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Preface

I have for a long time held the view that whereas university courses in algebra,
number systems and analysis admirably consolidate the corresponding school mate-
rial, this is not the case for geometry and trigonometry. These latter topics form an
important core component of mathematics, as they underpin analysis in its manifold
aspects and applications in classical applied mathematics and sundry types of science
and engineering, and motivate other types of geometry, and topology. Yet they are
not well treated as university topics, being either neglected or spread over a number
of courses, so that typically a student picks up a knowledge of these incidentally and
relies mainly on the earlier intuitive treatment at school.

Clearly the treatment, of geometry has seriously declined over the last fifty years,
in terms of both quantity and quality. Lecturers and authors are faced with the
question of what, if anything, should be done to try to restore it to a position of some
substance. Bemoaning its fate is not enough, and surely authors especially should
ponder what kinds of approach are likely to prove productive.

Pure or synthetic geometry was the first mathematical topic in the field and for a
very long time the best established. It was natural for authors to cover as much ground
as was feasible, and ultimately there was a large bulk of basic and further geometry.
That was understandable in its time but perhaps a different overall strategy is now
needed.

Synthetic geometry seems very difficult. In it we do not have the great benefit
of symbolic manipulations. It is very taxing to justify diagrams and to make sure
of covering all cases. From the very richness of its results, it is difficult to plan a
productive approach to a new problem. In the proofs that have come down to us,
extra points and segments frequently need to be added to the configuration. It is true
that, as in any approach, there are some results which are handled very effectively
and elegantly by synthetic methods, but that is certainly not the whole story. On the
other hand, what is undeniable is that synthetic geometry really deals with geometry,
and it forces attention to, and clarity in, geometrical concepts. It encourages the
careful layout of sequential proof. Above all, it has a great advantage in its intuitive
visualisation and concreteness.

The plan of this book is to have a basic layer of synthetic geometry, essentially
five chapters in all, because of its advantages, and thereafter to diversify as much as
possible to other techniques and approaches because of its difficulties. More than that,
we assume strong axioms (on distance and angle-measure) so as to have an efficient
approach from the start. The other approaches that we have in mind are the use of
coordinates, trigonometry, position-vectors and complex numbers. Our emphasis is on
clarity of concepts, proof and systematic and complete development of material. The
synthetic geometry that we need is what is sufficient to start coordinate geometry
and trigonometry, and that takes us as far as the ratio results for triangles and
Pythagoras’ theorem. In all, a considerable portion of traditional ground involving
straight-lines and circles is covered. The overall approach is innovative as is the detail
on trigonometry in Chapter 9 and on what are termed ‘mobile coordinates’ in Chapter
11. Some new concepts and substantial new notation have been introduced. There is
enough for a two-semester course; a one-semester one could be made from Chapters
2-9, with Chapter 7 trimmed back.



My object has been to give an account at once accessible and unobtrusively rig-
orous. Preparation has been in the nature of unfinished business, stemming from
my great difficulties when young in understanding the then textbooks in geometry. I
hold that the reasoning in geometry should be as convincing as that in other parts
of mathematics. It is too much to hope that there are no errors, mathematical or
typographical. I should be grateful to be told of any at the email address pdb@ucc.ie.
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GLOSSARY

Glossary
of
Greek and Latin roots of mathematical words

acute < L acutus, sharp-pointed (perf.
partic. of acuere, to sharpen).

addition < L additio, an adding to (ad-
dere, to add).

angle < L angulus, corner < Gk agkylos,
bent.

area < L ares, a vacant space.
arithmetic < Gk arithmetike (sc. tekh-
ne), the art of counting (arithmein, to
count; arithmos, number).

axiom < Gk azioma, self-evident prin-
ciple (azioun, to consider worthy; azios,
worthy).

calculate < L calculatus, reckoned (perf.
partic. of calculare < calculus, pebble).
centre < Gk kentron, sharp point (ken-
tein, to spike).

chord < Gk khorde, string of gut.
circle < L cireulus, ring-shaped figure
(related to Gk kyklos, ring; kirkos or kri-
kos, ring).

congruent < L congruens (gen. congru-
entis), agreeing with (pres. partic. of con-
gruere, to agree with).

curve < L curvus (curvare, to bend).
decimal < L(Med) decimalis, of tenths
(decima (sc. pars), tenth part; decem,
ten).

degree < OF degre < L degreds, descend
( de, down; grad, to step).

diagonal < L diagonalis, diagonal < Gk
diagonios, from angle to angle ( dia,
through ; gonia, angle).

diagram < Gk diagramma, plan, figure
indicated by lines (dia, through ; gramma,

a thing which is drawn; graphein, to draw).

diameter < Gk diametros, diametrical
(dia, through ; metron, measure).
distance < L distantia, remoteness (di-
stare, to stand apart).

divide < L dividere, to separate.

equal < L equalis, equal (aequare, to

make equal ; aequus, equal).

example < L ezemplum, sample < ez-
imere, to take out.

exponent < L ezponens (gen. ezponen-
tis), setting forth (pres. partic. of ez-
ponere, to set forth ; ex, out ; ponere to
place).

factor < L factor, maker, doer (facere, to
make).

focus < L focus, hearth.

fraction < L fractio, a breaking into pie-
ces (frangere, to break).

geometry < Gk geometria, measuring of
land (ge, land; metrein, to measure).
graph < Gk graphos, drawing, picture
(graphein, to draw).

hypotenuse < Gk hypoteinousa(sc.
gramme), the line extending underneath
(pres. partic. of hypoteinesn, to extend
under; gramme, line).

hypothesis < Gk hypothesis, supposition,
assumption (hypotithenas, to place ben-
eath).

inclination < L inclinatio, a leaning to
one side (inclinare, to cause to lean).
induction < L inductio, a leading into
(inducere, to lead in).

isosceles < Gk tsoskeles, having equal
legs (isos, equal; skelos, leg).

line < L linea, a linen thread (linum , flax
< Gk. linon).

logic < Gk logike (sc. techne), the art of
reasoning (logos, reason; logikos, endowed
with reason; techne, art).

magnitude < L magnitudo, size, great-
ness (magnus, great).

mathematics < Gk mathematika, things
that require mathematical or scientific
reasoning (mathema, lesson; mathemat-
ikos, mathematical or scientific; manthan-
ein, to learn).

measure < F mesure < L mensura, mea-



GLOSSARY

sure (metiri, to measure).

minus < L minus, less.

multiply < L multiplicare, multiply (mul-
tus, much; plicare, to lay together).
negative < L negativus, denying (negare,
to deny).

number < F nombre < L numerus, num-
ber.

oblong < L oblongus, longish.

obtuse < L obtusus, blunted (perf. par-
tic. of obtundere, to blunt).

orthogonal < Gk orthogonios, rectangu-
lar (orthos, right; gonia, angle).

parallel < Gk parallelos, beside one an-
other (para, beside; allelous, one another).
perimeter < Gk perimetron, circumfer-
ence (peri around; metron, measure).

Xv

subtract < L subtractus, withdrawn
(perf. partic. of subtrahere, to withdraw).
sum < L summa, top.

tangent < L tangens(sc. linea) (gen. tan-
gentis), touching line (tangere, to touch;
linea, line).

technical < Gk tekhnikos, artistic, skil-
ful (tekhne, art).

theorem < Gk theorema, thing observed,
deduced principle (theorein, to observe).
total < L totus, whole, all.

trapezium < Gk trapezion, small table
(trapeza, table).

triangle < L triangulum, triangle (tris,
three; angulus, angle).

trigonometry < Gk trigonometria, mea-
surement of triangles (trigonon, triangle;

perpendicular < L, perpendiculum, plumb- metrein, to measure).

line (perpendere, to weigh precisely).
plane < L planum, level ground (planus,
level).

point < L punctum, small hole (pungere,
to pierce).

polygon < Gk polygonon, thing with
many angles (polys, many; gonia, angle).
positive < L positivus, settled (ponere,
to place).

postulate < L postulare, to ask for.
power < OF poeir < L posse, to be able.
product < L productus, brought forth

(perf. partic. of producere, to bring forth).

proportion < L portio, comparative rela-
tionship (pro, according to; portio, part).
quadrangle < L quadrangulum, thing
with four angles (quattuor, four; angulus,
angle).

quotient < L quotiens, how often.
radius < L radius, rod, spoke of wheel.
rectangle < L rectiangulum, right-angled
(rectus, right; angulus, angle).

rhombus < Gk rhombos, a device whirled
round (rhembein, to whirl round).
science < L scientia, knowledge (scire,
to know).

secant < L secans (gen. secantis), cut-
ting (secare, to cut).

square < OF esquarre < L quattuor, four.

vector < L vector, bearer (vehere, to
bear).

vertex < L verter, summit.

volume < OF volum < L volumen, roll,
book (volvere, to roll).
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Preliminaries

1.1 HISTORICAL NOTE

This is one in a long line of textbooks on geometry. While all civilisations seem to
have had some mathematical concepts, the most significant very old ones historically
were the linked ones of Sumer, Akkad and Babylon, largely in the same region in
what is now southern Iraq, and the separate one of Egypt. These are the ones which
have left substantial traces of their mathematics, which was largely arithmetic, and
geometrical shapes and measurement.

The outstanding contribution to mathematics was in Greece about 600B.C.—
200B.C. The earlier mathematics conveyed techniques by means of examples, but
the Greeks stated general properties of the mathematics they were doing, and or-
ganised proof of later properties from ones taken as basic. There was astonishing
progress in three centuries and the fruit of that was written up in Euclid’s The El-
ements, ¢.300B.C. He worked in Alexandria in Egypt, which country had come into
the Greek sphere of influence in the previous century.

Euclid’s The Elements is one of the most famous books in the world, certainly
the most famous on mathematics. But it was influential widely outside mathematics
too, as it was greatly admired for its logical development. It is the oldest writing on
geometry of which we have copies by descent, and it lasted as a textbook until after
1890, although it must be admitted that in lots of places and for long periods not
very many people were studying mathematics. It should probably be in the Guinness
Book of Records as the longest lasting textbook in history.

The Elements shaped the treatment of geometry for 2,000 years. Its style would
be unfamiliar to us today, as apart from using letters to identify points and hence
line-segments, angles and other figures in diagrams, it consisted totally of words.
Thus it did not use symbols as we do. It had algebra different from ours in that it
said things in words written out in full. Full symbolic algebra as we know it was not
perfected until about 1600A.D. in France, by Vieta and later Descartes. Another very
significant feature of The Elements was that it did not have numbers ready-made, and
used distance or length, angle-measure and area as separate quantities, although links
between them were worked out.

Among prominent countries, The Elements lasted longest in its original style in
the U.K., until about 1890. They had started chipping away at it in France in

1
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the 16th century, beginning with one Petrus Ramus (1515-1572). There is a very
readable account of the changes which were made in France in Cajori [3, pages 275
— 289]. These changes mainly involved dis-improvements logically; authors brought
in concepts which are visually obvious, but they did not provide an account of the
properties of these concepts. Authors in France, and subsequently elsewhere, started
using our algebra to handle the quantities and this was a major source of advance.
One very prominent textbook of this type was Elements of Geometry by Legendre,
(first edition 1794), which was very influential on the continent of Europe and in the
U.S.A. All in all, these developments in France shook things up considerably, and
that was probably necessary before a big change could be made.

Although The Elements was admired widely and for a long time for its logic,
there were in fact logical gaps in it. This was known to the leading mathematicians
for quite a while, but it was not until the period 1880-1900 that this geometry was
put on what is now accepted as an adequate logical foundation. Another famous
book Foundations of Geometry by Hilbert (1899) was the most prominent in doing
this. The logical completion made the material very long and difficult, and this
type of treatment has not filtered down to school-level at all, or even to university
undergraduate level except for advanced specialised options.

Another sea-change was started in 1932 by G.D. Birkhoff; instead of building up
the real number system via geometrical quantities, he assumed a knowledge of num-
bers and used that from the start in geometry; this appeared in his ‘ruler postulate’
and ‘protractor postulate’. His approach allowed for a much shorter, easier and more
efficient treatment of geometry.

In the 1960’s there was the world-wide shake-up of the ‘New Mathematics’, and
since then there are several quite different approaches to geometry available. In this
Chapter 1 we do our best to provide a helpful introduction and context, and suggest
a re-familiarisation with the geometrical knowledge already acquired.

Logically organised geometry dates from ¢.600-300B.C. in Greece; by ¢.350B.C.
there was already a history of geometry by Eudemus. From the same period and
earlier, date positive integers and the treatment of positive fractions via ratios. The
major mathematical topics date from different periods: geometry as just indicated;
full algebra from ¢.1600A.D.; full coordinate geometry from c.1630A.D.; full numbers
(negative, rational, decimals) from ¢.1600A.D.; complex numbers from ¢.1800A.D.;
calculus from c.1675A.D.; trigonometry from c.200B.C., although circles of fixed
length of radius were used until ¢.1700A.D. when ratios were introduced.

There is an account of the history of geometry of moderate length by H. Eves in
(2, pages 165-192]

It should be clear from this history that the Greek contribution to geometry greatly
influenced all later mathematics. It was transmitted to us via the Latin language,
and we have included a Glossary on pp. xiv-xv showing the Greek or Latin roots of
mathematical words.

1.2 NOTE ON DEDUCTIVE REASONING

The basic idea of a logical system is that we list up-front the terms and properties
that we start with, and thereafter proceed by way of definitions and proofs. There
are two main aspects to this.
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1.2.1 Definitions

The first aspect concerns specifying what we are dealing with. A definition identifies
a new concept in terms of accepted or known concepts. In practice a definition of a
word, symbol or phrase E is a statement that E is to be used as a substitute for F,
the latter being a phrase consisting of words and possibly symbols or a compound
symbol. We accept ordinary words of the English language in definitions and what
is at issue is the meaning of technical mathematical words or phrases. In attempting
a definition, there is no progress if the technical words or symbols in F are not all
understood at the time of the definition.

The disconcerting feature of this situation is that in any one presentation of a topic
there must be a first definition and of its nature that must be in terms of accepted
concepts. Thus we must have terms which are accepted without definition, that is
there must be undefined or primitive terms. This might seem to leave us in a hopeless
position but it does not, as we are able to assume properties of the primitive terms
and work with those.

There is nothing absolute about this process, as a term which is taken as primitive
in one presentation of a topic can very well be a defined term in another presentation
of that topic, and vice versa. We need some primitive terms to get an approach under
way.

1.2.2 Proof

The second aspect concerns the properties of the concepts that we are dealing with.
A proof is a finite sequence of statements the first of which is called the Aypothesis,
and the last of which is called the conclusion. In this sequence, each statement after
the hypothesis must follow logically from one or more statements that have been
previously accepted. Logically there would be a vicious circle if the conclusion were
used to help establish any statement in the proof.

There is also a disconcerting feature of this, as in any presentation of a topic there
must be a first proof. That first proof must be based on some statements which are
not proved (at least the hypothesis), which are in fact properties that are accepted
without proof. Thus any presentation of a topic must contain unproved statements;
these are called azioms or postulates and these names are used interchangeably.

Again there is nothing absolute about this, as properties which are taken as ax-
iomatic in one presentation of a topic may be proved in another presentation, and
vice versa. But we must have some axioms to get an approach under way.

1.3 EUCLID’S The Elements

1.3.1

The Elements involved the earliest surviving deductive system of reasoning, having
axioms or postulates and common notions, and proceeding by way of careful state-
ments of results and proofs. Up to ¢.1800, geometry was regarded as the part of
mathematics which was best-founded logically. But its position was overstated, and
its foundations not completed until ¢.1880-1900. Meanwhile the foundations of al-
gebra and calculus were properly laid in the 19th century. From c¢.1800 on, some
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editions used algebraic notation in places to help understanding.

1.3.2 Definitions

The Greeks did not appreciate the need for primitive terms, and The Elements started
with an attempt to define a list of basic terms.

b A = > TR > L " ~ N /L R

10.

11.
12.
13.
14.
15.

16.
17.

18.

DEFINITIONS

. A POINT is that which has no parts, or which has no magnitude.

. A LINE is length without breadth.

. The EXTREMITIES of a line are points.

. A STRAIGHT LINE is that which lies evenly between its extreme points.

. A SUPERFICIES is that which has only length and breadth.

. The EXTREMITIES of a superficies are lines.

. APLANE SUPERFICIES is that in which any two points being taken, the

straight line between them lies wholly in that superficies.

. A PLANE ANGLE is the inclination of two lines to one another in a plane,

which meet together, but are not in the same direction.

. APLANE RECTILINEAL ANGLE is the inclination of two straight lines

to one another, which meet together, but are not in the same straight line.

When a straight line standing on another straight line, makes the adjacent angles
equal to one another, each of the angles is called a RIGHT ANGLE; and the
straight line which stands on the other is called a PERPENDICULAR to it.

An OBTUSE ANGLE is that which is greater than a right angle.
An ACUTE ANGLE is that which is less than a right angle.

A TERM or BOUNDARY is the extremity of anything.

A FIGURE is that which is enclosed by one or more boundaries.

A CIRCLE is a plane figure contained by one line, which is called the CIR-
CUMFERENCE, and is such that all straight lines drawn from a certain
point within the figure to the circumference are equal to one another.

And this point is called the CENTRE of the circle.

A DIAMETER of a circle is a straight line drawn through the centre, and
terminated both ways by the circumference.

A SEMICIRCLE is the figure contained by a diameter and the part of the
circumference cut off by the diameter.
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19.

20.

21.

22,

23.

24,

25.

26.

27.

28,

29.

30.

31.

32.

33.

34.

35.

A SEGMENT of a circle is the figure contained by a straight line and the
circumference which cuts it off.

RECTILINEAL FIGURES are those which are contained by straight lines.
TRILATERAL FIGURES, or TRIANGLES, by three straight lines.
QUADRILATERAL FIGURES by four straight lines.

MULTILATERAL FIGURES, or POLYGONS, by more than four straight
lines.

Of three-sided figures, an EQUILATERAL TRIANGLE is that which has
three equal sides.

An ISOSCELES TRIANGLE is that which has two sides equal.

A SCALENE TRIANGULE is that which has three unequal sides.

A RIGHT-ANGLED TRIANGLE is that which has a right angle.

An OBTUSE-ANGLED TRIANGLE is that which has an obtuse angle.
An ACUTE-ANGLED TRIANGLE is that which has three acute angles.

Of four-sided figures, a SQUARE is that which has all its sides equal, and all
its angles right angles.

An OBLONG is that which has all its angles right angles, but not all its sides
equal.

A RHOMBUS is that which has all its sides equal, but its angles are not right
angles.

A RHOMBOID is that which has its opposite sides equal to one another, but
all its sides are not equal, nor its angles right angles.

All other four-sided figures besides these are called TRAPEZIUMS.

PARALLEL STRAIGHT LINES are such as are in the same plane, and
which being produced ever so far both ways do not meet.

Although in The Elements these definitions were initially given, some of these were
treated just like motivations (for instance, for a point where no use was made of the
fact that ‘it has no parts’) whereas some were genuine definitions (like that of a circle,
where the defining property was used). Our definitions will differ in some respects
from these.
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1.3.3 Postulates and Common Notions

The Greeks understood the need for axioms, and these were laid out carefully in The
Elements. The Elements has two lists, a first one of POSTULATES and a second
one of COMMON NOTIONS. It is supposed by some writers that Euclid intended his
list of POSTULATES to deal with concepts which are mathematical or geometrical,
and the second list to deal with concepts which applied to science generally.

POSTULATES
Let it be granted,
1. That a straight line may be drawn from any one point to any other point.

2. That a terminated straight line may be produced to any length in a straight
line.

3. And that a circle may be described from any centre, at any distance from that
centre.

4. All right angles are equal to one another.

5. If a straight line meet two straight lines, so as to make the two interior angles
on the same side of it taken together less than two right angles, these straight
lines, being continually produced, shall at length meet on that side on which
are the angles which are less than two right angles.

COMMON NOTIONS

. Things which are equal to the same thing are equal to one another.
. If equals be added to equals the wholes are equals.
. If equals be taken from equals the remainders are equal.

> WD N

. Magnitudes which coincide with one another, [that is, which exactly fill the
same space] are equal to one another.

5. The whole is greater than its part.

1.3.4

The Elements attempted to be a logically complete deductive system. There were ear-
lier Elements but these have not survived, presumably because they were outclassed
by Euclid’s.

The Elements are charming to read, proceed very carefully by moderate steps and
within their own terms impart a great sense of conviction. The first proposition is to
describe an equilateral triangle on [A, B]. With centre A a circle is described passing
through B, and with centre B a second circle is described passing through A. If C
is a point at which these two circles cut one another, then we take the triangle with
vertices A, B, C.
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It is ironical that, with The Elements being so admired for their logical proceeding,
there should be a gap in the very first proposition. The postulates and common
notions did not make any provisions which would ensure that the two circles in the
proof would have a point in common. This may seem a curious choice as a first
proposition, dealing with a very special figure. But in fact it is used immediately in
Proposition 2, from a given point to lay off a given distance.

The main logical lack in The Elements was that not enough assumed properties
were listed, and this fact was concealed through the use of diagrams.

1.3.5 Congruence

Two types of procedure in The Elements call for special comment. The first is the
method of superposition by which one figure was envisaged as being moved and placed
exactly on a second figure. The second is the process of construction by which figures
were not dealt with until it was shown by construction that there actually was such
a type of figure. In the physical constructions, what were allowed to be used were
straight edges and compasses.

The notion of superposition is basic to Euclid’s treatment of figures. It is visualised
that one figure is moved physically and placed on another, fitting perfectly. We use
the term congruent figures when this happens. Common Notion 4 is to be used
in this connection. This physical idea is clearly extraneous to the logical set-up of
primitive and defined terms, assumed and proved properties, and is not a formal
part of modern treatments of geometry. However it can be used in motivation, and
properties motivated by it can be assumed in axioms.

1.3.6 Quantities or magnitudes

The Elements spoke of one segment (then called a line) being equal to or greater than
another, one region being equal to or greater than another, and one angle being equal
to or greater than another, and this indicates that they associated a magnitude with
each segment (which we call its length), a magnitude with each region (which we call
its area), and a magnitude with each angle (which we call its measure). They did not
define these magnitudes or give a way of calculating them, but they gave sufficient
properties for them to be handled as the theory was developed. In the case of each
of them the five common notions were supposed to apply.

Thus in The Elements, the quantities for which the Common Notions are intended
are distance or equivalently length of a segment, measure of an angle and area of a
region. These are not taken to be known, either by assumption or definition, but
congruent segments are taken to have equal lengths, congruent angles are taken to
have equal measures, and congruent triangles are taken to have equal areas. Thus
equality of lengths of segments, equality of measures of angles, and equality of areas
of triangles are what is started with. Treatment of area is more complicated than
the other two, and triangles equal in area are not confined to congruent triangles.
Addition and subtraction of lengths are to be handled using Common Notions 1,
2, 3 and 4; so are addition and subtraction of angle measures; so are addition and
subtraction of area.

Taking a unit length, there is a long build-up to the length of any segment. They
reached the stage where if some segment were to be chosen to have length 1 the length
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of any segment which they encountered could be found, but this was not actually done
in The Elements.

Taking a right-angle as a basic unit, there was a long build-up to handling any
angle. They reached the stage where if a right-angle was taken to have measure 90°,
the measure of any angle which they encountered could be found, but this was not
actually done.

There is a long build up to the area of figures generally. The regions which they
considered were those which could be built up from triangles, and they reached the
stage where if some included region were chosen to have area 1 the area of any
included region could be found. This is not actually completed in The Elements but
the materials are there to do it with.

All this shows that The Elements although very painstaking, thorough and exact
were also rather abstract. It should be remembered that the Greeks did not have
algebra as we have, and used geometry to do a lot of what we do by algebra. In
particular, considering the area of a rectangle was their way of handling multiplication
of quantities. Traditionally in arithmetic the area of a rectangle was dealt with as
the product of the length and the breadth, that is by multiplication of two numbers.
However, reconciling the geometical treatment of area with the arithmetical does not
seem to have been handled very explicitly in books, not even when from 1600A.D.
onwards real numbers were being detached from the ‘quantities’ of Euclid.

1.4 OUR APPROACH

1.4.1 Type of course

Very scholarly courses in geometry assume as little as possible, and as a result are
long and difficult. Shorter and easier courses have more or stronger assumptions, and
correspondingly less to prove. What is difficult in a thorough course of geometry is
not the detail of proof usually included, but rather is, first of all, locational viz. to
prove that points are where diagrams suggest they are, that is to verify the diagrams,
and secondly to be sure of covering all cases.

In particular, the type of approach which assumes that distance, angle-measure
and area are different ‘quantities’ leads to a very long and difficult treatment of
geometry. To make things much easier and shorter, we shall suppose that we know
what numbers are, and deal with distance/length and angle-measure as basic concepts
given in terms of numbers, and develop their properties. Moreover, we shall define
area in terms of lengths.

What we provide, in fact, is a combination of Euclid’s original course and a modifi-
cation of an alternative treatment due to the American mathematician G.D. Birkhoff
in 1932.

1.4.2 Need for preparation

What this course aims to do is to revise and extend the geometry and trigonometry
that has been done at school. It gives a careful, thorough and logical account of famil-
iar geometry and trigonometry. At school, a complete, logically adequate treatment
of geometry is out of the question. It would be too difficult and too long, unattractive
and not conducive to learning geometry; it would tend rather to put pupils off.



Sec.1.5) REVISION OF GEOMETRICAL CONCEPTS 9

Thus this is not a first course in geometry. It is aimed at third level students, who
should have encountered the basic concepts at secondary, or even primary, school.
It starts geometry and trigonometry from scratch, and thus is self-contained to that
extent.

But it is demanding because of a sustained commitment to deductive reasoning.
In preparation the reader is strongly urged to start by revising the geometry and
trigonometry which was done at school, at least browsing through the material. It
would also be a good idea to read in some other books some descriptive material on
geometry, such as the small amount in Ledermann and Vajda (10, pages 1 — 26), or the
large amount in Wheeler and Wheeler [13, Chapters 11 - 15]. Similarly trigonometry
and vectors can be revised from McGregor, Nimmo and Stothers [11, pages 99 123,
279 - 331).

It would moreover be helpful to practise geometry by computer, e.g. by using
software systems such as The Geometer’s Sketchpad or Cabri-Géométre. Material
which can be found in elementary books should be gone over, and also a look forwards
could be had to the results in this book.

1.5 REVISION OF GEOMETRICAL CONCEPTS

1.5.1

As part of the preliminary programme, we now include a review of the basic concepts
of geometry. Geometry should be thought of as arising from an initial experimental
and observational stage, where the figures are looked at and there is a great emphasis
on a visual approach.

1.5.2 The basic shapes

1. The plane II is a set, the elements of which are called points. Certain subsets of II
are called lines.

By observation, given any distinct points A, B € II, there is a unique line to which
A and B both belong. It is denoted by AB.

2. Given distinct points A and B, the set of points consisting of A and B themselves
and all the points of the line AB which are between 4 and B is called a segment, and
denoted by [A, B].

’ /
A A

Figure 1.1. A line AB. Figure 1.2. A segment [A, B).
The arrows indicate that the line
is to be continued unendingly.
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NOTE. Note that the modern mathematical terminology differs significantly from
that in The Elements. What was called a ‘line’ is now called a segment, and we have
added the new concept of ‘line’. This is confusing, but the practice is well established.
In ordinary English and in subjects cognate to mathematics, ‘line’ has its old meaning.
3. The set consisting of the point A itself and all the points of the line AB which
are on the same side of A as B is, is called a half-line, and denoted by [A,B . If A is
between B and C, then the half-lines [A, B and [A,C are said to be opposite.

B /AC
A B

Figure 1.3. A half-line [4,B . Opposite half-lines.

4. If the points B, C are distinct from A, then the pair of half-lines {[4,B ,[A,C }
is called an angle-support and denoted by [BAC; if [A, B and [A4,C are opposite half-
lines, then |BAC is called a straight angle-support. In each case A is called its vertez,
[4,B and [4,C its arms.

Figure 1.4. An angle-support. A straight angle-support.

5. The set of all the points on, or to one side of, a line AB is called a closed
half-plane, with edge AB.

Figure 1.5. A closed half-plane shaded.
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6. If the points A4, B, C are not collinear, then the set of points which are in both
the closed half-plane with edge AB, containing C, and the closed half-plane with edge
AC, containing B, is called the interior region of | BAC and denoted by IR(|BAC);
also (I1 \ ZR(]BAC)) U |BAC is called the ezterior region of |BAC and denoted by
ER(|BAC). When C € [A, B the interior and exterior regions of |[BAC are taken to
be [A, B and II, respectively.

Figure 1.6. An interior region. The corresponding exterior region.

7. If | BAC is a non-straight angle-support, then the couples (|lBAC, ZR(|BAC)),
(|BAC, ER(|BAC)), are called the wedge-angle and reflez-angle, respectively, with
support | BAC; this wedge-angle is denoted by ZBAC. Thus a wedge-angle is a pair
of arms in association with an interior region, while a reflex-angle is a pair of arms
combined with an exterior region.

If |BAC is a straight angle-support, and #;,H; are the closed half-planes with
edge the line AB, then the couples (|BAC, #,), (|lBAC, H2), are called the straight-
angles with support |BAC. If C € [A, B then the wedge-angle ZBAC = /BAB is
called a null-angle, and the reflex-angle with support |BAB is called a full-angle.

Figure 1.7. A wedge-angle. A reflex-angle.
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A straight-angle.

NOTE. The reason we call |BAC an angle-support and not an angle is that it sup-
ports two angles. If we were confining ourselves to pure geometry, and not concerned
to go forward to coordinate geometry and trigonometry, we could confine ourselves to
wedge and straight angles. Even more if we were to confine ourselves to the angles in
triangles, we could take |BAC = [A,B U [A,C . However when A is between B and
C, this would result in a straight-angle being a line, and it would not have a unique
vertex. In the early part of our course, we can confine our attention to wedge and
straight angles.

C

/’
oo c :
4, 5 TN A7
\_,/ \s_al

Figure 1.8. Supports bearing two angles each.

8. If A is between B and C and D ¢ BC, the wedge-angles ZBAD, ZCAD are
called supplementary. If A, B,C are not collinear, and A is between B and B,, and
A is between C and C), then the wedge-angles ZBAC, /B, AC) are called opposite
angles at a verter.

x D
\\
ER 2 -7~ N
\ \
\ \
\\ ]
C A B
Figure 1.9. Supplementary angles. Opposite angles at a vertex.

9. If A, B, C are non-collinear points and [A4, D is in the interior region of | BAC,
then [A, D is said to be between [A,B and [A4,C .
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Figure 1.10. [4,D between [A,B and [A4,C.

10. If A, B,C are non-collinear points, let H; be the closed half-plane with edge
BC, containing A, H3 be the closed half-plane with edge C A, containing B, Hs be
the closed half-plane with edge AB, containing C. Then the intersection H; NHz N
‘Hs is called a triangle. The points A, B,C are called its vertices and the segments
[B,C),[C, A),[A, B] its sides. If a vertex is not the end-point of a side ( e.g. the vertex
A and the side [B,C]), then the vertex and side are said to be opposite each other.
We denote the triangle with vertices A, B,C by [A, B,C)].

If at least two sides of a triangle have equal lengths, then the triangle is called
isosceles.

o

A

B D C

Figure 1.11. A triangle [4, B,C)]. An isosceles triangle.

11. Let A, B, C, D be points no three of which are collinear, and such that [4, C]N
(B, D] # 0. For this let #; be the closed half-plane with edge AB, containing C, H3
be the closed half-plane with edge BC, containing D, Hs be the closed half-plane
with edge CD, containing A, Hz be the closed half-plane with edge DA, containing
B. Then the intersection H; N H3z N Hs N Hz is called a convez quadrilateral

The points 4, B, C, D are called its vertices, the segments (4, B], B, ()], [C, D],
(D, A] its sides, and the segments [A, C], B, D] its diagonals. Two vertices which have
a side in common are said to be adjacent, and two vertices which have a diagonal in
common are said to be opposite. Thus A and B are adjacent as they both belong to
[A, B] which is a side; A and C are opposite as they both belong to [4, C] which is a
diagonal.

Two sides which have a vertex in common are said to be adjacent, and two
sides which do not have a vertex in common are said to be opposite. Thus the
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sides [A, B], (D, A] are adjacent as the vertex A belongs to both, while the sides
[4,B), [C,D] are opposite as none of the vertices belongs to both of them. The
wedge angles ZDAB, ZABC, /BCD, ZCDA are called the angles of the convex
quadrilateral; two of these angles are said to be adjacent or opposite according as
their two vertices are adjacent or opposite vertices of the convex quadrilateral.

We denote the convex quadrilateral with vertices A, B, C, D, with A and C
opposite, by [4, B, C, D].

c

A
Figure 1.12. A convex quadrilateral.

1.5.3 Distance; degree-measure of an angle

1. With each pair (4, B) of points we associate a non-negative real number |4, B|,
called the distance from A to B or the length of the segment [A,B]. In all cases
| B, A| = | A, B]. By observation, given any non-negative real number k, and any half-
line [A, B there is a unique point P € [4, B such that |4, P| = k.

A A
¥ ]
v P 5 e R
A v Q A
P xY
e
Laying off a distance k. Figure 1.13. Addition of distances.

By observation, if Q € [P, R] then |P, Q| + |Q, R| = |P, R|. In all cases |4, 4| = 0,
while |4, B| > 0if A # B.

2. Given distinct points 4 and B, choose the point C' € [4, B so that |4, C| =
11A, B|. Then C is between A and B and

1
|C, Bl =|4,B| - |4,C| = |4, B| - 5|4, B| = %IA,B| =|4,C|.

The point C' which is on the line AB and equidistant from A and B, is called the
mid-point of A and B. It is also called the mid-point of the segment A, B).
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B

A

Figure 1.14. Mid-point of A and B.

3. With each wedge-angle ZBAC we associate a non-negative number, called its
degree-measure, denoted by |ZBAC|°, and for each straight-angle a we take |a|® =
180.

c

Figure 1.15. Addition of angle-measures.

o

H,

Figure 1.16. Laying off an angle.

By observation, we note that if A,B,C are non-collinear and [A4,D is between
[4,B and [A,C, then |ZBAD|° + |£CAD|°> = |£BAC|°, while if [4,B and [4,C
are opposite and D ¢ AB, then |ZBAD|° +|£CAD|° = 180.

By observation, given any number k with 0 < k < 180 and any half-line (4,B ,
on each side of the line AB there is a unique wedge-angle ZBAC with |ZBAC|° = k.
In all cases |ZBAB|° =0, so that the degree-measure of each null angle is 0, while if
ZBAC is not null then |ZBAC|® > 0.

It follows from the foregoing, that if ZBAD is any wedge-angle then |ZBAD|° <
180, and that if ZBAD, ZCAD are supplementary angles, then |ZCAD|° = 180 —
|£BADJ°.

4. Given points B and C distinct from A such that C ¢ [A,B , we can choose
a point D such that |ZBAD|° is equal to half the degree-measure of the wedge or
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straight angle with support | BAC. Then for all points P # A on the line AD we have
|£BAP|° = |£LPAC|°. We call AP the mid-line or bisector of the support |BAC.

D $D
¢ P :p
A B

c B

‘A
v

Figure 1.17. Mid-line of an angle-support.

5. Any angle ZBAC such that 0 < |[£ZBAC|° < 90 is called acute, such that
|£ZBAC|° =90 is called right, and such that 90 < |£BAC|° < 180 is called obtuse.

If /BAC is a right-angle, then the lines AB and AC are said to be perpendicular
to each other, written AB 1 AC.

Figure 1.18. Perpendicular lines. Figure 1.19. Congruent triangles.

1.5.4 Our treatment of congruence
If (4, B,C], [A', B',C'] are triangles such that
|B,C|=|B',C'|, |C,A| =|C", 4|, |A,B| = |A', B'|,
|£BAC|° = [£B'A'C'|°, |£CBA|° = |LC'B'A'°, |LACB|° = |LA'C'B'|°,
then we say by way of definition that the triangle [A4, B, C] is congruent to the triangle
{4’,B’,C"]. Behind this concept is the physical idea that [A, B, C] can be placed on

(4, B',C"), fitting it exactly.
By observation if [4, B, C], [A’, B',C"] are such that

|C, Al =|C", A'|, |A, B| = |A", B'|, |ZBAC|° = |ZB'A'C'|",

then [4, B, C] is congruent to [A’, B’, C"]. This is known as the SAS (side, angle, side)
condition for congruence of triangles.
Similarly by observation if (4, B,C), [A', B’,C’] are such that

|B,C| = |B', C'|, |ZCBA|° = |£C'B' A'|°, |£BCA|° = |£B'C' A'}°,
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then [A4, B,C] is congruent to [A’, B’,C']. This is known as the ASA (angle, side,
angle) condition for congruence of triangles.

It can be proved that if T and T” are triangles with vertices {4, B,C}, {4', B',C'},
respectively, for which

IB? CI = |BI’ Cllr IC’Al = |Cl’A,|’ |A,B| = |A’1 Bll;

then T is congruent to T'. This is known as the SSS(side-side-side) principle of
congruence.

1.5.5 Parallel lines

1. Distinct lines I, m are said to be parallel if | N m = §; this is written as ! || m. We

also take I || 1.
/’"

l

Figure 1.20. Parallel lines.

By observation, given any line ! and any point P there cannot be more than one
line m through P which is parallel to ..

Figure 1.21. Alternate angles for a transversal. Corresponding angles.

It can be shown that two lines are parallel if and only if aliernate angles made
by a transversal, as indicated, are equal in magnitude, or equivalently, if and only if
corresponding angles made by a transversal are equal in magnitude.

2. A convex quadrilateral in which opposite side-lines are parallel to each other is
called a parallelogram. A parallelogram in which adjacent side-lines are perpendicular
to each other is called a rectangle.
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Figure 1.22. A parallelogram. A rectangle.

1.6 PRE-REQUISITIES

Although this book re-starts geometry and trigonometry from the beginning, it does
not take mathematics from a start. Consequently there is material from other parts
of mathematics which is assumed known. This also should be revised at the start, or
at the appropriate time when it is needed.

At the beginning, we presuppose a moderate knowledge of set theory, sufficient to
deal with sets, relations and functions, in particular order and equivalence relations.
From Chapter 3 on we assume a knowledge of the real number system, and the
elementary algebra involved. Later requirements come in gradually.

1.6.1 Set notation

For set notation we refer to Smith [12, pages 1 - 38]. We mention that we use the
word function where it uses map. We should also like to emphasise the difference
between a set {a,b} and a couple or ordered pair (a,b). In a set, the order of the
elements does not matter, so that {a,b} = {b,a} in all cases, and

{a,b} = {c,d}

if and only if either
a=c and b=d

or
a=d and b=ec.

In a couple (a,b) it matters which is first and which is second. Thus (a,d) # (b,a)
unless @ = b, and
(a,0) = (c,d)

if and only if
a=c and b=d.

1.8.2 Classical algebra

We need a knowledge of the real number system and the complex number system, and
the classical algebra involving these, up to dealing with quadratic equations and two
simultaneous linear equations in two unknowns. For this very elementary material
there is an ample provision of textbooks entitled College Algebra by international
publishers.
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1.8.3 Other algebra

For matrices and determinants we refer to Smith (12, pages 95 — 124] and McGregor,
Nimmo and Stothers [11, pages 243 — 278), and for the little that we use on group
theory to Smith [12, pages 125 - 152].

1.6.4 Distinctive property of real numbers

For the properties that distinguish the field of real numbers from other ordered fields,
we refer to Smith [12, pages 153 — 196].
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Basic shapes of geometry

COMMENT. Geometry deals with our intuitions as to the physical space in which
we exist, with the properties of the shapes and sizes of bodies as mathematically
abstracted. It differs from set theory in that in geometry there are distinguished or
special subsets, and relations involving them. To start with we presuppose a moderate
knowledge of set theory, sufficient to deal with sets, relations and functions. From
Chapter 3 on we assume a knowledge of the real number system, and the elementary
algebra involved.

In this first chapter we introduce the plane, points, lines, natural orders on lines,
and open half-planes as primitive concepts, and in terms of these develop other special
types of geometrical sets.

2.1 LINES, SEGMENTS AND HALF-LINES

2.1.1 Plane, points, lines

Primitive Terms. Assuming the terminology of sets, the plane, denoted by II, is a
universal set the elements of which are called points. Certain subsets of Il are called
(straight) lines. We denote by A the set of all these lines.

AXIOM A,. Each line is a proper non-empty subset of Il. For each set {A, B} of
two distinct points in II, there is a unique line in A to which A and B both belong. |

We denote by AB the unique line to which distinct points A and B belong, so that
A € AB and B € AB. It is an immediate consequence of Axiom A, that AB = BA;
that if C and D are distinct points and both belong to the line AB, then AB = CD;
and that if A, B are distinct points, both on the line / and both on the line m, then
l=m.

Furthermore if I,m are any two lines in A, then either

inm=40,
or

{Nm is a singleton,

20
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or
I=m andinthislast case INm=I=m.

Moreover the plane II is not a line, as each line is a proper subset of II.
If three or more points lie on one line we say that these points are collinear. If
one point lies on three or more lines we say that these lines are concurrent.

2.1.2 Natural order on a line

COMMENT. The two intuitive senses of motion along a line give us the original
examples of linear (total) orders, and we refer to these as the two natural orders on
that line. On a diagram the sense of a double arrow gives one natural order on [,
while the opposite sense would yield the other natural order on l. We now take natural
order as a primitive term, and go on to define segments and half-lines in terms of this
and our existing terms.

B
B
A
A
Figure 2.1. A line AB. Figure 2.2: The double arrow indicates
The arrows indicate that the line a sense along the line AB.

is to be continued unendingly.

Primitive Term. On each line | € A there is a binary relation <;, which we refer
1:0, as a natural order on [. We read A <; B as ‘A precedes or coincides with B on
AXIOM A;. Each natural order <; has the properties:-
(1) A < A for all points A€ ;
(i) f A<; B and B <; C then A< C;
(iii) ¢f A <; B and B <; A, then A= B;
(iv) for any points A,B € l, either A< B or B A |

COMMENT. We refer to (i), (ii), (iii) in A; as the reflexive, transitive and anti-
symmetric properties, respectively, of a binary relation; property (iii) can be reworded
as, if A <; B and A # B then B £; A. A binary relation with these three properties
is commonly called a partial order. A binary relation with all four properties (i), (ii),
(iii) and (iv) in Az is commonly called a linear order or a total order.



22 BASIC SHAPES OF GEOMETRY (Ch.2

2.1.3 Reciprocal orders

If A <; B we also write B >; A and read this as ‘B succeeds or coincides with 4 on
I. Then >; is also a total order on I, i.e. >; satisfies A3(i), (ii), (iii) and (iv), as can
readily be checked as follows.

First, on interchanging A and A in A3(i), we have A >; A for all A € l. Secondly,
suppose that A >; B and B >; C; then C <; B and B <; A, so by A3(ii) C < 4;
hence A >; C. Thirdly, suppose that A >; B and B >; A; then B<;Aand A <; B
80 by Aj(iii) A = B. Finally, let A, B be any points on /; by Az(iv), either A <; B or
B <; A and 8o either B >; Aor A >; B.

We say that >; is reciprocal to <;. If now we start with >; and let >; be its
reciprocal we have A >=; B if B >; A; then we have A »; B if and only if A <; B.
Thus >; coincides with <;, and so the reciprocal of >; is <;.

The upshot of this is that <; and >; are a pair of total orders on I, each the
reciprocal of the other. There is no natural way of singling out one of <;, >; over
the other, and the notation is equally interchangeable as we could have started with
>1. Having this pair is a nuisance but it is unavoidable, and we try to minimise the
nuisance a8 follows. Given distinct points A and B, let | = AB. Then exactly one
of A <; B, A 2; B holds; for by As(iv) either A <; B or A >; B, and by Aj(iii)
both cannot hold as that would imply that A = B. Thus we can choose the natural
order on I in which A precedes B, by taking <; when A <; B, and by taking >; when
A >; B; we will use the notation <; for this natural order.

Let A and B be distinct points in I1, let | = AB and A <; B. Let C be a point of
l, distinct from A and B. Then ezactly one of

(a')CS'ASlB1 (b)ASlCSlB’ (C)ASlBS‘Cy

holds.

Proof. If C < A then clearly (a) holds. If C <; A is false, then by A3(iv) A <; C;
by As(iv) we have moreover either C <; B or B <; C, and these yield, respectively,
(b) and (c). Thus at least one of (a), (b), (c) holds.

On the other hand, if (a) and (b) hold, we have A = C by Aj(iii) and this
contradicts our assumptions. Similarly if (b) and (c) hold we would have B = C.
Finally if (a) and (c) hold, from (a) we have C <; B by A;(ii) and then B = C.

2.1.4 Segments

Definition. For any points A4, B € II, we define the segments [A4, B] and [B, A] as
follows. Let ! be a line such that A,B € ! and <;, >; a pair of reciprocal natural
orders on l. Then if

A< B sothat B> 4, (2.1.1)
we define
[A,B]={P€l:A$;P5¢B}={P€l:A$,PandPS;B},
[B,A]={PGIZBZ;P21A},
while if

B<; A sothat A>; B, (2.1.2)
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we define
[B,A|={Pe€l:B<; P A},
[A,B]={P€l:A> P> B}.

We should use a more complete notation such as [4, B]<,,>,, [B,4]<,,>,, but make
do with the less precise one. Note that (2.1.2) comes from (2.1.1) on interchanging A
and B, or on interchanging <; and >.

When A # B, by A, | = AB; by

A, (iv) at least one of (2.1.1) and

(2.1.2) holds, and by Aj(iii) only

one of (2.1.1) and (2.1.2) holds.

When A = B, I can be any /;
line through A, and we find that

{Pel: A< P< A} = {4},

{Pel:A> P> A} = {4}, A

for the singleton {A}. To see this
we note that A <; A <; A by
A,(i), while if A <; P <; A then Figure 2.3. A segment [4, B].
P = A by Ag(iii). The same
argument holds for >;. Thus
(4, 4] = {A}.
Segments have the following properties:-

(i) If A+# B, then [A,B] C AB.
(i) A,B€[A,B] forallA,B€ll
(iii) [A,B] =[B,A] for all A,B € II.
(iv) IfC,D € [A, B] then [C, D] C [A, B).
(v) If A, B,C are distinct points on a line l, then precisely one of
A€[B,C), Be|[C,4), C€[A,B]
holds.

Proof. In each case we suppose that A <; B so that we have (2.1.1) above;
otherwise replace <; by > throughout to cover (2.1.2).

(i) By A, ! = AB s0 [A, B] is a set of points on AB.

(i) By A2(i) A1 A<iBand A< B < B.

(iii) As A <; B, then B >; Aso [B,A] = {P €l: B 2> P > A}. Now if
P € [A,B), then A <; P and P <; B. It follows that B >; P and P >; A. Thus
P € [B,A] and so [4,B] C [B,A]. By a similar argument [B, A] C [A, B] and so
(4, B) = [B, A].

(iv) Let C,D € [A,B] so that A <; C <; B and A <; D <; B. By Aj(iv) either
C<iDor DK C.

KC<;Dand P€e[C,D],then C < P<; D. Thus A < C, C < P so by A,(ii),
A< P. Also P <; D, D <; B so by Aq(ii) P <; B. Thus P € [A, B].

If D <; C, we interchange C and D in the last paragraph.

(v) This follows immediately from 2.1.3.
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2.1.5 Half-lines
Definition. Given a line [ € A, a point A € ! and a natural order <; on I, then the set
P(I,A,Sl) = {PG I:4<5 P})

is called a half-line or ray of /, with initial point A.
Given distinct points A, B let <; be the natural order on | = AB for which A <; B;
then we also use the notation [A, B for p(l, A, <i).

-0
B //4
A B

Figure 2.4. A half-line [4,B . Opposite half-lines.

As > is also a natural order on [,
p(l,A,2)={P€l: A2 P}={P€l:P< A}

is also a half-line of I, with initial point A. We say that p(l, A, <;) and p(l, A, >;) are
opposite half-lines.

Half-lines have the following properties:-

(i) In all cases p(l,A,<)) C L.
(i) In all cases A € p(l, A, <i).
(m) If B,C € P(’,A’ Sl), then [B1C] - p(l)A’ Sl)

Proof.

(i) By the definition of p(l, A, <), we have P € [ for all P € p(l, A, <) and so
P(l, A’ Sl) cl

(ii) By As(i) A <1 4,80 A€ p(l,A4,%)).

(iii) As B,C € p(I,A,<;) we have A <; B and A <; C. Since B, C € I, by Aj(iv)
either B <; C or C <; B. When B £; C, we have B <; P for all P € [B,C]; with
A <; B this gives A <; P by A,(ii), and so P € p(l, 4, <;). When C <; B, we have
a similar proof.

2.2 OPEN AND CLOSED HALF-PLANES

2.2.1 Convex sets

Definition. A set £ is said to be convex if for every P,Q € £, [P,Q] C € holds.

NOTE. By 2.1.4(iv) every segment is a convex set; by 2.1.5(iii) so is every half-line.
In preparation for the next subsection, we note that by A;, for each line [ € A we
have IT\ I # 0.
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2.2.2 Open half-planes
Primitive Term. Corresponding to each line I € A, there is a pair {Gi1,Ga} of non-
empty sets called open half-planes with common edge [.

AXIOM Aj3. Open half-planes Gy,Ga with common edge | have the properties:-
(i) M\!=G, UGy

(ii) G1 and Ga are both convez sets;

(iii) f P € G1 and Q € Gy, then [P,Q] NI #£0. |

We note the following immediately.
Open half-planes {G1,Ga} with common edge | have the properties.-

() InG,=0,InG, =0.

(i) G NGy =0.
(ili) If P € G and [P, Q)N # 0 where Q €1, then Q € Ga.
(iv) Each line l determines a unique pasr of open half-planes.

Proof.

(i) By As(i), INn(Gy UGs) =0 and as G, C G, UG it follows that ING; = @. The
other assertion is proved similarly.

(ii) If G1 N Gy # B, there is some point R in both G, and G3. By As(iii) with
P =R, Q = R, we have that [R,R] Nl # . But R is the only point in [R, R] so
R € 1. This contradicts the fact that I[N G, = 0.

(iii) For otherwise by As(i), Q € G and then by Ag(ii) [P,Q] C Gi. AslNG, =0,
it follows that [P,Q] N = @ which contradicts the assumptions.

(iv) Suppose that

M\i=6GUG=G UG,

where {G1,G3} and {G],G3} are both sets of open half-planes with common edge /.
Then
GICGUG =G UG

80 either
(@G cG o (BGCG o ()GNG #0, GNG,#0.

