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Preface 

I have for a long time held the view that whereas university courses in algebra, 
number systems and analysis admirably consolidate the corresponding school mate­
rial, this is not the case for geometry and trigonometry. These latter topics form an 
important core component of mathematics, as they underpin analysis in its manifold 
aspects and applications in classical applied mathematics and sundry types of science 
and engineering, and motivate other types of geometry, and topology. Yet they are 
not well treated as university topics, being either neglected or spread over a number 
of courses, so that typically a student picks up a knowledge of these incidentally and 
relies mainly on the earlier intuitive treatment at school. 

Clearly the treatment of geometry has seriously declined over the last fifty years, 
in terms of both quantity and quality. Lecturers and authors are faced with the 
question of what, if anything, should be done to try to restore it to a position of some 
substance. Bemoaning its fate is not enough, and surely authors especially should 
ponder what kinds of approach are likely to prove productive. 

Pure or synthetic geometry was the first mathematical topic in the field and for a 
very long time the best established. It was natural for authors to cover as much ground 
as was feasible, and ultimately there was a large bulk of basic and further geometry. 
That was understandable in its time but perhaps a different overall strategy is now 
needed. 

Synthetic geometry seems very difficult. In it we do not have the great benefit 
of symbolic manipulations. It is very taxing to justify diagrams and to make sure 
of covering all cases. From the very richness of its results, it is difficult to plan a 
productive approach to a new problem. In the proofs that have come down to us, 
extra points and segments frequently need to be added to the configuration. It is true 
that, as in any approach, there are some results which are handled very effectively 
and elegantly by synthetic methods, but that is certainly not the whole story. On the 
other hand, what is undeniable is that synthetic geometry really deals with geometry, 
and it forces attention to, and clarity in, geometrical concepts. It encourages the 
careful layout of sequential proof. Above all, it has a great advantage in its intuitive 
visualisation and concreteness. 

The plan of this book is to have a basic layer of synthetic geometry, essentially 
five chapters in all, because of its advantages, and thereafter to diversify as much as 
possible to other techniques and approaches because of its difficulties. More than that, 
we assume strong axioms (on distance and angle-measure) so as to have an efficient 
approach from the start. The other approaches that we have in mind are the use of 
coordinates, trigonometry, position-vectors and complex numbers. Our emphasis is on 
clarity of concepts, proof and systematic and complete development of material. The 
synthetic geometry that we need is what is sufficient to start coordinate geometry 
and trigonometry, and that takes us as far as the ratio results for triangles and 
Pythagoras' theorem. In all, a considerable portion of traditional ground involving 
straight-lines and circles is covered. The overall approach is innovative as is the detail 
on trigonometry in Chapter 9 and on what are termed 'mobile coordinates' in Chapter 
11. Some new concepts and substantial new notation have been introduced. There is 
enough for a two-semester course; a one-semester one could be made from Chapters 
2-9, with Chapter 7 trimmed back. 
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My object has been to give an account at once accessible and unobtrusively rig­
orous. Preparation has been in the nature of unfinished business, stemming from 
my great difficulties when young in understanding the then textbooks in geometry. I 
hold that the reasoning in geometry should be as convincing as that in other parts 
of mathematics. It is too much to hope that there are no errors, mathematical or 
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xiv GLOSSARY 

Glossary 
of 

Greek and Latin roots of mathematical words 
a c u t e < L acutus, sharp-pointed (pert*, 
partic. of acuere, to sharpen), 
a d d i t i o n < L additio, an adding to (ad­
der*, to add). 
angle < L angulus, corner < Gk agkylos, 
bent. 
a r e a < L area, a vacant space, 
a r i t h m e t i c < Gk arithmetike (sc. tekh-
ne), the art of counting (arithmein, to 
count; arithmos, number), 
a x i o m < Gk axioma, self-evident prin­
ciple (oxtoun, to consider worthy; axios, 
worthy). 
c a l c u l a t e < L calculatus, reckoned (perf. 
partic. of calculare < calculus, pebble), 
c e n t r e < Gk kentron, sharp point (ken-
tein, to spike). 
c h o r d < Gk khorde, string of gut. 
c i r c l e < L circuits, ring-shaped figure 
(related to Gk kyklos, ring; kirkos or hi­
kes, ring). 
c o n g r u e n t < L congruens (gen. congru-
entis), agreeing with (pres. partic. of con-
gruere, to agree with). 
c u r v e < L curvus (curvare, to bend). 
d e c i m a l < L(Med) decimalis, of tenths 
(decima (sc. pars), tenth part; decern, 
ten). 
d e g r e e < OF degre < L degredi, descend 
( de, down; gradi, to step). 
d i a g o n a l < L diagonalis, diagonal < Gk 
diagonios, from angle to angle ( dia, 
through ; gonia, angle). 
d i a g r a m < Gk diagramma, plan, figure 
indicated by lines (dia, through; gramma, 
a thing which is drawn; graphem, to draw). 
d i a m e t e r < Gk diametros, diametrical 
(dia, through ; metron, measure). 
d i s t a n c e < L distantia, remoteness (di-
stare, to stand apart). 
d i v i d e < L dividere, to separate. 
equal < L equalis, equal (aeguare, to 

make equal ; aequus, equal). 
e x a m p l e < L exemplum, sample < ex-
imere, to take out. 
e x p o n e n t < L exponens (gen. exponen­
ts), setting forth (pres. partic. of ex-
ponere, to set forth ; ex, out ; ponere to 
place). 
f a c t o r < L factor, maker, doer (facere, to 
make). 
focus < L focus, hearth, 
f r a c t i o n < L fractio, a breaking into pie­
ces (jrangere, to break), 
g e o m e t r y < Gk geometria, measuring of 
land (ge, land; metrein, to measure), 
g r a p h < Gk graphos, drawing, picture 
(graphein, to draw), 
h y p o t e n u s e < Gk hypoteinousa(sc. 
gramme), the line extending underneath 
(pres. partic. of hypoteinein, to extend 
under; gramme, line), 
h y p o t h e s i s < Gk hypothesis, supposition, 
assumption (hypotithenai, to place ben­
eath). 
i n c l i n a t i o n < L inclinatio, a leaning to 
one side (inclinare, to cause to lean). 
i n d u c t i o n < L inductio, a leading into 
(tnducere, to lead in). 
i sosce le s < Gk isoskeles, having equal 
legs (isos, equal; skelos, leg). 
l i n e < L linea, a linen thread (linum, flax 
< Gk. linon). 
log ic < Gk logike (sc. techne), the art of 
reasoning [logos, reason; logikos, endowed 
with reason; techne, art), 
m a g n i t u d e < L magnitudo, size, great­
ness (magnus, great), 
m a t h e m a t i c s < Gk mathematika, things 
that require mathematical or scientific 
reasoning (mathema, lesson; maihemat-
ikos, mathematical or scientific; manthan-
ein, to learn). 
m e a s u r e < F mesure < L mensura, mea-



GLOSSARY xv 

sure (metiri, to measure), 
minus < L minus, less, 
multiply < L multiplicare, multiply (mul 
tus, much; plicare, to lay together), 
negative < L negativus, denying (negare, 
to deny). 
number < F nombre < L numerus, num­
ber. 
oblong < L oblongus, longish. 
obtuse < L obtusus, blunted (pert, par-
tic, of obtundere, to blunt), 
orthogonal < Gk orthogonios, rectangu­
lar (orthos, right; gonia, angle), 
parallel < Gk parallelos, beside one an­
other (para, beside; allelous, one another), 
perimeter < Gk perimetron, circumfer­
ence (peri around; metron, measure), 
perpendicular < L perpendiculum, plumb-
line (perpendere, to weigh precisely), 
plane < L planum, level ground (planus, 
level). 
point < L punctum, small hole (pungere, 
to pierce). 
polygon < Gk polygonon, thing with 
many angles (polys, many; gonia, angle), 
positive < L positivus, settled (ponere, 
to place). 
postulate < L postulare, to ask for. 
power < OF poeir < L posse, to be able, 
product < L productus, brought forth 
(perf. partic. of producere, to bring forth), 
proportion < L portio, comparative rela­
tionship (pro, according to; portio, part), 
quadrangle < L quadrangulum, thing 
with four angles (quattuor, four; angulus, 
angle). 
quotient < L quotiens, how often, 
radius < L radius, rod, spoke of wheel, 
rectangle < L rectiangulum, right-angled 
(rectus, right; angulus, angle), 
rhombus < Gk rhombos, a device whirled 
round (rhembein, to whirl round), 
science < L scientia, knowledge (scire, 
to know). 
secant < L secans (gen. secantis), cut­
ting (secare, to cut). 
square < OF esquarre < L quattuor, four. 

subtract < L subtractus, withdrawn 
(perf. partic. of subtrahere, to withdraw), 
sum < L summa, top. 
tangent < L tangens(sc. linea) (gen. tan-
gentis), touching line (tangere, to touch; 
linea, line). 
technical < Gk tekhnikos, artistic, skil­
ful (tekhne, art). 
theorem < Gk theorema, thing observed, 
deduced principle (theorem, to observe), 
total < L totus, whole, all. 
trapezium < Gk trapezion, small table 
(trapeza, table). 
triangle < L triangulum, triangle (trie, 
three; angulus, angle), 
trigonometry < Gk trigonometria, mea­
surement of triangles (trigonon, triangle; 
metrein, to measure), 
vector < L vector, bearer (vehere, to 
bear). 
vertex < L vertex, summit. 
volume < OF volum < L volumen, roll, 
book (volvere, to roll). 
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1.1 HISTORICAL NOTE 

This is one in a long line of textbooks on geometry. While all civilisations seem to 
have had some mathematical concepts, the most significant very old ones historically 
were the linked ones of Sumer, Akkad and Babylon, largely in the same region in 
what is now southern Iraq, and the separate one of Egypt. These are the ones which 
have left substantial traces of their mathematics, which was largely arithmetic, and 
geometrical shapes and measurement. 

The outstanding contribution to mathematics was in Greece about 600B.C-
200B.C. The earlier mathematics conveyed techniques by means of examples, but 
the Greeks stated general properties of the mathematics they were doing, and or­
ganised proof of later properties from ones taken as basic. There was astonishing 
progress in three centuries and the fruit of that was written up in Euclid's The El­
ements, C.300B.C. He worked in Alexandria in Egypt, which country had come into 
the Greek sphere of influence in the previous century. 

Euclid's The Elements is one of the most famous books in the world, certainly 
the most famous on mathematics. But it was influential widely outside mathematics 
too, as it was greatly admired for its logical development. It is the oldest writing on 
geometry of which we have copies by descent, and it lasted as a textbook until after 
1890, although it must be admitted that in lots of places and for long periods not 
very many people were studying mathematics. It should probably be in the Guinness 
Book of Records as the longest lasting textbook in history. 

The Elements shaped the treatment of geometry for 2,000 years. Its style would 
be unfamiliar to us today, as apart from using letters to identify points and hence 
line-segments, angles and other figures in diagrams, it consisted totally of words. 
Thus it did not use symbols as we do. It had algebra different from ours in that it 
said things in words written out in full. Full symbolic algebra as we know it was not 
perfected until about 1600A.D. in France, by Vieta and later Descartes. Another very 
significant feature of The Elements was that it did not have numbers ready-made, and 
used distance or length, angle-measure and area as separate quantities, although links 
between them were worked out. 

Among prominent countries, The Elements lasted longest in its original style in 
the U.K., until about 1890. They had started chipping away at it in France in 
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the 16th century, beginning with one Petrus Ramus (1515-1572). There is a very 
readable account of the changes which were made in France in Cajori [3, pages 275 
- 289]. These changes mainly involved dis-improvements logically; authors brought 
in concepts which are visually obvious, but they did not provide an account of the 
properties of these concepts. Authors in France, and subsequently elsewhere, started 
using our algebra to handle the quantities and this was a major source of advance. 
One very prominent textbook of this type was Elements of Geometry by Legendre, 
(first edition 1794), which was very influential on the continent of Europe and in the 
U.S.A. All in all, these developments in France shook things up considerably, and 
that was probably necessary before a big change could be made. 

Although The Elements was admired widely and for a long time for its logic, 
there were in fact logical gaps in it. This was known to the leading mathematicians 
for quite a while, but it was not until the period 1880-1900 that this geometry was 
put on what is now accepted as an adequate logical foundation. Another famous 
book Foundations of Geometry by Hilbert (1899) was the most prominent in doing 
this. The logical completion made the material very long and difficult, and this 
type of treatment has not filtered down to school-level at all, or even to university 
undergraduate level except for advanced specialised options. 

Another sea-change was started in 1932 by G.D. Birkhoff; instead of building up 
the real number system via geometrical quantities, he assumed a knowledge of num­
bers and used that from the start in geometry; this appeared in his 'ruler postulate' 
and 'protractor postulate'. His approach allowed for a much shorter, easier and more 
efficient treatment of geometry. 

In the 1960's there was the world-wide shake-up of the 'New Mathematics', and 
since then there are several quite different approaches to geometry available. In this 
Chapter 1 we do our best to provide a helpful introduction and context, and suggest 
a re-familiarisation with the geometrical knowledge already acquired. 

Logically organised geometry dates from C.600-300B.C. in Greece; by C.350B.C. 
there was already a history of geometry by Eudemus. From the same period and 
earlier, date positive integers and the treatment of positive fractions via ratios. The 
major mathematical topics date from different periods: geometry as just indicated; 
full algebra from C.1600A.D.; full coordinate geometry from C.1630A.D.; full numbers 
(negative, rational, decimals) from C.1600A.D.; complex numbers from C.1800A.D.; 
calculus from C.1675A.D.; trigonometry from C.200B.C, although circles of fixed 
length of radius were used until C.1700A.D. when ratios were introduced. 

There is an account of the history of geometry of moderate length by H. Eves in 
[2, pages 165-192] 

It should be clear from this history that the Greek contribution to geometry greatly 
influenced all later mathematics. It was transmitted to us via the Latin language, 
and we have included a Glossary on pp. xiv-xv showing the Greek or Latin roots of 
mathematical words. 

1.2 NOTE ON DEDUCTIVE REASONING 

The basic idea of a logical system is that we list up-front the terms and properties 
that we start with, and thereafter proceed by way of definitions and proofs. There 
are two main aspects to this. 
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1.2.1 Definitions 

The first aspect concerns specifying what we are dealing with. A definition identifies 
a new concept in terms of accepted or known concepts. In practice a definition of a 
word, symbol or phrase Ε is a statement that Ε is to be used as a substitute for F, 
the latter being a phrase consisting of words and possibly symbols or a compound 
symbol. We accept ordinary words of the English language in definitions and what 
is at issue is the meaning of technical mathematical words or phrases. In attempting 
a definition, there is no progress if the technical words or symbols in F are not all 
understood at the time of the definition. 

The disconcerting feature of this situation is that in any one presentation of a topic 
there must be a first definition and of its nature that must be in terms of accepted 
concepts. Thus we must have terms which are accepted without definition, that is 
there must be undefined or primitive terms. This might seem to leave us in a hopeless 
position but it does not, as we are able to assume properties of the primitive terms 
and work with those. 

There is nothing absolute about this process, as a term which is taken as primitive 
in one presentation of a topic can very well be a defined term in another presentation 
of that topic, and vice versa. We need some primitive terms to get an approach under 
way. 

1.2.2 Proof 

The second aspect concerns the properties of the concepts that we are dealing with. 
A proof is a finite sequence of statements the first of which is called the hypothesis, 
and the last of which is called the conclusion. In this sequence, each statement after 
the hypothesis must follow logically from one or more statements that have been 
previously accepted. Logically there would be a vicious circle if the conclusion were 
used to help establish any statement in the proof. 

There is also a disconcerting feature of this, as in any presentation of a topic there 
must be a first proof. That first proof must be based on some statements which are 
not proved (at least the hypothesis), which are in fact properties that are accepted 
without proof. Thus any presentation of a topic must contain unproved statements; 
these are called axioms or postulates and these names are used interchangeably. 

Again there is nothing absolute about this, as properties which are taken as ax­
iomatic in one presentation of a topic may be proved in another presentation, and 
vice versa. But we must have some axioms to get an approach under way. 

1.3 EUCLID'S The Elements 

1.3.1 

The Elements involved the earliest surviving deductive system of reasoning, having 
axioms or postulates and common notions, and proceeding by way of careful state­
ments of results and proofs. Up to c.1800, geometry was regarded as the part of 
mathematics which was best-founded logically. But its position was overstated, and 
its foundations not completed until c.1880-1900. Meanwhile the foundations of al­
gebra and calculus were properly laid in the 19th century. From c.1800 on, some 
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editions used algebraic notation in places to help understanding. 

1.3.2 Definitions 

The Greeks did not appreciate the need for primitive terms, and The Elements started 
with an attempt to define a list of basic terms. 

DEFINITIONS 

1. A POINT is that which has no parts, or which has no magnitude. 

2. A LINE is length without breadth. 

3. The EXTREMITIES of a line are points. 

4. A STRAIGHT LINE is that which lies evenly between its extreme points. 

5. A SUPERFICIES is that which has only length and breadth. 

6. The EXTREMITIES of a superficies are lines. 

7. A PLANE SUPERFICIES is that in which any two points being taken, the 
straight line between them lies wholly in that superficies. 

8. A PLANE ANGLE is the inclination of two lines to one another in a plane, 
which meet together, but are not in the same direction. 

9. A PLANE RECTILINEAL ANGLE is the inclination of two straight lines 
to one another, which meet together, but are not in the same straight line. 

10. When a straight line standing on another straight line, makes the adjacent angles 
equal to one another, each of the angles is called a RIGHT ANGLE; and the 
straight line which stands on the other is called a PERPENDICULAR to it. 

11. An OBTUSE ANGLE is that which is greater than a right angle. 

12. An ACUTE ANGLE is that which is less than a right angle. 

13. A TERM or BOUNDARY is the extremity of anything. 

14. A FIGURE is that which is enclosed by one or more boundaries. 

15. A CIRCLE is a plane figure contained by one line, which is called the CIR­
CUMFERENCE, and is such that all straight lines drawn from a certain 
point within the figure to the circumference are equal to one another. 

16. And this point is called the CENTRE of the circle. 

17. A DIAMETER of a circle is a straight line drawn through the centre, and 
terminated both ways by the circumference. 

18. A SEMICIRCLE is the figure contained by a diameter and the part of the 
circumference cut off by the diameter. 
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19. A SEGMENT of a circle is the figure contained by a straight line and the 
circumference which cuts it off. 

20. RECTILINEAL FIGURES are those which are contained by straight lines. 

21. TRILATERAL FIGURES, or TRIANGLES, by three straight lines. 

22. QUADRILATERAL FIGURES by four straight lines. 

23. MULTILATERAL FIGURES, or POLYGONS, by more than four straight 
lines. 

24. Of three-sided figures, an EQUILATERAL TRIANGLE is that which has 
three equal sides. 

25. An ISOSCELES TRIANGLE is that which has two sides equal. 

26. A SCALENE TRIANGLE is that which has three unequal sides. 

27. A RIGHT-ANGLED TRIANGLE is that which has a right angle. 

28. An OBTUSE-ANGLED TRIANGLE is that which has an obtuse angle. 

29. An ACUTE-ANGLED TRIANGLE is that which has three acute angles. 

30. Of four-sided figures, a SQUARE is that which has all its sides equal, and all 
its angles right angles. 

31. An OBLONG is that which has all its angles right angles, but not all its sides 
equal. 

32. A RHOMBUS is that which has all its sides equal, but its angles are not right 
angles. 

33. A RHOMBOID is that which has its opposite sides equal to one another, but 
all its sides are not equal, nor its angles right angles. 

34. All other four-sided figures besides these are called TRAPEZIUMS. 

35. PARALLEL STRAIGHT LINES are such as are in the same plane, and 
which being produced ever so far both ways do not meet. 

Although in The Elements these definitions were initially given, some of these were 
treated just like motivations (for instance, for a point where no use was made of the 
fact that 'it has no parts') whereas some were genuine definitions (like that of a circle, 
where the defining property was used). Our definitions will differ in some respects 
from these. 
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1.3.3 P o s t u l a t e s a n d C o m m o n N o t i o n s 

The Greeks understood the need for axioms, and these were laid out carefully in The 
Elements. The Elements has two lists, a first one of POSTULATES and a second 
one of COMMON NOTIONS. It is supposed by some writers that Euclid intended his 
list of POSTULATES to deal with concepts which are mathematical or geometrical, 
and the second list to deal with concepts which applied to science generally. 

POSTULATES 

Let it be granted, 

1. That a straight line may be drawn from any one point to any other point. 

2. That a terminated straight line may be produced to any length in a straight 
line. 

3. And that a circle may be described from any centre, at any distance from that 
centre. 

4. All right angles are equal to one another. 

5. If a straight line meet two straight lines, so as to make the two interior angles 
on the same side of it taken together less than two right angles, these straight 
lines, being continually produced, shall at length meet on that side on which 
are the angles which are less than two right angles. 

COMMON NOTIONS 

1. Things which are equal to the same thing are equal to one another. 

2. If equals be added to equals the wholes are equals. 

3. If equals be taken from equals the remainders are equal. 

4. Magnitudes which coincide with one another, [that is, which exactly fill the 
same space] are equal to one another. 

5. The whole is greater than its part. 

1.3.4 
The Elements attempted to be a logically complete deductive system. There were ear­
lier Elements but these have not survived, presumably because they were outclassed 
by Euclid's. 

The Elements are charming to read, proceed very carefully by moderate steps and 
within their own terms impart a great sense of conviction. The first proposition is to 
describe an equilateral triangle on [A, B\. With centre A a circle is described passing 
through B, and with centre Β a second circle is described passing through A. If C 
is a point at which these two circles cut one another, then we take the triangle with 
vertices A, B, C. 
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It is ironical that, with The Elements being so admired for their logical proceeding, 
there should be a gap in the very first proposition. The postulates and common 
notions did not make any provisions which would ensure that the two circles in the 
proof would have a point in common. This may seem a curious choice as a first 
proposition, dealing with a very special figure. But in fact it is used immediately in 
Proposition 2, from a given point to lay off a given distance. 

The main logical lack in The Elements was that not enough assumed properties 
were listed, and this fact was concealed through the use of diagrams. 

1.3.5 Congruence 

Two types of procedure in The Elements call for special comment. The first is the 
method of superposition by which one figure was envisaged as being moved and placed 
exactly on a second figure. The second is the process of construction by which figures 
were not dealt with until it was shown by construction that there actually was such 
a type of figure. In the physical constructions, what were allowed to be used were 
straight edges and compasses. 

The notion of superposition is basic to Euclid's treatment of figures. It is visualised 
that one figure is moved physically and placed on another, fitting perfectly. We use 
the term congruent figures when this happens. Common Notion 4 is to be used 
in this connection. This physical idea is clearly extraneous to the logical set-up of 
primitive and defined terms, assumed and proved properties, and is not a formal 
part of modern treatments of geometry. However it can be used in motivation, and 
properties motivated by it can be assumed in axioms. 

1.3.6 Quantities or magnitudes 

The Elements spoke of one segment (then called a line) being equal to or greater than 
another, one region being equal to or greater than another, and one angle being equal 
to or greater than another, and this indicates that they associated a magnitude with 
each segment (which we call its length), a magnitude with each region (which we call 
its area), and a magnitude with each angle (which we call its measure). They did not 
define these magnitudes or give a way of calculating them, but they gave sufficient 
properties for them to be handled as the theory was developed. In the case of each 
of them the five common notions were supposed to apply. 

Thus in The Elements, the quantities for which the Common Notions are intended 
are distance or equivalently length of a segment, measure of an angle and area of a 
region. These are not taken to be known, either by assumption or definition, but 
congruent segments are taken to have equal lengths, congruent angles are taken to 
have equal measures, and congruent triangles are taken to have equal areas. Thus 
equality of lengths of segments, equality of measures of angles, and equality of areas 
of triangles are what is started with. Treatment of area is more complicated than 
the other two, and triangles equal in area are not confined to congruent triangles. 
Addition and subtraction of lengths are to be handled using Common Notions 1, 
2, 3 and 4; so are addition and subtraction of angle measures; so are addition and 
subtraction of area. 

Taking a unit length, there is a long build-up to the length of any segment. They 
reached the stage where if some segment were to be chosen to have length 1 the length 
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of any segment which they encountered could be found, but this was not actually done 
in The Elements. 

Taking a right-angle as a basic unit, there was a long build-up to handling any 
angle. They reached the stage where if a right-angle was taken to have measure 90°, 
the measure of any angle which they encountered could be found, but this was not 
actually done. 

There is a long build up to the area of figures generally. The regions which they 
considered were those which could be built up from triangles, and they reached the 
stage where if some included region were chosen to have area 1 the area of any 
included region could be found. This is not actually completed in The Elements but 
the materials are there to do it with. 

All this shows that The Elements although very painstaking, thorough and exact 
were also rather abstract. It should be remembered that the Greeks did not have 
algebra as we have, and used geometry to do a lot of what we do by algebra. In 
particular, considering the area of a rectangle was their way of handling multiplication 
of quantities. Traditionally in arithmetic the area of a rectangle was dealt with as 
the product of the length and the breadth, that is by multiplication of two numbers. 
However, reconciling the geometical treatment of area with the arithmetical does not 
seem to have been handled very explicitly in books, not even when from 1600A.D. 
onwards real numbers were being detached from the 'quantities' of Euclid. 

1.4 O U R A P P R O A C H 

1.4.1 T y p e of c o u r s e 

Very scholarly courses in geometry assume as little as possible, and as a result are 
long and difficult. Shorter and easier courses have more or stronger assumptions, and 
correspondingly less to prove. What is difficult in a thorough course of geometry is 
not the detail of proof usually included, but rather is, first of all, locational viz. to 
prove that points are where diagrams suggest they are, that is to verify the diagrams, 
and secondly to be sure of covering all cases. 

In particular, the type of approach which assumes that distance, angle-measure 
and area are different 'quantities' leads to a very long and difficult treatment of 
geometry. To make things much easier and shorter, we shall suppose that we know 
what numbers are, and deal with distance/length and angle-measure as basic concepts 
given in terms of numbers, and develop their properties. Moreover, we shall define 
area in terms of lengths. 

What we provide, in fact, is a combination of Euclid's original course and a modifi­
cation of an alternative treatment due to the American mathematician G.D. Birkhoff 
in 1932. 

1.4.2 N e e d for p r e p a r a t i o n 

What this course aims to do is to revise and extend the geometry and trigonometry 
that has been done at school. It gives a careful, thorough and logical account of famil­
iar geometry and trigonometry. At school, a complete, logically adequate treatment 
of geometry is out of the question. It would be too difficult and too long, unattractive 
and not conducive to learning geometry; it would tend rather to put pupils off. 
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Thus this is not a first course in geometry. It is aimed at third level students, who 
should have encountered the basic concepts at secondary, or even primary, school. 
It starts geometry and trigonometry from scratch, and thus is self-contained to that 
extent. 

But it is demanding because of a sustained commitment to deductive reasoning. 
In preparation the reader is strongly urged to start by revising the geometry and 
trigonometry which was done at school, at least browsing through the material. It 
would also be a good idea to read in some other books some descriptive material on 
geometry, such as the small amount in Ledermann and Vajda [10, pages 1 - 26], or the 
large amount in Wheeler and Wheeler [13, Chapters 11-15]. Similarly trigonometry 
and vectors can be revised from McGregor, Nimmo and Stothers [11, pages 99 -123, 
279 - 331]. 

It would moreover be helpful to practise geometry by computer, e.g. by using 
software systems such as The Geometer's Sketchpad or Cabri-Giomitre. Material 
which can be found in elementary books should be gone over, and also a look forwards 
could be had to the results in this book. 

1.5 REVISION OF GEOMETRICAL CONCEPTS 

1.5.1 

As part of the preliminary programme, we now include a review of the basic concepts 
of geometry. Geometry should be thought of as arising from an initial experimental 
and observational stage, where the figures are looked at and there is a great emphasis 
on a visual approach. 

1.5.2 The basic shapes 

1. The plane Π is a set, the elements of which are called points. Certain subsets of Π 
are called lines. 

By observation, given any distinct points Α, Β € Π, there is a unique line to which 
A and Β both belong. It is denoted by AB. 

2. Given distinct points A and B, the set of points consisting of A and Β themselves 
and all the points of the line AB which are between A and Β is called a segment, and 
denoted by [A,B]. 

Figure 1.1. A line AB. 
The arrows indicate that the line 
is to be continued unendingly. 

Figure 1.2. A segment [Α, β]. 

�� �� �� �� ��



1 0 P R E L I M I N A R I E S ( C h . l 

NOTE. Note that the modern mathematical terminology differs significantly from 
that in The Elements. What was called a 'line' is now called a segment, and we have 
added the new concept of 'line'. This is confusing, but the practice is well established. 
In ordinary English and in subjects cognate to mathematics, 'line' has its old meaning. 

3. The set consisting of the point A itself and all the points of the line AB which 
are on the same side of A as Β is, is called a half-line, and denoted by [Α,Β . If A is 
between Β and C, then the half-lines [A, Β and [A, C are said to be opposite. 

Figure 1.3. A half-line [Α,Β . Opposite half-linej. 

4. If the points B, C are distinct from A, then the pair of half-lines {[Α,Β , [A, C } 
is called an angle-support and denoted by \BAC: if [A, Β and [A, C are opposite half-
lines, then \BAC is called a straight angle-support. In each case A is called its vertex, 
[A, Β and [A, C its arms. 

Figure 1.4. An angle-support. A straight angle-support. 

5. The set of all the points on, or to one side of, a line AB is called a closed 
half-plane, with edge AB. 
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6. If the points A,B,C are not collinear, then the set of points which are in both 
the closed half-plane with edge AB, containing C, and the closed half-plane with edge 
AC, containing B, is called the interior region of \BAC and denoted by TRX\BAC)\ 
also (Π \ in(\BAC)) U \BAC is called the exterior region of \BAC and denoted by 
£7l(\BAC). When C e [A, Β the interior and exterior regions of \BAC are taken to 
be [A, Β and Π, respectively. 

7. If \BAC is a non-straight angle-support, then the couples (\BAC. m(\BAC)). 
(\BAC. £Tl(\BAC)). are called the wedge-angle and reflex-angle, respectively, with 
support \BAC; this wedge-angle is denoted by ABAC. Thus a wedge-angle is a pair 
of arms in association with an interior region, while a reflex-angle is a pair of arms 
combined with an exterior region. 

If \BAC is a straight angle-support, and % , % are the closed half-planes with 
edge the line AB, then the couples l\BAC. Hi), (\BAC. Hi), are called the straight-
angles with support \BAC. If C 6 [A, Β then the wedge-angle ABAC = ΔΒΑΒ is 
called a null-angle, and the reflex-angle with support \BAB is called a full-angle. 

Figure 1.7. A wedge-angle. A reflex-angle. 
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A stra ight-angle . 

NOTE. The reason we call \BAC an angle-support and not an angle is that it sup­
ports two angles. If we were confining ourselves to pure geometry, and not concerned 
to go forward to coordinate geometry and trigonometry, we could confine ourselves to 
wedge and straight angles. Even more if we were to confine ourselves to the angles in 
triangles, we could take \BAC — [Α,Β U [A,C . However when A is between Β and 
C, this would result in a straight-angle being a line, and it would not have a unique 
vertex. In the early part of our course, we can confine our attention to wedge and 
straight angles. 

8. If A is between Β and C and D £ BC, the wedge-angles /.BAD, /CAD are 
called supplementary. If A,B,C are not collinear, and A is between Β and By, and 
A is between C and Ci, then the wedge-angles /BAC,/B\AC\ are called opposite 
angles at a vertex. 

Β 

\ D 
Λ 

c Β 

Figure 1.9. Supp lementa ry angles. Oppos i t e angles a t a ver tex . 

9. If A, B, C are non-collinear points and [A, D is in the interior region of | BAC. 
then [A, D is said to be between [A, Β and [A, C . 
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Figure 1.10. [A,D between [Α,Β a n d [A,C . 

10. If A, B,C are non-collinear points, let ri\ be the closed half-plane with edge 
BC, containing Α, Ή3 be the closed half-plane with edge CA, containing B, % be 
the closed half-plane with edge AB, containing C. Then the intersection Ήι Π Ή3 Π 
% is called a triangle. The points A, B, C are called its vertices and the segments 
[B, C], [C, A], [A, B] its sides. If a vertex is not the end-point of a side ( e.g. the vertex 
A and the side [B,C]), then the vertex and side are said to be opposite each other. 
We denote the triangle with vertices A , B , C by [A, B, C]. 

If at least two sides of a triangle have equal lengths, then the triangle is called 
isosceles. 

Figure 1.11. A tr iangle [A,B,C\. An isosceles t r iangle . 

11. Let A, B, C, D be points no three of which are collinear, and such that [A, C]f~l 
[B, D] φ 0. For this let H\ be the closed half-plane with edge AB, containing C, Ή3 
be the closed half-plane with edge BC, containing D, %s be the closed half-plane 
with edge CD, containing Α, Ή,ι be the closed half-plane with edge DA, containing 
B. Then the intersection Hi Π Ή.3 Π Π Hj is called a convex quadrilateral 

The points A, B, C, D are called its vertices, the segments [Α,Β], [B,C], [C,D], 
[D, A] its sides, and the segments [A, C], [B, D] its diagonab. Two vertices which have 
a side in common are said to be adjacent, and two vertices which have a diagonal in 
common are said to be opposite. Thus A and Β are adjacent as they both belong to 
[A, B] which is a side; A and C are opposite as they both belong to [A, C] which is a 
diagonal. 

Two sides which have a vertex in common are said to be adjacent, and two 
sides which do not have a vertex in common are said to be opposite. Thus the 
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sides [A,J3], [D,A] axe adjacent as the vertex A belongs to both, while the sides 
[A,£], [C,D] are opposite as none of the vertices belongs to both of them. The 
wedge angles ADAB, AABC, ABCD, ACDA are called the angles of the convex 
quadrilateral; two of these angles are said to be adjacent or opposite according as 
their two vertices are adjacent or opposite vertices of the convex quadrilateral. 

We denote the convex quadrilateral with vertices A, B, C, D, with A and C 
opposite, by [A, B, C,D]. 

Figure 1.12. A convex quadr i la te ra l . 

1.5.3 D i s t a n c e ; d e g r e e - m e a s u r e o f a n a n g l e 

1. With each pair (A, B) of points we associate a non-negative real number |A, 2?|, 
called the distance from A to Β or the length of the segment [A, 2?]. In all cases 
\B, A\ = I A, B\. By observation, given any non-negative real number k, and any half-
line [A, Β there is a unique point Ρ € [A, Β such that | A, P| = k. 

Laying off a d is tance k. F igure 1.13. Addi t ion of dis tances . 

By observation, if Q € [P,R] then |P, Q\ + \Q,R\ = \P,R\. In all cases |A, A| = 0, 
while |A ,J5| > 0 if ΑφΒ. 

2. Given distinct points A and B, choose the point C € [A, Β so that | A , C\ = 
i|A, B\. Then C is between A and Β and 

\C,B\ = \A,B\ -\A,C\ = \A,B\ - \\A,B\ = \\A,B\ = \A,C\. 

The point C which is on the line AB and equidistant from A and B, is called the 
mid-point of A and B. It is also called the mid-point of the segment [A,B]. 
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Figure 1.14. Mid-point of A and B. 

3. With each wedge-angle ABAC we associate a non-negative number, called its 
degree-measure, denoted by \ABAC\°, and for each straight-angle α we take | Q | ° = 
180. 

Figure 1.15. Addition of angle-measures. 

A 

Figure 1.16. Laying off an angle. 

By observation, we note that if Α,Β,C are non-collinear and [A,D is between 
[Α,Β and [A,C , then \ABAD\° + \ACAD\° = \ABAC\°, while if [Α,Β and [A,C 
are opposite and D & AB, then \ABAD\° + \ACAD\° = 180. 

By observation, given any number k with 0 < k < 180 and any half-line [Α, Β , 
on each side of the line AB there is a unique wedge-angle ABAC with \ABAC\° = k. 
In all cases \ABAB\° = 0, so that the degree-measure of each null angle is 0, while if 
ABAC is not null then \ZBAC\° > 0. 

It follows from the foregoing, that if ABAD is any wedge-angle then \ABAD\° < 
180, and that if ABAD, ACAD are supplementary angles, then \ACAD\° = 180 -
\ABAD\°. 

4. Given points Β and C distinct from A such that C £ [Α,Β , we can choose 
a point D such that \ABAD\° is equal to half the degree-measure of the wedge or 
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straight angle with support \BAC_. Then for all points Ρ φ A on the line AD we have 
\ΔΒΑΡ\° = \ΔΡΑΟ\°. We call AP the mid-line or bisector of the support \BAC. 

Figure 1.17. Mid-line of a n angle-suppor t . 

5. Any angle £BAC such that 0 < \ZBAC\° < 90 is called acute, such that 
\ΔΒΑΰ\° = 90 is called right, and such that 90 < \ΔΒΑΟ\° < 180 is called obtuse. 

If ZBAC is a right-angle, then the lines AB and AC are said to be perpendicular 
to each other, written AB ± AC. 

Figure 1.18. Perpendicular lines. Figure 1.19. Congruent triangles. 

1.5.4 Our treatment of congruence 

If [A, B,C], [Α',Β',Ο'] are triangles such that 

|B,C7| = |5',C7'|, \C,A\ = \C,A'\, \A,B\ = \A',B'\, 
\ZBAC\° = \ΔΒ'Α'0'\\ \ΔΟΒΑ\° = \Δ0'Β'Α'\ο, \ΔΑΟΒ\° = \ΔΑ'ΰ'Β'\°, 

then we say by way of definition that the triangle [A, B,C]ia congruent to the triangle 
[A',B',C']. Behind this concept is the physical idea that [A,B,C] can be placed on 
[Α',Β',Ο'], fitting it exactly. 

By observation if [A, B, C], [Α', B', C] are such that 

\C,A\ = \C',A'\, \A,B\ = \A',B'\, \ΔΒΑΰ\° = \ΔΒΆ'C'\°, 

then [A, B, C] is congruent to [Α', B', C'\. This is known as the SAS (side, angle, side) 
condition for congruence of triangles. 

Similarly by observation if [A,B,C], [A',B',C] are such that 

\B, C\ = \B', C'\, \ΔΟΒΑ\° = \Δ0'ΒΆ'\ο, \ΔΒΟΑ\° = \ΔΒ'CA'\°, 
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then [A,B,C] is congruent to [Α',Β',Ο']. This is known as the ASA (angle, side, 
angle) condition for congruence of triangles. 

It can be proved that if Τ and T' are triangles with vertices {A, B , C}, {Α', B',C'}, 

respectively, for which 

\ B , C \ = \B',C'\, \C,A\ = \C',A'\, \A,B\ = \A',B'\, 

then Τ is congruent to T'. This is known as the SSS(side-side-side) principle of 
congruence. 

1.5.5 Parallel lines 

1. Distinct lines l, τη are said to be parallel if / Π m = 0; this is written as / 1 | m. We 
also take I \\ I. 

Figure 1.20. Parallel lines. 

By observation, given any line / and any point Ρ there cannot be more than one 
line m through Ρ which is parallel to I. 

Figure 1.21. Alternate angles for a transversal. Corresponding angles. 

It can be shown that two lines are parallel if and only if alternate angles made 
by a transversal, as indicated, are equal in magnitude, or equivalently, if and only if 
corresponding angles made by a transversal are equal in magnitude. 

2. A convex quadrilateral in which opposite side-lines are parallel to each other is 
called a parallelogram. A parallelogram in which adjacent side-lines are perpendicular 
to each other is called a rectangle. 
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1.6 P R E - R E Q U I S I T L E S 

Although this book re-starts geometry and trigonometry from the beginning, it does 
not take mathematics from a start. Consequently there is material from other parts 
of mathematics which is assumed known. This also should be revised at the start, or 
at the appropriate time when it is needed. 

At the beginning, we presuppose a moderate knowledge of set theory, sufficient to 
deal with sets, relations and functions, in particular order and equivalence relations. 
From Chapter 3 on we assume a knowledge of the real number system, and the 
elementary algebra involved. Later requirements come in gradually. 

1.6.1 S e t n o t a t i o n 

For set notation we refer to Smith [12, pages 1-38]. We mention that we use the 
word function where it uses map. We should also like to emphasise the difference 
between a set {a, b] and a couple or ordered pair (a,b). In a set, the order of the 
elements does not matter, so that {a, b} — {b, a} in all cases, and 

{β , 6} = {*<*} 

if and only if either 
a = c and b = d 

or 
ο = d and b = c. 

In a couple (a, b) it matters which is first and which is second. Thus (a, b) φ (6, a) 
unless a = b, and 

(a,6) = (c,d) 
if and only if 

α = c and b = d. 

1.6.2 C l a s s i c a l a l g e b r a 

We need a knowledge of the real number system and the complex number system, and 
the classical algebra involving these, up to dealing with quadratic equations and two 
simultaneous linear equations in two unknowns. For this very elementary material 
there is an ample provision of textbooks entitled College Algebra by international 
publishers. 
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1.6.3 O t h e r a l g e b r a 

For matrices and determinants we refer to Smith [12, pages 95 -124] and McGregor, 
Nimmo and Stothers [11, pages 243 - 278], and for the little that we use on group 
theory to Smith [12, pages 125 - 152]. 

1.6.4 D i s t i n c t i v e p r o p e r t y o f r e a l n u m b e r s 

For the properties that distinguish the field of real numbers from other ordered fields, 
we refer to Smith [12, pages 153 - 196]. 
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COMMENT. Geometry deals with our intuitions as to the physical space in which 
we exist, with the properties of the shapes and sizes of bodies as mathematically 
abstracted. It differs from set theory in that in geometry there are distinguished or 
special subsets, and relations involving them. To start with we presuppose a moderate 
knowledge of set theory, sufficient to deal with sets, relations and functions. From 
Chapter 3 on we assume a knowledge of the real number system, and the elementary 
algebra involved. 

In this first chapter we introduce the plane, points, lines, natural orders on lines, 
and open half-planes as primitive concepts, and in terms of these develop other special 
types of geometrical sets. 

2 . 1 L I N E S , S E G M E N T S A N D H A L F - L I N E S 

2 . 1 . 1 P l a n e , p o i n t s , l i n e s 

Prixmtive Terms. Assuming the terminology of sets, the p l a n e , denoted by Π, is a 
universal set the elements of which are called p o i n t s . Certain subsets of Π are called 
(straight) l i n e s . We denote by Λ the set of all these lines. 

AXIOM A i . Each line is a proper non-empty subset ο/Π. For each set {A,B) of 
two distinct points in I i , there is a unique line in Λ to which A and Β both belong, j 

We denote by AB the unique line to which distinct points A and Β belong, so that 
A Ε AB and Β € AB. It is an immediate consequence of Axiom Ai that AB = Β A; 
that if C and D are distinct points and both belong to the line AB, then AB = CD; 
and that if A, Β are distinct points, both on the line / and both on the line m, then 
l = m. 

Furthermore if I, m are any two lines in A, then either 

l η m = 0, 

or 

lr\m is a singleton, 

20 
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or 

I = m and in this last case / Π m = I = m. 

Moreover the plane Π is not a line, as each line is a proper subset of Π. 
If three or more points lie on one line we say that these points are collinear. If 

one point lies on three or more lines we say that these lines are concurrent. 

2 . 1 . 2 Natural order on a line 

COMMENT. The two intuitive senses of motion along a line give us the original 
examples of linear (total) orders, and we refer to these as the two natural orders on 
that line. On a diagram the sense of a double arrow gives one natural order on I, 
while the opposite sense would yield the other natural order on /. We now take natural 
order as a primitive term, and go on to define segments and half-lines in terms of this 
and our existing terms. 

Figure 2.1. A line AB. Figure 2.2: The double arrow indicates 
The arrows indicate that the line a sense along the line AB. 
is to be continued unendingly. 

Primitive Term. On each line / € Λ there is a binary relation <j, which we refer 
to as a natural order on I. We read A <ι Β as Ά precedes or coincides with Β on 

AXIOM A 2 . Each natural order <i has the properties:-

(i) A<i A for all points As I; 

(ii) ifA<tB and Β <, C then A <, C; 

(iii) if A <t Β and Β <t A, then A = B; 

(iv) for any points Α,Β el, either A<t Β or Β <j A. | 

COMMENT. We refer to (i), (ii), (iii) in A 3 as the reflexive, transitive and anti­
symmetric properties, respectively, of a binary relation; property (iii) can be reworded 
as, if A <j Β and Αφ Β then Β & A. A binary relation with these three properties 
is commonly called a partial order. A binary relation with all four properties (i), (ii), 
(iii) and (iv) in A 2 is commonly called a linear order or a total order. 
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2.1.3 Reciprocal orders 

If Α <ι Β we also write Β >j A and read this as lB succeeds or coincides with A on 
/'. Then >i is also a total order on /, i.e. >j satisfies A 2(i), (ii), (iii) and (iv), as can 
readily be checked as follows. 

First, on interchanging A and A in A 2(i), we have A >i A for all A 6 /. Secondly, 
suppose that Α>ι Β and Β >j C; then C <ι Β and Β <j A, so by A 2(ii) C <i A; 
hence A >j C. Thirdly, suppose that A >j Β and Β >» A; then Β <j A and A <j β 
so by A2(iii) A = B. Finally, let A, Β be any points on /; by A 2(iv), either A <j Β or 
Β <j A and so either Β >ι A or A >/ B. 

We say that >j is reciprocal to <j. If now we start with >i and let be its 
reciprocal we have A £j Β if Β >/ A; then we have A ^ Β if and only if A <j R. 
Thus coincides with <», and so the reciprocal of >j is <j. 

The upshot of this is that <j and >i are a pair of total orders on I, each the 
reciprocal of the other. There is no natural way of singling out one of <i, >j over 
the other, and the notation is equally interchangeable as we could have started with 
>i. Having this pair is a nuisance but it is unavoidable, and we try to minimise the 
nuisance as follows. Given distinct points A and B, let / = AB. Then exactly one 
of Α <ι Β, Α >ι Β holds; for by A 2(iv) either A <j Β or Α >ι B, and by A2(iii) 
both cannot hold as that would imply that A = B. Thus we can choose the natural 
order on / in which A precedes B, by taking < { when Α <ι B, and by taking >j when 
A >j B\ we will use the notation <i for this natural order. 

Let A and Β be distinct points in Π, let I = AB and A <j B. Let C be a point of 
I, distinct from A and B. Then exactly one of 

Proof. UC <iA then clearly (a) holds. If C <j A is false, then by A 2(iv) A <t C; 
by A 2(iv) we have moreover either C <j Β or Β <j C, and these yield, respectively, 
(b) and (c). Thus at least one of (a), (b), (c) holds. 

On the other hand, if (a) and (b) hold, we have A = C by Aa (iii) and this 
contradicts our assumptions. Similarly if (b) and (c) hold we would have Β = C. 
Finally if (a) and (c) hold, from (a) we have C <ι Β by A 2(ii) and then Β = C. 

2.1.4 Segments 

Definition. For any points A,R € Π, we define the segments [A,B] and [B,A] as 
follows. Let I be a line such that A,B e I and <j, >< a pair of reciprocal natural 
orders on /. Then if 

(a) C<tA<i B, (b) A <, C <t B, (c) A <, Β <, C, 

holds. 

A <t Β so that B>i A, (2.1.1) 
we define 

[A,B] = {Pzl:A<lP<l B} = 
[B,A] = {P€l:B>,P>t A}, 

{P 6 / : A <t Ρ and Ρ <, Β], 

while if 
Β <i A so that A>i R, (2.1.2) 
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we define 
[B,A] = {Pel:B<,P<, A}, 
[A,B) = {Pel:A>iP>i B). 

We should use a more complete notation such as {A, £]<,,>,, [B,A]<lt>t, but make 
do with the less precise one. Note that (2.1.2) comes from (2.1.1) on interchanging A 
and B, or on interchanging <j and >j. 
When Α φ Β, by Ax / = AB; by 
A2(iv) at least one of (2.1.1) and 
(2.1.2) holds, and by A2(iii) only 
one of (2.1.1) and (2.1.2) holds. 
When A = Β, I can be any 
line through A, and we find that 
{P € I : Α <ι Ρ <i A} = {A}, 
{P € / : A >, Ρ >t A} = {A}, 
for the singleton {A}. To see this 
we note that A <j A <i A by 
A2(i), while if A <j Ρ <j A then Figure 2.3. A segment [Α,Β]. 
Ρ = A by Aa (iii). The same 
argument holds for >j. Thus 
[A,A] = {A}. 

Segments have the following properties:-

(i) If Α φ Β, then [Α,Β] C AB. 

(ii) Α,Β e [A, B] for all A, Be Π. 

(iii) [Α, Β] = [B, A] for all A, Be Π. 

(iv) IfC,D e [Α,Β] then [C,D] C [Α,Β]. 

(ν) If Α,Β, C are distinct points on a line I, then precisely one of 

Ae[B,C], Be[C,A],Ce[A,B], 

holds. 
Proof. In each case we suppose that A <j Β so that we have (2.1.1) above; 

otherwise replace <j by >j throughout to cover (2.1.2). 
(i) By Ai, / = AB so [A, B] is a set of points on AB. 
(ii) By A2(i) A <, A <ι Β and A <t Β <, Β. 
(iii) As A <, B, then Β >< A so [J3,A] = {P € / : Β >, Ρ >t A). Now if 

Ρ e [Α,Β], then Α <ι Ρ and Ρ <ι B. It follows that Β >f Ρ and Ρ >t A . Thus 
Ρ € [5,A] and so [Α,Β] C [B, A], By a similar argument [B,A] C [Α,β] and so 
[A,B] = [B,A]. 

(iv) Let C,D e [Α,Β] so that A<iC <ι Β and A <j D <j B. By A2(iv) either 
C <j D or D <i C. 

If C << D and Ρ € [C,D], then C <ι Ρ <i D. Thus A <i C, C <j Ρ so by A2(ii), 
A <, P. Also Ρ <ι D, D <ι Β so by Α2(ϋ) Ρ <j B. Thus Ρ € [A, JB]. 

If D <i C, we interchange C and £) in the last paragraph. 
(v) This follows immediately from 2.1.3. 
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2 .1 .5 Ha l f - l i ne s 

Definition. Given a line / 6 Λ, a point Ael and a natural order <j on I, then the set 

p(l,A,<,) = {P€l:A<l P} , 
is called a half-line or ray of /, with initial point A. 

Given distinct points A, Β let <i be the natural order on Ζ = AB for which A <j B; 
then we also use the notation [A, Β for p(l,A, <j). 

Figure 2.4. A half-line [A, Β . Opposite half-lines. 

As >( is also a natural order on I, 
P(M,>|) = {P€l:A>,P} = {Pel:P<,A} 

is also a half-line of 1, with initial point A. We say that p(i, A, <i) and p{l, A, >j) are 
opposite half-lines. 

Half-lines have the following properties:-

(i) In all cases p(l,A, <j) C /· 

(ii) /n oi/ cases A € p(Z, A, </). 

(iii) // B, C € p(/, A, <,), tAen [R, C] C p(Z, A, <,). 
Proof. 
(i) By the definition of p(i, A, <j), we have Ρ € / for all Ρ € ρ(ί, A, <|) and so 

p{l,A,<,)cl. 
(ii) By A2(i) A <t A, so A € p{l,A, <,). 
(in) A s B . C e p(Z, A,<,) we have A <j R and A <i C. Since B,C €l, by A2(iv) 

either Β <i C at C <ι B. When R <j C, we have R <j Ρ for all Ρ € [R, C]; with 
Α <ι Β this gives A <j Ρ by A2(ii), and so Ρ € p(l, A, <t). When C <j R, we have 
a similar proof. 

2.2 O P E N A N D C L O S E D H A L F - P L A N E S 

2 .2 .1 C o n v e x s e t s 

Definition. A set 6 is said to be convex if for every P, Q € E, [P,Q] C £ holds. 
NOTE. By 2.1.4(iv) every segment is a convex set; by 2.1.5(iii) so is every half-line. 

In preparation for the next subsection, we note that by Ai, for each line I 6 Λ we 
have Π \ / φ 0. 
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2 . 2 . 2 Open half-planes 

Primitive Term. Corresponding to each line I € Λ, there is a pair {ft, ft} of non­
empty sets called open half-planes with common edge I. 

AXIOM A3. Open half-planes ft, Gi with common edge I have the properties:-

(i) I I \ / = ftUft; 

(ii) ft and Gi are both convex sets; 

(iii) ifPeGi and QeGi, then [P,Q] η ί φ 0. | 

We note the following immediately. 
Open half-planes {ft, ft} with common edge I have the properties:-

(i) i n f t = 0, / n f t = 0. 

(ii) Gi η Gi = 0. 

(iii) IfPeGi and [P, Q] Π / # 0 where Q$l, then Q e Gi-

(iv) Each line I determines a unique pair of open half-planes. 

Proof. 
(i) By A3(i), / Π ( f t U ft) = 0 and as Gi C Gi U Gi it follows that / Π Gi = 0- The 

other assertion is proved similarly. 
(ii) If Gi Π Gi φ 0, there is some point R in both Gi and ft. By A3(iii) with 

Ρ = Λ, Q = R, we have that [Λ,Α] η 1 ?έ 0. But Λ is the only point in [R,R] so 
Rel. This contradicts the fact that / Π Gi = 0-

(iii) For otherwise by A3(i), Q € ft and then by A3(ii) [P, Q] C ft. As ί Π & = 0, 
it follows that [P ,Q]ni = 0 which contradicts the assumptions. 

(iv) Suppose that 
n\l = GiUGi = G[uGi, 

where {Gi,Gi} and {G'i,G'i} are both sets of open half-planes with common edge /. 
Then 

Gi C Gi U Gi = G[ u a 2 

so either 

(a) ft C ft1 or ( b ) f t c a 3 or (c) ft Π G[ φ 0, ft Π & ?έ 0. 

In (c) we have Ρ € ft, Ρ € ft1 and Q € ft, Q € G'i for some Ρ and Q. But then 
we have [P,Q] C ft, by A3(ii) applied to ft, and [P,Q] Π / ^ 0, by A3(iii) applied to 
{ft1, (/£}. This gives a contradiction as 1Π ft = 0. Thus (c) cannot happen. 

By similar reasoning, we must have either 

(d) G[ C ft or (e) G[ C Gi-
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Now (a) and (d) give ft = G{ and it follows that ft = G2 as 

( f t u f t ) \ f t = f t , (G[^G2)\G[ = G'2. 

Similarly (b) and (e) give Gi = Gi and it follows that ft = G\. 
Finally, we cannot have (a) and (e) as that would imply ft C Gi- Neither can we 

have (b) and (d). 

TERMINOLOGY. If two points 
are both in Gi or both in Gi they 
are said to be on the one side 
of the line Z, while if one of the 
points is in Gi and the other is in 
Gi they are said to be on differ­
ent sides of Z. 

2.2.3 Closed half-planes 

Definition. If ft, ft are open half-planes with common edge Z, we call 

Hi = ft UZ, ft2 = ftUZ, 

closed half-planes with common edge Z. 
Closed half-planes Ηι,Ή,ι with common edge I have the pwperties:-

(i) Γ * ι υ Ή 2 = Π. 

(ii) Ή.ιΠη2 = 1. 

(iii) Each ofH\,H% is a convex set 

(iv) IfAel and Β φ A is in Hi, then [A, Β C Hi. 

Proof. 
(i) By A3(i), Π = Gi Uft UZ = (Gi UZ) U (ft Ui) = Hi UH2. 
(U) For (& u i ) η ( f t u z ) = ( f t η ft) υ ( f t n Z ) υ ( f t n z ) u ( z n z ) = z n z = z. 
(iii) We prove that Hi is convex; proof for H% is similar. 
Let A,B € Hi; we wish to show that [A,B] c Wi. 
CASE (a). Let A,Β € ft. Then the conclusion follows from A3(iii). 
CASE (b). Let A,R e Z. Then [A,R] C Ζ C Ήι, so the result follows. 
CASE (c). Let one of A,Β be on Ζ and the other in ft, say A € Z, R € ft. 
Suppose that [A,R] is not a subset of H\. Then there is some point C € [A,B] 

such that C € ft. Note that C φ A,C φ Β as A,Β $ Gi,C e ft. 
Now R € ft, C € ft so by A3 (iii) there is some point D of [B,C] on Z, so that 

D € [ £ , £ ] , £ € Z. Now A, R,C are collinear and distinct, and C € [A,R] so by 2.1.4 
we cannot have A e [R,C]. Hence Αφ D. 

But A € l,D € Ζ so by AUAD = I. However AB = BC and D 6 BC, so 
D € AR. Then AB = AD = I, so R € /. This gives a contradiction. Thus the 
original supposition is untenable so [A,R] C Hi, and this proves (iii). 

