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X PREFACE

In July 2006, with thekind support and consideration of Professor Mike Brennan, Kihong
Shin managed to take a sabbatical which he spent at the ISVR where his subtle pressures —
including attending Joe Hammond's very last course on signal processing at the ISVR — have
distracted Joe Hammond away from his duties as Dean of the Faculty of Engineering, Science
and Mathematics.

Thus the text was completed. It isindeed an introduction to the subject and therefore the
essential material is not new and draws on many classic books. What we have tried to do is
to bring materia together, hopefully encouraging the reader to question, enquire about and
explore the concepts using the MATLAB exercises or derivatives of them.

It only remains to thank all who have contributed to this. First, of course, the authors
whose texts we have referred to, then the decades of students at the ISV R, and more recently
in the School of Mechanical Engineering, Andong National University, who have shaped the
way the course evolved, especially Sangho Pyo who spent a generous amount of time gath-
ering experimental data. Two colleagues in the ISVR deserve particular gratitude: Professor
Mike Brennan, whose positive encouragement for the whole project has been essential, to-
gether with his very constructive reading of the manuscript; and Professor Paul White, whose
encyclopaedic knowledge of signal processing has been our port of call when we needed
reassurance.

We would also like to express special thanks to our families, Hae-Ree Lee, Inyong Shin,
Hakdoo Yu, Kyu-Shin Lee, Young-Sun Koo and Jill Hammond, for their never-ending support
and understanding during the gestation and preparation of the manuscript. Kihong Shinisalso
grateful to Geun-Tae Yim for his continuing encouragement at the ISVR.

Finally, Joe Hammond thanks Professor Simon Braun of the Technion, Haifa, for his
unceasing and inspirational leadership of signal processing in mechanical engineering. Also,
and very importantly, we wish to draw attention to a new text written by Simon entitled
Discover Sgnal Processing: An Interactive Guide for Engineers, also published by John
Wiley & Sons, which offers a complementary and innovative learning experience.

Please note that MATLAB codes (m files) and data files can be downloaded from the
Companion Website at www.wiley.com/go/shin_hammond

Kihong Shin
Joseph Kenneth Hammond
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Preface

This book has grown out of notes for a course that the second author has given for more
years than he cares to remember — which, but for the first author who kept various versions,
would never have come to this. Specificaly, the Institute of Sound and Vibration Research
(ISVR) at the University of Southampton has, for many years, run a Masters programme
in Sound and Vibration, and more recently in Applied Digital Signal Processing. A course
aimed at introducing students to signal processing has been one of the compulsory mod-
ules, and given the wide range of students first degrees, the coverage needs to make few
assumptions about prior knowledge — other than a familiarity with degree entry-level math-
ematics. In addition to the Masters programmes the ISV R runs undergraduate programmes
in Acoustical Engineering, Acoustics with Music, and Audiology, each of which to varying
levelsincludes signal processing modules. These taught elements underpin the wide-ranging
research of the ISVR, exemplified by the four interlinked research groups in Dynamics,
Fluid Dynamics and Acoustics, Human Sciences, and Signal Processing and Control. The
large doctoral cohort in the research groups attend selected Masters modules and an acquain-
tance with signal processing isa‘required skill’ (necessary evil?) in many aresearch project.
Building on the introductory course there are a large number of specialist modules ranging
from medical signal processing to sonar, and from adaptive and active control to Bayesian
methods.

It wasin one of the PhD cohorts that Kihong Shin and Joe Hammond made each other’s
acquaintance in 1994. Kihong Shin received his PhD from ISVR in 1996 and was then a
postdoctoral research fellow with Professor Mike Brennan in the Dynamics Group, then
joining the School of Mechanical Engineering, Andong National University, Korea, in 2002,
where heis an associate professor. This marked the start of this book, when he began ‘ editing’
Joe Hammond's notes appropriate to a postgraduate course he was lecturing — particularly
appreciating the importance of including ‘ hands-on’ exercises—using interactive MATLAB®
examples. With encouragement from Professor Mike Brennan, Kihong Shin continued with
thisand it was not until 2004, when a manuscript landed on Joe Hammond's desk (some bits
looking oddly familiar), that the second author even knew of the project —with some surprise
and great pleasure.
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| ntroduction to Signal Processing

Signal processing is the name given to the procedures used on measured data to reveal the
information contained in the measurements. These procedures essentially rely on various
transformations that are mathematically based and which areimplemented using digital tech-
niques. The wide availability of software to carry out digital signal processing (DSP) with
such ease now pervades all areas of science, engineering, medicine, and beyond. This ease
can sometimes result in the analyst using the wrong tools — or interpreting results incorrectly
because of alack of appreciation or understanding of the assumptions or limitations of the
method employed.

Thistext is directed at providing a user’s guide to linear system identification. In order
to reach that end we need to cover the groundwork of Fourier methods, random processes,
system response and optimization. Recognizing that there are many excellent texts on this,*
why should there be yet another? The aim isto present the material from a user’s viewpoint.
Basic concepts are followed by examples and structured MATLAB® exercises allow the user
to ‘experiment’. Thiswill not be a story with the punch-line at the end — we actually start in
this chapter with the intended end point.

Theaim of doing thisisto providereasonsand motivation to cover some of theunderlying
theory. It will also offer amore rapid guide through methodology for practitioners (and others)
who may wish to ‘skip’ some of the more ‘tedious’ aspects. In essence we are recognizing
that it is not always necessary to be fully familiar with every aspect of the theory to be an
effective practitioner. But what isimportant isto be aware of the limitations and scope of one's
analysis.

1 See for example Bendat and Piersol (2000), Brigham (1988), Hsu (1970), Jenkins and Watts (1968), Oppenheim
and Schafer (1975), Otnes and Enochson (1978), Papoulis (1977), Randall (1987), etc.

Fundamentals of Sgnal Processing for Sound and Vibration Engineers
K. Shinand J. K. Hammond. ~ © 2008 John Wiley & Sons, Ltd



2 INTRODUCTION TO SIGNAL PROCESSING

The Aim of the Book

We are assuming that the reader wishes to understand and use a widely used approach to
‘system identification’. By thiswe mean we wish to be able to characterize a physical process
in a quantified way. The object of this quantification is that it reveals information about the
process and accounts for its behaviour, and aso it allows usto predict its behaviour in future
environments.

The ‘physical processes could be anything, e.g. vehicles (land, sea, air), electronic
devices, sensorsand actuators, biomedical processes, etc., and perhapsless‘ physically based’
socio-economic processes, and so on. The complexity of such processes is unlimited — and
being able to characterize them in aquantified way relies on the use of physical ‘laws’ or other
‘models’ usually phrased within the language of mathematics. Most science and engineering
degree programmes are full of coursesthat are aimed at describing processesthat relate to the
appropriate discipline. We certainly do not want to go there in this book — life is too short!
But we dtill want to characterize these systems — with the minimum of effort and with the
maximum effect.

Thisiswhere ‘ system theory’ comes to our aid, where we employ descriptions or mod-
els — abstractions from the ‘real thing’ — that nevertheless are able to capture what may be
fundamentally common, to large classes of the phenomena described above. In essence what
we do issimply to watch what ‘a system’ does. Thisis of course totally uselessif the system
is ‘asleep’ and so we rely on some form of activation to get it going — in which case it is
logical to watch (and measure) the particular activation and measure some characteristic of
the behaviour (or response) of the system.

In ‘normal’ operation there may be many activators and a host of responses. In most
situationsthe activators are not separate discernible processes, but are distributed. An example
of such a system might be the acoustic characteristics of a concert hall when responding to
an orchestra and singers. The sources of activation in this case are the musical instruments
and singers, the system is the auditorium, including the members of the audience, and the
responses may be taken as the sounds heard by each member of the audience.

The complexity of such a system immediately leads one to try and conceptualize
something simpler. Distributed activation might be made more manageable by ‘lumping’
things together, e.g. a piano is regarded as several separate activators rather than continu-
ous strings/sounding boards all causing acoustic waves to emanate from each point on their
surfaces. We might start to simplify things asin Figure 1.1.

This diagram is amodel of a greatly simplified system with several actuators — and the
several responses as the sounds heard by individual members of the audience. The arrows
indicate a ‘ cause and effect’ relationship — and this aso has implications. For example, the
figureimpliesthat the ‘activators' are unaffected by the ‘responses’. Thisimpliesthat thereis
no ‘feedback’ — and this may not be so.

Activators Responses
_— System _—

Figure1l.1 Conceptua diagram of asimplified system
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X(t) y(t)
B

System —

Figurel.2 A single activator and a single response system

Having got this far let us simplify things even further to a single activator and a single
response as shown in Figure 1.2. Thismay berather ‘ distant’ from reality but isawidely used
model for many processes.

It isnow convenient to think of the activator x(t) and the response y(t) astime histories.
For example, x(t) may denote avoltage, the system may be aloudspeaker and y(t) the pressure
at some point in aroom. However, this time history model is just one possible scenario. The
activator x may denote the intensity of an image, the system is an optical device and y may
be a transformed image. Our emphasis will be on the time history model generally within a
sound and vibration context.

The box marked ‘ System’ is a convenient catch-all term for phenomena of great variety
and complexity. From the outset, we shall impose major constraints on what the box rep-
resents — specifically systems that are linear? and time invariant.® Such systems are very
usefully described by a particular feature, namely their response to an ideal impulse,* and
their corresponding behaviour is then the impulse response.® We shall denote this by the
symbol h(t).

Because the system is linear this rather ‘abstract’ notion turns out to be very useful
in predicting the response of the system to any arbitrary input. This is expressed by the
convolution® of input x(t) and system h(t) sometimes abbreviated as

y(t) = h(t) * x(t) (1.1)

where ‘*’ denotes the convolution operation. Expressed in this form the system box is filled
with the characterization h(t) and the (mathematical) mapping or transformation from the
input x(t) to the response y(t) is the convolution integral .

System identification now becomesthe problem of measuring x(t) and y(t) and deducing
the impulse response function h(t). Since we have three quantitative termsin the relationship
(1.1), but (assume that) we know two of them, then, in principle at least, we should be able to
find the third. The question is: how?

Unravelling Equation (1.1) asit standsispossiblebut not easy. L ife becomes considerably
easier if we apply atransformation that maps the convolution expression to a multiplication.
One such transformation is the Fourier transform.’” Taking the Fourier transform of the
convolution® in Equation (1.1) produces

Y(f) = H(F)X(f) (1.2)

* Wordsin bold will be discussed or explained at greater length later.
2 See Chapter 4, Section 4.7.

3 See Chapter 4, Section 4.7.

4 See Chapter 3, Section 3.2, and Chapter 4, Section 4.7.

5 See Chapter 4, Section 4.7.

6 See Chapter 4, Section 4.7.

7 See Chapter 4, Sections 4.1 and 4.4.

8 See Chapter 4, Sections 4.4 and 4.7.



4 INTRODUCTION TO SIGNAL PROCESSING

where f denotes frequency, and X(f), H(f) and Y(f) are the transforms of x(t), h(t) and
y(t). This achieves the unravelling of the input—output relationship as a straightforward mul-
tiplication — in a ‘domain’ called the frequency domain.® In this form the system is char-
acterized by the quantity H(f) which is called the system frequency response function
(FRF).10

The problem of ‘system identification’ now becomes the calculation of H(f), which
seemseasy: that is, divide Y () by X(f), i.e. dividethe Fourier transform of the output by the
Fourier transform of the input. Aslong as X( f) is never zero this seems to be the end of the
story —but, of course, itisnot. Reality interferesintheformof ‘ uncertainty’. Themeasurements
X(t) and y(t) are often not measured perfectly — disturbances or ‘noise’ contaminates them —
in which case the result of dividing two transforms of contaminated signalswill be of limited
and dubious value.

Also, the actual excitation signal x(t) may itself belong to aclass of random*! signals—
in which case the straightforward transformation (1.2) also needs more attention. It is this
“dual randomness’ of the actuating (and hence response) signal and additional contamination
that is addressed in this book.

The Effect of Uncertainty

We have referred to randomness or uncertainty with respect to both the actuation and response
signal and additional noise on the measurements. So let usredraw Figure 1.2 asin Figure 1.3.

X(t) ———>| System |——— Y(1)
n, (t) _>® @4_ n, (t)
! !

X (1) Y (1)

Figure1.3 A single activator/response model with additive noise on measurements

In Figure 1.3, x and y denote the actuation and response signals as before — which may
themselves be random. We also recognize that x and y are usually not directly measurable and
we model this by including disturbances written as ny and ny which add to x and y — so that
the actual measured signalsare X, and ym,. Now we get to the crux of the system identification:
that is, on the basis of (noisy) measurements X, and ym,, what is the system?

We conceptualize this problem pictorially. Imagine plotting vy, against xm, (ignore for
now what x,, and yy,, might be) asin Figure 1.4.

Each point inthisfigureisa‘representation’ of the measured response yy, corresponding
to the measured actuation X,.

System identification, in this context, becomes one of establishing arelationship between
Ym and Xp, such that it somehow relates to the relationship between y and x. The noises are a

9 See Chapter 2, Section 2.1.
10 See Chapter 4, Section 4.7.
11 See Chapter 7, Section 7.2.
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Figurel.4 A plot of the measured signals yy, Versus Xm

nuisance, but we are stuck with them. Thisiswhere *optimization’ comesin. Wetry and find
arelationship between xn, and yn, that seeksa‘systematic’ link between the data points which
suppresses the effects of the unwanted disturbances.

The simplest conceptual idea is to ‘fit' alinear relationship between x,, and ym. Why
linear? Because we are restricting our choice to the simplest relationship (we could of course
be more ambitious). The procedure we use to obtain this fit is seen in Figure 1.5 where the
slope of the straight line is adjusted until the match to the data seems best.

This procedure must be made systematic — so we need a measure of how well wefit the
points. Thisleadsto the need for aspecific measure of fit and we can choose from an unlimited
number. Let us keep it simple and settle for some obvious ones. In Figure 1.5, the closeness
of the line to the data is indicated by three measures ey, e, and er. These are regarded as
errors which are measures of the ‘failure’ to fit the data. The quantity ey is an error in the y
direction (i.e. in the output direction). The quantity e, isan error inthe x direction (i.e. in the
input direction). The quantity er is orthogonal to the line and combines errors in both x and
y directions.

We might now look at ways of adjusting the line to minimize ey, e, er or some conve-
nient ‘function’ of these quantities. Thisisnow phrased as an optimization problem. A most
convenient function turns out to be an average of the squared values of these quantities (‘ con-
venience' hereisused to reflect not only physical meaning but also mathematical ‘ niceness').
Minimizing these three different measures of closeness of fit resultsin three correspondingly
different slopes for the straight line; let us refer to the slopes as my, my, mr. So which one
should we use as the best? The choice will be strongly influenced by our prior knowledge of
the nature of the measured data — specifically whether we have some idea of the dominant
causes of error in the departure from linearity. In other words, some knowledge of the relative
magnitudes of the noise on the input and output.

Figure 1.5 A linear fit to measured data
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We could look to the figure for aguide:

* my seems best when errors occur on 'y, i.e. errors on output ey;
* m, seems best when errors occur on X, i.e. errors on input e;
* My seemsto make an attempt to recognize that errors are on both, i.e. er.

We might now ask how these rather simple concepts relate to ‘identifying’ the system in
Figure 1.3. It turns out that they are directly relevant and lead to three different estimators
for the system frequency response function H( f). They have come to be referred to in the
literature by the notation Hy(f), Ha( f) and Hr(f),'? and are the analogues of the slopes my,
my, My, respectively.

We have now mapped out what the book is essentially about in Chapters 1 to 10. The
book ends with a chapter that looks into the implications of multi-input/output systems.

1.1 DESCRIPTIONSOF PHYSICAL DATA (SIGNALYS)

Observed data representing a physical phenomenon will be referred to as atime history or a
signal. Examples of signals are: temperature fluctuationsin aroom indicated as a function of
time, voltage variations from a vibration transducer, pressure changes at a point in an acoustic
field, etc. The physical phenomenon under investigation is often translated by a transducer
into an electrical equivalent (voltage or current) and if displayed on an oscilloscope it might
appear as shown in Figure 1.6. Thisis an example of a continuous (or analogue) signal.

In many cases, data are discrete owing to some inherent or imposed sampling procedure.
In this case the data might be characterized by a sequence of numbers equally spaced intime.

The sampled data of the signal in Figure 1.6 are indicated by the crosses on the graph shown
in Figure 1.7.

v VV Tim; (seconds)

- VAV/\AV/\A/\VA/\ ) /\/\ [
\J V

Figure1.6 A typical continuous signal from atransducer output

Volts /i

\ a1\
AN W Y. S >

1

| Vit VL—-' VET Y PAX Time (seconds)

\

I
A seconds ‘\,'

Figurel.7 A discrete signa sampled at every A seconds (marked with x)

12 See Chapter 9, Section 9.3.
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Road height
(h)

>

| Spatial position (&)

Figure1.8 Anexampleof asigna wheretimeisnot the natural independent variable

For continuous data we use the notation x(t), y(t), etc., and for discrete data various
notations are used, e.g. x(nA), x(n), X, (n=0,1,2,...).

In certain physical situations, ‘time may not be the natural independent variable; for
example, a plot of road roughness as a function of spatial position, i.e. h(&) as shown in
Figure 1.8. However, for uniformity we shall use time as the independent variable in al our
discussions.

1.2 CLASSIFICATION OF DATA

Time histories can be broadly categorized as shown in Figure 1.9 (chaotic signals are added to
the classifications given by Bendat and Piersol, 2000). A fundamental differenceiswhether a
signal isdeterministic or random, and the analysis methods are considerably different depend-
ingonthe‘type’ of thesignal. Generally, signalsare mixed, so the classifications of Figure 1.9
may not be easily applicable, and thus the choice of analysis methods may not be apparent. In
many cases some prior knowledge of the system (or the signal) isvery helpful for selecting an
appropriate method. However, it must be remembered that this prior knowledge (or assump-
tion) may also be a source of misleading the results. Thusit isimportant to remember the First
Principle of Data Reduction (Ables, 1974)

The result of any transformation imposed on the experimental data shall incorporate and be
consistent with all relevant data and be maximally non-committal with regard to unavailable
data.

It would seem that this statement summarizes what is self-evident. But how often do we
contravene it — for example, by ‘assuming’ that atime history is zero outside the extent of a
captured record?

Signals
I |

Deterministic Random
l I |
| | . T 1
Periodic Non-periodic 1 Stationary Non-stationary
1

Sinusoidal Complex Almost Transient (Chaotic)
periodic  periodic

Figure1.9 Classification of signals
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.

Figure 1.10 A simple mass-spring system

Nonetheless, we need to start somewhere and signals can be broadly classified as being
either deterministic or non-deterministic (random). Deterministic signals are those whose
behaviour can be predicted exactly. As an example, a mass—spring oscillator is considered in
Figure 1.10. The equation of motionismX + kx = 0 (x isdisplacement and X is acceleration).
If themassisreleased fromrest at aposition x(t) = Aandattimet = 0, then the displacement
signal can be written as

x(t) = Acos (M - t) t>0 (13)

In this case, the displacement x(t) is known exactly for al time. Various types of deter-
ministic signals will be discussed later. Basic analysis methods for deterministic signals are
covered in Part | of this book. Chaotic signals are not considered in this book.

Non-deterministic signals are those whose behaviour cannot be predicted exactly. Some
examples are vehicle noise and vibrations on a road, acoustic pressure variations in a wind
tunnel, wave heights in a rough sea, temperature records at a weather station, etc. Various
terminol ogiesare used to describethese signals, namely randomprocesses (signal s), stochastic
processes, time series, and the study of these signalsiscalled time seriesanalysis. Approaches
to describe and analyse random signals require probabilistic and statistical methods. These
arediscussed in Part |1 of this book.

The classification of data as being deterministic or random might be debatable in many
cases and the choice must be made on the basis of knowledge of the physical situation. Often
signals may be modelled as being a mixture of both, e.g. a deterministic signal ‘embedded’
in unwanted random disturbances (noise).

In general, the purpose of signal processing is the extraction of information from a
signal, especialy when it is difficult to obtain from direct observation. The methodology of
extracting information from a signal has three key stages: (i) acquisition, (ii) processing, (iii)
interpretation. To alarge extent, signal acquisition is concerned with instrumentation, and we
shall treat some aspects of this, e.g. analogue-to-digital conver sion.'®* However, in the main,
we shall assume that the signal is already acquired, and concentrate on stages (ii) and (iii).

13 See Chapter 5, Section 5.3.
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Force sensor
Piezoceramic
patch actuator

Slender beam

Figure1.11 A laboratory setup

Some ‘Real’ Data

L et usnow look at some signals measured experimentally. We shall attempt to fit the observed
time histories to the classifications of Figure 1.9.

(a) Figure 1.11 shows a laboratory setup in which a slender beam is suspended verti-
caly from arigid clamp. Two forms of excitation are shown. A small piezoceramic PZT
(Piezoelectric Zirconate Titanate) patch is used as an actuator which is bonded on near the
clamped end. The instrumented hammer (impact hammer) is also used to excite the structure.
An accelerometer is attached to the beam tip to measure the response. We shall assume here
that digitization effects (ADC quantization, aliasing)'* have been adequately taken care of
and can be ignored. A sharp tap from the hammer to the structure results in Figures 1.12(a)
and (b). Relating these to the classification scheme, we could reasonably refer to these as de-
terministic transients. Why might we use the deterministic classification? Because we expect
replication of the result for ‘identical’ impacts. Further, from the figures the signals appear to
be essentially noise free. From a systems points of view, Figure 1.12(a) is x(t) and 1.12(b) is
y(t) and from these two signals we would aim to deduce the characteristics of the beam.

(b) We now use the PZT actuator, and Figures 1.13(a) and (b) now relate to a random
excitation. The source is a band-limited,’® stationary,'® Gaussian process,'’ and in the
steady state(i.e. after starting transients have died down) the response should al so be stationary.
However, on the basis of the visual evidence the responseisnot evidently stationary (or isit?),
i.e. it seems modulated in some way. This demonstrates the difficulty in classification. Asit

14 See Chapter 5, Sections 5.1-5.3.

15 See Chapter 5, Section 5.2, and Chapter 8, Section 8.7.
16 See Chapter 8, Section 8.3.

17 See Chapter 7, Section 7.3.
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(b) Response signal to the impact measured from the accelerometer

Figure1.12 Example of deterministic transient signals

happens, the response is a narrow-band stationary random process (due to the filtering action
of the beam) which is characterized by an amplitude-modulated appearance.

(c) Letuslook at asignal from amachinerotating at aconstant rate. A tachometer signal
is taken from this. As in Figure 1.14(a), this is one that could reasonably be classified as
periodic, athough there are some discernible differences from period to period — one might
ask whether thisis simply an additive low-level noise.

(d) Another repetitive signal arises from atelephone tone shown in Figure 1.14(b). The
tonality is‘evident’ from listening to it and its appearanceis ‘roughly’ periodic; it istempting
to classify these signals as ‘almost periodic’!

(e) Figurel.15(a) representsthesignal for atransformer * hum’, which again perceptually
has a repetitive but complex structure and visually appears as possibly periodic with additive
noise — or (perhaps) narrow-band random.
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(b) Response signal to the random excitation measured from the accelerometer

Figure1.13 Example of stationary random signals

Figure 1.15(b) is a signa created by adding noise (broadband) to the telephone tone
signal in Figure 1.14(b). It is not readily apparent that Figure 1.15(b) and Figure 1.15(a) are
‘structurally’ very different.

(f) Figure 1.16(a) is an acoustic recording of a helicopter flyover. The non-stationary
structure is apparent — specifically, the increase in amplitude with reduction in range. What
is not apparent are any other more complex aspects such as frequency modulation due to
movement of the source.

(g) The next group of signals relate to practicalities that occur during acquisition that
render the data of limited value (in some cases useless!).

Thejagged stepwise appearancein Figure 1.17 isdueto quanti zation effectsinthe ADC —
apparent because the signal being measured is very small compared with the voltage range of
the ADC.



12 INTRODUCTION TO SIGNAL PROCESSING

0.2 T

0.15 | 1

o
e
T

|

o
o
a
T
Il

x(t) (volts)

A et S e T T T W

] | | | | |
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

t (seconds)
(a) Tachometer signal from a rotating machine
5
4 H .
3 H .
2 H
Z 1
IS)
2 0
g :
2 I ,
3| .
—4 - R
-5 L L L L L L
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

t (seconds)

(b) Telephone tone (No. 8) signal

Figure1.14 Example of periodic (and almost periodic) signals

(h) Figures 1.18(a), (b) and (c) all display flats at the top and bottom (positive and
negative) of their ranges. This is characteristic of ‘clipping’ or saturation. These have been
synthesized by clipping the telephone signal in Figure 1.14(b), the band-limited random signal
in Figure 1.13(a) and the accelerometer signal in Figure 1.12(b). Clipping isanonlinear effect
which ‘creates spurious frequencies and essentially destroys the credibility of any Fourier
transformation results.

(i) Lastly Figures 1.19(a) and (b) show what happens when ‘control’ of an experiment
isnot astight asit might be. Both signals are the free responses of the cantilever beam shown
in Figure 1.11. Figure 1.19(a) shows the results of the experiment performed on a vibration-
isolated optical table. Thesignal isvirtually noisefree. Figure 1.19(b) showsthe results of the
same experiment, but performed on anormal bench-top table. The signal isnow contaminated
with noise that may come from various external sources. Note that we may not be able to
control our experiments as carefully as in Figure 1.19(a), but, in fact, it is a signa asin
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Figure1.17 Example of low dynamic range

Figure 1.19(b) which we often deal with. Thus, the nature of uncertainty in the measurement
process is again emphasized (see Figure 1.3).

The Next Stage

Having introduced various classes of signals we can now turn to the principles and details
of how we can model and analyse the signals. We shall use Fourier-based methods — that
is, we essentially model the signal as being composed of sine and cosine waves and tailor
the processing around this idea. We might argue that we are imposing/assuming some prior
information about thesignal —namely, that sinesand cosinesare appropriate descriptors. Whil st
this may seem constraining, such a‘prior model’ is very effective and covers awide range of
phenomena. Thisis sometimes referred to as anon-parametric approach to signal processing.

So, what might be a‘ parametric’ approach? This can again be related to modelling. We
may have additional ‘prior information’ asto how the signal has been generated, e.g. aresult of
filtering another signal. This notion may be extended from the knowledge that this generation
process is indeed ‘physical’ to that of its being ‘notional’, i.e. another model. Specifically
Figure 1.20 depicts thiswhen s(t) isthe ‘measured’ signal, which is conceived to have arisen
from the action of a system being driven by avery fundamental signal —in this case so-called
white noise!® w(t).

Phrased inthisway the analysisof thesignal s(t) can now betransformedinto aproblem of
determining the detail sof the system. The system could be characterized by aset of parameters,
e.g. it might be mathematically represented by differential equationsand the parametersarethe
coefficients. Set up likethis, theanalysis of s(t) becomes one of system parameter estimation—
hence this is a parametric approach.

The system could be linear, time varying or nonlinear depending on one’s prior know!-
edge, and could therefore offer advantages over Fourier-based methods. However, we shall
not be pursuing this approach in this book and will get on with the Fourier-based methods
instead.

