23 focused on the north Atlantic shows the
time series and amplitude spectra of themaximum summer temperature and the insola-
tion. Here we see strong peaks at the obliquity and precession periods, but also several
low-frequency peaks. These are related to the eccentricity and its effect on the other
orbital elements.
In equatorial Atlantic (0∘N, 30∘E), as seen in Figure 12.24, the obliquity signal is weak,

but the eccentricity frequencies corresponding to periods of 400 and 100 ky are very
strong. Note also a first harmonic of the two precession frequencies (periods of ∼12
and 10 ky). These harmonics are explained in Figure 12.25 (see also Short and Mengel,
1986). Figure 12.25 shows the response as function of lag (days) after the winter solstice.
At 86 ky, the temperature curve (indicated by +s) is symmetric about the summer sol-
stice as the Sun passes over the equator twice during the year. There are two maxima
of equal magnitude at this time. Then a quarter of the precession cycle later at 90 ky
(indicated by ×s), there is one absolute maximum. Next consider 94 ky (indicated by ∘s),
when there are two (nearly) equal maxima. Finally, in the cycle at 98 ky (indicated by
△s), there is a single global maximum. This sequence shows that there are two global
maxima occurring at a separation of about one half of the precession period. Finding
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Figure 12.24 (a) Fourier amplitude spectrum of the time series of maximum summer temperature
response at 0∘N, 20∘E (equatorial Atlantic) as simulated by the model after running for the last 800 000
years. (b) The amplitude spectrum of orbital forcing for summer at 60∘N. Major peaks are labeled with
the periodicity in thousands of years. Figure from Short et al. (1991).

the absolute maxima as a function lag in the seasonal cycle is a nonlinear procedure
from the direct forcing amplitude: hence, the first harmonic of the forcing.
Before moving away from spectra, we draw attention to the latitude dependence of

observed spectra. Figure 12.26 shows two spectral densities of temperatures estimated
from microfossils along the Mid-Atlantic Ridge. The right-most spectrum from a lati-
tude of 41∘ shows a prominent peak at 23 ky and the leftmost shows a similar spectrum
but taken at 54∘N, where the 23 ky peak has disappeared and a peak at 41 ky appears
prominently. This is close to what the 2-D model would suggest. As we leave Short’s
work, we see how the linear model is able to produce spectra comparable to our expec-
tation and even some data in the middle and lower latitudes. Moreover, the nonlinearity
of themaximum summer temperatures as driven by linear responses of the temperature



12.6 Pleistocene Glaciations and Milankovitch 345

33

32

31

30

T 
(°

C
)

29

28

27
0 50 100 150 200 250

Days from winter solstice

300 350

 98  94  90

0°N, 20°E, Seasonal cycle (4 epochs)

 86

Figure 12.25 The seasonal cycle of sea surface temperature simulated at 0∘N, 20∘E for epoch 98, 94,
90, 86 ka. The abscissa is the number days after winter solstice. The figure shows the simulated
temperature at the equator in the Atlantic Ocean. There are two local maxima at 86 ky (crosses) as the
Sun passes overhead at the equator at both vernal and autumnal equinox. As time passes through the
precession cycle, the two maxima become only one, either in the spring or in the autumn. This effect
leads to two maximum temperatures over the 22-year cycle. The result is a peak at twice the frequency
or half the period of the forcing (∼12 ky in the previous figure). Figure from Short et al. (1991).