Figure 2.5. A closed half-plane shaded. 
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(iv) 
CASE (a). Let Β el. Then [ i , f l C i c W i , which gives the desired conclusion. 
CASE (b). Let Be ft. Suppose that [Α,Β is not a subset of U\. Then there is 

some point C € [Α,Β such that C € ft. Clearly C φ A,C φ Β. Now A,B,C are 
distinct collinear points, so by 2.1.4 precisely one of 

Ae[B,C], Be[C,A], Ce[A,B], 

holds. We cannot have A € [B, C] as that would put B, C in different half-lines with 
initial-point A, whereas they are both in [A, B. This leaves us with two subcases. 

Subcase 1. Let C € [A, B]. We recall that A, Β e Ti\ so by part (iii) of the present 
result [Α,Β] c ?ίι. As C e [A,B],C € ft, we have a contradiction. 

Sufease 2. Let B € [A,C]. We recall that A € %i, C € ri 3 so by part (iii) of the 
present result, [A,C] C ria- Then Β e?i 2,J9 € ft which gives a contradiction. Thus 
the original supposition is untenable, and this proves (iv). 

NOTE. The terms 'open' and 'closed* are standard in analysis and point-set topol­
ogy. What is significant is that an open half-plane contains none of the points of the 
edge, while a closed half-plane contains all of the points of the edge. 

2.3 ANGLE-SUPPORTS, INTERIOR AND EXTERIOR REGIONS, AN­
GLES 

2.3.1 Angle-supports, interior regions 

Figure 2.6. An angle-support. A straight angle-support. 

Definition. We call a pair {[Α,Β , [A, C } of co-initial half-lines an angle-support. 
For this we use the notation \BAC. When Ae[B,C], this is called a straight angle-
support. We call the half-lines [Α,Β and [A,C the arms, and the point A the 
vertex, of \BAC. Note that we are assuming Β φ A and C φ A from the definition 
of half-lines. In all cases we have |RAC = \ CAB. 

COMMENT. The reason that we do not call \BAC an angle is that there are two 
angles associated with this configuration. 
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Definition. Consider an angle-support \BAC which is not straight. When A , R, C 
are not collinear, let Hi be the closed half-plane with edge AB in which C lies, and 
Ή3 the closed half-plane with edge AC in which Β lies. Then Hi Π H3 is called 
the interior region of \BAC. and we denote it by XH(\BAC). When A,B,C are 
collinear we have [A,Β = [A, C and we define TR.(\BAC) = [A, Β . 

Interior regions have the following properties:-

(i) [A,Β and [A,C are both subsets oiTRA\BAC\. 

(ii) I}P,Q € ITl(\BAC) then [P,Q] C 1K(\BAC). so that an interior region is a 
convex set 

(iii) If Ρ € m(\BAC) and Ρ φ A, then [A, Ρ C TM\BACY 

Proof. 
(i) When A,B,C are non-collinear, by 2.1.5 [A,Β c AB c Hi and by 2.2.3 

[A,Β CH3BO[A,B cHinH3. Similarly for [A, C . When [A, Β = [A,C the 
result is trivial. 

(ii) When A , B , C are non-collinear, we have that [P, Q] is a subset of Hi by 2.2.3. 
It is a subset of Hs similarly, and so is a subset of the intersection of these closed 
half-planes. When [A, Β = [A,C , the result follows from 2.1.5. 

(iii) When A , B , C are non-collinear, by 2.2.3 [A, Ρ is a subset of each of Hi and 
H3, and so of their intersection. When [A, Β = [A, C we have TH(\BAC) = [A, Β 
and[A,P =[A,B . 

2.3.2 Exterior regions 

Definition. If \BAC is an angle-support which is not straight and XK(\BAC) is its 
interior region, then 

{Π \ 1K(\BAC)\ U[A,B U [A, C 

is called the exterior region of \BAC. and denoted by £7l(\BAC). Thus the interior 
and exterior regions have in common only the arms. 
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2.3.3 Angles 

29 

Figure 2 .8. A wedge-angle. A reflex-angle. A straight-angle. 

Definition. Let \BAC be an angle-support which is not straight, with interior re­
gion 1K(\BAC) and exterior region SU(\BAC). Then the pair (\BAC. TR(\BAC\) is 
called a w e d g e - a n g l e , and the pair [\BAC_, £H(\BAO) is called a r e f l e x - a n g l e . If 
\BAC is a straight-angle support and Ηι,Ηι are the closed half-planes with common 
edge AB, then each of the pairs (\BAC. Hi). (\BAC.rii) is called a s t r a i g h t - a n g l e . 
In each case the point A is called the v e r t e x of the angle, the half-lines [Α,Β and 

[A, C are called the a r m s of the angle, and \BAC is called the s u p p o r t of the angle. 
We denote a wedge-angle with support \BACl by ABAC. The wedge-angle ΔΒΑΒ 

is said to be a n u l l - a n g l e . 

2.4 TRIANGLES AND CONVEX QUADRILATERALS 

2 .4 .1 Terminology 

COMMENT. The terminology which we have used hitherto is established, apart from 
'angle-support' and 'wedge-angle' which we have coined. Now we are reaching termi­
nology which is of long standing but is used in slightly varying senses. 

In Euclidean geometry it is generally accepted that the concept of triangle is 
associated with: 

(i) a set {A, B, C) of three points which are not collinear; 

(ii) a union of segments [B, C] U [C, A] U [A, JS], where the points A, B, C are as in 
(0; 

(iii) an intersection of half-planes Hi Π Hs ΓΊ H6, where A,B,C are as in (i), Hi is 
the closed half-plane with edge BC in which A lies, H3 is the closed half-plane 
with edge CA in which Β lies, and % is the closed half-plane with edge AB in 
which C lies. 

However in some courses the actual definition of a triangle is taken to be (i), in 
other courses it is taken to be (ii), and in other courses it is taken to be (iii), with (ii) 
and (iii) very common. In yet other courses a combination of (i) and (ii) is taken. 

Having to make a choice for the sake of precision, we opt for (iii); then for us (i) 
will be the set of vertices of our triangle, and (ii) will be the perimeter of our triangle, 
with the individual segments being the sides. We shall then be able to refer naturally 
to the area of a triangle and the length of its perimeter. 
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Consideration similar to (i), (ii) and (iii) for a triangle surround each of the terms 
quadrilateral, parallelogram, rectangle and square, and we adopt our terminology 
consistently. 

2.4.2 Triangles 

NOTE. Let A,B,C be points which do not lie on one line. Then by A i , A,B,C 
are distinct points, and A & BC, Β & CA, C & AB. In fact these lines are not 
concurrent; for BC and CA cannot have a point Ρ in common other than Ρ = C, 
while C $ AB. 

Definition. For non-collinear points A, B,C let Hi be the closed half-plane with 
edge BC in which A lies, Hz the closed half-plane with edge CA in which Β lies, 
and Hs the closed half-plane with edge AB in which C lies. Then the intersection 
Hi Π H3 Π H6 is called a triangle, and is denoted by [A, R, C]. 

Figure 2.9. A triangle [A, B, C]. 

The points A, B, C are called its vertices; the segments [B, C], [C, A], [A, B] are called 
its sides; the lines BC, CA, AB are called its side-lines. The union [B, C] U [C, A] U 
[A, B] of its sides is called its perimeter. A side and a vertex not contained in it are 
said to be opposite; thus A is opposite [B, C] but is not opposite [C, A] or [A, B]. 

Triangles have the following properties:-

(i) [A, B,C] is independent of the order of the points A, B, C. 

( i i ) Each of the vertices A,B,C is an element of[A,B,C]. 

(iii) IfP,Q€ [A,B,C], then [P,Q] C [A,B,C] so that a triangle is a convex set 

(iv) Each of the sides [B, C], [C, A], [A,B] is a subset of [A, B, C]. 

Proof. 
(i) As Π is commutative, ΗιΠΗζΠ H& is independent of the order of Hi,H3,Hs-
(ii) The vertex A is in Hi by definition. It is also in the edge of each of H3 and 

Hi, so by 2.2.3 it is in each of these closed half-planes. The vertices Β and C are 
treated similarly. 

(iii) By definition of an intersection, Ρ and Q are in each of Ήι,Ή 3,Ή 5. By 2.2.3, 
[P, Q] is a subset of each of these closed half-planes, and so it is a subset of their 
intersection. 

(iv) This follows from parts (ii) and (iii) of the present result. 

Figure 2.10. A convex quadrilateral. 
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2.4.3 Pasch'e property, 1882 

P A S C H ' S PROPERTY. If a line exits one side of a triangle, not at a vertex, then it will 
either pass through the opposite vertex, or cut one of the other two sides. 

Proof. Let [A, B, C] be the triangle and / a line which cute the side [A, B] at a 
point which is not a vertex. If C € I we have the first conclusion. Otherwise suppose 
that / does not cut [B, C]. Then A and Β are on different sides of I, but Β and C are 
on the same side of I. It follows that A and C are on different sides if i , so by A3 (iii) 
a point of [A, C] lies on /. 

2.4.4 Convex quadrilaterals 

Definition. Let A, B, C, D be four points in Π, no three of which are collinear, and 
such that [A, C] Π [Β, D] φ 0. Let Hi be the closed half-plane with edge AB in 
which D lies, Hz the closed half-plane with edge BC in which A lies, H& the closed 
half-plane with edge CD in which Β lies, and Hj the closed half-plane with edge DA 
in which C lies. Then the intersection Hi Π Ha Π Ht, Π ΗΊ of these four half-planes is 
called a convex quadrilateral, and we denote it by [A, B, C, D]. 

Each of the four points A, B, C, D is called a vertex ; the segments [Α, Β], [B, C], 
[C,D], [D,A] are called the sides, and AB,BC,CD,DA are called the side-lines ; 
the union of the sides [A, B] U[B,C]U [C, D] U [D, A] is called the perimeter. The 
segments [A,C], [B,D] are called the diagonals, and AC,BD the diagonal lines. 
Vertices which are the end-points of a side are called adjacent while vertices which 
are the end-points of a diagonal are called opposite; thus A and Β are adjacent as 
[A, B] is a side, and A and C are opposite as [A, C] is a diagonal. Sides which have 
a vertex in common are said to be adjacent while sides which do not have a vertex 
in common are said to be opposite; thus the sides [A, B], [A, D) are adjacent as the 
vertex A is in both, while the sides [A, B], [C,D] are opposite as neither C nor D is 
in AB and so neither of them could be A or B. If we write 

D 
I \ 

A C 
\ I 

Β 

then two vertices in [A, B, C, D] will be adjacent if the letters for them in this diagram 
are linked. 

Exercises 

2.1 Let Ρ be a fixed point in Π. Identify the union of all lines I € Λ such that Pel. 

2.2 Prove that segments have the following properties:-

(i) If C e [Α,Β], then [A,C] U [C,B] = [Α,Β] and [A,C] Π [C,B] = {C}. 

(ii) If C e [Α,Β] and Be [A,C] then Β = C. 

(iii) If C e [Α,Β] and D G [A,C], then C € [D,B]. 
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(iv) If Β φ A , Β € [A, C] and Β € [A, D], then either C Ε [R, D] or D G [R, C]. 

2.3 Prove that half-lines have the following properties:-

(i) If R € p(J, A , <,), then p(l, B, <,) C p(/, A, <,). 
(ii) If R e p(/,A,<j), then p(i,A,<,) = [Α,Β] Up(i,R,</) and [Α,Β] Π 

ρ(*,£,<ι) = {£}· 
(iii) Let R € p{l,A,<t),A φ Β and A G [R,C]. Then C € p(f,A,<,) only if 

C7 = A. 

(iv) Let R € p(i, A, <j) and Αφ B. Then C € p(l, A , <j) if and only if either 
RG [A,C] or Ce [Α,Β]. 

(ν) In all cases 

p{l> A,<,)U p(l, A , >i) = / and p(i, A , <j) Π p(/, A, >,) = {A}. 

(vi) Let R G p(l,A,<,) and Α φ B. Then C € .p(Z,A,>j) if and only if 
A G [B,C]. 

(vii) Let R G p(/,A,<j) and Αφ B. Then 

P(i, Λ <,) U p(l, Β, >ι) = I, p(l, A, <,) Π p(l, B, >,) = [A,B], 

p(i, A , >,) Π p(/,R, <,) = 0, p(/, A , >,) U p(i, R, <j) U [Α,Β] = I. 
(viii) I f A ^ R . A ^ C a n d C G [Α,Β, then [Α,Β = [A,C . 

2.4 If [A, B], [C, D] are both segments of a line / such that [Α, Β] Π [C, D] φ 0, show 
that [Α, Β] Π [C, D] and [A, B] U [C, D] are both segments. 

2.5 Show that if Α φ Β and C, D are both in AB\[A, B], then either [A, B]n[C, D] = 
dor[A,B]c[C,D]. 

2.6 Let <E be a total order on the set Ε and / : Ε -> F a 1:1 onto function. If for 
a,b €. F,a <F b when / _ 1 ( o ) <E f~l(b), show that <*· is a total order on F. 

2.7 Use Ex.2.6 to show that if F is an infinite set and there is a total order on F, 
then there are infinitely many total orders on F. 

2.8 Show that interior regions have the following properties:-

(i) If Ρ G XKdBAC) ma Ρ φ A, then AP Π XTIUBAC) = [A,P. 

(ii) If A,B,C are non-collinear and U G [Α,Β , V G [A,C but neither U nor 
V is A, then UVnTR.(\BAC) = [U,V\. 

(iii) If A, U, V are distinct collinear points, and U and V are both in TR.[\BAO. 
then Ve [A, U . 

2.9 Show that an exterior region has the following properties:-

(i) The arms [Α,Β and [A,C are both subsets of S7l(\BAC). 

(ii) If Ρ G SKQBACJ and Ρ φ A, then [A, Ρ c £K(\BAC\. 
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2.10 Show that convex quadrilaterals have the following properties:-

(i) Each of 

(2)[A,D,C,B], (3)[C,B,A,D), (4)[C,D,A,B], 
(5)[B,A,D,C], (6)[B,C,D,A]t (7)[D,A,B,C], 

{8)[D,C,B,A}, 

is equal to (1)[A,B,C,D]. 

(ii) Each of the vertices A, B, C,D is an element of [A,B,C,D]. 
(iii) If P,Q e [A,B,C,D], then [P,Q] C [A,B,C,D] so that [A,B,C,D] is a 

convex set. 

(iv) Each side and each diagonal is a subset of [A, B, C,D]. 
(v) Any pair of opposite sides are disjoint. 
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D i s t a n c e ; d e g r e e - m e a s u r e o f 
a n a n g l e 

COMMENT. In this chapter we introduce distance as a primitive concept, relate it to 
the properties of segments, and define the notion of the mid-point of two points. We 
also introduce as a primitive concept the notion of the degree-measure of a wedge-angle 
and of a straight-angle, relate it to the properties of interior-regions and half-planes, 
and define the notion of the mid-line of an angle-support. 

3.1 DISTANCE 

3.1.1 Axiom for distance 

Notation. We denote by R the set of real numbers. 
Primitive Term. There is a function | | : Π χ Π -> R called distance. We read 

\A,B\ as the distance from A to B. We also refer to \A,B\ as the length of the 
segment [Α,Β]. 

AXIOM A 4 . Distance has the following properties:-

(i) \A,B\ >0 for all A, Bell; 

(ii) |A,B\ = \B, A\ for all Α,Β € Π; 

(iii) ifQe[P,R), then\P,Q\ + \Q,R\ = \P,R\; 

(iv) given any fc > 0 tn R, any line I € A, any point A € / and either natural order 
<i on I, there is a unique point Β 6 ί such that A<t Β and \A, B\ = k, and a 
unique point C € / such that C <i A and \A, C\ = k. \ 

COMMENT. Note that A 4(iv) states that we can lay off a distance fc, uniquely, on 
/ on either side of A. The fact that different letters A, B, C are used is not to be taken 
as a claim that A, B,C are distinct in all cases. Axiom A 4(iv) implies that each line / 
contains infinitely many points and this supersedes the specification in Ai that l φ 0; 
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nevertheless it was convenient to stipulate the latter to avoid a trivial situation. In 
A4(iii) addition + of real numbers is involved. 

Figure 3.1. Addition of distances. Laying off a distance k. 

3.1.2 Derived properties of distance 

Distance has the following properties:-

(i) For all A ell \A,A\ = 0, end toe have \A,B\ > 0 if Α φ Β. 

(ii) If Ρ 6 [Α,Β], then \AtP\ < \A,B\. If additionally ΡφΒ, then \A,P\ < \A,B\. 

(iii) If ΑφΟ and Β lies on the line AC but outside the segment [A,C], then 

\A,B\ + \B, C\>\A, C\. 

(iv) IfC€ [A,Β is such that \A,B\ < \A, C\, then Β G [A,C]. 

Proof. 
(i) By A4(iii) with Ρ = Q = A and any R G Π, we have |A, A| + \A,R\ = \A,R\, 

i.e. χ + y = y where χ = \A, A\ and y — \A, R\. It follows that χ = 0. 
Next with Α φ Β let / = AB and <i be the natural order on / for which A </ B. 

Then we have 
A<tB, A <, A, \A, A\ = 0, 

so that if we also had \A,B\ — 0, then by the uniqueness part of A4(iv) with k = 0, 
we would have A = Β and so have a contradiction. To avoid this we must have 
|A,B |>0 . 

(ii) As Ρ G [Α,Β], by A4OU) we have \A,P\ + \P,B\ = \A,B\. But by A4(i) 
\P, B\ > 0 and so |A, P\ < \A, B\. If Ρ φ Β, then by (i) of the present theorem 
\P, B\ > 0 and so |A, P | < |A, B\. 

(iii) As Β # [A,C] we have Β φ Α,Β φ C and so by 2.1.4 we have either 
A G [B, C] or C G [A, B]. In the first of these \B, A\ + \A, C\ = \B, C\ by A4(iii) and 
as \A,B\ = \B, A\ > 0 this gives \A, C\ < \B, C\ < \A,B\ + \B, C\. In the second 
case we have |A, C\ + \C,B\ = \A,B\ by A^iii) and as \C,B\ = \B, C\ > 0, then 
\A,C\<\A,B\<\A,B\ + \B, C\. 

(iv) We have Α φ Β by definition of [Α,Β , and Α φ C as 0 < \ A , B \ < \A, C\ so 
that 0 < |A, C\. We also have Β φ C as \A,B\ < \A, C\ combined with Β = C would 
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give |A, B\ < I A, B\, whereas once (A, B) is known \A, B\ is uniquely determined. We 
cannot have A € [B,C] as C € [Α,Β . Then by 2.1.4 either Β € [C, A] or C 6 [Α,Β]. 
But by (ii) of the present result, if C G [Α,Β] we would have |A, C7j < |A, B|. As this 
is ruled out by assumption, we must have B e [A,C]. 

Segments and half-lines have the following further properties:-

(i) Let I € λ be a line, A € / and <i a natural order on I. Then there are points Β 
and C on I such that A <t Β and Β φ A, and such that C <i A and C φ A. 

(ii) If Αφ Β, there are points X € [Α,Β] such that Χ φ A andX φΒ. 

(in) If [Α,Β = [C,D then A = C. 

Figure 3.2. 

Proof. 
(i) By Ai(iv) with any k > 0, there is some Β € I such that Α <ι Β and \A, B\ = k. 

As \A, B\ > 0, we have Αφ B. Proof for the existence of C is similar. 
(ii) Let <i be the natural order on / — AB for which A <j B. As Αφ Β we have 

I A, B\ > 0 and then with any k such that 0 < k < \A, B\, there is a point X el such 
that A<tX and \A,X\ = Jfc. As \A,X\ φΟ,νκ have Αφ X; as\A,X\ < \A,B\ then 
Χ Φ B. As X e [Α,Β and \A,X\ < \A,B\, we have X e [Α,Β]. 

(iii) With the notation of (ii), Ρ € [A, Β if and only if A <j P . Now (7 € [C, D = 
[A, Β so A <i C; similarly A <; D. 

CASE 1 . Let C <t D, so that [C,I> = {Q € i : C <, Q}. As A € [Α,Β = [C,D 
we have C <i A and this combined with A <i C implies A = C. 

CASE 2. Let D <, C. Then [C,D = {Q e I : Q <, C}. By (i) of the present 
result there is an X G I such that X <t A and X # A. Then X < ( A, A <i C so 
X <i C and thus X 6 [C,D . However £ [Α,Β as otherwise we would have 
Α <ι X which combined with X <j A implies X = A and involves a contradiction. 
Then X e [C,D , X # [Α,Β which contradicts the fact that [Α,Β = [C,D and so 
this case cannot occur. 

Figure 3.3. 
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3.2 M I D - P O I N T S 

3 .2 .1 

Ij Αφ Β there is a unique point X on I = AB such that \ A,X\ = \X,B\. In this in 
fact X 6 [Α,Β] and Χ φ Α,Χ φ Β. 

Proof. 
Existence. Let <j be the natural order on / for which A <j B. With k = $\A,B\, 

by A4(iv) there is a point X on / such that A <j X and \A, X\ = $\A,B\. Clearly X e 
[Α,Β . As \A,B\ > 0 we have \A,X\ < \A,B\; by 3.1.2 this implies that X G [Α,Β], 
ΧφΒ. By A 4(iii)\A,X\+\X,B\ = \A,B\ and so\X, B\ = \A,B\-\\A,B\ = \\A,B\. 
Thus \A,X\ = \X, B\ as required. We have already seen that X G [A,B] and Χ Φ fl; 
as \A, XI > 0 we also have Χ φ A. 

Uniqueness. Suppose now that Y €. I and |A, Y\ = | Y,B\. Then Y cannot be A 
or B, as e.g. Y = A implies that |A, A| = |A, B\, i.e. 0 = |A, B\. Thus by 2.1.4 one of 

Y G [Α,Β], A G [Υ,Β], Β G [A,y], 

holds. The second of these would imply | Υ, A\ + \A, B\ = \ Y, B\ and so | Υ, A\ < 
IY, B\ as I A, B\ > 0. The third of these would imply \A,B\ + \B,Y\ = \ Α, Υ \ and so 
\B, Y\ < I A, Y\. As these contradict our assumptions, we must have Y G [Α,Β]. Then 
I A, Y\ + \Y,B\ = \A,B\ and as |A, 7 | = \ Y,B\ this implies that |A, 7 | = 5|A,B|. 
Then Α <ι Χ,Α <ι Y and |A, Jf| = |A, Y\ so by the uniqueness in A4(iv) we must 
have X = Y. 
Definition. Given any points 
Α,Β G Π, we define the mid­
point of A and Β as follows: if 
A = Β then the mid-point is A; 
when Αφ Β the mid-point is the 
unique point X on the line AB 
such that \A,X\ = \X,B\, which 
has just been guaranteed. We A 
denote the mid-point of A and Β Figure 3.4. Mid-point of A and B. 
by mp(A,B). 

Mid-points have the following properties:-

(i) For all Α,Β € Π, mp(A,fl) = mp(B, A). 

(ii) For all Α,Β €. Π, mp(A,fl) G [Α,Β]. 

(iii) In all cases mp(A,A) = A, andmp(A,fl) φ A, mp(A,Β) φ Β when Αφ Β. 
(iv) Given any points Ρ and Q in Π, there is a unique point R G Π sucA tftai Q = 

mp(P,iZ). 

Proof. 
(i) When Αφ Β this follows from the definition and A4(ii); when A = fl it is 

immediate. 
(ii) When Αφ Β this follows from the preparatory result. When A = fl it amounts 

to A G {A}. 
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(iii) This follows from the definition and preparatory result. 
(iv) Existence. If Q = Ρ we take R = Ρ and then mp(P, R) = mp(P, Ρ) = Ρ = Q. 

Suppose then that Ρ φ Q, let / = PQ and let <i be the natural order on / under 
which Ρ <( Q. Take R on / so that Ρ <i R and \P,R\ = 2|P, Q|. Then Ρ precedes 
both Q and R on /, while |P, Q\ = %\P,R\. By our initial specification of X in the 
preparatory result we see that Q — mp(P, A). 

Uniqueness. Suppose that also Q = mp(P, 5). We again first take Q = P. Now in 
the preparatory result we had Χ φ A, so that cannot be the situation here as Q = P; 
thus we must have S = Ρ and so S = R. Next suppose that Q φ P; then we cannot 
have S = P, as we had Χ φ A. Then Q G PS, so by Ax 5 € PQ. In fact Q G [P, 5] 
so as Ρ <j Q we must have Ρ <| 5; moreover |P, R\ = \P, S\ as each is twice the 
distance |P, Q\. By the uniqueness in A4(iv) we must then have R — S. 

3.3 A RATIO RESULT 

3.3.1 

Let A,B,C be distinct collinear points, and write 

\A,C\ \A,C\ 
\A,B\ Γ ' \C,B\ "· 

Then ifCe [Α,Β] we have 

r 8 

a = - , r = 1 - r ' ~ l + s ' 

Proof. Let \A, C\ = x, \C,B\ = y. As C G [A,B] we have \A,B\ = x + y. Then 

= r so that — 

Hence 

In turn 

giving 

x + y χ r 

V 1 n , a? |A,C| r 
- = — 1 and so - = ' „ = . 
x r y \C,B\ 1 - r 

β = —-— and so a — ar = r, 
1 — r 

a = r(l + a) and thus r = 
1 + e 

3.4 THE CROSS-BAR THEOREM 

3.4.1 

T H E C R O S S - B A R T H E O R E M . Let Α,Β, C be non-collinear points, Χ φ A any point on 
[A, Β and Υ φ A any point on[A,C . If D φ A is any point in the interior region 
IU(\BAQ, then [A,D Π [Χ,Υ] φ 9. 
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Proof. If D is on [A, Β or 
[A,C the result is clear, 
so we turn to other cases. 
By 3.1.2 there is a point 
Ε φ A such that A € 
[E,X]. Thus X and Ε 
are on different sides of the 
line AC. 

Then by 2.2.3(iv) every point of \Y,E (other than Y) is on one side of AC, while 
every point of [A,D (other than A) is on a different side of AC; thus [A,D does 
not meet \Y,E]. Moreover the other points of the line AD are on one side of the 
line AB, while the points of [Ε, Y (other than E) are on the other side of AB. 
On combining these two, we see that the line AD does not meet the side [Ε, Y] of 
the triangle [Ε,Χ,Υ]. As AD does meet the side [E,X] of that triangle, we see 
by 2.4.3 that AD must meet the third side [X, Y] of that triangle at some point F. 
As F € [X,Y] C TR.(\BAC). F must be on the part of AD in Hl(\BAC). that is 
F€[A,D. 

3.5 DEGREE-MEASURE OF ANGLES 

3.S.1 Axiom for degree-measure 

Primitive Term. There is a function | |° on the set of all wedge-angles and straight-
angles, into R. Thus with each angle a, either a wedge-angle α = ABAC or a 
straight-angle with support \BAC. there is associated a unique real number |a|°, 
called its degree-measure. 

AXIOM A 6. Degree-measure \ \° of angles has the following properties:-

(i) In all cases |oj° > 0; 

(ii) if a is a straight-angle, then \a\° = 180; 

(iii) if ABAC is a wedge-angle and the point D φ A lies in the interior region 
I1l(\BAC). then 

\ABAD\° + \ADAC\° = \ABAC\°, 

while if \BAC is a straight angle-support and D & AB, then 
\ABAD\° + \ADAC\° = 180; 

(iv) if Β φ A, if Ti\ is a closed half-plane with edge AB and if the half-lines [A, C 
and [A,D in Hi are such that \ABAC\° = \ABAD\°, then [A,D =[A,C; 
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(v) if Β φ A, if 7ii is a closed half-plane with edge AB andifO < k < 180, then 
there is a half-line [A,C in Hi such that \/BAC\° = k. | 

Figure 3 . 6 . Addition of angle-measures. 

COMMENT. The properties and proofs for degree-measure are quite like those for 
distance, with the role of interior regions analogous to that of segments. We note that 
A6(i) is like A4(i), A6(iii) is like A4(iii), A6(iv) is like the uniqueness part of A«(iv) 
and A6(v) is like the existence part of A4(iv). Wedge-angles /.BAD and ZD AC such 
as those in the second part of A6(iii) are said to be supplementary. 

3.5.2 Derived properties of degree-measure 

Definition. For a wedge-angle /BAC, if we take a point Ri φ A so that A € [R,Ri] 
and a point Ci φ A so that A € [C, Ci], then /B\AC\ is called the opposite angle 
of /BAC. 

Figure 3 . 7 . Laying off an angle. Figure 3 . 8 . Opposite angles at a vertex. 

Degree-measure has the properties:-

(i) The null-angle /BAB has degree-measure 0. 

(ii) For any non-null wedge-angle /BAC, we have 0 < \/BAC\° < 180. 

(iii) If /BiACi is the angle opposite to /BAC, then 

\/BtACt\° = \/BAC\°, 

so that opposite angles have equal degree-measures. 
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Proof. 
(i) Let C be a point not on AB. Then by Asfjii) with D = B, 

\ZBAB\° + \/BAC\° = \/BAC\°. 

It follows that \ZBAB\° = 0. 
(ii) Given any non-null wedge-angle LB AC, let Hi be the closed half-plane with 

edge AB in which C lies. If we had \/BAC\° = 0, then we would have \/BAC\° = 
\ZBAB\a and so by As(iv) we would have [A,C = [Α,Β . This would imply that 
/BAC is null, contrary to assumption. Then by A5(i) \/BAC\° > 0. 

Now choose the point Ε φ A so that A € [B,E]. Then by A5(iii), as we have 
supplementary angles, 

\/BAC\° + \ZCAE\0 = 180. 

But [Α, Ε φ [A, C as /BAC is a wedge-angle, so /CAE is not a null-angle. By the 
last paragraph we then have \/CAE\° > 0 and it follows that \/BAC\" < 180. 

(iii) As |RAfl/, \CACi are straight we have 

\/BAC\° + \/CAB1\° = 180, 
\/CABi\° -^[/BtACtV = 180, 

there being two pairs of supplementary angles. It follows that 

\/BAC\° + \/CAB,\° = \/CABt\° + \/BiACt\°, 

from which we conclude by subtraction that \/BAC\° = \/BtACi\°. 
Degree-measure has the further properties:-

(i) / / /BAC is a wedge-angle and D φ A is in IK(\BAC). then \/BAD\° < 
\/BAC\°. If, further, D#[A,C then |ZRAR|° < \/BAC\°. 

(ii) For non-collinear points A, B, C let Hi be the closed half-plane with edge AB 
in which C lies. If D φ A is in Hi and \/BAD\° < \/BAC\°, then D € 
in(\BAC). 

Figure 3.9. 

Proof. 
(i) As D G TJZ(\BAC). by A8(iii) \/BAD\° + \/DAC\° = \/BAC\°. By A 5(i), 

\/DAC\° > 0 so \/BAD\° < \/BAC\°. 
If D & [A,C then /DAC is not a null-angle, so \/DAC\° > 0 and hence 

|ZRAR|° < \/BAC\°. 
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(ii) Let Ε φ A be such that A € [B,E]. Let τίζ,Ήχ be the closed half-planes with 
common edge AC, with B € % and Ε € ri 4- Then 

Hi = r i i n n = r i i D ( r i 3 u ? i 4 ) = ( 7 i i n ? i 3 ) u ( ' r i i n ? i 4 ) 
= m(\BAC)Ul7l(\EAC). 

AsDeHi, then either Z? 6 ITll\BAC) or Z? e TR(\EAC\ 
Now suppose that Z? g 1H(\BAC). so that Z? € 1K.(\EAC) and Z? £ [A, C . By 

A5(iii), 
|ZZ?AZ?|° + \ZDAC\° = \ZEAC\°. 

Hence by A6(iii), as we have supplementary pairs of angles, 

180 - \ZBAD\° + \ZDAC\° = 180 - \ZBAC\°. 

From this 
\ΔΒΑΰ\α + \ZDAC\° = \ΔΒΑΏ\°, 

and as |ZZMC|° > 0, we have \ZBAC\° < \ZBAD\°. This gives a contradiction with 
our hypothesis. 

3.6 MID-LINE OF AN ANGLE-SUPPORT 

3.6.1 Right-angles 

Definition. Given any point Ρ φ A of a line AB, by Ae(v) there is a half-line [P, Q 
such that \ZAPQ\° = 90. Then LAPQ is called a right-angle. If R φ Ρ is such that 
Ρ € [A,R] then ZRPQ is also a right-angle. For \APR is a straight angle-support, 
so having supplementary angles, 

\ZAPQ\" + \ZQPR\° = 180. 

As \ZAPQ\° = 90 it follows that \ZRPQ\° = 180 - 90 = 90. 

3.6.2 Perpendicular lines 

Definition. If l,m are lines in Λ, we say that / is perpendicular m, written / _L τη, 
if / meets m at some point Ρ and if Α φ Ρ is on /, and Q φ Ρ is on m, then ZAPQ 
is a right-angle. 

COMMENT. In 3.6.1, we say that a perpendicular PQ has been erected to 
the line AB at the point Ρ on it. 

Perpendicularity has the following properties:-

(i) Ifl±m, thenm±l. 

(ii) Ifl±m, then l φ m and ΙΙΊτηφΰ. 

Proof. 
These follow immediately from the definition of perpendicularity. 
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Figure 3.10. Perpendicular lines. Mid-line of an angle-support. 

3 . 6 . 3 Mid-lines 

Given any angle-support \BAC such that C & [Α,Β , there is a unique line I such 
that A el and for all Αφ Ρ 6 i , \ΔΒΑΡ\° = \ZPAC\°. 

Proof. 
Existence. 
This was already shown in 3.6.1 in the case when [BAG is straight, so we may 

assume that A, B, C are non-collinear. 
By A8(v) and 3.5.2, as 0 < |ZRAC|° < 180 and so 0 < \\£BAC\° < 90, there 

is a half-line [A, Ρ with Ρ on the same side of AR as C is, such that \ΔΒΑΡ\° = 
\\LBAC\°. Then [A, Ρ C ITZ(\BAC) by 3.5.2, so by A6(iii) 

|ZRAP|° + \ΔΡΑΰ\° = \ZBAC\°. 

Figure 3.11. 

It follows that 

\ZPAC\° = \ZBAC\° - \\ZBAC\° = \\LBAC\° 

and so |ZRAP|° = \LPAC\°. 
If P* # A is such that A € [Ρ, P'], then by A6(iii) 

|ZRAP'|° = 180 - |ZRAP|° = 180 - \LPAC\° = \AP'AC\a. 
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Uniqueness. 
When \BAC is straight, by A5(iii) 2\ΔΒΑΡ\° = 180 so \ΔΒΑΡ\° = 90. By A5(iv) 

this determines / uniquely. For the remainder we suppose then that we have a wedge-
angle LB AC. 

Let Ήι,Τίι be the closed half-planes with common edge AB, with C € rii, and 
%z,ri4 be the closed half-planes with common edge AC, with Β £ Ή.3- Let Βχ φ A 
be such that A £ [B,B{\. 

Now if / contains a point Q φ A in Hi it will also contain a point R φ A of Ή3, 
so we may assume that I contains a point Ρ Φ A of Ή$. As 

rli = U1nU = U1n{UzUHi) = {Hinn3)U(rl1r\rii) 
= m(]BAC)OXn(\BjAC), 

we then have Ρ £ TR.(\BAC) or Ρ € IKQBjAC). 
We get a contradiction if / is either AB or AC. For if 2 = AB, then we have 

\ΔΒΑΡ\° = 0, |ZPAC7|° > 0. Similarly if / = AC. 
We also get a contradiction if / contains a point Ρ φ A in TR,{\Bi AC) which is 

not on AC. For then by 3.5.2 |ZB,AP|° < \ZBtAC\°, so that 180 - \ΔΒΑΡ\° < 
180 - \ZBAC\° and so |ZBAC|° < \ΔΒΑΡ\°. It follows from 3.5.2 that [A,C C 
Ift(|ZM£) and so \Z.BAC\° + |Z£7AP|° = \ΔΒΑΡ\°. But |ZHAC7|° > 0 and so 
|Ζ(7ΑΡ|° < \ΔΒΑΡ\°, which gives a contradiction. 

Thus ί must contain a point Ρ φ A in Xn{\BAC). As then |ZBAP|° + \ZPAC\° = 
|ZBAq° and |Z5AP|° = \ΔΡΑΟ\°, we must have \ΔΒΑΡ\° = \\ΔΒΑΰ\° which 
determines [A, Ρ uniquely. 

Definition. We define the mid-line or bisector of the angle-support \BAC as 
follows:- if C £ [A, Β then it is the line AB, and otherwise it is the unique line / just 
noted. We use the notation ml(|BAC7)for this. 

3.7 DEGREE-MEASURE OF REFLEX ANGLES 

3.7.1 

Definition. Let α be a reflex angle with support \BAC_. We first suppose that C £ AB, 
and as in 3.5.2 let ΔΒ\ΑΟ\ be the opposite angle of the wedge-angle ΔΒΑΟ. Then 
Bi $ AC, Ci & AB and ΔΒχΑΟ is the opposite angle for ΔΒΑΟ\. By 3.5.2 we note 
that 

180 + \ΔΒιΑΟ\° = [ΔΒΑΰ,ΐ + 180, 

and we define the degree-measure of α to be the common value of these: 

\a\° = 180 + \ΔΒ,ΑΟ\° = [ΔΒΑΟ, \° + 180. 

Secondly, if C £ [Α,Β so that α is a full-angle, we define |a|° = 360. 
Then for each reflex-angle a, \a\° is defined; by 3.5.2 it satisfies 180 < \a\° < 360 

unless α is a full-angle in which case |a|° = 360. 
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Figure 3.12. Measure of a reflex angle. 

Let a be a non-full reflex-angle with support \BAC and take R i φ A, C\ φ A so 
that A e [A.fli], A e [C,d]. Let [A,D C 2ft(|fl,AC,) but D $ [ A , d , D $ 
[A, Bi . Then 

\ZBAD\° + \ZDAC\° = \a\°. 

Proof. As [A,D c TRi\BiAGj), D is in the closed half-plane with edge AR in 
which C\ lies, and also in the closed half-plane with edge AC in which B\ lies. By 
3.5.2, \ZBtAD\° < \ZBtACt\a so by A8(iii) \ZBACi\° < \ZBAD\°. By 3.5.2 then 
[A,Ci c ITl(\BAD). and by similar reasoning [A,Ri c TR.(\DAO. Then 

\ZBAD\° + \ZDAC\° = \ZBAD\° + (\ZDAB1\° + \ZB1AC\0) 
= (\ZBAD\° + \ZDAB, |°) + \ZB, AC\° 
= 180 + \ZB, AC\° = \a\°. 

COMMENT. We could use this last result to employ the measures of reflex-angles 
to a significant extent, but in fact do not do so until our full treatment of them in 
Chapter 9. 

Exercises 

3.1 If R € [A, C], then |A, B\ < |A, P\ < |A, C\ for all Ρ G [R, C]. 

3.2 Let A , R , C be points of a line I, and Μ = mp(A,R). If C is A or R, or if 
C G I \ [Α,Β], then \C,A\ + \C,B\ = 2\C,M\. 

3.3 Let A,B,C be distinct points and D = mp(fl,C), Ε = mp(C,A), F = 
mp(A,fl). Prove that D,E,F are distinct. If A ^ BC, show that neither 
Ε nor F belongs to BC. 

3.4 If Α φ Β, show that 

{ P G A R : |R,A| + |A,P| = |fl,P|} 

is the half-line of AB with initial-point A which does not contain R, while 

[A,B = {PeAB: \A,P\ + \P,B\ = \A,B\ or |A,fl| + |R,P| = |A,P|}. 
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3.5 Find analogues of 3.3.1 when Ae[B,C] and when Β e [C, A]. 

3.6 Show that if A,B,C,D are distinct collinear points such that C e[A,B], Be 
[A,D], and 

\A,C\ _ \A,D\ 
\C,B\ \D,B\' 

then 
1 1 _ 2 

\A,C\ + \A,D\ ~ \Α,Β\· 
3.7 Show that if A, B, C are non-collinear points, and Ρ φ A is a point oim(\BAC). 

then 

m(\BAP)um(\PAC) = TFL(\BAC\ ITK\BAP) nxn(\PAO = [A,P. 

3.8 Show that if d is any positive real number and | | is a distance function, then 
d| I is also a distance function. 

3.9 If α is the reflex angle with support | J U C and β is the reflex angle with support 
\BAF. show that if [A,F C TR,(\BA 2) then 

| a | ° + \ZCAF\° = \β\°. 

3.10 Prove that if I = m\(\BAC) and m = ml(\BACi) where A € [C, Ci], then / ± m. 

3.11 Suppose that A,C,fl i and C\ are points distinct from A and that A € [R,Ri], 
A e [C,&]. Show that then ml(|R 7i4C/) = nu(\BAC). 
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C o n g r u e n c e o f t r i a n g l e s ; 
para l l e l l ine s 

COMMENT. In this chapter we deal with the notion of congruence of triangles, and 
make a start on the concept of parallelism of lines. As we have distance and angle-
measure, we do not need special concepts of congruence of segments and congruence 
of angles, and we are able to define congruence of triangles instead of having it as a 
primitive term as in the traditional treatment. As a consequence there is a great gain 
in effectiveness and brevity. 

4.1 PRINCIPLES OF CONGRUENCE 

4.1.1 Congruence of triangles 

Figure 4.1. Congruent triangles. 

Definition. Let Τ be a triangle with the vertices {A,B,C} and V a triangle with 
vertices {A',B',C'}. We say that Τ is congruent to T' in the correspondence 
A -> Α', Β -• Β', C -+ C", if 

\B,C\ = \B',C'\, \C,A\ = IC ' .A'I, \A,B\ = \A',B'\, 
\Z.BAC\° = \Z.B'A'C'\°, \ZCBA\° = \ZC'B'A'\a, \Z.ACB\°= \ZA'C'B'\C'. 

We denote this by Τ {AiB>C)3f{A.,B,,c-) Τ'· 

47 

�� �� �� �� ��



48 CONGRUENCE OF TRIANGLES; PARALLEL LINES (Ch.4 

We say that Τ is congruent to T', written Γ = Τ', if Τ is congruent to V in at 
least one of the correspondences 

(A,B,C) -* (A',B',C), (A,B,C)-r(A',C',B'), (A,f l ,C)-> (f l ' .C, Α'), 
{A,B,C) -> (Β',Α',Ο, (A, R,C)->(<?', Α',Α'), ( A . f l . C ) ( C " , R ' , Α'). 

COMMENT. Originally, behind the concept of congruence lay the idea that Τ can 
be placed on T', fitting it exactly. 

AXIOM A e . If triangles Τ and V, with vertices {A,B,C} and {A',B',C}, re­
spectively, are such that 

\C,A\ = \C',A'\, \A,B\ = |A',R'|, \ZBAC\° = \ZB'A'C'\\ 

then Τ Τ I 
v.rva>\ l (A,B,C)5(A',B'C) 

COMMENT. This is known as the SAS (side, angle, side) principle of congruence 
for triangles. 

Triangles have the following properties:-

(i) / / tn a triangle [A,B,C], \A,B\ = \A, C\ then \ZABC\° = \ZACB\°. 

(ii) If in a triangle [A,B,C], \A,B\ = \A,C\ and D is the mid-point of Β andC, 
then AD ± BC. 

(iii) If Β φ C, D is the mid-point of Β and C, and Αφ D is such that AD ± BC, 
then\A,B\ = \A, C\. 

(iv) / / |RAg is not straight, if Ε G [A, R ,F 6 [A, C are such that \A, E\ = |A, F\ > 
0 and G = mp(E,F), then AG = ml(\BAC). 

Proof. 
(i) Note that for the triangle Τ with vertices {A,B,C}, under the correspondence 

(A,B,C)->(A,C,B), 

\A,B\ = \A, C\, \A, C\ = \A,B\, \ZBAC\° = \ZCAB\°, 

so by the SAS principle Τ { A > B t C ) ^ { A < C i B ) T. In particular \ZABC\° = \ZACB\°. 
(ii) Note that if TUT2 are 
the triangles with vertices 
{A, R, £>}, {A, C, D}, respec­
tively, then 

\A,B\ = \A,C\, \B,D\ = \C,D\, 

\ZABD\° = \ZACD\°, 

so by the SAS principle, 
T L (A,B,D)5(A,C,D) T*- P*1-
ticular |ZARR|° = \ZADC\°. 
As D G [B,C], the sum of the 
degree-measures of these angles 
is 180 and so they must be 
right-angles. 

Β D C 

Figure 4.2. An isosceles triangle. 
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(iii) As AD J. BC we know that A £ BC. If Τι, T 2 are the triangles with vertices 
{A, B, D], {A, C, D}, respectively, then 

\B,D\ = \C,D\, \A,D\ = \A,D\, \ZBDA\° = \ZCDA\°, 

so by the SAS principle, Tx ^ β C D) particular l-̂ , ^1 = 1·̂ » C I-
(iv) As in (ii), the triangles [A,E,G],[A,F,G] are congruent, and so \ZEAG\° — 

\ZFAG\°. 
Definition. A triangle is said to be isosceles if at least two of its sides have equal 

lengths. 

IfT,T' are triangles with vertices {A,B,C},{A',B',C'}, respectively, for which 

\B, C\ = \B', C'\, \ZCBA\° = \ZC'B'A'\°, \ZBCA\° = \ZB'C'A'\°, 

then Τ ( > i i B ) C )4 ( > 4 / i B , i C <) T'. 
Proof. Suppose that \C, A'\ φ \C, A\. Choose the point D' on the half-line [C, A' 

such that IC, D'\ = | C, A\. Then if T" is the triangle with vertices {Β', C, D'}, under 
the correspondence (B,C,A) -»· (B',C',D') we have 

\B,C\ = \B',C'\, \C,A\ = \C,D'\, \ZBCA\° = \ZB'C'D'\°. 

Figure 4.3. 

Then by the SAS principle, Τ ( B ) C T A ) ^ ( B , IC-,D') Τ " · ^ Particular 

\ZC'B'D'\° = \ZCBA\° = \ZC'B'A'\°. 

Then we have different wedge-angles ZC'B'A', ZC'B'D', laid off on the same side of 
B'C and having the same degree-measure. This gives a contradiction. 

Thus \C',A'\ = IC, A\, and as we also have 

\C',B'\ = \C,B\, \ZB'C'A'\° = \ZBCA\°, 

by the SAS principle we have Τ (Btc,A)$(B',C',A>) Τ ' · 
This is known as the ASA (angle, side, angle) principle of congruence. 
If Τ and V are triangles with vertices {A,B,C},{A',B',C'}, respectively, for 

which 
\B,C\ = \B',C'\, \C,A\ = \C',A'\, \A,B\ = \A',B'\, 

then Τ (A,B,C)^(A',B',C') T' 
ι» m ηιλ · 
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A A 

D 

Figure 4.4. The SSS-principle of congruence. 

Proof. Choose D on the opposite side 
of BC from A, so that \ZCBD\° = 
\ZC'B'A'\° and \B,D\ = \B',A'\. 
Let T" be the triangle with vertices 
{B,C,D}. Then as \B,C\ = \B',C'\, 
by the SAS principle 

rplt rpl 

Now \B,A\ = \B',A'\ = \B,D\ 
so we have an isosceles triangle and D 
\ZBAD\° = \ZBDA\°. Similarly 
\ZCAD\° = \ZCDA\°. 

Note that A and D are on different sides of BC, so a point Ε of [A, D] is on BC. 
CASE 1. Let Ε G [B,C]. Then [A,D c in(\BAC) and [D,A G I1l(\BDC). It 

follows that 

\ZBAC\° = \ZBAD\° + \ZDAC\° = \ZBDA\° + \ZADC\° = \ZBDC\°. 

CASE 2. Let Β G [E,C]. Then [Α,Β c 1TI(\DAC) and [D,B G m(\ADC). It 
follows that 

\ZBAC\° = \ZDAC\° - \ZDAB\° = \ZADC\° - \ZADB\° = \ZBDC\°. 

CASE 3. Let C G [B,E]. Then [A,C C IK(\BAD) and [£>,C G I7lflBI?A). It 
follows that 

\ZBAC\° = \ZBAD\° - \ZDAC\° = \ZBDA\° - \ZADC\° = \ZBDC\°. 

Now combining the cases, by the SAS principle, as 

I A, B\ = \D, B\, \A, C\ = \D, C\, \ZBAC\° = \ZBDC\°, 

W e h a V e T (Α,Β,Ο^Ο,Β,Ο Τ " · B u t T " (Ο,Β,Ο^Α',Β',α') Τ ' 8 0 T ^ 
This is known as the SSS(side, side, side) principle of congruence for triangles. 
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4.2 ALTERNATE ANGLES, PARALLEL LINES 

4.2.1 Alternate angles 

Let A,B,C be non-collinear points, and take D φ C so that C € [A, 2?]. Then 
\ZBCD\° > \ZCBA\°. 

Proof. Let Ε = mp(R, C) and choose F so that Ε = mp(A, F). Then if Tx, T2 are 
the triangles with vertices {A, R, E}, {F, C, E}, respectively, by the SAS principle of 
congruence Γι ^ B % E ) M F , C , E ) T * ^ Particular, 

\ZEBA\° = \ZECF\°, i.e. \ZCBA\° = \ZBCF\°. 

But [C, F C 1TI(\BCD) as E, and so F, is in the closed half-plane with edge AC in 
which Β lies, and D and F are on the opposite side of BC from A. Also F & AD as 
F e AD would imply that E = C. Then by 3.5.2 \ZBCF\° < \ZBCD\°. 

COROLLARY. In the theorem ΜϋφΟ be such that Ce[B,G]. Then \ZACG\° > 
\ZABC\°. 

Proof. This follows immediately as ZACG and ZBCD are opposite angles. 

COMMENT. If D and 
Η are on opposite sides 
of BC, then ZCBH and 
ZBCD are known as al­
ternate angles . This last 
result implies that if al­
ternate angles ZCBH and 
ZBCD are equal in mea­
sure, then CD and BH 
cannot meet at some point 
A. Figure 4.5. Result on alternate angles. 

Given any line I and any point Ρ & I, there is a line m which contains Ρ and is 
such that l Π m = 0. 

Proof. Take any points Α,Β € I and lay off an angle ZAPQ on the opposite side 
of AP from R, so that \ZAPQ\° = |ZPAfl|°. Than by the last result the line PQ 
does not meet /. In this ZAPQ and ZPAB are alternate angles which are equal in 
measure. 

4.2.2 Parallel lines 

Definition. If Ζ and m are lines in Λ, we say that I is parallel to m, written /1| m, if 
I = m or Znm = 0. 

Parallelism has the following properties:-

(i) 11| I for all I £ A; 

(ii) / / / | | m thenm \\ I; 

(iii) Given any line Ζ € Λ and any point Ρ e Π, there is at least one line m which 
contains Ρ and is such that l\\m. 
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(iv) If the lines I and m are both perpendicular to the line n, then I and m are parallel 
to each other. 

Figure 4.6. Parallel lines. 

Proof. 
(i) and (ii) follow immediatly from the definition, while (iii) follows from 4.2.1. 
(iv) As perpendicular lines form right-angles with each other at some point, I 

must meet η at some point A, and m must meet η at some point Ρ such that if Β 
is any other point of I and Q is any point of m on the other side of η from R, then 
|ZPAR|° — 90, \ZAPQ\° = 90. Then, as there are alternate angles equal in measure, 
by 4.2.1 / || m. 

4.3 PROPERTIES OF TRIANGLES AND HALF-PLANES 

4.3.1 Side-angle relationships; the triangle inequality 

If Α,Β,C are non-collinear points and \A,B\ > \B,C\, then \ZACB\° > \ZBAC\°, 
so that in a triangle a greater angle is opposite a longer side. 

Β 

A 
Figure 4.7. Angle opposite longer side. Figure 4.8. The triangle inequality. 

Proof. Choose De[B,A so that |R,D| = |fl, C\. Then D € [R,A] as |R,£>| < 
|fl, A|. Now \ZACB\° > \ZDCB\° as [C,D c IU(\BCA). and \ZDCB\° = \ZBDC\° 
by 4.1.1. But \ZBDC\° > \ZDAC\° by 4.2.1, so 
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\ZACB\° > \ZDCB\° = \ZBDC\° > \ZDAC\°. 

Hence \ZACB\° > \ZDAC\° and ZD AC = ZBAC as D e [B, A]. 

COROLLARY. If Α,Β,C are non-collinear points and \ZACB\° > \ZBAC\°, then 
\A,B\ > \B, C\, so that in a triangle a longer side is opposite a greater angle. 

Proof. For if \A,B\ < \B, C\, we have \ZACB\° < \ZBAC\° by 4.1.1 and this 
result. 

T H E T R I A N G L E I N E Q U A L I T Y . If Α,Β,C are non-collinear points, then \C,A\ < 
\A,B\ + \B,C\. 

Proof. Take a point D so that Β € [A,D] and \B,D\ = \B, C\. As [C,B C 
ITKUCD) we have \ZDCA\° > \ZDCB\°. But \ZDCB\° = \ZCDB\° by 4.1.1, so by 
our last result, \A,D\ > \ A, C\. However \A,D\ = \A,B\ + \B,D\ as Β e [A,D], and 
the result follows. 

4.3.2 Properties of parallelism 

Let I £ A be a line, Gi an open half-plane with edge I and Ρ a point of G\. If m is a 
line such that Ρ € m and 11| m, then m C G j . 

Proof. As Ρ £ I, Ρ € m we have l Φ m. Then as I || m we have / Π m = 0. Thus 
there cannot be a point of m on I. Neither can there be a point Q of m in G2, the 
other open half-plane with edge I. For then we would have [P, Q] Π / φ 0 and so a 
point R of m would be on I, as [P, Q] C PQ = m. 

Let AB, CD be distinct lines and I distinct from and parallel to both. If I meets 
[A, C] in a point E, then I meets [B, D] in a point F. 

Proof. By the Pasch property applied to [A, B, C] as / does not meet [A, B] it 
meets [B,C] at some point G. Then by the Pasch property applied to [B,C,D], as / 
does not meet [C, D] it meets [B, D] in some point F. 
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4.3.3 Dropping a perpendicular 

Ρ 

Figure 4.11. Dropping a perpendicular. 

Given any line / £ Λ and any point Ρ & I, there is a unique line m such that 
Ρ Em and I ±m. 

Proof. 
Existence. Let Α,Β be distinct points of /. Take a point Q on the opposite side 

of I from Ρ and such that \ZBAQ\° = \ZBAP\°. Also take R 6 [A,Q so that 
I Α, R\ = I A, P|. As Ρ and R are on opposite sides of /, [P, R] meets I in a point S. 

We first suppose that A £ PR so that Αφ S. Then [A, P, S] and [A, R, S] are 
congruent by the SAS-prindple, so in particular \ZASP\° = \ZASR\°. As 5 € [P,R] 
it follows that these are right-angles and so PR ± I. 

In the second case suppose that A Ε PR so that A = S. Then S G [P, R] and by 
construction \ZBSR\° = \ZBSP\°. Again these are right-angles so PR ± I. 

Uniqueness. Suppose that there are distinct points S,T G I such that PS ± 
I, PT _L I. Choose U φ Τ so that Τ Ε [S,U]. Then \ZUTP\° = \ZUSP\° = 9 0 and 
this contradicts 4 . 2 . 1 . 

COMMENT. We refer to this last as dropping a perpendicular from Ρ to /. 

Let A,B,C be non-collinear points such that AB ± AC and let D be the foot of 
the perpendicular from A to BC. Then D €[B,C], D φ Β, D φ C. 
Proof. By 4 . 2 . 1 , in a 
right-angled triangle each 
of the other two angles 
have degree-measure less 
than 9 0 . By 4 .3 .1 it then 
follows that the side op­
posite the right-angle is 
longer than each of the Β D C 
other sides. It follows Figure 4.12. 
that |R,R| < |A,fl| < 
|R, C\. By a similar argu­
ment \C,D\ < \B,C\. 

We cannot then have Β € [C, D] as that would imply \C,B\ < \ C,D\, and similarly 
we cannot have C G [B,D] with as that would imply \B, C\ < \B,D\. Hence D G 
\Β,Ο\,ΌφΒ,Όφ0, 
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4.3.4 Projection and axial symmetry 

Definition. For any line Ζ € Λ we define a function πι : Π -> I by specifying that for 
all Ρ € Π, πι (Ρ) is the foot of the perpendicular from Ρ to /. We refer to πι as 
projection to the line /. 

st(P) 

Figure 4.13. Project ion t o t h e line /. Axial s y m m e t r y in t h e line /. 

Definition. For any line / € Λ we define a function sj : Π ->· Π by specifying that 
for all Ρ € Π, sj(P) is the point Q such that 

nt(P) = mp(P,Q). 

We refer to ej as axial symmetry in the line I. 
Let Ηι,Ηι be closed half-planes with common edge I, let Pi € Hi \ I and P 2 — 

s,(Pi). Then, for all Ρ e Hi, \P,Pi\< \P,PS\. 
Proof, if Ρ € I, then \P,Pt \ = \Ρ,Ρε\, by 4.1.1 when Ρ £ PiP 2 , and as Ρ = 

mp(Pi,P2) otherwise. 
When Ρ € Gi = Hi \ I we suppose first that Ρ # PtP2. Then [P, P2] meets / in a 

point Q and we have 

\P,PB\ = \P, Q\ + \Q,Pe\ = \P, Q\ + \Q,Pi \. 

