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Foreword

The theory of hyperbolic equations is a large subject, and its applications are
many: fluid dynamics and aerodynamics, the theory of elasticity, optics, electro-
magnetic waves, direct and inverse scattering, and the general theory of relativity.

The first seven chapters of this book, based on notes of lectures delivered at
Stanford in the spring and summer of 1963, deal with basic theory: the relation of
hyperbolicity to the finite propagation of signals, the concept and role of character-
istic surfaces and rays, energy, and energy inequalities.

The structure of solutions of equations with constant coefficients is explored
with the help of the Fourier and Radon transforms. The existence of solutions of
equations with variable coefficients with prescribed initial values is proved using
energy inequalities. The propagation of singularities is studied with the help of
progressing waves.

Chapter 8 of the second part describes finite difference approximations of hy-
perbolic equations. This subject is obviously of great importance for applications,
but also intriguing for the theorist. The proof of stability of difference schemes is
analogous to the derivation of energy estimates, but much more sophisticated.

Chapter 9 presents a streamlined version of the Lax-Phillips scattering theory.
The last section describes the Pavlov-Faddeev analysis of automorphic waves, and
their mysterious connection to the Riemann hypothesis.

Chapter 10, the only one dealing with nonlinear waves, is about hyperbolic
systems of conservation laws, an active research area today. We present the basic
concepts and results.

Five brief appendices sketch topics that are important or amusing, such as Huy-
gens' principle, a theory of mixed initial and boundary value problems, and the use
of nonstandard energy identities.

I hope that this book will serve well as an introduction to the multifaceted
subject of hyperbolic equations.

Peter Lax
New York
February 2006

Vii





CHAPTER 1

Basic Notions

The wave equation is the prototype of a hyperbolic equation

(1)) u,, - kuxx = 0, k positive.

To ,ut the positivity of k into evidence, we set k = c2; then (1.1) becomes

0 .) u,, - c2uxx = 0.

Th equation governs the transverse motion of a flexible elastic string, the constant
k b ing the ratio of the tension T and the linear density p. Observe that c has the
di ncion of velocity.

We expect, in analogy with the motion of finite systems of particles, that the
mo on of the string is determined once we specify its initial position and velocity:

(1. u(x,0)=a(x), u,(x,0)=b(x).

Thi is indeed so; to find the solution, we write the wave equation in operator form,

Lu=0,
and (hen factor the operator L. We get

I

L=D, -c2Dx2 =(D,+cDx)(D,-cDx).

Each linear factor on the right is directional differentiation, along the lines x =
xo ct, respectively. Integrating along these lines successively and making use of
the i itial conditions (1.2), we get, after a brief calculation, the following explicit
expr scion for u:

(1.3)

This
for tl

c

Then

a(x+ct) a(x-ct)
I

x+c'
u(x, t) _ + + -

J
b(s)ds .

2 2 2c x-ct

ierivation shows that the lines x = xa f ct (called rays) play a special role
e wave equation.
uppose we prescribe u and u, not at t = 0 but along some curve t = p(x).
the above procedure can still be used to determine the solution u as long as

evervl ray of both families cuts the curve in exactly one point. We call such curves
spur ike; the analytic conditions sufficient for a curve t = p(x) to be spacelike is
that I 'I be less than 1 /c at every point.

1'4he condition Ip'I > I/c also guarantees this; but since it turns out to be a special feature of
the on dimensional situation, we leave it aside.



2 1. BASIC NOTIONS

We shall now use formula (1.3) to study the manner in which the solution
depends on the initial data. The following features-some qualitative, some quanti-
tative-are of importance:

(I) The motion is uniquely determined by the initial data.
(2) The initial data can be prescribed as arbitrary, infinitely differentiable

functions with compact support, and the corresponding u is infinitely dif-
ferentiable in x and t.

(3) The principle of superposition holds.
(4) Influence propagates with speed < c.

We shall show that properties (1)-(4) imply the following further properties:

(5) Motion is governed by a partial differential equation.
(6) Sharp signals propagate along rays.
(7) Energy is conserved.
(8) Spacelike manifolds have the same properties as the manifolds t = const.

We shall further show that motions depend continuously on their initial data;
this implies that the governing equation is of a special type called hyperbolic.

The first two properties follow immediately from formula (1.3). The third
property follows from the linearity of the wave equation. Property (4) means that,
as evidenced by formula (1.3), the value of u at x, t is not influenced by the initial
values outside the interval (x -ct, x+ct). The formula also shows that, as asserted
under (6), the influence of the endpoints is stronger than that of the interior; this
will be made more precise later. To give meaning to (7) we have to define energy.
In analogy with mechanics, we define

Ekinetic = 2P J u, dx , Epotential = 2T J ux dx .

The total energy is then (using T/p = c2)

Etotal = IP J u; + c2us dx.

From the explicit formula for u we can verify that the energy density u, + c2u2 is
the sum of a function of x + ct and of x - ct; the integral of such a function is
indeed independent of time.

We shall give now a derivation of the law of conservation of energy for arbitrary
spacelike surfaces; this second method is applicable in rather general situations.

Let P1 and P2 be two spacelike curves; multiply equation (1.1') by ut and
integrate over the domain contained between P1 and P2. We get

r / P2
0 = JJ

u,u,, - c2u,u.,,r dx dt.
Pi

Integrating by parts with respect to x in the second term, we get

JJ
r0=U,u+c2u,udxdt-c2J uuds,

1 PI
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where t;, r denote the x, t components of the unit normal drawn in the positive t
direction. The remaining double integrals are both perfect t derivatives and so they
can be integrated with respect to t. The result is

E(P1) = E(P2),
where we define the energy E(P) contained in u on the curve P as

E(S) = 2 J (ru; - c2rux)ds .

P

We recall now that P is spacelike if

r>cII.
From the above form of E we deduce that the energy density (and thus the total
energy) along P is positive definite if and only if P is spacelike.

The law of conservation of energy gives another proof of the result that initial
data along a spacelike curve uniquely determine the motion. We shall see later that
energy conservation is the basic tool for constructing solutions of general hyper-
bolic equations.

Property (8) follows easily from an explicit representation for u in terms of the
values of u and u, along a spacelike curve.

In the next chapter we shall investigate a class of media whose motions have
properties (1)-(4). We shall show that such motions are governed by partial differ-
ential equations satisfying a certain algebraic condition. We shall show that, con-
versely, solutions of differential equations satisfying that algebraic property have
properties (1)-(8). It is perhaps surprising that the qualitative assumptions (1)-{4)
halve such quantitative consequences as (5), (6), and (7).





CHAPTER 2

Finite Speed of Propagation of Signals

We shall be dealing with motions of continuous media. The state of a medium
at any point x = (x1, ... , xk) of Euclidean space and any time t is specified by the
values of n variables (which in concrete cases are quantities like density, pressure,
velocity. strength of electric and magnetic fields, etc.). We shall denote the state
variables by u 1, ... , u, and their totality as a single vector u.

The state of the medium at any given time is a vector function u(x). We stipu-
late that

(1) all Co vector functions f (x) describe a state of the medium;
(2) the state of the medium at any given time s determines its state u(x, 1) at

all future and past times.

These functions u(x, t) describe all possible motions of the medium. Knowl-
edge of these motions makes it possible to describe those points q in space-time
that are influenced by the state of the medium at a point p = (x, s).

DEnNITIoN 2.1 The point p = (x, s) is said to influence the point q if, given any
spatial neighborhood 0 of x and any space-time neighborhood D of q, there exist
two motions ut and u2 which at the time s are equal outside of 0 but which are
unequal at some point in D.

If the motions are linear, i.e., if the superposition of two motions is also a
motion-which we assume hereafter-then the last part of the definition can be
rephrased as follows: There exists a motion u that at time s is zero outside 0 but
which is nonzero somewhere in D.

Having defined influence we can further define: The domain of influence of p
is the set of all points q influenced by it. The domain of dependence of a point q is
the set of all points p influencing it.

EXERCISE Show that domains of influence and dependence are closed sets.

A surface t = f (x) is called spacelike if no point on it influences another.
It is called strictly spacelike if there exists a positive quantity 8 such that all seg-
ments connecting a point p of the surface to any point q sufficiently close to p and
influenced by it makes an angle greater than 8 with the tangent plane at p.

We assume now that influence propagates with speed < c in the following
sen.e: Whenever

jxp - Xqi>Clte - tqI
p does not influence q; here Ix I denotes the Euclidean length of x.

This assumptions has the following consequences:

5



6 2. FINITE SPEED OF PROPAGATION OF SIGNALS

(1) If the medium at time s has compact support, it has compact support at
all other times.

(2) Every surface t = p(x) where 1gradpl < I/c is strictly spacelike.

THEOREM 2.2 Denote by A the intersection of the domain of dependence of q
with t = r. Suppose that the data of a motion u at time r are zero in an open set G
containing A; then u is zero in some neighborhood of q.

PROOF: Since no point p at time r and outside of G belongs to the domain
of dependence of q, to each such point p there exists a spatial neighborhood G p
of p and a neighborhood Dp of q such that any motion which at time s is zero
outside GP is zero inside Dp. Since influence propagates with finite speed, there
is a spatial neighborhood G,,, of oo with the same property. By compactness there
exists a finite, smooth partition of unity subordinate to the above covering, i.e., a
finite number of functions (pi (x) such that

(1) E(pi(x) = 1,
(2) each cpi is smooth, and
(3) the support of each Pi is contained in one of the sets Gp or G.

Denote the data of u at time s by f :

u(x,s) = f(x).

Multiplying (1) by f we get

Evif=Jfi=f.
Notice that if the support of pi lies in G then fi = pi f is zero since f was assumed
to be zero in G. Denote by ui the motion with initial state fi; by the principle of
superposition

1: ui =u.

Each motion ui vanishes in some neighborhood of q, and therefore their sum van-
ishes in the intersection of these neighborhoods. O

The theorem justifies calling the set A a domain of determinacy of q at time s.
Later we shall show that the intersection of the domain of dependence of q with
any spacelike surface is likewise a domain of determinacy of q on the surface.

The following result is called the Huygens wave construction:

THEOREM 2.3 Denote by (x, t) any point in space-time. Denote by s any time > t,
and by K(x, t; s) the set of points at time s that are influenced by (x, t). Let r be
any time between t and s; we claim that K(x, t; s) is contained in the set of all
points at time s that are influenced by points in K(x, t; r).

EXERCISE Prove Theorem 2.3. We note that in some interesting cases the con-
tainment is proper; see Appendix A.
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The Differential Equations of Motion. We have assumed that u(x, t) is
uniquely determined everywhere in terms of its value at time s, s any value. In
particular, the value of its t-derivative u, at time s is determined. We denote the
operator relating u,(s) to u(s) by G = G(s):

(21) u,=Gu.
G is an operator mapping the space of all C°° differentiable functions of x with
compact support into itself. We claim that G is a local operator, in the following
sense: The support of Gf is contained in the support of f . Another way of saying
this is: If f vanishes for all x in some open set U, so does Gf.

To show that G is local, we note that if u(x, s) vanishes in the open set U, then
since influence propagates with speed less than c, u(x, s +h) vanishes at all points
x whose distance from the complement of U is greater than cihi. This shows that
it, = Gu vanishes in U, i.e., that G is local.

According to a theorem of Peetre every linear operator mapping C' into CO°
that is local is a partial differential operator with coefficients that are differentiable
functions of x. Since G depends in general on s, so will its coefficients; it is easy
to show that the dependence of the coefficients on s is also differentiable.

We have thus shown that motions which have properties (1)-(4) satisfy a partial
differential equation. We turn now to the problem of characterizing algebraically
the partial differential equations satisfied by such motions. We shall treat first the
special case when the motions are translation invariant in the following sense: If
is 0 . 1) is a motion, then u(x - y, t - s) is also a motion for any fixed y, s.

The differential equations governing homogeneous motion have, it is easy to
show, constant coefficients. We proceed now to solve these equations by taking the
Fourier transform (FT) in x. Denote as usual the FT by the symbol

f(e) = J f (x)e-'sf dx,

being the dual vector variable of x. Denote by D the vector operator of differen-
tiation with respect to xi, ..., x.. The operator G can be written as a polynomial
in1.),

G(D) = EAiDi,

where Ai is a matrix, j a multi-index, and Di the symbolic power Di...... Dk'
According to the well-known rule, under FT differentiation goes into multiplication
by is, so

(2.2) Gu = G(il; )u .

Since motions are C°° and have, for fixed t, compact support in x, they have spatial
Fourier transforms. Taking the Fourier transform of both sides in (2.1) we get,
using (2.2),

u, =
This ordinary differential equation has the unique solution with initial value f (s)

(2.3) u(4, t) = etG(i4) .7(o'
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from which u itself can be determined by inversion.
In the process of deriving this explicit formula for the solution we have proved

this uniqueness theorem:

THEOREM 2.4 If a differentiable solution of (2.1) has compact support for each t,
and if it vanishes at t = 0, then it vanishes for all time.

It follows that not only does every motion satisfy differential equation (2.1), but
every solution of (2.1) that has compact support for each t is a motion.

THEOREM 2.5 Motions depend continuously on their initial data.

PROOF: Consider the set of all CO0 initial data f with support in some com-
pact set K. They form a Frechet space F, which is a complete metric linear space.
The corresponding motions u, restricted to the strip -I < t < 1, belong to the
Frechet space U of CO0 functions in this strip whose support lies in the domain of
influence of K. The mapping relating initial values with support in K to motions
restricted to the strip has the following properties:

(1) it is linear,
(2) it maps the whole space F into the space U,
(3) its graph is closed.

Property (3) means that if f is a sequence in F converging to f, and if the cor-
responding motions u, tend to an element u in U, then this limit u is the motion
corresponding to f. To verify that this is indeed so, we observe that the limit u
is a solution of the differential equation governing the motion, that it has compact
support, and that its initial value is f. According to the uniqueness theorem, u is
the motion with initial data f.

We recall that continuity means that if f and all its derivatives tend to f, then
u and all its derivatives tend to u.

We appeal now to the closed graph theorem: A transformation which has prop-
erties (1)-(3) is continuous. This completes the proof of Theorem 2.5.

COROLLARY 2.6 There exists a constant M and an integer m such that for all
motions u whose initial data f are supported in K, and for all x,

(2.4) lu(x,t)I <MIfIm, IrI < I.

Here If Im denotes the maximum of the initial value f and its partial derivatives
up to order m.

PROOF: Suppose not; then there exists a sequence of initial data fm supported
in K such that Ifm Im tends to zero but the maximum value of um in the strip It 1 < 1
doesn't. This clearly contradicts the continuity of the dependence of u on f.

W e take now K to be the hypercube Ixi I < 1 , j = 1, ... , k, and define the
initial value f with the aid of the following auxiliary function p:

p(x) -- (1 - x2)m for lxI < 1,(0

for IxI > I.
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Weiset

wh
int'

f(x) = J] P(xj)h,

re h is a vector to be chosen later. We take the Fourier transform of f, and
grate by parts mk times. We get

f( )=2mmt
sink]

Iti IMtj (H
aslI -+oo.

We turn now to u(x,±1). Since its initial value is supported in IxjI < 1, and
sine signals propagate with speed < c, u(x, ±1) is supported in IxjI < 1 + c.
Th efore we can estimate u(i, ±1) in terms of u(x, fl) as follows:

u(,±1) < (2+
Iu ( ± 1) Imu is bounded by inequality (2.4); therefore

Iu(S, ±1)I < (2 + 2C)kIf lm.

Th norm If 1,, depends only on m and k; therefore we can rewrite the above esti-
ma -as

(2. 6.1 Iu(>;,±1)I <const,

wh a the constant depends only on M, m, k and c.
We use now formula (2.3) to express u(t, ±1) in terms of f. We denote the

cig values of the matrix G(w) by a(w), the corresponding eigenvector by h. Then
the igenvalue of G(it) is a(ir), and (2.3) becomes

(2.7 u($, ±1) = e*°uEt hf(t)

Usi
all i

(2.8

Sim

and

g (2.5) to express f and the estimate (2.6) for u we deduce from (2.7) that for
-al t;

fl Isin tjIle°t'ttI < constf Itjlm.

larly we define g(x) as

g(x) = flxjp(xj)h
educe as before that as It I -* oo,

8()=2mm!JJc2snj +O( 1 m)

We !educe as before that

(2.8

Cool

whirl

(2.9

' f IcostjIlev(t)l <constf Itjlm.

bining (2.8) and (2.8') we deduce that

Ie°t'{)I <constflItjIm,

h implies that

IRea(ir;)I < constlog(2+ III)
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for all real t.
The eigenvalues a are roots of the characteristic polynomial P:

P(t, r) = det[rI - G(i;)].

THEOREM 2.7 The characteristic polynomial of the differential equation satisfied
by translation invariant motions propagating with finite speed has the following
properties:

(i) its degree in r equals its degree in r, t, and
(ii) its roots r = a(t;) satisfy the inequality

IRea(it;)I < constlog(2+ III) forte real.

PROOF: Property (ii) follows by taking t; real in (2.9).
The proof of (i) is based on the fact that the Fourier transform of a function u

of compact support,

u(t;) =
J

u(x)e-'`t dx,

is defined for all complex t:, and is of exponential growth:

Iu($)I <

Since signals propagate with finite speed, the solution u(x, t) has compact support
for all t. According to formula (2.3), its Fourier transform u is

u( t) = eG0Uf(t).

Therefore the eigenvalues of G (i tt) grow at most linearly in t:

(2.10) la(t)I < const(1 + III)

Write now
n

P(, T) = Ean-vrv, ao = 1 ,
0

av polynomial in t. Since an_v is the sum of products of the roots v at a time, it
follows from (2.10) that

lan_v(!;)I < const(1 + ItI").

This shows that an_v(1;) is a polynomial of degree at most v in t;. Since this is true
for arbitrary to, it follows that an_v is a polynomial of degree at most v in l;. D

Condition (ii) imposes a restriction on the roots r (t;) for It I large; for such
values the highest-order terms P0(1;, r) dominate. Po is a form of degree n, called
the characteristic form associated with the differential equation. The null set of
P0(l;, r) = 0 is called the characteristic variety.

It is easy to show, that the following relation holds between properties of the
roots of P and PO:

THEOREM 2.8

(i) If the roots of the characteristic equation satisfy inequality (ii) of Theo-
rem 2.7, then P0(!;, r) = 0 has, fort; real, only real roots r.
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(i i) If the characteristic form Po has for real nonzero 4 only real roots r which
furthermore are distinct, then the roots o(ff) of the polynomial satisfy

IRea(i4)I < const for all real t;.

Condition (ii) in Theorem 2.8 is slightly stronger than condition (ii) in Theo-
rem 2.7. GArding has shown by purely algebraic methods that the two conditions
are equivalent.

DEFINITION 2.9 A partial differential equation u, - Gu is called (strictly) hyper-
bolic if its characteristic polynomial has properties (i) and (ii) in Theorem 2.7.

We give now an invariant formulation of the property of forms discussed above;
this is important for it frees us from a fixed space-time frame:

DEFINITION 2.10 Let P0 be a form of degree n in the variables . A real vector
v is called (strictly) hyperbolic for P0 if for any real vector t not parallel to v the
polNnomial ins, Po(sv + ), has n real (distinct) roots.

A form is called (strictly) hyperbolic if there exists a (strictly) hyperbolic vec-
tor for it. In this terminology Theorem 2.7 asserts that the characteristic form of the
diflerential equations of motions investigated in these notes is hyperbolic, and that
the normal to the hyperplane t = 0 is hyperbolic. In the next chapter we shall see
that the hyperbolic directions are precisely those which are normal to a spacelike
hypersurface.

Examples.

Ex MpI I? 1

k

G=I:AjDj+B
I

with the Aj symmetric, real n x n matrices, and B an arbitrary real matrix. The
equation u, = Gu, G of the above form, is called a symmetric hyperbolic system
of hrst order.

We shall verify now that condition (ii) holds for the eigenvalues r of the matrix

When B is zero we obtain, using the result that real symmetric matrices have real
eigenvalues, that for real the eigenvalues r are real. For nonzero B we use the
following result about symmetric matrices: If A is a symmetric matrix and B an
arbitrary matrix, then the eigenvalues of A + B have imaginary part not greater
than II B II

PROM:: Let w be an eigenvector of A + B of length I with eigenvalue r:

(A + B)w = rw.

Take scalar product with w;

(Aw, w) + (Bw, w) = r .
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Take the imaginary part of the equation above. Since A is symmetric,

lm(Bw, w) = Im r.

The assertion follows now by the Schwarz inequality. 0
When this estimate is applied to we deduce that the eigenvalues of

satisfy condition (ii). Observe that symmetric hyperbolic systems need not be
strictly hyperbolic; more about this in Appendix C. We note that Maxwell's equa-
tions of electromagnetism form a symmetric hyperbolic system.

EXAMPLE 2 n = 2.

Eliminating v, we get

u, = V, V, = c2 uxkxt = c2Au .

U11 - c20u = 0,
the familiar wave equation, the prototype of hyperbolic equations. The character-
istic polynomial

r2-c2 2, 2 +...+ k
is homogeneous, and its roots

r = A(l;) = fc(42)1/2

are real and distinct for real and 54 0.

EXAMPLE 2' n = 2.

u, = v, v, _ a;j u x, x, - b; a x, - cu .

Eliminating v, we get the second-order equation

u - a;jux;; + b;u,, + cu = 0.

The characteristic form of this equation is

r` - j
which has real and distinct roots for real and # 0 if and only if the quadratic form
F a;j is positive definite.

EXAMPLE 3 n = 2.
u,=v, v,=ux.

Eliminating v, we get u - ux = 0. The characteristic polynomial is r2 - a; , whose
roots are r = X112. Clearly condition (ii) is violated, so that this equation is not
hyperbolic. The characteristic form is Po = r2 whose roots, r = 0, are real but not
distinct. So Po is hyperbolic, but not strictly hyperbolic.

EXAMPLE 4 k = 2.

0

r scalars, and Pj homogeneous of degree n - j. Suppose that Po(l, r) = 0
has real roots Tk of multiplicity nk, nk = n. E. E. Levi has shown that if rk
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is a root of degree nk - j of Pj, j = 1, 2, ..., then the initial values amu(x, 0),
m = 0, 1, ... , n - l of a solution u of Pu = 0 can be prescribed as arbitrary
C1 functions. Anneli Lax has shown that Levi's condition is necessary for the
existence of solutions. Svensson has extended this result to any number of space
variables.

Ex.AMPLE 5 n any integer, k = n(n + 1)/2. Consider the following form Po of
degree n in the k variables

lj, i, j = 1, ... , n, tj = Cji : det IC,j I

We claim that this form is hyperbolic; the hyperbolic vectors v are precisely those
for which the symmetric matrix v = (v,) is positive definite. For this equation

C) = 0 means precisely that the matrix sv + is not invertible, which
implies that there exists a nonzero vector w such that svw = i.e., s is an
eigenvalue of i; with respect to v. But it is well-known from matrix theory that the
eigenvalues of any symmetric matrix C with respect to a positive definite matrix
v are all real. On the other hand, for v nonpositive there exists a matrix c with
complex eigenvalues with respect to v.

Ex AMPLE 6 n any integer, k = W. Consider the following form Po of degree n in
the k variables

i.j=l,...,n,

An analysis similar to the above shows that Po is hyperbolic; the hyperbolic vectors
v are precisely those for which the Hermitian matrix v is positive definite.

Examples 5 and 6 are due to Lars G'drding.

EXAMPLE 7 Given a hyperbolic form Po of degree n in the variables t, r, take G
as the companion matrix of Po regarded as polynomial in r; i.e.,

GO =

0 1 0 0

0 1 0 ... 0

0

0
0 ... 0 0 0 1

-an -an-1 -al
where aj = is the coefficient of r"-j in P0. Clearly the characteristic form
of the operator a/at - G is Po.

In all these examples it was possible to associate an order dj with each of the
variables uj so that in the io' equation

at
u, = rglj(D)uj ,
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the total order of each term on the right does not exceed d, + 1, the order of the
left side; i.e., the order of g;j does not exceed d; - dj + 1. From now on we shall
confine our studies to operators of this kind.

The principal part Go of an operator G as above is defined as the matrix formed
by the terms of order d1-d; + 1. The characteristic form of a - G can be expressed
in terms of the principal part of G as follows:

Po(l;, r) = det(rI - Go(d))

- G is called hyperbolic if the order of g;j satisfies the aboveThe operator at
condition, and if the roots of its characteristic polynomial satisfy condition (ii) of
Theorem 2.7. It is called strictly hyperbolic if Go(l;) has real and distinct eigenval-
ues for real.

EXAMPLE 8 The equations governing the motion of elastic media are a hyperbolic
system of second-order partial differential equations.

In 1957 the author showed that part of Theorem 2.8 holds also for differential
equations governing motions with properties (1)-(4) that are not translation invari-
ant. In this case the characteristic form Po depends on x and t as well; the roots r
of Po = 0 are required to be real for all real and all x and t. The definitive form
of this result is due to Mizohata.
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CHAPTER 3

Hyperbolic Equations with Constant Coefficients

In this chapter we shall show that if u, - Gu = 0 is a strictly hyperbolic
equation with constant coefficients, then its solutions represent motions that have
properties (1)-(8) listed in Chapter 1. The verification of property (6) will be car-
ried out in Chapter 7.

3.1. The Domain of Influence

Properties (1), (2), and (4) assert that, given initial data which are infinitely
differentiable and of compact support, there exists exactly one solution of the dif-
ferential equation that has the prescribed data and that has compact support in x
for all t. As shown in Chapter 2. this solution is easily constructed by Fourier
transformation. Denote, as customary,

(3.11 .f(,) = feEf(x)dx.

Taking the Fourier transform of both sides of the differential equation (2.1) and
using (2.2) gives

at
u(r;, t) = t).

Integrate this ordinary differential equation:

(3.2 1 t) = o).

Since the differential equation is assumed to be hyperbolic, G(i4) satisfies con-
dition (ii) of Theorem 2.7, and this assures us that the exponential in (3.2) grows
at most like a power of t;. Then the function on the right in (3.2) decays fast as

oo, and so has a Fourier inverse. This inverse clearly satisfies the differen-
tial equation. has the prescribed initial values, and is unique in the class of solutions
admitted. What remains to be shown is that it has compact support in x for all val-
ues oft. We shall deduce this on the basis of Plancherel and Polya generalization of
the Paley-Wiener theorem, which characterizes the Fourier transforms of functions
with compact support.

Let f (x) be m times differentiable, and suppose that its support is the closed
bounded set K. Denote by SK (O the support function of K, defined by all real
vectors as

SK() = maxx .
xEK

15
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Note that SK (t;) is positive homogeneous: SK (a) = asK () for a positive, and is
a convex function of . The Fourier transform

f(o = Jef(x)dx
K

of such a function f is also well-defined for complex values of and is an entire
analytic function of C. Integrating by parts m times and estimating the resulting
integral by replacing the integrand by its maximum value leads to the following
estimate:

(3.3)
cons

e-'("), $ =SK,q=Imp.
I+WM

The converse of this result is the following:

THEOREM 3.1 (Theorem of Plancherel and Polya) Suppose T (C) is an entire ana-
lytic function that satisfies inequality (3.3) with some positive homogeneous func-
tion s(q). Then f (x), its Fourier inverse, is zero at all points outside the set of
points {y} that satisfy yq < s(q) for all real q.

SKETCH OF PROOF: If x does not belong to this set, then for some real w

(3.4) xw > s((o).

In the Fourier inversion formula

r
.f (x) =

J f d
,

change the path of integration to + ipso; by Cauchy's theorem the value of the
integral is unchanged. Relations (3.3) and (3.4) show that the value of the integral
is less than any a for p large positive. O

In order to apply this to the situation at hand, we have to estimate the rate of
growth of exp G (i c) for complex . We make use of the following variant of the
Phragmbn-Lindelof principle.

PRINCIPLE (Phragmen-Lindelof Principle) Let h (z) be an analytic function in the
upper half-plane satisfying the following:

(i) Ih (z) I < m for z real.
(ii) Ih(iy)I < mesy for y large positive.
(iii) Ih(z)I < Mesl'' for all z in the upper half-plane, then

(3.5) Ih(z)I < mestmz

in the whole upper half-plane.

In most applications the first two estimates are delicate, the third is crude. The
salient point of the lemma is that the constants in the crude estimate do not appear
in the conclusion (3.5). For proof, see the well-known text of Ahlfors on function
theory.
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We shall also make use of the following estimate from linear algebra: Let T be
a square matrix with a complete set of eigenvectors. Then

(3.6) ITI <constr,

where r is the absolute value of the largest eigenvalue of M and the constant de-
pends only on the determinant of the normalized eigenvectors of T and the order
of the matrix. This follows from the representation of T as RDR-1 where R is the
matrix whose columns are the eigenvectors of T.

For w real, denote the largest eigenvalue of Go(w) by a,,,. (w).

L I--%i %,l A 3.2 There exist constants m and N such that

(i) le';"')I <m(1+IIIN)forallreal .
(ii) For any real t; and q and any given positive e,

_y")1 < m(1 + yN)el°'""'(-")+flnlly for y sufficiently large positive.

(iii) There exist constants M and S such that
Iec(s)I < Mes1{I for all complex

SKETCH OF PROOF: Part (i) follows from inequality (2.9). To verify (ii), use
the fact that for y large, positive the eigenvalues of G(it - yq) differ by o(y) from
the eigenvalues of Go(-yq). These eigenvalues are homogeneous functions of yq
of degree 1; so the largest eigenvalue of Go(-yq) is ya,,,,,,(-q). The estimate in
(iii is a consequence of this observation.

To prove (iii), we recall from the end of Chapter 2 that the entry gig of
ha' degree < d1 - di + 1. It is convenient to represent G by a homogeneous matrix
H defined as

H(C) = -1 D-t (C)G(C)D(i;) .
where is a diagonal matrix with diagonal elements Cdi. It follows that the
elements of H have nonpositive degree, and that for ICI large, H has the form

(3.-1) H(C) = D-Go(w)D+0(1/ICI).

where w =/ICI and Go is the principal part of G. Since by assumption G is
strictly hyperbolic, Go has distinct eigenvalues; it follows that it has n linearly in-
dependent eigenvectors. Thus the determinant d(w) of the normalized eigenvectors
of Go((u) is nonzero for each w; since the unit sphere is compact, it follows that
d(,1)) is bounded away from zero uniformly for all w on the unit sphere. Then by
continuity it follows from (3.7) that for ICI large enough H(C) has linearly inde-
pendent eigenvectors whose determinant is bounded away from zero, so by (3.6)
for , Z I large enough

le"H({)I < eonste,'(010

where p(C) is the largest real part of the eigenvalues of H(i; ). Using this estimate
in

ec(S) = DetH({)D-1

gi\ es inequality (iii) of Lemma 3.2. The rest follow by using the strict hyperbolicity
of G.
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Let l; and ri be arbitrary real vectors; define

h(z) = I eGGF+izn1

(Z+i)N
It follows from Lemma 3.2 that h(z) satisfies the hypotheses of the Phragme n-
Lindelof principle with s = omax(-g) + Elg1. So

Ih(z)I < mea-(-n)+fl'

Put z = i ; we get,

(3.8) lecusll < m(IlIN +
for all complex , where g = Im l; .

Suppose that the initial values u(x, 0) have their support inside the sphere lx 1 <
r; then u (>; , 0) is bounded by

(3.9)
1 + Iff

Combining (3.8) and (3.9) to estimate u (t; , 1) as given by formula (3.2), we con-
clude that

const ear.(-v+(e+T)u
I+10M

where g = Im . Using this estimate in the theorem of Plancherel and Polya, we
conclude: u(x, 1) is zero if x lies outside the set of points satisfying for all g

xg:f:- omax(-g)+r,
provided that its initial values u(x, 0) are zero outside a sphere of radius r around
the origin.

Denote by K the intersection of the domain of influence of the origin and the
hyperplane t = 1. It follows from the assertion above that the supportfunction of
K, defined as SK (17) = maxxEK xg, is not greater than We claim:

THEOREM 3.3 The support function of K is equal to

PROOF: Denote by v the eigenvector of Go(-w) which corresponds to the
eigenvalue o ,. (-w). Then, as our analysis before shows, given any c, for p large
enough positive

(3.10) lea(-p°) vl > epa_(-")-fp

Choose the scalar function a(x) with support in a small sphere around x = 0 and
sot that its Fourier transform does not decrease too fast in the direction iw:

(3.11) la(ipw)l > e-', p > 0.
Put u(x, 0) = a(x)v; then expressing a by (3.2) and using estimates (3.10) and
(3.11), we get

(3.12) Iu(ipw, 1)l >_ epa( 1 zfp
.

1 This is easily done; in fact, whenever a (x) vanishes for Is I > F, lim supp,,, log Id (i pw) I l p

-E. and this suffices.
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On the other hand, by inequality (3.3) every solution whose initial values have
sufficiently small support satisfies for p large positive

(3.13) Ju(ipw, 1)1 < conste°5K((0)+fv

Comparing (3.12) and (3.13) we get

Cu.(-(0) < SK (w) + 3E .

Since a is arbitrary, this shows that

,Amax(-w) SK (W)

which. together with the previous inequality, proves Theorem 3.3.

Being the maximum of linear functions, the support function of a closed,
bounded set is a convex function. Therefore we have

C(IROLLARY 3.4 a convex function of q.

Knowing, the support function of K, we can determine the convex hull K of
K : it is the set of points y satisfying for all n

(3.14) Y)? :5 amax(-n)

When the equation in question is strictly hyperbolic, is a regular al-

gehraic function. In this case the boundary of K contains no straight line segments.

According to the theory of convex sets, it follows that every boundary point of K

is an extreme point, and so belongs to K.
For not strictly hyperbolic equations, on the other hand, it can happen that not

every boundary point of the set defined by (3.14) belongs to the domain of influence
K of the origin; see, e.g., examples 5 and 6 in Chapter 2.

What interior points of the set defined by (3.14) belong to K is a delicate
question: in Section 3.5, as well as in Appendix A, we shall give examples where

not all interior points of K belong to K.

3.2. Spacelike Hypersurfaces

Let P be a hyperplane in x, t space through the origin whose equation is

(3.15) zv = 0,

where z and v stand for (x, t) and (l;, r), respectively.

Tli1:ORENl3.5 P is strictly spacelikeifforall reals

r - amax(5 )
(3.16) 0 < < oo.

r + amax-
PROOF: Let z be any point in the domain of influence of the origin; we take

for simplicity the t-coordinate of z to be one: z = (x, 1). Then x belongs to K and
so by the result derived at the end of the last section

(3.17) xl; < amax(-O
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Since zv = xt; + r, it follows from (3.17) that

(3.18) T-Amax(?;)<ZV<T+Amax(- )

If (3.16) is satisfied, (3.18) shows that zv lies between two numbers of the same
sign and so is not zero. By (3.15) it follows that z does not lie on P, so P is'
spacelike. The restriction of the t-coordinate of z to be I is irrelevant. We conclude
that P is strictly spacelike; this completes the proof of Theorem 3.5.

When the underlying equation is strictly hyperbolic, and there is more than
one space variable, the converse of Theorem 3.5 holds. For, since is the
support function of K, there are points x and x' in K for which

Amax(-O = x , amax(O _ -x

If condition (3.16) fails there are three possibilities:

(i) r + xl; = 0,
(ii) r + x' = 0, or

(iii) T + xl; and r + x' have opposite signs.
The points x and x' are boundary points of K. For a strictly hyperbolic equa-

tion the boundary of K is the boundary of the convex hull of K, and so for more
than one space variable it is a connected set. Therefore, in case (iii) there is a point
x" E K for which r + x" 1; = 0. So one of the points (x, 1), (x', 1), or (x", 1) lies
on the hyperplane defined by (3.15), and so P is not spacelike.

EXAMPLE Suppose that G is a symmetric first-order operator

G=1: AjDj,
A j symmetric matrices. Here am. (t:) denotes the largest eigenvalue of

Condition (3.16) means that r - amp(s) and r + amax(-l;) are of the same sign,
which means that the smallest and largest eigenvalue of the characteristic matrix

(3.19) I r - G (O)

are of the same sign. This is the same as saying that the matrix (3.19) is definite;
thus according to Theorem 3.5, (4, r) is normal of a spacelike hyperplane if and
only if (3.19) is definite.

Next we observe that the definiteness of (3.19) is sufficient for the direction
v = (l;, r) to be hyperbolic. For hyperbolicity means that for any _ (?I, K) not
parallel to v

Po(sv+0
vanishes for n real values of s. The vanishing of Po means that the characteristic
matrix (sr +K)1 -G(sl; +>1) is not invertible, i.e., that it annihilates some nonzero
vector v. Since G(t;) depends linearly on l4, this can be written in the form

[KI - G(q)]v = -s[rl - G(t:)]v..
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According to the spectral theory of symmetric matrices, if the matrix KI - is
definite, this eigenvalue equation has only real roots s.

The above result is not surprising since hyperbolic directions were introduced
as a natural generalization of the prototype (0,1). Indeed the foregoing results hold
in general:

THEORt i 3.6 The direction v = (a;, r) is strictly hyperbolic if the hyperplane
whose normal is v is strictly spacelike.

PROOF: To prove this theorem, we factor the characteristic form

Po(l;', r') = fl(r' - ajw)),
j=I

where aj (i;') are arranged in decreasing order,

al ( O > 0`2W) > ... > a. W)

for 'real and i4 0. Since Po is homogeneous

(3.20) uj (a
) _

1aar._j+j(t')

aoj (i;') for a positive

for a negative

and

(3.21 I) amaa( ') = a1(l;') . amax(-r;') = -a.W)

Suppose that v is spacelike; we wish to show that v is then strictly hyperbolic,
i.e that the equation

(3.22) P0(sv + ) = 0

is satisfied for n different real values of s for any vector _ (n, K) not parallel to
v. Using the factored form of Po, we see that (3.22) vanishes if and only if one of
its factors does:

(3.22.1)

Different indices j furnish different roots sj since the functions aj are distinct ex-
cept at the origin; since is not parallel to v, s + r) 0 0.

We shall show now that for each j (3.22j) has a real root by showing that
the function on the left in (3.22j) has opposite sign for large positive and negative
values of s. By (3.20) we can write the function on the left as

Kls r - aj l + n) + -J for s positive,
s s
n K

s IT - an- j+1 ( + - s) + -
s

for s negative.

For Is I large this can be written as

s [ r - aj e] for s positive,
(3.

;) forsnegative.
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Since v was assumed spacelike, according to Theorem 3.5 condition (3.16) holds.
Using (3.21) we can state (3.16) in the form: r - al (t;) and r - a (t;) have the
same sign.

Since a, and a are the extreme roots, it follows that for all j, r - aj (t;) has
the same sign. But then the function (3.23) has opposite sign for large positive and
large negative values of s, which proves that each must vanish for some real value
of s.

The converse of Theorem 3.6 is left as an exercise.
The geometric picture behind this analytic discussion will be discussed in Sec-

tion 3.4.
Let u(x, t) be a solution with compact support in x. The boundary M of the

support is a point set in x, t space that separates disturbed from undisturbed regions
and thus can be thought of as a wave front. What is the shape of these possible wave
fronts?

Denote by s(t;, t) the support function of the support of u(x, t) at time t. It
follows from Theorem 2.2 and Theorem 3.3 that for t positive

(3.24) s(z,r) <s(,0)+to.(- ).
Suppose that the sign of equality holds in (3.24) and that the boundary M of the
support of u is a smooth surface in x, t space. Then an easy geometric argument
shows that the normal to M is of the form

(S, -amax(-S)) _ amin( ))

This shows that the normal to M lies in the characteristic variety; such a surface is
called a characteristic surface, see Section 3.4. We shall see in Chapter 7 that, as
the above discussion indicates, characteristic surfaces play an important role in the
more detailed description of motions.

The following useful result is an immediate consequence of Theorem 3.6:

THEOREM 3.7 Let P be a spacelike hyperplane; through every (k - 1)-dimen-
sional linear subspace L in P there pass n distinct characteristic hyperplanes.

PROOF: Let v be the normal to P. and let L be the intersection of P with the
hyperplane whose normal is t; , t not parallel to v. According to Theorem 3.6, the
equation

P0(sv + 0 = 0

has n distinct real solutions sj. Clearly the hyperplanes with normal sjv + t are
characteristic, and they pass through L.

In Section 3.4 we shall give a generalization of Theorem 3.7 where P is re-
placed by an arbitrary spacelike surface, L by any smooth (k - 1)-dimensional
submanifold, the characteristic hyperplane by characteristic hypersurfaces. In Sec-
tion 4.2 we further extend this result to equations whose coefficients may vary with
xandt.
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3.3. The Initial Value Problem on Spacelike Hypersurfaces

TIIEORI.,%t 3.8 Let S be any smooth, strictly spacelike surface, given as t = p(x).
Ler u0(x) be a smooth vector-valued function with compact support. Then there
ex. its a motion u(x, t) whose value on S equals uo:

u(x, p(x)) = u0(x) .

F:,rthernnore. u is uniquely determined.

PROOF: We shall construct a solution of the differential equation of the mo-
tion it, = Gu that has compact support in x and that equals uo on S; by the unique-
ness theorem such a solution is a motion.

For simplicity we shall treat the special case when G is a first-order operator:

G=EA, D, + B.
We introduce s = t - p(x) as a new variable; denote by v(x, s) the function
it (.t ..ti + p(x)). Using the chain rule, we get

u, = Vs , ux = ux - uspx

In terms of v the differential equation is

v,Aj (vxj-u,Pxj),
which can be rewritten as

(I+1: p1Aj)v,=Gv.
Since the surface S is assumed to be strictly spacelike, according to Theorem 3.6
its normal v is hyperbolic, which shows that v does not lie on the characteristic
variety. Since v is equal to (-px, 1), this shows that the coefficient of v, above is
nonsingular and so we solve for v,:

(3..5) v, = Hv,
where H is a first-order differential operator in the x-variables whose coefficients
are independent of s.

Repeated differentiation with respect to s gives

an-v=Hnv.
as"

De tine the functions un(x), n = 1, 2, ... , by

(3.26) un = H"uo.

Let V be any positive integer and define vN as the sum
N Sn

.VN(x, S) = E- un
0 n1

Clearly uN satisfies the differential equation

a SN
asuN - HUN= -NtUNtI.
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Returning to the original variables and denoting VN (X, t - p(x)) by rN(x, t), we
find that rN satisfies a differential equation of the form

(3.27) atrN - GrN = (t - p)NkN

Furthermore, rN has compact support in x and equals uo on S; so rN is a "near
solution" to our problem. We shall make it into an exact solution by subtracting
from it a suitable function WN. For this we need the following:

LEMMA 3.9 Given any smooth function g(x, t) with compact support, the inho-
mogeneous deferential equation

(3.28) w,-Gw=g
has a solution satisfying the initial condition

(3.28') w(x, a) = 0.

PROOF: Taking the Fourier transform in the space variables we reduce (3.28)
and (3.28') to an initial value problem for an ordinary differential equation. 0

We return to the proof of Theorem 3.8. Let's assume for sake of simplicity'
that p(x) is bounded, that is, that a- < p(x) < a+ for all x. We take for the
inhomogeneous term g in (3.28) the function g- defined as follows:

8 (x, t) - (t - p)NkNS
0

fort > p(x)
fort < p(x).

Denote by w- the solution of (3.28) with g = g- and a = a-. For this choice of
g-, w- satisfies the homogeneous equation

wt -Gw-=0
for a- < t < p(x). Since S is spacelike, every point (x, t) in this region belongs
to the domain of determinacy of the initial plane t = a-, and so, since w - (x, a-)
was chosen to be zero, w-(x, t) is zero in this region; in particular, w-(x, t) = 0
on S.

Similarly, we define g' as

0 fort > p(x)g(x,t)=
(t - p)NkN fort < p(x),

and denote by w+ the solution of (3.28), (3.28') with g = g+ and a = a+. Ac-
cording to the previous argument, w+(x, t) = 0 fort > p(x). Since g- and g+ are
N times differentiable, w- and w+ can be made as smooth as we wish by taking
N large enough.

Define u as follows:

(3.29) u(x, t) _
rN - w- fort > p(x)
rN - w+ fort < p(x).
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Since r,v satisfies equation (3.27) and w± satisfy (3.28)}, it follows that u satisfies
u, - Gu = 0. Since both w+ and w+ are zero on S, and since rN = uo(x) on S, it
follows that u = uo(x) on S. This proves the first part of Theorem 3.8.

To prove uniqueness, let u be a solution of u, = Gu that is zero on S. Define
u- by

u fort > p(x)
(3.29) a-(x, t) =

0 fort < p(x).

Equation (3.26) shows that not only u but all its derivatives are zero on S, so the
function u- defined above has continuous derivatives of all orders; furthermore,
u- satisfies the equation u, = Gu-. Since a- < p(x), u_(x, a-) is, according
to (3.29'), zero for all x. Therefore, according to the basic property of hyperbolic
motions, u-(x, t) = 0 for all x, t. This shows, in view of (3.29), that u(x, t) = 0
for r > p(x). That u(x, t) = 0 fort < p(x) can be deduced analogously.

If S and uo are COO, then, since N is arbitrary, u too is C°D. The simplifying
assumption that S lies between t = a- and t = a+ is not hard to remove; we leave
it as an exercise to the reader. By the uniqueness theorem, u defined by (3.29) is
independent of N.

3,4. Characteristic Surfaces

For simplicity we shall deal with first-order hyperbolic systems of the form

(3.30) Lu=D-tu-EAjDju=0,
Aj constant n x n matrices, u a vector function, D, = 8/at, and Dj = a/axj.
Given the value of u at t = 0, we can determine all derivatives of u with respect to
x from equation (3.30) and its derivatives with respect to t.

A hyperplane in x, t space is called free if given the values of a solution u of
(3.30) on the hyperplane we can determine all partial derivatives of u with respect
to x and t. A hyperplane that is not free is called characteristic with respect to the
operator 1 defined in (3.30).

To derive an algebraic criterion for a hyperplane to be characteristic we intro-
duce new variables y, s in terms of which the hyperplane is given by s = 0. We
set

s=tr+x, y=x;
then

D, = r D, , Dj = tj D: + Dy, .

Setting this into (3.30) we obtain

(rI - E>;jAj)D,u - > AjDy,u = 0.

Clearly s = 0 is characteristic if and only if the matrix rI - > tjAj is not invert-
ible: here (t, r) is normal to the hyperplane.
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Denote by a any one of the eigenvalues of E j A. Then the condition for
the hyperplane with normal (l;, r) to be characteristic can be written as

(3.31) r-a(l;)=0.
Note that a spacelike hyperplane is never characteristic.
The notion of characteristic can be extended to hypersurfaces:

DEFINITION 3.10 A hypersurface in x, t space is characteristic for the operator L
if all its tangent hyperplanes are characteristic for L

The significance of characteristic hypersurfaces for the propagation of signals
is that they are the carriers of discontinuities. A discontinuous solution is defined
as solution in the weak sense as follows:

A piecewise differentiable function u(x, t) that has a discontinuity across a
hypersurface S is called a weak solution of equation (3.30) if for all C°° functions
w of compact support

f
(3.32) J uL'wdxdt =0,

RtxR

where L` denotes the adjoint of L,

L`=-D,+>DjAj.
When u is everywhere differentiable, we can integrate (3.32) by parts to obtain

J(Lu)wdxdt = 0.

Since w is an arbitrary smooth function with compact support, it follows that a
differentiable function u is a genuine solution of (3.30) if and only if it is a weak
solution.

The argument above shows that at all points where a weak solution u is dif-
ferentiable, it satisfies pointwise the equation Lu = 0. In particular, a piecewise
differentiable weak solution that has a discontinuity across a surface S satisfies
Lu = 0 on either side of S.