18 See Chapter 8, Section 8.6.
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Figure1.18 Examplesof clipped signals
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Figure1.19 Examples of experimental noise
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Figure 1.20 A white-noise-excited system

We have emphasized that thisisabook for practitioners and users of signal processing,
but note also that there should be sufficient detail for completeness. Accordingly we have
chosen to highlight some main points using alight grey background. From Chapter 3 onwards
there is a reasonable amount of mathematical content; however, a reader may wish to get
to the main points quickly, which can be done by using the highlighted sections. The details
supporting these points are in the remainder of the chapter adjacent to these sectionsand inthe
appendices. Examplesand MATLAB exercisesillustrate the concepts. A superscript notation
is used to denote the relevant MATLAB example given in the last section of the chapter, e.g.
see the superscript (M?1) in page 21 for MATLAB Example 2.1 given in page 26.
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Classification of Deterministic Data

I ntroduction

Asdescribedin Chapter 1, deterministic signalscan beclassified asshowninFigure2.1.1n
thisfigure, chaotic signals are not considered and the sinusoidal signal and more general
periodic signals are dealt with together. So deterministic signals are now classified as
periodic, amost periodic and transient, and some basic characteristics are explained
below.

Deterministic

Periodic Non-periodic

Almost periodic Transient

Figure2.1 Classification of deterministic signals

2.1 PERIODIC SIGNALS

Periodic signals are defined as those whose waveform repeats exactly at regular timeintervals.
The simplest exampleisasinusoidal signal as shown in Figure 2.2(a), where the time interval
for one full cycle is called the period Tp (in seconds) and its reciprocal 1/Tp is called the
frequency (in hertz). Another example is atriangular signal (or sawtooth wave), as shown in
Figure 2.2(b). Thissignal has an abrupt change (or discontinuity) every Tp seconds. A more

Fundamentals of Sgnal Processing for Sound and Vibration Engineers
K. Shinand J. K. Hammond. ~ © 2008 John Wiley & Sons, Ltd



20 CLASSIFICATION OF DETERMINISTIC DATA

/\ AN
VARVARVARN e
(a) Single sinusoidal signal (b) Triangular signal
PRI
/L /1 AW
V4 V4 \

(c) General periodic signal

Figure2.2 Examples of periodic signals

general periodic signal isshownin Figure 2.2(c) where an arbitrarily shaped waveform repeats
with period Tp.

In each case the mathematical definition of periodicity implies that the behaviour of the
wave isunchanged for al time. Thisis expressed as

X(t) = X(t +nTp) n=+£1, +2, £3, ... (2.1)

For cases(a) and (b) in Figure 2.2, explicit mathematical descriptionsof thewave are easy
to write, but the mathematical expression for the case (c) is not obvious. The signal (c) may
be obtained by measuring some physical phenomenon, such asthe output of an accel erometer
placed near the cylinder head of a constant speed car engine. In this case, it may be more
useful to consider the signal as being made up of simpler components. One approach to this
isto ‘transform’ the signal into the ‘frequency domain’ where the details of periodicities of
the signal are clearly reveaed. In the frequency domain, the signal is decomposed into an
infinite (or afinite) number of frequency components. The periodic signals appear as discrete
componentsin thisfrequency domain, and are described by aFourier serieswhich isdiscussed
in Chapter 3. As an example, the frequency domain representation of the amplitudes of the
triangular wave (Figure 2.2(b)) with a period of Tp = 2 seconds is shown in Figure 2.3.
The components in the frequency domain consist of the fundamental frequency 1/Tp and its
harmonics2/Tp, 3/Tp, ..., i.e. dl frequency components are ‘harmonically related’.

However, there is hardly ever a perfect periodic signal in reality even if the signal is
carefully controlled. For example, amost all so-called periodic signals produced by a signal
generator used in sound and vibration engineering are not perfectly periodic owing to the
limited precision of the hardware and noise. An example of this may be a telephone keypad
tonethat usually consistsof two frequency components (assumetheratio of thetwo frequencies
isarational number — see Section 2.2). The measured timedataof thetel ephonetone of keypad
‘8 are shown in Figure 2.4(a), where it seems to be a periodic signal. However, when it is
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Figure2.3 Frequency domain representation of the amplitudes of atriangular wave with a period of
T, =2

transformed into the frequency domain, we may find something different. The telephone tone
of keypad ‘8 is designed to have frequency components at 852 Hz and 1336 Hz only. This
measured telephone toneistransformed into the frequency domain as shown in Figures 2.4(b)
(linear scale) and (c) (log scale). On a linear scale, it seems to be composed of the two
frequencies. However, there are in fact, many other frequency components that may result if
the signal is not perfectly periodic, and this can be seen by plotting the transform on a log
scale asin Figure 2.4(c).

Another practical exampleof asignal that may be considered to be periodicistransformer
hum noise (Figure 2.5(a)) whose dominant frequency components are about 122 Hz, 366 Hz
and 488 Hz, as shown in Figure 2.5(b). From Figure 2.5(a), it is apparent that the signal is
not periodic. However, from Figure 2.5(b) it is seen to have a periodic structure contaminated
with noise.

From the above two practical examples, we note that most periodic signals in practical
situations are not ‘truly’ periodic, but are ‘amost’ periodic. The term ‘almost periodic’ is
discussed in the next section.

2.2 ALMOST PERIODIC S| GNALsMZ.l (This superscript is short for MATLAB Example 2.1)

The name ‘amost periodic’ seems self-explanatory and is sometimes called quasi-periodic,
i.e. it looks periodic but in fact it is not if observed closely. We shall see in Chapter 3 that
suitably selected sine and cosine waves may be added together to represent cases (b) and (¢)
in Figure 2.2. Also, even for apparently simple situations the sum of sines and cosines results
in a wave which never repeats itself exactly. As an example, consider a wave consisting of
two sine components as below

X(t) = A;sin (27'[ pit + 91) + A sin (27'[ pot + 92) (22)
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Figure2.4 Measured telephone tone (No. 8) signal considered as periodic
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Figure2.5 Measured transformer hum noise signal

where A; and A, are amplitudes, p; and p; are the frequencies of each sine component, and
01 and 6, are called the phases. If the frequency ratio p;/p. isarational number, the signal
x(t) isperiodic and repeats at every time interval of the smallest common period of both 1/ p;
and 1/ p,. However, if theratio p1/ p. isirrational (asan example, theratio p1/p, = 2/+/2is
irrational), the signal x(t) never repeats. It can be argued that the sum of two or more sinusoidal
components is periodic only if the ratios of al pairs of frequencies are found to be rational
numbers (i.e. ratio of integers). A possible example of an almost periodic signal may be an
acoustic signal created by tapping a slightly asymmetric wine glass.

However, the representation (model) of a signal as the addition of simpler (sinusoidal)
components is very attractive — whether the signal is truly periodic or not. In fact a method
which predated the birth of Fourier analysis usesthisidea. Thisis the so-called Prony series
(de Prony, 1795; Spitznogle and Quazi, 1970; Kay and Marple, 1981; Davies, 1983). The
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basic components here have the form Ae ! sin(wt + ¢) in which there are four parameters
for each component — namely, amplitude A, frequency w, phase ¢ and an additional feature o
which controls the decay of the component.

Prony analysis fits a sum of such components to the data using an optimization proce-
dure. The parameters are found from a (nonlinear) agorithm. The nonlinear nature of the
optimization arises because (evenif o = 0) thefrequency w is calculated for each component.
Thisisin contrast to Fourier methods where the frequencies are fixed once the period Tp is
known, i.e. only amplitudes and phases are cal cul ated.

2.3 TRANSIENT SIGNALS

Theword ‘transient’ implies somelimitation on the duration of thesignal. Generally speaking,
atransient signal has the property that x(t) = 0 whent — +o00; some examples are shown
in Figure 2.6. In vibration engineering, acommon practical exampleisimpact testing (with a
hammer) to estimate the frequency response function (FRF, see Equation (1.2)) of astructure.
The measured input force signal and output accel eration signal from asimple cantilever beam
experiment are shown in Figure 2.7. The frequency characteristic of this type of signal is
very different from the Fourier series. The discrete frequency components are replaced by the
concept of the signal containing a continuum of frequencies. The mathematical details and
interpretation in the frequency domain are presented in Chapter 4.

Note also that the modal characteristics of the beam allow the transient response to be
modelled as the sum of decaying oscillations, i.e. ideally matched to the Prony series. This
allowsthe Prony model to be ‘fitted to’ the data (see Davies, 1983) to estimate the amplitudes,
frequencies, damping and phases, i.e. a parametric approach.

24 BRIEF SUMMARY AND CONCLUDING REMARKS

1. Deterministic signals are largely classified as periodic, almost periodic and transient
signals.

2. Periodic and almost periodic signals have discrete components in the frequency
domain.

3. Almost periodic signals may be considered as periodic signals having an infinitely
long period.

4. Transient signals are analysed using the Fourier integral (see Chapter 4).

Chapters 1 and 2 have been introductory and qualitative. We now add detail to these
descriptions and note again that a quick ‘skip-through’ can be made by following
the highlighted sections. MATLAB examples are also presented with enough de-
tail to allow the reader to try them and to understand important features (MATLAB
version 7.1 is used, and Signal Processing Toolbox is required for some MATLAB
examples).
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Figure2.6 Examples of transient signals
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Figure2.7 Practical examples of transient signals (measured from an impact testing experiment)
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25 MATLAB EXAMPLES

Example 2.1: Synthesis of periodic signalsand almost periodic signals
(see Section 2.2)
Consider Equation (2.2) for this example, i.e.

X(t) = ArSin(2rpit + 61) + Az sin (2 pat + 62)

Let the amplitudes A; = A, = 1 and phases6; = 6, = 0 for convenience.

Case 1. Periodic signal with frequencies p; = 1.4 Hzand p, = 1.5 Hz.
Note that the ratio p;/p, is rational, and the smallest common period of both
1/p;and 1/pyis* 10, thusthe period is 10 secondsin this case.

Line MATLAB code Comments

1 clear all Removes al local and global variables
(thisis agood way to start a new
MATLAB script).

2 Al=1; A2=1; Thetal=0; Define the parameters for Equation
Theta2=0; p1=1.4; p2=1.5; (2.2). Semicolon (;) separates
statements and prevents displaying the
results on the screen.

3 t=[0:0.01:30]; Thetime variablet is defined as arow
vector from zero to 30 seconds with a
step size 0.01.
4 x=A1xsin(2xpix pl«t+Thetal) MATLAB expression of Equation
+A2xsin(2x pi* p2*t+Theta2); (2.2).
5 plot(t, X) Plot the results of t versusx (t on
abscissaand x on ordinate).
6 xlabel (\itt\rm (seconds)"); Add text on the horizontal (xlabel) and
ylabel ("\itx\rm(\itt\rm)") on the vertical (ylabel) axes. “\it" isfor

italic font, and ‘\rm’ isfor normal
font. Readers may find more ways of
dealing with graphicsin the section
‘Handle Graphics Objects’ in the
MATLAB Help window.

7 gridon Add grid lines on the current figure.

1 MATLAB codes (m files) and data files can be downloaded from the Companion Website (www.wiley.com/go/
shin_hammond).
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Comments: It is clear that this signal is periodic and repeats every 10 seconds, i.e.
Tp = 10 seconds, thus the fundamental frequency is 0.1 Hz. The frequency domain
representation of the above signa is shown in Figure (b). Note that the amplitude of
the fundamental frequency is zero and thus does not appear in the figure. This ap-
plies to subsequent harmonics until 1.4 Hz and 1.5 Hz. Note also that the frequency
components 1.4 Hz and 1.5 Hz are ‘harmonically’ related, i.e. both are multiples of
0.1Hz.

0.5¢ 1
14 Hz 1.5Hz

0.4t \ / 1

0.3 1

IX(F)l

0.2y R

0.1 4

OO 05 1 15 2 25 3 35 4 45 5
Frequency (Hz)
(b) Fourier transform of x(t) (periodic)
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Case 2: Almost periodic signal with frequencies p; = v/2 Hz and p, = 1.5 Hz.
Notethat theratio p;/ p, isnow irrational, so thereisno common period of both

1/p1 and 1/ po.

Line

MATLAB code

Comments

AW N -

[

clear al

Al1=1; A2=1; Thetal=0;
Theta2=0; pl=sqrt(2); p2=1.5;

t=[0:0.01:30];

x=A1*sin(2" pi* p1* t+ Thetal)
+A2*sin(2* pi* p2* t+Theta2);

plot(t, x)

Exactly the same script asin the previous
case except ‘pl=1.4" isreplaced with
‘pl=sort(2)’.

xlabel ("\itt\rm (seconds)");

ylabel ("\itx\rm(\itt\rm)")

gridon

1
= 1 1
1)
T
T
T
T

7
| == ——
:
:

t (seconds)

(a) Almost periodic signal

Comments. One can find that this signal is not periodic if it is observed carefully by
closely investigating or magnifying appropriate regions. The frequency domain repre-
sentation of the above signal is shown in Figure (b). Since the signal is not exactly
periodic, the usual concept of the fundamental frequency does not hold. However, it may
be considered that the periodicity of thissignal isinfinite, i.e. the fundamental frequency
is‘OHZ (this concept leads us to the Fourier integral which is discussed in Chapter 4).
The spread of the frequency components in the figure is not representative of the true
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IX(F)I

frequency components in the signal, but results from the truncation of the signal, i.e. it
isawindowing effect (see Sections 3.6 and 4.11 for details).

0.5¢
o4l Y2Hz | 15Hz
0.3f
0.2}
Windowing
0.11 effect y

O0 05 1 15 2 25 3 35 4 45 5

Frequency (Hz)

(b) Fourier transform of x(t) (almost periodic)
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Fourier Series

I ntroduction

This chapter describes the simplest of the signal types — periodic signals. It begins with the
ideal situation and the basis of Fourier decomposition, and then, through illustrative examples,
discusses some of the practical issues that arise. The delta function is introduced, which is
very useful in signal processing. The chapter concludes with some examples based on the
MATLAB software environment.

The presentation is reasonably detailed, but to assist the reader in skipping through to
find the main points being made, some equations and text are highlighted.

3.1 PERIODIC SIGNALSAND FOURIER SERIES

Periodic signals are analysed using Fourier series. The basis of Fourier anaysis of a
periodic signal is the representation of such asignal by adding together sine and cosine
functions of appropriate frequencies, amplitudes and relative phases. For a single sine
wave

X(t) = Xsin(wt + ¢) = Xsin(2r ft + ¢) (31
where X isamplitude,
iscircular (angular) frequency in radians per unit time (rad/s),
is (cyclical) frequency in cycles per unit time (Hz),
is phase angle with respect to the time origin in radians.

S =~ e

The period of this sine wave is Tp = 1/f = 27 /w seconds. A positive phase angle ¢
shifts the waveform to the left (a lead or advance) and a negative phase angle to the right
(alag or delay), where the time shift is ¢ /w seconds. When ¢ = 7/2 the wave becomes a

Fundamentals of Sgnal Processing for Sound and Vibration Engineers
K. Shinand J. K. Hammond. ~ © 2008 John Wiley & Sons, Ltd
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cosine wave. The Fourier series (for periodic signal) isnow described. A periodic signal, x(t),
isshown in Figure 3.1 and satisfies

X(t) = X(t +nTp) n=41, £2, £3,... (3.2)
X(t)/l”\
NN\ g
7 0| ~
7

P

Figure3.1 A period signal with aperiod Tp

With afew exceptions such periodic functions may be represented by

X(t) = % + ni:; [an cos(zi—:t> + by sin <2$:t)] (33)

The fundamental frequency is f; = 1/Tp and all other frequencies are multiples
of this. ag/2 isthe d.c. level or mean value of the signal. The reason for wanting to use
a representation of the form (3.3) is because it is useful to decompose a ‘ complicated’
signal into asum of ‘simpler’ signals—in this case, sine and cosinewaves. The amplitude
and phase of each component can be obtained from the coefficients a,, b,, aswe shall see
later in Equation (3.12). These coefficients are cal culated from the following expressions:

Tp/2

% — / x(t)dt = — / x(t)dt :  mean value
—TP/2
2 Tp 2 2 TP/Z 27[
7T nt nt
an = T x(t)cos( T )dt = T x(t)cos(T—P> dt n=1 2,... (34
0 —Tp/2
) Tp/2 -
t t
bn:—/x(t)sm< Tm)dt — / x(t)sm( T”)dt n=12,...
—TP/2

Wejustify the expressions (3.4) for the coefficients a,, b, asfollows. Supposewewishto
add up aset of ‘elementary’ functionsun(t), n =1, 2, ..., soastorepresent afunction x(t), i.e.
wewant ) Cyun(t) to bea‘good’ representation of x(t). We may write x(t) ~ >, chun(t),
where ¢, are coefficientsto be found. Note that we cannot assume equality in this expression.
To find the coefficients ¢,,, we form an error function e(t) = x(t) — 3 _,, cnhun(t) and select the
Cn SO asto minimize some function of e(t), e.g.

Tp
J = [ €(t)dt (3.5)
/
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Since the un(t) are chosen functions, Jisafunction of ¢, ¢y, ... only, soin order to minimize
J we need necessary conditions as below:
ﬂ=O for m=1,2, ... (3.6)
dCm
Thefunction Jis
Tp

2
J(C1, Gy ...) = / (x(t)—chun(t)) dt

0
and so Equation (3.6) becomes

Tp
aJ
T / 2<x(t) - zn:cnun(t)>(—um(t))dt =0 (3.7)
0
Thus the following result is obtained:
Tp Tp
/ X(um(®)dt = "¢ / Un (t)um(t)dt (3.9)
0 "0
At this point we can see that a very desirable property of the ‘basis set’ uy, is that
Tp
/ Un(t)upm(t)dt =0 forn=£m (3.9

0

i.e. they should be ‘orthogonal’.
Assuming this is so, then using the orthogonal property of Equation (3.9) gives the
required coefficients as
Tp
J x(t)um(t)dt
Cny = "Ti (3.10)
[ u2(t)dt
0

Equation (3.10) is the equivaent of Equation (3.4) for the particular case of selecting sines
and cosines as the basic elements. Specifically Equation (3.4) utilizes the following results of

orthogonality:
Tp
2rmt 2rnt
/cos( m >sin< n >dt:0 for al m, n
Tp Tp
0

fcos( nmt)cos(znnt) t=0
fsn(zy_j_:]t>sn(_r ) t=0

(Znnt)dt /SI <2nnt) ( E
2
0

for m# n (311
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We began by referring to the amplitude and phase of the components of a Fourier
series. Thisis made explicit now by rewriting Equation (3.3) in the form

x(t) = % + Z M, cos(27nfit + ¢n) (3.12)
n=1

where f; = 1/Tp isthe fundamental frequency,
M, = /a2 + b2 are the amplitudes of frequencies at nfy,
¢n = tan (—by,/a,) are the phases of the frequency components at nf.

Notethat we have assumed that the summation of the components doesindeed accurately
represent the signal x(t), i.e. we have tacitly assumed the sum converges, and furthermore
converges to the signal. Thisis discussed further in what follows.

An Example (A Square Wave)

As an example, let us find the Fourier series of the function defined by

T
X(t) = -1 ~3 <t<0
and X(t+nT)=x(t) n==£1, £2, ... (3.13)

T
=1 O<t< —
< <2

where the function can be drawn asin Figure 3.2.

x(t) 4

— 1

|
o
N |-

— 1

Figure3.2 A periodic square wave signal

From Figure 3.2, it is apparent that the mean value is zero, so

T/2
1
3=7 / x(t)dt =0 (mean value) (3.14)
~T/2
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and the coefficients a,, and by, are

2 i 2
nt
= — t — | dt
an T /x()cos( T >
-T/2
5 0 T/2 5
nt nt
=T / —cos<? dt+/cos<?>d =0
-T/2 0
T . (3.15)
. nt
bn = ? / X(t)Sm (?) dt
—-T/2
2 0 2 e 2
. T nt Nt
= — — _— - = —(1-—
T sm( T )dt+/sm< T )dt n( cosnr)
-T/2 0

So Equation (3.13) can be written as

x(t):%[sin(?)—k%sin(@)Jr%sin (@)+] (3.16)

We should have anticipated that only a sine wave series is necessary. This follows from
thefact that the square waveisan ‘odd’ function and so does not require the cosine terms
which are ‘even’ (even and odd functions will be commented upon later in this section).

Let uslook at the way the successive terms on the right hand side of Equation (3.16)
affect the representation. Let w; = 27 f; = 27/ T, so that

4 [ . 1. 1 .
X(t) = — |:S|I’]a)1t + §S|n3w1t + 5 sin5wqt + - - i| (3.17)
T

Consider ‘partial sums’ of the series above and their approximation to x(t), i.e. denoted
by S (t), the sum of nterms, asin Figure 3.3:

\

\J

1 Term 2 Terms 3 Terms

S (t)=£sina)t Sz(t)=i sin w1t+lsin3w1t %(t):i[sin w1t+lsin 3w1t+lsin5wlt}
! V3 ! T 3 T & 5

Figure3.3 Partia sums of the Fourier series of the square wave
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[ ]
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1l
o~

Figure 3.4 The coefficients b, of the Fourier series of the square wave

Note the behaviour of the partial sums near points of discontinuity displaying what is
known asthe ‘overshoot’ or Gibbs' phenomenon, which will be discussed shortly. The above
Fourier series can be represented in the frequency domain, whereit appears asaline spectrum
as shown in Figure 3.4.

We now note some aspects of Fourier series.

Convergence of the Fourier Series

We have assumed that a periodic function may be represented by a Fourier series. Now
we state (without proof) the conditions (known as the Dirichlet conditions, see Oppenheim
et al. (1997) for more details) under which a Fourier series representation is possible. The
sufficient conditions are follows. If a bounded periodic function with period Tp is piecewise
continuous (with a finite number of maxima, minima and discontinuities) in the interval
—Tp/2 <t < Tp/2 and has a left and right hand derivative at each point to in that interval,
then its Fourier series converges. ThesumisX(to) if Xiscontinuousat to. If X isnot continuous
at to, then the sum isthe average of the left and right hand limits of x at to. In the square wave
example above, at t = 0 the Fourier series converges to

17 . . 1
3 [ KO+ i X0 = 3- 0 =0

Gibbs PhenomenonM31

When a function is approximated by a partial sum of a Fourier series, there will be a
significant error in the vicinity of adiscontinuity, no matter how many terms are used for
the partial sum. Thisis known as Gibbs' phenomenon.

Consider the square wave in the previous example. Asillustrated in Figure 3.5, near
the discontinuity the continuous terms of the series struggle to simulate a sudden jump.
Asthe number of termsin the partial sumisincreased, the ‘ripples’ are squashed towards
the point of the discontinuity, but the overshoot does not reduce to zero. In thisexampleit
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turnsout that alower bound on the overshoot isabout 9% of the height of the discontinuity
(Oppenheim et al., 1997).

Overshoot

S

—_—
. E—

7 Terms 20 Terms

Figure3.5 Illustrations of Gibbs phenomenon

Differentiation and I ntegration of Fourier Series

If x(t) satisfies the Dirichlet conditions, then its Fourier series may be integrated term by
term. Integration ‘ smoothes’ jumps and so resultsin a series whose convergence is enhanced.
Satisfaction of the Dirichlet conditions by x(t) does not justify differentiation term by term.
But, if periodic x(t) is continuous and its derivative, x(t), satisfies the Dirichlet conditions,
then the Fourier seriesof x(t) may be obtained from the Fourier series of x(t) by differentiating
term by term. Note, however, that these are general guidelines only. Each situation should be
considered carefully. For example, the integral of a periodic function for which ag # 0 (mean
value of the signal is not zero) is no longer periodic.

Even and Odd Functions

A function x(t) iseven if x(t) = x(—t), as shown for example in Figure 3.6.
A function x(t) isodd if x(t) = —x(—t), as shown for example in Figure 3.7.
Any function x(t) may be expressed as the sum of even and odd functions, i.e.

X(0) = 5 K0+ X(-0]+ 5 D0~ X(-1)] = %e(0) + %0 (319)
If x(t) and y(t) are two functions, then the following four properties hold:

1. If x(t) isodd and y(t) is odd, then x(t)-y(t) is even.
2. If x(t) isodd and y(t) is even, then x(t)-y(t) is odd.
3. If x(t) iseven and y(t) is odd, then x(t)-y(t) is odd.
4. 1f x(t) iseven and y(t) is even, then x(t)-y(t) is even.

AN

[ >

Figure3.6 An example of an even function
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va

Figure3.7 Anexample of an odd function

Also:

1. If x(t) isodd, then [°, x(t)dt = 0.
2. If x(t) iseven, then [°, x(t)dt = 2 [7 x(t)dt.

Fourier Series of Odd and Even Functions
If x(t) isan odd periodic function with period Tp, then

X(t) = i [bns'n<27_lr_m>}

n=1 P

It isaseries of odd terms only with azero mean value, i.e.a, =0,n=0, 1, 2,.... If x(t) is
an even periodic function with period Tp, then

X(t) = % + ; [an cos(ZJTT—:t>]

Itisnow aseriesof eventermsonly,i.e. b, =0,n=1,2,....
We now have a short ‘ mathematical aside’ to introduce the delta function, which turns
out to be very convenient in signal analysis.

3.2 THE DELTA FUNCTION

The Dirac delta function is denoted by §(t), and is sometimes called the unit impulse
function. Mathematically, it is defined by

8(t)=0 fort#0, and f S(t)dt =1 (3.19)

This is not an ordinary function, but is classified as a ‘generalized’ function. We may

consider thisfunction as avery narrow and tall spikeat t = 0 asillustrated in Figure 3.8.

Then, Figure 3.8 can be expressed by Equation (3.20), where the integration of the
function isffoOO 8:(t)dt = 1. Thisisaunit impulse:

1

for £ t ¢
2 2 (3.20)

85(t) = -
&
0 otherwise
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M|

—¢g/2'¢/2
Figure3.8 Model of aunit impulse

Now, if we visualize the spike as infinitesimally narrow, i.e. §(t) = lim._ o J.(t),
then we may represent it on a graph as shown in Figure 3.9, i.e. an arrow whose height
indicates the magnitude of the impulse.

1.0
t

Figure3.9 Graphical representation of the deltafunction

An dternative interpretation of the unit impulse isto expressit in terms of the unit step
function u(t) defined as

ut) =1 fort>0

=0 fort<O

Since Equation (3.20) can be obtained by using two unit step functions appropriately, i.e.

8:(t) = (L/e)[u(t + &/2) — u(t — &/2)], the Dirac delta function and the unit step function

have the following relationship, which is the Dirac delta function as the derivative of the unit

step function:

(3.21)

. d
(1) = lim 5.(t) = Ju(t) (3.22)

Notethat the concept of Equation (3.22) makesit possibleto deal with differentiating functions
that contain discontinuities.

Properties of the Delta Function

A shifted delta function: if adeltafunction islocated at t = a, then it can be written as
8(t — a). Some useful properties of the delta function are:

1. §(t) = 8(—t), i.e. adeltafunction is an even function.
2. Sfting property: if x(t) isan ‘ordinary’ function, then the integral of the product of the
ordinary function and a shifted delta function is

o0

/ x(t)s(t — a)dt = x(a) (3.23)

—00

i.e. the deltafunction ‘sifts out’ the value of the ordinary functionatt = a.



40 FOURIER SERIES

The result (3.23) isjustified in Figure 3.10 which shows the product of an ordinary function
and ashifted §.(t), i.e.

o0

l, = / (15 (t — a)dt (3.24)

—00

e =

x(t)
£

! -g/2 agf2

Figure3.10 Graphical illustration of the sifting property

We evaluate this integral and then let ¢ — 0 to obtain Equation (3.23), i.e.
ate/2
l. = 1 / x(t)dt (3.25)
8a—s/2

Thisis the average height of x(t) within therangea — ¢/2 <t < a + ¢/2 and we write this
asx(a+0¢e/2), 16| <1 Sol, =x(a+ 6¢/2), fromwhich lim,_o I, = x(a). Thisjustifies
Equation (3.23).

