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x PREFACE

In July 2006, with the kind support and consideration of Professor Mike Brennan, Kihong
Shin managed to take a sabbatical which he spent at the ISVR where his subtle pressures –
including attending Joe Hammond’s very last course on signal processing at the ISVR – have
distracted Joe Hammond away from his duties as Dean of the Faculty of Engineering, Science
and Mathematics.

Thus the text was completed. It is indeed an introduction to the subject and therefore the
essential material is not new and draws on many classic books. What we have tried to do is
to bring material together, hopefully encouraging the reader to question, enquire about and
explore the concepts using the MATLAB exercises or derivatives of them.

It only remains to thank all who have contributed to this. First, of course, the authors
whose texts we have referred to, then the decades of students at the ISVR, and more recently
in the School of Mechanical Engineering, Andong National University, who have shaped the
way the course evolved, especially Sangho Pyo who spent a generous amount of time gath-
ering experimental data. Two colleagues in the ISVR deserve particular gratitude: Professor
Mike Brennan, whose positive encouragement for the whole project has been essential, to-
gether with his very constructive reading of the manuscript; and Professor Paul White, whose
encyclopaedic knowledge of signal processing has been our port of call when we needed
reassurance.

We would also like to express special thanks to our families, Hae-Ree Lee, Inyong Shin,
Hakdoo Yu, Kyu-Shin Lee, Young-Sun Koo and Jill Hammond, for their never-ending support
and understanding during the gestation and preparation of the manuscript. Kihong Shin is also
grateful to Geun-Tae Yim for his continuing encouragement at the ISVR.

Finally, Joe Hammond thanks Professor Simon Braun of the Technion, Haifa, for his
unceasing and inspirational leadership of signal processing in mechanical engineering. Also,
and very importantly, we wish to draw attention to a new text written by Simon entitled
Discover Signal Processing: An Interactive Guide for Engineers, also published by John
Wiley & Sons, which offers a complementary and innovative learning experience.

Please note that MATLAB codes (m files) and data files can be downloaded from the
Companion Website at www.wiley.com/go/shin hammond

Kihong Shin
Joseph Kenneth Hammond
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Preface

This book has grown out of notes for a course that the second author has given for more
years than he cares to remember – which, but for the first author who kept various versions,
would never have come to this. Specifically, the Institute of Sound and Vibration Research
(ISVR) at the University of Southampton has, for many years, run a Masters programme
in Sound and Vibration, and more recently in Applied Digital Signal Processing. A course
aimed at introducing students to signal processing has been one of the compulsory mod-
ules, and given the wide range of students’ first degrees, the coverage needs to make few
assumptions about prior knowledge – other than a familiarity with degree entry-level math-
ematics. In addition to the Masters programmes the ISVR runs undergraduate programmes
in Acoustical Engineering, Acoustics with Music, and Audiology, each of which to varying
levels includes signal processing modules. These taught elements underpin the wide-ranging
research of the ISVR, exemplified by the four interlinked research groups in Dynamics,
Fluid Dynamics and Acoustics, Human Sciences, and Signal Processing and Control. The
large doctoral cohort in the research groups attend selected Masters modules and an acquain-
tance with signal processing is a ‘required skill’ (necessary evil?) in many a research project.
Building on the introductory course there are a large number of specialist modules ranging
from medical signal processing to sonar, and from adaptive and active control to Bayesian
methods.

It was in one of the PhD cohorts that Kihong Shin and Joe Hammond made each other’s
acquaintance in 1994. Kihong Shin received his PhD from ISVR in 1996 and was then a
postdoctoral research fellow with Professor Mike Brennan in the Dynamics Group, then
joining the School of Mechanical Engineering, Andong National University, Korea, in 2002,
where he is an associate professor. This marked the start of this book, when he began ‘editing’
Joe Hammond’s notes appropriate to a postgraduate course he was lecturing – particularly
appreciating the importance of including ‘hands-on’ exercises – using interactive MATLAB R©

examples. With encouragement from Professor Mike Brennan, Kihong Shin continued with
this and it was not until 2004, when a manuscript landed on Joe Hammond’s desk (some bits
looking oddly familiar), that the second author even knew of the project – with some surprise
and great pleasure.

ix
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1
Introduction to Signal Processing

Signal processing is the name given to the procedures used on measured data to reveal the
information contained in the measurements. These procedures essentially rely on various
transformations that are mathematically based and which are implemented using digital tech-
niques. The wide availability of software to carry out digital signal processing (DSP) with
such ease now pervades all areas of science, engineering, medicine, and beyond. This ease
can sometimes result in the analyst using the wrong tools – or interpreting results incorrectly
because of a lack of appreciation or understanding of the assumptions or limitations of the
method employed.

This text is directed at providing a user’s guide to linear system identification. In order
to reach that end we need to cover the groundwork of Fourier methods, random processes,
system response and optimization. Recognizing that there are many excellent texts on this,1

why should there be yet another? The aim is to present the material from a user’s viewpoint.
Basic concepts are followed by examples and structured MATLAB® exercises allow the user
to ‘experiment’. This will not be a story with the punch-line at the end – we actually start in
this chapter with the intended end point.

The aim of doing this is to provide reasons and motivation to cover some of the underlying
theory. It will also offer a more rapid guide through methodology for practitioners (and others)
who may wish to ‘skip’ some of the more ‘tedious’ aspects. In essence we are recognizing
that it is not always necessary to be fully familiar with every aspect of the theory to be an
effective practitioner. But what is important is to be aware of the limitations and scope of one’s
analysis.

1 See for example Bendat and Piersol (2000), Brigham (1988), Hsu (1970), Jenkins and Watts (1968), Oppenheim
and Schafer (1975), Otnes and Enochson (1978), Papoulis (1977), Randall (1987), etc.

Fundamentals of Signal Processing for Sound and Vibration Engineers
K. Shin and J. K. Hammond. C© 2008 John Wiley & Sons, Ltd

1
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2 INTRODUCTION TO SIGNAL PROCESSING

The Aim of the Book

We are assuming that the reader wishes to understand and use a widely used approach to
‘system identification’. By this we mean we wish to be able to characterize a physical process
in a quantified way. The object of this quantification is that it reveals information about the
process and accounts for its behaviour, and also it allows us to predict its behaviour in future
environments.

The ‘physical processes’ could be anything, e.g. vehicles (land, sea, air), electronic
devices, sensors and actuators, biomedical processes, etc., and perhaps less ‘physically based’
socio-economic processes, and so on. The complexity of such processes is unlimited – and
being able to characterize them in a quantified way relies on the use of physical ‘laws’ or other
‘models’ usually phrased within the language of mathematics. Most science and engineering
degree programmes are full of courses that are aimed at describing processes that relate to the
appropriate discipline. We certainly do not want to go there in this book – life is too short!
But we still want to characterize these systems – with the minimum of effort and with the
maximum effect.

This is where ‘system theory’ comes to our aid, where we employ descriptions or mod-
els – abstractions from the ‘real thing’ – that nevertheless are able to capture what may be
fundamentally common, to large classes of the phenomena described above. In essence what
we do is simply to watch what ‘a system’ does. This is of course totally useless if the system
is ‘asleep’ and so we rely on some form of activation to get it going – in which case it is
logical to watch (and measure) the particular activation and measure some characteristic of
the behaviour (or response) of the system.

In ‘normal’ operation there may be many activators and a host of responses. In most
situations the activators are not separate discernible processes, but are distributed. An example
of such a system might be the acoustic characteristics of a concert hall when responding to
an orchestra and singers. The sources of activation in this case are the musical instruments
and singers, the system is the auditorium, including the members of the audience, and the
responses may be taken as the sounds heard by each member of the audience.

The complexity of such a system immediately leads one to try and conceptualize
something simpler. Distributed activation might be made more manageable by ‘lumping’
things together, e.g. a piano is regarded as several separate activators rather than continu-
ous strings/sounding boards all causing acoustic waves to emanate from each point on their
surfaces. We might start to simplify things as in Figure 1.1.

This diagram is a model of a greatly simplified system with several actuators – and the
several responses as the sounds heard by individual members of the audience. The arrows
indicate a ‘cause and effect’ relationship – and this also has implications. For example, the
figure implies that the ‘activators’ are unaffected by the ‘responses’. This implies that there is
no ‘feedback’ – and this may not be so.

System

Activators Responses

Figure 1.1 Conceptual diagram of a simplified system
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INTRODUCTION TO SIGNAL PROCESSING 3

System
x(t) y(t)

Figure 1.2 A single activator and a single response system

Having got this far let us simplify things even further to a single activator and a single
response as shown in Figure 1.2. This may be rather ‘distant’ from reality but is a widely used
model for many processes.

It is now convenient to think of the activator x(t) and the response y(t) as time histories.
For example, x(t) may denote a voltage, the system may be a loudspeaker and y(t) the pressure
at some point in a room. However, this time history model is just one possible scenario. The
activator x may denote the intensity of an image, the system is an optical device and y may
be a transformed image. Our emphasis will be on the time history model generally within a
sound and vibration context.

The box marked ‘System’ is a convenient catch-all term for phenomena of great variety
and complexity. From the outset, we shall impose major constraints on what the box rep-
resents – specifically systems that are linear2 and time invariant.3 Such systems are very
usefully described by a particular feature, namely their response to an ideal impulse,4 and
their corresponding behaviour is then the impulse response.5 We shall denote this by the
symbol h(t).

Because the system is linear this rather ‘abstract’ notion turns out to be very useful
in predicting the response of the system to any arbitrary input. This is expressed by the
convolution6 of input x(t) and system h(t) sometimes abbreviated as

y(t) = h(t) ∗ x(t) (1.1)

where ‘*’ denotes the convolution operation. Expressed in this form the system box is filled
with the characterization h(t) and the (mathematical) mapping or transformation from the
input x(t) to the response y(t) is the convolution integral.

System identification now becomes the problem of measuring x(t) and y(t) and deducing
the impulse response function h(t). Since we have three quantitative terms in the relationship
(1.1), but (assume that) we know two of them, then, in principle at least, we should be able to
find the third. The question is: how?

Unravelling Equation (1.1) as it stands is possible but not easy. Life becomes considerably
easier if we apply a transformation that maps the convolution expression to a multiplication.
One such transformation is the Fourier transform.7 Taking the Fourier transform of the
convolution8 in Equation (1.1) produces

Y ( f ) = H ( f )X ( f ) (1.2)

* Words in bold will be discussed or explained at greater length later.
2 See Chapter 4, Section 4.7.
3 See Chapter 4, Section 4.7.
4 See Chapter 3, Section 3.2, and Chapter 4, Section 4.7.
5 See Chapter 4, Section 4.7.
6 See Chapter 4, Section 4.7.
7 See Chapter 4, Sections 4.1 and 4.4.
8 See Chapter 4, Sections 4.4 and 4.7.
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4 INTRODUCTION TO SIGNAL PROCESSING

where f denotes frequency, and X ( f ), H ( f ) and Y ( f ) are the transforms of x(t), h(t) and
y(t). This achieves the unravelling of the input–output relationship as a straightforward mul-
tiplication – in a ‘domain’ called the frequency domain.9 In this form the system is char-
acterized by the quantity H ( f ) which is called the system frequency response function
(FRF).10

The problem of ‘system identification’ now becomes the calculation of H ( f ), which
seems easy: that is, divide Y ( f ) by X ( f ), i.e. divide the Fourier transform of the output by the
Fourier transform of the input. As long as X ( f ) is never zero this seems to be the end of the
story – but, of course, it is not. Reality interferes in the form of ‘uncertainty’. The measurements
x(t) and y(t) are often not measured perfectly – disturbances or ‘noise’ contaminates them –
in which case the result of dividing two transforms of contaminated signals will be of limited
and dubious value.

Also, the actual excitation signal x(t) may itself belong to a class of random11 signals –
in which case the straightforward transformation (1.2) also needs more attention. It is this
‘dual randomness’ of the actuating (and hence response) signal and additional contamination
that is addressed in this book.

The Effect of Uncertainty

We have referred to randomness or uncertainty with respect to both the actuation and response
signal and additional noise on the measurements. So let us redraw Figure 1.2 as in Figure 1.3.

System

+

( )x t

+

( )y t

( )yn t( )xn t

( )my t( )mx t

x

Figure 1.3 A single activator/response model with additive noise on measurements

In Figure 1.3, x and y denote the actuation and response signals as before – which may
themselves be random. We also recognize that x and y are usually not directly measurable and
we model this by including disturbances written as nx and ny which add to x and y – so that
the actual measured signals are xm and ym . Now we get to the crux of the system identification:
that is, on the basis of (noisy) measurements xm and ym , what is the system?

We conceptualize this problem pictorially. Imagine plotting ym against xm (ignore for
now what xm and ym might be) as in Figure 1.4.

Each point in this figure is a ‘representation’ of the measured response ym corresponding
to the measured actuation xm .

System identification, in this context, becomes one of establishing a relationship between
ym and xm such that it somehow relates to the relationship between y and x . The noises are a

9 See Chapter 2, Section 2.1.
10 See Chapter 4, Section 4.7.
11 See Chapter 7, Section 7.2.
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mx

my

Figure 1.4 A plot of the measured signals ym versus xm

nuisance, but we are stuck with them. This is where ‘optimization’ comes in. We try and find
a relationship between xm and ym that seeks a ‘systematic’ link between the data points which
suppresses the effects of the unwanted disturbances.

The simplest conceptual idea is to ‘fit’ a linear relationship between xm and ym . Why
linear? Because we are restricting our choice to the simplest relationship (we could of course
be more ambitious). The procedure we use to obtain this fit is seen in Figure 1.5 where the
slope of the straight line is adjusted until the match to the data seems best.

This procedure must be made systematic – so we need a measure of how well we fit the
points. This leads to the need for a specific measure of fit and we can choose from an unlimited
number. Let us keep it simple and settle for some obvious ones. In Figure 1.5, the closeness
of the line to the data is indicated by three measures ey , ex and eT . These are regarded as
errors which are measures of the ‘failure’ to fit the data. The quantity ey is an error in the y
direction (i.e. in the output direction). The quantity ex is an error in the x direction (i.e. in the
input direction). The quantity eT is orthogonal to the line and combines errors in both x and
y directions.

We might now look at ways of adjusting the line to minimize ey , ex , eT or some conve-
nient ‘function’ of these quantities. This is now phrased as an optimization problem. A most
convenient function turns out to be an average of the squared values of these quantities (‘con-
venience’ here is used to reflect not only physical meaning but also mathematical ‘niceness’).
Minimizing these three different measures of closeness of fit results in three correspondingly
different slopes for the straight line; let us refer to the slopes as my , mx , mT . So which one
should we use as the best? The choice will be strongly influenced by our prior knowledge of
the nature of the measured data – specifically whether we have some idea of the dominant
causes of error in the departure from linearity. In other words, some knowledge of the relative
magnitudes of the noise on the input and output.

xeye

Te

mx

my

Figure 1.5 A linear fit to measured data
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6 INTRODUCTION TO SIGNAL PROCESSING

We could look to the figure for a guide:� my seems best when errors occur on y, i.e. errors on output ey ;� mx seems best when errors occur on x , i.e. errors on input ex ;� mT seems to make an attempt to recognize that errors are on both, i.e. eT .

We might now ask how these rather simple concepts relate to ‘identifying’ the system in
Figure 1.3. It turns out that they are directly relevant and lead to three different estimators
for the system frequency response function H ( f ). They have come to be referred to in the
literature by the notation H1( f ), H2( f ) and HT ( f ),12 and are the analogues of the slopes my ,
mx , mT , respectively.

We have now mapped out what the book is essentially about in Chapters 1 to 10. The
book ends with a chapter that looks into the implications of multi-input/output systems.

1.1 DESCRIPTIONS OF PHYSICAL DATA (SIGNALS)

Observed data representing a physical phenomenon will be referred to as a time history or a
signal. Examples of signals are: temperature fluctuations in a room indicated as a function of
time, voltage variations from a vibration transducer, pressure changes at a point in an acoustic
field, etc. The physical phenomenon under investigation is often translated by a transducer
into an electrical equivalent (voltage or current) and if displayed on an oscilloscope it might
appear as shown in Figure 1.6. This is an example of a continuous (or analogue) signal.

In many cases, data are discrete owing to some inherent or imposed sampling procedure.
In this case the data might be characterized by a sequence of numbers equally spaced in time.
The sampled data of the signal in Figure 1.6 are indicated by the crosses on the graph shown
in Figure 1.7.

Time (seconds)

Volts

Figure 1.6 A typical continuous signal from a transducer output

X

X

X X
X

X

X

X

X

X

X
X

X
X

X

Δ seconds

Time (seconds)

Volts

Figure 1.7 A discrete signal sampled at every � seconds (marked with ×)

12 See Chapter 9, Section 9.3.
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CLASSIFICATION OF DATA 7

Spatial position (ξ)

Road height 
(h)

Figure 1.8 An example of a signal where time is not the natural independent variable

For continuous data we use the notation x(t), y(t), etc., and for discrete data various
notations are used, e.g. x(n�), x(n), xn (n = 0, 1, 2, . . . ).

In certain physical situations, ‘time’ may not be the natural independent variable; for
example, a plot of road roughness as a function of spatial position, i.e. h(ξ ) as shown in
Figure 1.8. However, for uniformity we shall use time as the independent variable in all our
discussions.

1.2 CLASSIFICATION OF DATA

Time histories can be broadly categorized as shown in Figure 1.9 (chaotic signals are added to
the classifications given by Bendat and Piersol, 2000). A fundamental difference is whether a
signal is deterministic or random, and the analysis methods are considerably different depend-
ing on the ‘type’ of the signal. Generally, signals are mixed, so the classifications of Figure 1.9
may not be easily applicable, and thus the choice of analysis methods may not be apparent. In
many cases some prior knowledge of the system (or the signal) is very helpful for selecting an
appropriate method. However, it must be remembered that this prior knowledge (or assump-
tion) may also be a source of misleading the results. Thus it is important to remember the First
Principle of Data Reduction (Ables, 1974)

The result of any transformation imposed on the experimental data shall incorporate and be
consistent with all relevant data and be maximally non-committal with regard to unavailable
data.

It would seem that this statement summarizes what is self-evident. But how often do we
contravene it – for example, by ‘assuming’ that a time history is zero outside the extent of a
captured record?

Signals

Deterministic Random

Periodic Non-periodic Stationary

TransientAlmost

periodic

(Chaotic)

Non-stationary

Complex

periodic

Sinusoidal

Figure 1.9 Classification of signals
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m

k

x

Figure 1.10 A simple mass–spring system

Nonetheless, we need to start somewhere and signals can be broadly classified as being
either deterministic or non-deterministic (random). Deterministic signals are those whose
behaviour can be predicted exactly. As an example, a mass–spring oscillator is considered in
Figure 1.10. The equation of motion is mẍ + kx = 0 (x is displacement and ẍ is acceleration).
If the mass is released from rest at a position x(t) = A and at time t = 0, then the displacement
signal can be written as

x(t) = A cos

(√
k
/

m · t

)
t ≥ 0 (1.3)

In this case, the displacement x(t) is known exactly for all time. Various types of deter-
ministic signals will be discussed later. Basic analysis methods for deterministic signals are
covered in Part I of this book. Chaotic signals are not considered in this book.

Non-deterministic signals are those whose behaviour cannot be predicted exactly. Some
examples are vehicle noise and vibrations on a road, acoustic pressure variations in a wind
tunnel, wave heights in a rough sea, temperature records at a weather station, etc. Various
terminologies are used to describe these signals, namely random processes (signals), stochastic
processes, time series, and the study of these signals is called time series analysis. Approaches
to describe and analyse random signals require probabilistic and statistical methods. These
are discussed in Part II of this book.

The classification of data as being deterministic or random might be debatable in many
cases and the choice must be made on the basis of knowledge of the physical situation. Often
signals may be modelled as being a mixture of both, e.g. a deterministic signal ‘embedded’
in unwanted random disturbances (noise).

In general, the purpose of signal processing is the extraction of information from a
signal, especially when it is difficult to obtain from direct observation. The methodology of
extracting information from a signal has three key stages: (i) acquisition, (ii) processing, (iii)
interpretation. To a large extent, signal acquisition is concerned with instrumentation, and we
shall treat some aspects of this, e.g. analogue-to-digital conversion.13 However, in the main,
we shall assume that the signal is already acquired, and concentrate on stages (ii) and (iii).

13 See Chapter 5, Section 5.3.
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Piezoceramic
patch actuator

Slender beam

Accelerometer

Force sensor

Figure 1.11 A laboratory setup

Some ‘Real’ Data

Let us now look at some signals measured experimentally. We shall attempt to fit the observed
time histories to the classifications of Figure 1.9.

(a) Figure 1.11 shows a laboratory setup in which a slender beam is suspended verti-
cally from a rigid clamp. Two forms of excitation are shown. A small piezoceramic PZT
(Piezoelectric Zirconate Titanate) patch is used as an actuator which is bonded on near the
clamped end. The instrumented hammer (impact hammer) is also used to excite the structure.
An accelerometer is attached to the beam tip to measure the response. We shall assume here
that digitization effects (ADC quantization, aliasing)14 have been adequately taken care of
and can be ignored. A sharp tap from the hammer to the structure results in Figures 1.12(a)
and (b). Relating these to the classification scheme, we could reasonably refer to these as de-
terministic transients. Why might we use the deterministic classification? Because we expect
replication of the result for ‘identical’ impacts. Further, from the figures the signals appear to
be essentially noise free. From a systems points of view, Figure 1.12(a) is x(t) and 1.12(b) is
y(t) and from these two signals we would aim to deduce the characteristics of the beam.

(b) We now use the PZT actuator, and Figures 1.13(a) and (b) now relate to a random
excitation. The source is a band-limited,15 stationary,16 Gaussian process,17 and in the
steady state (i.e. after starting transients have died down) the response should also be stationary.
However, on the basis of the visual evidence the response is not evidently stationary (or is it?),
i.e. it seems modulated in some way. This demonstrates the difficulty in classification. As it

14 See Chapter 5, Sections 5.1–5.3.
15 See Chapter 5, Section 5.2, and Chapter 8, Section 8.7.
16 See Chapter 8, Section 8.3.
17 See Chapter 7, Section 7.3.
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(b) Response signal to the impact measured from the accelerometer
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Figure 1.12 Example of deterministic transient signals

happens, the response is a narrow-band stationary random process (due to the filtering action
of the beam) which is characterized by an amplitude-modulated appearance.

(c) Let us look at a signal from a machine rotating at a constant rate. A tachometer signal
is taken from this. As in Figure 1.14(a), this is one that could reasonably be classified as
periodic, although there are some discernible differences from period to period – one might
ask whether this is simply an additive low-level noise.

(d) Another repetitive signal arises from a telephone tone shown in Figure 1.14(b). The
tonality is ‘evident’ from listening to it and its appearance is ‘roughly’ periodic; it is tempting
to classify these signals as ‘almost periodic’!

(e) Figure 1.15(a) represents the signal for a transformer ‘hum’, which again perceptually
has a repetitive but complex structure and visually appears as possibly periodic with additive
noise – or (perhaps) narrow-band random.
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(b) Response signal to the random excitation measured from the accelerometer

Figure 1.13 Example of stationary random signals

Figure 1.15(b) is a signal created by adding noise (broadband) to the telephone tone
signal in Figure 1.14(b). It is not readily apparent that Figure 1.15(b) and Figure 1.15(a) are
‘structurally’ very different.

(f) Figure 1.16(a) is an acoustic recording of a helicopter flyover. The non-stationary
structure is apparent – specifically, the increase in amplitude with reduction in range. What
is not apparent are any other more complex aspects such as frequency modulation due to
movement of the source.

(g) The next group of signals relate to practicalities that occur during acquisition that
render the data of limited value (in some cases useless!).

The jagged stepwise appearance in Figure 1.17 is due to quantization effects in the ADC –
apparent because the signal being measured is very small compared with the voltage range of
the ADC.
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(a) Tachometer signal from a rotating machine
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(b) Telephone tone (No. 8) signal

Figure 1.14 Example of periodic (and almost periodic) signals

(h) Figures 1.18(a), (b) and (c) all display flats at the top and bottom (positive and
negative) of their ranges. This is characteristic of ‘clipping’ or saturation. These have been
synthesized by clipping the telephone signal in Figure 1.14(b), the band-limited random signal
in Figure 1.13(a) and the accelerometer signal in Figure 1.12(b). Clipping is a nonlinear effect
which ‘creates’ spurious frequencies and essentially destroys the credibility of any Fourier
transformation results.

(i) Lastly Figures 1.19(a) and (b) show what happens when ‘control’ of an experiment
is not as tight as it might be. Both signals are the free responses of the cantilever beam shown
in Figure 1.11. Figure 1.19(a) shows the results of the experiment performed on a vibration-
isolated optical table. The signal is virtually noise free. Figure 1.19(b) shows the results of the
same experiment, but performed on a normal bench-top table. The signal is now contaminated
with noise that may come from various external sources. Note that we may not be able to
control our experiments as carefully as in Figure 1.19(a), but, in fact, it is a signal as in
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(a) Transformer ‘hum’ noise
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(b) Telephone tone (No. 8) signal with noise

Figure 1.15 Example of periodic signals with additive noise
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Figure 1.16 Example of a non-stationary signal (helicopter flyover noise)
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Figure 1.17 Example of low dynamic range

Figure 1.19(b) which we often deal with. Thus, the nature of uncertainty in the measurement
process is again emphasized (see Figure 1.3).

The Next Stage

Having introduced various classes of signals we can now turn to the principles and details
of how we can model and analyse the signals. We shall use Fourier-based methods – that
is, we essentially model the signal as being composed of sine and cosine waves and tailor
the processing around this idea. We might argue that we are imposing/assuming some prior
information about the signal – namely, that sines and cosines are appropriate descriptors. Whilst
this may seem constraining, such a ‘prior model’ is very effective and covers a wide range of
phenomena. This is sometimes referred to as a non-parametric approach to signal processing.

So, what might be a ‘parametric’ approach? This can again be related to modelling. We
may have additional ‘prior information’ as to how the signal has been generated, e.g. a result of
filtering another signal. This notion may be extended from the knowledge that this generation
process is indeed ‘physical’ to that of its being ‘notional’, i.e. another model. Specifically
Figure 1.20 depicts this when s(t) is the ‘measured’ signal, which is conceived to have arisen
from the action of a system being driven by a very fundamental signal – in this case so-called
white noise18 w(t).

Phrased in this way the analysis of the signal s(t) can now be transformed into a problem of
determining the details of the system. The system could be characterized by a set of parameters,
e.g. it might be mathematically represented by differential equations and the parameters are the
coefficients. Set up like this, the analysis of s(t) becomes one of system parameter estimation –
hence this is a parametric approach.

The system could be linear, time varying or nonlinear depending on one’s prior knowl-
edge, and could therefore offer advantages over Fourier-based methods. However, we shall
not be pursuing this approach in this book and will get on with the Fourier-based methods
instead.

18 See Chapter 8, Section 8.6.
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Figure 1.18 Examples of clipped signals
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(a) Signal is measured on the optical table (fitted with a vibration isolator)

0 2 4 6 8 10 12

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

t (seconds)

x(
t)

 (
v

o
lt

s)

(b) Signal is measured on the ordinary bench-top table

Figure 1.19 Examples of experimental noise

System
w(t) s(t)

Figure 1.20 A white-noise-excited system

We have emphasized that this is a book for practitioners and users of signal processing,
but note also that there should be sufficient detail for completeness. Accordingly we have
chosen to highlight some main points using a light grey background. From Chapter 3 onwards
there is a reasonable amount of mathematical content; however, a reader may wish to get
to the main points quickly, which can be done by using the highlighted sections. The details
supporting these points are in the remainder of the chapter adjacent to these sections and in the
appendices. Examples and MATLAB exercises illustrate the concepts. A superscript notation
is used to denote the relevant MATLAB example given in the last section of the chapter, e.g.
see the superscript (M2.1) in page 21 for MATLAB Example 2.1 given in page 26.
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2
Classification of Deterministic Data

Introduction

As described in Chapter 1, deterministic signals can be classified as shown in Figure 2.1. In
this figure, chaotic signals are not considered and the sinusoidal signal and more general
periodic signals are dealt with together. So deterministic signals are now classified as
periodic, almost periodic and transient, and some basic characteristics are explained
below.

TransientAlmost periodic

Deterministic

Periodic Non-periodic

Figure 2.1 Classification of deterministic signals

2.1 PERIODIC SIGNALS

Periodic signals are defined as those whose waveform repeats exactly at regular time intervals.
The simplest example is a sinusoidal signal as shown in Figure 2.2(a), where the time interval
for one full cycle is called the period TP (in seconds) and its reciprocal 1/TP is called the
frequency (in hertz). Another example is a triangular signal (or sawtooth wave), as shown in
Figure 2.2(b). This signal has an abrupt change (or discontinuity) every TP seconds. A more

Fundamentals of Signal Processing for Sound and Vibration Engineers
K. Shin and J. K. Hammond. C© 2008 John Wiley & Sons, Ltd

19
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t

PT

(a) Single sinusoidal signal

(c) General periodic signal

(b) Triangular signal

t

PT

t

PT

Figure 2.2 Examples of periodic signals

general periodic signal is shown in Figure 2.2(c) where an arbitrarily shaped waveform repeats
with period TP .

In each case the mathematical definition of periodicity implies that the behaviour of the
wave is unchanged for all time. This is expressed as

x(t) = x(t + nTP ) n = ±1, ±2, ±3, . . . (2.1)

For cases (a) and (b) in Figure 2.2, explicit mathematical descriptions of the wave are easy
to write, but the mathematical expression for the case (c) is not obvious. The signal (c) may
be obtained by measuring some physical phenomenon, such as the output of an accelerometer
placed near the cylinder head of a constant speed car engine. In this case, it may be more
useful to consider the signal as being made up of simpler components. One approach to this
is to ‘transform’ the signal into the ‘frequency domain’ where the details of periodicities of
the signal are clearly revealed. In the frequency domain, the signal is decomposed into an
infinite (or a finite) number of frequency components. The periodic signals appear as discrete
components in this frequency domain, and are described by a Fourier series which is discussed
in Chapter 3. As an example, the frequency domain representation of the amplitudes of the
triangular wave (Figure 2.2(b)) with a period of TP = 2 seconds is shown in Figure 2.3.
The components in the frequency domain consist of the fundamental frequency 1/TP and its
harmonics 2/TP , 3/TP , . . . , i.e. all frequency components are ‘harmonically related’.

However, there is hardly ever a perfect periodic signal in reality even if the signal is
carefully controlled. For example, almost all so-called periodic signals produced by a signal
generator used in sound and vibration engineering are not perfectly periodic owing to the
limited precision of the hardware and noise. An example of this may be a telephone keypad
tone that usually consists of two frequency components (assume the ratio of the two frequencies
is a rational number − see Section 2.2). The measured time data of the telephone tone of keypad
‘8’ are shown in Figure 2.4(a), where it seems to be a periodic signal. However, when it is
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Figure 2.3 Frequency domain representation of the amplitudes of a triangular wave with a period of
Tp = 2

transformed into the frequency domain, we may find something different. The telephone tone
of keypad ‘8’ is designed to have frequency components at 852 Hz and 1336 Hz only. This
measured telephone tone is transformed into the frequency domain as shown in Figures 2.4(b)
(linear scale) and (c) (log scale). On a linear scale, it seems to be composed of the two
frequencies. However, there are in fact, many other frequency components that may result if
the signal is not perfectly periodic, and this can be seen by plotting the transform on a log
scale as in Figure 2.4(c).

Another practical example of a signal that may be considered to be periodic is transformer
hum noise (Figure 2.5(a)) whose dominant frequency components are about 122 Hz, 366 Hz
and 488 Hz, as shown in Figure 2.5(b). From Figure 2.5(a), it is apparent that the signal is
not periodic. However, from Figure 2.5(b) it is seen to have a periodic structure contaminated
with noise.

From the above two practical examples, we note that most periodic signals in practical
situations are not ‘truly’ periodic, but are ‘almost’ periodic. The term ‘almost periodic’ is
discussed in the next section.

2.2 ALMOST PERIODIC SIGNALSM2.1 (This superscript is short for MATLAB Example 2.1)

The name ‘almost periodic’ seems self-explanatory and is sometimes called quasi-periodic,
i.e. it looks periodic but in fact it is not if observed closely. We shall see in Chapter 3 that
suitably selected sine and cosine waves may be added together to represent cases (b) and (c)
in Figure 2.2. Also, even for apparently simple situations the sum of sines and cosines results
in a wave which never repeats itself exactly. As an example, consider a wave consisting of
two sine components as below

x(t) = A1 sin (2πp1t + θ1) + A2 sin (2πp2t + θ2) (2.2)



JWBK207-02 JWBK207-Shin January 21, 2008 17:32 Char Count= 0

22 CLASSIFICATION OF DETERMINISTIC DATA

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
–5

–3

–1

1

3

5

t (seconds)

(a) Time history

x(
t)

 (
v
o
lt

s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

Frequency (kHz)

(b) Frequency components (linear scale)

|X
( 

f )
| (

li
n

ea
r 

sc
al

e,
 v

o
lt

s 
/ H

z)
v

o
lt

s/
H

z)

10–10

10–8

10–6

10–4

10–2

100

|X
( 

f )
| (

lo
g

 s
ca

le
, 

v
o

lt
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Frequency (kHz)

(c) Frequency components (log scale)

Figure 2.4 Measured telephone tone (No. 8) signal considered as periodic
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Figure 2.5 Measured transformer hum noise signal

where A1 and A2 are amplitudes, p1 and p2 are the frequencies of each sine component, and
θ1 and θ2 are called the phases. If the frequency ratio p1/p2 is a rational number, the signal
x(t) is periodic and repeats at every time interval of the smallest common period of both 1/p1

and 1/p2. However, if the ratio p1/p2 is irrational (as an example, the ratio p1/p2 = 2/
√

2 is
irrational), the signal x(t) never repeats. It can be argued that the sum of two or more sinusoidal
components is periodic only if the ratios of all pairs of frequencies are found to be rational
numbers (i.e. ratio of integers). A possible example of an almost periodic signal may be an
acoustic signal created by tapping a slightly asymmetric wine glass.

However, the representation (model) of a signal as the addition of simpler (sinusoidal)
components is very attractive – whether the signal is truly periodic or not. In fact a method
which predated the birth of Fourier analysis uses this idea. This is the so-called Prony series
(de Prony, 1795; Spitznogle and Quazi, 1970; Kay and Marple, 1981; Davies, 1983). The
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basic components here have the form Ae−σ t sin(ωt + φ) in which there are four parameters
for each component – namely, amplitude A, frequency ω, phase φ and an additional feature σ

which controls the decay of the component.
Prony analysis fits a sum of such components to the data using an optimization proce-

dure. The parameters are found from a (nonlinear) algorithm. The nonlinear nature of the
optimization arises because (even if σ = 0) the frequency ω is calculated for each component.
This is in contrast to Fourier methods where the frequencies are fixed once the period TP is
known, i.e. only amplitudes and phases are calculated.

2.3 TRANSIENT SIGNALS

The word ‘transient’ implies some limitation on the duration of the signal. Generally speaking,
a transient signal has the property that x(t) = 0 when t → ±∞; some examples are shown
in Figure 2.6. In vibration engineering, a common practical example is impact testing (with a
hammer) to estimate the frequency response function (FRF, see Equation (1.2)) of a structure.
The measured input force signal and output acceleration signal from a simple cantilever beam
experiment are shown in Figure 2.7. The frequency characteristic of this type of signal is
very different from the Fourier series. The discrete frequency components are replaced by the
concept of the signal containing a continuum of frequencies. The mathematical details and
interpretation in the frequency domain are presented in Chapter 4.

Note also that the modal characteristics of the beam allow the transient response to be
modelled as the sum of decaying oscillations, i.e. ideally matched to the Prony series. This
allows the Prony model to be ‘fitted to’ the data (see Davies, 1983) to estimate the amplitudes,
frequencies, damping and phases, i.e. a parametric approach.

2.4 BRIEF SUMMARY AND CONCLUDING REMARKS

1. Deterministic signals are largely classified as periodic, almost periodic and transient
signals.

2. Periodic and almost periodic signals have discrete components in the frequency
domain.

3. Almost periodic signals may be considered as periodic signals having an infinitely
long period.

4. Transient signals are analysed using the Fourier integral (see Chapter 4).

Chapters 1 and 2 have been introductory and qualitative. We now add detail to these
descriptions and note again that a quick ‘skip-through’ can be made by following
the highlighted sections. MATLAB examples are also presented with enough de-
tail to allow the reader to try them and to understand important features (MATLAB
version 7.1 is used, and Signal Processing Toolbox is required for some MATLAB
examples).
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Figure 2.6 Examples of transient signals
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(a) Signal from the force sensor (impact hammer)

(b) Signal from the accelerometer

Figure 2.7 Practical examples of transient signals (measured from an impact testing experiment)
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2.5 MATLAB EXAMPLES1

Example 2.1: Synthesis of periodic signals and almost periodic signals
(see Section 2.2)

Consider Equation (2.2) for this example, i.e.

x(t) = A1 sin (2πp1t + θ1) + A2 sin (2πp2t + θ2)

Let the amplitudes A1 = A2 = 1 and phases θ1 = θ2 = 0 for convenience.

Case 1: Periodic signal with frequencies p1 = 1.4 Hz and p2 = 1.5 Hz.
Note that the ratio p1/p2 is rational, and the smallest common period of both
1/p1 and 1/p2 is ‘10’, thus the period is 10 seconds in this case.

Line MATLAB code Comments

1 clear all Removes all local and global variables
(this is a good way to start a new
MATLAB script).

2 A1=1; A2=1; Theta1=0;
Theta2=0; p1=1.4; p2=1.5;

Define the parameters for Equation
(2.2). Semicolon (;) separates
statements and prevents displaying the
results on the screen.

3 t=[0:0.01:30]; The time variable t is defined as a row
vector from zero to 30 seconds with a
step size 0.01.

4 x=A1*sin(2*pi*p1*t+Theta1)
+A2*sin(2*pi*p2*t+Theta2);

MATLAB expression of Equation
(2.2).

5 plot(t, x) Plot the results of t versus x (t on
abscissa and x on ordinate).

6 xlabel('\itt\rm (seconds)');
ylabel('\itx\rm(\itt\rm)')

Add text on the horizontal (xlabel) and
on the vertical (ylabel) axes. ‘\it’ is for
italic font, and ‘\rm’ is for normal
font. Readers may find more ways of
dealing with graphics in the section
‘Handle Graphics Objects’ in the
MATLAB Help window.

7 grid on Add grid lines on the current figure.

1 MATLAB codes (m files) and data files can be downloaded from the Companion Website (www.wiley.com/go/
shin hammond).
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Results

(a) Periodic signal
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Comments: It is clear that this signal is periodic and repeats every 10 seconds, i.e.
TP = 10 seconds, thus the fundamental frequency is 0.1 Hz. The frequency domain
representation of the above signal is shown in Figure (b). Note that the amplitude of
the fundamental frequency is zero and thus does not appear in the figure. This ap-
plies to subsequent harmonics until 1.4 Hz and 1.5 Hz. Note also that the frequency
components 1.4 Hz and 1.5 Hz are ‘harmonically’ related, i.e. both are multiples of
0.1 Hz.
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(b) Fourier transform of x(t) (periodic)
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Case 2: Almost periodic signal with frequencies p1 = √
2 Hz and p2 = 1.5 Hz.

Note that the ratio p1/p2 is now irrational, so there is no common period of both
1/p1 and 1/p2.

Line MATLAB code Comments

1 clear all
2 A1=1; A2=1; Theta1=0;

Theta2=0; p1=sqrt(2); p2=1.5;
3 t=[0:0.01:30];
4 x=A1*sin(2*pi*p1*t+Theta1)

+A2*sin(2*pi*p2*t+Theta2);
5 plot(t, x)
6 xlabel('\itt\rm (seconds)');

ylabel('\itx\rm(\itt\rm)')
7 grid on

Exactly the same script as in the previous
case except ‘p1=1.4’ is replaced with
‘p1=sqrt(2)’.

Results
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(a) Almost periodic signal

Comments: One can find that this signal is not periodic if it is observed carefully by
closely investigating or magnifying appropriate regions. The frequency domain repre-
sentation of the above signal is shown in Figure (b). Since the signal is not exactly
periodic, the usual concept of the fundamental frequency does not hold. However, it may
be considered that the periodicity of this signal is infinite, i.e. the fundamental frequency
is ‘0 Hz’ (this concept leads us to the Fourier integral which is discussed in Chapter 4).
The spread of the frequency components in the figure is not representative of the true
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frequency components in the signal, but results from the truncation of the signal, i.e. it
is a windowing effect (see Sections 3.6 and 4.11 for details).
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0

0.1
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0.5

Frequency (Hz)

|X
(

f)
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1.5 Hz2 Hz

Windowing
effect

(b) Fourier transform of x(t) (almost periodic)
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3
Fourier Series

Introduction

This chapter describes the simplest of the signal types – periodic signals. It begins with the
ideal situation and the basis of Fourier decomposition, and then, through illustrative examples,
discusses some of the practical issues that arise. The delta function is introduced, which is
very useful in signal processing. The chapter concludes with some examples based on the
MATLAB software environment.

The presentation is reasonably detailed, but to assist the reader in skipping through to
find the main points being made, some equations and text are highlighted.

3.1 PERIODIC SIGNALS AND FOURIER SERIES

Periodic signals are analysed using Fourier series. The basis of Fourier analysis of a
periodic signal is the representation of such a signal by adding together sine and cosine
functions of appropriate frequencies, amplitudes and relative phases. For a single sine
wave

x(t) = X sin (ωt + φ) = X sin (2π f t + φ) (3.1)

where X is amplitude,
ω is circular (angular) frequency in radians per unit time (rad/s),
f is (cyclical) frequency in cycles per unit time (Hz),
φ is phase angle with respect to the time origin in radians.

The period of this sine wave is TP = 1/ f = 2π/ω seconds. A positive phase angle φ

shifts the waveform to the left (a lead or advance) and a negative phase angle to the right
(a lag or delay), where the time shift is φ/ω seconds. When φ = π/2 the wave becomes a

Fundamentals of Signal Processing for Sound and Vibration Engineers
K. Shin and J. K. Hammond. C© 2008 John Wiley & Sons, Ltd
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cosine wave. The Fourier series (for periodic signal) is now described. A periodic signal, x(t),
is shown in Figure 3.1 and satisfies

x(t) = x(t + nTP ) n = ±1, ±2, ±3, . . . (3.2)

( )x t

t

PT

0

Figure 3.1 A period signal with a period TP

With a few exceptions such periodic functions may be represented by

x(t) = a0

2
+

∞∑
n=1

[
an cos

(
2πnt

TP

)
+ bn sin

(
2πnt

TP

)]
(3.3)

The fundamental frequency is f1 = 1/TP and all other frequencies are multiples
of this. a0/2 is the d.c. level or mean value of the signal. The reason for wanting to use
a representation of the form (3.3) is because it is useful to decompose a ‘complicated’
signal into a sum of ‘simpler’ signals – in this case, sine and cosine waves. The amplitude
and phase of each component can be obtained from the coefficients an , bn , as we shall see
later in Equation (3.12). These coefficients are calculated from the following expressions:

a0

2
= 1

TP

TP∫
0

x(t)dt = 1

TP

TP /2∫
−TP /2

x(t)dt : mean value

an = 2

TP

TP∫
0

x(t) cos

(
2πnt

TP

)
dt = 2

TP

TP /2∫
−TP /2

x(t) cos

(
2πnt

TP

)
dt n = 1, 2, . . . (3.4)

bn = 2

TP

TP∫
0

x(t) sin

(
2πnt

TP

)
dt = 2

TP

TP /2∫
−TP /2

x(t) sin

(
2πnt

TP

)
dt n = 1, 2, . . .

We justify the expressions (3.4) for the coefficients an , bn as follows. Suppose we wish to
add up a set of ‘elementary’ functions un(t), n = 1, 2, . . . , so as to represent a function x(t), i.e.
we want

∑
n cnun(t) to be a ‘good’ representation of x(t). We may write x(t) ≈ ∑

n cnun(t),
where cn are coefficients to be found. Note that we cannot assume equality in this expression.
To find the coefficients cn , we form an error function e(t) = x(t) − ∑

n cnun(t) and select the
cn so as to minimize some function of e(t), e.g.

J =
TP∫

0

e2(t)dt (3.5)
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Since the un(t) are chosen functions, J is a function of c1, c2, . . . only, so in order to minimize
J we need necessary conditions as below:

∂ J

∂cm
= 0 for m = 1, 2, . . . (3.6)

The function J is

J (c1, c2, . . .) =
TP∫

0

(
x(t) −

∑
n

cnun(t)

)2

dt

and so Equation (3.6) becomes

∂ J

∂cm
=

TP∫
0

2

(
x(t) −

∑
n

cnun(t)

)
(−um(t))dt = 0 (3.7)

Thus the following result is obtained:

TP∫
0

x(t)um(t)dt =
∑

n

cn

TP∫
0

un(t)um(t)dt (3.8)

At this point we can see that a very desirable property of the ‘basis set’ un is that

TP∫
0

un(t)um(t)dt = 0 for n �= m (3.9)

i.e. they should be ‘orthogonal’.
Assuming this is so, then using the orthogonal property of Equation (3.9) gives the

required coefficients as

cm =

TP∫
0

x(t)um(t)dt

TP∫
0

u2
m
(t)dt

(3.10)

Equation (3.10) is the equivalent of Equation (3.4) for the particular case of selecting sines
and cosines as the basic elements. Specifically Equation (3.4) utilizes the following results of
orthogonality:

TP∫
0

cos

(
2πmt

TP

)
sin

(
2πnt

TP

)
dt = 0 for all m, n

TP∫
0

cos

(
2πmt

TP

)
cos

(
2πnt

TP

)
dt = 0

TP∫
0

sin

(
2πmt

TP

)
sin

(
2πnt

TP

)
dt = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ for m �= n (3.11)

TP∫
0

cos2

(
2πnt

TP

)
dt =

TP∫
0

sin2

(
2πnt

TP

)
dt = TP

2
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We began by referring to the amplitude and phase of the components of a Fourier
series. This is made explicit now by rewriting Equation (3.3) in the form

x(t) = a0

2
+

∞∑
n=1

Mn cos (2πn f1t + φn) (3.12)

where f1 = 1/TP is the fundamental frequency,

Mn = √
a2

n + b2
n are the amplitudes of frequencies at n f1,

φn = tan−1 (−bn/an) are the phases of the frequency components at n f1.

Note that we have assumed that the summation of the components does indeed accurately
represent the signal x(t), i.e. we have tacitly assumed the sum converges, and furthermore
converges to the signal. This is discussed further in what follows.

An Example (A Square Wave)

As an example, let us find the Fourier series of the function defined by

x(t) = −1 −T

2
< t < 0

and x(t + nT ) = x(t) n = ±1, ±2, . . .

= 1 0 < t <
T

2

(3.13)

where the function can be drawn as in Figure 3.2.

2

T−
2

T
t

1−

1

( )x t

0

Figure 3.2 A periodic square wave signal

From Figure 3.2, it is apparent that the mean value is zero, so

a0

2
= 1

T

T/2∫
−T/2

x(t)dt = 0 (mean value) (3.14)
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and the coefficients an and bn are

an = 2

T

T/2∫
−T/2

x(t) cos

(
2πnt

T

)
dt

= 2

T

⎡⎢⎣ 0∫
−T/2

− cos

(
2πnt

T

)
dt +

T/2∫
0

cos

(
2πnt

T

)
dt

⎤⎥⎦ = 0

bn = 2

T

T/2∫
−T/2

x(t) sin

(
2πnt

T

)
dt

= 2

T

⎡⎢⎣ 0∫
−T/2

− sin

(
2πnt

T

)
dt +

T/2∫
0

sin

(
2πnt

T

)
dt

⎤⎥⎦ = 2

nπ
(1 − cos nπ )

(3.15)

So Equation (3.13) can be written as

x(t) = 4

π

[
sin

(
2π t

T

)
+ 1

3
sin

(
2π3t

T

)
+ 1

5
sin

(
2π5t

T

)
+ · · ·

]
(3.16)

We should have anticipated that only a sine wave series is necessary. This follows from
the fact that the square wave is an ‘odd’ function and so does not require the cosine terms
which are ‘even’ (even and odd functions will be commented upon later in this section).

Let us look at the way the successive terms on the right hand side of Equation (3.16)
affect the representation. Let ω1 = 2π f1 = 2π/T , so that

x(t) = 4

π

[
sin ω1t + 1

3
sin 3ω1t + 1

5
sin 5ω1t + · · ·

]
(3.17)

Consider ‘partial sums’ of the series above and their approximation to x(t), i.e. denoted
by Sn(t), the sum of n terms, as in Figure 3.3:

2

T−
2

T

2

T−
2

T−
2

T

2

T

1 1

4
( ) sinS t tω

π
= 2 1 1

4 1
( ) sin sin 3

3
S t t tω ω

π
⎡ ⎤= +⎢ ⎥⎣ ⎦

3 1 1 1

4 1 1
( ) sin sin 3 sin 5

3 5
S t t t tω ω ω

π
⎡ ⎤= + +⎢ ⎥⎣ ⎦

000

Figure 3.3 Partial sums of the Fourier series of the square wave
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nb

f

1

1
f

T
=

Figure 3.4 The coefficients bn of the Fourier series of the square wave

Note the behaviour of the partial sums near points of discontinuity displaying what is
known as the ‘overshoot’ or Gibbs’ phenomenon, which will be discussed shortly. The above
Fourier series can be represented in the frequency domain, where it appears as a line spectrum
as shown in Figure 3.4.

We now note some aspects of Fourier series.

Convergence of the Fourier Series

We have assumed that a periodic function may be represented by a Fourier series. Now
we state (without proof) the conditions (known as the Dirichlet conditions, see Oppenheim
et al. (1997) for more details) under which a Fourier series representation is possible. The
sufficient conditions are follows. If a bounded periodic function with period TP is piecewise
continuous (with a finite number of maxima, minima and discontinuities) in the interval
−TP/2 < t ≤ TP/2 and has a left and right hand derivative at each point t0 in that interval,
then its Fourier series converges. The sum is x(t0) if x is continuous at t0. If x is not continuous
at t0, then the sum is the average of the left and right hand limits of x at t0. In the square wave
example above, at t = 0 the Fourier series converges to

1

2

[
lim

t→0+
x(t) + lim

t→0−
x(t)

]
= 1

2
[1 − 1] = 0

Gibbs’ PhenomenonM3.1

When a function is approximated by a partial sum of a Fourier series, there will be a
significant error in the vicinity of a discontinuity, no matter how many terms are used for
the partial sum. This is known as Gibbs’ phenomenon.

Consider the square wave in the previous example. As illustrated in Figure 3.5, near
the discontinuity the continuous terms of the series struggle to simulate a sudden jump.
As the number of terms in the partial sum is increased, the ‘ripples’ are squashed towards
the point of the discontinuity, but the overshoot does not reduce to zero. In this example it
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turns out that a lower bound on the overshoot is about 9% of the height of the discontinuity
(Oppenheim et al., 1997).

Overshoot

7 Terms 20 Terms

Figure 3.5 Illustrations of Gibbs’ phenomenon

Differentiation and Integration of Fourier Series

If x(t) satisfies the Dirichlet conditions, then its Fourier series may be integrated term by
term. Integration ‘smoothes’ jumps and so results in a series whose convergence is enhanced.
Satisfaction of the Dirichlet conditions by x(t) does not justify differentiation term by term.
But, if periodic x(t) is continuous and its derivative, ẋ(t), satisfies the Dirichlet conditions,
then the Fourier series of ẋ(t) may be obtained from the Fourier series of x(t) by differentiating
term by term. Note, however, that these are general guidelines only. Each situation should be
considered carefully. For example, the integral of a periodic function for which a0 �= 0 (mean
value of the signal is not zero) is no longer periodic.

Even and Odd Functions

A function x(t) is even if x(t) = x(−t), as shown for example in Figure 3.6.
A function x(t) is odd if x(t) = −x(−t), as shown for example in Figure 3.7.
Any function x(t) may be expressed as the sum of even and odd functions, i.e.

x(t) = 1

2
[x(t) + x(−t)] + 1

2
[x(t) − x(−t)] = xe(t) + xo(t) (3.18)

If x(t) and y(t) are two functions, then the following four properties hold:

1. If x(t) is odd and y(t) is odd, then x(t)·y(t) is even.
2. If x(t) is odd and y(t) is even, then x(t)·y(t) is odd.
3. If x(t) is even and y(t) is odd, then x(t)·y(t) is odd.
4. If x(t) is even and y(t) is even, then x(t)·y(t) is even.

t

Figure 3.6 An example of an even function
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t

Figure 3.7 An example of an odd function

Also:

1. If x(t) is odd, then
∫ a
−a x(t)dt = 0.

2. If x(t) is even, then
∫ a
−a x(t)dt = 2

∫ a
0

x(t)dt .

Fourier Series of Odd and Even Functions

If x(t) is an odd periodic function with period TP , then

x(t) =
∞∑

n=1

[
bn sin

(
2πnt

TP

)]
It is a series of odd terms only with a zero mean value, i.e. an = 0, n = 0, 1, 2, . . . . If x(t) is
an even periodic function with period TP , then

x(t) = a0

2
+

∞∑
n=1

[
an cos

(
2πnt

TP

)]
It is now a series of even terms only, i.e. bn = 0, n = 1, 2, . . . .

We now have a short ‘mathematical aside’ to introduce the delta function, which turns
out to be very convenient in signal analysis.

3.2 THE DELTA FUNCTION

The Dirac delta function is denoted by δ(t), and is sometimes called the unit impulse
function. Mathematically, it is defined by

δ(t) = 0 for t �= 0, and

∞∫
−∞

δ(t)dt = 1 (3.19)

This is not an ordinary function, but is classified as a ‘generalized’ function. We may
consider this function as a very narrow and tall spike at t = 0 as illustrated in Figure 3.8.
Then, Figure 3.8 can be expressed by Equation (3.20), where the integration of the
function is

∫ ∞
−∞ δε(t)dt = 1. This is a unit impulse:

δε(t) = 1

ε
for − ε

2
< t <

ε

2

= 0 otherwise

(3.20)
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1
ε

2ε− 2ε
t

Figure 3.8 Model of a unit impulse

Now, if we visualize the spike as infinitesimally narrow, i.e. δ(t) = limε→0 δε(t),
then we may represent it on a graph as shown in Figure 3.9, i.e. an arrow whose height
indicates the magnitude of the impulse.

1.0

t

Figure 3.9 Graphical representation of the delta function

An alternative interpretation of the unit impulse is to express it in terms of the unit step
function u(t) defined as

u(t) = 1 for t > 0

= 0 for t < 0
(3.21)

Since Equation (3.20) can be obtained by using two unit step functions appropriately, i.e.
δε(t) = (1/ε) [u (t + ε/2) − u (t − ε/2)], the Dirac delta function and the unit step function
have the following relationship, which is the Dirac delta function as the derivative of the unit
step function:

δ(t) = lim
ε→0

δε(t) = d

dt
u(t) (3.22)

Note that the concept of Equation (3.22) makes it possible to deal with differentiating functions
that contain discontinuities.

Properties of the Delta Function

A shifted delta function: if a delta function is located at t = a, then it can be written as
δ(t − a). Some useful properties of the delta function are:

1. δ(t) = δ(−t), i.e. a delta function is an even function.
2. Sifting property: if x(t) is an ‘ordinary’ function, then the integral of the product of the

ordinary function and a shifted delta function is
∞∫

−∞
x(t)δ(t − a)dt = x(a) (3.23)

i.e. the delta function ‘sifts out’ the value of the ordinary function at t = a.
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The result (3.23) is justified in Figure 3.10 which shows the product of an ordinary function
and a shifted δε(t), i.e.

Iε =
∞∫

−∞
x(t)δε(t − a)dt (3.24)

( )x t

1 ε

ε

2ε− 2εa
t

Figure 3.10 Graphical illustration of the sifting property

We evaluate this integral and then let ε → 0 to obtain Equation (3.23), i.e.

Iε = 1

ε

a+ε/2∫
a−ε/2

x(t)dt (3.25)

This is the average height of x(t) within the range a − ε/2 < t < a + ε/2 and we write this
as x(a + θε/2), |θ | < 1. So Iε = x(a + θε/2), from which limε→0 Iε = x(a). This justifies
Equation (3.23).

3.

∞∫
−∞

e± j2πat dt = δ(a), or

∞∫
−∞

e± jat dt = 2πδ(a) (3.26)

The justification of this property is given below, where the delta function is described in terms
of the limiting form of a tall narrow ‘sinc function’ as shown in Figure 3.11:

∞∫
−∞

e± j2πat dt = lim
M→∞

M∫
−M

(cos 2πat ± j sin 2πat)dt = lim
M→∞

M∫
−M

(cos 2πat)dt

= lim
M→∞

2
sin 2πat

2πa

∣∣∣∣M

0

= lim
M→∞

2M
sin 2πaM

2πaM
= δ(a) (3.27)

Note that it can be verified that the integral of the function in Figure 3.11 is unity (see
Appendix A).

4. δ(at) = 1

|a|δ(t), where a is an arbitrary constant (3.28)

5.

∞∫
−∞

f (t)δ(n)(t − a)dt = (−1)n f (n)(a), where (n) denotes the nth derivative (3.29)
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1

2
a

M
=

a

2M

Figure 3.11 Representation of the delta function using a sinc function

3.3 FOURIER SERIES AND THE DELTA FUNCTION

As already noted, we can differentiate discontinuous functions if we introduce delta functions.
Let us consider the Fourier series of derivatives of discontinuous periodic functions. Consider
an example of a discontinuous function x(t) as shown in Figure 3.12, whose Fourier series is
given as

x(t) = 1

2
+ 1

π

∞∑
n=1

1

n
sin

(
2πnt

T

)
(Note that this is an odd function offset with a d.c. component.)

Differentiating the function in the figure gives

− 1

T
+

∞∑
n=−∞

δ(t − nT )

and differentiating the Fourier series term by term gives

2

T

∞∑
n=1

cos

(
2πnt

T

)
Equating these gives

∞∑
n=−∞

δ(t − nT ) = 1

T
+ 2

T

∞∑
n=1

cos

(
2πnt

T

)
(3.30)

This is a periodic ‘train’ of impulses, and it has a Fourier series representation whose coef-
ficients are constant (2/T ) for all frequencies except for the d.c. component. The periodic
train of impulses (usually written δT (t) or i(t)) is drawn as in Figure 3.13, and will be used in
sampling theory later.

( ) 1 0 , and

( ) ( ) 1, 2, ...

t
x t t T

T
x t nT x t n

= − < <

+ = = ± ±

( )x t

1.0

T 2T
t

Figure 3.12 An example of a discontinuous periodic function
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......
t

1.0

T

Figure 3.13 The periodic train of impulses

So far we have used sines and cosines explicitly in the Fourier series. These functions
can be combined using e± jθ = cos θ ± j sin θ and so sines and cosines can be replaced by
complex exponentials. This is the basis of the complex form of the Fourier series.

3.4 THE COMPLEX FORM OF THE FOURIER SERIES

It is often convenient to express a Fourier series in terms of e± jω1nt (ω1 = 2π/Tp). Note
that

cos θ = 1

2

(
e jθ + e− jθ

)
and sin θ = 1

2 j

(
e jθ − e− jθ

)
so the Fourier series defined in Equation (3.3)

x(t) = a0

2
+

∞∑
n=1

[
an cos

(
2πnt

TP

)
+ bn sin

(
2πnt

TP

)]
becomes

x(t) = a0

2
+

∞∑
n=1

[
an

2

(
e j2πnt/TP + e− j2πnt/TP

) + bn

2 j

(
e j2πnt/TP − e− j2πnt/TP

)]

= a0

2
+

∞∑
n=1

1

2

(
an + bn

j

)
e j2πnt/TP +

∞∑
n=1

1

2

(
an − bn

j

)
e− j2πnt/TP

= a0

2
+

∞∑
n=1

an − jbn

2
e j2πnt/TP +

∞∑
n=1

an + jbn

2
e− j2πnt/TP (3.31)

Let c0 = a0/2, cn = (an − jbn)/2, so c∗
n = (an + jbn)/2, i.e.

x(t) = c0 +
∞∑

n=1

cne j2πnt/TP +
∞∑

n=1

c∗
ne− j2πnt/TP (3.32)

Substituting for an and bn from Equation (3.4) gives

c0 = 1

TP

TP∫
0

x(t)dt, cn = 1

TP

TP∫
0

x(t)e− j2πnt/TP dt, c∗
n = 1

TP

TP∫
0

x(t)e j2πnt/TP dt = c−n

(3.33)
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Note that the negative frequency terms (c−n ) are introduced, so that

∞∑
n=1

c∗
ne− j2πnt/TP =

∞∑
n=1

c−ne− j2πnt/TP

in Equation (3.32). Thus, we obtain the very important results:

x(t) =
∞∑

n=−∞
cne j2πnt/TP (3.34)

cn = 1

TP

TP∫
0

x(t)e− j2πnt/TP dt (3.35)

Note that the ‘basic elements’ are now complex exponentials and the Fourier coefficients cn are
also complex, representing both amplitude and phase information. Note also that the notion
of ‘negative frequencies’, i.e. fn = n/TP , n = 0, ±1, ±2, . . . , has been introduced by the
algebraic manipulation in Equation (3.33).

Referring to Equation (3.12)

x(t) = a0

2
+

∞∑
n=1

Mn cos (2πn f1t + φn)

the relationship between the coefficients is given by

cn = an − jbn

2
so |cn| = 1

2

√
a2

n + b2
n = Mn

2

and arg cn = tan−1

(
−bn

an

)
= φn

⎫⎪⎪⎬⎪⎪⎭ for n �= 0 (3.36)

All previous discussions on Fourier series still hold except that now manipulations are
considerably easier using the complex form. We note a generalization of the concept of
orthogonality of functions for the complex case. Complex-valued functions un(t) are orthogonal
if

TP∫
0

un(t)u∗
m(t)dt = 0 for m �= n (3.37)

This is easily verified by using un(t) = e j2πnt/TP . Also, when n = m, the integral is TP .

3.5 SPECTRA

We now introduce the notion of the spectrum of a process. We shall refer to the com-
plex representation of Equation (3.34) using positive and negative frequencies and also
Equation (3.12) using only positive frequencies. Referring to Equation (3.34) first, a plot
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of the magnitude |cn| versus frequency f (or ω) is called the amplitude spectrum of the
periodic function x(t). A plot of the phase angle arg cn versus frequency is called the
phase spectrum. These are not continuous curves but take values only at discrete values
for f = n/TP , n = 0, ±1, ±2, . . . . We can draw these spectra as in Figures 3.14 and
3.15 respectively.

f

nc

1

PT

3

PT

1

PT
−

3

PT
−

Figure 3.14 Amplitude spectrum of a Fourier series (a line spectrum and an even function)

arg nc

f

Figure 3.15 Phase spectrum of a Fourier series (a line spectrum and an odd function)

If we did not want to include negative frequencies, we could plot Mn , øn (Equation (3.12))
versus n above (note that Mn = 2 |cn| for n �= 0).

As an example, consider a periodic function that can be depicted as in Figure 3.16. A
calculation will give the coefficients as

cn = (Ad/T ) sin (nπd/T )

(nπd/T )
, arg cn = 0

Since this function is even the phase spectrum is zero for all frequency components. If,
for example, T = 1/4, d = 1/20, then the amplitude spectrum is as given in Figure 3.17.

If the function is shifted to the right by d/2, then the function is depicted as in
Figure 3.18. Then, |cn| is unchanged but the phase components are changed, so that
arg cn = −nπ (d/T ) rads.

2T− 2T2d2d−

( )x t

A

t

Figure 3.16 A periodic function of a rectangular pulse
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5A

nc

Envelope

40− 20− 20 40
f

060− 60

Figure 3.17 Amplitude spectrum of the function given in Figure 3.16

T

( )x t

A

t
d

Figure 3.18 A periodic function of a rectangular pulse shifted to the right by d/2

Parseval’s Theorem – The Power Spectrum

Suppose x(t) is interpreted as a voltage. Then the instantaneous power dissipated across
a 1 ohm resistor is x2(t), and the average power dissipated across the resistor is

1

TP

TP∫
0

x2(t)dt

Now, using Equation (3.34),

x(t) =
∞∑

n=−∞
cne j2πnt/TP

the voltage squared is

x2(t) = x(t) · x∗(t) =
∞∑

n=−∞
cne j2πnt/TP ·

∞∑
m=−∞

c∗
me− j2πmt/TP

Thus, the average power can be written as

1

TP

TP∫
0

x2(t)dt = 1

TP

∞∑
n=−∞

∞∑
m=−∞

cnc∗
m

TP∫
0

e j2π (n−m)t/TP dt (3.38)
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By the property of orthogonality, this is reduced to the following form known as (one
form of) Parseval’s theorem:

1

TP

TP∫
0

x2(t)dt =
∞∑

n=−∞
|cn|2 (3.39)

This has a ‘physical’ interpretation. It indicates that the average power of the signal x(t)
may be regarded as the sum of power associated with individual frequency components.
The power spectrum is |cn|2 and may be drawn (typically) as in Figure 3.19. It is a
decomposition of the power of the process over frequency. Note that the power spectrum
is real valued and even (and there is no phase information).

f

2

nc

1

PT

3

PT

1

PT
−3

PT
−

Figure 3.19 An example of a power spectrum (Compare with Figure 3.14)

If we wished to restrict ourselves to positive frequencies only, we could fold the left
hand portion over to double the values at frequencies f = n/TP , n = 1, 2, . . . . The name
‘periodogram’ is sometimes given to this power decomposition.

3.6 SOME COMPUTATIONAL CONSIDERATIONSM3.2

When calculating the Fourier coefficients of a periodic signal which we measure, it is important
to be able to identify the period of the signal. For example, if x(t) has the form shown in
Figure 3.20, the period is TP .

( )x t

t

PT

1.0−

1.0

Figure 3.20 A periodic signal with a period TP
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If we acquire (record or measure) exactly one period, we can calculate Fourier coefficients
correctly (subject to ‘computational errors’) from the formula given by Equation (3.35), i.e.

cn = 1

TP

TP∫
0

x(t)e− j2πnt/TP dt

If we acquire rTP seconds of data and use the formula

cn = 1

rTP

rTP∫
0

x(t)e− j2πnt/TP dt (3.40)

then if r is an integer we can obtain the same Fourier coefficients spaced at frequencies 1/TP

along the frequency axis.
However, if r is not an integer and we use the formula

cn = 1

rTP

rTP∫
0

x(t)e− j 2πn
rTP

t dt (3.41)

then the Fourier coefficients need careful consideration. For example, if we use the period of
1.5TP (note that r is no longer an integer), then we are assuming that the signal is as shown in
Figure 3.21 (compare this with the true signal in Figure 3.20).

Clearly, the Fourier coefficients change (we see immediately that there is a non-zero
mean value) and frequencies are present at every 1/1.5TP Hz.

In practice, if the period is not known, then it is necessary to capture a large number of
periods so that ‘end effects’ are small. This point should be noted since computational methods
of obtaining Fourier coefficients often restrict the data set of N points where N = 2M , i.e. a
power of two (M is an integer). This means we may analyse a non-integer number of periods.
These features are now demonstrated for a square wave.

For the square wave shown in Figure 3.20 (a period of TP ), the theoretical Fourier
coefficient cn has magnitude

|cn| = 2

nπ
for n = odd

= 0 for n = 0, even

⎫⎬⎭ (3.42)

t

1.5 PT

1.0−

1.0

( )x t

Figure 3.21 A periodic signal with a period of 1.5TP
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If TP = 1 second, frequency components |cn| occur at every 1/TP = 1 Hz. Figure 3.22(a)
shows |cn| plotted (for n ≥ 0 only) up to 10 Hz for an exact single period using Equation (3.35)
(or using Equation (3.41) with r = 1). Figure 3.22(b) shows x(t) for two periods using Equation
(3.41), where r = 2. By comparing these two figures, it can be seen that the Fourier coefficients
are exactly the same except that Figure 3.22(b) has more ‘zeros’ due to the fact that we calculate
the coefficients at every 1/2TP = 0.5 Hz.

Figures 3.22(c) and (d) show changes in the amplitude spectra when a non-integer number
of periods is taken (i.e. non-integer r) and Equation (3.41) is used. In Figure 3.22(c), 1.5 periods
are used. Note that it appears that there are no frequency components at 1, 3, 5, . . . Hz as
indicated in Figures 3.22(a) and (b). For Figure 3.22(d), 3.5 periods are taken. The increased
‘density’ of the line frequencies shows maxima near the true values (also refer to Figure 3.22(e)
where 10.5 periods are taken). Note that in Figures 3.22(c)–(e) the amplitudes have decreased.
This follows since there is an increased density of frequency components in the decomposition.
Recall Parseval’s identity (theorem)

1

TP

TP∫
0

x2(t)dt =
∞∑

n=−∞
|cn|2

and note the 1/TP on the left hand side. For the square wave considered, the average power is
always unity when an integer number of periods is included. When a non-integer number of
periods is included the increased density of frequency components means that the amplitudes
change.

Some Comments on the Computation of Fourier Coefficients

This is an introductory comment on the computation of Fourier coefficients, which will be
expanded later in Chapter 6. We address the problem of performing the following integral
using digital techniques:

ck = 1

TP

TP∫
0

x(t)e− j2πkt/TP dt (3.43)

Consider an arbitrary signal measured for TP seconds as shown in Figure 3.23. Suppose the
signal is sliced as shown in the figure, and the values of x(t) at N discrete points x(n	), n = 0,
1, 2, . . . , N−1, are known, each point separated by a time interval 	, say. Then a logical and
simple approximation to the integral of Equation (3.43) is

ck ≈ 1

N	

N−1∑
n=0

x(n	)e− j 2πkn	
N	 · 	 (3.44)

or

ck ≈ 1

N

N−1∑
n=0

x(n	)e− j 2πkn
N = Xk

N
(say) (3.45)
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x(t)

t (s)

TP

1.0

1.0

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

|cn|

Frequency (Hz)

(a) Computed with a period TP (r = 1), using Equation (3.41)

(b) Computed with a period 2TP (r = 2), using Equation (3.41)

(c) Computed with a period 1.5TP (r = 1.5), using Equation (3.41)

(d) Computed with a period 3.5TP (r = 3.5), using Equation (3.41)

(e) Computed with a period 10.5TP (r = 10.5), using Equation (3.41)

x(t)

t
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1.0

|cn|

Frequency (Hz)
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0.5
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Frequency (Hz)
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Frequency (Hz)
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…
1.0

|cn|

Frequency (Hz)
0 1 2 3 4 5 6 7 8 9 10
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0.3

0.4

0.5

Figure 3.22 Fourier coefficients of a square wave
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……
t

PT

1N −

( )x t

0 1 2 3

Figure 3.23 An arbitrary signal measured for TP seconds

The expression Xk on the right hand side of Equation (3.45) is called a discrete Fourier
transform (DFT) and we note some important points that will be further discussed later:

1. It is a finite summation.
2. Do not assume Xk/N ≡ ck . In fact Xk turns out to be periodic (proved below), i.e. Xk =

Xk+r N , where r is an integer, though it would seem reasonable to expect that, if 	 is
‘sufficiently small’, then ck ≈ Xk/N for at least some ‘useful’ range of values for k.

Proof of the periodic nature of the DFT: From

Xk =
N−1∑
n=0

xne− j 2π
N nk

(note the change in notation xn ≡ x(n	)), substitute k by k + rN (r is an integer). Then the
equation becomes

Xk+r N =
N−1∑
n=0

xne− j 2π
N n(k+r N ) =

N−1∑
n=0

xne− j 2π
N nk e− j2πnr︸ ︷︷ ︸

=1.0

and thus Xk+r N = Xk .
3. The DFT relationship

Xk =
N−1∑
n=0

xne− j 2π
N nk (3.46)

has the inverse relationship (IDFT)

xn = 1

N

N−1∑
k=0

Xke j 2π
N nk (3.47)

So, although Xk may not provide enough information to allow the continuous time series
x(t) to be obtained, it is important to realize that it does permit the discrete values of the
series xn to be regained exactly.
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Proof of the inverse DFT (IDFT) relationship: Starting from

Xk =
N−1∑
n=0

xne− j 2π
N nk

multiply both sides by e j(2π/N )sk and sum over k (s is an integer, 0 ≤ s ≤ N − 1). This
yields

N−1∑
k=0

Xke j 2π
N sk =

N−1∑
k=0

N−1∑
n=0

xne− j 2π
N nke j 2π

N sk =
N−1∑
k=0

N−1∑
n=0

xne j 2π
N (s−n)k =

N−1∑
n=0

xn

N−1∑
k=0

e j 2π
N (s−n)k

Consider the second summation. Let s − n = m (integer); then we get
∑N−1

k=0 e j 2π
N mk .

(a) If m = 0, this is N.
(b) If m �= 0, this is a ‘geometric series’ with common ratio e j 2π

N m and the sum is

SN−1 =
1 −

(
e j 2π

N m
)N

1 − e j 2π
N m

= 0

Thus

N−1∑
k=0

Xke j 2π
N sk = N xs, and so xs = 1

N

N−1∑
k=0

Xke j 2π
N sk

or more usually

xn = 1

N

N−1∑
k=0

Xke j 2π
N nk

4. Some authors have defined the DFT in related but different ways, e.g.

Xk = 1

N

N−1∑
n=0

xne− j 2π
N nk (3.48)

Clearly such differences are ones of scale only. We shall use Equations (3.46) and (3.47)
since these are widely adopted as ‘standard’ in signal processing.

5. N is of course arbitrary above, but is often chosen to be a power of two (N = 2M , M an
integer) owing to the advent of efficient Fourier transform algorithms called fast Fourier
transforms (FFTs).

6. We have introduced the DFT as an approximation for calculating Fourier coefficients.
However, we shall see that a formal body of theory has been constructed for ‘discrete-
time’ systems in which the properties are exact and must be considered to stand on their
own. Analogies with continuous-time theory are not always useful and in some cases are
confusing.
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3.7 BRIEF SUMMARY

1. A periodic signal of period TP may be expressed (Equations (3.34) and (3.35)) by

x(t) =
∞∑

n=−∞
cne j2πnt/TP with cn = 1

TP

TP∫
0

x(t)e− j2πnt/TP dt

2. The plots of |cn| versus frequency and arg cn versus frequency are amplitude and phase
(line) spectra of the Fourier decomposition.

3. The average power of a periodic signal is described by Equation (3.39), i.e.

1

TP

TP∫
0

x2(t)dt =
∞∑

n=−∞
|cn|2 Parseval’s theorem (identity)

A plot of |cn|2 versus frequency is called a power spectrum (or a periodogram).
4. The DFT and IDFT relationships for discrete data are defined by Equations (3.46) and

(3.47),

Xk =
N−1∑
n=0

xne− j 2π
N nk and xn = 1

N

N−1∑
k=0

Xke j 2π
N nk

The Fourier coefficients ck are approximated by ck ≈ Xk/N if an integer number of
periods is taken and only for a restricted range of k.

We now include some MATLAB examples illustrating the material covered.

3.8 MATLAB EXAMPLES

Example 3.1: Illustration of the convergence of the Fourier series and Gibbs’
phenomenon (see Section 3.1)

Consider Equation (3.17),

x(t) = 4

π

[
sin ω1t + 1

3
sin 3ω1t + 1

5
sin 5ω1t + · · ·

]
In this MATLAB example, we compare the results of 3, 7 and 20 partial sums in
Equation (3.17).
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Line MATLAB code Comments

1
2

clear all
t=[0:0.001:1];

Define the time variable (vector) t
from 0 to 1 second with a step size
of 0.001.

3 x=[]; x tmp=zeros(size(t)); Define an empty matrix x, and
define the vector x tmp having the
same size as the vector t. All the
elements of x tmp are zeros.

4 for n=1:2:39 Start a ‘for’ loop where n are 1, 3,
5, . . . , 39 (n = 39 implies the 20 par-
tial sums).

5 x tmp=x tmp+4/pi*(1/n*sin(2*pi*n*t)); MATLAB expression of Equation
(3.17), and the result of each partial
sum is stored in the vector x tmp.

6 x=[x; x tmp]; Each row of matrix x has a
corresponding partial sum of
Equation (3.17). For example, the
second row of x corresponds to the
sum of two terms (i.e. n=3).

7 end End of the ‘for’ loop.

8 plot(t,x(3,:),t,x(7,:),t,x(20,:))
9 xlabel('\itt\rm (seconds)');

ylabel('\itx\rm(\itt\rm)')
Plot the results of only 3, 7 and 20
partial sums against the time
variable.

10 grid on

Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–1.5

–1

–0.5

0

0.5

1

1.5

t (seconds)

x(
t)

7 Terms

3 Terms 20 Terms

Comments: The square wave is better represented as the number of terms is increased,
but its errors remain near the discontinuities.
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Example 3.2: Fourier coefficients of a square wave (Figure 3.20, i.e. TP = 1 second
and the amplitude is ‘1’) This is examined for various values of r in Equation (3.41)
below (see Section 3.6):

cn = 1

rTP

rTP∫
0

x(t)e− j 2πn
rTP

t dt

Case 1: r is an integer number. We chose r = 3 for this example; however, readers
may choose any arbitrary positive integer number. The Fourier coefficients are
calculated up to 10 Hz.

Line MATLAB code Comments

1
2

clear all
r=3; cn=[];

Define a parameter r for the number of
periods, and the empty matrix cn for the
Fourier coefficients.

3
4

for n=1:10*r
temp1=0; temp2=0;

Define a ‘for’ loop for the Fourier
coefficients up to 10 Hz, and set temporary
variables.

5
6
7
8

for k = 1:2:2*r
tmp odd = exp(-i*(k/r)*n*pi);
temp1=temp1+tmp odd;

end

This nested ‘for’ loop calculates the
integral in Equation (3.41) for the intervals
of x(t) = 1 in Figure 3.20, and stores the
result in the variable temp1.

9
10
11
12

for k = 2:2:2*r-1
tmp even = -exp(-i*(k/r)*n*pi);
temp2=temp2+tmp even;

end

Another nested ‘for’ loop, which calculates
the integral in Equation (3.41) for the
intervals of x(t) = −1 in Figure 3.20, and
stores the result in the variable temp2.

13 temp = -1/2 + temp1 + temp2
-1/2*exp(-i*2*n*pi);

This completes the calculation of the
integral in Equation (3.41).

14 cn = [cn; i*temp/(pi*n)]; ‘i*temp/(pi*n)’ is the final calculation of
Equation (3.41) for each value of n. As a
result, cn is a ‘30 × 1’ vector, and each
row of the vector cn contains the
complex-valued Fourier coefficients.

15 end End of the ‘for’ loop.

16 stem([0:1/r:n/r],[0; abs(cn)], 'o', 'filled') Plot the result using the ‘stem’ command.
[0:1/r:n/r] defines the frequencies
(horizontal axis) from 0 Hz to 10 Hz at
every 1/3 Hz.
[0; abs(cn)] is the modulus of the Fourier
coefficient at each frequency. Note that the
value of zero is added for 0 Hz.
The result is the amplitude spectrum.

17 xlabel('Frequency (Hz)') Insert labels for each axis.
18 ylabel('Modulus (\mid\itc n\rm\mid)') ‘\mid’ is for ‘|’, ‘\it’ is for italic font, ‘c n’

is for cn , and ‘\rm’ is for normal font.
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Results
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Comments: Compare this graph with Figures 3.22(a) and (b) and with the next case.

Case 2: r is not an integer number. We chose r = 7.5 for this example; however, readers
may choose any arbitrary positive integer number + 0.5. The Fourier coefficients
are calculated up to 10 Hz.

Line MATLAB code Comments

1
2

clear all
r=7.5; r2=ceil(r); cn=[];

‘ceil’ command rounds the element to the
nearest integer towards infinity, so in this
case, r2 has a value of 8.

3
4

for n=1:10*r
temp1=0; temp2=0;

Same as previous case.

5
6
7
8

for k = 1:2:2*r2-3
tmp odd = exp(-i*(k/r)*n*pi);
temp1=temp1+tmp odd;

end

Except for ‘k= 1:2:2*r2-3’, it is the same
script as in the previous case, i.e. it
calculates the integral in Equation (3.41)
for the intervals of x(t) = 1.

9
10
11
12

for k = 2:2:2*r2-1
tmp even=-exp(-i*(k/r)*n*pi);
temp2=temp2+tmp even;

end

Same script as in previous case, except for
‘k=2:2:2*r2-1’. It is for the intervals of
x(t) = −1.

13 temp=-1/2 + temp1 + temp2
+1/2*exp(-i*(2*r/r)*n*pi);

This completes the calculation of the
integral in Equation (3.41).

14 cn = [cn; i*temp/(pi*n)]; Same as in previous case, but now cn is a
‘75 × 1’ vector.

15 end End of the ‘for’ loop.
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16 stem([0:1/r:n/r],[0.5/r; abs(cn)], 'o', 'filled') Frequencies are from 0 to 10 Hz at every
1/7.5 Hz.
0.5/r is added for 0 Hz (note the non-zero
mean value).

17 xlabel('Frequency (Hz)') Same as in previous case.
18 ylabel('Modulus (\mid\itc n\rm\mid)')

Results
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Comments: Compare this graph with Figures 3.22(c)–(e) and with the previous case.
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4
Fourier Integrals (Fourier Transform)
and Continuous-Time Linear Systems

Introduction

This chapter introduces the central concept for signal representation, the Fourier integral.
All classes of signals may be accommodated from this as a starting point – periodic, almost
periodic, transient and random – though each relies on a rather different perspective and
interpretation.

In addition, the concept of convolution is introduced which allows us to describe linear
filtering and interpret the effect of data truncation (windowing). We begin with a derivation
of the Fourier integral.

4.1 THE FOURIER INTEGRAL

We shall extend Fourier analysis to non-periodic phenomena. The basic change in the
representation is that the discrete summation of the Fourier series becomes a continuous
summation, i.e. an integral form. To demonstrate this change, we begin with the Fourier
series representation of a periodic signal as in Equation (4.1), where the interval of
integration is defined from −TP/2 to TP/2 for convenience:

x(t) =
∞∑

n=−∞
cne j2πnt/TP where cn = 1

TP

TP /2∫
−TP /2

x(t)e− j2πnt/TP dt (4.1)

As an example, visualize a periodic signal x(t) as having the form below, in Equation
(4.2) and Figure 4.1:

x(t) = 0 − TP/2 < t < −1
= 1 − 1 < t < 1 (TP/2 > 1)
= 0 1 < t < TP/2

(4.2)

Fundamentals of Signal Processing for Sound and Vibration Engineers
K. Shin and J. K. Hammond. C© 2008 John Wiley & Sons, Ltd
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2PT− 2PT11−

1.0

x(t)

t

Figure 4.1 An example of a periodic signal with a period TP

Now let TP become large. As this happens we are left with a single ‘pulse’ near
t = 0 and the others get further and further away. We examine what happens to the Fourier
representation under these conditions.

The fundamental frequency f1 = 1/TP becomes smaller and smaller and all other
frequencies (n f1 = fn , say), being multiples of the fundamental frequency, are more
densely packed on the frequency axis. Their separation is 1/TP = � f (say). So, as TP →
∞, � f → 0, i.e. the integral form of cn in Equation (4.1) becomes

cn = 1

TP

TP /2∫
−TP /2

x(t)e− j2πnt/TP dt → cn = lim
TP →∞
(� f →0)

� f

TP /2∫
−TP /2

x(t)e− j2π fn t dt (4.3)

If the integral is finite the Fourier coefficients cn → 0 as � f → 0 (i.e. the more frequency
components there are, the smaller are their amplitudes). To avoid this rather unhelpful
result, it is more desirable to form the ratio cn/� f , and so it can be rewritten as

lim
� f →0

(
cn

� f

)
= lim

TP →∞

TP /2∫
−TP /2

x(t)e− j2π fn t dt (4.4)

Assuming that the limits exist, we write this as

X ( fn) =
∞∫

−∞
x(t)e− j2π fn t dt (4.5)

Since � f → 0, the frequencies fn in the above representation become a continuum, so
we write f instead of fn . From Equation (4.4), X ( fn) which is now expressed as X ( f )
is an amplitude divided by bandwidth or amplitude density which is called the Fourier
integral or the Fourier transform of x(t), written as

X ( f ) =
∞∫

−∞
x(t)e− j2π f t dt (4.6)

Now consider the corresponding change in the representation of x(t) as the sum of sines
and cosines, i.e. x(t) = ∑∞

n=−∞ cne j2πnt/TP . Using the above results,

lim
� f →0

(
cn

� f

)
= X ( fn)
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x(t) can be rewritten as

x(t) = lim
� f →0

∞∑
n=−∞

X ( fn)� f · e j2πnt/TP (4.7)

which can be represented in a continuous form as

x(t) =
∞∫

−∞
X ( f )e j2π f t d f (4.8)

Equations (4.6) and (4.8) are called the Fourier integral pair.

Comments on the Fourier Integral

1. Interpretation and appearance of the Fourier transform: X ( f ) is a (complex) amplitude den-
sity. From the representation x(t) = ∫ ∞

−∞ X ( f )e j2π f t d f , we see that |X ( f )| d f represents
the contribution in magnitude (to x(t)) of the frequency components in a narrow band near
frequency f . Since X ( f ) is complex, we may write

X ( f ) = XRe( f ) + j X Im( f ) = |X ( f )| e jφ( f ) (4.9)

where |X ( f )| is the magnitude (or amplitude) spectrum and φ( f ) is the phase spectrum.
When x(t) is in volts, |X ( f )| is in volts/Hz.

If x(t) is real valued, XRe( f ) is an even function and X Im( f ) is an odd function, and
also |X ( f )| is an even function while φ( f )is an odd function. A typical display of X ( f )
may look like that shown in Figure 4.2. An alternative way of displaying X ( f ) is to use the
‘polar (or Nyquist) diagram’ as shown in Figure 4.3, where the positive frequency (+ f )
is drawn clockwise and the negative frequency (− f ) is drawn anti-clockwise. Note the
relationship between the ‘magnitude/phase’ pair with the ‘real/imaginary’ pair in these
figures.