Take now any open set that is intersected by S; denote by G, and G2 the parts
of G that lie on opposite sides of S (see Figure 3.1). Let w be any smooth function
whose support lies in the closure of G. We write (3.32) as a sum

(3.32') uL`wdxdt+J uL*wdxdt=0.
G1 G2

We integrate by parts each term. Since Lu = 0 on either side of S, and since w = 0
at those boundary points of G, and G2 that do not lie on S, we get

(3.33) f(ri - J:ljA)[u]wdS = 0,
s
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FIGURE 3.1

where (t, r) is the normal to S, [u] the difference in the values of a on the two sides
of S, and dS the surface area element. Since the value of w on S is an arbitrary
smooth function, it follows from (3.33) that

(3.33') (ri - 0

on S 1f S were noncharacteristic, the matrix r! EjAj would be invertible, and
(3.33') would imply that [u] = 0. This shows that jump discontinuities can occur
on!' across characteristic surfaces.

We turn now to the construction of characteristic surfaces. We shall describe
these surfaces implicitly by cp(x, t) = const; we shall assume that these surfaces
are characteristic for all values of the constant. The normal to the surface W = const
is ([), gyp, D,tp); setting this into (3.31) gives

(3.34) D,tp - a(DV) = 0.

a nonlinear partial differential equation for v, called the eikona! equation.
Since a is a homogeneous function of order I of its arguments, it satisfies the

relation

(3.35) a( ') _ Eaj j
where aj = as/adj. Setting this into (3.34) gives

(3.3(1) D,V -EajDjtp=0.

This implies that rp is constant along the curves defined by

dxj
(3.37)

dt
= -aj(DDQ).

We Shall now show that D,,Q-and therefore aj-are constant along such a curve,
and therefore these curves are straight lines. To see this differentiate equation
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(3.34) with respect to xi; we get

0 = DiDrco -a1D,D1co = -a1Djci
where qpi abbreviates D;cp. The constancy of Vi along the curves (3.37) follows,
therefore these curves are straight lines.

Next we show how to put together the values of cP along these straight line
solutions of (3.37) to construct a solution cp of (3.34). Choose cpo(x) = cp(x, 0)
as any C°° function of x. From each point x of lP there issues a straight line
in (x. t) space defined by equation (3.37), where the values of D,Lep are those of
D,rcpo. Suppose that the first derivatives rpo are uniformly bounded in Rk; then it
is not hard to show that there is a time T such that these straight lines fill the slab
IRk x (-T, T) in a one-to-one fashion. We then define cp(x, t) along each line to
be equal to cpo at the point where the line starts. Clearly, cp satisfies (3.34), and so
the hypersurfaces cp(x, t) = const are characteristics.

THEOREM 3.11 Through any smooth (k - 1)-dimensional manifold in 1R8 there
pass n characteristic surfaces.

PROOF: Choose cpo to be 0 on the prescribed (k - 1)-dimensional manifold,
and cp to be the solution of one of the n eikonal equations (3.34). D

A hyperbolic operator L of form (3.30) has n characteristic fields a( 1 ) . a(°)
corresponding to the n real eigenvalues of F ij Aj. Therefore, through any given
smooth (k - 1)-dimensional manifold in Iltk there pass n characteristic surfaces,
one of each field alit. i We now describe an especially important characteristic
surface, a characteristic cone. These are formed by the set of straight lines de-
fined by (3.37), all issuing from the same point, say the origin (0, 0), in the direc-
tion - Da (w), Dar the gradient of or (w), where a (w) is one of the eigenvalues of
F_ wi Aj, and w runs through all unit vectors. Define H to be the intersection of
this cone with the hyperplane t = 1. H consists of the points -Da((O), Iwl = 1.
Define p(w) = then

(3.38) H : Dp(w) , Iwl = 1 .

We are particularly interested in the characteristic cone corresponding to the
largest eigenvalue am.. We recall from Corollary 3.4 that amyX(i) is a convex
function; therefore so is p(a; ). Since or and p are positive homogeneous as well, it
follows that p is subadditive,

P40 + q) < P((0) + P(q)

Replace q by e4, a any positive number,

P(w+s) : P(w)+eP( )
At e = 0 equality holds. Therefore at e = 0 the derivative of the left side with
respect to a is less than or equal to the derivative of the right side,

(3.39) E pi ('0) 4i < P ( )
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We now recall from the beginning of this chapter the notion of the support
function of a compact set H in Rk:

SH(l;) = maxxi; .
xEH

For the set H defined by (3.38) it follows from (3.39) that sjj(i;) :S p(t). On
the other hand, it follows from (3.35) that for w = the sign of equality holds in
(3.--,)): this shows that

SH(U = P(s) = amax(- )

The argument above shows that through every point of H lies a supporting
hyperplane: i.e., all points of H lie on one side of it. It follows that H is a convex
hypersurface: i.e., H and its interior, consisting of the set of points

(3.3N') (rpt (w).... , rpk(rv)) . Iml = 1, 0 < r < 1 .

form a convex set in Rk.
We now turn to the set of points K that belong to the domain of influence of

the origin. and lie on the hyperplane t = 1. According to Theorem 3.3, the support
function of this set K is the same as the support function of the set H.
It then follows from the hyperplane separation theorem that

TiIEORFM 3.12 The domain of influence of the origin is contained inside or on
the characteristic cone corresponding to an. issuing from the origin.

Ext:R(tsl: Let P(DX, D,) be an nm-order scalar operator. Show that to +xi; = 0
is characteristic for Pu = 0 if and only if P(i;, a) = 0.

3.5. Solution of the Initial Value Problem by the Radon Transform

I n this section we shall express in a fairly direct fashion solutions of hyperbolic
equations in terms of their initial data. The prototype for the type of expression we
are looking for is furnished by

u(x, t) = h(x - ct) +k(x +ct)

for .olutions of the one-dimensional wave equation ut, - c2uxx = 0. Direct ver-
ification shows that every function of the above form is a solution of the wave
equation, and by choosing h and k appropriately we can satisfy initial conditions
imposed on u.

Let L be any scalar partial differential operator with constant coefficients and
homogeneous of order n; i.e., L does not contain terms of order lower than n. Such
equations have special solutions, called plane waves, of the form

(3.4(1) u(x, t) = h(xw+tr).
One can verify immediately that (3.40) is a solution of Lu = 0 if the vector (w, r)
is real and satisfies the characteristic equation L(w, r) = 0, and h(s) is any func-
tion of the real variable s.

If L is hyperbolic, we may take for (w, r) any point on one of the [ L4.) real
branches of the characteristic variety. The question is: Can every solution, or at
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least those which have compact support in x, be expressed as a superposition of
plane waves? The answer is yes, and the demonstration consists in showing that
we can satisfy arbitrary initial conditions by suitably chosen linear combinations
of plane waves. We shall carry out the details for the classical case of the wave
equation

(3.41) urt - Du = 0.

In this case every plane wave can be written as h(xw - t), jwi = l; so we are
looking for solutions in the form

(3.42) u(x, t) =
J

h(x(o - t, w)dw.

IwI=I

The function h(s, w) has to be chosen so that the initial conditions

u(x, 0) = f1(x) = J
h(xw, w)dw,

(3.43)
u,(x, 0) = f2(x) = - J h'(xw, w)dw,

are satisfied.
The contribution of the odd part of h to the first integral in (3.43), and of its

even part to the second integral, is zero. part. Therefore, in order to solve (3.43) it
is sufficient to solve the following problem:

Given a function p(x), find an even function e(s, w) such that

(3.44) p(x) = f e(xw, (o)dw and e(-s, -w) = e(s, w) .

The solution of this problem is furnished by the Radon transform, whose the-
ory has been expounded by Fritz John, Helgason, and Gelfand-Graev-Vilenkin. We
shall outline the theory in Rk, k odd and > 1.

We start with the Fourier representation of f :

(3.45) .f (x) = c f 7(S )e'xl; d
,

where f is the Fourier transform of f ,

(3.46) 7w = c f f (x)e-'x dx.

So as not to weary the reader (and the author), the letter c in these and subse-
quent formulas denotes the right constant. In formula (3.46) we express in polar
coordinates as pw and write

.f (pw) = c f f (x )e-`Pwx dx.

Carrying out the x-integration first on the hyperplane w x = s, we get

(3.47) f (pw) = cf f (s, w)e-'Ps ds ,
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where

(3.48) f(s,w) = J f(x)dS.
(OX=d

f is the Radon transform of f. Formula (3.47) shows that f (pw) is the Fourier
transform of 1(s, w) with respect to s.

In terms of polar coordinates, we can write the Fourier representation (3.45) of
f as follows:

(3.49) f (x) = c ff f (pw)e"lpk-1 dp dw.

We take the p-integration over all of R, at the cost of cutting the constant c in half.
It is at this point that we exploit the evenness of k - 1.

Inverting the Fourier transform (3.47), we get

(3.47') f (s, w) = c f f (pw)e'Psdp

Applying D, = ask - I times, we get

Ds-1f(s,w)=c Jf(pw)pk-'e'PSdp.

Setting this into (3.49), we get

(3.50) f (x) = c f Ds-1 f(xw, w)dw,

a representation of form (3.44), with £(s, w) = Dk-1 f (s, w).
We list now the properties of the Radon transform:

THEOREM 3.13

(i) f (s, w) is an even function,

f(-s, -w) = f (s, w)
(ii) The Parseval relation holds:

k-I

(3.51) fIf(x)I2dx=cfIDfI2dsdcv.

(iii) Every even function m(s, w) for which D;k-1>/2m lies in L2 is the Radon
transform of some f in L2.

(iv) Df = -wDJ f.
(v) of = Df.
PROOF: Properties (i), (iv), and (v) follow from formula (3.48) for f. To

deduce (ii) and (iii), apply Dsk-1)12 to (3.47') and use the one-dimensional Parseval
relation to obtain, after integration with respect to w,

f IDT f12dsdw=c f 1f(pw)I2pk-I dpdw.
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The Parseval relation between the L2 norm of f and f completes the derivation of
(3.51). O

From the explicit expression (3.48) for the Radon transform, we can read off
the following important consequence:

THEOREM 3.14 I f f (x) vanishes f o r Ixl > r, its Radon t r a n s f o r m j(s, w) van-
ishes f o r I s l > r.

We return now to expression (3.42) for the solution of the wave equation.
Choose the function h as

(3.52) h(s, w) = DiF-1 fI - Ds ,k-2f

Setting this choice of h into formula (3.43) we see that u defined by (3.42) has the
assigned initial values. Suppose now that both fI and f2 are zero for IxI > r; then
by Theorem 3.14 both fI and f2 are zero for Isl > r; it follows that h(s, w) is zero
for IsI > r. Looking at the explicit expression (3.42) for u in terms of h, we see
that if lx I < It I - r, then the integrand on the right is zero for all a). So we have
proven the following:

LEMMA 3.15 If the initial data of u are zero for IxI > r, then u(x, t) is zero for
Ixl < Itl - r.

THEOREM 3.16 In an odd number of space dimensions k, k > 1, the domain of
influence of the origin for the wave equation (3.41) consists of the double cone
Ixl = Itl.

PROOF: According to the results of Section 3.1, if IxI > It 1, then (x, t) does
not belong to the domain of influence of the origin. Suppose that lx I < It I; to show
that x, t lies outside the domain of influence of the origin, we have to show that if
the initial data of u are zero outside a ball of radius r, r small enough, then u is
zero at x, t. But this follows from Lemma 3.15. O

Define the energy of the initial data f1, f2 of a solution of the wave equation
as

(3.53)

We claim that

(3.54)

where a is defined as

(3.55)

E J(iDxfiI2 + ff)dx.

k-1

E=c ID;'el2dsdw,

e=Dsfi-f2;
note that a is related to h defined in (3.52) by h
combine parts (ii) and (iv) of (3.51) to get

(3.541)

= DS-2e.

f IDxfil2dx =c f ID±fI 2dsdw,

To deduce this we
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while

(3.542) ff?dx=cfIDhf2I2dsdw.

D,1 f, and D are the even and odd parts of DY f, so they are orthogonal.
Therefore adding (3.541) and (3.542) yields (3.54).

We can use formula (3.54) to express the energy contained in the data of u at
any time t. If follows from formula (3.42) and h = Ds-2l that

D,,u(t) -4,(t) =t(s-t,w).
Expression (3.54) does not change if a is subjected to a translation in s; thus we
have proven

THEOREM 3.17 The energy of a solution u of the wave equation (3.41) defined as

E = J (I DXu(x, t)12 + u2 (x, t))dx

is independent of 1.

Theorem 3.16 is the celebrated Huygens principle. It is false in an even number
of space variables.

Given a general hyperbolic equation, we can, following the method outlined
above for the wave equation, express solutions of it as superposition of plane
waves:

< MV

(3.42') u(x, t) =
J

hj(x(o+ rj(w)t, w)dw.
j=t Iwl=I

The functions h j (s, w) can be expressed as linear combinations of the integrals
with respect to s of the Radon transforms of the initial data of u. The details are
left to the reader.

There are further and more delicate generalizations of the Huygens principle;
see Appendix A.

At the beginning of this section, we set out to express solutions of hyperbolic
equations in terms of their initial data. The expressions we have found are in terms
of the Radon transform of the initial data. Using expression (3.48) for these Radon
transforms yields a formula for solutions directly in terms of their initial data; how-
ever, this formula is best interpreted in the language of distributions. The details
will be carried out, with a slightly different twist, in Chapter 7.

3.6. Conservation of Energy

In this last section of Chapter 3 we shall discuss conservation of energy. For
simplicity, we shall deal with symmetric hyperbolic systems, i.e., equations of the
form

(3.56) u, _ E Ajuxi = Gu,

where the A j are real symmetric matrices.
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THEOREM 3.18 Let u be a solution of (3.56) with compact support in x. Then the
quantity

(3.57) Ilu(t)II2 =
J

lu2(x, t)I2 dx

Rk

is independent oft.

Quantity (3.57) is called energy.
In view of the importance of this result, we give two different proofs.

PROOF 1: Denote as usual by (u, v) the L2 scalar product of the vector func-
tions u and v with respect to the space variables. Then quantity (3.57) can be
written as (u, u). Differentiate with respect to t to get, using the differential equa-
tion (3.56),

(3.58) dt (u, u) = (u,, u) + (u, u,) = (Gu, u) + (u, Gu) = ([G + Gt]u, u),

where G* denotes the adjoint of G. Since Aj* = Aj,

G'
8a A* = -G;

i.e., the operator G is antisymmetric. This shows that the expression (3.58) is
zero. D

PROOF 2: The Fourier transform of u at time t can be expressed explicitly in
terms of the Fourier transform of the initial values:

i t) = 0) .

Since is an antisymmetric matrix, its exponential is unitary; so

Ii t) 12 = Iu(, 0)12.

Integrating with respect to L; and using the fact that Fourier transformation pre-
serves the L2 norm, we get (3.57). 0

In Section 3.5 we proved the conservation of energy for solutions of the wave
equation using a representation of solutions in terms of the Radon transform of
their initial data. This proof can be extended to solutions of hyperbolic equations
of any order.

In the next chapter we shall take up the problem of formulating and proving a
law of conservation of energy for hyperbolic equations with variable coefficients.
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CHAPTER 4

Hyperbolic Equations with Variable Coefficients

This chapter is about linear hyperbolic equations with smoothly variable coef-
ficients. Such an equation is called strictly hyperbolic if for every choice of y, s the
equation with constant coefficients frozen at y, s is strictly hyperbolic. We shall
not give a general definition of a nonstrictly hyperbolic equation although we shall
present at least one example.

The characteristic form Po(z, ) of a hyperbolic equation with variable coeffi-
cients is a form of degree n in = r) whose coefficients depend on z = (x, t).
Throughout this chapter we shall assume that the coefficients are infinitely differ-
entiable functions of z.

Section 4.1 contains the theory of hyperbolic equations in one space variable.
Section 4.2 describes characteristic surfaces. Sections 4.3, 4.4, and 4.5 present
energy inequalities for solutions of symmetric hyperbolic systems, second-order
hyperbolic equations, and higher-order hyperbolic equations, respectively, and the
uniqueness theorems that follow from them.

4.1. Equations with a Single Space Variable

In this section we give a thumbnail sketch of the theory for one space variables,
which is very much simpler than for many space variables. We shall treat first-
order systems; general hyperbolic equations can be turned into first-order systems
by introducing the higher derivatives as new unknowns; this is no longer possible
if there are more space variables. Courant-Hilbert, vol. H, chap. V.

A first-order system is of the form

(4.1) u,=Au,+Bu.
We assume that the coefficient matrices A and B are infinitely differentiable func-
tions of x and t, and that (4.1) is strictly hyperbolic. The latter means that for every
x, t. the matrix A has real and distinct eigenvalues.

We want to construct solutions of (4.1) with prescribed initial values,

(4.2) u(x, 0) = uo(x) ;

unless specified otherwise, we assume that uo(x) is an infinitely differentiable func-
tion of x.

Denote by V = V (z) the matrix whose columns are the right eigenvectors of A,
normalized in some convenient fashion so that V depends infinitely differentiably
on :. V satisfies the eigenvalue equation

AV = VT,
37
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where T is the diagonal matrix with elements a,, ... , q, Introduce a new un-
known v related to u by

u = Vv.
The equation satisfied by v is

(4.1') v, = Tv, + Cv,
where C = V-'BV + V-'AVX - V-'V,. Componentwise this equation reads

(4.lj) vi.r = ajvj.x + 1: Cjkuk .

The differentiated terms can be combined into a single directional derivative

(4.3j)

where

duj
Cjkukdj

.(4.4) dj =D,-ajD.,
Equations (4.3j) and (4.4) constitute a system of ordinary differentiable equa-

tions but along different curves. Such equations can be solved by methods used
to solve ordinary differential equations, e.g., Picard iteration. A slightly different
twist is needed at the end.

Let Cj denote the trajectory of the j'^ direction field through some point (y, s);
i.e., Cj = (x(t), t), where x(t) is a solution of the differential equation

dx(t)
(4.5) dt = -aj(x, t) .

These curves are characteristic curves.
Integrate (4.3j) along the j`s characteristic curve Cj between the point y, s and

the intercept of Cj and the initial line t = 0; we obtain an integral relation

(4.6) uj(y,s)=uj(yj,0)+JSYCjkvkdt.
0

We abbreviate this as

(4.6') v=vo+Kv,
where vo is determined by the initial values of v and K is an integral operator.

Take some fixed point (xo, to); the two extreme characteristic curves C, and C
issuing from it and the initial line t = 0 together bound a curved triangular region
A; it can easily be shown that any point in A can be connected to the initial line
by a characteristic curve of the jth kind, j = 1 , 2, ... , n, which lies entirely in A.
That means that the integral operator K defined by (4.6') maps functions defined in
A into functions defined in A. It is easy to show that K maps continuous functions
defined in A into continuous functions in A, and that it is of Volterra type:

(4.7) I K"' I <
const M'"

m!

where K' is the mm power of the operator K, and IKI is the operator norm with
respect to the maximum over A. I
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EJERCISE Prove (4.7).

It follows from (4.7) that I - K is invertible,
00

(I - K)-' = E K"',
0

so 4.6') has a unique solution.
Since a solution of the initial value problem for the partial differential equation

is, i solution of the integral equation (4.6), it follows that the former has at most one
so ution. We still need to show that every solution of the integral equation (4.6) is
a lution of the partial differential equation.

An immediate consequence of the integral relation (4.6) is that the ja' compo-
net of v has a directional derivative that satisfies (4.3j). It is not quite obvious,
h ever. that the solution v has continuous partial derivatives. To show this we
pr ecd as follows:

Let CI be the space of functions defined in A that have continuous first partial
de ivatives in the closure of A. CI is a complete normed linear space. It is easy
to how that the operator K maps C' into itself and that it is of Volterra type, i.e.,
th (4.7) is satisfied in the sense of the CI norm. Then we conclude as before that
I K is invertible so that (4.6') has a unique solution in C'. This solution is of
co rse the same as the one constructed before.

This argument can be repeated for the class of m times differentiable functions,
ni bitrary. and leads to the following existence theorem:

T EOREM 4.1 Suppose that the initial function uo(x) is infinitely differentiable;
th n the initial value problem (4.1)-(4.2) has a uniquely defined, infinitely differ-
en fable solution. If uo has continuous derivatives up to order m, m > 1, there
er its a solution with continuous partial derivatives up to order m.

Our method of construction yields the following:

COROLLARY 4.2 The domain of influence of any point is the region contained
be 'een the two extreme characteristics issuing from it.

The construction of solutions of hyperbolic equations in more than one space
v able is harder than in the one-dimensional case. We shall give two existence
pr fs: the first one, in Chapter 6, is entirely indirect and is based on inequalities
de ved in Sections 4.3-4.5. The second one, in Chapter 7, is more constructive
an gives some further information about the manner of dependence of solutions
on initial data.

4.2. Characteristic Surfaces

We shall again deal with first-order hyperbolic systems of the form

(4.) Lu=Dru=>AjDju=O,
Aj matrices of order n x n that are C' functions of x and t.
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The operator L in (4.8) is strongly hyperbolic if all eigenvalues a of F Sj Aj
are real and distinct for all real choices of t. Since the matrices Aj are functions of
x and t, so are the eigenvalues:

(4.9) Cr =a(x,t,
As in Section 3.4, we define a surface S to be characteristic for L if at every

point x, t on S, the normal (i;, r) to S satisfies

(4.10) r - or (x, t, t;) = 0.

A weak solution of equation (4.8) is defined in the same way as in Section 3.4
for equations with constant coefficients:

(4.11) JuL*wdxdl o ,

where L` is the adjoint of L , holds for all C°° functions w with compact support,
and just as for equations with constant coefficients, discontinuities of piecewise
continuous weak solutions can occur only along characteristic surfaces.

We now turn to the construction of characteristic surfaces. As before we shall
describe them implicitly by rp(x, t) = const. The normal to such a surface is
(Dsrp, D, V); setting this into (4.10) gives

(4.12) D,cp - a(x, t, Dxrp) = 0,

called the eikonal equation.
Since a is a homogeneous function of of order 1,

(4.13)

aj = Setting this into (4.12) gives

(4.14) D,rp-EajDjrp=0.
This implies that rp is constant along the curves defined by

(4.15)
dxj

-aj(x, t, Dxrp)
dt

In order to determine these curves we need a differential equation for Dxrp along
such a curve. This can be obtained by differentiating (4.12) with respect to xi; we
get

DiD,rp - EajDiDjrp - Dia = 0,
which can be rewritten as

(4.16) D,li - ajlj = Dia .

Here ti denotes Dire, and Dia is the partial derivative of a(x, t, 1:) with respect to
x,. We combine (4.15) and (4.16) into a system of ordinary differential equations:

(4.17)

dxj as (x, t,
dt
dl, as
dt - 8xi(x,t,t).
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This is a Hamiltonian system of differential equations that can be solved uniquely
once the initial values of x and a; are specified, at, say, t = 0.

Solutions of (4.17) are called bicharacteristic; the projection of a bicharacter-
istic into x space is called a ray.

Just as in the case of constant coefficients, we can build characteristic surfaces
out of rays. We choose rpo(x) = rp(x, 0) as any C°° function of x. From each point
xo there issues a ray, obtained by solving the Hamiltonian system (4.17) with the
initial value of %; given by D;rpo(x). It is not hard to show that if the first derivatives
of are uniformly bounded in Rk, the rays cover some slab Rk x (-T, T) in a one-
to-one fashion. We define Qp(x, t) to be equal to the value of rpo(y) at the point y
where the ray through x, t originates.

EXERCISE Verify that for rp defined this way the surfaces tp = const are charac-
teristic.

The analogues of characteristic cones are conoids, defined similarly as in the
case of equations with constant coefficients. They are formed by all the rays issu-
ing from a single point x0, to, as the initial values of i; range over all unit vectors
w. Of particular interest are the characteristic cones corresponding to the largest
eigenvalue a,,.(x, t, ). In Section 4.3 we shall show, for symmetric first-order
systems, that any point influenced by x0, to is contained inside or on the character-
istic conoid corresponding to a,,,,,, issuing from xo, to.

It should be noted that the characteristic surfaces constructed in this section,
including the characteristic conoids, exist only for a finite time interval. Eventually
they develop wrinkles and other singularities. Therefore the description of the
domain of influence in terms of the characteristic conoids works only for a limited
time interval. The domain of influence for all time can be obtained by combining
the local time description with the Huygens wave construction; see Theorem 2.3.

We shall encounter the eikonal equation and bicharacteristics again in Sec-
tion 7.2 on progressing waves.

43. Energy Inequalities for Symmetric Hyperbolic Systems

In this section we shall derive so-called energy inequalities for solutions of
symmetric hyperbolic systems of first-order equations, i.e., equations of the form

(4.18) Lu = u, - Gu = 0
where

(4.19) G A D, + B, D, =
Bxi

A. B matrices depending smoothly on x and t, Aj symmetric. These are analogues
to energy identities derived in Section 3.6.

As usual, we shall denote the L2 inner product of u and v with respect to x by
(u, and the L2 norm of u by IluII.

THEOREM 4.3 Let u be a solution of (4.18) with compact support in x. Then

(4.20) Ilu(t)ll s eMill

11u(0)II ,
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where the constant M depends on the magnitude of the symmetric part of B and of
the first derivative of Aj with respect to xj.

The proof is based on the following simple lemma:

LEMMA 4.4 Let G be an operator whose domain and range lie in a Hilbert space.
Suppose that G is almost antisymmetric in the sense that G + G' is a bounded
operator, say

(4.21) JIG+G'll <2M,
where G' denotes the Hilbert space adjoint of G. Then every solution of

u, = Gu

satisfies the energy inequality (4.20).

PROOF OF LEMMA 4.4: To prove the lemma we form E(t) = (u, u), where
( ) is the scalar product in Hilbert space. Differentiating with respect to t gives

dE
-d 7t = (u,, u) + (u, u,) = (Gu, u) + (u, Gu) = (u, G + G'u).

Estimating the expression on the right by the Schwarz inequality and using the fact
that G + G' is bounded by 2M gives

dE
H2ME.

Multiplying this differential inequality by a-M' and integrating with respect to t
gives

e-2MTE(T) E(0) e2MTE(T),

as asserted in (4.20).

PROOF OF THEOREM 4.3: To prove the theorem we have to verify that G as
given by (4.19), its domain consisting of smooth functions with compact support,
is almost antisymmetric. The adjoint is easily computed:

G* = - EDAj + B';
adding this to (4.19) gives

(4.22) G+G'=F(A1Dj
where Ajj = DjAj.

Observe that if expression (4.22) is zero, then we may take M to be zero. This
means that the solutions are isometric; i.e., IIu(t) II is a constant.

Theorem 4.3 implies that if (lull is zero at time t = 0, then it is zero for all
times. This shows that solutions with compact support in x are uniquely deter-
mined by their initial values. We shall show now how to modify the above proof to
obtain a truly local uniqueness theorem.

Let PI and P2 denote pieces of a pair of hypersurfaces in x, t space that have
the same edge; that is, PI and P2 are two smooth imbeddings in x, t space of the
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k-dimensional unit ball that agree at the boundary. The domain 0 bounded by P1
and P, is called a lens-shaped domain, PI and P2 its faces.

We shall call a surface in x, t space weakly spacelike with respect to the op-
erator (4.18)-(4.19) if at every point its normal v = (t;, r) satisfies the following
condition: the matrix

(4.23) rI -
is nonnegalit e.

THEOREM 4.5 Let 0 denote a lens-shaped domain whose face P2 is weakly space-
like with respect to an operator L. Let u be a solution of Lu = 0 that vanishes on
PI ; then u vanishes in 0.

PROOF: Let v denote the outward normal to the boundary of 0. Then the
matrix (4.23) is positive on one of the faces, say P2 of 0, and negative on the
other. We introduce a new variable v in place of u,

The equation satisfied by v is

(4.18')

u=ea`v.

Lv+)tv=0.

Take the scalar product of the equation by v; the differentiated terms can be
written as

l 1 1

Integrate over 0 and perform integration by parts; we get the following identity:

0 = ff v (Lv + Av)dx dt

(4.24)

0
1=2

P, UP,

+ f
0

1

Since u is assumed to be zero on PI, so is v, and therefore the surface integral
over P, on the right side of (4.24) is zero. Since P2 is weakly spacelike the inte-
grand in the remaining surface integral over P2 is nonnegative, and if A is chosen
large enough. so is the integrand in the integral over 0. This shows that the right
side of (4.24) is positive unless v is zero in 0. This proves the theorem. 0

We show now how to use Theorem 4.5 to find, or at least put bounds on, the
domain of influence of points.
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FIGURE 4.1

THEOREM 4.6 Let z = (y, s) be any point, C+8 (z) the characteristic conoid
corresponding to 0r issuing from z in the direction t > s. We claim that all
points t > s influenced by z lie inside or on C"' (z).

PROOF: We have to show that no point w = (x, r), r > s, outside C"(z) is
influenced by z. For this we need the following:

LEMMA 4.7 If w lies outside the forward characteristic conoid C" (z) through
z. then z lies outside the backward characteristic conoid CO18"(w) through w.

PROOF: If x' is sufficiently far away from y, z lies outside C`"a"(x', r). Since
the exterior of C'"a"(z) is connected, if for some (x, s) in the exterior of C+a"(z) the
conoid CO187(x, r) contained in z, there would be a point w"(x", r) outside C+"a"(z)
for which z would lie on C'(w"). Cma`(w") consists of rays issuing from w";
this ray would then coincide with one of the rays issuing from z. But then w"
would lie on C+"a"(z), a contradiction.

To prove Theorem 4.6 we note that the characteristic conoids Cr (w) are
weakly spacelike. To see this we use equation (4.10): v = a,,,. (x, t, l; ). From this
it follows that r I - F li Aj is nonnegative. Consider now the lens-shaped domain
bounded by C°1a"(w) and that portion P2 of the hyperplane t = s that is contained
inside C°1a"(w). It follows from Theorem 4.5 that if a solution u of equation (4.18)
is zero on P2. then it is zero in 0 , and in particular u(w) = 0. Since z lies outside
of P2, it follows that w is not influenced by z.



4.4. ENERGY INEQUALITIES 45

A similar theory can be developed for equations of the form

Hu, - Gu = 0,
where G is given by (4.19), and H is a positive symmetric matrix function of x and
t.

4.4. Energy Inequalities for Solutions
of Second-Order Hyperbolic Equations

In this section we shall derive energy inequalities for solutions of second-order
hyperbolic equations

(4.25) u,, aijux;xi +biux; +cu = 0,

a,, positive definite. Let u be a solution of this equation that has compact support
in .t. Multiply by u, and integrate over the slab x E Rk, 0 < t < T. Integrating the
second term by parts with respect to xj gives

(4.26) ff [u,ut,+Eaiju,xiu, +aij.ju,ux; +b;u,ux; +cu,u]dxdt = 0.

Here a,,., abbreviates - ai j. The first term can be written as a perfect t-derivative:
8Xj

1

Since ai j = aji, the second term can be written as

2(aijuxiuj), - 2aij.tux,uxi

Substituting these expressions into (4.26) and carrying out the integrations with
respect to t gives the following identity:

(4.27) fq(u)dx
r

lo + ff Q(u)dx dt = 0

where

1 1

(4.28) q(u) = 2u, + 2 E aijux,ux;

and Q is a quadratic form in the first derivatives of u and u itself.
As shown at the end of Chapter 2, the hyperbolicity of (4.25) is equivalent

to the positive definiteness of the quadratic form (4.28). So using the Schwarz
inequality we can estimate Q in terms of q:

(4.29) Q < const(q + u2) .

Integrating (4.29) with respect to x gives

(4.30) fQdx < const( J qdx + J u2dx) .

Since u is of compact support in x, by a well-known inequality

f u2 dx < const I ux dx,
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the constant depending on the size of the support of u. Substituting this into (4.30)
gives

JQdxMJqdx(4.31)

M some constant.
Let us denote by E(t) the quantity

f
(4.32) E(t) =

J
q(u)dx.

Using (4.31) we can turn (4.27) into the inequality

rT
(4.33) E(T) < E(0) + M J E(t)dt .

0

It is well-known and easy to show that a function which satisfies the integral in-
equality (4.33) for all T is bounded by

(4.34) E(T) < eMT E(0) .

Denote by the symbol 1 1u1 11 the Sobolev norm

(4.35) Ilulli = f u; +EurJdx.

Since the quadratic form q is positive definite,

(4.36) cons[ llu(t)ll < E(t) < const Ilu(t)Ili

Combining (4.34) and (4.36) yields the following:

THEOREM 4.8 Every solution of hyperbolic equation (4.25) that has compact sup-
port in x satisfies the inequality,

(4.37) Ilu(t)llI <- e(t)llu(0)Ili

where e(t) is an exponential function oft.

Theorem 4.8 implies a global uniqueness theorem. Just as in Section 3.2, we
may in the proof above replace the slab by any lens-shaped domain whose faces are
spacelike and obtain a local uniqueness theorem. Thus we can derive the analogues
of Theorem 4.6.

4.5. Energy Inequalities for Higher-Order Hyperbolic Equations

In this section we shall present Leray's beautiful derivation of energy inequal-
ities for solutions of strictly hyperbolic equations of order n, n arbitrary. Let the
equation be

(4.38) Lu = 0.

The derivation will parallel that for the second-order case: we shall multiply (4.38)
by Mu, M an operator of order n - 1, integrate over the slab 0 < t < T, integrate
by parts, and pull out boundary integrals that are positive definite.

First we need the following generalization of Green's theorem:
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L MA 4.9 Let L and M be a pair of partial differential operators with smooth
va fable coefficients of order n and n - 1, respectively, and let 0 be any smoothly
bonded domain, 80 its boundary. Then an identity of the form

(4..9) ff MuLu dV = J q(u)dS + fJ Q(u)dV
o ao 0

ho s for every smooth function u, where q (u) is a quadratic form in the partial
de 'natives of u of order n - I depending linearly on the components of the normal
to 0, and Q a quadratic form in the partial derivatives of u of order n - I and
les

PROOF: A typical term in f f MuLu is of the form

ffaDI...DniuDn...DIu.
Integrate by parts, transferring alternately the n differentiations on the right factor
to a left factor and the n -1 differentiation from the left factor to the right factor.
W get

ffMuLu=_JfLuMu+Jq+ffQ.
wh re q and Q are as before. The minus sign occurs because the number of inte-
gr ion by parts, 2n - I in all, is odd. This gives the desired formula (4.39).

R E M A R K. For n greater than two and for more than two independent variables,
the quadratic forms q and Q are not uniquely determined by M and L; their form
de ends on the order in which the integration by parts is carried out. Nevertheless
the values of the integrals

ffQ(u)dxdt(4. ) r q(u)dS and

80 0

are uniquely determined by M and L.

It will be convenient in what follows to deal with complex-valued solutions;
for ese the analogue of Green's identity (4.39) is easily derivable from (4.38)
applied to the real and imaginary parts of u separately. We get

(4. j9h) Reff Mu udV = f gt,(u)dS+ff Q,(u)dV,
ao

wh e q,, and Qh, are the Hermitian forms induced by the quadratic forms q and Q,
i.e. for u = v + i w,

qh(u) = q(v) + q(w), etc.

Fro n now on we shall omit the subscripts h.
Take the domain 0 to be the slab 0 < t < T, and suppose that u is a solution

wit compact support of Lu = 0. Then (4.39h) gives

(4. 1) fq(u)dxl + Q(u)dxdt = 0.
0
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The coefficients of L, M, and q vary smoothly with x and t. Fix any point in
the slab and denote by Lo, Mo, and qo the operators formed with constant coeffi-
cients localized at that point. We take Lo and Mo to contain only terms of order
n and n - 1, respectively. The coefficients of q are bilinear functions of the coef-
ficients of the highest-order terms in L and M. Therefore for Lo and Mo we can
derive Green's identity

f f r
(4.42) Re JJ MouLou dV = J go(u)dx 1To

provided that we perform the integration by parts in the same order as we did for
L and M.

We are going to evaluate the left side of (4.42) by Fourier transformation in the
x-variable. By Parseval's relation

J MouLou dx = fMouLoud.

where the symbol - denotes Fourier transformation. Assume that u is smooth
and has compact support in x; then

Mou = Mo(i4, D,)u, L0u = Lo(il;, D,)u .

Abbreviating u by w we get

(4.43) ff MouLou dx dt = ff Mo(il;, D,)wLo(i4, D,)w dr; dt .

By assumption, L is strictly hyperbolic, which means that Lo is; so Lo can be
factored as

Lo(i;,r)=n(r-aj(i;))
and distinct aj real for real. So

Dr) = ll (D, - iaj(!;))

We shall keep fixed at some real value and not write it out. Express Mo by
Lagrange interpolation at the roots aj of Lo. The interpolating polynomials are

Lk = fl(D, - iaj) ;
j#k

write

(4.44) M o = > ak Lk .

The coefficients ak are easily evaluated:

MO(ak)ak=
Lk(ak)

The quantities Lk(ak) = nj#k(aj - ak) alternate in sign as k goes from I to n.
This proves the following:

LEMMA 4.10 Suppose that the coefficient of r"-I in Mo(r) is positive; then all the
quantities ak in (4.44) are positive if and only if the roots of Mo(r) separate those
of Lo(r).
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From the definition of Lk it follows that

(4.45) Lo = (D, - iak)Lk .

Using (4.44) and (4.45) we get the identity

MowLow = (E akLkw) Low = j:akLkw(D, - iak)Lkw .

Take the real part of both sides; since ak and ak are real, we get

Re MowLow = ReEakLkwD,Low = 2 E akD,ILkwI2.

Integrate over the slab; using (4.43) we get the identity

(4.46) Re MouLoudxdt =
2

1:JakILkwI2d.

Compare (4.42) and (4.46); the left sides are identical and the right sides of both
consist of the difference of two quantities which only depend on the values of u
and its derivatives at t = T and 0, respectively. From this it follows that

(4.47) = 2 f I: aklLkwl2d>; .

Suppose now that we can find M so that for every real r; the roots M0(r;, r)
separate those of L0(4, r); then according to Lemma 4.10 the quantities ak are
positive. Since the interpolating polynomials Lk form a base for all polynomials of
degree n -1, for every real t the integrand on the right in (4.47) is positive definite:

1

n-I

2 j:akILkwl2 > ceID,wI2,
0

where ct are positive. It is easy to show that ct is homogeneous of degree 2(n -
- 1) in 4; so there exists a positive constant c independent of a; so that

2 EakILkwl2 ? cLE
II2cn-t-IlIDtwl2

Integrate this with respect to ; for the left side we have the identity (4.47); the
right side can be evaluated by Parseval's formula in terms of the square integrals of
the derivatives of u, the Fourier inverse of w. The resulting inequality is

(4.48) fqo(u)dx > cJ E ID' ul2dx = c1lull2-1 ,
IaI=n-I

where D° denotes any partial differentiation with respect to x and t of order la I,
and the quantity Ilull.-I, the (n - 1) Sobolev norm of u, is defined by (4.48).

Inequality (4.48) shows that for operators with constant coefficients the bound-
ary integrals in Green's formula are indeed positive provided that the roots of M0
separate those of L0. Next we show that for operators with variable coefficients
they are nearly positive. We need two lemmas of which the first is merely an ap-
plication of the Schwarz inequality:
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LEMMA 4.11

fq(u)dx(4.49) < const

where the value of the constant depends only on the magnitude of the coefficients
of q.

The next lemma is due to G .rding:

LEMMA 4.12 Let L and M be a pair of hyperbolic operators with variable coeffi-
cients such that for every x, tin the slab and every real , the roots in r of Mo(t, r)
separate those of L0(l;, r). Then there exist two positive constants c and C such
that

(4.48') q(u)dx cIIuII_- CIIuIIJ> I o,

where q is the quadratic form associated by Lemma 4.9 with L and M and where

Ilullo= f Iu(x)I2dx.

PROOF: We take first the case that the support of u is small; denote by qo the
localization of q at some point zo in the support of u. Write

q=qo+qi.
By Lemma 4.11

(4.50) eIIufqi(u)dx 2_I.

where a is an upper bound for the coefficients of q, in the support of u. The
coefficients of q, are small in the neighborhood of the point zo; since we have
assumed that u vanishes outside this neighborhood, it follows that a in (4.50) is
small. Combining (4.48) and (4.50) we get

f q = f qo + f qI > CII«Iln- I - EIIUII2-I

which is inequality (4.48') with c - e in place of c and C = 0.
The general case can be reduced to this by a partition of unity. We need the

following well-known lemma from calculus:

LEMMA 4.13 For every smooth fimction u with compact support there exists a
constant a, depending only on the size of the support of u and on n, such that

(4.51) IID'ull < allulln-I for Ill < n - 1 .

Also, given any positive e, no matter how small, there exists a constant b such that

(4.52) IID'ull <Ellulln- I+bIIuIIo for l.il <n - 1.
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Let (p j } be a set of smooth functions with small support such that

(4.53) pj(x)=1.
Define

(4.54) uj = Pju ;

since q is quadratic,

(4.55) 9(uj) = 9(Pju) = P?q(u) + rj(9) ,

where rj is linear in derivatives of u of order n - 1, and quadratic in derivatives of
order less than n - 1. Summing (4.55) and using (4.53), we get

E 4(uj) = q(u) + r(u),

where r(u) _ rj (u). Integrating over x gives

(4.56) fq(u) = fq(ui) + J r(u).

Equation (4.54) shows that each u j has small support and therefore by our previous
derivation (4.48') holds with C = 0:

(4.57) f q(uj) ? c1lujI1n-1.

Estimating f r(u) by the Schwarz inequality and using (4.52) of Lemma 4.13 gives

(4.58) if r(u)I < eIIulh-1 + KIIuIIo,

K some constant. Putting (4.57) and (4.58) into (4.56) gives

(4.59) fq(u)dx ? c E IIUjII _. - EiluII_, -K IIUII2.

Analogously to (4.56) we have

_1+ f r'(u).

Estimating the second term on the right as in (4.58) and combining the resulting
inequality with (4.59) gives

f q(u)dx ? cIIuII,,,_, - 2ellullA-1 - (K + K')Ilullo,

which, for E small enough, is the desired inequality (4.48'). This completes the
proof of Lemma 4.12.

Next we show how Lemma 4.12 can be used to derive energy inequalities:
Using inequality (4.51) we get for functions u with compact support

T

(4.61)) Iff Q(u)I < constf IIu(1)II_1 dt.
0
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Denote

f q(u)dx = E(t).

Let u be a solution of Lu = 0 with compact support in x. Green's formula (4.41)
can be written as

E(T) = E(0) - ff Q(u) .

Using inequality (4.48') for E(T), (4.49) for E(0), and (4.60) for Q(u), we get
T

(4.61) IIu(T)II'_1 _ const Ilu(t)IInI dt + CIIu(T)II0

On the other hand, by differentiation and application of the Schwarz inequality and
(4.51), we get

dt Ilu(t)Ilo = (u, u,) + (u,, u) < 211u1Io Ilu,II <_ const IIUI1,2,_I .

Integrate from zero to T:
T

(4.62) I1u(T)112 < llu(0)Il0 2 + const r IlUIl,2,_I dt.
Jo

Multiply (4.62) by C and add it to (4.61); using the abbreviation

(4.63) F(t) = IIu(t)II' + 11u(t)11,,_1

the resulting inequality can be written as
T

F(T) < const F(0) + const I F(t)dt.

As is well-known, this implies that F satisfies the inequality

(4.64) F(T) < c(T)F(0),
c(T) an exponential function of T.

The last piece of information is contained in the following:

LEMMA 4.14 Given a hyperbolic operator L with variable coefficients, there exist
hyperbolic operators M of one order lower such that Mo separates the roots of Lo
for every real 1; and for every x, t.

PROOF: Set
a

L(z, , r).M(z, I , r) =
at

0
REMARK. Differentiating L in any hyperbolic direction produces an M with

the desired property. For two space variables, see Appendix B.

Combining Lemma 4.14 with Lemma 4.12 gives the following:

THEOREM 4.15 Let L be a strictly hyperbolic operator with variable coefficients,
and u a solution of Lu = 0 with compact support in x. Then energy inequality
(4.64) is satisfied, where F is defined by (4.63).
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An immediate corollary is that solutions are uniquely determined by their ini-
tial data. This is only a global uniqueness theorem, since we have to assume a priori
that u has compact support in x. It is no longer clear how to modify the argument
in order to obtain a truly local energy estimate and uniqueness theorem since the
use of the Fourier transformation needs all of space. In Chapter 6 we shall show
how global energy estimates lead to a global existence theorem from which local
uniqueness follows by a classical argument of Holmgren.

References

Friedrichs, K. 0. Symmetric hyperbolic linear differential equations. Comm.
Pure Appl. Math. 7: 345-392, 1954.

Friedrichs, K. 0., and Lewy, H. Ober die Eindeutigkeit and das Abhangigkeits-
gebiet der Losungen beim Anfangswertproblem linearer hyperbolischer Differ-
entialgieichungen. Math. Ann. 98: 192-204, 1927.

Girding, L. Solution directe du probl8me de Cauchy pour les equations hyper-
boliques. La thPorie des Equations aux dErivEes partielles. Nancy, 9-15 avril 1956,
71-90.

Leray, J. Hyperbolic differential equations. The Institute for Advanced Study,
Princeton, N.J., 1953, 1955.





CHAPTER 5

Pseudodifferential Operators and Energy Inequalities

This chapter contains a simple and direct derivation due to Calder6n of energy
inequalities for solutions of any strictly hyperbolic equation. The main tool used
is a ring of operators .R that constitutes a natural extension of partial differential
operators with variable coefficients.

Let G be a matrix partial differential operator of order m in the space variables
with smoothly variable coefficients; its characteristic matrix g(x, ) = c(G) is
obtained by discarding all terms of order lower than m and replacing D by .

Clearly g is a homogeneous function of degree m.
Those properties of partial differential operators that we want to retain for the

ring ,R can be expressed in terms of the relation of G to g:

(i) If G 1, G2 are both of degree m, then

c(G1 + G2) = c(G1) + c(G2), c(G1G2) = c(G1)c(G2) .

(ii) c(G') = (-1)mc'(G), where G* denotes the adjoint of G with respect to
the L2 scalar product, c* the matrix adjoint.

(iii) The order of DG - GD is < order of G.
(iv) The order of GH < order of G + order of H.
We turn now to constructing the operators of class R.
Let X denote the class of n x n matrix-valued functions k(x, ) defined for all

real x and 1; , except a; = 0, that have the following properties:

(a) k is homogeneous of degree zero in ,
(b) k is independent of x for lx I > R, and
(c) k is infinitely differentiable in x, for 0.

,7C forms a star algebra under pointwise addition and multiplication, and con-
jugation defined as taking the adjoint of k at each point. We shall associate to
each k of X an operator K denoted as s(k) mapping the space of square-integrable
vector-valued functions u with n components into itself, as follows:

(1) If k is independent oft, K is multiplication of u(x) by k(x).
(2) If k is independent of x, K is multiplication of the Fourier transform of u

by k (t):
K = F-'k(a;)F.

(3) If k(x, aj(x)kj then we put K = A1KK, Aj and K1 being
defined as in (1) and (2).

It is not hard to show that every function of class 3C can be expanded in a series of
the above form, and that the corresponding operator series defining K converges.
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EXERCISE Show that the definition of K is independent of the expansion used.

Each operator K is associated with a function k in X, called the symbol of K.
We define the operator A as follows:

A =

F-' -A.
We define the ring ,R to consist of all operators of the form KAm, K = s(k), k in
X. Partial differential operators can be expressed in terms of A and operators in
,R:

LEMMA 5.1 Let G be a matrix partial differential operator homogeneous of or-
der m, g its characteristic matrix, and define

gh(x, ) = g(x,
14 IM

Then

G = imGhAm

where Gh is that operator whose symbol is gh.

DEFINITION 5.2 C is the class of all operators C mapping L2 into L2 that are
compact, and for which AC and CA are bounded.

The basic theorem is the following:

THEOREM 5.3 The mapping s : k -+ K of X into a ring of bounded operators
defined above is a star isomorphism mode, i.e.,

(i) s(ki + k2) = s(ki) + s(k2), s(k1k2) = s(ki)s(k2) + C, C E C.