2 / etizratdt = s(a), or / etlddt = 275(a) (3.26)

Thejustification of this property is given below, where the deltafunction is described in terms
of the limiting form of atall narrow ‘sinc function’ as shown in Figure 3.11:

o0 M M
/eijz”a‘dt: lim /(cosZnatijsinZnat)dt: lim /(cosZnat)dt
M— oo M— 00
—00 —M —M
sin2zat |M sin2raM
= lim 2 = |lim 2M—— = §(a 3.27
M— o0 2ra 0 M— o0 2raM ( ) ( )

Note that it can be verified that the integral of the function in Figure 3.11 is unity (see
Appendix A).

1 . .
4. §(at) = Ha(t), where a is an arbitrary constant (3.28)

5. / f(t)sM(t — a)dt = (—1)" f™(a), where (n) denotes the nth derivative (3.29)

—0Q0
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Figure3.11 Representation of the delta function using asinc function

3.3 FOURIER SERIESAND THE DELTA FUNCTION
Asalready noted, we can differentiate discontinuous functionsif we introduce deltafunctions.

L et us consider the Fourier series of derivatives of discontinuous periodic functions. Consider
an example of a discontinuous function x(t) as shown in Figure 3.12, whose Fourier seriesis

given as
x(t)_ L1 Z <2nnt>

(Note that thisis an odd function offset with a d.c. component.)
Differentiating the function in the figure gives

1 oo
- n;wa(t —nT)
and differentiating the Fourier series term by term gives
2. & 2rnt
r e ()
n=1
Equating these gives

ia(t—nT) —+ i (Z’mt> (3.30)

N=—00

Thisisaperiodic ‘train’ of impulses, and it has a Fourier series representation whose coef-
ficients are constant (2/T) for al frequencies except for the d.c. component. The periodic
train of impulses (usually written 81 (t) or i(t)) isdrawn asin Figure 3.13, and will be used in

sampling theory later.
1.0 | : x(t):lf% 0<t<T, and
| ; X(t+nT)=x(t) n=+1 £2, ...
> t

T o

Figure3.12 An example of adiscontinuous periodic function
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A

R e O A

Figure3.13 The periodic train of impulses

So far we have used sines and cosines explicitly in the Fourier series. These functions

can be combined using e*1? = cosé + j sin@ and so sines and cosines can be replaced by
complex exponentials. Thisisthe basis of the complex form of the Fourier series.

34 THE COMPLEX FORM OF THE FOURIER SERIES

It is often convenient to express a Fourier seriesin terms of et/ (w; = 277/ Tp). Note
that

cosf = % (e +e%) and sing = % (el —e717)

so the Fourier series defined in Equation (3.3)

= 2rnt . (27nt
x(t)=%+ El[%cos(%>+bnsn< ™ ﬂ
n=

becomes
x(t) = @ + i [ﬁ (ej2nnt/Tp + e—jZnnt/Tp) + E (ej2ﬂnt/Tp _ e—jZnnt/Tp):|
2 n=1 2 2]
= @ A i} <an aF E) ejZnnt/Tp + i} <an _ E) e—jZnnt/TP
2 n=1 2 J n=1 2 J
_ %+§:an—zjbnejznnt/Tp_{_ian-;jbne,jzﬂmﬁp (3.31)
n=1 n=1
Letco = /2, Ch = (an — jbn)/2,50C% = (an + jbn)/2,i.e.
X(t) = co + Z CneJ'met/Tp 4 Z C:e—jZnnt/Tp (332)
n=1 n=1

Substituting for a, and b, from Equation (3.4) gives

Tp Tp

Tp
1 1 : 1 .
Co —/x(t)dt, Ch = —/x(t)e’lz””‘/“’dt, C = T—/x(t)elzﬂ“t/TPdt =cC.n
P
0

Tp
0 0

=7
(3.33)
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Note that the negative frequency terms (c_,,) are introduced, so that

Z C:esz7'[nt/Tp — Zc_neﬂZnnt/Tp
n=1 n=1

in Equation (3.32). Thus, we obtain the very important results:

X(t)= > celm/™ (3.34)
nN=—00
1 [
&= / x(t)e 12/ Te gt (3.35)
0

Notethat the‘ basic elements’ are now complex exponentialsand the Fourier coefficientsc, are
also complex, representing both amplitude and phase information. Note also that the notion
of ‘negative frequencies, i.e. f, =n/Tp, N =0, +£1, £2, ..., has been introduced by the
algebraic manipulation in Equation (3.33).

Referring to Equation (3.12)

X =3

+ Z M, cos(2rnfit + ¢n)
n=1
the relationship between the coefficientsis given by
a,— jb 1 M
Ch = 5 nso|Cn|=§/a§+br21=7n

b for n#£0 (3.36)
and argc, = tan?! (——n> = ¢n
an

All previous discussions on Fourier series still hold except that now manipulations are
considerably easier using the complex form. We note a generalization of the concept of
orthogonality of functionsfor thecompl ex case. Complex-val ued functionsu,(t) areorthogonal
if

Tp

/un(t)u:‘n(t)dt =0 form#n (3.37)

0

Thisiseasily verified by using u,(t) = €/2""/Tr Also, when n = m, the integral is Tp.

3.5 SPECTRA

We now introduce the notion of the spectrum of a process. We shall refer to the com-
plex representation of Equation (3.34) using positive and negative frequencies and also
Equation (3.12) using only positive frequencies. Referring to Equation (3.34) first, aplot
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of the magnitude |c,| versus frequency f (or w) is called the amplitude spectrum of the
periodic function x(t). A plot of the phase angle argc, versus frequency is called the
phase spectrum. These are not continuous curves but take values only at discrete values
for f =n/Tp, n=0, +£1, £2,....We can draw these spectraasin Figures 3.14 and
3.15 respectively.

Figure3.14 Amplitude spectrum of a Fourier series (aline spectrum and an even function)

argc,

1
T

Figure3.15 Phase spectrum of a Fourier series (aline spectrum and an odd function)

If we did not want to include negative frequencies, we could plot My, @, (Equation (3.12))
versus n above (note that M, = 2|c,| forn # 0).

As an example, consider a periodic function that can be depicted as in Figure 3.16. A
calculation will give the coefficients as

_ (Ad/T)sin(nzd/T)
" (nd/T)

,agc, =0

Since this function is even the phase spectrum is zero for all frequency components. If,
for example, T = 1/4, d = 1/20, then the amplitude spectrum is as given in Figure 3.17.

If the function is shifted to the right by d/2, then the function is depicted as in
Figure 3.18. Then, |c,| is unchanged but the phase components are changed, so that
argcy, = —nx(d/T) rads.

- 1 1 1 | —
1 1 1
1 1 1
1 1 1
| — ' >t

/2 —df2 42 1/2

Figure3.16 A periodic function of arectangular pulse
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Envelope

-60 -40 -20 0 20 40 60

Figure3.17 Amplitude spectrum of the function given in Figure 3.16

X(t)

— Afb—— —
| |
I I
! l
+

1
1
|
d

Figure3.18 A periodic function of arectangular pulse shifted to theright by d/2

Parseval’s Theorem — The Power Spectrum

Suppose X(t) is interpreted as a voltage. Then the instantaneous power dissipated across
alohm resistor is x?(t), and the average power dissipated across the resistor is

Tp

1 (5
T / x2(t)dt

0

Now, using Equation (3.34),

00
X(t): Z Cne]Znnt/Tp

nN=—00

the voltage squared is
oo . o0 )
X2(t) = x(t) - x*(t) = Z CREle Z C»r;]e—Jant/Tp
n=-00 m=—o00

Thus, the average power can be written as

1 o0 o0

Tp Tp
1 2 * j 277 (n—m)t /T,
T—P/x (t)dt = = >y cncm/eJ n—-mt/Te qt (3.39)
0

N=—00 M=—00
0
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By the property of orthogonality, this is reduced to the following form known as (one
form of) Parseval’s theorem:

Tp
1 (o.¢]
= f XP(M)dt = Y el (3.39)
P 4 n=—oo

Thishasa‘physical’ interpretation. It indicates that the average power of the signal x(t)
may be regarded as the sum of power associated with individual frequency components.
The power spectrum is |c,|? and may be drawn (typically) as in Figure 3.19. It is a
decomposition of the power of the process over frequency. Note that the power spectrum
isreal valued and even (and there is no phase information).

SESEEEREN

Figure3.19 An example of a power spectrum (Compare with Figure 3.14)

If we wished to restrict ourselves to positive frequencies only, we could fold the left
hand portion over to double the values at frequencies f =n/Tp,n =1, 2,.... The name
‘periodogram’ is sometimes given to this power decomposition.

3.6 SOME COMPUTATIONAL CONSIDERATIONS'32

When cal culating the Fourier coefficients of aperiodic signal whichwemeasure, itisimportant
to be able to identify the period of the signal. For example, if x(t) has the form shown in
Figure 3.20, the period is Tp.

X(1),

— 1.0

1
1
1
|
1
L 110

Figure3.20 A periodic signal with aperiod Tp



SPECTRA 47

If weacquire(record or measure) exactly one period, we can cal cul ate Fourier coefficients
correctly (subject to ‘computational errors') from the formula given by Equation (3.35), i.e.

Tp

1 .
Ch = — [ x(t)e 1Z/Trdt
Tp
0

If we acquirer Tp seconds of data and use the formula

rTp
1

Ch = =, / x(t)e 12/ Te gt (3.40)
0

thenif r isan integer we can obtain the same Fourier coefficients spaced at frequencies 1/ Tp
along the frequency axis.
However, if r isnot an integer and we use the formula

rTp
1 —j 2n ¢
Ch=— [ X(t)e T dt (341
rTe

0
then the Fourier coefficients need careful consideration. For example, if we use the period of
1.5Tp (notethat r isno longer an integer), then we are assuming that the signal isas shownin
Figure 3.21 (compare this with the true signal in Figure 3.20).

Clearly, the Fourier coefficients change (we see immediately that there is a non-zero
mean value) and frequencies are present at every 1/1.5Tp Hz.

In practice, if the period is not known, then it is necessary to capture alarge number of
periodssothat ‘ end effects’ are small. Thispoint should be noted since computational methods
of obtaining Fourier coefficients often restrict the data set of N pointswhere N = 2M | i.e. a
power of two (M isan integer). This meanswe may analyse a non-integer number of periods.
These features are now demonstrated for a square wave.

For the square wave shown in Figure 3.20 (a period of Tp), the theoretical Fourier
coefficient ¢, has magnitude

2
|Cnl = o for n = odd (3.42)

=0 for n =0, even

x(t) 4
1.0

-1.0 | |

15T,

Figure3.21 A periodic signal with aperiod of 1.5Tp
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If Tp = 1second, frequency components|c,| occur atevery 1/Tp = 1 Hz. Figure 3.22(a)
shows |c,| plotted (for n > 0 only) upto 10 Hz for an exact single period using Equation (3.35)
(or using Equation (3.41) withr = 1). Figure 3.22(b) showsx(t) for two periods using Equation
(3.41), wherer = 2. By comparing thesetwo figures, it can be seen that the Fourier coefficients
areexactly thesameexcept that Figure 3.22(b) hasmore* zeros' dueto thefact that we calculate
the coefficients at every 1/2Tp = 0.5Hz.

Figures 3.22(c) and (d) show changesin the amplitude spectrawhen anon-integer number
of periodsistaken (i.e. non-integer r) and Equation (3.41) isused. In Figure 3.22(c), 1.5 periods
are used. Note that it appears that there are no frequency components at 1, 3, 5,... Hz as
indicated in Figures 3.22(a) and (b). For Figure 3.22(d), 3.5 periods are taken. The increased
‘density’ of thelinefrequencies shows maximanear thetruevalues (alsorefer to Figure 3.22(e)
where 10.5 periods are taken). Note that in Figures 3.22(c)—(e) the amplitudes have decreased.
Thisfollowssincethereisanincreased density of frequency componentsinthe decomposition.
Recall Parseval’sidentity (theorem)

1 f >
= [Rod= Y el
Tp 9 n=—oo

and notethe 1/Tp on theleft hand side. For the square wave considered, the average power is
always unity when an integer number of periods is included. When a non-integer number of
periodsisincluded the increased density of frequency components means that the amplitudes
change.

Some Comments on the Computation of Fourier Coefficients

This is an introductory comment on the computation of Fourier coefficients, which will be
expanded later in Chapter 6. We address the problem of performing the following integral
using digital techniques:

Tp

1 )
Gc= 3 x(t)e~ 127K/ Te gt (3.43)
0

Consider an arbitrary signal measured for Tp seconds as shown in Figure 3.23. Suppose the
signal isdliced as shown in the figure, and the values of x(t) at N discrete pointsx(nA), n= 0,
1, 2,...,N-1, areknown, each point separated by atimeinterval A, say. Then alogical and
simple approximation to the integral of Equation (3.43) is

1 =t - 2rkna
~ — — A .
Ck ~ NA nE:O x(nA)e ! Na L A (3.44)
or
1= e X
o~ x(nA)e 15" = Wk (say) (3.45)
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(e) Computed with a period 10.5Tp (r = 10.5), using Equation (3.41)

Figure3.22 Fourier coefficients of a square wave
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x(t)

0123 \/\JZP
TP

<

Figure3.23 Anarbitrary signal measured for Tp seconds

The expression Xy on the right hand side of Equation (3.45) is called a discrete Fourier
transform (DFT) and we note some important points that will be further discussed later:

=

. Itisafinite summation.

2. Do not assume Xi/N = ¢. In fact Xy turns out to be periodic (proved below), i.e. Xi =

Xkirn, Where r is an integer, though it would seem reasonable to expect that, if A is

‘sufficiently small’, then ¢y ~ Xy /N for at least some ‘useful’ range of values for k.
Proof of the periodic nature of the DFT: From

N-1
i 21
X =) xe I W
n=0

(note the changein notation x, = x(nA)), substitute k by k + rN (r isan integer). Then the
equation becomes

N-1 N—1
i 21 i 2 ;
Xiprn = Z Xpe ) RNl N) Z x| Rk gz
n=0 n=0 10
and thus Xy rn = Xk.
3. The DFT relationship
N-—1 .
Xk =) Xje I v (3.46)
n=0
has the inverse relationship (IDFT)
1 N—1 o
Xy = — Z Xyel WK (3.47)
N =

So, athough X« may not provide enough information to allow the continuous time series
X(t) to be obtained, it is important to realize that it does permit the discrete values of the
series x, to be regained exactly.



SPECTRA 51

Proof of theinverse DFT (IDFT) relationship: Starting from

N-1 .
=Y eI
n=0

multiply both sides by el @7/N)k and sum over k (sis an integer, 0 < s < N — 1). This
yields

N-—1 N—1N-1 ) ] N—1N-1 N-1
xke] Tk _ X,e ) %nkej Tk _ Xne) j & (s—nk _ Z Xn
k=0 k=0 n=0 k=0 n=0 n=0

pzd

-1
el Z (s—n)k

=~

=0

Consider the second summation. Let s — n = m (integer); then we get >"p - el Wk,
(& If m=0,thisisN.
(b) If m+ 0, thisis a*geometric series’ with common ratio e/ M and the sum is

X N
1—<eJZW”m)
= — :0
SN-1 _oam
Thus

N—

=

i 2 2
Xcel WK = Nxs, andso xs= Z Xl Tk
k=0

or more usually

Xp = i NZ Xkej%”k
n N &

4. Some authors have defined the DFT in related but different ways, e.g.

1N
N

i R nk (3.48)
n=0

Clearly such differences are ones of scale only. We shall use Equations (3.46) and (3.47)
since these are widely adopted as ‘ standard’ in signal processing.

5. N is of course arbitrary above, but is often chosen to be a power of two (N = 2M, M an
integer) owing to the advent of efficient Fourier transform algorithms called fast Fourier
transforms (FFTSs).

6. We have introduced the DFT as an approximation for calculating Fourier coefficients.
However, we shall see that a formal body of theory has been constructed for ‘discrete-
time' systems in which the properties are exact and must be considered to stand on their
own. Analogies with continuous-time theory are not always useful and in some cases are
confusing.
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3.7 BRIEF SUMMARY

1. A periodic signal of period Tp may be expressed (Equations (3.34) and (3.35)) by

Tp
X(t) = Z CneJZJrnt/Tp with ¢, = T_P/X(t)eﬂZnnt/Tpdt
0

N=—00

2. Theplotsof |c,| versusfrequency and arg ¢, versusfrequency areamplitude and phase
(line) spectra of the Fourier decomposition.
3. The average power of a periodic signal is described by Equation (3.39), i.e.

N=—00

Tp
1 [, > , o
T—P/x (t)dt = > |ca|* Parseval’s theorem (identity)
0

A plot of |c,|2 versus frequency is called a power spectrum (or a periodogram).

4. TheDFT and IDFT relationshipsfor discrete dataare defined by Equations (3.46) and
(3.47),

N-l Nt
= Z Xn€ W™ and  x, = N Z Xel vk
n=0 k=0

The Fourier coefficients ¢k are approximated by ¢, ~ X /N if an integer number of
periodsis taken and only for arestricted range of k.

We now include some MATLAB examplesillustrating the material covered.

3.8 MATLAB EXAMPLES

Example 3.1: Illustration of the convergence of the Fourier series and Gibbs
phenomenon (see Section 3.1)

Consider Equation (3.17),
4 1 1
X(t) = — [sSihwit + = Sin3wst + = sin5wt + - - -
b 3 5

In this MATLAB example, we compare the results of 3, 7 and 20 partial sums in
Equation (3.17).
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Line MATLAB code Comments
1 clear all Define the time variable (vector) t
2 t=[0:0.001:1]; from 0 to 1 second with a step size
of 0.001.
3 x=[]; x_tmp=zeros(size(t)); Define an empty matrix x, and

define the vector x_tmp having the
same size as the vector t. All the
elements of x_tmp are zeros.

4 for n=1:2:39 Start a ‘for’ loop where n are 1, 3,
5,...,39(n=39impliesthe 20 par-
tial sums).

5 X_tmp=x_tmp+4/pi* (1/n* sin(2* pi* n*t)); MATLAB expression of Equation

(3.17), and the result of each partial
sum is stored in the vector x_tmp.

6 X=[Xx; x_tmp]; Each row of matrix x has a
corresponding partial sum of
Equation (3.17). For example, the
second row of x corresponds to the
sum of two terms (i.e. n=3).

7 end End of the ‘for’ loop.

8 plot(t,x(3,:),t,x(7,:),t,x(20,:))

9 xlabel ("\itt\rm (seconds)"); Plot the results of only 3, 7 and 20

ylabel ("\itx\rm(\itt\rm)") partial sums against the time
variable.
10 gridon
Results
15 T T
o3 Terms .~ 20 Terms

AN N~ f\..v A

1 /\‘f = -t
0.5 7 Terms

X(t)

-0.5
\./,L P

= Ky >R

0 01 02 03 04 05 06 07 08 09 1
t (seconds)

Comments: The square wave is better represented as the number of termsisincreased,
but its errors remain near the discontinuities.
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Example 3.2: Fourier coefficients of a square wave (Figure 3.20, i.e. Tp = 1 second
and the amplitude is ‘1') This is examined for various values of r in Equation (3.41)
below (see Section 3.6):

rTp

1 _j2ng
Ch=— [ x(t)e ' dt
n o ) P
0
Case 1: r is an integer number. We chose r = 3 for this example; however, readers

may choose any arbitrary positive integer number. The Fourier coefficients are

calculated up to 10 Hz.
Line MATLAB code Comments
1 clear all Define a parameter r for the number of
2 r=3; cn=[1; periods, and the empty matrix cn for the
Fourier coefficients.
3 for n=1:10"r Definea‘for’ loop for the Fourier
4 templ=0; temp2=0; coefficients up to 10 Hz, and set temporary
variables.
5 fork = 1:.2:2"r This nested ‘for’ loop calcul ates the
6 tmp_odd = exp(-i* (k/r)* n* pi); integral in Equation (3.41) for the intervals
7 templ=templ+tmp_odd; of x(t) = 1in Figure 3.20, and stores the
8 end result in the variable templ.
9 for k = 2:2:2%r-1 Another nested ‘for’ loop, which calcul ates
10 tmp_even = -exp(-i* (k/r)* n* pi); the integral in Equation (3.41) for the
11 temp2=temp2+tmp_even; intervals of x(t) = —1in Figure 3.20, and
12 end stores the result in the variable temp2.
This completes the calculation of the
1 temp = -1/2 + templ + temp2 . . :
3 ~1/2% exp(-i* 2* 1" pi); integral in Equation (3.41).
14 cn = [cn; i* temp/(pi* n)]; ‘i* temp/(pi* n)’ isthefinal calculation of

Equation (3.41) for each value of n. Asa
result, cnisa‘30 x 1’ vector, and each
row of the vector cn contains the
complex-valued Fourier coefficients.

15 end End of the ‘for’ loop.

16 stem([0:1/r:n/r],[0; abs(cn)], ‘o', filled’) Plot the result using the ‘ stem’ command.
[0:2/r:n/r] defines the frequencies
(horizontal axis) from 0 Hz to 10 Hz at
every /3 Hz.
[O; abs(cn)] isthe modulus of the Fourier
coefficient at each frequency. Note that the
value of zero is added for O Hz.
The result is the amplitude spectrum.

17 xlabel ('Frequency (Hz)") Insert labels for each axis.
18 ylabel(‘Modulus (\mid\itc_n\rm\mid)") “\mid' isfor ‘|, “\it" isforitalicfont, ‘c_.n’
isfor c,, and ‘\rm’ isfor normal font.
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Comments. Compare this graph with Figures 3.22(a) and (b) and with the next case.

Results

o
3

Modulus (|c,[)
o o o o o
Now R o o

o
[

.......

o
®
®

4 5 6 7 8 9 10
Frequency (Hz)

Case 2: r isnot an integer number. We choser = 7.5 for this example; however, readers
may choose any arbitrary positiveinteger number + 0.5. The Fourier coefficients

are calculated up to 10 Hz.

Line MATLAB code Comments
1 clear all ‘ceil” command rounds the element to the
2 r=7.5; r2=ceil(r); cn=[]; nearest integer towards infinity, so in this
case, 2 hasavalue of 8.

3 for n=1:10"r Same as previous case.

4 templ=0; temp2=0;

5 for k = 1:2:2*r2-3 Except for ‘k= 1:2:2"r2-3', it isthe same

6 tmp_odd = exp(-i* (k/r)* n* pi); script asin the previous case, i.e. it

7 templ=templ-+tmp_odd; calculates the integral in Equation (3.41)

8 end for the intervals of x(t) = 1.

9 fork = 2:2:2"r2-1 Same script asin previous case, except for
10 tmp_even=-exp(-i* (k/r)* n* pi); ‘k=2:2:2°r2-1'. It is for the intervals of
11 temp2=temp2+tmp_even, x(t) = -1
12 end
13 temp=-1/2 + templ + temp2 This completes the calculation of the

+1/2% exp(-i* (2 r/r)* n* pi); integral in Equation (3.41).
14 cn = [en; i* temp/(pi* n)]; Same as in previous case, but now cnisa
‘75 x 1' vector.
15 end End of the ‘for’ loop.
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16 stem([0:1/r:n/r],[0.5/r; abs(cn)], ‘o', filled") Frequencies are from 0 to 10 Hz at every
1/7.5Hz.
0.5/r is added for 0 Hz (note the non-zero
mean value).

17 xlabel (‘"Frequency (Hz)") Same asin previous case.
18 ylabel (‘Modulus (\mid\itc_n\rm\mid)')

Results

0.45
0.4}
0.35¢
0.3}
0.25¢
0.2}
0.15¢
0.1}

il

0o 1 2 3 4 5 6 7 8 9 10
Frequency (Hz)

Modulus (c|)

Comments. Compare this graph with Figures 3.22(c)—(€) and with the previous case.
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Fourier Integrals (Fourier Transform)
and Continuous-Time Linear Systems

I ntroduction

This chapter introduces the central concept for signal representation, the Fourier integral.
All classes of signals may be accommodated from this as a starting point — periodic, almost
periodic, transient and random — though each relies on a rather different perspective and
interpretation.

In addition, the concept of convolution isintroduced which allows us to describe linear
filtering and interpret the effect of data truncation (windowing). We begin with a derivation
of the Fourier integral.

4.1 THE FOURIER INTEGRAL

We shall extend Fourier analysis to non-periodic phenomena. The basic change in the
representation is that the discrete summation of the Fourier series becomes a continuous
summation, i.e. an integral form. To demonstrate this change, we begin with the Fourier
series representation of a periodic signa as in Equation (4.1), where the interval of
integration is defined from —Tp /2 to Tp /2 for convenience:

Tp/2
xt)= )Y e where cy=— / x(t)e 1z Te gt (4.1)
n=-o0 Te To/2
—Ip

As an example, visualize a periodic signal x(t) as having the form below, in Equation
(4.2) and Figure 4.1.

xt) =0 —-Tp/2<t< -1
=1 —-1<t<1l (Tp/2>1) (4.2)
=0 1<t<Tp/2

Fundamentals of Sgnal Processing for Sound and Vibration Engineers
K. Shinand J. K. Hammond. ~ © 2008 John Wiley & Sons, Ltd
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x(t)
1.0

1 | — | —

I
1 : 1
-T2 -1 1 T/2

Figure4.1 Anexample of aperiodic signal with aperiod Tp

Now let Tp become large. As this happens we are left with a single ‘pulse’ near
t = Oandtheothersget further and further away. We examinewhat happensto the Fourier
representation under these conditions.

The fundamental frequency f; = 1/Tp becomes smaller and smaller and all other
frequencies (nfy, = f,, say), being multiples of the fundamenta frequency, are more
densely packed on thefrequency axis. Their separationis1/Tp = Af (say). So,asTp —
oo, Af — 0, i.e theintegral form of c, in Equation (4.1) becomes

Tp/2 Te/2

1 . _ A
Ch = / x(t)e 1ZWTrdt ¢, = lim Af / x(t)e 1 htdt  (4.3)
P p—>00
(Af—0)

—Tp/2 ~Tp/2

If theintegral isfinitethe Fourier coefficientsc, — 0asAf — 0(i.e. themorefrequency
components there are, the smaller are their amplitudes). To avoid this rather unhel pful
result, it is more desirable to form theratio ¢, /Af, and so it can be rewritten as

Tp/2
Al;g()(%) = lim_ / x(t)e 12t dit (4.9)
—Tp/2
Assuming that the limits exist, we write this as
o0
X(f) = / x(t)e 127t dt (4.5)

Since Af — 0, the frequencies f,, in the above representation become a continuum, so
we write f instead of f,. From Equation (4.4), X(f,) which is now expressed as X( f)
is an amplitude divided by bandwidth or amplitude density which is called the Fourier
integral or the Fourier transform of x(t), written as

oo

X(f) = / x(t)e 127 gt (4.6)

—0Q0

Now consider the corresponding change in the representation of x(t) as the sum of sines
and cosines, i.e. X(t) = Y re . C,€/Z*™/Te_ Using the above resilts,

" Cn
o (35) -

FOURIER INTEGRALS AND CONTINUOUS-TIME LINEAR SYSTEMS
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X(t) can be rewritten as

o0

X(t) = lim > X(fa)Af ez (4.7)
N=—00

which can be represented in a continuous form as

o0

x(t) = / X(f)elZtdf (4.8)

—00

Equations (4.6) and (4.8) are called the Fourier integral pair.

Comments on the Fourier I ntegral

1. Interpretation and appearance of the Fourier transform: X( f) isa(complex) amplitude den-
sity. From the representation x(t) = [ X(f)el?>""df, we seethat | X(f)|df represents
the contribution in magnitude (to x(t)) of the frequency componentsin anarrow band near
frequency f. Since X(f) iscomplex, we may write

X(f) = Xre(f) + ] Xim(f) = [X(f)| /(D (4.9)

where | X( )| is the magnitude (or amplitude) spectrum and ¢( ) is the phase spectrum.
When x(t) isinvolts, | X(f)| isin volts/Hz.

