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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage
technology transfer in control engineering. The rapid development of control
technology has an impact on all areas of the control discipline. New theory,
new controllers, actuators, sensors, new industrial processes, computer meth-
ods, new applications, new philosophies . . . , new challenges. Much of this
development work resides in industrial reports, feasibility study papers and
the reports of advanced collaborative projects. The series offers an opportu-
nity for researchers to present an extended exposition of such new work in all
aspects of industrial control for wider and rapid dissemination.

It seems quite surprising to realise that the notion of fuzzy sets and all the
related concepts and applications have been developing now for nearly forty
years! A theory which was regarded by some as problematic has survived into
various successful industrial applications. The theory itself has continued to
develop as this excellent and insightful monograph by authors Jairo Espinosa,
Joos Vandewalle and Vincert Wertz shows. The presentation is almost equally
balanced between fuzzy models and fuzzy control. The already extensive re-
sults presented are also further supported by nearly forty pages of proofs,
explanations and illustrative examples in the Appendices.

The first part of the monograph is comprised of four chapters on different
aspects of and developments in fuzzy modelling. An important point to note
here is that the modelling approaches presented often have a wider applica-
tions interest than just for the control community.

From experience, when the material to be presented is a little difficult,
illustration by typical examples can be very useful. All through the mono-
graph the authors have introduced academic and industrial examples to pro-
vide the necessary insight. In the modelling chapters these examples include
a heat exchanger system, a reactor process and data from a gas furnace instal-
lation.

The second part of the book concentrates on fuzzy control. This part opens
with a very interesting discussion of PID-like fuzzy controllers and proceeds
to demonstrate that under some reasonably relaxed conditions “any linear



x Series Editors’ Foreword

controller . . . can be made into an exactly equivalent fuzzy controller” and
the proof is presented in one of the appendices for completeness. This type of
result characterizes the work presented in these three chapters where useful
and insightful presentations are interwoven with interesting and important
results. The final chapter of the monograph presents some well targeted dis-
cussion of successes and areas for further work within the fuzzy systems and
control paradigm. Researchers and postgraduate students will find this chap-
ter full of stimulating challenges and unsolved research issues.

An interesting feature of this monograph is the bold attempt to produce
repeatable engineering procedures that make the engineering application of
fuzzy methods in identification and control much more accessible and there-
fore more valuable. We believe this volume to be a fine contribution to the
Advances in Industrial Control series and believe it will find a wide reader-
ship within the control community.

M.J. Grimble and M.A. Johnson
Industrial Control Centre
Glasgow, Scotland, U.K.
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Preface

Since the idea of the fuzzy set was proposed in 1965, many developments
have occurred in this area. Applications have been made in such diverse areas
as medicine, engineering, management, behavioral science, just to mention
some. The application of the fuzzy sets involves different technologies, such
as fuzzy clustering on image processing, classification, identification and fault
detection, fuzzy controllers to map expert knowledge into control systems,
fuzzy modeling combining expert knowledge, fuzzy optimization to solve de-
sign problems.

Fuzzy systems are used in the area of artificial intelligence as a way to
represent knowledge. This representation belongs to the paradigm of behav-
ioral representation in opposition to the structural representation (neural net-
works). The foundation of this paradigm is that intelligent behavior can be
obtained by the use of structures that not necessarily resemble the human
brain.

A very interesting characteristic of the fuzzy systems is their capability
to handle in the same framework numeric and linguistic information. This
characteristic made these systems very useful to handle expert control tasks.

This book is divided in two parts. The first part is devoted to the con-
struction of static and dynamic fuzzy models from numerical information.
Such models are important in areas such as data mining and control of dy-
namical systems. The second part shows how to exploit these models to design
control systems. The book is organized into 8 chapters and 5 appendices.

Chapter 1 is entirely dedicated to the problem of function approximation
and modeling. The first part of the chapter shows the approximation capabil-
ities of fuzzy systems with triangular, polynomial and Gaussian membership
functions. In this part, this book presents an analytical study of the approxi-
mation capabilities of the different types of membership functions.

Chapter 2 describes different techniques to construct fuzzy models from
input–output data. Gradient descent techniques, clustering and evolutionary
techniques are explained in this chapter. Some gradient expressions are de-
rived to illustrate the expressions used to adjust the fuzzy models. This section
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is complemented with the Appendix B where the main clustering techniques
used in modeling are explained. In the second part of the chapter the problems
of generalization and consequence estimation are studied. An initialization and
training method for the consequences is one of the highlights of this chapter.
The method improves the generalization capabilities of the fuzzy models. It
is illustrated by means of a graphical example.

Chapter 3 introduces the concept of linguistic integrity and presents an
algorithm to build fuzzy models with linguistic meaning. This algorithm is
especially important in tasks such as knowledge discovery and data mining.
The contributed algorithm is named AFRELI (Autonomous Fuzzy Rule Ex-
tractor with Linguistic Integrity). This algorithm is complemented with an
algorithm to reduce the complexity of the fuzzy models (FuZion algorithm).
Several examples are presented where complex nonlinear functions, chaotic
nonlinear systems and industrial processes are modeled using this algorithm.

Chapter 4 is devoted to the problem of nonlinear identification of dynamic
systems using fuzzy models. In this chapter the tools developed in previous
chapters are used to develop a framework for system identification using fuzzy
models. The chapter begins by formulating the problem of system identifica-
tion using fuzzy models. The chapter includes an analysis of the structure of
the fuzzy models, which are more suitable to be applied in system identifi-
cation. Thereafter the chapter studies the problem of experiment design and
proposes types of signals that are considered to deliver “sufficient excitation”
to guarantee the reliable construction of the model. The regressors selection
is considered a complex problem also analyzed in this book. The main meth-
ods are reviewed and the advantages and disadvantages of the methods are
analyzed. The possible structures of the models for nonlinear systems are enu-
merated and a short analysis of the applicability of some of these structures to
identification using fuzzy models is included. Parameter calculations for differ-
ent type of structures are studied under the assumption that gradient descent
methods are used in this calculation. The issue of dynamic calculation of the
gradients is emphasized, and Appendix C includes the derived expressions of
these gradients. The chapter closes with a short discussion of the validation
issues. This discussion points out the fact that fuzzy models can be validated
using not only quantitative criteria but also qualitative criteria based on the
information given by the linguistic rules. The chapter presents an example of
identification of a gas furnace process proposed by Box and Jenkins [1]. In
this example, most of the elements presented in the chapter are included.

Chapter 5 presents an overview of different techniques that have been
designed to construct fuzzy controllers. The chapter starts by making a clas-
sification of the different methods where fuzzy sets are applied to control.
The chapter explains some of the methods starting with the first early ideas
employing pure expert knowledge. Then the discussion focuses on a very prac-
tical method, which is the design of PID-like fuzzy controllers. This section is
complemented with the theorem presented in Appendix D. This contributed
theorem guarantees that any discrete linear controller can be copied exactly
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by a fuzzy system. This property is exploited to initialize fuzzy controllers
such that their initial performance (before tuning) at least equals the per-
formance of a given linear controller. Then, the overview presented in this
chapter focus on the adaptive control techniques based on fuzzy models. In-
verse learning and direct learning are the two methods studied in this section.
The chapter then pays attention to methods based on direct synthesis, and
the method of feedback linearization is proposed where the models used to lin-
earize the affine system are fuzzy models. The main drawbacks of this method
are analyzed and the sliding mode fuzzy control method is explained as an al-
ternative. Finally, the chapter is completed by a description of the fuzzy gain
scheduling method. The advantages of the method, including the existence of
methods to directly design stable controllers and test controllers for stability,
are studied and discussed. The section is complemented with an industrial
example presented in Appendix E where a stable fuzzy scheduling controller
is designed for an automotive application a continuous variable transmission
(CVT) system.

Chapters 6 and 7 are devoted to the construction of predictive controllers
based on fuzzy models. Chapter 6 begins with the simplest idea of uncon-
strained predictive fuzzy control. The problem is formulated and a method
to reduce the problem to a quadratic program is presented. The method in-
cludes the formulation of a predictor based on the concept of free and forced
response; the estimation of the forced response is improved by a method pro-
posed in this chapter. The chapter includes an application example where
the control strategy is applied to a continuous stirred tank reactor (CSTR).
In this example, the strategy is shown to perform quite similarly to the most
optimal strategy. The second part of Chapter 6 studies the constrained predic-
tive control problem. This part shows three different algorithms that exploit
the information provided by the different types of dynamic fuzzy models. The
chapter closes with an example where the control methods are applied to a
steam generator model of a power plant and a gas-phase polymerization re-
actor for the production of polyethylene. The strategies are compared with
classical linear predictive control strategies, and the improvement in perfor-
mance can be clearly observed.

Chapter 7 presents a novel extension to the concepts presented in Chap-
ter 6. This chapter, studies the problem of robust nonlinear predictive control
based on fuzzy models. The chapter begins with the formulation of the prob-
lem. Then the problem is reduced to a robust quadratic program. The robust
quadratic program is written as a second-order cone program using a new
formulation presented in this book. Advantages of the use of these algorithms
are mentioned including the computational complexity. The use of this ro-
bust optimization technique guarantees a minimum performance despite the
mismatch of the models or the linearization errors introduced by the control
algorithm. The chapter is completed with a list of possible ways to describe
the uncertainty of the models.

Finally, Chapter 8 condenses the main contributions of the book and pro-
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poses new challenges for researchers.
The book also includes five appendices. The first two appendices show the

fundamentals of fuzzy set operations and clustering. The last three are exten-
sions to the content of the chapters.

The reader will be guided by summary boxes that contain the main ideas
of the different sections, facilitating the comprehension and the goals of each
section of the book.

The book is written at a level suitable for use in a graduate course on appli-
cations of fuzzy systems in data mining and nonlinear modeling and control.
The book discusses novel ideas and provides a new insight into the studied
topics. For this reason, the book is a valuable source for researchers in the
areas of artificial intelligence, data mining, modeling and control. The realistic
examples also provide a good opportunity to people in industry to evaluate
these new technologies, which have been applied with success especially in the
areas of monitoring and control of chemical processes and in oil exploitation.

Leuven, Belgium Jairo Espinosa
January 2004 Joos Vandewalle

Vincent Wertz
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Part I

Fuzzy Modeling



1

Fuzzy Modeling

Fuzzy set theory can be used in the modeling of systems. The modeling task is
carried by a so-called fuzzy inference system (FIS). Fuzzy Inference Systems
are processing units that convert numerical information into linguistic vari-
ables by means of a fuzzification process, process the linguistic information
using a rule base and generate a numerical result from the conclusions of the
rules by means of the defuzzification process (see details in A.7).

Fuzzy inference systems are universal approximators. This property means
that FISs are capable of approximating any continuous function into a com-
pact domain with a certain level of accuracy (ε).

The universal approximation property of the fuzzy models is not the only
remarkable property. Fuzzy models add a new dimension to the information
that can be extracted from the model. The new dimension is the linguistic
dimension, which provides intuitive (linguistic) descriptions over the behavior
of the modeled system.

Fuzzy models can be dynamic or static. Different types of fuzzy models
have been proposed in the literature. Perhaps the most used are the rule-
based fuzzy system [5][6]. These models are characterized by having fuzzy
propositions as antecedents and consequences of the rules (Mamdani models).
Another important type of models are the Takagi–Sugeno fuzzy models[7],

where the consequences of the rules are crisp functions of the antecedents.
After the model structures were proposed, many models were developed

based on “pure” empirical knowledge, although in many applications this
proved to be insufficient and not very efficient because most of the quantita-
tive information was not used. Several data-driven techniques are mentioned
in the literature. Some of them attempt to tune the parameters of the fuzzy
systems once the structure was selected [8] [9] [10] [11]; others try to use the
data to tune not only the parameters but also the structure [4] [12] [13] [14].

This chapter is divided into four sections, each of which presents impor-
tant aspects of fuzzy modeling. The first section is devoted to presenting an
extensive analysis of the capabilities for function approximation of different
types of rule-based fuzzy systems. The analysis includes a proof of the univer-
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sal approximation capabilities of a class of fuzzy systems and the geometrical
properties of the approximating units that can be constructed with the fuzzy
rule-based systems.

The second section presents the most important methods used to calcu-
late the structure and the parameters of a fuzzy model, including gradient
descent techniques, evolutionary strategies and cluster-based techniques.

The third section is focused on the issue of generalization. This chapter
discusses this matter and shows a systematic method to improve the general-
ization especially under circumstances where rules are not completely excited
by the data. The chapter closes with a discussion over linguistic modeling.
The section presents an algorithm to construct fuzzy models. This algorithm
can be used in data mining to extract linguistic knowledge from numerical
data sets. The algorithm is based on the concepts of linguistic integrity [15]
and optimal interface design [16]. The AFRELI (Autonomous Fuzzy Rule Ex-
tractor with Linguistic Integrity) algorithm selects the number of rules and
the location of the membership functions to guarantee a trade-off between
accuracy and comprehensibility of the rules.

Summary:
Fuzzy models can provide good numerical approximation of functions as
well as linguistic information over the behavior of the functions.

1.1 Function Approximation

This section shows the approximation capabilities of some fuzzy systems. Ini-
tially the analysis is oriented to the approximation error and the universal
approximation property of fuzzy systems. The second part of this section an-
alyzes the geometric properties of the rules approximating a function. Fuzzy
systems approach functions in a local way. This means that the information
provided by each rule is restricted to a compact region and the union of these
local descriptions achieves the approximation of the desired function. Each
rule acts like a tile on a mosaic where the picture of the mosaic is the func-
tion.

1.1.1 System Description

For the analysis of approximation error, a class of fuzzy systems will be used.
The class will be described as fuzzy systems with trapezoidal (or triangular)
and normal (maxµi(x) = 1) membership functions, with a maximum overlap
of 0.5 with its neighboring membership functions. 1

1 For notation and a basic introduction to the fuzzy set theory, please see Appendix
A.



1.1 Function Approximation 5

hgt(µi ∩ µi±1) ≤ 1
2

The center of the fuzzy set (modal value for triangular membership functions)
will be given by mj

i as shown in Figure 1.1. Using the product as the AND

Figure 1.1. Membership function definition for the ith input

operation, singleton consequences and center average defuzzifier the inference
process for a system with two inputs can be represented as

f(x) =

∑N1
j1=1

∑N2
j2=1 ȳj1j2(µ1

j1
(x1)µ2

j2
(x2))∑N1

j1=1
∑N2

j2=1(µ
1
j1

(x1)µ2
j2

(x2))
(1.1)

where x ∈ �2 and x1 and x2 are the components, µi
j is the membership

function of the set Ai
j defined on the universe of the ith entry on the vector

x and ȳj1j2 represents a singleton consequence of the rule

IF x1 is A1
j1

AND x2 is A2
j2

THEN f(x) is ȳj1j2

A more general representation is given by

f(x) =
∑L

l=1 ȳl(
∏N

i=1 µi
l(xi))∑L

l=1(
∏N

i=1 µi
l(xi))

(1.2)

where x ∈ �N , L is the number of rules, and xi represents each component of
x. The membership functions are trapezoidal membership functions and for
the case of the ith input are parameterized as follows (see Figure 1.1):

µi
j(x) = min

[
max

(
xi − ai

j

bi
j − ai

j

, 0

)
, max

(
1 − xi − ci

j

di
j − ci

j

, 0

)
, 1

]
(1.3)

Summary:
Fuzzy inference systems (FISs) can be represented in a compact mathe-
matical expression [Equation (1.2)].
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1.1.2 Approximation Error

This section shows the approximation capabilities of the fuzzy systems. The
following theorem describes the capacity of fuzzy systems to approximate a
continuous function in a compact domain. The theorem and the proof are
limited to a prescribed type of fuzzy systems. However, the same reasoning
can be extended to other types of fuzzy models.

Theorem 1.1. Let f(x) be a fuzzy inference system with an arbitrary number
of normal membership functions (triangular or trapezoidal) with centers mi

j,
distributed over the intervals [ai, bi] ∀i = 1, . . . , N and covering the interval
such that at least one and at most two membership functions are different from
zero for a given value xi and let g(x) : �N → � be an unknown function. If
g(x) is continuously differentiable in the interval U = [a1, b1] × [a2, b2] × · · · ×
[aN , bN ], then the fuzzy system f(x) can approximate the function g(x) with
an arbitrary bounded error ε

||g(x) − f(x)||∞ ≤ ε (1.4)

where ||.||∞ is defined as ||e(x)||∞ = supx∈U |e(x)|.
Proof:
Let the consequences ȳ of the rules of the fuzzy system f(x) be calculated as

ȳj1j2...jN = g(m1
j1 , m

2
j2 , . . . , m

N
jN

)

Without lost of generality assume g(x) : �2 → � defined and continuously dif-
ferentiable in the interval U = [a1, b1]× [a2, b2]. Define U j1j2 = [m1

j1
, m1

j1+1]×
[m2

j2
, m2

j2+1], where j1 = 1, 2, . . . , N1 − 1 and j2 = 1, 2, . . . , N2 − 1. The in-
tervals [ai, bi] = [mi

1m
i
2] ∪ [mi

2m
i
3] ∪ . . . ∪ [mi

Ni−1m
i
Ni

] with i = 1, 2. Then the
input domain can be defined as

U = [a1, b1] × [a2, b2] =
N1−1⋃
j1=1

N2−1⋃
j2=1

U j1j2 (1.5)

This implies that for any x ∈ U there is a “region” U j1j2 such that x ∈ U j1j2 ,
so x1 ∈ [m1

j1
m1

j1+1] and x2 ∈ [m2
j2

m2
j2+1] (see Figure 1.2). Due to the selected

description for the input membership functions, at least one and at most two
membership functions will have a membership degree different from zero. The
expression for the fuzzy system will be simplified as

f(x) =

∑j1+1
i1=j1

∑j2+1
i2=j2

ȳi1i2(µ1
i1

(x1)µ2
i2

(x2))∑j1+1
i1=j1

∑j2+1
i2=j2

(µ1
i1

(x1)µ2
i2

(x2))
(1.6)

f(x) =

∑j1+1
i1=j1

∑j2+1
i2=j2

g(m1
i1

, m2
i2

)(µ1
i1

(x1)µ2
i2

(x2))∑j1+1
i1=j1

∑j2+1
i2=j2

(µ1
i1

(x1)µ2
i2

(x2))
(1.7)
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The approximation error will be given by:

|g(x) − f(x)| ≤
∣∣∣∣∣g(x) −

∑j1+1
i1=j1

∑j2+1
i2=j2

g(m1
i1

, m2
i2

)(µ1
i1

(x1)µ2
i2

(x2))∑j1+1
i1=j1

∑j2+1
i2=j2

(µ1
i1

(x1)µ2
i2

(x2))

∣∣∣∣∣
≤ max

i1=j1,j1+1;i2=j2,j2+1
|g(x) − g(m1

i1 , m
2
i2)| (1.8)

Applying the mean-value theorem,

|g(x) − f(x)| ≤ max
i1=j1,j1+1;i2=j2,j2+1

(|| ∂g

∂x1
||∞|x1 − m1

i1 | + || ∂g

∂x2
||∞|x2 − m2

i2 |)
(1.9)

since |x1 − m1
i1

| ≤ |m1
j1+1 − m1

j1
| and |x2 − m2

i2
| ≤ |m2

j2+1 − m2
j2

|, the local
error becomes

|g(x) − f(x)| ≤ || ∂g

∂x1
||∞|m1

j1+1 − m1
j1 | + || ∂g

∂x2
||∞|m2

j2+1 − m2
j2 | (1.10)

m
1
j
1

m1
2

mj
2

2

mj +1
2

2

mN2

2

x2

U

x
a b

a

b

1 1

2

2
1m1

1 m
1

1
j +1 m

1
N1

U
j1j2

x

Figure 1.2. Input point in the rule space
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The maximum global error will be given by

||g(x) − f(x)||∞ = sup
x∈U

|g(x) − f(x)|

≤ || ∂g

∂x1
||∞ max

1≤j1≤N1−1
|m1

j1+1 − m1
j1 |

+|| ∂g

∂x2
||∞ max

1≤j2≤N2−1
|m2

j2+1 − m2
j2 |

= || ∂g

∂x1
||∞e1 + || ∂g

∂x2
||∞e2 (1.11)

where ei = max1≤ji≤Ni−1 |mi
j2+1 − mi

j2
|. Extending this result to N dimen-

sions,

||g(x) − f(x)||∞ ≤ || ∂g

∂x1
||∞e1 + || ∂g

∂x2
||∞e2 + · · · + || ∂g

∂xN
||∞eN (1.12)

This expression means that the maximum error in the approximation is
bounded and the approximation error can be reduced to a certain ||g−f ||∞ ≤ ε
value by playing with the distance ei

In other words, the described fuzzy system f(x) is a universal approxima-
tor to the function g(x) within a finite domain x ∈ U [17].

Observe that the accuracy of the approximation depends directly on two
factors:

1. The value of the maximum gradient of the function || ∂g
∂xi

||∞
2. The distance between the “centers” of the membership functions |mi

j2+1−
mi

j2
|.

Summary:
Fuzzy inference systems (FISs) can approximate any function in a compact
domain. The accuracy of the approximation depends on the maximum
slope of the function and the distance between the centers of the fuzzy
sets.

1.1.3 Constructing Units in the Fuzzy Models

A clearer perspective on the approximation capabilities of fuzzy systems can
be gained by making an analysis of the interpolation properties of neighboring
rules. These elements constitute the constructing units of the fuzzy systems.
These units work as “patches” that can be used to approximate a given func-
tion. The study of these units is important to analyze properties such as gen-
eralization and smoothness. It is important to remark that these constructing
units are the “smallest” fuzzy model that can be defined on a given inter-
val. The analysis of this section will be limited to three types of membership



1.1 Function Approximation 9

functions: triangular, polynomial and Gaussian. The interpolation properties
of these types of membership functions, and especially the triangular, already
cover the interpolation properties of the rules using trapezoidal membership
functions. For this reason, these membership functions are not covered in this
study.

Triangular Membership Functions with Overlap 1
2

The triangular membership functions with overlap 1
2 are plotted in Figure 1.3.

These membership functions exhibit two important properties:

1. Overlap is equal to 1
2 .

2. µi
ji

(xi) = 1 − µi
ji+1(xi). Overlapping membership functions add up to 1.

Initially, a one-input–one-output system will be studied to simplify the anal-
ysis. The rules for the interval x ∈ [mj1 , mj1+1] are

IF x is Aj1 THEN ȳj1

IF x is Aj1+1 THEN ȳj1+1

The expression for the function defined by the fuzzy system when the input
lies on the interval x ∈ [mj1 , mj1+1] will be

f(x) =
ȳj1µj1(x) + ȳj1+1µj1+1(x)

µj1(x) + µj1+1(x)

= ȳj1µj1(x) + ȳj1+1µji+1(x) (1.13)

where the membership functions are parameterized as

µj1(x) =
mj1+1 − x

mj1+1 − mj1

(1.14)

µj1+1(x) =
x − mj1

mj1+1 − mj1

(1.15)

replacing this parameterization in (1.13):

f(x) = ȳj1

(
m1

j1+1 − x

mj1+1 − mj1

)
+ ȳj1+1

(
x − mj1

mj1+1 − mj1

)
=

(
ȳj1+1 − ȳj1

mj1+1 − mj1

)
︸ ︷︷ ︸

a

x +
(

mj1+1ȳ
j1 − mj1 ȳ

j1+1

mj1+1 − mj1

)
︸ ︷︷ ︸

b

= ax + b (1.16)

Equation (1.16) is clearly an affine function of x. For the one-dimensional
case, the fuzzy system using the described fuzzy rules works as a linear inter-
polator between the consequences of the rules.
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Figure 1.3. Triangular membership functions with overlap 1
2

Extending the analysis to the case of functions with two inputs (x ∈ �2):
The function defined by the fuzzy system in the interval x ∈ [m1

j1
, m1

j1+1] ×
[m2

j2
, m2

j1+1] is given by

f(x) =

ȳj1j2(µ1
j1

(x1)µ2
j2

(x2)) + ȳ(j1+1)j2(µ1
j1+1(x)µ2

j2
(x2))

µ1
j1

(x1)µ2
j2

(x2) + µ1
j1+1(x)µ2

j2
(x2) + µ1

j1
(x1)µ2

j2+1(x2) + µ1
j1+1(x)µ2

j2+1(x2)

+
ȳj1j2+1(µ1

j1
(x1)µ2

j2+1(x2)) + ȳ(j1+1)(j2+1)(µ1
j1+1(x)µ2

j2+1(x2))
µ1

j1
(x1)µ2

j2
(x2) + µ1

j1+1(x)µ2
j2

(x2) + µ1
j1

(x1)µ2
j2+1(x2) + µ1

j1+1(x)µ2
j2+1(x2)

= ȳj1j2(µ1
j1(x1)µ2

j2(x2)) + ȳ(j1+1)j2(µ1
j1+1(x)µ2

j2(x2)) +

+ ȳj1j2+1(µ1
j1(x1)µ2

j2+1(x2)) + ȳ(j1+1)(j2+1)(µ1
j1+1(x)µ2

j2+1(x2)) (1.17)

where x1 and x2 are the components of x, and µi
j represents the jth mem-

bership function defined on the domain of xi. Replacing the parameterization
of the membership functions given by Equations (1.14) and (1.15), we can
express the function of the system as

f(x) =
−m2

j2+1ȳ
j1j2 + m2

j2+1ȳ
(j1+1)j2 + m2

j2
ȳj1(j2+1) − m2

j2
ȳ(j1+1)(j2+1)

(m1
(j1+1) − m1

j1
)(m2

(j2+1) − m2
j2

)
x1

+
−m1

(j1+1)ȳ
j1j2 + m1

j1
ȳ(j1+1)j2 + m1

j1+1ȳ
j1(j2+1) − m1

j1
ȳ(j1+1)(j2+1)

(m1
(j1+1) − m1

j1
)(m2

(j2+1) − m2
j2

)
x2

+
ȳj1j2 − ȳ(j1+1)j2 − ȳj1(j2+1) + ȳ(j1+1)(j2+1)

(m1
(j1+1) − m1

j1
)(m2

(j2+1) − m2
j2

)
x1x2
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+
m1

(j1+1)m
2
(j2+1)ȳ

j1j2 − m2
j2+1m

1
j1

ȳ(j1+1)j2

(m1
(j1+1) − m1

j1
)(m2

(j2+1) − m2
j2

)

+
−m1

j1+1m
2
j2

ȳj1(j2+1) + m1
j1

m2
j2

ȳ(j1+1)(j2+1)

(m1
(j1+1) − m1

j1
)(m2

(j2+1) − m2
j2

)
(1.18)

Observe that even if Equation (1.18) looks very complex, it is nothing but a
bilinear expression such as

f(x1, x2) = ax1 + bx2 + cx1x2 + d (1.19)

Figure 1.4 shows an example of a bilinear surface generated by a fuzzy system
with two inputs and triangular membership functions with overlap 1

2 .
If the procedure is extended to higher dimensions, similar expressions
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Figure 1.4. Bilinear surface generated with triangular membership functions with
overlap 1

2

will be found. In general, this description of the fuzzy systems produces
a multilinear element of interpolation between the centers of the rules; in
other words, the fundamental constructing element of this kind of fuzzy sys-
tem is a finite multilinear hypersurface defined in the interval U j1j2...jN =
[m1

j1
, m1

j1+1] × [m2
j2

, m2
j2+1] × . . . × [mN

jN
, mN

jN+1].
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Summary:
Triangular membership functions with 1

2 overlap generate linear interpo-
lations among the consequences of their corresponding rules. If the system
has multiple antecedents, the interpolation will be multilinear among the
values of the consequences of the rules.

Polynomial Membership Function with Overlap 1
2

Polynomial membership functions are characterized by two third-order poly-
nomials describing the left and the right edge of the fuzzy set. The membership
functions are shown in Figure - 1.5. Observe that these membership functions
preserve the properties described in the previous section. Additionally, two
new conditions are included. For the input domain xi the conditions are

• Overlap is equal to 1
2 .

• µi
ji

(xi) = 1 − µi
ji+1(xi). Overlapping membership functions add up to 1.

• ∂µi
ji

(mji
)

∂xi
= 0.

• ∂µi
ji

(mji+1)
∂xi

= 0.

With these conditions the polynomial describing the membership functions in
the interval [mji , mji+1] can be constructed. The membership function can be
described as follows:
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0.8

1

U

a
j
i

b
j
i c

j
i

d
j
i

c
j−1
i

d
j−1
i a

j+1
i

b
j+1
i

Figure 1.5. Polynomial membership functions
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Figure 1.6. Polynomial membership functions with overlap 1
2

µi
ji

(xi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if xi < ai

ji

(xi − ai
ji

)2(2xi + ai
ji

− 3bi
ji

)/(ai
ji

− bi
ji

)3 if ai
ji

< xi < bi
ji

1 if bi
ji

≤ xi ≤ ci
ji

−(xi − di
ji

)2(2xi + di
ji

− 3ci
ji

)/(ci
ji

− di
ji

)3 if ci
ji

< xi < di
ji

0 if xi > di
ji

(1.20)
Initially, a one-input–one-output system will be studied to simplify the anal-
ysis. The rules for the interval x ∈ [mj1 , mj1+1] are

IF x is Aj1 THEN ȳj1

IF x is Aj1+1 THEN ȳj1+1

The expression for the function generated by a system with one input defined
on the interval x ∈ [mj1 , mj1+1] and membership functions are shown in
Figure 1.6.

f(x) =
ȳj1µj1(x) + ȳj1+1µj1+1(x)

µ1
j1

(x) + µj1+1(x)

= ȳj1µj1(x) + ȳj1+1µji+1(x)
= −ȳj1(x − di

ji
)2(2x + mj1+1 − 3mj1)/(mj1 − mj1+1)3

+ȳj1+1(xi − mj1)
2(2xi + mj1 − 3mj1+1)/(mj1 − mj1+1)3 (1.21)

Grouping the terms, we get

f(x) = −2(ȳj1 − ȳj1+1)x3 + 3(ȳj1 − ȳj1+1)(mj1 + mj1+1)x2
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− 6(ȳj1 − ȳj1+1)(mj1mj1+1)x
− ȳj1(m3

j1 − 3m2
j1mj1+1) + ȳj1+1(m3

j1+1 − 3m2
j1+1mj1) (1.22)

It is clear from (1.22) that the interpolation given by this type of member-
ship functions is a third-order polynomial. Observe that the interpolation is
monotonic. Another very interesting property of this interpolation is that it
has a continuous derivative at the extremes. Such a property is not present
when triangular functions are used.

If the analysis is extended to more dimensions in the domain of the func-
tion, the interpolating unit will be a third-order polynomial on each of the
inputs. A graphical representation of this constructing unit is shown in Figure-
1.8.
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5
Polynomial Interpolation

i
ij j  +1i

mim

i
iy

j  +1i

iy

j

Figure 1.7. Polynomial interpolation generated with polynomial membership func-
tions with overlap 1

2

Summary:
Polynomial membership functions with 1

2 overlap generate smooth interpo-
lations among the consequences of their corresponding rules. These inter-
polations are characterized by a third-order polynomial that is monotonic
along the interpolation interval.

Gaussian Membership Functions with σ = 0.6(mi
ji+1 − mi

ji
)

These membership functions are parameterized by a function shaped as a
“Gauss’ bell”. For this type of membership functions the parameterization is
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Figure 1.8. Polynomial surface generated with polynomial membership functions
with overlap 1

2 in a system with two inputs

given as

µi
ji

(xi) = e
−

(
x(i)−mi

ji
σi

ji

)2

(1.23)

Assuming a simple fuzzy system with one input and one output and only two
membership functions and two rules, the system will generate the following
interpolation in the interval x ∈ [mj1 , mj1+1]:

f(x) =
ȳj1e

−
( x−mj1

σ

)2

+ ȳj1+1e
−

( x−mj1+1
σ

)2

e
−

( x−mj1
σ

)2

+ e
−

( x−mj1+1
σ

)2 (1.24)

The interpolation generated by this expression is shown in Figure- 1.10.
Observe that this interpolation is smooth but the membership functions are
not complementary. For this reason, the denominator in (1.24) is not equal to
1. This fact will make the interpolation less accurate because more than one
rule will be activated when the inputs correspond to a modal value and the
function will not pass exactly by the values given by the consequences.

The expression for the function generated by the fuzzy system when the
domain of x ∈ U is defined as U = [m1

j1
, m1

j1+1] × [m2
j2

, m2
j2+1] is

f(x) =

ȳj1j2(µ1
j1

(x1)µ2
j2

(x2)) + ȳ(j1+1)j2(µ1
j1+1(x)µ2

j2
(x2))

µ1
j1

(x1)µ2
j2

(x2) + µ1
j1+1(x)µ2

j2
(x2) + µ1

j1
(x1)µ2

j2+1(x2) + µ1
j1+1(x)µ2

j2+1(x2)
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Figure 1.10. Gaussian interpolation generated with Gaussian membership func-
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)

+
ȳj1j2+1(µ1

j1
(x1)µ2

j2+1(x2)) + ȳ(j1+1)(j2+1)(µ1
j1+1(x)µ2

j2+1(x2))
µ1

j1
(x1)µ2

j2
(x2) + µ1

j1+1(x)µ2
j2

(x2) + µ1
j1

(x1)µ2
j2+1(x2) + µ1

j1+1(x)µ2
j2+1(x2)

(1.25)
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Figure 1.11. Gaussian surface generated with Gaussian membership functions with
σ = 0.6(mi

ji+1 − mi
ji

)

The product of two membership functions of this type can be parameter-
ized as follows:

µ1
j1(x1)µ2

j2(x2) = e
−

(
σ2
2(x(1)−m1

j1
)2+σ2

1(x(2)−m2
j2

)2

σ2
1σ2

2

)

µ1
j1(x1)µ2

j2(x2) = µj1j2(x) = e
− dj1j2T

Σdj1j2
(σ1σ2)2 (1.26)

with Σ = diag(σ1, σ2) and dj1j2 = [x1 −m1
j1

, x2 −m2
j2

]T . Then the expression
for the function will be

f(x) =
ȳj1j2µj1j2(x) + ȳ(j1+1)j2µ(j1+1)j2(x)

µj1j2(x) + µ(j1+1)j2(x) + µj1j2+1(x) + µ(j1+1)(j2+1)(x)

+
ȳj1j2+1µj1j2+1(x) + ȳ(j1+1)(j2+1)µ(j1+1)(j2+1)(x)

µj1j2(x) + µ(j1+1)j2(x) + µj1j2+1(x) + µ(j1+1)(j2+1)(x)
(1.27)

The surface generated by this type of systems is shown in Figure- 1.11.
The surface generated is a weighted sum of Gaussians. For a domain of n
dimensions, the function is a weighted sum of Gaussians calculated using n
dimensional distances.

Summary:
Gaussian membership functions generate smooth interpolations among
points near the consequences of their corresponding rules. These inter-
polations are characterized as a sum of weighted Gaussian functions.



18 1 Approximation Capabilities of Takagi–Sugeno Fuzzy Models

Other Approximating Units

Some other approximating units can be obtained with different distribution of
the membership functions. Because the analytical expression for such “units”
is very complex and not very informative, only the graphical representation
is presented here. The bidimensional and tridimensional representations are
shown in Figures- 1.13, 1.14, and 1.15. The membership functions used to
generate these graphics are shown in Figure 1.12.
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Figure 1.12. (a) Triangular membership functions with overlap different than 1
2 .

(b) Polynomial membership functions with overlap different than 1
2 . (c) Gaussian

membership functions with different σ

1.2 Approximation Capabilities of Takagi–Sugeno Fuzzy
Models

The study of the approximation capabilities of Takagi–Sugeno (T-S) fuzzy
models is more complex, because the consequences of the rules are no longer
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Figure 1.13. Interpolation and surfaces generated with triangular membership
functions with overlap different than 1
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Figure 1.14. Interpolation and surfaces generated with polynomial membership
functions with overlap different than 1
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Figure 1.15. Interpolation and surfaces generated with Gaussian membership func-
tions with different σ

fixed values but are functions of the antecedents or other variables. However,
the reader can extend the reasonings of previous sections to T-S fuzzy models
bearing in mind this important fact. The reasonings can be summarized in
the following lines.
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• Takagi–Sugeno fuzzy models are also universal approximators.
• Takagi–Sugeno fuzzy models with triangular membership functions and

overlap of 1
2 generate linear interpolations among the values of the func-

tions used as consequences of the rules.
• Takagi–Sugeno fuzzy models with polynomial membership functions and

overlap of 1
2 generate nonlinear interpolations described by a monotonic

section of a third-order polynomial connecting the values of the functions
used as consequences of the rules.

• Takagi–Sugeno fuzzy models with Gaussian membership functions gener-
ate nonlinear interpolations described by a monotonic function that con-
nects the “neighborhoods” of the functions used as consequences of the
rules.

1.3 Conclusion and Summary

This chapter has presented the reader with the approximation capabilities of
fuzzy inference systems. The section has presented the theorem for “univer-
sal approximation” showing in summary that any continuous function can be
approximated with an arbitrary accuracy by a fuzzy inference system on a
compact domain.

The mechanism used to construct such an approximation resembles the
construction of a “mosaic” where each group of neighboring rules works like
a “tile” helping to shape the function like a picture.

The use of one or other type of membership functions depends on many
aspects. For instance, differentiability will favor the use of Gaussian and poly-
nomial membership functions since they exhibit continuous derivatives facili-
tating sensitivity analysis over the obtained fuzzy inference system. If the goal
is to obtain simple linear interpolations and simple numerical evaluations, the
triangular membership functions are favored. If the goal is to guarantee local
coverage of the rules, the triangular and polynomial membership functions are
preferred. These examples try to illustrate that the selection of the type of
membership functions is strongly conditioned by the application of the model
and not very strongly by the approximation capabilities. The same can be said
about the choice of between Mamdani models and Takagi–Sugeno models.



2

Constructing Fuzzy Models from Input-Output
Data

In the previous chapter we presented a discussion of the approximation capa-
bilities of fuzzy models. In summary, we have shown that fuzzy models can
be used to reproduce the behavior of any continuous function. This chapter
presents some of the methods used to construct fuzzy models that replicate
the behavior of a given function. The information about the function is pre-
sented in the form of input–output data, which means that a set of points
over the domain of the function (input) is selected and then evaluated in the
function (output).

The construction of fuzzy models involves the selection of several param-
eters: position, shape and the distribution of the membership functions, rule
base construction, selection of the logical operations, consequences of the rules,
etc. This large number of “degrees of freedom” makes it very difficult to im-
plement a unique method to select all these parameters at once. A typical
approach is to set in advance the logical operations and the type of mem-
bership functions using certain criteria (differentiability, linguistic integrity,
implementability, etc.). The remaining parameters can be estimated from the
data using different strategies, but in general all are based on a single objec-
tive, which is to minimize the approximation error between the output values
and the values given by the fuzzy model.
According to the tuned parameters and the strategies, different methods have

been proposed in the literature. This chapter presents the following strategies:

• Mosaic or table lookup scheme [18]
• Using gradient descent [18] [19]
• Using clustering and gradient descent [12] [4]
• Using evolutionary strategies [20] [21]

The mosaic or table lookup scheme fixes in advance the type, number and
position of the membership functions and calculates only the consequences
of the rules. The methods based on gradient descent fix in advance the type
and number of the membership functions and calculate their positions and
the value of the consequences. The methods based on clustering and gradient
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descent fix only the type of membership functions and by means of clustering
algorithms select the number and initial positions of the membership func-
tions. Consequences and refined positions of the membership functions are
found by means of a gradient descent algorithm.

Evolutionary strategies deserve a different comment since they can be
used to optimize all possible aspects integrated in a fuzzy model including
the set of inputs used to construct the model. Some interesting features of
the evolutionary strategies are the fact that they can introduce complex con-
straints to enforce some desired features into the model and also the fact that
they perform a gradient-free optimization.

Table 2.1 summarizes the methods and the parameters that are adjusted
by the method. The following sections are dedicated to explain these methods.
Finally, the chapter closes with an example of an industrial application of the
fuzzy models constructed from input–output data.

Table 2.1. Parameters Adjusted by the Different Training Methods

Method Type Number Location Consequences
of MFs of MFs of the MFs

Mosaic scheme Fixed Fixed Fixed Adjusted
Gradient descent Fixed Fixed Adjusted Adjusted
Clustering +
gradient descent Fixed Adjusted Adjusted Adjusted
Evolutionary
strategies (1) Adjusted Adjusted Adjusted Adjusted

Summary:
Fuzzy inference systems (FIS) can be systematically constructed from
“pure” input–output data. All methods are based on the optimization of
a cost function to minimize the “distance” between the predictions of the
FIS and the output data. The main differences among the methods are the
initialization and the adjusted parameters.

2.1 Mosaic or Table Lookup Scheme

The basic scheme of the method was proposed by Wang [18]. Here some sim-
ple modifications are introduced, and these modifications are related to the
consequence calculation. In this method the position, the shape and the dis-
tribution of the membership functions are choices for the designer. The rule
base is composed and the method finds only the consequences of the rules.

Assume a sequence of input–output {xi, yi} i = 1, . . . , N data is collected,
the inputs xi ∈ U ⊂ �p and the output yi ∈ V ⊂ �. The subset U is a portion
of the space �p and is defined as U = [a1, b1] × . . . × [ap, bp]. The procedure
to construct the model is laid out in the following.
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• For each of the p inputs of the system distribute over the interval [ai, bi]
Ni membership functions. The shape, the position and the distribution is
a user’s choice. The only condition is that the full interval is covered and
at least two membership functions are placed on each point of the input
domain. As shown in the previous sections, the shape and the distribution
affect the smoothness and the accuracy of the approximation.

• Generate the rule base using all possible combinations among the an-
tecedents and the AND operator (choosing in advance “min” or “product”
operator). The rule l of the rule base for Mamdani fuzzy systems is

IF xi
1 is Al

1 AND . . . AND xi
p is Al

p THEN y IS ȳl

and for Takagi–Sugeno fuzzy systems

IF xi
1 is Al

1 AND . . . AND xi
p is Al

p THEN y = al
1x

i
1 + . . . + al

px
i
p + bl

• Calculate the inference of each rule. For rule l of the form

µl(xi) = min{µ1
l (x

i
1), µ

2
l (x

i
2), . . . , µ

p
l (x

i
p)} (2.1)

or
µl(xi) = µ1

l (x
i
1).µ

2
l (x

i
2). . . . .µ

p
l (x

i
p) (2.2)

the general expressions for these fuzzy system with L rules will be given
by

f(xi) =

L∑
l=1

ȳlµl(xi)

L∑
l=1

µl(xi)

(2.3)

for the Mamdani models and

f(xi) =

L∑
l=1

(al
1x

i
1 + . . . + al

px
i
p + bl)µl(xi)

L∑
l=1

µl(xi)

(2.4)

for Takagi–Sugeno models.
• Calculate the consequence parameters

– In the Mamdani model the parameter to be calculated is ȳl l = 1, . . . , L
such that f(xi) ≈ yi. Observe that Equation (2.3) can be written as

f(xi) =
L∑

l=1

ȳlwl(xi) (2.5)
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wl(xi) =
µl(xi)

L∑
l=1

µl(xi)

= wi
l (2.6)

The N output values can be represented as the vector Y in terms of
the inference process:⎡⎢⎢⎢⎣

y1

y2

...
yN

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

Y

=

⎡⎢⎢⎢⎣
w1

1 w1
2 . . . w1

L

w2
1 w2

2 . . . w2
L

...
...