(ii) s(k*) = s(k)' + C, C E C.
(iii) For every K in X, K A - A K is bounded.
(iv) If K belongs to ,X and C to e, then KC also belongs to C.

COROLLARY 5.4 s(Ilk;) = lls(k;) + C, C in C.

For proof, see Hormander or M. Taylor. Calderf n has shown how to use op-
erators of class .R to derive energy estimates for solutions of strictly hyperbolic
equations. Although the method is applicable in general, for simplicity we shall
restrict the discussion to first-order systems, i.e., to systems of the form

(5.1) u,=Gu=EAjDj +Bu,
Ai, B matrices depending on x and t; denote (x, t) = z.

DEFINITION 5.5 Equation (5.1) is strictly hyperbolic if and only if a(1;, z) _
:;'f Aj (z) has real and distinct eigenvalues for all real values of z and 0.

In Section 3.2 we proved the following simple theorem:
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TUEOR EM 5.6 Let G bean operator in Hilbert space such that G+G' is bounded;
then solutions of

(5.2) u, = Gu

satisfy the energy inequality

(5.3) Ilu(T)II e(T)Ilu(0)II,

e some function of T.

An operator G satisfying the above condition is called almost antisymmetric
and so is equation (5.2).

In Section 3.2 we took the scalar product of the Hilbert space to be the L2 scalar
product

(u, v) =
J

uv dx .

For this scalar product, equation (5.1) is almost antisymmetric if and only if the
coefficients Aj are symmetric. Thus, in order to be able to use Theorem 5.6 to
derive energy inequalities for nonsymmetric first-order equations, we may have to
alter the scalar product. Instead of changing the scalar product we shall change the
function u:

(5.4) Ku = v.

This is equivalent to changing the scalar product. The equation satisfied by v is

(5.5) v, = KGK-I v - K,K-I v .

The task is to choose the operator K so that the equation satisfied by v is almost
antisymmetric with respect to the L2 scalar product. To construct a suitable K
we need two lemmas. Denote by a the homogenized characteristic matrix of the
operator G:

(5.6) a(z, $) = Sl AI(z).

LEMMA 5.7 If (5.1) is strictly hyperbolic, there exists a real, symmetric invertible
matrix function k(x, t, l;) of class .K, depending smoothly on t, such that

(5.7) kak-I = s

is real and symmetric, where a is the symbol defined in (5.6).

Proof of this lemma will be given at the end of this section.
The operator K whose symbol is k constructed above will serve to symmetrize

equation (5.1). Note that since k depends differentiably on t, K, is a bounded
operator.

LEMMA 5.8 Denote by K and Kt the operators whose symbols are k and k-.
Then KGKI is almost antisymmetric with respect to the L2 scalar product.
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PROOF: According to Lemma 5.1

G=iAA,
where A is the operator associated with a(z, l;) defined in (5.6). Then since, ac-
cording to Theorem 5.3(iii), the commutator of K, and A is bounded,

(5.8) KGK, = i KAAK, = i KAK, A + bounded operator.

Denote by S the operator whose symbol is s, defined in (5.7). According to the
Corollary 5.4 to Theorem 5.3, it follows from (5.7) that

KAK, = S + C, C in C.

It follows from the above and (5.8) that

(5.9) KGK, = SA + bounded operator.

Since by Lemma 5.7, s' = s, it follows from Theorem 5.3(ii) that

(5.10) S' = S + C , C in C.

Taking the adjoint of both sides of (5.9) we get, using the fact that A» = -A,
(5.10), and Theorem 5.3(iii), that

(KGK,)' = -AS' + bd. op. = -AS + bd. op.
= -SA + bd. op. = -KGK, + bd. op.

This completes the proof of Lemma 5.8. 0
THEOREM 5.9 Let (5.1) be strictly hyperbolic, and u a solution of it in the slab
0 < x < T with compact support in x. Then u satisfies an energy inequality

Ilu(T)I) e(T)Ilu(0)I1,

the norm being the L2 norm.

PROOF: It follows from Theorem 5.3(i) that

(5.11) KIK=1+C, CinC.
Suppose now that K is invertible; multiplying (5.11) by K-I from the right we get

K,=K-I+CK,
so by Theorem 5.3(iv), K, differs from K-I by an operator in C. From this it
follows that

KGK-I = KGK, + bd. op.,
since according to Lemma 5.8 the operator on the right is almost antisymmetric, so
is the operator on the left. Since K, is bounded, this shows that equation (5.5) sat-
isfied by v = Ku is almost antisymmetric. According to Theorem 5.6 we conclude
that v satisfies an energy inequality; does u. if K is invertible, so does u.

If K is not invertible, we claim that we can add an operator in e to K and make
it invertible. To see this we note that since according to Lemma 5.7 k is real and
symmetric, it follows from Theorem 5.3(ii) that K differs from the symmetric op-
erators (K + K*)/2 by an operator in C. Clearly, if we replace K by its symmetric
part, Lemma 5.8 and (5.11) remain valid. We claim that for the symmetric K the
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origin is an isolated point of the spectrum of finite multiplicity. For otherwise there
would be an orthonormal sequence of elements uj such that

IIKu;II- 0.
By (5.11)

so

(1 + C)uj = Kt Ku1 ,

(512) IIuj+Cuj II->0.
The sequence uj, being orthonormal, tends to zero weakly. Since C is a compact
operator. it maps this into a sequence converging to zero strongly. By (5.12) it
follows that Ilu1 II -> 0, a contradiction.

Once we know that zero is an isolated point of the spectrum of K, we can add
to K a degenerate operator M (finite-dimensional range) which belongs to C such
that K + M is invertible. This completes the proof of Theorem 5.9. 0

There remains to prove Lemma 5.7. Multiply (5.7) by k from both sides; we
get

(5.13) k
2a = ksk.

Since k and s are supposed to be symmetric, so is the right side of (5.13); since k
is invertible. k2 = p is positive definite. Thus (5.13) can be written as

(5.14) pa=r,
p positive definite, r symmetric. Conversely, if we can solve (5.14), then k = pt/2
solves (5.7).

To solve (5.14) we make use of the basic assumption that (5.1) is strictly hy-
perbolic, i.e., that at each point the eigenvalues of a are real and distinct. From
this it follows that a can be made diagonal, i.e., that there exists a real nonsingular
matrix m such that

mam-t = d, d diagonal.

Multiplying this by m' on the left and m on the right, we get

m'ma = m'dm,
which is (5.14) with p = m'm, r = m*dm.

In this way we can solve (5.14) by smooth functions p and r in the neighbor-
hood of every point of R' X Sk-t. Let

Fqj=1
be a partition of unity by smooth nonnegative scalar functions qj with small sup-
port. We can find smooth solutions of

(5.14j) pia = ri
in an open set containing the support of each qj. Multiplying (5.14j) by qj and
summing gives a solution of (5.14) in the large with

p=Egipi, r=>girj.
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As a last step we observe that if p is smooth, so is k = f provided we take the
positive square root. In order fork to belong to the class X it has to be independent
of x for IxI large enough. This will be the case if a(x, z) is independent of x for IxI
large; this can always be accomplished by altering the differential operator outside
the support of the function u for which we are deriving the energy inequality (5.3).

NOTES.

An alternative way to proceed is to take conclusion (5.7) of Lemma 5.7 as
the definition of hyperbolicity of (5.1); in this way we can admit operators
with multiple characteristics.
Petrowsky has used Fourier series to symmetrize hyperbolic equations of
degree n. His technique was extremely unwieldy.
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CHAPTER 6

Existence of Solutions

In this chapter we shall use energy inequalities to show that the initial value
problem for hyperbolic equations has a solution. For the sake of simplicity we
shall deal with the simplest case, symmetric first-order systems introduced in Sec-
tion 4.3:

(6.1) L=D,-EA, D, +B,
where Aj and B are C°° matrix functions of x = (x1.... , xk) and t, and the Aj are
symmetric.

THEOREM 6.1 (Main Existence Theorem) Lets be a C°° vector function the slab
B :x in 1Rk, -T < t < T, f a CO0 function of x; then the initial value problem

(6.2) Lu=s, u(O,x)=f(x),
has a CO0 solution in the slab.

This result will be obtained as a corollary of the following, more precise exis-
tence theorem. Let n be a whole number, and define by H,, the Sobolev space of
vector functions v(x, t) defined in the above slab B with finite Sobolev norm of
order n, where

(6.3) IIvI1n
= J JDavl2dxdt.

B lal<n

We denote by HH0 the corresponding Sobolev space of vector functions of the
space variables alone.

THEOREM 6.2 Let s be a vector function of class H. in the slab, and f a vector
function of class Hn°I. Then the initial value problem (6.2) has a solution u of class
H,, in the slab.

Clearly, by letting n tend to oo in Theorem 6.2, we obtain Theorem 6.1.

6.1. Equivalence of the Initial Value Problem and the Periodic Problem

As a first step we alter the coefficients Aj, B, and the data s and f for IxI and
Iti large so that they become periodic functions of x and t. Since solutions of a
hyperbolic equation depend locally on the data and coefficients, altering them far
away will not alter the solution locally.

The periodic problem for the hyperbolic operator L is to find for s in H. a
solution w in H,, of Lw = s that is periodic in x and r. We show now that the
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periodic problem and the initial value problem are equivalent. Suppose we can
solve the initial value problem; denote S(t) the operator that maps the initial values
of solutions of Lu = 0 into their value at t:

S(t) : u(0) -- u(t).

According to Theorem 4.3 the operators S(t) are bounded in the Ilullo norm. We
claim that they are also bounded in the IIuII norms. This can be seen by differen-
tiating the equation Lu = 0 with respect to x; the derivatives of u, D°tu, lal < n,
satisfy a symmetric hyperbolic system of differential equations, whose solutions
can be estimated as in Section 4.3.

The change of variables u = eP` v, p a positive number, results in a system
of equations for v whose zero-order term has the coefficient B + pI, and whose
solution operator S(T) has, for p large enough, II IIn norm less than 1. We assume
that L has this form.

To solve the periodic problem Lu = s, u(0) = u(T), we first solve the initial
value problem Lv = s, v(O) = 0. Let w denote the solution of the initial value
problem Lw = 0, w(0) = f, f yet to be chosen. We set u = v + w; clearly Lu =
L(v+w)=Lv+Lw=s,u(0)=v(0)+w(0)= f,andu(T)=v(T)+S(T)f.
So the periodicity condition is

f = v(T) + S(T) f.

Since the norm of S is < 1, this has a unique solution f.
Next we show how the solutions of the initial value problem can be obtained

from solutions of the periodic problem.

LEMMA 6.3 Given any f in there exists a g in the domain of S(T) such that
g-S(T)g=.f.

PROOF: We construct an auxiliary function v in H with these properties,

v(0)=0, v(T) = f, LvinH,,,

as follows: We determine the first n + I derivatives of v with respect to t at t = T
so that Lv and its first n t-derivatives are zero at t = T. From Lv = v, - Gv = 0,
we get v, (T) = G f . From D; L v = D; +1 - D; G v = 0, we determine recursively
(Di +1 v)(T), j < n. Then we set

v(x, t) = h(t)
L
f + E(D/ v)(T)

(t - T )i

where h(t) is a C°° function such that

h(t)_ j l for 3T <t <T
10 for0 < t < 3T.

Clearly, v and Lv belong to H.
Next we define w as the periodic solution of Lw = Lv. Their difference

satisfies L(w - v) = 0. Denote by g the value of watt = 0 and t = T; then w - v
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at = 0 is g, and at t = T is g - f .Therefore

(6.) S(T )g = g - f .

0

Next we show that the domain of S(T) is dense in Hn°I; for if not, there would
be t nonzero fin orthogonal to the domain of S(T). Taking the norm of both
si s of (6.4) and using the orthogonality of f and g we get, denoting 11 II0 as II II,

Ilf 112 + Ilgll2 = IISghI2

Si ce the norm of S is < 1, the right side is < Ilgll2; this implies that Ilgll = 0, and
so 1 f 11 = 0, a contradiction.

Since the operator S(T) is bounded and densely defined, it follows that its
cl sure is defined on the whole space H,° and is the solution operator for Lu = 0.

E ERCISE Use the solution of the periodic problem to solve the inhomogeneous
ini al value problem (6.2).

6.2. Negative Norms

All functions in this section and the next are periodic in x and r. For any vector
fu 'tion a we define the -n norm as follows:

D FINITION 6.4 For any vector function a in H° we define

(6. Ilall-n =sup
(w, a)o

W IlwlI,

In words, Ila11-n is the norm of f(w) _ (w, a)0 regarded as a linear functional on
H where (- , )0 is the H0 scalar product.

DEFINITION 6.5 H_n is the completion of H0 in the II II-n norm.

REMARK. H_n can be identified as a subspace of the space of periodic distri-
bu ons.

The scalar product (w, b)o can be defined by closure for every w in Hn and
every b in H_n. It follows from (6.5) that

(6.) (w, b)0 < 11wlln11b1l-n

It ,flows that for fixed w in Hn, (w, b)0 is a bounded linear functional on H_,,.
Define the n-Laplacian operator A. as

An =E (-1)1°1D2°`.

Ia_<n

Fo any CO0 periodic function u integration by parts gives

(6. (Onu, u)o = E (Dau, Dau)o = (lull,'.
dal<n
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LEMMA 6.6 Given any periodic distribution b in H-n, there is a unique periodic
fitnction c in H such that

(6.8) Onc = b,
(6.9) IIclln = IIbII-n

PROOF: First take b in Ho and solve equation (6.8) by, say, Fourier series.
Taking the Ho scalar product of equation (6.8) with c gives, using (6.7) and (6.6),

IIclln = (Onc, c)0 = (c, b)0 < IIbII,, IIbII-(n)

from which IIclln < IIbII-n follows. Next take the Ho scalar product of equation
(6.8) with any w in H and integrate by parts:

(w, b)0 = (w, Onc)o = E (Daw, Dac)o
laI<n

E IJDawll0 IlDacllo < IIwIIn IIclln ,

where in the last two steps we have used the Schwarz inequalities. This shows
that IIclln is an upper bound of the linear functional e(w) = (w, b)o in the Hn
norm. According to (6.5), the exact upper bound of e(w) is IIbII-n Therefore
IIbII-n IIclln; since we have already derived the opposite inequality, (6.9) follows.

So far we have assumed that b lies in Ho; any b in H_n can be approximated
by a sequence of functions in H0, and c obtained as a limit in the Hn norm. 0
THEOREM 6.7 Every bounded linear functional a on H_ can be expressed as
e(b) = (w, b)0, w in H.

PROOF: Inequality (6.6) can be stated in the following words: for any w in
Hn the linear functional e(b) = (w, b)0 is bounded, and its norm is < IIwIIn We
shall show now that its norm equals IIwIIn We take first the case when w lies in
H,,,; we define b as Onw. By (6.7)

e(b)=(w,b)=(w,Onw)=IIwIIn

By (6.8) and (6.9), IIbII-n = IIwIIn So the identity above implies

e(b) = IIwIInIIbII-n;

this shows that the norm of a is > II w Iln Combined with our previous upper bound
we conclude that the norm of a is IIwIIn For w merely in H, we reach the same
conclusion by approximating w.

It follows that the space of linear functionals of form e(b) _ (w, b)0 is a closed
linear subspace of the dual of H_n. If it were not all of the dual, there would be
a nonzero b in H_n such that (w, b)0 = 0 for all w in H. Since H- is the
completion of H0, for any e > 0 there is an a in Ho such that IIb - all -n < E. By
(6.5) there is a w in H, IIwIIn = 1, such that

(6.10) (w, a)o ? Ilall -n - E
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Using (6.6), (6.10), and Ilb - all- < e, we get

(w, b)0 = (w, a)o + (w, b - a)o Ilall, - e - Ilb - all,
Ilbll-, - 3E.

If we choose e < it follows that (w, b)0 > 0, contrary to our assumption.
It fo lows that the assumption is wrong, as asserted in Theorem 6.7

6.3. Solution of the Periodic Problem

THEOREM 6.8 Let s be a periodic vector function in H,,. The equation Lw = s
has. i periodic solution w in H,,.

PROOF:: Denote by L* the transpose of the operator L. L* is of the same
general form as L; in particular, we can assume that its zero-order term has been
augt tented by p/, p a positive number as large as we desire.

LEN MA 6.9 L* is bounded from below in the sense that for all bin

(6.1 ) IIL*bll_ > const IIbII-,,

with some positive constant.

PROOF: Take first b to be C°O. According to Lemma 6.6, b can be represented
as b = so that (6.9) holds. Denote L*b = a; then

(6.1(a, c)o = (L*b, c)o = (L*Onc, c)o.
I ntel: rating by parts, using the fact that L * is of the form -ID, + y A; Di + B + p I ,

whe a the AJ are symmetric matrices, we obtain, see (4.22),

(6.1:;) (L*A,.c, c)o = Q(c, c) + p(A,,c, c)0,

whu: c Q is a quadratic form of the derivatives of c up to order n integrated over
the period parallelogram. Using (6.7) we deduce that the right side of (6.13) is
bout ded from below by const IIcII . The left side of (6.12) is, by (6.6), bounded
froir above by IIcII,.llall- Combining the upper and lower bounds of (6.12) we
dedt ce that

IlaII -n const IIcli,

Using (6.9) gives inequality (6.11).
Since every b in can be approximated by C°° functions, we obtain

Lemma 6.9.

Inequality (6.11) shows that the mapping b -> L*b = a is a one-to-one map-
ping of H-,,+I, boundedly, into H_,,. Given s in H,,, we define on the range of L*
the I near functional 1(a) as

(6.1.-) 1(a) = (s, b)o,

and extend it boundedly to all a in H_,,. According to Theorem 6.7, a can be
as f(a) = (w, a)o, w E H,; setting this in (6.14) shows that for all b

in H
(s, b)o = (w, a)o = (w, L*b)o
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The right side can be rewritten to give

(s, b)o = (Lw, b)0,

valid for all bin it follows that s = Lw, as claimed in Theorem 6.8. 0

NOTES.

In this proof we did not use the fact that the coefficient of D, is the iden-
tity, only that it is a symmetric matrix. So Theorem 6.8 is not really about
hyperbolic equations, but about symmetric positive operators; their theory
is due to Friedrichs.
The theory of distribution uses the duality of C°° and the space of distri-
butions; here we have used the duality of H and

This streamlined existence proof is from the author's 1955 paper. Other proofs
based on a priori L2 inequalities can be found in Friedrich's paper. A much earlier
proof based on a priori estimates was given by Schauder in 1937.

Earlier existence theorems relied on some form of approximation to the Rie-
mann function; see Chapter 7. In particular, Hadamard dealt with the fact that
the Riemann function is a distribution by introducing the ingenious concept of the
finite part of a seemingly divergent integral.

6.4. A Local Uniqueness Theorem

In this section we use a method of Holmgren to deduce a uniqueness theorem
from the existence theorem derived in the previous sections.

We use the notion of a lens-shaped domain 0 introduced in Section 4.3,
bounded by two spacelike hypersurfaces PI and P2. We start with a spacelike
hypersurface t = f (x). x E Rk, where the function f (x) is > 0 on a compact
subset P, of IRk, and < 0 on the rest of IRk; P2 is that portion of the hypersurface
that lies above PI; 0 is the domain contained between P, and P2 as in the figure
below:

THEOREM 6.10 Denote by u a solution in 0 of Lu = 0 that equals 0 in PI; then
u=0onP2.
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PROOF: Denote by L the adjoint of L = D, - F AjD,r + B. By Green's
theorem, for any differentiable function v,

ff(Lu)vdxdt = JfuL*vdxdt

(6.15)
o ar/

f

Pz P,

where n, and nj are the components of the normal to P2.
By assumption Lu = 0 in 0 and u = 0 on PI; if we choose v to satisfy

L' i = 0, (6.15) becomes

f(n1I_njAj)u.vdS=0.(6.16)

P.,

Choose the initial values of v on the spacelike surface to be equal to
(n, I - F nj AI)u on P2, and extend it to the rest of the surface to satisfy the pe-
riodicity condition imposed in Section 6.1. For this choice we deduce from (6.16)
that (rt, I - > nj Aj)u = 0 on P2. Since P2 is spacelike, the matrix n, l - Y2 nj A j
is invertible; therefore u = 0 on P2, as claimed.

NOTE. Theorem 6.10 can be used to give estimates on the domain of depen-
dence and influence of points. In particular, we can derive the analogue of Theo-
rem 4.6 for first-order hyperbolic systems that are not necessarily symmetric.
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CHAPTER 7

Waves and Rays

Introduction

In Section 7.1 we shall show that the initial value problem for distribution
initial data has a unique distribution solution. In Section 7.2 we show how to
approximate smooth solutions by so-called progressive waves. In Section 7.3 we
show that progressive waves make sense for solutions with distribution initial data,
and in Section 7.4 we apply these notions to study the propagation of singularities.

The rest of this introduction is a brief review of the relevant portions of the
theory of distributions.

Square brackets, parentheses, and curly brackets denote the L2 scalar product
in the slab IRk x (-T, T), Ilk, and (-T, T), respectively,

[u, v] = ff u(x, t)v(x, t)dx dt ,

(u, v) =
J

u(x)u(x)dx,

{u, v} =
J

u(t)v(t)dt.

We denote by D, Dx, and D,, respectively, the space of CO0 functions with com-
pact support of x, t, of x, and of t, respectively, in the slab Itk x (-T, T). We
denote by 8 the space of C°° functions of x, t in the closed slab -T < t < T that
have bounded support.

The duals of these spaces are denoted by primes, and the associated bilinear
form by square, round, and curly brackets, respectively. We shall refer to elements
of D', Dx, and D,' as distributions in the slab, space, and time, respectively.

Just as any uniformly continuous function defined in a slab can be regarded as
a continuous function of t whose values are continuous functions of x, so every
distribution defined in a slab can be regarded as a distribution in t whose values are
distributions in x. More precisely, we make the following definition:

DEFINITION 7.1 For any din 1)'and uin S,in = (u,d)can be defined as a
distribution in D, by setting (p, m) = [pu, d] for every p in D,.

EXERCISE Verify that as defined above, m is a distribution in D.

LEMMA 7.2

(i) Let d be any distribution in D', and u any function in S. Then

(7.1) D, (u, d) = (D,u, d) + (u, D,d) .

69
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(ii) Let G be any partial differential operator with respect to the x-variables
whose coefficients are C°° functions, G' its adjoint. Then

(7.2) (Gu, d) = (u, G*d).

EXERCISE Prove Lemma 7.2.

LEMMA 7.3 Let d be a distribution in D' that satisfies a partial differential equa-
tion of the form D,d - Gd = 0 in the slab IRk x (-T, T), where G is a linear
partial differential operator with respect to x, with C°° coefficients. Then d is a
C°° function of t in the sense that for every u in 8, m = (u, d) is a C°° function of
t.

PROOF: Since d is in D', for every R and S < T there is an integer N and a
constant such that

(7.3) I[v, d]I < constlviN

for every v in D whose support is contained in Ixl < R, Itl < S. Here IvIN =
maxla,<N IDavi

Take any p in D, whose support is contained in [-S, S]. We shall show that
for m = (u, d),

(7.4) I{p,m}I <constIPlo,

where the constant depends on S and on the function u. First we take the special
case when p satisfies the following N linear conditions:

(7.5) = 0 , j=0,1,...,N-1.
Then we may represent p as DNq, q a C°O function whose support lies in [-S, S].
We write

(p, m) = [pu, d] = [p, ud] = [DNq, ud] = (_i)N[q, DN(ud)]
(7.6)

_ 1:(_l)N(N)[q, (DN-eu)(D,d)]

Next we make use of the fact that d satisfies D,d = Gd; therefore D, 'd = Ged,
and we rewrite the right side of (7.6) as

(-1)N (")[qr,'u.Gtd]_(-1)N ()[qG*tD Neu,d].

Now we apply inequality (7.3) with v = qG*(DN-euto obtain

I(p,m)I <constlglN

where the constant depends on Iu12N. Since DNq = p, IgIN < const Iplo, this
proves inequality (7.4) for all p that satisfy (7.5). For p in general we construct a
function r in D, whose support lies in [-S, S] so that

f ti(p - r)dt = 0, IvIN < cons[ IPIo

We then set p = DNq + r and proceed as before.
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The same technique can be used to derive the estimate

(7.4,) l(p,D'm}) 5 constIP1o

for any positive integer i. From this inequality we conclude, using the Riesz repre-
sentation theorem, that D,m is a signed measure. Since this holds for all i, m is a
C" function. 0

REMARK. The partial differential equation that d is required to satisfy in
Lemma 7.3 need not be hyperbolic.

7.1. The Initial Value Problem for Distributions

We shall study hyperbolic first-order operators of the form

(7.7) L=D,-G=D,->Aj Dj -B,
whose coefficient matrices Aj and B are C' functions of x and t.

THEOREM 7.4 The initial value problem

(7.8) L'd=-D,d-G'd=0, d(0)=1,
has a unique distribution solution d for every prescribed initial value a in D,,.

PROOF: The statement makes sense, since according to Lemma 7.3 every dis-
tribution d that satisfies a partial differential equation of form (7.8) is a CO0 function
of t with values in D.'.

Next we show the following:

LEMMA 7.5 Let d be a distribution solution of L*d = 0, and u a C00 solution of
Lu = 0. Then (u, d) is independent oft.

PROOF: Differentiate (u, d) with respect to t; using relations (7.1) and (7.2)
as well as (7.7) and (7.8) we get

D,(u, d) = (D,u, d) + (u, D,d) = (Gu, d) - (u, G'd) = 0.

0

We can use Lemma 7.5 to define the solution d(s) of equation (7.8) as follows:
For every f in D., we set

(7.9) (f, d (s)) = (u (0), f),

where u is the solution of Lu = 0 whose value at time s is f: u(s) = f. We
shall show that d(s) as defined by (7.9) is a distribution. Clearly, (7.9) is a linear
functional of f, since u(0) depends linearly on f. In addition, it is a continuous
functional of f, since u(O) depends continuously on f in all the H" norms, as
shown in Chapter 6. But then it follows by Sobolev's inequality that u(0) depends
continuously on f in the C" norm for functions f whose support is contained in
some fixed compact set S.

LEMMA 7.6 (f, d (s)) as defined by (7.9) is a Lipschitz continuous function of s.
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PROOF: Take any value r ¢ s, and denote by v the solution of Lv = 0 whose
value at r is f : v(r) = f . Then by (7.9)

(f,d(r)) = (v(0),f).
so

(7.10) (f, d (s)) - (f, d (r)) = (u(0) - v(0), f) .

We have seen that the norm of a solution v can be estimated in terms of the
of its initial value at t = r:

Ilvlln+I <-constllflln+I

We write

v(s)-v(r)=JrD,vdt,
so we can estimate

11v(s) - v(r)Iln < Ir - sl Ilvlln+I < const Ir - slll.f IIn+I

Since v(r) = f, we deduce that

(7.11) 11v(s) - f Iln < const Ir - sl IIfIIn+I

The function v - u satisfies the equation L (v - u) = 0, so we can estimate its value
at t = 0 in terms of its value oft = s:

(7 12)
I1 v(0) - u(0)Iln <- const Ilv(s) - u(s)Iln

= const Ilv(s) - f Iln < const Ir - slll.f lln+1

where in the last step we have used the inequality (7.11).
The support of f lies in some compact set in Rk; therefore, since signals prop-

agate with finite speed, u(0) and v(0) are supported in compact sets. Since 8 is a
distribution in ,Dx, it follows that for g in £., supported in some compact set,

I(g, e)I < const Iglj

for some positive integer j. By Sobolev's inequality Iglj < const Ilvlln for n >
j + k/2; therefore

(7.13) I(g, £)I < const Ilvlln

We choose now g = u(0) - v(0); using (7.10), (7.12), and (7.13) we get

I (f. d(s)) - (f, d(r))I < const I1 u(0) - v(0)IIn < const Ir - s I I I f lln+

This proves the Lipschitz continuity of (f, d(s)). 0
It follows from Lemma 7.6 that d(s) as defined by (7.9) is a distribution in .0';

by (7.9), its value at s = 0 is f. We shall show now that d satisfies L`d = 0. We
rewrite equation (7.9) as

(u(s), d(.s)) = (u(0), d(0)) ,

valid for all solutions of Lu = 0. Now we apply the converse of Lemma 7.5: if d is
a distribution in .0 such that (u(s), d (s)) is independent of s for all C°° solutions of
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Lu = 0, then d satisfies L'd = 0. The proof is the same as the proof of Lemma 7.5
run backwards.

This completes the proof of the existence theorem, Theorem 7.4.

EXERCISES

(1) Show that if {ej} is a sequence of distributions in Mx that converge to the
distribution t, then the solutions dd of L*d1 = 0 with initial value Lj tend
to d, the solution of L'd = 0 with initial value Z.

(2) Show that signals carried by distribution solutions of a hyperbolic equa-
tion propagate with finite speed.

NOTE. For a matrix -valued distribution M we define (u, M) as a distribution
in i whose values are row-vector-valued, the ja' component being (u, cj), where cj
is the fh column of M. We define L*M by letting L* act on each column vector
of M.

DEFINITION 7.7 The Riemann function-more precisely, Riemann distribution-
for the hyperbolic operator L is the matrix distribution R(x, t; y, s) that satisfies in
the x, t-variables L'R = 0, and has prescribed data S(x - y)1 at time s, where I
is the identity matrix,

(7.14) R(x, s; y, s) = S(x - y)1.

THEOREM 7.8

(i) For any CO0 solution of Lu = 0, and for any t,

(7.15) u'(y, s) = J
u(x, t) R(x, r y, s)dx,

where the integration is taken in the sense of distributions, and u' denotes the
transpose of u.

(ii) Each row r; of R satisfies in the variables y, s the equation

L'r, =0.
PROOF:

(i) It follows from Lemma 7.5 that for each column cj of R, (u(t), c1(t)) is
independent of t. By (7.14), all components except the ja' of cs(s) are zero, and
the j`h is S(x - y). So (u(t), ca (t)) = (u(s), cp(s)) = uj (y, s), the ja' component
of u(y, s). This proves (7.15)

(ii) Formally, apply the operator Lv,, to (7.15); the left side is zero. Since for
any fixed time t, u(x, t) can be prescribed arbitrarily, it follows that L',, annihilates
R, which is the same as L',, annihilating the rows of R.

To make this formal argument rigorous, take any C°O test function w'(y, s) of
compact support, multiply (7.15) by L"w, and integrate with respect to y and s.
The left side is zero, and we argue as before.

Of course, the usefulness of this explicit expression depends on what we know
about the Riemann function; its mere existence tells us nothing. The next two
sections will be devoted to this task.
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7.2. Progressing Waves

In Section 3.5 we showed that expressing the initial value in terms of its Radon
transform leads to an expression of the corresponding solution of a hyperbolic
differential equation with constant coefficients as an integral of plane waves, that
is, functions of the form h(x w+at, w)r, where a (w) is an eigenvalue of C(w) =
Fw1Aj, r the corresponding eigenvector, and w a unit vector in IRk. When the
coefficients Aj are functions of x and t, we replace plane waves by progressing
waves, which are sums of terms of the form

(7.16) h(rp(x, t))v(x, t),

where h is an arbitrary function, rp a scalar function, called the phase, satisfying
the eikonal equation described below in (7.18), and v a right eigenvector.

Set by given by (7.16) into the equation L(hv) = 0, L defined by (7.7):

(7.17) L(hv) = h'[c,! - C(DW)]v + hLv,

where C(w) = C(w,x,t) = Fw1Aj(x,t), Dcp the x-gradient of co. and h' _
Dsh(s). We choose (p and v so that the first term on the right in (7.17) is zero. To
avoid the trivial case v = 0, rp, is required to be an eigenvalue a = a(D(p, x, t) of
C(Dgp, x, t):

(7.18) D,c = a(D(p, x, t),

and v = ar, where r is the corresponding normalized eigenvector of C(D(p, x, t),
and a some scalar-valued function called the amplitude, which will be determined
in the next step.

It follows from (7.17) and (7.18) that the function by satisfies the inhomoge-
neous equation

L(hv) = hLv.
We shall add to it a function of the form h i (c)vI chosen so that it approximates a
solution of L(h1vi) = -hLv. Analogously to (7.17),

L(hivi) =h,(V,1 -C(Dc)vi +h1Lvi .

We choose h I as an antiderivative of h, h', = h, and vi so that

(7.19) ((p,1 - C(D(p))vi = -Lv.

Since the matrix V,1- C(DV) is not invertible, equation (7.19) has a solution only
if the right side is orthogonal to the left null vector a of cp,l - C(Drp), that is,
fLv = 0. Since v is of form ar,

fLv = era, - E PAjrar + atLr .

Normalizing the left eigenvector so that Er = I we can write the above equation as

(7.20) dta+ca =0,

where

(7.21) dt = D, - fAjrDj and c = BLr..
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The initial value of a is available to be chosen appropriately.
The solution v, of (7.19) is determined only modulo air; the function at will

he determined at the next step of approximation.
We construct recursively a sequence of correction terms, all of the form

h, i gyp) e3 , where the functions h j satisfy h' = h.1, and the vj satisfy

(7.19,) [cp,I - C(Dcp)]vj = -Lvj_i .

This determines vj modulo a multiple of the right eigenvectorajr; the compatibility
condition for solving (7.19j) gives an inhomogeneous differential equation for aj_ i
analogous to (7.20).

The partial sum UN = a hjuj satisfies the equation

(7.22) LUN = hNLVN .

We recall from Section 4.2 how to solve the eikonal equation (7.18). Differen-
tiate (.7.18) with respect to xj, denoting Djcp by cpj we get

D,cpj = a., + E a,,, Dkcpj .

This can be rewritten as

(7.23) cpj = as,

where ' is differentiation with respect to t along the curve

(723') xj=-as,.

Note that (7.23)-(7.23') constitute a Hamiltonian system. A solution of it is called
a hicharacteristic. The projection of a bicharacteristic into Rk is called a charac-
teristic ray, or just a ray.

From the definition of a(cv) as an eigenvalue of C(w) _ wjAj, it follows
that a is a homogeneous function of co of degree 1. Therefore Euler's relation
holds:

a(w) = Ewka.R.

Setting this into the eikonal equation (7.18) and setting w = Dcp, we get

Drop=Etpka,.

Using the dot notation (7.23'), we can rewrite this as

cp=0.

In words: the phase cp is constant along rays.
We have now the solution of the initial value problem for the eikonal equation

in hand.

THEOREM 7.9 Let cpo(x) be a C°O function in Rk whose first derivatives are
bounded by M. The eikonal equation (7.18) has a unique C°° solution cp in the
slab - T < t < T whose initial value is cpo. The value of T depends on M.
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PROOF: Prescribing Wo provides the initial data for (pj required to solve the
Hamiltonian system (7.23).-(7.23'). For T not too large the rays cover the slab
Rk x (-T, T) in a one-to-one fashion. Take tp to be constant along rays; this
defines V in the slab as a solution of the eikonal equation with the prescribed initial
value. O

NOTE. The solution is local in time; in general, singularities, called caustics,
develop after a finite time.

Equation (7.20) is a differential equation for the amplitude along a curve de-
fined by

(7.24) zj = -EAjr..
We show now that this curve is a ray, that is, the same as defined by (7.23'). To see
this, take the eigenvalue equation

C(w)r = ( (OkAk)r = ar

and differentiate it with respect to wj:

Air+C(w)r,,, =a,,i r+arri.
Multiply on the left by the left eigenvector f:

£AJr + £C(w)ru
J

= a,,
,
er + afrr .

I

Since tC(w) = at, and er = 1 by normalization, we deduce that

EAjr = a, j.

Setting w = Drp, we see that the right sides of (7.24) and (7.23') are equal.
Finally, we show how to use progressing waves to solve approximately initial

value problems. We saw in Section 3.5 that all initial functions can be represented
as a superposition of functions of the form g(x w), w a unit vector. Accordingly,
we choose the initial value of the phase V to be x - w. We then decompose g(x w)
according to the right eigenvectors rj (x, co) of C((o, x, 0):

gjrj,

where gj = egg = E(')g('), ej - the normalized left eigenvectors, and where
the superscript m denotes the mm component. The first term of the progressing
wave, given by (7.16), is at t = 0 of the form h(x w)ar. In our case we take
h(s) = g(m)(s) and choose a(0) = &)(x, co) to be the initial value of a; then we
sum the waves over all j and in.

The second and subsequent terms of the progressing waves are formed as fol-
lows: We subtract from h 1 v, traveling waves of the form h I F bjrj and choose the
initial values of bj so that F bjrj equals the initial value of v1.

The last step, after taking the sum of all these progressing waves, is to integrate
this sum with respect to w over the unit sphere. The result is an approximate
solution u of Lu = 0 with the prescribed initial values. We make this statement
more precise.
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THEOREM 7.10 Given initial data f in class CM and with compact support, we
can construct using progressing waves, an approximate solution u of class CK,
u(U) = f, for which Lu belongs to CK, K arbitrary, M sufficiently large.

We shall not present a direct proof of this proposition; rather we shall show
how to use progressive waves to construct an approximation to the Riemann func-
tion. To prepare the way, we present in the next section a discussion of compound
distributions and their integrals.

7.3. Integrals of Compound Distributions

We shall confine the discussion to the situation at hand, where the variables
x, t lie in a slab B, and the parameter w is a point of the unit sphere S.

DEFINITION 7.11 Let m be a distribution in a single variable, and Sp a C°° scalar-
valued function, defined in the slab B, whose gradient is nowhere zero. The com-
pound distribution in ((p) is defined as follows:

Let c be a CO0 function with compact support in B. If the support of c is
small enough, it is possible to introduce coordinates wt, ... , wk+i in an open set
containing the support of c, where wI = V. Then we set

(7.25) [c, m(tp)] =
J

c(z(w))m(wt)J(w)dwi .. dwk+I

where J(w) is the Jacobian determinant of the mapping w <- z = (x, t). The dw1
integration is taken in the sense of distributions, all the others in the ordinary sense.

When the support of c is not small, c can be decomposed by using a sufficiently
tine partition of unity, as c = E cj, where each cj has small support. We then
define [c, m((p)] as E[cj, m(tp)].

ExERCISES

(1) Show that the definition (7.25) is independent of the particular mapping
w -> z employed.

(2) Show that the definition of [c, m(p)] is independent of the partition of
unity employed to decompose c.

Compound distributions have the customary properties:

LEMMA 7.12

(i) The chain rule holds: Dm (W) = m'((p)Drp.
(ii) If m is C°° in a neighborhood of tp(zo), then m(tp) is C°° in a neighbor-

hood of zo
(iii) If the x-gradient of rp(x, t) is nonzero, then for any u in JDs, (u, m(tp)) is

a C0O function oft.

EXERCISE Prove Lemma 7.12.

We turn now to distribution-valued functions f(m) defined on the unit sphere
S; that is, for each w in S, e(m) lies in D'(B). We call t(m) integrable over S if for
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each u in .0(B) the integral

f[u.(7.26) f ( w)]dw

S

exists and is a continuous linear functional of u. For integrable functions e(w), the
integrated distribution

J
e(w)dw = e

S

is defined by setting [u, e] equal to (7.26).

LEMMA 7.13

(i) Let f(w) be an integrable distribution-valued function, and L a partial dif-
ferential operator with C°° coefficients. Then Le(w), too, is an integrable function,
and

LJ edw=J Ledw.

(ii) If w - W is a CO° invertible map, then

f f(w)dw = I e(w)J(w )dui .

EXERCISE Prove Lemma 7.13. l

We shall apply these notions to the terms that arise in the approximate solutions
of initial value problems by progressing waves. These are of the form

(7.27) e = I a(z, (o)m(V(z, (o))dw,

where a(z, w) and rp(z, w) are vector and scalar C°° functions of their arguments,
the z gradient of V is nonzero, and m is a distribution of a single argument. It is not
hard to show that (7.27) is an integrable compound distribution in .0'(B). Recall
that the singular support of a distribution is the smallest closed set outside of which
the distribution is C.

THEOREM 7.14 Let zo be a point in B with the following property: the gradient of
V with respect tow is nonzero at all points w for which W (zo, (o) lies in the singular
support K of in. Then the distribution (7.27) is C°° in a neighborhood of zo.

PROOF: Apply a sufficiently fine partition of unity to decompose a as the
sum E aj on the unit sphere where the support of each ai lies in a small w set Si.
This decomposes the distribution (7.27) as the sum of distribution ej, each of form
(7.27). For each of these distributions there are two cases:

(i) rp(z0, w) does not belong to K for any w in S1.
(ii) For some wj in Sj, rp(zo, wj) lies in K.

In case (i) ej is obviously a CO0 function. In case (ii) it follows from the assumption
about zo that we may for all points in a small neighborhood of zo introduce new
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parameters i in Sj so that V We then express lj as an integral with
respect to the C-variables ass

ej =
J

b(z, C)J(z, C)m(Ci)dCi ...dCt-t

where b(z, C) = a(z, (o(C, z)), and J is the Jacobian of the mapping C -+ w.
The integral with respect to C) is taken in the sense of distributions; the result is
a C'° function of z and the rest of the C. This proves that ft is a C°O function
of z.

We conclude this section with the Radon transform representation of S in Rk,
k odd.

EXERCISES Take in the definition (3.48) of the Radon transform f = S.

(1) Show that S = S; here S on the left is the 8-function in Rk, on the right
in R. Therefore by formula (3.50) for the inversion of the Radon trans-
form

(7.28) 8(x) = c f 8(k-1)(x w)dw,

where 8(k-I) denotes the (k - 1)' derivative of S.
(2) Give a proper proof of formula (7.28).

7.4. An Approximate Riemann Function
and the Generalized Huygens Principle

We recall from Section 7.1 the Riemann function R for the hyperbolic operator
L as the matrix solution of the hyperbolic equation L`R = 0, whose value at time s
is A(x - y) 1, where S is the delta function in Rk and I then x n identity matrix.
Formula (7.28), and the theory of progressing waves developed in Section 7.2,
gives an approximation RN to R that is a sum of terms of the following form:

(7.29) f a(x, t, w)h(rp(x, t, w))dw,

where h is a derivative or integral of some order of S in R, and a is a C°° matrix-
valued function of its arguments. The calculations in Section 7.2 show that L'RN
belongs to CM, M arbitrary, provided that N is taken large enough, and the initial
value of RN is 81.

The exact Riemann function R differs from RN by a smooth function; this can
be seen as follows: denote by EN the solution of the initial value problem

L*EN = L'RN , EN(0) = 0.

Clearly, R = R. - EN satisfies L'R = 0, R(0) = 81, which characterizes it as the
Riemann function. The function EN can be made as smooth as we wish by taking
N large enough. Note, furthermore, that R is zero for x, t outside the domain of
influence of (y, s).

THEOREM 7.15 The Riemann function R(x, t; y, s) is a Coo function of (x, t) and
(y, s) except when (x, t) and (y, s) are connected by a ray.
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PROOF: Since the correction term EN can be made CM by taking N large
enough, it suffices to show that RN is a Cx function of (x, t) except on the rays,
connecting (x, t) and (y, s). We shall show that each term (7.29) contained in RN
has this property. We appeal to Theorem 7.14, according to which such a term is
C°° at all points (x, t) provided that the gradient of rp with respect to w is nonzero
at all points where cp(x, t, w) belongs to the singular set of the distribution h. Since
h is obtained from the 8 distribution by differentiation or integration, these are the
points where rp(x, t, w) = 0.

To verify this condition, we calculate the partial derivatives of V with respect
tow. Denote by g such a partial derivative, g = 8V/8wj. Differentiate the eikonal
equation (7.18) with respect to wj; we get

D,g - mow, g = 0.

According to equation (7.23') this equation says that the derivative of g along a ray
is zero; therefore g is constant along this ray. At t = s the phase function was
taken to be (x - y) w; therefore g = 8(p/8wj = xj - y;. Suppose (x, t) does not
lie on any of the rays issuing from (y, s); origin; then at least one of the xJ - yj is
nonzero, which shows that the w-gradient of cp is nonzero at x, t.

To conclude that the gradient of rp on IcI = I is nonzero, we observe that W is a
homogeneous function of w of first degree. This shows that the derivative of V with
respect to Iwl equals gyp, which equals 0. Therefore the gradient of W on IWI = 1 is
not equal to 0.

According to Theorem 7.8, the transpose of R(x, t; y, s) is the Riemann func-
tion for L' in the variables y, s. It follows then from what we have just proven that
R is a C0O function of (y, s) as well, provided that (y, s) is not connected to (x, t)
by a ray.

We come now to the main result of this chapter.

THEOREM 7.16 Let u be a distribution solution of the strictly hyperbolic equation
Lu = 0 with C°° coefficients. Let (y, s) be a point with the property that the initial
value f (x) = u (x, 0) of u is CO0 in a neighborhood of all points x that lie on a ray
emanating from (y, s); then u is C°° in a neighborhood of (y, s).

PROOF: Decompose the initial data as f = f, + f2, where f, is zero in an
open set containing all points x that lie on a ray emanating from (xo, to), and f2
is CO0 everywhere. Then u = u, + u2, where u; is the solution of Lu; = 0,
u; (x, 0) = f;, i = 1, 2. Clearly, u2 is C°° everywhere.

To show that u, is C°O in a neighborhood of y, s, we approximate the distribu-
tion f, by a sequence of C°° functions hm by setting

hm(x) = Jfi(y)p(?n(x - y))m'dy,

where p(y) is a C°° function of compact support, f p d y = 1. Since f, = 0
in an open set containing all points x that lie on a ray issuing from (xo, to), the
same is true for all functions hm for m large enough. Denote by vm the solution of
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0, vm(x, 0) = hm(x); clearly vm tends in the sense of distributions to u1.
We represent vm in terms of the Riemann function as in (7.15):

(7.30) Vm(y, s) =
J

R(x, 0; y, s)hm(x)dx .

According to Theorem 7.15, R(x, 0; y, s) is a C°D function of x away from
the intersection of rays emanating from (y, s) with the initial hyperplane. Since
fl, and all functions hm are zero in an open set containing this exceptional set, in
formula (7.30) we can pass to the limit m -* oo:

(7.30w) u(y,s)=J R(x,0)fl(x)dx.

We appeal once more to Theorem 7.15 on the differentiability of R with respect to
y, s to conclude that u is C1 for the set of (y, s) specified in Theorem 7.16. 0

According to Theorem 3.16, in an odd number of space dimensions the value
at some point (x, t) of a solution of the wave equation doesn't depend on the val-
ues of the initial data except at those points where the characteristic rays issuing
from (x, t) intersect the initial hyperplane. This property is called, after its dis-
coverer, the Huygens principle. Theorem 7.16 says that the smoothness at (y, s)
of solutions of any strictly hyperbolic equation with C°° coefficients depends on
the smoothness of the initial data only at those points where the characteristic rays
issuing from (y, s) intersect the initial hyperplane. Theorem 7.16 is called the
Huygenss principle in a generalized sense.

Representation (7.28) of the 8 function holds only for an odd number k of
space dimensions; an extension to even k is not hard. More troublesome is that our
proof is local in time, for solutions of the eikonal equation are local in time. The
extension of Theorem 7.16 to large times is due to Donald Ludwig.

The last result of this section is about the propagation of discontinuities.

THEOREM 7.17 Let f be initial data that are C1 on either side of a C°O hyper-
surface K lying in the initial plane, and f and its partial derivatives have jump
discontinuities across K. Then the distribution solution of Lu = 0, u(x, 0) = f,
is C" except on the n characteristic hypersurfaces issuing from the discontinuity
K; a and its partial derivatives have jump discontinuities across these character-
istic surfaces.