If x(t) isreal valued, Xge( f) isan even function and X;m( f) isan odd function, and
aso | X(f)| isan even function while ¢( f)isan odd function. A typical display of X(f)
may look likethat shownin Figure4.2. An alternative way of displaying X( f) istousethe
‘polar (or Nyquist) diagram’ as shown in Figure 4.3, where the positive frequency (+ f)
is drawn clockwise and the negative frequency (— f) is drawn anti-clockwise. Note the
relationship between the ‘ magnitude/phase’ pair with the ‘real/imaginary’ pair in these
figures.

f
IX(F) o0

@) (b)

Figure4.2 Typical display of X(f): (a) magnitude spectrum, (b) phase spectrum
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Im, X ()
—f

> Re, Xg (f

o0 re ()

Figure4.3 Polar (or Nyquist) diagram of X(f), equivalent to Figure 4.2

2. We have chosen to derive Equations (4.6) and (4.8) using f(Hz). Often w is used and
alternatives to the above equations are

x(t):% / X(@)eldw| and |X(w)= / x(t)e 1tdt (4.10)
x(t) = f X(w)e!”'dw  and X(a)):% f x(t)e 1t dt (4.12)
C 1 [ e S

X(t) = \/Zi X(w)e!'dew and X(w)_mé x(t)e ' dt  (4.12)

So, the definition used must be noted carefully. Equations (4.10) are acommon alternative
which we shall use when necessary, and Equations (4.11) and (4.12) are not used in this
book.

3. Theinversion of the Fourier pair is often accomplished using the delta function. In order
to be able to do this we need to use the properties of the delta function. Recall Equation
(3.26), i.e

/eiizﬂa‘dtza(a), or /eiia‘dtzzna(a)

We now demonstrate theinversion. We start with x(t) = [0 X(f)el?""tdf, multiply both
sides by e~ 1279 and integrate with respect to t. Then, we obtain

/x(t)e—izﬂgtdtz / / X(f)elZ(-9tgfdt = / X(f)/ejz”(f‘g)tdtdf

(4.13)
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Using the property of the delta function (Equation (3.26)), the inner integral term on the
right hand side of Equation (4.13) can be written as [ el2"("=9tdt = §(f — g), and so
the right hand side of Equation (4.13) becomes

[e¢]

/ X(f)s(f —g)df = X(9) (4.14)

Hence, equating this with the left hand side of Equation (4.13) gives X(g) =
J75, x(t)e~12m9tdt, which proves the inverse.

Similarly, x(t) can be obtained viainversion of X( f) using the deltafunction. That is,
westart with X(f) = [ x(t)e~ 2"t dt, multiply both sides by €/?* ' and integrate with

respect to f: -
/X(f)ejz’”tldf = / /x(t)e‘jZ””ejZ”ftldtdf :/x(t)/ejzﬂfﬁl—ﬂdfdt
= / X(t)8(ty — t)dt = x(t1) (4.15)
. The sufficient conditions for the existence of a Fourier integral are usualy given as
/ [X(t)|dt < oo (4.16)

but we shall transform functions failing to satisfy this condition using delta functions (see
example (d) in Section 4.3).

4.2 ENERGY SPECTRA

Using an electrical analogy, if x(t) is the voltage across a unit resistor then the total
energy dissipated intheresistor is [ x?(t)dt. Thismay be decomposed into afrequency
distribution from the relationship given in Equation (4.17), which isaform of Parseval’s
theorem:

(e¢]

/xz(t)dt: / IX(f)?df (4.17)

—0Q

This can be proved using the delta function, as given below:

o] (o¢] oo 0 0

/ x2(t)dt = / X(t)x* (t)dt = / / / X(f)elZhtX* (fy)e 12 dtd fLdf,
— / / X(f)X* (£2)8(f1 — fo)df2df, = / |X(f1)|?dfy (4.18)
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Note that we are using energy here, whereas for Fourier series we talked of power (power
spectra). The quantity | X( f)|2 isan energy spectral density (energy per unit bandwidth) since
it must be multiplied by a bandwidth df to give energy. It is a measure of the decomposition
of the energy of the process over frequency.

4.3 SOME EXAMPLESOF FOURIER TRANSFORM S

Some examples are given below, which help to understand the properties of the Fourier
transform:

(8 The Fourier transform of the Dirac delta function §(t) is

F{s8(t)) = / s(t)e 1z ftdt = e 12710 = 1 (4.19)

where F{} denotes the Fourier transform (shown in Figure 4.4). Note that the sifting
property of the delta function is used (see Equation (3.23)).

o(t) F{5(t)}

10 1.0

Figure4.4 Dirac deltafunction and its Fourier transform

(b) For an exponentialy decaying symmetric function

xt)=e™ a>0 (4.20)
X(f) = / X(t)e‘iz”“dt _ / e Mtig-iznftyy
% e
0 o .
= ele-iznftgt v/.ef)ntefj&'[ftdt __ 491
'/ ! A2+ 4rn2f2 (4.21)
s 5

The time history and the transform are shown in Figure 4.5.

X(t) X(f)

m A
I t | f

Figure4.5 Timedomain and frequency domain graphs of example (b)
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Observations:

(i) The time history is symmetric with respect tot = 0 (i.e. an even function), so the
transformisentirely real (i.e. acosinetransform) and the phaseiszero, i.e. aso-called
zero-phase signal.

(if) The parameter A controls the shape of the signal and its transform. In the frequency
domain the transform fallsto 1/2 of itsvalueat f = O at afrequency f = A/27. So
if A islarge then x(t) is narrow in the time domain, but wide in the frequency domain
and vice versa. Thisis an example of the so-called inverse spreading property of the
Fourier transform, i.e. the wider in one domain, then the narrower in the other.

(c) For an exponentially decaying function

X(t)=e’°‘t t>0, >0

=0 t<0O (4.22)
X(f) = / x(t)e‘iz”“dt _ /e—ate—jantdt _ /e—(a+12nf)tdt
—00 0 0
= _ = |X(f)| el (4.23)
o+ j2rf
where
1 2 f
X(f)) = —  and f) = tan—l (__)
X = e @@ oD ;

The time and frequency domains are shown in Figure 4.6.

x(t) [X ()] #(f)

1.0«’\ %\ xj[ﬂ/z
f
I t T f ‘M
@ (b)

—7/2
©

Figure4.6 Time domain and frequency domain graphs of example (c): (a) time domain, (b)
magnitude spectrum, (¢) phase spectrum

(d) For asine function

X(t) = Asin(2r pt) (4.24)
[ - 00 . () A - . -
X(f) = [ x(t)e 1 tdt = / Asin2zpt - e 1Zfdt = / N (el2mPt — gizmPt)grizritgy
A T oot _ itk A
=3 e —€ dt:z—j[a(f—p)—a(f+p)] (4.25)

—00



64 FOURIER INTEGRALS AND CONTINUOUS-TIME LINEAR SYSTEMS

X(t) [X(f)]

/.
e

Figure4.7 Time domain and frequency domain graphs of example (d)

A/z[ A/zI

—-p p

Inthisexample, X(f)isnon-zeroat f = pand f = —p only, and isimaginary valued
(the sine functionisan odd function). The phase componentsarearg X(p) = —z /2 and
arg X(—p) = 7 /2. This shows that a distinct frequency component resultsin spikesin
the amplitude density.

(e) For arectangular pulse

xt)=a |t|<b

4.26
=0 |[t|>b (4.26)
o) b
X(f) = /x(t)e—l'z”“dtzfae—izﬂ“dt
—00 -b
2absin(2zfb
= % (“4.27)
x(t) X(f)
2ab
ar—-i
: | 13
: : . A~ 2b 20 ;
—b b \VAN LV .

b
Figure4.8 Time domain and frequency domain graphs of example (e)

The expression for X( f) has been written so as to highlight the term sin(2x f b) /27 f b,
i.e. sin(x)/x, which is the so-called sinc function which is unity at x = 0, and thereafter
is an amplitude-modulated oscillation, where the modulation is 1/x. The width (in time)
of x(t) is 2b and the distance to the first zero crossing in the frequency domain is 1/2b
(as shown in Figure 4.8). This once again demonstrates the inverse spreading property.
For the case a = 1, then as b — oo, X(f) is more and more concentrated around
f = 0 and becomestaller and taller. In fact, limy_, ., 2bsin(2r f b) /27 f b is another way
of expressing the deltafunction §( f), as we have seen in Chapter 3 (see Equation (3.27)).
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(f) For adamped symmetrically oscillating function

x(t) = e ¥t cos2nfot, a>0 (4.28)
=) - 00 ) 0 1 ) i .
X(f) = /x(t)e‘lz”“dt: /e—a‘” cos2x fote 127 gt = /e—a‘t'é e i CRid

o0

oo
_ 1—/e—a\t|e—12n(f—fo)tdt+}/e—ame—jzn(f+fo)tdt
2
—00

2
a a
= + 4.29
a2+ [27(f — )2 a2+ [2n(f + fo)]? (4.29)
The time and frequency domains are shown in Figure 4.9.
X(t) X(f)
1.0
~V VY —— f
_fo fo
Figure4.9 Time domain and frequency domain graphs of example (f)
(g) For adamped oscillating function
x(t) =e®sn27fet, t>0anda=>0 (4.30)
X(f) = /x(t)e‘jz”“dt = /e‘a‘ sin2r fote 127 gt = /e“"‘tz—l_ (el2rfot _ gri2riot)gi2rfigy
—00 0 0 J
1 1 21t
= e—[a+]2n(f—fo)]tdt N / ef[a+]2n(f+fo)]tdt _ i 4.31
2j / 2j @2rfo)2+ (a+ j2nf)? (4:31)

0

The time and frequency domains are shown in Figure 4.10.

x(t) [X ()| o(f)

Whv%év-thI}Lf

(b)

Figure4.10 Time domain and frequency domain graphs of example (g): (a) time domain, (b)
magnitude spectrum, (c) phase spectrum
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(h)

For the Gaussian pulse

xt)=e? a>0 (4.32)
X(w) = /m/a- e /% (4.33)

i.e. X(w) isaso aGaussian pulse. Proof of Equation (4.33) is given below. We shall use
X(w) instead of X(f) for convenience.

We start from
o0 o0
X(w) = f e erietdt = / g at+iot/a)gy
—00 —00

and multiply by e=*/4a . e»*/4a to complete the square, i.e. so that

o0 o0
X(w) = —w?/da / e—a(t2+jwt/a—w2/4a2)dt:e—w2/4a_ / efa[tJrj(w/Za)]zdt

—00 —0Q

Now, let y = [t + j(w/2a)]; then finally we have

X(w) = e /% / e ®dy = /r/a. e /4

The time and frequency domains are shown in Figure 4.11.

X(t) X (@)
1.0 /a

| t | ®
Figure4.11 Time domain and frequency domain graphs of example (h)

For a unit step function

ut)=1 t>0
=0 t<O (4.39)

The unit step function is not defined at t = 0, i.e. it has a discontinuity at this point. The
Fourier transform of u(t) is given by

1 1
Flu@®)} = =8(f) + —— 4.35
vy = 38(1) + -5 (4.35)
where F{} denotes the Fourier transform (shown in Figure 4.12). The derivation of this
result requires the use of the delta function and some properties of the Fourier transform.
Details of the derivation can be found in Hsu (1970), if required. Also, note the presence
of the deltafunction at f = 0, which indicates ad.c. component.
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u(t) |F{u®}] o
- 7/2
()] — f

—t f )2

@ (b) ©

Figure4.12 Time domain and frequency domain graphs of example (i): (a) time domain, (b)
magnitude spectrum, (¢) phase spectrum

(j) For the Fourier transform of aperiodic function
If x(t) isperiodic with aperiod Tp, then

00
X(t)z Z CneJZTII'lt/Tp

N=—00

(i.e. Equation (3.34)). The Fourier transform of this equation gives

X(f) = / Cnejzﬂnt/TPe_jZHftdt — Ch / e_jzn(f_n/-rp)tdt
—00 H:Zoo n;oo s
= > d(f —n/Tp) (4.36)

nN=—00

This showsthat the Fourier transform of aperiodic functionisaseries of deltafunctions
scaled by c,, and located at multiples of the fundamental frequency, 1/Tp.

Note that, in examples (a), (b), (e), (f) and (h), arg X(f) = 0 owing to the evenness of
X(t). Some useful Fourier transform pairs are given in Table 4.1.

4.4 PROPERTIES OF FOURIER TRANSFORMS
We now list some important properties of Fourier transforms. Here F {x(t)} denotes X(f).
(8 Timescaling:
F{x(at)} = %X(f/a) (4.379)
or
1
F{x(at)} = EX(w/a) (4.37h)

wherea isarea constant. The proof is given below.
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Table4.1 Some Fourier transform (integral) pairs

Time function

Fourier transform

No. x(t) X(f) X(w)
1 5(t) 1 1
1 5(f) 278(w)
3 A AS(T) 27A8(w)
1 1 1
4 t =§(f s 1) —
u(t) 2()-1'1-271f 7T(w)+jw
5 St — to) g1zl g ivb
6 elzriot or gieot S(f — fo) 278(w — wo)
1
7 cos(2r fot) or cos(wopt) E[6(f — fo) + 8(f + fo)] 7[8(w — wo) + 8(w + wo)]
. . 1
8 sin(2r fot) or sin(wot) 281 = 1) = (1 + fol ’Jl[a(w — ) — 8( + wo)]
2c 20
9 —alt]
€ a2+ 47212 a? + w?
10 ; Ze*azﬂ fl Zeﬂﬂ(lﬂ
a? +t2 o o
1 1
11 t) = e *tu(t —
X() =e*u®) o+ j2nf a+ jo
xt)=A |t]<T . .
sin(27fT) sin(wT)
12 —0 [t|>T ZATW 2AT
- Al sin2r fot) . ASin(wot) X(fy=A |fl<fo X(w) =A || < wg
0 2 fot t =0 [f]l>fo =0 |o|>wo
14 > @@ Mtor Y gt > cd(f —nfo) 2 )" Cod(e — o)
N=—00 N=—00 N=—00 N=—00
1 2
15 t i il
sn(t) jnf I
1
16 - —jmsgn(f) —jmsgn(w)

t

o0

For a > 0, the Fourier transform is F{x(at)} = [*_x(at)e !?""'dt. Letat = 7; Then

F{x(at)} = % f x(r)e 1 (/g = %X(f/a)

Similarly fora <0,
1 [ —j2r(f/a)r
F{x(at)} = 3 x(zr)e™! dr

o0
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(b)

(©

(d)

thus

F{x(at)} = —g / x(z)e 1Z (AT = F;X(f/a)

That is, timescaling resultsinfrequency scaling, again demonstrating theinverse spreading

relationship.
Timereversal:
| F{X(—t)} = X(=f) (= X*(f), forx(t)rea)] (4.383)
or
F{x(—t)} = X(—w) (4.38b)
Proof: We start from F{x(—t)} = [~ x(—t)e~12""tdt, let —t = 7, then obtain
F{x(—t)} = — / x(r)e'# T dr = / x(2)e1#ZE0dr = X(—f)

Note that if x(t) isreal, then x*(t) = x(t). In this case,

oo o0

X(—f) = / x(t)e 12Nt = / x*(t)elZ ftdt = X*(f)

—0Q0 —00

Thisis called the conjugate symmetry property.
It isinteresting to note that the Fourier transform of X(—w) is x(t), i.e. F{X(—w)} =
X(t), and similarly F{X(w)} = x(-t).

Time shifting:
| Fix(t —to)) = e 12T x(f)]| (4.3%)
or
F{x(t —to)} = € 1% X (w) (4.39b)
Proof: We start from F{x(t — to)} = [ X(t — to)e 12tdt, let t — to = 7, then obtain
F{x(t —to)} = / x(r)e 1 lot)dr — g i2rflo / x(r)e 17 dr = e 127X (f)

Thisimportant property is expanded upon in Section 4.5.

Modulation (or multiplication) property:
(i) F{x(t)elz et} = X(f — fo) (4.40a)
or
F{x(t)el*'} = X(» — wo) (4.40b)

This property is usually known as the ‘frequency shifting’ property.
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Proof:
F{x(t)e!? "} = / x(t)elZrfotgmirftgy — f x(t)e 1z (f=foltgt — X(f — fy)
(i) 1
F{x(t) cos(2r fot)} = 5 [X(f — fo) + X(f + fo)] (4.414)
or
F{x(t) cos(wot)} = % [X(@ — wo) + X(w + wo)] (4.41b)

This characterizes ‘amplitude modulation’. For communication systems, usually x(t)
isalow-frequency signal, and cos(2r fot) is ahigh-frequency carrier signal.

Proof:

F{X(t) cos(27 fot)} = F{%x(t)eizﬂfot + %x(t)ejwot}
= %F{x(t)ejznf‘)t} +%F{x(t)e*j2”f°t}
= 2 IX(F ) X(T + o)
(e) Differentiation:
| F{x(0)} = j2r tX(F)](if x(t) > 0 ast — +o0) (4.42a)
or
FX)} = joX(w) (4.42b)
Proof:
F{X(t)} = / )‘((t)e*jZJTftdt — X(t)e*jZth|‘iooo+j2n,f \/‘X(t)eijJIftdt

Since x(t) — Oast — o0, thefirst part of the right hand side diminishes. Thus
F{x(t)} = j2rf fx(t)e‘jz”“dt = j2nf X(f)

(f) The Fourier transform of the ‘ convolution’ of two functions:

| F{h(t) = x(t)} = H(F)X(T)] (4.43)
where the convolution of the two functions h(t) and x(t) is defined as
h(t) x x(t) = / h(z)x(t — 7)dt (4.44)

—00
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The property of Equation (4.43) isvery important in linear system theory and is explained
fully in Section 4.7.

Proof: Lett — 7 = v. Then

F{h(t)  x(t)} = /oo/ooh(r)x(t—r)ejznftdtdt
= /Oo ]o h(t)x(v)e 17+ drdy
= /wh(z)e—izﬂffdf/Oox(u)e—ﬂ"fvdv: H(f)X(f)
(g) The Fourier transform of th;xj product’ of two;:ndions:
Fix®w(t)} = /oo X(@W(f —g)dg = X(f) = W(f) (4.45)

Thisis also avery important property, and will be examined in detail in Section 4.11.

Proof: We start from F{x(t)w(t)} = [ x()w(t)e~12" dt. If x(t) and w(t) both have
Fourier representations, then the right hand side is

[e.¢]

/x(t)w(t)e’jz”“dtz / f / X(f)elZ W (fy)el2ft . e i2rftgf, df,dt

—00 —00 —00 —00
o0

= [ X(fl)/W(fz)/e*jZ”(f*f“fZ)tdtdfgdfl

—00
(o] oo

- / X(fl)/W(fz)cS(f — 1 — fo)dfdf;

—00

:/x(fl)W(f— f)dfr = X(F) = W(F)

—00

45 THE IMPORTANCE OF PHASE

In many cases, we sometimes only draw the magnitude spectral density, |X(f)|, and

not the phase spectral density, arg X(f) = ¢(f). However, in order to reconstruct a
signal we need both. An infinite number of different-looking signals may have the same
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magnitude spectra— it is their phase structure that differs. We now make a few general
comments:

1. A symmetrical signa has a real-valued transform, i.e. its phase is zero. We saw this
property in examples given in Section 4.3.

2. A pure delay imposed on a signal results in a linear phase change to the transform
(see property (c) in Section 4.4). An example of thisisillustrated in Figure 4.13.

x(t) y(t)
X(t—t,)

delay by t,
A\J | \/A" t | VA\/ io VA t
Fon [] [ Fexe-uy
X(f) - Y(f)=e 7 MX ()
argY(f) =-2xft,
arg X (f)=0 > f

| Slope =-27t,

Figure4.13 The effect of a pure delay on a zero-phase signal

The slope of the phase curve givesthe delay, i.e. d¢/df = —2rty, or d¢/dw =
—to. Specifically, the quantity —d¢ /dw = tgisknown asthe group delay of the signal.
In the above case, the delay is the same for all frequencies due to the pure delay (i.e.
thereis no dispersion). The reason for the term group delay is given in Section 4.8.
3. If the phase curve is nonlinear, i.e. —d¢/dw is a nonlinear function of w, then the
signal shape is altered.

4.6 ECHOESV41

If asigna y(t) contains a pure echo (a scaled replica of the main signal), it may be
modelled as

y(t) = x(t) + ax(t — to) (4.46)

where X(t) isthe main signal and ax(t — tp) is the echo, a is the amplitude of the echo,
andty iscalled the ‘ epoch’ of the echo (i.e. the time delay of the echo relative to the main
signal). A typical example may be illustrated as shown in Figure 4.14, and the Fourier
transform of y(t) is

Y(f) = (14 ae” 1o)X (1) (4.47)
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Hard reflector

Path (2): ax(t-ty)

Speaker - . )
A Path (1): x(t) ? Mic.: y(t) = x(t) + ax(t-ty)

Figure4.14 Example of asignal containing a pure echo

The term (1 4 ae~1?7'%) js a function of frequency and has an oscillatory form
in both magnitude and phase. This describes the effect of the echo on the main
signal, and may be illustrated as shown in Figure 4.15. The magnitude of Y(f) is
/(1 + a2 + 2a cos2rfty) | X( )| where an oscillatory form is imposed on |X(f)| due
tothe echo. Thus, such a‘rippling’ appearancein energy (or power) spectramay indicate
the existence of an echo. However, additional echoes and dispersion result in more com-
plicated features. The autocorrelation function can also be used to detect the time delays
of echoes in asignal (the correlation function will be discussed in Part 11 of this book),
but are usually limited to wideband signals (e.g. a pulse-like signal). Another approach
to analysing such signalsis ‘ cepstral analysis' (Bogert et al., 1963) later generalized as
homomorphic deconvolution (Oppenheim and Schafer, 1975).

(o)
IX(1)

1,
—>|—|<—

i f

Figure4.15 Effect of apure echo

4.7 CONTINUOUS-TIME LINEAR TIME-INVARIANT SYSTEMS
AND CONVOLUTION

Consider the input—output relationship for alinear time-invariant (LTI) system as shown
in Figure 4.16.

X(t) y(®)
Input —» System —— Output

Figure4.16 A continuous LTI system

We now define the terms ‘linear’ and ‘time-invariant’.
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Linearity

Let y1(t) and y»(t) be the responses of the system to inputs X1 (t) and x»(t), respectively.
If the system is linear it satisfies the properties in Figure 4.17, where a is an arbitrary
constant.

(i) Additivity: X,(0) +%,(t) ——>| Linear system |—— ¥,(t) +Y,(t)
(i) Scaling (or homogeneity): ~ ax,(t) —>—> ay,(t)

Figure4.17 Properties of alinear system

Or the two properties can be combined to give a more general expression that
is known as the ‘superposition property’ (Figure 4.18), where a; and a, are arbitrary
constants.

a,%, () +a,%,(t) —>| Linear system [— a,Y,(t)+a,Y,(t)

Figure4.18 Superposition property of alinear system

Time I nvariance

A time-invariant system may be illustrated as in Figure 4.19, such that if the input is
shifted by to, then the response will also be shifted by the same amount of time.

X(t—t;) —>| Time-invariant system |— y(t—t;)

Figure4.19 Property of atime-invariant system

Mathematical Characterization of an LTI System

Very commonly LTI systemsare describedin differential equationform. Theforced vibra-
tion of a single-degree-of-freedom system is atypical example, which may be expressed
as

my(t) + cy(t) + ky(t) = x(t) (4.48)

where x(t) isthe input and y(t) is the output of the system.

Relating y(t) to x(t) in the time domain then requires the solution of the differential
equation. Transformation (Laplace and Fourier) techniques allow a ‘ systems approach’
with the input/response relationships described by transfer functions or frequency re-
sponse functions.

We shall use a general approach to linear system characterization that does not
require a differential equation format. We could characterize a system in terms of its
response to specific inputs, e.g. a step input or a harmonic input, but we shall find that
the response to an ideal impulse (the Dirac delta function) turns out to be very helpful -
even though such an input is a mathematical idealization.

FOURIER INTEGRALS AND CONTINUOUS-TIME LINEAR SYSTEMS
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We define the response of alinear system to aunit impulseatt = 0 (i.e. §(t)) to be
h(t). See Figure 4.20. In the figure, it can be seen that the system only responds after the
impulse, i.e. we assume that the system is causal, in other words h(t) = 0 for t < 0. For
a causal system, the output y(t) at the present time, say t = t;, is dependent upon only
the past and present values of the input x(t), i.e. x(t) for t < t;, and does not depend on
the future values of x(t).

X(1) =5(t) y(t) = h(t)

1.0 —| LTI system, h(t) |[—> |/\
A ‘

t

Figure4.20 Impulse response of a system

We shall now show how the concept of the ideal impulse response function h(t)
can be used to describe the system response to any input. We start by noting that for a
time-invariant system, the response to a delayed impulse §(t — t;) is a delayed impulse
response h(t — ty).

Consider an arbitrary input signal x(t) split up into elemental impulses as given
in Figure 4.21. The impulse at time t; is X(t;) At;. Because the system is linear, the
response to thisimpulse at time't ish(t — t;)x(t;) At;. Now, adding all the responses to
such impulses, the total response of y(t) at timet (the present) becomes

y() ~ Y h(t — t)x(t) At (4.49)
and by letting At; — Othisresultsin

t

y(t) = f h(t — to)x(t)dts (4.50)

—0Q

Note that the upper limit ist because we assume that the system is causal. Using the
substitution t —t; = v (—dt; = dt), the expression can be written in an alternative

x(t)A

X(t)

/

Input

Response to y(®) TS h(t—t,)x(t,)At,
elemental inputs __--f--~__ _/\/

Figure4.21 The response of a system to elemental inputs
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form as given by Equation (4.514), i.e. the convolution integral has the commutative
property

t 0 0o
y(t) = / h(t — t)x(t)dt; = — f h(7)x(t — 7)dt = / h(r)x(t — 7)dr  (4.51a)
—o0 (] 0

or smply
y(t) = x(t) * h(t) = h(t) * x(t) (4.51b)
Asdepicted in Figure 4.22, we see h(z) initsrole asa‘memory’ or weighting function.

t h(f)\ it(Now)

X(0)
4

—=———Time
T \/ 5

Past «——— Future
Figure4.22 Theimpulse response function as a‘memory’

If theinput x(t) iszero for t < O, the response of a causal systemis
t t
y(t) :/h(r)x(t —7)dt =/h(t — 7)X(7)dt (4.52)
0 0

And, if the system is non-causal, i.e. the system also responds to future inputs, the
convolution integrals are

y(t) = / h(7)x(t — 7)dt = / h(t — 7)x(z)dt (4.53)

An example of convolution operation of acausal input and a causal LTI systemisillus-
trated in Figure 4.23.
We note that, obviously,

h(t) = h(t) * 5(t) = / h(z)8(t — 7)dt (4.54)

The convolution integral also satisfies ‘associative’ and ‘ distributive’ properties, i.e.