(b)

( f )φ

f

X( f )

f

(a)

Figure 4.2 Typical display of X ( f ): (a) magnitude spectrum, (b) phase spectrum
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ImIm, ( )X f

ReRe, ( )X f

( )X f

( )fφ

f−

f+

Figure 4.3 Polar (or Nyquist) diagram of X ( f ), equivalent to Figure 4.2

2. We have chosen to derive Equations (4.6) and (4.8) using f (Hz). Often ω is used and
alternatives to the above equations are

x(t) = 1

2π

∞∫
−∞

X (ω)e jωt dω and X (ω) =
∞∫

−∞
x(t)e− jωt dt (4.10)

x(t) =
∞∫

−∞
X (ω)e jωt dω and X (ω) = 1

2π

∞∫
−∞

x(t)e− jωt dt (4.11)

x(t) = 1√
2π

∞∫
−∞

X (ω)e jωt dω and X (ω) = 1√
2π

∞∫
−∞

x(t)e− jωt dt (4.12)

So, the definition used must be noted carefully. Equations (4.10) are a common alternative
which we shall use when necessary, and Equations (4.11) and (4.12) are not used in this
book.

3. The inversion of the Fourier pair is often accomplished using the delta function. In order
to be able to do this we need to use the properties of the delta function. Recall Equation
(3.26), i.e.

∞∫
−∞

e± j2πat dt = δ(a), or

∞∫
−∞

e± jat dt = 2πδ(a)

We now demonstrate the inversion. We start with x(t) = ∫ ∞
−∞ X ( f )e j2π f t d f , multiply both

sides by e− j2πgt and integrate with respect to t . Then, we obtain

∞∫
−∞

x(t)e− j2πgt dt =
∞∫

−∞

∞∫
−∞

X ( f )e j2π ( f −g)t d f dt =
∞∫

−∞
X ( f )

∞∫
−∞

e j2π ( f −g)t dtd f

(4.13)
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Using the property of the delta function (Equation (3.26)), the inner integral term on the
right hand side of Equation (4.13) can be written as

∫ ∞
−∞ e j2π ( f −g)t dt = δ( f − g), and so

the right hand side of Equation (4.13) becomes

∞∫
−∞

X ( f )δ( f − g)d f = X (g) (4.14)

Hence, equating this with the left hand side of Equation (4.13) gives X (g) =∫ ∞
−∞ x(t)e− j2πgt dt , which proves the inverse.

Similarly, x(t) can be obtained via inversion of X ( f ) using the delta function. That is,
we start with X ( f ) = ∫ ∞

−∞ x(t)e− j2π f t dt , multiply both sides by e j2π f t1 and integrate with
respect to f :

∞∫
−∞

X ( f )e j2π f t1 d f =
∞∫

−∞

∞∫
−∞

x(t)e− j2π f t e j2π f t1 dtd f =
∞∫

−∞
x(t)

∞∫
−∞

e j2π f (t1−t)d f dt

=
∞∫

−∞
x(t)δ(t1 − t)dt = x(t1) (4.15)

4. The sufficient conditions for the existence of a Fourier integral are usually given as

∞∫
−∞

|x(t)|dt < ∞ (4.16)

but we shall transform functions failing to satisfy this condition using delta functions (see
example (d) in Section 4.3).

4.2 ENERGY SPECTRA

Using an electrical analogy, if x(t) is the voltage across a unit resistor then the total
energy dissipated in the resistor is

∫ ∞
−∞ x2(t)dt . This may be decomposed into a frequency

distribution from the relationship given in Equation (4.17), which is a form of Parseval’s
theorem:

∞∫
−∞

x2(t)dt =
∞∫

−∞
|X ( f )|2 d f (4.17)

This can be proved using the delta function, as given below:

∞∫
−∞

x2(t)dt =
∞∫

−∞
x(t)x*(t)dt =

∞∫
−∞

∞∫
−∞

∞∫
−∞

X ( f1)e j2π f1t X*( f2)e− j2π f2t dtd f1d f2

=
∞∫

−∞

∞∫
−∞

X ( f1)X*( f2)δ( f1 − f2)d f1d f2 =
∞∫

−∞
|X ( f1)|2 d f1 (4.18)
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Note that we are using energy here, whereas for Fourier series we talked of power (power
spectra). The quantity |X ( f )|2 is an energy spectral density (energy per unit bandwidth) since
it must be multiplied by a bandwidth df to give energy. It is a measure of the decomposition
of the energy of the process over frequency.

4.3 SOME EXAMPLES OF FOURIER TRANSFORMS

Some examples are given below, which help to understand the properties of the Fourier
transform:

(a) The Fourier transform of the Dirac delta function δ(t) is

F{δ(t)} =
∞∫

−∞
δ(t)e− j2π f t dt = e− j2π f ·0 = 1 (4.19)

where F{} denotes the Fourier transform (shown in Figure 4.4). Note that the sifting
property of the delta function is used (see Equation (3.23)).

( )tδ

1.0

t

1.0

{ }( )F tδ

f

Figure 4.4 Dirac delta function and its Fourier transform

(b) For an exponentially decaying symmetric function

x(t) = e−λ| t |, λ > 0 (4.20)

X ( f ) =
∞∫

−∞
x(t)e− j2π f t dt =

∞∫
−∞

e−λ| t |e− j2π f t dt

=
0∫

−∞
eλt e− j2π f t dt +

∞∫
0

e−λt e− j2π f t dt = 2λ

λ2 + 4π2 f 2
(4.21)

The time history and the transform are shown in Figure 4.5.

( )x t

1.0

t

( )X f

2 λ

f

Figure 4.5 Time domain and frequency domain graphs of example (b)
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Observations:
(i) The time history is symmetric with respect to t = 0 (i.e. an even function), so the

transform is entirely real (i.e. a cosine transform) and the phase is zero, i.e. a so-called
zero-phase signal.

(ii) The parameter λ controls the shape of the signal and its transform. In the frequency
domain the transform falls to 1/2 of its value at f = 0 at a frequency f = λ/2π . So
if λ is large then x(t) is narrow in the time domain, but wide in the frequency domain
and vice versa. This is an example of the so-called inverse spreading property of the
Fourier transform, i.e. the wider in one domain, then the narrower in the other.

(c) For an exponentially decaying function

x(t) = e−αt t ≥ 0, α > 0

= 0 t < 0
(4.22)

X ( f ) =
∞∫

−∞
x(t)e− j2π f t dt =

∞∫
0

e−αt e− j2π f t dt =
∞∫

0

e−(α+ j2π f )t dt

= 1

α + j2π f
= |X ( f )| e jφ( f ) (4.23)

where

|X ( f )| = 1√
α2 + 4π2 f 2

and φ( f ) = tan−1

(
−2π f

α

)
The time and frequency domains are shown in Figure 4.6.

(a) (b) (c)

( )X f

1 α

f

2π

2π−

( )fφ

f

( )x t

t

1.0

Figure 4.6 Time domain and frequency domain graphs of example (c): (a) time domain, (b)
magnitude spectrum, (c) phase spectrum

(d) For a sine function

x(t) = A sin(2πpt) (4.24)

X ( f ) =
∞∫

−∞
x(t)e− j2π f t dt =

∞∫
−∞

A sin 2πpt · e− j2π f t dt =
∞∫

−∞

A

2 j

(
e j2πpt − e− j2πpt

)
e− j2π f t dt

= A

2 j

∞∫
−∞

e− j2π ( f −p)t − e− j2π ( f +p)t dt = A

2 j
[δ( f − p) − δ( f + p)] (4.25)
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1 p

x(t)

A

t
2A

p− p

2A

X( f )

f

Figure 4.7 Time domain and frequency domain graphs of example (d)

In this example, X ( f ) is non-zero at f = p and f = −p only, and is imaginary valued
(the sine function is an odd function). The phase components are arg X (p) = −π/2 and
arg X (−p) = π/2. This shows that a distinct frequency component results in spikes in
the amplitude density.

(e) For a rectangular pulse

x(t) = a | t | < b
(4.26)

= 0 | t | > b

X ( f ) =
∞∫

−∞
x(t)e− j2π f t dt =

b∫
−b

ae− j2π f t dt

= 2ab sin(2π f b)

2π f b
(4.27)

a

t
b− b

1

2b

1

b

3

2b

X( f )x(t)

2ab

f

Figure 4.8 Time domain and frequency domain graphs of example (e)

The expression for X ( f ) has been written so as to highlight the term sin(2π f b)/2π f b,
i.e. sin(x)/x , which is the so-called sinc function which is unity at x = 0, and thereafter
is an amplitude-modulated oscillation, where the modulation is 1/x . The width (in time)
of x(t) is 2b and the distance to the first zero crossing in the frequency domain is 1/2b
(as shown in Figure 4.8). This once again demonstrates the inverse spreading property.

For the case a = 1, then as b → ∞, X ( f ) is more and more concentrated around
f = 0 and becomes taller and taller. In fact, limb→∞ 2b sin(2π f b)/2π f b is another way
of expressing the delta function δ( f ), as we have seen in Chapter 3 (see Equation (3.27)).
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(f) For a damped symmetrically oscillating function

x(t) = e−a| t | cos 2π f0t, a > 0 (4.28)

X ( f ) =
∞∫

−∞

x(t)e− j2π f t dt =
∞∫

−∞

e−a| t | cos 2π f0te− j2π f t dt =
∞∫

−∞

e−a| t | 1

2

(
e j2π f0t + e− j2π f0t

)
e− j2π f t dt

= 1

2

∞∫
−∞

e−a| t |e− j2π ( f − f0)t dt + 1

2

∞∫
−∞

e−a| t |e− j2π ( f + f0)t dt

= a

a2 + [2π ( f − f0)]2
+ a

a2 + [2π ( f + f0)]2
(4.29)

The time and frequency domains are shown in Figure 4.9.

x(t)

1.0

t

X( f )

f
0f− 0f

Figure 4.9 Time domain and frequency domain graphs of example (f)

(g) For a damped oscillating function

x(t) = e−at sin 2π f0t, t ≥ 0 and a > 0 (4.30)

X ( f ) =
∞∫

−∞
x(t)e− j2π f t dt =

∞∫
0

e−at sin 2π f0te− j2π f t dt =
∞∫

0

e−at 1

2 j

(
e j2π f0t − e− j2π f0t

)
e− j2π ftdt

= 1

2 j

∞∫
0

e−[a+ j2π ( f − f0)]t dt − 1

2 j

∞∫
0

e−[a+ j2π ( f + f0)]t dt = 2π f0

(2π f0)2 + (a + j2π f )2
(4.31)

The time and frequency domains are shown in Figure 4.10.

(a) (b) (c)

x(t)

t
f

( )X f

f

( f )φ

Figure 4.10 Time domain and frequency domain graphs of example (g): (a) time domain, (b)
magnitude spectrum, (c) phase spectrum
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(h) For the Gaussian pulse

x(t) = e−at2

, a > 0 (4.32)

X (ω) =
√

π/a · e−ω2/4a (4.33)

i.e. X (ω) is also a Gaussian pulse. Proof of Equation (4.33) is given below. We shall use
X (ω) instead of X ( f ) for convenience.

We start from

X (ω) =
∞∫

−∞
e−at2

e− jωt dt =
∞∫

−∞
e−a(t2+ jωt/a)dt

and multiply by e−ω2/4a · eω2/4a to complete the square, i.e. so that

X (ω) = e−ω2/4a ·
∞∫

−∞
e−a(t2+ jωt/a−ω2/4a2)dt = e−ω2/4a ·

∞∫
−∞

e−a[t+ j(ω/2a)]2

dt

Now, let y = [t + j(ω/2a)]; then finally we have

X (ω) = e−ω2/4a ·
∞∫

−∞
e−ay2

dy =
√

π/a · e−ω2/4a

The time and frequency domains are shown in Figure 4.11.

x(t)

1.0

t

aπ

( )X ω

ω

Figure 4.11 Time domain and frequency domain graphs of example (h)

(i) For a unit step function

u(t) = 1 t > 0

= 0 t < 0 (4.34)

The unit step function is not defined at t = 0, i.e. it has a discontinuity at this point. The
Fourier transform of u(t) is given by

F{u(t)} = 1

2
δ( f ) + 1

j2π f
(4.35)

where F{} denotes the Fourier transform (shown in Figure 4.12). The derivation of this
result requires the use of the delta function and some properties of the Fourier transform.
Details of the derivation can be found in Hsu (1970), if required. Also, note the presence
of the delta function at f = 0, which indicates a d.c. component.
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(a)               (b)   (c)

( )u t

1.0

t

1

2

{ }( )F u t

f

2π

( )fφ

2π−

f

Figure 4.12 Time domain and frequency domain graphs of example (i): (a) time domain, (b)
magnitude spectrum, (c) phase spectrum

(j) For the Fourier transform of a periodic function
If x(t) is periodic with a period TP , then

x(t) =
∞∑

n=−∞
cne j2πnt/TP

(i.e. Equation (3.34)). The Fourier transform of this equation gives

X ( f ) =
∞∫

−∞

∞∑
n=−∞

cne j2πnt/TP e− j2π f t dt =
∞∑

n=−∞
cn

∞∫
−∞

e− j2π ( f −n/TP )t dt

=
∞∑

n=−∞
cnδ( f − n/TP ) (4.36)

This shows that the Fourier transform of a periodic function is a series of delta functions
scaled by cn , and located at multiples of the fundamental frequency, 1/TP .

Note that, in examples (a), (b), (e), (f) and (h), arg X ( f ) = 0 owing to the evenness of
x(t). Some useful Fourier transform pairs are given in Table 4.1.

4.4 PROPERTIES OF FOURIER TRANSFORMS

We now list some important properties of Fourier transforms. Here F{x(t)} denotes X ( f ).

(a) Time scaling:

F{x(at)} = 1

|a| X ( f/a) (4.37a)

or

F{x(at)} = 1

|a| X (ω/a) (4.37b)

where a is a real constant. The proof is given below.
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Table 4.1 Some Fourier transform (integral) pairs

Time function Fourier transform

No. x(t) X ( f ) X (ω)

1 δ(t) 1 1

2 1 δ( f ) 2πδ(ω)

3 A Aδ( f ) 2πAδ(ω)

4 u(t)
1

2
δ( f ) + 1

j2π f
πδ(ω) + 1

jω

5 δ(t − t0) e− j2π f t0 e− jωt0

6 e j2π f0t or e jω0t δ( f − f0) 2πδ(ω − ω0)

7 cos(2π f0t) or cos(ω0t)
1

2
[δ( f − f0) + δ( f + f0)] π [δ(ω − ω0) + δ(ω + ω0)]

8 sin(2π f0t) or sin(ω0t)
1

2 j
[δ( f − f0) − δ( f + f0)]

π

j
[δ(ω − ω0) − δ(ω + ω0)]

9 e−α|t | 2α

α2 + 4π 2 f 2

2α

α2 + ω2

10
1

α2 + t2

π

α
e−α2π | f | π

α
e−α|ω|

11 x(t) = e−αt u(t)
1

α + j2π f

1

α + jω

12

x(t) = A | t | < T

= 0 | t | > T 2AT
sin(2π f T )

2π f T
2AT

sin(ωT )

ωT

13 2A f0

sin(2π f0t)

2π f0t
or A

sin(ω0t)

π t

X ( f ) = A | f | < f0

= 0 | f | > f0

X (ω) = A |ω| < ω0

= 0 |ω| > ω0

14
∞∑

n=−∞
cne j2πn f0t or

∞∑
n=−∞

cne jnω0t
∞∑

n=−∞
cnδ( f − n f0) 2π

∞∑
n=−∞

cnδ(ω − nω0)

15 sgn(t)
1

jπ f

2

jω

16
1

t
− jπsgn( f ) − jπsgn(ω)

For a > 0, the Fourier transform is F{x(at)} = ∫ ∞
−∞ x(at)e− j2π f t dt . Let at = τ ; Then

F{x(at)} = 1

a

∞∫
−∞

x(τ )e− j2π ( f/a)τ dτ = 1

a
X ( f/a)

Similarly for a < 0,

F{x(at)} = 1

a

−∞∫
∞

x(τ )e− j2π ( f/a)τ dτ
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thus

F{x(at)} = −1

a

∞∫
−∞

x(τ )e− j2π ( f/a)τ dτ = 1

|a| X ( f/a)

That is, time scaling results in frequency scaling, again demonstrating the inverse spreading
relationship.

(b) Time reversal:

F{x(−t)} = X (− f ) (= X∗( f ), for x(t) real) (4.38a)

or

F{x(−t)} = X (−ω) (4.38b)

Proof: We start from F{x(−t)} = ∫ ∞
−∞ x(−t)e− j2π f t dt , let −t = τ , then obtain

F{x(−t)} = −
−∞∫
∞

x(τ )e j2π f τ dτ =
∞∫

−∞
x(τ )e− j2π (− f )τ dτ = X (− f )

Note that if x(t) is real, then x∗(t) = x(t). In this case,

X (− f ) =
∞∫

−∞
x(t)e− j2π (− f )t dt =

∞∫
−∞

x∗(t)e j2π f t dt = X∗( f )

This is called the conjugate symmetry property.
It is interesting to note that the Fourier transform of X (−ω) is x(t), i.e. F{X (−ω)} =

x(t), and similarly F{X (ω)} = x(−t).
(c) Time shifting:

F{x(t − t0)} = e− j2π f t0 X ( f ) (4.39a)

or

F{x(t − t0)} = e− jωt0 X (ω) (4.39b)

Proof: We start from F{x(t − t0)} = ∫ ∞
−∞ x(t − t0)e− j2π f t dt , let t − t0 = τ , then obtain

F{x(t − t0)} =
∞∫

−∞
x(τ )e− j2π f (t0+τ )dτ = e− j2π f t0

∞∫
−∞

x(τ )e− j2π f τ dτ = e− j2π f t0 X ( f )

This important property is expanded upon in Section 4.5.
(d) Modulation (or multiplication) property:

(i) F
{

x(t)e j2π f0t
} = X ( f − f0) (4.40a)

or

F
{

x(t)e jω0t
} = X (ω − ω0) (4.40b)

This property is usually known as the ‘frequency shifting’ property.
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Proof:

F
{

x(t)e j2π f0t
} =

∞∫
−∞

x(t)e j2π f0t e− j2π f t dt =
∞∫

−∞
x(t)e− j2π ( f − f0)t dt = X ( f − f0)

(ii)
F{x(t) cos(2π f0t)} = 1

2
[X ( f − f0) + X ( f + f0)] (4.41a)

or

F{x(t) cos(ω0t)} = 1

2
[X (ω − ω0) + X (ω + ω0)] (4.41b)

This characterizes ‘amplitude modulation’. For communication systems, usually x(t)
is a low-frequency signal, and cos(2π f0t) is a high-frequency carrier signal.

Proof:

F{x(t) cos(2π f0t)} = F

{
1

2
x(t)e j2π f0t + 1

2
x(t)e− j2π f0t

}
= 1

2
F

{
x(t)e j2π f0t

} +1

2
F

{
x(t)e− j2π f0t

}
= 1

2
[X ( f − f0) + X ( f + f0)]

(e) Differentiation:

F{ẋ(t)} = j2π f X ( f ) (if x(t) → 0 as t → ±∞) (4.42a)

or

F{ẋ(t)} = jωX (ω) (4.42b)

Proof:

F{ẋ(t)} =
∞∫

−∞
ẋ(t)e− j2π f t dt = x(t)e− j2π f t

∣∣∞
−∞ + j2π f

∞∫
−∞

x(t)e− j2π f t dt

Since x(t) → 0 as t → ±∞, the first part of the right hand side diminishes. Thus

F{ẋ(t)} = j2π f

∞∫
−∞

x(t)e− j2π f t dt = j2π f X ( f )

(f) The Fourier transform of the ‘convolution’ of two functions:

F{h(t) ∗ x(t)} = H ( f )X ( f ) (4.43)

where the convolution of the two functions h(t) and x(t) is defined as

h(t) ∗ x(t) =
∞∫

−∞
h(τ )x(t − τ )dτ (4.44)
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The property of Equation (4.43) is very important in linear system theory and is explained
fully in Section 4.7.

Proof: Let t − τ = v. Then

F{h(t) ∗ x(t)} =
∞∫

−∞

∞∫
−∞

h(τ )x(t − τ )e− j2π f t dτdt

=
∞∫

−∞

∞∫
−∞

h(τ )x(v)e− j2π f (τ+v)dτdv

=
∞∫

−∞
h(τ )e− j2π f τ dτ

∞∫
−∞

x(v)e− j2π f vdv = H ( f )X ( f )

(g) The Fourier transform of the ‘product’ of two functions:

F{x(t)w(t)} =
∞∫

−∞
X (g)W ( f − g)dg = X ( f ) ∗ W ( f ) (4.45)

This is also a very important property, and will be examined in detail in Section 4.11.

Proof: We start from F{x(t)w(t)} = ∫ ∞
−∞ x(t)w(t)e− j2π f t dt . If x(t) and w(t) both have

Fourier representations, then the right hand side is

∞∫
−∞

x(t)w(t)e− j2π f t dt =
∞∫

−∞

∞∫
−∞

∞∫
−∞

X ( f1)e j2π f1t W ( f2)e j2π f2t · e− j2π f t d f1d f2dt

=
∞∫

−∞
X ( f1)

∞∫
−∞

W ( f2)

∞∫
−∞

e− j2π ( f − f1− f2)t dtd f2d f1

=
∞∫

−∞
X ( f1)

∞∫
−∞

W ( f2)δ( f − f1 − f2)d f2d f1

=
∞∫

−∞
X ( f1)W ( f − f1)d f1 = X ( f ) ∗ W ( f )

4.5 THE IMPORTANCE OF PHASE

In many cases, we sometimes only draw the magnitude spectral density, |X ( f )|, and
not the phase spectral density, arg X ( f ) = φ( f ). However, in order to reconstruct a
signal we need both. An infinite number of different-looking signals may have the same
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magnitude spectra – it is their phase structure that differs. We now make a few general
comments:

1. A symmetrical signal has a real-valued transform, i.e. its phase is zero. We saw this
property in examples given in Section 4.3.

2. A pure delay imposed on a signal results in a linear phase change to the transform
(see property (c) in Section 4.4). An example of this is illustrated in Figure 4.13.

X( f ) 02( ) ( )j ftY f e X fπ−=

arg ( ) 0X f =

F{x(t)} 0{ ( )}F x t t−

02Slope tπ−=

02argY( f ) f tπ−=

y(t)

0( )x t t−

0t
t

x(t)

t

0delay by t

f

Figure 4.13 The effect of a pure delay on a zero-phase signal

The slope of the phase curve gives the delay, i.e. dφ/d f = −2π t0, or dφ/dω =
−t0. Specifically, the quantity −dφ/dω = t0 is known as the group delay of the signal.
In the above case, the delay is the same for all frequencies due to the pure delay (i.e.
there is no dispersion). The reason for the term group delay is given in Section 4.8.

3. If the phase curve is nonlinear, i.e. −dφ/dω is a nonlinear function of ω, then the
signal shape is altered.

4.6 ECHOESM4.1

If a signal y(t) contains a pure echo (a scaled replica of the main signal), it may be
modelled as

y(t) = x(t) + ax(t − t0) (4.46)

where x(t) is the main signal and ax(t − t0) is the echo, a is the amplitude of the echo,
and t0 is called the ‘epoch’ of the echo (i.e. the time delay of the echo relative to the main
signal). A typical example may be illustrated as shown in Figure 4.14, and the Fourier
transform of y(t) is

Y ( f ) = (1 + ae− j2π f t0 )X ( f ) (4.47)
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Mic.: y(t) = x(t) + ax(t – t0)

Hard reflector

Speaker

Path (1):  x(t)

Path (2):  ax(t – t0)

Figure 4.14 Example of a signal containing a pure echo

The term (1 + ae− j2π f t0 ) is a function of frequency and has an oscillatory form
in both magnitude and phase. This describes the effect of the echo on the main
signal, and may be illustrated as shown in Figure 4.15. The magnitude of Y ( f ) is√

(1 + a2 + 2a cos 2π ft0) |X ( f )| where an oscillatory form is imposed on |X ( f )| due
to the echo. Thus, such a ‘rippling’ appearance in energy (or power) spectra may indicate
the existence of an echo. However, additional echoes and dispersion result in more com-
plicated features. The autocorrelation function can also be used to detect the time delays
of echoes in a signal (the correlation function will be discussed in Part II of this book),
but are usually limited to wideband signals (e.g. a pulse-like signal). Another approach
to analysing such signals is ‘cepstral analysis’ (Bogert et al., 1963) later generalized as
homomorphic deconvolution (Oppenheim and Schafer, 1975).

01 t

Y( f )

X ( f )

f

Figure 4.15 Effect of a pure echo

4.7 CONTINUOUS-TIME LINEAR TIME-INVARIANT SYSTEMS

AND CONVOLUTION

Consider the input–output relationship for a linear time-invariant (LTI) system as shown
in Figure 4.16.

System
y(t)x(t)

OutputInput

Figure 4.16 A continuous LTI system

We now define the terms ‘linear’ and ‘time-invariant’.
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Linearity

Let y1(t) and y2(t) be the responses of the system to inputs x1(t) and x2(t), respectively.
If the system is linear it satisfies the properties in Figure 4.17, where a is an arbitrary
constant.

Linear system(i) Additivity: x1(t) + x2(t)

ax1(t)

y1(t) + y2(t)

ay1(t)(ii) Scaling (or homogeneity): Linear system

Figure 4.17 Properties of a linear system

Or the two properties can be combined to give a more general expression that
is known as the ‘superposition property’ (Figure 4.18), where a1 and a2 are arbitrary
constants.

Linear system1 1 2 2( ) ( )a x t a x t+ 1 1 2 2( ) ( )a y t a y t+

Figure 4.18 Superposition property of a linear system

Time Invariance

A time-invariant system may be illustrated as in Figure 4.19, such that if the input is
shifted by t0, then the response will also be shifted by the same amount of time.

Time-invariant systemx(t − t
0
) y(t − t

0
)

Figure 4.19 Property of a time-invariant system

Mathematical Characterization of an LTI System

Very commonly LTI systems are described in differential equation form. The forced vibra-
tion of a single-degree-of-freedom system is a typical example, which may be expressed
as

mÿ(t) + cẏ(t) + ky(t) = x(t) (4.48)

where x(t) is the input and y(t) is the output of the system.
Relating y(t) to x(t) in the time domain then requires the solution of the differential

equation. Transformation (Laplace and Fourier) techniques allow a ‘systems approach’
with the input/response relationships described by transfer functions or frequency re-
sponse functions.

We shall use a general approach to linear system characterization that does not
require a differential equation format. We could characterize a system in terms of its
response to specific inputs, e.g. a step input or a harmonic input, but we shall find that
the response to an ideal impulse (the Dirac delta function) turns out to be very helpful -
even though such an input is a mathematical idealization.
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We define the response of a linear system to a unit impulse at t = 0 (i.e. δ(t)) to be
h(t). See Figure 4.20. In the figure, it can be seen that the system only responds after the
impulse, i.e. we assume that the system is causal, in other words h(t) = 0 for t < 0. For
a causal system, the output y(t) at the present time, say t = t1, is dependent upon only
the past and present values of the input x(t), i.e. x(t) for t ≤ t1, and does not depend on
the future values of x(t).

LTI system, h(t) 

δx(t) =   (t)

1.0

t

y(t) = h(t)

t

Figure 4.20 Impulse response of a system

We shall now show how the concept of the ideal impulse response function h(t)
can be used to describe the system response to any input. We start by noting that for a
time-invariant system, the response to a delayed impulse δ(t − t1) is a delayed impulse
response h(t − t1).

Consider an arbitrary input signal x(t) split up into elemental impulses as given
in Figure 4.21. The impulse at time t1 is x(t1)�t1. Because the system is linear, the
response to this impulse at time t is h(t − t1)x(t1)�t1. Now, adding all the responses to
such impulses, the total response of y(t) at time t (the present) becomes

y(t) ≈
∑

h(t − t1)x(t1)�t1 (4.49)

and by letting �t1 → 0 this results in

y(t) =
t∫

−∞
h(t − t1)x(t1)dt1 (4.50)

Note that the upper limit is t because we assume that the system is causal. Using the
substitution t − t1 = τ (−dt1 = dτ ), the expression can be written in an alternative

…
Input

Response to 
elemental inputs

1 1( )x t tΔ

1tΔ

1 1 1( ) ( )h t t x t t− Δ

1t

1t

…

( )x t

( )y t

t

t

Figure 4.21 The response of a system to elemental inputs
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form as given by Equation (4.51a), i.e. the convolution integral has the commutative
property

y(t) =
t∫

−∞
h(t − t1)x(t1)dt1 = −

0∫
∞

h(τ )x(t − τ )dτ =
∞∫

0

h(τ )x(t − τ )dτ (4.51a)

or simply

y(t) = x(t) ∗ h(t) = h(t) ∗ x(t) (4.51b)

As depicted in Figure 4.22, we see h(τ ) in its role as a ‘memory’ or weighting function.

h(τ) t (Now)

τ

1t

x(t)

Time

Past Future

Figure 4.22 The impulse response function as a ‘memory’

If the input x(t) is zero for t < 0, the response of a causal system is

y(t) =
t∫

0

h(τ )x(t − τ )dτ =
t∫

0

h(t − τ )x(τ )dτ (4.52)

And, if the system is non-causal, i.e. the system also responds to future inputs, the
convolution integrals are

y(t) =
∞∫

−∞
h(τ )x(t − τ )dτ =

∞∫
−∞

h(t − τ )x(τ )dτ (4.53)

An example of convolution operation of a causal input and a causal LTI system is illus-
trated in Figure 4.23.

We note that, obviously,

h(t) = h(t) ∗ δ(t) =
∞∫

−∞
h(τ )δ(t − τ )dτ (4.54)

The convolution integral also satisfies ‘associative’ and ‘distributive’ properties, i.e.

Associative: [x(t) ∗ h1(t)] ∗ h2(t) = x(t) ∗ [h1(t) ∗ h2(t)] (4.55)

Distributive: x(t) ∗ [h1(t) + h2(t)] = x(t) ∗ h1(t) + x(t) ∗ h2(t) (4.56)
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Integral of ( ) ( ),  

i.e. the value of the convolution at t

h t xτ τ−

Time

h(t)

x(t)

Time

τ τ

Time

( )h t τ−

t
τ

y(t) = x(t)*h(t)

h(t −  ) x( )

t
Time

Figure 4.23 Illustrations of a convolution operation

The Frequency Response Function

Consider the steady state response of a system to a harmonic excitation, i.e. let x(t) =
e j2π f t . Then the convolution integral becomes

y(t) =
∞∫

0

h(τ )x(t − τ )dτ =
∞∫

0

h(τ )e j2π f (t−τ )dτ = e j2π f t

∞∫
0

h(τ )e− j2π f τ dτ

︸ ︷︷ ︸
H ( f )

(4.57)

The system response to frequency f is embodied in H ( f ) = ∫ ∞
0

h(τ )e− j2π f τ dτ , which
is the system ‘frequency response function (FRF)’.

The expression of the convolution operation in the time domain is very much simpli-
fied when the integral transform (Laplace or Fourier transform) is taken. If the response
is y(t) = ∫ ∞

0
h(τ )x(t − τ )dτ , then taking the Fourier transform gives

Y ( f ) =
∞∫

−∞

∞∫
0

h(τ )x(t − τ )e− j2π f t dτdt

Let t − τ = u; then

Y ( f ) =
∞∫

0

h(τ )e− j2π f τ dτ

∞∫
−∞

x(u)e− j2π f udu
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Thus,

Y ( f ) = H ( f )X ( f ) (4.58)

The convolution operation becomes a ‘product’ (see property (f) in Section 4.4). H ( f )
is the Fourier transform of the impulse response function and is the frequency response
function of the system. Sometimes, Equation (4.58) is used to ‘identify’ a system if the
input and response are all available, i.e. H ( f ) = Y ( f )/X ( f ). Following on from this the
relationship between the input and output energy spectra is

|Y ( f )|2 = |H ( f )|2 |X ( f )|2 (4.59)

If the Laplace transform is taken (the Laplace transform will be discussed further in
Section 5.1), then by a similar argument as for the Fourier transform, it becomes

Y (s) = H (s)X (s) (4.60)

where s = σ + jω is complex. The ratio Y (s)/X (s) = H (s) is called the transfer function of
the system. The relationships between the impulse response function, the frequency response
function and the transfer function are depicted in Figure 4.24. Note that H (ω) can be obtained
by H (s) on the imaginary axis in the s-plane, i.e. the Fourier transform can be considered as
the Laplace transform taking the values on the imaginary axis only (see Section 5.1).

h(t)

H(s) H(ω)
s = jω

F{}
1{}F −1{}L−

L{}

Figure 4.24 Relationship between h(t), H (ω) and H (s)

Examples of Systems

Example 1

Reconsider the simple acoustic problem in Figure 4.25, with input x(t) and response y(t).
The relationship between x(t) and y(t) may be modelled as

y(t) = ax(t − �1) + bx(t − �2) (4.61)

The impulse response function relating x(t) to y(t) is

h(t) = aδ(t − �1) + bδ(t − �2) (4.62)

and is illustrated in Figure 4.26.
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Mic. B, y(t)Mic. A, x(t)

Hard reflector

1

Path (1)
(delay, )Δ

2

Path (2)
(delay, )Δ

Figure 4.25 A simple acoustic example

1Δ 2Δ

h(t)

a
b

t

Figure 4.26 Impulse response function for Example 1

The frequency response function is

H (ω) =
∞∫

−∞
h(t)e− jωt dt = ae− jω�1 + be− jω�2 = ae− jω�1

(
1 + b

a
e− jω(�2−�1)

)
(4.63)

If we let � = �2 − �1, then the modulus of H (ω) is

|H (ω)| = a

√(
1 + b2

a2
+ 2b

a
cos ω�

)
(4.64)

This has an oscillatory form in frequency (compare this with the case depicted in Figure 4.15).
The phase component arg H (ω) also has an oscillatory behaviour as expected from Equation
(4.63). These characteristics of the frequency response function are illustrated in Figure 4.27,
where H (ω) is represented as a vector on a polar diagram.

Next, applying the Laplace transform to h(t), the transfer function is

H (s) =
∞∫

−∞
h(t)e−st dt = ae−s�1 + be−s�2 (4.65)

Now we shall examine the poles and zeros in the s-plane. From Equation (4.65), it can be seen
that there are no poles. Zeros are found, such that H (s) = 0 when ae−s�1 = −be−s�2 , i.e. at

es� = −b

a
(4.66)

where � = �2 − �1. Let s = σ + jω so that Equation (4.66) can be written as

eσ�e jω� = b

a
e± j(π+2kπ ) (4.67)
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1ω− Δ

2ω− Δ a

b

( )H ω

ReRe, ( )H ω

ImIm, ( )H ω

b

Figure 4.27 Polar diagram of H (ω) for Example 1 (where �1 = 1, �2 = 4 and a/b = 2)

where k is an integer. Since eσ� = b/a and ω� = ± jπ (2k + 1), zeros are located at

σ = 1

�
ln

(
b

a

)
, ω = ± j

π

�
(2k + 1) (4.68)

and are depicted in Figure 4.28.
In the figure, the corresponding oscillatory nature of the modulus of the frequency re-

sponse function is seen, as it is in the phase. However, the phase has a superimposed linear

s-plane

1
ln

b

aΔ

3π Δ

jω

σ

ω

|H
(ω

)|

ar
g

H
( ω

)

π− Δ

3π− Δ

ω

π Δ

Figure 4.28 Representation in the s-plane and its corresponding H (ω) for Example 1
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component due to the delay �1 of the first ‘spike’ in the impulse response function (see Figure
4.26).

Example 2

Consider the single-degree-of-freedom mechanical system as given in Equation (4.48), which
can be rewritten in the following form:

ÿ(t) + 2ζωn ẏ(t) + ω2
n y(t) = 1

m
x(t) (4.69)

where ωn = √
k/m and ζ = c/2

√
km. The impulse response function can be obtained from

ḧ(t) + 2ζωnḣ(t) + ω2
nḣ(t) = (1/m)δ(t), and assuming that the system is underdamped (i.e.

0 < ζ < 1), the impulse response function is

h(t) = 1

mωd
e−ζωn t sin ωd t (4.70)

where ωd = ωn

√
1 − ζ 2, and is illustrated in Figure 4.29.

h(t)

t

Figure 4.29 Impulse response function for Example 2

The corresponding frequency response function and transfer function are

H (ω) = 1/m

ω2
n − ω2 + j2ζωnω

(4.71)

H (s) = 1/m

s2 + 2ζωns + ω2
n

(4.72)

Note that there are only poles in the s-plane for this case as shown in Figure 4.30.

nζω

ω

ω

ω ω
ω ω

ω
−

21nj ζ

ζ

−

2

j

|H
(

)|

ar
g

H
(

)

s-plane

21j −

σ

21nj− −

j

Figure 4.30 Representation in the s-plane and its corresponding H (ω) for Example 2
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4.8 GROUP DELAY1 (DISPERSION)M4.2

We have seen that a pure delay results in a linear phase component. We now interpret nonlinear
phase characteristics. Suppose we have a system H (ω) = A(ω)e jφ(ω), where A(ω) (= |H (ω)|)
is amplitude and φ(ω) is phase. Consider a group of frequencies near ωk in the range from
ωk − B to ωk + B (B 
 ωk), i.e. a narrow-band element of H (ω), approximated by Hk(ω), as
shown in Figure 4.31, i.e. H (ω) ≈ ∑

k Hk(ω), and Hk(ω) = |Hk(ω)| e j arg Hk (ω) = A(ωk)e jφ(ω).
The phase φ(ω) may be linearly approximated over the narrow frequency interval (by applying
the Taylor expansion) such that φ(ω) ≈ φ(ωk) + (ω − ωk)φ′(ωk) as shown in Figure 4.32.
Then, Hk(ω) has the form of an ideal band-pass filter with a linear phase characteristic.

( )kA ω

( )kH ω

( )kA ω

arg ( )kH ω

kω

kω− ( )kφ ω
− = −

(a) (b)

ω

ω2B

kωk−ω ( ) ( )k kφ ω φ ω

Figure 4.31 Narrow-band frequency components of Hk(ω): (a) magnitude, (b) phase

arg ( )kH ω

kω

kω−
slope ( )kφ ω′=

ω

Figure 4.32 Linear approximation of arg Hk(ω)

Now, based on the representation H (ω) ≈ ∑
k A(ωk)e j[φ(ωk )+(ω−ωk )φ′(ωk )] we shall inverse

transform this to obtain a corresponding expression for the impulse response function. We
start by noting that the ‘equivalent’ low-pass filter can be described as in Figure 4.33(a) whose
corresponding time signal is 2A(ωk)B sin[B(t + φ′(ωk))]/[π B(t + φ′(ωk))] (see Equation
(4.39b) and No. 13 of Table 4.1). Now, consider the Fourier transform of a cosine function
with a phase, i.e. F{cos(ωk t + φ(ωk))} = π [e jφ(ωk )δ(ω − ωk) + e− jφ(ωk )δ(ω + ωk)] as shown
in Figure 4.33(b). In fact, Hk(ω) can be obtained by taking the convolution of Figures 4.33(a)
and (b) in the frequency domain. This may be justified by noting that the frequency domain
convolution described in Equation (4.45) can be rewritten as

X ( f ) ∗ W ( f ) =
∞∫

−∞
X (g)W ( f − g)dg =

∞∫
−∞

|X (g)| e jφX (g) |W ( f − g)| e jφW ( f −g)dg

=
∞∫

−∞
|X (g)| · |W ( f − g)| e j[φX (g)+φW ( f −g)]dg (4.73)

1 See Zadeh and Desoer (1963); Papoulis (1977).
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1{ }F −

2 ( )kA ω
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Slope ( )kφ ω′=

(a) Equivalent low-pass filter
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( )kφ ω

(b) Fourier transform of carrier

∗
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×
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(c) Time domain representation

BB−
ω

ω

π π

ω

ωkω

kω−

Figure 4.33 Frequency and time domain representation of Hk(ω)

Thus, the frequency domain convolution (Equation (4.73)) may be interpreted in the form that
the resultant magnitude is the running sum of the multiplication of two magnitude functions
while the resultant phase is the running sum of the addition of two phase functions.

Since the convolution in the frequency domain results in the multiplication in the time
domain (see Equation (4.45)) as depicted in Figure 4.33(c), the inverse Fourier transform of
Hk(ω) becomes

F−1 {Hk(ω)} ≈ 2A(ωk)B
sin

[
B

(
t + φ′(ωk)

)]
π B (t + φ′(ωk))

cos (ωk t + φ(ωk)) (4.74)

and finally, the inverse Fourier transform of H (ω) is

h(t) = F−1 {H (ω)} ≈
∑

k

2A(ωk)B
sin

[
B

(
t − tg(ωk)

)]
π B

(
t − tg(ωk)

)︸ ︷︷ ︸
envelope

cos ωk(t − tp(ωk))︸ ︷︷ ︸
carrier

(4.75)

where tg and tp are the ‘group delay’ and ‘phase delay’ respectively, and are defined by
Equations (4.76) and (4.77). The relationship between these two properties is illustrated in
Figure 4.34.

tg(ω) = −dφ(ω)

dω
(4.76)

tp(ω) = −φ(ω)

ω
(4.77)



JWBK207-04 JWBK207-Shin January 18, 2008 9:1 Char Count= 0

84 FOURIER INTEGRALS AND CONTINUOUS-TIME LINEAR SYSTEMS

( )φ ω

kω

( )
( )k

p k
k

t
φ ω

ω
ω

= −

( ) ( )k g ktφ ω ω′ = −

ω

Figure 4.34 Illustrations of group delay and phase delay in the frequency domain

Note that each signal component given in Equation (4.75) is an amplitude modulation
signal where the ‘envelope’ is delayed by tg , while the ‘carrier’ is delayed by tp. This is
illustrated in Figure 4.35. As shown in the figure, the phase delay gives the time delay of
each sinusoidal component while the group delay can be interpreted as the time delay of the
amplitude envelope (or the group of sinusoidal components within a small frequency band
centred at ωk). The delays are a continuous function of ω, i.e. they may have different values
at different frequencies. This deviation of the group delay away from a constant indicates the
degree of nonlinearity of the phase. If a system has a non-constant group delay, each frequency
component in the input is delayed differently, so the shape of output signal will be different
from the input. This phenomenon is called the dispersion. In our simple acoustic models (e.g.
Figure 4.25), a single path is non-dispersive, but the inclusion of an echo results in a nonlinear
phase characteristic. Most structural systems exhibit dispersive characteristics.

In the case of a pure delay, the group delay and the phase delay are the same as shown
in Figure 4.36 (compare the carrier signal with that in Figure 4.35 where the group delay and
the phase delay are different).

Directly allied concepts in sound and vibration are the group velocity and the phase
velocity of a wave, which are defined by

Group velocity of a wave: vg = dω

dk
(4.78)

Phase velocity of a wave: vp = ω

k
(4.79)

t

( ) ( )k g ktφ ω ω′− =

( )
( )k

p k
k

t
φ ω ω

ω
− =

( )Carrier, cos ( )k p kt tω ω−

( )
( )

sin ( )
Envelope, 2 ( )

( )

g k

k

g k

B t t
A B

B t t

ω
ω

π ω

−

−

Figure 4.35 Illustrations of group delay and phase delay in the time domain
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( ) ( )g k p kt tω ω=

t

Figure 4.36 The case of pure delay (group delay and phase delay are the same)

where ω is the wave’s angular frequency, and k = 2π/λ is the angular wave number (λ is
the wavelength in the medium). The group velocity and the phase velocity are the same for
a non-dispersive wave. Since velocity is distance divided by time taken, the group delay is
related to the group velocity of a wave and the phase delay to the phase velocity.

4.9 MINIMUM AND NON-MINIMUM PHASE SYSTEMS

All-pass Filter

We shall now consider the phase characteristics of a special filter (system). Suppose we
have a filter with transfer function

H (s) = s − a

s + a
(4.80)

The pole–zero map on the s-plane is shown in Figure 4.37.

a−
σ

jω

a

s-plane

Figure 4.37 The pole–zero map of Equation (4.80)

Equation (4.80) may be rewritten as

H (s) = 1 − 2a

s + a
(4.81)

Then, taking the inverse Laplace transform gives the impulse response function

h(t) = δ(t) − 2ae−at (4.82)

which is depicted in Figure 4.38.
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h(t)

1.0

2a−

t

Figure 4.38 Impulse response function of the all-pass filter

The corresponding frequency response function is

H (ω) = jω − a

jω + a
(4.83)

Thus, the modulus of H (ω) is

|H (ω)| =
√

ω2 + a2

√
ω2 + a2

= 1 (4.84)

This implies that there is no amplitude distortion through this filter. So, it is called the
‘all-pass filter’. But note that the phase of the filter is nonlinear as given in Equation
(4.85) and Figure 4.39. So, the all-pass filter distorts the shape of the input signal.

arg H (ω) = arg( jω − a) − arg( jω + a) = π − 2 tan−1
(ω

a

)
(ω ≥ 0) (4.85)

arg H(ω)

π−

π

0 ω

Figure 4.39 Phase characteristic of the all-pass filter

From Equation (4.85), the group delay of the all-pass system is

− d

dω
(arg H (ω)) = 2

a
(
1 + ω2/a2

) (4.86)

Note that the group delay is always positive as shown in Figure 4.40.

2 a

ω

( )arg ( )
d

H
d

ω
ω

−

Figure 4.40 Group delay of the all-pass filter (shown for ω ≥ 0)
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All-pass systemx(t) y(t)

Figure 4.41 Input–output relationship of the all-pass system

Now, suppose that the response of an all-pass system to an input x(t) is y(t) as in
Figure 4.41.

Then, the following properties are obtained:

(i)

∞∫
−∞

|x(t)|2 dt =
∞∫

−∞
|y(t)|2 dt (4.87)

(ii)

t0∫
−∞

|x(t)|2 dt ≥
t0∫

−∞
|y(t)|2 dt (4.88)

The first Equation (4.87) follows directly from Parseval’s theorem. The second Equation (4.88)
implies that the energy ‘build-up’ in the input is more rapid than in the output, and the proof
is as follows. Let y1(t) be the output of the system to the input

x1(t) = x(t), t ≤ t0

= 0 t > t0

Then for t ≤ t0,

y1(t) =
t∫

−∞
h(t − τ )x1(τ )dτ =

t∫
−∞

h(t − τ )x(τ )dτ = y(t) (4.89)

Applying Equation (4.87) to input x1(t) and output y1(t), then

t0∫
−∞

|x1(t)|2 dt =
∞∫

−∞
|y1(t)|2 dt =

t0∫
−∞

|y1(t)|2 dt +
∞∫

t0

|y1(t)|2 dt (4.90)

Thus, Equation (4.88) follows because x(t) = x1(t) and y(t) = y1(t) for t ≤ t0.

Minimum and Non-minimum Phase Systems

A stable causal system has all its poles in the left half of the s-plane. This is referred
to as BIBO (Bounded Input/Bounded Output) stable, i.e. the output will be bounded for
every bounded input to the system. For the time domain condition for BIBO stability, the
necessary and sufficient condition is

∫ ∞
−∞ |h(t)| dt < ∞. We now assume that the system

is causal and satisfies the BIBO stability criterion. Then, systems may be classified by
the structure of the poles and zeros as follows: a system with all its poles and zeros in
the left half of the s-plane is a minimum phase system; a system with all its zeros in the
right half of the s-plane is a maximum phase system; a system with some zeros in the
left and some in the right half plane is a mixed phase (or non-minimum phase) system.
The meaning of ‘minimum phase’ will be explained shortly.
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Consider the following (stable) maximum phase system which has poles and a zero
as shown in Figure 4.42:

H (s) = s − a

s2 + 2ζωns + ω2
n

(4.91)

σ

jω

a

s-plane

Figure 4.42 The pole–zero map of Equation (4.91)

This may be expressed as

H (s) =
(

s + a

s2 + 2ζωns + ω2
n

) (
s − a

s + a

)
= Hmin(s)Hap(s) (4.92)

where Hmin(s) is the minimum phase system with |Hmin(ω)| = |H (ω)|, and Hap(s) is the
all-pass system with

∣∣Hap(ω)
∣∣ = 1. This decomposition is very useful when dealing with

‘inverse’ problems (Oppenheim et al., 1999). Note that the direct inversion of the system,
H−1(s), has a pole in the right half of the s-plane, so the system is unstable. On the other
hand, the inverse of a minimum phase system, H−1

min(s), is always stable.

The term ‘minimum phase’ may be explained by comparing two systems, H1(s) =
(s + a)/D(s) and H2(s) = (s − a)/D(s). Both systems have the same pole structure but the
zeros are at −a and a respectively, so the phase of the system is

arg H1(ω) = tan−1
(ω

a

)
− arg D(ω) (4.93)

arg H2(ω) = π − tan−1
(ω

a

)
− arg D(ω) (4.94)

Comparing tan−1 (ω/a) and π − tan−1 (ω/a), it can be easily seen that arg H1(ω) < arg H2(ω)
as shown in Figure 4.43.

2π

4π

π

ω

1

2tan , for ( )Ha
ωπ ω−−

1

1tan , for ( )H
a
ω ω−

a

Figure 4.43 Phase characteristics of H1(ω) and H2(ω)
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a−
σ

jω

a

α β

ω

s-plane

Figure 4.44 Phase characteristics of H1(s) and H2(s)

Or, the angles in the s-plane show that α < β as shown in Figure 4.44. This implies that
H1(s) is minimum phase, since ‘phase of H1(s) < phase of H2(s)’.

It follows that, if H (s) is a stable transfer function with zeros anywhere and Hmin(s)
is a minimum phase system with |H (ω)| = |Hmin(ω)|, then the group delay of H (s),
−d arg H (ω)/dω, is larger than −d arg Hmin(ω)/dω. Also, if input x(t) is applied to
arbitrary system H (s) giving response y(t) and to Hmin(s) giving response ymin(t), then
for any t0 the following energy relationship is given:

t0∫
−∞

|y(t)|2 dt ≥
t0∫

−∞
|ymin(t)|2 dt (4.95)

As a practical example, consider the cantilever beam excited by a shaker as shown in
Figure 4.45. Let the signal from the force transducer be the input x(t), and the signals
from the accelerometers be the outputs y1(t) and y2(t) for positions 1 and 2 respectively.
Also, let H1(ω) and H2(ω) be the frequency response functions between x(t) and y1(t),
and between x(t) and y2(t) respectively.

Position 1 Position 2Accelerometer

Force transducer
Shaker

Figure 4.45 Cantilever beam excited by a shaker

If the input and the output are collocated (i.e. measured at the same point) the fre-
quency response function H1(ω) is minimum phase, and if they are non-collocated the
frequency response function H2(ω) is non-minimum phase (Lee, 2000). Typical charac-
teristics of the accelerance frequency response functions H1(ω) and H2(ω) are shown in
Figure 4.46. Note that the minimum phase system H1(ω) shows distinct anti-resonances
with a phase response over 0 ≤ arg H1(ω) ≤ π .
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2arg ( )H ω

π
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ω

2 ( )H ω

ω

dB

(b) Non-minimum phase system

1arg ( )H ω

ω

π

0

(a) Minimum phase system

ω

dB

1( )H ω

Figure 4.46 Frequency response functions of the system in Figure 4.45

4.10 THE HILBERT TRANSFORMM4.3–4.5

Consider the input–output relationship as described in Figure 4.47.

1
( )h t

tπ
= ˆ( ) ( )y t x t=( )x t

Figure 4.47 Input–output relationship of the 90◦ phase shifter

The output of the system is the convolution of x(t) with 1/π t :

x̂(t) = h(t) ∗ x(t) = 1

π t
∗ x(t) (4.96)

This operation is called the Hilbert transform. Note that h(t) is a non-causal filter with
a singularity at t = 0. The Fourier transform of the above convolution operation can be
written as

X̂ (ω) = H (ω)X (ω) (4.97)

where H (ω) is the Fourier transform of 1/π t , which is given by (see No. 16 of Table 4.1)

H (ω) = − jsgn(ω) =

⎧⎪⎨⎪⎩
− j for ω > 0

j for ω < 0

0 for ω = 0

(4.98a)

or

H (ω) =

⎧⎪⎨⎪⎩
e− j(π/2) for ω > 0

e j(π/2) for ω < 0

0 for ω = 0

(4.98b)
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From Equation (4.98), it can be seen that

|H (ω)| = 1 for all ω, except ω = 0 (4.99)

arg H (ω) =
{

−π/2 for ω > 0

π/2 for ω < 0
(4.100)

Thus, the Hilbert transform is often referred to as a 90◦ phase shifter. For example, the
Hilbert transform of cos ω0t is sin ω0t , and that of sin ω0t is −cos ω0t .

The significance of the Hilbert transform is that it is used to form the so called
‘analytic signal’ or ‘pre-envelope signal’. An analytic signal is a complex time signal
whose real part is the original signal x(t) and where imaginary part is the Hilbert transform
of x(t), i.e. x̂(t). Thus, the analytic signal ax (t) is defined as

ax (t) = x(t) + j x̂(t) (4.101)

The Fourier transform of analytic signal F{ax (t)} is zero for ω < 0, and is 2X (ω) for
ω > 0 and X (ω) for ω = 0. Since the analytic signal is complex, it can be expressed as

ax (t) = Ax (t)e jφx (t) (4.102)

where Ax (t) =
√

x2(t) + x̂2(t) is the instantaneous amplitude, and φx (t) = tan−1

(x̂(t)/x(t)) is the instantaneous phase. The time derivative of the unwrapped instan-
taneous phase ωx (t) = φ̇x (t) = dφx (t)/dt is called the instantaneous frequency. For
a trivial case x(t) = cos ω0t , the analytic signal is ax (t) = e jω0t where Ax (t) = 1 and
ωx (t) = ω0, i.e. both are constants as expected. These concepts of instantaneous ampli-
tude, phase and frequency are particularly useful for amplitude-modulated and frequency-
modulated signals.

To visualize these concepts, consider the following amplitude-modulated signalM4.3

x(t) = m(t) cos ωct = (Ac + Am sin ωmt) cos ωct (4.103)

where ωc > ωm . We note that if m(t) is band-limited and has a maximum frequency less
than ωc, the Hilbert transform of x(t) = m(t) cos ωct is x̂(t) = m(t) sin ωct . Then, using the
relationship between Equations (4.101) and (4.102), the analytic signal can be written as

ax (t) = Ax (t)e jφx (t) = (Ac + Am sin ωmt) e jωct (4.104)

and the corresponding Ax (t), φx (t) and ωx (t) are as shown in Figure 4.48.
In sound and vibration engineering, a practical application of the Hilbert transform re-

lated to amplitude modulation/demodulation is ‘envelope analysis’ (Randall, 1987), where the
demodulation refers to a technique that extracts the modulating components, e.g. extracting
Am sin ωmt from Equation (4.103). Envelope analysis is used for the early detection of a ma-
chine fault. For example, a fault in an outer race of a rolling bearing may generate a series of
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t

( )x tφ
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( )c         mA A− +
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c         mA A+ ( )xA t

( )x t

(a) Instantaneous amplitude

(b) Instantaneous (unwrapped) phase

Figure 4.48 Analytic signal associated with the amplitude-modulated signal

burst signals at a regular interval. Such burst signals decay very quickly and contain relatively
small energies, thus the usual Fourier analysis may not reveal the repetition frequency of the
bursts. However, it may be possible to detect this frequency component by forming the analytic
signal and then applying Fourier analysis to the envelope Ax (t).

Examples

Example 1: Estimation of damping from time domain records

of an oscillator M4.4

Suppose we have a free response of a damped single-degree-of-freedom system as below:

x(t) = Ae−ζωn t sin(ωd t + φ) t ≥ 0 (4.105)

where ωd = ωn

√
1 − ζ 2. The analytic signal for this may be approximated as

ax (t) = Ax (t)e jφx (t) ≈ (
Ae−ζωn t

)
e j(ωd t+φ−π/2) t ≥ 0 (4.106)

Since ln Ax (t) ≈ ln A − ζωnt , the damping ratio ζ can be estimated from the plot of ln Ax (t)
versus time, provided that the natural frequencyωn is known. This is demonstrated in MATLAB
Example 4.4. However, as shown in MATLAB Example 4.4, it must be noted that Ax (t) and
φx (t) are usually distorted, especially at the beginning and the last parts of the signal. This
undesirable phenomenon occurs from the following: (i) the modulating component Ae−ζωn t

is not band-limited, (ii) the non-causal nature of the filter (h(t) = 1/π t), and (iii) practical
windowing effects (truncation in the frequency domain). Thus, the part of the signal near
t = 0 must be avoided in the estimation of the damping characteristic. The windowing effect
is discussed in the next section.
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Example 2: Frequency modulationM4.5

Now, to demonstrate another feature of the analytic signal, we consider the frequency modu-
lated signal as given below:

x(t) = Ac cos(ωct + Am sin ωmt) (4.107)

This can be written as x(t) = Ac [cos ωct cos (Am sin ωmt) − sin ωct sin (Am sin ωmt)] which
consists of two amplitude-modulated signals, i.e. x(t) = m1(t) cos ωct − m2(t) sin ωct , where
m1(t) and m2(t) may be approximated as band-limited (Oppenheim et al., 1999). So, for
Amωm 
 ωc, the analytic signal associated with Equation (4.107) may be approximated as

ax (t) = Ax (t)e jφx (t) ≈ Ace j(ωct+Am sin ωm t) (4.108)

and the corresponding Ax (t), φx (t) and ωx (t) are as shown in Figure 4.49. Note that the
instantaneous frequency is ωx (t) = dφx (t)/dt = ωc + ωm Am cos ωmt , as can be seen in Figure
4.49(c).

( )x tφ

t

(c) Instantaneous frequency

(a) Instantaneous amplitude

(b) Instantaneous (unwrapped) phase

cA−

t

cA

( )x cA t A≈ ( )x t

( )x tω

cω

t

c m mAω ω+

c m mAω ω−

Figure 4.49 Analytic signal associated with the frequency-modulated signal

From this example, we have seen that it may be possible to examine how the frequency
contents of a signal vary with time by forming an analytic signal. We have seen two methods of
relating the temporal and frequency structure of a signal. First, based on the Fourier transform
we saw how group delay relates how groups of frequencies are delayed (shifted) in time, i.e. the
group delays are time dependent. Second, we have seen a ‘non-Fourier’ type of representation
of a signal as A(t) cos φ(t) (based on the analytic signal derived using the Hilbert transform).
This uses the concepts of amplitude modulation and instantaneous phase and frequency.

These two approaches are different and only under certain conditions do they give similar
results (for signals with large bandwidth–time product – see the uncertainty principle in the
next section). These considerations are fundamental to many of the time–frequency analyses
of signals. Readers may find useful information on time–frequency methods in two review
papers (Cohen, 1989; Hammond and White, 1996).
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4.11 THE EFFECT OF DATA TRUNCATION (WINDOWING)M4.6–4.9

Suppose x(t) is a deterministic signal but is known only for −T/2 ≤ t ≤ T/2, as shown
in Figure 4.50.

2T2T−
t

( )w t

( )x t

1.0

Figure 4.50 Truncated data with a rectangular window w(t)

In effect, we are observing the data through a window w(t) where

w(t) = 1 | t | < T/2

= 0 | t | > T/2
(4.109)

so that we see the truncated data xT (t) = x(t)w(t).
If we Fourier transform xT (t) (in an effort to get X ( f )) we obtain the Fourier

transform of the product of two signals x(t) and w(t) as (see Equation (4.45))

XT ( f ) = F{x(t)w(t)} =
∞∫

−∞
X (g)W ( f − g)dg = X ( f ) ∗ W ( f ) (4.110)

i.e. the Fourier transform of the product of two time signals is the convolution
of their Fourier transforms. W ( f ) is called the spectral window, and is W ( f ) =
T sin(π f T )/π f T for the rectangular window. Owing to this convolution operation in
the frequency domain, the window (which need not be restricted to the rectangular data
window) results in bias or truncation error. Recall the shape of W ( f ) for the rectangular
window as in Figure 4.51.

1

T

2

T

1

T
−

2

T
−

Side lobe

Main lobeT

( )W f

f

Figure 4.51 Fourier transform of the rectangular window w(t)

The convolution integral indicates that the shape of X (g) is distorted, such that it
broadens the true Fourier transform. The distortion due to the main lobe is sometimes
called smearing, and the distortion caused by the side lobes is called leakage since the
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frequency components of X (g) at values other than g = f ‘leak’ through the side lobes
to contribute to the value of XT ( f ) at f . For example, consider a sinusoidal signal
x(t) = cos(2πpt) whose Fourier transform is X ( f ) = 1

2
[δ( f + p) + δ( f − p)]. Then

the Fourier transform of the truncated signal xT (t) is

XT ( f ) =
∞∫

−∞
X (g)W ( f − g)dg = 1

2

∞∫
−∞

[δ(g + p) + δ(g − p)] W ( f − g)dg

= 1

2
[W ( f + p) + W ( f − p)] (4.111)

This shows that the delta functions (in the frequency domain) are replaced by the shape of
the spectral window. The ‘theoretical’ and ‘achieved (windowed)’ spectra are illustrated
in Figure 4.52 (compare X ( f ) and XT ( f ) for both shape and magnitude).

1 21 2

( )X f

(a) Theoretical

f
pp−

( ) ( ) ( )TX f X f W f= ∗

f
pp−

2T Smearing

Leakage

(b) Windowed

Figure 4.52 Fourier transform of a cosine wave

If two or more closely spaced sinusoidal components are present in a signal, then they
may not easily be resolved in the frequency domain because of the distortion (especially
due to the main lobe). A rough guide as to the effect of this rectangular window is obtained
from Figure 4.53 (shown for f > 0 only).
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x(t) is the sum of three sine (or cosine) waves

Figure 4.53 Effects of windowing on the modulus of the Fourier transform
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In fact, in order to get two separate peaks of frequencies f1, f2 given in this example
it is necessary to use a data length T of order T ≥ 2/( f2 − f1) (i.e. f2 − f1 ≥ 2/T )
for the rectangular window. Note that the rectangular window is considered a ‘poor’
window with respect to the side lobes, i.e. the side lobes are large and decay slowly. The
highest side lobe is 13 dB below the peak of the main lobe, and the asymptotic roll-off
is 6 dB/octave. This results from the sharp corners of the rectangular window. However,
the main lobe of the rectangular window is narrower than any other windows.

MATLAB examples are given at the end of the chapter. Since we are using sinusoidal
signals in MATLAB Examples 4.6 and 4.7, it is interesting to compare this windowing
effect with the computational considerations for a periodic signal given in Section 3.6
(and with MATLAB Example 3.2).

A wide variety of windows are available, each with its own frequency characteristics. For
example, by tapering the windows to zero, the side lobes can be reduced but the main lobe is
wider than that of the rectangular window, i.e. increased smearing. To see this effect, consider
the following two window functions:

1. A 20 % cosine tapered window (at each side, 10 % of the data record is tapered):

wC (t) = 1 | t | < 4T /10

= cos2 5π t

T
−T /2 ≤ t ≤ −4T /10, 4T /10 ≤ t ≤ T/2

= 0 | t | > T/2 (4.112)

2. A Hann (Hanning) window (full cosine tapered window):

wH (t) = cos2 π t

T
| t | < T/2

(4.113)
= 0 | t | > T/2

These window functions are sometimes called the Tukey window, and are shown in Figure 4.54.
Note that the cosine tapered window has a narrower bandwidth and so better frequency res-
olution whilst the Hann window has smaller side lobes and sharper roll-off, giving improved
leakage suppression.

(a) Cosine tapered (b) Hann
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f

( )W f

Cosine tapered

Hann

(c) Spectral windows

Figure 4.54 Effect of tapering window
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Window ‘carpentry’ is used to design windows to reduce leakage at the expense of
main lobe width in Fourier transform calculations, i.e. to obtain windows with small side
lobes. One ‘trades’ the side lobe reduction for ‘bandwidth’, i.e. by tapering the window
smoothly to zero, the side lobes are greatly reduced, but the price paid is a much wider
main lobe. The frequency characteristic of a window is often presented in dB normalized
to unity gain (0 dB) at zero frequency, e.g. as shown in Figure 4.55 for the rectangular
window (in general, A = 1).
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Figure 4.55 Rectangular window and its frequency characteristic

The rectangular window may be good for separating closely spaced sinusoidal compo-
nents, but the leakage is the price to pay. Some other commonly used windows and their
spectral properties (for f ≥ 0 only) are shown in Figure 4.56. The Hann window is a good
general purpose window, and has a moderate frequency resolution and a good side lobe roll-
off characteristic. Through MATLAB Examples 4.6–4.9, the frequency characteristics of the
rectangular window and the Hann window are compared. Another widely used window is the
Hamming window (a Hann window sitting on a small rectangular base). It has a low level of
the first few side lobes, and is used for speech signal processing. The frequency characteristics
of these window functions are compared in Figure 4.57.

We now note a few general comments on windows:

1. The ability to pick out peaks (resolvability) depends on the data widow width as well as
the shape.

2. The windows in Figure 4.56 (and others except the rectangular window) are not generally
applicable to transient waveforms where a significant portion of the information is lost by
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Figure 4.56 Some commonly used windows
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Figure 4.57 Frequency characteristics of some windows

windowing.M4.9 (The exponential window is sometimes used for exponentially decaying
signals such as responses to impact hammer tests.)

3. A correction factor (scaling factor) should be applied to the window functions to account
for the loss of ‘energy’ relative to a rectangular window as follows:

Scaling factor =
√√√√∫ T/2

−T/2
w2

rect(t)dt∫ T/2

−T/2
w2(t)dt

(4.114)

where wrect(t) is the rectangular window, and w(t) is the window function applied on the
signal. For example, the scaling factor for the Hann window is

√
8/3. This correction

factor is used in MATLAB Examples 4.7–4.9. This correction is more readily interpreted
in relation to stationary random signals and will be commented upon again in that context
with a more general formula for the estimation of the power spectral density.

4. For the data windows, we define two ‘bandwidths’ of the windows, namely (a) 3 dB band-
width; (b) noise bandwidth. The 3 dB bandwidth is the width of the power transmission
characteristic at the 3 dB points, i.e. where there are 3 dB points below peak amplification,
as shown in Figure 4.58.

The (equivalent) noise bandwidth is the width of an ideal filter with the same peak
power gain that accumulates the same power from a white noise source, as shown in
Figure 4.59 (Harris, 1978).

5. The properties of some commonly used windows are summarised in Table 4.2. More
comprehensive discussions on window functions can be found in Harris (1978).
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Figure 4.58 The 3 dB bandwidth
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2
( )W f

Peak power gain, A

0

0.5A

Spectral window
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f
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0

Figure 4.59 Noise bandwidth

Table 4.2 Properties of some window functions

Window Highest Asymptotic 3 dB Noise First zero
(length T ) side lobe (dB) roll-off (dB/octave) bandwidth bandwidth crossing (freq.)

Rectangular −13.3 6 0.89
1

T
1.00

1

T

1

T

Bartlett (triangle) −26.5 12 1.28
1

T
1.33

1

T

2

T

Hann(ing) (Tukey
or cosine squared)

−31.5 18 1.44
1

T
1.50

1

T

2

T

Hamming −43 6 1.30
1

T
1.36

1

T

2

T

Parzen −53 24 1.82
1

T
1.92

1

T

4

T

The Uncertainty Principle (Bandwidth–Time Product)

As can be seen from the Fourier transform of a rectangular pulse (see Figure 4.8), i.e. Equation
(4.27), X ( f ) = 2ab sin(2π f b)/2π fb, a property of the Fourier transform of a signal is that the
narrower the signal description in one domain, the wider its description in the other. An extreme
example is a delta function δ(t) whose Fourier transform is a constant. Another example is
a sinusoidal function cos(2π f0t) whose Fourier transform is 1

2
[δ( f − f0) + δ( f + f0)]. This

fundamental property of signals is generalized by the so-called uncertainty principle.
Similar to Heisenberg’s uncertainty principle in quantum mechanics, the uncertainty

principle in Fourier analysis is that the product of the spectral bandwidth and the time duration
of a signal must be greater than a certain value. Consider a signal x(t) with finite energy, such
that ‖x‖2 = ∫ ∞

−∞ x2(t)dt < ∞, and its Fourier transform X (ω). We define the following:

t̄ = 1

‖x‖2

∞∫
−∞

t x2(t)dt (4.115a)

(�t)2 = 1

‖x‖2

∞∫
−∞

(t − t̄)2x2(t)dt (4.115b)



JWBK207-04 JWBK207-Shin January 18, 2008 9:1 Char Count= 0

THE EFFECT OF DATA TRUNCATION (WINDOWING) 101

where t̄ is the centre of gravity of the area defined by x2(t), i.e. the measure of location, and
the time dispersion �t is the measure of the spread of x(t). Similarly, on the frequency scale,
‖X‖2 = ∫ ∞

−∞ |X (ω)|2 dω, and we define

ω = 1

‖X‖2

∞∫
−∞

ω |X (ω)|2 dω (4.116a)

(�ω)2 = 1

‖X‖2

∞∫
−∞

(ω − ω)2 |X (ω)|2 dω (4.116b)

where ω is the measure of location on the frequency scale, and �ω is called the spectral
bandwidth, which is the measure of spread of X (ω). Note that for a real signal x(t), ω is equal
to zero since |X (ω)|2 is even. Using Schwartz’s inequality

∞∫
−∞

| f (t)|2 dt ·
∞∫

−∞
|g(t)|2 dt ≥

∣∣∣∣∣∣
∞∫

−∞
f (t)g(t)dt

∣∣∣∣∣∣
2

(4.117)

and Parseval’s theorem, it can be shown that (Hsu, 1970)

�ω·�t ≥ 1

2
(4.118)

or, if the spectral bandwidth is defined in hertz,

� f ·�t ≥ 1

4π
(4.119)

Thus, the bandwidth–time (BT) product of a signal has a lower bound of 1/2 . For
example, the BT product of the rectangular window is �ω·�t = 2π (or � f ·�t = 1),
and the Gaussian pulse e−at2

has the ‘minimum BT product’ of �ω·�t = 1/2 (recall
that the Fourier transform of a Gaussian pulse is another Gaussian pulse, see Equation
(4.33)). For the proof of these results, see Hsu (1970).

The inequality above points out a difficulty (or a limitation) in the Fourier-based time–
frequency analysis methods. That is, if we want to obtain a ‘local’ Fourier transform then
increasing the ‘localization’ in the time domain results in poorer resolution in the frequency
domain, and vice versa. In other words, we cannot achieve arbitrarily fine ‘resolution’ in both
the time and frequency domains at the same time.

Sometimes, the concept of the above inverse spreading property can be very useful to
understand principles of noise control. For example, when the impact between two solid
bodies produces a significant noise, the most immediate remedy may be to increase the impact
duration by adding some resilient material. This increase of time results in narrower frequency
bandwidth, i.e. removes the high-frequency noise, and reduces the total noise level. This is
illustrated in Figure 4.60 assuming that the force is a half-sine pulse. Note that the impulse
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Figure 4.60 Interpretation of impact noise

(the area under the force curve, xi (t)) is the same for both cases, i.e.

T1∫
0

x1(t)dt =
T2∫

0

x2(t)dt

However, the total energy of the second impulse is much smaller, i.e.

∞∫
−∞

∣∣X1( f )
∣∣2

d f �
∞∫

−∞

∣∣X2( f )
∣∣2

d f

as shown in Figure 4.60(b). Also note that, for each case, Parseval’s theorem is satisfied, i.e.

Ti∫
0

x2
i (t)dt =

∞∫
−∞

∣∣Xi ( f )
∣∣2

d f

4.12 BRIEF SUMMARY

1. A deterministic aperiodic signal may be expressed by

x(t) =
∞∫

−∞
X ( f )e j2π f t d f and X ( f ) =

∞∫
−∞

x(t)e− j2π f t dt : Fourier integral pair

2. Then, the energy spectral density of x(t) is |X ( f )|2 and satisfies

∞∫
−∞

x2(t)dt =
∞∫

−∞
|X ( f )|2 d f : Parseval’s theorem
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3. The input–output relationship for an LTI system is expressed by the convolution
integral,

LTI system, 
h(t)

x(t) y(t)

i.e. y(t) = h(t) ∗ x(t) = ∫ ∞
−∞ h(τ )x(t − τ )dτ , and in the frequency domain Y ( f ) =

H ( f )X ( f ).
4. A pure delay preserves the shape of the original shape, and gives a constant value

of group delay−dφ/dω = t0. A non-constant group delay indicates the degree of
nonlinearity of the phase.

5. A minimum phase system has all its poles and zeros in the left half of the s-plane, and
is especially useful for inverse problems.

6. The analytic signal ax (t) = Ax (t)e jφx (t) provides the concepts of instantaneous ampli-
tude, instantaneous phase and instantaneous frequency.

7. If a signal is truncated such that xT (t) = x(t)w(t), then XT ( f ) =∫ ∞
−∞ X (g)W ( f − g)dg.

8. Data windows w(t) introduce ‘leakage’ and distort the Fourier transform. Both the
width and shape of the window dictate the resolvability of closely spaced frequency
components. A ‘scale factor’ should be employed when a window is used.

9. The uncertainty principle states that the product of the spectral bandwidth and the time
extent of a signal is �ω·�t ≥ 1/2. This indicates the fundamental limitations of the
Fourier-based analyses.

4.13 MATLAB EXAMPLES

Example 4.1: The effect of an echo

Consider a signal with a pure echo, y(t) = x(t) + ax(t − t0) as given in Equation (4.46),
where the main signal is x(t) = e−λ| t | (see Equation (4.20) and Figure 4.5). For this
example, the parameters a = 0.2, λ = 300 and t0 = 0.15 are chosen. Readers may change
these values to examine the effects for various cases.

Line MATLAB code Comments

1
2

clear all
fs=500; t=-5:1/fs:5;

Define time variable from −5 to 5 seconds
with sampling rate fs = 500.

3 lambda=300; t0=0.15; a=0.2; Assign values for the parameters of the
signal.

4 x=exp(-lambda*abs(t)); Expression of the main signal, x(t). This is
for the comparison with y(t).
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5 y=x+a*exp(-lambda*abs(t-t0)); Expression of the signal, y(t).

6 X=fft(x); Y=fft(y); Fourier transforms of signals x(t) and y(t).
In fact, this is the discrete Fourier transform
(DFT) which will be discussed in Chapter 6.

7
8
9

10

N=length(x);
fp=0:fs/N:fs/2; % for the positive frequency
fn=-fs/N:-fs/N:-fs/2;
% for the negative frequency
f=[fliplr(fn) fp];

Define the frequency variables for both
positive and negative frequencies. (The
frequency spacing of the DFT will also be
discussed in Chapter 6.) The command
‘fliplr’ flips the vector (or matrix) in the
left/right direction.

11
12
13

plot(f,fftshift(abs(X)/fs), 'r:')
xlabel('Frequency (Hz)'); ylabel('Modulus')
hold on

Plot the magnitude of X ( f ), i.e. |X ( f )|
(dashed line)2, and hold the graph. The
command ‘fftshift’ shifts the zero frequency
component to the middle of the spectrum.
Note that the magnitude is scaled by ‘1/fs’,
and the reason for doing this will also be
found in Chapter 6.

14
15

plot(f,fftshift(abs(Y)/fs))
hold off

Plot the magnitude |Y ( f )| on the same
graph, and release the graph. Compare this
with |X ( f )|.

Results
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Example 4.2: Appearances of envelope and carrier signals

This is examined for the cases of tp = tg , tp < tg and tp > tg in Equation (4.75), i.e.

x(t) = 2AB
sin

(
B(t − tg)

)
π B(t − tg)︸ ︷︷ ︸
envelope

cos ωk(t − tp)︸ ︷︷ ︸
carrier

2 It is dotted line in the MATLAB code. However, dashed lines are used for generating figures. So, the dashed line in
the comments denotes the ‘dotted line’ in the corresponding MATLAB code. This applies to all MATLAB examples
in this book.
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Line MATLAB code Comments

1
2

clear all
B=1;

Define the frequency band in rad/s.

3
4

A=3;
wk=6;

Select the amplitude A arbitrary, and define
the carrier frequency, wk such that wk � B.

5
6

tg=5;
tp=5; % tp=4.7 (for tp < tg),

% tp=5.3 (for tp > tg)

Define the group delay tg, and the phase
delay tp.
In this example, we use tp=5 for tp = tg,
tp=4.7 for tp < tg, and tp=5.3 for tp > tg. Try
with different values.

7 t=0:0.03:10; Define the time variable.

8 x=2*A*B*sin(B*(t-tg))./(pi*B*
(t-tg)).*cos(wk*(t-tp));

Expression of the above equation. This is the
actual time signal.

9 xe=2*A*B*sin(B*(t-tg))./(pi*B*(t-tg)); Expression of the ‘envelope’ signal.

10

11

plot(t,x); xlabel('Time (s)');
ylabel('\itx\rm(\itt\rm)')
hold on

Plot the actual amplitude-modulated signal,
and hold the graph.

12
13
14

plot(t, xe, 'g:', t, -xe, 'g:')
hold off
grid on

Plot the envelope signal with the dashed line,
and release the graph.

Results
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Example 4.3: Hilbert transform: amplitude-modulated signal (see Equation (4.103))

x(t) = (Ac + Am sin ωmt) cos ωct = (Ac + Am sin 2π fmt) cos 2π fct

For this example, the parameters Ac = 1, Am = 0.5, fm = 1 and fc = 10 are chosen.

Line MATLAB code Comments

1 clear all Define parameters and the time
variable.

2 Ac=1; Am=0.5; fm=1; fc=10;
3 t=0:0.001:3;

4 x=(Ac+Am*cos(2*pi*fm*t)).*cos(2*pi*fc*t); Expression of the amplitude-modulated
signal, x(t).

5 a=hilbert(x); Create the analytic signal. Note that, in
MATLAB, the function ‘hilbert’
creates the analytic signal, not x̂(t).

6 fx=diff(unwrap(angle(a)))./diff(t)/(2*pi); This is an approximate derivative,
which computes the instantaneous
frequency in Hz.

7
8
9

10

figure(1)
plot(t, abs(a), t, x, 'g:')
axis([0 3 -2 2])
xlabel('Time (s)'); ylabel('\itA x\rm(\itt\rm)')

Plot the instantaneous amplitude
Ax (t).
Note that Ax (t) estimates well the
envelope of the signal,
Ac + Am sin 2π fmt =
1 + 0.5 sin 2π · 1 · t .

11
12
13
14

figure(2)
plot(t, unwrap(angle(a)))
axis([0 3 0 200])
xlabel('Time (s)'); ylabel('\it\phi x\rm(\itt\rm)')

Plot the instantaneous (unwrapped)
phase φx (t), which increases linearly
with time.

15
16
17
18

figure(3)
plot(t(2:end),fx)
axis([0 3 8 12])
xlabel('Time (s)'); ylabel('\itf x\rm(\itt\rm)')

Plot the instantaneous frequency,
where fx (t) = ωx (t)/2π.
Note that fx (t) estimates fc = 10
reasonably well, except small regions
at the beginning and end.

Results
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Example 4.4: Hilbert transform: estimation of damping coefficient (see Equation
(4.106))

Suppose we have a signal represented as Equation (4.105), i.e.

x(t) = Ae−ζωn t sin(ωd t + φ) = Ae−ζ2π fn t sin(ωd t + φ)

and, for this example, the parameters A = 1, ζ = 0.01, fn = 10 and φ = 0 are chosen.

Line MATLAB code Comments

1 clear all Define parameters and the time variable.
2 A=1; zeta=0.01; fn=10; wn=2*pi*fn;
3 wd=wn*sqrt(1-zetaˆ2); phi=0; t=0:0.001:6;

4 x=A*exp(-zeta*wn*t).*sin(wd*t+phi); Expression of the signal (Equation
(4.105)).

5 a=hilbert(x); Create the analytic signal.

6 ax=log(abs(a)); Compute ln Ax (t). Note that ‘log’ in
MATLAB denotes the natural logarithm.

7
8
9

figure(1)
plot(t, abs(a), t, x, 'g:'); axis([0 6 -1.5 1.5])
xlabel('Time (s)');
ylabel('\itA x\rm(\itt\rm)')

Plot the instantaneous amplitude Ax (t).
Note that, in this figure (Figure (a) below),
the windowing effect (truncation in the
frequency domain – MATLAB uses the
FFT-based algorithm, see MATLAB help
window for details) and the non-causal
component are clearly visible.

10
11
12

figure(2)
plot(t, ax); axis([0 6 -6 1])
xlabel('Time (s)');
ylabel('ln\itA x\rm(\itt\rm)')

Plot ln Ax (t) versus time. The figure shows
a linearly decaying characteristic over the
range where the windowing effects are not
significant.



JWBK207-04 JWBK207-Shin January 18, 2008 9:1 Char Count= 0

108 FOURIER INTEGRALS AND CONTINUOUS-TIME LINEAR SYSTEMS

13 p=polyfit(t(1000:4000), ax(1000:4000), 1); ‘polyfit’ finds the coefficients of a
polynomial that fits the data in the least
squares sense. In this example, we use a
polynomial of degree 1 (i.e. linear
regression). Also, we use the data set in the
well-defined region only (i.e. 1 to
4 seconds).

14
15

format long
zeta est=-p(1)/wn

‘format long’ displays the number with 15
digits.
The first element of the vector p represents
the slope of the graph in Figure (b) below.
Thus, the ζ can be estimated by dividing
−p(1) by the natural frequency ωn .

Results
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The variable ‘zeta est’ returns the value ‘0.00999984523039’ which is very close to the
true value ζ = 0.01.

Example 4.5: Hilbert transform: frequency-modulated signal (see Equation (4.107))

x(t) = Ac cos (ωct + Am sin ωmt) = Ac cos (2π fct + Am sin 2π fmt)

For this example, the parameters Ac = 1, Am = 4, fm = 1 and fc = 8 are chosen.

Line MATLAB code Comments

1
2
3

clear all
Ac=1; Am=4; fm=1; fc=8;
t=0:0.0001:4;

Note that we define a much finer time
variable for a better approximation of
the derivative (see Line 6 of the
MATLAB code).

4 x=Ac*cos(2*pi*fc*t + Am*sin(2*pi*fm*t)); Expression of the
frequency-modulated signal, x(t).
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5 a=hilbert(x); Create the analytic signal.

6 fx=diff(unwrap(angle(a)))./diff(t)/(2*pi); Compute the instantaneous frequency
in Hz.

7
8
9

figure(1)
plot(t, abs(a), t, x, 'g:'); axis([0 4 -1.5 1.5])
xlabel('Time (s)'); ylabel('\itA x\rm(\itt\rm)')

Plot the instantaneous amplitude
Ax (t).
Note that the envelope is
Ax (t) ≈ Ac = 1.

10
11
12

figure(2)
plot(t, unwrap(angle(a))); axis([0 4 0 220])
xlabel('Time (s)');
ylabel('\it\phi x\rm(\itt\rm)')

Plot the instantaneous (unwrapped)
phase φx (t).

13
14
15

figure(3)
plot(t(2:end),fx); axis([0 4 0 13])
xlabel('Time (s)'); ylabel('\itf x\rm(\itt\rm)')

Plot the instantaneous frequency,
where fx (t) = ωx (t)/2π .
Note that fx (t) = fc+ fm Am

cos 2π fmt = 8 + 4 cos 2π · 1 · t .

Results
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Example 4.6: Effects of windowing on the modulus of the Fourier transform

Case 1: Rectangular window (data truncation)
Consider the following signal with three sinusoidal components:

x(t) = A1 sin 2π f1t + A2 sin 2π f2t + A3 sin 2π f3t
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Amplitudes are A1 = A2 = A3 = 2, which gives the magnitude ‘1’ for each sinusoidal
component in the frequency domain. The frequencies are chosen as f1 = 10, f2 = 20
and f3 = 21.

Line MATLAB code Comments

1
2

clear all
f1=10; f2=20; f3=21; fs=60;

Define frequencies. The sampling rate is
chosen as 60 Hz.

3 T=0.6; % try different values: 0.6, 0.8, 1.0,
1.5, 2, 2.5, 3, 4

Define the window length 0.6 s. In this
example, we use various lengths to
demonstrate the effect of windowing.

4 t=0:1/fs:T-1/fs; Define time variable from 0 to T-1/fs
seconds. The subtraction by 1/fs is
introduced in order to make ‘exact’ periods
of the sinusoids (see Chapter 6 for more
details of DFT properties).

5 x=2*sin(2*pi*f1*t) +
2*sin(2*pi*f2*t)+2*sin(2*pi*f3*t);

Description of the above equation.

6
7
8

N=length(x);
X=fft(x);
f=fs*(0:N-1)/N;

Perform DFT using the ‘fft’ function of
MATLAB. Calculate the frequency variable
(see Chapter 6).

9
10
11

Xz=fft([x zeros(1,2000-N)]); %zero padding
Nz=length(Xz);
fz=fs*(0:Nz-1)/Nz;

Perform ‘2000-point’ DFT by adding zeros
at the end of the time sequence ‘x’. This
procedure is called the ‘zero padding’ (see
the comments below). Calculate new
frequency variable accordingly.

12
13
14
15
16
17
18

figure(1)
stem(f(1:N/2+1), abs(X(1:N/2+1)/fs/T), 'r:')
axis([0 30 0 1.2])
xlabel('Frequency (Hz)'); ylabel('Modulus')
hold on
plot(fz(1:Nz/2+1), abs(Xz(1:Nz/2+1)/fs/T))
hold off; grid on

Plot the modulus of the DFT (from 0 to
fs/2 Hz). Note that the DFT coefficients are
divided by the sampling rate fs in order to
make its amplitude the same as the Fourier
integral (see Chapter 6). Also note that,
since the time signal is periodic, it is further
divided by ‘T’ in order to compensate for its
amplitude, and to make it same as the
Fourier series coefficients (see Chapter 6
and Chapter 3, Equation (3.45)).
The DFT without zero padding is drawn as
the dashed stem lines with circles, and the
DFT with zero padding is drawn as a solid
line. Two graphs are drawn in the same
figure.