SKETCH OF PROOF: Describe the discontinuity K by an equation cp(x) = 0,
cp a scalar function. Given any integer M, we can decompose f as f = ft +
f2, where fl is a finite sum of the form aj(x)m(cp(x)), where aj is a C°O vector
function, m is some integral of the 8-function, and fz belongs to CM. We can,
using the technique of Section 7.2, construct progressive waves wj whose initial
value is f, and which consists of terms of the form

aj(x,t)m((p1(x,t)), j = 1,...,n.
Here W, (x, t) is the solution of the j`h eikonal equation with initial value 1p. We
have shown that cpj is constant along rays; therefore (pi (x, t) = 0 only on the rays
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issuing from those points x for which cy(x) = 0, and this set is the hypersur-
face K along which the discontinuities of the initial data occur. The rays issuing
from K form the characteristic hypersurfaces issuing from K. It follows that w
is C°° except on the characteristic surfaces issuing from K. Since w differs by
a C' function from the solution of Lu 1 = 0, u I (x, 0) = f, (x), it follows that
ui is smooth away from the characteristic surfaces. The solution u2 of Lug = 0,
u2(0, x) = f2(x), is smooth everywhere, so Theorem 7.17 follows.

REMARK 7.18. In Courant-Lax we have shown how to deduce the generalized
Huygens principle from Theorem 7.17, for which we gave a direct proof.

REMARK 7.19. Hormander has introduced the important notion of wave front
set, and has shown that it propagates along rays. This is a further generalization of
Theorems 7.16 and 7.17.

REMARK 7.20. There is an important extension due to Melrose and Taylor of
the generalized Huygens principle to solutions of mixed initial and boundary value
problems; see the expository article by Taylor.
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CHAPTER 8

Finite Difference Approximation to Hyperbolic Equations

8.1. Consistency

We shall discuss first-order symmetric hyperbolic systems

(8.1) Du = EAjDju,

when u = u(x, t) is a vector variable, and the Aj are real symmetric matrices that
depe; td smoothly on x but not on 1. Dj denotes partial differentiation with respect
toxj. j=1, ,k.

Problems in physics and engineering often call for numerical approximations
of solutions whose initial values are given. The most powerful and most general
meth ds for constructing the needed approximation is to discretize the variables x
and t. replace derivatives by difference quotients, and solve the resulting equations
in a f nice number of variables. We seek to approximate the values of the function u
only it points of a lattice in x, t space. Denote by h a multi-index (h 1 , ..., hk ), and
deno e by n an integer. Denote the spatial and time scales by S and e, respectively,
and t enote by uh an approximation to the value of u at the point x = hS and time
t=1 E.

F. difference equation connects the values of un at various points of the lattice.
Herd we shall discuss the simplest schemes, explicit two-level ones; these express
uh+ in terms of the values of uh at the previous time level. For simplicity we first
treat the case when there is only one space variable. Then equation (8.1) takes the
form

(8.2) D,u = ADXu ;

h is t. scalar index, and the difference scheme is of the form

(8.3) n+I
n

Uh = Cjuh+j.

Here C; are matrices that are functions of x = hS; the integer j ranges over a set
of a finite number of indices.

1b relate the difference equation (8.3) to the differential equation (8.2), and
the fatrices Cj to the matrix A, we express uh+t and uh+j in terms of u and its
deriv hives at x = hS, t = ne, using Taylor's formula:

(8.4) uh+t = u", + Due + 0(e2) ,

(8.5) u",+j = u", + j DxuS + O(S2).

83
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Setting these into the difference equation (8.3) gives

(8.6) uh+D,uE+0(E2)=>2Cjuy+EjCjD,ruS+0(62).
According to equation (8.2), D,u = AD,u. Setting this into (8.6) and writing
c = X3, we deduce the following two consistency conditions for the coefficients
Cj of the difference scheme:

(8.7) J Cj = 1 , > jCj = XA.
If these are satisfied, it follows from (8.6) that

,h+1 - u(hS, (n + 1)E)1 < 0 (e2 + 62) .

We shall keep the ratio X of c to S constant so that we can write the above estimate
as

u(hS, (n + 1)E)l 0(82).(8.8)

We now consider the simplest case: only C_I and CI are different from zero.
Then the two consistency conditions (8.7) yield a unique value for the two coeffi-
cients:

1 1

(8.9) C_I = 2(I -AA), C1 = 2(I+)A).

The resulting difference scheme is called the Lax-Friedrichs scheme:

(8.10)
n+l n n

llh -C_Itlh-1 +Cluh+1

Note the following important distinction between the differential equation (8.3)
and the approximation (8.10): whereas the initial value problem for (8.3) can be
solved equally well for t positive or t negative, (8.10) is set up to solve the initial
value problem only in the positive time direction.

8.2. Domain of Dependence

The value of u" is determined by the values of u"=' and uh+i; these in turn
are determined by the values of uh=Z, uh-2, and uh+; . Continuing in this fashion
backward in time, we find that u; is determined by the initial values uoh -n, ui°,-n+2,

u°,+n. We can express this result as follows:
The domain of dependence of uh on the initial data consists of all lattice points

in the interval [(h - n)S, (h + n)S].
In Section 4.1 we showed that the domain of dependence of u(x, t), t > 0,

on the initial data lies in the interval cut out of the initial line by the leftmost
and rightmost characteristic curves. These characteristic curves propagate with
speed -ami and -omax, the smallest and largest eigenvalues of the matrix A. When
A does not depend on x and t, these characteristic curves are straight lines, and the
interval they cut out of the initial line is [x + ami,,t, x + amaxt].

Setting x = hS, t = nE, the domain of dependence of x, t for the difference
scheme consists of integer multiples of S on the interval [(h - n)S, (h + n)S] =
[x - t/A, x + t/A]; here we have used nS = nES/E = t/A, since A was defined as
E/S.
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In their seminal paper Courant, Friedrichs, and Lewy observed that if the
scheme is to converge to the solution of the differential equation, then the domain
of dependence of the difference scheme must include all points of the domain of
dependence of the differential equation. That means that

(8.111 'k -t >'T., -),-t < Qmin ,

the celebrated CFL condition.

8.3. Stability and Convergence

It turns out that the CFL condition is not only necessary but also sufficient for
convergence of the LF scheme. The most important step in proving convergence
is to prove the stability of the scheme. Stability means that the L2 norm of the
solution of the difference scheme at the n`h step, Ilu" 112 = S Fh luh 12, is bounded
by a, constant multiple of the L2 norm of the initial data Ilu°112 = S Eh Iu°l2; the
constant is typically an exponential function of t = ne.

To derive such an estimate we note that the CFL condition (8.11) implies that
the matrices C_1 and Ct in (8.9) are nonnegative. The stability of the LF scheme
(8.111) follows from the following general theorem due to Friedrichs:

THI OREM 8.1 (Stability Theorem) Consider a difference scheme of the form

uh+t = Cjuh+j , j ranging over a finite set,
t

where the coefficients Cj are symmetric matrix functions that satisfy

(8.13a) Cj > 0,

(8.13b) EjCj = 1,
(8. l 3c) Cj is a Lipschitz continuous function of x = h8.

Then the scheme is stable in the sense that

(8.14) Ilunlit <- eo(M)ndllu°ll ,

here llu" ll3 = S and M is the Lipschitz constant.

PROOF: Take a vector w, to be specified later, and take the scalar product of
(8.1 '_) with w; we get

(8.15) uh+t , w = Cjuh+j ' w .

Sine Cj is a nonnegative symmetric matrix, by the Schwarz inequality

Cju.u

applying the arithmetic-geometric mean inequality on the right, we get

2 2
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Take u = u',+ j and use the above inequality to estimate the right side of (8.15); we
get

(8.16) uh+l , w <
2

Cjuh+j - uh+j + 2 E Cjw - W.

Since Ej Cj = 1, the second sum on the right adds up to 1 w - w. Now choose
w = uh+l; multiplying (8.16) by 2 gives

u"+I
I

2 < un un

h L Cjh+j h+j

i

Sum this over all h and multiply by S; we get

IIu"+l II -SECiuh+j uh+j
h,j

Introduce h + j = k as the index of summation in place of h; we get

(8.17) Ilun+l 112 < S r` Cjuk uk

j.k

where Cj = Cj(hS) = Cj((k - j)S). Sum first with respect to j; Cj(kS) = 1,
and since Cj are Lipschitz continuous and j ranges over a finite set,

1: Cj(kS - jS) = I + O(M)S.
i

Setting this into (8.17) gives

(8.18) Ilun+llla < (I + O(M)8)Iiunp2 .

Using (8.18) repeatedly we obtain

11,,"1j, <_ (I + O(M)S)"1111 °Ila < eo(M)a"IIu°Ila

This proves the stability of the scheme.

Obviously, Theorem 8.1 holds in any number of space variables.
We now show how to combine the error estimate (8.8) and the stability estimate

(8.14) to prove convergence of the scheme as S tends to zero.
Denote by S(E) = S the operator that relates the initial data of solutions of

(8.2) to their values at time E. Since we have assumed that the matrix A does not
depend on t, the operator that relates the initial values of solutions to their value
at t = nE is S". Denote by Cs the operator that relates the u"+l to U" by equation
(8.12). Estimate (8.14) can be expressed so: the L2 norm of the operator Ce is
< eO(M)Sn

Denote by P the operation of discretization that maps a continuous function
u(x) into its values at the lattice points hS:

P : u(x) -* {u(hS)}.

We convert the error estimate (8.8) into a norm estimate:
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LEN MA 8.2 Consider a difference scheme of form (8.12) whose coefficients Cj
.satiali the consistency condition (8.7) with the differential equation (8.2). Denote
bvg any twice-differentiable function of x of compact support; then

(8.19) IIPSg - CsPglla < 0(32).

PROOF: In inequality (8.8) set u(x, ne) = g. Square (8.8), sum over h, and
multiply by S. Since g is of compact support, the number of terms in the sum is
0(S -' ); taking the square root yields (8.19).

-lere is the basic approximation theorem:

THE ORF.NI 8.3 Consider a hyperbolic differential equation of form (8.2) and a dif-
scheme of form (8.12) that is consistent with the equation in the sense of

(8.7 , and that is stable in the sense of (8.14). Then for any sufficiently diferen-
ticrbl e initial value f of compact support, the difference between the solution of the
diffe -ential equation and the approximation furnished by the scheme (8.12) is

(8.211)
II PSNf - Ca Pf

115

0(8)e°(NS)

PROOF: We start with the identity

N-1

(82) PSNf - CaPf =.CS(PS-CiP)SN-j+l f.

j=0

When f is sufficiently smooth, SN-j+l f is twice differentiable; so inequality
(8.I!9 gives

(82:) II(PS-CiP)SN-j+IfII < 0(82).
Sine- the scheme is assumed to be stable,

(8.2-:) II Cs Ij < IDCall' < (I + 0(M)8)j < eo(M)sj

Sine.' (8.2) is hyperbolic, 11Sk11 < eo(k,) We can use (8.22) and (8.23) to estimate
the r ght side of (8.21):

N-1

II PSNf - Ca Pf II <
eo(At)aj 0(S)2

0

since N = t/c = t/AS, this is < e0(M)'0(8). This proves (8.20).

NOTES.

(1) Lemma 8.2 and Theorem 8.3 hold equally for functions of k space vari-
ables, except that then we need k+ I consistency conditions of form (8.7).
The proof is the same.

(2) The requirement that the coefficients A and Cj be independent of t is
inessential. The statement of Theorem 8.3 becomes

II Pjjsjf -11 cs,jPfI a
< 0(S);

the proof is the same.
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(3) We have shown in Theorem 8.1 that schemes with nonnegative coeffi-
cients are stable. It follows that such schemes converge to solutions of
differential equations with which they are consistent. In particular, the
LF scheme converges.

8.4. Higher-Order Schemes and Their Stability

Error estimate (8.20) shows that if we need an accurate estimate of the solu-
tion, we have to choose 8 very small, which means that the evaluation of Ca f
takes many steps. An intelligent way to reduce the number of steps needed is to
choose the coefficients Cj of the difference scheme (8.3) so that un+l is a better ap-
proximation of the exact solution than (8.8). This can be achieved by using Taylor
polynomials of higher order in the place of (8.4) and (8.5) :

Gh+1 =uh+D,uE+ 2D;uE2+0(E3),

2

uh_i = uh + j DXu8 + 2 DXu82 + O(83) .

Setting into

gives

n+I n

Gh = Cjuh+j

uh + D,uE + 2 D2 UE2 + 0(83) = Cjuh jCjDXu8
(8.24)

+ 2 j2C1Dxu82 + 0(83).

For simplicity, we first take the case when the coefficient matrix A in equation
(8.2) is independent of x as well as t. In this case differentiation of

D,u = ADu

gives

DXD,u=ADXu,

Setting these relations into (8.24) and equating the coefficients of u, DXu, Dxu on
the two sides gives

(8.25) J:Cj=/, jCj=AA, j2Cj=A2A2,

where c = A8 as before. These three equations for the Cj should be solvable if we
take all Cj but C_1, Co, C1, equal to zero. Indeed, the reader can easily verify that

(8.26) C_I = I (A2A2 - ),A), Co = I - A2A2 , C, =
2

(A2A2 + AA),

is the unique solution of the equations. The resulting difference scheme is called
the Lax-Wendroff scheme:

(8.27) uh+I = C_1GN_1 + Couh + C1uh+1.
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The domain of dependence of this scheme is essentially the same as for the LF
scheme (8.9), (8.10). Therefore the CFL condition is again a necessary condition
for the convergence of the scheme

(8.111) A-1 > Omax , Qmin ,

where o., and onin denote the largest and smallest eigenvalues of the symmetric
matrix A. But this time the CFL condition does not imply that the matrices Cj are
nonnegative. In fact, it is easy to see that at least one of the matrices C_1 or C1
has a negative eigenvalue, except in the trivial cases when the eigenvalues of A are
1 or - I and the corresponding matrices C1 has eigenvalues of I or 0 and C- I has
eigenvalues of 0 or 1. I call these cases trivial because then equation (8.2) can be
solved explicitly.

One might surmise that if one doesn't impose at the outset that only C_1,Co,C1
are different from zero, one could satisfy the consistency relations (8.25) by non-
negative matrices; alas, this hope is in vain.

THEOREM 8.4 The consistency relations (8.25) cannot be satisfied by nonnegative
matrices except in trivial cases.

PROOF: First we take the scalar case; for simplicity we take I = I and a
positive:

(8.28) Ecj = I , >jcj =a, Ej2Cj =a2,
cj and a scalars. Suppose cj > 0; by the Schwarz inequality and (8.28),

a = jcj = (jcjh12)cj/2 < ( =a.

Equality holds only if the two vectors (jcj"2) and (cj/2) are proportional; that
means that exactly one cj is # 0, and therefore by (8.28) equal to 1. This is one of
the trivial cases.

We now turn to the matrix case. Denote by w one of the eigenvectors of norm I
of the symmetric matrix A. Let (8.25) act on w and form the scalar product with
w. Denoting Cjw w by cj and the corresponding eigenvalue of A by a, we obtain
equation (8.28). If all the Cj were nonnegative matrices, the cj would be nonnega-
tive numbers, and so by the result above we are in one of the trivial cases. 0

The positivity of the coefficients Cj was an essential ingredient of the proof of
the stability theorem, Theorem 8.1. To prove the stability of the LW scheme (8.26),
(8.27) we need a new method. When A and thereby C_1, CO, C1 are independent
of x, we can use the Fourier transform. Define the Fourier transform of irn of the
array (un) by

(8.29) role) _ u,etne

Define the symbol of the difference scheme (8.12) to be

(8.30) C(9) = E Cjerje .
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Taking the Fourier transform of (8.12) we obtain
a^+i(9) = C(9)a"(9).

Using this relation repeatedly gives

(8.31) a"(9) = C(9)"0°(9).

We now recall Parseval's relation, which says that

(8.32) IIu"I12=3 f la"(9)I2d9,

where d9 is d9/2n. Combining (8.31) and (8.32) gives

(8.33) Ilu"p2=3 f IC(9)"a°((9)I2d9,

which leads immediately to the following stability criterion, valid in any number
of space dimensions:

THEOREM 8.5 The difference scheme

(8.12) uh+I = ECiuh+/

with constant coefficients is stable if the norm of the powers of its symbol C(O)
defined by (8.30) are uniformly bounded :

(8.34) IC"(9)I < K

for some K, for all 0, and all n.

PROOF: The norm of u' is easily estimated from (8.33) when (8.34) is avail-
able:

Ilu"Il3 < SK2 Ia°(0)12d0 = K2llu°IIaf .

In the last step we used Parseval's relation (8.32). This inequality can be expressed
in terms of the operator C8 linking u"+I to u": the norm of the n`h power of C6 is
<Kforalln. 0

Here is a useful necessary and a sufficient condition for (8.34) to hold:

COROLLARY 8.6

(i) If C(9) satisfies (8.34), then the eigenvalues of C(9) are < 1 in absolute
value for all 9.

(ii) If IC(0)I < 1 forall0, then condition (8.34) holds with K = 1.

PROOF:

(i) The spectral radius of C(O) equals limn-,, IC"(9)II1".

(ii) This condition is obvious.

O

We now show how to use criterion (ii) to prove the stability of the LW scheme.

THEOREM 8.7 The LW scheme (8.26) and (8.27), with constant coefficients, is
stable provided that the CFL condition is satisfied.
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PROOF: Abbreviate AA as A; then the CFL condition says that the eigenval-
ueO of A lie between -1 and I.

Next we compute the symbol of the LW scheme:

(8.t 5)

anti

C(9) =
2

(A2 - A4)e-`B + I - A2 + 2 (A2 + A)e'0

= A2(cos0 - 1)+I+iAsin9

C*(9)C(9) = (A2(cos9 - 1) + 1)2 + A2 sin29

(84M) = A4(cos9 - 1)2 + A2(2(cos9 - 1) + sin2) + I

= (A4 - A2)(cos9 - 1)2 + 1.

SiOce the eigenvalues of A are < I in absolute value, A4 - A2 is negative; this
proves that C'(9)C(9) < I.

Take any vector w; then

1C(9)wi2 = (C(9)w, C(9)w) = (w, C*(9)C(9)w) < (w, w) = Iwi2 ;

in the last step we have used C*(9)C(9) < 1. The above inequality asserts that
IC 10)1 < 1 for all 9. By part (ii) of Corollary 8.6 it follows that the scheme is
sta})Ie.

II

NOTES.

(1) Condition (i) of Corollary 8.6 on the spectrum of the symbol of a dif-
ference scheme is the discrete analogue of the condition of hyperbolicity
on the symbol of the differential operator (8.2). Both were derived by
Fourier analysis of the growth of solutions.

(2) We have proven the stability of the LW scheme in the L2 norm. In Sec-
tion 4.1 we have shown that solutions of hyperbolic equations in one
space variable are stable in all the LP norms, 1 < p < oo. However,
it was shown by Brenner et al. that the LW scheme is not stable in any
LP norm except for p = 2. In contrast, the LF scheme is stable in all
LP norms.

(3) Condition (i) of Corollary 8.6 is necessary for stability of schemes in
any number of dimensions. It is called the von Neumann condition; von
Neumann formulated it in his study of the discretization of the equations
of fluid dynamics. He conjectured that the criterion guarantees stability
even for schemes for nonlinear equations. Similar stability conditions
were also formulated by Olga Ladyzhenskaya.

I We now turn to the intriguing problem of showing that von Neumann's crite-
riop, mildly strengthened, implies the stability of difference schemes with variable
co4fficient.

TrfEOREM 8.8 Suppose that the matrix A(x) depends Lipschitz continuously on x.
Th4n the scheme (8.26), (8.27) is stable if the CFL condition is satisfied.
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PROOF: We have already computed the symbol C(O) of this scheme; formula
(8.36) gives

(8.37) C*(9)C(9) = I + (A4 - A2)(cosO - 1)2.

The CFL condition requires that the eigenvalues of A(x) lie between -1 and I for
all x.

We define D(9) = (cos9 - 1)/; then (8.37) can be rewritten as

(8.38) C*(9)C(9) + (A2 - A4)D*(9)D(9) = I .

We define the matrix function K as

(8.39) K((p, 9) = C*(cp)C(9) + (A2 - A4)D*(cp)D(9) .

LEMMA 8.9 K((p, 0) has the following properties:

(i) The integral operator with kernel K(cp, 0) acting on vector-valued func-
tions is symmetric and positive,

(ii) K(9, 9) = 1,
(iii) K(0, 9) = C(9) and,

(iv) K((p, 0) depends Lipschitz continuously on x.

PROOF:

(i) Denote by K the integral operator with kernel K(cp, 0). Using formula
(8.39) we get

(KU, U) = ff K(cp, 0)U(9)d9 U(rp)dcp

= ff C*(rp)C(9)U(9) U(v)d9 dcp

(8.40) + Jf(A2 - A4)D*(Q)D(9)U(9) U((p)d0drp

= J C(9)U(0)d9 J C(rp)U((p)drp

+
J

BD(0)U(9)d9 f BD(cp)U(rp)drp .

Here B denotes a square root of A2 - A4, and we have used the fact that B com-
mutes with D. Clearly (8.40) is positive or zero.

(ii) This follows from (8.38).

(iii) This follows from the fact that C(0) = I and D(0) = 0.
(iv) This follows from the fact that the ingredients of K((p, 0), powers of A,

are Lipschitz continuous.

0

Set in (8.40)

U(9) = [ ame;mo U((p) _ E ateie ;
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we get

J
K(rp, 0)U(0) U((p)d0 drp = > Kmtam at,

where
r

(8.41) Kmt=J K(rp,0)ei(me-t,p)d0drp.

Since K(rp, 0) is a positive kernel, it follows that the block matrix X = (Kern) is
positive. The Fourier coefficients of K((p, 0) are given by formula (8.41); therefore
K itself can be expressed as

(8.41') K(rp, 0) _ Kmtei(tp-me)

Property (ii) of Lemma 8.9, K(0, 0) = 1, can be expressed using (8.41') in terms
of the Kmt as follows:

(8.42) >Ktt=1, Kmt=0 forr960.
t m-t=r

Property (iii) of Lemma 8.9, K(0, 0) = C(0), can be expressed in terms of the
K,,,,, using formulas (8.41') and (8.30), as follows:

(8.43) >2 Kmt = C_m .

t

We are now ready to tackle the stability of the scheme (8.26), (8.27). For
simplicity denote uh as uh and u,,+) as Vh. Then we can write the scheme as

(8.44) Vh = E Cjuh+j.
j

Let uY denote a vector to be specified later, and take the scalar product of (8.44)
with u ; since the Cj are symmetric, we have

Vh'w=1: Cjuh+j'w=1: uh+j - Cjw.
j j

Using relation (8.43) and switching j to -j, we get

uh . W = E uh-j - Kjew .
j.t

Since the block matrix Kjt is positive, we can apply the Schwarz inequality on the
right:

(Uh . w)2 < 1 uh-j . Kjtuh-t) w . ICjtw) .

j.t j.t
It follows from (8.42) that

j.t
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so the above inequality says that

(Vh ' w)2 < uh-j Kjeuh-t I w W.
j.t

Now we choose w = Vh and obtain

Ivhl2
<

uh-i- Kieuh-e

j.t

Sum this over h and multiply by 8; we get

Ilvlla < 8 T uh-j Kituh-e
h, j.e

We now recall that the matrix Kit depends Lipschitz continuously on x. Writing
x = hS and introducing h - j = k as a new index of summation, we get

(8.45) Ilvlla < 8 2Uk Kje(hS)uk+j-t .
k.i.e

On the right side replace KJe(h8) by KJe(k8); then using relations (8.42) we realize
that the right side of (8.45) thus modified is 8 Euk uk = IIuII2. Since Kjt(x)
is Lipschitz continuous and since j ranges over a finite set of integers (in fact,
-1, 0, 1), the error committed by the replacement is O (8) II u 112 . So we deduce
from (8.45) that

(8.46) Ilvll6 (1 + O(8))Ilu115

This proves the stability of (8.26), (8.27).

The reader will no doubt observe that we have in hand the elements of a proof
of a much more general stability result.

THEOREM 8.10 The difference scheme

(8.3) uh = Cjuh+j , III N,

is stable provided that its symbol satisfies these conditions:

(i) ECi=1,
(ii) C(x, 0) depends Lipschitz continuously on x,

(iii) C*(0)C(0) < I, with the inequality holding at all 0 except 8 = 0,

(iv) for 8 near 0,

C'(0)C(0) < I - Q(x)024 + O(02q+1) ,

where Q(x) is positive definite, and q a natural number.

NOTE. It follows from formula (8.36) that for the LW scheme q = 2 provided
that in the CFL condition (8.11) the strict inequality holds.

For the LF scheme (8.9), (8.10)

C(8)=Icos8+iAsin0,
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so

C*(0)C(9) = I cost 0 + A2 sin2 0 <I - (I -A 2) sin20.

This shows that for the LF scheme q = I provided that the CFL condition holds
strictly.

PROOF: First we treat the scalar case. It follows from assumption (iii) of
Theorem 8.10 that I - C*(0)C(0) is a nonnegative trigonometric polynomial of
degree 2N. According to a classical theorem of Fej6r and F. Riesz, a nonnegative
trigonometric polynomial of degree 2N can be represented as the absolute value
squared of a trigonometric polynomial D(9) of degree N. It follows therefore that

C'(9)C(9) + D'(9)D(0) = 1.

It is not hard to show that if C(x, 0) satisfies condition (iv) of Theorem 8.10 and
depends Lipschitz continuously on x, then so does D(x, 0). This allows us to
define the kernel K((p, 0) as

K((p, 0) = C*(rp)C(9) + D*((p)D(0) ;

then the proof proceeds as the proof of Theorem 8.8 via Lemma 8.9.
This last argument can be extended to the matrix-valued case thanks to Murray

Rosenblatt's extension of the Fej6r-Riesz theorem to matrix-valued trigonometric
polynomials. 0

NOTE. One can avoid appealing to the Fej6r-Riesz theorem by choosing D(0)
as the positive square root of I - C*(0)C(0). Defined this way, D(0) is not a
trigonometric polynomial, but its Fourier coefficients die down fast enough so that
crucial estimate (8.46) can be deduced from inequality (8.45).

We now return to the LW scheme.
When the coefficient A in equation (8.2), D,u = ADxu, depends on x, the LW

scheme (8.26) has to be modified slightly. Differentiating the equation gives

DxD,u=ADXu+AxDu,
D,u = AD,Du = A2Dxu+AAxDxu.

Setting these relations into (8.24) and equating the coefficients of u, Dxu, D,u on
the two sides gives

Cj=I, >jCj=A+SAAx, >j2CJ=A2.
Here we have chosen e = 8, i.e.,A = 1, for the sake of simplicity. These equations
are easily solved for C_1, CO, Ct:

(8.47) C_1 = (A2-A-SAAx), Co= I-A2, Ci = 2(A2+A+SAAx).

This scheme is merely a perturbation of the scheme (8.26), (8.27); we shall now
show that its stability can be deduced from the former with the help of the follow-
ing:
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THEOREM 8.11 Let F be an operator in a Hilbert space whose powers are
bounded in norm: II F" II < K. Let G be a bounded operator, II G II < M. Then

II(F+SG)"II < K(1 +MKS)".

PROOF: By the noncommutative binomial theorem,

(F+8G)" = F"+8 F'GF"-'-I + .

The norm of the sums on the right is bounded by

K + nK2M3 + ()K3M262 + = K(1 + MKS)" .

0

Denote by F the operator linking (uh } to (uh+I } by formulae (8.26) and (8.27),
and denote by G the operator with coefficients C_ = -AA.i/2, Co = 0, and
CI = AA,/2. The operator Ca with coefficients given by formula (8.47) can then
be expressed as F + SG. According to Theorem 8.8, F is stable and therefore
IF" I < K for n < N. By Theorem 8.11, F + SG is stable too.

Denote as before by S the operator that relates the initial data of solutions to
their values at t = E, and by P the discretization operator:

P:u(x)-> (u(hS)}.

Denote the operator F + SG as C. In analogy with Lemma 8.2, we deduce from
(8.24) and (8.47) that for any three-times-differentiable function f of compact sup-
port

(8.48) IIPSf - Ca'fII <- 0(S3).

From this and the stability of Ca, we deduce, as in the proof of Theorem 8.3, that

(8.49) II PSNf - Ca Pf II < 0(32)eouval
This proves the convergence of the LW scheme in the L2 norm. Note that since
the error in (8.48) is 0(33), the approximation error (8.49) is 0(32), a significant
improvement over (8.20) in Theorem 8.3.

Gil Strang constructed different schemes of arbitrary high order of accuracy
that are stable under a suitable restriction on X.

8.5. The Gibbs Phenomenon

Let's take another look at the LW scheme; for simplicity take l = 1, and the
scalar case:

vh = 2(a2 - a)uh_I + (1 - a2)uh + 2(a2 +a)uh+I

The CFL condition requires a to be less than I in absolute value. We choose
discontinuous initial data

_ (0 forh <0
uh

1 for h ? 0.
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From the definition of vh above

_
vh

2
I

0 forh < -1

2(a2+a) forh=-1
) for h = 0a -a1+ (

I forh > 0.
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It follows from this formula for vh that when a is negative, v_t undershoots the
initial data. for a positive an overshoot occurs at h = 0. Let's take a to be positive;
the amount of overshoot is Z(a - a2). The maximum of this quantity occurs at
a = 2w here it amounts to 8, about 12% of the magnitude of the jump in the
initial data.

The explanation of the overshoot is that the LW scheme is designed to give
a good approximation to the solution of the initial value problem at t = 0 for
three-times-differentiable initial data. When the scheme is applied to discontinuous
initial data, the features designed to give a good approximation for smooth data
produce instead gross distortions.

The same happens when a function is approximated by the partial sums of its
Fourier series. For smooth functions the partial sums give an excellent approx-
imation to the function. When applied to a discontinuous function, the features
that produce an excellent approximation lead instead to an over and undershoot of
about 8% of the size of the discontinuity, called the Gibbs phenomenon.

A clever strategy for avoiding a Gibbs phenomenon was devised by Ami Harten
and Gideon Zwass. They proposed monitoring the smoothness of the solution be-
ing computed, and at points where the solution appear to lack smoothness, switch-
ing from a high-order scheme to a low-order scheme. We shall illustrate how the
method works by using LW as the high-order scheme and LF as the low-order one.

The criterion that tests the smoothness of the computed solution u at h is the
ratio

uh - uh_I
(8.50) = rh .

uh+1 - Uh

When rh is near 1, the solution is smooth at h; when rh differs appreciably from
1, then either u is not differentiable at h, or ut has a maximum or minimum at or
near h.

Using (8.50) we can express

I r
uh = l +ruh-I + 1 +ruh+I

Setting this into the LW scheme

a2_ a 2 a
vh = 2 uh_I + (I - a2)uh +

a
2 uh+I

we get

(a2 -I -a2 +a r(1 -a2)
(8.51) vh -

2 + 1 +r )uh_I +
(a2

2 + I +r )uh+I
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For r positive the coefficient of uh_I in (8.51) is a decreasing function of r, while
the coefficient of uh+I is an increasing function of r. Therefore in the interval

< r < 2, the minimum value of the coefficient of uh-1 is (2 - 3a + a22)/6, while
the minimum of the coefficient of Uh+1 is (2 + 3a +a2)/6. Both of these quantities
are positive in the interval -1 < a < 1.

We form a hybrid of the LW and LF schemes by setting

(8.52) C = SCW + (I - S)CF.

Here s = s(r) is a switch that turns off the LW scheme when r = rh differs
appreciably from 1, and turns on the LF scheme. The function s (r) is chosen to be
equal to 1 at r = I and 0 for r < 1 and r > 2. In this range we have shown that the
LW scheme expresses vh as a linear combination of uh-I and uh+1 with positive
coefficients that add up to 1. The LF scheme also has this property, therefore so
does the hybrid scheme (8.52). It follows in particular that

min(uh-l, uh, uh+l) < vh < max(uh-I, uh, uh+I)

We can express this property in the following words:

THEOREM 8.12 When the CFL condition is satisfied, the hybrid scheme (8.52) is
stable in the L°° norm I ul,, = maxh Iuh 1, and does not exhibit the Gibbs phenom-
enon.

Hybrid schemes of the above type have been constructed for symmetric hyper-
bolic systems in any number of space dimensions by Xu-Dong Liu, and applied to
quasi-linear hyperbolic systems of conservation laws as well. Solutions of these
can develop spontaneous discontinuities-shocks, whereas discontinuities of solu-
tions of linear hyperbolic equations always originate in initial discontinuities.

Since hybrid schemes are nonlinear even when used to solve linear equations,
the simple proof given for Theorem 8.3, which shows that stability implies con-
vergence, cannot be used. Not much has been proven about the convergence of
hybrid schemes, but the evidence of numerical calculations shows that they work
very well indeed.

In the next section we outline another-linear-approach for the approxima-
tion of solutions of linear hyperbolic equations that contain discontinuities.

8.6. The Computation of Discontinuous Solutions
of Linear Hyperbolic Equations

The error estimate (8.49) shows that for smooth initial data the approximate
solution furnished by the LW scheme differs from the exact solution by 0(82).
When the cruder LF scheme is used, the error, as estimated by (8.20), is only
0(8). A natural question arises: when the initial data are piecewise-smooth but
contain discontinuities, does it pay to use the more accurate LW scheme? In this
section we show that the answer is yes; Michael Mock and the author devised a
way of preventing the gross errors that arise at the discontinuity from polluting the
calculation in the smooth regions. The tool is preprocessing the initial data and
postprocessing the numerical answer.
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We start with a quadrature formula going back to Newton:

THEOREM 8.13 Let s(x) be a C°O scalar function with bounded support defined
on R... Given any positive integer q, there is a quadrature formula that is accurate
of order q, of the form

(8.53) I.
0

s(x)dx = 8 wt,s(h3) + O(SQ),
0

where the weights wh depend on q, but w8 = I for h > q.

Here are the values of the weight for low values of q:

q W0 WI W2 W3

2 1 1 1 I

3 s s 1 1

4 3 7 23 1

8 6 24

For a derivation see any old-fashioned text on numerical analysis.
The following is an immediate consequence:

COROLLARY 8.14 Lets be a piecewise C°° function on IR with compact support
and a discontinuity at x = 0. Then for any positive integer q,

0(8.53') s(x)dx = S whs(hS) + 0(SQ) ,
00

where w = 2wo, w1hi, and

S(0) =
s(0-) + s(0+)

2

We shall study discontinuous solutions of first-order hyperbolic systems of
PDEs in one space variable, not necessarily symmetric:

(8.54) D,u = ADxu + B,

where A and B are CO0 matrix-valued functions of x. Discontinuous solutions of
(8.54) satisfy the equation in the sense of distribution. An equivalent formulation is
this: Let v(x, t) be a C°O solution with compact support in x of the adjoint equation

(8.54t)

Then

Drv=DxA*v-B*v.

(u(t), V(0) °`t f u(x, t) v(x, t)dx

is independent of t. Another way of expressing this is

(8.55) (u(T), v(T)) = (u(0), v(0)) forall T .

Take any two-level forward difference scheme to approximate solutions of (8.54):

(8.56) un+i = Ciuti+j, Cj= Ci(h).
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Take any other function vh defined on the lattice, form the scalar product of (8.56)
with vh+I and sum over all h; we get

Uh+I C/Uh+j vh+I = Uk Cj (k - J)v±j
h h,j k,j

in the last step we have introduced k = h + j as a new index to be summed over.
If the lattice function v, satisfies the adjoint relation

(8.56`) vk = Cj (k - j)Vk+

then the above identity can be stated as follows:

(8.57) (Un+I vn+1)6
= (Un, vn)6 ,

where the scalar product (, )6 is the L2 scalar product over the lattice

(u, v)6 = S E Uh Vh .

It follows from (8.57) that for any N,

(8.556) (UN, VN)6 = (u°, V0)3 ,

a discrete analogue of (8.55).

DEFINITION The scheme (8.56) approximates differential equation (8.54) with
accuracy of order q if for all CO0 solutions u(x, t) of (8.54) that have compact
support in x, the following holds: Define uh as u(hS, ne), uh+1 by formula (8.56),
and w'+1 as u(hS, (n + 1)e); then

IIwn+I - Un+l II, < 0(3q+1).

REMARK. Formula (8.19) shows that the LF scheme is accurate of order q =1,
and formula 8.47 shows that the LW scheme is accurate of order q = 2.

THEOREM 8.15

(1) If the scheme (8.56) approximates the differential equation (8.54) with ac-
curacy q, then the adjoins scheme (8.56') approximates the adjoint of equation
(8.54) with the same accuracy q.

(ii) If scheme (8.56) is stable, so it its adjoint (8.56*).

EXERCISE Prove Theorem 8.15.

The proof offered for Theorem 8.3 also proves the following more general
result:

THEOREM 8.16 Suppose that the difference scheme (8.56) approximates the dif-
ferential equation (8.54) with accuracy of order q and is stable. Take any C°°
initial function f (x) of compact support; denote by u(x,1) the solution of equa-
tion (8.54) with initial value f (x), and denote by uh the solution of the difference
scheme (8.56) with initial value ut°, = f (hS). Then for any time T with Ne = T,

IIPu(T)-uN116 <_ O(SQ);

here Pu(T) = (u(hS, T)).
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We now turn to initial data f that are piecewise CO0 with a discontinuity at
x = 0. The first step is to preprocess the initial data. Define ut°, as follows:

(8.58) un = wnf(hS),
where the wl, are defined in Corollary 8.14.

THEOREM 8.17 Impose the same assumptions on the difference scheme as in The-
orem 8.15, but take the initial data f to be piecewise C°° with a discontinuity at
x = 0. Denote by u(x, t) the distribution solution of equation (8.54) with initial
value f, and by u' the solution of the difference scheme with preprocessed ini-
tial data (8.58). Then for any time T = Ne and any C°O vector function g(x) of
compact support,

fu(x.(8.59) T) g(x)dx = S > un g(hS) + 0 (8q) .

PROM,. Denote by v(x, t) the solution of the equation adjoint to (8.54) whose
value at T is g(x):

v(x, T) = g(x).
Now we use relation (8.55); noting that v(x, T) = g(x) and u(x, 0) = f (x), we
get

fu(x
r

(8.60) ,T) g(x)dx =
J

f (x) v(x, 0)dx .

Next we note that the adjoint difference scheme (8.56*) is a two-level backward
difference scheme; denote by v,, that solution of (8.56*) whose value at N is g(kS):

vk = g(kS) .

According to Theorem 8.15, the difference scheme (8.56*) approximates the ad-
joint of (8.54) with accuracy of order q and is stable. Therefore by Theorem 8.16
applied backwards in time,

(8.61) IIPv(0) - v°Ila ¢ 0(8"),

where Pv(0) = {v(hS, 0)}.
We now use relation (8.558); noting that vh = g(hS) and, by (8.58),

ut°, = f (M), we get

(8.60') 8

Next we show that the right side of (8.60*) differs by 0(8") from

(8.62) 8 > wk f (h8) v(h8, 0).

We estimate the difference of the two by using the Schwarz inequality and estimate
(8.61):

S E w' f(hS) [vt°, - v(hS, 0)] :5 IIf'IIB 11v° - Pv(0)IIa = 0(3q).

Here f' denotes f (h8)).
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We now apply (8.53') of Corollary 8.14 to s(x) = f (x) v(x, 0) to conclude
that (8.62) differs by 0(8q) from

J
f (x) v(x, 0)dx.

This show that the right side of (8.60*) differs from the right side of (8.60) by
O(8q). But then the left sides differ by the same amount; this proves estimate
(8.59) of Theorem 8.17.

Theorem 8.17 can be stated in the following words: the solution uh of the
difference equation with preprocessed initial data (8.58) differs in the weak sense
from the exact solution u(x, T) by 0(8q).

As the last step, we show how to use the weak error bound (8.59) to obtain
pointwise estimates of the solution u(x, T). We have shown in Chapter 7 that
discontinuities propagate along characteristics. Therefore we know the exact loca-
tions of the discontinuities of u(x, 1). We now show how to use Theorem 8.17 to
reconstruct with good accuracy the values of u(y, T) at points not too close to the
discontinuities of u at t = T.

Denote by m(x) an auxiliary function with the following properties:

(i) m (x) is q + 1 times differentiable and is supported on [-1, 1 ].

(ii)

(8.63) fm(x)dx = 1. fxJm(x)dx = 0, j = 1, ... , q - 1.

The function mr(x) = m(x/e)/e has the corresponding properties:

(i') ml(x) is supported on [-e, e], and its derivative of order q + 1 is bounded
by O(e-q-2).

(ii') same as (ii).

Suppose that the interval [y - e, y + e] is free of discontinuities of u(x, T). A
good approximation to u(y, T) is furnished by the weighted mean

f u(x, T)mt(x - v)dx.

Changing to x - y = z as variables of integration, and approximating u(x, T) by
its Taylor polynomial at y, we get

(8.64)

f u(x, T)mt(x - y)dx

= f u(z + y, T)me(z)dz

= f [u(y) + zD.tu(y) + . + zq-ID-l(y) + 0(e9)]me(z)dz

= u(y) + O(eq) ;

in the last step we have used the identities (8.63) as they apply to me.
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We now apply the conclusion of Theorem 8.17 (8.59) to g(x) = mt(x - y).
The coefficient of 8q in 0(8q) in (8.59) is bounded by max I Dx+1 gI; according to
(i'). for g f= mt this quantity if bounded by O(t-q-2). So we conclude that

J u(x, T)mt(x - y)dx = 8 E uhmt(h8 - y) + O(e-4-284) .

Combining this with (8.64) we conclude that

(8.65) u(y, T) = S E uhmt(h8 - y) + O(84) + 0(e-4-284)
.

We choose f so that the two error terms in (8.65) are equal:

fq = e-q-26q, So e = 37+=

and (8.65) asserts that

For q large the error term approximates 54u12.
Similar approximations can be obtained for derivatives of u(y, T).
When y is located at a point of discontinuity, we can estimate u(y + 0, T)

by choosing form a q + 1 times differentiable function supported on [-1, 11 that
satisfies instead of (ii) the relations

ro 1

J
m(x)dx = 0,

J
m(x)dx = 1 ,

(ii') r0
1 1 0

J J

xim(x)dx=O=J xim(x)dx=0, j=1,2,...,p-1.
1 0

The case q = 2 has been done by Majda and Osher; they proved a pointwise
estimate.

8.7. Schemes in More Than One Space Variable

We shall study difference approximations to symmetric hyperbolic systems in
two and more space variables:

(8.66) Du = ADu + BD,,u.
A and B are real, symmetric matrices that depend smoothly on x and y. We shall
study difference approximations of the same form as before

(8.67) uh+i = C`Ciun+j ,

but this time h and j are multi-indices with j = (j1,12). Here uh is an approxi-
mation of the solution sought at (x, y) = hS, t = en. We derive the consistency
conditions between (8.53) and (8.54) by approximating uh+1 and uh+j using Tay-
lor's formula, and using the differential equation (8.66) to relate the t-derivative to
the.x and y derivatives. The resulting relations are the two-dimensional analogues
of equation (8.7):

(8.68) ECM=/, Ej1Cj=;LA, >j2C1=AB,
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where ,l is the ratio of c to S.
The analogue of the LF scheme is to set equal to zero all coefficients CC except

those pertaining to the nearest neighbor of h; we denote these as CE, Cw, CN, and
Cs, in obvious notation. Since these four matrix coefficients are restricted by only
three equations, there is a redundancy. We choose, in analogy with (8.9),

(8.69)
Cw

2(21-,1A), CE= 2(2-I+AA

Cs=21 21-;IBI, CN=2(21+AAB).

Choose ,l so small that

(8.70)
1 1

AIAI < 2 , ),IBI < 2 ;

then the four matrices Cw, CE, Cs, and CN are positive. It follows therefore from
Theorem 8.1 that with this choice the scheme (8.69) is stable, provided that A and
B are Lipschitz continuous functions of x and y.

Take the case that A and B are independent of x and y. In Chapter 3 we
determined the convex hull of the domain of dependency K of the point x = y = 0,
t = 1, on the initial plane t = 0 for solutions of the PDE (8.66). We found that the
support function SK (4, rj) of K is

SK(, ri) = maxa(tA +,1B) ,

where a(M) denotes an eigenvalue of M. Take $ = n = ±1; we conclude that

(8.71)
SK(fl,±1) < IA+BI,
sK(fl,±1) < IA - BI.

The domain of dependence of the point (0, 0, 1) on the initial plane for solutions of
the difference equation (8.67), (8.69) consists of the lattice points contained in the
rectangle whose vertices are (±nS, 0), (0, ±nS), where ne = 1; so the vertices are
(±), -, 0), (0, Denote by s), (i;, q) the support function of this rectangle;
clearly

(8.71x) sa(fl, fl) _-1 , 4(::F1, fl) =,l-1
.

The CFL condition says that for a convergent scheme the domain of dependence of
the difference scheme must include the domain of dependence of the differential
equation. Comparing (8.713) with (8.71) this is satisfied if

(8.72) IA+BI<A-1, IA-BI<l-1.

Condition (8.70), sufficient for stability-and thereby for convergence- im-
plies condition (8.72), but is more stringent.
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NOTE. The most general four-point scheme satisfying the three consistency
conditions (8.68) is of the form

Cw=2(21+M- AA)

Cs=2(21-M-AB).

CE=2(21+M+IA),

CN=2(21-M+AB) ,

M any symmetric matrix. The choice M =
z
(A2 - B2) gives a stable scheme

under condition (8.72).

We now turn to second-order schemes, analogues of the LW scheme. The
second-order consistency conditions, analogues of (8.25), are, for I = 1, as fol-
lows:

ECj=1, Ej1Cj=A, Ej2Cj=B,
(8.73)

j2Cj = A2 , jiCi = B2 , E j1j2Cj = AB + BA.

These are six conditions; they can no longer be satisfied by setting Cj = 0 except
for j = 0 and the four nearest neighbors. We have to use all eight neighbors, which
allows for many choices. But, just as in the one-dimensional case, see Theorem 8.4,
it is impossible to satisfy (8.73) with all positive Cj, except in trivial cases.

A straightforward way of constructing a scheme that is second-order accurate
is to expand u(x, t + S) into a Taylor series,

u(x, t + 8) = u(x, t) + D,u(x, t)S + 2D;u(x, t)S2 + O(83) ,

and then use differential equation (8.66) to express the t derivatives in terms of
x, Y derivatives:

u(x, t + 8) = u(x, t) + ((ADs + BD,)u)S

+ 2(A2Dx + (AB + BA)D.,Dy + B2Dy)u + O(83) .

We approximate Du by (uE-uw)/28, Dyu by (UN-us)/2S, DDu by (uE-2uo+
uw)/262 , Dyu by and DxDyu by (uNE-uNw-usE+USW)/4S2
This determines the nine coefficients Cj in the two-dimensional LW difference
scheme. The symbol C(B, (p) of the scheme, defined as

C(e, (P) _ C;e'j.te.v)

is easily calculated:

C(O, cp) = I - A2(1 - cosO) - B2(1 - cosV)
(8.74)

- 2(AB+BA)sinOsincp+i(Asin9+Bsinrp).

Compare this with the symbol of the one-dimensional LW scheme given by for-
mula (8.35). The main difference is that in the two-dimensional case both the
Hermitian and anti-Hermitian parts of C are polynomials in both A and B. Since
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A and B do not in general commute, the matrix function C(8, gyp) is not a nor-
mal matrix. Consequently, the von Neumann necessary condition, as explained in
Corollary 8.6, that the eigenvalues of C(8, (p) be < I in absolute value, no longer
implies that the norm of C(8, (), given in (8.74), is < 1. And, in fact, the norm
of C(8, rp) is not less than one. However, Burt Wendroff and the author showed
the uniform boundedness of the powers of C(8, (p) by employing the notion of the
numerical range of a matrix, defined as follows:

DEFINITION The numerical range of a matrix M is the set of all complex numbers
of the form Mw w as w takes on all unit vectors with complex entries.

The properties of the numerical range that we need are contained in

THEOREM 8.18

(i) The numerical range of a Hermitian symmetric matrix is the interval on
the real axis between its smallest and largest eigenvalues.