Period (kyper cycle)

S
c
a

le
d

 v
a

ri
a

n
c
e

100
100

54°N 41°N

100

23

41

80

30

0
80 40 20

50

0
80 40

K708–7 V30–87

20

Figure 12.26 The spectral variance densities of the mid-Atlantic sea cores: K708-7 at 54∘N and V30-97
at 41∘N. Note that the more tropical core shows a strong peak at period 23 ky and the more polar core
has its peak at 41 ky, both having a strong variance at 100 ky. Modified from Ruddiman and McIntyre
(1984), Geol. Soc. Amer. Bull. 95, 381–396. (© Geological Society of America, with permission).

field invites the possibility of under- and overtones appear in the spectra along with
evidence of the eccentricity cycles.
An interesting set of paleoclimatological experiments with the linear seasonal 2-D

EBMwere recently conducted by Zhuang (private communication, 2015). He employed
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the same physical model as was used in North et al. (1983), but as modified by Stevens
who used a finite-difference numerical scheme based on multigrid relaxation as dis-
cussed in Bowman and Huang (1991), Huang and Bowman (1992), Stevens and North
(1996). No parameter changes were employed in his work. Among his experiments were
the following cases shown in Figure 12.27. Panel (a) shows a simulation of the linear (no
ice feedback) model wherein the full Last Glacial Maximum (LGM) were employed,
including the orbital parameters, the concentration of CO2, and the placement of ice in
the Laurentide Ice Sheet, the Greenland Ice Sheet, and the Fenno-Scandian Ice Sheet.
As usual, no topography and no dynamical ice volume model were introduced in the
EBM. It can be seen that the summertime 5 ∘C line hugs the equatorward edge of the ice
sheet on both continents.While he did not iterate the solution to include the ice–albedo
feedback, it appears that this would be a solution if the ice line were to be close to the
5 ∘C line. Figure 12.27b shows the simulated temperature (linear model) when the ice
albedo of the Laurentide Ice Sheet is removed and replaced by bare land, while the con-
centration of CO2 and the orbital elements were unaltered from their LGM settings. As
the figure shows, the 5 ∘C line jumps to leave only Greenland and northwestern Eura-
sia with ice cover. It appears that the ice albedo is dominant over the other conditions,
which seem to play a rather minor role. This is a rather puzzling result. It suggests that
there are equilibrium solutions for the big ice sheet and for a small one. An attractive
possibility is that if the ice is placed there it will stay. If remove it will remain removed.
This may be a kind of neutral stability. Perhaps a large fluctuation could make it jump,
aided by the orbital forcing. Another result that has been known for some time is that the
orbital perturbation alone is not enough to start an ice sheet in North America. Might
a large fluctuation do the trick? We leave this to the imagination of our readers.

12.6.2 Last Interglacial

Figure 12.28 shows a time series going back to 420 ka from the ice core data derived from
the Vostok site in Antarctica (Petit et al., 2001). Estimates of temperature departures
from a modern long-term average are plotted versus time, increasing from right to left.
The last interglacial is the peak between roughly 110 and 140 ka. Other information
from this core including other proxies, CO2 concentrations, and spectral estimates can
be found in Petit et al. (1999).
Crowley and Kim (1994) employed the two-dimensional, seasonal EBM (described in

Chapter 8) to study temperatures and inferred estimates of sea level during the last inter-
glacial (LIG). They found model indications of 3–4 ∘C July (mid-summer) increases at
high latitudes from 140 to 130 ka. In these simulations, they kept CO2 fixed but included
the forcing from obliquity and precession changes over that period. The three sites are
(75∘N, 120∘W), Northern Canada, (75∘N, 30∘E) Arctic Ocean north of Scandinavia, and
(45∘N, 90∘W), US Canadian border near Lake Superior. They note the following:

Although it is at the same latitude as the Barents Sea site, peak warming at the
Canadian Arctic site occurred 4000 years later. This response reflects the greater
importance of the precession-controlled continentality effect on the Canadian
site. However, all sites were warmer than they are now by 130 000 years ago.

They suggest that the Milankovitch forcing might be responsible for the decaying ice
sheet (see Figure 12.29).
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The problem of temperature and sea level (ice volume) during the LIG has recently
received attention especially because of its similarity to the present interglacial. Some
studies suggest that sea level might have been much higher during the LIG.