Now we cannot have Q € [Ρ,Ρι] 
as [Ρ,Ρι] C Gi and Q G I. Thus 
either Q $ PPi or Q € PPi \ 
[Ρ,Ρι]. We then have |P, Q\ + 
\Q,Pt\ > \P,Pt\ by 4.3.1 and 
3.1.2. For the case when Ρ e 
P 1 P 2 , we denote by R the point 
of intersection of ΡχΡ2 and I, so 
that R --- mp(Pi,P2). Figure 4.14. Dis tance a n d half-planes. 

Now Ρ 6 [R, Pi so either Ρ € [R, Pi] or Pi € [R, P]. In the first of these cases we 
have 

\P1,P\<\P1,R\ = \R,Pe\<\P,Pe\, 

as Re [P,P2]. In the second case we have |P,Pi | < \P,R\ < \P,Pe\ as R e [P,P2]. 
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Exercises 

4.1 If D φ A is in [A, B, C] but not in [R, C], then |fl, D\ + \D, C\ < \B, A\ + \A, C\ 
and \ZBDC\° > \ΔΒΑβ\°. 

4.2 There is an AAS-principle of congruence that if 

\ZBAC\° = \ZEDF\°, \ZCBA\° = \ZFED\°, 
\B,C\ = \E,F\, 

then the triangles [A,B,C],[D,E,F] are congruent. [Hint. Suppose that 
\ZBCA\° < \ZEFD\°; lay off an angle ZBCG equal in magnitude to ZEFD and 
with G on the same side of BC as A is; then [C, G meets [A, B] at a point R~; 
also [H,B,C] = [D, E, F] and in particular \ZBHC\° = \ZEDF\° = \ZBAC\°] 
deduce a contradiction and then apply the ASA-principle.] 

4.3 There is an ASS-principle of congruence for right-angled triangles, that if BC ± 
BA, EF ± ED, \C,A\ = \F,D\, \A,B\ = \D,E\, then [A,B,C] = [D,E,F]. 
[Hint. Take C so that Ε e [F, C] and \E, C'\ = |R, C\] 

4.4 If Ρ € m\{\BAC) and Q = π Α Β ( Ρ ) , R = *AC(P), then \ P , Q \ = \ P , R \ . 
Conversely, if Ρ € 1H(\BAC) and |P, Q \ = \ P , R \ where Q = πΑΒ(Ρ), R = 
KAC(P), then Ρ 6 ml(|RAC). 

4.5 In triangles [A,B,C],[D,E,F] let 

|A,R| = \D,E\, |A, C\ = \D,F\, \ZBAC\° > \ZEDF\°. 

Then \B,C\ > \E,F\. [Hint. Lay off the angle ZBAG with |ZRAG|° = 
\ZEDF\° and with G on the same side of AB as C is. If G e BC proceed; 
if G & BC, let Κ = mp(G, C) and show that [A, Κ meets [R, C] in a point H] 

4.6 If AR || AC, then AR = AC. 

4.7 Let fti be a closed half-plane with edge /, let Ρ € H i and let Ο = π/(Ρ). Then 
if m is any line in Λ such that Ο em, we must have 7rm(P) € H i . 
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T h e para l l e l a x i o m ; E u c l i d e a n 
g e o m e t r y 

COMMENT. The effect of introducing any axiom is to narrow things down, and 
depending on the final axiom still to be taken, we can obtain two quite distinct well-
known types of geometry. By introducing our final axiom, we confine ourselves to the 
familiar school geometry, which is known as Euclidean geometry. 

5.1 THE PARALLEL A X I O M 

5.1.1 Uniqueness of a parallel line 

We saw in 4.2 that given any line I and any point Ρ & I there is at least one line m 
such that Ρ em and l\\m. We now assume that there is only one such line ever. 

AXIOM A7. Given any line I € Λ and any point Ρ &l, there is at most one line 
m such that Ρ em and l\\m. \ 

COMMENT. By 4.2 and A7, given any line Ζ 6 Λ and any point Ρ € Π, there is a 
unique line m through Ρ which is parallel to I. 

Let I € A, Ρ 6 Π and η e Λ be such that Ιφη, Ρ € η and I \\ n. Let A and Β be 
any distinct points of I and R a point of η such that R and Β are on opposite sides of 
AP. Then \ZAPR\° = |ZPAB|°, so that for parallel lines alternate angles must have 
equal degree-measures. 

Proof. Let m be the line PQ in 4.2.1 such that \ZAPQ\° = \ZBAP\°. Then I || m. 
As m and η both contain Ρ and / is parallel to both of them, by A7 we have m = n, so 
that R e [P,Q and so \ZAPR\° = \ZAPQ\°. Thus \ZAPR\° = \ZAPQ\° = \ZPAB\°. 

Let I, η be distinct parallel lines, A, Β e I and Ρ, Τ e η be such that Β and Τ 
are on the one side of AP, and S φ Ρ be such that Ρ e [A, S]. Then the angles 
ZBAP, ZTPS have equal degree-measures. 

Proof. Choose R Φ Ρ so that Ρ e [T,R]. Then R e n and Β and R are 
on opposite sides of AP, so that ZBAP, ZAPR are alternate angles and so have 
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equal degree-measures. But Δ APR and ZTPS are opposite angles and so have equal 
degree-measures. Hence \ΔΒΑΡ\° = \ZTPS\°. 

Figure 5.1. Alternate angles. Corresponding angles. 

We call such angles ΔΒΑΡ, ΔΤΡΞ corresponding angles for a transversal. 
If lines Ι,τη,η are such that l\\m and m || n, then I \\ n. 
Proof. UI = n, the result is trivial as / || /, so suppose l φ η. If ί is not parallel 

to n, then I and η will meet at some point P, and then we will have distinct lines I 
and n, both containing Ρ and both parallel to m, which gives a contradiction by A7. 
Thus parallelism is a transitive relation. Combined with the properties in 4.2.2 this 
makes it an equivalence relation. 

If lines are such that I ±n and 11| m, then m i n . 

Proof. As / is perpendicular to η 
they must meet at some point A. 
As I II m, we cannot have m \\ 
n, as by transitivity that,, would 
imply I \\ n. Thus m meets η in 
some point P, and if we choose 
Β on /, Q on m on opposite sides 
of n, then we have |ZAPQ|° = 
\ΔΡΑΒ\° as these are alternate 
angles for parallel lines. Hence 
|ZAPQ|°= 90 and m ± n . - Figure 5.2. 

5.2 PARALLELOGRAMS 

5.2.1 Parallelograms and rectangles 

Definition. Let points A, R, C, D be such that no three of them are collinear and 
AB II CD, AD II BC. Let U\ be the closed half-plane with edge AR in which C lies; 
as CD II AB then, by 4.3.2, D € H\. Similarly let Ή.3 be the closed half-plane with 
edge BC in which A lies; as AD || BC, then D € U3. Thus D 6 UirtHs = TRX\ABC\ 
and so by the cross-bar theorem [A, C] meets [B,D in some point T, which is unique 
as AC = BD would imply R € AC. Similarly C € 17l(\BAD) so Τ is on [B, D]. Thus 
[A, C] Π [Β, D] φ β so as in 2.4.4 a convex quadrilateral [A,B,C,D] can be defined, 
and in this case it is called a parallelogram. The terminology of 2.4.4 then applies. 
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D 

A D 
•···.. Τ ...· 

Β c 
Β 

Figure 5.3. A parallelogram. A rectangle. 

Definition If [A, B, C, D] is a parallelogram in which AB _L AD, then, as AB || CD, 
by 5.1.1 we have AD ± CD. Thus if two adjacent side-lines of a parallelogram 
are perpendicular, each pair of adjacent side-lines are perpendicular; we call such a 
parallelogram a rectangle. 

Parallelograms have the following properties:-

(i) Opposite sides of a parallelogram have equal lengths. 

(ii) The point of intersection of the diagonals of a parallelogram is the mid-point of 
each diagonal. 

(i) With the notation above for a parallelogram, the triangles with vertices {A, B, D} 
and {C, D, B} are congruent in the correspondence (A, B, D) -¥ (C, D, B) by the ASA 
principle. First note that \B,D\ = \D,B\. Secondly note that AB \\ CD and A and 
C are on opposite sides of BD so that ZABD and ZCDB* are alternate angles, and 
hence \ZABD\° = \ZCDB\°. Finally AD || BC, and A and C are on opposite sides of 
BD, so that Ζ AD Β and ZCBD are alternate angles and hence \ZADB\° = \ZCBD\°. 
It Mows that \A,B\ = \C,D\, \A,D\ = \B, C\. 

(ii) Let Τ be the point of intersection of the diagonals. Then the triangles [A, B,T], 
[C,D,T] are congruent by the ASA principle, as 

\A,B\ = \C,D\, \ZABT\° = \ZCDT\°, \ZBAT\° = \ZDCT\°. 

It Mows that j A, T\ = \C, T\, \B, T\ = \D, T\. 

5.2.2 Sum of measures of wedge-angles of a triangle 

If Α,Β, C are non-collinear points, then 

Thus the sum of the degree-measures of the wedge-angles of a triangle is equal to 180. 

Proof. 

\ZCAB\° + \ZABC\° + \ZBCA\° = 180. 
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Proof. Let / be the line through 
A which is parallel to BC. If 
m is the line through Β which 
is parallel to AC, then we can­
not have I || m as we would 
then have I || m, m || AC 
which would imply I \\ AC; we 
would then have BC || /, / || 
AC and so RC || AC; thus as 
DC Π AC φ 0 we would have 
BC = AC; this would make 
A,B,C collinear and contradict 
our assumption. 

Thus m meets / at some point, Q say. Then [A, C, B,Q] is a parallelogram and 
[Α,Β], [Q,C] meet at a point T. Now Q is on the opposite side of AB from C, so 
that ZCBA and ZDAQ are alternate angles and so \ZCBA\° = \ZBAQ\°. Moreover 
[Α,Β c in{\CAQ) and so \ZCAB\° + \ZBAQ\° = \ZCAQ\°. 

Choose R φ A so that A G [Q, R], Then R Ε / and R is on the opposite side of 
AC from Q. But RQ || AC so R and Q are on the same side of AC, and hence R 
and R are on opposite sides of AC. Then ZBCA and ZCAR are alternate angles, so 
|ZfltfA|° = |ZCAH|°. Thus 

(|ZC7AB|0 + |ZCBA| 0) + |ZBCA| 0 = {\ZCAB\° + \ZBAQ\°) + \ZBCA\° 
= \ZCAQ\0 + \ZCAR\° 
= 180. 

COROLLARY. If the points A, B, C are non-collinear, and D φ C is chosen so 
that C e [B,D], then |ZACR|° = \ZBAC\° + |ZCRA|°. Thus the degree-measure of 
an exterior wedge-angle of a triangle is equal to the sum of the degree-measures of the 
two remote wedge-angles of the triangle. 

Proof. For each of these is equal to 180 - \ZACB\°, as C G [B, D]. 

5 .3 R A T I O R E S U L T S F O R T R I A N G L E S 

5.3 .1 L i n e s p a r a l l e l t o o n e s i d e - l i n e o f a t r i a n g l e 

Let A,B,C be non-collinear points, and with I = AB, m = AC, let <i, <m be 
natural orders such that Α<ι B, A <m C. Let Dx,Di,Ds be points of AB such that 
A <i Di <ι I?2 <i D3 <ι Β and \Di,De\ = \D£,D3\, so that Di is the mid-point of 
D\ and Da. Then the lines through Dx, D2 and Da which are all parallel to BC, will 
meet AC in points Ei,E2,Ea, respectively, such that A <m E\ <m <m E3 <m C 
and\E,,EB\ = \Ee,E3\. 
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Figure 5.5. Transversals to parallel lines. 

Proof. By Pasch's property 
in 2.4.3 applied to the trian­
gle [A,B,C], the lines through 
[Di,D2,D3] which are paral­
lel to BC will meet [A,C] in 
points Ει,Ει,Ε^, respectively. 
By Pasch's property applied to 
[A,Da,Ea], since D2 6 [A,D3] 
and the lines through D2 and 
D3 parallel to BC are parallel to 
each other, Ei 6 [Α,253]. 
By Pasch's property applied to 
[A,D2,Ei], since Dl € [A,D2] 
and the lines through Di and 
Di parallel to BC are parallel to 
each other, Ει € [Α,ϋ^]. It re­
mains to show that Ei is equidis­
tant from Ei and E$. 

By Pasch's property applied to [Α,ΰι,Ει], since Ei € [A,£2] the line through Εχ 
which is parallel to AB — AD2 will meet [D2, Ei] in a point F. By Pasch's property 
applied to [A,D3,E3], since Ei e [Α,ί^] the line through Ei which is parallel to 
AB - AD3 will meet [D3, Ei] in a point G. 

Let Γι, Ti be the triangles with vertices {E\, F, Ει}, {Ει, G, E3 }, respectively. Our 
objective is to show that 

Now D1E1 Κ D2F, DxDi || EiF, so [DltD2,F,Ei] is a parallelogram, and so by 
5.2.1 \Dt,De\ = \E,,F\. Similarly D2Ei \\ D3G, D2D3 \\ EiG so [D2,D3,G,Ei] 
is a parallelogram, and so \De,D3\ = \Ee,G\. But \Dt,De\ = \Dg,D3\ and hence 
| ^ , F | = | i i f > G|. 

Let Ήι be the closed half-plane with edge AC in which Β lies. Then [A, B]cWi, 
so D2,D3 6 Ήι. Then [D2,Ei],[D3,E3] C Ήι, so F,G € U\. Then F and G 
are on the one side of the line AC, and as D2Ei \\ D3E3 and Ei € [E3,Ei], the 
angles £FEiE\, LGE^Ei are corresponding angles for parallel lines and so have equal 
degree-measures. Thus \/.FEeEi\° = \Z.GE3EB\°. 

By transitivity EiF || EiG as both are parallel to AB, F and G are on the one 
side of AC, and Ei € [Fi,£g], so the angles ZFE1E1 and ZGEiE3 are corresponding 
angles for parallel lines and so have equal degree-measures. Thus [ZFEtEs^ = 
\ZGEeE3\°. 

As 

\ZFEBEt\° = \ZGE3E2\°, \ZFE,ES\0 = \ZGESE3\°, 

by 5.2.2 \ZEtFEs\° = \ZESGE3\°. Thus 

\E,,F\ = \Ee, G\, \ZFE,Ee\0 = \ZGEeE3\°, [ZEtFEtf = \ZEeGE3\°, 

so by the ASA principle, the triangles Ti ,T 2 are congruent in the correspondence 
(EuF,Ei) •+ (Ei,G,E3). It Mows that \E!,Ee\ = \E2,E3\. 
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Let A,B,C be non-collinear points and let Ρ 6 [Α,Β and Q € [A, C be such that 
PQ || BC. Then 

\A,P\ = \A,Q\ 
\A,B\ \A,C[ 

C 
Figure 5.6. 

Proof. We assume first that Ρ € [A, B]. Within this first case, we suppose initially 
that 

\A,P\ s 
\A,B\ f 

where s and t are positive whole numbers with s < t, so that s/t is an arbitrary 
rational number between 0 and 1. For 0 < j < t let Bj be the point on [Α,Β such 
that 

\Α,ΒΛ j 
\A,B\ V 

so that BQ = A, Bt = Β and R, = P. If AB = I and <j is the natural order for 
which Α <ι B, then A <, Rj_i </ Bj <, Bj+1 <, Β and \Bj.t,Bj\ = | R , , f l i + 1 | . 
If AC = m and < m is the natural order for which A <m C, then by the last result 
applied with (DX,D2,D3) = (Bj-i,Bj,Bj+x), for 1 < j < t - 1 the line through Bj 
which is parallel to BC will meet AC in a point Cj such that A <m Cj-\ <m Cj <m 

Cj+i <m C and \Cj- t , Cj\ = \Cj, Cj+i|. 
It Mows that, for 0 < j < t, \A, Cj\ = j\A, C, | and so as Ct = C, 

\A,Cj\ _j\A,Ct\ j 
\A,C\ t\A,C,\ t' 

In particular, as C, = Q, it follows that 

\A,Q\ = s = \A,P\ 
\A,C\ t \A,B\-

�� �� �� �� ��



Sec.5.3) RATIO RESULTS FOR T R I A N G L E S 63 

Still within the first case, now suppose that 

\A,B\-X> \A,C\~Y> 

where a; is an irrational number with 0 < χ < 1. If u is any positive rational number 
less than x, and Pu is a point chosen on [A, B] so that 

\A,B\ 

then the line through Pu which is parallel to BC will meet [A, C] in a point Qu such 
that 

\A1QA=n 
\A,C\ U-

Similarly if υ is any rational number such that χ < υ < 1, and Pv is a point chosen 
on [A, B] so that 

\A,PV\ 
\A,B\ - v. 

then the line through Pv which is parallel to BC will meet [A, C] in a point Qv such 
that 

\A, Qv\ 
\A,C\ = v. 

As \A,PU\ < \A,P\ < \A,PV\ we have Ρ € [PU,PV]. It follows by 4.3.2 that Q € 
[Quy Qv] and so u < y < v. Thus for all rational u and ν such that u < χ < ν we have 
u < y < v. It follows that x — y. 

This completes the first case. For the second case note that if Ρ & [A, B] we have 
Β € [A, P]. Then by the first case 

\A1B\ = \A1C[ 
\A,P\ \A,Q\' 

so the reciprocals of these are equal. 

5.3.2 Similar triangles 

Let A,B,C and A',B',C be two sets of non-collinear points such that 

\ZBAC\° = \ZB'A'C'\°, \ZCBA\° = \ZC'B'A'\°, \ZACB\° = \ZA'C'B'\°. 

Then 
\B',C'\ _ \C',A'\ = \A',B'\ 
\B,C\ \C,A\ \Α,Β\· 

Thus if the degree-measures of the angles of one triangle are equal, respectively, to 
the degree-measures of the angles of a second triangle, then the ratios of the lengths 
of corresponding sides of the two triangles are equal. 
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Figure 5.7. Similar triangles. 

Proof. Choose fl" € [Α,Β and C" e [A,C so that \A,B"\ = \A',B'\, \A, C"\ = 
\A',C'\. Then as \ZB"AC"\° = \ZBAC\° = \ZB'A'C'\°, by the SAS principle 
we see that the triangles [A,B",C"],[A',B',C] are congruent in the correspon­
dence (A,B",C") ->· (A'.fl ' .C). In particular \ZAB"C"\° = \ZA'B'C'\° and so 
\ZAB"C"\° = \ZABC\°. These are corresponding angles in the sense of 5.1.1, so 
B"C" || BC and then by 5.3.1 

so 

\A,B"\ 
\A,B\ 

\A',B'\ 

\A,C"\ 

\A',C'\ 
\A,B\ \A,C\-

By a similar argument on taking a triangle [fl, E, F] which is congruent to [fl', C", A'], 
we have 

|fl',C"| |fl',A'| 
| f l ,C| | R , A | " 

COMMENT. Triangles like these, which have the degree-measures of corresponding 
angles equal and so the ratios of the lengths of corresponding sides are equal, are said 
to be similar in the correspondence (A, fl, C) -> (Α', fl', C). 

Let A,B,C and A',B',C be two sets of non-collinear points such that 

\A',B'\ \A',C'\ 
\A,B\ \A,C\ 

, |ZR'A'C'|° = |ZRAi7| 0 

TAen the triangles are similar. 
Proof. Choose fl" € [Α,Β , C" e [A,C so that |A,A"| = |A',A'|, |A,C7"| = 

|A', C'\. Then as \ZB'A'C'\° = \ZBAC\° = \ZB"AC"\°, by the SAS principle we see 
that the triangles [A',B',C], [A,B",C"] are congruent. We note that 

|A,fl"| |A, C"\ 
\A,B\ \A,C\-
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Now the line through B" which is parallel to BC will meet [A, C in a point D such 
that 

\A,B"\ \A,D\ 
\A,B\ \A,C\-

Hence 
\A,C"\ _ \A,D\ 
\A,C\ \A,cy 

from which it follows that \ A,D\ = \A,C"\. As C",D e [A, C we then have D = C" 
and so B"C" || BC. Thus the degree-measures of the angles of [A, B, C] are equal 
to those of the corresponding angles of [A,B",C] and so in turn to those of the 
corresponding angles in [A1, B\ C']. 

5.4 PYTHAGORAS' THEOREM, C.550B.C. 

5.4.1 

P Y T H A G O R A S ' T H E O R E M . Let A,B,C be non-collinear points such that AB _L AC. 
Then 

\B,C\2 = \C,A\2 + \A,B\2. 

Proof. Let D be the foot of the perpendicular from A to BC; then by 4 .3 .3 D 
is between Β and C. The triangles [D,B,A], [A,B,C] are similar as \ZADB\° = 
\ZCAB\° = 90 , \ZDBA\° = \ZABC\°, and then by 5.2.2 \ZBAD\° = \ZBCA\°. Then 
by the last result 

\A,B\ \B,D\ 
\B,C\ \A,B\> 

so that |A, B\2 = \B,D\\B,C\. By a similar argument applied to the triangles 
[D,C,A], [A,B,C] we get that |A, C\2 = \D, C\\B, C\. Then by addition, as D € 
[B,C], 

|A, B\2 + |A, C f = (\B, D\ + \D, C\)\B, C\ = \B, C\2. 

Figure 5.8. Pythagoras' theorem. Figure 5.9. Impossible figure for conver 
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CONVERSE of P Y T H A G O R A S ' T H E O R E M . Let A, B, C be non-collinear points such 
that 

\B,C\2 = \C,A\2 + \A,B\2. 

Then ABAC is a right-angle. 
Proof. Choose the point Ε so that \A, C\ = \A, E\, Ε is on the same side of AB 

as C is, and ZBAE is right-angle. By Pythagoras' theorem, 

| A , I ? | 2 = μ , ι ? | 2 + μ , Α | 2 = \C,A\2 + \A,B\2 = \B, C\2. 

Thus |A,I?| = I A, C|, and the lengths of the sides of the triangle [B,A,C] are equal 
to those of [Β,Α,Ε]. By the SSS principle, [B,A,C] = [Β,Α,Ε]. In particular 
\ZBAC\° = \ZBAE\° and this latter is a right-angle by construction. In fact Ε = C. 

NOTE. In a right-angled triangle, the side opposite the right- angle is known as 
the hypotenuse 

5.5 MID-LINES A N D TRIANGLES 

5.5.1 Harmonic ranges 

Let A, B, C be non-collinear points such that \A,B\ > \A, C\. Take D φ A so that A e 
[R, D]. Then the mid-lines of \BAC_ and \ CAD meet BC at points E, F, respectively, 
such that {E, F} divide {R, C} internally and externally in the same ratio. 

Proof. By the cross-bar theorem the mid-line of \BAC meets [R, C] in a point E. 
Let G be a point of the mid-line of \CAD. on the same side of AB as C is. We cannot 
have AG \\ BC as that would imply 

\ZBCA\° = \ZCAG\° = \ZGAD\° = \ZCBA\°, 

and this in turn would imply that \A, B\ = \A, C\, contrary to hypothesis. Then AG 
meets BC in some point F. 

Take Η € [A,D so that \A,H\ = \A, C\. Then \ZAHC\° = \ZACH\°. We have 
that 

\ZBAC\° = \ZAHC\° + \ZACH\°, \ZAHC\° = \ZACH\°, 
\ZBAC\° = \ZBAE\° + \ZEAC\°, \ZBAE\° = \ZEAC\°. 
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It follows that \ZEAC\° — \ZACH~\°, and as E,H are on opposite sides of AC this 
implies that AE \\ HC. It then follows that 

\B,E\ \B,A\ \B,A\ 
\E,C\ \A,H\ \A,C[ 

Next choose Κ €[A,B so that |A,uf| = \A, C\. Then \A,K\ < \A,B\ ao Κ € 
[Α,Β]. Now 

\ZHAC\° = \ZAKC\° + \ZACK\°, \ZAKC\° = \ZACK\°, 
\ZHAC\° = \ZHAG\° + \ZGAC\°, \ZHAG\° = \ZGAC\°. 

It follows that \ZGAC\° = \ZACK\°. But H,K are on opposite sides of AC, H,G 
are on the same side, and so G, Κ are on opposite sides. This implies that AG || KG. 
Now AG meets BC at F, and Κ € [Α,Β] so C G [B,F]. It follows that 

\B,F\ _ \B,A\ _ \B,A\ 
\F,C\ \A,K\ \A,C[ 

On combining the two results, we then have 

\B,E\ \B,F\ 
\E,C\ \F,C[ 

NOTE. We also refer to the mid-line of \CAD above as the external bisector of 
\BAC. When {E,F} divide {B,C} internally and externally in the same ratio, we 
say that (B, C, E, F) form a harmonic range. 

Let (A,B,C,D) be α harmonic range and S £ AB. Let the line through C, parallel 
to SD, meet SA at G and SB at H. Then C is the mid-point of G and H. 

S *^ 
/ ι \ ^ 

/ 1 \ / ι 
/ I 

/ I 
/ I 

\ 
\ 
\ 
\ 
\ 

G / - . . ! ν 

c · \ 
\ 
•V Η F igure 5.11. 

Proof. We are given 
\A,C\ \A,D\ 
\C,B\ \D,BY 

\A,C\ \C,B\ 
\A,D\ \D,B\-
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As GC || SD the triangles [A,D,S] and [A,C,G] are similar, so 

\A,C\ \G,C\ 
\A,D\ \S,D\-

In the similar triangles [B,C,H] and [B,D,S], 

\B,C\ \C,H\ 
\B,D\ \S,D\-

Then 

\G,C\ _ \C,H\ 

\S,D\ \S,Di­

li follows that \G,C\ = \C,H\. 

D 
Figure 5.12. 

Let (A, R, C, D) be a harmonic range, S & AB and Κ φ S be such that S € [A, K]. 
Suppose that CS ± DS. Then CS and DS are the mid-lines of \ASB and \BSK_. 

Proof. Let the line through C, parallel to DS meet SA at G and SB at H. Then 
C is the mid-point of G and H. Also CS ± SD, SD || GH so SC ± GH. It 
follows that the triangles [G, C, S] and [H, C, S] are congruent by the SAS-principle. 
In particular \ZGSC\° = \ZHSC\° and so SC is the mid-line of \ASB. But also 
\ZCGS\° = |ZCffS|° and in fact the triangle [S,G,H] is isosceles. Now ZCGS and 
ZDSK are corresponding angles and ZCHS and ZDSH are alternate angles. It 
follows that \ZDSK\° = \ZDSH\° and so the mid-line of \BSK is SD. 

5.6 A R E A OF TRIANGLES, A N D C O N V E X 
QUADRILATERALS A N D P O L Y G O N S 

5.6.1 Area of a triangle 

Let A, B, C be non-collinear points, and D 6 BC, Ε € CA, F € A R points such that 
AD ± BC, BE ± CA, CF LAB. Then 

\A,D\\B, C\ = |Α,25||ί7, A| = |C,F | |A,R| . 
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A A 

Β C Β D C 
Figure 5.13. 

Proof. 
The triangles [Α,Β,Ε] and [A, C, F] are similar in the correspondence [A, R, E) -» 

(A,C,F), as ZBAE = ZCAF is in both, \ZAEB\° = \ZAFC\° = 90, and then by 
5.2.2 \ZABE\° = \ZACF\°. By 5.3.2 

\B,E\ \A,B\ 
\C,F\ \C,A\-

On cross multiplication, 

\B,E\\CtA\ = \C,F\\A,B\. 

By a similar argument, we can show that \A, D\\B, C\ is equal to these. 
Definition. With the notation of the last result, the area of the triangle [A, B, C], 

denoted by A[A,B,C], is the common value of: 

\\A,D\\B,C\, \\B,E\\C,A\, \\C,F\\A,B\. 

Area of triangles has the following properties:-

(i) If Ρ e [B,C] is distinct from Β and C, then 

A[A,B,P] + A[A,P,C] = A[A,B,C]. 

(ii) If[A,B,C,D] is a convex quadrilateral, then 

A[A, B, D] + A[C, R, D] = A[R, C, A] + A[D, C, A]. 

A 

Β Ρ D C Β C 
Figure 5.14. 
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Proof. 
(i) For D is the foot of the perpendicular from the vertex A to the opposite side-line 

in each of the triangles [Α,Β,Ρ] and [A,P,C], so with pi — \A,D\ we have 

A[A,B,P) = fa\B,P\, A[A,P,C] = ±j>i|P,C|, 

and the sum of these is 

Ipi(|B,P| + |P, C\) = \Pl\B,C\, 

as Ρ € [B,C]. 
(ii) As in 5.2.1 denote by Τ the point which [A,C] and [B,D] have in common. 

Then by (i) above, 

Δ [A, B, D] + A[C, B,D] = (Δ[Α, B,T] + Δ[Α, D, T\) + (A[C, B,T] + A[C, D, T]) 

Δ[Α, Β, C] + Δ[Α, A C] = (Δ[Α, Β, Τ] + Δ[<7, Β, Γ]) + (Δ[Α, D, T) + A[C, A T}) 

and these are clearly equal. 

5.6.2 Area of a convex quadrilateral 

Definition. We define the area of the convex quadrilateral [A, B, C, X)] to be 
A[A,B,D] + A[C,B,D], and denote it by A[A,B,C,D]. 

If [A, B, C,D] is a rectangle, then 

A[A,B,C,D) = \A,B\\B, C\, 

that is the area is equal to the product of the lengths of two adjacent sides. 
Proof. For A[A,B,D] = i |A,B| |A,B| , A[C,B,D] = \\D,C\\B,C\. As by 5.2.1 

|£>, C\ = \A,B\ and \B, C\ = |A,£>|, the result follows by addition. 

5.6.3 Area of a convex polygon 

Definition. For an integer η > 3 let Pi, Pi,..., P„ be η points such that no three of 
them are collinear. Writing also P n + i = Pi, for each integer j such that 1 < j < η let 
r^j-i, rlij be the closed half-planes with common edge the line PjPj+i, and suppose 
that all the points P* lie in Hy-i in each case. Then the intersection Γ)?=ι Mtj-i 
is called a convex polygon. The intersection of the corresponding open half-planes 
is called the interior of the convex polygon. The notation for convex quadrangles is 
extended to convex polygons in a straightforward way. 

Consider a convex polygonal region with sides [Pi, Pa], [PajPe], · · ·, [P„,Pi]. Let 
a point U interior to the polygon be joined by segments to the vertices. Then 

Σ A[U,Pj,Pj+1] + Δ[ί/,Ρ η ,Ρ :] = Σ Δ[Ρι, 
j=l j=2 
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Pi Pi 

Figure 5.15. 

Proof. 
CASE 1. We first take the case of a triangle so that η = 3. Now [P\,U will meet 

[P2,Pa] in a point V. Then by 5.6.1 

Δ[Γ7, Pi, P2] + A[U, P2, P3] + A[U, P3, Pi] 
= A[U,PUP2] + {A[U,P2,V] + A[U,V,P3]} + A[U,P3,Pi] 
= {A[U,PUP2] + A[U,P2, V]} + {A[U, V,P3] + A[U,P3,Pi]] 
= A[PuP2,V] + A[V,P3,Pi] = Δ[Ρ!,Ρ 2,Ρ3]. 

CASE 2. Secondly we take the case of a convex quadrilateral so that η = 4. 
Suppose first that U € [Ρι,Ρβ]. Then by 5.6.1 used twice, 

{A[U,PUP2] + A[U,P2, P3]} + {A[U, P 3 , P4] + Δ[ί/,Ρ 4, Pi]} 
= Δ[Ρ 1 ,Ρ 2 ι Ρ 3 ] + Δ[Ρ 1 ,Ρ 3 ,Ρ 4 ] . 

Suppose next that U & [Pi,P3]. Then U is interior to [Pi,P 2,P 3] or [Pi,P 3,P 4], say 
U €[Ui,P3,Pi]. Then by 5.6.1 

Δ[ί/,Ρι,Ρ 2] + A[U,P2,P3] = A[P!,P2,P3] + A[U,PuPa], 

so 

A[U,PUP2] + A[U,P2,P3] + A[U,P3,P4] + A[U,P4,Pi] 
= A[Pi,P2,P3] + {A[U,Pi,P3] + A[U,P3,P4] + A[U,P4,Px]} 

= A[Px,P2,P3] + A[PuPa,Pi] 

by CASE 1. 
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CASE 3. We now suppose that the result holds, for some η > 4, for any con­
vex polygonal region with η sides. Then for that η consider any convex polyg­
onal region with η + 1 sides, [ P i , P 2 ] , [Ρϊ,Ρβ], · · · , [Ρη,Ρη+ι], [Ρ η+ι,Λ]· As 
η + 1 > 5, [Pi,P2,P3] and [ P i , P n , P n + i ] have only P i in common, so U cannot 
be in both. Suppose that U # [ P i , P 2 , P 3 ] . By 5.6.1 

Δ[[/,Ρι,Ρ2] + Δ[ί/,Ρ 2,Ρ 3] = Δ[Ρι,Ρ 2 ,Ρ 3] + Δ[ί/,Ρι,Ρ 3]. 

Hence as U is interior to the polygon with η sides [Pi,Pa], [Ps.P-i], . . . , [ P „ , P „ + i ] , 
[Pr»+l)Pl]) 

η 

Σ Δ[υ, PJ,PJ+X]+m pn+i, Pi] 

η 
= Δ[Ρι,Ρ 2 ,Ρ 3] + Δ[ί / ,Ρι,Ρ 3 ] + Σ*\υ,Ρ^+ι] + Δ [ ί / ,Ρ π + ι ,Ρ ι ] 

i=3 
η η 

= Δ[Ρι,Ρ 2 ,Ρ 3] + Σ Δ Γ Ρ ί , Ρ , , Ρ ^ ! ] = ΣΔ[Ρι,Ρί,Ρ»Λ-
j=3 J=2 

If instead U 6 [ P i » P n » P n + i ] we get the same conclusion by similar reasoning. The 
result now follows by induction on n. 

Definition. The area of the polygonal region in the present section is denned to 
be the sum of the areas of the triangles involved. 

Exercises 

5.1 Opposite wedge-angles in a parallelogram have equal degree-measures. 

5.2 If two adjacent sides of a rectangle have equal lengths, then all the sides have 
equal lengths. Such a rectangle is called a square. 

5.3 If the diagonals of a parallelogram have equal lengths, it must be a rectangle. 

5.4 If the diagonal lines of a rectangle are perpendicular, it must be a square. 

5.5 Let A, B, C be non-collinear points and let Ρ € [A, Β and Q € [A,C be such 
that 

| A , P | |A,g| 
\A,B\ \A,cy 

Then PQ || BC. 

5.6 Let AB _L AC and let D = mp(B,C). Prove that \D,A\ = \D,B\ = \D, C\. 

5.7 Let A,B,C be non-collinear points and for A e [B,P and A € [C,Q let 
PQ || BC. Show that then 

\A,P\ \A,Q\ 
\A,B\ \A,C\-
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5.8 Suppose that A,B,C are non-collinear points with \A,B\ > \ A , G \ and let 
D = TTBC(A). Prove that then 

\A,B\2 -\A,C\2 = \B,D\2 -\C,D\2. 

5.9 Suppose that A,B,C are non-collinear points and D is the mid-point of Β and 
C. Prove that then 

\A,B\2 + \A, C\2 = 2\B,D\2+2\A,D\2. 

[Hint. Consider the foot of the perpendicular from A to BC] 

5.10 Show that the AAS-principle of congruence in Ex.4.2 can be deduced from 5.2.2 
and the ASA-principle. 

5.11 Show that the AAS-principle of congruence for right-angled triangles in Ex.4.3 
can be deduced from Pythagoras' theorem and the SSS-principle. 

5.12 For C AB, suppose that m is the line through C which is parallel to AR. 
Prove that for any point D ^ AB the line AD meets m in a unique point 
E. When, additionally, D 6 TR.{\BAC) then Ε is on [A,D and is also on 
m Π XTIQBAC). 

5.13 In a triangle [A, R,C], let |A,fl| > \A ,C\ . Let De[A,B be such that\A,D\ = 
I A, C|. Prove that then 

2\ZBCD\° = \ZACB\° - \ZCBA\°. 
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C a r t e s i a n c o o r d i n a t e s ; 
a p p l i c a t i o n s 

COMMENT. Hitherto we have confined ourselves to synthetic or pure geometrical 
arguments aided by a little algebra, and traditionally this is continued with. This is 
a difficult process because of the scarcity of manipulations, operations and transfor­
mations to aid us. The main difficulties in synthetic proofs are locational, to show 
that points are where the diagrams suggest they should be, and in making sure that 
all possible cases are covered. 

For ease and efficiency we now introduce coordinates, and hence thoroughgoing 
algebraic methods. These not only enable us to deal with the concepts already intro­
duced but also to elaborate on them in an advantageous way. 

In Chapter 6 we do the basic coordinate geometry of lines, segments, half-lines 
and half-planes. The only use we make of angles here is to deal with perpendicularity. 

6.1 FRAME OF REFERENCE, CARTESIAN COORDINATES 

Definition. A couple or ordered pair Τ = ([Ο, I , [Ο, J ) of half-lines such that 
01 J- OJ, will be called a frame of r e f e r e n c e for Π. With it, as standard notation, 
we shall associate the pair of closed half-planes H\,H2, with common edge OI, and 
with J 6 Hi, and the pair of closed half-planes H3,H4, with common edge OJ, and 
with I e H3. We refer to Qi = Hi Π H3, Q.i = Hi Π Hi, Q3 = H2 Π Hi and 
Qi = H2 ΠΉ3, respectively, as t h e first, s e c o n d , t h i r d and f o u r t h quadrants of 
T. We refer to OI and OJ as the a x e s and to Ο as the o r i g i n . 

Given any point Ζ in Π, (rectangular) Cartesian coordinates for Ζ are defined as 
follows. Let U be the foot of the perpendicular from Ζ to OI and V the foot of the 
perpendicular from Ζ to OJ. We let 

6.1.1 

and 

74 
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Qa 

Hi H3 

Hi H3 

Qi V· 
J J \ Η 

Hi 0 I υ η 
0 I H2 

0 I υ η 

Q 3

 : QA 
Figure 6.1. FVame of reference. Figure 6.2. Cartesian coordinates. 

Then the ordered pair (x, y) are called Cartesian coordinates for Z, relative to T. 
We denote this in symbols by Ζ = ^ r (x, y), but when Τ is fixed and can be understood, 
we relax this notation to Ζ = ( x , y ) . 

Cartesian coordinates have the following properties:-

(i) If Ζ e Qi, then χ > 0, y > 0; if Ζ G Q2, then χ < 0, y > 0; if Ζ G Q3, then 
x < 0. V < 0/ if Ζ G Qi, then χ > 0, y < 0. 

(ii) IfZi = ( x i , j / i ) , Z2 = ( x 2 , y 2 ) and 

Ui = ποι(Ζι), Vi = nOJ(Zx), U2 = π0ι{Ζ2), V2 = n0j{Z2), 

then \Ut,Us\ = ± ( x 2 - x i ) , | Vtl VM\ = ±(y2 - yx). 

(iii) IfZx = ( x i . y i ) , Za = (x2,y2), then 

\Zj,ZB\ = y/{x2-xx)2 + {y2-yx)2. 

(iv) IfZi = ( x i . y i ) , Z2 = (x 2 , l /2 ) and Z3 = ( x 3 , y 3 ) where 

Xs = j ( x i + xa) , 1/3 = | ( y i + i/a), 

trtenZ3 = mp(Zi,Z 2 ) . 

(v) Let <i be the natural order on I = Ol under which Ο <j I. If Xi < x2, Ui Ξ 
( x l t 0 ) and U2 = (xa.0), then Ux <i l / 2 . 

Proof. 
(i) This is clear from the definition of coordinates. 
(ii) For iiZltZ2eH3 we have 

\0,Ue\ = Xi, \0,Ue\ = x2, 

and so as U\, U2 G [O, I, 
\U,,Ue\ = ±(x2-Xl) 

according as Ui G [0,t/2] or U2 G [O, £/i]. Similarly if Ζχ, Z2 G Ή 3 , we have 
\0,Ut\ = -xx, \0,Us\ = -x2 
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and 

\Ut,Us\ = ±[-x2-(-Xl)) 

according as Ux € [O, U2] or U2 € [O, Ux]. Finally if Zi € H3, Z2 € H4 then 

\0,Ut\=xlt \0,U2\ = -x2 

and Ο € [Ui,U2] so that 

f«| = «i + ( - « a ) ; 

similarly if Zi e r£4, Z 2 € Ή3· 
That IV/, V2\ = ±(y2 — yx) can be shown in the same way. 
(iii) Now the lines through Ζχ parallel to OI and through Z2 parallel to OJ are 

perpendicular to each other, and so meet in a unique point Z 4 . Clearly πο/(Ζ 4) = 
πο/(Ζ 2) = U2 so Z 2 and Z 4 have the same first coordinate, x2; noj(Z4) = noj(Zx) = 
Vi so Zi and Z 4 have the same second coordinate, j/i. Thus Z 4 has coordinates 
(22 ,2 /1) · If the points Zi,Z2, Z 4 are not collinear, then by Pythagoras' theorem 

ΐ ζ , , ζ ^ ι ζ , , ζ ^ + ι ^ , ζ , , ι 2 ; 

if they are collinear we must have Ζχ = Z 4 or Z2 = Z 4 and this identity is trivially 
true. But \ZltZ^ \ = \ Ui, Ue\ as [Ζχ,Ζ4,υ2,ΙΙχ] is a rectangle, or else Ζχ = Z 4 and 
Ux = U2, or Ζχ = Ux, Z 4 = U2. Similarly |Z S ,Z^| = | V,, Vs\. Thus we have the 
distance formula 

| Z / , z 8 | 2 = ι ^ , ϋ - β ΐ ' + ι ν , , ν , ι 2 

= {Χϊ-ΧιΫ + {V2-Vi)2, 

which expresses the distance \Zj,Zs\ in terms of the coordinates of Ζχ and Z 2 . 
(iv) If Ζχ = Z2, then x2 = ΐχ, y2 = yx so that x 3 = xl} j / 3 = yx. Thus Z 3 = Ζχ = 

ταρ(Ζχ,Ζχ), as required. 
Suppose then that Ζχ Φ Z2. Note that 

| ζ , , ζ 3 | 2 = 
Xl + x2 

Χχ - 2 / 1 
X2 - Χχ 12 

+ 
J/2 " J / I 

and so | Z / , Z 3 | = \\Zt,Z2\. Similarly 

| Z 3 , Z f i | 2 = Xl + X2 
X2 

J/1 +V2 
- J / 2 

Xl - x 2 2/1 - 2/2 12 

and so \Z3,Z2\ = \\Zt,Z2\. Then 

\Z,,Z3\ + \Z3,Z2\ = \Z1,ZS\. 

It follows by 3.1.2 and 4.3.1 that Z 3 € [Ζχ, Z2] C ZjZ 2 . As |Z, , Z 3 | = |Z 3 , Ze\ it then 
follows that Z 3 = mp(Zi, Z 2). 
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Figure 6.3. The distance formula. Order of points on the x-axis. 

(v) By 2.1.4 at least one of 

(a) Ο 6 [UltU2], (b) Ui € [0,U2], (c) U2 € [0,Ux], 

holds. 
In (a), Ui and U2 are in different half-lines with end-point O. We cannot have 

Ui € [0,1 as then we would have Xi > 0, x 2 < 0, a contradiction. Thus t / 2 € [0,1 
so that Ui <ι Ο, Ο <ι U2 and thus Ui <t U2. 

In (b) we cannot have Ux <i O. For then we would have Ui <ι Ο and 

\0,Ut\ = -xlt \0,Ue\ = -x2. 

As Ui € [0,U2] we have \0, Ui \ < \0, Ug\ which yields —χχ < —x2 and so i i > x2, 
a contradiction. Hence Ο <ι Ux and so as Ux G [0,Ui], Ux <i Ui. 

In (c) we cannot have Ο <iUx. For then we would have Ο <ι Ui and so 

\0,Ut\ = χχ, \0,Us\ = xi. 

As U2 € [O, Ux] we have \0, U%\ <\0,Ui \, so that x 2 < xi, a contradiction. Hence 
Ux <ι Ο so Ux <i Ui. 

6.2 ALGEBRAIC NOTE ON LINEAR EQUATIONS 

6.2.1 

It is convenient to note here some results on solutions of two simultaneous linear 
equations in two unknowns. 

(a) If 
Ol,l°2,2 - 01,202,1 φ 0, (6.2.1) 

then the pair of simultaneous equations 

Oi , ix + ai l 2y = *i, 
αι,χχ + ai,iy = ki, (6.2.2) 
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has precisely one solution pair (x,j/), and that is given by 

( X > y ) = ( « a . a * i - a i . a * a , « 1 , 1 * 2 - Q a , i * i ^ ( 6 2 - 3 ) 

\ Ο ΐ , ΐ θ 2 , 2 — Οΐ,2θ2,1 01,1^2,2 — Οι,2θ2,1 / 

(b) If 

( 0 1 , 1 , 0 1 , 2 ) ^ ( 0 , 0 ) and ( 0 2 , 1 , 0 2 , 2 ) ^ ( 0 , 0 ) , (6.2.4) 

and 

θ ι , ι α 2 , 2 - 01,202,1 = 0, (6.2.5) 

then there is some j Φ 0 such that 

02,1 = j a i . i , 02,2 = j o i , 2 . (6.2.6) 

(c) If (6.2.4) holds, then for the system (6.2.2) of simultaneous equations to have 
either no, or more than one, solution pair (x,y) it is necessary and sufficient 
that (6.2.5) hold. 

Note in particular that when (6.2.4) holds, for the pair of homogeneous linear 
equations 

o i . i x + Oi , 2 y = 0, 

o 2 , i x + 0 2 , 2 1 / = 0 . (6.2.7) 

to have a solution (x,j/) other than the obvious one (0,0), it is necessary and 
sufficient that (6.2.5) hold. 

6.3 CARTESIAN EQUATION OF A LINE 

6.3.1 

Given any line I € A, there are numbers a, b and c, with the case a = b = 0 excluded, 
such that Ζ = (x,y) € / if and only if 

ax + by + c = 0. 

Proof. Take any point Z2 = (12,1/2) £ I and let Z3 = (x 3,I/3) = 8t(Z2). Then 
Z2 φ Z3. Now I is the perpendicular bisector of [Z2,Z3], so by 4.1.1 Ζ 6 I if and 
only ii\Z,Ze\ = \Z,Z3\. As these are both non-negative, this is the case if and only 
if \Z, Ze\2 = \Z, Z3\2. By 6.1.1 this happens if and only if 

(x - x 2 ) 2 + (|, - j /2) 2 = (x - x 3 ) 2 + (y - y3)2. 

This simplifies to 

2(x3 - Xi)x + 2(1/3 - y2)y + xl + y\ - x\ - y\ = 0. 
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On writing 

α = 2 (x 3 - x 2), 6 - 2(y 3 - y 2 ) , c = x§ + y\ - x\ - yf , 

we see that Ζ ~ ( x , y) € / if and only ax + by + c — 0. Now a — b = 0 corresponds to 
xi = X3» Vi = 1/3, which is ruled out as Z 2 φ Z3. 

COROLLARY. Let Zo = (io,l/o),^i = ( * i , i / i ) be distinct points and Ζ = ( x , y ) . 
Then Ζ G Ζ0Ζχ if and only if 

- ( y i - yo)(x - xo) + (χι - xo)(y - yo) = o. 
Proof. By the theorem, there exist numbers o, 6, c, with the case ο = b = 0 

excluded, such that Ζ 6 ΖοΖγ if and only if ax + by + c = 0. As ZQ, Z\ € ΖοΖχ we 
then have 

axo + by0 + c = 0, 
axi +byi+c = 0. 

We subdivide into two cases as follows. 
CASE 1. Let xo φ Χι· We rewrite our equations as 

α χ ι + c = -by i, 

axo + c = -by0, 

and regard these as equations in the unknowns a and c. As x i — Xo φ 0, we note that 
by 6.2.1 we must have 

-b(yi - yo) - i > ( x i y o - x o y i ) 
α = , c = . 

xi — xo Χι — Xo 
Note that b φ 0, as b = 0 would imply a — 0 here. On inserting these values for a 
and c above we see that Ζ el if and only if 

-b(y!-yo)x | h y | - h ( x i g o - x o y i ) J 0 > 

Xl — Xo X l — xo 

and so as b/(xi - XQ) φ 0, if and only if 

- ( y i - yo)x + ( χ ι - x o ) y - x i y o + x o y i = o. 

This is equivalent to the stated equation. 
CASE 2. Let yo φ y i - We rewrite our equations as 

byi+c = - o i l , 

6y0 + c = - a x o , 

and note that, as y i - yo φ 0, by 6.2.1 we must have 

, - α ( χ ι - x 0 ) - a ( y i X o - yoXi) ο = , c = . 
yi - yo y i - yo 
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Note that α φ 0, as α = 0 would imply 6 = 0 here. On inserting these values for 6 
and c above we see that Ζ € / if and only if 

, -o(xi - x 0) , -aJViXo - Voxi) n 

ax + y Η = 0, 
J/i - l/o l/i - l/o 

and so as -a/(yi - yo) Φ 0, if and only if 

-(i/i ~ Vo)x + (xi ~ Xo)y ~ XiVo + xol/i = 0. 

This is equivalent to the stated equation. 
Now either CASE 1 or CASE 2 (or both) must hold, as otherwise we have x 0 = 

Xi, l/o = l/i and so ZQ = Zi, contrary to what is given. 
Definition. If / € Λ and I = { Z = (x,y): ox + by + c = 0}, we call ox + by + c = 0 

a Cartesian equation of / relative to T, and we write I =r ax + by + c = 0. When 
7 can be understood we relax this to Ζ = ax + by + c = 0. 

Let I € A be a line, with Cartesian equation 
(i) 

αχ + by + c = 0. 

Then I also has 
(ii) 

oix + b\y + Ci = 0, 
as an equation if and only if 

(iii) 
oi = ja, h = jb, ci = jc, 

for some j φ 0. 
Proof. 
Necessity. Suppose first that I can be expressed in each of the forms (i) and (ii) 

above. We subdivide into four cases as follows. 
CASE 1. Suppose that αφ 0, bφ 0 and c φ 0. Then we note from (i) that the 

points A = (-c/α,Ο) and R = (0, -c/b) are in I, and are in fact the only points of I 
in either OJ or Ο J, as A is the only point with y = 0 and R is the only point with 
x = 0. 

We now note that none of oi,6i,Ci can be equal to 0. For if oi = 0, by (ii) we 
would have y — -cy/bi for all points Ζ in I; this would make I parallel to OI and 
give a contradiction. Similarly &i = 0 would imply that χ = — Ci /αχ for all points Ζ 
in I, making I parallel to OJ and again giving a contradiction. Moreover if ci = 0, by 
(ii) we would have that Ο €l, again a contradiction. 

We note from (ii) that the points A\ = (—c\/a\, 0), Ri = (0, —ci/bi) are in I and 
are in fact the only points of / in either OI or OJ. Thus we must have Ai = A, Ri = Β 
and so „ 

C\ c C\ c 
αϊ a ' 6i 6 

Thus 
°± — h. — £i 
a ~ b ~ c ' 

and if we denote the common value of these by j , we have j φ0 and (iii). 
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CASE 2. Suppose that a = 0. Then 6 ^ 0 and by (i) for every Ζ e / we have 
y = -c/b, so that I contains Β and is parallel to 01; when c φ 0, I has no point 
in common with 01, and when c — 0, I coincides with 01. Now we must have 
αϊ = 0, as otherwise I would meet 01 in the unique point Ai, and that would give 
a contradiction. Then bi Φ 0 and for every Ζ e / we have y = —ci/bi, so that I 
contains Bx and is parallel to 01. Thus we must have 

Ci _ c 
~£T ~ ~b' 

When c = 0, this implies that ci = 0, so that if we take j = b\/b, we have satisfied 
(iii). When c φ 0, we must have that b\/b — ci/c, and if we take j to be the common 
value of these we have (iii) again. 

CASE 3. Suppose that 6 = 0. This is treated similarly to CASE 2. 
CASE 4. Finally suppose that α φ 0, 6^0 and c = 0. Then by (i) we see that 

Ο € I and then by (ii) we must have Ci = 0. We see from (i) that C = (1, -a/6) is in 
I, and on using this information in (ii) we find that a\ + bi(—a/b) = 0. This implies 
that Oi /o = &i fb, and if we take j to be the common value of these, we must have 
(iii). 

This establishes the necessity of (iii). 
Sufficiency. Suppose now that (iii) holds. Then a\X + b\y + c i = j(ax + by + c) 

and as j φ 0 we have axx + hy + c i = 0 if and only if ax + by + c = 0. 

6.4 P A R A M E T R I C EQUATIONS OF A LINE 

6.4.1 

Let I be a line with Cartesian equation ax + by + c = 0. 

(i) IfZ0 = (x0,yo) is in I, then 

I = {Z = (x, y) : χ = x0 + bt, y = y0 - at, (t € R)}. 

(ii) / / Zi = ( x i , j / i ) = (xo + b,yo - a) and <i is the natural order on I for which 
Zo <i Z\, then for Z2 = (xo + bt2,yo - at2), Z 3 = (x0 + bt3,yo - at3) we have 
h < t3 if and only if Z2 </ Z3. 

(iii) //Ζχ = ( χ ! , y i ) = (x0 + b,y0-a), then 

[Z0, Z^ = {Z = ( x , y ) : χ = x 0 + bt, y = y0 - at, (0 < t < 1)}. 

(iv) With Zi as in (ii), 

[Z0, Zx ={Z = ( x , y ) : χ = x 0 + bt, y = y0 - at, (t > 0)}. 

Proof. 
(i) If Ζ el then ax + by + c - 0, o x 0 + by0 + c = 0, so that 

Hv ~ Vo) = -a(x - xo)- (6.4.1) 
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When 6 φ 0, let us define t by t = (x — xo)/b; then by (6.4.1) we must have, y — yo — 
-at. Thus 

χ = Xo + bt, y = y0- at, (6.4.2) 

for some ί € R. 
When 6 = 0 then α φ0, and by (6.4.1) we must have χ = xo- If we define ί by 

t = (y- Vo)/(—a), then we have (6.4.2) for some t € R. 
Conversely suppose that (6.4.2) holds for any t € R. Then 

ax + by + c = a(x0 + bt) + b(y0 - at) + c = ax0 + byo + c = 0. 

(ii) We first suppose that / is not perpendicular to m = OI, so that 6^0. We 
recall that Z0, Z\ are distinct points on / for which Z0 <i Z\. Let < m be the 
natural order on m for which Ο <m I. Let Uo = nm(Zo), Ui = nm(Zi) so that 
i/ o = (xo,0), Ux = (a*+ 6,0). 

Uo Ui ΓΛ Uo 
Figure 6.4. Direct correspondence. Indirect correspondence. 

If 6 > 0, then x0 < xo + 6 and so by 6.1.1 Uo <m U\. In this case we say that 
the correspondence between <i and < m is direct . If 6 < 0 then xo + 6 < XQ and 
so U\ <m Uo- In this case we say that the correspondence between <j and < m is 
indirect. In what follows we assume that 6 > 0 so that the correspondence between 
<j and < m is direct. The other case can be covered by replacing < m by > m in the 
following. 

^m(Zz). We subdivide into three 
cases. •« ; ; ; 

UxU2 U3 

Figure 6.5. 
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CASE 1. Suppose that Z 2 <, Z 0 . Then Z 2 <i Z0 <t Zx so that Z0 G [Z2,ZX]. 
Then by 4.3.2, U0 G [U2,UX]. As U0 <m Ux, we then have U2 <m U0. There are 
now two possibilities, that Z 3 <j ZQ or that Zo <i Z3. In the first of these subcases, 
Z3 G [Z2,Z0] so U3 € [U2, Uo]. As Ϊ 7 2 < m Ĉo we then have U2 <m U3. In the second 
of these subcases we have Zo € [Z 2,Z 3] ao Uo € [U2,U3]. As U2 <m Uo we have 
Uo <m U3 so U2 <m U3. 

CASE 2. Suppose that Z 0 << Z2 <i Zx. Then Z 2 € [Z 0,ZX] so Γ72 € [U0,Ui]. As 
ί/o <m ί/i then U0 <m U2 <m Ux. Now Z2 G [Z 0,Z 3] so U2 G [C/o.^a]- As i/ 0 < m i/2 
it follows that U2 <m U3. 

CASE 3. Suppose that Zx <j Z2. Then Z x € [Z 0,Z 2] so that Ux G [t/ 0,i/ 2]. 
As Uo <m Ui we then have Ui <m U2. Then Z2 € [ZX,Z 3] so U2 G [ i / i , i / 3 ] . As 
ί/i < T O U2 we have i/2 < m U3. 

Now continuing with all three cases, we note that U2 = (xo + 6*2» 0), U3 = (XQ + 
6*3,0) and as U2 <m U3 by 6.1.1 we have xo + bt2 < xo + bt3. As b > 0 this implies 
that i 2 < t 3. 