(ii) The numerical range of any matrix M includes all its eigenvalues.
(iii) If the numerical range of M lies in the unit disk, then the norm of M

is < 2.
(iv) If the numerical range of M lies in the unit disk, so does the numerical

range of all its powers M".

PROOF:

(i) is just the variational characterization of the smallest and largest eigen-
values of a Hermitian matrix.

(ii) follows if we choose w to be a normalized eigenvector of M; Mw w =

(iii) The real and imaginary parts of the numerical range of M are the numer-
ical range of the Hermitian and anti-Hermitian parts of M. Therefore by
part (i), the Hermitian and anti-Hermitian parts of M have norm < 1,
from which I M I < 2 follows.

(iv) is the celebrated Halmos-Berger-Pearcy theorem.

NOTE. Hausdorff and Toeplitz proved that the numerical range of any matrix
is a closed, convex subset of C; we shall not need this interesting result in what
follows.

THEOREM 8.19 The numerical range of the symbol C(8, rp) of the two-dimen-
sional LW scheme (8.74) lies in the unit disk, provided that

1 1

JAI<<-8, IBI<<g

PROOF: Separate C into its Hermitian and anti-Hermitian parts R and J:

C=R+iJ,
where

R=I-K,
K = A2(l -cos8)+B2(1 -cos4p)+ I (AB+BA)sin 0sin cp,
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and

(8.75)

Using the abbreviation

J =A sin 0+ Bsincp.

l-cosO=e, 1-coscp=f.
we can write K as

(8.76) K=2A2e2+2B'f2+2J2
Our aim is to estimate Cw w for any unit vector w:

r and j are real, therefore

ICw-wl2=r2+j2.
By the Schwarz inequality

j2 = (Jw w)2 < IJw12.

Since R = I - K, r = Rw w = I - Kw w. Using formula (8.76) we get

r = I - ZIAwl''e2 - ZIBwl'f` - ZIJwI2.

Squaring this gives

r2 = I -a 2 e 2 - b2f2 - IJwI2 + (Kw W)2'

where we have used the abbreviations

(8.77) IAwl=a, IBwI=b.
Adding to this the above estimate for j, we get

(8.78) r2+j2 < 1
Using the original definition of K, we have

Kw w =a22e+b2f +ReAw Bwsin0sinrp.
Estimating the last term by the Schwarz inequality gives

IKw wl <a2e+b`f +absin0sinrp.
Estimate the last term by the arithmetic-geometric inequality:

IKw W 12 < a 2e + b2 f
+ a22 sin22 0 + b2 sin2 (p

2

< 1-cos 6, and < 1-cos cp.Recalling that e = 1-cos B, f = I -cos fp, 2 2

we get
5 2a2e+2b2f;

squaring this gives
<8a4e2+8b°f2.
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Setting this into (8.78) gives

r2 + j2 < I - a2(1 - 8a2)e22 - h2(1 - 8b2)f2.

The right side is < I if 8a2 and 8b2 are < 1. Recalling the definition (8.77) of a
and b, these inequalities amount to Al I< g, IBI < $ ; this completes the proof of
Theorem 8.19.

We now combine parts (iii) and (iv) of Theorem 8.18 to conclude that if A and
B have norms < 8, all powers of the 2D LW scheme are < 2. We now appeal to
Theorem 8.5 to conclude that when A and B are independent of x and y, the 2D
LW scheme is stable, and so by Theorem 8.3 convergent, with an approximation
error 0(82).

As already remarked, the six consistency conditions (8.73) for second-order
accuracy do not determine the nine coefficients CC uniquely. It is easy to verify
that

w=-4CNr:=CNw=CSI=Cs
M

CN=Cw=Cs=C M= 2

C0' -M,
satisfy the homogeneous equations (8.73). The symbol of this scheme is

-M(1 -cosO)(1 -cos,).(COROLLARY
8.20 The numerical range of C (O, rp) - n'

z
a'- (1 - cos 9) (1 - cos w),

where C(0, V) is defined by (8.74), lies in the unit disk, provided that A'-+ B'- < 2*

EXERCISE Verify Corollary 8.20.

It follows, as before, that the modified LW scheme whose symbol is given in
Corollary 8.20 is stable, and therefore convergent, when A and B are independent
of x and y, and satisfy AZ + B2 <

The challenging task is to prove the convergence of the schemes discussed
above when A and B are functions of x and y. We face this issue in the next
section.

8.8. The Stability of Difference Schemes

As mentioned, one difficulty in proving the stability of difference schemes in
several space variables is that the symbol of the schemes is no longer a normal op-
erator. Another difficulty is that nonnegative functions of many variables may not
have representations as squares, or even as sums of squares of smooth functions.
So a new method of proof is needed.

It is analytically very convenient-although artificial from the numerical point
of view-to make the difference operators act on functions of continuous spatial
variables. Thus the approximate solution u" at time t = nS is a function of the
space variables x in Rk, and the operator relating u' to u"+I is of the form
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(8.79) (T Cj(.r)TS) un .

where Ta is the translation operator

(T6 u)(x) = u(x + jS) .

The summation in (8.79) is over a finite number of multi-indices j. The symbol
of the scheme is defined as

CO=TCi(.r)e'jt';

is a multivariable >;1, ..., k , and j:: = f1 s;1 + + jkl:k.
The key estimate, due to Louis Nirenberg and the author, is

THEOREM 8.21 Let Pa be a difference operator of the form

PP=EPj(x)Ts.
lil<N

Pi (x) symmetric matrix functions that depend twice differentiably on x. Suppose
that the symbol of Pa,

P(x.
is Hermitian and nonnegative:

P(x, E) > 0.
Then

Re Pa > -const S ,

where Re Ps denotes the Hermitian part of Ps:

2RePA=P6 +PP.
where' denotes the adjoint in the Hilbert spaces L2(Rk).

NOTE. Unlike the one-dimensional case, where the coefficients of the scheme
had to be merely Lipschitz continuous, here the coefficients of the scheme-and
therefore of the hyperbolic equation whose solution they approximate-have to be
twice differentiable.

PROOF: The first step is to localize the problem. Let (cpj(x)} be a Girding
type partition of unity:

(8.80) %(x) = 1

where the support of each Vh has diameter O(f). The first derivatives of the qh
are then O (1/ % FS), and so

(8.81) Iwh(x) - (Ph(y)I < O(l/f)Ix - A -
Our aim is to estimate from below the real part of (Pau, u); by definition

Pj(x)u(x + jS) u(x)dx .(Pau, u) = f 57
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LEMMA 8.22 Define uh = cphu; then E(Psui uh) differs by O(S)IIu112 from
(Pdu, u) for any u in L2.

PROOF:

(8.82) (Psu, u) - 1:(P5Uh, uh) _
h

r
f P;(x)u(x + is) u(x)(1 - E cph(x + j8)(h(x)dx) .

h

Using the identity (8.80) we see that

(8.83) 1 -E cph(x+jS)cph(x)=2 (coh(x+f8)-(ph(x))2
h h

Using (8.81), and the fact that at any point y only a finite number of (h (y) are
# 0, we conclude that the sum (8.83) is O(j23). Set this into (8.82), and Lemma
8.22 follows.

LEMMA 8.23 Let Pa be a difference operator whose symbol P(l;) is Hermitian and
independent of x. Denote by ((x) be a real scalar function with Lipschitz constant
K. Then for all u in L2

(8.84) IRe(VPSu, cpu) - Re(PsVu, (pu)I < O(K232)IIu112.

PROOF: Since P(f;) is Hermitian, its coefficients satisfy P_j = Pj*. The
amount A inside the absolute value sign in (8.84) can be written as

(8.85) A = Ref Pju(x + J8) u(x)(cp(x) - cp(x + i3))cp(x)dx.

Replacing x + j6 by x as a variable of integration, and replacing j by -j we get

A = Re
J E Pj*u(x) u(x + jS)(rp(x + j8) - (p(x))ip(x + jS)dx,

where we have used P_j = Pj*. Since

/Pi*u(x) u(x + is) = u(x) PJu(x + is),

(8.85') A = Re
J

u(x) Pju(x + jS)(ip(x + j8) - c(x))ip(x + jS)dx

The factors involving u in (8.85) and (8.85') are complex conjugates of each other.
Adding them gives

A = 2 Re
J > Pju(x + is) . u(x)(cp(x) - cp(x + jS))2dx + O(K32) ,

from which we deduce that

JAI < O(K282)IIu112.

The next result is a version of the Schwarz inequality:



8.8. THE STABILITY OF DIFFERENCE SCHEMES I I I

LEMMA 8.24 Let M and N be Hermitian matrices, and assume that for all vec-
tors V

(8.86)

Then for any pair of vectors v, w

(8.86') IMv wI < (Nv v)7(Nw w)2.

PROOF:

Add and divide by 2:

Replace w by to"0w, t real, and argue as usual about the discriminant of a nonneg-
ative quadratic function. 0

The next lemma is the local version of Theorem 8.21:

LEMMA 8.25 P is an operator as in Theorem 8.21, and v a function whose sup-
port has diameter O(ff). Then

Re(Pv, v) > O(S)IIv112

PROOF: To simplify notation, suppose the support of v is centered at the ori-
gin. Then

(Pav, v) =
J

E P(x)v(x + jS) v(x)dx .

IxI<cf
Since Pj (x) is assumed twice differentiable, we approximate it by two terms of its
Taylor series:

P(x)= Pj(0)+EPt(0)xt+O(IxI2);
so for IxI < cN/8_

P1(x) - P(0) - PJ(0)xt) < 0(S) .

Denote by Pa and Pa the operators

Pa =>2Pj(0)TJ, Pa =>2P!(0)TJ.

For all v supported in IxI < cam,

(Pav,v)=(Pav,v)+1: (xtPav,v)+O(S)IIv112.

So to prove Lemma 8.25 we have to show that

(8.87) Q = (Pav, v)+ReE(xtPav,v) > -0(8)IIvI12
I
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Since P6° and Pa are operators with constant coefficients, we can use Parseval's
formula for the Fourier transform to (express Q :

(8.88) (P6°v, V) =
J

where is the symbol of P°, and

i

(>;) the Fourier transform of v:

v"() = J v(x)e-'xrdx.

Similarly, denoting xev by vt we can write

(8.88') (xePty, v) =
J

u d .

We look now at the Taylor approximation to the symbol of P6:

P(x, ) = P°() + ExePt() + 0(x2) .

By hypothesis, P(x, 4) > 0; setting xt = all the other xm = 0 into the
Taylor approximation we deduce that

P°()±'/3_P1()? 0(S).

Adding 0(S) to P°(g) alters Q only by 0(S)IIv112 and is acceptable; consider it
done. That turns the above inequality into

P°() ± /Pt(y) ? 0.
We apply now Lemma 8.24, with M = N = and conclude that

We estimate the right side by the arithmetic-geometric inequality:

2m 28

where m is the number of components of the vector v. Set (8.88) and (8.88') into
the definition (8.87) of Q, and use the above inequality for the integrand in the
second term. We get the following lower bound for Q:

1

l
Q (Pa v, v)

-
2m (Pa y, v) +

m

2S (Pa vt, vt)]
(8.89) e

= 2(Pav,v)-- E(Psve,ve);

vt is defined as xtv. According to Lemma 8.23, with ep = xt,

(Pa vt, vt) = (Pa xty, xey) = (Pa v, xe v) + 0(62)11v112 ,
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Summing over all 1, and denoting E A = r2 we set this in the second term of
(8.89):

Q I(Pav,v)-2 Re(Pav,

S2

v)+0(6)IIv112
(8.90)

2

=2Re(Pav,(1-
d

)v)+O(S)11v112

The support of the function v is contained in the ball IxI < cs. Choose c to
be I / 2m, and introduce the function (p defined as

( 1 - mr2/S for r < c.
Sl 1/2 forr > cvrS-

In terms of (p we can rewrite (8.90) as

(8.91) Q>-
1

2Re(Pav,c2v)+0(8)11v112.

The function (p is Lipschitz continuous with Lipschitz constant K = 0(1/.).
So according to Lemma 8.23

(Pa V, (P2v) = (Ps (pv. (pv) + O(K2a2)IIvII2

= (Pa (Pv, (PV) + 0(8)IIv112.

Pa is a difference operator with constant coefficients whose symbol is positive.
Therefore

(Pa (Pv, (pv) = f P(0, t)(Pv . (pv dr;

is positive. Setting this into (8.91) we conclude that

Q >- O(S)IIv112.

But we have seen in (8.87) that this lower bound for Q implies Lemma 8.25.

According to Lemma 8.22

(Pau, U) > E(Pauh, uh) + 0(S)IIuh112,

where uh = (phu. By Lemma 8.25 applied to v = uh

(Pauh, uh) > 0(S)IIuh1I2;

setting this into the estimate above we get

(Pau, u) > 0(S) E 11U1, 112 = 0(8)IIu112,

where in the last step we have used (8.80). This completes the proof of Theo-
rem 8.21.

We deduce now two important stability theorems from Theorem 8.21.
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THEOREM 8.26 The difference scheme

(8.79) u"+1 = ( 1` Ci(x)Ta )u"
IiIIN

is stable, provided that its symbol C(x, 4) satisfies these conditions:

(i) C(x, t;) is a twice differentiable function of x.

(ii) IC(x. l;)I < l for all x and l;.

PROOF: We shall show that the norm of C8 is < I + O(S), Cs being the
operator relating u" to u'+'. This is sufficient for stability.

IIC8u112 = (Cau, Cau) = (u, CaCau) .

Since the coefficients of Cs are Lipschitz continuous, CaC6 differs by O(S) from
the operator whose symbol is C' (x, l; )C (x, t4 ). Define

P(x, 4) = I - C`(x, 4)C(x, 4)

and denote by Pa the operator whose symbol is P(x, 4).By assumption (ii),
C'C < 1, therefore P(x, 4) > 0, and so by Theorem 8.21, Re Pa > O(S),

IIu1122 - IIC8u112 = (u, (1- CaC4)u) = (u, Pau) + O(S)IIu112

The left side is real; the real part of the right side is > O(S)IIu1,2, therefore
IICau112 (1 + 0(8))IIu112. O

NOTE. Theorem 8.26 should be compared to Theorem 8.10. Here the symbol
is assumed twice differentiable in x, in the earlier one only once. On the other
hand, there is no need for an analogue of condition (iv).

THEOREM 8.27 The difference scheme

(8.79) u"+1 = ( E Ci(x)Ta ) un

IiI N

is stable provided that its symbol C(x, t) satisfies these conditions:

(i) C(x, t4) is twice differentiable function of x.

(ii) The numerical range of C(x, t4) lies in the unit disk for all x, l;.

PROOF: We shall show that the numerical range of the operator C8 lies inside
a disk of radius 1 + 0(8) centered at the origin in the complex plane. What we
have to show is that for all u in L2,

I (Cau, u) 1 (1 + 0(8))11u112 .

This is equivalent to the following: for all complex numbers z, Izl = 1,

Rez(Csu, u) < (u, u) + 0(8)11u112.

This can be written as

(8.92) Re((1 - zCs)u, u) > O(S)IIu112
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The symbol of 1- zC8 is 1- zC(x, i; ); it follows from assumption (ii) that the real
part of I - zC(x, ) is nonnegative. Therefore, by Theorem 8.21 the Hermitian
part of the operator whose symbol is I - zC(x, ) is > 0(8); this proves (8.92).

We appeal now to part (iv) of Theorem 8.18, The Halmos-Berger-Pearcy theo-
rem. which says that if the numerical range of an operator C8 in Hilbert space lies
in a disk of radius I + 0(8), then the numerical range of its powers Ca lies in a
disk of radius (1 + 0(8))". It follows from then by part (iii) of Theorem 8.18 that

11c 11 <2(1+0(8))".
This proves the stability of the scheme (8.79).

NOTE. It follows from Theorem 8.27, with the help of Theorem 8.19 and The-
orem 8.11, that the LW scheme for the symmetric hyperbolic equation D,u =
AD,u + BDYu is stable, provided that the coefficients A and B are twice differen-
tiable functions of x and y, are independent of t, and IAI s 8, IBI < s

When A and B depend on r as well, the proof presented above breaks down;
however, numerical experience indicates that the LW scheme is stable even in the
time dependent case.

Theorems 8.26 and 8.27 are not the last word in stability theory. To go beyond
them we need to introduce nonlocal difference operators of the form

(8.93) Ws = WjT',

where Wj are not zero for I j I > N, but tend to zero rapidly as I j I --> oo. This is
the same as saying that

(8.93') W() _ Wje'jt

is a smooth periodic function if . We discuss first the simpler case when the Wj-
and therefore W(t)-are independent of x.

We take the case that, for each t, W(4) is a symmetric positive definite matrix.
We define the Wa-norm of a function u in L2 by

(8.94) IIu112w = (Wsu, U).

Denote as before by u(t) the Fourier transform of u. Then

Wau = W(8)u(f;);

by Parseval's theorem

(8.94') IIuIIw=(Wau,u)=f W(4) 4 ud .

By hypothesis. for all

(8.95) <W()<c21,
c1, c2 positive constants. So it follows that

(8.95') c111ull -< IIuIIw -< c211uII

In words: the L2 norm and the Ws-norm are equivalent.
It follows from formula (8.94') that if W(O) = 1, lims'o IIuIIw = Hull.
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It follows from the equivalence of the two norms that stability of a difference
scheme in the W-norm implies its stability in the L2 norm.

Denote by C8 a difference operator Chu = v of the form

(8.96) Vh = Cjuh+j .

Denote by C(l;) the symbol of C8:

(8.96') C(s) Cie'jt

THEOREM 8.28 Denote by C(1;) the symbol of a difference scheme with constant
coefficients. Suppose there exists a smooth, periodic function W(1;) whose values
are symmetric positive definite matrices that satisfies

(8.97) C`OWOcO < WO.
Then the scheme is stable.

PROOF: We apply formula (8.94') to v = Cbu;

IIUIIw = f

where

vO = f v(x)e {dx = f Cju(x + &j)e-'xtdx

= f E C(s$)u()

Setting this into the formula for IIUIIw we get

IIUIIw = f W(S )C(8 )u() C(Ss;)u( )ds

= fC`(d )W(8 )C(St;)u(:;) u( )d .

Using inequality (8.97) we deduce that

IICsullw II«11w

It follows that the W8-norm of any power of C8 is < 1:

IICsuIIw < Ilullw

It follows from (8.95') that

Cs U II < CI 1 II C; U II w

ci' Ilullw _< CI 1c211u11

This proves the stability of the scheme C8. 0

We sketch now how to extend Theorem 8.28 to schemes with variable coeffi-
cients.
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Ttt ORENI 8.29 Denote by C(x, t;) the symbol of the difference scheme

Ca = >2C1(x)T1.

Suppose that there exists a function W (x, i) with the following properties:

(i) The values of W are symmetric, positive definite matrices.

ii) W (x, t) is a twice differentiable function of x.

t i i) W (x, t;) is a smooth, periodic function of t.

iv) C'(x,t;)W(x,t;)C(x,t;) <W(x,t;)forallxandt;.
Conclusion: the scheme Ca is stable.

PROOF: We shall use repeatedly the following:

LE IMA 8.30

(i) Let As and B3 denote difference operators

A6 A1(x)T1, Ba=>B1(x)T,
whsc symbols

are smooth function of x and . Then the operator whose symbol is A (x, l;) B(x, t)
di rs by 0(8) from the operator product As B3.

(ii) The operator whose symbol is A'(x, l;) differs by 0(8) from the operator
A'P

We leave it to the reader to find a proof for this lemma.
We define the Wa norm as follows: denote by V (x, t;) the positive square root

of V, and by Vs the associated difference operator. Define

(8.98) Ilullw = Roll -

Thin

Ilullw = (Vau, Vau) = (u, Va Vau) .

De ote by Ws the operator whose symbol is W (x, t). The product Va Vs differs by
O ( ) from the operator WS, according to Lemma 8.30; so

(8.$8') IIUI12 = (u, Wau) + O(S)IIu112.

Now we are ready to show the equivalence of the Wa-norm and the L2 norm
for small S. It follows from formula (8.98), since Va is an operator bounded in-
de ndently of S, that Ilullw -< constllull To derive an inequality in the opposite
direction we recall the lower bound c21 < W(l;) in (8.95). We choose a positive
nu Iber c < cI, and decompose W as W = cl +U2, where U is the positive square
r of W - cl. Since c is less than the lower bound of W, U is a smooth func-
tio of t; and a twice differentiable function of x; the values of U are symmetric
m rices. Using Lemma 8.30 we get the following decomposition of Wa:

WS = cI + Ua + 0(S),
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and

Ua =Ua+0(S).

Setting these in (8.98') we get

(8.99) Ilullw = dull, + (u, UM + 0(8).

The second term on the right can be written as

(US* U, Uau) = (U8u, Uau) + 0(3) = IIUsull2 + 0(3).

Setting this into (8.99) we conclude that

Ilullw > cIIuIl2+ 0(S);

so for S small enough 11 is 11 w > (c/2) Ilu 112 follows. This completes the proof of the
equivalence of the Ws-norm with the L2 norm.

We turn now to proving the stability of Ca in the Wa-norm. We need the full
power of Theorem 8.21, as presented in Lax and Nirenberg, where P (x, ) need
not be a trigonometric polynomial in i, but is merely required to be a smooth
function of l; ; being twice differentiable is enough for the conclusion of Theorem
8.21, namely that if P(x, l;) is symmetric and nonnegative, then Re Ps > -KS.

We apply this result to

P=W-C'WC,
by assumption (iv) of Theorem 8.29 nonnegative. We write, using (8.98')

IIUII2iv - IICauIIi, = (U, W611) - (CSu, WWCau) + 0(5)

_ (u, (Wa - Ca WaCa)u) + O(S)

_ (u, PPu) + 0(S) .

The left side is real, and the real part of the right side is > 0(S)IIu112. Using the
equivalence of the Ws-norm and the L2 norm we deduce that

IICauIIw <- (1 +O(S))Ilullw.

But then

IICauI1 W (1 + 0(S))"IlullIV

For n < T/S, all the operators Ca are uniformly bounded in the Wa-norm. But
then, since the Wa-norm is equivalent with the L2 norm, we conclude as in the
proof of Theorem 8.28 that Ca is stable in the L2 norm.

For what schemes Ca is there a W (x, a;) that satisfies the hypotheses of Theo-
rem 8.29 is an open question. Note that a necessary condition is that the eigenvalues
of C(x, a;) not exceed I in absolute value.
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CHAPTER 9

Scattering Theory

Scattering theory studies obstacles in space-objects, potentials-by compar-
ing the propagation of waves in the presence of the obstacle with the propagation
of waves in free space. The information available is the asymptotic behavior of
waves as time goes from -oo to oc. This is expressed as the scattering operator,
whose precise definition is given in the pages that follow.

The aim of scattering theory is twofold. The first, called the direct problem.
is to prove the existence of the scattering operator. The second, called the inverse
problem, is to reconstruct the scatterer from the scattering operator. Solving the
inverse problem is of great importance in situations when direct measurements of
the scatterer are not possible.

In this chapter we shall study the scattering of acoustic waves by an obstacle
in space; only the direct problem will be discussed.

9.1. Asymptotic Behavior of Solutions of the Wave Equation

In this section we shall discuss one of the simplest scattering problems gov-
erned by the wave equation in the exterior of an obstacle denoted by B:

(9.1) it,, - Au = 0 outside B.

B is a smoothly bounded domain in R', contained in a ball of radius R around the
origin. On B the solution it is required to be zero:

(9.2) it (x, r) = 0 for x on dB.

We shall be studying solutions it of finite energy, that is, those for which

E = J (u; + a)dx
_

is finite, where the integration is over the exterior of B. The standard technique for
computing energy-multiplying (9.1) by it, and integrating by parts-shows that
if it has finite energy at, say, t = 0, then it has the same energy for all other times.

The mixed initial-boundary value problem (9.1), (9.2), and (9.3),

(9.3) u(x,0)=ki(x), u,(x,0)=g2(x).

can be put into the form of a symmetric system discussed in Appendix D by intro-
ducing the first derivatives of it as new unknowns:

«,= a,, u,=p. u,.=y. u.,=r.
121
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These four functions satisfy the following system of equations:

1941
wt - p.t - q, - r. = 0, Pt - w.c = 0,

q,-w,.=0, r,-w_=0.
These equations form a symmetric hyperbolic system, and the boundary condition
p = 0 is minimally nonnegative. We invite the reader to verify these statements.
Thus the existence of a solution is assured; its uniqueness is guaranteed by the law
of conservation of energy.

Signals governed by the wave equation propagate with speed 1. Therefore it is
reasonable to expect that as t tends to infinity, most of the signal is propagated far
away from the obstacle. Here is a precise way of stating this.

Given any bounded subset C of the exterior of B, the energy of u contained
in C,

J
(u; + uY)dx

C

tends to zero as t tends to oo.
If so, the obstacle plays less and less of a role for u as t tends to 00; thus u

behaves more and more as a solution of the wave equation in free space. To put
this more precisely, there exists a solution v_ of the wave equation in free space of
finite energy such that

r
(9.5)+ lim

J
((u - v), + (u - v)c) dx = 0,

t

where the integration is over all space, and u(x, t) is set = 0 inside the obstacle.
Since the wave equation is invariant under time reversal, an entirely similar

state of affairs is expected to hold as t tends to -oo. That is, there is a solution v_
of the wave equation in freee space of finite energy for which

(9.5)_ lim f ((u - v_), + (u - v_)?) dx = 0.00

It is appropriate at this time to introduce the space H of all initial data g of
finite energy in the exterior of B that are zero on the boundary of B. We define the
energy norm of g = ($1, 92) as

IIxIIE = f(x +g2)dx,

with integration over the exterior of B.
We denote by U(t) the operator that relates the initial data g of a solution u

of the mixed initial-boundary value problem to its data at time t. According to the
law of conservation of energy, U(t) maps H into H isometrically. Since U(t) is
invertible, its inverse being U(-t), the operators U(t) are unitary. Furthermore,
they form a one-parameter group:

U(s + t) = U(s)U(t).
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Similarly, we define the space Ho of all initial data of finite energy in the whole
space R3; the energy norm is defined as before, except that the integration is over
the whole space.

H can be embedded in Ho by setting g(x) = 0 inside the obstacle; thus H is
a subspace of Ho. The operator that relates the initial data of solutions of the wave
equation in 1R3 to their data at time t is denoted by Uo(t). They map Ho onto Ho,
and form a one-parameter group of unitary operators.

Let g denote any initial data in H. The relations (9.5)f can be expressed as
follows:

There exist data g+ and g_ in Ho such that

(9.(,) rliM IIU(0g-U0(t)g+IIE=0, 11U(t)9-U0(1)9-11E=0-
00

Here g+ and g_ are the initial values of v+ and v_.
Since the operator U0(t) is an isometry, we deduce from (9.6) that

(9.7) lim Uo(-t)U(t)g = g+ , lim Uo(-t)U(t)g = g-
1 00 1-00

here the limit is in the sense of the E-norm.
Denote by W+ and W_ the operators relating g to g+ and g_; these operators,

called the wave operators, map H into Ho. Since Uo and U preserve the E-norm,
so do their strong limits W+ and W_.

Replace tin (9.7) by t + s; using the group property we can write

Uo(-t -s)U(t +s)g = Uo(-s)Uo(-t)U(t)U(s)g.

Letting t tend to oo we get, using (9.7), that

W+ = Uo(-s) W+U(s) .

Multiplying this relation by U0(s), we get

(9.8)+

and similarly

(9.8)_

U0(s)W+ = W+U(s),

Uo(s)W_ = W_U(s).

Suppose that W_ maps H onto Ho. Then, since W_ is an isometry, it maps H
1-to- I onto Ho; its inverse maps Ho onto H. Multiply (9.8)_ by W_ 1 on the left;
we get

(9.9) W.7' Uo(s)W_ = U(s) .

This shows that the groups U and Uo are unitarily equivalent. Set (9.9) into the
right side of (9.8)+ and multiply by W_71 on the right; we get

(9.10) Uo(s)W+W=1 = W+W=1 Uo(s) .

The operator W+W=1, mapping Ho into H0, is the scattering operator alluded to in
the introduction to this chapter; it is denoted by S:

S=W+W_t.
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Relation (9.10) can be rewritten as

(9.10)' Uo(s)S = SUo(s)

it says that the scattering operator commutes with the group Uo If we make the
further supposition that W+ maps H onto H0, we conclude that S is a unitary
operator mapping Ho onto itself.

To gain further knowledge of the nature of the scattering operator, we recall
from Section 3.5 of Chapter 3 the representation of solutions of the wave equation
in k-dimensional space, k odd, in terms of the Radon transform of their initial data
g = {g,, $2}. For k = 3 it goes as follows:

Denote the Radon transform of g, and g2 by k, and k2. Define

(9.11) ko = a.2k1 - asb'2 ;

then

(9.12) 11811E = fkdsdw.
and the solution uo(x, t) with initial value g is given by

(9.13) uo(x, t) = f ko(x co - t, co) dco.

The data g are represented by the function ko(s) defined by (9.11); it follows from
(9.13) that Uo(t)g is represented by ko(s - t). For this reason (9.11) is called the
translation representation of Ho for the group Uo.

According to (9.10), S commutes with U0. It follows that in the translation
representation, S acts as convolution:

(9.14) (Sko)(r) = f S(r - s)ko(s. w) ds.

LEMMA 9.1 The operator-valued function S(t) representing the scattering opera-
tor in the translation representation is supported on (-00, 2 R).

PROOF: Let ko(s, co) be a function supported on (-oo, -R], and g the initial
data it represents. It follows from formula (9.13) that the solution uo(X, 1) with
initial value g is zero for t < 0 and l.rl < R - t. Such a solution is zero on the
obstacle for t < 0, and therefore is a solution of the mixed initial-boundary value
problem as well. It follows that for t < 0

Uo(-t)U(t)g = g
Letting t tend to -oo, we conclude that W_g = g.

Let l(s, w) be a function supported on [R, oo), and f the initial data it repre-
sents. Arguing as above, replacing t < 0 by t > 0, we conclude that W+ f = f.
Using these relations, we deduce that

(Sg, f)E = (W+W. t g, f) r. = (W+g, f) E

= (g, W+f )E = (g, W+ ' f )E = (g, DE;
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in the step before the last we used the fact that W+ is unitary and therefore W+ _
W+ 1.

Next we use the fact that the translation representation is an isometry, and
therefore

(S9, f) E = (g, f) r. = (ku.lo) = 0,
since the supports of k0 and 10 are disjoint. Next we use formula (9.14) for the
translation representer of Sg to write

0 = (Sg, PE = ff S(r - s)kl)(s)lo(r)ds dr ,

for all k0 supported on (-oo, -RJ and all 1o supported on [R, oo). It follows from
this that S(t) = 0 fort > 2R. O

Taking the Fourier transform of the translation representation gives a spectral
representation of the unitary group UII. Take the Fourier transform on (9.14); it
follows that in the spectral representation the scattering operator acts as multipli-
cation by an operator valued function M(a), the Fourier transform of the function
S(t) appearing in (9.14). Since S(t) is supported in (-oo, 2R), M(a) is analytic
in the lower half-plane.

We stop at this point and remind the reader that nothing has been proved rigor-
ously. The whole edifice erected in this section is based on the supposition that its
wave operators, defined as strong limits, exist and are unitary.

Rigorous proofs of these suppositions will be presented in Section 9.4, in terms
of an abstract setup described in Sections 9.2 and 9.3.

9.2. The Lax-Phillips Scattering Theory

The scene is a Hilbert space H and a strongly continuous group U(t) of unitary
operators. U(t + s) = U(t)U(s), mapping H onto H.

We start with a theorem of Sinai.

THEOREM 9.2 Let U (t) be a strongly continuous group of unitary operators map-
ping a Hilbert space onto itself. Let F_ be a closed subspace of H. called an
incoming subspace. related to U (t) as follows:

(i)U(t)F_cF_ fort<0,
(9.15_) (ii) n u(t)F- = (0)

(iii) UU(t)F_ isdenseinH.

Then H can be represented as L2(R, N), N some auxiliary Hilbert space, so that

(a) F_ is represented as L2(R_, N).
(b) The action of U(t) is right translation; that is, if h in H is represented by

the function k(s), U(t)h is represented by k(s - t).

The representation is essentially unique; any two representations are related
by a constant unitary factor N - N.
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Similarly, let F+ be a closed subspace of H, called an outgoing subspace,
related to U(t) as follows:

(i) U(t)F+cF+ fort>0,
(9.15+) (ii) n U(t)F+ =to),

(iii) U U(t)F+ is dense in H.

Then H can be represented as L2(IR, N) so that F+ is represented as L2(R+, N)
and the action of U(t) is right translation.

Curiously, in the applications we make in this chapter, the translation repre-
sentations are constructed explicitly, without appeal to Sinai's theorem. But our
thinking has been guided throughout this development by being aware of Sinai's
theorem.

Suppose the unitary group U(t) acting on the Hilbert space H has both an
incoming and an outgoing subspace F_ and F+. By Sinai's theorem, there are two
translation representations of U(t), H ++ L2(IR, N+) and H ++ LI(IR, N_). Since
the Fourier transform of a translation representation is a spectral representation, the
dimension of the auxiliary space N is the multiplicity of the spectrum. Therefore
N+ and N_ have the same dimension, and so may be taken as the same space.

Let h be any element of H, k_ and k+ its incoming and outgoing representers.
We denote by S the operator relating the two:

(9.16) Sk_ = k+ ;

S is called the scattering operator associated with U(t), F_, and F+.

THEOREM 9.3 Let U(t) be a strongly continuous unitary group acting on the
Hilbert space, and let F_ and F+ be incoming and outgoing subspaces that are
orthogonal to each other. Then the scattering operator S has the following prop-
erties:

(i) S is a unitary map of L2(IR, N) onto itself
(ii) S commutes with translation.

(iii) S maps L2(R_, N) into itself

PROOF:

(i) Since k_ and k+ represent the same element of H isometrically, S is an
isometry. Since it maps L2(IR, N) onto itself, it is unitary.

(ii) Since k_(s - t) and k+(s - t) both represent U(t)h, S maps translates of
k_ onto translates of k+.

(iii) Any k_ in L2(IR_, N) represents an element of F_. By assumption such an
element is orthogonal to F+. Therefore its outgoing representer k+ is orthogonal
to the functions representing F+, which is L2(1R , N). Therefore k+ is supported
on IR_.
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We pass now from the translation representations to the corresponding spectral
representations by taking their Fourier transforms:

(9.17) a_((T) =
J

k_(s)e;' ds. a+(a) = J k+(s)e'3' ds.

We denote by S the operator linking a_ to a+,

(9.18) Sa_ = a+ .

In what follows we need the vector version of the Paley-Wiener theorem:

THEOREM 9.4 The Fourier transform of a vector-valued function a(s) supported
on IR_ and square integrable has an analytic extension to C_ with the following
properties:

(i) For fired q > 0, a(a - iq) is an L2 finetion of a on llt; as q -+ oo, the
L2 norm of a(a - i q) tends to 0.

(ii) As q tends to 0, -a(a - i q) tends to a in the L2 norm.
(iii) Converseh: everyfunction of a with properties (i) and (ii) is the Fourier

transform of an L2(R-, N) function.

The proof in the scalar case is nothing more than an application of the Cauchy
integral theorem. The extension to the vector-valued case is straightforward.

We denote by A_ the Fourier transform of L2 (R-. N), and by A+ the Fourier
transform of L2(IR+, N). Analogously to A_, functions in A+ have analytic exten-
sions in the upper half-plane C+.

Theorem 9.3 has a straightforward version for the spectral representation:

THEOREM 9.5

(i) S_ is a unitary mapping of L2(R, N) onto itself
(ii) S_commutes with multiplication by bounded, continuous scalar functions.

(iii) S maps A_ into itself

PROOF: Only (ii) needs a ghost of a proof. According to part (ii) of Theo-
rem 9.3, the operator S commutes with translation. It follows that S commutes
with multiplication by e'°' for all real t. By forming linear combinations of these
exponentials we deduce that S commutes with multiplication by any continuous,
bounded scalar function. 0
THEOREM 9.6 The operator S defined in (9.18) is multiplication by an operator
valued function M(a), N --+ N, with the following properties:

(i) M(a) is unitary for almost all real a.
(ii) M(a) is the boundary value of an operator-valued function defined and

holomorphic in the lower half-plane C_ defined as Im a < 0.
(iii) For each C in C_. M(1;) is a contraction mapping N into N.

PROOF: We tackle (ii) first. According to part (iii) of Theorem 9.5. if the
incoming spectral representer belongs to A_, so does the outgoing representer. We
claim that for any C in C_ the value of a+(C) is determined by the value of a_(C).
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To prove this it suffices to show that if a_ 0, then a+(i) = 0. We factor such
an a_ as

a-(a)=a+Zh(a).
It follows from part (iii) of Theorem 9.4 that h(a) belongs to A_. Since S com-
mutes with multiplication by bounded, continuous functions

a+a=Sa_=SIIa
+

Since h belongs to A_, so does Sh; setting a = in the above equation shows that
a+(i;) = 0. This shows that that determines the value of

a+ (C) depends linearly on

(9.19)

a linear operator mapping N -> N.
To show that Ma is a strongly analytic function of set a_(a) _ (yri in, n any

vector in N. Clearly a_ belongs to A_; therefore so does a+. Set this pair into
(9.19):

1

a+ (o,) = M(a)n,
a - t

since a+(a) is an analytic function in C_, so is M(a)n.
We turn now to proving part (iii). Let n be any vector in N, InI its norm. is

any point in C_, Im = -rl. Set

a_ belongs to A_, and

(9.20) n, Ila-II=2 ni7 In I.

Set a+ = Sa_; by Theorem 9.4, part (iii), a+ belongs to A_. We express the value
of using the residue theorem:

(9.21)

a contour that goes around . We choose a rectangular contour from the point
1 on the real axis to -1, then to -1 - it, to I - it, then back to 1. Since a+(a) tends
to zero as a tends to oo, as I -> oo we are left with the integral along the real axes.
We estimate that integral by the Schwarz inequality:

(9.22)
21 Ila+II l1 11 =

2
I Ila+ll

According to part (i) of Theorem 9.5, S is an isomorphism: Ila+II = Ila-II. Setting
this into (9.22) and using (9.20) we get

2
I7r,7

2 ni7 Inl =

This proves that is a contraction for every in the lower half-plane.
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The rest of the proof is basic theory of analytic functions. Take any two vectors
it and p in N; (M(a)n, p), where ( , ) denotes the scalar product in N. is a
bounded analytic function in C_. For such functions

(9.23) lim(M(A - il))n, p)

exists for almost all real X. Take a dense denumerable set of it and p; the limit
(9.23) exists on a set of A whose complement is of measure zero. Then. since
M(a) is a contraction, it follows that the limit (9.23) exists for all it and p in N for
almost all X. We denote this weak limit as M(A), clearly, M() is a contraction a.e.

For any vector it in N, a_(a) = --' . belongs to A_; therefore so does a+ _
Sa_. We have shown that S acts as multiplication by M(a); therefore

1

(9.24) M(a)a_((Y) = M((T)n =a+(a).a-i
Set a = A - iq, A real. As t) -+ 0, the right side tends, according to part (ii) of
Theorem 9.4, strongly to a+()). It follows that M(A. - i q)n tends strongly to M(;,)
for almost all A.

Since S is an isometry, Ila- II = Ila+ 11. Using the form above of a_ and a+, this
means that

f d) d', = f I M(X),tl` dx.
f IA-i1` ! IA-i1-

Since IM(X)nI < Inl for almost all X, the sign of equality must hold for almost
all A. _

It follows from (9.24) as r) - 0 that a+(A) = M(A)a_(A) a.e. Since S is
unitary, it follows that M(A) is invertible, and therefore unitary, for a.a. X. This
completes the proof of Theorem 9.6. U

The function M((T) is called the scattering metric.

9.3. The Associated Semigroup

The setting is the same as in Section 9.2.
Let U(t) he a strongly continuous, one-parameter group of unitary operators

acting on a Hilbert space H. Let F_ and F+ be a pair of incoming and outgoing
subspaces in the sense of (9.15_) and (9.15+); furthermore, we assume that F_ and
F+ are orthogonal to each other. Denote by P_ and P+ orthogonal projections onto
the orthogonal complements F_ and F+. respectively. Denote by K the orthogonal
complement in H of F_ ® F+. Define Z(t) by

(9.25) Z(t) = P+U(t)P_ . I > 0.

THEOREM 9.7 Z(t) is a one-parameter sentigmup of contractions on K, and that
Z(t) tends strongly to zero as t -+ oo.

PROOF: Clearly each Z(t) is a contraction. To show that it maps K into K
we have to show that for every k in K, Z(t)k is orthogonal to F_ and Ft. when t is
positive.
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Since P_ is the identity on K, Z(t)k = P+U(t)k. We claim that U(t)k is
orthogonal to F_; to see this take any f_ in F_ and write

(9.26) (U(t)k, f-)E = (k, U*(t)f-)E = (k, U-'(t)f-)E = (k, U(-t)f_)E,
where , )E denotes the scalar product in H. By (9.15_), U(-t) takes F_ into
itself, and therefore the scalar product on the right in (9.26) is zero. Since P+U (t )k
differs from U(t)k by a vector in F+, assumed orthogonal to F_, it follows that
P+U(t)k, too, is orthogonal to F_.

Since the range of P+ is orthogonal to F+, P+U(t)k is orthogonal to F+. This
completes the proof that Z(t) maps K into K.

Next we show that the operators Z(t) form a semigroup. By definition

Z(t)Z(s)k = P+U(t)P_P+U(s)P_k.

Since k is orthogonal to F_, and since P+ and P_ commute, we can rewrite the
right side as

P+U(t)P+P_U(s)k.

We have shown above that U(s)k is orthogonal to F_, so P_ above can be dropped.
We are left with

P+U(t)P+U(s)k = P+U(t)(U(s)k + f+) = P+U(t)U(s)k + P+U(t)f+

By (9.15+), U(t) maps F+ into itself; therefore P+ kills the second term and leaves
us with P+U(t + s)k = Z(t + s)k.

To show that Z(t) tends to zero strongly, we present Z in the outgoing trans-
lation representation. Since k in K is orthogonal to F+, its outgoing translator
representer K+ is supported on R_. U(t) translates k+, and P+ removes that part
of U(t)k+ that is supported in [0, t]. So the action of Z(t) on k+ is translation
followed by restriction to R_; clearly IIZ(t)k_ II tends to zero.

We establish now an interesting and important relation between the semigroup
Z(t) and the scattering matrix M(a) defined in Section 9.2. That some relation
exists is not surprising, since both are built out of the same ingredients.

We recall the concept of the infinitesimal generator G of a semigroup Z(t):

(9.27) Gk = lim
Z(t)k - k

1y0

The domain of G is the set of k in K for which the limit on the right in (9.27) exists
in the sense of convergence in the norm of K. It follows easily from the semigroup
property that if k belongs to the domain of G, so does Z(t)k, and GZ(t)k =
Z(t)Gk. Put in another way,

(9.27)'
dt

Z(t)k = GZ(t)k.
d

THEOREM 9.8 A complex number y, Re y < 0, belongs to the point spectrum of
G, Gk = yk, iff Z(t)k = e1`k.

We leave the proof of this proposition to the reader.
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THEOREM 9.9 A complex number y, Re y < 0, belongs to the spectrum of the
infinitesimal generator G of the semigroup Z(t) iff M'(iy) has a nontrivial null-
space. The dimension of the nullspace equals the multiplicity of the eigenvalue,

PROOF: Let k be an eigenvector of G : Gk = yk. Then Z(t)k = eY'k. Let
k+ denote the outgoing translation representer of k. Since k belongs to K, it is
orthogonal to F+; therefore k+ is supported on R_. As we have seen earlier, the
action of Z(t) is right translation followed by restriction to R_. Since k satisfies
Z(t)k = eY'k,

k+(s - t) = e"'k+(s) , s < 0.

It follows that

eYsn , s < 0,
k+(s)= 0, 0<s.

The outgoing spectral representer of k is the Fourier transform of k+:

.f+(a) = I nis - y

The incoming spectral representer is

f-(a) = M-1(cr).f+(Q) _ I M-1(a)n .is - y

For o real, a = o and M-1(a) = M*(a); so for a real

(9.28) f-(a) = I M'(v)n.is - y

Since k_ is supported on R+, its Fourier transform belongs to A+ and thus has an
analytic extension to the upper half-plane. Formula (9.28) gives a meromorphic
extension of f_(a) to C+; M'(a)n is analytic for or in C+, but to

YY

has a pole at
a = -i y. So for f_ (a) to be analytic M*(v)n must vanish at a = -i y:

M*(iY)n = 0.

It follows fyrthermore that to each eigenfunction of G there corresponds a nullvec-
tor of M'(iy).

The proof can be run backwards to deduce the converse proposition. 0

REMARK. Suppose that the scattering matrix M(a) is invertible at all but a
discrete set of points a in C_, and that it is continuous on the real axis. Then M(a)
has a meromorphic continuation into the upper half-plane, given by the operator
version of the Schwarz reflection principle:

M(a) = M*(&)-1 for Ima > 0.
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9.4. Back to the Wave Equation in the Exterior of an Obstacle

The setting is the same as in Section 9.1.
H is the space of all initial data g of finite energy in the exterior of an obstacle

B contained in the ball 1x1 < R. The energy norm of g = {$1, $2} is

(9.29) 11811

E
= f (g%r + 92)dv,

the integration over the exterior of B. The operator U(r) relates the initial data g
of a solution u of the wave equation in the exterior of B, u = 0 on 8B, to its data
at time t. The operators U(t) form a strongly continuous one-parameter group of
unitary operators mapping H onto H.

A solution u is called incoming if u(x, t) = 0 in the backward cone lx1 < R-t,
t < 0. Outgoing solutions are those that are zero in the forward cone Ix 1 < R + t,
t > 0. The initial data of incoming solutions are denoted as F_; those of outgoing
solutions as F+.

THEOREM 9.10 F_ and F+ defined above are incoming and outgoing subspaces
for the one-parameter group U (t) defined above. That is,

(i) U(t)F_ c F_ fort < 0,
(9.30)_ (ii) n U(t)F_ _ (0),

(iii) U U(t)F_ is dense in H ,

and similarly

(i) U(t)F+cF+ fort >0,
(9.30)+ (ii) n U(t)F+ = (0),

(iii) U U (t) F+ is dense in H .

Furthermore, F_ and F+ are orthogonal to each other.

PROOF: We recall from Section 9.1 the space Ho of all data with finite energy
defined in the whole space R3, and the operator Uo(t) that relates the initial data
of a solution of the wave equation in R3 to its data at time t. We further recall
the translation representation (9.11) of Ho furnished by the Radon transform of the
data. The solution uo of the wave equation in terms of the translation representer
ko is given by formula (9.13):

(9.13) uo(x, t) = f ko(x . (o - t, w)dw,

where ko is defined by (9.11). The energy norm of u equals the L2 norm of ko; see
(9.12).

It follows from formula (9.13) that when ko(s, w) = 0 for s < 0, uo(x, 1) = 0
in the forward cone Ix I < t, 0 < t. Likewise, when ko(s, w) = 0 for s > 0,
uo(x, t) = 0 in the backward cone IxI < -t, t < 0. O

We now show the converse of these propositions.
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LEMMA 9.11 Suppose that uo(x, t) is a solution of the wave equation in all space
and time, has finite energy, and is zero in the forward cone Ix I < t, t > 0. Then
the translation representer ko(s, w) of its initial data is zero for s < 0. Similarly,
if u,.) (x, t) = 0 in the backward cone IxI < -t, t < 0, the translation representer
ko(s, co) of its initial data is zerofor s > 0.

PROOF: We shall deal with C°° solutions. We can achieve this by mollifying
the solution in the t-variable:

vo(x, t) = f uo(r, x)4 (t - r)dr ,

where 0 is a CO0 function, f 0 dr = 1, and ¢ is supported on the interval [-e, 0].
The translation representer of v is

(9.31) ko(s) = f ko(r, w)¢(s - r)dr.