Comments:

1. Windowing with the rectangular window is just the truncation of the signal (i.e. from
0 to T seconds). The results are shown next together with MATLAB Example 4.7.

2. Zero padding: Padding ‘zeros’ at the end of the time sequence improves the appear-
ance in the frequency domain since the spacing between frequencies is reduced. In
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other words, zero padding in the time domain results in interpolation in the frequency
domain (Smith, 2003). Sometimes this procedure is called ‘spectral interpolation’.
As a result, the appearance in the frequency domain (DFT) resembles the true spec-
trum (Fourier integral), thus it is useful for demonstration purposes. However, it does
not increase the ‘true’ resolution, i.e. does not improve the ability to distinguish the
closely spaced frequencies. Note that the actual resolvability in the frequency do-
main depends on the data length T and the window type. Another reason for zero
padding is to make the number of sequence a power of two to meet the FFT algo-
rithm. However, this is no longer necessary in many cases such as programming in
MATLAB.

Since zero padding may give a wrong impression of the results, it is not used in this
book except for some demonstration and special purposes.

Example 4.7: Effects of windowing on the modulus of the Fourier transform

Case 2: Hann window
In this example, we use the same signal as in the previous example.

Line MATLAB code Comments

1 clear all Same as in the previous example.
2 f1=10; f2=20; f3=21; fs=60;
3 T=0.6;

% try different values: 0.6, 0.8, 1.0, 1.5, 2, 2.5, 3, 4
4 t=0:1/fs:T-1/fs;
5 x=2*sin(2*pi*f1*t)+ 2*sin(2*pi*f2*t)+

2*sin(2*pi*f3*t);
6 N=length(x);

7 whan=hanning(N); Generate the Hann window with
the same size of vector as x, and
multiply by x. Then, perform the
DFT of the windowed signal.

8 x=x.*whan';
9 X=fft(x);

10 f=fs*(0:N-1)/N;

11 Xz=fft([x zeros(1,2000-N)]); % zero padding Same as in the previous example.
12 Nz=length(Xz);
13 fz=fs*(0:Nz-1)/Nz;

14 figure(1) Same as in the previous example,
except that the magnitude
spectrum is multiplied by the
scale factor ‘sqrt(8/3)’ (see
Equation (4.114)).

15 stem(f(1:N/2+1), sqrt(8/3)*abs(X(1:N/2+1)/fs/T), 'r:')
16 axis([0 30 0 1.2])
17 xlabel('Frequency (Hz)'); ylabel('Modulus')
18 hold on
19 plot(fz(1:Nz/2+1), sqrt(8/3)*abs(Xz(1:Nz/2+1)/fs/T))
20 hold off; grid on
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Results of Examples 4.6 and 4.7
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Comments:

1. The 10 Hz component is included as a reference, i.e. for the purpose of comparison
with the other two peaks.

2. The solid line (DFT with zero padding) is mainly for demonstration purposes, and
the dashed stem line with circles is the actual DFT of the windowed sequence. From
the results of the DFT (without zero padding), it is shown that the two sinusoidal
components (20 Hz and 21 Hz) are separated after T = 2 for the case of a rectangular
window. On the other hand, they are not completely separable until T = 4 if the Hann
window is used. This is because of its wider main lobe. However, we note that the
leakage is greatly reduced by the Hann window.

3. For the case of the Hann window, the magnitudes of peaks are underestimated even if
the scale factor is used. (Note that the main lobe contains more frequency lines than
in the rectangular window.)

4. However, for the case of the rectangular window, the peaks are estimated correctly
when the data length corresponds to exact periods of the signal, i.e. when T = 1, 2, 3
and 4. Note that the peak frequencies are located precisely in this case (see the 21 Hz
component). Compare this with the other cases (non-integer T) and with MATLAB
Example 3.2 in Chapter 3.

Example 4.8: Comparison between the rectangular window and the Hann window:
side roll-off characteristics

Consider the signal x(t) = A1 sin (2π f1t) + A2 sin (2π f2t), where A1 � A2. In this ex-
ample, we use A1 = 1, A2 = 0.001, f1 = 9, f2 = 14, and the data (window) length ‘T =
15.6 seconds’.

Line MATLAB code Comments

1 clear all Define parameters and the time
variable. ‘T=15.6’ is chosen to
introduce some windowing effect.
The sampling rate is chosen as 50 Hz.

2 f1=9; f2=14; fs=50; T=15.6;
3 t=0:1/fs:T-1/fs;

4 x=1*sin(2*pi*f1*t) + 0.001*sin(2*pi*f2*t); Expression of the above equation.

5 N=length(x); Create the Hann windowed signal xh,
and then perform the DFT of both x
and xh. Also, calculate the frequency
variable.

6 whan=hanning(N); xh=x.*whan';
7 X=fft(x); Xh=fft(xh);
8 f=fs*(0:N-1)/N;

9 figure(1) Plot the results: solid line for the
rectangular window, and the dashed
line for the Hann window.

10 plot(f(1:N/2+1), 20*log10(abs(X(1:N/2+1)/fs/T)));
hold on

11 plot(f(1:N/2+1), 20*log10(sqrt(8/3)*
abs(Xh(1:N/2+1)/fs/T)),'r:')

12 axis([0 25 -180 0])
13 xlabel('Frequency (Hz)'); ylabel('Modulus (dB)')
14 hold off
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Results
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Comments: The second frequency component is hardly noticeable with the rectangular
window owing to the windowing effect. But, using the Hann window, it becomes pos-
sible to see even a very small amplitude component, due to its good side lobe roll-off
characteristic.

Example 4.9: Comparison between the rectangular window and the Hann window
for a transient signal

Case 1: Response of a single-degree-of-freedom system
Consider the free response of a single-degree-of-freedom system

x(t) = A

ωd
e−ζωn t sin(ωd t) and F{x(t)} = A

ω2
n − ω2 + j2ζωnω

where ωd = ωn

√
1 − ζ 2. In this example, we use A = 200, ζ = 0.01, ωn = 2π fn =

2π (20).

Line MATLAB code Comments

1 clear all The sampling rate is chosen as
100 Hz. The time variable and
other parameters are defined.

2 fs=100; t=[0:1/fs:5-1/fs];
3 A=200; zeta=0.01; wn=2*pi*20;

wd=sqrt(1-zetaˆ2)*wn;

4 x=(A/wd)*exp(-zeta*wn*t).*sin(wd*t); Expression of the time signal.

5 N=length(x); Create the Hann windowed
signal xh, and then perform
the DFT of both x and xh.
Also, calculate the frequency
variable.

6 whan=hanning(N); xh=x.*whan';
7 X=fft(x); Xh=fft(xh);
8 f=fs*(0:N-1)/N;

9 H=A./(wnˆ2 - (2*pi*f).ˆ2 + i*2*zeta*wn*(2*pi*f)); Expression of the true Fourier
transform, F{x(t)}.
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10 figure(1) Plot the results in dB scale:
Solid line (upper) for the
rectangular window, solid line
(lower) for the Hann window,
and dashed line for the ‘true’
Fourier transform.

11 plot(f(1:N/2+1), 20*log10(abs(X(1:N/2+1)/fs)));
hold on

12 plot(f(1:N/2+1), 20*log10(sqrt(8/3)*
abs(Xh(1:N/2+1)/fs)), 'r')

13 plot(f(1:N/2+1), 20*log10(abs(H(1:N/2+1))), 'g:')
14 axis([0 50 -150 0])
15 xlabel('Frequency (Hz)'); ylabel('Modulus (dB)')
16 hold off

17 figure(2) Plot the results in linear scale:
underestimation of the
magnitude spectrum by the
Hann window is more clearly
seen.

18 plot(f(1:N/2+1), abs(X(1:N/2+1)/fs)); hold on
19 plot(f(1:N/2+1), (sqrt(8/3)*abs(Xh(1:N/2+1)/fs)), 'r')
20 plot(f(1:N/2+1), abs(H(1:N/2+1)), 'g:')
21 axis([0 50 0 0.7])
22 xlabel('Frequency (Hz)');

ylabel('Modulus (linear scale)')
23 hold off

Results
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Comments: Note that the magnitude spectrum is considerably underestimated if the
Hann window is used, because a significant amount of energy is lost by windowing.
Thus, in general, windowing is not applicable to transient signals.

Case 2: Response of a two-degree-of-freedom system, when the contributions of two
modes are considerably different. This example is similar to MATLAB Example 4.8.

Consider the free response of a two-degree-of-freedom system, e.g.

x(t) = A

ωd1

e−ζ1ωn1t sin(ωd1t) + B

ωd2

e−ζ2ωn2t sin(ωd2t)

Then, its Fourier transform is

F{x(t)} = A

ω2
n1 − ω2 + j2ζ1ωn1ω

+ B

ω2
n2 − ω2 + j2ζ2ωn2ω
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In this example, we use A = 200, B = 0.001A, ζ1 = ζ2 = 0.01, ωn1 = 2π (20) and ωn2 =
2π (30). Note that A � B.

Line MATLAB code Comments

1 clear all Same as Case 1, except that the
parameters for the second mode
are also defined.

2 fs=100; t=[0:1/fs:5-1/fs];
3 A=200; B=0.001*A; zeta1=0.01; zeta2=0.01;
4 wn1=2*pi*20; wd1=sqrt(1-zeta1ˆ2)*wn1;
5 wn2=2*pi*30; wd2=sqrt(1-zeta2ˆ2)*wn2;

6 x=(A/wd1)*exp(-zeta1*wn1*t).*sin(wd1*t) +
(B/wd2)*exp(-zeta2*wn2*t).*sin(wd2*t);

Expression of the time signal, x(t).

7 N=length(x); Same as Case 1.
8 whan=hanning(N); xh=x.*whan';
9 X=fft(x); Xh=fft(xh);

10 f=fs*(0:N-1)/N;

11 H=A./(wn1ˆ2-(2*pi*f).ˆ2+i*2*zeta1*wn1*(2*pi*f))
+ B./(wn2ˆ2-(2*pi*f).ˆ2+i*2*zeta2*wn2*(2*pi*f));

Expression of the true Fourier
transform, F{x(t)}.

12 figure(1) Plot the results of the rectangular
window in dB scale: solid line for
the rectangular window and
dashed line for the 'true' Fourier
transform.

13 plot(f(1:N/2+1), 20*log10(abs(X(1:N/2+1)/fs)));
hold on

14 plot(f(1:N/2+1), 20*log10(abs(H(1:N/2+1))), 'g:')
15 axis([0 50 -60 0])
16 xlabel('Frequency (Hz)'); ylabel('Modulus (dB)')
17 hold off

18 figure(2) Plot the results of the Hann
window in dB scale: solid line for
the Hann window, and dashed line
for the ‘true’ Fourier transform.

19 plot(f(1:N/2+1), 20*log10(sqrt(8/3)*
abs(Xh(1:N/2+1)/fs)))

20 hold on
21 plot(f(1:N/2+1), 20*log10(abs(H(1:N/2+1))), 'g:')
22 axis([0 50 -160 0])
23 xlabel('Frequency (Hz)'); ylabel('Modulus (dB)')
24 hold off

Results
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Comments: Similar to MATLAB Example 4.8, the second mode is clearly noticeable
when the Hann window is used, although the magnitude spectrum is greatly under-
estimated. Note that the second mode is almost negligible, i.e. B 
 A. So, it is almost
impossible to see the second mode in the true magnitude spectrum and even in the phase
spectrum as shown in Figure (c).
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The reason for these results is not as clear as in MATLAB Example 4.8 where the two
sinusoids are compared. However, it might be argued that the convolution operation in
the frequency domain results in magnifying (or sharpening) the resonance region owing
to the frequency characteristic of the Hann window.
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5
Time Sampling and Aliasing

Introduction

So far, we have developed the Fourier transform of a continuous signal. However, we usually
utilize a digital computer to perform the transform. Thus, it is necessary to re-examine Fourier
methods so as to be able to transform sampled data. We would ‘hope’ that the discrete version
of the Fourier transform resembles (or approximates) the Fourier integral (Equation (4.6)),
such that it represents the frequency characteristic (within the range of interest) of the original
signal. In fact, from the MATLAB examples given in the previous chapter, we have already
seen that the results of the discrete version (DFT) and the continuous version (Fourier integral)
appear to be not very different. However, there are fundamental differences between these two
versions, and in this chapter we shall consider the effect of sampling, and relate the Fourier
transform of a continuous signal and the transform of a discrete signal (or a sequence).

5.1 THE FOURIER TRANSFORM OF AN IDEAL

SAMPLED SIGNAL

Impulse Train Modulation

We introduce the Fourier transform of a sequence by using the mathematical notion of
‘ideal sampling’ of a continuous signal. Consider a ‘train’ of delta functions i(t) which
is expressed as

i(t) =
∞∑

n=−∞
δ(t − n�) (5.1)

Fundamentals of Signal Processing for Sound and Vibration Engineers
K. Shin and J. K. Hammond. C© 2008 John Wiley & Sons, Ltd
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i.e. delta functions located every � seconds as depicted in Figure 5.1.

1.0

Δ

. . .. . .

i(t)

t

Figure 5.1 Train of delta functions

Starting with a continuous signal x(t), an ideal uniformly sampled discrete sequence
is x(n�) = x(t)|t=n� evaluated every � seconds of the continuous signal x(t). Since the
sequence x(n�) is discrete, we cannot apply the Fourier integral. Instead, the ideally
sampled signal is often modelled mathematically as the product of the continuous sig-
nal x(t) with the train of delta functions i(t), i.e. the sampled signal can be written
as

xs(t) = x(t)i(t) (5.2)

The reciprocal of the sampling interval, fs = 1/�, is called the sampling rate, which
is the number of samples per second. The sampling procedure can be illustrated as in
Figure 5.2.

( )sx t

=×
Δ

... ...

( )i t( )tx

Figure 5.2 Impulse train representation of a sampled signal

In this way we see that xs(t) is an amplitude-modulated train of delta functions. We
also note that xs(t) is not the same as x(n�) since it involves delta functions. However,
it is a convenient step to help us form the Fourier transform of the sequence x(n�), as
follows. Let Xs( f ) denote the Fourier transform of the sampled signal xs(t). Then, using
properties of the delta function,

Xs( f ) =
∞∫

−∞

[
x(t)

∞∑
n=−∞

δ(t − n�)

]
e− j2π ftdt =

∞∑
n=−∞

⎡⎣ ∞∫
−∞

x(t)e− j2π ft · δ(t − n�)dt

⎤⎦
=

∞∑
n=−∞

x(n�)e− j2π fn� (5.3)

The summation (5.3) now involves the sequence x(n�) and is (in principle) computable. It
is this expression that defines the Fourier transform of a sequence. We are now in a position
to note some fundamental differences between the Fourier transform X ( f ) of the original
continuous signal x(t) and Xs( f ), the Fourier transform of the uniformly sampled version
x(n�).
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Note that Equation (5.3) implies that Xs( f ) has a periodic structure in frequency with
period 1/�. For example, for an integer number r , Xs( f + r/�) becomes

Xs( f + r/�) =
∞∑

n=−∞
x(n�)e− j2π ( f +r/�)n� =

∞∑
n=−∞

x(n�)e− j2π fn�e− j2πrn

=
∞∑

n=−∞
x(n�)e− j2π fn� = Xs( f ) (5.4)

This periodicity in frequency will be discussed further shortly. The inverse Fourier transform
of Xs( f ) can be found by multiplying both sides of Equation (5.3) by e j2π f r� and integrating
with respect to f from −1/2� to 1/2� (since Xs( f ) is periodic, we need to integrate over
only one period), and taking account of the orthogonality of the exponential function. Then

1/2�∫
−1/2�

Xs( f )e j2π f r�df =
1/2�∫

−1/2�

[ ∞∑
n=−∞

x(n�)e− j2π fn�

]
e j2π f r�df

=
∞∑

n=−∞

⎡⎢⎣ 1/2�∫
−1/2�

x(n�)e− j2π fn�e j2π f r�df

⎤⎥⎦
=

∞∑
n=−∞

⎡⎢⎣x(n�)

1/2�∫
−1/2�

e− j2π f (n−r )�df

⎤⎥⎦ = x(r�)
1

�
(5.5)

Thus, we summarize the Fourier transform pair for the ‘sampled sequence’ as below,
where we rename Xs( f ) as X (e j2π f �):

X (e j2π f �) =
∞∑

n=−∞
x(n�)e− j2π fn� (5.6)

x(n�) = �

1/2�∫
−1/2�

X (e j2π f �)e j2π fn�df (5.7)

Note that the scaling factor � is present in Equation (5.7).

The Link Between X(e j2π fΔ) and X( f )

At this stage, we may ask: ‘How is the Fourier transform of a sequence X (e j2π f �) related
to the Fourier transform of a continuous signal X ( f )?’ In order to answer this, we need to
examine the periodicity of X (e j2π f �) as follows.

Note that i(t) in Equation (5.1) is a periodic signal with period �, thus it has a Fourier
series representation. Since the fundamental period TP = �, we can write the train of delta
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functions as (see Equation (3.34))

i(t) =
∞∑

n=−∞
cne j2πnt/� (5.8)

where the Fourier coefficients are found from Equation (3.35) such that

cn = 1

�

�/2∫
−�/2

i(t)e− j2πnt/�dt = 1

�
(5.9)

Thus, Equation (5.8) can be rewritten as

i(t) = 1

�

∞∑
n=−∞

e j2πnt/� (5.10)

(Recall Equation (3.30) which is equivalent to this.) Using the property of the delta
function

∫ ∞
−∞ e± j2πat dt = δ(a), the Fourier transform of Equation (5.10) can be calculated

as

I ( f ) = F{i(t)} =
∞∫

−∞

[
1

�

∞∑
n=−∞

e j2πnt/�

]
e− j2π ftdt = 1

�

∞∑
n=−∞

⎡⎣ ∞∫
−∞

e j2πnt/�e− j2π ftdt

⎤⎦
= 1

�

∞∑
n=−∞

⎡⎣ ∞∫
−∞

e− j2π ( f −n/�)t dt

⎤⎦ = 1

�

∞∑
n=−∞

δ
(

f − n

�

)
(5.11)

Thus, the Fourier transform of the train of delta functions can be drawn in the frequency
domain as in Figure 5.3.

Since the Fourier transform of xs(t) results in the convolution of X ( f ) with I ( f ) in the
frequency domain, i.e. Xs( f ) = F{x(t)i(t)} = X ( f ) ∗ I ( f ), it follows that

Xs( f ) = I ( f ) ∗ X ( f ) =
∞∫

−∞
I (g)X ( f − g)dg =

∞∫
−∞

1

�

∞∑
n=−∞

δ
(

g − n

�

)
X ( f − g)dg

= 1

�

∞∑
n=−∞

⎡⎣ ∞∫
−∞

δ
(

g − n

�

)
X ( f − g)dg

⎤⎦ = 1

�

∞∑
n=−∞

X
(

f − n

�

)
(5.12)

... ...

1 Δ

( )I f

1 Δ

2 Δ1− Δ2− Δ
f

Figure 5.3 Fourier transform of the train of delta functions
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This gives an alternative form of Equation (5.6), which is

X (e j2π f �) = 1

�

∞∑
n=−∞

X
(

f − n

�

)
(5.13)

This important equation describes the relationship between the Fourier transform of a
continuous signal and the Fourier transform of a sequence obtained by ideal sampling
every � seconds. That is, the Fourier transform of the sequence x(n�) is the sum of shifted
versions of the Fourier transform of the underlying continuous signal. This reinforces the
periodic nature of X (e j2π f �). Note also that the ‘scaling’ effect 1/�, i.e. the sampling
rate fs = 1/�, is a multiplier of the sum in Equation (5.13).

So, the ‘sampling in the time domain’ implies a ‘periodic and continuous structure
in the frequency domain’ as illustrated in Figure 5.4. From Equation (5.6), it can be
seen that Xs( fs − f ) = X∗

s ( f ), where * denotes complex conjugate. This is confirmed
(for the modulus) from Figure 5.4. Thus, all the information in Xs( f ) lies in the range
0 ≤ f ≤ fs/2. This figure emphasizes the difference between X ( f ) and X (e j2π f �), and
leads to the concept of ‘aliasing’, which arises from the possible overlapping between
the replicas of X ( f ). This will be discussed further in the next section.

2( )j fX e π ΔΔ

1

2Δ

...

( )X f

1

Δ

...

3

2Δ

f

Aliasing

3

2
−

Δ
1−
Δ

1

2
−

Δ

Figure 5.4 Fourier transform of the sampled sequence

An Alternative Route to the Derivation of the Fourier Transform

of a Sequence

The z-transform

The expression for the Fourier transform of a sequence, Equation (5.6), can also be obtained
via the z-transform of a sequence. The z-transform is widely used in the solution of difference
equations, just as the Laplace transform is used for differential equations. The definition of
the z-transform X(z) of a sequence of numbers x(n) is

X (z) =
∞∑

n=−∞
x(n)z−n (5.14)

where z is the complex-valued argument of the transform and X(z) is a function of a complex
variable. In Equation (5.14), the notion of time is not explicitly made, i.e. we write x(n) for
x(n�). It is convenient here to regard the sampling interval as set to unity. Since z is complex,
it can be written in polar form, i.e. using the magnitude and phase such that z = re jω, and is
represented in a complex plane (polar coordinates) as shown in Figure 5.5(a). If this expression
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2( )j fX e π
Im( )z

Re( )z
1r =

( )X z

-planez

(a) Representation of the z-plane 2( )j fe π(b) Relationship between X (z) and X

jz re ω=

-planez

Re(z)

Im(z)

r
ω

Figure 5.5 Representation of the z-plane and the Fourier transform of a sequence

is substituted into Equation (5.14), it gives

X (re jω) =
∞∑

n=−∞
x(n)(re jω)−n =

∞∑
n=−∞

x(n)r−ne− jωn (5.15)

If we further restrict our interest to the unit circle in the z-plane, i.e. r = 1, so z = e jω = e j2π f ,
then Equation (5.15) is reduced to

X (e j2π f ) =
∞∑

n=−∞
x(n)e− j2π fn (5.16)

which is exactly same form for the Fourier transform of a sequence as given in Equation (5.6)
for sampling interval � = 1.

Thus, it can be argued that the evaluation of the z-transform on the unit circle in the
z-plane yields the Fourier transform of a sequence as shown in Figure 5.5(b). This is analogous
to the continuous-time case where the Laplace transform reduces to the Fourier transform if
it is evaluated on the imaginary axis, i.e. s = jω.

Relationship Between the Laplace Transform and the z-transform

To see the effect of sampling on the z-plane, we consider the relationship between the Laplace
transform and the z-transform. The Laplace transform of x(t), L{x(t)}, is defined as

X (s) =
∞∫

−∞
x(t)e−st dt (5.17)

where s = σ + j2π f is a complex variable. Note that if s = j2π f , then X ( f ) = X (s)|s= j2π f .
Now, let X̂ (s) be the Laplace transform of an (ideally) sampled function; then

X̂ (s) = L{x(t)i(t)} =
∞∫

−∞
x(t)

∞∑
n=−∞

δ(t − n�)e−st dt

=
∞∑

n=−∞

⎡⎣ ∞∫
−∞

x(t)e−stδ(t − n�)dt

⎤⎦ =
∞∑

n=−∞
x(n�)e−sn� (5.18)
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If z = es�, then Equation (5.18) becomes the z-transform, i.e.

X̂ (s)
∣∣
z=es� =

∞∑
n=−∞

x(n�)z−n = X (z) (5.19)

Comparing Equation (5.19) with Equation (5.6), it can be shown that if z = e j2π f �, then

X (e j2π f �) = X (z)|z=e j2π f � (5.20)

Also, using the similar argument made in Equation (5.13), i.e. using

i(t) = 1

�

∞∑
n=−∞

e j2πnt/�

an alternative form of X̂ (s) can be written as

X̂ (s) =
∞∫

−∞
x(t)

1

�

∞∑
n=−∞

e j2πnt/�e−st dt = 1

�

∞∑
n=−∞

⎡⎣ ∞∫
−∞

x(t)e−(s− j2πn/�)t dt

⎤⎦ (5.21)

Thus,

X̂ (s) = 1

�

∞∑
n=−∞

X

(
s − j2πn

�

)
(5.22)

From Equation (5.22), we can see that X̂ (s) is related to X (s) by adding shifted ver-
sions of scaled X (s) to produce X̂ (s) as depicted in Figure 5.6(b) below, which is similar
to the relationship between the Fourier transform of a sampled sequence and the Fourier
transform.

Note that, as we can see from Equation (5.19), X (z) is not directly related to X (s), but
it is related to X̂ (s) via z = es�. Further, if we let s = j2π f , then we have the following
relationship:

Xs( f )
(= X (e j2π f �)

) = X̂ (s)
∣∣
s= j2π f = X (z)|z=e j2π f � (5.23)

The relationships between X (s), X̂ (s) and X (z) are illustrated in Figure 5.6. In this figure, a
pole is included in the s-plane to demonstrate how it is mapped to the z-plane. We can see
that a single pole in the X (s)-plane results in an infinite number of poles in the X̂ (s)-plane;
then this infinite series of poles all map onto a single pole in the X (z)-plane. In effect, the left
hand side of the s-plane is mapped to the inside of the unit circle of the z-plane. However, we
must realize that, due to the sampling process, what it maps onto the z-plane is not X (s), but
X̂ (s), and each ‘strip’ in the left hand side of X̂ (s) is mapped onto the z-plane plane such that
it fills the complete unit circle. This indicates the ‘periodic’ structure in the frequency domain
as well as possible aliasing in the frequency domain.

The above mapping process is sometimes used in designing an IIR (Infinite Impulse
Response) digital filter from an existing analogue filter, and is called the impulse-invariant
method.
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(c) Digital (discrete-time) domain:
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(b) Laplace transform of a sampled function:

Figure 5.6 Relationship between s-plane and z-plane

5.2 ALIASING AND ANTI-ALIASING FILTERSM5.1–5.3

As noted in the previous section, Equation (5.13) describes how the frequency components
of the sampled signal are related to the Fourier transform of the original continuous signal.
A pictorial description of the sampling effect follows. Consider the Fourier transform that
has X ( f ) = 0 for | f | > fH , as given in Figure 5.7.
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Hf

( )X f

Hf−
f

Figure 5.7 Fourier transform of a continuous signal such that X ( f ) = 0 for | f | > fH

Assuming that the sampling rate fs = 1/� is such that fs > 2 fH , i.e. fH < 1/2�,
then Figure 5.8 shows the corresponding (scaled) Fourier transform of a sampled sequence
� · Xs( f ) (or � · X (e j2π f �)). Note that the scaling factor � is introduced (see Equa-
tion (5.13)), and some commonly used terms are defined in the figure. Thus � · Xs( f )
accurately represents X ( f ) for | f | < 1/2�.

Hf

2( )j fX e π ΔΔ ⋅

Hf− 1

2Δ
1

( )sf sampling rate=
Δ

1

2
−

Δ
1−
Δ

2 Hf

( 2)sFolding frequency f

......

Nyquist rate

Nyquist 
frequency

f

Figure 5.8 Fourier transform of a sampled sequence fs > 2 fH

Suppose now that fs < 2 fH . Then there is an overlapping of the shifted versions of
X ( f ) resulting in a distortion of the frequencies for | f | < 1/2� as shown in Figure 5.9.

HfHf− 1
( )sf=

Δ
1−
Δ

2−
Δ

... ...

2
sf

2( )j fX e π ΔΔ ⋅

f
2

Δ

Figure 5.9 Fourier transform of a sampled sequence fs < 2 fH

This ‘distortion’ is due to the fact that high-frequency components in the signal
are not distinguishable from lower frequencies because the sampling rate fs is not high
enough. Thus, it is clear that to avoid this distortion the highest frequency in the signal
fH should be less than fs/2. This upper frequency limit is often called the Nyquist frequency
(see Figure 5.8).

This distortion is referred to as aliasing. Consider the particular case of a harmonic wave
of frequency p Hz, e.g. cos(2πpt) as in Figure 5.10. We sample this signal every � seconds, i.e.
fs = 1/� (with, say, p < fs/2), to produce the sampled sequence cos(2πpn�). Now, consider
another cosine wave of frequency (p + 1/�)Hz, i.e. cos[2π (p + 1/�)t]; again we sample
this every � seconds to give cos[2π(p + 1/�)n�] which can be shown to be cos(2πpn�),
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cos(2πpt)

( )cos[2 ]1p tπ + Δ

Δ

Figure 5.10 Illustration of the aliasing phenomenon

identical to the above. So, simply given the sample values, how do we know which cosine
wave they come from?

In fact, the same sample values could have arisen from any cosine wave hav-
ing frequency ±p + (k/�) (k = 1, 2, . . . ), i.e. cos(2πpn�) is indistinguishable from
cos[2π (±p + k/�)n�]. So if a frequency component is detected at p Hz, any one of these
higher frequencies can be responsible for this rather than a ‘true’ component at p Hz. This
phenomenon of higher frequencies looking like lower frequencies is called aliasing. The val-
ues ±p + k/� are possible aliases of frequency p Hz, and can be seen graphically for some
p Hz between 0 and 1/2� by ‘pleating’ the frequency axis as shown in Figure 5.11 (Bendat
and Piersol, 2000).
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Figure 5.11 Possible aliases of frequency p Hz

To avoid aliasing the signal must be band-limited, i.e. it must not have any frequency
component above a certain frequency, say fH , and the sampling rate must be chosen to
be greater than twice the highest frequency contained in the signal, namely

fs > 2 fH (5.24)

So, it would appear that we need to know the highest frequency component in the signal.
Unfortunately, in many cases the frequency content of a signal will not be known and so
the choice of sampling rate is problematic. The way to overcome this difficulty is to filter
the signal before sampling, i.e. filter the analogue signal using an analogue low-pass
filter. This filter is often referred to as an anti-aliasing filter.

Anti-aliasing Filters

In general, the signal x(t) may not be band-limited, thus aliasing will distort the spectral
information. Thus, we must eliminate ‘undesirable’ high-frequency components by applying
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( )H f

cf

‘Roll-off’ of the filter

stop Hf f≈
f

StopbandPassband

Transition

region

(cut-off frequency)

Figure 5.12 Typical characteristics of a low-pass filter

an anti-aliasing low-pass filter to the analogue signal prior to digitization. The ‘anti-aliasing’
filter should have the following properties:� flat passband;� sharp cut-off characteristics;� low distortion (i.e. linear phase characteristic in the passband);� multi-channel analysers need a set of parallel anti-aliasing filters which must have matched

amplitude and phase characteristics.

Filters are characterized by their frequency response functions H ( f ), e.g. as shown in
Figure 5.12.

Some typical anti-aliasing filters are shown in Figure 5.13.
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Figure 5.13 Some commonly used anti-aliasing low-pass filters
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We shall assume that the anti-aliasing filter operates on the signal x(t) to produce a
signal to be digitized as illustrated in Figure 5.14.

Anti-aliasing filter,

H( f )
ADC

x(t) x(nΔ)

Figure 5.14 The use of anti-aliasing filter prior to sampling

But we still need to decide what the highest frequency fH is just prior to the ADC
(analogue-to-digital converter). The critical features in deciding this are:� the ‘cut-off’ frequency of the filter fc, usually the fc (Hz) = 3 dB point of the filter;� the ‘roll-off rate’ of the filter in dB/octave (B in Figure 5.15);� the ‘dynamic range’ of the acquisition system in dB (A in Figure 5.15). (Dynamic range

is discussed in the next section.)

These terms and the effect of sampling rate are depicted in Figure 5.15. Note that, in this
figure, if fs > 2 fstop(≈ 2 fH ) there is no aliasing, and if fs > 2 f A there is no aliasing up
to fc. Also note that it is not the 3 dB point of the filter which should satisfy the Nyquist
criterion. But at the Nyquist frequency the filter response should be negligible (e.g. at
least 40 dB down on the passband).
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Figure 5.15 Characteristics of the anti-aliasing filter

If the spectrum is to be used up to fc Hz, then the figure indicates how fs is chosen. Using
simple trigonometry,

− A

log2( fstop/ fc)
= −B (dB/octave) (5.25)

Note that if B is dB/decade, then the logarithm is to base 10. Some comments on the octave
are: if f2 = 2n f1, then f2 is ‘n’ octaves; thus, log2 f2 = n + log2 f1 and log2 f2 − log2 f1 =
log2( f2/ f1) = n (octaves).

From Equation (5.25), it can be shown that fstop = 2A/B fc. Substituting this expression
into fs > fstop + fc, which is the condition for no aliasing up to the cut-off frequency fc
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(see Figure 5.15), then we have the following condition for the sampling rate:

fs > fc(1 + 2A/B) ≈ fc(1 + 100.3A/B) (5.26)

For example, if A = 70 dB and B = 70 dB/octave, then fs > 3 fc, and if A = 70 dB and B =
90 dB/octave, then fs > fc(1 + 270/90) ≈ 2.7 fc. However, the following practical guide
(which is based on twice the frequency at the noise floor) is often used:

fs = 2 fstop(≈ 2 fH ) ≈ 2 × 100.3A/B fc (5.27)

For example, if A = 70 dB and B = 90 dB/octave, then fs ≈ 3.42 fc, which gives a more
conservative result than Equation (5.26).

In general, the cut-off frequency fc and the roll-off rate of the anti-aliasing filter should be
chosen with the particular application in mind. But, very roughly speaking, if the 3 dB point of
the filter is a quarter of the sampling rate fs and the roll-off rate better than 48 dB/octave, then
this gives a 40 to 50 dB reduction in the folding frequency fs/2. This may result in an acceptable
level of aliasing (though we note that this may not be adequate for some applications).

Choosing an appropriate sampling rate is important. Although we must avoid aliasing,
unnecessarily high sampling rates are not desirable. The ‘optimal’ sampling rate must be se-
lected according to the specific applications (the bandwidth of interest) and the characteristics
of the anti-aliasing filter to be used.

There is another very important aspect to note. If the sampled sequence x(n�) is sampled
again (digitally, i.e. downsampled), the resulting sequence can be aliased if an appropriate
anti-aliasing ‘digital’ low-pass filter is not applied before the sampling. This is demonstrated
by MATLAB Examples 5.2 and 5.3. Also note that aliasing does occur in most computer
simulations. For example, if a numerical integration method (such as the Runge–Kutta method)
is applied to solve ordinary differential equations, in this case there is no simple way to avoid
the aliasing problem (see comments of MATLAB Example 6.5 in Chapter 6).

5.3 ANALOGUE-TO-DIGITAL CONVERSION AND

DYNAMIC RANGE

An ADC is a device that takes a continuous (analogue) time signal as an input and produces
a sequence of numbers (digital) as an output that are sample values of the input. It may be
convenient to consider the ADC process as consisting of two phases, namely sampling and
quantization, as shown in Figure 5.16.

Note that actual ADCs do not consist of two separate stages (as in the conceptual figure),
and various different types are available. In Figure 5.16, x(n�) is the exact value of time signal
x(t) at time t = n�, i.e. it is the ideally sampled sequence with sample interval �. x̃(n�) is

x~(nΔ)
Sampler Quantizer

( )x t ( )x nΔ
ADC

Figure 5.16 Conceptual model of the analogue-to-digital conversion
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the representation of x(n�) on a computer, and is different from x(n�) since a ‘finite number
of bits’ are used to represent each number. Thus, we can expect that some errors are produced
in the quantization process.

Now, consider the problem of quantization, in Figure 5.17.

x~(nΔ)Quantizer( )x nΔ

Figure 5.17 Quantization process

Suppose the ADC represents a number using 3 bits (and a sign bit), i.e. a 4 bit ADC as
given in Figure 5.18.

Digital word
Sign bit

Figure 5.18 A digital representation of a 4 bit ADC

Each bit is either 0 or 1, i.e. two states, so there are 23 = 8 possible states to represent a
number. If the input voltage range is ±10 volts then the 10 volts range must be allocated to
the eight possible states in some way, as shown in Figure 5.19.
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Figure 5.19 Digital representation of an analogue signal using a 4 bit ADC

In Figure 5.19, any input voltage between −5/8 and 5/8 volts will be represented by
the bit pattern [000], and from 5/8 to 15/8 volts by [010], etc. The rule for assigning the bit
pattern to the input range depends on the ADC. In the above example the steps are uniform
and the ‘error’ can be expressed as

e(n�) = x̃(n�) − x(n�) (5.28)

Not that, for the particular quantization process given in Figure 5.19, the error e(n�) has
values between −5/8 and 5/8. This error is called the quantization noise (or quantization
error). From this it is clear that ‘small’ signals will be poorly represented, e.g. within the input
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voltage range of ±10 volts, a sine wave of amplitude ±1.5 volts, say, will be represented by
the 4 bit ADC as shown in Figure 5.20.

Δ

( )x nΔ~
~

20 8

Quantized signal: ( ) ( ) ( )x n x n e nΔ = Δ + Δ

( )x t
10 8

10 8−

20 8−

nΔ

Figure 5.20 Example of poor digital representation

What will happen for a sine wave of amplitude ±10 volts and another sine wave of
amplitude ±11 volts? The former corresponds to the maximum dynamic range, and the latter
signal will be clipped.

Details of quantization error can be found in various references (Oppenheim and Schafer,
1975; Rabiner and Gold, 1975; Childers and Durling, 1975; Otnes and Enochson, 1978).
A brief summary is given below. The error e(n�) is often treated as random ‘noise’. The
probability distributions of e(n�) depend on the particular way in which the quantization
occurs. Often it is assumed that this error has a uniform distribution (with zero mean) over
one quantization step, and is stationary and ‘white’. The probability density function of e(n�)
is shown in Figure 5.21, where δ = X/2b for a b bit word length (excluding the sign bit), and
X (volts) corresponds to the full range of the ADC. Note that δ = 10/2b = 10/23 = 10/8 in
our example above. The variance of e(n�) is then

Var (e) = σ 2
e =

∞∫
−∞

(e − μe)2 p(e)de = 1

δ

δ/2∫
−δ/2

e2de

= δ2

12
= (X/2b)2

12
(5.29)

where μe is the mean value of e(n�). (See Chapter 7 for details of statistical quantities.)

( )p e

1

δ

2δ− 2δ0
e

Figure 5.21 Probability density function of e(n�)

Now, if we assume that the signal x(t) is random and σ 2
x is the variance of x(n�), then a

measure of signal-to-noise ratio (SNR) is defined as

S

N
= 10 log10

(
signal power

error power

)
= 10 log10

(
σ 2

x

σ 2
e

)
(for zero mean) (5.30)
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where ‘signal power’ is Average[x2(n�)] and ‘error power’ or the quantization noise is
Average[e2(n�)]. This describes the dynamic range (or quantization signal-to-noise ratio)
of the ADC. Since we assume that the error is random and has a uniform probability density
function, for the full use of the dynamic range of ADC with b bit word length, e.g. σx = X ,
Equation (5.30) becomes

S

N
= 10 log10

(
σ 2

x /σ 2
e

) = 10 log10[12X2/(X/2b)2]

= 10 log10(12 × 22b) ≈ 10.8 + 6b dB (5.31)

For example, a 12 bit ADC (11 bit word length) has a maximum dynamic range of about
77 dB. However, we note that this would undoubtedly result in clipping. So, if we choose
σx = X/4 to ‘avoid’ clipping, then the dynamic rage is reduced to

S

N
= 10 log10(σ 2

x /σ 2
e ) ≈ 6b − 1.25 dB (5.32)

In this case, a 12 bit ADC gives a dynamic range of about 65 dB. This may be reduced
further by practical considerations of the quality of the acquisition system (Otnes and
Enochson, 1978). For example, the sampler in Figure 5.16 cannot be realized with a
train of delta functions (thus producing aperture error and jitter). Nevertheless, it is
emphasized that we must avoid clipping but always try to use the maximum dynamic
range.

5.4 SOME OTHER CONSIDERATIONS IN SIGNAL ACQUISITION

Signal Conditioning

We have already noted that signals should use as much of the ADC range as possible − but
without overloading − or clipping of the signal will occur. ‘Signal conditioning’ refers to the
procedures used to ensure that ‘good data’ are delivered to the ADC. This includes the correct
choice of transducer and its operation and subsequent manipulation of the data before the ADC.

Specifically, transducer outputs must be ‘conditioned’ to accommodate cabling, environ-
mental considerations and features of the recording instrumentation. Conditioning includes
amplification and filtering, with due account taken of power supplies and cabling. For exam-
ple, some transducers, such as strain gauges, require power supplies. Considerations in this
case include: stability of power supply with little ripple, low noise, temperature stability, low
background noise pick-up, low interchannel interference, etc.

Amplifiers: Amplifiers are used to increase (or attenuate) magnitudes in a calibrated fashion;
transform signals from one physical variable to another, e.g. charge to voltage; remove d.c.
biases; provide impedance matching, etc. The most common types are voltage amplifier,
charge amplifier, differential amplifier, preamplifier, etc. In each case, care should be taken
to ensure linearity, satisfactory frequency response and satisfactory ‘slew rate’ (i.e. response
to maximum rate of rise of a signal). In any case, the result of amplification should not cause
‘overload’ which exceeds the limit of input (or output) range of a device.
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Filters: Filters are used to limit signal bandwidth. Typically these are low-pass filters (anti-
aliasing filters), high-pass filters, band-pass filters and band-stop filters. (Note that high-pass
and band-stop filters would need additional low-pass filtering before sampling.) Most filters
here are ‘analogue’ electronic filters. Sometimes natural ‘mechanical filtering’ is very helpful.

Cabling: Cabling must be suited to the application. Considerations are cable length, impedance
of cable and electronics, magnetic and capacitive background noise, environment, interfer-
ences, transducer type, etc.

Triboelectric noise (static electricity) is generated when a coaxial cable is used to connect
a high-impedance piezoelectric transducer to a charge amplifier, and undergoes mechanical
distortion. Grounding must be considered. Suitable common earthing must be established
to minimize electromagnetic interference manifesting itself as background noise. Shielding
confines radiated electromagnetic energy.

Note that none of the considerations listed above is ‘less important’ to obtain (and generate)
good data. A couple of practical examples are demonstrated below. First, consider generating a
signal using a computer to excite a shaker. The signal must pass through a digital-to-analogue
converter (DAC), a low-pass filter (or reconstruction filter) and the power amplifier before
being fed into the shaker. Note that, in this case, it is not only the reconstruction filter, but also
the power amplifier that is a filter in some sense. Thus, each device may distort the original
signal, and consequently the signal which the shaker receives may not properly represent
the original (or intended) signal. The frequency response of the power amplifier in particular
should be noted carefully. Most power amplifiers have a band-limited frequency response
with a reasonably high enough upper frequency limit suitable for general sound and vibration
problems. However, some have a lower frequency limit (as well as the upper limit), which
acts as a band-pass filter. This type of power amplifier can distort the signal significantly if
the signal contains frequency components outside the frequency band of the amplifier. For
example, if a transient signal such as a half-sine pulse is fed to the power amplifier, the output
will be considerably distorted owing to the loss of energy in the low-frequency region. This
effect is shown in Figure 5.22, where a half-sine wave is generated by a computer and measured
before and after the power amplifier which has a lower frequency limit.

Power amplifier

(with a lower frequency limit)

Distorted responseHalf-sine wave

Figure 5.22 Example of distortion due to the power amplifier

As another practical example, consider the beam experimental setup in Chapter 1
(Figure 1.11). In Figure 1.11, all the cables are secured adequately to minimize additional
dynamic effects. Note that the beam is very light and flexible, so any excessive movement and
interference of the cables can affect the dynamics of the beam. Now, suppose the cable
connected to the accelerometer is loosely laid down on the table as shown in Figure 5.23.
Then, the movement of the beam causes the cable to slide over the table. This results in ad-
ditional friction damping to the structure (and also possibly additional stiffness). The system
frequency response functions for each case are shown in Figure 5.24, where the effects of this
cable interference are clearly seen.
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Cable interference

Figure 5.23 Experiment with cable interference
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Figure 5.24 FRF of the system with/without cable interference

Data Validation

As demonstrated in the above experimental results, every possible effort should be made
early in any experiment to ensure good data are captured. Data validation refers gener-
ally to the many and varied checks and tests one may perform prior to ‘serious’ signal
processing. This will occur at both analogue and digital stages. Obviously it would be
best always to process only ‘perfect’ signals. This ideal is impossible and a very clear
understanding of any shortcomings in the data is vital.

A long list of items for consideration can be compiled, some of which are as follows:� Most signals will be recorded, even if some real-time processing is carried out. Identify
any physical events for correlation with data.� Inspect time histories critically, e.g. if periodic signals are expected, check for other
signals such as noise, transients.� Ensure non-stationary signals are adequately captured and note any changing ‘physics’
that might account for the non-stationarity.
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� Check for signal clipping.� Check for adequate signal levels (dynamic range).� Check for excessive background noise, sustained or intermittent (spikes or bursts).� Check for power line pick-up.� Check for spurious trends, i.e. drifts, d.c. offsets.� Check for signal drop-outs.� Check for ADC operation.� Check for aliasing.� Always carry out some sample analyses (e.g. moments, spectra and probability densi-
ties, etc; these statistical quantities are discussed in Part II of this book).

5.5 SHANNON’S SAMPLING THEOREM (SIGNAL RECONSTRUCTION)

This chapter concludes with a look at digital-to-analogue conversion and essentially starts
from the fact that, to avoid aliasing, the sampling rate fs should be greater than twice the
highest frequency contained in the signal. This begs a fundamental question: is it possible to
reconstruct the original analogue signal exactly from the sample values or has the information
carried by the original analogue signal been lost? As long as there is no aliasing, we can indeed
reconstruct the signal exactly and this introduces the concept of an ideal digital-to-analogue
conversion. This is simple to understand using the following argument.

Recall the pictorial representation of the Fourier transforms of a continuous signal x(t) and
its sampled equivalent x(n�), i.e. X ( f ) and X (e j2π f �) respectively, as shown in Figure 5.25.
The figure shows the situation when no aliasing occurs. Also, note the scale factor.

Hf

( )X f

Hf−
f

Hf

2( )j fX e π ΔΔ ⋅

Hf−
2
sf sf

......
f

2
sf−sf−

Figure 5.25 Fourier transforms: X ( f ) and X (e j2π f �)

In digital-to-analogue conversion, we want to operate on x(n�) (equivalently X (e j2π f �))
to recover x(t) (equivalently X ( f )). It is clear that to achieve this we simply need to multiply
X (e j2π f �) by a frequency window function H ( f ), where

H ( f ) = �(= 1/ fs) − fs/2 < f < fs/2

= 0 elsewhere
(5.33)

Then

X ( f ) = H ( f )X (e j2π f �) (5.34)
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Taking the inverse Fourier transform of this gives

x(t) = h(t) ∗ x(n�) (5.35)

where

h(t) = sin π fs t

π fs t
(5.36)

Note that Equation (5.35) is not a mathematically correct expression. Thus, using the ex-
pression for x(n�) as xs(t) = x(t)i(t) where i(t) = ∑∞

n=−∞ δ(t − n�), then Equation (5.35)
becomes

x(t) = h(t) ∗ xs(t) =
∞∫

−∞

[
sin π fsτ

π fsτ

∞∑
n=−∞

x(t − τ )δ(t − n� − τ )

]
dτ

=
∞∑

n=−∞

⎡⎣ ∞∫
−∞

sin π fsτ

π fsτ
x(t − τ )δ(t − n� − τ )dτ

⎤⎦
=

∞∑
n=−∞

x(n�)
sin π fs(t − n�)

π fs(t − n�)
(5.37)

i.e. the ‘ideal’ interpolating function is the sinc function of the form sin x/x . Equation
(5.37) can be depicted as in Figure 5.26 which shows how to reconstruct x(t) at time t
that requires the infinite sum of scaled sinc functions.
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Figure 5.26 Graphical representation of Equation (5.37)

Note that, with reference to Figure 5.25, if the highest frequency component of the
signal is fH then the window function H ( f ) need only be � for | f | ≤ fH and zero
elsewhere. Using this condition and applying the arguments above, the reconstruction
algorithm can be expressed as

x(t) =
∞∑

n=−∞
x(n�)

2 fH

fs

sin 2π fH (t − n�)

2π fH (t − n�)
(5.38)

This result is called Shannon’s sampling theorem.

This ideal reconstruction algorithm is not fully realizable owing to the infinite summation,
and practical digital-to-analogue converters (DACs) are much simpler − notably the zero-order
hold converter. Typical digital-to-analogue conversion using the zero-order hold is shown in



JWBK207-05 JWBK207-Shin January 26, 2008 17:5 Char Count= 0

BRIEF SUMMARY 139

Zero-order hold

DAC
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Figure 5.27 Reconstruction of a signal using a zero-order hold DAC

Figure 5.27. The zero-order hold DAC generates a sequence of rectangular pulses by holding
each sample for � seconds. The output of the zero-order hold DAC, however, inevitably
contains a large amount of unwanted high-frequency components. Thus, in general, we need
a low-pass filter to eliminate these high frequencies following the DAC. This low-pass filter
is often called the reconstruction filter (or anti-imaging filter), and has a similar (or identical)
design to the anti-aliasing low-pass filter. The cut-off frequency of the reconstruction filter is
usually set to half the sampling rate, i.e. fs/2.

Note that not only does the zero-order hold DAC produce undesirable high frequencies,
but also its frequency response is no longer flat in both magnitude and phase (it has the shape
of a sinc function). Thus the output signal x̂(t) has reduced amplitude and phase change in
its passband (frequency band of the original (or desired) signal x(t)). To compensate for this
effect, a pre-equalization digital filter (before the DAC) or post-equalization analogue filter
(after the reconstruction filter) is often used. Another method of reducing this effect is by
‘increasing the update rate’ of the DAC. Similar to the sampling rate, the update rate is the
rate at which the DAC updates its value.

For example, if we can generate a sequence x(n�) in Figure 5.27 such that 1/� is much
higher than fH (the highest frequency of the desired signal x(t)), and if the DAC is capable
of generating the signal accordingly, then we have a much smoother analogue signal x̂(t), i.e.
x̂(t) ≈ x̃(t). In this case, we may not need to use the reconstruction filter. In effect, for a given
band-limited signal, by representing x̂(t) using much narrower rectangular pulses, we have
the frequency response of the DAC with flatter passband and negligible high-frequency side
roll-off of the sinc function (note that the rectangular pulse (or a sinc function in the frequency
domain) can be considered as a crude low-pass filter). Since many modern DAC devices have
an update rate of 1MHz or above, in many situations in sound and vibration applications, we
may reasonably approximate the desired signal simply by using the maximum capability of
the DAC device.

5.6 BRIEF SUMMARY

1. The Fourier transform pair for a sampled sequence is given by

x(n�) = �

1/2�∫
−1/2�

X (e j2π f �)e j2π fn�df and X (e j2π f �) =
∞∑

n=−∞
x(n�)e− j2π fn�

In this case, the scaling factor � is introduced.
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2. The relationship between the Fourier transform of a continuous signal and the Fourier
transform of the corresponding sampled sequence is

X (e j2π f �) = 1

�

∞∑
n=−∞

X
(

f − n

�

)
i.e. X (e j2π f �) is a continuous function consisting of replicas of scaled X ( f ), and is
periodic with period 1/�. This introduces possible aliasing.

3. To avoid aliasing, an ‘analogue’ low-pass filter (anti-aliasing filter) must be used before
the analogue-to-digital conversion, and the sampling rate of the ADC must be high
enough. In practice, for a given anti-aliasing filter with a roll-off rate of B dB/octave
and an ADC with a dynamic range of A dB, the sampling rate is chosen as

fs ≈ 2 × 100.3A/B fc

4. To obtain ‘good’ data, we need to use the maximum dynamic range of the ADC (but
must avoid clipping). Also, care must be taken with any signal conditioning, filters,
amplifiers, cabling, etc.

5. When generating an analogue signal, for some applications, we may not need a
reconstruction filter if the update rate of the DAC is high.

5.7 MATLAB EXAMPLES

Example 5.1: Demonstration of aliasing

Case A: This example demonstrates that the values ±p + k/� Hz become aliases of
frequency p Hz. (see Figure 5.11).

Consider that we want to sample a sinusoidal signal x(t) = sin 2πpt with the sam-
pling rate fs = 100 Hz. We examine three cases: x1(t) = sin 2πp1t , x2(t) = sin 2πp2t
and x3(t) = sin 2πp3t where p1 = 20 Hz, p2 = 80 Hz and p3 = 120 Hz. Note that all
the frequencies will appear at the same frequency of 20 Hz.

Line MATLAB code Comments

1 clear all Define the sampling rate fs = 100 Hz, total record
time T = 10 seconds, and the time variable t from 0
to ‘T-1/fs’ seconds. Also define the frequencies for
each sinusoid.

2 fs=100; T=10;
3 t=0:1/fs:T-1/fs;
4 p1=20; p2=80; p3=120;

5 x1=sin(2*pi*p1*t); Generate the signals x1(t), x2(t) and x3(t). Note that
all these signals use the same time variable ‘t’, thus it
has the same sampling rate.

6 x2=sin(2*pi*p2*t);
7 x3=sin(2*pi*p3*t);

8 N=length(t); Perform the DFT of each signal, and calculate the
frequency variable f.
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9 X1=fft(x1); X2=fft(x2);
X3=fft(x3);

10 f=fs*(0:N-1)/N;

11 figure(1); plot(f, abs(X1)/fs/T) Plot the modulus of the DFT of x1(t) = sin 2π (20)t
for the frequency range 0 Hz to 100 Hz (i.e. up to the
sampling frequency). Note that the right half of the
graph is the mirror image of the left half (except the
0 Hz component).

12 xlabel('Frequency (Hz)');
ylabel('Modulus')

13 axis([0 100 0 0.55])

14 figure(2); plot(f, abs(X2)/fs/T) Plot the modulus of the DFT of x2(t) = sin 2π (80)t .
15 xlabel('Frequency (Hz)');

ylabel('Modulus')
16 axis([0 100 0 0.55])

17 figure(3); plot(f, abs(X3)/fs/T) Plot the modulus of the DFT of x3(t) = sin 2π (120)t .
18 xlabel('Frequency (Hz)');

ylabel('Modulus')
19 axis([0 100 0 0.55])

Results
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1 20 Hz,p =

2 380 Hz, 120 Hzp p= =
and aliases of

2sf sf

Comments: Note that all the frequencies p1 = 20 Hz, p2 = 80 Hz and p3 = 120 Hz
appear at the same frequency 20 Hz.

Example 5.2: Demonstration of aliasing

Case B: This example demonstrates the aliasing problem on the ‘digital’ sampling of a
sampled sequence x(n�).

Consider a sampled sinusoidal sequence x(n�) = sin 2πpn� where p = 40 Hz,
and the sampling rate is fs = 500 Hz ( fs = 1/�). Now, sample this sequence digitally
again, i.e. generate a new sequence x1(k�) = x[(5k)�], k = 0, 1, 2, . . . , by taking every
five sample values of x(n�) (this has the effect of reducing the sampling rate to 100 Hz).
Also generate a sequence x2(k�) = x[(10k)�] by taking every 10 sample values of
x(n�), which reduces the sampling rate to 50 Hz. Thus, aliasing occurs, i.e. p = 40 Hz
will appear at 10 Hz.
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Line MATLAB code Comments

1 clear all Define the sampling rate fs = 500 Hz, total record time
T = 10 seconds, and the time variable t from 0 to
‘T-1/fs’ seconds. Also generate the sampled sinusoidal
signal whose frequency is 40 Hz.

2 fs=500; T=10;
3 t=0:1/fs:T-1/fs;
4 p=40; x=sin(2*pi*p*t);

5 x1=x(1:5:end); Perform digital sampling, i.e. generate new sequences
x1(k�) and x2(k�) as described above.6 x2=x(1:10:end);

7 N=length(x); N1=length(x1);
N2=length(x2);

Perform the DFT of each signal x(n�), x1(k�) and
x2(k�), and calculate the frequency variables f, f1 and
f2 accordingly.8 X=fft(x); X1=fft(x1);

X2=fft(x2);
9 f=fs*(0:N-1)/N;

f1=100*(0:N1-1)/N1;
f2=50*(0:N2-1)/N2;

10 figure(1); plot(f, abs(X)/fs/T) Plot the modulus of the DFT of x(n�) = sin 2π (40)n�
for the frequency range 0 Hz to 500 Hz (up to the
sampling rate).

11 xlabel('Frequency (Hz)');
ylabel('Modulus')

12 axis([0 500 0 0.55])

13 figure(2);
plot(f1, abs(X1)/100/T)

Plot the modulus of the DFT of x1(k�) for the
frequency range 0 Hz to 100 Hz (sampling rate of
x1(k�)).14 xlabel('Frequency (Hz)');

ylabel('Modulus')
15 axis([0 100 0 0.55])

16 figure(3); plot(f2, abs(X2)/50/T) Plot the modulus of the DFT of x2(k�) for the
frequency range 0 Hz to 50 Hz (sampling rate of
x2(k�)).

17 xlabel('Frequency (Hz)');
ylabel('Modulus')

18 axis([0 50 0 0.55])

Results
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(a) DFT of x(nΔ) = sin 2π(40)nΔ with f  (= 1/Δ) = 500 Hzs
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Alias of p = 40 Hz

(b) DFT of  x1 (kΔ) = x[(5k)Δ] (c) DFT of  x2 (kΔ) = x[(10k)Δ]

Comments: Note that aliasing occurs in the third case, i.e. p = 40 Hz appears at 10 Hz
because the sampling rate is 50 Hz in this case.

Example 5.3: Demonstration of ‘digital’ anti-aliasing filtering

This example demonstrates a method to overcome the problem addressed in the previous
MATLAB example.

We use the MATLAB function ‘resample’ to avoid the aliasing problem. The
‘resample’ function applies the digital anti-aliasing filter to the sequence before the
sampling.

Consider a sampled sinusoidal sequence x(n�) = sin 2πp1n� + sin 2πp2n�

where p1 = 10 Hz and p2 = 40 Hz and the sampling rate is fs = 500 Hz ( fs = 1/�).
Generate new sequences x1(k�1) and x2(k�2) from x(n�) such that �1/� = 5 and
�2/� = 10 without causing aliasing using the ‘resample’ function.

Line MATLAB code Comments

1 clear all Define the sampling rate fs = 500 Hz, total
record time T = 10 seconds, and the time
variable t from 0 to ‘T-1/fs’ seconds. Also
generate the sampled signal whose frequency
components are 10 Hz and 40 Hz.

2 fs=500; T=10;
3 t=0:1/fs:T-1/fs; p1=10; p2=40;
4 x=sin(2*pi*p1*t) + sin(2*pi*p2*t);

5 x1=resample(x,100,500); Perform the ‘resampling’ as described above.
6 x2=resample(x,50,500); For example, the function ‘resample(x,100,500)’

takes the sequence ‘x’, applies a low-pass filter
appropriately to the sequence, and returns the
resampled sequence, where ‘100’ is the new
sampling rate and ‘500’ is the original sampling
rate.

7 N=length(x); N1=length(x1);
N2=length(x2);
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8 X=fft(x); X1=fft(x1); X2=fft(x2);
9 f=fs*(0:N-1)/N; f1=100*(0:N1-1)/N1;

f2=50*(0:N2-1)/N2;
10 figure(1); plot(f, abs(X)/fs/T)
11 xlabel('Frequency (Hz)');

ylabel('Modulus')
Exactly the same code as in the previous
example.

12 axis([0 500 0 0.55])
13 figure(2); plot(f1, abs(X1)/100/T)
14 xlabel('Frequency (Hz)');

ylabel('Modulus')
15 axis([0 100 0 0.55])

16 figure(3); plot(f2, abs(X2)/50/T) Exactly the same code as in the previous
example.
Note that, due to the low-pass filtering, the
40 Hz component disappears on this graph.

17 xlabel('Frequency (Hz)');
ylabel('Modulus')

18 axis([0 50 0 0.55])

Results
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(a) DFT of  x(nΔ) = sin 2π(10)nΔ  + sin 2π(40)nΔ with f  (=1/Δ) = 500 Hzs
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(b) DFT of  x1(kΔ1) (using digital anti-aliasing filter),

where Δ1 = 5Δ (i.e.  f  = 100 Hz)s 

(c) DFT of  x2(kΔ2) (using digital anti-aliasing filter),

where Δ2  = 10Δ (i.e.  f  = 50 Hz)s 

Comments: Note that, in Figure (c), only the 10 Hz component is shown, and the 40 Hz
component disappears owing to the inherent low-pass (anti-aliasing) filtering process in
the ‘resample’ function.
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6
The Discrete Fourier Transform

Introduction

In this chapter we develop the properties of a fundamental tool of digital signal analysis −
the discrete Fourier transform (DFT). This will include aspects of linear filtering, and
relating the DFT to other Fourier representations. The chapter concludes with an intro-
duction to the fast Fourier transform (FFT).

6.1 SEQUENCES AND LINEAR FILTERS

Sequences

A sequence (or digital signal) is a function which is defined at a discrete set of points.
A sequence results from: (i) a process which is naturally discrete such as a daily posted
currency exchange rate, and (ii) sampling (at � second intervals (say)) an analogue signal
as in Chapter 5. We shall denote a sequences as x(n). This is an ordered set of numbers
as shown in Figure 6.1.

( )x n

−2 −1 0 1 2 3 4 5
n

Figure 6.1 Example of a sequence

Some examples are listed below:

Fundamentals of Signal Processing for Sound and Vibration Engineers
K. Shin and J. K. Hammond. C© 2008 John Wiley & Sons, Ltd
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(a) The unit impulse sequence or the Kronecker delta function, δ(n), is defined as

δ(n) = 1 if n = 0
= 0 if n �= 0

}
(6.1)

It can be depicted as in Figure 6.2

......

−2 −1 0

1.0

1 2−3 3

( )nδ

n

Figure 6.2 The unit impulse sequence, δ(n)

This is the digital impulse or unit sample, i.e. it is the digital equivalent of the Dirac
delta δ(t). If the unit impulse sequence is delayed (or shifted) by k, then

δ(n − k) = 1 if n = k
= 0 if n �= k

}
(6.2)

If k is positive the shift is k steps to the right. For example, Figure 6.3 shows the case for
k = 2.

......

−2 −1 0

1.0

1 2 543−3

( 2)nδ −

n

Figure 6.3 The delayed unit impulse sequence, δ(n− 2)

(b) The unit step sequence, u(n), is defined as

u(n) = 1 if n ≥ 0
= 0 if n < 0

}
(6.3)

The unit sample can be expressed by the difference of the unit step sequences, i.e. δ(n) =
u(n) − u(n − 1). Conversely, the unit step can be expressed by the running sum of the unit
sample, i.e. u(n) = ∑n

k=−∞ δ(k).

Starting with the unit sample, an arbitrary sequence can be expressed as the sum of scaled,
delayed unit impulses. For example, consider the sequence x(n) shown in Figure 6.4, where
the values of the sequence are denoted as an .

This sequence can be written as x(n) = a−3δ(n + 3) + a1δ(n − 1) + a2δ(n − 2) +
a5δ(n − 5), i.e. in general form any sequence can be represented as

x(n) =
∞∑

k=−∞
x(k)δ(n − k) (6.4)
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−2 −1 0 1 2 3 4 5−3−4

( )x n

n

3a− 2a

1a 5a

Figure 6.4 An arbitrary sequence, x(n)

Linear Filters

Discrete Linear Time (Shift) Invariant SystemsM6.1

The input–output relationship for a discrete LTI system (a digital filter) is shown in
Figure 6.5.

y(n)x(n)
Discrete LTI system

h(n)
Output sequenceInput sequence

Figure 6.5 A discrete LTI system

Similar to the continuous LTI system, we define the impulse response sequence of
the discrete LTI system as h(n). If the input to the system is a scaled and delayed impulse
at k, i.e. x(n) = akδ(n − k), then the response of the system at n is y(n) = akh(n − k).
So, for a general input sequence, the response at n due to input x(k) is h(n − k)x(k). Since
any input can be expressed as the sum of scaled, delayed unit impulses as described in
Equation (6.4), the total response y(n) to the input sequence x(n) is

y(n) =
n∑

k=−∞
h(n − k)x(k) if the system is causal (6.5a)

or

y(n) =
∞∑

k=−∞
h(n − k)x(k) if the system is non-causal (6.5b)

We shall use the latter notation (6.5b) which includes the former (6.5a) as a special
case when h(n) = 0, if n < 0. This expression is called the convolution sum, which
describes the relationship between the input and the output. That is, the input–output
relationship of the digital LTI system is expressed by the convolution of two sequences
x(n) and h(n):

y(n) = x(n) ∗ h(n) =
∞∑

k=−∞
h(n − k)x(k) (6.6)

Note that the convolution sum satisfies the property of commutativity, i.e.

y(n) =
∞∑

k=−∞
h(n − k)x(k) =

∞∑
r=−∞

h(r )x(n − r ) (6.7a)

or simply

y(n) = x(n) ∗ h(n) = h(n) ∗ x(n) (6.7b)
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The above expressions for the convolution sum are analogous to the convolution integral
for a continuous system (see Equations (4.51), (4.53)). An example of the convolution sum
is demonstrated graphically in Figure 6.6. In this figure, note that the number of non-zero
elements of sequence y(n) is ‘12’ which is one element shorter than the sum of the lengths of
non-zero elements of sequences x(n) and h(n).

h n( )x n

(2) (2 ) ( )
∞

∑

∞
∑

( )

n
70

n
0 4

y h k x k= −
k=−∞

0

( ) ( ) ( ) ( ) ( ) (not to scale)= ∗ = −
k=−∞

y n x n h n h n k x k

n
0 11

Figure 6.6 Illustrations of a convolution sum M6.1

Relationship to Continuous Systems

Starting from y(t) = h(t) ∗ x(t) = ∫ ∞
−∞ h(τ )x(t − τ )dτ , consider that the signals are sam-

pled such that y(n�) = h(n�) ∗ x(n�). Then the approximation to the convolution integral
becomes

y(n�) ≈
∞∑

r=−∞
h(r�)x((n − r )�) · � (6.8)

Note the scaling factor �, i.e. if the discrete LTI system h(n) results from the sampling of the
corresponding continuous system h(t) with sampling rate 1/� and the input x(n) is also the
sampled version of x(t), then it follows that

y(n�) ≈ y(n) · � (6.9)

where y(n) = h(n) ∗ x(n).
The concept of creating a digital filter h(n) by simply sampling the impulse response of

an analogue filter h(t) is called ‘impulse-invariant’ filter design (see Figure 5.6 in Section 5.1).
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Stability and Description of a Digital LTI System

Many digital systems are characterized by difference equations (analogous to differential
equations used for continuous systems). The input–output relationship for a digital system
(Figure 6.5) can be expressed by

y(n) = −
N∑

k=1

ak y(n − k) +
M∑

r=0

br x(n − r ) (6.10)

Taking the z-transform of Equation (6.10) gives

Z{y(n)} = Y (z) = −Y (z)
N∑

k=1

ak z−k + X (z)
M∑

r=0

br z−r (6.11)

Note that we use the time shifting property of the z-transform, i.e. Z{x(n − r )} = z−r X (z), to
obtain Equation (6.11). Rearranging Equation (6.11) gives the transfer function of the digital
system as

H (z) = Y (z)

X (z)
=

M∑
r=0

br z−r

1 +
N∑

k=1

ak z−k

(6.12)

which is the z-transform of impulse response h(n). Since Equation (6.12) is a rational function,
i.e. the ratio of two polynomials, it can be written as

H (z) = b0zN−M (z − z1)(z − z2) . . . (z − zM )

(z − p1)(z − p2) . . . (z − pN )
(6.13)

Note that H(z) has M zeros (roots of the numerator) and N poles (roots of the denominator).
From Equation (6.13), the zeros and poles characterize the system. A causal system is BIBO
(Bounded Input/Bounded Output) stable if all its poles lie within the unit circle | z | = 1. Or
equivalently, the digital LTI system is BIBO stable if

∑∞
n=−∞ |h(n)| < ∞, i.e. output sequence

y(n) is bounded for every bounded input sequence x(n) (Oppenheim et al., 1997).
The system described in the form of Equation (6.10) or (6.12) is called an auto-regressive

moving average (ARMA) system (or model) which is characterized by an output that depends
on past and current inputs and past outputs. The numbers N, M are the orders of the auto-
regressive and moving average components, and characterize the order with the notation (N,
M). This ARMA model is widely used for general filter design problems (e.g. Rabiner and
Gold, 1975; Proakis and Manolakis, 1988) and for ‘parametric’ spectral estimation (Marple,
1987).

If all the coefficients of the denominator are zero, i.e. ak = 0 for all k, the system is called
a moving average (MA) system, and has only zeros (except the stack of trivial poles at the
origin, z = 0). Note that this system is always stable since it does not have a pole. MA systems
always have a finite duration impulse response. If all the coefficients of the numerator are
zero except b0, i.e. br = 0 for k > 0, the system is called an auto-regressive (AR) system, and
has only poles (except the stack of trivial zeros at the origin, z = 0). The AR systems have a
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feedback nature and generally have an infinite duration impulse response. In general, ARMA
systems also have an infinite duration impulse response.

Sometimes, the ARMA representation of the system can be very useful, especially for
real-time processing. For example, if the estimated impulse response sequence h(n) based
on the methods in Chapter 9, which can be considered as an MA system, is very large, one
can fit the corresponding FRF data to a reduced order ARMA model. This may be useful for
some real-time digital signal processing (DSP). (See Comments 2 in MATLAB Example 9.4,
Chapter 9.)

6.2 FREQUENCY DOMAIN REPRESENTATION OF DISCRETE

SYSTEMS AND SIGNALS

Consider the response of a digital filter to a harmonic signal, i.e. x(n) = e j2π f n . Then the
output is

y(n) =
∞∑

k=−∞
h(k)x(n − k) =

∞∑
k=−∞

h(k)e j2π f (n−k)

= e j2π f n
∞∑

k=−∞
h(k)e− j2π f k

(6.14)

We define H (e j2π f ) = ∑∞
k=−∞ h(k)e− j2π f k . Then

y(n) = e j2π f n H (e j2π f ) = x(n)H (e j2π f ) (6.15)

H (e j2π f ) is called the frequency response function (FRF) of the system (compare this with
Equation (4.57)).

Consider an example. Suppose we have a discrete system whose impulse response
is h(n) = anu(n), |a| < 1, as shown for example in Figure 6.7(a). Then the FRF of the
system is

H (e j2π f ) =
∞∑

n=0

ane− j2π f n =
∞∑

n=0

(ae− j2π f )n (6.16)

This is a geometric series, and using the property of a geometric series, i.e.

∞∑
n=0

rn = 1

1 − r
, |r | < 1

Equation (6.16) can be written as

H (e j2π f ) = 1

1 − ae− j2π f
(6.17)
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The modulus and phase of Equation (6.17) are shown in Figures 6.7(b) and (c), respec-
tively.

( ) ( ), 0 1nh n a u n a= < <

...

0
n

(a)

0

2( )j fH e π

0.5 1.0

(b)

f

2arg ( )j fH e π

0 0.5 1.0

(c)

f

Figure 6.7 Example of discrete impulse response and corresponding FRF

Note that, unlike the FRF of a continuous system, H (e j2π f ) is periodic (with period
1, or 2π if ω is used instead of f ), i.e.

H (e j2π f ) = H (e j2π ( f +k)) = H (e j2π f e j2πk) = H (e j2π f ) (6.18)

where k is integer. Note also that this is a periodic continuous function, whereas its correspond-
ing impulse response h(n) is discrete in nature. Why should the FRF be periodic? The answer
is that the system input is x(n) = e j2π f n which is indistinguishable from x(n) = e j(2π f +2πk)n

and so the system reacts in the same way to both inputs. This phenomenon is very similar
to the case of sampled sequences discussed in Chapter 5, and we shall discuss their relation
shortly.

Since H (e j2π f ) is periodic it has a ‘Fourier series’ representation. From Equation (6.14),
we already have

H (e j2π f ) =
∞∑

n=−∞
h(n)e− j2π f n (6.19)

The values h(n) are the Fourier coefficients and this expression can be inverted to give

h(n) =
1/2∫

−1/2

H (e j2π f )e j2π f nd f (6.20)
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Equation (6.20) is easily justified by considering the Fourier series pair given in Chapter 3,
i.e.

x(t) =
∞∑

n=−∞
cne j2πnt/TP

and

cn = 1

TP

TP∫
0

x(t)e− j2πnt/TP dt

The two expressions (6.19) and (6.20) are the basis of the Fourier representation of
discrete signals and apply to any sequence provided that Equation (6.19) converges. Equation
(6.19) is the Fourier transform of a sequence, and is often called the discrete-time Fourier
transform (Oppenheim et al., 1997). However, this should not be confused with discrete
Fourier transform (DFT) for finite length signals that will be discussed in the next section.
Alternatives to Equations (6.19) and (6.20) are

H (e jω) =
∞∑

n=−∞
h(n)e− jωn (6.21)

h(n) = 1

2π

π∫
−π

H (e jω)e jωndω (6.22)

Note that, similar to the Fourier integral, if h(n) is real,
∣∣H (e j2π f )

∣∣ is an even and arg H (e j2π f )
is an odd function of ‘f ’.

The Fourier Transform of the Convolution of Two Sequences

Let us consider an output sequence of a discrete LTI system, which is the convolution of two
sequences h(n) and x(n), i.e. y(n) = h(n) ∗ x(n) = ∑∞

k=−∞ h(k)x(n − k). Since the sequence

x(n) has a Fourier representation, i.e. x(n) = ∫ 1/2

−1/2
X (e j2π f )e j2π f nd f , substituting this into

the convolution expression gives

y(n) =
∞∑

k=−∞
h(k)x(n − k) =

∞∑
k=−∞

h(k)

1/2∫
−1/2

X (e j2π f )e j2π f (n−k)d f

=
1/2∫

−1/2

X (e j2π f )
∞∑

k=−∞
h(k)e− j2π f k

︸ ︷︷ ︸
H (e j2π f )

e j2π f nd f =
1/2∫

−1/2

X (e j2π f )H (e j2π f )e j2π f nd f

(6.23)
Thus,

Y (e j2π f ) = X (e j2π f )H (e j2π f ) (6.24)

i.e. the Fourier transform of the convolution of two sequences is the product of their transforms.
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Relation to Sampled Sequences, x(nΔ)

If time is involved, i.e. a sequence results from sampling a continuous signal, then Equations
(6.19) and (6.20) must be modified appropriately. For a sample sequence x(n�), the Fourier
representations are

X (e j2π f �) =
∞∑

n=−∞
x(n�)e− j2π f n� (6.25)

x(n�) = �

1/2�∫
−1/2�

X (e j2π f �)e j2π f n�d f (6.26)

which correspond to Equations (6.19) and (6.20), with � = 1. Note that we have already seen
these equations in Chapter 5, i.e. they are the same as Equations (5.6) and (5.7) which are the
Fourier transform pair for a ‘sampled sequence’.

6.3 THE DISCRETE FOURIER TRANSFORM

So far we have considered sequences that run over the range −∞ < n < ∞ (n integer).
For the special case where the sequence is of finite length (i.e. non-zero for a finite
number of values) an alternative Fourier representation is possible called the discrete
Fourier transform (DFT).

It turns out that the DFT is a Fourier representation of a finite length sequence and
is itself a sequence rather than a continuous function of frequency, and it corresponds to
samples, equally spaced in frequency, of the Fourier transform of the signal. The DFT
is fundamental to many digital signal processing algorithms (following the discovery of
the fast Fourier transform (FFT), which is the name given to an efficient algorithm for
the computation of the DFT).

We start by considering the Fourier transform of a (sampled) sequence given by
Equation (6.25). Suppose x(n�) takes some values for n = 0, 1, . . . , N − 1, i.e. N points
only, and is zero elsewhere. Then this can be written as

X (e j2π f �) =
N−1∑
n=0

x(n�)e− j2π f n� (6.27)

Note that this is still continuous in frequency. Now, let us evaluate this at frequencies
f = k/N� where k is integer. Then, the right hand side of Equation (6.27) becomes∑N−1

n=0 x(n�)e− j(2π/N )nk , and we write this as

X (k) =
N−1∑
n=0

x(n�)e− j(2π/N )nk (6.28)
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This is the DFT of a finite (sampled) sequence x(n�). For more usual notation, omitting
�, the DFT of x(n) is defined as

X (k) =
N−1∑
n=0

x(n)e− j(2π/N )nk (6.29)

As a result, the relationship between the Fourier transform of a sequence and the DFT of
a finite length sequence can be expressed as

X (k) =
[

X (e j2π f �) evaluated at f = k

N�
Hz

]
(k integer) (6.30)

i.e. X (k) may be regarded as the sampled version of X (e j2π f �) in the frequency domain. Note
that, since X (e j2π f �) is periodic with 1/�, we may need to evaluate for k = 0, 1, . . . , N−1,
i.e. N points only.

The inverse DFT can be found by multiplying both sides of Equation (6.29) by e j(2π/N )rk

and summing over k. Then

N−1∑
k=0

X (k)e j(2π/N )rk =
N−1∑
k=0

N−1∑
n=0

x(n)e− j(2π/N )nke j(2π/N )rk =
N−1∑
k=0

N−1∑
n=0

x(n)e− j(2π/N )k(n−r )

(6.31)

Interchanging the summation order on the right hand side of Equation (6.31) and noting that

N−1∑
k=0

e− j(2π/N )k(n−r ) = N if n = r

= 0 otherwise

(6.32)

gives
∑N−1

k=0 X (k)e j(2π/N )rk = N · x(r ). Thus, the inverse DFT is given by

x(n) = 1

N

N−1∑
k=0

X (k)e j(2π/N )nk (6.33)

Note that in Equation (6.33), since e j(2π/N )(n+N )k = e j(2π/N )nk , we see that both X (k) and
x(n) are periodic with period N. It is important to realize that whilst the original sequence
x(n) is zero for n < 0 and n ≥ N , the act of ‘sampling in frequency’ has imposed a periodic
structure on the sequence. In other words, the DFT of a finite length x(n) implies that x(n) is
one period of a periodic sequence x p(n), where x(n) = x p(n) for 0 ≤ n ≤ N − 1 and x p(n) =
x p(n + r N ) (r integer).

As an example, the DFT of a finite length sequence is shown in Figure 6.8 where the
corresponding Fourier transform of a sequence is also shown for comparison. Suppose x(n)
has the form shown in Figure 6.8(a); then Figures 6.8(b) and (c) indicate the (continuous)
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amplitude and phase of X (e j2π f �). Figures 6.8(e) and (f) are the corresponding |X (k)| and
arg X (k) − the DFT of x(n) (equivalently the DFT of x p(n) in Figure 6.8(d)). These correspond
to evaluating Figures 6.8(b) and (c) at frequencies f = k/N�. Note that the periodicity is
present in all figures except Figure 6.8(a).

( ) 0 for 0 and 1x n n n N= < > −

Δ

( )x n

(a)

n
1N −0

2( )j fX e π Δ

1 Δ1 2Δ
(b)

......

f
0

n

( )px n

(d)

......

1N −0

arg ( ) arg ( )pX k X k=

1 2Δ 1 Δ

1k N= −

(f)

... ...
f

0

2arg ( )j fX e π Δ

1 2Δ 1 Δ

(c)

0
f

... ...

1 NΔ

( ) ( )pX k X k=

1k N= −

(e)

f
1 2Δ 1 Δ0

......

Figure 6.8 Fourier transform of a sequence and the DFT of a finite length (or periodic) sequence

Data TruncationM6.2

We assumed above that the sequence x(n) was zero for n outside values 0 to N − 1. In general,
however, signals may not be finite in duration. So, we now consider the truncated sampled
data xT (n�). For example, consider a finite (N points) sequence (sampled and truncated) as
shown in Figure 6.9.

As we would expect from the windowing effect discussed in Chapter 4, there will be some
distortion in the frequency domain. Let x p(n) and wp(n) be the equivalent periodic sequences
of x(n�) and w(n�) for 0 ≤ n ≤ N − 1 (omitting � for convenience). Then the DFT of the
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n

...

1N −Δ

( )x nΔ

...

0

( ) ( ) ( )Tx n x n w nΔ = Δ ⋅ Δ
where  ( ) 1 0 1

0 otherwise

w n n NΔ = ≤ ≤ −
=

Figure 6.9 Sampled and truncated sequence xT (n�)

truncated signal, XT (k), becomes

XT (k) = DFT
[
x p(n)wp(n)

]
= 1

N 2

N−1∑
n=0

N−1∑
k1=0

X p(k1)e j(2π/N )nk1

N−1∑
k2=0

Wp(k2)e j(2π/N )nk2 e− j(2π/N )nk

= 1

N 2

N−1∑
k1=0

X p(k1)
N−1∑
k2=0

Wp(k2)
N−1∑
n=0

e− j(2π/N )n(k−k1−k2) = 1

N

N−1∑
k1=0

X p(k1)Wp(k − k1)

= 1

N
X p(k) ©* Wp(k) (6.34)

It is the convolution of the two periodic sequences − hence the distortion in the frequency
domain, where the symbol ©* denotes circular convolution (this will be explained in Section
6.5). The windowing effect will be demonstrated in MATLAB Example 6.2.

Alternative Representation of the DFT

Starting with the z-transform of x(n), i.e. X (z), then when z = e j2π f � a circle is picked out of
unit radius, and X (e j2π f �) is the value of X (z) evaluated at points on the unit circle. When
f = k/N�, this amounts to evaluating X (z) at specific points on the unit circle, i.e. N evenly
spaced points around the unit circle. This gives the DFT expression X (k) as illustrated in
Figure 6.10.

2( )j fX e π Δ

(2 )( ) ( )j N kX e X kπ =
( )X z

2 fπ Δ

Im( )z

1.0

-planez

Re( )z

Figure 6.10 Representation of the DFT in the z-plane
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Frequency Resolution and Zero Padding

As we have seen earlier in Chapter 4, the frequency resolution of Fourier transform XT ( f )
depends on the data length (or window length) T. Note that the data length of the truncated
sampled sequence xT (n�) is T = N�, and the frequency spacing in XT (k) is 1/N� =
1/T Hz. Thus, we may have an arbitrary fine frequency spacing when T → ∞.

If the sequence x(n�) is finite in nature, then the Fourier transform of a sequence
X (e j2π f �) is fully representative of the original sequence without introducing truncation,
because

X (e j2π f �) =
∞∑

n=−∞
x(n�)e− j2π f n� =

N−1∑
n=0

x(n�)e− j2π f n�

Then, the DFT X (k) = X (e j2π f �)
∣∣

f =k/N�
gives the frequency spacing 1/N� Hz. This

spacing may be considered sufficient because we do not lose any information, i.e. we can
completely recover x(n�) from X (k).

However, we often want to see more detail in the frequency domain, such as finer fre-
quency spacing. A convenient procedure is simply to ‘add zeros’ to x(n), i.e. define

x̂(n) = x(n) 0 ≤ n ≤ N − 1

= 0 N ≤ n ≤ L − 1
(6.35)

Then the L-point DFT of x̂(n) is

X̂ (k) =
L−1∑
n=0

x̂(n)e− j(2π/L)nk =
N−1∑
n=0

x(n)e− j(2π/L)nk (6.36)

Thus, we see that X̂ (k) = X (e j(2π/L)k), k = 0, 1, . . . , L − 1, i.e. ‘finer’ spacing round the unit
circle in the z-plane (see Figure 6.10), in other words, zero padding in the time domain results
in the interpolation in the frequency domain (Smith, 2003). In vibration problems, this can be
used to obtain the fine detail near resonances. However, care must be taken with this artificially
made finer structure − the zero padding does not increase the ‘true’ resolution (see MATLAB
Example 4.6 in Chapter 4), i.e. the fundamental resolution is fixed and it is only the frequency
spacing that is reduced.

An interesting feature is that, with zero padding in the frequency domain, performing the
inverse DFT results in interpolation in the time domain, i.e. an increased sampling rate in the
time domain (note that zeros are padded symmetrically with respect to N/2, and it is assumed
that X (N/2) = 0 for an even number of N). So zero padding in one domain results in a finer
structure in the other domain.

Zero padding is sometimes useful for analysing a transient signal that dies away quickly.
For example, if we estimate the FRF of a system using the impact testing method, the measured
signal (from the force sensor of an impact hammer) quickly falls into the noise level. In this
case, we can artificially improve the quality of the measured signal by replacing the data in
the noise region with zeros (see MATLAB Example 6.7); note that the measurement time may
also be increased (in effect) by adding more zeros. This approach can also be applied to the
free vibration signal of a highly damped system (see MATLAB Example 6.5).
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Scaling EffectsM6.2

If the sequence x(n�) results from sampling a continuous signal x(t) we must consider the
scaling effect on X (k) as compared with X ( f ). We need to consider the scaling effect differently
for transient signals and periodic signals. For a transient signal, the energy of the signal is
finite. Assuming that the data window is large enough so that the truncation of data does not
introduce a loss of energy, the only scaling factor is the sampling interval �. However, if the
original signal is periodic the energy is infinite, so in addition to the scaling effect introduced
by sampling, the DFT coefficients will have different amplitudes depending on the length of
the data window. This effect can be easily justified by comparing Parseval’s theorems for a
periodic signal (Equation (3.39)) and for a transient signal (Equation (4.17)). The following
example shows the relationship between the Fourier integral and the DFT, together with the
scaling effect for a periodic signal.

Consider a periodic continuous signal x(t) = A cos 2πpt , p = 1/TP , and its Fourier
integral, as shown in Figure 6.11(a). Suppose we use the data length T seconds; then its
effect is applying the rectangular window as shown in Figure 6.11(b). Note that the magnitude
spectrum of W ( f ) depends on the window length T. The Fourier integral of the truncated signal
is shown in Figure 6.11(c), and the Fourier transform of a truncated and sampled signal is

(a) A periodic signal and its Fourier integral

(b) Data window and its Fourier integral

(c) Truncated signal and its Fourier integral

(d) Truncated and sampled signal and its Fourier transform of a sequence
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Figure 6.11 Various Fourier transforms of a sinusoidal signal
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shown in Figure 6.11(d). Note the periodicity in this figure. Note also the windowing effects and
the amplitude differences for each transform (especially the scaling factor in Figure 6.11(d)).