We also have that i 2 < t 3 implies Z2 <j Z3. For otherwise Z 3 <j Z 2 and so by the 
above t3 <t2, which gives a contradiction unless Z2 = Z3. 

When / is perpendicular to 01 we use TTOJ instead of nm. By a similar argument 
we reach the same conclusion. 

(iii) This follows directly from (ii) of the present theorem. It can also be proved 
as follows. Note that in (6.4.2) t = 0 gives Z0 and t = 1 gives Zx. Then for Ζ = (χ, y) 
with χ and y as in (6.4.2), by 6.1.1 we have 

\Z0,Z\ = y/(x - xp)2 + {y- y 0) 2 = y/(bt)2 + (-<**)2 = 1*1 ν7*»2 + ° 2 , 
\Zt,Z\ = ^(δί - φ + (α - αί)2 = y/(t - 1)>(ο* + α2) = \t - 1 \s/b2 + o?, 

\Z0tZi\ = ν'62 + (-α) 2 = s/b2 + a2. 

Thus when t < 0, 

= ( - * ) > / » » + a a , ΙΖ,,Ζ^α-Ον'β'+α 8 , 
and so \Z,Z0\ + \Z0,Zt\ = \Z,Zt\; thus by 3.1.2 and (i) above, Z0 G [Ζ,Ζι], Z0 Φ 
Ζ, ΖφΖχ. 

When 0 < t < 1, 

| Z 0 , Z | = rV6 2 + a 2, |Z, Z, | = (1 - tWb2 + a 2, 

and so |Z 0 , Z\ + \Z,Z,\ = \Zo,Zi\ ; thus Ζ G [Z 0 ,ZJ. 
When ί > 1, 

\Z0,Z\ = ty/V+o?, \Z1,Z\ = {t-lWb2 + a2, 

and so \Z0, Zt | + |Z, , Z| = |Z 0 , Z|; thus Z x G [Z0,Z] and Ζ φ Z0, ΖφΖχ. 
These combined show that the values of t for which 0 < t < 1 are those for which 

Z€[Z0,ZX}. 
(iv) This follows directly from (ii) of the present theorem. It can also be proved 

as follows. As in the proof of (iii) above, we see that the values of t for which ί > 0 
are those for which Ζ e[Z0,Zx . 

�� �� �� �� ��



84 CARTESIAN COORDINATES; A P P L I C A T I O N S (Ch.6 

COROLLARY*. Let Z0 = (x0,j/o) and Ζχ = (x i , j / i ) be distinct points. Then the 
following hold:-

(i) 

ZQZi = {Z = (x,y) : χ = x0 + t (xi - Xo), V = l/o + t(yi - yo), t £ R}. 

(ii) Let <i be the natural order on I = Ζ0Ζχ for which Z0 <i Z\. Let 

Z 2 = ( x 0 + i 2 ( x i - x 0 ) , Vo + h(yx - Vo)), 

Z 3 = ( x 0 + i 3 ( x x - x 0 ) , l/o + *3(i/i - ί/o)) · 

Then we have ti < t3 if and only if Z 2 <j Z3. 

(iii) 

[Z0, Zx\ = {Ζ = (x, j/) : χ = x 0 + t (x i - x 0 ) , y = Vo + t{yi -yo),0<t< 1}. 

(iv) 

[Z0, Zx ={Z= (x, y):x = x0 + t ( x a - x 0 ) , y = yo + t(yi - y0), t > 0}. 

Proof. By 6.3.1, in the above we can take α = -(l/i — yo), b = xx — x0 and the 
conclusions follow immediately. 

NOTE. We refer to 

χ = Xo + bt, 2/ = l/o - at, (i € R) 

in 6.4.1 as parametric equations of the line I, and t as the parameter of the 
point Ζ = ( x , y ) . 

6.5 P E R P E N D I C U L A R I T Y A N D PARALLELISM OF LINES 

6.5.1 

Let I = ax + by + c = 0, m = axx + b\y + ci = 0. 

(i) Then I ±m if and only if 
aai + bbi = 0. (6.5.1) 

(ii) Also 11| m if and only if 
abi-aib = 0. (6.5.2) 

Proof. 
(i) Suppose that I ± m. Then I meets m in a unique point which we denote by 

Z0. By 6.4.1 Z\ = ( x 0 + b,y0 - a) is a point of I and similarly Z 2 = ( x 0 + i>i, yo - Oi) 
is a point of m. Now by Pythagoras' theorem \Z0,Ztf + \Z0,Zef = \ZltZg\2 and so 
by 6.1.1 

[δ2 + (-α)2] + [δ2 + (-αχ)2] = (δ - δχ)2 + (βι - α)2. 
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This simplifies to (6.5.1). 
Conversely suppose that (6.5.1) holds. Then we cannot have (6.5.2) as well. For 

if we did, on multiplying (6.5.1) by α and (6.5.2) by b we would find that 

o 2 Oi + abbi = 0, - b 2 o i + abbi = 0, 

so that ( a 2 + b 2 )a i = 0, and hence as (o,b) φ (0,0), oi = 0. Similarly 

abai + 6 26i = 0, -abcn + a2bi - 0, 

so that 6i = 0 as well, giving a contradiction. We now search for a point of intersection 
of I and m, and so consider solving for (x, y) the simultaneous equations 

ax + by = -c , a\x + bty = - c i . 

As abi - aib φ 0, by 6.2.1 these will have a unique solution, yielding a point which 
we shall denote by ZQ = (χο,Ι/ο)· Then by 6.4.1 

I = {Z = (x,y):x = xQ + bt,y = yo- at, t € R}, 
m = {Z = (x,y) : χ = x0 + bit, y = y0 - ait, t€ R}. 

We choose Zx € I, Z2 € m as above, and from (6.5.1) find that \Z0, Zt j 2 + \Z0i Ze\2 = 
\Zj,Zg\2. By 6.4.1 we can conclude that I ±m. 

(ii) By 6.2.1 the equations ax + by + c = 0, aix + biy + c i = 0 have either no 
solution or more than one if and only if (6.5.2) holds. 

Alternatively, by (i) above we have I \\ m if and only if there is some (02,62) # (0,0) 
such that 

aa2 + 662 = 0, 01O2 + 6162 = 0. 

But the equations 
ou + bv = 0, O i « + bit) = 0, 

have a solution (u,w) other than (0,0) if and only if obi — 016 = 0. Thus (6.5.2) is a 
condition for / and m to be parallel. 

COROLLARY. 

(i) The lines ZiZ2 and Z3Z4 are perpendicular if and only if 

(l/2 - Vi){V4 - 1/3) + (X2 - Xl)(X4 - X3) = 0. 

(ii) These lines are parallel if and only if 

-(l/2 - l/i)(x4 - X3) + (l/4 - Va)(x2 ~ xi) = 0. 
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6.6 PROJECTION A N D AXIAL S Y M M E T R Y 

6.6 .1 

\axp + by0 + c\ 
Vo 2 + i>2 

7Tj(Zo) = (XQ - a (axo + byo + c), y0 

b 
(ox0 + byo + c)). 

ο 2 + 6 2 α?+Ρ 

(iii) 
si(Z0) = (x0 -

2a 
{ax0 + byo + c), y0 

2b 
(ax0 + by0 + c)). 

a 2 + 6 2 a 2 + &2 

Proof. Let m be the line such that I _L m and Z0 € m. Then as / J. m, by 6.5.1 we 
will have m = -δχ + ay + Ci = 0 for some ci, and as ZQ € m we have ci = 6xo - o y o -
To find the coordinates (x,y) of πι(Ζ0) we need to solve simultaneously the equations 

As for (i) we shall then go on to apply 6.1.1 it is (x - x o ) 2 and (y - yo) 2 that we shall 
actually use, and it is easier to work directly with these. We rewrite the equations as 

For (iii) we recall that if si(ZQ) — (x i , j / i ) and π»(Ζο) = (x2,y2) , then as 
mp(Z0,fl((Z0)) = 7Τ((Ζ0) we have X! + Xo = 2x 2, y i + yo = 2y2- Now x 2 and yi 
are given by (ii) of the present theorem, and the result follows. 

6.6.2 F o r m u l a for a r e a o f a t r i a n g l e 

Let Zi ( x i , y i ) , Z 2 ( x 2 , y 2 ) and Z3 =jr (13 ,1/3) be non- collinear points. Then 
the area b\Z\,Zi,Z3\ is equal to \δΓ(Ζι,ΖΒ,Ζ3)\ where 

ax + by = -c, -bx + ay = -bxo + ayo-

a(x - x 0 ) + 6(y - y 0 ) = - ( a x 0 + 6yo + c), 
- 6 ( x - x 0 ) + a(y - y0) = 0. 

Now on squaring each of these and adding, we find that 

( a 2 + b 2)[(x - x o ) 2 + (y - y 0 ) 2 ] = ( a x 0 + 6y0 + c) 2. 

The conclusion (i) now readily follows. 
For (ii) we solve these equations, obtaining 

(αχο + 6yo + c)). 

djr (Zi ,z 2 ,z 3 ) = I fri (y2 - y e ) - y i ( 2 : 2 - x a ) + 2 ^ 3 - 2 ^ 2 ] 

�� �� �� �� ��



Sec.6.7)COORDLNATE TREATMENT OF HARMONIC RANGES 87 

Proof. By 6.3.1 Z2Z3 = 
-{V3 ~ Vi){x ~ X2) + (X3 -
Xi)(y - Vi) = 0, so by 6.6.1 
\Zi,Ttz%zs(Zt)\ is equal to 
\-(Vi-Vt)(xi-Xt)+{xi-xt)(vi-Vi)\ 

y/(V3-V3)*+(x3-zi)3 

But A[ZUZ2,Z3] Z2 ' · — ^ Z3 

πζ3ζ3(Ζι) 
Figure 6.6. Area of a triangle. 

^Z^ZaWZt^ZsiZ,)], and 
the denominator above is equal 
to \ZZ,Z3\. Hence the area is 
equal to half the numerator. 

6.6.3 Inequalities for closed half-planes 

Let l = ax + by + c = Q. Then the sets 

{Z = (x,y) : ax + by + c < 0}, 
{Z = (x,y) :ax + by + c>0}, 

(6.6.1) 
(6.6.2) 

are the closed half-planes with common edge I. 
Proof. Let Zx = (xi,yi) be a point not in I, and let si(Zx) = Z2 = {x2,y2). Let 

Ζ = (χ, y). Then as in 6.3.1, Ζ € / if and only if \Z, Z} \2 = \Z, Zs | 2 , and this occurs 
when (x — x%)2 + (y — j /1) 2 = (x - X 2 ) 2 + (y — I/2) 2 , which simplifies to 

This is an equation for I and so by 6.3.1 there is some j φ 0 such that 

α χ + by + c = j [2(x 2 - x i ) x + 2(y2 - yi)y + x\ + y\ - x\ - y2] · 

By 4.3.4 the sets 

{Z = (x,y) : 2 (x 2 - x i ) x + 2(y2 - yi)y + x\ + y\ - x\ - y\ < 0} , (6.6.3) 

{Z = (x,y) : 2 (x 2 - X i ) x + 2(y2 - Vi)y + x\ + y\ - x\ - v\ > 0} , (6.6.4) 

are the closed half-planes with edge /, as they correspond to \Z,Zt\ < \Z,Ze\ and 
\Z,Zt \ > \Z,ZS\, respectively. But when j > 0, (6.6.1) and (6.6.3) coincide as do 
(6.6.2) and (6.6.4), while when j < 0, (6.6.1) and (6.6.4) coincide as do (6.6.2) and 
(6.6.3). 

6.7 COORDINATE TREATMENT OF HARMONIC RANGES 

6.7.1 New parametrization of a line 

As in 6.4.1, if Zx = ( x i . j / i ) , Z2 = (xa.jfij), Ζ = (x,y) where χ = χ ι + ί ( χ 2 - x i ) , y 
2/1 + t(y2 - Vi), then Ζ € ZXZ2 and 

2(x 2 - x i ) x + 2(j/ 2 - yx)y + x\ + y\ - x\ - y\ = 0. 

\Z,,Z\2 

\Z,Z2\2 

\z,,z\ 
\z,z2\ 

[Kyi - rf + [t(yi - yx)]2 = t2\Zt, Ze\2, 

[(1 - t)(x2 - X i ) ] 2 + [(1 - i)(y2 - i / i ) ] 2 = (1 - i) 2 | ^2\Z1,Ze\2, 
t 
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Accordingly, if we write ^ = λ where λ φ 0 and so have t = j ^ j , we have 

Thus Ζ divides (Z x, Z 2) in the ratio |λ| : 1 . 
Changing our notation slightly, if we denote by Z3 Ξ («3,1/3) the point with 

= Ι 1 + Γ π ( - 5 2 - χ ι ) = ϊ ^ Χ ι + Ϊ Τ λ Χ 2 ' 

then Z3 divides (Zi,Z 2) in the ratio |Λ| : 1 . Consequently if we denote by Z 4 = (14 ,1 /4 ) 

the point with 

*4 = ihXl +
 ITV 1 2 ' * 4 = ϊΤλ 7 ΐ ' 1 + Ϊ Τ λ ^ ' 

where λ = —λ, so that 

1 

then Z 4 also divides (Zi,Z 2) in the ratio |—A| : 1 = |λ| : 1 . 
Now λ = and if we write - λ = j 4 j we have Z 4 in the original format, 

Then 

so that 

Thus 

Hence 

Xi = xi + a(x2 ~ xi), 1/4 = i/i + s(l/2 - 1 / 1 ) · 

t __s_ 
l - t ~ 1 - 8 

i t 1 
r - I 2 t - \ 

(8-h)(t-h) = i\(°-h)«-h)\ = \- ί6·7·1) 
Then we have three possibilities, 

(a) \t~h\<h | * - | | > 5 . 
(b) \s-\\<h \t~h\>h 
( c ) l * - i l = i -

In (a) we have - ± < ί - \ < | and either β - ± < - \ or a - ±· > ±. Hence 
0 < t < 1 and either a < 0 or β > 1 . It follows that Z 3 € [Zi,Z 2], Z 4 £ [Ζχ, Z 2]. 
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The situation in (b) is like that in (a) with the roles of t and a, and so of Z3 and 
Zi interchanged. 

In (c) —i = i—|-ori — 5 = 5,so either t = 0 or t — 1. Similarly either a = 0 or 
a = 1. We rule out the case of t = 1 as then λ would be undefined, and we rule out 
the case of a = 1 as then —λ would be undefined. What remains is t = a = 0 and we 
excluded this by taking λ φ 0; it would imply that Z3 = Z4 = Z\. 

Thus just one of Z3, Z4 is in the segment [Z\, Z2] and the other is on the line Z\ Z2 

but outside this segment. Hence Z3 and Zi divide {Zi, Z2} internally and externally 
in the same ratio. We recall that we then call {Z\, Z 2 , Z3, Zi) a harmonic range. 

We note above that there can be no solution for a if t = \; thus there is no 
corresponding Ζ4 when Z3 is the mid-point ZQ of Z\ and Z 2 . Similarly there can be 
no solution for t if a = \; thus there is no corresponding Z3 when Zi is Zo. 

6.7.2 Interchange of pairs of points 

// the points Z3 and Zi divide {Zi,Z2} internally and externally in the aame ra­
tio, then it turns out that the points Z\ and Z2 also divide {Z3,Zi} internally and 
externally in the same ratio. 

Proof. For we had 

*3 = ΪΤλ11 + ΪΤλΧ2' y 3 = TTxyi + TT\y2> 
1 λ ι λ 

Then 

(1 + λ)χ 3 = Xi + Xx2, 
(1 - X)xi = χχ - λχ 2 . 

By addition and subtraction, we find that 

1 + λ 1 - λ 
xi = 2 X3 -I 2 ~ χ 4 > 

1 + λ λ-1 
X 2 = - 2 Γ * 3 + " 2 F X 4 > 

and by a similar argument, 

If we define μ by 

so that 

1+λ 1-λ 
Vi = —2~ 1/3 + —Tj—J/4, 

1+λ λ-1 
V2 = " 2 ^ 3 + 

1 1 + λ 
1 + μ 2 ' 

_ 1-λ μ _ 1-λ '̂ΐ + λ' 1 + μ~ 2 ' 
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then 

If we define μ' by 
1 1 + λ 

so that 

then 

l + μ' 2A ' 

' - A - 1 μ' _ A - 1 
μ ~ l + A' l + μ' ~ 2A ' 

As μ' = -μ , this shows that Z\ and Z2 divide {Z3,Z4} internally and externally in 
the same ratio. 

6 . 7 . 3 Distances from mid-point 

Let Zo be the mid-point of distinct points Z\ and Z2. Then points Z3,Z4 € Z\Z2 

divide {Ζχ, Z2} internally and externally in the same ratio if and only if Z3 and Z4 

are on the one side of Zo on the line Z\Z2 and 

\Z0,Z3\\Z0,Z4\ = \\Zi,Ze\2. 

Proof. We have Z0 = (xo.l/o) where x0 = \{x\ + xi), yo = 5(1/1 +1/2) · Then 

X3-X0 = {t~ 2")(X2 -Xl), 2/3 - I/O = ( < - 2 ) ( l / 2 - y i ) , 
X 4 - X O = ( β - | ) (X 2 -Xl), 2/4-lft) = ( s - 2 ) ( 2 / 2 - l / l ) , 

and so 
\Z0,Z3\\Z0,Z4\ = \{t-i) ( a - $ \ \ Z T , Z T \ \ 

By (6.7.1) Z3,Z4 divide {Zi,Z2} internally and externally in the same ratio if and 
only if (β - | ) (f - | ) = \ . This is equivalent to having |(s - 5) (ί - | ) | = \ and 
(a - j) (ί - I) > 0. The latter is equivalent to having either a — 5 > 0 and t - \ > 0, 
or β — 5 < 0 and ί - \ < 0, so that Z3 and Z4 are on the one side of ZQ on the line 
ZiZ2. 

6 . 7 . 4 Distances from end-point 

Let {Z3,Z4} divide {Zi,Z2} internally and externally in the same ratio with Z2 e 
[Ζι,Ζ4]. Then 

1 ( 1 1 \ = 1 
2 \\Zt,Z3\ + \Zt,Z4\) \ZuZey 

Proof. We have as before 

λ , . A 
a* = χι + - f ^ f o - χ ι ) , 1/3 = yi + ϊ^Γλ (yz - yi ) , 
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Now λ/(λ - 1) > 1 and so λ > 1. Hence \ < λ/(1 + λ) < 1, and so Z3 e [Ζχ,Ζ2]. 
Thus Z2, Z3 and Ζ\ are on the one side of Ζχ on the line ΖχΖ2. Then 

\Z,,Z3\ _ A \Z,,Z4\_ A 
\ZlyZe\ X + V \ZitZa\ X-V 

\ZuZg\ X + 1 \Zt,ZM\ A - l 
\Z,,Z3\ X ' \Zt,Z4\ X ' 

so that 

and so 

Hence 

\Zt,Z,\ \Zi,Zs\_X + l A - l 
\ZuZa\ +\ZUZA\ λ A 

1 ( 1 1 λ = 1 

2 Vl̂ ,̂ !̂̂ ,,̂ ^ " | Z , , Z f | " 

This is expressed by saying that \Zi,Zg\ is the h a r m o n i c m e a n of \Zt, Z3\ and 
| Z „ 2 , | . 

β. 7 . 5 C o n s t r u c t i o n for a h a r m o n i c r a n g e 

Let Ζχ,Ζ2,Ζ3 be distinct collinear points with Z3 not the mid-point of Ζχ and Z2. 
Take any points Wx and W2, not on ΖχΖ2, so that Z2 is the mid-point ofWi and W2. 
Let I be the line through Z\ which is parallel to W\ W2 and let W3 be the point in which 
WXZ3 meets I, with ZA the point in which W2W3 meets ZXZ2. Then (ZuZ2tZ3lZi) 
is a harmonic range. 

Proof. Without loss of generality we may take the x-axis to be the line ΖχΖ2 and 
so take coordinates 

Zx = (xj.O), Z2 = (x2,0), Z3 = (χ^,Ο), Zi = (x4,0), 

and Wx = (μχ,υχ), W2 = (2x2 - «i, -ui). The lines Ζ and WxZ3 have equations 

(ui - x 2 ) y = υ ι ( χ - χ ι ) , («ι - x3)y = νχ(χ -x3), 
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respectively, and so W3 has coordinates 

x3(ui - x 2 ) -xifai -x3) x3-xi 
u 3 = — -, V3=Vi . 

x3 — ΧΊ X3 — xi 

On the forming the equation of WiW3 and finding where it meets ZiZ 2 we obtain 

-x3(xi + x 2) + 2xix 2 Xi = , 
Xi + Xi — 2x3 

from which it follows that 

„ , (xi - x 2 ) ( x 3 - xi) (xi - x 2)(x 3 - x 2) Xi - Xl — ; 7, , X2 - Xi = ; ^ · 
Xl + X2 — lX3 Xl + X2 — ^X3 

From these we see that 
Xi — Xl _ X3 — Xl 

x 2 — Xi Xi — x3 

Exercises 

6.1 Suppose that Z i , Z 2 , Z 3 are non-collinear points and Z5 = mp{Z3,Zi}, Z e = 
mp{Zi,Z 2}. Show that if \Z2,ZS\ = \Z3,Z6\, then | Z 3 , Z , | = IZ^Zj-j-pint. 
Select a frame of reference to simplify the calculations.] 

6.2 Let h, h be distinct intersecting lines and Zo a point not on either of them. Show 
that there are unique points Zi € Ii, Z 2 € f2 such that Zo is the mid-point of 
Z\ and Z 2 . 

6.3 Suppose that Z i , Z 2 , Z 3 are non-collinear points. Show that the points Ζ = 
(χ, y), the perpendicular distances from which to the lines ZiZ 2 , Z iZ 3 are equal, 
are those the coordinates of which satisfy 

-(1/2 - yi)(x - χι) + (a?2 - xi)(y - yi) 
y / (x 2 - xi) 2 + (y2 -yif 

± ~(V3 - Vi)(x ~ xi) + {X3 - xi)(y -Vi) n 

y/(x3 - xi)2 + (y3 - Vi)2 

Show that if χ = (1 - t)x2 + fX3, y = (1 — i)j/2 + ty3 then Ζ lies on the line with 
equation 

-JV2 - Vi)(x - xi) + (X2 - xi)(y - Vi) 
y/{X2 ~Xl)2 + (V2 - Vl)2 

+ ~(V3 - Vi)(x - xi) + (xs ~ Xi)(v ~ Vi) _ n 

y/(x3-xi)2 + (y3-Vi)2 

if and only 
t = \Z1}Z2\2 

\Zi,Z2\2 + \Z2,Z3\2' 

Deduce that this latter line is the mid-line of \Z2ZtZ3. 
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6.4 If the fixed triangle \Z\yZ2,Z3\ is isosceles, with \Zi,Zg\ = \Zi,Zs\, and Ζ is 
a variable point on the side [Z2,Z3], show that the sum of the perpendicular 
distances from Ζ to the lines Z\Z2 and Z\Z3 is constant.[Hint. Select a frame 
of reference to simplify the calculations.] 

6.5 Let [A,B,C,D] be a parallelogram, Ε = mp{C,D}, F = mp{A,B}, and let 
AE and CF meet BD at G and H, respectively. Prove that AE || CF and 
\D,G\ = \G,H\ = \H,B\. 
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Hitherto our sets have involved lines and half-planes, and specific subsets of these. 
Now we introduce circles and study their relationships to lines. We do not do this 
just to admire the circles, and to behold their striking properties of symmetry. They 
are the means by which we control angles, and simplify our work on them. 

7.1 INTERSECTION OF A LINE A N D A C I R C L E 

7.1.1 

Definition. If 0 is any point of the plane Π and k is any positive real number, 
we call the set C(0; k) of all points X in Π which are at a distance k from O, i.e. 
C{0; k) = {X € Π : \0,X\ = k}, the circle with centre Ο and length of radius Jb. If 
X 6 C(0] k) the segment [Ο, X] is called a radius of the circle. Any point U such 
that \0, U\ < k is said to be an interior point for this circle. Any point V such 
that \0, V\ > k is said to be an exterior point for this circle. 

For every circle C(0; k) and line I, one of the following holds:-

(i) l Π C(0; k) = {P} for some point P, in which case every point of l \ {P} is 
exterior to the circle. 

(ii) I nC(0; k) = {P, Q} for some points Ρ and Q, with Ρ ^Q, in which case every 
point of [P, Q]\{P,Q) is interior to the circle, and every point of PQ \ [P, Q] 
is exterior to the circle. 

(iii) lr\C(0;k) = 0, in which case every point of I is exterior to the circle. 

Proof. Let Μ = πι (Ο), and let m be the line which contains Μ and is perpendic­
ular to I, so that Ο € τη. 

94 

Circ l e s ; t h e i r b a s i c p r o p e r t i e s 
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(i) Suppose that |0,Af| = k, 
so that Μ is a point of the cir­
cle. We write Ρ = M. Then 
Ρ El, Ρ € C{0;k) and OP _L 
/. Thus if V is any point of I, 
other than P, by 4.3.1 we have 
\0, V\ > \0,P\ = Jfc. Hence V 
is exterior to the circle, and so 
there is no point common to I 
and the circle except P. 

(ii) Suppose that | 0 ,M| < k, so that Μ is interior to the circle. Then k2 — 
\0,M\2 > 0 so that its square root can be extracted as a positive real number. By 

A4(iv) choose Ρ Ε / so that \M,P\ = ^k2-\0,M\2. There is also a point Q Ε / 
on the other side of Μ from Ρ and such that \M, Q\ = |M,P| . Clearly Μ is the 
mid-point of Ρ and Q. 

When Μ = O, this gives \0,P\ = k so that Ρ G C(0;k). By 2.1.3 any point 
Χ φ Ρ of the half-line [0,P must satisfy either X Ε [Ο,Ρ] οτ Ρ Ε [Ο, X]. If 
Χ Ε [Ο,Ρ] then by 3.1.2 \0,Χ\ < \0,Ρ\ = k, so that Χ is interior to the circle. 
On the other hand if Ρ Ε [Ο,X] then \0,Χ\ > \ 0,Ρ\ = k, and so X is an exterior 
point for the circle. Moreover Q is also on the circle and similar results hold when 
XE[0,Q. 

When Μ φ Ο, we have MP = I, MO = m, so that MP _L MO and then by 
Pythagoras' theorem 

\0,P\2 = \0,M\2 + \M,P\2 = \0,M\2 + [k2 - \0,M\2] = k2; 

thus again \ 0,P\ = k, so that Ρ is on the circle. By 2.1.3 any point Χ φ Ρ oi the 
half-line [M,P must satisfy either Χ Ε [Μ,Ρ] or Ρ G [Μ,X]. UX Ε [Μ,Ρ], then 
by 3.1.2 \Μ, Χ\ < \Μ, Ρ\; when Χ = Μ, clearly Χ an interior point; when Χ φ Μ, 
by Pythagoras' theorem this gives 

\0,X\2 = \0,M\2 + \M,X\2 < \0,M\2 + \M,P\2 = k2, 

so that \0,X\ < k and so again X is interior to the circle. If on the other hand 
Ρ G [M,X], while still Χ φ Ρ, then by 3.1.2 \M,X\ > \M,P\; by Pythagoras' 
theorem we have 

\0,X\2 = \0,M\2 + \M,X\2 > \0,M\2 + \M,P\2 = k2, 

so that 10, X\ > k and so X is exterior to the circle. Thus the points of [Μ, Ρ] \ {P} 
are interior to the circle, and the points of ([Μ, Ρ ) \ [Μ, P] are exterior to the circle. 

�� �� �� �� ��



96 CIRCLES; THEIR BASIC PROPERTIES (Ch.7 

Similar results hold when X € [M, Q , that is the points of [M, Q] \ {Q} are 
interior to the circle while the points of ([M, Q ) \ [M, Q] are exterior to the circle. 
But Μ € [P,Q] so that [P,M] U [M,Q] = [P,Q], [M,P U[M,Q = PQ and so we 
can take these results together. Thus the points of [P, Q], other than Ρ and Q, are 
interior to the circle, and the points of PQ \ [P, Q] are exterior to the circle, leaving 
just the points Ρ and Q of the line I = PQ in the circle. 

(iii) Suppose that \0, M\ > k, so that Μ is exterior to the circle. Then Μ € I and 
OM ±1. If X el,X φ Μ, then by 4.3.1, \0, X\ > \0, M\ > k, so that X is exterior 
to the circle. 

Definition. If I is a line such that lf)C(0; k) — {P} for a point P, then I is called a 
t a n g e n t to C{0; k) at P, and Ρ is called the p o i n t of c o n t a c t . If lnC(0; k) = {P, Q} 
for distinct points Ρ and Q, then I is called a s e c a n t for C{0; k) and the segment 
[P, Q] is called a c h o r d of the circle; when Ο £ I = PQ, the chord [P, Q] is called a 
diameter of the circle; in that case Ο = mp(P, Q). If l Π C(0; k) = 0, then / is called 
a n o n - s e c a n t line for the circle. 

NOTE. By the above every point of a tangent to a circle, other than the point 
of contact, is an exterior point. If [P, Q] is a chord, every point of the chord other 
than its end-points Ρ and Q is an interior point, while every point of PQ \ [P, Q] is 
exterior. Every point of a non-secant line is an exterior point. 

7.2 PROPERTIES OF CIRCLES 

7.2.1 

Circles have the following properties:-

(i) / / [Q,S] is a diameter of the circle C(0; k) and Ρ any point of the circle other 
than Q and S, then PQ ± PS. 

(ii) / / points P, Q, S are such that PQ ± PS, then Ρ is on a circle with diameter 

(iii) If Ρ is any point of the circle C(0;k), [Q,S] is any diameter and U = WQS(P), 
then U€[Q,S] and \Q,U\< 2k. 

(iv) If Q is a point of a circle with centre Ο and I is the tangent to the circle at Q, 
then every point of the circle lies in the closed half-plane with edge I in which 

[Q,s]. 

O lies. 

S 
Q 

Figure 7.2. 
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Proof. 

(i) By 5.2.2 

\ZOSP\° + \ZSPO\° + \ZPOS\° = 180, \ZOQP\° + \ZQPO\° + \ZPOQ\° = 180. 

But by 4.1.1, 
\ZOSP\° = \ZSPO\°, \ZOQP\° = \ZQPO\°, 

and so 
2\ZSPO\° + 2\ZQP0\° + \ZPOS\° + \ZPOQ\° = 360. 

Now Ο G [Q,S] so \ZPOS\° + \ZPOQ\° = 180, and as [P,0 C TH(\QPS) we have 
\ZSPO\° + \ZOPQ\° = \ZQPS\°. Thus \ZQPS\° = 90. 

(ii) Let Ο be the mid-point of Q and S and through Ο draw the line parallel to 
PQ. It will meet [P, S] in a point M. Then by 5.3.1 Μ is the mid-point of Ρ and 5. 
But PQ JL PS and PQ || MO so by 5.1.1 MO J. PS. Then [Ο, Ρ, M] = [O, S, M] by 
the SAS principle of congruence. It follows that \0,P\ = \ 0, S\. 

(iii) If Ρ g QR, then by (i) of the present theorem and 4.3.3 U € [Q,S]. UP € QS 
then U is either Q or S and so i/ € [Q,S]. Then by 3.1.2 \Q,U\<\Q, S\. But as Ο 
= mp(Q,5), by 3.2.1 \Q,0\ = \\Q,S\, and so \Q,S\ = 2k. 

(iv) Let [Q,S] be the diameter containing Q and Hi the closed half-plane with 
edge I which contains O. Then by 2.2.3 every point of [Q,0 lies in Hi. If Ρ is 
any point of the circle and U = KQO(P) then by (iii) above U € [Q,5] C [Q,0 so 
U e Hi. But / J. QS, UP ±QS so UP \\ I. Then by 4.3.2 Ρ G Hi. 

7.2.2 Equation of a circle 

Let Z0 = (χο,ί/ο) and > 0. Tften Ζ = (x,y) ω on C(Zo; fc) if and only if 

(x-xo)2 + {v-Vo)2 =k2. 

Proof. This is immediate by the distance formula in 6.1.1. 

7.2.3 Circle through three points 

Given any three non-collinear points A, Β and C, there is a unique circle which passes 
through them. 

Proof. Let I and m be the perpendicular bisectors of [R, C] and [C, A], respectively. 
Then if we had / || m we would have I \\ m, m ± CA and so I ± CA by 5.1.1; this 
would yield BC LI, CA J. I and so BC \\ CA by 4.2.2(iv). This would make the 
points A,B,C collinear and so give a contradiction. 

Thus / must meet m in a unique point, D say. Then by 4.1.1(iii) D is equidistant 
from R and C as it is on /, and it is equidistant from C and A as it is on m. Thus 
the circle with centre D and length of radius |R, A| passes through A, R and C. 

Conversely, suppose that a circle passes through A, R and C. Then by 4.1.1(h) 
its centre must be on I and on m and so it must be D. The length of radius then 
must be \D, A\. 

COROLLARY. Two distinct circles cannot have more than two points in common. 
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7.3 FORMULA FOR MID-LINE OF AN ANGLE-SUPPORT 

7.3.1 

COMMENT. We now start to prepare the ground for our treatment of angles. Earlier 
on we found that mid-points have a considerable role. Now we shall find that mid­
lines of angle-supports, dealt with in 3.6, have a prominent role as well. Given any 
angle-support \BAC. if we take any number k > 0 there are unique points Pi and P2 

on [A,Β and [A,C respectively, such that |A, Pt \ = k, \A,Ps\=k. Thus Pi and P 2 

are the points of [A, Β and [A, C on the circle C(A; k). Then \BAC = \Pt APe and 
it is far more convenient to work with the latter form. We first prove a result which 
will enable us to deal with the mid-lines of angle-supports by means of Cartesian 
coordinates. 

With a frame of reference Τ = ([Ο,I , [0,J ) , let P i ,P 2 e C(0; 1) be such that 
Pi (oi,6i),P 2 =r («2,62)· Trten the mid-line I of \Pi OP2 has equation 

(bi + 62)2 - («ι + 02)1/ = 0 

when Pi and P 2 are not diametrically opposite, and equation aix + b\y = 0 when they 
are. 

Proof. When Pi and P2 are 
not diametrically opposite, their mid­
point Μ is not Ο and we have 
I - OM. As Μ has coordinates ρ 

+ θ 2 ) , | ( 6 ι + 6 2 ) ) , the line OM 
has equation (61 + 6 2 ) 1 - («ι +02)1/ = 0. 
When Pi is diametrically opposite to 
P2, / is the line through Ο which is per­
pendicular to OP and this has the given 
equation. 

Figure 7.3. 
With the notation of the last result, let Q =yr (1,0) and 8i(Q) = P3 where P 3 =r 

(03,63)· Then 

_ (oi + P 2 ) 2 - ( 6 i + 6 2 ) 2 2 ( 0 l + P2X61 + 62) 

° 3 " (01 + 02) 2 + (61 + &2) 2 ' 3 (oi + o 2 ) 2 + (61 + &2) 2 ' 

when Pi and P2 are not diametrically opposite, and 

o 3 = b\ — a\, 63 = —2oi6i, 

when they are. 
Proof. For l = ax + by + c = 0, we recall from 6.6.1 that 

si{Z0) = (x0 - ^^{axo + by0 + c),y0 - J^^(axQ + by0 + c)j . 

When Pi and P2 are not diametrically opposite, I = (61 + 6a)x — (01 + a2)y = 0. Thus 
for it X Q = 1, yo = 0, ο = 61 + 62, 6 = -(οι + 02), c = 0 and so 

2(oi + 02) (61 + 6 2 ) _ (01 + 02) 2 - (61 + 6a) 2 

° 3 ( α 1 + α 2 ) 2 + ( 6 ι + 6 2 ) 2 ' ° 3 (o i+o 2 ) 2 + ( 6 i + 6 2 ) 2 . 
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When Pi and P 2 are diametrically opposite, I = a\x + b\y = 0. Thus for it 
xo = 1, y0 = 0, a — oi, b = bi, c = 0, so we have 

o 3 = b\ -a\, b3 = -2αι6ι, 

as ο 2 + 62 = 1. 

7.4 POLAR PROPERTIES OF A CIRCLE 

7.4.1 Tangents from an exterior point 

Let Ρ be a point exterior to a circle C. Then two tangents to the circle pass through 
P. Their points of contact are equidistant from P. 
Proof. Let the circle have centre 
Ο and length of radius a. Let 
10, P\ = b, so that b > a. Choose 
the point U € [Ο, Ρ so that χ = 
I Ο, U\ = a?/b. As b > a, then 
χ < a KbsoU € [0,P]. Erect 
a perpendicular to OP at U and 
mark off on it a distance 

y = |̂ r1| = e.yi-(J)a. 
Then, by Pythagoras' Theorem, 

\0,TA2 = \0,Uf + \U,T1f=x* + y> = £ + a>-£=a>, 

so that Ti € C. 

Let V be the mid-point of Ο and P, so that V € [0,P] and \0, V\ = | . Then 

\U, V| = ±(|0, V\-\0, U\) = ±(ib-x). 

Again by Pythagoras' Theorem, 

| V , r , | 2 = \U,V\2 + \U,T1\2 = {\b-xf + y2 

Thus Ti is on the circle C\ with centre V and radius length | . Note that C\ also 
passes through Ο and P. Then Δ,ΟΤχΡ is an angle in a semi-circle of Ci, so that by 
7.2.1 it is a right-angle. Thus by 7.1.1 P7\ is a tangent to C at Τχ. 

By a similar argument, if we take Tb so that U is the mid-point of Ti and T 2 , then 
PT 2 is also a tangent to C at T 2 . We note that Ti and T 2 are both on the line which 
is perpendicular to OP at the point U. 

By Pythagoras' theorem 

\P, T, | 2 = |0 ,P | 2 - \0, Tt\2 = \0,P\2 -\0,TB\2 = \P, T2\2, 

β η α β ο Ι Ρ , Γ , Ι ^ Ρ , ϊ , Ι . 
There cannot be a third tangent PT3 as then T3 would be on C and C\, whereas 

by 7.2.3 these circles have only two points in common. 
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7.4.2 The power property of a circle 

For a fixed circle C(0;k) and fixed point Ρ & C(0;k), let a variable line I through 
Ρ meet C(0; k) at R and S. Then the product of distances \P, R\\P, S\ is constant. 
When Ρ is exterior to the circle, 

\P,R\\P,S\ = \P,T1\2, 

where T\ is the point of contact of a tangent from Ρ to the circle. 
Proof. By the distance formula Ζ = (χ, y) is on C(0; k) if and only if x2+y2 - A;2 = 

0. If Ρ = ( X Q , yo) and I has Cartesian equation ax + by + c = 0, by 6.4.1 points Ζ on 
I have parametric equations of the form χ = Xo + bt, y = yo — at (t G R). Now / also 
has Cartesian equation 

a b c _ 
Va 2 + 6 2 * + v V + + Va 2 + 6 2 

Thus as we we may replace α and b by a/y/a2 + b2 and b/y/a2 + ft2, without loss of 
generality we may assume that o 2 + 6 2 = 1. Then the point Ζ on the line lies on the 
circle if (x0 + 6t ) 2 + (j/0 - at)2 -k2=0, that is if 

t2 + 2(6x 0 - ay0)t + x2, + y& - k2 = 0. 

If ti, i 2 are the roots of this equation, then ίχί 2 = x§ + 2/o ~ * 2· As for R and 5 we 
have 

X i = xo + 6t! , 2 / i = 2 / o - oti, x 2 = xo + 6 i 2 , 1 / 2 = 2 / 0 — oi 2, 

so |Ρ,Λ| = | ί , | , |P ,S | = |f2|. Thus 

|P,R| |P,S| = |t I *,| = | ^ + y | - * * | , 

which is constant. 
When Ρ is exterior to the circle, the roots of the quadratic equation are equal if 

(6x 0 - ay0)2 = xl + yl - k2, 

and the repeated root is given by t = —(6x0 — ayo). Then for a point of intersection 
Γι of the line and circle, we have for the coordinates of Γι 

χ = xo - (6x 0 - ayo)b, y = yo + (6x0 - ayo)a. 

Hence 

|P, Tt I 2 = (x - xo)2 + (y- yo)2 = (bxo - ay0)2 = x\ + vl - k2 = | O, P | 2 - k2. 

It is also easy to give a synthetic proof as follows. We first take Ρ interior to the 
circle. Let Μ be the mid-point of R and 5 so that Μ is the foot of the perpendicular 
from Ο to RS. Then Ρ is in either [R, M) or [M,S]; we suppose that Ρ € [R, M], 
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® 
Figure 7.5. 

Then 

\P,R\\P,S\ = (\M,R\-\P,M\)(\M,S\ + \P,M\) = \M,R\2-\P,M\2 

= \M,R\2 - (|P, 0\2 - \0,M\2) = (\M,R\2 + | 0 ,M| 2 ) - |P, 0\2 

= \0,R\2-\P,0\2 = k2-\P,0\2, 

and this is fixed. 
We continue with the case where Ρ is exterior to the circle, and may suppose that 

|P,R| < \P,S\, as otherwise we can just interchange the points R and 5. As Ρ is 
outside the circle, by 7.1.1 it is outside the segment [R,S] on the line RS. Then we 
have 

\P,R\\P,S\ = (\P,M\-\M,R\)(\P,M\ + \M,S\) = \P,M\2-\M,R\2 

= (|P, 0\2 -\0,M\2) - \M,R\2 = |P, 0| 2 - ( |0 ,M| 2 + |M,R| 2 ) 

= |P, 0| 2 - |0,R| 2 = |P, 0| 2 - |0, T , | 2 = |P, T , | 2 . 

7.4.3 A harmonic range 

Let T\ and T 2 be the points of contact of the tangents from an exterior point Ρ to a 
circle C with centre 0. If a line I through Ρ cuts C in the points R and S, and cuts 
T\T2 in Q, then Ρ and Q divide {R,S} internally and externally in the same ratio. 

Proof. We use the notation of 
7.4.1 and first recall that Ϊ \ Γ 2 

cuts OP at right-angles at a 
point U. Then, by 7.2.1(ii), the 
circle C2 on [O, Q] as a diameter 
passes through U. We let Μ be 
the mid-point of R and 5; then 
by 4.1.1 OM X MQ, and so Μ 
also lies on the circle C 2 . Figure 7.6. 

We have |P,R||P, S\ = \P, Tt | 2 by 7.4.2, |P, T, \2 = |P, U\\P, 0\ by the proof of 
Pythagoras' theorem in 5.4.1, and |P, U\\P, 0\ = |P, Q\\P,M\, by the 7.4.2 applied 
to the circle C 2. On combining these we have |P, R||P, 5| = |P, Q\\P, M\. 
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We cannot have I ± OP as that would make /1| TiT 2 whereas I meets 2iT a . Then, 
with the notation of 7.4.1, / is not a tangent to C\ at Ρ so, by 7.1.11 must meet C\ 
at a point H. We are supposing that / is not either of PTi, PT2 and so if is not 
Ti or T 2 . We let Κ be the foot of the perpendicular from Η to OP. Then by 4.3.3 
Κ € [Ρ, Ο] and by the proof of Pythagoras' theorem in 5.4.1 \P,H\2 = \P,K\\P, 0\. 
If we had Κ € [P,U] we would have |P, K\ < |P, U\ and so 

|P, J/f = |P, 0||P, K\ < |P, 0||P, U\ = |P, Tj | 3 . 

From this it would follow that 

\0,H\2 = \0,P\2 - \P,H\2 > \0,P\2 - |P, Ti\2 = a 3, 

and make Η exterior to the circle. But Η is the foot of the perpendicular from Ο to 
I, and by 7.1.1 this would cause I to have no point in common with the circle. This 
cannot occur and so we must have Κ € [Ο, U]. By a similar argument it then follows 
that Η is interior to the circle C and so I meets C in two points R and 5. 

By 7.2.1(iv) every point of the circle C is in the closed half-plane Ήι with edge 
PTi and which contains O. By 2.2.3 Hi contains U € [P,0 and then it also contains 
T 2 € [Ti,U . Similarly every point of C is also in the closed half-plane with edge 
PT2 and which contains Ti. It follows that every point of C lies in the interior region 
ITl(\TiPTg)- Now every point of [P,R is in this interior region and so Q is. It 
follows that Q € [Ti,T2] and so by 7.1.1 is interior to the circle; we thus must have 
Q€[R,S] by 7.1.1 again. 

We let χ = \P,R\, y = \P,S\, ζ = |P, Q\, and without loss of generality assume 
|P, R\ < |P, S\ so that χ < y. As Ρ is outside the circle it is outside the segment 
[R, S]; as Q is on the segment [R, S], it follows that 0 < χ < ζ < y. Then in turn 

1 . , 2 1 1 1 1 1 1 
xy = Αχ + y)z, - = - + -, = , 

2 ζ χ y χ ζ ζ y 
z-x = y ^ z x = _y_ \P,R\ = \P,S\ 

xz zy ' z-x y-z' \R,Q\ \S,Q\' 
In the above we have assumed that / is not the line OP. When it is we have a 

simple case; / cuts the circle in points Ai,5i such that [RuSi] is a diameter. Then 
taking |P, Ri \ < |P, Si |, with the notation of 7.4.1 we have that 

\S,,P\ _ b + a \S,,U\ a + a2/b 
\P,Ri\ δ - ο ' \U,Rt\ o - o 2 / 6 ' 

and these are equal. 

7.5 ANGLES STANDING ON ARCS OF CIRCLES 

7.5.1 

Let P, Q,R,S be points of a circle C(0; k) such that R and S are on the same side of 
the line PQ. Then \ZPRQ\° = \ZPSQ\°. 

(i) When Ο 6 PQ, \Z.PRQ\° = 90; 
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(ii) when Ο & PQ and R is on the same side of PQ as Ο is, then \ZPRQ\° = 
h\^POQ\°; 

(iii) when Ο & PQ and R is on the opposite side ofPQ from O, then \ZPRQ\° is 
equal to half of the degree-measure of the reflex-angle with support \POQ. 

Proof. Now R £ PQ as by 7.1.1 a line cannot meet the circle in more than two 
points; for this reason also S cannot be on a side of the triangle [P,Q,R]. Moreover, 
neither can S be in [P,Q,R] but not on a side, as then by the cross-bar theorem we 
would have S € [Ρ, V] for some point V in [Q, R] but not at an end-point. Then V 
is interior to the circle and Ρ is on the circle, so by 7.1.1 every point of [Ρ, V], other 
than P, is interior to the circle; this would make S interior to the circle whereas it is 
on it. 

Thus as S & [P, Q, R] we must have at least one of the following 

(a) 5 is on the opposite side of QR from P, (b) S is on the opposite side of AP from 
Q, 

(c) S is on the opposite side of PQ from R, 

and of course (c) is ruled out by assumption. 
R 

Figure 7.7. 

We suppose that (a) holds as in the first figure; the case of (b) is treated similarly. 
Then there is a point U € [P, S] Π Q R . A B U € [ P , S ] , U must be an interior point for 
the circle and hence we must have U G [Q,R]. By 7.4.2 

\ U , P \ = \ U , R \ 
\ U , Q \ \ U , S \ ' 

and we also have \ Z P U R \ ° = \ Z Q U S \ ° as these are opposite angles. By 5.3.2, the 
triangles [ί/,Ρ,Λ], [ U , Q , S ] are similar. In particular \ Z P R U \ ° = \ Z Q S U \ ° . The first 
diagram in Fig. 7.7 deals with this general case. 
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In (i) when Ο G PQ, that we have a right-angle comes from 7.2.1 and there is a 
diagram for this in Fig. 7.2. 

When Ο £ PQ we l e t V he the mid-point of {P, Q) and for the second case (ii), 
as in the second diagram in Fig. 7.7, we take R to be point in which [V, Ο meets 
the circle. Then by 5.2.2, Corollary, and 4.1.1(1) |ZV0P|° = 2\ZVRP\°, \ZVOQ\° = 
2\ZVRQ\°. But [R,V C m(\PRQ) so that \ZVRP[° + \ZVRQ\° = \ZPRQ\°. 
Moreover [Ο, V c TR.{\POQ) so thaTfZ VOP\° + \Z VOQ\° = \ZPOQ\°. By addition 
we then have that \ZPOQf= 2\ZPRQ\°. 

For the third case (iii), as in the third diagram in Fig. 7.7, we take R to be point 
in which [Ο, V meets the circle and W Φ Ο a point such that Ο € [V,W]. Then 
by 5.2.2, Corollary, and 4.1.1(1) \ZWOP\" = 2\ZWRP\°, \ZWOQ\° = 2\ZWRQ\°. 
But [R,W C 1H(\PRQ) so that \ZWRP\° + \ZWRQ\° = \ZPRQ\°. Moreover 
[Ο,V C in(\POQ) so that by 3.7.1 \ZWOP\° + \ZWOQ\° is equal to the degree-
measure of the reflex- angle with support \ZPOQ. By addition we then have that the 
degree-measure of this reflex-angle is equal to 2\ZPRQ\°. 

Definition. If the vertices of a convex quadrilateral all lie on some circle, then the 
quadrilateral is said to be cyclic. 

COROLLARY. Let [P,Q,R,S] be a convex cyclic quadrilateral. Then the sum of 
the degree-measures of a pair of opposite angles is 180. 

Proof. Using the fourth diagram in Fig. 7.7, we first we note that 

Next as [S, Q C Jftfl££2), we have \ZPSR\° = \ZPSQ\°+\ZQSR\°. But \ZPSQ\° = 
\ZQRP\°, \ZQSR\° = \ZRPQ\°. Hence 

\ZPSR\° + \ZPQR\° = \ZRPQ\° + \ZPQR\° + \ZQRP\° = 180. 

Ο € 7ί6. Then C{0;k) Π i 
Ή.*, C(0; k) Π Ή β , are called, re- Ο 
spectively, the major and mi­
nor arcs of C(0; k) with end- Figure 7 8 
points Pi and Pj. 

The point Ρ € C{0; k) is in the minor arc with end-points Pi, P2 if and only if 
[0,Ρ]η[ρ1,ρ*]Φ9. 

Proof. Let Ρ be in the minor arc. Then Ο € Ή δ , Ρ € Ή β so [Ο,Ρ] meets ΡιΡ 2 in 
some point W. As W G [0,P] we have \0, W\ < k so by 7.1.1 W 6 [Pi,Pa]. 

Conversely suppose that W G [Pi,Pa] so that \0,W\< k. Choose Ρ G [O, W so 
that |0 ,P | = Jb. Then as |0, W\ < \0, P\ we have W G [0,P] so that as Ο G Ή 6 we 
have Ρ G Ήβ· 

\ZRPQ\° + \ZPQR\° + \ZQRP\° = 180. 

7.5.2 M i n o r a n d m a j o r a r c s o f a c i r c l e 

Definition. Let Pi,Pa G C[0;k) 
be distinct points such that Ο $ 
PiP 2 . Let Ή.6,Ή.0 be the closed 
half-planes with edge Pi Pa, with 
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7.6 SENSED DISTANCES 

7.6.1 Sensed distance 

Definition If / is a line, <j is a natural order on / and Ζχ, Z 2 € I, then we define 
Z 7 ^ < , by 

_ - _/ \Z,,ZS\, i f Z i < , Z a , 

and call this the sensed distance from Z\ to Z 2 . In knowing this rather than just 
the distance from Ζχ to Z 2 we have extra information which can be turned to good 
account. It can have negative as well as positive and zero values and it is related to 
the distance as ΖχΖ 2<, = ±\Zj,Z2\ or equivalently \ZtZe<t\ — \Zt,Ze\. 

We note immediately the properties: 

ΖΓΖΪχ, = 0, (7.6.1) 
2ζζ7<, = - Ζ χ Ζ 2 < ( , (7.6.2) 

iu all cases. We can add sensed distances on a line and have the striking property 
that 

ΖχΖ 2<, + Z 2 Z 3 < , = ΖχΖ 3 < ( , (7.6.3) 

for all Zi, Z 2 , Z 3 € /. This is easily seen to hold by (7.6.1) when any two of the three 
points coincide, as e.g. when Ζχ = Z 2 it amounts to 0 + ΖχΖ 3<, = ΖχΖ 3 <, . Suppose 
then that Ζχ, Z 2 , Z3 are all distinct and suppose first that Ζχ <j Z 2 . Then by 2.1.3 
we have one of the cases 

(a) Z 3 <, Ζχ <ι Z2, (b) Ζχ <, Z 3 <i Z 2 , (c) Ζχ <, Z 2 < , Z 3 . 

In (a) we have 

ZiZ 2 <, = \Zt,Zii\, ZiZ3<, =- -\ZS,Z3\, ΖχΖ 3<, = -\Zt,Z3\, 

and as Ζχ € [ Z 3 , Z 2 ] , | Z 3 , Z , | + \Z,,ZS\ = \Z3,ZS\, which is - Ζ χ Ζ ^ , + ΖχΖ 2<, = 
- Z 2 Z 3 < R In (b) we have 

ΖχΖ 2<, = \ZI,ZB\, ZIZ3<, = -\Zg,Z3\, ΖχΖ 3<, = | Z J , Z J | , 

and as Z 3 € [Zx.Za], | Z , , Z 3 | + | Z 3 , Z S | = | Z i , Z f | , which is ΖχΖ 3<, - Z 2 Z 3 < , = 
ΖχΖ 2<,. In (c) we have 

ΖχΖ 2<, = \Zt,Zg\, Z 2 Z 3 < , = \Z2,Z3\, Z\Z3<t = |Zj,Zs| , 

and as Z 2 € [Ζχ,Ζ3], | Ζ ί , Ζ β | + | Z f i , Z 3 | = | Z , , Z 3 | , which is ΖχΖ 2<, + Z 2 Z 3 < , = 
Z iZ 3 < ( . 

Next suppose that Z 2 <ι Ζχ. Then on interchanging Ζχ and Z 2 in the cases just 
proved we have Z^^+^2J<t = ZiZ3<„ for all Z 3 € I and by (7.6.2) this gives 
- Z 1 Z 2 < J + ZiZ3<t = Z 2 Z 3 < , . This completes the proof of (7.6.3) which shows that 
addition of sensed distances on a line is much simpler than addition of distances. 
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We next relate sensed distances to the parametric equations of / noted in 6.4.1, 
Corollary. Suppose that W0 = (uo.wo), Wi = (ui,vi) are distinct points on I and 
that W0 <| W\. Then for points Z\ = (χι,ι/i), Z a = (12,1/2) on J we have 

xi = "o + «i ("i - «o), l/i = v0 + 81 (vi - v0), 
x-i = uo +«2(1*1 -«o), 1/2 = u0 + sa(ui - υ 0 ) , 

and we recall that Zi <j Z a if and only if βι < « a . Moreover, by the distance formula 

\Zi,Ze\ = \Ss-s1\\W0,W1\. 

From these we conclude that 

2Τ2Ϊ<, = (s2 - Wf l, |. (7.6.4) 

In particular the simplest case of parametric representation in relation to sensed 
distances is when we additionally take | Wo, Wi \ = 1 as we then have Z iZ a < ( = s 2 - a 1. 

When we consider the reciprocal natural order on / we note that 

ZiZ2>t = —Z\Z2<t, 

so that changing to the reciprocal natural order multiplies the value by —1. As well 
as adding sensed distances on one line we can multiply or divide them. Now for 
Zu Z2, Z3, Z4 in i, 

•2s^4>, ZiZ2>, = —Z7Z7<, ( - l )ZiZ a <, = Z3Z\^ Z\Z-i<0 

so this sensed product is independent of which natural order is taken. Similarly, 
when Z\ φ Z a , we can take a ratio of sensed distances 

ZaZ4<t _ —ZzZi>x _ ZaZ4>, _ «4 — S3 
ZlZ2<t —Z\Zl>t Z\Z2>t 82 — «1 

and see that this sensed ratio is independent of whichever of <j, >j is used. When 
the line I is understood, we can relax our notation to Z3Z4 ZiZ a and | ^ for these 
products and ratios. 

If for Z\, Z a , Ζ € / we take the parametric equations 

χ = xi + t(xa - Xl), y = J/1 + t(l/2 - Vi), (i € R), 
then we have that 

χ = uq + [at + t(ea - si)](ui - u 0), y = v0 + [«i + t(a2 - βι)](ι>ι - υ 0), 

and by (7.6.4) we have that 

Z7Z<, = t{92 - W0, Wi I, Ί Τ 2 ^ = (1 - ί ) ( β 2 - β ι ) | W 0, |, 

and so 
Z i Z t 
m=—,- '7·6·5» 

Our main utilisation of these concepts is through sensed ratios; for example 
(Zi,Z2,Z 3,Z4) is a harmonic range when Z i Z 3 / Z 3 Z a = -Z1Z4/Z4Z2. It is con­
venient to defer the details until Chapter 11. However we make one use of sensed 
products in the next subsection. 
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7.6.2 Sensed products and a circle 

The conclusion of 7.4.2 can be strengthened to replace \P, R\\P, S\ by PR~PS. In fact 
the initial analytic proof gives this but it also easily follows from the stated result as 
PRPS~ = -\P, R\\P, S\ when Ρ is interior to the circle while PRP~3 = \P, R\\P, S\ 
when Ρ is exterior to the circle. We now look to a converse type of result. 