This is a C°O fl L2 function of s; it follows from formula (9.13) that vo(x, t) is C°0.
Since 0 is supported on R_, if uo is zero in the forward cone, so is vo.

Since vo(x, t) = 0 in the forward cone, all its spacial derivatives are zero on
the positive t-axis:

(9.32) Dxvo(x,t)Ix_o=0 fort 0,

where n is a multi-index. We can compute these derivatives from (9.13):

D".,vo(x, t)Ix=o = f w"Ds"1ko(-t, w)dw.

Multiply this by a smooth test function a(t) supported on a finite interval of R+. It
follows from (9.32) that

'I:

00

w"ko(-t, w)D,"'a(t)dt = 0.

Any smooth function b(t) compactly supported on R+ can be approximated in the
L2(IR+) norm by functions of the form D, a(t). Therefore

f ko(-t, w)w"b(t)dt = 0

for all smooth b(t) supported on a bounded interval on R+. Since functions of the
form Y c"w"b"(t) are dense in L2(t, w), t > 0, it follows that ko(t, w) = 0 for
t>0.

It follows from (9.31) that as the support [-e, 0] of the mollifying function ¢
tends to zero, ko tends to ko; therefore ko(-t, (o) = 0 for t > 0, as asserted in
Lemma 9.11. The second assertion of Lemma 9.11 follows analogously.

We have observed in Section 9.1 that H can be regarded as a subspace of
Ho. Denote by g+ any member of the outgoing subspace F+ of H. Clearly,
U)(t)g+ = U(t)g+ fort > 0, therefore Uo(-R)g+ is zero in the forward cone
IxI < t, t > 0, and so by Lemma 9.11 its translation representer is zero in R_. It
follows that the translation representer k+ of g+ is zero on s < R. Similarly, the
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translation representer of any g_ in F_ is zero for -R < s. Thus the supports of
k+ and of k_ are disjoint. Therefore the L2 scalar product (k_, k+) = 0. Since the
translation representation is isometric, (g_, g+)E = 0. This proves that F_ and F+
are orthogonal.

Next we shall deal with (9.30)+; (9.30)_ can be treated similarly. Properties
(i) and (ii) in (9.30)+ are obviously true. Part (iii) is trickier and requires seven
lemmas. We start with the following observation:

Let C be a bounded set containing the obstacle. Denote by 11811 E.C the local
energy norm:

(9.33) IIg11e.c = f (gix + gz)dx .
c

We claim that property (iii) in (9.30)+ implies local energy decay, that is, that for
every h in H

(9.34) lim 11U(t)h11E.c=0
1-too

PROOF: If property (iii) holds, then given any h in H and any e > 0, there
exists an element g of F+ and a time T such that

(9.35) Ilh - U (T )g Il E < s .

Since C is bounded, it is contained in some ball around the origin of radius K,
The solution with initial value in F+ is zero in the ball 1x1 < R + t. Therefore if
t > ITI + K, U(t + T)g = 0 in C.

Since U(t) is an isometry, it follows from (9.35) that

IIU(t)h -U(t+T)gI1E <S.

Since local energy is less than total energy,

IIU(t)h - U(t + T)gIIE.c < E.

But since fork > ITI + K, U(t + T) is zero in C,

IIU(t)hiiE.c <s.

This proves (9.34).

Of greater interest is the converse implication:

LEMMA 9.12 Suppose that for all h in H and all bounded domains C

(9.36) lim inf II U(s)h II E.c = 0
S-00

O

Then property (iii) in (9.30)+ holds.

PROOF: We argue indirectly. The union of U(t)F+ is a linear subspace of H;
if it were not dense in H, there would be a nonzero p in H orthogonal to it:

(9.37) (P, U(t)g+)E = 0 for all g+ in F+ .
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Since U(t) is unitary, U'(t) = U-1(t) = U(-t). So the above relation can be
rewritten as

(U`(t)P, g+)£ = (U(-t)P, g+) = 0 for all g+ in F+.

Wnting s for -t, we can express this relation in words: For all s, U(s)p is orthog-
onal to F+.

LEMMA 9.13 Forall q in H that are orthogonal to F+

(i) Uo(t)q = 0 in the cone IxI < -t - R for t < -R, and
(ii) Uo(t)q = U(t + 2R)Uo(-2R)q fort < -2R.

PROOF: We have seen earlier in this section that the free space translation
representation of F+ is L2[R, oo). Therefore the translation representer of any
element in H that is orthogonal to F+ is supported on (-oo, R]. Part (1) then
follows from the explicit formula (9.13) expressing solutions in free space in terms
of their translator representers. Since for t < -2R this solution is zero on the
obstacle. it is a solution of the mixed problem as well; this proves part (ii).

LEMMA 9.14 For any h in H

(i) Uo(-2R)h = U(-2R) for IxI > 3R,
(ii) IIUo(-2R)hII£.3R <- IIhII£.5R, IIU(-2R)hll£.3R -< IIhII£.SR

PROOF: Both statements express the fact that signals are propagated with
speed < 1. Part (i) says that solutions of the initial-boundary value problem at
time t are unaffected by the boundary condition at points x whose distance to the
boundary is greater than It 1. Part (ii) says that the energy contained inside a ball of
radius 3R at time -2R comes from the energy contained in the solution inside the
ball of radius 5R at time 0. We leave it to the reader to give a formal derivation of
this estimate.

Next we make use of hypothesis (9.36) of local energy decay: given any e,
there exist s arbitrarily large such that

(9.38) IIU(s)PII£.SR < e ;

here II II£.sR denotes the energy contained inside the ball of radius 5R.
Let's apply part (ii) of Lemma 9.14 to q = U(s)p; using estimate (9.38) we

get

IIUo(-2R)U(s)pIlE.3R < e, IIU(s - 2R)pll£,3R < s

By the triangle inequality

(9.39) IIUo(-2R)U(s)p - U(s - 2R)PII£,3R < 2s.

According to part (i) of Lemma 9.14 applied to h = U(s) p,

Uo(-2R)U(s)p = U(s - 2R)p for IxI > 3R.

Combining this with (9.39), we get the estimate

(9.39)' IIUo(-2R)U(s)p - U(s - 2R)pIIE < 2s.
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According to part (i) of Lemma 9.13 applied to q = U(s)p, Uo(-2R)U(s)p be-
longs to H. Therefore U(2R - s) acts on Uo(-2R)U(s)p - U(s - 2R)p; since it
is an isometry, it follows from (9.39)' that

(9,40) IIU(2R - s)Uo(-2R)U(s)p - PIIE < 2e.

Now apply part (ii) of Lemma 9.13 with t = -s and q = U(s) p; we conclude
that for s > 2R, U(2R - s)Uo(-2R)U(s)p = Uo(-s)U(s)p. According to part
(i) of Lemma 9.13, Uo(-s)U(s)p is zero for Ix] < s - R. Combine this with
(9.40); we get

IIPIIE,.s-R < 2E.
According to hypothesis (9.36), s can be taken arbitrarily large, so it follows that
II P II E < E, Since a can be taken arbitrarily small, it follows that II P II E = 0, a
contradiction to p 0. This completes the proof of Lemma 9.12.

We turn now to proving hypothesis (9.36) of Lemma 9.12, that for all h in H,

(9.36) liminf IIU(s)h1IE.G = 0
S-00

for all compact subsets C. We need the following theorem of Wiener:I

THEOREM 9.15 Let dm be a signed measure on IR that has finite total variation.
Denote by m(t) its Fourier transform:

(9.41) int =
J

eiiz dm (X) .

Suppose that dm contains no point measure; then the mean value of lm 12 is zero.

1

(9.42) lim
fT

Im(t)Izdt =0.
T-.a0 T T

For proof, see, e.g., section 5.2 in Scattering Theory by Lax and Phillips.
We return now to the unitary group U(t) that describes solutions of the wave

equation in the exterior of an obstacle that have finite energy. Denote by A the
infinitesimal generator of this group; A is an anti-self-adjoint operator on H. Let
d P(x) denote the spectral resolution of i A; d P(al) is a projection-valued measure.
The group U (t) generated by A is the Fourier transform of this measure:

(9.43) U(t) =
J

e')'dP(al).

We only need the weak form of the representation:

(9.43),, (U(t)h, g)E = J erzr d(P(X)h, g)

for any pair of elements g and h of H.

LEMMA 9.16 Suppose that the spectrum of A is free of point eigenvalues. Then
there is a sequence ttending to 0o such that tends weakly to zero, that is,
for any pair of elements g and h in H,

(9.44) g)E = 0.

'T'he suggestion to use Wiener's theorem is due to Karel de Leeuw.
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PROOF: Formula says that U(t)h, g), is the Fourier transform of
the measure dm = d(P(X)h, g). The total variation of in is IIhIIEIIg11E, and we
have supposed-supposition to be proved subsequently-that d P contains no point
measure. So by Wiener's theorem, 9.15, the mean value of its Fourier transform
squared is zero:

T
(9.45) riymo T rJ I(U(t)h.9)E12dt = 0.

We choose a denumerable set I fi) of elements that are dense in H. It follows from
(9.45) that for any it there is a T such that T > it and

rr
J I(U(t)fi..li)F-I'-dt < 3n .

T

1,...,n, j = I,...,n. It follows that for each i, j, I(U(t)f, fj)rI < 1/n
except on a set of measure < T/3n2. Therefore there is a t,, contained in (T/2, T)
such that

I(U(tn)f, fj)rsI < -
it

for i. j = I..... n. Since the I fj) are dense in H, it follows that (9.44) holds for
all It and g.

Next we show how to deduce strong local energy decay (9.36) from weak
energy decay (9.44):

LEMMA 9.17 For any h in H, there is a sequence s -> oo such that for any
compact set C

lim IIU(sn)hlle.c =0n-.

PROOF: It suffices to prove this for a dense set of h; we may take this dense
set to consist of smoothed data of the form

J 4,(t - r)U(r)h dr = ho,

0 a Col function. For such h the solution u(x, t) of the wave equation with initial
data h is C°° in t. In particular, u, satisfies the wave equation, and so the sum
of the L2 norms of u,r, and u over the exterior of the obstacle is the same for
all t. Since u satisfies the wave equation, the L2 norm of Du = u is uniformly
bounded for all t. Standard elliptic techniques give estimates of the L2 norm of all
second derivatives of u in any bounded domain C adjacent to the boundary of the
obstacle in terms of the L2 norm of Du. By Rellich's compactness theorem the
functions u.r and u, belong to a precompact set in the L2 norm over C. It follows
that the sequence U(tn)h has a subsequence U(sn)h which converges in the II Ile.c-
norm. But we have seen in Lemma 9.16 that the weak limit of this sequence is
zero. Since weak and strong limits are equal, it follows that IIU(sn)hIIE.c tends to
zero, as claimed in Lemma 9.17.

1
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We have now proved hypothesis (9.36) underlying Lemma 9.12 under the addi-
tional hypothesis that the infinitesimal generator A of U(t) has no point spectrum.
We supply now the last step in this chain of reasoning leading to the proof of parts
(9.30)_ and (9.30)+ of Theorem 9.10.

LEMMA, 9.18 A has no point eigenvalue.

PROOF: We argue indirectly; suppose that for some nonzero g in H, and a
real, Ag = ag. Then g = (a, iaa), and

U(t )g =
erarg

.

so the solution u of the wave equation with initial value g is of the form u(x, t) _
e'ata(x). It follows that a(x) satisfies

(9.46) to + a22a = 0.

We claim that this equation has no solution in the exterior of the obstacle that has
finite, nonzero energy. We take first the case a = 0. To see this multiply (9.46) by
a and integrate by parts. Since a(x) = 0 in the boundary of the obstacle, we get
that

f a'dx=0.
It follows that IIgIIE = 0, a contradiction.

For a # 0 there is a sharper result due to Rellich and Vekua: (9.46) has no
nonzero solution that is square integrable at infinity; we don't need to require that
the solution a vanish on the boundary of the obstacle. To see this we expand the
solution a(x) into a series of spherical harmonics:

a(x) =

The coefficients b satisfy the ordinary differential equation:

n(9.47)
n2

r2r r

here' denotes ° . Square integrability of a(x) implies that the functions rb are
square integrable. Introduce rb as a new variable:

C

r
Then

by (9.47) c satisfies

(9.48)

b'
c c b c" 2c 2c=-- =----;
r r2 ' r r- +

r3

z

c -n nc+a 2c=0 .r2

By assumption, c is square integrable up to oo; we shall show now that so is c'.
Multiply (9.48) by c and integrate over [r, 1], where 1 may be taken arbitrarily
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large. We get, after integration by parts, that

(9.49)j cc'I.- f Ici2+ JI (a2 -n2 M)
J
2=r

S

Since the integral of c2 from r to oo is finite, there is a sequence l tending to oo
such that the derivative of c2 at 1 tends to zero. Passing to the limit through such a
sequence I in (9.49), we conclude that c' is square integrable up to oo.

Next multiply (9.48) by 2c' and integrate over [r, 1], and let 1 tend to oo over a
sequence for which both c and c' tend to zero. We get

0 = -c'(r)2 - (n2 + n)f 2c'
ds -a 2 C 2(r).

r S2

Integrate the middle term by parts:
o0 22

0 = -c'(r)z + n rz n c2(r) - (n2 + n) f 223 - a2C2(r)S3

For r large, the sum of the second and the fourth terms, (" - a2)c2(n), is nega-
tive. as are the first and third terms. This is a contradiction, proving that (9.48) has
no nonzero solution square integrable up to oo. 0

And this, dear reader, completes the proof of assertions in parts (iii), (9.30)+
and (9.30)_ of Theorem 9.10.

From Theorem 9.10 we conclude by Sinai's theorem, Theorem 9.2 in Section
9.2, that there exist incoming and outgoing representations, h ++ k_ and h H
L. for U(t) acting on H. These representations can also be obtained from the
translation representation g ++ ko of Uo(t) acting in free space. We define the
incoming representer k_ of any given g in F_ as k_(s) = ko(s + R). We then
define the representer k_ of U(t)g, g in F_ as ko(s + R - t). Since by part (iii)
of (9.30)_ U(t)g are dense in H, this defines h H k_ for all h in H. So Sinai's
theorem is not needed.

The outgoing representation j H k+ can be defined similarly.
Appendix E contains an astonishingly simple proof of local energy decay for

bodies that are star-shaped.

9.5. The Semigroup Associated with Scattering by an Obstacle

Given a pair of orthogonal incoming and outgoing subspaces F_ and F+ for a
one-parameter group U(t) of unitary operators, we have in Section 9.3 (see The-
orem 9.7), constructed a semigroup Z(t) = P+U(t)P. Here P_ is the projection
that removes the F_ component; P+ removes the F+ component.

For waves scattered by an obstacle, with F_ and F+ defined in Section 9.4, we
can motivate this construction as follows:

Data in F_ do not undergo scattering until they are carried out of F_ by U(t),
t > 0. We remove them to start the scattering process immediately.

Data in F+ do not undergo any further scattering; removing them focuses at-
tention on the scattering process.

For scattering by an obstacle, Z(t) has the following important property:
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THEOREM 9.19 Z(t) is the semigroup defined by (9.25), and G its generator de-
fined by (9.27).

(i) Every positive number K belongs to the resolvent set of G, and the resol-
vent (K! - G) is given by theformula

(9.50) (K! - G)-'k =
J

00 Z(s)e-"'k ds.

where k is any element of K, the space on which Z(t) acts.
(ii) Z(2R)(K! - G)-1 is a compact operator.

PROOF: The intuitive derivation of formula (9.50) is to write Z(t) in the ex-
ponential form Z(t) = eGr and to carry out the integration in (9.50) in a formal
fashion. The rigorous proof is not hard. Denote by T the operator defined on the
right side of (9.50):

Tk =
J

Z(s)e-"Sk ds .

0

We claim that the range of T belongs to the domain of G. To see this we form the
difference

Z(t)Tk - Tk = fo Z(T +s)e-"Skds - fo 00 Z(s)e-"kds

r

r
fZ(r)e-"'+"`k dr - Z(s)e-"k ds= J

r 0o

f= (e"r - 1) J Z(r)e`k dr - Z(s)eSk ds .

i

Clearly the difference quotient (9.27)

Z(t)Tk - Tk

tends as t -+ 0 to KTk - k. So
t

GTk = KTk - k,

from which (9.50) follows.

REMARK. In a similar fashion we can prove that for K positive

(9.50)' (KI - A)-'h = J U(s)e-"Sh ds ,

0

where A denotes the infinitesimal generator of the group U(t), and h is any element
of H.

To prove part (ii) we need the following lemmas:

LEMMA 9.20 Define the operator N as

(9.51) N = U(2R) - U0(2R).

(i) I1Nlls < 2.
(ii) For any h in H, Nh = O for Ix I > 3 R.
(iii) IINh11s < 211h11E.5R
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(iv) N maps the orthogonal complement of F_, defined by (9.30)_, into itself
(v) N maps F+, defined by (9.30)+, into itself.
(vi) P+U(2R)P_ = P+NP_.

PROOF: Since both U(2R) and Uo(2R) are unitary operators, their norm is 1;
so part (i) follows by the triangle inequality.

Parts (ii) and (iii) follow from Lemma 9.14.
To see why (iv) is true, we note that both Uo(-2R) and U(-2R) map F_ into

itself. Therefore their adjoints Uo(2R) and U(2R) map the orthogonal complement
of F_ into itself; but then so does their difference N.

To show (v) we note that U(2R) = Uo(2R) on F+, and both map F+ into
itself: then so does their difference N.

Finally, for (vi), in the free translation representation F_ and F+ are repre-
sented by L2(-oo, -R] and L2[R, oo). The orthogonal complement of F_ is rep-
resented by L2[-R, oo), whose translate by 2R represents F+. This shows that
P+1.U0(2R)P_ = 0; (vi) is an immediate consequence of this and the definition
(9.51)ofN. 0
LEMMA 9.21

(i) A set of elements h of H that satisfy an inequality of the form

(9.52) IIAhlie + IIh11e 5 const

is precompact in any local energy norm II IIE.c
(ii) (KI - A)-1 maps the unit ball 119 11 E 5 I into a set that is compact in any

local energy norm.

o ). Inequality (9.52) can be ex-PROOF: A is the 2 x 2 matrix operator (A
pressed as

11Hxh2 ll + IIoh111 + 11D h111 + llh211 5 const,

where II II denotes the L2 norm over the exterior of the obstacle. Since hI is zero
on the boundary, the L2 norms of all of its second derivatives over any bounded
domain adjoining the boundary can be estimated in terms of the L2 norm of Ah1.
The conclusion then follows from Rellich's compactness criterion.

(ii) We shall show that all elements of the form h = (KI - A) g, 11811 e 5 1,
satisfy an inequality of form (9.52), in particular that

IlAhlle = IIA(K1 - A)-1gllE const .

This follows from the identity

A(KI - A)-1 = -1 +K(KI - A)-'.

The conclusion of (ii) then follows from part (i). 0
LEMMA 9.22

(9.53) P_(KI - A)-1 P_ = (KI - A)-t P_ .
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PROOF: By definition, for t positive U(-t) maps F_ into itself. Therefore
its adjoint U(t) maps the orthogonal complement of F_ into itself. It follows that
P_U(t)P_ = U(t)P_ for all t > 0. Multiply this relation by a-" and integrate
from 0 to oo, and (9.53) results. 0

We are now ready to complete the proof of Theorem 9.19. The following
series of identities are based on the definition of Z(t), that P+ and P_ commute,
that P+U(2R)P+ = P+U(2R), and on (9.51) and (9.53):

Z(2R)(KI - G)-1k = Z(2R)
J

00 Z(s)e-"k ds
0

U(s)P_e-"skds(9.54) = P+U(2R)P_P+foo"
Co

= P+NP_(KI - A-')P_k = P+N(KI - A)-'P-k.

By part (ii) of Lemma 9.21, (KI - A)-1 maps the unit ball Ilhlle < I into a set
precompact in the II IIE.5R norm. So part (ii) of Theorem 9.19 follows from the
representation (9.54) of Z(2R)(KI - G)-1 as P+N(KI - A)-1 P_; for according to
part (iii) of Lemma 9.20, N is a bounded map from the space normed by II - IIe.5R
into the space nonmed by II - IIE El

It is not hard to deduce from Theorem 9.19 that

(i) the generator G of the semigroup has a pure point spectrum,
(ii) the eigenvalues of G have no finite point of accumulation, and

(iii) the eigenvalues y of G have negative real part.
Part (iii) follows from the assertion in Theorem 9.7 that Z(t) tends strongly to 0 as
t - oo.

More refined results about the spectrum of G depend on the details of the shape
of the obstacle. The first result of this kind was given by Cathleen Morawetz, who
proved that if the obstacle is star-shaped, then in any compact set C solutions with
finite energy of the exterior problem for the wave equations decay uniformly as
t-1:

(9.55) IIU(t)hllE.c
const

t IIh1IE

From this it is not hard to deduce that the local decay is exponential:

THEOREM 9.23 If the obstacle is star-shaped, then Z(t) decays exponentially

(9.56) IIZ(t)II < conste-°°' a > 0.

For proof we refer to Lax, Morawetz, and Phillips (1963), Morawetz (1961),
or Appendix E.

The crucial property of the obstacle turns out to be whether it can confine rays
indefinitely. A ray is a polygonal line in the exterior of the obstacle B, straight
except at boundary points, where it is reflected according to the classical law of
reflection. Denote by L(B) the supremum of the lengths of all rays originating at
a point of the sphere IxI = R and remaining in IxI < R. Of course, L(B) could
be oo.
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THEOREM 9.24

(i) If L(B) < oo, then Z(t) is a compact operator fort > L(B) + 12R.
(ii) If L(B) = oo, then IIZ(t)IIE = I for all t.

PROOF: According to an important result of Melrose and Taylor, discussed in
Appendix D, singularities of solutions of mixed initial-boundary value problems
propagate along rays. This result can be formulated as follows:

THEOREM 9.25 Let C, and C2 be closed bounded sets in the exterior of the obsta-
cle. Suppose no ray originating in C, at time 0, traveling with speed 1, lies at time
T in C2. Then U(T) maps data of E-norm < I supported in C1 into a precompact
set in the norm II II E.C2

In the application we wish to make of this result we take CI to consist of those
points of the exterior that belong to the ball IxI < 3R. We take C2 to consist
of those points that belong to the ball IxI < 5R. It is easy to see that any ray
originating in C1 and traveling with speed I leaves C2 by the time T = L(B)+8R.
We factor now Z(T + 4R) as follows:

Z(T + 4R) = Z(2R)Z(T)Z(2R)
(9.57) = P+U(2R)P_P+U(T)P_P+U(2R)P_

= P+U(2R)P_U(T)P+U(2R)P_.

The legitimacy of omitting P+ and P_ in the middle has been explained in Sec-
tion 9.3 where the semigroup property of Z(t) is shown.

We now make use of property (vi) in Lemma 9.20 to rewrite (9.57) as

(9.57)' Z(T +4R) = P+NP_U(T)P+NP_.

According to part (iv) of Lemma 9.20 N maps the orthogonal complement of
F. into itself; so do U(T) and P+. Therefore we may omit the third factor P_ on
the right in (9.57)'. According to part (v), N maps F+ into itself, as do U(T) and
P_ Therefore we may drop the sixth factor P+ on the right in (9.57)'. Altogether
we get

(9.58) Z(T + 4R) = P+NU(T)NP_.
According to part (ii) of Lemma 9.20, N maps H into data supported in the ball
I.xI < 3R. According to Theorem 9.25 U(T) maps such data into a set that is
precompact in the norm II IIE.SR

We appeal now to Lemma 9.20, part (iii), to conclude that NU(T)N maps the
unit ball IIhhIE <_ 1 into a precompact set in the II HE norm. In view of formula
(9.58), this proves part (i) of Theorem 9.24.

Part (ii) was proved by Jim Ralston by constructing solutions whose bulk trav-
els along rays.

An obstacle for which L(B) < oo is called nonconfining.
According to Theorem 9.24, for a nonconfining obstacle Z(t) is compact for t

large enough. Therefore for such t, Z(t) has a pure point spectrum that accumu-
lates only at 0. Since 11Z(t)11E < 1, the eigenvalues are < I in absolute value. By
the spectral mapping theorem, the same holds for all t.
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For t > 0, Z(t) has no eigenvalue of absolute value 1, since it was shown in,
Theorem 9.7 of Section 9.3 that Z(t) tends to 0 strongly as t -+ oo. So the spectral
radius p of Z(1) is less than 1. By the formula for the spectral radius

lim IIZ(n)IIEn

= P

this shows that Z(t) decays exponentially as t -+ oo.

THEOREM 9.26 When B is a nonconfining obstacle, U(t)h decays exponentially
on any compact set, for any h in H.

PROOF: U(t)h = Z(t)h for Ixi < R. Since Z(t)h decays exponentially, so
does U(t)h for Ix) < R. But R is an arbitrary number.

9.6. Analytic Form of the Scattering Matrix

By now we know quite a bit about the scattering matrix-it is analytic in the
lower half of the complex plane, meromorphic in the upper half-plane. It is high
time we learned how to calculate it. To this end we shall turn to the spectral repre-
sentations.

The free space spectral representation is essentially the Fourier transform. De-
fine

(9.59) eo(x, a, w) = e-"" 'I 1, ia}.

eo satisfies the differential equation

(9.60) Aoeo = icseo,

where Ao is the generator of the group Uo(t):

(9.61) dtUo(t) = AoUo(t), Ao=
(0

O

11

0

Since Ao is the generator of a group of unitary operators, it is antisymmetric: Ao =
-Ao.

THEOREM 9.27 We define the spectral representer of any Co data go in Ho as

(9.62) ao(a, w) = (go, eo)E

This is a spectral representation of Uo(t).

PROOF: The representer of Uo(t)go is

(Uo(t)go, eo)E

We shall show that it satisfies an ordinary differential equation

dt(Uo(t)go,eo)E _ (_uo(t)go eo)
e

_ (AoUo(t)go, eo)E _ -(U(t)go, Aoeo)e = ia(Uo(t)go, eo)E

In this derivation we have used (9.61), the antisymmetry of Ao, and that eo is an
eigenfunction of Ao.
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The solution of the above differential equation is

(Uo(t)go, eo)E = eiat(go,
eo) E ,

proving that (9.62) is a spectral representation of Uo(t). The isometry of (9.62)
follows from the Parseval relation for the Fourier transform. Using the definition
of the energy scalar product we write go = {$1, $2}:

(g0, eo)E = (Dxg1, ia(g2, e-iax ))
.

Integrating by parts the first term gives

a2(gt, io(g2,

where ( , ) denotes the L2 scalar product. So

(9.63) (go, eo)E = a2i1(aw) - iai2(aw),

where " denotes the Fourier transform. The first term is an even function of a and
w, the second term odd. The sum of their L2 norms is, by Parseval,

IIDxg1112+1182112

Finally, we show that ao, defined by (9.62), is the Fourier transform with re-
spect to s of the translation representer ko defined in (9.11) as

ko(s, oi) = -a; $1 + asg2 ,

where " denotes the Radon transform. Denote by F the Fourier transform with
respect to s; applying F to ko gives

Fko = a2Fit - iaFg2.
As we have shown in Section 3.5 of Chapter 3, Fg = i; so we conclude from
(9.63) that

Fko=ao
0

We turn now to the much more interesting task of constructing incoming and
outgoing spectral representations for the group U(t). To make matters simple, we
shall treat scattering by obstacles that do not confine rays. In this case U(t)h decays
exponentially on any compact subset of the exterior of the obstacle, as shown in
Theorem 9.26.

The incoming and outgoing spectral representations will be of a similar form
as (9.62):

(9.64)- a_(a, w) = (h, e_)E,

where e_ is an eigenfunction of A, the generator of the group U(t):

(9.65)_ Ae_ = iae_.

e_ will be constructed as a perturbation of eo:

(9.65)' e_ = eo + f+ .

To serve its purpose, the function f+ has to have the following properties:
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(i) For (9.65)_ to hold, f+ has to satisfy the differential equation

(9.66) Af+ = iaf+
(ii) e_ has to be zero on 8B; therefore f+ must satisfy

f+(x) = -eo(x) on aB.

(iii) In order that the free space and incoming spectral representations be the
same for all h in F_, f+ must be orthogonal to F_.

THEOREM 9.28 There exists a unique f+ that has all three properties (i)-(iii)
listed above.

PROOF: We start by choosing a smooth cutoff function c (x) with the follow-
ing properties:

_ 0 for lx i > R,
Ox)

1 in an open set containing B.

We set

(9.67) f+=-i;eo+p.
In order for f+ to satisfy (9.66) p must satisfy

(9.68) (A - icr)p = (A -
Denote the right side of (9.68) by g. A simple calculation shows that

g = (A - {0, r),

where
r = (A - 2iaDxt; m)e

The support of r lies outside of B and inside Ix1 < R, so that g belongs to H.
We define p by the explicit formula

(9.69) p=-f e-iatU(t)gdt.
0

We claim that f+ given by (9.67) and (9.69) has properties (i), (ii), and (iii) above.
First we note that the integral converges for all x, since, according to Theorem 9.26,
U(t)g decays exponentially as a function of t. Since g is a smooth function of x,
the x-derivatives of U(t)g also decay exponentially. Therefore x differentiation of
p, given by formula (9.69), can be rcarried out under the integral sign:

(A - ia)p = -J e-;°r(A - ia)U(t)gdt
0

e-iot
(dt
d _ ia) U(t)g dt

I
_ f dt(e-;atU(t)g)dt =g.J0

Since g belongs to H, so do U(t)g, and therefore they are zero on the boundary.
But then so is their integral. We have thereby shown that f+ defined by (9.67) has
properties (i) and (ii).
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What remains to be shown is property (iii). We shall show that for all smooth
h_ in F_ of compact support,

(f+, h_)E = 0.

This scalar product makes sense, since h_ is assumed to have compact support.
Using the definition (9.67) of f+ we can write the equation above as

h_)E + (p, h-)E = 0.
Since the cutoff function C is zero for lxi > R, the supports of Leo and h are
disjoint, and so the first term above is zero. We turn now to the second term; using
the definition of p we write

(p. h-)E = - \f e-ic"U(t)gdt,h-) _ - f e-iot(U(t)g,h-)Edt
0 E 0

00= - r e-io'(g, U(-t)h-)E dt .
JO

In the last step we have used the fact that the adjoint of U(t) is U(-t). U(-t)
maps F_ into itself; g is zero outside of the ball (x I = R; therefore the value of the
integrand above is zero for all t > 0. But then so is their integral.

To nail down this argument we need the following piece of information:

LEMMA 9.29 The set of smooth elements h_ in F_ that have compact support is
dense in F_.

We shall present a proof of this result at the end of this section.
We leave it to the reader to verify that the f+ we constructed is independent of

the choice of the cutoff function
Next we verify that

(9.64) a- (a, w) = (h, a-)E

gives the incoming spectral representation of U(t). Here h can be any smooth data
in H of compact support.

Set in (9.64) U(t)h in place of h:

a-(a, w, t) = (U(t)h, a-)E
Differentiate with respect to t, integrate by parts, and use the fact that e_ is an
eigenfunction of A:

dta-(a, w, t) = (AU(t)h, e-)E

= -(U(t)h, Ae_)E = ia(U(t)h, e-)E
= i aa_ (a, w, t) .

It follows that U(t)h is represented by eia'a_(a, w). From part (iii) it follows that
the representer of any h in F_ is the same as its free space spectral representer.
So the representation is isometric for h in F_; it follows that it is isometric for all
U(t)h. According to the basic Theorem 9.10, these are dense in H, so we can, by
closure, define a spectral representer for all h in H.
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We are now ready to complete the proof of Theorem 9.28 and show that prop-
erties (i), (ii), and (iii) completely determine f+. Denote by q the difference of two
choices for f+. Since both choices give the same spectral representation, it follows
that (h, q)E = 0 for all h in H that have compact support. It follows from the
fact that e_ + f+ is an eigenfunction that q is of the form {v, ior v}. Now choose
h = {0, (v}, where is a real, nonnegative cutoff function at oo, and we get that

v) = 0,

from which v = 0 follows. 0
The most important information about f+ is its asymptotic behavior for Ix

large. To determine that, we shall represent f+ in terms of its translation repre-
senter in free space. Since the energy of f+ is infinite, we have to generalize the
concept of translation representer.

Extend f+ smoothly into the interior of B; f+ thus extended satisfies the equa-
tion

(Ao-ia)f+=go,
where go is supported on the obstacle B. We can solve this equation as we have
solved (9.68):

(9.70) f+ _ - f e-'°t Uo(t )go dt .
0

By Huygens' principle, Uo(t)go is zero for Ix I < t - R; therefore for x in a compact
set the integral is over a finite range of t. Define f+ as

T

(9.70)T f+ f e-" Uo(t)go dt .

0

It follows that

(9.71) f+(x)= f+(x) forlxj <T - R.
We denote by ko(s, w') the free space translation representer of go. The angular

variable is denoted as w ; go depends on a and w as parameters, and therefore so
does ko. Since go is supported in the ball Ix1 < R, ko is supported in -R < s < R.

By definition (9.70)T, the free space translation representer of f+, is

r_f
e-'

.

"ko(s - t, w')dt = jo (s, w') ,
0

which can be rewritten as

bko(b, ai )db .fT(9.72)T AT = -e-`as ero

f+ can be expressed in terms of its translation representer:

(9.73) f+(x)1 = f jo (x w', w')dco ;

a similar expression holds for the second component of f1 T_
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The support of jo lies in -R < s < R + T. Let h_ be any element of F_,
k_ (s. w') its free space translation representer; k_ is supported on s < -R, disjoint
from the support of i0 T. Therefore

(9.74) (h-, f+ )E = (k-, jo) = 0.
We are now ready to let T -> oo. According to (9.71) f+ (x) tends to f+(x).

We let T -+ oo in (9.72)T and define

(9.72) jo(s, w) = -e-ias f e'obko(b, w )db .
00

Since ko(b, w') = 0 for b outside [-R, R],

(9.75)

where

(9.75)'

here

jo(s, w) = e-iosn(s, w) ,

n(s, to') = 10 for s < -R,
n(d) for R < s ;

rR
n((0')=J eiabk0(b,(d)db.

-R
If we compare (9.72)T and (9.72), we conclude that for T - R > s,

jo(s,w)=jo(s,(0)
Therefore choosing T > IxI + R we conclude from this, (9.71), and (9.73) that for
every .v,

(9.76) f+(x)1 = f jo(x d, Odd.

Suppose h_ belongs to F_ and has compact support. Then by (9.71), f+(x) _
f+ (x) on the support of h_(x) for T large enough, and so it follows from (9.74)
that

(h-, f+)E = 0;
this shows that f+, as defined by (9.70), has the required property (iii).

The asymptotic behavior of f+(x) for lxi = r large can be determined from
formula (9.76). Take x to be r(1, 0, 0), and parametrize w' as

(9.77) w = (cos 0, sin 0 cos sfr, sin ¢ sin t/i) ,

¢ in [0, ir], in [0, 2n], dw = sin ¢ do d*, and x w' = r cos 0 . We set this in
(9.76), using the definition (9.72) of jo:

Ir rm
f+(x)1 = -

J
e-iarCOS# sin0f eivbk0(b, (W)dbdodt/r .

0 00

Introduce cos ¢ = c as a new variable of integration:
1 rc

f+(x)1 = - f e-iarc f etabko(b, w)dbdcdif .
1 00
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We integrate by parts with respect to c, integrating the first factor e-'a", differen-
tiating the second factor

frc
eiabk0(b, w )db .

00

Since ko(b, w) is zero for ibI > R, the second factor is zero for c = -1 when
r > R. For c = 1 it is equal to

00

n((o')= euabko(b,(o')db.

Joo
So we get

e-far 1 I

f+(x)1 = r m+ - is f ko(rc, ai )dcdilr , m+ = m+(a, w)
1

We claim that the second term in the above formula for f+(x)I is O(1/r2). To see
this we note that outside the range Icl < R/r the integrand ko(rc, w) is zero. In this
range we may replace to', given in formula (9.77), by w(i,r) = (0, cos >li, sin v,),
with an error that is 0(1/r2). In the remaining integral we introduce s = rc as a
new variable of integration; we get

ko(s, w(If))dsdly.iar
But it follows from formula (9.11) that the s-integral is, for fixed w, equal to zero.
This proves that as x tends to oo,

(9.78) f+(x)I =
far

r
m++O( 1r2

where IxI = r.
So far we have taken x to be r(1, 0, 0). But clearly the argument can be ex-

tended to any x. In the general case, m in (9.78) will be a function of 9 = x/r, and
of co and a, which enter the function go, and therefore also ko, as parameters.

In Theorem 9.28, f+ was characterized by the following conditions:

(i) f+ = { f, is f }, where f satisfies A f + a2 f = 0 outside B.
(ii) f (x) = -e- on aB.
(iii) f+ is orthogonal to F_.

We have shown that such an f exists, and that it is uniquely characterized by
these conditions. The asymptotic behavior of f (x) for large x is given by formula
(9.78).

We shall show now that condition (iii) may be replaced by (9.78).

THEOREM 9.30 There is exactly one solution of the reduced wave equation in the
exterior of B with prescribed boundary values (ii) whose asymptotic behavior is of
the form (9.78).

PROOF: The asymptotic behavior of
a

f as IxI -+ oo can be determined by
the same argument as was used for f itself. The result is the same as that obtained
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by differentiating (9.78) with respect to r:

(9.78),
8.f(x)^_-ia'-;o.

m+O r2

Combine (9.78) and (9.78),; as x --> oo,

(9.78)' la,f+iafl = 0 1

2r
(9.78)' is called the Sommerfeld radiation condition.

Suppose that there are two functions satisfying (i), (ii), and (9.78)'. Their dif-
ference, again denoted as f , satisfies Af +a2 f = 0 in the exterior of B, and f = 0
on a B. Furthermore, f satisfies the asymptotic relation ((9.78)') as r -> oo.

Denote by S, the sphere Ix I = r.

= J (arf 12+a2Ifl2dS

Sr S,

r+iaJ (fart -a,ff)ds.
Sr

We claim that the third term on the right is zero. To see this, integrate f (Af +
a2 f) in the region contained between B and S,. Since f = 0 on d B, after integra-
tion by parts we obtain the desired result.

Integrate the identity above from R to oo. By estimate (9.78)' the left side is
finite; therefore so is the right side; this shows that f is L2 at oo. But according to
the Rellich-Vekua theorem, Lemma 9.18, this implies that f - 0. 0

We turn now to a physical interpretation of f+. What happens when a wave
impinges on an obstacle? We take the wave to be a harmonic plane wave e'ot`'°''"1,
traveling in the direction w, with frequency a/2ir. To make this wave impinge on
B we choose a smooth cutoff function i ,

fi(x)
0 on an open set containing B ,

Sl 1 for R < Ix I ,

and take the initial value (: eo for the exterior problem. We shall show that as T ->
00.

(9.79) U(T)teo -> e'oTe_ ,

uniformly on any compact set in the exterior of the obstacle B.

PROOF: By (9.65)1-, e- = eo + f+; therefore e_ - $eo = (1 - )eo + f+.
Taking 1 - to be and using (9.67) we get

e-- teo=P.
Applying U(T) we get

(9.79)' e;ore_ - U(T )teo = U(T)p.
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Using the definition (9.69) of p we can write

U(T)p = - fo x e-ia'U(r+T)gdt
00= eiaT j e-i"U(s)g ds.

T

According to Theorem 9.26, U(s)g tends to zero exponentially as s -+ oo, uni-
formly on compact sets. Therefore so does U(T)p as T -> oo. This shows that
(9.79)' tends to zero as T -+ oo; from this (9.79) follows.

The signal eiaT e_ consists of two parts, eiaT eo plus eiaT f+. Our analysis
shows that eiaT eo is the incident signal, eiaT f+ is the reflected signal.

In an experimental setup the wave is sent in, and the reflected wave
e1" f+ is measured. Since the measurement is made at some distance from the
obstacle, only the leading term of the reflected wave

(9.80)
r

eia(t-r)
m+(8, (V; a) ,

is measured.
Note that (9.80) is an outgoing spherical wave.
The inverse problem of scattering theory is to determine the shape of the ob-

stacle from the scattering data m+ (8, w; a).

THEOREM 9.31 The scattering data m+(9, w; a) uniquely determine the obstacle.

PROOF: Take two obstacles B and B', with e_ and e' the incoming eigen-
functions. According to (9.65)' ,

e-=eo+f+, e'_=eo+f+
Their difference is

e--e'=f+-f+.
Denote by m+ and m'F the terms appearing in the asymptotic description (9.78)
of f+ and f+. Suppose that for some fixed value of w and a, m+(B, (o; a) =
m+(9, (o; a) for all 9. Then the difference e_ - e' is O(1/r2) as x oo. This
implies that e_ - e' is square integrable around oo. Since the components of e_
and e' satisfy the reduced wave equation (9.46), it follows from the Rellich-Vekua
theorem (see Lemma 9.18) that e_ - e' is zero in a neighborhood of oo. But since
solutions of the reduced wave equation are analytic functions of x, it follows that
e_ - e' = 0 at every point of the set in the exterior of both B and B' that is
connected to infinity within this set.

The set of points that belong to B' but lie outside of B is the union of connected
components G;. The boundary if each Gj belongs either to the boundary of B or
of B'; therefore e_ is zero on the boundary of each G. The first component of e_
is a solution of the reduced wave equation, and therefore an eigenfunction in G of
-A, equal to zero on the boundary of G, with eigenvalue a2. If both B and B'
are contained in a ball of radius R, so is G, and we can estimate from above the
number N of eigenvalues < a2.
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Suppose m+(6, w; a) = m'}(6, co; a) for all 0 and N + I values of w. That
would give N + I eigenfunctions of -A with eigenvalue a2, too many, a contra-
diction, into which we were led by assuming that B : Y. 0

The inverse problem of scattering is to reconstruct the obstacle B from the
observed scattering amplitudes m+(0, w; a) for all 0 and a finite set of w. This
would require measuring the scattered waves for all 0, that is, all around the ob-
stacle. This is not practical. However, one of the results of scattering theory, the
reciprocity law, says that m+(6, w; a) is a symmetric function of 0 and w:

m+(0, w; a) = m+(w, 6; a).

REMARK. Merely proving that a certain set of scattering data uniquely deter-
mines the scatterer is a far cry from solving the inverse problem. That task calls for
algorithms to actually generate the obstacle from the scattering data. We refer the
reader to chapter 9 in Michael Taylor's book on scattering theory (1996) for some
thoughts on this subject.

We turn now to the scattering matrix M(a). Since both the incoming and
outgoing spectral representations are perturbations of the free space spectral repre-
sentation, it is no surprise that the scattering matrix is of the form

M(a) = I + K(a),
where K is an integral operator. The kernel of K can be expressed in terms of the
scattering amplitude m+(6, w; a).

We conclude this section by presenting a proof of Lemma 9.29, that the set of
smooth elements h_ in F_ that have compact support is dense in F_. We argue
indirectly: suppose not. Then there would be a nonzero k in F_ that is orthogonal
to all h_.

It is easy to construct data h_ in F_ that have compact support. Take any g
in Ho that is supported in lxi < T - R, and set h_ = Uo(-T)g. By Huygens'
principle, h_ belongs to F_, and since signals propagate with speed < 1, h_ is
supported in lxi < 2T - R. All such h_ would be orthogonal to k:

(Uo(-T)g, k)E = 0.
Since the adjoint of Uo(-T) is U0(T),

(g, Uo(T)k)E = 0.

We may take for the second component of g any smooth function supported in
Ix I < T - R, and take the first component zero. It follows that the second compo-
nent of Uo(T )k is zero for Ix I < T - R.

Denote by uo(x, t) the solution of the wave equation in free space with initial
data k. We have shown that 81uo(x, t) = 0 in the cone lxi < t - R. It follows that
uo(x, t) = uo(x) for Jxi < t - R. Since 8, uo = 0 for lxi < t - R, it follows from
8; uo - Duo = 0 that uo(x) is a harmonic function. Since J1xI<R 18xuo12 dx is less
than the energy of k, uo(x) has finite energy. But a harmonic function defined in
the exterior of a compact set that has finite energy is a constant. We claim that this
constant is zero.
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The proof is based on the following estimate for functions f defined in 1R3,
differentiable and of compact support:

For every R,

(9.81) f If(x)Izdx < 2 f Ifxlzdx.
Ixl<R

To derive this inequality write for x = rr8,

df(x)=-fd f(rO)dr.
r

By the Schwarz inequality
00 00 00

if (x)I2 < f r-z dr f frzrz dr = r_1 f dr.
r r

Integrating with respect to 8 on the unit sphere gives

f If(r9)I2 d8 <r-' f f Ifxl2dx.
kx I>r

Multiply this inequality by r 2 and integrate dr from 0 to R to obtain the estimate
(9.81).

Inequality (9.81) holds for any function f (x) that is the limit in the norm,
(f f,2 dx) of Co functions. The harmonic function uo(x) is such a limit, and there-
fore

R2
(9.82) f uo(x)zdx < 2 f laxuoIzdx < R2Ik1E.

Ixj<R

We have already shown that uo(x) __ const. If that constant were nonzero, the left
side of (9.82) would grow like R3, contradicting (9.82) for R large enough.

We have thus shown that uo(x, t) = 0 in the cone IxI < t - R. Since k belongs
to F_, uo(x, t) = 0 in the cone IxI < -t + R. It follows then from Lemma 9.11
that the translation representer of k is zero, and therefore so is k itself, contrary to
assumption. This completes the indirect proof of Lemma 9.29. (]

9.7. Scattering of Automorphic Waves

Boris Pavlov and Ludwig Faddeev have given a beautiful analysis of the scat-
tering of automorphic waves.

The scene of action is hyperbolic plane H. In the Poincare model this is the
upper x, y plane, y > 0, equipped with the Riemannian metric

(9.83) ds 2 = dxz + dyz

vz

Motions in the hyperbolic plane can be expressed as fractional linear transfor-
mations in the complex variable z = x + iy:

(9.84) z -). az + b
a, b, c, d real, ad - be = 1 I.cz+d'
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THEOREM 9.32

(i) The mappings (9.84) preserve the metric (9.83).
(ii) The hyperbolic L2 norm

ffu2Y
Y2

is invariant under the mappings (9.84).
(iii) The hyperbolic Dirichlet form

D(u) = f (u2 + u2)dx dy

is invariant under the mappings (9.84).
(iv) The Laplace-Beltrami operator

(9.85) AH = y2A

is invariant under the mappings (9.84).

Proof is left as an exercise for the reader.
The renormalized Laplace-Beltrami operator is

1

(9.86) L=0H+4
and the hyperbolic wave equation is

(9.87) u,, - Lu = 0.
The conservation is energy is derived just as in the Euclidean case. Multiply

(9.87) by 2u, and integrate by parts. We get

0=2J u, (71-_ lf( +u+u-4yu2ldxdy./
H

This proves that
i

(9.88) E(u) = u2 + uy - .!- u2 + y2)dx dyf
H

is a constant of the motion.
A useful form for energy is

(9.88') E(u) = -(u, Lu) + (u,, u,),

where (,) denotes the L2 scalar product in the metric (9.83).
For data with compact support, energy is positive, in spite of the presence of a

negative term in (9.88). Integration by parts gives

f0L (uy+u) 2dy = uuJo (u+_+_)dY

00 //
2

u2 u2 )dy(U
2 u 2=' lay-2Y2+4y2 y-4y2ldy.
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The Pavlov-Faddeev theory deals with automorphic solutions of the hyperbolic
wave equation, with respect to to the modular group, a subgroup of the group r
of motions (9.84) characterized by the condition that the coefficients a, b, c, d are
integers. A function u(x, y) defined in the hyperbolic plane is called automorphic
with respect to r if u(y(x, y)) = u(x, y) for all motions y in r.