12.6.3 EBMs and Ice Volume

Since the two-dimensional-seasonal EBM (North et al., 1983) simulates the seasonal
cycle surface temperature well to first order, it was natural that Peltier and colleagues
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use it in their modeling of the glacial–interglacial cycles of the Pleistocene (DeBlonde
and Peltier, 1991; Hyde and Peltier, 1987). Also, Pollard (1982) has tried including an ice
model to an EBMcomparable to the beachballmodel (see Section 8.1).Others, including
Paillard (2001), tried combining ice models to EBMs. As noted by Huybers andWunsch
(1994), this combination always leads to a number of new tunable parameters, as there
are only eight or so glaciations at the 100 ky timescale. The problem of tuning comes up
immediately, as one tries to model glacial growth by inserting precipitation in the form
of snow. But this is only the one of the problems encountered as one contemplates the
flow and decay of ice sheets. This is not to discourage experimentation wherein much
might be learned, but it is to recognize that this is a very big step fraught with potential
errors of overfitting.
Crowley andHyde (2008) re-plotted the Lisiecki and Raymo data in a way that empha-

sizes the increase of amplitude and the lower frequencies of the fluctuations as a function
of time. They note the striking resemblance between Figure 2.10 and Figure 12.30 that
have been reproduced from Crowley and North (1988). Crowley and Hyde (2008) argue
that a series of threshold crossings are in progress. First is a small ice sheet in North
America, then a transition to a larger one. Next is a smaller ice cover in northeastern
Europe. Finally, to come is a large ice sheet in Eurasia. Their model goes beyond the
simple EBMs of this book in employing a dynamical ice sheet.
Anunsolved puzzle is the transition from the so-called 41 kyworld to the 100 kyworld.

This is clearly shown in Figures 12.13 and 12.30 wherein the peaks in global ice volume
suddenly change from a dominant obliquity forcing to that associated with the less well
understood 100 ky forcing. Interesting attempts at explaining the transition are reviewed
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Figure 12.30 The 18O record as replotted by Crowley and Hyde (2008). These authors argue that as the
planet cools during the last 3.0 Ma the amplitude of the fluctuations increases. Each new oscillation
seems to have a larger amplitude and a lower frequency—perhaps an indicator of another bifurcation
coming up. (Crowley and Hyde (2008). Reproduced with permission of Nature.)
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in Raymo and Huybers (2008). One mystery is: Why are not the 21 ky peaks evident in
the “41 kyworld?” Raymonotes that the precession forcing is antisymmetric between the
hemispheres and she posits the ice volume forcing may be canceling. Huybers has been
interested in the possibility of integrating the insolation over the entire summer season,
whose length changes with the precession phase and is modulated by the eccentricity.

12.6.4 What Can Be Done without Ice Volume

Our use of EBMs in paleoclimatology has been to partially answer questions about the
inception of glaciation as in Sections 12.4 and 12.5. EBMsmight be able to address these
issues without any new adjustable parameters. This is as opposed to trying to map the
detailed time series in order to compare with a corresponding time series of data.We are
guided by the results shown in Figure 7.10 where a latitude-only seasonal EBM was run
with a disklike continent centered at the pole. This simulation shows how as a thresh-
old of some control parameter is crossed there is a qualitatively different steady state.
Figure 7.12 shows that as the threshold is crossed, it may take tens if not hundreds of
years to adjust to the new steady state.The long adjustment time is a result of the nonlin-
ear snow-albedo effect.This time as illustrated in that figure is sensitively dependent on
the initial conditions in the problem.This is done without any noise forcing in the prob-
lem. One wonders how this bizarre behavior would be affected by background noise as
in Chapter 9. Figure 7.14 shows another case where a zonal band of land replaces the
pole-centered disk. In this band-of-land geography there are two thresholds.This kind of
simulation is tricky because one must be very careful to use high latitudinal resolution.
One cannot help but wonder what happens if there is longitudinal dependence in this
nonlinear seasonal EBM. And what if noise is included? Might there be quasi-periodic
jumping? Some seasonal simulations of two dimensional, seasonal EBMs including non-
linear snow feedback and with realistic and idealized two-dimensional geography (in
their case, the late Permian geography) have been conducted by Baum and Crowley
(1991).The two-dimensional seasonal simulations seem to confirm the one-dimensional
works ofMengel et al. (1988) and Lin andNorth (1990), andHuang and Bowman (1992)
that bifurcations exist when (not-too-large, or appropriately fragmented) landmasses lie
near or at the poles when forced by a seasonal cycle with an interactive snowline. Then
Crowley et al. (1994) used to Genesis GCM to investigate the effect. They showed a
comparison between the EBM and the GCM results. The GCM seems to confirm the
bifurcation and the corresponding catastrophic change in ice cover as the TSI Q∕Q0 is
varied.

Notes for Further Reading

Bradley (2015) has written the most comprehensive book on the climate of the last few
million years. It is especially good on the observational evidence including its promise
and its limitations. Bender (2013) has written an nice book that covers a lot of ground
from the Precambrian to theHolocene andwritten by an expert especially on the isotope
chemistry. Another recent well written book with lots of references is that of Summer-
hayes (2015), a marine geologist. Bender’s book in the Princeton University Press series
is well written and up to date.Thefield is changing rapidly and sadly the book byCrowley
and North (1988) is out of print and mostly out of date.
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There is not much direct evidence of CO2 changes over the long timescale spanning
the Phanerozoic (last 540Ma), hence, models have to be employed to make inferences
about the record of this greenhouse gas. The book by Berner (2004) explains the many
considerations that go into such amodel with some details about the processes involved.
This book also discusses the evolution of O2. An excellent recent book on paleoclima-
tology includingmany historical notes written by amarine geologist is by Summerhayes
(2015).
As this manuscript was being submitted for publication, a special issue of the period-

ical Past Global Changes Magazine, 24, No. 1, August 2016, arrived.This happens to be
a special issue on tipping points, which is of interest to readers of Chapter 12 as well as
several others that cover bifurcations in the solutions of EBMs.

Exercises

12.1 For this exercise, use the program called milank.f, which computes the orbital
parameters (obliquity, eccentricity, perihelion angle, precession index) based
on the Milankovitch theory. (This program is available at the author’s (KYK)
website.)
(a) Calculate the orbital parameters for the past 1000 ky at intervals of 1 ky. Plot

the four orbital parameters.
(b) On the basis of spectral analysis, determine themajor periodicities in the time

series of obliquity, eccentricity, and precession.

12.2 The magnitude of solar irradiance varies according to the distance between the
Sun and the Earth. The amount of solar irradiance is given by

Q = Q0

(
1 + 𝜀 cos𝜙∗

1−𝜀2

)1

,

where Q0 is the mean solar irradiance and 𝜙∗ is the true anomaly.10
(a) Calculate the solar irradiance as a function of Q0 for three different values of

eccentricity: 𝜀 = 0.0, 0.02, and 0.04.
(b) What would be the percentage change in the solar constant between the per-

ihelion and aphelion when the eccentricity is 0.04?

12.3 For this exercise, use “insol.f” which computes insolation distribution function for
given orbital parameters. (This program can be found at the author’s website.)
(a) Run the program to calculate the insolation distribution function for the

present orbital configuration and that at 15 ky BP (before present). Hint: The
insolation program requires orbital parameters, which can be calculated by
executing milank.f program.

(b) Describe the difference in insolation between the two time periods. Explain
why. Describe what you would expect in the NH and SH polar regions.

10 True anomaly is the angle of the Earth measured from the Sun with respect to the perihelion. Thus, true
anomaly varies by 360∘ when the Earth makes a single revolution along its orbit around the Sun.
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