Suppose that Z\, Z2 and Z3 are fixed non-collinear points. For a variable point W 
let Z{W meet Z2Z3 at W and 

W'WW'Zx = W'Z-i W'Z3. 

Then W lies on the circle which passes through Z\,Z2 and Z3. 

Zi 

Proof. Without loss of generality / '·. 
we may take our frame of refer- ' 
encesothat Z\ = (0,yi), Z2 = : / 
(x2,0), Z3 = (x3,0), and we * Λ — τ -

The line WW has parametric equations χ = u' + sju - u'), y = 0 + s[v - 0), with 
s = 0 giving W' and β = 1 giving W. Thus W'W = | W', W\. The point Zx has 
parameter given by yi - sv and so β = yi/v; then W'ZX = ^-| W', W\. It follows 
that 

take W = {u,v), W' = (u',0). Ζ2'·4 ••' Z3 

W 
Figure 7.9. 

Then it is easily found that u' - v), and so, first of all, 

On equating the two expressions we have 

which we re-write as 

On multiplying across by yi — ν we obtain 

l/i (u2 + υ 2) - yi (x3 + Xs)« - ivi + X J X S ) " + I/1X2X3 = 0, 

and this is the equation of a circle. 
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7.6.3 Radical axis and coaxal circles 

In 7.4.2 our proof showed that if a line through the point Ζ meets the circle C(Zi, fci) 
at the points R and S then ZRZS = \ZltZ\2 — fc? depends only on the circle and 
the point Z. We call this expression the power of the point Ζ with respect to this 
circle. To cater for degenerate cases, when fci = 0 we also call \Zj, Z\2 the power of 
Ζ with respect to the point Z\. 

We let C\ denote either C(Zi,fci) or Zi and similarly consider C2 which is either 
C(Z2,fca) or Z2 . We ask for what points Ζ its powers with respect to C\ and C2 are 
equal This occurs when \Zt, Z | 2 - k\ = \Zg, Z\2 — fc2 which simplifies to 

2(x2 - xi)x + 2(j/2 - V\)V + x\ + Vi - fc2 + x\ + y\ - k\ = 0. 

If Zi φ Z 2 this is the equation of a line which is called the radical axis of C\ and C2. 
It is always perpendicular to the line Z\ Z2 and it passes through any points which C\ 
and C2 have in common. 

More generally we also ask for what points Ζ its powers with respect to C\ and C2 

have a constant ratio. For a real number Λ which is not equal to 1 we consider when 

|Z, , Z | 2 - fc? = λ [|Z*, Z | 2 - fc2] . (7.6.6) 

When λ = 0 this yields Ci and by considering μ [ |Ζ 7 ,Ζ| 2 - fc2] = \Ze, Z\2 - k\ as 
well, we also include C2. 

Now (7.6.6) expands to 

2 . 2 0 x i - A x 2 _ 0 j / i - Ay 2., , X1+V1- fc? - A(x?, +y% - fc2) 

x +v -2-ττΓχ-2-ϊΤΓν + ~χ =°· 
and on completing the squares in both χ and y it becomes 

l 2 
XI — Xx2 

χ — 

2 

+ _ Vi ~ Ay2 

V 1-X 1-X 

= (ΓΖλ )2 W + [(*! " **) 2 + (Vl ~ V2Y ~ % - 4] λ + Φ2} · 

This quadratic expression in Λ is postive when |A| is large, so it has either a positive 
minimum, or its minimum is 0 attained at Χι, say, or it has a negative minimum and 
so has the value 0 at λ2 and A 3 , say, where A2 < A 3 . In the first of these cases (7.6.6) 
always represents a circle and in the second case it represents a circle for all λ φ Χι 
and a point for A = Ai. In the third case it represents a circle when either A < A2 
or A > A 3 , it represents a point when either A = AQ or A = A 3 , and it represents an 
empty locus when A2 < A < A 3 . Thus it is the equation of a circle, a point or an 
empty locus. 

Suppose that we consider two of these loci, corresponding to the values A 4 and A 5 
of A. They will then have equations 

j , „ 2 n x i - A4i 2_ 0t/i - XAVI ., , x\ + y2 - fc? - M s 2 ; + vl - kp 

~ 2 , „ 2 n x i - Asx 2_ „yi ~ Asi/2., , xj+yj-k2- Xjjx2, + yl - fcf) 
x +y -2-ΊΤχΓχ-2-ϊ=χΓν + ϊ=χ> = °· 
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On subtracting the second of these from the first, and simplifying, we find that their 
radical axis is the line with equation 

(1 - ^ " ( l ^ As) ^ 2 ( Χ 2 " X x ) x + 2 ( V 2 " V l ) y + x! + V 2 - k i + 3%+V*-*a] = 0. 

As we can cancel the initial fraction we see that these loci have the same radical axis 
as did the original pair C\ and C2. For this reason all the loci considered are said to 
be coaxal. 

Exercises 

7.1 Prove that a circle cannot have more than one centre. [Hint. If Ο and 0\ are 
both centres, consider the intersection of 00\ with the circle.] 

7.2 Give an alternative proof of 7.2.1(iv) by showing that if (x - Jb)2 + y 2 = A2, 
where k > 0, then χ > 0. 

7.3 Prove that if the point X is interior to the circle C(0; k), I is a line containing 
X, and Μ = πι(Χ), then Μ is also an interior point of this circle. Deduce that 
ί is a secant line. Show too that if Y is also interior to this circle, then every 
point of the segment [X, Y] is also interior. 

7.4 Show that if A, B, C are non-collinear points, there is a unique circle to which 
the side-lines BC, CA, AB are all tangents. 

7.5 Let Zi = (xi,0),Z2 = (xj,0) and Z3 — (xs,0) be distinct fixed collinear points 
and Z3 not the mid-point of Z\ and Z2. For W # Z\Z2 let / be the mid-line 
of \ZgWZj_. Find the locus of W such that either 2, or the line through W 
perpendicular to I, passes through Z3. 

7.6 Show that the locus of mid-points of chords of a circle on parallel lines is a 
diameter. 

7.7 Show that if two tangents to a circle are parallel, then their points of contact 
are at the end-points of a diameter. 

7.8 Show that if each of the side-lines of a rectangle is a tangent to a given circle, 
then it must be a square. 

7.9 Consider the circle C(0; a) and point Z\ = ( i i , 0) where X\ > a > 0, so that Z\ 
is an exterior point which lies on the diametral line AB, where A = (a,Q),B = 
(-o ,0). Show that for all points Ζ = (x,y) on the circle, 

\Zi,A\<\Z1,Z\<\Z1,B\. 

7.10 For 0 < a < b, suppose that A = (0,α), Β = (0,6). Show that the circles 
C(A; a) and C(B; b) both have the axis Ol as a tangent at the point O, and that 
A 6 [Ο,Β], Verify that every point of C(A; a), other than O, is an interior point 
for C(B; b). [Hint. Consider the equations of C{A; a) and C(B; b).] 

7.11 Use Ex.6.3 to establish the equation of the mid-line I in 7.3.1 when Pi and P2 

are not diametrically opposite. 
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COMMENT. In this chapter we introduce translations and develop them and axial 
symmetries. These will be useful in later chapters. It is more convenient to frame our 
proofs for isometries generally. 

8.1 TRANSLATIONS AND AXIAL SYMMETRIES 

8.1.1 

Definition. Given points 
Z\,Z2 € Π, we define a trans­
lation tzx,Zi to be a function 
tzi,za : Π -¥ Π such that, for all 
Ζ € Π, tz„2h(Z) = W where 
mp(Zi,W) = mp(Z 2,Z). Figure 8.1. 

Translations have the following properties:-

(i) / / Zj = (x i , y i ) Z2 = (χ2,ι/2) Ζ = (x,y), W = («,v), then tZuz*{Z) = W if 
and only if 

U = X + X2 - χι, ν = y + tfe - Vi-

(ii) 7n all cases \tz,,z${Zs),tz,,zt(Z4)\ = \ZS, Z4\, so that each translation preserves 
all distances. 

(iii) For each W € Π the equation tzltz,(Z) = W has a solution in Z, so that each 
translation is an onto function. 

(iv) Each translation ίζΛ,ζΛ has an inverse function t^ Z i = tz2,zl-

(v) The translation tzx ,ζλ is the identity function on Π. 

(vi) If Ζχ Φ Z 2 , Ζ <f. ΖχΖ2 and W = tZl,z3(z)> #»en [ZUZ2,W,Z] is a parallelo­
gram. 

110 

T r a n s l a t i o n s ; a x i a l 
s y m m e t r i e s ; i s o m e t r i e s 
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Proof. 
(i)Formp(Zi,WO = ( 5(xi + u), ±(1/1 + «)), mp(Z2, Z) = (±(x2 + x), ±(y2 + y)) 

and these are equal if and only if u = χ -I- x 2 - Χι , v = y + y2—y\. 
(ii) For if W3 = tz^zAZs), W4 = tzuz3(Z4), then 

U 4 - U 3 = X4 +X2 - Xl - (x 3 +X 2 -Xl) = X4 - x 3 , 

V4-V3 = J/4 +1/2 "l/i - (l/3 +1/2 "l/i) = 1/4 -1/3· 

It Mows that \Z3,Z4\ = \W3, W4\. 
(iii) By (i) the equation tz,,z3{Z) = W has the solution given by χ = u + xi -

X2, y = ν +1/1 - i/2. 
(iv) By (ii) and (iii) the equation tzx,z3{Z) — W has a unique solution and this is 

denoted by Ζ = t""* za(W*)- The correspondence from Π to Π given by W -¥ Ζ is the 
inverse of tzltz3 and is a function. As by the proof of (iii) 

χ = u + xi - x 2 , y = ν +1/1 - 1 / 2 , 

by (i) this inverse function is tz3,Zi · 

(ν) For if Z\ — Z 2 , in (i) we have u = χ + xi - xi = x, w = !/ + l/i — l/i = 1/· 
(vi) We denote by Τ the common mid-point mp(Zi,iy) = mp(Z 2,Z). First we 

note that W φ Ζ, as mp(Zi,Ζ) =mp(Z2, Z) would imply Zi = Z 2 . As Ζ £ ZiZ 2 , we 
have Τ & Z\Z2 and hence W & Z\Z2. It follows that Τ # ZW as otherwise we would 
have Zi G ZW, Z 2 G ZW and so Ζ G ZiZ 2 . The triangles \ZX,T,Z2\, [W,T,Z] 
are congruent in the correspondence (Ζι,Γ,Ζ 2 ) -> (W,T,Z) by the SAS-principle. 
Hence the alternate angles LWZ\Z2, £ZXWZ have equal degree-measures and so 
Z X Z 2 II WZ. Similarly Z t Z || Z2W. 

Axial symmetries have the following properties:-

(i) In all cases |sj(Z 3),s,(Z 4)| = \ZS,Z4\, so that each axial symmetry preserves 
all distances. 

(ii) Each axial symmetry sj nos on inverse function ej"1 = ej. 

Proof. 

We note that by 6.6.1, 

s,(Z3) Ξ (or 2̂ K&3 " <*2)*3 - 2aby3 - 2oc], -Jl^[-2obx3 - (62 - o2)i/3 - 26c]) , 

a,(Z4) = (or^Kb2 " ° 2 ) χ 4 - 2 o ^ " 2oc], -5i-^[-2o6x4 - (62 - o 2)y 4 - 26c]) , 

and thus 

\si{Zs), st{Z4)\2 = ( o a ^ y ) a {lib2 ~ α2)(*3 - X4) - 2o6(y3 - y 4)] 2 

+[-2o6(x3 - x 4) - (62 - o2)(i/3 - y 4)] 2} 

= ( a , ^ y ) a {[(b2 - o 2) 2 + 4o262][(x3 - x 4 ) 2 + (y3 -1/4)2] 

+[-4o6 + 4o6](62 - o 2)(x 3 - X4XV3 - V*)} 

= ( x s - x 4 ) 2 + {v3-y*)2-
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(ii) For if m is the line through Ζ which is perpendicular to I and W = «j (Z), then 
W € m and so n,{W) = π,(Ζ). Then n,(W) = mp{W, Z) so Ζ = e,(W). This shows 
that the function s< is its own inverse. 

8.2 ISOMETRIES 

8.2.1 

Definition. A function / : Π-» Π which satisfies |Ζ/,Ζι>| = \f(Zt),f(ZB)\ for all 
points Zi,Zi € Π, is called an isometry of Π. 

Each translation and each axial symmetry is an isometry. 
Proof. This follows from 8.1.1. 
Each isometry f has the following properties:-

(i) The function f : Π Π is one-one. 

(ii) ForallZuZi € Π, f([Zx,Z2]) = if(Zx),f(Z2)], so that each segment is mapped 
onto a segment, with the end-points corresponding. 

(iii) For all distinct points ZX,Z2 € Π, f([ZuZ2 ) = [/(Zi),/(Z 2) , so that each 
half-line is mapped onto a half-line, with the initial points corresponding. 

(iv) For all distinct points ZX,Z2 € Π, f{ZxZ2) = / (Zi) / (Z 2 ) , so that each line is 
mapped onto a line. If f{Z) € /(Zi) /(Z 2 ) then Ζ € ZXZ2. 

(v) IfZi,Zi,Z3 arenoncollinearpoints, thenf {[ZuZ2,Z3]) = [f(Zi),f(Z2),f(Z3)\. 

(vi) Let Z3 $ I and Ήι,Ή2 be the closed half-planes with common edge I, with 
Z3 6 Ήι. Let Ή3,Ή4 be the closed half-planes with common edge /(/), with 
f{Z3) € Ή 3 · Tnen /(Ήι) C Ή 3 , /(Ή 2) C Ή 4 · 

(vii) The function / :Π->Πίβ onto. 

(viU) In (vi), /(Wi) = Ή 3 , /(Ή 2) = Ή 4 . 

(ix) If I and m are intersecting lines, then /(/) and /(m) are intersecting lines. If I 
and m are parallel lines, then /(/) and f(m) are parallel lines. 

(x) If the points Z\, Z2 and Z3 are non-collinear, then 

\ΖΖΒΖ,Ζ3\0 = \Zf{ZB)f{Zt)nZ3)\°. 

(xi) If I and m are perpendicular lines, then /(/) ± f(m). 

(xii) / / a point Ζ has Cartesian coordinates (x, y) relative to the frame of reference 
Τ = {[Ο,Ι, [0,J ), then f(Z) has Cartesian coordinates (x,y) relative to the 
frame of reference ( [ / (0) , / (J ) , [f{0),f{J)). 

Proof. 
(i) If Zx φ Z2 then \Zt, ZB[ > 0 so that \f(Zt),f(ZB)\ > 0, and so f(Zx) φ f{Z2). 
(ii) If Ζχ = Z2 the result is trivial, so suppose that Ζχ φ Z%. Then for all 

Z€ [Zi.ZaJ.webavel^.ZHZ.Zel = \Z,,ZB\and so \f(Zt),f(Z)\+\f{Z),f{ZB)\ = 
\f(Zt),f(ZB)\. It follows by 3.1.2 and 4.3.1 that f(Z) € [f{Zx)J(Z2)] and so 
f{[ZxM)c[f{Zx),f{Z2)}. 
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Figure 8.2. 

Next let W G [/(Zi),/(Z a)]. Then |/(Z,), W\ < | / (Z,) , /(Z,) | = \Z,,Ze\. Choose 
the point Ζ € [Zi,Z 2 so that \Zt,Z\ = |/(Z,), W|; as \Zt,Z\ < \Zt,Zs\ then Ζ € 
[ZUZ2). Moreover |/(Z,),/(Z)| = | Z , , Z | = |/(Z,), W\. Then /(Z) and W are both 
in [/(Zi),/(Z 2) and at the same distance from /(Zi) so f(Z) = W. Thus W is a 
value of / at some point of [Zu Z 2]. Hence /([Z x ,Z 2 ]) = [/(Ζχ),/(Z2)]. 

(iii) By (i) /(Zi) φ / (Z 2 ) . Suppose that Ζ 6 [ Z l 5 Z 2 . Then either Ζ e [ZX,Z 2] 
or Z 2 € [Ζι,Ζ]. It follows from part (ii) of the present theorem, that then either 
/(Z) G [/(ZX),/(Z2)] or / (Z 2 ) G [/(Ζχ),/(Ζ)]. Thus /(Z) G [/(Z0,/(Z 2) and so 
/ ( [ Ζ ^ Ζ , Κ ί / ί Ζ Ο , / ί Ζ , ) . 

If W G [/(Zi), / ( Z 2 ) choose Ζ G [Zx, Z 2 so that \Z,, Z| = |/(Z,), W|. Then by 
the last paragraph /(Z) G [/(ZX),/(Z 2) and as | /(Z,),/(Z)| = | / (Z , j , W|, we have 
/(Z) = W. Thus W is a value of / at some point of [Zi,Z 2 . Hence / ( [Z i ,Z 2 ) = 
[f(Zi),f{Z2). 

(iv) Take Z 3 Φ Zx so that Zx G [Z 2 ,Z 3]. Then ZiZ 2 = [Z X ,Z 2 U [Zi,Z 3 . Hence 

/ (Ζ Χ Ζ 2 ) = f([ZuZ2)Uf{[ZuZ3) 
= [f(Zi),f(Z2) U ^ Z O . / i Z a ) 
= /(Z!)/(Z 2 ) , as /(Zj) G [/(Z 2),/(Z 3)]. 

If /(Z) G / (Zi) /(Z 2 ) , then by the foregoing there is a point Z 4 G Z iZ 2 such that 
/ (Z 4 ) = /(Z) and then as / is one-one Ζ = Z 4 G ZiZ 2 . 

(v) For 

| Z 8 , Z 3 | = | / (Z S ) , / (Z S ) | , ΙΖ^,Ζ,Ι = | / ( Z J ) , / ( Z i ) | , | Z J , Z e | = Ι /^ , ϊ , / ίΖ, ) ! , 

so by the SSS-principle, these triangles are congruent in the correspondence 

(Z X ,Z 2 ,Z 3 ) -> (/(Z!), /(Z 2 ) , /(Z 3 )) . 
(vi) Suppose that f{Hi) is not a subset of H3 · Then there is some Z 4 G %\ 

such that / (Z 4 ) G W4, / (Z 4 ) ^ /(/). Then / (Z 3 ) and / (Z 4 ) are on opposite sides of 
/(/), so there is a point W on both /(/) and [/(Z3), /(Z 4)]. By (ii) there is a point 
Ζ G [Z 3,Z 4] such that /(Z) = W, and then by (i) and (iv) Ζ G i. But this implies 
that Z 4 £ fti and so gives a contradiction. Hence /(Hi) C Ή.3 and by a similar 
argument f{%2) C Ή4-

(vii) Take distinct points Z l t Z 2 in Π. If W G / (Zi)/(Z 2 ) , then by (iv) /(Z) = W 
for some Ζ G ΖχΖ 2 and so W is a value of / . 
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Suppose then that W & / ( Z i ) / ( Z 2 ) and let Ή 3 be the closed half-plane with edge 
/(Ζχ)/(Ζ 3) which contains W. Let Hi be the closed half-plane with edge Z I Z J 

such that by (vi) /(Ήι) C Ή 3 · Take a point Ζ 6 Ήι such that \ZZgZtZ\0 = 
\Zf{Zg)f{Zt)W\° and |Z,,Z| = |/(Z,), W\. Then by the SAS-principle [Zx.Zj.Z] = 
[f(Zi)J(Z3),W], and so by (ν) [f{Zi),f(Z2),f(Z)] s [ / ( Ζ χ ) , / ^ ) , W]. In particu­
lar \Zf(Zg)f{Z,)f{Z)\° = \Zf{Zg)f{Z,)W\°. As /(Z) G Ή 3 , W € Ή3 we then have 
/(Z) € [/(Zi),W. But by the congruence we also have | /(Z,) , /(Z) | = |/(Z,), W|. 
It follows that /(Z) = W and so W is a value of / . 

(viii) Let W € Ή 3 . Then by (vii) W = /(Z) for some Ζ € Π. If W € /(J) then by 
(iv) Ζ € / C Ήι. If W i /(/) then W # Ή 4 and by (vi) we cannot have Ζ € Ή 2 as 
that would imply W ε Ή4. Thus again Ζ € Ήι. In both cases W is a value /(Z) for 
some Ζ e Ήι. 

(be) By part (iv) f(l),f(m) are lines. If Ζ belongs to both I and m, then /(Z) 
belongs to both /(i) and /(m) so these have a point in common. 

On the other hand, if / || m suppose first that I = m. Then /(/) = /(m) and 
so /(Ζ) II /(m). Next suppose that l Φ m; then / Π m = 0. We now must have 
/(i)n/(m) = 0, as if W were on both /(i) and /(m), by (iv) we would have W = /(Z) 
for some Ζ 6 Z, W = f(ZQ) for some Zo € m. But by (i) Ζ = Zo so we would have 
Ζ on both I and m. 

(x) By (v) the triangles [Zi,Z 2 ,Z 3], [f(Zi),f(Zi),f{Z3)] are congruent, and so 
corresponding angles have equal degree-measures. 

(xi) If I and m are perpendicular, let Z\ be their point of intersection, and let 
Z 2 , Z 3 be other points on / and m respectively. Then as in part (χ), ZZ3Z1Z3 is a 
right-angle and so its image is also a right-angle. 

(xii) For any line I and any point Ζ we recall that πι(Ζ) denotes the foot of the 
perpendicular from Ζ to /. For any point Ζ € Π, let U = πο/(Ζ) and V = ITOJ(Z). 

Let O' = f(0), V = /(/), J' = f(J). Then O' φ / ' , O' / J' and 0 7 ' ± aj' 
so that we can take {[Ο',Ι', [Ο', J ' ) as a frame of reference. Let Ήι, Ή 2 be the 
half-planes with edge 01, with J € Hi, and Ή 3 , Ή4 the half-planes with edge OJ, 
with / € Ή 3· Similarly let H[, H2 be the half-planes with edge ΟΊ', with J' € H[, 
and Ή' 3, H\ the half-planes with edge 0*3', with 7' € Ή 3 . 

Figure 8.3. 
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-Hi 

V 

J 

Ο 

If (x, y) are the Cartesian coordinates of Ζ relative to ([O, I, [0,J), then 

ί \o,u\,zzeH3, 
x - \ -\0,u\,\iZeu4. 

But if Z' = f(Z), U' = f(U) we have U' 6 OV% and if Ζ £ 01 we have ZU ± OI and 
hence Z'U' _L ΟΊ ' . It Mows that U' = κσΐ'(Ζ'). Moreover f(H3) = W3, f{UA) = 
U\. Then if (x',y') are the Cartesian coordinates of Z' relative to ([Ο', Γ , [Ο', J'), 
when Ζ € Ή 3 we have £' 6 Ή 3 and so 

x* = \0',πο·ι>(Ζ')\ = \0', U'\ = \0, U\ = x. 

Similarly when Ζ € we have £ ' € W4 and so 

x' = - | 0 ' , π Ο ' / ' ( Ζ ' ) | = -\0\ U'\ = -\0, U\ = x. 

Thus x' = χ in all cases, and by a similar argument y' — y. 

8.2.2 

//1 = ml(\BAC). then at([A,B) = [A,C and «,([A,C ) = [Α,Β . 
Proof. We prove ai([A, Β ) = [A, C as the other then follows. As A G / we have 

«i(A) = A and so by 8.2.1(iii) «j([A,R ) = [A,D for some point D. 
Suppose first that A,B,C are collinear. When C € [Α,Β we have I = AB, and 

so at (Ρ) = Ρ for all Ρ € [A, R . As [A, R = [A, C the conclusion is then immediate. 
On the other hand when A € [B, C] so that |RAff is straight, I is the perpendicular 
to AR at A. Then if A = mp(fl,D) we have «i([A,R ) = [A,D , and [A,D = [A,C 
aaDe[A,C. 

Finally suppose that A,B,C are non-collinear. Now take D € [A,C so that 
I A, D\ = \A,B\. If Μ = mp(fl,I>) by 4.1.1(iv) we have that I = AAf and as «i(R) = D 
then «i([A,fl ) = [A,D = [A,C. 

8.3 TRANSLATION OF A FRAME OF REFERENCE 

NOTATION. By using 8.2.1(iii), (vi) and (xi), we showed in 8.2.1(xii) that for 
any frame of reference Τ = {[Ο,Ι , [0,J ) and any isometry / , T' = 
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([/(0)»/CO , [/(0),/(J) ) is also a frame of reference, and that Cartesian coor­
dinates of Ζ relative to Τ are also Cartesian coordinates of f(Z) relative to P. We 
denote Ρ by f{P). 

For any frame of reference Τ = ([Ο,Ι , [0,J ), let Zo =τ (xo,Vo) and Ρ = 
to,z0(P)- Then if Ζ (x,y) we have Ζ =yr, (x -x0,y- yo). 
Proof. By 8.2.1(xii), to,z0(Z) 
has coordinates (x,y) relative to 
Ρ, and by 8.1.l(i) it also has co­
ordinate (x + Xo,V + Vo) relative 
to T. Thus for all (x,y) 6 R x R 
the point with coordinates (x + 
Xo, V+Vo) relative to Τ has coor­
dinates (x,y) relative to P. On 
replacing (x, y) by (x -x 0 , y-yo), 
we conclude that the point with 
coordinates (x, y) relative to Τ 
has coordinates (x — xo,y - yo) 
relative to P. 

J 
6 

H3 ν • / 2 Ί 

Ζ . . · · ' " 

J' 
. σ 

•Ί' w 

I υ Ήι 

Figure 8.5. 

Exercises 

8.1 If Τ is the set of all translations of Π, show that (T, o) is a commutative group. 

8.2 If I is the set of all isometries of Π, show that (T, o) is a group. 

8.3 Given any half-lines [Α, Β, [C,D show that there is an isometry / which maps 
[Α,Β onto[C,D . 

8.4 Show that each of the following concepts is an isometric invariant:- interior 
region of an angle-support, triangle, dividing a pair of points in a given ra­
tio, mid-point, centmid, circumcentre, orthocentre, mid-line, incentre, parallel­
ogram, rectangle, square, area of a triangle, circle, tangent to a circle. 

8.5 For any line I, 8i[C(0,k)] = C(e,(0);k) so that, in particular, if Ο € I then 
8t[C(0;k))=C(0;k). 
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T r i g o n o m e t r y ; s i n e a n d 
c o s i n e ; a d d i t i o n f o r m u l a e 

COMMENT. In this chapter we go on to deal fully with reflex-angles as well as with 
wedge and straight ones, we define the cosine and sine of an angle and we deal with 
addition of angles. As a vitally convenient aid to identifying the two angles with a 
given support \BAC. we start by introducing the notion of the indicator of an angle. 

9.1 INDICATOR OF AN ANGLE 

Θ.1.1 

Definition. If α is an angle with support \BAjQ_, we call the other angle with support 
\BAC the co-supported angle for a, and denote it by co — sp a. 

A /A 

co - spa >.·; ( α ) 

Figure 9.1. Co-supported angle. Figure 9.2. Angle indicators. 

Definition. Referring to 2.3.3, for each angle support |RAC let I = m\(\BAC) as 
in 3.6 and 4.1.1. When A £ [B, C], we call l Π m(\BAC) and / Π EH(\BAC) the 
indicators of the wedge-angle {\BA£,TR.(\BA£j) and of the reflex-angle (\BAC. 
εΚ(\ΒΑΟ). respectively. When A € [B,C] we call l Π Hi, / Π Wa the indicators of 
the straight-angles (\BAC_,7ii), (\ΒΑΟ.Ή*). respectively. In each case an indicator 
is a half-line of / with initial point the vertex A. We denote the indicator of an angle 
a by i(a). 

117 
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COMMENT. The first use we make of the concept of indicator is in defining the 
cosine and sine of any angle. 

9.2 COSINE A N D SINE OF A N ANGLE 

Θ.2.1 

Definition. Starting with a sup­
port \BAC. let Hi be a closed 
half-plane with edge AB in which 
C lies. Let α be an angle with 
support \BAC such that the in­
dicator i(a) lies in Hx. Then 
we define cos α and sin α as fol­
lows. Take any point Ρ φ A on 
[A,C , let Q € [Α,Β be such 
that I A, Q\ = \A,P\ and Λ € Ήι 
be such that \A,R\ = \A, P\ and 
AR ± AB. 

Let U, V be the feet of the perpendiculars from Ρ to AB — AQ and AR respec­
tively. Then we define 

coaa.\A,P\-\Q,U\ \A,P\-\R,V\ 
c o s a · M n o \XT\—· 

It follows from this definition that if Ή2 is the other half-plane with edge AB and 
if we take Τ € Ή 2 so that |A, T\ = \A,P\ and AT ± AB, then 

. \A,P\-\Q, U\ . \A,P\-\T,V\ 
cos(co-spa) = 1 lA ^ j " ', sm(co-spa) = ^ ^ '. 

COMMENT. Two comments on this definition are in order. First we note that 
when A,B,C are collinear, Hi and Hi are not uniquely determined above but are 
interchangeable with each other, so that the angles α and co-spa are not uniquely 
determined. Our second comment is that to show that cos a, sin a are well-defined it 
is first necessary to use the ratio results for triangles to show that the values of cosa 
and sin α do not depend on the particular point Ρ € [A, C taken, and then to show 
that if the arms [Α,Β and [A, C are interchanged the outcome is unchanged. 

To help us in our study of angles, it is convenient to fit a frame of reference to the 
situation in the definition. We take Ο = A, I = Β and J φ Ο & point in Hi so that 
01 J_ OJ. We let H3, HA be the closed half-planes with edge 03, with I € H3. 

Figure 9.3. Cosine and Sine. 

�� �� �� �� ��



Sec.9.2) COSINE A N D SINE OF A N ANGLE 119 

With fc = \A,P\ = \0,P\, let 
Q be the point on [Ο,I — [Α,Β 
such that \0,Q\ = fc, and let R 
be the point on [O, J such that 
| 0 , Λ | = fc. Choose S,T so that 
0 = mp(Q,S),0 = mp(R,T). 

/ ^ R 
/ V' 

1 3 

1 A = 0 

n3 

c / ^ R 
/ V' 

1 3 

1 A = 0 I %\ 
s\ B'=IU]Q N* 

Figure 9.4. 

The cosine and sine of an angle are well-defined. 
Proof. 
(i) When Α, Β and C are collinear there are two cases to be considered. One 

case is when A € [B, C] so that \BAC is straight. Then each of a, co — sp a is a 
straight-angle and as Ρ = S, we have U = S, V = A and so 

cos α = cos(co — sp a) = —1, sin α — sin(co — sp a) = 0. 

A second case is when C 6 [A, Β so that one of a, co — sp a is a null-angle 
with indicator [A, Β and the other is a full-angle with indicator [Α, Βχ where A is 
between Β and B\. Both of the indicators are in Ήι and % , but as Ρ = Q we have 
U = Q, V = A and so 

cos α = cos(co — sp o) = 1, sin α = sin(co — sp a) = 0. 

Thus in neither case does the ambiguity affect the outcome. 
(ii) We now use the ratio results for triangles to show that the values of cos α and 

sin α do not depend on the particular point Ρ € [A,C chosen. Take fci > 0 and let 
•Pi, Qi, Ri be the points in [Ο, Ρ, [Ο, Q , [Ο, R , respectively, each at a distance fci 
from O. Let ί/ι = π 0 / ( Ρ ι ) , Vi = K0J(PI)-

Suppose first that Ρ^ΟΙ,Ρ^ OJ. As PU \\ PXUU by 5.3.1 

\Q,U\ _ \O,P\ 

and so 

\O,U,\ ΙΟ ,Ρ , Ι ' 

| 0 , U\ _ \Q,Ut\ 
fc fcX ' 

Now if Ρ € Ή.3 so that U 6 [Q,0] and so | 0 , Γ7| = fc - \ Q , U\, by 2.2.3(iv) Pi 6 H3 

and similarly \0, Ut\ = *i - |Qi, ίΛ|· On inserting this we get that 

fc-|Q, U\_kl-\Q1,Ut\ 
* *i 

When instead Ρ € H A , we have Ο € [<?,(/] so | 0 , U\ = \Q, U\ - fc and similarly 
| 0 , £/j| = \Qt, Ut\ - fci. On inserting these we obtain 

k-\Q,U\ = kl-\Q1,Ui\ 
fc fci 
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again. 
When Ρ Ε 01 we have either Ρ = Q or Ρ = S. When Ρ = Q, we have Pi = Qi 

and the formula checks out. It checks out similarly in the cases when Ρ is Λ, S or T. 
By a similar proof we find that 

lb- l i t , V\ _kl-\RtlVi\ 
k ki 

Thus it makes no difference to the values of cosa and sin α if Ρ is replaced by P x . 

Figure 9.5. Figure 9.6. 

(iii) It remains to show that if the arms [Α,Β and [A,C are interchanged the 
outcome is unchanged. Let / = ml(|QOP) so that at{OQ) = OP and 8t(Hi) is a 
closed half-plane with edge OP. As »(a) C Hi we have at (*(α)) C βι(7ίι); but as 
t(a) C /, a, (»(a)) = »(a) and thus »(a) C at(Hi). If W = 8t(R) then W € at(Hi) and 
as OQ J. OR we have OP ± OW\ Moreover X = at(U) = n0p(Q) and 7 = a^V) = 
T O W ( Q ) satisfy | P , X | = | Q , Γ/|, \W, Y\ = \R, V\. Hence 

fc-|P,*| _ k-\Q, U\ k-\W, Y\ k-\R, V\ 
k k ' k k 

This completes the proof. 

Θ . 2 . 2 Polar coordinates 
For Ζ φ O, let k = \0,Z\ and the angle a have support ]IOZ and indicator i(a) in 
Hi. Then ifZ=r{x,y) 

χ = Jbcosa, y = fcsina. 
Proof. Let Q, R be the points where C{0; k) meets [0,1 and [O, J , respectively; 

then Q and R have Cartesian coordinates (k,0) and (0, k), respectively. Let U, V 
be the feet of the perpendiculars from Ζ to the lines 01 and OJ, so that these have 
Cartesian coordinates (x,0) and (0,y) respectively. Now Ο = (0,0) and Ζ = (χ, y) so 
by the distance formula (x - 0) a + (j, - 0) a = Jb3. Thus x a + y 1 = Jb2, so that x a < Jba 

and as k > 0 we have χ < k. Then by the distance formula 

10, tf| = v / ( * - x ) 2 + ( 0 - 0 ) 2 = Jb-x, 
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as k — χ > 0, and similarly \ R , V\ = k-y. Hence 

k-\Q,U\ k-{k-x) χ . k-\R,V\ k-(k-y) y 
cos α = — • = = —, sm α = '—-—- = i — = f . . 

k k Jfc' Jfc Jfc Jfc 
Thus χ = fccosa, y = λ sin a. 

We refer to k and α as polar coordinates of the point Ζ with respect to T. 

9.2.3 

With the notation of 9.2.1, let a bean angle with support \IOP = \ QOP and indicator 
i(a) in %\. Then we have the following properties:-

(i) For all a, cos2 a + sin2 a = 1. 

(ii) For Ρ G Qi, cosa > 0, sina > 0; for Ρ G Q 2 , cosa < 0, sina > 0; for 
Ρ G fie, cosa < 0, sina < 0; for Ρ G Q4 , cosa > 0, sina < 0. 

Proof. 
(i) As in the proof in 9.2.1, 

, \Q, U\ . JO,V\ cosa = ± \ „ ', sina = ±^ 1 

\0,P\ \0,P\ 

Now when O, U, Ρ , V are not collinear they are the vertices of a rectangle and so 
\0,V\ = \U,P\. Then by Pythagoras' theorem 

\0, £/| 2 + |Γ/ ,Ρ| 2 = | 0 , Ρ | 2 , 

and the result follows. It can be verified directly when Ρ is any of Q , R , S , T . 
(ii) This follows directly from details in the proof in 9.2.1. 

9.3 ANGLES IN STANDARD POSITION 

Θ.3.1 Angles in standard position 

C O M M E N T . The second use that we make of the concept of indicator of an angle is 
to identify angles with respect to a frame of reference. 

%A 1 n3 UA Τ n3t »(*) 
PJ 
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H3 

Ol 

H3 

Figure 9.7. 

Definition. We recall from 3.7 
our extension of degree-measure 
to reflex-angles. Let \QOP_ be 
a non-straight support, and let 
Hi, %2 be the closed-half planes 
with edge OQ, with Ρ e Tij. Let 
a be the reflex angle with sup­
port \QOP, so that «'(a) C Hi. 
Let S be the point such that Ο 
= mp(Q, S). Let β be the wedge 
or straight angle with support 
\SOP. 

*(<*) Y^- H3 

7 <*χ 
J 

^ I \Q7i 
0 1 * 

p \ ^ 

Figure 9.8. Measure of a reflex angle. 

Then we defined the degree measure of α by 

|a|° = 180+|/J|°. 

In particular if Ρ = Q, then β is a straight angle, a is the full angle with support 
[POP = \QOQ and indicator [O,S , and \a\° = 360. 

Definition. Given a frame of reference Τ = ([Ο,Ι, [Ο, J ), we denote by A*(7) 
the set of angles α with arm [Ο, I and with indicator t(a) C Hi. 

If a and 7 are different angles in A*(T), then |a|° Φ |7 | ° . 
Proof. This is evident if a and 7 are both wedge or straight angles and hence, by 

addition of 180, if they are both reflex or straight. If α is wedge or straight and 7 is 
reflex, then |a|° < 180, |7|° > 180. 

NOTATION. Given any real number χ such that 0 < χ < 360, we denote the angle 
α € A* (Τ) with |α|° = χ by χ j r . Thus the null, straight and full angles in A*(!F) are 
denoted by 0^·, 180 ·̂ and 360.?·, respectively. 

Θ.3.2 Addition of angles 
COMMENT. Given angles α, β € A* (Τ) we wish to define two closely related forms 
of addition, the first suited to angle measure as to be dealt with in Chapter 12 and 
the second suited to more general situations. As we make more use of the latter we 
employ for it the common symbol +, and φ for the former. Asae /3 i s tobean angle 
we need to specify its support and its indicator; similarly for α + β. 
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Definition. Let α, β be an­
gles in A*(T) with supports 
\QOPi, \QOPe, respectively. 
Let I be the midline of \Pt OPg 
and let P 3 = st(Q). Then α®β 
is an angle with support \QOP3 
for which i(a ® β) C H\, so that 
α φ 0 6 This identi­
fies αφ β uniquely except when 
P3 = Q\ in this case both the 
null angle G> and the full angle 
36G> have support \QOQ and we 
define α θ β to be this full angle 
360> in every case except when 
a and β are both null; in the lat-

S 

Figure 9.9. Addition of angles. 
ter case we define the sum to be 
this null angle 0>. We call α®β 
the sum of the angles α and β. 

For all angles α,/? € A'C?"), 

(i) οοβ(α®β) = cosacos/3 — sin a sin/?, 

(ii) sin(a®/?) = sin a cos/? + cos a sin/?. 

Proof. On using the notation of 7.3.1 and above, we have 

αϊ = cosa, 61 = sin a, 03 = cos/?, 62 = sin #,03 = οοθ(αφ^),&3 = 8Ϊη(αφ/?). 

We note that in 7.3.1 

(αϊ + aa) 2 + (61 + 6a)2 = 2(1 + 01O2 + 6163), 

asa? + 6? = a2

t + 62

, = l. Then, by 7.3.2, when P i and Pa are not diametrically 
opposite, 

a? + a\ - 6? - bl - 2a\al + 2b\b\ = 2a? + 2a?, - 2 - 2a?a2

! + 2(1 - a?)(l - a 2 ) = 0. 

αβ(αθ/?) - cos a cos ̂  + sin a sin/? 
(01 + Q3) 2 - (bi + bj)2 + 2 ( - a 1 a a + QiPa)(l + OiQa + 6163) 

2(1 + a!Oa + 616a) 

and the numerator here is equal to 

Similarly 

sin(a®/?) — sin α cos β — cos a sin β 
2(αι + aa)(fei + 63) - 2(0163 + Oa0i)(l + QiQa + 6163) 

2(1+0103+0! 63) 
and the numerator here is equal to twice 

01 h + 0363 - 0161(03 + 63) - 0363(0? + 6?) = 0. 
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When Pi and Pa are diametrically opposite, 

οοδ(αφβ) -cceacoe^ + sinasin^ = 62 - a 2 - oi(-oi) + i>i(-6i) = 0, 
sm(a® β)-sin a coa β— cm a am β = —2θιδι — 6i(-oi) — ai(-6i) = 0. 

9 . 3 . 3 Modified addition of angles 

COMMENT. In 9.3.2 we clearly exercised a choice in specifying what α®β should 
be when P3 = Q. The choice made there is what suits length of a circle and area of 
a disk which will be treated in Chapter 12, and that was the reason for the choice 
made. We now define modified addition a + β of angles, which is easier to use. 

Definition. Let A(JF) = A*(T) \ {360», so that A(F) is the set of all non-full 
angles in A*{F). We denote by Z.j?QOP = έ^ΙΟΡ the unique angle in A(F) with 
support \QOP = l/OP. 

Definition. Let α,β be angles in A{F) with supports \QOPt, \QOPs- Let / be 
the midline of \Pt OP» and let P 3 = «/((?). Then α + β is the angle in A{T) with 
support \QOPa. Note that when P 3 = Q we have ο + β = Ojr. We call α + β the 
modified sum of the angles α and β. 

For all α,βζΑ(Γ), 

οχ»{α + β) = cos α cos /? - sin α sin sin(a + β) = sin α cos β + cos a sin β. 

Proof. This follows immediately from 9.3.2 as cos 360^ = cos Or, sin 360jr = 
sinOjr. 

Modified addition + of angles has the following properties:-

(i) For all α, β Ε A{T), α + β is uniquely defined and lies in A{F). 

(fi) For all α,βζΑ(?), α + β = β + α. 

(iii) For all α,β,ηϊ A(F), (α + β) + η = a + (β + 7 ) . 

(iv) For all a € A(F), a + 0^ = a. 

(v) Corresponding to each a € A(T), there is α β € A(F) such that a + β = Oj-. 

Proof. 
(i) This is evident from the definition. 
(ii) This is evident as the roles of Pi and Pa are interchangeable in the definition. 
(iii) We note that by the last result 

cos[(a + β) + 7 ] = [cosocos^ - sin a sin β] cos 7 - [smacce^ + cceasin/3]sin7, 

cos[(a + 0 ) + 7 ] cos(a + /0)cos7 sin(a + / ? ) s i n 7 

and then 

while 

cos[a + (/3 + 7)] cosacos(/? + 7 ) — sinasin(fi + 7 ) 
cosa[cos/3cos7 - s i n / ? s i n 7 ] — sina[sin)3co87-l-coe^sin7], 
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and these are equal. Similarly 

sin[(a + ^) + 7 ] = s i n ( a - l - £ ) c o s 7 + cos(a + £ ) s i n 7 
= [sin a cos/? +cos a sin 0] cos 7 + [cosa cos/? — sin a sin β] sin 7 , 

while 

sin[a + 0? + 7 ) ] = sinacos(/9 + 7 ) + cos a sin(/? + 7 ) 
= gin a [cos/? cos 7 - sin a sin ,9] 4 - cosa [ s in^cos7 + coS )9s in7] , 

and these are equal. Thus (ο + β) + 7 and α + (β + 7 ) are angles in >4(.F) with the 
same cosine and the same sine and so by 9.2.2 they are equal. 

(iv) When β — 0>, in the definition we have Pi — Q and then / is the midline of 
\QOPi and so P 3 = P\. Thus ο and α + 0> are both in A[T) and they have the 
same support, so they must be equal. 

(v) Given any angle α € A(F) with support \QOPi, let P 2 = «o/(Pi) and β be 
the angle in A{F) with support \QOPe- Then / = OI is the midline of |P/ OPg and 
so in the definition P 3 = ej(Q) = Q. Thus α + β has support \ QOQ and so it is 0^·. 

COMMENT. The properties just listed show that (A{F), +) is a commutative 
group. Because of this the familiar properties of addition, subtraction and additive 
cancellation apply to it. 

0.3.4 Subtraction of angles 

Definition. For all α € 
Α(Τ), we denote the an­
gle β in 9.3.3(v) by - o . 
The difference 7 — α in 
A(P) is denned by spec­
ifying that 7 — α = 7 + 
(—α). In this way we deal 
with subtraction. 

Figure 9.10. 

For all a € A(T), 

cos(-a) = cos(co -spa) = cos a, s in(-o) = sin(co - sp a) = - sin a. 

Proof. With Pi as in the proof of 9.3.3(v), we have 

, χ fc-IQ, U\ . , , k-\R,Vt\ cos(-or) = ^ , s in(-a) = £ , 

and |R, V,\ = \T,V\=2k- \R, V\. We use this in conjunction with 9.2.1. 
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Θ.3.5 Integer multiples of an angle 

Definition. For all η € Ν and all α € A{!F), not is defined inductively by 

l a = a, 

(n + l )a = na + a, for all η € N. 
We refer to na as integer multiples of the angle a. 

For all a€A(F), 

(i) cos(2a) = cos2 a - sin2 a = 2 cos2 a - 1 = 1 - 2 sin2 a, 

(ii) sin(2a) = 2 cos a sin a. 

Proof. These are immediate by 9.3.3 and 9.2.3. 

Θ.3.6 Standard multiples of a right-angle 

The angles 90?, 180?, 270? have the following properties:-

0) 

cos90> = 0, sin90> = 1, cos 180> = - 1 , 
βίη180> = 0, cos27iV = 0, ein270jr = - 1 . 

(ii) 2(90jr) = 18G>, 2(180^) = 0? so that -180? = 180?, and 90? + 270? = G> 
so that 270? = -90?. 

(iii) For all a € A{F), 

cos(a + 90?) = - sin a, sin(a + 90>) = cos a, 
cos(a +180>) = - cosa, sin(a + 180>) = - sina, 
cos(a + 27G>) = sina, sin(a + 270?) = - cosa. 

Proof. 
(i) These follow immediately from 9.2.1. 
(ii) These follow from 9.2.1 and 9.3.4. 
(iii) These follow immediately from 9.3.3 and (i) of the present theorem. 

9.4 HALF ANGLES 

Θ.4.1 

Definition. Given any angle a € A*(J7) with support \ QOP, its indicator t(a) meets 
C(0;k) in a unique point P1 which is in Hi. Then the wedge or straight angle in 
A(F) with support \QOP' is denoted by j a and is called a half-angle. 
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Given any angle a Ε A(T), the equation 2η = a has exactly two solutions in 
A(F), these being 5 a and 5 a + 180>. 

Proof. In the definition we have 
\a = Z f Q O P 1 and take P " so 
that Ο = mpiP'.P"). Let β = 
L T Q O P " so that β = jo+ieOjr. 
Then 80p-(Q) = Ρ so that by 
9.3.3, 2 ( 5 α) = a, 2β = a. 
Now suppose that 7, δ 6 -4(^) 
and 27 = 20* = a. Then cos2<5 = 
cos 27 so that 2 cos2 δ - 1 = 
2cos 2 7 - 1, and hence cos δ = 
±cos7. 

Then also sin 2 δ = sin 2 7 so sino" — ±3017. Moreover sin2<$ = sin 2 7 so 
2 sin δ cos δ = 2 sin 7 cos 7. 

We first suppose that α φ 18G> so that cosa / —1 and so cos7 φ 0. Then if 
cos δ — cos 7 we must have sino* = sin 7, and so δ = η. Alternatively we must have 
cosi = — cos7, s ini = — sin7 and so ί = 7 + 18G>. 

If α = 180> then coso* = 0, so that sin5 = ±1 and so ί is either 90> or 270>. 
C O M M E N T . Our definition of a half-angle is the standard one for the angles we 

deal with, but it would not suit angles which we do not consider, for example ones 
with degree-magnitude greater than 360. The latter are difficult to give an account 
of geometrically. For ua \α+\β and 5 (α + β) need not be equal; we shall deal with 
such matters in 12.1.1. Because of this, there is a danger of error if half-angles are 
used incautiously. 

For any angles α, β € A(F), if 7 = \a + \β and δ = \a - \β, then 7 + δ = a 
and 7 - δ = β. 

Proof. As we are dealing with a commutative group, we have 

7 + 0- = [ J a + Μ + [ | e + ( - # ) ] 
= [ * « + Η + [** + (-**)] 
= a + Qjr — a. 

Similarly 

7 - f = [|* +Μ-[*«+(-**)] 
= [b+Μ+ [(-*«) +Μ 
= β· 

θ.δ THE COSINE A N D SINE RULES 

9.5.1 The cosine rule 

N O T A T I O N . Let A,R, C be non-collinear points. Then for the triangle [A,R,C], we 
denote by α the length of the side which is opposite the vertex A, by b the length of 
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the side opposite B, and by c the length of the side opposite C, so that 
a=\B,C\,b = \C,A\,c=\A,B\. 

We also use the notation 
ο = Z.BAC, β = Z.CBA, 7 = ZACB. 

Let A,B,C be non-collinear points, let D = KBC(A) and write χ = \B,D\. Then 
with the notation above, 2ax = a2 + c2 - b3 when D e [B,C] or C € [B,D], while 
2ax = b2 -a2 -c2 whenBe[D,C]. 

Proof. When D € [B, C] we have \ D , C\ = a - x, and when C € [B,D], \ D , C\ = 
χ - a. In both of these cases, by Pythagoras' theorem used twice we have 

I A, D \ 2 = I A, B\2 - \B, D \ 2 = c3 - x2, \A, D \ 2 = |A, C\2 - \ D , C\2 = b2-(a- x)2. 

On equating these we have c 3 — x2 = b2 — a2 + 2ax — x2, giving lax = c2 + a2 — b2. 
When Β € [D, C] we have |D, C\ = a + x, so by the formulae for |A, D \ 2 above we 

have c2-x = b2-(a + x)2. This simplifies to 2ax = b2 - a2 - c2. 

Figure 9.12. 

T H E COSINE RULE. In each triangle [A,B,C], 

b2+c2-a2

 a c2+o2-b2 a2 + b2-c2 

cosa = — , cosp = , cos7 = — - . 26c 2ca 2a6 
Proof. On returning to the last proof, we note that when D € [B, C we have 

\B,D\_x 
cosa = 

while 

and so 
χ = 

cosa = 

\B,A\ c ' 

c2+a2-b2 

2a 

c 3 + a 3 - 6 2 

Similarly, when Β € [D, C] we have 

cosa = — 

2ca 

\B,D\ 

while 
χ = — 

and this gives the same conclusion. 

\B,A\ 

c2 + a2-b2 

2a 
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9.5.2 The sine rule 

T H E SINE RULE In each triangle [A,R,C], 

sina _ ΒΪηβ _ βΐηγ 
α b c 

Proof. By the cosine rule 

cos2 α _ 1 - sin2 a _ (δ2 + c 2 - β 2 ) 2 

~σ? α2 4 α 2 ' 

so that 

sin2 α = 4 fe 2 c 2 - (6 2 - t -c 2 -o 2 ) 2 

α2 ~ 4a262c2 

2(6V + c V + a2b*) - ( o 4 + 64 + c4) 
4α 2 δν 

As the right-hand side here is symmetrical in α, δ and c we must have 

sin2 a _ sin2 β _ sin2 7 
" ο 2 " " ~W ~ " c 2 " ' 

As the sines of wedge-angles are all positive, we may take square roots here and the 
result follows. 

Θ.5.3 

In a triangle [A,R, C], let the mid-line of \BAC meet [R,C]atD and let dx = |A, D\. 
Then 

2bc 1 
d\ = cos -a . 

6 + c 2 

Proof. By 5.5 
\B,D\ c 
\D,C\ 6 ' 

so that 
|R,D| = ^ o . 

On applying the sine rule to the triangle [A,R,D] we have that 

dy _ co 1 
ύηβ b + csn\\a 

and so 

_ ca em β _ co sin/? δ _ co sina δ _ 26c ^ 1 q 

1 — 6 + c sin l a b + c b sin j-a δ + c ο sin i a δ + c 2 
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9.5.4 The Steiner-Lehmus theorem, 1842 

Suppose that we are given a tri­
angle [A, B, C], that the mid-line 
of \CBA meets CA at E, that the 
mid-line of \ACB meets AB at 
F, and that \B,E\ = \C,F\. We 
then wish to show that the tri­
angle is isosceles. This is known 
as the Steiner-Lehmus theo­
rem. 

Proof. By the last result we have 

2ca 

Β C 
Figure 9.13. Steiner-Lehmus theorem. 

Then 

dl-a% 4o a 

2o 3 

2o3 

cos -β, d3 = —r cos -7· 
c+a 2 a + b 2 

Taj™ f i i W ^ r . 
^ (1 + 008^-7^^(1 + 0087) L(c + o ) 2 V (a + b)2 

<? Λ c ' + a 3 - * . 3 

+ α) 3 I (c 
1 + 

= α 

= α 

c-fe + 
6c3 

2ca 
^ c 

)-(ΪΤί?( 1 + 
o 3 + 6 3 - c 3 

2ab )] 

= a(c - b) 

(a + b)2 (c + a)2 

c - t + ( i T W T ^ W c + o ) 1 - 6 ( 0 + i ) i l 

6 0 [o2 + 6 3 + c 3 + 2ai + 6c + 2co] 1 + (a + b)2 (c + a)2 

Then b < c implies that d? > d3. 

9.6 COSINE AND SINE OF ANGLES EQUAL IN MAGNITUDE 

9.6.1 

// angles α,β are such that \a\° = \β\°, then cosa = cos/? and sin a = sin/2. Con­
versely if cos a = cos β and sin a = sin#, then |a|° = uniess one of them is null 
and the other is full. 

Proof. Let Τ = ([Ο, / , [Ο, J ) and α have support |QOP and indicator in Hi, 
where | 0 , P | = \0, Q\ = k. Let Τ = ([Ο',Γ , [0',J') and β have support \Q'0'P' 
and indicator in Wi, where \0',P'\ = \0', Q'\ = k. 
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0\ I Ρ H2 

Figure 9.14. 

We suppose first that |α|° = \β\° < 90 so that Ρ € &, P' 6 Qi- Then U € 
[0,Q], V € [0,R], U' 6 [O'.Q'], V e [Ο*, A']. The triangles [Ο,ί/, Ρ], [Ο',ί/',Ρ'] 
are congruent by the ASA-principle, so )0,U] = |0', U'\, \0, V\ = |0', V'\. Then 
\Q, U\ -\Q', U'\, \R, V\ = \R', V'\. Hence cosa = οοββ, sina = sin^. 

Similar arguments work in the case of the other three quadrants of T. 
Conversely, let cosa = cos β, sina = am β. Suppose first that cosa > 0, sina > 

0. Then Ρ e Qlt P1 € Qi- But \Q, U\ = \Q', U'\, \R, V\ = \R', V'\ and so \0, U\ = 
\0', U'\, \U,P\ = \U',P'\. By the SSS-principle, the triangles [0,U,P], [0\U',P'] 
are congruent so |α|° = \β\°, unless we have a degeneration from a triangle and one 
angle is null and the other is full. 

A similar argument works for the other three quadrants of T. 

Exercises 

9.1 Prove that for all angles α € Λ* (Τ), 

—1 < cosa < 1, — 1 < sina < 1. 

9.2 Let C\ be the circle with centre Ο and radius of length k. Let Z\ = 
(fccos0,fcsin0), Zi = (-k,0), Z3 = (fc,0), so that Z\ is a point on this 
circle, and [Z2, Z3] is a diameter. Let C2 be the circle with [Zi,Z3] as diameter. 
Find the coordinates of the second point in which C2 meets the line Z2Z3. How 
does this relate to 4.3.3? 

9.3 ViD is the mid-point of the side [B,C] of the triangle [A, B,C] and dx = | A , D | , 
prove that 

4dj = i>3 + c 2 + 26ccosa. 

Deduce that 2di > α if and only if α is an acute angle. 
9.4 Prove the identities 

cos α + cos β = 2cos(2-a + \β) cm{\a - \β), 
cos a-cos/3 = -2sin( ia+ \β)&να{\α- \β), 
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and find similar results for sin α + sin/? and sina - Bin β . 

9.5 Show that 
sin 27G> + sin 21G> = - - , 

and yet 
2sin[£(27G> + 27G>)] α»β(27ϋ> - 270jr)] = §. 
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C o m p l e x c o o r d i n a t e s ; s e n s e d 
a n g l e s ; r o t a t i o n s ; a p p l i c a t i o n s 
t o c irc les ; a n g l e s b e t w e e n 
l i n e s 

COMMENT. In this chapter we utilise complex coordinates, develop sensed angles 
and rotations, complete our formulae for axial symmetries and identify isometries in 
terms of translations, rotations and axial symmetries. We go on to establish more 
results on circles and consider a variant on the angles we have been dealing with. 