Automorphic functions are hyperbolic analogues of periodic functions in Eu-
clidean space. The analogue of a period parallelogram is a fundamental domain,
defined as follows:

A subset P of IEII is called a fundamental domain for I' if

(i) every point of IHI can be mapped into a point of P by some y in r',
(ii) only boundary points of P are mapped into each other by a y I in r.

It is a classical fact that set T defined by the inequalities -Z < x < Z, x2 +
y2 > I is a fundamental domain for r'. Its boundaries, x = - 2, x = ;, x2+ y2 = 1
are geodesics of the metric (9.83), as the reader may verify. Thus T is a geodesic
triangle, one of whose vertices lies at oo. Nevertheless, the area of T is finite; the
reader is invited to verify these facts. The mapping x, y x + 1, y carries the left
edge of T onto the right edge. The mapping z -f carries the bottom edge of T
onto itself.

NOTE. These two maps generate r.

It follows from property (i) of a fundamental domain that the image of T under
any y in the modular group is again a fundamental domain, and that the union of
y(T), y r. r, is the whole hyperbolic plane H. These facts lead to the following
construction of continuous automorphic functions u(x, y):

Take any continuous function u(x, y) defined on the fundamental domain T,
and which satisfies the following automorphic boundary conditions:

(9.89) u
(I2y)=u(2,

)' u(x,y)=u(-x,y) for x2+y2=1.

We then define u(x, y) for any (x, y) in III as u(y(x, y)), where y in I' carries
(x, y) into T.

We can similarly construct differentiable automorphic functions by imposing
automorphic boundary conditions on the derivatives of a as well.

The objects of our study are automorphic solutions of the hyperbolic wave
equation (9.86), (9.87). Given automorphic initial data g = {u(0), u,(0)} in IHI, we
denote by u(x, y, t) the solution in H x P of the hyperbolic wave equation (9.87)
with initial data g. Since the wave equation is invariant under hyperbolic mo-
tions, u(y(x, y), t) also is a solution of the wave equation. Since g is automorphic
u(y(x, y), t) has the same initial values as u(x, y, t), and therefore is = u(x, y, t).
This shows that if the initial data of u(x, y, t) are automorphic, then u(x, y, t) is
automorphic for all t.

DEFINITION H is the space of all automorphic data h = {h1, h2} with the follow-
ing properties:
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(i) h I and its first derivatives are square integrable over T.
(ii) h2 is square integrable over T.

The energy ET(h) of data h in H is defined as

[(ahi)2
1

(9,)0) ET(h) = + (ah1)2 - + Jdxdy.

NOTE. Energy is not positive for all h in H; take for instance h = 11, 0}.

Let u(t) be the solution of the hyperbolic wave equation with initial data h in
H: (u(0), u,(0)} = h. Denote by U(t) the operator h -+ {u (t), u,(t)}. The oper-
atQrs U(t) form a one-parameter group; each U(t) preserves energy; this follows
fro,n the standard argument.

The operator L acting on automorphic functions square integrable in T has a
vet y rich point spectrum with negative eigenvalue:

(9:)1) Lg = -µ.2g , µ real.

Th.- corresponding eigendata of U(t) are

(9.911) e+ = {g, iµg}, e_ = {g, -iµg}.

Th: corresponding solutions of the wave equation,

g(x, y)e'," and g(x, y)e-iu' ,

are standing waves and so do not contribute to the scattering process. A scattering
the.iry for automorphic waves has to be built on data that are orthogonal to the
eig:nfunctions f. We denote by HH the space of such data. We show now how to
cot struct data in H.

LII vt M A 9.33 For any automorphic function h(x, y) define
1/2

h(y) = J h(x, y)dx, y > 0.
1/2

Foi eigenf nlctions g satisfying (9.91), h(y) = 0.

PROOF: Integrate with respect to x the eigenvalue equation (9.91); the result
is tie ordinary differential equation

(9')3) y2hyy + 4h + µ2h = 0.

Tw -) solutions of this equation are yt/2+lµ and y1/2-'u; all others are linear com-
binations of them. Since h(x, y) is square integrable over T, h(y) is a square

function of y over [1, oo) with respect to dy/y2. But the only square
integrable solution of (9.93) is h = 0.

Let u(x, y, t) be any automorphic solution of the hyperbolic wave equation.
We define. as before, its x-average u(y, t) as

P1/2

I/2
u(y,t)= 1 u(x,y,t)dx, y>0.

J
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Integrate the hyperbolic wave equation with respect to x. It follows that u satisfies
the averaged wave equation

-(9.94) urr-y 2u ,y 1 Iii = 0.

The change of variables

(9.95) u=y1"2v, y=es,
turns this equation into

(9.94') vrr - vas = 0.

We can factor this equation as

(a, + aa)(vr - VS) = 0,

from which it follows that vs - v, is a function of s - t:

(9.96+) va - v, = r+(s - t).

Going back to (9.95) we can express the function r+(s) in terms of u:

(9.97+) r+(s) = ase-a"2h1(es) - e-s12h2(es) ,

where {h1, h2} are the initial values of u. We call r+(s) the outgoing translation
representer of h = {h1, h2}; we shall denote it as

r+=R+h.
It follows from (9.96+) that

(9.96') R+U(t)h = r+(s - t) ,

that is, R+ transmutes the action of U(t) into translation.
It follows from Lemma 9.33 that the translation representer of e+ and e_ de-

fined in (9.91') is zero.
Automorphic solutions of the hyperbolic wave equation that are independent

of x satisfy equation (9.94). The transformation (9.95) turns this into the classical
wave equation (9.94'), which has solutions m(s - t) that propagate only in one
direction. The corresponding solution of (9.94) is

(9.98+) u+(Y, t) = y1/2m(log y - t).

We choose for m(s) a differentiable function with compact support contained in
0 < s. Then for t > 0, u+(y, t) satisfies the automorphic boundary conditions
(9.89) on the boundary of T, and so can be extended as an automorphic function to
all of H.

The initial data of u+ in T are

(9.99+) f+ = (Y1/2m(logy), -Y112m'(log y)},

where m' denotes the derivative of m.
These solutions u+(y, t) are outgoing in the sense that given any compact set

in T, u+(y, t) = 0 in this set for t large enough. Thus for t > log a, u(y, t) = 0
for y <a.
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DEFINITION F+ consists of all data f+ of the form (9.99+) where m in Co is
supported on 0 < s.

THEOREM 9.34

(i) F+ satisfies the first two properties of outgoing subspaces that are listed
in (9.15+):

U(t)F+ C F+fort > 0; flU(t)F+ = (0).

(i i) Every f+ in F+ is E-orthogonal to every e+ and e_ defined in (9.91').
(iii) The energy of f+ defined by (9x.98+) is

(9.100) E(f+) = 2 J 00 (m'(s))2 ds.
0

(iv) The outgoing translation representer of f+ is 2m'(s).

PROOF:

(i) Follows from (9.98+).

(ii) Since f+ is independent of x and zero for y < 1, the integration in

(f+,e+)E and (f+,e_)E

acts only on e+ and e_. By Lemma 9.33, e+ and e_ are zero.

(iii) From (9.99+) we get for the first component of f+

(9.101) fy = Y-"Zm'(logy) +
1

2Y-I/2m(log Y);

therefore. according t(y'o (9.88),

1
E(f+)= f -(m' + m2-4ym2+Y-tm'2)dY

fao / oo roo

= J (2y-I mi2 + ymm')dy = f 2m'(s)2ds +
J

mm' ds
1 0 0

= 2 f(m'(s))2
00

ds .

(iv) From (9.99+), for s > 0

fl (es) = es'2m(s) , fe(e) = -eJ12m'(s) .

Setting this into formula (9.97+) for R+ f+, we conclude that for s > 0

R+f+ = r+(s) = 2m'(s).

Fort > Oandfors >0,

U(t)f = (y"2m(Iog y - 1), -yi/2m'(Iog y - 1).

Setting this into the formula (9.96') for R+U(t) f+ gives

R+U(t)f+ = r+(s - t) = 2m'(s - t).
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Since this holds for all t > 0, s > 0,

(9.102) r+(s) = 2m'(s)

holds for all s. 0

The incoming translation representer r = R_h of any h in H is defined anal-
ogously to (9.97+) as

(9.97)_ r_(s) = dse-s12h1(es) + e-s"2h2(es).

R_ transmutes the action of U(t) into translation to the left:

R_U(t)h =r+(s+ t).

F_ is defined analogously to F+; it consists of the initial data of solutions

u_(y,t) = y1"2n(logy+t),

where n is a differentiable function of compact support contained in 0 < s. The
initial data of u_ are

(9.99)_ {y112n(log y), y1/2n'(log y)) .

The analogue of Theorem 9.34 holds for the space F_.

THEOREM 9.35 F_ and F+ are E-orthogonal to each other.

PROOF: This is a simple calculation. Using formula (9.101), and its analogue
for f_, in the definition of the energy scalar product, we have

ME
°O

(in'(f+. )E = J [y' + Im )I n'+ n I - Imn - I m'n' dy
/'lily \\\

f(m'n= J (m'n + mn') a = + mn')ds = 0

O

The operator L has a single square integrable eigenfunction g with positive
eigenvalue:

Ig=1, Lg=4g.
This gives rise to two eigenfunctions of U(t):

P+ _ (1, 1/2), p_ _ {1, -1/2),
(9.103)

U(t)P+ = e`12P+, U(t)P- = e-'12 P_

LEMMA 9.36 p_ is E-orthogonal to F+, and p+ is E-orthogonal to F_.
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PROOF: This is again a/calculation based on (9.99+):

(f+, P-)E = -4 f yt /2m
+

(yI/2m',
1

= f oo

(- y 4/2m(logy) + y 2/2m'(log y))dY

e-s/2
m(s) +

as/2
=

foo
m'(s)ds = 0,

4
2

as rfay be seen by integrating the second term by parts.
(i P+)E = 0 can be proved similarly. 0

Denote by F+ those elements f of F+ that are orthogonal to p+. Then U(t) f,
too is orthogonal to p+, and by Lemma 9.36 to p_ as well. The energy norm is
pos tive on the orthogonal complement of p+ and p-.

H+ is the closure in the energy norm of U(t)F+.

TH .OREM 9.37 H+ consists of all f in H that are E-orthogonal to the eigendata
e+, i nd e_ defined in (9.91'), and p+, p_ defined in (9.103).

SKF_TCH OF PROOF: According to part (ii) of Theorem 9.34, every f+ in
F, :s E-orthogonal to the eigenfunctions e+ and e_. By Lemma 9.36, f+ is E-
ort ogonal to p_, and by definition of F+, f+ in F+ is orthogonal to p+ as well.
Sin e U(t) preserves the E-scalar product,

0 = (f+, e*)E = (U(t)f+, U(t)e±)E = eTi '(U(t)f+, ef)E

it f .llows that U(t) f+ is E-orthogonal to a+, e_, as well as to p_ and p+. But
the so is every f in H+, the closure of U(t)F+. The content of Theorem 9.37 is
tha . conversely. the E-orthogonal complement of F° is spanned by these eigen-
fun dons. This can be shown by demonstrating that (A - k/)-1 acting on the E-
ortogonal complement of F+ is a compact operator. For complete proof the reader
is r1~ferred to Lax and Phillips (1985); below we merely give the key lemma.

L E I M n 9.38 Denote by H° the space of all g in H that are E-orthogonal to p+
an4 p_. Such a g is E-orthogonal to F+ iff R+g - 0.

PROOF: Rewrite formula (9.97+) for the outgoing translation representer in
terlf is of the variable y instead of s:

R+g = y1/2Dy81 - 2Y-1/281 - y-1/282

De I ore by ft and f2 the components of f+. Using formula (9.99+) we get

(f+, g)E = f [iyii Dy81 -
1

4y2 Ail +
1

y2
f28z dY

(9.104) -3/2

= f [y_ii2(mi +
1

2m)Dy81 - 2

4 mgl - Y-3/2m'g2 dy.
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We integrate the second term by parts:

f = 2 -'/2(!m -m,gudy;
J y

set this into (9.104):

rr dy
(f+, 9)E = f mLy1/2D.91 - 2v-3/291 -.V

_3/2
2 dy = f m'(1ogy)R+g y .

Switch to s = logy as variable:

(9.104') (f+, 9) E = f m'(s)R+g(s)ds.

It follows from (9.104') that if R+g(s) - 0, then (f+, g)E = 0 for all f+ in F.
Conversely, if (9.104') is zero for all m'(s) satisfying orthogonality of f+ to p+:

f e-5/2m'(s)ds = 0,

it follows that R+g(s) 0.

We define similarly F°, and H_ as the closure of U(t)F_. The analogue of
Theorem 9.37 holds:

H_ consists of all f in H that are E-orthogonal to a+, e_, d+, d_.
These two results show that H+ and H_ have the same E-orthogonal comple-

ment. But then H+ and H_ are the same space; we denote H+ = H_ as H, for it
is the subspace on which U(t) has a continuous spectrum.

We are now back in the framework of LP scattering theory presented in Sec-
tion 9.2. The one-parameter group of unitary operator U(t) acts on H, There is
an incoming and an outgoing subspace F° and F+, E-orthogonal, having the usual
properties. Each gives rise to a translation representation given by R+, and R_
with a sign reversal.

Note that these representations have been constructed explicitly, without ap-
pealing to Sinai's theorem.

We can describe the scattering process as follows:
Let u be an incoming wave, defined for t < 0 by

(9.105) u(x, y, t) = y-1/2n(log y + t),

n(s) supported on s > 0. For t > 0, the wave impinges on the edge x2 + y2 = I of
the fundamental triangle T, and is scattered by the geometry of T. For t tending to
infinity u(t) becomes outgoing, as may be seen by the following argument: Denote
by h the initial values of u defined by (9.105). Given any s > 0, there is an f+ (e)
in F+0 and a t (E) such that

Ilh - U(-t(E))f+(E)II E < E .

Since U(t) preserves energy,

II U(t (E))h - f+(E)IIE < E .

This shows that u(x, y, t (e)) is very nearly outgoing.
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The scattering operator relates the incoming and outgoing translation represen-
tations, and the scattering matrix relates their Fourier transformations. Since the
continuous spectrum has multiplicity one-the translation representers are scalar
valued functions-the scattering matrix is a scalar valued function. Pavlov and
Faddeev have determined M(a) as

r(Z)r(io)C(2io)
(9.106) M(a) =

r(Z +2ia)
where is the Riemann C function. Denote by z the zeros of C; the zeros of M(a)
are located at a = z/2i; so the Riemann hypothesis is true if all zeros of M(a)
have imaginary part -i/4.

Let Z(t) be the LP semigroup associated with the scattering process; see Sec-
tion 9.3. According to Theorem 9.9, the spectrum of the infinitesimal generator G
of Z(f) consists of those complex numbers y for which iy is a zero of M(a).

According to Phillips' spectral mapping theorem for semigroups, if y belongs
to the spectrum of the generator G of Z(t) eY' belongs to the spectrum of Z(t).
Using this fact Pavlov and Faddeev examined the following intriguing possibility.

Suppose we can show that Z(t) decays exponentially:

(9.107) lim
1

log 11Z(t)II =a < 0.
t-+ao t

Since the spectrum of Z(t) lies in the disk of radius IIZ(t)II,

(9.108) I et r I <
e(a+e)t

for all y in the spectrum of G; since e - 0 as t -+ oo, it follows from (9.107) that

(9.108') Rey <a.
The zeros of M(a) are iy, and therefore the imaginary part of the zeros of M(a)
are a. It follows that the zeros z = 2ia of the function have real part > -2a.
If one could prove (9.107) for a = 1/4, the Riemann hypothesis would follow.

Scattering theory is a big subject. In the bibliography below we list mainly
those items that were used in the text.
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CHAPTER 10

Hyperbolic Systems of Conservation Laws

No monograph on hyperbolic equations is complete without some discussion
of a nonlinear instance. Systems of conservation laws in a single space variable is
a well-rounded subject, suitable for presentation in an introductory monograph.

The Euler equations of compressible flow, discussed in Section 10.6, are an
important example of a hyperbolic system of conservation laws.

in phenomena governed by nonlinear hyperbolic equations signals propagate
with finite speed, just as in the linear case. Singularities propagate along character-
istics, but unlike the linear case, can arise spontaneously, leading to the formation
of shocks. Time is not reversible as for linear equations but future and past are
different, as they are in real life. There is a substantial loss of information as time
moves forward, which can be interpreted as an increase of entropy.

The basic existence theory of solutions of hyperbolic conservation laws in a
single space variable is due to Jim Glimm (1965). It is a scandal of mathemati-
cal physics that, apart from isolated results, no comparable theory exists for more
space variables.

10.1. Scalar Equations; Basics

Many phenomena in the solutions of nonlinear hyperbolic equations are al-
ready manifested by solutions of the simplest nonlinear equation

(10.1) u,+uuX =0.

The left side can be interpreted as a directional derivative, leading to the following
form of (10.1):

du dx
(10.2)

_
dt

0,
dt

= U.

The first equation says that u is constant on the curve, call it characteristic, along
which we are differentiating; the second equation says that the speed u with which
this curve propagates is constant. Therefore the characteristic curves are straight
lines.

Given initial values u(x, 0) = uo(x), we draw a straight line from each point
(x. 0) traveling with speed uo(x). If uo(x) is differentiable, these lines cover a slab
0 < t < T in a one-to-one fashion and provide these a solution of the initial value
problem.

ExERCISE Prove the last statement.

165
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When uo(x) is an increasing, smooth function of x, the straight lines cover the
whole half-plane x, t, t > 0 in a one-to-one fashion. But consider the case when
uo(x1) > uo(x2) for some pair x1, x2, where x1 < x2. In this case the characteristics
issuing from xI and x2 intersect at time t, = (x2 - x1)/(uo(x1) - uo(x2)):

X .T.

at the point of intersection u(x, tt) would have to be equal to both uo(xl) and
140(x2). an impossibility. So there is no continuous solution beyond the time t,

A similar breakdown of solutions of the Euler equations of incompressible
flow, observed in the middle of the nineteenth century caused a crisis in fluid dy-
namics. The leading theorists, Stokes and Airy among them, have grappled with
the problem. Its resolution came from the greatest mathematician, Riemann, who
pointed out that the equations of fluid dynamics are integral conservation laws of
the following kind.

Denote by u = u(x, t) the density of some quantity that obeys a conservation
law, and by f = f (x, t) the flux that transports that quantity. Then the total amount
of that quantity contained in any smoothly bounded domain C changes at the rate
at which that quantity is transported across the boundary of C:

(10.3) dtJ u(x,t)dx=-J f ndS.
C ac

The minus sign occurs because n denotes, as usual, the outward normal to aC.
If u and f are differentiable, the differentiation on the left can be carried out

under the integral sign, and the boundary integral on the right can be transformed
by the divergence theorem, leading to

(10.4) u, + div f = 0.

Riemann then pointed out that whereas the differential equation (10.4) makes
sense only for differentiable functions, the integral form (10.3) is meaningful for a
much larger class, such as discontinuous ones.

Today of course we can, using the theory of distribution, make sense of the
differential equation. Riemann, in 1860, had anticipated that theory by almost a
hundred years.

Riemann proposed that solutions can by continued beyond the time when sin-
gularities form, as solutions in the integral sense (10.3). Furthermore he derived
the law of propagation of discontinuities of solutions in the integral sense. We
shall carry out the calculation in one space dimension; the differential form of the
conservation law is

(10.5) u,+fT=0,
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where f is a function of u and of other densities. Let x = y(t) be a curve along
which u is discontinuous; since f is a function of u, it too is discontinuous. We
shall denote by u1, u' and f r, jr the values of u and f at the left and right sides of
the discontinuity.

We take in (10.3) the domain C to be an interval [a, b] containing y(t). Then
(10.3) says that

d rb
(10.6)

dt J
u(x,t)dx = f° - fb.

a

We break up the integral on the left as
b y(r) rb

f udx= f udx+J udx.
a a y(t)

Its i -derivative is
y b

1 utdx+ytu`-ytur+ J udx.
a y

Expressing u, to the left and right of y from (10.5) and carrying out the integration
we get

fa-fr+yt(n'-ur)+f'- f'.
Setting this into (10.6) and solving for y, = s, the speed of propagation of the
discontinuity, we get

(10.7)
]

where [ ] denotes the jump in the quantity in brackets upon crossing the disconti-
nuity.

Equation (10.7) is, or should be, called the Riemann-Rankin-Hugoniot condi-
tion (RRH).

We return now to equation (10.1) and write it as a conservation law

(10.8) u,+I IU2/ =0.
.,

For this conservation law the RRH condition, with f (u) = Zu2,
u1

2
ur

Consider now the following initial value problem:

I forx < 0
(10.9) Uo(x) = I - x for 0 < x < 1

0 for I < x.

For r < I this initial value problem has the solution

1 forx < t
(10.10) u(x,t) _ fort < x < 1

0 for l < x .
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The characteristic lines issuing from the interval 0 < x < I all intersect at the
point (1, 1). So no solution exists in the classical sense for t > 1. But there is a
discontinuous solution that satisfies the jump condition (10.8'):

(10.1(y)
u(x,t)= 110 for.r<1+2

fort+2 <x.
The function u(x, t) defined by (10.10) fort < l and by (10.10') fort > I is a
solution of the initial value problem (10.9) for the conservation law (10.8).

Consider now the initial value problem

(10.11) u0(x)0 forx<0
l 1 for O < x.

The discontinuous solution

(10.12) u(x, t) =
(0 forx <

2S1 for2 <x
satisfies the jump condition (10.8'), and is therefore a solution in the integral sense
of the conservation law (10.8).

On the other hand, the function

0 forx <0
(10.12') v(x,t)= for0<x <t

I fort < x
is a continuous solution of the differential form (10.1) of the conservation law
(10.8). These examples show that within the class of solutions in the integral sense
an initial value problem may have several solutions. Therefore this class has to be
narrowed. Recall that we were forced to introduce discontinuous solutions because
of the collision of characteristics. Therefore we only accept discontinuities that
separate two characteristics that otherwise would impinge on each other; that is, if

(10.13) o1 > s > u'.
We turn now to general scalar conservation laws

(10.14) u, + f (u)x = 0 .

The differential form of this equation is

(10.14') u, +a(u)u, = 0, a(u) = d .

This equation is genuinely nonlinear if the derivative of a(u) with respect to u is
nonzero. This requires f to be strictly convex or concave; for definiteness we take
f (u) to be convex. The condition of admissibility, the same for convex and concave
f, is
(10.13') a(ul) > s > a(u').
In addition to its geometric meaning this condition has a physical meaning; this
will be explained in Section 10.4.
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For a flux function that is neither convex nor concave, OleTnik has given the
correct admissibility condition.

A discontinuity that satisfies the RRH condition (10.7) and the entropy condi-
tion (10.13') is called a shock.

A solution u of (10.14) all of whose discontinuities are shocks is called an
admissible solution.

10.2. The Initial Value Problem for Admissible Solutions

We start with the following result of Kruzkov; see also Keyfitz.

THEOREM 10.1 Let u and v be a pair of admissible solutions of the same conser-
vation law (10.14), f (u) convex. We claim that

(10.15) lu(t) - V(t)Iu = f Iu(x, t) - v(x, t)Idt

is a decreasing function oft.

PROOF: Denote by y1(t), ... , the points where u(x, t) - v(x, t) as a function
of.r changes sign. We rewrite (10.15) as

(10.15') (u(x, t) - v(x, t))dx ,
r

where S = I if the integrand in (10.15') is positive, and S = -i if it is negative.
Differentiate (10.15') with respect to t; we get

dt
lu(t) - v(t)ILI

(u, - v,)dx(10.16)
fy.'

1
+(u-v)(Yn+I)ddt 1 -(u-v)(Y.) dt J

Expressing u,, v, as -f (u), - f (v)x we get for (10.16)

[f(V(Y.+,)) - f(u(Y.+1)) - f(v(Y.)) + f(u(Y.))

(10.16') + (u - v)(Y,+I)dd! , - (u - v)(Y.)

_ E f(v) - f(u) + (u - v)-]
dt IN

If the change in sign of u - v at occurs at a point of continuity of both u and
v, the contribution to (10.16') at is zero. Suppose u has a shock at and v
is continuous there; for convex f, by (10.13')

(10.17) ut > v > u'.
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Then the sign of u - v in yn+I] is positive, so S = 1, and the contribution to
(10.16') at y,,+, is

Uf (v) - f (u') + (u' - v) f (urf =

u

f
(u)

where we have used the RRH relation (10.7). We rewrite the formula above as

(10.18)
v -

ur f (u')+
u' -u

f (v) -- [ of - ur Ul - r(r f(u'),

Since, by (10.17), v lies between ur and ur, and since f (u) is convex, the value of
f (v) is less than the value at v of the linear function that interpolates f between ul
and u,. This shows that (10.18) is a negative quantity.

The continuation to (10.16) at y,, is likewise negative. The same is true when
both u and v are discontinuous at y,,. U

An important consequence of Theorem 10.1 is

COROLLARY 10.1' Admissible solutions are uniquely determined by their initial
data.

We turn now to the problem of existence of admissible solutions with given
initial values. We start with the observation that a convex function f (u) lies above
its tangent lines:

(10.19) f(u) ? f(v) + a(v)(u - v),

where a(v) = f'(v).
Let u(x, t) be a smooth solution of (10.14), and suppose that its initial value

uo(x) is zero for x large negative. Then the same is true for u(x, t) for any t for
which u(x, t) is defined. We define U(x, t) as

s(10.20) u(z, t)dz.U(x, t) =
J 00

Conversely

(10.20') u=Ux.
Integrating the equation

from -oo to x gives

(10.21)

u,+f(u)x=0

U,+f(Ux)=0;
here we assumed that f (0) = 0. We apply inequality (10.19) with u = Ux:

-U, = f (u) > f (v) + a(v)(u - v),
which we can rewrite as

(10.22) U, + a(v)Ux <- g(v),

where

(10.22') g(v) = a(v)v - f (v).
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Denote by y the point where the line dx/dt = a(v) intersects the initial line
t = 0:

(10.23)
X

Y = a(v)
t

Denote the inverse of the function a(u) by b; we obtain from (10.23) that

(10.23') b(xY) =v.

The left side of (10.22) is a directional derivative of U; integrate (10.22) from
0to1:

(10.24) U(x,t) < U(y,0)+tg(v).

Expressing v from (10.23') gives

(10.25) g(v) = g(1 b(x t Y))

Denote the function g(b(s)) as h(s). From (10.22') we get, using f = a, that

gv = a'(v)v;

therefore by the chain rule

dsh(s) = g'(b)b' = a'(v)b'(s)v.

Since a and b are inverse of each, and b(s) = v, it follows that a'(v)b'(s) = 1,
which leaves

(10.26) h'(s) = b(s).

This determines h up to a constant. Since f (0) = 0, it follows from (10.22') that
g(0) = 0. Denote a(0) by c; then b(c) = 0, and so

(10.26') h(c) = g(b(c)) = g(0) = 0.
Note that b is an increasing function, and so h is convex.

Coming back to (10.24), we use (10.25) to rewrite it as

(10.27) U(x, t) <U(y,0)+th(x-t Y)

Since (10.22) holds for arbitrary v, (10.27) holds for arbitrary y. Since for v =
u(.%. t) equality holds in (10.22) along the whole characteristic issuing from x, r,
for each x, t there is a value y for which equality holds in (10.27). We summarize:

THEOREM 10.2 Let u(x, t) be a smooth solution of (10.14):

u, + f (u)x = 0.

Then

(10.28) u(x, t) = b
x

t
y
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where y = y(x, t) minimize,

(10.29) Uo(y) +th(x t
)

= G(x, y, t).

Here b is the inverse function of a(u) = d f//du, f (u) is convex.

(10.30)
du

= b(u) , h(c)=O for c = a(0) ,

and
r>

(10.31) Uo(y) =
J

uo(z)dz, uo(x) = u(x,0).
00

Since the derivation of Theorem 10.2 used the integrated form (10.21) of the
differential equation (10.14), it is not surprising that the formula (10.28) also holds
for distribution solutions.

THEOREM 10.3 Let uo(x) be any bounded, L' function on the x-axis.
(i) The function u(x, t), defined by formulas (10.28), (10.29), is an admissi-

ble solution of equation (10.14) with initial value uo(x).
(ii) All discontinuities of u(x, t) are shocks.

PROOF OF THEOREM 10.3(i): Since uo(x) is integrable Uo(y) as defined by
(10.31) is a bounded, continuous function; h(u) is a convex function that achieves
its minimum at u = c. Therefore the function G(x, y, t), defined by (10.29),
achieves its minimum in y at some point or points.

We can combine (10.28) and (10.29) into a single formula:

(10.32)

where

(10.32')

Similarly

(10.33)

where

u(x, t) = L1 urn uN(x, t) ,

u (x t) --
fb(x1)e-NG(x.y)dY

N , f e-NG(x.r) dy

f (u) = L' r11 n fN,

f f b e-NG dy
(10.33') fN(x, t) =

,

-NG dYf e
We can express uN and fN in terms of the function

(10.34) VN(x, t) = log

f
e-NGdy

as

(10.34')
__ l a _a

UN
l

aXVN, fN=NatVN,
where we use the relations

h'=b, sb(s) - h(s) = f (b(s)) .
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EXERCISE Verify these relations.

If follows from (10.34) that

a,uN + axfN = 0.

Let N -+ oo; using (10.32) and (10.33) we conclude that the equation

u,+f(u)x=0
is satisfied in the sense of distributions.

It follows from (10.32') that UN(X, 0) tends to uo. This completes the proof of
the first part of Theorem 10.3.

To prove the second part, that all discontinuities of u are shocks, we need

LEMMA 10.4 For t fixed, denote by y(x) any value of y where G(x, y) achieves
its minimum: y(x) is a nondecreasing function of x.

PROOF: We shall show that for x1 < x2, G(x2, y) does not take on its mini-
mum for y < yI, where G(xl, y) takes on its minimum at yI; that is,

(10.35) Uo(y1)+th (xl t yl) < Uo(y)+th
/l

X
Y\
I.

Next we apply Jensen's inequality to the convex function h(s); since x1 < x2,
y < Y1,

h\lx2Y1/ f+h \lxlt Y/ I<h(xI FYI)+h(X2t Y/I.

Multiply this by t and add to (10.35); after cancellationon we get

G(x2, Y1) < G(x2, Y)

This proves that G(x2, y) does not take on its minimum for y < yI.

PROOF OF THEOREM 10.3(ii): Using formula (10.28) and the fact that b(s)
is an increasing function, and thatx1 < x2, yI < y2 we get

u(x1, t) = b
/l x1 t Y11 > b(xI Y2),

X2 y2
u(x2,t) = 6

t
Subtract the first from the second:

u(x2,t)-u(xI,t) <b

\\

t x2 t Y2)-b(xl t Y2'.

Denote by k an upper bound for b'; then the right side is _< k(x2 - xI)/t,
therefore since x2 - XI is positive,

(1036)
u(x2,t) - u(x,,1)

<
k

. - ,

X2 - x1

So u(x, t) satisfies a one-sided Lipschitz condition; it follows that at a discontinu-
ity. UI > U,.
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From the explicit representation of the solution we can extract information
about the dependence of solutions on their initial data.

THEOREM 10.5 Denote by S(t) the operator that relates admissible solutions of
(10.14) to their initial data The operators S(t) form a semi-group, that is, for all
s,t>0

S(s + t) = S(S)S(t).

PROOF: For uo in L 1 and bounded, define

We claim that
00

U(x, t) = G(x, y(x, t), t),
where G is defined by (10.29) and y(x, t) minimizes G(x, y, t). For smooth so-
lutions this follows from the derivation of Theorem 10.2; for solutions in Theo-
rem 10.3 we argue as follows: define

UN(X, t) = J UN(Z, t)dz.X

Since uN tends to u in the L' norm, it follows that UN tends to U uniformly. It
follows from (10.34') that UN = -VN/N. But it follows from (10.34) that VN/N
tends to -G(x, y(x, t), t). Denote S(t)uo as u(t); by Theorem 10.3,

u(x,t)=b x y

where y(x, t) minimizes
yl

Uo(y) +
th(x -t

l
Similarly, denote S(s + t)uo as u(s + t); then

(10.37) u(x, s + t) = b1 ys+t
where y minimizes

(10.37') Uo(y) + (s + t)h(s+1x
y

Denote S(s)u(t) as v(s); then

(10.38) v(x, s) = b(x zl
\\ s J

where z minimizes

(10.38') U(z, t) + sh (x z l
\ s J

We have shown above that

U(x, t) =
J

u(z, t)dz.
x

U(z,t)=minUo(y
\\\

)+thl z
t y)
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Setting this into (10.38') characterizes z(x, s) as the minimizer of

(10.39) minmin[Uo(y)+th(z t
y)+sh(xs z)].

We perform the minimization first with respect to z; since h' = b, we get

b(zty)-b(xsz)=0.

Since b is a strictly increasing function,

(10.39')

from this

Setting this into (10.38) gives

(10.40)

z-y _ x - z
t s

tx + sy
z= .

s + t

x-$v(x,s)=b s+t
Setting (10.39') into (10.39) gives

minlUo(y)+(s+t)hl s+t)]

the same minimization problem as (10.37'). Comparing (10.37) and (10.40) we
conclude that

u(x,s + t) = v(x,s).

This proves the semigroup property.

The next result shows that the admissible solution of the nonlinear equation
(10.14) shares some of the properties of solutions of linear equations.

THEOREM 10.6 Suppose that the initial value uo(x) of a solution u is in L', and
is bounded: Iuo(x)I < m for all x; then

(i) Iu(x,t)I < m for all x and all t,
(ii) signals propagate with speed < max{la(-m)I, a(m)}.

We leave it to the reader to deduce these properties from the explicit formula
for the solution.

More interesting are results about solutions of nonlinear conservation laws that
have no counterpart for linear equations.

THEOREM 10.7

(i) Suppose that the initial value uo of u is in L I; then fort > 0. u(x, t) is
hounded for all x, and

(10.41)
lu(x,t),

<
const

asi - oo.
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(ii) Take the set of all initial values of uo that are supported in a given finite
interval, and whose L' norm is < 1. For t > 0, the corresponding admissible
solutions u (x, t) form a precompact set in L 1.

PROOF:

(i) Since uo is in L 1, -C < Uo(y) < C for all y, C = 1U0 I LI We recall from
(10.29) that

G(x, y, t) = U11(y) + th
x

t
y

the function h(s) reaches its minimum at s = c, h(c) = 0. Since h is convex,

(10.42) h(s) > q(s - C)2.

For any value of x and t, the choice of yo = x - ct yields

G(x, yo, t) = Uo(yo) < C.

Therefore the minimizer y of G(x, y, t) must make G < C. Using (10.42) we have
for any y

/X- 2G(x,y, t) > -C + tq y
I - c

In order for the right side to be < C, we must have
/ 2tq(x-y -c < 2C.
\\\ t ////

so for the minimizing y

(10.43)

Since b(c) = 0,

(10.44)

Ix -y

Ib(s)I < kIs - cI ,

-c FC

where k is an upper hound for the derivative of b. Setting (10.43) into (10.44) we
get

since by (10.28)
-,y

u(x, t) =
b(x

(10.41) follows.

(ii) We claim that fort > 0, all u(x, t) are supported in an interval somewhat
larger than the support of uo, and that all I u (x, t) l are bounded. This can be deduced
by the type of argument presented in the proof of (i). It follows from inequality
(10.36) that

kx
u(x, t) -
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is a decreasing function of x. It is not hard to show, and is left to the reader, that a
set of decreasing functions uniformly bounded on a finite interval is precompact in
the L I norm. 0

Luc Tarter has established the much deeper result of compactness for solutions
of hyperbolic systems of a pair of conservation laws.

Theorem 10.7 shows that most of the information contained in the initial data
is lost with the passage of time. A more precise measure of this loss has been given
by DeLellis and Golse.

From the fact that

u,+f,=0
is satisfied in the sense of distributions it follows that f u(x, t)dx is a conserved
quantity, that is, its value is independent of t. Somewhat surprisingly, there is a
second conserved quantity:

THEOREM 10.8 Let u denote a solution whose initial value uo is in L'. Denote as
before by U(x, t) the integral of it (x. t):

r
U(x,t)-J u(z,t)d,.

We claim that

inf U (x, t)

is a conserved quantity.

PROOF: We have shown in the proof of Theorem 10.5 that

r-y
U(x, t) = min U0(y) + th

t

Since h is a nonnegative function, it follows that

U(x,t) > infUo(y).

Suppose that U1>(y) achieves its minimum at y; then U(x, t) achieves it min-
imum at x,, = y, + ct, and it is equal to the minimum of Uo(y). The equality of
the infima can be proved analogously. 0

The next result shows that there are only these two conserved quantities that
depend continuously on the initial data in the LI topology.
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THEOREM 10.9

(i) Let p and q denote two nonnegative numbers, and d a positive number
Define

(10.45) N(x. t: v. a) _
(x/t - c)/d for - pt < x - ct <
0 otherwise.

qt

Define f (u) = cu + du22/2. Then N is an admissible solution of

N,+f(N),r=0
with two shocks.

(ii) Conversely, let f (u) be a convex function, f (0) = 0, f'(0) = c, f"(0) _
d. Let it be an admissible solution of

u, + f (u)s = 0
whose initial value uo belongs to L'. Define

r00

p = -2d inf J uo(x)dx, q = 2d sup f uo(x)dx .

We claim that

(10.45') lim Iu(t) - N(t; p, qIL1 = 0.
I -.

PROOF: Part (1) is a simple calculation; part (ii) follows from the explicit
description given in Theorem 10.3 of admissible solutions in terms of their initial
data. We leave the working out to the reader.

It follows from the asymptotic description (10.45') that any conserved quantity
for admissible solutions is a function of p and q.

10.3. Hyperbolic Systems of Conversation Laws

These are systems of equations of the form

(10.46) a,u;+afi =0, i = 1,...,n;
each f , is a function of all the u1, ... , u,,. Denote by u the column vector of the
u,; then (10.46) can be written as a quasi-linear system

(10.46') u, + A(u)ux = 0,

where the rows of A are the gradients of the f; :

(10.47)
af,
auk

We assume that the system (10.46') is hyperbolic, that is, that for all values of u,
A(u) has real and distinct eigenvalues ak(u),

We denote by rk(u) the right eigenvectors:

(10.48) Ark = akrk .
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We need (10.46) to be genuinely nonlinear; we require not only that the eigen-
values ak should depend on it, that is grad ak 0, but also that it be not orthogonal
to rk: grad a4. rk 0. We normalize rk so that

(10.49) rk grad ak = I I.

If for a characteristic field rk grad ak = 0, we call the k'h characteristic field
linear/v degenerate.

Let a be a solution of the systems of conservation laws (10.46) that is piece-
wise continuous. Then across a discontinuity the RRH jump condition for each
conservation law must be satisfied:

(10.50) sluk)=Ifkj, k= 1.....n.
where s is the speed of propagation of the discontinuity.

Just as in the case of scalar conservation laws, not all discontinuous solutions
are admissible. We recall from (10.13') that for scalar conservation the admissibil-
ity condition was

a(u') > s > a(a'),

where s is the speed with which the discontinuity propagates, and a(u'), a(u') the
characteristic speeds on the left and right sides of the discontinuity.

Analogously, for systems we require that there be an index k, I < k < n, such
that

(10.51) ak(ut) > s > ak(u'),

and

(10.51') ak_I(«') < s < ak+1(u')

For weak shocks. (10.51') follows from (10.51). It follows that characteristics
with speed ak(u').ak+I(u') starting to the left of the discontinuity,
and characteristics with speed aI(u'), ... , ak(u') starting to the right, impinge on
the curve across which a is discontinuous, carrying n - k + 1. and k, a total of n + I
pieces of information to each point on the curve of discontinuity. This information.
together with the n jump conditions (10.50), suffices to determine uniquely the
2n + I quantities its. a", j = 1, .... n, and s.

A discontinuity across which (10.50), (10.51), and (10.51') are satisfied is
called a k-shock. A piecewise continuous distribution solution, all of whose dis-
continuities are shocks, is an admissible solution.

We describe now all states u' near tat that can be connected to u(I) through a
k-shock.

THEOREM 10.10 The set of states u' near at that can be connected to u' through
a k-shock form a smooth one-parameter family of states u(p), 0 > p
u (0) = ut : the shock speed s is also a smooth function of p.

A proof can be based on bifurcation theory.
We shall now calculate the first two derivatives of u(p) at p = 0. Differentiat-

ing the jump relations (10.50) with respect to p gives

(10.52) .'slut + sit = i = Aii ;
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here the symbol ' denotes differentiation with respect to p.
At p = 0, [u] = 0, so

s(0)ii(0) = A(u1)u(0) .

For u(0) 0 this can be satisfied only if s(0) is an eigenvalue of A(u'):

(10.53) s(0) = ak(u'), u(0) = constrk(ul).

By appropriate choice of parameter the constant can be chosen to be one.
Differentiating (10.52) once more and setting p = 0 we get

su+2su=Aii+Au.
Set (10.53) in this relation; dropping the subscript k we get

(10.54) au + 2sr = Aii + Ar.

To determine s(0) and ii(0) we differentiate the relation

ar = Ar, u = u(p),

with respect to p; we get

ai+ar=Ai+Ar.
Subtract this from (10.54):

(10.55) a(ii - i) + (2s - a)r = A(ii - i) .

Take the scalar product of this vector equation with the left eigenvector I of A
corresponding to the eigenvalue a; we get

(10.56) 2s - a = 0.

Since a = grad a grad a r = I according to the normalization (10.49),

(10.56') 6(0) = 1 . i(0) = 2 .

Setting (10.56) into (10.55) shows that ii - i is an eigenvector of A

(10.57) ii - i = const r ;

by a suitable reparametrization we can make that constant 0. So

(10.57') ii (0) = ;(0).

According to (10.56'), i(0) is positive; it follows that the left side of inequality
(10.51),

ak(in) > S(P),

holds for p small and negative.
Since 6(0) = I = 2i(0), the right side of inequality (10.51),

s(p) > ak(u(P))
holds for p negative and small.

For shocks of medium strength an additional condition due to Liu must be
imposed.
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We turn now to an important class of continuous solutions of the equation
10.46'). centered rarefaction waves. These are solutions that are functions of

x -X0
t - to

X(), to is the center of the wave. Waves centered at (0, 0) are of the form

(10.58) u(x, t) = w -
(X)

w a vector valued function so chosen that (10.46') is satisfied. Denote x/t by q,
and denote differentiation with respect to q by'. Then

,xU,= -wt2
W1

u,t = 1 .

Setting this into
u, + A(u)ux = 0

gives

[A(w) - qjw' = 0.
This equation is satisfied if

(10.59) q = a(w(q)), w '(q) = r(w(q)).

Differentiate the first relation; using the second relation, and the normalization
(10.49) we get

1 1,

which shows that the relations (10.59) are consistent. The second equation in
(10.59).

(10.59) w' = r(w)

is an ordinary differential equation; we specify its initial value at qo = a(ut) as

w(qo) = U.

A solution will exist for q close enough to qo.
We define now the following continuous, piecewise smooth solution:

ut for x < qoT
(10.60) u(x,t) = w(x/t) for qot < x < (qo + e)t

lur for(go+e)t <x,
where

u' = w(qo + e).

Note that the solution (10.12) is a special instance of a centered rarefaction wave.
Take a(u) to be ak(u); we say that the states ul and u' are connected by the

centered k-rarefaction wave (10.60). We summarize:

THEOREM 10.11 The set of states u' near ut that can be connected to ut by a
centered k-rarefaction wave form a smooth one-parameter family.
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Introduce as new parameter p = q - qo; we can then combine the states u'
that can be connected to ul through either a k-shock or a k-rarefaction wave into a
one-parameter family u(p), -e < p < e.

THEOREM 10.12 This one-parameter family is twice differentiable.

PROOF: We only have to verify that the two one-parameter families out of
which we have built u(p) have the same first and second derivatives at p = 0.

According to formulas (10.53) and (10.57'), for the p < 0 branch

iu(0)=r,
For the branch p > 0 we deduce from (10.59'), and by differentiating (10.59'), that

w'(0) = r, w"(0) = r',

the same as for the other branch.

THEOREM 10.13 Suppose that the kh characteristic field is degenerate in the
sense that

(10.61) grad ak rk = 0 .

Given ul, there is a one-parameter family of states u' such that

(10.62) u(x, t) =

where

f ut forx <st
Eu' forst<x,

s = ak(ur) ,
is a solution in the distribution sense of the conservation laws (10.46).

PROOF: We shall construct a one-parameter family of states u(p) so that for
u' = u(p) the jump conditions (10.50) are satisfied. To this end we differentiate
the jump conditions with respect to p; since s is independent of p, we get

(10.63) su = Au .

We set s = ak(ut), and require that

u = rk(u) , u(0) = u1 .

We claim that ak(u) is constant along this one-parameter family; this follows from

dk = gradak u = gradak rk = 0,

where we have used (10.61).
It follows that (10.63) is satisfied for all p, from which the jump conditions

follow.

Solutions of form (10.62) are called contact discontinuities.
We now have all ingredients in hand to construct an admissible solution of the

Riemann initial value problem:

(10.64) u0(x)
uo forx < 0

I u for O < x .
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THEOREM 10.14 Suppose that states uo and u are sufficiently close. Then the
initial value problem with uo given by (10.64) has an admissible solution, con-
sisting of n + 1 constant states uo, u 1, ... , un, separated by a shock, a centered
rarefaction wave, or a contact discontinuity, one of each family.

PROOF: The state uo can be connected through a 1-wave to a one-parameter
family u1(p1) of states to the right of uo; u1 in turn can be connected through a
2-wave to a one-parameter family u2(pi, p2) of states to the right of u1. Con-
tinuing in this fashion we can connect uo through a succession of n waves to an
n-parameter family of states.

According to (10.59),
au
- = rk ;
apk

since the rk are linearly independent, it follows from the implicit function theorem
that ( p1 ,...,. , maps uo one-to-one onto a neighborhood of uo.

How large this neighborhood is is an interesting and important problem for the
equations of fluid dynamics.

Sergei Godunov had used the solution of the Riemann initial value problem for
solving approximately arbitrary initial value problems, as follows: the given initial
value a piecewise constant initial function u3(x),

(10.65) ua(x)=mti, h6<x<(h+l)S h=0,f1,...,
where 8 is the spatial discretization, a small number, and mh is the average of u0(x)
over the ha' interval [hS, (h + 1)S].

The initial value problem with initial value us given by (10.65) can be solved
exactly. At each point hS we have to solve a Riemann initial value problem. The
waves issuing from two neighboring points of discontinuity hS and (h + 1)S will
not interact as long as

S
t a,. <

2
where a, is the maximum signal speed.

}t
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So the solutions of the Riemann problems can be combined into an exact solu-
tion.

At time t = 3/2a,,,a,, we replace this exact solution by averaging with one that
is piecewise constant, and repeat the process.

Numerical experiments strongly suggest that Godunov's method supplies good
approximations to exact solutions of the equations of compressible flow. Leveque
and Temple have proved convergence of the method for certain 2 x 2 systems, but
proof of convergence of fluid dynamics is still lacking.

In 1965 James Glimm suggested the following modification of Godunov's
method: instead of defining the quantities mj as the average of the initial values
on the interval [hS, (h + 1)3], set

mj = u(hS + rS, t),

where r is a number chosen randomly in the unit interval [0, 1]. At the next time
step another number r is chosen at random, and so on. Glimm then proved that
with probability 1 the approximate solutions constructed in this fashion converge
to an exact solution. The main ingredient of the proof if a new, powerful estimate
for the approximate solutions.

For his proof to work, Glimm assumed that the given initial value uo(x) has
small oscillation and small total variation. Robin Young showed how to prove
convergence when the total variation of uo is not small; see also Schochet.

What about uniqueness of solutions of initial value problems? Recently Bres-
san and Bianchini have proved the following vast generalization of Theorem 10.1:

THEOREM 10.15 Let u and v be a pair of admissible solutions of a hyperbolic
system of conservation laws, whose initial values belong to L'. Then

(10.66) fIu(xt)_v(xt)idx < constJ lu(x, 0) - v(x, 0)Idx.