In (c) we have P € G,, P € G} and Q € G1, Q € G; for some P and Q. But then
we have [P,Q] C G1, by As(ii) applied to G, and [P,Q] N1 # B, by As(iii) applied to
{G:,G5}- This gives a contradiction as § NGy = @. Thus (c) cannot happen.

By similar reasoning, we must have either

@G cG or ()G CGa.
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Now (a) and (d) give G; = G| and it follows that G3 = G as
(GLUG)\ G =G, (GIUG)\ G =Gi.

Similarly (b) and (e) give G, = G; and it follows that G; = Gj.
Finally, we cannot have (a) and (e) as that would imply G, C G3. Neither can we
have (b) and (d).

TERMINOLOGY. If two points
are both in G; or both in G; they
are said to be on the one side
of the line I, while if one of the
points is in G, and the other is in
G they are said to be on differ-

ent sides of {. Figure 2.5. A closed half-plane shaded.

2.2.3 Closed half-planes
Definition. If Gy, G, are open half-planes with common edge I, we call

H1 =G U, Ha =Ga U,

closed half-planes with common edge l.
Closed half-planes H;,Ha with common edge | have the properties:-

(i) HaUHa =11
(i) HanHa =1.
(iii) Each of Hi,H3 is a conves set.
(iv) fA€land B# A is in M, then [A,B CH,.

Proof.

(i) By As(i), I=GiUGUI= (G U U (G Ul) =H; UH3.

(i) For (GGUDN(GUD)=(GiNGR)UGINHU(Gsn)ulnl) =Inl=IL.

(iii) We prove that #, is convex; proof for H; is similar.

Let A, B € H,; we wish to show that [A4, B] C #,;.

CASE (a). Let A, B € G,. Then the conclusion follows from Ag(iii).

CASE (b). Let A,B € 1. Then [A, B] C 1 C H;, so the result follows.

CASE (c). Let one of A, B be on ! and the other in G;,say A€ [,B € G,.

Suppose that [A, B] is not a subset of ;. Then there is some point C € [A, B]
such that C € G;. Note that C # A,C # B as A,B¢ G3,C € G3.

Now B € G;,C € G s0 by As(iii) there is some point D of [B,C] on I, so that
D € [B,C),D €l. Now A, B,C are collinear and distinct, and C € [A, B] so by 2.1.4
we cannot have A € [B,C]. Hence A # D.

But A € |,D € I s0 by A;,AD = I. However AB = BC and D € BC, so
D € AB. Then AB = AD =1, 80 B € I. This gives a contradiction. Thus the
original supposition is untenable so [A, B] C #,, and this proves (iii).
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(iv)

CASE (a). Let B € 1. Then [A,B C I C H,, which gives the desired conclusion.

CASE (b). Let B € G,. Suppose that [A, B is not a subset of ;. Then there is
some point C € [A, B such that C € G;. Clearly C # A,C # B. Now A,B,C are
distinct collinear points, 80 by 2.1.4 precisely one of

A€ (B,C]l, Be[C, 4], C€|[A4,B],

holds. We cannot have A € [B, C] as that would put B,C in different half-lines with
initial-point A, whereas they are both in (4, B. This leaves us with two subcases.
Subcase 1. Let C € [A, B]. We recall that A, B € H; so by part (iii) of the present
result [4, B] C H,. As C € [A, B],C € G3, we have a contradiction.
Subcase 2. Let B € [A,C). We recall that A € Ha,C € H;3 so by part (iii) of the
present result, [A,C] C H;3. Then B € Hja, B € G, which gives a contradiction. Thus
the original supposition is untenable, and this proves (iv).

NOTE. The terms ‘open’ and ‘closed’ are standard in analysis and point-set topol-
ogy- What is significant is that an open half-plane contains none of the points of the
edge, while a closed half-plane contains all of the points of the edge.

2.3 ANGLE-SUPPORTS, INTERIOR AND EXTERIOR REGIONS, AN-
GLES

2.3.1 Angle-supports, interior regions

C '
B - C
! /
B
Figure 2.6. An angle-support. A straight angle-support.

Definition. We call a pair {[A4, B, [4, C } of co-initial half-lines an angle-support.
For this we use the notation |[BAC. When A € [B, C], this is called a straight angle-
support. We call the half-lines [4,B and [A,C the arms, and the point A the
vertex, of |[BAC. Note that we are assuming B # A and C # A from the definition
of half-lines. In all cases we have |BAC = |CAB.

COMMENT. The reason that we do not call | BAC an angle is that there are two
angles associated with this configuration.
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Figure 2.7. An interior region. The corresponding exterior region.

Definition. Consider an angle-support |BAC which is not straight. When A, B,C
are not collinear, let 7, be the closed half-plane with edge AB in which C lies, and
Hs the closed half-plane with edge AC in which B lies. Then H; N Hg is called
the interior region of |[BAC, and we denote it by ZR(|JBAC). When A, B,C are
collinear we have [4,B = [A,C and we define ZR(|BAC) = [A,B .

Interior regions have the following properties:-

(i) [A,B and[A,C are both subsets of IR(|BAC).

(i) If P,Q € IR(|BAC) then [P,Q] C IR(|BAC), so that an interior region is a
convezx set.

(iii) If P € TR(\BAC) and P # A, then [A,P C TR(|BAC).

Proof.

(i) When A, B,C are non-collinear, by 2.1.5 [A,B C AB C H, and by 2.2.3
(A,B C H3 s0o [A,B C H; NHs. Similarly for [A,C . When [A,B = [A,C the
result is trivial.

(ii) When A, B, C are non-collinear, we have that [P, Q)] is a subset of H; by 2.2.3.
It is a subset of Hs similarly, and so is a subset of the intersection of these closed
half-planes. When [A,B = [A,C , the result follows from 2.1.5.

(iii) When A, B,C are non-collinear, by 2.2.3 [A, P is a subset of each of ; and
Hs, and so of their intersection. When [4,B = [A,C we have ZR(|BAC) = [A,B
and [A,P =[A,B.

2.3.2 Exterior regions

Definition. If |BAC is an angle-support which is not straight and ZR(|BAC) is its
interior region, then

{1\ ZR(|BAC)} U [4,B U[A,C

is called the exterior region of | BAC, and denoted by ER(|BAC). Thus the interior
and exterior regions have in common only the arms.
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2.3.3 Angles
Figure 2.8. A wedge-angle. A reflex-angle. A straight-angle.

Definition. Let |BAC be an angle-support which is not straight, with interior re-
gion IR (|BAC) and exterior region ER(|BAC). Then the pair (|BAC, IR(|BAC)) is
called a wedge-angle, and the pair (|BAC, ER(]BAC)) is called a reflex-angle. If
|BAC is a straight-angle support and #;,H; are the closed half-planes with common
edge AB, then each of the pairs (|BAC,H,), (JBAC, Ha) is called a straight-angle.

In each case the point A is called the vertex of the angle, the half-lines [4,B and
[A4,C are called the arms of the angle, and |BAC is called the support of the angle.

We denote a wedge-angle with support |BAC by ZBAC. The wedge-angle ZBAB

is said to be a null-angle.

2.4 TRIANGLES AND CONVEX QUADRILATERALS

2.4.1 Terminology

COMMENT. The terminology which we have used hitherto is established, apart from
‘angle-support’ and ‘wedge-angle’ which we have coined. Now we are reaching termi-
nology which is of long standing but is used in slightly varying senses.

In Euclidean geometry it is generally accepted that the concept of triangle is
associated with:

(i) aset {A, B,C} of three points which are not collinear;

(ii) a union of segments [B,C] U [C, A] U [A, B], where the points 4, B,C are as in
(i)

(iii) an intersection of half-planes H; N H3 N Hg, where A, B,C are as in (i), H; is
the closed half-plane with edge BC in which A lies, H;3 is the closed half-plane
with edge C A in which B lies, and H; is the closed half-plane with edge AB in
which C lies.

However in some courses the actual definition of a triangle is taken to be (i), in
other courses it is taken to be (ii), and in other courses it is taken to be (iii), with (ii)
and (iii) very common. In yet other courses a combination of (i) and (ii) is taken.

Having to make a choice for the sake of precision, we opt for (iii); then for us (i)
will be the set of vertices of our triangle, and (ii) will be the perimeter of our triangle,
with the individual segments being the sides. We shall then be able to refer naturally
to the area of a triangle and the length of its perimeter.
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Consideration similar to (i), (ii) and (iii) for a triangle surround each of the terms
quadrilateral, parallelogram, rectangle and square, and we adopt our terminology
consistently.

2.4.2 Triangles

NOTE. Let A, B,C be points which do not lie on one line. Then by A,, A,B,C
are distinct points, and A € BC, B € CA, C ¢ AB. In fact these lines are not
concurrent; for BC and CA cannot have a point P in common other than P = C,
while C ¢ AB.

Definition. For non-collinear points A, B,C let H; be the closed half-plane with
edge BC in which A lies, H3 the closed half-plane with edge CA in which B lies,
and Hg the closed half-plane with edge AB in which C lies. Then the intersection
‘H1 NHs N Hy is called a triangle, and is denoted by [A4, B, C].

A
Figure 2.9. A triangle [4, B,C]. Figure 2.10. A convex quadrilateral.

The points A, B, C are called its vertices; the segments [B, C], [C, A], (4, B] are called

its sides; the lines BC,C A, AB are called its side-lines. The union [B,C)U [C, A]JU

[4, B] of its sides is called its perimeter. A side and a vertex not contained in it are

said to be opposite; thus A is opposite B, C] but is not opposite [C, A] or [4, B].
Triangles have the following properties:-

(i) [A,B,C] is independent of the order of the points A, B,C.

(i) Each of the vertices A, B,C is an element of [A, B, C).
(i) If P,Q € [A,B,C), then [P,Q] C [A4, B,C] so that a triangle is a convez set.
(iv) Each of the sides B, C),[C, A],[A, B] is a subset of [A, B, C].

Proof.

(i) As N is commutative, H; N Hz N H; is independent of the order of H;,Hs, Hs.

(ii) The vertex A is in #; by definition. It is also in the edge of each of 3 and
Hs, 50 by 2.2.3 it is in each of these closed half-planes. The vertices B and C are
treated similarly.

(iii) By definition of an intersection, P and Q are in each of #,,Hs,Hs. By 2.2.3,
[P,Q) is a subset of each of these closed half-planes, and so it is a subset of their
intersection.

(iv) This follows from parts (ii) and (iii) of the present result.
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2.4.3 Pasch’s property, 1882

PASCH’S PROPERTY. If a line cuts one side of a triangle, not at a vertez, then it will
either pass through the opposite vertez, or cut one of the other two sides.

Proof. Let [A, B,C] be the triangle and I a line which cuts the side [A, B] at a
point which is not a vertex. If C € | we have the first conclusion. Otherwise suppose
that ! does not cut [B, C]. Then A and B are on different sides of {, but B and C are
on the same side of I. It follows that A and C are on different sides if I, so by Ag(iii)
a point of [A4, C] lies on .

2.4.4 Convex quadrilaterals

Definition. Let A, B,C, D be four points in II, no three of which are collinear, and
such that [A,C] N [B,D] # @. Let #H; be the closed half-plane with edge AB in
which D lies, Hg the closed half-plane with edge BC in which A lies, 75 the closed
half-plane with edge CD in which B lies, and H7 the closed half-plane with edge DA
in which C lies. Then the intersection H; N3 N Hg N H7 of these four half-planes is
called a convex quadrilateral, and we denote it by (4, B, C, D].

Each of the four points A, B, C, D is called a vertex ; the segments (4, B), (B, C],
[C, D], [D, A] are called the sides, and AB, BC,CD, DA are called the side-lines ;
the union of the sides (4, B]U [B,C] U [C, D] U [D, 4] is called the perimeter. The
segments [A,C], [B, D] are called the diagonals, and AC, BD the diagonal lines.
Vertices which are the end-points of a side are called adjacent while vertices which
are the end-points of a diagonal are called opposite; thus A and B are adjacent as
[A, B] is a side, and A and C are opposite as [4,C] is a diagonal. Sides which have
a vertex in common are said to be adjacent while sides which do not have a vertex
in common are said to be opposite; thus the sides [A, B), [4, D] are adjacent as the
vertex A is in both, while the sides [4, B], [C, D] are opposite as neither C nor D is
in AB and so neither of them could be A or B. If we write

/\
A C

\ /
B

then two vertices in [4, B, C, D] will be adjacent if the letters for them in this diagram
are linked.
Exercises
2.1 Let P be a fixed point in II. Identify the union of all lines { € A such that P € {.
2.2 Prove that segments have the following properties:-
(i) If C € [A, B], then [4,C]U[C,B] =[A, B] and [4,C]N[C,B] = {C}.

(i) If C € {A, B] and B € [A,C] then B =C.
(iii) If C € [A, B] and D € [A,C], then C € [D, B).
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(iv) B # A, B € [A,C] and B € [A, D), then either C € [B,D]or D € [B,C].
2.3 Prove that half-lines have the following properties:-

(i) EBe p(’r A, Sl)’ then p(l) B, Sl) c p(l)As Sl)
(ii) IfB e p(”A’Sl)’ then p(l’A, S') = [A’B] u p(l’B’ Sl) and [A»B] n
p(l’ B, Sl) = {B}
(iii) Let B € p(l, A,<;),A # B and A € [B,C]. Then C € p(l, A, <;) only if

(iv) Let B € p(l,A,<i) and A # B. Then C € p(l, A, <;) if and only if either
Be[A,C)or C € [A,B].

(v) In all cases
p(l) Ar Sl) Up(l) As Zl) =l and P(’,A, Sl) n P(l, A’ Zl) = {A}

(vi) Let B € p(l,A,<;) and A # B. Then C € .p(l, A, >;) if and only if
A€ [B,C).

(vii) Let B € p(l,A,<;) and A # B. Then
p(, A, <)) Up(l, B, ) =1, p(l, A,<i) N p(l, B, 1) = [A, B),
plhA,2)Np(, B, <) =0, p(l, A, 2:) Up(l,B,<i)U[4,B] =1
(viii) f A# B,A#C and C € [A,B, then [4,B =[A,C.

2.4 If [A, B}, [C, D] are both segments of a line I such that [4, BN [C, D] # @, show
that (4, B] N [C, D] and [4, B] U [C, D] are both segments.

2.5 Show that if A # B and C, D are both in AB\[A, B], then either (4, B]N[C, D] =
@ or [A,B] C [C, D).

2.6 Let <g be a total order on the set E and f : E — F a 1:1 onto function. If for
a,b € F,a <p b when f~'(a) <g f~1(b), show that <r is a total order on F.

2.7 Use Ex.2.6 to show that if F is an infinite set and there is a total order on F,
then there are infinitely many total orders on F.

2.8 Show that interior regions have the following properties:-

(i) If P € ZR(|BAC) and P # A, then AP NIR(|BAC) =[A,P.

(ii) If A, B,C are non-collinear and U € [4,B, V € [A,C but neither U nor
V is A, then UV NIR(|BAC) = [U,V].

(iii) If A, U,V are distinct collinear points, and U and V are both in ZR(JBAC),
then V € [A,U .

2.9 Show that an exterior region has the following properties:-

(i) The arms [A,B and [A,C are both subsets of ER(|BAC).
(ii) If P € ER(|BAC) and P # A, then [A,P C ER(|BAC).
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2.10 Show that convex quadrilaterals have the following properties:-
(i) Each of

(2)(4,D,C, B], (3)[C,B, A, D}, (4)[C,D, A, B),
(5)(B, 4, D, C], (6)(B,C, D, 4], (7)[D, A, B,C),
(8)[D,C, B, 4),

is equal to (1)[4, B,C, D).
(ii) Each of the vertices A, B,C, D is an element of [4,B,C, D).

(iii) If P,Q € [A,B,C, D), then [P,Q] C [A,B,C, D] so that [4,B,C,D] is a
convex set.

(iv) Each side and each diagonal is a subset of (4, B, C, D).
(v) Any pair of opposite sides are disjoint.
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Distance; degree-measure of
an angle

COMMENT. In this chapter we introduce distance as a primitive concept, relate it to
the properties of segments, and define the notion of the mid-point of two points. We
also introduce as a primitive concept the notion of the degree-measure of a wedge-angle
and of a straight-angle, relate it to the properties of interior-regions and half-planes,
and define the notion of the mid-line of an angle-support.

3.1 DISTANCE

3.1.1 Axiom for distance

Notation. We denote by R the set of real numbers.

Primitive Term. There is a function | | : II x II =+ R called distance. We read
|A, B| as the distance from A to B. We also refer to |4, B| as the length of the
segment [A, B).

AXIOM A,. Distance has the following properties:-
(i) |A,B| 20 for all A, B € 1I;
(i) |A,B| =|B,A| for all A,B € II;
(iii) i Q € [P, R], then |P,Q| +|Q,R| = |P,R|;

(iv) given any k > 0 in R, any line l € A, any point A € | and either natural order
<i on l, there is a unique point B € | such that A <; B and |A,B| =k, and a
unique point C € | such that C <; A and |A,C| = k. |

COMMENT. Note that A4(iv) states that we can lay off a distance k, uniquely, on
I on either side of A. The fact that different letters A, B, C are used is not to be taken
as a claim that A, B, C are distinct in all cases. Axiom A4(iv) implies that each line [
contains infinitely many points and this supersedes the specification in A, that I # @;

34
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nevertheless it was convenient to stipulate the latter to avoid a trivial situation. In
A4(iii) addition + of real numbers is involved.

A
v’ Q_a A

P XY

v

Figure 3.1. Addition of distances. Laying off a distance k.

3.1.2 Derived properties of distance
Distance has the following properties:-
(i) Forall A€l |A,A| =0, and we have |A,B| >0 if A# B.
(i) If P € [A, B), then |A, P| < |A, B|. If additionally P # B, then |A, P| < |A, B|.
(ii) If A # C and B lies on the line AC but outside the segment [A,C), then
|4, B| +|B, C| > |4, C|.

(iv) IfC € [A,B is such that |4, B| < |A, C|, then B € [A,C].

Proof.
(i) By Ay(iii) with P = Q = A and any R € II, we have |4, A| + |4, R| = |4, R],
i.e. 4+ y =y where z = |4, A| and y = |A, R|. It follows that z = 0.
Next with A # B let | = AB and <; be the natural order on ! for which A <; B.
Then we have
A< B, A< A, IA’AI=0v

so that if we also had |4, B| = 0, then by the uniqueness part of A4(iv) with k =0,
we would have A = B and so have a contradiction. To avoid this we must have
|4, B| > 0.

(ii) As P € [A, B], by A4(iii) we have |A, P| + |P,B| = |A, B|. But by A4(i)
|P,B| > 0 and so |A,P| < |A,B|. If P # B, then by (i) of the present theorem
|P,B| > 0 and so |4, P| < |4, B|.

(iii) As B ¢ [A,C] we have B # A,B # C and so by 2.1.4 we have either
A €[B,C] or C € [A, B). In the first of these |B, A| + |4, C| = | B, C| by A4(iii) and
as |4, B| = |B, A| > 0 this gives |4,C| < |B,C| < |A,B| +|B, C|. In the second
case we have |4, C| + |C, B| = |A, B| by A4(iii} and as |C, B| = |B,C| > 0, then
|A,C| <|A,B| < |A,B|+|B,C|.

(iv) We have A # B by definition of [A,B ,and A# C as 0 < |4, B| < |4, C| s0
that 0 < |4, C|. We also have B # C as |4, B| < |4, C| combined with B = C would
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give |4, B| < | A, B|, whereas once (A, B) is known |A, B| is uniquely determined. We
cannot have A € [B,C] as C € [4,B . Then by 2.1.4 either B € [C, 4] or C € [A, B).
But by (ii) of the present result, if C € [A4, B] we would have |4, C| < |4, B|. As this
is ruled out by assumption, we must have B € [A, C].

Segments and half-lines have the following further properties:-

(i) Letl € A be a line, A €l and <; a natural order on l. Then there are points B
and C onl such that A <; B and B # A, and such that C <; A and C # A.

(ii) If A # B, there are points X € [A, B] such that X # A and X # B.
(iii) If[4,B =(C,D then A=C.

Cc A

Figure 3.2.

Proof.

(i) By A4(iv) with any k > 0, there is some B € I such that A <; B and |4, B| =k.
As |4, B] > 0, we have A # B. Proof for the existence of C is similar.

(ii) Let <; be the natural order on ! = AB for which A <; B. As A # B we have
|A, B| > 0 and then with any k such that 0 < k < |4, B, there is a point X € [ such
that A <; X and |4, X| = k. As |4, X]| #0, we have A # X; as |4, X| < |4, B| then
X #B. As X € [A,B and |4, X| < |4, B|, we have X € [A,B].

(iii) With the notation of (ii), P € (4, B if and only if A <; P. Now C € [C,D =
[A,B so A S; C; similarly A Sj D.

CASE 1. Let C < D,sothat [C,D ={Q€l:C<;Q}. AsA€[A,B=[C,D
we have C <; A and this combined with A <; C implies A =C.

CASE 2. Let D <; C. Then [C,D = {Q €l : Q <; C}. By (i) of the present
result there is an X € I such that X <; Aand X # A. Then X <; 4,4 <, C s0
X <; C and thus X € [C,D . However X ¢ [A,B as otherwise we would have
A <; X which combined with X <; A implies X = A and involves a contradiction.
Then X € [C,D, X ¢ [A,B which contradicts the fact that [A,B = [C,D and so
this case cannot occur.

Figure 3.3.
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3.2 MID-POINTS

3.2.1

If A # B there is a unique point X on |l = AB such that |A,X| = |X,B|. In this in
fact X € [A,B] and X # A, X # B.

Proof.

Existence. Let <; be the natural order on ! for which A <; B. With k = %|A,B|,
by A4(iv) there is a point X on I such that A <; X and |4, X| = 1]A, B|. Clearly X €
[4,B . As |A, B} > 0 we have |4, X| < |4, B|; by 3.1.2 this implies that X € [A, B],
X # B. By Ay(iii) |4, X|+|X, B| = |A, Bl and s0 | X, B| = |4, B|-}|4, B| = }|4, B|.
Thus |A, X| = | X, B| as required. We have already seen that X € [4, B] and X # B;
as [A, X| > 0 we also have X # A.

Uniqueness. Suppose now that Y € l and |4, Y| =|Y,B|. Then Y cannot be A
or B, ase.g. Y = A implies that |4, A| = |4, B|, i.e. 0 = |A, B|. Thus by 2.1.4 one of

Y €[A,B), A€[Y,B], BE[4,Y),

holds. The second of these would imply |Y, 4| + |4,B| = |Y,B| and 80 |Y, 4] <
|Y, B| as |4, B| > 0. The third of these would imply |4, B| + |B, Y| = |4, Y| and so
|B, Y| < |A, Y|. As these contradict our assumptions, we must haveY € [A, B]. Then
|4,Y]|+|Y,B| = |A,B| and as |4, Y| = |Y, B| this implies that |4, Y| = 3|A, B|.
Then A <; X,A <; Y and |4, X| = |A, Y| 80 by the uniqueness in A4(iv) we must
have X =Y.

Definition. Given any points B

A,B € II, we define the mid-

point of A and B as follows: if

A = B then the mid-point is A;

when A # B the mid-point is the X

unique point X on the line AB

such that |4, X| = | X, B|, which

has just been guaranteed. We A
denote the mid-point of A and B Figure 3.4. Mid-point of 4 and B.
by mp(4, B).

Mid-points have the following properties:-
(i) For all A,B € 11, mp(A, B) = mp(B, A).
(ii) For all A,B €11, mp(A, B) € [A, B].
(iii) In all cases mp(A, A) = A, and mp(A, B) # A, mp(A, B) # B when A # B.

(iv) Given any points P and Q in II, there is a unigque point R € II such that Q =
mp(P, R).

Proof.
(i) When A # B this follows from the definition and A4(ii); when A = B it is

immediate.
(ii) When A # B this follows from the preparatory result. When A = B it amounts

to A € {A}.
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(iii) This follows from the definition and preparatory result.

(iv) Existence. If Q = P we take R = P and then mp(P, R) = mp(P,P) = P =Q.
Suppose then that P # Q, let | = PQ and let <; be the natural order on I under
which P <; Q. Take R on ! so that P <; R and |P, R| = 2|P, Q|. Then P precedes
both Q and R on I, while |P, Q| = |P, R|. By our initial specification of X in the
preparatory result we see that Q = mp(P, R).

Uniqueness. Suppose that also Q = mp(P,S). We again first take Q = P. Now in
the preparatory result we had X # A, so that cannot be the situation here as Q = P;
thus we must have S = P and 80 S = R. Next suppose that Q # P; then we cannot
have S = P, as we had X # A. Then Q € PS,s0 by A, S € PQ. In fact Q € [P, S]
so a8 P <; Q we must have P <; S; moreover |P, R| = |P, S| as each is twice the
distance |P, Q|. By the uniqueness in A4(iv) we must then have R = S.

3.3 A RATIO RESULT

3.3.1
Let A, B,C be distinct collinear points, and write
4.0] __ 14,0 _,
|4,B8f ~ " |C,B|  ©
Then if C € [A, B] we have
=T ="
T 1-r T 148

Proof. Let |A,C| ==z, |C,B|=y. As C € [A, B] we have |A,B| =z +y. Then

z =r so that z+y__
z+y
Hence
y 1 z |AC| r
—:——1 d _— i e— .
z r and 8o y |C,B] 1-r
In turn
r
8= and so s—8r=r,
1-r
giving

8
1+3s

s8=r(l+s) andthus r=

3.4 THE CROSS-BAR THEOREM

3.4.1

THE CROSS-BAR THEOREM. Let A, B, C be non-collinear points, X # A any point on
(A,B andY # A any point on [A,C . If D # A is any point in the interior region
IR(|BAC), then [A,D N[X,Y]#0.
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Proof. f D is on [A,B or
[A,C the result is clear,
80 we turn to other cases.
By 3.1.2 there is a point
E # A such that A €
[E,X]. Thus X and E
are on different sides of the
line AC. E-A

Figure 3.5. The Cross-Bar Theorem.

Then by 2.2.3(iv) every point of [Y, E (other than Y') is on one side of AC, while
every point of [A,D (other than A) is on a different side of AC; thus [A,D does
not meet (Y, E]. Moreover the other points of the line AD are on one side of the
line AB, while the points of [E,Y (other than E) are on the other side of AB.
On combining these two, we see that the line AD does not meet the side [E,Y] of
the triangle [E, X,Y]. As AD does meet the side [E, X] of that triangle, we see
by 2.4.3 that AD must meet the third side [X,Y] of that triangle at some point F.
As F € [X,Y] C IR(|BAC), F must be on the part of AD in IR(|BAC), that is
Fe[AD.

3.5 DEGREE-MEASURE OF ANGLES

3.5.1 Axiom for degree-measure

Primitive Term. There is a function | [° on the set of all wedge-angles and straight-
angles, into R. Thus with each angle a, either a wedge-angle a = ZBAC or a
straight-angle with support |[BAC, there is associated a unique real number |al°,
called its degree-measure.
AXIOM Aj;. Degree-measure | |° of angles has the following properties:-
(i) In all cases |al° > 0;
(i) if a s a straight-angle, then |a|® = 180;

(iii) if ZBAC is a wedge-angle and the point D # A lies in the interior region
IR(|BAC), then
|£BAD|° + |£DAC|° = |£BAC|°,

while if |BAC is a straight angle-support and D ¢ AB, then
|£BAD|° + |£DAC|° = 180;

(iv) if B # A, if H1 is a closed half-plane with edge AB and if the half-lines {A,C
and [A,D in H, are such that |ZBAC|° = |ZBADJ°, then [A,D =[A,C;
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(v) if B # A, if ", is a closed half-plane with edge AB and if 0 < k < 180, then
there is a half-line [A,C in H, such that |[ZBAC|° =k. |

Figure 3.6. Addition of angle-measures.

COMMENT. The properties and proofs for degree-measure are quite like those for
distance, with the role of interior regions analogous to that of segments. We note that
A5 (i) is like A4(i), Ag(iii) is like A4(iii), As(iv) is like the uniqueness part of A4(iv)
and Aj(v) is like the existence part of A4(iv). Wedge-angles ZBAD and ZDAC such
as those in the second part of Aj(iii) are said to be supplementary.

3.5.2 Derived properties of degree-measure

Definition. For a wedge-angle ZBAC, if we take a point B, # A so that A € [B, B]
and a point C) # A so that A € [C,C\], then £B; AC, is called the opposite angle
of ZBAC.

M

A

Figure 3.7. Laying off an angle. Figure 3.8. Opposite angles at a vertex.

Degree-measure has the properties:-
(i) The null-angle ZBAB has degree-measure 0.
(i) For any non-null wedge-angle ZBAC, we have 0 < |£BAC|° < 180.
(iii) If £B1AC, is the angle opposite to LBAC, then
|£B;AC:|° = |£BAC|°,

so that opposite angles have egual degree-measures.
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Proof.
(i) Let C be a point not on AB. Then by A;(iii) with D = B,

|£BAB|° + |£BAC|° = |£BAC[°.

It follows that |ZBAB|° = 0.

(ii) Given any non-null wedge-angle ZBAC, let H; be the closed half-plane with
edge AB in which C lies. If we had |£BAC|° = 0, then we would have |ZBAC|° =
|£BAB|°® and so by As(iv) we would have [4,C = [4,B . This would imply that
£BAC is null, contrary to assumption. Then by As(i) [£ZBAC|® > 0.

Now choose the point E # A so that A € [B,E]. Then by As(iii), as we have
supplementary angles,

|£BAC|° + |£CAE|° = 180.
But [A,E # [A,C as ZBAC is a wedge-angle, so ZCAE is not a null-angle. By the
last paragraph we then have |ZCAE|° > 0 and it follows that |ZBAC|° < 180.
(iii) As |BAB,, |CAC} are straight we have

|£BAC|° +|£CAB4|° = 180,
IéCAB] |° + IZB; AC}Io = 180,
there being two pairs of supplementary angles. It follows that
|£ZBAC|° + |£CAB,|° = |£LCAB;|° + |£B; AC,|°,
from which we conclude by subtraction that [£BAC|° = |£B; AC,|°.
Degree-measure has the further properties:-

(i) If £BAC is a wedge-angle and D # A is in IR(|BAC), then |ZBAD|° <
|£BACP. If, further, D & [A,C then |ZBAD|° < |{BAC|°.

(ii) For non-collinear points A, B,C let H, be the closed half-plane with edge AB
in which C lies. If D # A is in M, and |Z/BAD|° < |£/BAC|°, then D €
IR(|BAC).

Figure 3.9.

Proof.

(i) As D € IR(|BAC), by As(iii) |ZBAD)° + |£DAC|° = |£ZBAC|°. By As(i),
|£ZDACI® > 080 |£BAD|° < |£BAC|°.

If D ¢ [A,C then ZDAC is not a null-angle, so |ZDAC|° > 0 and hence
|£BAD|° < |£BAC/°.
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(ii) Let E # A be such that A € [B, E]. Let Hs, H4 be the closed half-planes with
common edge AC, with B € H3 and E € H4. Then

Hi = HinI=H, n(H3U7'l4) = ('Hl n')‘ls)U('Hl n'H4)
IR(|BAC)UIR(|EAC).

As D € H,, then either D € IR(|BAC) or D € IR(|EAC).
Now suppose that D ¢ TR(JBAC), so that D € IR(|EAC) and D ¢ [A,C . By
As(iii),
|LEAD|®° + |£DAC|° = |LEAC|°.

Hence by Aj(iii), as we have supplementary pairs of angles,
180 - |£BAD|° + |£DAC|° =180 - [£BAC|°.
From this
|£BAC|° + |£ZDAC|° = |£BAD|°,
and as |ZDAC|° > 0, we have |ZBAC|° < |£BAD|°. This gives a contradiction with

our hypothesis.

3.6 MID-LINE OF AN ANGLE-SUPPORT

3.6.1 Right-angles

Definition. Given any point P # A of a line AB, by As(v) there is a half-line [P,Q
such that |ZAPQ|° = 90. Then ZAPQ is called a right-angle. If R # P is such that
P € [A, R)] then ZRPQ is also a right-angle. For |[APR is a straight angle-support,
80 having supplementary angles,

|ZAPQ|° + |ZQPR|° = 180.

As |ZAPQ|° = 90 it follows that [ZRPQ|° = 180 — 90 = 90.

3.6.2 Perpendicular lines

Definition. If I,m are lines in A, we say that I is perpendicular m, written ! L m,
if | meets m at some point P and if A # P ison I, and Q # P is on m, then ZAPQ
is a right-angle.

COMMENT. In 3.6.1, we say that a perpendicular PQ has been erected to
the line AB at the point P on it.

Perpendicularity has the following properties:-
(i) Ifl L m, thenm L.
(i) Ifl Lm, thenl#m and INm # 0.

Proof.
These follow immediately from the definition of perpendicularity.
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C P
Q
90 p A B
A
P
Figure 3.10. Perpendicular lines. Mid-line of an angle-support.

30803 Mid'lines

Given any angle-support |[BAC such that C & [A,B , there is a unique line | such
that A€l and for all A# P €l, |{BAP|° = |£PAC|°.

Proof.

Existence.

This was already shown in 3.6.1 in the case when |BA(C is straight, so we may
assume that A, B, C are non-collinear.

By As(v) and 3.5.2, as 0 < |ZBAC|° < 180 and so 0 < 3|ZBAC|° < 90, there
is a half-line [4, P with P on the same side of AB as C is, such that |ZBAP|° =
34BAC|°. Then [A,P C IR(|BAC) by 3.5.2, so by As(iii)

|ZBAP|° +|ZPAC|® = |ZBAC]".

Figure 3.11.

It follows that
1
|LPACI® = |LBACI" - 5|ZBACI" = |BACI"

and so |[ZBAP|° = |ZPAC°.
If P' # A is such that A € [P, P'], then by Ag(ii)

|ZBAP'|° = 180 — |£BAP|° = 180 — |ZPAC|° = |£P'AC]°.
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Uniqueness.

When |BAC is straight, by Aj(iii) 2|ZBAP|° = 180 so |ZBAP|° =90. By Ag(iv)
this determines ! uniquely. For the remainder we suppose then that we have a wedge-
angle ZBAC.

Let #;,Ha be the closed half-planes with common edge AB, with C € #;, and
Hs,Ha be the closed half-planes with common edge AC, with B € Hg. Let By # A
be such that A € [B, By].

Now if I contains a point @ # A in H,4 it will also contain a point R # A of Hs,
80 we may assume that [ contains a point P # A of Hj. As

Il

Hi %1ﬂn=%1n(%3u7{4)=(Hlnﬂs)U(%ln'Hﬂ

IR(|BAC) UTR(|B;AC),

we then have P € TR(|BAC) or P € IR(|B; AC).

We get a contradiction if ! is either AB or AC. For if | = AB, then we have
|£BAP|° =0, |£PAC|° > 0. Similarly if I = AC.

We also get a contradiction if I contains a point P # A in ZR(|B; AC) which is
not on AC. For then by 3.5.2 |£B; AP|° < |£B; AC|°, so that 180 — |ZBAP|° <
180 — |ZBAC|° and so |ZBAC|° < |£BAP|°. It follows from 3.5.2 that [4,C C
IR(JBAP) and so |ZBAC|° + |£CAP|° = |£BAP|°. But |[ZBAC|°® > 0 and so
|£CAP|° < |£BAP|°, which gives a contradiction.

Thus ! must contain a point P # A in TZR(JBAC). As then |ZBAP|°+|£LPAC|° =
|£BAC|° and |£BAP|° = |£PAC|°, we must have |ZBAP|° = {|£BAC|° which
determines [A, P uniquely.

Definition. We define the mid-line or bisector of the angle-support |[BAC as

follows:- if C € [A, B then it is the line AB, and otherwise it is the unique line ! just
noted. We use the notation ml(| BAC)for this.

3.7 DEGREE-MEASURE OF REFLEX ANGLES

3.7.1

Definition. Let a be a reflex angle with support | BAC. We first suppose that C ¢ AB,
and as in 3.5.2 let ZB; AC; be the opposite angle of the wedge-angle ZBAC. Then
B, g AC, C, ¢ AB and /B, AC is the opposite angle for ZBAC;. By 3.5.2 we note
that

180 + |£B; AC|° = |[£BAC;|° + 180,
and we define the degree-measure of a to be the common value of these:
|a|® =180 + |£B; AC|° = |£BAC,|° + 180.
Secondly, if C € [4, B so that a is a full-angle, we define |a|° = 360.

Then for each reflex-angle a, |a|°® is defined; by 3.5.2 it satisfies 180 < |a|° < 360
unless a is a full-angle in which case |a|®> = 360.
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Figure 3.12. Measure of a reflex angle.

Let a be a non-full reflex-angle with support |BAC and take B, # A, Cy, # A so
that A € [B,By), A € [C,C1]. Let [A,D C IR(|B1AC;) but D ¢ [A,C, , D ¢
(4,By . Then

|£BAD|° + |£DAC|° = |a|°.

Proof. As [A,D C IR(|B1AC:), D is in the closed half-plane with edge AB in
which C) lies, and also in the closed half-plane with edge AC in which B, lies. By
3.5.2, [{B; AD|° < |[£B1 AC|° so by Ag(iii) |ZBAC;|° < |£BADJ°. By 3.5.2 then
(4,C1 CIR(|BAD), and by similar reasoning [4,B; C ZR(]DAC). Then

|£BAD° + |ZDAC|° |£BAD|° + (|£DAB;|° + |£B1 AC[°)
(|ZBAD|° + |£DAB;|°) + |£B1 AC|°
= 180 +|ZB;AC[° = |af°.

COMMENT. We could use this last result to employ the measures of reflex-angles
to a significant extent, but in fact do not do so until our full treatment of them in
Chapter 9.

Exercises
3.1 If B € [A,C], then |4, B| < |A,P| < |A, C| for all P € [B,C].

3.2 Let A,B,C be points of a line I, and M = mp(4,B). If C is A or B, or if
C €1\ [A, B}, then |C, A| +|C, B| = 2|C, M|.

3.3 Let A,B,C be distinct points and D = mp(B,C), £ = mp(C,4), F =
mp(A, B). Prove that D,E, F are distinct. If A ¢ BC, show that neither
E nor F belongs to BC.

3.4 If A # B, show that
{P € AB: |B,A| +|A,P|=|B, P}
is the half-line of AB with initial-point A which does not contain B, while
([A,B={P€ AB:|A,P|+|P,B|=|4A,B|or|A,B|+|B,P|=|A,P|}.
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3.5 Find analogues of 3.3.1 when A € [B,C] and when B € [C, A].

3.6 Show that if A, B,C, D are distinct collinear points such that C € [4,B], B €
(4, D], and

h
then 1 1 2

40 " TAD  AB

3.7 Show that if A, B, C are non-collinear points, and P # A is a point of ZR(|BAC),
then

IR(|BAP) UTR(|PAC) = TR(|BAC), TR(|BAP) N IR(|PAC) = [A,P .

3.8 Show that if d is any positive real number and | | is a distance function, then
d| | is also a distance function.

3.9 If « is the reflex angle with support |; !AC and 8 is the reflex angle with support
|BAF, show that if [A,F C TR(|BA Z) then

|al® + |ZCAF|° = |B]°.

3.10 Prove that if | = ml(]BAC) and m = ml(|BAC}y) where A € [C,C}], thenl L m.

3.11 Suppose that B,C, B, and C, are points distinct from A and that A € [B, B,],
A € [C,C,]. Show that then ml(|B; AC;) = ml(|BAC).



4

Congruence of triangles;
parallel lines

COMMENT. In this chapter we deal with the notion of congruence of triangles, and
make a start on the concept of parallelism of lines. As we have distance and angle-
measure, we do not need special concepts of congruence of segments and congruence
of angles, and we are able to define congruence of triangles instead of having it as a
primitive term as in the traditional treatment. As a consequence there is a great gain
in effectiveness and brevity.

4.1 PRINCIPLES OF CONGRUENCE

4.1.1 Congruence of triangles

Figure 4.1. Congruent triangles.

Definition. Let T be a triangle with the vertices {4, B,C} and T" a triangle with
vertices {A’, B’,C'}. We say that T is congruent to T' in the correspondence
A=A, BB, C>0C,if

|B,C|=|B',C"|, |C,A| |C', 4’|, |A,B|=|A" B,
[ZBAC|® = |£B'A'C'|°, |LCBAP® = |LC'B'A'\°, |LACB|° =|LA'C'B']".

We denote this by T (A,B,C)i(A'.B',C') T.

47
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We say that T is congruent to T, written T' = T", if T is congruent to T” in at
least one of the correspondences

(4,B,C) -+ (4,B,C"), (4,B,C)—~(4,C',B'), (4,B,C)~ (B,C',A),

(4,B,C) - (B,A,C), (A,B,C)—(C',A,B), (4,B,C)— (C',B',A).

COMMENT. Originally, behind the concept of congruence lay the idea that T can
be placed on TV, fitting it exactly.

AXIOM Ag. If triangles T and T', with vertices {A,B,C} and {A',B’,C'"}, re-
spectively, are such that

|C, 4| =|C", 4, |A, B| = 4", B'|, |LBAC|® = |LB'A'C"}",

thenT (A,B,C)5(4",B'C") T. |

COMMENT. This is known as the SAS (side, angle, side) principle of congruence
for triangles.

Triangles have the following properties:-
(i) If in a triangle [A, B,C), |A,B| = |A, C| then |£ABC|° = |£LACBJ°.

(ii) If in a triangle (A, B,C), |A, B| = |A, C| and D is the mid-point of B and C,
then AD 1 BC.

(iii) If B # C, D is the mid-point of B and C, and A # D is such that AD L BC,
then |A,B| = |4, C|.
(iv) If|BAC is not straight, if E € [A,B ,F € [A,C are such that |A,E| = |A, F| >
0 and G = mp(E, F), then AG = ml(|BAC).
Proof.

(i) Note that for the triangle T with vertices {A, B,C}, under the correspondence

(4,B,C) = (4,C, B),
|4,B| =4, C|, |4,C| = |4,B], |£BAC|® = |£CAB[",

so by the SAS principle T (A.B.C)3(AC,B) T. In particular |ZABC|° = |£ACBJ°.
(ii) Note that if T),T: are
the triangles with vertices
{A,B,D},{A,C,D}, respec-
tively, then

|4,B|=|A,Cl|, |B,D|=|C,D|,

|ZABD]® = |£ACD),
so by the SAS principle,
T (480)34cp) T In par-
ticular |ZADB|® = |ZADCP.
As D € [B,C], the sum of the B b c

degree-measures of these angles . . .
is 180 and so they must be Figure 4.2. An isosceles triangle.

right-angles.
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(iii) As AD 1 BC we know that A ¢ BC. If T1,T; are the triangles with vertices
{A, B, D}, {A,C, D}, respectively, then

|B,D|=|C,D|, |A,D| = |A,D|, |£BDAP = |ZCDA|°,

so by the SAS principle, T) (A,B,D)3(A,C,D) T,. In particular |4, B| = |4, C|.

(iv) As in (ii), the triangles [A, F, G],[A, F, G| are congruent, and so |ZEAG|° =
|£ZFAG|°.

Definition. A triangle is said to be isosceles if at least two of its sides have equal
lengths.

If T,T' are triangles with vertices {A, B,C},{A', B',C'}, respectively, for which

|B,C| = |B',C'|, |£CBA|° = |£C'B'A'|°, |£BCA|° = |£B'C' A'}°,
then T (4,5,0)3w,80,0n T
Proof. Suppose that |C’, A'| # |C, A|. Choose the point D’ on the half-line [C’, A’
such that |C’, D'| = |C, A|. Then if T” is the triangle with vertices {B’,C', D'}, under
the correspondence (B,C, A) — (B',C’, D') we have

|B,C| =B, C'|, |C,A| =|C", D'|, |ZBCA|° = |£B'C'D'|°.

BI

Figure 4.3.

Then by the SAS principle, T

T". In particular

(B,C,A)S(B',C",D')
|£C'B'D'|° = |LCBA|]° = |LC'B'A').

Then we have different wedge-angles ZC'B'A’, ZC'B'D’, laid off on the same side of
B'C'" and having the same degree-measure. This gives a contradiction.
Thus |C’', A’'| = |C, 4|, and as we also have

|C', B'| = |C, B|, |£B'C' A'|° = |ZBCAP°,

by the SAS principle we have T (B,C,A)3(B,C",A") T.
This is known as the ASA (angle, side, angle) principle of congruence.
If T and T' are triangles with vertices {A,B,C},{A’,B',C'}, respectively, for
which
|B,C| =|B', C'|, |C, 4| =|C", A'|, |A,B| = |4, B,

!
then T (4 p.0r8 81,00 T
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Figure 4.4. The SSS-principle of congruence.

Proof. Choose D on the opposite side
of BC from A, so that |ZCBD|° =
|£C'B'A'f° and |B,D| = |B',A'|.
Let T” be the triangle with vertices
{B,C,D}. Then as |B,C| = |B',C|,
by the SAS principle

T'.

T (B,D,C)3(8',A',C")

Now |B,A] = |B', Al = |B,D|
so we have an isosceles triangle and D
|£BAD|° = |/BDAP. Similarly
|£CAD|° = |£CDA|°.
Note that A and D are on different sides of BC, so a point E of {A, D] is on BC.
CASE 1. Let E € [B,C]. Then [A,D C IR(|BAC) and [D,A € IR(|BDC). It
follows that

|£BAC|® = |£BADI® + |£DAC|° = |ZBDAJ|° + |£ADC|° = |ZBDCJ°.

CASE 2. Let B € [E,C]. Then [A,B C IR(|DAC) and [D,B € IR(|ADC). 1t
follows that

|ZBAC|° = |£DAC|° - |£DAB|° = |LADC|° — |ZADB|° = |ZBDCJ°.

CASE 3. Let C € [B, E]. Then [A,C C IR(|BAD) and [D,C € TR(|BDA). It
follows that

|£BAC|° = |£BAD|° — |£DAC|° = |£BDA|° - |£ADC|° = |£BDC|°.
Now combining the cases, by the SAS principle, as
|A,B| =|D,B|, |[A,C|=|D,C|, |£BAC|° = |£BDC|°,
T.

we have T (4,B,0)3(D,B,C) T". ButT" (D,B,C)3(A',B',C") T'soT (A,B,C)3(4",B',C")

This is known as the SSS5(side, side, side) principle of congruence for triangles.
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4.2 ALTERNATE ANGLES, PARALLEL LINES

4.2.1 Alternate angles

Let A,B,C be non-collinear points, and take D # C so that C € [A,D]. Then
|£BCD|° > |£CBAJ°.

Proof. Let E = mp(B,C) and choose F so that E = mp(A, F). Then if T}, T; are
the triangles with vertices {A, B, E}, {F,C, E}, respectively, by the SAS principle of
congruence T} (A,B,E)3(F,C,E) T,. In particular,

|ZEBA|° = |LECF|°, ie.|£CBAJ]° = |ZBCF|°.

But [C,F CIR(|BCD) as E, and so F, is in the closed half-plane with edge AC in
which B lies, and D and F are on the opposite side of BC from A. Also F ¢ AD as
F € AD would imply that E = C. Then by 3.5.2 |ZBCF|° < |£BCD|°.

COROLLARY. In the theorem let G # C be such that C € [B,G]. Then|ZACG|° >
|£ABC)°.
Proof. This follows immediately as ZACG and ZBCD are opposite angles.

COMMENT. I D and
H are on opposite sides
of BC, then ZCBH and
ZBCD are known as al-
ternate angles . This last
result implies that if al-

ternate angles ZCBH and

£ZBCD are equal in mea-

sure, then CD and BH ‘L D

cannot meet at some point

A Figure 4.5. Result on alternate angles.

Given any line | and any point P & |, there is a line m which contains P and is
such thatiNnm = 0.

Proof. Take any points A, B € | and lay off an angle ZAPQ on the opposite side
of AP from B, so that |ZAPQ|° = |ZPAB|°. Than by the last result the line PQ
does not meet !. In this ZAPQ and £ZPAB are alternate angles which are equal in
measure.

4.2.2 Parallel lines

Definition. If | and m are lines in A, we say that [ is parallel to m, written { || m, if
l=morlnm=0.

Parallelism has the following properties:-
@) U]l for alll € A;
(i) Ifl||m thenm || {;

(iii) Given any linel € A and any point P € II, there is at least one line m which
contains P and is such that !l || m.
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(iv) If the linesl and m are both perpendicular to the line n, thenl and m are parallel
to each other.

Figure 4.6. Parallel lines.

Proof.

(i) and (ii) follow immediatly from the definition, while (iii) follows from 4.2.1.

(iv) As perpendicular lines form right-angles with each other at some point, !
must meet n at some point A, and m must meet n at some point P such that if B
is any other point of I and @ is any point of m on the other side of n from B, then
|£PAB|° =90, |ZAPQ|° = 90. Then, as there are alternate angles equal in measure,
by 4.2.11 || m.

4.3 PROPERTIES OF TRIANGLES AND HALF-PLANES

4.3.1 Side-angle relationships; the triangle inequality
If A,B,C are non-collinear points and |A, B| > |B, C|, then |ZACB|° > |£BAC|°,
30 that in a triangle a greater angle is opposite a longer side.

B

B

A
Figure 4.7. Angle opposite longer side. Figure 4.8. The triangle inequality.

Proof. Choose D € (B, A so that |B,D| = |B, C|. Then D € [B,A] as |B,D| <
|B, A]. Now |ZACB|° > |£DCBJ° as [C,D C IR(|BCA), and |ZDCBJ° = [£BDC|°
by 4.1.1. But |[£BDC|° > [£DAC|° by 4.2.1, so
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|ZACB|® > |£DCB|° = |£BDC|° > | LDAC|".

Hence [ZACB|° > |£DAC|° and ZDAC = £BAC as D € [B, A].

COROLLARY. If A, B, C are non-collinear points and |ZACB|° > |£BAC|°, then
|4, B| > |B, Cj, so that in a triangle a longer side is opposite a greater angle.

Proof. For if |A,B| < |B, C|, we have |ZACB|° < |ZBAC}° by 4.1.1 and this
result.

THE TRIANGLE INEQUALITY. If A,B,C are non-collinear points, then |C, A| <
|4, B| +|B, C|.

Proof. Take a point D so that B € [A,D] and |B,D| = [B,C|. As [C,B C
TR(|ACD) we have |£DCA|° > |£DCB|°. But |ZDCB|° = |ZCDBJ° by 4.1.1, so by
our last result, |4, D| > |A, C|. However |A,D| = |A,B|+|B,D| as B € [A, D], and
the result follows.

Figure 4.9. Figure 4.10.

4.3.2 Properties of parallelism

Let 1 € A be g line, Gy an open half-plane with edge | and P a point of G1. If m is a
line such that P € m and l || m, then m C G\.

Proof. As P ¢1,P € m we havel # m. Then as ! || m we have INnm = 0. Thus
there cannot be a point of m on l. Neither can there be a point @ of m in G4, the
other open half-plane with edge I. For then we would have [P,@Q] Nl # @ and so a
point R of m would be on I, as [P,Q] C PQ =m.

Let AB,CD be distinct lines and | distinct from and parallel to both. If | meets
[A,C] in a point E, then | meets [B,D] in a point F.

Proof. By the Pasch property applied to [4, B,C)] as | does not meet [A,B] it
meets [B,C) at some point G. Then by the Pasch property applied to [B,C, D], as |
does not meet [C, D] it meets [B, D] in some point F.
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4.3.3 Dropping a perpendicular

v

P

B S A

Qv R ST U

Figure 4.11. Dropping a perpendicular.

Given any line | € A and any point P & I, there is a unique line m such that
Pemandl L m.

Proof.

Existence. Let A, B be distinct points of I. Take a point @ on the opposite side
of | from P and such that |ZBAQ|®> = |£ZBAP|°. Also take R € [4,Q so that
|A, R| = |A, P|. As P and R are on opposite sides of /, [P, R] meets ! in a point S.

We first suppose that A ¢ PR so that A # S. Then [4, P,S] and [4, R, S] are
congruent by the SAS-principle, so in particular |ZASP|° = |ZASR|°. As S € [P, R]
it follows that these are right-angles and so PR L I.

In the second case suppose that A € PR so that A = S. Then S € [P, R] and by
construction |ZBSR|® = |/BSP|°. Again these are right-angles so PR 1 l.

Uniqueness. Suppose that there are distinct points S,T € [l such that PS L
I, PT 11. Choose U # T so that T € [S,U]. Then |[ZUTP|° = |£USP|° = 90 and
this contradicts 4.2.1.

COMMENT. We refer to this last as dropping a perpendicular from P to l.

Let A,B,C be non-collinear points such that AB 1 AC and let D be the foot of
the perpendicular from A to BC. Then D € [B,C], D# B, D # C.
Proof. By 4.2.1, in a
right-angled triangle each
of the other two angles
have degree-measure less
than 90. By 4.3.1 it then
follows that the side op-
posite the right-angle is
longer than each of the B D C
other sides. It follows Figure 4.12.
that |B,D| < |4,B| <
|B, C|. By a similar argu-
ment |C, D| < |B, C|.

We cannot then have B € [C, D] as that would imply |C, B| < |C, D|, and similarly
we cannot have C € [B, D] with as that would imply |B, C| < |B,D|. Hence D €
[B,Cl, D# B, D#C.

A
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4.3.4 Projection and axial symmetry

Definition. For any line | € A we define a function m; : Il — [ by specifying that for
all P € II, m(P) is the foot of the perpendicular from P to I. We refer to m as
projection to the line [.

P P
l l
m(P)
81(P)
Figure 4.13. Projection to the line . Axial symmetry in the line .

Definition. For any line l € A we define a function s; : IT =+ II by specifying that
for all P € I, s(P) is the point @ such that

Tl'[(P) = mp(P)Q)'

We refer to g; as axial symmetry in the line /.

Let Hy, M2 be closed half-planes with common edge I, let P, € H1 \l and P, =
81(P1). Then, fOT alPc Hl’ IP,P1| S IP,PgI

Proof. If P € I, then |P,P,| = |P,Pg|, by 4.1.1 when P ¢ P,P,, and as P =
mp(P;, P») otherwise.

When P € G; = H; \ | we suppose first that P ¢ P, P;. Then [P, P;] meets / in a
point @ and we have

|P,Pg| =|P, Q|+ |Q, Pe| = |P, Q| +1Q, Py

Now we cannot have Q € [P, P]
as [P,P] C Gi and @ € l. Thus
either @ ¢ PP, or Q € PP\
[P,P]. We then have |P, Q| +
lQ,P1| > IP,P1| by 4.3.1 and
3.1.2. For the case when P €
P, P,, we denote by R the point
of intersection of Py P, and [, so P,
that R = mp(Pl,Pg).

Figure 4.14. Distance and half-planes.

Now P € [R, P, so either P € [R,Py] or P, € [R, P]. In the first of these cases we
have
IPI)PI < |P1)RI =IR1P2| < IP)P2|,

as R € [P, P,;). In the second case we have |P, Py| < |P,R| < |P, Pg| as R € [P, R,].
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Exercises

4.1 If D # Ais in [A, B, C] but not in [B, C], then |B, D|+|D, C| < |B, A| + |4, C|
and [£BDC|° > |£BAC|°.

4.2 There is an AAS-principle of congruence that if

i

|£BAC|°
|B, C|

|ZEDF|°, |£CBAJ]° = |ZFEDJ°,
|E, Fl,

then the triangles [A4,B,C],[D,E, F] are congruent. [Hint. Suppose that
|£BCA|° < |£ZEFD|°; lay off an angle ZBCG equal in magnitude to ZEFD and
with G on the same side of BC' as A is; then [C,G meets [A4, B] at a point H;
also [H,B,C| = [D, E, F] and in particular |ZBHC|° = |ZEDF|° = |£{BAC|°;
deduce a contradiction and then apply the ASA-principle.)

4.3 There is an ASS-principle of congruence for right-angled triangles, that if BC 1
BA, EF 1 ED, |C,A| = |F,D|, |A,B| = |D, E|, then [A,B,C] = [D,E, F].
[Hint. Take C' so that E € [F,C'] and |E, C'| =|B, C|.]

44 If P € ml(|BAC) and Q = w45(P), R = mac(P), then |P,Q| = |P,R|.
Conversely, if P € TR(|BAC) and |P, Q| = |P, R| where Q = wap(P), R =
wac(P), then P € ml(|BAC).

4.5 In triangles [4, B,C),[D, E, F] let
|A, B| = |D, E|, |A, C| =|D, F|, |£BAC|° > |£LEDF|°.

Then |B,C| > |E,F|. [Hint. Lay off the angle ZBAG with |ZBAG|®° =
|£EDF|° and with G on the same side of AB as C is. If G € BC proceed;
if G € BC, let K = mp(G, C) and show that [4, K meets [B, C] in a point H.]

4.6 If AB || AC, then AB = AC.

4.7 Let H, be a closed half-plane with edge I, let P € H; and let O = m;(P). Then
if m is any line in A such that O € m, we must have 7, (P) € H;.
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The parallel axiom; Euclidean
geometry

COMMENT. The effect of introducing any axiom is to narrow things down, and
depending on the final axiom still to be taken, we can obtain two quite distinct well-
known types of geometry. By introducing our final axiom, we confine ourselves to the
familiar school geometry, which is known as Euclidean geometry.

5.1 THE PARALLEL AXIOM

5.1.1 TUniqueness of a parallel line

We saw in 4.2 that given any line ! and any point P ¢ [ there is at least one line m
such that P € m and [ || m. We now assume that there is only one such line ever.

AXIOM A,. Given any line l € A and any point P € 1, there is at most one line
m such that P € m and l || m. |

COMMENT. By 4.2 and A7, given any line ! € A and any point P € II, there is a
unique line m through P which is parallel to .

Letle A, PeIl andn € A be such thatl#n, P€n andl || n. Let A and B be
any distinct points of | and R a point of n such that R and B are on opposite sides of
AP. Then |ZAPR|®° = |£PAB|°, so that for parallel lines alternate angles must have
equal degree-measures.

Proof. Let m be the line PQ in 4.2.1 such that [ZAPQ|° = |ZBAP|°. Then! || m.
As m and n both contain P and ! is parallel to both of them, by A7 we have m = n, so
that R € [P,Q and so |ZAPR|° = |ZAPQ|°. Thus |ZAPR|° = |£LAPQ|° = |ZPAB|°.

Let 1,n be distinct parallel lines, A, B €l and P, T € n be such that B and T
are on the one side of AP, and S # P be such that P € [A,S]. Then the angles
/BAP, /TPS have equal degree-measures.

Proof. Choose R # P so that P € [T,R]. Then R € n and B and R are
on opposite sides of AP, so that ZBAP, ZAPR are alternate angles and so have

57
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equal degree-measures. But ZAPR and ZT PS are opposite angles and so have equal
degree-measures. Hence |ZBAP|° = |£TPS|°.

Figure 5.1. Alternate angles. Corresponding angles.

We call such angles ZBAP, £ZT PS corresponding angles for a transversal.

If lines I, m,n are such thatl || m and m || n, then l || n.

Proof. If | = n, the result is trivial as ! || I, so suppose ! # n. If | i3 not parallel
to n, then ! and n will meet at some point P, and then we will have distinct lines !
and n, both containing P and both parallel to m, which gives a contradiction by As.
Thus parallelism is a transitive relation. Combined with the properties in 4.2.2 this
makes it an equivalence relation.

If lines are such thatl L n and !l || m, thenm L n.

Proof. Asl is perpendicular to n
they must meet at some point A.
As [ || m, we cannot have m ||
n, as by transitivity that, would
imply I || n. Thus m meets n in
some point P, and if we choose
B onl, @ on m on opposite sides
of n, then we have [ZAPQ|° =
|£PABI|°® as these are alternate
angles for paralle] lines. Hence
|£ZAPQ|° =90 and m L n.

5.2 PARALLELOGRAMS

5.2.1 Parallelograms and rectangles

Definition. Let points A, B,C,D be such that no three of them are collinear and
AB || CD, AD || BC. Let H,; be the closed half-plane with edge AB in which C lies;
as CD || AB then, by 4.3.2, D € H,. Similarly let 73 be the closed half-plane with
edge BC in which A lies; as AD || BC, then D € Hs. Thus D € HyNH3 = IR(|ABC)
and so by the cross-bar theorem [A, C] meets [B, D in some point T', which is unique
as AC = BD would imply B € AC. Similarly C € ZR(|BAD) so T is on [B, D]. Thus
(4,C]N (B, D] # 0 s0 as in 2.4.4 a convex quadrilateral [4, B,C, D] can be defined,
and in this case it is called a parallelogram. The terminology of 2.4.4 then applies.
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D

Figure 5.3. A parallelogram. A rectangle.

Definition If [A, B, C, D] is a parallelogram in which AB 1 AD, then, as AB || CD,
by 5.1.1 we have AD L CD. Thus if two adjacent side-lines of a parallelogram
are perpendicular, each pair of adjacent side-lines are perpendicular; we call such a
parallelogram a rectangle.

Pgrallelograms have the following properties:-

(i) Opposite sides of a parallelogram have equal lengths.

(i) The point of intersection of the diagonals of a parallelogram is the mid-point of
each diagonal.

Proof.

(i) With the notation above for a parallelogram, the triangles with vertices {A, B, D}
and {C, D, B} are congruent in the correspondence (4, B, D) — (C, D, B) by the ASA
principle. First note that |B,D| = |D, B|. Secondly note that AB || CD and A and
C are on opposite sides of BD so that ZABD and ZCDB are alternate angles, and
hence |£ABD|° = |£CDB|°. Finally AD || BC, and A and C are on opposite sides of
BD, so that ZADB and ZCBD are alternate angles and hence |ZADB|° = |£CBD|°.
It follows that |4, B| =|C, D|, |4, D| =B, C|.

(ii) Let T be the point of intersection of the diagonals. Then the triangles [4, B, T},
[C, D, T] are congruent by the ASA principle, as

|A, B| = |C,D|, |ZABT|° = |£CDT|°, |ZBAT|° = |£DCT}°.

It follows that |4, T|=|C, T|, |B, T|=|D, T|.

5.2.2 Sum of measures of wedge-angles of a triangle

If A, B,C are non-collinear points, then
|£CAB|° + |£ABC|° + |£BCA|° = 180.

Thus the sum of the degree-measures of the wedge-angles of a triangle 13 equal to 180.
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Proof. Let | be the line through
A which is parallel to BC. If
m is the line through B which
is parallel to AC, then we can- <t
not have ! | m as we would
then have | || m, m | AC
which would imply ! || AC; we
would then have BC || I, I ||
AC and so BC || AC; thus as
BC N AC # 0 we would have
BC = AC; this would make
A, B,C collinear and contradict
our assumption.

Figure 5.4. Angles of a triangle.

Thus m meets [ at some point, @ say. Then [4,C, B,Q)] is a parallelogram and
[4,B), [@,C] meet at a point T. Now Q is on the opposite side of AB from C, so
that ZCBA and ZBAQ are alternate angles and so |ZCBA|° = |£BAQ|°. Moreover
[4,B C IR(|CAQ) and so [ZCAB|° +|£BAQ|° = |£CAQ|°.

Choose R # A so that A € [Q, R]. Then R € | and R is on the opposite side of
AC from Q. But BQ || AC so B and @ are on the same side of AC, and hence B
and R are on opposite sides of AC. Then ZBCA and ZC AR are alternate angles, so
|£BCA|° = |£CAR|°. Thus

(IZCABJ° + |ZCBA|°) + |£BCA|° (IZCABJ° + |ZBAQ|°) + |£BCA]°
|£CAQ|° + |ZLCAR[°

180.

COROLLARY. If the points A, B,C are non-collinear, and D # C is chosen so
that C € [B, D), then |ZACD|° = |£ZBAC|° + |£CBA|°. Thus the degree-measure of
an exterior wedge-angle of a triangle s equal to the sum of the degree-measures of the
two remote wedge-angles of the triangle.

Proof. For each of these is equal to 180 — |ZACB|°, as C € [B, D).

5.3 RATIO RESULTS FOR TRIANGLES

5.3.1 Lines parallel to one side-line of a triangle

Let A,B,C be non-collinear points, and with | = AB, m = AC, let <;, <, be
natural orders such that A<; B, A <, C. Let Dy, Dy, D3 be points of AB such that
A< Dy 54 D; <4 D3 <; B and |Dy, Dg| = |Dg, D3|, so that Dy is the mid-point of
D, and D3. Then the lines through Dy, D, and D3 which are all parallel to BC, will
meet AC in points E,, Ey, E3, respectively, such that A <p; By <m F2 <m Es < C
and |E1 ,Egl = IEg,EgI.
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Proof. By Pasch’s property
in 2.4.3 applied to the trian-
gle [A, B,C], the lines through
[D1,Dq,D3] which are paral-
lel to BC will meet [4,C] in
points E,, Fs, E3, respectively.
By Pasch’s property applied to
[A, D3, E3), since D, € [A,Ds)
and the lines through D, and
D3 parallel to BC are parallel to
each other, E, € (A, E).

By Pasch’s property applied to
[A, D,, E;), since Dy € [A, D]
and the lines through D; and
D, parallel to BC are parallel to
each other, E; € [A, E,). It re-
mains to show that E; is equidis- Figure 5.5. Transversals to parallel lines.

tant from E; and Ej.

By Pasch’s property applied to 4, D2, E»], since E; € [A, E,] the line through E;
which is parallel to AB = AD, will meet (D3, Ey] in a point F. By Pasch’s property
applied to [A4, D3, E3), since E; € [A, E3) the line through E, which is parallel to
AB = ADj; will meet [Ds, E3] in a point G.

Let Ty, T be the triangles with vertices { E1, F, Ey }, { Ea, G, E3}, respectively. Our
objective is to show that

T (Br,F,E2)3(E2,G,Es) .

Now Dy E, || DoF, D\D; || E\F, so [Dy,D,,F, Ey] is a parallelogram, and so by
5.2.1 |D1,Dg| = IE],FI Slmllarly D2E2 " DaG, D2D3 " EQG S0 [Dz,D3,G,E2]
is a parallelogram, and so |Dg, D3| = |Eg, G|. But |Dy, Dg| = |Dg,Dg| and hence
|Es, F| = |Eg, GI.

Let #; be the closed half-plane with edge AC in which B lies. Then [4, B] C H,,
8o Dy, D3 € Hy. Then [Dy,Ey],[Ds,E3] C Hi, so F,G € H,. Then F and G
are on the one side of the line AC, and as D;E; || D3sE3 and E; € [E3, Ei], the
angles LZFE,E,, LG E3 E, are corresponding angles for parallel lines and so have equal
degree-measures. Thus |ZFEgE,|° = |£GEgEg|°.

By transitivity Ey F || E2G as both are parallel to AB, F and G are on the one
side of AC, and E; € [Ey, E3], so the angles ZFE, E; and ZG E; E3 are corresponding
angles for parallel lines and so have equal degree-measures. Thus |ZFE;Eg|® =
|[£GEgEs|°.

As

'ZFEgEllo = llGEgEglo, IAFEI Eglo = IlGEgEglo,

by 5.2.2 IZE; FEglo = IZEg GE3|°. Thus
IE,,F' - IEg, Gl, IZFEIEgIO = llGEgE’sIo, léEt FEgIQ - ILEQ GE3|°,

so by the ASA principle, the triangles T;,T> are congruent in the correspondence
(El,F,Ez) — (EQ,G,E;;). It follows that IE},Egl = lEg,Egl.
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Let A,B,C be non-collinear points and let P € [A,B and Q € [A,C be such that
PQ || BC. Then

|4,P| _ |4,Q|
|4,B| |4, Cl

Figure 5.6.

Proof. We assume first that P € [A, B]. Within this first case, we suppose initially
that
|4, P| s
|4,B] — t’
where 8 and ¢t are positive whole numbers with 8 < ¢, so that s/t is an arbitrary
rational number between 0 and 1. For 0 < j < ¢ let B; be the point on [A,B such
that
'A1Bj| _ ._7_
|4,B] ¢’

so that By = A, B; = B and B, = P. If AB =1 and <; is the natural order for
which 4 <; B, then A <; Bj_y < Bj < Bjyy <1 B and |Bj—1, Bj| = |Bj, Bjy1].
If AC = m and <,, is the natural order for which A <,,, C, then by the last result
applied with (Dy, Da, D3) = (Bj-1,Bj,Bj41), for 1 < j <t — 1 the line through B;
which is parallel to BC will meet AC in a point C; such that A <, Cj—1 < Cj <m
Ct1 <m C a0d |Gj_1, G| = |Gy, Cya1].

It follows that, for 0 < j < t, |4, Gj| = j|A, Cy| and so as C; = C,

IA’ le — lev CII — l
|4,Cl  tA4,Ci] ¢
In particular, as C, = @, it follows that
14,9 _s _ |4,P|
14,C] t  |A, B
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Still within the first case, now suppose that

IA,P| _ |4,Q| _
14,8~ 14,0~ ¥

where z is an irrational number with 0 < z < 1. If u is any positive rational number
less than z, and P, is a point chosen on [4, B] so that

|A, Py| —u

(4,B]
then the line through P, which is parallel to BC will meet [4,C] in a point Q, such
that

|4, Qu] _

14, C| =u.

Similarly if v is any rational number such that z < v < 1, and P, is a point chosen
on [A, B] so that

AP _

|4,B] — 7
then the line through P, which is parallel to BC will meet [A,C] in a point @, such
that

|4, Qul _

——— =u.

|4, C|

As |A,Py| < |4,P| < |A, P,| we have P € [P,,P,]. It follows by 4.3.2 that Q €
[Qu, Qyv) and so u < y < v. Thus for all rational u and v such that 4 < £ < v we have
u <y < v. It follows that z = y.

This completes the first case. For the second case note that if P ¢ [A, B] we have
B € [A, P). Then by the first case '

|4,B| _ |4,C|

14,P] —|4,QI

s0 the reciprocals of these are equal.

5.3.2 Similar triangles

Let A,B,C and A, B',C’ be two sets of non-collinear points such that
|£BAC|° = |£B'A'C'|°, |£CBA|° = |£C'B'A'|°, |LACB|° = |£A'C'B'|°.
Then
|B’,C'| _|C", 4" _ |4, B
|B,C|  |C,A] |A,B|
Thus if the degree-measures of the angles of one triangle are equal, respectively, to

the degree-measures of the angles of a second triangle, then the ratios of the lengths
of corresponding sides of the two triangles are equal.
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A
CII

CI

Figure 5.7. Similar triangles.

Proof. Choose B” € [A,B and C” € [A,C so that |A,B"| = |A,B'|, |4,C"| =
|A’, C'|. Then as |ZB"AC"|° = |{BAC|° = |£{B'A'C'}|°, by the SAS principle
we see that the triangles [A, B”,C"],{A',B’,C’] are congruent in the correspon-
dence (4,B",C") —» (A',B’,C"). In particular |[ZAB"C"|° = |ZA'B'C’|° and so
|£ZAB"C"|° = |£ABC|°. These are corresponding angles in the sense of 5.1.1, so
B"C" || BC and then by 5.3.1

IA’ BIII _ IA’ CIII

|4,B| — |A,C|°
80

|A!, B| 3 |4, C'|

|4,B] — |A,C|"
By a similar argument on taking a triangle (B, E, F] which is congruent to [B’,C’, A",
we have

lBI,Cll 3 IBI’All

|B,C| — [B,A]"

COMMENT. Triangles like these, which have the degree-measures of corresponding
angles equal and so the ratios of the lengths of corresponding sides are equal, are said
to be similar in the correspondence (4, B,C) = (A', B',C’).

Let A,B,C and A',B',C' be two sets of non-collinear points such that

IAI,BII _ IAI’ CII

iB = AC] |£B'A'C'|° = |£/BACY.

Then the triangles are ssmilar.

Proof. Choose B"” € [A,B, C" € [A,C so that |A,B"| = |A',B'|, |A,C"| =
|A', C’|. Then as |£B'A'C’|® = |£BAC|° = |£B" AC"|°, by the SAS principle we see
that the triangles [A’, B', C'], [A, B”,C"] are congruent. We note that

|A’ Blll _ IA’ CIII
|4,B] — |4,C|"
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Now the line through B" which is parallel to BC will meet [4,C in a point D such
that

|4, B"| _ |4, D|

|4,B] ~ |4,C|
Hence

|4, C"| _ |4,D|

|4, C| - |4, C|’

from which it follows that |4, D| = |4, C"|. As C",D € [A,C we then have D = C"
and so B”"C" || BC. Thus the degree-measures of the angles of [4, B,C] are equal
to those of the corresponding angles of [A, B”,C"] and so in turn to those of the
corresponding angles in [A’, B, C'].

5.4 PYTHAGORAS’ THEOREM, c.550B.C.

5.4.1

PYTHAGORAS’ THEOREM. Let A, B,C be non-collinear points such that AB 1 AC.
Then

|B,C|* =|C, A + |4, B>

Proof. Let D be the foot of the perpendicular from A to BC; then by 4.3.3 D
is between B and C. The triangles [D, B, 4], [A, B,C] are similar as |ZADB|° =
|£CAB|° =90, |£DBA|° = |£ABC|°, and then by 5.2.2 |ZBAD|° = |Z/BCA|°. Then
by the last result

|A,B| _|B,Dj
|B,C| ~ |4, B’

s0 that |A,B|2 = |B,D||B,C|. By a similar argument applied to the triangles
[D,C, A], [A,B,C] we get that |4, C|* = |D, C||B, C|. Then by addition, as D €
[B7 C]’

|4, BI* + |4, C* = (1B, D| +|D, C|)|B, C| = |B, C|".

CreE

B D C

Figure 5.8. Pythagoras’ theorem. Figure 5.9. Impossible figure for conver
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CONVERSE of PYTHAGORAS’ THEOREM. Let A, B, C be non-collinear points such
that
|B,C|” =|C, A" + |4, BI".

Then ZBAC i3 a right-angle.
Proof. Choose the point E so that |4, C| = |A, E|, E is on the same side of AB
as C is, and ZBAE is right-angle. By Pythagoras’ theorem,

|B,E|* = |A,E" +|A,B" = |C, A" + 4, B|" = |B, C".

Thus |B, E| = |B, C|, and the lengths of the sides of the triangle [B, A, C] are equal
to those of [B, A, E]. By the SSS principle, (B, A,C] = [B, A,E]. In particular
|£BAC|° = |£ZBAE|° and this latter is a right-angle by construction. In fact E = C.

NOTE. In a right-angled triangle, the side opposite the right- angle is known as
the hypotenuse

5.6 MID-LINES AND TRIANGLES

5.5.1 Harmonic ranges

Let A, B,C be non-collinear points such that |A,B| > |A, C|. Take D # A so that A €
(B, D). Then the mid-lines of |BAC and |CAD meet BC at points E, F, respectively,
such that {E, F} divide {B,C} internally and externally in the same ratio.

Figure 5.10.

Proof. By the cross-bar theorem the mid-line of |[ BAC meets [B, C] in a point E.
Let G be a point of the mid-line of | CAD, on the same side of AB as C is. We cannot
have AG || BC as that would imply

[£BCA|° = |ZCAG|° = |ZGAD|° = | ZCBAJ",

and this in turn would imply that |4, B| = |A, C|, contrary to hypothesis. Then AG
meets BC in some point F.

Take H € [A,D so that |4, H| = |A, C|. Then |ZAHC|° = |£ACH|°. We have
that

|ZBAC| |ZAHC|® + |LACH|°, |LAHC) =|/ACH|°,
|4BAC|° = |LBAE|® +|LEAC|°, |/BAE|° =|/EAC) .
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It follows that |[ZEAC|° = |ZACH|°, and as E, H are on opposite sides of AC this
implies that AE || HC. It then follows that

|B,E| _ |B,4| _ |B,A4|
|E,C| ~ |4,H| "~ |4,C|

Next choose K € [A,B so that |4, K| = |A, C|. Then |A,K| < |4,B]|so K €
(4, B]. Now
|£HAC|® |ZAKC|®° + |£ACK|°, |LAKC|°=|ZACK|°,
|£HAC|°® = |ZHAG|® +|ZGAC|°, |ZHAG|° =|ZGAC|°.

It follows that |ZGAC|° = |ZACK|°. But H, K are on opposite sides of AC, H,G
are on the same side, and so G, K are on opposite sides. This implies that AG || KC.
Now AG meets BC at F, and K € [A,B] so C € [B, F]. It follows that

|B,F| _ |B,A| _ |B,A|
|F,Cl ~ |A,K| 4,0

On combining the two results, we then have

|B,E| _ |B,F|
|E,Cl ~ IF,CI

NOTE. We also refer to the mid-line of |[CAD above as the external bisector of
|BAC. When {E, F} divide {B,C} internally and externally in the same ratio, we
say that (B, C, E, F) form a harmonic range.

Let (A, B,C, D) be a harmonic range and S & AB. Let the line through C, parallel
to SD, meet SA at G and SB at H. Then C is the mid-point of G and H.

S
/‘\\
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/ I \ ~<
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// I \ \\\
G4 ! \ Ss
7 1 \ \\\
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Proof. We are given

|4,C| _ |4,D]

|C,B|  |D,B|’
80

|4,C| _ |C,B|

|4,D| ~ |D, B|’
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As GC || SD the triangles (A, D, S] and [A, C, G] are similar, so

|B,C| _ |C,H|

|B,D| ~ |S,D|
Then

16,01 _ 10,H]

IS,D|  |S,D|

-
-
—
—
—~
-—
-~
-
—

Figure 5.12.

Let (A, B, C, D) be a harmonic range, S € AB and K # S be such that S € [A, K].
Suppose that CS L DS. Then CS and DS are the mid-lines of | ASB and |BSK.

Proof. Let the line through C, parallel to DS meet SA at G and SB at H. Then
C is the mid-point of G and H. Also CS L SD, SD || GH s0o SC L GH. It
follows that the triangles [G,C, S] and [H,C, S] are congruent by the SAS-principle.
In particular [£GSC|° = |£HSC|® and so SC is the mid-line of |ASB. But also
|£CGS|° = |£CHS|° and in fact the triangle [S,G, H] is isosceles. Now ZCGS and
£ZDSK are corresponding angles and ZCHS and ZDSH are alternate angles. It
follows that |£DSK|° = |£DSH|° and so the mid-line of | BSK is SD.

5.6 AREA OF TRIANGLES, AND CONVEX
QUADRILATERALS AND POLYGONS

5.6.1 Area of a triangle

Let A, B,C be non-collinear points, and D € BC, E € CA, F € AB points such that
AD 1 BC, BE L CA, CF L AB. Then

|4, D||B, C| = |B, E||C, A| = |C, F|i4, B].


file:///BSK_

Sec.5.6) AREA OF TRIANGLES ETC. 69

A A

Y S AR

Figure 5.13.
Proof.

The triangles [A, B, E] and [A, C, F] are similar in the correspondence (4, B, E) —
(A,C,F), as ZBAE = ZCAF is in both, |ZAEB|° = |ZAFC|° = 90, and then by
5.2.2 |ZABE|° = |£ACF|°. By 5.3.2

|B,E| _ |4, B]
IC,F| ~|C,Al
On cross multiplication,
|B, E||C, Al = |C, F||A, B|.

By a similar argument, we can show that |4, D|| B, C| is equal to these.

Definition. With the notation of the last result, the area of the triangle (4, B, C],
denoted by A[A, B,C), is the common value of:

314,D||B, C|, 3|B,E||C, 4|, 3|C, Fl|A, B|.
Area of triangles has the following properties:-
(i) If P € [B,C] is distinct from B and C, then
A[A,B,P]+ A[A, P,C] = A[A, B, C).

(i) If [A,B,C, D] is a convex quadrilateral, then
A[A,B,D]+ A[C,B,D] = A[B,C, A] + A[D, C, A].

A
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Proof.
(i) For D is the foot of the perpendicular from the vertex A to the opposite side-line
in each of the triangles [A, B, P] and [A, P, C], so with p; = |A, D| we have

A[A,B,P) = §p1|B, P|, A[A,P,C] = §p1|P, Cl,
and the sum of these is
im(B,P|+|P,C|) = im|B,C|,

as P € [B,C].
(ii) As in 5.2.1 denote by T' the point which (A4, C] and [B, D] have in common.
Then by (i) above,

A[A, B, D] + A[C, B, D] = (A[A, B,T) + A[A, D, T]) + (A[C, B,T] + A[C, D, TY)

A[4,B,C] + A[A,D,C] = (A[4,B,T] + A[C, B,T]) + (A[4, D, T] + A[C, D, )

and these are clearly equal.

5.6.2 Area of a convex quadrilateral

Definition. We define the area of the convex quadrilateral [A4,B,C,D] to be
A[A, B, D) + A[C, B, D}, and denote it by A[A, B,C, D].

If [A, B,C, D] is a rectangle, then
AlA, B,C, D) = |A, B||B, C|,

that is the area is equal to the product of the lengths of two adjacent sides.
Proof. For A[A, B, D] = 1|4, B||A, D|, A[C,B, D) = }|D,C||B, C|. As by 5.2.1
|D, C| = |A, B| and |B, C| = |4, D|, the result follows by addition.

5.6.3 Area of a convex polygon

Definition. For an integer n > 3 let B, P,..., P, be n points such that no three of
them are collinear. Writing also P41 = P, for each integer j such that 1 < j < nlet
Hz2j—1, Haj be the closed half-planes with common edge the line P; P;;, and suppose
that all the points P lie in #z;_, in each case. Then the intersection N}, Hz2j—1
is called a convex polygon. The intersection of the corresponding open half-planes
is called the interior of the convex polygon. The notation for convex quadrangles is
extended to convex polygons in a straightforward way.

Consider a convez polygonal region with sides [Py, P), (P2, P3), ..., [Pn, P1]. Let
a point U intersor to the polygon be joined by segments to the vertices. Then

n—1 n—1

Y AlU,P;, Pia] + AU, Po, P = Y A[Py, Pj, Pi].

i=1 j=2
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P,

I Py
Figure 5.15.

Proof.
CASE 1. We first take the case of a triangle so that n = 3. Now [P;,U will meet
[Pz, Ps] in a point V. Then by 5.6.1

A[U, Py, Py) + A[U, Py, Ps] + A[U, Py, Py]
= A[U,P, B+ {A[U, P, V] + A[U,V, Ps]} + A[U, Ps, Py
{A[U, P, Py} + A[U, P, V]} + {A[U, V, Ps) + AU, Ps, P1}}
A[P,, P2, V] + A[V, Ps, P] = A[P,, Py, Py).

I

CASE 2. Secondly we take the case of a convex quadrilateral so that n = 4.
Suppose first that U € [Py, P;]. Then by 5.6.1 used twice,

{A[U, P\, Py) + A[U, Py, B3]} + {A[U, Ps, Py) + A[U, Py, Ai]}
= A[P,, P, P3] + A[P,, P3, Py).

Suppose next that U ¢ [P, Ps). Then U is interior to [Py, P;, Ps] or [Py, Ps, Py, say
Ue [Ul,P3,P4]. Then by 5.6.1

A[U, Pl,Pz] + A[U,Pg,P:g] = A[Pl,Pz,P;«;] <+ A[U, Pl,Ps],
S0

A[U, Py, P) + AU, P2, Ps] + A[U, P3, P3] + A[U, Py, i)
= A[Pl,Pg,P:;] + {A[U, PI,PS] + A[U, P3,P4] + A[U, P4,P1]}
= A[P,, P, P3] + AP, Ps, Py

by CASE 1.
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CASE 3. We now suppose that the result holds, for some n > 4, for any con-
vex polygonal region with n sides. Then for that n consider any convex polyg-
onal region with n + 1 sides, [Pi, P2}, [P2,Ps], ...y [PnyPnt1)s [Pnt1,P1]. As
n+1>5, [P,P,P;) and [Py, Py, Pyt1] have only P, in common, so U cannot
be in both. Suppose that U ¢ [Py, P, P;]. By 5.6.1

A[U, P],Pz] + A[U, B, Pa] = A[Pl, P, Ps] + A[U, P, P3]
Hence as U is interior to the polygon with n sides [Py, Ps), [Ps, P4], -y [Pa;Pat1)s
[Pn+l 3 Pl]’

n
ZA[U,IDj,Pj.{.l] + A[U,Pn+laPl]

i=1

n
= A[Py, Py, Ps] + A[U, Py, Ps} + ) A[U, P}, Pjy1] + A[U, Poy1, Pi]
£

n n
= A[P, Py, Pl + AP, P;, Pia] = ) APy, Py, Piya].

j=3 j=2

If instead U € [P, Py, Pry1) we get the same conclusion by similar reasoning. The
result now follows by induction on n.

Definition. The area of the polygonal region in the present section is defined to
be the sum of the areas of the triangles involved.

Exercises

5.1 Opposite wedge-angles in a parallelogram have equal degree-measures.

5.2 If two adjacent sides of a rectangle have equal lengths, then all the sides have
equal lengths. Such a rectangle is called a square.

5.3 If the diagonals of a parallelogram have equal lengths, it must be a rectangle.
5.4 If the diagonal lines of a rectangle are perpendicular, it must be a square.
5.5 Let A, B, C be non-collinear points and let P € [A,B and @ € [A,C be such

that
APl _ 149
B| cl

Then PQ || BC.
5.6 Let AB 1L AC and let D = mp(B,C). Prove that |D, 4| = |D,B| = |D, C|.

5.7 Let A,B,C be non-collinear points and for A € [B,P and A € [C,Q let
PQ || BC. Show that then

|A, P

QI
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5.8 Suppose that A,B,C are non-collinear points with |A,B| > |A, C| and let
D = wpc(A). Prove that then

|A’BI2 —lAa C|2 = IB’D|2 - |CsD|2

5.9 Suppose that A, B,C are non-collinear points and D is the mid-point of B and
C. Prove that then

|4, B]* + |4, C]* =2|B, D|® + 2|4, D|*.
[Hint. Consider the foot of the perpendicular from A to BC.]

5.10 Show that the AAS-principle of congruence in Ex.4.2 can be deduced from 5.2.2
and the ASA-principle.

5.11 Show that the AAS-principle of congruence for right-angled triangles in Ex.4.3
can be deduced from Pythagoras’ theorem and the SSS-principle.

5.12 For C ¢ AB, suppose that m is the line through C' which is parallel to AB.
Prove that for any point D ¢ AB the line AD meets m in a unique point
E. When, additionally, D € ZR(|BAC) then E is on [A,D and is also on
m N IR(|BAC).

5.13 In a triangle {4, B,C], let |A,B| > |A, C|. Let D € [A, B be such that |4, D| =
|A, C|. Prove that then

9|£BCD|° = |ZACB|° — |£CBAJ°.
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Cartesian coordinates;
applications

COMMENT. Hitherto we have confined ourselves to synthetic or pure geometrical
arguments aided by a little algebra, and traditionally this is continued with. This is
a difficult process because of the scarcity of manipulations, operations and transfor-
mations to aid us. The main difficulties in synthetic proofs are locational, to show
that points are where the diagrams suggest they should be, and in making sure that
all possible cases are covered.

For ease and efficiency we now introduce coordinates, and hence thoroughgoing
algebraic methods. These not only enable us to deal with the concepts already intro-
duced but also to elaborate on them in an advantageous way.

In Chapter 6 we do the basic coordinate geometry of lines, segments, half-lines
and half-planes. The only use we make of angles here is to deal with perpendicularity.

6.1 FRAME OF REFERENCE, CARTESIAN COORDINATES

6.1.1

Definition. A couple or ordered pair F = ([0, , [0,J ) of half-lines such that
OI L OJ, will be called a frame of reference for II. With it, as standard notation,
we shall associate the pair of closed half-planes #,,H, with common edge OI, and
with J € H,, and the pair of closed half-planes H3,H,, with common edge OJ, and
with I € Hz. We refer to @; = H; NHz, Qo = HiNHy Q3 = Ha N Hy and
Q4 = Ha N M3, respectively, as the first, second, third and fourth quadrants of
F. We refer to OI and OJ as the axes and to O as the origin.

Given any point Z in II, (rectangular) Cartesian coordinates for Z are defined as
follows. Let U be the foot of the perpendicular from Z to OI and V the foot of the
perpendicular from Z to OJ. We let

r= !0, U,, ifZE'H:;, and _ ‘O, Vl, ifZe’Hl,
-0, Ul, if Z € Ha, Y= =10, V), if Z € Ha.

74
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Ha | Hs
Hy | Hs
Q2 J Ql V ............ e Z
J My
............ H 0: I U H
o I o :

Qs : Q4

Figure 6.1. Frame of reference. Figure 6.2. Cartesian coordinates.

Then the ordered pair {z,y) are called Cartesian coordinates for Z, relative to F.
We denote this in symbols by Z =x (z, y), but when F is fixed and can be understood,
we relax this notation to Z = (z,y).

Cartestan coordinates have the following properties.-

() IfZ€Q),thenz>0,y>0;ifZ € Q, thenz <0,y 20; if Z € Q3, then
2<0,y<0;,ifZ € Qq, thenz >0, y<O0.

(i) If Z1 = (21,01), Z2 = (2,y2) and
Uy =n01(Z1), Vi = m04(Zy), Ua = mo1(Z2), V2 = m04(Z2),
then |Uy, Ug| = (22 = z1), | V1, Vel = £(y2 — 11)-
(iii) If Z1 = (z1,01), Z2 = (22,Y2), then

121, 28] = V(22 — 1) + (32 — ).

(iv) If Z1 = (z1,11), Z2 = (22,y2) and Z3 = (z3,ys) where
z3 = 3(z1 +22), s = 5(11 +12),
then Z3 = mp(Z,, Z,).

(v) Let <; be the natural order on 1 = OI under which O <; I. If 2y < z2, Uy =
(21,0) and Us = (22,0), then Uy <i Us.

Proof.
(i) This is clear from the definition of coordinates.
(ii) For if Zy,Z2 € Hs we have

|01 U2| =T, Ior UBI = Z9,

and so as U1,U; € (O, T,
{Us, Ug| = £(z2 — 1)

according as U; € [0,Us) or U; € [0, Uh]. Similarly if Z;, Z; € Hs, we have
|01 Ull =-&, I07 U2| = =T2
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and
|U1, U2| = i[—-'1?2 - (—371)]

according as Uy € [O,U.] or Uz € [O,U1]. Finally if Z; € Hs, Z; € Hy then
IO, Ull =, |Ov U2| = -

and O € [Ul,Uz] so that
|U1, Ugl =z + (—:L'z);

similarly if Z, € Ha4,Z2 € H;.

That | Vy, Ve| = £(y2 — 11) can be shown in the same way.

(iii) Now the lines through Z; parallel to OI and through Z; parallel to OJ are
perpendicular to each other, and so meet in a unique point Z;. Clearly mor(Zs) =
nmo1(Z3) = Uz so Z3 and Z4 have the same first coordinate, z2; 70y (Z4) = m034(Z1) =
Vi so Z; and Z, have the same second coordinate, ;. Thus Z4 has coordinates
(22, ). If the points Z;, Z3, Z, are not collinear, then by Pythagoras’ theorem

1Z1, 22| = |21, Z4* + 124, Zo|%;

if they are collinear we must have Z; = Z; or Z; = Z, and this identity is trivially
true. But |Z;,Z;| = |Uy, Ug| a8 [Z1,Z4,Us, U] is a rectangle, or else Z; = Z; and
Uy =U,, or Z, = Uy, Z4 = U,. Similarly |Zg, Z;| = | V4, Vg|. Thus we have the
distance formula

121,25 = |Uy, Us|* +|Vy, Ve
= (z2—71)* + (32 — )%,

which expresses the distance |Z;, Zp| in terms of the coordinates of Z; and Z,.
(iviIf Zy =Z;, thenzy =21, yo=y1 sothat z3 =1, y3 = 1. Thus Z3 = Z; =
mp(Zy,Z,), as required.
Suppose then that Z; # Z;. Note that

2 2 2 2
n +z + To—-T -
|Z1,Z3|2 [ 1 . 2 1] | [yl 21/2 1] [ 2 1] I [yz yl]

and so lZ],ZgI = %lZI,Zl?" Smularly

2 2
2_ [Z1+3Z2 Y1 +y: _ |71~z Nn-w
it = [ 2n]  [2 o] [ o]

and so IZg,ZgI = %IZ],ZgI. Then
|Z1,23| + |23, Z¢| = |24, Zs)|.

It follows by 3.1.2 and 4.3.1 that Z3 € [Z1, Z5) C Z,2Z,. As |Z;, Z3| = | Z3, Zg| it then
follows that Z3 = mp(Z;, Z,).
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U O U,
o U U,
U, U, O
Figure 6.3. The distance formula. Order of points on the z-axis.

(v) By 2.14 at least one of
(a) Oe [Ul,U2], (b) U, e [O,Uz], (C) U; € [O,Ul],

holds.

In (a), U, and U; are in different half-lines with end-point O. We cannot have
U, € [O,1 as then we would have z; > 0, z2 < 0, a contradiction. Thus U € [0,
so that U; <; 0, O <; U; and thus U; <; Us.

In (b) we cannot have U; <; O. For then we would have Uz <; O and

|O, U1| = -I, IO, Ugl = —ZTs.

As U € [0,Uz] we have |0, Uy| < |0, Ug| which yields —z; < -z and s0 z; > z2,
a contradiction. Hence O <; U; and so as U; € [0,Us], Uy < Us.
In (c) we cannot have O <; U;. For then we would have O <; U, and so

|0, U1| =, |0, Ugl = Zq.
As U, € [0, U] we have |0, Ug| < |0, Uy|, so that 22 < z1, a contradiction. Hence
U1 Sz O so Ul Sl U2-

6.2 ALGEBRAIC NOTE ON LINEAR EQUATIONS

6‘2.1

It is convenient to note here some results on solutions of two simultaneous linear
equations in two unknowns.

(a) If
@1,183,2 — 61,202,1 # 0, (6.2.1)

then the pair of simultaneous equations

61,17+ 612y = ki,
621Z +az2y = ke, (6.2.2)
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(b)

(c)

6.3

6.3.1
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has precisely one solution pair (z,¥), and that is given by

(:z:,y) — ( a2,2k1 —a1,2k2 : G1,1k2 —az,lkl ) ) (623)
€1,1G02,2 — G1,2G2,1 G1,1G2,2 — G1,282,1
If
(a1,1,81,2) # (0,0) and (a2,1,a22) # (0,0), (6.2.4)
and
a1,1G2,2 — G1,282,1 = 0, (6.2.5)
then there is some j # O such that
a2, = jai,1, 62,2 = ja 2. (6.2.6)

If (6.2.4) holds, then for the system (6.2.2) of simultaneous equations to have
either no, or more than one, solution pair (z,y) it is necessary and sufficient
that (6.2.5) hold.

Note in particular that when (6.2.4) holds, for the pair of homogeneous linear
equations

611 T 012 = 0,
a1 +az2y = 0, (6.2.7)

to have a solution (z,y) other than the obvious one (0,0), it is necessary and
sufficient that (6.2.5) hold.

CARTESIAN EQUATION OF A LINE

Given any line l € A, there are numbers a,b and ¢, with the case a = b = 0 excluded,
such that Z = (z,y) €l if and only if

ax+by+c=0.

Proof. Take any point Z; = (r2,y2) € ! and let Z3 = (z3,y3) = 81(Z3). Then
Zy # Z3. Now I is the perpendicular bisector of [Z;, Zg], so by 4.1.1 Z € I if and
only if |Z, Zg| = |Z, Z3|. As these are both non-negative, this is the case if and only
if |2, Zs|* = |2, Z5|*. By 6.1.1 this happens if and only if

(@ - z2)* + (¥ — o)’ = (z - 23)* + (y — y3)%.

This simplifies to

2(z3 — Z2)2 +2(ys — y2)y + x5 + y2 — 3§ -y3=0.
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On writing
a = 2(z3 ~ 22), b= 2(ys - 4), ¢ =23 +y3 — 23 — 43,

we see that Z = (z,y) €l if and only az + by + ¢ = 0. Now a = b = 0 corresponds to
T2 = T3, Y2 = Y3, which is ruled out as Z; # Z3.

COROLLARY. Let Zy = (z0,¥0), 21 = (21,1) be distinct points and Z = (z,y).
Then Z € ZyZ, if and only if
~(@1 — yo)(z — z0) + (21 — z0)(y — yo) = 0.

Proof. By the theorem, there exist numbers a,b,c, with the case a = b = 0
excluded, such that Z € ZpZ; if and only if ax + by + ¢ = 0. As Zy,2, € ZpZ;, we
then have

azo +byo + ¢ 0,
azy +by1+¢c = 0.

We subdivide into two cases as follows.
CASE 1. Let zo # z:. We rewrite our equations as

ar; +c¢ = -=by,
azg+c¢ = -—byo,

and regard these as equations in the unknowns aq and c. As z; — zg # 0, we note that
by 6.2.1 we must have

_ by —yo) _ =b(z1y0 — Tomn)
T —%¢ 1 —Zo '

a

Note that b # 0, as b = 0 would imply a = 0 here. On inserting these values for a
and ¢ above we see that Z €[ if and only if

=b(y1 — yo)z by + —b(=1y0 — Zoy1) 0,
Ty — %o 1 — %o
and so as b/{z1 — zo) # 0, if and only if
—( — yo)z + (z1 — To)y — Z130 + Toth = 0.

This is equivalent to the stated equation.
CASE 2. Let yo # 1. We rewrite our equations as

b1 + ¢ = —az,

byo+c= —-aZzo,

and note that, as ¥, — yo # 0, by 6.2.1 we must have

b= —a(z; — Zo) c= —a(y1%o — YoT1)
- N — Y
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Note that a # 0, as @ = 0 would imply b = 0 here. On inserting these values for b
and ¢ above we see that Z € [ if and only if

—o(@ - %) | —elpzo—pr) _
h—Y d h—Y

azr +

b

and so as —a/(y1 — yo) # 0, if and only if
(1 - yo)z + (1 — To)y — Tayo + zoyr = 0.

This is equivalent to the stated equation.

Now either CASE 1 or CASE 2 (or both) must hold, as otherwise we have zp =
z1, yo = 11 and so Zy = Z;, contrary to what is given.

Definition. fl € Aand l= {Z = (z,y) :az+by+c =0}, wecallaz+by+c=0
a Cartesian equation of [ relative to F, and we write | =r az + by + ¢ = 0. When
F can be understood we relax thistol = azx +by+c=0.

Let 1 € A be a line, with Cartesian equation
(@)
az +by+c=0.

Then | also has
(ii)
az+biy+e =0,

as an equation if and only if

(iii)

a, = ja, by = jb, a1 = je,
for some j #0.

Proof.

Necessity. Suppose first that ! can be expressed in each of the forms (i) and (ii)
above. We subdivide into four cases as follows.

CASE 1. Suppose that @ # 0, b # 0 and ¢ # 0. Then we note from (i) that the
points A = (~¢/a,0) and B = (0, —¢/b) are in /, and are in fact the only points of I
in either OI or OJ, as A is the only point with y = 0 and B is the only point with
z=0.

We now note that none of a;,b1,¢; can be equal to 0. For if a; = 0, by (ii) we
would have y = —¢,/b; for all points Z in I; this would make ! parallel to O and
give a contradiction. Similarly 8; = 0 would imply that z = —¢; /a; for all points Z
in {, making ! parallel to OJ and again giving a contradiction. Moreover if ¢; = 0, by
(ii) we would have that O € I, again a contradiction.

We note from (ii) that the points A, = (—¢1/a;,0), By = (0,—¢1/by) are in | and
are in fact the only points of | in either OI or OJ. Thus we must have A; = A, B; = B

and so
Cl_ [ Cl_ [+

ay a ? b1 b
Thus

and if we denote the common value of these by j, we have j # 0 and (iii).
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CASE 2. Suppose that a = 0. Then b # 0 and by (i) for every Z € | we have
y = —c/b, so that I contains B and is parallel to OI; when ¢ # 0, ! has no point
in common with OI, and when ¢ = 0, ! coincides with OI. Now we must have
a; = 0, as otherwise ! would meet OI in the unique point A;, and that would give
a contradiction. Then b; # 0 and for every Z € | we have y = —¢;1 /by, so that [
contains B; and is parallel to OI. Thus we must have

a__¢
b b
When ¢ = 0, this implies that ¢; = 0, so that if we take 7 = b, /b, we have satisfied
(iii). When ¢ # 0, we must have that b, /b = ¢1/c, and if we take j to be the common
value of these we have (iii} again.
CASE 3. Suppose that b = 0. This is treated similarly to CASE 2.
CASE 4. Finally suppose that @ # 0, b # 0 and ¢ = 0. Then by (i) we see that
O € | and then by (ii) we must have ¢; = 0. We see from (i) that C = (1,—-a/b) is in
l, and on using this information in (ii) we find that a; + b1(—a/b) = 0. This implies
that a;/a = b1 /b, and if we take j to be the common value of these, we must have
(ii).
This establishes the necessity of (iii).
Sufficiency. Suppose now that (iii) holds. Then a,z + by + ¢1 = j(az + by +¢)
and as j # 0 we have a1z + b1y + ¢ =0 if and only if az + by + ¢ = 0.

6.4 PARAMETRIC EQUATIONS OF A LINE

6.4.1
Let | be a line with Cartessan equation az + by +c= 0.
(i) If Zy = (zo,y0) 18 in l, then

I1={Z=(z,y):z=20+bt, y=yo —at, (t € R)}.

(i) If Z, = (z1,%1) = (o + b,y0 — a) and <; is the natural order on | for which
Zo <y Zy, then for Zy = (zo + bta, yo — at2), Zz = (zo + bts, yo — atz) we have
ta <3 lf and only if Zy <i Z3.

(i) If Zi = (z1,31) = (To + b, yo — 6), then
(20, 2)={Z=(z,y) :z=20+bt, y=yo—at, (0<t<1)}.
(iv) With Z, as in (ii),
(20,21 ={Z=(z,y):z=20+bt, y=1yo—at, (t>0)}.

Proof.
(i) If Z €l then az + by + ¢ =0, azo + byo + ¢ =0, 8o that

b(y - o) = —a(z — o). (6.4.1)
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When b # 0, let us define ¢ by ¢t = (z — o) /b; then by (6.4.1) we must have, y —yo =
~at. Thus
z =g+ bt, y=yo — at, (6.4.2)
for some t € R. ‘
When b = 0 then a # 0, and by (6.4.1) we must have 2 = zo. If we define ¢ by

t = (y — yo)/(—a), then we have (6.4.2) for some ¢ € R.
Conversely suppose that (6.4.2) holds for any t € R. Then

az + by + ¢ = a(zo + bt) + b(yo — at) + ¢ = azo + byo + ¢ = 0.

(ii) We first suppose that ! is not perpendicular to m = OI, so that b # 0. We
recall that Zy, Z; are distinct points on I for which Zy <; Z;. Let <,, be the
natural order on m for which O <, I. Let Uy = mq(Zo), Ur = mm(Z:) so that
Us = (20,0), U1 = (20 + 5,0).

Z

Uo U1 Ul Uo
Figure 6.4. Direct correspondence. Indirect correspondence.
Ifb > 0, then 29 < 29 + b and s0 by 6.1.1 Uy <,, Ui. In this case we say that

the correspondence between <; and <,, is direct . If b < 0 then 29 + b < 29 and
80 Uy <, Up. In this case we say that the correspondence between <; and <,, is
indirect. In what follows we assume that b > 0 so that the correspondence between
< and <,, is direct. The other case can be covered by replacing <,, by >, in the

following,.

Zy Z3

Us UL Uo v Uz Us

Suppose now that Z; <; Zj;
we wish to show that U; <,
Us where Ug = 7l'm(Zz), U3 =
7m(Z3). We subdivide into three
cases.
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CASE 1. Suppose that Z; <; Zy. Then Z3 <; Zy <; Z; so that Zy € [Zg,Zl].
Then by 4.3.2, Uy € (U, U1]. As Uy <m U1, we then have U; <,, Up. There are
now two possibilities, that Zg <; Zp or that Zy <; Z3. In the first of these subcases,
Z3 € [Z2,2Zg) so Us € [Uz,Up]. As Uy < Uy we then have U, <, Us. In the second
of these subcases we have Zy € [Z;,Z3] so Up € [Uz,Us]. As Uy <n Up we have
Uo <m Us so Uz < Us.

CASE 2. Suppose that Zy <; Z3 <t Z;. Then Z; € [Zo,zl] sol; € [UQ,U1]. As
Up <m Uy then Uy <;u Uz <; Ur. Now Z; € [Zo,Za] sols € [Uo,Us]. As Ug <pm Us
it follows that Us <y, Us.

CASE 3. Suppose that Z; <; Z;. Then Z, € [Zy,Z,] so that Uy € [Up,Us).
As Uy <, Uy we then have U; <,, Us. Then Z; € [21,23] solU, € [Ul,U;;]. As
U1 Sm Uz we have Uz Sm U3.

Now continuing with all three cases, we note that Uy = (2o + b22,0), Us = (29 +
bt3,0) and as Uz <, Us by 6.1.1 we have z¢ + bty < x¢ + btz. As b > 0 this implies
that ¢; < .

We also have that ¢; < t3 implies Zs <; Z3. For otherwise Z3 <; Z; and so by the
above t3 < 3, which gives a contradiction unless Z, = Z3.

When [ is perpendicular to OI we use woy instead of #,,. By a similar argument
we reach the same conclusion.

(iii) This follows directly from (ii) of the present theorem. It can also be proved
as follows. Note that in (6.4.2) ¢t = 0 gives Zg and t = 1 gives Z;. Then for Z = (z,y)
with z and y as in (6.4.2), by 6.1.1 we have

120,2] = (z—120)%+ (y — 10)2 = V(bt)? + (—at)? = |t|] Vb2 + a?,

124, 2] V=t +(a—at)? =/t - 1)2(8 + &%) = |t — 1|\/B? + a2,
|Z0,24] = B2+ (=a)® =V +al.
Thus when ¢t <0,

120, Z| = (~t)V® + a2, |21, 2| = (1 - t)V/b2 + a2,

and so iZ, Zo' + IZa,21I = IZ, ZII; thus by 3.1.2 and (I) above, Zg € [Z,Zl}, Zo #
Z, Z#%.
When 0<t<1,

IZo,Zl = t/b? + a?, |Z,le = (l—t)\/b2+¢12,

and so IZo, ZI + IZ, Z}l = IZO;ZIl ; thus Z € [Zo,Zl].
When ¢ > 1,

lZg,ZI =tvVH + a?, |Z1,Z| = (t—l)vb2+a,2,

and 80 |Zp, Z;| + 121, Z)| = | Zo, Z|; thus Z, € [Zp,Z] and Z # Zy, Z # Z;.

These combined show that the values of ¢ for which 0 < ¢ < 1 are those for which
Z € |2y, Z,).

(iv) This follows directly from (ii) of the present theorem. It can also be proved
as follows. As in the proof of (iii) above, we see that the values of ¢ for which ¢t > 0
are those for which Z € {Z, Z; .
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COROLLARY. Let Zy = (zo,%0) and Z1 = (z1,1) be distinct points. Then the
following hold:-
(i)
202y ={Z = (z,y):z =20+ t(z1 — Z0), Yy =Y0 + t(h —¥0), L ER}.
(ii) Let <; be the natural order on l = ZoZ; for which Zy <; Z,. Let

Zy
Zs

(zo + ta(z1 — o), v0 + t2(y1 — 0)),
(zo + t3(z1 — Zo), Yo + t3(y1 — o)) .

Then we have t2 < t3 if and only if Z, <; Zs.
(iif)
(20, 21) ={Z = (z,y) : =20 + t(z2 ~ Z0), y=y0 + t(11 —30), 0 <t < 1}.

(iv)
(20,2, ={Z = (2,y) : x =20 + t(z1 — Z0), ¥y = Yo + (11 — ¥o), t > 0}.

Proof. By 6.3.1, in the above we can take a = —(y1 — y0), b = 1 — z¢ and the
conclusions follow immediately.

NOTE. We refer to
z=zog+bt, y=yo—at, (t€R)

in 6.4.1 as parametric equations of the line I, and ¢ as the parameter of the
point Z = (z,y).

6.5 PERPENDICULARITY AND PARALLELISM OF LINES

6.5.1
Letl=az+by+c=0,m=a;z+biy+¢c =0.

(i) Thenl L m if and only if
aa; + bb; = 0. (6.5.1)

(i) Alsol|| m if and only if
ab1 - alb =0. (652)

Proof.

(i) Suppose that I L m. Then ! meets m in a unique point which we denote by
Zo. By 6.4.1 Zy = (2o +b,y0 — a) is a point of | and similarly Z; = (zo + b1, 50 — a1)
is a point of m. Now by Pythagoras’ theorem |2, Z; |* + |20, Ze|* = |2y, Zg)* and so
by 6.1.1

(6% + (=a)] + B + (=a1)*] = (b — b1)? + (a1 — @)?.
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This simplifies to (6.5.1).
Conversely suppose that (6.5.1) holds. Then we cannot have (6.5.2) as well. For
if we did, on multiplying (6.5.1) by a and (6.5.2) by b we would find that

a’a; + abby; =0, —b%a; + abb, =0,
so that (a? + b?)a; = 0, and hence as (a,b) # (0,0), 1 = 0. Similarly
aba; + b%b; = 0, —aba; + a®b; =0,

so that &, = 0 as well, giving a contradiction. We now search for a point of intersection
of I and m, and so consider solving for (z,y) the simultaneous equations

az+by=—c, aiz+by=—q.

As aby — a1b # 0, by 6.2.1 these will have a unique solution, yielding a point which
we shall denote by Zy = (zg,0). Then by 6.4.1

Il = {Z=(z,y):z2=29+bt, y=yo—at, t € R},
m = {Z=(z,y):z2=20+bt, y=y—art, t € R}

We choose Z; € I, Z; € m as above, and from (6.5.1) find that |Zg, Z;{* +|2,, Ze|* =
|21, Zg|*. By 6.4.1 we can conclude that I 1 m.
(ii) By 6.2.1 the equations az + by + ¢ = 0, a1z + b1y + ¢; = 0 have either no
solution or more than one if and only if (6.5.2) holds.
Alternatively, by (i) above we have [ || m if and only if there is some (a2, b2) # (0, 0)
such that
aas + bbs =0, ajazs + b1bs = 0.

But the equations
au+bv =0, aqyu+bv=0,

have a solution (u,v) other than (0,0) if and only if aby — a;b = 0. Thus (6.5.2) is a
condition for / and m to be parallel.

COROLLARY.
(i) The lines Z2,Z2 and Z3Z, are perpendicular if and only if

(2 — ¥1)(ya — y3) + (32 — :1) (24 — 23) = 0.
(ii) These lines are parallel if and only if

—(y2 — 11)(%4 — 23) + (ya — y3)(z2 — 21) = 0.
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6.6 PROJECTION AND AXIAL SYMMETRY

6.6.1
Letl =az + by + ¢ =0 and Zy = (x9,y0). Then

(@)
lazo + byo + ¢|

Zy,m1(Zp)| =
V2o, m(Zo)| = — 75—

(ii)
a b
m(Zo) = (2?0 - m(axo + byo +¢), Yo — m(a@‘o + byo + C))-
(i)
2a 2b
a? + b2 a? +b?

Proof. Let m be the line such that I L m and Zy € m. Then as! L m, by 6.5.1 we
will have m = —bz +ay + ¢; = 0 for some ¢;, and as Zy € m we have ¢; = bzp — aye.
To find the coordinates (z,y) of m(Zg) we need to solve simultaneously the equations

81(Zo) = (%0 ~ (azo + byo + ), Yo — (azo + byo + ©)).

az + by = —¢, —bz + ay = —bzo + ayo.

As for (i) we shall then go on to apply 6.1.1 it is (z — z9)? and (y — yo)? that we shall
actually use, and it is easier to work directly with these. We rewrite the equations as

a(z—z0) +b(y—y) = —(azo+byo+c),
bz —z0)+aly—w) = 0.

Now on squaring each of these and adding, we find that
(@® +*)[(z — 20)* + (¥ — 40)*] = (azo + byo + ).
The conclusion (i) now readily follows.
For (ii) we solve these equations, obtaining

a b
Tz = - (az +bhyw+c) y -y = ~ 7 32 (%0 + byo + ).

For (iii) we recall that if 8(Zo) = (z1,51) and m(Zy) = (z2,y2), then as
mp(Zy, 81(Zo)) = mi(Zy) we have z; + 2o = 233, Y1 + Yo = 2y2. Now z3 and .
are given by (ii) of the present theorem, and the result follows.

6.6.2 Formula for area of a triangle

Let Z) =5 (21,11), Z2 =7 (22,Y2) and Z3 =5 (x3,Yy3) be non- collinear points. Then
the area A[Z,,Z;, Z3) is equal to |65(2y, Zg, Z3)| where

65(Z1,22,Z3) = 3[z1(y2 — ys) — y1(z2 — z3) + T2ys — T3y

T N 1
= idet| zp yo 1 |.
z3 y3 1
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Proof. By 6.3.1 Z;Z; = A

-(ys — y2)(z — =2) + (23 -

z2)(y — y2) = 0, so by 6.6.1

|Z1,72,2,(Z1)] is equal to

~(ys—~y2)(Z1 ~Tg)+{zs—~Zs)(y1 —ys2
v(w—v:)’+(za—zz)’ )

But A[Zl, Zz, Z3] = 7

}2e, Zs1|21,72,2,(Z1)|,  and : 2.2, (Z1)

the denominator above is equal

t0 |Zg,Z3|. Hence the area is

equal to half the numerator.

Zs

Figure 6.6. Area of a triangle.

6.6.3 Inequalities for closed half-planes
Letl=az + by +c=0. Then the sets
{Z =(z,y):az+ by +c <0}, (6.6.1)
{Z=(z,y):az+by+c >0}, (6.6.2)
are the closed half-planes with common edge l.
Proof. Let Z; = (z1,y:) be a point not in I, and let 8;(Z;) = Z2 = (z2,y2). Let
Z = (z,y). Then asin 6.3.1, Z €1 if and only if |Z, Z; | = |Z, Z,|*, and this occurs
when (z — 21)2 + (y — 11)? = (z — 22)? + (y — y2)?, which simplifies to
2z — 1)z +2y2 —p)y + 23 + 4] — 23 —v3 = 0.
This is an equation for ! and so by 6.3.1 there is some 7 # 0 such that
oz +by +c=j[2z2 - 31)T + 202 ~ )y + 21 + i — 25 - 43] -
By 4.3.4 the sets

{Z = (z,9) : 222 — 71)7 + 202 — 1)y + 7} + 4} — 23 —y3 <0}, (6.6.3)

{Z = (z,y) : 2(z2 — 21)z + 2(y2 — 91)y + 23 + 4] — 23 —y3 2 0}, (6.6.4)
are the closed half-planes with edge I, as they correspond to |Z,Z;| < |Z,Zg| and
|Z, 24| > |Z,Zg|, respectively. But when j > 0, (6.6.1) and (6.6.3) coincide as do
(6.6.2) and (6.6.4), while when j < 0, (6.6.1) and (6.6.4) coincide as do (6.6.2) and
(6.6.3).

6.7 COORDINATE TREATMENT OF HARMONIC RANGES

6.7.1 New parametrization of a line

Asin 6.4.1,if Z; = (z1,41), 22 = (22,¥2), Z = (z,y) wherez =z +t(z2 —T1), ¥y =
1 +ty2— 1), then Z € 7,2, and

21,2 = [t - y)]* + [tz — 1)) = 8121, Ze)’,
12, Zel* = [(1-8)(z2 —2)] +[(1 - )w2 — w0 = 1 - )°|Z1, Ze[,
'ZI)ZI = | t ‘.

|Z, Zg| 1-¢
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Accordingly, if we write =3 = A where A # 0 and so have t = _X we have
|Z1’Z|

Thus Z divides (Z, Z3) in the ratio |A| : 1
Changing our notation slightly, if we denote by Z3 = (z3,ys) the point with

lx+ '\a:
T+ AT 102

(2 —31) =

z—:z:+A
3—11+,\

_ + A (v2 —y1) = 1 + A
y3 - yl 1+A y2 yl - 1+/\y1 1+Ay2’
then Z3 divides (Z,, Z;) in the ratio |A| : 1. Consequently if we denote by Z4 = (x4, y4)
the point with

1 21 + X :c 1 + X
T G P, 2y Y4 = 1+/\,U1 +’\,y2,

where X' = =), so that

Tq4 =

L, SRS ST
TIoAn T I MTEI N T I

then Z4 also divides (Z;, Z2) in the ratio |-\ : 1 =|A]: 1.
Now A = t&; and if we write —A = ;£ we have Z, in the original format,

T4 =21+ 8(x2 — 21), ya =4 + 8(y2 — »1)-

Then
t s
1-t 1-3
so that
it
—_ _2
8= T
t—3
Thus 1 1 1 1
a_1_ 3t _1_gt—jt+i 1
P-4 2 t-3 fe- g
Hence
-2 ¢-3)=%6-Dt-p=1 (6.7.1)
Then we have three possibilities,
(@ |t-3<z |s-3>5
®  |s-z[<3 [t-3>3
@ |s-%[=3 [-il=%
In (a) we have -3 <t— 1 < } and either s— L < L ors—-1 > 3. Hence

0 <t <1andeither s<0ors>1. It follows that Z; € [Z,, Z,)], Z4 ¢ [Zl,Zz]
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The situation in (b) is like that in (a) with the roles of ¢ and s, and so of Z3 and
Z, interchanged.

In(c) -1 =t—%ort—}=3,soeither £ =0 or ¢t = 1. Similarly either s=0or
s = 1. We rule out the case of ¢ = 1 as then A would be undefined, and we rule out
the case of s =1 as then —A would be undefined. What remains is £t = s = 0 and we
excluded this by taking X\ # 0; it would imply that Z3 = Z, = Z,.

Thus just one of Z3, Z, is in the segment [Z,, Z,] and the other is on the line Z; Z,
but outside this segment. Hence Z3 and Z; divide {Z;, Z,} internally and externally
in the same ratio. We recall that we then call (Z;, Z3, Z3, Z;) a harmonic range.

We note above that there can be no solution for s if ¢ = }; thus there is no
corresponding Z, when Z3 is the mid-point Zy of Z; and Z;. Similarly there can be
no solution for t if s = %; thus there is no corresponding Z3 when Z4 is Z,.

6.7.2 Interchange of pairs of points

If the points Z3 and Z4 divide {Z,,Z;} internally and externally in the same ra-
tio, then it turns out that the points Z, and Z; also divide {Z3,Z,} internally and
externally in the same ratio.

Proof. For we had

T3 = L$1+L$2 y3=Ly1+Ly2
1+ 1+277 1+ 1+ 277

x4 = Lﬂn—L% y4=;y1—Ly2.
1-X 1=-27% 1-) i-2A

Then

1+ Nzz = 21+ Azg,
(1—A)2:4 = 21—/\272.

By addition and subtraction, we find that

_ 1+'\z +1—,\
rn = 2 3 2 z4,
_ 1+/\z+/\—lz
= Ty BT
and by a similar argument,
1+A 1-A
n = 2 Y3 + 2 Y4,
_ 14 +,\—1
Y2 = o Y3 on Ya.
If we define u by
1 1+
1+ 2 °
that
S0 tha ol b 1=
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then
- _F - H
x1_1+”z3+1+“z4,y1 1+”y3+1+py4-
If we define ' by
1 1+
T+ 2x°
80 that
,_A-1 W A-1
k=1 1+ 2)°7
then
Tz = 1 z3 + 2 z. - + 2
2—1_*_“, 3 T+ 4,92—1+“,113 1+”,y4.

As u' = —p, this shows that Z;, and Z, divide {Z3,Z,} internally and externally in
the same ratio.
6.7.3 Distances from mid-point
Let Zy be the mid-point of distinct points Z, and Zy. Then points Z3,24 € Z1Z,
divide {21, Zy} internally and externally in the same ratio if and only if Z3 and Z,
are on the one side of Zy on the line Z,Z; and
|20, 251120, 24| = §121, Zel".
Proof. We have Zp = (%o, o) where zo = 3(21 + Z2), yo = §(11 + y2). Then

z3—-20 = (-3 (z2—21), vs—vo=0C-3)w—n)
T4 —2p (s - %)(22 -21), Wa—-ypo=(- %)(Uz - ),

and so

|20, Zs11Z0, 24| = |(¢ - §) (2 = $)11Z1, Ze|".
By (6.7.1) Za,Z.; divide {Zl,Zg} internally and externally in the same ratio if and
only if (8- %) (¢t — %) = ;- This is equivalent to having (s — -) (t-%)=4%and
(s— -) (t- -) > 0. The latter is equivalent to having either s — § > 0 and t—— >0,

ors—— <0andt—- < 0, so that Z3 and Z, areontheonez-ndeono onthelme
Z\Z,.

6.7.4 Distances from end-point

Let {Z3,Z4} divide {Z,,2,} internally and externally in the same ratio with Z, €
[Zl,Z4]. Then

1( 1, 1 )_ 1
2\121,25| 121,24 |21, Ze|"

Proof. We have as before

A A
T3 =21+ 1+_A($2 -z1), y3=n+ 1+,\(y2 -y1),
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A A
A-1 A-1

Now A/(A—1) > 1 and so A > 1. Hence 1 < A/(1+ A) < 1, and so Z3 € [Z;, Z,).
Thus Z, Z3 and Z,4 are on the one side of Z; on the line Z,Z,. Then

(y2 —y1)»

(32 —271), Y=y -+

Ty=I) +

1Z1,%5) _ A |Z0,Z0 _ A
1Z1,2¢) ~ A+1' |Z1,25] A-1’

so that
|Z1,Ze]  A+1 |Z4,Z5] A-1
121,25 — X 124,25 A
and so 121,28l 121,Ze] A+1 A-1
A7 7 A S e
Hence

l( 1, 1 )_ 1
2\121,25| " 121,,Z4]) ~ 1|21, 2e|

This is expressed by saying that |Z;, Zg| is the harmonic mean of |Z;, Z3] and
IZI ’ 24 |

6.7.5 Construction for a harmonic range

Ws
T~
~ ~——
Sy T s e
l S~ W2 --------
~. 4= TTEme—aa.
T Zy4
- Soc —
Zl Z3 S ]ZZ
~
~
Wi
Figure 6.7.

Let Z1,2,,2Z3 be distinct collinear points with Z3 not the mid-point of Z, and Z,.
Take any points W, and Wy, not on Z) Z;, so that Z; is the mid-point of W1 and Wo.
Let 1 be the line through Z, which is parallel to W1 W2 and let W3 be the point in which
W1 Zs meets I, with Z, the point in which Wo W3 meets Z1Z;. Then (21,2, Z3,24)
s @ harmonic range.

Proof. Without loss of generality we may take the z-axis to be the line Z; Z; and
so take coordinates

Zy = (1,0), Za = (22,0), Z3 = (z3,0), Zs = (24,0),
and W, = (u1,v1), Wa = (223 — u1, —v1). The lines I and W; Z3 have equations

(m—z)y=vn(z—z1), (0 —z3)y=r(z—13),
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respectively, and so W3 has coordinates

_273('01—2‘2)-271("1—373) _ . T3—=I
3 = , Ug =y ———

3 1 .
3 — T2 T3 — T2
On the forming the equation of WoWj3 and finding where it meets Z; Z we obtain

—z3(z1 + 22) + 27129
Ty = N
) + T2 — 21‘3

from which it follows that

_(z1 = 22)(23 — 71)

— (x1 — z2)(23 — x2)

Ty —T1 = Ty — X4
T, + 22 — 2x3 ’ T, + 29 — 223
From these we see that
T4—21 . T3— I
T2 — T4 T2 — T3 )

Exercises

6.1 Suppose that Z,, Z,,Z3 are non-collinear points and Zs = mp{Z3, 2}, Zg =
mp{Zl,Zg}. Show that if |Zg,Z5| = |Zg,Zg|, then IZg,Z]I = IZ;,Zgl.[Hint.
Select a frame of reference to simplify the calculations.)

6.2 Let 1, ls be distinct intersecting lines and Zy a point not on either of them. Show
that there are unique points Z; € i1, Z2 € I3 such that Z; is the mid-point of
Zl and Zg.

6.3 Suppose that Z;, Z,;,Z3 are non-collinear points. Show that the points Z =
(z,y), the perpendicular distances from which to the lines Z; Z3, Z; Z3 are equal,
are those the coordinates of which satisfy

—(y2 =y ) —21) + (22 — ) (y — 1)
ViZg2a —21)2 + (g2 — 31 )?
" “s—m)E-—z)+@s—2)ly—wy) _ 0
V(@s =212 + (ys — 11)? '

Show that if z = (1 — t)zg + tz3, ¥y = (1 — t)y2 + tys then Z lies on the line with

equation
—(y2—y ) —31) + (22 — 1) (¥ — 1)
V(@ —21)? + (y2 — 1)?
+ —W-n)z—z)+ (@ —21)y—m) _ 0
V(@3 —21)? + (y3 — n)? ’
if and only

__ 12,z
121, Ze|” + 22, Zs|”
Deduce that this latter line is the mid-line of | Zp Z; Z5.




Sec.6.7YCOORDINATE TREATMENT OF HARMONIC RANGES 93

6.4 If the fixed triangle [Z,, Z,, Z3] is isosceles, with |Z;, Zg| = |Z;, Z3|, and Z is
a variable point on the side [Z3, Z3), show that the sum of the perpendicular
distances from Z to the lines Z,Z, and Z,Z3 is constant.[Hint. Select a frame
of reference to simplify the calculations.)

6.5 Let [4, B,C, D] be a parallelogram, E = mp{C, D}, F = mp{A, B}, and let
AE and CF meet BD at G and H, respectively. Prove that AE || CF and
|D,G|=|G,H|=|H, B



7

Circles; their basic properties

Hitherto our sets have involved lines and half-planes, and specific subsets of these.
Now we introduce circles and study their relationships to lines. We do not do this
just to admire the circles, and to behold their striking properties of symmetry. They
are the means by which we control angles, and simplify our work on them.

7.1 INTERSECTION OF A LINE AND A CIRCLE

7.1.1

Definition. If O is any point of the plane Il and k is any positive real number,
we call the set C(O;k) of all points X in II which are at a distance k from O, i.e.
C(O;k) = {X € I1: |0, X| = k}, the circle with centre O and length of radius k. If
X € C(O;k) the segment [0, X] is called a radius of the circle. Any point U such
that |0, U| < k is said to be an interior point for this circle. Any point V such
that |O, V| > k is said to be an exterior point for this circle.

For every circle C(O; k) and line I, one of the following holds:-

(i) InC(O;k) = {P} for some point P, in which case every point of | \ {P} is
exterior to the circle.

(i) INC(0O;k) = {P,Q} for some points P and Q, with P # Q, in which case every
point of [P,Q] \ {P,Q} is interior to the circle, and every point of PQ \ [P, Q)]
is exterior to the circle.

(iii) INC(O;k) =0, in which case every point of l is exterior to the circle.

Proof. Let M = m(0), and let m be the line which contains M and is perpendic-
ular to /, so that O € m.

94
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Q

v
I
R

(i) Suppose that |O,M| = k,
so that M is a point of the cir-
clee. We write P = M. Then
Pel, Pe C(O;k) and OP L
l. Thus if V is any point of I,
other than P, by 4.3.1 we have
|0,V| > |O,P| = k. Hence V
is exterior to the circle, and so
there is no point common to I
and the circle except P.

(ii) Suppose that |O, M| < k, so that M is interior to the circle. Then k? —
|0, M)* > 0 so that its square root can be extracted as a positive real number. By

A4(iv) choose P € I so that |M, P| = 1/k? — |0, M|?. There is also a point Q € I
on the other side of M from P and such that |M, Q| = |M, P|. Clearly M is the
mid-point of P and Q.

When M = O, this gives |0, P| = k so that P € C(O;k). By 2.1.3 any point
X # P of the half-line [0,P must satisfy either X € [O,P] or P € [0,X]. If
X € [O,P) then by 3.1.2 |0, X| < |0, P| = k, so that X is interior to the circle.
On the other hand if P € [0, X] then |0, X| > |O,P| =k, and so X is an exterior
point for the circle. Moreover @ is also on the circle and similar results hold when
Xelo,Q.

When M # O, we have MP = |, MO = m, so that MP 1 MO and then by
Pythagoras’ theorem

|0, P> =0, M + |M, P|* = |0, M|* + [k* - |O, M|’] = k%

thus again |0, P| = k, so that P is on the circle. By 2.1.3 any point X # P of the
half-line [M, P must satisfy either X € [M,P] or P € [M,X]. If X € [M, P], then
by 3.1.2 |[M, X| < |M, P|; when X = M, clearly X an interior point; when X # M,
by Pythagoras’ theorem this gives

10, X> =10, M)* + |M,X|* < |0, M? +|M, P|* = k?,

so that |0, X| < k and so again X is interior to the circle. If on the other hand
P € [M,X), while still X # P, then by 3.1.2 |M,X| > |M,P|; by Pythagoras’
theorem we have

10, XI2 =0, M| + M, X]> > |0, M + |M, P = ¥?,

so that |0, X| > k and so X is exterior to the circle. Thus the points of [M, P]\ {P}
are interior to the circle, and the points of ((M, P )\ [M, P] are exterior to the circle.

Figure 7.1.
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Similar results hold when X € [M,Q , that is the points of [M,Q] \ {Q} are
interior to the circle while the points of ((M,Q ) \ [M, Q] are exterior to the circle.
But M € [P,Q)] so that [P,M]U [M,Q] = [P,Q], [M,P U[M,Q = PQ and so we
can take these results together. Thus the points of [P, @], other than P and Q, are
interior to the circle, and the points of PQ \ [P, Q] are exterior to the circle, leaving
just the points P and @ of the line | = P@ in the circle.

(iii) Suppose that |O, M| > k, so that M is exterior to the circle. Then M €l and
OM LI. f X €l,X # M, then by 4.3.1, |0, X| > |O, M| > k, so that X is exterior
to the circle.

Definition. If | is a line such that {NC(0; k) = {P} for a point P, then [ is called a
tangent to C(O; k) at P, and P is called the point of contact. If INC(O; k) = {P,Q}
for distinct points P and Q, then ! is called a secant for C(O;k) and the segment
[P, Q] is called a chord of the circle; when O € | = PQ, the chord [P, Q)] is called a
diameter of the circle; in that case O = mp(P, Q). If INC(0; k) = B, then [ is called
a non-secant line for the circle.

NOTE. By the above every point of a tangent to a circle, other than the point
of contact, is an exterior point. If [P, @] is a chord, every point of the chord other
than its end-points P and @ is an interior point, while every point of P@Q \ [P,Q)] is
exterior. Every point of a non-secant line is an exterior point.

7.2 PROPERTIES OF CIRCLES

7.2.1

Circles have the following properties:-

(i) If[@,S] is a diameter of the circle C(O;k) and P any point of the circle other
than Q and S, then PQ L PS.

(i) If points P,Q,S are such that PQ 1 PS, then P is on a circle with diameter
@, $).

(iii) If P is any point of the circle C(O;k), [Q, 5] is any diameter and U = ngs(P),
thenU € [Q,S] and |Q, U| < 2k.

(iv) If Q is a point of a circle with centre O and [ is the tangent to the circle at Q,
then every point of the circle lies in the closed half-plane with edge ! in which
O lies.
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Proof.
(i) By 5.2.2

|£OSPJ° + |ZSPOJ° + |£POS|° = 180, |£OQP|° + |ZQPOI° + [ZPOQ|® = 180.

But by 4.1.1,
|£O0SP|° = |£SPO|°, |£0QP|° = |£QPO)°,

and so
2|£SPO|° +2|£QPO|° + |£POS|° + |£POQ|° = 360.

Now O € [@,S] so |£POS|° + |£ZPOQ|° = 180, and as [P,0 C IR(|QPS) we have
|£SPO|° + |£OPQ|° = |£QPS|°. Thus |ZQPS|° = 90. T

(ii) Let O be the mid-point of @ and S and through O draw the line parallel to
PQ. It will meet [P, S] in a point M. Then by 5.3.1 M is the mid-point of P and S.
But PQ 1 PS and PQ || MO so by 5.1.1 MO L PS. Then [O, P, M] = [0, S, M] by
the SAS principle of congruence. It follows that |O, P| = |0, §|.

(iii) If P ¢ QR, then by (i) of the present theorem and 4.3.3U € [Q,S]. f P € QS
then U is either Q or S and so U € [@,S]. Then by 3.1.2|Q, U| < |Q, S]- But as O
= mp(Q, ), by 3.211Q, 0| = }Q, S|, and 50 |Q, §| = 2.

(iv) Let [@,S] be the diameter containing @ and #, the closed half-plane with
edge | which contains O. Then by 2.2.3 every point of [Q,0 lies in H;. If P is
any point of the circle and U = wgo(P) then by (iii) above U € [@,S] C [Q,0 so
UeH;. But 1 LQS, UP L QS soUP||I. Then by 4.3.2 P € H,.

7.2.2 Equation of a circle

Let Zy = (z9,y0) and k > 0. Then Z = (2,y) s on C(Zp; k) if and only if
(z — 20)* + (y —0)* = k.

Proof. This is immediate by the distance formula in 6.1.1.

7.2.3 Circle through three points

Given any three non-collinear points A, B and C, there is a unique circle which passes
through them.

Proof. Let | and m be the perpendicular bisectors of [B, C] and [C, 4], respectively.
Then if we had I || m we would have ! || m, m L CA and so ! L CA by 5.1.1; this
would yield BC L1, CA 11 and so BC || CA by 4.2.2(iv). This would make the
points A, B, C collinear and so give a contradiction.

Thus I must meet m in a unique point, D say. Then by 4.1.1(iii} D is equidistant
from B and C as it is on I, and it is equidistant from C and A as it is on m. Thus
the circle with centre D and length of radius |D, A| passes through A, B and C.

Conversely, suppose that a circle passes through A, B and C. Then by 4.1.1(ii)
its centre must be on [ and on m and so it must be D. The length of radius then
must be |D, AJ.

COROLLARY. Two distinct circles cannot have more than two points in common.



98 CIRCLES; THEIR BASIC PROPERTIES (Ch.7

7.3 FORMULA FOR MID-LINE OF AN ANGLE-SUPPORT

7.3.1

COMMENT. We now start to prepare the ground for our treatment of angles. Earlier
on we found that mid-points have a considerable role. Now we shall find that mid-
lines of angle-supports, dealt with in 3.6, have a prominent role as well. Given any
angle-support |BAC, if we take any number k > O there are unique points P; and P;
on [A,B and [4,C respectively, such that |4, P;| = k, |4, Pg| = k. Thus P, and P,
are the points of [4, B and [A,C on the circle C(4; k). Then |BAC = |P; APy and
it is far more convenient to work with the latter form. We first prove a result which
will enable us to deal with the mid-lines of angle-supports by means of Cartesian
coordinates.

With a frame of reference F = ([0, , [0,J ), let P,,P, € C(O;1) be such that
P, =f (61,b1), P2 =5 (a2,b2). Then the mid-line | of |P; OPg has egquation

(b +b)x—(ay +a)y=0

when P, and Py are not diametrically opposite, and equation a1z + b1y = O when they
are.

Proof. When P, and P, are ,’

not diametrically opposite, their mid- Q

point M is not O and we have y 2
| = OM. As M has coordinates P A
(3(a1 +az2), £(by + b)), the line OM 10
has equation (b +b2)z — (a1 +a2)y = 0.

When P, is diametrically opposite to

P,, | is the line through O which is per-

pendicular to OP and this has the given ;
equation.
Figure 7.3.

With the notation of the last result, let Q =x (1,0) and 8(Q) = P; where P3 =f
(a3,b3). Then

- (a1 + a2)? = (b1 + ba)? b = 2(a1 + ag)(by + ba)
BT @1 +a2)? + (01 +52)2° ° (a1 +a2)% + (by + b2)?’

when P; and Py are not diametrically opposite, and

az = b? - af, b3 = —2a1b1,
when they are.
Proof. For | = az + by + ¢ = 0, we recall from 6.6.1 that
7= 2a 2b
81(Zo) = | o — m(‘no +byo +¢), 30 — m(azo +bypo+c) ).
When P, and P, are not diametrically opposite, | = (b1 + b3)z ~ (a1 +a2)y = 0. Thus
foritzo=1, yp=0,a="5b +be, b= —(a; +az2), c=0and so

g mta) -G +5)  2a +as)(bs +5a)
3T (a1 +a2)2 + (0 +b2)2" 2 (a1 +2)% + (b1 +b2)?
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When P, and P, are diametrically opposite, | = ayz + by = 0. Thus for it
20=1,90=0, a=a;, b=b, ¢=0, 80 we have

12 _ 2 —
a3 = by — a7, b3 = —2a; b1,

asa?+b=1.
7.4 POLAR PROPERTIES OF A CIRCLE

7.4.1 Tangents from an exterior point

Let P be a point exterior to a circle C. Then two tangents to the circle pass through

P. Their points of contact are equidistant from P.
Proof. Let the circle have centre

O and length of radius a. Let
|0, P| = b, so that b > a. Choose
the point U € [O, P so that z =
|0, U| = a®/b. As b > a, then
z<a<bsoU € [0,P]. Erect
a perpendicular to OP at U and
mark off on it a distance

_ _ a\? Figure 7.4.
y=|U,Ti|=ayf1 (z) .
Then, by Pythagoras’ Theorem,
2 2 2 a* a?
|0, T1|* =0, U] +|U, T1|" =2 +y* = b—2+a2— 7 =a’,
so that T3 € C.
Let V be the mid-point of O and P, so that V € [0, P] and |0, V| = §. Then

|U, V| =%(10, V| -0, U|) = £(3b - 2).
Again by Pythagoras’ Theorem,
\V,Ti> = U, VP+|U,T:)* =(b-2)* +¢°

1 @\’ 2 a? 132
= gb—T +a I—F '__Z'b‘

Thus T; is on the circle C; with centre V' and radius length 3. Note that C; also
passes through O and P. Then ZOT; P is an angle in a semi-circle of C;, so that by
7.2.1 it is a right-angle. Thus by 7.1.1 PT is a tangent to C at T}.

By a similar argument, if we take T so that U is the mid-point of 71 and T3, then
PT; is also a tangent to C at T,. We note that T} and T3 are both on the line which
is perpendicular to OP at the point U.

By Pythagoras’ theorem

|P, T;* =10, P|* = |0, Ts)* = |0, Pf* = |0, Te|* = |P, Te |,
and so |P, Ty| = |P, Tg|.

There cannot be a third tangent PT3 as then T3 would be on C and C,, whereas
by 7.2.3 these circles have only two points in common.
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7.4.2 The power property of a circle

For a fized circle C(O; k) and fized point P € C(O;k), let a variable line l through
P meet C(O;k) at R and S. Then the product of distances |P, R||P, S| is constant.
When P is exterior to the circle,

|P’R“P,S|=|P’ Tllzv

where T} is the point of contact of a tangent from P to the circle.

Proof. By the distance formula Z = (z,y) is on C(O; k) if and only if z2+y% k% =
0. If P = (x0,y0) and [ has Cartesian equation az + by + ¢ = 0, by 6.4.1 points Z on
| have parametric equations of the form z = 2o + bt, y = yo — at (¢ € R). Now { also
has Cartesian equation

a b c
+ + =0.
VaZ+ =i VvaZ + b2y VvaZ + 2

Thus as we we may replace a and b by a/vaZ + b2 and b/v/a? + b2, without loss of
generality we may assume that a2 + b2 = 1. Then the point Z on the line lies on the
circle if (zo + bt)? + (yo — at)® — k? =0, that is if

£ + 2(bzo — ayo)t + 75 + ¥y — k* = 0.

If t1,t; are the roots of this equation, then £,¢; = 2% + y2 — k?. As for R and S we
have

z1 = Zo + b1, ¥1 = Yo — at1, T2 = 2o + b2, Y2 = Yo — ata,

80 lP!Rl =It1', IP:SI'_: ItZI‘ Thus
|P, R||P, 8| = |tste| = |75 + y5 — K|,

which is constant.
When P is exterior to the circle, the roots of the quadratic equation are equal if

(bzo — ayo)® = z2 + y2 - K%,

and the repeated root is given by t = —(bzg — ayg). Then for a point of intersection
T; of the line and circle, we have for the coordinates of T}

z = 2o — (bzo — ayo)b, ¥ = yo + (bzo — ayo)a.
Hence

|P, Ti* = (z — 20)® + (y — %0)* = (bzo — apo)® = 25 + ¥z — k* = |0, P|* - k™.

It is also easy to give a synthetic proof as follows. We first take P interior to the
circle. Let M be the mid-point of R and S so that M is the foot of the perpendicular
from O to RS. Then P is in either [R, M] or [M, S]; we suppose that P € [R, M].
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Figure 7.5.

Then
\P,R|IP,S| = (IM,R|-|P,M|)(M,S|+|P,M|)=|M,Rf - |P,M]
= |M,R* - (1P,0f" -10,M[*) = (1M, R +|0, M[*) - |P, O
= |0,R’-|P,0 =k*-|P,OP,

and this is fixed.

We continue with the case where P is exterior to the circle, and may suppose that
|P,R| < |P, S|, as otherwise we can just interchange the points R and S. As P is
outside the circle, by 7.1.1 it is outside the segment R, S] on the line RS. Then we
have

i

(1P, M| - |M, R|) (1P, M| + |M,5)) = |P,M]" - |M, R’
(1P,OF - |0, M*) - M, RI* = |P,O* - (|0, M[* + M, R}")
|P,O|* - |0,R]* =|P, O - |0, Ts|* = |P, Ty|*.

|P, R||P, 5|

7.4.3 A harmonic range

Let T\ and T3 be the points of contact of the tangents from an exterior point P to a
circle C with centre O. If a line | through P cuts C in the points R and S, and cuts
T\T; in Q, then P and Q divide {R, S} internally and ezternally in the same ratio.

Proof. We use the notation of S T,

7.4.1 and first recall that T\ T3

cuts OP at right-angles at a

point U. Then, by 7.2.1(ii), the “"1

circle C3 on [0, Q)] as a diameter
passes through U. We let M be

the mid-point of R and S; then

by 4.1.1 OM 1L MQ, and so M T,
also lies on the circle C,. Figure 7.6.

We have |P, R||P, S| = |P, Ty|* by 7.4.2, |P, T{|* = |P, U||P, O} by the proof of

Pythagoras’ theorem in 5.4.1, and |P, U||P, O| = |P, Q||P, M|, by the 7.4.2 applied
to the circle C;. On combining these we have |P, R||P, S| = |P, Q||P, M|.
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We cannot have ! L OP as that would make { || T)T; whereas I meets T1T;. Then,
with the notation of 7.4.1, [ is not a tangent to C; at P 8o, by 7.1.1 | must meet C;
at a point H. We are supposing that ! is not either of PTy, PT; and so H is not
Ty or T3. We let K be the foot of the perpendicular from H to OP. Then by 4.3.3
K € [P,0] and by the proof of Pythagoras’ theorem in 5.4.1 |P, }‘I|2 = |P,K||P, O|.
If we had K € [P,U] we would have |P, K| < |P, U| and so

|P,H[’ =|P,O||P,K| < |P,O||P,U| = |P, T4}*.
From this it would follow that
'Osng = IO’PIZ - IP)H|2 > IOvPI2 - IPr Tll2 = 02,

and make H exterior to the circle. But H is the foot of the perpendicular from O to
l, and by 7.1.1 this would cause ! to have no point in common with the circle. This
cannot occur and so we must have K € [0, U]. By a similar argument it then follows
that H is interior to the circle € and so ! meets C in two points R and S.

By 7.2.1(iv) every point of the circle C is in the closed half-plane #; with edge
PT; and which contains O. By 2.2.3 #; contains U € [P,0 and then it also contains
T; € [T1,U . Similarly every point of C i8 also in the closed half-plane with edge
PT; and which contains T;. It follows that every point of C lies in the interior region
IR(|T1PTg). Now every point of [P,R is in this interior region and so Q is. It
follows that Q € [T, T3] and so by 7.1.1 is interior to the circle; we thus must have
Q € [R, S] by 7.1.1 again.

We let z = |P,R|, y = |P, S|, z = |P, Q|, and without loss of generality assume
|P,R| < |P,S| so that z < y. As P is outside the circle it is outside the segment
(R, S]; as Q is on the segment [R, S], it follows that 0 < z < z < y. Then in turn

2 "z oz y =z oz z ¥y
z-z _ y-z z oy |P,R| |P,S|
zz oz’ z-z y-z' IRQl 15,QI

In the above we have assumed that ! is not the line OP. When it is8 we have a
simple case; I cuts the circle in points R;, S such that [Ry,S;] is a diameter. Then
taking |P, R;| < |P, Si|, with the notation of 7.4.1 we have that

|S:,P| _b+a |S:;,Ul a+a?/b
|P,Ry|  b—a' |U,Rs| ™ a—-a3/b’

and these are equal.

7.5 ANGLES STANDING ON ARCS OF CIRCLES

7.5.1

Let P,Q, R, S be points of a circle C(O; k) such that R and S are on the same side of
the line PQ. Then |ZPRQ|° = |£PSQ|°.
(i) When O € PQ, |£ZPRQJ° = 90;
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(i5) when O € PQ and R is on the same side of PQ as O s, then |ZPRQ|° =
1{2POQ°;

(i5) when O € PQ and R is on the opposite side of PQ from O, then |ZPRQJ° is
equal to half of the degree-measure of the reflez-angle with support |[POQ.

Proof. Now R ¢ PQ as by 7.1.1 a line cannot meet the circle in more than two
points; for this reason also S cannot be on a side of the triangle [P, Q, R]. Moreover,
neither can S be in [P, Q, R] but not on a side, as then by the cross-bar theorem we
would have S € [P, V] for some point V in [Q, R] but not at an end-point. Then V
is interior to the circle and P is on the circle, so by 7.1.1 every point of [P, V], other
than P, is interior to the circle; this would make S interior to the circle whereas it is
on it.

Thus as S ¢ [P,Q, R] we must have at least one of the following

(a) S is on the opposite side of QR from P, (b) S is on the opposite side of RP from

Q,
(c) S is on the opposite side of PQ from R,

and of course (c) is ruled out by assumption.

R
‘s
P \
Q
PN
R

.Q
p I\ @

Figure 7.7.

We suppose that (a) holds as in the first figure; the case of (b) is treated similarly.
Then there is a point U € [P,S]NQR. As U € [P, S}, U must be an interior point for
the circle and hence we must have U € [Q, R]. By 7.4.2

\U,P| _ |U,R|
lv,Ql 10,81’

and we also have |ZPUR|° = |£QUS|° as these are opposite angles. By 5.3.2, the
triangles [U, P, R],[U,Q, S] are similar. In particular |ZPRU|° = |£QSU|°. The first
diagram in Fig. 7.7 deals with this general case.
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In (i) when O € PQ, that we have a right-angle comes from 7.2.1 and there is a
diagram for this in Fig. 7.2.

When O ¢ PQ we let V be the mid-point of {P,Q} and for the second case (ii),
as in the second diagram in Fig. 7.7, we take R to be point in which [V,0 meets
the circle. Then by 5.2.2, Corollary, and 4.1.1(i) |ZVOP|° = 2| VRP|°, |£VOQ|° =
2|ZVRQ|°. But [R,V C IR(|PRQ) so that |[ZVRP|° + |£ZVRQ|° = |£PRQ]°.
Moreover [0,V C IR(|POQ) so that [£VOP|° +|ZVOQ|° = |£POQ|°. By addition
we then have that |ZPOQ[° = 2|ZPRQJ°.

For the third case (iii), as in the third diagram in Fig. 7.7, we take R to be point
in which [0,V meets the circle and W # O a point such that O € [V,W). Then
by 5.2.2, Corollary, and 4.1.1(i) |[ZWOP|° = 2|ZWRP|°, |£WOQ|° = 2|ZWRQ|°.
But [R,W C IR(|PRQ) so that |ZWRP|° + |£WRQ|° = |[£PRQ|°. Moreover
[0,V C IR(|POQ) so ‘8o that by 3.7.1 |ZWOP|° + |£WOQJ° is equal to the degree-
measure of the reflex- angle with support |£POQ. By addition we then have that the
degree-measure of this reflex-angle is equal to 2[ZPRQ|°.

Definition. If the vertices of a convex quadrilateral all lie on some circle, then the
quadrilateral is said to be cyclic.

COROLLARY. Let [P,Q, R, S] be a convez cyclic quadrilateral. Then the sum of
the degree-measures of a pair of opposite angles is 180.
Proof. Using the fourth diagram in Fig. 7.7, we first we note that
|£RPQ|° + |ZPQR|° + |ZQRP|° = 180.

Next as [S,Q C IR(|PSR), we have |ZPSR|° = |£PSQ|°+|£QSR|°. But |£PSQ|° =
[ZQRP|°, |£QSR|° = |£ZRPQ|°. Hence

|LPSR° + |£PQR|° = |ZRPQ|° + |ZPQR|® + |ZQRP|° = 180.

7.5.2 Minor and major arcs of a circle
Definition. Let Py, P; € C(O;k)

be distinct points such that O ¢ P P 7_{2,
P,P,. Let Hs,Hs be the closed P 4T
half-planes with edge PPy, with  «—=~"" - w

O € Hs. Then C(O;k) N : :

Hs, C(O;k) N Hs, are called, re- =0 ;

spectively, the major and mi-
nor arcs of C(O;k) with end-
points P, and P;.

The point P € C(O; k) is in the minor arc with end-points P, P, if and only if
[O,PIN[P,P) #0.

Proof. Let P be in the minor arc. Then O € Hs, P € Hsg 50 [0, P] meets PP, in
some point W. As W € [0, P] we have |0, W| < kso by 7.1.1 W € [P, Py).

Conversely suppose that W € [P, P3] so that |O, W| < k. Choose P € [0, W so
that |O, P| = k. Then as |0, W| < |O, leehaveWG[O P] so that as O € Hs we
have P € Hg.

.
------
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7.6 SENSED DISTANCES

7.6.1 Sensed distance

Definition If [ is a line, <; is a natural order on { and Z), Z, € I, then we define
Z1Za g, by

_f 124,25, £ 2, < 2y,
ZiZy, = { =21, Ze|, if Z3 <t 24,

and call this the sensed distance from Z; to Z,. In knowing this rather than just
the distance from Z; to Z3 we have extra information which can be turned to good
account. It can have negative as well as positive and zero values and it is related to
the distance as 2; Zz2<, = |21, Z¢| or equivalently |Z; Z¢ ¢,| = |21, Zq|.

We note immediat_ely the properties:

ZiZig, = O, (7.6.1)
Dz, = -Diag, (7.6.2)

in all cases. We can add sensed distances on a line and have the striking property

that
71725, + 22235. = 21235,, (7.6.3)

for all Z,, Z3, Z3 € l. This is easily seen to hold by (7.6.1) when any two of the three
points coincide, as e.g. when Z; = Z; it amounts to 0+ 21 Z3<, = 2123, Suppose
then that Z,, Z;, Z3 are all distinct and suppose first that Z; <; Z;. Then by 2.1.3
we have one of the cases

(@) 23121123, b)Dr <2512y, (€) 2y <122 <1 2s.
In (a) we have

ZiZag, = |21, 22), Z2Z3<, = ~|2g, 23|, Z123¢, = ~|Z1, Zs],

and as Z; € [Zs, Zz], |Zg,Z,| + |ZI,ZQI = IZg,Zgl, which is —lessl +71225,
—ZiZs<,. In (b) we have

il

Z122<, = |21, 28|, Z2Z3<, = —|Zs, 23|, Z123<, = |21, Zs|,

and as Zs € (2,23}, |21, 23| + |25, 2| = |21, Zg|, which i8 Z1Z3¢, — Z323¢, =
Z,1Z;<,. In (c) we have

Z1Zag, =121,2s\, ZaZsg, = |2, 23|, Z1Z3¢, = |21, Zsl,

and as Z; € (2, 23], |21, Ze| + |22, 25| = |21, Zs|, which is Z1Z2¢, + ZaZ3<, =
Z2,23,.

Next suppose that Zz <; Z;. Then on interchanging Z, and Z3 in the cases just
proved we have 2321 ¢, + Z123¢, = Z22Z3¢,, for all Z € | and by (7.6.2) this gives
~Z1Z2<, + Z1Z3<, = 2223<,- This completes the proof of (7.6.3) which shows that
addition of sensed distances on a line is much simpler than addition of distances.
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We next relate sensed distances to the parametric equations of ! noted in 6.4.1,
Corollary. Suppose that Wy = (ug,v), W1 = (u1,v) are distinct points on ! and
that Wy <; W,. Then for points Z; = (z1,1), Z2 = (22,¥2) on | we have

z1 = uo+8(u1 —uo), y1 =vo+ 81(v1 — ),
T3 = wup+382(u1 — uo), y2 = vo + 82(v1 — W),
and we recall that Z; <; Z; if and only if 8, < 83. Moreover, by the distance formula
|2y, Zg| = |82 — 31|| Wo, Wi|.
From these we conclude that
Z1Zag, = (82 — 81)| Wy, Wy|. (7.6.4)

In particular the simplest case of parametric representation in relation to sensed
distances is when we additionally take | Wy, W;| = 1 as we then have 21235, = §3—8;.
When we consider the reciprocal natural order on [ we note that

21295, = -1 23,

so that changing to the reciprocal natural order multiplies the value by —1. As well
as adding sensed distances on one line we can multiply or divide them. Now for
Zy, Zy, Z3, Zyin |,

23745, 21 23>, = —Z324<, (—1)2123<, = Z5Zs<, Zi 21,

so this sensed product is independent of which natural order is taken. Similarly,
when Z; # Z,, we can take a ratio of sensed distances

Z324¢,  ~23Z45, _ Z3Zy>, _84—83
2173, -Z1Zay, Z1Z3>, H1—8'

and see that this sensed ratio is independent of whichever of <;, >; is used. When
the line [ is understood, we can relax our notation to Z3Z4 Z; 2 and % for these

products and ratios. T
If for Z,,Z3,Z € | we take the parametric equations

z=z1+tz2—11), y=y1 +t(y2— ), (Lt €ER),
then we have that
T = ug + [81 + t(s3 — 81)])(41 — uo), ¥ = vo + [81 + (82 — 81)](v1 — wo),
and by (7.6.4) we have that
212 = t(sa — 81)|Wo, Wi, ZZagy = (1 — t) (82 — 81)| Wo, Wi,
and so -
gl_ZZ; = +t (7.6.5)
Our main utilisation of these concepts is through sensed ratios; for example
(21, 24,23, 2,) is a harmonic range when 2,25/252; = —2124/242;. It is con-

venient to defer the details until Chapter 11. However we make one use of sensed
products in the next subsection.
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7.6.2 Sensed products and a circle

The conclusion of 7.4.2 can be strengthened to replace | P, R||P, S| by PRPS. In fact
the initial analytic proof gives this but it also easily follows from the stated result as
PRPS = —|P, R||P,S| when P is interior to the circle while PR PS = |P, R||P, S|
when P is exterior to the circle. We now look to a converse type of result.

Suppose that Z,, Z; and Z3 are fized non-collinear points. For a variable point W
let Z\W meet Z3Z3 at W' and

WWWIZ, =W'Z; W' Zs.
Then W lies on the circle which passes through Z,,Z; and Zs.

...... A
Proof. Without loss of generality /"-.
we may take our frame of refer- : /
enceso that Z, = (0,y1), Z2 = Swe .
(22,0), Z3 = (z3,0), and we -—a- o >
takeWE(u’v)i W'-__-(ulyo)- Zﬂ."{l-...-"..z3
Figure 7.9.

Then it is easily found that v’ = y1u/(y1 — v), and so, first of all,

= (o) (-2

nh-—v y—v

The line W'W has parametric equations z = u’ + s(u — v'), y = 0 + s(v — 0), with
8 = 0 giving W’ and s = 1 giving W. Thus W'W = |W', W|. The point Z; has
parameter given by y; = sv and 80 8 = g, /v; then W'Z] = L|w', w|. It follows

that
2
Biw,w)’ = un (u— n? ) +v?
v v nh-—-v

[( )]

On equating the two expressions we have

2
nu nu u
- T3 — =nv +1},
(:':2 n -v) ( 3 n —v) n [(w —v) ]

which we re-write as

WWW'Z,

2

nui(yp ~v) y(z2 +z3)u

————— UV —T9T + —.
(yn —v)? n s y—v

On multiplying across by y; — v we obtain
1 (6? + v?) — p1(za + 23)u — (¥ + 2223)v + 12223 = 0,

and this is the equation of a circle.
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7.6.3 Radical axis and coaxal circles

In 7.4.2 our proof showed that if a line through the point Z meets the circle C(Z,, k)
at the points R and S then ZRZS = |Z;, Z)* — k? depends only on the circle and
the point Z. We call this expression the power of the point Z with respect to this
circle. To cater for degenerate cases, when k; = 0 we also call |Z;,2 |2 the power of
Z with respect to the point Z;.

We let C; denote either C(Z,, k;) or Z; and similarly consider C; which is either
C(Z2,k2) or Z,. We ask for what points Z its powers with respect to C; and C2 are
equal. This occurs when |Z;, Z)* — k? = | Zg, Z)® — k2 which simplifies to

Az2—z)z+ 22—y + 23+ 9] — K +23+93 — k3 =0.
If Z, # Z, this is the equation of a line which is called the radical axis of C; and Cs.
It is always perpendicular to the line Z; Z; and it passes through any points which C;
and €2 have in common.

More generally we also ask for what points Z its powers with respect to C, and C;
have a constant ratio. For a real number A\ which is not equal to 1 we consider when

1Z;,2]* - k? = A [|zg, 2z - k§] . (7.6.6)

When A = O this yields C, and by considering u [IZ,,ZI2 - kf] = |Zg, Z2|* — k2 as
well, we also include C.

Now (7.6.6) expands to
T1 — AT _oWt -/\y2y+$¥+ll?-k?—/\(zg +y3 — k3)

T-x 2 “1=-a I—\

and on completing the squares in both z and y it becomes

2 2
[x_-’tl /\zz] +[y_1/1 /\Ilz]

x2+y2__2 =0,

1-2A 1-A
= ﬁf{k?*‘[(zl —z2)2+(y1—yg)"’-kf—k.f,],\+k§,\2}_

This quadratic expression in A is postive when || is large, so it has either a positive
minimum, or its minimum is 0 attained at A, say, or it has a negative minimum and
80 has the value 0 at A3 and Ag, say, where Az < A3. In the first of these cases (7.6.6)
always represents a circle and in the second case it represents a circle for all A # A,
and a point for A = A;. In the third case it represents a circle when either A < A
or A > Ag, it represents a point when either A = Az or A = Ag, and it represents an
empty locus when A2 < A < A3. Thus it is the equation of a circle, a point or an
empty locus.

Suppose that we consider two of these loci, corresponding to the values A4 and \s
of A. They will then have equations

2‘1—/\4222:_21/1‘/\4U2y+z¥+y§‘k?"\4($§+yg‘kg) = 0
1-X 1- M 1-N\
2_21:1—,\51:23_2111—A5y2y+z¥+yf—k¥—/\5(z§+y3—k§)

1-2Ag 1-X 1-2As

o +y? -2

2 +y = 0.
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On subtracting the second of these from the first, and simplifying, we find that their
radical axis is the line with equation

AL =X 2,2 124 .2 .2 121 _
(1_/\4)(1_’\5) [2(2:2 $1)3+2(ﬂ2 yl)y+$l + ¥ _kl +x2+y2 _kﬂ] =0.
As we can cancel the initial fraction we see that these loci have the same radical axis
as did the original pair ; and C;. For this reason all the loci considered are said to

be coaxal.

Exercises

7.1 Prove that a circle cannot have more than one centre. [Hint. If O and O, are
both centres, consider the intersection of OO, with the circle.]

7.2 Give an alternative proof of 7.2.1(iv) by showing that if (z — k)2 + y? = k?,
where k > 0, then z > 0.

7.3 Prove that if the point X is interior to the circle C(O;k),{ is a line containing
X, and M = m;(X), then M is also an interior point of this circle. Deduce that
| is a secant line. Show too that if Y is also interior to this circle, then every
point of the segment [X, Y] is also interior.

7.4 Show that if A, B,C are non-collinear points, there is a unique circle to which
the side-lines BC,C A, AB are all tangents.

7.5 Let Z, = (2,,0), Z3 = (z3,0) and Z3 = (z3,0) be distinct fixed collinear points
and Zg not the mid-point of Z, and Z;. For W ¢ Z,Z; let | be the mid-line
of |ZgWZ,. Find the locus of W such that either [, or the line through W
perpendicular to I, passes through Zs.

7.6 Show that the locus of mid-points of chords of a circle on parallel lines is a
diameter.

7.7 Show that if two tangents to a circle are parallel, then their points of contact
are at the end-points of a diameter.

7.8 Show that if each of the side-lines of a rectangle is a tangent to a given circle,
then it must be a square.

7.9 Consider the circle C(O; a) and point Z; = (z,,0) where z; > a > 0, so that Z;
is an exterior point which lies on the diametral line AB, where A = (a,0),B =
(—a,0). Show that for all points Z = (z,y) on the circle,

|ZI’AI S lzl)zl S IthI-

7.10 For 0 < @ < b, suppose that A = (0,a), B = (0,b). Show that the circles
C(A;a) and C(B;b) both have the axis OI as a tangent at the point O, and that
A € [0, B). Verify that every point of C(4; @), other than O, is an interior point
for C(B;b). [Hint. Consider the equations of C(4;a) and C(B;b).]

7.11 Use Ex.6.3 to establish the equation of the mid-line [ in 7.3.1 when P, and P;
are not diametrically opposite.
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Translations; axial
symmetries; isometries

COMMENT. In this chapter we introduce translations and develop them and axial
symmetries. These will be useful in later chapters. It is more convenient to frame our
proofs for isometries generally.

8.1 TRANSLATIONS AND AXIAL SYMMETRIES

8.1.1
Z Z
Definition. Given points
Z),2,3 € I, we define a trans-
lation ¢z, 7, to be a function
tz,,z, : Il = II such that, for all
Z € Hv tZ].Zg(Z) = W where Zg w

mp(Z,, W) = mp(Z3, 2). Figure 8.1.

Translations have the following properties:-

(@) If Zy = (z1,31) Z2 = (z2,12) Z = (z,y), W = (u,v), then t2,,z(Z) = W if
and only if
U=Z+Z2-Z, V=Y+Y2—¥.

(ii) In all cases |tz,,2,(Zs),1z,,2,(Z;)| = |23, Z;|, s0 that each translation preserves
all distances.

(iii) For each W € II the equation tz,,2,(Z) = W has a solution in Z, so that each
translation is an onto function.

(iv) Each translation tz,,z, has an inverse function t;ll' 22 = 22,2,

(v) The translation tz, z, is the identity function on II.

(i) IfZ) # 23, Z & Z1Z; and W = tz,,2,(Z), then [Z,,23,W, Z) is a parallelo-
gram.

110
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Proof.

(i) For mp(Z;, W) = (3(z1 + u), (11 +v)), mp(Z3, Z) = (3(z2 + 2), 3(v2 + 1))
and these areequal if and only if u =2+ 22— 2), v=y +¥2 — 1.

(ii) For if W3 = tz,,2,(Z3), Wy = tz,,2,(Zs), then

Ug—U3 = T4+ Ta~ T — (Ta+ 22— T1) =24 — T3,
vg—vs = Ya+y2—n-—-Ws+y2—n)=y—ys

It follows that IZg,Z‘l = |W3, W4|

(iii) By (i) the equation tz,,z,(Z) = W has the solution given by z = u + z; —
T2, y=v+y1— Y.

(iv) By (ii) and (iii) the equation tz, z,(Z) = W has a unique solution and this is
denoted by Z = t;ll. 2,(W). The correspondence from II to II given by W — Z is the
inverse of tz,,z, and is a function. As by the proof of (iii)

T=u+2 —Z2, Yy=v+ Y — Y2,

by (i) this inverse function is ¢z, z, .

(v)Forif Zy = Zy,in (i) wehaveu=z+z, -1 =z, v=y+m -1 =¥

(vi) We denote by T the common mid-point mp(Z,,W) = mp(Zs, Z). First we
note that W # Z, as mp(Z,,2) =mp(Z3, Z) would imply Z, = Z;. As Z ¢ Z,2,, we
have T € Z, Z, and hence W ¢ Z,Z,. It follows that T' ¢ ZW as otherwise we would
have Z, € ZW, Z, € ZW and so Z € Z,Z,. The triangles [Z,,T, Z,), [W,T, Z]
are congruent in the correspondence (Z,,T,Z;) — (W, T, Z) by the SAS-principle.
Hence the alternate angles ZW Z,2Z,, £Z,W Z have equal degree-measures and so
Z1Z; || WZ. Similarly Z,Z || Z,W.

Azial symmetries have the following properties:-

(i) In all cases |si(2s), 51(Z4)| = |Z3, 24|, so that each azial symmetry preserves
all distances.

(i) Each azial symmetry 8; has an inverse function a,‘I = g,

Proof.
We note that by 6.6.1,

si(Zs) = (a, i 5167 — a%)z5 — 2abys - 200), - i o [-2abzs - (7 - a*)ya 2bc]) ,

81(Zy) = (ﬁ[(b2 - a%)z4 — 2abys — 2ac], = i = [-2abzs — (b — a®)ys - 2bc]) ,
and thus
1(Z3), 52" = g {10° = @) = 20) = 200045 ~ 3]
+[~2ab(z3 ~ z4) - (b* - a®)(ys — ya))*}
gy ([0 = a7+ 4o = 22" + (s = )]

+[~4ab + 4ab](b* - 6®)(z3 — z4)(y3 — ¥4)}
= (z3 — 24)* + (y3 — 14)*.
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(ii) For if m is the line through Z which is perpendicular to ! and W = g;(Z), then
W € m and so m(W) = m(Z). Then m(W) = mp(W, Z) so Z = &(W). This shows
that the function s; is its own inverse.

8.2 ISOMETRIES

8.2.1
Definition. A function f : II — II which satisfies |Z;,Zg| = |f(Z:),f(Zg)| for all
points Z;,Z3 € I, is called an isometry of II.

Each translation and each azial symmetry is an isometry.
Proof. This follows from 8.1.1.

Each isometry f has the following properties.-

(i) The function f:II = II is one-one.

(i) Forall Z,,2Z3 € I, f([Z1,Za)) = [f(Z:), £(Z3)], so that each segment is mapped
onto a segment, with the end-points corresponding.

(iii) For all distinct points Z,,25 € I, f([2:,2Z3) = [f(2:1), f(Z2) , so that each
half-line is mapped onto a half-line, with the initial points corresponding.

(iv) For all distinct points Z,,2; € 11, f(Z122) = f(Z1)f(Z3), so that each line is
mapped onto a line. If {(Z) € f(Z,)f(Z3) then Z € Z,2,.

(v) If Z,, Z3, Z3 are noncollinear points, then f (21, Za, Z3)) = (f(21), £(Z2), f(Z3)).

(vi) Let Z3 ¢ 1 and Hy1,H; be the closed half-planes with common edge I, with
Zs € Hy. Let Ha, Hy be the closed half-planes with common edge f(l), with
f(Z3) € Hs. Then f(H1) C Hs, f(Ha) C Ha.

(vii) The function f :I1 = II is onto.
(viii) In (vi), f(H1) =Hs, f(Ha) = Ha.
(ix) Ifl and m are intersecting lines, then f(I) and f(m) are intersecting lines. If |
and m are parallel lines, then f(I) and f(m) are parallel lines.
(x) If the points Zy, Zs and Z3 are non-collinear, then
|£222: Z5|° = |£f(Zs)f (21)f(Z5)]°-
(xi) Ifl and m are perpendicular lines, then f(I) L f(m).

(xii) If a point Z has Cartesian coordinates (z,y) relative to the frame of reference
F =([0,1, [0,J), then f(Z) has Cartesian coordinates (z,y) relative to the

Jrame of reference ([f(O), f(I), [f(O), f(J)).

Proof.

(1) Xf Z, # Z, then |2y, Zg| > 0 80 that |f(Z1), f(Zs)| > 0, and s0 f(Z;) # f(Za).

(ii) f 2, = Z; the result is trivial, so suppose that Z, # Z;. Then for all
Z € (2,,2y), we have |21, Z|+1Z, Zg| = |21, Z| and 80 |f(21), /(2)|+|f(2), £ (Ze)| =
|f(21),f(Zs)]- It follows by 3.1.2 and 4.3.1 that f(Z) € [f(Z),f(Z3)] and so
f (21, Z7)) C [f(Zh), f(Za)).
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f(Z3)

./2/2‘2

Zl f(zl)

Figure 8.2.

Next let W € [f(Z:), f(Z23)]. Then |f(2;), W| < |f(Z1),f(Z¢)| = |Z1,2Zg|. Choose
the point Z € [Z,Z; so that |Z;,2Z| = |f(Z:), W|; as |Z;,Z]| < |Z1,2¢] then Z €
[Z1, Z5). Moreover |f(21),f(2)| =|21,2| = |f(Z1), W|. Then f(Z) and W are both
in [f(Z1), f(Z3) and at the same distance from f(Z;) so f(Z) = W. Thus W is a
value of f at some point of (Z;, Z3]. Hence f ([2:,Z3)) = (f(Z1), f(Z-2))]-

(iii) By (i) f(Z1) # f(Z2). Suppose that Z € {Z;,Z; . Then either Z € [Z,, Z,]
or Z; € [Z,,Z). It follows from part (ii) of the present theorem, that then either
1(2) € [f(20), f(Za)] or £(Z2) € [f(21), f(2)). Thus £(Z) € [f(Z1),f(Z2) and s0
f (21, 22) C [f(Z1), f(Z3) -

W € [f(Z1), f(Z3 ) choose Z € [Z,,Z; so that |Z;,2Z| = |f(Z:), W|. Then by
the last paragraph f(Z) € [f(Z1), f(Z2) and as |f(Z1),f(Z)| = [f(Z1), W], we have
f(Z) = W. Thus W is a value of f at some point of [Z;,Z, . Hence f([Z1,22) =

[f(Z1), f(Za) .
(iv) Take Z3 # Z, so that Z) € [Z;, Z3). Then Z,2; = [Z,,23 U([Z,,Z5 . Hence

f(2,12Z,) f([21,22)U f([21,25)
[£(21), £(Z3) U [f(Z1), f(Zs)
1(2))f(Z,), as f(2,) € [f(Za), f(Zs))-

If f(Z) € f(Z1)f(Z,), then by the foregoing there is a point Z4 € Z; Z; such that
f(Z4) = f(Z) and then as f is one-one Z = Z4 € Z,2;.
(v) For

|Ze, Zs| = |f(22), f(2Z3)\, |23, Z1| = |f(Zs),(Z1)|,|21, Ze| = |f(Z1),f(Z¢)|,

so by the SSS-principle, these triangles are congruent in the correspondence

(21,23, Z3) —+ (f(Z1), £(Za), f(Zs)) -

(vi) Suppose that f(H:) is not a subset of #3 . Then there is some Z4 € H,
such that f(Z,) € Ha, f(Zs) & f(1). Then f(Z3) and f(Z,) are on opposite sides of
f(1), so there is a point W on both f(I) and [f(Z3), f(Z4)]. By (ii) there is a point
Z € (23, 2,) such that f(Z) = W, and then by (i) and (iv) Z € l. But this implies
that Z, € H, and so gives a contradiction. Hence f(#;) C H3 and by a similar
argument f(H3) C Ha.

(vii) Take distinct points Z;, 2, in II. If W € f(Z,)f(Z3), then by (iv) f(Z) =W
for some Z € Z,Z; and so W is a value of f.
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Figure 8.3.

Suppose then that W ¢ f(Z,)f(Z;) and let #s be the closed half-plane with edge
f(Z1)f(Z3) which contains W. Let H; be the closed half-plane with edge Z;Z,
such that by (vi) f(#Hi) C Hs. Take a point Z € H, such that |£Z,Z,Z]° =
14f(Z¢)f(Z,)W|° and |Z;, Z| = |f(Z1), W|. Then by the SAS-principle [Z,, Z3,Z] =
[£(21), £(Z2), W), and 80 by (v) [£(Z1), (Za), £(2)] = [f(Z1), f(Z), W]. In particu-
lar |£f(Z)f(Z:)f (Z)|° = |£f(Ze)f(Z1)WI°. As f(Z) € H3, W € N3 we then have
f(Z) € [f(Z,),W. But by the congruence we also have |f(Z;),f(Z)| = |f(Z;), W|.
It follows that f(Z) = W and so W is a value of f.

(viii) Let W € Hgz. Then by (vii) W = f(Z) for some Z € Il. If W € f(I) then by
(iv) Ze€elCcH,. W ¢ f(I) then W ¢ H,4 and by (vi) we cannot have Z € H; as
that would imply W € H4. Thus again Z € H,. In both cases W is a value f(Z) for
some Z € H;.

(ix) By part (iv) f({), f(m) are lines. If Z belongs to both [ and m, then f(Z)
belongs to both f(I) and f(m) so these have a point in common.

On the other hand, if ! || m suppose first that | = m. Then f(I) = f(m) and
so f(I) || f(m). Next suppose that I # m; then INm = 0. We now must have
Ff()Nf(m) = @, as if W were on both f(I) and f(m), by (iv) we would have W = f(2)
for some Z € I, W = f(Zp) for some Zy € m. But by (i) Z = Zy so we would have
Z on both ! and m.

(X) By (V) the triangles [Zl’zﬂa ZS]’ [f(zl)v f(Zﬂ)t f(zs)] are congruent, and so
corresponding angles have equal degree-measures.

{(xi) If | and m are perpendicular, let Z, be their point of intersection, and let
Za, Z3 be other points on ! and m respectively. Then as in part (x), £Z232,23 is a
right-angle and so its image is also a right-angle.

(xii) For any line [ and any point Z we recall that m;(Z) denotes the foot of the
perpendicular from Z to I. For any point Z € II, let U = mo;(Z) and V = 7oy(2).
Let O' = f(O), I' = f(I), J' = f(J). Then O' # I', O' # J' and O'I" L O'J'
so that we can take ([0',I', [0’,J’) as a frame of reference. Let 7{;, #3 be the
half-planes with edge OI, with J € #;, and Hgs, H4 the half-planes with edge OJ,
with I € Hg. Similarly let #{;, #3 be the half-planes with edge O'I', with J' € H},
and H3, H; the half-planes with edge O'J’, with I' € 5.
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Ha y Hs
Z
Vi----2
|
I
|
|
1
J | Ha
..... -—— —
o I U Ha
Figure 8.4.

If (z,y) are the Cartesian coordinates of Z relative to ([O,I, [O,J ), then

L= 10Ul 2 e,
=\ -0, U], if Z € Ha.

Butif Z' = f(2), U' = f(U) we have U’ € O'T', and if Z ¢ OI we have ZU L OI and
hence Z'U’ L O'I'. 1t follows that U’ = gy (Z'). Moreover f(Hs3) = Hs, f(H4) =
‘Hj. Then if (z',y’) are the Cartesian coordinates of Z’ relative to ((O',I' , [0/,J'),
when Z € Hg we have Z' € Hg and so

Z =|0,m0r(2')|=|0",U'|=]0,U| ==.
Similarly when Z € #4 we have Z’' € H} and so
z' = —|0’,1ro:p(Z’)| = —|0’, U'f= —IO, Ul =T

Thus 2z’ = z in all cases, and by a similar argument y’ = y.

8.2.2

If 1 = m)(|BAC), then 8;([A,B ) =[A,C and 8;([A,C)=[A,B.

Proof. We prove 8([A,B ) = [A,C as the other then follows. As A € | we have
8;(A) = A and so by 8.2.1(iii) 8;([4, B ) = [A,D for some point D.

Suppose first that A, B,C are collinear. When C € [A,B we have l = AB, and
80 8;(P)=Pforall P€ [A,B. As[A,B =[A,C the conclusion is then immediate.
On the other hand when A € [B, C] so that |BAC is straight, { is the perpendicular
to AB at A. Then if A=mp(B,D) we have 8;([4,B) =[A,D,and [4,D =[A4,C
asDe[AC.

Finally suppose that A,B,C are non-collinear. Now take D € [A,C so that
|A, D| = |A, B|. ¥ M = mp(B, D) by 4.1.1(iv) we have that | = AM and as 8(B) = D
then 8;([4,B ) = [4,D =[A,C.

8.3 TRANSLATION OF A FRAME OF REFERENCE

NOTATION. By using 8.2.1(iii), (vi) and (xi), we showed in 8.2.1(xii) that for
any frame of reference ¥ = ([0, , [0,J ) and any isometry f, F' =
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([f(O), f(I) , [f(0),f(J) ) is also a frame of reference, and that Cartesian coor-
dinates of Z relative to F are also Cartesian coordinates of f(Z) relative to F'. We
denote F' by f(F).

For any frame of reference F = ([O,I , (0,J ), let Zy =F (2o,y0) and F' =
t0,2,(F). Then if Z =5 (z,y) we have Z =5 (z — Zo,y — Yo)-
Proof. By 8.2.1(xii), to,z,(Z)
has coordinates (z,y) relative to
F', and by 8.1.1(i) it also has 00- He | Hs v 7z
ordinate (z + Zo,y + yo) relative —
to F. Thus for all (z,y) € RxR. 7|
the point with coordinates (z + v :
Zo,y + Vo) relative to F has coor- J
dinates (z,y) relative to F'. On I L
replacing (z,y) by (z—2o, y—th), Y R R L
we conclude that the point with g SRS 1
coordinates (z,y) relative to F O: 1U Ha
has coordinates (z — zo,y — o) )
relative to F'.

Figure 8.5.

Exercises

8.1 If T is the set of all translations of II, show that (7, o) is a commutative group.
8.2 If Z is the set of all isometries of I, show that (Z, o) is a group.

8.3 Given any half-lines [A, B, [C,D show that there is an isometry f which maps
{A,B onto [C,D.

8.4 Show that each of the following concepts i8 an isometric invariant:- interior
region of an angle-support, triangle, dividing a pair of points in a given ra-
tio, mid-point, centroid, circumcentre, orthocentre, mid-line, incentre, parallel-
ogram, rectangle, square, area of a triangle, circle, tangent to a circle.

8.5 For any line !, 8[C(O;k)) = C(8:1(0); k) so that, in particular, if O € I then
8[C(0; k)] = C(O; k).
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Trigonometry; sine and
cosine; addition formulae

COMMENT. In this chapter we go on to deal fully with reflex-angles as well as with
wedge and straight ones, we define the cosine and sine of an angle and we deal with
addition of angles. As a vitally convenient aid to identifying the two angles with a
given support | BAC, we start by introducing the notion of the indicator of an angle.

9.1 INDICATOR OF AN ANGLE

9.1.1

Definition. If a is an angle with support |[BAC, we call the other angle with support
|BAC the co-supported angle for a, and denote it by co —sp a.

-——. C
\
B
A
co-spa *"i(a)

Figure 9.1. Co-supported angle. Figure 9.2. Angle indicators.

Definition. Referring to 2.3.3, for each angle support |BAC let | = ml(|BAC) as
in 3.6 and 4.1.1. When A ¢ [B,C], we call INIR(|BAC) and I N ER(|BAC) the
indicators of the wedge-angle (|BAC,ZR(|BAC)) and of the reflex-angle (|[BAC,
ER(|BAC)), respectively. When A € [B,C] we call N, {N H; the indicators of
the straight-angles (|[BAC,H1), (|[BAC,H3), respectively. In each case an indicator
is a half-line of ! with initial point the vertex A. We denote the indicator of an angle
a by i(a).

117
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COMMENT. The first use we make of the concept of indicator is in defining the
cosine and sine of any angle.

9.2 COSINE AND SINE OF AN ANGLE

9.2.1

Definition. Starting with a sup-
port |[BAC, let H; be a closed
half-plane with edge AB in which Vi P ia)
C lies. Let a be an angle with
support |BAC such that the in- A l Q
dicator $(a) lies in H;. Then Ul B
we define cosa and sina as fol-

lows. Take any point P # A on

([4,C , let Q € [A,B be such

that |4, Q| = |4, P| and R € H; T
be such that |4, R| = |4, P| and

AR 1 AB.

Let U,V be the feet of the perpendiculars from P to AB = AQ and AR respec-
tively. Then we define

Q

Figure 9.3. Cosine and Sine.

IA’PI_IQ’ UI gsina = lA,PI—IRv Vl

cosa = IA,PI , 810 'A,PI

It follows from this definition that if 3 is the other half-plane with edge AB and
if we take T € Hj so that |4, T| = |4, P| and AT 1 AB, then

|4,P1-1Q, U]

IA’P' — IT’ VI
|4, P| '

, 8in(co—spa) = 4P|

cos(co —spa) =

COMMENT. Two comments on this definition are in order. First we note that
when A, B,C are collinear, #{, and #; are not uniquely determined above but are
interchangeable with each other, so that the angles a and co-spa are not uniquely
determined. Our second comment is that to show that cosa, sin a are well-defined it
is first necessary to use the ratio results for triangles to show that the values of cosa
and sina do not depend on the particular point P € [A4,C taken, and then to show
that if the arms [4, B and [A, C are interchanged the outcome is unchanged.

To help us in our study of angles, it is convenient to fit a frame of reference to the
situation in the definition. We take O = A, I = B and J # O a point in #; so that
OI 1L OJ. We let Hs, H4 be the closed half-planes with edge OJ, with I € H;.
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Ma Hs
R C
With k = |4,P| = |0, P|, let V. s
Q be the point on [O,] = [A,B J i(a)
such that |0, Q| = k, and let R A=0 |1 7
be the point on [0, J such that S B=IUJ|Q ™
|O, R} = k. Choose S,T so that
O = mp(Q, S), O = mp(R,T). T
Figure 9.4.

The cosine and sine of an angle are well-defined.

Proof.

(i) When A, B and C are collinear there are two cases to be considered. One
case is when A € [B,C] so that |BAC is straight. Then each of a, co—-spa is a
straight-angle and as P =S, we have U = S, V = A and 8o

cosa = cos{co —~ sp a) = —1, sina = sin(co —spa) = 0.

A second case is8 when C € [A4,B so that one of a, co—spa is a null-angle
with indicator [A, B and the other is a full-angle with indicator [A, B, where A is
between B and B;. Both of the indicators are in H; and H3, but as P = Q we have
U=Q,V =Aandso

cosa = cos(co — sp a) = 1, sina = sin(co—spa) =0.

Thus in neither case does the ambiguity affect the outcome.

(ii) We now use the ratio results for triangles to show that the values of cosa and
sina do not depend on the particular point P € [4,C chosen. Take k; > 0 and let
Py, @1, R, be the points in [0, P, [0,Q, (O, R, respectively, each at a distance k;
from O. Let Ul = Wo,(Pl), Vl = ﬂ’OJ(Pl).

Suppose first that P ¢ OI, P ¢ OJ. As PU || P,U;, by 5.3.1

[0,U] _ [0,P|
lO’Ull IO’PII’
and so
'01 UI = IO’ Ull
k kO

Now if P € Mg so that U € [Q,0] and 80 |0, U| =k —|Q, U], by 2.2.3(iv) P, € Hs
and similarly |0, Uy| = k1 — |Q1, U1|. On inserting this we get that

k-1Q, Ul _ k —1Q1, Uil
k k; :

When instead P € H4, we have O € (Q,U] s0 |0, U] = |Q, U| — k and similarly
10, Us| =1Q1, Us| — k1. On inserting these we obtain

k’lQr”l = kl—lQI’UII
k k
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again.
When P € OI we have either P=Q or P=S. When P = Q, we have P, = @,
and the formula checks out. It checks out similarly in the cases when Pis R, Sor T.
By a similar proof we find that

k—|R, V| _ki—|Ry, Vil
k ky

Thus it makes no difference to the values of cos a and sin « if P is replaced by P,.

H‘ us 7"4 %8
R R
V [ V P al(?{l)
v ) J Py i(a) J4{ i(a)
i 1] % N7
S ol mr v]|QHa s ON\I Uv/QHa
Y
T T
Figure 9.5. Figure 9.6.

(iii) It remains to show that if the arms [A, B and [4,C are interchanged the
outcome is unchanged. Let | = ml(|QOP) so that 8(0Q) = OP and 8(H,) is a
closed half-plane with edge OP. As i(a) C H; we have s (i(a)) C 8(#,); but as
i(a) C !, & (i(a)) = i(a) and thus i(a) C 8;(H1). EW = 8(R) then W € (#,) and
as 0Q L OR we have OP L OW. Moreover X = 8(U) = nop(Q) and Y = (V) =
mow (Q) satisfy lP)XI = IQ; Ul IWt Y= IR’ V|. Hence

k_IP’XI _k—IQ’UI k—lW,YI _k-IR’V|
k B k ’ k - k )

This completes the proof.

9.2.2 Polar coordinates

For Z # O, let k = |0, Z| and the angle a have support |I0Z and indicator i(a) in
Hy. Then if Z =5 (z,y)
z=kcosa, y = ksina.

Proof. Let Q, R be the points where C(O; k) meets [0, and [0, J , respectively;
then Q and R have Cartesian coordinates (k,0) and (0, k), respectively. Let U, V
be the feet of the perpendiculars from Z to the lines OI and OJ, so that these have
Cartesian coordinates (z,0) and (0,y) respectively. Now O = (0,0) and Z = (z,y) s0
by the distance formula (z — 0)? + (y — 0)® = k2. Thus z2 + y* = k2, so that z? < k?
and as k > 0 we have z < k. Then by the distance formula

19, Ul=v(k-2)*+(0-02 =k -z,
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as k — z > 0, and similarly |R, V| = k — y. Hence

k-|Q Ul k-(k-2) =z k—lR,Vl k—-(k-y) y
k k k® k k k’
Thus z = kcosa, y = ksina.

We refer to k and a as polar coordinates of the point Z with respect to F.

cosa =

9.2.3

With the notation 0f9.2.1, let a be an angle with support |IOP = |QOP and indicator
i(a) in H,. Then we have the following properties.-

(i) For all a, cos®a+sin*a=1.

(i) For P € Q,, cosa > 0, sina > 0; for P € Q3, cosa < 0, sina > 0; for
Pe Qs cosa<0,sina<0; for P€ Qy, cosa >0, sina <0.

Proof.
(i) As in the proof in 9.2.1,

10, Ul
|0, P|

_ . lo,v
cosa==% ’sma—iIO,Pl'

Now when O, U, P, V are not collinear they are the vertices of a rectangle and so
|0, V| = |U, P|. Then by Pythagoras’ theorem

0, Uf? +|U, Pl =0, P]?,

and the result follows. It can be verified directly when P is any of @, R, S, T.
(ii) This follows directly from details in the proof in 9.2.1.

9.3 ANGLES IN STANDARD POSITION

8.3.1 Angles in standard position

COMMENT. The second use that we make of the concept of indicator of an angle is
to identify angles with respect to a frame of reference.

He | s He | Hsg (@)
R PXR
P .
J i(a) v,
1 .7{1
S ol 1 QM s ol 1 Q%
T T
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Hs Hy ‘ Hs
R R
J i(a) J I 1
1
or Q"2 S QT
T P

Figure 9.7.

Definition. We recall from 3.7
our extension of degree-measure
to reflex-angles. Let |QOP be
a non-straight support, and let
H1, Ha be the closed-half planes
with edge 0Q, with P € H;3. Let
a be the reflex angle with sup-
port |QOP, so that i(a) C H;.
Let S be the point such that O
= mp(Q, S). Let B be the wedge

. th ot
r';os;ralght angle with suppo Figure 9.8. Measure of a reflex angle.

Then we defined the degree measure of a by
|a]® = 180 + |B]°.

In particular if P = Q, then § is a straight angle, a is the full angle with support
|POP = |QOQ and indicator (0, S, and |a|® = 360.

Definition. Given a frame of reference F = ([0,1 , [0, J ), we denote by A*(F)
the set of angles a with arm [0, and with indicator i(a) C H,.

If a and v are different angles in A*(F), then |a|®° # |v/°.

Proof. This is evident if a and v are both wedge or straight angles and hence, by
addition of 180, if they are both reflex or straight. If a is wedge or straight and « is
reflex, then |af® < 180, |y|° > 180.

NOTATION. Given any real number z such that 0 < z < 360, we denote the angle
a € A*(F) with |a|® = z by zx. Thus the null, straight and full angles in .4*(F) are
denoted by 0x, 1805 and 360, respectively.

9.3.2 Addition of angles

COMMENT. Given angles a, 8 € A*(F) we wish to define two closely related forms
of addition, the first suited to angle measure as to be dealt with in Chapter 12 and
the second suited to more general situations. As we make more use of the latter we
employ for it the common symbol +, and & for the former. As a® 3 is to be an angle
we need to specify its support and its indicator; similarly for a + 8.
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Definition. Let «,8 be an-
gles in A*(F) with supports
|QOP;, |QOPg, respectively.
Let [ be the midline of [Py OPg
and let P = 8;(Q). Thena® 8
is an angle with support |QOPs
for which i(a ® 8) C H,, so that
a®pB € A*(F). This identi-
fies a @ 8 uniquely except when
P3 = Q; in this case both the
null angle 0r and the full angle
3605 have support | QOQ and we
define a & B to be this full angle
3605 in every case except when
« and § are both null; in the lat- Figure 9.9. Addition of angles.
ter case we define the sum to be
this null angle 0x. We call a®
the sum of the angles a and £.

For all angles a,p € A*(F),

(i) cos(a® B) = cosacosf —sinasin g,

(ii) sin(a® B) = sinacos S + cosasin .
Proof. On using the notation of 7.3.1 and above, we have
a1 = cosa, b, = sina, a3 = cos B, b3 = sin B, a3 = cos(a ® B), b3 = sin(a & B).
We note that in 7.3.1
(61 +62)" + (b1 +52)* = 21 + ;102 + bib),

as a? + b = a3 + 83 = 1. Then, by 7.3.2, when P, and P, are not diametrically
opposite,

cos(a @ B) — cosacos B + sinasin 8
(a1 +a3)? — (by + b2)® + 2(—ayaz + biba)(1 4+ ara2 + blb2)
2(1 +a1aq + blbn)

and the numerator here is equal to
a} + a3 - b} — b3 - 2ala3 + 26362 = 2a] + 2a3 — 2 — 2a}ad + 2(1 - a})(1 - a3) =0.
Similarly
sin(a ® B) — sinacos 8 — cosasinf

2(01 + aa)(bl + ba) 2(alb2 + aabl)(l + ai162 + b[bz)
20+ 6102 + b1b2)

and the numerator here is equal to twice

a1y + azbs — a1b1(a3 + b3) — agbs(af +b}) =0.
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When P, and P; are diametrically opposite,

cos(a ® B) — cosacos B +sinasinf = b —a? —a1(—a1) + bi(-b) =0,
sin(a ® B) —sinacosf —cosasinf = —2a1b; — bi(—a;) — a1 (b)) =0.

9.3.3 Modifled addition of angles

COMMENT. In 9.3.2 we clearly exercised a choice in specifying what a @ 8 should
be when P3 = Q. The choice made there i8 what suits length of a circle and area of
a disk which will be treated in Chapter 12, and that was the reason for the choice
made. We now define modified addition a + 8 of angles, which is easier to use.

Definition. Let A(F) = A*(F) \ {3605}, so that A(F) is the set of all non-full
angles in A*(F). We denote by ZxrQOP = ZxIOP the unique angle in A(F) with
support |QOP = |IOP.

Definition. Let a, be angles in A(F) with supports |QOP;, |QOPs. Let I be
the midline of |[P; OPg and let P = 8/(Q). Then a + 8 is the angle in A(F) with
support |QOPs. Note that when P; = Q we have a + 8 = 0. We call a + 8 the
modified sum of the angles a and 5.

For all a,B € A(F),
cos(a + B8) = cosacos § — sinasin 8, sin(a + ) = sinacos S + cosasin 8.

Proof. This follows immediately from 9.3.2 as cos360x = cos0x, 8in360x =
sinO;.

Modified addition + of angles has the following properties:-
(i) For all a,B € A(F), a+ B is uniquely defined and lies in A(F).
(ii) For all a,f € A(F), a+Bf=8+a.
(iii) For all a,B,v€ A(F), (a+B)+v=a+(B+7)-
(iv) For alla € A(F), a+0r=a.
(v) Corresponding to each a € A(F), there is a B € A(F) such that a+ S =0x.

Proof.

(i) This is evident from the definition.

(ii) This is evident as the roles of P, and P; are interchangeable in the definition.
(iii) We note that by the last result

cos[(a + B) + 7] = cos(a + B) cosy — sin(a + B) siny
and then
cos[(a + B) + 7] = [cosacos B — 8in a sin ] cosy — [sin arcos B + cos asin f] siny,
while

cosla + (8 + 7)) cos a cos(f +v) — sinasin(f + )

= cosafcos B cos<y — sin B sin ] — sin afsin B cosy + cos Bsin ),
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and these are equal. Similarly

sinf(a+ B)+7) = sin(a+ B)cosvy + cos(a + B)siny
= [sinacosf + cosasin f] cosy + [cos acos § — sin asin B]sin 7,
while
sinfa+ (B+49)] = sinacos(8++v)+ cosasin(f +17)

= sinalcos B cos~y — sin asin f] + cosalsin B cosy + cos Bsin 7],

and these are equal. Thus (a + 8) + v and a + (8 + <) are angles in A(F) with the
same cosine and the same sine and so by 9.2.2 they are equal.

(iv) When B8 = O, in the definition we have P, = Q and then [ is the midline of
|QOP; and 8o P; = P;. Thus a and a + O are both in A(F) and they have the
same support, so they must be equal.

(v) Given any angle a € A(F) with support |QOP,, let P; = sor(P,) and B be
the angle in A(F) with support | QOPg. Then I = OI is the midline of [P; OPg and
80 in the definition Ps = 8;(Q) = Q. Thus a + 8 has support |QOQ and so it is Or.

COMMENT. The properties just listed show that (A(F),+) is a commutative
group. Because of this the familiar properties of addition, subtraction and additive
cancellation apply to it.

9.3.4 Subtraction of angles

Definition. For all a €
A(F), we denote the an-
gle B in 9.3.3(v) by —a.
The difference v -~ a in
A(F) is defined by spec-
ifying that vy —a = v +
(—a). In this way we deal
with subtraction.

Figure 9.10.

For all a € A(F),
cos(—a) = cos(co —spa) = cosa, sin(—a) = sin(co — sp @) = —sina.
Proof, With P, as in the proof of 9.3.3(v), we have

k_IQ)UI . _k-IR’Vll
—F =

and |R, Vy| =|T, V| = 2k — |R, V|. We use this in conjunction with 9.2.1.

cos(—a) =


file:///QOPi
file:///QOPi

126 TRIGONOMETRY; SINE AND COSINE (Ch.9

9.3.5 Integer multiples of an angle
Definition. For all n € N and all a € A(F), na is defined inductively by
la =a,

(n+la=na+a, forall neN.

We refer to na as integer multiples of the angle a.
For all a € A(F),

(i) cos(2a) = cos®a - sin® @ = 2cos? a — 1 =1 - 2sin’ a,
(ii) sin(2a) =2cosasina.

Proof. These are immediate by 9.3.3 and 9.2.3.

9.3.6 Standard multiples of a right-angle
The angles 90x,180x, 2705 have the following properties:-
@)
c0890r = 0, sin90x =1, co8180r = -1,
sin180x = 0, co82705 =0, 8in270x = —-1.
(ii) 2(905) = 180F, 2(180F5) = Or so that —180x = 180F, and 90 + 2705 = OF
so that 270 = —90x.
(ii) For all a € A(F),

cos(a + 90x) = -—sina, sin(a +90x) = cosa,
cos(a +180) = -cosa, sin(a + 180Fr) = —sina,
cos(a +2705) = sina, sin(a + 270x) = — cosa.

Proof.

(i) These follow immediately from 9.2.1.

(ii) These follow from 9.2.1 and 9.3.4.

(iii) These follow immediately from 9.3.3 and (i) of the present theorem.

9.4 HALF ANGLES

9.4.1

Definition. Given any angle a € A*(F) with support |QOP, its indicator $(a) meets
C(O;k) in a unique point P’ which is in H;. Then the wedge or straight angle in
A(F) with support |QOP’ is denoted by }a and is called a half-angle.
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Given any angle a € A(F), the equation 2y = a has ezactly two solutions in
A(F), these being ja and ja + 1807.

Proof. In the definition we have . Hy Hs
3a = Z7QOP' and take P" so i(a)

that O = mp(P’,P"). Let 8 =
ZrQOP" sothat 8 = §a+1807.

Then sop:(Q) = P so that by
9.3.3,2(3a) =a, 28 =a.

Now suppose that v, § € A(F) s
and 2y = 26 = a. Then cos82) =

cos2y so that 2cos?éd — 1 = P
2cos®y — 1, and hence cosé = T
* cos. Figure 9.11.

Then also sin?6 = sin®~ so sind = <xsiny. Moreover 8in2§ = sin2y so
28iné cosd = 28iny cos”.

We first suppose that a # 180x 80 that cosa # —1 and s0 cosy # 0. Then if
cosd = cosy we must have sind = sin+, and so § = 4. Alternatively we must have
cosd = —co87, 8ind = —sin+y and 80 6§ =y + 180x.

If o = 180 then cosd = 0, so that sind = %1 and so ¢ is either 90+ or 270x.

COMMENT. Our definition of a half-angle is the standard one for the angles we
deal with, but it would not suit angles which we do not consider, for example ones
with degree-magnitude greater than 360. The latter are difficult to give an account
of geometrically. For us $a + 38 and (a + B) need not be equal; we shall deal with
such matters in 12.1.1. Because of this, there is a danger of error if half-angles are
used incautiously.

For any angles a, B € A(F), ify=}a+}B andé = ja— 3B, theny+d=a
andy—-6=25.

Proof. As we are dealing with a commutative group, we have

y+5 = [ja+ 18]+ [ja+ (-30)]
= [ta+ja] +[38+ (-36)]
= a+lr=a.
Similarly
v=6 = [3a+}B] - [fa+ (-36)]
(3o + 3B] + [(~3) + 6]
= B

9.5 THE COSINE AND SINE RULES

9.5.1 The cosine rule

NOTATION. Let A, B, C be non-collinear points. Then for the triangle [4, B, C], we
denote by a the length of the side which is opposite the vertex A, by b the length of



128 TRIGONOMETRY; SINE AND COSINE (Ch.9

the side opposite B, and by ¢ the length of the side opposite C, so that
a=|B,C|, b=|C,A|, c=|A4,B|.
We also use the notation
a=/LBAC, 8= 4CBA, y=£ZACB.
Let A,B,C be non-collinear points, let D = ngc(A) and write z = |B, D|. Then
with the notation above, 2az = a® + ¢ — b? when D € B, C) or C € [B, D), while
20z = b? — a® — ¢ when B € [D,C).

Proof. When D € (B,C) we have |D,C| =a - z, and when C € [B,D}, |D,C| =
z — a. In both of these cases, by Pythagoras’ theorem used twice we have

|A,D)* = |A,B]* - |B,D|* = — 2%, |A,DI* = A, C)* - |D,C> = * - (a — 2)*.

On equating these we have ¢ — 22 = b? — a2 + 2az — 72, giving 2ax = 2 + a? = b2,
When B € [D, C] we have |D, C| = a + z, 80 by the formulae for |A,D|2 above we
have ¢ — z = b? - (a + z). This simplifies to 2az = b? — 4% - ¢2.

Figure 9.12.

THE COSINE RULE. In each triangle [A, B, C],

cosa_b’-i-c’—a’ cosﬂ_c’+a’-b’ cos _a+ -2
T e PP T T 2w YT T,
Proof. On returning to the last proof, we note that when D € [B,C we have
coem—lB’Dl—£
T 1B, Al ¢’
while
_A+a -
= % ,
and so
mw{_c’-l-a’—b2
- 2ca
Similarly, when B € [D, C] we have
cosa——IB’DI z
~1B,A4 c’
while
__&+$—P
= o ,

and this gives the same conclusion.
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9.5.2 The sine rule
THE SINE RULE In each triangle [A, B,C],

sina _sin8  siny
a b c '

Proof. By the cosine rule

cosa _1-sinfa (P +c2 —a?)?
T T e

so that

ginfa 40 - (B? + 2 — a?)?
- 1753

yPerer

2(b%c + 2a? + a3b?) — (a* + b* + )

As the right-hand side here is symmetrical in a,d and ¢ we must have

sina _ sin®f  sin’y

B a8

129

As the sines of wedge-angles are all positive, we may take square roots here and the

result follows.

9.5.3

In a triangle {A, B, C], let the mid-line of |BAC meet [B,C) at D and let d = | A, D|.

Then

2bc cosl
'“b+e 2
Proof. By 5.5
|B,D| ¢
|D,C| ¥’
so that c
IB,D'— ma

On applying the sine rule to the triangle [A, B, D] we have that

d1 _ ca 1
sinf ~ b+csinla’
and so
d ca sinf  casinf b _ ca sina b 2bc
1

2

=b+csin%a—b+c b sinla b+c a sin%azb+c

Za
0032 .
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9.5.4 The Steiner-Lehmus theorem, 1842

Suppose that we are given a tri-

angle [A, B, C), that the mid-line

of |CBA meets CA at E, that the

mid-line of |ACB meets AB at F E
F, and that |B, E| = |C, F|. We
then wish to show that the tri-
angle is isosceles. This is known B C
as the STEINER-LEHMUS THEO-

REM. Figure 9.13. Steiner-Lehmus theorem.

Proof. By the last result we have

2ca 1 2ab 1
= g c83h dy= = cos gy

Then

[ 3 1 » 1
@ - dy ol (c+a)? 255_-(_752-(:082_7]

= 23 (f)z( +cosf) — @ fb)2(1+cos'y)]

Y - (1+c’+a -b’)_ » (1+a’+b’-—c’)]

| (¢ +a)? 2ca (a + )3 2ab
= ofe-b+ o - )
(a+d)? (c+a)?
= a [C- b+ G““—b):‘(:;m[(:(c+ 0)2 —bla+ b)2]]
= a(c—b)[1+(‘;—+Egm[a2+b2+c2+2ab+bc+2ca]]

Then b < ¢ implies that da > ds.

9.6 COSINE AND SINE OF ANGLES EQUAL IN MAGNITUDE

9.6.1

If angles a, 8 are such that |al®° = |8|°, then cosa = cosB and sina = sinf. Con-
versely if cosa = cos § ond sina = sin B, then |a|® = |B]|° unless one of them is null
and the other is full.

Proof. Let F = ([0,I, [0,J ) and a have support |QOP and indicator in H,,
where [0, P| = |0, Q| = k. Let F' = ([0, I', [O' J' ) and B have support Q0P
and indicator in H}, where |0', P'| = |0', Q’| =
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QI
r~w

5 “— 1
’ Figure 9.14.

We suppose first that |a]®° = |8|° < 90so that P € @y, P' € @;. Then U €
(0,Q], V € [O,R], U’ € [0',Q'), V' € [0, R']. The triangles [0,U, P}, [0',U’, P’}
are congruent by the ASA-principle, so |0, U| =|0',U’|, |0, V| = |0', V'|. Then
|Q,Ul=1|Q",U'|, |IR,V|=|R', V'|. Hence cosa = cos 8, sina = sin f.

Similar arguments work in the case of the other three quadrants of F.

Conversely, let cosa = cos 8, sina = 8in §. Suppose first that cosa > 0, sina >
0. Then P€ Q,, P € Q]. But |Q,U|=|Q",U’|, |R,V|=|R',V'| and 80 |0, U| =
|0, U'}, |U,P|=|U',P'|. By the SSS-principle, the triangles [O,U, P}, {0',U’, P']
are congruent 80 |a|® = |8|°, unless we have a degeneration from a triangle and one
angle is null and the other is full.

A similar argument works for the other three quadrants of F.

Exercises
9.1 Prove that for all angles a € A*(F),
~1<cosa<l, -1<sina<l.

9.2 Let C; be the circle with centre O and radius of length k. Let Z; =
(kcosf,ksing), Z3 = (-k,0), Z3 = (k,0), so that Z; is a point on this
circle, and [Z3, Z3) is a diameter. Let C; be the circle with [Z;, Z3) as diameter.
Find the coordinates of the second point in which C; meets the line Z3Z;. How
does this relate to 4.3.37

9.3 If D is the mid-point of the side [B, C] of the triangle {4, B,C] and d, = |4, D|,
prove that
4d? = b* + A + 2bccosa.

Deduce that 2d; > a if and only if a is an acute angle.

9.4 Prove the identities

cosa + cos 8 2cos(}a + §B) cos(3a — 38),
cosa—cosf = -2sin(a+ iB)sin(3a - 38),
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and find similar results for sin a + sin 8 and sin a — sin .

9.5 Show that s
8in 2705 + sin 2105 = -,

and yet ,
2sin[} (2707 + 2707)) cosl} (2705 — 2705)] = 3.
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Complex coordinates; sensed
angles; rotations; applications
to circles; angles between
lines

COMMENT. In this chapter we utilise complex coordinates, develop sensed angles
and rotations, complete our formulae for axial symmetries and identify isometries in
terms of translations, rotations and axial symmetries. We go on to establish more
results on circles and consider a variant on the angles we have been dealing with.

10.1 COMPLEX COORDINATES

10.1.1

We now introduce the field of complex numbers (C,+,.) as an aid. This has an
added convenience when doing coordinate geometry. We recall that any z € C can

be written uniquely in the form z = z + sy, where z,y € R and 12 = —1. We use the
notations |z| = /23 + y2, Z = z — sy for the modulus or absolute value, and complex
conjugate, respectively, of z. As well as having the familiar properties for addition,
subtraction, multiplication and division (except division by 0), these have the further
properties:

I=z,Zim=%1:, V2,2,2€C; Z=zif 2€R;
l212¢) = |z1)|2e), Z1 =12}, V2,21,22 € C; |2| =zif z€ Rand 2 > 0;

1 =
zi=|z|2, Vz€eC; —=—z-§Vz¢0.
z |z

Definition. Let F = ([0,1, {0, J ) be a frame of reference for II and for any point
Z € 11 we recall the Cartesian coordinates (z,y) of Z relative to F, Z = (z,y). If
2z = T + 1y, we also write Z ~x z, and call z a Cartesian complex coordinate

133
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of the point Z relative to F. When F can be understood, we can relax our notation
and denote this by Z ~ 2.

Complez coordinates have the following properties:-
(i) |2e — 21) = |24, Zg| for all Z,,Z,.
(i) If Z, # Za, then Z € Z,2Z; if and only if z — 2y = t(23 — 21) for somet € R.
(ii) If Zy # Z,, then Z € [Z1,2Z; if and only if z — 21 = t(z2 — 21) for some t > 0.

(iv) If 2, # Za, then Z € {Z,,Z3) if and only if z — 21 = t(z2 — ;) for some t such
that 0< ¢ < 1.

(v) For Z, # Z3 and Z3 # Z4, 2,123 || Z3Z4 if and only if z4 — 23 = t(2za — 21) for
somet € R\ {0}.

(vi) For Zy # Z3 and Z3 # Z3, 2123 L Z3Z4 if and only if 24 — 23 = ts(23 — 21) for
somet € R\ {0}.

Proof.

(i) For |25 — 21" = |22 — 71 +8(ye — y2)|" = (33 — 31)? + (12 — 91)? =21, Ze|".

(ii) For z— 2y = t(za—z1) ifand only if z — 21 +3(y — 1) = t[z2 — 21 +3(y2 — 11))-
If this happens for some ¢t € R, then 2 - z; = t(z3 — 1), y — 11 = t(y2 — ). By
6.4.1, Corollary (i), this implies that Z € Z,Z,.

Conversely if Z € Z,Z3, by the same reference there is such a ¢ € R and it follows
that z —2; = t(22 - 21).

(iii) and (iv). In (ii) we have Z € [Z,,Z3 when t > 0 by 6.4.1, Corollary, and
similarly Z € (Z),Z;) when 0 <t < 1.

(v) By 6.5.1, Corollary (ii), Z; Z; and Z3Z, are parallel only if

—(y2 — ¥1)(24 — 23) + (ya — y3)(z2 — 1) = 0. (10.1.1)

We note that as Z, # Z; we must have either z; # z3 or y; # ya.
Suppose first that z4 — 23 = t(23 — 2;) for some ¢ € R. Then

Z4 — 23 +3(Ya — y3) =tz — 1) + 3t (2 — 1),
and so as ¢ is real,
z4— 23 =22 — 71), ya — Y3 = t{ya — 1)
Then
=(ya — i )(z4 — z3) + (ys — ys)(z2 — 71)
= —(ya—yn)t(za —21) +t{ya —n)(z2 —21) = 0,

8o that (10.1.1) holds and hence the lines are parallel.
Conversely suppose that the lines are parallel so that (10.1.1) holds. When z; #
T3, we let
Ty — 23
t==—2
T2—I)
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so that £4 — 23 = t(z3 — z1). On inserting this in (10.1.1), we have

~t(yz —n1)(z2 — 21) + (ya — ys)(22 — 21) =0,

from which we have ys — ys = t(yz — ¥1)-

When z; — z; = 0, by (10.1.1) we must have z4 — z3 = 0. We now let

t= Ya — lls,
n-n

8o that ys — ys = t(ya — 41 ). For this ¢ we also have, trivially, z4 — z3 = t(z3 — z;).

Thus in both cases z4 — 23 = t(za — 1), y4 —ys = t(ya — 1), and so on combining
these

z4 — 23+ 3(Ys — y3) = ¢(za — 71) + t(ya — 1)

Thus z4 — 23 = t(23 — z1).
(vi) By 6.5.1, Corollary (i), these lines are perpendicular if and only if
(va — 11)(Wa — y3) + (22 — 21 )(z4 — 25) =0. (10.1.2)
Suppose first that 24 — 23 = #3(22 — z;) for some ¢ € R. Then
z4 — 23 +38(ya — ys) = st(z3 — 1) — tya - 1),

and 80 as ¢ is real, T4 — z3 = —t(ya — 1), ya — ys = t(z3 — 21). Then

(v2 = 1) (ya — ys) + (22 — 21)(24 — z3)
= (r—n)tzs~ =) -t(za ~21)(1r - 1) =0,
so that (10.1.2) holds, and hence the lines are perpendicular.

Conversely suppose that the lines are perpendicular so that (10.1.2) holds. When

1 # 23, we let
$ = Va—Ys
3 — I

8o that ys — ys = £(z3 — z1). On inserting this in (10.1.2), we have
(y2 —y)t(za — 21) + (z2a — 1) (T2 — 1) = 0,

from which we have z4 — 23 = —¢t(ya — ).
When z3 — z; = 0, by (10.1.2) we must have y4 — ys = 0. We now let
_34 - T3
va—t’
80 that z4 — zs = —¢(y2 — 3. For this ¢ we also have, trivially, y4 — ys = t(z3 — 21).

Thus in both cases £4—2z3 = —t(y2a—y1), ¥4 —ys = t(z2 — 1), and so on combining
these

zq — 23 +3(ya — ys) = —t{ya — 1) + (23 — 71) = stfza — 21 +3(3s — 0))-

Thus z4 — 23 = t4(22 — 21).



136 SENSED ANGLES; ROTATIONS (Ch.10

10.2 COMPLEX-VALUED DISTANCE

10.2.1 Complex-valued distance

The material in 7.6 i8 long established; we can generalise those concepts of sensed
distances and sensed ratios as follows.

Definition Let F be a frame of reference for II. If Z, ~5 21, Z3 ~x 23 we define
ZyZa 5 = 23 — 71, and call this a complex-valued distance from Z; to Z;. We then

consider also ﬁ“: 2” a ratio of complex-valued distances or complex ratio when
Zy # Z,.
We show that this latter reduces to the sensed ratio

Z3Z4<,
D123,

when Z,, Z;, 23, Z4 are points of a line I. As in 7.6.1 we suppose that ! is the line
WoW, where Wy = (uo, %) and W; = (uy,v;), and has parametric equations

T = up + 8(u1 — o), ¥ = vo + 8(v1 — vo).

By 10.1.1(ii) { then has complex parametric equation z = wg + s(wi — wp). If
Zy, Zy, Zs, Z4 have parameters 8,, 83, 83, 84, respectively, then

23— 21 = (zz3 — wp) — (21 — wo) = (82 — 81} (w1 — wo), 24 — 23 = (84 — 83) (w1 — wy),

and so
2324}' _ 84— 83
21 22; 82 — 81

By 7.6.1 this is equal to the sensed ratio. This shows that for four collinear points
a ratio of complex-valued distances reduces to the corresponding ratio of sensed dis-
tances.

COMMENT. We could make considerable use of this concept in our notation for
the remainder of this chapter but in fact we use it sparingly.

10.2.2 A complex-valued trigonometric function

For Zy ~F5 2 and F' = to,z,(F), let Iy = to,z,(I); we recall from 8.3 that Z ~x
z2—2y. Thenif Z # 2y, Z ~5 z and 0 = L5 IyZy Z, by 9.2.2 we have

z—2o=rco8h, y— yo =rsinb,

where r = |Zy, Z| = |z — 2o|. It follows that z — zp = r(cos 8 + 15in#@).
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'H” Hs
Ty Ha
O: 1 Ha

Figure 10.1.

IfZ, # 2y, Z; ~5 z) and a = £51yZyZ,, then by this
) — 29 = kcosa, y1 —yo = ksina,
where k = |Zp, Z;|. On inserting this in 6.3.1 Corollary, we see that
ZyZy ={Z = (z,y) : (z — zo)8ina — (y — yo) cosa = 0}.

When ZyZ, is not parallel to OJ we have that cosa # 0 and this equation of the line
ZyZ, can be re-written as y — yo = tana(z — zo) where tan a = sina/ cosa. We call
tan a the slope of this line.

Notation. For any angle 6 we write cis # = cos8 + s8in 0.
The complez-valued function cis has the properties:-

(i) For all 0,9 € A(F),cis (8 + ¢) = cis f.cis ¢.
(ii) cisOx = 1.
(iii For all § € A(F), E!:‘J = cig (—6).
(iii) For all 8 € A(F),cis 0 = cis (—0), where Z denotes the complez conjugate of z.
(iv) For all 8, |cisf| = 1.
Proof.
(i) For
cis@.cis¢ = (cosf + s8inf)(cos¢ + 18ing)
= co8fcos¢d — sin@sin ¢ + 3[sin# cos ¢ + cos f sin ¢]
= cos(@ + @) +18in(8 + ¢) = cis (8 + ¢).
(ii) For cis0x = cos0r +8in0xr =1+10 = 1.
(iii) For by (i) and (ii) of the present theorem,
cisf.cis (—8) = cis (§ — 8) = cis 05 = 1.
(iv) For the complex conjugate of cos 8+ 8in 8 is cos #—18in 6 = cos(—6)+ssin(—0).
(v) For [cis 8| = cos? 8 + sin’ 0 = 1.
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10.3 ROTATIONS AND AXIAL SYMMETRIES

10.3.1 Rotations

Definition. Let Zy ~x z, t be the translation to,z,, F' = t(F) and Iy = ¢(I). Let
a € A(F'). The function ry;z, : II = II defined by

Zrngz, 2 g2 10z (Z2) =2 if 2' — 5 = (2 — zg)ci8 a,

is called rotation about the point Zy through the angle a.

ZI
Ha y Hs
Jyi H
0: 1 Ha

Figure 10.2.

If ra;2,(Z) = Z' we have the following properties:-
(i) In all cases |2y, Z'| = |Zy, Z|, and hence in particular rq,z,(Zo) = Zo.
(i) f Z# 2o, 0=LFr 10202 and & = Ly IgZ9Z', then 8 =0 + a.
(ili) If Zo ~r 20, Z ~x 2, Z' ~5 2, then ro.z, has the real coordinates form

z'-2p = cosa.(z—2p) —sina.(y - yo),
v -y = sina.(z-zo)+cosa.(y — yo),

which has the matriz form
Z-z9 \ _ [ cosa -—sina z— g
¥ -w /  \ sina cosa v-w /°
Proof.

(i) For |2’ — 25| = |(z ~ 2p)cis a| = |z — zp]|cis a] = |z — 20|-
(ii) For by 10.2.2

Z—2= Iz—Zol(:iBo, z _20=lz’—20|Ci801,
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and 80 |2’ — zp|cis 8’ = |z - zp]cis fcis a. Hence cis & = cis §cis a = cis (# + a) and so
' =60+aby9.22.
(iii) Now 2’ — 2o + 3(y' — yo) = (cosa + ssina)[z — zo + $(y — yo)] and so

z'—z9 = cosa.(z —zp)—sina.(y — o),
v -y = sina.(z—-zp)+cosa.(y — yo)-
COMMENT. The rotation rq,z, is characterised by (i) and (ii), as the steps can be

traced backwards. Why a frame of reference F’ is prominent in this characterisation
stems from the need to identify the angles a,9,6’.

10.3.2 Formula for an axial symmetry

z
4
l
Ha y Hs >
81(Z)
b A
-o" .-a
_.-"::::':.-Zﬁ...IO
Jpie
0;/ Ha
Figure 10.3.

The form of equation of a line noted in 10.2.2 can be used in the formula in 6.6.1(iii)
for an axial symmetry. However, for practice with complex-valued coordinates we
deduce the result independently.

Let | be the line Zy2,, Zo ~5 2, F' = to,z,(F), Iy = to,z,(I) and a =
L IoZoZ,. Then 8(Z) = Z' where

Zr~yz, 2~ 2 - 29 =(Z - %)cis 2a,
30 that s; has the real coordinates form

2 —zyp = cos2a.(z —zo) + 8in2a.(y — yo),
v -y = sin2a.(z— zo) —cos2a.(y - yo),

and so has the mairiz form

' —zg \ _ [ co82a sin2a z -z
v -y /  \ sin2a —cos2a v—-v /
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Proof. To find a formula for Z' = 8;(Z) we first show that if W = m(Z) and
W ~x w then

w—zo=ﬂ[z_z°](zg-zo),z—w=:8‘[z_z°(zl—zo)].

21— 2 2 -2
To start on this we note that
z2—-2 z—2 Z—2
- = -— = R - 8 - .
z-2z 11—Zo(zl %) [zl—zo](z’ zo)'H[ ZI_z‘)](zl )
If we now define w by

2 -2
then W € ZyZ, as w — z is a real multiple of z; — z9. But then

w-2z= [Rz-%](zl—zo)

Z2—-2
—w=1 | - 20),
z—w t[ — ](zl z0)

z
80 W is on a line through Z which is perpendicular to ZyZ,. Thus W is the foot of
the perpendicular from Z to ZyZ;.

From this, a8 2’ + 2 =2w, wehave 2’ —2=2' —w— (z — w) = -2(z — w) s0

z—
21 —

Z-z=-2 [8‘ z:o] (21 — 20)-

As z) —- z9 = kcis a for some k > 0, we then have
-2 = -2 [8‘%;8—3] kcis a = —24{S[(z — zo)cis (—a)]}cis
= —[(z - 20)cis (—a) - (2 - K)cis alcis a = —(z — 20) + (2 — Z)cis 2a

and 80 2’ — 29 = (- %)cis 2a. Hence 2’ — 2o +3(y' — yo) = [z — 2o —3(y — y0)] (co8 22 +
18in 2a), 8o that

2 —z9 = cos2a.(z— zg)+ sin2a.(y — yo),
Y -yo = sin2a.(z — 2o) — cos2a.(y — yo)-
We can express this in matrix form as stated.
We denote 8; by 84,2, as well.

10.4 SENSED ANGLES

10.4.1

Definition. For F' = tg,z,(F), let Iy = to,z,(I). Then if Z, # 2y, Z; # Zy, we let
0, = LrIyZpZ, and 8; = Ly IyZoZ,. We define the sensed-angle £ rZ, ZyZ; to
be 6; — 6,.
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Figure 10.4.

Sensed angles have the following properties. Throughout Zy ~5 29, Z) ~r
21, 23 ~F 7.

(i) If the points Z, and Z; are both distinct from Z,, and ¢ is the sensed-angle
élezozg, then

ZoZar _ 22—z _ |20, %)

ZZir -2 120,21

(i) The sensed-angle £xZ,ZyZ, is wedge or reflex according as

is ¢.

23— 29
o=
21— 20

18 positive or negative, and this occurs according as
5{(1a — ¥0)(21 — To) — (z2 - Zo) (11 ~ 30)]
is positive or negative.
(iii) If the points Z, and Z; are both distinct from Z,, then
LdrZyZoZy = ~LFZ3ZyZ,.

(iv) If Z,,2,,Z3 are all distinct from Z,, then
Lx21202s + £5ZaZyZ3 = L5 2, Zo2Z3.

(V) If¢ = ‘.FZIZOZQ: then T¢:20 ([ZO’ Zl ) = [201 Z2 .
(vi) In10.3.1(ii), £rZZoZ' = a.
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Figure 10.5.

Proof.
(i) For 21 — 29 = |21 — 20|ci8 6y, z2 — 20 = |2¢ — 2p|cis 63 and s0

-2 29 — 2plcis 0 zp — 20| .
n-z | —zolisby |z -zl o g
zZ1—20 |21 — zp|cis by z — 2|

(ii) From (i)

22—20 _ |2 — 20| _
=3 sin(f; — 8
21—z |z-2 a(fs 1,
and this is positive or negative according as 63 — 8, is wedge or reflex. Moreover

la1 = 20"S 7222 = S(aa ~ )5 ~ %)) = (12 = 30) (&1 ~ 70) = (2 ~ 20) 31 ~ ¥o)-
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(iii) For the first is 83 — 6, and the second is 6; —~ 6;.
(iv) For if 0, = Lr Iy ZoZy, 03 = LMo ZoZa, 03 = Ly Iy ZyZ3, then
6; -6, +(03 —92) =03 —-0,.

(v) For if Z € [Zy,Z,; , then z = 29 + t(21 — z0) = 2p + t|21 — 2¢|cis 6, for some
t > 0. Hence r9,_¢,;2,(Z) = Z' where

2 -z= (z — zo)cis 02 -6,) = t|z, - zolcisolcis 62 - 6) = tlz, - zalcis 8;.

Thus Z’ € [Zy, Z; .
(vi) For ¢ -8 =a.
If the points Z, and Z; are both distinct from Zy and ¢ = LxZ,202,, then

|21, Ze|* = |20, 21 |* + |20, Zs|* - 2|20, 21|20, 22| co8 ¢.
Proof. For by (i) in the last result,

— 0= [0t o0+ 1800 )1 - ),

80 that
|20, Zs|

lZ‘,,le(ccmd*+H3m¢5) 1| (21 — 20)-

-2 =

Then

2 _ ) [ 20, Zsl |Z0, Zs|
|Z1, Zg| —{ 1Z0.Z1] cos ¢ — 1] [Izo,z Iﬂm¢ 120, 24|,

and the result follows on expanding the right-hand side here.
For a non-collinear triple (29, 2\, Z3), let a be the wedge-angle £Z1Z0Z3 and ¢ be

the sensed angle L xZ120Z3. Then cosd = cosa so that |¢]° = |a|® when ¢ is wedge,
and |¢]° = 360 — |a|® when ¢ is reflex.
Proof. By the last result,
|2y, Zs|* = 120, 21" + 120, Zs|" — 2|20, 21| Z0, Zs| cos ¢,
while by the cosine rule for a triangle in 9.5.1
121, Zs|* = 120, 21 + |20, Zs|* — 2120, 211|120, Zs} co8 ax.

Hence cos¢ = cosa 8o that sin? ¢ = sin? a and hence sing = *sina. The result
follows from 9.3.4 and 9.6.
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10.5 SENSED-AREA

10.5.1

For points Zy =x (Zo,¥%0), 21 =7 (Z1,41), Z2 =5 (T2,y2) such that 2, # 2y, Z; #
Zy, and 8 = L5222, we have

(i)
5120, 211|120, Zg|8in8 = [(z1 — zo)(y2 — vo) — (22 — Zo)(¥1 — w0)),

(ii)
$120,21||20, Zg| co86 = §[(z1 — zo)(22 — Zo) + (11 ~ ¥0)(y2 — ¥o)]-

Proof. By 8.3 and 9.2.2, if ki = |2y, Z1|, kz = | Zo, Ze|, then

1~z = kicosby, y1 —yo = kisinb,
Za—-Zo = Kkacosbs, y2 —yo = kasinbs.
Then by 9.3.3 and 9.3.4,

klkz Sin(oz - 01) = kg sin02k1 (30801 - kz C0802k1 sin01
= (y2 — yo)(z1 — Z0) — (z2 — Zo)(11 — ¥o)-

Similarly
k1ks 006(02 - 01) = kg cosfqk,; cosl, + kg sin 87k, sin 6,
(z2 = zo)(z1 — T0) + (¥2 — %) (11 — ¥o)-

10.5.2 Sensed-area of a triangle

For an ordered triple of points (2, Z3, Z3) of points and a frame of reference F, if
Z, = (z1,3), Z3 =7 (232,y2) and Z3 =r (z3,ys), we recall from 6.6.2 and 10.5.1(i)
05(2,,2a,Z3) defined by the formula

05(21,22,23) = 3[z1(ya —y3) — 11 (22 — z3) + Zays — Z3ys)
= (za—z1)(ys —m) — (=3 — 1) (y2 — 1))

1 I 0N 1

= =det| z3 ya 1
2

z3 ys 1

By 6.6.2, when Z,,Z3,Z3 are non-collinear |6x(Z;,Zg, Z3)| is equal to the area of
the triangle [Z,, Z3, Z3]. In this case we refer to §r(Z, Z,, Z3) as the sensed-area
of the triangle [Z;, Z,, Z3], with the order of vertices (Z), Z3,Z3). This was first
introduced by Mébius in 1827.
Note that

6_7-‘(Z1, ZZ’ ZS) = 6}'(221 ZSv Zl) = 6.7"(23’ Zla Z2)
= —05(21, 23, 23) = ~65(22,2,,23) = —65(Z3, 24,2,),
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8o that its value is unchanged if Z,, Z3, Zs are permuted cyclically, and its value is
multiplied by —1 if the order of these is changed.

We note that 10.4.1(ii) can be restated as that the sensed-angle £ rZ; ZyZ; is
wedge or reflex according as

g2 =% _ gzozz.r

21— 2 202,

is positive or negative, and this occurs according as §x(Zy, Z1,Z3) is positive or
negative.

10.5.83 A basic feature of sensed-area

A basic feature of sensed-area is given by the follow-ing. Let the points Zg
(z3,¥3), Zs = (%4, ¥1), Zs = (z5,ys) be such that

z3 = (1 — 8)z4 + 825, ys = (1 — 8)y4 + ays,
for some 8 € R. Then for all Z,, Z;,
0r(Zy,22,23) = (1 - 8)05(21, 23, Zs) + 8057(2,, Z3, Zg).

For

1 z n 1
0x(21,23,23) = 3 det T3 va 1
(1-8)zs+szs (1—8)ysa+sys (1—-8)+s

1 x " 1 1 zn n 1
= 5 det T3 Y3 1 + -é det 3 y2 1

(1-8)zy (1-8)ys 1-3s 8T 8Yys 8

1 1 1 znn n 1
=§(l-a)det T2 ya 1 +-2-adet z2 y2 1
Ty Yo 1 zs ys 1

= (1 = 3)6}'(Z1)Z29 Zl) + aaf(zh ZQ’ZG)'

10.5.4 An identity for sensed-area

An identity that we have for sensed-area is that for any points Z,, Z3, Zs, Z4,

07(Z4, Z2,Z3) + 67(24, Z3, Z1) + 65(24, Z), Z3) = b5 (21, Z3, Z3).
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For the left-hand side is equal to
1 e Y4 1 ya 1 1 Z4
3 det| z2 y2 1 | += det ys 1 |+ 2 det | =
T3 Ys 1 n 1 T2
1 Ta ys 1 ya 1 1 T4
= 3 det| z2 y3 1 | -2 det n 1|+ 3 det | =
z3 ys 1 s 1 z3
1 T4 Y4 1 1 T4 Y4 1
= Edet Ta—2%1 Ya—y O +§det zn, ¢ 1
z3 Y3 1 z2 y2 1
1 T4 V4 1 1 Z4 Y4
= Edet r3—21 Yo—p O +§det ) N
z3 ys 1 T3—-%1 Ya—Wn
1 T4 77 1 T4 Ya
= Edet z3—-%1 Yya—wn O —-det I3—21 Y2-— %
z3 ys 1 5 hn
1 z4 Y4 1
= Edet Z3-7 Yya-»n O
z3—z1 ys—yn O
1 x "N 1 1 1 1
= Edet. T3—-2y Ya—h 0 ——det 22 y3 11,
I3—21 Ys— 4 z3 ys 1

Y4
n
Y2

Y4
n

and this is equal to the right-hand side. This was first proved by Mdbius.

10.6 ISOMETRIES AS COMPOSITIONS

10.6.1
Hay Hs
7{
. "t
O: I %

Figure 10.6.
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Let F = ([0,1, [0,J ) and F, = ([2o, 2, , [Z0,22 ) be frames of reference. Let
tO,Zo(I) = I0$ tO,Zo(J) = JO, F = ([ZOa IO ’ [ZOy JO ) and a = ZT’IOZOZI- Then
there is a unique isometry g such that

9(0,1)=[20,2:, 9([0,J)= 20,2, .
When £xZ,ZyZ; is a wedge-angle and so a right-angle 905,
9 ="Ta;2, °10,2.
When £ 52, ZyZ; i3 a reflex-angle 2705 and so its co-supported angle is a right-angle,
9 = 8}4a;2, ©10,2,-

Proof. Without loss of generality we take |0, I| = |0, J| = |Zp, Z2;| = |29, Z¢| = 1.
Let Zg ~r 29, 21 ~5 21, 29 ~r zz and note that [ ~x 1, J ~x 3, 2 — 290 = cisa.
As Zozl L ZoZg, by 1011(V1) we have

23 — 29 = t(21 — 20) when £xZ,ZyZ, is a wedge- angle, (10.6.1)
and
23 — zg = —%(z) — %) when £x2Z,ZyZ, is a reflex- angle. (10.6.2)
In case (10.6.1) we take the transformation Z’' = g(Z) where

2 =zp+zcisa =z + (2 + 20 — zo)cis a.

Then for z =t > 0, 2’ = z9 + (21 — 2) 80 g([0O,I ) = [Zo,Z: . Similarly for
2= (t>0), 2 =2z +t(za — 20) 80 9([0,J ) =2, 23 .
In case (10.6.2) we take the transformation Z' = g(Z) where

Z=zg+2cisa=2+(z+ 2z — 20)ci8 a.

Then for z =t > 0, 2/ = z + t(z1 — 2) 80 g([0,] ) = [Zo,Z, . Similarly for
2= (t>0), 2 =z + t(za — z0) 80 9([0,J ) =[Z0, 25 .

This establishes the existence of g. As to uniqueness, suppose that f is also an
isometry such that f(F) = F,. Then by 8.2.1(xii), if Z ~x z we have f(Z) ~x
z, 9(Z) ~x, z, and so f(Z) = g(Z) for all Z € 1I.

COROLLARY. Let f be any isometry. Then f can be ezpressed in one or other
of the forms

(8) f =raiz, 0t0,20: (b)f = 80,2, © t0,2,-

Proof. In the theorem, take Zo = f(0), Z; = f(I), Z2 = f(J) and consequently

f is equal to the function g as defined in the proof.

10.7 ORIENTATION OF A TRIPLE OF NON- COLLINEAR POINTS

10.7.1

Definition. We say that an ordered triple (Zy, Z), Z3) of non-collinear points is pos-
itively or negatively oriented with respect to F according as the sensed angle
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L7527, ZyZ, is wedge or reflex. By 10.4.1(ii) this occurs according as 6x(Zg, 21, Z3) i8
positive or negative.

Definition. Let F = ([0,I , [0,J ) and Fy = ([Zy, 21 , [Zo,Z32 ) be frames of
reference. We say that F, is positively or negatively oriented with respect to F
according as (Zy, Z;, Z3) is positively or negatively oriented with respect to F.

The special isometries have the following effects on orientation.-

(i) Each translation preserves the orientations with respect to F of all non-collinear
triples.

(ii) Each rotation preserves the orientations with respect to F of all non-collinear
triples.

(ili) Each azial symmetry reverses the orientations with respect to F of all non-
collinear triples.

Proof.
(i) Let f =tz,,2, and Z3 ~5 23, Z3 ~F 23, Z4 ~F z4. Then

Zé =23+ (21 —Zo), Z; =23+ (zl - 20),
8o that 25 — zj = 23 — 2, and similarly 2§ — zj = z4 — 2. Hence

B~z _ u-2n
] T ’
-~z B-—2

and so by 10.4.1(ii) the result follows.
(ii) Let f = ra;z,. Then by 10.3.1

23~ 2 = (2~ z)csa, z3 — 2 = (23 — n)ds a,

and so

23— 2y = (23 — z3)ci8 @, 24 — 23 = (24 — 7)ciB .

Hence
-z _u-n
25—z 23—23
and so by 10.4.1(ii) the result follows.
(iii) Let f = 84,7, Then by 10.3.2

!

32—30=(z-2_z-0)d32a1 Zé—zo=(z's-z_o)0i82a,

and so
23— 2y = (f3 — f3)cis 2a, 24 — 25 = (7 — Z)cis 2a.
Hence
Zy—% -2
z:',—z.Q - 23—22,
80 that

! '
AT _ g4

?
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and so by 10.4.1(ii) the result follows.

Let F,F, be frames of reference and Zs, Zy4, Zs non-collinear points. Let § =
£xZ423Z5 and ¢ = L5,Z4Z3Z5. Then |¢|° 13 equal to |0]° or 360 — |0]|°, according
as F) i3 positively or negatively oriented with respect to F.

Proof. We use the notation of 10.6.1. When F; is positively oriented with respect
to F, we recall that for f(Z) = Z’ with 2/ = 2 + z2cis a, we have f(F) = F;. On
solving this for 2 and then interchanging z and 2, we see that

FU2) ~F5 (z - z0)cis (—a).

Then by 8.2.1(xii), Z = f(f~1(2)) ~#, (z — zo)cis (—a).
Letting Z; ~r 2j, Z; ~7, z; we then have z; = (z; — 2o)cis (—a). Thus

75— 23 _ (2 — 20)cis (—a) — (23 ~ z0)ci8 (@) _ -2
zp— 23 (24— 20)cs(—a) — (23 — z)ci8 (@)  z4—23

But by 10.4.1(i),

Zé —z:’, _ IZg,ZgI .

cis ¢.

25 —23 _ |23,25| .
= cisf, —— =
z—z3 |25, 7 -2y |23, %)

Thus cis ¢ = cis 8 and so |¢|° = |9]°.
When F, is negatively oriented with respect to F, we take instead f(Z) = Z' with
2’ = zo + zcis a. Now f~1(Z) ~5 (Z — %)cis a and so

25— 23 _ (% — %)cis (a) — (75 — Zo)cis (@) _ 25 — 23
-z (f4a—%)cis(a) - (4~ 2)cis(a) za—2’

Thus cis ¢ = cis § = cis (—8) and so |¢|° = |(~8)|° = 360 — |8|°.
Let F and F1 be frames of reference. Then the ratios of complez-valued distances

p= Z3Zyr o= 232, 7,
Z1Z35’ Z1Za7,

defined in 10.2.1, satisfy o = p when F, is positively oriented with respect to F, and
o = p when F, is negatively oriented with respect to F.
Proof. We use the notation of 10.6.1. In the case (10.6.1) z’ = z9 + zcis a so that

v = -2 _ (24 — z3)cisa _
2h—2 (23 —2)csa

In the case (10.6.2) z' = %z + Zcis a so that

_ -4 _(a-f)dsa

“a-2 (@-masa
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10.8 SENSED ANGLES OF TRIANGLES, THE SINE RULE

10.8.1

Definition. For any non-full angle 8, we denote by 8 the angle in A(F) such that
10=1° = 16]°.

MHa g Hs Hay Hs

A, th A

O: 1 Ha O: 1
Figure 10.7.

NOTATION. For non-collinear points Z,, Z3, Z3, we use as standard notation
|Z¢, 23| = a, |23,21] = b, | 21,2} =,

u=? y=C y-0
- C, - ar - b’
a=L~L5rZyZ2\Z3, f = L£5Z3232), v = L5 21 Z3Z;,.
Note that by comparison with 9.5.1 we are now using sensed-angles instead of wedge-
angles.

For non-collinear points Z,,2, 23 if
a=L5212,23, B=LFZ322Z\, Y= L5232,

and 8 = ar, ¢ =PF, Y =7r, then0 + ¢ + ¢ = 180x.
Proof. For

On multiplying these together, we find that
-1 =cisf.cis ¢p.cisyp = cis (6 + ¢ + ¢).

As cis 180x = —1 it follows that @ + ¢ + 3 = 1805.
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With the above notation, the lengths of the sides and the sensed-angles of a triangle
[Zy,Z3, Z3) have the properties:-

(i) In each case
1

vcis f = ——,
1 - ucisa

and two pairs of similar identities obtained from these on advancing cyclically
through (u,v,w) and (a, 5,7)-

(ii) In each case

’

c=bcosa+acosp, %’-:%

and two pairs of similar identities obtained from these on advancing cyclically
through (a,b,c) and (a, B,7).

Proof.

(i) For 23 — 21 = ucisa.(za — 21) so that 23 — z0 = (1 — ucisa)(z1 — 22), while
z1 — 23 = vcis .(z3 — 23), which give (1 — ucisa)vcis 8 = 1.

(ii) From (i)

1 — u[cosa + ssina] = %[cosﬁ —1sinf],

80 equating real parts gives ¢ = bcosa + a cos 3, while equating imaginary parts gives
sina/a = sin §/b.
This result re-derives the sine rule for a triangle.

If Z,, 24, Z3 are distinct points, then

VAYAYS ZaZ\ 5 =

—_— 1.

Z3Za5  Zalar
Proof. For

21— 23 +zl—zz =1.

223 32X

10.8 SOME RESULTS ON CIRCLES

10.9.1 A necessary condition to lie on a circle

In this section we provide some results on circles which are conveniently proved using
complex coordinates.
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Let Z,,Z2 be fized distinct
points, and Z a variable point,
all on the circle C(Zg;k).
Let F' = t0,z,(F) and a =
LrloZoZy, B = LploZoZy
and v = 5(B — a). As Z varies
on the circle, in one of the
open half-planes with edge Z)Z,
the sensed angle £xZ1ZZ; i3
equal in measure to <y, while
in the other open half-plane
with edge Z,Z; it s equal in
measure to v + 180x. Note that
2y = L5212y 2Z,. Figure 10.8.

Proof. Now z; — zg = kcisa, 29 — 29 = kcis 8 and if 8 = £xI3Z¢Z, then 2 — z =
kcis 8. We write ¢ = £52Z,Z Z; so that

n-z . _ 12,25
7z = Icis ¢, wherel = Z. %4
Then
., _cisf—cisb
I8¢ = G a—ca?’

while on taking complex conjugates here

cis (—f) —cis(—0) cisacisf—cisp

lcis (~¢) = cis (—a) —cis(—8) ~ cisBcisf —cisa’
By division
cis 2¢ = % =cis (8 - a).

Thus 2(cis ¢)? = (cisy)? so that cis ¢ = +cis~y. Thus either cis ¢ = cisy or cis ¢ =
cis (v + 180#), and accordingly

—z -—
g2 =Isiny or 32
2 — 2 4 Shaad

i = Isin(y + 1805).

As giny > 0, the first of these occurs when Z is in the half-plane with edge Z; Z,
in which =% > 0, and the second when Z is in the half-plane with edge Z,Z; in
which Q#==2 < (.

21—z
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10.9.2 A sufficient condition to lie on a circle

Let Z,,Z, be fixed distinct points
and Z a variable point. As Z
varies in one of the half-planes
with edge Z,Z3, for the sensed
angle 0 = £xZ\ZZ; let |6]° =
|7|° where v i3 a fized non-null
and non-straight angle in A(F'),
while as Z varies in the other
half-plane with edge Z)Z3, let
181° = |y + 180%:|°. Then Z lies
on a circle which passes through
Zy and 2.

Proof. We have

for some ¢t € R \ {0}. Then

80 that with coty = cos<y/sin¥,

Ha

i

z .
= tcisy
2l — 2

_ Z—tlzcisy
T 1-tcisy

1 1
z- E(zl + ) - Etcotfy.(zg -z)

_ %3 —tz;cis'y
T 1-tcisy
(22 = 21)[1 + tcisy — scoty(1 — tcis )]

1 1.
- 5(21 +2z3) - E%COt"/.(Zg -2z)

1 — tcisy

3(z2 — z1)[siny(1 + tcis y) — scosy(1 — tcis v)]

siny(1 — tcis )

3(#2 — z1)[sin 7 + +(t — cos )]

siny(1 — tcis )

and this has absolute value

|ze — z1]
2lsiny|

This shows that Z lies on a circle, the centre and length of radius of which are evident.
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10.9.3 Complex cross-ratio

Let Z3,23,Z4 be non-collinear points and C the circle that contains them. Then
Z ¢ Z3Z4 lies in C if and only if

(z=2)(@m=20) _
(z — 24)(22 — z3)
When this holds and Z and Z3 are on the same side of Z3Z,, then

(2 — 23)(22 — z4)
(z — 24)(23 — z3) >0

Proof. The given condition is equivalent to

PTA s (10.9.1)
Z—23 22 — 23
for some t # 0 in R. Let G;,G; be the open half-planes with common edge Z3Z4,
with Zs € Gy. Let 8§ = L5rZ3Z37Z4 and ¢ = £rZ3Z Z4.
Suppose first that (10.9.1) holds. For Z € G,

Z— 24 Z
R and §
Z—23 29 — 23

must have the same sign and so ¢ > 0; it follows that ¢ = 8. For Z € G,,

272 g 92275
z2—23 22—23
must have opposite signs and so ¢t < 0; it follows that ¢ = 6+ 180x. By 109.2Z € C
in both cases.

Conversely let Z € C. Then by (10.9.1) for Z € G, we have ¢ = 8, while for Z € G,
we have ¢ = 8 + 1805 and the result now follows.

The expression g—::—ﬂ-g:—::—;} is called the cross-ratio of the ordered set of points
(Zr 23,23, z4)

2 — 24

g

10.8.4 Ptolemy’s theorem, c.200A.D.

Let Z3,Z3,Z4 be non-collinear
points and C the circle that
contains them. Let Z € C
be such that Z and 2
are on opposite sides of
Z9Zs. Then lZ,Z4“Zg, Zs| +
12, Zel|Zs, Z4| = |2, 25|25, Z;).

Figure 10.10.
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Proof. By multiplying out, it can be checked that
(z = 24)(23 — z3) + (2 — 23){23 — 24) = (2 ~ 23)(23 — z4).
This is an identity due to Euler and from it

(z = z4)(22 — 23) | (2 — 23)(24 — 25)

(2= 23)(za —21) (2= 23)(24 — 22) =1 (10.9.2)

By 10.9.3 both fractions on the left are real-valued. As Z and Z3 are on opposite
sides of Z32Z,, there is a point W of [Z, Zs] on Z3Z,. Then W is an interior point of
the circle, and so W € [Z3, Z4] as the only points of the line Z;Z, which are interior
to the circle are in this segment. It follows that Z; and Z; are on opposite sides of
ZZg3. Then (Z, Z,], (Z3, Z4] are in different closed half-planes with common edge the
line ZZ3, so they have no points in common. It follows that Z and Z; are on the
one side of Z3Z; so the first of the fractions in (10.9.2) is positive, and so equal to its
own absolute value. But [Z, Z4] and [Z3, Z5] are in different closed half-planes with
common edge ZZ3 so they have no point in common. It follows that Z and Z4 are
on the one side of Z3Z3, so the second fraction in (10.9.2) is positive and so equal to
its own absolute value. Hence

|(2 — 24) (2 — 25)| (2= 20)(z — 2)| _,
(z —25)(ze — )]~ (z—2s)(z —ze)]

This is known as PTOLEMY’S THEOREM.
From the original identity (10.9.2) with Z, replacing Z we can deduce that for
four distinct points Z;, Z3, Z3, Zs

22 Ba%sr  5i%ar Zidsr
217;;- Z_Z-_r Z;ZS—}' Z;z;}'

This can be expanded as

=1

(21,24) . 1Zg,25| . 121, Z¢| . 124,2s| .

cisa + cis cisd =1,
21,251 12, 24 P 121,25 120, 2]
where
a=45Z32,\24, B=£5Z42223, v = £5Z3Z:Z3, 6 = LFrZ42,32;3.
From this we have that
121,24 |23, 25| . 121,28 124, 25 .
cis (ar + + cis +dr)=1.
71251 17, 24" O PO F (2, 2 12, 2,12 07 + 7)<

We get two relationships on equating the real parts in this and also equating the
imaginary parts.

NOTE. For other applications of complex numbers to geometry, see Chapter 11
and Hahn (8].
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10.10 ANGLES BETWEEN LINES

10.10.1 Motivation

Since cos(180x + 8) = —cosé, 8in(180F + §) = —sinf, we have that tan(180Fr +
0) = tan#. Thus results that tan@ is constant do not imply that 4 is an angle of
constant magnitude. To extract more information from such situations, we develop
new material. This also deals with the rather abrupt transitions in results such as
those in 10.9.1 and 10.9.2.

10.10.2 Duo-sectors

Let I;,l2 be lines intersecting at a point Z;. When |; # by, let Z3,2Z3 € l; with Z;
between Z; and Zg, and let Z4, Z5 € I3 with Z; between Z4 and Zs. Then the union

IR(|Z¢Z:12;) UIR(|Z32125)
we ghall call a duo-sector with side-lines /; and l,; we shall denote it by ;. Similarly
IR(|222:25) SIR(|1232,2;)

is also a duo-sector with side-lines I; and I3, and we shall denote it by D,.

Figure 10.11. Figure 10.12.

The mid-line I3 of |Z¢ Z; Z; is also the mid-line of |Z3Z; Z5 and it lies entirely in D, .
The mid-line 4 of | Zg Z; Zs is also the mid-line of |Z32Z; Z; and it lies entirely in D,.
We call {I3,l4} the bisectors of the line pair {l,,3} and use I3 to identify D, I4 to
identify D3. When 8x(Zy, Z3,Z4) > 0 we note that

Dy
D,

{Z ell: Jf(zlvzﬂi Z)‘S.F(Zl) Z47 Z) S 0})
{Z ell: J.F(er ZQ,Z)J]-‘(ZI, Z4, Z) 2 0}’

and get a similar characterisation when 6x(Z, Z3,Z,) < 0.
When I, = I3, we take D; = l,; we could also take D3 = II but do not make any
use of this.
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10.10.3 Duo-angles
When [;, I3 are distinct lines, intersecting at Z;, we call the pairs

({h, 12}, D1), ({h,l2},Ds),

duo-angles, with arms [;, l3; in this D, D, are the duo-sectors of 10.10.2. We
denote these duo-angles by ay, B4, respectively. We call the bisector I3 the indicator
of a4, and the bisector !4 the indicator of 84. We define the degree-magnitudes of
these by

|ad|° = |£ZgZ} Z‘ |° = I[ZgZ;Z5|°, Iﬂdlo = I[ZgZ] Zg'o = IéZgZ] Z4|°.

If Iy 1 I3 we have that |ag|® = |84|° = 90, and we call these right duo-angles.
When [, = I; we take ag = ({l1,l2},4) to be a duo-angle with arms I, };, and
call it a null duo-angle. Its indicator is l;, and we define its degree-measure to be
0. We do not define a straight duo-angle. Thus the measure of a duo-angle 4 always
satisfies 0 < |v4/|° < 180.
When [, # l2 we define
sinad = dn([z:zlz.g) = sin(AZ;;ZlZ5),
cosag = ¢08(LZ232,2,) = cos(LZ3Z) Z5),
sinﬂd = Sin(éZ2Z1Z5) = 8i11(£ZleZ4),
cosﬂd = COS(ZZQZl Z5) = COS(ZZle Z4).
For a right duo-angle these have the values 1 and 0, respectively. .
When I, and I; are not perpendicular, we can define as well tan ag= 2254 tan 3 =

%%I;.

ag is a null duo-angle we define sinag =0, cosay =1, tanayg =0.

10.10.4 Duo-angles in standard position

Mzt
Hs ::’ 1 m
D; / ~m Dy Hal|: Hs
J ,’ D
O {..,-' Hl l‘\ J :' 1
II I M R 3 4 Ha
o ~~. H
.'. [’, D2 -: \\\2
D D, !
/ D,

Figure 10.13.

We extend our frame of reference F by taking in connection with the line pair
{OI1,0J} a canonical pair of duo-sectors D; and D;, with D, the union of the first
and third quadrants Q; and Qs, and D; the union of the second and fourth quadrants.
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For any line [ through the origin O, we consider the duo-angle ag with side-lines
OI and [, such that the indicator m of a4 lies in the duo-sector D;, that is the bisector
of the line-pair {OI,l} which lies in the duo-sector of ag also lies in D;. We denote
by DA(F) the set of such duo-angles, and we say that they are in standard position
with respect to F.

If | # OI and Z4 = (z4,y4) is a point other than O on [, then so is the point with
coordinates (—z4, —y4); thus, without loss of generality, we may assume that y4 > 0
in identifying | as OZ;. Then Z4 € #, and

lag|® = |£10Z;)°,
Z4
cosag = co08(Z£I0Zy) = ———,
Y ;4 + Vs
. . V4
sinag = s8in(£10Z;) = ———.
VE 7 71

When q4 i8 not a right duo-angle, we have

tanag = —.
T4

We identify | = OI as OZ; where Z; = (z4,0) and z4 > 0. Thus for the null duo-
angle in standard position we have cosag = 1, sinag = 0, tanag = 0. We denote
this null duo-angle by 045 and the right duo-angle in standard position by 904%.

We now note that if ag, B4 € DA(F) and tanag = tan Sy, then ag = B4.

Proof. For this we let a4, 4 have pairs of side-lines (OI,0Z,), (OI,0Z;), re-
spectively, where |0, Z;| = |0, Zs| = k, and either y4 > 0 or z4 > 0, y4 = 0, and
similarly either y5 > 0 or z5 > 0, y5 = 0. Then neither ag nor B4 is 9047 and

Va _ I8 2 2 2
—_—= = z + =zf + = k .
T x5 4 V4 5 TVUs

If y4 = 0 then y5 = 0 and both duo-angles are null. Suppose then that y4 # 0 so
that y4 > 0; it follows that ys > 0. Then

2 e 2 vs Vs
K =af+ys=gei+ii= ,(zi+u3)=y—§k’-

Hence y? = y3, and so y5 = y4. It follows that z5 = z4.
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10.10.5 Addition of duo-angles in standard position

To deal with addition of duo- Dy !
angles in standard position, let
Q = (k,0), R = (0,k) for some
k > 0, and a4 have side-lines
0Q and 0Z,, 84 have side-lines N’ \ Q
0Q and 0Z;, where |0, Z;| = g
|0, Zs] = k and both have their

indicators in D,. Without loss of

generality, we may suppose that

either y4 > Qorys = 0, z4 > D
0, and similarly with respect to ] D,
(zs,5)- é

Figure 10.14. Addition of duo-angles.
Then the line through Q which is parallel to Z4Z5 will meet the circle C(O; k) in a

second point, which we denote by Zg = (z¢,ys). The line through Q parallel to Z,Zg
has parametric equations

o,
'''''

z=k+tzs — 24), ¥y =t{ys —v4),
and so meets the circle again when ¢ # 0 satisfies
[k + (s — 24))* + [t(us ~ pa))” = K.
This yields
2k(z5 — 24)

t=—
(x5 — 24)? + (ys — ya)?*’

and so we find for (zg,ys) that

v —@s ) (z5 — Za)(ys — y4)
- k(% —z4)2 + (y5 - y4)?’ vo =2k (25 — 74)% + (Y5 — y4)?’ (10.10.1)

Zs

We define the sum a4 + 84 = 74, where <4 has side-lines OQ and OZg and has its

indicator in D,. When Z; = Z; we take QZg as the line through Q which is parallel

to the tangent to the circle at Z4. This is analogous to the modified sum of angles.
It can be checked that

Yo  TsY4 + Ta¥s Te T4Ts — YalUs
=B TP ), — - 22 ). 10.10.2
k k2 0, k k2 0 ( )

To see this we first note that (ys — y4)? + (25 — z4)? = 2[k? ~ (2425 + Yays)]. Then
the numerator in

(zs — Za)(ys —ya) _ Tsya + Tays

T4xp + Yays — k2 k3
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is equal to

K?[(z5 — Z4)(ys — ya) + Tsya + Tays] — (TsYa + Tays)(T4Ts + Yays)
= k*(2sys + Taya) — [Zaya(z? + v3) + Tsys(2] + v3)]
= (k* — k*)(zsys + Zays) =

Similarly the numerator in

(ys — va)® — (25 — Z4)® _ TaZ5 — Yals
= (%425 + Yays) K3

1
2
equals

K ((ys — v4)® — (-’175 — 24)% — 2(z425 ~ yays)] + 2(z4Zs + Yays) (T4zs — Yays)
= k(ys + y? -"75 - 73] + 2(z4zg - uﬁu?)
=K[ys + 114 - 23] + 2[z3(K* - y3) - i)
= k[ys +vi - 35 — 23] + 2[z3K* — Y3 (23 + ¥3)]
= k*(y3 + yj — 2§ — 73 + 221 - 2y5) = 0.
To apply these we note that by 10.10.4

. 4 Ty 25
sinay = y_’ cosag = —, 8in 4y = =— ys , Co8f84 =

k k N &

The sum 4 = agq + 4 has side-lines OQ and OZg, and we sub-divide into two major
cases. First we suppose that zsys + zays > 0 or equivalently |ag4|® + |84|° < 180.
Then yg > 0 and we have

. Ye T
sinyqd = ?, CO87Yg = ?.
It follows from (10.10.2) that

sin(ag + f3) = sinagcosfq + cosaysin By,
cos(ag +Ba) = cosaycosfy — sinaysin fy.

Secondly we suppose that zsys + Z4ys < 0 or equivalently |agq|® + |84|° > 180.
Then yg < 0 s0 we have

gin cos ..
74 - k * 7d - k .
It follows from (10.10.2) that
—sin{ag+fs) = sinagcosfBg+ cosagsinfby,
—cos{ag+ B4) = cosagycosfBy— sinagysinfy.

There is a further case when z5y4 + Z4ys = 0 and we obtain these formulae according
a8 2425 — Yays i8 positive or negative, respectively. Thus the addition formulae for
sine and cosine of duo-angles are more complicated than those of angles.
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10.10.6 Addition formulae for tangents of duo-angles

(i) We first note that if ag, B4 € DA(F) and ag + f4 =904, neither duo-angle being
null or right, then tanagtan S84 = 1. For we have that zg = 0, so that by (10.10.2)
T4T5 — Yyays = 0 and thus
ey
T4 Ty
(ii) Next we note that, as tan ag = sin a4/ cos ay, it follows from the above addition
formulae for cosine and sine that

=1.

tan ag + tan S84

1 - tanagtan By’

provided that 0 does not occur in a denominator, that is provided none of ag, B4, aa+
B4 is a right duo-angle; this can be done separately for the cases considered in 10.10.5.
In fact this addition formula for the tangent function can be verified without subdi-
vision into cases, as

tan(aq + B4) =

Yo _ _o (ys — ya)(z5 — Z4)

Te - (5 — y4)? — (z5 — 74)?’
and we wish to show that this is equal to
Ys/%s +Ya/Zs _ Tays +Tsvs (10.103)

1 - yays/2axs  TaZs — Ya¥s

On subtracting the first of these expressions from the second, we obtain a quotient
the numerator of which is equal to

(zays + zsya) (s — ¥4)? — (25 — 24)*] + 2(z4zs — yays)(ys — ya)(zs — Z4)

= (Tays + z5ya)ly3 + v — 25 — 24 + 2(z4Zs — yays)]

+ 2(z4Z5 — yays)[Taya + T5ys — (Tays + T5ys)]

= (zays + Tsva) V3 + V3 — T3 — 23] + 2(24Zs — yays)(Taya + T5ys)

= (Tays + Tsya) Vs + V3 — 78 — 73) + 2(z3 25y — YiTays + T5Tays — Y3 Zsva)

= (z3 + yg — 73 — v3)(Zays — zsy4) = 0,
as 22 + y3 = z} + y# = k2. This identity then implies the standard addition formula

for the tangents of duo-angles.
(iii) We also wish to show that

-1
tan(aq +9047) = — o’
when a4 is neither null nor right. For with z5 = 0, ys = k (10.10.1) gives
N Ul )k SO Wl o )
1+ (k—ya)?’ 73+ (k- va)*’

8o that

v _ _2za(k =)

2o (k—ya)? — =
Then

Yo Ys _ vak—ya) _owalk-y) _
Zg T4 k3 — 2kys + y2 — =3 2y — 2ky,
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10.10.7 Associativity of addition of duo-angles

With the notation of 10.10.5, suppose that a4, 84 and 4 are duo-angles in DA(F),
with pairs side- lines (0Q,0Z,), (0Q, 0OZs), (0Q,0Zs), respectively. We wish to
consider the sums (ag + B4) + 74 and ag + (B4 + v4). We suppose that ag + 84 has
side-lines (0Q,0Z7) and that (as + B4) + 74 has side-lines (0Q,0Z). Similarly
we suppose that 84 + 74 has side-lines (0Q,0Zg) and aq + (B4 + v4) has side-lines
(0Q,02Z,4). Then by (10.10.2) applied several times we have that

TgYs + TaYs 2y = T425 — Y4¥s

v = A y 7 = & ’
o = Teyr + Trys _ TeZRlAfIlt +_,_,_sz=— Ve
9 — —

k

To(Tsys + 241/5) + (zaz5 — 1/4!/5)!/6

0 = T1Z6 — Y1Y6 ﬂil.h_lﬂ.lze - -"’-‘{—‘uye

k
_ (zaTs — yays)ze — (zsya + 1741/5)1/6
= 7 .
Similarly
v = ZgYs : TsYe |z = T5Te ;uule’
yio = Tsys + Tays  Eefieloy, 4 g, ZelatIele
0 = =
k k
_ (zsze — ysye)ys + z4(zTeys + Tsys)
= 5 ,
| Zums—yays T4 ZESTiNe _ g, Zoladaule
T10 = " 3
_ T4(z576 — Ysys) — ya(Teys + Tsye)
= = )

From these we can see that Zg = Z,9 and so we have that

(ag + B4) + va = ag + (B4 + 74).

Thus addition of duo-angles is associative on DA(F).

10.10.8 Group properties of duo-angles; sensed duo-angles

We note the following properties of addition of duo-angles:-

(i) Given any duo-angles aq, Ba in DA(F), the sum ag+ B4 is a unique object v4
and it lies in DA(F).

(ii) Addition of duo-angles is commutative, that is

aq + B4 = B4 + aa,
for dll a4, Ba € DA(F).
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(iii) Addition of duo-angles is associative on DA(F).

(iv) The null angle 045 is a neutral element for + on DA(F).

(v)Each ag € DA(F) has an additive inverse in DA(F).

Proof.

(i) This is evident from the definition.

(ii) This is evident as the definition is symmetrical in the roles of the two duo-
angles.

(iii) This was established in 10.10.7.

(iv) For a4 + 045 = ay, for all ag € DA(F).

(v) With the notation of 10.10.5 let Z5 = sos(Z4) so that Zs = (—z4,y4), and let
d4 be the duo-angle in DA(F) with arms OI,0Z;. Then, straightforwardly, ag+64 =
04r. Thus this duo-angle d4 is an additive inverse for a4 in DA(F). We denote it by
—Qyq.

These properties show that we have a commutative group. We note that

sin(—ag) = . yf = sinay, cos(—aq) = —2—4 = —cosay,
tan(—aq) = —:—: = - tanay.

If a = £rQ0Z, is a wedge-angle in A(F), with Z; = (z4,y4) and y4 > 0, we
recall that —a = £xQO0Zg where Zg = 801(Z4) = (24, —y4). If aq is the duo-angle
in DA(F) with side-lines (0Q,0Z;) then —ay is the duo-angle in DA(F) with side-
lines (0Q,0Z5) where Z5 = 804(Zs) = (~z4,ys4). This inverse angle and inverse
duo-angle are linked in that OZs = OZg and 80 |—a|® = |-aq4|® + 180.

We define 84 — ag = B4 + (—ag), and this is the duc-angle in standard position
with side-lines OQ and OZ,, where Z; = (z+,y) is the point where the line through
Q and parallel to Zssos(Z4) meets the circle C(O; k) again. We call 84 — ag the
sensed duo-angle with side-lines 0Z;,0Z5 and denote it by <5(02,,0Zs). If F'
is any frame of reference obtained from F by translation, we also define

gF (024,025) = 4;‘(024,025).

Earlier names for this were a ‘complete angle’ and a ‘cross’; see Forder (7] for ap-
plications and exercises, and Forder [6, pages 120-121, 151-154] for applications, the
terminology used being ‘cross’. Sensed duo-angles were also used by Johnson (9, pages
11 -15] under the name of ‘directed angles’.

We have
tan 84 — tanay

tan(ﬁd-ad) = 1+tana¢ta.nﬂd'
provided none of a4, 84, Ba — a4 is a right duo-angle. For a coordinate formula to
utilise this we replace 4 by —z4 in (10.10.3) and translate to parallel axes through
Z,. Thus for vg = 45(2124,2,Z5) we have

= _ ¥aoih
tanye = S e

FE—21 T4—2)

when <4 i8 not right, and
1+1/5 i Ya— 4 =0
Ty —T1T4— 11
when it is.
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10.10.9 An application

For fixed points Z4 and Zs, consider the locus of points Z such that <x(ZZ,,ZZ5)
has constant magnitude. If it is a right duo-angle we will have

1+ Ys ~Y Ya— y=0’
T5—ZTTs—2

and so the points Z ¢ Z4Z; lie on the circle on [Z4, Z;] as diameter. Otherwise, we
have that

¥o—v __ ¥s—¥

z!—z T4—T = 1 —- A,

1 + Z8—T T4—2
for some A # 1, and then the points Z ¢ Z4Z5 lie on a circle which passes through
Z4 and Zg. In fact we obtain a set of coaxal circles through Z; and Zs. This should

be compared with 7.5.1 and 10.9.1.

10.11 A CASE OF PASCAL’S THEOREM, 1640

10.11.1

Let Z,, W\, Z2,W; be distinct points on the circle C(O;k). Then Z,W; || W1 Z; if and
Oﬂly Sf K}‘ZQOWQ = A;—ZlOWI.
Proof. We let z, ~ kcis 6y, 22 ~ kcis 02, wy ~ kcis ¢, wq ~ kcis ¢3. Then Z, W,
and W) Z; are parallel if and only if
kcis ¢2 — kcis 01 _
kcis@y —kcis ¢y

for some ¢ # 0 in R. By 9.4.1 the left-hand side is equal to

cos ¢y — cos by + +(sin ¢ — siné,)
cosf; — cos ¢y +1(sinf; —8in )
_ —2sin(3¢2 + 361)sin(362 — 361) + 2scos(3 ¢ + 56:) cos(3¢2 ~ 161)
 —2sin(302 + 5¢1)sin(18, — 141) + 21 cos(182 + L61) cos(16: — 1¢1)
_ sin(3¢g — 361) cis (242 + 361)
" sin(}6; - %¢,) cis (16 + 3 ¢1)

sin( 362 — 361) .

= WCW (302 + 361 — 362 — 3¢1).

Thus

sin(362 — 3¢1)
sin(1¢, — 361)
But the absolute value here is 1, 80 the right-hand side is 1. Thus we have either

302 + 561 — 362 — 361 = 05,

Cis(%¢2+%01—%02—%¢1)= t.

or
562 + 361 — 362 — 161 = 1805.
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In each case, we have that ¢9 — ¢y =82 — 0, and s0 £xZ,0W;3 = £xZ,0W;.

If (Z:,W1), (Z3,W3), (Z3,Ws)
are distinct pairs of points all on
a circle and such that Z,W; ||
lez and ZgWs “ WQZg then
Z\Ws || W12Z3.

Proof. This follows immediately 3
from the last subsection. It is a Zy
case of what is known as PAs- '
CAL’S THEOREM .

Figure 10.15. A case of Pascal’s theorem

COROLLARY. If (Z,,W1), (Z3,W3), (Z3,W3), (Z4,Wy) are four distinct pairs
of points all on a circle and such that

LW || WiZ3, Z3W3 || WiZ3, ZsW, | WsZ,,
then ZIW4 " WIZ4.

Figure 10.16. Very symmetrical cases.

Proof. For from the first two we deduce that Z; W3 || W1 Z; and on combining this
with the third relation we obtain the conclusion.

NOTE. Clearly this last result can be extended to any number of pairs of points
on a circle.

10.11.2

Starting more generally than in the last subsection, for pairs of distinct points let
(Z1,W1) ~ (Za2,Ws) if and only if Z,W; || W1Z,. Then clearly the relation ~ is
reflexive and symmetric. We ask when it is also transitive and thus an equivalence
relation.

Now if Z; = (21,11), 22 = (z3,¥2), W1 = (u1,11), Wa = (u3,12), we have
(Zy,Wh) ~ (Z3,Ws3) if and only if

(va —y1)(za — 1) = (ua — 31 )(y2 — v1)- (10.11.1)
Similarly we have (Z3, Wa) ~ (Z, W) if and only if
(v~ y2)(z — uz) = (u — z3)(y — va). (10.11.2)
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We wish (10.11.1) and (10.11.2) to imply that
(v=-n)(z-uw)=(u-z1)@y —n) (10.11.3)
From (10.11.1) we have that
VaZ2 — UaY2 = U1V2 — UaV + T2y — T1Yy2 + Z1V1 — Y1t1,
and from (10.11.2)
V2Z3 — Ugla = UV — UgV + Zay — TY2 + VT — uy,
80 together these give
VT — uy = U V2 — UgU1 + Tay1 — T1Y2 + T1t1 — Y1t — UU2 + ugv — ZTay + TYa.
We need for (10.11.3) that
VZ — uy = vU; — UV + 1T — T1Y — Y1t + T
and so our condition for transitivity is got by equating the two right- hand sides here.
This turns out to be §5(2,, 29, Z) = éx(W1,Wa, W).

Now (10.11.2) and (10.11.3) simultaneously give a transformation under which
Z - W as we see by writing them as

V—Yz2 _Y—v2 V=% _y—u
BU—2y ZT—uU3 U—T T—t

(10.11.4)

On solving for u and v in this we obtain

—v
p-n+nlEd -2

T —u2

= v _ 1% ’
z—Uy T—U3z
z-u, z—u;
2=+ ymy T Wy

T—uy _ z—ug
y—n y—va

To utilise this transformation we consider loci with equations of the form

2hy—vz y—-u +2gy"’2 +2fy"vl

+¢=0. (10.11.5)
T—-U2T—U T — Ug r—u

Under the transformation this maps into the locus with equation

Y- _ _ -
DYt - ol ' +2gv Y2 +2fv “o.=o. (10.11.6)
U—Tat—T) U — T u-—-I

On clearing the equation (10.11.5) of fractions we obtain

2h(y —va)(y — v1) + 29(y — va)(z — 1) + 2f(y — v1)(z — ua2)
+c(z — u)(z —ua) =0,
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from which we see that W; and W; are both on this locus. This equation can be
re-arranged as

cz® + 2(g + f)zy + 2hy? — (29v2 + 2fv; + cu; + cug)z—
(29u1 + 2fua + 2hvy + 2hva)y + 2hv vz + 2gu1v2 + 2fugyy + cujuz = 0. (10.11.7)

Similarly we see that Z; and Z; are on the locus given by (10.11.6), and the equation
for it becomes

cu? + 2(g + f)uv + 2hv? — (2gy2 + 2fy + cz1 + cx3)u—
(2921 + 2fz2 + 2hy;, + 2hy2)v + 2hy1ya + 2921y2 + 2fzay + €212, = 0. (10.11.8)

We note that W, maps to Z; and W, maps to Z; under the transformation in which
Z mapsto W
To identify all the loci that can occur in (10.11.7) and (10.11.8) would take us
beyond the concepts of the present course, 8o we concentrate on when they represent
circles.
Now (10.11.7) is a circle when ¢ = 2h # 0 and g = — f. The equation then becomes
2 +y’ + [%(Ul - vg) —th —uz] z+ [%(Uz-ul) - -vz] v
+ %(ulvg —ugvy) + uug + v, = 0. (10.11.9)

This is the set of circles which pass through the points W; and W2, a set of coaxal
circles. The corresponding equation for the second locus is

u? +o? + [%(lll -y2) -7 — z‘z] u+ [%(2:2 -n) -y - y2] v
+ %(311!2 ~ Zoy) + 7122 + iy2 = 0, (10.11.10)

and this gives the set of coaxal circles passing through Z; and Z,.

Z W,

We can take an arbitrary circle
from the first coaxal set and then
there is a unique one from the
second set corresponding to it. If
we take Z1, Z3, W, W3 to be con-
cylic we get just one circle and
that is the classical case; it oc-
curs when the remaining coeffi-
cients in the two equations are
pairwise equal.

Figure 10.17. Pascal result for two circles.
10.11.3

Instead of using parallelism of lines as the basis of the relation in 10.11.2, we could
take instead a fixed line o with equation Iz +my +n = 0, and let (Z, W1) ~ (Z2, W2)
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if the lines Z,W; and W) Z; meet on o. The results are like those in 10.11.2 and the
transformation corresponding to (10.11.4) is

n(ya —v) —l(zav—pau) _ n(va —y) — l(uay — 1az)
n(zz —u) +m(zav —yau)  n(ugz — z) + m(uay — vaz)’
ny —v)=l(zw-—nu) _  nv-y)-l(ny-nz)
n(z1 —u) +mzv-yu) 0w -2z) +muy —nz)

Exercises

10.1 Prove the result of Varignon (1731) that if A, B, C, D are the vertices of a convex
quadrilateral and

P= mp(A)B)) Q = mp(B’ C)a R= mp(CtD)s S = mp(D’A)1
then P,Q, R, S are the vertices of a parallelogram.
102 If Z, ~ 21,23 ~ z3 and Z3 ~ z3 are non-collinear points show that

21 (53 - 52) + 32(21 - 53) + 23(22 - 21) = 4‘6_1-'(21,22,23) # 0.

10.3 Let A ~a, B ~ b, C ~ ¢ be non-collinear points and P ~ p a point such that
AP, BP, CP meet BC, CA, AB at D ~d, E ~ ¢, F ~ f, respectively. Show
for sensed ratio that

BD _ p(b-a)+p(a—b)+ba—ab
DC ~ p(a-¢é) +p(c—a)+ac—ca’

and hence prove Ceva’s theorem that

BDCEAF _.

DCEAFB

10.4 Let A ~a, B ~ b, C ~ c be non-collinear points. Given any point P ~ p, show
that as (c — a)/(b — a) is non-real there exist unique real numbers y and z such
that p—a=y(b-a)+2(c~a),andsop=za+yb+ 2c wherez +y +z=1.
Show that if AP meets BC it is in a point D ~ d such that

1 r

i Pl gl

where r = z/y. Hence prove Ceva's theorem that if D € BC, E € CA, F € AB
are such that AD, BE, CF are concurrent, then

33
s
E’UIIIFI
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10.5 Let A ~a, B ~ b, C ~ ¢ be non-collinear points. If D ~ d, E ~ e where
1 A 1 U

= Tt Tia% T T4 T T4 %
and DE meets AB it is in a point F ~ f where
1 v
F=re it
and Apv = -1,
Prove Menelaus’ theorem that if D € BC, E € CA, F € AB are collinear, then
BDCEAF _ _,
DCEAFB
10.6 Let A, B,C be non-collinear points and take D € BC, E € CA, F € AB such
that —_— ——
BD CE—s F—t
BC 'CA " AB

Let I, m,n be, respectively, the lines through D, E, F which are perpendicular
to the side-lines BC, CA, AB. Show that [, m, n are concurrent if and only if

(1-2r)|B,C)* + (1 - 28)|C, A]> + (1 - 2t)|A, B]* = 0.
10.7 If R(Z,) is the set of all rotations about the point Zy, show that (R(Zy), o) is
a commutative group.

10.8 Show that the composition of axial symmetries in two parallel lines is equal to a
translation, and conversely that each translation can be expressed in this form.

10.9 Prove that 8¢:2¢ © 80;25 = T2(¢—0);2Z0-

10.11 Prove that 84,2, 0,2, = 84_}4,7,- Deduce that any rotation about the point
Zy can be expressed as the composition of two axial symmetries in lines which
pass through Zg.

10.12 Let F, ~ F; if the frame of reference F3 is positively oriented with respect to
Fi. Show that ~ is an equivalence relation.

10.13 Prove the Stewart identity
(24 — 21)%(23 — 23) + (24 — 22)*(21 — 23) + (24 — 23)* (22 ~ 1)
= - (23— 2)(21 — 2z3)(2z2 — 21).
Interpret this trigonometrically.
10.14 Prove DEMOIVRE’S THEOREM that
(cosa + ssina)™ = cos(na) + ssin(na),

for all positive integers n and all angles a € A*(F), where 3 is the complex
number satisfying 1> = —1.
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10.15 Suppose that l,m,n are distinct parallel lines. Let Z;,23,23,Z4 € | with
Zy # Z,, Z3 # Z4. Suppose that Zg,Zg € n, ZyZy, ZaZs meet m at Z7,Zg,
respectively, and Z3Zg, Z4Z¢ meet m at Zy, Z1o, respectively. Prove that then

29210 = 2824
ZZs .72

10.16 If [Z1, Z3, Z3, Z,) is a parallelogram, W is a point on the diagonal line Z,Zs, a
line through W parallel to Z;Z; meets Z,Z4 and Z3Z3 at W, and Wy respec-
tively, and a line through W parallel to Z; Z; meets Z;Z; and Z3Z,; at W3 and
Wj, respectively, prove that

6}'(W, W4) Wl) = 5}'(“’, W31 W2)°

10.17 If Z; # Z; and 6x(Z,, Z3,23) = —85(2;, Z3, Z4), prove that the mid-point of
Z3 and Z4 is on leg.

10.18 Suppose that Z,, Z;,Z3,Z4 are points no three of which are collinear. Show
that [Zl, Zs] n [ZQ,Z4] # 0 if and only if

6.7"(21, Zﬂ) Z4)

0r(Za, Z1,Z3) <0
07(Z3, Za, Z4)

< 0and ——m———— .
A 55 (Za, 21, Zs)
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Position vectors; vector and
complex-number methods in
geometry

11.1 EQUIPOLLENCE

11.1.1

Definition. An ordered pair (Z;, Z3) of points in II is said to be equipollent to the
pair (Z3, Z,), written symbolically (Z,, Z3) 1 (Zs, Z4), if mp(Z,, Z;) = mp(Z,, Z3).
Thus 1 is a binary relation in II x II.

Equspollence has the properties:-

() If 2y = (z1,01), Z3 = (z2,12), Zs = (23,¥4), Z4 = (24,Va), then (Z),2Z2) t
(Z3,24) if and only if z) + 4 = T3 + 3, Y1 + Y4 = Y2 + Y3, or equivalently
T2=ZT1 =423, Y2a— Y1 =Ys—Ys.

(ii) Given any points Z,,Z3, Z3 € Il, there is a unique point Z, such that (Z,,2,) 1
(23, 24).

(ii) For all Z,,24 € I, (21, 23) 1 (2, Z3).
(iv) If (21, 23) 1 (Z3, Z4) then (23, Z4) 1 (21, Z3).
(v) If(Z1,22) 1 (23, 2Z4) and (Z3,Z4) t (25, Zs), then (21, Z2) T (25, Ze).
(Vi) If (21, 2Z3) 1 (Zs,24) then (21, Z3) 1 (23, Z4).
(vii) If (Z1,23) 1 (Z3,Z24), then |21, Zg| = |Zs, Z4].
(vili) For all 2, € I,(Z1,2,) t(Z3,Zs) if and only if Z3 = Z4.

(ix) If 2, # Z; and 23 € | = Z,2,, then (2,,Z2) 1 (Z3,Z4) if and only Z, €
l, |21,2¢| = |25,2Z;| and if <; is the natural order for which Z, < Z;, then
23 <y Zs.

171
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(x) Ile # Zg and Za ¢ leg, then (Zl, Zz) T (Z3,Z4) t'f and only if[Zl,Zz, Z4,Z3]
is a parallelogram.

Proof.
(i) By the mid-point formula,

) +z + 2+ 7T +
mp(Zy, Z,) = (_1_4 b ”4),mp(z2,z3)s( 243 2 ya)’

2 72 2 7 2

and the result follows immediately from this.

(ii) By part (i) it is necessary and sufficient that we choose Z4 so that z4 =
Ta+T3—Z1, ya=y2+ys—h.

(iii) This is immediate as z; + 2 = 21 + Za, y1 +¥2 = ¥ + Ya-

(iv) This is immediate as 3 + 23 = 21 + T4, Y2 + ¥3 = V1 + V4.

(v) We are given that

Ty +T4y = T2+T3, Y1 +Ys=Yy2+Ys
T3+ZTg = T4+ Ts Y3s+yYs=1ys+ys

By addition (z, + z6) + (23 + 24) = (22 +z5) + (z3 + 24), 80 by cancellation of z3 + z4
we have z; + z¢ = 73 + z5. Similarly y + ye = y2 + ys and so the result follows.
(vi) For by (i) above we have z; + 24 = 23 + Z3, {1 + ¥4 = Y3 + Y.
(vii) For by (i) above

(22 —71)% + (y2 — 91)* = (4 — 23)* + (ya — 3)%,

and now we apply the distance formula.
(viii) For if ; = 22,31 = y2, then (i) above is satisfied if and only if 3 = z4,y3 =
Ya-

Z 2

Z, Z4

Figure 11.1.

(ix) For suppose first that (Z;,22) t (Zs,Zs). Then Z3 € I and mp(Z3,2Z4) € 1,
so Z4 € I. By (vii) above we have |2y, Zg| = |Z3,2;]. Suppose first that ! is not
perpendicular to OI and that, as in 6.4.1(ii), the correspondence between <; and the
natural order <oy, under which O <oy I, is direct. Then 7o;(Z:) <or moi(Z,),
80 z; £ z2. Then by (i) above z3 < z4, and so by this argument traced in reverse
we have Z3 <; Z;. If the correspondence is indirect, we have z; < z;, z4 < z3
instead. When [ is perpendicular to OI, we project to OJ instead and make use of
the y-coordinates.
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Conversely suppose that Z4 € I, |Z;,2¢| = |Z23,2;| and Z3 <; Z4. Now [ has
parametric equations £ =z, +¢(z2 —21), y=y1 +t(ya—y) (¢t € R). Suppose
that Z3 and Z, have parameters t3, t4, respectively, so that

z3 = T+iy(za—71), ys=uy +tsya —y1),
Ts = m+i(za—-m), va=un+taly2—m)

Recall that Z;,Z; have parameters 0 and 1 and 0 < 1. As in the last paragraph
above, if ! is not perpendicular to OI and the correspondence between <; and <oy
is direct, then z, < z3,z3 < z4; hence t3 < t4 and we obtain this same conclusion
when the correspondence is inverse. When ] is perpendicular to OI we project to OJ
instead, and use the y-coordinates. Moreover

25, Z5* = [(ta — ts)(z2 — 21)]* + [(ta — t3) (w2 — 00)]* = (t4 — t3)*| Z1, Ze”.
Hence |t; — t3] = 1, and so as t3 < ¢4 we have t4 = 1+t3. Then
T+ T4 =271 + (1 +t3)(z‘2 - Il), T2+ 23 =T+ T + ts(zz - zl)
and these are equal. Similarly
nty=2n+1+t3)ya-n) ya+ys=ya+ym+taly2—w)
and these are equal. By (i) above we now have (Z,Z;) 1 (Z3, Z4)-

(x) If [21,23,2Z4,2Z3) is a parallelogram, then mp(Z, Zs) = mp(Z3, Z3). Con-
versely suppose that Z, # Z3,23 ¢ Z1Z; and mp(Z,,Zs) = mp(Za, Z3). Then
Z12Z,, 23274 have equations

“-n)z-z)+(z2~21)y-n) = O,
~(s—ys)(z—z3) +(za —2z3)(y—y3) = O.
By (i) above, 3 — 21 = 24 — Z3,¥2 — 1 = Y4 — Y3, 80 these lines are parallel. Similarly
Z)Z3,Z3Z4 have equations
- -p)z-—m)+@s-z)y-n) = 0
~ -z - o) + (- Ty -1) = O,
and by (i) above z3 — 21 = z4 — Z2,¥s — ¥1 = ¥4 — ¥3, 80 that these lines are parallel.
Thus (Z,, Z3, Z4, Z3] is a parallelogram.

11.2 SUM OF COUPLES, MULTIPLICATION OF A COUPLE BY A
SCALAR

11.2.1

Zg Z3 Z4

Z

Figure 11.2.
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Definition. For O € II, let V(IT; O) be the set of all couples (0,Z) for Z € Il. We
define the sum (0, Z;) + (0, Z3) of two couples to be (O, Z3) where mp(0, Z3) =
mp(Z,, Z3), so that (O, Z;) 1 (Z2,Zs). Thus + is a binary operation in V(II; 0). We
define the product by a number or scalar ¢.(0,Z;), of a number ¢ € R and a
couple, to be a couple (O, Z,) as follows. When Z;, = O wetake Z, = Oforallt € R.
When Z, # O we take Z; to be in the line | = 02, and with |0, Z;| = |¢||O, Z;|;
furthermore if <; is the natural order for which O <; Z;, we take O <; Z; when ¢ > 0,
and Z4 <; O when t < 0. Thus product by a number is a function on R x V(II; O)
into V(II; ).

COMMENT. To prove by synthetic means the basic properties of coupies listed
in 11.2.2 and 11.3.1, would be very laborious in covering all the cases. We establish
instead initial algebraic characterizations which allow an effective algebraic approach.

If O is the origin and Z, = (z1,1), Za = (x2,92), then
(i) (0,21) +(0,23) = (0, Z3) where Z3 = (21 + T2, + ¥a)-
(i) t.(0,2,) = (0, 2Z4) where Z4 = (tz1,ty).

Proof.

(i) For this we have 0+ z3 = ) + 22, 0+ ys = ¢1 + ya-

(ii) We verify this as follows. Let (z4,y4) = (tz1,¢tn). When (z1,11) = (0,0)
clearly we have (z4,ys) = (z1,1). When (zy,91) # (0,0), clearly Z; € OZ,; while

10, Z* = (tz:1)? + (ty1)* = 2|0, Z4 [*.

Now if | is not perpendicular to O and the correspondence between the natural order
< and the natural order <p; on OI, under which O <pj I, is direct then z; < z3.
Thus when ¢t > 0, we have tz; > 0 and so O <; Z4; when ¢t < 0, we have iz; < 0
and so Z4 <; 0. When the correspondence between the natural orders is inverse, we
reach the same conclusion. When { is perpendicular to OI we project to OJ instead.
11.2.2 Vector space over R

Definition. A triple (V,+,.) is said to be a vector space over R if the following
hold:-

(i) First, + is a binary operation in V.
(ii) Forallg,b,c€V, (a+b) +c=a+(b+o).
(iii) There is an @ € V such that for allg € V,

a+o0=g, 0+a=g.

(iv) Corresponding to each g € V, there is some —g € V such that

(-a)+a=0,a+(~a)=0.

(v) Forallg, b€V, a+b=0b+a.
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(vi) Next,.:R xV — V is a function.

(vii) For all g € V and all ¢;,¢3 € R, {2.(t1.@) = (t2t;).a.

(viii) Forallg,beVand allt€ R, t.(a+b) =t.a+t.b

(ix) Forallga€ Vand all t;,,t;3 € R, (¢ + t2).a =t1.a+ t2.a.
(x) Forallgae V, 1.a=a.

We then have the following result.

(v{1; 0), +,.) is a vector space over R.

Proof.

(i) This has been covered already in 11.2.1.

(ii) Now (O, Zl) + (0, Zg) = (0, Z4) where (z4,y4) =(z1 +z2,0n + yz). Then

[(0’ Zl) + (0’ Z2)] + (O) Z3) = (O’ Z4) + (01 ZS) = (Oy ZB):

where
(z5,¥5) = (T4 + Z3,y4 + y3) = ((z1 + 22) + 23, (11 +y32) +ys3) .

Similarly (0, Z3) + (0, Z3) = (O, Zg) where (zs,ys) = (z2 + 23,2 + y3), and s0
(0,21) +((0, Z3) + (0, 23)] = (0, Z1) + (0, Zs) = (0, Z7)

where (z7,y7) = (21+%6,¥1+¥s) = (21 + (T3 + 23), 11 + (y2 + y3)). Clearly Z5 = Zy.

(iii) For any Z, € II, (0,2,)+(0,0) = (0, Z3) where (z2,2) = (1 + 0,1 +0) =
(21,1/1), so that Za = Zl. Slmllarly (0,0) + (O, Zl) = (O,Z3) where (a:3,y3) =
(0 +2,0+p) = (zl,yl), so that Z3 = Z,.

(iv) Now (0, Z1)+(0, Z3) = (0, Z3), (0, 2Z2)+(0, Z,) = (0, Z4) where (z3,y3) =
(z1 + 22,31 + y2) and (z4,ys) = (23 + 71,42 + 31). Clearly 23 = Z,.

(v) If (z3,y2) = (=21,-w1), then (0, 2,) + (0, Z3) = (O, Z3) where (z3,y3) =
(z1 — 21,91 — 1) = (0,0); hence Z3 = O. Similarly (0, Z3) + (0, Z,) = (O, Z4) where
(z4,y4) = (=21 + 21, —y1 + 1) = (0,0); hence Z, = O.

(vi) This was covered in 11.2.1.

(Vii) For t;.(O, Zl) = (O, Zz) where (xg,yg) = (tlzl, tlyl). Then t,. (tl.(O, A ))
tg.(o, Zz) = (O,Z3) where (.’123,1[3) = (tz(t]ﬂ!l),tg(tlyl)). Also (tntl).(o, Zl)
(O, Zq) where (34, y4) = ((tatl)zl, (tztl)yl). Thus Za = Z4.

(viii) For (0, 21)+(0, 23) = (0, Zs) and t.[(0, Z,)+(0, Z;)] = t.(0, Z3) = (0, Zs)
where (z3,y3) = (z1+22, 1 +¥2), (Z4,y4) = (¢(21 + Za2),t(y1 + 12)). Also t.(0,2Z;) =
(0, Zy), t.(0, Z3) = (0, Zg) where (zs5,y5) = (tz1,t11), (%6,y6) = (tz2,tys). More-
over (0, Zg) + (0, Zg) = (O, Z7) where (z7,y7) = (T5 + Te, Y5 + Ya) = (tz1 +tza, tn +
tyz). Hence 24 = Z7.

(ix) For t,.(0,2:) = (0, Z3), t3.(0,2,) = (0,Z3), (t1 + t2).(0,2:1) = (0, Z4)
and (0, 23) + (0, Z3) = (O, Z5) where (22,y2) = (t1z1,t141), (T3,¥3) = (taz1, tapn)
and (z4,94) = ((t1 +t2)Z1, (}1 +t2)y1). Moreover (z5,y5) = (z2 + 23,42 + 43) =
(t121 + taz1, tagn + tayn). Clearly 24 = Zs.

(x) For 1.(0, Z,) = (0, Z;) where (z3,ya) = (1.z1,1.41) = (z1,1). Thus Z; = Z;.

o



176 VECTOR AND COMPLEX-NUMBER METHODS (Ch.i11

11.3 SCALAR OR DOT PRODUCTS

11.3.1
A \
AN Z \(/ 0
70z,(Z2) 7oz, (Z2)
(9}
Figure 11.3.

Definitions. We define a scalar product, or dot product, (0, Z;).(0, Z;) as follows.
If Z, = O then (O, Z,).(0, Z;3) = 0; otherwise Z; # O and we set

_ lO» ZI ”0177021 (Z2)|v if ”OZ;(ZQ) € [O; Zl ’
(0,2,)(0,25) = { -0, 2||0,70z,(Z2)|, if 702z,(Z3) € 0Z,\ |0, Z; .

Clearly the scalar product is a function on V(II; O) x V(II; O) into R.
The norm ||a|| of a vector @ = (O, Z) is defined to be the distance |0, Z|.

The scalar product has the following properties:-
() If Zj = (z5,95) for j = 1,2 then g.b = (0, Z1)(0, Z3) = 122 + H193-
(ii) For all a,b € V(I1; 0), a.b=b.a.
(iii) For allg,b,c € V(I1;0), a.(b+c)=ab+a.c

(iv) For alla,b € V(II;0) and allt € R, t.(a.b) = (t.a).b.
(v) Foralla# 9, a.a> 0, while p.0=0.

(vi) For alla, ||g|| = {2a.

Proof.
(i) If Z; = O, then z1 = y; = 0 so that z1z2 + 12 = 0 as required.

Suppose then that 2, # O.

Write | = OZ; and let m be the ™ \
line through the point O which
is perpendicular to I. Define the %4, Hs I
closed half-plane Hs; = {X :
m(X) € [O, Z]} and let Hg be Zh
the other closed half-plane with J

edgem. Now !l = ~yjz+119y =0 o
and m=z1z + 1y =0. I

Figure 11.4.
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Then as Z; € Hs,
Hs={Z=(r,y) :t1z+ 1y >0}, He={Z=(z,9): 2;7+yy <0}

But by 6.6.1(ii),

n I
(2 = T - T , - (-
1(22) < 2+y¥+z§( Y172 + T1%2), Y2 y§+z§( y11'2+1'1y2)>
_ 12ty | T1T2 + iy
= |z 73 .2 T .3 .
1ty 71+ 4
Thus
(z1z2 + 1132)? 2 (172 + 11y2)?
10,2110, m(Ze)* = (23 +4} [Iz y
R N T O = R

= (122 + ny2)?,

so that |0, Z;|| 0, mi(Z2)| = |z122 + y1y2|.
If Z> € Hs so that

(0,21).(0,2Z3) = |0, 21]|0,m(2z)),

and 7,22 + y1y2 2 0 so that |z;7e + y1y2| = 7122 + Y112, clearly (O, Z,).(0, Z3) =

z122 + n1y2-
If Z; € He \ m we have m(Z2) € 1\ [0,2; . Then

(O, Zl)'(ov ZQ) = —|O, Z; ”017”(Z2)|

and 1172 + y1y2 < O, so that |27z + y1y2| = —(z1z2 + y1y2). Clearly again
(0,2,).(0,22) = 2122 + 112

(ii) Let @ = (0,Z;), b = (O, 2Z3). Then by (i) of the present theorem, a.b =
122+ Y1y2, b.a = xax1 + yay1, and clearly these are equal.

(ili) Let a = (0, Z1), b= (0, Z2), ¢ = (O, Zs). Then by 11.2.1(i) b+ ¢ = (O, Za)
where Z; = (z2+ z3,y3+¥3). Then by (i) above a.(b+¢) = z1(22 +3) +y1(y2 +¥3),
while a.b+ a.c = (2122 + ¥1y2) + (2123 + y1y3), and these are equal.

(iv) Let a = (0, 2,), b= (0, Z3). Then t.(a.b) = t(z122+1112). But by 11.2.1(ii),
t.a = (O, Z,) where Z; = (tz1,ty,) and so (t.a).b = (tz1)x2 + (ty1)ya, which is equal
to the earlier expression.

(v) If @ = (O, Z) then a.a = z2 + y2. This is positive when (z,y) # (0,0), and
equal to 0 for z =y = 0.

(vi) This follows immediately.

NOTE. Note that 11.2.2(i) to (v) make (V, +) a commutative group. In text-
books on algebra it is proved that there is not a second element which has the property
(iii); we shall refer to ¢ as the null vector. It is also a standard result that for each
a € V there is not a second element with the property (iv); we call —g the inverse
of g. Subtraction - is defined by specifying the difference b — @ = § + (~a); then
— is a binary operation on V. If a = (0, Z,), b = (0, Z;), then —a = (O, Z3) where
Z3 = (—z3, ), and consequently b — a = (0, Z,;) where Z; = (z2 — z1,y2 — ¥1)-
Thus (O, Z3) — (0, Z1) = (O, Za) if and only if (Z1, Z3) 1 (O, Za).
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COMMENT. Now that we have set up our couples we call (O, Z) a position
vector with respect to the point O, and we adopt the standard notation 0Z for
(0, 2).

Position vectors can be used for many geometrical purposes instead of Cartesian
coordinates, or complex coordinates and complex-valued distances. We would note

L —— v
that by 6.1.1(iv) and 11.2 Zo = mp(Z;, Z3) if and only if 0Zy = 3(0Z), + 0Z3);
—_— — —_— ‘=
by 10.1.1(v) that Z,2; || Z3Z, if and only if 0Z4 — OZ3 = t(OZ; — OZ,) for some
t 76 0 in R, and by 9.7.1(ii) and 6.5.1 Corollary (ii) that Z;Z; 1 Z3Z, if and only if
— . =TT

(021 023).(0Z3 — OZ;) = 0. Most importantly, from parametric equations of a
line r =z, + t(z2 — 1), ¥ = 11 + t{y2 — v1) (t € R), we have that Z € Z,2; if and
only if

0Z = 07 + t(02; ~ 0Z;) = (1 — t)0Z; + t0Z; (11.3.1)
for some t € R;

COMMENT. 1t is usual, in modern treatments, to define vectors to be the equiv-
alence classes for equipollence. This defines free vectors. Position vectors are then
defined by taking a specific point O in II so that we have a pointed plane, and then
concentrating on the representatives of the form (O, Z) for the vectors. But if our
objective is to introduce position vectors, it is wasteful of effort to set up the free
vectors, and in fact the use of free vectors and subsequent specialisation to position
vectors can be a confusing route to position vectors.

11.4 COMPONENTS OF A VECTOR

11.4.1 Components

Given non-collinear points Z,, Z3, Z3, we wish to obtain an expression
Z,Z = pZ123 + 42, Z3.

For this we need

(za—n))p+(z3—-71)g = z—19,
(e-wlp+{m-vle = y-u.
We obtain the solutions

- 6f(Zl|Z|ZS) q= 6;(211Z21Z)
‘Sf(ZI) Zﬁu ZS)' 6}-(211 221 Z3) ’

and so have
=2 _ 05(21,2,23) 5— b65(21,22,2) =—

YAV 2127 +
YT (2 7 25) 2T
11.4.2 Areal coordinates

Given non-collinear points Z;, Z3, Z3, the posmon vector of any point Z of the plane
— —
can be expressed in the form 0Z = pOZ; + q022 +r0OZz, withp+q+r =1. This
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is equivalent to having ¢, r such that
glza—z1)+r(az—21) = z-14,
qy-n)+tr(yz—-n) = y-un.
These equations have the unique solution

q= 6.7"(2123’21) r= Jf(Z)ZlyZ2)
6}‘(21,22,23)’ 6}'(Z1,Zg,Z3)’

and now we take p =1 — g — r so that by 10.5.4

o= 0r(Z, Z3, Z3)
05(Zy, 23, Z3)

For non-collinear points Z,, Z;, Z3, for any Z we write
a = 6-7"(Z1 ZQ,Z3)v B= 6]:(2, Z31 Zl)) 7= 6.7(2) ZI!ZQ)’

and call (e, 8,7) areal point coordinates of Z with respect to (Z1, Z2, Z3). Note that
we have

p = a q = ﬂ r= 7
05(21, 22, Z3)’ 05(Z1, Z2,Z3)’ 05(21, 22, 23)’

and e+ B+ v = 85(Z1, Z3, Z3). These were first used by Mébius in 1827.

11.4.3 Cartesian coordinates from areal coordinates
With the notation in 11.4.2, we have
(ya—ys)r—(za—z3)y = 2a—z3ys+ Taya,
(ys—wy)z—(z3—z1)y = 2B8-z3y1 + 13,
and if we solve these we obtain

_ nia+ 2B+ 737 y= y1a + 28 + Y37
6.7'-(ZI|Z2)Z3) ’ df(Z11221ZS) ’

1144
The representation in 11.4.2 is in fact independent of the origin O. For we have
z =pr)+qT3 +7T3, ¥ =py1 + qy2 +1Y3,
and so for any point Zg =7 (zo, ¥o),
z~xz0 = p(z1— o)+ g(zz — o) + r(23 — T0),
y-t = p(y—w)+a(a— o) +r(ys - yo).

But Z =5 (z — 2o,y — Yo), Where F' = to,z,(F). Hence ZTé = pZoZy + qZoZ2 +

rZoZ3, withp+qg+r=1.
NOTATION. Where a vector equation is independent of the origin, as in 07 =
_’ _d _' . - . . - -
pOZ;, + qOZ3 + rOZ3, with p+ ¢+ r = 1, it is convenient to write this as Z =
pZ1+qZ3+12Z3 with p+q+r = 1. In particular, in (11.3.1) we write Z = (1-t)Z,+tZ>.
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Figure 11.5.

Figure 11.5 caters for when O and Z, are taken as origins, a similar diagram would
cater for when Zp and Z; are origins, and then a combination of the two would give
the stated result.

11.4.5

We also use the nota;t:on 05(Z1,23,pZs+ qZg +1rZg) for 65(Z1, 23, Z3) where O_Z' =
pOZ4 + qOZ5 +r0Zg and p+ g+ r = 1. We can then write the conclusion of 10.5.3

as
07 (21, 2Z2,(1 — 8)Z4 + 825) = (1 — 8)05(21, Za, Z4) + 807(21, Z3, Zs).

The more general result
05(Z1, Z2,pZ4 + qZs + rZg) = pdr(Z1, 23, Zs) + 907 (2Zy, Z3, Z5) + r05 (21, 22, Zs),
where p+ ¢+ r = 1, can be deduced from this. For
‘sf(zh ZZ,PZ4 + ¢1Z5 + TZG)
= 0Fr (Zx,zn,PZ4 +(1-p) ( sz +io pze))

= por(Z1,23,24) + (1 — p)oF (Zl,zz, Zs + P ZB)
= pdr(Z1,22,25)+ (1 -p) [maf'(zl’ Z3,25) + ITPJF(Zl,Zn, Ze)] .

In this we have used the fact that

q+r _gq+r _1-
1-p 1-p 1-p 1-

P_1.
p

11.5 VECTOR METHODS IN GEOMETRY

There is an informative account of many of the results of this chapter contained in
Coxeter and Greitzer (5], dealt with by the methods of pure geometry.
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Some results are very basic, involving just collinearities or concurrencies, or ratio
results. We start by showing how vector notation can be used to prove such results
in a very straightforward fashion.

11.5.1 Menelaus’ theorem, ¢.100A.D.

For non-collinear points Z,,Z,
and Zs, let Zy € 2273, Zy €
Z3Z, and Zg € Z1Z3. Then
Z4, Zg and Zg are collinear if and
only if

2924 Z3Zy ZyZ4

ZyZ3 252, ZgZg

Proof. Let Z4 = (1—r)Z2+r1Z3, :
Zs=(1-8)23+82,,2Z6=(1- & - o %
£)2, + tZs. Figure 11.6.

Since Z4, Zs and Zg are collinear, we have that Zg = (1 — u)Z4 + uZ;s, for some
real number u. Then

1-8)Zy +tZy = (1 - u)[(1 = r)Z2 +rZ3]) + u[(1 — 8)Z3 + 82Z,).

As the coefficients on each side add to 1, by the uniqueness in 11.4.2 we can equate
coefficients and thus obtain

1-t=su,t=(1-u)(1-7r), r(l1 —u)=-u(l-23s).
On eliminating u we obtain

r 8 t
1—31—t1—r T1- uu(l u) =

and so
r 8 t

1-r1—-81-t¢ ="
This yields the stated result.
This is known as MENELAUS’ THEQREM.

11.5.2 Ceva’s theorem and converse, 1678

For non-collinear points Z,,23 and 23, let Zy € Z3Z3, Zs € Z3Z, and Zg € 2, Z,.
If 2, 24,2225 and Z3Zg are concurrent, then

hiy Tl Doy _ (11.5.1)
Z4Zs Z52y ZeZa
Proof. Denoting the point of concurrency by Zp, we have
Zy = (1-uZy+uZ, = 1- )22 +1rZ;3,
Zy = (1-v)Zp+vZy=(1-28)Z3s+ 82,
Ze = (1-wZy+wZz=(1- t)Z, + tZ,,
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for some u,v,w,r,s,t € R. Then

u r r
Zy = - Z yA 23,
0 1w 1-|-1 " 2+1_ 3
8 v l1-3
= Zy - Z. Z
Z 1-v ' 1-v 2+1—v 8
1-¢ t w
Zy = l_wZH-l_ng—l_sz.
On equating the coefficients of 7
Z,,Z3 and Zg, in turn, we obtain
u _ s _1-t
-4 1-v 1-w’
l-r v i
1-u ~ 1-v 1-w’
r _ 1—-3__ w
1-4 ~ 1-v 1-w’
From this
8 1-v t _l-w r l-u

1-t 1-w'l-r 1-u'l-s 1-v
and so by multiplication
8 t ro_
1-tl-rl-—s5
Thus we obtain our conclusion. This is known as CEVA’S THEOREM.
In fact we also have that

1.

CONVERSE of CEVA’s THEOREM. Conversely, for non-collinear points Z,, Z,
and Zg3, let Zy € 2223, Zy € Z3Z, and Zg € ZyZy. If (11.5.1) holds and Z2Z5 and
Z3Zg meet at a point Zy, then Z,Z,4 also passes through Z,.

To start our proof we note that we have

Zy = (1- v)Zo +vZ;=(1- 8)Z3 +82,,
Zsg = (1-w)Zo+wZs=(1-t)2Z3+tZ,.

Hence
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It follows that

s 1-¢ v t 1-s w
1-v 1-w' 1-v 1-w l-v 1-w’
from which I—
8 —
I—_t—m,(l—s)t—vw.

On eliminating s between these, we obtain {1 — v)t2 + (v — w)t — vw(l — w) = 0. We
then obtain two pairs of solutions, t = w, s =1 — v, and

l-w 5= 1-vw

T 1w

t=-v

The first pair of solutions leads to v = w = 0 and so Z5 = Zg = Zy = Z1, which we
regard as a degenerate case.
With Z4 = (1 — r)Z; + rZ3, we are given that

1-r st
r  (1-8)(1-¢)

and so have
st (1-8)(1-1t)

= Z: .
g+l >t ari-a0-09>"
With the second pair of solutions above, we obtain that

Z4

_ 1-vw 7 — v(l —w) w(l -v)
TO-v-w)! -y -w)*0-v)(1-w)

Zy Zg,

and also that
_ v(l-w) z w(l —v)
4—v+w—2vw 2 v+ w - 2vw

3y

so that
1-vw v+ w-2vw

SAooa-w2 T T-wi-w)

As the sum of the coefficients of Z; and Z, is equal to 1, Z,Z, passes through Z,.
This proves the result.
To obtain a formula for Z; we note that on solving the second pair of solutions
above for v and w, we obtain the pair of solutions
st _(1-8(1-1¢)

v=1w=1l v=—1—_t,w= .

Zy Zs.

To see this, note that

- 1-
vt,w=1+ Y

t

l-w=-

so that .
1-v(1+132%) 1-v—(1-vt
- sy 0 T Iy T
v v
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Thus either v = 1 and consequently w =1, or

1-¢ . st
7 = 8, 1.e.v=1—_t,

v

and hence B (1-s5)(1—1)
—_— T.

The first pair lead to Zy = Z3,Zs = Z3, another degenerate case, while the second
pair lead to

_ 8(1-1%) st 1-8)(1-1)
Uil el Rl per pruri R per e S (11.5.2)

Because of the condition (11.5.1) the coefficients in (11.5.2) could be given in
several different forms.

11.5.3 Desargues’ perspective theorem, 1648

Let (Zlvzﬁs Z3) and (Z4s Z5s zﬁ)
be two pairs of non-collinear
points. Let Z3Z3 and ZxZs
meet at Wy, Z3Z, and ZgZ,
meet at Wy, and Z,Z3 and Z4Z5
meet at Ws. Then Wi, W3, Ws
are collinear if and only if
Z2124,2925,232Z¢ are concur-
rent.

Proof. Suppose that Z,Z,,
227y, Z3Zg meet at a point Zy.
Then

Zy = (1 - U)Zo +uZ;,
Zy = (1-v)Zy+vZ,,
Zo = (1 - W)Zo + UJZg,

for some u,v,w, € R.
On eliminating Zp between the second and third of these, we obtain that

(1-w)Zs - (1-v)Zg = v(1 —w)Z3 — w(l — v)Zs,

from which we obtain that

1_w25— l—vze=v(1—w)zz_w(1—v)zs‘

v—w v-w v—w v—w
Now the sum of the coefficients of Z; and Zg is equal to 1, so the left-hand side
represents a point on the line Z5Zg. Similarly, the sum of the coefficients of Z; and

Z3 is equal to 1, so the right-hand side represents a point on the line Z; Zs. Thus this
must be the point W;.
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By a similar argument based on the third and first lines, we find that

1- 1~ 1- -
uZe— w 4=w( u)Za_u(l w)zl

w-—u w-—u w—u w-—u

must be the point W3, and by a similar argument based on the first and second lines,
we find that
1—024- 1--uZli - u(l—v)z . v(l—-m)z,2
u-—-v u—-v u—v u—v
must be the point Ws.
Then by repeated use of 10.5.3 and 11.4.5

05 (W, Wa, Ws)
_ Jf(v_(l_-l)z _w(l—v)z,_u(l—w)z Loy,

v—w v—w w—u w-u
u(l—v)zl _ U(l‘“)zz)
u-—-v u-v
[v(l_w) w(l-vju(l-v) w(l-v)-u(l-w)-v(l-1yu) 65(21, 23, Zs3)
v-w w-u u-v v-w  w-u u-v

= 0.

This shows that W), W2 and Wj are collinear.
This is known as DESARGUES’ PERSPECTIVE OR TWO-TRIANGLE THEOREM.
Conversely, let

=
|

(1 - I)ZQ +1Z3=(1- m)25 +mZg,
(1-p)Zs +pZ1 = (1 - q)Zs + qZs,
Ws = (1-r)21+rZ3=(1-8)Z4+ 8Z;.

From the third of these we deduce that (1 —r)2; — (1 - 8)Z4 = 8Z5 ~ rZ;, and from
this

S
I

1-r 1-3 8 r
- = Zg — Z.
s—r ' a—r AT s—r P T s-r®
so that this must be the point of intersection of Z, Z4 and Z3Z;.
By a similar argument, we deduce from the second equation that

1-1 1-m m l

m—lz2 - m—lz5 - m—lZ's B m—lzs’

and s0 this must be the point of intersection of Z2Z5 and Z3Zg. By a similar argument,
we deduce from the first equation that

1_pzs- l—pZ°= 1 _z,--L_z,
q—p q—p q-p q—p
and so this must be the point of intersection of Z3Zg and Z; Z;.
We are given now that W, W and W are collinear, so that W3 = (1—-t)W) +tW,,
for some ¢t € R. Then

(1=-8)[(1—12Z3 +1Z3) + t{1 - p)Z5s + pZ1] = (1-71)Z1 +125,
(1 - 8)[(1 = m)Zs + mZe) + t{(1 — q)Z6 +q24) = (1—8)Z4 +8Zs.
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Since the points Z,, Z3, Zs are not collinear we can equate the coefficients in the first
line here, and obtain that

pt=1-r, (1-t)1-l=r, A -t)l+t(1-p)=0,

and since the points Z4, Z5, Zg are not collinear we can equate the coefficients in the
second line, and obtain that

g=1-35 (1-t)(1-m)=s, (1-t)ym+t(1-4q)=0.

Now for Z2Z5 and Z3Zg to meet Z; Z, in the same point, we need to have

l-r P
s—r q-p'
and from this
l-r s8-r
P 4q-p
But we have from above
l-r 1-3
p  q’
as a common value of ¢, and so need
l-8  s-r
g  q-p

or equivalently g(1 — r) = p(1 — s), and we have already noted that this is so.
It follows that Z,2Z4, Z3Z5 and Z3Zg are concurrent.

11.5.4 Pappus’ theorem, c.300A.D.

Let the points Z,,Z3,Z3 lie
on one line, and the points
Z4,2Z5,Z¢ lie on a second line,
these two lines intersecting at
some point Zy. Suppose that
ZzZa and Z5Zg meet at W1 y
ZsZ4 and ZsZ:[ meet at Wg,
and Z, Zy and Z4Z3 meet at W3,
Then the points Wy, W,, W3 are
collinear.

Proof. We have that

23 = (1-p)Zo+pZy, Z3=(1-q)Z + 92,
Zy = (1-u)Zo+uZ, Zg=(1-v)Zy +vZ,,

for some p,q,u,v € R. On eliminating Z from the equations for Z; and Z, we find
that

(1-u)Z; - (1-p)Zs =p(1 —u)Z; ~ u(1 — p)Z,,
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and 8o 1- 1- 1 1-
CPRRTLES. PR (U PR E A
1- 1-pu 1- 1-pu
This must be the pomt Ws then. Similarly, on eliminating Zy from the equations for
Z3 and Zg we have that

(1-v)Z3 - (1-q)Z¢ = q(1 - v)2Z, — (1 — q)vZ,,

and so

1- (Ql-qv, _ql-v) l-g¢
l—qu 3+ 1=qu 24 = =g Z + l—que-
This must be the point W3 then.

Now from the equations for Z; and Zs we have that pZs — ¢Z2 = (p — ¢) 2o, and
from the equations for Zy and Zs we have that uZg —vZ5 = (4 —v)Zs. On combining
these, we have that

(v — u)(pZ3 — qZ3) = (g — p)(uZe — vZs).
From this we have that
ug—pl,  dv-v), pv-vu, (@-pv,
gu-pu qu-pu qu — pu qv — pu
This must then be the point W;.

However, the left-hand sides of the representations for W;,W; and W3 contain
four points Z;,Z3,Zs,Zs and we wish to reduce this to three non-collinear points.
For this purpose we eliminate Z5. From the equations for Zy and Zg we have that
uZg—vZ; = (u—v)Zy, while from the equation for Z; we have Z; —pZ, = (1~ p)Z,.
Combining these gives

_u (u-v)
Zs = -Zo - g )(Zz pZ,).
On substitution, this gives that
pu(l —v) v—u u(l — p)
= Zy + —————=Z,
e ey T P R e b

We note that the sum of the coeflicients for each of W, W3, Wy in terms of Z;, 2,
and Zg is equal to 1, and 80 by repeated use of 10.5.3 and 11.4.5 we have that
0x(Wh, W3, W3) is equal to

6y

pu qu —pu 1-qu 1-
pu(l—v) v-u u(l - p)
v —pu) 2 T s 2t v pu)
_qv-u)q1-v) u(1-p) g(v—u) 1—q pu(l —v)
= m 1w v(l_pu)-‘sf(Zz,Zl,Ze)'f'qv_pu l_qw(l_pu)éf(zg,zs,zl)

u(@g-p)g(l—v) v—-u
A
+qv—pu 1-qu 1;(1-;)14)5}'(2"’Z1 2)

___ qul-v)(v-u) o1 _ B _
= @ —pu)i- )= oyl iR +PA-g)+g Pl65(Z1,22,26) =0

JJr(q(v U)z+u(q p)z q(1 - )Zl+1—ize,
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This shows that Wy, W, and W are collinear.
This is known as PAPPUS’ THEOREM.

11.5.5 Centroid of a triangle

If Z4,Z5,Z¢ are the mid-points of {Z3,23}, {Zs,Z1}, {Z1,Za}, respectively, then
with the notation of 11.5.2 we have that r = s = ¢ = {, and the condition (11.5.1) in
the converse of Ceva’s theorem holds. Note that [Z3, Zg] i8 a cross-bar for the interior
region ZR(|Z3 23 Z,) and so [Z3,Z5 meets [Z3,Zg] in a point Zo, which is thus on
both Z3Zs and Z3Zg. It follows that it is also on Z;Z4. Thus the lines joining the
vertices of a triangle to the mid-points of the opposite sides are concurrent. The point
of concurrence Zy is called the centroid of the triangle, and for it by 11.5.2 we have

Zy = %Zl + %Zz + %23.

11.5.6 Orthocentre of a triangle

Let Z4, Zs, Zg be the feet of the perpendiculars from Z; to Z3Z3, Z3 to Z3Z,, Z3 to
ZyZ,, respectively. Then with the notation of 11.5.2 we have that

r—ccosﬂ a—gcos t—bcosa
—a ] ‘-b 7? _C .
Hence
1_r=a—ccosﬁ=ccosﬁ+bcos'y—ccosﬁ=2cos7_
a a a
Similarly

c a
1-s=3cosa, 1—¢==cosp.
8= jcosa t ccosﬂ

It follows that the condition (11.5.1) in the converse of Ceva's theorem is true.
Repeating an argument that we
used in 7.2.3, suppose now that

. Zoa~wr 28
m and n are any lines which AN Snte b P Zs
are perpendicular to Z3Z; and NN
ZyZ,, respectively. If we had Ze‘r'
m || n, then we would have \
m L Z3Z,, n || msothatn L \ Z4
Z3Zy; but already n 1 2,2 so
Zszl || leg; as 21,22,23 are Z2
not collinear, this gives a contra- Figure 11.10. Orthocentre of triangle.
diction.

Thus m is not parallel to n and so these lines meet in a unique point Z;. In
particular the lines Z;Z5, Z3Zg must meet in a unique point Z; and then by the
converse of Ceva’s theorem, Z,Z4 will pass through Z,. Thus the lines through the
vertices of a triangle which are perpendicular to the opposite side-lines are concurrent.
The point of concurrence Z; is called the orthocentre of the triangle.
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By (11.5.2) we thus have

Zo=
§cosy2cosp P £ cosycosa + § cos a cos z
£cosf + 2cosycosa ! 2cosf + 2cosycosa ? 2cosf + 2 cosycosa 3
a cosfcosy €08y CO8 O cos a cos 8

c
1 2ty Zs.

= b cosB + cosycosa cos B + cos-ycosa cos8 f + cosycosa

We could also proceed in this special case as follows. The argument is laid out
for the case in the diagram, with 8 and v acute angles and (Z;, Z3, Z3) positive in
orientation. The other cases can be treated similarly.

Now by 5.2.2 a.pplied to [ZQ,ZQ,Zs], |lZoZgZ4|° = IZZ{;ZngI° =90 - |"Y|° 80

that
|20, Z4|
|Ze, Z4|

But |Z¢,Z;| = ccosf and so |Zp,2;| = ccosBcoty. Thus d5(Zo, Za,Z3) =
jaccos B cot v and since 85 (2, Za, Z3) = }acsin B, we have that

=tanZZyZ3Z4 = cot .

6.7"(20’ ZZ’ ZS)
05(21,22,23)

As similar results hold in the other two cases, we have by 11.4.2 that

= cot S cot .

Zo = cot B cotyZ; + cotycotaZs + cot acot BZ3.
That the sum of the coefficients is equal to 1 follows from the identity
tana + tan S + tan~y = tan atan S tany

for the angles of a triangle. For, using the notation of 10.8.1, |a|° + |8|° + |7|° = 180,
and so ar + Br + v = 180F so that

—tan~yr = tan(180F — 7r) = tan(ar + B7)
_ tanar +tanfFx
~ 1-tanastan Sy’

whence the result follows by multiplying across and rearranging. This formula fails
in the case of a right-angled triangle.
From our two methods we have two formulae for Zy, but we further note that

cos(ar +7vF) = co8(180x — Br),
cosarcosvyr — Sinarsinyr = -—cosfr,
cosacosy+cosff = sinasinvy.

On using this with the sine rule, the two formulae for the orthocentre are recon-
ciled.
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11.5.7 Incentre of a triangle

Let Z;,Z3,Z3 be non-collinear points. By 5.5.1 the mid-line of |Z¢ Z; Zy will meet
{Za2,Zs) in a point Z4 where Z4 = (1 — r)Z3 + rZ3, and

r
1-r

>l o

By similar arguments the mid-line of |Z3Z¢ Z; will meet [Z3, Z;] in a point Z; where
Zy =(1-8)Z3 + 82, and

8 _a
1-8 ¢’
and the mid-line of | Z; Z3 Z¢ will meet [Z,, Z3] in a point Zg where Zg = (1-t) 2, +tZ,,
and
t b
1-t a

The product of these three ratios is clearly equal to 1 so (11.5.1) is satisfied. By the
cross-bar theorem, [Z3,Z5 will meet [Z3, Zg) in a point Zy and so Z32Z5, Z3Zg meet
in Zy. It follows that Z; Z, also passes through the point Zp.
Thus the mid-lines of the
angle-supports |ZgZ: Zs, z
|25 2 21, | 21 23 23 for a triangle 8
(21, Za, Z3] are concurrent. The %
perpendicular distances from
this point Zyp to the side-lines
of the triangle are equal by
Ex.4.4, so the circle with Zy as
centre and length of radius these
common perpendicular distances Z,
will pass through the feet of Figure 11.11. Incentre of triangle.
these perpendiculars.

This circle is called the incircle for the triangle; its centre Zj is called the incentre
of the triangle. The three side-lines are tangents to the circle with the points of contact
being the feet of the perpendiculars. For the incentre, by (11.5.2) we have the formula

_ a b Z + c
Tatbtc ' a+b+e 2 a+bte

ZO Z3.

11.6 MOBILE COORDINATES

In standard vector notation, the vector product or cross product takes us out of the
plane IT and into solid geometry. Sensed-area gives us half of the magnitude of the
vector product and we use that instead. Without the vector product, however, we
have not got orientation of the plane II by vector means. We go on to supply this
lack.

However the standard vector operations can be awkward in dealing with perpen-
dicularity and distance, and can involve quite a bit of trigonometry, so we also set
out a method of reducing unwieldy calculations.
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11.6.1 Grassmann’s supplement of a vector
Given any Z # O, we show that there is a uniqgue W such that
|0, W|=10,2|, OW LOZ, 6+(0,Z,W) > 0.
Proof. With Z = (z,y), W = (u, v) these require
4yl =uwl+v uz+vy=0, zv—yu>0.
By the middle one of these

T ¥

=0,
-V U

8o the rows of this are linearly dependent. Thus we have r(z,y) + 8(-v,u) = (0,0),
for some (r,8) # (0,0). We cannot have r = 0 as that would imply W = O and so
Z = 0. Then

z 80 = 3
= - = —=y
r'y rh

80 by the first property above
2,.2_8 .2, .2
+y' = —r,(z +y°).

Thus we have either 8/r = 1, so that u = —y, v = z, for which 265(0, Z, W)
22 +y?® > 0, or we have s/r = —1, so that u = y, v = —z, for which 265(0, Z, W)
—(z? + y?) < 0. Thus the unique solution is u = -y, v ==z.
L
For any Z € I, we define 07 = OW where Z = (z,¥), W = (~y,z), and call
this the Grassmann supplement of (TZ' . This clearly has the properties

il

©Z,+0Z)* = 0Z +0%, ,
k0Z)* = KOZ)*,
02y = -02.

11.6.2

In F we take |0,1| =]0,J| = 1. £|0, Z} = 1 and § is the angle in Ax with support
|I0Z, then we recall from 9.2.2 that Z = (z,y) where z = cosd, y = sinf. As
I=(1,0), J = (0,1), we note that

OF" =0J, 02 =cos80! +5in60J, 02" = —sin001 + cos80J.

Suppose that we also have W = cos¢5} + sin¢0_.;. Then by 11.4.1 we have

bw = rO-? + .35-2‘.L where

= cos¢cosd + sin Psiné, s = sin pcosh — cos ¢sinb.

By the addition formulae we recognise that r = cos £ rZOW, 8 =sin{rZOW.
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11.6.3 Handling a triangle

Although for a triangle [Z;, Z3, Z35], we have the vector form for the centroid as
% (21 + Z2 + Z3), and for the incentre as

a b c
VA VA Z3,
at+b+c l+a-|—b+c 2+a+b+c 3
where as usual @ = |Zg, Zs|, b = |Z3, 24|, ¢ = |21, Zg|, neither this formula for

the incentre, nor the more awkward formula for the orthocentre, are convenient for
applications and generalisation. In 7.2.3 we noted that a unique circle passes through
the vertices of a triangle [Z,, Z3, Z3]. It is called the circumcircle of this triangle
and its centre is called the circumcentre. It is possible to find an expression for
the circumcentre in terms of the vertices as in 11.4.4 but it is tedious to cover all the
cases. For these reasons we consider the following way of representing any triangle.

Z Z3

Z3

w) — z2 = p(23 — 23);
Figure 11.12. Grassmann supplement. 21 — w; = q3(23 — 22}

Given non-collinear points Z;, Z3, Z3, by 11.4.1 we can express
—_ — —_— — —  —
02, =023+ p1(0Z3 — OZ3) + 1(0Z3 — OZ3)~,
for unique non-zero p; and g;. We could work exclusively with material in this form
but the manipulations are simpler if we use complex coordinates as well. Then
z1 - 23 =p1(z3 —72) —q1(y3 — ¥2), Y1 —y2 = p1(y3 — ya) + qu(z3 — z3),

so with Z) ~ 21,23 ~ 23, Z3 ~ z3 we have 21 — z3 = (p1 + q11)(23 — 23). We coin the
name mobile coordinates of the point Z; with respect to (Z3,Z3) and F, for the

pa'ir (Pl:‘h)'
It follows immediately that |Z;, Zz| = v/P? + ¢}|Z, Zs|, and as z; — z3 = (p; —

1+ g12)(23 — 22) we also have |Zs, Z;| = \/(p1 — 1)? + ¢2|Z2, Zs|. From

zz3—z21 pr—1l+qr z1~2 23 — 23 1
= I} =p1+ q11, = [}
23— 2 ntqr  z-—z z21—23 l1—-pr+qn
with a = £xZ32,Z3, 8= 523222, v = L5 Z1Z32Z,, we have that

(p1 ~ 1+ q11)(p1 — q17) _pntar 1-—p1+qnt

—=, €8 = ——=, Cis Y = ————o——:.
VP +diV(p - 1)2 + ¢} vpPta4 V(1 =-p1)2+4i

We also have that
. c .
Pt = \/P? +gicis B = ;cmﬂ,

. b .
V(p1—1)? + gfcisy = —cis7,

be
2 4 g2 — 12 4 g2cis a = :
VPitaiy (p1 —1)2 + glcisa = cisa. (11.6.1)

cisa =

1-p—1qy

nip1 — 1)+ ¢ +1q
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Thus we have in terms of p; and ¢1, the ratios of the lengths of the sides and cosines
and sines of the angles. Moreover, it is easily calculated that

&F(Zly Z2) Z3) = %'Zh Zg |21

80 the orientation of this triple is determined by the sign of ¢;.
Note too that if

z—z2=(@+@)(zs-2), 7 —z2=(p + ¢1)(2z3 - 23),

then
|2 = 2| =p' —p+ (¢ — g)ll2s — 2],
and so

12,2') = V& -0 + (@ - 92128, 25| =a/(¥ — P2 + (¢ — q)>.  (11.6.2)

11.6.4 Circumcentre of a triangle

Looking first for the circumcen-
tre, we note that points Z on the
perpendicular bisector of [Z3, Z3]
have complex coordinates of the
form z = z + (7 + @1)(23 — 2),
where ¢ € R. But 23 — 23 =
(m + @13)(23 — 23) and s0

1 . .
g+q
2=+ 2z — 29). Ceee s .
2 p1+q1t(1 @). el
Figure 11.13. Circumcentre of triangle.
From this we have that
1
s+aq 1
1 3
z—5(z +2z3) = - = (21 — z).
3(z1 +za) (p1+¢11% 2)( 1— 23)

To have Z3Z 1. Z)Z,; also we need the coefficient of z; — 23 in this to be purely
imaginary. The coefficient is equal to

jptan+(am ko) 1
p+q 2’
and so we need
. n-m+q
Im+an =30 +ql) ieq= —‘-—2q-l——‘--

Thus the circumcentre has complex coordinate

1 -
ZO=Z2+§ [1+p2_1_—:h+q?'] (23—22).
1



194 VECTOR AND COMPLEX-NUMBER METHODS (Ch.11

From this we have that
1 -p+q
z0— jlza+23) = 3 [—1+ 1—721——211—&1] (23 — 22)

= o - g - 1+ @)z - 2),
qQ
and from this can conclude that the length of radius of the circumcircle is

Q
m\/ﬂf +<I¥\/(;1 -1)? +qi.

In fact we can deduce from this material a formula for the circumcentre in terms
of areal coordinates. For by (11.6.1)

\ be be
Pl —p+q = 5 cosa, @ = 5 sing,
a a

80 that z = 23 + (1 + cot as)(z3 — 2z3). Then by 11.6.3 we have

T ~ T3 = (23 — 22) — zcotalys — ), ¥y —y2 = Fcota(zs — 22) + 3(¥s — y2)-
From this we have that

6.7"(21 Zﬁvz3) =6}'(Z - Z270a Z3 - Zﬁ)
=}cota [(z3s — 22)* + (y3 — y2)?] = Jecotad®.

As 67(2,,23,23) = 3q16* = jbcsina we have

67(Z,23,23) _ 1a*cota
6_1.'(21,22,23) " 2 bcsina’

and by use of the sine rule this is seen to be equal to

1 cosa
2sinfBsiny’
By cyclic rotation we can write down the other two coefficients and so have
_ 1 cosa 1 cosf 1 cosy
~ 2sinfBsiny ' " 2sinysina’ " 2sinasing >

That the sum of the coefficients here is equal to 1 follows from the identity
sin 2a + 8in 25 + sin 2y = 4sinasin Bsiny,
for the angles of a triangle. For
sin 2ar + 8in 28x + sin 2y
2sin(ar + Br) cos(ax — Bx) + 2s8in v cosyx
2sinyx[cos(ar — BF) + cosvr)

= 2sinyr(cos(ar — BF) — cos(ar + Br))
2sinyr.2sinarsin 8.
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11.6.5 Other distinguished points for a triangle

For the centroid Zo of 2, Z3, Zs) we have by 11.5.5 and 11.4.5 that zo = (21 +22+23)
and so

20—zn=t(zn+2+2)—2=1(a—2)+}z-2)
=§-(p1 +qs)(z3 — ) + %(za —z)= %(pl + 1+ qi1)(zs — 22).

This gives the complez coordinate of the centroid.
We next turn to the orthocentre of this triangle. Points Z on the line through Z,
perpendicular to Z3Z3 have complex coordinates of the form

2=+ (D1 +q1)(23 —23) =23+ (71 — 1 + q3)(23 — 23)
n-1l+q
=23 + —————(21 — 22).
S P +q (=2 )

For Zz to be also perpendicular to Z; Z; we also need the coefficient of z; — 22 here
to be purely imaginary. Thus we need

. -1
P -Upr+9n =0 ie. ¢= _ﬂ%,
and so obtain
-1
Z2+m (1 - p—l-—t) (23 — 22),
qQ
as the complex coordinate of the orthocentre.

It takes more of an effort to deal with the incentre. The mid-point of the points
with complex coordinates

+ o (a = 2), 2+ i (21 — )
IZ2)ZSI 3 e IZZle' ! ’
has complex coordinate
21 — 22
2|Zmzs| ( +q1( ! ))
D1+ qrt
= —-Z2+ 23— 22
%, 7 ( s+ el ))

n+ @
29 + 1+ 23— 22
2|Zs,zs| ( N/ +q1’) (25 = z2).

Points on the midline of |Z; Zg Zs then have complex coordinates of the form

r N+ as
+ o= [ 1+ ——=—=—=5 | (23 — 22).
2|Z8) ZS| ( \/ 51 +ql) ( 3 2)
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By a similar argument, points on the midline of | Zg Z3 Z, have complex coordinates

of the form
s n-1l+aq
+ Z
2|Zy, Z3| (\/(Pl -1)2 + ) (2 = 22)

_ s n-14+q _
= at [l+ 2|Z, Zs| (\/(pl —1)2 +q1’)] (25 = za).

For a point of intersection we need

r D+ @t 8 —14q
1+ =1+ .
2|Z¢, Zs| ( 1+q1) 2|Zq, Zs| (\/(pl —1)’+q1§)
On solving for r and s, we obtain for the incentre the complez coordinate

22+ p+ai+Vol+q@ 25— 2)
1+ Vol +q + Vo - 12 + a

11.6.6 Euler line of a triangle

With the notation Zy, Zg, Zg for the centroid, circumcentre and orthocentre, respec-
tively, of a triangle [Z), Z,, Z3] we have the formulae

m—z = 3o+ 1+q) (s - 2),
+
w—m = 2(1+P_’_m_ql_)(23_z,),
(")

-1
Zp—22 = P (l—pl—t) (23 — 22).
U}
It is straightforward to check that
328+ j2 = + 3(z8 — 22) + §(20 — 22) = 21,

and 80 Z7 € ZgZg.

Thus we have shown that the centroid, circumcentre and orthocentre of any triangle
are collinear. This is a result due to Euler, after whom this line of collinearity is named
the Euler line of the triangle.

11.6.7 Similar triangles
For any two triangles [Z,, Z3, Z3] and (24, Zs, Zg) we have

02, = 02 +p (07 - 0Z3) +q:(0Z - OZ)*,
(ﬁ: = O_Z;+P4(5E;—0—Z;)+q4(5z—O_Z;)L,

or equivalently 21 = z3 + (p1 + q13)(23 — 22), 24 = z5 + (Pa + qu1)(26 — 25), where
P1,41, P4, Qs are non-zero real numbers. Then these triangles are similar in the corre-
spondence (2, Z2, Z3) — (24, Zs, Zg) if and only if py = p1, qs = £q;.
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Proof. First suppose that ps = p1, @2 = q1 sothat 2 = zo+ (D1 +q13)(25—22), 24 =
25 + (1 + q13)(26 — 25). Then we have that

lt(]:ZngZ}lo = IK;‘Z@Z{;Z‘P, lé}'Z}Zng‘o = ‘K}‘Z‘2525l°.

It follows by 5.3.2 that the measures of the corresponding angles of these triangles are
equal, and so the triangles are similar, with the lengths of corresponding sides pro-
portional. Moreover, the triples (Z,, Z3, Z3) and (Z4, Z5, Zg) are similarly oriented.

&
Z r’l
3 7
Zy S
// !
!
1 )i II
Zy /
Vo WA
2
Z, ‘\ ,I
vy
v\
\y
\
N Z,

Figure 11.14. Similar triangles.

Next suppose that 21 = 23 + (p1 + @13)(2s — 22), 22 = 25 + (P — @13)(%6 — z5). By
an analogous argument the triangles are still similar, and now the triples (21, 23, Z3)
and (Z4, Zg, Zg) are oppositely oriented.

Conversely, suppose that (Z;, 23, Z3) and {Z4, Z5, Ze] are similar triangles in the
correspondence (Z1, 22, Zs) — (24, Z5, Zg). Let W, be the foot of the perpendicular
from Z; to Z3Z3, and from parametric equations of Z3Z3 choose p; € R so that

w) = z2 + p1(23 — z3). Then

|ZBy WII — I l

|Z¢, Zs| '
and p, is positive or negative according or not as W, is on the same or opposite side
of Z; as Z3 is on the line Z,Z3, that is according as the wedge-angle £Z3Z32, is
acute or obtuse. As Wy 2, L Z3Z3 we can find ¢, € R so that z; — w; = q13(23 ~ 22).

Then
|ZI ] Wl I
|Z¢, Zs)

and ¢ is positive or negative according as (2, Z2, Z3) is positively or negatively
oriented.
As the lengths of the sides of the two triangles are proportional, we have

|25, Zs) = k|Zs, Zs|, |12, Z4| = k|23, 21\, |24, Z5| = k|21, Zsl,

for some k > 0. Let W; be the foot of the perpendicular from Z4 to the line Z5Zg.
Then the triangles [Z;, Z3, Wi] and [Z4, Z5, Wa] are similar, so we have that
|ZS’ W2| = IZ‘125| =
1Ze, Wi1| |21, 26|

= |QI|1

k.

It follows that
|25, Wg| = k|Zg, W1) = klp1||Z¢, Zs| = |p11|Z5, Z6|.
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But W; is on the same side of the point Z5 on the line Z5Zg as Zg is if the wedge-angle
LZgZyZ, is acute, and on the opposite side if this angle is obtuse. Hence we have
that we — 25 = py (26 — 25)-
As Z,W, 1L ZyZg, we have z4 — wo = ji(z¢ — 25) for some j € R, and then
|Z4, Wel = ljl|Zs, Z5|. But
|24, Wel _ 124, 25] _ 125, Z|
|2y, Wil 121,2]  |2e,25]

80
lZ‘v WQ! _ |ZI’ WII _

Z5: 26— 12,20l 2
Hence j = £, and we are to take the plus if (Z,, Z3, Z3) and (Z4, Zg, Zg) have the
same orientation, the minus if the opposite orientation.
Thus our mobile coordinates (p;,q;) are intimately connected with similarity of
triangles.

11.6.8 Similar triangles erected on the sides of a triangle

Given an arbitrary triangle [Z;, Z3, Z3], if we consider points Z4, Zs and Zg defined
by

zs =z3 + (P + q13)(23 — 22), 25 = 23 + (11 + @3)(21 — 23),

z¢ =21 + (M + q13)(22 — 21),
for some non-zero real numbers p; and q;, then we have triangles erected on the sides
(22, Zs), (23, Z1] and [Z,, 2Z3), respectively, which are similar to each other and have
the same orientation as each other. By addition we note that }(z4 + z5 + 2z6) =

§(21 + 22 + z3), and so the triangle [Z4, Zs, Zg] has the same centroid as the original
tn'angle [Zl , Zg, Zs]

3
i \\\
! Z:
[} 3
Z \\
L4
Zs . '
« \
~
~ Y
e M
Z3 el A

Figure 11.15. Similar triangles on sides of triangle.

Further, if we let Z7, Zg, Zy be the centroids of the triangles (Za, Z3, Z4), (Z3, Z,, Zs)
and [Z;, Z3, Zg), respectively, we have that z; = 3(za+23+24), 23 = Flzs + 2 +
z5), 29 = (21 + 22+ 24); it follows that the centroid of [Z7, Zs, Zo] is also the centroid
of the original iriangle.
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11.6.9 Circumcentres of similar triangles on sides of triangle

In a more complicated fashion than in the last subsection, for an arbitrary triangle
[Z,, 2Z,, Z3] suppose that we take points Z4, Zs and Zg so that

23 =22+ (1 + q13)(23 — 22), 23 =21 + (P1 + q1¥)(25 — 1),
22 =28 + (; + q1%)(21 — 26),
so that we have similar triangles once again on the sides of the original triangle

but now in the correspondences (Z2,23,2;) = (2,,25,23) = (Zg,21,2Z2). We let
Zy, Zg, Zy be the circumcentres of these three similar triangles, so that we have

Pi-p+4q;
- - 1+ "7, -
27~ 2o 2( + o (23 — 22),
P2 -m+q
2g—2 = 5( -—ql—— (25 — 21),
1 -
29—z = 5(1+m;)(zl_zo)
qQ
But
25— 21 =p1 +ql’(23—21),
while z3 — z; = (1 — p1 — q13)(26 — 21), 8o that
1
2 —21 = m(zz - z1).
Also
n- p1+q1) (1 Pf—p1+q?)
—_ = —_ . 1+—-— —_Z1)=| - - -——s 2 —21).
-2 =2%-2 2( p (2 —2)= {3 o7 (26 — 21)
On combining these we have
1 p?—pﬁ-q?) 1
- = =1+ $ 23— 21},
aTa 2( Q 1’1’*'1115(3 1)
1 pi- P1+qz) 1
— f— - -2 .
wma (2 2q 1-P1"¢hl(z2 1)

Then
29+ (p1 + q13)(z8 — 23)
=(l-p-a)(ze—2)+m +at)(zs —z1) +2
= (E_M,) (zm—2) + (2 m)(z3_zl)+zl

2 2q 2q
P2 -p+ <I2
2qy

= %(Zn+23)+ 2 — L4253 — 23) = 21.

It follows that the triangle [Z7, Zs, Zg] i3 also similar to the similar triangles above,
in the correspondence (Zg, Z3,Z4) - (Zg,Zs, Z7)
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In the particular case when p; = 1/2, ¢ = V/3/2, the similar triangles are all
equilateral triangles, that is all three sides have equal lengths. In this case the last
result is known as NAPOLEON’S THEOREM. It is easier to prove than the more general
case, as for it we can work just with centroids.

11.6.10 The nine-point circle

Given the notation of 11.6.3,

11.64 and 11.6.5, let 2, =
mp(Z;,23), Zs = mp(Zs, Z,) Zy =
and Zg = mp(Zl,Zg). We ﬁrst

seek the circumcircle of the tri-

angle [Z4,Z5,24) with vertices

these mid-points of the sides of

the original triangle.

Figure 11.16. Nine-point circle.

Now
24 = %(Zz +2z3) =22+ -;-(23 ~ z3),
z5 = tas+zn)=n+ 3(0 + 1+ q13) (23 — 22),
26 = Hnt+zn)=n+ 37 + q11) (23 — z3).
Then
26 — 25 = —3(23 — ),
so that

24~ 25 = =3 (1 + @11)(23 — 22) = (P1 + q13) (26 — 25).
It follows from 11.6.4 that the circumcentre of [Z, Zs, Zg] has complex coordinate

1
Z5 + '2;(171 + @) (pr — 1 — q13)(26 — 25),

and this simplifies to

4 (50141400 - g0+ @)~ 1- ) (s - 2

= 23+ : <1+2p1 +qi+ Mt)
4 Q1
We denote this point by Z,.
Next let Z7,Z3, Zy be the feet of the perpendiculars from the vertices Z,,2,,23
onto the opposite side-lines Z;Z3, Z32,, 2, Z,, respectively. We now show that the
circumcentre of [Zg, Z4, Zy] is Zy also. For this we note that

z=u+3(z-n) 26 =2+L10+at)(zs - n), 21 =22+ p (23 — 22).
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From this
—14q
-2 = - 3)(23~2), 26 -2 = &_2F1£1—(z7 - 24),
and hence
1
26 =24 + Tl—_l(pl -1+ qlz)(z-, - 24).

By the formula of 11.6.4 for the circumcentre, we know that the incentre of [Zg, Z4, Z7]
has complex coordinate

: p -1 Q )(Pl—l Q )
24 + + 1 1= —1) (27 — %),
T /e - 1) (2p1—1 2m-1/\2p -1 2p -1 (27 = 24)

and this simplifies to 2.

Thus Z; lies on the circumcircle of the triangle [Z4, Z5, Zg], and as this argument
also applies to the other two sides of [Z;, Z3, Z3)], s0o do Zg and Zg. This shows that
the feet of the perpendiculars from the vertices of the triangle onto the opposite side-
lines also lie on the above circle.

Finally, let Z;o be the mid-point of the orthocentre and the vertex Z; in the
original triangle, Z;; be the mid-point of the orthocentre and the vertex Z, and Z;,
be the mid-point of the orthocentre and the vertex Z3. We seek the circumcentre of
the triangle [Z11, Z4, Z7). Now 24 = 23+ §(23 — 22), 27 = 22 + p1(23 — 22), and by the
formula in 11.6.5 for the orthocentre,

_ n p-—1
211 =22+ 3 (1 - :) (23 — 22).

From these we have that

Px-l( Pl)
211 =24 + 1— —3} (27 — 24).
n=za+g o (27 — 24)

Then the circumcentre of [Z;1, Z4, Z7] has complex coordinate

1 Pl_l( pl)[pl—l
z + 1-—3] |o——= -1+
T (- 1)/2p - Do 2p - 1 a ) |2m -1

nip —1)
2= 1)'] (er = 24)

and it can be checked that this reduces to zo. Hence Z;, lies on the circle through
the mid-points of the sides of [Z;, Z3, Z3], and thus, as our argument applies equally
well to the other two sides of the original triangle, so do Zy; and Z;o. This shows
that the mid-point of the orthocentre and each vertex also lies on the above circle.

Thus we have identified nine points on this circle, which is named from this prop-
erty.



202 VECTOR AND COMPLEX-NUMBER METHODS (Ch.11

11.7

NOTE. The advantage of mobile coordinates is that they located a point with respect
to a triangle using just two instead of three numbers and they also behave like re-
scaled Cartesian coordinates. None the less they can lead to unwieldy expressions as
in this section and it is a good idea when possible to check the algebraic manipulations
using a computer software programme.

11.7.1 Feuerbach’s theorem, 1822

Our formula in 11.6.5 for the incentre of a triangle is very awkward to apply because
of the complicated term in the denominator. However by eliminating the surds in the
denominator in two steps, by multiplying above and below by a conjugate surd of the
denominator, we obtain the more convenient formulation that

n+vVR+a 1 1 2 1
=>+zp+add -5/l -1 +gf (1171
e F e A AR L S

In fact once we know the form of this we can establish it more directly and easily by
noting that

%[1+ \/p§+q§+\/(p1-1)2+qf] [1+\/;§+qf—\/(p1-1)2+qf]
- 1 |(eVTR) - -0 e

We note that the right-hand side in (11.7.1) must be positive.
Recalling from 11.6.5 that the incentre Z;3 has complex coordinate

P1+V51+41+¢hi (25 — 23)
1+Vp+a+vVin -1 +q ’

Zis=2+

we re-write this as
23— 2

= %[“\/p%q?—\/(m—l)’wf] [1+p1—+———

(z3 — z)
1+q1]
= % 1+\/ﬂ?+qf—\/(l’1—1)2+qf] [th+ (\/pf-i-qf-pl) ;] (23 — 23).

From this, the foot of the perpendicular from the incentre Z;3 to the line Z,Z5 has
complex coordinate

z,+% [1+\/pf+qf—\/(p1—1)2+qf] a1 (23 = z2)
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and so the length of radius of the incircle is equal to

2!%? [1+\/p§+q?—\/(pl—l)’+q?] [\/p? +¢1f—p1].

On the other hand the nine-point circle has radius-length equal to the distance
from Zg to Z;. From the formula

oma = 4o tan) 1= oo = 1- )] s - )
= 4%(}71 + @s){q + (1 = p1)s](23 — 22)
1

we note that a

|20 — 24| = mlpx + qt|lgs + (1 = p1)sl,

and so this is the radius-length of the nine-point circle.
We also require the distance between the centres of the inscribed and nine-point
circles. For this we note that
213 — &

{% (1+\/p7¥+q?-\/(1?1-1)’+¢1?) (q1+ (\/;H—Q?-m) ;)

- (3 +14 a0 - o+ e -1-a) | (o -2

- 4711? {(H\/"“qg - ‘1)’+‘1?) 2q1 - (1+2p1)@
¥ [(H‘/phq? - - 1)2’”3) 2 (\/P?-HI? -m) +9 -1 -Qf] t}-
It follows that
|20 — 215]* =

+ [(1+\/pf +q§—\/&—l)2+q?)2(\/m—m) +pi —; —qfr}.

The next feature which we wish to note is that if we denote by r; and r3, respec-
tively, the lengths of the radii of the nine-point circle and the incircle, then

120, Z1s|* = (r1 — r2)%.

This can be verified on a computer; it can also be written out at length by writing
each term in the form

u+v\/pf+qf+w\/a— 1)’+q§+z\/p?+-q?\/&1 -1+,
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where u,v, w and z are polynomials in p;, ¢ and a. This is unsatisfactory as a method
of proof but in the absence of some insight which will lead to a reasonable calculation
it must suffice. It follows that

|Z0, Z13| = £(r1 — r2).

With these preparatory
results, we can now show
that the nine-point circle
and the incircle meet at
Just one point and they
have a common tangent
there.

Figure 11.17. Feuerbach’s theorem.

Suppose first that r; > ry so that |Zp, Z;3] = ra — r;. Let Z be the point on
[Z13, Zo such that |Z;3, Z| = ry; then Z is a point on the incircle. As r; —r; < rp we
have that Z € [213,Z) and 0 |Zy,Z| = r3 — (ra — ;) = r,. It follows that Z is also
on the nine-point circle. It then follows that every other point of the nine-point circle
is inside or on the incircle. But the incircle is contained in the triangle [Z,, Z3, Z3) and
the nine-point circle is not (as it passes through the mid-points of the sides). Thus this
gives a contradiction and we must have r; > r; and 80 |2y, Z;3| = r; —r3. Now let Z
be the point on [Zy, Z;3 such that |Zj,Z| = ry; then Z is a point on the nine-point
circle. Asry—ry < ry we have that Zy3 € [Z;, Z] and 80 |Z;3, 2| = 1y ~(r; —13) = 1.
It follows that Z is also on the incircle. Then every other point of the incircle is inside
the nine-point circle and the line through Z perpendicular to ZyZ;3 is a tangent to
both circles. This shows that the incircle and the nine-point circle of a triangle meet
at just one point and they have a common tangent there.

If we modify our treatment of the incentre of the triangle [Z), Z,, Z3], using the
terminology of 5.5.1 points on the external bisector of |Z; ZgZs will have complex

coordinates
r D+ Q1
— 1= -
Z3 + %a ( ) (23 — =),

v+

and points on the external bisector of |Z¢ Z3Z; will have complex coordinates

s pr—1+aqs
2+l — |14+ e —— 23 — 23).
(-2 (1 i) oo
It follows that the point of intersection of these lines has complex coordinate

V7 +q1 +q1

1-vri+a -V -1 +qf

+p— (23 — 23).
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This point is equally distant from the side-lines of the triangle and is called an ex-
centre. The circle with it as centre and which touches the side-lines of the triangle
is called an escribed circle for the triangle.

Now

di- VAT - o - d [i- V@ o - g
- %[(I—W)z—(@l—nuqf)]
= n-\R+q.

Then by a straightforward modification of our argument for the incircle, it follows
that the nine-point circle and this escribed circle meet at one point, where they have
a common tangent. As this argument is valid for the other two sides of the triangle
as well, it follows that the two other escribed circles have this property also.

This combined result is known as FEUERBACH’S THEOREM.

11.7.2 The Wallace-Simson line, 1797

We take a triangle [Z), Z3, Z3] and for a point Z let Wy, W3, W3 be the feet of the
perpendiculars from Z to the side-lines Z3Z3, Z3Z1, Z, Z,, respectively.

-———

-~ -
- — -

Figure 11.18(a). A Simson-Wallace line. Figure 11.18(b). A right sensed duo-angle.
Using notation like that in 11.6.3, we suppose that
an-zn=@m+a)(zs-z), z2-z2=@+ag)(zs—2)

Then z = 2z + p(23 — 23) + q3(2s — z2), and 80 wy; = 23 + p(z3 — 23). Next, w3 =
23 + 8(21 — z3), for some 8 € R. Hence 2 —w; = (p — 1 + q1)(23 — 22) — 8(21 — z3).
But z; — 23 = (p1 — 1 + q13)(23 — 22), 80

1

- = ——21 — 23}
z3 — 23 p1—1+q1:(1 3)
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On inserting this, we have that
p—-1+qs
——— — 8| (21 — 23)-
p—1l+qi ](1 )
We wish the coeflicient of z; — z3 to be purely imaginary, and so take
_ =1 - 1)+
m-12+q

(p—1)(p1 — 1) +qa1
2 — 23).
h-Dir@ )
Thirdly, wg = 22 + t(21 — 23), for some ¢t € R. Hence z — w3 = (p+ q3)(23 — 23) —
t(z; — z3). But

Z—WQ=[

Hence

we =23+

23 —23= n +ql,(21 - z),
and so +
Prq
zZ—w3 = =t (21 — 22).
: [PI'HIH ]( 1= )
We choose ¢t so that the coefficient of z; — 2z is purely imaginary. Thus
¢ = PP +qq
pi+q’
which yields
+
w3 = 23 + T L (21 — 23).

1 1
From these expressions for w,,w;,ws we note that

—1 -
wy—wy - atiEh L; *(21 — 23) — p(23 — z2)
w3 — w; %(zl —23) = p(zs — z2)

DA (P~ 1+au)
B (;m +qu) - p

The real part of this has numerator (p? +¢? —p1)(p* +¢2) ~ (9} +¢3 —p1 )p+4q14, and the
imaginary part has numerator ¢, (p? + ¢*) —qip— (P} + ¢ —p1)g. 0 = < W W1 W,
then for 8 to have a constant magnitude it is necessary and sufficient that
a(@+@)-ap- Pl +q —-mg
=k} + & - p)0* +¢°) — (0] + @ - )P+ @14}

This can be re-written as

@ [( -1)’+ (q-”’l___.“?-m)’] < b+ (p¥+q¥-m)’]

2 2q1 q?

= Heleop) {"2 [(" 1)+ (o s —p{))z]

2 2

a qi
S.d | . | S—
4[ (P¥+<1?-p:)’]}
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On using 11.6.1 we infer that as k varies this gives the family of coazal circles which
pass through Z3 and Z3.

For Wy, Wy, W3 to be collinear, it is necessary and sufficient that the expression be
real. On equating its imaginary part to 0 we obtain ¢ (p? +¢*) - q1p— (P} +¢f —p1)g =

0. On writing this as
P+ -p_pl+ta-m
q qQ ’
we note from the formula for a circumcentre in 11.6.4 that it holds when Z lies on
the circumcircle of the triangle [Z,, 22, Z;3).
This latter result is due to WALLACE, but SIMSON’s name has for a long time been
associated with it.

11.7.3 The incentre on the Euler line of a triangle

We suppose that we have the mobile coordinates 2y — 23 = (P1 + q13)(23 — 22), where
p1 and q; are real numbers and ¢q; # 0. Then z; — z3 = (p1 — 1 + q13)(23 — 22), and
as in 11.6.3 we have

2 .2 T _c.
%_h-—m+mujMA
7 —23 1-p1+q a .
= ———— > = —cis
z1 — 23 A-pl+q B0
-2 _ m—1+mg=%mm
z— 2z PN+ Qs ¢
where we are using our sandard notation. Then
e b?
pi+a= o A-m)’+q = pol

We recall that the orthocentre, centroid and incentre have mobile coordinates
pn(l-p) m+l @
n + P 3 3 + 3 L)
n+vVon+a + Q .
1+ +@V0-p)P+d 1+VA+agV/I-pn)+a

respectively.
Now
-2
1_2p1_ 02 ?
and s0
A+a? -5 _a+ -2 _E+a?—b+2d°
=g 1A= T o ntls %a? ‘
Mnreover
e _é A +a?-b? 2_ (2 + a? = ¥?)? ~ 4cPa?
@ =gA~a- (T )T

[(c+a)* - ¥li(c~a)* - ¥]
- = :
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while
A+a?-b 4 (c+a)2—b2
/ 2 _ oI AP \ i/ A
pl+ p¥+ql - 202 G 202 ’
¢c b a+b+c
1+\/p§+q§+\/(1-p1)2+q§ = 1+;+;=——a—,
8o that
n+vVe+a _ (c+a)®-¥ c+a-b
1+ +@3+V/O0-p)2 + g 2a(a+b+c) 2a ’
ai _ _1 [(c+a)? - ¥)l(c-a)®-¥]
1+Vri+d+V/O-pP +q 1a? atb+te
1
= —Za—g(c+a—b)[(c-a)2—b2].

The determinant for collinearity, on multiplying the middle column by ¢, is

P4a-p? (c?+a* —b’)(a’-}-b2 —c’) 1

204

6a 2
cta=b ££+_°.-_")1L°;_°)_il 1

20 4a

and this is a non-zero multiple of

E+a?-p (A+a?-®)a®+b-2) 1
A+a?-b0*+2a? -[(c+a)’-¥(c-a)-b] 3|
alc+a-1") ~alc+a-bd)(c-a)® -t 1

the value of which is 4(ca® — a3 — ba® + a%b® + Sba? — b3ca?). This factorizes as
4a*(b—c)(c—a)(a—b)(a+b+c) and so the incentre lies on the Euler line if and only
if the triangle is isosceles.

11.7.4 Miquel’s theorem, 1838

Let Z,,Z3,23 be non-collinear points, and Zy € Z3Z3, Zg € 232y, Zg € 2129 be
distinct from Z,,2; and Zs. Let Cy, C3, C3 be the circumcircles of [Z1,2Zs, Z),
(22, Zg, 24), (Z3, Z4, Zs), respectively. Then Cy, C3, Cs have a point in common.
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Figure 11.19(a). Miquel’s theorem. Figure 11.19(b). Miquel’s theorem.

Proof. Suppose that these circles have centres the points W;, Wy, W3, respectively.

We first assume that C; and C3 meet at a second point Zy # Z4. If Z7 = Zg the
result is trivially true, so we may exclude that case. As Z;,Z3,Zg are collinear, we
have z; — zg = —v(23 — 2g), for some non-zero v in R. As 23, Z4, Z4, Z7 are concyclic,
by 10.9.3 we have

22—2 _ 2224
- ]
21— 2 27 — 24
for some non-zero p in R. As Z3, Z3, Z; are collinear, we have 23 — z4 = —\(z3 — 24),

for some non-zero A in R. As Z3, Z,, Z§, Z7 are concyclic, we have

23— 24 23 — 25
=0 y
27— 2 21— 2

for some non-zero ¢ in R. On combining these we have

2 — Z 23 — 25
a1 = VpAO’—-.

21— 2g 27— 28

It follows by 10.9.3 that Z,, Zs, Zg, Z7 are concyclic.

We suppose secondly that 3 and C3 have a common tangent at Za. It is convenient
to suppose that 2; = za+(p1+1¢1) (23— 22) and wa = z3+(p+1g)(23—23). Then the foot
Z; of the perpendicular from W3 to Z3Z3 has complex coordinate z7 = 23 +p(z3 — 232),
and hence z4 = 23 + 2p(z3 — 22). Then the mid-point Zg of Z3 and Z4 has complex
coordinate zg = 22 + (p+ 3)(23 — 23). It follows that for the centre W3 of C3 we have
w3 = 22+ (p+ } +1¢')(23 — 2), for some real number ¢'. But Z4, W2, W3 are collinear,
so that

2p 0 1
p g 1|=0
p+i ¢ 1
and from this
1
P—3

7= p (23 — z3).