10.1 COMPLEX COORDINATES 

10.1.1 

We now introduce the field of complex numbers (C, +,.) as an aid. This has an 
added convenience when doing coordinate geometry. We recall that any ζ 6 C can 
be written uniquely in the form z = x + vy, where x,y € R and »2 = — 1. We use the 
notations \z\ = y/x3 + y 2 , ζ = χ — iy for the modulus or absolute value, and complex 
conjugate, respectively, of z. As well as having the familiar properties for addition, 
subtraction, multiplication and division (except division by 0), these have the further 
properties: 

f = ζ, ζϊζϊ = z~iZ2,V z,zi,z2 € C; ζ = ζ iff ζ e R; 
|*i zs\ = \ζι ||**|, |*1 = |*|, V z, zu *a € C; |z| = ζ iff ζ € R and ζ > 0; 

zz = |z| 2, V z € C ; i = - ^ V z ^ 0 . 
ζ |z| 

Definition. Let Τ — ([Ο, I, [Ο, J) be a frame of reference for Π and for any point 
Ζ e Π we recall the Cartesian coordinates (x,y) of Ζ relative to Τ, Ζ (x,y). If 
ζ = χ + iy, we also write Ζ ~j? z, and call ζ a Cartesian complex coordinate 

133 
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of the point Ζ relative to T. When Τ can be understood, we can relax our notation 
and denote this by Ζ ~ z. 

Complex coordinates have the following properties:-

(i) \zB-z,\ = \Zt,ZB\ for all Ζχ,Ζ7. 

(ii) If Ζχ φ Za , iften Ζ € Z i Z a if and only if ζ — z\ = i (z 3 — z\) for some t € R. 

(iii) If Ζχ φ Za , then Ζ € [Zi , Z 2 if and only if ζ - z\ = t(za - z\) for some t > 0. 

(iv) If Zi Φ Za, then Ζ 6 [Zi , Za] if and only if ζ - zi = t(za — zi) /or some t such 
that0<t< 1. 

(v) For Z i ^ Z 2 and Zs ^ Z i , Ζ Χ Ζ 2 || Z3Z4 if and only if ζ* — z3 = t(z? — z\) for 
some t 6 R \ { 0 } . 

(vi) For Ζ\φΖ% and Z3 φ Z 4 , ΖχΖ 2 ± Z3Z4 if and only if z* — z3 = it(z 3 - Zi) for 
some t € R \ {0}. 

Proof. 
(i) For | z s - z, | 2 = |x 8 - x, + i (y s - y, ) | 2 = (x 3 - X i ) 2 + (ya - y i ) 2 = , ZB\2. 
(ii) For z - z i = t ( z 3 - z i ) if and only if x - x i + » ( y - y i ) = i[xa - x i +t(ya - y i ) ] -

If this happens for some t € R, then χ - xi = t(x 3 — xi) , y — yi = t(ya - yi)- By 
6.4.1, Corollary (i), this implies that Ζ 6 Z i Z 2 . 

Conversely if Ζ € Z1Z3, by the same reference there is such a t e R and it follows 
that ζ — Zi = t(z 2 — z\). 

(iii) and (iv). In (ii) we have Ζ 6 [Ζχ,Ζ 2 when t > 0 by 6.4.1, Corollary, and 
similarly Ζ 6 [Ζχ, Z 2 ] when 0 < t < 1. 

(v) By 6 .5 .1 , Corollary (ii), ΖχΖ 2 and Z3Z4 are parallel only if 

-(ya - y i)(*4 - X3) + (y» - yaH^a - χι) = 0. (10 .1 .1) 

We note that as Ζχ φ Z 2 we must have either χχ φ x 2 or yx φ y 2 . 
Suppose first that z\ — z3 — t(z? — zx) for some ( 6 R. Then 

X4 - x 3 + *(y4 - ya) = t(xa - xi) + *t(ya - yi), 

and so as t is real, 

X4 - X3 = *(xa - xi) , V4 - ya = t(ya - yi). 

Then 

-(ya - y i ) (x4 - xa) + (y4 - y a ) ( « 3 - xi) 

= -(ya - yi)t(xa - Xi ) + t(ya - yi)(xa - xi) = 0, 

so that (10 .1 .1) holds and hence the lines are parallel. 
Conversely suppose that the lines are parallel so that (10 .1 .1 ) holds. When χχ φ 

Xa, we let 
_ X4 - x 3 

r , 
Xa - Xi 
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so that XA - x 3 = t(xa - x i ) . On inserting this in (10.1.1), we have 

- t ( l f t - yi)(xa - Xi) + (V4 - ys)(xa - x\) = 0, 

from which we have y4 —y3 = t(ya — y i ) . 
When x 2 - x i = 0, by (10.1.1) we must have x< — x 3 = 0. We now let 

f = Vi ~ 1/3 

so that y 4 - y 3 = t(ya - y i ) . For this t we also have, trivially, x 4 - x 3 = t(x 2 — x i ) . 
Thus in both cases X4 - x 3 = f(xj — X i ) , Vi-yz = 1(1/2 — y i ) , and so on combining 

these 
x 4 - x 3 + t(y4 - ya) = *(xa - xi) + *(V2 - l / i)-

Thus ZI - Z 3 — t(Z2 — Z \ ) . 
(vi) By 6.5.1, Corollary (i), these lines are perpendicular if and only if 

(l/3 - Vi)(l/4 - Vi) + (X2 - xi)(x* - XI) = 0. (10.1.2) 

Suppose first that z 4 — z$ = Ufa — z{) for some t € R. Then 

x 4 - x 3 + t(y 4 - y 3) = tt(xa - xi) ~ t(V2 - Vi), 

and so as i is real, X4 - x 3 = - t ( l /2 - y i ) , Vi - y3 = t(«a - X i ) . Then 

(ya - y i ) (y4 - ys) + («2 - * i ) (*4 - x s ) 
= ( y 2 - y i ) i ( x a - x i ) - t ( x 2 - x i ) ( y 2 - y i ) = 0, 

so that (10.1.2) holds, and hence the lines are perpendicular. 
Conversely suppose that the lines are perpendicular so that (10.1.2) holds. When 

χ ι φ xa , we let 

Xa - Xi 

so that yi — y 3 = t(xa — a?i). On inserting this in (10.1.2), we have 

(ya - yi)i(x2 - x i ) + (xa - Xi) (xa - x i ) = 0, 

from which we have x 4 — X3 = —t(ya — y i ) . 
When x 2 - x i = 0, by (10.1.2) we must have y 4 - y 3 = 0. We now let 

_ X4 - X3 
ya - y i ' 

so that X4 - x 3 = -t(ya - yi)- For this t we also have, trivially, y4 - ys = *(xa - Χ ι ) · 
Thus in both cases x 4 - x 3 = - t (ya-yi) , Vi-yi = t(xa-xi) , and so on combining 

these 

x 4 - x 3 + »(y4 - y 3) = -t(V2 ~Vi) + **(xa - x i ) = **[xa - Xi + *(l/a - »ι)] · 

Thus z4 - z3 = ti(za - ζι)· 
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10 .2 COMPLEX-VALUED DISTANCE 

10 .2 .1 Complex-valued distance 

The material in 7.6 is long established; we can generalise those concepts of sensed 
distances and sensed ratios as follows. 

Definition Let Τ be a frame of reference for Π. If Z\ ~r z\, Z2 ~? z2 we define 
Z\Z2jr = ZQ — ZI, and call this a complex-valued distance from Z\ to Z2. We then 
consider also » a ratio of complex-valued distances or complex ratio when 
ΖιφΖ2. 

We show that this latter reduces to the sensed ratio 

when Ζχ,Ζι,Ζζ,Ζ* are points of a line /. As in 7.6.1 we suppose that I is the line 
WQWI where Wo = (uo ,vo ) and W\ = ( u i , v i ) , and has parametric equations 

x = «o + s ( u i - tto), y = vo + a(vi - VQ). 

By lO.l.l(ii) I then has complex parametric equation ζ — uio + a(u>i — w0). If 
Ζι, Z2, Z 3 , Zi have parameters βι, sa, 83 , 84, respectively, then 

Z2 - Ζχ = (Zj - Ulo) - (Ζχ - W Q ) - (e2 - Si)( tui - w0), z 4 - z 3 = (s 4 - 8 3 ) O i - WQ), 

and so 

By 7.6.1 this is equal to the sensed ratio. This shows that for four collinear points 
a ratio of complex-valued distances reduces to the corresponding ratio of sensed dis­
tances. 

COMMENT. We could make considerable use of this concept in our notation for 
the remainder of this chapter but in fact we use it sparingly. 

10 .2 .2 A complex-valued trigonometric function 

For Z 0 ~ y zo and Ρ = to,z„(P), let fo = to,z0(T); we recall from 8.3 that Ζ ~r. 
z-zo- Then if Ζ φ Zo, Ζ ~ j r ζ and θ = Zjr,I0Z0Z, by 9.2.2 we have 

84 - 8 3 

82 - Si 

x — Xo = rcos0, y - yo = rsinfl, 

where r = |Zo,Z| = |z - z0\. It follows that ζ - z0- r(cos0 + »sin0). 
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Figure 10.1. 

If Z\ φ Zo, Z\ ~r z\ and α = Ζ?·Ι0ΖοΖι, then by this 

xi - Xo = fccosa, yi - l/o = fcsina, 

where k = \Zo,Zt |. On inserting this in 6.3.1 Corollary, we see that 

ZQZI = {Z = (x,y): [x - x 0 ) s ina - (y - y0)coaa = 0 } . 

When ZQZi is not parallel to OJ we have that cosa φ 0 and this equation of the line 
Z Q Z \ can be re-written as y — yo = tana( i —10) where tana = sin a /cos a. We call 
tan α the slope of this line. 

Notation. For any angle θ we write cis θ = COB θ + tain θ. 
The complex-valued function cis has the properties:-

(i) For all θ,φ € A(F),CJB (θ + φ) = άΒθ.άΒφ. 

(ii) cisO^ = 1. 

(iii For all θ Ε A ( F ) , ^ = cis ( - Θ ) . 

(iii) For all θ € A ( F ) , cis θ = cis (-Θ), where ζ denotes the complex conjugate of z. 

(iv) For all 0, |ds0 | = l. 

Proof. 
(i) For 

cifl0.tis</> = (cc«0 + tsin0)(cos0 + »sin^) 
= cosflcos^ — sin0sin0 + »[sin0cc«0 + cce0sin0] 
= cos(0 + 0) +»sin(0 + 0) = cis(0 + φ). 

(ii) For deO^ = cosO^- + tsinO^- = 1 + tO = 1. 

(iii) For by (i) and (ii) of the present theorem, 

dsfl.cis (-Θ) = cis (0 - Θ) = cis 0^ = 1. 

(iv) For the complex conjugate of cos θ+t sin die cos θ-ι sin θ = cos(-0)+»sin(-0). 
(v) For |cis 0| 2 = cos 2 θ + sin 2 θ = 1. 
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10.3 ROTATIONS AND AXIAL SYMMETRIES 

10.3.1 Rotations 

Definition. Let Z 0 zo, t be the translation to,Ze>P = ' (^ ) and lo = t(I). Let 
α € A(T'). The function r a ; z 0 : Π -¥ Π defined by 

Ζ ~ j r ζ, Ζ ' ~ j r ζ', Γ α ; ^ ( Ζ ) = Ζ ' if z' - zo = (* - zo)cis a, 

is called rotation about the point Zq through the angle a. 

J 

"o 

IfTa.tz0(Z) = Ζ' we have the following properties:-

(i) In all cases \Z0, Z'\ = \Z0, Z\, and hence in particular ra>z0(ZQ) = Zo. 

(ii) IfZ^Z0,e = ZF'IQZQZ and & = Zjr,I0Z0Z', then θ' = θ + α. 

(iii) / / Z 0 ~ . F zo, Ζ ~ j r ζ, Ζ' ~ : F ζ', then ra-,z0 has the real coordinates form 

x' — xo = cosa.(i — xo) — sina.(y — yo)» 
y' -yo = sina.(x - x 0) + cosa.(y - y0)» 

which has the matrix form 

( x1 - xo \ _ f cosa - sina \ / χ - x 0 \ 
y'-Vo ) ~ \ sina cosa ) \ y-yo )' 

Proof. 
(i) For |z' - z 0 | = |(z - zpjcisal = |z - z 0 | |cisa| = |z - z 0 | . 
(ii) For by 10.2.2 

ζ - zo = |z - z0|cis θ, z' - zo = \z' - z0|cis (?, 
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and so \z' — z0\c\s θ' = \z — zo\ds 0cis a. Hence cis ff = as9dsa = cis (Θ + a) and so 
θ' = θ + a by 9.2.2. 

(iii) Now x' - xo + »(y' - yo) = (cosο + tsina)[x - xo + *(l/ - Vo)] and so 

x ' - x o = cosa.(x-xo)-s ina.( i / - i /o) , 
y' — yo = sina.(x-xo) +cosa.(y-y0). 

COMMENT. The rotation ra]z0 is characterised by (i) and (ii), as the steps can be 
traced backwards. Why a frame of reference T' is prominent in this characterisation 
stems from the need to identify the angles α,θ,θ'. 

10.3.2 Formula for an axial symmetry 

Ζ 

Figure 10.3. 

The form of equation of a line noted in 10.2.2 can be used in the formula in 6.6.1(iii) 
for an axial symmetry. However, for practice with complex-valued coordinates we 
deduce the result independently. 

Let I be the line Z0ZU Z0 ~τ ζ, F = *ο,ζ0 (•?*)> = *o,z„(J) and a = 
Δτ·ΙοΖοΖχ. Then st(Z) = Z' where 

Ζ ~>· ζ, Z' ~Γ z't z' - zo = (ζ - ZO)OB 2α, 

so that si has the real coordinates form 

x' - xo = cos2a.(x - xo) + sin2a.(y - yo), 
y'-yo = sin2a.(x-xo) -cos2a.(y-j/o), 

and so has the matrix form 

( x* - x 0 \ _ / cos 2a sin 2a \ ( x-xo\ 
\ V1 - Vo ) ~ \ si112** — cos 2a ) \ y-yo )' 
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Proof. To find a formula for Z ' = *i(Z) we first show that if W - π ((Ζ) and 
W ~jr to then 

- ZQ = R — — (Z\ - ZQ), Z — W = 
Zl — ZQ\ 

» 9 
Z - ZQ 

Zl — ZQ 
{Zl - ZQ) 

To start on this we note that 

Z — ZQ . Ζ — Zo 
Z~ZQ=- - ( z i - Zo) = R - -

Zl — ZQ l ZI — ZQ 

If we now define w by 

(*1 - ZQ) + I 
Ζ — Zq 

Ζχ — Zq 
(zi - Zo). 

UI 
L Zl — Zq 

(Ζχ - Zo) 

then W € Z 0Zi as w — ZQ is a real multiple of zi — zo- But then 

ζ - Zq ζ — w — ι 
Zi-ZQ Ol - ZQ), 

so W is on a line through Ζ which is perpendicular to Z 0Zi. Thus W is the foot of 
the perpendicular from Ζ to ΖοΖχ. 

From this, as ζ' + ζ = 2w, we have ζ' — z — ZJ — V J - ( Z —w) — -2(z - u>) so 

z' - ζ = -2ι ζ - Zq 
Zi - zo 

As Zi - Zq = Jkcis a for some k > 0, we then have 

(zi - Zo). 

L fcasa 
Jbcis ο = -2*{9f[(z — zo)cis (—a)]}cis a 

— -[(z - zo)cis ( -a) - (z - zo)cis a]cis a = - ( z - zo) + (z - zo)cis 2a 

and so z' - zo = (z-zb)cis 2a. Hence χ* - x 0 +*(v' ~ Vo) = [ x - X o - » ( y - y o ) ] ( c o s 2 a + 
t sin 2a), so that 

x* - xo = cos 2a.(x - x 0 ) + sin 2a.(y - yo), 

y ' - y o = sin2a.(x —xo) -cos2a . (y — yo). 

We can express this in matrix form as stated. 
We denote β| by aa<Zo as well. 

10.4 SENSED ANGLES 

10.4.1 

Definition. For Ρ = to,z0(F), let IQ = to,z0(P)- Then if Z X φ Z Q , Za φ Z Q , we let 
0i = ZJT,I0ZQZI and θ% = Zjr,I0Z0Z3. We define the sensed-angle ZJTZIZQZI to 
be fa — 0i · 
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Ή.4 4 Ή.3 

J 

"0 

θ2 —θι 

.••·'.2ο*Λρ\ 

Ή.2 

Figure 10.4. 

Sensed angles have the following properties. Throughout Z0 ~ j r zo, Z\ ~ t 

Zl, Zi Z 2 -

(i) If the points Z\ and Zi are both distinct from Z0, and φ is the sensed-angle 
4 - F Z \ Z Q Z I , then 

ZpZip _ z2 — ZQ _ \Z0, Ze\c^ φ 
ZQZ\? ZI — ZQ \ZO,ZI\ 

(ii) The sensed-angle LTZ\ZQZI is wedge or reflex according as 

Zl — Zo 

is positive or negative, and this occurs according as 

jKlfe - l/o)(xi - xo ) - (xa - Xo)(Vi - yo)] 
is positive or negative. 

(iii) If the points Z\ and Zi are both distinct from Zo, then 

Lj:Z\ZoZi — —£j:ZiZoZi. 

(iv) If Zi,Zi,Z3 are all distinct from Z0, then 

Δ-jrZlZoZi + £rZ2ZoZ3 = Lj:Z\ZoZ3. 

(v) If φ = LTZXZQZI, then ι>.*([Ζο,Ζι ) = [Z0,Z2 . 

(vi) In 10.3.1(ϋ), έ?ΖΖ0Ζ' = a. 
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"θ\ I U% 

Figure 10.5. 

Proof. 
(i) For Z\ — za = \zt - Zo\aa θ\, - Zo = \ze - z0\cis θ? and so 

zn-zp _ \ze -ζ0\ζ\&θ2 _ \zs - z 0 \ ^ _ 
ζι-ζο \zi - ζο\ά&θ\ \zt — zo\ 2 l ' 

(ii) From (i) 
Z 2 - Z 0 \ z e - z 0 \ , . 

* z T ^ - W = z 7 \ ™ { 9 * - e i ) > 

and this is positive or negative according as $t — θχ is wedge or reflex. Moreover 

\zi - zo\2%——— = 5t[(zi - zo)(z\ - zo)] = (va - vo){x\ - xo) - (*a - xo)(Vi - Vo)-
Zl — ZQ 
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(iii) For the first is 0 3 - 0i and the second is 0i - 0 3 . 
(iv) For if 0i = Zjr,I0Z0Zu 0 3 = Z^IQZQZI, 0 3 = Z^I0Z0Z3, then 

02 — 01 + (03 — 0a) = 0 3 — 01. 

(v) For if Ζ € [Z0, Z\ , then ζ = zo + t(z t - zo) = ZQ + t|zi - z0|cis 0i for some 
t > 0. Hence Γ β , _ ί ι ; ζ 0 ( Ζ ) = Z' where 

ζ' - zo = (z - zo)cis (0 2 - 0i) = t|*i - z 0 |ds0icis (0 2 - 0i) = t\zi - Zo|cis 0a-

Thus Z' € [Z0,Za . 
(vi) For 0' - 0 = a. 

If the points Zx and Z 3 are both distinct from Z0 and φ = ZyrZiZQZ2, then 

\Zi, Z*|2 = \Z0,Z,|2 + \Z0,Zg\7 - 2\ZQ,Ζ,\\Z0,Ζ,\<χχφ. 

Proof. For by (i) in the last result, 
\Zo,Zs\l 

za - zo = (cos^ + »8in^)(zi - Zo), 

so that 

Then 

ζ 2 

\ZoM 

- * i = {^^{(coe0 + . s i n ^ ) - l ( z ! - z o ) . 

and the result follows on expanding the right-hand side here. 
For a non-collinear triple (Zo,Zi, Za), let a be the wedge-angle ΖΖχΖΰΖ2 and φ be 

the sensed angle Z.TZ\ZQZ2. Then cos φ = cos a so that \φ\° — \a\° when φ is wedge, 
and \φ\° = 360 - |α|° when φ is reflex. 

Proof. By the last result, 

\Zi ,Z8\2 = \Z0,Z, |2 + \Z0, Z , | 2 - 2\Z0, Z,\\Z0, Z, | cos φ, 

while by the cosine rule for a triangle in 9.5.1 

\Ζι, Z 8 | 2 = \Z0, Zi I 2 + \Z0, Ζ,I2 - 2\Z0, Zt\\Z0, Z, | coso. 

Hence cos^ = cosa so that sin2 φ = sin2 α and hence sin φ = ±sina. The result 
follows from 9.3.4 and 9.6. 

�� �� �� �� ��



144 S E N S E D A N G L E S ; R O T A T I O N S (Ch.10 

10 .5 S E N S E D - A R E A 

10 .5 .1 

For points Zo =r (xo,Vo), Zi =r Oi,J/i)> Z2 = r (xa.ya) such that Ζχφ Zo, Ζ2φ 
Zo, and θ = έ.?Ζ\ΖοΖ2 we have 

(0 
%\Ζο,Ζί\\Ζο,ΖΒ\Β\ηθ= j[(xi -x 0 )(ya -yo) - (x2 -xo)(yi - yo)]. 

(ii) 
5|Z(,, z , | |Z 0 , z e | coed = 5[(xi - xo)(x2 - xo) + (yi - yo)(y2 - yo)]-

Proof. By 8.3 and 9.2.2, if fci = |Z 0 , Z, |, fc2 = \Z0, Ze\, then 

x i - x o = fci COS01, yi -yo = *i sinfli, 
X 2 - X 0 = *aco802, V 2 - y o = *2sin02. 

Then by 9.3.3 and 9.3.4, 

fcifcasin(0a - θι) = hisintfafci cos#i — fc3cos # 2 fci sin0i 
= (y2 - yo)(xi - xo) - (xa - xo)(yi - yo)-

Similarly 

fcifca cos(0a - θι) = hi cos0?fci cos0i + fc3 sinlafci sin0i 
= (x2 - χο)(χι - xo) + (ya - yo)(yi - yo)-

10 .5 .2 S e u s e d - a r e a o f a t r i a n g l e 

For an ordered triple of points (Zi,Z 3 ,Z 3 ) of points and a frame of reference F, if 
Zi =jr (xi.yi), Za =r (xa.ya) and Z 3 = ? (x 3 ,y 3), we recall from 6.6.2 and 10.5.1(i) 
ό>(Ζι, Z 3 ,Z 3 ) defined by the formula 

o>(Zi, Z 2 , Z 3) = 5[xi(y 2 - y 3) - yi (x 2 - x 3 ) + x 2 y 3 - xaife] 
= |[(x2 - xi)(ya - yi) - (xs - xi)(y2 - yi)] 

ι ί χι yi 1 \ 
= - det I x 2 ya 1 j 

\ xa y3 1 / 

By 6.6.2, when Zi ,Z 2 ,Z 3 are non-collinear \Sjr(Zi,Zg,Z3)\ is equal to the area of 
the triangle [Zi.Z^Zs]. In this case we refer to 0>(Zi ,Z 2 ,Z 3 ) as the sensed-area 
of the triangle [Zi,Z 2 ,Z 3], with the order of vertices (Zi ,Z 2 ,Z 3 ) . This was first 

introduced by Mobius in 1827. 
Note that 

^{Ζι,Ζι,Ζζ) = ό^·(Ζ 2,Ζ 3,Ζι) = ijr(Z 3 ,Zi,Z 2 ) 
= - fo(Zl, Z3, Z2) = -0>(Z 2 ,Zi ,Z3) = -ό>(Ζ 3 ,Ζ 2 ,Ζι ) , 
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so that its value is unchanged if Zi,Z2,Z3 are permuted cyclically, and its value is 
multiplied by —1 if the order of these is changed. 

We note that 10.4.l(ii) can be restated as that the sensed-angle Z J ? Z \ Z Q Z 2 is 
wedge or reflex according as 

Zl — ZQ ZQZ\JT 

is positive or negative, and this occurs according as δ?(Ζο,Ζγ,Ζ2) is positive or 
negative. 

10.5.3 A basic feature of sensed-area 

A basic feature of sensed-area is given by the follow-ing. Let the points Zz 
(x3,y 3),Zj = (2:4,1/4), £δ = (xe.ye) be such that 

x 3 = (1 - β)χ4 + ex 6, 1/3 = (1 - «)l/4 + ay6, 

for some a € R. Then for all Zi,Z2, 

6f{ZuZ2, Zz) = (1 - a)S?{Zu Z2, Z4) + «o>(2i, 2a, Z6). 

For 

1 ( xi Vi 1 
6jr{ZuZ2,Zz) = -det xa ya 1 

\ (1 - s)x 4 + βχβ (1 - «)y4 + ey6 (1 - a) + a 

1 ( xi yi 1 \ 1 ( xi Vi 1 
= - det I x 2 ya 1 I + - det I x 2 ya 1 

\ (1 - β)χ4 (1 - a)y4 1 - a J \ 8X5 sy6 a 

j / χι yi 1 \ 1 f χι yi 1 
= - ( l - « ) d e t l xa ya 1 J+xadetl x 3 ya 1 

\ i 4 1/4 1 / \ χδ ye 1 
= (1 - β)δΜ,Ζ2,Ζ4) + aSr{ZuZ2,Z6). 

10.5.4 An identity for sensed-area 

An identity that we have for sensed-area is that for any points Z t , Z 3 , Z 3 , Z4, 

δ^Ζ^Ζΐ,Ζζ) +S?(Zi,Zz,Zi) +Sjr(Z4,Zi,Z2) = ό>(Ζχ,Ζ 3,Ζ 3). 

�� �� �� �� ��



146 SENSED ANGLES; ROTATIONS (Ch.10 

For the left-hand side is equal to 

1 , ί 1 4 " 4 ! 1 1 , 
- det xi y 2 1 + - det 
2 V * 3 1/3 1 ' 2 

1 / X 4 V* 1 \ 1 
= - det x 2 y 2 1 - - det 

2 x χ3 y3 ι 1 2 

Vi 
= - det I x 2 - x\ ya - yi 

X3 1/3 

Xi Vi 
= - det I x 2 - Xi y2 - yi 

xs V3 

= - det I x 3 - xi ya - yi 
1 X3 1/3 

X4 y4 
= - det I xa - xi ya - yi 0 

X 3 - X 1 » 3 - y i 0 
Xi yi 

= - det I xa - xi ya - yi 0 
x 3 - xi y 3 - yi 0 

and this is equal to the right-hand side. This was first proved by Mobius. 

10.6 ISOMETRJES AS COMPOSITIONS 

10.6.1 

UA n3 

o\ 

V τ 
Ν Jo 

\ 
^ 1 

• Zp. · ' Ιο 

Hi 

Η2 

ΗΛ 

J 

"θ 

Hz 
Jo 

Αι 

Hi 

H2 

Z&s Ιο 
•'•••\z2 

Figure 10.6. 

�� �� �� �� ��



Sec.10.7) ORIENTATION OF A TRIPLE 147 

Let Τ = ([Ο,Ι, [0,J) and Τι = ([Ζ0,Ζχ , [ZQ,Z2 ) be frames of reference. Let 
to,Zo(I) = lo, to,z0(J) = Jo, Ρ = ([Z0,Io , [ZQ,Jo ) anda = ΖΓΙαΖ0Ζγ. Then 
there is a unique isometry g such that 

g([0,1) = [ZQ, Zi , g([0, J) = [Zo, Z2 . 

When LjrZ\ZoZ2 is a wedge-angle and so a right-angle 9ϋ>>, 

9 = ra;Zo °to,Z0-

When Z-JTZIZOZI is a reflex-angle 27G>< and so its co-supported angle is a right-angle, 

9 = e j a ; z o ο ί ο , ζ 0 · 

Proof. Without Ices of generality we take \0,I\ = \0,J\ = \Z0,Zt\ = \Z0,ZS\ = 1. 
Let Zo zo, Zi ~jr Zi, Z2 ~ j r Z3 and note that I 1, J τ ι, z i — zo = cis a. 
As ZQZi _L Z0Z2, by lO.l.l(vi) we have 

za - zo = t(zi — zo) when ZJ:ZIZQZ2 is a wedge- angle, 

and 
za — zo = — *(zi — zo) when ZjrZiZoZ2 is a reflex- angle. 

In case (10.6.1) we take the transformation Z' = g(Z) where 

z' = zo + zcis a = zo + (z + zo - zo)cis a. 

Then for ζ = t > 0, z' = z 0 + t(zi - zo) so g([0,I ) = [Z0,Zi 
ζ = tt (t > 0), ζ' = zo + t(za - z 0) so g([0,J) = [Z0,Z2 . 

In case (10.6.2) we take the transformation Z' = g(Z) where 

(10.6.1) 

(10.6.2) 

Similarly for 

z' = zo + zcis ο = zo + (z + zo -zo)cis a. 

Then for ζ = t > 0, z' = z 0 + t(zi - zo) so g([0,I ) = [Z0,Zi . SimUarly for 
ζ = it (t > 0), ζ' = zo + t(za - zo) so g([0,J) = [Z0,Z2 . 

This establishes the existence of g. As to uniqueness, suppose that / is also an 
isometry such that f(T) = Tx. Then by 8.2.1(xii), if Ζ ζ we have f(Z) ~r% 

ζ, 9(Z) ~π ζ, and so f(Z) = g(Z) for all Ζ 6 Π. 
COROLLARY. Let f be any isometry. Then f can be expressed in one or other 

of the forms 
(a) / = ra.Zo

 0 to,z0, (b)/ = s^a.tZo ο to,z0-

Proof. In the theorem, take ZQ = f(0), Zx = f(T), Z2 = f(J) and consequently 
/ is equal to the function g as defined in the proof. 

10.7 ORIENTATION OF A TRIPLE OF NON- COLLINEAR POINTS 

10.7.1 

Definition. We say that an ordered triple (Zo, Zi,Z2) of non-collinear points is pos­
itively or negatively oriented with respect to Τ according as the sensed angle 
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LTZ\ZQZI is wedge or reflex. By 10.4.1(ii) this occurs according as δ^Ζο,Ζι,Ζι) is 
positive or negative. 

Definition. Let Τ = {[Ο,Ι , [0,J ) and Τχ = ([Ζ0,Ζι , [Zo.Za ) be frames of 
reference. We say that T\ is positively or negatively oriented with respect to Τ 
according as (Zo, Zi,Za) is positively or negatively oriented with respect to T. 

The special isometries have the following effects on orientation:-

(i) Each translation preserves the orientations with respect to Τ of all non-collinear 
triples. 

(ii) Each rotation preserves the orientations with respect to Τ of all non-collinear 
triples. 

(iii) Each axial symmetry reverses the orientations with respect to Τ of all non-
collinear triples. 

Proof. 
(i) Let / = tz0,Z\ and Z2 Z2, Z3 z3, Z4 ~jr z4. Then 

z'3 = z3 + (zi - z0), z 3 = z 2 + (zi - Zo), 

so that z'3 — z i = z 3 — z-ί, and similarly z'4 - z2 = z4 — z%. Hence 

4 ~ 4 _ z4 — Zi 

4 - 4 Z3— Z-x 

and so by 10.4. l(ii) the result follows. 
(ii) Let / = r a i Z o - Then by 10.3.1 

z'2- ZQ = (Z2- ZQ)os a, z ' 3 - zo = {z3 - zo)as a, 

and so 
z'3 — z!} = (z3 - Z2)ob a, z\ - z^ = (z4 - 2 3 ) 0 8 a. 

Hence 4 — 4 _ z4 — z2 

z'3 — 4 z3 — z2 

and so by 10.4.1(ii) the result follows. 
(iii) Let / = s a i Z o . Then by 10.3.2 

z'2 - zo = {z~2 - z~o)as 2a, z'3 - zo = (z3 - zb)cis 2a, 

and so 

z'3 - 4 = (*3 - Z2)as 2a, z'4 - 4 = (ZA - £2)08 2a. 

Hence 4 ~ 4 _ Z4 — Z2 
z

3— Z2 Z3— Z2 

so that 

3 4 ~4 _ - z2 

4-4 Ζ3-Ζ2' 
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and so by 10.4.1(ii) the result follows. 

Let Τ,Τι be frames of reference and Ζ3,Ζ^,Ζ6 non-collinear points. Let θ = 
ZjrZ4Z3Z6 and φ = Ζ^ΖΑΖ3Ζ6. Then \φ\° is equal to \θ\° or 360 - according 
as Ti is positively or negatively oriented with respect to T. 

Proof. We use the notation of 10.6.1. When T\ is positively oriented with respect 
to T, we recall that for f(Z) = Z' with z' = ZQ + zcis a, we have f(T) — T\. On 
solving this for ζ and then interchanging ζ and ζ', we see that 

f~\Z) ~ j r (z - z0)as (-α). 

Then by 8.2.1(xu), Ζ = / ( / _ 1 (2 ) ) ~ ^ (z - z0)cis (-a). 
Letting Zj ~r Zj, Z'} Zj we then have ζ'] = {ZJ - zo)ds (-a). Thus 

zj - z3 _ (z6 - zo)ci8 (-a) - (z3 - zo)cis (-a) _ z s - z 3 

A - z>

3 (*4 - zo)ds (-a) - (z3 - z0)cis (-a) z 4 - z 3 ' 

But by 10.4.1(i), 

Zf, - z 3 _ \Ζ3,Ζ5\_._Δ z ' h - z 3 _ \ZS,ZS\_.^ 
ΊΓΤ3-\ζ3,ζ4\α8"> ζ>4-ζ'3-\ζ3,ζ4\α8ψ· 

Thus cis φ = cis θ and so \φ\° = \θ\°. 
When Τι is negatively oriented with respect to T, we take instead f(Z) = Z' with 

ζ' = zo + zcis a. Now f~l(Z) ~ j r (z — zb)cis a and so 

z'5-z'3 _ (z's - zb)ci8 (a) - (z"3 - zo)cis (a) _ z 5 - z 3 

z 4 - z'3 ~ (ii - zb)cis (a) - (z"3 - z"b)cis (a) z 4 - z 3 ' 

Thus cis φ = ά&θ = cis (-0) and so \φ\° = \(-θ)\" = 360 -

Let Τ and Ti be frames of reference. Then the ratios of complex-valued distances 

Ζ3Ζ\? Z3Z\?i 
P = —, ο — 

Z\Z2f Z\Z<lj:% 

defined in 10.2.1, satisfy σ — ρ when Τι is positively oriented with respect to T, and 
σ = ρ when Τι is negatively oriented with respect to T. 

Proof. We use the notation of 10.6.1. In the case (10.6.1) z' — z0 + zcis α so that 

_ z\ - z 3 _ (z 4 - z 3 ) c i8 a _ 

° z'i ~ z \ ( za _ ζι)ά& a ^' 

In the case (10.6.2) z' = zo + zcis a so that 

_ z 4 - Za _ (zj - ζ 3 )ά8 a _ _ 

° z>2 ~ ΖΊ (z* ~ z\)dB a 
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10.8 SENSED ANGLES OF TRIANGLES, THE SINE RULE 

10.8.1 
Definition. For any non-full angle 0, we denote by θ? the angle in A(T) such that 
l*H° = 1*1°. 

U4 LH3 

ο\ ι n2 

n4 n3 

o\ ι 
Figure 10.7. 

Hi 

NOTATION. For non-collinear points Ζι,Ζ2, Z3, we use as standard notation 

\Zg,Zs\ = o, \ZS,Zt\ = b, \Zt,ZB\ = c, 

b c a u = - , υ = - , to = - , 
c a b 

a = 4.?ΖΊΖ\Ζ3, β = Δ^Ζ3Ζ2Ζι, 7 = 4-?Ζ\Ζ3Ζ2. 

Note that by comparison with 9.5.1 we are now using sensed-angles instead of wedge-
angles. 

For non-collinear points ZX,Z2,Z3 if 

a = L?Z2Z\Z3, β = ί?Ζ3ΖιΖ\, η/ — Ζ^ΖχΖ3Ζ2, 

and 6 = ajr, φ = β?, ψ= ητ, then θ+φ+ψ= 180jr. 
Proof. For 

z 3 - zi b ζχ- zi c . z2 — z3 a 
= -as 0, = —as φ, = —cis ψ. 

z2 — zx c z3 — Z2 α Ζχ — z3 b 

On multiplying these together, we find that 

- 1 = cis 0.ds φ-as φ = cis (0 + φ + ψ). 

As cis 180jr = - 1 it follows that 0 + φ + rp = 180jr. 
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With the above notation, the lengths of the sides and the sensed-angles of a triangle 
[Zi,Z2,Zz] have the properties:-

(i) In each case 
ι 

νά»β -- 1 - ucis α' 

and two pairs of similar identities obtained from these on advancing cyclically 
through (u,v,w) and (a,0,y). 

(ii) In each case 

sina sin/3 
c = 6 cos α + α cos/?, 

6 ' 

and two pairs of similar identities obtained from these on advancing cyclically 
through (a,6,c) and (α,β,η). 

Proof. 
(i) For zz - zi = uasa.fo - zi) so that z3 - z2 = {I - ucisa)(zi - z?), while 

zi — zi = vcia β.(ζζ — zi), which give (1 - ucis α)υαβ β = 1. 
(ii) From (i) 

1 - u[cosa + tsina] = [̂cos/J — isin/?], 

so equating real parts gives c — b cos α + α cos β, while equating imaginary parts gives 
sin α/α = sin/?/6. 

This result re-derives the sine rule for a triangle. 

If Z\,Z2,Zz are distinct points, then 

ZZZIJT ^ ZjZir _ j 

ZzZ?yr Z2Zzjr 

Proof. For 
Zl - Zz Z l - Zi _ j 
Zi — Zz Zz — Zi 

10.0 SOME RESULTS ON CIRCLES 

10.9.1 A necessary condition to lie on a circle 

In this section we provide some results on circles which are conveniently proved using 
complex coordinates. 
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Let Z\,Z2 be fixed distinct 
points, and Ζ a variable point, 
all on the circle C(Zo;k). 
Let Γ = to,z0{T) and a = 
/ . J T I I Q Z Q Z \ , β = ZJTIIQZOZI 

and 7 = \(β — a). As Ζ varies 
on the circle, in one of the 
open half-planes with edge Z\Z2 

the sensed angle 4.?Ζ\ΖΖ·ι is 
equal in measure to 7 , while 
in the other open half-plane 
with edge Z\Z2 it is equal in 
measure toy + 18G>». Note that 
27 = IJTZIZQZI. Figure 10.8. 

Proof. Now zi - zo = kcis a, z% - zo = fccis β and if θ = /.JTIQZQZ, then z - ZQ = 

Jfccis Θ. We write φ = ΙγΖιΖΖι so that 

- — - = /cisφ, where/ = j ^ ' ^ B \ . zi-z \Z, Zi I 

Then 

, . , cis β - cis θ 
Ια&φ= - Γ - 7 , 

as α - as ο 

while on taking complex conjugates here 

cis {-β) — cis (-Θ) cis α cis θ — cis β 
/cis (-φ) = 

cis (-a) — cis (—0) cis β cis θ — cis a' 

By division 

. „ , as β . ,_ . 
as 20 = —— = as (p — a), 

as a 

Thus 2(cis φ)2 = (cis 7 ) ' so that cis φ = i d s 7 . Thus either cis φ = cis 7 or cis φ = 
cis (7 + 180j?>), and accordingly 

3 * " ~Z = / sin7 or S* 2 ~ * = Zsin(7 + 180^-). 
Zl - Z Zl— ζ 

As sin7 > 0, the first of these occurs when Ζ is in the half-plane with edge Z\Z% 
in which 9 f J 5 § > 0, and the second when Ζ is in the half-plane with edge Z 1 Z 2 in 
which < 0. 
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10 .9 .2 A suff ic ient c o n d i t i o n t o l ie o n a c i r c l e 

Let Ζι,Ζι be fixed distinct points 
and Ζ a variable point. As Ζ 
varies in one of the half-planes 
with edge Z\Z2, for the sensed 
angle θ = lTZxZZi let \B\° = 

where η is a fixed non-null 
and non-straight angle in Α(Τ'), 
while as Ζ varies in the other 
half-plane with edge Z\Z2, let 
|0|o = | 7 + I80jr>|°. Then Ζ lies 
on a circle which passes through 
Z\ and Z2. 

Proof. We have 

for some t G R \ {0}. Then 

22 

Figure 10.9. 

Zi - ζ 
fcis7 

ζ = 
Za — tzicia 7 

1 - ids 7 
so that with cot 7 = cos 7/sin 7 , 

ζ - + *a) - 2 * c o t 7 - ( * 2 - *i) 
= T-tisT " \{Zl +Z2) - h™^22 ~ Zl) 

_ \(z2 - zi)[l + i d s 7 - * c o t 7 ( l - t c i 8 7 ) ] 
1 - tcis 7 

(22 - * i ) [ s in7 ( l + ids 7 ) -1cos7 (1 - i c i s 7 ) ] 
_ 2 

sin 7(1 — ids 7 ) \(z2-zi ) [ s i n 7 + t ( f - c o s 7 ) ] 

and this has absolute value 

sin 7(1 — ids 7 ) 

\zs - zi I 2 | s i n 7 | ' 

This shows that Ζ lies on a rircle, the centre and length of radius of which are evident. 
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10.9.3 Complex cross-ratio 

Let Z2,Z3,Z4 be non-collinear points and C the circle that contains them. Then 
Ζ & Z3Z4 lies in C if and only if 

^(z - Z3)(Z2 - Zj) _ Q 

[z - Z 4 ) ( * 2 - Z3) 

When this holds and Ζ and Z2 are on the same side of Z3Z4, then 

(Z - Z3){Z2 - Zi) 

( 2 - Zi)(Z2 - z3) 

Proof. The given condition is equivalent to 

> 0 . 

1 Ζ ϋ = ί ί 2 Ζ ϋ , (10.9.1) 
Z — Z3 Zi — z 3 

for some t Φ 0 in R. Let ft, ft be the open half-planes with common edge Z3Z4, 
with Z2 € ft. Let θ = ZTZ3Z2Z4 and φ = 1ΤΖ3ΖΖ\. 

Suppose first that (10.9.1) holds. For Ζ G ft, 

c j i Z U ^ c j f i Z U 
ζ — Z3 z 2 — z 3 

must have the same sign and so t > 0; it follows that φ = θ. For Ζ G ft, 

ZLHH and 
ζ — z 3 Z2 — Z3 

must have opposite signs and so t < 0; it follows that φ = θ +180 By 10.9.2 Ζ eC 
in both cases. 

Conversely let Ζ G C. Then by (10.9.1) for Ζ G ft we have ̂  = 0, while for Ζ G ft 
we have φ — θ + 180^·' and the result now follows. 

The expression |*~^|^~**| is called the cross-ratio of the ordered set of points 
(Z,Z2,Z3,Zi). 

10.9.4 Ptolemy's theorem, C.200A.D. 

Let Z2fZ3,Z4 be non-collinear 
points and C the circle that 
contains them. Let Ζ G C 
be such that Ζ and Z3 

are on opposite sides of 
Z2Z4. Then \Z,Z4\\ZS,Z3[+ 
\Z,Ze\\Z3,Z4\ = \Z,Z3\\Ze,Z4\. 
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Proof. By multiplying out, it can be checked that 

(Z - Z4)(Z2 - Z3) + ( Z - Z2)(z3 - Zi) = ( Z - Z3)(Z2 - Zi). 

This is an identity due to Euler and from it 

(z - Zj)(z2 - z3) + (z - Z2)(ZJ - z3) = 1 

(Z - Z3)(Z2 - Zi) (Ζ - Ζ3)(Ζ4 - Z2) 

By 10.9.3 both fractions on the left are real-valued. As Ζ and Z3 are on opposite 
sides of Z2Zi, there is a point W of [Z, Z3] on Z2Z4. Then W is an interior point of 
the circle, and so W 6 [Z2, Zi] as the only points of the line Z2Z4 which are interior 
to the circle are in this segment. It follows that Z2 and Zi are on opposite sides of 
ZZ3. Then [Z, Z2], [Z3, Zi] are in different closed half-planes with common edge the 
line ZZ3, so they have no points in common. It follows that Ζ and Z2 are on the 
one side of Z3Z4 so the first of the fractions in (10.9.2) is positive, and so equal to its 
own absolute value. But [Z,Zi] and [Z3,Z2] are in different closed half-planes with 
common edge ZZ3 so they have no point in common. It follows that Ζ and Zi are 
on the one side of Z2Z3, so the second fraction in (10.9.2) is positive and so equal to 
its own absolute value. Hence 

\{z - z4)(zB - zs)\ \(z - ze)(z4 - z3)\ = 1 

\(z - z3)(zs - z4)\ \(z - z3)(z4 - ze)\ 

This is known as P t o l e m y ' s t h e o r e m . 
From the original identity (10.9.2) with Z\ replacing Ζ we can deduce that for 

four distinct points Zy,Z2,Z3, Zi 

ZlZj^^2~23jr ^ Z\Z2f~Z~jZ3:F _ ^ 
Z\Z2f Z2Zij: Z\Z3f ZiZ2j: 

This can be expanded as 

i ^ i l c i s a i ^ i c i s β + i ^ i c i s 7 J ^ J c i s δ = 1 
\gi,Zs\aaa\zMtz4\atfi+ \ζ„ζ3ΓΊ\ζβ,ζ4\01Βό 

where 

ο = £j:Z3ZiZi, β = L?ZiZ2Z3, 7 — LfZ3Z\Z2, δ = Lj:ZiZ2Z3. 

From this we have that 
\Zh^\ZB1Z3\.(n , ο , , \Z,,Za\\Z4,Za\ . x v , 

\zuz3\\zt,z4r ^ + Μ + \ΎΜ\ζτζ7Γ+ *° - L 

We get two relationships on equating the real parts in this and also equating the 
imaginary parts. 

NOTE. For other applications of complex numbers to geometry, see Chapter 11 
and Hahn [8]. 
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10.10 ANGLES BETWEEN LINES 

10.10.1 Motivation 

Since cos (180jr + Θ) - -cos<9, 8in(180jr + Θ) = -sinfl, we have that t a n ( 1 8 0 ^ + 

Θ) = tan0. Thus results that tand is constant do not imply that θ is an angle of 
constant magnitude. To extract more information from such situations, we develop 
new material. This also deals with the rather abrupt transitions in results such as 
those in 1 0 . 9 . 1 and 1 0 . 9 . 2 . 

10.10.2 Duo-sectors 

Let / i , / 2 be lines intersecting at a point Z\. When l\ φ / 2 , let Zi,Z3 e h with Z\ 
between Z 2 and Z3, and let Z 4 ,Zs € f2 with Z\ between Z4 and Z 5 . Then the union 

in{\zez1z4) u m(\zsz,z5) 

we shall call a duo-sector with side-lines <Ί and / 2 ; we shall denote it by V\. Similarly 

in<\ZBZiZ5) U TR.(\Z3ZtZ4) 

is also a duo-sector with side-lines l\ and / 2 , and we shall denote it by Vi. 

Figure 10.11. Figure 10.12, 

The mid-line l3 of \ZgZi Z4 is also the mid-line of \Z3ZiZ5 and it lies entirely in V\. 
The mid-line l4 of \ZsZtZ5 is also the mid-line of \Z3ZtZ4 and it lies entirely in 2 > 2 . 
We call {h,l4} the bisectors of the line pair {/i,/2} and use h to identify Z>i, l4 to 
identify 2 > 2 . When 0>(Zi,Z 2 ,Zi) > 0 we note that 

2>i = {Z€U.SAZi,Z7,Z)Sjr{ZuZi,Z)<0}, 
V7 = {Z£U:djr(ZuZi,Z)Sjr(ZuZ4,Z)>0}, 

and get a similar characterisation when δ?(Ζι,Ζ2,Z4) < 0 . 
When li = / 2 , we take Vi = <Ί; we could also take 2 ? 2 = Π but do not make any 

use of this. 
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10.10.3 Duo-angles 
When li, l2 are distinct lines, intersecting at Ζχ, we call the pairs 

{{hMM, ({hM,v2), 
duo-angles, with arms h, l2; in this T>\, V2 are the duo-sectors of 10.10.2. We 
denote these duo-angles by eta, β*, respectively. We call the bisector i 3 the indicator 
of ad, and the bisector U the indicator of β&· We define the degree-magnitudes of 
these by 

\ad\° = \ΔΖ„ΖιΖ4\" = \ΔΖ9ΖιΖ5\\ \βα\° = \/LZeZtZ5\° = \£.Z9ZtZtf. 

If Ιχ ± l2 we have that | a j | 0 — \β^\° = 90, and we call these right duo-angles. 
When Ιχ = l2 we take ad — ({ii,ia},ii) to be a duo-angle with arms ii, ii, and 

call it a null duo-angle. Its indicator is Χχ, and we define its degree-measure to be 
0. We do not define a straight duo-angle. Thus the measure of a duo-angle 74 always 
satisfies 0 < ΙΎ̂  |° < 180. 

When Ιχ φ l2 we define 

s inad = sin(ZZ2ZxZi) = 8 \ η ( / . Ζ 3 Ζ Χ Ζ Ζ ) , 

COSOd = COS(Z2"2Z1Z4) = COs(ZZ3ZiZ5), 

sin & = sin(ZZ 3ZiZ 5) = &ία{ΖΖ3ΖχΖ4), 
cosflj = cos(ZZ2ZxZ6) = cos(ZZ 3ZiZ 4). 

For a right duo-angle these have the values 1 and 0, respectively. 
When ii and l2 are not perpendicular, we can define as well tan ad= , tan β& = 

gin 8 I 
COTBJ' 

If ad is a null duo-angle we define sin ad = 0, cos ad = 1, tan ad = 0. 

10.10.4 Duo-angles in standard position 

H4 

7*3/ 1 

ζ Vx 
v2 J 

1 
1 / .·'"' m 

0 
/ 

/ . · ' Ή.χ 

. · ' / 
/ 

I n2 

Vx 

/ 
/ 

/ 
/ 

/ 

v2 

Figure 

: m 

V2 HA : U3 

J 
' / Ηχ 

0. 

Vx 

10 

V 2 

We extend our frame of reference Τ by taking in connection with the line pair 
{OI,OJ} a canonical pair of duo-sectors Vx and V2, with Vx the union of the first 
and third quadrants & and Q3, and V2 the union of the second and fourth quadrants. 
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For any line ί through the origin O, we consider the duo-angle 0:4 with side-lines 
01 and /, such that the indicator m of ad lies in the duo-sector 2>i, that is the bisector 
of the line-pair {01,1} which lies in the duo-sector of a<j also lies in V\. We denote 
by VA(F) the set of such duo-angles, and we say that they are in standard position 
with respect to T. 

λ! l φ 01 and Z4 = (X4,yi) is a point other than Ο on /, then so is the point with 
coordinates ( - X 4 , -y4); thus, without loss of generality, we may assume that y4 > 0 
in identifying / as 0ZA. Then Ζ4 € Ήι and 

\ad\° = \ZIOZ4\\ 

cos ad = cos(Z/0Zi) = 

sin a j = sin(Z/OZ4) = 

When ad is not a right duo-angle, we have 

V4 
tan = —. x4 

v/xT+yT 

We identify I = 01 as OZ4 where Z4 = (i 4 ,0) and X4 > 0. Thus for the null duo-
angle in standard position we have cos ad = 1, sin ad = 0, tan ad = 0. We denote 
this null duo-angle by b~dr and the right duo-angle in standard position by 90dF-

We now note that if eta, β& € VA(F) and tan ad = tan£d, then α& = βά· 

Proof. For this we let ad, βά have pairs of side-lines (ΟΙ,ΟΖΑ), (OI,OZ6), re­
spectively, where \0,Z4\ = \0,Zs\ = fc, and either y 4 > 0 or X4 > 0, y4 = 0, and 
similarly either y e > 0 or x 8 > 0, ys = 0. Then neither ad nor βά is 90d^ and 

X4 X5 

If yi = 0 then ye = 0 and both duo-angles are null. Suppose then that y4 φ 0 so 
that y4 > 0; it follows that y 6 > 0. Then 

*2 = 4 + vi = 4*1+νϊ = 4(χ^+y\) = ylk\ 
Vi Vi Vi 

Hence yl=y\, and so y& = y4· It follows that χ6 = x4. 
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10.10.5 Addition of duo-angles in standard position 

To deal with addition of duo-
angles in standard position, let 
Q = (Jfc.O), R Ξ (0,*) for some 
k > 0, and ay have side-lines 
OQ and OZ4, have side-lines 
OQ and 0Z 8 , where \0,Z4\ = 
\0,Z5\ = k and both have their 
indicators in 2>i. Without loss of 
generaUty, we may suppose that 
either y4 > 0 or y4 = 0, x4 > 
0, and similarly with respect to 
(*6,ί/δ)· 

Figure 10.14. Addi t ion of duo-angles. 

Then the line through Q which is parallel to Z4Z5 will meet the circle C(0; λ) in a 
second point, which we denote by Za = (χβ,Ι/β)· The line through Q parallel to Z4Z5 
has parametric equations 

χ = k + i(x 6 - X4), y - t{y6 -1/4), 

and so meets the circle again when t φ 0 satisfies 

[fc + t ( X 5 - X 4 ) ] 2 + [ t ( l /5 -y4) ] 2 = fc2. 

This yields 
t = _ 2fc(x 6 -X4) 

(x s - x 4 ) 3 + (y8 - ' 

and so we find for (xe,ye) that 

X e - *(x 6 - x 4 ) 2 + (v. - y 4 ) 2 ' y* ^ ( x 5 - x 4 ) 2 + ( y 6 - y 4 ) 2 ' 
(10.10.1) 

We define the sum ctd + 0d = Id, where 74 has side-lines OQ and OZe and has its 
indicator in V\. When Z 4 = Z 6 we take QZ0 as the line through Q which is parallel 
to the tangent to the circle at Z 4 . This is analogous to the modified sum of angles. 

It can be checked that 

ye _ xi,Vi + X4V6 _ Q x± _ XJxs - y4ys _ 0 1 0 2 ^ 

To see this we first note that (y6 - yA)2 + (x6 - X 4 ) 2 = 2[Λ2 - (x4x5 + y4ye)]- Then 
the numerator in 

(x s - X4)(ys - y4) _ J s y 4 + a^ys 
X4X6 + y4ye - * 2 * 2 
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is equal to 

fc3[(x6 - x4)(l/6 - Vi) + XiVi + XiVi] ~ (xiVi + XiVb)(xiX5 + ViVh) 

= k2{XiV6 + XiVi) - [XiVifrl + vl) + XtViiXi + Vi)] 
= (fc3 - fc3)(*6V6 + Z4V4) = 0. 

Similarly the numerator in 

1 (gs - Vi)2 ~ (xs ~ Xif _ XjXs ~ ViV* 
2 fc2 - (X4X6 + ViVt) fc2 

equals 

fc2[(ite - Vi)2 - (χβ - X4) 2 - 2(x 4 x 5 - vm)] + 2(x4xe + ι/4ΐ,6)(χ4Χδ - y4ye) 
= fc2[y5

2 + vl -xl-xl] + 2(«2«2-vlvl) 
= fc2[y6

2 + vl - x l - xl] + 2[x2(* 3 - vl) - vlvl] 
= k2[vl + vl - x l - χ2] + 2 [χ1* 2 - vl(xl + vl)] 
= fc2[y6

2 + vl - χΐ - χΐ + 2χ24 - 2y5

2] = 0. 

To apply these we note that by 10.10.4 

V4 x i · a Vs a x& amctd = —, cosad = —, sinpd = -r, coapd = —. κ κ κ κ 

The sum 7d = α<< + βά has side-lines OQ and OZe, and we sub-divide into two major 
cases. First we suppose that X5U4 + XiVs > 0 or equivalently |ad|° + \βά\° < 180. 
Then ye > 0 and we have 

ye xe sin7d = - p cos7d = y -

It follows from (10.10.2) that 

sin(ad + βά) = sin ay cos βα + cos ad sin β^, 
cos(ad + βά) = cos ad cos βΛ - sin ad sin β&. 

Secondly we suppose that XsVi + X4ys < 0 or equivalently |ad|° + \βά\° > 180. 
Then ye < 0 so we have 

ye χβ 

sin7d = - — , cos7d = - y . 

It follows from (10.10.2) that 
— sin(ad + βά) = sin ad cos βά + cos ad sin β<ι, 
-οοβ(αά + βά) = cos ad cos βά - sin ad sin βά. 