Uniqueness of solutions with prescribed initial values is a corollary. See also
Bressan and LeFloch.

Liu and DiPema have studied the behavior of solutions of genuinely nonlinear
systems of conservation laws for t large. Under some mild assumptions on the
initial values, the analogues of Theorems 10.7 and 10.9, derived for scalar conser-
vation laws, holds:

(i) Solutions decay as 1/.,It- as t tends to oo.
(ii) As t - 00

Iu(t) - N(t; p,q)IL' _+ 0,
where N(x, t; p, q) is a superposition on n functions of form (10.45), depending
on 2n parameters p, q.

10.4. The Viscosity Method and Entropy

The equations of compressible flow consist of the laws of conservation of
mass, momentum, and energy; they form a hyperbolic system of conservation laws.
When viscosity is included, the equations become partly parabolic. The solutions
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of the inviscid equations, including solutions with shocks, are the limits of the so-
lutions of the viscous equation as the coefficient of viscosity tends to zero. This
has inspired the vanishing viscosity method for solving the initial values problem
for hyperbolic systems of conservation laws

f;
(10.46') u, + A(u)u,, = 0 A;1

a=
au

, u(x, 0) = uo(x) ,

as the limit a -+ 0 of solutions of the parabolic system

(10.67) u, + A(u)ux = euxx

with the same prescribed initial values uo.
Let u(x, t) be a smooth solution of (10.46') for t < T, its initial value uo(x)

in L'. Denote by uE(x, t) the solution of the parabolic system (10.67) with initial
value uo(x). It can be shown that fort < T,

(10.68) lim uE(x,r) = u(x,I).
s-+0

But more is true; suppose u(x, t) is an admissible solution of the system of con-
servation laws (10.46); then (10.68) holds in the Ll sense for each t. This is a
deep, recent result; see Bianchini and Bressan. We shall not present the proof, but
only sketch an argument why limits of solutions of (10.67) that are discontinuous
would satisfy the admissibility condition (10.51). We rewrite equation (10.67) in
conservation form

(10.67') u, + f (u )x = suxx .

Denote by u` its solution whose initial value is given by u(x, t) the limit of uE as
s -- 0. Suppose u has a shock traveling with speed s; denote by ut and u' the
values of u on the two sides of the shock. The jump conditions

S(u'-u')=f(u')-f(u')
arc satisfied, and so are the admissibility conditions (10.51) and (10.51'):

Rk(u') > s > ak(u'),
(10.69)

ak-I(u') < s < ak+l(u')

It is plausible to suppose that near the shock, ut(x, t) has approximately the shape
of a traveling wave of the form

(10.70)

where

(10.71)

uE(x,t)ru x -st
s

v(-oo) = u' , v(oo) = u' .

Set (10.70) into (10.67'); we get

(10.72) -sv'+f(v)'=v",
where v = v(p),' = d/dp. Integrate (10.72):

(10.72') -sv + f(v) = v'+c,
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c a constant vector. Since v'(p) tends to zero as p -+ too, c must be so chosen
that

c = -suI + f (u1) = -su' + f(ur);
here we use the jump condition satisfied by ul and u'.

The solution of (10.72') is a curve along the vector field c - sv + f (v) in R",
connecting the point ur to u'; the field is zero at both points. The linear approxi-
mation to the fields at these points is

(A(u') - sI)(v - u1) and (A(u') - sI)(v - u') .
According to the admissibility condition (10.69), A(u) - s I has n -k +I positive
eigenvalues; so the unstable manifold issuing from uI is (n - k + 1)-dimensional.
Similarly, A(u') -sI has k negative eigenvalues; so the stable manifold converging
to u' is k-dimensional. Foy has shown that for u' close to ut the unstable and
stable manifold intersect in a smooth curve connecting ul to u', which in the right
parameterization satisfies equation (10.72').

This completes the heuristic argument that limits of solutions of the equation
with viscosity tending to zero have admissible discontinuities.

We turn now to the concept of entropy.

DEFINITION A function S(u1, ..., u") is called an entropy for a system of con-
servation laws (10.46) if every smooth solution of (10.46) satisfies an additional
conservation law

(10.73) a,s+aF=0,
where F(ul, ..., u") is called the entropy flux. In addition, S(u) is required to be a
convex function of it.

To derive an equation satisfied by the pair S and F we write the system of
conservation laws in the form (10.46'), and multiply this system on the left by
grad S, denoted as Su; we get

=0.
This implies the conservation law (10.73) if

(10.74) F..
This is a system of n linear first-order equations for the pair of functions S and F.
For n = I this system is under-determined, for n = 2 determined, and for n > 2
over-determined.

What if u(x, t) is an admissible discontinuous solution of (10.46) in the dis-
tribution sense? Does S(u(x, t)), F(u(x, t)) satisfy (10.73) in the sense of distri-
bution? To answer this question we regard admissible discontinuous solutions as
limits of solutions of the viscous equation (10.67'). Multiply (10.67') by S"; if we
use (10.74) we get

(10.75)

By calculus
SX.T = CuuXX + CuuuX . u.T ,
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h e S,,,, denotes the matrix of the second derivatives of S. Since S(u) is assumed
tobe convex, S,,,, is a positive matrix, and therefore S,,,,uX uX positive. It follows
th t

SXX < SuuXX

Siting this into (10.75) we conclude that

(Ifl.76) S,+FX <ES.
Suppose of converges in LI for all t, and that u`(x, t) stays uniformly bounded.
Tl+en S(u`) converges in L' to S(u), and therefore the right side of (10.76) con-
ve4ges to zero in the sense of distributions. Since the limit of a negative distribution
is Negative. it follows that, in the sense of distributions,

(1(37) a,s(u) + aXF(u) < 0
1f ); an admissible distribution u and for any entropy-entropy flux pair S, F.

The entropy inequality (10.77) has some useful consequences:

T"EOREM 10.16 Let u be an admissible solution of a hyperbolic system of con-
sei nation laws. Suppose that the sup norm and the L1 norm with respect to x are
bo ended for all t. Let S be an entropy for the system of conservation laws. Then

(i)

(10.77') f S(u(x, t))dx

is a decreasing function oft.
(ii) At a point of discontinuity of u

(10.77") F(ur) - F(ut) < s[S(u') - S(u)]

We show now in the special case of conservation law u, + (u2/2)X = 0 that
(11.77") is equivalent to the admissibility condition u' < u1. Take S(u) = u2/2;
by1 quation (10.74), F(u) = 2u3/3. A simple calculation shows that [F(u)] -
s[4(u)] = 3[(u')3 - (u')3] - , u[(Ur)2 - (U)2] = (u' - u')3/6. So (10.77") is
egtyivalcnt to u' < ut.

For scalar conservation laws every convex function is an entropy.
Systems of two conservation laws

(1078) u,+fX=0, v,+gX=0,
where f and g are functions of u and v, have many special properties not shared
by c;ystems of more than two equations. Here we shall discuss the construction of
en opies.

Equations (10.78) can be rewritten as

(Id.78') (u), + A \u/ = 0,
v v

X

whfre

(l(79) A = (f"
8u g,
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Equation (10.78') is hyperbolic if the matrix A has real, distinct eigenvalues. The
equation (10.74) for entropy and entropy flux is

(S., S,,)A = (F,,, Fu)

Eliminate F; we get

(10.78") aS,,,, + bS,,,. + cS,,,, = 0,

where

a=-f,,, c=gu.
Clearly the second-order equation (10.78") is hyperbolic if (10.78') is. It is easy
to see that it has solutions that are convex in the small. Under a simple additional
condition it has convex solutions in the large; see Lax (1973).

For n > 2 there may be no entropy; but for many systems describing physical
phenomena there is. And when there is, it leads to a symmetric form of the system.
We rewrite equation (10.74) component-wise, using equation (10.47) to express
the entries of A as

(10.79')

So S A = F becomes

(10.80)

=
afi

A,1 .
= .1..1au1

Sifi.j = Fj,

where subscript j denotes differentiation with respect to uj. Differentiate (10.80)
with respect to uk, k any index whatsoever. We get

Sik fi. j + Si fi. jk = Fjk .

Since the matrix of second derivatives is symmetric, the second term on the left,
and the term on the right, are symmetric functions of j, k. Therefore so is the first
term. We can, using the symmetry of Sik rewrite that term as

Skili.j

which can be rewritten without indices as the matrix S.. A. So we have shown:
If a system of conservation laws has an entropy S, then S,,,,A is symmetric,

where A is defined by (10.79'). Note that it follows that A has real eigenvalues,
that is, that the system is hyperbolic.

The system is not only hyperbolic but symmetric hyperbolic, as discussed in
Section 4.4, Chapter 4. To see this denote the Hessian S,,,, as H, and multiply
equation (10.46') by H; we get

Hu,+HAu,, =0,

where H is symmetric and positive, HA symmetric.
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10.5. Finite Difference Methods

In this section we shall present an overview of the numerical approximation
of solutions of the initial value problem for hyperbolic systems of conservation
laws by discretizing the differential equation. As in Chapter 8, we denote by uk an
approximation to the value of u at the point x = hS at time t = ne; 8 and a are the
space and time scales of discretization. We denote e/S = X.

We shall only discuss explicit, two-level schemes, where uk,+1 is expressed in
terms of the values of uk. It is of paramount importance to write the scheme in

form; by this we mean of the form

(1().81) U,+1 = uk, - A(fti+1/2 - An- 1/2)!
where f1+1/2, the numerical flux, is, in the simplest cases, of the form

(10.82) .fn+l/2 = f(uk,, u%+l)
Here f (u, v), the numerical flux function, is required to satisfy the consistency
condition

(10.83) f(u,u)= f(u).
More generally, the numerical flux function could be of form

(10.82') fh+l = f (Uh-1, Uh, Uh+l, Uh+2)

f (u, v, w, z) is required to satisfy the consistency condition

(10.83') f(u,u,u,u)= f(u).
We now give some examples.

EXAMPLE 9 The conservation form of the LF scheme, discussed in Section 8.1 of
Chapter 8, is

Uh+I = (U"h-1 + uh+I 2 if Uh+l) - f (uh-1)I
This is of form (10.81), with

f(u,v)=
f(u)+f(v)+u-v

2 2A

Clearly, the consistency condition (10.83) is satisfied.

EXAMPLE 10 The conservation form of the LW scheme is discussed in Section 8.4
of Chapter 8. This is a second-order scheme, based on the Taylor approximation

2

(10.84) u(t + e) = u + cut + 2 U" + 0(e3) .

We can approximate ur = - fX with second-order accuracy by a symmetric differ-
ence quotient. u,, can be expressed as follows:

urt = -f (u)., = -f(u)rs = -(A(u)ur)x = (A(u)f(u).).,
So we set

U, _-28(f(u(X+8))- f(u(x-8))}+0(82),
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and

u = a, {A(x + )Ef(u(x)) - f(u(x - S))]

-AIx - D[f(u(x)) - f(u(x-S))]1+0(8).

The difference scheme obtaained byinserting the approximations above into (10.84)
is of the form (10.81), with the numerical flux

1
(10.85) f (u, v) =

f (u)
2

f(v) - 2 [A(u)
2

A(v) (f (v) - f (u))] .

Clearly, the consistency condition (10.83) is satisfied.

EXAMPLE I I The Richtmyer two-step method uses the LF scheme to construct an
approximation to un+1, and and makes a "leap frog" to determine uh+i:

n+I n ( n+I/2 n+I/2
Uh - Uh - f (Uh+1/2J

- f Uh-1/21
So in this case the numerical flux is

(10.85') f(u, v) = f
(U

2
v

- 2[f(v) - f(u))

Clearly, the consistency condition (10.83) is satisfied.
The reader is invited to verify that the Richtmyer two-step scheme is of second-

order accuracy. Algorithmically it is more efficient then the LW scheme, for it
avoids multiplication by the matrix (A(u) + A(v))/2.

EXAMPLE 12 Godunov's scheme described in Section 10.3 can be put in the form
(10.81), (10.82). In this scheme the approximate solution is represented as a piece-
wise constant function:

(10.86) u(x, tn) = uh in h8 < x < (h + 1)8.

u(x, to+1) is constructed by solving exactly the conservation laws with initial val-
ues (10.86). This is accomplished by solving the Riemann problems at the points
of discontinuities of u(x, tn); to+l - to has to be restricted to be so small that the
waves issuing from the points of discontinuity don't interact. The resulting exact
solution is then averaged over each interval [h8, (h + 1)8] to determine u,+1:

0.87) uh
f(h+1)8

n+1(1 u(x, t)dx .
S I

This algorithm can be described somewhat differently. Let u(x, t) be any
piecewise continuous solution of a system of conservation laws in the rectangle

h8 <x < ( h + 1 ) 8 , t,, <t <t,,+I

Integrate the conservation law

u,+f(u)X =0
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over this rectangle; we get

f (h+I )a (h+1)a

J
u(x,tn+1)dx =

J
u(x,t")dx

hb hb(1(1 88)

[ f (u(h + 1)S, t) - f (u(hS, t)]dt.

Choose to+1-tn so small that no wave issuing from (h8, t") reaches the interval
((h + 1)S, t), t" < t < to+1, nor any wave issuing from ((h+1)8, t.) reaches (hS, t),
t" < t < to+1. Then u(hS, t) and u((h + 1)S, t) are constant on [t", t.+,], and so
the time integrals in (10.88) can be evaluated simply as

(10.89) (tn+1 - tn)[f (u(h + 1)S, to+1) - f (u(hS, to+I))]

The state u(hS, t"+I) is uniquely determined by the two states uh_1 and uh through
the process of solving the Riemann problem. Therefore we can write

(10.90)

similarly

(10.90')

f (u(hS, to+t)) = f (uh-I, uh) ;

f (u((h + 1)3, to+1)) = f (Uh Uh+I)

Now set (10.89) and (10.90), (10.90') into (10.88), and divide by S. In view of the
definition of uh+I as the average (10.87), we can write the resulting relation as

uhtl = Uh - X"[ f n' Uh+I) - f(Uh_1, Uh)]

where ?" = (tn+1 - t")/S. This is of the same form as (10.81), (10.82). The
consistency condition

f (u, u) = f (u)
is satisfied, for when uh_1 = uh, the solution of the Riemann problem is trivial,
and u(hS,tn+I) = Uh_1 = uh

This analysis shows that to+I - r" may be chosen as S/a,,,,,,, twice as large as
permitted by the analysis in Section 10.3.

EXAMPLE 13 As in Example 12 the approximate solutions are piecewise constant
as in (10.86). We integrate the conservation law over a shifted rectangle

(10.91)

We get a formula analogous to (10.88). If wechoose to+l - t" < S/2ama,,, the exact
solution on the vertical sides x = (h -1/2)S and x = (h + 1/2)S are just uh_1 and
uh. The resulting formula, after division by S, is

n n
Uh+-1112 Uh-1 + Uh - .X[f(UI)

- f(Uh-I)J'- 2

This is just the LW scheme, with a shift.

For the basic result about difference schemes in conservation form, see Lax
(1954) and Lax-Wendroff (1960).



192 10. HYPERBOLIC SYSTEMS OF CONSERVATION LAWS

THEOREM 10.17 Let us,, be an approximate solution of the system of conservation
laws

u,+ f(u).r = 0,
generated by a difference equation for form (10.81), (10.82), (10.83). Regard ut,E
as equal to uh in the rectangle (10.91). Suppose us,, converges boundedly and
in L' to a limit it as a b and E tend to zero. Then u is a solution in the sense of
distribution of the conservation laws.

PROOF: The proof is simple. Choose any differentiable function w(x, t) that
is zero for Ix I and t large. Multiply (10.81) by w(hS, ne) and sum over all h and
all n > 0. Then sum by parts; we get

uh{w(h6, (n - 1)E) - w(hS, ne)}
0<n.h

+ Afh+112{w(h8, ne) - w(h + 1)S, ne)} - T uhw(hS, 0) = 0.

Multiply by S; using the relation ,kS = e we can express this equation in terms of
difference quotients of w with respect to t and x. Since w is differentiable, these
tend to w, and w,. By assumption, uh converges to u in L', and since u, are
assumed to be bounded, fh+1/2 = f (u', un+1) converges to f (u, u) = f (u). So
in the limit we get

- ff uw, + f (u)w,rdx dt - J u(x, 0)w(x, 0)dx = 0,

since this holds for all test functions w, it is a solution of

ur+f(u)x=0
in the sense of distributions. 0

Note that we haven't shown that the limit is an admissible solution. In fact
there are examples where us,, converge to an inadmissible solution.

Note that if we only prove weak convergence of us., to u, it doesn't follow that
it satisfies the conservation laws.

We have left open the question of how one proves convergence of the solutions
of a conservative finite difference scheme. We remark, as was already pointed out
in Examples 12 and 13, that the Courant-Friedrichs-Lewy condition,

amaxe < S

must be satisfied, just as it must be satisfied in the linear case.
There is a big literature about convergence. In the scalar case, for special

forms of f (u) the difference equations can be linearized, solved explicitly, and
the passage to the limit carried out; see Lax (1954, 1957). The general case was
settled by Vvedenskaya. For isentropic compressible flows X. Ding, G. Q. Chen,
and P. Luo have proved convergence of the LW scheme.

The convergence of second-order methods, such as LW and the Richtmyer
two-step method is more delicate, just as in the linear case; see Section 8.4. In
Section 8.5 we described the strategy of Harten and Zwass of switching from a
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high-order scheme such as LW, to a low-order scheme such as LF, in the neighbor-
hood of discontinuities. This switch can be carried out for schemes in conservation
form by applying the switch to the numerical fluxes themselves.

The concept of difference schemes in conservation form makes sense for ap-
proximating conservation laws in several space variables:

u, + f (u)x + g(u)y = 0.

Many highly effective methods have been designed which work very well in re-
solving complicated flows. We mention in particular the methods designed by
Alexander Choin, by Van Leer, the popular Colella-Woodland piecewise para-
bolic method, the ENO scheme of Harten and Osher, the method of Tadmor and
Kurganov. the positive schemes of Zhu Dong Liu and Lax, by Yulian Radvogin,
and many others.

10.6. The Flow of Compressible Fluids

The flow of inviscid, non-heat-conducting fluid that depends on a single space
variable is described by a hyperbolic systems of first-order conservation laws of
the type studied in Section 10.3; they go back to Euler. The conserved quantities
are

p = mass per unit volume,

m = momentum per unit volume,

E = energy per unit volume.

p is called the density of the fluid; m can be expressed as pv, where v is flow
velocity. Energy E is the sum of internal energy per unit volume plus kinetic
energy per unit volume. Denoting by e internal energy per unit mass, we can
express E as

(10.92) E = pe + 2-p v2 .

Mass flux is determined by the rate at which fluid is transposed out of the region;
for one-dimensional flow it is

fl=VP.
Momentum flux is the sum of the rate at which the flow transports momentum
of the fluid out of the region plus the rate at which the force of pressure imparts
momentum:

f2=vm+p.
Energy flux is the sum of the rate at which the flow transports energy of the fluid
out of the region plus the work alone by the force of pressure:

f3=vE+vp.
The three thermodynamic variables p, e, and p are related to each other by an

equation of state which we put in the form

(10.93) p = p(e,p)
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The three fluxes have to be expressed as functions of the conserved quantities:

(10.94)

m 2 E m2

`t =m, f2= 2 +p\P 2p2,P
m m f E m2f3= E+ pp - 2p2,p

The equations of motion are

(10.95) p,+f1x=0, m,+f2x=0, E,+f3x=0.
They can be written in the form

P P

m +A m =0,
E E

x

where the matrix A is

grad f 1

(10.96) A = grad f2

grad f3

A is expressed in terms of the partial derivatives of the fluxes. A simple cal-
culation will show that tr A = 3v, and that v is an eigenvalue of A. It follows that
the other two eigenvalues are of the form v + c and v - c. A calculation of the
determinant of A shows that c depends only on the thermodynamic variables. The
requirement that c be real imposes some conditions on the equation of state.

Next we compute an entropy. We rewrite the conservation of energy equation
by expressing E as pe + Zpv2:

(pe), + 2(m v), + (me), + 2(v2m)x + (vp)x = 0.

Using the other conservation laws

p,+mx=0
m,+(vm)x+P.,=0

we deduce that
p(e,+vex)+pvx=0.

We use the conservation of mass

P1 +vpt+PV.r=0
to obtain

(10.97) p2(e, + vex) - P(P, + vP:) = 0.

Recall that p is a function of e and p. Let M(e, p) be a solution of

(10.98) pMe + p2Mp = 0.

Multiply (10.97) by Me; using (10.98) we get

P2Me(e, + vex) + P2MP(P, + vpx) = 0.
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This can be rewritten as

(1099) M,+vMx =0.
It follows that for any smooth solution of the conservation laws, M is constant
along particle paths.

Combining (10.97) with the conservation of mass equation we get

(pM), + (MM), = 0,

an additional conservation law.
Clearly we may replace M by any function of M. To obtain an entropy we

have to choose this function, also denoted as M, so that pM is a convex function
of e and p. This is possible under the conditions imposed on the equation of state
to make c real.

We shall now drastically specialize the equation of state to polytropic gases,
defined as one whose interval energy is proportional to its temperature. The equa-
tion of state of a polytropic gas is of the form

(10.100) p = (y - 1)ep.

The constant y, called the adiabatic exponent, lies between 1 and 3. Setting (10.94)
into (10.96) we get after a brief calculation that

1 0 1 0

(10.101) A = (2 )v2 (3 - y)v y - 1 ,

(E72-1) V 3 - yve (Z - y)v2 + ye yv

The eigenvalues of A are v, v - c, and v + c, where c = yp p. The eigen-
values v - c and v + c are genuinely nonlinear.

The gradient of the eigenvalue v = m/p is (-v/p, 1/p, 0); the corresponding
right eigenvector of A is (1, v,

i
v2)', clearly orthogonal to grad v. This shows

that the middle eigenvalue v is linearly degenerate. Discontinuities traveling with
velocity v are called contact discontinuities.

Waves traveling with velocity v travel along the path of the fluid. Waves trav-
eling with velocity v + c and v - c travel with speed c relative to the fluid; for this
reason c is called the speed of sound.

EXERCISE Verify that c = Iy-plp has the dimension of velocity.

We turn now to entropy. When p = (y - I)ep, equation (10.98) is

(y-1)eMe+pMp=0.
A solution of this equation is

M= e

and any function of it.

EXERCISE Find a function f such that

e
S = Pf pr-1
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is a convex function of p, in, and E.

The equations of compressible flow in two (and three) dimensions are anal-
ogous. Denote the velocity vector in the x, y plane as (v, w), the momenta as
(m, n) = (pu, pw). The conservation laws are

p,+mx+ n,.=0,
m, + (vm)x + (wm)y = 0,
n, (vn)x + (wn)y = 0,

E, + (v(E + p))x + (w(E + p)),, = 0.
The notion of solution in the sense of distributions is the same as in one dimension.
So is the RRH jump condition across a discontinuous surface; the notion of an ad-
missible discontinuity-shock or contact- can be defined similarly. There are use-
ful theorems guaranteeing the existence of solutions for a finite range, see Majda,
but nothing like the global existence theorems comparable to the one-dimensional
case. What we do have is an impressive array of numerical methods capable of
computing flows with very complicated structures. We close this chapter by pre-
senting some calculational results.

The analogue of the Riemann problem in two dimensions is an initial value
problem where the initial data are constant in each of the four quadrants 1, 2, 3, and
4. The states in the four quadrants are chosen so that the one-dimensional Riemann

2 1

problems between any two adjacent states are resolved by a single wave, either a
shock, a rarefaction, or a contact discontinuity. For fluid flow in two dimensions a
contact discontinuity is a slip line, across which the tangential velocity, as well as
density, changes discontinuously.

Below we present the results of three numerical calculations, done by a method
developed by Zhu-Dong Liu and the author. The figures represent the contour
lines of density. Figure 10.1(a) pictures the interaction of four shockwaves, Figure
10.1(b) the interaction of four rarefaction waves, and Figure 10.3(c) the interaction
of four contact discontinuities. The direction of propagation of each wave is clearly
discernible from the figures.

What can we learn from these calculations? First of all that the interaction of
four waves creates a complicated flow pattern, so that, unlike flows in one dimen-
sion, the Riemann problem in two dimensions is a not suitable building block to
describe approximately general flows.

How much credence can we give to these numerical calculations? There is no
proof, and there never will be, that these results approximate the exact solutions
of the Riemann problem within some acceptable error bound. Our confidence is
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based on the remarkable agreement of calculations carried out by Colella and Glaz,
and others, using entirely different numerical methods; see Lax, 2006.

Ami Harten has famously observed that for numerical analysts there are two
kinds of truths: the truth that you prove and the truth you see when you compute.
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APPENDIX A

Huygens' Principle for the Wave Equation
on Odd-Dimensional Spheres

For simplicity we shall analyze the three-dimensional case.

EXERCISE Carry out the analysis in higher odd dimensions.

The four-dimensional Euclidean Laplace operator can be written in polar co-
ordinates as follows:

Da =
a,2

+
3

ar +
1

AS,r r2
where As is the Laplace-Beltrami operator on the unit sphere S3. The eigenfunc-
tions of As are the spherical harmonics he(w), where H! = r3hj (w) is a harmonic
polynomial of degree j, so

0= D4Hj =ri-2(j(j - 1)+3j +As)h1.
It follows that Ashy = -(j2 + 2 j )hj, which we rewrite as

(A.1) (Os-1)hj=-(j+1)2h1.
The spherical wave equation is defined to be

(A.2) un - (AS - 1)u = 0.

We expand solutions u in terms of the eigenfunctions of As - 1:

(A.3) u((w,I)=E(aje 'j'+bje- '`j')hj(w),

where hj are the eigenfunctions of As - 1, A = -(j + 1)2 its eigenvalues. The
coefficients aj and bj are determined by the Cauchy data of u:

u((O, 0) _ E(aj + bj)h1 ,

u,(w,0)=iE(aj-b,)(j+1)hj.
Replace w by -w, and set t = r in (A.3). Since r'hj((o) is homogeneous of
degree j, hj(-w) = (-1)'hj((w) and e'(j+t)" = (-1)j+'; so we get

(A4)
u(-w, n) _ E(aj(-1)j+t +bj(-1)-U+t))(-1)'hj(w)

_ - )aj + bj)hj(w) _ -u(&), 0).

This shows that the value of u at -w and time tr is determined by the value of u
at the antipodal point w at time 0. Antipodal points are connected by geodesics

201
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of length 7r; since geodesics are rays for the spherical wave equation, or for that
matter on any Riemannian manifold, this is an instance of Huygens' principle.

To obtain Huygens' principle for any time t that is not a multiple of 7r we argue
as follows:

Let t be any number between 0 and 7r. Take initial data whose support lies
in a ball of radius E around coo. Since, as is easy to show, signals propagate with
speed < I on the sphere, u(co, t) is supported in a ball of radius s + t around coo.

It follows from (A.4) and a similar formula for u, (-(o, 7r) that the data u and u,
at time 7r are supported in a ball of radius e around the antipode -coo. Since signals
propagate backward in time with speed < 1, it follows that u(co, t) is supported in
a ball of radius e + 7r - t around -coo. The intersection of these two balls is the
spherical strip consisting of points co whose distance to coo is < t + e but > t - E.
Since e is an arbitrary positive number, it follows that the domain of influence at
time t of the point coo is the set of points whose distance from coo is t. This is
Huygens' principle for the spherical wave equation.

Huygens' principle holds of course on spheres of any radius. As the radius
tends to oo the sphere tends to flat Euclidean space, and the spherical wave equa-
tion tends to the Euclidean one. So in the limit we obtain Huygens' principle in
Euclidean 3-space.

The spherical and Euclidean wave equations appear to be quite different; nev-
ertheless there is a mapping of a spherical cap less than half of S3 onto a ball in
Euclidean space that maps any solution u of the former into a solution f u of the
latter. For details see Lax and Phillips and frsted.

An entirely analogous result holds for the wave equation in hyperbolic 3-space
H3 defined as

ut,-(0H+Du =0.
Here the reduction to the Euclidean case is much simpler; see the monograph by
Lax and Phillips.

Semenov-Tian-Shansky has discovered a hyperbolic system, with many time
variables, associated with any symmetric space, for which Huygens' principle
holds. Further study of this system can be found in the papers of Shashahani,
Phillips and Shashahani, and Helgason.
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APPENDIX B

Hyperbolic Polynomials

We recall from Chapter 2 that a polynomial p(r, 51, ..., 5k) is called hyper-
bolic in the r direction if for all real choices of a the roots r of the equation
p(r, i) = 0 are real. In this appendix we look at hyperbolic polynomials p(r, 5. q)
in three variables and homogeneous of degree n.

The prototype of such a polynomial, with n = 2, comes from the wave equa-
tion: r2 - k-' - , 22. It can be represented as a determinant:

(B.l) T
q

17 r+5)
In 1958 1 surmised the following generalization of (B. 1):

CONJECTURE Every homogeneous monic polynomial in three variables that is
hyperbolic can be represented as a determinant:

(B.2) p(r,i , q) =det(rl +5A+qB),
where A and B are real, symmetric matrices. Manic means that the coefficient of
T" is I

Clearly every p of form (B.2) is homogeneous. monic, and hyperbolic. The
heuristic argument for the converse is as follows:

If we subject the matrix, whose determinant appears on the right in (B.2), to an
orthogonal transformation, that is. replace it by

(B.3) O(rl +4A+gB)OT
where 0 is an orthogonal matrix, we obtain

(B.3') rl +4A'+qB',
where A' = OAOT and B' = OBOT. Clearly, the determinant of (B.3) is equal to
(B.2). Therefore, in seeking a representation of p in form (B.2) we might as well
take A to be diagonal:

(B.2') p(r,l;,q) =det(rI +5D+qB).
where D is a real, diagonal matrix.

The number of parameters on the right side of (B.2') is n from D and n(n +
1)/2 from B, altogether (n2 + 3n)/2. The number of powers of degree n in three
variables is (";22) = (n + 2)(n + 1)/2; therefore the number of homogeneous
monic polynomials contains (n2 + 3n)/2 variables, the same as on the right side of
equation (B.2').
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Recently A. S. Lewis, Parrilo, and Ramana have succeeded in deducing this
conjecture from a study of Helton and Vinnikov, based on a deep result of Vinnikov.

We now present an application of the determinantal representation (B.2) of
hyperbolic polynomials. In Chapter 4, Section 4.5, we gave a derivation of energy
inequalities for solutions of hyperbolic equations of order n with the aid of another
hyperbolic operator whose characteristics separate those of the given hyperbolic
operator. In terms of the associate symbol, a hyperbolic polynomial p of degree n,
we seek another hyperbolic polynomial q of degree n - I such that for all real
the roots in r of q (r, :) = 0 separate the roots of p(r,1;) = 0.

We need the following result from the spectral theory of symmetric matrices:

LEMMA B.I Let M denote a real symmetric n x n matrix, and P a projection of
R"-I into Rn; that is, P' P = 1, the identity map R"-I -+ R"-I.

CLAIM The eigenvalues of P'MP separate the eigenvalues of M.

EXERCISE Use the variational characterization of the eigenvalues of a symmetric
matrix to prove the lemma.

We apply the lemma to

(B.4) M = rI + 4A + i7B

and define q as

(B.5) q(r, l;, q) = det P*M(r, l;, t7)P.

According to the lemma, the roots of q separate those of p.
The set of monic polynomials q of degree n - I whose roots separate those of

p form a convex set. It is tempting to conjecture that the convex hull of the poly-
nomials q of form (B.5) is the set of all monic polynomials whose roots separate
those of p. It is true for p given by (B.1).
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APPENDIX C

The Multiplicity of Eigenvalues

Strict hyperbolicity demands that the roots of the characteristic equation be
real and distinct. Here we shall investigate symmetric hyperbolic systems of first
order in three space variables, i.e., of the form

(C. 1) u, + Au, + Buy + Cu, = 0,

where A, B, C are real, symmetric matrices of order n x n.

THEOREM C.1 If n 2 (mod4), a system of form (C.1) is not strictly hyper-
bolic; that is, there exist three real numbers i;, q, C, t2 + q2 + C2 = 1, such that
A + qB + C has a multiple eigenvalue.

PROOF: Denote by Ji the set of n x n real symmetric matrices whose eigen-
values are distinct; this is an open set in the space of all real symmetric matrices.
Every matrix N in W has distinct real eigenvalues that can be arranged in increas-
ing order:

We denote the corresponding real eigenvectors by rt, ..., rn, normalized so that
I rj I = 1; these eigenvectors are only determined up to a factor ±1.

Let N(9), 0 < 0 < 2n, be a closed curve in W. If we fix rj(0), the rj(O) is
uniquely determined if we require it to depend continuously on 0. Since
N(2rr) = N(0),

(C.2) rj(27r) = rjrj(0), Irjl = 1 .

Clearly

(i) each rj is a homotopy invariant of the closed curve,
(ii) for a constant curve N(9) = const each rj = 1.

Combining (i) and (ii) we conclude that

(iii) if N(9) is homotopic to a point, then each rj = 1.
Consider a curve that is odd, i.e., it satisfies

(C.3) NO +n) = -N(9).
It follows that Aj (9 + rr) = j+i (9), and

(C.4) IAjI = I.

Using (C.4) for 9 = n and 0 gives

rj(2n) = A rn-j+1(7r) = isjILn-j+trj(0).
207
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Comparing this with (C.2) we conclude that

(C.5) Tj = 1Ajµn-j+1

For each 9, the eigenvectors

r1(0), ... , rn(0)

form an ordered base. Since they depend continuously on 9, the orientation of this
ordered base is the same for all 0; in particular, it is the same for 9 = 0 and 8 = jr.
Using (C.4) with 0 = 0, we get

{r1 (n), ... , rn(7r)} = ( 0 ) ,..., lsnr1(0)} .

In other words, the ordered base at r is obtained from the ordered base at 0 by
reversing the order of the base vector and multiplying the j'h vector by µj. In-
terchanging the order amounts to n/2 transpositions. Since we have assumed
n - 2 (mod 4), these would reverse the orientation; to preserve the orientation
the product of A j must = -1:

(C.6)
n

We regroup the factors and write

n n/2

-1 = f Aj = (A1I1n)(A2itn-1) ... = 11 Tj
I I

where in the last step we made use of (C.5). It follows that at least one of the
Tj = -l; so we conclude from proposition (iii) that an odd curve N(0) is not
honwtopic to a point.

The curve

(C.7) N(0) = cos 0A + sin 0B

is odd; it is the equator of the unit sphere i 2 + n2 + c2 = 1. If for all values of
(>; , il, c) the matrices >; A + o 7B + C had distinct eigenvalues, we could deform the
equator on the sphere to a point. This contradicts the previously established fact
that N(9) given by (C.7) cannot be deformed to a point. 0

Friedland, Robbin, and Sylvester extended this result and showed that the
conclusion of the theorem holds for all n = 2,..., 6 (mod 8) but not for n
0, ±1 (mod 8).

The condition of symmetry of the matrices A, B, C can be replaced by the
requirement that all linear combinations 4A + i1B + (C have real eigenvalues.

Eigenvalues that have a constant multiplicity for all:;', q, do not affect the
behavior of solutions. But a change in multiplicity is more than a technical issue; it
alters the way singularities of solutions propagate. This is strikingly demonstrated
in crystal optics, where rays of light propagating in special directions are refracted
into a cone.

Fritz John obtained interesting results on the persistence of the multiplicity in
eigenvalues in hyperbolic systems of second-order equations.
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APPENDIX D

Mixed Initial and Boundary Value Problems

We shall study mixed initial and boundary value problems for first-order sym-
metric hyperbolic systems of the form

(D.Ii D,u=Gu=>AjDju+Bu,

Aj symmetric matrices of order n x n that are C°° functions of x and t, B not
necessarily symmetric. The main tools for studying the initial value problem for
such systems are the a priori estimate solutions in the Ho and Hj norms. The basic
estimate in the Ho norm is obtained (see Section 4.3) by taking the scalar product
of (D.1) with u and integrating with respect to x over Rk. The left side can be
written as

1

(D.2i D,

integration by parts turns the right side f u Gu dx into f G*u u dx. Taking their
average shows that (D.2) is equal to

(D.3)
l
2 f(B+B*-A)u.udx. where A,,1 = DjAj.

Recall that the change of variables u = ea`v results in an equation for v similar to
(D. I ): the only difference is that the coefficient B is diminished by AI. For X large
enough the quadratic form in the integrand in (D.3) is negative; combined with
(D._) it leads to the conclusion that the L2 norm of v is a decreasing function oft.
In what follows we assume that such a transformation has already been performed,
so that the integrand in (D.3) is negative.

In this appendix we shall investigate mixed initial boundary value problems,
where initial values are prescribed on a domain S in x space, and linear boundary
conditions are imposed on as for all time > 0. The boundary condition at a
boundary point x restricts u(x, t) to belong to a subspace U of R"; this subspace
may vary smoothly from point to point. We are looking for boundary conditions
that make the L2 norm of u over S a decreasing function of time. To derive such
conditions we proceed as before: take the scalar product of (D. 1) with u, integrate
over 0. integrate byy parts on the right, and average. We get

(D.4) D , f Q(u,u)dx+J
s s as
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212 D. MIXED INITIAL AND BOUNDARY VALUE PROBLEMS

where v is the unit outward normal, and A is the normal component of the Aj - s:

(D.5) vj .

Q is the quadratic form in (D.3). Since we made Q < 0, all that remains is to
require that the boundary integral on the right in (D.4) be < 0. That will be the
case if the integrand in the boundary integral is < 0. This leads to the following
condition on the boundary space U:

(D.6) u 0 for all u E U.

We must avoid imposing too many boundary conditions. The number of boundary
conditions imposed is the codimension of the subspace U. Therefore we require U
to be maximal regarding property (D.6):

(D.7)
There is no subspace U' properly containing U such that

u' E U'.

For technical reasons we require that be invertible at every point x of as2.

THEOREM D.1 The dimension of a boundary space U satisfying (D.6) and (D.7)
is equal to the number of negative eigenvalues of A,,.

PROOF: If dim U were greater than the number of negative eigenvalues, there
would be a nonzero vector v in U that is orthogonal to all eigenvectors correspond-
ing to negative eigenvalues. Since zero is not an eigenvalue of A. v would
be positive.

Conversely, if dim U were less than the number of negative eigenvalues, there
would exist a nonzero vector w, a linear combination of eigenvectors correspond-
ing to negative eigenvalues of A that satisfies the following condition:

(D.8)

w does not belong to U, for, if it did, it would satisfy
w is a linear combination of eigenvectors with negative eigenvalues, w 0.

Now we define U' to consist of all vectors of the form u + cw, u E U,
U'properly contains U. Using (D.8), we get

<0,

since both terms are < 0. This contradicts requirement (D.7) of maximality, and
thereby proves Theorem D. 1.

The adjoint of equation (D.1) is

(D.9) Do = -G'v,,

where G* is the adjoint of G. We define the adjoint of the boundary condition
u E U to be v I A,U; that is, the adjoint boundary space V is the orthogonal
complement of AU.
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The significance of adjoint boundary conditions ties in this: If u is a solution
of (D.1) and v of the adjoint equation (D.9), and if u and v satisfy adjoint boundary
conditions, then

r
(D. 10)

J
u(x, t) v(x, t)dx

is independent of t.

PROOF: Differentiate (D.10) with respect to t, express the t derivatives of u
and v as Gu and -G', and integrate by parts.

THEOREM D.2 Suppose the boundary condition u E U for solutions of equation
(D. I) satisfies requirements (D.6) and (D.7); then the adjoint boundary condition
v E V, V = (A U)1 satisfies

(D. 11) forallvEV,
and V is maximal with respect to this property.

PROOF: Suppose, on the contrary, that for some v E V, v 0. Such a
v does not belong to U, since v 0. We can then enlarge the space U by
adjoining v to it. The elements u + cv of this enlarged space satisfy

(u + cv) cv) = u 2cv1 c2v 0,

because the first term on the right is < 0, the second term = 0, and the third term
is negative except when c = 0. But since U is assumed to be maximal, such an
extension is not possible; this proves (D.11).

To show that V is maximal, we appeal to Theorem D. 1, which says that
dim U = the number of negative eigenvalues of A. Since A is invertible, A,U
has the same dimension; the orthogonal complement V of has the comple-
mentary dimension n - dim A. Since 0 is not an eigenvalue of A, dim V = the
number of positive eigenvalues of A. Analogously to Theorem D.1, the dimension
of a space of vectors that satisfies (D.11) and is maximal with respect to this prop-
erty equals the number of positive eigenvalues of A. Since this is the dimension
of V, it follows that V cannot be enlarged and still retain property (D.11).

Denote by I the time interval I = [0, T]. Let u and v be once-differentiable
functions in the cylinder S x I that are 0 at t = 0 and t = T, respectively:
u(x.0) = 0 and v(x, T) = 0. Suppose that u satisfies linear boundary condi-
tions on 8S and v the adjoint boundary conditions. Denote D, - Gu = f and
D, v + G*v = g. Then integration by parts shows that

(D.12) fJ(f.v_u.g)dxdt=0.
sxI

DEFINITION D.3 Let u and f be L2 functions in S x I; u is defined to be a weak
solution of

(D.13) D, - Gu = f , u(x, 0) = 0 and u(x, t) E U(x) forx E BS,
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if (D. 12) holds for all once-differentiable functions v that are 0 at t = T, that
satisfy the adjoint boundary conditions, and where g = D, v + G'v.

DEFINITION D.4 Let u and f be L2 functions in S x I. U is called a strong
solution of (D.13) if u is the limit in the L2 norm of a sequence of functions (uk}
that have square integrable first derivatives, satisfy Uk(X, 0) = 0 and the boundary
conditions, and D,uk - GUk = fk tends to f in the L2 norm.

NOTES.

(1) A function Ilk that has square integrable first derivatives has initial and
boundary values that belong to L2.

(2) A strong solution is a weak solution.

The main existence theorem for mixed initial boundary value problems is the
following:

THEOREM D.5 Let f be an L2 function in S x 1.
(i) The initial boundary value problem (D. 13) has a weak solution in S x 1,

provided that the boundary space satisfies conditions (D.6) and (D.7).
(ii) This weak solution is a strong solution.

This result is due to Friedrichs; a somewhat simpler proof was given by Ralph
Phillips and the author.

The boundary conditions (D.6), (D.7) are not the only ones for which the mixed
initial boundary value problem has a unique solution. A general theory has been
developed, independently, by Kreiss and Sakamoto.

Taylor and Melrose have shown, independently, that singularities of solutions
of mixed initial boundary value problems propagate along rays, including rays re-
flected from the boundary.
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APPENDIX E

Energy Decay for Star-Shaped Obstacles
by Cathleen S. Morawetz

The standard energy conservation law for U is found by multiplying the wave
equation by UT and noting that the resulting quadratic expression is a divergence:

(E.l:: UT(UTT - AXU) = divx P + QT

where

(E.2 P = -UTVU, Q = 2 (UT + IvUI2) .

lntefrated over any region 1D this expression therefore yields a surface integral in
(X. T) space which vanishes whenever U is a solution of the wave equation; this is
called the standard energy identity. It has the additional property that the integrand
is a positive definite form on spacelike surfaces.

As is well known, the Kelvin transformation

(E.3; X=r2X
,

T=r2t t2, RU=ru, R=IXI, r=lxl,
preserves the wave operator in the sense that

(E.4y R3(UTT - AxU) = r3(u,r - AxU).

On the other hand,

(E.5) RUT =r[(r2+t2)u,+2t(ru)rI
and

(E.6)
dXdT = dxdt

R4 r4

Combining (E.4), (E.5), and (E.6) we get

(E.7) J UT(UTT - AxU)dX dT = / Nu(u - Axu)dx dt

with Nu = (r2 + t2)u, + 2t(ru)r.
Using (E.1), the left-hand side of (E.7) can be written as a surface integral and

thertifore so can the right side. Thus one obtains:

Reprif ted from Scattering Theory, Pure and Applied Mathematics Vol. 26, P. Lax and R. S. Phillips,
"Ene;y Decay for Star-Shaped Obstacles" (appendix), pp. 261-264, © 1967, with permission from
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THEOREM E.1 Suppose u(x, t) is a solution of the wave equation that has square
integrable derivatives. Then over any three-dimensional surface 8 with the surface
element d S,

f(pn(E.8) + g n,)dS=0
a

where n is the space component of the outward normal, n, is the time component.

A tedious calculation gives

p = -tux - 2t(xVu)Vu + tIVul2x - (r2 + t2)u,Vu - 2tuVu
(E.9) 1- 2r-2((r2 + t2)u2)1 x

q = 2t(xVu)u, + 2(r2 +t2)(IVuI2 +u,) + 2tuu,
(E.10)

+r-2(r2+ t2) uVux+ 1

2u2

q is a definite form; in fact, q may be written as:

q =2(r2+12)(IVul2-u:)
(E. 11)

+ T-{(r + t)2((ru)r + (ru),)2 + (r - t)2((ru)r - (ru),)2}

The positivity of q can also be deduced as follows: Under the Kelvin transforma-
tion, the inverse of (E.3), the surface t = constant is transformed into a spacelike
surface in the (X, T) space. On this spacelike surface the integrand in the standard
energy identity is a definite form. Hence on the transform of this surface, i.e., t =
constant, the new integrand, q, is also definite.

THEOREM E.2 Let u be a solution of the wave equation outside a star shaped body
with boundary B and assume that u = 0 on B. Suppose further that the initial data
f of u is zerofor Ix I > k. Then

(E.12) Iu(T)Ih <- 2kIfl
T

for r > 2h. Here I u(T) Ih is the energy, f (I V u I + ul )dx, inside a sphere of radius
h at time T and 1112 is the total energy of the initial data.

PROOF: Choose the origin so that B is star shaped with respect to the origin,
i.e., xn < 0, where n is the inward normal to B. We apply Theorem E.1 to a domain
bounded by the planes t = r, t = 0, and the body cylinder x E B, 0 < t < T.
Then since the solution vanishes for r large enough,

r
(E. 13)

J
qdx+ f r f pndsdt = J q dx.

0
r=r B t=0
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Since u vanishes on B, Vu = (au/an)n there and u, = 0; thus from (E.9), it
follows that pn = -t(au/an)2xn. Since B is star-shaped with respect to the
origin. xn < 0; thus pn > 0. Hence from (E. 13).

(E.14) f qdx < fqdx.
r=r t=0

From the expression (E.11) for q, we see that for t = 0, q < Zr2(Iput2 + U2).
Therefore, since f has support in Ix I < k, we find

(E.15) fqdx < I kk2lf 12

r=0

Since the integrand q is positive, we get from (E. 14) and (E. 15) for any h,

(E.16) fqdx < fqdx < I k21f I2

r<h r=T
f=T

Using the expression (E. 11) we can bound q from below for r < t/2:

(E.17) 4t2[2 (IVuI2 - ur) + 4I ((ru)r + (ru),)2 + 4r2 ((ru)r - (ru),)2 I < q

or
J

(E. 18) 1f2(IvUI2+u, +divr2u2x <) q.

Using (E.18) in (E.16). we get for r > 2h

(E.19) k2(IVuI2+u+diviu2x)dx 1f12;<
_r2r2J

r<h

since u = 0 on B, integrating the divergence gives

(E.20) J (Ioul2+u,2)dx+ J 'u2dS< 4k2If12r r2
t=T r=T
r<h r=h

where d S is the surface element on the sphere r = h. Hence,

(E.2 1) f (Ioul2+u2)dx < 4k21fI2,
t=T
r<h

which concludes the proof. 0
Theorem E.2 shows that for solutions whose initial data have compact support,

local energy decays as r tends to oo. Since solutions whose initial data have com-
pact support are dense among all solutions with finite energy, it follows that local
energy decays for all solutions with finite energy. This gives a much simpler proof
of Lemma 9.12 for star-shaped obstacles than the one presented in Chapter 9.
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