Now consider the DFT of the truncated and sampled sequence. The DFT results in
frequencies at fk = k/N�, k = 0, 1, . . . , N − 1, i.e. the frequency range covers from 0 Hz to
( fs − fs/N ) Hz. Thus, if we want frequency p to be picked out exactly, we need k/N� = p
for some k. Suppose we sample at every � = TP/10 and take one period (10-point DFT)
exactly, i.e. T (= N�) = TP (= 1/p). As shown in Figure 6.12, the frequency separation is
1/N� = 1/TP = p (Hz), thus p = f1 = 1/N� which is the second line on the discrete
frequency axis ( fk = k/N�). Note that the first line is f0 = 0 (Hz), i.e. the d.c. component.
All other frequencies ( fk except f1 and f9) are ‘zeros’, since these frequencies correspond to
the zero points of the side lobes that are separated by 1/T = 1/TP . Thus, the resulting DFT
is one single spike (up to k = N/2).

k

2

AT

Δ 1 1

PN T
=

Δ

1 9N − =

10

10P

N

T

=
Δ =

(1 )
5

2 2( 10)
P

P

A TAT
A

T

×= =
Δ

( )X k

5 2sf f=

 Hzp

10

Figure 6.12 The 10-point DFT of the truncated and sampled sinusoidal signal, T = TP

Since the DFT has a periodic structure, X (10) (if it is evaluated) will be equal to X (0).
Also, due to the symmetry property of the magnitude spectrum of X (k), the right half of
the figure is the mirror image of the left half such that |X (1)| = |X (9)|, |X (2)| = |X (8)|, . . . ,
|X (4)| = |X (6)|. Note that the magnitude of X (1) is 5A. Also note that X (5) is the value at the
folding frequency fs/2. From the fact that we have taken an ‘even’-numbered DFT, we have
the DFT coefficient at the folding frequency. However, if we take an ‘odd’-numbered DFT, then
it cannot be evaluated at the folding frequency. For example, if we take the nine-point DFT,
the symmetric structure will become |X (1)| = |X (8)|, |X (2)| = |X (7)|, . . . , |X (4)| = |X (5)|
(see Section 6.4 and MATLAB Example 6.4).

For the same sampling interval, if we take five periods exactly, i.e. T (= N�) = 5TP

(50-point DFT), then the frequency separation is 1/N� = 1/(50 · TP/10) = 1/5TP =
p/5 (Hz) as shown in Figure 6.13. Thus, p = f5 = 5/N� which is the sixth line on the
discrete frequency axis. Again, all other frequencies fk (except f5 and f45) are ‘zeros’, since
these frequencies also correspond to the zero points of the side lobes that are now separated by
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Figure 6.13 The 50-point DFT of the truncated and sampled sinusoidal signal, T = 5TP
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1/T = 1/5TP . Note the magnitude change at the peak frequency, which is now 25A (compare
this with the previous case, the 10-point DFT).

If a non-integer number of periods are taken, this will produce all non-zero frequency
components (as we have seen in MATLAB Example 4.6 in Chapter 4; see also MATLAB
Example 6.2b). The ‘scaling’ effect is due to both ‘sampling’ and ‘windowing’, and so different
window types may produce different scaling effects (see MATLAB Examples 4.6 and 4.7
in Chapter 4). Since the DFT evaluates values at frequencies fk = k/N�, the frequency
resolution can only be improved by increasing N� (=window length, T ). Thus, if the sampling
rate is increased (i.e. smaller � is used), then we need more data (larger N) in order to maintain
the same resolution (see Comments in MATLAB Example 6.3).

6.4 PROPERTIES OF THE DFT

The properties of the DFT are fundamental to signal processing. We summarize a few here:

(a) The DFT of the Kronecker delta function δ(n) is

DFT [δ(n)] =
N−1∑
n=0

δ(n)e− j(2π/N )nk = e− j(2π/N )0·k = 1 (6.37)

(Note that the Kronecker delta function δ(n) is analogous to its continuous counterpart,
the Dirac delta function δ(t), but it cannot be related as the sampling of δ(t).)

(b) Linearity: If DFT [x(n)] = X (k) and DFT [y(n)] = Y (k), then

DFT [ax(n) + by(n)] = aX (k) + bY (k) (6.38)

(c) Shifting property: If DFT [x(n)] = X (k), then

DFT [x(n − n0)] = e− j(2π/N )n0k X (k) (6.39)

Special attention must be given to the meaning of a time shift of a finite duration sequence.
Shown in Figure 6.14 is the finite sequence x(n) of duration N samples (marked •). The
N-point DFT of x(n) is X(k). Also shown are the samples of the ‘equivalent’ periodic
sequence x p(n) with the same DFT as x(n).

If we want the DFT of x(n − n0), n0 < N , we must consider a shift of the periodic se-
quence x p(n − n0) and the equivalent finite duration sequence with DFT e− j(2π/N )n0k X (k)
is that part of x p(n − n0) in the interval 0 ≤ n ≤ N − 1, as shown in Figure 6.15 for
n0 = 2 (for example), i.e. shift to right.

( )

( )x n

......
n

( )px n

( )

0 1N −

Figure 6.14 Finite sequence x(n) and equivalent periodic sequence x p(n)
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......

( 2)px n −

( 2)x n −

......

p −

−

0 1N −
n

Figure 6.15 Shifted finite sequence x(n − n0) and equivalent shifted periodic sequence x p(n − n0)

Examining Figures 6.14 and 6.15, we might imagine the sequence x(n) as displayed
around the circumference of a cylinder in such a way that the cylinder has N points on it.
As the cylinder revolves we see x p(n), i.e. we can talk of a ‘circular’ shift.

(d) Symmetry properties M6.4: For real data x(n), we have the following symmetry properties.
An example is shown in Figure 6.16 (compare the symmetric structures for even and odd
numbers of N). Note that, at N/2, the imaginary part must be ‘zero’, and the phase can
be either ‘zero or π ’ depending on the sign of real part:

Re [X (k)] = Re [X (N − k)] (6.40a)

Im [X (k)] = −Im [X (N − k)] (6.40b)

|X (k)| = |X (N − k)| (6.41a)

arg X (k) = − arg X (N − k) (6.41b)

Or, we may express the above results as (*denotes complex conjugate)

X (N − k) = X∗(k) (6.42)
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Figure 6.16 Symmetry properties of the DFT
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6.5 CONVOLUTION OF PERIODIC SEQUENCESM6.6

Consider two periodic sequences with the same length of period, x p(n) and h p(n), and their
DFTs as follows:

X p(k) =
N−1∑
n=0

x p(n)e− j(2π/N )nk (6.43a)

Hp(k) =
N−1∑
n=0

h p(n)e− j(2π/N )nk (6.43b)

Then, similar to the property of Fourier transforms, the DFT of the convolution of two periodic
sequences is the product of their DFTs, i.e. DFT

[
yp(n) = x p(n) ∗ h p(n)

]
is

Yp(k) = X p(k)Hp(k) (6.44)

The proof of this is given below:

Yp(k) = DFT
[
x p(n) ∗ h p(n)

] = DFT

[
N−1∑
r=0

x p(r )h p(n − r )

]

=
N−1∑
n=0

N−1∑
r=0

x p(r )h p(n − r )e− j(2π/N )nk

=
N−1∑
r=0

x p(r )
N−1∑
n=0

h p(n − r )e− j(2π/N )(n−r )ke− j(2π/N )rk

=
N−1∑
r=0

x p(r )e− j(2π/N )rk ·
N−1∑
n=0

h p(n − r )e− j(2π/N )(n−r )k = X p(k) · Hp(k) (6.45)

This is important − so we consider its interpretation carefully. yp(n) is called a circular
convolution, or sometimes a periodic convolution. Let us look at the result of convolving two
periodic sequences in Figure 6.17.

Now, from yp(n) = x p(n) ∗ h p(n) = ∑N−1
r=0 x p(r )h p(n − r ), we draw the sequences in

question as functions of r. To draw h p(n − r ), we first draw h p(−r ), i.e. we ‘reverse’ the
sequence h p(r ) and then move it n places to the right. For example, h p(0 − r ), h p(2 − r ) and
x p(r ) are as shown in Figure 6.18.

( )

1

( )h n

0−5

px n

......

n

5N =

One period

1 2 3 401−5− 9

( )

n

p

... ...

5N =

1 2 3 41−− 9

Figure 6.17 Two periodic sequences x p(n) and h p(n)
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...

( ) and (2 )p px r h r−

...

1 2 3 401−5− 9

( ) and (0 )p px r h r−

......

1 2 3 401−5− 9

Figure 6.18 Illustration of the circular convolution process

As n varies, h p(n − r ) slides over x p(r ) and it may be seen that the result of the convolution
is the same for n = 0 as it is for n = N and so on, i.e. yp(r ) is periodic – hence the term circular
or periodic convolution. The resulting convolution is shown in Figure 6.19.

n

( ) ( ) ( )p p py n x n h n= ∗

......

1 2 3 401−5− 9

Figure 6.19 Resulting sequence of the convolution of x p(n) and h p(n)

Often the symbol ©* is used to denote circular convolution to distinguish it from linear
convolution. Let us consider another simple example of circular convolution. Suppose we have
two finite sequences x(n) = [1, 3, 4] and h(n) = [1, 2, 3]. Then the values of the circular
convolution y(n) = x(n)©* h(n) are

y(0) =
2∑

r=0

x(r )h(0 − r ) = 18, where h(0 − r ) = [1, 3, 2]

y(1) =
2∑

r=0

x(r )h(1 − r ) = 17, where h(1 − r ) = [2, 1, 3]

y(2) =
2∑

r=0

x(r )h(2 − r ) = 13, where h(2 − r ) = [3, 2, 1]

(6.46)

Note that y(3) = y(0) and h(3 − r ) = h(0 − r ) if they are to be evaluated.
If we are working with finite duration sequences, say x(n) and h(n), and then take DFTs

of these, there are then ‘equivalent’ periodic sequences with the same DFTs, i.e. X p(k) =
X (k) and Hp(k) = H (k). If we form the inverse DFT (IDFT) of the product of these, i.e.
IDFT

[
Hp(k)X p(k)

]
or IDFT [H (k)X (k)], then the result will be circular convolution of the

two finite sequences:

x(n) ©* h(n) = IDFT [X (k)H (k)] (6.47)

Sometimes, we may wish to form the linear convolution of the two sequences as discussed
in Section 6.1. Consider two finite sequences x(n) and h(n), where n = 0, 1, . . . , N − 1 as
shown in Figures 6.20(a) and (b). Note that these are the same sequences as in Figure 6.17,
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but their lengths are now only one period. The linear convolution of these two sequences,
y(n) = x(n) ∗ h(n), results in a sequence with nine points as shown in Figure 6.20(c).

(c)

0

( ), 0,1, 1y n n L= −...,

1 2 3 4 5 6 7 8

2 1 9L N= − =

n

(b)

0

( ), 0,1, 1h n n N= −...,

1 2 3 4

5N =

n

(a)

0

( ), 0,1, 1x n n N= −...,

1 2 3 4

5N =

n

Figure 6.20 Linear convolution of two finite sequences

The question is: can we do it using DFTs? (We might wish to do this because the FFT
offers a procedure that could be quicker than direct convolution.)

We can do this using DFTs once we recognize that the y(n) may be regarded as one period
of a periodic sequence of period 9. To get this periodic sequence we add zeros to x(n) and
h(n) to make x(n) and h(n) of length 9 (as shown in Figures 6.21(a) and (b)), and form the
nine-point DFT of each. Then we take the IDFT of the product to get the required convolution,
i.e. x(n) ©* h(n) = IDFT [X (k)H (k)]. The result of this approach is shown in Figure 6.21(c)
which is the same as Figure 6.20(c).

(c)

n

9N =

( )x n

0 1 2 3 4 5 6 7 8

)b()a(

( )h n

0 1 2 3 4 5 6 7 8

9N =

n
0

[ ]( ) ( ) ( )y n IDFT X k H k=

1 2 3 4 5 6 7 8

9N =

n

Figure 6.21 Linear convolution of two finite sequences using the DFT

More generally, suppose we wish to convolve two sequences x(n) and h(n) of length
N1 and N2, respectively. The linear convolution of these two sequences is a sequence y(n) of
length N1 + N2 − 1. To obtain this sequence from a circular convolution we require x(n) and
h(n) to be sequences of N1 + N2 − 1 points, which is achieved by simply adding zeros to x(n)
and h(n) appropriately. Then we take the DFTs of these augmented sequences, multiply them
together and take the IDFT of the product. A single period of the resulting sequence is the
required convolution. (The extra zeros on x(n) and h(n) eliminate the ‘wrap-around’ effect.)
This process is called fast convolution. Note that the number of zeros added must ensure that
x(n) and h(n) are of length greater than or equal to N1 + N2 − 1 and both the same length.

6.6 THE FAST FOURIER TRANSFORM

A set of algorithms known as the fast Fourier transform (FFT) has been developed to reduce
the computation time required to evaluate the DFT coefficients. The FFT algorithm was
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rediscovered by Cooley and Tukey (1965) − the same algorithm had been used by the German
mathematician Karl Friedrich Gauss around 1805 to interpolate the trajectories of asteroids.
Owing to the high computational efficiency of the FFT, so-called real-time signal processing
became possible. This section briefly introduces the basic ‘decimation in time’ method for
a radix 2 FFT. For more details of FFT algorithms, see various references (Oppenheim and
Schafer, 1975; Rabiner and Gold, 1975; Duhamel and Vetterli, 1990).

The Radix 2 FFT

Since the DFT of a sequence is defined by X (k) = ∑N−1
n=0 x(n)e− j(2π/N )nk, k = 0, 1, . . . ,

N − 1, by defining WN = e− j(2π/N ) the DFT can be rewritten as

X (k) =
N−1∑
n=0

x(n)W nk
N (6.48)

It is this expression that we shall consider. Note that W nk
N is periodic with period N (in both

k and n), and the subscript N denotes the periodicity. The number of multiply and add operations
to calculate the DFT directly is approximately N 2, so we need more efficient algorithms to
accomplish this. The FFT algorithms use the periodicity and symmetry property of W nk

N , and
reduce the number of operations N 2 to approximately N log2 N (e.g. if N = 1024 the number
of operations is reduced by a factor of about 100).

In particular, we shall consider the case of N to be the power of two, i.e. N = 2ν . This leads
to the base 2 or radix 2 algorithm. The basic principle of the algorithm is that of decomposing
the computation of a DFT of length N into successively smaller DFTs. This may be done in
many ways, but we shall look at the decimation in time (DIT) method.

The name indicates that the sequence x(n) is successively decomposed into smaller sub-
sequences. We take a general sequence x(n) and define x1(n), x2(n) as sequences with half the
number of points and with

x1(n) = x(2n), n = 0, 1, . . . ,
N

2
− 1, i.e. even number of x(n) (6.49a)

x2(n) = x(2n + 1), n = 0, 1, . . . ,
N

2
− 1, i.e. odd number of x(n) (6.49b)

Then

X (k) =
N−1∑
n=0

x(n)W nk
N =

N−1∑
n=0
(even)

x(n)W nk
N +

N−1∑
n=1
(odd)

x(n)W nk
N

=
N/2−1∑

n=0

x(2n)W 2nk
N +

N/2−1∑
n=0

x(2n + 1)W (2n+1)k
N (6.50)

Noting that W 2
N = [e− j(2π/N )]2 = e− j[2π/(N/2)] = WN/2, Equation (6.50) can be written as

X (k) =
N/2−1∑

n=0

x1(n)W nk
N/2 + W k

N

N/2−1∑
n=0

x2(n)W nk
N/2 (6.51)
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i.e.

X (k) = X1(k) + W k
N X2(k) (6.52)

where X1(k) and X2(k) are N/2-point DFTs of x1(n) and x2(n). Note that, since X (k) is defined
for 0 ≤ k ≤ N − 1 and X1(k), X2(k) are periodic with period N/2, then

X (k) = X1

(
k − N

2

)
+ W k

N X2

(
k − N

2

)
N

2
≤ k ≤ N − 1 (6.53)

The above Equations (6.52) and (6.53) can be used to develop the computational procedure.
For example, if N = 8 it can be shown that two four-pont DFTs are needed to make up the
full eight-point DFT. Now we do the same to the four-point DFT, i.e. divide x1(n) and x2(n)
each into two sequences of even and odd numbers, e.g.

X1(k) = A(k) + W k
N/2 B(k) = A(k) + W 2k

N B(k) for 0 ≤ k ≤ N

2
− 1 (6.54)

where A(k) is a two-point DFT of even numbers of x1(n), and B(k) is a two-point DFT of odd
numbers of x1(n). This results in four two-pont DFTs in total. Thus, finally, we only need to
compute two-point DFTs.

In general, the total number of multiply and add operations is N log2 N . Finally, we
compare the number of operations N 2(DFT) versus N log2 N (FFT) in Table 6.1.

Table 6.1 Number of multiply and add operations, FFT versus DFT

N N 2 (DFT) N log2 N (FFT) N 2/(N log2 N )

16 256 64 4.0
512 262 144 4608 56.9

2048 4 194 304 22 528 186.2

6.7 BRIEF SUMMARY

1. The input–output relationship of a digital LTI system is expressed by the convolution
of two sequences of h(n) and x(n), i.e.

y(n) =
∞∑

k=−∞
h(n − k)x(k) =

∞∑
r=−∞

h(r )x(n − r ) or

y(n) = x(n) ∗ h(n) = h(n) ∗ x(n)

The Fourier transform of the sequence h(n), H (e j2π f ), is called the system frequency
response function (FRF), where

H (e j2π f ) =
∞∑

n=−∞
h(n)e− j2π f n and h(n) =

1/2∫
−1/2

H (e j2π f )e j2π f nd f

Note that H (e j2π f ) is continuous and periodic in frequency.
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2. The Fourier transform of the convolution of two sequences is the product of their
transforms, i.e.

F {y(n) = x(n) ∗ h(n)} = Y (e j2π f ) = X (e j2π f )H (e j2π f )

3. The DFT pair for a finite (or periodic) sequence is

x(n) = 1

N

N−1∑
k=0

X (k)e j(2π/N )nk and X (k) =
N−1∑
n=0

x(n)e− j(2π/N )nk

Note that the N-point DFT of a finite length sequence x(n) imposes a periodic structure
on the sequence.

4. Frequency spacing in X(k) can be increased by adding zeros to the end of sequence
x(n). However, care must be taken since this is not a ‘true’ improvement in resolution
(ability to distinguish closely spaced frequency components).

5. The relationship between the DFT X(k) and the Fourier transform of a (sampled)
sequence X (e j2π f �) is

X (k) =
[

X (e j2π f �) evaluated at f = k

N�
Hz

]
Note that this sampling in frequency imposes the periodicity in the time domain (as
does the sampling in the time domain which results in periodicity in the frequency
domain).

6. If a signal is sampled and truncated, we must consider the windowing effect (distor-
tion in the frequency domain) and the scaling factor as compared with the Fourier
transform of the original signal.

7. Symmetry properties of the DFT are given by

X (N − k) = X∗(k)

8. The circular convolution of two finite sequences can be obtained by the inverse DFT
of the product of their DFTs, i.e.

x(n) ©* h(n) = IDFT [X (k)H (k)]

The linear convolution of these two sequences, y(n) = x(n) ∗ h(n), can also be ob-
tained via the DFT by adding zeros to x(n) and h(n) appropriately.

9. The fast Fourier transform (FFT) is an efficient algorithm for the computation of the
DFT (the same algorithm can be used to compute the inverse DFT). There are many
FFT algorithms. There used to be a restriction of data length N to be a power of two,
but there are algorithms available that do not have this restriction these days (see
FFTW, http://www.fftw.org).

10. Finally, we summarize the various Fourier transforms in Figure 6.22 (we follow
the display method given by Randall, 1987) and the pictorial interpretation of
the DFT of a sampled and truncated signal is given in Figure 6.23 (see Brigham,
1988).
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Figure 6.22 Summary of various Fourier transforms
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Figure 6.23 Pictorial interpretations (from the Fourier integral to the DFT)
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6.8 MATLAB EXAMPLES

Example 6.1: Example of convolution (see Figure 6.6)

In this example, we demonstrate the convolution sum, y(n) = x(n) ∗ h(n), and its com-
mutative property, i.e. x(n) ∗ h(n) = h(n) ∗ x(n).

Line MATLAB code Comments

1 clear all Define a sequence x(n) whose total length is
9, but the length of non-zero elements is 5.
Also define a sequence h(n) whose total
length is 11, but the length of non-zero
elements is 8. And define indices for x(n)
and h(n).
Note that MATLAB uses the index from 1,
whereas we define the sequence from n = 0.

2 x=[1 1 1 1 1 0 0 0 0];
3 h=[8 7 6 5 4 3 2 1 0 0 0];
4 nx=[0:length(x)-1];
5 nh=[0:length(h)-1];

6 y1=conv(h,x);
7 y2=conv(x,h);
8 ny=[0:length(y1)-1];

Perform the convolution sum using the
MATLAB function ‘conv’, where
y1(n) = h(n) ∗ x(n) and
y2(n) = x(n) ∗ h(n).
Both will give the same results. Note that
the length of ‘conv(h,x)’ is ‘length(h) +
length(x) −1’. And define the index for both
y1(n) and y2(n).

9 figure(1); stem(nx,x, 'd', 'filled') Plot the sequences x(n), h(n), y1(n) and
y2(n).
Note that y1(n) and y2(n) are the same, the
total length of y1(n) is 19, which is ‘11 + 9
−1’, and the length of the non-zero
elements is 12, which is ‘8+ 5 − 1’.

10 xlabel('\itn'); ylabel('\itx\rm(\itn\rm)')
11 figure(2); stem(nh,h, 'filled')
12 xlabel('\itn'); ylabel('\ith\rm(\itn\rm)')
13 figure(3); stem(ny,y1, 'filled')
14 xlabel('\itn'); ylabel('\ity 1\rm(\itn\rm)')
15 figure(4); stem(ny,y2, 'filled')
16 xlabel('\itn'); ylabel('\ity 2\rm(\itn\rm)')

Results
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Example 6.2a: DFT of a sinusoidal signal

Case A: Truncated exact number of periods. (see Figures 6.12 and 6.13).

Consider a sinusoidal signal x(t) = A sin 2πpt , p = 1/TP Hz. Sample this signal at the
sampling rate fs = 10/TP Hz. We examine two cases: (i) data are truncated at exactly
one period (10-point DFT), (ii) data are truncated at exactly five periods (50-point DFT).
For this example, we use A = 2 and p = 1 Hz. Note that the Fourier integral gives the
value A/2 = 1 at p Hz.

Line MATLAB code Comments

1 clear all Define parameters and the sampling rate fs
such that 10 samples per period Tp. Truncate
the data exactly one period (T1) and five
periods (T2). Define time variables t1 and t2
for each case.

2 A=2; p=1; Tp=1/p; fs=10/Tp;
3 T1=1*Tp; T2=5*Tp;
4 t1=[0:1/fs:T1-1/fs];
5 t2=[0:1/fs:T2-1/fs];

6 x1=A*cos(2*pi*p*t1); Generate the sampled and truncated signals x1
(one period) and x2 (five periods). Perform the
DFT of each signal.

7 x2=A*cos(2*pi*p*t2);
8 X1=fft(x1); X2=fft(x2);

9 N1=length(x1); N2=length(x2); Calculate the frequency variables f1 and f2 for
each case.10 f1=fs*(0:N1-1)/N1;

f2=fs*(0:N2-1)/N2;

11 figure(1) Plot the results (modulus) of 10-point DFT.
Note the frequency range 0 to 9 Hz
( fs − fs/N ) and the peak amplitude
AT /2� = 5A = 10 (see Figure 6.12). Since
exact number of period is taken for DFT, all
the frequency components except p = 1 Hz
(and 9 Hz, which is the mirror image of p Hz)
are zero.

12 stem(f1, abs(X1), 'fill')
13 xlabel('Frequency (Hz)')
14 ylabel('Modulus of \itX\rm(\itk\rm)');

axis ([0 9.9 0 10])
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15 figure(2) This plots the same results, but now the
DFT coefficients are scaled appropriately.
Note that the modulus of X(k) is divided
by the sampling rate (fs) and window
length (T1). Note that it also gives
the same scaling effect if X(k) is divided
by the number of points N1. The result
corresponds to the Fourier integral, i.e. the
peak amplitude is now A/2 = 1 at p Hz.

16 stem(f1, abs(X1)/fs/T1, 'fill'); % this is the
same as stem(f1, abs(X1)/N1, 'fill')

17 xlabel('Frequency (Hz)')
18 ylabel('Modulus (scaled)');

axis ([0 9.9 0 1])

19
20
21
22

figure(3)
stem(f2, abs(X2), 'fill')
xlabel('Frequency (Hz)')
ylabel('Modulus of \itX\rm(\itk\rm)')

Plot the results (modulus) of 50-point
DFT. Note that the peak amplitude is
AT /2� = 25A = 50. In this case, we
used the data five times longer in ‘time’
than in the previous case. This results in
an increase of frequency resolution, i.e.
the resolution is increased five times that
in the previous case.

23 figure(4) This plots the same results, but, as before,
the DFT coefficients are scaled
appropriately, thus A/2 = 1 at p Hz.

24 stem(f2, abs(X2)/fs/T2, 'fill'); % this is the
same as stem(f2, abs(X2)/N2, 'fill')

25 xlabel('Frequency (Hz)');
ylabel('Modulus (scaled)')

Results
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Comment: In this example, we applied the scaling factor 1/( fs T ) = 1/N to X(k) to
relate its amplitude to the corresponding Fourier integral X( f ). However, this is only true
for periodic signals which have discrete spectra in the frequency domain. In fact, using
the DFT, we have computed the Fourier coefficients (amplitudes of specific frequency
components) for a periodic signal, i.e. ck ≈ Xk/N (see Equation (3.45) in Chapter 3).

For transient signals, since we compute the amplitude density rather than ampli-
tude at a specific frequency, the correct scaling factor is 1/ fs or � (assuming that the
rectangular window is used), although there is some distortion in the frequency domain
due to the windowing effect. The only exception of this scaling factor may be the delta
function. Note that δ(n) is not the result of sampling the Dirac delta function δ(t) which
is a mathematical idealization.

Example 6.2b: DFT of a sinusoidal signal

Case B: Truncated with a non-integer number of periods. (See also the windowing effect
in Sections 4.11 and 3.6.)

We use the same signal as in MATLAB Example 6.2a, i.e. x(t) = A sin 2πpt ,
p = 1/TP Hz, fs = 10/TP Hz, A = 2, and p = 1 Hz. However, we truncate the data in
two cases: (i) data are truncated one and a half periods (15-point DFT), (ii) data are trun-
cated three and a half periods (35-point DFT). Note that we use an odd number for the DFT.

Line MATLAB code Comments

1 clear all Exactly the same as previous example
(Case A), except T1 is one and a half
periods of the signal and T2 is three and
a half periods of the signal.

2 A=2; p=1; Tp=1/p; fs=10/Tp;
3 T1=1.5*Tp; T2=3.5*Tp;
4 t1=[0:1/fs:T1-1/fs];

t2=[0:1/fs: T2-1/fs];
5 x1=A*cos(2*pi*p*t1); x2=A*cos(2*pi*p*t2);
6 X1=fft(x1); X2=fft(x2);
7 N1=length(x1); N2=length(x2);
8 f1=fs*(0:N1-1)/N1;

f2=fs*(0:N2-1)/N2;

9 X1z=fft([x1 zeros(1,5000-N1)]); % zero padding Perform 5000-point DFT by adding
zeros at the end of each sequence x1
and x2, i.e. ‘zero padding’ is applied for
demonstration purpose. Calculate new
frequency variable accordingly.

10 X2z=fft([x2 zeros(1,5000-N2)]); % zero padding
11 Nz=length(X1z);
12 fz=fs*(0:Nz-1)/Nz;

13 figure(1) Plot the results (modulus) of 15-point
DFT (stem plot) and DFT with zero
padding (dashed line). Magnitudes of
DFT coefficients are scaled
appropriately. Examine the effect of
windowing in this figure. Note the
change of magnitude at the peak
(compare this with the previous
example). Also, note that we do not have
the value at the frequency p = 1 Hz.

14 stem(f1, abs(X1)/fs/T1, 'fill');
hold on

15 plot(fz, abs(X1z)/fs/T1, 'r:'); hold off
16 xlabel('Frequency (Hz)');

ylabel('Modulus (scaled)')
17 axis([0 10 0 1.02])
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18 figure(2) Plot the results (modulus) of 35-point
DFT (stem plot) and DFT with zero
padding (dashed line). Note that the
resolution is improved, but there is still
a significant amount of smearing and
leakage due to windowing. Again, we
do not have the DFT coefficient at the
frequency p = 1 Hz.

19 stem(f2, abs(X2)/fs/T2, 'fill'); hold on
20 plot(fz, abs(X2z)/fs/T2, 'r:'); hold off
21 xlabel('Frequency (Hz)');

ylabel('Modulus (scaled)')
22 axis([0 10 0 1.02])
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Example 6.3: DFT of a sinusoidal signal

Increase of sampling rate does not improve the frequency resolution; it only increases
the frequency range to be computed (with a possible benefit of avoiding aliasing, see
aliasing in Chapter 5).

We use the same signal as in the previous MATLAB example, i.e. x(t) = A sin 2πpt ,
p = 1/TP Hz, A = 2 and p = 1 Hz. However, the sampling rate is increased twice, i.e.
fs = 20/TP Hz. We examine two cases: (a) data length T = TP (20-point DFT; this
corresponds to the first case of MATLAB Example 6.2a), (b) data length T = 1.5TP

(30-point DFT; this corresponds to the first case of MATLAB Example 6.2b).

Line MATLAB code Comments

1 clear all Exactly the same as previous examples
(MATLAB Examples 6.2a and 6.2b),
except that the sampling rate fs is now
doubled.

2 A=2; p=1; Tp=1/p; fs=20/Tp;
3 T1=1*Tp; T2=1.5*Tp;
4 t1=[0:1/fs:T1-1/fs]; t2=[0:1/fs:T2-1/fs];
5 x1=A*cos(2*pi*p*t1);

x2=A*cos(2*pi*p*t2);
6 X1=fft(x1); X2=fft(x2);
7 N1=length(x1); N2=length(x2);
8 f1=fs*(0:N1-1)/N1; f2=fs*(0:N2-1)/N2;
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9 figure(1) Plot the results (modulus) of 20-point DFT
(i.e. for the case of T = TP ). Note that the
frequency spacing is 1 Hz which is exactly
the same as MATLAB Example 6.2a
(when N = 10), and the folding frequency
is now 10 Hz (5 Hz in the previous
example).

10 stem(f1, abs(X1)/fs/T1, 'fill')
11 xlabel('Frequency (Hz)');

ylabel('Modulus (scaled)')
12 axis([0 20 0 1])

13 figure(2) Plot the results (modulus) of 30-point DFT
(i.e. for the case of T = 1.5TP ). Again, the
result is the same as MATLAB Example
6.2b (when N = 15), within the frequency
range 0 to 5 Hz.

14 stem(f2, abs(X2)/fs/T2, 'fill')
15 xlabel('Frequency (Hz)');

ylabel('Modulus (scaled)')
16 axis([0 20 0 1])

Results

 20 , 20 (i.e. )(a) PPsf T N T T= = =

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

M
o
d
u
lu

s 
(s

ca
le

d
) This region is exactly the same as 

previous example (Example 6.2a, 

see Figure (a2))

This region is exactly the same as 
previous example (Example 6.2b, 
see Figure (b1))

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

M
o
d
u
lu

s 
(s

ca
le

d
)
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Comments: Compare these results with the previous examples (MATLAB Example 6.2a,
6.2b). Recall that the only way of increasing frequency resolution is by increasing data
length (in time). Note that, since the sampling rate is doubled, double the amount of data
is needed over the previous example in order to get the same frequency resolution.

Example 6.4: Symmetry properties of DFT (see Section 6.4)

Consider a discrete sequence x(n) = anu(n), 0 < a < 1, n = 0, 1, . . . , N − 1. In this
example, we use a = 0.3 and examine the symmetry properties of the DFT for two
cases: (a) N is an odd number (N = 9), and (b) N is an even number (N = 10).

Line MATLAB code Comments

1 clear all Define the parameter a, and variables n1 (for
the odd-numbered sequence) and n2 (for the
even-numbered sequence).

2 a=0.3;
3 n1=0:8; % 9-point sequence
4 n2=0:9; % 10-point sequence
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5 x1=a.ˆn1; x2=a.ˆn2;
Create two sequences x1 and x2 according to
the above equation, i.e. x(n) = anu(n).
Perform the DFT of each sequence, i.e.
X (k) = DFT[x(n)].

6 X1=fft(x1); X2=fft(x2);

7 figure(1) Plot the real part of the DFT of the first
sequence x1. The MATLAB command
‘subplot(2,2,1)’ divides the figure(1) into four
sections (2×2) and allocates the subsequent
graph to the first section.

8 subplot(2,2,1);
stem(n1, real(X1), 'fill')

9 axis([-0.5 8.5 0 1.6])
10 xlabel('\itk');

ylabel('Re[\itX\rm(\itk\rm)]')

11 subplot(2,2,2);
stem(n1, imag(X1), 'fill')

Plot the imaginary part of the DFT of the first
sequence x1. Note that, since N/2 is not an
integer number, we cannot evaluate the DFT
coefficient for this number. Thus, the
zero-crossing point cannot be shown in the
figure.

12 axis([-0.5 8.5 -0.4 0.4])
13 xlabel('\itk');

ylabel('Im[\itX\rm(\itk\rm)]')

14 subplot(2,2,3);
stem(n1, abs(X1), 'fill')

Plot the modulus of the DFT of the first
sequence x1.

15 axis([-0.5 8.5 0 1.6])
16 xlabel('\itk');

ylabel('|\itX\rm(\itk\rm)|')
17 subplot(2,2,4);

stem(n1, angle(X1), 'fill')
Plot the phase of the DFT of the first sequence
x1. Similar to the imaginary part of the DFT,
there is no zero-crossing point (or π ) in the
figure.

18 axis([-0.5 8.5 -0.4 0.4])
19 xlabel('\itk');

ylabel('arg\itX\rm(\itk\rm)')

20 figure(2) Plot the real part of the DFT of the second
sequence x2.21 subplot(2,2,1);

stem(n2, real(X2), 'fill')
22 axis([-0.5 9.5 0 1.6])
23 xlabel('\itk');

ylabel('Re[\itX\rm(\itk\rm)]')

24 subplot(2,2,2);
stem(n2, imag(X2), 'fill')

Plot the imaginary part of the DFT of the
second sequence x2. Since N/2 is an integer
number, we can evaluate the DFT coefficient
for this number. Note that the value is zero at
n = N/2.

25 axis([-0.5 9.5 -0.4 0.4])
26 xlabel('\itk');

ylabel('Im[\itX\rm(\itk\rm)]')

27 subplot(2,2,3);
stem(n2, abs(X2), 'fill') Plot the modulus of the DFT of the second

sequence x2.28 axis([-0.5 9.5 0 1.6])
29 xlabel('\itk');

ylabel('|\itX\rm(\itk\rm)|')
30 subplot(2,2,4);

stem(n2, angle(X2), 'fill')
Plot the phase of the DFT of the second
sequence x2. Similar to the imaginary part of
the DFT, there is a zero-crossing point at
n = N/2. (The value is zero because the real
part is positive. If the real part is negative the
value will be π .)

31 axis([-0.5 9.5 -0.4 0.4])
32 xlabel('\itk');

ylabel('arg\itX\rm(\itk\rm)')
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(b) The 10-point DFT

Comments: Compare the results of the even-numbered DFT and odd-numbered DFT.
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Example 6.5: Zero-padding approach to improve (artificially) the quality of a
measured signal

Consider the free response of a single-degree-of-freedom system

x(t) = A

ωd
e−ζωn t sin(ωd t) and F {x(t)} = A

ω2
n − ω2 + j2ζωnω

where A = 200, ωn = 2π fn = 2π (10) and ωd = ωn

√
1 − ζ 2. In order to simulate a prac-

tical situation, a small amount of noise (Gaussian white) is added to the signal. Suppose
the system is heavily damped, e.g. ζ = 0.3; then the signal x(t) falls into the noise level
quickly.

Now, there are two possibilities of performing the DFT. One is to use only the
beginning of the signal where the signal-to-noise ratio is high, but this will give a poor
frequency resolution. The other is to use longer data (including the noise-dominated part)
to improve the frequency resolution. However, it is significantly affected by noise in the
frequency domain.

The above problem may be resolved by truncating the beginning part of signal and
adding zeros to it (this increases the measurement time artificially).

Line MATLAB code Comments

1 clear all Define the sampling rate fs = 100 Hz,
total record time T = 5 seconds, and the
time variable t from 0 to ‘T-1/fs’ seconds.
Also generate the sampled signal
according to the equation above.

2 fs=100; T=5;
3 t=[0:1/fs:T-1/fs];
4 A=200; zeta=0.3; wn=2*pi*10;

wd=sqrt(1-zetaˆ2)*wn;
5 x=(A/wd)*exp(-zeta*wn*t).*sin(wd*t);

6 var x=sum((x-mean(x)).ˆ2)/(length(x)-1);
% var x=var(x)

7 randn('state',0);

Calculate the variance of the signal (note
that the MATLAB function ‘var(x)’ can
also be used).
MATLAB function ‘randn(size(x))’
generates the normally distributed random
numbers with the same size as x, and
‘randn('state', 0)’ initializes the random
number generator.
Generate the noise sequence whose power
is 0.25 % of the signal power that gives
the SNR of approximately 26 dB (see
Equation (5.30)). Then, add this noise to
the original signal.

8 noise=0.05*sqrt(var x)*randn(size(x));
9 xn=x+noise;

10 figure(1) Plot the noisy signal. It can be easily
observed that the signal falls into the noise
level at about 0.4 seconds. Note that 0.4
seconds corresponds to the 40 data points.
Thus, for the DFT, we may use the signal
up to 0.4 seconds (40-point DFT) at the
expense of the frequency resolution, or
use the whole noisy signal (500-point
DFT) to improve the resolution.

11 plot(t, xn)
12 axis([0 2 -0.8 2.2])
13 xlabel('\itt\rm (seconds)');

ylabel('\itx\rm(\itt\rm)')
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14 Xn1=fft(xn,40); % 40 corresponds to
0.4 seconds in time

First, perform the DFT using only the first
40 data points of the signal. The
MATLAB function ‘fft(xn, 40)’ performs
the DFT of xn using the first 40 elements
of xn. Next, perform the DFT using the
whole noisy signal (500-point DFT).
Calculate the corresponding frequency
variables.

15 N1=length(Xn1);
f1=fs*(0:N1-1)/N1;

16 Xn2=fft(xn);
17 N2=length(xn);

f2=fs*(0:N2-1)/N2;

18 Xa=A./(wnˆ2 - (2*pi*f2).ˆ2 +
i*2*zeta*wn*(2*pi*f2));

Calculate the Fourier integral according to
the formula above. This will be used for
the purpose of comparison.

19 figure(2) Plot the modulus of the 40-point DFT
(solid line), and plot the true magnitude
spectrum of the Fourier transform (dashed
line). Note the poor frequency resolution
in the case of the 40-point DFT.

20 plot(f1(1:N1/2+1),
20*log10(abs(Xn1(1:N1/2 +1)/fs)))

21 hold on
22 plot(f2(1:N2/2+1),

20*log10(abs(Xa(1:N2/2+1))), 'r:')
23 xlabel('Frequency (Hz)');

ylabel('Modulus (dB)'); hold off

24 figure(3) Plot the modulus of the DFT of the whole
noisy signal (solid line), and plot the true
magnitude spectrum of the Fourier
transform (dashed line). Note the effect of
noise in the frequency domain.

25 plot(f2(1:N2/2+1),
20*log10(abs(Xn2(1:N2/2+1)/fs)))

26 hold on
27 plot(f2(1:N2/2+1),

20*log10(abs(Xa(1:N2/2+1))), 'r:')
28 xlabel('Frequency (Hz)');

ylabel('Modulus (dB)'); hold off

29 Xnz=fft(xn(1:40),N2); Now, perform the DFT of the truncated
and zero-padded signal. The MATLAB
function ‘fft(xn(1:40),N2)’ takes only the
first 40 data elements of xn, then adds
zeros up to the number N2.

30 figure(4) Plot the modulus of the DFT of the
zero-padded signal (solid line), and plot
the true magnitude spectrum of the
Fourier transform (dashed line). Note the
improvement in the frequency domain.

31 plot(f2(1:N2/2+1),
20*log10(abs(Xnz(1:N2/2+1)/fs)))

32 hold on
33 plot(f2(1:N2/2+1),

20*log10(abs(Xa(1:N2/2+1))), 'r:')
34 xlabel('Frequency (Hz)');

ylabel('Modulus (dB)'); hold off
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Results
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Comments: In this example, apart from the zero-padding feature, there is another aspect
to consider. Consider the DFT of the noise-free signal (i.e. noise is not added), and
compare it with the Fourier integral. To do this, add the following lines at the end of the
above MATLAB code:

X=fft(x);
figure(5)
plot(f2(1:N2/2+1), 20*log10(abs(X(1:N2/2+1)/fs))); hold on
plot(f2(1:N2/2+1), 20*log10(abs(Xa(1:N2/2+1))), 'r:')
xlabel('Frequency (Hz)'); ylabel('Modulus (dB)'); hold off

The results are shown in Figure (e). Note the occurrence of aliasing in the
DFT result. In computer simulations, we have evaluated the values of x(t) at t =
0, 1/ fs, 2/ fs, . . . , T − 1/ fs simply inserting the time variable in the equation without
doing any preprocessing. In the MATLAB code, the act of defining the time variable
‘t=[0:1/fs:T-1/fs];’ is the ‘sampling’ of the analogue signal x(t). Since we cannot (in a
simple way in computer programming) apply the low-passfilter before the sampling, we
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always have to face the aliasing problem in computer simulations. Note that aliasing does
occur even if the signal is obtained by solving the corresponding ordinary differential
equation using a numerical integration method such as the Runge–Kutta method. Thus,
we may use a much higher sampling rate to minimize the aliasing problem, but we cannot
avoid it completely.

Note also that aliasing occurs over the ‘entire’ frequency range, since the original
analogue signal is not band-limited. It is also interesting to compare the effect of aliasing
in the low-frequency region (compared with the natural frequency, fn = 10 Hz) and in the
high-frequency region, i.e. the magnitude spectrum is increased at high frequencies, but
decreased at low frequencies. This is due to the phase structure of the Fourier transform
of the original signal, i.e. arg X ( f ). Note further that there is a phase shift at the natural
frequency (see Fahy and Walker, 1998). Thus the phase difference betweenX ( f )and its
mirror image is approximately 2π at the folding frequency and is approximately π at
zero frequency. In other words, X ( f ) and the aliased part are in phase at high frequencies
(increase the magnitude) and out of phase at low frequencies (decrease the magnitude),
as can be seen from Figures (f) and (g).
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Example 6.6: Circular (periodic) and linear convolutions using the DFT

Consider the following two finite sequences of length N = 5:

x(n) = [1 3 5 3 1] and h(n) = [9 7 5 3 1]

Perform the circular convolution and the linear convolution using the DFT.

Line MATLAB code Comments

1 clear all Define the sequences x(n) and h(n).
2 x=[1 3 5 3 1]; h=[9 7 5 3 1];

3 X=fft(x); H=fft(h); Perform the DFT of each sequence. Take the
inverse DFT of the product X(k) and H(k) to
obtain the circular convolution result. Define
the variable for the x-axis.

4 yp=ifft(X.*H);
5 np=0:4;

6 figure(1) Plot the sequences x and h, and the results of
circular convolution. Note that the sequences
x and h are periodic in effect.

7 subplot(3,1,1); stem(np, x, 'd', 'fill')
8 axis([-0.4 4.4 0 6])
9 xlabel('\itn');

ylabel('\itx p\rm(\itn\rm)')
10 subplot(3,1,2); stem(np, h, 'fill')
11 axis([-0.4 4.4 0 10])
12 xlabel('\itn');

ylabel('\ith p\rm(\itn\rm)')
13 subplot(3,1,3); stem(np, yp, 'fill')
14 axis([-0.4 4.4 0 90])
15 xlabel('\itn');

ylabel('\ity p\rm(\itn\rm)')

16 Xz=fft([x zeros(1,length(h)-1)]); Perform the linear convolution using the
DFT. Note that zeros are added appropriately
when calculating DFT coefficients.
Also, note that the MATLAB function
‘conv(x, h)’ will give the same result (in fact,
this function uses the same algorithm).

17 Hz=fft([h zeros(1,length(x)-1)]);
18 yz=ifft(Xz.*Hz);
19 nz=0:8;

20 figure(2) Plot the zero-padded sequences, and the
results of linear convolution using the DFT.21 subplot(3,1,1);

stem(nz, [x 0 0 0 0], 'd', 'fill')
22 axis([-0.4 8.4 0 6])
23 xlabel('\itn');

ylabel('\itx\rm(\itn\rm)')
24 subplot(3,1,2);

stem(nz, [h 0 0 0 0], 'fill')
25 axis([-0.4 8.4 0 10])
26 xlabel('\itn');

ylabel('\ith\rm(\itn\rm)')
27 subplot(3,1,3); stem(nz, yz, 'fill')
28 axis([-0.4 8.4 0 90])
29 xlabel('\itn');

ylabel('\ity\rm(\itn\rm)')
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(b) Linear convolution using the DFT,  ( ) ( ) ( )y n x n h n= ∗

Example 6.7: System identification (impact testing of a structure)

Consider the experimental setup shown in Figure (a) (see also Figure 1.11 in Chapter 1),
and suppose we want to identify the system (FRF between A and B) by the impact
testing method. Note that many modern signal analysers are equipped with built-in signal
conditioning modules.
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(a) Experimental setup
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If the measurement noise is ignored, both input and output are deterministic and
transient. Thus, provided that the input x(t) is sufficiently narrow in time (broad in fre-
quency), we can obtain the FRF between A and B over a desired frequency range from
the relationship

Y ( f ) = H ( f )X ( f ) → H ( f ) = Y ( f )

X ( f )
(6.55)

However, as illustrated in Figure (a), the actual signals are contaminated with noise. Also,
the system we are identifying is not the actual physical system H (between A and B) but
the Ĥ that includes the individual frequency responses of sensors and filters, the effects of
quantization noise, measurement (external) noise and the experimental rig. Nevertheless,
for convenience we shall use the notation H rather than Ĥ .

Measurement noise makes it difficult to use Equation (6.55). Thus, we usually
perform the same experiment several times and average the results to estimate H ( f ).
The details of various estimation methods are discussed in Part II of this book. Roughly
speaking, one estimation method of FRF may be expressed as

H1( f ) ≈

1

N

N∑
n=1

X∗
n( f )Yn( f )

1

N

N∑
n=1

X∗
n( f )Xn( f )

(6.56)

where N is the number of times the experiment is replicated (equivalently it is the number
of averages). Note that different values of Xn( f ) and Yn( f ) are produced in each experi-
ment, and if N = 1 Equations (6.55) and (6.56) are the same. In this MATLAB example,
we shall estimate the FRF based on both Equations (6.55) and (6.56), and compare the
results.
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The experiment is performed 10 times, and the measured data are stored in the
file ‘impact data raw.mat’,1 where the sampling rate is chosen as fs = 256 Hz, and each
signal is recorded for 8 seconds (which results in the frequency resolution of � f = 1/8 =
0.125 Hz, and each signal is 2048 elements long). The variables in the file are ‘in1, in2, . . . ,
in10’ (input signals) and ‘out1, out2, . . . , out10’ (output signals). The anti-aliasing filter
is automatically controlled by the signal analyser according to the sampling rate (in this
case, the cut-off frequency is about 100 Hz). Also, the signal analyser is configured to
remove the d.c. component of the measured signal (i.e. high-pass filtering with cut-on at
about 5 Hz).

Before performing the DFT of each signal, let us investigate the measured signals.
If we type the following script in the MATLAB command window:

load impact data raw
fs=256; N=length(in1); f=fs*(0:N-1)/N;
T=N/fs; t=0:1/fs:T-1/fs;
figure(1); plot(t, in1); axis([-0.1 8 -1.5 2.5])
xlabel('\itt\rm (seconds)'); ylabel('\itx\rm(\itt\rm)')
figure(2); plot(t, out1); axis([-0.1 8 -4 4])
xlabel('\itt\rm (seconds)'); ylabel('\ity\rm(\itt\rm)')

The results will be as shown in Figure (b1) and (b2).
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(b2) Output signal

Note that the output signal is truncated before the signal dies away completely.
However, the input signal dies away quickly and noise dominates later. If we type in the
following script we can see the effect of noise on the input signal, i.e. the DFT of the
input signal shows a noisy spectrum as in Figure (c):

In1=fft(in1);
figure (3); plot(f(1:N/2+1), 20*log10(abs(In1(1:N/2+1))))
xlabel('Frequency (Hz)'); ylabel('Modulus (dB)')
axis([0 128 -70 30])

1 The data files can be downloaded from the Companion Website (www.wiley.com/go/shin hammond)
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Now let us look at the input signal in more detail by typing

plot(in1(1:50)); grid on

As shown in Figure (d1), the input signal after the 20th data point and before the
4th data point is dominated by noise. Thus, similar to MATLAB Example 6.5, the data
in this region are replaced by the noise level (note that they are not replaced by zeros due
to the offset of the signal). The following MATLAB script replaces the noise region with
constant values and compensates the offset (note that the output signal is not offset, so it
is replaced with zeros below the 4th data point):

in1(1:4)=in1(20); in1(20:end)=in1(20); in1=in1-in1(20);
out1(1:4)=0;

The result is shown in Figure (d2).
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Now we type the script below to see the effect of this preprocessing, which is a
much cleaner spectrum as in Figure (e). Note that each signal has a different transient
characteristic, so it is preprocessed individually and differently. The preprocessed data
set is stored in the file ‘impact data pre processed.mat’.

In1=fft(in1);
plot(f(1:N/2+1), 20*log10(abs(In1(1:N/2+1))))
xlabel('Frequency (Hz)'); ylabel('Modulus (dB)')
axis([0 128 -70 30])
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Now, using these two data sets, we shall estimate the FRF based on both Equations
(6.55) and (6.56).

Case A: FRF estimate by Equation (6.55), i.e.

H ( f ) = Y ( f )

X ( f )

Line MATLAB code Comments

1 clear all Load the data set which is not preprocessed.
Define frequency and time variables.2 load impact data raw

3 fs = 256; N = length(in1);
f=fs*(0:N-1)/N;

4 T=N/fs; t=0:1/fs:T-1/fs;

5 In1=fft(in1); Out1=fft(out1); Perform the DFT of input signal and output
signal (only one set of input–output records).
Then, calculate the FRF according to
Equation (6.55).

6 H=Out1./In1;

7 figure(1) Plot the magnitude and phase spectra of the
FRF (for the frequency range from 5 Hz to
95 Hz).

8 plot(f(41:761),
20*log10(abs(H(41:761))))

9 axis([5 95 -30 50])
10 xlabel('Frequency (Hz)');

ylabel('FRF (Modulus, dB)')
11 figure(2)
12 plot(f(41:761),

unwrap(angle(H(41:761))))
13 axis([5 95 -3.5 3.5])
14 xlabel('Frequency (Hz)');

ylabel('FRF (Phase, rad)')

15 load impact data pre processed Load the preprocessed data set, and perform
the DFT. Then, calculate the FRF according
to Equation (6.55).

16 In1=fft(in1); Out1=fft(out1);
17 H=Out1./In1;
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18 figure(3) Plot the magnitude and phase spectra of the FRF.
19 plot(f(41:761),

20*log10(abs(H(41:761))))
20 axis([5 95 -30 50])
21 xlabel('Frequency (Hz)');

ylabel('FRF (Modulus, dB)')
22 figure(4)
23 plot(f(41:761),

unwrap(angle(H(41:761))))
24 axis([5 95 -3.5 3.5])
25 xlabel('Frequency (Hz)');

ylabel('FRF (Phase, rad)')
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(f3)With preprocessing
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Comments: Note that the preprocessed data produce a much cleaner FRF.

Case B: FRF estimate by Equation (6.56), i.e.

H1( f ) ≈

1

N

N∑
n=1

X∗
n( f )Yn( f )

1

N

N∑
n=1

X∗
n( f )Xn( f )
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Line MATLAB code Comments

1 clear all Load the data set which is not preprocessed
(Line 2).
Later, comment out this line (with %), and
uncomment Line 3 to load the preprocessed
data set.
Define frequency and time variables.

2 load impact data raw
3 % load impact data pre processed
4 fs = 256; N = length(in1);

f=fs*(0:N-1)/N;
5 T=N/fs; t=0:1/fs:T-1/fs;

6 Navg=10;
% Navg=3 for preprocessed data set

Define the number of averages N = 10 (see
Equation (6.56)). Later, use N = 3 for the
preprocessed data set.

7 for n=1:Navg This ‘for’ loop produces variables: In1,
In2, . . . , In10; Out1, Out2, . . . , Out10; Sxx1,
Sxx2, . . . , Sxx10; Sxy1, Sxy2, . . . , Sxy10.
They are the DFTs of input and output signals,
and the elements of the numerator and
denominator of Equation (6.56), such that, for
example, In1 = X1, Out1 = Y1,
Sxx1 = X∗

1 X1 and Sxy1 = X∗
1Y1.

For more details of the ‘eval’ function see the
MATLAB help window.

8 In = ['In', int2str(n), '= fft(in',
int2str(n), ');'];

9 eval(In);
10 Out = ['Out', int2str(n), '= fft(out',

int2str(n), ');'];
11 eval(Out);
12 Sxx = ['Sxx', int2str(n), '=conj(In',

int2str(n), ')' '.*In', int2str(n), ';'];
13 eval(Sxx);
14 Sxy = ['Sxy', int2str(n), '= conj(In',

int2str(n), ')' '.*Out', int2str(n), ';'];
15 eval(Sxy);
16 end

17 Sxx=[]; Sxy=[]; Define empty matrices which will be used in
the ‘for’ loop.
The ‘for’ loop produces two matrices Sxx and
Sxy, where the nth row of the matrices is
X∗

n Xn and X∗
nYn , respectively.

18 for n=1:Navg
19 tmp1= ['Sxx', int2str(n), ';'];
20 Sxx=[Sxx; eval(tmp1)];
21 tmp2= ['Sxy', int2str(n), ';'];
22 Sxy=[Sxy; eval(tmp2)];
23 end

24 Sxx=mean(Sxx); Sxy=mean(Sxy); First calculate the numerator and denominator
of Equation (6.56), and then H1 is obtained.25 H1=Sxy./Sxx;

26 figure(1) Plot the magnitude and phase spectra of the
FRF.
Run this MATLAB program again using the
preprocessed data set, and compare the results.

27 plot(f(41:761),
20*log10(abs(H(41:761))))

28 axis([5 95 -30 50])
29 xlabel('Frequency (Hz)');

ylabel('FRF (Modulus, dB)')
30 figure(2)
31 plot(f(41:761),

unwrap(angle(H1(41:761))))
32 axis([5 95 -3.5 3.5])
33 xlabel('Frequency (Hz)');

ylabel('FRF (Phase, rad)')
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Results

No. of averages = 10 
(without preprocessing)
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(g2)No. of averages = 10 
(without preprocessing)

10 20 30 40 50 60 70 80 90
–30

–20

–10

0

10

20

30

40

50

Frequency (Hz)

F
R

F
 (

M
o

d
u

lu
s,

 d
B

)

(g3)No. of averages = 3 
(with preprocessing)
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(g4)No. of averages = 3 
(with preprocessing)

Comments: Comparing Figures (g1), (g2) with (f1), (f2) in Case A, it can be seen that
averaging improves the FRF estimate. The effect of averaging is to remove the noises
which are ‘uncorrelated’ with the signals x(t) and y(t), as will be seen later in Part II of
this book. Note that preprocessing results in a much better FRF estimate using far fewer
averages, as can be seen from Figures (g3) and (g4).
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7
Random Processes

Introduction

In Part I, we discussed Fourier methods for analysing deterministic signals. In Part II,
our interest moves to the treatment of non-deterministic signals. There are many ways in
which a signal may be characterized as non-deterministic. At this point we shall say that
the time history of the signal cannot be predicted exactly. We may consider the signal
shown in Figure 7.1 as a sample of a non-deterministic signal.

x(t)

t

Figure 7.1 A sample of a non-deterministic signal

An example of such a signal might be the time history measured from an accelerom-
eter mounted on a ventilation duct. In order to be able to describe the characteristics of
such a time history we need some basic ideas of probability and statistics. So we shall
now introduce relevant concepts and return to showing how we can use them for time
histories in Chapter 8.

7.1 BASIC PROBABILITY THEORY

The mathematical theory of describing uncertain (or random) phenomena is probability theory.
It may be best explained by examples – games of chance such as tossing coins, rolling dice,

Fundamentals of Signal Processing for Sound and Vibration Engineers
K. Shin and J. K. Hammond. C© 2008 John Wiley & Sons, Ltd
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etc. First, we define a few terms:

(a) An experiment of chance is an experiment whose outcome is not predictable.
(b) The sample space is the collection (set) of all possible outcomes of an experiment, and

is denoted by �. For example, if an experiment is tossing a coin, then its sample space
is � = (H, T ), where H and T denote head and tail respectively, and if an experiment is
rolling a die, then its sample space is � = (1, 2, . . . , 6).

(c) An event is the outcome of an experiment and is the collection (subset) of points in the
sample space, and denoted by E . For example, ‘the event that a number ≤ 4 occurs when
a die is rolled’ is indicated in the Venn diagram shown in Figure 7.2. Individual events in
the sample space are called elementary events, thus events are collections of elementary
events.

Sample space, 

 elements)(containing nΩ

Ω
Event, E

 elements)(containing nE

E Ω
1

3
5 6

2

4

Figure 7.2 Sample space (�) and event (E)

The sample space � is the set of all possible outcomes, containing n� elements. The
event E is a subset of �, containing nE elementary events.

(d) Probability: To each event E in a sample space �, we may assign a number which
measures our belief that E will occur. This is the probability of occurrence of event
E , which is written as Prob[E] = P(E). In the case where each elementary event is
equally likely, then it is ‘logical’ that

P(E) = nE

n�

(7.1)

This is a measure of the ‘likelihood of occurrence’ of an ‘event’ in an ‘experiment of
chance’, and the probability of event E in the above example is P(E) = nE

/
n� =

2
/

3. Note that P(E) is a ‘number’ such that

0 ≤ P(E) ≤ 1 (7.2)

From this, we conclude that the probability of occurrence of a ‘certain’ event is one
and the probability of occurrence of an ‘impossible’ event is zero.

Algebra of Events

Simple ‘set operations’ visualized with reference to Venn diagrams are useful in setting up
the basic axioms of probability. Given events A, B, C , . . . in a sample space �, we can define
certain operations on them which lead to other events in �. These may be represented by Venn
diagrams. If event A is a subset of � (but not equal to �) we can draw and write A and �

as in Figure 7.3(a), and the complement of A is A′ (i.e. not A) denoted by the shaded area as
shown in Figure 7.3(b).
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(a) (b)

A
ΩΩ

A

Figure 7.3 Event A as a subset of � and its complement

A
Ω

 is the shaded area) ( CCBA =∪

B
Ω

BA

DBA =∩

Figure 7.4 Union and intersection of two sets A and B

The union (sum) of two sets A and B is the set of elements belonging to A or B or
both, and is denoted by A ∪ B. The intersection (or product) of two sets A and B is the set
of elements common to both A and B, denoted by A ∩ B. In Venn diagram terms, they are
shown as in Figure 7.4.

If two sets have no elements in common, we write A ∩ B = � (the null set). Such events
are said to be mutually exclusive. For example, in rolling a die, if A is the event that a number
≤ 2 occurs, and B is the event that a number ≥ 5 occurs, then A ∩ B = �, i.e. � corresponds
to an impossible event.
Some properties of set operations are:

(a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (7.3)
(b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (7.4)
(c) (A ∪ B)′ = A′ ∩ B ′ (7.5)
(d) For any set A, let n(A) denote the number of elements in A; then

n(A ∪ B) = n(A) + n(B) − n(A ∩ B) (7.6)

Two different cases are shown in Figure 7.5 to demonstrate the use of Equation (7.6).

Case (a): Case (b):

BABA

Thus, n(A ∪ B) = n(A) + n(B)

A and B are disjoint, i.e. n(A ∩ B) = 0. These elements are counted twice and

so n(A ∩ B) must be subtracted.

Figure 7.5 Demonstration of n(A ∪ B) for two different cases
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Algebra of Probabilities

The above intuitive ideas are formalized into the axioms of probability as follows. To
each event Ei (in a sample space �), we assign a number called the probability of Ei

(denoted P(Ei )) such that

(a) 0 ≤ P(Ei ) ≤ 1 (7.7)
(b) If Ei and E j are mutually exclusive, then

P(Ei ∪ E j ) = P(Ei ) + P(E j ) (7.8)

(c) If
⋃

Ei = �, then

P
( ⋃

Ei
) = 1 (7.9)

(d) P(�) = 0 (7.10)
(e) For any events E1, E2, not necessarily mutually exclusive,

P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2) (7.11)

Equally Likely Events

If n events, E1, E2, . . . ,En , are judged to be equally likely, then

P(Ei ) = 1

n
(7.12)

As an example of this, throw two dice and record the number on each face. What is
the probability of the event that the total score is 5? The answer is P(E5) = nE5

/n� =
4/36 = 1/9.

Joint Probability

The probability of occurrence of events A and B jointly is called a joint probability and is
denoted P(A ∩ B) or P(A, B). With reference to Figure 7.6, this is the occurrence of the
shaded area, i.e.

P(A ∩ B) = n A∩B

n�

(7.13)

A
Ω

B

Figure 7.6 The intersection of two sets A and B in a sample space �



JWBK207-07 JWBK207-Shin January 26, 2008 17:21 Char Count= 0

BASIC PROBABILITY THEORY 197

Conditional Probability

The probability of occurrence of an event A given that event B has occurred is written as
P(A|B), and is called a conditional probability. To explain this, consider the intersection of
two sets A and B in a sample space � as shown in Figure 7.6. To compute P(A|B), in effect
we are computing a probability with respect to a ‘reduced sample space’, i.e. it is the ratio of
the number of elements in the shaded area relative to the number of elements in B, namely
n A∩B/nB , which may be written (n A∩B/n�)/(nB/n�), or

P(A|B) = P(A ∩ B)

P(B)
= P(A, B)

P(B)
(7.14)

Statistical Independence

If P(A|B) = P(A), we say event A and B are statistically independent. Note that this is so
if P(A ∩ B) = P(A)P(B). As an example of this, toss a coin and roll a die. The probability
that a coin lands head and a die scores 3 is P(A ∩ B) = 1/2 · 1/6 = 1/12 since the events are
independent, i.e. knowing the result of the first event (a coin lands head or tail) does not give
us any information on the second event (score on the die).

Relative FrequenciesM7.1

As defined in Equations (7.1) and (7.2), the probability of event E in a sample space
�, P(E) is a theoretical concept which can be computed without conducting an exper-
iment. In the simple example above this has worked based on the assumption of equal
likelihood of occurrence of the elementary events. When this is not the case we resort
to measurements to ‘estimate’ the probability of occurrence of events. We approach this
via the notion of relative frequency (or proportion) of times that E occurs in a long series
of trials. Thus, if event E occurs nE times in N trials, then the relative frequency of E is
given by

fE = nE

N
(7.15)

Obviously, as N changes, so does fE . For example, toss a coin and note fH (the relative
frequency of a head occurring) as N increases. This is shown in Figure 7.7.

1 2

1

0

Hf

1 200 400 600
N

Figure 7.7 Illustration of fH as N increases

This graph suggests that the error is ‘probably’ reduced as N gets larger.
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The above notion of relative frequency is not useful as a definition of probability because
its values are not unique, but it is intuitively appealing and is used to estimate probabilities
where applicable, i.e. fE is often taken as an estimate of P(E). The relative frequency is
sometimes referred to as the ‘empirical’ probability since it is deduced from observed data.
This estimate has the following properties:

(a) For all events A,

f A ≥ 0 (non-negativity) (7.16)

(b) For all mutually exclusive events,

f A∪B = n A + nB

N
= f A + fB (additivity) (7.17)

(c) For any set of collectively exhaustive events, A1, A2, . . . , i.e. A1 ∪ A2 ∪ · · · = ⋃
Ai ,

f⋃ Ai = N

N
= 1 (certainty) (7.18)

i.e. a ‘certain’ event has a relative frequency of ‘1’.

7.2 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

In many cases it is more convenient to define the outcome of an experiment as a set of
numbers rather than the actual elements of the sample space. So we define a random variable
as a function defined on a sample space. For example, if � = (H, T ) for a coin tossing
experiment, we may choose to say we get a number ‘1’ when a head occurs and ‘0’ when the
tail occurs, i.e. we ‘map’ from the sample space to a ‘range space’ or a new sample space as
shown in Figure 7.8. We may write the function such that X (H ) = 1 and X (T ) = 0. More
generally, for any element ωi in �, we define a function X (ωi ).

Note that the number of elements of � and the number of values taken by X (ωi ) need not
be the same. For an example, toss two coins and record the outcomes and define the random
variable X as the number of heads occurring. This is shown in Figure 7.9.

Sample space

Ω

( )iX ω

Range space

1

0

H

T
XΩ

Figure 7.8 A random variable X that maps from a sample space � to a range space �X

( )iX ω( , )H H
0 1 2

XΩ
Ω

( , )H T

( , )T H ( , )T T

Figure 7.9 An example of a random variable X



JWBK207-07 JWBK207-Shin January 26, 2008 17:21 Char Count= 0

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 199

We note that the values taken by a random variable are denoted xi , i.e. X (ωi ) = xi , and
the notation X (ωi ) is often abbreviated to X . In many cases the sample space and the range
space ‘fuse’ together, e.g. when the outcome is already a number (rolling a die, recording a
voltage, etc.).

There are two types of random variable. If the sample space �X consists of discrete
elements, i.e. countable, X is said to be a discrete random variable, e.g. rolling a die. If �X

consists of ‘continuous’ values, i.e. uncountable (or non-denumerable), then X is a continuous
random variable, e.g. the voltage fluctuation on an ‘analogue’ meter. Some processes may be
mixed, e.g. a binary signal in noise.

Probability Distributions for Discrete Random Variables

For a discrete random variable X (which takes on only a discrete set of values x1, x2, . . . ),
the probability distribution of X is characterized by specifying the probabilities that the
random variable X is equal to xi , for every xi , i.e.

P [X = xi ] for xi = x1, x2, . . . (7.19)

where P[X = xi ] describes the probability distribution of a discrete random variable X
and satisfies

∑
i P[X = xi ] = 1, e.g. for rolling a die, the probability distribution is as

shown in Figure 7.10.

iP[X    x ]=

1 2 3 4 5 6

1 6

ix

Figure 7.10 Probability distribution for rolling a die

The Cumulative Distribution

Random variables have a (cumulative) distribution function (cdf). This is the probability
of a random variable X taking a value less than or equal to x . This is described by F(x)
where

F(x) = P[X ≤ x] = Prob[X taking on a value up to and including x] (7.20)

For a discrete random variable there are jumps in the function F(x) as shown in
Figure 7.11 (for rolling a die).

F(x)

x
1 2 3 4 5 6

1 6

1 2

5 6
1

Figure 7.11 Cumulative distribution function for rolling a die
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Since probabilities are non-negative the cumulative distribution function is mono-
tonic non-decreasing.

Continuous distributions

For a continuous process, the sample space is infinite and non-denumerable. So the
probability that X takes the value x is zero, i.e. P[X = x] = 0. Whilst technically correct
this is not particularly useful, since X will take specific values. So a more useful approach
is to think of the probability of X lying within intervals on the x-axis, i.e. P[X > a],
P[a < X ≤ b], etc.

We start by considering the distribution function F(x) = P[X ≤ x]. F(x) must have
a general shape such as the graph shown in Figure 7.12.

( )F x P X x= ≤

1

0 a b
x

[          ]

Figure 7.12 An example of a distribution function for a continuous process

From Figure 7.12, some properties of F(x) are:

(a) F(−∞) = 0, F(∞) = 1 (7.21)
(b) F(x2) ≥ F(x1) for x2 ≥ x1 (7.22)
(c) P[a < X ≤ b] = P[X ≤ b] − P[X ≤ a] = F(b) − F(a) for a < b (7.23)

Probability Density Functions

Using the properties of distribution function F(x), the probability of X lying in an interval
x to x + δx can be written as

P[x < X ≤ x + δx] = F(x + δx) − F(x) (7.24)

which shrinks to zero as δx → 0. However, consider P[x < X ≤ x + δx]/δx . This is the
probability of lying in a band (width δx) divided by that bandwidth. Then, if the quantity
limδx→0 P[x < X ≤ x + δx]/δx exists it is called the probability density function (pdf)
which is denoted p(x) and is (from Equation (7.24))

p(x) = lim
δx→0

P [x < X ≤ x + δx]

δx
= d F(x)

dx
(7.25)

From Equation (7.25) it follows that

F(x) =
x∫

−∞
p(u)du (7.26)
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Some properties of the probability density function p(x) are:

(a) p(x) ≥ 0 (7.27)
i.e. the probability density function is non-negative;

(b)
∞∫

−∞
p(x)dx = 1 (7.28)

i.e. the area under the probability density function is unity;

(c) P[a < X ≤ b] =
b∫

a
p(x)dx (7.29)

As an example of Equation (7.29), P[a < X ≤ b] can be found by evaluating the
shaded area shown in Figure 7.13.

( )p x

0 a b x

Figure 7.13 An example of a probability density function

Note that we can also define the probability density function for a discrete random variable
if the properties of delta functions are used. For example, the probability density function for
rolling a die is shown in Figure 7.14.

F(x)

1 2 3 4 5 6

1 6

1 2

5 6
1

x

1

6

( ) 1
( ) ( ), 1, 2, ,6

6
i i

dF x
p x x x x

dx
δ= = − =

1 2 3 4 5 6
x

Figure 7.14 Probability density function for rolling a die

Joint Distributions

The above descriptions involve only a single random variable X . This is a univariate process.
Now, consider a process which involves two random variables (say X and Y ), i.e. a bivariate
process. The probability that X ≤ x occurs jointly with Y ≤ y is

P[X ≤ x ∩ Y ≤ y] = F(x, y) (7.30)
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Note thatF(−∞, y) = F(x, −∞) = 0, F(∞, ∞) = 1, F(x, ∞) = F(x) and F(∞, y) =
F(y). Similar to the univariate case the ‘joint probability density function’ is defined as

p(x, y) = lim
δx→0
δy→0

P[x < X ≤ x + δx ∩ y < Y ≤ y + δy]

δxδy
= ∂2 F(x, y)

∂x∂y
(7.31)

and

F(x, y) =
x∫

−∞

y∫
−∞

p(u, v)dvdu (7.32)

Note that

∞∫
−∞

∞∫
−∞

p(x, y)dydx = 1 and

x∫
−∞

∞∫
−∞

p(u, v)dvdu = F(x)

hence

p(x) =
∞∫

−∞
p(x, y)dy (7.33)

This is called a ‘marginal’ probability density function.
These ideas may be extended to n random variables, X1, X2, . . . , Xn , i.e. we may define

p(x1, x2, . . . , xn). We shall only consider univariate and bivariate processes in this book.

7.3 EXPECTATIONS OF FUNCTIONS OF A RANDOM VARIABLE

So far, we have used probability distributions to describe the properties of random vari-
ables. However, rather than using probability distributions, we often use averages. This
introduces the concept of the expectation of a process.

Consider a discrete random variable X which can assume any values x1, x2, . . . with
probabilities p1, p2, . . . . If xi occurs ni times in N trials of an experiment, then the
average value of X is

x = 1

N

∑
i

ni xi (7.34)

where x̄ is called the sample mean. Since ni/N = fi (the empirical probability of oc-
currence of xi ), Equation (7.34) can be written as x = ∑

i xi fi . As N → ∞, the empir-
ical probability approaches the theoretical probability. So the expression for x becomes∑

i xi pi and this defines the theoretical mean value of X .
For a continuous process, the probability pi may be replaced by the probability den-

sity multiplied by the bandwidth, i.e. pi → p(xi )δxi . So
∑

i xi pi becomes
∑

i xi p(xi )δxi
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which as δxi → 0 is written
∫ ∞
−∞ xp(x)dx . This defines the theoretical mean value of X

which we write as E[X ], the expected value of X , i.e.

E[X ] =
∞∫

−∞
xp(x)dx (7.35)

This is the ‘mean value’ or the ‘first moment’ of a random variable X . More generally, the
expectation operation generalizes to functions of a random variable. For example, if Y = g(X ),
i.e. as shown in Figure 7.15,

Output

g(X )Y =)(
System

g
Input

X

Figure 7.15 System with random input and random output

then the expected (or average) value of Y is

E[Y ] = E[g(X )] =
∞∫

−∞
g(x)p(x)dx (7.36)

For a discrete process, this becomes

E[g(X )] =
∑

i

g(xi )pi (7.37)

This may be extended to functions of several random variables. For example, in a bivariate
process with random variables X and Y , if W = g(X, Y ), then the expected value of W is

E[W ] = E[g(X, Y )] =
∞∫

−∞

∞∫
−∞

g(x, y)p(x, y)dxdy (7.38)

Moments of a Random Variable

The probability density function p(x) contains the complete information about the prob-
ability characteristics of X , but it is sometimes useful to summarize this information in
a few numerical parameters – the so-called moments of a random variable. The first and
second moments are given below:

(a) First moment (mean value):

μx = E[X ] =
∞∫

−∞
xp(x)dx (7.39)
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(b) Second moment (mean square value):

E[X2] =
∞∫

−∞
x2 p(x)dx (7.40)

Note that, instead of using Equation (7.40), the ‘central moments’ (moments about
the mean) are usually used. The second moment about the mean is the called the variance,
which is written as

Var(X ) = σ 2
x = E[(X − μx )2] =

∞∫
−∞

(x − μx )2 p(x)dx (7.41)

where σx = √
Var(X ) is called the standard deviation, and is the root mean square (rms)

of a ‘zero’ mean variable.

In many cases, the above two moments μx and σ 2
x are the most important measures of

a random variable X . However, the third and fourth moments are useful in considerations of
processes that are non-Gaussian (discussed later in this chapter).

The first moment μx is a measure of ‘location’ of p(x) on the x-axis; the variance σ 2
x

is a measure of dispersion or spread of p(x) relative to μx . The following few examples
illustrate this.

Some ‘Well-known’ Distributions

A Uniform Distribution (Figure 7.16)
This is often used to model the errors involved in measurement (see quantization noise dis-
cussed in Chapter 5).

1

b a−
2

2

Mean value:
2

( )
Variance:

12

x

x

a b

b a

μ

σ

+=

−=
a b

p(x)

x

Figure 7.16 Probability density function of a uniform distribution

Rayleigh Distribution (Figure 7.17)
This is used in fatigue analysis, e.g. to model cyclic stresses.

( )p x

x

2 2

Mean value: 2

4
Variance:

2

x

x

c

c

μ π

πσ

=

−=

2 22
2

( ) for 0

0 otherwise

x cx
p x e x

c
−= ≥

=

Figure 7.17 Probability density function of a Rayleigh distribution
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Gaussian Distribution (Normal Distribution)
This is probably the most important distribution, since many practical processes can
be approximated as Gaussian (see a statement of the central limit theorem below). If a
random variable X is normally distributed, then its probability distribution is completely
described by two parameters, its mean value μx and variance σ 2

x (or standard deviation
σx ), and the probability density function of a Gaussian distribution is given by

p(x) = 1

σx

√
2π

e−(x−μx )2/2σ 2
x (7.42)

If μx = 0 and σ 2
x = 1, then it is called the ‘standard normal distribution’. For μx = 0,

some examples of the Gaussian distribution are shown in Figure 7.18.

( )p x

0 2 4 6−2−4−6

1 2π
1

2 2π

0.5xσ =

1xσ =
2xσ =

2 2π

x

Figure 7.18 Probability density functions of Gaussian distribution

The importance of the Gaussian distribution is illustrated by a particular property: let
X1, X2, . . . be independent random variables that have their own probability distributions;
then the sum of random variables, Sn = ∑n

k=1 Xk , tends to have a Gaussian distribution
as n gets large, regardless of their individual distribution of Xk . This is a version of
the so-called central limit theorem. Moreover, it is interesting to observe the speed with
which this occurs as n increases.M7.2

For a Gaussian bivariate process (random variables X and Y ), the joint probability density
function is written as

p(x, y) = 1

2π
· 1

|S|1/2
exp

[
−1

2
(ν − μν)TS−1(ν − μν)

]
(7.43)

where

S =
[

σ 2
x σxy

σxy σ 2
y

]
, ν =

[
x

y

]
and μν =

[
μx

μy

]

Also μx = E[X ], μy = E[Y ], σ 2
x = E[(X − μx )2], σ 2

y = E[(Y − μy)2] and σxy = E[(X −
μx )(Y − μy)] (this is discussed shortly).
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Bivariate ProcessesM7.3

The concept of moments generalizes to bivariate processes, essentially based on Equation
(7.38). For example, the expected value of the product of two variables X and Y is

E[X Y ] =
∞∫

−∞

∞∫
−∞

xyp(x, y)dxdy (7.44)

This is a generalization of the second moment (see Equation (7.40)). If we centralize the
process (i.e. subtract the mean from each) then

Cov(X, Y ) = σxy = E[(X − μx )(Y − μy)] =
∞∫

−∞

∞∫
−∞

(x − μx )(y − μy)p(x, y)dxdy

(7.45)
E[X Y ] is called the correlation between X and Y , and Cov(X, Y ) is called the covariance
between X and Y . They are related by

Cov(X, Y ) = E[X Y ] − μxμy = E[X Y ] − E[X ]E[Y ] (7.46)

Note that the covariance and correlation are the same if μx = μy = 0. Some definitions
for jointly distributed random variables are given below.

X and Y are:

(a) uncorrelated if E[X Y ] = E[X ] E[Y ] (or Cov(X, Y ) = 0)

(note that, for zero-mean variables, if X and Y are uncorrelated, then E[X Y ] = 0);

(b) orthogonal if E[X Y ] = 0;
(c) independent (statistically) if p(x, y) = p(x)p(y).

Note that, if X and Y are independent they are uncorrelated. However, uncorrelated
random variables are not necessarily independent. For example, Let X be a random variable
uniformly distributed over the range −1 to 1. Note that the mean value E[X ] = 0. Let another
random variable Y = X2. Then obviously p(x, y) �= p(x)p(y), i.e. X and Y are dependent (if
X is known, Y is also known). But Cov(X, Y ) = E[X Y ] − E[X ]E[Y ] = E[X3] = 0 shows
that they are uncorrelated (and also orthogonal). Note that they are related nonlinearly.

An important measure called the correlation coefficient is defined as

ρxy = Cov(X, Y )

σxσy
= E[(X − μx )(Y − μy)]

σxσy
(7.47)

This is a measure (or degree) of a linear relationship between two random variables, and the
correlation coefficient has values in the range −1 ≤ ρxy ≤ 1. If |ρxy | = 1, then two random
variables X and Y are ‘fully’ related in a linear manner, e.g. Y = aX + b, where a and b are
constants. If ρxy = 0, there is no linear relationship between X and Y . Note that the correlation
coefficient detects only linear relationships between X and Y . Thus, even if ρxy = 0, X and
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Y can be related in a nonlinear fashion (see the above example, i.e. X and Y = X2, where X
is uniformly distributed on −1 to 1).

Some Important Properties of Moments

(a) E[aX + b] = aE[X ] + b (a, b are some constants) (7.48)
(b) E[aX + bY ] = aE[X ] + bE[Y ] (7.49)
(c) Var(X ) = E[X2] − μ2

x = E[X2] − E2[X ] (7.50)

Proof: Var(X ) = E[(X − μx )2] = E
[
X2 − 2μx X + μ2

x

]
= E[X2] − 2μx E[X ] + μ2

x = E[X2] − μ2
x

(d) Var(aX + b) = a2Var(X ) (7.51)
(e) Cov(X, Y ) = E[X Y ] − μxμy = E[X Y ] − E[X ]E[Y ] (7.52)
(f) Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X, Y ) (7.53)

Proof: Var(X + Y ) = E[(X + Y )2] − E2[(X + Y )]

= E[X2 + 2XY + Y 2] − E2[X ] − 2E[X ]E[Y ] − E2[Y ]

= (
E[X2] − E2[X ]

) + (
E[Y 2] − E2[Y ]

) + 2
(
E[XY ] − E[X ]E[Y ]

)
= Var(X ) + Var(Y ) + 2Cov(X, Y )

Note that, if X and Y are independent or uncorrelated, Var(X + Y ) = Var(X ) + Var(Y ).

Higher Moments

We have seen that the first and second moments are sufficient to describe the probability
distribution of a Gaussian process. For a non-Gaussian process, some useful information
about the probability density function of the process can be obtained by considering higher
moments of the random variable.

The generalized kth moment is defined as

M ′
k = E[Xk] =

∞∫
−∞

xk p(x)dx (7.54)

The kth moment about the mean (central moment) is defined as

Mk = E[(X − μx )k] =
∞∫

−∞
(x − μx )k p(x)dx (7.55)

In engineering, the third and fourth moments are widely used. For example, the third
moment about the mean, E[(X − μx )3], is a measure of asymmetry of a probability
distribution, so it is called the skewness. In practice, the coefficient of skewness is more
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often used, and is defined as

γ1 = E[(X − μx )3]

σ 3
x

(7.56)

Note that, in many texts, Equation (7.56) is simply referred to as skewness. Also note that
γ1 = 0 for a Gaussian distribution since it has a symmetric probability density function.
Typical skewed probability density functions are shown in Figure 7.19. Such asymmetry
could arise from signal ‘clipping’.

( )p x

x
0 xμ

( )p x

x
0 xμ

(a) skewnessNegative (b)  skewnessPositive

Figure 7.19 Skewed probability density functions

The fourth moment about the mean, E[(X − μx )4], measures the degree of flattening
of a probability density function near its mean. Similar to the skewness, the coefficient
of kurtosis (or simply the kurtosis) is defined as

γ2 = E[(X − μx )4]

σ 4
x

− 3 (7.57)

where ‘−3’ is introduced to make γ2 = 0 for a Gaussian distribution (i.e.
E[(X − μx )4]/σ 4

x = 3 for a Gaussian distribution, thus E[(X − μx )4]/σ 4
x is often used

and examined with respect to the value 3).
A distribution with positive kurtosis γ2 > 0 is called leptokurtic (more peaky than

Gaussian), and a distribution with negative kurtosis γ2 < 0 is called platykurtic (more
flattened than Gaussian). This is illustrated in Figure 7.20.

( )p x

xμ

2 0 (leptokurtic)γ >

2 0 (platykurtic)γ <

2Gaussian ( 0)γ =

x
0

Figure 7.20 Probability density functions with different values of kurtosis

Since γ1 = 0 and γ2 = 0 for a Gaussian process, the third and fourth moments (or
γ1 and γ2) can be used for detecting non-Gaussianity. These higher moments may also be
used to detect (or characterize) nonlinearity since nonlinear systems exhibit non-Gaussian
responses.

The kurtosis (fourth moment) is widely used as a measure in machinery condition moni-
toring – for example, early damage in rolling elements of machinery often results in vibration
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signals whose kurtosis value is significantly increased owing to the impacts occurring because
of the faults in such rotating systems.

As a further example, consider a large machine (in good condition) that has many compo-
nents generating different types of (periodic and random) vibration. In this case, the vibration
signal measured on the surface of the machine may have a probability distribution similar to
a Gaussian distribution (by the central limit theorem). Later in the machine’s operational life,
one of the components may produce a repetitive transient signal (possibly due to a bearing
fault). This impact produces wide excursions and more oscillatory behaviour and changes
the probability distribution from Gaussian to one that is leptokurtic (see Figure 7.20). The
detection of the non-Gaussianity can be achieved by monitoring the kurtosis (see MATLAB
Example 7.4). Note that, if there is severe damage, i.e. many components are faulty, then the
measured signal may become Gaussian again.

Computational Considerations of Moments (Digital Form)

We now indicate some ways in which the moments described above might be estimated from
measured data. No attempt is made at this stage to give measures of the accuracy of these
estimates. This will be discussed later in Chapter 10.

Suppose we have a set of data (x1, x2, . . . , xN ) collected from N measurements of a
random variable X . Then the sample mean x (which estimates the arithmetic mean, μx ) is
computed as

x = 1

N

N∑
n=1

xn (7.58)

For the estimation of the variance σ 2
x , one may use the formula

s2
x = 1

N

N∑
n=1

(xn − x)2 (7.59)

However, this estimator usually underestimates the variance, so it is a biased estimator. Note
that x is present in the formula, thus the divisor N − 1 is more frequently used. This gives an
unbiased sample variance, i.e.

s2
x = 1

N − 1

N∑
n=1

(xn − x)2 (7.60)

where sx is the sample standard deviation. Since

N∑
n=1

(xn − x)2 =
N∑

n=1

x2
n − 2N x2 + N x2

the following computationally more efficient form is often used:

s2
x = 1

N − 1

[(
N∑

n=1

x2
n

)
− N x2

]
(7.61)
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The above estimation can be generalized, i.e. the kth sample (raw) moment is defined as

m ′
k = 1

N

N∑
n=1

xk
n (7.62)

Note that m ′
1 = x and m ′

2 is the mean square value of the sample. Similarly the kth sample
central moment is defined as

mk = 1

N

N∑
n=1

(xn − x)k (7.63)

Note that m1 = 0 and m2 is the (biased) sample variance. As in the above equation, the divisor
N is usually used for the sample moments. For the estimation of skewness and kurtosis
coefficients, the following biased estimators are often used:

Skew = 1

N

N∑
n=1

(xn − x)3

/
s3

x (7.64)

Kurt =
(

1

N

N∑
n=1

(xn − x)4

/
s4

x

)
− 3 (7.65)

where the sample standard deviation

sx =
√√√√ 1

N

N∑
n=1

(xn − x)2

is used.
Finally, for bivariate processes, the sample covariance is computed by either

sxy = 1

N

N∑
n=1

(xn − x)(yn − y) = 1

N

[(
N∑

n=1

xn yn

)
− N xy

]
(biased estimator) (7.66)

or

sxy = 1

N − 1

N∑
n=1

(xn − x)(yn − y) = 1

N − 1

[(
N∑

n=1

xn yn

)
− N xy

]

(unbiased estimator) (7.67)

Note that, although we have distinguished the biased and unbiased estimators (the divisor is
N or N − 1), their differences are usually insignificant if N is ‘large enough’.
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7.4 BRIEF SUMMARY

1. The relative frequency (or empirical probability) of event E is

fE = nE

N
2. A random variable is a function defined on a sample space, i.e. a random variable

X maps from the sample space � to a range space �X such that X (ωi ) = xi . There
are two types of random variable: a discrete random variable (�X consists of discrete
elements) and a continuous random variable (�X consists of continuous values).

3. The central limit theorem (roughly speaking) states that the sum of independent ran-
dom variables (that have arbitrary probability distributions) Sn = ∑n

k=1 Xk becomes
normally distributed (Gaussian) as n gets large.

4. The moments of a random variable are summarized in Table 7.1.

Table 7.1 Summary of moments

Moment (central) Estimator Measures

1st moment: x = 1

N

N∑
n=1

xn Mean (location)

μx = E[X ]

2nd moment: s2
x = 1

N − 1

N∑
n=1

(xn − x)2 Variance (spread or dispersion)

σ 2
x = E[(X − μx )2]

3rd moment: m3 = 1

N

N∑
n=1

(xn − x)3 Degree of asymmetry (skewness)

M3 = E[(X − μx )3] γ1 = E[(X − μx )3]

σ 3
x

4th moment: m4 = 1

N

N∑
n=1

(xn − x)4 Degree of flattening (kurtosis)

M4 = E[(X − μx )4] γ2 = E[(X − μx )4]

σ 4
x

− 3

5. The correlation of X and Y is defined as E[X Y ], and the covariance of X and Y is
defined as

Cov(X, Y ) = σxy = E[(X − μx )(Y − μy)]

These are related by

Cov(X, Y ) = E[X Y ] − μxμy = E[X Y ] − E[X ]E[Y ]

6. Two random variables X and Y are uncorrelated if

E[X Y ] = E[X ] E[Y ] (or Cov(X, Y ) = 0)
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7. The correlation coefficient is defined as

ρxy = Cov(X, Y )

σxσy
= E[(X − μx )(Y − μy)]

σxσy

This is a measure of a linear relationship between two random variables. If |ρxy | = 1,
then two random variables X and Y are ‘fully’ related linearly. If ρxy = 0, they are
not linearly related at all.

7.5 MATLAB EXAMPLES

Example 7.1: Relative frequency fE = nE/N as an estimate of P(E)

In this MATLAB example, we consider an experiment of tossing a coin, and observe
how the relative frequency changes as the number of trials (N ) increases.

Line MATLAB code Comments

1
2

clear all
rand('state',0);

Initialize the random number generator. The
MATLAB function ‘rand’ generates
uniformly distributed random numbers, while
‘randn’ is used to generate normally
distributed random numbers.

3
4

X=round(rand(1,1000)); % 1: head, 0: tail
id head=find(X==1); id tail=find(X==0);

Define the random variable X whose
elements are either 1 or 0, and 1000 trials are
performed. We regard 1 as the head and 0 as
the tail. Find indices of head and tail.

5
6
7

N=ones(size(X));
head=N; head(id tail)=0;
tail=N; tail(id head)=0;

The vector ‘head’ has ones that correspond to
the elements of vector X with 1, and the
vector ‘tail’ has ones that correspond to the
elements of vector X with 0.

8
9

fr head=cumsum(head)./cumsum(N);
fr tail=cumsum(tail)./cumsum(N);

Calculate the relative frequencies of head and
tail. The MATLAB function ‘cumsum(N)’
generates a vector whose elements are the
cumulative sum of the elements of N.

10 figure(1)
11 plot(fr head)
12 xlabel('\itN \rm(Number of trials)') Plot the relative frequency of head.
13 ylabel('Relative frequency (head)')
14 axis([0 length(N) 0 1])

15 figure(2)
16 plot(fr tail)
17 xlabel('\itN \rm(Number of trials)') Plot the relative frequency of tail.
18 ylabel('Relative frequency (tail)')
19 axis([0 length(N) 0 1])
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Results
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Comments: Note that the relative frequency approaches the theoretical probability (1/2)
as N increases.

Example 7.2: Demonstration of the central limit theorem

The sum of independent random variables, Sn = ∑n
k=1 Xk , becomes normally distributed

as n gets large, regardless of individual distribution of Xk .

Line MATLAB code Comments

1
2
3

clear all
rand('state',1);
X=rand(10,5000);

Initialize the random number generator, and generate
a matrix X whose elements are drawn from a
uniform distribution on the unit interval.
The matrix is 10×5000; we regard this as 10
independent random variables with a sample length
5000.

4
5
6
7

S1=X(1,:);
S2=sum(X(1:2,:));
S5=sum(X(1:5,:));
S10=sum(X);

Generate the sum of random variables, e.g. S5 is the
sum of five random variables.
In this example, we consider four cases: S1, S2, S5
and S10.

8
9

10
11
12

nbin=20; N=length(X);
[n1 s1]=hist(S1, nbin);
[n2 s2]=hist(S2, nbin);
[n5 s5]=hist(S5, nbin);
[n10 s10]=hist(S10, nbin);

Define the number of bins for the histogram. Then,
calculate the frequency counts and bin locations for
S1, S2, S5 and S10.

13 figure(1) Plot the histograms of S1, S2, S5 and S10. A
14 bar(s1, n1/N) histogram is a graph that shows the distribution of
15 xlabel('\itS\rm 1') data. In the histogram, the number of counts is
16 ylabel('Relative frequency'); normalized by N.

axis([0 1 0 0.14])
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17 figure(2)
18 bar(s2, n2/N) Examine how the distribution changes as the number
19 xlabel('\itS\rm 2') of sum n increases.
20 ylabel('Relative frequency');

axis([0 2 0 0.14])
21 figure(3)
22 bar(s5, n5/N)
23 xlabel('\itS\rm 5')
24 ylabel('Relative frequency');

axis([0.4 4.7 0 0.14])
25 figure(4)
26 bar(s10, n10/N)
27 xlabel('\itS\rm 1 0')
28 ylabel('Relative frequency');

axis([1.8 8 0 0.14])

Results
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(d) Number of sums: 10
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Comments: Note that it quickly approaches a Gaussian distribution.
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Example 7.3: Correlation coefficient as a measure of the linear relationship between
two random variables X and Y

Consider the correlation coefficient (i.e. Equation (7.47))

ρxy = Cov(X, Y )

σxσy
= E[(X − μx )(Y − μy)]

σxσy

We shall compare three cases: (a) linearly related, |ρxy | = 1; (b) not linearly related,
|ρxy | = 0; (c) partially linearly related, 0 < |ρxy | < 1.

Line MATLAB code Comments

1
2
3
4
5
6

clear all
randn('state' ,0);
X=randn(1,1000);
a=2; b=3; Y1=a*X+b; % fully related
Y2=randn(1,1000); % unrelated
Y3=X+Y2; % partially related

Initialize the random number generator,
and define a random variable X.
Then, define a random variable Y1 that is
linearly related to X, i.e. Y1 = aX+b.
Define another random variable Y2
which is not linearly related to X. Also,
define a random variable Y3 which is
partially linearly related to X.

7
8

9

10

N=length(X);
s xy1=sum((X-mean(X)).*
(Y1-mean(Y1)))/(N-1);
s xy2=sum((X-mean(X)).*
(Y2-mean(Y2)))/(N-1);
s xy3=sum((X-mean(X)).*
(Y3-mean(Y3)))/(N-1);

Calculate the covariance of two random
variables, Cov(X, Y1), Cov(X, Y2) and
Cov(X, Y3).
See Equation (7.67) for a computational
formula.

11
12
13

r xy1=s xy1/(std(X)*std(Y1))
r xy2=s xy2/(std(X)*std(Y2))
r xy3=s xy3/(std(X)*std(Y3))

Calculate the correlation coefficient for
each case. The results are:
r xy1 = 1 (fully linearly related),
r xy2 = −0.0543 (≈ 0, not linearly
related),
r xy3 = 0.6529 (partially linearly related).

14
15
16

figure(1)
plot(X,Y1, '.')
xlabel('\itX'); ylabel('\itY\rm1')

The degree of linear relationship between
two random variables is visually
demonstrated.
First, plot Y1 versus X; this gives a
straight line.

17
18
19

figure(2)
plot(X,Y2, '.')
xlabel('\itX'); ylabel('\itY\rm2')

Plot Y2 versus X; the result shows that
two random variables are not related.

20
21
22

figure(3)
plot(X,Y3, '.')
xlabel('\itX'); ylabel('\itY\rm3')

Plot Y3 versus X; the result shows that
there is some degree of linear
relationship, but not fully related.
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Results

–3 –2 –1 0 1 32
–4

–3

–2

–1

0

1

2

3

4

XX

Y
2

(a)  ρxy  = 1 (X and Y1 are fully related

                   linearly, i.e. Y1 = aX + b)

(c)  ρxy  = 0.6529 (not fully related, but obviously there is some degree of linear relationship)
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Example 7.4: Application of the kurtosis coefficient to the machinery condition
monitoring

Kurtosis coefficient : γ2 = E[(X − μx )4]

σ 4
x

− 3

In this example, we use a ‘real’ measured signal. Two acceleration signals are stored
in the file ‘bearing fault.mat’:1 one is measured on a rotating machine in good working
order, and the other is measured on the same machine but with a faulty bearing that results
in a series of spiky transients. Both are measured at a sampling rate of 10 kHz and are
recorded for 2 seconds. The signals are then high-pass filtered with a cut-on frequency
of 1 kHz to remove the rotating frequency component and its harmonics.

Since the machine has many other sources of (random) vibration, in ‘normal’
condition, the high-pass-filtered signal can be approximated as Gaussian, thus the
kurtosis coefficient has a value close to zero, i.e. γ2 ≈ 0.

1 The data files can be downloaded from the Companion Website (www.wiley.com/go/shin hammond).
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However, if the bearing is faulty, then the signal becomes non-Gaussian due to the
transient components in the signal, and its distribution will be more peaky (near its mean)
than Gaussian, i.e. γ2 > 0 (leptokurtic).

Line MATLAB code Comments

1
2
3
4

clear all
load bearing fault
x=br good; y=br fault;
N=length(x);

Load the measured signal, and let x be
the signal in good condition, y the
signal with a bearing fault.

5
6

kur x=(sum((x-mean(x)).ˆ4)/N)/(std(x,1)ˆ4)-3
kur y=(sum((y-mean(y)).ˆ4)/N)/(std(y,1)ˆ4)-3

Calculate the kurtosis coefficients of
both signals (see Equation (7.65)).
The results are: kur x = 0.0145 (i.e.
γ2 ≈ 0) and kur y = 1.9196 (i.e.
leptokurtic).

7
8

[nx x1]=hist(x,31);
[ny y1]=hist(y,31);

Calculate the frequency counts and bin
locations for signals x and y.

9
10
11
12
13
14
15

figure(1); subplot(2,1,1)
plot(t,x)
xlabel('Time (s)'); ylabel('\itx\rm(\itt\rm)')
subplot(2,1,2)
bar(x1, nx/N)
xlabel('\itx'); ylabel('Relative frequency')
axis([-1 1 0 0.2])

Plot the signal x, and compare with the
corresponding histogram.

16
17
18
19
20
21
22

figure(2); subplot(2,1,1)
plot(t,y)
xlabel('Time (s)'); ylabel('\ity\rm(\itt\rm)')
subplot(2,1,2)
bar(y1, ny/N)
xlabel('\ity'); ylabel('Relative frequency')
axis([-1 1 0 0.2])

Plot the signal y, and compare with the
corresponding histogram. Also
compare with the signal x.

Results

(a) Signal measured on a machine in good condition, γ2 = 0.0145 
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(b) Signal measured on a machine with a bearing fault, γ2 = 1.9196
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Comments: In this example, we have treated the measured time signal as a random vari-
able. Time-dependent random variables (stochastic processes) are discussed in Chapter 8.
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8
Stochastic Processes; Correlation
Functions and Spectra

Introduction

In the previous chapter, we did not include ‘time’ in describing random processes. We
shall now deal with measured signals which are time dependent, e.g. acoustic pressure
fluctuations at a point in a room, a record of a vibration signal measured on a vehicle
chassis, etc. In order to describe such (random) signals, we now extend our considerations
of the previous chapter to a time-dependent random variable.

We introduce this by a simple example. Let us create a time history by tossing a coin
every second, and for each ‘head’ we record a unit value and for each ‘tail’ we record a
zero. We hold these ones and zeros for a second until the next coin toss. A sample record
might look Figure 8.1.

x(t)

t

...

0

1

1s

Figure 8.1 A sample time history created from tossing a coin

The sample space is (H , T ), the range space for X is (1, 0) and we have introduced
time by parameterizing X (ω) as Xt (ω), i.e. for each t , X is a random variable defined on
a sample space. Now, we drop ω and write X (t), and refer to this as a random function
of time (shorthand for a random variable defined on a sample space indexed by time).

Fundamentals of Signal Processing for Sound and Vibration Engineers
K. Shin and J. K. Hammond. C© 2008 John Wiley & Sons, Ltd
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1( )x t

2 ( )x t

( )nx t
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0

1

0

1
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t

t

t

...
...

Figure 8.2 An example of an ensemble

We shall carry over the ideas introduced in the last chapter to these time series which
display uncertainty referred to as stochastic processes. The temporal aspects require us to
bring in some additional definitions and concepts.

Figure 8.1 depicts a single ‘realization’ of the stochastic process X (t) (obtained by the
coin tossing experiment). It could be finite in length or infinite, i.e. −∞ < t < ∞. Its random
character introduces us to the concepts (or necessity) of replicating the experiments, i.e.
producing additional realizations of it, which we could imagine as identical experiments run
in parallel as shown in Figure 8.2.

The set of such realizations is called an ensemble (whether finite or infinite). This is
sometimes written as {X (t)} where −∞ < t < ∞.

8.1 PROBABILITY DISTRIBUTION ASSOCIATED WITH A

STOCHASTIC PROCESS

We now consider a probability density function for a stochastic process. Let x be a
particular value of X (t); then the distribution function at time t is defined as

F(x, t) = P[X (t) ≤ x] (8.1)

and

P[x < X (t) ≤ x + δx] = F(x + δx, t) − F(x, t) (8.2)

Since

lim
δx→0

P[x < X (t) ≤ x + δx]

δx
= lim

δx→0

F(x + δx, t) − F(x, t)

δx
= d F(x, t)

dx
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the probability density function can be written as

p(x, t) = d F(x, t)

dx
(8.3)

Note that the probability density function p(x, t) for a stochastic process is time depen-
dent, i.e. it evolves with time as shown in Figure 8.3.

1( , )p x t
2( , )p x t 3( , )p x t

...

3t2t1t

t

Figure 8.3 Evolution of the probability density function of a stochastic process

Alternatively, we may visualize this as below. We project the entire ensemble onto
a single diagram and set up a gate as shown in Figure 8.4.

x xδ+
x

1( )x t
2( )x t
3( )x t

4( )x t

t

Time

Figure 8.4 A collection of time histories

Now, we count the number of signals falling within the gate (say, k). Also we count
the total number of signals (say, N ). Then the relative frequency of occurrence of X (t) in
the gate at time t is k/N . So, as N gets large, we might say that P[x < X (t) ≤ x + δx]
is estimated by k/N (for large N ), so that

p(x, t) = lim
δx→0

P[x < X (t) ≤ x + δx]

δx
= lim

N→∞
δx→0

k

Nδx
(8.4)

It is at this point that the temporal evolution of the process introduces concepts additional
to those in Chapter 7. We could conceive of describing how a process might change as time
evolves, or how a process relates to itself at different times. We could do this by defining joint
probability density functions by setting up additional gates.

For example, for two gates at times t1 and t2 this can be described pictorially as in Figure
8.5. Let k2 be the number of signals falling within both gates in the figure. Then, the relative
frequency k2/N estimates the joint probability for large N , i.e.

P[x1 < X (t1) ≤ x1 + δx1 ∩ x2 < X (t2) ≤ x2 + δx2] ≈ k2

N
(8.5)
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1 1x xδ+

1x
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2( )x t
3( )x t

4( )x t

1t

2 2x xδ+

2x

2t

Time

Figure 8.5 Pictorial description of the joint probability density function

Thus, the joint probability density function is written as

p(x1, t1; x2, t2) = lim
δx1,δx2→0

P[x1 < X (t1) ≤ x1 + δx1 ∩ x2 < X (t2) ≤ x2 + δx2]

δx1δx2

= lim
N→∞

δx1 ,δx2→0

k2

Nδx1δx2

(8.6)

Also, the joint distribution function is F(x1, t1; x2, t2) = P[X (t1) ≤ x1 ∩ X (t2) ≤ x2], so
Equation (8.6) can be rewritten as

p(x1, t1; x2, t2) = ∂2 F(x1, t1; x2, t2)

∂x1∂x2

(8.7)

For a ‘univariate’ stochastic process, Equation (8.7) can be generalized to the kth-order
joint probability density function as

p(x1, t1; x2, t2; . . . ; xk, tk) (8.8)

However, we shall only consider the first and second order, i.e. p(x, t) and p(x1, t1; x2, t2).

8.2 MOMENTS OF A STOCHASTIC PROCESS

As we have defined the moments for random variables in Chapter 7, we now define
moments for stochastic processes. The only difference is that ‘time’ is involved now, i.e.
the moments of a stochastic process are time dependent. The first and second moments
are as follows:

(a) First moment (mean):

μx (t) = E[X (t)] =
∞∫

−∞
xp(x, t)dx (8.9)

(b) Second moment (mean square):

E[X2(t)] =
∞∫

−∞
x2 p(x, t)dx (8.10)
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(c) Second central moment (variance):

Var(X (t)) = σ 2
x (t) = E[(X (t) − μx (t))2] =

∞∫
−∞

(x − μx (t))2 p(x, t)dx (8.11)

Note that E[(X (t) − μx (t))2] = E[X2(t)] − μ2
x (t), i.e.

σ 2
x (t) = E[X2(t)] − μ2

x (t) (8.12)

Ensemble Averages

We noted the concept of the ensemble earlier, i.e. replications of the realizations of the process.
We now relate the expected value operator E to an ensemble average. Consider the ensemble
shown in Figure 8.6.

Then, from the ensemble, we may estimate the mean by using the formula

x̄(t) = 1

N

N∑
n=1

Xn(t) (8.13)

We now link Equation (8.13) to the theoretical average as follows. First, for a particular time
t , group signals according to level (e.g. the gate defined by x and x + δx). Suppose all Xi (t)
in the range x1 and x1 + δx1 are grouped and the number of signals in the group is counted
(say k1). Then, repeating this for other groups, the mean value can be estimated from

x̄(t) ≈ x1

k1

N
+ x2

k2

N
+ · · · =

∑
i

xi
ki

N
(8.14)

where ki/N is the relative frequency associated with the i th gate (xi to xi + δxi ). Now, as
N → ∞, ki/N → p(xi , t)δxi , so

lim
N→∞

1

N

N∑
n=1

Xn(t) →
∞∫

−∞
xp(x, t)dx (8.15)
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Time

Time

Time
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Figure 8.6 An example of ensemble average
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Thus, an average across the ensemble (the infinite set) is identified with the theoretical average,
μx (t), i.e.

μx (t) = E[X (t)] = lim
N→∞

1

N

N∑
n=1

Xn(t) (8.16)

So, the operator E[ ] may be interpreted as the Expectation or Ensemble average.

8.3 STATIONARITY

As we have seen in previous sections, the probability properties of a stochastic process
are dependent upon time, i.e. they vary with time. However, to simplify the situation, we
often assume that those statistical properties are in a ‘steady state’, i.e. they do not change
under a shift in time. For example:

(a) p(x, t) = p(x). This means that μx (t) = μx and σ 2
x (t) = σ 2

x , i.e. the mean and vari-
ance are constant.

(b) p(x1, t1; x2, t2) = p(x1, t1 + T ; x2, t2 + T ), i.e. p(x1, t1; x2, t2) is a function of time
difference (t2 − t1) only, and does not explicitly depend on individual times t1 and t2.

(c) p(x1, t1; x2, t2; . . . ; xk, tk) = p(x1, t1 + T ; x2, t2 + T ; . . . ; xk, tk + T ) for all k.

If a process satisfies only two conditions (a) and (b), then we say it is weakly stationary
or simply stationary. If the process satisfies the third condition also, i.e. all the kth-
order joint probability density functions are invariant under a shift in time, then we say
it is completely stationary. In this book, we assume that processes satisfy at least two
conditions (a) and (b), i.e. we shall only consider stationary processes. Typical records
of non-stationary and stationary data may be as shown in Figure 8.7.

( )x t

Non-stationary (varying variance)

Non-stationary (varying mean)

‘Probably’stationary

( )x t

( )x t

t

t

t

Figure 8.7 Typical ‘sample’ of non-stationary and stationary processes
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In general all practical processes are non-stationary, thus the assumption of stationarity
is only an approximation. However, in many practical situations, this assumption gives a
sufficiently close approximation. For example, if we consider a vibration signal measured on
a car body when the car is driven at varying speeds on rough roads, then the signal is obviously
non-stationary since the statistical properties vary depending on the types of road and speed.
However, if we locate a road whose surface is much the same over a ‘long’ stretch and drive
the car over it at constant speed, then we might expect the vibration signal to have similar
characteristics over much of its duration, i.e. ‘approximately’ stationary.

As we shall see later, the assumption of stationarity is very important, especially when
we do not have an ensemble of data. In many situations, we have to deal with only a single
record of data rather than a set of records. In such a case, we cannot perform the average
across the ensemble, but we may average along time, i.e. we perform a time average instead of
ensemble average. By implication, stationarity is a necessary condition for the time average to
be meaningful. (Note that, for stationary processes, the statistical properties are independent
of time.) The problem of deciding whether a process is stationary or not is often difficult and
generally relies on prior information, though observations and statistical tests on time histories
can be helpful (Priestley, 1981; Bendat and Piersol, 2000).

8.4 THE SECOND MOMENTS OF A STOCHASTIC PROCESS;

COVARIANCE (CORRELATION) FUNCTIONS

The Autocovariance (Autocorrelation) Function

As defined in Equation (8.11), the variance of a random variable for a stochastic process
is written σ 2

x (t) = E
[
(X (t) − μx (t))2

]
. However, a simple generalization of the right

hand side of this equation introduces an interesting concept, when written as E[(X (t1) −
μx (t1))(X (t2) − μx (t2))]. This is the autocovariance function defined as

Cxx (t1, t2) = E[(X (t1) − μx (t1))(X (t2) − μx (t2))] (8.17)

Similar to the covariance of two random variables defined in Chapter 7, the autocovariance
function measures the ‘degree of association’ of the signal at time t1 with itself at time
t2. If the mean value is not subtracted in Equation (8.17), it is called the autocorrelation
function as given by

Rxx (t1, t2) = E[X (t1)X (t2)] (8.18)

Note that, sometimes, the normalized autocovariance function, Cxx (t1, t2)/
[σx (t1)σx (t2)], is called the autocorrelation function, and it is also sometimes called an
autocorrelation coefficient. Thus, care must be taken with the terminology.

If we limit our interest to stationary processes, since the statistical properties remain
the same under a shift of time, Equation (8.17) can be simplified as

Cxx (t2 − t1) = E[(X (t1) − μx )(X (t2) − μx )] (8.19)

Note that this is now a function of the time difference (t2 − t1) only. By letting t1 = t and
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t2 = t + τ , it can be rewritten as

Cxx (τ ) = E[(X (t) − μx )(X (t + τ ) − μx )] (8.20)

where τ is called the lag. Note that when τ = 0, Cxx (0) = Var(X (t)) = σ 2
x . Similarly, the

autocorrelation function for a stationary process is

Rxx (τ ) = E[X (t)X (t + τ )] (8.21)

Note that Rxx (τ ) is a continuous function of τ for a continuous stochastic process, and
Cxx (τ ) and Rxx (τ ) are related such that

Cxx (τ ) = Rxx (τ ) − μ2
x (8.22)

Interpretation of the Autocorrelation Function in Terms of the Ensemble

In Section 8.2, we have already seen that the mean value might be defined as an ensemble
average (see Equation (8.16)), i.e.

μx (t) = lim
N→∞

1

N

N∑
n=1

Xn(t)

We now apply the same principle to the autocorrelation function for a stationary process. For
simplicity, we assume that the mean value is zero, i.e. we set μx = 0.

For the nth record, we form Xn(t)Xn(t + τ ) as shown in Figure 8.8, and average this
product over all records, i.e. an ensemble average.

Then, we can write the autocorrelation function as

Rxx (τ ) = E[X (t)X (t + τ )] = lim
N→∞

1

N

[
N∑

n=1

Xn(t)Xn(t + τ )

]
(8.23)

Since we assumed that μx = 0, the autocorrelation function at zero lag is Rxx (0) =
Var(X (t)) = σ 2

x . Also, as τ increases, it may be reasonable to say that the average

1( )x t

2( )x t

( )nx t

..
.

..
.

Time

Time

Time

t

1( )X t τ+

2( )X t τ+

( )nX t τ+

1( )X t

2( )X t

( )nX t

1 1Form ( ) ( )X t X t τ+

2 2Form ( ) ( )X t X t τ+

Form ( ) ( )n nX t X t τ+

t τ+

Figure 8.8 Ensemble average for the autocorrelation function
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2 (for zero mean)xσ

( )xxR τ

τ

Figure 8.9 A typical autocorrelation function

E[X (t)X (t + τ )] should approach zero, since the values of X (t) and X (t + τ ) for large lags
(time separations) are ‘less associated (related)’ if the process is random. Thus, the gen-
eral shape of the autocorrelation function Rxx (τ ) may be drawn as in Figure 8.9. Note that,
as can be seen from the figure, the autocorrelation function is an even function of τ since
E[X (t)X (t + τ )] = E[X (t − τ )X (t)].

We note that the autocorrelation function does not always decay to zero. An example of
when this does not happen is when the signal has a periodic form (see Section 8.6).

The Cross-covariance (Cross-correlation) Function

If we consider two stochastic processes {X (t)} and {Y (t)} simultaneously, e.g. an
input–output process, then we may generalize the above joint moment. Thus, the cross-
covariance function is defined as

Cxy(t1, t2) = E[(X (t1) − μx (t1))(Y (t2) − μy(t2))] (8.24)

and, if the mean values are not subtracted, the cross-correlation function is defined as

Rxy(t1, t2) = E[X (t1)Y (t2)] (8.25)

Equation (8.24) or (8.25) is a measure of the association between the signal X (t) at time
t1 and the signal Y (t) at time t2, i.e. it is a measure of cross-association. If we assume
both signals are stationary, then Cxy(t1, t2) or Rxy(t1, t2) is a function of time difference
t2 − t1. Then, as before, letting t1 = t and t2 = t + τ , the equations can be rewritten as

Cxy(τ ) = E[(X (t) − μx )(Y (t + τ ) − μy)] (8.26)

and

Rxy(τ ) = E[X (t)Y (t + τ )] (8.27)

where their relationship is

Cxy(τ ) = Rxy(τ ) − μxμy (8.28)

Also, the ensemble average interpretation becomes

Rxy(τ ) = E[X (t)Y (t + τ )] = lim
N→∞

1

N

[
N∑

n=1

Xn(t)Yn(t + τ )

]
(8.29)
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We shall consider examples of this later, but note here that Rxy(τ ) can have a general
shape (i.e. neither even, nor odd) and Rxy(τ ) = Ryx (−τ ).

The cross-correlation (or cross-covariance) function is one of the most important
concepts in signal processing, and is applied to various practical problems such as
estimating time delays in a system: radar systems are a classical example; leak detection
in buried plastic pipe is a more recent application (Gao et al., 2006). Moreover, as we
shall see later, together with the autocorrelation function, it can be directly related to the
system identification problem.

Properties of Covariance (Correlation) Functions

We now list some properties of covariance (correlation) functions; the examples to follow in
Section 8.6 will serve to clarify these properties:

(a) The autocovariance (autocorrelation) function: First, we define the autocorrelation coef-
ficient as

ρxx (τ ) = Cxx (τ )

σ 2
x

(
= Rxx (τ )

Rxx (0)
for zero mean

)
(8.30)

where ρxx (τ ) is the normalized (non-dimensional) form of the autocovariance function.
(i) Cxx (τ ) = Cxx (−τ ); Rxx (τ ) = Rxx (−τ ) (i.e. the autocorrelation function is ‘even’)

(8.31)

(ii) ρxx (0) = 1; Cxx (0) = σ 2
x (= Rxx (0) for zero mean) (8.32)

(iii) |Cxx (τ )| ≤ σ 2
x ; |Rxx (τ )| ≤ Rxx (0), thus − 1 ≤ ρxx (τ ) ≤ 1 (8.33)

Proof: E[(X (t) ± X (t + τ ))2] = E[X2(t) + X2(t + τ ) ± 2X (t)X (t + τ )] ≥ 0, thus
2Rxx (0) ≥ 2 |Rxx (τ )| which gives the above result.

(b) The cross-covariance (cross-correlation) function: We define the cross-correlation coef-
ficient as

ρxy(τ ) = Cxy(τ )

σxσy

(
= Rxy(τ )√

Rxx (0)Ryy(0)
for zero mean

)
(8.34)

(i) Cxy(−τ ) = Cyx (τ ); Rxy(−τ ) = Ryx (τ ) (neither odd nor even in general) (8.35)

(ii) |Cxy(τ )|2 ≤ σ 2
x σ 2

y ; |Rxy(τ )|2 ≤ Rxx (0)Rxy(0), thus − 1 ≤ ρxy(τ ) ≤ 1 (8.36)

Proof: For real values a and b,

E[(aX (t) + bY (t + τ ))2] = E[a2 X2(t) + b2Y 2(t + τ ) + 2abX (t)Y (t + τ )] ≥ 0

i.e. a2 Rxx (0) + 2abRxy(τ ) + b2 Ryy(0) ≥ 0, or if b 	= 0

(a/b)2 Rxx (0) + 2(a/b)Rxy(τ ) + Ryy(0) ≥ 0

The left hand side is a quadratic equation in a/b, and this may be rewritten as

[Rxx (0)(a/b) + Rxy(τ )]2 ≥ R2
xy(τ ) − Rxx (0)Ryy(0)
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For any values of a/b, this inequality must be satisfied. Thus

R2
xy(τ ) − Rxx (0)Ryy(0) ≤ 0

and so the result follows.
(iii) If X (t) and Y (t) are uncorrelated, Cxy(τ ) = 0; Rxy(τ ) = μxμy .

Note that the above correlation coefficients are particularly useful when X (t) and Y (t)
have different scales. Although we have distinguished the covariance functions and correlation
functions, their difference is the presence of mean values only. In most practical situations,
the mean values are usually subtracted prior to some processing of data, so the correlation
functions and the covariance functions are the same in effect. Consequently, the ‘correlation’
functions are often preferably used in engineering.

8.5 ERGODICITY AND TIME AVERAGES

The moments discussed in previous sections are based on the theoretical probability
distributions of the stochastic processes and have been interpreted as ensemble averages,
i.e. we need an infinite number of records whose statistical properties are identical.
However, in general, ensemble averaging is not feasible as we usually have only a single
realization (record) of limited length. Then, the only way to perform the average is along
the time axis, i.e. a time average may be used in place of an ensemble average. The
question is: do time averages along one record give the same results as an ensemble
average? The answer is ‘sometimes’, and when they do, such averages are said to be
ergodic.

Note that we cannot simply refer to a process as ergodic. Ergodicity must be related
directly to the particular average in question, e.g. mean value, autocorrelation function
and cross-correlation function, etc. Anticipating a result from statistical estimation theory,
we can state that stationary processes are ergodic with respect to the mean and covariance
functions. Thus, for example, the mean value can be written as

μx = lim
T →∞

1

T

T∫
0

x(t)dt (8.37)

i.e. the time average over any single time history will give the same value as the ensemble
average E[X (t)].

If we consider a signal with a finite length T , then the estimate of the mean value
can be obtained by

μ̂x = x̄ = 1

T

T∫
0

x(t)dt (8.38)
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or if the signal is digitized using samples every � seconds so that T = N�, then

x̄ = 1

N�

N−1∑
n=0

x(n�)�

thus

x̄ = 1

N

N−1∑
n=0

x(n�) (8.39)

Note that the mean value x̄ is a single number characterizing the offset (or d.c. level) as being
the same over the whole signal.

If the offset changes at some point (i.e. a simple type of non-stationary signal), e.g. at
t = T1 as shown in Figure 8.10, then the ‘estimate’ of the mean value using all T seconds will
produce a mean for the whole record – whereas it might have been preferable to split up the
averaging into two segment to obtain x̄1 and x̄2.

1

1
1 0

1
( )

T

x x t dt
T

= ∫
1

2
1

1
( )

T

T

x x t dt
T T

=
− ∫( )x t

t
T1T0

Figure 8.10 A varying mean non-stationary signal

This idea may be generalized to estimate a ‘drifting’ or ‘slowly varying’ mean value
by using local averaging. The problem with local averaging (or local smoothing) is that, of
necessity, fewer sample values are used in the computation and so the result is subject to more
fluctuation (variability). Accordingly, if one wants to ‘track’ some feature of a non-stationary
process then there is a trade-off between the need to have a local (short) average to follow the
trends and a long enough segment so that sample fluctuations are not too great. The details of
the estimation method and estimator errors will be discussed in Chapter 10.

Similar to the mean value, the estimate of time-averaged mean square value is (we follow
the notation of Bendat and Piersol, 2000)

x2 = ψ̂2
x = 1

T

T∫
0

x2(t)dt (8.40)

and in digital form

ψ̂2
x = 1

N

N−1∑
n=0

x2(n�) (8.41)
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The root mean square (rms) is the positive square root of this. Also, the variance of the signal
can be estimated as

σ̂ 2
x = 1

T

T∫
0

(x(t) − x̄)2dt (8.42)

In digital form, the unbiased estimator is

σ̂ 2
x = 1

N − 1

N−1∑
n=0

(x(n�) − x̄)2 (8.43)

where σ̂x is the estimate of the standard deviation.
For the joint moments, the ensemble averages can also be replaced by the time averages

if they are ergodic such that, for example, the cross-covariance function is

Cxy(τ ) = lim
T →∞

1

T

T∫
0

(x(t) − μx )(y(t + τ ) − μy)dt (8.44)

i.e. the time average shown above is equal to E[(X (t) − μx )(Y (t + τ ) − μy)] and holds for
any member of the ensemble. The (unbiased) estimate of the cross-covariance function is

Ĉxy(τ ) = 1

T − τ

T −τ∫
0

(x(t) − x̄)(y(t + τ ) − ȳ)dt 0 ≤ τ < T

= 1

T − |τ |

T∫
|τ |

(x(t) − x̄)(y(t + τ ) − ȳ)dt − T < τ ≤ 0

(8.45)

In Equation (8.45), if the divisor T is used, it is called the biased estimate. Since Ĉxy(τ ) =
Ĉyx (−τ ) we may need to define the Ĉxy(τ ) for positive τ only. The corresponding digital
version can be written as

Ĉxy(m�) = 1

N − m

N−m−1∑
n=0

(x(n�) − x̄)(y((n + m)�) − ȳ) 0 ≤ m ≤ N − 1 (8.46)

In this section, we have only defined unbiased estimators. Other estimators and corre-
sponding errors will be discussed in Chapter 10. Based on Equations (8.44)–(8.46), the same
form of equations can be used for the autocovariance function Cxx (τ ) by simply replacing y
with x , and for correlation functions Rxx (τ ) and Rxy(τ ) by omitting the mean values in the
expressions.
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8.6 EXAMPLES

We now demonstrate several examples to illustrate probability density functions and covariance
(correlation) functions.

Probability Distribution of a Sine WaveM8.1

A sine wave x(t) = A sin(ωt + θ ) may be considered random if the phase angle θ is random,
i.e. θ is now a random variable, and so each realization has a phase drawn from some probability
density function p(θ ) (A and ω are known constants).

For a fixed value of t we shall compute the probability density function of x . To do this, we
work from the first principles. We want p(x, t) = dF(x, t)/dx where F(x, t) = P[X (t) ≤ x].
Let us first calculate F(x, t) and then differentiate with respect to x . We shall assume that

p(θ ) = 1

2π
for 0 ≤ θ ≤ 2π

= 0 otherwise

(8.47)

i.e. θ is uniformly distributed. Then the distribution function is

F(θ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 θ < 0

θ

2π
0 ≤ θ ≤ 2π

1 θ > 2π

(8.48)

Since it is a stationary process, an arbitrary value of t can be used, i.e. F(x, t) = F(x) and
p(x, t) = p(x), so let t = 0 for convenience. Then

F(x) = P[X ≤ x] = P[A sin θ ≤ x] = P
[
sin θ ≤ x

A

]
(8.49)

This condition is equivalent to

P
[
θ ≤ sin−1

( x

A

)]
= F(θ )|θ=sin−1(x/A) and

P
[
π − sin−1

( x

A

)
< θ ≤ 2π

]
= F(θ )|θ=2π − F(θ )|θ=π−sin−1(x/A)

(8.50)

Note that, in the above ‘equivalent’ probability condition, the values of sin−1(x/A) are de-
fined in the range −π/2 to π/2. Also F(θ )|θ is allowed to have negative values. Then, the
distribution function F(x, t) becomes

F(x, t) = F(x) = 1

2
+ 1

π
sin−1

( x

A

)
(8.51)

and this leads to the probability density function as

p(x) = dF(x)

dx
= 1

π

1√
A2 − x2

(8.52)

which has the U shape of the probability density function of a sine wave as shown in Figure 8.11.
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1 2

( )F x

1

x
AA− 0

( )p x

x
AA− 0

Figure 8.11 Probability density function and distribution function of a sine wave

As an alternative method, we demonstrate the use of a time average for the probability
density calculation (assuming ‘ergodicity’ for the probability density function). Consider
the sine wave above (and set the phase to zero for convenience, i.e. θ = 0 for a particular
realization). Then, we set up a gate (x ≤ x(t) ≤ x + dx) as shown in Figure 8.12, and evaluate
the time spent within the gate. Then

p(x)dx ≈ probability of lying in the gate ≈
∑

dti
T

(8.53)

where T = the total record length, and
∑

dti = total time in the gate.

PT

1dt 2dt

x
x dx+

( ) sin( )x t A tω=( )x t

A

t

Figure 8.12 A sine wave with a gate

For the sine wave, we take one period, i.e. T = TP . Since dx = ωA cos(ωt)dt , it follows
that

dt = dx

ωA cos(ωt)
= dx

ωA
√

1 − (x/A)2
(8.54)

Also, let dt1 = dt2 = dt , so

p(x)dx = 2dt

TP
= 2dx

(2π/ω) ωA
√

1 − (x/A)2
= dx

π
√

A2 − x2
(8.55)

which is the same result as Equation (8.52), i.e.

p(x) = 1

π
√

A2 − x2
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The Autocorrelation (Autocovariance) Function

A Sine WaveM8.2

Let x(t) = A sin(ωt + θ ) where θ is a random variable with a uniform probability density
function as discussed above. For any fixed value of t , let

x(t) = A sin(ωt + θ ) = x1(θ )

x(t + τ ) = A sin [ω(t + τ ) + θ ] = x2(θ )
(8.56)

The mean value is

μx = E [x(t)] = E [x1(θ )] =
∞∫

−∞
A sin(ωt + θ )p(θ )dθ = 0 (8.57)

Then the autocorrelation function becomes

Rxx (τ ) = E [x(t)x(t + τ )] = E [x1(θ )x2(θ )]

=
∞∫

−∞
A2 sin(ωt + θ ) sin [ω(t + τ ) + θ ]p(θ )dθ

= A2

2π

2π∫
0

1

2
[cos(ωτ ) − cos(2ωt + ωτ + 2θ )]dθ

= A2

2
cos(ωτ ) (8.58)

which is a cosine function as shown in Figure 8.13. Note that this is an example where the
autocorrelation does not decay to zero as τ → ∞.

Assuming ‘ergodicity’ for the autocorrelation function, the time average for a single trace
x(t) = A sin(ωt + θ ) gives the same result:

Rxx (τ ) = lim
T →∞

1

T

T∫
0

x(t)x(t + τ )dt = lim
T →∞

1

2T

T∫
−T

x(t)x(t + τ )dt

= lim
T →∞

1

2T

T∫
−T

A2 sin(ωt + θ ) sin(ωt + ωτ + θ )dt

= lim
T →∞

A2

2T

T∫
−T

1

2
[cos(ωτ ) − cos(2ωt + ωτ + 2θ )]dt = A2

2
cos(ωτ ) (8.59)

2

2

A

( )xxR τ

τ

Figure 8.13 Autocorrelation function of a sine wave
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It is appropriate to emphasize the meaning of the autocorrelation function by considering
Rxx (τ ) as the ‘average’ of the product x(t)x(t + τ ). The term x(t + τ ) is a shifted version of
x(t), so this product is easily visualized as the original time history x(t) which is ‘overlaid’ by
a shifted version of itself (when τ is positive the shift is to the left). So the product highlights
the ‘match’ between x(t) and itself shifted by τ seconds.

For the sine wave, which is periodic, this matching is ‘perfect’ for τ = 0. When τ = 1/4
period (i.e. τ = π/2ω), the positive and negative matches cancel out when integrated. When
τ = 1/2 period this is perfect matching again but with a sign reversal, and so on. This shows
that the periodic signal has a periodic autocorrelation function. Note that, as can be seen in
Equation (8.59), the autocorrelation (autocovariance) function does not depend on θ , i.e. it is
‘phase blind’.

Asynchronous Random Telegraph Signal
Consider a time function that switches between two values +a and −a as shown in Figure
8.14. The crossing times ti are random and we assume that it is modelled as a Poisson process
with a rate parameter λ. Then, the probability of k crossings in time τ is

pk = e−λ|τ |(λ|τ |)k

k!
(8.60)

where λ is the number of crossings per unit time.

( )x t

t
it

a+

a−

Figure 8.14 Asynchronous random telegraph signal

If we assume that the process is in steady state, i.e. t → ∞, then P[X (t) = a] =
P[X (t) = −a] = 1/2. So the mean value μx = E[x(t)] = 0. And the product x(t)x(t + τ ) is
either a2 or −a2, i.e. it is a2 if the number of crossings is even in time τ and −a2 if the number
of crossings is odd in time τ . The total probability for a2 (i.e. an even number of crossings
occurs) is

∑∞
k=0 p2k , and the total probability for −a2 is

∑∞
k=0 p2k+1. Thus, the autocorrelation

function becomes

Rxx (τ ) = E [x(t)x(t + τ )] =
∞∑

k=0

[
a2 p2k − a2 p2k+1

]
= a2e−λ|τ |

[ ∞∑
k=0

(
(λ |τ |)2k

(2k)!
− (λ |τ |)2k+1

(2k + 1)!

)]
= a2e−λ|τ |

[ ∞∑
k=0

(−λ |τ |)k

k!

]
= a2e−2λ|τ | (8.61)

which is an exponentially decaying function as shown in Figure 8.15, where the decay rate is
controlled by the parameter λ.
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2a

( )xxR τ

τ

Figure 8.15 Autocorrelation function of an asynchronous random telegraph signal

White Noise
This is a very useful theoretical concept that has many desirable features in signal pro-
cessing. In the previous example of the Poisson process, the autocorrelation function is
defined as Rxx (τ ) = a2e−2λ|τ |. Note that, as the parameter λ gets larger (i.e. the number
of crossings per unit time increases), Rxx (τ ) becomes narrower. We may relate this to
the concept of white noise by considering a limiting form. As λ → ∞, the process is
very erratic and Rxx (τ ) becomes ‘spike-like’. In order that Rxx (τ ) does not ‘disappear
completely’ we can allow the value a to become large in compensation. This gives an
idea of a ‘completely erratic’ random process whose autocorrelation (autocovariance)
function is like a delta function, and the process that has this property is called white
noise, i.e.

Autocorrelation function of white noise: Rxx (τ ) = kδ(τ ) (8.62)

An example of the autocorrelation function of white noise is shown in MATLAB
Example 8.10 which demonstrates some important aspects of correlation analysis related
to system identification. Note, however, that in continuous time such processes cannot
occur in practice, and can only be approximated. Thus, we often refer to ‘band-limited
white noise’ whose spectral density function is constant within a band as we shall see in
Section 8.7.

Synchronous Random Telegraph Signal
Consider a switching signal where now the signal can only change sign at ‘event points’ spaced
� seconds apart. At each event point the signal may switch or not (with equal probability) as
shown in Figure 8.16.

t

( )x t

a+

a−
Δ

Figure 8.16 Synchronous random telegraph signal
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Since this has equal probability, the mean value is μx = 0. We shall calculate Rxx (τ )
using time averages. For 0 ≤ τ ≤ �, the product x(t)x(t + τ ) is

x(t)x(t + τ ) = a2 for a fraction
� − τ

�
of the time

= a2 for a fraction
1

2

( τ

�

)
of the time

= −a2 for a fraction
1

2

( τ

�

)
of the time (8.63)

Thus, the autocorrelation function becomes

Rxx (τ ) = lim
T →∞

1

T

T∫
0

x(t)x(t + τ )dt = a2
(

1 − τ

�

)
0 ≤ τ ≤ � (8.64)

Note that for |τ | > �, the probabilities of a2 and −a2 are the same, so

Rxx (τ ) = 0 |τ | > � (8.65)

As a result, the autocorrelation function is as shown in Figure 8.17.

2a

( )xxR τ

Δ−Δ
τ

Figure 8.17 Autocorrelation function of a synchronous random telegraph signal

A Simple Practical ProblemM8.3

To demonstrate an application of the autocorrelation function, consider the simple acous-
tic problem shown in Figure 8.18. The signal at the microphone may be written as

x(t) = as(t − �1) + bs(t − �2) (8.66)

Mic.  x(t)

Hard reflector

1

Path (1)
(delay, )Δ

2

Path (2)
(delay, )ΔSource, ( )s t

Figure 8.18 A simple acoustic example
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We assume that the source signal is broadband, i.e. Rss(τ ) is narrow. By letting
� = �2 − �1 the autocorrelation function of the microphone signal x(t) is

Rxx (τ ) = E [x(t)x(t + τ )]

= E [(as(t − �1) + bs(t − �2)) (as(t − �1 + τ ) + bs(t − �2 + τ ))]

= (a2 + b2)Rss(τ ) + abRss(τ − (�2 − �1)) + abRss(τ + (�2 − �1))

= (a2 + b2)Rss(τ ) + abRss(τ − �) + abRss(τ + �) (8.67)

That is, it consists of the autocorrelation function of the source signal and its shifted
versions as shown in Figure 8.19. For this particular problem, the relative time delay
� = �2 − �1 can be identified from the autocorrelation function of x(t), and also the
relative distance can be found if the speed of sound is multiplied by �.

( )xxR τ

−Δ Δ

2 2( ) ( )ssa b R τ+

τ

Figure 8.19 Autocorrelation function for time delay problem

We shall see later that if we also measure the source signal, then �1 can also be
found by using the cross-correlation function. Thus, the complete transmission paths
can be identified as long as Rss(τ ) is narrow compared with the relative time delay
� = �2 − �1. This will be demonstrated through a MATLAB example in Chapter 9.

The Autocorrelation (Autocovariance) Function of Non-stochastic Processes
It is worth noting that the time average definition may be utilized with non-random (i.e.
deterministic) functions and even for transient phenomena. In such cases we may or may not
use the divisor T .

1. A square wave: Consider a square periodic signal as shown in Figure 8.20. This function
is periodic, so the autocorrelation (autocovariance) function will be periodic, and we use
the autocorrelation function as

Rxx (τ ) = 1

TP

TP∫
0

x(t)x(t + τ )dt (8.68)

To form Rxx (τ ), we sketch x(t + τ ) and ‘slide it over x(t)’ to form the integrand. Then,
it can be easily verified that Rxx (τ ) is a triangular wave as shown in Figure 8.21.
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( )x t

A

t

PT

A−

Figure 8.20 A square periodic signal

2A

( )xxR τ

4
PT

PTPT− 4
PT

− ......

τ

Figure 8.21 Autocorrelation function of a square wave

2. A transient signal: In such a case there is no point in dividing by T , so the autocorrelation
function for a transient signal is defined as

Rxx (τ ) =
∞∫

−∞
x(t)x(t + τ )dt (8.69)

We note an important link with the frequency domain, i.e. if

x(t) =
∞∫

−∞
X ( f )e j2π f t d f and X ( f ) =

∞∫
−∞

x(t)e− j2π f t dt

then the Fourier transform of Rxx (τ ) is

F {Rxx (τ )} =
∞∫

−∞
Rxx (τ )e− j2π f τ dτ

=
∞∫

−∞

∞∫
−∞

x(t)x(t + τ )e− j2π f τ dτdt (let t1 = t + τ )

=
∞∫

−∞
x(t1)e− j2π f t1 dt1

∞∫
−∞

x(t)e j2π f t dt

= X ( f )X*( f ) = |X ( f )|2 (8.70)



JWBK207-08 JWBK207-Shin January 18, 2008 10:6 Char Count= 0

240 STOCHASTIC PROCESSES; CORRELATION FUNCTIONS AND SPECTRA

Thus, the following relationship holds:

|X ( f )|2 =
∞∫

−∞
Rxx (τ )e− j2π f τ dτ (8.71)

Rxx (τ ) =
∞∫

−∞
|X ( f )|2e j2π f τ d f (8.72)

i.e. the ‘energy spectral density’ and the autocorrelation function are Fourier pairs. This
will be discussed further in Section 8.7.

The Cross-correlation (Cross-covariance) Function

Two Harmonic SignalsM8.4

Consider the two functions

x(t) = A sin(ωt + θx ) + B

y(t) = C sin(ωt + θy) + D sin(nωt + φ)
(8.73)

We form the cross-correlation function using the time average, i.e.

Rxy(τ ) = lim
T →∞

1

T

T∫
0

x(t)y(t + τ )dt

= 1

2
AC cos

[
ωτ − (θx − θy)

]
(8.74)

and compare this with the autocorrelation functions which are given as

Rxx (τ ) = A2

2
cos(ωτ ) + B2

Ryy(τ ) = C2

2
cos(ωτ ) + D2

2
cos(nωτ )

(8.75)

Note that the cross-correlation function finds the components in y(t) that match or fit
x(t). More importantly, the cross-correlation preserves the relative phase (θx − θy), i.e. it
detects the delay that is associated with the ‘correlated (in a linear manner)’ components
of x(t) and y(t).

Once again an intuitive idea of what a cross-correlation reveals arises from the
visualization of the product x(t)y(t + τ ) as looking at the match between x(t) and the
shifted version of y(t). In the above example the oscillation with frequency ω in y(t)
matches that in x(t), but the harmonic nω does not. So the cross-correlation reveals this
match and also the phase shift (delay) between these components.
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A Signal Buried in NoiseM8.5

Consider a signal buried in noise, i.e. y(t) = s(t) + n(t), as shown in Figure 8.22.

( ) ( ) ( )y t s t n t= +
( )s t

( )y t

t

Figure 8.22 A sinusoidal signal buried in noise

We assume that the noise and signal are uncorrelated: for example, s(t) is a sine wave
and n(t) is wideband noise. Then, the cross-correlation function of the signal s(t) and noise
n(t) is Rsn(τ ) = E[s(t)n(t + τ )] = μsμn , i.e. Csn(τ ) = E[(s(t) − μs)(n(t + τ ) − μn)] = 0.
Note that the cross-covariance function of two uncorrelated signals is zero for all τ . Thus, the
autocorrelation function of y(t) becomes

Ryy(τ ) = E [(s(t) + n(t)) (s(t + τ ) + n(t + τ ))]

= E [s(t)s(t + τ )] + E [n(t)n(t + τ )] + 2μsμn (8.76)

Assuming that the mean values are zero, this is

Ryy(τ ) = Rss(τ ) + Rnn(τ ) (8.77)

Since the autocorrelation function of the noise Rnn(τ ) decays very rapidly (see Equation
(8.62)), the autocorrelation function of the signal Rss(τ ) will dominate for larger values of τ ,
as shown in Figure 8.23. This demonstrates a method of identifying sinusoidal components
embedded in noise.

( )yyR τ
( ) (   )nnR dies out rapidlyτ

( )ssR τ

τ

Figure 8.23 Autocorrelation function of a sinusoidal signal buried in noise

Time Delay ProblemM8.6

Consider a wheeled vehicle moving over rough terrain as shown in Figure 8.24. Let the time
function (profile) experienced by the leading wheel be x(t) and that by the trailing wheel be
y(t). Also let the autocorrelation function of x(t) be Rxx (τ ). We now investigate the properties
of the cross-correlation function Rxy(τ ).

Assume that the vehicle moves at a constant speed V . Then, y(t) = x(t − �) where
� = L/V . So the cross-correlation function is

Rxy(τ ) = E[x(t)y(t + τ )] = E[x(t)x(t + τ − �)]

= Rxx (τ − �) (8.78)
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( )x t ( )y t

L

V

Figure 8.24 A wheeled vehicle moving over rough terrain

( )xyR τ

Δ

τ

( )xxR τ

τ

Figure 8.25 Autocorrelation and cross-correlation functions for time delay problem

That is, the cross-correlation function Rxy(τ ) becomes a delayed version of Rxx (τ ) as shown
in Figure 8.25. The cross-correlation function detects the time delay between the two signals.

The detection of time delay using the cross-correlation function has been applied to many
problems, e.g. radar systems, acoustic source localization, mechanical fault detection, pipe
leakage detection, earthquake location, etc. The basic concept of using the cross-correlation
function for a simplified radar system is demonstrated in MATLAB Example 8.7.

8.7 SPECTRA

So far we have discussed stochastic processes in the time domain. We now consider
frequency domain descriptors. In Part I, Fourier methods were applied to deterministic
phenomena, e.g. periodic and transient signals. We shall now consider Fourier methods
for stationary random processes.

Consider a truncated sample function xT (t) of a random process x(t) as shown in
Figure 8.26, i.e.

xT (t) = x(t) |t | < T/2

= 0 otherwise
(8.79)

2

T
−

2

T
t

( )x t

( )Tx t

Figure 8.26 A truncated sample function of a stochastic process
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We shall consider the decomposition of the power of this sample function in the
frequency domain. As seen from the figure, the truncated signal xT (t) is pulse-like, i.e. it
can be regarded as a transient signal. Thus, it can be represented by the Fourier integral

xT (t) =
∞∫

−∞
XT ( f )e j2π f t d f (8.80)

Since the total energy of the signal
∫ ∞
−∞ x2

T (t)dt tends to infinity as T gets large, we shall
consider the average power of the signal, i.e.

1

T

∞∫
−∞

x2
T (t)dt

Then, by Parseval’s theorem it can be shown that

1

T

∞∫
−∞

x2
T (t)dt = 1

T

T/2∫
−T/2

x2
T (t)dt = 1

T

∞∫
−∞

|XT ( f )|2d f =
∞∫

−∞

1

T
|XT ( f )|2d f (8.81)

where the quantity |XT ( f )|2/T is called the raw (or sample) power spectral density,
which is denoted as

Ŝxx ( f ) = 1

T
|XT ( f )|2 (8.82)

Note that the power of the signal in a data segment of length T is

1

T

∞∫
−∞

x2
T (t)dt =

∞∫
−∞

Ŝxx ( f )d f (8.83)

Now, as T → ∞ Equation (8.81) can be written as

lim
T →∞

1

T

T/2∫
−T/2

x2
T (t)dt =

∞∫
−∞

lim
T →∞

|XT ( f )|2
T

d f (8.84)

Note that the left hand side of the equation is the average power of the sample function,
thus it may be tempting to define limT →∞|XT ( f )|2/T as the power spectral density.
However we shall see (later) that Ŝxx ( f ) does not converge (in a statistical sense) as
T → ∞, which is the reason that the term ‘raw’ is used. In Chapter 10, we shall see
that Ŝxx ( f ) evaluated from a larger data length is just as erratic as for the shorter data
length, i.e. the estimate Ŝxx ( f ) cannot be improved simply by using more data (even
for T → ∞). We shall also see later (in Chapter 10) that the standard deviation of the
estimate is as great as the quantity being estimated! That is, it is independent of data
length and equal to the true spectral density as follows:

Var
(
Ŝxx ( f )

) = S2
xx ( f )

(
or

Var
(
Ŝxx ( f )

)
S2

xx ( f )
= 1

)
(8.85)
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In fact, we have now come across an estimate for which ergodicity does not hold, i.e.
Ŝxx ( f ) is not ergodic. So some method of reducing the variability is required.

We do this by averaging the raw spectral density to remove the erratic behaviour.
Consider the following average

E

⎡⎢⎣ lim
T →∞

1

T

T/2∫
−T/2

x2
T (t)dt

⎤⎥⎦ = E

⎡⎣ ∞∫
−∞

lim
T →∞

|XT ( f )|2
T

d f

⎤⎦ (8.86)

Assuming zero mean values, the left hand side of Equation (8.86) is the variance of the
process, thus it can be written as

Var (x(t)) = σ 2
x =

∞∫
−∞

Sxx ( f )d f (8.87)

where

Sxx ( f ) = lim
T →∞

E
[|XT ( f )|2]

T
(8.88)

This function is called the power spectral density function of the process, and it states
that the average power of the process (the variance) is decomposed in the frequency do-
main through the function Sxx ( f ), which has a clear physical interpretation. Furthermore
there is a direct relationship with the autocorrelation function such that

Sxx ( f ) =
∞∫

−∞
Rxx (τ )e− j2π f τ dτ (8.89)

Rxx (τ ) =
∞∫

−∞
Sxx ( f )e j2π f τ d f (8.90)

These relations are sometimes called the Wiener–Khinchin theorem.

Note that, if ω is used, the equivalent result is

Sxx (ω) =
∞∫

−∞
Rxx (τ )e− jωτ dτ (8.91)

Rxx (τ ) = 1

2π

∞∫
−∞

Sxx (ω)e jωτ dω (8.92)

Similar to the Fourier transform pair, the location of the factor 2π may be interchanged
or replaced with 1/

√
2π for symmetrical form. The proof of the above Fourier pair
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(Equations (8.89)–(8.92)) needs some elements discussed in Chapter 10, so this will be justified
later.

Note that the function Sxx ( f ) is an even function of frequency and is sometimes called
the two-sided power spectral density. If x(t) is in volts, Sxx ( f ) has units of volts2/Hz. Often a
one-sided power spectral density is defined as

Gxx ( f ) = 2Sxx ( f ) f > 0

= Sxx ( f ) f = 0

= 0 f < 0

(8.93)

Examples of Power Spectral Density Functions1

(a) If Rxx (τ ) = kδ(τ ), k > 0, i.e. white noise, then

Sxx ( f ) =
∞∫

−∞
Rxx (τ )e− j2π f τ dτ =

∞∫
−∞

kδ(τ )e− j2π f τ dτ = ke− j2π f ·0 = k (8.94)

τ

( )xxR τ

k

f

( )xxS f

k

Figure 8.27 Power spectral density of white noise

Note that a ‘narrow’ autocorrelation function results in a broadband spectrum (Figure 8.27).

(b) If Rxx (τ ) = σ 2
x e−λ|τ |, λ > 0, then

Sxx ( f ) =
∞∫

−∞
Rxx (τ )e− j2π f τ dτ =

∞∫
−∞

σ 2
x e−λ|τ |e− j2π f τ dτ

= σ 2
x

⎡⎣ 0∫
−∞

eλτ e− j2π f τ dτ +
∞∫

0

e−λτ e− j2π f τ dτ

⎤⎦ = 2λσ 2
x

λ2 + (2π f )2
(8.95)

( )xxS f
22 xσ

λ

f

2

xσ

( )xxR τ

τ

Figure 8.28 Exponentially decaying autocorrelation and corresponding power spectral density

The exponentially decaying autocorrelation function results in a mainly low-frequency
power spectral density function (Figure 8.28).

1 See examples in Section 4.3 and compare.
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(c) If Rxx (τ ) = (A2/2) cos(2π f0τ ), then

Sxx ( f ) =
∞∫

−∞
Rxx (τ )e− j2π f τ dτ = A2

2

∞∫
−∞

1

2

(
e j2π f0τ + e− j2π f0τ

)
e− j2π f τ dτ

= A2

4

∞∫
−∞

(
e− j2π ( f − f0)τ + e− j2π ( f + f0)τ

)
dτ = A2

4
δ( f − f0) + A2

4
δ( f + f0)

(8.96)

( )xxR τ

01 f

2

2

A

τ

( )xxS f

0f− 0f

2

4

A

f

2

4

A

Figure 8.29 Sinusoidal autocorrelation and corresponding power spectral density

An oscillatory autocorrelation function corresponds to spikes in the power spectral density
function (Figure 8.29).

(d) Band-limited white noise: If the power spectral density function is

Sxx ( f ) = a −B < f < B

= 0 otherwise
(8.97)

then the corresponding autocorrelation function (shown in Figure 8.30) is

Rxx (τ ) =
∞∫

−∞
Sxx ( f )e j2π f τ d f =

B∫
−B

ae j2π f τ d f = 2aB
sin(2π Bτ )

2π Bτ
(8.98)

1

B

1

2B

3

2B

( )xxR τ

τ

2aB

( )xxS f

f

a

B− B

Figure 8.30 Autocorrelation and power spectral density of band-limited white noise
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The Cross-spectral Density Function

Generalizing the Wiener–Khinchin theorem, the cross-spectral density function is
‘defined’ as

Sxy( f ) =
∞∫

−∞
Rxy(τ )e− j2π f τ dτ (8.99)

with inverse

Rxy(τ ) =
∞∫

−∞
Sxy( f )e j2π f τ d f (8.100)

As with the power spectral density function, if ω is used in place of f , then

Sxy(ω) =
∞∫

−∞
Rxy(τ )e− jωτ dτ (8.101)

Rxy(τ ) = 1

2π

∞∫
−∞

Sxy(ω)e jωτ dω (8.102)

Alternatively, Sxy( f ) is defined as

Sxy( f ) = lim
T →∞

E[X*
T ( f )YT ( f )]

T
(8.103)

where XT ( f ) and YT ( f ) are Fourier transforms of truncated functions xT (t) and yT (t)
defined for | t | < T/2 (see Figure 8.26).

The equivalence of Equations (8.99) and (8.103) may be justified in the same manner
as for the power spectral density functions as discussed in Chapter 10.

In general, the cross-spectral density function is complex valued, i.e.

Sxy( f ) = ∣∣Sxy( f )
∣∣ e j arg Sxy ( f ) (8.104)

This can be interpreted as the frequency domain equivalent of the cross-correlation func-
tion. That is, |Sxy( f )| is the cross-amplitude spectrum and it shows whether frequency
components in one signal are ‘associated’ with large or small amplitude at the same
frequency in the other signal, i.e. it is the measure of association of amplitude in x and
y at frequency f ; arg Sxy( f ) is the phase spectrum and this shows whether frequency
components in one signal ‘lag’ or ‘lead’ the components at the same frequency in the
other signal, i.e. it shows lags/leads (or phase difference) between x and y at frequency f .

Properties of the Cross-spectral Density Function

(a) An important property is

Sxy( f ) = S*
yx ( f ) (8.105)

This can be easily proved using the fact that Rxy(τ ) = Ryx (−τ ).



JWBK207-08 JWBK207-Shin January 18, 2008 10:6 Char Count= 0

248 STOCHASTIC PROCESSES; CORRELATION FUNCTIONS AND SPECTRA

(b) A one-sided cross-spectral density function Gxy( f ) is defined as

Gxy( f ) = 2Sxy( f ) f > 0

= Sxy( f ) f = 0

= 0 f < 0

(8.106)

(c) The coincident spectral density (co-spectrum) and quadrature spectral density (quad-
spectrum) are defined as (Bendat and Piersol, 2000)

Gxy( f ) = 2

∞∫
−∞

Rxy(τ )e− j2π f τ dτ = Cxy( f ) − j Qxy( f ) f ≥ 0 (8.107)

where Cxy( f ) and Qxy( f ) are called the co-spectra and quad-spectra, respectively (the
reason for these names is explained later in the example given in page 249). Cxy( f ) is an
even function of f and Qxy( f ) is an odd function of f . Also, by writing Rxy(τ ) as the
sum of even and odd parts (see Equation (3.18)), then

Cxy( f ) = 2

∞∫
0

[
Rxy(τ ) + Ryx (τ )

]
cos(2π f τ )dτ = Cxy(− f ) (8.108)

Qxy( f ) = 2

∞∫
0

[
Rxy(τ ) − Ryx (τ )

]
sin(2π f τ )dτ = −Qxy(− f ) (8.109)

Similar to Sxy( f ), the one-sided cross-spectral density function Gxy( f ) can be
written as

Gxy( f ) = ∣∣Gxy( f )
∣∣ e j arg Gxy ( f ) (8.110)

Then, it can be shown that ∣∣Gxy( f )
∣∣ =

√
C2

xy( f ) + Q2
xy( f ) (8.111)

and

arg Gxy( f ) = − tan−1

(
Qxy( f )

Cxy( f )

)
(8.112)

(d) For the phase of Sxy( f ) = ∣∣Sxy( f )
∣∣ e j arg Sxy ( f ), let θx ( f ) and θy( f ) be the phase com-

ponents at frequency f corresponding to x(t) and y(t), respectively. Then, arg Sxy( f )
gives the phase difference such that

arg Sxy( f ) = − [
θx ( f ) − θy( f )

]
(8.113)
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which is θy( f ) − θx ( f ). Note that it is not θx ( f ) − θy( f ) (see Equation (8.103) where

X*
T ( f ) is multiplied by YT ( f ), and also compare it with Equations (8.73) and (8.74)).

Thus, in some texts, Sxy( f ) is defined as

Sxy( f ) = ∣∣Sxy( f )
∣∣ e− jθxy ( f ) (8.114)

where θxy( f ) = θx ( f ) − θy( f ). So, care must be taken with the definitions.

(e) A useful inequality satisfied by Sxy( f ) is∣∣Sxy( f )
∣∣2 ≤ Sxx ( f )Syy( f ) (8.115)

or ∣∣Gxy( f )
∣∣2 ≤ Gxx ( f )G yy( f ) (8.116)

The proof of this result is given in Appendix B. We shall see later that this is a par-
ticularly useful result – we shall define, in Chapter 9, the ‘coherence function’ as∣∣Sxy( f )

∣∣2
/(Sxx ( f )Syy( f )) which is a normalized cross-spectral density function.

Examples of Cross-spectral Density Functions

Two examples are as follows:

(a) Consider two functions (see also Equation (8.73) in Section 8.6)M8.8

x(t) = A sin(2πpt + θx )

y(t) = C sin(2πpt + θy) + D sin(n2πpt + φ)
(8.117)

In the previous section, it was shown that the cross-correlation function is

Rxy(τ ) = 1

2
AC cos

[
2πpτ − (θx − θy)

]
(8.118)

Let θxy = θx − θy ; then

Rxy(τ ) = 1

2
AC cos(2πpτ − θxy) (8.119)

The cross-spectral density function is

Sxy( f ) =
∞∫

−∞
Rxy(τ )e− j2π f τ dτ = AC

4

∞∫
−∞

(
e j(2πpτ−θxy) + e− j(2πpτ−θxy)

)
e− j2π f τ dτ

= AC

4

∞∫
−∞

(
e− j2π ( f −p)τ e− jθxy + e− j2π ( f +p)τ e jθxy

)
dτ

= AC

4

[
δ( f − p)e− jθxy + δ( f + p)e jθxy

]
(8.120)
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and the one-sided cross-spectral density function is

Gxy( f ) = AC

2
δ( f − p)e− jθxy (8.121)

Thus, it can be seen that

∣∣Gxy( f )
∣∣ = AC

2
δ( f − p)︸ ︷︷ ︸

Amplitude association

(8.122)

and

arg Gxy( f ) = −θxy = −(θx − θy)︸ ︷︷ ︸
Phase difference

(8.123)

From Gxy( f ) in Equation (8.121), we see that the co-spectra and quad-spectra are

Cxy( f ) = AC

2
δ( f − p) cos θxy (8.124)

Qxy( f ) = AC

2
δ( f − p) sin θxy (8.125)

Since x(t) = A sin(2πpt + θx ) = A sin(2πpt + θy + θxy), Equation (8.117) can be writ-
ten as

x(t) = A sin(2πpt + θy) cos θxy + A cos(2πpt + θy) sin θxy

y(t) = C sin(2πpt + θy) + D sin(n2πpt + φ)
(8.126)

Comparing Equation (8.124) and (8.126), we see that Cxy( f ) measures the correlation
of the in-phase components, i.e. between A sin(2πpt + θy) and C sin(2πpt + θy), thus
it is called the coincident spectrum. Similarly, Qxy( f ) measures the correlation between
sine and cosine components (A cos(2πpt + θy) and C sin(2πpt + θy)), i.e. quadrature
components, thus it is called the quadrature spectrum.

(b) Consider the wheeled vehicle example shown previously, in Figure 8.24 shown again
hereM8.9

( )x t ( )y t

L

V

Figure 8.24 A wheeled vehicle moving over rough terrain
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We have seen that Rxy(τ ) = Rxx (τ − �), where � = L/V . So the cross-spectral density
function is

Sxy( f ) =
∞∫

−∞
Rxx (τ − �)e− j2π f τ dτ =

∞∫
−∞

Rxx (u)e− j2π f (u+�)du

= e− j2π f �

∞∫
−∞

Rxx (u)e− j2π f udu

= e− j2π f �Sxx ( f ) (8.127)

This shows that the frequency component f in the signal y(t) lags that component in
x(t) by phase angle 2π f �. This is obvious from simple considerations: for example, if
x(t) = A cos(ωt) then y(t) = A cos [ω(t − �)] = A cos(ωt − ω�), i.e. the lag angle is
ω� = 2π f �.

Comments on the Time Delay Problem

At this point, it may be worth relating the time delay problem to the pure delay discussed
in Chapter 4, where we defined the group delay as tg = −dφ(ω)/dω. We saw that a
pure delay (say, delay time is � for all frequencies) produces a constant group delay, i.e.
tg = �.

The above time delay problem can be considered as identifying a pure delay system.
To see this more clearly, rewrite Equation (8.127) as

Sxy( f ) = H ( f )Sxx ( f ) (8.128)

where H ( f ) is the frequency response function which can be written as

H ( f ) = Sxy( f )

Sxx ( f )
= e− j2π f � (8.129)

i.e. H ( f ) is a pure delay system. Note that we are identifying the system by performing
the ratio Sxy( f )/Sxx ( f ). We shall compare the results of using arg Sxy( f ) and arg H ( f )
in MATLAB Example 8.9. We shall also demonstrate a simple system identification
problem by performing H ( f ) = Sxy( f )/Sxx ( f ) in MATLAB Example 8.10. More details
of system identification will be discussed in the next chapter.

8.8 BRIEF SUMMARY

1. A stochastic process X (t) is stationary if it satisfies two conditions: (i) p(x, t) = p(x)
and (ii) p(x1, t1; x2, t2) = p(x1, t1 + T ; x2, t2 + T ).

2. If certain averages of the process are ergodic, then ensemble averages can be replaced
by time averages.
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3. Autocovariance and autocorrelation functions are defined by

Cxx (τ ) = E[(X (t) − μx )(X (t + τ ) − μx )]

Rxx (τ ) = E[X (t)X (t + τ )]

where Cxx (τ ) = Rxx (τ ) − μ2
x . The corresponding time averages are

Cxx (τ ) = lim
T →∞

1

T

T∫
0

(x(t) − μx )(x(t + τ ) − μx )dt

Rxx (τ ) = lim
T →∞

1

T

T∫
0

x(t)x(t + τ )dt

4. Cross-covariance and cross-correlation functions are defined by

Cxy(τ ) = E[(X (t) − μx )(Y (t + τ ) − μy)]

Rxy(τ ) = E[X (t)Y (t + τ )]

where Cxy(τ ) = Rxy(τ ) − μxμy . The corresponding time averages are

Cxy(τ ) = lim
T →∞

1

T

T∫
0

(x(t) − μx )(y(t + τ ) − μy)dt

Rxy(τ ) = lim
T →∞

1

T

T∫
0

x(t)y(t + τ )dt

5. An unbiased estimate of the cross-covariance function is

Ĉxy(τ ) = 1

T − τ

T −τ∫
0

(x(t) − x̄)(y(t + τ ) − ȳ)dt 0 ≤ τ < T

where Ĉxy(−τ ) = Ĉyx (τ ). The corresponding digital form is

Ĉxy(m�) = 1

N − m

N−m−1∑
n=0

(x(n�) − x̄)(y((n + m)�) − ȳ) 0 ≤ m ≤ N − 1

6. The autocorrelation functions of a periodic signal and a transient signal are,
respectively,

Rxx (τ ) = 1

TP

TP∫
0

x(t)x(t + τ )dt and Rxx (τ ) =
∞∫

−∞
x(t)x(t + τ )dt
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7. The autocorrelation function of white noise is

Rxx (τ ) = kδ(τ )

8. The cross-correlation function of two uncorrelated signals s(t) and n(t) is

Rsn(τ ) = E [s(t)n(t + τ )] = 0 (assuming zero mean values)

9. The power spectral density and cross-spectral density functions are

Sxx ( f ) = lim
T →∞

E
[|XT ( f )|2]

T
and Sxy( f ) = lim

T →∞

E
[

X*
T ( f )YT ( f )

]
T

and the corresponding raw (or sample) spectral density functions are

Ŝxx ( f ) = 1

T
|XT ( f )|2 and Ŝxy( f ) = 1

T
X*

T ( f )YT ( f )

10. The Wiener–Khinchin theorem is

Sxx ( f ) =
∞∫

−∞
Rxx (τ )e− j2π f τ dτ and Rxx (τ ) =

∞∫
−∞

Sxx ( f )e j2π f τ d f

Also,

Sxy( f ) =
∞∫

−∞
Rxy(τ )e− j2π f τ dτ and Rxy(τ ) =

∞∫
−∞

Sxy( f )e j2π f τ d f

11. The cross-spectral density function is complex valued, i.e.

Sxy( f ) = ∣∣Sxy( f )
∣∣ e j arg Sxy ( f ) and Sxy( f ) = S*

yx ( f )

where |Sxy( f )| is the measure of association of amplitude in x and y at frequency f ,
and arg Sxy( f ) shows lags/leads (or phase difference) between x and y at frequency f .

8.9 MATLAB EXAMPLES

Example 8.1: Probability density function of a sine wave

The theoretical probability density function of a sine wave x(t) = A sin(ωt + θ ) is

p(x) = 1

π
√

A2 − x2

In this MATLAB example, we compare the histograms resulting from the ensemble
average and the time average. For the ensemble average θ is a random variable and t is
fixed, and for the time average θ is fixed and t is a time variable.
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Line MATLAB code Comments

1
2
3
4
5

clear all
A=2; w=1; t=0;
rand('state',1);
theta=rand(1,20000)*2*pi;
x1=A*sin(w*t+theta);

Define the amplitude and frequency of a sine wave.
For the ensemble average, let time t = 0.
Initialize the random number generator, and then
generate θ which is uniformly distributed on the
range 0 to 2π . The number of elements of θ is
20 000.
Also generate a sequence x1 which can be
considered as an ensemble (only for the specified
time, t = 0).

6
7

nbin=20; N1=length(x1);
[n1 s1]=hist(x1,nbin);

Define the number of bins for the histogram. Then
calculate the frequency counts and bin locations.

8
9

10
11

figure(1) % Ensemble average
bar(s1, n1/N1)
xlabel('\itx\rm 1')
ylabel('Relative frequency')

Plot the histogram of x1. Note that it has a U shape
as expected. One may change the number of
elements of θ , and compare the results.

12
13

t=0:0.01:(2*pi)/w-0.01;
x2=A*sin(w*t);

For the time average, θ is set to zero and a sine
wave (x2) is generated for one period.

14
15

[n2 s2]=hist(x2, nbin);
N2=length(x2);

Calculate the frequency counts and bin locations for
x2.

16
17
18
19

figure(2) % Time average
bar(s2, n2/N2)
xlabel('\itx\rm 2')
ylabel('Relative frequency')

Plot the histogram of x2. Compare the result with
the ensemble average.

Results
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Comments: The two results are very similar and confirm the theoretical probability
density function. This illustrates that the process is ergodic with respect to the estimation
of the probability density function.
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Example 8.2: Autocorrelation function of a sine wave

We compare the autocorrelation functions of a sinusoidal signal x(t) = A sin(ωt + θ ),
resulting from the ensemble average and the time average. The theoretical autocorrelation
function is

Rxx (τ ) = A2

2
cos(ωτ )

For the ensemble average θ is a random variable and t is fixed, and for the time average
θ is fixed and t is a time variable.

Line MATLAB code Comments

1
2
3
4
5

clear all
A=2; w=2*pi*1; t=0; fs=100;
rand('state',1);
theta=rand(1,5000)*2*pi;
x1=A*sin(w*t+theta);

Define the amplitude and frequency of a sine
wave. For the ensemble average, let time t = 0.
Also define the sampling rate.
Initialize the random number generator, and then
generate θ which is uniformly distributed on the
range 0 to 2π . The number of elements of θ is
5000. Then generate a sequence x1 which can be
considered as an ensemble (only for the
specified time, t = 0).

6
7
8
9

10
11
12

Rxx1=[]; maxlags=5;
for tau=-maxlags:1/fs:maxlags;

tmp=A*sin(w*(t+tau)+theta);
tmp=mean(x1.*tmp);
Rxx1=[Rxx1 tmp];

end
tau=-maxlags:1/fs:maxlags;

Define an empty matrix (Rxx1) which is used in
the ‘for’ loop, and define the maximum lag
(5 seconds) for the calculation of the
autocorrelation function.
The ‘for’ loop calculates the autocorrelation
function Rxx1 based on the ensemble average.
The variable ‘tau’ is the lag in seconds (Line 12).

13 Rxx=Aˆ2/2*cos(w*tau); Calculate the theoretical autocorrelation
function Rxx. This is used for comparison.

14
15
16
17

figure(1) % Ensemble average
plot(tau,Rxx1,tau,Rxx, 'r:')
xlabel('Lag (\it\tau)')
ylabel('Autocorrelation')

Plot the autocorrelation function Rxx1 obtained
by ensemble average (solid line), and compare
this with the theoretical autocorrelation function
Rxx (dashed line).

18
19
20

21

t=0:1/fs:20-1/fs;
x2=A*sin(w*t);
[Rxx2, tau2]=xcorr(x2,x2,maxlags*fs,
'unbiased');
tau2=tau2/fs;

For the time average, θ is set to zero and a sine
wave (x2) is generated for 20 seconds. The
MATLAB function ‘xcorr(y,x)’ estimates the
cross-correlation function between x and y, i.e.
Rxy(τ ) (note that it is not Ryx (τ )). In this
MATLAB code, the number of maximum lag
(maxlags*fs) is also specified, and the unbiased
estimator is used.
The variable ‘tau2’ is the lag in seconds
(Line 21).

22
23
24
25

figure(2) % Time average
plot(tau2,Rxx2,tau,Rxx, 'r:')
xlabel('Lag (\it\tau)')
ylabel('Autocorrelation')

Plot the autocorrelation function Rxx2 obtained
by time average (solid line), and compare this
with the theoretical autocorrelation function Rxx
(dashed line).
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Results
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Comments: The two results are almost identical and very close to the theoretical au-
tocorrelation function. This demonstrates that the process is ergodic with respect to the
estimation of the autocorrelation function.

Example 8.3: Autocorrelation function of an echoed signal

Consider the following echoed signal (see Equation (8.66) and Figure 8.18):

x(t) = s1(t) + s2(t) = as(t − �1) + bs(t − �2)

In this example, we use a sine burst signal as the source signal, and demonstrate that the
autocorrelation function Rxx (τ ) detects the relative time delay � = �2 − �1.

We shall also consider the case that some additive noise is present in the signal.

Line MATLAB code Comments

1
2

3
4

clear all
a=2; b=1; fs=200;
delta1=1; delta2=2.5;
t=0:1/fs:0.5-1/fs;
s=sin(2*pi*10*t);

Define the parameters of the above equation. The
sampling rate is chosen as 200 Hz. Note that the
relative time delay is 1.5 seconds.
Define the time variable up to 0.5 seconds, and
generate the 10 Hz sine burst signal.

5
6

7

8

N=4*fs;
s1=[zeros(1,delta1*fs) a*s];
s1=[s1 zeros(1,N-length(s1))];
s2=[zeros(1,delta2*fs) b*s];
s2=[s2 zeros(1,N-length(s2))];
x = s1+s2;

Generate signals s1(t) = as(t − �1) and
s2(t) = bs(t − �2) up to 4 seconds. Then combine
these to make the signal x(t).

9
10
11

% randn('state',0);
% noise = 1*std(s)*randn(size(x));
% x=x+noise;

This is for later use. Uncomment these lines then.
Initialize the random number generator, then
generate the Gaussian white noise whose variance
is the same as the source signal s(t), i.e. the
signal-to-noise ratio is 0 dB.
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12
13
14
15

L=length(x); t=[0:L-1]/fs;
maxlags=2.5*fs;
[Rxx, tau]=xcorr(x,x,maxlags);
tau=tau/fs;

Define the time variable again according to the
length of the signal x(t).
The maximum lag of the autocorrelation function
is set to 2.5 seconds. The variable ‘tau’ is the lag
in seconds.
Note that the autocorrelation function is not
normalized in this case because the signal is
transient.

16
17
18

19

figure(1)
plot(t,x)
xlabel('Time (s)');
ylabel('\itx\rm(\itt\rm)')
axis([0 4 -4 4])

Plot the signal x(t).
Later, compare this with the noisy signal.

20
21
22

23

figure(2)
plot(tau,Rxx)
xlabel('Lag (\it\tau)');
ylabel('Autocorrelation')
axis([-2.5 2.5 -300 300])

Plot the autocorrelation function Rxx (τ ).
Note its symmetric structure, and the peak values
occur at Rxx (0), Rxx (�) and Rxx (−�).
Run this MATLAB program again for the noisy
signal (uncomment Lines 9–11, and compare
Rxx (τ ) with the corresponding time signal).

Results
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(b2) Autocorrelation function of the noisy signal
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Comments: Comparing Figures (b1) and (b2), it can be seen that the autocorrelation
function is much cleaner than the corresponding time signal, and detects the relative time
delay even if a significant amount of noise is present. This is because the source signal
and the noise are not correlated, and the white noise contributes to Rxx (τ ) at zero lag only
(in theory). This noise reduction will be demonstrated again in MATLAB Example 8.5.

Example 8.4: Cross-correlation function

Consider two signals (see Equation (8.73))

x(t) = A sin(ωt + θx ) + B

y(t) = C sin(ωt + θy) + D sin(nωt + φ)

The cross-correlation function is Rxy(τ ) = 1
2

AC cos[ωτ − (θx − θy)] (see Equation
(8.74)).

Line MATLAB code Comments

1
2

3

4
5
6

clear all
A=1; B=1; C=2; D=2;
thetax=0; thetay=-pi/4;
phi=pi/2; n=2;
w=2*pi*1; fs=200; T=100;
t=0:1/fs:T-1/fs;
rel time delay=(thetax-thetay)/w
x=A*sin(w*t+thetax)+B;
y=C*sin(w*t+thetay)
+D*sin(n*w*t+phi);

Define the parameters and time variable of the
above equation. The sampling rate is chosen as
200 Hz.
Calculate the relative time delay for reference. Note
that the relative phase is θx − θy = π/4 that
corresponds to the time delay of 0.125 seconds.
Generate signals x(t) and y(t) accordingly.

7
8

9

maxlag=4*fs;
[Rxy, tau]=xcorr(y,x,maxlag,
'unbiased');
tau=tau/fs;

The maximum lag of the cross-correlation function
is set to 4 seconds. The unbiased estimator is used
for the calculation of the cross-correlation function.

10
11

12

figure(1)
plot(t(1:maxlag),x(1:maxlag),
t(1:maxlag),y(1:maxlag), 'r')
xlabel('Time (s)');
ylabel('\itx\rm(\itt\rm)
and \ity\rm(\itt\rm)')

Plot the signals x(t) and y(t).

13
14

15

16
17

figure(2)
plot(tau(maxlag+1:end),
Rxy(maxlag+1:end)); hold on
plot([rel time delay rel time delay],
[-1.5 1.5], 'r:')
hold off
xlabel('Lag (\it\tau)');
ylabel('Cross-correlation')

Plot the cross-correlation function Rxy(τ ). Note that
it shows the values for positive lags only in the
figure.
Compare the figure with the theoretical
cross-correlation function (i.e. Equation (8.74)).
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Results
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(b) Cross-correlation function

Comments: The cross-correlation function finds the components in y(t) that are corre-
lated with the components in x(t) and preserves the relative phase (i.e. time delay).

Example 8.5: A signal buried in noise

Consider the signal buried in noise (see Figure 8.22)

y(t) = s(t) + n(t)

In this example, we use a sine wave for s(t) and a band-limited white noise for n(t), where
s(t) and n(t) are uncorrelated and both have zero mean values. Thus, the cross-correlation
between s(t) and n(t) is E[s(t)n(t + τ )] = E[n(t)s(t + τ )] = 0.

Then, the autocorrelation function is

Ryy(τ ) = Rss(τ ) + Rnn(τ )

It is shown that

Ryy(τ ) ≈ Rss(τ ) for large τ (see Figure 8.23)

Considering the time-averaged form of correlation functions, we also compare the results
for different values of T (total record time).

Line MATLAB code Comments

1
2
3
4
5

clear all
A=1; w = 2*pi*1; fs=200;
T=100; % T=1000;
t=0:1/fs:T-1/fs;
s=A*sin(w*t);

Define the parameters of a sine wave and the sampling
rate. The total record time is specified by ‘T’. Initially,
we use T = 100 seconds (i.e. 100 periods in total). Later,
we shall increase it to 1000 seconds. Also, define the
time variable, and generate the 1 Hz sine wave.

6
7

randn('state',0);
n=randn(size(s));

Generate the broadband white noise signal. (The
frequency band is limited by half the sampling rate, i.e.
zero to fs/2 Hz.)
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8
9

10

fc=20;
[b,a]=butter(9, fc/(fs/2));
n = filtfilt(b,a,n);

These lines convert the above broadband white noise
into a band-limited white noise by filtering with a digital
low-pass filter.
‘fc’ is the cut-off frequency of the digital filter. The
MATLAB function ‘[b,a] = butter(9, fc/(fs/2))’ designs
a ninth-order low-pass digital Butterworth filter (IIR),
where ‘b’ is a vector containing coefficients of a moving
average part and ‘a’ is a vector containing coefficients of
an auto-regressive part of the transfer function (see
Equation (6.12)).
The MATLAB function ‘output = filtfilt(b,a,input)’
performs zero-phase digital filtering. (Digital filtering
will be briefly mentioned in Appendix H.) The resulting
sequence ‘n’ is the band-limited (zero to 20 Hz) white
noise.

11

12

n=sqrt(2)*(std(s)/std(n))*n;
% SNR=-3dB
y=s+n;

Make the noise power twice the signal power, i.e. ‘Var(n)
= 2×Var(s)’. Note that the signal-to-noise ratio is −3
dB. Then, make the noisy signal ‘y’ by adding n to s.

13
14

15

maxlags=4*fs;
[Ryy, tau]=xcorr(y,y,maxlags,
'unbiased');
tau=tau/fs;

Calculate the autocorrelation function up to 4 seconds of
lag.

16
17

18
19

figure(1)
plot(t(1:8*fs),y(1:8*fs),
t(1:8*fs),s(1:8*fs), 'r:')
xlabel('Time (s)')
ylabel('\its\rm(\itt\rm) and
\ity\rm(\itt\rm)')

Plot the signals s(t) and y(t) up to 8 seconds on the same
figure.

20
21

22

23

figure(2)
plot(tau(maxlags+1:end),
Ryy(maxlags+1:end), 'r')
xlabel('Lag (\it\tau)');
ylabel('Autocorrelation')
axis([0 4 -1.5 1.5])

Plot the autocorrelation function Ryy(τ ) for the positive
lags only.
Run this MATLAB program again for T = 1000 (change
the value at Line 3), and compare the results.

Results
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(a) Clean time signal s(t) and noisy signal y(t)
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(c) Autocorrelation function for T = 1000 seconds

Comments: Comparing Figures (b) and (c), it can be seen that as T increases the results
improve. Note, however, that it will not be so if the signal is a transient. For example, if
the total record time in MATLAB Example 8.3 is increased the result gets worse (Line 5,
N = 4*fs; of MATLAB Example 8.3). This is because, after the transient signal dies out, it
does not average ‘signal×noise’ but ‘noise×noise’. Thus, we must apply the correlation
functions appropriately depending on the nature of the signals.

Example 8.6: Application of the cross-correlation function (time delay problem 1)

Consider the wheeled vehicle example given in Section 8.6 (see Figure 8.24). We assume
that the surface profile results in a band-limited time function (or profile) s(t) and the
trailing wheel experiences the same profile � seconds later, i.e. s(t − �).

We measure both these signals, and include uncorrelated broadband noises nx (t)
and ny(t), i.e.

x(t) = s(t) + nx (t)

y(t) = s(t − �) + ny(t)

The cross-correlation function Rxy(τ ) is (assuming zero mean values)

Rxy(τ ) = E[(s(t) + nx (t))
(
s(t − � + τ ) + ny(t + τ )

)
]

= E [s(t)s(t + τ − �)] = Rss(τ − �)

Line MATLAB code Comments

1
2
3
4
5
6
7

clear all
fs=1000; T=5; t=0:1/fs:T-1/fs;
randn('state',0);
s=randn(size(t));
fc=100; [b,a]=butter(9, fc/(fs/2));
s=filtfilt(b,a,s);
s=s-mean(s); s=s/std(s);
% Makes mean(s)=0 & std(s)=1;

The sampling rate is 1000 Hz, and the time variable
is defined up to 5 seconds.
Broadband white noise is generated, and then it is
low-pass filtered to produce a band-limited white
noise s(t), where the cut-off frequency of the filter is
100 Hz.
Produce the signal s(t) such that it has zero mean
value and the standard deviation is one.
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8
9

10
11

12

13

delta=0.2;
x=s(delta*fs+1:end);
y=s(1:end-delta*fs);
randn('state',1);
nx=1*std(s)*randn(size(x));
randn('state',2);
ny=1*std(s)*randn(size(y));
x=x+nx; y=y+ny;

Define the delay time � = 0.2 seconds, and generate
two sequences that correspond to s(t) and s(t − �).
Generate the broadband white noise nx (t) and nx (y).
Then add these signals appropriately to make noisy
measured signals x(t) and y(t). Note that the
signal-to-noise ratio is 0 dB for both signals.

14

15

16

17

maxlag1=0.25*fs;
maxlag2=0.5*fs;
[Rss, tau1]=xcorr(s,s,maxlag1,
'unbiased');
[Rxy, tau2]=xcorr(y,x,maxlag2,
'unbiased');
tau1=tau1/fs; tau2=tau2/fs;

Calculate the autocorrelation function Rss(τ ) and the
cross-correlation function Rxy(τ ), where the
unbiased estimators are used.

18
19
20
21
22

figure(1)
plot(tau1,Rss)
axis([-0.25 0.25 -0.4 1.2])
xlabel('Lag (\it\tau)')
ylabel('Autocorrelation
(\itR s s\rm(\it\tau\rm))')

Plot the autocorrelation function Rss(τ ).

23
24

25
26
27

figure(2)
plot(tau2(maxlag2+1:end),
Rxy(maxlag2+1:end))
axis([0 0.5 -0.4 1.2])
xlabel('Lag (\it\tau)')
ylabel('Cross-correlation
(\itR x y\rm(\it\tau\rm))')

Plot the cross-correlation function Rxy(τ ), and
compare this with the autocorrelation function
Rss(τ ).

Results
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(a) Autocorrelation function ( )ssR τ (b) Cross-correlation function ( )xyR τ

Comments: Note that, although both signals x(t) and y(t) have a very low SNR (0 dB
in this example), the cross-correlation function gives a clear copy of Rss(τ ) at τ = 0.2
seconds.
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Example 8.7: Application of the cross-correlation function (time delay problem 2)

This example describes the basic concept of using the cross-correlation function in a
(radar-like) system. It is similar to the previous Example (MATLAB Example 8.6),
except that we shall use a pulse-like signal for this example.

Let x(t) be a pulse transmitted by the radar system, and y(t) be the received signal
that contains a reflected pulse from a target such that

y(t) = ax(t − �) + n(t)

where n(t) is uncorrelated broadband noise. Note that the amplitude of the reflected
pulse in y(t) may be very small compared with the original pulse, and so the SNR of the
received signal y(t) will also be very low.

To maximize the detectability, a special filter called a ‘matched filter’ is usually
used. The matched filter is known to be an optimal detector while maximizing the SNR
of a signal that is buried in noise (Papoulis, 1977; Bencroft, 2002).

If the length of the pulse x(t) is T seconds, the impulse response function of the
matched filter is defined by

h(t) = x(T − t)

i.e. the pulse x(t) is time reversed and shifted. Now, the received signal y(t) is filtered,
i.e. y(t) is an input to the matched filter as shown in Figure (a).

(a) Matched filtering

y(t)
h(t) x(T t)= − Output?

out(t)
Input

The output signal is the convolution of y(t) and x(T − t). Thus, it follows that

out(t) =
∞∫

−∞
y(τ )h(t − τ )dτ =

∞∫
−∞

y(τ )x(T − (t − τ ))dτ =
∞∫

−∞
y(τ )x(T − t + τ )dt

=
∞∫

−∞
y(τ )x(τ + (T − t))dτ = Ryx (T − t) = Rxy(t − T )

Note that the result is the cross-correlation between the original pulse x(t) and the received
signal y(t), which is shifted by the length of the filter T .

Assuming zero mean values, the cross-correlation function Rxy(τ ) is

Rxy(τ ) = E [x(t) (ax(t − � + τ ) + n(t + τ ))]

= aE [x(t)x(t + τ − �)] = a Rxx (τ − �)
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i.e. the cross-correlation function gives the total time delay � between the transmitter
and the receiver. Thus, the distance to the target can be estimated by multiplying half of
the time delay �/2 by the speed of the wave. The filtered output is

out(t) = Rxy(t − T ) = a Rxx (t − T − �) = a Rxx (t − (T + �))

We will compare the two results: the direct cross-correlation function Rxy(τ ) and the
filtered output out(t). A significant amount of noise will be added to the received signal
(SNR is −6 dB).

Line MATLAB code Comments

1
2
3
4
5

clear all
fs=200;
t=0:1/fs:1;
x=chirp(t,5,1,15);
h=fliplr(x); % Matched filter

The sampling rate is 200 Hz, and the time
variable is defined up to 1 second. This is the
duration of the pulse.
For the transmitted pulse, a chirp waveform is
used. The MATLAB function ‘chirp(t,5,1,15)’
generates a linear swept frequency signal at the
time instances defined by ‘t’, where the
instantaneous frequency at time 0 is 5 Hz and at
time 1 second is 15 Hz.
Then, define the matched filter h. The MATLAB
function ‘fliplr(x)’ flips the vector x in the
left/right direction. The result is
h(t) = x(T − t), where T is 1 second in this
case.

6
7
8
9

figure(1)
plot(t,x)
xlabel('Time (s)')
ylabel('Chirp waveform,
\itx\rm(\itt\rm)')

Plot the transmitted chirp waveform x(t).

10
11
12
13

figure(2)
plot(t,h)
xlabel('Time (s)')
ylabel('Matched filter,
\ith\rm(\itt\rm)')

Plot the impulse response function of the
matched filter h(t), and compare with the
waveform x(t).

14
15
16
17
18
19

delta=2; a=0.1;
y=[zeros(1,delta*fs) a*x zeros(1,3*fs)];
t=[0:length(y)-1]/fs;
randn('state',0);
noise =2*std(a*x)*randn(size(y));
y=y+noise;

Define the total time delay � = 2 seconds and
the relative amplitude of the reflected waveform
a = 0.1.
Generate the received signal y(t). We assume
that the signal is measured for up to 6 seconds.
Define the time variable again according to the
signal y(t).
Generate the white noise whose standard
deviation is twice that of the reflected
waveform, then add this to the received signal.
The resulting signal has an SNR of −6 dB, i.e.
the noise power is four times greater than the
signal power.
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20
21
22
23

figure(3)
plot(t,y)
xlabel('Time (s)')
ylabel('Received signal,
\ity\rm(\itt\rm)')

Plot the noisy received signal y(t). Note
that the reflected waveform is completely
buried in noise, and so is not noticeable
(see Figure (d) below).

24
25
26

maxlags=5*fs;
[Rxy, tau] =xcorr(y,x,maxlags);
tau=tau/fs;

Define the maximum lags (up to
5 seconds), and calculate the
cross-correlation function Rxy(τ ). Note
that Rxy(τ ) is not normalized.

27
28

29
30

figure(4)
plot(tau(maxlags+1:end),
Rxy(maxlags+1:end))
xlabel('Lag (\it\tau)')
ylabel('Cross-correlation,
\itR x y\rm(\it\tau\rm)')

Plot the cross-correlation function Rxy(τ ).
Note that the peak occurs at τ = 2.

31 out=conv(y,h); out=out
(1:length(y));
% or out=filter(h,1,y);

Now, calculate out(t) by performing
the convolution of y(t) and h(t).
The same result can be achieved by
‘out=filter(h,1,y)’.
Note that ‘h’ can be considered as an FIR
(Finite Impulse Response) digital filter (or
an MA system). Then, the elements of ‘h’
are the coefficients of the MA part of the
transfer function (see Equation (6.12)). In
this case, there is no coefficient for the
auto-regressive part, except ‘1’ in the
denominator of the transfer function.

32
33
34
35

figure(5)
plot(t(1:maxlags),out(1:maxlags))
xlabel('Time (s)')
ylabel('Filtered signal,
\itout\rm(\itt\rm)')

Plot the filtered signal out(t), and compare
this with the cross-correlation function
Rxy(τ ). Now, the peak occurs at t = 3 and
the shape is exactly same as the
cross-correlation function, i.e. Rxy(τ ) is
delayed by the length of the filter T .

Results
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(b) Transmitted chirp waveform, x(t)
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–10

–5

0

5

10

15

Time (s)

F
il

te
re

d
 s

ig
n
al

, 
ou

t(
t)

(f) Output signal of the matched filter, out(t)

Comments: Note that Figure (f) is simply a delayed version of Figure (e). This example
demonstrates that the cross-correlation function maximizes the SNR of a signal that is
buried in noise.

Example 8.8: Cross-spectral density function (compare with MATLAB Example 8.4)

Consider two signals (see Equation (8.117))

x(t) = A sin(2πpt + θx )

y(t) = C sin(2πpt + θy) + D sin(n2πpt + φ)

These are the same as in MATLAB Example 8.4 except that the constant B is not included
here. The cross-correlation function and one-sided cross-spectral density function are (see
Equations (8.119) and (8.121))

Rxy(τ ) = 1

2
AC cos(2πpτ − θxy) and Gxy( f ) = AC

2
δ( f − p)e− jθxy

where θxy = θx − θy .
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Line MATLAB code Comments

1
2

3

4
5
6
7
8

clear all
A=1; C=2; D=2; thetax=0;
thetay=-pi/4; phi=pi/2; n=2;
p=1; w=2*pi*p; fs=200;
T=1000; t=0:1/fs:T-1/fs;
x=A*sin(w*t+thetax);
y=C*sin(w*t+thetay)+D*sin(n*w*t+phi);
maxlag=4*fs;
[Rxy, tau]=xcorr(y,x,maxlag,'unbiased');
tau=tau/fs;

Same as in MATLAB Example 8.4, except
that ‘T’ is increased by 10 times for better
estimation of the cross-correlation function.

9
10

11

f=fs*(0:maxlag-1)/maxlag;
Rxy=Rxy(maxlag+1:end-1);
% makes exactly four periods
Sxy=fft(Rxy);

Define the frequency variable.
Discard the negative part of τ , i.e. we only
take Rxy(τ ) for τ ≥ 0. This makes it exactly
four periods. Then, obtain Sxy( f ) via the DFT
of the cross-correlation function.

12
13
14
15

format long
thetaxy=thetax-thetay
ind=find(f==p);
arg Sxy at p Hz=angle(Sxy(ind))

The MATLAB command ‘format long’
displays longer digits. Display the value of
θxy = θx − θy which is π/4, and find the index
of frequency p Hz in the vector ‘f’.
Display the value of arg Sxy( f ) at p Hz, and
compare with the value of θxy .

Results

thetaxy=0.785 398 163 397 45

arg Sxy at p Hz=−0.785 403 708 042 95

Comments: This demonstrates that arg Sxy( f ) = −(θx − θy). We can see that the longer
the data length (T), the better the estimate of Rxy(τ ) that results in a better estimate of
Sxy( f ). Note, however, that we estimate Sxy( f ) by Fourier transforming the product of
the estimate of Rxy(τ ) and the rectangular window (i.e. the maximum lag is defined when
Rxy(τ ) is calculated (see Lines 7 and 10 of the MATLAB code)). The role of window
functions is discussed in Chapter 10.

Example 8.9: Application of the cross-spectral density function (compare with
MATLAB Example 8.6)

Consider the same example as in MATLAB Example 8.6 (the wheeled vehicle), where
the measured signal is

x(t) = s(t) + nx (t)

y(t) = s(t − �) + ny(t)
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and the cross-correlation function and the cross-spectral density function are

Rxy(τ ) = Rss(τ − �) and Sxy( f ) = H ( f )Sss( f ) = e− j2π f �Sss( f )

First, we shall estimate � using Sxy( f ). Then, by forming the ratio Sxy( f )/Sxx ( f ) we
shall estimate the frequency response function H ( f ) from which the time delay � can
also be estimated. Note that we are not using Sxy( f )/Sss( f ), but the following:

H1( f ) = Sxy( f )

Sxx ( f )
= Sxy( f )

Sss( f ) + Snx nx ( f )
(1)

Since Rnx nx (τ ) is an even function, Snx nx ( f ) is real valued, i.e. arg Snx nx ( f ) = 0. Thus, it
can be shown that

arg H ( f ) = arg H1( f ) = −2π f �

Note that H1( f ) may underestimate the magnitude of H ( f ) depending on the variance of
the noise. However, the phase of H1( f ) is not affected by uncorrelated noise, i.e. we can
see that the phase of H1( f ) is less sensitive to noise than the magnitude of H1( f ). More
details of the estimator H1( f ) defined by Equation (1) will be discussed in Chapter 9.

Line MATLAB code Comments

1
2
3
4
5
6
7

8
9

10
11

12

13
14
15
16
17

clear all
fs=500; T=100; t=0:1/fs:T-1/fs;
randn('state',0);
s=randn(size(t));
fc=100; [b,a]=butter(9,fc/(fs/2));
s=filtfilt(b,a,s);
s=s-mean(s); s=s/std(s);
% Makes mean(s)=0 & std(s)=1;
delta=0.2;
x=s(delta*fs+1:end);
y=s(1:end-delta*fs);
randn('state',1);
nx=1*std(s)*randn(size(x));
randn('state',2);
ny=1*std(s)*randn(size(y));
x=x+nx; y=y+ny;
maxlag=fs;
[Rxx, tau]=xcorr(x,x,maxlag, 'unbiased');
[Rxy, tau]=xcorr(y,x,maxlag, 'unbiased');
tau=tau/fs;

Same as in MATLAB Example 8.6,
except that the sampling rate is reduced
and the total record time ‘T’ is increased.
Note that the delay time � = 0.2 seconds
as before.
Note also that the same number of lags is
used for both autocorrelation and
cross-correlation functions.

18
19
20

f=fs*(0:maxlag-1)/maxlag;
Rxy 1=Rxy(maxlag+1:end-1);
Sxy=fft(Rxy 1);

Define the frequency variable.
Discard the negative part of τ , i.e. we
only take Rxy(τ ) for τ ≥ 0. If we include
the negative part of τ when the DFT is
performed, then the result is a pure
delay. If this is the case, we must
compensate for this delay.
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Then, obtain the cross-spectral density
function via the DFT of the
cross-correlation function.

21
22

23
24
25

figure(1)
plot(f(1:maxlag/2+1),
unwrap(angle(Sxy(1:maxlag/2+1))))
hold on
xlabel('Frequency (Hz)')
ylabel('arg\itS x y\rm(\itf\rm) (rad)');
axis([0 fs/2 -160 0])

Plot the unwrapped arg Sxy( f ) up to half
the sampling rate. Then hold the figure.
We can see the linear phase characteristic
up to about 100 Hz. Note that the signal
is band-limited (0 to 100 Hz), thus the
values above 100 Hz are meaningless.

26
27

28
29
30

ind=find(f==fc);
P1=polyfit(f(2:ind),
unwrap(angle(Sxy(2:ind))),1);
format long
t delay1=-P1(1)/(2*pi)
plot(f(2:ind), P1(1)*f(2:ind)+P1(2), 'r:');
hold off

Find the index of the cut-off frequency
(100 Hz) in the vector ‘f’. Then, perform
first-order polynomial curve fitting to
find the slope of the phase curve.
Display the estimated time delay. Plot
the results of curve fitting on the same
figure, then release the figure.

31
32
33
34

35

36

N=2*maxlag;
f=fs*(0:N-1)/N;
Sxx=fft(Rxx(1:N)); Sxy=fft(Rxy(1:N));
% Sxx=fft(Rxx(1:N)).
*exp(i*2*pi.*f*(maxlag/fs));
% Sxy=fft(Rxy(1:N)).
*exp(i*2*pi.*f*(maxlag/fs));
H1=Sxy./Sxx;

Calculate Sxx ( f ) and Sxy( f ) using the
DFT of Rxx (τ ) and Rxy(τ ), respectively.
Since Rxx (τ ) is an even function, we
must include the negative part of τ in
order to preserve the symmetric
property. Note that the last value of the
vector Rxx is not included to pinpoint
frequency values in the vector f. Then,
estimate the frequency response function
H1( f ) = Sxy( f )/Sxx ( f ) (Line 36).
As mentioned earlier, we must
compensate the delay due to the
inclusion of the negative part of τ .
However, this is not necessary for the
estimation of the frequency response
function, i.e. the ratio Sxy( f )/Sxx ( f )
cancels the delay if Rxx (τ ) and Rxy(τ )
are delayed by same amount.
Lines 34 and 35 compensate for the
delay, and can be used in place of Line
33.

37
38

39
40
41

figure(2)
plot(f(1:maxlag+1),
unwrap(angle(H1(1:maxlag+1))))
hold on
xlabel('Frequency (Hz)')
ylabel('arg\itH\rm 1(\itf\rm) (rad)');
axis([0 fs/2 -160 0])

Plot the unwrapped arg H1( f ) up to half
the sampling rate. Then hold the figure.
Compare this with the previous result.

42
43

44
45

ind=find(f==fc);
P2=polyfit(f(2:ind),
unwrap(angle(H1(2:ind))), 1);
t delay2=-P2(1)/(2*pi)
plot(f(2:ind), P2(1)*f(2:ind)+P2(2), 'r:');
hold off

Perform first-order polynomial curve
fitting as before.
Display the estimated time delay, and
plot the results of curve fitting on the
same figure, then release the figure.
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Results
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Dashed line: results of curve fitting
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Comments: Note that the two methods give almost identical results and estimate delay
time � = 0.2 very accurately.

Example 8.10: System identification using spectral density functions

In the previous MATLAB example, we saw that H1( f ) = Sxy( f )/Sxx ( f ) estimates the
system frequency response function. Although we shall discuss this matter in depth in
Chapter 9, a simple example at this stage may be helpful for understanding the role of
correlation and spectral density functions.

Consider the input–output relationship of a single-degree-of-freedom system in
Figure (a).

(a) A single-degree-of-freedom system

( )x t ( ) sinnt
d

d

A
h t e tζω ω

ω
−= ( )y t

In this example, we use white noise as an input x(t), i.e. Rxx (τ ) = kδ(τ ); then the
output y(t) is obtained by y(t) = h(t) ∗ x(t).

Rxx (τ ), Ryy(τ ), Rxy(τ ) and H1( f ) = Sxy( f )/Sxx ( f ) are examined for two different
values of measurement time. We shall see that the estimation results get better as the total
record time T increases.

Line MATLAB code Comments

1
2
3

4

clear all
fs=100; t=[0:1/fs:2.5-1/fs];
A=100; zeta=0.03; f=10; wn=2*pi*f;
wd=sqrt(1-zetaˆ2)*wn;
h=(A/wd)*exp(-zeta*wn*t).*sin(wd*t);

Define parameters for the impulse
response function h(t), and generate a
sequence accordingly. Note that the
impulse response is truncated at 2.5
seconds.
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5
6
7
8
9

randn('state',0);
T=100; % 100 and 2000
x=2*randn(1,T*fs);
y=conv(h,x); y=y(1:end-length(h)+1);
% y=filter(h,1,x);

Generate a white noise signal for input
x(t). Note that the variance of x(t) is
four (in theory). Then obtain the output
signal by convolution of h(t) and x(t).
First, run this MATLAB program using
the total record time T = 100 seconds.
Later run this program again using T
= 2000, and compare the results.
Note that the sequence ‘h’ is an FIR
filter, and Line 9 can be used instead of
Line 8.

10
11
12
13
14

maxlag=2.5*fs;
[Rxx, tau]=xcorr(x,x,maxlag, 'unbiased');
[Ryy, tau]=xcorr(y,y,maxlag, 'unbiased');
[Rxy, tau]=xcorr(y,x,maxlag, 'unbiased');
tau=tau/fs;

Calculate the correlation functions.
Note that we define the maximum lag
equal to the length of the filter h.

15
16
17

18
19
20

N=2*maxlag;
f=fs*(0:N-1)/N;
Sxx=fft(Rxx(1:N));
Syy=fft(Ryy(1:N))/(fsˆ2);
Sxy=fft(Rxy(1:N))/fs;
H1=Sxy./Sxx;
H=fft(h,N)/fs;

Calculate the spectral density
functions.
Note that different scaling factors are
used for Sxx, Syy and Sxy in order to
relate to their continuous functions (in
relative scale). This is due to the
convolution operation in Line 8, i.e.
the sequence ‘y’ must be divided by
‘fs’ for the equivalent time domain
signal y(t).
Calculate H1( f ) = Sxy( f )/Sxx ( f ),
and also calculate H ( f ) by the DFT of
the impulse response sequence. Then
compare these two results.

21
22
23

figure(1)
plot(tau,Rxx)
xlabel('Lag (\it\tau)');
ylabel('\itR x x\rm(\it\tau\rm)')

Plot the autocorrelation function
Rxx (τ ). It is close to the delta function
(but note that it is not a ‘true’ delta
function), and Rxx (0) ≈ 4 which is the
variance of x(t).

24
25
26

figure(2)
plot(tau,Ryy)
xlabel('Lag (\it\tau)');
ylabel('\itR y y\rm(\it\tau\rm)')

Plot the autocorrelation function
Ryy(τ ). Note that its shape is reflected
by the impulse response function.

27
28
29

figure(3)
plot(tau,Rxy)
xlabel('Lag (\it\tau)');
ylabel('\itR x y\rm(\it\tau\rm)')

Plot the cross-correlation function
Rxy(τ ). Note that its shape resembles
the impulse response function.

30
31

32

33

figure(4)
plot(f(1:N/2+1),
20*log10(abs(H1(1:N/2+1)))); hold on
xlabel('Frequency (Hz)');
ylabel('|\itH\rm 1(\itf\rm)| (dB)')
plot(f(1:N/2+1), 20*log10(abs(H(1:N/2+1))),
'r:'); hold off

Plot the magnitude spectrum of both
H1( f ) and H ( f ) (in dB scale), and
compare them.
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34
35

36

37

figure(5)
plot(f(1:N/2+1),
unwrap(angle(H1(1:N/2+1)))); hold on
xlabel('Frequency (Hz)');
ylabel('arg\itH\rm 1(\itf\rm) (rad)')
plot(f(1:N/2+1), unwrap(angle(H(1:N/2+1))),
'r:'); hold off

Plot the phase spectrum of both H1( f )
and H ( f ), and compare them. Run
this MATLAB program again for T =
2000, and compare the results.

Results

T = 100 T = 2000
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Comments:

1. By comparing the results of using T = 100 and T = 2000, it can be seen that as the
length of data (T ) increases, i.e. as the number of averages increases, we obtain better
estimates of correlation functions and frequency response functions.

Note particularly that the cross-correlation function Rxy(τ ) has a shape sim-
ilar to the impulse response function h(t). In fact, in the next chapter, we shall
see that Rxy(τ ) = kh(τ ) where k is the variance of the input white noise. To see
this, type the following script in the MATLAB command window (use the result of
T = 2000):

plot(t,4*h); hold on
plot(tau(maxlag+1:end), Rxy(maxlag+1:end), 'r:'); hold off
xlabel('Time (s) and lag (\it\tau\rm)'); ylabel('Amplitude')

The results are as shown in Figure (d). Note that h(t) is multiplied by 4 which
is the variance of the input white noise. (Note that it is not true white noise,
but is band-limited up to ‘fs/2’, i.e. fs/2 corresponds to B in Equation (8.97) and
Figure 8.30.)
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Also note that the autocorrelation function of the output is the scaled version of
the autocorrelation function of the impulse response function, i.e. Ryy(τ ) = k Rhh(τ ).
Type the following script in the MATLAB command window to verify this:

Rhh=xcorr(h,h,maxlag);
plot(tau,4*Rhh); hold on
plot(tau, Ryy, 'r:'); hold off
xlabel('Lag (\it\tau\rm)'); ylabel('Amplitude')

The results are shown in Figure (e). Note that Rhh(τ ) is not normalized since h(t) is
transient.
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Note that, in this MATLAB example, the system frequency response function is
scaled appropriately to match its continuous function. However, the correlation and
spectral density functions are not exactly matched to their continuous functions, they
are scaled relatively.

2. In this example, we have estimated the spectral density functions by taking the Fourier
transform of correlation functions. However, there are better estimation methods such
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as the segment averaging method (also known as Welch’s method (Welch, 1967)).
Although this will be discussed in Chapter 10, the use of Welch’s method is briefly
demonstrated. Type the following script in the MATLAB command window (use the
result of T =100):

Sxx w=cpsd(x,x, hanning(N),N/2, N, fs, 'twosided');
Sxy w=cpsd(x,y/fs, hanning(N),N/2, N, fs, 'twosided');
H1 w=Sxy w./Sxx w;
figure(1)
plot(f(1:N/2+1), 20*log10(abs(H1 w(1:N/2+1)))); hold on
plot(f(1:N/2+1), 20*log10(abs(H1(1:N/2+1))), 'r:'); hold off
xlabel('Frequency (Hz)'); ylabel('|\itH\rm 1(\itf\rm)| (dB)')
figure(2)
plot(f(1:N/2+1), unwrap(angle(H1 w(1:N/2+1)))); hold on
plot(f(1:N/2+1), unwrap(angle(H1(1:N/2+1))), 'r:'); hold off
xlabel('Frequency (Hz)'); ylabel('arg\itH\rm 1(\itf\rm) (rad)')

The MATLAB function ‘cpsd’ estimates the cross-spectral density function using
Welch’s method. In this MATLAB script, the spectral density functions are estimated
using a Hann window and 50 % overlap. Then, the frequency response function es-
timated using Welch’s method is compared with the previous estimate (shown in
Figures (b4) and (b5)). Note that the output sequence is divided by the sampling rate,
i.e. ‘y/fs’ is used in the calculation of cross-spectral density ‘Sxy w’ to match to its
corresponding continuous function.

The results are shown in Figures (f1) and (f2). Note that the result of using
Welch's method is the smoothed estimate. This smoothing reduces the variability, but
the penalty for this is the degradation of accuracy due to bias error. In general, the
smoothed estimator underestimates peaks and overestimates troughs. The details of
bias and random errors are discussed in Chapter 10.
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9
Linear System Response to Random
Inputs: System Identification

Introduction

Having described linear systems and random signals, we are now able to model the
response of linear systems to random excitations. We concentrate on single-input, single-
output systems, but can also consider how additional inputs in the form of noise on
measured signals might affect these characteristics. We shall restrict the systems to be
linear and time invariant, and all the signals involved to be stationary random processes.
Starting with basic input–output relationships, we introduce the concept and interpretation
of the ordinary coherence function. This leads on to the main aim of this book, namely
the identification of linear systems based on measurements of input and output.

9.1 SINGLE-INPUT, SINGLE-OUTPUT SYSTEMS

Consider the input–output relationship depicted as in Figure 9.1, which describes a linear
time-invariant system characterized by an impulse response function h(t), with input x(t) and
output y(t).

If the input starts at t0, then the response of the system is

y(t) = x(t)*h(t) =
t∫

t0

h(t − t1)x(t1)dt1 (9.1)

If we assume that the system is stable and the response to the stationary random input x(t)
has reached a steady state, i.e. y(t) is also a stationary process for t0 → −∞, then Equation

Fundamentals of Signal Processing for Sound and Vibration Engineers
K. Shin and J. K. Hammond. C© 2008 John Wiley & Sons, Ltd
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( )x t ( )

System

h t
Output

( )y t
Input

Figure 9.1 A single-input, single-output system

(9.1) can be written as

y(t) =
t∫

−∞
h(t − t1)x(t1)dt1 =

∞∫
0

h(τ )x(t − τ )dτ (9.2)

Whilst Equation (9.2) describes fully how input x(t) is related to the corresponding
response y(t), it is more helpful to develop relationships relating the first and second moments
of the input and response. We shall do this in both the time and frequency domains. We shall
include mean values, (auto and cross-) correlation functions and (power and cross-) spectral
density functions.

Mean Values

If the mean value of input x(t) is μx , then the mean value of the output y(t), μy , may be
obtained by taking expectations of Equation (9.2), i.e.

μy = E [y(t)] = E

⎡⎣ ∞∫
0

h(τ )x(t − τ )dτ

⎤⎦ (9.3)

The expectation operation is linear and so the right hand side of Equation (9.3) can be
written as

∞∫
0

h(τ )E [x(t − τ )] dτ =
∞∫

0

h(τ )μx dτ = μx

∞∫
0

h(τ )dτ

So it follows that

μy = μx

∞∫
0

h(τ )dτ (9.4)

From this it is clear that if the input has a zero mean value then so does the output
regardless of the form of h(τ ).

It will be convenient to assume that the signals have zero mean values in what follows.
This keeps the equations from becoming unwieldy.
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Autocorrelation Functions

If x(t) is characterized by its autocorrelation function Rxx (τ ) it is logical to ask how the
output autocorrelation Ryy(τ ) is related to the Rxx (τ ). So we need to evaluate Ryy(τ ) =
E[y(t)y(t + τ )], where y(t) is given by Equation (9.2). This follows, where again we
exploit the linear nature of the expected value operator which allows it under integral
operations:

Ryy(τ ) = E[y(t)y(t + τ )] = E

⎡⎣ ∞∫
0

∞∫
0

h(τ1)x(t − τ1)h(τ2)x(t + τ − τ2)dτ1dτ2

⎤⎦
=

∞∫
0

∞∫
0

h(τ1)h(τ2)E [x(t − τ1)x(t + τ − τ2)]dτ1dτ2 (9.5)

Thus,

Ryy(τ ) =
∞∫

0

∞∫
0

h(τ1)h(τ2)Rxx (τ + τ1 − τ2)dτ1dτ2 (9.6)

This is rather complicated and is a difficult equation to evaluate, and we find that the frequency
domain equivalent is more useful.

Taking the Fourier transform of Equation (9.6) gives

Syy( f ) =
∞∫

−∞
Ryy(τ )e− j2π f τ dτ

=
∞∫

0

h(τ1)e j2π f τ1 dτ1

∞∫
0

h(τ2)e− j2π f τ2 dτ2

∞∫
−∞

Rxx (τ + τ1 − τ2)e− j2π f (τ+τ1−τ2)dτ

(9.7)

Let τ + τ1 − τ2 = u in the last integral to yield

Syy( f ) = |H ( f )|2 Sxx ( f ) (9.8)

where H ( f ) = ∫ ∞
0

h(τ )e− j2π f τ dτ is the system frequency response function. (Recall that
the Fourier transform of the convolution of two functions is the product of their transforms,
i.e. Y ( f ) = F{y(t)} = F{h(t) ∗ x(t)} = H ( f )X ( f ) which gives |Y ( f )|2 = |H ( f )|2 |X ( f )|2,
and compare this with above equation.)
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We see that the frequency domain expression is much simpler than the corresponding
time domain expression. Equation (9.8) describes how the power spectral density of the input
is ‘shaped’ by the frequency response characteristic of the system. The output variance is the
area under the Syy( f ) curve, i.e. the output variance receives contributions from across the
frequency range and the influence of the frequency response function is apparent.

Cross-relationships

The expression in Equation (9.8) is real valued (there is no phase component), and shows
only the magnitude relationship between input and output at frequency f . The following
expression may be more useful since it includes the phase characteristic of the system.

Let us start with the input–output cross-correlation function Rxy(τ ) = E[x(t)y(t +
τ )]. Then

Rxy(τ ) = E[x(t)y(t + τ )] = E

⎡⎣ ∞∫
0

x(t)h(τ1)x(t + τ − τ1)dτ1

⎤⎦
=

∞∫
0

h(τ1)E[x(t)x(t + τ − τ1)]dτ1 (9.9)

i.e.,

Rxy(τ ) =
∞∫

0

h(τ1)Rxx (τ − τ1)dτ1 (9.10)

Whilst Equation (9.10) is certainly simpler than Equation (9.6), the frequency domain
equivalent is even simpler.

The Fourier transform of Equation (9.10) gives the frequency domain equivalent as

Sxy( f ) =
∞∫

−∞
Rxy(τ )e− j2π f τ dτ =

∞∫
0

h(τ1)e− j2π f τ1 dτ1

∞∫
−∞

Rxx (τ − τ1)e− j2π f (τ−τ1)dτ

(9.11)
thus

Sxy( f ) = H ( f )Sxx ( f ) (9.12)

Equation (9.12) contains the phase information of the frequency response function such
that arg Sxy( f ) = arg H ( f ). Thus, this expression is often used as the basis of system identi-
fication schemes, i.e. by forming the ratio Sxy( f )/Sxx ( f ) to give H ( f ). Note also that if we
restrict ourselves to f ≥ 0, then we may write the alternative expressions to Equations (9.8)
and (9.12) as

G yy( f ) = |H ( f )|2 Gxx ( f ) (9.13)
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and

Gxy( f ) = H ( f )Gxx ( f ) (9.14)

Examples

A First-order Continuous System with White Noise Input M9.1

Consider the first-order system shown in Figure 9.2 where the system equation is

T ẏ(t) + y(t) = x(t) T > 0 (9.15)

x(t)

System

Ty(t) y(t) x(t)
Output

y(t)Input

(white noise)

Figure 9.2 A first-order continuous system driven by white noise

We shall assume that x(t) has zero mean value and is ‘white’, i.e. has a delta function
autocorrelation which we write Rxx (τ ) = σ 2

x δ(τ ). The impulse response function of the system
is

h(t) = 1

T
e−t/T t ≥ 0

the transfer function is

H (s) = 1

1 + T s

and the frequency response function is

H ( f ) = 1

1 + j2π f T
(9.16)

Using Equation (9.6), the autocorrelation function of the output is

Ryy(τ ) =
∞∫

0

∞∫
0

h(τ1)h(τ2)σ 2
x δ(τ + τ1 − τ2)dτ1dτ2

= σ 2
x

∞∫
0

h(τ1)

∞∫
0

h(τ2)δ(τ + τ1 − τ2)dτ2dτ1

= σ 2
x

∞∫
0

h(τ1)h(τ + τ1)dτ1 = σ 2
x Rhh(τ ) (9.17)

This shows that for a white noise input, the output autocorrelation function is a scaled version
of the autocorrelation function formed from the system impulse response function.
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From Equation (9.8), the power spectral density function of the output is

Syy( f ) = |H ( f )|2 Sxx ( f ) = 1

1 + (2π f T )2
σ 2

x (9.18)

Note that

Ryy(0) = σ 2
y = σ 2

x

∞∫
0

h2(τ1)dτ1 = σ 2
x

∞∫
−∞

|H ( f )|2d f =
∞∫

−∞
Syy( f )d f

i.e. the output variance is shaped by the frequency response characteristic of the system and
is spread across the frequencies as shown in Figure 9.3. A filter operating on white noise in
this way is often called a ‘shaping filter’.

2
xσ

( )xxS f

2
( )H f

1

( )yyS f

2Area is yσ

22 ( )x H fσ
2
xσ

ff

Figure 9.3 Power spectral density functions of input and output for the system in Figure 9.2.

Cross-relationships
Consider the cross-spectral density and the cross-correlation functions which can be written
as

Sxy( f ) = H ( f )Sxx ( f ) = 1

1 + j2π f T
σ 2

x (9.19)

Rxy(τ ) =
∞∫

0

h(τ1)σ 2
x δ(τ − τ1)dτ1 = σ 2

x h(τ ) = σ 2
x

T
e−τ/T τ ≥ 0

= 0 τ < 0

(9.20)

From these two equations, it is seen that, if the input is white noise, the cross-spectral
density function is just a scaled version of the system frequency response function, and
the cross-correlation function is the impulse response function scaled by the variance of
the input white noise (see also the comments in MATLAB Example 8.10 in Chapter 8).
This result applies generally (directly from Equations (9.10) and (9.12)). Accordingly
white noise seems the ideal random excitation for system identification. These results are
theoretical and in practice band-limiting limits the accuracy of any identification.
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A First-order Continuous System with a Sinusoidal Input M9.2

Consider the same system as in the previous example. If the input is a pure sine function, e.g.
x(t) = A sin(2π f0t + θ ) with the autocorrelation function Rxx (τ ) = (A2/2) cos(2π f0τ ) (see
Section 8.6), the power spectral density function Sxx ( f ) = (A2/4)[δ( f − f0) + δ( f + f0)]
and the variance σ 2

x = A2/2, then the power spectral density function of the output is

Syy( f ) = |H ( f )|2 Sxx ( f ) = 1

1 + (2π f T )2

A2

4
[δ( f − f0) + δ( f + f0)] (9.21)

The variance and autocorrelation function of the output are

σ 2
y =

∞∫
−∞

Syy( f )d f = A2

2

1

1 + (2π f0T )2
(9.22)

Ryy(τ ) = F−1
{

Syy( f )
} = A2

2

1

1 + (2π f0T )2
cos(2π f0τ ) (9.23)

The cross-spectral density and the cross-correlation functions are

Sxy( f ) = H ( f )Sxx ( f ) = 1

1 + j2π f T

A2

4
[δ( f − f0) + δ( f + f0)] (9.24)

Rxy(τ ) = F−1
{

Sxy( f )
} = A2

2
√

1 + (2π f0T )2
sin(2π f0τ + φ) (9.25)

where

φ = tan−1

(
1

2π f0T

)
Thus, it can be seen that the response to a sinusoidal input is sinusoidal with the same frequency,
the variance differs (Equation (9.23) with τ = 0) and the cross-correlation (9.25) shows the
phase shift.

A Second-order Vibrating System

Consider the single-degree-of-freedom system shown in Figure 9.4 where the equation
of motion is

mÿ(t) + cẏ(t) + ky(t) = x(t) (9.26)

Force, x(t)
Displacement, y(t)

m

k

c

Figure 9.4 A single-degree-of-freedom vibration system
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The impulse response function of the system is

h(t) = 1

mωd
e−ζωn t sin ωd t t ≥ 0

and the frequency response function is

H ( f ) = 1

k − m(2π f )2 + jc(2π f )

where ωn = √
k/m, ζ = c/2mωn and ωd = ωn

√
1 − ζ 2.

If the input is white noise with the autocorrelation function Rxx (τ ) = σ 2
x δ(τ ), then

the power spectral density and the cross-spectral density functions of the output are

Syy( f ) = |H ( f )|2 Sxx ( f ) = 1[
k − m(2π f )2

]2 + [c(2π f )]2
σ 2

x (9.27)

and

Sxy( f ) = H ( f )Sxx ( f ) = 1

k − m(2π f )2 + jc(2π f )
σ 2

x (9.28)

The cross-correlation function of the output is

Rxy(τ ) = σ 2
x h(τ ) = σ 2

x

mωd
e−ζωnτ sin ωdτ τ ≥ 0

= 0 τ < 0 (9.29)

which is a scaled version of the impulse response function (see the comments in MATLAB
Example 8.10).

This and the other examples given in this section indicate how the correlation functions
and the spectral density functions may be used for system identification of single-input, single-
output systems (see also some other considerations given in Appendix C). Details of system
identification methods are discussed in Section 9.3.

9.2 THE ORDINARY COHERENCE FUNCTION

As a measure of the degree of linear association between two signals (e.g. input and
output signals), the ordinary coherence function is widely used. The ordinary coherence
function (or simply the coherence function) between two signals x(t) and y(t) is defined as

γ 2
xy( f ) =

∣∣Gxy( f )
∣∣2

Gxx ( f )G yy( f )
=

∣∣Sxy( f )
∣∣2

Sxx ( f )Syy( f )
(9.30)

From the inequality property of the spectral density functions given in Chapter 8, i.e.∣∣Sxy( f )
∣∣2 ≤ Sxx ( f )Syy( f ), it follows from Equation (9.30) that

0 ≤ γ 2
xy( f ) ≤ 1 (9.31)
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If x(t) and y(t) are input and output signals, then Syy( f ) = |H ( f )|2 Sxx ( f ) and
Sxy( f ) = H ( f )Sxx ( f ). So the coherence function for the single-input, single-output sys-
tem given in Figure 9.1 is shown to be

γ 2
xy( f ) = |H ( f )|2 S2

xx

Sxx ( f ) |H ( f )|2 Sxx ( f )
= 1 (9.32)

Thus, it is shown that the coherence function is unity if x(t) and y(t) are linearly related.
Conversely, if Sxy( f ) is zero, i.e. the two signals are uncorrelated, then the coherence
function is zero. If the coherence function is greater than zero but less than one, then
x(t) and y(t) are partially linearly related. Possible departures from linear relationship
between x(t) and y(t) include:

1. Noise may be present in the measurements of either or both x(t) and y(t).
2. x(t) and y(t) are not only linearly related (e.g. they may also be related nonlinearly).
3. y(t) is an output due not only to input x(t) but also to other inputs.

Since γ 2
xy( f ) is a function of frequency its appearance across the frequency range can be

very revealing. In some ranges it may be close to unity and in others not, e.g. see Figure
9.5, indicating frequency ranges where ‘linearity’ may be more or less evident.

2 ( )xy f

1.0

f

Figure 9.5 A typical example of the coherence function

Effect of Measurement Noise

Case (a) Output Noise
Consider the effect of measurement noise on the output as shown in Figure 9.6, where ym(t) is
a measured signal such that ym(t) = y(t) + ny(t). We assume that input x(t) and measurement
noise ny(t) are uncorrelated. Since y(t) is linearly related to x(t), then y(t) and ny(t) are also
uncorrelated. Then, the coherence function between x(t) and ym(t) is

γ 2
xym

( f ) =
∣∣Sxym ( f )

∣∣2

Sxx ( f )Sym ym ( f )
(9.33)

( )x t

( ),  noiseyn t

( )my t( )h t
( )y t

Figure 9.6 The effect of measurement noise on the output
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where Sym ym ( f ) = Syy( f ) + Sny ny ( f ) = |H ( f )|2 Sxx ( f ) + Sny ny ( f ). Using the standard
input–output relationship, i.e.

Sxym ( f ) = Sxy( f ) + Sxny ( f ) = Sxy( f ) = H ( f )Sxx ( f ) (9.34)

the coherence function becomes

γ 2
xym

( f ) = |H ( f )|2 S2
xx ( f )

Sxx ( f )
[|H ( f )|2 Sxx ( f ) + Sny ny ( f )

] = 1

1 + Sny ny ( f )

|H ( f )|2 Sxx ( f )

(9.35)

So

γ 2
xym

( f ) = 1

1 + Sny ny ( f )

Syy( f )

= Syy( f )

Syy( f ) + Sny ny ( f )
= Syy( f )

Sym ym ( f )
(9.36)

From Equation (9.36), it can be seen that the coherence function γ 2
xym

( f ) describes how much
of the output power of the measured signal ym(t) is contributed (linearly) by input x(t). Also,
since the noise portion is

Sny ny ( f )

Sym ym ( f )
= Sym ym ( f ) − Syy( f )

Sym ym ( f )
= 1 − γ 2

xym
( f )

the quantity 1−γ 2
xym

( f ) is the fractional portion of the output power that is not due to input x(t).

Thus, a useful concept, called the coherent output power (spectral density function),
is defined as

Syy( f ) = γ 2
xym

( f )Sym ym ( f ) (9.37)

which describes the part of the output power fully coherent with the input. In words, the
power spectrum of the output that is due to the source is the product of the coherence
function between the source and the measured output, and the power spectrum of the
measured output. Similarly, the noise power (or uncoherent output power) is the part of
the output power not coherent with the input, and is

Sny ny ( f ) = [
1 − γ 2

xym
( f )

]
Sym ym ( f ) (9.38)

The ratio Syy( f )/Sny ny ( f ) is the signal-to-noise ratio at the output at frequency f . If this
is large then γ 2

xym
( f ) → 1, and if it is small then γ 2

xym
( f ) → 0, i.e.

γ 2
xym

( f ) → 1 as
Syy( f )

Sny ny ( f )
→ ∞ and γ 2

xym
( f ) → 0 as

Syy( f )

Sny ny ( f )
→ 0 (9.39)

Case (b) Input Noise
Now consider the effect of measurement noise (assumed uncorrelated with x(t)) on the input
as shown in Figure 9.7, where xm(t) is a measured signal such that xm(t) = x(t) + nx (t) and
Sxm xm ( f ) = Sxx ( f ) + Snx nx ( f ). Then, similar to the previous case, the coherence function
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( )x t ( )y t

( )xn t

( )mx t

+

( )h t

Figure 9.7 The effect of measurement noise on the input

between xm(t) and y(t) is

γ 2
xm y( f ) = 1

1 + Snx nx ( f )

Sxx ( f )

= Sxx ( f )

Sxx ( f ) + Snx nx ( f )
= Sxx ( f )

Sxm xm ( f )
(9.40)

Thus, the input power and noise power can be decomposed as

Sxx ( f ) = γ 2
xm y( f )Sxm xm ( f ) (9.41)

and

Snx nx ( f ) = [
1 − γ 2

xm y( f )
]

Sxm xm ( f ) (9.42)

Case (c) Input and Output Noise
Consider the uncorrelated noise at both input and output as shown in Figure 9.8, where xm(t)
and ym(t) are the measured input and output.

( )x t ( )y t

( )yn t( )xn t

( )my t( )mx t

( )h t

Figure 9.8 The effect of measurement noise on both input and output

The noises are assumed mutually uncorrelated and uncorrelated with x(t). Then the coherence
function between xm(t) and ym(t) becomes

γ 2
xm ym

( f ) =
∣∣Sxm ym ( f )

∣∣2

Sxm xm ( f )Sym ym ( f )
= 1

1 + Snx nx ( f )

Sxx ( f )
+ Sny ny ( f )

Syy( f )
+ Snx nx ( f )Sny ny ( f )

Sxx ( f )Syy( f )

(9.43)

Note that, in this case, it is not possible to obtain the signal powers Sxx ( f ) and Syy( f )
using the measured signals xm(t) and ym(t) without knowledge or measurement of the noise.

Some comments on the ordinary coherence function are given in Appendix D.

9.3 SYSTEM IDENTIFICATIONM9.4, 9.5

The objective of this section is to show how we can estimate the frequency response
function of a linear time-invariant system when the input is a stationary random process.
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It is assumed that both input and output are measurable, but may be noise contaminated.
In fact, as we have seen earlier, the frequency response function H ( f ) can be obtained by
forming the ratio Sxy( f )/Sxx ( f ) (see Equation (9.12)). However, if noise is present on
the measured signals xm(t) and ym(t) as shown in Figure 9.8, then we may only ‘estimate’
the frequency response function, e.g. by forming Sxm ym ( f )/Sxm xm ( f ). In fact we shall now
see that this is only one particular approach to estimating the frequency response from
among others.

Figure 9.8 depicts the problem we wish to address. On the basis of making mea-
surements xm(t) and ym(t), which are noisy versions of input x(t) and response y(t), we
wish to identify the linear system linking x and y.

To address this problem we begin by resorting to something very much simpler.
Forget for the moment the time histories involved and consider the problem of trying to
link two random variables X and Y when measures of this bivariate process are available
as pairs (xi , yi ), i = 1, 2, . . . , N . Suppose we wish to find a linear relationship between
x and y of the form y = ax . We may plot the data as a scatter diagram as shown in
Figure 9.9. The parameter a might be found by adjusting the line to ‘best-fit’ the scatter
of points. In this context the points (xi , yi ) could come from any two variables, but to
maintain contact with Figure 9.8 it is convenient to think of x as an input and y as the
output. With reference to Figure 9.9, the slope a is the ‘gain’ relating x to y.

To find the slope a that is best means deciding on some objective measure of closeness
of fit and selecting the value of a that achieves the ‘optimal’ closeness. So we need some
measure of the ‘error’ between the line and the data points.

y ax

x

y

Figure 9.9 Scatter diagram relating variable x (input) and y (output)

We choose to depict three errors that characterize the ‘distance’ of a data point from
the line. These are shown in Figure 9.10:� Case 1: The distance (error) is measured in the y direction and denoted ey . This assumes

that offsets in the x direction are not important. Since x is identified with input and
y with output, the implication of this is that it is errors on the output that are more
important than errors on the input. This is analogous to the system described in Case
(a), Section 9.2 (see Figure 9.6).� Case 2: In this case we reverse the situation and accentuate the importance of offsets
(errors) in the x direction, ex , i.e. errors on input are more important than on output.
This is analogous to the system described in Case (b), Section 9.2 (see Figure 9.7).� Case 3: Now we recognize that errors in both x and y directions matter and choose an
offset (error) measure normal to the line eT . The subscript T denotes ‘total’. This is
analogous to the system described in Case (c), Section 9.2 (see Figure 9.8).
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ye

x

y

Case 1

xe

x

y

Case 2

Te

x

y

Case 3

Figure 9.10 Scatter diagram; three types of error, ey , ex and eT

For each of the cases we need to create an objective function or cost function
from these measures and find the slope a that minimizes the cost function. There are
an unlimited set of such functions and we shall choose the simplest, namely the sum of
squared errors. This results in three least squares optimisation problems as follows.

Case 1: Errors in the Output, ey (i.e. xi are known exactly but yi are noisy)

In this case, we will find the parameter a1 that fits the data such that y = a1x and minimizes
the sum of squares of errors

∑N
i=1 (ei

y)2, where the error is defined as ei
y = yi − a1xi . We

form an objective function (or a cost function) as

J1 = 1

N

N∑
i=1

(
ei

y

)2 = 1

N

N∑
i=1

(yi − a1xi )
2 (9.44)

and minimize J1 with respect to a1. J1 is a quadratic function of a1, and has a single
minimum located at the solution of d J1/da1 = 0, i.e.

d J1

da1

= 2

N

N∑
i=1

(yi − a1xi )(−xi ) = 0 (9.45)

Thus, the parameter a1 is found by

a1 =
∑N

i=1 xi yi∑N
i=1 x2

i

(9.46)

Note that, if the divisor N is used in the numerator and denominator of Equation (9.46),
the numerator is the cross-correlation of two variables x and y, and the denominator is
the variance of x (assuming zero mean value). If N is large then it is logical to write a
limiting form for a1 as

a1 = E [xy]

E
[
x2

] = σxy

σ 2
x

(for zero mean) (9.47)

emphasizing the ratio of the cross-correlation to the input power for this estimator.

Case 2: Errors in the Input, ex (i.e. yi are known exactly but xi are noisy)
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Now we find the parameter a2 for y = a2x . The error is defined as ei
x = xi − yi/a2, and

we form an objective function as

J2 = 1

N

N∑
i=1

(
ei

x

)2 = 1

N

N∑
i=1

(
xi − yi

a2

)2

(9.48)

Then, minimizing J2 with respect to a2, i.e.

d J2

da2

= 2

N

N∑
i=1

(
xi − yi

a2

) (
yi

a2
2

)
= 0 (9.49)

gives the value of parameter a2 as

a2 =
∑N

i=1 y2
i∑N

i=1 xi yi

(9.50)

Note that, in contrast to Equation (9.46), the numerator of Equation (9.50) represents the
power of the output and the denominator represents the cross-correlation between x and
y. Again, taking a limiting case we express this

a2 = E
[
y2

]
E [xy]

= σ 2
y

σxy
(for zero mean) (9.51)

Case 3: Errors in Both Input and Output, eT (i.e. both variables xi and yi are noisy)

In this case, the error to be minimized is defined as the perpendicular distance to the line
y = aT x as shown in Figure 9.11. This approach is called the total least squares (TLS)
scheme, and from the figure the error can be written as

ei
T = yi − aT xi√

1 + a2
T

(9.52)

Ty a x

ix

iy

T ia x

i T iy a x
21i Tx a

2
sin

1

i
iT

i T i i T

xe

y a x x a

i
Te

y

x

Figure 9.11 Representation of error eT normal to the line y = aT x

Then the cost function JT is

JT = 1

N

N∑
i=1

(
ei

T

)2 = 1

N

N∑
i=1

(yi − aT xi )
2(

1 + a2
T

) (9.53)
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This is a non-quadratic function of aT and so there may be more than one extreme value.
The necessary conditions for extrema are obtained from

d JT

daT
= 1

N

N∑
i=1

2(yi − aT xi )(−xi )(
1 + a2

T

) − 1

N

N∑
i=1

(yi − aT xi )
2(2aT )(

1 + a2
T

)2
= 0 (9.54)

This yields a quadratic equation in aT as

a2
T

N∑
i=1

xi yi + aT

(
N∑

i=1

x2
i −

N∑
i=1

y2
i

)
−

N∑
i=1

xi yi = 0 (9.55)

Thus, we note that the non-quadratic form of the cost function JT (9.53) results in two
possible solutions for aT , i.e. we need to find the correct aT that minimizes the cost
function. We resolve this as follows. If we consider N large then the cost function JT can
be rewritten as

JT = E
[(

ei
T

)2
]

= E

[
(yi − aT xi )

2

1 + a2
T

]
= σ 2

y + a2
T σ 2

x − 2aT σxy

1 + a2
T

(for zero mean) (9.56)

Then equation (9.55) becomes

a2
T σxy + aT

(
σ 2

x − σ 2
y

) − σxy = 0 (9.57)

The solutions of this are given by

aT =
(
σ 2

y − σ 2
x

) ±
√(

σ 2
x − σ 2

y

)2 + 4σ 2
xy

2σxy
(9.58)

A typical form of the theoretical cost function (Equation (9.56)) may be drawn as in
Figure 9.12 (Tan, 2005), where +√

and −√
denote the solutions (9.58) with positive

and negative square root respectively.

Ta

TJ

, 0y ax a

Ta

TJ

, 0y ax a

Figure 9.12 Theoretical cost function JT versus aT

From this we see that the correct parameter aT (in a limiting form) for y = aT x
that minimizes the cost function JT is given by the solution (9.58) which has the positive
square root, i.e.

aT =
(
σ 2

y − σ 2
x

) +
√(

σ 2
x − σ 2

y

)2 + 4σ 2
xy

2σxy
(9.59)
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Accordingly, the correct parameter aT for Equation (9.55) is

aT =

(
N∑

i=1

y2
i −

N∑
i=1

x2
i

)
+

√(
N∑

i=1

x2
i −

N∑
i=1

y2
i

)2

+ 4

(
N∑

i=1

xi yi

)2

2
N∑

i=1

xi yi

(9.60)

Frequency Response Identification

The relationship between x(t) and y(t) in the time domain is convolution (not a simple gain) -
but it becomes a gain through the Fourier transform, i.e. Y ( f ) = H ( f )X ( f ), and the previous
gain a is now the complex-valued H ( f ) which is frequency dependent.

With reference to Figure 9.8, i.e. considering measurement noise, suppose we have a
series of measured results Xmi ( f ) and Ymi ( f ). The index i previously introduced now implies
each sample realization that corresponds to each sample time history of length T . Accordingly,
the form

1

N

N∑
i=1

x2
i

used in the previous analysis can be replaced by

1

N

N∑
i=1

|Xmi ( f )|2
T

As we shall see in Chapter 10, this is an estimator for the power spectral density function of
xm(t), i.e.

S̃xm xm ( f ) = 1

N

N∑
i=1

|Xmi ( f )|2
T

(9.61)

Similarly, the cross-spectral density between xm(t) and ym(t) can be estimated by

S̃xm ym ( f ) = 1

N

N∑
i=1

X*
mi ( f )Ymi ( f )

T
(9.62)

These results introduce three frequency response function estimators based on a1, a2 and aT .
A logical extension of the results to complex form yields the following:

1. Estimator H1(f ): Based on Equation (9.46),

a1 =
N∑

i=1

xi yi

/
N∑

i=1

x2
i
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the estimator H1( f ) is defined as

H1( f ) = S̃xm ym ( f )

S̃xm xm ( f )
(9.63)

We shall see later that this estimator is unbiased with respect to the presence of output
noise, i.e. ‘best’ for errors (noise) on the output. Once again, the limiting (theoretical)
version of this is

H1( f ) = Sxm ym ( f )

Sxm xm ( f )
(9.64)

This estimator is probably the most widely used.
2. Estimator H2( f ): Based on Equation (9.50),

a2 =
N∑

i=1

y2
i

/
N∑

i=1

xi yi

the estimator H2( f ) is defined as

H2( f ) = S̃ym ym ( f )

S̃ym xm ( f )
(9.65)

This estimator is known to be ‘best’ for errors (noise) on the input, i.e. it is unbiased
with respect to the presence of input noise. Note that the denominator is S̃ym xm ( f ) (not
S̃xm ym ( f )). This is due to the location of the conjugate in the numerator of Equation (9.62),
so S̃ym xm ( f ) must be used to satisfy the form H ( f ) = Y ( f )

/
X ( f ) (see Appendix E for

a complex-valued least squares problem). Similar to the H1( f ) estimator, the theoretical
form of Equation (9.65) is

H2( f ) = Sym ym ( f )

Sym xm ( f )
(9.66)

3. Estimator HW( f ) (also known as Hs( f ) or Hν( f )): This estimator is sometimes called
the total least squares estimator. It has various derivations with slightly different forms –
sometimes it is referred to as the Hν( f ) estimator (Leuridan et al., 1986; Allemang and
Brown, 2002) and as the Hs( f ) estimator (Wicks and Vold, 1986). Recently, White et al.
(2006) generalized this estimator as a maximum likelihood (ML) estimator. We denote
this ML estimator HW ( f ), which is

HW ( f )

=
S̃ym ym ( f ) − κ( f )S̃xm xm ( f ) +

√[
S̃xm xm ( f )κ( f ) − S̃ym ym ( f )

]2 + 4
∣∣S̃xm ym ( f )

∣∣2
κ( f )

2S̃ym xm ( f )

(9.67)

where κ( f ) is the ratio of the spectra of the measurement noises, i.e. κ( f ) =
Sny ny ( f )/Snx nx ( f ).

This estimator is ‘best’ for errors (noise) on both input and output, i.e. it is unbiased
with respect to the presence of both input and output noise provided that the ratio of
noise spectra is known. Note that if κ( f ) = 0 then HW ( f ) = H2( f ), and if κ( f ) → ∞
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then HW ( f ) → H1( f ) (see Appendix F for the proof). In practice, it may be difficult
to know κ( f ). In this case, κ( f ) = 1 may be a logical assumption, i.e. the noise power
in the input signal is the same as in the output signal. If so, the estimator HW ( f ) becomes
the solution of the TLS method which is often referred to as the Hν( f ) estimator (we
use the notation HT ( f ) where the subscript T denotes ‘total’), i.e.

HT ( f ) =
S̃ym ym ( f ) − S̃xm xm ( f ) +

√[
S̃xm xm ( f ) − S̃ym ym ( f )

]2 + 4
∣∣S̃xm ym ( f )

∣∣2

2S̃ym xm ( f )
(9.68)

Note that this is analogous to aT defined in Equation (9.60). The theoretical form of this
is

HT ( f ) =
Sym ym ( f ) − Sxm xm ( f ) +

√[
Sxm xm ( f ) − Sym ym ( f )

]2 + 4
∣∣Sxm ym ( f )

∣∣2

2Sym xm ( f )
(9.69)

The Biasing Effect of Noise on the Frequency Response Function Estimators

H1( f ) and H2( f )

First, consider the effect of output noise only as described in Figure 9.6. The H1( f ) estimator
is

H1( f ) = Sxym ( f )

Sxx ( f )
= Sxy( f ) + Sxny ( f )

Sxx ( f )
= Sxy( f )

Sxx ( f )
= H ( f ) (9.70)

Thus, H1( f ) is unbiased if the noise is present on the output only. We assume that appropriate
averaging and limiting operations are applied for this expression, i.e. theoretical spectral
density functions are used. Now, consider the H2( f ) estimator which becomes

H2( f ) = Sym ym ( f )

Sym x ( f )
= Syy( f ) + Sny ny ( f )

Syx ( f )
= H ( f )

(
1 + Sny ny ( f )

Syy( f )

)
(9.71)

Note that this estimator is biased and overestimates H ( f ) if the output noise is present, depend-
ing on the signal-to-noise ratio of the output signal (it may be different for each frequency).
If the input is white noise, then the input power spectral density function Sxx ( f ) is constant
over the entire frequency range while the output power spectral density Syy( f ) varies as the
frequency changes, depending on the frequency response characteristics.

Now consider the case when only the input noise is present as shown in Figure 9.7. The
H1( f ) and H2( f ) estimators are

H1( f ) = Sxm y( f )

Sxm xm ( f )
= Sxy

Sxx ( f ) + Snx nx

= H ( f )

1 + Snx nx /Sxx ( f )
(9.72)

H2( f ) = Syy( f )

Syxm ( f )
= Syy( f )

Syx ( f ) + Synx ( f )
= Syy( f )

Syx ( f )
= H ( f ) (9.73)

Thus, it is shown that H2( f ) is unbiased with respect to input noise while H1( f ) is biased and
underestimates H ( f ) if the input noise is present. Note that the bias of the H1( f ) estimator
depends on the ratio Snx nx ( f )/Sxx ( f ). If both noise and input signal are white noise, then the
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ratio is constant for all frequencies, i.e. the H1( f ) estimator becomes simply a scaled version
of the true frequency response function H ( f ) (see MATLAB Example 9.4, Case (b)).

ExampleM9.4

Consider a system (with reference to Figure 9.8) that displays resonant and anti-resonant
behaviour, i.e. as shown in Figure 9.13.

f
arf

( )H f

rf

dB

Figure 9.13 A system with resonant and anti-resonant behaviour

Assume that both input and response are noise contaminated. The input and output
signal-to-noise ratios (SNRs) are Sxx ( f )/Snx nx ( f ) and Syy( f )/Sny ny ( f ). Also, assume
the noises are white.

Whilst the input SNR is unaffected by the system response, the output SNR is
largest at resonance ( fr ) and smallest at anti-resonance ( far ). Accordingly the ‘errors’
at the output are (relatively) more significant at far than fr , so estimator H1( f ) is more
appropriate than H2( f ) for this frequency. Conversely, at frequency fr the output SNR
is high, and so errors on input may be more significant and therefore H2( f ) may be more
appropriate.

Thus, H1( f ) usually underestimates the frequency response function at resonances
of the structure but gives better estimates at anti-resonances than H2( f ). On the other
hand, as mentioned earlier, H2( f ) is relatively unbiased at resonances but significantly
overestimates near the anti-resonances (see MATLAB Example 9.4, Case (a)). Thus,
when both input and output noise are present the TLS estimator HT ( f ) (or HW ( f ) if
κ( f ) can be measured) may be preferably used (see MATLAB Example 9.4, Case (c)).
Alternatively, a combination of frequency response function estimates H1( f ), H2( f ) and
HT ( f ) may also be used for different frequency regions appropriately.

Note that the biasing effect of noise on the estimators H1( f ), H2( f ) and HW ( f ) is limited
to the magnitude spectrum only, i.e. the phase spectrum is unaffected by uncorrelated noise
and is not biased. This can be easily verified from Equations (9.71) and (9.72), where Sny ny ( f ),
Syy( f ), Snx nx ( f ) and Sxx ( f ) are all real valued. Thus, it follows that

arg Sxm ym ( f ) = arg

(
1

Sym xm ( f )

)
= arg H1( f ) = arg H2( f ) = arg HW ( f ) = arg H ( f )

(9.74)
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This result indicates that the phase spectrum is less sensitive to noise. However, note that this
is a theoretical result only. In practice we only have an estimate S̃xm ym ( f ). Thus, the phase
spectrum also has errors as we shall see in Chapter 10.

The Effect of Feedback

In some situations, there may be feedback in a dynamical system, as shown for example in
Figure 9.14. The figure might depict a structure with frequency response function H ( f ), with
x(t) the force and y(t) the response (e.g. acceleration). The excitation is assumed to come from
an electrodynamic shaker with input signal r (t). The force applied depends on this excitation
but is also affected by the back emf (electromotive force) effect due to the motion. This is
modelled as the feedback path G( f ). A second input (uncorrelated with r (t)) to the system is
modelled by the signal n(t). This could come from another (unwanted) excitation.

( )x t

( )n t

( )y t( )H f
( )z t

( )G f

( )y t

( )r t

Figure 9.14 A system with feedback

The objective is to determine H ( f ), i.e. the forward path frequency response function us-
ing the measured signals x(t) (force) and y(t) (acceleration). Simply using the H1( f ) estimator
turns out not to be helpful as the following demonstrates.

In this case, X ( f ) and Y ( f ) can be written as

X ( f ) = R( f ) + G( f )Y ( f ) = R( f ) + G( f )N ( f )

1 − H ( f )G( f )
(9.75)

Y ( f ) = H ( f )X ( f ) + N ( f ) = N ( f ) + H ( f )R( f )

1 − H ( f )G( f )

Thus, the H1( f ) estimator based on the measured signals x(t) and y(t) gives

H1( f ) = Sxy( f )

Sxx ( f )
= H ( f )Srr ( f ) + G*( f )Snn( f )

Srr ( f ) + |G( f )|2 Snn( f )
(9.76)

which is not the required H ( f ). Rather than determining H ( f ), note that as the noise power
gets large, H1( f ) estimates the inverse of G( f ), i.e.

H1( f ) = Sxy( f )

Sxx ( f )
≈ 1

G( f )
if

Srr ( f )

Snn( f )
→ 0 (9.77)

It is clear, however, that in the absence of disturbance n(t), H1( f ) does indeed result in H ( f )
even in the presence of feedback.

From this we see that (if the additional input n(t) is present) we need another approach
and this was provided by Wellstead (1981), who proposed using a third signal, namely the
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excitation to the shaker r (t). In essence he proposed an estimator referred to here as

H3( f ) = Sry( f )

Sr x ( f )
(9.78)

i.e. the ratio of two cross-spectral density functions. Equation (9.75) can be rearranged as

X ( f ) [1 − G( f )H ( f )] = R( f ) + G( f )N ( f )
(9.79)

Y ( f ) [1 − G( f )H ( f )] = H ( f )R( f ) + N ( f )

Then, the cross-spectral density functions are

Sr x ( f ) = Srr ( f )

1 − G( f )H ( f )
and Sry( f ) = H ( f )Srr ( f )

1 − G( f )H ( f )
(9.80)

So H3( f ) = H ( f ) even in the presence of disturbance n(t) and feedback.

9.4 BRIEF SUMMARY

1. The input–output relationship in the time domain for a stationary random process x(t)
is

Ryy(τ ) =
∞∫

0

∞∫
0

h(τ1)h(τ2)Rxx (τ + τ1 − τ2)dτ1dτ2 and

Rxy(τ ) =
∞∫

0

h(τ1)Rxx (τ−τ1)dτ1

and the corresponding frequency domain expressions are

Syy( f ) = |H ( f )|2 Sxx ( f ) and Sxy( f ) = H ( f )Sxx ( f )

2. If the input x(t) is white noise, then (for zero mean values)

Ryy(τ ) = σ 2
x Rhh(τ ) and Rxy(τ ) = σ 2

x h(τ )

3. The ordinary coherence function between input x(t) and output y(t) is defined as

γ 2
xy( f ) =

∣∣Sxy( f )
∣∣2

Sxx ( f )Syy( f )
0 ≤ γ 2

xy( f ) ≤ 1

which measures the degree of linearity between x(t) and y(t).
4. When the effect of measurement noise on the output is considered, the coherent output

power is defined as

Syy( f ) = γ 2
xym

( f )Sym ym ( f )
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and the noise power (or uncoherent output power) is defined as

Sny ny ( f ) = [
1 − γ 2

xym
( f )

]
Sym ym ( f )

5. Power spectral and cross-spectral density functions can be estimated by

S̃xm xm ( f ) = 1

N

N∑
i=1

|Xmi ( f )|2
T

and S̃xm ym ( f ) = 1

N

N∑
i=1

X*
mi ( f )Ymi ( f )

T

6. The frequency response function is estimated by:

(a) H1( f ) = S̃xm ym ( f )

S̃xm xm ( f )

which is unbiased with respect to the output noise;

(b) H2( f ) = S̃ym ym ( f )

S̃ym xm ( f )

which is unbiased with respect to the input noise;

(c) HW ( f ) =
S̃ym ym ( f ) − κ( f )S̃xm xm ( f ) +

√[
S̃xm xm ( f )κ( f ) − S̃ym ym ( f )

]2 + 4
∣∣S̃xm ym ( f )

∣∣2
κ( f )

2S̃ym xm ( f )

where κ( f ) = Sny ny ( f )/Snx nx ( f ). This is unbiased with respect to both input and
output noise. If κ( f ) is unknown, κ( f ) = 1 may be used.

9.5 MATLAB EXAMPLES

Example 9.1: System identification using spectral density functions: a first-order
system

Consider the following first-order system (see Equation (9.15))

T ẏ(t) + y(t) = x(t)

where the impulse response function is h(t) = (1/T )e−t/T and the frequency re-
sponse function is H ( f ) = 1/(1 + j2π f T ). In this example, we use the band-limited
white noise as an input x(t); then the output y(t) is obtained by the convolution, i.e.
y(t) = h(t) ∗ x(t). The spectral density functions Sxx ( f ) and Sxy( f ) are estimated using
Welch’s method (see Chapter 10 for details, and also see Comments 2 in MATLAB
Example 8.10).

Then, we shall estimate the frequency response function based on Equation (9.12),
Sxy( f ) = H ( f )Sxx ( f ), i.e. H1( f ) = Sxy( f )/Sxx ( f ). This estimate will be compared
with the DFT of h(t) (we mean here the DFT of the sampled, truncated impulse response
function).

In this MATLAB example, we do not consider measurement noise. So, we note that
H1( f ) = H2( f ) = HT ( f ).
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Line MATLAB code Comments

1
2

3
4

clear all
fs=500; T1=1; T2=40; t1=0:1/fs:T1;
t2=0:1/fs:T2-1/fs;
T=0.1;
h=1/T*exp(-t1/T);

Define sampling rate and time variables t1
(for the impulse response function h(t)) and
t2 (for the band-limited white noise input
x(t)). Then, generate the impulse response
sequence accordingly which is truncated at
1 second.

5
6
7
8
9

10

11

randn('state',0);
x=randn(1,T2*fs);
fc=30; [b, a] = butter(9,fc/(fs/2));
x=filter(b,a,x);
x=x-mean(x); x=x/std(x);
y=conv(h,x); y=y(1:end-length(h)+1);
% or y=filter(h,1,x);
y=y/fs;

Generate the band-limited white noise input
signal x(t). The cut-off frequency is set to
30 Hz for this example. The input sequence
has a zero mean value, and the variance is
one.
Then, obtain the output sequence by a
convolution operation. Note that the output
sequence y is scaled by the sampling rate in
order to match its corresponding continuous
function.

12
13

14

15

16

17

N=4*fs; % N=10*fs;
Sxx=cpsd(x,x, hanning(N),N/2, N, fs,
'twosided');
Syy=cpsd(y,y, hanning(N),N/2, N, fs,
'twosided');
Sxy=cpsd(x,y, hanning(N),N/2, N, fs,
'twosided');
Sxx=fftshift(Sxx); Syy=fftshift(Syy);
Sxy=fftshift(Sxy);
f=fs*(-N/2:N/2-1)/N;

Calculate the spectral density functions
using Welch’s method; we use a Hann
window and 50 % overlap. The length of
segment is defined by N, and is 4 seconds
long in this case.
Note that we defined both negative and
positive frequencies (Line 17), thus the
MATLAB function ‘fftshift’ is used to shift
the zero-frequency component to the centre
of spectrum.

18
19
20

H1=Sxy./Sxx;
H=fftshift(fft(h,N))/fs;
Gamma=abs(Sxy).ˆ2./(Sxx.*Syy);

Calculate H1( f ) = Sxy( f )/Sxx ( f ), and also
calculate H ( f ) using the DFT of the impulse
response sequence. Also, compute the
coherence function.

21
22
23

24
25
26
27

28

figure(1)
plot(f, 10*log10(Sxx))
xlabel('Frequency (Hz)');
ylabel('\itS x x(\itf\rm) (dB)')
axis([-30 30 -35 -5])
figure(2)
plot(f, 10*log10(abs(Sxy)))
xlabel('Frequency (Hz)');
ylabel('|\itS x y(\itf\rm)| (dB)')
axis([-30 30 -35 -15])

Plot the ‘calculated (estimated)’ power
spectral density function and the magnitude
spectrum of cross-spectral density function,
for the frequency range −30 to 30 Hz.
Note that these functions are only estimates
of true spectral density functions, i.e. they
are S̃xx ( f ) and S̃xy( f ). So, we may see some
variability as shown in the figures. Note that
we use ‘10*log10(Sxx)’ and
‘10*log10(abs(Sxy))’ for dB scale, since the
quantities are already power-like.

29
30
31

32
33

figure(3)
plot(f, 20*log10(abs(H1))); hold on
xlabel('Frequency (Hz)');
ylabel('|\itH\rm 1(\itf\rm)| (dB)')
plot(f, 20*log10(abs(H)), 'r:'); hold off
axis([-30 30 -30 5])

Plot the magnitude spectrum of both H1( f )
and H ( f ) for the frequency range −30 to
30 Hz.
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34
35
36

37
38

figure(4)
plot(f, unwrap(angle(H1))); hold on
xlabel('Frequency (Hz)');
ylabel('arg\itH\rm 1(\itf\rm) (rad)')
plot(f, unwrap(angle(H)), 'r:'); hold off
axis([-30 30 -1.6 1.6])

Plot the phase spectrum of both H1( f ) and
H ( f ) for the frequency range −30 to 30 Hz.

39
40
41

42

figure(5)
plot(f, Gamma)
xlabel('Frequency (Hz)');
ylabel('Coherence function')
axis([-150 150 0 1.1])

Plot the coherence function.

Results
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Comments:

1. Note that the coherence function γ 2
xy( f ) ≈ 1 within the frequency band of interest,

except at the peak (i.e. at zero frequency). The drop of coherence function at f = 0 is
due to the bias error. This bias error can be reduced by improving the resolution (see
Chapter 10 for details). To improve the resolution, the length of the segment must be
increased (but note that this reduces the number of averages). For example, replace the
number 4 with 10 in Line 12 of the MATLAB code. This increases the window length
in the time domain, thus increasing the frequency resolution. The result is shown in
Figure (f), where the coherence function is almost unity including the value at f = 0.
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2. From Figures (c) and (d), we see that we have an almost perfect estimate for the
frequency response function from H1( f )=S̃xy( f )/S̃xx ( f ). However, the individual
spectral density function estimates show a large variability as shown in Figures (a)
and (b). Note that, in theory, Sxx ( f ) is constant and Sxy( f ) is a scaled version of H ( f )
if the input is white noise.

It is emphasized that the errors are not due to the noise (we did not consider
measurement noise in this example). In fact, these are the statistical errors inherent in
the estimation processes (see Chapter 10). By comparing Figures (a)–(c), we may see
that the estimate of H ( f ) is less sensitive to the statistical errors than the estimates of
spectral density functions. This will be discussed in Chapter 10.

Note that, even if there is no noise, the estimate of H ( f ) may have large statistical
errors if the number of averages (for the segment averaging method) is small. To
demonstrate this, change the length of time (T2) in Line 2 of the MATLAB code, i.e.
let T2 = 6. The result is shown in Figure (g), where we see relatively large random
errors near the peak.
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(g) Magnitude spectrum of H1( f ), for T2 = 6
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Example 9.2: A first-order continuous system with a sinusoidal input

Consider the same first-order system as in MATLAB Example 9.1. Now, the input is a
sine function, i.e.

x(t) = A sin(2π f0t) and Rxx (τ ) = A2

2
cos(2π f0τ )

Then, the output y(t) can be written as

y(t) = A√
1 + (2π f0T )2

sin(2π f0t + θ ) θ = tan−1 (−2π f0T )

In section 9.1, we have seen that the autocorrelation and cross-correlation functions are
(see Equations (9.23) and (9.25))

Ryy(τ ) = A2

2

1

1 + (2π f0T )2
cos(2π f0τ ) and Rxy(τ ) = A2

2
√

1 + (2π f0T )2
sin(2π f0τ + φ)

where
φ = tan−1

(
1

2π f0T

)
In this example, we shall verify this.

Line MATLAB code Comments

1
2

3
4
5
6
7

clear all
fs=500; T1=1; T2=40; t1=0:1/fs:T1;
t2=0:1/fs:T2-1/fs;
T=0.1;
h=1/T*exp(-t1/T);
A=2; f=1; w=2*pi*f;
x=A*sin(w*t2);
y=filter(h,1,x)/fs;

Same as in MATLAB Example 9.1,
except that the input is now a 1 Hz sine
function.

8
9

10
11

maxlag=2*fs;
[Ryy, tau]=xcorr(y,y,maxlag, 'unbiased');
[Rxy, tau]=xcorr(y,x,maxlag, 'unbiased');
tau=tau/fs;

Define the maximum lag and calculate
the correlation functions.

12
13
14

phi=atan(1/(w*T));
Ryy a=(Aˆ2/2)*(1./(1+(w*T).ˆ2)).*cos(w*tau);
Rxy a=(Aˆ2/2)*(1./sqrt(1+(w*T).ˆ2)).
*sin(w*tau+phi);

Calculate the true Ryy(τ ) and Rxy(τ )
using Equations (9.23) and (9.25).

15
16
17

figure(1)
plot(tau,Ryy,tau,Ryy a, 'r:')
xlabel('Lag (\it\tau)');
ylabel('\itR y y\rm(\it\tau\rm)')

Plot both estimated and true
autocorrelation functions (Ryy and
Ryy a, respectively).

18
19
20

figure(2)
plot(tau,Rxy,tau,Rxy a, 'r:')
xlabel('Lag (\it\tau)');
ylabel('\itR x y\rm(\it\tau\rm)')

Plot both estimated and true
cross-correlation functions (Rxy and
Rxy a, respectively).
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Results
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(a) Autocorrelation function Ryy (τ)

(solid line: estimated; dashed line: true function)

(b) Cross-correlation function Rxy (τ)

(solid line: estimated; dashed line: true function)
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Comments: As mentioned in Section 9.1, this example has shown that the response to a
sinusoidal input is the same sinusoid with scaled amplitude and shifted phase.

Example 9.3: Transmission path identification

We consider the simple acoustic problem as shown in Figure 9.15. Then, we may model
the measured signal as

Mic. A = x(t) = as(t)
(9.81)

Mic. B = y(t) = bs(t − 
1) + cs(t − 
2)

where 
1 and 
2 are time delays.

Mic. , ( )B y t

Hard reflector

1

Path (1)

(delay, )

2

Path (2)

(delay, )

Mic. , ( )A x t

Source, s(t)

( )ssR

Figure 9.15 A simple acoustic example: transmission path identification

If the source signal s(t) is broadband, then the autocorrelation function Rss(τ ) is
narrow as depicted in the figure. By treating x(t) as an input and y(t) as an output,
i.e. y(t) =h(t) ∗ x(t), as we have seen in Chapter 4, the impulse response function and
frequency response function are given by

h(t) = b

a
δ(t − 
1) + c

a
δ(t − 
2) (9.82)

H ( f ) = b

a
e− j2π f 
1

[
1 + c

b
e− j2π f (
2−
1)

]
(9.83)
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We now establish the delays and the relative importance of paths by forming the
cross-correlation between x(t) and y(t) as

Rxy(τ ) = E[x(t)y(t + τ )] = abRss(τ − 
1) + acRss(τ − 
2) (9.84)

This may be drawn as in Figure 9.16.

( )xyR

1 2

0

Figure 9.16 Cross-correlation function between x(t) and y(t)

Note that 
1 and 
2 are identified if Rss(τ ) is ‘narrow’ compared with 
2 − 
1,
and the relative magnitudes yield b/c. If the source signal has a bandwidth of B as shown
in Figure 9.17, then the autocorrelation function of s(t) can be written as

Rss(τ ) = AB
sin(π Bτ )

π Bτ
cos(2π f0τ ) (9.85)

Thus, in order to resolve the delays, it is required that (roughly) 
2 − 
1 > 2/B.

0f

( )ssS f

0f

2

A

f

B

Figure 9.17 Power spectral density function of the band-limited signal s(t)

Time domain methods as outlined above are probably best – but we might also look
at frequency domain methods. First, consider the cross-spectral density function for the
simpler case of no reflector, i.e. as shown in Figure 9.18.

Mic. , ( )B ty

1Delay,

Mic. , ( )A tx

)( )(x ast t 1)y(t) bs(t

Figure 9.18 A simple acoustic example with no reflector

Then, Rxy(τ ) = abRss(τ − 
1) and Sxy( f ) = abe− j2π f 
1 Sss( f ). So arg Sxy( f )
gives the delay (see also MATLAB Example 8.9), but it turns out that the phase is more
sensitive to other reflections (not the uncorrelated noise) than the correlation function.

Now reconsider the first problem (with a hard reflector). Suppose that y(t) is noise
contaminated, i.e. ym(t) = y(t) + n(t). If n(t) is independent of y(t) then Rxym (τ ) =
Rxy(τ ) and Sxym ( f ) = Sxy( f ). Thus, from Equation (9.84), the cross-spectral density
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function is

Sxym ( f ) = Sxy( f ) = abe− j2π f 
1

[
1 + c

b
e− j2π f (
2−
1)

]
Sss( f ) (9.86)

So the delay information is contained in the phase. However, unlike the single delay
problem arg Sxy( f ) shows a mixture of two delay components. As will be seen later,
although it is possible to identify both delays 
1 and 
2 from the cross-spectral density
function, the frequency domain method is more difficult in this case. Also, consider the
coherence function (see Equation (9.33)), which is

γ 2
xym

( f ) =
∣∣Sxym ( f )

∣∣2

Sxx ( f )Sym ym ( f )
= Syy( f )

Syy( f ) + Snn( f )
= Syy( f )

Sym ym ( f )
(9.87)

For convenience, let b = c and 
2 − 
1 = 
; then

Syy( f ) = 2b2 [1 + cos(2π f 
)] Sss( f ) (9.88)

So we see that γ 2
xym

( f ) = 0 at certain frequencies ( f = n/2
, n = 1, 3, 5, . . .), i.e.
the coherence collapses owing to destructive interference (i.e. the measurement SNR
becomes very low).

In the above, we considered both individual transmission paths as non-dispersive.
(Note that the two paths taken together are dispersive, i.e. the group delay is −dφ/dω 
=
const.) In practical cases, we must first decide whether the paths are dispersive or non-
dispersive. If dispersive, the propagation velocity varies with frequency. In such cases,
broadband methods may not be successful since waves travel at different speeds. In
order to suppress the dispersive effect the cross-correlation method is applied for narrow
frequency bands, though this too has a smearing effect.

We now examine the transmission path identification problem described above, where
the measured signal is

x(t) = as(t)

ym(t) = y(t) + n(t) = bs(t − 
1) + cs(t − 
2) + n(t)

The cross-correlation function and the cross-spectral density function are

Rxym (τ ) = E[x(t)ym(t + τ )] = abRss(τ − 
1) + acRss(τ − 
2)

and

Sxym ( f ) = [
abe− j2π f 
1 + ace− j2π f 
2

]
Sss( f )

In this example, we shall compare the time domain method (using the cross-correlation
function) and the frequency domain method (using the cross-spectral density function).

Line MATLAB code Comments

1
2
3
4
5
6

clear all
fs=100; T=502; t=0:1/fs:T-1/fs;
randn('state',0);
s=randn(size(t));
fc=10; [b,a] = butter(9,fc/(fs/2));
s=filtfilt(b,a,s);

Define sampling rate and time variable.
Generate a band-limited white noise
signal, where the (full) bandwidth
(equivalent to B in Figure 9.17) is
approximately 20 Hz (− fc to fc).
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7

8

9
10
11

12

13
14
15
16

s=s-mean(s); s=s/std(s);
% Makes mean(s)=0 & std(s)=1;
a=1; b=0.8; c=0.75; delta1=1; delta2=1.5;
% delta2=1.07;
N1=2*fs; N2=T*fs-N1;
x=a*s(N1+1:N1+N2);
y1=b*s(N1-(delta1*fs)+1:N1-
(delta1*fs)+N2);
y2=c*s(N1-(delta2*fs)+1:N1-
(delta2*fs)+N2);
y=y1+y2;
randn('state',10);
n=randn(size(y))*0.1;
y=y+n;

Define parameters for signals x(t) and
y(t).
Also, define time delays, 
1 = 1 and

2 = 1.5. Note that 
2 − 
1 = 0.5.
Later, use 
2 = 1.07, and compare the
cross-correlation functions.
Generate signals x(t) and y(t). Also, add
some noise to the signal y(t).

17
18
19

maxlag=2*fs;
[Rxy, tau]=xcorr(y,x,maxlag, 'unbiased');
tau=tau/fs;

Calculate the cross-correlation function.

20
21

22

23

24

T1=50;
[Gxx, f]=cpsd(x,x, hanning(T1*fs),T1*fs/2,
T1*fs, fs);
[Gyy, f]=cpsd(y,y, hanning(T1*fs),T1*fs/2,
T1*fs, fs);
[Gxy, f]=cpsd(x,y, hanning(T1*fs),T1*fs/2,
T1*fs, fs);
Gamma=abs(Gxy).ˆ2./(Gxx.*Gyy);

Calculate the (one-sided) spectral density
functions and the coherence function.

25
26
27
28
29

figure(1)
plot(tau(maxlag+1:end),Rxy(maxlag+1:end))
xlabel('Lag (\it\tau)')
ylabel('Cross-correlation')
axis([0 2 -0.2 0.8])

Plot the cross-correlation function. As
shown in Figure (a), 
1 = 1 and

2 = 1.5 are clearly identified. However,
if 
2 = 1.07 is used, it is not possible to
detect the delays as shown in Figure (d).
Note that the bandwidth of the signal s(t)
is approximately 20 Hz, thus it is required
that 
2 − 
1 > 0.1 for this method to be
applicable.

30
31
32
33
34

figure(2)
plot(f,unwrap(angle(Gxy)))
xlabel('Frequency (Hz)')
ylabel('arg\itG x y\rm(\itf\rm) (rad)')
axis([0 15 -90 0])

Plot the phase spectrum of the
cross-spectral density function Gxy( f ).
As shown in Figure (b), the phase curve
is no longer a straight line, but it has a
‘periodic’ structure. In fact, the relative
delay 
2 − 
1 can be found by
observing this periodicity as described in
the figure, while 
1 can be obtained from
the overall slope of the phase curve.
Compare this phase spectrum with that of
a single delay problem (see MATLAB
Example 8.9).

35
36
37

38

figure(3)
plot(f,Gamma)
xlabel('Frequency (Hz)');
ylabel('Coherence function')
axis([0 15 0 1])

Plot the coherence function. Note that the
coherence drops owing to the interference
between two delay components (see
Equations (9.87) and (9.88)).
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Results
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(c) Coherence function

Comments: Note that the time domain method is much simpler and clearer. However,
the signal must be wideband if the relative delay 
2 − 
1 is small, otherwise the time
domain method may fail as shown in Figure (d).

Example 9.4: Frequency response function estimators H1( f ), H2( f ) and HT ( f )

Consider the following impulse response function of a two-degree-of-freedom system:

h(t) = A1

ωd1

e−ζ1ωn1t sin ωd1t + A2

ωd2

e−ζ2ωn2t sin ωd2t

In this example, we use the white noise as an input x(t), and the output y(t) is obtained
by y(t)=h(t) ∗ x(t). We also consider the uncorrelated measurement noise.

Three FRF estimators, H1( f ), H2( f ), and HT ( f ), are compared for three different
cases: Case (a), output noise only; Case (b), input noise only; and Case (c), both input
and output noise.
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Equations (9.63), (9.65) and (9.68) are used in this example, i.e.

H1( f ) = S̃xm ym ( f )

S̃xm xm ( f )
, H2( f ) = S̃ym ym ( f )

S̃ym xm ( f )
,

HT ( f ) =
S̃ym ym ( f ) − S̃xm xm ( f ) +

√[
S̃xm xm ( f ) − S̃ym ym ( f )

]2 + 4
∣∣S̃xm ym ( f )

∣∣2

2S̃ym xm ( f )

where the spectral density functions are estimated using the segment averaging method.

Line MATLAB code Comments

1
2

3
4

5
6

clear all
A1=20; A2=30; f1=5; f2=15;
wn1=2*pi*f1; wn2=2*pi*f2;
zeta1=0.05; zeta2=0.03;
wd1=sqrt(1-zeta1ˆ2)*wn1;
wd2=sqrt(1-zeta2ˆ2)*wn2;
fs=50; T1=10; t1=[0:1/fs:T1-1/fs];
h=(A1/wd1)*exp(-
zeta1*wn1*t1).*sin(wd1*t1) +
(A2/wd2)*exp(-
zeta2*wn2*t1).*sin(wd2*t1);

Define parameters for the impulse response
function h(t), and generate the sequence
accordingly. The sampling rate is chosen as
50 Hz, and the length of the impulse
response function is 10 seconds.

7
8
9

10

T= 50000;
randn('state',0);
x=randn(1,T*fs);
y=filter(h,1,x);
% we do not scale for convenience

Define the length of input signal, and
generate input white noise sequence ‘x’.
Then obtain the output sequence ‘y’.
Note that we define very long sequences to
minimize random errors on the estimation of
the spectral density functions. This will be
discussed in Chapter 10.

11
12

13
14

15
16

randn('state',10);
nx=0.5*randn(size(x));
% nx=0 for Case (a)
randn('state',20);
ny=0.5*randn(size(y));
% ny=0 for Case (b)
x=x+nx; y=y+ny;
clear nx ny

Generate the uncorrelated input
measurement noise and output measurement
noise. Note that we define the noise such that
the variances of the input noise and the
output noise are the same, i.e. κ( f )=1. Add
these noises to the input and output
appropriately. Then clear the variables ‘nx’
and ‘ny’ (to save computer memory).
This script is for Case (c). Replace Line 12
with ‘nx=0’ for Case (a), and replace Line
14 with ‘ny=0’ for Case (b).

17

18

19

20

21
22
23

24

[Gxx, f]=cpsd(x(1:T*fs),x(1:T*fs),
hanning(T1*fs),T1*fs/2, T1*fs, fs);
[Gyy, f]=cpsd(y(1:T*fs),y(1:T*fs),
hanning(T1*fs),T1*fs/2, T1*fs, fs);
[Gxy, f]=cpsd(x(1:T*fs),y(1:T*fs),
hanning(T1*fs),T1*fs/2, T1*fs, fs);
[Gyx, f]=cpsd(y(1:T*fs),x(1:T*fs),
hanning(T1*fs),T1*fs/2, T1*fs, fs);
H1=Gxy./Gxx;
H2=Gyy./Gyx;
HT=(Gyy-Gxx + sqrt((Gxx-Gyy).ˆ2 +
4*abs(Gxy).ˆ2))./(2*Gyx);
H=fft(h);

Calculate the (one-sided) spectral density
functions using the segment averaging
method.
Then calculate the frequency response
function estimates H1( f ), H2( f ) and HT ( f ).
Note that HT ( f ) = HW ( f ) since κ( f ) = 1.
Also calculate H ( f ) by the DFT of the
impulse response sequence. Then compare
the results.
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25
26

27

28

figure (1)
plot(f,20*log10(abs(H1)),
f,20*log10(abs(H(1:length(f)))), 'r:')
xlabel('Frequency (Hz)');
ylabel('|\itH\rm 1(\itf\rm)| (dB)')
axis([0 25 -35 25])

Plot the magnitude spectrum of both
H1( f ) and H ( f ).

29
30

31

32

figure(2)
plot(f,20*log10(abs(H2)),
f,20*log10(abs(H(1:length(f)))), 'r:')
xlabel('Frequency (Hz)');
ylabel('|\itH\rm 2(\itf\rm)| (dB)')
axis([0 25 -35 25])

Plot the magnitude spectrum of both
H2( f ) and H ( f ).

33
34

35

36

figure(3)
plot(f,20*log10(abs(HT)),
f,20*log10(abs(H(1:length(f)))), 'r:')
xlabel('Frequency (Hz)');
ylabel('|\itH T(\itf\rm)| (dB)')
axis([0 25 -35 25])

Plot the magnitude spectrum of both
HT ( f ) and H ( f ).

Results: Case (a) output noise only (Replace Line 12 with ‘nx=0’.)
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Results: Case (b) input noise only (Replace Line 14 with ‘ny=0’.)
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Results: Case (c) both input and output noise
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Comments:

1. We have demonstrated that H1( f ) is unbiased with respect to the output noise (see
Case (a)), H2( f ) is unbiased with respect to the input noise (see Case (b)), and HT ( f )
is unbiased with respect to both input and output noise if κ( f ) = 1 (see Case (c)).
Note that, for all different cases, the HT ( f ) estimator gives more consistent estimates
of the frequency response function. Thus, the TLS estimator HT ( f ) (or HW ( f ) if
κ( f ) is measurable) is highly recommended. However, in practical applications, it is
always wise to compare all three estimators and choose the ‘best’ estimator based on
some prior knowledge.

As described in Equation (9.74) in Section 9.3, note that the phase spectrum of all
three estimators is the same. To see this, type the following script in the MATLAB
command window. The results are shown in Figure (d).

figure(4)
plot(f,unwrap(angle(H1)), f,unwrap(angle(H2)), f,unwrap(angle(HT)),

f,unwrap(angle(H(1:length(f)))), 'k:')
xlabel('Frequency (Hz)'); ylabel('Phase spectrum (rad)')
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(d) Phase spectra of  H1 ( f ),  H2 ( f ) and HT ( f )

2. We note that the inverse DFT of the FRF estimate gives the corresponding estimated
impulse response sequence. As mentioned in Chapter 6, this impulse response se-
quence can be regarded as an MA system (i.e. an FIR filter). In this MATLAB
example, it has 500 MA coefficients. In real-time signal processing (such as active
control), it may be useful if the number of coefficients can be reduced, especially for
the case of a large number of filter coefficients. One approach to this is by curve fit-
ting the estimated FRF data to a reduced order ARMA model (see Equation (6.12)).
The basic procedure of the curve fitting algorithm can be found in Levi (1959). In
MATLAB, the function called ‘invfreqz’ finds the coefficients for the ARMA model
based on the estimated frequency response function. Type the following script to
find the reduced order ARMA model (we use the ARMA(4,4) model, which has 10
coefficients in total):

[b,a]=invfreqz(HT, 2*pi*f/fs, 4,4, [], 30);
Hz=freqz(b,a,length(f),fs);
figure(5)
plot(f,20*log10(abs(Hz)),f,20*log10(abs(H(1:length(f)))), 'r:')
xlabel('Frequency (Hz)'); ylabel('Magnitude spectrum (dB)')
axis([0 25 -35 25])
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figure(6)
plot(f,unwrap(angle(Hz)), f,unwrap(angle(H(1:length(f)))), 'r:')
xlabel('Frequency (Hz)'); ylabel('Phase spectrum (rad)')

The first line of the MATLAB script finds the coefficients for the ARMA(4,4) model
based on the estimated FRF (we use the results of HT ( f ) in this example), and the second
line evaluates the frequency response HZ ( f ) based on the coefficient vectors ‘a’ and ‘b’
obtained from the first line. Then, plot both magnitude and phase spectra of HZ ( f ) and
compare with those of H ( f ). The results are as in Figures (e) and (f).
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(e) Magnitude spectra of HZ ( f ) and H( f ) (f) Phase spectra of  HZ( f ) and H( f )

Example 9.5: A practical example of system identification

We consider the same experimental setup used in MATLAB Example 6.7 (impact testing
of a structure), except that we use a band-limited white noise for the input signal as shown
in Figure (a). In this experiment, the frequency band of the signal is set at 5 to 90 Hz and
the sampling rate is chosen as fs = 256 Hz.

Physical system

Estimated (digital) system, Ĥ(z)

H(s)

Accelerometer

Input
(voltage)

Output

A (PZT patch)

B

x(t)

y(t)

Data recorder 
(with ADC)

(a) Experimental set-up

(with

Signal conditioner

anti-aliasing filter B)

Noise

Noise

Band-limited
white noise

Power amplifier

Anti-aliasing filter A

Voltage

In this example, we will compare the results of three different FRF estimators, H1( f ),
H2( f ) and HT ( f ), using the measured data stored in the file ‘beam experiment.mat’.1

1The data files can be downloaded from the Companion Website (www.wiley.com/go/shin hammond).
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Line MATLAB code Comments

1
2
3
4

5

6

7

8
9

10

clear all
load beam experiment
fs=256; T=4;
[Gxx, f]=cpsd(x,x, hanning(T*fs),T*fs/2,
T*fs, fs);
[Gyy, f]=cpsd(y,y, hanning(T*fs),T*fs/2,
T*fs, fs);
[Gxy, f]=cpsd(x,y, hanning(T*fs),T*fs/2,
T*fs, fs);
[Gyx, f]=cpsd(y,x, hanning(T*fs),T*fs/2,
T*fs, fs);
H1=Gxy./Gxx;
H2=Gyy./Gyx;
HT=(Gyy – Gxx + sqrt((Gxx-Gyy).ˆ2 +
4*abs(Gxy).ˆ2))./(2*Gyx);

Load the measured data (x and y) which
are recorded for 20 seconds. Define the
sampling rate and the length of segment
(4 seconds).
Calculate the (one-sided) spectral density
functions. We use a Hann window and
50 % overlap – this gives nine averages
for each estimate.
Then calculate the frequency response
function estimates H1( f ), H2( f ) and
HT ( f ).

11
12
13

14
15
16
17

18
19
20
21

22

figure (1)
plot(f,20*log10(abs(H1)))
xlabel('Frequency (Hz)');
ylabel('|\itH\rm 1(\itf\rm)| (dB)')
axis([5 90 -45 25])
figure (2)
plot(f,20*log10(abs(H2)))
xlabel('Frequency (Hz)');
ylabel('|\itH\rm 2(\itf\rm)| (dB)')
axis([5 90 -45 25])
figure (3)
plot(f,20*log10(abs(HT)))
xlabel('Frequency (Hz)');
ylabel('|\itH T(\itf\rm)| (dB)')
axis([5 90 -45 25])

Plot the magnitude spectra of H1( f ),
H2( f ) and HT ( f ) for the frequency range
5 to 90 Hz.

23
24

25

26

figure(4)
plot(f(21:361), unwrap(angle(H1(21:361))),

f(21:361), unwrap(angle(H2(21:361))),
f(21:361), unwrap(angle(HT(21:361))));

xlabel('Frequency (Hz)');
ylabel('Phase spectrum (rad)')
axis([5 90 -7 0.5])

Plot the phase spectra of H1( f ), H2( f ) and
HT ( f ) for the frequency range 5 to 90 Hz.
Note that they are almost identical.

Results
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(b1) Magnitude spectrum of H1 ( f ) (b2) Magnitude spectrum of H2 ( f )
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(b3) Magnitude spectrum of HT ( f ) (b4) Phase spectra of  H1 ( f ),  H2 ( f ) and HT ( f )

Comments:

1. As shown in Figure (b4), the phase spectra of H1( f ), H2( f ) and HT ( f ) are the same.
However, the results of magnitude spectra show that H1( f ) considerably underes-
timates at resonances compared with other estimates H2( f ) and HT ( f ). Figure (c)
shows the differences in detail.

(c) Magnitude spectra of H1( f ), H2( f ) and HT( f )
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Also, plot the coherence function by typing the following script. The result is shown
in Figure (d).

figure(5)
Gamma=abs(Gxy).ˆ2./(Gxx.*Gyy);
plot(f, Gamma); axis([5 90 0 1.1])
xlabel('Frequency (Hz)'); ylabel('Coherence function')

Note that the value of the coherence function drops at resonances due to the bias
error, which will be discussed in Chapter 10 (see also Comments 1 in MATLAB
Example 9.1).
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2. With reference to the experimental setup in Figure (a), there is another practical aspect
to be considered. It is often the case that the anti-aliasing filters A and B introduce
different delays. For example, if the filter B introduces more delay than the filter A,
the phase spectrum becomes as shown in Figure (e). Thus, it is recommended that the
same type of filter is used for both input and output.
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10
Estimation Methods and Statistical
Considerations

Introduction

So far, we have discussed random processes in terms of ideal quantities: probability
density functions, correlation functions and spectral density functions. The results in
Chapter 9 used these theoretical concepts, and the MATLAB examples used estimation
methods that anticipated what is presented in this chapter. In this chapter, we introduce
statistical estimation methods for random signals based on a single realization (record) of
the process, and show how the theoretical quantities may be estimated and the accuracy
of these estimates.

While omitting many mathematical justifications, the details of results quoted in
this chapter may be found in many of the references, especially in Jenkins and Watts
(1968) and Bendat and Piersol (2000). Readers who wish to know the details of statistical
properties of random processes should refer to these two excellent texts.

10.1 ESTIMATOR ERRORS AND ACCURACY

Suppose we only have a single time record x(t) with a length of T , taken from a stochastic
process. If we want to know the mean value μx of the process, then a logical estimate
(denoted by x̄) of μx is

x̄ = 1

T

T∫
0

x(t)dt (10.1)

Fundamentals of Signal Processing for Sound and Vibration Engineers
K. Shin and J. K. Hammond. C© 2008 John Wiley & Sons, Ltd
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The value obtained by Equation (10.1) is a sample value of a random variable, say X̄ ,
which has its own probability distribution (this is called the sample distribution). And
x̄ is a single realization of the random variable X̄ . Each time we compute a value x̄
from a different length of record we get a different value. If our estimation procedure is
‘satisfactory’, we may expect that:

(i) the scatter of values of x̄ is not too great and they lie close to the true mean value μx ;
(ii) the more data we use (i.e. the larger T ), the better the estimate.

We now formalize these ideas. Let φ be the parameter we wish to estimate (i.e. φ

is the theoretical quantity, e.g. μx above) and let �̂ be an estimator for φ. Then �̂ is a
random variable with its own probability distribution, e.g. as shown in Figure 10.1, where
φ̂ is the value (or estimate) of the random variable �̂.

ˆ( )p φ

φ̂φ α0

Figure 10.1 Probability density function of φ̂

We see here that the estimates φ̂ we would obtain can take a whole range of values
but would predominantly take values near α. It is often difficult to obtain the sampling
distribution p(φ̂), and so we shall settle for a few summarizing properties.

Bias

The bias of an estimator is defined as

b(�̂) = E[�̂] − φ (10.2)

i.e. the difference between the average of the estimator and the true value. Note that
E[�̂] is α in the cases shown in Figure 10.1. Thus, the bias is a measure of the average
offset of the estimator. If b(�̂) = 0, then the estimator �̂ is ‘unbiased’. Although it seems
desirable to use an unbiased estimator, we may need to allow some bias of the estimator
if the variability of the estimate can be reduced (relative to that of an unbiased estimator).

Variance

The variance of an estimator is defined as

Var(�̂) = E
[
(�̂ − E[�̂])2

] = E[�̂2] − E2[�̂] (10.3)

This is a measure of the dispersion or spread of values of �̂ about its own mean value
(see Section 7.3). Note that the square root of the variance is the standard deviation σ (�̂)
of the estimator. In general, it is desirable to have a small variance, i.e. the probability
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density function should be ‘peaky’. This requirement often results in an increase of the
bias error.

Mean Square Error

The mean square error (mse) of an estimator is a measure of the spread of values of �̂

about the true (theoretical) value φ, i.e.

mse(�̂) = E
[
(�̂ − φ)2

]
(10.4)

Since E[(�̂ − φ)2] = E[(�̂ − E[�̂] + E[�̂] − φ)2] = E[(�̂ − E[�̂])2] + E[(E[�̂] − φ)2],
the above equation can be rewritten as

mse(�̂) = Var(�̂) + b2(�̂) (10.5)

which shows that the mean square error reflects both variance and bias. Thus, the mean
square error is often used as a measure of the relative importance of bias and variance.
For example, if an estimator has the property that its mean square error is less than any
other estimators, it is said to be more efficient than other estimators.

If the mean square error decreases as the sample size (amount of data) used to
compute the estimate increases, then the estimator is consistent. Sometimes the errors
are non-dimensionalized (normalized) by dividing them by the quantity being estimated
(for φ �= 0), e.g. as

Bias error: εb = b(�̂)

φ
(10.6)

Random error: εr = σ (�̂)

φ
(10.7)

RMS error: ε =
√

mse(�̂)

φ
(10.8)

Confidence Intervals

The estimate φ̂ we have discussed so far is a point estimate, i.e. a single value. It is
often desirable to define a certain interval of values in which the parameter is likely to
fall. For example, if we estimate a mean value x̄ as 50, then perhaps it is ‘likely’ that
μx lies in the interval 45 to 55. This estimate is an interval estimate, and is called the
confidence interval when we attach a number describing the likelihood of the parameter
falling within the interval.

For example, if we say ‘a 95 % confidence interval for μx is (45, 55)’, then this means
we are 95 % confident that μx lies in the range (45, 55). Note that this does not mean that
the probability that μx lies in the interval (45, 55) is 0.95, because μx is not a random
variable and so we cannot assign probabilities to it. Instead, we mean that if we could
realize a large number of samples and find a confidence interval for μx for each sample,
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then approximately 95 % of these intervals would contain the true value μx . In order to
calculate confidence intervals, we need to know the sampling distribution of the estimator.
We shall return to this problem when we discuss the spectral density function estimates.

In the following sections, we shall give a summary of: (i) definitions of commonly used
estimators; (ii) some statistical properties of the estimators; and (iii) some computational
aspects for calculating the estimates. Unless otherwise stated, we shall assume we are
dealing with realizations of a continuous, stationary random process. Also, if the data are
sampled we assume that the sampling rate is sufficiently high so that there is no aliasing.

10.2 MEAN VALUE AND MEAN SQUARE VALUE

The Mean Value of x(t)

For a stationary stochastic process x(t), the mean value (from data with length T ) is estimated
as

μ̂x = 1

T

T∫
0

x(t)dt (10.9)

where the true mean value is μx . Note that we have changed our notation for sample mean
from x̄ to μ̂x to use the circumflex notation for an estimate. The average of this estimate is

E [μ̂x ] = 1

T

T∫
0

E[x(t)]dt = 1

T

T∫
0

μx dt = μx (10.10)

i.e. μ̂x is unbiased. Now consider the mean square error which is

mse(μ̂x ) = E
[
(μ̂x − μx )2

] = E

⎡⎣ 1

T 2

T∫
0

T∫
0

(x(t1) − μx ) (x(t2) − μx )dt1dt2

⎤⎦
= 1

T 2

T∫
0

T∫
0

Cxx (t2 − t1)dt1dt2 = 1

T 2

T∫
0

T −t1∫
−t1

Cxx (τ )dτdt1 (10.11)

where τ = t2 − t1 and Cxx (τ ) is the autocovariance function. By reversing the integration
order and changing the limits of integration appropriately, this equation can be written as

mse(μ̂x ) = 1

T 2

0∫
−T

T∫
−τ

Cxx (τ )dt1dτ + 1

T 2

T∫
0

T −τ∫
0

Cxx (τ )dt1dτ

= 1

T

T∫
−T

(
1 − |τ |

T

)
Cxx (τ )dτ (10.12)
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The integrand is a triangular weighted covariance function, so the integral is finite. Thus
mse(μ̂x ) → 0 as T → ∞, i.e. this estimator is consistent.

For example, if Cxx (τ ) = K e−λ|τ |, then the power spectral density function is

Sxx ( f ) = K
2λ

λ2 + (2π f )2
(assuming zero mean value)

and the 3 dB bandwidth is B = λ/π Hz. The mean square error may be approximated as

mse(μ̂x ) ≈ 1

T

∞∫
−∞

Cxx (τ )dτ = 1

T

∞∫
−∞

K e−λ|τ |dτ = 2K

T λ
= 2K

π BT
(10.13)

i.e. it is inversely proportional to the bandwidth–time (BT) product of the data.
To perform the calculation using digitized data (sampled at every 
 seconds), the mean

value can be estimated by (as Equation (8.39))

μ̂x = 1

N

N−1∑
n=0

x(n
) (10.14)

The Mean Square Value of x(t)

As for the mean value, the mean square value is estimated as

ψ̂2
x = 1

T

T∫
0

x2(t)dt (10.15)

The mean of this estimate is

E
[
ψ̂2

x

] = 1

T

T∫
0

E[x2(t)]dt = ψ2
x (10.16)

where the true mean square value is ψ2
x . Thus, the estimator is unbiased. The variance of the

estimate is

Var
(
ψ̂2

x

) = E
[(

ψ̂2
x − ψ2

x

)2
]

= E
[(

ψ̂2
x

)2
]

− (
ψ2

x

)2

= 1

T 2

T∫
0

T∫
0

(
E[x2(t1)x2(t2)] − (

ψ2
x

)2
)

dt1dt2 (10.17)

If we assume that x(t) is Gaussian we can use the following result to simplify the integrand. If
the random variables X1, X2, X3 and X4 are jointly Gaussian, it can be shown that (Papoulis,
1991)

E[X1 X2 X3 X4] = E[X1 X2]E[X3 X4] + E[X1 X3]E[X2 X4]

+E[X1 X4]E[X2 X3] − 2E[X1]E[X2]E[X3]E[X4] (10.18)
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Using this result, it follows that E[x2(t1)x2(t2)] = ψ4
x + 2R2

xx (t2 − t1) − 2μ4
x . After some

manipulation by letting τ = t2 − t1, Equation (10.17) becomes (Bendat and Piersol,
2000)

Var(ψ̂2
x ) = 2

T

T∫
−T

(
1 − |τ |

T

) (
R2

xx (τ ) − μ4
x

)
dτ (10.19)

Thus, for large T , if Rxx (τ ) dies out ‘quickly’ compared with T , then

Var(ψ̂2
x ) ≈ 2

T

∞∫
−∞

(
R2

xx (τ ) − μ4
x

)
dτ (10.20)

For example, if μx = 0 and Rxx (τ ) = K e−λ|τ |, then

Var(ψ̂2
x ) ≈ 2K 2

T λ
= 2K 2

π BT
(10.21)

Since ψ̂2
x is an unbiased estimator, mse(ψ̂2

x ) = Var(ψ̂2
x ), which is also inversely proportional

to the bandwidth–time product of the data. Note that the normalized rms error is

ε =
√

mse(ψ̂2
x )

ψ2
x

=
√

Var(ψ̂2
x )

ψ2
x

≈
√

2K

K
√

π BT
=

√
2

π BT
(10.22)

where

ψ2
x = 1

T

T∫
0

Rxx (0)dt = K (from Equation (10.16))

In practice, we often calculate the variance of the signal by subtracting the mean first
from the data. In digital form, we might estimate the variance of x(n
) by

Var(x) ≈ σ̂ 2
x = 1

N

N−1∑
n=0

(x(n
) − μ̂x )2 (10.23)

However, if the observations are independent the above can be shown to be a biased estimate.
Thus, the divisor N − 1 is frequently used, i.e. the unbiased estimate is

σ̂ 2
x = 1

N − 1

N−1∑
n=0

(x(n
) − μ̂x )2 (10.24)
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10.3 CORRELATION AND COVARIANCE FUNCTIONS

The Autocorrelation (Autocovariance) Function

If a signal x(t) is defined for 0 ≤ t ≤ T , then there are two commonly used estimates
of the theoretical autocovariance function Cxx (τ ). They may be written as Ĉb

xx (τ ) and
Ĉxx (τ ), where

Ĉb
xx (τ ) = 1

T

T −|τ |∫
0

(x(t) − μ̂x ) (x(t + |τ |) − μ̂x )dt 0 ≤ |τ | < T

= 0 |τ | > T

(10.25)

and

Ĉxx (τ ) = 1

T − |τ |

T −|τ |∫
0

(x(t) − μ̂x ) (x(t + |τ |) − μ̂x )dt 0 ≤ |τ | < T

= 0 |τ | > T

(10.26)

The superscript b in Equation (10.25) denotes a biased estimate. Often the latter expression
is used since it is unbiased. However, both these estimators are used because they have
intuitive appeal and should be compared on the basis of some criterion (e.g. the mean
square error) to choose between them. The estimates for the theoretical autocorrelation
function Rxx (τ ) may be expressed as R̂b

xx (τ ) and R̂xx (τ ) in the same way as above by
omitting μ̂x in the equations.

For convenience, suppose that the process x(t) has zero mean (so that Cxx (τ ) = Rxx (τ )).
Then, as in Jenkins and Watts (1968), we can calculate the bias and variance:

1. Bias: Since

E
[
R̂b

xx (τ )
] = 1

T

T −|τ |∫
0

E [x(t)x(t + |τ |)]dt 0 ≤ |τ | < T

the expected value of the biased estimator is

E
[
R̂b

xx (τ )
] = Rxx (τ )

(
1 − |τ |

T

)
0 ≤ |τ | < T

= 0 |τ | > T
(10.27)

and the expected value of the unbiased estimator is

E
[
R̂xx (τ )

] = Rxx (τ ) 0 ≤ |τ | < T
= 0 |τ | > T

(10.28)

That is, for τ in the range 0 ≤ |τ | < T , R̂xx (τ ) is an unbiased estimator, whilst R̂b
xx (τ ) is

biased but the bias is small when |τ |/T 	 1 (i.e. asymptotically unbiased).
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2. Variance: The variances of biased and unbiased estimators are

Var
(
R̂b

xx (τ )
) = 1

T 2

T −τ∫
−(T −τ )

(T − τ − |r |) (
R2

xx (r ) + Rxx (r + τ )Rxx (r − τ )
)
dr (10.29)

Var
(
R̂xx (τ )

) = 1

(T − |τ |)2

T −τ∫
−(T −τ )

(T − τ − |r |) (
R2

xx (r ) + Rxx (r + τ )Rxx (r − τ )
)
dr

(10.30)
When T is large compared with τ , a useful approximation for both equations is

Var
(
R̂xx (τ )

) ≈ Var
(
R̂b

xx (τ )
) ≈ 1

T

∞∫
−∞

(
R2

xx (r ) + Rxx (r + τ )Rxx (r − τ )
)
dr (10.31)

Note that the variance of the estimates is inversely proportional to the length of data, i.e.
Var

(
R̂xx (τ )

) ∝ 1
/

T . This shows that both estimators are consistent. Thus, the autocorre-
lation function may be estimated with diminishing error as the length of the data increases
(this also shows that the estimate of the autocorrelation function is ergodic).

Comparison of the Two Estimators, R̂b
xx(τ ) and R̂xx(τ )

For τ 	 T , there is little difference between the two estimators, i.e. R̂xx (τ ) ≈ R̂b
xx (τ ). How-

ever, Jenkins and Watts conjecture that mse(R̂xx (τ )) > mse(R̂b
xx (τ )). In fact, by considering

the divisor in Equation (10.30), it is easy to see that as τ → T the variance of the unbiased
estimator R̂xx (τ ) tends to infinity (i.e. diverges). It is this behaviour that makes the unbiased
estimator unsatisfactory. However, we note that the unbiased estimator is often used in prac-
tical engineering despite the relatively larger mean square error. As a rough guide to using
R̂xx (τ ), the ratio of the maximum lag to the total data length, τmax/T , should not exceed 0.1.

Another important feature of the estimators is that adjacent autocorrelation function
estimates will have (in general) strong correlations, and so the sample autocorrelation function
R̂xx (τ ) (and R̂b

xx (τ )) gives more strongly correlated results than the original time series x(t),
i.e. the estimate may not decay as rapidly as might be expected to (Jenkins and Watts, 1968).

The Cross-correlation (Cross-covariance) Function

If x(t) and y(t) are random signals defined for 0 ≤ t ≤ T, the sample cross-covariance
function is defined as

Ĉxy(τ ) = 1

T − τ

T −τ∫
0

(x(t) − μ̂x )(y(t + τ ) − μ̂y)dt 0 ≤ τ < T

= 1

T − |τ |

T∫
|τ |

(x(t) − μ̂x )(y(t + τ ) − μ̂y)dt −T < τ ≤ 0

= 0 |τ | > T

(10.32)
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This is an unbiased estimator. The same integral but with divisor T can also be used, which
is then the biased estimator Ĉb

xy(τ ). Similarly the sample cross-correlation function may be

expressed as R̂xy(τ ) or R̂b
xy(τ ) without subtracting mean values.

The estimators for the cross-correlation (cross-covariance) function have statistical prop-
erties that are very similar to those of the autocorrelation (autocovariance) function: R̂xy(τ )
is unbiased whilst R̂b

xy(τ ) is asymptotically unbiased, and R̂b
xy(τ ) has a smaller mean square

error, i.e. mse(R̂xy(τ )) > mse(R̂b
xy(τ )).

Methods of Calculation Using Sampled Data

From sampled data, the autocovariance and cross-covariance functions are evaluated from

Ĉxx (m
) = 1

N − m

N−m−1∑
n=0

(x(n
) − μ̂x )(x((n + m)
) − μ̂x ) 0 ≤ m ≤ N − 1

(10.33)
and

Ĉxy(m
) = 1

N − m

N−m−1∑
n=0

(x(n
) − μ̂x )(y((n + m)
) − μ̂y) 0 ≤ m ≤ N − 1

(10.34)
where both x(n
) and y(n
) are N -point sequences, i.e. they are defined for n =
0, 1, . . . , N − 1, and m is the lag that may take values 0 ≤ m ≤ N − 1. Note that these are
unbiased estimators, and the divisor is N for the biased estimators Ĉb

xx (m
) and Ĉb
xy(m
).

The same expressions are applied for the computation of autocorrelation and cross-correlation
functions, e.g. R̂xx (m
) and R̂xy(m
) are obtained without subtracting mean values in Equa-
tions (10.33) and (10.34).

We note that the autocorrelation function is even, i.e. R̂xx (−m
) = R̂xx (m
), and the
cross-correlation function has a property that

R̂xy(−m
) = R̂yx (m
) = 1

N − m

N−m−1∑
n=0

y(n
)x((n + m)
) 0 ≤ m ≤ N − 1

(10.35)
The above expressions are the so-called ‘mean lagged product’ formulae and are evaluated

directly if there are not too many multiply and add operations. However, it turns out that it is
quicker to use FFT methods to evaluate these indirectly.

Autocorrelation via FFT1

The basis of this method lies in our earlier discussions in Chapter 6 on the convolution of two
sequences (i.e. the convolution sum). Recall that if y(n) = ∑N−1

m=0 h(m)x(n − m), and h(n)
and x(n) are N -point sequences, then y(n) is a (2N − 1)-point sequence. Since the DFT of
the convolution of two sequences is the product of the DFTs of two sequences, as long as the
sequences are padded out with zeros to avoid circular convolution, the sequence y(n) can be
obtained by y(n) = IDFT [H (k)X (k)].

1 See Bendat and Piersol (2000) for more details.
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The correlation calculation is very similar. In fact
∑N−1

n=0 x(n)y(n + m) is a convolution
of x(−n) with y(n) and the DFT of this is

DFT

[
N−1∑
n=0

x(n)y(n + m)

]
=

N−1∑
m=0

N−1∑
n=0

x(n)y(n + m)e− j(2π/N )mk = X*(k)Y (k) (10.36)

Thus, the required correlation function R̂xy(m
) is the IDFT
[
X*(k)Y (k)

]
and then scaled by

1/(N − m). Note that we must ensure that circular effects are removed by adding zeros.
Pictorially, the computation of the autocorrelation function can be illustrated as in

Figure 10.2. Note that the sequence is effectively periodic when the DFT is used.

n

x(n) Zeros are padded

n

0

0

x(n m)+
1N − 2N

Figure 10.2 Pictorial description of the computation of the autocorrelation function

We can see that the correlation of these periodic sequences is the same as the linear
correlation if there are as many zeros appended as data points. So the autocorrelation function
(without explicitly noting the sampling interval 
)

R̂xx (m) = 1

N − m

N−m−1∑
n=0

x(n)x(n + m)

is obtained by:

1. Take x(n) (N points) and add N zeros to it.
2. Form X (k) (2N -point DFT).
3. Form IDFT

[
X*(k)X (k)

]
and then scale appropriately by 1/(N − m).

The result will have the appearance as shown in Figure 10.3. This basic idea can be generalized
to cross-correlation functions.

ˆ ( )xxR m

1N − 2 1N −

ˆThis is ) for positive lags up to ( 1xxR m Nm −=

m

Figure 10.3 Results of autocorrelation computation using the DFT
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10.4 POWER SPECTRAL DENSITY FUNCTION

There are two main approaches to estimating the power spectral density function, namely
parametric (more recent) and non-parametric (traditional), as shown in Figure 10.4.

Estimation methods

Non-parametric Parametric
(ARMA, maximum entropy, etc.)

Filter bank method
(analogue method)

Indirect method
(Fourier transform of 

autocorrelation function)

Direct methods
(e.g. segment averaging)

Figure 10.4 Classification of the estimation methods for the power spectral density function

Estimation methods for the power spectral density function considered here will
relate to the ‘traditional’ methods rather than ‘parametric’ methods. We shall outline
three methods for the estimation of the power spectral density function:� Method (1): ‘Analogue’ method (filter bank method)� Method (2): Fourier transform of the autocorrelation function (indirect method)� Method (3): Direct methods.

Note that Method (3) is the most widely used since with the advent of the FFT it is the
quickest.

Method (1): ‘Analogue’ Method (Filter Bank Method)

The word ‘analogue’ is in quotes because this method can also be implemented digitally, but
it is convenient to refer to continuous signals. The basic scheme is indicated in Figure 10.5.

The basis of this method is that the variance of the signal is the area under the power
spectral density function curve (assuming zero mean value), i.e.

Var (x(t)) = σ 2
x =

∞∫
0

Gxx ( f )d f (10.37)

where Gxx ( f ) is regarded as a measure of the distribution of the power of the process over
frequency. So if we wish to know the power in the signal over some frequency band fc ± B/2,

x(t) Tunable narrow

band-pass filter

Centre frequency, f
Bandwidth, B

c

cx(t, f , B) Squarer,

integrator and averager

)( fxx cG

Figure 10.5 Concept of the filter bank method
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then we pass the signal through a filter with that passband, square (to get the power), average
to reduce the fluctuations and divide by the bandwidth to obtain the ‘density’, i.e.

G̃xx ( fc) = 1

BT

T∫
0

x2(t, fc, B)dt (10.38)

The key elements in any spectral estimation scheme are: (i) a procedure to ‘home in’ on
a narrow band, i.e. good resolution (low bias); (ii) the subsequent smoothing of the squared
estimate (i.e. low variance).

Let us assume an ideal band-pass filter and discuss the bias and variance of this estimate.
The frequency response function of an ideal band-pass filter is shown in Figure 10.6.

cfcf−

)(H f

f

1.0

B

Figure 10.6 Frequency response function of an ideal band-pass filter

Bias

The bias of the smoothed estimator is obtained from averaging G̃xx ( fc), i.e.

E
[
G̃xx ( fc)

] = 1

BT

T∫
0

E
[
x2(t, fc, B)

]
dt = E

[
x2(t, fc, B)

]
B

(10.39)

Note that E
[
x2(t, fc, B)

]
is the variance of the output of the filter, i.e.

E
[
x2(t, fc, B)

] =
fc+B/2∫

fc−B/2

Gxx ( f )d f

Thus,

E
[
G̃xx ( fc)

] = 1

B

fc+B/2∫
fc−B/2

Gxx ( f )d f (10.40)

So, in general, E[G̃xx ( fc)] �= Gxx ( fc), i.e. the estimate is biased. Expanding Gxx ( f ) in a
Taylor series about the point f = fc gives

Gxx ( f ) ≈ Gxx ( fc) + ( f − fc)G ′
xx ( fc) + ( f − fc)2

2!
G ′′

xx ( fc) (10.41)
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Substituting this into the integral, we get (Bendat and Piersol, 2000)

E
[
G̃xx ( fc)

] ≈ Gxx ( fc) + B2

24
G ′′

xx ( fc)︸ ︷︷ ︸
bias

(10.42)

Note that at a peak, G ′′
xx ( f ) < 0, so the power spectral density is underestimated (on

average); at a trough, G ′′
xx ( f ) > 0, so we have an overestimate, i.e. the dynamic range is

reduced as illustrated in Figure 10.7. Note also that poor resolution (large B) introduces
more bias error.

( )xxE G f
( )xxG f

f

Figure 10.7 Demonstration of the bias error of G̃xx ( f )

As can be seen from Equation (10.42), bias depends on the resolution B (i.e. the filter
bandwidth) relative to the fine structure of the spectrum. As an example, consider a simple
oscillator (with a damping ratio of ζ and a resonance at fr ) excited by white noise. The output
power spectral density may be as shown in Figure 10.8, where the half-power point bandwidth
is given by Br ≈ 2ζ fr . For a given ideal filter with a bandwidth of B centred at frequency fr ,
the normalized bias error at fr can be shown to be (Bendat and Piersol, 2000)

εb = b
(
G̃xx ( fr )

)
Gxx ( fr )

≈ −1

3

(
B

Br

)2

(10.43)

Note that if B = Br , the normalized bias error is −33.3 %, whereas the bias error may be
negligible if B < Br/4 (where |εb| < 2.1 %).

( )xx     rE G f( )xx     rG f

rf

3 dB bandwidth 2r                rB fζ≈

Filter bandwidth B

f

dB

Figure 10.8 Illustration of 3 dB bandwidth and the filter bandwidth
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Variance and the Mean Square Error

Assuming that the process is Gaussian and Gxx ( f ) is constant over the bandwidth of
the filter, the variance of the estimate may be shown to be (Newland, 1984; Bendat and
Piersol, 2000)

Var
(
G̃xx ( f )

) ≈ G2
xx ( f )

BT
(10.44)

The mean square error is the sum of the variance and the square of bias, and we
normalize this to give

ε2 = Var
(
G̃xx ( f )

) + b2
(
G̃xx ( f )

)
G2

xx ( f )
≈ 1

BT
+ B4

576

(
G ′′

xx ( f )

Gxx ( f )

)2

(10.45)

Note the conflict – to suppress bias the filter bandwidth B must be small (i.e. fine res-
olution), but to reduce the variance the product BT must be large. Note also that the
product BT relates to controllable parameters, i.e. B is the filter bandwidth (not the data
bandwidth), and the averaging time T obviously affects the variance. While maintaining
small filter bandwidth, the only way to reduce the mean square error is by increasing the
averaging time T .

Comments on the Choice of Filter Bandwidth2

The basic choice is between the constant (absolute) bandwidth and the constant (relative)
percentage (%) bandwidth. The constant bandwidth gives uniform resolution on a linear
frequency scale, as shown in Figure 10.9.

10 20 6050 110100
(Hz),  linear scalef

Figure 10.9 Constant bandwidth (10 Hz) filter

For constant bandwidth, the centre frequency of an ideal filter is defined as

fc = fu + fl

2
(10.46)

where fu and fl are defined as in Figure 10.10. The centre frequency is simply the arithmetic
mean of the upper and the lower frequencies.

Constant bandwidth is useful if the signal has harmonically related components, i.e.
for detecting a harmonic pattern. However, note that if the bandwidth is satisfactory at high
frequencies, it is ‘coarse’ at the one below and swamps the next lowest on a logarithmic scale
(see Figure 10.11).

2 See Randall (1987) for more details.
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(Hz)

B

f
lf cf uf

Figure 10.10 Centre frequency of the constant bandwidth filter

1 2 2010 200100
(Hz),  logarithmic scalef

Solid line: constant percentage (70.7 %)

Dashed line: constant bandwidth (10Hz)

Figure 10.11 Constant percentage (70.7 %) bandwidth filter

Since in many cases it is natural and efficient to analyse spectra using a constant percentage
bandwidth, e.g. structural response, where if each mode has roughly the same damping, then
the 3 dB bandwidth increases with frequency.

The constant percentage bandwidth gives uniform resolution on a logarithmic frequency
scale, as shown in Figure 10.11.

For the constant percentage bandwidth, the centre frequency of an ideal filter is defined
as (see Figure 10.12)

log fc = log fu + log fl

2
(10.47)

or

fc =
√

fu · fl (10.48)

We consider two special cases: octave and third octave filters. The octave filters have a
passband such that fu = 2 fl , so fc = √

2 fl and the relative bandwidth is

Relative bandwidth = fu − fl

fc
= fl

fc
= 1√

2
≈ 70.7 % (for octave filters) (10.49)

i.e. a constant percentage of 70.7 %. Starting with a reference centre frequency of 1000 Hz,
it is possible to cover three decades in frequency with 10 octave bands ranging from 22.5 Hz

B

log lf log cf log uf
log f

Figure 10.12 Centre frequency of the constant percentage bandwidth filter
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log lf
log f

Third octave filter

Octave filter

log uf

Figure 10.13 Comparison of the third octave filter and the octave filter

(lower frequency for a centre frequency of 31.5 Hz) to 22.5 kHz (upper frequency for a centre
frequency of 16 kHz).

Third octave filters (1/3 octave filters) are obtained as illustrated in Figure 10.13, i.e. each
octave band is divided into three geometrically equal subsections.

As shown in the figure, log ( fu/ fl) = log 2 for the octave filter, so log ( fu/ fl) = 1
3

log 2
for the third octave filter, i.e. fu = 21/3 fl . (Note that this is approximately 1/10 of a decade,

i.e. 1
3

log 2 ≈ 0.1 = 1
10

log 10.) The centre frequency is fc = √
fu · fl =

√
21/3 f 2

l = 21/6 fl ,

and the bandwidth for the third octave filter is

Bandwidth = fu − fl = (21/3 − 1) fl (10.50)

and the relative bandwidth is

Relative bandwidth = fu − fl

fc
= 21/3 − 1

21/6
≈ 23.1 % (10.51)

Note that, similar to the third octave filter, an m octave filter may be defined so that fu = 21/m fl .
The above considerations relate to ‘ideal’ filters. Various other definitions of bandwidth

exist, e.g. 3 dB bandwidth and noise bandwidth as shown in Figure 10.14. As mentioned in
Section 4.6, the (effective) noise bandwidth is defined as the width of an ideal rectangular filter
that would accumulate the same noise power from a white noise source as the practical filter
with the same reference transmission level. The 3 dB bandwidth is the width of the practical
filter at the 3 dB points. Although the noise bandwidth and the 3 dB bandwidth are close to
each other, the 3 dB bandwidth may be more useful when describing structural responses and

Practical band-pass filter

Noise bandwidth

1

0

0.5

Ideal band-pass filter

3 dB bandwidth 
of the practical filter

3 dB
Half power

( 3 dB)−

f

2
( )H f

cf

Figure 10.14 Noise bandwidth and 3 dB bandwidth of a practical filter
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is often preferably used since it is easier to measure. Later in this section, we shall define
another bandwidth for spectral windows, which is effectively the resolution bandwidth.

As a final comment, note that the phase characteristics of the filters are unimportant for
power spectra measurements.

Method (2): Fourier Transform of the Autocorrelation Function

(Indirect Method)3

Consider a sample record x(t), where | t | < T/2, and the corresponding Fourier transform

given by XT ( f ) = ∫ T/2

−T/2
x(t)e− j2π f t dt . Then, the raw (or sample) power spectral density

function is

Ŝxx ( f ) = |XT ( f )|2
T

= 1

T

T/2∫
−T/2

T/2∫
−T/2

x(t)e− j2π f t x(t1)e j2π f t1 dtdt1 (10.52)

Now, transforming the double integral by setting u = t − t1 and v = t1, as shown in
Figure 10.15, then Equation (10.52) may be rewritten as

Ŝxx ( f ) =
T∫

0

⎡⎢⎣ 1

T

T /2−u∫
−T /2

x(u + v)x(v)dv

⎤⎥⎦ e− j2π f udu

+
0∫

−T

⎡⎢⎣ 1

T

T /2∫
−T /2−u

x(u + v)x(v)dv

⎤⎥⎦ e− j2π f udu (10.53)

By definition, the term in the first square bracket is R̂b
xx (u) for 0 ≤ u < T , and the term in the

second square bracket is R̂b
xx (u) for −T < u ≤ 0, i.e. Ŝxx ( f ) = ∫ T

−T R̂b
xx (u)e− j2π f udu.

2T− 2T

2T

2T−

t

1t

1– -planet t
– -planeu v

2T− 2T

2T

2T−

2u T v= −

2u T v= − −

u

v

T

T−

Figure 10.15 Transformation of the regions of integration

3 See Jenkins and Watts (1968) for more details.
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Thus, an estimate of the power spectral density from a length of data T (we assume that
x(t) is defined for | t | < T/2) can be written as

Ŝxx ( f ) =
T∫

−T
R̂b

xx (τ )e− j2π f τ dτ (10.54)

Note that the sample power spectral density Ŝxx ( f ) is related to the sample autocorrelation
function R̂b

xx (τ ) (biased estimator with divisor T ). This relationship suggests that we might
estimate the power spectral density by first forming the sample autocorrelation function and
Fourier transforming this. (However, we do not presume the validity of the Wiener–Khinchin
theorem – which will follow shortly.) Note that R̂b

xx (τ ) = 0 for | τ | > T , thus

Ŝxx ( f ) =
∞∫

−∞
R̂b

xx (τ )e− j2π f τ dτ = F
{

R̂b
xx (τ )

}
(10.55)

However, as mentioned in Chapter 8, this is termed the ‘raw’ power spectral density since
it turns out that the variability of this estimator is independent of the data length T as we shall
see soon. Now, first consider the bias of this estimator.

Bias of Ŝxx( f )

Averaging Ŝxx ( f ) gives

E
[
Ŝxx ( f )

] =
T∫

−T

E
[
R̂b

xx (τ )
]

e− j2π f τ dτ (10.56)

and using Equation (10.27), this becomes

E
[
Ŝxx ( f )

] =
T∫

−T

Rxx (τ )

(
1 − |τ |

T

)
e− j2π f τ dτ 0 ≤ |τ | < T (10.57)

Thus, if T is sufficiently large, i.e. T → ∞, then

lim
T →∞

E
[
Ŝxx ( f )

] = lim
T →∞

E
[|XT ( f )|2]

T
= Sxx ( f ) =

∞∫
−∞

Rxx (τ )e− j2π f τ dτ (10.58)

So Ŝxx ( f ) is an asymptotically unbiased estimator. The above result (10.58) proves the
Wiener–Khinchin theorem introduced in Chapter 8.

Variance of Ŝxx( f )

As a prerequisite we need to discuss the properties of a random variable having the so-called
chi-squared distribution. We first outline some important results on this (Jenkins and Watts,
1968).
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The Chi-squared Distribution
Let X1, X2, . . . , Xn be n independent random variables, each of which has a normal distribu-
tion with zero mean and unit standard deviation, and define a new random variable

χ2
n = X2

1 + X2
2 + · · · + X2

n (10.59)

The distribution of χ2
n is called the chi-squared distribution with ‘n degrees of freedom’, where

the number of degrees of freedom represents the number of independent random variables Xi .
The general form of the χ2

ν probability density function with ν degrees of freedom is

pχ2
ν
(x) = 1

2ν/2�(ν/2)
x (ν/2)−1e−x/2 0 ≤ x ≤ ∞ (10.60)

where �( ν
2
) = ∫ ∞

0
e−t t (ν/2)−1dt is the gamma function. For some values of ν, pχ2

ν
(x) are

shown in Figure 10.16.

5 10 15 20

0.1

0.2

0.3

0.4

0.5

0

1ν =

2ν =

3ν =
5ν =

10ν = 15ν =

2 ( )p x
νχ

x

Figure 10.16 Chi-squared probability density functions

For a small value of ν, the distribution is non-symmetrical, but as ν increases the
chi-squared distribution tends to Gaussian, as predicted by the central limit theorem. The
first two moments of the χ2

ν random variable are

E
[
χ2

ν

] = ν (10.61)

Var(χ2
ν ) = 2ν (10.62)

We now summarize two important properties of the chi-squared distribution: (i) the
decomposition theorem for chi-squared random variables; (ii) approximation by a chi-squared
distribution. The first property states that if a random variable χ2

ν is decomposed into k random
variables according to χ2

ν = χ2
ν1

+ χ2
ν2

+ · · · + χ2
νk

and if ν1 + ν2 + · · · + νk = ν, then the

random variables χ2
νi

are mutually independent. Conversely, if k independent random variables

χ2
νi

are added together, then the sum is χ2
ν , where

ν = ν1 + ν2 + · · · + νk (10.63)

The second property states that: suppose we have a positive-valued random variable
Y , and we wish to approximate its distribution by aχ2

ν where a and ν are unknown, but
we may know the mean and variance of Y , i.e. μy and σ 2

y are known. Then in this case,
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E [Y ] = μy = E[aχ2
ν ] = aν and σ 2

y = Var(aχ2
ν ) = a2Var(χ2

ν ) = 2a2ν = 2μ2
y/ν. Thus a and

ν are found from

a = μy

ν
(10.64)

ν = 2μ2
y

σ 2
y

(10.65)

Variance Considerations
We now return to study the variance of Ŝxx ( f ). The sample power spectral density function
can be written as (x(t) is defined for | t | < T/2)

Ŝxx ( f ) = |XT ( f )|2
T

= 1

T

∣∣∣∣∣∣∣
T /2∫

−T /2

x(t)e− j2π f t dt

∣∣∣∣∣∣∣
2

= 1

T

∣∣∣∣∣∣
∞∫

−∞
x(t)e− j2π f t dt

∣∣∣∣∣∣
2

= 1

T

⎧⎪⎨⎪⎩
⎡⎣ ∞∫

−∞
x(t) cos(2π f t)dt

⎤⎦2

+
⎡⎣ ∞∫

−∞
x(t) sin(2π f t)dt

⎤⎦2
⎫⎪⎬⎪⎭

= 1

T

[
X2

c ( f ) + X2
s ( f )

]
(10.66)

where Xc( f ) and Xs( f ) are Fourier cosine and sine transforms of x(t).
Let us assume that x(t) is a Gaussian process with zero mean value; then Xc( f )

and Xs( f ) are also Gaussian and have zero mean values. Furthermore, it can be shown
that Xc( f ) and Xs( f ) are uncorrelated and have approximately equal variances (Jenkins
and Watts, 1968). Now if the variances were unity, we could use the properties of the
chi-squared distribution to say Ŝxx ( f ) is related to a χ2

2 distribution (note that Ŝxx ( f ) is
a squared quantity and so positive valued). We do this as follows. Let

1

T
E

[
X2

c ( f )
] = 1

T
E

[
X2

s ( f )
] = σ 2 (say, for each frequency f ) (10.67)

and

E
[
Ŝxx ( f )

] ≈ Sxx ( f ) = 2σ 2 (10.68)

Then, it can be shown that

2Ŝxx ( f )

Sxx ( f )
= X2

c ( f )

T σ 2
+ X2

s ( f )

T σ 2
(10.69)

which is the sum of two squared Gaussian random variables with unit variances (note that
Xc( f ) and Xs( f ) are jointly normally distributed (see Appendix G for justification) and
uncorrelated, so they are independent). Therefore the random variable 2Ŝxx ( f )/Sxx ( f )
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is distributed as a chi-squared random variable with two degrees of freedom, i.e. χ2
2 (for

all values of sample length T ). Using Equation (10.62), the variance is

Var

(
2Ŝxx ( f )

Sxx ( f )

)
= 4

and so

4Var
(
Ŝxx ( f )

)
S2

xx ( f )
= 4 (10.70)

i.e.

Var(Ŝxx ( f )) = S2
xx ( f ) (10.71)

or

σ (Ŝxx ( f )) = Sxx ( f ) (10.72)

This important result states that the estimator Ŝxx ( f ) has a variance that is independent
of sample length T, i.e. Ŝxx ( f ) is an inconsistent estimate of Sxx ( f ). Furthermore, the
random error of the estimate is substantial, i.e. the standard deviation of the estimate is
as great as the quantity being estimated. These undesirable features lead to the estimate
Ŝxx ( f ) being referred to as the ‘raw’ spectrum estimate or ‘raw periodogram’. As it
stands, Ŝxx ( f ) is not a useful estimator and we must reduce the random error. This may
be accomplished by ‘smoothing’ as indicated below. However, as we shall see, the penalty
for this is the degradation of accuracy due to bias error.

Smoothed Spectral Density Estimators

As we have already discussed, the averaged Ŝxx ( f ) is given by Equation (10.57), where
the integrand is Rxx (τ ) (1 − |τ |/T ). This motivates us to study the effect of introducing a
lag window, w(τ ), i.e. the estimate may be smoothed in the frequency domain by Fourier
transforming the product of the autocorrelation function estimate and w(τ ) which has a
Fourier transform W ( f ) (called a ‘spectral window’). This defines the smoothed spectral
estimator S̃xx ( f ) as

S̃xx ( f ) =
∞∫

−∞
R̂b

xx (τ )w(τ )e− j2π f τ dτ (10.73)

Recall that
∞∫

−∞
x(t)w(t)e− j2π f t dt =

∞∫
−∞

X (g)W ( f − g)dg
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i.e. S̃xx ( f ) = Ŝxx ( f ) ∗ W ( f ), which is the convolution of the raw spectral density with
a spectral window. Thus the right hand side of Equation (10.73) has an alternative form

S̃xx ( f ) =
∞∫

−∞
Ŝxx (g)W ( f − g)dg (10.74)

This estimation procedure may be viewed as a smoothing operation in the frequency
domain. Thus the lag window w(τ ) results in the spectral window W ( f ) ‘smoothing’ the
raw periodogram Ŝxx ( f ) through the convolution operation. In fact, the above method is
the basis of the correlation method of estimating spectral density functions. In the time
domain, the lag window can be regarded as reducing the ‘importance’ of values of R̂b

xx (τ )
as τ increases.

It is necessary to start all over again and study the bias and variance properties of this
new estimator S̃xx ( f ) where clearly the window function w(τ ) will now play an important
role. Jenkins and Watts (1968) and Priestley (1981) give a detailed discussion of this problem.
We shall only quote the main results here.

Some commonly used window functions are listed in Table 10.1. The rectangular window
is included for completeness, and other window functions may also be used. Note that the
discussions on window functions given in Chapter 4 are directly related to this case.

The lag windows w(τ ) are shown in Figure 10.17, where w(0) = 1 for all windows,
and the spectral windows W ( f ) are shown in Figure 10.18. Note that the spectral win-
dows which take negative values might give rise to negative spectral density estimates in this
approach.

Table 10.1 Commonly used lag and spectral windows

Window
name Lag window, w(τ ) Spectral window, W ( f )

Rectangular
w(τ ) = 1

= 0

|τ | ≤ Tw

|τ | > Tw

W ( f ) = 2Tw

(
sin(2π f Tw)

2π f Tw

)

Bartlett
w(τ ) = 1 − |τ |

Tw= 0

|τ | ≤ Tw

|τ | > Tw

W ( f ) = Tw

(
sin(π f Tw)

π f Tw

)2

Hann(ing)
w(τ ) = 1

2

(
1 + cos

πτ

Tw

)
= 0

|τ | ≤ Tw

|τ | > Tw

W ( f ) = Tw

(
sin(2π f Tw)

2π f Tw

)
1

1 − (2 f Tw)2

Hamming
w(τ ) = 0.54 + 0.46 cos

πτ

Tw= 0

|τ | ≤ Tw

|τ | > Tw

W ( f ) =
[
0.54π2 − 0.08(2π f Tw)2

]
sin(2π f Tw)

2π f Tw

[
π2 − (2π f Tw)2

]

Parzen

w(τ ) = 1 − 6

(
τ

Tw

)2

+ 6

( |τ |
Tw

)3

= 2

(
1 − |τ |

Tw

)3

= 0

|τ | ≤ Tw

2
Tw

2
< |τ | ≤ Tw

|τ | > Tw

W ( f ) = 3

4
Tw

(
sin(π f Tw/2)

π f Tw/2

)4



JWBK207-10 JWBK207-Shin January 18, 2008 8:20 Char Count= 0

POWER SPECTRAL DENSITY FUNCTION 339

( )w τ

τ
0.2 wT0 0.4 wT 0.6 wT 0.8 wT wT

0.2

0.4

0.6

0.8

1.0 Rectangular

Hamming

Hann

Bartlett

Parzen

Figure 10.17 Lag windows (for τ ≥ 0)
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Figure 10.18 Spectral windows (for f ≥ 0)

Bias Considerations
From Equation (10.74), the average of the smoothed power spectral density function is

E
[
S̃xx ( f )

] =
∞∫

−∞
Sxx (g)W ( f − g)dg (10.75)

So, S̃xx ( f ) is biased. Note that this equation indicates how the estimate may be distorted
by the smearing and leakage effect of the spectral windows. In fact, for large T , bias is
shown to be

b
(
S̃xx ( f )

) = E
[
S̃xx ( f )

] − Sxx ( f ) ≈
∞∫

−∞
[w(τ ) − 1] Rxx (τ )e− j2π f τ dτ (10.76)

Note that the bias is different for each lag window. The details are given in Jenkins and
Watts (1968). We may comment broadly that the general effect is to reduce the dynamic
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range of the spectra as in the filter bank method of the spectral estimation, i.e. peaks are
underestimated and troughs are overestimated.

As can be seen from Equation (10.75), the bias is reduced as the spectral window
gets narrower, i.e. as the width of the lag window w(τ ) gets larger, the spectral window
becomes W ( f ) → δ( f ). So, S̃xx ( f ) is asymptotically unbiased (for Tw → ∞). However,
the spectral windows cannot be made too narrow since then there is little smoothing and
the random errors increase, so we need W ( f ) to have some width to do the smoothing.
Consequently, once again we need a compromise between bias and variance, i.e. a trade-
off between the resolution and the random error. Note that, sometimes, the bias problem
is referred to under ‘bandwidth considerations’ since small bias is associated with small
bandwidth of the window function.

Variance Considerations
From Equation (10.74), S̃xx ( f ) can be considered as a weighted sum of values of Ŝxx ( f ).
Thus, it may be argued that nS̃xx ( f )/Sxx ( f ) is approximately distributed as a chi-squared
random variable with n degrees of freedom, χ2

n , where the number of degrees of freedom
is defined as

n = 2T∫ ∞
−∞ w2(τ )dτ

= 2T

I
(10.77)

which depends on the window and data length (Jenkins and Watts, 1968).
Also, since Var(nS̃xx ( f )/Sxx ( f )) = 2n, it can be shown that

Var(S̃xx ( f )) = S2
xx ( f )

n/2
= S2

xx ( f )

T/I
(10.78)

σ (S̃xx ( f )) = Sxx ( f )√
n/2

= Sxx ( f )√
T/I

(10.79)

Now, 1/I can be argued to be a measure of the resolution bandwidth B of the window
(see below for justification), so the number of degrees of freedom is n = 2BT . Thus, the
above equations can be rewritten as

Var(S̃xx ( f ))

S2
xx ( f )

= 1

BT
(10.80)

σ (S̃xx ( f ))

Sxx ( f )
= 1√

BT
(10.81)

To justify that 1/I is a measure of bandwidth, consider an ideal filter shown in Figure 10.19,
where

I =
∞∫

−∞
w2(τ )dτ =

∞∫
−∞

W 2( f )d f (10.82)



JWBK207-10 JWBK207-Shin January 18, 2008 8:20 Char Count= 0

POWER SPECTRAL DENSITY FUNCTION 341

2B

1 B

( )W f

f

B

Figure 10.19 An ideal filter with a resolution bandwidth of B

Since

∞∫
−∞

W 2( f )d f = 1

B

it can be shown that

1/I = 1
∞∫

−∞
w2(τ )dτ

= 1
∞∫

−∞
W 2( f )d f

= B (10.83)

When the ‘non-ideal’ filters (Bartlett, Hann, Parzen, etc.) are used, then 1/
∫ ∞
−∞ w2(τ )dτ

defines a generalized bandwidth. This is the effective resolution of the spectral window.
A summary of bandwidths, biases and variance ratios of some window functions is given

in Table 10.2 (Jenkins and Watts, 1968; Priestley, 1981).

Table 10.2 Properties of some spectral windows

Window Bandwidth
name 1/I = B DOF Variance ratio,

Var
(
S̃xx ( f )

)
S2

xx ( f )
Approximate bias

Rectangular
0.5

Tw

T

Tw

2Tw

T
N/A

Barlett
1.5

Tw

3T

Tw

0.667Tw

T
≈ 1

Tw

∞∫
−∞

−|τ |Rxx (τ )e− j2π f τ dτ

Hann(ing)
1.333

Tw

2.667T

Tw

0.75Tw

T
≈ 0.063

T 2
w

S′′
xx ( f )

Hamming
1.26

Tw

2.52T

Tw

0.795Tw

T
≈ 0.058

T 2
w

S′′
xx ( f )

Parzen
1.86

Tw

3.71T

Tw

0.539Tw

T
≈ 0.152

T 2
w

S′′
xx ( f )

Note: S′′
xx ( f ) is the second derivative of the spectrum at frequency f , T is the total data length and Tw is as defined in Table 10.1

(i.e. half of the lag window length).
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General Comments on Window Functions and S̃xx( f )

Although the rectangular window is included in Table 10.2, it is rarely used since its spectral
window side lobes cause large ‘leakage’ effects. However, in Chapter 8, the rectangular window
function is applied to estimate the spectral density functions in MATLAB Examples 8.8–8.10
(note that we have used a very long data length T ).

Bias of the Bartlett window is of order 1/Tw and so will in general be greater than other
windows (order 1/T 2

w). Among the Hann, Hamming and Parzen windows, the Parzen window
has the smallest variance but has the greatest bias. Since the bias of these windows depends on
S′′

xx ( f ), larger bias occurs at sharp peaks and troughs than other frequency regions. From the
table, we can easily see that the bias is reduced as Tw increases, but the variance is increased.
The variance can then be reduced by increasing the total data length T .

We note that: (i) when the bias is small, S̃xx ( f ) is said to reproduce Sxx ( f ) with high
fidelity; (ii) when the variance is small, the estimator is said to have high stability (Jenkins and
Watts, 1968). The choice of window functions should depend on whether the concern is for
statistical stability (low variance) or high fidelity (small bias), although in general we must
consider both. For example, if the spectral density function has narrow peaks of importance
we may willingly tolerate some loss of stability to resolve the peak properly, while if the
spectral density function is smooth then bias errors are not likely to be so important. Thus, we
may state that the estimator S̃xx ( f ) is approximately unbiased and has a low variance only if
the sufficiently narrow resolution bandwidth and yet long enough data are used.

When spectra are estimated via the autocorrelation function many texts give only ap-
proximate values for the degrees of freedom and the resolution bandwidth. For example, with
digital analysis with N data points (sampled at every 
 seconds) and a maximum correlation
lag M , the number of degrees of freedom is usually quoted as 2N/M and the resolution
bandwidth as 1/(M
) (this may corresponds to the rectangular window function).

Finally, instead of multiplying the sample autocorrelation function by the lag window and
Fourier transforming the weighted sample autocorrelation function, an alternative procedure
is to do the smoothing in the frequency domain, i.e. form the raw periodogram and perform
the frequency convolution. This ‘frequency smoothing’ will be referred to again soon.

Method (3): Direct Methods

We shall now discuss the basis for forming smoothed power spectral density estimates without
first forming the autocorrelation functions. These methods are probably the most widely
used because of computational considerations. There are two methods, although they can be
combined if required, namely (i) segment averaging; (ii) frequency smoothing.

Segment Averaging (Welch’s Method)M10.1

The segment averaging method has become very popular mainly because of its fast
speed of computation. The method is discussed in Jenkins and Watts (1968) as Bartlett’s
smoothing procedure and in Welch (1967) in some detail. The basic procedure is outlined
with reference to Figure 10.20.
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t

T

rT

Figure 10.20 The basis of the segment averaging method

Consider the data (length T ) which is segmented into q separate time slices each
of length Tr such that qTr = T (in this case non-overlapping). Now we form the raw
periodogram for each slice as

Ŝxxi ( f ) = 1

Tr

∣∣XTri ( f )
∣∣2

for i = 1, 2, . . . , q (10.84)

We saw earlier that this is distributed as a chi-squared random variable with two degrees
of freedom. We might expect that by averaging successive raw spectra the underlying
behaviour would reinforce and the variability would reduce, i.e. form

S̃xx ( f ) = 1

q

q∑
i=1

Ŝxxi ( f ) (10.85)

We can estimate the variance reduction by the following argument. Note that for each
segment 2Ŝxxi ( f )/Sxx ( f ) is a χ2

2 random variable. From Equation (10.85),

2S̃xx ( f ) · q

Sxx ( f )
=

q∑
i=1

2Ŝxxi ( f )

Sxx ( f )

Thus, (2S̃xx ( f ) · q)/Sxx ( f ) is the sum of qχ2
2 random variables and so assuming that

these are essentially independent of each other then this is approximated as χ2
2q . From

Equation (10.61),

E

[
2S̃xx ( f ) · q

Sxx ( f )

]
≈ 2q (10.86)

from which E[S̃xx ( f )] ≈ Sxx ( f ) (i.e. S̃xx ( f ) is approximately unbiased). From Equation
(10.62),

Var

(
2S̃xx ( f ) · q

Sxx ( f )

)
≈ 4q (10.87)

Thus,

4q2

S2
xx ( f )

Var
(
S̃xx ( f )

) ≈ 4q
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i.e. it follows that

Var
(
S̃xx ( f )

)
S2

xx ( f )
≈ 1

q
(10.88)

σ
(
S̃xx ( f )

)
Sxx ( f )

≈ 1√
q

(10.89)

This can be expressed differently. For example, the resolution bandwidth of the
rectangular data window is B = 1/Tr = q/T . Thus, Equation (10.88) can be written as

Var
(
S̃xx ( f )

)
S2

xx ( f )
≈ 1

BT
(10.90)

which is the same as Equation (10.80). Note that by segmenting the data, the resolution
bandwidth becomes wider since Tr < T . We must be aware that the underlying assump-
tion of the above results is that each segment of the data must be independent (see the
comments in MATLAB Example 10.1). Clearly this is generally not the case, particularly
if the segments in the segment averaging overlap. This is commented on in the following
paragraphs.

To summarize the segment averaging method:

1. Resolution bandwidth: B ≈ 1
Tr

= q
T

2. Degrees of freedom: n = 2q = 2BT

3. Variance ratio:
Var(S̃xx ( f ))

S2
xx ( f )

≈ 1
BT = 1

q

While the above description summarizes the essential features of the method, Welch
(1967) and Bingham et al. (1967) give more elaborate procedures and insight. Since the use
of a rectangular data window introduces leakage, the basic method above is usually modified
by using other data windows. This is often called linear tapering. The word ‘linear’ here does
not refer to the window shape but to the fact that it operates on the data directly and not on the
autocorrelation function (see Equation (10.73)) where it is sometimes called quadratic tapering.

The use of a data window on a segment before transforming reduces leakage. However,
since the windows have tapering ends, the values obtained for Ŝxxi ( f ) must be compensated for
the ‘power reduction’ introduced by the window. This results in the calculation of ‘modified’
periodograms for each segment of the form

Ŝxxi ( f ) =

1

Tr

∣∣∣∣∣∣
∫

i th interval

x(t)w(t)e− j2π f t dt

∣∣∣∣∣∣
2

1

Tr

Tr /2∫
−Tr /2

w2(t)dt

(10.91)

where the denominator compensates for the power reduction, and is unity for the rectangular
window and 3/8 for the Hann window.
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Finally, we note that the use of a data window ignores some data because of the tapered
shape of the window. Intuitively the overlapping of segments compensates for this in some
way (Welch, 1967), though it is not easy to relate these results to the indirect method of Fourier
transforming the autocorrelation function. We must remember that ideally segments should
be independent to obtain the variance reduction – and with overlapping this is compromised.
We simply quote the following results from Welch (1967) which is based on Gaussian white
noise. If the segments overlap by one-half of their length (50 % overlap), and the total data
length is N points and each individual segment length is L points, then

1. The number of degrees of freedom is n ≈ 2( 2N
L − 1)

2. The variance ratio is
Var(S̃xx ( f ))

S2
xx ( f )

≈ 1
n/2

3. The resolution is 1/(L
) = fs/L , but note that this depends on the data window being
used.

Frequency Smoothing

This approach is based on the comments given in Method (2) (in the last paragraph). The
method is as follows:

1. Form the raw periodogram from the data length T .
2. Average l neighbouring estimates of this spectrum, i.e. form

S̃xx ( fk) = 1

l

l∑
i=1

Ŝxx ( fi ) (10.92)

where the fi surround fk .

As before, we can argue that (2S̃xx ( f ) · l)/Sxx ( f ) is distributed as χ2
2l and

Var(S̃xx ( f ))

S2
xx ( f )

≈ 1

l
(10.93)

The resolution bandwidth before smoothing is approximately 1/T , but after smoothing it is
approximately l/T since l neighbouring values are averaged. This method is effectively the
same as the indirect method (Method (2)).

Note that one might combine both segment averaging and frequency smoothing to get
an estimate with 2lq degrees of freedom and then the resolution bandwidth is approximately
lq/T .

Confidence Intervals for Spectral Estimates

We now discuss the ‘interval estimates’ based on the point estimates for the smoothed spectral
density function S̃xx ( f ). We have seen that nS̃xx ( f )/Sxx ( f ) is distributed as a χ2

n random
variable where the probability density function for χ2

n is of the form shown in Figure 10.21,
i.e. the values taken by nS̃xx ( f )/Sxx ( f ) are much more likely to fall within the hump than the
tail or near x = 0.
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Figure 10.21 The creation of confidence intervals

If we choose a number α (0 < α < 1) such that sections of area α/2 are as shown marked
off by the points xn,α/2 and xn,1−α/2, then the following probability statement can be made:

P

[
xn,α/2 ≤ nS̃xx ( f )

Sxx ( f )
≤ xn,1−α/2

]
= 1 − α (10.94)

The points xn,α/2 and xn,1−α/2 can be obtained from tables of χ2
n for different values of α. Now

the inequality can be solved for the true spectral density Sxx ( f ) from the following equivalent
inequality:

nS̃xx ( f )

xn,1−α/2

≤ Sxx ( f ) ≤ nS̃xx ( f )

xn,α/2

(10.95)

Thus, for a particular sample value S̃xx ( f ) (a point estimate), the 100(1 − α) % confidence
limits for Sxx ( f ) are

n

xn,1−α/2

S̃xx ( f ) and
n

xn,α/2

S̃xx ( f ) (10.96)

and the confidence interval is the difference between these two limits.
Note that on a linear scale the confidence interval depends on the estimate S̃xx ( f ), but

on a log scale the confidence limits are

log

(
n

xn,1−α/2

)
+ log

(
S̃xx ( f )

)
and log

(
n

xn,α/2

)
+ log

(
S̃xx ( f )

)
(10.97)

and so the interval is log(n/xn,α/2) − log(n/xn,1−α/2) which is independent of S̃xx ( f ). Thus,
if the spectral estimate S̃xx ( f ) is plotted on a logarithmic scale, then the confidence interval
for the spectrum can be represented by a constant interval about the estimate. Figure 10.22
indicates the behaviour of n/xn,α/2 and n/xn,1−α/2 (Jenkins and Watts, 1968).

From Figure 10.22, we can clearly see that the confidence interval decreases as the number
of degrees of freedom n increases. For example, if n = 100 (approximately 50 averages for the
segment averaging method), the 95 % confidence interval is about [0.77S̃xx ( f ), 1.35S̃xx ( f )].
Sometimes, the number of degrees of freedom is referred to as the ‘statistical degrees of
freedom (Stat DOF)’, and more than 120 degrees of freedom is often required in many random
vibration testing standards (e.g. MIL-STD-810F and IEC 60068-2-64).
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Figure 10.22 Confidence interval limits

10.5 CROSS-SPECTRAL DENSITY FUNCTIONM10.1,10.3

The basic considerations given in Section 10.4 relate also to cross-spectral density function
estimation together with some additional features, but we shall not go into any detail here.
Detailed results can be found in Jenkins and Watts (1968). We shall merely summarize some
important features.

The raw cross-spectral density function can be obtained by Fourier transforming the raw
cross-correlation function, i.e.

Ŝxy( f ) =
T∫

−T

R̂b
xy(τ )e− j2π f τ dτ (10.98)

and this has the same unsatisfactory properties as the raw power spectral density function.
Thus, as before, a lag window w(τ ) is introduced to smooth the estimate, i.e.

S̃xy( f ) =
T∫

−T

R̂b
xy(τ )w(τ )e− j2π f τ dτ (10.99)
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Note that the unbiased estimator R̂xy(τ ) may also be used in place of R̂b
xy(τ ) provided that the

maximum lag τmax is relatively small compared with T . Alternatively, the smoothed estimate
can be obtained by the segment averaging method or by frequency smoothing of the raw cross-
spectral density. For example, if the segment averaging method is used the raw and smoothed
cross-spectral density functions are

Ŝxyi ( f ) = 1

Tr

[
X*

Tri
( f )YTri ( f )

]
for i = 1, 2, . . . , q (10.100)

S̃xy( f ) = 1

q

q∑
i=1

Ŝxyi ( f ) (10.101)

The smoothed estimate S̃xy( f ) may be written in the form

S̃xy( f ) = ∣∣S̃xy( f )
∣∣ e j arg S̃xy ( f ) (10.102)

Roughly speaking, one can show that the variances of the amplitude
∣∣S̃xy( f )

∣∣ and the
phase arg S̃xy( f ) are proportional to 1/BT where B is the resolution bandwidth and T
is the data length.

Whilst the general effect of smoothing is much the same as for the power spectral
density estimate, we note in addition, though, that the amplitude and phase estimators
are also strongly dependent on the ‘true’ coherence function γ 2

xy( f ). So, as Jenkins and
Watts (1968) observed, the sampling properties of the amplitude and phase estimators
may be dominated by the ‘uncontrollable’ influence of the coherence spectrum γ 2

xy( f )
rather than by the ‘controllable’ influence of the smoothing factor 1/BT . For example,
the variance of the modulus and phase of S̃xy( f ) are shown to be (Bendat and Piersol,
2000)

Var
(∣∣S̃xy( f )

∣∣)∣∣Sxy( f )
∣∣2

≈ 1

γ 2
xy( f )

· 1

BT
(10.103)

Var
(
arg S̃xy( f )

) ≈ 1 − γ 2
xy( f )

γ 2
xy( f )

· 1

2BT
(10.104)

Note the ‘uncontrollable’ influence of true coherence function γ 2
xy( f ) on the variability

of the estimate. Note also that the variance of arg S̃xy( f ) is not normalized. Particularly,
if x(t) and y(t) are fully linearly related, i.e. γ 2

xy( f ) = 1, then Var(arg S̃xy( f )) ≈ 0. Thus,
we see that the random error of the phase estimator is much smaller than that of the
amplitude estimator.

Similar to the power spectral density estimate, in general, the estimator S̃xy( f )
is approximately unbiased when T is sufficiently large and the resolution bandwidth
is narrow. However, there is another important aspect: since R̃xy(τ ) is not (in general)
symmetric, it is necessary to ensure that its maximum is well within the window w(τ )
or serious bias errors result. For example, if y(t) = x(t − 
), then it can be shown that
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(Schmidt, 1985b) for rectangular windows

E
[
S̃xy( f )

] ≈
(

1 − 


Tr

)
Sxy( f ) (10.105)

where Tr is the length of window (or the length of segment). Note that the time delay
between signals results in biased estimates (see MATLAB Example 10.3). This problem
may be avoided by ‘aligning’ the two time series so that the cross-correlation function
R̃xy(τ ) has a maximum at τ = 0.

10.6 COHERENCE FUNCTIONM10.2

The estimate for the coherence function is made up from the estimates of the smoothed power
and cross-spectral density functions as

γ̃ 2
xy( f ) =

∣∣S̃xy( f )
∣∣2

S̃xx ( f )S̃ yy( f )
(10.106)

It should be noted that if ‘raw’ spectral density functions are used on the right hand side of the
equation, it can be easily verified that the sample coherence function γ̂ 2

xy( f ) is always ‘unity’
for all frequencies for any signals x and y (even if they are unrelated).

Detailed calculations are given in Jenkins and Watts (1968) for the sampling properties
of the smoothed coherence function γ̃ 2

xy( f ), but roughly speaking, the variance of γ̃ 2
xy( f ) is

proportional to 1/BT (which is known, so a controllable parameter) and also depends on
γ 2

xy( f ) (which is unknown, so is an uncontrollable parameter), where the variance of γ̃ 2
xy( f )

is shown to be

Var
(
γ̃ 2

xy( f )
)(

γ 2
xy( f )

)2
≈ 2

(
1 − γ 2

xy( f )
)2

γ 2
xy( f )

· 1

BT
(10.107)

This expression is sometimes used as an approximate guide after measurements have been
made by replacing γ 2

xy( f ) with γ̃ 2
xy( f ).

Jenkins and Watts (1968) show that the bias of this estimator is proportional to the square
of the derivative of the phase spectrum arg Sxy( f ). For example, if the Hann window is used
the normalized bias error can be expressed by

b
(
γ̃ 2

xy( f )
)

γ 2
xy( f )

≈ −0.126

T 2
w

(
d

d f

(
arg Sxy( f )

))2

(10.108)

for large T (total data length), where Tw is half of the lag window length as defined in
Table 10.1. For the Parzen window, 0.126 is replaced by 0.304. The above equation means
that the estimator is sensitive to delays between x(t) and y(t). Similar to the cross-spectral
density function estimate, such bias can be reduced by realigning the processes, i.e. aligning
the peak in the cross-correlation between x(t) and y(t) to occur at zero lag.



JWBK207-10 JWBK207-Shin January 18, 2008 8:20 Char Count= 0

350 ESTIMATION METHODS AND STATISTICAL CONSIDERATIONS

Note also that, if x(t) and y(t) are the input and output of a lightly damped oscillator,
severe bias errors are likely to occur at resonant (and anti-resonant) frequencies where
the phase changes rapidly. Since the resolution bandwidth is inversely proportional to
the length of the lag window (e.g. for the Hann window B = 1.333/Tw as shown in
Table 10.2), the bias error can be reduced by improving the resolution of the estimate, i.e.
the resolution bandwidth B should be reduced (see MATLAB Example 10.2). In Figure
10.23, the coherence function is estimated for simulated input/output results for a lightly
damped oscillator (ζ = 0.02) with natural frequency at 1 Hz. The theoretical value of
coherence is unity and the resolutions used are shown in the figure, where it can be seen
that the bias is reduced as the resolution bandwidth B decreases.

If the resolution bandwidth is chosen adequately, the bias of γ̃ 2
xy( f ) may be approx-

imated (Carter et al., 1973) by

b
(
γ̃ 2

xy( f )
) ≈

(
1 − γ 2

xy( f )
)2

BT
(10.109)

This shows that the estimate γ̃ 2
xy( f ) is asymptotically unbiased (i.e. for large BT).

2
xyγ

Resolution bandwidth, B ≈ 0.02 Hz

B ≈ 0.2 Hz

B ≈ 0.5 Hz

B ≈ 1 Hz

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

Figure 10.23 Bias in the coherence function estimate

10.7 FREQUENCY RESPONSE FUNCTION

The frequency response function is estimated using smoothed spectral density functions. For
example, the estimate of H1( f ) can be obtained from

H̃1( f ) = S̃xy( f )

S̃xx ( f )
(10.110)

Note that we use the notation H̃1( f ) to distinguish it from the theoretical quantity H1( f ),
though it is not explicitly used in Chapter 9. The results for errors and confidence limits can
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be found in Bendat and Piersol (1980, 2000) and Otnes and Enochson (1978). A few results
from Bendat and Piersol are quoted below.

Bias errors in the frequency response estimate H̃1( f ) arise from:

(a) bias in the estimation procedure;
(b) nonlinear effects;
(c) bias in power spectral and cross-spectral density function estimators;
(d) measurement noise on input (note that uncorrelated output noise does not cause bias).

In connection with (a), we would get bias effects since

E
[
H̃1( f )

] = E

[
S̃xy( f )

S̃xx ( f )

]
�= E

[
S̃xy( f )

]
E

[
S̃xx ( f )

]
i.e. E[H̃1( f )] �= H1( f ). However, this effect is usually small if BT is large. In connection with
(b), use of Equation (10.110) produces the best linear approximation (in the least squares sense)
for the frequency response function. In connection with (c), bias in the power spectral and
cross-spectral density function may be significant at peaks and troughs. These are suppressed
by having narrow resolution bandwidth. In connection with (d), we have already discussed this
in Chapter 9 (i.e. various FRF estimators H1( f ), H2( f ) and HW ( f ) (or HT ( f )) are discussed
to cope with the measurement noise).