There is a further case when x6y4 + £4ye = 0 and we obtain these formulae according 
as Z4X5 — y4»s is positive or negative, respectively. Thus the addition formulae for 
sine and cosine of duo-angles are more complicated than those of angles. 
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10.10.6 Addition formulae for tangents of duo-angles 

(i) We first note that if α^βά € Τ>Α(Τ) and ad + fid = 90AF, neither duo-angle being 
null or right, then tan tan ^ = 1. For we have that xe = 0, so that by (10.10.2) 
x*x& -1/41/8 = 0 and thus 

1/4 1/6 _ j 
Xi xs 

(ii) Next we note that, as tan α* = sin ad/ cos a<j, it follows from the above addition 
formulae for cosine and sine that 

. , , a χ tanad+tan^d 
tan(ad + fid) = ζ—τ τ—3", 

1 - tan ad tan Pd 
provided that 0 does not occur in a denominator, that is provided none of ad, Pd, atd+ 
/3d is a right duo-angle; this can be done separately for the cases considered in 10.10.5. 
In fact this addition formula for the tangent function can be verified without subdi­
vision into cases, as 

Ve = _2_(Vs ~ V4)(X6 ~ Xi) 
xe (Vs -1/4)2 - (xs - a*)3' 

and we wish to show that this is equal to 

vs/xs + 1/4/X4 xm + X51/4 (10.10.3) 
1 - ViVh/xiXs x*xs ~ 1/41/5' 

On subtracting the first of these expressions from the second, we obtain a quotient 
the numerator of which is equal to 

(X4l/8 + X8V4)[(V5 - J/4)2 - (Χβ ~ Xi)2] + 2(x4X6 - l/4l/6)(i/6 - V*)(*6 - Xi) 
= (X4VS + X&VUfal + I/4 - xl ~ x \ + 2(X4l5 - i/41/δ)] 
-ι- 2(x 4x 6 - ym)[xiV4 + xm - {xm + x&y*)] 

= (X\ys + *6l/4)[l/I + I/4 - Xl ~ Xl) + 2(X4X6 - y4l/5)(*4t/4 + XbVb) 
= {xm + Xf>Vi)\y\ + vl - xl - xl) + 2(x4*5t/4 - v\xm + x\xm - vl*m) 
= (χϊ +1/5 - A - vl)(zm - *6ΐΜ) = ο, 

as x 3 + y\ = xl +1/| = Jfc3. This identity then implies the standard addition formula 
for the tangents of duo-angles, 

(iii) We also wish to show that 

tan(ad + 90dj0 = 7 -^- , tan ad 

when ad is neither null nor right. For with 1 5 = 0, ye = * (10.10.1) gives 

„ _ Jk-ytf-xl O L - x 4 ( f c - y 4 ) 
X e " *x* + ( i f c - y 4 ) 2 ' V e " 2*xJ + ( i f e - y 4 ) 2 ' 

so that 

Then 

y e _ 2x4(fc - y 4 ) 
xo (k - V*)2 - xl' 

ye y_4 = „ y*(k-yi) _ 2Vi(k-yi) _ _χ 

χ β χ 4 Jfc3 - 2*y4 + yl - x\ 2y\ - 2ky4 
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1 0 . 1 0 . 7 A s s o c i a t i v i t y o f a d d i t i o n o f d u o - a n g l e s 

With the notation of 10.10.5, suppose that ay, βά and 7d are duo-angles in VA{T), 
with pairs side- lines (OQ,OZA), (OQ,OZ6), (OQ,OZ6), respectively. We wish to 
consider the sums (ad -I- βί) + 7d and ad + (βα + 7d)- We suppose that ad + βα has 
side-lines (OQ,OZ7) and that (α* + /3d) + jd has side-lines (OQ,OZ9). Similarly 
we suppose that β^ + 7<j has side-lines (OQ, OZa) and ad + (βα + 7d) has side-lines 
(OQ,OZ1Q). Then by (10.10.2) applied several times we have that 

X6V4 + X4V6 X4X5 - 1/41/5 1/7 = Ζ · χ7 = 

Similarly 

Jb Jb 

XEVI + XRVE X e ' m t ' m + ' ^ ν ^ Ν * 
Jb Jb 

X*(xhV4 + XM) + (X4X6 - YM)VO 
Jb2 

XIXE - Ifrye = ^ p ^ x e - X™X'™YT 
k k 

( x 4 x s - y 4 y s ) x e - (xsy4 + X4ys)ye 
Jb2 

XEVT + xsye χβχβ - yeye 
y 8 = s , χ 8 = s , 

X 9 = 

yio 

X 1 0 = 

x 8y4 + x4y8 _ '*^»nyi+x4^»t'm 

k k 
( χ 6 χ β - y sye )y 4 + x 4 ( x e y e + xjVo) 

Jb2 

χ 4 χ 8 -y4y 8 _ X A X I X I V M - y 4

a , w t * , w 

Jb Jb 

_ x 4 ( x s x e - ysya) - y4(xays + ssye) 

Jb2 

From these we can see that Zq = Z 1 0 and so we have that 

(a d + βΛ) + 7d = a d + [βΛ + 7a). 

Thus addition of duo-angles is associative on VA(7). 

10 .10 .8 G r o u p p r o p e r t i e s o f d u o - a n g l e s ; s e n s e d d u o - a n g l e s 

We note the following properties of addition of duo-angles:-
(i) Given any duo-angles ad, βά in T>A(F), the sum ad + fid ΰ a unique object ηΛ 

and it lies in VA(T). 
(ii) Addition of duo-angles is commutative, that is 

(*ά + βά = βά+ ad, 

for all ad, βάΕΊ>Α(Γ). 
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(iii) Addition of duo-angles is associative on VA(F). 
(iv) The null angle w a neutral element for + on VA{T). 
(v)Each ad e VA{T) has an additive inverse in VA(T). 
Proof. 
(i) This is evident from the definition. 
(ii) This is evident as the definition is symmetrical in the roles of the two duo-

angles. 
(iii) This was established in 10.10.7. 
(iv) For a d + OAF = a<*. for all ad € VA(T). 
(v) With the notation of 10.10.5 let Z 8 = SOJ(Z4) so that Z 8 = (-x4,y4), and let 

5d be the duo-angle in VA(T) with arms 0J,0Z 8 . Then, straightforwardly, ad+Sd = 
Qdj?. Thus this duo-angle 6d is an additive inverse for ad in VA{!F). We denote it by 
-ad. 

These properties show that we have a commutative group. We note that 

If α = LTQOZI is a wedge-angle in A ( T ) , with Z 4 = (14 ,1 /4) and 1/4 > 0, we 
recall that -a - Z . j ? Q O Z 0 where Z e = soi(Z4) = (x4, - # 4 ) · If ad is the duo-angle 
in V A ( T ) with side-lines ( O Q , O Z 4 ) then -ad is the duo-angle in V A { T ) with side­
lines (OQ,0Z 8) where Z 8 = SOJ{Z4) = {—x4,y4). This inverse angle and inverse 
duo-angle are linked in that O Z S = O Z 9 and so \-a\° = \-ad\° + 180. 

We define fid — ad = fid + (—ad), and this is the duo-angle in standard position 
with side-lines O Q and 0Z 7 , where Zi = (17 ,1 /7) is the point where the line through 
Q and parallel to Z^SOJ{Z4) meets the circle C(0;k) again. We call fid - ctd the 
sensed duo-angle with side-lines O Z 4 , O Z 6 and denote it by < ? ( O Z 4 , O Z 6 ) . ΊίΤ' 
is any frame of reference obtained from Τ by translation, we also define 

Earlier names for this were a 'complete angle' and a 'cross'; see Forder [7] for ap­
plications and exercises, and Forder [6, pages 120-121,151-154] for applications, the 
terminology used being 'cross'. Sensed duo-angles were also used by Johnson [9, pages 
11 -15] under the name of 'directed angles'. 

provided none of ad, 0d, fid - ad is a right duo-angle. For a coordinate formula to 
utilise this we replace X4 by - 1 4 in (10.10.3) and translate to parallel axes through 
Zi. Thus for 7 d = <i>(ZiZ4 ,Z iZ 8 ) we have 

sin(-ad) = — = sinarf, coa(-ad) = -— = -

tan(-a d) = - — = -t&aad. 

cos ad, 

<t>(0Z 4 ,OZ 6) = < R ( O Z 4 } O Z 6 ) . 

We have 
tan/3d - tan ad 

1 + tan ad tan/3d' tan(£d - ad) = 

tan7d 1 + v » - v i 

when 7d is not right, and 
1 + Vi - Vi Vi - Vi 

X5 — Xi X4 — Xl 
= 0 

when it is. 
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10.10.θ An application 

For fixed points Z4 and Z s , consider the locus of points Ζ such that <?(ZZ\,ZZ$) 
has constant magnitude. If it is a right duo-angle we will have 

= 0 , 
1 5 — X X4 — χ 

and so the points Ζ & Z4Z5 lie on the circle on [Z4, Z5] as diameter. Otherwise, we 
have that 

V5-v _ v*-v 
xs—x Xj—x _ -ι \ 

1 4 . vt-v Vi-v ~ ' 
* g — I 1 4 — ζ 

for some λ φ 1, and then the points Ζ £ Z4Z5 lie on a circle which passes through 
Ζ4 and Z5 . In fact we obtain a set of coaxal circles through Z4 and Z 5 . This should 
be compared with 7.5.1 and 10.9.1. 

10.11 A CASE OF PASCAL'S THEOREM, 1640 

10.11.1 
LetZx,Wx,Z2,W2 be distinct points on the circle C{0;k). Then ZXW2 \\ WXZ2 if and 
only ifZrZ2OW2 = ZTZxOWx. 

Proof. We let zx ~ fccisdi, z2 ~ fccis02, u»i ~ fccis^i, u>a ~ fcris^j. Then Z1W2 
and Wx Z2 are parallel if and only if 

fccis Φ2 — kcxs θχ _ 
fccis θ2 — fccis <fo 

for some t φ 0 in R. By 9.4.1 the left-hand side is equal to 

cos Φ2 — cos 0i + t(sin#2 — sin0i) 
cos 02 - cos φι + »(ein 0j - sin φχ) 

= - 2 s i n ( ^ + |0i)«a( | fr - fo) + 2 tcos (^ + | 0 i ) cos (^ - \θχ) 
- 2 s i n ( i 0 2 + i&)s in( i0 2 - \φι) + 2»cos(±02 + ^ i )cos ( i0 2 - ±φι) 

= sin(^2-2-0i) cis (2-^ + 2-01) 
sin(i0 2 - £<fe) cis ( i 0 2 + \φχ) 

_ΆΤΧ(\φ2-\θΧ) , 

Thus 

c i a ( ^ + : f l l _ . , 2 _ ^ ) = ^ i | 4 M , 
8in(5^2 - j P l ) 

But the absolute value here is 1, so the right-hand side is ±1. Thus we have either 

\φι + ^01 ~ 2^2 - \φι = O r̂, 

or 
\φι + 2*ι - fo - 2^1 = 18G>. 
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In each case, we have that fa - φι = θ2 - #i and so Lj:Z20W2 = J C ^ Z I O W I . 

Z3 

If(Zi,Wi), (Z 2 ,W 2), (Z 3 ,W 3) 
are distinct pairs of points all on 
a circle and such that ZiW 2 || 
WiZ2 and Z2W3 \\ W2Z3 then 
ZiW3 || WiZ3. 
Proof. This follows immediately 
from the last subsection. It is a 
case of what is known as P A S ­
CAL'S T H E O R E M . 

Zi Λ 

W V - . . - · 

Figure 10.15. A case of Pascal ' s t heo rem 

COROLLARY. / /(Zi.Wi), (Z 2 ,W 2), (Z 3 ,W 3), (Z 4 ,W 4) are four distinct pairs 
of points all on a circle and such that 

ZiW2\\WiZ2, Z2W3\\W2Z3l Z3W4\\W3Z4, 

thenZiWi \\ WiZt. 

Figure 10.16. Very symmetrical cases. 

Proof. For from the first two we deduce that ZiW3 || WiZ3 and on combining this 
with the third relation we obtain the conclusion. 

NOTE. Clearly this last result can be extended to any number of pairs of points 
on a circle. 

10.11.2 

Starting more generally than in the last subsection, for pairs of distinct points let 
(Zi, Wi) ~ (Z 2, WJ) if and only if ZiW 2 || WiZ 2. Then clearly the relation ~ is 
reflexive and symmetric. We ask when it is also transitive and thus an equivalence 
relation. 

Now if Zi = (xi,yi), Z2 = (x2,y2), Wi = (uuvx), W2 = ( u ^ ) , we have 
(Zi, Wi) ~ (Z 2, W2) if and only if 

(«2 - Vi)(x2 - «ι) = (u2 - xi)(y2 - vi). (10.11.1) 

Similarly we have (Z 2, W2) ~ (Z, W) if and only if 

(v - y2){x - u2) = ( u - x2)(y - 1 ^ ) . (10.11.2) 
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We wish (10.11.1) and (10.11.2) to imply that 

(v - jftK* - tn) = (u - x i ) ( l , - υ ι ) . (10.11.3) 

From (10.11.1) we have that 

V2X2 ~ ualfc = uivi - U2U1 + Χ2Ι/1 - X1I/2 + X1V1 - y i U i , 

and from (10.11.2) 

V2X2 — U2J/2 = U«2 ~ «2V + X2V ~ XJ(2 + VX - UJf, 

so together these give 

vx - uy = « i « 2 - ti2t;i + xzyi - x\y2 + xiVi - j / iU i — uvi + v.2v — x2y + xy3. 

We need for (10.11.3) that 

vx - uy = t m i - uvi + y i x - i iy - y i U i + X1V1 

and so our condition for transitivity is got by equating the two right- hand sides here. 
This turns out to be Sr(Zu Z2,Z) = o>(Wi, W a, W). 

Now (10.11.2) and (10.11.3) simultaneously give a transformation under which 
Ζ -¥ W as we see by writing them as 

ν - V2 _ y - «2 ν - y i _ y - v i 
U - X2 X - U 2 ' U — Χι X — Ui 

On solving for u and ν in this we obtain 

χ—tii x—ua 

X2 - Xl + Vi - Vi£=ia-

(10.11.4) 

x—ui _ a — t w 

To utilise this transformation we consider loci with equations of the form 

afclLza IL^L + 2 f l i L U l + 2 / i L Z i l + c = 0 . ( 1 0 . i i . 5 ) 
X — U2 X - Ui X — «2 X — Ui 

Under the transformation this maps into the locus with equation 

2 ή v - y , v - * + v - y , + v - y i _ + c _ q {W.IUS) 
U — X2 U — Xl tt — X2 U — Xl 

On clearing the equation (10.11.5) of fractions we obtain 

2n(y - v a ) ( y - vx) + 2o(y - V2)(x - u x) + 2 / ( y - vi)(x - u 2) 
+ c(x - «i)(x - 02 ) = 0, 
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from which we see that W\ and W2 are both on this locus. This equation can be 
re-arranged as 

cx 2 + 2{g + f)xy + 2hy2 - (2gv2 + 2/n + cui + cu2)x-
(2(rui + 2/u 2 + 2hvi + 2hv2)y + 2ftt>it;2 + 2ouit>2 + 2/u2t>i + cuiu2 = 0. (10.11.7) 

Similarly we see that Z\ and Z2 are on the locus given by (10.11.6), and the equation 
for it becomes 

cu2 + 2(o + f)uv + 2hv2 - (2gifc + 2/y x + cxi + cx 2 )u-
(2gxi + 2/x 2 + 2hyi + 2hy2)v + 2hyiy2 + 2gXly2 + 2/x 2yi + cxix2 = 0. (10.11.8) 

We note that W\ maps to Z\ and W2 maps to Z2 under the transformation in which 
Ζ maps to W 

To identify all the loci that can occur in (10.11.7) and (10.11.8) would take us 
beyond the concepts of the present course, so we concentrate on when they represent 
circles. 

Now (10.11.7) is a circle when c = 2Λ φ 0 and g - - / . The equation then becomes 

x 2 + y 2 + [|(υ χ - t*j) - ui - u2] χ + [|(u 2 - ui) - υι - r2j y 

+ z(uiV2 - u2V\) + Uiu2 + viv-i = 0. (10.11.9) 
η 

This is the set of circles which pass through the points W\ and W2, a set of coaxal 
circles. The corresponding equation for the second locus is 

u 2 + υ 2 + [|(yx - y 2) - xi - x2j u + [|(x 2 - xi) - yi - y2] ν 

+ |(a:iy2 - x 2yi) + xix 2 + ym = 0, (10.11.10) 

and this gives the set of coaxal circles passing through Z\ and Z2. 

We can take an arbitrary circle 
from the first coaxal set and then 
there is a unique one from the 
second set corresponding to it. If 
we take Z\,Z2,Wi,W2to be con-
cylic we get just one circle and 
that is the classical case; it oc­
curs when the remaining coeffi­
cients in the two equations are 
pairwise equal. 

Figure 10.17. Pascal resul t for two circles. 

10.11.3 
Instead of using parallelism of lines as the basis of the relation in 10.11.2, we could 
take instead a fixed line ο with equation Ix+my+η = 0, and let (Z\, W\) ~ (Z2, W2) 
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if the lines ZXW2 and WXZ7 meet on o. 
transformation corresponding to (10.11.' 

n{V2 -v)- Ijxzv - jftu) 
n(x3 — o) + m(xat> — yau) 
n(yi - v) - l(xiv - yiu) 

n(xx - u) + m(x\v - yi«) 

he results axe like those in 10.11.2 and the 
is 

" ( P a - y) - * ( " a y - ν*χ) 
n(«2 -x) + m ( u a y — Wjx)' 
n(vi - y) - l(uiy - vix) 

n(ui - x) + m(uiy — v\x)' 

Exercises 

10.1 Prove the result of Varignon (1731) that if A, B, C, D are the vertices of a convex 
quadrilateral and 

Ρ = mp(A,fl), Q = mp(£,C), R = mp(C,D), 5 = mp(D,A), 

then P,Q,R,S are the vertices of a parallelogram. 

10.2 If Zi ~ zi, ~ z% and Z3 ~ 2 3 are non-collinear points show that 

zi(23 - h) + « 3 ( 2 1 - 2 3 ) + 2 3 ( 2 2 - 2 1 ) = 4io>(Zi,Z 2,Z 3) ^ 0. 

10.3 Let A ~ α, Β ~ b, C ~ c be non-collinear points and Ρ ~ ρ a point such that 
AP, .BP, C P meet .BC, CA, AB at D ~ d, 2? ~ e, Ρ ~ / , respectively. Show 
for sensed ratio that 

2JD _ p(b - ά) + p(a - b) + 6a - ab 
DC ~ p{a-c)+p(c-a) + ac — ca' 

and hence prove Ceva's theorem that 

ΈΏΤΤΕΆΎ i 

10.4 Let A ~ ο, Β ~ 6, C ~ c be non-collinear points. Given any point Ρ ~ p, show 
that as (c — a)/(6 — a) is non-real there exist unique real numbers y and 2 such 
that ρ - α = y(6 - a) + z(c - o), and so ρ = xo + yb + zc where χ + y + ζ = 1. 
Show that if AP meets BC it is in a point D ~ d such that 

1 ,. r 

ϊ + r Γ+ Γ ° ' 

where r = z/y. Hence prove Ceva's theorem that if D € BC, Ε € CA, Ρ e AB 
are such that AD, BE, CF are concurrent, then 

�� �� �� �� ��



Sec. 10.11) A CASE OF PASCAL'S THEOREM, 1640 169 

10.5 Let A ~ a, R ~ 6, C ~ c be non-collinear points. If Z? ~ d, Ε ~ e where 

1 . λ 1 μ 
d = -—-ο + -—-c, e = c + o, 

l + A 1 + λ l+μ l+μ 

and DE meets AB it is in a point F ~ / where 

and λμι/ = - 1 . 

Prove Menelaus' theorem that if I? € BC, Ε € CA, F € AB are collinear, then 
RD CEAT DC Ε A FB 

= - 1 . 

10.6 Let A,B,C be non-collinear points and take D € BC, Ε 6 CA, i"" € AB such 
that 

BD _ CE _ I F _ 

Let /, τη, η be, respectively, the lines through D, E, F which are perpendicular 
to the side-lines BC, CA, AB. Show that /, m, η are concurrent if and only if 

(1 - 2r)|R, C f + (1 - 2e)| C, A| 2 + (1 - 2r)|A, R| 2 = 0. 

10.7 If K{ZQ) is the set of all rotations about the point Zo, show that (ft(Zo), °) is 
a commutative group. 

10.8 Show that the composition of axial symmetries in two parallel lines is equal to a 
translation, and conversely that each translation can be expressed in this form. 

10.9 Prove that 8φ.<Ζο ο 8β-,ζ0 = r2^-ey,z0-
10.11 Prove that a^;z0 ο re,z0 = 8φ-±β;Ζ0· Deduce that any rotation about the point 

Zo can be expressed as the composition of two axial symmetries in lines which 
pass through Zo. 

10.12 Let T\ ~ !F2 if the frame of reference Ti is positively oriented with respect to 
T\. Show that ~ is an equivalence relation. 

10.13 Prove the Stewart identity 

(*4 - *l) 2 (23 - «a) + (*4 - *2) 2 (Ζ1 - Z3) + (24 - Zs)2(Z2 - Ζχ) 

= ~ (Z3 ~ Zi)(Zi ~ Z3)(Z2 ~ Ζχ). 

Interpret this trigonometrically. 

10.14 Prove D E M O I V R E ' S T H E O R E M that 

(cosa + tsina)" = cos(na) + tsin(na), 

for all positive integers η and all angles α 6 A*(Τ), where t is the complex 
number satisfying t 2 = - 1 . 
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10.15 Suppose that Ι,τη,η are distinct parallel lines. Let Z\,Z2,Z3,Z4 Ε / with 
Zi φ Z2, Z3 φ Z4. Suppose that Z6,Z<s Ε η, ΖχΖ6, Z2Z6 meet m at Z7,Za, 
respectively, and Z3Z6, Z4Z6 meet m at Z9, Zi0, respectively. Prove that then 

ZQZIQ Z3Z4 

ZjZg Z\Z2 

10.16 If [Ζι,Ζ2,Ζ3,Ζ4] is a parallelogram, W is a point on the diagonal line Z\Z3, a 
line through W parallel to Z\Z2 meets ΖχΖ4 and Z2Z3 at W\ and W2 respec­
tively, and a line through W parallel to ZXZ4 meets ZXZ2 and Z3Z4 at W3 and 
W4, respectively, prove that 

Sr(W% Wi, Wi) = 5r{W, W3, W2). 

10.17 If Zi φ Z2 and δ^(Ζι,Ζ2,Ζ3) = -6^Ζι,Ζ2,Ζ4), prove that the mid-point of 
Z3 and Zi is on Z\Z2. 

10.18 Suppose that Z\,Z2,Z3,Z4 are points no three of which are collinear. Show 
that [Zi, Z3] Π [Ζ2,Ζ4] φ 0 if and only if 

fc(Zx,Z2,Zj) ^ 0 ^ δ?{Ζ2,Ζι,Ζ3) 0 

& Τ { Ζ * Ι Ζ * Λ Ζ \ ) S?{Zi,Zi,Z3) 
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P o s i t i o n v e c t o r s ; v e c t o r a n d 
c o m p l e x - n u m b e r m e t h o d s i n 
g e o m e t r y 

11.1 EQUIPOLLENCE 

11.1.1 

Definition. An ordered pair (Ζχ, Za) of points in Π is said to be equipollent to the 
pair (Z3,Z4), written symbolically (Zi,Z 2) t (Z3,Z4), if mp(Z 1,Z 4) = mp(Z2,Z3). 
Thus t is a binary relation in Π χ Π. 

Equipollence has the properties:-

(i) If Ζχ = (xi,yi), Zi = (x2,ya), Z 3 = (13,1/4) , Z4 = (X4,y 4 ) , then (Zi,Z 2) t 
(Z 3, Z 4) if and only if Xi + x4 = x 2 + x3, yi +y4 = 1/2 + y3, or equivalently 
xi - Xl = X4 - X3, J /a - l / i=2 /4-1 /3 · 

(ii) Given any points Zi, Z 2 , Z 3 € Π, t/tere is a unique point Z4 such that (Zi, Z 2 ) t 
(2 3 ,2 4 ) . 

(iii) For a// Z i , Z 2 6 Π, (ZuZ2) t (2i,2 2). 

(iv) / / (Ζ!, Z 2) f (Z 3, Z 4) then (Z 3, Z 4) t (Zi, Z*). 

(v) / / (Z x , Z 2 ) t (3», Z 4 ) and (Z 3, Z 4 ) ί (Z 6 , Z e ) , tnen (Zx, Z 2 ) f (Ζ δ , Z e ) . 

(vi) / / (Z^Z, ) t (2 3 ,Z 4 ) tfcen (Zx.Zs) ί (Z 2 ,Z 4 ) . 

(vii) / / (Zi, Z 2) t (Z3, Z 4 ) , ίΛβη |Z , , Z„| = |Z 3 , Z, |. 

(viii) For all Zi € Π, (Zu Z{) f (Z 3, Z 4 ) »/ and oniy 1/Z3 = Z 4 . 

(ix) 7/ Zi φ Z 2 and Z 3 € ι* = ZiZa, tften (Zi,Z 2) f (2 3 ,Z 4 ) 1/ and on/y Z 4 € 
/, \Zt,Zj>\ = \Z3,Z4\ and if <i is tne natural order for which Zi <» Za, tnen 
^3 <l ^ 4 . 

171 
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(x) 7/Zj φ Z 2 andZ3 # ZXZ2, then (ZUZ2) t (Z 3 ,Z 4 ) if and only if[ZuZ2,Z4,Z3] 
is a parallelogram. 

Proof. 

(i) By the mid-point formula, 

mp(*,Z 4 ) = ( ^ . ^ ) , m P (Z 2 ,Z 3 ) = ( * ^ , » + * ) , 

and the result follows immediately from this. 

(ii) By part (i) it is necessary and sufficient that we choose Z 4 so that x 4 = 
x2 + x 3 - xi, y 4 = yi +1/3 - l/i-

(iii) This is immediate as x i + x 2 = Xi + x 2 , l/i + 1 / 2 = l/i + 1 / 2 . 
(iv) This is immediate as x 2 -I- x 3 = Xi 4· x 4 , y 2 + y 3 = yi +1/4· 
(v) We are given that 

X i + x 4 = x 2 + X 3 , Vi+1/4 =ya+1 /3, 
x 3 + x e = X4 + X 5 , 1/3+1/8 =1/4 +1/5· 

By addition (xi + xe) + (xs + X4) = (x2 + X5) + (X3 + X4), so by cancellation of x 3 + X4 
we have xi + xe = x 2 + X5. Similarly yi + ye = 1/2 + ye and so the result follows. 

(vi) For by (i) above we have Χι + X4 = x 3 + x 2 , yi + y4 = ys + Vi-

(vii) For by (i) above 

(x2 - xi) 2 + (y2 - yi) 2 = (x4 - x 3 ) 2 + (y4 - y 3 ) 2 , 

and now we apply the distance formula. 
(viii) For if xi = x 2 , yi = y 2, then (i) above is satisfied if and only if x 3 = x 4 , y 3 = 

Vi-

Figure 11.1. 

(ix) For suppose first that (Z t ,Z 2 ) χ (Z 3 ,Z 4 ) . Then Z 3 G I and mp(Z 3,Z 4) € /, 
so Z 4 G /. By (vii) above we have \ZltZe\ = \Z3,Z4\. Suppose first that / is not 
perpendicular to OI and that, as in 6.4.1(ii), the correspondence between <i and the 
natural order <oi, under which Ο <oi I, is direct. Then πο/(Ζι) <οι ποι(Ζ2), 
so Xi < x 2 . Then by (i) above X3 < x 4 , and so by this argument traced in reverse 
we have Z 3 < i Z 4 . If the correspondence is indirect, we have x 2 < Xi , x 4 < x 3 

instead. When / is perpendicular to OI, we project to OJ instead and make use of 
the y-coordinates. 
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Conversely suppose that Zj € /, \Zj,Zs\ = \Z3,Z4\ and Z3 <i Z4. Now I has 
parametric equations χ = X \ + f(x2 — X \ ) , y = yi + i(ya - Vi) (t € R). Suppose 
that Z 3 and Ζ4 have parameters t3,t4, respectively, so that 

X3 = xi + is(xa - Xi). V3 = Vi + t3(V2 - Vi), 
X4 = xi+ t 4 (x 2 - Xi), 1,4 = yi + i 4(y 2 - yi)-

Recall that Z i ,Z 2 have parameters 0 and 1 and 0 < 1. As in the last paragraph 
above, if / is not perpendicular to 01 and the correspondence between <; and <oi 
is direct, then Xi < x 2 ,X3 < X4i hence £3 < U and we obtain this same conclusion 
when the correspondence is inverse. When / is perpendicular to 01 we project to OJ 
instead, and use the y-coordinates. Moreover 

\Z3, ZA | 2 = [(t4 - i3)(xa - xi)] 2 + [(t4 - t 3)(y 2 - yi)] 2 = (t 4 - i 3 ) 2 |2r , ze\2. 
Hence \t4 - t3\ = 1, and so as t 3 < U we have t4 = l +13. Then 

χι + X4 = 2xi + (1 + teXxa - Χι)ι X2 + X3 = X2 + Xi + *3(x2 - Xi) 

and these are equal. Similarly 

yi + y4 = 2yi + (l + t 3 )(y2 - yi), y2 + y 3 = y2 + yi + *3(y2 - yi) 
and these are equal. By (i) above we now have (Zi,Z 2) t (Z3, Z4). 

(x) If [Zi,Z 2 ,Z4,Z 3] is a parallelogram, then mp(Zi,Z 4) = mp(Z 2 ,Z 3). Con­
versely suppose that Zi φ Z2lZ3 # Z\Z2 and mp(Zi,Z4) = mp(Z2,Z3). Then 
Z\Z7,Z3Z\ have equations 

- ( y 2 - y i ) ( x - x i ) + ( x a - x i ) ( y - y i ) = 0, 
- ( y 4 - y 3 ) ( x - x 3 ) + ( x 4 - x s ) ( y - y 3 ) = 0. 

By (i) above, x 2 - χι = X4 - xa, ya - yi = V4 - ye. eo these lines are parallel. Similarly 
Ζ\Ζ3,Ζ>χΖ\ have equations 

- ( y 3 - y i ) ( x - x i ) + ( x 3 - x i ) ( y - y i ) = 0, 
- (y4 -ya ) (x -xa) + ( x 4 - x 2 ) ( y - y 2 ) = o, 

and by (i) above X3 - χι = X4 - X21 Va - Vi = Vi - yi, so that these lines are parallel. 
Thus [Zi, Zi, Ζ4,Ζ3] is a parallelogram. 

11.2 SUM OF COUPLES, MULTIPLICATION OF A COUPLE B Y A 
SCALAR 

11.2.1 

Figure 11.2. 
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Definition. For Ο 6 Π, let V(1"I;0) be the set of all couples (0,Z) for Ζ € Π. We 
define the sum (Ο,Ζι) + {Ο,Ζ^) of two couples to be (0,Z3) where mp(0,.Z3) = 
mp(Zi,Z2), so that (Ο,Ζχ) t (Z 2 ,Z 3 ). Thus + is a binary operation in ν(Π;0). We 
define the product by a number or scalar t.{0,Z\) , of a number t € R and a 
couple, to be a couple (O, Zi) as follows. When Z\ = 0 we take Z4 — Ο for all t € R. 
When Ζχ ΦΟ we take Z 4 to be in the line / = OZx and with | 0 , ^ | = ΙιΙΙΟ,Ζ,Ι; 
furthermore if <i is the natural order for which Ο <ι Zi, we take Ο <ι Z4 when t > 0, 
and Z 4 <j Ο when ί < 0. Thus product by a number is a function on R χ V(I1; 0) 
intoV(n;0). 

COMMENT. To prove by synthetic means the basic properties of couples listed 
in 11.2.2 and 11.3.1, would be very laborious in covering all the cases. We establish 
instead initial algebraic characterizations which allow an effective algebraic approach. 

If Ο is the origin and Zi = (xi,yi),Za = (x2 ,ya) , then 

(i) {Ο,Ζι) + (0,Z 2 ) = (0,Z3) where Z3 = (xx + x 2 , y i + ya). 

(ii) t.{0,Zi) = {0,Zt) where Z4 = (ixi.tyi). 

Proof. 
(i) For this we have 0 + x3 = xi + x 2 , 0 + y 3 = yi + y 2. 
(ii) We verify this as follows. Let (x 4 ,y 4) = (txi,tyi). When (xi.yi) = (0,0) 

clearly we have (xi,yt) = (xi,yi). When (xi,yi) Φ (0,0), clearly Z 4 € OZi while 

\0,Ζ4ΐ = (txi)* + (tyif = t>\0,Zt\\ 

Now if / is not perpendicular to OI and the correspondence between the natural order 
<i and the natural order <oi on OI, under which Ο <oi I, is direct then xi < x 2 . 
Thus when t > 0, we have fxi > 0 and so Ο <j £ 4 ; when t < 0, we have txi < 0 
and so Ζ4 <j O. When the correspondence between the natural orders is inverse, we 
reach the same conclusion. When I is perpendicular to OI we project to OJ instead. 

11.2.2 Vector space over R 

Definition. A triple (V, +,.) is said to be a vector space over R if the following 
hold:-

(i) First, + is a binary operation in V. 

(ii) For all o,6,c 6 V, (o + b) + c = a + {b + c). 

(iii) There is an 2 € V such that for all α € V, 

a + ο — a, 0 + 0 = 0 . 

(iv) Corresponding to each fi G V, there is some - 3 6 V such that 

(-a) + 0 = 0 , ο + (—ο) = ο. 

(ν) For all a, 2 € V, fl + 2 = fi 4- a-
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(vi) Next, . : R χ V -» V is a function. 

(vii) For all fi € V and alWx, i 2 € R, i 3.(*i-fi) = ( taM-f i . 

(viii) For all fi,fc G V and all t 6 R, i.(fi + k) = t.a + t.b. 

(ix) For all α € V and all ίχ, , t 2 € R, (ίχ + ί2).α = h.a + t2.a. 

(χ) For all a € V, l.g = fi. 

We then have the following result. 

(V(u; Ο), +,.) is a vector space over R. 
Proof. 
(i) This has been covered already in 11.2.1. 
(ii) Now (Ο,Ζχ) + (0,Z 2) = (0,Z 4) where (x 4,y 4) = (xi + Xa.yi +ya)- Then 

[(O, Zx) + (O, Za)] + (O, Z 3) = (O, Z 4) + (O, Z 3 ) = (O, Z 6 ) , 

where 

(xs.Ite) = (x4 + X3,y 4 + y 3) = ((xi + x 2) + x 3 , (yi + y 2) + y 3 ) . 

Similarly (Ο, Z2) + (Ο, Z 3 ) = (Ο, Z e ) where (xe.ye) = (xa + x 3,ya + y3), and so 

(Ο, Ζχ) + [(0, Za) + (O, Za)] = (Ο, Ζχ) + (Ο, Z e ) = (0, Z 7 ) 

where (x 7,y 7) = (xi+Xe.yi+Ve) = (xi + (xa + X3),yi + (ya + ye))- Clearly Z 6 = Z 7 . 
(iii) For any Ζχ € Π, (0, Zi) + (O, 0) = (O, Z 3 ) where (x3, ya) = (xi + 0, y 1 + 0) = 

(xi,yi) , so that Z 3 = Ζχ. Similarly (0,0) + (Ο,Ζχ) = (0,Z 3) where (x 3 ,y 3) = 
(0 + χχ,Ο + yi) = (xi.yi), so that Z 3 = Ζχ. 

(iv) Now (Ο, Ζχ) + (O, Z 3) = (Ο, Z 3 ), (O, Za) + (Ο,Ζχ) = (Ο, Z 4 ) where (x 3 ,y 3) = 
(xi + x 2 , y i +ya) and (x 4,y 4) = (x2 +Xi,ya +Vi)- Clearly Z 3 = Z 4 . 

(v) If (xa.ya) = ( - * i , - y i ) , then (Ο,Ζχ) + [0,Z2) = (0,Z 3 ) where (x 3 ,y 3) = 
(xi - xi .yi - Vi) = (0,0); hence Z 3 = 0. Similarly (Ο, Z 2 ) + (0, Ζχ) = (Ο, Z 4 ) where 
(x 4,y 4) = (-Xi + x i , - y i + yi) = (0,0); hence Z 4 = 0. 

(vi) This was covered in 11.2.1. 
(vii) For ίι.(Ο,Ζχ) = (0,Z 2) where (x 2,y 2) = (fixi.tiyi). Then t 2. (ίχ.(Ο,Ζχ)) = 

ta.(0,22) = (0,Z 3) where (x 3,y 3) = (t2(tixx),t2(ixyx)). Also (ί2ίχ).(0,Ζχ) = 
(0,Z 4) where (x 4,y 4) = ((t 2ti)xi,(t 3ti)yi). Thus Z 3 = Z 4 . 

(viii) For (Ο,Ζχ)+(0,Ζ 2) = (O,Z 3) and t.[(0,Ζχ)+(0,Z3)] = t.(0,Z3) = (0, Z 4 ) 
where (x 3 ,y 3) = (xi+xa.yi+ya), (x4,y 4) = (t(xi + xa),t(yi + ya))- Also ί.(Ο,Ζχ) = 
(0,Z 5), i.(0,Z 3) = (0,Z e) where (x 5,y 6) = (txi.tyi), (xe.ye) = (tx 3 , iy 3 ) . More­
over (Ο, Z 6) + (Ο, Z e) = (O, Z 7) where (x7, y 7) = (x6 + xe, ye + ye) = (ixi + tea, tyi + 
ty2). Hence Z 4 = Z 7 . 

(ix) For ίχ.(Ο,Ζχ) = (O.Za), ί 3.(Ο.Ζχ) = (O.Z 3), (ίχ + ί3).(0,Ζχ) = (O.Z 4) 
and (0,Z 3) + (0,Z 3) = (0,Z 6) where (x3,ya) = (iiXi.tiyi), (x3,Va) = (iaXi,*ayi) 
and (x 4,y 4) = ((ti +t 3 )xi , (t i +ta)yi). Moreover (x6,ye) = (xa + x 3,ya + V3) = 
(tiXi + taxi.tiyi + *ayi)- Clearly Z 4 = Z 5 . 

(x) For Ι.(Ο,Ζχ) = (0,Z 3) where (x 3,y 3) = (1.χχ, l.yi) = (xi,yi) . Thus Z 2 = Ζχ. 
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11.3 SCALAR OR DOT PRODUCTS 

11.3.1 

π σζι (Z2) 

Figure 11.3. 

Definitions. We define a scalar product, or dot product, (O, Z\).(0, Z 2) as follows. 
If Ζχ = Ο then (O, Zi).(0, Z2) = 0; otherwise Ζ\φΟ and we set 

( U ' Z l ) ( υ ' ^ > - \ -\0,Z1\\0,nOZ,(ZS)l if π0Ζι(Ζ2)€0Ζι\{0,Ζ1. 

Clearly the scalar product is a function on V(1~I; Ο) χ V(II; O) into R. 
The norm ||a|| of a vector α = (Ο, Ζ) is defined to be the distance \ 0,Z\. 

The scalar product has the following properties:-

(i) / / Zj = (xj,yj) for j = 1,2 then a.b = (O, Zi).(0, Z 2 ) = X l x 2 + y i y 2 . 

(ii) For alla,b€ ν(Π;Ο), a.b = b.a. 

(iii) For all a, b, c Ε V(II; O), a.(b + c) = a.b + a.c. 

(iv) For all a,b G V(II;O) and all t G R, ί.(α.δ) = (ί.α).δ. 

(ν) For all α ψ ο, a.a > 0, while o.o = 0. 

(vi) For all a, \\a\\ = y/aia. 

Proof. 
(i) If Zi = O, then i i = j/i = 0 so that xix 2 + ί/ιί/2 = 0 as required. 

Suppose then that Zi ψ Ο. 
Write I = OZx and let m be the 
line through the point Ο which 
is perpendicular to 1. Define the ft6 

closed half-plane 7is ' {X : 
nt(X) G [Ο,Ζι} and let 7i6 be 
the other closed half-plane with 
edge m. Now / = — yix+xiy = 0 
and τη = Χχχ + yxy = 0. 

Figure 11.4. 
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Then as Ζχ G 7is, 

Hb = {Z = (x,y) : i n + Vly > 0}, H6 = {Z = (x,y) : ΧχΧ + yxy < 0}. 

But by 6.6.1(ii), 

πι(Ζ2) = (xi + Λ-ν&ι + xm), Vi - -T7—2(~νιχ2 + ziife) ^ \ V\ τ Χχ Vx -r Χχ J 
( X\X2-ry\V2 Χ\Χ2+ν\ν2\ 

= I11
 x 2 + y? > y i x\ + y\ 

Thus 

\ο,ζ1\2\ο,πι{Ζ2)\2 = (xi + y2x) 

= ( X H 2 + ί / ΐ « 2 ) 2 , 

so that \0, Ζ!\\0,πι(Ζ2)\ = \x,x2 + yty2\. 
If Z 2 G Hs so that 

( O . Z i M O . Z a H l O . Z j H O , ^ ) ! , 

and x i x 2 + yij/2 > 0 so that | x ; x 2 + y 2 y 2 | = χχχ2 + yxm, clearly (Ο, Ζχ).(0, Z2) = 
x i x a + yiya-

If Z 2 G ft6 \ τη we have ^ ( Z 2 ) G i \ [O, Z i . Then 

(O,Z1).(O,Z3) = -\0,Z1\\0MZ*)\ 

and Χ1Χ2 + y iy2 < 0, so that \xtx2 +yiy2\ = -(χχχ2 + Vim)- Clearly again 
(Ο, Ζχ).(0, Z2) = χχχ2 + y i y 2 . 

(ii) Let α = (Ο,Ζχ), b — (0,Z2). Then by (i) of the present theorem, a.b = 
X1X2 + ViV2, k-H — X2X1 + y 2 y i . and clearly these are equal. 

(iii) Let α = (Ο,Ζχ), b= (Ο,Z2), c = (Ο, Z 3 ) . Then by 11.2.1(i) b + c=(0, Z 4 ) 
where Z 4 = ( i 2 + X3,y2 + y3) . Then by (i) above a.(b + c) = Χ ι ( χ 2 + X3) + y i ( y 2 + ys), 
while a.b + a.c = (χχΧ2 + yilft) + (X1X3 + y i y 3 ) . and these are equal. 

(iv) Let a = (Ο, Ζχ), b= (O, Z2). Then t.(a.b) = t ( x i x 2 + y i y 2 ) - But by 11.2. l(ii), 
t.a = (O, Z 4 ) where Z 4 = ( t i j , tyx) and so (t.a).b = ( t i i ) x 2 + (iyi)V2, which is equal 
to the earlier expression. 

(v) If α = (Ο, Ζ) then α.α = χ 2 + y 2 . This is positive when (x,y) φ (0,0), and 
equal to 0 for χ = y = 0. 

(vi) This follows immediately. 
NOTE. Note that 11.2.2(i) to (v) make (V,+) a commutative group. In text­

books on algebra it is proved that there is not a second element which has the property 
(iii); we shall refer to 0 as the null vector. It is also a standard result that for each 
α G V there is not a second element with the property (iv); we call —a the inverse 
of o. Subtraction — is defined by specifying the difference b — a = b + (—a); then 
— is a binary operation on V. If α = (Ο, Ζχ), b — (0,Z2), then —a = (Ο, Z3) where 
Z3 = ( - x i , — y i ) , and consequently 6 — a = (O,Z4) where Z 4 = (X2 — xx,y2 — Vi)-
Thus (Ο, Z2) - (Ο,Ζχ) = (Ο, Ζ4) if and only if (Ζχ,Ζ2) Τ (Ο, Z 4 ) . 

2(^1x2 + y i y 2 ) 2

 2 ( x i x 2 + y i y 2 ) 2 

C l ( χ ι + y 2 ) 2 + y i (x? + y ? ) 2 
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COMMENT. Now that we have set up our couples we call {Ο,Ζ) a position 
vector with respect to the point O, and we adopt the standard notation θί for 
(Ο,Ζ). 

Position vectors can be used for many geometrical purposes instead of Cartesian 
coordinates, or complex coordinates and complex-valued distances. We would note 
that by 6.1.1(iv) and 11.2 Z0 = mp(Zi,Z 3) if and only if OZQ = \(θΖ\ + OZ2)\ 
by 10.1.1(v) that ΖιΖ 2 \\ Z3Z4 if and only if OZ[ - OZ3 = t{OZ2 - OZ~l) for some 
t φ 0 in R, and by 9.7.1(h) and 6.5.1 Corollary (ii) that ΖχΖ-χ ± Z 3 Z 4 if and only if 
(OZ\ — OZ2).(OZ3 — O Z 4 ) ~ 0. Most importantly, from parametric equations of a 
line χ = xx + t(x2 — xi), y = j/i + t(y2 — yx) (t € R), we have that Ζ € ΖχΖ 2 if and 
only if 

oz = ozl + t(pz2 - ozl) = (1 - t)ozl + tOZ2 (11.3.1) 

for some t £ R; 
COMMENT. It is usual, in modern treatments, to define vectors to be the equiv­

alence classes for equipollence. This defines free vectors. Position vectors are then 
defined by taking a specific point Ο in Π so that we have a pointed plane, and then 
concentrating on the representatives of the form (Ο, Z) for the vectors. But if our 
objective is to introduce position vectors, it is wasteful of effort to set up the free 
vectors, and in fact the use of free vectors and subsequent specialisation to position 
vectors can be a confusing route to position vectors. 

11.4 COMPONENTS OF A VECTOR 

11.4.1 Components 

Given non-collinear points Z\,Z2,Z3, we wish to obtain an expression 

Z\Z = pZ\Z2 + 9Z1Z3. 

For this we need 

(x* - xi)p + (x3 - xi)q = x-xi, 
(m - yi)p + (m - yi)g = y-yi. 

We obtain the solutions 

Sjr(ZUZ,Z3) _ 0>(Z! , Z 2 , Ζ ) 
" i I rr r, rj \ 1 1 &AZi,z2,zzyH δ?(ζλ,ζ2,ζ3γ 

and so have 
M Z i . Z . Z a ) ^ o > ( Z i , Z 2 , Z ) ^ 

- δ,(Ζι,Ζ2,Z3)ZlZ2 + WuZ2,Zz)ZxZ*-

11.4.2 Areal coordinates 

Given non-collinear points ZUZ2,Z3, the position vectorof any point Ζ of the plane 
can be expressed in the form b~% = pOz[ + qOZ2 + rOZ3, with ρ + q + r = 1. This 
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is equivalent to having q, r such that 

q(x2 - Xi) + r(x 3 - x i ) = x - x i , 

q(y2 -Vi) + r(y3 - y i ) = y - y i . 

These equations have the unique solution 

_ δ^(Ζ,Ζ3,Ζχ) _ Sjr(Z,Zi,Z2) 
δ^(Ζι,Ζ2,Ζ3)' δ?(Ζι,Ζ2,Ζ3Υ 

and now we take ρ = 1 — q — r so that by 10.5.4 

δρ(Ζ,Ζ2, Z3) 
6yr(Zi,Z2,Z3) 

For non-collinear points Z\,Z2,Z3, for any Ζ we write 

α = ό>(Ζ,Z a ,Z 3), β = δ?(Ζ,Z3,Zj), η = ό>(Ζ ,Z U Z 2 ) , 

and call (α,β,7) area/ point coordinates of Ζ with respect to (Zi, Z 2 , Z 3 ) . Note that 
we have 

α /? 
P δ?{Ζ\,Ζ2\Ζ3Υ 9 δ?(Ζ\,Ζ2,Ζ3Υ 6jr(Z\,Z2,Z3y 

and α + /? + η = 6j?(Zi, Z2, Z 3). These were first used by Mobius in 1827. 

11.4.3 Cartesian coordinates from areal coordinates 

With the notation in 11.4.2, we have 

(yi - m)x - (x2 - x^)y = 2a - x 2 y 3 + x3ya, 
(j/3 - yi)x - (xz - xi)y = 2/J - x3j/i + xii/3, 

and if we solve these we obtain 
_ xia + χ2β + x 3 7 Vict + νιβ +1/37 

δτ(Ζ\,Ζ2,Ζ3) ' δ?(Ζι, Z2,Z3) 

11.4.4 

The representation in 11.4.2 is in fact independent of the origin O. For we have 

χ = px ι •+• qx2 + rx3, y = pyi + qy2 + ry3, 

and so for any point ZQ =? (xo,yo), 

χ - x 0 = p(xi - xo) + g(xa - xo) + r{x3 - xo), 
y-m = p(yi -yo) + q(v2 -j/o) + r(u3 - y 0 ) . 

But Ζ =jr> (x - xo, y - yo), where T' = to,z0(T). Hence ZoZ = pZoZi + qZoZ2 + 
rZ 0 Z 3 , with ρ + g + r = 1. 

NOTATION. Where a vector equation is independent of the origin, as in OZ = 
pOZ\ + gOZa + rOZ3, with ρ + q + r = 1, it is convenient to write this as Ζ = 
pZi+qZ2+rZ3 with p+q+r = 1. In particular, in (11.3.1) we write Ζ = (1-ί)Ζι+£Ζ 2. 
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Z 3 

Figure 11.5. 

Figure 11.5 caters for when Ο and Z\ are taken as origins, a similar diagram would 
cater for when ZQ and Z\ are origins, and then a combination of the two would give 
the stated result. 

11.4.5 

We also use the notation β>(Ζι, Z 2 , pZ 4 + qZ6 + rZ e) for ό>(Ζι, Z 2 , Z 3) where 0~Z% = 
pOZ4 + qOZ6 + rOZe and ρ + q + r = 1. We can then write the conclusion of 10.5.3 
as 

d> (Z 1 ( Z 2 , (1 - «)Z4 + «Z6) = (1 - β)ό>(2ι, Z 2 , Z 4) + sST{Zlt Zi,Z6). 
The more general result 

ό>(Ζ!, Z 2 ,pZ 4 + qZh 4- rZ e) = phT(Zx,Z2, Z 4) + odXZj,Z 2 , Z 6) + ro>(Zi,Z 2, Z e), 

where p + ? + r = l, can be deduced from this. For 

SriZuZ^pZi + qZt + rZt) 

= Sr^ZuZ2,pZ4 + {l-p)(j^Zs + j^Z6y) 
= po>(2i,Z*,Z 4) + (1 -ρ )ό> ( z l t Z 2 , ^ Ζ β + γ τ ^ Ζ β ) 

= ρο>(Ζχ, Z 2 , Z 4) + (1 - ρ) [ ^ ό χ Ζ χ , Ζ 2 , Ζ 6) + J - ^ W I » Ζ 2 , Ζ β) . 

In this we have used the fact that 
Q r _ q + r _ 1 - ρ = χ 

1-P 1 - p 1 - P 1 - p 

11.5 VECTOR METHODS ΓΝ GEOMETRY 

There is an informative account of many of the results of this chapter contained in 
Coxeter and Greitzer [5], dealt with by the methods of pure geometry. 
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Some results are very basic, involving just collinearities or concurrencies, or ratio 
results. We start by showing how vector notation can be used to prove such results 
in a very straightforward fashion. 

11.5.1 Menelaus' theorem, c.lOOA.D. 

For non-collinear points Z\,Z2 

and Z3, let ZA G Z2Z3, Z6 e 
Z3Zi and Z6 G ΖχΖ2. Then 
Z4, Z5 and Zg are collinear if and 
only if 

Z2Z\ Z3Z$ Z\Z§ 
Z4Z3 Z$Z\ Z$Z2 

= - 1 . 

Proof. Let Z4 = (1 - r)Z2 + rZ3, 
Z6 = {1-s)Z3 + sZi, Ze = (1 -
t)Zi +tZ2. Figure 11.6. 

Since Z\, Z6 and Ze are collinear, we have that Z6 = (1 - u)Z4 + uZ6, for some 
real number u. Then 

(1 - t)Zi + tZ2 = (1 - u)[(l - r)Z2 + rZ3] + u[(l - s)Z3 + sZ{\. 

As the coefficients on each side add to 1, by the uniqueness in 11.4.2 we can equate 
coefficients and thus obtain 

1 - 1 = au, t = (1 - u)(l - r), r(l - u) = - u ( l - a). 

On eliminating u we obtain 
r a t 

1 - e l - i l - r • ^ - i ( l - « ) = - ! , 1 - u u 
and so 

1 - r 1 - e 1 - t 
This yields the stated result. 

This is known as M E N E L A U S ' T H E O R E M . 

= - 1 . 

11.5.2 Ceva's theorem and converse, 1678 

For non-collinear points Z\,Z2 and Z3, let Z4 € Z2Z3, Z& € Z3Z\ and Zo G Z\Z2. 
If ΖχΖ4,Ζ2Ζ6 and Z3Z6 are concurrent, then 

Z2Z\ Z3Z§ Z\Z§ 
= 1. 

Z \ Z 3 Z$Z\ z$z2 

Proof. Denoting the point of concurrency by ZQ, we have 
Zi = (1 - u)Z0 + uZi = (1 - r)Z2 + rZ3, 
Z6 = (l-v)Z0-rvZ2 = {l-a)Z3 + aZu 

Ze = (1 - w)ZQ + wZ3 = (1 - t)Zi + tZ2, 

(11.5.1) 
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for some u, v, w, r, β, t G R. Then 

Z 0 = — - Zi + - Zi + - Zz, 
1 — η 1 - u 1 — u 

ZQ = Ζχ — - Z i + Zz, 
l-v l-v 1 - υ 
1 - ί t ui 

ZQ = Z\ + - Z i — 1 — ui 1 — ui 1 — ui 

On equating the coefficients of 
Zi, Zj and Z 3 , in turn, we obtain 

u a 1 - •t 
1 - u 
1 - r 

l - v 
V 

1 - to' 
t 

1 - u 
r 

1 -
1-8 

v 1 — w 
UI 

1 - u l-v 1 — VJ 

From this 
a l-v 

1 -t 1-u. ' 
1 — to r _ 1 — u 
1-u* 1 - β ~ 1 - t i ' 

and so by multiplication 
ί = 1. 1 - t l - r l - a 

Thus we obtain our conclusion. This is known as C E V A ' S T H E O R E M . 

In fact we also have that 

u 
a 

1 - u ν 
l-v' t 

which gives uvw = —ret. This is 

1 — ν w 1-tt) 
1 - u ' 

Z0Z4 Z0Z5 ΖοΖβ Z2Z4 Z3Z5 ZiZg 
ZQZ\ ZQZ? ZQZZ Ζ·χΖζ ZzZ\ Z\Z<i 

CONVERSE of CEVA'S T H E O R E M . Conversely, for non-collinear points Zi,Z2 

and Z3t let Z 4 G Z 2 Z 3 , Z 6 G Z 3Zi ond Z e G ZjZ 2 . If (11.5.1) holds and Z2Zb and 
Z3Z6 meet at a point Z0, then Z X Z 4 also passes through Z0. 

To start our proof we note that we have 

Z 6 = (1 - v)Z0 + vZ2 = (1 - β)Ζ3 + βΖι, 
Z e = (1 - ui)Z0 + uiZ3 = (1 - f)Z3 + tZi. 

Hence 

Z 0 = 
l - v 

Ζχ - -Z2 + -—-Zz, Z 0 = Zi + 
l - v 1-u; 

- — z 2 — - — z 3 . 
1 - w 1 - u i 
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It follows that 
a _ 1 — t ν _ t 1 — a _ w 

1-v ~ 1 - V J ' ~l-v ~ 1-w' 1-v ~ ~l-w' 

from which 

— t = W i 1 — > ' = «"· 
On eliminating a between these, we obtain (1 — v)t2 + (v — w)t — vw(l — w) = 0. We 
then obtain two pairs of solutions, t = w, a = 1 — v, and 

1 — ui 1 — vw 
t = -ν- , a = 

ι — ν ι — ui 

The first pair of solutions leads to ν = w = 0 and so Z5 = Zg = ZQ = Z\, which we 
regard as a degenerate case. 

With Zi = (1 - r)Zi + rZ3, we are given that 

1 - r _ at 
— -(l-a)(l-t)' 

and so have 
7 8 t (!-*)(!-*) Ί 

4 at + (1 - a)(l -1) at + (1 - β)(1 - i) 
With the second pair of solutions above, we obtain that 

_ 1 - titt; r, _ f(l - w) v w(l - v) 
0 ( l - v ) ( l - w ) 1 ( l - v ) ( l - u » ) 2 ( 1 - υ ) ( 1 - ω ) 3 ' 

and also that 
_ υ (1 -ω) _ ω ( 1 - υ ) 

"i = ; Δι Η ; Z 3 , 
ν + VJ — 2WJ ν + VJ — 2vw 

so that 
1 - vw ^ V + VJ — 2vw σ 

Z o " {1-V){1-VJ)Zi ~ (l-v)(l-w)ZA-
As the sum of the coefficients of Z\ and Zi is equal to 1, Z\Zi passes through Z0. 
This proves the result. 

To obtain a formula for Zo we note that on solving the second pair of solutions 
above for ν and w, we obtain the pair of solutions 

at ( l - s ) ( l - t ) 
υ = 1, w = l; v = ——-, w = . 

1 — I 8 

To see this, note that 

1-v , 1 - υ 
1 — w = 1, w = 1 + 1, 

�� �� �� �� ��



184 V E C T O R A N D C O M P L E X - N U M B E R M E T H O D S (Ch.ll 

Thus either ν = 1 and consequently ui = 1, or 

1 - t at 
— j - = 8, i.e. ν — 

and hence 

w = — 

1 - t ' 

( 1 - - ) ( ! - « ) 

The first pair lead to Z& = Z2,Zg = Z3, another degenerate case, while the second 
pair lead to 

1 - i + at 1 - ί + θί 1 - t + at 
(11.5.2) 

Because of the condition (11.5.1) the coefficients in (11.5.2) could be given in 
several different forms. 