. . .
...

wN
1 wN

2 . . . wN
L

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

W

⎡⎢⎢⎢⎣
ȳ1

ȳ2

...
ȳL

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

θ

+

⎡⎢⎢⎢⎣
e1
e2
...

eN

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

E

(2.7)

– In the Takagi–Sugeno model the parameters to be calculated are
al
1 . . . al

p and bl l = 1, . . . , L such that f(xi) ≈ yi. Using the reasoning
applied for the Mamdani models, Equation (2.4) can be written as

f(xi) =
L∑

l=1

(al
1x

i
1 + . . . + al

px
i
p + bl)wl(xi) (2.8)

where wl(xi) has the same form shown in Equation (2.6).
The N output values can be represented as the vector Y in terms of
the inference process

⎡⎢⎢⎢⎣
y1

y2

...
yN

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

Y

=

⎡⎢⎢⎢⎣
w1

1x
1
1 . . . w1

1x
1
p w1

1 w1
2x

1
1 . . . w1

Lx1
p w1

L

w2
1x

1
1 . . . w2

1x
1
p w2

1 w2
2x

1
1 . . . w2

Lx1
p w2

L
...

. . .
...

...
...

. . .
...

...
wN

1 x1
1 . . . wN

1 x1
p wN

1 wN
2 x1

1 . . . wN
L x1

p wN
L

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

W

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
1

a1
2
...

a1
p

b1

a2
1
...

aL
p

bL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

θ

+

⎡⎢⎢⎢⎣
e1
e2
...

eN

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

E

(2.9)

In both cases the vector E is the approximation error and the aim is to
reduce the norm of this vector as much as possible. Using the quadratic
norm to measure the approximation error, we obtain
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min
θ

||E||2 = min
θ

||Y − Wθ||2 (2.10)

It is a least-squares problem and the consequences can be calculated using
least squares. The solution to this least-squares problem is

θ = arg min
θ

||E||2 = (WT W )−1Y T W (2.11)

This solution is applicable as far as the rank(WT W ) = dim(θ); otherwise
other methods must be applied to guarantee a reliable set of consequences
for the rules. In Section 2.5, a method based on recursive least squares is
detailed.

Summary:
A mosaic or table lookup scheme is probably the simplest method to con-
struct fuzzy models from data. The method demands from the user the
definition of the antecedent of the rules and finds the consequences by
using least squares.

2.1.1 Illustrative Example

In this example we show a simple application of the method mosaic or table
lookup scheme to approximate the function f(x) = sin(x) over the interval
[0, 2π] using 629 points equidistant along the domain of x. In this case we illus-
trate the results using six membership functions over the input domain. Four
models are presented: three of the Mamdani type and one Takagi–Sugeno. The
three Mamdani models are created with three different types of membership
functions: triangular, polynomial and Gaussian. For the model using Takagi–
Sugeno rules only the results using triangular membership are illustrated.
Observe that the interpolations generated by the Mamdani models are men-

tioned in previous Chapter: linear for the triangular membership functions
(see Figure 2.1), polynomial for the polynomial membership functions (see
Figure 2.2) and between the neighborhoods of the consequences for the Gaus-
sian membership functions.

The best model is by far the Takagi–Sugeno model (see Figure 2.4). In
fact, in the figure it is difficult to distinguish the approximation from the
original function. Figure 2.4 shows some straight segments corresponding to
the consequences of the rules. The successful result of the Takagi–Sugeno can
be explained in part because the model exhibits 12 degrees of freedom (two
adjustable parameters per rule al

1 and bl) in contrast with the Mamdani mod-
els with only 6 degrees of freedom (only one adjustable parameter per rule ȳl).
Having more degrees of freedom can be beneficial as long as the number of
points is large enough and as long as they are well spread over the input do-
main (persistent excitation). Otherwise the generalization capabilities of the
model can be compromised.

Among the Mamdani models the best model is the model generated us-
ing Gaussian membership functions. The result is explained in part for the
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resemblance between the shapes of the sine function and the Gaussian mem-
bership functions. Also, it is interesting to observe how the “flat” sections of
the polynomial membership functions affect the approximation by generating
local plateaus in the function approximation.

Observe that the results of this example are only an illustration of the
method and are by no means a benchmark to judge the capabilities of some
membership functions or model types.
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Figure 2.1. (a) Approximation generated by a Mamdani fuzzy model trained using
the mosaic or table lookup scheme using triangular membership functions with 6
membership functions. (-) Original function (- -) Approximation generated by the
fuzzy model (*) Consequences of the rules (b) Membership functions

2.2 Using Gradient Descent

This method requires the definition of the number of membership functions
and their shape. Normally the AND function is fixed to be the “product”
because an analytical expression for the gradient of the cost function is needed.
The initial position of the membership functions is another element that must
be chosen. The method proceeds as follows:

• For each of the p inputs of the system, distribute over the interval [ai, bi],
Ni membership functions. The shape, the initial positions and the distri-
bution are user’s choices. The membership functions must cover the input
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Figure 2.2. (a) Approximation generated by a Mamdani fuzzy model trained using
the mosaic or table lookup scheme using polynomial membership functions with 6
membership functions. (-) Original function (- -) Approximation generated by the
fuzzy model (*) Consequences of the rules (b) Membership functions
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Figure 2.3. (a) Approximation generated by a Mamdani fuzzy model trained using
the mosaic or table lookup scheme using polynomial membership functions with 6
membership functions. (-) Original function (- -) Approximation generated by the
fuzzy model (*) Consequences of the rules (b) Membership functions
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Figure 2.4. (a) Approximation generated by a Takagi–Sugeno fuzzy model trained
using the mosaic or table lookup scheme using triangular membership functions with
6 membership functions. (-) Original function (- -) Approximation generated by the
fuzzy model (.-) Consequences of the rules (b) Membership functions

interval, and at least two membership functions should be placed on each
input domain.

• Generate the rule base using all possible combinations among the an-
tecedents and the AND operator using “product”.

• Initialize the value of the consequences using prior knowledge, least squares
or recursive least squares.

• Optimize the value of the consequences ȳl and the parameters of the mem-
bership functions. The criteria will be to minimize the cost function de-
scribed in the previous section, but now the optimization will also adjust
the membership functions of the antecedents. The cost function can be
described as

J =
1
2

N∑
i=1

(yi − f(xi, θ))2 (2.12)

where θ is a vector representing all the “adjustable” parameters (conse-
quences, parameters of the membership functions) of the fuzzy system
f(., .). The problem will be the minimization of the cost function J . This
minimization is a nonlinear, nonconvex optimization problem. The objec-
tive is to obtain an “acceptable” solution and not necessarily “the global
minima” of this cost function. Different schemes for optimization can be
applied to find this solution. Probably the simplest one will be the gra-
dient descent method. This method consists of an iterative calculation of
the parameters oriented to the negative direction of the gradient. The ex-



2.2 Using Gradient Descent 29

planation behind this method is that by taking the negative direction of
the gradient, the steepest route toward the minimum will be taken. This
descent direction does not guarantee convergence of the scheme; for this
reason, the α parameter is introduced and it can be modified to improve
the convergence rate and properties. Some choices of α are given by New-
ton and quasi-Newton methods [22].

θ(k + 1) = θ(k) + α
∂J

∂θ
(2.13)

α is sometimes called the “learning rate.” The gradient descent method
can be modified; for example, by calculating the consequences by means
of least squares (see ANFIS scheme [19]).

The gradient of the cost function will be in general

∂J

∂θ
=

N∑
i=1

(yi − f(xi, θ))
∂f(xi, θ)

∂θ
=

N∑
i=1

ei ∂f(xi, θ)
∂θ

(2.14)

Using the general expression of the fuzzy system can be parameterized as

f(xi) =

L∑
l=1

ȳlµl(xi)

L∑
l=1

µl(xi)

=
A

B
(2.15)

The updating of the consequence parameters will be independent of the pa-
rameterization of the membership functions and will be given by

ȳl(k + 1) = ȳl(k) + α

N∑
i=1

(y − f(xi))
µl(xi)

B
(2.16)

The expressions to update the parameters of the membership functions are
different for each parameterization. Special attention is devoted to the gra-
dient calculation to guarantee a 0.5 overlap between contiguous membership
functions. The updating formulas for some of the membership functions are
shown in the next sections.

Summary:
The gradient descent method calculates parameters on the antecedents and
the consequences of the fuzzy inference system. The method demands from
the user the definition of the initial location of the membership functions
of the antecedents. The method can be combined with a calculation of the
consequences by using least squares. In this case the method is known as
the ANFIS scheme. Such a method exhibits faster convergence, especially
for Takagi–Sugeno models.
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2.2.1 Gradient Updating for Trapezoidal Membership Functions

Assuming the parameterization given in the expression

µi
j(xi, a

i
j , b

i
j , c

i
j , d

i
j) = min

[
max

(
xi − ai

j

bi
j − ai

j

, 0

)
, max

(
1 − xi − ci

j

di
j − ci

j

, 0

)
, 1

]
(2.17)

the updating formulas will be

ai
j(k + 1) = ai

j(k)

+ α

N∑
t=1

(yt − f(xt))
B

∑
l∈U

(ȳl − f(xt))
µl(xt)
µi

j(x
t
i)

∂µi
j(x

t
i)

∂ai
j

(2.18)

bi
j(k + 1) = bi

j(k)

+ α

N∑
t=1

(yt − f(xt))
B

∑
l∈U

(ȳl − f(xt))
µl(xt)
µi

j(x
t
i)

∂µi
j(x

t
i)

∂bi
j

(2.19)

ci
j(k + 1) = ci

j(k)

+ α

N∑
t=1

(yt − f(xt))
B

∑
l∈U

(ȳl − f(xt))
µl(xt)
µi

j(x
t
i)

∂µi
j(x

t
i)

∂ci
j

(2.20)

di
j(k + 1) = di

j(k)

+ α

N∑
t=1

(yt − f(xt))
B

∑
l∈U

(ȳl − f(xt))
µl(xt)
µi

j(x
t
i)

∂µi
j(x

t
i)

∂di
j

(2.21)

where the set U is the set of rules that includes the function µi
j(x) in the

antecedents and

∂µi
j(x

t
i)

∂ai
j

=

⎧⎪⎨⎪⎩
0 if xt

i < ai
j

xt
i−bi

j

(bi
j−ai

j)
2 if ai

j < xt
i < bi

j

0 if xt
i > bi

j

(2.22)

∂µi
j(x

t
i)

∂bi
j

=

⎧⎪⎨⎪⎩
0 if xt

i < ai
j

ai
j−xt

i

(bi
j−ai

j)
2 if ai

j < xt
i < bi

j

0 if xt
i > bi

j

(2.23)

∂µi
j(x

t
i)

∂ci
j

=

⎧⎪⎨⎪⎩
0 if xt

i < ci
j

di
j−xt

i

(di
j−ci

j)
2 if ci

j < xt
i < di

j

0 if xt
i > di

j

(2.24)

∂µi
j(x

t
i)

∂di
j

=

⎧⎪⎨⎪⎩
0 if xt

i < ci
j

xt
i−cj

i

(dj
i −ci

j)
2 if ci

j < xt
i < di

j

0 if xt
i > di

j

(2.25)
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It is important to remark that the updating should preserve the condition ai
j ≤

bi
j ≤ ci

j ≤ di
j . This adaptation rule can be applied to triangular membership

functions by just making bi
j = ci

j .

2.2.2 Gradient Updating for Triangular Membership Functions
with Overlap 1

2

The membership functions are parameterized by using only their modal val-
ues. This parameterization not only preserves the overlap but also reduces
the number of parameters to be tuned. Triangular membership functions are
parameterized by the position of their three vertices; but the condition of
overlap 1

2 makes the lower right vertex of one membership function to be at
the same position as the modal value of the next membership function. So,
instead of tuning three parameters (the vertices), only one parameter is tuned
for each membership function.

The parameterization for a triangular membership function using the
modal values as parameters is

µi
j(xi, m

i
j−1, m

i
j , m

i
j+1) = max

[
0, min

(
xi − mi

j−1

mi
j − mi

j−1
, 1 − xi − mi

j

mi
j+1 − mi

j

)]
(2.26)

The updating formula will be

mi
j(k + 1) = mi

j(k) + α

N∑
t=1

(yt − f(xt))
B[∑

l∈U

(ȳl − f(xt))
µl(xt)

µi
j−1(x

t
i)

∂µi
j−1(x

t
i)

∂mi
j

+
∑
l∈V

(ȳl − f(xt))
µl(xt)
µi

j(x
t
i)

∂µi
j(x

t
i)

∂mi
j

+
∑
l∈W

(ȳl − f(xt))
µl(xt)

µi
j+1(x

t
i)

∂µi
j+1(x

t
i)

∂mi
j

]
(2.27)

where the sets U, V and W are the set of rules that includes the functions
µi

j−1(.), µi
j(.) and µi

j+1(.), respectively, and with

∂µi
j−1(x

t
i)

∂mi
j

=

⎧⎪⎨⎪⎩
0 if xt

i < mi
j−1

xt
i−mi

j

(mi
j−mi

j−1)
2 if mi

j−1 < xt
i < mi

j

0 if xt
i > mi

j

(2.28)

∂µi
j(x

t
i)

∂mi
j

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if xt

i < mi
j−1

mi
j−1−xt

i

(mi
j−mi

j−1)
2 if mi

j−1 < xt
i < mi

j

mj+1−xt
i

(mi
j+1−mi

j)
2 if mi

j < xt
i < mi

j+1

0 if xt
i > mi

j+1

(2.29)
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∂µi
j+1(x

t
i)

∂mi
j

=

⎧⎪⎨⎪⎩
0 if xt

i < mi
j

xt
i−mi

j+1

(mi
j+1−mi

j)
2 if mi

j < xt
i < mi

j+1

0 if xt
i > mi

j+1

(2.30)

Here the adaptation must be constrained such that the condition mi
j ≤ mi

j+1
is preserved.

2.2.3 Gradient Updating for Polynomial Membership Functions

Assuming the parameterization given in the expression

µi
ji

(xi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if xi < ai

ji

(xi − ai
ji

)2(2xi + ai
ji

− 3bi
ji

)/(ai
ji

− bi
ji

)3 if ai
ji

< xi < bi
ji

1 if bi
ji

≤ xi ≤ ci
ji

−(xi − di
ji

)2(2xi + di
ji

− 3ci
ji

)/(ci
ji

− di
ji

)3 if ci
ji

< xi < di
ji

0 if xi > di
ji

(2.31)
the expressions to update the parameters ai

j , b
i
j , c

i
j and di

j are similar to the
ones used for the trapezoidal membership functions. Only the expression for
the gradient of the membership functions changes.

ai
j(k + 1) = ai

j(k)

+ α

N∑
t=1

(yt − f(xt))
B

∑
l∈U

(ȳl − f(xt))
µl(xt)
µi

j(x
t
i)

∂µi
j(x

t
i)

∂ai
j

(2.32)

bi
j(k + 1) = bi

j(k)

+ α

N∑
t=1

(yt − f(xt))
B

∑
l∈U

(ȳl − f(xt))
µl(xt)
µi

j(x
t
i)

∂µi
j(x

t
i)

∂bi
j

(2.33)

ci
j(k + 1) = ci

j(k)

+ α

N∑
t=1

(yt − f(xt))
B

∑
l∈U

(ȳl − f(xt))
µl(xt)
µi

j(x
t
i)

∂µi
j(x

t
i)

∂ci
j

(2.34)

di
j(k + 1) = di

j(k)

+ α

N∑
t=1

(yt − f(xt))
B

∑
l∈U

(ȳl − f(xt))
µl(xt)
µi

j(x
t
i)

∂µi
j(x

t
i)

∂di
j

(2.35)

with

∂µi
j(x

t
i)

∂ai
j

=

⎧⎪⎨⎪⎩
0 if xt

i < ai
j

6 (bi
j−xt

i)
2(ai

j−xt
i)

(ai
j−bi

j)
4 if ai

j < xt
i < bi

j

0 if xt
i > bi

j

(2.36)
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∂µi
j(x

t
i)

∂bi
j

=

⎧⎪⎨⎪⎩
0 if xt

i < ai
j

−6 (ai
j−xt

i)
2(bi

j−xt
i)

(ai
j−bi

j)
4 if ai

j < xt
i < bi

j

0 if xt
i > bi

j

(2.37)

∂µi
j(x

t
i)

∂ci
j

=

⎧⎪⎨⎪⎩
0 if xt

i < ci
j

−6 (di
j−xt

i)
2(ci

j−xt
i)

(ci
j−di

j)
4 if ci

j < xt
i < di

j

0 if xt
i > di

j

(2.38)

∂µi
j(x

t
i)

∂di
j

=

⎧⎪⎨⎪⎩
0 if xt

i < ci
j

6 (ci
j−xt

i)
2(di

j−xt
i)

(cj
i −di

j)
4 if ci

j < xt
i < di

j

0 if xt
i > di

j

(2.39)

The adaptation algorithm should preserve the condition ai
j ≤ bi

j ≤ ci
j ≤ di

j .

2.2.4 Gradient Updating for Polynomial Membership Functions
with Overlap 1

2 and bi
j = ci

j = mi
j

The parameterization of the membership functions is made using only their
modal values. This parameterization guarantees the overlap of 1

2 with the
neighboring membership functions. The number of adjusted parameters is re-
duced: instead of adjusting four parameters (ai

j , b
i
j , c

i
j , d

i
j), for each member-

ship function, only one parameter mi
j is adjusted. Observe that the overlap

1
2 is preserved only if the parameters ai

j+1, b
i
j , c

i
j , d

i
j−1 describing the polyno-

mial membership function are equal among each other and equal to the modal
value mi

j . The parameterization using the modal values is as follows:

µi
ji

(xi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if xi < mi

j−1
(xi−mi

j−1)
2(2xi+mi

j−1−3mi
j)

(mi
j−1−mi

j)
3 if mi

j−1 < xi < mi
j

−(xi−mi
j+1)

2(2xi+mi
j+1−3mi

j)
(mi

j−mi
j+1)

3 if mi
j < xi < mi

j+1

0 if xi > mi
j+1

(2.40)

The parameters mi
j are updated with a similar formula as the one used

for the triangular membership functions with overlap 1
2 :

mi
j(k + 1) = mi

j(k) + α

N∑
t=1

(yt − f(xt))
B[∑

l∈U

(ȳl − f(xt))
µl(xt)

µi
j−1(x

t
i)

∂µi
j−1(x

t
i)

∂mi
j

+
∑
l∈V

(ȳl − f(xt))
µl(xt)
µi

j(x
t
i)

∂µi
j(x

t
i)

∂mi
j

+
∑
l∈W

(ȳl − f(xt))
µl(xt)

µi
j+1(x

t
i)

∂µi
j+1(x

t
i)

∂mi
j

]
(2.41)
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where the sets U, V and W are the set of rules that includes the functions
µi

j−1(.), µi
j(.) and µi

j+1(.), respectively, and with

∂µi
j−1(x

t
i)

∂mi
j

=

⎧⎪⎨⎪⎩
0 if xt

i < mi
j−1

6 (mi
j−1−xt

i)
2(mi

j−xt
i)

(mi
j−1−mi

j)
4 if mi

j−1 < xt
i < mi

j

0 if xt
i > mi

j

(2.42)

∂µi
j(x

t
i)

∂mi
j

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if xt

i < mi
j−1

−6 (mi
j−1−xt

i)
2(mi

j−xt
i)

(mi
j−1−mi

j)
4 if mi

j−1 < xt
i < mi

j

−6 (mi
j+1−xt

i)
2(mi

j−xt
i)

(mi
j−mi

j+1)
4 if mi

j < xt
i < mi

j+1

0 if xt
i > mi

j+1

(2.43)

∂µi
j+1(x

t
i)

∂mi
j

=

⎧⎪⎨⎪⎩
0 if xt

i < mi
j

6 (mi
j+1−xt

i)
2(mi

j−xt
i)

(mi
j−mi

j+1)
4 if mi

j < xt
i < mi

j+1

0 if xt
i > mi

j+1

(2.44)

Observe that the adaptation must preserve the condition mi
j ≤ mi

j+1 .

2.2.5 Gradient Updating for Gaussian Membership Functions

The parameterization of the membership functions is given by

µi
j(x

t
i) = exp(−(

xt
i − x̄i

j

σi
j

)2) (2.45)

The updating formula for the parameters x̄i
j and σi

j will be given by

x̄i
j(k + 1) = x̄i

j(k)

+ α

N∑
t=1

(yt − f(xt))
B

∑
l∈U

2(ȳl − f(xt))µl(xt)
xt

i − x̄i
j

σi
j
2 (2.46)

σi
j(k + 1) = σi

j(k)

+ α

N∑
t=1

(yt − f(xt))
B

∑
l∈U

2(ȳl − f(xt))µl(xt)
(xt

i − x̄i
j)

2

σi
j
3 (2.47)

where U is the set of rules with the antecedent term µi
j(.).

2.2.6 Illustrative Example

This example uses the same simple sine function presented in Section 2.1.1.
The same 629 equidistant points were used to approximate the function
f(x) = sin(x) over the interval [0, 2π]. In this case the number of mem-
bership functions is 6 and they were initially equally distributed along the
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input domain in the same way as in the example of Section 2.1.1. Again, we
prepared four models: three of the Mamdani type and one Takagi–Sugeno.
The three Mamdani models were created with three different types of mem-
bership functions triangular, polynomial and Gaussian, and they were trained
during 400 iterations (epochs) using pure gradient descent. For the model
using Takagi–Sugeno rules, only the results using triangular membership are
illustrated. The Takagi–Sugeno model was trained during 400 iterations using
a combination of gradient descent and least squares (ANFIS Scheme [19]).
The ANFIS scheme was more efective in the Takagi–Sugeno scheme showing
a faster convergence. For the Mamdani models, the use of ANFIS or “pure”
gradient descent did not show major differences.

Observe that all the approximations are better than the approximations
given by the models obtained with the method of mosaic or table lookup. The
Mamdani model with triangular membership functions improves the approx-
imation by extending the overlap of the most external membership functions
(see Figure 2.5). Observe that the function no longer crosses the points of the
consequences and the interpolation is no longer linear, all because the overlap
of the membership functions is no longer 1

2 .
On the other hand, the Mamdani models using polynomial and Gaussian

membership functions improve the approximation by narrowing the central
membership functions and putting their centers closer (see Figures 2.6 and
2.7). The improvement shown by the approximation using polynomial mem-
bership functions (see Figure 2.6) is very remarkable compared with the ap-
proximation obtained with the simple mosaic or table lookup method.
The Takagi–Sugeno model shows again a good approximation with some im-
provement as shown in Table 2.2, but compared with the other models the
improvement brought by the gradient descent method was not as significant
as it was for the other models. However, observe that even that the member-
ship functions did not have significant changes; the functions describing the
consequences show completely different slopes.

In general, the improvement in the approximation provided by the tuning
of the membership functions using the gradient descent method is clear. The
observed improvement, which in one case (Mamdani polynomial model) was
of almost two orders of magnitude, is partially explained by the increased
number of degrees of freedom (consequences + parameters of the membership
functions) introduced in the gradient descent method (see Table 2.2).
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Figure 2.5. (a) Approximation generated by a Mamdani fuzzy model trained using
the gradient descent method using triangular membership functions with 6 mem-
bership functions initially equally spaced. (-) Original function (- -) Approximation
generated by the fuzzy model (*) Consequences of the rules (b) Membership func-
tions after training
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Figure 2.6. (a) Approximation generated by a Mamdani fuzzy model trained using
the gradient descent method using polynomial membership functions with 6 mem-
bership functions initially equally spaced. (-) Original function (- -) Approximation
generated by the fuzzy model (*) Consequences of the rules (b) Membership func-
tions after training
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Figure 2.7. (a) Approximation generated by a Mamdani fuzzy model trained using
the gradient descent method using polynomial membership functions with 6 mem-
bership functions initially equally spaced. (-) Original function (- -) Approximation
generated by the fuzzy model (*) Consequences of the rules (b) Membership func-
tions after training
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Figure 2.8. (a) Approximation generated by a Takagi–Sugeno fuzzy model trained
using the mosaic or table lookup scheme using triangular membership functions with
6 membership functions equally spaced. (-) Original function (- -) Approximation
generated by the fuzzy model (.-) Consequences of the rules (b) Membership func-
tions after training
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Table 2.2. Approximation Error (
∑629

i=1[f(x) − f̂(x)]2)of the Different Models
Trained with the Mosaic or Table Lookup Scheme and the Gradient Descent Method
for 400 Steps.

Table look up Gradient Descent
Model Error DOF Error DOF

Mamdani triangular M.F. 1.3392 6 0.0615 24
Mamdani Gaussian M.F. 0.2378 6 0.0449 18
Mamdani polynomial M.F. 12.9666 6 0.1755 30
Tak.Sug. triangular M.F. 0.0206 12 0.0117 30
DOF=degrees of freedom number of adjustable parameters

2.3 Using Clustering and Gradient Descent

The methods studied so far had placed the fuzzy sets of the input domains on
their initial positions according to the choice made by the designer (typically
equally distributed). Two choices has been made by the designer – the number
of membership functions and their initial distribution. The methods based on
clustering aim to obtain both parameters at the same time, the number of
fuzzy sets needed to make the function approximation and their distribution
along the input domains.

The methods based on clustering are considered as data-driven methods.
The main idea of these methods is to find structures (clusters) among the data
according to their distribution in the space of the function and assimilate each
cluster as a multidimensional fuzzy set representing a rule. The cluster proto-
types can be either a point (to construct Mamdani models) or a hyperplane
(to construct Takagi–Sugeno models).

The fuzzy inference system is constructed by means of projecting the clus-
ters into the input space and approximating the projected cluster with a one-
dimensional fuzzy set. The advantage of these methods is that they generate
automatically the membership functions, leaving as the user’s choices only
the parameters of the clustering algorithms (number of clusters and distance
function). According to the type of model to be constructed the method will
be slightly different. Here is a summary of the methods:

2.3.1 Algorithm for Mamdani Models

• Collect the data and construct a set of vectors Zt = {xtT
, yt} where xt

and yt are, respectively, the inputs and the output of the function. Observe
that here we assume xt ∈ �n and yt ∈ �.

• Search for clusters using the Fuzzy C-means algorithm [2] or the mountain-
clustering algorithm [4] for problems where the dimension of the input
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space is small. Appendix B includes a description of the mentioned algo-
rithms.

• Project the membership functions from the partition matrix U into the
input space.

• Approximate the projected membership function using convex member-
ship functions (triangular, Gaussian, polynomial, trapezoidal, etc.)

• Construct the rules with the projected membership functions.
• Calculate the consequences using recursive least squares.
• Adjust the parameters of the antecedents (if needed) using gradient de-

scent.

2.3.2 Algorithm for Takagi–Sugeno Models

• Collect the data and construct a set of vectors Zt = {xtT
, yt} where xt

and yt are, respectively, the inputs and the output of the function. Observe
that here we assume xt ∈ �n and yt ∈ �.

• Search for clusters using the Gustafson and Kessel (G-K) algorithm [3].
Appendix B describes the G-K algorithm.

• Check for similarities among the clusters. Do two clusters describe a similar
hyperplane?

• Project the membership functions from the partition matrix U into the
input space.

• Approximate the projected membership function using convex member-
ship functions (triangular, Gaussian, polynomial, trapezoidal, etc.)

• Construct the rules with the projected membership functions.
• Generate the consequences using the covariance matrices of each cluster.
• Calculate the consequences that are not covered by the clusters using re-

cursive least squares.
• Adjust the parameters of the antecedents (if needed) using gradient de-

scent.

Summary:
The clustering + gradient descent method calculates the initial location
of the membership function by projecting the partition matrices obtained
from a clustering applied to the input–output data. The consequences are
generated from the centers of the clusters and for the Takagi–Sugeno mod-
els from the centers and their covariance matrices. The parameters can be
refined to improve the approximation by applying gradient descent.

2.3.3 Illustrative Example

This example uses the same function (f(x) = sin(x)) presented in Sections
2.1.1 and 2.2.6. The data are composed of 629 equidistant points that were
used to approximate the function f(x) = sin(x) over the interval [0, 2π]. In
this case the models were constructed based in two clustering procedures.
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Fuzzy C-Means to construct Mamdani models and Gustafson and Kessel to
construct a Takagi–Sugeno model. For both procedures the number of clusters
selected a priori was 6 and the stopping criteria ε = 5 × 10−5. This selection
was made such that the results are comparable with the ones shown in previous
examples. Both clustering algorithms were executed and they generated the
clusters shown in Figures 2.9(a) and 2.10(a). Observe that the cluster of the
G-K algorithm are characterized by their center and “main direction” of its
covariance matrix. The partition matrix was projected over the input domain
obtaining the membership functions shown in Figures 2.9(b) and 2.10(b).
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Figure 2.9. (a) Center of the clusters found by the Fuzzy C-means algorithm.
Original function (-) Center of the clusters (*) (b) Membership functions projected
from the partition matrix U

The projected membership functions obtained from the partition matrix
U are approximated by convex membership functions as they are shown in
Figures 2.11 and 2.12.

The rule base was constructed and the models were further optimized
using gradient descent for 400 steps. Figures 2.13 and 2.14 show the approx-
imation of the function. It is important to comment that for the Mamdani
models there are little differences with the models shown in previous examples,
but it is not the case of the Takagi–Sugeno models. Observe the orientation
of the consequences of the rules, which are almost tangent to the function.

Table 2.3 summarizes the results obtained with the three methods shown.
Perhaps the most remarkable results are the improvement of the models using
Gaussian functions. The reason for such a benefit from the clustering can be
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Figure 2.10. (a) Clusters found by the G-K algorithm. Original function (-) Center
of the clusters (*) Main direction of the covariance matrix (.-) (b) Membership
functions projected from the partition matrix U

explained by the strong similarity between the projected partition function
from the clusters and the Gaussian membership functions. Observe that these
results are simple illustrations of the methods and do not represent an abso-
lute benchmark. For other functions the performance exhibit by the models
will be different.

Table 2.3. Approximation error (
∑629

i=1[f(x) − f̂(x)]2)of the Different Models
Trained with the Mosaic or Table Lookup Scheme, the Gradient Descent Method
for 400 Steps and Clustering Gradient Descent Method for 400 steps)

Table lookup Gradient descent Clustering + GD
Model app. error app. error app. error

Mamdani triangular M.F. 1.3392 0.0615 0.0858
Mamdani Gaussian M.F. 0.2378 0.0449 0.0037
Mamdani polynomial M.F. 12.9666 0.1755 0.1959
Takagi–Sugeno model. 0.0206 0.0117 0.5058
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Figure 2.11. Membership functions for Mamdani models.(a) Membership functions
projected from the partition matrix U (b) Approximation with polynomial M.Fs.
(c)Approximation with triangular M.Fs. (d) Approximation with Gaussian M.Fs.
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Figure 2.12. Membership functions for Takagi–Sugeno models.(a) Membership
functions projected from the partition matrix U from the G–K clustering (b) Ap-
proximation with polynomial M.Fs.
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Figure 2.13. Function approximation of the models obtained using clustering and
gradient. Original function (-) Approximated function (–) Consequences (*) Conse-
quence of the TS model (-.). (a) Membership functions projected from the partition
matrix U (b) Approximation with polynomial M.Fs. (c)Approximation with trian-
gular M.Fs. (d) Approximation with Gaussian M.Fs.
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Figure 2.14. Membership functions for the models obtained by clustering and gra-
dient descent optimization.(a) Mamdani model with polynomial M.Fs. (b) Mamdani
model triangular M.Fs. (c) Mamdani model with Gaussian M.Fs.(d) Takagi–Sugeno
model with polynomial M.Fs.
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2.4 Using Evolutionary Strategies

The evolutionary strategies are computational algorithms that use methods
derived from the concept of “natural evolution.” Some of the methods include
reproduction, mutation and selection. The use of these algorithms has been
oriented to the search of parameters such that a certain computational entity
can achieve some goals.

In this case the computational entity will be a fuzzy system, the goal will
be to approximate a function with certain accuracy and a limited complexity
and the parameters could be the number of membership functions, their dis-
tribution, etc.

Basic methods in these strategies are the so-called genetic algorithms [23].
In genetic algorithms, the data are represented as binary strings. The param-
eters are encoded on these binary strings. It is important to remark that the
efficiency of these techniques is strongly affected by the “code book” used to
construct the strings [24]. Initiallty, a group of these strings is generated as
the initial “population.” The fulfillment of the goal is tested for each element
of the population (cost evaluation) and a “fitness” value is generated such
that, if the value is larger, the objective is better achieved. The procedure can
be outlined as follows:

• Take the initial population N and evaluate the “fitness” of the individuals
(binary strings).

• Reproduce the population according to the “fitness,” such that those indi-
viduals with higher values of fitness will have a higher probability of being
reproduced.

• Make random couples among the individuals of the reproduced population
and apply the “crossover” operation. The crossover operation takes two
individuals and generates a random number l ≤ L where L is the length
of the string. This operation generates two new individuals by taking the
first l elements of one string and the remaining L − l element from the
other string. For example, take the first string A1A2A3A4A5A6 and the
second string B1B2B3B4B5B6. In this case L = 6. Suppose l = 2. The
crossover will be represented as

A1A2A3A4A5A6

B1B2B3B4B5B6

− − − − − − −−
A1A2B3B4B5B6

B1B2A3A4A5A6

• Finally, some members of the population are selected for “mutation.” A
random number l is generated such that 0 < l ≤ L for each selected
member and the bit l is flipped. Suppose the string A1A2A3A4A5A6 =
101100 is selected for mutation and l = 4. The string after mutation is
A1A2A3A4A5A6 = 101000.
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• The “fitness” of the generated population is evaluated and the procedures
of reproduction, crossover and mutation are repeated for a given number
of times (generations).

These algorithms are very powerful for the search of “global” solutions in the
search space, and there is a probability equal to 1 that the algorithm will find
the “global solution” after a number of generations given by [20]

1

1 − (1 − pM
Nopt

2L )N
(2.48)

where pM is the probability of mutation, Nopt is the number of global solutions
in the final population, L is the length of the strings and N is the number of
strings in the population.

The application of these algorithms to the design of fuzzy systems is mainly
oriented to the generation of the number and distribution of the membership
functions. One example of codification is: Assume a number of triangular,
trapezoidal or polynomial membership functions with overlap 1

2 have been
fixed for each input. Then the string will represent the distance from the pre-
vious point, as shown in Figure- 2.15. The length of the string is L = 28, four
groups of seven bits. An example of mutation is shown in Figure- 2.16, where

0011111 0101110 0011001 0011011

31 46 25 27

770 31 102 129
Figure 2.15. Codification of the membership functions

l = 10. Finally, an example of the effect of the crossover operation is shown
in Figure- 2.17, where l = 10. Other codification methods and details can be
seen in [20].
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0011111 0101110 0011001 0011011

31 46 25 27

0 31

770 31 102 129

0011111 0011001 00110110111110

31 25 2762

15112499

Figure 2.16. Mutation operation in a fuzzy partitions

Summary:
The evolutionary strategies are mainly based on discrete optimization al-
gorithms such as the genetic algorithms. The method can calculate param-
eters such as number and location of the membership functions.
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Figure 2.17. Crossover operation between two fuzzy partitions
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2.5 Generalization and Consequences Estimation

The issue of generalization is quite related with the issue of consequence esti-
mation in fuzzy systems, as will be explained in the following lines. General-
ization is the capacity of the designed system (the fuzzy inference system) to
generate “good” output values when new inputs are presented to the system.
Two issues limit the capacity of generalization:

• Lack of excitation during model construction
• Too many degrees of freedom in the model

These two issues are strongly related because as the degrees of freedom grow
the data must excite all the new modes introduced by the new degrees of
freedom. There are two ways to improve the generalization:

• Reducing the degrees of freedom with the drawback of reducing the accu-
racy of the approximation.

• Generating many data for all possible operating modes. For some practical
cases, this is almost an impossible task.

Assuming the input–output data are given in advance, the challenge is to de-
sign a system with good approximation properties and good generalization.
The application of the methods reviewed in previous sections postulates the
generation of the consequences of the rules by means of least squares. As
mentioned in Section 2.1, the calculation of the least squares using Equa-
tion (2.11) will be possible only if rank(WT W ) = dim θ. In cases where
rank(WT W ) ≤ dim θ, the estimation will be very poor and the consequences
of those unexcited rules will be very far from their real value. A reasonable
solution is to initialize the rules using information given by a simpler model
(with very few degrees of freedom) and to improve the estimation of the con-
sequences of those rules that have been excited using recursive least squares.
The advantage of the recursive least-squares algorithm is that it only updates
those terms that have been excited. The procedure can be detailed in two
steps.

2.5.1 Consequence Initialization

The initialization of the consequences can be done in two ways using the
information given by a simple model with sufficient excitation or using expert
knowledge. The use of expert knowledge demands, the designer that initialize
those rules with empirical knowledge. The initialization using a simple model
with sufficient excitation operates as follows:

• The smallest fuzzy model f̂(xt) is constructed by placing only two member-
ship functions (triangular or polynomial) on each input with their modal
values placed, respectively, in the maximum and the minimum values of the
universe of discourse and fixing the overlap value in 1

2 . This distribution
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of the membership functions will generate a fuzzy system with 2N rules
where N is the number of inputs. This fuzzy system has the property that
any input presented will excite the whole set of rules. This property guar-
antees enough excitation such that the 2N consequences can be estimated
using the least-squares solution given in the Equation (2.11).

• If the constructed model uses triangular or polynomial membership func-
tions with overlap 1

2 , the consequences of the rules can be initialized using
the model f̂(xt) as follows:

ȳj1j2...jN = f̂(M j1j2...jN ) (2.49)

with
M j1j2...jN = {m1

j1 , m
2
j2 , . . . , m

N
jN

}T

where mi
ji

are the modal values of the membership functions of the fuzzy
model f(xt). If the model is not constructed as described above, the initial
consequences can be estimated by using a data set generated from the
model f̂(xt), so that the condition of sufficient excitation is guaranteed.
This can be done just by generating input data regularly distributed and
with “enough” density over the input space U .

This initialization method guarantees that the constructed fuzzy model will
be at least as good as the best multilinear model, if the smaller model is
constructed with triangular membership functions, or at least as good as the
best third-order multipolynomial model. These bounds guarantee the quality
of the generalization even if the training data have no information about some
of the regions described in the rule base.

2.5.2 Consequence Estimation

Once the consequences have been initialized, the recursive least-squares algo-
rithm can be applied to improve the estimation. The algorithm is described
as follows using the notation presented in Section 2.1:

θ(k + 1) = θ(k) + γ(k)[yt − W tθ(k)] (2.50)

with W t = {wt
1, w

t
2, . . . , w

L
t }, θ(k) = {ȳ1(k), ȳ2(k), . . . , ȳL(k)} and:

γ(k) = P (k + 1)Wk+1 (2.51)

=
1

W tP (k)W tT + 1
P (k)W t (2.52)

P (k + 1) = [I − γ(k)W t]P (k) (2.53)

with the initial value P (0) = αI, where α is a large scalar value. The procedure
is repeated and each time the index k is incremented. Also, the index t is
incremented until it reaches the value N , and then the value of t is reset to
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t = 1. The initial values of θ(0) are the initialization values given by the
procedure described before. The following example is presented in order to
illustrate how the present method improves the generalization.

Example 2.1. The objective is to approximate the function of two variables
f(x, y) = 6x + 4y + cos(πx) + cos(πy) + 50 on the interval (x, y) ∈ U U =
[−2, 2] × [−2, 2]. The function is plotted in Figure- 2.18.
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Figure 2.18. Function to be approximated f(x, y) = 6x+4y+cos(πx)+cos(πy)+50

The function is sampled at 153 points. The sampling was done such that
only one point falls in the interval V = [−2, 0] × [−2, 0]. The data points are
depicted in Figure 2.19.

The function will be approximated by a fuzzy system using five triangular
membership functions equally distributed on each domain with overlap 0.5.
A total of 25 rules is generated and the consequences will be estimated using
three methods: least squares (LS), recursive least squares (RLS) and RLS with
the consequence initialization method explained in Section 2.5.1. Observe in
Figure 2.20 that the LS method and the “pure” RLS fail to approximate the
function in the domain V and even the LS solution fails to make a good
approximation in the region where the “training” points were selected.

The third method as was explained in Section 2.5.1 first calculates the
smallest fuzzy model f̂(x, y) with only two membership functions with overlap
0.5 covering the whole domain on each input. The model has four rules that
are excited by all the points such that the consequence estimation does not
represent any numerical problem. The approximation generated by this model
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Figure 2.19. Sampled points to approximate the function f(x, y) = 6x + 4y +
cos(πx) + cos(πy) + 50
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Figure 2.20. (a) Approximation obtained with the consequences calculated using
LS (b)Approximation obtained with the consequences calculated using RLS

is shown in Figure 2.21. Equation (2.49) is used to initialize the consequences
of the rules in the model with 25 rules such that it generates an approximation
perfectly equivalent to the approximation given by the model f̂(x, y).

Then the consequences are estimated using RLS. The results are shown in
Figure 2.22. Observe that the approximation is good in the whole domain U
and there are no big changes in the region V where almost no data exist during
the training. A final comparison was performed by generating 141 points in
the domain U but excluding the region V (the same conditions used for the
training) to observe the approximation error in the “well-excited” region. The
results are presented in Table 2.4, and the error index is calculated as E =
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Figure 2.21. Approximation generated by the “smallest” fuzzy model f̂(x, y) with
only 4 rules
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Figure 2.22. Approximation generated by the fuzzy model initialized with f̂(x, y)
and with the consequences calculated using RLS

1
141

∑141
i=1 e2, where E is the difference between the real and the estimated

values. From these results, it is clear that the LS method is the worst. The
reason is that the inputs selected for the estimation did not excite some of
the rules and in this specific case the rank(WT W ) = 22; therefore, the LS



2.6 Example of an Industrial Application 55

solution is badly conditioned. The RLS solution is better because it updates
only the excited rules but the badly excited rules are not updated, making a
bad generalization on “poorly” excited regions. Finally, the best performance
is by far the one of the proposed method. The reason is that this method
assumes the generalization given by a “well”-excited model (f̂(x, y)) and the
tuning will only improve the approximation on these regions where there is
enough excitation.

Table 2.4. Example: Comparison Between Methods for Consequences Calculation

Method Approx. error
Least Squares 0.3455
Recursive Least Squares 0.1659
RLS with initialization using f̂(x, y) 0.0146

Summary:
Fuzzy models should make good predictions even when they are asked to
predict on regions that were not excited during the construction of the
model. The generalization capabilities can be controlled by an appropriate
initialization of the consequences (prior knowledge) and the use of the
recursive least squares to improve the prior choices. The prior knowledge
can be obtained from the data.

2.6 Example of an Industrial Application

This section presents an industrial application of a static model. In this case
the system helps to supply hot water for domestic use. The water is heated
using steam coming from the cooling circuit of an electric power plant. The
heat is transferred to the cold water by a heat exchanger (see Figure 2.23).
Since the demand of hot water (Fhw) and the supply of steam change (Fsteam

and Tsteam), the system must be commanded by a control system to guarantee
a supply of hot water at a constant temperature (Thw) (Set-point = 60◦C).
This objective is achieved by combining a feedback controller constructed
with a PID (proportional integral derivative) and a feed-forward controller
constructed using a fuzzy model (see Figure 2.24). The fuzzy model is con-
structed using experimental data supplied by the manufacturer of the heat
exchanger. The fuzzy model is constructed to map the flow of water (Fhw),
the temperature of the steam (Tsteam) and the temperature of the cold water
(Tcw) into a steam flow (Fsteam) to guarantee that the hot water is supplied
at the correct temperature (60◦C).
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Fsteam = f(Fhw, Tsteam, Tcw)

Since the function is constructed using nominal data and the controller is not
supposed to be “fine-tuned” on each installation, the feed-forward action will
be insufficient to guarantee the supply of the water at the correct tempera-
ture. For this reason an additional feedback controller is put in place.
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Figure 2.23. Diagram of the installation of the heat exchanger including the in-
strumentation and the control system
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Figure 2.24. Diagram of the control system for the heat exchanger

The data supplied by the manufacturer of the heat exchanger are shown in
Figure 2.25 together with the result of the approximation [see Figure 2.25(d)].
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The system was implemented using triangular membership functions since
the memory and the computational time available in the microcontroller were
limited. Figure 2.26 shows the membership functions of the feed-forward con-
troller.
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Figure 2.25. Signal collected from the heat exchanger to guarantee a nominal
temperature of 60◦C (a) Flow of hot water Fhw (b) Temperature of the cold water
Tcw (c) Temperature of the steam Tsteam (d) Flow of steam Fsteam (-) Original value
(.-) Value generated by the fuzzy system
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Figure 2.26. Membership functions of the feed-forward controller

2.7 Conclusions

This chapter has presented different methods to construct fuzzy models that
approximate nonlinear functions. The issue of lack of excitation and gener-
alization has been analyzed and a method to guarantee good generalization
has been proposed. This method guarantees a lower bound in the quality of
the model (the fuzzy model will be at least as good as the best multilinear
approximation). The example of the industrial application shows a method to
construct feed-forward controllers using fuzzy inference systems for function
approximation.
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Fuzzy Modeling with Linguistic Integrity: A
Tool for Data Mining

3.1 Introduction

The use of models is an essential element of human behavior. When a human
being predicts the impact of his actions, he is using a model. This causality
analysis conditions our capacity to act and our scheme for decision making.
Causality is a paramount assumption that makes models useful. Causality is
reflected in language as IF–THEN rules (IF cause-happens THEN a con-
sequence is foreseen). A set of IF–THEN rules is a linguistic representation
of a mental model created inside the brain.

New instrumentation and data acquisition systems have expanded the ca-
pacity of human beings beyond the five senses. This expanded sensorial ca-
pacity has been accompanied with an increase in the storage capacity, but
the capacity of the human brain to interact with this information remains
limited. This situation motivates the development of computer techniques
that can extract the “knowledge” and represent it in a linguistic way using
IF–THEN rules. This is one of the goals of data mining, to discover causal
relations among features in large databases.

There is a trade-off between numerical accuracy and linguistic inter-
pretability. This trade-off is a consequence of a limitation of the human brain
to represent a limited number of categories on a given domain. A consequence
of this limitation is reflected in language. The number of linguistic labels that
a human being can generate to represent categories on a given domain is lim-
ited to as much as nine and it will typically be seven.

On the other hand, the numerical accuracy is important in the implemen-
tation of policies and control actions based on the information given by model.
This issue of accuracy is especially relevant when the models are used in a
dynamic way where the predicted value is fed back.

In the previous chapter, some methods for model construction are ex-
plained. Initially the algorithms based on gradient descent techniques, also
known as neurofuzzy models [18] [19], have been oriented to minimize the
numerical error. The use of this technique generates in some cases fuzzy sets
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with “too much” or “no” overlap, making the interpretation of the model a
difficult task.

To overcome the drawback of the initial selection of the fuzzy sets, several
methods have been proposed, some of them based on local error approxima-
tion [13] [14] and others based on clustering techniques [11] [4] [12]. These
methods generate multidimensional fuzzy sets and project them into the in-
put spaces. The projections also exhibit unsatisfactory overlap, making the
interpretation and the labeling of the fuzzy sets a difficult task.

This section presents the AFRELI algorithm (Autonomous Fuzzy Rule
Extractor with Linguistic Integrity); the algorithm is able to fit input–output
data while maintaining the semantic integrity of the rule base. The AFRELI
algorithm uses clustering and projection techniques to find a good initial posi-
tion for the fuzzy set in the input domains. A FuZion algorithm is introduced
to reduce the complexity of the projected fuzzy sets. A rule base is constructed
using the reduced representation of the fuzzy sets and the consequences are
initialized and calculated with a method that improves generalization and
avoids the lack of excitation in some rules. Finally, the consequences of the
rules are represented by two fuzzy sets with different strength. The number of
terms in the consequences of the fuzzy rules is reduced again using the FuZion
algorithm.

ORAL COMUNICATION

MODEL DESCRIPTION

USING IF-THEN RULES

REAL

SYSTEM
INTERNAL

REPRESENTATION

INTERNAL
REPRESENTATION

HUMAN A

HUMAN B

FIVE
SENSES

Figure 3.1. Traditional knowledge acquisition (Courtesy of Springer-Verlag [25])
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Figure 3.2. Knowledge Acquisition using AFRELI (Courtesy of Springer-Verlag
[25])

Summary:
Fuzzy models with embedded linguistic interpretability are useful to ex-
tract knowledge from data. This knowledge is represented as a set of IF–
THEN rules where the antecedents and the consequences are semantically
meaningful.

3.2 Structure of the Fuzzy Model

The high number of degrees of freedom in a fuzzy inference system (shape
and number of membership functions, T-norms, aggregation methods, etc.)
gives high flexibility to the fuzzy system but also demands systematic criteria
to select these parameters. Some parameters can be fixed taking into account
the following issues: optimal interface design [16] and semantic integrity [15].

• Optimal interface design
– Errorfree reconstruction: In a fuzzy system a numerical value is con-

verted into a linguistic value by means of fuzzification. A defuzzifica-
tion method should guaranteed that this linguistic value can be recon-
structed in the same numerical value

∀x ∈ [a, b] : L−1[L(x)] = x (3.1)
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where [a, b] is the universe of discourse, L is the fuzzification process
and L−1 is the defuzzification process. The use of triangular member-
ship functions with overlap 1

2 and centroid defuzzification will satisfy
this requirement (see proof: [16]). Polynomial membership functions
with overlap 1

2 also are used, but a new defuzzification process must
be designed to guarantee an errorfree reconstruction.

• Semantic integrity: This property guarantees that the membership func-
tions represent linguistic concepts. The conditions for semantic integrity
are
– Distinguishability: Each linguistic label should have semantic mean-

ing and the fuzzy set should clearly define a range in the universe of
discourse. Therefore, the membership functions should be clearly dif-
ferent. The assumption of the overlap equal to 1

2 makes sure that the
support of each fuzzy set will be different. A minimum distance be-
tween the modal values of the membership functions makes sure that
the membership functions can be distinguished. The modal value of a
membership function is defined as the α-cut with α = 1

mi = µi(α=1)(x), i = 1, . . . , N (3.2)

– Justifiable number of elements: The number of sets on each domain
should be compatible with the number of “quantifiers” that a human
being can handle. This number should not exceed the limit of 7 ± 2
distinct terms [26]. The choice of the shape of the membership functions
does not guarantee this property. To assure that this requirement is
fulfilled, the FuZion algorithm is presented further in this chapter. This
algorithm reduces the number of sets on each input or output domain.

– Coverage: Any element from the universe of discourse should belong
to at least one of the fuzzy sets. This concept is also mentioned in the
literature as ε completeness [19].

– Normalization: Due to the fact that each linguistic label has semantic
meaning, at least one of the values in the universe of discourse should
have a membership degree equal to 1. In other words, all the fuzzy sets
should be normal.

Based on these criteria the selected membership functions will be triangular
and normal (µ1(x), µ2(x), . . . , µn(x)) with a specific overlap of 1

2 . It means
that the height of the intersection of two successive fuzzy sets is

hgt(µi ∩ µi±1) =
1
2

(3.3)

The choice of the AND and the OR operation will be conditioned by the need
of constructing a continuous and differentiable nonlinear map. This property is
important if optimization of the antecedent terms is needed. In this case AND
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and OR operations using product and probabilistic sum will be preferred be-
cause their derivatives are continuous.
Summary:
The selection of the appropriate structure of the fuzzy models guarantees
their linguistic interpretability.

3.3 The AFRELI Algorithm

The AFRELI (Automatic Fuzzy Rule Extractor with Linguistic Integrity)[27]
[28] is an algorithm designed to obtain a good compromise between numerical
approximation and linguistic meaning. This particular trade-off has been ref-
erenced for long time in science (for a compilation of remarks, see [29]). The
main steps of this algorithm are (see Figure 3.3)

• Clustering
• Projection
• Reduction of terms in the antecedents(FuZion, see Section- 3.4)
• Consequence calculation
• (Optional step) Further antecedent optimization
• Reduction of terms in the consequences and rule modification (FuZion, see

Section- 3.4)

The AFRELI algorithm proceeds as follows:

1. Collect N points from the inputs (X = {x1, . . . , xN}) and the output
(Y = {y1, . . . , yN})

xk =

⎡⎢⎣xk
1
...

xk
p

⎤⎥⎦ (3.4)

where xk ∈ �p and yk ∈ � represent the inputs and the output on instant
k and construct the feature vectors

Uk =

⎡⎢⎢⎢⎣
xk

1
...

xk
p

yk

⎤⎥⎥⎥⎦ (3.5)

uk ∈ �p+1.
2. Using the N feature vectors find C clusters. Apply the mountain cluster-

ing method [4] [12] to initialize the centers and to obtain the number of
clusters (C). Refine the clusters using the fuzzy C-means algorithm [2].
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Figure 3.3. Flow diagram of AFRELI algorithm (Courtesy of IEEE [27])

Uc =

⎛⎜⎜⎜⎝
x̃1

1 x̃2
1 . . . x̃C

1
...

...
. . .

...
x̃1

p x̃2
p . . . x̃C

p

ỹ1 ỹ2 . . . ỹC

⎞⎟⎟⎟⎠ (3.6)

with Uc ∈ �p+1×C and x̃j
i represents the ith coordinate of the jth cluster.

It is very important to remark that the use of mountain clustering will
be limited to low-dimensional problems (up to four or five dimensions).
Its inherent advantage is that it can guide good initial points and number
of clusters. For high-dimensional problems, the alternative is to use only
fuzzy c-means with an overestimated number of clusters; the subsequent
steps (FuZion) will reduce the number of terms.

3. Project the C prototypes of the clusters into the input spaces, by con-
verting the projected value of each prototype into the modal value of a
triangular membership function.
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mi
j = x̃j

i (3.7)

where i = 1, . . . , p, j = 1, . . . , C
4. Sort the modal values on each domain such that

mi
j ≤ mi

j+1 ∀i = 1, . . . , p (3.8)

5. Add two more modal values to each input to guarantee full coverage of
the input space.

mi
0 = min

k=1,...,N
xk

i (3.9)

mi
C+1 = max

k=1,...,N
xk

i (3.10)

6. Construct the triangular membership functions with overlap of 1
2 as

µi
j(x

k
i ) = max

[
0, min

(
xk

i − mi
j−1

mi
j − mi

j−1
,

xk
i − mi

j+1

mi
j − mi

j+1

)]
(3.11)

where: j = 1, . . . , C, and the trapezoidal membership functions at the
extremes of each universe of discourse

µi
0(x

k
i ) = max

[
0, min

(
xk

i − mj
1

mj
0 − mj

1

, 1

)]
(3.12)

µj
C+1(x

k
i ) = max

[
0, min

(
xk

i − mj
C

mj
C+1 − mj

C

, 1

)]
(3.13)

7. Apply FuZion algorithm (see Section 3.4) to reduce the number of mem-
bership functions on each input domain. This algorithm does a somewhat
one-dimensional clustering among the modal values of the fuzzy sets.

8. Associate linguistic labels (e.g.BIG, MEDIUM, SMALL, etc.) to the re-
sulting membership functions. This association will depend on the type of
variable and the criteria of the designer. In fact, the association of a fuzzy
set with a label will be the result of the agreement between the fuzzy set
proposed by the algorithm and the “sense” that this set creates in the
mind of the user.

9. Construct the rule base with all possible antecedents (all possible permu-
tations) using rules of the form

...
IF xk

1 is µ1
l AND xk

2 is µ2
l AND . . . AND xk

p is µp
l THEN ŷk = ȳl

...

Equivalently, the evaluation of the antecedents of each rule can be ex-
pressed in terms of the operators min and product . Using min operator:

µl(xk) = min{µ1
l (x

k
1), µ2

l (x
k
2), . . . , µn

l (xk
p)} (3.14)
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Using product operator:

µl(xk) = µ1
l (x

k
1) · µ2

l (x
k
2) · . . . · µn

l (xk
p) (3.15)

Observe that if the number of fuzzy sets on the input i is Li and there
are n inputs, the number of rules will be

L1 × L2 × . . . × Ln

This structure guarantees a complete description of the system in the
space interval U , because every possible condition will be represented in
the rule base. Observe that the number of rules will grow very fast as
the number of input increases. This fact is a limitation in the sense that
the comprehension of a set of rules with a large number of antecedents is
difficult. In addition, the storage problem, generated by a large number of
terms to be kept in the computer’s memory. On the other hand, it does
not represent a limitation in terms of execution time because the use of
the described type of triangular membership functions will guarantee that
at most 2p rules will be evaluated during the inference process.

U
m

in

U
m

ax

µ1µ 2

Figure 3.4. Input membership functions for the smallest fuzzy model

10. Propagate the N values of the inputs and calculate the consequences of
the rules as singletons (ȳl). These singletons should be calculated with
the method explained in Section 2.5. It is important to remember that
this method guarantees that the “full” model will be at least as good as
the “reduced” model. Because the “reduced” model is the best multilinear
model that can be built with the given data, there is a guarantee that the
“full” fuzzy model will be at least as good as the best multilinear model.
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11. (Optional step) The approximation can be improved by fine-tuning the
parameters using constrained optimization methods based on gradient de-
scent. These methods will use the expressions for the gradient calculated in
Section 2.2.2. This tuning can improve the location of the modal values of
the antecedent membership functions. The main constraint applied in the
optimization phase is the “distinguishability” constraint. This constraint
can be represented as the minimum acceptable distance between consec-
utive modal values. The use of gradient descent methods will move the
system parameters toward a “local minimum” close to the initial values.
Because the improvement obtained by this step will not be very signifi-
cant, this step is considered optional and will only be recommended when
the numeric performance of the model does not satisfy the requirements
of the user.

12. Because the singletons in the consequences are crisp sets, the linguistic
meaning of the rules will be lost. The next step is to convert the singletons
of the consequences to triangular membership functions with overlap 1

2
and modal values equal to the position of the singleton ȳl. Consider the
vector Ỹ whose entries are the L consequences of the rules but sorted in
such a way that

ỹ1 ≤ ỹ2 ≤ . . . ≤ ỹL (3.16)

The triangular membership function of the ith consequence is

µỹ
i (y) = max

[
0, min

(
y − ỹi−1

ỹi − ỹi−1
,

y − ỹi+1

ỹi − ỹi+1

)]
(3.17)

and the two membership functions of the extremes:

µỹ
1(y) = max

[
0, min

(
y − 2ỹ1 + ỹ2

−ỹ1 + ỹ2
,

y − ỹ2

ỹ1 − ỹ2

)]
(3.18)

µỹ
L(y) = max

[
0, min

(
y − ỹL−1

ỹL − ỹL−1
,
y − 2ỹL + ỹL−1

−ỹL + ỹL−1

)]
(3.19)

This description of the outer membership functions guarantees that their
centers of gravity will be exactly on their modal values. This guarantees
that the condition of errorfree reconstruction for optimal interface will be
achieved.

13. Apply FuZion algorithm (see Section 3.4) to reduce the number of mem-
bership functions in the output universe. The FuZion process reduces
groups of neighboring singletons to triangular membership functions
whose modal values are representative for a group of singletons. It is op-
timal in a sense that the modal value of the “FuZioned” membership
function is placed at the mean value of the neighboring singletons.

14. Associate linguistic labels to the resulting membership functions.
15. With the partition of the output universe, fuzzify the values of the sin-

gletons. Observe that each singleton will have a membership degree in at
least one set and in as much as two.
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16. Relate the fuzzified values with the corresponding rule. It means that each
rule will have one consequence or two weighted consequences, where the
weights are the nonzero membership values of the fuzzified singleton. This
description of the consequences of the rules using two linguistic fuzzy sets
and two strength values improves the interpretability of the consequences
compared when only one singleton describes the consequence. The advan-
tage of this description is that interpretability is gained without a cost in
numerical precision. This strategy was independently proposed previously
in [30] and [31].

Summary:
The AFRELI algorithm is a clustering-based algorithm to construct fuzzy
models with linguistically meaningful parameters.

3.4 The FuZion Algorithm

The FuZion algorithm is a routine that merges consecutive triangular mem-
bership functions when their values are “too close” to each other. This merging
process is needed to preserve the distinguishability and a justifiable number of
elements on each domain guaranteeing the semantic integrity. A fundamen-
tal parameter of this algorithm is the minimum acceptable distance between
modal values and it is given by M (see Figure 3.5). The FuZion algorithm
goes as follows:

1. Take the triangular membership functions µ1(x), µ2(x), . . . , µN (x) with 1
2

overlap, and the modal values

mi = µi(α=1)(x), i = 1, . . . , N (3.20)

with
m1 ≤ m2 ≤ . . . ≤ mN (3.21)

2. Define the minimum distance acceptable M between the modal values.
3. Calculate the difference between successive modal values as

dj = mj+1 − mj , j = 1, . . . , N − 1 (3.22)

4. While ∃dj < M do steps 5–8
5. Find all the differences smaller than M .
6. Merge all the modal values corresponding to consecutive differences smaller

than M using (3.23).

mnew =

b∑
i=a

mi

D
(3.23)

D = b − a + 1 (3.24)
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Figure 3.5. Flow diagram of FuZion algorithm (Courtesy of IEEE [27])

where a and b are, respectively, the index of the first and the last modal
value of the fusioned sequence and D is the number of merged membership
functions.

7. Update N .
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8. Calculate the difference between the new successive modal values as:

dj = mj+1 − mj , j = 1, . . . , N − 1 (3.25)

9. end while
10. end

Original Membership Functions

Membership functions after FuZion

Figure 3.6. Effect of the FuZion algorithm
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Summary:
The FuZion algorithm is an algorithm that reduces the number of member-
ship functions obtained from the projection of the clusters into the input
space. The method combines membership functions close to each other,
reducing the number of membership functions on each input domain.

3.5 Examples

The present section shows four examples of applications of the AFRELI and
FuZion algorithms. The first two examples are approximations of nonlinear
static maps, the third one is the prediction of a chaotic time series and the
last one is a practical example where the density of the polyethylene produced
in a gas-phase HDPE reactor is predicted.

3.5.1 Modeling a Two-Input Nonlinear Function

In this example, we consider the function

f(x, y) = sin
(πx

10

)
sin

(πy

10

)
(3.26)

The steps applied to the current example will be numbered using the same
numbering as the one used in the FuZion algorithm in Section 3.4.

• Step 1 441 points regularly distributed were selected from the interval
[−10, 10] × [−10, 10]. The graph of the function is shown in Figure 3.7.

• Step 2 Using mountain clustering and fuzzy C-means algorithm 26 clus-
ters were found and are shown in Figure 3.8 represented with ‘x’.

• Step 3 After the clusters were found, their center values were projected
into the input domains as shown in Figure 3.9.

• Steps 4, 5, 6 The modal values were sorted and two more modal values
were added to each input domain on minus 10 and 10. The triangular
membership functions were constructed. Figure 3.10 shows the projected
membership functions.

• Steps 7, 8 The FuZion algorithm was applied with M equal to 10% of
the universe of discourse on each domain; observe that with this value
of M five membership functions were generated, as shown in Figure 3.11.
Figure 3.12 shows the membership functions obtained (seven) when the M
parameter in the FuZion algorithm is chosen equal to 7% of the universe
of discourse. It is clear that the smaller the value of M , the larger the
number of membership functions. Linguistic labels were associated to the
membership functions, as shown in Figure 3.11.

• Step 9 A rule base was generated by combining all the membership func-
tions present on each domain, 5 × 5 = 25 rules.
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Figure 3.7. Function f(x, y) = sin
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(Courtesy of IEEE [27])

• Step 10 The 25 singletons of the consequences were calculated using RLS.
The output membership functions are shown in Figure 3.13(a).

• Step 11 The optional step was not applied because the approximation
was considered acceptable.

• Step 12 The singletons were converted into 25 triangular membership
functions.

• Steps 13, 14 The FuZion algorithm was applied to the 25 output tri-
angular membership functions with M equal to 10% of the universe of
discourse. Three membership functions were obtained and they received
their linguistic values, as shown in Figure 3.13(b).

• Steps 15, 16 The 25 singletons were fuzzified using the three membership
functions obtained in the previous step. All the nonzero membership values
were associated to the consequences of the rules, as shown in the following
list.

1. IF x is Negative Large AND y is Negative Large THEN z is Negative with
strength 0.01 AND Zero with strength 0.99

2. IF x is Negative Medium AND y is Negative Large THEN z is Zero with
strength 0.92 AND Positive with strength 0.08

3. IF x is Zero AND y is Negative Large THEN z is Negative with strength 0.01
AND Zero with strength 0.99

4. IF x is Positive Medium AND y is Negative Large THEN z is Negative with
strength 0.1 AND Zero with strength 0.9
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5. IF x is Positive Large AND y is Negative Large THEN z is Negative with
strength 0.03 AND Zero with strength 0.97

6. IF x is Negative Large AND y is Negative Medium THEN z is Zero with
strength 0.96 AND Positive with strength 0.04

7. IF x is Negative Medium AND y is Negative Medium THEN z is Zero with
strength 0.01 AND Positive with strength 0.99

8. IF x is Zero AND y is Negative Medium THEN z is Zero with strength 0.92
AND Positive with strength 0.08

9. IF x is Positive Medium AND y is Negative Medium THEN z is Negative with
strength 0.99 AND Zero with strength 0.01

10. IF x is Positive Large AND y is Negative Medium THEN z is Negative with
strength 0.1 AND Zero with strength 0.90

11. IF x is Negative Large AND y is Zero THEN z is Negative with strength 0.02
AND Zero with strength 0.98

12. IF x is Negative Medium AND y is Zero THEN z is Negative with strength
0.11 AND Zero with strength 0.89

13. IF x is Zero AND y is Zero THEN z is Negative with strength 0.03 AND Zero
with strength 0.97

14. IF x is Positive Medium AND y is Zero THEN z is Zero with strength 0.92
AND Positive with strength 0.08

15. IF x is Positive Large AND y is Zero THEN z is Negative with strength 0.01
AND Zero with strength 0.99
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Figure 3.10. Projected membership functions over the input domains (Courtesy of
IEEE [27])

16. IF x is Negative Large AND y is Positive Medium THEN z is Negative with
strength 0.07 AND Zero with strength 0.93

17. IF x is Negative Medium AND y is Positive Medium THEN z is Negative with
strength 1

18. IF x is Zero AND y is Positive Medium THEN z is Negative with strength
0.11 AND Zero with strength 0.89
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Figure 3.11. Membership functions after FuZion with M = 10% (Courtesy of IEEE
[27])
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Figure 3.12. Membership functions after FuZion with M = 7% (Courtesy of IEEE
[27])
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Figure 3.13. Consequences of the rules. (a) Singletons (b) Membership functions
with linguistic meaning. (Courtesy of IEEE [27])

19. IF x is Positive Medium AND y is Positive Medium THEN z is Positive with
strength 1
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20. IF x is Positive Large AND y is Positive Medium THEN z is Zero with strength
0.93 AND Positive 0.07

21. IF x is Negative Large AND y is Positive Large THEN z is Negative with
strength 0.02 AND Zero with strength 0.98

22. IF x is Negative Medium AND y is Positive Large THEN z is Negative with
strength 0.07 AND Zero with strength 0.93

23. IF x is Zero AND y is Positive Large THEN z is Negative with strength 0.02
AND Zero with strength 0.98

24. IF x is Positive Medium AND y is Positive Large THEN z is Zero with strength
0.96 AND Positive with strength 0.04

25. IF x is Positive Large AND y is Positive Large THEN z is Negative with
strength 0.01 AND Zero with strength 0.99

Observe that the obtained rules exhibit a clear dominance of one of the con-
sequences. When this happens it will be possible to eliminate the consequence
with the small strength without a major impact on the numerical approxima-
tion. However, this step is a decision that must be left to the designer because
it is case-dependent. Figure 3.14 shows the identified surface. Observe that
the main features of the function were captured by the fuzzy system.
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Figure 3.14. Surface generated by the fuzzy system to approximate the function
f(x, y) = sin

(
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)
(Courtesy of IEEE [27])
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3.5.2 Modeling of a Three-Input Nonlinear Function

For this example the data were generated using the function

f(x, y, z) = (1 + x0.5 + y−1 + z−1.5)2 (3.27)

The training set for this example is composed of 216 random points from the
input range [1, 6]× [1, 6]× [1, 6] while the validation set has 125 random points
from the input range [1.5, 5.5] × [1.5, 5.5] × [1.5, 5.5]. As a performance index,
we used the average percentage error (APE):

APE =
1
P

P∑
i=1

|T (i) − O(i)|
|T (i)| × 100% (3.28)

where T (i) is the desired output and O(i) is the predicted output. This per-
formance index allows us to compare the present result with previous works.
First a mountain-clustering procedure was used and 11 clusters were found;
further refinement was obtained by using fuzzy C-means clustering algorithm.
In Figure 3.15 the projected membership functions can be observed. After re-
duction using FuZion with a minimum distance factor of 15% of the size of
the universe of discourse, the membership functions shown in Figure 3.16 were
obtained.

Figure 3.17 shows the singleton consequences and the consequences after
FuZion. Table 3.1 shows the comparative results with previous work. From
the results it can be observed that the numeric performance is very similar to
other proposed methods. It is important to note the generalization capabilities
of the system generated by the AFRELI method. Observe the small degra-
dation of the performance when the training and the validation set are used.
All the other techniques show significant degradation (i.e., ANFIS almost 2
orders of magnitude). This example shows that the method provides an ac-
ceptable numerical performance with the advantage that the interpretability
is guaranteed.

Table 3.1. Performance Comparison with Previous Work

Model APETRN APEV AL Param. Size Size
num. train. valid.

set set
AFRELI 1.002 % 1.091 % 80 216 125
ANFIS 0.043 % 1.066 % 50 216 125
GMDH 4.7 % 5.7 % - 20 20
Fuzzy model 1 1.5 % 2.1 % 22 20 20
Fuzzy model 2 0.59 % 3.4 % 32 20 20
The results from previous works were taken from [19]
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Figure 3.15. Projected membership functions to approximate the function
f(x, y, z) = (1 + x0.5 + y−1 + z−1.5)2.
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Figure 3.16. Membership functions after FuZion in the approximation of the func-
tion f(x, y, z) = (1 + x0.5 + y−1 + z−1.5)2
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Figure 3.17. Consequences of the rules in the approximation of the function
f(x, y, z) = (1 + x0.5 + y−1 + z−1.5)2.(a) Singletons (b) Membership functions with
linguistic meaning



80 3 Fuzzy Modeling with Linguistic Integrity: A Tool for Data Mining

3.5.3 Predicting Chaotic Time Series

This example shows the capability of the algorithm to capture the dynam-
ics governing the Mackey–Glass chaotic time series. These time series were
generated using the following delay differential equation:

ẋ(t) =
0.2x(t − τ)

1 + x10(t − τ)
− 0.1x(t) (3.29)

where τ = 17. The numerical solution of this differential equation was obtained
using the fourth-order Runge–Kutta method, with a time step of 0.1 and initial
condition x(0) = 1.2. The simulation was run for 2000 seconds and the samples
were taken each second. To train and test the fuzzy system, 1000 points were
extracted, t = 118 to 1117. The first 500 points were used as the training set
and the remaining as the validation set. First, a six-step-ahead predictor is
constructed using past outputs as inputs of the model:

[x(t − 18) x(t − 12) x(t − 6) x(t)] (3.30)

and the output will be x(t + 6).
After applying the mountain-clustering method, 57 clusters were found.

Some refinement on the position of the clusters was obtained by using the
Fuzzy C-Means clustering method. After projection and FuZion the member-
ship functions shown in Figure 3.18 were obtained.

To allow a comparison with previous works, the prediction error was
evaluated using the so called nondimensional error index (NDEI) defined as

NDEI =

√
1
N

∑N
i=1(T (i) − O(i))2

σ(T )
(3.31)

where T (i) is the desired output, O(i) is the predicted output and σ(T ) is the
standard deviation of the target series.
Tables 3.2 and 3.3 show some comparative results. In this example, the im-
pact of the use of the optional step of optimization can be observed. It is clear
that the improvement of this optional step is small (reduction of about 30%
on the NDEI), but of course on certain applications this value could be sig-
nificant. Observe once more that the numeric performance is similar to other
techniques but a significant value is added with the interpretability of the
obtained rule base.
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Figure 3.18. Mackey–Glass chaotic time series. Membership functions after pro-
jection and FuZion (Courtesy of IEEE [27])

Table 3.2. Mackey–Glass Chaotic Time Series. Performance for Prediction Six
Steps Ahead

Method Training cases Nondimensional
error index

AFRELI 500 0.0493
AFRELI (with optional step) 500 0.0324
ANFIS 500 0.007
AR model 500 0.19
Cascaded-correlation NN 500 0.06
Back-propagation MLP 500 0.02
sixth-order polynomial 500 0.04
Linear predictive method 2000 0.55

The results from previous works were taken from [19].
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Table 3.3. Mackey–Glass chaotic time series. Performance for Prediction 84 Steps
Ahead (the first seven rows) and 85 (the last four rows)

Method Training cases Nondimensional
error index

AFRELI 500 0.1544
AFRELI (with optional step) 500 0.1040
ANFIS 500 0.036
AR model 500 0.39
Cascaded-correlation NN 500 0.32
Back-propagation MLP 500 0.05
Sixth-order polynomial 500 0.85
Linear predictive method 2000 0.60
LRF 500 0.10–0.25
LRF 10000 0.025–0.05
MRH 500 0.05
MRH 10000 0.02

Results for the first seven methods are obtained by simulation of the model
obtained for prediction six steps ahead. Results for localized receptive fields

(LRFs) and multiresolution hierarchies (MRHs) are for neurons trained to predict
85 steps ahead. The results from previous works were taken from [19].
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Figure 3.19. Mackey–Glass chaotic time series. Consequences of the rules:
(a)Singletons (b) Membership functions with linguistic meaning (Courtesy of IEEE
[27])
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Figure 3.20. Mackey–Glass chaotic time series approximation. (a) Mackey–Glass
time series (solid line) from t = 618 to 1117 and six-steps-ahead prediction (dashed
line) (b) Prediction errors (Courtesy of IEEE [27])
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Figure 3.21. Mackey–Glass chaotic time series approximation. (a) Mackey–Glass
time series (solid line) from t = 118 to 1117 and 84-steps-ahead prediction (dashed
line) (b) Prediction errors (Courtesy of IEEE [27])
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3.5.4 Modeling of the Quality Properties on a High-Density
Polyethylene (HDPE) Reactor

In this example the purpose is to predict the density of the polyethylene pro-
duced in a gas phase HDPE reactor. For this purpose three signals are collected
and preprocessed to eliminate dynamic information. Finally, 254 samples were
selected and from this set two subsets were chosen, one for training (178 sam-
ples) and one for validation (76 samples). The input signals are C4/C2 ratio,
H2/C2 ratio and product outflow (see Figure 3.22), and the output signal is
the density of the polyethylene (see Figure 3.23).
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Figure 3.22. Modeling of an HDPE Reactor. Signals used to predict the density
in the HDPE reactor (Courtesy of Springer-Verlag [25])

The training set was clustered using mountain clustering ([12]) with a grid of
five divisions per dimension. From this procedure, 6 clusters were selected as
the most important candidates, and they were refined using fuzzy C-means
([2]) (step 2). These clusters were projected into the input space and the
membership functions were constructed (steps 3, 4, 5, 6). Figure 3.24 shows
the projected membership functions. The FuZion algorithm was applied to
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Figure 3.23. Modeling of an HDPE reactor. Data for density in the HDPE reactor
Original data (-) Predicted data (- -) (Courtesy of Springer-Verlag [25])

the input domains with M equal to 10% of the universe of discourse (steps 7,
8). Figure 3.25 shows the membership functions after the FuZion algorithm
was applied. A rule base of 60 rules (4 × 5 × 3) was constructed and the
consequences of the rules were calculated (steps 9, 10). In Figure 3.26(a) the
singleton consequences are represented.

The singletons were converted into triangular membership functions and
reduced by means of the FuZion algorithm to only six membership functions
[see Figure 3.26(b)] (steps 12, 13, 14).

The new membership functions are associated with the rules (steps 15,
16). Some of the obtained rules are

• IF C4-C2 Ratio is Small AND H2-C2 Ratio is Very Small AND Prod.Outflow is
Small THEN Density is Medium Low with strength 0.9 AND Low with strength
0.1

• IF C4-C2 Ratio is Small AND H2-C2 Ratio is Very Small AND Prod.Outflow is
Large THEN Density is Very High with strength 0.99 AND High with strength
0.01

• IF C4-C2 Ratio is Small AND H2-C2 Ratio is Very Large AND Prod.Outflow
is Small THEN Density is Medium Low with strength 0.89 AND Medium High
with strength 0.11
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Figure 3.24. Modeling of an HDPE Reactor. Membership functions after clus-
ter projection. (a) C4/C2 ratio (b) H2/C2 ratio (c) Product outflow (Courtesy of
Springer-Verlag [25])

• IF C4-C2 Ratio is Small AND H2-C2 Ratio is Very Large AND Prod.Outflow is
Large THEN Density is Very High with strength 0.99 AND High with strength
0.01

• IF C4-C2 Ratio is Very Large AND H2-C2 Ratio is Very Small AND Prod.Outflow
is Small THEN Density is Very Low with strength 0.6 AND Low with strength
0.4

• IF C4-C2 Ratio is Very Large AND H2-C2 Ratio is Very Small AND Prod.Outflow
is Large THEN Density is High with strength 0.95 AND Very High with
strength 0.05

• IF C4-C2 Ratio is Very Large AND H2-C2 Ratio is Very Large AND Prod.Outflow
is Small THEN Density is Very Low with strength 1

• IF C4-C2 Ratio is Very Large AND H2-C2 Ratio is Very Large AND Prod.Outflow
is Large THEN Density is Medium High with strength 0.92 AND Medium Low
with strength 0.08

Finally, Figure 3.23 shows the prediction of the fuzzy model, observe in Fig-
ure 3.22 that the conditions of the validation set are different to the ones
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Figure 3.25. Modeling of an HDPE Reactor. Membership functions after FuZion.
(a) C4/C2 ratio, (b) H2/C2 ratio, (c) Product outflow (Courtesy of Springer-Verlag
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presented in the training set. However, the prediction is still very good for the
validation set.

3.6 Complexity of the AFRELI Algorithm

The AFRELI algorithm is an algorithm based on clustering methods to locate
the rules. The clusters are projected into the input space and converted into
fuzzy sets. The FuZion algorithm reduces the large number of projected sets
on each input so that the linguistic integrity is preserved. With the reduced
group of fuzzy sets a combinatorial number of IF–THEN rules is generated
using only the AND operation in the antecedents. The rule base will cover
every possible case in the compact set defined by the universes of discourse of
the input domains. This is an important advantage because the system will be
able to make accurate predictions values even if there were no similar values
in the data set used to construct the model. The generalization of this method
for the case of rules badly excited will be as good as the generalization given
by a multilinear model of dimension N where N is the number of inputs.

However, such a large number of rules present some problems: (1) a large
set of rules with a large set of antecedents is difficult to understand and
analyze; (2) a large set of rules demands large memory storage; for instance, a
rule base created for a system with five inputs and six membership functions
on each input will demand approximately 30 Kbytes of memory, and a similar
system with 10 inputs will demand 230 Mbytes of memory. On the other hand,
the evaluation time will not grow that fast; for the first system only 25 = 32
rules need to be evaluated, for the second system 210 = 1024 rules.

Summary:
The exponential growth of the number of rules with respect to the increase
in the number of inputs affects mainly the storage demanded by the model
obtained using the AFRELI method. The performance of rule evaluation,
however, remains limited since it grows only in powers of 2.

3.7 Conclusions

The AFRELI algorithm has been created to further exploit the comparative
advantage of fuzzy systems by securing their linguistic interpretability. The
AFRELI algorithm in combination with the FuZion algorithm guarantees a
good trade-off between numerical accuracy and interpretability. The method
exploits some successful elements proposed in other methods to reduce the
complexity of the model construction.

The algorithm generates automatically the fuzzy sets and the interactive
labeling process (with intervention of the designer) guarantees an agreement
between the fuzzy set and the assigned label (semantic agreement).
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The method generates a rule base covering all the possible cases, this
guarantees the completeness of the rule base, but the associated drawback is
the exponential growth of the rule base as the number of inputs increases.
However, this is only a storage problem because the description of the fuzzy
sets guarantees that only 2N rules (N number of inputs) are activated on
each inference. This makes the inference process fast because only a limited
number of rules are evaluated.

The numerical accuracy of the algorithm is directly related with the choices
of the M parameter governing the FuZion algorithm, and the choices in the
clustering algorithm. When the number of inputs is large, the clustering will be
limited to use the Fuzzy C-means algorithm with an overestimated number of
clusters. The poor performance of the mountain clustering method with large
dimensions motivated this modification.

Some improvements of the numerical performance of the model can be
obtained by making a fine-tuning of the parameters of the antecedents by
means of constrained gradient descent techniques.



4

Nonlinear Identification Using Fuzzy Models

This chapter is oriented to the study of system identification using fuzzy mod-
els. The chapter presents the main aspects of system identification using fuzzy
models such as the structure of the fuzzy systems, experiment design, regres-
sors selection, structure selection, parameter calculation and validation. The
chapter includes the analysis and derivation of the gradients for dynamic cal-
culation of the parameters of dynamic fuzzy models. This result is condensed
at the end of the book in Appendix C.

It is important to remark that fuzzy systems are one of several possibilities
in the area of nonlinear system identification. Neural networks, Volterra se-
ries, wavelets and other universal approximators represent other possibilities
in nonlinear system identification. The advantages of the use of fuzzy sys-
tems is their capacity to interact and to extract linguistic information from
input–output data and to describe the dynamics of the system in local re-
gions described by the rules. These features are very valuable and make fuzzy
models different from other traditional black-box techniques. The capacity to
handle linguistic information adds an extra dimension to the identification
and modeling because the validation process will be based not only on quan-
titative criteria but also on qualitative criteria such as whether or not the
extracted rules “make sense.” In this way, expert knowledge and empirical
knowledge (which is normally not represented as quantitative information)
can be exploited. Extra knowledge is gained when users of the models observe
the extracted rules and realize what kind of reasoning process they apply on
certain decisions. This is typically the case when the objective is to make
the identification of a group of human experts. Information is collected about
their decision under given circumstances. The human experts know how to
take a decision, but they fail to explain the reasoning mechanism that they
are using. Once the knowledge is extracted in the form of a fuzzy model with
a rule base, they realize the reasoning mechanism that they are using. One
of the main failures when human experts try to generate rules is to neglect
the dynamic information, such as trends and other dynamic effects, which are
tightly linked to the decision process. This capacity to extract knowledge does
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not come for free and the price paid for this property is a reduction in ac-
curacy and the so-called curse of dimensionality. The curse of dimensionality
arises because the number of rules grows exponentially when the number of
inputs to the model is increased.

Modeling and function approximation using fuzzy models is a topic that has
been studied extensively in recent years [7] [9] [8] [15] [10] [14], but very few
authors had studied the whole problem in a formal way; most of them focus
on training algorithms and function approximation. This chapter tries to fill
this gap by studying most of the issues involved on system identification.

Summary:
Identification using fuzzy models offers a new dimension to the subject
of nonlinear system identification. These dynamic fuzzy models can offer
linguistic and numerical information together with “local” descriptions of
the system behavior.

4.1 System Identification

System identification is a technique to build mathematical models of dynamic
systems based on input–output data. The output of the dynamic system at
time t is y(t) and the input u(t). The “data set” will be described as

Zt = {y(1), u(1), . . . , y(t), u(t)} (4.1)

A model of the dynamic system can be constructed as a mapping from past
data Zt−1 to the next output y(t). This model is known as the predictor model
and is represented by

ŷ(t) = f(Zt−1) (4.2)

where ŷ(t) represents the estimated output. The essence of identification using
fuzzy systems is to try to represent the function f by means of a fuzzy model.
It is important to see the fuzzy system as a parameterizable mapping,

ŷ(t|θ) = f(Zt−1|θ) (4.3)

where θ is the vector of parameters to be chosen (position and shape of the
membership functions, consequences of the rules, etc.). The choice of these
parameters is guided by the information embedded in the data. The structure
of (4.2) is a very general structure and it has the drawback that the data set
is continuously increasing. For this reason, it is better to use a vector ϕ(t) of
fixed dimension. So the general model is now formulated as

ŷ(t|θ) = f(ϕ(t)|θ) (4.4)
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The vector ϕ is known as the regression vector and its elements regressors.

ϕ(t) = [y(t − 1), . . . , y(t − n), u(t − 1), . . . , u(t − m)] (4.5)

Using this parameterization, the problem can be decomposed in three sub-
problems:

1. How to choose the regressors in ϕ(t) from the set of past inputs and
outputs

2. How to find the structure of the Fuzzy System f(., .)
3. How to find the parameters θ

In the following sections these topics will be addressed.

Summary:
System identification using fuzzy models can be formulated in the “classi-
cal” framework of system identification where the structure definition and
the parameter estimation are the subproblems that must be solved in order
to obtain a model.

4.2 Basic Structure of the Fuzzy System

Fuzzy systems are suitable for identification, from the mathematical point of
view, because these structures are “universal approximators,” as shown in a
previous chapter. Using this way of reasoning, there is a guarantee that the
nonlinear system identification problem can be approached using fuzzy sys-
tems. There are many universal approximators; RBF, MLP, wavelets, Fourier
series, Volterra kernels, etc. are just few to mention. The use of fuzzy systems
for nonlinear identification is not motivated only by their approximation ca-
pabilities but also by their capacity to extract linguistic information in the
form of IF–THEN rules which typically describe compact sets.

The structure selection for fuzzy system demands the selection of a large
set of diverse type of parameters: shapes of the membership functions, AND
and OR operations, implications, defuzzification methods, consequence type
(Mamdani or Takagi–Sugeno), etc.

Since some of the parameter adjustment methods are based on gradient
descent methods, it is preferable to use operations with continuous deriva-
tives. This fact motivated the selection of product and bounded sum as AND
and OR operators because their derivatives are continuous. The shape of the
membership functions of the consequences will be singletons or linear combi-
nations of the inputs (Takagi–Sugeno models). It is important to remember
that the singletons can be converted into triangular membership functions
and reduced using the rule description presented in the previous chapter in
the AFRELI algorithm.
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The choice of the type of consequence will determine the linguistic prop-
erties of the model: the use of singletons gives more linguistic meaning to the
rules, but the use of Takagi–Sugeno models can improve the approximation
properties, especially in the case of piecewise linear functions.

The shape of the membership functions for the fuzzification process will
be preferred to be triangular or polynomial for their local and linguistic prop-
erties (see previous chapter), but Gaussian membership functions can also be
used if minor attention is devoted to interpretability and locality of the rules.

Additional constraints are needed if the model should have some linguistic
meaning. Some of them are

• The number of membership functions in every universe of discourse for the
inputs should be limited to as much as 7 ± 2 and at least 2.

• The overlap among neighboring membership functions should be enforced
to be 0.5.

• The distance between the “center” of the membership functions should
guarantee a minimum amount of coverage over the universe of discourse.

In this section we will use the parameterization of the fuzzy system presented
in previous sections:

f(x) =
∑L

l=1 ȳlµl(x)∑L
l=1 µl(x)

(4.6)

where x represents the input vector. In the present case the input vector will
be the regressors ϕ(t), and µl(x) represent the membership function of the
rule l constructed during the inference process. Finally, ȳl is the singleton
consequence of the l rule.

For the case of Takagi–Sugeno models the parameterization will be,

f(x) =
∑L

l=1 Alxµl(x)∑L
l=1 µl(x)

(4.7)

where Al is a row vector. In this case, the consequences are linear combina-
tions of the inputs or other variables.

These initial choices are complemented with other choices that can be
guided by I/O data using clustering and projections methods, as shown in
Chapter 2.

These structures as they are described will be used to identify multiple-
input–single-output (MISO) systems. Most of the comments expressed here
are also valid for multiple-input–multiple-output (MIMO) systems. However,
the authors consider that the problem of nonlinear MIMO identification prob-
lems only makes sense, from the practical point of view, if the output variables
are of the same type (e.g. all temperatures or all displacements) and with sim-
ilar orders of magnitude. Otherwise, the formulation of a cost function that
balances the approximation of different signals with different magnitude is
very difficult. In addition, MIMO parameterizations where some outputs are
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weakly related with some inputs tend to generate overfitting and bad gener-
alizations. In these cases, it is better to use multiple MISO models (one per
output) where only strongly related inputs are used to construct the model.
Because there is only one output, no compromise among outputs should be
taken into account to formulate the cost function for the approximation.

Summary:
The structure of fuzzy systems for identification can be fixed by using
different criteria: Continuity of the function, linguistic interpretability and
locality are just some worthy of mention.

4.3 Experiment Design for System Identification

The main objective of the experiment design is to extract as much informa-
tion as possible from the dynamic system by means of a “good” input signal.
What we understand for a “good” input signal is a signal that exposes the
most important features of the system. Typically, a good input signal for the
identification of nonlinear systems is a signal that should be rich on ampli-
tudes and frequency, is limited in duration and, according to the application
of the model, must excite those characteristics that are relevant for the desired
application.

The problem of optimal experiment design can be formulated as the min-
imization in the uncertainty of the estimated parameters in the model. This
statement includes a fundamental assumption implying that the structure of
the model is already known. This leads to the consequence that every optimal
experiment design for the identification of a nonlinear system should be an
iterative process.

In this iterative process, an initial signal is used to make a rough identifi-
cation of the structure of the model (regressors and noise model). Once this
structure is selected, an initial description of the model is created, and with
this description an optimization can be performed.

In heuristic terms, a good excitation signal for a fuzzy system is a signal
that will excite the complete rule base. The signal should expose all possible
cases presented in the rule base and, if the rule base is complete (all possible
combinations of antecedents), the excitation signal will cover all possible sit-
uations in a compact set. It is important to remark that the excitation of the
rule implies not only the excitation of the consequence but also the excitation
of the membership functions of the antecedents associated with the rule.

In general, the probability distribution of the parameter estimates can
be characterized by their bias B(θ̂) and covariance cov(θ̂). If the estimator is
unbiased, the bias will approach zero asymptotically as the number of training
point grows and the covariance will be bounded [32]. The estimator in this
case will be unbiased if the correct structure (regressors, membership func-
tions and inputs) is selected.
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Assuming the description of the fuzzy system given in Equation (4.6), the
fuzzy system can be described as

ŷ(t) =
L∑

l=1

ȳlwl(ϕ(t)) (4.8)

with

wl(ϕ(t)) =
µl(ϕ(t))∑L
l=1 µl(ϕ(t))

(4.9)

such that
y(t) = Ȳ T W (t) + e(t) (4.10)

where Ȳ = {ȳ1, ȳ2, . . . , ȳL}T , W (t) = {w1(ϕ(t)), w2(ϕ(t)), . . . , wL(ϕ(t))}T

and e(t) is the prediction error that is assumed to have zero mean and variance
σ2. If the vector of the consequence values is estimated using least squares,
the covariance matrix of errors on the estimates of Ȳ will be given by

covȲ = σ2

[
N∑

t=1

W (t)W (t)T

]−1

(4.11)

Now the problem is to minimize (or maximize) some measure of the covariance
matrix or its inverse, the information matrix (MȲ = [covȲ ]−1). Formally, the
problem can be written as

min
u(1),...,u(N)

φ(MȲ ) (4.12)

where φ is a cost function (typically a norm) calculated over the information
matrix and u(1), . . . , u(N) is a sequence of N inputs.

According to the purpose of the model, the cost function φ(.) can be de-
fined in different ways including even criteria such as control relevance of the
inputs [33]. This optimization problem is nonlinear and nonconvex, so there
is no guarantee that the obtained solution is the global minimum. However,
a local minimum can be an acceptable solution.

When no prior knowledge about the structure is present, using a com-
bined sequence of random movements can create an excitation signal. The
experience of the authors shows that a good excitation can be obtained by
constructing a signal composed by a “slow” random signal with some discrete
values selected in the input range and a random wide band signal (fast sig-
nal) with an amplitude that covers the gap between the discrete values of the
“slow signal.” The reasoning behind the formulation of this kind of signal is
that the slow signal will drive the plant to different operating points and the
fast signal will guarantee enough excitation around the operating points. It
is important to remark that the fast signal will be limited in amplitude and
frequency such that saturation and slew rate limitations in the actuators will
be respected. Figure 4.1 shows an example of such a signal. Combinations of
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Figure 4.1. Heuristically designed excitation signal with four discrete levels between
0 and 1. (a) Slow random signal with 4 discrete levels (b) Wide band signal (c)
Combined signals

this type of signals can be used for the identification of multivariable systems.
Other excitation signals are the multisine signals with variable frequency and
the swept sinus with random frequencies. These signals are frequently used in
the identification of mechanical systems.
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Summary:
The identification of nonlinear system demands a good experiment design
such that the sequence of input signals excites all the rules in the rule base
as well as all the important dynamics. The design of an optimal input
sequence is conditioned by the knowledge of the model structure.

4.4 Choosing the Regressors

The problem of regressors selection for nonlinear modeling is a complex com-
binatorial problem that cannot be solved in polynomial time. The complexity
of the problem is, in fact, exponential O(2n): if there are n possible regressors,
2n possibilities must be evaluated.

Figure 4.2 shows the sequence for regressors selection. First a selection
algorithm to pickup the regressors from a set of possible candidates is needed,
because the exhaustive search of the 2n possibilities is not practical. Some
shortcuts to guide the search have been proposed. Among these methods it is
worth mentioning the tree search methods and the genetic selection methods.
The scheme shows that once a set of regressors is postulated the quality must
be evaluated. To evaluate the quality of the regressors two types of strategies
can be distinguished: model-based strategies, where a model should be built
to evaluate the quality of the regressors, and model-free strategies, where the
quality of the regressors is evaluated using only the input–output data. Next
sections will explore these issues in detail. Section 4.4.1 will show the search
methods and Section 4.4.2 will show the evaluation methods.

4.4.1 Search Methods

This section describes two classes of search methods, the heuristic search
methods and the pseudo-random methods.

Heuristic Search

In the class of heuristic search methods, a tree selection method is used. In this
method, two approaches can be used: one approach constructs a model adding
new inputs one by one. The other method makes a model with all possible
inputs and regressors are dismissed according to the impact in the performance
evaluation (those with small impact are removed first). For fuzzy systems, the
first one is preferred because the size of the models made for the evaluation is
smaller (in terms of number of inputs). The method works as follows: first a
set of all possible models using one regressor is proposed (n models where n
is the number of regressor candidates). The quality of the models is evaluated
using any of the model-based or model-free methods shown in Section 4.4.2.
The regressor with the best performance index is selected and a new set of
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Algorithm

Evaluation

of the regressor

Selection

Criteria

Stop Regressor

Selected

Figure 4.2. Sequence for regressors selection

models with two regressors is proposed. One of the two regressors will be
always the one selected in the previous step; in this way n−1 possible models
will be proposed and evaluated. Again the best regressors will be selected
and the procedure will be repeated until a prescribed number of inputs is
reached or no improvement in the performance index is observed. Figure 4.3
shows a graphical representation of an example of regressor selection using
this method. The complexity of this method is polynomial (O(n2)). At the
worst case, this algorithm reduces the number of evaluated possibilities to

n∑
i=1

i =
n2 + n

2
(4.13)

where n is the number of regressor candidates.
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Figure 4.3. Heuristic search for regressors selection

This tree search does not guarantee that the best regressors are selected. It
ignores the fact that some information can be carried only when two or more
signals are present at the same time. To overcome this problem, the search
can evaluate the addition of two or more inputs at the same time.

Pseudo-Random Methods

Genetic algorithms are included among the pseudo-random methods. The
selection of the candidate regressors to be evaluated is given by the genetic
algorithm. It was explained in Chapter 2 that there is a high probability
that after a given number of iterations the optimal solution is found. The
advantage of using the genetic algorithm is that the codification of the problem
is straightforward and each bit of the string will be used to represent an active
(bit equal “1”) or an inactive (bit equal “0”) regressor. Figure 4.4 shows the
codification for the selection of the regressors among 10 candidates and the
effect of the crossover operator of the genetic algorithm. The number of
evaluations for this method is at the worst:

Size of the population × Number of generations (4.14)
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Figure 4.4. Regressors selection using genetic algorithms. Effect of the crossover
operator

Summary:
A rigorous selection of the regressors for a model demands the evaluation
of 2n possible solutions. This exponential complexity of the problems mo-
tivates the use of search methods. The most important are the heuristic
search and the pseudo-random search.

4.4.2 Regressors Evaluation

Model-Based Evaluation

Model-based evaluation evaluates the prediction error of the model con-
structed with the suggested set of regressors. Special attention must be taken
during the construction of the model to avoid problems such as lack of exci-
tation, overparameterization and large training time which could jeopardize
the evaluation of the set of regressors. An acceptable solution to avoid these
problems is the use of the smallest fuzzy model described in Section 2.5.1.
This model is evaluated very fast (only a least-squares solution is needed)
and there is a guarantee of enough excitation and no chance of overparame-
terization. In addition, the model is more complex than a linear model; in fact,
the model is multilinear. The evaluation of a complete model with more than
two membership functions per input is not recommended for two reasons:
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• Computational cost could be very large since the regressor selection de-
mands many model evaluations.

• Lack of excitation and overparameterization could spoil the evaluation of
the set of regressors.

Different cost functions have been presented in the literature to evaluate the
quality of a model. Some of these cost functions penalize the validation error
ε = y(t) − ŷ(t|θ) and the complexity of the model dim(θ). The penalization
of the validation error is obvious; however, the motivation to penalize the
complexity of the model should be explained as an effort to avoid overparam-
eterization. The fact that these two measures have different units requires the
use of weights to combine them in a cost function. These weights are in most
of the cases arbitrary. Among these types of criteria are Akaike’s information
criteria (AIC) and Rissanen’s minimum description length (MDL) [34]. The
cost function for Akaike’s information criterion is given by

VN (θ, ZN ) =
(

1 +
2 dim θ

N

)
1
N

N∑
t=1

ε2(t, θ) (4.15)

where
ε = y(t) − ŷ(t|θ) (4.16)

and dim θ represents the length of the vector of the parameters, and N is the
size of the validation set.

Rissanen’s minimum description length criterion is very similar to the
AIC and its cost function is described as

VN (θ, ZN ) =
(

1 +
2 log N dim θ

N

)
1
N

N∑
t=1

ε2(t, θ) (4.17)

The arbitrary weighting between the objectives makes the cost functions very
“subjective.” Therefore, it is very difficult to say which cost function is more
suitable.

Other criteria are practically motivated and they take into account only
the validation error and try to avoid the overparameterization by other means.
Most of these criteria try to minimize the impact of the data set ZN used for
the evaluation. One example of this type of methods is the so-called Regu-
larity Criterion.

The application of this method to fuzzy modeling was suggested by Sugeno
and Yasukawa [11]. The regularity criterion was first proposed in other mod-
eling technique known as GMDH (group method of data handling). The cost
function for this criterion is defined as follows:

RC =

[
kA∑
i=1

(yA
i − ŷAB

i )2/kA +
kB∑
i=1

(yB
i − ŷBA

i )2/kB

]
/2 (4.18)

where
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• kA and kB , number of data of the groups A and B
• yA

i and yB
i , outputs of the data groups A and B

• ŷAB , model output for the group A input estimated using the model con-
structed with the data set B

• ŷBA, model output for the group B input estimated using the model con-
structed with the data set A

This cost function evaluates the prediction error in a cross-validation scheme.
Figure 4.5 shows a representation of the cross-validation scheme. Cross-
validation aims to prevent overparameterization and an overtraining.

BA
MODELMODEL

U    YB BU    YA A

B
DATA SETDATA SET

A

ESTIMATION

(a)

BA
MODELMODEL

Y AB

UB UA

DATA SETDATA SET
B A

Y BA

CROSS-VALIDATION

(b)

Figure 4.5. Regularity criterion. (a) Estimation of models A and B (b) Cross-
validation of the models
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Summary:
The cost function to measure the quality of a model punishes the distance
of the predictions of the model to the original data and introduce a punish-
ment in the complexity of the models to avoid overparameterization. Other
methods avoid the overparameterization by means of cross-validation.

Model-Free Evaluation

The main drawback of the model-based techniques is that the evaluation can
be influenced by estimation errors or, in some cases, the calculation of the
parameters of the model can be very time-consuming. A good alternative is
the model-free test proposed by He and Asada in [35]. The method is based
in the evaluation of the Lipschitz quotients. A Lipschitz quotient is defined
in this framework: given a nonlinear function y = f(x) and N input output
pairs (yi, (x)i), the Lipschitz quotient qij is given by

qij =
|yi − yj |
|xi − xj | , (i �= j) (4.19)

Using these quotients, the following index is formulated:

q̄(n) = (
p∏

k=1

√
nq(n)(k))1/p (4.20)

where q̄(n) is called the Lipschitz number, q(n)(k) is the kth largest Lipschitz
quotient among all q

(n)
ij (i �= j; i, j = 1, 2, . . . , N) where n is the number of

input variables. The parameter p is selected as 0.01N < p < 0.02N . From
Equation (4.20) it is clear the q̄(n) is the geometric mean of the sequence
q(n)(1), q(n)(2), . . . , q(n)(p). In practice, the criterion decreases as the number
of regressors increases until a point where no further improvement is obtained.
The index evaluates the smoothness of the mapping constructed with the data
points in the regressor vector. This method works very well with noise-free
data; it can even find the regressors for a chaotic time series. The performance
with noise is reduced, but it still works with signals having an S/N ratio of
around 8 dB.

Summary:
The performance of set of regressors can be measured without construct-
ing any explicit model. These methods of evaluation are called model-free
methods. Lipschitz quotients are a good example of such methods. The
method estimates the smoothness of function constructed with a given set
of regressors.
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4.5 Choosing the Structure

Following the nomenclature for linear models the following structures has been
defined for nonlinear systems [36] [37] as follows:

• NFIR models, in this case the vector of regressors is composed only with
past inputs ϕ = [u(t − k), . . . , u(t − n)].

• NARX models, in this case the vector of regressors has past inputs and
outputs ϕ = [u(t − k), . . . , u(t − n), y(t − k), . . . , y(t − m)].

• NOE models, the vector of regressors has past inputs and past estimated
outputs: ϕ = [u(t − k), . . . , u(t − n), ŷ(t − k|θ), . . . , ŷ(t − m|θ)].

• NARMAX models, which use as regressors past inputs, past outputs and
estimation errors ϕ = [u(t − k), . . . , u(t − n), y(t − k), . . . , y(t − m), ε(t −
k|θ), . . . , ε(t − l|θ)].

• NBJ models, in this case the regressors are past inputs, estimation errors
using past outputs and estimation errors using past estimated outputs
(εu(t − k|θ)): ϕ = [u(t − k), . . . , u(t − n), y(t − k), . . . , y(t − m|θ), ε(t −
k|θ), . . . , ε(t − l|θ), εu(t − k|θ), . . . , εu(t − p|θ)].

• State-space models, for the deterministic case the model will be

x̂(t + 1) = f(x̂(t), u(t)) (4.21)
ŷ(t) = g(x̂(t), u(t)) (4.22)

for the stochastic case the model will be

x̂(t + 1) = f(x̂(t), u(t), ε(t)) (4.23)
ŷ(t) = g(x̂(t), u(t)) (4.24)

It is clear that there is a wide set of possible structures. The application, the
information available and the complexity of the model condition the selection
of one type of structure. Some remarks about the models and their applica-
tions are reviewed in the following lines.

The NFIR model type is simple and has some interesting properties with
respect to the stability (in fact, it is always stable), but its main drawback is
that it needs a significant number of past inputs to capture simple dynamics.
This large number of past inputs can make the rule base of the fuzzy model
very big, thus making the model inefficient. In general, it is not a practical
structure for fuzzy models.

The NARX model type is the most used structure since it is very easy to
estimate due to its nonrecursive structure. For this reason, the NARX models
are used during the phase of regressor selection where the computation of sev-
eral models requires the use of simple models. It is interesting for applications
where short-term forecasting is needed (one or few steps ahead).

The NARMAX, NOE, NBJ and the state-space stochastic model types are
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recurrent models where the estimated output is fed back. This characteristic
makes the estimation of the model more complicated. The advantage of the
use of these models is that the information provided by the simulation model
is corrected via a noise model providing a synchronization mechanism with
the real process.

NOE models are preferred for simulation purposes because no information
from the “real system” is needed to operate a simulation, since past real out-
puts are not included in the model.

All these model structures can be used either with Mamdani models-
or with Takagi–Sugeno models. For the Mamdani models the regressors are
processed by the inference system, making in some cases the construction of
models with many regressors very difficult. In these cases it is preferable to use
Takagi–Sugeno models with rules where the consequences are linear models.
These linear models use the above-mentioned structures and they are “sched-
uled” by the inference mechanism, which is driven by either states, inputs or
outputs. The selection of the variable used by the inference mechanism can
be done with the methods mentioned above, although in most of the cases the
variable is selected using prior knowledge about the dynamic system.

Summary:
There are multiple structures to construct dynamic fuzzy models. The
selection of one structure is guided by the features of the dynamic system
as well as the applications of model.

4.6 Calculating the Parameters

The parameter adjustment techniques for dynamic systems are very similar
to the ones used for function approximation, as explained in Chapter 2. Clus-
tering techniques and projection can be used to estimate initial distributions
of the membership functions. This initial estimation must be done using the
NARX structure, because the construction of an NARX model is equivalent
to the construction of a model for static function approximation. The initial-
ization of the consequences must use the method explained in Section 2.5.

Once the structure of the model has been selected, the NARX model
can be used to initialize the other structures; further improvement must be
achieved using gradient descent techniques.

The classical cost function to be minimized is the quadratic cost function,
defined as:

VN (θ) =
1

2N

N∑
t=1

|y(t) − ŷ(t|θ)|2 (4.25)

where θ is a vector containing the parameters of the membership functions
and the position of the singletons of the consequences or the parameters of
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the vectors Al in the Takagi–Sugeno models. The iterative scheme to update
the parameters is defined as

θ̂(i+1) = θ̂(i) − µiR
−1
i ĝi (4.26)

where µi is the step size, ĝi is an estimate of the gradient V ′
N (θ̂(i)) and Ri

is a matrix that modifies the search direction. online (recursive) and offline
(batch) methods are available [38]. Depending on the Ri the methods will be

• Gradient direction Ri = I
• Gauss–Newton direction

Ri = Hi =
1
N

N∑
t=1

ψ(t, θ̂(i))ψT (t, θ̂(i))

where
ψ(t, θ) =

∂

∂θ
ŷ(t|θ)

• Levenberg–Marquard direction

Ri = Hi + δI

• Conjugate gradient direction

Ri = V ′′
N (θ̂(i))

It is very important to remark that the gradient of some of the parameters
involved in the model must be generated dynamically due to the recursive
structure of the model. The following example illustrates the complexity of
the problem.

Example 4.1. Given a nonlinear dynamic system defined as ŷ(t) = f(ŷ(t −
k), θ) where ŷ(t) is the output of the model, ŷ(t) delayed k units of time and
θ ∈ � is a parameter of the model. The gradient of ŷ(t) with respect to θ is
given by the expression

∂ŷ(t)
∂θ

=
∂f(ŷ(t − k), θ)

∂θ
+

∂f(ŷ(t − k), θ)
∂ŷ(t − k)

∂ŷ(t − k)
∂θ

(4.27)

Replacing ∂ŷ(t)/∂θ by g(t), the expression will look like

g(t) =
∂f(ŷ(t − k), θ)

∂θ
+

∂f(ŷ(t − k), θ)
∂ŷ(t − k)

g(t − k) (4.28)

The expression clearly shows that the gradient ∂ŷ(t)/∂θ is given by a dynamic
system.
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Some constraints can be imposed on these models to enforce certain proper-
ties (i.e., limited gains, monotonicity, etc.). In general, the use of the gradients
will improve the performance of the optimization algorithms used to tune the
models. Gradient expressions for different types of fuzzy systems are presented
in Appendix C.

Summary:
Gradient-based methods are the most reliable method to calculate the
parameters of an identified model. The use of such methods demands the
calculation of the gradient, which is in many cases (for fed-back variables)
the simulation of a dynamic system.

4.7 Validation

For nonlinear systems, validation methods are restricted to criteria in time
but not in frequency. The most typical validation test is the prediction er-
ror [32] ε(t) = y(t) − ŷ(t|θ). Once this test is acceptable, further tests can be
introduced. The most important is the residual validation test. This test is
based in correlation analysis of the residuals. The test allows us to detect in-
formation that can still be modeled and has not been captured by the model.
The test also detects unmodeled dynamics or bias in the estimation.
Billings et al. [39] have shown that the residual validation test applied for

linear systems,

φεε(τ) = δ(τ)
φεu(τ) = 0 ∀τ

}
(4.29)

(where φ stands for the normalized cross-correlation) was not enough to detect
biases or unmodeled dynamics. The reason is that the test can only detect the
residuals that are uncorrelated with themselves and with the inputs. The test
simply establishes that no more “linear” relations can be found in the current
data.

An extension of this test to nonlinear systems includes the correlation test
between powers of the inputs and the residuals [39], for instance:

φεε(τ) = δ(τ)
φε2u2(τ) = 0

φεu(τ) = 0
φεu2(τ) = 0
φεεu(τ) = 0 ∀τ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.30)

These results can be used in a constructive way. For instance, if the residuals
are correlated with an input to the second power, the model can be increased
to include directly this new input (u2(t)) or the number of membership func-
tions used in the input u(t) can be increased.
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As a final remark, it is important to remember that fuzzy models have an
additional validation mechanism by comparing the linguistic rules with the
knowledge of an expert. In dynamic systems, this is not always a simple task
because of the tendency of human beings to represent expert knowledge in a
static form.

Summary:
Validity of the models can be assessed by evaluating the prediction error or
by a correlation analysis of the residuals. The classical correlation analysis
can be extended to nonlinear systems.

4.8 Example: Identification of the Box and Jenkins Gas
Furnace Data Set

In this section, some of the techniques discussed in this chapter are applied
to the data of the example given by Box and Jenkins [1]. The process is a
gas furnace with a single input u(t) (gas flow) and a single output y(t) (CO2
concentration). The data set contains 296 data points; here only the last 290
points are used.

For the selection of the regressors the heuristic search method explained
in Section 4.4.1 was applied. In order to evaluate the “quality” of the regressors
we used the Lipschitz quotients and the regularity criterion (see Section 4.4.2).
The set of initial candidates for regressors were {u(t−1), u(t−2), u(t−3), u(t−
4), u(t − 5), u(t − 6), y(t − 1), y(t − 2), y(t − 3), y(t − 4)}.

Figure 4.6 shows the results of the evaluation of the regressors using Lips-
chitz quotients (with p = 6) method combined with the input selection using
the heuristic search. The bar graph shows that among the models built with
one input the regressor selected was y(t − 1). Among the models with two
inputs, y(t − 1) and y(t − 2) were selected. Finally the selection process was
stopped with three inputs y(t − 1), y(t − 2) and u(t − 3).

This example also evaluated the input selection using the heuristic search
and evaluating the sets of regressors by means of the regularity criterion gener-
ating the results shown in Figure 4.7. The regularity criterion index obtained
for a model with one regressor makes us select y(t − 1). Among the models
with two regressors y(t − 1), u(t − 3) were the best and for the model with
three regressors y(t − 1), u(t − 3), y(t − 4). The constructed models were the
“smallest” fuzzy models described in Section 2.5.1.

The methods selected different regressors. The selections using Lipschitz
quotients proposes y(y − 1), y(t − 2), u(t − 3) and the selection using the reg-
ularity criterion y(t − 1), u(t − 3), y(t − 4). The reason for this discrepancy is
that the quality of the regressors is measured with a completely different crite-
rion. The Lipschitz quotients method rewards the smoothness of the candidate
function and the regularity criterion rewards models with small prediction er-
ror.
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Figure 4.6. Input selection using Lipschitz quotients and heuristic search

Once the regressors are selected, the problem is to find the structure of the
fuzzy system (number of rules, membership functions, consequences, etc.). In
order to extract the model structure, clustering, projection and FuZion were
used (see Section- 3.3). In this example the mountain-clustering method (see
Section B.3) was applied with α = 4 and β = 4. For both sets of regres-
sors 9 clusters were found and projected into the input space (see Figures
4.8 and 4.9). The membership functions were reduced using the FuZion al-
gorithm (see Section 3.4) with M = 10% of the universe of discourse of the
variable. The model using the regressors obtained using the Lipschitz quo-
tients (y(t − 1), y(t − 2), u(t − 3)) used 4 triangular membership functions on
each input, as shown in Figure 4.10. The total number of rules for this model
is 64 (4× 4× 4). The model using the regressors obtained using the regularity
criterion (y(t − 1), y(t − 4), u(t − 3)) used 4 triangular membership functions
on the inputs y(t − 1) and y(t − 3) and 5 triangular membership functions on
the input y(t− 4), as shown in Figure 4.11. The total number of rules for this
model is 80 (4 × 4 × 5).

With each set of regressors two models were constructed: one NARX and one
NOE. The consequences of the NARX model were calculated using the method



4.8 Example: Identification of the Box and Jenkins Gas Furnace Data Set 111

RC index

u(t−
1)

u(t−
2)

u(t−
3)

u(t−
4)

u(t−
5)

u(t−
6)

y(t−
1)

y(t−
2)

y(t−
3)

y(t−
4)

y(t−
1)u(t−

1)
y(t−

1)u(t−
2)

y(t−
1)u(t−

3)
y(t−

1)u(t−
4)

y(t−
1)u(t−

5)
y(t−

1)u(t−
6)

y(t−
1)y(t−

2)
y(t−

1)y(t−
3)

y(t−
1)y(t−

4)
y(t−

1)u(t−
3)u(t−

1)
y(t−

1)u(t−
3)u(t−

2)
y(t−

1)u(t−
3)u(t−

4)
y(t−

1)u(t−
3)u(t−

5)
y(t−

1)u(t−
3)u(t−

6)
y(t−

1)u(t−
3)y(t−

2)
y(t−

1)u(t−
3)y(t−

3)
y(t−

1)u(t−
3)y(t−

4)
8.

09
5.

96
3.

57
1.

73
1.

16
1.

93
0.

59
2.

12
4.

41
7.

06
0.

38
0.

29
0.

25
0.

30 0.
46 0.

72
0.

25 0.
36

0.
45

0.
33

0.
33

0.
29

0.
29

0.
29

0.
31

0.
27

0.
23

Figure 4.7. Input selection using regularity criterion and heuristic search

described in Section 2.5. The NOE model was calculated by initializing the
system with the NARX solution and by running an optimization over the
consequences, using the prediction error as a cost function. The results of the
obtained models can be seen in Table 4.1 and in Figures- 4.12, 4.13, 4.14 and-
4.15.

Table 4.1. Example: Performance Comparison Between the Models

Model Number Pred. error Pred.error
description of whole validation

rules data data
NARX [y(t − 1), y(t − 2), u(t − 3)] 64 0.3189 0.5175
NOE [y(t − 1), y(t − 2), u(t − 3)] 64 0.8128 1.3812
NARX [y(t − 1), y(t − 4), u(t − 3)] 80 0.0648 0.1837
NOE [y(t − 1), y(t − 4), u(t − 3)] 80 0.0646 0.1741
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Figure 4.8. Membership functions after clustering for the model using y(t−1), y(t−
2), u(t − 3)
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Figure 4.9. Membership functions after clustering for the model using y(t−1), y(t−
4), u(t − 3)
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Figure 4.10. Membership functions after clustering and FuZion for the model using
y(t − 1), y(t − 2), u(t − 3)

46 48 50 52 54 56 58 60
0

0.2

0.4

0.6

0.8

1

MF for y(t−1) obtained by clustering after reduction

46 48 50 52 54 56 58
0

0.2

0.4

0.6

0.8

1

MF for y(t−4) obtained by clustering after reduction

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

MF for u(t−3) obtained by clustering after reduction

Figure 4.11. Membership functions after clustering and FuZion for the model using
y(t − 1), y(t − 4), u(t − 3)
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Figure 4.12. Prediction error one step ahead for the NARX model with regressors
y(t − 1), y(t − 2), u(t − 3)
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Figure 4.13. Prediction error one step ahead for the NOE model with regressors
y(t − 1), y(t − 2), u(t − 3)
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Figure 4.14. Prediction error one step ahead for the NARX model with regressors
y(t − 1), y(t − 4), u(t − 3)
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Figure 4.15. Prediction error one step ahead for the NOE model with regressors
y(t − 1), y(t − 4), u(t − 3)
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Figure 4.16. Correlation analysis for the NARX model with regressors y(t−1), y(t−
2), u(t − 3)
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Figure 4.17. Correlation analysis for the NOE model with regressors y(t−1), y(t−
2), u(t − 3)
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Figure 4.18. Correlation analysis for the NARX model with regressors y(t−1), y(t−
4), u(t − 3)

A final validation is obtained by using the correlation analysis. This is shown
in the Figures 4.16 and 4.17, which correspond to the NARX and the NOE
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Figure 4.19. Correlation analysis for the NOE model with regressors y(t−1), y(t−
4), u(t − 3)
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models for the regressors y(t− 1), y(t− 2), u(t− 3) and Figures 4.18 and 4.19,
which correspond to the NARX and the NOE models for the regressors y(t −
1), y(t − 4), u(t − 3).

From the pictures and the table it is clear that the models constructed with
the regressors obtained using the regularity criterion have smaller prediction
error. This is easily explained by the fact that the input selection based on the
regularity criterion attempts to find the set of input that generates the smaller
cross-validation error. The regressors selected using the Lipschitz quotients
are chosen to improve the smoothness properties of the model but not the
prediction error. The correlation analysis shows similar features for all the
models, being acceptable according with this validation criterion.

4.9 Identification of Takagi–Sugeno Fuzzy Models Using
Local Linear Identification

Classical control techniques are based in the design of a feedback compensator
(controller) based on a “local” linear model. Understand by “local” a given
neighborhood where the dynamics of the system can be described by a linear
perturbation model.

The ever-increasing demands in the performance of control systems mo-
tivated the use of different linear controllers for different localities. In this
way the control system could guarantee the performance under different op-
erating conditions. So far each local model has been treated as disconnected
from other models on its neighborhood, under the classical model and control
scheduling theory.

Takagi–Sugeno fuzzy models provide an automatic mechanism to combine
local models and calculate smooth transitions among the localities generat-
ing a global nonlinear dynamic system described by rules with local linear
dynamics. Such models offer many advantages:

• Simple analysis is possible, because each rule represents a linear dynamic
system.

• Stability analysis can be applied because the dynamics of the plant will
always be described by a convex combination of local linear models.

• Simple local linear models can be obtained and extended every time a new
operating point is reached.

The identification problem demands the selection not only of the regressors
but also of the scheduling variables. The scheduling variables are the variables
that govern the changes of dynamical regime. The scheduling variables can be
outputs, inputs or states. In practice, to guarantee a smooth behavior of the
model the scheduling variables are selected to be slowly varying.

The combination of the local models demands consistency among them.
By consistency is understood the use of the same regressors in all the models
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or the same state-space representation in case the local model are obtained in
state-space form.

One way to guarantee the consistency of rules using state-space models is
to identify all the local models with the same order and convert all of them
to the so-called observer canonical form (see Chapter 2 in [40]). In this way
all the states of the local model will be consistent and their evolution will be
perfectly synchronic.

The identification of Takagi–Sugeno fuzzy models offers many advantages
for practitioners since it can generate a smooth transition from linear to non-
linear models. Current linear models can be used as the initial description of
the consequences of the rules and gradually as the process is moved to new
operating points the new information can be use to update the local rules.

Summary:
The identification of Takagi–Sugeno fuzzy models offers many advantages
for practitioners specially in process controls. The fact that the changes
from one operating point to another is slow favors the use of this since it
can generate a smooth transition from linear to nonlinear models. Current
linear models can be used as the initial description of the local models.

4.10 Conclusions

Dynamic fuzzy models can be constructed and validated using classical sys-
tem identification theory. This chapter presented the main problems faced
along the construction of dynamic fuzzy models using system identification,
regressors selection, experiment design, structure, parameter adjusting and
validation.

The problem of regressor selection faces the so-called curse of dimension-
ality (exponential growth of the possible solutions). The chapter presented
some efficient methods based on heuristic search and genetic algorithms to
trade off the complexity of the calculation with the accuracy of the solution.
Such methods improve the search of the parameter by means of some edu-
cated decision.

Once a set of regressors is selected, the optimization of the parameters of
the models is a task that involves the use of gradient descent techniques. The
gradients are generated by a dynamic system whose states are the gradients of
some of the parameters. The chapter included the derivation of the dynamic
systems that generates such gradients for the most common membership func-
tions (see Appendix C).

Validation is a very important phase that defines the criteria to compare,
accept or reject certain model. The validation methods discussed in this chap-
ter included the prediction error and a nonlinear correlation analysis.

Finally, the chapter was closed with a brief explanation of an empirical
method for system identification based on Takagi–Sugeno models . However
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simple, the methods is powerful, intuitive and reliable. It does not demand
the use of complex system identification tools, since it can construct models
using only linear identification techniques and very simple similarity transfor-
mations to guarantee the consistency of the models.
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Fuzzy Control



5

Fuzzy Control

The use of fuzzy logic and fuzzy systems for control has promised the devel-
opment of powerful control strategies. These expectations can be explained
by the linguistic representation of the control actions and the flexible nonlin-
earities that can be constructed with such systems. On the other hand, some
limitations to the analysis of these control systems arise from the complex
mathematical description of the nonlinearities.

Fuzzy controllers can be constructed in many different ways but it is possi-
ble to establish a classification between model-based designed controllers and
model-free. Model based controllers usually demand a “complete” description
of the plant dynamics. The model-free strategies are called model-free because
they are not based on complete mathematical models; however, they are not
completely model-free. They are based on information extracted from simple
experiments (relay experiments, etc.) or a heuristic model present in the de-
signer’s mind.

This chapter presents an overview of “classical” methods to build fuzzy
controllers. The chapter includes some novel results and applications using
these “classical” techniques. Appendixes D and E are a complement to this
chapter. The content of Appendix D is a proof of the theorem stating that any
linear controller with bounded states and inputs can be made into an exact
equivalent fuzzy controller. The content of Appendix E shows an application
of these techniques to a system used in the automotive industry.

Summary:
According to the information used to construct fuzzy controllers, they can
be classified as model-free and model-based control systems.
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Figure 5.1. Classification of the fuzzy controllers

5.1 Model-Free Fuzzy Control

5.1.1 Heuristic Trial-and-Error Design

This methodology is probably the first technique ever used to design fuzzy
controllers. The technique uses the experience cumulated over years of man-
ual control. The typical approach to construct these controllers has been the
formulation of rule bases using the information provided by the operator’s
manual. Most of the time, these controllers are used at high level as a kind of
supervisory control where issues such as stability are not critical. The stabi-
lization of the plant is a task accomplished by low-level controllers. In many
cases, the fuzzy controller is not used directly in the system in automatic
mode, but it is used as a support system for the operator. Successful ap-
plications of this technique have been reported in the areas of cement kiln
control [41], boiler startup sequences, washing powder production [42], waste
incineration and waste water treatment [43].

5.1.2 Design of PID-like Fuzzy Controllers

This PID (proportional integral and derivative)-like fuzzy controller has been
included in this model-free class because a fuzzy controller can be designed
using the same experiments designed to tune linear PID controllers in a model-
free basis or using simple models (step response models). The main idea be-
hind this approach is that any PID with bounded input and output can be
reproduced exactly by a fuzzy system (see theorem proof in Appendix D).
The design method proceeds as follows:

• Tune a PID controller using any of the traditional methods (Ziegler Nichols
or Kappa–Tau from Aström and Hägglund [44].

• Construct a fuzzy controller equivalent to the tuned PID.
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• Do further tuning of the fuzzy controller using heuristics.

Perhaps the most popular presentation of the low-level (nonsupervisory) fuzzy
controller is the so called e, ∆e controller. This is a fuzzy controller with two
inputs, e=error and ∆e=change of the error, and one output, which is the
control action u or ∆u depending, on whether the controller acts as PD (pro-
portional derivative) or PI (proportional integral). One interesting character-
istic of this description of the controller is the fact that a direct analogy can
be established with the classical PD and PI controllers. The fuzzy controller
with a direct action will be analog to a PD controller, and the fuzzy controller
with incremental action will be analog to a PI controller (see Figures 5.2 and
5.3).
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Figure 5.2. Fuzzy PD controller
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Figure 5.3. Fuzzy PI controller

Assuming five fuzzy sets (NL: Negative Large, NS: Negative Small, ZE:
Zero, PS: Positive Small and PL: Positive Large) on each input of the fuzzy
controller and seven fuzzy sets in the output (the previous five plus PM: Pos-
itive Medium, NM: Negative medium, PVL: Positive Very Large and NVL:
Negative Very Large) a typical rule base is shown in Table 5.1.

The distribution of the membership functions in the inputs can be very
uniform, as shown in Figure 5.4. Observe that the domain of the membership
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Table 5.1. Rule Base for a PD- or PI-like Fuzzy Controller

e \ ∆e NL NS ZE PS PL
NL PVL PL PM PS ZE
NS PL PM PS ZE NS
ZE PM PS ZE NS NM
PS PS ZE NS NM NL
PL ZE NS NM NL NVL

functions is distributed in the interval –100 to 100. Also, the output member-
ship functions have been scaled between –200 to 200 and are described using
singletons. Using this rule base, triangular membership equally distributed
and with 0.5 overlap, a fuzzy controller perfectly equivalent to a PI or PD
controller can be built and the tuning parameters can be initially given by
scaling factors at the input and the output of the controller. This will be a
very safe method to tune a fuzzy controller by first replacing a stabilizing PI
or a PD controller by its equivalent fuzzy version and then a further tuning
of the membership functions can improve the performance of the controller.
The procedure can be summarized as follows:

• To replace a PD controller described by the transfer function

C(s) = Kp(1 + τds) (5.1)

the scaling factors should fulfill the following requirements:
– GE × GU = Kp

– GCE × GU = Kpτd

– GE × max |e| ≤ 100
– GCE × max |∆e| ≤ 100

• To replace a PI controller described by the transfer function

C(s) = Kp(1 +
1

τis
) (5.2)

the scaling factors should fulfill the following requirements:
– GCE × GCU = Kp

– GE × GCU = Kp

τi

– GE × max |e| ≤ 100
– GCE × max |∆e| ≤ 100

Observe that for both cases the first two conditions guarantee the correct map-
ping of the gains of the controller. Meanwhile the last two conditions avoid
the saturation. In this way the obtained fuzzy controller will behave exactly as
the replaced PD or PI controller. The main guidelines of this tuning method
were mentioned in [45].
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Figure 5.4. Fuzzy system with linear relations

The design of a fuzzy-PID controller can be achieved in different ways.
One way is to build a fuzzy controller with three inputs: the error (propor-
tional action), the delta error (derivative action) and the sum of the error
(integral action) (see Figure 5.5). The inconvenience for such a controller is
that the number of rules will grow and instead of 25 rules (for systems with
five membership functions on each input), this controller will have 125 rules,
making the tuning task very difficult. A more efficient solution is to divide
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the controller in two controllers, one that is the PD equivalent and another
one that provides the integral action. It will reduce the number of rules to 30
(see Figure 5.6).
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Figure 5.5. Fuzzy PID controller
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Figure 5.6. Fuzzy PD+I controller

The use of the “gain constants” can be avoided using a more complex
initialization of the fuzzy system where the inputs are not scaled and the
singletons of the output are calculated using its direct relation with the modal
values of the membership functions in the antecedents, in a similar way as the
rules are initialized in the training algorithm presented in Section 2.5.1.

Further improvement will be done by trial and error, if there is no model of
the plant, or via optimization, if a model is available. Using this initialization,
the controller will guarantee a performance at least as good as the one provided
by the linear PID controller.

Some of the typical actions in the trial-and-error procedure are to increase
the impact of the proportional action when the error is very large and slightly
reduce the integral action. These two actions tend to reduce the settling time
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and the overshoot.

Summary:
Fuzzy controllers can be built as “exact” copies of PID controllers. This
initial representation guarantees a smooth migration from linear PID to
nonlinear PID controllers. Further improvement of the performance can
be achieved by tuning the new degrees of freedom provided by the fuzzy
controller.

5.2 Model Based Fuzzy Control

This section presents three types of methods to construct model-based fuzzy
controllers. These are considered as the most representative methods. In prac-
tice, these strategies appear mixed up to some level.

• Using adaptive methods This design technique is an optimization-
based technique that uses the model of the plant and intensive simulations
to optimize the parameters of the fuzzy controller. In most of the cases the
optimizations are performed offline, but in cases like the direct adaptive
control the optimization can be done online.

• Using direct synthesis This design technique uses either the information
given by the parameters of the model or the model itself to construct the
controller.

• Using online optimization This technique uses a fuzzy model to pre-
dict the future behavior of the plant in a receding horizon and with this
information calculates the future movements of the control actions using
optimization.

5.2.1 Using Adaptive Methods

Inverse Learning

The fundament of this kind of controllers is the construction of an inverse
model of the plant such that the controller generates an input to drive the
state of the plant from the current state xk to a desired state xd

k+n [19]. For
the application of this technique, it is assumed that the states of the plant are
measurable. The dynamics of the plant are assumed to be discrete or at least
sampled and represented by the function

xk+1 = f(xk, uk) (5.3)

where k represents the discrete time, xk is the state and uk is the input of the
plant. The state of the plant for the time k + N is given by

xk+N = f(f(f(xk, uk), uk+1), . . . , uk+N−1)︸ ︷︷ ︸
Ntimes

(5.4)



130 5 Fuzzy Control

It is equivalent to say
xk+N = F (xk, U) (5.5)

where F is a function representing the multiple composition of the function
f(., .) and U is a vector with the input sequence uk, . . . , uk+N−1. With this
description, and assuming the invertibility of the function F , an inverse map
of the plant can be constructed as

U = G(xk, xk+N ) (5.6)

This function will generate the control sequence U to move the plant from the
current state xk to the state xk+N in N steps. The existence of this inverse
map is equivalent to the controllability condition for linear systems [46].

The existence of the map G does not guarantee the existence of an ana-
lytical closed form. The fuzzy system Ĝ is used to approximate this map. The
dimension of the map for a system of order n with one input will be 2n inputs
and N outputs. It is clear that even for systems of low order the number of
inputs will make the fuzzy system very big (with a large number of rules).

The use of the inverse model for control works as follows: the reference is
given as the future state xd

k+N and with the current state the inverse model
Ĝ generates a vector U . The first entry of the vector is implemented and the
function is evaluated once more at the next sampling time. If the reference
is not known in advance, the future reference will be replaced by the current
reference, generating a system that behaves as a pure delay system.

For practical purposes it is better to use an inverse model that generates
only one value for the input sequence N = 1. Figure 5.7 shows the construc-
tion of the controller.

This control technique is limited by the condition of invertibility of the
plant and the fact that the minimization of the norm ||uk − ûk|| does not
guarantee the minimization of ||xk − xd

k||. For practical purposes this method
is very limited because it demands full access to the states of the system.
Moreover, the tuning demands that a large number of possible transitions
from xk to xk+1 are tested to guarantee full coverage of the operating range
of the controller. This problem is even worse when the order of the system
is large. Already a fifth-order model can generate some serious problems, be-
cause the controller will have 2 × 5 = 10 inputs and at least 1024 rules. In
summary, this strategy can be applied only to low-order (first- or second-
order) invertible systems with full access to the state variables of the system.
The performance of the controller will be limited by the characteristics of
the experiments used during the training phase. This control strategy can be
seen during the learning phase as an identification experiment. Other authors
proposed the use of adaptive schemes where the inverse model is continuously
updated online while the process is in operation [47].
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Summary:
Fuzzy inference systems can be used to map the inverse dynamics of a
plant and by these means achieve simple nonlinear control of a plant. The
performance of the controller will be limited by the bandwidth on the input
signals used along the training phase.
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Figure 5.7. Scheme for design of an inverse controller (a) Plant (b) Learning Phase
(c) Scheme of operation

Specialized Learning or Direct Adaptive Fuzzy Control

This technique adjusts the parameters of the controller according to some
performance measurement [48]. In this case, the controller is represented by
a fuzzy system. Due to the multiple possible schemes the discussion will be
restricted to two cases: state feedback and output feedback.
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The performance measure can be made against some performance speci-
fication (settling time, maximum overshoot, raise time) or a reference model
(normally a linear one) that already includes the desired specifications. The
general scheme is shown in Figure 5.8.
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Figure 5.8. Direct adaptive control

Assuming a controller using state feedback the formulation of the method
is as follows:
Given a plant model

xk+1 = f(xk, uk) (5.7)

the objective is to design a control system

uk = g(xk, xref
k , θ) (5.8)

this controller is a static nonlinear map with 2n inputs and a parameterization
is given by the vector θ. The nonlinear map will be constructed using a fuzzy
system. The goal is to obtain a set of parameters θ such that the closed
loop dynamics should mimic the dynamics of the reference model depicted in
Equation (5.9).

xd
k+1 = f̄(xd

k, xref
k ) (5.9)

where xd
k is the output of the reference model and xref

k is the reference. The
design of this controller can be formulated by the optimization problem

min
θ

J = min
θ

N∑
k=1

||xd
k − xk|| (5.10)

the closed-loop expression for the system is
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xk+1 = f(xk, g(xk, xref
k , θ)) (5.11)

then the minimization can be written as

min
θ

N−1∑
k=0

||f̄(xd
k, xref

k ) − f(xk, g(xk, xref
k , θ))||2 (5.12)

If a gradient descent technique is going to be applied, the adjustments will be
directed by the gradient

∂J

∂θ
= 2

N−1∑
k=0

−(xd
k+1 − xk+1)

∂xk+1

∂θ
(5.13)

where the gradient ∂xk+1/∂θ is generated by the dynamic system

∂xk+1

∂θ
=

[
∂f(xk, uk)

∂xk
+

∂f(xk, uk)
∂uk

∂g(xk, xref
k )

∂xk

]
∂xk

∂θ

+
∂f(xk, uk)

∂uk

∂g(xk, xref
k )

∂θ
(5.14)

It is clear that in order to apply this method a good model of the plant f(., .) is
needed to derive the expressions ∂f(xk, uk)/∂xk, ∂f(xk, uk)/∂uk analytically
or by means of numerical methods.

Now the analysis will be oriented to the case of output feedback, where
the model of the plant will be described by

xk+1 = f(xk, uk)
yk = g(xk) (5.15)

and the controller will be a dynamic fuzzy model represented by the equation:

zk+1 = h(zk, yk, yref
k |α)

uk = d(zk, yk, yref
k |β) (5.16)

where zk are the states of the controller, yref
k is the reference input, α and

β are the parameters of the functions h(., ., .) and d(., ., .). The closed-loop
system will be expressed as the dynamic system

sk+1 = m(sk, yref
k |θ)

uk = p(sk, yref
k |β)

yk = q(sk) (5.17)

where sk = {xk, zk}T , θ = {α, β}T , d(zk, yk, yref
k |β) = p(sk, yref

k |β) and
q(sk) = g(xk). Assuming a cost function
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min
θ

J = min
θ

N∑
k=1

||yref
k − yk|| + λuT

k uk (5.18)

the derivative will be given by

∂J

∂θ
= 2

N−1∑
k=0

−(yref
k − yk)

∂yk

∂θ
+ λuk

∂uk

∂θ
(5.19)

with the terms ∂yk

∂θ and ∂uk

∂θ generated by the dynamic system:

∂sk+1

∂θ
=

∂m

∂sk

∂sk

∂θ
+

∂m

∂θ
∂yk

∂θ
=

∂q

∂sk

∂sk

∂θ
∂uk

∂θ
=

∂p

∂sk

∂sk

∂θ
+

∂p

∂θ
(5.20)

According to the parameters to be adjusted (membership functions, conse-
quences or scaling values) the computation of the gradients will be more or
less complex. Figures 5.9 and 5.10 show the tuning of the values for a PID
controller. The optimization procedure should evaluate a cost function that
can include the optimization for disturbance rejection or for tracking a set-
point or a compromise between these two objectives.

Different parameters can be tuned using this method, but according to
the impact into the performance the priority will be to tune the scaling factors
if there are any, then tune the consequences of the rules of the fuzzy system
and finally if a very fine tuning is required, the parameters of the membership
functions of the antecedents of the rules.

This method does not demand full access to the states and an output
feedback strategy can be implemented if the system is both controllable and
observable.

Summary:
The use of specialized learning or direct adaptive fuzzy control provides
the means to construct optimal fuzzy controllers. The scheme demands a
good model of the plant dynamics, such that the desired optimality can
be achieved.

5.2.2 Using Direct Synthesis

Feedback Linearization

This methodology is applied to nonlinear systems of order n of the form

x(n) = f(x, ẋ, . . . , x(n−1)) + g(x, ẋ, . . . , x(n−1))u
y = x (5.21)
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Figure 5.9. Tuning of the gain constants using nonlinear optimization
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Figure 5.10. Tuning of the internal parameter of the fuzzy controller (membership
functions, consequences, etc.)

these systems are known as nonlinear affine systems. A very interesting feature
of these type of nonlinear systems is that the knowledge of the functions f(x)
and g(x) can be used in a straight manner to design a control signal u so that
the nonlinearity is cancelled and the controller can be designed using linear
techniques such as pole placement [49][50][17].

The control law is described by this equation,

u =
1

g(x)
(−f(x) + y

(n)
ref + kT e) (5.22)

Once this controller is applied to the plant, then the control error will be
defined as e = yref − y, and the vector of state errors will be defined as
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e = {e, ė, . . . , e(n−1)}T . Vector k = {kn, . . . , k1}T defines the dynamics of the
error. Introducing the control law to the plant will generate a closed-loop
dynamic system governed by

x(n) = y
(n)
ref + kT e

y = x (5.23)

and the error dynamics will be

e(n) + k1e
(n−1) + . . . + kne = 0 (5.24)

From this equation it is clear that the closed-loop dynamics will be governed
by the dynamics determined by the components of the vector k since the
entries of the vector are the coefficients of the characteristic polynomial of
the closed-loop system. A proper selection of the elements of k guarantees the
stability and the convergence of y toward yref .

In practice, fuzzy models can be used to represent the functions f and g,
but there will be some modeling error. The function f will be approximated
by the fuzzy inference system described by the function

f̂(x|θf ) = θT
f σ(x) (5.25)

where θf are the consequences of the rules and σ(x) represents the inference
process. The function g will be approximated by

ĝ(x|θg) = θT
g η(x) (5.26)

where θg are the consequences of the rules and γ(x) represents the inference
process. If the mismatch between the function and its approximator is taken
into account, the error dynamics will be given by

e(n) = −kT e + [f̂(x|θf ) − f(x)] + [ĝ(x|θg) − g(x)]u∗ (5.27)

where
u∗ =

1
ĝ(x|θg)

(−f̂(x|θf ) + y
(n)
ref + kT e) (5.28)

The error dynamics can be written in matrix form using

Λ =

⎡⎢⎢⎢⎢⎣
0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 1

−kn −kn−1 . . . . . . . . . . . . −k1

⎤⎥⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎣
0
...
0
1

⎤⎥⎥⎥⎦ (5.29)

generating the following differential equation to describe the error dynamics:

ė = Λe + b[f̂(x|θf ) − f(x)] + b[ĝ(x|θg) − g(x)]u∗ (5.30)
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The minimum approximation error is defined as

w = [f̂(x|θ∗
f ) − f(x)] + [ĝ(x|θ∗

g) − g(x)]u∗ (5.31)

where θ∗
f and θ∗

g represent the optimal approximation values of θf and θg.
Using this representation, the error dynamics can be written as

ė = Λe + b{[f̂(x|θf ) − f̂(x|θ∗
f )] + [ĝ(x|θg) − ĝ(x|θ∗

g)]u∗ + w} (5.32)

Replacing the expressions for f̂(x|θf ) and ĝ(x|θg) given in Equations (5.25)
and (5.26), the error dynamics become

ė = Λe + b[(θf − θ∗
f )T σ(x) + (θg − θ∗

g)T η(x)u∗ + w] (5.33)

The task is to define a stable adaptation law for θf and θg so that the tracking
and the parameter errors are minimized as time evolves. Wang [17] proposed
the following procedure based on the following Liapunov function:

V =
1
2
eT Pe +

1
2γ1

(θf − θ∗
f )T (θf − θ∗

f ) +
1

2γ2
(θg − θ∗

g)T (θg − θ∗
g) (5.34)

where γ1 and γ2 are positive constants and P is a positive definite matrix
satisfying the Lyapunov equation:

ΛT P + PΛ = −Q (5.35)

where Q is an arbitrary positive definite matrix. The derivative of the Lya-
punov function is given by

V̇ = −1
2
eT Pe + eT Pbw +

1
γ1

(θf − θ∗
f )T [θ̇f + γ1eT Pbσ(x)]

+
1
γ2

(θg − θ∗
g)T [θ̇g + γgeT Pbη(x)u∗] (5.36)

The minimization of the tracking error e and the parameter error is equivalent
to the minimization of the Lyapunov function V . The adaptation law should
guarantee that V̇ is negative. To guarantee the negativeness of V̇ let us take
a look at the terms of the expression: the term − 1

2e
T Pe is always negative,

since P is positive definite, the term eT Pbw can be positive or negative,
but if the initial modeling task is well done w must be small and therefore
eT Pbw << 1

2e
T Pe, a condition that still will guarantee a negative value for

V̇ . Finally, by forcing the last two terms to be equal to zero, we obtain the
following adaptation law:

θ̇f = −γ1eT Pbσ(x) (5.37)

θ̇g = −γ2eT Pbη(x)u∗ (5.38)

Figure- 5.11 shows a scheme of the proposed control system.

In summary, the sequence of design is defined in the following steps:
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Figure 5.11. Scheme for adaptive feedback linearization

1. Design an initial model of the plant f̂(x|θf ), ĝ(x|θg) using the identifica-
tion techniques depicted in previous section.

2. Design the vector k according to the desired behavior.
3. Connect the system in closed loop and use the updating rule to update

online the consequence values θf , θg of the rules.

The main advantage of this control strategy is that it makes possible to con-
struct a controller directly using the model and the desired linear behav-
ior. The main disadvantage is that it is only applicable to a limited set of
continuous-time nonlinear systems and since the controller is implemented in
discrete time, care must be taken during the implementation phase. Addition-
ally, the scheme does not assume the presence of disturbances and relies on
the adaptation of the parameters θf and θg to compensate the effect of the
disturbances. The stability of the system is guaranteed, but the tracking error
will be proportional to the mismatch between the plant and the model.

Summary:
Fuzzy models can be used for the synthesis of feedback linearizing con-
trollers. The technique offers the possibility to construct nonlinear con-
trollers using the model of the system and the desired closed-loop dynam-
ics.
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Sliding Mode Fuzzy Control

This control strategy keeps some similarities with the feedback linearization
technique; but its analysis include disturbances, making the formulation more
realistic. The objective is to “force” the system to behave like a linear system
with dynamics described by the so-called sliding surface [51].

The control law is designed to steer the plant toward the “sliding surface.”
Once the system reaches the sliding surface, the controller guarantees that the
closed-loop system behaves according to the dynamics of the sliding surface.

This control design methodology can be applied to plants of the form

x(n) = f(x) + g(x)u + d̃ (5.39)

where x(t) = {x, ẋ, . . . , x(n−1)}T is the state vector and d̃(t) are disturbances
with known upper bounds, and f(x) and g(x) are nonlinear functions describ-
ing the dynamics of the plant. Additionally the set νu is defined to represent
the spectrum of unmodeled frequencies. The desired trajectory is given by
xref (t) and the tracking error by

e(t) = x(t) − xref (t) = {e, ė, . . . , e(n−1)}T (5.40)

The “sliding surface” is determined as

s(x, t) = (
d

dt
+ λ)n−1e =

n−1∑
k=0

(
n − 1

k

)
λke(n−1−k) = 0 (5.41)

The stability of the “sliding surface” is guaranteed if λ > 0, which guarantees
that the linear dynamics of the “sliding surface” are governed by poles placed
in the negative real axis. The control problem requires the design of a control
law to guarantee that the vector e(t) remains in the sliding surface s(x, t) = 0
for t ≥ 0. To construct this control law a Lyapunov function is proposed:

V =
1
2
s2 (5.42)

Observe that V (0) = 0 and V > 0 for s > 0. A sufficient condition for the
stability of (5.39) is

V̇ =
1
2

d

dt
(s2) = sṡ ≤ −η|s| (5.43)

with η > 0.
From (5.43) the reaching condition can be derived:

ṡ sgn(s) ≤ −η (5.44)

The first parameter that must be selected during the design phase is the pa-
rameter λ. Assuming νumin as the lower bound of the unmodeled frequencies,
then λ must be selected as
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λ << νumin (5.45)

Calculating the time derivative of s, we obtain

ṡ = x(n) − x
(n)
ref +

n−1∑
k=1

(
n − 1

k

)
λke(n−k) (5.46)

Replacing this expression and the plant model in the reaching condition (5.44),
we obtain

sgn(s)

(
f(x) + g(x)u + d̃ − x

(n)
ref +

n−1∑
k=1

(
n − 1

k

)
λke(n−k)

)
≤ −η (5.47)

The sliding mode control law is defined as follows:

u = ĝ(x)−1(ũ − ˆf(x)) (5.48)
ũ = G(û − K(x, t)sgn(s)) (5.49)

û = x
(n)
ref −

n−1∑
k=1

(
n − 1

k

)
λke(n−k) (5.50)

where K(x, t) > 0 and f̂(x) and ĝ(x) are estimates of the functions f(x)
and g(x). Observe that, so far, with the exceptions of the terms G and
K(x, t)sgn(s), the control strategy resembles the feedback linearization con-
trol strategy.

The term G is determined using the following bounds:

0 ≤ βmin ≤ g(x)ĝ(x)−1 ≤ βmax (5.51)

as
G = (βminβmax)−1/2 (5.52)

Also a parameter β will be defined as

β =
(

βmax

βmin

)1/2

(5.53)

The goal of the design now is to find a K(x, t) satisfying the reaching condi-
tion. Replacing the control law in the reaching condition,

sgn(s)(∆f(x) + (g(x)ĝ(x)−1G − 1)û + d̃ − g(x)ĝ(x)−1GK(x, t)sgn(s)) ≤ −η
(5.54)

where ∆f(x) = f(x) − g(x)ĝ(x)−1f̂(x). It is equivalent to

(∆f(x)+ (g(x)ĝ(x)−1G− 1)û+ d̃)sgn(s)− g(x)ĝ(x)−1GK(x, t) ≤ −η (5.55)

This inequality is always true if
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g(x)ĝ(x)−1GK(x, t) ≥ |∆f(x) + (g(x)ĝ(x)−1G − 1)û + d̃| + η (5.56)

A stronger condition is given by

g(x)ĝ(x)−1GK(x, t) ≥ |∆f(x)| + |(g(x)ĝ(x)−1G − 1)||û| + |d̃| + η (5.57)

g(x)ĝ(x)−1 can be substituted by its lower bound βmin and because β−1 =
βminG the condition for K(x, t) is given by

K(x, t) ≥ β(|∆f | + (1 − β−1)|û| + |d̃| + η) (5.58)

Taking the upper bounds for

|∆f(x)| < F̃

|û| < Ũ

|d̃| < D

then the condition for the sliding surface s = 0 to be a global domain of
attraction is satisfied if

K(x, t) ≥ β(F̃ + (1 − β−1)Ũ + D + η). (5.59)

The steps to design the controller are as follows:

1. Select λ from the lower bound of the unmodeled frequencies νmin.
2. Derive û and its upper bound Ũ .
3. Find estimates f̂(x) and ĝ(x) for f(x) and g(x) using a fuzzy inference

system.
4. Derive G from (5.52).
5. Determine η and the upper bounds F̃ for |∆f(x)| and D for |d̃|.
6. Compute K(x, t)

An important advantage of this technique compared with the feedback lin-
earization is that this technique takes into account disturbances and model-
ing mismatches. However, a significant disadvantage is that the control actions
are very strong (with a large amplitude and abrupt changes). Nevertheless the
impact of this drawback can be reduced by the introduction of the so-called
boundary layer (BL) near the sliding surface s = 0. The introduction of this
boundary layer will affect the tracking accuracy. The width of the BL is de-
fined as 2Φ, |s| is the distance of the state e to the sliding surface. A state e is
located inside the BL if |s| ≤ Φ and is outside if |s| > Φ. The BL is introduced
in the control law by replacing sgn(s) by sat(s/Φ),

u = ĝ(x)−1(ũ − f̂(x))
ũ = G[(û − K(x, t).sat(s/Φ)] (5.60)

where the function sat(z) is defined as
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sat(z) =
{

z if |z| < 1
sgn(z) if |z| ≥ 1 (5.61)

For practical purposes K(x, t) is reduced to a constant value.
Palm et al. [52] propose replacing the term K(x, t)sat(s/Φ) with a fuzzy

nonlinearity Kfuzz(x, t, s, Φ) showing some improvements in the performance
and reducing the chattering effect. In the same document some examples show
the introduction of an integral action in this type of structure.

Figure 5.12(a) shows a fuzzy system with one input s. The fuzzy system
represents the term K(x, t).sat(s/Φ) when K(x, t) is a constant. Observe that
the location of the membership functions will affect the shape of the function.
In Figure 5.12(b), it is clear that the separation of the membership functions
from the center will cause the curve to flatten in the middle. This will make
the control action react slowly for small errors or disturbances. The third plot
shows a system where the slope is steep in the middle, generating strong con-
trol actions even for small errors.

In summary, fuzzy systems can be used in sliding mode control to gen-
erate the estimates of the model (f̂ and ĝ) and the function Kfuzz(x, t, s, Φ),
which forces the error vector e to remain in the sliding surface.

Summary:
The design of sliding mode controllers can be achieved by means of the
combination of a fuzzy model of the plant and a nonlinear monotonic
function used to fine-tune the controller and reduce the aggressiveness of
“classical sliding mode controllers.”

Fuzzy Gain Scheduling

Gain scheduling has been used extensively on industrial applications includ-
ing aircraft control. The advantage of this technique is the use of linear tech-
niques to design controllers for nonlinear systems by applying linearization
around the different operating points. In this way several linear controllers
are designed and “connected” to the plant according to the current operating
point. This design method is also known as the the paradigm of parallel dis-
tributed compensation. Fuzzy systems offer to this techniques the advantage
of integrating in one mechanism the detection of the operating point and the
interpolation among the different operating points, providing a smooth non-
linear control law. It has been proved that the fuzzy controllers can be seen
as smooth gain scheduling controllers [53].

To apply this compensation technique, the model of the plant is assumed
to be given by a Takagi–Sugeno fuzzy system with rules of the form

Rule i: IF x1(k) is µi1 AND . . . AND xn(k) is µin

THEN x(k + 1) = Aix(k) + Biu(k)
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Figure 5.12. Relation between the position of the membership functions and the
shape of Kfuzz(x, t, s, Φ)

where x(k) = {x1(k), . . . , xn(k)}T , u(k) = {u1(k), . . . , uNi(k)}T and i =
1, . . . , L with L is the number of rules. The dynamic system defined by the
fuzzy system is given by

x(k + 1) =

L∑
i=1

µi(xk)[Aix(k) + Biu(k)]

L∑
i=1

µi(xk)

(5.62)
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A sufficient condition for stability of this system is given in [54] and is defined
as follows: the equilibrium of the fuzzy system (5.62) with u(k) = 0 is asymp-
totically stable if there exists a common positive definite matrix P , so that

AT
i PAi − P < 0, i = 1, 2, . . . , L (5.63)

The search for such a P matrix is a complex task that cannot be solved effi-
ciently by using analytic methods, but the use of numerical tools to solve this
type of linear matrix inequalities (LMI) [55][56] has simplified the problem.
The search of P can be described in terms of an LMI as follows:

P > 0
AT

i PAi − P < 0, i = 1, 2, . . . , L.

This technique was applied to guarantee the stability of the system described
in Appendix E.
A state feedback controller can also be designed using the paradigm of par-

allel distributed compensation. A state feedback controller can be described
by a fuzzy system with rules of the form

Rule i: IF x1(k) is µi1 AND . . . AND xn(k) is µin

THEN u(k) = −Kix(t)

where i = 1, . . . , L. The mathematical expression for the controller will be
given by

u(k) =

−
L∑

i=1

µi(xk)Kx(k)

L∑
i=1

µi(xk)

(5.64)

The closed-loop expression is given by

x(k + 1) =

L∑
i=1

L∑
j=1

µi(xk)µj(xk)[Ai − BiKj ]x(k)

L∑
i=1

L∑
j=1

µi(xk)µj(xk)

(5.65)

So the equilibrium of the closed-loop system (5.65) is asymptotically stable if
there exists a common positive definite P matrix such that

[Ai − BiKj ]T P [Ai − BiKj ] − P < 0 (5.66)

for µi.µj �= 0.
The state feedback matrices Kj can be calculated by solving the following
LMIs (see proof, [57]):
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Q AiQ + BiYi

QAT
i + Y T

i BT
i Q

)
> 0 (5.67)(

Q
AiQ+BiYj+AjQ+BjYi

2
QAT

i +Y T
j BT

i +QAT
j +Y T

i BT
j

2 Q

)
> 0, i < j (5.68)

and the fuzzy state feedback matrices are constructed as Ki = YiQ
−1, i =

1, 2, . . . , L. The design methods using LMIs can be extended also to guarantee
some decaying rate and even to account for uncertainties (for further details
see [57]).

Summary:
Takagi–Sugeno fuzzy controllers can be constructed for systems described
by local linear models. Such controllers can have guaranteed stability and
performance. The design methodology demands the solution of linear ma-
trix inequalities using efficient numerical methods.

Example Control of a Helicopter Laboratory Process

This example1 presents the comparative results of a fuzzy controller against
some classical controllers (an LQG and a PID) tested on a didactic system
that imitates some of the dynamics of a helicopter.

The system is part of a laboratory of the CUAO University in Cali,
Colombia. As mentioned before the system with two degrees of freedom im-
itates some of the dynamics present in a helicopter (see Figure 5.13). The
objective of the control system is to position the arm at a certain elevation
angle and certain azimuth angle by using the main rotor and the side rotor.

The main nonlinearities in this system are in the elevation angle; the az-
imuth angle behaves almost linearly and in fact it has integral dynamics. The
model used to build the controllers was obtained using subspace identifica-
tion. The linear controllers were tuned with the model obtained around zero
angle of elevation. For the fuzzy controller the variable used for the inference
system was the elevation angle. The model constructed was a Takagi–Sugeno
fuzzy model with three rules: one for elevation angle around −30o, one for
elevation angle around 0o and one for elevation angle around 30o.

The three controllers were constructed: the LQR, the PIDs and the fuzzy
controller. The fuzzy controller was constructed using three linear LQG con-
trollers, one for each rule. The global stability of the system was tested by
solving the feasibility stability problem shown in previous section. The three
controllers deliver a similar performance, as shown in Figures 5.14, 5.15 and
5.16. The only remarkable difference is the “nervous” behavior of the control
action of the PID controller.

However, when the system is perturbed by putting a counterweight into
1 The results presented in this example were obtained by one of the master students

under the supervision of one of the authors [58].
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Figure 5.13. Helicopter laboratory process. COPTER II. Photo: Courtesy Oscar
Mauricio Agudelo

the lever arm, the performance of the PID and the LQR degraded significantly.
Observe the coupling of the PID and the oscillations of the LQR (see Figures
5.17 and 5.18). The fuzzy controller preserves its good behavior despite the
disturbance (see Figure 5.19). One can conclude from this experiment that the
additional information included in the fuzzy model and in the fuzzy controller
not only generates a good performance but also improves the robustness of
the controllers.

5.3 Conclusions and Future Perspectives

This chapter has presented “classical” ways to design fuzzy controllers. The
description has covered the widely used model-free strategies, characterized
by their simplicity. Heuristic methods are popular for first-order systems and
supervisory systems because they can provide an acceptable performance us-
ing the expert knowledge of the operators.

PID-like fuzzy controllers represent an interesting alternative to improve
the performance of existing PID controllers with a small additional effort of
tuning.
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Figure 5.14. PID controllers applied to the helicopter laboratory process in nominal
conditions. In the first two plots: (- -) reference trajectory (–) helicopter’s trajectory.
In the third plot the control voltages: main rotor (–) and side rotor (..)
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Figure 5.15. LQR controller applied to the helicopter laboratory process in nominal
conditions. In the first two plots: (- -) reference trajectory (–) helicopter’s trajectory.
In the third plot the control voltages: main rotor (–) and side rotor (..)

Model based control techniques using adaptive methods have been de-
scribed. These techniques require the use of a “good” plant model, and the
robustness of the obtained controller is not guaranteed. Also, model-based
control techniques using direct synthesis have been presented. The feedback
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Figure 5.16. Takagi–Sugeno fuzzy controller applied to the helicopter laboratory
process in nominal conditions. In the first two plots: (- -) reference trajectory (–)
helicopter’s trajectory. In the third plot the control voltages: main rotor (–) and side
rotor (..)
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Figure 5.17. PID controllers applied to the helicopter laboratory process in dis-
turbed conditions. In the first two plots: (- -) reference trajectory (–) helicopter’s
trajectory. In the third plot the control voltages: main rotor (–) and side rotor (..)

linearization technique is a technique limited to a certain class of nonlinear
systems (affine nonlinear systems). This technique has been criticized for its
lack of robustness. To overcome this drawback a stable adaptive control strat-
egy has been presented: the sliding mode fuzzy control strategy. This strategy
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Figure 5.18. LQR controller applied to the helicopter laboratory process in dis-
turbed conditions. In the first two plots: (- -) reference trajectory (–) helicopter’s
trajectory. In the third plot the control voltages: main rotor (–) and side rotor (..)
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Figure 5.19. Takagi–Sugeno fuzzy controller applied to the helicopter laboratory
process in disturbed conditions. In the first two plots: (- -) reference trajectory (–)
helicopter’s trajectory. In the third plot the control voltages: main rotor (–) and side
rotor (..)
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also demands a special structure of the nonlinear model. The strategy requires
only a rough description of the model. This strategy is very robust and the
performance can be improved by the use of fuzzy systems in the design of the
switching function.

Finally, the fuzzy gain scheduling technique was presented. This design
technique is quite “elegant” from the analytical point of view. The use of
advanced algorithms for semidefinite programming facilitates the solution of
the LMIs generated by the synthesis problem. More advanced synthesis tech-
niques include the H∞ criterion for disturbance rejection, robust synthesis
and observer design by applying the same methodologies.

Stability analysis is still an open problem, especially for empirically de-
signed controllers that are shown to be stable in practice (after trial and error)
but no mathematical proof guarantees their stability. The design of fuzzy con-
trollers using LMIs has been considered conservative since a common P matrix
has to be found for a large set of dynamics. New alternatives have been pro-
posed by Johansson et al.[59]. The relaxation of the problem is obtained by
means of formulating a piecewise quadratic Lyapunov function.



6

Predictive Control Based on Fuzzy Models

This chapter and the next one are devoted to the presentation of a control
technique that will exploit the capacity of fuzzy systems to represent nonlin-
ear plants. The author considers the use of fuzzy models for predictive control
a step further in the implementation of modern control techniques in the pro-
cess industry. Predictive control (MPC, model-based predictive control) based
on linear models is a mature control technique with multiple applications in
the process industry. The next natural step in this area is the development
of predictive control based on nonlinear models. The use of controllers that
take into account the nonlinearities of the plant implies an improvement in
the performance of the plant by reducing the impact of the disturbances and
by improving the tracking capabilities of the control system.

The inclusion of nonlinear information demands the use of a parametric
representation for the model of the plant. These chapters assume that the
representation of the plant is given in terms of a fuzzy model. The use of
fuzzy models together with the concept of predictive control is a promising
technique because both techniques can be explained in simple terms to op-
erators and commissioning engineers. Simplicity is paramount for the success
of a control technique in the industrial environment. In fact, some of these
techniques are already embedded in leading-edge products for process control.

The use of nonlinear models increases the complexity of the problem and
demands more information from the plant. Gains, raise times and in general
data at different operating points are part of the information needed to con-
struct a nonlinear model of the plant. In other cases rigorous physical models
demand the knowledge of the physical properties of the materials and equip-
ment involved in the process. One advantage of the use of fuzzy models is the
fact that their complexity can be gradually increased as more information is
gathered. This increase in complexity can be done automatically or manually
by a careful commission of the new operating point.

From the computational point of view, nonlinear predictive control can
be quite demanding. The quest for shortcuts and simplification is considered
one of the main research topics in this subject. This chapter contains some
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ideas about ways to implement the simplification of the calculation by ex-
ploiting some features of the fuzzy models. The chapter starts by presenting
a solution for the case of single-input–single-output (SISO) systems without
constraints. The control technique demands the estimation of a step response.
In this chapter we present a novel method to estimate such a step response to
maximize the resemblance of the model and the plant. The method improves
the estimation of the nonlinear information extracted from the model, im-
proving the performance of the controller. In the second part of the chapter,
the multivariable problem with constraints is studied. The method studied
for SISO systems is extended for multivariable constrained systems. There-
after two new methods are included where the structure of the Takagi–Sugeno
fuzzy models is exploited to construct two types of predictive controllers. The
chapter illustrates these control techniques with examples based on realistic
simulations of three industrial systems: a chemical reactor, a steam genera-
tor and a polymerization reactor. The examples include analysis about the
performance of the controllers.

6.1 The Predictive Control Strategy

The predictive control strategy is based on a receding horizon optimization,
calculated online at each sampling time (see Figure 6.2). The algorithm can
be described as follows:

1. Sample the output of the plant.
2. Use the model of the plant to predict its future behavior over a prediction

horizon during Np samples when a control action is applied along a control
horizon during Nc. samples.

3. Calculate the optimal control sequence {u(k), . . . , u(k+Nc)} that minimizes

min
u(k),...,u(k+Nc)

J(u(k), y(k), w(k)) (6.1)

subject to

x(k + 1) = f(x(k), u(k))
y(k) = g(x(k), u(k))
ymin ≤ y(k) ≤ ymax, ∀k = 1, . . . , Np

umin ≤ u(k) ≤ umax, ∀k = 1, . . . , Nu

∆ymin ≤ ∆y(k) ≤ ∆ymax, ∀k = 1, . . . , Np

|∆u(k)| ≤ ∆umax, ∀k = 1, . . . , Nu

where J(.) is the “the cost function” and if it is quadratic it will be of the
form
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J(u(k), y(k), r(k)) =
k+Np∑
t=k

(w(t) − y(t))T Q(w(t) − y(t))

+
k+Nc∑
t=k

(u(t)T Ru(t) + δu(t)tSδu(t)) (6.2)

where x(k) represents the states of the system, u(k) the inputs, y(k) the
outputs, the functions f(., .) and g(., .) represent the dynamic model of the
plant, w(k) is the reference signal, δu(t) = u(t) − u(t − 1), Q is a positive
definite matrix and R and S are positive semidefinite matrices.

4. Apply the input u(k) and repeat the procedure at the next sampling time.

PREDICTIVE
CONTROLLER

u(t)w(t) y(t)

MODEL

PLANT

Figure 6.1. Block diagram of a predictive controller

The problem posed in Step 3 of the algorithm is a very complex optimiza-
tion problem. This problem can be relaxed by assuming no constraints on the
input nor on the outputs and a linear plant model. This problem has been
extensively studied [60][61][62][63]. The most important characteristic of this
relaxation (unconstrained linear predictive control) is the generation of a con-
troller in a closed form, so that no optimization is solved online. A complete
analysis of this strategy including stability and robustness issues has been
presented in books such as [60][64].

The complete problem without relaxation has been analyzed in pre-
vious studies. [65] and [66] include some interesting studies. Probably the
best overview published up today is [67]. Also interesting is [68]. The use
of fuzzy techniques in predictive control was proposed for the first time by
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Figure 6.2. Prediction and control horizons

Yasunobu [69] on his implementation of the control system for the Sendai
Train. Other publications includes conference papers [70] and doctoral the-
ses [71] [72]. The analysis presented in this chapter assumes that the plant
model included in the optimization (6.1) given by the nonlinear functions
f(., .) and g(., .) will be represented by a fuzzy model. The control strategies
presented in Sections 6.2 and 6.3.2 can be applied to any type of fuzzy model.
However, the control strategies presented in Sections 6.3.3 and 6.3.4 demand
the model to be a Takagi–Sugeno fuzzy model [73][74][75] [76].

Summary:
Predictive control is a model-based control strategy that calculates at each
sampling time via optimization the optimal control action to maintain the
output of the plant close to the desired reference.

6.2 Unconstrained Nonlinear Predictive Control

In this section, the study is focused on the optimization problem of the uncon-
strained nonlinear predictive control with quadratic cost. The section presents
an approximate solution to the problem where the information given by a
fuzzy model is used to solve the problem.

The problem can be written as
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min
u(k),...,u(k+Nc)

J(u(k), y(k), w(k)) =
k+Np∑
t=k

(w(t) − y(t))T Q(w(t) − y(t))

+ δu(t)tRδu(t)) (6.3)

subject to

x(k + 1) = f(x(k), u(k))
y(k) = g(x(k), u(k))

For the present case the plant model described by the functions f(., .) and
g(., .) are parameterized by a fuzzy model. An alternative representation for
the plant model is a NOE model represented as

y(t) = ŷ(t)+n(t) = f(ŷ(t−1), . . . , ŷ(t−m), u(t−1), . . . , u(t−n))+n(t) (6.4)

where the function f(.) corresponds to the fuzzy model and the noise model
is given by

n(t) =
C(z−1)
D(z−1)

e(t) (6.5)

where e(t) is a white noise sequence. A typical choice of the noise model is

n(t) =
C(z−1)
D(z−1)

e(t) =
e(t)
∆

(6.6)

where ∆ = 1 − z−1. This choice of the noise model will guarantee a zero
steady-state error for step disturbances and constant references (for details,
see [61] [63] [62]).

An approximation of the predicted future output is given by

y(t + k|t) = yforced(t + k|t) + yfree(t + k|t) (6.7)

where yforced(t + k|t) depends only on the future increments on the input and
yfree(t+k|t) depends only on the past inputs and outputs. In the present case
the yfree sequence is given by

yfree(t + k|t) =
f(ŷ(t + k − 1), . . . , ŷ(t + k − m), u(t + k − 1), . . . , u(t + k − n)) + n(t + k|t)

(6.8)

with u(t) = u(t + 1) = . . . = u(t + k − 1) = u(t − 1), which is equivalent to
simulate the system assuming all the future inputs constant and equal to the
last input value applied to the plant u(t − 1), and the sequence of predicted
noise n(t + k|t) is calculated assuming that e(t + k|t) = 0 for k > 1 (white
noise assumption). The predicted yforced will be given by
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yforced(t + k|t) =
k−1∑
i=0

giδu(t + k − i − 1|t) (6.9)

where gi are the step response coefficients of the plant, calculated on the
present operating point by simulating the step response on the model.

It is important to remark that the representation given by Equation (6.7)
is not a linear representation because the term yfree is generated via simula-
tion using the nonlinear model and the coefficients gi depend on the current
operating point and the amplitude of the input signal.

This is an important contribution to the analysis of the problem because it
simplifies the study and the solution without a significant degradation. Most
of the nonlinear information is preserved, as shown in the simulation included
in the example of Section 6.2.2.

The optimization problem can be formulated in matrix form. First, the
predictor is constructed as

Y = G∆U + Yfree (6.10)

where

Y =

⎡⎢⎢⎢⎣
y(t + 1|t)
y(t + 2|t)

...
y(t + Np|t)

⎤⎥⎥⎥⎦ , G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0 0 . . . 0
g1 g0 . . . 0
...

...
. . .

...
gNu−1 gNu−2 . . . g0

...
...

...
...

gNp−1 gNp−2 . . . gNp−Nu−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.11)

∆U =

⎡⎢⎢⎢⎣
δu(t|t)

δu(t + 1|t)
...

δu(t + Nu − 1|t)

⎤⎥⎥⎥⎦ , Yfree =

⎡⎢⎢⎢⎣
yfree(t + 1|t)
yfree(t + 2|t)

...
yfree(t + Np|t)

⎤⎥⎥⎥⎦ (6.12)

yfree(t + i|t) = f(ŷ(t + i − 1), . . . , ŷ(t + i − m),
û(t + i − 1), . . . , û(t + i − n)) + n(t + i|t)

with: û(k) =
{

u(t − 1) ∀k > t − 1
u(k) otherwise

(6.13)

and with the reference vector described as

W =

⎡⎢⎢⎢⎣
w(t)

w(t + 1)
...

w(t + Np)

⎤⎥⎥⎥⎦ (6.14)

The cost function can be written as
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J = ET QE + ∆UT R∆U (6.15)

J = (W − Y)T Q(W − Y) + ∆UT R∆U
= (W − G∆U − Yfree)T Q(W − G∆U − Yfree) + ∆UT R∆U (6.16)

The minimization of the function J can be obtained by calculating the input
sequence ∆U so that ∂J/∂∆U = 0:

∂J

∂∆U
= 2GT Q(Yfree − W) + 2(GT QG + R)∆U = 0 (6.17)

Then the optimal sequence ∆U is

∆U = (GT QG + R)−1GT Q(W − Yfree) (6.18)

The input applied to the plant at time t is

u(t) = u(t − 1) + δu(t) (6.19)

where δu(t) is the first element of the vector ∆U.
Observe that the expression given by Equation (6.18) is the same expres-

sion obtained for the generalized predictive control (GPC) [61]. However, in
the GPC formulation the components involved in the calculation of the for-
mula (6.18) come from a linear model. In the present case the components
introduced in the formula (6.18) are generated by the nonlinear model (a fuzzy
model). A more rigorous formulation of (6.18) will be to represent the com-
ponents as time-variant matrices, as they are shown in the expression (6.20).
In this expression at each sampling time the vectors G(t),Yfree(t),W(t) are
reconstructed. The vector Yfree(t) is obtained by simulating the fuzzy model
with the current input u(t); the matrix G(t) is also reconstructed at each
sampling time by using a method described in the next section.

∆U(t) = (G(t)T QG(t) + R)−1G(t)T Q(W(t) − Yfree(t)) (6.20)

6.2.1 Estimation of the Step Response to Construct G(t)

The estimation of the step response is obtained by

g(k − 1) =
ystep(t + k|t) − yfree(t + k|t) − n(t + k|t)

du(t)
(6.21)

where du(t) represents the step size and

ystep(t + k|t) = f(ŷ(t + k − 1), . . . , ŷ(t + k − m),
û(t + k − 1), . . . , û(t + k − n))

with: û(k) =
{

u(k) ∀k ≤ t − 1
u(t − 1) + du(t) ∀k > t − 1

(6.22)
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The estimation of the step response is a very important element in the present
algorithm, because the quality of the system’s response is determined by the
accuracy of this estimation. The main difficulty to obtain an accurate estimate
of the step response around some operating point is to select an appropriate
value for the amplitude and the sign of the step du(t), because the “step
response” of a nonlinear system is determined by the operating point, the
size and the sign of the step signal. A good value of du(t) should satisfy the
following requirements:

• It is very important that the value u(t − 1) + du(t) do not saturate the
“actuators” in the model. Even though the constraints are not taken into
account for the optimization, the saturation constraints on the actuators
must be taken into account. Failing to consider these saturation points
can lead to an underestimated step response (with smaller gain) and this
response will generate a response from the controller larger than needed,
thereby possibly generating unstable behavior.

• Also important is the fact that du(t) should be “close” to the predicted
∆u(t). Since this value is only known after the optimization, a good choice
is to select du(t) = δu(t|t − 1) [δu(t) obtained in the previous optimiza-
tion step t − 1], and it corresponds to the second element of the vector
∆U(t − 1). When the system reaches the steady state ∆U → 0, it means
that if we select du(t) as stated before, Equation (6.22) will be badly con-
ditioned. This imposes a minimum step size dumin in order to avoid this
bad conditioning.

Summary:
The problem of nonlinear unconstrained predictive control can be solved
without online optimization. Only the calculation of a simple matrix equa-
tion where the matrices are extracted from the model is sufficient to gen-
erate an optimal trajectory.

6.2.2 Example Predictive Control of a CSTR Using a Fuzzy Model

As example of the application of this control strategy, a plant representing
a continuous-stirred tank reactor was chosen (see Figure 6.3). The model of
this plant was presented in [77][78]. The model is described by the following
differential equations:

Ċa(t) = q
v (Ca0 − Ca(t)) − k0Ca(t)e− E

RT (t)

Ṫ (t) = q
v (T0 − T (t)) + k1Ca(t)e− E

RT (t)

+ k2qc(t)
(
1 − e− k3

qc(t)
)
(Tc0 − T (t))

(6.23)

The process describes the reaction where product A is converted into product
B, the concentration Ca(t) is the concentration of product A, T (t) is the
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Figure 6.3. Continuous Stirred Tank Reactor

temperature of the mixture. The reaction is exothermic and it is controlled by
a coolant flow whose rate is represented by qc(t). So, by changing the coolant
flow, the temperature is controlled and by controlling the temperature, the
concentration is controlled. Ca0 is the inlet feed concentration, q is the process
flow rate, T0 and Tc0 are the inlet feed and coolant temperatures; all these
values are assumed constant at nominal values. In the same way, k0, E/R,
v, k1, k2 and k3 are thermodynamic and chemical constants. The numerical
values of these parameters are given in Table 6.1.

Table 6.1. CSTR Model Parameters

Parameter Description Nominal value
q Process flow-rate 100 l/min
v Reactor volume 100 l
k0 Reaction rate constant 7.2 × 1010min−1

E/R Activation energy 1 × 104K
T0 Feed temperature 350 K
Tc0 Inlet coolant temp. 350 K
∆H Heat of reaction 2 × 105 cal/mol

Cp, Cpc Specific heats 1 cal/g/K
ρ, ρc Liquid densities 1 × 103 g/l
ha Heat transfer coeff. 7 × 105 cal/min/K
Ca0 Inlet feed concentration 1 mol/l
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k1 =
∆Hk0

ρCp
k2 =

ρcCpc

ρCpv
k3 =

ha

ρcCpc

The nominal conditions for a product concentration Ca = 0.1 mol/l are

T = 438.54K qc = 103.41l/min

Fuzzy Identification of the CSTR

For the identification procedure a sampling time Ts = 6 sec was chosen. A
sequence of 7500 samples was generated; the first 5000 samples were used as
training set and the last 2500 as validation set. Figure 6.4 shows the input
and the output signal used for the identification (This dataset can be found
in [79].)

The regressors were selected using the regularity criterion and the heuristic
search method explained in Chapter 4. The structure selected for the model
is

Ĉa(k + 1) = f(Ĉa(k), Ĉa(k − 1), Ĉa(k − 2), qc(k − 1)) (6.24)

The identified model is an NOE model; the fuzzy model has three triangular
membership functions distributed regularly on the universes of discourse. The
number of rules extracted was 3 × 3 × 3 × 3 = 81 rules. The membership
functions can be observed in Figure 6.6 and the results of the validation in
Figure 6.5. Figure 6.5 shows the validation error on simulation. It can be
observed that the quality of the model is very good and in fact the two signals
appear overlapped; the error is plotted at the bottom of Figure 6.5 in another
scale to make it visible.

Implementation of the Controller and Performance Results

The predictive controller was implemented using the following parameters:
prediction horizon Np = 10, control horizon Nc = 2, cost matrices Q = INp ,
R = 10−4INc , where In is an identity matrix such that In ∈ �n×n, C(z−1) = 1
and D(z−1) = 1−z−1, dumin = 0.1(qmax

c −qmin
c ) = 2 l/min. Figure 6.8 shows

the response of the system with a “stair” reference; each step has a duration
of 10 min and an amplitude of 0.005 mol/l. The reference starts on 0.08 mol/l
and it goes up to 0.12 mol/l. Perturbation steps of 0.005 mol/l are applied in
the middle of each step. The reference and the perturbation signal are shown
in Figure- 6.7. To compare the performance of the designed controller three
other control strategies were implemented.

• A PID strategy optimized for the current reference. The parameters of the
PID are

Kp = 91.2 Ti = 0.178 sec Td = 0.208 sec
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Figure 6.4. Identification experiments for the CSTR (Courtesy of Springer-Verlag
[76])

• A Generalized Predictive Controller (GPC) designed with the same pa-
rameters as our predictive controller but using an Output Error linear
model described as:

Ĉa(k + 1) =
1.653 × 10−4z−1

1 − 2.43z−1 + 2.4z−2 − 1.189z−3 + 0.269z−4 qc(k) (6.25)

• An “optimal” nonlinear control strategy calculated using the Branch and
Bound (B & B) optimization algorithm [80][81]. The Branch and Bound
method is a discrete optimization algorithm. For this reason, the input
range is discretized in 10 equidistant points. At each iteration the Branch
and Bound algorithm will search in a space of 100 (10Nc) possible solutions.
The optimization is refined with a local Newton optimization. The model
used for the controller is the same model used to simulate the plant, so
that there is no mismatch between the model and the plant.

Figure 6.10 shows details of the performance comparison between the pre-
dictive controller based on the fuzzy model and the GPC and the PID. It
is important to remark the degradation of the performance experimented by
the systems with the linear GPC controller and the PID controller when the
concentration is close to 0.12 mol/l. Observe that the PID controller is not
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Figure 6.5. Validation results for the CSTR (Courtesy of Springer-Verlag [76])

able to stabilize the plant near this set point. In addition, the performance of
the GPC is also degraded.

Figures- 6.9 and- 6.11 show the comparison between the fuzzy model pre-
dictive controller and the “optimal” control strategy. Observe that, when the
change in the operating point is big (between t = 0, ..., 2), the two solutions
are different, but when the changes are smaller the two solutions are almost
the same, which indicates that the “suboptimal” solution is very close to the
“optimal” solution. The execution time of the algorithm is a very important
parameter in order to evaluate its applicability. The execution time was eval-
uated using a Pentium IV 2.8 GHz, and the algorithm was implemented as an
s-function in Simulink. Observe that this execution time gives the possibility
of sampling frequencies of the order of 100 Hz. It is important to observe that
the execution time grows in a linear form with respect to the length of the
prediction horizon and it changes very little with the increase of the control
horizon. Other interesting comparisons with other fuzzy model based predic-
tive control strategies using the present model are presented in [73].
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Figure 6.6. Membership function of the fuzzy model of the CSTR (Courtesy of
Springer-Verlag [76])
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Figure 6.8. Response of the CSTR using an unconstrained fuzzy model-based
predictive control (Courtesy of Springer-Verlag [76])
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Figure 6.9. Response of the CSTR using an unconstrained fuzzy model-based
predictive control. Comparison against the global “optimal” strategy
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Figure 6.10. Response of the CSTR using an unconstrained fuzzy model-based
predictive control. Detailed comparison for two different operating points (Courtesy
of Springer-Verlag [76])
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Figure 6.11. Response of the CSTR using an unconstrained fuzzy model-based pre-
dictive control. Detailed comparison against the “optimal” strategy for two different
operating points
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Table 6.2. Execution Time of the Controller for the CSTR Using an Unconstrained
Fuzzy Model-Based Predictive Control. Execution Time (msec.) VS. Horizons

Nu/Np 10 11 12 13 14 15
2 5.60 6.25 6.58 7.07 7.43 7.83
4 5.90 6.30 6.68 7.12 7.50 7.88
6 5.95 6.41 6.74 7.17 7.54 7.95
8 5.95 6.39 6.81 7.17 7.54 7.99

Figure 6.12. Execution time of the controller for the CSTR using an unconstrained
fuzzy model-based predictive control. Execution time (msec.) vs. Horizons

6.3 Constrained Nonlinear Predictive Control

The introduction of constraints in the predictive control strategy is quite im-
portant. Constraints give more “realism” to the control actions by modeling
saturation and slew rate constraints present in the actuators. It can also im-
prove the formulation of a control system in terms of acceptable quality values
(output constraints). Perhaps the most important feature from the economical
point of view is that it guarantees maximal exploitation of the plant facility by
driving the system closer to its maximum productivity without compromising
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the safety of the plant.

In the next lines, three algorithms for constrained nonlinear predictive control
based on fuzzy models are presented. Initially, in Section 6.3.1 the constrained
nonlinear predictive control problem is presented and a solution based on local
linearization is derived. Sections 6.3.2, 6.3.3 and 6.3.4 present three algorithms
to solve the constrained nonlinear predictive control problem. The strategy
presented in Section 6.3.2 is an extension of the algorithm presented in a previ-
ous section for the unconstrained case; this control strategy can be applied on
any type of fuzzy model. The strategies presented in Sections 6.3.3 and 6.3.4
exploit the structure of a Takagi–Sugeno fuzzy model to extract the infor-
mation needed to solve the optimization problem. The strategy presented in
Section 6.3.4 converts the nonlinear problem into a linear time-variant prob-
lem to simplify the optimization.

6.3.1 The Constrained Nonlinear Predictive Control Problem

The constrained nonlinear predictive control problem can be described as the
problem of finding the “optimal” input sequence to move a dynamic system
to a desired state, taking into account the constraints in the values of the
inputs and the outputs. To achieve this objective an internal representation
of the dynamical system (in this case a fuzzy model) is used in order to predict
the future behavior. The problem is solved at each sampling time and only
the first movement of the calculated input is implemented. This guarantees
disturbance rejection. Mathematically the problem can be written as

min
u(k),...,u(k+Nc)

J(u(k), x(k), r(k)) (6.26)

subject to

x(k + 1) = f(x(k), u(k))
y(k) = g(x(k), u(k))
ymin ≤ y(k) ≤ ymax, ∀k = 1, . . . , Np

umin ≤ u(k) ≤ umax, ∀k = 1, . . . , Nc

∆ymin ≤ ∆y(k) ≤ ∆ymax, ∀k = 1, . . . , Np

|∆u(k)| ≤ ∆umax, ∀k = 1, . . . , Nc

where J(.) is the “the cost function” and it is of the form

J(u(k), x(k), r(k)) =
k+Np∑
t=k

(r(t) − x(t))T Q(r(t) − x(t))

+
k+Nc∑
t=k

(u(t)T Ru(t) + δu(t)tSδu(t)) (6.27)
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or

J(u(k), y(k), r(k)) =
k+Np∑
t=k

(r(t) − y(t))T Q(r(t) − y(t))

+
k+Nc∑
t=k

(u(t)T Ru(t) + δu(t)tSδu(t)) (6.28)

where δu(t) = u(t) − u(t − 1), Q is positive definite matrix and R and S are
positive semidefinite matrices.

The solution to this problem is computationally very expensive because it
involves the solution of a constrained nonlinear quadratic program. The exact
solution to this problem (“finding the global minima”) is very complicated
and it cannot be done in real time. The next section shows three approaches
to solve this problem in real time generating a suboptimal solution with a
performance quite close to the “optimal solution.”

The design of a predictive controller demands the construction of a pre-
dictor. In this section, the formulation is presented in state-space form to
generalize the problem in the multivariable form. The construction of the
predictor in the state-space representation can be conducted in the following
form: given the linearization of the system for the trajectory point [x∗, u∗]:

x(k + 1) = E + A(x(k) − x∗) + B(u(k) − u∗)
y(k) = F + C(x(k) − x∗) + D(u(k) − u∗) (6.29)

where

E = f(x∗, u∗)
F = g(x∗, u∗)

A =
∂f(x, u)

∂x
|x∗,u∗

B =
∂f(x, u)

∂u
|x∗,u∗

C =
∂g(x, u)

∂x
|x∗,u∗

D =
∂g(x, u)

∂u
|x∗,u∗

(6.30)

Using this simplification the prediction of the state and the output n steps
ahead with a given input sequence Un will be given by

x(k + n|k) =
n−1∑
i=0

AiL + Anx(k) + [An−1BAn−2B . . . ABB]

⎡⎢⎢⎢⎣
u(k|k)

u(k + 1|k)
...

u(k + n|k)

⎤⎥⎥⎥⎦
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y(k + n|k) = M + Cx(k + n|k) + Du(k + n|k) (6.31)

where

L = E − Ax∗ − Bu∗

M = F − Cx∗ − Du∗

In matrix representation the prediction can be seen as

Xn = Ψ + Φx(k)︸ ︷︷ ︸
Free response

+ HU
n︸ ︷︷ ︸

Forced response

(6.32)

Y n = Mn + CnXn + DnUn (6.33)
Y n = Mn + Cn[Ψ + Φx(k)]︸ ︷︷ ︸

Free response

+ CnHU
n

+ DnUn︸ ︷︷ ︸
Forced response

Y n = Mn + Cn[Ψ + Φx(k)]︸ ︷︷ ︸
Γ

+ [CnH 0] + [0Dn]︸ ︷︷ ︸
Λ

Un (6.34)

where

X =

⎡⎢⎢⎢⎣
x(k + 1|k)
x(k + 2|k)

...
x(k + n|k)

⎤⎥⎥⎥⎦ Ψ =

⎡⎢⎢⎢⎣
L

L + AL
...

L + AL + . . . + An−1L

⎤⎥⎥⎥⎦ Φ =

⎡⎢⎢⎢⎣
A
A2

...
An

⎤⎥⎥⎥⎦

H =

⎡⎢⎢⎢⎣
B 0 . . . 0

AB B . . . 0
...

...
. . .

...
An−1B An−2B . . . B

⎤⎥⎥⎥⎦ Mn =

⎡⎢⎢⎢⎣
M
M
...

M

⎤⎥⎥⎥⎦

Un =

⎡⎢⎢⎢⎣
u(k|k)

u(k + 1|k)
...

u(k + n|k)

⎤⎥⎥⎥⎦ U
n

=

⎡⎢⎢⎢⎣
u(k|k)

u(k + 1|k)
...

u(k + n − 1|k)

⎤⎥⎥⎥⎦ Un =

⎡⎢⎢⎢⎣
u(k + 1|k)
u(k + 2|k)

...
u(k + n|k)

⎤⎥⎥⎥⎦

Cn =

⎡⎢⎢⎢⎣
C 0 . . . 0
0 C . . . 0
...

...
. . .

...
0 0 . . . C

⎤⎥⎥⎥⎦ Dn =

⎡⎢⎢⎢⎣
D 0 . . . 0
0 D . . . 0
...

...
. . .

...
0 0 . . . D

⎤⎥⎥⎥⎦
When the predictor is constructed with an input sequence Nc and prediction
horizon Np the matrices of the predictor are converted to

X =

⎡⎢⎢⎢⎣
x(k + 1|k)
x(k + 2|k)

...
x(k + Np|k)

⎤⎥⎥⎥⎦ Ψ =

⎡⎢⎢⎢⎣
L

L + AL
...

L + AL + . . . + ANp−1L

⎤⎥⎥⎥⎦
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Φ =

⎡⎢⎢⎢⎣
A
A2

...
ANp

⎤⎥⎥⎥⎦ Mn =

⎡⎢⎢⎢⎣
M
M
...

M

⎤⎥⎥⎥⎦

H =

⎡⎢⎢⎢⎢⎢⎣
B 0 . . . 0

AB B . . . 0
...

...
. . .

...
ANp−2B ANp−3B . . .

∑Np−Nc−1
i=0 AiB

ANp−1B ANp−2B . . .
∑Np−Nc

i=0 AiB

⎤⎥⎥⎥⎥⎥⎦

UNu =

⎡⎢⎢⎢⎣
u(k|k)

u(k + 1|k)
...

u(k + Nc|k)

⎤⎥⎥⎥⎦ U
n

=

⎡⎢⎢⎢⎣
u(k|k)

u(k + 1|k)
...

u(k + Nc − 1|k)

⎤⎥⎥⎥⎦ Un =

⎡⎢⎢⎢⎣
u(k + 1|k)
u(k + 2|k)

...
u(k + Nc|k)

⎤⎥⎥⎥⎦

CNp =

⎡⎢⎢⎢⎣
C 0 . . . 0
0 C . . . 0
...

...
. . .

...
0 0 . . . C

⎤⎥⎥⎥⎦ , ∈ RNpno×Npns

Dn =

⎡⎢⎢⎢⎢⎢⎣
D 0 . . . 0
0 D . . . 0
...

...
. . .

...
0 0 . . . D
0 0 . . . D

⎤⎥⎥⎥⎥⎥⎦ , ∈ RNpno×Ncni

where ns is the number of states, no the number of outputs and ni the number
of inputs.

Once this local linear representation has been obtained, the optimization
problem can be written as a quadratic program (QP). In fact, now the problem
is a classical linear constrained predictive control problem.

Using the vector notation, the cost function will be written as

J(Un, Y n) =
(Y n

ref − Y n)T Q(Y n
ref − Y n) + UnT RUn + (∆Un − Ūk−1)T S(∆Un − Ūk−1)

(6.35)

where
Y n
ref = [yref(k + 1), . . . , yref(k + n)]T

is the vector of the reference. Introducing (6.34) in (6.35):

J(Un) =
Jmin + 2[(Γ − Y n

ref)
T QΛ − ŪT

k−1S∆]Un + UnT [ΛT QΛ + R + ∆T S∆]Un

(6.36)
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where

Jmin = Y nT
ref QY n

ref + ΓT QΓ − 2Y nT
ref QΓ + ŪT

k−1SŪk−1

is the minimum cost due to the reference and the free response and it cannot
be modified by any control input. The constraints can be written as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I(niNc)

−I(niNc)

I(ni)0(ni×niNc)

−I(ni)0(ni×niNc)

∆
−∆
Λ

−Λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
UNc ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

UNc
max

−UNc

min
∆UNc

max + Ūk−1
∆UNc

max − Ūk−1
∆UNc

max
∆UNc

max

Y
Np
max − Γ

−Y
Np

min + Γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.37)

where

I =

⎡⎢⎢⎢⎣
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎤⎥⎥⎥⎦ ∆ =

⎡⎢⎢⎢⎢⎢⎣
I 0 0 . . . 0 0

−I I 0 . . . 0 0
0 −I I . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −I I

⎤⎥⎥⎥⎥⎥⎦

ŪNc

k−1 =

⎡⎢⎢⎢⎣
u(k − 1)

0
...
0

⎤⎥⎥⎥⎦ UNc
max =

⎡⎢⎢⎢⎣
umax(k)

umax(k + 1)
...

umax(k + Nc)

⎤⎥⎥⎥⎦ Un
min =

⎡⎢⎢⎢⎣
umin(k)

umin(k + 1)
...

umin(k + n)

⎤⎥⎥⎥⎦ ,

∆UNc
max =

⎡⎢⎢⎢⎣
∆umax(k)

∆umax(k + 1)
...

∆umax(k + Nc)

⎤⎥⎥⎥⎦ Y Np
max =

⎡⎢⎢⎢⎣
Ymax(k)

Ymax(k + 1)
...

Ymax(k + Np)

⎤⎥⎥⎥⎦

Y
Np

min =

⎡⎢⎢⎢⎣
Ymin(k)

Ymin(k + 1)
...

Ymin(k + Np)

⎤⎥⎥⎥⎦
where I(n) = I ∈ �n×n and 0(m×n) ∈ �m×n.

At each sampling time, this QP is solved with new parameters. The three
algorithms presented in the following sections are based on this concept, but
they differ in the way the parameters of the QP are obtained from the nonlin-
ear model. It is important to remark that these methods generate a suboptimal
solution to the original nonlinear quadratic program (NLQP), because at each
step a pseudo-linear approximation of the problem is used. This suboptimal
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solution will be very close to the exact solution of the NLQP if the nonlinear-
ities of the plant are smooth such that along the prediction horizon the real
trajectory is not very different from the trajectory generated by the proposed
predictor. The algorithms also show some methods to improve the quality of
the approximation.

Summary:
The problem of nonlinear constrained predictive control is formulated as
a nonlinear quadratic optimization problem. By means of local lineariza-
tion a relaxation can be obtained and the problem can be solved using
quadratic programming. This is the solution of the linear constrained pre-
dictive control problem.

6.3.2 Approach Using Estimated Step Response

This approach can be applied to any type of nonlinear model, whether it
be a fuzzy model (Takagi–Sugeno or Mamdani), a neural network model, a
Volterra series model, wavelet model, gain scheduling, etc. The main idea is
to solve also a QP by using an estimation of the step response as a linearized
model. The formulation presented in this section is a generalization of the
strategy presented for unconstrained predictive control. The advantage of this
approach is that the linearization takes into account not only the current
operating point (x∗, u∗) but also the direction of the control action in order
to reach the next operating point (x(k + 1|k), u(k|k)), by means of a similar
reasoning as the one used in Equations (6.34) and (6.35). This comes from the
fact that this method is based on the step response and the step response of
a nonlinear system depends on the operating point, the amplitude of the step
and the direction. In this method, the estimation of the step response uses
the “prior knowledge” gained from the previously calculated control actions.

The prediction of the state and the output n steps ahead can also be
represented as

x(k + n|k) =
n−1∑
i=0

AiL + Anx(k) +
n−1∑
i=0

AiBuk−1 +

+ [
n−1∑
i=0

AiB,

n−2∑
i=0

AiB, . . . , AB + B, B]

⎡⎢⎢⎢⎣
δu(k|k)

δu(k + 1|k)
...

δu(k + n − 1|k)

⎤⎥⎥⎥⎦
y(k + n|k) = M + Cx(k + n|k) + Du(k + n|k) (6.38)

where δu(k|k) = u(k|k) − u(k − 1), in matrix representation

Xn = Ψ + Φx(k) + GŪk−1︸ ︷︷ ︸
Free response

+ G∆U
n−1︸ ︷︷ ︸

Forced response

(6.39)
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Y n = Mn + CnXn + DnUn (6.40)
Y n = Mn + CnΨ + CnΦx(k) + ([CnG 0] + Dn

∆)Ūk−1︸ ︷︷ ︸
Free response

+ ([CnG 0] + Dn
∆)∆Un︸ ︷︷ ︸

Forced response

Y n = Mn + CnΨ + CnΦx(k)︸ ︷︷ ︸
Γ

+ ([CnG 0] + Dn
∆)︸ ︷︷ ︸

Ξ

Ūk−1 + ([CnG 0] + Dn
∆)︸ ︷︷ ︸

Ξ

∆Un

Y n = Γ + ΞŪk−1︸ ︷︷ ︸
Σ

+Ξ(∆Un − Ūk−1) = Σ + Ξ(∆Un − Ūk−1) (6.41)

Y n = Γ + Ξ∆Un (6.42)

where Mn, Xn, Φ, Ψ, Cn are equivalent to the ones previously described and
the free response Γ is modified by the addition of the term ΞŪk−1,

G =

⎡⎢⎢⎢⎣
B 0 . . . 0

AB + B B . . . 0
...

...
. . .

...∑n−1
i=0 AiB

∑n−2
i=0 AiB . . . B

⎤⎥⎥⎥⎦

∆Un = ∆Un − Ūk−1 =

⎡⎢⎢⎢⎣
δu(k|k)

δu(k + 1|k)
...

δu(k + n|k)

⎤⎥⎥⎥⎦ Dn
∆ =

⎡⎢⎢⎢⎣
D D 0 . . . 0
D D D . . . 0
...

...
...

. . .
...

D D D . . . D

⎤⎥⎥⎥⎦

Ξ =

⎡⎢⎢⎢⎣
CB + D D . . . 0 0

CAB + CB + D CB + D . . . 0 0
...

...
. . .

...
...∑n−1

i=0 CAiB + D
∑n−2

i=0 CAiB + D . . . CB + D D

⎤⎥⎥⎥⎦
Observe that the first column of the matrix Ξ corresponds to the step response
of the system. So the response of the system can be described as the sum of
the free response with the product of the Toeplitz matrix constructed with
the “local” step response and the incremental input ∆Un. The cost function
(6.37) written with the response described by (6.41) is

J(Un) = Jmin + 2[(Σ − ΞŪk−1 − Y n
ref)

T QΞ∆ − ŪT
k−1S∆]Un + . . .

+ UnT [∆T ΞT QΞ∆ + R + ∆T S∆]Un (6.43)

where

Jmin = Y nT
ref QY n

ref + (Σ − ΞŪk−1)T Q(Σ − ΞŪk−1) −
− 2Y nT

ref Q(Σ − ΞŪk−1) + ŪT
k−1SŪk−1

is the minimum cost due to the reference and the free response. The QP
program will be written using now the cost function (6.43) and the constraint
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definition (6.37).
In this procedure, the parameters of the QP are updated at each sampling

time. The parameters that are updated at each sampling time are the matrices
Σ and Ξ. The Σ matrix is the free response constructed by evolving the system
form k + 1 to k + Np as

x̄(k + 1) = f(x̄(k), u∗)
ȳ(k) = g(x̄(k), u∗) (6.44)

where f(., .) and g(., .) are the description of the plant given by the fuzzy
model, u∗ = u(k) is the current input of the system, ¯x(k) and ȳ(k) are,
respectively, the “estimated” state and free response. Observe that this free
response is different from the one calculated in the previous section. The
difference is that the free response of the previous section is calculated by
evolving the fuzzy system with u∗ = 0. The Σ vector will look like

Σ =

⎡⎢⎢⎢⎣
ȳ(k + 1|k)
ȳ(k + 2|k)

...
ȳ(k + Np|k)

⎤⎥⎥⎥⎦ (6.45)

The Ξ matrix is obtained by making step experiments. A step input is equiv-
alent to ∆U

n

step = [du, 0, . . . , 0]T , where du is a vector in �ni where only one
entry (i) is different from zero. The ||du|| is the size of the applied step. The
free response of the system will be

Y n
free = Γ + ΞŪk−1

and the response with the step:

Y n
step = Γ + ΞŪk−1 + Ξ∆U

n

step

operating:

Y n
step − Y n

free = Ξ∆U
n

step =

⎡⎢⎢⎢⎣
(CB + D)du

(CAB + CB + D)du
...

(
∑n−1

j=0 CAjB + D)du

⎤⎥⎥⎥⎦
because only the i entry of du is different from zero, then the i column of Ξ
will be obtained as⎡⎢⎢⎢⎣

(CB + D)i

(CAB + CB + D)i

...
(
∑n−1

j=0 CAjB + D)i

⎤⎥⎥⎥⎦ =
1

dui

⎡⎢⎢⎢⎣
(CB + D)idui

(CAB + CB + D)idui

...
(
∑n−1

j=0 CAjB + D)idui

⎤⎥⎥⎥⎦ (6.46)



176 6 Predictive Control Based on Fuzzy Models

Observe that only the first ni columns (ni is the number of inputs) are needed
because Ξ is a block Toeplitz matrix.
An important remark is that the amplitude and the direction of the dui ele-
ment will determine the obtained step response. This is due to the fact that
the step response of a nonlinear system is a function of the operating point,
the amplitude and the direction of the step. Our estimation had already dealt
with obtaining the step response at the operating point, but the amplitude
of the step and its direction have not been determined. A good method to
determine the size and direction of dui is to apply the most likely input that
will be applied by the control action. This input will be obtained from the
solution obtained in the previous optimization. So the most suitable value for
dui at time k will be

duk
i = δu(k|k − 1)i (6.47)

Observe that, when a steady state is reached, then u(k|k − 1)i ≈ u(k − 1)i,
making the value of dui ≈ 0 and the estimation of Ξ a badly conditioned op-
eration. For this reason, a dumin vector should be defined with the minimum
value of du, so that the estimation of Ξ is reliable. To sum up, the control
algorithm will be

Algorithm

At each sampling time:

1. Read the current output of the system and update y(k).
2. With the input u(k−1) calculate thefree response Σ using Equation (6.44).
3. Calculate the entries of the du vector for the ni step experiments using

Equation (6.47).
4. If dui < dui

min make dui = dui
min.

5. Make the step experiments and calculate the Ξ matrix.
6. With Ξ and Σ construct the matrices for the cost [Equation (6.43)] and the

constrains [Equation (6.37)] of the QP problem.
7. Solve the QP problem.
8. Apply only the first control action u(k|k).

The advantage of this method is that no special structure is needed for the
model to perform prediction task and to extract the step response. The price
paid for this is that every time a simulated step response must be calculated
for each input. On the other hand, it is also an advantage since the “lineariza-
tion” provided by the step response will have a validity region matching the
next most likely movement of the plant.
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Summary:
This control algorithm solves the nonlinear constrained predictive control
problem solving a quadratic programming problem using parameters such
as the free response obtained by simulation over the nonlinear fuzzy model
and the extraction of a local step response also derived from the same
model by simulation.

6.3.3 Approach Using Takagi–Sugeno Fuzzy Models

This approach exploits the properties of Takagi–Sugeno fuzzy models with
rules of the form

If x(k) is Ai AND u(k) is Ui THEN x(k + 1) = Ei + Aix(k) + Biu(k)
y(k) = Fi + Cix(k) + Diu(k)

The evaluation of this model will generate at each step not only the output
y(k), but also a linear models of the form

x(k + 1) = E(k) + A(k)x(k) + B(k)u(k)
y(k) = F (k) + C(k)x(k) + D(k)u(k) (6.48)

where

E(k) =
L∑

i=0

wiEi A(k) =
L∑

i=0

wiAi B(k) =
L∑

i=0

wiBi

F (k) =
L∑

i=0

wiFi C(k) =
L∑

i=0

wiCi D(k) =
L∑

i=0

wiDi

such that
∑L

i=0 wi = 1.
L is the number of rules, the term wi is the result of the inference process
in the rule i and Ei, Ai, Bi, Fi, Ci, Di are the matrices of the dynamic system
which are the consequences of the rule i.

If the membership functions are normal and the inference uses the prod-
uct as the AND operation, the result of the inference is a convex combination
of the linear models of the “active” rules. Under this assumption, the result of
each inference will be considered a local linearization of the nonlinear model.
The representation given by Equation (6.48) is the representation of a linear
time-variant system.

With this representation at each moment, we can directly obtain from the
model a local linearization that can be used to construct the QP. The param-
eters A(k), B(k), C(k), D(k) are used to construct the matrices Cn, H, Dn at
each sampling time and, with this, to construct the matrix Λ. The vector
Γ corresponding to the free response is constructed by evolving the system
(6.44) from k + 1 to k + Np with input u∗ = 0.

The control algorithm can be summarized in the following actions:
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Algorithm

At each sampling time:

1. Read the current output of the system and update y(k).
2. Make u∗ = 0 and calculate the free response Γ [Equation (6.44)].
3. With the current states and inputs obtain from the fuzzy system the current

A(k), B(k), C(k), D(k) [Equation (6.49)].
4. With A(k), B(k), C(k), D(k) compose the Λ matrix [Equation (6.34)].
5. With Λ and Γ construct the matrices for the cost [Equation (6.36)] and the

constraints [Equation (6.37)] of the QP problem.
6. Solve the QP problem.
7. Apply only the first control action u(k|k).

The contribution of this approach is the capacity to exploit the information
given directly by the Takagi–Sugeno fuzzy model. This approach is very at-
tractive for systems of high order because no simulation is needed to obtain
the parameters to solve the optimization; the matrices can be generated di-
rectly from the inference of the fuzzy system. The use of this approach is very
attractive to the industry for practical reasons related with the capacity of
this model structure to combine local models identified in experiments around
the different operating points.

Summary:
This control algorithm solves the nonlinear constrained predictive control
problem solving a quadratic programming problem using parameters such
as the free response obtained by simulation using the nonlinear fuzzy model
and the extraction of a “local” linear model obtained from the inference
process of a Takagi–Sugeno fuzzy model.

6.3.4 Approach Using Takagi–Sugeno Fuzzy Models and Multiple
Models in the Predictor

This approach increases the nonlinear information included on the matrices
operating in the QP. This increase of information is achieved by formulating
the predictor using a time-variant model over the prediction horizon. In the
previous formulation, the model was assumed to change only at each iteration
of the controller. The model is fixed along the prediction horizon in the pre-
dictor. The current approach assumes a change in the model of the predictor
not only at each iteration of the controller, but also at each time step in the
prediction horizon.

The formulation of the predictor will be similar to the formulation pre-
sented in the previous section, but observe that the matrices used to build the
predictor include the time-variant information:
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Xn = Ψ + Φx(k)︸ ︷︷ ︸
Free response

+ HU
n︸ ︷︷ ︸

Forced response

(6.49)

Y n = Mn + CnXn + DnUn (6.50)
Y n = Mn + Cn[Ψ + Φx(k)]︸ ︷︷ ︸

Free response

+ CnHU
n

+ DnUn︸ ︷︷ ︸
Forced response

Y n = Mn + Cn[Ψ + Φx(k)]︸ ︷︷ ︸
Γ

+ [CnH 0] + [0Dn]︸ ︷︷ ︸
Λ

Un (6.51)

where

X =

⎡⎢⎢⎢⎣
x(k + 1|k)
x(k + 2|k)

...
x(k + Np|k)

⎤⎥⎥⎥⎦ Φ =

⎡⎢⎢⎢⎣
A(k)

A(k + 1)A(k)
...∏Np−1

j=0 A(k + Np − 1 − j)

⎤⎥⎥⎥⎦

MNp =

⎡⎢⎢⎢⎣
M(k + 1)
M(k + 2)

...
M(k + Np)

⎤⎥⎥⎥⎦

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L(k)
L(k + 1) + A(k + 1)L(k)

L(k + 2) + A(k + 2)L(k + 1) + A(k + 2)A(k + 1)L(k)
...

L(k + Np − 1) + A(k + Np − 1)L(k + Np − 2) + . . .

. . . +
∏Np−2

j=0 A(k + Np − 1 − j)L(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

H =

⎡
⎢⎢⎢⎢⎢⎣

B(k) 0
A(k + 1)B(k) B(k + 1)

A(k + 2)A(k + 1)B(k) A(k + 2)B(k + 1)
...

...∏Np−1
j=0 A(k + Np − 1 − j)B(k)

∏Np−2
j=0 A(k + Np − 1 − j)B(k + 1)

. . . 0

. . . 0

. . . 0

. . .
...

. . . B(k + Np − 1) +
∑Np−Nc−1

i=0

∏i
j=0 A(k + Np − 1 − j)B(k + Np − i − 2)

⎤
⎥⎥⎥⎥⎥⎦

UNu =

⎡⎢⎢⎢⎣
u(k|k)

u(k + 1|k)
...

u(k + Nc|k)

⎤⎥⎥⎥⎦ U
n

=

⎡⎢⎢⎢⎣
u(k|k)

u(k + 1|k)
...

u(k + Nc − 1|k)

⎤⎥⎥⎥⎦ Un =

⎡⎢⎢⎢⎣
u(k + 1|k)
u(k + 2|k)

...
u(k + Nc|k)

⎤⎥⎥⎥⎦
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Cn =

⎡⎢⎢⎢⎣
C(k + 1) 0 . . . 0

0 C(k + 2) . . . 0
...

...
. . .

...
0 0 . . . C(k + Np)

⎤⎥⎥⎥⎦ , ∈ RNpno×Npns

Dn =

⎡⎢⎢⎢⎢⎢⎣
D(k + 1) 0 . . . 0

0 D(k + 1) . . . 0
...

...
. . .

...
0 0 . . . D(k + Np − 1)
0 0 . . . D(k + Np)

⎤⎥⎥⎥⎥⎥⎦ , ∈ RNpno×Ncni

where ns is the number of states, no the number of outputs and ni the number
of inputs.
These matrices are then replaced in the cost function (6.36) and in the con-
straints (6.37) and the QP is solved.
The algorithm work as follows:

Algorithm

1. Read the current output of the system and update y(k).
2. Make u∗ = 0 and calculate the free response Γ [Equation (6.44)].
3. With the current states and inputs obtain from the fuzzy system the current

A(k), B(k), C(k), D(k) [Equation (6.51)].
4. With A(k), B(k), C(k), D(k) compose the Λ matrix [Equation (6.34)].
5. With Λ and Γ construct the matrices for the cost [Equation (6.36)] and the

constraints [Equation (6.37)] of the QP problem.
6. Solve the QP problem.
7. Apply the generated input sequence to the fuzzy model and generate the set

of E(k), F (k), A(k), B(k), C(k), D(k) matrices over the prediction horizon.
8. Construct the Γ and the Λ matrices and using the cost [Equation (6.36)]

and the constrains [Equation (6.37)] solve the QP problem.
9. If the time for calculation has not expired and the difference between two

consecutive solutions is larger than a given value ε, repeat the iteration from
step 7.

10. Apply only the first control action u(k|k).

For the first iteration the constructed predictor assumes that the plant is
linear time-invariant in the term corresponding to the forced response. From
this iteration, a suboptimal solution is obtained. This solution is equivalent
to the solution presented in Section 6.3.3.

With the solution from the first iteration, it is possible to construct a pre-
dictor by using time-variant linear models included in the term of the forced
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response. A new QP problem will be solved and a new input sequence will
be generated. The process will be repeated until the sampling time is over or
the difference among two consecutive input sequences is smaller than a given
value ε.

This method can deliver an additional improvement on the quality of the
solution since extra information over the nonlinearity is introduced in the op-
timization. The price paid for this improvement is computational time since
each entry of the columns of the Λ matrix must be calculated since it is no
longer a Toeplitz matrix.

Summary:
This control algorithm improves the nonlinear calculation by introducing
extra information on the simplification such that a solution of the approx-
imated QP method resembles more the actual solution of the nonlinear
optimization problem.

6.3.5 Example Predictive Control of a Steam Generator Using a
Fuzzy Model

This application is based on the simulation model presented by Pelegrinetti
et al. [82]. There they obtain a model of the boiler at Abbott Power Plant in
Champaign, Illinois. The model is a multivariable model, which includes four
inputs (fuel, air, water flow, and steam demand) and four outputs (pressure,
oxygen, and level in the drum, steam flow). The obtained model includes
perturbation and measurement noises. This model is used as the real plant
for the simulations. The model of the steam generator (see Figure 6.13) is
described by the following system of equations:

ẋ1(t) = c11x4(t)x
9/8
1 (t) + c12u1(t − τ1) − c13u3(t − τ3) + c14 (6.52)

ẋ2(t) = −c21x2 +
c22u2(t − τ2) − c23u1(t − τ1 − c24u1(t − τ1x2(t)

c25u2(t − τ2 + c26u1(t − τ1
(6.53)

ẋ3(t) = c31x1(t) − c32x4(t)x1(t) + c33u3(t − τ3) (6.54)
ẋ4(t) = −c41x4(t) + c42u1(t − τ1) + c43 + u4(t) + n5 (6.55)
y1(t) = c51x1(t − τ4) + n1(t) (6.56)
y2(t) = c61x2(t − τ5) + n2(t) (6.57)
y3(t) = c70x1(t − τ6) + c71x3(t − τ6) + c72x4(t − τ6) + c73u3(t − τ3 − τ6)

+ c74u1(t − τ1 − τ6) +
[c75x1(t − τ6) + c76][1 − c77x3(t − τ6)]

x3(t − τ6)[x1(t − τ6) + c78]
+ c79 + n3(t) (6.58)

y4(t) = [c81x4(t − τ7) + c82]x1(t − τ7) + n4(t) (6.59)

where x1 is the drum pressure state (kgf/cm2); y1 is the measured drum
pressure (PSI); y2 and x2 are the measured excess oxygen level and its state,
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Figure 6.13. Steam generator

respectively (percent); x3 is the system fluid’s density (kg/m3); y3 is the drum
water level (in.); y4 is the steam flow rate (kg/s); u1, u2, u3 are, respectively,
the fuel, air, and feed water flow rate inputs, which take values between 0 and
1; x4 is the exogenous variable related to the steam demanded. The constants
are shown in Table 6.3. The variables ni are colored noise sequences generated
by first-order models driven by zero mean, unit variance white noise.

n1 =
0.75s + 0.1
s + 0.001

w1 n2 =
0.019s + 0.001

s + 0.024
w2 n2 =

0.105s + 0.038
s + 0.010

w3

n4 =
0.01s + 0.0001

s + 0.001
w4 n5 =

0.003s + 0.003
s + 0.0075

w5

where ni, i = 1, . . . , 5, are colored noise and wi is the unit variance white
noise. A linear model was obtained by linearizing around the operating point:

x0 = [22.5 2.5 621.17 0.6941]T

y0 = [320 2.5 0.0 9.3053]T

u0 = [0.32270 0.39503 0.37404 0]T

The linearized model is described by

ẋ = Apx + Bpu

y = Cpx + Dpu
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Table 6.3. Coefficients of the Nonlinear Equation of the Power Plant Model

c11 = −0.00478 c31 = 0.00533176 c70 = −0.1048569
c12 = 0.280 c32 = 0.0251950 c71 = 0.15479
c13 = 0.01348 c33 = 0.7317058 c72 = 0.4954961
c14 = 0.02493 c41 = 0.04 c73 = −0.20797
c21 = 0.1540357 c42 = 0.0299886 c74 = 1.2720
c22 = 103.5462 c43 = 0.018088 c75 = −324212.7805
c23 = 107.4835 c51 = 14.214 c76 = −99556.24778
c24 = 1.95150 c61 = 1.00 c77 = 0.0011850
c25 = 29.04 c81 = 0.85663 c78 = −1704.50476
c26 = 1.824 c82 = −0.18128 c79 = −103.7351

τ1 = 2,τ2 = 2,τ3 = 3,τ4 = 3,τ5 = 4,τ6 = 10,τ7 = 2.

where

Ap =

⎡⎢⎢⎣
−0.005509 0 0 −0.1588

0 −0.2062 0 0
−0.01216 0 0 −0.5672

0 0 0 −0.040

⎤⎥⎥⎦

Bp =

⎡⎢⎢⎣
0.2800 0 −0.01348 0
−9.375 7.658 0 0

0 0 0.7317 0
0.02999 0 0 0.040

⎤⎥⎥⎦

Cp =

⎡⎢⎢⎣
14.21 0 0 0

0 1.0 0 0
0.3221 0 0.1434 11.16
0.4133 0 0 19.28

⎤⎥⎥⎦

Dp =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0

1.272 0 −0.2080 0
0 0 0 0

⎤⎥⎥⎦

Fuzzy Identification of the Steam Generator

To perform the identification of the model, the level control is first stabi-
lized by means of a feed-forward control plus a PID control. The feed-forward
control signal is proportional to the steam flow to compensate the mass of
water in the drum; a PID controller performs further control. The represen-
tation of the system with this stabilizing control actions can be observed in
the Figure 6.14. With this modification the system will have the following
inputs: fuel rate (u1), air rate (u2), reference level (rLevel), steam demand
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(u4). A sampling time of Ts = 3 sec was chosen and several experiments were
performed. A total of five multiple-input–single-output fuzzy models was ex-
tracted. The details of the extracted models are presented in Table 6.4. The
data points used for this identification are available at [83]. The inputs for
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Figure 6.14. Stabilization scheme for the steam generator

Table 6.4. Steam Generator. Characteristics of the Identified Fuzzy Model

Model No. rules
ŷ1(k) = f1(ŷ1(k − 2), x̂4, u1(k − 2), u1(k − 3)) 81
ŷ2(k) = f2(ŷ2(k − 2), u1(k − 2), u2(k − 2)) 27
ŷ3(k) = f3(rLevel(k − 8), ŷ4(k − 5), ŷ4(k − 6), u1(k − 4)) 81
ŷ4(k) = f4(ŷ1(k − 1), x̂4(k − 1)) 9
x̂4(k) = f5(x̂4(k − 1), u1(k − 1), u4(k − 1)) 27
Total rules 225

each model were selected by using the RC index. The five models obtained
can be described as

ŷ1(k) = f1(ŷ1(k − 2), x̂4, u1(k − 2), u1(k − 3)) (6.60)
ŷ2(k) = f2(ŷ2(k − 2), u1(k − 2), u2(k − 2)) (6.61)
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ŷ3(k) = f3(rLevel(k − 8), ŷ4(k − 5), ŷ4(k − 6), u1(k − 4)) (6.62)
ŷ4(k) = f4(ŷ1(k − 1), x̂4(k − 1)) (6.63)
x̂4(k) = f4(x̂4(k − 1), u1(k − 1), u4(k − 1)) (6.64)

where yi represent the outputs (Pressure, Oxygen level, Drum level and Steam
Flow, respectively) and x4 is an internal state variable. Figure 6.15 shows
the validation results of the model. Another model (a Takagi–Sugeno fuzzy

1000 2000 3000 4000 5000 6000
100

200

300

400

500

Time

P
S

I

Pressure

1000 2000 3000 4000 5000 6000

−5

0

5

10

15

20

25

Time

P
er

ce
nt

Oxygen Level

1000 2000 3000 4000 5000 6000

−5

0

5

10

Time

In
ch

es

Water Level

0 2000 4000 6000

5

10

15

20

25

30

35

Time

K
g/

s

Steam Flow

Figure 6.15. Identification of the steam generator. Validation experiment: (-) Plant
data, (–) Fuzzy model data

model) was generated with only five rules, equally distributed over the domain
of the Steam flow. This second model only describes the dynamics around the
nominal operating points of the Pressure, Level and Excess oxygen and uses
five local models for different values of steam flow. The rules of this system
look as follows:

IF Steam Flow (y4(k)) is Fi THEN
X(k + 1) = Ei + AiX(k) + BiU(k)
Y (k + 1) = Fi + CiX(k) + DiU(k)
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Implementation of the Controller and Performance Results

Four predictive controllers were implemented. The first one corresponds to a
linear MPC constructed using the linearized model presented in the previous
section (MPC with linear model); the second MPC corresponds to an MPC
controller using the estimated step response method (MPC with Fuzzy Model;
see Section 6.3.2); the third one corresponds to the strategy using Takagi–
Sugeno fuzzy models without time-variant information (MPC with TS Fuzzy
Model see Section 6.3.3) and the fourth controller corresponds to the strategy
using Takagi–Sugeno models with time-variant information (see Section 6.3.4).

The following parameters were used in the construction of the controllers:
prediction horizon N = 5, control horizon Nc = 2, Cj(z−1) = 1 and
Dj(z−1) = 1 − z−1 ∀j = 1, . . . , 4, α = 0.9 the Q matrix

Q =

⎡⎢⎢⎣
q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4

⎤⎥⎥⎦
where qi are �N×N diagonal matrices with values [0.0014, 0.0001, 0.0002,
0.0503] and the R matrix is

R =

⎡⎢⎢⎣
r1 0 0 0
0 r2 0 0
0 0 r3 0
0 0 0 r4

⎤⎥⎥⎦
where ri are �Nc×Nc diagonal matrices with values [50 0.1 1 104]. The inputs
corresponding to the fuel and the air valves are constrained to be in the in-
terval [0 1] and with a dumax = 0.1; the reference of the level is constrained
to be in the interval [-4 4] and with a dumax = 1 and the valve for the steam
is constrained in the interval [-0.15 0.03] (the reason that this valve was not
constrained in the interval [0 1] is that the valve was originally modeled as
a disturbance variable) and with a dumax = 1. The solution with the linear
MPC is not subject to constraints.

The performance of the controllers is evaluated by using an experiment
where the energy generated by the plant is first reduced from the 39% of the
maximum power to the 27%; then it is raised to the 100% and finally reduced
to the 27%. This change should be done while Pressure, Oxygen level and
Water level are kept constant with values 320 PSI, 2.5% and 0 inches, respec-
tively, and the Steam flow is changed from 9.3 Kg/s to 6.6 Kg/s, then it is
raised to 22.096 Kg/s and finally reduced again to 6.6 Kg/s. Figure 6.16 and
Table 6.5 show the comparative results of the experiments.

The comparison shows some interesting results. It is clear that the pro-
posed control strategies outperforms the classical linear MPC solution. Their
capacity to reject disturbances can be clearly observed when the system is
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Table 6.5. Comparative Results- Performance Calculated for the Steam Flow

MPC with MPC with MPC with MPC with
fuzzy model TS fuzzy Model TS fuzzy Model linear model
Strategy 1 Strategy 2 Strategy 3

Variance on 27%
of the capacity 0.0011 0.0055 0.0055 0.0119
Variance on 100%
of the capacity 4.42 × 10−4 0.00430 0.00427 0.0096
Overshoot on
transition from 1.06% 1.83% 1.83% 1.32%
27%–100%
Overshoot on
transition from 0.25% 1% 1% 2.58%
100%–27%
Settling time on
transition from 103 sec 150 sec 150 sec 423 sec
27%–100%
Settling time on
transition from 120 sec 190 sec 190 sec 558 sec
100%–27%

operated at 100% of the capacity. The linear MPC is not capable of keeping
the level at the desired value. In addition, it is important to observe that the
settling time has been reduced to one quarter of the settling time for the sys-
tem with the linear MPC without any increase in overshoot. The reduction of
the variance once more compared with the linear MPC strategy is around one
order of magnitude for the MPC strategy with estimated step response and
half order of magnitude for the strategy based on the Takagi–Sugeno model.
The MPC based on the Takagi–Sugeno model has the best disturbance re-
jection capacity. It does make a better task controlling the drum pressure.
The settling time of the MPC strategy with estimated step response is the
shortest.

6.3.6 Example: Nonlinear Predictive Control of a Gas-Phase
High-Density Polyethylene (HDPE) Reactor

This example1 shows the control of a gas-phase reactor used in the production
of polyethylene. The example is based on a model built in gPROMS by the
company IPCOS N.V. in Belgium, and the model is based on the models pro-
posed by Choi and Ray [85] and the Ph.D. thesis of McAuley [86]. The process
is shown in Figure 6.17. In this process the monomer ethylene reacts with the
1 Part of these results were obtained in the framework of the a master thesis in

collaboration with IPCOS N.V. and the Katholieke Universiteit Leuven, Belgium
[84].
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co-monomer butylene to produce the HDPE. The ratios butylene/ethylene
(CH4/CH2) (MV1) and hydrogen/ethylene (H2/CH2)(MV2) are very im-
portant to guarantee the quality of the HDPE. The quality of the HDPE is
defined by two parameters, melt index (CV1) and density (CV2). The unre-
acted ethylene is recycled. Nitrogen (MV3) is used as transportation medium
and cooling agent. It does not take part in the reaction. The system has three
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Figure 6.17. High-density polyethylene gas-phase reactor

PID controllers to guarantee the safety of the process: temperature control for
the reactor, level control for the liquid phase inside the reactor and a pressure
control. Additionally, two ratio controls for CH4/CH2 and H2/CH2 are used
in the operation.
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The predictive controller will manipulate four variables: butylene/ethylene
ratio (CH4/CH2) (MV1) and hydrogen/ethylene ratio (H2/CH2)(MV2),
nitrogen (MV3) and catalyst (MV3) in order to obtain some desired prop-
erties in the HDPE melt index (CV1) and density (CV2) while maintaining
the temperature (CV3) and the production (CV4) at acceptable levels.

This system should operate over a wide range since a flexible production is
expected. By flexible we mean multiple density and melt index are expected.
Nowadays the automatic transitions between different qualities are considered
a challenge since serious savings can be achieved by reducing the time used to
perform a transition. Traditionally these transitions are performed manually
or automatically but using very conservative and far from optimal operations.
The use of a nonlinear controller is motivated in this case by the multiple dy-
namics encountered along the so-called production slate, which defines the set
of qualities that can be produced. In this case the set of products mentioned
in the slate is 104, represented by 8 density and 13 melt indexes and their
respective combinations.

Fuzzy Model for the HDPE Reactor

The controller was implemented using a model with 104 rules, one for each
grade on the slate. The model was constructed using trapezoidal membership
functions, which are shown in Figure 6.18, and dynamic state-space models
of 45th order in the consequences. However large this model is a significant
reduction compared with the original rigorous model represented (with more
than 800 variables with several hundreds of algebraic differential equations).
Figure 6.19 shows the validation of the model for a transition between grade
K2 and grade L4.

Controller Design and Results

A predictive controller was constructed using the Takagi–Sugeno fuzzy model
described in the previous section. The parameters of the controller were a
prediction horizon Np = 5 and a control horizon Nu = 2. The controller was
built with a weight equal for all inputs and 1000 times smaller for the density.
All the inputs were constrained by their respective maximum amounts.

Figure 6.20 shows the results given by the controller compared with an
offline precalculated optimal trajectory obtained over the rigorous model. The
objective of the precalculated optimal trajectory was to maximize the added
value [87]. The objective of the fuzzy predictive controller was to achieve the
change as fast as possible. Observe that the results generated by the predictive
controller are quite close to the optimal trajectory.
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Figure 6.18. Membership functions for the Takagi–Sugeno fuzzy model of the
HDPE reactor

6.4 Conclusions

This chapter has presented a novel approach to fuzzy model-based control. The
combination of fuzzy modeling and predictive control is the result of the mat-
uration of the modeling and identification techniques using fuzzy structures.
The goal was to design a simple control strategy. –Simple for the designer and
simple for the end user of the control systems.

The simplicity for the designer of the control system is reflected on the
fact that the only task during the tuning process is the definition of the goal
of the control systems in terms of a quadratic cost function and the con-
straints of the elements involved in the system. Other tuning parameters such
as control and prediction horizons are closely related with the settling times
and the model order. These parameters exhibit a monotonic tendency making
the tuning of the controller a simple task. Of course, a price must be paid
to achieve this simplicity and this cost can be divided in two: (1) the effort
that must be put to build the model; and (2) the computational cost of calcu-
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Figure 6.19. Validation of the Takagi–Sugeno model for the HDPE reactor on the
transition between grade K2 and grade L4
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Figure 6.20. Result of the Takagi–Sugeno model-based predictive control for the
HDPE reactor on the transition between grade K2 and grade L4

lating the control actions at each sampling time. The fact that the described
algorithms are computationally intensive limits the sampling time with the
current computational technology (Pentium IV 2.8 GHz) to 7 × 10−3 seconds
for unconstrained system and around 0.2 seconds for constrained multivariable
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systems of low order. This will limit the applications where these strategies
can be applied today to applications to process control problems where sam-
pling time is about 1 sec. The unconstrained strategy can be applied even
to some mechanic systems with already fast dynamics (sampling times of the
order of 150 Hz).

This chapter includes four control algorithms with their respective deriva-
tions. Two of the proposed algorithms are particularly interesting for their
applicability to other types of nonlinear models and not only to fuzzy systems.
These algorithms are the strategies based on the estimated step response.

It is also important to note the advantages of the other two contributed
strategies. The two strategies based on the use of Takagi–Sugeno fuzzy models
exploit the structural and the simulation information provided by the model.
Control engineers are particularly attracted by the fact that the model “looks
alike” gain scheduling models.

The key point of the strategies presented in the current chapter is the
reduction of the original complex nonlinear program (with no possibility for
online implementation) to a simple quadratic program (online implementable)
by exploiting the structure of the problem and the structure of the models
and by relaxing the constraints imposed by the problem. The relaxation intro-
duced by the methods presented in this chapter is a relaxation of the equality
constraints, which are in fact the plant description. In some cases the solu-
tions can be quite close to the “global optimal solution,” especially for systems
with monotonic nonlinearities. The assumptions used to reduce the problem
demand some smoothness in the nonlinearities, which are, of course, related
with the prediction capability of the model when “strong” nonlinearities are
involved.

The three examples presented are realistic simulations of industrial pro-
cesses. The improvement in the performance is clear from the simulations.
The systems used in the examples are characterized by strong changes in gain
and dynamics at the different operating points.



7

Robust Nonlinear Predictive Control Using
Fuzzy Models

7.1 Introduction

The increasing popularity of the fuzzy models for nonlinear system iden-
tification and modeling can be explained by the possibility to extract “lo-
cal” information about the dynamics of the system. Different algorithms for
identification of Takagi–Sugeno fuzzy models have been proposed in recent
years [71] [57]. The representation of locally linearized models in the form
of a Takagi–Sugeno fuzzy model has shown its advantages in simplifying the
design of nonlinear controllers.

The previous chapter showed the advantages of the use of model-based
predictive control techniques in the process control industry as a technique to
design multivariable controllers with direct performance specifications.

The complexity of the solution of predictive controllers for nonlinear sys-
tems was discussed in the previous chapter. Relaxations to the problem and
its reduction to a quadratic program were the strategies applied to obtain a
solution. This solution is very close to the real “optimal” solution (see results
of the example in Section 6.2.2), but it demands a very accurate description
of the nonlinear plant to guarantee such a performance.

An accurate description of the plant is not always an achievable goal. The
limitations are (1) the impossibility of performing extensive experiments on
the plant and (2) the fact that the aging process of the plant generates a
mismatch with respect to the model.

For stability and performance reasons, it is very important to take into ac-
count this mismatch during the optimization process. The solution obtained
will guarantee a minimum performance that will be reflected in the quality of
the product.

This chapter presents an algorithm for nonlinear predictive control us-
ing the description of the nonlinear plant provided by Takagi–Sugeno fuzzy
models. The method solves the problem by formulating a robust quadratic
program. The solution of the robust quadratic program is obtained by trans-
forming the program into a second–order cone program [88]. It is important
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to remark that the solution presented in [88] only takes into account uncer-
tainties in the Hessian matrix. In this chapter, the uncertainties are extended
to the linear term of the cost function and the problem is once more reformu-
lated as a second-order cone program. Perhaps the most important benefit of
the method is the fact that constraints are always respected by the solution
despite the uncertainties of the model. In this way robust performance can
be guaranteed. The chapter is organized as follows: Section 7.2 presents the
formulation of a robust quadratic program as a second-order cone program
including the contribution where uncertainties in the linear term are included;
Section 7.3 describes the problem analytically; Section 7.4 shows the nominal
solution when the problem has no uncertainties (it is the same solution pre-
sented in the previous chapter but included here for completeness); Section 7.5
presents an approximated solution to the problem of robust predictive control
using robust quadratic programming; Section 7.7 shows some possible ways
to describe the uncertainty on the fuzzy model and Section 7.8 concludes the
chapter.

Summary:
This chapter introduces a method to construct robust nonlinear predictive
controllers based on a robust quadratic programming method.

7.2 Robust Quadratic Programming

Robust programming has been a subject of study in recent years [89] [90] [91].
Boyd et al. [92] have shown the practical applications of these techniques
in control and filter design. Other applications include robust antenna array
design and truss topologies. Robust programming is a class of optimization
problems where the parameters such as coefficients of cost functions and/or
constraints are uncertain and prescribed into a defined set.

Efficient interior point methods have been created for some of these prob-
lems. A very interesting property of these methods is that their computational
complexity is polynomial with respect to the number of constraints. For in-
stance, the computational complexity for the second-order cone program so-
lution is a value proportional to

√
l, where l is the number of constraints.

This fact makes these algorithms very promising for large-scale optimization.
This property opens wide possibilities in the application of these methods not
only for robust optimization but also for plant-wide optimizers. Some authors
have already explored the applications of interior point methods to solve the
nominal problem of linear predictive control [93].

This section will focus its attention into the problem of robust quadratic
programming (RQP). The problem is formulated as follows:

min
x

max
P∈E,q∈F

xT Px + 2qT x + r (7.1)
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The objective is to minimize the cost function (7.1), where x ∈ �N is the
optimization variable, P ∈ �N×N is a symmetric positive definite matrix also
known as the Hessian matrix, the vector q ∈ �N is also known as the linear
term of the cost function and the scalar value r. Observe that in this case
the Hessian matrix P and the linear term q are considered uncertain and
their uncertainties are described by the sets E and F. This set E describes the
uncertainty in the following form for the P matrix:

E =

{
P0 +

m∑
i=1

Piui | ||u|| ≤ 1

}

where P0 and Pi are matrices in �N×N , u is a vector in �m and ||.|| is the
Euclidean norm. The set F describes the uncertainty of the linear term q as
follows:

F =

{
q0 +

n∑
i=1

qivi | ||v|| ≤ 1

}
where q0 and qi are vectors in �N , v is a vector in �n and ||.|| is the Euclidean
norm.

Lobo et al. [88] show that a robust quadratic program can be written as a
second-order cone program (SOCP). However, in that formulation, the uncer-
tainty was restricted to the Hessian matrix. This text presents an extension
to the formulation presented in [88] by including the uncertainty in the linear
term q, described by the set F. The next lines will describe the basics of a
second-order cone program.

A second-order cone program is defined as follows:

min
x

fT x

subject to ||Aix + bi|| ≤ cT
i x + di, i = 1, . . . , N (7.2)

where x ∈ �n is the optimization variable, ||.|| is the Euclidean norm and
the problem parameters are f ∈ �n, Ai ∈ �(ni−1)×n, bi ∈ �ni−1, ci ∈ �n and
di ∈ �.

As mentioned previously, there are very efficient methods to solve this op-
timization problem with complexity proportional to

√
l, where l is the number

of constraints.
To transform the robust quadratic program into a second-order cone pro-

gram, the description of the uncertainty sets E and F is introduced in the cost
function (7.1),

min max
||u||≤1
||v||≤1

xT P0x +
m∑

i=1

xT Pixui + 2qT
0 x + 2

n∑
j=1

qT
j xvj + r (7.3)

applying the triangle inequality:
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min[xT P0x + 2qT
0 x + max||u||≤1 ||xT Pix||||u|| + 2 max||v||≤1 ||qT

j x||||v|| + r]
≤ min[xT P0x + 2qT

0 x + ||xT Pix|| + 2||qT
j x|| + r]

(7.4)
Using this representation, the problem can be converted into a problem with
linear cost with quadratic constraints,

min f + 2qT
0 x + t + 2d + r (7.5)

subject to

xT P0x ≤ f

xT Pix ≤ wi

||qT
j x|| ≤ d

||w|| ≤ t

This optimization can be formulated as an SOCP as follows:

min f + 2qT
0 x + t + 2d + r (7.6)

subject to ∣∣∣∣∣
∣∣∣∣∣
[

2P
1
2
0 x

f − 1

]∣∣∣∣∣
∣∣∣∣∣ ≤ f + 1∣∣∣∣∣

∣∣∣∣∣
[

2P
1
2

i x
wi − 1

]∣∣∣∣∣
∣∣∣∣∣ ≤ wi + 1

||qT
j x|| ≤ d

0 ≤ f

0 ≤ wi

||w|| ≤ t (7.7)

Observe that with this new formulation the search space is extended from the
space of x to the spaces of f, wi, t and d.

Summary:
The problem of robust quadratic programming can be reduced to a second-
order cone program, which can be solved very efficiently using interior point
optimization algorithms.

7.3 Problem Description

The formulation of the robust nonlinear predictive control problem is ex-
pressed in the following lines as
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min
u(k),...,u(k+Nc)

max
δ∈∆

J(Yref, y, u, δ) (7.8)

subject to

x(k + 1) = f(x(k), u(k), δ)
y(k) = g(x(k), u(k), δ)

umin ≤ u ≤ umax

|u(k) − u(k − 1)| ≤ ∆umax

where J(...) is a cost function (typically quadratic) which penalizes the devia-
tion of the output of the plant y with respect to the reference signal Yref , in a
prescribed period (Np samples-prediction horizon). The minimization searches
for a sequence of inputs (u(k + 1), u(k + 2), . . . , u(k + Nc)) subject to con-
straints such as the plant dynamics described by f(...) and g(...) and input
constraints related with saturation and slew rate. The parameter ||δ|| ≤ ρ
represents a bounded uncertainty in the plant dynamics. For the present case
the dynamics of the plant [f(...) and g(...)] will be represented using dynamic
fuzzy models, in a state-space form or in an input–output form.

This optimization problem is a very complex problem of robust nonlinear
programming (RNLP), and with the actual computational resources it is im-
possible to guarantee that a solution is found in a prescribed number of steps.

Summary:
The problem of robust nonlinear predictive control demands the solution
on real time of a problem of robust nonlinear programming (RNLP). Such
a task is not feasible with the current state-of-the-art optimization tech-
niques.

7.4 Nominal Solution

The nominal problem (without uncertainty, ||δ|| = 0) is simpler than the
robust one, but still it is a nonlinear program (NLP). In the previous chap-
ter, some approximated solutions were found by reducing the problem to a
quadratic program (QP). . Other approaches for general classes of nonlin-
ear systems have also been proposed in the literature [65] The approaches
presented in the previous chapter explore the use of three different pseudo-
linearization methods to convert the NLP into a QP.
The nominal problem assumes no uncertainty:

min
u(k),...,u(k+Nc)

J(Yref, y, u) (7.9)

subject to
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x(k + 1) = f(x(k), u(k))
y(k) = g(x(k), u(k))

umin ≤ u(k) ≤ umax

|u(k) − u(k − 1)| ≤ ∆umax

using a pseudo-linearization1 given by

Y = Γ︸︷︷︸
Free response

+ Λu︸︷︷︸
Forced response

(7.10)

and a quadratic cost function given by

J(Y, Un) = (Yref − Y )T Q(Yref − Y ) +

+ UnT RUn + (∆Un − Ūk−1)T S(∆Un − Ūk−1)
(7.11)

The problem can be written as the following QP:

J(Un) = Jmin+
+ 2[(Γ − Yref)T QΛ − ŪT

k−1S∆]Un

+ UnT [ΛT QΛ + R + ∆T S∆]Un (7.12)

where
Jmin = Y t

refQYref + ΓT QΓ − 2Y T
refQΓ + ŪT

k−1SŪk−1

is the minimum cost that cannot be modified by any control input. The con-
straints will be written as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

I(niNc)

−I(niNc)

I(ni)0(ni×niNc)

−I(ni)0(ni×niNc)

∆
−∆

⎤
⎥⎥⎥⎥⎥⎥⎦

UNc ≤

⎡
⎢⎢⎢⎢⎢⎢⎣

UNc
max

−UNc
min

∆UNc
max + Ūk−1

∆UNc
max − Ūk−1

∆UNc
max

∆UNc
max

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.13)

where I is an identity matrix.

UNc
max =

⎡
⎢⎢⎢⎣

umax(k)
umax(k + 1)

...
umax(k + Nc)

⎤
⎥⎥⎥⎦

1 The term “pseudo-linearization” comes from the fact that Γ is obtained by sim-
ulation of the free response in the nonlinear model and Λ is the result of a lin-
earization (time invariant or variant).
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UNc
min =

⎡
⎢⎢⎢⎣

umin(k)
umin(k + 1)

...
umin(k + Nc)

⎤
⎥⎥⎥⎦ ∆Umax =

⎡
⎢⎢⎢⎣

∆umax(k)
∆umax(k + 1)

...
∆umax(k + Nc)

⎤
⎥⎥⎥⎦

where I(n) = I ∈ �n×n and 0(m×n) ∈ �m×n.
This method works well when the nonlinearities are smooth, the model is

a good representation of the plant and the control actions do not move the
system far away from the region where the “pseudo-linearization” is valid.

7.5 Formulation of the Predictive Control Problem as a
robust quadratic program

This section expands the nominal solution presented in Section 7.4 by in-
troducing uncertainty in the parameters of the cost function of the QP [see
Equation (7.12)].

For the current formulation the uncertainty will be restricted to the forced
response term (Λ + δΛ)U . The problem described in Equation (7.12) will be
converted to

J(Un) = Jmin+
+ 2[(Γ − Yref)T QΛ − ŪT

k−1S∆ + (Γ − Yref)T QδΛ]Un

+ UnT [ΛT QΛ + R + ∆T S∆ + δΛT QδΛ + ΛT QδΛ + δΛT QΛ+]Un

(7.14)

where Jmin has the same description presented in Equation (7.12).
Using this description, we can give the P matrix for the RQP by

P = P0 +
m∑

i=1

Piui

P0 = ΛT QΛ + R + ∆T S∆ (7.15)
m∑

i=1

Piui = δΛT QδΛ + ΛT QδΛ + δΛT QΛ (7.16)

where δΛ is an n-dimensional ellipsoidal uncertainty in the matrix used to
build the forced response. Observe that the n-dimensional ellipsoidal uncer-
tainty in δΛ is reflected as an m-dimensional ellipsoidal uncertainty in P with
m = n +

∑n
i=1 i = n2 + 3

2n.
The q vector will be described as:

q = q0 +
n∑

i=1

qivi

qT
0 = (Γ − Yref)

T QΛ − ūT
k−1S∆ (7.17)
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n∑
i=1

qT
i vi = (Γ − Yref)

T QδΛ (7.18)

Observe that no uncertainty is considered in the free response Γ . The main
reason for this simplification is the complexity to obtain an analytical expres-
sion that can be introduced into the RQP. The addition of uncertain terms
in the free response makes the solution computationally expensive and very
conservative, destroying the advantages of the “pseudo-linearization.” On the
other hand, the uncertainty introduced by this term is only due to the mis-
match between the plant and the model and there is no uncertainty due to
the linearization process.

Summary:
Using the concept of “pseudo-linearization” the problem of robust non-
linear predictive control can be reduced to a problem of robust quadratic
programming.

7.6 The Control Algorithm

The control algorithm can be described (see Figure 7.1) at each sampling time
by the following steps:

Algorithm

1. Read the current output of the system and update y(k).
2. With the input u(k −1) calculate thefree response Γ using Equation (6.44).
3. Construct the Λ matrix.
4. With the Λ and the Γ matrices construct the matrix P0 and the vector q0.
5. Using the uncertainty description build the set of matrices Pi and the vectors

qi.
6. Solve the SOCP described in Equation (7.6).
7. Apply the first control action, which is the first entry of the solution of the

SOCP.

7.7 Uncertainty Description in Fuzzy Models

The following lines include some ideas about the way to represent the uncer-
tainty by using the structure of the Takagi–Sugeno fuzzy models.
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Figure 7.1. Diagram with the stages of the control algorithm

7.7.1 Local Uncertainty Described on Each Rule

This is perhaps the simplest method to describe the uncertainty. The idea is
to use a Takagi–Sugeno description of the plant where the consequences of
the rules are linear dynamic systems with their respective uncertainties (see
Figure 7.2). In this case, the uncertainty and the linearization of the plant
will be assumed to be the convex combination of the local uncertainties.

. . .
IF x(k) is Ai

THEN x(k + 1) = Li + Aix(k) + Biu(k) |{δAi, δBi}
. . .

Among the advantages of this method are the simplicity of the description and
the possibility to describe locally the uncertainty based on the real knowledge
about the quality of each of the local models (for instance, the covariance of the
parameters during identification). It is important to remark that this descrip-
tion will be valid only if the fuzzy sets are complementary in the antecedents
such that the local description will be equivalent to the local linearization. It
is probably the less conservative description, but also it demands more effort
during the design phase.
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Figure 7.2. Uncertainty description on each of the rules

7.7.2 Using the Active Rules

This description assumes that the uncertainty is given by the polytope con-
structed with all the local descriptions of the active rules (rules with a firing
value different from 0) at the present instant (see Figure 7.3). This description
is efficient but inaccurate, especially when the coverage of the rules is small.
As a result of the small coverage of the rules, it might happen that the sys-
tem reaches rules that are beyond the set of active rules within the prediction
horizon. In this case, the uncertainty will be underestimated. For rules with
wide coverage, it is a very interesting solution because the system will tend
to remain within the set of active rules.
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Figure 7.3. Uncertainty description using the “polytope” of the active rules

7.7.3 Using All the Rules

The polytope constructed with all the models present in the rules is a quite
conservative approach, but it can also be constructed quickly because it can be
precomputed (see Figure 7.4). The conservativeness can lead to infeasibility
in the solution. For rules with wide coverage, it is a very interesting but very
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conservative solution and it is recommended only for systems with gentle
nonlinearities.
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Figure 7.4. Uncertainty description using the “polytope” of the complete set of
rules

7.7.4 Using the Reachable Set

In this method, the uncertainty is described also as a polytope, generated
with all rules that can be reached in the control horizon (see Figure 7.5). The
regions of the state-space that can be reached in Nc steps (control horizon)
from the current state x(k) are limited, because the input is constrained on
its maximum value and increment. These regions compose the reachable set
at time k. This description can be prepared in advance during the design
phase and can be converted in the first description proposed to improve the
performance. This method is a good compromise between the two previously
described. Observe that the reachable set can be generated dynamically ac-
cording not only to the maximum and minimum value of the inputs, but also
using the information about the predictions of the input sequence. This in-
put sequence will tell which rules will be activated in the prediction horizon,
and this information will be used to build an uncertainty description, i.e., the
polytope of all active rules in the prediction horizon.

Summary:
The uncertainty in the model can be described in many different ways.
Takagi–Sugeno fuzzy models offer a natural mechanism to obtain a de-
scription of the uncertainty of the model.

7.8 Conclusions and Perspectives

This chapter has presented a formulation for robust nonlinear predictive con-
trol based on Takagi–Sugeno fuzzy models. The structure of the Takagi–
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Figure 7.5. Graphic representation of the reachable set

Sugeno fuzzy models has been exploited to generate the formulation of the
problem. The formulation converts the Nonlinear min-max program into a
robust quadratic program (RQP). The chapter shows the way to convert the
(RQP) into a second-order cone program. This type of problem can be solved
in a very efficient way by using interior point methods.

The chapter shows that by using Takagi–Sugeno fuzzy models it is possi-
ble to design a robust nonlinear predictive controllers with a certain degree of
transparency given by the local linear representations of the system and its
uncertainties.

Future work must be devoted to refine the uncertainty description such
that it will be more compact. The stability of these control schemes can be
guaranteed by using end constraints; however, there is no formal proof to this
statement.

The main contributions included in this chapter are the formulation of the
problem of robust nonlinear predictive control in terms of a robust quadratic
program and the extension of the formulation of the robust quadratic program
as a second-order program by extending the uncertainties to the linear term
of the cost function. Another contribution is the formulation of possible ways
to obtain and represent the uncertainty.
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Conclusions and Future Perspectives

8.1 Conclusions and Summary

This book has presented several contributions to a multitude of different top-
ics of fuzzy systems. However, to cover all the issues related to fuzzy control
in detail will demand many more pages. Chapter 1 presents the capabilities
of fuzzy logic systems to approach nonlinear functions. The chapter includes
a detailed mathematical description of the constructing units and graphical
examples used to expand the comprehension of the subject.

Chapter 2 shows the main techniques to approximate nonlinear functions
by using fuzzy models, trained with input–output data. Expressions of the
gradients applied during the optimization process to adjust the parameters
of the models have been derived. The problem of generalization is addressed
and a technique to improve the generalization capabilities of the fuzzy mod-
els as well as to overcome the lack of excitation is included. This technique
guarantees a lower bound in the quality of the model (the fuzzy model will
be at least as good as the best multilinear approximation).

The fact that one of the comparative advantages of fuzzy systems in com-
parison with other “universal approximators” is its linguistic interpretability
explains the formulation of the AFRELI algorithm included in Chapter 3.
The AFRELI algorithm in combination with the FuZion algorithm has been
designed to guarantee a good trade-off between numerical accuracy and inter-
pretability. The method exploits some successful elements proposed in other
methods to reduce the complexity of the constructed model.

The algorithm generates automatically the fuzzy sets from the data and
the interactive labeling process (with intervention of the designer) guarantees
an agreement between the fuzzy set and its semantic meaning.

The algorithm generates a rule base covering all the possible cases; this
guarantees the completeness of the rule base, but the associated drawback is
the exponential growth of the rule base as the number of inputs increases.
However, this is only a storage problem because the description of the fuzzy
sets guarantees that only 2N rules (N number of inputs) are activated on each
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inference. This fact makes the inference process fast because only a limited
number of rules are evaluated.

The numerical performance of the model can be improved by making a
“fine” tuning of the parameters of the antecedents by means of constrained
gradient descent techniques.

Chapter 4 presents the formulation of the problem of system identification
in the framework of fuzzy systems. The chapter discusses the main issues in
this area such as regressors selection, experiment design, structure, parameter
adjusting and validation.

The regressor’s selection is a very important task needed in order to coun-
teract the “curse” of dimensionality that arises as the number of inputs of the
model increases. Some efficient methods are presented in this chapter to trade
off the complexity of the calculation with the accuracy of the solution.

The optimization of the parameters of the models is a task that involves
the use of gradient descent techniques. The recursive structure of the dynamic
models demands the use of gradients generated dynamically. The derivation
of the dynamic systems that generate the gradients for the most common
membership functions is also an important element contributed in this book.

Chapter 5 opens the second part of the book, which has been devoted to
the subject of control using fuzzy logic. This chapter presents several control
synthesis techniques. The chapter begins with the description of the controller
designed using pure expert knowledge. The chapter also explains the “para-
doxical” success of this type of controller in process control applications. An
interesting contribution is a method to tune fuzzy controllers using the pa-
rameters of a previously designed PID controller. This contribution is very
important because it is possible to guarantee that the fuzzy controller will
be able to achieve at least the same performance as obtained with the PID
controller. Other linear controllers can be converted into an equivalent fuzzy
controller, making smoother the migration from linear control toward nonlin-
ear control. A proof of this statement is a contribution, which can be found
in the Appendix D. Other techniques are also shown in the chapter. Among
those, it is important to mention techniques such as inverse modeling and
model referenced adaptive control. Techniques such as feedback linearization
are also explained. This technique is limited to a certain class of nonlinear
systems (affine nonlinear systems) and has been criticized for its lack of ro-
bustness. However, a more elaborate control technique based on the same
principle has been presented. This technique is the sliding mode control. This
technique deserves special attention; its robustness makes it a very good can-
didate for applications where the dynamics of plant are not very well known.
Only rough bounds on the gain are needed to achieve an acceptable perfor-
mance. Finally, the fuzzy gain scheduling technique is presented. This design
technique is quite “elegant” from the analytical point of view. The use of
advanced algorithms for semidefinite programming facilitates the solution of
the LMIs generated by the synthesis problem. More advanced synthesis tech-
niques include H∞ criterion for disturbance rejection; robust synthesis and
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observer design can be developed by the same type of methods.
In Chapter 6 the book presents a set of fuzzy model-based predictive con-

trol strategies. These strategies combine two ideas that have been accepted by
the industry for their simplicity and good performance. The ideas combined
in this strategy are predictive control and fuzzy modeling. The development of
these strategies has been preceded by a maturation of the modeling and iden-
tification techniques using fuzzy structures. This is simple control strategy,
simple from the designer’s point of view and simple to operate and maintain.

The simplicity during the design phase comes from the fact that the design
task is focused in the formulation of the goal of the control systems in terms of
a quadratic cost function and the physical or the safety constraints imposed to
the elements involved in the system. Other tuning parameters such as control
and prediction horizons are closely related with the settling time and model
order and typically exhibit a monotonic tendency, making the tuning of the
controller a simple task. Of course, the simplicity does not come for free. The
strategy concentrates the effort in two tasks. One task is the effort that must
be put to build the model and the other task is the operation of the control
system, which is computationally intensive, compared with more traditional
controllers. Today the limit of the sampling frequencies lies around the 100
Hz, which are already good not only for process control but also for some
mechanical systems.

The algorithms presented in this chapter are applicable for unconstrained
and constrained systems. Also, these algorithms presented can be extended in
some cases to other model structures such as neural networks, Volterra series,
splines, support vector machines, physical models, etc. The central aspect of
the strategies presented is the reduction of the original complex nonlinear pro-
gram (with no possibility for online implementation), to a simple quadratic
program (online implementable) by exploiting the structure of the problem
and the structure of the models. The relaxation introduced by the methods
presented in this chapter can be explained as a relaxation of the equality
constraints imposed by the plant description. In some cases, these approx-
imated solutions can be quite close to the “global optimal solution” of the
original nonlinear program. The assumptions used to reduce the problem de-
mand some smoothness in the nonlinearities, which are directly related with
the prediction capability of the model.

Finally, the book closes with a chapter dedicated to the solution of the
problem of robust nonlinear predictive control based on Takagi–Sugeno fuzzy
models. The structure of the Takagi–Sugeno fuzzy models has been exploited
to generate a formulation of the problem as a robust optimization problem.
The robust solution guarantees that under the uncertainty described the con-
straints will not be violated. This fact is very important to guarantee stability,
especially when it is enforced by means of end constraints. The formulation
generates a big set of constraints; however, the performance of the optimiza-
tion procedure is only slightly degraded because the solution of the optimiza-
tion problem is found by means of interior point optimization algorithms. The
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chapter also presents some possible ways to formulate the uncertainty in the
problem.

8.2 Perspectives and Future Work

This section is included as a guideline for the new researchers and attempts
to point out some research topics that are important to be pursued in the
coming years.

In the area of modeling, the curse of dimensionality is an open problem
that has limited the application of fuzzy systems to systems with a small num-
ber of inputs. The solution to this problem must keep in mind the importance
of the linguistic relevance of the solution. A promising strategy is the formu-
lation of hierarchies; however, there is no systematic method to define the
priority of one variable with respect to the others. Heuristic methods are the
only available tools. Some type of measurements should be defined to guide
the selection and the position in the hierarchy of the variables to guarantee
the maximum generalization with the minimal description.

Another important problem that deserves attention is the design of clus-
tering techniques with variable shapes such that the number of rules obtained
after projection is optimal.

The identification problem presents a series of open problems. Important
problems are model order estimation and more constructive regressor selec-
tion methods. New validation methods and a better link between the results
given by the validation method and the way to improve the quality of the
model are also very important.

When the identification problem includes Takagi–Sugeno models, the se-
lection of the variables governing the scheduling of the local models is also an
open problem. So far, only heuristic methods have been proposed.

Even if the models obtained via identification are consistent from the lin-
guistic point of view, the use of delayed variables (x(k − n)) is not very in-
tuitive. A more intuitive description is in terms of tendencies of the variables
(∆x(k)). A method to convert a model described in terms of delayed variables
into a model described with tendencies of the variables, and vice versa, will be
very useful to extract more linguistic information from the dynamic model.

Experiment design is a very important issue that must be investigated.
This issue has special relevance when the system to be identified is very com-
plex. Performing experiments in some processes can be very expensive or take
such a long time that their number will be very limited. Identification along
trajectories is a very interesting issue in the chemical process industry. Here
good experiment design is paramount due to the high costs of production.

Even though one of the earliest developments on the application of fuzzy
systems has been the design of controllers using expert knowledge, still there
is no test for stability for this kind of controllers. Probably the main difficulty
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comes from the fact that mathematical knowledge about the plant is very lim-
ited, and a formal test of stability demands some knowledge about the plant.
The proposed technique to design fuzzy controllers from PID controllers has
no formal proof for stability. However, if the plant is a linear system of second
order, it is possible to design a synthesis method that guarantees the stability
of the system. The author is more skeptical as to whether such a method can
be constructed for a linear plant with any order.

The sliding mode control strategy using fuzzy systems is a very promising
strategy; so far, the limitation is that such a technique is applicable only to
affine systems. Further research must be oriented to extend this method to
more general nonlinear plants. Finally, the design of fuzzy controllers using
LMIs has been considered conservative for the difficulty to find a common P
matrix. Johansson et al. [59] have proposed new alternatives. The relaxation
of the problem is obtained by means of formulating a piecewise quadratic
Lyapunov function; the potential of this idea seems very wide.

The idea of predictive control using fuzzy models has been studied ex-
tensively in this book. However, there is enough space for improvement and
future research. One very important issue is to study the performance of the
algorithms and their possible modification such that other cost functions in-
volving direct economic cost can be taken into account. Such a cost function
can be in some cases quite nonlinear and even discontinuous. New research
must be oriented to find ways to introduce other types of inequality con-
straints. So far, only linear constraints have been treated. Linear inequality
constraints cover a big spectrum of constraints such as saturation and slew
rate constraints. The use of nonlinear constraints can make possible the in-
troduction of energy-related aspects.

The authors have explored the use of active set methods and interior
point methods to solve the quadratic optimization programs generated by the
presented algorithms. Interior point methods are very promising for their ca-
pacity to handle a large number of constraints. However, some problems must
be solved before these techniques can be applied exploiting their full potential.
The matrices involved in the optimization exhibit a regular structure that can
be exploited to improve the performance of the optimization algorithms.

The robust predictive control strategy demands more research about the
way to define the uncertainty and how to obtain such information from the
plant and/or the model. Finally, the stability of this control schemes can be
guaranteed by using end constraints; however, there is no formal proof to this
statement.
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Fuzzy Set Theory

A.1 Introduction

The purpose of this appendix is to present an introduction to the main con-
cepts of fuzzy sets. The concept of fuzzy sets arises as an answer to the prob-
lems of paradoxes, uncertainties and absence of precision found in crisp sets.
Fuzzy sets are more inherent to nature than crisp sets. Crisp sets only consider
elements with very well-defined characteristics, such that a clear set boundary
can be established. Many authors try to relate fuzziness to probabilities. In
some cases fuzziness and probabilities can be treated with similar rules, but
it is very important to recall that fuzziness presents the degree of belonging
of one element to a certain set, while probabilities describe the behavior of
many elements that belong to a certain set.

A.2 Fuzzy Sets

Let X denote the universal set. A conventional (crisp) set A is defined by a
characteristic (membership) function µ(x) (x ∈ X) that assigns the values 1
or 0 to each element x ∈ X, respectively, if x belongs or does not belong to
A. µA : X → {0, 1}

A fuzzy set A is defined by a membership function µA : X → [0, 1] that
describes the membership degree of the elements of A. Values of µA(x) closer
to 1 denote a higher degree of set membership.

A.2.1 Some Examples of Membership Functions

Let X = �. For the statement “x is around M” we can define the following
membership functions:
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• Delta membership:

µ(x) =
{

1 x = M
0 otherwise

• Step membership:

µ(x) =
{

1 M − M1 ≤ M ≤ M + M1
0 otherwise

• Ramp or triangular membership:

µ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 x < M − M1 or x > M + M1

1 + x−M
M1

M − M1 ≤ x ≤ M

1 − x−M
M1

M ≤ x ≤ M + M1

• Exponential membership:

µ(x) = exp(−t|x − M |)

• Gaussian membership:

µ(x) = exp(−t(x − M)2)

A.3 Basic Definitions of Fuzzy Sets

A.3.1 Support

The support of a fuzzy set A over the universe X is defined as the crisp subset
where the membership function µA(x) is larger than zero.

Supp(A) = {x|µ(x) > 0}

A.3.2 Core

The core of a fuzzy set A over the universe X is defined as the crisp subset
where the membership function µA(x) is equal to 1.

Core(A) = {x|µ(x) = 1}
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A.3.3 Height

The height of a fuzzy set A is the supremum of its membership function:

hgt(A) = sup
x∈X

µA(x)

A.3.4 Normal Fuzzy Set

A fuzzy set A is “normal” if there exists at least one value of x ∈ X such that
µA(x) = 1.

A.3.5 α-Cut

The α-cut of a fuzzy set A is defined as the crisp subset of X where µA(x) ≤ α.

Aα = {x|µA(x) ≤ α}

A.3.6 Strict α-Cut

The strict α-cut of a fuzzy set A is defined as the crisp subset of X where
µA(x) < α.

A.3.7 Convexity

A fuzzy set A defined in �n is convex if each of its α-cuts is convex.

A.4 Operations on Fuzzy Sets

A.4.1 A Is Contained in B

A set A is contained in the set B or A is a subset of B, denoted by A ⊆ B, if

µA(x) ≤ µB(x) ∀x ∈ X

A subset is proper (A ⊂ B) if (µA(x) < µB(x)).

A.4.2 Complement, Negation

The membership function µĀ(x) of the complement of A (denoted by Ā) is
defined by

µĀ(x) = 1 − µA(x), ∀x ∈ X

The relative complement of the set A with respect to a set B is defined by:

µĀB
(x) = µB(x) − µA(x), x ∈ X if µB(x) > µA(x)
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A.4.3 Intersection

The intersection of a set A with a set B is defined by

A ∩ B = {x|x ∈ A ∧ x ∈ B}
The most important operators for the intersection are

• Extreme operator

µA∩1B(x) = µA(x) ∧ µB(x) = min{µA(x), µB(x)} ∀x ∈ X

• Product operator

µA∩2B(x) = µA(x)µB(x) ∀x ∈ X

For crisp sets:

µA∩1B(x) = µA∩2B(x)

For fuzzy sets:

µA∩1B(x) ≥ µA∩2B(x)

Characteristics of the intersection operators:

• ∩1 and ∩2 are commutative.
• ∩1 and ∩2 are associative.
• Identity: µA ∩i 1 = µA.
• Absorption: µA ∩i 0 = 0.
• ∩1 is an idempotent operator. µ ∩1 µ = µ.
• ∩2 is not an idempotent operator. µ ∩2 µ �= µ, µ ∩2 µ ⊂ µ.
• For fuzzy sets the law of non-contradiction (µ ∩ µ̄ = 0) does not hold.

Example: Let µ = 0.5, µ ∩1 µ̄ = 0.5 or µ ∩2 µ̄ = 0.25.
• Product intersection is a subset of minimum intersection: (µA ∩1 µB) ⊂

(µA ∩2 µB).
• For µA ⊂ µB , µA ∩1 µB = µA and µA ∩2 µB ⊂ µA.

A.4.4 Union

The union of a set A with a set B is defined by

A ∪ B = {x|x ∈ A ∨ x ∈ B} ∀x ∈ X

The most important operators for the union operation are
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• Extreme operator

µA∪1B(x) = µA(x) ∨ µB(x) = max{µA(x), µB(x)} ∀x ∈ X

• Sum operator

µA∪2B(x) = µA(x) + µB(x) − µA(x)µB(x) ∀x ∈ X

For crisp sets:

µA∪1B(x) = µA∪2B(x)

For fuzzy sets:

µA∪1B(x) ≤ µA∪2B(x)

Characteristics of the union operators:

• ∪1 and ∪2 are commutative.
• ∪1 and ∪2 are associative.
• Identity: µA ∪i 0 = µA.
• Absorption: µA ∪i 1 = 1.
• ∪1 is an idempotent operator. µ ∪1 µ = µ.
• ∪2 is not an idempotent operator. µ ∪2 µ �= µ, µ ∪2 µ ⊂ µ.
• For fuzzy sets the law of excluded middle (µ ∪ µ̄ = X) does not hold.

Example: Let µ = 0.5, µ ∪1 µ̄ = 0.5 or µ ∪2 µ̄ = 0.75.
• (µA ∪1 µB) ⊂ (µA ∪2 µB).
• For µA ⊂ µB , µA ∪1 µB = µB and µA ∪2 µB ⊃ µB .

A.5 Fuzzy relations

A relation represents the presence or absence of association, interaction or
interconnection between the elements of two or more sets. A binary relation
is any relation between two sets. For example:

R(x, y) = (X AND Y ) x ∈ X, y ∈ Y

A fuzzy relation R(x, y) is a fuzzy subset of X × Y .
For membership function µ(x, y)

R = {µ(x, y) : X × Y → [0, 1]}
or

R = {(x, y), µR(x, y)} =
⋃

(x, y)µR(x, y)

A fuzzy relation on sets X1, X2, ..., Xn is a fuzzy subset of X1×X2×...×Xn
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Rn = {µ(x1, x2, ..., xn) : X1 × X2 × ... × Xn → [0, 1]}
or

Rn =
⋃{(x1, x2, ..., xn), µR(x1, x2, ..., xn)} : X1 × X2 × ... × Xn → [0, 1]

A fuzzy relation can be represented by

• Membership function
• Matrix (table) if the number of elements is finite
• Picture with gray shades corresponding to µ value

A.5.1 Projection of Fuzzy Relations

In a binary fuzzy relation one can define two projections:

• First projection: R(1) = {x,maxy µ(x, y)} x, y ∈ X × Y
• Second projection: R(2) = {y, maxx µ(x, y)} x, y ∈ X × Y

The global projection (also known as the height of the relation) is given by

Rg = max
x

max
y

µ(x, y)

A fuzzy relation is called normal if the global projection is 1. The opera-
tions between fuzzy sets can be extended to relations, for instance, intersec-
tion, union, etc.

A.5.2 Composition of Relations

The combination of fuzzy sets and fuzzy relations is called the composition.
Given:

R(x, y) (x, y) ∈ X × Y R : X × Y → [0, 1]
S(y, z) (y, z) ∈ Y × Z S : Y × Z → [0, 1]

Composition C(x, z)

• Max-min composition:
µc(x, z) = max{min(µR(x, y), µS(y, z))} x ∈ X, y ∈ Y, z ∈ Z

• Max product composition:
µc(x, z) = max{µR(x, y)µS(y, z)} x ∈ X, y ∈ Y, z ∈ Z

A.6 Approximate Reasoning

A.6.1 Introduction

Approximate reasoning is a well-known form of fuzzy logic and uses a group of
inference rules. These inference rules use fuzzy propositions as premises. The
output of the inference rules is a set of conclusions. In the case of crisp sets,
these are either true or false, but when the inference rules use fuzzy premises
the conclusions have a certain degree of truth.
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A.6.2 Linguistic Variables

Lotfi Zadeh defines a linguistic variable as follows: “By a linguistic variable we
mean a variable whose values are words or sentences in a natural or artificial
language. For example, Age is a linguistic variable if its values are linguistic
rather than numerical, i.e.young, not young, very young, quite young, old, not
very old and not very young, etc., rather than 20, 21, 22,...” [5]

Driankov[6] represents a linguistic variable and the framework as

〈X, LX, X, Mx〉
where X denotes the name of the symbolic variable, e.g., age, height, speed,
pressure, error, change of error, etc. LX is the set of linguistic values that X
can take. In the case of the variable age A we have

LA = {very young, young, adult, mature, old, very old}
In control systems, the linguistic variables are usually the error and the change
of error and the set is usually represented by the set {NB, NM, NS, ZO, PS,
PM, PB} where NB means “Negative Big,” NM “Negative Medium,” ZO
means “Zero,” etc. LX is also called the term set of X or the reference set
of X. X is the physical domain of the variables; for instance, for the variable
age, the domain could be [0, 95]. X is also called U or the universe of discourse
and can be continuous or discrete. Mx is a semantic function that gives an
interpretation of the linguistic value in terms of the quantitative elements of
X. It is the set of the membership function in the universe of discourse X, i.e.,

MX : LX → L̃X

A.7 General Structure of a Fuzzy Inference System

The purpose of this section is to give an overview about the structure, char-
acteristics and functioning of the fuzzy inference systems. The fuzzy inference
system is an inference system based on linguistic rules sometimes generated by
empirical knowledge. First the crisp values coming from quantitative measure-
ments are converted to linguistic values (LX). This process is called fuzzifica-
tion. The fuzzification process uses the membership functions to make such a
conversion. Figure A.1 shows the membership functions for the fuzzification
of a crisp temperature.

A.7.1 Control Rules as a Knowledge Representation

After the fuzzification, the control rules can be applied. These rules are pre-
sented in an IF .. AND.. THEN ..OR ELSE form and represent the set of
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Figure A.1. Fuzzy sets for temperature

decisions when the input variables belong to certain fuzzy sets. The conse-
quence of the rule is calculated as a max-min composition.

if LA1 and LB1 and .. and LN1 then LU1
or else
if LA1 and LB1 and .. and LN2 then LU2
or else
...
or else
if LAN and LBN and .. and LNN then LUN

Represented in the form of a fuzzy relation:

R : R1 ∪ R2 ∪ . . . ∪ RN =
N⋃

i=1

(LAi × LBi × . . . × LNi × LUi)

Because the AND operation can be represented as a min operation and the
OR can be represented as the max operation, a rule can be represented by

R(µA(l), µB(j), . . . , µU (k)) =
max

1≤i≤N
{LAl(µA(l)) ∧ LBj(µB(j)) ∧ . . . ∧ LUi(µU (k))}
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A.7.2 Defuzzification

After the inference process, the result of the process has to be converted to
a crisp value. This procedure is called defuzzification. Some defuzzification
methods are

• Center-of-area/ gravity
• Center-of-sums
• Height

The influence of the mentioned defuzzification method on the controller perfor-
mance is negligible. The next lines present the different defuzzification meth-
ods.

Center-of-Area/Gravity

For discrete systems:

x∗ =
∑n

i=1 xiµU (xi)∑n
i=1 µU (xi)

For continuous membership function:

x∗ =

∫
U

xµU (x)dx∫
U

µU (x)dx

Center-of-Sums

For discrete systems:

x∗ =
∑n

i=1 xi

∑l
k=1 µk(xi)∑n

i=1
∑l

k=1 µk(xi)

For continuous membership function:

x∗ =

∫
U

x
∑l

k=1 µk(x)dx∫
U

∑l
k=1 µk(x)dx

Height

This method takes the peak value of each consequence and makes a weighted
sum of these peak values, where the weights are the degree of membership
of the fired rule. The method is equal to the center of gravity when the
consequence membership functions are singletons. Using a singleton as the
membership functions of the consequences, the membership function of the
ith consequence is
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µi(x) = 1 if x = xi

µi(x) = 0 if x �= xi

The defuzzification using this method will generate the following expression:

x∗ =
∑L

i=1 xiµi(x)∑L
i=1 µi(x)

This method is computationally fast and generates continuous values, making
it very useful for function approximation.
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Clustering Methods

Clustering methods are a set of techniques to reduce groups of information X
represented as p-dimensional vectors into characteristic sets Ai characterized
by feature vectors vi ∈ �p and membership functions µA. The applications
of these techniques include pattern recognition, classification and the appli-
cations presented in this book for fuzzy modeling and identification. This
appendix presents only the methods that are used in this book, and it is by
no means a complete survey of these techniques.

B.1 Fuzzy C-Means [2]

The fuzzy C-means clustering algorithm is based on the minimization of the
cost function:

min
(U,V )

{
Jm(U, V ; X) =

n∑
k=1

c∑
i=1

(µik)m||xk − vi||2A
}

(B.1)

where X is the set of vectors, xk ∈ �p with the information, V = [v1, . . . , vc]
is the set of feature vectors, ||.||A is the norm of the vector defined as xT Ax,
where A is assumed to be the identity matrix, and U ∈ Mfc is the fuzzy
partition matrix, defined as an element of the set:

Mfc =

{
U ∈ �c×N |µik ∈ [0, 1],∀i, k;

c∑
i=1

µik = 1, ∀k; 0 <

N∑
k=1

µik < N, ∀i

}
(B.2)

The ith row of the fuzzy partition matrix contains the membership values of
the vectors x to the Ai fuzzy set. The elements of U are calculated as

µik =

⎡⎣ c∑
j=1

( ||xk − vi||A
||xk − vj ||A

) 2
m−1

⎤⎦−1

∀i, k (B.3)
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The prototypes vi are calculated as

vi =
∑n

k=1(µik)mxk∑n
k=1(µik)m

∀i (B.4)

The fuzzy C-means algorithm works as follows:

Algorithm Fuzzy C-Means

Given the data set X with N vectors, select the number of clusters 1 < c <
N , the exponent m, the termination tolerance ε > 0 and the matrix A to
calculate the induced norm, and initialize the matrix U randomly such that
U (0) ∈ Mfc.

• Repeat for j = 1, 2, . . ..
• Step 1: Calculate the prototypes:

v
(j)
i =

∑n
k=1(µ

(j−1)
ik )mxk∑n

k=1(µik)m
1 ≤ i ≤ c (B.5)

• Step 2: Calculate fuzzy partition matrix:

µ
(j)
ik =

⎡⎣ c∑
l=1

(
||xk − v

(j)
i ||A

||xk − v
(j)
l ||A

) 2
m−1

⎤⎦−1

1 ≤ i ≤ c, 1 ≤ k ≤ N (B.6)

• Until ||U (j) − U (j−1)|| < ε.

It is important to remark that when the vector xk is equal to one of the proto-
types vi the expression (B.6) becomes singular. For this case the membership
value µik for this vector is equal to one and zero for all the other entries in
the kth row of U .

The parameter m is a very important parameter. As m → ∞, the means
of the clusters tend to the mean of the set X.

B.2 Using Fuzzy Covariance Matrix: Gustafson and
Kessel Algorithm [3]

The fuzzy Gustafson and Kessel clustering algorithm is based on the mini-
mization of the cost function:

min
(U,V,A)

{
Jm(U, V,A; X) =

n∑
k=1

c∑
i=1

(µik)m(xk − vi)T Ai(xk − vi)

}
(B.7)
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where X is the set of vectors, xk ∈ �p with the information, V = [v1, . . . , vc]
is the set of feature vectors, A = [A1, . . . , Ac] is a set of c norm-inducing
matrices and U ∈ Mfc is the fuzzy partition matrix, defined as an element of
the set:

Mfc =

{
U ∈ �c×N |µik ∈ [0, 1], ∀i, k;

c∑
i=1

µik = 1, ∀k; 0 <

N∑
k=1

µik < N, ∀i

}
(B.8)

The ith row of the fuzzy partition matrix contains the membership values of
the vectors x to the Ai fuzzy set.

Observe that the cost function can be arbitrarily small by reducing the
norm of each Ai. For this reason a constraint is introduced to preserve the
norm of Ai:

|Ai| = ρi ρi > 0

Applying the Lagrange multipliers to the above mentioned optimization prob-
lem generates the following expression for Ai:

Ai = [ρi det(Pi)]1/nP−1
i (B.9)

where Pi is the fuzzy covariance matrix:

Pi =
∑n

k=1(µik)m(xk − vi)(xk − vi)T∑n
k=1(µik)m

(B.10)

The elements of U are calculated as

µik =

⎡⎣ c∑
j=1

(
(xk − vi)T Ai(xk − vi)
(xk − vj)T Ai(xk − vj)

) 2
m−1

⎤⎦−1

∀i, k (B.11)

The prototypes vi are calculated as

vi =
∑n

k=1(µik)mxk∑n
k=1(µik)m

∀i (B.12)

The Gustafson and Kessel algorithm works as follows:
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Algorithm Fuzzy Covariance Matrix – Gustafson and Kessel

Given the data set X with N vectors, select the number of clusters 1 < c < N ,
the exponent m, the termination tolerance ε > 0 and the volumes ρi of
the matrices Ai to calculate the induced norms, and initialize the matrix U
randomly such that U (0) ∈ Mfc.

• Repeat for j = 1, 2, . . . .
• Step 1: Calculate the prototypes:

v
(j)
i =

∑n
k=1(µ

(j−1)
ik )mxk∑n

k=1(µ
(j−1)
ik )m

1 ≤ i ≤ c (B.13)

• Step 2: Calculate the fuzzy covariance matrices:

P
(j)
i =

∑n
k=1(µ

(j−1)
ik )m(xk − v

(j)
i )(xk − v

(j)
i )T∑n

k=1(µ
(j−1)
ik )m

(B.14)

• Step 3: Calculate the induced-norm matrices:

Ai = [ρi det(Pi)]1/nP−1
i 1 ≤ i ≤ c (B.15)

• Step 4: Calculate the fuzzy partition matrix:

µ
(j)
ik =

⎡⎣ c∑
l=1

(
(xk − v

(j)
i )T A

(j)
i (xk − v

(j)
i )

(xk − v
(j)
l )T A

(j)
i (xk − v

(j)
l )

) 2
m−1

⎤⎦−1

1 ≤ i ≤ c, 1 ≤ k ≤ N

(B.16)
• Until ||U (j) − U (j−1)|| < ε.

It is important to remark that when the vector xk is equal to one of
the prototypes vi the expression (B.16) becomes singular. For this case the
membership value µik for this vector is equal to one and zero for all the other
entries in the kth row of U .

The parameter m is a very important parameter. As m → ∞, the means
of the clusters tend to the mean of the set X.

B.3 Mountain Clustering [4]

In this algorithm a super set of the feature vectors V is proposed in advance,
then some vectors are selected according to the value of the mountain function
calculated for the given vector vi. The mountain function is defined as

M(vi) =
N∑

k=1

e−(αd(vi,xk)) (B.17)
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where α is a positive constant and d(vi, xk) is a distance measure from vi to
xk and it is typically but not necessarily:

d(vi, xk) = ||vi − xk||2 (B.18)

Two of the most popular elections of the feature vector candidates are

• Take the set of feature candidates equal to the set of data points V = X.
This is not very efficient for large data sets.

• Take a grid (arbitrary) defined in the interval where the points of X are
defined. This is not very efficient for vectors defined on a large-dimensional
space.

Compared with other clustering methods the mountain clustering method has
as its main advantage the fact that the number of clusters does not need to
be defined in advance. The algorithm works as follows:

Algorithm Mountain Clustering

Given the data set X with N vectors, select the parameters α and β, the
termination tolerance ε, and the set of feature vector candidates V with c
elements.

• Step 1: Calculate the initial mountain function

M (0)(vi) =
N∑

k=1

e−(αd(vi,xk)) 1 ≤ i ≤ c (B.19)

• Repeat for j = 1, 2, . . . .
• Step 2: Find the largest mountain value:

M (j−1)∗ = max
vi

M (j−1)(vi) (B.20)

• Step 3: Define the location of the maximum of the mountain value
as the center of the j − 1 cluster:

v(j−1)∗ = arg max
vi

M (j−1)(vi) (B.21)

• Step 4: Calculate the revised mountain function M (j)(vi):

M (j)(vi) = M (j−1)(vi) − M (j−1)∗
N∑

k=1

e−(βd(v(j−1)∗,xk)) 1 ≤ i ≤ c (B.22)

• Until M (j−1)∗ < ε.
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Gradient Expressions Used in Identification
with Fuzzy Models

The gradients derived on this appendix are useful in the optimization of dy-
namic models. The cost function to be minimized is the quadratic cost func-
tion, which is defined as

VN (θ) =
1

2N

N∑
t=1

|y(t) − ŷ(t|θ)|2 (C.1)

where y(t) is the output of the “real” system at time t,

ŷ(t|θ) = f(ϕ(t), θ) (C.2)

ŷ(t|θ) is the output of the constructed model parameterized by the vector
θ. The vector θ describes the membership functions and the position of the
singletons in the consequences and

ϕ(t) = [y(t − 1), . . . , y(t − m), ŷ(t − 1), . . . , ŷ(t − n), . . .
u(t), . . . , u(t − k), ε(t − 1), . . . , ε(t − l)]

is the set of regressors of the model. The derivations shown in this appendix
can be applied to the structures NFIR, NARX, NOE, NARMAX and NBJ.

This appendix initially shows the derivation of the gradient for the con-
sequences of the rules; in the second part it shows the derivation for the
parameters of different types of membership functions.

C.1 Gradient for the Singleton Consequences

The expression for the gradient is given by

∂VN (θ)
∂ȳl

=
1
N

N∑
t=1

(y(t) − ŷ(t|θ))(−∂ŷ(t|θ)
∂ȳl

) (C.3)
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with
∂ŷ(t|θ)

∂ȳl
= ȳl ∂wl(ϕ(t))

∂ȳl
+ wl(ϕ(t)) (C.4)

Observe that if the model is NARX or NFIR the term ∂wl(ϕ(t))/∂ȳl = 0
and the expression for the gradient will be the same used for static function
approximation. The term ∂wl(ϕ(t))/∂ȳl is dependent from previous gradient
values and must be generated dynamically.

∂wl(ϕ(t))
∂ȳl

=
∂µl(ϕ(t))

∂ȳl

∑L
i=1 µi(ϕ(t)) − µl(ϕ(t))∂

∑L
i=1 µi(ϕ(t))

∂ȳl∑L
i=1 µi(ϕ(t))

(C.5)

where

∂µl(ϕ(t))
∂ȳl

=
∑
i∈Y

µl(ϕ(t))
µi

l(ŷ(t − k(i)))
∂µi

l(ŷ(t − k(i)))
∂ȳl

+
∑
j∈E

µl(ϕ(t))
µj

l (ε(t − m(j)))

∂µj
l (ε(t − m(j)))

∂ȳl
(C.6)

where Y represents the set of inputs related with the regressors ŷ(.) with delay
k(i) and E represents the set of inputs related with the regressors ε(.) with
delay m(j), and∑L

i=1 µi(ϕ(t))
∂ȳl

=
L∑

l=1

{∑
i∈Y

µl(ϕ(t))
µi

l(ŷ(t − k(i)))
∂µi

l(ŷ(t − k(i)))
∂ȳl

+
∑
j∈E

µl(ϕ(t))
µj

l (ε(t − m(j)))

∂µj
l (ε(t − m(j)))

∂ȳl

⎫⎬⎭ (C.7)

Finally, according to the type of membership functions used in the terms
∂µj

l (ε(t − m(j)))/∂ȳl and ∂µi
l(ŷ(t − k(i)))/∂ȳl will have the following expres-

sions:

C.1.1 With Trapezoidal Membership Functions

For trapezoidal membership functions using the parameterization given in
Equation (2.17):

∂µi
l(ŷ(t − k(i)))

∂ȳl
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if ŷ(t − k(i)) < ai
l

1
bi

l−ai
l

∂ŷ(t−k(i))
∂ȳl if ai

l < ŷ(t − k(i)) < bi
l

0 if bi
l < ŷ(t − k(i)) < ci

l
−1

di
l−ci

l

∂ŷ(t−k(i))
∂ȳl if ci

l < ŷ(t − k(i)) < di
l

0 if ŷ(t − k(i)) > di
l

(C.8)
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∂µj
l (ε(t − m(j)))

∂ȳl
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if ε(t − m(j)) < aj
l

−1
bj

l −aj
l

∂ŷ(t−m(j))
∂ȳl if aj

l < ε(t − m(j)) < bj
l

0 if bj
l < ε(t − m(j)) < cj

l
1

dj
l −cj

l

∂ŷ(t−m(j))
∂ȳl if cj

l < ε(t − m(j)) < dj
l

0 if ε(t − m(j)) > dj
l

(C.9)

C.1.2 With Polynomial Membership Functions

For polynomial membership functions using the parameterization given in
Equation (2.31)

∂µi
l(ŷ(t − k(i)))

∂ȳl
=⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if ŷ(t − k(i)) < ai
l

6[ŷ(t−k(i))2−(ai
l+bi

l)ŷ(t−k(i))]+ai
l
3−3bai

l
2

(ai
l−bi

l)
3

∂ŷ(t−k(i))
∂ȳl if ai

l < ŷ(t − k(i)) < bi
l

0 if bi
l < ŷ(t − k(i)) < ci

l
6[ŷ(t−k(i))2−(di

l+ci
l)ŷ(t−k(i))]+di

l
3−3cdi

l
2

(di
l−ci

l)
3

∂ŷ(t−k(i))
∂ȳl if ci

l < ŷ(t − k(i)) < di
l

0 if ŷ(t − k(i)) > di
l

(C.10)

∂µj
l (ε(t − m(j)))

∂ȳl
=⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if ε(t − m(j)) < aj
l

6[(aj
l +bj

l )ε(t−m(j))−ε(t−m(j))2]−aj
l

3+3baj
l

2

(aj
l −bj

l )
3

∂ŷ(t−m(j))
∂ȳl if aj

l < ε(t − m(j)) < bj
l

0 if bj
l < ε(t − m(j)) < cj

l
6[(dj

l +cj
l )ε(t−m(j))−ε(t−m(j))2]−dj

l

3+3cdj
l

2

(dj
l −cj

l )
3

∂ŷ(t−m(j))
∂ȳl if cj

l < ε(t − m(j)) < dj
l

0 if ε(t − m(j)) > dj
l

(C.11)

C.1.3 With Gaussian Membership Functions

For Gaussian membership functions using the parameterization presented in
(2.45):

∂µi
l(ŷ(t − k(i)))

∂ȳl
= −2

(ŷ(t − k(i)) − x̄i
l)

σi
l
2 µi

l(ŷ(t − k(i)))
∂ŷ(t − k(i))

∂ȳl
(C.12)

∂µj
l (ε(t − m(j)))

∂ȳl
= 2

(ε(t − m(j)) − x̄j
l )

σj
l

2 µj
l (ε(t−m(j)))

∂ŷ(t − m(j))
∂ȳl

(C.13)
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C.2 Gradient for the Parameters of the Membership
Functions

The expression for the gradient is given by

∂VN (θ)
∂ȳl

=
1
N

N∑
t=1

(y(t) − ŷ(t|θ))(−∂ŷ(t|θ)
∂α

) (C.14)

where α ⊂ θ represents all the adjustable parameter in the model excluding
the consequences, and

∂ŷ(t|θ)
∂αn

=
1∑L

l=1 µl(ϕ(t))

∑
l∈U

(ȳl − ŷ(t|θ)) µl(ϕ(t))
µi

j(ŷ(t − k(l)))
∂µi

j(ŷ(t − k(l)))
∂αn

(C.15)
where αn is a parameter of the membership function µi

j(.) and U is the set
of rules that include in the antecedents the membership function µi

j(.). Ac-
cording to the type of membership functions and the regressors the term
∂µi

j(ŷ(t− k(l)))/∂αn will have expressions, which are presented in the follow-
ing lines.

C.2.1 With Trapezoidal Membership Functions

For trapezoidal membership functions αn could be aj
i , b

j
i , c

j
i , d

j
i and the gradi-

ents will be

∂µi
j(ŷ(t − k(l)))

∂aj
i

=

⎧⎪⎪⎨
⎪⎪⎩

0 ŷ(t − k(l)) < aj
i

∂ŷ(t−k(l))

∂a
j
i

(bj
i −a

j
i )+(ŷ(t−k(l))−b

j
i )

(bj
i −a

j
i )2

aj
i < ŷ(t − k(l)) < bj

i

0 ŷ(t − k(l)) > bj
i

(C.16)

∂µi
j(ε(t − m(l)))

∂aj
i

=

⎧⎪⎪⎨
⎪⎪⎩

0 ε(t − m(l)) < aj
i

− ∂ŷ(t−m(l))

∂a
j
i

(bj
i −a

j
i )+(ε(t−m(l))−b

j
i )

(bj
i −a

j
i )2

aj
i < ε(t − m(l)) < bj

i

0 ε(t − m(l)) > bj
i

(C.17)

∂µi
j(ŷ(t − k(l)))

∂bj
i

=

⎧⎪⎪⎨
⎪⎪⎩

0 ŷ(t − k(l)) < aj
i

∂ŷ(t−k(l))

∂b
j
i

(bj
i −a

j
i )−(ŷ(t−k(l))−a

j
i )

(bj
i −a

j
i )2

aj
i < ŷ(t − k(l)) < bj

i

0 ŷ(t − k(l)) > bj
i

(C.18)

∂µi
j(ε(t − m(l)))

∂bj
i

=

⎧⎪⎪⎨
⎪⎪⎩

0 ε(t − m(l)) < aj
i

− ∂ŷ(t−m(l))

∂b
j
i

(bj
i −a

j
i )−(ε(t−m(l))−a

j
i )

(bj
i −a

j
i )2

aj
i < ε(t − m(l)) < bj

i

0 ε(t − m(l)) > bj
i

(C.19)
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∂µi
j(ŷ(t − k(l)))

∂cj
i

=

⎧⎪⎪⎨
⎪⎪⎩

0 ŷ(t − k(l)) < cj
i

− ∂ŷ(t−k(l))

∂c
j
i

(dj
i −c

j
i )+(dj

i −ŷ(t−k(l)))

(dj
i −c

j
i )2

cj
i < ŷ(t − k(l)) < dj

i

0 ŷ(t − k(l)) > dj
i

(C.20)

∂µi
j(ε(t − m(l)))

∂cj
i

=

⎧⎪⎪⎨
⎪⎪⎩

0 ε(t − m(l)) < cj
i

∂ŷ(t−m(l))

∂c
j
i

(dj
i −c

j
i )+(dj

i −ε(t−m(l)))

(dj
i −c

j
i )2

cj
i < ε(t − m(l)) < dj

i

0 ε(t − m(l)) > dj
i

(C.21)

∂µi
j(ŷ(t − k(l)))

∂dj
i

=

⎧⎪⎪⎨
⎪⎪⎩

0 ŷ(t − k(l)) < cj
i

∂ŷ(t−k(l))

∂d
j
i

(dj
i −c

j
i )−(dj

i −ŷ(t−k(l)))

(dj
i −c

j
i )2

cj
i < ŷ(t − k(l)) < dj

i

0 ŷ(t − k(l)) > dj
i

(C.22)

∂µi
j(ε(t − m(l)))

∂dj
i

=

⎧⎪⎪⎨
⎪⎪⎩

0 ε(t − m(l)) < cj
i

−
∂ŷ(t−m(l))

∂d
j
i

(dj
i −c

j
i )−(dj

i −ε(t−m(l)))

(dj
i −c

j
i )2

cj
i < ε(t − m(l)) < dj

i

0 ε(t − m(l)) > dj
i

(C.23)

C.2.2 With Polynomial Membership Functions

For polynomial membership functions αn could be aj
i , b

j
i , c

j
i , d

j
i and the gradi-

ents will be

∂µi
j(ŷ(t − k(l)))

∂aj
i

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if ŷ(t − k(l)) < aj
i

6 (ŷ(t−k(l))−b
j
i )(ŷ(t−k(l))−a

j
i )

(aj
i −b

j
i )3

[
∂ŷ(t−k(l))

∂a
j
i

−
(ŷ(t−k(l))−b
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∂µi
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0 if ŷ(t − k(l)) < aj
i
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C.2.3 With Gaussian Membership Functions

With Gaussian membership functions αn could be x̄i
j , σ

i
j and the gradients

will be
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j(ŷ(t − k(l)))
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− (ŷ(t − k(l)) − x̄i
j)

]

(C.34)

∂µi
j(ε(t − m(l)))

∂σi
j

=

− 2
(ε(t − m(l))) − x̄i

j)

σi
j
3 µi

j(ε(t − m(l)))
[
−σi

j
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(C.35)

C.2.4 With Triangular Membership Functions with 0.5 Overlap

For triangular membership functions with 0.5 overlap the αn parameters could
be mj−1, mj , mj+1 and the derivatives will be given by
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C.2.5 With Polynomial Membership Functions with 0.5 Overlap

For polynomial membership functions with 0.5 overlap the αn parameters
could be mj−1, mj , mj+1 and the derivatives will be given by
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j < ŷ(t − k(l)) < mi
j+1
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Observe once more that when there is no feedback in the model ∂ŷ(t −
m(l))/∂αn = 0 the gradient expressions are reduced to the ones used for
static functions.

The presence of the terms ∂ŷ(t − m(l))/∂αn in the gradients demands
for computation of the gradients the calculation of a numerical solution of a
discrete dynamic system, which must be updated each time a new data point
is presented to the model.



D

Discrete Linear Dynamical System
Approximation Theorem

Theorem D.1. Any stable single-input–single-output discrete linear system
with transfer function f(z) and bounded input can be represented by a fuzzy
system with normal triangular membership functions with overlap 1

2 .

Proof: Suppose the transfer function f(z) is given by

f(z) =
y(z)
u(z)

=
b0 + b1z

−1 + . . . + bnz−n

1 + a1z−1 + . . . + anz−n
(D.1)

By applying the inverse Z transform to the transfer function, we can convert
the system into the difference equation:

y(k) = −a1y(k − 1) − . . . − any(k − n) + b0u(k) + . . . + bnu(k − n) (D.2)

This formula can be represented in vector form as

y(k) = TT X(k) (D.3)

where T = [−a1, . . . ,−an, b0, . . . , bn]T , X(k) = [y(k−1), . . . , y(k−n), u(k), . . . ,
u(k − n)]T and X(k), T ∈ �N with N = 2n + 1. A fuzzy system to map the
function y(k) = F(X(k)) representing the linear dynamic system can be con-
structed by placing an arbitrary number of normal, triangular membership
functions with overlap 1

2 covering the universe of discourse of each of the N
inputs. A rule base is constructed using only AND operations and covering
all possible combinations of antecedents. Each of the rules is initialized as
follows:

IF x1 IS A1
j1

AND . . . AND xN IS AN
jN

THEN yj

where
yj = t1m

1
j1 + . . . + tNmN

jN

where xi is the ith entry of the vector X, Ai
ji

is the fuzzy set defined at the
ith input used as antecedent of the jth rule. This fuzzy set is described by
the membership function:
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µi
ji

(xi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xi−mi

ji−1

mi
ji

−mi
ji−1

if xi ∈ [mi
ji−1, m

i
ji

]
mi

ji+1−xi

mi
ji+1−mi

ji

if xi ∈ [mi
ji

, mi
ji+1]

0 otherwise

(D.4)

mi
ji

is the modal value of the membership function µi
ji

(.) and ti is the ith
entry of the vector T .

With this description of the fuzzy model, the evaluation of an arbitrary
vector X(k) ∈ [m1

j1
, m1

j1+1] × . . . × [mN
jN

, mN
jN+1] will activate 2N rules. To

analyze the result of this evaluation assume without lost of generality N = 2.
The point described by the vector X(k) will be in the interval [m1

j1
, m1

j1+1] ×
[m2

j2
, m2

j2+1] and the set of active rules will be described as

1. IF x1 IS A1
j1

AND x2 IS A2
j2

THEN yj

2. IF x1 IS A1
j1+1 AND x2 IS A2

j2
THEN yj+1

3. IF x1 IS A1
j1

AND x2 IS A2
j2+1 THEN yj+2

4. IF x1 IS A1
j1+1 AND x2 IS A2

j2+1 THEN yj+3

where

yj = t1m
1
j1 + t2m

2
j2

yj+1 = t1m
1
j1+1 + t2m

2
j2

yj+2 = t1m
1
j1 + t2m

2
j2+1

yj+3 = t1m
1
j1+1 + t2m

2
j2+1

Then, the value of fuzzy system evaluated at the point X(k) is given by the
expression

F(X(k)) =

yj(µ1
j1(x1)µ2

j2(x2)) + yj+1(µ1
j1+1(x1)µ2

j2(x2))
µ1

j1
(x1)µ2

j2
(x2) + µ1

j1+1(x1)µ2
j2

(x2) + µ1
j1

(x1)µ2
j2+1(x2) + µ1

j1+1(x1)µ2
j2+1(x2)

+
yj+2(µ1

j1(x1)µ2
j2+1(x2)) + yj+3(µ1

j1+1(x1)µ2
j2+1(x2))

µ1
j1

(x1)µ2
j2

(x2) + µ1
j1+1(x1)µ2

j2
(x2) + µ1

j1
(x1)µ2

j2+1(x2) + µ1
j1+1(x1)µ2

j2+1(x2)

= yj(µ1
j1(x1)µ2

j2(x2)) + yj+1(µ1
j1+1(x1)µ2

j2(x2)) +

yj+2(µ1
j1(x1)µ2

j2+1(x2)) + yj+3(µ1
j1+1(x1)µ2

j2+1(x2)) (D.5)

at the interval [mi
j , m

i
j+1], µi

j+1(x) = 1 − µi
j(x). Then, the expression (D.5)

becomes

F(X(k)) = yjµ1
j1(x1)µ2

j2(x2) + yj+1(1 − µ1
j1(x1)µ2

j2(x2))

+ yj+2µ1
j1(x1)(1 − µ2

j2(x2)) + yj+3(1 − µ1
j1(x1)(1 − µ2

j2(x2))

= yjµ1
j1(x1)µ2

j2(x2) + yjµ1
j1(x1)µ2

j2(x2) + yj+1µ2
j2(x2)

− yj+1µ1
j1(x1)µ2

j2(x2) + yj+2µ1
j1(x1) − yj+2µ1

j1(x1)µ2
j2(x2)

−yj+3µ2
j2(x2) + yj+3µ1

j1(x1)µ2
j2(x2) − yj+3µ1

j1(x1) + yj+3(D.6)
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replacing the values of the consequences in the expression (D.6):

F(X(k)) = t1m
1
j1µ

1
j1(x1) + t2m

2
j2µ

2
j2(x2) − t1m

1
j1+1µ

1
j1(x1) − t2m

2
j2+1µ

2
j2(x2)

= t1m
1
j1+1 + t2m

2
j2+1 (D.7)

Finally, replacing (D.4) in (D.7) the expression becomes

F(X(k)) = t1x1 + t2x2 = TT X(k) (D.8)

Being F(X(k)) = TT X(k), then the constructed fuzzy system will be equal
to the linear discrete dynamical system of Equation (D.1).
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Fuzzy Control for a Continuously Variable
Transmission

This appendix presents the design of a nonlinear PI-like fuzzy controller. The
task of the fuzzy system is to generate the parameters (Kp and Ti) for a
proportional-integral (PI) controller integrated in the control system to gov-
ern a continuously variable transmission (CVT). Nonlinear compensations
were also designed to improve the performance.

E.1 Introduction and Process Description

The continuously variable transmission (CVT) is a type of transmission used
in cars with a combustion engine. It is different from the classical gearbox
transmission where the rotation ratio between the engine and the wheels
changes in discrete steps (first, second, third gear and so on). Instead CVT
can give a continuous speed ratio between the motor and the wheels. This
specification improves the exploitation of the power given by the motor, such
that the system can be commanded to reduce the fuel consumption and pollu-
tion (economic mode) or maximize the power transmitted to the wheels (sport
mode).

The system is constructed using two conic pulleys connected to each other
with a belt. The radius of the pulleys is variable and in fact increases if the
two cones of the pulley approximate to each other and reduces if they split
apart. The distance between the cones is controlled by means of a hydraulic
cylinder connected to a hydraulic circuit, which feeds not only the pulleys but
also the clutch system. The schematic representation presented in Figure E.1
explains the working principle.

The pressure applied to the pulleys (Pp, Ps) must be accurately controlled
in such a way that the belt works with an optimal tension. If the tension is
too high the belt will not move and it can break apart because of the fric-
tion and the stress. If the tension is too low the motor does not transmit the
movement to the wheels and the belt can also slip off the pulleys, destroying
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the complete system (the rotation speed of the motor (Ne is about 1000–4000
r.p.m.).

The pressures for the cylinders are generated by a valve body, which be-
haves as a hydraulic amplifier. There is a third pressure that drives the wet-
plate clutch. Therefore, the system has three control inputs. The pressures
are controlled using a servo pressure and the servo pressures are regulated
by a servo pulse width modulated (PWM) valve driven by electric signals. In
this way, the signals generated by the controller of the CVT system are only
electrical signals.

The three reference values for the pressures of the three valves are gener-
ated by a master control system. This master control system generates the set
points of the pressures according to the conditions of the road, desired speeds
and throttle positions (see Figure E.2).

The control of CVTs is challenging due to the complexity generated by the
large number of variables involved (speed, temperature, oil viscosity, valve
construction, etc.) and their interactions. The system is highly nonlinear and
difficult to control by means of classical linear control techniques.

This appendix presents the design of the control system that regulates the
pressure applied to the pulleys (Pp and Ps in Figure E.1). This control system
receives the set-point signals from the master control system and guarantees
the exact positioning of the pulleys despite the disturbances.

E.2 Performance Specifications

The main objective of the control system is to follow the set-point pressures
generated by the master control system, with a minimum overshoot and with

α

Figure E.1. Power train of a car with a CVT and wet-plate clutch. FD=Final
reduction
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a settling time of 60 to 70 msec. The condition of minimum overshoot is a
consequence of the fact that overshoots can generate a release of the tension in
the belt, generating a slip off of the pulleys and damage to the system. Hence,
some overshoot is allowed when the pressures are increased (pulleys closing),
but it has to be small when the pressures are decreased (pulleys opening).

E.3 A Physical Model for the CVT

A physical model of the system was obtained by Minten and Vanvuchelen [94].
This model is a full physical model oriented to functional simulation. The
model is nonlinear and describes the full operating range of the CVT. This
model is suitable for simulation of physical properties, but it is too complex
for control design because of its long simulation time. Therefore, a simpler
model for control was obtained. The system has one manipulated input, the
voltage applied to the PWM servo valve Vin, and two measured disturbances,
temperature T and engine speed Nengine. The only output considered in this
study was the pressure applied to the pulley.

A simplified representation of the plant, for a given temperature T and on
the engine speed Nengine is a nonlinearity in series with a second-order linear
system. In other words, the system can be represented by a Hammerstein
model where the coefficients are functions of the temperature T and the engine
speed Nengine. Figure E.3 shows that the nonlinearity f depends mainly on
the speed of the engine Nengine and that the dynamics of the second-order
system G(s) depends on the temperature T and on the engine speed Nengine.

Figure E.2. Diagram of the system including the high-level controller
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Figure E.4 shows the clear dependence of f on the engine speed. Using this
assumption a set of nonlinearities and linear plant models are extracted for
different operating points in temperature and engine speed.

V
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2in

u

Temperature NengineengineN

[a (T,N)s+a
0

(T,N)]e

s +b
1
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0
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f(V ,N)

-ds Psec

Figure E.3. Representation of the process by means of a static nonlinearity
f(Vin, Nengine) and a dynamic linear system G(s) with variable parameters
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Figure E.4. Static nonlinearity f for different values of engine speed Nengine and
constant temperature
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Figure E.5. Membership functions of the fuzzy inference systems that generate the
parameters P and Ti for the PI controller.

E.4 Design of the Controller

The first step in the controller design is to compensate the nonlinearity
f(Vin, Nengine) by means of f̂−1(Vin, Nengine). This function f̂−1(., .) is gener-
ated from measurement data using power series to approximate the function.
Observe that this procedure can be applied due to the monotonicity of the
function f(., .). Once the “local” linear models for different values of T and
Nengine and the f̂−1(., .) function are obtained, an optimization procedure
(see [95]) is applied to calculate a suboptimal proportional-integral (PI) con-
troller for the operating point. The cost function of the optimization is defined
as

J(Kp, Ti) = λMp + (1 − λ)
∫ ∞

0
t(e2(t)dt)

1
2

where Kp and Ti are the proportional gain and the integral time of the PI
controller, λ = 0.5 is a weight that defines the importance of the overshoot
o.s. in the cost function, e(t) = Pref(t) − Psec(t) is the tracking error, t is the
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time and Mp is the overshoot for a unitary step response of the closed loop
system and is defined as:

Mp = max{max(y(t) − 1), 0}
The starting point for the optimization is obtained using the relay method
for PI tuning. The quasi-Newton method for unconstrained multivariable opti-
mization was applied (see [22]). This procedure generates a set of PI controllers
that depend on the temperature and the engine speed. The PI controller in-
cluding the set of local PI controllers can be represented in continuous time
as

C(s) = Kp(T, Nengine)
(

1 +
1

Ti(T, Nengine)s

)
and for discrete time as

C(z) = Kp(T, Nengine)
(

1 +
1

Ti(T, Nengine)(1 − z−1)

)
The optimization of the controller was done using the discrete description of
the controller. In this way, all quantization effects are present and the con-
troller will be more accurate. The values of Kp(T, Nengine), Ti(T, Nengine) and
f̂−1(Vin, Nengine) are defined only for some operating points. An interpolation
method is needed to make the transitions between the different operating
points. An interpolation method is needed. The overall performance of the
controller is related to the number of operating points evaluated; this implies
that a large number of parameters should be stored in a lookup table. We
found that a good solution will be to approximate this lookup table with a
fuzzy inference system (FIS). The main characteristics of this FIS are Gaus-
sian membership functions, product-sum composition and defuzzification us-
ing center of gravity. The membership functions were uniformly distributed
in the domain of the temperature and the engine speed. The model was tuned
using a gradient descent algorithm. A picture of the membership functions
can be seen in Figure E.5. The function f̂−1(., .) is also scheduled depending
on the speed. The controller is shown in Figure E.6.

E.5 Stability Analysis

The closed-loop system can be described by means of a Takagi -Sugeno fuzzy
model [assuming perfect cancellation of the nonlinearity f(., .)] with rules like

Rulei IF Temperature is αi AND Nengine is βi THEN ẋ = Ãix+ B̃iu

The condition for stability is the existence of a common P matrix such that

P > 0 (E.1)
ÃT

i P + PÃi < 0 (E.2)
∀i i ∈ {1, . . . , Nrules} (E.3)
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The search for this P matrix can be conducted by means of solving the fea-
sibility LMI problem shown in Chapter 5. A feasible solution was found for
this problem so that stability is guaranteed.
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Figure E.6. Block diagram of the process with the nonlinear controller

Figure E.7 shows the improvements obtained with the fuzzy controller com-
pared with the linear scheduled controller. It is important to observe that
there is not only improvement in the performance, but also that any modifi-
cation of the design will be easier to implement, due to the extra information
provided by the rule base description. The rules of the controller have the
following form:

IF T is Aj AND Nengine is Bj THEN P is Oj AND Ti is Qj

IF Nengine is Cj THEN f−1 is Rj

E.6 Conclusions

This appendix has shown the design procedures of a control systems for a
CVT. The control system is based on a fuzzy inference system that “sched-
ules” the parameters of the controller according to some measured distur-
bances. In the procedure, several linear controllers were calculated by means
of optimization for different operating points. In addition, different nonlinear
compensators were obtained for different values of Nengine. Stability of the
closed-loop system is guaranteed by means of the solution of an LMI. Im-
provements in the performance were observed when the new control system
was compared with the scheduled linear version. Another advantage of the de-
signed controller is the linguistic description of the scheduling action, which
simplifies the retuning of the system in the industrial framework.
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67. F. Allgöwer, T. Badgwell, J. Qin, J. Rawlings, S. Wright: (1999), “Nonlinear
predictive control and moving horizon estimation–an introductory overview,”
Advances in Control–Highlights of ECC’99 (Springer-Verlag)

68. J. Rawlings: (1999), “Tutorial: Model predictive control technology,” in Pro-
ceedings of the ACCSan Diego, CA

69. S. Yasunobu, S. Miyamoto: (1984), “A predictive fuzzy control for automatic
train operation” in Japanese Systems and Control 28(10), 605–613
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