Finally, the variances of the modulus and phase of H̃1( f ) are

Var
(∣∣H̃1( f )

∣∣)
|H1( f )|2 ≈ 1 − γ 2

xy( f )

γ 2
xy( f )

· 1

2BT
(10.111)

Var
(
arg H̃1( f )

) ≈ 1 − γ 2
xy( f )

γ 2
xy( f )

· 1

2BT
(10.112)

This shows that, similar to the estimates S̃xy( f ) and γ̃ 2
xy( f ), the variances depend on both

the controllable parameter BT and the uncontrollable parameter γ 2
xy( f ). Note that the

right hand sides of Equations (10.111) and (10.112) are the same. Also, comparing with
the results of the cross-spectral density estimate S̃xy( f ) shown in Equations (10.103)
and (10.104), we see that the normalized variance of |H̃1( f )| is smaller than that of
|S̃xy( f )|, while the variances of the phase estimators are the same, i.e. Var(arg H̃1( f )) =
Var(arg S̃xy( f )). In practice, this implies that we may need shorter data length (or fewer
number of averages) for the FRF estimate than the cross-spectral density estimate. Note
that, if γ 2

xy( f ) = 1, then both Var(|H̃1( f )|) and Var(arg H̃1( f )) approach zero.

The random errors of H̃2( f ) may be similar to those of H̃1( f ) since the H2( f ) estimator
can be thought of as reversing the role of input and output defined for H1( f ) in the optimization
scheme (discussed in Chapter 9). The random errors of H̃W ( f ) (or H̃T ( f )) are not as obvious
as the others. However, if there is no measurement noise it can easily be seen that all three
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theoretical quantities are the same, i.e. H1( f ) = H2( f ) = HW ( f ). Thus, apart from the error
due to the measurement noise, we may anticipate that the random errors are similar to the
H1( f ) estimator. Details of the statistical properties of HW ( f ) can be found in White et al.
(2006).

We summarize the normalized random errors of various estimates in Table 10.3, where
the factor BT can be replaced by the number of averages q for the segment averaging method
(assuming that the data segments used are mutually uncorrelated).

Table 10.3 Random errors for some smoothed estimators

Estimator Random error, εr = σ (�̂)

φ

S̃xy( f ) εr ≈ 1√
BT∣∣S̃xy( f )

∣∣ εr ≈ 1∣∣γxy( f )
∣∣ √BT

arg S̃xy( f ) σ
(
argS̃xy( f )

) ≈
[
1 − γ 2

xy( f )
]1/2∣∣γxy( f )

∣∣ √2BT

∣∣H̃1( f )
∣∣ εr ≈

[
1 − γ 2

xy( f )
]1/2∣∣γxy( f )

∣∣ √2BT

arg H̃1( f ) σ
(
argH̃1( f )

) ≈
[
1 − γ 2

xy( f )
]1/2∣∣γxy( f )

∣∣ √2BT

γ̃ 2
xy( f ) εr ≈

√
2

[
1 − γ 2

xy( f )
]∣∣γxy( f )

∣∣ √BT

10.8 BRIEF SUMMARY

1. Estimator errors are defined by

Bias: b(�̂) = E[�̂] − φ

Variance: Var(�̂) = E[�̂2] − E2[�̂]

Mean square error: mse(�̂) = Var(�̂) + b2(�̂)

The normalized errors are

Bias error: εb = b(�̂)/φ

Random error: εr = σ (�̂)/φ

RMS error: ε =
√

mse(�̂)/φ
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2. R̂xx (τ ) and R̂xy(τ ) are the unbiased autocorrelation and cross-correlation function
estimates; however, the biased (but asymptotically unbiased) estimators R̂b

xx (τ ) and
R̂b

xy(τ ) have a smaller mean square error. When unbiased estimators are used, the ratio
of the maximum lag to the total data length, τmax/T , should not exceed 0.1.
Correlation functions may be estimated with arbitrarily small error if the length of the
data is sufficiently long.

3. The ‘raw’ power spectral density function Ŝxx ( f ) is an asymptotically unbiased esti-
mator; however, the variance of Ŝxx ( f ) is Var

(
Ŝxx ( f )

) = S2
xx ( f ).

4. The ‘smoothed’ power spectral density function S̃xx ( f ) can be obtained by

S̃xx ( f ) =
∞∫

−∞
R̂b

xx (τ )w(τ )e− j2π f τ dτ

or

S̃xx ( f ) = 1

q

q∑
i=1

Ŝxxi ( f ), where Ŝxxi ( f ) = 1

Tr

∣∣XTri ( f )
∣∣2

5. The bias error of S̃xx ( f ) is usually small if Sxx ( f ) is smooth. However, the estimator
S̃xx ( f ) usually underestimates the peaks and overestimates the troughs (i.e. dynamic
range is reduced). The bias error can be reduced by improving the resolution band-
width. The resolution bandwidths and approximate bias errors for various lag windows
are shown in Table 10.2.

6. The variance of S̃xx ( f ) is given by

Var
(
S̃xx ( f )

)
S2

xx ( f )
= 1

BT

where the BT can be replaced by the number of averages q for the segment averaging
method (the number of degree is n = 2BT ). The random error is reduced as the product
BT becomes large. However, in general, we need to trade-off between the resolution
(bias error) and the variability (random error).
While maintaining the good resolution (low bias) the only way to reduce the random
error is by increasing the data length T .

7. The cross-spectral density function estimate S̃xy( f ) has similar statistical properties
to those of S̃xx ( f ). However, this estimator depends on the ‘true’ coherence function
γ 2

xy( f ) which is an ‘uncontrollable’ parameter.
Time delay between two signals x(t) and y(t) can introduce a severe bias error.

8. The statistical properties of the coherence function estimate γ̃ 2
xy( f ) depend on both the

true coherence function γ 2
xy( f ) and the product BT. The random error is reduced by

increasing the product BT. However, significant bias error may occur if the resolution
bandwidth is wide when arg Sxy( f ) changes rapidly.

9. The estimator H̃1( f ) also depends on both the controllable parameter BT and the
uncontrollable parameter γ 2

xy( f ).
The random errors of various estimators are summarized in Table 10.3.
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10.9 MATLAB EXAMPLES

Example 10.1: Statistical errors of power and cross-spectral density functions

Consider the same example (2-DOF system) as in MATLAB Example 9.4, i.e.

h(t) = A1

ωd1

e−ζ1ωn1t sin ωd1t + A2

ωd2

e−ζ2ωn2t sin ωd2t

Again, we use the white noise as an input x(t), and the output y(t) is obtained by
y(t) = h(t) ∗ x(t). However, we do not consider the measurement noise.

Since we use the white noise input (band-limited up to fs/2, where fs is the sam-

pling rate, i.e. σ 2
x = ∫ fs/2

− fs/2
Sxx ( f )d f = 1), the theoretical spectral density functions are

Sxx ( f ) = σ 2
x / fs , Syy( f ) = |H ( f )|2 σ 2

x / fs and Sxy( f ) = H ( f )σ 2
x / fs . These theoretical

values are compared with the estimated spectral density functions.
The segment averaging method is used to obtain smoothed spectral density functions

S̃xx ( f ), S̃ yy( f ) and S̃xy( f ). Then, for a given data length T , we demonstrate how the
bias error and the random error change depending on the resolution bandwidth B ≈ 1/Tr ,
where Tr is the length of the segment.

Line MATLAB code Comments

1
2

3
4

5
6

clear all
A1=20; A2=30; f1=5; f2=15; wn1=2*pi*f1;
wn2=2*pi*f2;
zeta1=0.02; zeta2=0.01;
wd1=sqrt(1-zeta1∧2)*wn1;
wd2=sqrt(1-zeta2∧2)*wn2;
fs=100; T1=10; t1=[0:1/fs:T1-1/fs];
h=(A1/wd1)*exp(-zeta1*wn1*t1).
*sin(wd1*t1) + (A2/wd2)
*exp(-zeta2*wn2*t1).*sin(wd2*t1);

Same as MATLAB Example 9.4, except
that the damping ratios are smaller, i.e.
we use a more lightly damped system.

7
8
9

10

T= 2000; % T=10000;
randn('state',0);
x=randn(1,T*fs);
y=filter(h,1,x)/fs; % scaled appropriately.

Define the data length T seconds. First,
use T = 2000, then compare the results
with the cases of T = 10000 (when Tr =
20 is used at Line 11).
Generate the white noise input sequence
‘x’ (σ 2

x = 1), and then obtain the output
sequence ‘y’ (scaled appropriately).

11
12

13

Tr=4; N=Tr*fs; % Tr=20;
[Sxx, f]=cpsd(x,x, hanning(N),N/2, N, fs,
'twosided');
[Syy, f]=cpsd(y,y, hanning(N),N/2, N, fs,
'twosided');

Define the length of segment Tr
seconds. First, use Tr = 4
(approximately 1000 averages), then
compare the results with the cases of Tr
= 20 (approximately 200 averages).
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14

15
16

[Sxy, f]=cpsd(x,y, hanning(N),N/2,
N, fs, 'twosided');
H=fft(h)/fs; % scaled appropriately.
f1=fs*(0:length(H)-1)/length(H);

Obtain the spectral density
estimates using the segment
averaging method (Hann window
with 50 % overlap is used). Also,
calculate H ( f ) by the DFT of the
impulse response sequence (scaled
appropriately).

17
18
19
20
21

figure (1)
plot(f,10*log10(fs*Sxx), f, zeros(size(f)), 'r:')
xlabel('Frequency (Hz)')
ylabel('Estimate of \itS x x\rm(\itf\rm) (dB)')
axis([0 30 -10 10])

Plot the power spectral density
estimate S̃xx ( f ), where ‘fs’ is
multiplied. Also, plot the variance
of the signal σ 2

x = S̃xx ( f ) · fs = 1
(0 dB) for comparison.

22
23

24
25
26

figure(2)
plot(f,10*log10(Syy),
f1,10*log10(abs(H).∧2/fs), 'r:')
xlabel('Frequency (Hz)')
ylabel('Estimate of \itS y y\rm(\itf\rm) (dB)')
axis([0 30 -100 -20])

Plot the power spectral density
estimate S̃ yy( f ) and the theoretical
power spectral density function
Syy( f ) = |H ( f )|2 σ 2

x

/
fs .

27
28

29
30
31

figure(3)
plot(f,10*log10(abs(Sxy)),
f1,10*log10(abs(H)/fs), 'r:')
xlabel('Frequency (Hz)')
ylabel('Estimate of |\itS x y\rm(\itf\rm)| (dB)')
axis([0 30 -60 -20])

Plot the magnitude spectra of
S̃xy( f ) and Sxy( f ) = H ( f )σ 2

x

/
fs .

32
33

34
35

36

figure(4)
plot(f,unwrap(angle(Sxy)),
f1,unwrap(angle(H)), 'r:')
xlabel('Frequency (Hz)')
ylabel('Estimate of arg\itS x y\rm(\itf\rm)
(rad)')
axis([0 30 -3.5 0])

Plot the phase spectra of S̃xy( f ) and
Sxy( f ).

Results: Case (a) Tr = 4 seconds at Line 11 and T = 2000 at Line 7 (1000 averages)
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(a3) Magnitude spectrum of Sxy ( f )
(a4) Phase spectrum of Sxy ( f )
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Comments: Since the Hann window is used, the resolution bandwidth is B ≈ 1.33/Tw ≈
0.67 Hz, where Tw ≈ Tr/2. Note that both S̃ yy( f ) and |S̃xy( f )| underestimate the peaks
and overestimate the trough owing to the bias error.

Results: Case (b) Tr = 20 seconds at Line 11 and T = 2000 at Line 7 (200 averages)
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(b1) Power spectral density function Sxx ( f ) (b2) Power spectral density function Syy ( f )

0 5 10 15 20 25 30
Frequency (Hz)

Solid line: arg ( )

Dashed line: arg ( )

xy

xy

S f

S f

–3.5

–3

–2.5

–2

–1.5

–1

–0.5

0

E
st

im
at

e 
o
f 

ar
g

S x
y(

f)
(r

ad
)

Solid line: ( )

( )Dashed line:

xy

xy

S f

S f

0 5 10 15 20 25 30
Frequency (Hz)

E
st

im
at

e 
o
f 

|S
xy

(f
)|

(d
B

)

–60

–55

–50

–45

–40

–35

–30

–25

–20

(b3) Magnitude spectrum of Sxy ( f ) (b4) Phase spectrum of Syy ( f )

Comments: In this case, the resolution bandwidth is B ≈ 0.13 Hz. It can be shown that
the bias errors of spectral density estimates S̃ yy( f ) and S̃xy( f ) are greatly reduced owing
to the improvement of the resolution. However, the random error is increased since the
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number of averages is decreased. Note that arg S̃xy( f ) has much less random error than∣∣S̃xy( f )
∣∣ (almost no random error is present in this example since γ 2

xy( f ) = 1).

Results: Case (c) Tr = 20 seconds at Line 11 and T = 10 000 at Line 7 (1000 averages)
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(c1) Power spectral density function Sxx ( f ) (c2) Power spectral density function Syy ( f )
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(c3) Magnitude spectrum of Sxy ( f )
(c4) Phase spectrum of Sxy ( f )

Comments: While maintaining the narrow resolution bandwidth, increasing the number
of averages results in better estimates.

Comments on the segment averaging method: As mentioned in Section 10.4, the
underlying assumption for the segment averaging method is that each segment of the data
must be uncorrelated. If it is correlated, the random error will not reduce appreciably. To
demonstrate this, use T = 2000 and Tr = 20 (i.e. Case (b)), and add the following script
between Line 9 and Line 10. Then run this MATLAB program again and compare the
result with Case (b).

x=[x 2*x 3*x 4*x 5*x]; x=x-mean(x); x=x/std(x);

Now, the total data length is 5 × 2000 = 10 000 seconds, so the number of averages
is approximately 1000 which is the same as in Case (c). However, the random error will
not reduce since correlated data are repeatedly used. For example, the results of S̃xx ( f )
and

∣∣S̃xy( f )
∣∣ are shown in Figures (d).
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Example 10.2: Bias error of the coherence function estimate

In the previous MATLAB example, we did not consider the coherence function estimator
γ̃ 2

xy( f ). We shall examine the bias error of γ̃ 2
xy( f ), using the same system as in the previous

example. Note that the half-power point bandwidths at resonances ( f1 = 5 and f2 = 15)
are Br1 = 2ζ1 f1 = 0.2 Hz and Br2 = 2ζ2 f2 = 0.3 Hz

As mentioned in Section 10.6, considerable bias error may occur at resonances and
anti-resonances where the phase of the cross-spectral density function changes rapidly,
e.g. if the Hann window is used the normalized bias error is (i.e. Equation (10.108))

b
(
γ̃ 2

xy( f )
)

γ 2
xy( f )

≈ −0.126

T 2
w

(
d

d f

(
arg Sxy( f )

))2

In this example, various resolution bandwidths are used: B1 = 1 Hz, B2 = 0.5 Hz, B3 =
0.2 Hz and B4 = 0.05 Hz. For each resolution bandwidth, approximately 1000 averages
are used so that the random error is negligible. A Hann window with 50 % overlap is used.
The length of each segment for the Hann window is obtained by Tr = 2Tw ≈ 2 × 1.33/B,
where B is the resolution bandwidth (see Table 10.2).

Line MATLAB code Comments

1
2

3
4

5
6

clear all
A1=20; A2=30; f1=5; f2=15; wn1=2*pi*f1;
wn2=2*pi*f2;
zeta1=0.02; zeta2=0.01;
wd1=sqrt(1-zeta1∧2)*wn1;
wd2=sqrt(1-zeta2∧2)*wn2;
fs=100; T1=10; t1=[0:1/fs:T1-1/fs];
h=(A1/wd1)*exp(-zeta1*wn1*t1).
*sin(wd1*t1) + (A2/wd2)*exp(-zeta2*wn2*t1).
*sin(wd2*t1);

Same as MATLAB Example 10.1.
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7
8
9

10
11
12
13

B1=1; B2=0.5; B3=0.2; B4=0.05;
N1=fix(1.33*2/B1*fs); N2=fix(1.33*2/B2*fs);
N3=fix(1.33*2/B3*fs); N4=fix(1.33*2/B4*fs);
Ns=500; Nt=N4*Ns;
randn('state',0);
x=randn(1,Nt);
y=filter(h,1,x);
% we do not scale for convenience.

Define the resolution bandwidths: B1,
B2, B3 and B4. Then, calculate the
number of points of a segment for each
bandwidth. Define the total number of
segments Ns = 500 that results in
approximately 1000 averages if 50 %
overlap is used.
Generate white noise input sequence
‘x’ and the output sequence ‘y’.

14

15

16

17

18

[Gamma 1, f] = mscohere(x(1:Ns*N1),
y(1:Ns*N1), hanning(N1), [], N4, fs);
[Gamma 2, f] = mscohere(x(1:Ns*N2),
y(1:Ns*N2), hanning(N2), [], N4, fs);
[Gamma 3, f] = mscohere(x(1:Ns*N3),
y(1:Ns*N3), hanning(N3), [], N4, fs);
[Gamma 4,f] = mscohere(x(1:Ns*N4),
y(1:Ns*N4), hanning(N4), [], N4, fs);
H=fft(h, N4);
% we do not scale for convenience.

Calculate the coherence function
estimates γ̃ 2

xy( f ) for each resolution
bandwidth using the MATLAB
function ‘mscohere’.
Also, calculate H ( f ) by the DFT of
the impulse response sequence. We
calculate this to compare γ̃ 2

xy( f ) and
arg H ( f ). Note that arg H ( f ) =
arg Sxy( f ).

19
20

21
22

23

figure (1)
plot(f, [Gamma 1 Gamma 2 Gamma 3
Gamma 4])
xlabel('Frequency (Hz)')
ylabel('Estimate of \it\gamma x y\rm∧

2(\itf\rm)')
axis([0 30 0 1])

Plot the coherence function estimates
γ̃ 2

xy( f ) for each resolution bandwidth.

24
25
26
27

28

figure(2)
plot(f,unwrap(angle(H(1:length(f)))))
xlabel('Frequency (Hz)')
ylabel('arg\itH\rm(\itf\rm) =
arg\itS x y\rm(\itf\rm) (rad)')
axis([0 30 -3.5 0])

Plot arg H ( f ) which is the same as
arg Sxy( f ).

Results
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Comments: Note the large bias error at the resonances and anti-resonance. Also note
that the bias error decreases as the resolution bandwidth gets narrower.
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Another point on the bias error in the coherence function is that it depends on the
‘window function’ used in the estimation (Schmidt, 1985a). For example, if we use a
rectangular window, i.e. replace ‘hanning’ in Lines 14–17 with ‘rectwin’, then we may
not see the drop of coherence at resonances as shown in Figure (c). Readers may care to
try different window functions.
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(c) Coherence function estimate γ2
xy ( f ) (rectangular window function is used)∼

Example 10.3: Bias error of the cross-spectral density function estimate (time delay
problem)

In Section 10.5, we mentioned that the cross-spectral density function estimate S̃xy( f )
produces a biased result if time delay is present between two signals. For example if
y(t) = x(t − 
), then the average of S̃xy( f ) is (i.e. Equation (10.105) for a rectangular
window)

E
[
S̃xy( f )

] ≈
(

1 − 


Tr

)
Sxy( f )

In this example, we use the white noise signal for x(t) (band-limited up to fs/2), and
y(t) = x(t − 
) where 
 = 1 second. Since it is a pure delay problem, the cross-spectral
density function is

Sxy( f ) = e− j2π f 
Sxx ( f )

i.e. |Sxy( f )| = Sxx ( f ) = σ 2
x / fs (see MATLAB Example 10.1).

We shall examine the bias error of S̃xx ( f ) for various values of Tr . Note that the
bias error can only be reduced by increasing the window length (in effect, improving the
resolution) or by aligning two signals (Jenkins and Watts, 1968), e.g. y(t) may be replaced
by y′(t) = y(t + 
) if 
 can be found from the cross-correlation function (arg S̃xy( f )
must be compensated later).
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Line MATLAB code Comments

1
2
3
4

clear all
delta=1; fs=20;
Tr=1.1; % Tr=1.1, 2, 5, 50;
N=Tr*fs; Nt=1000*N;

Define the delay 
 = 1 second and the
window length Tr . We compare the
results of four different window
lengths Tr = 1.1, 2, 5 and 50 seconds.
‘N’ is the number of points in the
segment and ‘Nt’ is the total data
length.

5
6
7
8
9

randn('state',0);
x=randn(1,Nt+delta*fs);
y=x(1:length(x)-delta*fs);
x=x(delta*fs+1:end);
[Sxy, f]=cpsd(x,y, rectwin(N), 0, 1000, fs,
'twosided');

Generate white noise sequence ‘x’ and
the delayed sequence ‘y’. (Note that
σ 2

x = σ 2
y = 1.) Then, calculate the

cross-spectral density function
estimate S̃xy( f ). In this example, the
rectangular window with no overlap is
used. So, the number of averages is
1000.

10
11
12
13

14

figure (1)
plot(f,fs*abs(Sxy), f, ones(size(f)), 'r:')
xlabel('Frequency (Hz)')
ylabel('Estimate of |\itS x y\rm(\itf\rm)|
(linear scale)')
axis([0 10 0 1.1])

Plot the magnitude spectrum of S̃xy( f )
(multiplied by the sampling rate) and
the theoretical value which is unity
(note that

∣∣Sxy( f )
∣∣ · fs = σ 2

x = 1).

15
16

17
18

19

figure(2)
plot(f, unwrap(angle(Sxy)), [0 10],
[0 -2*pi*10*delta], 'r:')
xlabel('Frequency (Hz)')
ylabel('Estimate of arg\itS x y\rm(\itf\rm)
(rad)')
axis([0 10 -65 0])

Plot the phase spectrum of S̃xy( f ) and
the theoretical value of arg Sxy( f )
which is −2π f 
.
Run this MATLAB program again
using different values of Tr .

Results
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(d1)              using Tr = 50( )xyS f (d2) arg             using Tr = 50( )xyS f

Comments: Note that a significant bias error occurs if the window length Tr is short.
However, it is interesting to see that arg S̃xy( f ) is almost unaffected as long as Tr > 
,
as one might expect from Equation (10.105).
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11
Multiple-Input/Response Systems

Introduction

This chapter briefly introduces some additions to the work presented so far. The natural
extension is to multiple-input and multiple-output systems. The concepts of residual spectra
and partial and multiple coherence functions offer insight into the formal matrix solutions.
Finally principal component analysis is summarized and related to the total least squares
method of Chapter 9.

11.1 DESCRIPTION OF MULTIPLE-INPUT, MULTIPLE-OUTPUT

(MIMO) SYSTEMS

Consider the multiple-input, multiple-output system depicted in Figure 11.1.
Assuming that the system is composed of linear elements, then any single output y j (t)

(say) is

y j (t) =
m∑

i=1

h ji (t) ∗ xi (t) (11.1)

where h ji (t) is the impulse response function relating the i th input to the j th output. Fourier
transforming this yields

Y j ( f ) =
m∑

i=1

Hji ( f )Xi ( f ) (11.2)

where Hji ( f ) is the frequency response function relating the i th input to the j th response.
The Fourier transform of the set of all responses can be arranged as a vector as

Y( f ) = H( f )X( f ) (11.3)

Fundamentals of Signal Processing for Sound and Vibration Engineers
K. Shin and J. K. Hammond. C© 2008 John Wiley & Sons, Ltd
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x

System

1y
y

1x

2y2x

nymx

Figure 11.1 A multiple-input, multiple-output system

where Y( f ) is an n × 1 vector of responses, X( f ) is an m × 1 vector of inputs and H( f )
is n × m matrix of frequency response functions. For simplicity of notation we write the
transforms as X( f ) rather than XT ( f ), implying a data length T . Also, we imply below the
proper limitation as T → ∞ etc.

From this the n × n output spectral density matrix SYY( f ) = E[Y∗( f )YT ( f )] is

SYY( f ) = H∗( f )SXX( f )HT ( f ) (11.4)

where SXX( f ) is the m × m input spectral density matrix. This expression generalizes
Equation (9.8). Note that both these matrices SXX( f ) and SYY( f ) include cross-spectra relating
the various inputs for SXX( f ) and outputs for SYY( f ).

Similarly, the input–output spectral density matrix may be expressed as SXY( f ) =
E[X∗( f )YT ( f )], which becomes

SXY( f ) = SXX( f )HT ( f ) (11.5)

This is the generalization of Equation (9.12). It is tempting to use this as the basis for ‘identi-
fication’ of the matrix HT ( f ) by forming

HT ( f ) = S−1
XX( f )SYY( f ) (11.6)

Immediately apparent is the potential difficulty in that we need the inverse of SXX( f ), which
might be singular. This arises if there is a linear dependency between inputs, i.e. if at least
one input can be regarded as a linear combination of the others. Under these circumstances
the determinant of SXX( f ) is zero and the rank of SXX( f ) is less than m. The pseudo-inverse
of SXX( f ) may be employed but this is not followed up here.

11.2 RESIDUAL RANDOM VARIABLES, PARTIAL AND MULTIPLE

COHERENCE FUNCTIONS

The matrix formulation in Equation (11.6) is a compact approach to dealing with multiple-
input, multiple-output systems. However, there are other approaches aimed at revealing and
interpreting the nature and relative importance of signals and transmission paths in systems.
One such method is described below. This is demonstrated here by using a very simple
example, namely a two-input, single-output system. This can easily be generalized to more
inputs – and for more outputs each output can be taken in turn.

Let us start by saying that we measure three signals (x1(t), x2(t), x3(t)) and wish to know
how these signals may be related. An approach to this would be to ‘strip out’ progressively
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the ‘effect’ of first one signal on the other two, and then what is left of the next from the
last remaining one (and so on if we had more signals). This ‘stripping out’ of one signal’s
effect on another yields what is called a ‘residual’ process. Comprehensive studies on residual
processes can be found in Bendat (1976a, 1976b, 1978) and Bendat and Piersol (1980, 2000).
We illustrate how this approach may be helpful by choosing any one of the three (say x3(t))
and identifying it as an ‘output’ y(t) arising from inputs x1(t) and x2(t).

So we consider a two-input, single-output system with some uncorrelated output mea-
surement noise as shown in Figure 11.2.

1x

+

n

3(     )x y=

1H

2x
2H

Figure 11.2 Two-input, single-output system

On the basis of the measurements taken, this is a three-component process, x1, x2, x3(= y),
where we reiterate that it may be convenient (but not necessary) to regard y as an output. Based
on the assumed structure we might wish to quantify:

1. The relative magnitude of noise to ‘linear effects’, i.e. how much of y is accounted for by
linear operations on x1 and x2.

2. The relative importance of inputs x1 and x2, i.e. how much of y comes from each of x1 and
x2.

3. The frequency response functions H1 and H2 (i.e. estimate H1 and H2 from x1, x2 and y).

To start with, it is useful to remind ourselves of the concept and use of the ordinary coherence
function. With reference to Figure 11.3, suppose we have two signals x , y and we seek a linear
‘link’ between them. Then, Figure 11.3 may be redrawn as Figure 11.4.

x +

n

yH

Figure 11.3 A single-input, single-output system with measurement noise on the output

L

x

y

(fully coherent with x )cy

 (uncoherent with x )ucy n=

Figure 11.4 Alternative expression of Figure 11.3
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If we try to estimate the ‘best’ linear operation (optimal filter L) on x that minimizes
E[y2

uc], then its frequency response function is given by

L( f ) = Sxy( f )

Sxx ( f )
(11.7)

Also, the coherent output power is Syc yc ( f ) = γ 2
xy( f )Syy( f ) and the uncoherent (noise) power

is Syuc yuc ( f ) = [1 − γ 2
xy( f )]Syy( f ). In fact, yuc is the residual random variable resulting from

y after a linear prediction of y based on x has been subtracted. Note that, in Figure 11.4,
the noise is interpreted as what is ‘left’ in the output after the linear effects of x have been
removed.

We now return to the problem of three processes x1, x2, x3(= y). Figure 11.2 can be
decomposed into the two stages below, as shown in Figure 11.5.

1x

Stage 1

2y

1L

y
3
(= x

2.1
)

y
5
(= x

3.1
)

y
7
(= x

3.1,2
 = n)

2x

4
y

3

(= y)

x

1y

6y

Stage 2

2L
3L

Figure 11.5 Alternative expression of Figure 11.2

We should emphasize that we assume that we can only use the three measured signals
x1, x2 and x3(= y). Furthermore we restrict ourselves to second-order properties of stationary
random processes. Accordingly, the only information we have available is the 3 × 3 spectral
density matrix linking x1, x2 and x3(= y). All subsequent manipulations involve the elements
of this (Hermitian) matrix.

Stage 1

In Figure 11.5, Stage 1 depicts the ‘stripping out’ (in a least squares optimization sense) of
the signal x1 from x2 and x3(= y). The signal denoted x2·1 is therefore what is left of x2 when
the linearly correlated part of x1 has been removed. The notation x2·1 denotes the ‘residual’
random variable. Similarly, x3·1 denotes what is left of x3 when the linearly related part of x1

has been removed.
To put a physical interpretation on this – it is as though process x1 is ‘switched off’ and

x2·1 and x3·1 are what remains of x2 and x3 when this is done. (Once again we emphasize
that this switching off is in a least squares sense. Thus it picks out the linear link between the
signals.) The linear links between x1 and x2, x3 are denoted L1 and L2. These and the following
quantities can be expressed in terms of spectra relating the residual random variables. It should
be noted that the filters L1 and L2 are mathematical ideal (generally non-causal) linear filters –
not ‘physical’ filters (and so should not be identified with H1 and H2). This introduces the
concept of residual spectral densities and partial coherence functions:
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� Residual spectral density functions are ‘usual’ spectral density functions formed from
residual variables.� Partial coherence functions are ordinary coherence functions formed from residual variables.

First, for the pair x1 and x2, the ‘optimal’ linear filter linking x1 and x2 is

L1( f ) = S12( f )

S11( f )
(11.8)

where S12( f ) is short for Sx1x2
( f ) etc. The power spectral density of that part of x2 which is

coherent with x1 is

Sy2 y2
( f ) = γ 2

12( f )S22( f ) (11.9)

The ‘noise’ output power is Sy3 y3
( f ) which is written as S22·1( f ), i.e.

Sy3 y3
( f ) = S22·1( f ) = [

1 − γ 2
12( f )

]
S22( f ) (11.10)

Similarly, for the pair x1 and x3, the optimal filter is

L2( f ) = S13( f )

S11( f )
(11.11)

The spectral density of y(= x3) is Syy( f ) = S33( f ) = Sy4 y4
( f ) + Sy5 y5

( f ), where Sy4 y4
( f ) is

the power spectral density of that part of y that is coherent with x1 and Sy5 y5
( f ) = S33·1( f ) is

the power spectral density of that part of y that is uncoherent with x1, i.e.

Sy4 y4
( f ) = γ 2

13( f )S33( f ) (11.12)

Sy5 y5
( f ) = S33·1( f ) = [

1 − γ 2
13( f )

]
S33( f ) (11.13)

From Equations (11.10) and (11.13), we see that the residual spectral density functions
S22·1( f ) and S33·1( f ) are computed from the ‘usual’ spectral density functions and ordinary
coherence functions. Similarly, the residual spectral density function S23·1( f ) which is the
cross-spectral density between x2·1 and x3·1 can also be expressed in terms of the spectral
density functions formed from the measured signal x1, x2 and x3. We do this as follows.

From the definition of the cross-spectral density function, S23·1( f ) is

S23·1( f ) = lim
T →∞

E[X∗
2·1( f )X3·1( f )]

T
(11.14)

Since X2 = Y2 + X2·1 = L1 X1 + X2·1 and X3 = Y4 + X3·1 = L2 X1 + X3·1, and using
Equations (11.8) and (11.11), it can be shown that

S23·1( f ) = S23( f ) − S21( f )S13( f )

S11( f )
(11.15)

So the residual spectral density S23·1( f ) can be computed in terms of the usual spectral density
functions.

We now introduce the concept of the partial coherence function. This is the ‘ordinary’
coherence function but linking residual random variables. The partial coherence function
between x2·1 and x3·1 can be computed using the above results, and is

γ 2
23·1( f ) = |S23·1( f )|2

S22·1( f )S33·1( f )
(11.16)



JWBK207-11 JWBK207-Shin January 18, 2008 8:21 Char Count= 0

368 MULTIPLE-INPUT/RESPONSE SYSTEMS

Stage 2

In Figure 11.5, Stage 2 depicts the ‘removal’ of x2·1 from x3·1. As before, for the pair x2·1 and
x3·1, the optimal filter is

L3( f ) = S23·1( f )

S22·1( f )
(11.17)

In the figure, x3·1,2 denotes the residual variable arising when the linear effects of both x1 and
x2 are removed from x3. The output powers of uncoherent and coherent components with x2·1
are

Sy7 y7
( f ) = Snn( f ) = S33·1,2( f ) = [

1 − γ 2
23·1( f )

]
S33·1( f ) (11.18)

Sy6 y6
( f ) = γ 2

23·1( f )S33·1( f ) (11.19)

Note that S33·1,2( f ) is the power spectral density of that part of y unaccounted for by linear
operations on x1 and x2, i.e. the uncorrelated noise power. Now, combining the above results
and using Figure 11.5, the power spectral density of y can be decomposed into

Syy( f ) = S33( f ) = Sy4 y4
( f ) + Sy6 y6

( f ) + Sy7 y7
( f )

= γ 2
13( f )S33( f ) part fully coherent with x1

+ γ 2
23·1( f )S33·1( f ) part fully coherent with x2

after x1 has been removed from x2 and x3

+ [
1 − γ 2

23·1( f )
]

S33·1( f ) uncoherent with both x1 and x2 (11.20)

This equation shows the role of the partial coherence function.
Note that by following the signal flow in Figure 11.5, one can easily verify that

H1( f ) = L2( f ) − L1( f )L3( f ) (11.21)

and

H2( f ) = L3( f ) (11.22)

A multiple coherence function is defined in a manner similar to that of the ordinary
coherence function. Recall that the ordinary coherence function for the system shown in
Figure 11.3 can be written as γ 2

xy( f ) = (Syy( f ) − Snn( f ))/Syy( f ). Similarly, the multiple

coherence function denoted γ 2
y:x ( f ) is defined as

γ 2
y:x ( f ) = Syy( f ) − Snn( f )

Syy( f )
(11.23)

That is the multiple coherence function γ 2
y:x ( f ) is the fraction of output power accounted for

via linear operations on the inputs; it is a measure of how well the inputs account for the
measured response of the system. For the example shown above, it can be written as

γ 2
y:x ( f ) = S33( f ) − S33·1,2( f )

S33( f )
(11.24)

Note that the nearer γ 2
y:x ( f ) is to unity, the more ‘completely’ does the linear model apply

to the three components. Using Equations (11.12) and (11.18), the above equation can be
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written as

γ 2
y:x ( f ) = 1 − (

1 − γ 2
13( f )

) (
1 − γ 2

23·1( f )
)

(11.25)

which shows that it can be computed in terms of partial and ordinary coherence functions. See
Sutton et al. (1994) for applications of the multiple coherence function.

Computation of Residual Spectra and Interpretation in Terms

of Gaussian Elimination

The above example illustrates the methodology. A more general computational formulation
is given below which operates on the elements of the spectral density matrix of the measured
signals. The residual spectral density function S23·1( f ) given in Equation (11.15) can be
generalized as

Si j ·k( f ) = Si j ( f ) − Sik( f )Skj ( f )

Skk( f )
(11.26)

This can be extended as

Si j ·k,l( f ) = Si j ·k( f ) − Sil·k( f )Sl j ·k( f )

Sll·k( f )
(11.27)

We use the above expressions to ‘condense’ successive cross-spectral density matrices, e.g.⎡⎢⎣ S11( f ) S12( f ) S13( f )

S21( f ) S22( f ) S23( f )

S31( f ) S32( f ) S33( f )

⎤⎥⎦ ⇒
[

S22·1( f ) S23·1( f )

S32·1( f ) S33·1( f )

]
⇒ [

S33·1,2( f )
]

(11.28)

This can be extended to larger systems. This ‘condensation’ can be interpreted through Gaus-
sian elimination (row manipulations) as follows (where ri is the i th row):

Step 1: r2 → r2 − r1 ×
(

S21( f )

S11( f )

)
; r3 → r3 − r1 ×

(
S31( f )

S11( f )

)
gives

⎡⎢⎣ S11( f ) S12( f ) S13( f )

S21( f ) S22( f ) S23( f )

S31( f ) S32( f ) S33( f )

⎤⎥⎦ ⇒

⎡⎢⎣ S11( f ) S12( f ) S13( f )

0 S22·1( f ) S23·1( f )

0 S32·1( f ) S33·1( f )

⎤⎥⎦ (11.29)

Step 2: r3 → r3 − r2 ×
(

S32·1( f )

S22·1( f )

)
gives

⎡⎢⎣ S11( f ) S12( f ) S13( f )

0 S22·1( f ) S23·1( f )

0 S32·1( f ) S33·1( f )

⎤⎥⎦ ⇒

⎡⎢⎣ S11( f ) S12( f ) S13( f )

0 S22·1( f ) S23·1( f )

0 0 S33·1,2( f )

⎤⎥⎦ (11.30)

i.e. the residual spectral density functions arise naturally.
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Further interpretation can be obtained by starting from Figure 11.2 again. Since X3( f ) =
H1( f )X1( f ) + H2( f )X2( f ) + N ( f ), the cross-spectral density functions are written as

S13( f ) = H1( f )S11( f ) + H2( f )S12( f )

S23( f ) = H1( f )S21( f ) + H2( f )S22( f ) (11.31)

Solving for H1( f ) and H2( f ) using Gaussian elimination (eliminate the term H1( f )S21( f ) in
the second Equation of (11.31)) gives

S11( f )H1( f ) + S12( f )H2( f ) = S13( f )(
S22( f ) − S21( f )S12( f )

S11( f )

)
H2( f ) = S23( f ) − S21( f )S13( f )

S11( f )
(11.32)

Thus,

H2( f ) = S23·1( f )

S22·1( f )
and H1( f ) = S13( f )

S11( f )
− S12( f )

S11( f )

S23·1( f )

S22·1( f )

11.3 PRINCIPAL COMPONENT ANALYSIS

Although residual spectral analysis is useful in source identification, condition monitoring,
etc., the shortcoming of the method is that prior ranking of the input signals is often required
(see Bendat and Piersol, 1980), i.e. a priori knowledge. Principal component analysis (PCA)
is a general approach to explore correlation patterns (Otte et al., 1988).

Suppose we have three processes x1, x2, x3. Then we start as before by forming the
cross-spectral density matrix

S =

⎡⎢⎣ S11( f ) S12( f ) S13( f )

S21( f ) S22( f ) S23( f )

S31( f ) S32( f ) S33( f )

⎤⎥⎦ (11.33)

Note that this is a Hermitian matrix, i.e. S = S*T = SH , where SH is the conjugate transpose.
If there is a linear relationship between the processes xi , then the determinant of this matrix
is zero (i.e. its rank is less than three). If there is no linear relationship then its rank is three.

Suppose the matrix is full rank (i.e. rank 3). Then eigenvalue (or singular value) decom-
position gives

S = UΛUH (11.34)

where Λ is a diagonal matrix that contains eigenvalues of S, and U is a unitary matrix whose
columns are the corresponding eigenvectors. We may describe the physical interpretation of
this as follows. Suppose there exist three (fictitious) processes z1, z2, z3 that are mutually
uncorrelated and from which x1, x2, x3 can be derived, i.e. for each frequency f ,⎡⎢⎣ X1( f )

X2( f )

X3( f )

⎤⎥⎦ =

⎡⎢⎣ m11( f ) m12( f ) m13( f )

m21( f ) m22( f ) m23( f )

m31( f ) m32( f ) m33( f )

⎤⎥⎦
⎡⎢⎣ Z1( f )

Z2( f )

Z3( f )

⎤⎥⎦ (11.35)

i.e. X( f ) = M( f )Z( f ). Conceptually, this can be depicted as in Figure 11.6.
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M
1x1z

2x2z

3x3z

Uncorrelated

variables

Measured

signals

Figure 11.6 Virtual signals and measured signals

Then, forming the spectral density matrix gives

SXX( f ) = S = M∗( f )SZZ( f )MT ( f ) (11.36)

Since the zi are mutually uncorrelated, SZZ( f ) is a diagonal matrix. Thus, Equation (11.36)
has the same form as Equation (11.34), i.e. SZZ( f ) = Λ and M∗( f ) = U. So, the eigenvalues
of S are the power spectra of these fictitious processes and their (relative) magnitudes serve
to define the principal components referred to, i.e. zi are the principal components.

Note however, that, it is important not to think of these as physical entities, e.g. it is quite
possible that more than three actual independent processes combine to make up x1, x2 and x3.
The fictitious processes z1, z2, z3 are merely a convenient concept. These signals are called
virtual signals. Note also that the power of these virtual signals is of course not the power
of the measured signals. It is therefore interesting to establish to what degree each principal
component contributes to the power of the measured signals. To see this, for example, consider
X1( f ) which can be written as (from Equation (11.35))

X1( f ) = m11( f )Z1( f ) + m12( f )Z2( f ) + m13( f )Z3( f ) (11.37)

Then, since the zi are uncorrelated the power spectral density function Sx1x1
( f ) can be written

as

Sx1x1
( f ) = |m11( f )|2 Sz1z1

( f ) + |m12( f )|2 Sz2z2
( f ) + |m13( f )|2 Sz3z3

( f ) (11.38)

and the power due to z1 is γ 2
z1x1

( f )Sx1x1
( f ), where

γ 2
z1x1

( f ) =
∣∣Sz1x1

( f )
∣∣2

Sz1z1
( f )Sx1x1

( f )
(11.39)

This is a virtual coherence function. More generally, the virtual coherence function between
the i th virtual input zi and the j th measured signal x j can be written as

γ 2
zi x j

( f ) =
∣∣Szi x j ( f )

∣∣2

Szi zi ( f )Sx j x j ( f )
(11.40)

Since the cross-spectral density function between zi and x j can be obtained by

Szi x j ( f ) = m ji ( f )Szi zi ( f ) (11.41)
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we see that the virtual coherence function: (i) can be computed from the eigenvalues and
eigenvectors of S; (ii) gives a measure of what proportion of Sx j x j ( f ) comes from a particular
component of zi .

For the details of practical applications of principal component analysis, especially for
noise source identification problems, see Otte et al. (1988).

Relationship to the System Identification Methods1

It is interesting to relate principal component analysis (PCA) to the system identification
methods we described in Chapter 9. Let x denote a column vector of observations (e.g. x
(input) and y (output) in Figure 9.9 in Chapter 9) with correlation matrix

Rxx = E
[
xxT

]
(11.42)

Let x be derived from a set of uncorrelated processes z (through the transformation matrix T)
by

x = Tz (11.43)

Then, the correlation matrix is

Rxx = TE
[
zzT

]
TT = TRzzTT (11.44)

Since the elements of z are uncorrelated, Rzz = Λ, where Λ is a diagonal matrix that contains
eigenvalues of Rxx. So,

Rxx = T Λ TT (11.45)

This is an eigendecomposition of the correlation matrix Rxx, and T is an orthogonal matrix
whose columns are the corresponding eigenvectors, i.e.

T = [
t1 t2

] =
[

t11 t12

t21 t22

]
(11.46)

Let us apply this to the pair of variables (x (input) and y (output)) as in Figure 9.9 in
Chapter 9. Assuming zero mean values, the correlation matrix is

Rxx = E

[[
x

y

] [
x y

]] =
[

E [xx] E [xy]

E [xy] E [yy]

]
=

[
σ 2

x σxy

σxy σ 2
y

]
(11.47)

The eigenvalues are

det(Rxx − λI) =
∣∣∣∣σ 2

x − λ σxy

σxy σ 2
y − λ

∣∣∣∣ = 0 (11.48)

i.e.

λ1,2 =
σ 2

x + σ 2
y ±

√(
σ 2

x − σ 2
y

)2 + 4σ 2
xy

2
(11.49)

1 See Tan (2005).
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x

y

1t

2t

Figure 11.7 Eigenvectors t1 and t2

The eigenvectors t1 and t2 corresponding to these eigenvalues are orthogonal and define a
basis set of the data, as shown in Figure 11.7.

From the figure, the slope of the eigenvector corresponding to the largest eigenvalue is
the PCA ‘gain’ relating y to x . Using the eigenvectors T = [ t1 t2 ], Equation (11.43) can
be expanded as

x = t11z1 + t12z2

y = t21z1 + t22z2 (11.50)

We note that the first principal component z1 is related to the largest eigenvalue, and the part
due to z1 is t11z1 for input x , and t21z1 for output y. The gain relating y to x (corresponding to
the first principal component z1) is then given by the ratio t21/t11. The ratio can be found from

(Rxx − λ1I) t1 = 0 (11.51)

and so

t21

t11

=
σ 2

y − σ 2
x +

√(
σ 2

x − σ 2
y

)2 + 4σ 2
xy

2σxy
(11.52)

We see from this that Equation (11.52) is the total least squares gain (aT , see Equation (9.59)).
This equivalence follows from the fact that both the PCA approach and TLS minimize the
power ‘normal’ to the ‘principal’ eigenvector.
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Appendix A

Proof of
∞∫

−∞
2M sin 2πaM

2πaM
da = 1

We first consider the contour integration of a function F(z) = e jz f (z) = e jz/z around a closed
contour in the z-plane as shown in Figure A.1, where z = x + j y.

x

jy

RC

Cρ

ρ− ρ RR−

Figure A.1 A contour with a single pole at z = 0

Using Cauchy’s residue theorem, the contour integral becomes

∮
e jz

z
dz =

∫
CR

e jz

z
dz +

−ρ∫
−R

e jx

x
dx +

∫
Cρ

e jz

z
dz +

R∫
ρ

e jx

x
dx = 0 (A.1)

From Jordan’s lemma, the first integral on the right of the first equality is zero if R → ∞, i.e.
limR→∞

∫
CR

e jz f (z)dz = 0. Letting z = ρe jθ and dz = jρe jθdθ , where θ varies from π to
0, the third integral can be written as∫

Cρ

e jz

z
dz = j

0∫
π

e j(ρe jθ )dθ (A.2)
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Taking the limit as ρ → 0, this becomes

lim
ρ→0

⎧⎨⎩ j

0∫
π

e j(ρe jθ )dθ

⎫⎬⎭ = jθ|0π = − jπ (A.3)

Now, consider the second and fourth integral together:

−ρ∫
−R

e jx

x
dx +

R∫
ρ

e jx

x
dx =

−ρ∫
−R

cos x + j sin x

x
dx +

R∫
ρ

cos x + j sin x

x
dx (A.4)

Since cos(x)/x is odd, the cosine terms cancel in the resulting integration. Thus, Equation
(A.4) becomes

−ρ∫
−R

e jx

x
dx +

R∫
ρ

e jx

x
dx = 2 j

R∫
ρ

sin x

x
dx (A.5)

Combining the above results, for R → ∞ and ρ → 0, Equation (A.1) reduces to

lim
ρ→0
R→∞

⎧⎨⎩2 j

R∫
ρ

sin x

x
dx

⎫⎬⎭ = 2 j

∞∫
0

sin x

x
dx = jπ (A.6)

Thus, we have the following result:

∞∫
0

sin x

x
dx = π

2
(A.7)

We now go back to our problem. We have written

lim
M→∞

2M
sin 2πaM

2πaM
= δ(a)

in Chapter 3. In order to justify this, the integral of the function

f (a) = 2M
sin 2πaM

2πaM

must be unity. We verify this using the above result. Letting x = 2πaM and dx = 2πMda,
we have

∞∫
−∞

f (a)da =
∞∫

−∞
2M

sin 2πaM

2πaM
da =

∞∫
−∞

2M
sin x

x

dx

2π M
= 1

π

∞∫
−∞

sin x

x
dx (A.8)

From Equation (A.7),

∞∫
−∞

sin x

x
dx = 2

∞∫
0

sin x

x
dx = π
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thus Equation (A.8) becomes

∞∫
−∞

2M
sin 2πaM

2πaM
da = 1 (A.9)

This proves that the integral of the function in Figure A.2 (i.e. Figure 3.11) is unity.

1

2M
a =

a

2M

Figure A.2 Representation of the delta function using a sinc function
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Appendix B
Proof of |Sxy( f )|2 ≤ Sxx( f )Syy( f )

Suppose we have ZT ( f ) consisting of two quantities XT ( f ) and YT ( f ) such that

ZT ( f ) = u1 XT ( f ) + u2YT ( f ) (B.1)

where ui are arbitrary complex constants. Then the power spectral density function Szz( f )
can be written as

Szz( f ) = lim
T →∞

E[Z∗
T ( f )ZT ( f )]

T
= u∗

1 Sxx ( f )u1 + u∗
2 Syx ( f )u1 + u∗

1 Sxy( f )u2 + u∗
2 Syy( f )u2

= [
u∗

1 u∗
2

] [
Sxx ( f ) Sxy( f )

Syx ( f ) Syy( f )

] [
u1

u2

]
= uH Su (B.2)

where S is the cross-spectral density matrix.
S is a Hermitian matrix. Moreover, this cross-spectral density matrix is positive semi-

definite, i.e. for all non-zero (complex) vectors u, uH Su ≥ 0 since the power spectral density
function Szz( f ) is non-negative for all frequencies f .

Since the matrix S is positive semi-definite, its determinant must be non-negative, i.e.∣∣∣∣ Sxx ( f ) Sxy( f )

Syx ( f ) Syy( f )

∣∣∣∣ ≥ 0 (B.3)

or Sxx ( f )Syy( f ) − Sxy( f )Syx ( f ) ≥ 0, i.e.

Sxy( f )Syx ( f ) ≤ Sxx ( f )Syy( f ) (B.4)

Since Syx ( f ) = S∗
xy( f ), it follows that∣∣Sxy( f )

∣∣2 ≤ Sxx ( f )Syy( f ) (B.5)

Note that it can easily be verified that a multi-dimensional cross-spectral density matrix S
(say, n × n) is also a positive semi-definite Hermitian matrix.
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Appendix C
Wave Number Spectra
and An Application

Rather than a ‘time series’ we may consider a function of ‘space’. This might be demonstrated
with height indications on a rough road, for example, as shown in Figure C.1.

( )z x

1x 2xξ

x

Figure C.1 Height profile of a rough road

If the process is ‘spatially stationary’ (homogeneous) we may characterize it by the
autocorrelation function

Rzz(x2 − x1) = E[z(x1)z(x2)] (C.1)

or Rzz(ξ ) = E[z(x1)z(x1 + ξ )], where ξ = x2 − x1 which is the spatial separation of the two
points.

Now we shall consider a spectral analysis of the process. If the independent variable is
time then we speak of ω (rad/s). Here we shall use k (rad/m), and this is called the wave
number. Note that ω = 2π/T shows how fast it oscillates (in radians) in a second, while
k = 2π/λ represents how many cycles (in radians) of the wave are in a metre, where λ is the
wavelength. Then, the wave number spectrum is defined as

Szz(k) =
∞∫

−∞
Rzz(ξ )e− jkξ dξ (C.2)
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Compare this expression with the usual spectral density function, Sxx (ω) = ∫ ∞
−∞ Rxx (τ )

e− jωτ dτ . We note that period T = 2π/ω is now replaced by wavelength λ = 2π/k. (See
Newland (1984) for more details.)

Application

Consider a vehicle moving over rough ground at speed V as shown in Figure C.2. The equation
of motion for this simple model is mÿ(t) = −k [y(t) − z(t)] − c [ẏ(t) − ż(t)], so that

mÿ(t) + cẏ(t) + ky(t) = cż(t) + kz(t) (C.3)

The problem we are concerned with is: given a specific road property Rzz(ξ ), calculate the
value of the variance of y(t) as the vehicle moves over the ground at constant speed V .

m

k c

( )y tV

( )z t

Figure C.2 A vehicle moving over rough ground at speed V

If we treat z(t) as a stationary random variable, the variance of y(t) can be written as (we
assume y(t) has a zero mean value)

E[y2(t)] = 1

2π

∞∫
−∞

Syy(ω)dω = 1

2π

∞∫
−∞

|H (ω)|2 Szz(ω)dω (C.4)

where the system frequency response function is

H (ω) = k + jcω

k − mω2 + jcω

Now, it remains to obtain Szz(ω) while we only have Szz(k) at present, i.e. we must interpret
a wave number spectrum as a frequency spectrum. We do this as follows. First, we convert a
temporal autocorrelation to a spatial one as

Rzz(τ ) = E [z(t)z(t + τ )] = E [z(x(t))z(x(t + τ ))] = E [z(x)z(x + V τ )] = Rzz(V τ )
(C.5)

and so

Szz(ω) =
∞∫

−∞
Rzz(τ )e− jωτ dτ =

∞∫
−∞

Rzz(V τ )e− jωτ dτ (C.6)

Letting V τ = ξ , this can be rewritten as

Szz(ω) = 1

V

∞∫
−∞

Rzz(ξ )e− j(ω/V )ξ dξ = 1

V
Szz(k)|k=ω/V (C.7)
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Thus, to obtain the frequency spectrum from the wave number spectrum we simply replace k
by ω/V and divide by V . Note that the speed can be expressed by

V = f λ = ω

2π
λ = ω

k

For a simple example, if the road property is Rzz(ξ ) = e−0.2|ξ | then the wave number
spectrum and the power spectral density function are

Szz(k) = 0.4

0.04 + k2
and Szz(ω) = 0.4V

0.04V 2 + ω2

respectively.



JWBK207-APP-C JWBK207-Shin January 18, 2008 8:23 Char Count= 0

384



JWBK207-APP-D JWBK207-Shin January 18, 2008 8:23 Char Count= 0

Appendix D
Some Comments on the Ordinary
Coherence Function γ2

xy( f )

The Use of the Ordinary Coherence Function

If we wish to estimate the transfer function linking two signals from Sxy( f ) = H ( f )Sxx ( f ),
i.e. by forming the ratio H ( f ) = Sxy( f )/Sxx ( f ), then we may compute the coherence function
which is a direct measure of the ‘validity’ of this relationship. That is, if γ 2

xy( f ) ≈ 1 the transfer

function H ( f ) is well estimated; if γ 2
xy( f ) is low, the estimate of H ( f ) is not trustworthy.

Also, this concept can be applied to multiple-source problems. For example, let x(t) and
y(t) be the input and the output, and suppose there is another input z(t) which we have not
accounted for and it contributes to y(t) as shown in Figure D.1.

x(t)

+

(t)yn

y(t),  output

h(t)

z(t)
g(t)

Figure D.1 Multiple-source problems

If z(t) is uncorrelated with x(t), then its effect on the coherence function between x(t)
and y(t) is the same as the measurement noise ny(t) as in Case (a), Section 9.2.

The Use of the Concept of Coherent Output Power

Consider the experiment depicted in Figure D.2. A measurement ym(t) is made of sound from
a plate being shaken with the addition of background noise n(t) from a speaker, i.e.

ym(t) = y(t) + n(t) (D.1)

where y(t) is the sound due to the plate and n(t) is the noise due to the speaker.
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Speaker, n(t)

Mic., ym(t) Shaker

Accelerometer, x(t)

Plate

Figure D.2 Measurements of acoustic pressure resulting from a vibrating plate

From the coherence measurement γ 2
xym

( f ) and the power spectral density Sym ym ( f ) we
can calculate the power at the microphone due to the plate by

Syy( f ) = γ 2
xym

( f )Sym ym ( f ) (D.2)

This is only satisfactory if x(t) is a ‘good’ measurement of the basic source, i.e. the vibration
signal x(t) must be closely related to the radiated sound y(t). An example where this might
not be so is as shown in Figure D.3.

Speaker, n(t)

Mic., ym(t) Motor/blower

Accelerometer, x(t)

Figure D.3 Measurements of acoustic pressure due to a motor/blower

Now x(t) will not be a good measurement of the primary noise source in general, i.e. the
accelerometer will not measure the aerodynamic noise.
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Appendix E
Least Squares Optimization:
Complex-Valued Problem

Consider the least squares problem (Case 1 in Section 9.3) which finds the optimal parameter
a1 that fits the data such that y = a1x , where the objective function is given by

J1 = 1

N

N∑
i=1

(yi − a1xi )
2

If x and y are complex valued, then we may find an optimal complex parameter a1, where the
objective function is

J1 = 1

N

N∑
i=1

|yi − a1xi |2 = 1

N

N∑
i=1

(y∗
i − a∗

1 x∗
i )(yi − a1xi ) (E.1)

Let xi = xi,R + j xi,I, yi = yi,R + j yi,I and a1 = aR + jaI. Then Equation (E.1) can be
written as

J1 = 1

N

N∑
i=1

[(
y2

i,R + y2
i,I

) − 2aR(xi,R yi,R + xi,I yi,I)

+ 2aI(xi,I yi,R − xi,R yi,I) + (
a2

R + a2
I

)(
x2

i,R + x2
i,I

)]
(E.2)

This is a real quantity. To minimize J1 with respect to both aR and aI, we solve the following
equations:

∂ J1

∂aR

= 1

N

N∑
i=1

[−2(xi,R yi,R + xi,I yi,I) + 2aR

(
x2

i,R + x2
i,I

)] = 0

∂ J1

∂aI

= 1

N

N∑
i=1

[
2(xi,I yi,R − xi,R yi,I) + 2aI

(
x2

i,R + x2
i,I

)] = 0

(E.3)
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Solving these equation gives

aR =

N∑
i=1

(xi,R yi,R + xi,I yi,I)

N∑
i=1

(
x2

i,R + x2
i,I

) and aI =

N∑
i=1

(xi,R yi,I − xi,I yi,R)

N∑
i=1

(
x2

i,R + x2
i,I

)
Thus the optimal complex parameter a1 can be written as

a1 = aR + jaI =

N∑
i=1

[
(xi,R yi,R + xi,I yi,I) + j(xi,R yi,I − xi,I yi,R)

]
N∑

i=1

(
x2

i,R + x2
i,I

) =

N∑
i=1

x∗
i yi

N∑
i=1

|xi |2
(E.4)

Similarly, the complex form of a2 and aT (Case 2 and Case 3 in Section 9.3) can be found as

a2 =

N∑
i=1

|yi |2

N∑
i=1

y∗
i xi

(E.5)

aT =

(
N∑

i=1

|yi |2 −
N∑

i=1

|xi |2
)

+
√(

N∑
i=1

|xi |2 −
N∑

i=1

|yi |2
)2

+ 4

∣∣∣∣ N∑
i=1

x∗
i yi

∣∣∣∣2

2
N∑

i=1

y∗
i xi

(E.6)

Note the location of conjugates in the above equations, and compare with the frequency
response function estimators H1( f ), H2( f ) and HT ( f ) given in Section 9.3.
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Appendix F
Proof of HW( f ) → H1( f ) as κ( f ) → ∞

We start from Equation (9.67), i.e.

HW ( f ) =
S̃ym ym ( f ) − κ( f )S̃xm xm ( f ) +

√[
S̃xm xm ( f )κ( f ) − S̃ym ym ( f )

]2 + 4
∣∣S̃xm ym ( f )

∣∣2
κ( f )

2S̃ym xm ( f )
(F.1)

Let κ( f ) = 1/ε; then the right hand side of the equation can be written as

f (ε)

g(ε)
=

S̃ym ym ( f )ε − S̃xm xm ( f ) +
√

S̃2
xm xm

( f ) − 2S̃xm xm ( f )S̃ym ym ( f )ε + S̃2
ym ym

( f )ε2 + 4
∣∣S̃xm ym ( f )

∣∣2
ε

2S̃ym xm ( f )ε
(F.2)

Now, taking the limit ε → 0 (instead of κ → ∞) and applying L’Hôpital’s rule, i.e.

lim
ε→0

f (ε)

g(ε)
= lim

ε→0

f ′(ε)

g′(ε)

we obtain

lim
ε→0

f ′(ε)

g′(ε)
=

S̃ym ym ( f ) + 1
2

(
S̃2

xm xm
( f )

)−1/2
(
−2S̃xm xm ( f )S̃ym ym ( f ) + 4

∣∣S̃xm ym ( f )
∣∣2

)
2S̃ym xm ( f )

= S̃ym ym ( f )− S̃ym ym ( f )+2
(
S̃xm xm ( f )

)−1 ∣∣S̃xm ym ( f )
∣∣2

2S̃ym xm ( f )
=

(
S̃xm xm ( f )

)−1 ∣∣S̃xm ym ( f )
∣∣2

S̃ym xm ( f )

= S̃∗
xm ym

( f )S̃xm ym ( f )

S̃xm xm ( f )S̃ym xm ( f )
= S̃ym xm ( f )S̃xm ym ( f )

S̃xm xm ( f )S̃ym xm ( f )

= S̃xm ym ( f )

S̃xm xm ( f )
= H1( f ) (F.3)

This proves the result.
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Appendix G
Justification of the Joint Gaussianity
of X( f )

If two random variables X and Y are jointly Gaussian, then the individual distribution remains
Gaussian under the coordinate rotation. This may be seen from Figure G.1. For example, if
X ′ and Y ′ are obtained by [

X ′

Y ′

]
=

[
cos φ − sin φ

sin φ cos φ

] [
X

Y

]
(G.1)

then they are still normally distributed. For a complex variable, e.g. Z = X + jY , the equiv-
alent rotation is e jφ Z . If two random variables are Gaussian (individually) but not jointly
Gaussian, then this property does not hold. An example of this is illustrated in Figure G.2.

x

y

p(x, y)

Figure G.1 Two random variables are jointly normally distributed

Now, consider a Gaussian process x(t). The Fourier transform of x(t) can be written as

X ( f ) = Xc( f ) + j Xs( f ) (G.2)
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p(x, y)

x

y

Figure G.2 Each random variable is normally distributed, but not jointly

where Xc( f ) and Xs( f ) are Gaussian since x(t) is Gaussian. If these are jointly Gaussian, they
must remain Gaussian under the coordinate rotation (for any rotation angle φ). For example,
if e jφ X ( f ) = X ′( f ) = X ′

c( f ) + j X ′
s( f ) then X ′

c( f ) and X ′
s( f ) must be Gaussian, where

X ′
c( f ) = Xc( f ) cos φ − Xs( f ) sin φ and X ′

s( f ) = Xc( f ) sin φ + Xs( f ) cos φ.
For a particular frequency f , let φ = −2π f t0. Then e− j2π f t0 X ( f ) is a pure delay, i.e.

x(t − t0) in the time domain for that frequency component. If we assume that x(t) is a sta-
tionary Gaussian process, then x(t − t0) is also Gaussian, so both X ′

c( f ) and X ′
s( f ) remain

Gaussian under the coordinate rotation. This justifies that Xc( f ) and Xs( f ) are jointly normally
distributed.
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Appendix H
Some Comments on Digital Filtering

We shall briefly introduce some terminology and methods of digital filtering that may be
useful. There are many good texts on this subject: for example, Childers and Durling (1975),
Oppenheim and Schafer (1975), Oppenheim et al. (1999) and Rabiner and Gold (1975). Also,
sound and vibration engineers may find some useful concepts in White and Hammond (2004)
together with some other advanced topics in signal processing.

The reason for including this subject is because we have used some digital filtering
techniques through various MATLAB examples, and also introduced some basic concepts in
Chapter 6 when we discussed a digital LTI system, i.e. the input–output relationship for a
digital system that can be expressed by

y(n) = −
N∑

k=1

ak y(n − k) +
M∑

r=0

br x(n − r ) (H.1)

where x(n) denotes an input sequence and y(n) the output sequence. This difference equation
is the general form of a digital filter which can easily be programmed to produce an output
sequence for a given input sequence. The z-transform may be used to solve this equation and
to find the transfer function which is given by

H (z) = Y (z)

X (z)
=

M∑
r=0

br z−r

1 +
N∑

k=1

ak z−k

(H.2)

By appropriate choice of the coefficients ak and br and the orders N and M , the characteristics
of H (z) can be adjusted to some desired form. Note that, since we are using a finite word
length in the computation, the coefficients cannot be represented exactly. This will introduce
some arithmetic round-off error.
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In the above equations, if at least one of coefficients ak is not zero the filter is said to be
recursive, while it is non-recursive if all the coefficients ak are zero. If the filter has a finite
memory then it is called an FIR (Finite Impulse Response) filter, i.e. the impulse response
sequence has a finite length. Conversely, an IIR (Infinite Impulse Response) filter has an
infinite memory. Note that the terms ‘recursive’ and ‘non-recursive’ do not refer to whether
the memory is finite or infinite, but describe how the filter is realized. However, in general,
the usual implementation is that FIR filters are non-recursive and IIR filters recursive.

There are many methods of designing both types of filters. A popular procedure for
designing IIR digital filters is the discretization of some well-known analogue filters. One of
the methods of discretization is the ‘impulse-invariant’ method that creates a filter such that
its impulse response sequence matches the impulse response function of the corresponding
analogue filter (see Figure 5.6 for mapping from the s-plane to z-plane). It is simple and easy
to understand, but high-pass and band-stop filters cannot be designed by this method. It also
suffers from aliasing problems. Another discretization method, probably more widely used, is
the ‘bilinear mapping’ method, which avoids aliasing. However, it introduces some frequency
distortion (more distortion towards high frequencies) which must be compensated for (the
technique for the compensation is called ‘prewarping’).

FIR filters are often preferably used since they are always stable and have linear phase
characteristics (i.e. no phase distortion). The main disadvantage compared with IIR filters
is that the number of filter coefficients must be large enough to achieve adequate cut-off
characteristics. There are three basic methods to design FIR filters: the window method, the
frequency sampling method and the optimal filter design method. The window method designs
a digital filter in the form of a Fourier series which is then truncated. The truncation introduces
distortion in the frequency domain which can be reduced by modifying the Fourier coefficients
using windowing techniques. The frequency sampling method specifies the filter in terms of
H (k), where H (k) is DFT[h(n)]. This method is particularly attractive when designing narrow-
band frequency-selective filters. The principle of optimal filter design is to minimize the mean
square error between the desired filter characteristic and the transfer function of the filter.

Finally, we note that IIR filters introduce phase distortion. This is an inevitable con-
sequence of their structure. However, if the measured data can be stored, then ‘zero-phase’
filtering can be achieved by using the concept of ‘reverse time’. This is done by filtering the
data ‘forward’ and then ‘backward’ with the same filter as shown in Figure H.1.

x(n)
H(z)

1(n)y Time
reverse

2(n)y
H(z)

1 )(y −n=

3(n)y y(n)Time
reverse

Figure H.1 Zero-phase digital filtering

The basic point of this scheme is that the reverse time processing of data ‘undoes’ the
delays of forward time processing. This zero-phase filtering is a simple and effective procedure,
though there is one thing to note: namely, the ‘starting transients’ at each end of the data.
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l’École Polytechnique, Vol. 1, cahier 22, pp. 24–76, 1795.

Duhamel, P. and Vetterli, M., ‘Fast Fourier transforms: a tutorial review and a state of the art’, Signal
Processing, Vol. 19, pp. 259–299, 1990.

Fahy, F. and Walker, J., Fundamentals of Noise and Vibration, Spon Press, 1998.

Gao, Y., Brennan, M. J. and Joseph, P. H., ‘A comparison of time delay estimator for the detection

of leak noise signal in plastic water distribution pipes’, Journal of Sound and Vibration, Vol. 292,

pp. 552–570, 2006.

Hammond, J. K. and White, P. R., ‘The analysis of non-stationary signals using time-frequency methods’,

Journal of Sound and Vibration, Vol. 190, No. 3, pp. 419–447, 1996.

Harris, F. J., ‘On the use of windows for harmonic analysis with the discrete Fourier transform’, Pro-
ceedings of the IEEE, Vol. 66, No. 1, pp. 51–83, 1978.

Hsu, Hwei P., Fourier Analysis, Revised Edition, Simon & Schuster, 1970.

Jenkins, G. M. and Watts, D. G., Spectral Analysis and its Applications, Holden-Day, 1968.

Kay, S. M. and Marple Jr, S. L., ‘Spectrum analysis – a modern perspective’, Proceedings of the IEEE,

Vol. 69, No. 11, pp. 1380–1419, 1981.

Lee, Y.-S., ‘Active control of smart structures using distributed piezoelectric Transducers’, PhD Thesis,

Institute of Sound and Vibration Research, University of Southampton, 2000.

Leuridan, J., De Vis, D., Van der Auweraer, H. and Lembregts, F., ‘A comparison of some frequency

response function measurement techniques’, Proceedings of the 4th International Modal Analysis
Conference IMAC, Los Angeles, CA, pp. 908–918, 1986.

Levi, E. C., ‘Complex-curve fitting’, IRE Transactions on Automatic Control, Vol. AC/4, pp. 37–43,

1959.

Marple Jr, S. L., Digital Spectral Analysis with Applications, Prentice Hall, 1987.

Newland, D. E., An Introduction to Random Vibrations and Spectral Analysis, Longman Scientific &

Technical, 1984.

Oppenheim, A. V. and Schafer, R. W., Digital Signal Processing, Prentice Hall International, 1975.

Oppenheim, A. V., Willsky, A. S. and Hamid Nawab, S., Signals & Systems, Second Edition, Prentice

Hall International, 1997.

Oppenheim, A. V., Schafer, R. W. and Buck, J. R., Discrete-Time Signal Processing, Second Edition,

Prentice Hall International, 1999.

Otnes, R. K. and Enochson, L., Applied Time Series Analysis Vol. 1. Basic Techniques, John Wiley and

Sons, Inc., 1978.

Otte, D., Fyfe, K., Sas, P. and Leuridan, J., ‘Use of principal component analysis for dominant

noise source identification’, Proceedings of the Institution of Mechanical Engineers, International
Conference: Advances in the Control and Refinement of Vehicle Noise, C21/88, pp. 123–132,

1988.

Papoulis, A., Signal Analysis, McGraw-Hill, 1977.

Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill, 1991.

Priestley, M. B., Spectral Analysis and Time Series, Academic Press, 1981.

Proakis, J. G. and Manolakis, D. G., Introduction to Digital Signal Processing, Macmillan, 1988.

Rabiner, L. R. and Gold, B., Theory and Applications of Digital Signal Processing, Prentice Hall,

1975.

Randall, R. B., Frequency Analysis, Third Edition, Bruel and Kjaer, 1987.

Schmidt, H., ‘Resolution bias errors in spectral density, frequency response and coherence function

measurement, III: application to second-order systems (white noise excitation)’, Journal of Sound
and Vibration, Vol. 101, No. 3, pp. 377–404, 1985a.



JWBK207-REF JWBK207-Shin January 18, 2008 8:25 Char Count= 0

REFERENCES 397

Schmidt, H., ‘Resolution bias errors in spectral density, frequency response and coherence func-

tion measurement, IV: time delay bias errors’, Journal of Sound and Vibration, Vol. 101, No. 3,

pp. 405–412, 1985b.

Smith, J. O., Mathematics of the Discrete Fourier Transform (DFT), http://ccrma.stanford.edu/

∼jos/mdft/, 2003.

Spitznogle, F. R. and Quazi, A. H., ‘Representation and analysis of time-limited signals using a complex

exponential algorithm’, Journal of the Acoustical Society of America, Vol. 47, No. 5(1), pp. 1150–

1155, 1970.

Sutton, T. J., Elliot, S. J., McDonald, A. M. and Saunders, T. J., ‘Active control of road noise inside

vehicles’, Noise Control Engineering Journal, Vol. 42, No. 4, pp. 137–147, 1994.

Tan, M. H., ‘Principal component analysis for signal-based system identification’, PhD Thesis, Institute

of Sound and Vibration Research, University of Southampton, 2005.

Welch, P. D., ‘The use of fast Fourier transform for the estimation of power spectra: a method based on

time averaging over short, modified periodograms’, IEEE Transactions on Audio and Electroacous-
tics, Vol. AU-15, No. 2, pp. 70–73, 1967.

Wellstead, P. E., ‘Non-parametric methods of system identification’, Automatica, Vol. 17, pp. 55–69,

1981.

White, P. R. and Hammond, J. K., ‘Signal processing techniques’, Chapter 1, in Advanced Applications
in Acoustics, Noise and Vibration, ed. Fahy, F. J. and Walker, J. G., Spon Press, 2004.

White, P. R., Tan, M. H. and Hammond, J. K., ‘Analysis of the maximum likelihood, total least squares

and principal component approaches for frequency response function estimation’, Journal of Sound
and Vibration, Vol. 290, pp. 676–689, 2006.

Wicks, A. L. and Vold, H., ‘The Hs frequency response function estimator’, Proceedings of the 4th
International Modal Analysis Conference, IMAC, Los Angeles, CA, pp. 897–899, 1986.

Zadeh, L. A. and Desoer, C. A., Linear System Theory: The State Space Approach, McGraw-Hill, 1963.



JWBK207-REF JWBK207-Shin January 18, 2008 8:25 Char Count= 0

398



JWBK207-IND JWBK207-Shin January 26, 2008 17:31 Char Count= 0

Index

Aliasing, 123, 126–128, 140–144, 181

All-pass filter, see Filter, all-pass

Amplitude Modulation, see Modulation, amplitude

Analogue-to-digital conversion, 131–134

Analogue-to-digital converter (ADC), 130, 131

Analytic signal, 91

Anti-aliasing filter, see Filter, anti-aliasing

Anti-imaging filter, see Filter, reconstruction

Autocorrelation coefficient, 225, 228

Autocorrelation function, 225–227, 231

computational form, 231, 325

estimator, 323

examples, 234–240, 255–258, 259–261, 274

properties, 228

sine wave, 234–235, 255–256

square wave, 238–239

time delay problem, 237–238, 256–258

transient signal, 239–240

via FFT, 325–326

white noise, 236

Autocovariance function, see Autocorrelation function

Auto-regressive (AR), 149

Auto-regressive moving average (ARMA), 149

Band-limited, 128. See also White noise, band-limited

Bandwidth

3 dB, 99, 329, 332

noise, 99, 100, 332

resolution, 340, 341, 342, 344

Bandwidth-time (BT) product, see Uncertainty principle

Bias, 94, 318. See also Error; Estimator errors

Bivariate, 201, 205, 206

Bounded input/bounded output (BIBO) stable, 87, 149

Butterworth, see Filter, low-pass

Causal, 75, 76, 147

Central limit theorem, 205, 213–214

Central moment, see Moment, central

Cepstral analysis, 73

Chebychev, see Filter, low-pass

Chi-squared (χ2
n ) distribution, 335–336

Coherence function, 284–287, 385

effect of measurement noise, 285–287

estimator, 349

multiple, 368

partial, 367

virtual, 371

Coherent output power, 286, 385

Confidence interval, 319

spectral estimates, 345–347

Conjugate symmetry property, see Symmetry property

Convolution, 3, 75–77, 147–148, 182–183

circular, see Convolution, periodic

fast, 164

integral, 75–76

linear, see Convolution, sum

periodic, 162–163, 182–183

sequences, see Convolution, sum

sum, 147–148, 164, 170–171, 182–183

Correlation, 206

coefficient, 206, 215–216

Correlation function, see Autocorrelation function;

Cross-correlation function

Cost function, see Objective function
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Covariance, 206

Covariance function, see Autocorrelation function;

Cross-correlation function

Cross-correlation coefficient, 228

Cross-correlation function, 227–228, 231

computational form, 231, 325

estimator, 324

examples, 240–242, 258–266, 273–274

properties, 228–229

time delay problem, 241–242, 261–266

Cross-covariance function, see Cross-correlation

function

Cross-spectral density function, 247

estimator, 292, 347, 348

examples, 249–251, 266–275

properties, 247–249

raw, 347, 348

smoothed, 347, 348

time delay problem, 250–251

Cumulative distribution function, see Distribution

function

Cut-off frequency, 129, 130

Data truncation, 94–96, 109–114, 155–156, 158–160,

171–174. See also Fourier series, computational

consideration

Data validation, 136

Decimation in time (DIT), 165

Deconvolution, see Cepstral analysis

Degrees of freedom, 335, 340, 344, 345, 346

Delta function, 38–39, See also Impulse

Dirac delta, 38

Fourier transform, see Fourier integral, Dirac delta;

Discrete Fourier Transform, Kronecker delta

Kronecker delta, 146

properties, 39–40

Deterministic, see Signal, deterministic

Digital filter, see Filter, digital

Digital-to-analogue converter (DAC), 135, 139

Discrete Fourier transform (DFT), 50, 153–155,

156

inverse (IDFT), 51, 154

Kronecker delta, 160

properties, 160–161

scaling effect, 158–160

Dirichlet conditions, see Fourier series, convergence

Dispersion, see Group delay

Distribution function, 199, 200

Dynamic range, 130, 133, 134

Echo, 72–73, 103–104

Ensemble, 220

Ensemble average, 223–224

autocorrelation function, 226–227, 255–256

probability density function, 253–254

Envelope analysis, 91

Ergodic, 229

Error, see also Estimator errors

bias error, 319

random error, 319, 352

RMS error, 319

Estimator errors, 317–320

autocorrelation function, 323–324

coherence function, 349–350, 358–360

cross-correlation function, 324–325

cross-spectral density function, 348–349, 354–358,

360–362

frequency response function, 351–352

mean square value, 321–322

mean value, 320–321

power spectral density function, 327–330, 334–337,

339–342, 343–344, 345, 354–358

table, 352

Even function, 37, 44, 59

Expectation, 202

Expected value, 203. See also Ensemble average

Experiment of chance, 194

Event, 194

algebra, 194–195

equally likely, 194, 196

Fast Fourier transform (FFT), 164–166. See also
Discrete Fourier transform

Filter

all-pass, 85

anti-aliasing, 128–131, 143

band-pass, 82

constant bandwidth, 330

constant percentage bandwidth, 331

digital, 148, 393–394

low-pass, 82, 129

octave, 331

reconstruction, 139

third (1/3) octave, 331

Filter bank method, 327. See also Power

spectral density function, estimation

methods

Finite Impulse Response (FIR), 265, 394

Folding frequency, 127

Fourier integral, 57–61

Dirac delta, 62

examples, 62–67

Gaussian pulse, 66

inversion, 60–61

pair, 59, 60

periodic function, 67

properties, 67–71

rectangular pulse, 64

sine function, 63

table, 68
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Fourier series, 31–34, 41, 42–43. See also Fourier

transform

complex form, 42–43

computational consideration, 46–48, 49, 54–56.

See also Data truncation

convergence, 36

even function, 38

odd function, 38

rectangular pulse, 44–45

relationship with DFT, 48, 50–51

square wave, 34–36, 49

Fourier transform

continuous signal, see Fourier integral

convolution, 70, 152

descrete-time, 152

differentiation, 70

discrete, see Discrete Fourier transform

product, 71

properties, see Fourier integral, properties; Discrete

Fourier transform, properties

sampled sequence, 121, 153

summary, 168–169

train of delta functions, 122

Frequency domain, 20

Frequency modulation, see Modulation, frequency

Frequency response function (FRF), see also System

identification

biasing effect of noise, 294–295, 307–312

continuous system, 4, 77–78

curve fitting, 311–313

descrete (digital) system, 150

estimator H1, 6, 184, 293, 350

estimator H2, 6, 293

estimator H3, see System identification, effect of

feedback

estimator HT , 6, 294

estimator HW , 293

Frequency smoothing, 345. See also Power spectral

density function, estimation methods

Gaussian pulse, see Fourier integral, Gaussian pulse

Gaussian, see Probability distribution, Gaussian

Gibbs’ phenomenon, 36, 52–53

Group delay, 72, 82–85, 104–105

Group velocity, 84

Hilbert transform, 90–93, 106–109

Impulse-invariant, 125, 148

Impulse, see Delta function

Impulse response

continuous, 75

discrete, 147

Impulse train, 41, 42, 119, 120

Independent, see Statistically independent

Infinite Impulse Response (IIR), 125, 394

Instantaneous amplitude, 91

Instantaneous frequency, 91

Instantaneous phase, 91

Inverse spreading property, 63, 64, 101

Kurtosis, 208, 216–218. See also Moment

computational form, 210

Laplace transform, 78, 124. See also z-transform

sampled function, 124, 125

Leakage, 94, 95

Least squares, 289. See also Total least squares

complex valued problem, 387–388

Leptokurtic, see Kurtosis

Linearity, 74

Linear phase, see Pure delay

Linear time-invariant (LTI) system, 73

continuous, 73–81

discrete, 147, 149–150

examples, 78–81

Matched filter, 263

Mean square error, 319. See also Estimator errors

Mean square value, 204, 222, 230, 321. See also
Moment

computational form, 230

Mean value, 32, 203, 222, 230, 278, 317, 321.

See also Moment

computational form, 209, 230

sample mean, see Mean value, computational

form

Minimum phase, 87–90

Modulation

amplitude, 70, 84, 91

frequency, 93

Moment, 203–204, 206, 207–210, 222–223

central, 204

computational consideration, 209–210

properties, 207

summary, 211

Moving average (MA), 149

Multiple-input and multiple-output (MIMO) system,

363

Mutually exclusive, 195, 196

Noise power, 286

Non-stationary, 224. See also Signals, non-starionary

Nyquist diagram, see Polar diagram

Nyquist frequency, 127

Nyquist rate, 127

Objective function, 289

Odd function, 37, 44, 59

Optimisation, 5. See also Least squares
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Ordinary coherence function, see Coherence function

Orthogonal, 33, 43, 206

Overshoot, see Gibbs’ phenomenon

Parseval’s theorem, 45, 61

Passband, 129

Periodogram, 337

modified, 344

raw, 337, 343

Phase delay, 83, 84, 105

Phase velocity, 84

Platykurtic, see Kurtosis

Poisson process, 235

Polar diagram, 60

Power spectral density function, 242–245, 327–347

estimation methods, 327–345

estimator, 292, 328, 337–338, 343, 345

examples, 245–246, 270–275

raw, 243, 333, 334, 343

smoothed, 328, 337–338, 343, 345

Principal component analysis (PCA), 370–372, 373

Probability, 194

algebra, 196

conditional, 197

joint, 196

Probability density function, 200–201, 220–222

chi-squared, 335

Gaussian bivariate, 205

joint, 202, 222

marginal, 202

sine wave, 232–233, 253–254

Probability distribution, 199. See also Distribution

function

Gaussian, 205

jointly Gaussian, 391–392

normal, see Probability distribution, Gaussian

Rayleigh, 204

standard normal, 205

uniform, 133, 204

Pure delay, 72. See also Group delay; Phase delay

Quantization 11, 131, 132

error, see Quantization, noise

noise, 132

Random, 8, 193. See also Signal, random

Random error, see Error; Estimator errors

Random variable, 198

continuous, 199

discrete, 199

residual, 366

time-dependent, see Stochastic process

Range space, 198

Reconstruction filter, see Filter, reconstruction

Relative frequency, 197, 212–213

Resolution, 157, 174–175. See also Data truncation

Root mean square (RMS), 204. See also Moment

Sample space, 194

Sampling, 119, 131

Sampling rate, 120, 127, 131

Sampling theorem, 137–139

Schwartz’s inequality, 101

Segment averaging, 275, 342–345. See also Power

spectral density function, estimation methods

Shannon’s sampling theorem, see Sampling theorem

Skewness, 207, 208. See also Moment

computational form, 210

Sifting property, 39. See also Delta function, properties

Signal, 6–14, 15, 16, 19–29

almost periodic, 10, 12, 21–24, 28–29

analogue, see Signal, continuous

classification, 7

clipped, 15

continuous, 6

deterministic, 7, 8, 10, 19

digital, see Signal, discrete

discrete, 6

low dynamic range, 14

non-deterministic, see Signal, random

non-stationary, 13

periodic with noise, 13

periodic, 12, 19–21, 26–27, 31

random, 8, 11

square wave, 34

transient with noise, 16

transient, 10, 16, 24, 25

Signal conditioning, 134

Signal reconstruction, see Sampling theorem

Signal-to-noise ratio (SNR), 133

Sinc function, 40, 41, 64, 138

Smearing, 94

Spectra, see Spectrum; Spectral density; Power spectral

density function; Cross-spectral density function

Spectral density, see also Power spectral density

function; Cross-spectral density function

coincident, 248

energy, 62

quadrature, 248

matrix, 364, 370, 379

residual, 367, 369

Spectrum, 43–46. See also Power spectral density

function; Cross-spectral density function

amplitude, 44, 59, 247

line, 44

magnitude, see Spectrum, amplitude

phase, 44, 59, 247

power, 45–46

Stability, see Bounded input/bounded output (BIBO)

stable
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Standard deviation, 204, 209

Stationary, 9, 11, 224

Statistical degrees of freedom, 346. See also Degrees of

freedom

Statistically independent, 197, 206

Stochastic process, 220

Stopband, 129

Symmetry property, 69, 159, 161, 175–177

System identification, 3–6, 183–190, 251,

287–297

effect of feedback, 296–297

effect of noise, 294–295

examples, 183–190, 270–275, 298–315

Time average, 229–231. See also Ensemble average;

Ergodic

autocorrelation function, 234, 255–256

probability density function, 233, 253–254

Time invariance, 74

Time series analysis, 8

Time shifting, 69. See also Pure delay

Total least squares (TLS), 290, 373

Transfer function

continuous system, 78

discrete system, 149

Transmission paths identification, 303–307

Uncertainty, 4

noise, 4–6, 14

Uncertainty principle, 100–101

Unit step function, 66

Unit step sequence, 146

Univariate, 201

Variance, 204, 209, 223, 231, 318. See also Moment;

Estimator errors

computational form, 209, 231

Wave number spectra, 381

Welch method, see Segment averaging method

White noise, 236, 245, 281

band-limited, 246

Wiener-Khinchin theorem, 244, 247, 334

Window, 94, 96–100

Bartlett, 98, 339

Hamming, 98, 339

Hann (Hanning), 96, 98, 111, 112–117, 339

lag, 337

Parzen, 98, 339

rectangular, 94, 97, 109, 112–117, 339

spectral, 94, 337, 341

table, 100, 338, 341

Tukey, 96

Windowing, see Data truncation

z-transform, 123–124

relationship with the Laplace transform, 124–126

Zero-order hold, 139

Zero padding, 110, 157, 178

Zero phase filtering, 260, 394
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