1 1 . 5 . 3 D e s a r g u e s ' p e r s p e c t i v e t h e o r e m , 1 6 4 8 

Let (ZUZ2,Z3) and {Ζ4,Ζ5,Ζβ) 
be two pairs of non-collinear 
points. Let Z2Z3 and Z&Ze 

meet at Wu Z3ZX and Z6Z4 

meet at W2, and Z\Z2 and Z4Zh 

meet at W3. Then Wi,W2,W3 

are collinear if and only if 
Ζ ι Ζ4 ,Z2Z$, Z3 Ze are concur­
rent. 
Proof. Suppose that Z1Z4, 
Z2Zs, Z3Z6 meet at a point ZQ. 
Then 

Zt = ( l - u ) Z 0 + uZi, 
Z 5 = (1 - v)Z0 + vZ2, 
Z0 = (1 - u>)Z0 + wZ3, 

Figure 11.8. 

for some u, v, w, € R-

On eliminating ZQ between the second and third of these, we obtain that 

(1 - w)Z6 - (1 - v)ZE = v(l - w)Z2 - u»(l - v)Z3, 

from which we obtain that 
l - u > l-v „ _ v(l-ui) „ tt>(l -v) „ 

-Ah — - — " β — —~ • ί*Ί --——Δ3. V — W V — VJ V — VJ V — VJ 

Now the sum of the coefficients of Z6 and Z e is equal to 1, so the left-hand side 
represents a point on the line Z6Z0. Similarly, the sum of the coefficients of Z2 and 
Z3 is equal to 1, so the right-hand side represents a point on the line Z2Z3. Thus this 
must be the point W\. 
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By a similar argument based on the third and first lines, we find that 

1 - u 1 -tu w(l - u) u(l - w) 
Ze Z4 = Z 3 Z i 

UI —u w — u w — u w — u 
must be the point W2, and by a similar argument based on the first and second lines, 
we find that 

1 - t ) 1 - u _ u ( l - v ) „ v(l -u)„ 
Z4 Z5 — Z i Z j 

u — v u — v u — v u — v 
must be the point W3. 

Then by repeated use of 10.5.3 and 11.4.5 

, „K~-w)„ U J ( 1 - V ) u(l-m)^, , m( l -u)„ , 
o^-1 Z2 Z 3 , Z i Η Z s , 

1 -• · u» V — VJ VJ — u VJ — u 

u—v u—v J 
v(l - w) U>(1 - u) u(l - v) u»(l — υ) -u(l - VJ) -v(l — u) 

υ - u ) u) - u u - υ υ — w w — u u — v 
o~r(Zx,Z2,Z3) 

= 0. 

This shows that Wx, W2 and W3 are collinear. 
This is known as D E S A R G U E S ' PERSPECTIVE OR T W O - T R I A N G L E T H E O R E M . 

Conversely, let 

Wi = (l-l)Z2+lZ3 = {l-m)Z6 + mZ0, 
W2 = {l-p)Z3+pZ1 = (l-q)Z6+qZ4, 
W3 = (1 - r)Zi + rZ2 = (1 - a)Z4 + aZh. 

From the third of these we deduce that (1 — r)Zj — (1 — a)Z4 = sZg — rZ2, and from 
this ^ 

Z\ Z\ = Zs z 2 , 
8 — r 8 — r 8 — r a — r 

so that this must be the point of intersection of Z1Z4 and Z2Z5. 
By a similar argument, we deduce from the second equation that 

1 - m 7 m ν 1 ν 
— 7 Z 2 - — 7Z5 = — — 7 z e - — — j Z 3 , 
m — < m — i m — i m — < 

and so this must be the point of intersection of Z2Z^ and Z3Ze. By a similar argument, 
we deduce from the first equation that 

—Z3 —Ze = —-—Z\ ——Zi, 
q-p q-p q-p q-p 

and so this must be the point of intersection of Z3Zt and Z1Z4. 
We are given now that Wi, W2 and W3 are collinear, so that W3 = (1 -t)W\ +tW2, 

for some t e R. Then 

( 1 - ί ) [ ( 1 - 0 ^ + / Ζ 3 ] + ί [ (1-ρ)Ζ 3 +ρΖι] = ( l - r ) Z i + r Z 3 , 
(1 - t)[(l - m)Z6 + mZ„] + t[(l - q)Ze + qZ4] = (1 - e)Z4 + aZ6. 

�� �� �� �� ��



186 V E C T O R A N D C O M P L E X - N U M B E R M E T H O D S (Ch.ll 

Since the points Z 1 } Z 2 , Z 3 are not collinear we can equate the coefficients in the first 
line here, and obtain that 

p* = l - r , ( l - t ) ( l - / ) = r, (1 - t)l + t(l -p) = 0, 

and since the points Z 4 ) Z5,Z e are not collinear we can equate the coefficients in the 
second line, and obtain that 

qt = 1 - β, (1 - t)(l -m) = s, (1 - t)m + t(l -q)=0. 

Now for Z 2Zs and Z3Ze to meet Z1Z4 in the same point, we need to have 

1 - r _ ρ 
s - r ~ q-p 

and from this 
1 — r _ 8 — r 

Ρ ~ Q-P 
But we have from above 

1 - r 1-a 

as a common value of t, and so need 

1 - a _ a—r 
q ~ q-p 

or equivalently q{l - r) = p(l — β), and we have already noted that this is so. 
It follows that Z1Z4, Z 2 Z S and Z 3 Z e are concurrent. 

11.5.4 Pappus' theorem, C.300A.D. 

Let the points Z i , Z 2 , Z 3 lie 
on one line, and the points 
Zt,Z6,Zo lie on a second line, 
these two lines intersecting at 
some point Z 0 . Suppose that 
Z2Ze and ZSZ3 meet at Wu 

Ζ3ΖΛ and Z9ZX meet at Wi, 
and ZXZ6 and Ζ4Ζ2 meet at W3. 
Then the points WUW2, W3 are 
collinear. 

Proof. We have that 

Z 2 = (1 - p)Z 0 + pZi, Z 3 = (1 - o)Z 0 + qZu 

Z 5 = (1 - u)Z0 + uZ 4 , Z e = (1 - v)Z0 + vZ4, 

for some p, q, u, υ 6 R. On eliminating Z 0 from the equations for Z 2 and Z 6 , we find 
that 

(1 - u)Z2 - (1 - p ) Z 6 =p(l - u)Zi - u(l -p)Z4, 

Z3 

Z4 Z5 Ze 

Figure 11.9. 
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and so 

1 - pu 1 - pu 1 - p u 1—pu 
This must be the point W 3 then. Similarly, on eliminating ZQ from the equations for 
Z3 and Ze we have that 

(1 - v)Z3 - (1 - q)Z6 = ς(1 - v)Zi - (1 - σ)υΖ4, 

and so 

1-σν 1 — ov 1 - συ 1 - συ 
This must be the point W 2 then. 

Now from the equations for Z2 and Z3 we have that pZ3 — oZ 2 = (ρ — o)Zo, and 
from the equations for Z5 and Ze we have that uZe — vZ^ — (u — V)ZQ. On combining 
these, we have that 

( t i - u)(pZ3 - qZ2) = (q- p)(uZ e - tiZ6). 

From this we have that 
u(q-p)z + q{v-u) _ p{v-u)z [ (g -p) f ^ 

- pu qv - pu 2 ov - pu 3 ου - pu 
This must then be the point Wi. 

However, the left-hand sides of the representations for W \ , W 2 and W 3 contain 
four points Ζ ι ,Ζ 2 ,Ζ δ ,Ζ β and we wish to reduce this to three non-collinear points. 
For this purpose we eliminate Z 6 . From the equations for Z5 and Z e we have that 
uZ e - vZ6 = (u - v)Z0, while from the equation for Z2 we have Z2-pZ\ = (1 - p ) Z 0 . 
Combining these gives 

Z 6 = zZo~vjr^jiZi~pZl)-

On substitution, this gives that 
_ pu(l - ν) Ύ v-u „ u ( l - p ) „ 

W3 = —r r Z i + — rZ2 + — rZe-
v ( l - p u ) υ(1 - pu) υ(1 - pu) 

We note that the sum of the coefficients for each of W \ , W 2 , W 3 in terms of Zi, Z 2 

and Ze is equal to 1, and so by repeated use of 10.5.3 and 11.4.5 we have that 
M W i . W a . W s ) is equal to 

δ tqjv^^ + «Οζ^Ρ) z + 

\qv-pu - — pu qv —pu I- qv 1 - qv 
U ( I - P ) 7 \ 
vOTpV)2'} 

pu{l-v) z | « - t i | 

w(l-pu) 1 v ( l - p u ) 
q(t) - ti) o(l -1>) u ( l - p ) f . „ , , q(v - u) l-q pu(l - υ) r . 

: 7 ; rO.F(Z 2 , Z i , Ζβ)Η ζ jz ror ( Ζ 2 , Ζ β , Ζ\) qv -pu I - qv υ(1 - pu) qv - pu 1 - συ υ(1 - pu) 
, u(q-p)g(l-v) v-u Γ 

Η ; 71 Γ β ^ ( Α » Ζ ι , Ζ 2 ) 
qv — pu I — qv ν(1 — pu) 
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This shows that Wy, W2 and W3 are collinear. 
This is known as P A P P U S ' T H E O R E M . 

11.5.5 Centroid of a triangle 

If Z 4 ,Z 6 , 2* e are the mid-points of {Z2,Z3}, {Z3,Zy}, {Zy,Z2}, respectively, then 
with the notation of 11.5.2 we have that r = a = t = \, and the condition (11.5.1) in 
the converse of Ceva's theorem holds. Note that [Z3, Z e] is a cross-bar for the interior 
region TR,[\Z3ZtZi) and so [ Z 2 ) Z 5 meets [Z 3 ,Z e] in a point Z0, which is thus on 
both Z2Z5 and Z3Ze. It follows that it is also on Z\Z4. Thus the lines joining the 
vertices of α triangle to the mid-points of the opposite sides are concurrent The point 
of concurrence Zo is called the centroid of the triangle, and for it by 11.5.2 we have 

ZQ = \Z\ + \Z2 + \Z3. 

11.5.6 Orthocentre of a triangle 

Let Ζ4, Z&,Ze be the feet of the perpendiculars from Z\ to Z2Z3, Z2 to Z3Z\, Z3 to 
Z\Z2, respectively. Then with the notation of 11.5.2 we have that 

c a a 4. b 

r = - cos p. a = - cos7, t = - cosa. 
a b c 

Hence 

Similarly 

α - ccosS ccoe/3 + i>co87 — ccos/? b 
1 - r = = = - cos 7 . 

a a a 

c a -
1 — s = 7 cosa, 1 - r = - cos p. 

0 c 

It follows that the condition (11.5.1) in the converse of Ceva's theorem is true. 
Repeating an argument that we 
used in 7.2.3, suppose now that 
m and η are any lines which 
are perpendicular to Z3Z\ and 
Z\Z2, respectively. If we had 
m I n, then we would have 
m -L Ζ32Ί, η II m so that η ± 
23Z1; but already η J. Z\Z2 so 
2*32ι II ZyZ2; as ZUZ2,Z3 are Z2 

not collinear, this gives a contra- Figure 11.10. Orthocentre of triangle, 
diction. 

Thus m is not parallel to η and so these lines meet in a unique point Z0. In 
particular the lines Ζ2Ζζ,Ζ3Ζβ must meet in a unique point ZQ and then by the 
converse of Ceva's theorem, Z\Z4 will pass through 2*o. Thus the lines through the 
vertices of a triangle which are perpendicular to the opposite side-lines are concurrent. 
The point of concurrence Zo is called the orthocentre of the triangle. 
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By (11.5.2) we thus have 

Z0 = 
r cos 7 7 cos β „ §. cos 7 cos α „ £cosacos/3 0 ' C ^ j7 j C ' ^ j P ^ 

| cos /? + f cos 7 cos a | cos /? + f cos 7 cos α 3 § cos/3 + | cos 7 cos α 
_ α cos/? cos 7 ^ ^ cos 7 cos α ^ ^ c cos α cos/? ^ 

6 cos/3 4-cos 7 cos α 1 cos /? + cos 7 cos α 2 6 cos /? + cos 7 cos α 2 ' 

We could also proceed in this special case as follows. The argument is laid out 
for the case in the diagram, with β and 7 acute angles and (Zi ,Z 2 ,Z 3 ) positive in 
orientation. The other cases can be treated similarly. 

Now by 5.2.2 applied to [Ζβ,Ζ2,Ζ3], \ZZ0ZeZ4\° = \lZ6ZeZ3\° = 90 - I7I0 so 
that 

||^!4 = tan Z Z 0 Z 2 Z 4 = «>t 7· 

But |Z £ ,Z^| = ccos^ and so ΙΖο,Ζ Ι̂ = ccosp*cot7. Thus ό>(Ζ0,Ζ2,Ζ3) = 
jaccos^cot7 and since δ?(Ζι,Ζι,Ζ3) = jacsin/?, we have that 

O > ( Z Q , Z 2 , Z 3) _ c Q t ^ c Q t ^ 

^ ( Z i , Z 2 , Z 3 ) 

As similar results hold in the other two cases, we have by 11.4.2 that 

Zo = cot β cot 7 Z 1 + cot 7 cot a Z 2 + cot a cot βΖ3. 

That the sum of the coefficients is equal to 1 follows from the identity 

tana + tan/3 + t a n 7 = tan α tan β tan 7 

for the angles of a triangle. For, using the notation of 10.8.1, |α|° + \β\° + Μ" = 180, 
and so a? + β? + η? = 180? so that 

- t an7 jr = tan(180jr - 7 ^ ) = tan(a^ + β τ) 
_ tanajr + tan fly 

1 — tan a? tan β?' 

whence the result follows by multiplying across and rearranging. This formula fails 
in the case of a right-angled triangle. 

From our two methods we have two formulae for Zo, but we further note that 

cos(a.F + y?) = cos(180.F - p » , 
cos a? cos 7 F - sin a? sin η? — — cospV, 

cos a cos 7 + cos β = sin a sin 7 . 

On using this with the sine rule, the two formulae for the orthocentre are recon­
ciled. 
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11.5.7 Incentre of a triangle 

Let Z 1 . Z 2 . Z 3 be non-collinear points. By 5.5.1 the mid-line of \ZgZtZ3 will meet 
[Z2, Z 3 ] in a point Z4 where Z4 = (1 - r)Z 2 + rZ 3 , and 

r c 
1 - r 6 

By similar arguments the mid-line of \Z3ZeZt will meet [Ζ3,Ζχ] in a point Z 6 where 
Z 8 = ( l - a )Z 3 -MZi ,and 

1 - a 

and the mid-line of \Zt Z3Zg will meet [Zx, Z2] in a point Z a where Z e = ( l-t)Zi+fZ 2 , 
and 

t = 6 
1 - t ~ o' 

The product of these three ratios is clearly equal to 1 so (11.5.1) is satisfied. By the 
cross-bar theorem, [Z2 ,Z 8 will meet [Z 3 ,Z e] in a point Zo and so Z 2 Z ^ , Z 3 Z Q meet 
in Zo. It follows that Z1Z4 also passes through the point Zo-
Thus the mid-lines of the 
angle-supports \ZSZ,Z3, 
\Z3ZtZi, \Z,Z3Ze for a triangle 
[Zi,Z 2 ,Z 3 ] are concurrent. The 
perpendicular distances from 
this point Zo to the side-lines 
of the triangle are equal by 
Ex.4.4, so the circle with Za as 
centre and length of radius these 
common perpendicular distances ^ 2 

will pass through the feet of Figure 11.11. Incentre of triangle, 
these perpendiculars. 

This circle is called the incircle for the triangle; its centre Zo is called the incentre 
of the triangle. The three side-lines are tangents to the circle with the points of contact 
being the feet of the perpendiculars. For the incentre, by (11.5.2) we have the formula 

Zo = : Zl + Z2 + ; Z3. 

a + b + c a+b+c a+b+c 

11.6 MOBILE COORDINATES 
In standard vector notation, the vector product or cross product takes us out of the 
plane Π and into solid geometry. Sensed-area gives us half of the magnitude of the 
vector product and we use that instead. Without the vector product, however, we 
have not got orientation of the plane Π by vector means. We go on to supply this 
lack. 

However the standard vector operations can be awkward in dealing with perpen­
dicularity and distance, and can involve quite a bit of trigonometry, so we also set 
out a method of reducing unwieldy calculations. 
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11.6.1 Grassmann's supplement of a vector 

Given any Ζ Φ Ο, we show that there is a unique W such that 

\0, W\ = \0,Z\, OW ±OZ, S?(O,Z,W)>0. 

Proof. With Ζ = (χ, y), W = (u, v) these require 

x 2 + y2 = u 2 + υ 2 , ux + vy = 0, xv - yu > 0. 

By the middle one of these 
x V =0, -v u 

so the rows of this are linearly dependent. Thus we have r(x,y) + s(—v,u) = (0,0), 
for some (r,e) φ (0,0). We cannot have r = 0 as that would imply W = Ο and so 
Ζ = 0. Then 

8 S 
χ = -v, y = - - u , r r 

so by the first property above 

* 2 + t/2 = £ (* 2 + !/2)· 

Thus we have either s/r = 1, so that u = — y, ν = χ, for which 2δ?(0, Ζ, W) = 
x 2 + y 2 > 0, or we have s/r = - 1 , so that u = y, ν = -χ , for which 2o>(0,Z, W) = 
- ( x 2 + y 2) < 0. Thus the unique solution is u = -y , ν = x. 

For any 2* € Π, we define 02* = OW where 2 = (x,y), W = (-y,x), and call 
this the Grassmann supplement of OZ. This clearly has the properties 

(ozX+οζΧ)^ = ozV~ + ozV~, 
(fcOSV = *(θ2)\ 
( O ^ V = -02*. 

11.6.2 

In ^* we take = \0, J\ = 1. If | 0 , 2 | = 1 and 0 is the angle in A? with support 
1702. then we recall from 9.2.2 that Ζ = (x,y) where χ = cos β, y = sin β. As 
J Ξ (1,0), J = (0,1), we note that 

OIX =0$, δί = οο8θδϊ + ώηθθί, 0^ J " = -sinflar + cosdOi). 

Suppose that we also have OW = cos φθϊ + sin φθ5. Then by 11.4.1 we have 
where 

r = cos 0 cos β + sin ̂  sin β, s = sin 0 cos 0 — cos 0 sin β. 

By the addition formulae we recognise that r = cos Z^20W, s = &m£j:ZOW. 
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11.6.3 Handling a triangle 

Although for a triangle [Zi,Z 2 ,Z 3 ] , we have the vector form for the centroid as 
5 (Z\ + Z2 + Z3), and for the incentre as 

a b c 
—7T~,—Zi Η —j——Z2 Λ —r——Zz, 
α + 6 + c a+o+c a + o + c 

where as usual a = \Z2,Z3\, b = \Z3,Zt\, c = \Zi,Z2\, neither this formula for 
the incentre, nor the more awkward formula for the orthocentre, are convenient for 
applications and generalisation. In 7.2.3 we noted that a unique circle passes through 
the vertices of a triangle [Zi,Z 2 ,Z 3 ] . It is called the circumcircle of this triangle 
and its centre is called the circumcentre. It is possible to find an expression for 
the circumcentre in terms of the vertices as in 11.4.4 but it is tedious to cover all the 
cases. For these reasons we consider the following way of representing any triangle. 

Ο wi - ζ-χ = p(z3 - zi): 
Figure 11.12. Gras smann supplement . zi — «n = 91(23 — z2) 

Given non-collinear points Z\, Z 2 , Z 3 , by 11.4.1 we can express 

OZi = OZ2 + Pi(OZ*3 - OZ2) + qi(OZz - OZi)^, 

for unique non-zero pi and qi. We could work exclusively with material in this form 
but the manipulations are simpler if we use complex coordinates as well. Then 

χι-χ2 = ρι(χζ - X2) - qi(y3 - m)> y\-yi = pi(yz - ya) + qi(*z - 1 2 ) , 

so with Zi ~ zi, Zi ~ z 2 , Z 3 ~ z 3 we have zx - z2 — (pi + <7i»)(23 - z 2 ) . We coin the 
name mobile coordinates of the point Zj with respect to (Z 2 ,Z 3 ) and T, for the 
pairip^oi). 

It follows immediately that \Zl,Z2\ = \ /P i + 9?l^2.Z3\, and as zi - z 3 — (pj -
1 + 9ii)(z 3 - z 2 ) we also have |Z 3 , Zj \ = \ / (P i ~ I) 2 +9 2|^2. Z3\. From 

Z3 - zi pi - 1 + qii Zi - z 2 z 2 - z 3 1 
-p\ + gi», 2 2 - zi Pi+qii z 3 - Z 2 Zi - z 3 1 - pi + qii' 

with a = Z.yrZ2ZiZ3, β = Ζ?Ζ3Ζ2Ζι, 7 = Ζ^·ΖιΖ 3 Ζ 2 , we have that 
• „ (pi - 1 +qii)(pi - qii) px + qii 1 - Pi + qii 

VpJTqlV(Pi-ir + q r viFUT ' y/H " P i ) 2 + 9?' 
We also have that 

Pi + »9i = y p 2 + a?cis β = -cis β, » a 

1 - Pi - m = J (pi - l ) 2 + 92cis 7 = -cis 7, 
Y α 

P i ( p i - 1 ) + 9?+ΐ9ι = y/tf + q2yj(pi- l ) 2 + g2cis α = ^cis a. (11.6.1) 
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Thus we have in terms of pi and q\, the ratios of the lengths of the sides and cosines 
and sines of the angles. Moreover, it is easily calculated that 

δ?(Ζι,Ζ2,Ζ3) = ^\Ze,Za\2, 

so the orientation of this triple is determined by the sign of q\. 
Note too that if 

ζ - z 2 = (p + qt)(z3 - z 2), z' - z 2 = (p' + qft){z3 - zj), 

then 
\ζ' - z\ = \ρ' - ρ + ( β 7 - q)t\\z3 - zel 

and so 

\z,z'\ = V(pJ-p)3 + (q,-q)2\zii,zs\ = avV-p)2 + (<r*-<7)2. (11 .6 .2) 

11.6.4 Circumcentre of a triangle 

Looking first for the circumcen­
tre, we note that points Ζ on the 
perpendicular bisector of [Z2, Z3] 
have complex coordinates of the 
form z-Z2 + {\+ qt)(z3 - ζ?), 
where q € R. But z\ — z2 = 
(Pi + Qi*)(z3 - ZQ) and so 

Z - Z2 + -£— (Ζχ ~ Ζ2). 
Pi 

From this we have that 
Figure 11.13. Ci rcumcent re of t r iangle . 

-V*+*-(J£T.-\)<*-*-
To have Z3Z ± ZiZ2 also we need the coefficient of zi - z2 in this to be purely 
imaginary. The coefficient is equal to 

2-pi + qqi + (gpi - _ ι 
Pi+t f 2 ' 

and so we need 

2fl τ 111 — 2 

Thus the circumcentre has complex coordinate 

ZO = Z2 + - 1 + 
Pi - P i + 9 i . 

9i 
(z3 - z a). 
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From this we have that 

zo - h(z2 + z3) = -
1 
2 
ι 

2q~i 

1 | PJ-Pi+Qit (z3 - z2) 

(pi - ςι»)(ρι - 1 + giOfo - z2), 

and from this can conclude that the length of radius of the drcumcirde is 

In fact we can deduce from this material a formula for the drcumcentre in terms 
of areal coordinates. For by (11.6.1) 

Pi - Pi +9i = cosa, qi = ^s ina , 
a* a2 

so that ζ = z2 + j ( l + cotai)(z3 - z2). Then by 11.6.3 we have 

x-x2 = \{x3 - xa) - j cota(y3 - y2), y-y2 = \ cota(x 3 - x 2) + \{y3 -ya) . 

From this we have that 

5jr(Z, Z2, Z3) —Sjr(Z — Za, O, Z 3 - Za) 

=£cota [(x3 - x 2 ) 2 + (1/3 -ya) 2 ] = j co taa 2 . 

As 6jr(Zi,Z2,Z3) = jgio 2 = |6csina we have 

0>(Z,Z 2 ,Z 3) _ l a 2 cot α 
br(ZuZ2,Z3) ~ 2 bcsina' 

and by use of the sine rule this is seen to be equal to 

1 cosa 
2 sin β sin 7 

By cydic rotation we can write down the other two coeffidents and so have 

1 cosa 1 cos/3 1 cos 7 
Ζ — — Ζ ι "4* Za ~f" — Z 3 . 

2 sin ρ sin 7 2 sin 7 sin α 2 sin α sin ρ 

That the sum of the coeffidents here is equal to 1 follows from the identity 

sin 2a + sin 2β + sin 27 = 4 sin a sin β sin 7 , 

for the angles of a triangle. For 
sin 2a j r + βΐη 2β? + Bin 2yj? 

= 2 sin(a -̂ + p > ) cos(ajr - fijr) + 2 sin yjr cos 7 ^ 

= 2 sin 7JT [cos(ay? - p » + cos 7?] 

= 2 sin7^[cos(ajr - p » - cos(ajr + p » ] 

= 2sin7jr.2sinajrsin/3jr. 
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11.6.5 Other distinguished points for a triangle 

For the centroid 2"o of [Zi.Zj.Zs] we have by 11.5.5 and 11.4.5 that ZQ = 5 ( 2 1 + 2 2 + 2 3 ) 

and so 

2 0 - 2 2 =1(21 + 22 + 2 3 ) - 2 2 = | ( 2 i - 22) + 5 ( 2 3 - 22) 

= j(Pl + 9 l * ) ( * 3 - 22) + | ( 2 3 - 22) = |(pi + 1 + fllt)(23 - 2 2 ) . 

This gives the complex coordinate of the centroid 
We next turn to the orthocentre of this triangle. Points Ζ on the line through Zi 

perpendicular to Z2Z3 have complex coordinates of the form 

2 = 2 2 + (pi + qt)(z3 - 22) = 2 3 + ( p i - l + gt)(*3 - 2 2 ) 

Pi - l + q\, . 
= 2 3 + ; (2i - 22). 

Pi+gi* 

For Ζ ζ to be also perpendicular to Z1Z2 we also need the coefficient of 21 — 22 here 
to be purely imaginary. Thus we need 

(Pi - l)pi + qq\ = 0 i.e. q = -———, 

q\ 

and so obtain 

22 + Pi ^1 - ( 2 3 - zi), 

as the complex coordinate of the orthocentre. 
It takes more of an effort to deal with the incentre. The mid-point of the points 

with complex coordinates 

1 . . 1 , . 
| Z 2 , Z 3 | |Z 2 ,Z i | 

has complex coordinate 

22 + 
2|Z 8 

= z * + ίΤΓ^ 

Μ21~Ζί+ν^?<2'~*>) 
^r( 1 +^l) ( i s 

Points on the midline of \Z]ZeZs then have complex coordinates of the form 

2 l + r a ( 1 + ^ ) ( i s - i l ) -
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By a similar argument, points on the midline of \ZsZ3Zt have complex coordinates 
of the form 

z3 + 

= Z2 + 

2\z2,z3\ V v^pT^ 
P I - 1 + g H A 
Γ (ρι -1 ) 2 +9ι7 

1 + 
2\Zt 

s / Pi - 1 + git \ 

(z3 - z2) 

(z3 - zn)-

For a point of intersection we need 

_r / Pi +qi% ^ 
= 1 + ( Pi - 1 + gi* 

2\Z,,Za\ \' • y/pJTql) ' ' 2\ZS,Z3\ [ Jfa - i)a + q \ ) ' 

On solving for r and a, we obtain for the incentre the complex coordinate 

Pi +Qit+ y/pj+q2 

2 2 + 

1 + νβ Γ +βι"+ν / (Ρι-1) 2 +«? 
(23 " Zi). 

11.6.6 Euler line of a triangle 

With the notation Z7,Zs,Z9 for the centroid, circumcentre and orthocentre, respec­
tively, of a triangle \Z\,Z2,Z3\ we have the formulae 

27 - 2 2 = |(pi + 1 + 9 l t ) ( 2 3 - 2 2 ) , 

2 8 - 2 2 = Pi ^1 - ( Z 3 - Z2). 

It is straightforward to check that 

| 2 8 + \Z9 = 2 2 + | ( 2 8 - 2 2 ) + | ( 2 β - 2 2 ) = 2 7 , 

and so Z 7 € Z&Z9. 
Thus we have shown that the centroid, circumcentre and orthocentre of any triangle 

are collinear. This is a result due to Euler, after whom this line of collinearity is named 
the Euler line of the triangle. 

11.6.7 Similar triangles 

For any two triangles \Z\,Z2,Z3\ and [ Ζ Α , Ζ ^ , Ζ ^ ] we have 

oz\ = d^2+Pl{d^3-ozt) + qi(ozt-ozt)±, 
oz\ = 0^+p 4 (0^-Ozt ) - r - f l 4 (Ozt -Ozt ) - L , 

or equivalently Z\ = 2 2 + (pi + qii)(z3 - 2 2 ) , 2 4 = 2 6 + (p4 + σ 4 ι ) ( 2 β - 2 5 ) , where 
Pi,9iiP4,04 are non-zero real numbers. Then these triangles are similar in the corre­
spondence (Ζι,Ζ2,Ζ3) -> ( Z 4 , Z 6 , Z e ) if and only »/p4 = p 1 ( qt = ± q i . 

�� �� �� �� ��



Sec.11.6) MOBILE COORDINATES 197 

Proof. First suppose that P4 =pi , q4 — Qi so that z\ = Z2+(pi+qit)(z3-za), z* — 
*6 + (Pi + ίι*)(*β - Then we have that 

\irZaZaZt\° = \lyZ6ZsZ4\\ \irZ,Z3Zt\° = \lrZ4Z6Zs\°. 

It follows by 5.3.2 that the measures of the corresponding angles of these triangles are 
equal, and so the triangles are similar, with the lengths of corresponding sides pro­
portional. Moreover, the triples (Zi ,Z 2 ,Z 3 ) and (Z4,Z&,Ze) are similarly oriented. 

/ Ze 

Z 3 Si /! 
z*<'.. / 

\ / 
\ 
\ 

/ 

Figure 11.14. Similar triangles. 
Next suppose that zx = + (pi + qi*)(z3 - z?), z4=z6 + (px- qi\)(ze - z6). By 

an analogous argument the triangles are still similar, and now the triples (Zi, Z 2 , Z3) 
and (Z4, Z5, Ze) are oppositely oriented. 

Conversely, suppose that [Zi,Z 2 ,Z 3 ] and [Z4,Z5,Ze] are similar triangles in the 
correspondence (Zi ,Z 2 ,Z 3 ) -> (Z 4 ,Z 6 ,Ze). Let W\ be the foot of the perpendicular 
from Zi to Z 2 Z 3 , and from parametric equations of Z a Z 3 choose pi € R so that 
u>\ = zi +pi(z3 - zi). Then 

| ζ Ι ^ Γ - | Ρ ί ' · 
and pi is positive or negative according or not as W\ is on the same or opposite side 
of Z 2 as Z 3 is on the line Z 2 Z 3 , that is according as the wedge-angle ΔΖ3Ζ2Ζ\ is 
acute or obtuse. As W\Z\ ± Z2Z3 we can find qi e R so that z\ - \o\ = gii(z3 - Z2). 
Then 

iz^r-19'1, 

and q\ is positive or negative according as (Zi ,Z 2 ,Z 3 ) is positively or negatively 
oriented. 

As the lengths of the sides of the two triangles are proportional, we have 

\Z5,Z6\ = k\Ze,Z3\, \Ze,Z4\ = k\Z3lZt\, l ^ . ^ l = k\Z,,Za\, 
for some k > 0. Let W2 be the foot of the perpendicular from Z4 to the line Z 6 Z e . 
Then the triangles [Zi, Z 2 , W\] and [Z4, Z 6 , W2] are similar, so we have that 

\Z5,WS\ _ \Z4,Z5\_ 
\ZttW,\ \ZuZa\ 

It follows that 

\Z5, Wa\ = k\Za, Wt\ = k\p,\\ZB,Z3\ = \p,\\Zs,Z6\. 
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But Wi is on the same side of the point Z 6 on the line Z 5Ze as Ze is if the wedge-angle 
ZZgZiZi is acute, and on the opposite side if this angle is obtuse. Hence we have 
that w2 - 25 = pi(«e - z&). 

As Z4W2 -L Z6Ze, we have z4 - VJ2 = jtfa - 25) for some j € R , and then 
\Z4,We\ = \j\\Z5,Z6\. But 

\Z4,We\ _ \Z4,ZS\ = \ Z S , Z E \ 
\z,,w,\ \zt,zs\ \ze,zsy 

\ZAM _ \ Z M T W , \ _ . 
\Z5,Z6\ \zs,z3\ |ϊ,'· 

Hence j = ±q\ and we are to take the plus if (Z i ,Z 2 ,Z 3 ) and ( Z 4 , Z 6 , Z e ) have the 
same orientation, the minus if the opposite orientation. 

Thus our mobile coordinates (ρι,οι) are intimately connected with similarity of 
triangles. 

11.Θ.8 S i m i l a r t r i a n g l e s e r e c t e d o n t h e s i d e s o f a t r i a n g l e 

Given an arbitrary triangle [Zi,Z 2 ,Z 3 ] , if we consider points Z4, Z 6 and Ze defined 
by 

24 =23 + (Pi + 0i*)C*3 - zi), 25 = z3 + (pi + qii)(zi - z3), 
ze =zi + (pi + ?i*)(*a - zi), 

for some non-zero real numbers pi and 91, then we have triangles erected on the sides 
[Zi,Z3], [Z3,Zi] and [Zi,Z 2], respectively, which are similar to each other and have 
the same orientation as each other. By addition we note that 5(24 + 25 + zg) = 
I (zi + Z i + 23), and so the triangle [Z4, Z 5 , Ze] AOS tne same centroid as the original 
triangle [ZX, Z 2 , Z 3]. 

Figure 11.15. Similar t r iangles on sides of t r iangle . 

Further, if we let Z 7 , Z 8 , Z9 be the centroids of the triangles [Z2, Z 3 , Z 4], [Z3, Zx, Z6] 
and [Zi,Zi,Z0], respectively, we have that 27 = \(z2 + z3 + 24), 2 8 = | ( 2 3 + zi + 
Z5), z9 = 5(21 + za +2e); it follows that the centroid of [Z7, Z 8 , Z e] is α/50 ine centroid 
of the original triangle. 
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11.6.9 Circumcentres of similar triangles on sides of triangle 
In a more complicated fashion than in the last subsection, for an arbitrary triangle 
[Ζχ,Ζι,Ζζ] suppose that we take points Zj , 2*6 and Ze so that 

Z\ =22 + (Pi + fllt)(23 ~ 22), 23 = 2i + (pi + 9ΐ0(*5 - Ζχ), 

22 =2β + (Pi + 0,lt)(2l - Ζβ), 

so that we have similar triangles once again on the sides of the original triangle 
but now in the correspondences [Zi,Z3,Z\) (Ζχ,Ζ$,Ζ3) -> (Ζβ,Ζι,Ζ 2). We let 
Z7, Ze, Z9 be the circumcentres of these three similar triangles, so that we have 

= l ( l + rf-Pl+^(*3-*2), 

2 8 - 2 ! = Ifl-r"1
 "I ' *^)(Ζ6-Ζχ), 

zo-z, = I ( l 

P? - P i + 9? 
9i 

P? - P i + 9? 
9i 

P? - P i + 9 i 
1 + " 1 " ' ( 2 X - 2 e ) . 

But 
2 8 - 2 X = (Z3 - 2 i ) , 

Pi + 9 i * 
while 22 — ζχ = (1 - ρχ - 9ι»)(2β - 2 i ) , so that 

2 β ~ 2 1 = ϊ — ~ — Γ Τ ( 2 2 - *l)-1 - Pi - 9 i » 

Also 

On combining these we have 

„ - „ . i ( 1 + ! L ^ ± i . ) _ L _ h . e ) . 

Then 

29 + (pi + ?i*)(*8 - 2 9 ) 
= (1 -ρχ -qxt){z9-zx) + (pi + 9 i » ) ( 2 8 - 21) + 2 1 

- ( I - » + ( I + < · - » + * 
P i - P i + 9 i . 

291 
= * ( * + 4 ) + W ~ £ N * " 2 > ) = 2 Τ · 

It follows that the triangle [Ζτ,Ζ%,Ζ9] is also similar to the similar triangles above, 
in the correspondence (Zi,Z3,Z4) -> (Ζβ,Ζβ,Ζγ). 
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In the particular case when pi = 1/2, gi = Λ/3/2, the similar triangles are all 
e q u i l a t e r a l triangles, that is all three sides have equal lengths. In this case the last 
result is known as N A P O L E O N ' S T H E O R E M . It is easier to prove than the more general 
case, as for it we can work just with centroids. 

11 .6 .10 T h e n i n e - p o i n t c i r c l e 

Given the notation of 11.6.3, 
11.6.4 and 11.6.5, let Z 4 = 
mp(Z 2 ,Z 3 ) , Z 6 = m p ( Z s , Z i ) 
and Z f l = mp(Zi,Z 2). We first 
seek the circumcircle of the tri­
angle [ Z A , Z 6 , Z 0 ] with vertices 
these mid-points of the sides of 
the original triangle. 

Ζ„ = Ζ 

Figure 11.16. Nine-point circle. 

Now 

Then 

so that 

ZA = \{z2 + z3) = z 2 + \ ( z 3 - z2), 

zs = \(z3 + zx) = z 2 + i(pi + l + ai»)(zs-*a), 
za = \{ζι +ΖΊ) = z2 + j(pi +gi»)(*3 - z2). 

Zg- Z6 = -h(z3 - Zi), 

Z A - Z 5 = - i ( p i + qii){z3 - Z i ) = (pi+ qit){z6 - z6). 

It follows from 11.6.4 that the circumcentre of [Z 4 , Ζ δ , Z e ] has complex coordinate 

Zh + 2^·(ρι + gi»)(pi - 1 - qnXze - z6), 

and this simplifies to 

Z i + Q(pi + 1 + qn) - ^ - ( p i + giOfjh - 1 - o i » ) j (z3 - zi) 

= Zl + » ) (z3 - Zl). - I l + 2pi +oi$ + 

We denote this point by ZQ. 
Next let Z 7 , Zg, Z 9 be the feet of the perpendiculars from the vertices Z \ , Z 2 , Z 3 

onto the opposite side-lines Z 2 Z 3 , Z 3 Z \ , Z \ Z 2 , respectively. We now show that the 
circumcentre of [Z e , Z 4 , Z 7] is ZQ also. For this we note that 

ZA = Z2 + \ ( z 3 - z i ) , z e = zi + i(pi +git)(z 3 - Zl), Ζη = z 2 +pi(z 3 - z 2 ) . 
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From this 

Z7 ~ ZA = (Pi - \)(z3 - 2 2 ) , Z6 - Zi = P l 1 + ? 1 1 { Z 7 - Zi), 
2pi - 1 

and hence 

ze = Zi + 1 (pi - 1 + qit)(z7 - Zi). 
2pi - 1 

By the formula of 11.6.4 for the circumcentre, we know that the incentre of [Ze, Zi, Z7] 
has complex coordinate 

Z i + 2 σ 1 / ( 2 ρ 1 - 1) ( g ^ T + 2 ρ 7 ^ ΐ 1 ) {ϊρΤ^Ϊ ~ 1 " 2 ρ 7 ^ ) { Z 1 ~ Ζ 4 ) ' 

and this simplifies to ZQ. 
Thus Z7 lies on the circumcircle of the triangle [Zi, Z5,Ze], and as this argument 

also applies to the other two sides of [Z\,Z2,Z3], so do Zs and Zg. This shows that 
the feet of the perpendiculars from the vertices of the triangle onto the opposite side­
lines also lie on the above circle. 

Finally, let Zio be the mid-point of the orthocentre and the vertex Z\ in the 
original triangle, Zn be the mid-point of the orthocentre and the vertex Z2, and Z\2 

be the mid-point of the orthocentre and the vertex Z3. We seek the circumcentre of 
the triangle [Zn,Zi, Z7\. Now z 4 = z? + 5 ( 2 3 - z2), z7 = z 2 + P i ( * 3 - 2 2 ) , and by the 
formula in 11.6.5 for the orthocentre, 

Pi ί Pi — 1 λ / \ 
2 1 1 = z2 + — I 1 —xJ ( 2 3 - Z2). 

From these we have that 

Then the circumcentre of [Zn, Zi, Z7] has complex coordinate 

, I Pi ~ 1 Λ _ Pi λ Γ Pi - 1 _ , 

2 4 + ^ ' " V h - l t o ^ - U 1 <7i7l2pi-l 
( 2 7 - 2 4 ) , 

- 2 p i ( p i - l ) / ( 2 p i 
Pi(pi - 1 ) 
«i(2pi - 1 ) ' 

and it can be checked that this reduces to ZQ. Hence Zn lies on the circle through 
the mid-points of the sides of [Z\, Z2, Z3], and thus, as our argument applies equally 
well to the other two sides of the original triangle, so do Z\2 and Zio- This shows 
that the mid-point of the orthocentre and each vertex also lies on the above circle. 

Thus we have identified nine points on this circle, which is named from this prop­
erty. 
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11 .7 

NOTE. The advantage of mobile coordinates is that they located a point with respect 
to a triangle using just two instead of three numbers and they also behave like re-
scaled Cartesian coordinates. None the less they can lead to unwieldy expressions as 
in this section and it is a good idea when possible to check the algebraic manipulations 
using a computer software programme. 

11.7.1 Feuerbach's theorem, 1822 

Our formula in 11.6.5 for the incentre of a triangle is very awkward to apply because 
of the complicated term in the denominator. However by eliminating the surds in the 
denominator in two steps, by multiplying above and below by a conjugate surd of the 
denominator, we obtain the more convenient formulation that 

x ^ T i ^ - ^ ' h ^ - l ^ 1 ^ * - <»·»> 

In fact once we know the form of this we can establish it more directly and easily by 
noting that 

_ ι 
2 

1 + \Jp\+q\ + \j(j>i-l)2 + q2 1 + γΡι +9? " yV ~ 1)2 + «? 

= Ρ Ι + \/ΡΪ + ϊι· 

We note that the right-hand side in (11.7.1) must be positive. 
Recalling from 11.6.5 that the incentre Z\3 has complex coordinate 

213 = Zn + 
Pi + ypi + ql+qit 

i + y/pT+ql+Vipi-W + q'i 
( * 3 - 2 2 ) , 

we re-write this as 

2χ3 — Z? 

1 
2 

2ft 

1 + 01* (z3 - 2 2 ) v v J L Pi + y/pi + qi^ 

l+Jpl+q2i-y/(pi-l)2+q2 ii + ( v ^ + « i - 0 * 3 - 2 3 ) . 
From this, the foot of the perpendicular from the incentre Zi3 to the line Z2Z3 has 
complex coordinate 

*2 + "5"Γ 2qi i + Jpi + q2-y/(Pi-i)2+q2 9i ( 2 3 - 2 2 ) 
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and so the length of radius of the incircle is equal to 

2 |? , | 

On the other hand the nine-point circle has radius-length equal to the distance 
from ZQ to Z4. From the formula 

ZQ-Zi = j ( p i + o i » ) 1 - — ( p j - 1 - i i i ) 
2qi (z3 - Z2) 

we note that 

= 1—(Pi + 9i*)[9i + C1
 ~ P i ) « ] ( * 3 - 2 2 ) 4qi 

and so this is the radius-length of the nine-point circle. 
We also require the distance between the centres of the inscribed and nine-point 

circles. For this we note that 

Z 1 3 — ZQ 

- ( | ( P i + 1 + 9i») - ^ ( P i + ft»)(Pi - 1 " 9 i * ) ) } (*s ~ -22) 

= 4 ^ { (l + ^ P i + 9 ? ~ >/(Pi " I ) 2 + 9 ? ) 2 f t - (1 + 2p i )« i 

+ [(l + ν ^ + Α ϊ " v'fo-iP + tf) 2 (v^ + tf " P i ) + ~ P i " «?] * } 

It follows that 

\Z0 — Z1312 = 
^ | [ ( ΐ + ν

/ ρ ? + 9 2 - ν

/ ( ρ 1 - 1 ) 2 + α 2 ) 2 σ 1 - ( 1 + 2 

+ [(l + \/p}+ql-\/(Pi- I ) 2 + 9?) 2 ( ^ P ? + 9 ? - P i ) + P ? - P i - 9?] J. 

The next feature which we wish to note is that if we denote by rx and r 2, respec­
tively, the lengths of the radii of the nine-point circle and the incircle, then 

\Zo,Z13\2 = {n-r2)\ 

This can be verified on a computer; it can also be written out at length by writing 
each term in the form 

u + vyJpl+ql + w ^ - l Y + ql+XxJpl + qlxJ^-lY+qh 
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where u,v,w and χ are polynomials in p\, q\ and a. This is unsatisfactory as a method 
of proof but in the absence of some insight which will lead to a reasonable calculation 
it must suffice. It follows that 

\Ζ0,Ζ13\ = ±(π - ra). 

With these preparatory 
results, we can now show 
that the nine-point circle 
and the incircle meet at 
just one point and they 
have a common tangent 
there. 

~ Ζ 3 

Zg = Zn 

Figure 11.17. Feuerbach ' s t heo rem. 

Suppose first that r 2 > ri so that \Z0, Zi3\ = r 2 - rx. Let Ζ be the point on 
[Zi3, Zo such that \Z13, Z\ = r2; then Ζ is a point on the incircle. As r 2 - ri < r 2 we 
have that Z0 € [2"i3, Z] and so |Z 0 , Z\ = r 2 - (r2 - n) — r\. It follows that Ζ is also 
on the nine-point circle. It then follows that every other point of the nine-point circle 
is inside or on the incircle. But the incircle is contained in the triangle [Z\, Z 2 , Z3] and 
the nine-point circle is not (as it passes through the mid-points of the sides). Thus this 
gives a contradiction and we must have ri > ra and so \Zo,Zt3\ = η - r 2. Now let Ζ 
be the point on [Zo, Z i 3 such that \Zo,Z\ = rr, then Ζ is a point on the nine-point 
circle. As r\ — rj < ri we have that Z J 3 € [Zo, Z] and so \Zj3,Z\ = ri — (r\ —ra) = ra. 
It follows that Ζ is also on the incircle. Then every other point of the incircle is inside 
the nine-point circle and the line through Ζ perpendicular to Z 0 Z i 3 is a tangent to 
both circles. This shows that the incircle and the nine-point circle of a triangle meet 
at just one point and they have a common tangent there. 

If we modify our treatment of the incentre of the triangle [Zi,Za,Z 3], using the 
terminology of 5.5.1 points on the external bisector of \ZiZgZ3 will have complex 
coordinates 

and points on the external bisector of \ZsZ3Zj will have complex coordinates 

It follows that the point of intersection of these lines has complex coordinate 

_ , „ v / Pi+9?+9i» . 
1 - VP? + 9? - y/iPl - 1) +9i 
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This point is equally distant from the side-lines of the triangle and is called an e x -
c e n t r e . The circle with it as centre and which touches the side-lines of the triangle 
is called an e s c r i b e d c i r c l e for the triangle. 

Now 

_ ι 
2 

= Pi- yjpi+q2-

Then by a straightforward modification of our argument for the incircle, it follows 
that the nine-point circle and this escribed circle meet at one point, where they have 
a common tangent As this argument is valid for the other two sides of the triangle 
as well, it follows that the two other escribed circles have this property also. 

This combined result is known as FEUERBACH'S THEOREM. 

11.7.2 T h e W a l l a c e - S i m s o n l i n e , 17Θ7 

We take a triangle [Zi,Z2,Z3] and for a point Ζ let W\,W%,W3 be the feet of the 
perpendiculars from Ζ to the side-lines Z2Z3, Z3Zi, Z\Z2, respectively. 

Figure 11.18(a). A Simson-Wallace line. Figure 11.18(b). A r ight sensed duo-angle. 

Using notation like that in 11.6.3, we suppose that 

z\ - z2 = (Pi + iit)Os - 2 2 ) , z - z 2 = (p + qt)(z3 - zj). 

Then ζ = Z i + p(z3 - z%) + qt(z3 - z2), and so wi - z2 + p(z3 - z2). Next, u/3 = 
z3 + s{zi - z3), for some β G R. Hence z - u » 2 = ( p - l + qi)(z3 - z 2) - - 2 3 ) · 
But zi - z3 = (pi - 1 + qii)(z3 - Za), so 

z 3 - z 2 ~ ——1 (zi - z3). 
Pi - 1 + 9i* 
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On inserting this, we have that 

ζ — U>2 = 
ρ - 1 + qt 

— 8 (*i - z3). 
[ P I - l + g i* 

We wish the coefficient of z\ - z3 to be purely imaginary, and so take 

(p-l)(pi -\)+qqi 
a = 

Hence 

W2 = Z3 + 

( P i - l ) 2 + af 

( p - l ) ( p i - l ) + 99i (zi - z3). 
( P i - l ) 2 + 9? 

Thirdly, w3 = zi + t(z\ - z2), for some t 6 R. Hence z - ui3 = (p + qt)(z3 - ZQ) -
t(z\ — Z2). But 

z3 — z2 = 

and so 

ζ - t t>3 = 

Pi +9i» 

p + qi 

(zi - ζ?), 

- t (zi - Zi). 
LPi + 9I» 

We choose ί so that the coefficient of z\ — z2 is purely imaginary. Thus 

PPi + qq\ t = 
Pi + 9 ? ' 

ppi + qqi 
(Zl - Zi). 

which yields 

w* = Z2 + '~%+lT 
From these expressions for wi,w2,w3 we note that 

W 3 ~ W l ' Z*) ~ Pi* ~ *>) 

^ f p ( p i +9 i » ) - p 

The real part of this has numerator (pi+g 2 -Pi)(p2+q2)-(pi+qi ~Pi)p+9i9, and the 
imaginary part has numerator giip2 + 9 2) - g i p - (p? + 9? ~Ρι)ϊ· If 0 = < F ' W 3 W I W I 
then for θ to have a constant magnitude it is necessary and sufficient that 

«ι (p2 + q2) - qip - (p? + 9? - Pi )q 

= *KP? + Ά -PI)(P2 + q3) - (p? + qi -PI)P + 919]. 
This can be re-written as 

21 
4 1 + i η 

(ρϊ + ^ - Ρ ι ) 2 ] / · 

�� �� �� �� ��



Sec.11.7) 207 

On using 11.6.1 we infer that as k varies this gives the family of coaxal circles which 
pass through Z 2 and Z3. 

For W\, Wi, W3 to be collinear, it is necessary and sufficient that the expression be 
real. On equating its imaginary part toOwe obtain gi^+q^-qip- ipi+qi—pijq = 
0. On writing this as 

P 2 + g 2 - P _ Ρ ι + α ? - Ρ ι 
Q Qi 

we note from the formula for a circumcentre in 11.6.4 that it holds when Ζ lies on 
the circumcircle of the triangle \Z\,Z-i,Z3\. 

This latter result is due to W A L L A C E , but SIMSON'S name has for a long time been 
associated with it. 

11.7.3 The incentre on the Euler line of a triangle 

We suppose that we have the mobile coordinates z\ — z 2 = (pi + qii){z3

 — where 
Pi and qi are real numbers and qi Φ 0. Then z\ - z 3 = (pi - 1 + qi*)(z3 — za), and 
as in 11.6.3 we have 

c . . 
= Pi +«ι* = -aap, α 
_ 1 - p i - f git _ α . 

Zl - Z l 

z 3 - z i 

Z2 - z 3 

Z\ - z 3 

z 3 
-Zl 

Z2 -Zl 

Pi - 1 + git b . 
= -c i s a, Pi+gi* c 

where we are using our sandard notation. Then 

p\ + q \ = \%, ( 1 - Ρ ι ) 2 + ί 2 = ατ· 

We recall that the orthocentre, centroid and incentre have mobile coordinates 

„ , P i ( l - P i ) . Pi + 1 , gi. 
Pi -i ~ », — 5 — + 

gi 3 3 
P I + y/pj + g'i , gi 

i + VpT+glV^-Pi)2 + ii i + V53+^>/ ( i -P i ) 2 + ei ' 
respectively. 

N ° w , . *-* 
and so 

c 3 + a 2 - 6 2 , o t + P - c 3 , c 2 + o 2 - 6 2 + 2a2 

Pi = ^ · ! - Λ = 2o? ·* + 1 = 2σ? " 

Moreover 

„ _ c 2 - c 2 (# + α * - Ρ γ _ (c2 + a 2 - b 2 ) 2 - 4 c 2 a 2 

It - o T - P i - o T - ^ 2â  J ~ 4a1 

[(c + a)>-b>}[(c-ar-b>] 
4a4 
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while 

Pi + TJPI+QI = 
c 2 + a 2 - 6 2 c (c + a ) 2 - 6 2 

2a2
 + a 2o2 

c 6 α + δ + c 
1 + - + - = , 

a a a so that 

Pi + y/Pi + 9i 

l + N /pT+^+N/a -P iP + O2 

(c + a)2 - ft2 _ c + a-b 
2o(o + δ + c) ~ 2a ' 

1 [(c + â -ô c-a)2-̂ ] 
4o3 α + δ + c 

1 
4a3 

{c + a-b)[(c-ay -tf]. 

The determinant for collinearity, on multiplying the middle column by q\, is 

2 ? 

( ο + ο - » ) " £ - ο ) 3 - 6 3 1 , 
4 o s 

and this is a non-zero multiple of 

c 2 + o 2 - 6 2 (c2 + o a -6 2 ) ( e a + 6 ' - c a ) 1 
c 3 + o 2 - 6 2 + 2a2 -[(ο + α̂ -δ̂ -α̂ -δ2] 3 ' a(c + o -6 ) -αίο + α-δΗ̂ -α̂ -δ2] 1 

the value of which is 4(co5 — (Pa3 — ba6 + oPb3 + cPbo? — 63co2). This factorizes as 
4a2(b-c)(c-a)(a — b)(a + b+c) and so the incentre lies on the Euler line if and only 
if the triangle is isosceles. 

11.7.4 MiquePs theorem, 1838 

Let ZX,Z2,Z3 be non-collinear points, and Z4 € Z2Z3, Z6 € Z3ZX, 2"β € ZXZ2 be 
distinct from ZX,Z2 and Z3. Let Cx, C2, C3 be the circumcircles of [Zx,Z&,Ze], 
[2*2,Ze,2"4], [Z3,Zt,Z6], respectively. ThenCi, C2, C3 have a point in common. 
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Figure 11.19(a). Miquel 's theorem. Figure 11.19(b). Miquel 's t heo rem. 

Proof. Suppose that these circles have centres the points Wi,W2,W3, respectively. 
We first assume that C2 and C3 meet at a second point Z7 φ Z\. If Z7 = Zg the 

result is trivially true, so we may exclude that case. As Z\,Z2,Zg are collinear, we 
have zi - zg = -ν(ζ-χ - zg), for some non-zero ν in R. As Z%, Z4, Zg, Z7 are concyclic, 
by 10.9.3 we have 

Z2 — Zg Zi — Z4 
= Ρ , 

Zj — Zg Z7 — Z4 

for some non-zero ρ in R. As Z 3 , Z 3 , Z4 are collinear, we have z2 — 24 = — λ{ζ3 — 2 4 ) , 
for some non-zero λ in R. As Z3, Z4, Z5, Z7 are concyclic, we have 

2 3 — 24 2 3 — 2 5 
= a , 

2 7 — 24 2 7 - 25 

for some non-zero a in R. On combining these we have 

Zi — Zg 2 3 — 2 5 
= νρ\σ-

Zl - zg zj - 2 5 

It fol lows b y 10.9.3 t h a t Zi, Z 6 , Zg, Z7 a r e concyc l i c . 
We s u p p o s e s e c o n d l y t h a t C2 a n d £ 3 h a v e a c o m m o n t a n g e n t a t Z2. It is c o n v e n i e n t 

t o 8 u p p o s e t h a t 2 i = 2 j + ( p i - f t 0 i ) (23-22) a n d ω 2 = 22+(p-Ho)(2 3 -22). Then t h e foo t 
Z 7 of t h e p e r p e n d i c u l a r f rom W2 t o Z2Z3 h a s c o m p l e x c o o r d i n a t e 2 7 = 22 + p ( 2 3 - 22), 
a n d h e n c e 24 = 22 + 2p(23 - 2 2 ) . Then t h e m i d - p o i n t Z 8 of Z 3 a n d Z4 h a s c o m p l e x 
c o o r d i n a t e 2 8 = 22 + ( p + |)(23 - 22). It follows t h a t for t h e c e n t r e W3 of C 3 w e h a v e 
u>3 = 22 + ( p + j + » g ' ) ( 2 3 - 2 2 ) , for s o m e r e a l n u m b e r o/. But Zi,W2, W3 a r e co l l i nea r , 
s o t h a t 

2p 0 1 
Ρ Q 1 

P+k <ί 1 
= 0, 

and from this 

——qi(z3 ~ zn). 

�� �� �� �� ��




