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Foreword

Life expectancy has signi  cantly increased in the last century, thanks to 
the discovery and development of new drugs by pharmaceutical industries. 
Search for new therapeutics is the primary activity of the R&D of 
pharmaceutical industries and it involves complex network of tasks such as 
synthetic chemistry, in vitro/in vivo ef  cacy, safety, preclinical and clinical 
research. Statistical analysis has always been the foundation to establish the 
safety and ef  cacy of drugs. The decision to- or not to- advance preclinical 
drug candidates to very expensive clinical development heavily relies on 
statistical analysis and the resulting signi  cance of preclinical data. Recent 
reports attributed failure of certain drugs in clinical stages of development 
to improper conduct of preclinical studies and inappropriate application 
of statistical tools. Applying appropriate statistical tools is sagacious 
to analysis of data from any research activity. Though scientists expect 
computerized statistical packages to perform analyses of the data, he/she 
should be familiar with the underlying principles to choose the appropriate 
statistical tool.

‘A  Handbook of Applied Statistics in Pharmacology’ by Katsumi 
Kobayashi and K. Sadasivan Pillai is a very useful book for scientists 
working in R&D of pharmaceuticals and contract research organizations. 
Most of the routine statistical tools used in pharmacology and toxicology 
are covered perspicuously in the book. The examples worked out in the 
book are from actual studies, hence do not push a reader having less or no 
exposure to statistics outside his/her comfort zone.

Dr. K.M. Cherian
M.S., F.R.A.C.S., Ph.D., D.Sc. (Hon.), D.Sc. (CHC), D.Sc. (HC) 
Chairman & CEO
Frontier Lifeline Hospitals
Chennai, India





Preface

Scientists involved in pharmacology have always felt that statistics is a 
dif  cult subject to tackle. Thus they heavily rely on statisticians to analyse 
their experimental data. No doubt, statisticians with some scienti  c 
knowledge can analyse the data, but their interpretation of results often 
perplexes the scientists.

Statistics play an important role in pharmacology and related subjects 
like, toxicology, and drug discovery and development. Improper statistical 
tool selection to analyze the data obtained from studies conducted in 
these subjects may result in erroneous interpretation of the performance- 
or safety- of drugs. There have been several incidents in pharmaceutical 
industries, where failure of drugs in clinical trials is attributed to improper 
statistical analysis of the preclinical data. In pharmaceutical Research 
& Development settings, where a large number of new drug entities are 
subjected to high-throughput in vitro and in vivo studies, use of appropriate 
statistical tools is quintessential. 

It is not prudent for the research scientists to totally depend on 
statisticians to interpret the  ndings of their hard work. Factually, scientists 
with basic statistical knowledge and understanding of the underlying 
principles of statistical tools selected for analysing the data have an 
advantage over others, who shy away from statistics. Underlying principle 
of a statistical tool does not mean that one should learn all complicated 
mathematical jargons. Here, the underlying principle means only ‘thinking 
logically’ or applying ‘common sense’.

The authors of this book, with decades of experience in contract 
research organizations and pharmaceutical industries, are fully cognizant 
of the extent of literacy in statistics that the research scientists working in 
pharmacology, toxicology, and drug discovery and development would be 
interested to learn. This book is written with an objective to communicate 
statistical tools in simple language. Utmost care has been taken to avoid 
complicated mathematical equations, which the readers may  nd dif  cult 
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to assimilate. The examples used in the book are similar to those that the 
scientists encounter regularly in their research. The authors have provided 
cognitive clues for selection of an appropriate statistical tool to analyse the 
data obtained from the studies and also how to interpret the result of the 
statistical analysis.
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Probability

1

Probability and Possibility

We all are familiar with the words, possibility and probability. Though 
these words seem to convey similar meanings, in reality they do not. 
Imagine, your greatest ambition is to climb Mount Everest. But you do 
not know the basics of mountaineering and have not climbed even a 
hill before. It may still be possible for you to climb Mount Everest, if 
you learn mountaineering techniques and undergo strenuous training in 
mountaineering. But the probability of accomplishing your ambition of 
climbing Mount Everest is remote. Possibility is the event that can happen 
in life, whereas the probability is the chance of that happening. In statistical 
terminology, an event is collection of results or outcomes of a procedure. 
Probability is the basic of statistics. 

Mathematicians developed the ‘principle of indifference’ over 300 
years ago to elucidate the ‘science of gaming’ (Murphy, 1985). According 
to Keynes (1921), the ‘principle of indifference’ asserts that “if there is 
no known reason for predicating of our subject one rather than another of 
several alternatives, then relatively to such knowledge the assertions of 
each of these alternatives have an equal probability.” In other words, if you 
have no reason to believe the performance of drug A is better than B, then 
you should not believe that drug A is better than B.

The two approaches to probability are classical approach and relative 
frequency approach. In classical approach, the number of successful 
outcomes is divided by the total number of equally likely outcomes. Relative 
frequency is the frequency of an event occurring in large number of trials. 
For example, you  ip a coin 1000 times and the number of occurrences of 
head up is 520. The probability of head up is 520/1000=0.52. 
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Both the classical and frequency approaches have some drawbacks. 
Because of these drawbacks, an axiomatic approach to probability has 
been suggested by mathematicians (Spiegel et al., 2002).

However, in pharmacology and toxicology experiments, relative 
frequency approach proposed by Mises and Reichenbach (Carnap, 1995) 
works well.

We shall understand probability a bit more in detail by working out 
examples. 

Probability—Examples

Let us try to de  ne a probability with regard to frequency approach. The 
probability of an occurrence for an event labeled A is de  ned as the ratio of 
the number of events where event A occurs to the total number of possible 
events that could occur (Selvin, 2004).
Let us understand some basic notations of probability:
P denotes probability.
If you toss a coin, only two events can occur, either a head up or a tail 
up.
P(H) denotes probability of event head is up. You can calculate the 
probability of head coming up using the formula:

Number of times head is up
(Number of times head is up+Number of times tail is up) P(H) = 

Remember, a head up and a tail up have equal chance of occurring. Ideally 
you will get a value very close to 50% for P(H), if you toss the coin several 
times.

You roll an unbiased six-sided dice. The total number of outcomes is 
six, which are equally likely. This means the likelihood of ‘any number’ 
coming up is same as ‘any other number’. The probability of any number 
coming up is 1/6. The probability of any two numbers coming up is 2/6.

Let us come back to our example of tossing a coin. The probability of 
a head up is ½ (0.5 or 50%). Now you  ip the coin twice. The probability 
of a head up both times is ½ x ½ = ¼.
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Mutually exclusive events
While you toss a coin either a head up or a tail up occurs. When the event 
head up occurs, the event tail up cannot occur and vice versa; one event 
precludes the occurrence of the other. In this example, head up or tail up 
that occurs while tossing a coin is a mutually exclusive event. 

Equally likely events
Occurrence of head up or tail up is an equally likely event when you toss 
a fair coin. This means P(H) = P(T), where P(H) denotes probability of 
event head up and P(T) denotes probability of event tail up.

Probability Distribution

Let us try to understand probability distribution with the help of an 
example. You  ip a coin twice. In this example the variable, H is number 
of heads that results from  ipping the coin. There are only 3 possibilities:
H = 0
H = 1
H = 2
Let us calculate the probabilities of the above occurrences of head up. 
The probability of not occurring a head up in both the times (H=0) 
=0.25
The probability of occurring a head up in one time (H=1) = 0.5
The probability of occurring a head up in both times (H=2) = 0.25
0.25, 0.5 and 0.25 are the probability distribution of H.

Cumulative Probability

A cumulative probability is a sum of probabilities. It refers to the probability 
that the value of a random variable falls within a speci  ed range. 

You toss a dice. What is the probability that the dice will land on a 
number that is smaller than 4? The possible 6 outcomes, when a dice is 
tossed are 1, 2, 3, 4, 5 and 6. 
The probability that the dice will land on a number smaller than 4: 

P(X < 4 ) = P(X = 1) + P(X = 2) + P(X = 3) = 1/6 + 1/6 + 1/6 = 1/2
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The probability that the dice will land on a number 4 or smaller than 4: 
P(X  4 ) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 1/6 + 1/6 + 1/6 + 

1/6 = 2/3
Cumulative probability is commonly used in the analysis of data obtained 
from pharmacological (Kuo et al., 2009; Rajasekaran et al., 2009) and 
toxicological experiments. 

Probability and Randomization

In order to evaluate the ef  cacy of an anti-diabetic drug in rats, twenty 
rats are administered streptozotocin to induce diabetes. The blood sugar 
of individual rats is measured to con  rm induction of diabetes. You  nd 
that 13 rats have blood sugar >250 mg/dl and remaining 7 rats have blood 
sugar <200 mg/dl. The 20 rats are then distributed randomly in two equal 
groups (Group 1 and Group 2). You want to treat the Group 1 (control 
group) with the vehicle alone and the Group 2 (treatment group) with the 
drug. 
Initiate randomization by picking up a rat without any bias and place it in 
Group 1. 
The probability of picking up a rat having blood sugar >250 mg/dl = 13/20 
= 65%
The probability of picking up a rat having blood sugar <200 mg/dl = 7/20 
= 35%

Assign 10 rats to Group 1 and then the remaining to Group 2. It is 
most likely that you will have more rats with blood sugar >250 mg/dl in 
Group 1. 

Remember that both the groups are physiologically and metabolically 
different, because it is most likely that more number of rats in Group 1 
will have blood sugar >250 mg/dl and more number of rats in Group 2 
will have blood sugar <200 mg/dl. It is unlikely that the experiment with 
these groups will yield a fruitful result. Randomization is very important in 
animal studies. We shall be discussing more on randomization of animals 
in pharmacological studies in later chapters.

References
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2

History

The most commonly used probability distribution is the normal 
distribution. The history of normal distribution goes way back to 1700s. 
Abraham DeMoivre, a French-born mathematician introduced the normal 
distribution in 1733. Another French astronomer and mathematician, 
Pierre-Simon Laplace dealt with normal distribution in 1778, when he 
derived ‘central limit theorem’. In 1809 Johann Carl Friedrich Gauss 
(1777–1855), a German physicist and mathematician, studied normal 
distribution extensively and used it for analysing astronomical data. Normal 
distribution curve is also called as Gaussian distribution after Johann Carl 
Friedrich Gauss, who recognized that the errors of repeated measurements 
of an object are normally distributed (Black, 2009). 

Variable

We need to understand a terminology very commonly used in statistics, 
i.e., ‘variable’. Variable is the fundamental element of statistical analysis. 
Variables are broadly classi  ed into categorical (attribute) and quantitative 
variables. Categorical and quantitative variables are further classi  ed into 
two subgroups each—Categorical variables into nominal and ordinal, and 
Quantitative variables into discrete and continuous. 

Nominal variable: The key feature of nominal variables is that the 
observation is not a number but a word (example—male or female, blood 
types). Nominal variables cannot be ordered. It makes no difference if you 
write the blood types in the order A, B, O, AB or AB, O, B, A. 
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Stem Leaf 

13 2 4 9 
14 0 0 1 1 5 5 6 8 8 
15 3 4 4 4 4 8 
16 2 5 6 

Figure 2.1. Stem- and- Leaf plot

Table 2.2. Body weight of rats arranged in an ascending order

Body weight (g)
132, 134, 139, 140, 140, 141, 141, 145, 145, 146, 148, 148, 153, 154, 154, 154, 154, 
158, 162, 165, 166

Ordinal variable: Here the variable can be ordered (ranked); the data can 
be arranged in a logical manner. For example, intensity of pain can be 
ordered as—mild, moderate and severe. 

Discrete variable: Discrete variable results from counting. It can be 0 or 
a positive integer value. For example, the number of leucocytes in a l of 
blood. 

Continuous variable: Continuous variable results from measuring. For 
example, alkaline phosphatase activity in a dl of serum. 

The variables can be independent and dependent. In a 90 day repeated 
dose administration study you measure body weight of rats at weekly 
intervals. In this situation week is the independent variable and the body 
weight of the rats is the dependent variable.

Stem-and-Leaf Plot

Stem- and Leaf-Plot (Tukey, 1977) is an elegant way of describing the 
data (Belle et al., 2004). Let us construct a stem-and-leaf plot of the body 
weight of rats given in Table 2.1.

Table 2.1. Body weight of rats

Body weight (g)
132, 139, 134, 141, 145, 141, 140, 166, 154, 165, 145, 158, 162, 148, 154, 146, 154, 
148, 140, 153, 154

 Stem-and-leaf plot of the above data is drawn in Figure 2.1:

Now arrange the data in an ascending order as given in Table 2.2:
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Each data is split into a “leaf” (last digit) and a “stem” (the  rst two 
digits). For example, 132 is split into 13, which forms the ‘stem’ and 2, 
which forms the ‘leaf’. The stem values are listed down (in this example 
13, 14, 15 and 16) and the leaf values are listed on the right side of the 
stem values. 

The Stem-and-leaf plot provides valuable information on the 
distribution of the data. For example, the plot indicates that more number 
of the animals is having body weight in the 140 g range, followed by the 
150 g range. 

Box-and-Whisker Plot

Another way of describing the data is by constructing a box-and-whisker 
plot. The usefulness of box-and-whisker plot is better understood by 
learning how to construct it. For this purpose we shall use the same body 
weight data given in Table 2.1. As we have done for plotting the stem-
and-leaf plot, arrange the data in an ascending order (Table 2.2). The  rst 
step in constructing a box-and-whisker plot is to  nd the median. You will 
learn more about median in Chapter 3.

The median of the data given in Table 2.2 is the 11th value, i.e., 148 
(see Table 2.3).

Table 2.3. Median value of the body weight data

                 Median

132, 134, 139, 140, 140, 141, 141, 145, 145, 146, 148, 148, 153, 154, 154, 154, 154, 158, 
162, 165, 166

Table 2.4. Median value of the lower and upper quartiles
                  Median
               Lower half         Upper half

132, 134, 139, 140, 140, 141, 141, 145, 145, 146, 148, 148, 153, 154, 154, 154, 154, 158, 
162, 165, 166

The median divides the data into 2 halves (a lower and an upper half). 
The lower half consists of a range of values from 132 to 146 and the upper 
half consists of a range of values from 148 to 166 (see Table 2.4). 
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Next step is to  nd the median of lower half and upper half: 
Median of the lower half   = (140+141)/2 = 140.5
Median of the upper half   = (154+154)/2 = 154.0

Median of the lower half is also called as ‘lower hinge’ or ‘ lower 
quartile’ and the median of the upper half as ‘upper hinge’ or ‘ upper 
quartile’. The term, quartile was introduced by Galton in 1882 (Crow, 
1993). About 25% of the data are at or below the ‘lower hinge’, about 
50% of the data are at or below the median and about 75% of the data are 
at or below the ‘upper hinge’. 
Next step is calculation of ‘hinge spread’, the range between lower and 
upper quartiles: 

Hinge spread = 154.0–140.5 = 13.5

Hinge spread is also called as inter-quartile range (IQR).
Now, we need to determine ‘inner fence’. The limits of ‘inner fence’ are 
determined as given below:

Lower limit of ‘inner fence’ = Lower hinge–1.5 x hinge spread
          = 140.5–(1.5x13.5)= 120.25
Upper limit of ‘inner fence’ = Upper hinge+1.5 x hinge spread
          = 154.0+(1.5x13.5)= 174.25
We now have all the required information to construct the ‘whiskers’. The 
lowest body weight data observed (see Table 2.4) between 140.5 g and 
120.25 g is 132 g and the highest body weight data observed between 
154.0 g and 174.25 g is 166 g. Hence, the whiskers are extended from the 
lower quartile to 132 g and from the upper quartile to 166 g. 

Box-and-whisker plot of the data (Table 2.1) is given in Figure 2.2.
The box-and-whisker plot is based on   ve numbers: the least value, 

the lower quartile, the median, the upper quartile and the greater value in 
a data set.
If the data are normally distributed:

 1.  the median line will be in the centre of the box dividing the box into 
two equal halves

 2.  the whiskers will have similar lengths
 3.  observed values will scarcely be outside the ‘inner fence’. 
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It is important to examine whether the data are normally distributed 
before applying a statistical tool. We shall learn more about this in later 
chapters. 
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Figure 2.2. Box-and-whisker plot of the data 
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Average and Mean

Average and mean are interchangeably used in everyday life. Average is 
the synonym for the central tendency. There are various types of central 
tendencies, such as mean, mode and median.

Mean

The procedure for calculating mean is very simple; sum of all individual 
observations divided by the sum of number of observations. There are 
several types of means, such as arithmetic mean, geometric mean and 
harmonic mean. Let us work out the example given in Table 3.1 to 
familiarise the reader with the calculation procedure of these means.

Table 3.1. Calculation of arithmetic mean of body weight of rats

Body weight (g) Sum
132, 139, 134, 141, 145, 141, 140, 166, 186, 183 1507

In statistics, the number of observations is denoted by the letter N or 
n (both cases). Number of observations is also called the sample size. The 
Greek letter  (uppercase only) is used to denote sum. Mean is denoted as 
X  (X bar).
Mean body weight of above example:

7.150
10

1507
N

X
X g 

Mean in the above example is called the arithmetic mean. Arithmetic 
mean is sensitive to extreme values in data set. There is a condition for 
calculating arithmetic mean—the data should  t a normal distribution. 



12 A Handbook of Applied Statistics in Pharmacology

Geometric Mean

Mathematically geometric mean is defined as the nth root of the product 
of n numbers. An easy way to calculate the geometric mean is to find the 
mean of logarithmic values of the data and then to find the antilog of 
the mean. Steps involved in the calculation of the geometric mean of 
the body weight data of the rats (Table 3.1) are given in Table 3.2.

Table 3.2. Calculation of geometric mean of body weight of rats

Body weight (g) N X

Linear scale 132, 139, 134, 141, 145, 141, 140, 166, 186, 183 1507 10 150.7
Log scale 2.12, 2.14, 2.13, 2.15, 2.16, 2.15, 2.15, 2.22, 

2.27, 2.26 
21.7 10 2.17

Geometric mean is the antilog of 2.17 = 147.9

If any observed value is 0 or negative, geometric mean cannot 
be calculated. Geometric mean is very rarely used in pharmacology. 
However, use of it is witnessed in some pharmacokinetic studies 
(Schuirmann, 1987).

Harmonic Mean

Harmonic mean is calculated by  nding the mean of the reciprocals of the 
values and then  nding the reciprocal of the mean.  
Calculation procedure of the harmonic mean of the data given in Table 3.1 
is described in Table 3.3:
Table 3.3. Calculation of harmonic mean of body weight of rats

Body weight (g) N X

Linear scale 132, 139, 134, 141, 145, 141, 140, 166, 186, 183 1507 10 150.7
Reciprocal 0.0076, 0.0072, 0.0075, 0.0071, 0.0069, 0.0071, 

0.0071, 0.0060, 0.0054, 0.0055
0.0673 10 0.0067

Harmonic mean = 1/0.0067 = 148.5 g

Unlike arithmetic mean, the harmonic mean is not in  uenced by 
the extreme values. Harmonic mean has limited use in pharmacology. 
A pharmacokinetic study carried out with cyclosporine-A revealed that 
there was little use of harmonic mean to describe the central tendency 
(Lum et al., 1992). However, Iwamoto et al. (2008) used harmonic mean 
to evaluate the central tendency of pharmacokinetics in a clinical study 
conducted with Raltegravir in healthy subjects. 
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Weighted Mean

In an experiment designed to administer a drug to rats, 15 rats were 
randomly assigned to 3 cages (Cage 1, Cage 2 and Cage 3), each cage 
consisting of 5 rats. At the end of 2 weeks of the drug administration in 
Cages 1 and 2, two rats each survived, whereas in Cage 3 all the  ve rats 
survived. The body weight of the survived rats is given in Table 3.4. 

Table 3.4. Body weight (g) of rats in 3 Cages at the end of 2 weeks following a drug 
administration

Cage N Mean (g)
1 2 119
2 2 125
3 5 134

Let us calculate the grand mean:
(119+125+134)/3 = 126 g. But there is a problem with this grand mean. 
It is very close to the mean value of 2 animals of Cage 2, but does not 
seem to represent the body weight of animals in Cages 1 and 3. Hence 
calculating grand mean by the above method is not advisable. In such 
situation, calculating weighted mean value may be the right approach.
Weighted Mean = [(2x119)+(2x125)+(5x134)]/(2+2+5) =1158/9 = 128.7 g 

Mode

The mode is the value which appears the most in the data. It is usually 
calculated for discrete data (Belle et al., 2004). There can be more than 
one mode, if there is more than one value which appears the most. 
In the following data,
130, 140, 140, 150, 140, 160, 140, 110, 120
The mode is 140 (140 appears 4 times in the data).
In the following data,
130, 140, 140, 150, 140, 160, 140, 110, 120, 130, 130
There are two modes, 140 and 130 (140 appears 4 times in the data, 
whereas 130 appears 3 times).
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Median

To measure the central tendency, median is second in popularity to mean 
(Rosner, 2006). Median is also termed as 0.50 quantile. Another term for 
the median is the 50th percentile. 

The  rst step to calculate the median is to rank the values from lowest 
to the highest. If the number of data values is odd, add 1 to the number of 
data values and divide that by 2. For example, if there are 9 sample values, 
divide (9+1) by 2. The median is the 5th ranked value. If the number of 
data values is even, again add 1 to the number of data values and divide 
that by 2. For example, if there are 10 sample values, divide (10+1) by 2 to 
get 5.5. Median is the mean of the 5th and 6th ranked values.

The second situation where the median is useful is when it is impractical 
to measure all of the values, such as when you are measuring the time until 
something happens. Survival time is a good example of this; in order to 
determine the mean survival time, you have to wait until every individual 
is dead, whereas to determine the median survival time you do not need 
to wait until every individual is dead; you need to wait only until half the 
individuals are dead. 

Mean, mode and median are theoretically the same for the data collected 
from a symmetrical distribution (Lemma, 2008). Median and mode are 
not affected by the extreme values (outliers). One disadvantage of mode 
is that it does not include all the data for the analysis. Though mean and 
median are commonly used in statistical analysis of pharmacological and 
toxicological data, the use of mode is not very common. 
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Variance, Standard Deviation, 
Standard Error, Coeffi cient of 

Variation 

4

Variance 

Even the inbred animals maintained under well controlled animal house 
conditions may show some variations among the individuals in responding 
to a treatment in a pharmacology or toxicology study. Though majority of 
the individual animals respond to the treatment in a similar manner or 
magnitude, few of them will be too sensitive or resistant to the treatment. 
There are several factors that may affect the outcome of an animal 
experimentation, for example factors related to the experimenter. In a nut-
shell, even a well designed animal experimentation is bound to show some 
variations in the result and it is important to understand these variations 
for interpreting the experimental data. We shall work out an example, to 
make it very clear.

For a pharmacology experiment 5 rats are randomly picked up and 
placed them in a cage. As all the rats are of similar age and maintained in 
identical animal house conditions, one would assume that all the animals 
will have comparable body weight. The body weight of the rats is given 
in Table 4.1.

It is evident from the Table that the assumption of ‘all animals having 
comparable body weight’ is incorrect. In animal experiments, one can 
seldom get identical animals. There could be several differences (for 
example difference in water and feed consumption, difference in activity, 
difference in certain clinical chemistry parameters, etc.) among them. 
These differences have an important role in determining the outcome of an 
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animal experimentation. Let us try to  nd an estimate for these differences. In 
the example given in Table 4.1, the mean body weight is calculated as 
252.6 g. Now, calculate the difference of each observation from the 
mean value (X–X ). A better statistical terminology for the difference 
is deviation, which is given in column 3 of Table 4.1. One may think 
that an estimate of the deviations can be obtained easily by summing 
up (X– X ). By doing so what you get is a zero. You cannot go further 
with this zero. When (X–X ) given in column 3 is closely examined, 
one would realize that the sum of the values bearing plus (+) sign is 
equal to the sum of the values bearing minus (–) sign. That is why a 
zero is obtained for the sum of (X–X ). This can be easily solved by 
squaring (X–X ). Squares of (X–X ) are given in column 4 of Table 4.1. 
Summing up (X-X )2, a value 465.2, is called as sum of the squares (SS) 
of deviations is obtained. By dividing 465.2, i.e., the sum of the squares of 
deviations by n–1, a very important statistical parameter called ‘variance’ 
is derived.
Variance = 465.2/(5–1) = 116.3
One may ask why the SS is divided by 4 (n–1), instead of 5 (n). The 
denominator to calculate the variance is called as ‘degrees of freedom’. 
Degrees of freedom is one less than the total number of observations. Let 
us try to explain this logically. Five different coloured boxes, say Black, 
Blue, Green, Red and Yellow are placed on a table. You have the ‘freedom’ 
to pick up the boxes in an unbiased manner, one by one. You may think that 
there are 5 boxes and the number of the ‘freedoms’ that you can exercise 
in picking up the boxes is also 5. You exercised your ‘freedoms’ to pick up  
the boxes as given in Table 4.2.

Table 4.1. Body weight of rats (g)

Column 1 Column 2 Column 3 Column 4
Rat No. Body Weight (X) (X- X ) (X-X )2

1 245 –7.6 57.76
2 254 +1.4 1.96
3 239 –13.6 184.96
4 266 +13.4 179.56
5 259 +6.4 40.96

Number of observations (n)
5 - -

Sum ( ) 1263 0 465.2
Mean (X ) 252.6 - -
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Initially, you thought that you would have had 5 degrees of freedom 
before picking up any box. Firstly, you picked up the red box and your 
degrees of freedom is reduced by 1 (5–1). The next time you picked up 
the yellow box, and now your degrees of freedom is reduced by 2 (5–2). 
When you picked up the black box, you have only 2 degrees of freedom 
left. After picking the green box, you have only 1 degree of freedom left. 
But you cannot exercise any freedom to pick up the blue box. Blue box 
is the last box left out and you have to pick up this without any choice. 
Therefore, the actual degrees of freedom that one can exercise is not equal 
to the total number of observations, but 1 less than the total number of 
observations.

Standard Deviation (SD)

Standard deviation is the square root of variation:

SD = Variance = 3.116  = ±10.78 

A ± sign should always be added as a pre  x to SD.
Some statisticians are of the opinion that the ± symbol is super  uous 
(Everett and Benos, 2004). According to them, a standard deviation is a 
single positive number, the notation of the SD should be: Mean (SD X), 
where X is the value for SD (for example, body weight of rats = 252.6 g 
(SD 10.78). We are in favor of pre  xing a ± sign to SD as it gives an easily 
perceivable indication about the lowest and highest values of the sample 
observations. 

Standard deviation is a useful measure to explain the distribution of the 
sample observations around the mean. SD can also be used to see whether 
a single observation falls within the normal range (Cumming, 2007). If 
the observations follow a normal distribution, mean ± 1 SD covers a range 
of 68% of the observations. About 95% of individuals will have values 
within 2 standard deviations of the mean (mean ± 2 SD), the other 5% 

Table 4.2. Degrees of freedom exercised in picking up coloured boxes

Boxes picked up Degrees of freedom exercised Degrees of freedom left
Red 1 5–1 = 4
Yellow 2 5–2 = 3
Black 3 5–3 = 2
Green 4 5–4 = 1
Blue This is the last box left out. You cannot exercise any degree of 

freedom for picking up this box.
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being equally scattered above and below these limits (Altman and Bland, 
1995). Mean ± 3 SD covers a range of 99.7% of the observations. 

Standard Error (SE)

SE is the SD of the mean. SE is considered as a measure of the precision 
of the sample mean (Altman and Bland, 2005). It provides an estimate of 
the uncertainty of the true value of the population mean (Everett, 2008). 
In simple words, SE measures the variation in the means of the samples. It 
can be calculated using the formula:

SE = SD/ n  = 10.78/ 5  = ± 4.82

Always pre  x ± sign to SE.

Coef  cient of Variation (CV)

CV is a numerical value where the proportion of the standard deviation in 
the mean value is shown as a percentage:

%27.4100
6.252

78.10100
Mean
SDCV

CV is an excellent statistical tool that can be used to compare different 
analytical methods and performance of equipments. Since CV is independent 
of the scale of measurement, it can be used to compare variables measured 
on different scales (Daniel, 2007). In a clinical chemistry laboratory, 
biochemists routinely use the commercially available reagent kits for 
analyzing clinical chemistry parameters in blood. It is dif  cult to choose 
from the plenty of kits available in the market. In such cases, kit with the 
lowest CV given in the packet insert should be chosen. 

CV plays a very important role in determining the signi  cant difference 
in pharmacology and toxicology experiments. Kobayashi et al. (2011) 
examined 59 parameters from 153 numbers of 28-day repeated dose 
administration studies conducted in 12 test facilities in order to understand 
the in  uence of CV in determining signi  cant difference of quantitative 
values. CV of electrolytes was comparatively small, whereas enzymes 
had large CV. A signi  cant difference between the sexes was observed 
in the CVs of feed consumption, reticulocyte, platelet and leucocyte 
counts, cholesterol, total protein, albumin, albumin/globulin ratio, alkaline 
phosphatase, inorganic phosphorus, and pituitary and adrenals weights. 
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Large differences in CV were observed for major parameters among 7 test 
facilities. The authors inferred that a statistically signi  cant difference is 
usually detected if there is a difference of 7% in mean values between the 
groups and the groups have a CV of about 7%. A parameter with a CV as 
high as 30% in two groups can be signi  cantly different from each other, if 
the difference between the two mean values of the groups is about 30% and 
the number of observation (n) in each group is 10. The authors suggested 
that it would be ideal to use median value to assess the treatment-related 
effect, rather than mean, when the CV is very high. 

Matsuzawa et al. (1993) analyzed historical control data pertaining to 
clinical pathology of study population covering 14000 rats, 10000 dogs 
and 1400 monkeys. The authors stated that the serum assay values showed 
greater variation than the plasma values. Aoyama (2005) suggested that 
when the number of animals is adjusted, the decentralization of data, like 
body weight and the organ weight, become comparatively smaller, and a 
CV of about 10% is obtained. CV for blood levels of various hormones, 
even in control animals is large. Often, the standard deviation exceeds the 
mean value by more than 50% for these parameters. 

There is a misconception that the variability in the experimental data 
occurs only in animal experiments. One may think that the instruments 
used in bioanalytical laboratories are highly sophisticated and automated, 
hence the results obtained from these instruments show minimum to no 
variation. This is not true. There is variability in analytical chemistry and 
the measured values differ from the actual values and ‘if the variability 
of a measurement is not characterized and stated along with the result of 
the measurement, then the data can only be interpreted in a limited sense’ 
(USP, 2008).

When to Use a Standard Deviation (SD)/Standard Error (SE)? 

Pharmacologists and toxicologists ambiguously use SD and SE in their 
study reports. A confusion in the use of SD and SE is evident in scienti  c 
articles published in various journals (Herxheimer, 1988; Nagele, 2003). 

Figure 4.1. SD and SE calculated for human -GTP dataa

aData—42, 60, 26, 48, 56, 31, 30, 80, 79, 93 -GTP (IU/l)

0              100             200 
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Since SE is smaller than the SD (see Figure 4.1), some authors use SE, 
perhaps intentionally, in order to reduce the variability of their samples 
(Streiner, 1996; Lang, 1997; Fisher, 2000). 

Although SD and SE are related, they give two very different types of 
information (Carlin and Doyle, 2000). In animal experiments, generally 
SD is 8–20% of the mean of the measured values, hence, the bar presented 
by the SD in a graph seems to be well balanced against the mean value. It 
is not permitted to use SE intentionally just to show a small width of the 
bar (Matsumoto, 1990). The next question is how precisely mean and SD 
should be speci  ed? Mean should not be speci  ed with more than one 
extra decimal place over the raw data but for SD greater precision can be 
given (Altman and Bland, 1996). 

In conclusion, SD gives a fairly good indication about the distribution 
of the observed values around the mean. SE gives an indication about the 
variability of the mean. In toxicology experiments, especially with rodents, 
where the number of animals in a group is usually 10, it would be more 
ideal to use SD and in pharmacology experiments, where the number of 
animals in a group is usually <5 it would be more ideal to use SE, though 
there is no hard and fast rule for these. 
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Analysis of Normality and 
Homogeneity of Variance

5

Distribution of Data in Toxicology and Pharmacology Experiments

It is important to know how the data are distributed for selecting a 
statistical tool for the analysis of the data (Bradlee, 1968). In toxicology 
and pharmacology experiments, data could be distributed in various 
patterns. The three commonly seen patterns of data distribution are given 
in Figure 5.1.

A B C 

Figure 5.1. Three patterns of data distribution in toxicology and pharmacology 
experiments
A. Normal distribution and homogeneity of variance, B. Non-normal distribution and 
homogeneity of variance, C. Non-normal distribution in and heterogeneity in variance.

Analysis of Normality

The two types of non-normal distributions that are generally encountered 
in statistical analysis are skewness and kurtosis. The mean and median are 
different in a skewed distribution. Skewness can be positive or negative. 
The data are positively skewed, when the tail of the distribution curve is 
extended towards more positive values and the data are negatively skewed, 
when the tail of the distribution curve is extended towards more negative 
values ( isar and isar, 2010).

Peakedness of a distribution is depicted by kurtosis. A distribution 
can be ‘platykurtic’ or ‘leptokurtic’. Platykurtic is more  at-topped and 
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leptokurtic is less  at-topped. Usually platykurtic has long tails, whereas 
leptokurtic has short tails. In a leptokurtic distribution, the individual 
measures are concentrated near the mean, whereas in a platykurtic 
distribution, the individual measures are spread out across their range.

Most of the results obtained from toxicity studies do not follow a 
normal distribution. When Weil (1982) examined the distribution pattern 
of hematological and blood chemistry parameters of toxicological studies, 
skewness and kurtosis were observed in many cases. Kobayashi (2005) 
examined the measured items of a carcinogenicity/chronic toxicity study in 
rats. He reported that majority of hematological and biochemical parameters 
presented a non-normal distribution—mean corpuscular volume, mean 
corpuscular hemoglobin, platelets, protein, alanine aminotransferase, 
aspartate aminotransferase, gamma-glutamyl transpeptidase, creatinine 
phosphokinase, cholesterol and potassium were skewed positively, 
whereas hematocrit, hemoglobin, red blood cells and mean corpuscular 
hemoglobin concentration were negatively skewed. 

Tests for Analyzing Normal Distribution

Several tests are available for analyzing normal distribution of the data, 
for example, Kolmogorov-Smirnov (Chakravarti et al., 1967; Park, 
2008), Lilliefors (1967), Shapiro-Wilk’s W (Shapiro and Wilk, 1965) and 
Chi-distribution using goodness of  t tests (Snedecor and Cochran, 1989).

The Kolmogorov-Smirnov test is used to analyse continuous 
distributions. The Lilliefors test is a modi  ed Kolmogorov-Smirnov test. 
The Shapiro-Wilk W test is capable of detecting non-normality for a wide 
variety of statistical distributions. Owing to this, a lot of attention has been 
paid to this test in the literature (Sen et al., 2003). The power of Shapiro-
Wilk’s W test for detecting a non-normal distribution is better than other 
normality tests (Chen, 1971; Liang et al., 2009). The chi-square test is an 
excellent test to examine whether the data are normally distributed. The 
major advantage of the chi-square test is that it can be applied to discrete 
distributions and its disadvantage is that it requires a larger sample size. 

Shapiro-Wilk’s W test

Let us understand Shapiro-Wilk’s W test in detail by working out an 
example given in Table 5.1, body weight of F344 male rats. The data are 
arranged in an orderly fashion.
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The data in Table 5.1. is analysed using SAS-JMP and the statistics 
are given in Tables 5.2. and 5.3. The body weight distribution is given in 
Figure 5.2.

Table 5.1. Body weight of F344 male rats

Animal No. 1 2 3 4 5 6 7 8 9 10
Body weight (g) 71 86 92 95 100 102 105 108 118 123

Observation 1 1 2 4 1 1

Table 5.2. Quantiles

100% Maximum 123.0
99.5% 123.0
97.5% 123.0
90.0% 122.5
75.0% Quartile 110.5
50.0% Median 101.0
25.0% Quartile 90.5
10.0% 72.5
2.5% 71.0
0.5% 71.0
0.0% Minimum 71.0

Note: The term, quantile was introduced by Kendall (1940). Quantiles divide the 
distributions such that there is a given proportion of observations below the quantile. 
Quartiles and percentiles are quantiles. Quartile divides the quantile into four equal parts 
(0–25%, 25–50%, 50–75% and 75–100%). A percentile is the value of a variable below 
which a certain percent of observations fall. For example, the 10th percentile is that position 
in a data set which has 90% of data points above it, and 10% below it.

Table 5.3. Estimates

N 10
Sum ( ) 1000
Mean ( X) 100
Standard error (SE) 4.7981478
Upper 95% mean 110.85416
Lower 95% mean 89.145836

Sum of squares (X- X)2 2072

Standard deviation (SD) 15.173076
Variance 230.22222
Coef  cient of variation (CV) 15.173076
Skewness –0.36285
Kurtosis 0.3549171
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Shapiro-Wilk’s W test-calculation steps

Step 1: Find the difference between the  rst set of extreme values (123 
and 71 g from Table 5.1). Then  nd the difference between the second 
set of extreme values (118 and 86 g). In such a manner  nd the difference 
between the extreme values of remaining sets sequentially. If the number 
of samples is an odd number, ignore the remaining value.
Step 2: Find the Shapiro-Wilk W coef  cients corresponding to the 
difference between the extreme values from the Appendix 1. In this 
example, the number of samples, N=10. The Shapiro-Wilk W coef  cients 
corresponding to the difference between the 1st, 2nd, 3rd, 4th and 5th 
sets of extreme values are 0.5739, 0.3291, 0.2141, 0.1224 and 0.0399, 
respectively. Calculate the product of difference between extreme values 
and Shapiro-Wilk W coef  cients (Table 5.4).

Step 3: Calculate the statistic, W, as given below:

98166.0
2072

10.45 2

W

Compare W (0.98166) with the quantiles of the Shapiro-Wilk W test 
statistic given in Appendix 2. At 10 degrees of freedom the quantiles at 
0.95 and 0.98 are 0.978 and 0.983, respectively. Since, the calculated W 
(0.98166) falls between 0.978 and 0.983, it could be concluded that the 
body weight of all the 10 animals follow a normal distribution. The same 
is con  rmed by Test for goodness of  t:

Figure 5.2. Body weight of F344 male rats
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Test for goodness of  t by Shapiro-Wilk test
 W  Prob < W
 0.981120 0.9673
Since the probability 0.9673<0.981120 (W), it is con  rmed that the body 
weight of all the 10 animals follow a normal distribution pattern.
Table 5.4. Product of difference between extreme values and Shapiro-Wilk W coef  cients

Animal 
No.

Body 
weight (g)

Difference between 
extreme values (D)

Shapiro-Wilk W 
coefficients (C)

Product
(DxC)

1 71 First set 123–71=52 0.5739 29.8428
2 86 Second set 118–86=32 0.3291 10.5312
3 92 Third set 108–92=16 0.2141 3.4256
4 95 Fourth set 105–95=10 0.1224 1.2240
5 100 Fifth set 102–100=2 0.0399 0.0798
6 102 - - - -
7 105 - - - -
8 108 - - - -
9 118 - - - -

10 123 - - - -
Sum    45.10

Power of Shapiro-Wilk’s W test

Shapiro-Wilk’s W test can be used in small as well as large sample sizes 
(Singh, 2009). 
However, the power of this test varies with the number of animals in the 
group. This can be demonstrated with the help of an example of weight of 
rats on week 13, in a repeated dose administration study. Four situations 
are simulated in the example:

Situation 1 (Seventeen observations): 70, 80, 85, 90, 94, 99, 101, 102, 
104, 105, 108, 111, 112, 114, 121, 125, and 131. The distribution of the 
observations is given in Figure 5.3a.

Statistics
 Mean 103.05882
 SD 16.009648
 SE 3.8829099
 Upper 95% mean 111.29022
 Lower 95% mean 94.827422
 N 17
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Shapiro-Wilk’s W test
 W Prob <W
 0.987278 0.9891
Situation 2 (Thirty four observations, the observations of situation 1 are 
used twice): 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 111, 112, 114, 
121, 125, 131, 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 111, 112, 
114, 121, 125, and 131. The distribution of the observations is given in 
Figure 5.3b.

Figure 5.3a. Distribution pattern of body weight (g) of rats—17 observations

Figure 5.3b. Distribution pattern of body weight (g) of rats—34 observations

Body Weight (g) 

Body Weight (g) 
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Statistics
 Mean 103.05882
 SD 15.765211
 SE 2.7037114
 Upper 95% mean 108.55957
 Lower 95% mean 97.558081
 N 34

Shapiro-Wilk’s W test
 W Prob <W
 0.968746 0.5017
Situation 3 (Fifty one observations, the observations of situation 1 are used 
thrice ): 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 111, 112, 114, 121, 
125, 131, 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 111, 112, 114, 
121, 125, 131, 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 111, 112, 
114, 121, 125, and 131. The distribution of the observations is given in 
Figure 5.3c.

Figure 5.3c. Distribution pattern of body weight (g) of rats—51 observations

Statistics
 Mean 103.05882
 SD 15.686187
 SE 2.1965056
 Upper 95% mean 107.47063
 Lower 95% mean 98.647012
 N 51
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Test for goodness of  t, Shapiro-Wilk’s W test
 W Prob <W
 0.959888 0.1486
Situation 4 (Sixty eight observations, the observations of situation 1 are 
used four times): 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 111, 112, 
114, 121, 125, 131, 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 111, 
112, 114, 121, 125, 131, 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 108, 
111, 112, 114, 121, 125, 131, 70, 80, 85, 90, 94, 99, 101, 102, 104, 105, 
108, 111, 112, 114, 121, 125, and 131. The distribution of the observations 
is given in Figure 5.3d.

Figure 5.3d. Distribution pattern of body weight (g) of rats—68 observations

Statistics
 Mean 103.05882
 SD 15.647118
 SE 1.8974918
 Upper 95% mean 106.84623
 Lower 95% mean 99.271414
 N 68

Shapiro-Wilk’s W test
 W Prob <W
 0.954862 0.0383
The statistics given in Figure 5.3a–Figure 5.3d are consolidated in Table 
5.5. Shapiro-Wilk’s W test revealed a signi  cant P, when the number of 
animals was 68, indicating a non-normal distribution. 

Body Weight (g) 
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Parametric and Non-parametric Analyses 

The two basic assumptions for any statistical analysis are the distribution 
of the data (normal or non-normal) and homogeneity of variance 
(homogeneous or heterogeneous). If the variances of the groups are 
heterogeneous and or the data are non-normally distributed, the choice 
of the statistical tools is non-parametric (Kobayashi et al., 2011a). Non-
parametric tests are also called as ‘distribution-free tests’. A parametric 
test is always based on the assumption that the data follow a normal 
distribution and variances of the groups are homogeneous. 

Analysis of Homogeneity of Variance

One of the assumptions of parametric analysis is that variances of the 
observations in the individual groups are equal (the other assumption is that 
the data are normally distributed). When the variances of the groups are 
equal, the situation is referred to as homogeneity of variance (also called 
as homoscedasticity of variance). When the variances of the groups are 
different (not homogeneous), the situation is called as heteroscedasticity.

Bartlett’s homogeneity test

In most of the pharmacological and toxicological studies, Bartlett’s test is 
commonly used to examine the data for homogeneity of variance (Bartlett, 
1937). However, according to Finney (1995) “Bartlett’s test is notorious 
for its unwanted sensitivity to non-normality of error distribution, and is an 
untrustworthy instrument for classifying some data sets as homogeneous 
in variance, other as heterogeneous.”

Table 5.5. Change in power of Shapiro-Wilk’s W test with the change in number of 
animals

N Mean Coef  cient of variance (%) Shapiro-Wilk’s W test
W P

17 103 15.5 0.987278 0.9891 (NS)
34 15.3 0.968746 0.5017 (NS)
51 15.2 0.959888 0.1486 (NS)
68 15.2 0.954862 0.0383 (S)

NS-Not signi  cant (normal distribution); S-Signi  cant (non-normal distribution)
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Homogeneity of variance by Bartlett’s test is calculated using the below 
given formula:

1

(Sum of N Number of group) log N of each group 1 log Sum of Variance2 2.3026
1 1

Sum of (N of each group Sum of total number Number of group
1

3 (Numbe of group 3)

V
X cal

where,

groupofNumber)ofSum(
1ofSumgroupeachofVariance

N
NV  

X 2 cal (chi square calculated) is compared with the value given in chi square 
Table (N=number of groups-1) at 5% probability level. If the computed 
value is less than the table value, it is interpreted that the variances of the 
groups are similar (no heterogeneity). It may be noted that Bartlett’s test 
is not suitable for detecting a heterogeneity when the number of animals 
in a group very small.

Levene’s homogeneity test

Another test used to examine the data for homogeneity of variance is 
Levene’s test (Levene, 1960; Nichols, 1994), which has less sensitivity to 
non-normality of error distribution. Interestingly, compared to Bartlett’s 
test, Levene’s test is less commonly used to analyse the data obtained from 
toxicological and pharmacological experiments.

Power of Bartlett’s and Levene’s homogeneity tests

Bartlett’s test is used for testing the homogeneity of variance of the data 
that follow a normal distribution. Bartlett’s test is very sensitive to the 
data that are non-normal to the slightest extent. According to Finney 
(1995), Bartlett’s test is not necessarily to be carried out for examining 
homogeneity of variance before ANOVA (Analysis of variance, an 
important statistical tool for comparing more than two groups; you will 
learn more about ANOVA in Chapter 11). The reason for this is that the 
power of the Bartlett’s homogeneity test is too strong for examining 
homogeneity of variance, as mentioned above. Toxicity studies using 
Bartlett’s test for testing homogeneity of variance at 1% probability level, 
which is not so conventional, have been reported (Hayashi et al., 1994; 
Katsumi et al., 1999; Kudo et al., 2000; Mochizuki et al., 2009; Ishii 
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et al., 2009). The reason for setting a 1% probability level for detecting 
a signi  cant difference probably could be: if a signi  cant difference is 
detected by Bartlett’s test at the conventional 5% probability level, then 
the data should be analysed using the non-parametric Dunnett type rank 
sum test (joint type) (Yamazaki et al., 1981) and/or Dunn test (Hollander 
and Wolfe, 1973), which have low detection power. Therefore, when 
the probability level is set at 1%, it is unlikely that the data show a 
heteroscedacity in variance by Bartlett’s test. The reason for this is that to 
detect a signi  cant difference at 1% probability level, the chi square value 
has to be larger than that of the 5% probability level.

Do We Need to Examine the Data for Both Normality and 
Homogeneity?

Kobayashi et al. (2011b) made an attempt to compare the statistical tools 
used to analyse the data of repeated dose administration studies with 
rodents conducted in 45 countries, with that of Japan. They found that the 
statistical techniques used for testing the above data for homogeneity of 
variance are similar in Japan and other countries. In most of the countries, 
including Japan, the data are generally not tested for normality.

Kobayashi et al. (2008; 2011b) suggested that the data may be examined 
for both homogeneity of variance and normal distribution. However, in 
bioequivalence clinical trials, because of the limited sample size a reliable 
determination of the distribution of the data set is not required (EMEA, 
2006). 

Which Test to be Used for Examining Homogeneity of Variance? 

In pharmacological and toxicological experiments, treatments that lower 
mean values often decrease variance in the treated groups, substantially 
(Colquhoun, 1971). In these cases, statistical analyses based on the 
assumption of normal distribution and homogeneity of variance are 
inappropriate (Spector and Vesell, 2006). 

Water consumption of B6C3F1 female mice during the week 13 of a 
repeated dose administration study is given in Table 5.6. There were four 
groups and each group consisted of 10 mice. Homogeneity of variances 
among the groups was analysed using Brown-Forsythe’s (Brown and 
Forsythe, 1974), O’Brien’s, Levene’s and Bartlett’s tests.
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It is clear from the table that the sensitivity of Bartlett’s test is higher, 
followed by Levene’s test. O’Brien’s and Brown-Forsythe’s tests have 
very low sensitivity.

Brown-Forsythe’s test is a modi  ed Levene’s test. Both Brown-
Forsythe’s and Levene’s tests use transformed values (Maxwell and 
Delaney, 2004). It is more appropriate to use the Levene’s, Brown-
Forsythe’s or O’Brien’s tests (O’Brien, 1979; 1981) for testing the 
homogeneity of variance of the data that follow a non-normal distribution 
(SAS, 1996). Kobayashi et al. (1999) suggested Levene’s test for examining 
homogeneity of variance of the data obtained from toxicity studies. 
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Transformation of Data and 
Outliers 

6

Transformation of Data

There are situations in pharmacological and toxicological experiments 
that the data show heterogeneous variance across the groups of animals. 
Using parametric tests to analyse such data may give rise to Type I error. 
One way to overcome this situation is to transform the data (Wallenstein et 
al., 1980). It is most likely that the variance of the transformed data show 
homogeneity. 

In Table 6.1, transformed values of alanine aminotransferase activity 
of Wistar rats of the control group in a 14-day repeated dose administration 
study is given. 
Table 6.1. Alanine aminotransferase activity (U/L) of Wistar rats of the control group in 
a 14-day repeated dose administration study

45.3, 63.8, 82, 42, 40.8, 38.2, 35.9, 37.9, 39.1, 35.5 (N=10)
Transformation Mean±SD CV (%)

None 46 ± 15 32.7
Logarithm 1.6 ± 0.12 7.2
Square root 6.7 ± 1.0 15.0
Reciprocal 0.02 ± 0.005 22.8

For the non-transformed data, the CV was 32.7%, which substantially 
decreased, when the data were transformed to logarithms. CV also 
decreased when the data were transformed to square roots and reciprocals, 
but in a lesser magnitude than the logarithmic-transformed data. 

Concentrations of blood constituents usually show a non-normal 
distribution (Flynn et al., 1974). Therefore, statistical analysis is usually 
carried out with the transformed values of blood constituents (Niewczas 
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et al., 2009). According to Lew (2007), in pharmacology, the data may 
be transformed to their logarithms in order to eliminate heterogeneity in 
variation. For example, plasma/serum concentration of drug and/or its 
metabolites in drug metabolism and pharmacokinetic studies (DMPK) in 
laboratory animals (Girard et al., 1992; Steinke et al., 2000; Zheng et al., 
2010) and bioavailability/bioequivalence (BA/BE) studies in volunteers 
(Dubey et al., 2009) are usually analysed in their logarithmic-transformed 
values. FDA (2003) and EMEA (2006) recommend logarithmic-
transformation of exposure measures before statistical analysis in BA/BE 
studies. It should be borne in mind that the data showing a non-normal 
distribution may also display other patterns of uneven variation that cannot 
be easily eliminated (Keppel and Wickens, 2004).

Statistical analysis using transformed values are not the same as using 
measured values. Therefore, interpreting the transformed values may be 
dif  cult (Jenifer, 2010). In the words of Finney (1995), “When a scientist 
measures a quantity such as concentration of a chemical compound in a 
body  uid, his interest usually lies in the scale, perhaps mg/ml, that he has 
used; he is less likely to be interested in a summary of results relating to 
a transformed quantity such as the logarithm of blood concentration. If he 
analyzes in terms of logarithm, encouraged perhaps by an elementary but 
uncritical statistical textbook or by a convenient software package, he may 
 nd signi  cant differences but to express his conclusions in meaningful 

numbers may be impossible. I do not assert that a scientist should never 
transform data before analysis; I urge that data should be transformed only 
after careful consideration of all consequences. Textbook implications 
that; ‘In certain speci  ed circumstance, data must be transformed’ should 
not be unthinkingly accepted. Remember that any transformation is likely 
to increase the dif  culty of interpreting results in relation to the original 
measurements.” Therefore, when a signi  cant difference is obtained for 
transformed values, following a statistical analysis, it is necessary to 
describe that the signi  cant difference obtained is for the transformed 
values.

Outliers

Data obtained from pharmacological and toxicological studies are not 
free from outliers. An outlier can be de  ned as ‘an observation which 
deviates so much from other observations as to arouse suspicion that it 
was generated by a different mechanism’ (Hawkins, 1980). Outliers 
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can have deleterious effects on statistical analyses (Rasmussen, 1988; 
Schwager and Margolin, 1982). Outliers increase error rates and distort 
statistical estimates when using either parametric or nonparametric tests 
(Zimmerman, 1995; 1998). Outliers arise from two sources—from errors 
in the data and from the inherent variability of the data (Anscombe, 1960). 
According to Barnett and Lewis (1994), ‘not all outliers are illegitimate 
contaminants, and not all illegitimate scores show up as outliers’. 

Hypoglycemic property of a drug was evaluated in alloxan-induced 
hyperglycemic rats. These rats were divided into two groups (5 rats/group), 
Groups 1 and 2. Group 1 (control) was treated with vehicle and Group 2 
was treated with the drug. Following the administration of vehicle or drug, 
blood glucose was determined in individual rat (Table 6.2.).
Table 6.2. Blood glucose (mg/dl) in alloxan-treated rats following administration of drug

Group 1 (Vehicle treated) Group 2 (Drug treated)
189, 195, 169, 206, 175 138, 161, 156, 171, 259

Mean ± SD = 186.8 ± 14.9 (n=5) Mean ± SD = 177.0 ± 47.4 (n=5)
Mean ± SD = 156.5 ± 13.4 (n=4)

The blood glucose level of the vehicle treated group was 186.8 ± 14.9 
mg/dl (mean ± SD), whereas the drug treated group was 177.0 ± 47.4 mg/
dl (mean ± SD). Though a decrease in blood glucose level was observed in 
the drug treated animals, it was statistically insigni  cant by Aspin Welch’s 
t-test using one-sided (we used Aspin Welch’s t-test because the variance 
of the groups is different. You will read more about this test in Chapter 8). 
The SD of drug treated group exploded considerably, indicating a large 
variance. Close observation of the individual values of the drug treated 
animals shows that all the values in this group are close to each other, 
except the value, 259. Let us recompute the mean and SD of this group, 
after removing 259 from the data. The revised mean ± SD is 156.5 ± 13.4 
(n=4). We are comfortable with this SD, as this is very close to the SD of 
the vehicle treated group, indicating a homogeneity of variance between 
the vehicle treated and drug treated animals. The blood glucose of drug 
treated animals (after removing the value, 259) is statistically different 
from the vehicle treated animals by Student’s t-test (we used the Student’s 
t-test because the variance of the groups is not different. You will read more 
about this test in Chapter 8). In this example, the value 259 is an outlier, 
as it clearly stands out of other values, but in many pharmacological and 
toxicological experiments it is not easy to spot an outlier. A simple method 
to identify an outlier mentioned in several books on statistics is given 
below (Hogan and Evalenko, 2006):
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Lower outlier = 25th percentile – (1.5 x IQR)
Upper outlier = 75th percentile + (1.5 x IQR)
Readers may go back to Chapter 2 and refresh their memory on box-and-
whisker plot and IQR (inter-quartile range or hinge spread). 

There are several statistical tools available for detecting an outlier. 
Among them, the Dixon test and Grubb test are widely used (Verma and 
Ruiz, 2006) and these tests are suggested by ASTM (2008). Outlier tests 
suggested in USP (2008) are ESD test, Dixon-Type test and Hampel’s 
rule. 
We shall discuss 3 outlier tests in detail:

1. Masuyama’s Rejection Limit Test (Shibata, 1970) 

Let us examine whether the value 259 of the example given in Table 6.2 is 
an outlier. Masuyama’s rejection limit test is calculated using the following 
equation:

05.0)1(
1

nt
n

nSxX , where

Sx: Standard deviation; t(n-1)0.05 is t value at 5% probability level (n–1 
degrees of freedom). 
The mean and SD of the data (138, 161, 156, 171, 259) given in Table 6.2 
are;
Mean = 177.0; SD = 47.4 (n=5)

776.205.0)15(t  [from t Table by two-tailed test]

Rejection limits 89.157177)776.2
5

154.47(177

19.11~334.89
As indicated above, Masuyama’s rejection limit test gives the rejection 
limits in a wider range. Masuyama’s rejection test is not sensitive in 
detecting an outlier. Hence, use of this test should be done in toxicology/
pharmacology with a little caution.
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2. Thompson’s Rejection Test (Thompson, 1935)

Let us again work out the example of blood glucose levels of drug-treated 
rats given in Table 6.2. The values are 138, 161, 156, 171, 259 mg/dl. We 
shall apply Thompson’s rejection test to examine whether the value, 259 
mg/dl is an outlier.

X = 885, X  = 177, Sum of squares (SS), (X-X )
2
= 8978

= 177–259 = –82

37.426.1795
5

8978Sn  

94.1
37.42

82

When you substitute these calculations for the expression of t:

2)25(
94.115

2594.1t  

2.14)3(t  

The Table value for t at 0.001 probability level (Table 6.3) for three 
degrees of freedom, is 12.923. Since the calculated t value is greater 
than the table value, we consider the blood glucose value, 259 mg/
dl is an outlier.

Table 6.3. t test critical values (Yoshimura, 1987)

df \2 0.2 0.1 0.05 0.02 0.01 0.002 0.001
df \ 0.1 0.05 0.025 0.01 0.005 0.001 0.0005

2 1.885 2.919 4.302 6.964 9.924 22.327 31.59
3 1.637 2.353 3.182 4.540 5.840 10.214 12.923
4 1.533 2.131 2.776 3.746 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 2.250 4.297 4.781

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587
=One-sided, 2 =Two-sided test.
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3. Smirnov-Grubbs’ Rejection Test (Grubbs, 1969)

Smirnov-Grubbs’ rejection test is one of the tests for outliers used widely 
in various  elds of biology (Sunaga et al., 2006; Kawano et al., 2007; 
Ishikawa et al., 2010; Okubo et al., 2010).

In animal experiments, the Smirnov-Grubbs’ test is used more 
frequently than the Thompson’s rejection test. Smirnov-Grubbs’ test has 
a high power when the outlier is only one observation. However, when 
outliers are two or more observations, power of this test decreases due to 
the masking effect of one outlier to the other.

The calculation procedure of Smirnov- Grubbs’ test is very simple. We 
can use the same example that we used for Thompson’s rejection test.
First, calculate Tn . 

,)( 1

V
XX

Tn

Where n = Number of samples; X1= The outlier.
Blood glucose level of drug treated rats are 138, 161, 156, 171, 259 mg/
dl.

X = 885, X  = 177, Sum of squares (SS), (X– X )
2
= 8978, Variance (V) 

= 1795.6.

94.1
37.42

82
1795.6

177259
5T  

The Table value for Smirnov- Grubbs at 0.01 probability level (Table 6.4) 
for 5 degrees of freedom, is 1.749. Since the calculated value (1.94) is 
greater than the table value (1.749), the test con  rms that the blood glucose 
value 259 mg/dl is an outlier.

A Cautionary Note 

Though human and other errors are major contributing factors for outliers, 
a positive outcome from an outlier test should be investigated (Ellison et 
al., 2009). Before discarding an outlier, one has to con  rm that the value 
discarded as an outlier is not a genuine data point. Hubrecht and Kirkwood 
(2010) suggested that one way to deal with an outlier is to carry out the 
statistical analysis with and without it. If the analytical results provide 
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similar interpretation, the outlier should not be discarded. By merely not 
falling in the ‘expected’ range should not be the only reason for considering 
a data point as an outlier and discarding it (Petrie and Sabin, 2009). Let us 
examine the data on hemoglobin concentration of F344 male rats on week 
104 in a repeated dose administration study given in Figure 6.1.

Table 6.4. Smirnov-Grubbs’ Tablea (Aoki, 2002; 2006)

N 0.1 0.05 0.025 0.01
3 1.148 1.153 1.154 1.155
4 1.425 1.462 1.481 1.493
5 1.602 1.671 1.715 1.749
6 1.729 1.822 1.887 1.944
7 1.828 1.938 2.020 2.097
8 1.909 2.032 2.127 2.221
9 1.977 2.110 2.215 2.323

10 2.036 2.176 2.290 2.410
11 2.088 2.234 2.355 2.484
12 2.134 2.285 2.412 2.549
13 2.176 2.331 2.462 2.607
14 2.213 2.372 2.507 2.658
15 2.248 2.409 2.548 2.705
16 2.279 2.443 2.586 2.747
17 2.309 2.475 2.620 2.785
18 2.336 2.504 2.652 2.821
19 2.361 2.531 2.681 2.853
20 2.385 2.557 2.708 2.884

aOne-sided table.

Figure 6.1. Hemoglobin concentration (g/dl) of F344 male rats on week 104
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 The data between 9 and 13 g/dl, appear to be outliers. Box-and-
Whisker plot given in the upper section of the Figure provides useful 
information on the spread of the data and two outlier data points. It may be 
also possible that an outlier test done on the data of the Figure 6.1 con  rms 
this view. But the values lower than 13 g/dl should not be considered as 
outliers, since this is how hemoglobin is distributed in the rat population 
of the study, which is non-normal. However, according to Ye (2003), an 
outlier is valid if it represents an accurate measurement and still falls well 
outside range of majority of values. 

Non-normal distribution of several parameters is normally seen in 
biological experiments. In a non-normal distribution, the data points that 
fall outside the range of majority of the values should not be considered 
as outliers. It is worth mentioning here that in bioequivalence trials the 
regulatory agencies may permit exclusion of outliers from the statistical 
analysis if they are caused by product or process failure but the regulatory 
agencies may not permit exclusion of outliers from the statistical analysis if 
they are caused by subject-by-treatment interaction (Schall et al., 2010).
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Tests for Signifi cant Differences

7

Null Hypothesis

The main objective of conducting an animal experiment is to know 
whether the treatment with a test item causes any effect compared to the 
control group. The comparison between the treatment group/s and the 
control group is made using various statistical tools. The selection of an 
appropriate statistical tool is based on certain assumptions. Before we go 
further, we need to understand a hypothesis called ‘null hypothesis’.

In the statistical context, a hypothesis is a statement about a distribution 
(example, normal distribution), or its underlying parameter (example, 
mean value, ) or a statement about the relationship between probability 
distribution (example, there is no statistical difference between the treated 
and the control groups) or its parameter ( 1= 2) (Le, 2009). Why is it 
called as ‘null hypothesis’? Let us try to understand ‘null hypothesis’ using 
the explanation proposed by Yoshida (1980). No pharmaceutical company 
will venture in developing a new drug, A1, if it is not superior to the drug 
currently in use, A2. In a statistical analysis, we  rst hypothesize that drugs 
A1 and A2 have the same therapeutic value. That is, we hypothesize A1 = 
A2, which is contrary to our assumption A1 > A2. When the experimental 
data fail to show A1 = A2, we judge that A1 differs from A2 and reject 
the hypothesis. Thus, in a statistical test, we  rst hypothesize A1 = A2 in 
contrast to our assumption A1 > A2, and then show that it is not true (A1 

 A2). The original hypothesis A1 = A2, which is desirably rejected, is 
called the null hypothesis. In most of the statistical books null hypothesis 
is notated as:
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H0= 1= 2, and the alternate hypothesis is notated as:
H1= 1 2, where 1 and 2 are the mean values of two groups.

Generally, a statistical process starts from the null hypothesis, which 
assumes no difference between the control group and the treated group 
or among the groups, and if a signi  cant difference is detected at 5% 
signi  cant level (P<0.05), the null hypothesis is rejected.

Signi  cant Level, Type I and Type II Errors

In the publications of pharmacological and toxicological experiments one 
would have come across authors using P<0.05, usually as footnotes of the 
Tables to denote a signi  cant difference. P stands for probability. In order 
to detect a signi  cant difference we have to challenge the null hypothesis. 
When P <0.05, the null hypothesis is rejected. It means there is only a 5% 
chance of rejecting null hypothesis, when it is true. We are not supposed 
to reject null hypothesis, when it is true, if we reject it, it is called as Type 
I error. In a pharmacological experiment, if you reject the null hypothesis, 
when actually it is true, i.e., H0= 1= 2 (there is no difference between the 
treated and control groups), you would report that the drug that you tested 
had an effect, causing a Type I error. Hence, this Type I error is also called 
as ‘false positive’. Experimental design in pharmacology should be proper 
so that misleading claims concerning the effectiveness of a treatment 
(Type I error) are not made (Spina, 2007). Type II error is opposite to Type 
I error, also called as ‘false negative’, occurs when you falsely accept the 
null hypothesis.

Why at 5% Signi  cant Level?

In statistical analysis, the smallest probability for rejecting a null hypothesis, 
when it is true, is considered as 5% (Madsen, 2011). The same is used in 
most of the pharmacological and toxicological studies, where a signi  cant 
difference between the treated and the control groups is judged at 5% 
probability level. Why the statisticians look upon 5% probability as the 
cut-off point for assessing a signi  cant difference? Let us try to explain it 
with an example: A tennis player loses several matches against an opponent 
of supposedly equal skill level. How many losses will be required for the 
player to regard the opponent as a better player than him? It is not odd 
for a player to lose three consecutive games to his opponent with equal 
ability, but the fourth consecutive loss leads the player to believe that his 
opponent to be a better player. After losing  ve consecutive games, the 
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player may abandon the null hypothesis (null hypothesis in this case is that 
the player and his opponent have equal skill level) and consider that his 
opponent is a better player than him. If the player and his opponent have 
equal ability, the probability of losing the game once by the player is 1/2, 
but the probabilities of losing four and  ve games consecutively by the 
player are (1/2)4 = 6.3% and (1/2)5 = 3.2%, respectively. The mid-point of 
these probabilities is about 5% [(6.3+3.2)/2=4.8%)]. 

The  ve percent signi  cant level which implies 1 mistake in 20 
observations (1/20) is normally unavoidable in biological experiments 
and has been used for more than half a century in bioassays including 
toxicity tests (Dunnett, 1955; Kornegay et al., 1961). Hence, according 
to Bailey (1995), the  ve percent signi  cant level can be generally used 
for  agging a signi  cant difference. Conventionally, a P value of <0.05 
indicates statistical signi  cance (Doll and Carney, 2005). 

However, strictly adhering to a 5% signi  cant level to delineate a 
signi  cant difference has been questioned by few statisticians. Fisher 
(1955) recommended a 5% signi  cant level based on a single hypothesis, 
H0. Neyman and Pearson (1928, 1936) proposed a decision process which 
seeks to con rm or reject a priori hypothesis and rejected Fisher’s idea that 
only the null hypothesis needs to be tested. Statisticians posed questions 
against Fisher’s 5% probability level; the question was ‘what should be 
the smallest P value that warrants rejection of the null hypothesis?’ In later 
years, Fisher (1971) stated that the Q value can be signi  cant at a ‘higher 
standard, if P is 1%’ and at a ‘lower standard if P is 5%’. It again states, 
though indirectly, that a signi  cant difference can be obtained only when 
the P is between 1 and 5%. (Note: Q value is the ‘false discovery rate’ 
analogue of P). 

Many statisticians do not favor strictly characterizing the result of a 
statistical analysis into a positive or negative  nding on the basis of a 
P value. They suggest, when reporting the results of signi  cance tests, 
precise P values (example, P<0.049 or P<0.051) should be reported rather 
than referring to speci  c critical values. Interpretation of the results of a 
statistical analysis should not be made solely on the basis of null hypothesis. 
The hypothesis testing has been challenged and there has been suggestion 
to report con  dence intervals rather than P (Krantz, 1999). According 
to Gelman and Stern (2006) ‘dichotomization into signi  cant and non-
signi  cant results encourages the dismissal of observed differences in 
favor of the usually less interesting null hypothesis of no difference’. In the 
case of experiments conducted in pharmacology and toxicology, biological 
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relevance of the results also should be considered for interpreting the data. 
Declaring a result non-signi  cant does not mean that the effect is not 
biologically relevant; it only means that there is not suf  cient evidence 
to reject the null hypothesis. In a nutshell, statistical analysis should not 
override the experience of the experimenter in interpreting the results of 
the experiments. 

How to Express P?

The published articles express the P in two ways: P <0.05 or P<0.05. The 
question is how the P should be expressed—P <0.05 or P 0.05? Though, 
technically, it may be better to express P 0.05, P<0.05 also conveys similar 
information on statistical signi  cance. We conducted a small investigation 
on the expression of P in toxicological/pharmacological articles published 
in few journals. In most of the journals investigated, we observed that 
P<0.05 and P <0.05 were used at similar frequencies. In the toxicological/
pharmacological experiments conducted in Japan, P<0.05 tended to be 
used slightly more frequently than P<0.05. In the technological report of 
the National Toxicology Program of NIH, USA, P <0.05 is more widely 
used.

One-sided and Two-sided Tests

Generally, it has been stated that a one-sided test is used in the following 
cases: 1) the difference, large or small is questioned and 2) the inter-group 
difference (plus or minus) is known in advance. On the other hand, a two-
sided test is used in the following cases: 1) only the presence or absence of 
an inter-group difference is questioned and 2) it is not certain whether the 
inter-group difference is plus (positive) or minus (negative). The detection 
rate of a signi  cant difference differs depending on the selection of a 
one-sided or a two-sided test. Let us work out an interesting example: A 
customer went to a grocery shop to buy a loaf of bread. The weight of a 
loaf of bread printed on the bread wrappers was 450 g. On a hunch, the 
customer purchased one loaf of bread from the shop daily for seven days 
and weighed the loaves. The weights were 444, 434, 450, 430, 458, 446 
and 422 g. He informed the grocer that the weight printed on the bread 
wrapper did not match with the actual weight of the bread. The grocer 
offered to analyse the data provided by the customer using a two-sided test. 
The calculated t value (2.14) was less than the value of t-distribution Table 
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(2.447), hence the null hypothesis was not rejected (Note: Normally we 
analyse the data using a statistical formula to obtain a ‘calculated value’. 
Then, we compare this ‘calculated value’ with the value (critical value) 
given in the appropriate statistical Table. If the calculated value is greater 
than the Table value (critical value), we consider the null hypothesis is 
rejected. In this particular example we have analysed the data using a t-test 
and got a t value. This t value was compared with the value given in the 
t Table. You shall learn about various statistical tools and their applications 
in later chapters). Not-rejection of the null hypothesis means there is no 
statistical signi  cant difference among the weights of seven loaves of the 
bread that the customer purchased. The customer was not convinced with the 
result of the two-sided test provided by the grocer. The customer decided to 
analyse the data using a one-sided test, with the assumption that the weight of 
the loaf of the bread is less than 450 g. When the customer analysed the data 
using the one-sided test, he found that the calculated t value (2.14) was greater 
than the value of t-distribution Table (1.943). Therefore, “Null hypothesis” is 
rejected, which means that there is a statistical signi  cant difference among 
the weights of seven loaves of the bread that he purchased. 

Which Test to Use: One-sided or Two-sided? 

It is interesting to note that scientists have different views in choosing 
between one-sided test and two-sided test. Kobayashi et al. (2008) examined 
whether a one-sided or a two-sided test was used in the analysis of the 
data obtained from 122 numbers of 28-day repeated dose administration 
studies in rats. The studies were conducted as per Chemical Substances 
Control Law, Japan (CSCL, 1986) or OECD test guideline (OECD, 2008). 
Out of 122 studies examined, quantitative data of 22 studies were analysed 
by the one-sided test, 87 studies were analysed by two-sided test, whereas 
there was no mention about whether the one-sided or two-sided test was 
used in 13 studies. With regard to qualitative data, in 34 and 22 studies 
the data were analysed by the one-sided and two-sided tests, respectively, 
whereas there was no mention about whether the one-sided or two-sided 
test was used in 66 studies.

Drewitt et al. (1993) used a two-sided t-test for preliminary studies 
and one-sided test for the main studies. Shertzer and Sainsbury (1991) 
used a one-sided t-test for the detection of a signi  cant difference between 
two groups. Yoshimura and Ohashi (1992) recommended the one-sided 
test because the results of a toxicity study are evaluated by the presence or 
absence of an increase in the mean value of the treated groups in comparison 
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with the control group. Shirley (1997) used a two-sided test for Student’s 
t-test and Cochran’s t-test, and if a signi  cant difference is observed in 
the ANOVA, used the one-side test in Dunnett’s multiple comparison test. 
Dunnett (1955) recommended the use of a two-sided test to determine 
simultaneously the upper and lower limits to the difference between the 
control group and each treated group and a one-sided test to determine 
either the upper or lower limit to the difference between the control group 
and each treated group. Gad and Weil (1988) explained the signi  cant 
difference between the control and treated groups in body weight by using 
the two-sided test. Sakuma (1977) suggested to select either a one- or a 
two-sided test referring to the reports of similar studies. Nakamura (1986) 
stated that selection of one- or two-sided test may depend on the objective 
of the study, and he suggested that the statistical signi  cance of the data 
should not be foreseen. Kobayashi (1997) recommended a one-sided test 
for the analysis of data obtained from toxicological studies.

A signi  cant difference is more apt to be observed in a one-sided 
test than in a two-sided test. According to a survey, the detectability of a 
signi  cant difference by the two-sided test was 71–95% of that by a one-
sided test in the Dunnett’s t-test (Table 7.1) (Kobayashi, 1997). 

Table 7.1. Difference in number of signi  cant differences (P < 0.05) by one- and two-sided 
test by Dunnett’s t-test in a chronic toxicity and carcinogenicity study

Items No. of statistical
analyses

Dunnett’s t-test
One-sided Two-sided

Body weight (b.w.) 528 223 212 (95)
Feed consumption 832 235 189 (80)
Hematology 352 123 105 (85)
Blood chemistry 576 215 181 (84)
Urinalysis 64 7 5 (71)
Organ weight 224 47 42 (89)
Organ weight/b.w. 224 82 67 (81)
Total 2800 932 801 (86)

Note: Values in parentheses show the percent signi  cant difference by two-sided test with 
regard to one-sided test.

Overall signi  cant difference shown by the two-sided test is 86% of 
the one-sided test. The reason for this is that one-sided test requires less 
strength of evidence than the two-sided test for a signi  cant difference. 
It is likely that an item shown as insigni  cant by a two-tailed test can be 
signi  cant by a one-sided test. One-sided test should never be used to 
make a conventionally non-signi  cant difference signi  cant (Bland and 
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Bland, 1994). Therefore, it is important to decide to use a one-sided or a 
two-sided test before the data collection (Rosner, 2010). 

The rejection limit value at 5% probability level of t-test and Dunnett’s 
multiple comparison test was excerpted and is shown in Table 7.2. The 
rejection limit value of the one-sided test does not become 1/2 the value 
of the Table of the two-sided test, but it becomes 78% of two-sided test 
in t-test, and it becomes 85% of two-sided test at four groups setting in 
Dunnett’s multiple comparison test. 
Table 7.2. Rejection limits of t-test and Dunnett’s multiple comparison test with one- and 
two-sided (Yoshimura, 1987) 

DF Rejection limit at 5% level
t-Table Dunnett’s Tablea

Two-sided One-sided Two-sided One-sided
1 12.706 6.314 – –
2 4.303 2.920 – –
3 3.182 2.353 3.867 2.912
4 2.776 2.132 3.310 2.598
5 2.571 2.015 3.030 2.433
6 2.447 1.943 2.863 2.332
7 2.365 1.895 2.752 2.264
8 2.306 1.860 2.673 2.215
9 2.262 1.833 2.614 2.178

10 2.228 1.812 2.268 2.149
• • • • •
• • • • •

21 2.080 1.721 2.370 2.021
22 2.074 1.717 2.363 2.016
• • • • •
• • • • •

31 2.040 1.696 2.317 1.986
32 2.037 1.694 2.314 1.984
• • • • •
• • • • •

41 2.020 1.683 2.291 1.969
42 2.018 1.682 2.289 1.968
• • • • •
• • • • •

60 2.000 1.671 2.265 1.952
120 1.980 1.657 2.238 1.934
240 1.970 1.651 – –

       
1.960 1.645 2.212 1.916

Rateb 1:0.78 1:0.85
aFour groups setting.
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bValue when total of two-sided is assumed to be one.

The decision to use a one-sided or a two-sided test should be made 
carefully, as it has an impact on sample size calculation. Minimum sample 
size required for one-sided test is less, because it focuses on only tail of 
the probability distribution (Moye and Tita, 2002). The decision to use a 
one-sided or a two-sided test also has an impact on assessment of study 
results by regulatory authorities (Freedman, 2008). When you carry out 
initial pharmacological or toxicological tests with an unknown molecule, 
it would be appropriate to use a two-sided test. In subsequent tests, for 
con  rming the  ndings of the initial tests, one-sided test may be used. 
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Student’s t-Test—History

The history of statistical signi  cance tests dates back 17th century. Perhaps 
the earliest statistical analysis published was by John Arbuthnot on London 
birth rates with regards to gender in 1710 (Hacking, 1965). One of the 
most popular signi  cance tests is the Student’s t-test, which has wide 
scienti  c applications (Papana and Ishwaran, 2006). The Student’s t-test 
is a parametric test for comparing two groups. Readers may be interested 
to know why it is called as Student’s t-test. ‘Student’ was the pseudonym 
of W.S. Gossett (1876–1937) (Box, 1987). He worked as a chemist at the 
Guinness brewery, Ireland. He chose this pseudonym because his company 
did not allow its scientists to publish con  dential data (Raju, 2005). His 
company regarded use of statistics in quality control as a trade secret. In 
an article published in Biometrika, Gossett described a procedure to assess 
population means by using small samples under the pseudonym, “Student” 
(Student, 1908). 

t-Test for One Group
The temperature of an animal room was set at 22°C. The temperature of 
the room measured everyday at 9.00 am for seven days is given in Table 
8.1. The temperature measured was not the same as the temperature set 
(22°C) in any of these days. Let us examine whether the temperature 
measured during the seven days is statistically similar to the temperature 
set (22°C). 
Table 8.1. Temperature of the animal room 

Day 1 2 3 4 5 6 7
Temperature (°C) 22.3 22.6 22.4 22.4 22.6 22.5 22.4

N = 7; Mean = 22.46; SD = 0.1134; SE =0.0429
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The t-distribution Table value (Table 8.2.) at 0.05 probability, for 6 (7–1) 
degrees of freedom is 2.447 (two-sided). Since calculated value (10.723) 
is greater than the Table value (2.447), it is considered that the temperature 
measured in the animal room during the seven days differed from the 
temperature set (22°C). 
Table 8.2. t-distribution Table (Yoshimura, 1987)

DF\2 * 0.2 0.1 0.05 0.02 0.01 0.002 0.001
DF\ ** 0.1 0.05 0.025 0.01 0.005 0.001 0.0005

5 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408

DF, Degrees of freedom; *One-sided; **Two-sided

t-Test for Two Groups

The use of a repeated t-test for comparison of three or more groups might 
cause the error of the  rst kind (Type I error). Three kinds of t-tests are 
commonly used (Figure 8.1). Depending on the variance ratio (F) and the 
number of samples in the group, a t-test is selected.

F-test
P=0.05

Not signi  cant             Signi  cant

Number of samples

Equal              Not equal

Student’s t-test Aspin-Welch’s t-test Cochran-Cox’s t-test

Figure 8.1. Selection of a t-test

F-value is the variance ratio. It is calculated by dividing the larger 
variance by the smaller variance. If the calculated F-value is smaller than 
the value given in F-distribution Table at 5% probability level, the two 
groups are regarded to have the same distribution and the data are analysed 



58 A Handbook of Applied Statistics in Pharmacology

using Student’s t-test. On the contrary, if the calculated F-value is greater 
than the value given in F-distribution Table at 5% probability level, the 
two groups are regarded to have different distributions and the data are 
analysed using either Aspin-Welch’s t-test (if the number of samples in the 
two groups is equal) or Cochran-Cox’s t-test (if the number of samples in 
the two groups is not equal). Cochran-Cox’s test has a low power to detect 
a signi  cant difference. This may be the reason why Aspin-Welch’s t-test 
is often used regardless of the number of samples in the two groups.

Student’s t-test

The height of male and female students in a class room is given in Table 
8.3. We would like to examine whether the male and female students have 
similar heights.
Table 8.3. Height (cm) of male and female students

Male (Group 1) Female (Group 2)
170 160
168 154
170 162
169 160
179 151
162 159
172 148
169 159
169 150
179 162

Statistics
Estimates Male (Group 1) Female (Group 2)

N 10 10
Sum 1707 1565
Mean 170.7 156.5
SD 5.0783 5.2546

Variance 25.79 27.61
Sum of squares 232.10 248.50

Let us examine the distribution of the data of males and females by 
calculating F-value:

07.1
8.25
6.279

9F

Note: 9
9F —The superscript and subscript to F indicate the degrees of 

freedom of the numerator and denominator, respectively.
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Compare the calculated F-value with the F-distribution Table value 
(Table 8.4). F-distribution Table value is the value, where the degrees of 
freedom of numerator and denominator intercept.
(Note: The F-distribution is named after Sir Ronald A. Fisher (1890 –1962), 
who is known to be the father of modern statistics (Kennedy, 2003). F-test 
is a ratio of the sample variances. However, F-test is not suitable for the 
data showing a non-normal distribution.). 

N1 N2                      1      2   3  4  5        6       7       8       9       10     12     14     16     18     20     30 

7 5.59  4.73  4.34  4.12  3.97  3.86  3.78  3.72  3.67  3.63  3.57  3.52  3.49  3.46  3.44  3.37 

8 5.31  4.45  4.06  3.83  3.68  3.58  3.50  3.43  3.38  3.34  3.28  3.23  3.20  3.17  3.15  3.07 

9 5.11  4.25  3.96  3.63  3.48  3.37  3.29  3.22  3.17  3.13  3.07  3.02  2.98  2.96  2.93  2.86 

10 4.96  4.10  3.70  3.47  3.32  3.21  3.13  3.07  3.02  2.97  2.91  2.86  2.82  2.79  2.77  2.69 

11 4.84  3.98  3.58  3.35  3.20  3.09  3.01  2.94  2.89  2.85  2.78  2.73  2.70  2.67  2.64  2.57 

N
1
= Degrees of freedom of numerator, N

2
= Degrees of freedom of denominator 

Table 8.4. F-distribution values at 5% probability level (Yoshimura, 1987)

The calculated F value (1.07) is less than the Table value (3.17). 
Hence, 9

9F  is not considered signi  cant, indicating that the variances of 
both the groups having a similar distribution. Therefore, as given in Figure 
8.1, the data can now be analysed using Student’s t-test.
The t value is calculated using the equation,

221
21

21

21

21 NN
NN
NN

SSSS

XX
tcal  

Where, 

1X  = Mean of Group 1; 2X  = Mean of Group 2; SS1 = Sum of squares of 
Group 1; SS2= Sum of squares of Group 2; N1 = Degrees of freedom of 
Group 1; N2 = Degrees of freedom of Group 2. 

145.6)21010(
1010
1010

5.2481.232
5.1567.170

tcal  

Compare the calculated t value with the t-test critical value given 
in Table 8.5.
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The t-test critical value at 5% probability level for N1+N2–2 (10+10–
2=18) degrees of freedom is 1.734. Since calculated t-value (6.145) is 
greater that the t-test critical value, it is considered that the height of male 
and female students is different.

Aspin-Welch’s t-test

This test is used to compare the means of two groups having different 
distributions, but number of samples (observations) is the same.

A study was conducted in volunteers to  nd the effect of high fat 
content. Diet containing high fat content was given to 10 individuals 
(Group 1). Concurrently, normal diet was given to another 10 individuals 
for comparison (Group 2). At the end of the 7 days treatment, alanine 
aminotransferase (ALT) activity was measured in the individuals of both 
the Groups. The ALT determined in the individuals is given in Table 8.6. 

Table 8.5. t-test critical values (Yoshimura, 1987)
 P= 2  0.20 0.10 0.05 0.02 0.01 0.002 0.001
 P=  0.10 0.05 0.025 0.01 0.005 0.001 0.0005
 DF 
 16  1.337 1.746 2.120 2.583 2.921 3.686 4.015
 17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
 18 1.330 1.734 2.101 2.552 2.878 2.610 3.922
 19  1.328 1.729 2.093 2.539 2.861 3.579 3.883
 20 1.325 1.725 2.086 2.528 2.845 3.552 3.850
Note: =one-sided, 2 =two-sided.

Table 8.6. Alanine aminotransferase activity (IU/l) of individuals

Diet containing high fat content (Group1) Normal diet (Group 2)
42 30
60 34
26 35
48 32
56 36
31 41
30 42
80 28
79 71
93 35
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Statistics
Estimates Diet containing 

high fat content (Group 1)
Normal diet 
(Group 2)

N 10 10
Sum 545 384
Mean 55 38
SD 23.4011 12.2493
Variance (Sx2) 548 150

F-ratio =

65.3
150
5489

9F

Compare the calculated F-value with the Table value (Table 8.4). The 
derived F value (3.65) is greater than the Table value (3.17). Hence, 9

9F  is 
considered signi  cant, indicating that the variances of both the groups are 
distributed differently. According to Figure 8.1, Aspin-Welch’s t-test is the 
appropriate statistical tool for the analysis of this data. The t is calculated 
using the following formula:

2

2

1

1

21

N
Sx

N
Sx

XX
tcal

Where, 

1X  = Mean of Group 1; 2X  = Mean of Group 2; Sx1= Variance of Group 
1; Sx2= Variance of Group 2; N1= Degrees of freedom of Group 1; N2 = 
Degrees of freedom of Group 2.

03.2

10
150548

3855
tcal  

Unlike Student’s t-test, where the degrees of freedom is N1+N2–2, degrees 
of freedom needs to be calculated for Aspin-Welch’s t-test. The degrees of 
freedom for Aspin-Welch’s t-test is calculated as given below: 

1
)1(

1

1

2

2

1

2

N
C

N
C

N
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Where,

2

2
2

1

2
1

1

2
1

N
Sx

N
Sx

N
Sx

C  

79.0
0.158.54

8.54C  

5.13

9
)79.01(

9
79.0

1
22N  

Compare the derived t value with the t-test critical value given in Table 
8.7 at 5% probability level for fourteen degrees of freedom (14 degrees 
of freedom is obtained by rounding up the calculated N, 13.5). Since the 
calculated t-value, 2.03 is greater than the t-test critical value given in the 
Table 8.7 (1.761), it can be stated that there is a difference in ALT between 
the high fat diet-treated and normal diet treated-individuals.
Table 8.7. t-test critical values (Yoshimura, 1987)

2 0.20 0.10 0.05 0.02 0.01 0.002 0.001
0.10 0.05 0.025 0.01 0.005 0.001 0.0005

DF=14 1.345 1.761 2.145 2.624 2.977 3.787 4.140
=one-sided, 2 =two-sided.

Cochran-Cox’s t-test

Cochran-Cox’s t-test is used to compare the means of two samples having 
different distributions and different number of observations. We shall 
modify the data given in Table 8.6 and analyse it using Cochran-Cox’s 
t-test. The values modi  ed are given in Table 8.8. We have not made 
any change in the ALT values of Group 1. But, the values of Group 2 are 
changed and only nine individuals of this group are used for the analysis.  
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Statistics
Estimates Diet containing 

high fat content (Group 1)
Normal diet 
(Group 2)

N 10 9
Sum 545 381
Mean 55 42
SD 23.4011 10.0374

Variance (Sx2) 548 101
F-ratio =

43.5
101
5489

8F

Compare the derived F-value with the Table value (Table 8.4). The calculated 
F-value (5.43) is greater than the Table value (3.38). Hence, 9

8F  is considered 
signi  cant, indicating that the variances of both the groups are distributed 
differently. According to Figure 8.1, Cochran-Cox’s t-test is the appropriate 
statistical tool for the analysis of the data given in Table 8.8.

In Cochran-Cox’s t-test, we need to calculate two t values 
(t calculated and t' calculated).

2

2
2

1

2
1

21

N
Sx

N
Sx

XX
tcal

Table 8.8. Alanine aminotransferase activity (IU/l) of individuals

Diet containing 
high fat content (Group1)

Normal diet (Group 2)

42 57
60 45
26 55
48 46
56 26
31 33
30 41
80 35
79 43
93 -
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Since the t calculated (tcal = 1.21) is smaller than the t' calculated 
(t’cal=1.83), it is concluded from the analysis that there is no signi  cant 
difference in ALT between the high fat diet-treated and normal diet treated-
individuals.

Paired t-Test

Let us assume one needs to test an antidiabetic drug in diabetic rats. One 
way to do is to measure the blood sugar before and after treatment with 
the drug and calculate the respective mean values, and compare the mean 
values using an appropriate t-test (select the appropriate t-test as per Figure 
8.1). Another way is to analyse the data using paired t-test. 

Blood sugar values of individual rats before and after the drug treatment 
is given Table 8.9.

Table 8.9. Blood sugar values (mg/dl) of individual rats

Rat Number 1 2 3 4 5 Mean Variance SD SE

Before treatment 274 287 277 259 237 - - - -

After treatment 165 142 215 209 198 - - - -

Difference 
between before 
and after 
treatments

109 145 62 50 39 81 1992 44.6 19.9
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..ES
Meantcal  

07.4
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81tcal
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Compare the calculated t-value with the t-test critical value given in Table 
8.10 at 5% probability level for N-1 degrees of freedom. N is number of 
pairs, hence N–1=4. Since the calculated t value, 4.07 is greater than the 
t-test critical value given in the Table 8.10 (2.132), it can be stated that 
treatment with the drug signi  cantly decreased the blood sugar in rats.
Table 8.10. t-test critical values (Yoshimura, 1987)

2 0.20 0.10 0.05 0.02 0.01 0.002 0.001
0.10 0.05 0.025 0.01 0.005 0.001 0.0005

DF=4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
 =one-sided, 2 =two-sided.

A Note of Caution

It is well known that with Student’s two-independent-sample t-test, the 
actual level of signi  cance can be well above or below the nominal level, 
con  dence intervals can have inaccurate probability coverage, and power 
can be low relative to other methods.

In Student’s two-independent-sample t-test, the variance heterogeneity 
can distort rates of Type I error (Kaselman et al., 2004). Therefore, when 
the variance of the two populations is different, Student’s t-test is not 
suitable (Ruxton, 2006). When the number of the groups is more than two, 
multiple comparison with Student’s t-test can cause Type I error. 
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Correlation and Association 

Correlations are relationships between two or more variables or sets of 
variables (Cohen and Cohen, 1983). In statistics there is a distinction 
between an association and a correlation, though these terms are often 
used interchangably. Two variables are associated if one of them provides 
information about the likely value of the other. If the association between 
two variables is linear, there is a correlation. Therefore, strictly speaking, 
“non-linear correlation” is an incorrect terminology, a better term is 
“non-linear association”. 

Statisticians’ de  nition of correlation is that it is ‘a parameter of the 
bivariate normal distribution’. The variables are random variables when one 
variable is not depended on the other. In statistics, correlation is referred to 
as coef  cient of correlation (Paler-Calmorin and Calmorin-Piedad, 2008). 
The correlation coef  cient is denoted by the letter r which might have 
originated from the letter, r of the word, relation. A number between –1 
and +1 is used to ‘quantify’ the correlation of the variables (Glantz, 2005). 
The closer the absolute value of r to 1 or –1, the higher the degree of 
correlation. When one variable increases as the other variable increases, 
it is called a ‘positive correlation’, and when one variable decreases as 
the other variable increases, it is called a ‘negative correlation’. When r 
= –1, there is a 100% negative correlation, when r = +1, there is a 100% 
positive correlation and when r = 0, there is a 100% no correlation. But, if 
r = 0.5, it does not mean that there is a 50% correlation. Therefore, r does 
not indicate the percent of correlation (Gurumani, 2005). 
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Pearson’s Product Moment Correlation Coef  cient

A commonly used measure of correlation is Pearson’s product moment 
correlation coef  cient. Correlation coef  cient is a standardised covariance 
(Field, 2009; Berkman and Reise, 2011). Covariance is a measure of joint 
variances of two variables; the deviation of each variable is computed and 
multiplied. Since there are two variables, there are two standard deviations. 
Multiply these standard deviations and divide joint variances by it. 

Standardised covariance, r =   
1

1
n ))((

))((

yx ss
yyxx , where

sx and sy are the standard deviations of variable x and variable y, respectively. 
Above equation can be rewritten as follows:

r =   
1

1
n

1
)(

1
)(

))((
22

n
yy

n
xx

yyxx
 

r =   
22 )()(

))((

yyxx

yyxx  

The above equation was formulated by Karl Perason, hence called 
Pearson’s correlation coef  cient. 

 Let us compute correlation coef  cient, r for the variables x and y 
given in Table 9.1.

Table 9.1. Calculation of correlation coef  cient

x y x2 y2 xy
1 93 1 8649 93
2 87 4 7569 174
3 76 9 5776 228
4 70 16 4900 280
5 62 25 3844 310
6 45 36 2025 270
7 40 49 1600 280
8 32 64 1024 256
9 25 81 625 225

10 10 100 100 100
x= 55 y=540 x2=385 y2=36112 xy= 2216
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32.757
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69525.82
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Signi  cance of r

When the sample size is not too large, the signi  cance of a correlation 
coef  cient can be tested using a t-test: 

51.31
0894.0
8171.2

)996.0(1

210996.0

1

2
22r

nrt

Above is Students t-test with n–2 degrees of freedom.
Alternatively, signi  cance of a correlation coef  cient can be tested as 

given below, which involves no calculation procedure:
Compare the correlation coef  cient, r with the value given in 

correlation coef  cient table (Table 9.2) for eight degrees of freedom. The 
computed correlation coef  cient, r (–0.996) is less than the correlation 
coef  cient Table value (–0.765) at 1% probability level. Hence the 
correlation coef  cient is considered to be signi  cant. The negative sign of 
the correlation coef  cient indicates that the variables x and y are negatively 
correlated. Had the r been 0.996 (positively correlated), we would have 
compared it with 0.765 (without a minus sign). In this case, in order to 
consider the r to be signi  cant, it has to be greater than 0.765. 

r =
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Con  dence Interval of Correlation Coef  cient

A con  dence interval of correlation coef  cient, r can be determined by 
using a transformation of r to a quantity z, which has an approximately 
normal distribution. This transformed z is calculated using the equation:

r
rZ

1
1ln

2
1

For the example given in Table 9.1, r = 0.996. The transformed Z is:

)996.0(1
)996.0(1ln

2
1Z 1063.3

996.1
004.0ln

2
1

Now, we need to calculate an estimate called Error of Estimate:
Error of Estimate = 3/1 n = 310/1  = 0.3780 
Using the Error of Estimate we can calculate Z1 and Z2 with 95% con  dence 
level:

= 1063.3  (1.96x0.3780) = 3.8472 
= 1063.3 + (1.96x0.3780)  = 2.3654 

Z1
Z2

Table 9.2. Correlation coef  cient Table (Shibata, 1970)

DF 5% 1% DF 5% 1% DF 5% 1%
1 0.997 1.000 17 0.456 0.575 45 0.288 0.372
2 0.950 0.990 18 0.444 0.561 50 0.273 0.354
3 0.878 0.959 19 0.433 0.549 60 0.250 0.325
4 0.811 0.917 20 0.423 0.537 70 0.232 0.302
5 0.754 0.874 21 0.413 0.526 80 0.217 0.283
6 0.707 0.834 22 0.404 0.515 90 0.205 0.267
7 0.666 0.798 23 0.396 0.505 100 0.195 0.254
8 0.632 0.765 24 0.388 0.496 125 0.174 0.228
9 0.602 0.735 25 0.381 0.487 150 0.159 0.208

10 0.576 0.708 26 0.374 0.478 200 0.138 0.181
11 0.553 0.684 27 0.367 0.470 300 0.113 0.148
12 0.532 0.661 28 0.361 0.463 400 0.098 0.128
13 0.514 0.641 29 0.355 0.456 500 0.088 0.115
14 0.497 0.623 30 0.349 0.449 1000 0.062 0.081
15 0.482 0.606 35 0.325 0.418
16 0.468 0.590 40 0.304 0.393
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Next step is to transform the Z1 and Z2 back to original scale. Con  dence 
interval of r is:

1
1

1

1

2

2

z

z

e
e

  to 1
1

2

2

2

2

z

z

e
e

 

1
1

8472.32

8472.32

e
e

  to 1
1

3654.22

3654.22

e
e

0005.1
9995.0

  to 0088.1
9912.0

to

Con  dence interval of r is calculated as 0.983–0.999.

Coef  cient of Determination

The coef  cient of determination is the square of r (R 2; coef  cient of 
determination is usually denoted by the capital letter R 2), which expresses 
the strength of the relationship between the x and y variables (McDonald, 
2009). This is reviewed in Chapter 10, in greater detail.

Rank Correlation

When the variables are not linearly associated, Pearson’s product moment 
correlation analysis does not work well. In this situation the association 
is transformed into linear by ranking the variables. Rank correlation is 
a nonparametric alternative to the linear correlation coef  cient (Ruby, 
2008). There are several rank correlation analyses available, amongst 
them, Spearman’s rank correlation is more commonly employed (Hassard, 
1991).

Spearman’s Rank Correlation

As stated, in Spearman correlation analysis, the variables are converted to 
ranks. Spearman rank correlation analysis is also used, when there are two 
measurement variables and one “hidden” nominal variable. If you measure 
body weight and body surface area of rats with the rat identi  cation 
number, the identi  cation number of the rat is the nominal variable. The 
major advantages of Spearman’s rank correlation are that it is not affected 
by the distribution of the population and it can be applied to small samples 
(Gauthier, 2001). 
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Canonical Correlation

Canonical correlation analysis developed by Hotelling (1936), is the study 
of the linear relationships between two sets of variables, and is considered 
as a fundamental statistical tool (Bulut et al., 2010). It is the multivariate 
extension of correlation analysis and it measures the interrelationships 
among sets of multiple dependent variables and multiple independent 
variables (Green, 1978). Canonical correlation simultaneously predicts 
multiple dependent variables from multiple independent variables. It is a 
very useful tool in pharmacology and toxicology (Kelder, 1982; Hu et al., 
2003; Tanaka, 2010), where interrelationships between several dependent 
and independent variables need to be assessed. 

An elaborative discussion on canonical correlation is beyond the scope 
of this book. Several books are available that cover the subject in depth 
(Green and Carroll, 1978; Das and Sen, 1994). 

Misuse of Correlation Analysis

There are a several situations in which the correlation coef  cient can be 
misinterpreted. Fifteen errors related to correlation and regression were 
identi  ed in articles published in three leading medical journals in the 
year, 1997 (Porter, 1999). Perhaps the most important error committed 
in these articles was, not presenting con  dence intervals of correlation 
coef  cient (this error could be seen in many of the scienti  c articles, 
even today). Another error in interpreting the correlation coef  cient is, 
the failure to consider that there may be a third variable related to both 
of the variables being investigated, which is responsible for the apparent 
correlation. Often the correlation coef  cient fails to detect the existence of 
a nonlinear association between two variables (Bewick et al., 2003).

A high correlation coef  cient (for example, r = >0.997) is not always 
a useful indicator of linearity in method validation; other statistical tests 
like Lack-of-  t and Mendel’s  tting test may be used for evaluating the 
linearity (Loco et al., 2002).

A correlation coef  cient will have limited use as a stand-alone quantity 
without reference to the number of observations, the pattern of the data and 
the slope of the regression line (Sonnergaard, 2006). It is recommended to 
plot the variables and understand the pattern of the data before interpreting 
the correlation analysis.
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Regression Analysis

10

History

The origin of the term ‘regression’ in statistics has an interesting history. 
Francis Galton (1822–1911) had deep interest in heredity, biometrics and 
eugenics (Crow, 1993). He found that sons of tall men to be shorter than 
their fathers. He called this phenomenon regression towards the mean, and 
thus the term ‘regression’ originated (Dupont, 2002). 

Unlike correlation, where there is no ‘dependence relationship’, 
there are dependent and independent variables in regression analysis. In 
regression analysis, y is assumed to be a random variable and x is assumed 
to be a  xed variable. The underlying assumption of regression analysis is 
that the dependent variable follows a normal distribution and scatter about 
the regression line.

In animal experiments regression analysis is used to evaluate cause 
(variable x) and effect (variable y) relationships; for example in a repeated 
dose administration study, the rate of decrease in body weight (y) as the 
exposure period (x) increases can be determined using regression analysis.

Linear Regression Analysis 

The regression equation is:
y = a + bx, where y = Dependent variable, x = Independent variable, a = 
Intercept and b = slope. 
The intercept represents the estimated average value of y when x equals 
zero and the slope represents the estimated average change in y when x 
increases/decreases by one unit. Slope and intercept are derived using the 
least-square method. 
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If the underlying assumptions of the least-square model are not met, 
the regression slope and intercept may be incorrect. Two factors that cause 
incorrect regression coef  cients are: (i) imprecision in the measurement 
of the independent (x) variable and (ii) inclusion of outliers in the data 
analysis (Cornbleet and Gochman, 1979). Outliers have profound effect 
on the slope (Farnsworth, 1990; Glaister, 2005).
The slope, b is calculated using the formula:

2)(
))((

xx
yyxxb

The intercept a can be calculated from the equation:
y   = a + b xba

Let us work out an example for calculating b and a. Body weight of 
babies measured in different months is given in Table 10.1. Month is 
the independent variable (x) and the body weight is the dependent 
variable (y).
Table 10.1. Body weight of babies measured in different months

Age (Month) (x) Body weight (kg) (y) x2 y2 xy
1 3.8 1 14.44 3.8
2 4.2 4 17.64 8.4
3 4.8 9 23.04 14.4
5 5.7 25 32.49 28.5
6 6.4 36 40.96 38.4
7 6.9 49 47.61 48.3
8 7.1 64 50.41 56.8
9 7.8 81 60.84 70.2

10 8.6 100 73.96 86
12 10.4 144 108.16 124.8
x= 63

X =6.3
y= 65.7

Y =6.57
x2= 513 y2= 469.55 xy= 479.6

We shall calculate the slope, b  rst: 

n
yx

xyyyxx ))(( = 
10

7.65636.479  = 65.69 

2)( xx = 
n
x

x
2

2 )(
 =  

10
)63(513

2

 = 116.1
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2)( yy = 
n
y

y
2

2 )(
 ==  

10
)7.65(55.469

2

 =  37.90 

2)(
))((

xx
yyxxb  = 

1.116
69.65

=0.5658 

Once the slope, b is calculated, it is easy to calculate the intercept, a: 

y   = a + b x  

6.57 =  a + 0.5658 × 6.3 

a =  6.57  (0.5658 × 6.3) = 3.005 

a

a

Regression equation:
 y = a + bx 
y = 3.005 + 0.5658 x

Signi  cance of regression line can be determined by ANOVA (Table 10.2). 
We wish to test the hypothesis:
H0: b = 0 vs H1: b  0, where b is the slope. 
Table 10.2. Signi  cance of regression line by ANOVA

SS—Sum of squares

Source of variation Degrees of 
freedom 

SS Mean SS F 

Total SS for y = 
n
y

y
2

2 )(
 

9 37.90 4.21 - 

Reduction due to regression (Residual SS)  = 
2

2

x y
xy

N

x x
 

1 37.17 37.17 407 

Error 8 0.73 0.0913 - 

Since the calculated F-value is greater than the F-Table value (Table 
10.3), the null hypothesis is rejected and the alternative hypothesis (H1: b 

 0) is accepted. This means the slope of the regression line is signi  cantly 
different from 0, which implies that there is a signi  cant relationship 
between age and body weight of the babies. 
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The test of signi  cance is based on the assumption that the distribution 
of the deviation from the regression line (residual values) of all the values 
of dependent variable, y is the same for all the independent varable, x. 
The residue of each observation is given by the difference between the 
observed value and the  tted value of the regression line (Chan, 2004). Let 
us understand the terminology the residue of y, by plotting the data given 
in the Table 10.1. Figure 10.1 is the body weight vs age plot.

Table 10.3. F-distribution values at 0.1% probability level (Yoshimura, 1987)

N1\N2 1 2 3 4 5 6 7 8 9 10
8 25.42 18.49 15.83 14.39 13.49 12.86 12.40 12.05 11.77 11.54

Figure 10.1. Body weight of babies measured in different months

Solid squares are the actual values. The line passing through the actual 
values is the regression line. For each value of x variable, the predicted y
value is computed using the regression equation, y' = 3.005 + 0.5658 x
(predicted y is denoted as y' in order to differentiate it from the actual y). 
Thus, y' is derived for each x, and the predicted y's are joined together to 
obtain the regression line. By closely observing the plot, one can  nd that 
all the actual values do not fall on the regression line, though they are very 
close to the regression line. Linear regression line is called a ‘best  t line’, 
since it best  ts the data points. The “best”  t line minimizes the squared 
vertical distances between the actual values and the line. An estimate 
of the squared vertical distances between the actual values and the line 
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(in other words, variation of the actual values from the predicted values) 
can easily be arrived at (vide Table 10.4). You would have noticed that this 
estimate is the sum of squares for error component given in the ANOVA 
Table (Table 10.2).

Table 10.4. Calculation of variation of the actual y values from the predicted y’ values

Age (Month) 
(x)

Body weight 
(kg) (y)

y'
(y' = 3.005 
+ 0.5658 x)

y – y' (y – y')2

1 3.8 3.5708 0.2292 0.052533
2 4.2 4.1366 0.0634 0.00402
3 4.8 4.7024 0.0976 0.009526
5 5.7 5.834 –0.134 0.017956
6 6.4 6.3998 0.0002 0.00000004
7 6.9 6.9656 –0.0656 0.004303
8 7.1 7.5314 –0.4314 0.186106
9 7.8 8.0972 –0.2972 0.088328

10 8.6 8.663 –0.063 0.003969
12 10.4 9.7946 0.6054 0.366509
- - - - 2(y - y') = 

0.733249

Con  dence Limits for Slope 

95% con  dence limits for the slope (b) can be derived by using the 
formula:

b ± t0.05.n–2 SE (b), where b is the slope (0.5658); t0.05.n–2 is the critical value 
for t at 5 % probability level for n–2 degrees of freedom (2.306);

SE (b) is the standard error of b = 2
0.0913 0.0280
116.1

ErrorMeanSS

x x
    

     

95% con  dence limits for the slope (b) = 0.5658 ± (2.306 x 0.0280) = 
0.5658 ±0.0646.
The signi  cance of slope can be tested using the t-test, when the number 
of samples is smaller than about 30 (Bailey, 1995):

t0.05.n–2 = 
2

/

b

s x x
 where t0.05.n–2 is the critical value for t at 5%

probability level for n–2 degrees of freedom; b is the slope (b=0.5658);
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 is the hypothetical value (  =0) (we are testing whether the observed b 
value is different from the hypothetical value); s is the square root of error 
mean sum of squares

( )3022.00913.0s ;  2x x =116.1. 

t0.05.n-2 = 17.20
0280.0
5658.0

1.116/3022.0
05658.0  

The derived t value (20.17) is greater than the Table t-value (2.228) at 5% 
probability level and 10 degrees of freedom; hence the slope is signi  cant. 

Comparison of Two Regression Coef  cients

The regression coef  cient, b measures how much the dependent variable, 
y changes (increases or decreases), for each unit change in the independent 
variable, x. The slopes of two similar studies can be compared using the 
formula:

d = 1 2

2 2
1 2

2 2

1 1 2 2

b b

s s

X X X X

 

Suf  x 1 refers to independent variable x1, and 2 independent variable x2. 
Since d is normally distributed, the difference between b1 and b2 can be 
examined for statistical signi  cance using t-test:

t = 1 2

2 2

1 1 2 2

1 1

b b

s
X X X X

, where

s=
2 2

1 1 2 2

1 2

( 2) ( 2)
4

n s n s
n n

The calculated t value is compared with the Table t-value at 421 nn  
degrees of freedom.
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R2

R2 is interpreted as the proportion of total variability of the outcome that 
is accounted by the model (Vittinghoff et al., 2005). In other words, it is 
the proportion of the variation in the y variable that is “explained” by the 
variation in the x variable. R2 is called as the ‘coef  cient of determination’. 
R2 can vary from 0 to1. An R2 close to 1 indicates that the actual y values 
fall almost right on the regression line. An R2 close to 0 indicates that there 
is little or no relationship between x and y.

Multiple Linear Regression Analysis

In most situations, the dependent variable is associated with more than one 
independent variable. For example, the body weight of rats measured in a 
repeated dose administration study is associated with several independent 
variables like, age, sex and feed consumption of the animals. Multiple 
regression analysis is a very useful tool for  nding out which independent 
variable/s has/have genuine relationship with the dependent variable. 
Multiple linear regression model is an extension of the simple linear 
regression model (Ambrosius, 2007). 
The regression equation for two independent variables is:
y = a + b1x1 + b2x2, where y = Dependent variable, x1 and x2 are the 
independent variables, a = Intercept and b1 = Slope of x1 and b2 = Slope 
of x2. 
We shall examine the steps involved in calculating multiple linear 
regression coef  cient:

2

1 1x x   = A

1 1 2 2x x x x
  

= B

2

2 2x x   = C

1 1x x y y
  

= D

2 2x x y y
  

= E

2
y y

              
=F
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b1    = 2BAC
BECD

 

 b2    = 2BAC
BDAE  

Once the slopes are derived, a can be calculated using the formula: 
y = a + b1 x1+ b2x2

Multiple correlation coef  cient can be computed using the formula:

R= 
22 '

'
yy

yy
, where 

R = Multiple correlation coef  cient; y = Actual value; y’= Predicted 
y (calculated using the regression equation, y = a + b1x1+ b2 x2;

 'yy = 
n

yy
yy

'
'   

2y =
n
y

y
2

2 )(
;  2'y

n
y

y
2

2 )'(
'  

Signi  cance of the multiple regression equation can be checked by 
ANOVA (Table 10.5).

Polynomial Regression

Linear regression does not hold good, when the data of your dependent 
variable follows a curved line, rather than a straight line. Transforming the 
y or x or both the variables to their logarithms, reciprocals, square roots 
etc., may straighten certain curves, but not all. Another way to solve this 
issue is to use a curvilinear regression equation. Polynomial regression 
equation is an example of curvilinear regression equation, which is used 
to predict toxicological variables (Vogt, 1989). Given the complexity of 
the calculations in polynomial regression analysis, it is not being included 
in the coverage of this book. The purpose of touching upon polynomial 
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regression analysis, is to create awareness that before carrying out linear 
regression analysis one should ensure that the trend of the association 
between the two variables is linear. 

Misuse of Regression Analysis

Use of a regression equation is considered to be inappropriate for estimating 
an independent variable, rather than a dependent variable (Williams, 1983). 
It is important to understand the nature of the data before choosing a 
regression model. This can be easily done by plotting the data, which will help 
understanding the nature of the data and selecting appropriate regression model. 
One should not  t a straight line using a linear regression equation for a ‘non-
linear data’. 
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Table 10.5. Signi  cance of multiple regression equation by ANOVA
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variation
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k is the number of independent variables.
F value is calculated by dividing Reduction due to regression (Residual SS) with error.
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11

Analysis of More than Two Groups

Student’s t-test is used to test the equality of the means from two different 
populations (Rothmann, 2005). Use of Student’s t-test for comparing more 
than two groups can cause Type I error. This can be better understood from 
the example below:

Absolute weight of the liver of female mice in a 13-week repeated 
dose administration study is given in Table 11.1.
Table 11.1. Liver weight (g) of female mice in a 13-week repeated dose administration 
study

Group N Mean ± SD Tukey’s multiple 
range test

Repeated comparison 
with Student’s t-test

A B C A B C
A 10 1.083±0.057 - - - - - -
B 10 1.098±0.077 NS - - NS - -
C 10 1.154±0.050 NS NS - S NS -
D 10 1.273±0.062 S S S S S S

NS—Not signi  cant; S—Signi  cant (P<0.05).

Repeated analysis by Student’s t-test revealed a signi  cant difference 
between Groups A and C. Actual increase in liver weight in Group C 
compared to Group A is only 6.6%. In this case, the signi  cant difference 
between Groups A and C detected by repeated comparison with the t-test 
is caused by Type I error. When the groups were compared using Tukey’s 
multiple range test, no signi  cant difference was observed between Groups 
A and C (Tukey’s multiple range test is the ideal test in this situation, since 
the number of groups to be compared is more than two).
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There are several methods available for multiple comparison of means, 
but most of them have often been misused (Gill, 1990). An appropriate tool 
for analyzing more than two groups is analysis of variance (Wallenstein et 
al., 1980). One advantage of ANOVA (Analysis of Variance is abbreviated 
as ANOVA) is that it is easy to execute (Muir et al., 2006) and it has great 
utility and  exibility (Armstrong et al., 2000). Like Student’s t-test, for 
carrying out ANOVA, it is a prerequisite that homogeneity of variance 
prevails across all the groups (Moder, 2007) and the data has normal 
distribution. However, normality is rarely tested in ANOVA, because, a 
slight departure from normality does not affect the conclusion drawn from 
the analysis (Norman and Streiner, 2008). 

ANOVA is also an excellent tool for analysing data obtained from 
factorial experiments. In a factorial experiment, there can be several factors 
at several levels. For example, to test a drug against hypercholesterolemia 
in rats, we may use a standard drug for comparison. The test drug and the 
standard drug are called factors. We may test these drugs at different dose 
levels. Depending upon the number and levels of factors, an ANOVA can 
be one-way, two-way or multi-way. 

One-way ANOVA

One-way ANOVA is used to  nd if the given factor has signi  cant effect on 
the expected outcome of the experiment. Jaundice index (x) of a newborn 
baby measured in weeks 36, 38 and 40 is presented in Table 11.2. We want 
to examine if the factor (week) has any signi  cant effect on the jaundice 
index. 
Table 11.2. Jaundice index (x) of newborn baby

Week
36 (Group 1) 38 (Group 2) 40 (Group 3)
x1 13 x11 9 x21 5
x2 6 x12 11 x22 5
x3 11 x13 11 x23 4
x4 12 x14 10 x24 7
x5 14 x15 7 x25 7
x6 10 x16 7 x26 3
x7 9 x17 5 x27 3
x8 11 x18 8 x28 4
x9 11 x19 7 x29 5
x10 10 x20 10 x30 3
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Statistics
Estimates Week

36 (Group 1) 38 (Group 2) 40 (Group 3)
N 10 10 10

Mean ± SD 10.7 ± 2.2 8.5 ± 2.0 4.6 ± 1.5
Sum 107 85 46

Grand sum 238

Total sum of squares =  
N
x

xxxx
2

2
30

2
29

2
2

2
1

)(
)(  

        
= 9.291

30
)238()35613(

2
2222

           
Sum of squares of among the groups

        = 9.190
30

)238(
10
46

10
85

10
107 2222

Total sum of squares for error   = Total sum of squares—Sum of   
            squares of among the groups 

                   = 291.9–190.9 = 101
We have all the estimates required for constructing the ANOVA Table. See 
Table 11.3 given below:
Table 11.3. ANOVA Table

Source of variation SS DF Variance (MS) F-value P
Total 291.9 29 - - -

Groups 190.9 2 95.5 25.5 P<0.001
Error 101 27 3.74

SS-Sum of squares; DF-Degrees of freedom; MS-Mean sum of squares.
Note: There are 30 observations, hence the DF for SS total is 30–1 = 29; Total number 
of groups are three, hence the DF for SS groups is 3–1 = 2; DF for error SS = DF for SS 
total—DF for groups SS (29–2 = 27).

5.25
74.3

5.952
27calcF

Compare the derived F value with the value given in the F distribution 
Table (Table 11.4):
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post hoc Comparison

ANOVA indicates that the jaundice index of the newborn baby is 
signi  cantly different among the groups. The question is, which group is 
different from the other group or groups? Are all the groups are different 
from each other? The possible comparisons that we can make in this 
particular example are:
Group 1 vs Group 2
Group 1 vs Group 3
Group 2 vs Group 3
There are several tests available in the literature for post hoc comparison. 
Few tests that are commonly used in pharmacology and toxicology are 
explained below:

Dunnett’s multiple comparison test

Dunnett’s multiple comparison test (Dunnett, 1955) is a widely used 
approach for comparing all groups with the control (Cheung and Holland, 
1991).

To compare the Jaundice indices of weeks 36 and 38 with that of 
week 40 (i.e., Group 1 vs Group 3 and Group 2 vs Group 3), Dunnett’s 
multiple comparison test is the most appropriate statistical tool. Here, we 
are considering Group 3 as some sort of ‘standard’ or ‘control’. Dunnett’s 
multiple comparison test should not be used for other comparison, such as, 
comparison between Group 1 and Group 2.
Comparison between Group 1 and Group 3:

001.005.7
8648.0

1.6

10
274.3

6.47.10 p

Table 11.4. F-distribution values at 0.1% probability level (Yoshimura, 1987)

N1\N2 1 2 3 4 5 6 7 8 9 10

27 13.613 9.019 7.272 6.326 5.726 5.308 4.998 4.759 4.568 4.412
N

1
—DF associated with the numerator (in this example, the DF associated with 95.5); 

N2—DF associated with the denominator (in this example, the DF associated with 3.74). 
Since the calculated F-value is greater than the Table value, it is considered that the 
jaundice index of the newborn baby is signi  cantly different among the weeks at 0.1% 
probability level. 
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Comparison between Group 2 and Group 3:

001.051.4
8648.0

9.3

10
274.3

6.45.8
p

The calculated values (7.05 and 4.51) are greater than the Dunnett’s 
t-test critical value given in Table 11.5. Dunnett’s t-test critical value at 3 
(numerator)/27 (denominator) degrees of freedom is 3.674

Hence, it is considered that Jaundice indices of weeks 36 and 38 are 
different from that of week 40.
Table 11.5. Dunnett’s t-test critical values (one-sided test at 0.1% probability level) 
(Yoshimura, 1987)

DF 2 3 4 5 6 7 8
27 3.422 3.674 3.821 3.922 3.999 4.061 4.114

Note: One-sided t-test is more appropriate in this example as it is an established fact that 
the jaundice index decreases in newborn babies as their age increases.

The power of the Dunnett’s test decreases as the number of groups 
increases. This could be better understood from the data given in Table 
11.6.

Table 11.6. Change in the power of the Dunnett’s test when the number of groups 
increases

Data and tests Control Low dose Mid dose High dose Top dose
Hemoglobin level 

(g/dl) of B6C3F1 male 
mice at Week 78

13.9, 14.3
13.7, 13.8
14.0, 14.3
13.9, 13.7
13.9, 13.5

14.0, 13.3
15.0, 13.8
14.1, 13.3
14.1, 13.9
13.8, 13.4

14.0, 13.8
13.7, 13.8
13.5, 14.1
14.2, 13.8
14.1, 14.0

14.1, 13.9
14.3, 14.0
14.2, 14.1
14.3, 14.4
14.4, 14.4

14.2, 14.2
14.7, 13.9
14.3, 13.7
14.3, 14.4
14.0, 14.3

N 10 10 10 10 10
Mean ± SD 13.9 ± 0.3 13.9 ± 0.4 13.9 ± 0.2 14.2 ± 0.2 14.2 ± 0.3

Rejection value in 
Dunnett’s Table at 0.05 

(two-sided)

2.45

Statistical result NS NS S
Rejection value in 

Dunnett’s Table at 0.05 
(two-sided)

2.53

Statistical result NS NS NS NS
 NS-Not signi  cant; S-Signi  cant (P < 0.05)
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In the four-group setting (control, low dose, mid dose and high dose), 
the high dose group showed a signi  cant difference from the control group, 
whereas in the in the  ve-group setting (control, low dose, mid dose, high 
dose and top dose), no signi  cant difference was seen in the high dose 
group compared to the control group, indicating a decrease in the power 
of Dunnett’s test to detect a signi  cant difference as the number of groups 
increases.

Tukey’s multiple range test (Yoshida, 1980)

Tukey’s multiple range test, also known as Tukey range test, Tukey’s honest 
signi  cance test (Tukey’s HST) or the Tukey–Kramer test (Mathews, 
2005), is used to compare all possible pairs of means.
This is exempli  ed by reviewing the example given in Table 11.2.
The variance of the error is 3.74 (Table 11.3).

6116.0
10
74.3xS

Find the Q (critical) value from the Table of Tukey (Table 11.7). In this 
example, Q at 5% probability level is 2.8882 [Number of groups = 2 ; 
Degrees of freedom for error = 30. Actual degrees of freedom of error is 
27 (Table 11.3); since this value is not given in Table 11.7, the value 30 is 
considered]. 

Table 11.7. Tukey’s critical value at 5% probability level (Yoshida, 1980)

Degrees of 
freedom for error

Number of Groups 
2 3 4 5 6 8 10

24 2.9188 3.5317 3.9013 4.1663 4.3727 4.6838 4.9152
30 2.8882 3.4864 3.8454 4.1021 4.3015 4.6014 4.8241

Next step is the calculation of signi  cant difference D. It is the product of 
xS  and Q ( xS ×Q):

7664.12.88826116.0D=S x  Q
If the difference between any two means is greater than D, the difference 
is considered signi  cant. 

The difference between the means is given in Table 11.8. All means 
are different from each other. 
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Table 11.8. Jaundice index of newborn baby-Difference between mean values

Estimates Week
36 (Group 1) 38 (Group 2) 40 (Group 3)

Mean 10.7 8.5 4.6
Difference of Means Group 1 and Group 2 2.2a Signi  cant (P<0.05)

Group 1 and Group 3 6.1b Signi  cant (P<0.05)
Group 2 and Group 3 3.9c Signi  cant (P<0.05)

Note: The superscripts of the mean values can be explained as—“Values bearing similar 
superscripts are statistically the same”. Since the superscripts of the mean values are 
different, it can be stated that each mean value is different from the other. 

Williams’s test

Most of the regulatory guidelines prescribe that the repeated-dose 
administration studies with rodents should be conducted with a minimum 
of three levels of doses (low, mid and high doses) and a control group 
(OECD, 1995). The high dose is chosen with the aim to induce toxicity 
but not death or severe suffering (OECD, 1998; EPA, 2000), whereas the 
low dose is chosen with the assumption that animals exposed to this dose 
level will not show any effect of the treatment compared to the control 
group (Kobayashi et al., 2010). However, these guidelines do not state 
how to determine the mid dose. It only indicates that this dose is required 
to examine dose dependency. According to Gupta (2007), the mid dose 
selection should consider threshold in toxic response and mechanism of 
toxicity. Choosing the mid dose is as important as choosing the high and 
low doses in repeated dose administration studies, since mid dose plays a 
determining role in establishing the dose dependency. It is not uncommon 
to encounter situations where mid dose alone shows an insigni  cant 
difference compared to the control group, whereas low and high doses 
show a signi  cant difference. In this situation the data are examined for 
a dose-related trend. Williams’ test is generally carried out to test dose-
related trend (Bretz, 2006). 

For the data that show a dose-related trend and a signi  cant difference 
by Dunnett’s test (Dunnett, 1955), the interpretation of the data analysis 
can be done in a straight forward manner. In a four group-setting repeated 
dose administration study, seven different situations can be expected 
(Table 11.9). Interpretation is relatively easier in situations 1–3, whereas 
it is dif  cult in situations 4–7, where further investigation on dose-related 
trend is required. 
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Absolute kidney weight of rats from a repeated dose administration 
study is given in Table 11.10. These data were analysed using Dunnett’s 
and Williams’ tests. Dunnett’s test showed a signi  cant difference in 
low and high dose groups, whereas Williams’ test showed a signi  cant 
difference in all the groups. 

Test Group 
: Significant difference, : No significant difference for the control group  

Situation 1 Situation 2 Situation 3 Situation 4 Situation 5 Situation 6 Situation 7 

Control        

Low dose        

Mid-dose        

High dose        

Investigation Not required Not required Not required Required Required Required Required 

Visual dose-
related trends Yes Yes Yes No No No No 

Table 11.9. Signi  cant difference shown by the treatment groups by Dunnett’s test—
Possible situations

Table 11.10. Absolute kidney weights of rats

Absolute kidney weights Dose group
Control Low Mid High

Individual data, (g) 2.558 3.269 3.116 2.706
2.789 3.428 2.791 3.293
2.764 3.083 2.981 3.535
2.707 3.532 3.337 3.387
2.793 3.546 2.432 3.064
3.041 2.677 2.934 3.102
3.000 2.822 3.388 3.279

- 3.656 2.911 -
- 3.271 2.798 -
- 3.348 3.208 -
- 3.031 2.876 -
- 3.742 2.703 -

Number of animal 7 12 12 7
Mean ± Standard deviation 2.807±0.167 3.284±0.329 2.956±0.273 3.195±0.269
Bartlett’s homogeneity test P = 0.4130 (No heterogeneity)

Dunnett’s test P = 0.0026* P = 0.5190 P = 0.0332*
Mean value used for 

Williams’ test
2.807 3.284 3.120 3.195

Williams’ test P<0.05* P<0.05* P<0.05*
Jonckheere’s trend test No signi  cant difference

*Signi  cantly different from control group.

from the control group

Mid dose
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Use of Williams’ test is not recommended when the number of animals 
in the groups is different (Williams, 1972) and extremely less (Williams, 
1971; 1972). But, Sakaki et al. (2000) stated that Williams’ test can be used 
even if number of the animals in a group differs about 2 times compared 
to other group/s.

Williams’ test analyzes the difference of the mean values between each 
treated group and the control, like Dunnett’s test, when the mean value of the 
treated groups changes in one direction. The example given in Table 11.11 
does not show a dose-dependence as the mid dose showed an insigni  cant 
liver weight compared to control (by Dunnett’s test). When the data were 
analysed by Williams’ test, signi  cance in the liver weight is observed in the 
mid dose group. The reason for this may be better explained by elucidating 
the calculation procedure of Williams’ test as given below:

Table 11.11. Liver weight of rats in a 4-week repeated dose administration study 

Group Liver weight (g), 
N=5, (Sum)

 Mean ± SD
(% change 

with respect 
to control)

Results of 
Dunnett’s 

test

Mean for 
Williams’ test

(% change with 
respect to control)

Results of 
Williams’ 

test

Control 10.7, 11.5, 11.6, 
12.0, 11.0 (56.8)

11.36 ± 0.51
(100) 

11.36 

(100) 
Low dose 11.6, 12.3, 12.5, 

12.3, 12.7 (61.4)
12.28 ± 

0.41 (108.1)
P<0.05 12.28 (108.1) P<0.05

Mid dose 11.2, 11.5, 11.6, 
11.5, 11.5 (57.3)

11.46 ± 
0.15 (100.9)

Not 
signi  cant

11.87 (104.5) P<0.05

High dose 12.2, 12.5, 12.0, 
11.9, 13.0 (61.6)

12.32 ± 
0.44 (108.5)

P<0.05 12.32 (108.5) P<0.05

Calculation procedure of Williams’ test:
(1) Control vs High dose

61.4 57.3 61.6 12.02
5 5 5

(Note: Numerator—sums of low dose + mid dose + high dose; denominator—
number of observations of low dose + mid dose + high dose). 

57.3 61.6 11.89
5 5

(Note: Numerator—sums of mid dose + high dose; denominator—number 
of observations of mid dose + high dose). 
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61.6 12.32
5

This largest value is used for the calculation of t value.

(Note: Numerator—sum of high dose; denominator—number of 
observations of high dose). 

We have all estimates for calculating the t value, except the mean SS 
of error variance. Let us analyse the data using ANOVA: 
Liver weight of rats in a 4-week repeated dose administration study

Statistics
Estimates Liver weight (g)

Control Low dose Mid dose High dose
N 5 5 5 5

Mean ± SD 11.36 ± 0.51 12.28 ±0.41 11.46±0.15 12.32 ± 0.44
Sum 56.8 61.4 57.3 61.6

Grand sum 237.1

Total sum of squares

          =  
N
x

xxxx
2

2
30

2
29

2
2

2
1

)(
)(  

= 6095.6
20

)1.237()139.115.117.10(
2

2222

Sum of squares of among the groups

             = 9895.3
20

)1.237(
5
6.61

5
3.57

5
4.61

5
8.56 22222

Total sum of squares for error = Total sum of squares—Sum of squares 
        of among the groups
    = 6095.6  – 9895.3  = 2.62

The ANOVA Table constructed is given below (Table 11.12).
Table 11.12. ANOVA Table

Source of 
variation

SS DF MS F value P

Total 6.6095 19 - - -
Groups 3.9895 3 1.32983 8.12 P<0.001
Error 2.62 16 0.16375

SS-Sum of squares; DF-Degrees of freedom; MS-Mean sum of squares.

=
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Mean SS for error is 0.16375. Now we have all the required estimates for 
calculating t:

751.3

5
1

5
116375.0

32.1236.11t

t-value is signi  cant at 5% level (Table 11.13, Number of groups-4; 
DF-16).
(2) Control vs Mid dose

87.11
55

3.574.61 This largest value is used for the calculation of 

t-value. 
(Note: Numerator—sums of low dose + mid dose; denominator—number 
of observations of low dose + mid dose). 

57.3 11.46
5

(Note: Numerator- sum of mid dose; denominator- number of observations 
of mid dose). 

11.36 11.87 1.993
1 10.16375
5 5

t

t value is signi  cant at 5% level (Table 11.13, Number of groups-3; 
DF-16).
(3) Control vs Low dose

61.4 12.28
5

(Note: Numerator- sum of low dose; denominator- number of observations 
of low dose). 

11.36 12.28 3.595
1 10.16375
5 5

t

t-value is signi  cant at 5% level (Table 11.13, Number of groups-2; 
DF-16). 
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The reason for Williams’ test showing a signi  cant difference in the 
weight of the liver of the mid dose group, when compared with the control 
group, is that the test used 11.87 as the mean value of the mid dose group 
for the comparison instead of the actual value (11.46). 

Williams’ test is a useful statistical tool in toxicology as it provides 
information on evidence of toxicity and also the dose level that causes 
the toxicity (Shirley, 1977). Williams’ test is similar to Dunnett, Tukey 
and Duncan multiple comparison (range) tests as it uses the error variance 
of the ANOVA (Nagata and Yoshida, 1997) in the calculation procedure. 
Williams’ test is a closed procedure. If no signi  cant difference between 
control group and highest dose group is seen, all the other treated groups are 
considered to have no signi  cant difference compared to the control group 
and no further analysis is carried out. If there is a signi  cant difference in 
the highest dose group, then the next highest dose level is examined for the 
signi  cant difference from the control. If this dose group does not show 
a signi  cant difference, no further analysis is carried out. But if it shows 
a signi  cant difference, the next highest dose level is examined for the 
signi  cant difference from the control group. Thus all the dose groups are 
sequentially examined.

Williams’ test is effective in monotonic and non-monotonic dose-
response relationships (Dmitrienko et al., 2007). Since estimated mean 
values are used in the calculation procedure of Williams’ test, it is likely 
that this test might show a dose-related trend, where it actually does not 
exist. It also may be noted in this context that, according to Gad and Weil 
(1988) dose-related trend is necessarily not evident in all the parameters. 

Duncan’s multiple range test (Shibata, 1970)

Duncan’s multiple range test is generally used for comparison of more 
than 2 groups, when the number of observations of the groups is different. 
We shall work on the example given in Table 11.2. The data is slightly 
modi  ed by changing the number of observations of Groups 1 and 2. The 
changed data are given in Table 11.14. 

Table 11.13. Williams’ Table

DF Number of groups
2 3 4 5 6 7 8 9

15 1.753 1.839 1.868 1.882 1.891 1.896 1.900 1.903
16 1.746 1.831 1.860 1.873 1.882 1.887 1.891 1.893
17 1.740 1.824 1.852 1.866 1.874 1.879 1.883 1.885
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Statistics
Estimates Week

36 (Group 1) 38 (Group 2) 40 (Group 3)
N 7 8 10

Mean ± SD 10.7±2.7 8.5±2.1 4.6±1.5
Sum 75 68 46

Grand sum 189

 Calculation steps:
Total sum of squares =

N
x

xxxx
2

2
25

2
24

2
2

2
1

)(
)(

 

 2.260
25

)189()35613(
2

2222   

Sum of squares of among the groups

  = 3.164
25

)189(
10
46

8
68

7
75 2222

 

Total sum of squares for error = Total sum of squares—Sum of squares 
                                                  among the groups
    = 260.2 – 164.3 = 95.9

Let us construct the ANOVA Table (Table 11.15).

Table 11.14. Jaundice index of newborn baby. Reproduced from Table 11.2. Number of 
observations of Groups 1 and 2 was changed

Week
36 (Group 1) 38 (Group 2) 40 (Group 3)

13 9 5
6 11 5

11 11 4
12 10 7
14 7 7
10 7 3
9 5 3

8 4
5
3
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Note: There are 25 observations, hence the DF for total SS is 25–1 = 24; 
Total number of groups are three, hence the DF for SS groups is 3–1 = 
2; DF for error SS = DF for total SS—DF for SS among groups (24 – 
2 = 22). 

2
22

82.2 19.1
4.3

F calc

Compare the derived F values with that of the value given in the F 
Distribution Table (Table 11.16.)

Table 11.15. ANOVA Table

Source of 
variation SS DF MS F value P

Total 260.2 24 - - -
Groups 164.3 2 82.2 19.1 P<0.001
Error 95.9 22 4.3

SS-Sum of squares; DF-Degrees of freedom; MS-Mean sum of squares.

Table 11.16. F-distribution values at 0.1% probability level (Yoshimura, 1987)

N1\N2 1 2 3 4 5 6 7 8 9 10
22 14.380 9.612 7.796 6.814 6.191 5.758 5.438 5.190 4.993 4.832

N
1
—DF for the numerator; N

2
–DF for the denominator.

Since the derived F-value is greater than the Table value, it is 
considered that the jaundice index of the newborn baby is signi  cantly 
different among the weeks at 0.1% probability level. 
Let us carry out post hoc comparison using Duncan’s multiple range test. 
The  rst step is calculation of ‘least signi  cant range’, Rp:

Rp = Sm×Q, where 

groups ofNumber /
 anceerror varifor   MS

N
Sm  

Q  = Critical value from Duncan’s table 

= 0.72
4.3

25 / 3
Sm 

Note: 4.3 is variance of error (see Table 11.15); Total number of observation 
= 25; Total number of groups = 3).
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Critical Q values are obtained from Duncan’s Table (Table 11.17). Q 
values at 22 degrees of freedom (Degrees of freedom of the error component; 
see Table 10.15) for 2 and 3 Groups are 2.93 and 3.08, respectively. 
Table 11.17. Duncan’s critical values at 5% probability level (Shibata, 1970)

DF Group
2 3 4 5 6 7 8 9 10

22 2.93 3.08 3.17 3.24 3.29 3.32 3.35 3.37 3.39

2(0..05)

3(0..05)

0.72 2.93 2.11

0.72 3.08 2.22

R

R

Arrange the mean values orderly:
Group 1 (Week 36) = 10.7
Group 2 (Week 38) = 8.5
Group 3 (Week 40) = 4.6

Let us compare the largest sample means range, i.e., 10.7 and 4.6. The 
difference between these two mean values is 6.1, which is greater than the 
‘least signi  cant range’, R3. Hence, the difference between these two mean 
values (Group 1 and Group 3) is considered signi  cant. Let us compare 
the next set of mean values, 10.7 and 8.5. The difference between these 
two mean values is 2.2, which is greater than the ‘least signi  cant range’, 
R2. Hence the difference between the mean values of Group 1 and Group 2 
is also considered signi  cant.

Scheffé’s multiple comparison test (Scheffe, 1953)

We shall use the data given in Table 11.14 for demonstrating Scheffé’s 
multiple comparison test.

Statistics
Estimates Week

36 (Group 1) 38 (Group 2) 40 (Group 3)
N 7 8 10

Mean ± SD 10.7±2.7 8.5±2.1 4.6±1.5
Sum 75 68 46

Grand sum 189
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Comparisons:
Group 3 vs Group 2

05.086.7
)

8
1

10
1(3.4)13(

)5.86.4( 2

pF

Group 3 vs Group 1

05.082.17
)

7
1

10
1(3.4)13(

)7.106.4( 2

pF

Group 2 vs Group 1
2(8.5 10.7) 2.10 0.05( )1 1(3 1) 4.3 ( )

8 7

F p NS

Note: 4.3 is the variance of error (vide Table 11.15). 
These derived F-values are compared with the values given in F distribution 
Table (Table 11.18) given below:
Table 11.18. F-distribution values at 5% probability level (Yoshimura, 1987)

N1\N2 1 2 3 4 5 6 7 8 9 10
22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.342 2.297

N
1
-DF for the numerator; N

2-DF for the denominator. 

All the derived F values, except the one computed for the comparison 
between Group 2 and Group 1, are signi  cant at 5% probability level.

The Scheffé’s multiple comparison test is used for all-pair comparisons, 
like the Duncan’s multiple comparison test. However, the power to detect 
a signi  cant difference is low with the Scheffé’s multiple comparison test 
compared to that of the Duncan’s multiple comparison test (vide Table 
11.19).

Duncan’s multiple comparison test showed a signi  cant difference 
in the mid dose and high dose groups, whereas the Scheffé’s multiple 
comparison test did not show a signi  cant difference in these groups, 
indicating it’s low power to detect a signi  cant difference. Therefore, use 
of Scheffé’s multiple comparison test should be done with little caution in 
the safety evaluation studies with animals.
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Two-way ANOVA

It is an extension of one-way ANOVA. The difference in 2-way ANOVA 
is that it has 2 independent factors. The data is arranged in tabular fashion 
in such a way that the column represents one factor and the row, the other 
factor (Belle et al., 2004). 

An example is provided to illustrate the computations required in 
two-way ANOVA (Kibune and Sakuma, 1999).The diameter of the head 
of the three human embryos was measured by four observers. Each 
observer measured the diameter of three embryos. The data is arranged 
in a tabular fashion as given in Table 11.20. We are interested to know: 
1. Among the observers, is there any difference in the diameter of embryos 
measured 2. Among the embryos, is there any difference in the diameter of 
embryos measured and 3. Is there any simultaneous in  uence of observer 
and embryo in the diameter measured (interaction) 

Calculation steps:

 1)  Correction factor (CF) 
  =(Grand sum)2/N = 558.12/36=8652.1
 2)  Total sum of squares 
  = (14.32+14.02+......+12.92+13.82)-CF=8979.7–8652.1=327.6
 3)  Sum of squares of among the observers
  =1/9 (141.02+137.62+138.22+141.32)-CF=8653.2–8652.1=1.199

Table 11.19. Comparison of the power to detect a signi  cant difference between Scheffés 
and Duncan’s multiple comparison tests. LDH activity (U/l) of F344 female rats at week 
78 in a repeated dose administration study is given.

Estimates Control Low dose Mid dose High dose

-

168, 188, 181, 
250, 122, 89, 
125, 135, 211, 

204

112, 168, 175, 
241, 218, 49, 
49, 76, 66, 30

69, 86, 145, 
244, 135, 46, 

105, 40, 53, 73

43, 59, 73, 99, 
129, 181, 49, 69

N 10 10 10 8
Mean ± SD 167 ± 49 118 ± 76 100 ± 62 88 ± 47

In % of control - 71 60 53
ANOVA P < 0.05

Duncan’s test N.S. S S 
Scheffé’s test N.S. N.S. N.S.

N.S.—Not signi  cant (P > 0.05); S—Signi  cant (P < 0.05)
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 4)  Sum of squares of among the embryos
  =1/12 (167.92+236.32+153.92)-CF=8976.1–8652.1=324
 5)  Embryo  Observer (Interaction)
  =1/3 (43.12+59.42+38.52+41.02+58.92+37.72+41.42+58.82

  +38.02+42.42+59.22+39.72)-CF=8977.8–8652.1=325.7
  Sum of squares of interaction is calculated as given below:
  325.7–1.199–324= 0.501. The DF for interaction is (3–1) (4–1)=6.
 6)  Sum of squares of error
  327.6–1.199–324–0.501=1.9. The DF for error is 35–2–3–6=24

Table 11.20. Diameter of three human embryos (cm) measured by four observers

Observer 1 Observer 2 Observer 3 Observer 4 Sum
Embryo 1 14.3 13.6 13.9 13.8 167.9 (109)

14.0 13.6 13.7 14.7
14.8 13.8 13.8 13.9

Sum 43.1 41.0 41.4 42.4
Embryo 2 19.7 19.8 19.5 19.8 236.3 (154)

19.9 19.3 19.8 19.6
19.8 19.8 19.5 19.8

Sum 59.4 58.9 58.8 59.2
Embryo 3 13.0 12.4 12.8 13.0 153.9 (100)

12.6 12.8 12.7 12.9
12.9 12.5 12.5 13.8

Sum 38.5 37.7 38.0 39.7
Total sum 141.0 

(99.8)
137.6 (97.4) 138.2 (97.8) 141.3 (100) 558.1

Let us construct the ANOVA Table (Table 11.21): 
Table 11.21. Two-way layout ANOVA

Source of variation SS DF MS F value P
Embryo* 324 2 162 2051 P<0.001
Observer* 1.199 3 0.399 5.05 P<0.01

Embryo×Observer** 0.501 6 0.084 1.06 NS
Error 1.9 24 0.079

Total sum 327.6 35
*Main effects **Interaction, SS-Sum of squares; DF-Degrees of freedom; MS-Mean sum 
of squares.
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The computed F values are compared with the F distribution values 
given in F distribution Table (Table 11.22). For the comparison of all the 
sources of variation (embryo, observer and embryo × observer interaction), 
the denominator remains the same (DF of error, which is 24), but the 
numerator differs. The F values should be compared with F distribution 
values at 2/24 (numerator/denominator) for embryo, 3/24 for observer and 
6/24 for embryo × observer interaction.

Table 11.22. F distribution values at 1% probability level (Yoshimura, 1987)

N1\N2 1 2 3 4 5 6 7 8 9 10
24 7.823 5.614 4.718 4.218 3.895 3.667 3.496 3.363 3.256 3.168

N
1
- DF for the numerator; N

2 –DF for the denominator.

Discussion:
 1.  Embryo: The F-value is greater than the Table F-value (2051>5.614); 

hence there is a signi  cant difference among embryos.
 2.  Observer: The F-value is greater than the Table F-value (5.05>4.718); 

hence there is a signi  cant difference among observers.
 3.  The embryo × observer interaction: The F-value is less than the 

Table F value (1.06<3.667); hence embryo×observer interaction is 
not signi  cant.

Since the interaction is not signi  cant, the ANOVA Table can be 
reconstructed excluding interaction as a source of variation. The SS of 
interaction is added to the SS of error and the DF of the interaction is 
added to the DF of error. The Table thus reconstructed after excluding 
interaction as a source of variation is given below (Table 11.23): 

Table 11.23. ANOVA Table excluding the interaction

Source of 
variation 

SS DF MS F value P

Embryo 324 2 162 2024 P<0.001
Observer 1.199 3 0.399 4.99 P<0.001

Error 2.40 30 0.080
Total sum 327.6 35 -

SS-Sum of squares; DF-Degrees of freedom; MS-Mean sum of squares.
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Dunnett’s Multiple Comparison Test and Student’s t Test—
A Comparison  

In pharmacological and toxicological experiments the number of groups 
usually employed is more than two. If the data obtained from such studies 
are anlaysed by Student’s t-test (picking up any two groups and analyzing 
by Student’s t-test), it may cause Type I error.

We analysed data obtained from several repeated dose administration 
studies in rats using Dunnett’s multiple comparison test and Student’s 
t-test to know to what extent repeated analysis by Student’s t-test shows a 
Type I error. Our  nding is given in Table 11.24.

Table 11.24. Analysis of data obtained from repeated dose administration studies in rats by 
Dunnett’s multiple comparison test and Student’s t-test

Item Number of analyses Dunnett’s multiple 
comparison test

Student’s t-testa

Body weight 528 223 246 (10)
Feed consumption 832 235 349 (49)

Hematology 352 123 159 (29)
Blood chemistry 576 215 272 (27)

Urinalysis 64 7 11 (57)
Organ weight 224 47 80 (70)
Organ weight/

body weight ratio
224 82 104 (27)

Total 2800 932 1221 (31)
aValues given in parentheses are percent increase compared to Dunnett’s multiple 
comparison test.

The number of items showing a signi  cant difference by Student’s 
t-test increased, compared to those showing a signi  cant difference by 
Dunnett’s multiple comparison test. Overall, there was an increase by 31% 
in the items, when they were analysed by Student’s t-test. This increase is 
due to the Type I error. Yoshimura and Tsubaki (1993) suggested that to 
assess the toxicity, Dunnett’s multiple comparison test is the appropriate 
statistical approach; on the contrary, from a consumer point of view, 
Student’s t-test, may be more appropriate. 
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Non-parametric and Parametric Tests—Assumptions

Statistical methods are based on certain assumptions. For applying 
parametric statistical tools, the assumptions made are that data follow 
a normal distribution pattern and are homogeneous. In many situations, 
the data obtained from animal studies contradict these assumptions, and 
are not suitable to be analysed with the parametric statistical methods. 
Non-parametric tests do not require the assumption of normality or the 
assumption of homogeneity of variance. Hence, these tests are referred to 
as distribution-free tests. Non-parametric tests usually compare medians 
rather than means, therefore in  uence of one or two outliers in the data 
is annulled. We shall deal with some of the most commonly used non-
parametric tests in toxicology/pharmacology.

Sign Tests

Perhaps, the sign test is the oldest distribution-free test which can be used 
either in the one-sample or in the paired sample contexts (Sawilowsky, 
2005). Sign test is probably the simplest of all the non-parametric methods 
(Whitley and Ball, 2002; Crawley, 2005). The null hypothesis of the sign 
test is that given a pair of measurements (xi, yi), then xi and yi are equally 
likely to be larger than each other (Surhone et al., 2010). Though the sign 
test is rarely used in toxicology, it can be used in certain pharmacological 
in vivo experiments to evaluate whether a treatment is superior to the other. 
The sign test may be used in clinical trials to know whether either of the 
two treatments that are provided to study subjects is favored over the other 
(Nietert and Dooley, 2011). 

The calculation procedure of sign test for small sample size (n <= 25) is 
different from that of large sample size (n>25): 
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Calculation procedure of sign test for small sample size

A study was conducted to evaluate the hypoglycemic effect of an herbal 
preparation in rats. Hyperglycemia was induced in rats by administering 
streptozotozin. Following the administration of streptozotozin, the blood 
sugar was measured in individual rats to con  rm hyperglycemia. Then 
the hyperglycemic rats were given the herbal preparation daily for 14 
consecutive days. On day 15, again blood sugar was measured in these 
rats. The blood sugar measured in hyperglycemic rats before and after the 
administration of the herbal preparation is given in Table 12.1.

Table 12.1. Blood sugar level (mg/dl) in hyperglycemic rats

Rat No. 1 2 3 4 5 6 7 8
Blood sugar level before 
administration of herbal 

preparation (Xa)

236 223 211 229 205 245 243 231

Blood sugar level after 
administration of herbal 

preparation (Xb)

155 156 172 198 209 181 231 231

Difference (Xb- Xa) –81 –67 –39 –31 +4 –64 –12 0

Sign -
(–1)

-
(–1)

-
(–1)

-
(–1)

+
(+1)

-
(–1)

-
(–1)

±
(0)

7

07

6

17 2
1

2
1

2
1 CCp

7

7 1 7 0
1
2

C C

0624.00078.00546.0

Note: 
)( rnr

n
Crn ; Rat No. 8, which did not show any change in the

blood sugar is not included in the analysis.
Since P=0.0624 is >0.05, it is considered that the decrease in blood sugar 
in rats administered with herbal preparation is insigni  cant. 

Calculation procedure of sign test for large sample size

The effect of two analgesics, drugs A and B was evaluated  ve times by 
32 doctors and their  ndings are given in Table 12.2. The objective of the 
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study was to know whether the analgesic effect of drugs A and B is similar 
or different. 

The pairs, which showed a difference of 0 (± sign) are excluded from 
the calculation procedure. In this example four pairs showed a difference 
of 0 (± sign). Therefore, number (n) of data becomes 32–4=28. Number 
of + sign, which indicates that the effect of drug B is better than drug A, is 
11. Z is obtained from the equation given below: 

94.0
65.2

145.115.0

r

rr
z

 

14
2
28Mean r

 

65.2
2
28)(SDr  

r = Total number of + sign = 11
The 0.94 0.9 0.36812p z  from normal distribution Table (Table 
12.3) is greater than 0.05 (two-sided test). Therefore, it can be concluded 
that both the drugs have similar effect.
Table 12.3. Normal distribution table (Yoshimura, 1987)

% Two-sided P Upper P
Z 2

0.8 0.423711 0.211855
0.9 0.368120 0.184060
1.0 0.317311 0.158655

Signed Rank Sum Tests

The major disadvantage of the sign test is that it considers only the 
direction of difference between pairs of observations, not the size of the 
difference (Mc Donald, 2009). Ranking the observations and then carrying 
out the statistical analysis can solve this issue. Signed rank sum test is 
more powerful than the sign test (Elston and Johnson, 1994).

Wilcoxon Rank-Sum test (Wilcoxon, 1945)

The Wilcoxon rank-sum test is one of the most commonly used non-
parametric procedures (Le, 2003). This is the non-parametric analogue to 
the paired t-test. The null hypothesis of Wilcoxon rank-sum test is that the 
median difference between pairs of observations is zero.
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The performance of six classes of two schools expressed in average 
scores is given in Table 12.4. We shall analyse this data using Wilcoxon 
rank-sum test. 
Table 12.4. Average scores of six classes of two schools

School Average score
School A 79.5 85.5 83.5 93.5 91.5 77.5
School B 95.5 87.5 89.5 98.0 97.5 81.5

Step 1: Combine the scores of both the schools and arrange them from the 
smallest to the largest. Then assign a rank from 1 to 12 to the scores as 
given in Table 12.5. (Note: if there are tied observations, assign average 
rank to each of them). 

Table 12.5. Ranks assigned to the combined scores of two schools

Scores arranged from smallest to largest Rank
77.5 1
79.5 2
81.5 3
83.5 4
85.5 5
87.5 6
89.5 7
91.5 8
93.5 9
95.5 10
97.5 11
98 12

Step 2: Arrange the rank corresponding to the original scores as given in 
Table 12.6 and calculate the sum of the ranks. 
Table 12.6. Ranks arranged to the original scores

School Ranks Sum of rank
School A 2 5 4 9 8 1 29
School B 10 6 7 12 11 3 49

Calculation Procedure:
The number of samples (classes) in each group = 6
Sum of rank of School B, R2=10+6+7+12+11+3=49
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Where,

12
49295.6

12 = Sum of number of samples (classes) of School A and School B 
11 = (Sum of number of samples (classes) of School A and School B) – 1
Let us calculate T

601.1
39

2
13649

T

Where,
13 = (Sum of number of samples (classes) of School A and School B) + 1
2 = Constant

Calculated T value (T=1.601) is smaller than the U( ) = 1.644854 at 
P= 0.05 (see Table 12.7). Hence, it is considered that there is no signi  cant 
difference in scores between the schools.

Table 12.7. Standard normal distribution Table (Yoshimura, 1987)

Two tailed P Upper P % point
2 U( )

0.05000 0.025000 1.959964
0.06000 0.030000 1.880791
0.07000 0.035000 1.811911
0.08000 0.040000 1.750686
0.09000 0.045000 1.695398
0.10000 0.050000 1.644854

Fisher’s exact test
Fisher’s exact test is used in the analysis of contingency tables with small 
sample sizes (Fisher, 1922; 1954). It is similar to 2 test, since both Fisher’s 
exact test and 2 test deal with nominal variables. In Fisher’s exact test, it is 
assumed that the value of the  rst unit sampled has no effect on the value 
of the second unit. It is interesting to learn how the Fisher’s exact test 
was originated. Dr Muriel Bristol of Rothamsted Research Station, UK 
claimed that she could tell whether milk or tea had been added  rst to a 
cup of tea. Fisher designed an experiment to verify the claim of Dr Muriel 
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Bristol. Eight cups of tea were made. In four cups, milk was added  rst 
and in the other four cups tea was added  rst. Thus, the column totals were 
 xed. Dr. Bristol was asked to identify the four to ‘tea  rst’, and the four 

to ‘milk  rst’ cups. Thus, the row totals were also  xed in advance. Fisher 
proceeded to analyse the resulting 2 × 2 table, thus giving birth to Fisher’s 
exact test (Clarke, 1991; Ludbrook, 2008).

Manual analysis of data using Fisher’s exact test is beyond the scope of 
this book, hence not covered. The power to detect a signi  cant difference 
is more with Fisher’s exact test than the 2 test as seen in Table 12.8.

Table 12.8. Power to detect a signi  cant difference—Comparison between 2 test and 
Fisher’s exact test

Incidence of pathological lesions
(Control vs dosed group)

P-value
Chi-square test* Fisher’s test ( )

0/5 vs 1/5 1.00000 0.50000
0/5 vs 2/5 0.42920 0.22222
0/5 vs 3/5 0.16755 0.08333
0/5 vs 4/5 0.05281 0.02381
0/5 vs 5/5 0.01141 0.00397
1/5 vs 2/5 1.00000 0.50000
1/5 vs 3/5 0.51861 0.26190
1/5 vs 4/5 0.20590 0.10317
1/5 vs 5/5 0.05281 0.02381
2/5 vs 3/5 1.00000 0.50000
2/5 vs 4/5 0.51861 0.26190
2/5 vs 5/5 0.16755 0.08333

*Yetes’s correction (Note on Yetes’s correction: 2 slightly overestimates the ‘difference 
between expected and observed’ results. This overestimation can be corrected by decreasing 
the ‘difference between expected and observed’ by 0.5). 

McKinney et al. (1989) reviewed the use of Fisher’s exact test in 71 
articles published between 1983 and 1987 in six medical journals. Nearly 
60% of articles did not specify use of a one- or two-sided test. The authors 
concluded that the use of Fisher’s exact test without speci  cation as a one- 
or two-sided version may misrepresent the statistical signi  cance of data. 
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Mann-Whitney’s U test

Mann-Whitney’s U test, a test equivalent of Student’s t-test for comparing 
two groups, was independently developed by Mann and Whitney (1947) 
and Wilcoxan (1945). The calculation procedure of Mann-Whitney’s U test 
is very much similar to Wilcoxan signed rank sum test. For understanding 
Mann-Whitney’s U test in a detailed manner, let us analyse the data given 
in Table 12.9. Our objective of the analysis is to  nd whether there is 
a signi  cant difference in hemoglobin content between Group A and 
Group B. 

Table 12.9. Hemoglobin content (g/dl) in two experimental groups of rats following the 
administration of a drug at 10 mg/kg b.w. (Group A) and at 20 mg/kg b.w. (Group B)

Group A 9.3 6.4 10.8 5.6
Group B 5.9 9.7 9.9 6.7

Let us pool the data and arrange them from the smallest to the largest, 
ignoring the Group to which they belong and rank them. Then, tag them 
with the identity of the Group to which they belong (Table 12.10).

Table 12.10. Ranking the data

Pooled data 5.6 5.9 6.4 6.7 9.3 9.7 9.9 10.8
Ranked data 1 2 3 4 5 6 7 8

Tagged data with 
respective group

A B A B A B B A

(Note for tied observations: Assign mean score for the tied observations. For example, if 
the value of ranks 2nd and 3rd is 5.9, give each value a rank of 2.5). 

Let na = Number of observations in Group A, nb = Number of observations 
in Group B, Ta = Rank sum for Group A, Tb = Rank sum for Group B: 
Ta = 1+3+5+8 = 17 
Tb = 2+4+6+7 = 19
Let us calculate U1 and U2:

 U1 = Ta- 2
1)(nn aa    = 17- 

2
1)4(4  = 7 

U2 = Tb- 2
1)(nn bb    = 19 - 

2
1)4(4  = 9 
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The smallest value 7 is the U value. 
The smallest U value, 7 is compared with the Mann-Whitney U Table 

value at n1=4 and n2=4. Relevant part of the U Table is reproduced in Table 
12.11.

Table 12.11. Mann-Whitney U Table

n1 n2 Two-sided One-sided
=0.05 =0.01 =0.05 =0.01

2 2 --- --- --- ---
3 3 --- --- --- ---
4 4 0 --- 1 ---
5 5 2 0 4 1
6 6 5 2 7 3

Since the computed U value is greater than the values given in the 
Mann-Whitney U Table, it is not signi  cant at 5% level by two-sided and 
one-sided tests (at 5 % signi  cant level the U Table values are 0 and 1 for 
two-sided and one-sided tests, respectively).
When the size of either of the groups exceeds 20, the signi  cance of U can 
be tested using the Z statistic: 

12/)1(
2/

2121

21

nnnn

nnU
Z

Z score for normal distribution is shown in Appendix 3. 
(A note on Z statistic: Z is designated to a standard normal variate. It 

is computed by subtracting the measured value from the population mean, 
then dividing by the population SD( ). A standard normal variate has 
a normal distribution with mean 0 and variance 1. The total area under 
a normal distribution curve is unity (or 100%). The notation, Prð(–1 < z 
< 1) = 0.6826, indicates that about 68% of the area is contained within 
± 1 SD).

Mann-Whitney’s U test works well in the analysis of data obtained 
from toxicity studies, where the number of animals in each group is 27 or 
less. By Mann-Whitney’s U test, a signi  cant difference (one-sided test) 
can be detected even with three animals in each group. Therefore, this test 
can be used in experiments with dogs, where each group usually consists 
of three animals/sex. This test seems to be extensively used for analyzing 
urinalyses data and pathological  ndings in repeated dose administration 
studies in rodents. 
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The power to detect a signi  cant difference is more with Mann-
Whiney’s U test than the Fisher’s test. Analysis of pathological  ndings of 
a repeated dose administration study by Mann-Whitney’s U and Fisher’s 
tests is given in Table 12.12.
Table 12.12. Analysis of pathological  ndings of a repeated dose administration study by 
Mann-Whitney’s U and Fisher’s tests

Groups Lesions grades and 
number of animals 
with lesions grade

Mann-Whitney’s 
U test

Lesions 
grades and 
number of 

animals with 
lesions grade

Fisher’s test

- ± + ++ P=0.0032
(One-sided)

- > ± P=0.0238 
(One-sided) Control 4 1 0 0 4 1

High dose 0 0 3 2 0 5

The computed P value for Mann-Whitney’s U test (P=0.0032) is 
considerably less than that of the Fisher’s test (P = 0.0238), indicating that 
the power to detect a signi  cant difference is more with Mann-Whitney’s 
U test than the Fisher’s test.

The power of the Mann-Whitney’s U test decreases when the groups to 
be compared have the same order of rank. There is a possibility in having 
the same order of rank, when the number of digits after decimal of the 
raw data is truncated. This can be better understood from the data given 
in Table 12.13.
Table 12.13. Change in the pattern of signi  cant difference detection as the number of 
digits after decimal of the raw data decreases. Absolute liver weight (g) of male rats from 
a 28-day repeated dose administration study is given in the Table.
Number of 
digits after 

decimal

Items Groups P
Control
(N = 6)

High dose
(N = 6)

Mann-Whitney’s
U test

3 Raw data 10.391, 11.442, 
13.653, 10.224, 
10.783, 10.414 

13.194, 11.444, 
13.701, 11.572, 
12.683, 12.661 

< 0.05

Mean ± SD 11.151 ± 1.301 12.543 ± 0.889
Mean rank 4.3 8.6

2 Raw data 10.39, 11.44, 
13.65, 10.22, 
10.78, 10.41

13.19, 11.44, 
13.70, 11.57, 
12.68, 12.66

Not signi  cant

Mean ± SD 11.15 ± 1.30 12.54 ± 0.89
Mean rank 4.4 8.5

1 Raw data 10.4, 11.4, 13.7, 
10.2, 10.8, 10.4

13.2, 11.4, 13.7, 
11.6, 12.7, 12.7

Not signi  cant

Mean ± SD 11.2 ± 1.3 12.6 ± 0.9
Mean rank 4.5 8.5
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The high dose group is signi  cantly different from the control group 
as per Mann-Whitney’s U test, when the data of both the groups have 
three digits after decimal and no data from the control group is repeated 
in the high dose group and vice versa. When the number of digits after 
the decimal of the data was truncated to two decimals, the value 11.44 
was repeated in both the groups, resulting in an insigni  cant difference 
between the control and high dose groups. When the number of digits 
after the decimal of the data was restricted to one decimal, the values 11.4 
and 13.7 were repeated in both the groups, resulting in an insigni  cant 
difference between the control and high dose groups. 

There are two methods for calculating the Mann-Whitney’s U test. 
When the number of observations in each group is small (N= <27), the 
Mann-Whitney’s U test can be calculated by using a ready reckoner (http://
aoki2.si.gunma-u.ac.jp/lecture/Average/u-tab.html). When the number of 
observations in each group is large (N= >27), it is calculated using the 
Z distribution Table method. Table 12.14 demonstrates the analysis of a 
simulated data with a strong dose-related pattern by Mann-Whitney’s U 
test using the Z distribution Table method. Table 12.15 demonstrates the 
analysis of a simulated data with strong dose-related pattern by Mann-
Whitney’s U test using the ready reckoner.

Table 12.14. Power of Mann-Whitney’s U test for three and four samples with a strong 
dose-related pattern (calculated by using Z distribution Table)

Number 
of samples

Group Raw data 
(ranked)

Mean rank Z value P value
Two-sided One-sided

3 Control 1, 2, 3 2 1.96 0.04953 0.02500
Dose 4, 5, 6 5

4 Control 1, 2, 3, 4 2.5 2.30 0.0209 0.010
Dose 5, 6, 7, 8 6.5

Table 12.15. Power of Mann-Whitney’s U test for three and four samples with a strong 
dose-related pattern (calculated by using the ready reckoner—http://aoki2.si.gunma-u.
ac.jp/lecture/Average/u-tab.html)

Number of 
samples

Group Raw data 
(ranked)

Mean rank U value P value
Two-sided One-sided

3 Control 1, 2, 3 2 0.0 Not signi  cant P<0.05.
Dose 4, 5, 6 5

4 Control 1, 2, 3, 4 2.5 0.0 P=0.05 P<0.05.
Dose 5, 6, 7, 8 6.5
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The Tables 12.14 and 12.15 indicate that there is not much difference in 
P values between Z distribution Table and ready reckoner methods, when 
the number of samples is as small as 3 to 4. However, we recommend a 
ready reckoner when the number of observations in each group is small 
(N= <27) and a Z distribution Table when the number of observations in 
each group is large (N= >27).

Kruskal-Wallis Nonparametric ANOVA by Ranks 
(Kruskal and Wallis, 1952)
The Kruskal–Wallis test is identical to one-way ANOVA with the data 
replaced by their ranks. It has also been stated that this test is an extension 
of the two-group Mann-Whitney’s U (Wilcoxon rank) test (Mc Kight and 
Najab, 2010). It assumes that the observations in each group come from 
populations with the same shape of distribution, so if different groups have 
different shapes (for example, one is skewed to the right and another is 
skewed to the left or they have different variances), the Kruskal–Wallis 
test may give inaccurate results (Fagerland and Sandvik, 2009). 

Calculation Procedure:
The data is ranked and the sum of the ranks is calculated. Then the test 
statistic, H, is calculated (hence this test is also called as Kruskal-Wallis H 
test). H is approximately chi-square distributed. Kruskal-Wallis test is not 
suitable if the sample size is small, say less than 5.
The formula for the calculation of chi-square value is given below 
(Equation 1):
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If the derived chi-square value is larger than the chi distribution Table 
value, then it indicates a signi  cant difference.

Let us work out an example. Lymphocyte count determined in four 
groups in a clinical study is given in Table 12.16.

Table 12.16. Lymphocyte counts (%) determined in a clinical study

Group A Group B Group C Group D
40.6 31.9 32.7 30.6
38.0 36.8 31.3 35.9
41.1 32.4 32.9 29.6
52.7 34.8 31.9 29.2
48.8 43.1 28.5 28.5
41.1 39.0 31.2 30.8
39.9 33.6 33.1 30.5
43.1 34.3 34.1 29.4
32.7 34.0 31.2 30.8
30.1 33.8 31.7 32.0

Mean 40.8 35.4 31.9 30.7
N 10 10 10 10

Number group = 4; Total number of samples = 40.

Combine the lymphocytes counts of all the four groups, and arrange 
them from the smallest to the largest. Then assign a rank from 1 to 40 
to them as given in Table 12.17. (Note: we have done a similar exercise 
while working out the example of scores for performance of six classes of 
two schools for explaining Wilcoxon rank-sum test; vide Tables 12.4 and 
12.5). 
Table 12.17. Ranks assigned to the lymphocyte counts (%) of four groups

Group A Group B Group C Group D
34 15.5 19.5 8
31 30 13 29
35.5 18 21 5
40 28 15.5 3
39 37.5 1.5 1.5
35.5 32 11.5 9.5
33 23 22 7
37.5 27 26 4
19.5 25 11.5 9.5
6 24 14 17

Mean rank 31.1 26 15.55 9.35
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Equation 2 (page 117) is used to calculate the chi-square value.
Let us calculate r1, r2. r3 and r4:

r = 34+31+ +19.5+6 =311 
 
r = 15.5+30+ +25+24=260 
 
r =19.5+13+ +11.5+14=155.5 
 
r = 8+29+ +9.5+17=93.5 

S is calculated as 2914.35 (see below):

35.2914
10

2
41105.93

10
2

41105.155

10
2

4110260

10
2

4110311
2222
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X 2 is calculated as 21.3 (see below):
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35.2914)140(X

=
5326.5

113659.7
 = 21.3 

The computed X 2 value is compared with the X 2 Table value (Table 12.18) 
at 4–1=3 degrees freedom. Since the computed X 2 value (21.3) is greater 
than the X 2 Table value (16.266), it is considered that there is a signi  cant 
difference in lymphocyte counts among the groups (P<0.001). 
Table 12.18. Chi square Table (Yoshimura, 1987)

DF\ 0.1 0.05 0.01 0.001
1 2.706 3.841 6.635 10.828
2 4.605 5.991 9.210 13.816
3 6.251 7.815 11.345 16.266
4 7.779 9.488 13.277 18.467
5 9.236 11.070 15.086 20.515

Comparison of Group Means

Wilcoxon Rank-Sum test or Kruskal-Wallis test provides the information, 
whether a signi  cant difference exists among the group means. If these 
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tests reveal a signi  cant difference, it does not indicate that every group 
means are signi  cantly different from each other. One of the robust tests 
used to  nd out which group means are signi  cantly different from each 
other is the Dunn’s multiple comparison test. Dunn’s multiple comparison 
test can be used to  nd the difference of 3 or more groups (Israel, 2008). 
Dunn’s multiple comparison test for more than three groups (Gad and 
Weil, 1986; Hollander and Wolf, 1973)

Let us review the example given in Table12.17. The mean rank values 
are reproduced in Table 12.19.

Table 12.19. Mean rank of lymphocyte (%) 

Group A Group B Group C Group D
Mean rank 31.1 26 15.6 9.4

N 10 10 10 10 Sum=40

Calculation procedure

Group A vs Group B:

Difference of mean rank: 31.1–26=5.1
The Probability value:

7.13
10
1

10
1

12
)41)(40(63.2

)3(4
05.0

00417.0Z

Group A vs Group C: 

Difference of mean rank: 31.1–15.6=15.5
The Probability value:

7.13
10
1

10
1

12
)41)(40(63.2

)3(4
05.0

00417.0Z

Group A vs Group D: 

Difference of mean rank: 31.1-9.4=21.7
The Probability value:

7.13
10
1

10
1

12
)41)(40(63.2

)3(4
05.0

00417.0Z
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4 (3) = Number of group Number of group – 1; The value 2.63 is obtained 
from Table 12.20 (the value, 0.00417 can be rounded to 0.0042. This 
value lies between 0.0043 and 0.0041 of Z value. In this case, 0.0043 was 
considered. The Z value corresponding to 0.0043 is 2.63). 

The numerator (40) is total number of samples, (41) is total number 
of sample + 1; The denominator 12 is a constant, whereas 10 is number of 
samples in the groups.

Table 12.20. Z score for normal distribution (Gad and Weil, 1986)

Z Proportional parts

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

The difference between the two mean scores is compared with the 
Probability (critical) value (13.7). If the difference between the two mean 
scores is greater than the Probability (critical) value, then the difference is 
considered signi  cant (see below given Table 12.21). 

Table 12.21. Signi  cant difference between the groups

Analysis Difference Critical 
value

P

Group A vs Group B 31.1–26=5.1 13.7 Not signi  cant (P>0.05)
Group A vs Group C 31.1–15.6=15.5 Signi  cant (P<0.05)
Group A vs Group D 31.1–9.4=21.7 Signi  cant (P<0.05)

Steel’s multiple comparison test for more than three groups 
(Steel, 1961)

The power of Steel’s test is higher than the other multiple comparison 
tests. Usually the number of groups employed is four (three treatment 
groups + one control group) in most of the animal studies. For a parameter 
which shows a strong dose-related pattern, a signi  cant difference can be 
detected by Steels’s test, even if the number of animals in a group is as low 
as four (Yoshimura and Ohashi, 1992; Inaba, 1994). Let us work out an 
example (Table 12.22).

Calculation procedure:

Control group vs Low dose group
 1)  Sum of rank of low dose group, R

2
=5+6+7+8=26
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 2)  Calculation of SS(S
2
) and Variance (V

2)
  S

2
= (1–4.5)2 + (2–4.5)2 + (3–4.5)2 + (4–4.5)2 + (5–4.5)2 + (6–4.5)2 + 

(7–4.5)2 + (8–4.5)2 = 42, where
4.5 = Sum of number of samples of control group and number of samples 
of low dose group + 1 divided by number of groups [(4+4+1)/2]= 4.5).

75.0
784

424
2V , where 

4 42 = Number of sample in control group × S
2
value, 42; 4×8×7 = 

Number of sample in low dose × Sum of number of samples of control 
and low dose groups ×Sum of number of samples of control and low dose 
groups – 1.
 3)  Calculation of t

2

309.2
866.0
2

75.0
2

144
4

26

2t , where 

26/4 =R
2
/4 (4=Number of sample in low dose), (4+4+1)/2 =(Number of 

samples in control group + Number of samples in low dose group + 1)/2; 
0.75 = 2V .
 4)  Calculated t

2 
value, 2.309 is compared with the critical value given 

in Table 12.23. As the size of each group is similar, the critical value 
becomes ( , 4) =2.062.

 5)  Since computed t
2 
value, 2.309 is greater than the Table value,2.062, 

it is considered that the low dose group is signi  cantly different from 
the control. 

Table 12.23. Dunnett’s t test critical values, one-sided at 0.05 probability level (Yoshimura, 
1987)

Number of group 2 3 4 5 6 7 8
1.645 1.916 2.062 2.160 2.234 2.292 2.340

Table 12.22. Quantitative data from a toxicity study

Group Control Low dose Mid dose High dose
1 5 9 13 
2 6 10 14 
3 7 11 15 
4 8 12 16 

Mean rank 2.5 6.5 10.5 14.5
Note: Ranked values are given. 
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Using the calculation procedure mentioned above for comparing 
control group vs low dose group, comparison between other groups 
(control group vs mid dose group and control group vs high dose group) 
can be made.

Rank Sum Tests—Some Points

An interesting example of a rank sum test analysis is given in Table 12.24. 
Creatinine value of F344 rats on week 52 in a repeated dose administration 
study is given in the Table.

Table 12.24. Creatinine value (mg/dl) of F344 rats at 52 weeks after dosing

Group Individual value (20 animals/group) Mean ± SD

Control 0.70 0.68 0.70 0.74 0.60 0.65 0.65 0.72 0.63 0.78 0.67 0.64 
0.63 0.66 0.88 0.73 0.57 0.79 0.78 0.65

0.69 ± 0.07

Low dose 0.72 0.64 0.66 0.66 0.88 0.68 dead 0.51 0.65 0.63 0.79 0.60 
0.69 0.68 0.62 0.57 dead 0.66 0.59 0.54

0.65 ± 0.09

Middle 
dose

0.56 0.59 0.66 0.68 0.57 0.67 0.70 0.83 0.86 0.68 0.60 0.68 
0.57 0.67 0.53 0.57 0.64 0.61 0.86 0.67

0.66 ± 0.10

High dose 0.51 0.59 0.49 0.60 0.58 0.62 0.51 0.57 0.60 2.96 0.56 0.65 
0.71 0.55 0.54 0.41 0.52 0.62 0.59 0.59

0.69 ± 
0.54**

**Signi  cantly different from control by rank sum test (P<0.01).

Bartlett’s test for homogeneity of variance showed a signi  cant 
difference, therefore Dunnett type rank test was used for the analysis 
of the data. The Dunnett type rank test revealed a signi  cant difference 
between the high dose group and the control group (P<0.01), though the 
mean values of these groups are the same (0.69). Close examination of the 
individual values of the high dose group revealed that one of the values 
among them (2.96) is extremely high compared with the other values. If a 
number slightly higher than 0.88, which is the next highest value among 
the high dose and control groups, replaces 2.96 of the high dose group, the 
mean value of this group becomes lower than that in the control group, 
but the rank is not changed, i.e., the result of the rank sum test will not be 
changed. Thus, the signi  cant difference between the control group and 
high dose group detected by the rank sum test is understandable, though 
the mean values of these groups are the same.

Another important point in rank sum test analysis is that one should 
know the minimum number of animals required in each group to detect a 
signi  cant difference. Table 12.25 shows the minimum number of animals 
required in four-group and  ve-group settings to detect a signi  cant 
difference.



124 A Handbook of Applied Statistics in Pharmacology

Table 12.25. Minimum number of animals in four-group and  ve-group settings necessary 
to show a signi  cant difference 

Test Four groups Five groups
Scheffé type 22 40

Hollander-Wolfe* 19 30
Tukey type 18 32

Dunnett type 15 26
Wilcoxon 8 12
Steel type 4 6

Mann-Whitney U** 3
*Dunn’s test. **Test for 2 group alone.

The power also depends on the number of treatment groups, which 
implies that inclusion of further non-signi  cant treatment group/s can 
result in overlooking signi  cant effects (Hothorn, 1990). 

As mentioned earlier, the power to detect a signi  cant difference is 
high with Steel’s test. A comparison of the power to detect a signi  cant 
difference between Dunnett type rank test and Steel’s test is given in Table 
12.26.

Table 12.26. Comparison of the power to detect a signi  cant difference between Dunnett 
type rank test and Steel’s test

Parameter analysed 
and tests

Control (N=5) Low dose 
(N=5)

Mid dose 
(N=5)

High dose 
(N=4)

Top dose 
(N=4)

Urine volume (ml) 2.4, 2.8, 2.4, 
2.4, 2.4

43, 45, 40, 
41, 46

62, 48, 68, 
52, 55

73, 72,
102, 104

52, 97, 99, 
103

Mean ± SD 2.5 ± 0.18 43 ± 2.55 57 ± 8.0 87.8 ± 
17.6

87.8 ± 24

Bartlett’s 
homogeneity test

P = 0.0001

Kruskal-Wallis’s 
test

P = 0.0006

Dunnett type rank 
test

NS S S S

Steel’s test S S S S
NS-Not signi  cant (P>0.05); S-Signi  cant (P<0.05)

The low dose group was not signi  cantly different, when analysed 
using Dunnett type rank test, whereas, this dose group was signi  cantly 
different, when analysed using Steel’s test. 

Most of the pharmacologists and toxicologists express their concern 
about use of non-parametric tests like rank sum tests, because of their 
low sensitivity in detecting a signi  cant difference. However, some 
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biostatisticians are of the opinion that the rank sum tests are more useful 
for analyzing the biological data than the parametric tests.
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13

What is Cluster Analysis?

Cluster analysis is used to classify observations into a  nite and small 
number of groups based upon two or more variables (Finch, 2005). The 
term cluster analysis was  rst used in 1939 by Tryon (Tryon,1939). 
‘Numerical taxonomy’ is another term used for cluster analysis in some 
areas of biology (Romesburg, 2004). There is no a priori hypothesis in 
cluster analysis, unlike other statistical analysis. In cluster analysis the 
variables are arranged in a natural system of groups (Kirkwood, 1989). The 
heterogeneous data collected are sorted into series of sets. Data in a cluster 
are considered to be ‘similar’ or highly correlated to each other. Clusters 
can be exclusive (a particular variable is included in only one cluster) and 
overlapping (a particular variable is included in more than one cluster). 
Cluster analysis method is used in a variety of research problems (Hartigan, 
1975; Scoltock, 1982; Moore et al., 2010). It is applied extensively in the 
 elds of toxicogenomics (Hamadeh et al., 2002), genetics (Shannon et al., 

2003; Makretsov et al., 2004) and molecular biology (Furlan et al., 2011). 
Cluster analysis only discovers structures in data, but does not explain 
why such structures exist.
Cluster analysis can be carried out using several methods. Three commonly 
used methods are described below:

Hierarchical cluster analysis

As the name indicates, hierarchical cluster analysis produces a hierarchy 
of clusters. The clusters thus produced are graphically presented. This 
graphical output is known as a dendrogram (from Greek dendron ‘tree’, 
gramma ‘drawing’). The dendrogram can be used to examine how clusters 
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are formed in hierarchical cluster analysis (Schonlau, 2002). Hierarchical 
clustering can be of two types. One type is agglomerative clustering, 
where grouping of clusters is done small clusters to large ones. The other 
type is divisive clustering, where grouping of clusters is done large 
clusters to small ones. For illustrative purpose a dendrogram is given in 
Figure 13.1.

Figure 13.1. Dendrogram

The individual observations (A–I) are arranged evenly along the X 
axis of the dendrogram. They are called as leaf nodes. The vertical axis 
indicates a distance or dissimilarity measure. The height of a leaf node 
represents the distance of the two clusters that the node joins. In this 
dendrogram, the similarity of samples A and B is better than the other 
samples, and the  rst cluster is formed by these two samples. 

Ward’s method of cluster analysis (Ward, 1963; Ward and Hook, 1963)

This method is more ef  cient than hierarchical cluster analysis. Ward’s 
method uses the squared distances between-clusters and within-clusters 
(Rencher, 2002). Hence, Ward’s method is also called as the ‘incremental 
sum of squares’ method.
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k-means cluster analysis

This method of clustering is used when a priori hypothesis concerning the 
number of clusters in variables are available. k is the number of clusters 
that we desire. 

Data collected in repeated dose administration toxicity studies is 
enormous and are either qualitative or quantitative in nature. No observed 
adverse effect level (NOAEL) of the test substance is judged based on these 
data. Sometimes the toxicity effects manifested are not dose-dependent, 
which makes judging an NOAEL dif  cult. In such situations, cluster analysis 
is extremely useful for judging an NOAEL. Now the question is whether to 
consider only those data which show a signi  cant difference compared to 
control for the cluster analysis or all data collected in the study, irrespective 
of their difference from the control is signi  cant or not. 

We shall try to understand cluster analysis with the help of an example. 
Groups (10/sex/dose) of seven-week-old Crj: CD rats were administered 
the test substance at low, mid, high and top doses by gastric intubation 
daily for 28 days. A concurrent control group was also maintained. Rats 
were daily examined for general behavior. During the dosing period, 
body weight, food and water consumption of the animals were measured. 
Animals were sacri  ced on day 29 after overnight starvation for assessment 
of hematology, blood biochemistry, serum protein electrophoresis, 
urinalysis, myelogram and ophthalmologic and pathological (organ 
weight measurement and gross and histopathology) examinations 
(Kobayashi, 2004). 

Salivation in both sexes in the high dose group, staggering gait in the 
top dose group, slight suppression of the body weight gain in males in the 
top dose group, slight anemic trend in both sexes in the top dose group, 
higher values in alkaline phosphatase in both sexes in the high dose and top 
dose groups, lower values in albumin in males in the top dose group and in 
females in the high dose and top dose groups, bone fractures, mobilization 
of the sinusoidal cell and extramedullary hematopoiesis in the liver in both 
sexes in the top dose group and squamous hyperplasia, and erosion of the 
fore-stomach in both sexes in the high and top dose groups were observed 
as the main changes attributable to the repeated oral administration of 
the test substance. Based on above observations and determinations, the 
NOAEL was considered to be the mid dose for both males and females.

The data obtained in the study was analyzed statistically. Continuous 
data was subjected to Bartlett’s test for examining homogeneity of variance 
and was analysed (two-sided analysis) using the statistical techniques as 
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given in the decision tree proposed by Kobayashi et al. (2000) (Figure 
13.2). Gross and histopathological  ndings were analyzed by the Fisher’s 
exact test (Gad and Weil, 1986). The level of signi  cance for the above 
mentioned statistical analysis was set at P<0.05.

Bartlett’s test

Not Signi  cant                      Signi  cant

Dunnett’s multiple 
comparison test Steel’s test

Figure 13.2. Analytical methods by a decision tree

We shall analyse the data of the study described above using Ward’s 
method of cluster analysis (Milligan 1980). The software used for the 
analysis was JMP (version 5) of the SAS (SAS Institute, Japan).

Cluster-1
The items in the dosed groups that showed a signi  cant difference 
compared to the control group were—body weight gain, food ef  ciency, 
hematocrit, hemoglobin, red blood cell count, platelet count, neutrophil 
(%), lymphocytes (%), blood urea nitrogen, total protein, alanine 
aminotranferase, alkaline phosphatase, glucose, prothrombin time, 
albumin, albumin/globulin ratio, inorganic phosphorus in urine, lung 
weight, relative weights of the lung, liver, kidneys and testes, gross 
pathology  ndings, and microscopic  ndings. These items were grouped 
in Cluster 1. 

Each dosed group was divided into Group 1 and Group 2. Group 1 was 
further divided into Subgroup 1 and Subgroup 2 (Table 13.1). 

Table 13.1. Results of cluster analysis: Cluster 1—Items showing a signi  cant difference 
(P<0.05) compared to control

Dose Group Number of animals
Group 1 Group 2

Subgroup-1 Subgroup-2
Control 10 0 0

Low 10 0 0
Mid 10 0 0
High 2 8 0
Top 0 4 6
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The dendrogram obtained from the above data is given in Figure 13.3. 

Figure 13.3. Dendrogram of items that are signi  cantly different from control (Ward’s 
method)
Note: Animal identi  cation mark, dose group and animal number are given on the left side 
of the dendrogram.
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Cluster 2

The items which did not show a signi  cant difference compared to control 
were—food and water consumption, leucocyte count, lymphocyte count, 
reticulocyte count, activated partial thromboplastin time, total cholesterol, 
free cholesterol, triglyceride, phospholipid, non esteri  ed fatty acid, 
creatinine, total bilirubin, sodium, potassium, chloride, calcium, inorganic 
phosphorus, alanine aminotransferase, lactate dehydrogenase, alpha-1 (%), 
gamma (%), urine volume, urine speci  c gravity, and sodium, potassium, 
chloride, calcium and inorganic phosphorus in urine, and weights of the 
brain, heart, liver, kidneys, spleen, adrenals, testes, thyroid and thymus, 
and relative weights of the brain, heart, spleen, adrenals, thyroid and 
thymus. These items were grouped in Cluster 2. 

Each dosed group was divided into Group 1 and Group 2. Groups 1 
and 2 were further divided into two Subgroups each (Table 13.2). 
Table 13.2. Results of cluster analysis: Cluster 2—Items showing no signi  cant difference 
(P>0.05) compared to control

Dose group Number of animal
Group 1 Group 2

Subgroup-1 Subgroup-2 Subgroup-1 Subgroup-2
Control 8 2 0 0

Low 6 4 0 0
Mid 7 3 0 0
High 5 0 5 0
Top 0 0 5 5

The dendrogram obtained from the above data is given in 
Figure 13.4. 

As you would have observed from the dendrograms, when the number 
of observations are more, it is very dif  cult to distinguish each observation. 
Dendrograms are only suitable for hierarchical cluster analysis. Schonlau 
(2002) proposed a clustergram, which is suitable for non-hierarchical 
cluster analysis. For hierarchical cluster analysis, a radial clustergram was 
proposed by Agra  otis et al. (2007). In radial clustergram, clusters are 
arranged into a series of layers, each representing a different level of the 
tree. However, for small set of data, a dendrogram is still preferable to a 
clustergram. 
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Figure 13.4. Dendrogram of items that are not signi  cantly different from control (Ward’s  
method)
Note: Animal identi  cation mark, dose group and animal number are given on the left side 
of the dendrogram.
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Introduction

In pharmacology and toxicology experiments three or more than three 
treatment groups are usually used. One of the objectives for carrying 
out the experiment with three or more than three groups is to assess the 
dose-dependency of the test substance. Dose-dependency is an important 
concept for evaluating toxicological data (Hamada et al., 1997). In order 
to examine whether the change in a parameter observed in a study is dose-
dependent, a trend test is used. A trend test examines whether the results 
in all dose groups together increase as the dose increases (EPA, 2005). 
Trend tests have been recommended as a customary method for analyzing 
data from subchronic and chronic animal studies (Selwyn, 1995). For 
examining quantitative data, Jonckheere’s trend test (Jonckheere, 1954) 
is generally used. The frequency data are examined by Cochran-Armitage 
trend test (Cochran, 1954; Armitage, 1955). 

Jonckheere’s trend test

Jonckheere’s test is a frequently used nonparametric trend test for the 
evaluation of preclinical studies and clinical dose-  nding trials (Neuhäuser 
et al., 1999). Predicted trend can be evaluated using this test (Cohen and 
Holliday, 2001). Since it does not require speci  cation of a covariate, it has 
generated a continued interest (Jones, 2001). Jonckheere’s test is based on 
the idea of taking a score in a particular condition and counting how many 
scores in subsequent conditions are smaller than that score (Field, 2004).  
In order to use the Jonckheere’s test, the number of groups should be 3 or 
more than 3 and each group should have equal number of observations. 
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Water consumption of B6C3F1 mice fed on a diet containing a test 
substance at week eight is given in Table 14.1. There are three dose groups 
and one control group. Let us examine whether there is a trend in the water 
consumption across the groups. 
Table 14.1. Water consumption (g/week) of B6C3F1 mice fed on a diet containing a test 
substance at week eight

Group Group 1 
(Control)

Group 2 (Low 
dose)

Group 3 
(Mid dose)

Group 4 (High 
dose)

40.6 31.9 32.7 30.6
38.0 36.8 31.3 35.9
41.1 32.4 32.9 29.6
52.7 34.8 31.9 29.2
48.8 43.1 28.5 28.5
41.1 39.0 31.2 30.8
39.9 33.6 33.1 30.5
43.1 34.3 34.1 29.4
32.7 34.0 31.2 30.8
30.1 33.8 31.7 32.0

Mean 40.8 35.4 31.9 30.7
SD 6.7 3.4 1.5 2.1
N 10 10 10 10

Formula:
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If the computed J value is greater than the Z value given in the standard 
normal distribution Table, it is considered to be signi  cantly different.

Calculation of T values:
We need this information for the calculation of J. Arrange the data in each 
group in the order of prediction. Let us calculate T12 (Control Group vs Low 
Dose Group). For each control value the number of values that are lesser 
than it in the low dose group are counted, and their total is calculated:
T

12 
= 9+ 8+ 9+10+10+9+ 9+ 9+ 2+ 0 = 75  

The  rst value of the control group is 40.6 and there are 9 values of the low 
dose group, which are lesser than 40.6. The second value of the control 
group is 38.0 and there are 8 values of the low dose group, which are lesser 
than 38.0, and so on. 
Similarly, values are counted for other trends.
T

13  
=10+10+10+10+10+10+10+10+ 6+ 1  = 87  

T
 14  

=10+10+10+10+10+10+10+10+ 9+ 4  = 93  
T

 23 
= 5+10+ 6+10+10+10+ 9+10+ 9+ 9  = 88  

T
 24 

= 8+10+ 9+ 9+10+10+ 9+ 9+ 9+ 9  = 92  
T

 34  
= 9+ 8+ 9+ 8+ 0+ 8+ 9+ 9+ 8+ 8  = 76

where, T
13 is Control Group vs Mid Dose Group, T14 is Control Group vs 

High Dose Group, T23 is Low Dose Group vs Mid Dose Group, T24 is Low 
Dose Group vs High Dose Group and T34 is Mid Dose Group vs High Dose 
Group.

 Values: We also need to know how many times a value repeated 
within a group and across the groups. 43.1 is repeated twice-one each in 
Groups 1 and 2 ( 1), 41.1is repeated twice within the Group 1 ( 2), 32.7 is 
repeated twice-one each in Groups 1 and 3 ( 3), 31.9 is repeated twice-one 
each in Groups 2 and 3 ( 4), 30.8 is repeated twice within Group 4 ( 5), 
31.2 is repeated twice within Group 3 ( 6)and 28.5 is repeated twice-one 
each in Groups 3 and 4 ( 7). 

72
4)520)(110(10)5402)(140(40V

)240)(140(36
)22)(12(2)22)(12(2

)22)(12(2)22)(12(2)22)(12(2)22)(12(2)22)(12(2)210)(110(104

003.1717
)140(408

)12(2)12(2)12(2)12(2)12(2)12(2)12(24)110(10
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13.5
4.41
5.212

003.1717

5.0
4

41040
2

101011769288938775
22

J

Note: 40 is total number of observations, 10 is number of observations in 
each group, 4 is total number of groups and the denominators 2 and 4, and 
0.5 are the constants.
1+1+0+1+0+1= S

12
+S

13
+S

14
+S

23
+S

24
+S

34
; Number of values repeated 

across the groups (not within the groups)—the value 43.1 repeated in 
Groups 1 and 2 (S

12
=1), 32.7 is repeated in Groups 1 and 3 (S

13
=1), no 

value is repeated in Groups 1 and 4 (S
14

=0), 31.9 is repeated in Groups 2 
and 3 (S

23
=1), no value is repeated in Groups 2 and 4 (S

24
=0), and 28.5 is 

repeated in Groups 3 and 4 (S
34

=1).
Computed value for J=5.13 is greater than the point and ( ) = 3.290 

(Table 14.2). Therefore, it could be stated that there is a dose-related 
trend in the decrease of water consumption of B6C3F1 mice fed on diet 
containing the test substance at week eight.
Table 14.2. Standard normal distribution Table (Yoshimura, 1987)

Two tailed P Upper P % point
2 U( )

0.00100 0.000500 3.290527
0.00200 0.0010000 3.090232

The Cochran-Armitage test

The Cochran-Armitage trend test is commonly used to examine whether 
a dose-response relationship exists in toxicological risk assessment, 
carcinogenicity studies and several other biomedical experiments (Mehta 
et al., 1998) including mutagenicity studies (Kim et al., 2000). It is also 
widely used in genetics and epidemiology to test linear trend (Buonaccorsi 
et al., 2011). The Cochran-Armitage test for trend is used in categorical 
data analysis. It can be used to test for linear correlation between a binomial 
response and an ordinal group variable (Walker and Shostak, 2010). In 
1985, the US Federal Register recommended that the analysis of tumour 
incidence data is carried out with a Cochran-Armitage’s trend test (Gad, 
2009). 

The presence of the antibody to the house dust was investigated 
in individuals of different age groups (see Table 14.3). Let us examine 
whether there is a tendency to increase the antibodies to the house dust as 
the age of the individuals increases.
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A value of 10 is assigned to the age forties. Half of the value of the age 
forties (10/2=5) is assigned to the age  fties and half of the value of age 
 fties (5/2=2.5) is assigned to the age sixties. The value assigned for the 

age thirties is 20 (10x2). 
Number of group = 4, Sum of number of sample = 40, rate of positive in 
total = (2+4+6+8)/40= 20/40= 0.5

8495.0
40

301.110000.110699.010398.010(Mean

2
2

2 2 2 20.5 (1 0.5) 10 (0.398 0.8495) (0.699 0.8495) (1.000 0.8495) (1.301 0.8495)

(2 0.398 4 0.699 6 1.000 8 1.301) 40 0.5 0.8495
X

9.0601 8.000
1.1325

From the chi-square Table (Table 14.4), for one degree of freedom, we 
 nd that the calculated value (8.000) is greater than the chi-square Table 

value (6.635) at 0.01 probability level. Hence, we conclude that there is 
a tendency to increase the antibodies to the house dust as the age of the 
person increases.

Table 14.3. Individuals of different age groups expressing antibodies to house dust

Age Conversion 
value

Independent variable 
(log transformed)

Number of 
investigations

Number of 
antibody 
positives

One’s sixties 2.5 0.398 10 2
One’s  fties 5 0.699 10 4
One’s forties 10 1.000 10 6
One’s thirties 20 1.301 10 8

Table 14.4. Chi-square (Yoshimura, 1987)

DF
0.100 0.050 0.010 0.001

1 2.705 3.841 6.635 10.82
2 4.605 5.991 9.210 13.81
3 6.251 7.814 11.34 16.26
4 7.779 9.487 13.27 18.46
5 9.236 11.07 15.08 20.51
6 10.64 12.59 16.81 22.45
7 12.01 14.06 18.47 24.32
8 13.36 15.50 20.09 26.12
9 14.68 16.91 21.66 27.87
10 15.98 18.30 23.20 29.58
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Armitage (1955) recommended the Cochran-Armitage test in case there 
is no a priori knowledge of the type of the trend. The Cochran-Armitage 
test is asymptotically ef  cient for all monotone alternatives (Tarone and 
Gart, 1980). But, this test should not be used for the data showing an extra-
Poisson variability (Astuti and Yanagawa, 2002), where estimated variance 
exceeds estimated means. Antonello et al. (1993) stated that Tukey trend 
test is more powerful for monotonic dose-response toxicologic effects than 
the pair-wise comparison tests. But dichotomous endpoints are frequently 
observed in several toxicologic effects. For analysing dichotomous 
endpoints, Neuhauser and Hothorn (1997) proposed a trend test analogous 
to the nonparametric Jonckheere’s trend test. 

We propose Jonckheere’s trend test for the analysis of quantitative 
data, such as body weight, erythrocyte count, alkaline phosphatase and 
organ weights. For qualitative data, such as a macroscopic-, microscopic- 
pathological  ndings and urinalysis (color, pH, protein, glucose, ketone, 
bilirubin and urobilinogen) we propose Cochran-Armitage test.
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Introduction

Survival analysis is one of the oldest  elds of statistics, going back to 
the 17th century. The  rst life-table was presented by John Graunt in 
1662 (Kreager, 1988). Life-tables are used extensively in analysing the 
mortality data obtained from toxicology studies, especially carcinogenicity 
and long-term repeated dose administration studies (Portier, 1988; FDA, 
2007) and ecotoxicology studies (Gentile et al., 1982; Van Leeuwen et al., 
1985; Bechmann, 1994). A major advancement in the survival analysis 
took place in 1958, when Kaplan and Meier proposed their ‘estimator 
of the survival curve’ (Kaplan and Meier, 1958). Since then, the  eld of 
survival analysis progressed signi  cantly with the contributions from 
several statisticians (Mantel and Haenszel, 1959; Cox, 1972; Aalen, 1976; 
Aalen, 1980; Diggle, et al., 2007; Aalen et al., 2008). The term “survival” 
is a bit misleading. Originally the analysis was concerned with time 
from treatment until death, hence the name, “survival analysis”. Survival 
analysis is a collection of statistical procedures for data analysis for which 
the outcome variable of interest is time until an event occurs (Kleinbaum 
and Klein, 2005). According to Akritas (2004), survival analysis is a 
method for the analysis of data on an event observed over time and the 
study of factors associated with the occurrence rates of this event. The 
event could be the time until a generator’s bearing seizes, the time until 
a patient dies or the time until a person  nds employment (Cleves et al., 
2008). Survival analysis can be used in many  elds, such as medicine, 
biology, public health and epidemiology (Kul, 2010). In pharmacology 
and toxicology survival analysis is used in analyzing the events like time 
to death, time to signs occurrence, disappearance and reoccurrence, time 
to recovery etc. of the experimental animals.
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Another terminology that we need to understand in survival analysis 
is ‘censored observation’. When animals do not have an event during the 
observation time, they are described as censored. Censored animals may 
or may not have an event after the end of observation time.

Hazard Rate

‘Hazard rate’ is an important concept in survival analysis. It provides 
information on the risk of event happening as a function of time, condition 
on not having happened previously (Aalen et al., 2009), whereas survival 
curve provides information on how many have survived upto a certain 
time. Hazard function can be estimated using the equation:
H (t) = Number of individuals experiencing an event in interval beginning 
at t/(number of individuals surviving at time t) x (interval width)

The hazard function describes the risk of an outcome of an event in 
an interval after time t, conditional on the individual having experienced 
the event to time t. The hazard function is useful in determining whether 
toxicity is constant over time, or it increases or decreases as the exposure 
continues (Wright and Welbourn, 2002). 

Kaplan-Meier Method

Survival analysis is normally carried out using Kaplan-Meier method or 
the log rank test. The log rank test is ideal for the analysis of two groups. 
The Kaplan–Meier estimator uses product-limit methods to estimate the 
survival ratio (Kaplan and Meier, 1958). This is a nonparametric maximum 
likelihood estimate of survival analysis and is used in animal experiments 
to measure the fraction of animals that lives after treatment.

Distribution of the survival time T from the start of the experiment 
(  rst dose administration) to the event of interest (for example mortality) 
is considered as a random variable. The survival rate, St, is de  ned as the 
probability that an animal survives longer than t units of time:
St=P (T> t); for example, if t is in years, S2 is the two-year survival rate; 
if S2=P (T> 2)=0.10, it indicates 10% is the probability the time from a 
treatment to death is greater than 2 years

Kaplan-Meier product-limit estimator

i

ii
t r

dr
S ,
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ri is the number of animals lived just before ti; di is the number of animals 
which died in ti.  denotes the product (geometric sum) across all cases 
less than or equal to t. Kaplan-Meier product-limit estimator measures the 
fraction of animals living for a certain amount of time after treatment.

Let us review an example to understand Kaplan-Meier product-limit 
estimator. The survival rate of F344 rats in a 110-week chronic toxicity 
study is given in Table 15.1. The experimental group of rats (20 rats/group) 
was treated with 1000 ppm pesticide in diet. The control group of rats (20 
rats/group) was given normal diet without the pesticide.

Table 15.1. Survival rate of F344 rats in a 110-week chronic toxicity (Funaki and Origasda, 
2001)

Control group (Normal diet) Treatment group (1000 ppm pesticide in 
diet)

Animal 
ID-No.

Survival 
period 
(week)

Survival 
rate (st)

Size of 
effective 

sample (n’)

Animal 
ID-No.

Survival 
period 
(week)

Survival 
rate (st)

Size of 
effective 

sample (n’)
1001 85 0.950 20 1101 66 0.900 20
1002 87 0.900 19 1102 66
1003 95 0.800 18 1103 62 0.850 18
1004 95 1104 63 0.800 17
1005 99 0.650 16 1105 68 0.750 16
1006 99 1106 70 0.650 15
1007 99 1107 70
1008 101 0.550 13 1108 72 0.550 13
1009 101 1109 72
1010 102 0.500 11 1110 75 0.400 11
1011 103 0.350 10 1111 75
1012 103 1112 75
1013 103 1113 77 0.300 8
1014 104 0.250 7 1114 77
1015 104 1115 78 0.57 7
1016 106 0.150 5 1116 79 0.154 5
1017 106 1117 79
1018 110 0.050 3 1118 80 0.051 3
1019 112 0.025 2 1119 80
1020 120 - 1 1120 88 - 1

The survival rate is calculated using the equation:

i

ii
t r

dr
S
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Calculation procedure of St is given below by working out few selected 
survival period of control group: 

Week 85 (S85): 20
120950.0

Week 87 (S87): 19
119950.0900.0

Week 95 (S95): 18
218900.0800.0

Week 112 (S112): 2
1205.0025.0  

Thus St is calculated for all survival periods of control group and given in 
Table 15.1.
Calculation of standard error of St:

n
SE

)S1(S tt

Let us calculate SE for (S104):

Week 104 (S104): 7
2735.025.0

164.0
7

)25.01(25.0
SE

Survival rate at 95% con  dence interval is:
0.25 (1.96 0.164) 0.25 (1.96 0.164)∼ =0–0.57

The 95% con  dence interval exploded in a wide range, because of the 
small sample size (N=7).

Similarly survival rate of the treatment group is computed and given in 
Table 15.1. Plot of survival curves is an important part of survival analysis 
(Freeman et al., 2008). A plot of the survival curves of data (Table 15.1) is 
given in Figure 15.1.

Though the survival curves provide a good information on the mortality 
rates in two groups, the comparison of the curves should be made using a 
statistical tool (Altman, 1991). Log-rank test is the common method used 
to compare survival curves (Cox, 1972). This test assigns equal weight 
to each event at whatever time it occurs (Tinazzi et al., 2008). The null 
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hypothesis for the log-rank test is that there is no difference between 
the survivals of two or more populations that are being compared. The 
comparison is based on the difference between the observed number of 
events in each group and the expected number of events in case of non-
difference between the two groups. The 2 equation is:

log

2

2
rank

g g

g g

O E

E

where O is the number of observed events in each group g, and E is the 
total number of expected events in each group g. O and E are computed 
each time an event happens; if a survival time is censored, then the subject 
is considered to be at risk during the interval of censoring, but not anymore 
for the subsequent intervals. The test statistic is then compared with a 2 
with g-1 degrees of freedom. The limitation of log rank test and Cox’s 
proportional hazards model is that they are based on the assumption that 
the hazard ratio is constant over time (Bewick et al., 2004).

Both the life-table and the Kaplan-Meier methods have advantages 
and disadvantages. In small data sets in which the time of occurrence event 
is measured precisely the Kaplan-Meier method is best used, whereas the 
life-table methods works well with large data sets and when the time of 
occurrence of an event cannot be measured precisely. The Kaplan-Meier 
method handles censored data better than life-table method.

Figure 15.1. Survival rate of F344 rats in a 110-week chronic toxicity
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Dose Response Relationships

16

Dose and Dosage

Dose-response relationship is the association between the dose 
administered and the response/s that is/are exhibited. Response/s and dose 
are causally related (Eaton and Klaassen, 1996). Establishing a cause–
response relationship is very important in the analysis/assessment of a risk 
(Christensen et al., 2003). Though the terms ‘dose’ and ‘dosage’ refer to 
more or less a same thing, there is a difference between these two terms. 
Dose refers to a stated quantity or concentration of a substance to which an 
organism is exposed and is expressed as the amount of test substance per 
unit weight of test animal (example, mg/kg body weight), whereas dosage 
is a general term comprising the dose, its frequency and the duration of 
dosing. Dosages often involve the dimension of time (example, mg/kg 
body weight/day) (Hayes, 1991).

Margin of Exposure, NOAEL, NOEL

Determining the presence or absence of a dose-response relationship is 
one of the primary criteria of a risk assessment (IPCS, 2009). In drug 
development, assessment of dose-response should be an integral part in 
the study design. The studies should be designed to assess dose-response 
an inherent part of establishing the safety and effectiveness of the drug 
(EMEA, 2006). Once a dose-response relationship is established for a test 
substance, the margin of exposure is determined. The margin of exposure 
lies between a de  ned point on the dose-response relationship and the 
human exposure level. In animal experiments, NOAEL (No-observed-
adverse-effect-level) and NOEL (No-observed-effect-level) on the dose-
response curve are usually considered as this de  ned point. Though in 
reality, both NOAEL and NOEL have similar meaning, JECFA (Joint 
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FAO/WHO Expert Committee on Food Additives) differentiated between 
the terms NOEL and NOAEL in risk assessments with the following 
de  nitions (WHO, 2007):

NOEL: Greatest concentration or amount of a substance, found by 
experiment or observation, that causes no alteration of morphology, 
functional capacity, growth, development, or lifespan of the target organism 
distinguishable from those observed in normal (control) organisms of the 
same species and strain under the same de  ned conditions of exposure.

NOAEL: Greatest concentration or amount of a substance, found by 
experiment or observation, which causes no detectable adverse alteration 
of morphology, functional capacity, growth, development, or lifespan of 
the target organism under de  ned conditions of exposure.

An adverse response is de  ned as ‘change in morphology, physiology, 
growth, development or life-span of an organism which results in 
impairment of the functional capacity or impairment of the capacity to 
compensate for additional stress or increase in susceptibility to the harmful 
effects of other environmental in  uences’. Decisions on whether or not any 
effect is adverse requires expert judgment (WHO, 1994). This de  nition 
shows that the environmental standard setting in general is adjusted to 
subtle effects which represent early steps in biological effect chains 
or can be interpreted as  rst signs of a pathological process (Neus and 
Boikat, 2000). An alternative approach is to classify dose-related effects 
in to physiological, toxic and pharmacological responses (OECD, 2000a). 
Physiological responses are not considered as adverse responses. For 
example, changes in pulse rate or respiration rate as long as it occurs within 
the normal functioning of the animal. Changes in physiological function 
as a result of interaction of a test substance with a cellular receptor site 
are considered as pharmacological responses. Pharmacological responses 
are reversible and of short duration, and can be adverse if they cause harm 
to the animals. Toxic responses are adverse and they can be reversible or 
irreversible. A chemical which causes a physiological or pharmacological 
effect may produce a toxic response if the exposure is prolonged and/or if 
the dose is increased beyond a certain level. 

But, there is no consistent standard de  nition of NOAEL (Dorato and 
Engelhardt, 2005). In an FDA document (FDA, 2005) NOAEL is de  ned 
as the highest dose level that does not produce a signi  cant increase in 
adverse effects in comparison to the control group. Any biologically 
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signi  cant effect is considered as an adverse effect, which may or may not 
statistically signi  cant. NOEL refers to any effect, which may or may not 
be an adverse one. The de  nition of the NOAEL, in contrast to that of the 
NOEL, re  ects the view that some effects observed in the animal may be 
acceptable pharmacodynamic actions of the therapeutic and may not raise 
a safety concern (FDA, 2005). Some other terminologies related to dose-
response relationship are LOEL (Lowest-Observed-Effect Level), LOAEL 
(Lowest-Observed-Adverse-Effect Level) and threshold dose. LOEL is 
the lowest dose of a test substance which causes effects distinguishable 
from those observed in control animals and LOAEL is the lowest dose 
of a test substance which causes adverse changes distinguishable from 
those observed in control animals. Threshold dose is the minimum dose 
required to elicit a response. NOAEL has lot of importance in the clinical 
development of a drug. For example, the calculation of the  rst dose in 
man is based on NOAEL (EMEA, 2007). We may brie  y explain some of 
the practical issues in determining NOEL/NOAEL. 

Determining NOEL and NOAEL 

One of the main objectives of conducting repeated-dose toxicity studies is 
to arrive at NOEL or NOAEL. Most of the regulatory guidelines prescribe 
that the repeated-dose toxicity studies with rodents should be conducted 
with a minimum of three treatment doses (low, mid and high doses) and a 
control group (OECD, 1995). The low dose level is carefully selected so 
that the animals exposed to this dose level will not show any effect of the 
treatment compared to the control dose. But, most of the repeated-dose 
toxicity studies show some effect of the treatment in few parameters of 
the low dose group. In such cases considering the low dose as an NOEL/
NOAEL may be questionable. Kobayashi et al. (2010) investigated 
109 numbers of 28-day repeated dose administration studies in rats and 
examined the measurable items (functional observational battery, urinalysis, 
hematology, blood chemistry and absolute and relative organ weights) of 
the low dose group. Their investigation revealed that, 205/12167 (1.6%) 
measurable items showed a signi  cant difference (P<0.05) in the low dose 
groups compared to the respective controls. The authors concluded from 
the investigation that the low dose may be considered to be NOEL, if 
the signi  cant difference of the measurable items showed by this dose 
group is about 2% (maximum <5%), compared to the control. However, 
due consideration may be given to the clinical relevance of the items that 
showed a signi  cant difference.
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It is not uncommon to encounter situations in repeated-dose toxicity 
studies where mid dose group alone shows an insigni  cant difference 
compared to control, whereas low and high dose groups show a signi  cant 
difference. The guidelines do not mention how to determine the mid dose, 
except an indication that this dose is required to examine dose dependency. 
According to Gupta (2007), the mid dose selection should consider 
threshold in toxic response and mechanism of toxicity. Determining the 
mid dose is as important as determining the high and low doses in repeated-
dose toxicity studies, since mid dose plays a determining role in establishing 
the dose dependency. For determining dose-related trend in repeated-dose 
toxicity studies, Williams’ test is generally carried out (Bretz, 2006). The 
disadvantage of Williams’ test is that it uses an estimated value for the 
mean rather than the original mean value for the analysis. Hence, it is likely 
that Williams’ test may indicate a dose-related trend, when it actually does 
not exist (Williams’ test is covered in detail in Chapter 11). Therefore, 
to analyse such data the use of Dunnett’s multiple comparison test for 
comparing each dose group with the control, followed by Jonckheere’s 
trend test for examining dose-related trend is recommended.

Benchmark Dose

NOAEL is based on a single data point and it does not consider the shape 
of the dose-response curve, the number of animals in the group, or the 
statistical variation in the response and its measurement (EPA, 1998). 
An alternative approach to NOAEL is the Benchmark dose approach 
(Kimmel and Gaylor, 1988). The Benchmark dose is de  ned as the dose 
of a chemical that is required to achieve a predetermined response of a 
toxicological effect (Sand et al., 2006). The Benchmark dose method uses 
the full dose response data for the statistical analysis, hence the result 
obtained from the analysis is considered to be more reliable than the single 
data point based NOAEL. Unlike the NOAEL approach, the Benchmark 
dose method includes the determination of the response at a given dose, 
the magnitude of the dose at a given response and their con  dence limits. 
According to EPA SAB (1998): “The [categorical regression] process 
makes use of every bit of data available. The underlying premise of the 
approach is that the severity of the effect, not the speci  c measurement 
or outcome incidence, is the information needed for assessing exposure-
response relationships for non-cancer endpoints…. All the available data is 
plotted on a single chart and one can immediately see a rough picture of the 
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level of the concentration multiplied by time values that can be expected 
to cause adverse effects of varying severity.” The U.S. EPA’s CatReg 
Program (Strickland, 2000) utilizes categorical regression to establish 
the relationship between concentration, time, and severity of the resulting 
effect. Response variability and uncertainty are addressed by con  dence 
limits bounding the derived relationship curves. Three statistical models 
(Logit, Probit and Complementary Log-Log) are available in the CatReg 
program.

Probit Analysis

Probit analysis was originally published in Science by Bliss (Bliss, 
1934). He was an entomologist and was involved in research to  nd a 
pesticide to control insects that fed on grape leaves (Greenberg, 1980). 
Bliss transformed the percentage mortality into a “probability units” (or 
“Probits”) and plotted the ‘Probits’ against concentrations. But, he did not 
have a statistical tool to compare the effects among various pesticides. In 
1952, Finney of the University of Edinburgh wrote a book, ‘Probit Analysis’ 
(Finney, 1952). Probit analysis, a preferred method for analyzing dose-
response relationship even today described elaborately in Finney’s book, 
is based on the idea developed by Bliss. One of the assumptions of Probit 
analysis is that the response vs dose data   are normally distributed, if not, 
Finney suggested using the logit over the Probit transformation (Finney, 
1952). Both Logit analysis (Muhammad et al., 1990) and Probit analysis 
(Finney, 1978) are used in biological assays. 

Performing Probit analysis manually is tedious. An example is provided 
below to show the steps involved in this statistical analysis. Most of the 
commercially available statistical software can perform Probit analysis. 

Groups of rats (10 rats/group) were given a drug at different dose 
levels. The response shown by the number of animals at each dose level is 
given in Table 16.1.

Let us plot a graph with dose on X axis and percent response on Y axis 
(Figure 16.1). 

The very purpose of carrying out the Probit analysis is to  nd out that 
dose which causes the response in 50% of the animals. If the response that 
we are looking at is mortality, the dose that causes mortality in 50% of 
animals is called as LD50. Since the inception of the LD50 test by Trevan 
(1927), the test has gained wide acceptance as a measure of acute toxicity 
of all types of substances (DePass, 1989).
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We could have determined the dose which causes 50% response (for 
example, LD50) straight away from the plot, had the plot been a straight 
line. In Finney’s Probit analysis the dose response curve is converted to a 
straight line by transforming the doses to logarithmic values and percent 
mortality to Probit values (Finney, 1971). Let us try to understand what 
Probit values means. Percent response on Y axis can be converted to 
normal equivalent deviation (NED). What is an NED? We know that at 
one standard deviation below mean value (–1SD), 16% will show response 
and one standard deviation above mean value (+1SD) 84% will show 

Table 16.1. Response shown by rats following the administration of a drug

Dose (mg/kg b.w.) Response shown by number of 
animals

Percent Response

5 0 0
6 0 0
8.6 1 10
10.3 1 10
12.4 4 40
14.9 6 60
17.9 7 70
21.5 9 90
25.8 10 100
31 10 100

Figure 16.1. Dose vs response plot
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the response. Such a relationship can be established between standard 
deviation and response. The response converted to the corresponding 
standard deviation is termed as NED. NEDs of below 50 percent response 
are negative numbers and above 50 percent response are positive numbers. 
To make the subsequent calculation steps easier, the negative numbers can 
be converted to positive numbers by simply adding 5 to all NEDs. Now 
these NEDs are called as probability units or Probits. Finding the Probits 
for percent response using the above steps is cumbersome. Probit value 
of a percent response can be directly read from the ‘Probit Table’ given in 
several statistical books. Such a Table is given hereunder in an abridged 
form (Table 16.2). 
Table 16.2. Transformation of percentage response to Probit values

Percentage 
Response

0 10 20 30 40 50 60 70 80 90 100

Probits - 3.72 4.16 4.48 4.75 5.00 5.25 5.52 5.84 6.28 -

Lets us now plot a graph with log dose on X axis and Probit on Y 
(Figure 16.2.).

Figure 16.2. Log dose vs Probit response plot

 You would have observed that Probit responses for 4 doses are missing 
in the Figure 16.2. The reason for this is that there are no Probit values for 
0% and 100% responses. From the Figure one can  nd that the Probit values 
somewhat fall in a linear fashion. Let us closely observe the Probit values. 
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The middle region of the line (region of 50% response, i.e., the region of 
Probit 5) is linear, hence this region is somewhat reliable for making a 
prediction. The two ends of the line, where the data are controlled by few 
animals, are not so linear in fashion, hence these regions are seldom used 
for making a prediction. The variation in the middle region of the line is 
less, whereas it is on the higher side in the 2 ends. This variation can be 
minimised by using weighting coef  cients. Once a best-  t line is drawn 
using a regression equation, a ‘statistically reliable median response dose’ 
can be estimated:

Y  = a + b X , where
Y  = 5 (Probit value corresponding 50% response)
X = Log dose
a  = Intercept
b  = Slope

Mentioning the term ‘statistically reliable median response dose’, is 
intentional as several reports have stated that ‘median response dose’, for 
example, LD50 is notoriously variable. Usefulness of LD50 test has been 
criticized, as the test only expresses mortality; the test requires large 
number of animals and the outcome of the LD50 test is in  uenced by 
several factors associated with the animal (for example, species, age, sex, 
etc.), animal house condition (for example, temperature, humidity, light 
intensity, etc.) and human error; many times the  ndings of the test cannot 
be extrapolated to man. On the contrary, supporters of the LD50 test are of 
the opinion that a properly conducted LD50 test can yield information on 
the cause and time of death, symptomatology, nonlethal acute effects; slope 
of the mortality curve can provide information on the mode of action and 
metabolic detoxi  cation; the results can be used for the basis for designing 
subsequent subchronic studies; the test is  rst approximation of hazards to 
workers (Hodgson, 2010). 

This method for calculating LD50, requires a large number of animals, 
thus, not desirable. Interested readers may refer to the Up and Down 
Procedure, which requires less number of animals (OECD, 2000b).

IC50 and EC50 Determination

IC50 and EC50 determinations are performed for assessing pharmacological 
af  nity of new pharmaceutical compounds. IC50 is the concentration of the 
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compound that provides 50% inhibition, whereas EC50 is the concentration 
that provides 50% of compound’s maximal response. IC50 is determined 
for competition binding assays and functional antagonist assays, whereas 
EC50 is determined for agonist/stimulator assays. The procedure for 
determining IC50 and EC50 is similar. 

For  tting an IC50/EC50 curve,  rst convert the data into percentage 
inhibition/ percentage activity depending up on the assay performed. 
If the assay is carried out in replicates  nd the median percentage 
inhibition/percentage activity for each concentration. Plot a graph of log 
concentration vs percentage inhibition/percentage activity. The dose-
response relationship can be derived using the Hill-slope model. It is 
also known as four parametric logistic model (4PL). The 4PL function is 
widely used in biological assays (Healy, 1972; Rodbard et al., 1978). The 
4PL model equation is given below:

Slope  Hill
5050 )//(1

)Asymptote MinimumAsymptote Maximum(Asymptote Minimum
ECICx

y

where y is the percentage activity/percentage inhibition and x is the 
corresponding concentration. The IC50/EC50 given in the equation is not 
the absolute IC50/EC50, but, relative IC50/EC50. Relative IC50/EC50 is the 
concentration giving a response half way between the  tted top and bottom of 
the curve. The relative IC50/EC50 serves the purpose for most of the assays. 

Bioassays with a quantitative response showing a sigmoid log-dose 
relationship can be analysed by  tting a non-linear dose-response model 
directly to the data (Vølund, 1978). If the quantitative response shows a 
non-normal distribution, a  ve-parameter logistic (5PL) function is more 
ideal to  t dose-response data. The 5PL can dramatically improve the 
accuracy of asymmetric assays (Gottschalk and Dunn, 2005).

Usually, several concentrations of the compound are employed for the 
determination of IC50. Turner and Charlton (2005) proposed a method for 
determining IC50 using two concentrations. However, use of this method is 
not well accepted in drug discovery research. 

Hormesis
All along we have been discussing about ‘threshold dose-response 
curve’. It is widely believed that to initiate a biological effect some dose 
is required. This dose is called as the threshold dose. According to this 
belief a dose below the threshold dose level cannot initiate the effect. This 
concept has been disproven in recent years by introducing a hypothesis 
called ‘hormesis’. The term hormesis was coined by Southam and Ehrlich 
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(1943). The hormesis hypothesis states that most of the chemical agents 
may stimulate or inhibit biological effects at doses lower than a threshold, 
while they are toxic at doses higher than the threshold. This hypothesis 
falls in line with Arndt-Schulz Law, which states that ‘a weak stimulus 
increases physiologic activity, a moderate stimulus inhibits activity and 
a very strong stimulus abolish the activity (Schulz,1887). However, 
Arndt-Schulz Law is not widely known among the toxicologists and 
pharmacologists. One of the reasons for this is it was heavily criticised 
by earlier pharmacologists and toxicologists, hence did not  nd place in 
most books on toxicology and pharmacology. Alfred Clark, the renowned 
pharmacologist, in his book entitled ‘The Mode of Action of Drugs on 
Cells’ published in 1933 stated: “In 1885 Rudolf Arndt put forward the 
suggestion that if a weak stimulus excites an organism, then any drug in 
suf  ciently weak dose ought to do this also. This suggestion was developed 
by Schulz, who had leanings to homeopathy” (Clark, 1933). Clark was 
well known among the statisticians like Fisher and Bliss, who contributed 
signi  cantly to the threshold dose-response relationship. Another book by 
Clark, ‘Handbook of Experimental Pharmacology” (Clark, 1937), which 
was very critical of the Arndt-Schulz Law, was published in seven editions, 
in 1970s, more than 30 years after his death. Holmstedt and Lijestrand 
in their book, ‘Readings in Pharmacology, published in 1981 stated that 
Homoeopathic theories like the Ardnt-Schulz law and Weber-Fechner law 
were based on loose ideas around surface tension of the cell membranes 
but there was little physic-chemical basis to these ideas (Holmstedt and 
Lijestrand, 1981). 

Brain-Cousens (1989) proposed a modi  ed four-parameter logistic 
model in situations where hormesis is present. Several publications indicated 
that the hormetic dose-response is far more common and fundamental than 
the threshold dose-response models used in toxicology (Calabrese, 2005). 
According to Calabrese (2010), the hormetic dose-response model makes 
far more accurate predictions of responses in low dose zones than either 
the threshold or linear at low dose models.
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Analysis of Pathology Data

17

Pathology in Toxicology

Pathology occupies a pivotal role in animal experiments. The toxicity 
of a compound can be assessed by linking compound-related changes in 
biochemical, haematological or urinalysis parameters with organ weight, 
gross pathology and/or histopathological changes (Tyson and Sawhney, 
1985; Krinke et al., 1991). All regulatory guidelines on animal experiments 
have given special emphasis to pathology. For example, in the long-term 
repeated dose administration studies, it is a regulatory requirement that 
all data relating to moribund or dead animals as well as the results of 
postmortem examinations is scrutinized and the analysis of the cause of 
individual deaths is done (OECD, 2000). 

Pathologists usually make a biological judgment based on their 
experience, which differs from one pathologist to the other (Glaister, 
1986). In a repeated dose administration study involving a large number 
of animals, the observation of tissue section slides may be completed 
over a substantial length of time. Thus it is not possible to maintain 
the consistency of grading the lesions, causing a ‘diagnostic drift’. It 
has been stated that even the nomenclature used to describe pathology 
 ndings in toxicology studies suffers from the lack of uniformity. Use 

of different nomenclature for describing the lesions causes dif  culties 
while interpreting the observations (Haseman et al., l984). Statistically 
and logically, blinding the slides is the best way to avoid the bias. But, 
several veterinary pathologists do not favor this, because they fear that 
blinded reading of slides of animal tissues/organs may result in loss 
of information critical to interpretation, such as the ability to relate 
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observations in different tissues (Iatropoulos, 1984; Newberne and de la 
Lglesia, 1985; Prasse et al., 1986; Goodman, 1988; House et al., 1992; 
FDA, 2001). Mistakes can be easily made when assigning, opening 
codes, and recording results in blinded reading (Iatropoulos, 1988). 

Microscopical data obtained from toxicity studies is usually classi  ed 
into several grades. The grades of the control group is usually shown 
by minus (–) and those of the treated groups by (+1), (+2), (+3), so on. 
For statistical analysis, the difference of the grades between the control 
group and treatment groups is examined by Fisher’s probability test or 
cumulative chi-square test. By these methods, only the presence or 
absence of a difference among several groups or between two groups can 
be ascertained and the degree of pathology lesions remains uncertain. 

There is not enough speci  c statistical guidance available for the 
pathologists. Wade (2005) stated that most of the published statistical 
literature is not directly applicable to research in the  eld of pathology. 
In the toxicology studies with three or more groups, the relationship 
between the  ndings and the dose dependency should be examined. Dose 
dependency is often examined by the Cochran-Armitage trend test after 
Fisher’s probability test or chi-square test. Kobayashi and Pillai (2003) 
proposed a method to examine both the degree of pathology lesions and 
the dose dependency. In this method, the pathology  ndings are scored in 
grades and analyzed by the rank sum test. For comparison between two 
groups, Mann-Whitney’s or Wilcoxon’s test, and for comparison among 
several groups, Dunnett’s, Tukey’s, Duncan’s, Scheffe’s, Wilcoxon’s or 
Williams-Wilcoxon’s non-parametric tests are proposed. However, the 
number of animals necessary to detect a signi  cant difference between 
the low dose group and the control group greatly varies with these tests. 
Dunnett’s multiple comparison test can detect a signi  cant difference 
even with four animals per group when the dose dependency is very high. 
The authors suggested Jonckheere’s trend test and Spearman’s correlation 
coef  cient (r) for examination of dose-dependency.

Analysis of Pathology Data of Carcinogenicity Studies

The objectives to be achieved as per the guidelines of OECD (2009) for 
rodent carcinogenicity studies are hazard characterization, describing the 
dose-response relationship and the derivation of an estimate of a point of 
departure such as the Benchmark dose or a no observed adverse effect 
level. Normally, carcinogenicity studies are conducted in rodents with 
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a control group and 2 or 3 treatment groups, each group containing a 
minimum of 50 animals of each gender. Mice are normally exposed to 
the test compound for 18–24 months, whereas rats are exposed for 24–30 
months. Animals are sacri  ced at intervals or at the end of the experiment. 
The major observations carried out in a carcinogenicity study are the 
survival time and status (presence/absence) of speci  c tumour types.

National Toxicology Programme (NTP) and U.S. Food and Drug 
Administration (US FDA), reported that there were issues in the 
application of statistical methods to carcinogenicity studies (Gad and 
Rousseaux, 2002). Tumour incidence (tumour incidence is de  ned as the 
rate of tumour onset among the tumour-free population) is considered 
the most appropriate measure of tumourigenesis (Malani and Van Ryzin, 
1988; Dinse, 1994). Tumours can be classi  ed as ‘incidental,’ ‘fatal,’ 
and ‘mortality-independent (or observable)’ according to the contexts of 
observation described by Peto et al. (1980). Tumours that are not directly 
or indirectly responsible for the animal’s death, but are merely seen at 
the autopsy of the animal after it has died of an unrelated cause, are said 
to have been observed in an incidental context. Tumours that kill the 
animal, either directly or indirectly, are said to have been observed in a 
fatal context. Tumours, such as skin tumours, whose detection occurs at 
times other than when the animal dies are said to have been observed in a 
mortality-independent context (Lin, 2000). Benign and malignant tumours 
should be analysed separately (Mc Connell et al., 1986; EPA, 2005), if it 
is considered scienti  cally defensible, further statistical analysis may be 
performed on the combined benign and malignant tumours of the same 
histogenic origin, even when those tumours are in different tissues.

Peto test

While most pharmaceutical companies use the Peto test (Peto et al., 1980), 
some do not categorize neoplasms as fatal or incidental. Generally, this test 
is considered to be useful for the groups with different survival rates. Before 
analysing, pathological  ndings should be examined (whether malignant 
of benign) and conclude whether the drug caused the death or not. Some 
categorize neoplasms as fatal or incidental based solely on the type of 
neoplasm rather than on an animal-by-animal basis. Others categorize 
neoplasms as fatal or incidental based on the gross and microscopic 
 ndings for each animal. Some controversies exist when relying on the 

Peto test for information on ‘cause of death’ (STP, 2002). 
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According to Lee et al. (2002), the ‘fatal’ de  nition is often 
misunderstood by the pathologists and there is a tendency for the over-
designation of fatal tumours (Kodell et al., 1982; Ahn et al., 2000). 

The US FDA recommends that both trend test and pair-wise comparison 
test be performed routinely for each study and that the results of both tests 
should be presented to regulatory of  cials (FDA, 2001). However, the 
Peto test is required for product registration in Europe. Based on current 
regulatory requirements, the STP recommends that the Peto test should be 
performed whenever the study pathologist and the peer review pathologist 
can consistently classify neoplasms as fatal or incidental (Morton et al., 
2002).

Decision rules

A distinguished characteristic of the Peto test is that it involves dosages 
in the calculation procedure. The power of the Peto test is very high, 
when the signi  cance level is set at 5% probability level. However, 
the use of signi  cance set at 5% and 1% probability levels in tests for 
positive trend in incidence rates of rare tumours and common tumours, 
respectively, will result in an overall false positive rate around 10% in a 
study in which only one 2-year rodent bioassay (plus the shorter rodent 
study) is conducted (Lin, 1998; Lin and Rahman, 1998). The power to 
detect a signi  cant difference is greater with the trend tests than with the 
pair-wise comparisons in an animal experiment with a control group and 
more than two treatment groups. There are situations in which pair-wise 
comparisons between control and individual treated groups may be more 
appropriate than trend tests. However, both trend and pair-wise comparison 
tests are likely to cause false positive results. In order to control overall 
positive rates associated with trend tests and pair-wise comparisons certain 
statistical decision rules were developed (Haseman,1983). The decision 
rules were developed based on historical control data of Crl: CDÒ BR rats 
and Crl: CD-1Ò (ICR) BR mice to achieve an overall false positive rate 
of around 10% for the standard in vivo carcinogenicity studies in rodents. 
The decision rule tests the signi  cance difference in tumour incidences 
between the control and the treatment groups at 5% probability level for 
rare tumours (tumours with background rate of 1% or less) and at 1% 
probability level for common tumours (frequent tumours). However, the 
decision rule described by Haseman (1983) to analyse the trend tests 
would lead to an excessive overall false positive error rate about twice 
as large as that associated with control-high dose pair-wise comparison 
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tests. Statistical decision rules for controlling the overall false positive 
rates associated with tests for positive trend or with control vs high dose 
pair-wise comparison in tumour incidences in carcinogenicity studies 
were reported by FDA (2001). These decision rules test positive trend in 
tumour incidence at 2.5% probability level for rare tumours and at 0.5% 
probability level for common tumours. Although the overall false positive 
rate resulting from the use of the decision rule may vary from study to 
study, it is estimated that it will be around 10%. 

The decision rules for testing positive trend or differences between 
control and individual treatment groups in incidence rates of tumours 
for standard studies using two species and two sexes as well as studies 
following ICH guidance and using only one 2-year rodent bioassay are 
summarized in Table 17.1. 

Table 17.1. Statistical decision rules for controlling the overall false positive rates 
associated with tests for positive trend or with control vs high dose pair-wise comparisons 
in tumour incidences to around 10 percent in carcinogenicity studies of pharmaceuticals 
(FDA, 2001).

Study Tests for positive trend Control vs high dose pair-
wise comparison

Standard 2-year studies 
with 2 species and 2 sexes

Common and rare tumours 
are tested at 0.5% and 
2.5% probability levels, 
respectively

Common and rare tumours 
are tested at 1% and 
5% probability levels, 
respectively

Alternative ICH studies 
(one two-year study in one 
species and one short- or 
medium-term study, two 
sexes)

Common and rare tumours 
are tested at 1% and 
5% probability levels, 
respectively

Under development and not 
yet available.

Note: The decision rules were developed assuming the use of two-species and two-sex (or 
one-species and two-sex) for the standard design of a two-year study with 50 animals in 
each of the four treatment/sex/group.

Poly-k Type test

An alternative to the Peto-type is Poly-k type test (Bailer and Portier, 1988; 
Portier and Bailer, 1989; Piegorsch and Bailer, 1997). One advantage of 
this test is that it does not require the controversial ‘cause of death’ in the 
calculation procedure. NTP uses the Poly-k test to assess neoplasm and 
non-neoplastic lesion prevalence. 
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Analysis of Tumour Incidence—Comparison with Historical Control 
Data

Tumour incidence between the treatment group and control group is 
normally compared using Fisher’s probability test. By this test, no signi  cant 
difference in tumour incidence is observed between the treatment group 
and control group, if the incidence of tumour is 0/50 (number of animals 
in the group having tumour/total number of animals in the group) in the 
control group and 4/50 in the treatment group. However, a tumour incidence 
of 4/50 is considered to be signi  cant from a pathological viewpoint. 
Comparison of the incidence of tumour in the treatment group with that of 
the historical control data may be useful, especially to assess the occurrence 
of rare tumours and marginally increased tumour incidences. But, certain 
requirements must be met before the use of historical control data, since 
the historical control data may change in time (Greim et al., 2003). Several 
procedures have been proposed for incorporating historical control data 
into the analysis of data obtained from carcinogenicity studies (Sun, 1999). 
If the data of the treatment group is compared with the historical control 
data using t-test, it should be remembered that the number of animals used 
in these groups is different, being much larger in the historical control 
group, since the source of historical control data is several studies. Table 
17.2 shows a comparison of incidence of tumour observed in 50 animals 
in the treatment group with several historical controls having differences 
in number of animals but with similar tumour incidence (%). 

Table 17.2. Comparison of treatment group with historical control data using Kastenbaum 
and Bowman test (Kastenbaum and Bowman, 1966)

Incidence of tumour 
(Historical control dataa)

Incidence of tumour in 50 animals (Treatment group) 
1 (2%) 2 (4%) 3 (6%) 4 (8%)

1/ 200 (0.5%) NS NS NS NS
2/ 500 (0.4%) NS NS NS *
3/ 700 (0.4%) NS NS NS **
4/1000 (0.4%) NS NS * **
5/1250 (0.4%) NS NS * **
7/1500 (0.5%) NS NS * **
7/1700 (0.4%) NS NS * **
8/2000 (0.4%) NS NS * **
10/2500 (0.4%) NS NS * **

aNumber of animals in the historical controls showing tumour/total number of animals in 
the historical controls; NS-Not signi  cance, *P<0.05, **P<0.01.
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The incidence of tumour in 1 or 2 animals out of 50 animals in the 
treatment group is not signi  cantly different compared with the historical 
control animals showing the tumour incidence in 1 animal out of 200 
or 10 out of 2500 animals. However, the incidence of tumour seen in 3 
animals out of 50 animals in the treatment group is signi  cantly different 
from the historical control animals with incidences of tumour as 4/1000, 
5/1250, 7/1500, 7/1700, 8/2000 and 10/2500 (number of animals showing 
incidence of tumour/total number of animals). The incidence of tumour 8% 
(4/50) in the treatment group is signi  cantly different from the historical 
control data showing the incidence of tumour as 2/500, 3/700, 4/1000, 
5/1250, 7/1500, 7/1700, 8/2000 and 10/2500. It is obvious from the Table 
17.2 that the number of animals used in constructing the historical control 
data plays a crucial role in determining a signi  cant difference between 
the historical control data and the treatment group. 

The circumstances that prompted the use of historical control for the 
analysis of carcinogenicity data should be properly explained and justi  ed. 
It must be remembered that the concurrent control group is the most 
relevant comparator for determining treatment-related effects in a study 
(FDA, 2001; EMEA, 2002; OECD, 2002). In evaluating the data from 
historical controls, statistically signi  cant increases in tumours based on 
the concurrent control should not be discounted simply because incidence 
rates in the treatment groups are within the range of historical controls 
or because incidence rates in the concurrent controls are low (Keenan 
et al., 2009). OECD guidelines (OECD, 2002) emphazise the historical 
control data should be generated by the same laboratory in animals of 
contemporaneous studies in the same species and strain, maintained under 
similar conditions, at which the study being assessed was performed. 
Furthermore, the historical control data should come from studies 
conducted within  ve years prior to, or within two to three years from the 
conclusion of the study. The guidelines recommend parameters that could 
affect the occurrence of spontaneous tumours in historical control data 
are identi  ed. In studies exhibiting the lowest incidence (less than a few 
percent) of tumours, the Kastenbaum and Bowman test appears to be more 
relevant, since it takes into account the sample size of both the historical 
control data base and each treatment group in the study. In studies where 
a wider range of tumour incidence is exhibited, a statistical method which 
employs a rejection limits based on the range of incidence in the historical 
data is recommended. When malignant tumours are evident in treatment 
groups, no matter how low the incidence, the tumour should be analyzed 
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statistically and compared with the incidence in the historical control data 
as well as those in the concurrent control group (Kobayashi and Inoue, 
1994).

Analysis of Incidence of Tumour Using X 2 Test

Chi square test is an excellent tool to evaluate the signi  cant difference in 
occurrence of tumours among the groups. An example is given in Table 
17.3.

Table 17.3. Total number of occurrence of tumours in different organs in a two-year 
carcinogenicity study

Control Low dose Mid dose High dose Total
58 50 62 65 235

Note: Each group consists of 50 animals.

X = 157.2235
25.0235

65
25.0235

62
25.0235

50
25.0235

58 2222

 

Note: 0.25=1/4: Assumed probability distribution (4=Number of groups).
The chi-squared Table value for 3 degrees of freedom is 7.82 at 5% 
probability level. The calculated value 2.157 is less than 7.82, which means 
that there is no signi  cant differences in the occurrence of tumours among 
the groups. If a signi  cant difference is observed, difference between 
control and each group is analyzed. 

However, use of chi-square goodness-of-  t in multistage model 
to carcinogenicity has been questioned in recent years. According to 
Sielken (1988) “although the chi-square goodness-of-  t is a very widely 
used statistical test, it is also well documented (though not suf  ciently 
widely known) that the test can have very little power to reject inaccurate 
models”.

Comparison of Incidence of Tumours in Human, Rats, Mice and Dogs

Considerable debate about the need of conducting carcinogenicity studies 
in rats and mice has been taken place in recent years (Ennever and Lave, 
2003; Billington et al., 2010; Storer et al., 2010). Most of the scientists 
are of the opinion that there is no need to conduct long-term rodent 
carcinogenicity studies in mice, since the use of the mice in carcinogenicity 
testing does not provide useful scienti  c information (Grif  ths et al., 1994;  



Analysis of Pathology Data 171

Carmichael et al., 1997; Meyer, 2003; Doe et al., 2006). However, some 
current regulatory programmes require carcinogenicity testing in rats and 
mice. 

Kobayashi et al. (1999) made an interesting comparison of incidence 
of spontaneous malignant tumours in human, rats, mice and dogs. The 
prevalence of each carcinoma in rodents was calculated as the population 
ratio P, at a 95% con  dence interval, and compared with that in humans. 
The primary carcinomas according to sex in Japanese people who died 
of cancer were cited from the report of investigations on the population 
dynamics and economy in 1992, “Malignant neoplasm” published by the 
Welfare Statistics Association, Japan (Ministers’ Secretariat, 1994). Data 
on spontaneous incidence of tumours in rats, mice and dogs were obtained 
from Biosafety Research Centre—Foods, Drugs and Pesticides, Japan. The 
incidence of spontaneous malignant tumours of various organs in humans, 
rodents and dogs is shown in Table 17.4.
Table 17.4. Incidence (%) of spontaneous malignant tumours in dead humans, rodents and 
dogs

Organ
Male Female Male+Female

Human Rat Mouse Human Rat Mouse Dog
No. of deaths 
with cancer 139674 105 120 92243 117 100 5845

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Esophagus 4.7 0 0 1.4 0 0 0.3
Stomach 21.8 1.0 0 19.0 0.9 1.0 0.3
Intestinea 4.4 0 0.89 4.3 0 0 1.0

Liver 14.0 0. 52.5 8.1 1.7 24.0 0.7
Pancreas 5.6 0 0 6.9 0.9 2.0 0.5

Lung, trachea, 
bronchi 20.9 2.9 5.0 11.9 0 1.0 0.6

Mammary gland <0.1 0 0. 7.1 2.6 8.0 9.1
Uterus - - - 5.1 10.3 11.0 0.3

Leukemia 2.4 53.3 20.8 2.69 59.8 31.0 4.3
Other 26.1 42.9 20.8 33.9 23.9 22.0 82.9

aIncluding colon and anus in humans, small intestine, duodenum, large intestine and colon 
in rodents, and colon in dogs.

The incidence of tumours in the organs of humans who died of cancer 
differed considerably from that of mice, rats and dogs. For example, 
very low or no incidence of tumour was seen in esophagus, stomach and 
intestine of rats and mice. The incidence of hepatocellular carcinoma in 
mice and leukemia in rats and mice were higher than those in humans, 
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while the incidence of malignant tumours in the lungs of rodents was 
lower than those in humans. The authors stated it is important to consider 
the spontaneous tumours and the probable target organ when selecting the 
appropriate species for a carcinogenicity study.

Analysis of Organ Weight Data

Organ weights (absolute and relative organ weights) are an important 
quantitative end point in the repeated dose administration studies. Many 
pathologists are of the opinion that it would be better to calculate organ 
weight relative to brain weight (organ-to-brain weight ratio) rather than 
to body weight (organ-to-body weight ratio). Animals are usually fasted 
before necropsy. The deprivation of food can affect the body weight 
of the animals, and also the physiological adaptability to fasting may 
vary signi  cantly among the animals. When the body weight gain is 
affected, alterations of organ weight/body weight ratio may be due to 
the physiological response of the animal to decreased nutrient intake. 
Organ-to-body weight ratios are preferable for analysis of liver and 
thyroid weights, whereas organ-to-brain weight ratios are best for analysis 
of ovary and adrenal weights, and both organ-to-body weight ratios and 
organ-to-brain weight ratios do not accurately model brain, heart, kidney, 
pituitary, or testis weights (Bailey et al., 2004). Regardless of the study 
type or organs evaluated, organ weight changes must be evaluated within 
the context of the compound class, mechanism of action, and the entire 
data set for that study (Sellers et al., 2007). 

Absolute weight of the mouse liver in a 13 week repeated dose 
administration study is given in Table 17.5.

Table 17.5. Absolute weight (g) of the mouse liver in a 13 week repeated dose administration 
study

Group Control Low Dose Mid Dose High Dose
Individual value 1.08, 1.09, 

1.15, 1.09,
1.16, 1.00,
1.12, 1.01,
1.12, 1.02

1.09, 1.12,
1.15, 1.09,
1.04, 0.99,
1.24, 1.15,
0.99, 1.12

1.10, 1.20,
1.09, 1.02,
1.07, 1.12,
1.13, 1.06,
1.11, 1.20

1.16, 1.15,
1.24, 1.16,
1.22, 1.10,
1.18, 1.07,
1.18, 1.09

n 10 10 10 10
Mean ± SD 1.08 ± 0.06 1.10 ± 0.08 1.11± 0.06 1.16 ± 0.05

In % Control 100 102 103 107
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Since there are four groups, the data is analysed using one-way 
ANOVA, which shows a non-signi  cant F value, indicating that there is no 
signi  cant difference in the absolute weight of the liver among the groups. 
Close examination of the mean value of the groups indicates that there is 
a dose-dependent increase in the absolute weight of the liver. When the 
data is analysed using Dunnett’s multiple comparison test, absolute weight 
of the liver of the high dose group is found to be signi  cantly different 
from the control group. It may be worth mentioning in this context that 
Dunnett (1964) did not recommend ANOVA prior to multiple comparison 
tests. Several authors are of the opinion that the error of second kind can 
be prevented by carrying out direct multiple comparison tests without 
subjecting the data to ANOVA (Hamada et al., 1998; Sakaki et al., 2000; 
Kobayashi et al., 2000).

Interpretation of Pathology Observations

Interpretations made from the organ weight data should be used with 
caution. Indicating a signi  cant or non-signi  cant difference in organ 
weight alone by statistical analysis, particularly in studies with small size, 
has little use in evaluating the organ weight changes (Sellers et al., 2007). 
According to Gad and Rousseaux (2002), treatment-related alterations 
in organ weight may not be statistically signi  cant, similarly statistically 
signi  cant alteration in organ weight may not be treatment related.

In the long-term toxicology studies, animals may show age-associated 
changes, which can have a signi  cant effect on histopathology (Mohr 
et al., 1992, 1994, 1996). Spontaneous degenerative lesions, especially 
when misinterpreted as toxic effects can cause major dif  culty in hazard 
evaluation. In these situations, the data can be compared with historical 
control data. It has been stated that historical control tumour data is useful in 
the interpretation of long-term rodent carcinogenicity bioassays, especially 
to assess the occurrence of rare tumours and marginally increased tumour 
incidences (Deschl et al., 2002). However, the advantage of a concurrent 
control as the comparator for treatment-related effects should not be 
overlooked, when historical control data are used as the comparator.
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Designing Animal Experiments 

The use of animals raises scienti  c and ethical challenges (Workman et 
al., 2010). Therefore, an animal experiment should be designed with due 
consideration to ethics on a solid scienti  c platform. Animal experiment 
should have high precision, but should not waste resources or animals 
(Festing, 1997). It is important to select an appropriate study design to 
provide scienti  c evaluation of the research  ndings without bias (Lim 
and Hoffmann, 2007). Replication, randomization and blinding are the 
key components of the design of the animal experiment. But, these are less 
often used in animal research (Kilkenny et al., 2009). Hess (2011) reviewed 
statistical design given in 100 articles on animal experiments published in 
Cancer Research in 2010. In 14 of the 100 articles, the number of animals 
used per group was not reported. In none of the 100 articles was the method 
employed to determine the number of animals used per group reported. 
Among the 74 articles in which randomization seemed feasible, only 21 
reported that they had randomly allocated animals to various groups. None 
of these articles described how the randomization was carried out.

In animal experiments, bias could arise from lack of randomization, 
not blinding the groups, failure to report excluded animals, small sample 
sizes or use of statistical tools with low power (Dirnagl and Macleod, 2009). 
If there is a large difference between the treatment group and control of a 
well designed study, an experienced analyser can draw a conclusion without 
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carrying out a statistical analysis of the data. But, if the difference is 
marginal, a mistaken or a biased conclusion could be avoided by subjecting 
the data to the statistical analysis (Lew, 2007).

It has been stated that several reports on animal experiments were 
biased or did not correctly model human disease and therefore were of 
little utility (Festing, 2003; Perel et al., 2007). Though the  ndings of 
most of the animals studies cannot be directly extrapolated to man, a 
properly designed study may provide vital information on ef  cacy and 
toxicity of the test substance. Acclimation and randomization procedures 
of animals, and rationale for  xing the number of animals in a group 
should be explained in the study plan. There are additional issues such 
as rationale for selection of species, animal house conditions, bedding 
material, diet, drinking water, etc., which need to be considered in the 
study plan, but beyond the scope of this book.

Acclimation

It should be ensured that the animals are not stressed at the start of the 
experiment. One way to ensure this is by acclimating the animals to the 
laboratory conditions. The acclimation period can be used for health-related 
quarantine and monitoring, and for behavioral conditioning. This period 
may include habituation to, desensitization to, and training for procedures 
that will be involved in experimental use (Bloomsmith et al., 2006). Well-
acclimated animals are able to deal appropriately with the challenges 
of the experimental environment. This ability is typically manifested in 
a transient divergence from equilibrium in response to a manipulation, 
followed by a gradual return to homeostatic balance (Schapiro and Everitt, 
2006). Animals appearing to be behaviorally acclimated to a procedure may 
not necessarily physiologically acclimated to that procedure (Capitanio 
et al., 2006). For example, acclimated animals may sometimes show 
change in metabolic pro  les. Changes in nuclear magnetic resonance 
spectroscopic-based urinary metabolite pro  les were observed in germ-
free rats acclimated in standard laboratory animal facility conditions 
(Nicholls et al. 2003).

Randomization

Appropriate randomization and statistical procedures in the design of animal 
experimentation provide con  dence that statistically signi  cant results are 
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not due to chance (EPA, 2005). Selection of an appropriate statistical tool 
is heavily depended on randomization, which is a fundamental element of 
good statistical design that acts to reduce potential bias during treatment 
allocation (Festing and Altman, 2002). 

Infact the concept of randomization originated as early as 1935 
(Fisher, 1935). Randomization transforms systematic errors into 
random errors and con  rms comparability among experimental groups 
(Hamada and Ono, 2000). Though randomization is an important aspect 
in designing animal experiments, little consideration is given to it in 
most cases. This is evident from different terminologies that are used for 
randomization, like “animals were divided into four groups”; “animals 
were randomly divided”; “animals were sorted into groups”; “animals 
were randomly assigned”; and, “half of the animals were placed into one 
group and the other half in a second group” (Kozinetz, 2011). The key 
de  ciencies that are seen in animal experiments are failure to randomly 
allocate animals to treatments and failure to blind observers to treatment 
assignment during outcome assessments (Hess, 2011). Failure of NXY-
059, a neuroprotective agent for stroke patients, of Astra Zeneca, in 
Phase III has been attributed to improper randomization and bias in 
preclinical studies (Savitz, 2007). When comparing two treatments, 
analyser-related bias may occur. This bias can be avoided by blinding 
(Aguilar-Nascimento, 2005). In a clinical trial, blinding can take place 
at three levels: study units, researcher and data (Lim and Hoffmann, 
2007). The same method can be applied to animal experiments also. In 
a blinded study, the researcher does not know which group of animals 
receives what treatment. According to Bebarta et al. (2003), “animal 
experiments where randomization and blind testing are not reported 
are  ve times more likely to report positive results”. Therefore, effects 
of randomization have to be considered in planning and performing 
experiments as well as in the interpretation of experimental results (Vogt 
and Kloting, 1990).

In toxicological experiments, especially in repeated dose administration 
studies, young adult animals of an inbred strain are used. Though the animals 
of inbred strain are supposed to be isogenic, in reality it is not so. There could 
be some genetic variation between the individuals  from one litter and the 
other. Let us work out an example. Body weight of rats from 3 litters is given in 
Table 18.1.

Let us randomly distribute the animals of litters 1, 2 and 3 into three 
groups. An unbiased randomization should distribute the variation of 
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animals of litter 1 more or less equally to the animals of litters 2 and 3. 
Similarly, an unbiased randomization should distribute the variation of 
animals of litter 2 more or less equally to the animals of litters 1 and 3 
and so on. This can be achieved if the randomization results in an equal 
representation of animals from all the three litters to each group.

Just for academic interest the data (Table 18.1) was analysed using 
one-way ANOVA, and found that there is a signi  cant difference in body 
weight among the groups.

Assign an arbitrary identi  cation number to each animal and with the 
help of a random number table randomize the animals into three groups 
(Table 18.2). 

One-way ANOVA of the above data (Table 18.2) resulted in a non-
signi  cant F value, indicating that the body weight of the rats did not 

Table 18.1. Body weight (g) of rats from 3 litters

Statistic Litter 1 Litter 2 Litter 3
1801 1952 2103

1851 2052 1933

1891 2152 1903

1981 2132 2083

2031 2112 2013

Mean 191.00 207.80 200.40
CV (%) 4.93 3.89 4.42

Note: Superscripts indicate litter number. 

Table 18.2. Body weight (g) of rats after randomization

Statistic Group 1 Group 2 Group 3
1981 2132 1851

2052 1891 1933

2103 2152 1952

2013 2083 1903

2031 2112 1801

Mean 203.40 207.20 188.60
CV (%) 2.22 5.07 3.24

Note: Superscripts indicate litter number.

differ among the groups. Strictly speaking, the randomization procedure 
is completed, but some researchers rearrange the animals among the 
groups, as explained below, to obtain a uniform mean value. On closely 
examining the mean values one should be satis  ed with the mean values of 
Groups 1 and 2 since they are somewhat close to each other, but one 
should be concerned about the mean value of group 3, which deviates 
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considerably from the mean values of groups 1 and 2, particularly of group 
2. This can be overcome by selecting one or two animals based on their 
body weight from each group and distributing them in other groups in such 
a way that the mean values of all the groups are more or less similar. 

One way to reduce the mean value of group 2 and increase the mean 
value of group 3 is to take out the rat with the largest body weight from 
group 2 (215 g) and place it in group 3 and take out the rat with the smallest 
body weight from group 3 (180 g) and place it to group 2. Now the animals 
are distributed as given in Table 18.3.
Table 18.3. Body weight (g) of rats after rearranging the animals (  rst time)

Statistic Group 1 Group 2 Group 3
1981 2132 1851

2052 1891 1933

2103 1801 1952

2013 2083 1903

2031 2112 2152

Mean 203.40 200.20 195.60
CV (%) 2.22 7.39 5.87

Note: Superscripts indicate litter number. 

One-way ANOVA of the data given in Table 18.3 indicates that there 
is no signi  cant different in body weight of rats among the groups. This 
is still not satisfactory for few researchers. The difference of the body 
weight between groups 1 and 3 is about 8 g. In order to bring the mean 
body weight of these two groups closer, one more adjustment is required. 
A rat of 210 g is taken from group 1 and placed in group 3. Then a rat of 
185 g is taken from group 3 and placed in group 1. Now the animals are 
distributed as given in Table 18.4.

Table 18.4. Body weight (g) of rats after rearranging the animals (second time)

Statistic Group 1 Group 2 Group 3
1981 2132 2103

2052 1891 1933

1851 1801 1952

2013 2083 1903

2031 2112 2152

Mean 198.40 200.20 200.60
CV (%) 3.99 7.39 5.56

Note: Superscripts indicate litter number. 
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The mean values of the three groups are very close to each other, thus 
satisfactory. If you closely observe the individual values of the groups, you 
will realize that Group 3 represents animals from litters 2 and 3 and Groups 
1 and 2 represent animals from all the three litters. Rearrangement increases 
variation within the groups, consequently, the animals respond to a treatment 
differently. This is evident from the Tables 18.2 and 18.4. The variations 
(CV%) of groups 1, 2 and 3 after randomization, but before rearrangement 
were 2.22, 5.07 and 3.24, respectively (Table 18.2). After the rearranging 
the animals a second time, the variations (CV%) of groups 1, 2 and 3 were 
3.99, 7.39 and 5.56, respectively (Table 18.4). Such variations reduce the 
power of the experiment (Beynen et al., 2001). In the  rst randomization 
(Table 18.2), each group represented animals from all the litters and the 
variation (CV%) among the groups are less and somewhat close to each 
other. Therefore, rearrangements of observations after the randomization to 
obtain desired mean values should be avoided as far as possible.

Determining Sample Size
In regulatory toxicology, the guidelines clearly indicate the number of 
animals to be used in a group for a study (Hauschke, 1997). In the research 
and development of a pharmaceutical company, where a large number of 
new chemical entities (NCEs) are synthesized, often the scientists carry 
out experiments with ‘inadequate number’ of animals. Results from 
such studies may not be reproducible and may fail to provide the desired 
information on the effectiveness of the molecule.

Using too few animals in experiments will result in a low power to detect 
a biologically meaningful results. Similarly, the use of too many animals 
is not ethical and drain organization’s resources unnecessarily. The right 
number of animals (not too few and not too many) required for obtaining 
a biologically meaningful result should be an important component of any 
animal experimental design. In an in vivo ef  cacy study, the number of 
animals required to obtain the desired result is determined  based on certain 
speci  cations: the desired magnitude of treatment effect, the chance of 
obtaining Type I and Type II errors and the inter-individual variability. 

An in vivo ef  cacy study is a comparison-oriented study. The 
comparison of the NCE-treated animals is usually done with the control 
animals, using an appropriate statistical analysis. The two errors which 
can occur in such comparisons are Type I error (  error) and Type II 
error (  error). Though much attention is given to  error,  error is often 
overlooked.  error is a very potential error in animal experiments and in 
certain situations more potential than  error. For example, in an in vivo 
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experiment you are con  dent that there is a treatment-related effect, but the 
statistical analysis does not show it because of random variation. This is a 
typical example of  error that commonly occurs in animal experiments. A 
large  error is a risk in detecting a genuine difference. Power of a study to 
detect a signi  cant difference is explained by this risk: 
Power = 1–
In simple language, the power is the probability of obtaining a statistically 
signi  cant result using a statistical test (Lenth, 2007). In other words, 
power of the test is the probability of correctly rejecting the null hypothesis, 
when false. A study with a high power is unlikely to fail in detecting a 
genuine signi  cant difference, whereas a study with a weak power may 
fail in detecting a genuine signi  cant difference. The power of the tests 
can be improved by increasing , sample size, or limiting the statistical 
analysis to detection of large differences among samples (Hayes, 1987).

To design an experiment to investigate the effect of a hypoglycemic 
NCE in diabetic rats, the blood sugar in the individual diabetic rat is 
measured before and after the treatment with the NCE. Then the difference 
in blood sugar level of the individual rat is calculated. Another group of 
animals treated similarly, but with a placebo is  also maintained. Let us 
work out number of animals required in each group to obtain the desired 
result. For that speci  cations of the study need to be de  ned:

 1.  The signi  cance level (probability of  error). Usually it is set at 5% 
probability level.

 2.  Probability of  error is set at 10%. The statistical power (1– ) is 
90%.

 3.  The desired treatment effect (difference between NCE treated group 
and placebo treated group. This is determined based on the factors 
like clinical, economical etc.)

 4.  Estimate of expected variation (variation between individual 
measurements with respect to difference of before and after 
treatments. This is estimated based on earlier experiments of similar 
nature or a pilot study) 

 5.  Type of statistical analysis (since there are only two groups, the t-test 
would be better).
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  Number of animals in each group by two-sided test can be calculated 
using the formula,

n= 2
2

21

2
2/

/
)( ZZ a  

 
Number of animals in each group by one-sided test can be calculated using 
the formula,

n= 2 2
21

2

/
)( ZZ a  

Let us work out an Example;  = 0.05,  = 0.9, Desired effect = 25%;  
=15% (CV).
Z  = 1.645 (vide Appendix 3 for Z 0.05)
Z  = 1.282 (vide Appendix 3 for Z 0.10)

n= 2
2

2
(1.645 1.282)

25 /15
 = 6.2; Number of animals required in each group = 7

Animal Experimental Designs

Accuracy of an animal experiment depends on the design of the 
experiment. An animal experimental design should be unbiased, should 
have high precision, wide range of applicability and should be simple in 
design (Cox, 1958). An animal experiment can be designed in several 
ways, for example, completely randomized design, randomized block 
design, cross-over design, Latin square design etc. The commonly used 
design in pharmacology and toxicology is randomized design. Other 
designs may be adopted, especially for in vivo ef  cacy studies with NCEs, 
where more than one NCE at more than two dose levels, a control group, a 
group treated with a commercially available drug with known ef  cacy are 
involved. Perhaps the most important thing to remember while designing 
an animal experiment is the prior knowledge of all the factors that could 
affect the outcome of the experiment.
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Good Statistical Design

Good statistical design is a pivotal factor in animal research. However, 
replication, randomization and blinding, which are key components of 
good statistical design, are less often used in animal research (Kilkenny et 
al., 2009). Hess (2011) reviewed statistical design given in 100 articles on 
animal experiments published in Cancer Research in 2010. In 14 of the 100 
articles, the number of animals used per group was not reported. In none of 
the 100 articles the method used to determine the number of animals per 
group was reported. Among the 74 articles in which randomization seemed 
feasible, only 21 reported that they had randomly allocated animals to 
treatment groups. None of these articles described how the randomization 
was carried out. Selection of appropriate statistical tools is very crucial 
in the analysis of data obtained from toxicological and pharmacological 
studies. Selection of a non-appropriate statistical tool during the design of 
a study or using a different statistical tool from that mentioned in the study 
plan with improper justi  cation may lead to misinterpretation of the data 
(Kobayashi et al., 2011).

Decision Trees

Several attempts have been made to standardize statistical methodologies 
for the analysis of data obtained from the toxicological and pharmacological 
studies. One of the methodologies proposed by several authors is the 
tree-type algorithms (Gad and Weil, 1986; Healey, 1997; Hamada et al., 
1998; Gad, 2006). The tree-type algorithms are called as decision trees, 
which are graphical representation of decisions involved in the choice of 
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the statistical procedure (Howell, 2008). The decision tree-diagram is an 
excellent tool for determining the optimum course of action in situations 
offering several alternatives with uncertain outcomes. The  rst tree-type 
algorithm for toxicity studies reported in Japan by Yamazaki et al. (1981) 
is given in Figure 19.1.

Bartlett’s test P<0.05P>0.05

P<0.05 P>0.05 P<0.05 P>0.05

ANOVA Kruskal-Wallis’s H test

Dunnett’s test
at 0.05

End

Scheffé’s test
at 0.05 

Group size

Same Diff.

Dunnett-type rank
test at 0.05

Group size

Same Diff.

End

Scheffé-type rank
test at 0.05 

Figure 19.1. The  rst tree-type algorithm for toxicity studies reported in Japan

This tree-type algorithm was criticized by Kobayashi et al. (1995),  
who identi  ed three major weaknesses which included: selection of a 
parametric or non-parametric test is based on the highly sensitive Bartlett’s 
homogeneity test; test for normality is not covered in this algorithm; and 
outliers and dose-dependency are not evaluated.

Hamada et al. (1998) proposed a tree-type algorithm for the analysis 
of quantitative data, which is given in Figure 19.2. 

Kobayashi et al. (2000) proposed a simple tree-type algorithm for 
the analysis of quantitative data obtained from toxicological experiments 
involving more than 2 groups (Figure 19.3).

Sakaki et al. (2000) proposed a tree-type algorithm for the analysis of 
quantitative data, particularly body weight, hematology, and organ weight 
data, obtained from repeated dose administration studies. This tree-type 
algorithm does not recommend homogeneity and normality tests; the data 
are directly analysed by Williams’s test (Figure 19.4). 

Gad and Weil (1986) proposed a  ow chart covering most of the 
situations that can be encountered in toxicology and pharmacology (Figure 
19.5). 
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Figure 19.2. Tree-type algorithm for the analysis of quantitative data proposed by Hamada 
et al. (1998)

Visual recognition of 
data (scatter diagram 

or  box-plot) 

  

  

  

    

Check for 
homogeneity 

(Bartlett’s 
test) 

  

   

    P<0.01(Heterogeneity)                                                               P>0.01 ( Homogeneity)   

      

Log-transformation of the 
data 

    
     

  P 0.05   (Homogeneity)     

                                                                                           P<0.05 (Heterogeneity) 
        

Analyze log-transformed data  Analyze raw data 
      

    
     

Check outliers: absolute maximum value of Studentized residual 
    <4 4

No outlier           At least one outlier 
      
     Analysis for influence of 

outlier, if necessary 

Dose-dependency [regression (1%)]           Linearity (model fitness) 
   

Comparison with control [Dunnett’s test (5%)] 

Figure 19.3. The tree-type algorithm for the analysis of toxicological data proposed by 
Kobayashi et al. (2000)

Bartlett’s test 
   P=0.05 

   

Not significant                                Significant  

  

  

Dunnett’s multiple 
comparison test 

 
Steel’s test 
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Figure 19.4. The tree-type algorithm for the analysis of quantitative data obtained from 
repeated dose administration studies proposed by Sakaki et al. (2000)

Williams’ test 
( =0.025, 2-sided) 

   
   

  

Not significant                                 Significant 
(p>0.025)                                          (p 0.025) 

 

  

Steel test             
( =0.025, 2-sided) 

 
End           

 

Statistical Procedures Used by National Toxicology Program (NTP), 
USA

The statistical procedures used in the analysis of data of 2-year toxicity/
carcinogenesis studies presented in the Technical Reports of the NTP are 
given below: 
a. Survival Analyses
The product-limit procedure of Kaplan and Meier (1958) is used to 
estimate the probability of survival. Animals found dead due to causes 
other than natural causes are censored from the survival analyses, while 
animals dying from natural causes are not censored. Dose-related effects 
on survival is calculated using Cox’s method (Cox, 1972) (for testing two 
groups for equality) and Tarone’s (1975) life table test (to identify dose-
related trends). The P values are two-sided.
b. Analysis of neoplasm and non-neoplastic lesion incidences 
The Poly-k test (Bailer and Portier, 1988; Portier and Bailer, 1989; 
Piegorsch and Bailer, 1997) is used to assess neoplasm and non-neoplastic 
lesion prevalence. Tests of signi  cance include pair-wise comparisons of 
each exposed group with controls and a test for an overall exposure-related 
trend. Continuity-corrected Poly-3 tests are used in the analysis of lesion 
incidence. The P values are one-sided.
c. Analysis of continuous variables
Organ and body weight data is analyzed with the parametric multiple 
comparison procedures of Dunnett (1955) and Williams (1971, 1972). 
Hematology, clinical chemistry, urinalysis, urine concentrating ability, 

(p <= 0.025)
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cardiopulmonary, cell proliferation, tissue concentrations, spermatid, 
and epididymal spermatozoal data are analyzed using the non-parametric 
multiple comparison methods of Shirley (1977), as modi  ed by Williams 
(1986) and Dunn (1964). Jonckheere’s test (Jonckheere, 1954) is used to 
assess the signi  cance of the dose-related trends and to determine whether 
a trend-sensitive test (Williams’ or Shirley’s test) is more appropriate for 
pair-wise comparisons than a test that does not assume a monotonic dose-
related trend (Dunnett’s or Dunn’s test).

Average severity values are analyzed for signi  cance with the Mann-
Whitney U test (Hollander and Wolfe, 1973). Vaginal cytology data are 
transformed to arcsine values and then the treatment effects are investigated 
by applying a multivariate analysis of variance (Morrison, 1976). 

Immunological data is initially tested for homogeneity using Bartlett’s 
test. For data that is determined to be homogeneous, one-way analysis 
of variance (ANOVA) is conducted. If the ANOVA is signi  cant at P < 
0.05, Dunnett’s multiple range t-test is used for multiple treatment-control 
comparisons. If the data is not homogeneous, the Kruskal-Wallis test or 
the Wilcoxon rank sum test is used to compare treatment groups with 
controls groups. The level of statistical signi  cance is set at P < 0.05 and 
P < 0.01. 
Values are routinely presented as mean ± standard error. 

Decision Tree Produced by OECD

OECD produced a decision tree for analyzing data in long-term toxicology 
studies by summarizing common statistical procedures (OECD, 2010). 
This decision tree, more or less similar to an approach used by the US 
National Toxicology Program, is given in Figure 19.6. 

A detailed description on this decision tree is given in the guideline 
(OECD, 2010) by providing explanation on each circled number given in 
the Figure. 

Decision tree has also been used in vitro assays and pharmacological 
experiments. Decision-tree approaches were proposed for the analysis of 
the chromosome aberration assay (Kim et al., 2000; Hothorn, 2002) and 
for evaluating drug-speci  c effects of quantitative pharmaco-EEG (Dago 
et al., 1994). 

Though the decision trees are used in the statistical analysis of data of 
various toxicological studies (Krores et al., 2004), critics point out that, 
‘although there are ef  ciency gains in the application of  ow charts, there 
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is a ‘deskilling’ of the task, an over-emphasis on signi  cance testing for 
decision making, and vulnerability to artefactual results’. There is also 
the methodological problem with a multiple testing procedure where 
one hypothesis test is used to select another test which can complicate 
quantifying the true probability values associated with various comparisons 
(OECD, 2010).

Incongruence in Selection of a Statistical Tool

Nomura (1994) compared the tree-type algorithms used at the contract 
research laboratories in Japan and other countries. He observed that 
the countries developed their own tree-type algorithms. Kobayashi et 
al. (2011) compared the statistical tools used for analysing the data of 
repeated dose toxicity studies with rodents conducted in 45 countries, 
with that of Japan. The study revealed there was no congruence among 
the countries in the use of statistical tools for analysing the data obtained 
from the above studies. For example, to analyse the data obtained from 
repeated dose toxicity studies with rodents, Scheffé’s multiple range and 
Dunnett type (joint type Dunnett) tests are commonly used in Japan, but in 

Figure 19.6. Decision tree produced by OECD for the analysis of data in long-term 
toxicology studies (OECD, 2010)
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other countries use of these statistical tools is not so common. In most of 
the countries, the data are generally not tested for normality. The authors  
observed that out of 127 studies examined, data of only 6 studies were 
analysed for both homogeneity of variance and normal distribution. 

The decision trees mentioned above are developed based on the 
classical statistical principles sidelining biological principles. For example 
a sensitive Bartlett’s test for examining homogeneity of variance may not 
be suitable in most of the animal studies. The below mentioned decision 
trees or  ow charts are developed providing due consideration to biological 
principles: 

Selection of a Statistical Tool—Suggested Decision Tress or Flow 
Charts

 1.  Selection of a statistical tool when the data show a normal or non-
normal distribution (Kobayashi et al., 2008).

Situation 1 (Number of Groups, 2)
When the data of each group show a normal distribution by Shapiro-Wilk’s 
W test, then the F-test is applied. If the F-test is insigni  cant, the data are 
analysed using Student’s t-test and if it is signi  cant, Aspin-Welch’s t-test 
is used to analyse the data.

When the data of any group show a non-normal distribution by 
Shapiro-Wilk’s W test, they are subjected to Mann-Whitney’s U test (Rank 
sum test).

Flow chart of situation 1 is given in Figure 19.7.

Figure 19.7. Flow chart for selecting the statistical tool when the data show a normal or 
non-normal distribution (Situation 1, Number of group = 2)

Normal distribution by Shapiro-Wilk’s W test for each group (P = 0.05) 

Mann-Whitney’s U test 
 (Rank sum test) 

F-test 

Student’s t-test 
DF = 2N-2 

 

Significant

SignificantNot significant (-) 

Not significant (-) 

Aspin-Welch s t-test  
DF = 2N-2 
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Figure 19.8. Flow chart for selecting the statistical tool when the data show a normal or 
non-normal distribution (Situation 2, Number of group  3)

Normal distribution by Shapiro-Wilk’s W test for each group (P = 0.05) 

Dunnett’s multiple 
comparison test 

Only control group or 
all groups 

One or two treatment 
groups 

Steel’s test 
Dunnett’s multiple comparison test or Student’s t-

test (analysis is carried out after excluding the 
group/s that do not show a normal distribution) 

Not significant (-) Significant

Situation 2 (Number of Groups, 3)
When each group shows a normal distribution by Shapiro-Wilk’s W test, 
the Dunnett’s multiple comparison test is used. When control group or 
all groups do not show a normal distribution, non-parametric Steel’s 
test (Dunnett’s separate type test) is used. When normal distribution is 
not observed by one or two treatment groups, they are excluded from the 
analysis and the remaining groups are analyzed by Dunnett’s multiple 
comparison test. The clinical relevance of the excluded groups is assessed 
in the light of other observations.

Flow chart of situation 2 is given in Figure 19.8.

 2.  Analysis of qualitative data of urinalyses and pathological  ndings.
Analysis of qualitative data of urinalysis and pathological  ndings 

presented in 2×2 and 4×4 Tables is given in Table 19.1.

Statistical Tools Suggested for the Analysis of Toxicology Data
The suggested statistical tools for the analysis of parametric and non-
parametric data are given in Table 19.2 and for the comparison of two and 
multi-groups are given in Table 19.3.

Use of Statistics in Toxicology-Limitations
There are limitations in the use of statistics in toxicology. According to Gad 
and Weil (1986), the limitations are: 1. statistics cannot make poor data 
better; 2. statistical signi  cance may not imply biological signi  cance; 3. 
an effect that may have biological signi  cance may not be statistically 
signi  cant; 4. the lack of statistical signi  cance does not prove safety. 
Statistical analysis cannot rescue poor data resulting from a  awed design or 
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Table 19.2. Parametric and non-parametric statistical tools for the analysis of data obtained 
from toxicology studies

Group settings Parametric test Non-parametric test
Only two groups Student,  Aspin-Welch, Cochran-

Cox t-tests
Mann-Whitney U test, 
Wilcoxon test

Three or more 
group

ANOVA Kruskal-Wallis rank sum test
Dunnett’s multiple comparison 

test, General, multiple comparison 
test

Nonparametric type Dunnett’s 
rank sum test

Steel’s test
Tukey’s multiple range test 
(the size of the group is the same)

Nonparametric type Tukey’s 
rank sum test

Tukey-Kramer’s multiple range test
(the size of the group is different)

Steel-Dwass’ test

Duncan’s multiple range test Nonparametric type Duncan’s 
rank sum test

Scheffé’s multiple comparison test Nonparamteric type Scheffé’s 
rank sum test

Williams’s t-test (analyzes the 
difference of the mean values 
between each treated group and 
control, when the mean value of 
the treated groups changes in one 
direction.)

Shirley-Williams’s test

— Jonckheere’s trend test
Tests recommended.

Table 19.1. Analysis of qualitative data of urinalyses and pathological  ndings (Kobayashi, 
2010)

Incidence

2×2 Table 4×4 Table, Grades and number of  ndings with the 
grades in Groups 

Control: 
Observed (+)

Control: 
None (–)

Group No  nding 
(–)

Slight
(+)

Moderate 
(++)

Marked 
(+++)

Treatment: 
Observed (+)

Treatment: 
None (–)

Control 10 1 0 0

(1) Chi square test Low 4 3 2 1
(2) Fisher’s test Mid 1 4 3 2

Note: Small numerical values 
(0–5) are not suitable for Chi 
square analysis in the four- 
values data set (Control: +, – 
and Treatment: +, –). Fisher’s 
test (one-sided) is suitable for 
the data with small numerical 
values.

High 0 3 4 3
Note 1: If Chi square analysis by 4×4 Table shows a 
signi  cant difference, Control Group vs Low dose Group, 
Control Group vs Mid dose Group and Control Group vs 
High dose Group are analysed by 2×4 Table by division.
Note 2: If the number of animals in a group is 5, use of 
Mann-Whitney’s U test is preferred.
Note 3: Cochran-Armitage trend test is the preferred 
tool for examining dose-related pattern.
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a poorly conducted study. An appropriate data analysis will follow directly 
from a correct experimental design (including the selection of statistical 
methods to be applied) and implementation (OECD, 2010). According to 
Altman and Bland (1994), ‘failing to reject the hypothesis often leads to 
the conclusion of evidence in favour of safety, simply because absence of 
evidence is not evidence of absence’. 
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