Associative: [X(t) * hy(t)] * ha(t) = x(t) * [hy(t) * ha(t)] (4.55)
Distributive: x(t) * [hy(t) + ha(t)] = x(t) * hy(t) + x(t) * ha(t) (4.56)
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X(t)

Time

ht)

Time

h(t—7) x(z) f}(t -7)
v

- | Time
P

t
Integral of h(t —7)x(7), @

i.e. the value of the convolution at t

y(t) = x(t)*h(t) I/\'/
E Time

I t

Figure4.23 Illustrations of a convolution operation

The Frequency Response Function

Consider the steady state response of a system to a harmonic excitation, i.e. let x(t) =
el27ft Then the convolution integral becomes

y(t):/h(r)x(t—r)dr =/h(r)e12”f(t’f)dr =e1'2”“/h(r)e*i%ffdr
0 0 0 (4.57)

—_—
H(f)
The system response to frequency f isembodiedin H(f) = [;° h(r)e 12""*dr, which
isthe system ‘frequency response function (FRF)’.
The expression of the convolution operation in thetime domainisvery much simpli-
fied when the integral transform (Laplace or Fourier transform) is taken. If the response
isy(t) = fo°° h(z)x(t — r)dz, then taking the Fourier transform gives

Y(f):f/h(r)x(t—r)e*izﬂ“drdt

—o0 0
Lett — ¢ = u; then
Y(f):/h(r)e*izﬂffdr / x(u)e~ 127 fudy
0

—0Q
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Thus,
Y(f) = H(f)X(f) (4.58)

The convolution operation becomes a ‘product’ (see property (f) in Section 4.4). H(f)
is the Fourier transform of the impulse response function and is the frequency response
function of the system. Sometimes, Equation (4.58) is used to ‘identify’ a system if the
input and response are all available, i.e. H(f) = Y(f)/X(f). Following onfrom thisthe
relationship between the input and output energy spectra is

IY(F)IZ = IH(F)PIX(f)2 (4.59)
If the Laplace transform is taken (the Laplace transform will be discussed further in
Section 5.1), then by a similar argument as for the Fourier transform, it becomes
Y(s) = H(s)X(s) (4.60)

wheres = o + jw iscomplex. Theratio Y(s)/X(s) = H(s) iscaled the transfer function of
the system. The relationships between the impul se response function, the frequency response
function and the transfer function are depicted in Figure 4.24. Note that H (w) can be obtained
by H(s) on theimaginary axisin the s-plane, i.e. the Fourier transform can be considered as
the Laplace transform taking the values on the imaginary axis only (see Section 5.1).

o
G5

Figure4.24 Relationship between h(t), H(w) and H(s)

Examples of Systems
Example 1

Reconsider the simple acoustic problem in Figure 4.25, with input x(t) and response y(t).
The relationship between x(t) and y(t) may be modelled as

y(t) = ax(t — A1) + bx(t — Ap) (4.61)
The impulse response function relating x(t) to y(t) is

h(t) = as(t — A1) + bs(t — Ap) (4.62)
andisillustrated in Figure 4.26.
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Hard reflector

Path (2)
(delay, A,)

&\iﬁ Path (1)

Mic. A, xt)  (delay, &) Mic. B, y(t)

Figure4.25 A simple acoustic example

h(t)

Figure4.26 Impulse response function for Example 1
The frequency response function is

- . . . . b
H(w) = / h(t)e 1“'dt = ae™1*4t + pe~142 = ge~l@M <1 + ae‘J”(AZ‘A1)> (4.63)

—00

If welet A = Ay — Ay, then the modulus of H(w) is

b2 2b
IH(w)| = a\/<l+ 2 + = COSa)A) (4.64)

Thishasan oscillatory formin frequency (compare thiswith the case depicted in Figure 4.15).
The phase component arg H () aso has an oscillatory behaviour as expected from Equation
(4.63). These characteristics of the frequency response function are illustrated in Figure 4.27,
where H(w) is represented as a vector on a polar diagram.

Next, applying the Laplace transform to h(t), the transfer functionis

H(s) = / h(t)e S'dt = ae 5%t 4 beS42 (4.65)

Now we shall examine the poles and zerosin the s-plane. From Equation (4.65), it can be seen
that there are no poles. Zeros are found, such that H(s) = 0 when ae 4t = —be=5%2, j.e. at

b
et = —— 4.66
- (466)

where A = A, — Aj. Let s= o + jw so that Equation (4.66) can be written as

e(fAej oA _ geij(ﬂ+2kﬂ) (467)
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Im’ Hlm (C())
A

» Re, H,, (w)

Figure4.27 Polar diagram of H(w) for Example 1 (where A; = 1, A, = 4anda/b = 2)

wherek isan integer. Sincee’® = b/aand wA = £ (2k + 1), zeros are located at

1 b T
=_In(-= =+j—(2k+1 4.68
a=3in(3). o=sif@cty (4.68)
and are depicted in Figure 4.28.

In the figure, the corresponding oscillatory nature of the modulus of the frequency re-
sponse function is seen, asit isin the phase. However, the phase has a superimposed linear

Jo S] S]
r' A A
® L > SRS M —
® -
1 = S
: > O §/ < f <
1 (bj I 2
=In| =11 = <
A \a)@ ._;;/A .......................................................
® N, U I W—
s-plane

Figure4.28 Representation in the s-plane and its corresponding H () for Example 1



CONTINUOUS-TIME LTI SYSTEMS AND CONVOLUTION 81

component dueto thedelay A of thefirst ‘spike’ in theimpul se response function (see Figure
4.26).

Example 2

Consider the single-degree-of-freedom mechanical system as given in Equation (4.48), which
can be rewritten in the following form:

. . 1

Y(O) + 2t ony(t) + 0py () = —x(1) (4.69)
where v, = k/m and ¢ = ¢/2v'km. The impulse response function can be obtained from
h(t) + 2¢wah(t) + w2h(t) = (1/m)s(t), and assuming that the system is underdamped (i.e.

0 < ¢ < 1), theimpulse response function is

1 .
h(t) = ——e ‘! sinegt (4.70)
Mwqy

where wg = wn/1 — ¢2, and isillustrated in Figure 4.29.

h(t)
Ih\/AVAV |

Figure4.29 Impulse response function for Example 2

The corresponding frequency response function and transfer function are

_ 1/m
HEO) = s (4.71)
H(s) = 1/m 4.72)

§? + 2L wnS + w3
Note that there are only polesin the s-plane for this case as shown in Figure 4.30.
jw S S|

s-plane

Figure4.30 Representation in the s-plane and its corresponding H () for Example 2
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4.8 GROUP DELAY? (DI SPERSI ON)M42

We have seen that apure delay resultsin alinear phase component. We now interpret nonlinear
phase characteristics. Supposewe have asystem H (w) = A(w)el?@), where A(w) (= |H (w)])
is amplitude and ¢(w) is phase. Consider a group of frequencies near wy in the range from
wkx — Btowy + B (B <« wy), i.e. anarrow-band element of H (w), approximated by Hy(w), as
showninFigure4.31,i.e. H(w) ~ Y, Hk(w), and Hy(w) = |Hk(w)| & @9H©) = A(wy)el @),
The phase ¢ (w) may belinearly approximated over the narrow frequency interval (by applying
the Taylor expansion) such that ¢(w) ~ ¢(wk) + (w0 — wi)¢’(wk) as shown in Figure 4.32.
Then, Hy(w) has the form of an ideal band-pass filter with alinear phase characteristic.

|Hy (@) argH, ()
Aw,) [ A@,) }‘k I o
i —> E «— 2B —(:0 ' @
-, [ , @ ¢ (-0,) =-¢(w,) B

(@) (b)

Figure4.31 Narrow-band frequency components of Hy(w): (@) magnitude, (b) phase

arg Hy (@)
>

1 a)k
-, |

@

N slope='(a))

Figure4.32 Linear approximation of arg Hy(w)

Now, based ontherepresentation H () ~ Y, A(wy)el [#@)He—wde'@)] weshall inverse
transform this to obtain a corresponding expression for the impulse response function. We
start by noting that the ‘ equivalent’ low-passfilter can be described asin Figure 4.33(a) whose
corresponding time signal is 2A(wk)B sin[B(t + ¢'(wk))]/[7 B(t + ¢'(wk))] (see Equation
(4.39b) and No. 13 of Table 4.1). Now, consider the Fourier transform of a cosine function
with aphase, i.e. F {cos(wxt + ¢(wk))} = 7[e19@§(w — wy) + e 1§ (w + wi)] asshown
in Figure 4.33(b). In fact, Hyx(w) can be obtained by taking the convolution of Figures 4.33(a)
and (b) in the frequency domain. This may be justified by noting that the frequency domain
convolution described in Equation (4.45) can be rewritten as

X(f)+W(f) = / X(gW(f —g)dg = / IX(9) €@ (W(f —g)| el ~9dg
= / [X(g)| - IW(f — Q)| ej[¢x(g)+¢w(f*9)]dg (4.73)

1 See Zadeh and Desoer (1963); Papoulis (1977).
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/ ’ (a) Equivalent low-pass filter (b) Fourier transform of carrier \\l
| A |
L 2A(,) ,, . |
 Magnitude: [ I |
: w * > :
| -B'B (Convolution) — @y |
: '. s |
I . : @y !
, Phase: a) — — @ ’l
N NSlope=¢'(,) : s (@),
Fr ]

S (c) Time domain representation N
! sin[ B(t+¢'(a,))] !
| 2A(w,)B X _ |
| (o) 2Bt P (@) cos(mt+g(w,)) = cos @, | t :
| |
L ” Sm[ (t-t (wk))] (Multiplication) =cosa, (t—t (a)k ) )|
= 2R, B(t-t,(a,)) )
\ g k

Figure4.33 Frequency and time domain representation of Hy(w)

Thus, the frequency domain convolution (Equation (4.73)) may beinterpreted in the form that
the resultant magnitude is the running sum of the multiplication of two magnitude functions
while the resultant phase is the running sum of the addition of two phase functions.

Since the convolution in the frequency domain results in the multiplication in the time
domain (see Equation (4.45)) as depicted in Figure 4.33(c), the inverse Fourier transform of
Hy(w) becomes

sin[B (t + ¢'(wK))]
7B (t + ¢'(wx))

and finally, the inverse Fourier transform of H(w) is
in[B (t — ty(wx))]
7B (t — tg(wK))

envelope carrier

where tg and t,, are the ‘group delay’ and ‘phase delay’ respectively, and are defined by
Equations (4.76) and (4.77). The relationship between these two properties is illustrated in
Figure 4.34.

F~1 {Hk(w)} ~ 2A(wx)B cos (wt + ¢ (wx)) (4.74)

h(t) = F1 {H(w)} ~ ZZA( 0B cosa(t — tp(wy)) (4.75)

do(w)

ty(w) = - dw

(4.76)

tp(w) = T o (4.77)
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o) p) _ ()

‘ @)=t (@)

i / S
‘—l

1
1
:
R
N
<

Figure4.34 lllustrations of group delay and phase delay in the frequency domain

Note that each signal component given in Equation (4.75) is an amplitude modulation
signal where the ‘envelope’ is delayed by tg, while the *carrier’ is delayed by t,. Thisis
illustrated in Figure 4.35. As shown in the figure, the phase delay gives the time delay of
each sinusoidal component while the group delay can be interpreted as the time delay of the
amplitude envelope (or the group of sinusoidal components within a small frequency band
centred at wy). The delays are a continuous function of w, i.e. they may have different values
at different frequencies. This deviation of the group delay away from a constant indicates the
degree of nonlinearity of the phase. If asystem hasanon-constant group delay, each frequency
component in the input is delayed differently, so the shape of output signal will be different
from the input. This phenomenon is called the dispersion. In our simple acoustic models (e.g.
Figure 4.25), asingle path is non-dispersive, but the inclusion of an echo resultsin anonlinear
phase characteristic. Most structural systems exhibit dispersive characteristics.

In the case of a pure delay, the group delay and the phase delay are the same as shown
in Figure 4.36 (compare the carrier signal with that in Figure 4.35 where the group delay and
the phase delay are different).

Directly alied concepts in sound and vibration are the group velocity and the phase
velocity of awave, which are defined by

o
S

Group velocity of awave: vg = (4.78)

Kk

Phase velocity of awave: vy = (4.79)

~Ie a

¢(wk) '[(a))

Carrier, cos o, (t-t,(,))

/\ [\ | ~
Pa i SR AMAN ’/\ /\A”/V Py t

AR S \/v \Vans e
sm[B(t—tg(wk))J
7B(t-t,(e))

\ Envelope, 2A(w, )B

~¢ (wk)=tg(wk)

Figure4.35 |Illustrations of group delay and phase delay in the time domain
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tg(wk) Ttp(a)k)

Figure4.36 The case of pure delay (group delay and phase delay are the same)

where w is the wave's angular frequency, and k = 27 /A is the angular wave number (A is
the wavelength in the medium). The group velocity and the phase velocity are the same for
a non-dispersive wave. Since velocity is distance divided by time taken, the group delay is
related to the group velocity of awave and the phase delay to the phase velocity.

4.9 MINIMUM AND NON-MINIMUM PHASE SYSTEMS

All-pass Filter
We shall now consider the phase characteristics of a special filter (system). Suppose we
have afilter with transfer function
s—a
s+a
The pole-zero map on the s-plane is shown in Figure 4.37.

H(s) = (4.80)

jo

| ..

s-plane

Figure4.37 The pole-zero map of Equation (4.80)

Equation (4.80) may be rewritten as
2a
s+a
Then, taking the inverse Laplace transform gives the impul se response function
h(t) = 8(t) — 2ae™ (4.82)
which is depicted in Figure 4.38.

H(s)=1-

(4.81)
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h(t)

Figure4.38 Impulse response function of the all-pass filter

The corresponding frequency response function is

jo—a

H(w) =
(@) jo+a

Thus, the modulus of H(w) is

JoT T a
H) = Y222 —1
Vot a

(4.83)

(4.84)

This implies that there is no amplitude distortion through this filter. So, it is called the
‘al-pass filter'. But note that the phase of the filter is nonlinear as given in Equation
(4.85) and Figure 4.39. So, the all-passfilter distorts the shape of the input signal.

agH(w) = ag(jo —a) —ag(jo +a) =7 — 2tan? (Z) (w > 0)

arg H(w)

T

R

Figure4.39 Phase characteristic of the all-passfilter

From Equation (4.85), the group delay of the all-pass system is

d 2
do (ergH(w)) = a(1+ w?/a?)

Note that the group delay is aways positive as shown in Figure 4.40.
d
—a(arg H(w))

2/a

@

Figure4.40 Group delay of the all-passfilter (shown for w > 0)

(4.85)

(4.86)
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X(t) ———| All-pass system |—— ¥(t)

Figure4.41 Input—output relationship of the all-pass system

Now, suppose that the response of an al-pass system to an input x(t) is y(t) as in
Figure 4.41.
Then, the following properties are obtained:

0 / ()2 dt = / ()2 dt (4.87)
% e
(i) f XM dt > / ()2 dt (4.88)

Thefirst Equation (4.87) followsdirectly from Parseval’ stheorem. The second Equation (4.88)
implies that the energy ‘build-up’ in the input is more rapid than in the output, and the proof
isasfollows. Let y;(t) be the output of the system to the input

x(t) = x(t), t=to
=0 t >t

Thenfort < to,
t t
yi(t) = / h(t — t)xi(r)dr = / h(t — o)x(z)dt = y(t) (4.89)

Applying Equation (4.87) to input x(t) and output y;(t), then

to 00 to 00
xi®)1Pdt = [ [yat)Pdt = [ [ya(t)>dt + [ [ya(t)*dt (4.90)
[mora= [moras [mota [

Thus, Equation (4.88) follows because x(t) = x1(t) and y(t) = yi(t) fort < to.

Minimum and Non-minimum Phase Systems

A stable causal system has all its poles in the left half of the s-plane. This is referred
to as BIBO (Bounded Input/Bounded Output) stable, i.e. the output will be bounded for
every bounded input to the system. For the time domain condition for BIBO stability, the
necessary and sufficient condition isff"oo |h(t)| dt < oco. We now assume that the system
is causal and satisfies the BIBO stability criterion. Then, systems may be classified by
the structure of the poles and zeros as follows: a system with all its poles and zeros in
the left half of the s-plane is a minimum phase system; a system with all its zeros in the
right half of the s-plane is a maximum phase system; a system with some zeros in the
left and some in the right half plane is a mixed phase (or non-minimum phase) system.
The meaning of ‘minimum phase’ will be explained shortly.



88 FOURIER INTEGRALS AND CONTINUOUS-TIME LINEAR SYSTEMS

Consider the following (stable) maximum phase system which has poles and a zero
as shown in Figure 4.42:

H(S) = s? + ZSga)ni + o e
jo
X
. o
X
s-plane
Figure4.42 The pole-zero map of Equation (4.91)
This may be expressed as

H(s) = <52 " 2:2 " w%> (2; :) — Huin(S) Hap(S) (4.92)

where Hmin(s) is the minimum phase system with | Hmin(@)| = |H(w)|, and Hy(s) isthe
all-pass system with | Hap(w) | = 1. This decomposition is very useful when dealing with
‘inverse’ problems (Oppenheim et al., 1999). Note that the direct inversion of the system,
H~(s), hasapolein theright half of the s-plane, so the system is unstable. On the other
hand, the inverse of a minimum phase system, H,;i}](s), isaways stable.

The term ‘minimum phase’ may be explained by comparing two systems, H;(s) =
(s+ a)/D(s) and Hz(s) = (s — a)/D(s). Both systems have the same pole structure but the
zeros are at —a and a respectively, so the phase of the system is

arg Ha(w) = tan™! (%) — arg D() (4.93)
agHy(w) =7 —tant (g) — arg D(w) (4.94)

Comparingtan— (w/a) andr — tan~! (w/a), it can beeasily seenthat arg Hy(w) < arg Ha(w)
as shown in Figure 4.43.

7[-
e
7 —tan 1[;), for H,(w)
)2 == m o=
m/at tan™ (%)j for H, ()
: ®
a

Figure4.43 Phase characteristics of Hi(w) and Ha(w)
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jo
]
B
o
X .
-a | a
s-plane

Figure4.44 Phase characteristics of Hi(s) and Hx(S)

Or, the angles in the s-plane show that @ < S as shown in Figure 4.44. Thisimplies that

H1(s) is minimum phase, since ‘phase of H;(s) < phase of Hy(s)'.

It followsthat, if H(s) isastabletransfer function with zeros anywhere and Hpin(S)
is a minimum phase system with |H(w)| = |Hmin(®)|, then the group delay of H(s),
—darg H(w)/dw, is larger than —d arg Hyin(w)/dw. Also, if input x(t) is applied to
arbitrary system H(s) giving response y(t) and to Hy,in(S) giving response ymin(t), then
for any to the following energy relationship is given:

to to
/ y(t)2dt = / [Yrin(®)P dlt (4.95)

As a practical example, consider the cantilever beam excited by a shaker as shown in
Figure 4.45. Let the signal from the force transducer be the input x(t), and the signals
from the accelerometers be the outputs y; (t) and y,(t) for positions 1 and 2 respectively.
Also, let Hi(w) and Hy(w) be the frequency response functions between x(t) and y;(t),
and between x(t) and y,(t) respectively.

Position 1 Position 2

Accelerometer

LAY

Figure4.45 Cantilever beam excited by a shaker

If the input and the output are collocated (i.e. measured at the same point) the fre-
guency response function Hi(w) is minimum phase, and if they are non-collocated the
frequency response function Hx(w) is non-minimum phase (Lee, 2000). Typical charac-
teristics of the accelerance frequency response functions H; (w) and Hx(w) are shownin
Figure 4.46. Note that the minimum phase system H; (w) shows distinct anti-resonances
with a phase response over 0 < arg Hi(w) < 7.
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|H.(@)| |H, (@)
dB dB
I @ w
arg H, (o)
T
arg H, (@)
0
T
T
0 —2r
] > w
(@) Minimum phase system (b) Non-minimum phase system

Figure4.46 Freguency response functions of the system in Figure 4.45

410 THE HILBERT TRANSFORMM43-45

Consider the input—output relationship as described in Figure 4.47.

O—s| MO ——y0=%0)

Figure 4.47 Input—output relationship of the 90° phase shifter

The output of the system is the convolution of x(t) with 1/7t:

R(t) = h(t) * x(t) = % % X(t) (4.96)

This operation is called the Hilbert transform. Note that h(t) is a non-causal filter with
asingularity at t = 0. The Fourier transform of the above convolution operation can be
written as

X(w) = H(w)X(w) (4.97)
where H (w) isthe Fourier transform of 1/7t, whichisgiven by (seeNo. 16 of Table 4.1)

—j forw=>0
H(w)=—json(w)=1 ] fore <0 (4.98a)
0 forw=0
or
e 12 forw >0
H(w) = e  forw <0 (4.980)
0 forwm =0
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From Equation (4.98), it can be seen that

|H(w)| = 1 foral w, except w =0 (4.99)
—nr/2 forw=>0

H(w) = 4.100

agH () : n/2 forw <0 ( )

Thus, the Hilbert transform is often referred to as a 90° phase shifter. For example, the
Hilbert transform of coswot IS Sinwgt, and that of sinwgt 1S —coswpt.

The significance of the Hilbert transform is that it is used to form the so called
‘analytic signal’ or ‘pre-envelope signal’. An analytic signal is a complex time signal
whosereal partistheoriginal signal x(t) and whereimaginary partisthe Hilbert transform
of x(t), i.e. X(t). Thus, the analytic signal ay(t) is defined as

ax(t) = x(t) + jX(t) (4.101)

The Fourier transform of analytic signal F{ax(t)} is zero for w < 0, and is 2X(w) for
w > 0and X(w) for w = 0. Since the analytic signal is complex, it can be expressed as

ay(t) = Ac(t)e!>® (4.102)

where Ay(t) = /X2(t) + X2(t) is the instantaneous amplitude, and ¢y(t) = tan~!
(X(t)/x(t)) is the instantaneous phase. The time derivative of the unwrapped instan-
taneous phase wy(t) = ¢« (t) = do«(t)/dt is caled the instantaneous frequency. For
atrivial case x(t) = coswot, the analytic signal is ay(t) = el“® where A(t) = 1 and
wx(t) = wo, i.e. both are constants as expected. These concepts of instantaneous ampli-
tude, phase and frequency are particularly useful for amplitude-modul ated and frequency-
modulated signals.

To visualize these concepts, consider the following amplitude-modul ated signal™#3
X(t) = m(t) coswct = (Ac + Am SiNwmt) CoSwct (4.103)

where w; > wm. We note that if m(t) is band-limited and has a maximum fregquency less
than w¢, the Hilbert transform of x(t) = m(t) coswct is X(t) = m(t) sinwct. Then, using the
relationship between Equations (4.101) and (4.102), the analytic signal can be written as

ay(t) = Ac(t)e'>® = (A + Apsinwpt) el (4.104)

and the corresponding Ax(t), ¢« (t) and wx(t) are as shown in Figure 4.48.

In sound and vibration engineering, a practical application of the Hilbert transform re-
lated to amplitude modulation/demodulationis‘ envelopeanalysis (Randall, 1987), wherethe
demodulation refers to a technique that extracts the modulating components, e.g. extracting
Am Sinwmt from Equation (4.103). Envelope analysisis used for the early detection of a ma-
chine fault. For example, afault in an outer race of arolling bearing may generate a series of
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Figure4.48 Analytic signal associated with the amplitude-modulated signal

burst signalsat aregular interval. Such burst signals decay very quickly and contain relatively
small energies, thus the usual Fourier analysis may not reveal the repetition frequency of the
bursts. However, it may be possibleto detect thisfrequency component by forming the analytic
signal and then applying Fourier analysis to the envelope Ax(t).

Examples

Example 1: Estimation of damping from time domain records
of an oscillator M44

Suppose we have a free response of a damped single-degree-of-freedom system as below:
X(t) = Aet“tsin(wgt +¢) t >0 (4.105)
where wg = wny/1 — ¢2. The analytic signal for this may be approximated as
a(t) = At)e! W ~ (AeTéent) glldtto=m/2) t > o (4.106)

Sinceln A«(t) ~ In A — ¢wpt, the damping ratio ¢ can be estimated from the plot of In Ay(t)
versustime, provided that thenatural frequency wr, isknown. Thisisdemonstratedin MATLAB
Example 4.4. However, as shown in MATLAB Example 4.4, it must be noted that A«(t) and
¢dx(t) are usually distorted, especially at the beginning and the last parts of the signal. This
undesirable phenomenon occurs from the following: (i) the modulating component Ag=¢nt
is not band-limited, (ii) the non-causal nature of the filter (h(t) = 1/xt), and (iii) practical
windowing effects (truncation in the frequency domain). Thus, the part of the signal near
t = 0 must be avoided in the estimation of the damping characteristic. The windowing effect
is discussed in the next section.
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Example 2: Frequency modulation™45

Now, to demonstrate another feature of the analytic signal, we consider the frequency modu-
lated signal as given below:

X(t) = Accos(wct + Am Sinwmt) (4.107)

This can be written as x(t) = Ac [cOSwct COS(Am SiNwmt) — SiNwct sin (Ay Sinwmt)] which
consists of two amplitude-modulated signals, i.e. X(t) = my(t) coswst — My (t) sinwct, where
my(t) and my(t) may be approximated as band-limited (Oppenheim et al., 1999). So, for
Anom < o, the analytic signal associated with Equation (4.107) may be approximated as

ax(t) = Ac(t)e!™® ~ Agel@ettAnsinent) (4.108)

and the corresponding Ax(t), ¢«(t) and w«(t) are as shown in Figure 4.49. Note that the
instantaneousfrequency iswy(t) = d¢g(t)/dt = we + wmAm COSwmt, ascanbeseeninFigure
4.49(c).

AD=A ()
/ /

#,(t)

1
(b) Instantaneous (unwrapped) phase (c) Instantaneous frequency

Figure4.49 Analytic signal associated with the frequency-modulated signal

From this example, we have seen that it may be possible to examine how the frequency
contentsof asignal vary with timeby forming an analytic signal. We have seen two methods of
relating the temporal and frequency structure of asignal. First, based on the Fourier transform
we saw how group delay relateshow groups of frequenciesare delayed (shifted) intime, i.e. the
group delays are time dependent. Second, we have seen a‘ non-Fourier’ type of representation
of asignal as A(t) cos¢(t) (based on the analytic signal derived using the Hilbert transform).
This uses the concepts of amplitude modulation and instantaneous phase and frequency.

Thesetwo approaches are different and only under certain conditionsdo they give similar
results (for signals with large bandwidth-time product — see the uncertainty principle in the
next section). These considerations are fundamental to many of the time—frequency analyses
of signals. Readers may find useful information on time—frequency methods in two review
papers (Cohen, 1989; Hammond and White, 1996).
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4.11 THE EFFECT OF DATA TRUNCATION (WINDOWING)4&49

Suppose X(t) isadeterministic signal but isknown only for —T/2 <t < T/2, asshown
in Figure 4.50.

x(t)

~T/2 N2 S
Figure4.50 Truncated data with arectangular window w(t)

In effect, we are observing the data through a window w(t) where
wt)=1 |t|<T/2
=0 |t|>T/2
so that we see the truncated data 1 (t) = X(t)w(t).

If we Fourier transform x1(t) (in an effort to get X(f)) we obtain the Fourier
transform of the product of two signals x(t) and w(t) as (see Equation (4.45))

(4.109)

o0

Xt (f) = Fix®w(®)} = f X(@W(f —g)dg = X(f) + W(f) (4.110)

—00

i.e. the Fourier transform of the product of two time signals is the convolution
of their Fourier transforms. W(f) is called the spectral window, and is W(f) =
Tsin(@fT)/xfT for the rectangular window. Owing to this convolution operation in
the frequency domain, the window (which need not be restricted to the rectangular data
window) resultsin bias or truncation error. Recall the shape of W( f) for the rectangular
window asin Figure 4.51.

W(f)
T /Main lobe
1 1 Side lobe
= |\ «
A LA f
2V Va2
T T

Figure4.51 Fourier transform of the rectangular window w(t)

The convolution integral indicates that the shape of X(g) is distorted, such that it
broadens the true Fourier transform. The distortion due to the main lobe is sometimes
called smearing, and the distortion caused by the side lobes is called leakage since the
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frequency components of X(g) at values other than g = f ‘leak’ through the side lobes
to contribute to the value of X1 (f) at f. For example, consider a sinusoidal signal
X(t) = cos(27 pt) whose Fourier transform is X(f) = %[S(f + p)+38(f — p)]. Then
the Fourier transform of the truncated signal xt(t) is

o0 o0

Xr(f) = [ X@W(f —g)dg =5 [ @+ P)+3(g— PIW(T — g)dg
= 2 IW(T + )+ W(T — )] (4.411)

This showsthat the deltafunctions (in the frequency domain) are replaced by the shape of
the spectral window. The ‘theoretical’ and ‘achieved (windowed)' spectraareillustrated
in Figure 4.52 (compare X( f) and X+ (f) for both shape and magnitude).

X(f) X7 (F) = X()=W(f)

1/2[ 1/21 /Smearing
f
p

/ Leakage
-p |

f
p
(@) Theoretical (b) Windowed

Figure4.52 Fourier transform of a cosine wave

If two or moreclosely spaced sinusoidal componentsare presentinasignal, then they
may not easily be resolved in the frequency domain because of the distortion (especially
duetothemainlobe). A rough guideasto theeffect of thisrectangular window isobtained
from Figure 4.53 (shown for f > 0 only).

(0]

X(t) is the sum of three sine (or cosine) waves

Considerable smearing due to
the spectral window

T increases

Three components are resolved but with
considerable leakage at other frequencies

Figure 4.53 Effects of windowing on the modulus of the Fourier transform
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Infact, in order to get two separate peaks of frequencies f;, f, giveninthisexample
it is necessary to use a data length T of order T > 2/(f, — fy) (i.e. fo— f1 > 2/T)
for the rectangular window. Note that the rectangular window is considered a ‘ poor’
window with respect to the side lobes, i.e. the side |obes are large and decay slowly. The
highest side lobe is 13dB below the peak of the main lobe, and the asymptotic roll-off
is 6 dB/octave. Thisresults from the sharp corners of the rectangular window. However,
the main lobe of the rectangular window is narrower than any other windows.

MATLAB examplesaregiven at the end of the chapter. Sinceweare using sinusoidal
signalsin MATLAB Examples 4.6 and 4.7, it is interesting to compare this windowing
effect with the computational considerations for a periodic signal given in Section 3.6
(and with MATLAB Example 3.2).

A widevariety of windows are available, each with its own frequency characteristics. For
example, by tapering the windows to zero, the side lobes can be reduced but the main lobeis
wider than that of the rectangular window, i.e. increased smearing. To see this effect, consider
the following two window functions:

1. A 20% cosine tapered window (at each side, 10 % of the data record is tapered):

we(t) =1 It| < 4T/10

5t
=Cosz% _T/2<t<—4T/10, 4T/10<t<T/2

=0 It] > T/2 (4.112)

2. A Hann (Hanning) window (full cosine tapered window):

wH(t)zcosZ”—t [t| <T/2
T (4.113)
=0 It]>T/2

Thesewindow functionsare sometimescalled the Tukey window, and are shownin Figure4.54.
Note that the cosine tapered window has a narrower bandwidth and so better frequency res-
olution whilst the Hann window has smaller side lobes and sharper roll-off, giving improved
leakage suppression.

X(t) X(t) W(f)

1.0 1.0
| | t t
T a1 I ' I
2 10 10 2 2 2
(a) Cosine tapered (b) Hann (c) Spectral windows

Figure4.54 Effect of tapering window
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Window ‘ carpentry’ is used to design windows to reduce leakage at the expense of
main lobe width in Fourier transform calculations, i.e. to obtain windows with small side
lobes. One ‘trades’ the side lobe reduction for ‘bandwidth’, i.e. by tapering the window
smoothly to zero, the side |obes are greatly reduced, but the price paid is a much wider
main lobe. The frequency characteristic of awindow is often presented in dB normalized
to unity gain (0dB) at zero frequency, e.g. as shown in Figure 4.55 for the rectangular
window (in general, A = 1).

w(t) = Alu(t+T/2)—u(t-T/2)] W(f)= ATM
A 7 fT
A AT
| |
| |
| | L~ ~f
= /2 ' 2 3
T T T
(@ (b)
044 1 2 34
0 T T T T T f
—galgffe=mem 5 Pl
m -10} 0 0 5§
e N
s (2B = 3 dB bandwidth) \ ; hE
s 20 : 1/ \Tni 6 dB/octave
2 : Rt
£ a0t [ ﬂ

©

Figure4.55 Rectangular window and its frequency characteristic

The rectangular window may be good for separating closely spaced sinusoidal compo-
nents, but the leakage is the price to pay. Some other commonly used windows and their
spectral properties (for f > 0 only) are shown in Figure 4.56. The Hann window is a good
general purpose window, and has a moderate frequency resolution and a good side lobe roll-
off characteristic. Through MATLAB Examples 4.6-4.9, the frequency characteristics of the
rectangular window and the Hann window are compared. Another widely used window isthe
Hamming window (a Hann window sitting on a small rectangular base). It has alow level of
thefirst few sidelobes, and is used for speech signal processing. Thefrequency characteristics
of these window functions are compared in Figure 4.57.

We now note a few general comments on windows:

1. The ability to pick out peaks (resolvability) depends on the data widow width as well as
the shape.

2. Thewindowsin Figure 4.56 (and others except the rectangular window) are not generally
applicable to transient waveforms where a significant portion of the information is lost by
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w(t) W(f)

AT/2~|\
| >t

>,>_

T ! > f
-T/2 T/2 I 2 4
] ToT
)=Al-—-| [t[<T/2
"0 { t2) |U=T/ W) :AT(sin(frfT/Z)]Z
=0 otherwise 2\ xfT/2
(a) Bartlett window (in general, A = 1)
w(t) W(f)
/A‘\ : ‘ \
-T/2 [ T/2 . 3 f
0= Acos? D= Al 14 cos 22| [t]<T/2 T
W(t) = Acos® == 1+cos— | [t[<T/ Wity < AT.__sin(zfT)
=0 otherwise 2 rfT[1-(fT)’]
(b) Hann window (in general, A=1)
w(t) W(f)
/‘\ 0.54]\
t — > f
-T/)2 12 I
ont TT
w(t) = 0.54+0.46 cos = t|<T/2 W) _[0.547z2—0.08(;rfT)2]sin(;sz)
=0 otherwise ZfT[2° —(z 1Ty
(c) Hamming window
w(t) W(f)
A 3T/81\
t — f
-T/2 I 7 4
2 3 T
w(t) =1—24(£J +48‘l \t\SI .
T T 4 3T sin(z 7/ 4)
] Y M irs reoy
=2[1—J I<\t\sI
T/2 4 2
=0 otherwise

(d) Parzen window

Figure4.56 Some commonly used windows
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Attenuation (dB)
1N
o

Figure4.57 Frequency characteristics of some windows

windowing.M4° (The exponential window is sometimes used for exponentially decaying
signals such as responses to impact hammer tests.)

. A correction factor (scaling factor) should be applied to the window functions to account
for the loss of ‘energy’ relative to arectangular window as follows:

T/2
L wha(t)dt

T/2
1 w2(t)dt

Scaling factor = (4.114)

where wye(t) is the rectangular window, and w(t) is the window function applied on the
signal. For example, the scaling factor for the Hann window is /8/3. This correction
factor isused in MATLAB Examples 4.7-4.9. This correction is more readily interpreted
in relation to stationary random signals and will be commented upon again in that context
with amore general formulafor the estimation of the power spectral density.

. For the data windows, we define two ‘ bandwidths' of the windows, namely (a) 3dB band-
width; (b) noise bandwidth. The 3 dB bandwidth is the width of the power transmission
characteristic at the 3dB points, i.e. where there are 3dB points below peak amplification,
as shown in Figure 4.58.

The (equivalent) noise bandwidth is the width of an ideal filter with the same peak
power gain that accumulates the same power from a white noise source, as shown in
Figure 4.59 (Harris, 1978).

. The properties of some commonly used windows are summarised in Table 4.2. More
comprehensive discussions on window functions can be found in Harris (1978).

~ 0 N

N e G b N 3dB

o

£ -10 3 dB bandwidth
S _15

5

£ 20

< f

0

Figure4.58 The 3dB bandwidth
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WP .
Noise bandwidth
'4——‘>/'
Peak power gain, A4~ - — —— — Spectral window
] )
3dB Ideal filter
[Half powerj sal—_ _L _ 4
-3dB X
( ) A/ v*\3;:18 bandwidth
0 > f
0

Figure4.59 Noise bandwidth

Table4.2 Properties of some window functions

Window Highest Asymptotic 3dB Noise First zero

(length T) sidelobe (dB) roll-off (dB/octave) bandwidth bandwidth crossing (freg.)
1 1 1
Rectangular -133 6 0.89? 1'007 T
Bartlett (triangle) 26.5 12 1.28 = 1.33 = 2
9 ' T =0T T
. 1 1 2
Hann(ing) (Tukey -315 18 144 1.50— =
or cosine squared) T T T
Hamming —43 6 1 301 1 361 E
T T T
Parzen —53 24 1 82l 1 921 4
T T T

The Uncertainty Principle (Bandwidth—Time Product)

As can be seen from the Fourier transform of arectangular pulse (see Figure 4.8), i.e. Equation
(4.27), X(f) = 2absin(2r f b) /27 th, aproperty of the Fourier transform of asignal isthat the
narrower thesignal descriptioninonedomain, thewider itsdescriptionintheother. Anextreme
example is a delta function §(t) whose Fourier transform is a constant. Another example is
asinusoidal function cos(2r fot) whose Fourier transform is %[S(f — fo) + 8(f + fo)]. This
fundamental property of signalsis generalized by the so-called uncertainty principle.
Similar to Heisenberg's uncertainty principle in quantum mechanics, the uncertainty
principlein Fourier analysisisthat the product of the spectral bandwidth and the time duration
of asignal must be greater than a certain value. Consider asignal x(t) with finite energy, such
that [|x[|* = [ x?(t)dt < oo, and its Fourier transform X(w). We define the fol lowing:

[ee}

ro 1 2
= / tx2(t)dt (4.1153)

(At)? [ (t — D)23(t)dt (4.115b)

T2
T
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wheret isthe centre of gravity of the area defined by x2(t), i.e. the measure of location, and
the time dispersion At isthe measure of the spread of x(t). Similarly, on the frequency scale,
IX]12 = [ 1X(w)|* do, and we define

o0

»= ||X||2_£ o | X(w)?> dw (4.116a)
(Aw)® = ”;(LHZZ; (0 — ®)* |X(w)[* dw (4.116b)

where @ is the measure of location on the frequency scale, and Aw is called the spectral
bandwidth, which isthe measure of spread of X(w). Notethat for areal signa x(t), @ isequal
to zero since | X(w)|? is even. Using Schwartz s inequality

2

JICIE AEO L JRCECE (4.117)
and Parseval’s theorem, it can be shown that (Hsu, 1970)
1
AwAt > S (4.118)
or, if the spectral bandwidth is defined in hertz,
Af.At > 1 (4.119)
47

Thus, the bandwidth-time (BT) product of a signal has a lower bound of 1/2 . For
example, the BT product of the rectangular window is Aw-At = 27 (or Af-At = 1),
and the Gaussian pulse e has the ‘minimum BT product’ of Aw-At = 1/2 (recall
that the Fourier transform of a Gaussian pulse is another Gaussian pulse, see Equation
(4.33)). For the proof of these results, see Hsu (1970).

The inequality above points out a difficulty (or a limitation) in the Fourier-based time—
frequency analysis methods. That is, if we want to obtain a ‘local’ Fourier transform then
increasing the ‘localization’ in the time domain results in poorer resolution in the frequency
domain, and vice versa. In other words, we cannot achieve arbitrarily fine ‘resolution’ in both
the time and frequency domains at the same time.

Sometimes, the concept of the above inverse spreading property can be very useful to
understand principles of noise control. For example, when the impact between two solid
bodies produces a significant noise, the most immediate remedy may be to increase theimpact
duration by adding someresilient material. Thisincrease of time resultsin narrower frequency
bandwidth, i.e. removes the high-frequency noise, and reduces the total noise level. Thisis
illustrated in Figure 4.60 assuming that the force is a half-sine pulse. Note that the impulse
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o A 3

/A
IV x(t), Ty=1ms

3l | \/ 1() 1
z | \ 2 |X(f)|
8 ! \ 2 1
82 S \/
e |t \ 0.7 s

( \ /xz , To=4ms
ih | 1
L L Nt~
15 2 25 3 35

0 .
0 0.5 1 15 2 25 3 35 4
Time (ms) Frequency (kHz)

@ (b)

Figure4.60 Interpretation of impact noise

(the area under the force curve, x; (t)) isthe same for both cases, i.e.

T T2

/ xq(t)dt = / Xo(t)dt

0 0

However, the total energy of the second impulse is much smaller, i.e.
2 2
/|X1(f)| df > / | Xo(f)|df

as shown in Figure 4.60(b). Also note that, for each case, Parseval’s theorem is satisfied, i.e.

/xiz(t)dtz /oo’Xi(f)|2df

0

4.12 BRIEF SUMMARY

1. A deterministic aperiodic signal may be expressed by

X(t) = / X(f)elZ™df and X(f)= / x(t)e~ " "tdt : Fourier integral pair

2. Then, the energy spectral density of x(t) is | X( f)|? and satisfies

(o/¢]

/xz(t)dt: / IX(f)|?df : Parseval’stheorem

—0Q
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3. The input—output relationship for an LTI system is expressed by the convolution
integral,

LTI system,
h(t)

X(t) ——» — y(D)

i.e. y(t) = h(t) * x(t) = ff"oo h(z)x(t — z)dz, and in the frequency domain Y(f) =
H(f)X(f).

4. A pure delay preserves the shape of the original shape, and gives a constant value
of group delay—d¢/dw = to. A non-constant group delay indicates the degree of
nonlinearity of the phase.

5. A minimum phase system has all its poles and zeros in the left half of the s-plane, and
is especially useful for inverse problems.

6. Theanalyticsignal a,(t) = Ax(t)el**® providesthe concepts of instantaneous ampli-
tude, instantaneous phase and instantaneous frequency.

7. 1f a sdignal is truncated such that xr(t) = x(t)w(t), then Xq(f)=
[0 X(@W(f — g)dg.

8. Data windows w(t) introduce ‘leakage’ and distort the Fourier transform. Both the
width and shape of the window dictate the resolvability of closely spaced frequency
components. A ‘scale factor’ should be employed when awindow is used.

9. Theuncertainty principle statesthat the product of the spectral bandwidth and thetime
extent of asignal is Aw-At > 1/2. Thisindicates the fundamental limitations of the
Fourier-based analyses.

4.13 MATLAB EXAMPLES

Example 4.1: The effect of an echo

Consider asignal with apure echo, y(t) = x(t) + ax(t — to) asgivenin Equation (4.46),
where the main signal is x(t) = e *I'! (see Equation (4.20) and Figure 4.5). For this
example, theparametersa = 0.2, 1. = 300andty = 0.15arechosen. Readersmay change
these values to examine the effects for various cases.

Line MATLAB code Comments

1 clear dl Define time variable from —5 to 5 seconds

2 fs=500; t=-5:1/fs.5; with sampling rate fs = 500.

3 lambda=300; t0=0.15; a=0.2; Assign values for the parameters of the
signal.

4 x=exp(-lambda* abs(t)); Expression of the main signal, x(t). Thisis

for the comparison with y(t).
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y=x+a* exp(-lambda* abs(t-t0)); Expression of the signal, y(t).
X=fft(x); Y =fft(y); Fourier transforms of signals x(t) and y(t).

In fact, thisisthe discrete Fourier transform
(DFT) which will be discussed in Chapter 6.

7  N=length(x); Define the frequency variables for both
8  fp=0:fg/N:fs/2; % for the positive frequency positive and negative frequencies. (The
9  fn=-fg/N:-fs/N:-f5/2; frequency spacing of the DFT will also be
% for the negative frequency discussed in Chapter 6.) The command
10 f=[fliplr(fn) fp]; “fliplr’ flips the vector (or matrix) in the
left/right direction.
11 plot(f,fftshift(abs(X)/fs), 'r:") Plot the magnitude of X(f),i.e. |X(f)]|
12 xlabel('Frequency (Hz)"); ylabel(Modulus) (dashed ling)?, and hold the graph. The
13 holdon command ‘fftshift’ shifts the zero frequency
component to the middle of the spectrum.
Note that the magnitude is scaled by * 1/fs,
and the reason for doing this will also be
found in Chapter 6.
14 plot(f,fftshift(abs(Y)/fs)) Plot the magnitude |Y ()| on the same
15  hold off graph, and release the graph. Compare this
with | X(f)].
Results
0 x107
gl
7
(%} 6 [
S 4f
sl
2
1p y
%50 200 -150 100 50 0 50 100 150 200 250

Frequency (Hz)

Example 4.2: Appearances of envelope and carrier signals

Thisis examined for the cases of t, =tg, t, <ty andt, > tg in Equation (4.75), i.e.

sin(B(t — tg))

x(t) = 2AB 7Bt~ 1)

cosax(t —tp)

envelope carrier

2 Itisdotted lineinthe MATLAB code. However, dashed lines are used for generating figures. So, the dashed linein
the comments denotes the ‘ dotted line’ in the corresponding MATLAB code. This appliesto all MATLAB examples
in this book.
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Line MATLAB code Comments
1 cleardl Define the frequency band in rad/s.
3 A=3; Select the amplitude A arbitrary, and define
4 wk=6; the carrier frequency, wk such that wk > B.
5 tg=5 Define the group delay tg, and the phase
6  tp=5; % tp=4.7 (for tp < tg), delay tp.

% tp=>5.3 (for tp > tg) In this example, we use tp=5 for tp = tg,
tp=4.7 for tp < tg, and tp=5.3 for tp > tg. Try
with different values.

7 t=0:0.03:10; Define the time variable.
8 x=2* A*B*sin(B* (t-tg))./(pi* B* Expression of the above equation. Thisisthe
(t-tg)).* cos(wk* (t-tp)); actual time signal.
9  xe=2*A*B*sin(B*(t-tg))./(pi*B*(t-tg));  Expression of the ‘envelope’ signal.
10  plot(t,x); xlabel (‘'Time (9)"); Plot the actual amplitude-modulated signal,
ylabel (\itx\rm(\itt\rm)") and hold the graph.
11 hold on
12 plot(t, xe, 'g:', t, -xe, 'g:") Plot the envelope signal with the dashed line,
13 hold off and release the graph.
14  gridon

©
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Example 4.3: Hilbert transform: amplitude-modulated signal (see Equation (4.103))

X(t) = (Ac + Am Sinwmt) coswct = (Ac + Am Sin 27 fit) cos 27 ft

For this example, the parameters Ac = 1, A, = 0.5, f, = 1 and f. = 10 are chosen.

Xx=(Ac+Am*cos(2* pi*fm*t)).* cos(2* pi*fc*t);

a=hilbert(x);

fx=diff (unwrap(angle(a)))./diff(t)/(2* pi);

figure(1)

plot(t, abs(a), t, X, 'g:")

axis([03-22])

xlabel (‘"Time (s)"); ylabel ("\itA x\rm(\itt\rm)")

figure(2)
plot(t, unwrap(angle(a)))
axis{[0 3 0 200])

xlabel (‘'Time (s)"); ylabel ('\it\ phi_x\rm(\itt\rm)")

figure(3)

plot(t(2:end),fx)

axis([03812])

xlabel (‘'Time (s)'); ylabel (\itf x\rm(\itt\rm)")

Line MATLAB code Comments
1 cleardll Define parameters and the time
variable.
2  Ac=1; Am=0.5; fm=1; fc=10;
3 t=0:0.001:3;

Expression of theamplitude-modulated
signal, x(t).

Create the analytic signal. Note that, in
MATLAB, the function *hilbert’
creates the analytic signal, not X(t).

Thisis an approximate derivative,
which computes the instantaneous
frequency in Hz.

Plot the instantaneous amplitude
A(t).

Note that A, (t) estimates well the
envelope of the signal,

Ac+ Ansin2r ft =
1+05sn2r-1-t.

Plot the instantaneous (unwrapped)
phase ¢y (t), which increases linearly
with time.

Plot the instantaneous fregquency,
wherefy(t) = wy(t)/2r.

Note that f,(t) estimates f, = 10
reasonably well, except small regions
at the beginning and end.

Results
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Example 4.4: Hilbert transform: estimation of damping coefficient (see Equation
(4.106))
Suppose we have asignal represented as Equation (4.105), i.e.
X(t) = Ae " sin(wgt + ¢) = Ae ¥ sin(wgt + ¢)
and, for this example, the parameters A =1, ¢ = 0.01, f, = 10 and ¢ = 0 are chosen.
Line MATLAB code Comments
1 cleardl Define parameters and the time variable.
2 A=1; zeta=0.01; fn=10; wn=2*pi*fn;
3 wd=wn*sgrt(1-zeta 2); phi=0; t=0:0.001:6;
4 x=A*exp(-zeta*wn*t).* sin(wd* t+phi); Expression of the signal (Equation
(4.105)).
5  a=hilbert(x); Create the analytic signal.
6  ax=log(abs(a)); Compute In Ay (t). Notethat ‘log’ in
MATLAB denotes the natural logarithm.
7  figure(l) Plot the instantaneous amplitude Ay(t).
8 plot(t, abs(a), t, x, 'g:"); axis([0 6 -1.5 1.5]) Note that, in this figure (Figure (a) below),
9  xlabel('Time(9)"); the windowing effect (truncation in the
ylabel (\itA x\rm(\itt\rm)") frequency domain — MATLAB uses the
FFT-based algorithm, see MATLAB help
window for details) and the non-causal
component are clearly visible.
10  figure(2) Plot In A.(t) versustime. The figure shows
11  plot(t, ax); axis([0 6 -6 1]) alinearly decaying characteristic over the
12 xlabel('Time(s)); range where the windowing effects are not
ylabel (In\itA x\rm(\itt\rm)") significant.
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13 p=polyfit(t(1000:4000), ax(1000:4000), 1);  ‘polyfit’ finds the coefficients of a
polynomial that fits the datain the least
squares sense. In this example, we use a
polynomial of degree 1 (i.e. linear
regression). Also, we use the data set in the
well-defined region only (i.e. 1to

4 seconds).
14  format long ‘format long’ displays the number with 15
15 zeta est=-p(1)/wn digits.

Thefirst element of the vector p represents
the slope of the graph in Figure (b) below.
Thus, the ¢ can be estimated by dividing
—p(1) by the natural frequency wp.

:‘)‘( Windowing effect

Windowing effect and
non-causal component
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iy || Uyrify
—0.5 fugullp?
N W
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@ (b)

The variable ‘zeta est’ returns the value ‘ 0.00999984523039" which is very close to the
truevalue ¢ = 0.01.

Example 4.5: Hilbert transform: frequency-modulated signal (see Equation (4.107))
X(t) = Accos(wct + AmSinwmt) = Ac cos (2 fet + A Sin2r ft)

For this example, the parameters Ac = 1, A = 4, f, = 1and f. = 8 are chosen.

Line MATLAB code Comments
1 clear all Note that we define a much finer time
2  Ac=1; Am=4; fm=1; fc=8; variable for a better approximation of
3 t=0:0.0001:4; the derivative (see Line 6 of the

MATLAB code).

4 x=Ac*cos(2*pi*fc*t + Am*sin(2* pi*fm*t)); Expression of the
frequency-modulated signal, x(t).




MATLAB EXAMPLES

109

5  a=hilbert(x); Create the analytic signal.
fx=diff(unwrap(angle(a)))./diff(t)/(2* pi); Compute the instantaneous frequency
inHz.
7 figure(l) Plot the instantaneous amplitude
8  plot(t, abs(a), t, x, 'g:"); axis([0 4 -1.5 1.5]) Ac(t).
9  xlabel('Time (9)"); ylabel ("\itA_x\rm(\itt\rm)") Note that the envelopeis
Aty ~ A= 1.
10 figure(2) Plot the instantaneous (unwrapped)
11 plot(t, unwrap(angle(@))); axis([0 4 0 220]) phase ¢y (t).
12 xlabel('Time (9)");
ylabel (\it\ phi_x\rm(\itt\rm)")
13 figure(3) Plot the instantaneous frequency,
14 plot(t(2:end),fx); axis([0 4 0 13]) where fy(t) = wy(t)/2r.
15  xlabel('Time (9)'); ylabel ("\itf _x\rm(\itt\rm)") Notethat fy(t) = fo+fmAm
cos2m ft =8+ 4cos27 - 1-t.
Results
15
Z
-05
15005 1 15 2 25 3 35 4
Time (s)
(®
200 12
10
150
= 8
< 100 S
4
50
2
0 : . . . : . : 0 : . . : : : :
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
Time (s) Time (s)
(b) ()
Example 4.6: Effects of windowing on the modulus of the Fourier transform
Case 1: Rectangular window (data truncation)
Consider the following signal with three sinusoidal components:
X(t) = Arsin2x fit + Ao sin2x fot + Agsin 2 fat
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Amplitudes are A; = A, = Az = 2, which gives the magnitude ‘1’ for each sinusoidal
component in the frequency domain. The frequencies are chosen as f; = 10, f, =20

and f3 = 2L
Line MATLAB code Comments

1 cleardl Define frequencies. The sampling rateis

2 f1=10; f2=20; f3=21; fs=60; chosen as 60 Hz.

3 T=0.6; % try different values: 0.6, 0.8, 1.0,  Define the window length 0.6s. In this

15,2,25,3,4 example, we use various lengths to
demonstrate the effect of windowing.

4 t=0:UfsT-1/fs; Define time variable from 0 to T-1/fs
seconds. The subtraction by 1/fsis
introduced in order to make ‘exact’ periods
of the sinusoids (see Chapter 6 for more
details of DFT properties).

5 x=2*sin(2*pi*fl*t) + Description of the above equation.

2*sin(2* pi*f2*t)+2* sin(2* pi* f3*1);

6 N=length(x); Perform DFT using the ‘fft’ function of

7 X=fft(x); MATLAB. Calculate the frequency variable

8 f=fs*(0:N-1)/N; (see Chapter 6).

9 Xz=fft([x zeros(1,2000-N)]); %zero padding Perform ‘2000-point’ DFT by adding zeros

10 Nz=length(X2z); at the end of the time sequence ‘x’. This

11 fz=fs*(0:Nz-1)/Nz; procedure is called the ‘ zero padding’ (see
the comments below). Calculate new
frequency variable accordingly.

12 figure(l) Plot the modulus of the DFT (from 0 to

13 stem(f(1:N/2+1), abs(X(1:N/24+-1)/fdT), 'r:')  fs/2Hz). Note that the DFT coefficients are

14 axis([03001.2]) divided by the sampling rate fsin order to

15 xlabel(‘Frequency (Hz)"); ylabel (‘M odulus) make its amplitude the same as the Fourier

16 hold on integral (see Chapter 6). Also note that,

17 plot(fz(1:Nz/2+1), abs(Xz(1:Nz/2+1)/fd/T)) sincethetimesignal is periodic, it is further

18 hold off; grid on divided by ‘T’ in order to compensate for its
amplitude, and to make it same as the
Fourier series coefficients (see Chapter 6
and Chapter 3, Equation (3.45)).
The DFT without zero padding is drawn as
the dashed stem lines with circles, and the
DFT with zero padding is drawn as a solid
line. Two graphs are drawn in the same
figure.

Comments:

1. Windowing with the rectangular window isjust the truncation of the signal (i.e. from
0to T seconds). The results are shown next together with MATLAB Example 4.7.

2. Zero padding: Padding ‘ zeros' at the end of the time sequence improves the appear-
ance in the frequency domain since the spacing between frequencies is reduced. In
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other words, zero padding in the time domain resultsin interpolation in the frequency
domain (Smith, 2003). Sometimes this procedure is called ‘spectral interpolation’.
As aresult, the appearance in the frequency domain (DFT) resembles the true spec-
trum (Fourier integral), thusit is useful for demonstration purposes. However, it does
not increase the ‘true’ resolution, i.e. does not improve the ability to distinguish the
closely spaced frequencies. Note that the actual resolvability in the frequency do-
main depends on the data length T and the window type. Another reason for zero
padding is to make the number of sequence a power of two to meet the FFT algo-
rithm. However, this is no longer necessary in many cases such as programming in

MATLAB.

Since zero padding may give awrong impression of the results, it isnot used in this
book except for some demonstration and special purposes.

Example 4.7: Effects of windowing on the modulus of the Fourier transform

Case 2: Hann window

In this example, we use the same signal as in the previous example.

Line MATLAB code Comments
1 cleardll Same as in the previous example.
2 f1=10; f2=20; f3=21, fs=60;
3 T=056;
% try different values: 0.6, 0.8, 1.0, 1.5, 2, 2.5, 3, 4
4  t=0:UfsT-1/fs
5 x=2*sin(2*pi*f1*t)4 2*sin(2*pi*f2*t)+
2*sin(2* pi*f3*t);
6 N=length(x);
7 whan=hanning(N); Generate the Hann window with
8 x=x.*whan; the same size of vector as x, and
9 X=fft(x); multiply by x. Then, perform the
10 f=fs*(0:N-1)/N; DFT of the windowed signal.
11 Xz=fft([x zeros(1,2000-N)]); % zero padding Same as in the previous example.
12 Nz=length(X2z);
13 fz=fs*(0:Nz-1)/Nz;
14 figure(l) Same as in the previous example,
15  stem(f(1:N/2+1), sort(8/3)* abs(X(1:N/2+1)/f9/T), 'r:")  except that the magnitude
16 axis([03001.2]) spectrum is multiplied by the
17  xlabel(‘Frequency (Hz)"); ylabel('Modulus)) scale factor ‘sgrt(8/3)" (see
18 holdon Equation (4.114)).
19 plot(fz(1:Nz/2+1), sgrt(8/3)* abs(Xz(1:Nz/2+-1)/f9T))
20 hold off; grid on
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Results of Examples 4.6 and 4.7
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Comments:

1. The 10 Hz component is included as a reference, i.e. for the purpose of comparison
with the other two peaks.

2. The solid line (DFT with zero padding) is mainly for demonstration purposes, and
the dashed stem line with circlesis the actual DFT of the windowed sequence. From
the results of the DFT (without zero padding), it is shown that the two sinusoidal
components (20Hz and 21 Hz) are separated after T = 2 for the case of arectangular
window. On the other hand, they are not completely separable until T = 4 if the Hann
window is used. This is because of its wider main lobe. However, we note that the
leakage is greatly reduced by the Hann window.

3. For the case of the Hann window, the magnitudes of peaks are underestimated even if
the scale factor is used. (Note that the main lobe contains more frequency lines than
in the rectangular window.)

4. However, for the case of the rectangular window, the peaks are estimated correctly
when the data length corresponds to exact periods of thesignal, i.e.when T =1,2,3
and 4. Note that the peak frequencies are located precisely in this case (seethe 21 Hz
component). Compare this with the other cases (non-integer T) and with MATLAB
Example 3.2 in Chapter 3.

Example 4.8: Comparison between therectangular window and the Hann window:
side roll-off characteristics

Consider the signal x(t) = Ay sin(2x fit) + Az sin(2x fot), where Ap > As. Inthisex-
ample, weuse A; = 1, A, = 0.001, f; =9, f, = 14, and thedata (window) length ‘T =
15.6 seconds'.

Line MATLAB code Comments

1 cleardl Define parameters and the time

2 f1=9; f2=14; fs=50; T=15.6; variable. ‘T=15.6" ischosen to

3 t=0:1fsT-1fs introduce some windowing effect.
The sampling rate is chosen as 50 Hz.

4  x=1*sin(2*pi*f1*t) + 0.001*sin(2* pi*f2*t); Expression of the above equation.

5  N=length(x); Create the Hann windowed signal xh,

6  whan=hanning(N); xh=x.*whan'; and then perform the DFT of both x

7 X=fft(x); Xh=fft(xh); and xh. Also, calculate the frequency

8  f=fs*(0:N-1)/N; variable.

9 figure(l) Plot the results: solid line for the

10 plot(f(1:N/2+1), 20*log10(abs(X (1:N/2+-1)/fs/T))); rectangular window, and the dashed

hold on line for the Hann window.

11 plot(f(1:N/24-1), 20*10g10(sqrt(8/3)*
abs(Xh(1:N/2+-1)/fs/T)),'r:")

12 axis([0 25-1800])

13  xlabel('Frequency (Hz)"); ylabel (‘"M odulus (dB)")

14 hold off
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Comments: The second frequency component is hardly noticeable with the rectangular
window owing to the windowing effect. But, using the Hann window, it becomes pos-
sible to see even a very small amplitude component, due to its good side lobe roll-off
characteristic.

Example 4.9: Comparison between the rectangular window and the Hann window
for atransient signal

Case 1: Response of a single-degree-of-freedom system
Consider the free response of a single-degree-of-freedom system

A A
t) = —e ‘'t sin(wgt) and F{x(t)} =
x(t) oC sin(wqt) and F{x(t)} o2~ + [2eamw

where wg = wny/1 — ¢2. In this example, we use A = 200, ¢ = 0.01, o, = 27 f, =
27 (20).

115

Line MATLAB code Comments

1 clear all The sampling rate is chosen as
2 fs=100; t=[0:V/fs:5-1/fg]; 100Hz. The time variable and
3 A=200; zeta=0.01; wn=2* pi* 20, other parameters are defined.

wd=sgrt(1-zeta"2)*wn;

4 X=(A/wd)* exp(-zeta* wn*t).* sin(wd*t); Expression of the time signal.

5 N=length(x); Create the Hann windowed

6 whan=hanning(N); xh=x.*whan’; signal xh, and then perform

7 X=fft(x); Xh=fft(xh); the DFT of both x and xh.

8 f=fs*(0:N-1)/N; Also, calculate the frequency
variable.

9 H=A./(wn"2 - (2*pi*f)."2 + i*2* zeta* wn* (2* pi*f)); Expression of the true Fourier

transform, F{x(t)}.
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10 figure(1) Plot the resultsin dB scale:
11 plot(f(1:N/2+1), 20*10g10(abs(X (1:N/2+1)/fs))); Solid line (upper) for the
hold on rectangular window, solid line
12 plot(f(1:N/2+1), 20*10g10(sart(8/3)* (lower) for the Hann window,
abs(Xh(1:N/2+1)/fs)), 'r") and dashed line for the ‘true’
13 plot(f(1:N/2+1), 20*1og10(abs(H(1:N/2+-1))), 'g:") Fourier transform.

14 axis([0 50 -150 0])
15 xlabel (‘"Frequency (Hz)"); ylabel (‘M odulus (dB)")

16 hold off

17 figure(2) Plot theresultsin linear scale:
18 plot(f(1:N/2+41), abs(X (1:N/2+1)/fs)); hold on underestimation of the

19 plot(f(1:N/2+1), (sort(8/3)* abs(Xh(1:N/2+1)/fs)), 'r')  magnitude spectrum by the
20 plot(f(1:N/2+1), abs(H(1:N/2+1)), 'g:") Hann window is more clearly
21 axis([05000.7]) seen.

22 xlabel ('Frequency (Hz)");
ylabel("Modulus (linear scale)')

23 hold off
Results
0 0.7
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/ window > RectangL_lIar_Wlndow
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3 7 Ele _~ (dashedline)
= -1001 E
8 02
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01k ann window
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@ (b)

Comments. Note that the magnitude spectrum is considerably underestimated if the
Hann window is used, because a significant amount of energy is lost by windowing.
Thus, in general, windowing is not applicable to transient signals.

Case 2: Response of a two-degree-of-freedom system, when the contributions of two
modes are considerably different. This exampleis similar to MATLAB Example 4.8.
Consider the free response of a two-degree-of-freedom system, e.g.

A . B .
X(t) = —e " sin(wgit) + —e 2" sin(wgat)
Wd1 Wd2

Then, its Fourier transform is

F{x(t)} = A + 5
wﬁl — ? + | 200me a)ﬁz — @? + | 2000n0
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Inthisexample, weuse A = 200, B = 0.001A, {1 = ¢ = 0.01, wp; = 27 (20) and wpp =
27 (30). Note that A > B.

Line MATLAB code Comments
1 clear al Same as Case 1, except that the
2 fs=100; t=[0:1/fs.5-1/fq)]; parameters for the second mode
3 A=200; B=0.001*A; zetal=0.01; zeta?2=0.01; are also defined.
4 wnl=2*pi*20; wdl=sgrt(1-zetal"2)*wnl;
5  wn2=2*pi*30; wd2=sqrt(1-zeta2"2)*wn2;
6  x=(A/wdl)*exp(-zetal*wnl*t).*sin(wd1*t) + Expression of the time signal, x(t).
(B/wd2)* exp(-zeta2* wn2*t).* sin(wd2*t);
7 N=length(x); Same as Case 1.
8 whan=hanning(N); xh=x.*whan';
9 X=fft(x); Xh=fft(xh);
10 f=fs*(0:N-1)/N;
11 H=A./(wn1"2-(2* pi*f)."2+i* 2* zetal*wn1* (2* pi*f)) Expression of the true Fourier
+ B./(wn2"2-(2* pi*f)."2+4i* 2* zeta2* wn2* (2* pi*f)); transform, F{x(t)}.
12 figure(l) Plot the results of the rectangular
13 plot(f(1:N/2+4-1), 20*10g10(abs(X (1:N/2+1)/fs))); window in dB scale: solid line for
hold on the rectangular window and
14 plot(f(1:N/2+1), 20*logl0(abs(H(1:N/2+1))), 'g:")  dashed line for the 'true’ Fourier
15 axis([050-60 Q) transform.
16 xlabel (‘"Frequency (Hz)"); ylabel (‘M odulus (dB)")
17 hold off
18 figure(2) Plot the results of the Hann
19 plot(f(1:N/2+1), 20*10g10(sqrt(8/3)* window in dB scale: solid line for
abs(Xh(1:N/2+1)/fs))) the Hann window, and dashed line
20  holdon for the ‘true’ Fourier transform.
21 plot(f(1:N/2+1), 20*1og10(abs(H(1:N/2+1))), 'g:")
22 axis([050-160 Q)
23 xlabel (‘"Frequency (Hz)"); ylabel (‘M odulus (dB)")
24 hold off
Results
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Comments: Similar to MATLAB Example 4.8, the second mode is clearly noticeable
when the Hann window is used, although the magnitude spectrum is greatly under-
estimated. Note that the second mode is ailmost negligible, i.e. B « A. So, it is almost
impossible to see the second mode in the true magnitude spectrum and even in the phase
spectrum as shown in Figure (c).

-05 i 4
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- True phase spectrum !
2 -15 - .
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& 2r : :
o 1
25 : 2nd mod |
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LY
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Frequency (Hz)
(c) Phase spectrum

Thereasonfor theseresultsisnot asclear asin MATLAB Example4.8 wherethetwo
sinusoids are compared. However, it might be argued that the convolution operation in
the frequency domain resultsin magnifying (or sharpening) the resonance region owing
to the frequency characteristic of the Hann window.
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Time Sampling and Aliasing

I ntroduction

So far, we have devel oped the Fourier transform of a continuous signal. However, we usually
utilizeadigital computer to perform thetransform. Thus, it is necessary to re-examine Fourier
methods so asto be able to transform sampled data. We would ‘hope’ that the discrete version
of the Fourier transform resembles (or approximates) the Fourier integral (Equation (4.6)),
such that it represents the frequency characteristic (within the range of interest) of the original
signal. In fact, from the MATLAB examples given in the previous chapter, we have already
seen that theresults of the discrete version (DFT) and the continuous version (Fourier integral)
appear to be not very different. However, there are fundamental differences between thesetwo
versions, and in this chapter we shall consider the effect of sampling, and relate the Fourier
transform of a continuous signal and the transform of a discrete signal (or a sequence).

5.1 THE FOURIER TRANSFORM OF AN IDEAL
SAMPLED SIGNAL

Impulse Train Modulation

We introduce the Fourier transform of a sequence by using the mathematical notion of
‘ideal sampling’ of a continuous signal. Consider a ‘train’ of delta functionsii (t) which
is expressed as

o0

i)=Y 8(t—na) (5.1)

N=—00

Fundamentals of Sgnal Processing for Sound and Vibration Engineers
K. Shinand J. K. Hammond. ~ © 2008 John Wiley & Sons, Ltd
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i.e. deltafunctions located every A seconds as depicted in Figure 5.1.
it)

firre

A

Figure5.1 Train of deltafunctions

Starting with acontinuoussignal x(t), anideal uniformly sampled discrete sequence
isx(nA) = x(t)|i=na evaluated every A seconds of the continuous signal x(t). Since the
sequence x(nA) is discrete, we cannot apply the Fourier integral. Instead, the ideally
sampled signal is often modelled mathematically as the product of the continuous sig-
nal x(t) with the train of delta functions i(t), i.e. the sampled signal can be written
as

Xs(t) = x(1)i(t) (52

The reciprocal of the sampling interval, fs = 1/A, is caled the sampling rate, which
is the number of samples per second. The sampling procedure can be illustrated as in
Figure 5.2.

X(t) i(t) Xs(t)

G R T

I \_/ i I

Figure5.2 Impulse train representation of a sampled signal

In this way we see that Xs(t) isan amplitude-modulated train of delta functions. We
also note that xs(t) is not the same as x(nA) since it involves delta functions. However,
it is a convenient step to help us form the Fourier transform of the sequence x(nA), as
follows. Let Xs( f) denote the Fourier transform of the sampled signal xs(t). Then, using
properties of the delta function,

Xs(f) = / [x(t) i a(t—nA)}e-izﬂﬂdt: i [/ x(t)e‘jz”ﬂ-s(t—nA)dt:|
= i x(nA)g12ra (5.3)

The summation (5.3) now involves the sequence x(nA) and is (in principle) computable. It
is this expression that defines the Fourier transform of a sequence. We are now in a position
to note some fundamental differences between the Fourier transform X(f) of the origina
continuous signal X(t) and Xs(f), the Fourier transform of the uniformly sampled version
Xx(nA).
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Note that Equation (5.3) implies that Xs(f) has a periodic structure in frequency with
period 1/A. For example, for an integer number r, Xg(f +r/A) becomes

o0 o0

Xs(f + r/A) — Z X(nA)e—jZTE(f-H/A)nA — Z X(nA)e—jZJTane—jZTrrn
N=—00 N=-—00
= > x(nA)e 1M = X(f) (5.4)
n=—00

This periodicity in frequency will be discussed further shortly. The inverse Fourier transform
of Xs(f) can be found by multiplying both sides of Equation (5.3) by ei?*f"2 and integrating
with respect to f from —1/2A to 1/2A (since Xs(f) is periodic, we need to integrate over
only one period), and taking account of the orthogonality of the exponential function. Then

1/2A 1/2A -
Xs(f)ejZNfl’Adf — / |: Z X(nA)e—jannA] eerrfrAdf
—1/2A —1/2A n=-00
™ 1724
o0
— Z / X(nA)eijraneerfrAdf
A R VN
1/2A
= D | x(a) / e 12N | =x(rA) L (55)
n=—e _1/2A

Thus, we summarize the Fourier transform pair for the ‘sampled sequence’ as below,
where we rename Xs( ) as X(el?7f2):

oo

X ™) = > x(nA)e 1z (5.6)
N=—00
1/2A
x(NA) = A / X(elZf2)el2rA g (5.7)
—1/2A

Note that the scaling factor A is present in Equation (5.7).

The Link Between X(el?*fA) and X(f)

At this stage, we may ask: ‘How is the Fourier transform of a sequence X(ei?"f2) related
to the Fourier transform of a continuous signal X(f)? In order to answer this, we need to
examine the periodicity of X(el2"f2) asfollows.

Note that i (t) in Equation (5.1) is a periodic signal with period A, thus it has a Fourier
series representation. Since the fundamental period Tp = A, we can write the train of delta
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functions as (see Equation (3.34))
i)=Y cpel?ma (5.8)
Nn=—00
where the Fourier coefficients are found from Equation (3.35) such that

AJ2

1 ; 1
Ch=— [ i(t)e 7 dt= = 5.9
AL 2 59
—AJ2

Thus, Equation (5.8) can be rewritten as

i(t):% i el2mnt/a (5.10)

N=—00

(Recall Equation (3.30) which is equivalent to this) Using the property of the delta
function ffooo gti2raldt — §(a), the Fourier transform of Equation (5.10) can be calculated
as

N=—00

I(f) F{I(t)}: / |:% Z ej2nnt/A:| e—jhﬂdtzi Z |:/ ej2ﬂnt/Ae—j2ﬂftdti|
n=—o00

—00 —0o0

1 & | 1 & n
_ = —j2(f—n/A)t S -
=2 n;w {/ e dt:| =< n;ooa(f A) (5.11)
Thus, the Fourier transform of the train of delta functions can be drawn in the frequency
domain asin Figure 5.3.

Since the Fourier transform of xs(t) resultsin the convolution of X(f) with I (f) inthe
frequency domain, i.e. Xg(f) = F{x(t)i(t)} = X(f)* I (f), it followsthat

o0 [e¢]
o]

X(f) = 10 x(N = [ 1@X(F-gdg= [ £+ Y 5(3-7)X( g

nN=—00
—00

:%nio [/8(9—%)x(f—g)dg} =%n§;®X(f—%) (5.12)
1(f)
YA

SRR R

2/ -YA | YA 2/A

Figure5.3 Fourier transform of thetrain of delta functions
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This gives an alternative form of Equation (5.6), whichis

o0

jorfay _ L _n
X8 = n;oo x(f-%) (5.13)
This important equation describes the relationship between the Fourier transform of a
continuous signal and the Fourier transform of a sequence obtained by ideal sampling
every A seconds. That is, the Fourier transform of the sequence x(nA) isthe sum of shifted
versions of the Fourier transform of the underlying continuous signal. Thisreinforcesthe
periodic nature of X(el?*f2). Note also that the ‘scaling’ effect 1/A, i.e. the sampling
rate fs = 1/A, isamultiplier of the sumin Equation (5.13).

So, the ‘sampling in the time domain’ implies a‘ periodic and continuous structure
in the frequency domain’ as illustrated in Figure 5.4. From Equation (5.6), it can be
seen that Xs(fs — f) = XZ(f), where * denotes complex conjugate. This is confirmed
(for the modulus) from Figure 5.4. Thus, all the information in Xs(f) liesin the range
0 < f < fs/2. Thisfigure emphasizes the difference between X( f) and X(ei?*f2), and
leads to the concept of ‘aiasing’, which arises from the possible overlapping between
the replicas of X(f). Thiswill be discussed further in the next section.

A\x (eiZ”fA)\

|
A R

24

Figure5.4 Fourier transform of the sampled sequence

An Alternative Route to the Derivation of the Fourier Transform
of a Sequence

The z-transform

The expression for the Fourier transform of a sequence, Equation (5.6), can also be obtained
viathe ztransform of a sequence. The z-transform iswidely used in the solution of difference
equations, just as the Laplace transform is used for differential equations. The definition of
the z-transform X(2) of a sequence of numbers x(n) is

X@= > x(mz™" (5.14)

nN=—00
where z is the complex-val ued argument of the transform and X(2) is afunction of acomplex
variable. In Equation (5.14), the notion of time is not explicitly made, i.e. we write x(n) for
x(nA). It is convenient here to regard the sampling interval as set to unity. Since zis complex,
it can be written in polar form, i.e. using the magnitude and phase such that z = rel®, and is
represented in acomplex plane (polar coordinates) as shownin Figure5.5(a). If thisexpression
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Im(z2) Im(z)

w > Re(z) \\)j > Re(z)

z-plane z-plane )
(a) Representation of the z-plane  (b) Relationship between X (z) and X (L)

Figure5.5 Representation of the z-plane and the Fourier transform of a sequence

is substituted into Equation (5.14), it gives
X(rel”) = Y x(n)rel) "= > x(n)r e ien (5.15)

nN=-—00 nN=-—00
If we further restrict our interest to the unit circleinthe z-plane, i.e.r = 1,50z = el® = el?*f,
then Equation (5.15) is reduced to

oo
X = 3" x(nye Iz (5.16)
N=—00

which is exactly same form for the Fourier transform of a sequence as given in Equation (5.6)
for sampling interval A = 1.

Thus, it can be argued that the evaluation of the ztransform on the unit circle in the
z-planeyieldsthe Fourier transform of asequence asshownin Figure 5.5(b). Thisisanalogous
to the continuous-time case where the Laplace transform reduces to the Fourier transform if
it is evaluated on theimaginary axis, i.e. s = jw.

Relationship Between the Laplace Transform and the z-transform
To seethe effect of sampling on the z-plane, we consider the relationship between the Laplace
transform and the z-transform. The Laplace transform of x(t), L{x(t)}, is defined as

X(s) = / x(t)e Stdt (5.17)
wheres = o + j2n f isacomplex variable. Notethatif s = j2r f, then X(f) = X(S)ls=j2xt-
Now, let X(s) be the Laplace transform of an (ideally) sampled function; then

X(s) = L{x(t)i(t)} = / x(t) i 8(t —nA)e St

00 o0

= { / x(t)e‘S‘(S(t—nA)dtj| = > x(nA)e™ (5.18)

N=—00 N=—00
—00
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If z= €%, then Equation (5.18) becomes the z-transform, i.e.

X(9)],en = Y X(NA)Z" = X(2) (5.19)
nN=—00
Comparing Equation (5.19) with Equation (5.6), it can be shown that if z = e/?f2  then
X (@ 2) = X(2)|,—eizrta (5.20)

Also, using the similar argument made in Equation (5.13), i.e. using

o0

1 -
i j2rnt/A
i(t) = E e

n=—00

an alternative form of 5((3) can be written as

. ro1 & 12| 7 .
X(s) = / X(t)Z Z er””‘/Ae‘Stdt=K Z |:/ x(t)e‘(s‘lz””/A)tdt:| (5.21)

Nn=—00 Nn=—00

Thus,
N 1 & j27n
X(s) = — X|(s— 22
©=3 > (s . ) (5.22)

From Equation (5.22), we can see that X(s) is related to X(s) by adding shifted ver-
sions of scaled X(s) to produce X(s) as depicted in Figure 5.6(b) below, which is similar
to the relationship between the Fourier transform of a sampled sequence and the Fourier
transform.

Note that, as we can see from Equation (5.19), X(2) is not directly related to X(s), but
it is related to X(s) viaz = €. Further, if we let s = j27f, then we have the following
relationship:

Xs(f) (= X(@71%)) = X(s)| = X(2)lz=eiert (5.23)

s=j2rf
The relationships between X(s), 5((3) and X(z) areillustrated in Figure 5.6. In this figure, a
pole is included in the s-plane to demonstrate how it is mapped to the z-plane. We can see
that a single pole in the X(s)-plane results in an infinite number of poles in the X(s)-plane;
then thisinfinite series of polesall map onto asingle polein the X(z)-plane. In effect, the left
hand side of the s-plane is mapped to the inside of the unit circle of the z-plane. However, we
must realize that, due to the sampling process, what it maps onto the z-plane is not X(s), but
5((3), and each ‘strip’ in the left hand side of 5((5) is mapped onto the z-plane plane such that
it fillsthe complete unit circle. Thisindicatesthe ‘periodic’ structure in the frequency domain
aswell as possible aliasing in the frequency domain.

The above mapping process is sometimes used in designing an |IR (Infinite Impulse
Response) digital filter from an existing analogue filter, and is called the impul se-invariant
method.
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(a) Analogue (continuous-time) domain:

X ()= X ()| jors Im(s) = j2z f

L Mree XO

L exo

! f=0

3 ez > Re(s)
i IR -
Is-plane

(b) Laplace transform of a sampled function:

Im(s)
! X(s) =+ ZX( 12’”‘]
""""" XA Ko A=
""""" O [Ny
y:< I 5 Re(s)
......... 7
--------- )i(—-- B ]
(c) Digital (discrete-time) domain:
|X(ejzzrfA) = X(Z)‘z:ei”m| Im(z) X(2) = )Z(S)‘
'y - 7=SA
X(ejZI!fA)\ /H 1
f=+1f/2, £3f/2,.. f =0, + f,(=1/A), £2f;,

Re(z)

z-plane

Figure5.6 Relationship between s-plane and z-plane

5.2 ALIASING AND ANTI-ALIASING FILTERSY51753

Asnotedinthe previoussection, Equation (5.13) describeshow thefrequency components
of the sampled signal arerelated to the Fourier transform of the original continuoussignal .
A pictorial description of the sampling effect follows. Consider the Fourier transform that
has X(f) = Ofor | f| > fy, asgivenin Figure5.7.
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X(f)

! » f
-f, f,

Figure5.7 Fourier transform of a continuous signal such that X(f) = Ofor | f| > fy

Assuming that the sampling rate fs = 1/A issuchthat fs > 2fy,i.e. fy < 1/2A,
then Figure5.8 showsthe corresponding (scaled) Fourier transform of asampled sequence
A - Xs(f) (or A - X(el?772)). Note that the scaling factor A is introduced (see Equa-
tion (5.13)), and some commonly used terms are defined in the figure. Thus A - Xs(f)
accurately represents X(f) for | f| < 1/2A.

A-X (€24 Nyquist

A frequency Nyquist rate
> f

1 1-fy fy 1 2f, 1
— = f; (sampling rate
N “ox A (sampling rate)

2A
\ Folding frequency (f/2)

Figure5.8 Fourier transform of a sampled sequence fs > 2fy

Suppose now that fs < 2 fy. Then thereisan overlapping of the shifted versions of
X(f) resulting in adistortion of the frequenciesfor | f| < 1/2A asshownin Figure5.9.

A-X (e jZIIfA)

T y T % t = t
1_f fof, 1 2
-—""H S H Z(=f £
A 2 A( )

Figure5.9 Fourier transform of a sampled sequence fs < 2fy

This ‘distortion’ is due to the fact that high-frequency components in the signal
are not distinguishable from lower frequencies because the sampling rate fs is not high
enough. Thus, it is clear that to avoid this distortion the highest frequency in the signal
fy should belessthan fs/2. Thisupper frequency limit is often called the Nyquist frequency
(see Figure 5.8).

Thisdistortionisreferred to asaliasing. Consider the particular case of aharmonic wave
of frequency pHz, e.g. cos(2r pt) asin Figure 5.10. We samplethissignal every A seconds, i.e.
fs = 1/A (with,say, p < fs/2),toproducethesampled sequencecos(2r pnA). Now, consider
another cosine wave of frequency (p + 1/A)Hz, i.e. cog[2x(p + 1/A)t]; again we sample
this every A seconds to give cos[2r(p + 1/A)nA] which can be shown to be cos(2z pnA),
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?9 S /cos[Zﬁ( p+1/A)t]
cos(27zpt)

A

Figure5.10 Illustration of the aliasing phenomenon

identical to the above. So, simply given the sample values, how do we know which cosine
wave they come from?

In fact, the same sample values could have arisen from any cosine wave hav-
ing frequency £p+ (k/A) (k=1, 2, ...), i.e. cos(2rpnA) is indistinguishable from
cog 27 (+p + k/A)nA]. So if afrequency component is detected at pHz, any one of these
higher frequencies can be responsible for this rather than a ‘true’ component at pHz. This
phenomenon of higher frequencies looking like lower frequenciesis called aliasing. The val-
ues +p + k/A are possible aliases of frequency pHz, and can be seen graphically for some
pHz between 0 and 1/2A by ‘pleating’ the frequency axis as shown in Figure 5.11 (Bendat
and Piersol, 2000).

Figure5.11 Possible aliases of frequency pHz

To avoid dliasing the signal must be band-limited, i.e. it must not have any frequency
component above a certain frequency, say fy, and the sampling rate must be chosen to
be greater than twice the highest frequency contained in the signal, namely

fo > 2fy (5.24)

So, it would appear that we need to know the highest frequency component in the signal.
Unfortunately, in many cases the frequency content of asignal will not be known and so
the choice of sampling rateis problematic. The way to overcome this difficulty isto filter
the signal before sampling, i.e. filter the analogue signal using an analogue low-pass
filter. Thisfilter is often referred to as an anti-aliasing filter.

Anti-aliasing Filters

In general, the signal x(t) may not be band-limited, thus aliasing will distort the spectral
information. Thus, we must eliminate ‘undesirable’ high-frequency components by applying
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A ..
[H() Transition — «poj1off* of the filter
\&region
“Passband ‘<‘Stopban'd
» f
fe fstopz fy

(cut-off frequency)

Figure5.12 Typical characteristics of alow-pass filter

an anti-aliasing low-pass filter to the analogue signal prior to digitization. The ‘anti-aliasing’
filter should have the following properties:

o flat passband;

e sharp cut-off characteristics,

e |ow distortion (i.e. linear phase characteristic in the passband);

e multi-channel analysers need a set of parallel anti-aliasing filters which must have matched
amplitude and phase characteristics.

Filters are characterized by their frequency response functions H(f), e.g. as shown in
Figure 5.12.
Some typical anti-aliasing filters are shown in Figure 5.13.

2
[H ()|
A
1 4
2 1
H(@)|"=——x
14| @ Half power0 5
@, (-3dB)
(N is the order of the filter, and w=2rxf) 0
> @
(a) Butterworth low-pass filter
H(w)f Ripple H (o)}
1 / Typel 1 1 Type Il
equiripple passband monotonic passhand
Half power monotonic stopband equiripple stopband
P s (REEEEES 0.5]-------------
(-3dB)
— Fast cut-off
0+ - > 0 0 > @

(UC
(b) Chebychev low-pass filter

@

Figure5.13 Some commonly used anti-aliasing low-pass filters
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We shall assume that the anti-aliasing filter operates on the signal x(t) to produce a
signal to be digitized asillustrated in Figure 5.14.

X(t) | Anti-aliasing filt x(nA)
nti a:lzlfn)g 1ter, > ADC

Figure5.14 The use of anti-aliasing filter prior to sampling

But we still need to decide what the highest frequency fy isjust prior to the ADC
(analogue-to-digital converter). The critical featuresin deciding this are:

e the ‘cut-off’ frequency of thefilter f, usually the f. (Hz) = 3dB point of the filter;

e the ‘roll-off rate’ of thefilter in dB/octave (B in Figure 5.15);

e the'dynamicrange’ of theacquisition systemin dB (Ain Figure5.15). (Dynamic range
is discussed in the next section.)

These terms and the effect of sampling rate are depicted in Figure 5.15. Note that, in this
figure, if fs > 2fgop(~ 2fy) thereisno aliasing, andif fs > 24 thereisno aliasing up
to f.. Also notethat it is not the 3dB point of the filter which should satisfy the Nyquist
criterion. But at the Nyquist frequency the filter response should be negligible (e.g. at
least 40 dB down on the passband).

H(f) log, ( .,/ f.) in octaves ot
< > sT AT c
Filter gain Roll-off; —* .’ .‘,:"‘:.k_fs:Zfstop
(48) B (dB/octave) / & Dynamic range: A (dB)
b o | R — f
Passhand ¢ fafs fop = fu fs
2 *Noise floor

Figure5.15 Characteristics of the anti-aliasing filter

If the spectrumistobeused upto f. Hz, thenthefigureindicateshow fgischosen. Using
simple trigonometry,

A

_m = —B (dB/octave) (5.25)

Note that if B is dB/decade, then the logarithm is to base 10. Some comments on the octave
are: if f, =2"f;, thenf, is‘n’ octaves; thus, log, f» = n+log, f; and log, f, — log, f1 =
log,( f2/ f1) = n (octaves).

From Equation (5.25), it can be shown that fsop = 2B f.. Substituting this expression
into fs > fsop + fc, which is the condition for no diasing up to the cut-off frequency f.
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(see Figure 5.15), then we have the following condition for the sampling rate:

| fo > fo(1+2Y8) ~ t(1+ 10°34/B) | (5.26)

For example, if A= 70dB and B = 70dB/octave, then fs > 3f;, and if A= 70dB and B =
90dB/octave, then fs > fo(1+ 279%) ~ 2.7f.. However, the following practical guide
(which is based on twice the frequency at the noise floor) is often used:

fs = 2fgop(~ 2f1y) ~ 2 x 10°3A/B f (5.27)

For example, if A = 70dB and B = 90dB/octave, then fs ~ 3.42f., which gives a more
conservative result than Equation (5.26).

Ingeneral, the cut-off frequency f. and theroll-off rate of theanti-aliasing filter should be
chosen with the particular applicationin mind. But, very roughly speaking, if the 3dB point of
thefilter isaquarter of the sampling rate fs and theroll-off rate better than 48 dB/octave, then
thisgivesa40to 50 dB reductioninthefolding frequency fs/2. Thismay resultinanacceptable
level of aliasing (though we note that this may not be adequate for some applications).

Choosing an appropriate sampling rate is important. Although we must avoid aliasing,
unnecessarily high sampling rates are not desirable. The ‘optimal’ sampling rate must be se-
lected according to the specific applications (the bandwidth of interest) and the characteristics
of the anti-aliasing filter to be used.

Thereisanother very important aspect to note. If the sampled sequence x(nA) issampled
again (digitally, i.e. downsampled), the resulting sequence can be aliased if an appropriate
anti-aliasing ‘digital’ low-pass filter is not applied before the sampling. Thisis demonstrated
by MATLAB Examples 5.2 and 5.3. Also note that aliasing does occur in most computer
simulations. For example, if anumerical integration method (such asthe Runge-Kuttamethod)
isapplied to solve ordinary differential equations, in this case thereis no simple way to avoid
the aliasing problem (see comments of MATLAB Example 6.5 in Chapter 6).

5.3 ANALOGUE-TO-DIGITAL CONVERSION AND
DYNAMIC RANGE

An ADC is adevice that takes a continuous (analogue) time signal as an input and produces
a sequence of numbers (digital) as an output that are sample values of the input. It may be
convenient to consider the ADC process as consisting of two phases, namely sampling and
quantization, as shown in Figure 5.16.

Note that actual ADCsdo not consist of two separate stages (asin the conceptual figure),
and variousdifferent typesare available. In Figure 5.16, x(nA) isthe exact value of timesignal
X(t) attimet = nA, i.e. it isthe ideally sampled sequence with sasmple interval A. X(nA) is

Figure5.16 Conceptual model of the analogue-to-digital conversion
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the representation of x(NA) on acomputer, and is different from x(nA) since a *finite number
of bits' are used to represent each number. Thus, we can expect that some errors are produced
in the quantization process.

Now, consider the problem of quantization, in Figure 5.17.

X(NA) —— | Quantizer |——— X(nA)

Figure5.17 Quantization process

Suppose the ADC represents a number using 3 bits (and a sign bit), i.e. a4 bit ADC as
givenin Figure 5.18.

Sign bit —/—
Digital word

Figure5.18 A digital representation of a4 bit ADC

Each bit is either 0 or 1, i.e. two states, so there are 2° = 8 possible states to represent a
number. If the input voltage range is £10 volts then the 10 volts range must be allocated to
the eight possible states in some way, as shown in Figure 5.19.

Digital ¥(nh)

representation 4
011

010
010 (=20/8) ;

001
001 (=10/8) + =i

b, oo & > X(NA
25 15 58 [ 5 15 25 > X(n4)

s 8 _8 |8 8 8 Input voltage

Figure5.19 Digital representation of an analogue signal using a4 hit ADC

In Figure 5.19, any input voltage between —5/8 and 5/8 volts will be represented by
the bit pattern [000], and from 5/8 to 15/8 volts by [010], etc. The rule for assigning the bit
pattern to the input range depends on the ADC. In the above example the steps are uniform
and the ‘error’ can be expressed as

e(nA) = X(nA) — x(nA) (5.28)

Not that, for the particular quantization process given in Figure 5.19, the error e(nA) has
values between —5/8 and 5/8. This error is called the quantization noise (or quantization
error). Fromthisitisclear that ‘small’ signalswill be poorly represented, e.g. within theinput
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voltage range of +10 volts, a sine wave of amplitude 4-1.5 volts, say, will be represented by
the 4 bit ADC as shown in Figure 5.20.

X(nA)
Quantized signal: X(nA) = x(nA) +e(nA)

Figure’5.20 Example of poor digital representation

What will happen for a sine wave of amplitude +10 volts and another sine wave of
amplitude +11 volts? The former corresponds to the maximum dynamic range, and the latter
signal will be clipped.

Details of quantization error can befound in various references (Oppenheim and Schafer,
1975; Rabiner and Gold, 1975; Childers and Durling, 1975; Otnes and Enochson, 1978).
A brief summary is given below. The error e(nA) is often treated as random ‘noise’. The
probability distributions of e(nA) depend on the particular way in which the quantization
occurs. Often it is assumed that this error has a uniform distribution (with zero mean) over
one quanti zation step, and is stationary and ‘ white' . The probability density function of e(nA)
isshown in Figure 5.21, where § = X/2° for ab bit word length (excluding the sign bit), and
X (volts) corresponds to the full range of the ADC. Note that § = 10/2° = 10/2% = 10/8 in
our example above. The variance of e(nA) isthen

00 5/2
1
Var(e) =02 = [ (e—pe)’ple)de= = [ €de
_ §2 _ (X/zb)Z
= ==L (5.29)

where e isthe mean value of e(nA). (See Chapter 7 for details of statistical quantities.)
p(e)

A

SO

-8/2 0 §)2
Figure5.21 Probability density function of e(nA)

Now, if we assume that the signal x(t) is random and o2 isthe variance of x(nA), then a
measure of signal-to-noise ratio (SNR) is defined as

: 2
5 = 10log;o (M> = 10log;o (a—xz) (for zero mean) (5.30)

error power (o
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where ‘signal power’ is Average[x?(nA)] and ‘error power’ or the quantization noise is
Average[e?(nA)]. This describes the dynamic range (or quantization signal-to-noise ratio)
of the ADC. Since we assume that the error is random and has a uniform probability density
function, for the full use of the dynamic range of ADC with b bit word length, e.g. ox = X,
Equation (5.30) becomes

S
N = 10104 (07 /02) = 10logy[12X?/(X/2°)?]

= 10log;,(12 x 2%°) ~ 10.8 4 6bdB (5.31)

For example, a12 bit ADC (11 bit word length) has a maximum dynamic range of about
77 dB. However, we note that this would undoubtedly result in clipping. So, if we choose
ox = X/4t0 ‘avoid’ clipping, then the dynamic rage is reduced to

S
N = 10log,o(02/02) ~ 6b — 1.25dB (5.32)

In this case, a 12 bit ADC gives a dynamic range of about 65dB. This may be reduced
further by practical considerations of the quality of the acquisition system (Otnes and
Enochson, 1978). For example, the sampler in Figure 5.16 cannot be realized with a
train of delta functions (thus producing aperture error and jitter). Nevertheless, it is
emphasized that we must avoid clipping but always try to use the maximum dynamic
range.

54 SOME OTHER CONSIDERATIONSIN SIGNAL ACQUISITION

Signal Conditioning

We have already noted that signals should use as much of the ADC range as possible — but
without overloading — or clipping of the signal will occur. *Signal conditioning’ refersto the
procedures used to ensure that ‘ good data’ are delivered to the ADC. Thisincludesthe correct
choi ce of transducer and its operation and subsequent mani pul ation of the databeforethe ADC.

Specifically, transducer outputs must be ‘ conditioned’ to accommodate cabling, environ-
mental considerations and features of the recording instrumentation. Conditioning includes
amplification and filtering, with due account taken of power supplies and cabling. For exam-
ple, some transducers, such as strain gauges, require power supplies. Considerations in this
caseinclude: stability of power supply with little ripple, low noise, temperature stability, low
background noise pick-up, low interchannel interference, etc.

Amplifiers: Amplifiers are used to increase (or attenuate) magnitudesin a calibrated fashion;
transform signals from one physical variable to another, e.g. charge to voltage; remove d.c.
biases; provide impedance matching, etc. The most common types are voltage amplifier,
charge amplifier, differential amplifier, preamplifier, etc. In each case, care should be taken
to ensure linearity, satisfactory frequency response and satisfactory ‘slew rate’ (i.e. response
to maximum rate of rise of asignal). In any case, the result of amplification should not cause
‘overload’” which exceeds the limit of input (or output) range of a device.
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Filters: Filters are used to limit signal bandwidth. Typically these are low-pass filters (anti-
aliasing filters), high-pass filters, band-pass filters and band-stop filters. (Note that high-pass
and band-stop filters would need additional low-pass filtering before sampling.) Most filters
hereare‘analogue’ electronic filters. Sometimes natural ‘ mechanical filtering’ isvery helpful.

Cabling: Cabling must be suited totheapplication. Considerationsare cablelength, impedance
of cable and electronics, magnetic and capacitive background noise, environment, interfer-
ences, transducer type, etc.

Triboel ectric noise (static el ectricity) isgenerated when acoaxial cableisused to connect
a high-impedance piezoelectric transducer to a charge amplifier, and undergoes mechanical
distortion. Grounding must be considered. Suitable common earthing must be established
to minimize electromagnetic interference manifesting itself as background noise. Shielding
confines radiated el ectromagnetic energy.

Note that none of the considerations listed above is ‘less important’ to obtain (and generate)
good data. A coupleof practical examplesare demonstrated bel ow. First, consider generating a
signal using acomputer to excite a shaker. The signal must pass through a digital-to-analogue
converter (DAC), a low-pass filter (or reconstruction filter) and the power amplifier before
being fed into the shaker. Note that, in this case, it isnot only the reconstruction filter, but also
the power amplifier that is afilter in some sense. Thus, each device may distort the original
signal, and consequently the signal which the shaker receives may not properly represent
the origina (or intended) signal. The frequency response of the power amplifier in particular
should be noted carefully. Most power amplifiers have a band-limited frequency response
with areasonably high enough upper frequency limit suitable for general sound and vibration
problems. However, some have a lower frequency limit (as well as the upper limit), which
acts as a band-pass filter. This type of power amplifier can distort the signal significantly if
the signal contains frequency components outside the frequency band of the amplifier. For
example, if atransient signal such asahalf-sine pulseisfed to the power amplifier, the output
will be considerably distorted owing to the loss of energy in the low-frequency region. This
effectisshownin Figure5.22, whereahalf-sinewaveisgenerated by acomputer and measured
before and after the power amplifier which has alower frequency limit.

Power amplifier
(with a lower frequency limit)

Half-sine wave Distorted response

Figure5.22 Example of distortion due to the power amplifier

As another practical example, consider the beam experimental setup in Chapter 1
(Figure 1.11). In Figure 1.11, &l the cables are secured adequately to minimize additional
dynamic effects. Note that the beam is very light and flexible, so any excessive movement and
interference of the cables can affect the dynamics of the beam. Now, suppose the cable
connected to the accelerometer is loosely laid down on the table as shown in Figure 5.23.
Then, the movement of the beam causes the cable to slide over the table. This results in ad-
ditional friction damping to the structure (and a so possibly additional stiffness). The system
frequency response functions for each case are shown in Figure 5.24, where the effects of this
cable interference are clearly seen.
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Figure5.23 Experiment with cable interference
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Figure5.24 FRF of the system with/without cable interference

Data Validation

As demonstrated in the above experimental results, every possible effort should be made
early in any experiment to ensure good data are captured. Data validation refers gener-
aly to the many and varied checks and tests one may perform prior to ‘serious’ signal
processing. This will occur at both analogue and digital stages. Obviously it would be
best always to process only ‘perfect’ signals. This ideal is impossible and a very clear
understanding of any shortcomingsin the datais vital.

A long list of itemsfor consideration can be compiled, some of which areasfollows:

e Most signalswill berecorded, evenif somereal-time processing iscarried out. |dentify
any physical events for correlation with data.

e |nspect time histories critically, e.g. if periodic signals are expected, check for other
signals such as noise, transients.

e Ensure non-stationary signals are adequately captured and note any changing ‘ physics
that might account for the non-stationarity.
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Check for signal clipping.

Check for adequate signal levels (dynamic range).

Check for excessive background noise, sustained or intermittent (spikes or bursts).
Check for power line pick-up.

e Check for spurious trends, i.e. drifts, d.c. offsets.

e Check for signal drop-outs.

e Check for ADC operation.

e Check for aiasing.

¢ Always carry out some sample analyses (e.g. moments, spectra and probability densi-
ties, etc; these statistical quantities are discussed in Part |1 of this book).

55 SHANNON'S SAMPLING THEOREM (SIGNAL RECONSTRUCTION)

This chapter concludes with a look at digital-to-analogue conversion and essentially starts
from the fact that, to avoid aiasing, the sampling rate fs should be greater than twice the
highest frequency contained in the signal. This begs a fundamental question: isit possible to
reconstruct the original analogue signal exactly from the sample values or hasthe information
carried by the original analogue signal been lost? Aslong asthereisno aliasing, we canindeed
reconstruct the signal exactly and this introduces the concept of an ideal digital-to-analogue
conversion. Thisis simple to understand using the following argument.

Recall thepictorial representation of the Fourier transformsof acontinuoussignal x(t) and
its sampled equivalent x(nA), i.e. X( ) and X(el?"2) respectively, as shown in Figure 5.25.
The figure shows the situation when no aliasing occurs. Also, note the scale factor.

X(f)

A-X (ejzzrfA)

|

A P T A
2 2

v
—_

Figure5.25 Fourier transforms; X(f) and X(el?*'2)

In digital-to-anal ogue conversion, wewant to operate on x(nA) (equivalently X(el?7F2))
to recover x(t) (equivalently X(f)). Itisclear that to achieve this we simply need to multiply
X(el?72) by afrequency window function H(f), where

H(f)=A(=1/f) —fs/2<f < f5/2
(f) ( / s) s/2<f < fg/ (5.33)
=0 elsawhere
Then

X(f) = H(f)X(eZ"2) (5.34)
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Taking the inverse Fourier transform of this gives

x(t) = h(t)  x(nA) (5.35)
where
h(t) = SN fst (5.36)
7 fst

Note that Equation (5.35) is not a mathematically correct expression. Thus, using the ex-
pression for X(NA) as xs(t) = x(t)i (t) wherei(t) = > o-__ 8(t — nA), then Equation (5.35)
becomes

—00

X(t) = h(t) % Xs(t) = f [Sj;’f’;sf i X(t — 7)8(t — nA — r)i|dr

—00

oo

i {/ Szjfr f:’x(t — )8t —nA — r)dtj|

n=—00
—00

> sinmfs(t — nA)
> x(nA)m (5.37)

nN=—00

i.e. the ‘ideal’ interpolating function is the sinc function of the form sinx/x. Equation
(5.37) can be depicted as in Figure 5.26 which shows how to reconstruct x(t) at time t
that requires the infinite sum of scaled sinc functions.

R sinz f; (t—nA)
x(t) = n;mx(nA) o) \ x(nA)

/ x(nA)sinﬂfs(t—nA)
'

Th(t-na) o

Figure5.26 Graphical representation of Equation (5.37)

Note that, with reference to Figure 5.25, if the highest frequency component of the
signal is fy then the window function H(f) need only be A for |f| < fy and zero
elsewhere. Using this condition and applying the arguments above, the reconstruction
algorithm can be expressed as

_ = 2fH gnZﬂfH(t—nA)
X =) x(na)— 27 fa(t —nA)

nN=—00

(5.39)

Thisresult is called Shannon’s sampling theorem.

Thisideal reconstruction algorithmisnot fully realizabl e owing to theinfinite summation,
and practical digital-to-analogue converters (DACs) aremuch simpler — notably the zero-order
hold converter. Typical digital-to-analogue conversion using the zero-order hold is shown in
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Zero-order hold X(t) Low-pass _
X(n4) ——> DAC — filter — X0
x(nA) K(t) X(t) = x(t)
T,n,’ TT= !TT= ,_}J_—L| o~ *\ ‘
e 18 NI G | >

Figure5.27 Reconstruction of asignal using a zero-order hold DAC

Figure 5.27. The zero-order hold DAC generates a sequence of rectangular pulses by holding
each sample for A seconds. The output of the zero-order hold DAC, however, inevitably
contains a large amount of unwanted high-frequency components. Thus, in general, we need
alow-pass filter to eliminate these high frequencies following the DAC. This low-pass filter
is often called the reconstruction filter (or anti-imaging filter), and has asimilar (or identical)
design to the anti-aliasing low-pass filter. The cut-off frequency of the reconstruction filter is
usually set to half the sampling rate, i.e. fs/2.

Note that not only does the zero-order hold DAC produce undesirable high frequencies,
but also its frequency response is no longer flat in both magnitude and phase (it has the shape
of a sinc function). Thus the output signal X(t) has reduced amplitude and phase change in
its passband (frequency band of the original (or desired) signal x(t)). To compensate for this
effect, a pre-equalization digital filter (before the DAC) or post-equalization analogue filter
(after the reconstruction filter) is often used. Another method of reducing this effect is by
‘increasing the update rate’ of the DAC. Similar to the sampling rate, the update rate is the
rate at which the DAC updatesits value.

For example, if we can generate a sequence X(nA) in Figure 5.27 such that 1/ A is much
higher than f (the highest frequency of the desired signal x(t)), and if the DAC is capable
of generating the signal accordingly, then we have amuch smoother analogue signal X(t), i.e.
X(t) ~ X(t). Inthis case, we may not need to use the reconstruction filter. In effect, for agiven
band-limited signal, by representing X(t) using much narrower rectangular pulses, we have
the frequency response of the DAC with flatter passband and negligible high-frequency side
roll-off of the sinc function (note that the rectangular pulse (or asinc function in the frequency
domain) can be considered as a crude low-passfilter). Since many modern DAC devices have
an update rate of 1IMHz or above, in many situations in sound and vibration applications, we
may reasonably approximate the desired signal simply by using the maximum capability of
the DAC device.

5.6 BRIEF SUMMARY

1. The Fourier transform pair for a sampled sequence is given by

1/2A N
X(nA) — A / x(ejZHfA)ejZT!andf and X(ejanA) — Z X(nA)e—jannA
—1/2A W==e2

In this case, the scaling factor A isintroduced.
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2. Therelationship between the Fourier transform of acontinuous signal and the Fourier
transform of the corresponding sampled sequence is

jortay _ 1§ o
X(e )= An;oox(f A)
i.e. X(e/?*72) is a continuous function consisting of replicas of scaled X(f), and is
periodic with period 1/A. This introduces possible aiasing.

3. Toavoidaliasing, an‘analogue’ |ow-passfilter (anti-aliasing filter) must be used before
the anal ogue-to-digital conversion, and the sampling rate of the ADC must be high
enough. In practice, for a given anti-aliasing filter with aroll-off rate of B dB/octave
and an ADC with a dynamic range of AdB, the sampling rate is chosen as

fo & 2 x 1003A/B £

4. To obtain ‘good’ data, we need to use the maximum dynamic range of the ADC (but
must avoid clipping). Also, care must be taken with any signal conditioning, filters,
amplifiers, cabling, etc.

5. When generating an analogue signal, for some applications, we may not need a
reconstruction filter if the update rate of the DAC is high.

57 MATLAB EXAMPLES

Example 5.1: Demonstration of aliasing

Case A: This example demonstrates that the values +p + k/A Hz become aliases of
frequency pHz. (see Figure 5.11).

Consider that we want to sample asinusoidal signal x(t) = sin 2z pt with the sam-
pling rate fs = 100Hz. We examine three cases. x1(t) = sin2pat, Xo(t) = sin 27 pot
and x3(t) = sin2wr pst where p; = 20Hz, p, = 80Hz and p3 = 120Hz. Note that al
the frequencies will appear at the same frequency of 20Hz.

Line MATLAB code Comments

1 clear all Define the sampling rate fs = 100 Hz, total record

2 fs=100; T=10; time T = 10 seconds, and the time variable t from O
3 t=0:1/fs:T-Ufs; to ‘ T-1/fs' seconds. Also define the frequencies for

4 p1=20; p2=80; p3=120; each sinusoid.

5 x1=sin(2* pi* p1*t); Generate the signals x4 (t), X»(t) and x3(t). Note that
6 x2=sin(2* pi* p2* t); all these signals use the same time variable ‘t’, thus it
7 x3=sin(2* pi* p3*1); has the same sampling rate.

8 N=length(t); Perform the DFT of each signal, and calculate the

frequency variablef.
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9 X1=fft(x1); X2=fft(x2);
X3=fft(x3);
10 f=fs"(O:N-1)/N;

11 figure(1); plot(f, abs(X1)/f/T) Plot the modulus of the DFT of x;(t) = sin 27 (20)t

12 xlabel(‘Frequency (Hz)"); for the frequency range OHz to 100 Hz (i.e. up to the
ylabel(‘Modulus)) sampling frequency). Note that the right half of the
13 axis([010000.55]) graph isthe mirror image of the left half (except the
0Hz component).

14 figure(2); plot(f, abs(X2)/f/T) Plot the modulus of the DFT of x,(t) = sin 27 (80)t.
15 xlabel(‘Frequency (H2)");

ylabel(‘Modulus)
16 axis([0 100 0 0.55])

17 figure(3); plot(f, abs(X3)/fS/T) Plot the modulus of the DFT of x3(t) = sin27(120)t.
18 xlabel(‘Frequency (Hz)");

ylabel(‘Modulus)
19 axis([0 100 0 0.55])

Results

p, =20 Hz,

0.4 and aliases of
< p, =80 Hz, p, =120 Hz

01 f,/2 f J

/o \

0 . . . . .
0 10 20 30 40 50 60 70 80 90 100
Frequency (Hz)

Comments: Note that all the frequencies p; = 20Hz, p, = 80Hz and ps = 120Hz
appear at the same frequency 20Hz.

Example 5.2: Demonstration of aliasing

Case B: This example demonstrates the aliasing problem on the ‘digital’ sampling of a
sampled sequence x(nA).

Consider a sampled sinusoidal sequence X(nA) = sin2zpnA where p = 40Hz,
and the sampling rate is fs = 500Hz (fs = 1/A). Now, sample this sequence digitally
again, i.e. generate anew sequence x3(kA) = x[(5k)A],k =0, 1, 2, ..., by taking every
five sample values of x(nA) (this has the effect of reducing the sampling rateto 100 Hz).
Also generate a sequence Xo(KA) = x[(10k)A] by taking every 10 sample values of
x(nA), which reduces the sampling rate to 50 Hz. Thus, aliasing occurs, i.e. p = 40Hz
will appear at 10Hz.
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Line MATLAB code Comments
1 cleardl Define the sampling rate fs= 500 Hz, total record time
2 fs=500; T=10; T = 10 seconds, and the time variable t from O to
3  t=0:1/fsT-Ufs ‘T-1/fs seconds. Also generate the sampled sinusoidal
4 p=40; x=sin(2" pi* p* t); signal whose frequency is 40 Hz.
5 x1=x(1:5:end); Perform digital sampling, i.e. generate new sequences
6 x2=x(1:10:end); x1(kA) and x(kA) as described above.
7  N=length(x); N1=length(x1); Perform the DFT of each signal x(nA), x;(kA) and
N2=length(x2); X2(kA), and calculate the frequency variablesf, f1 and
8  X=fft(x); X1=fft(x1); f2 accordingly.
X2=fft(x2);
9 f=fs"(0:N-1)/N;
f1=100" (0:N1-1)/N1;
f2=50" (0:N2-1)/N2;
10  figure(1); plot(f, abs(X)/fs/T) Plot the modulus of the DFT of x(nA) = sin27 (40)nA
11 xlabel('Frequency (Hz)"); for the frequency range O Hz to 500 Hz (up to the
ylabel(‘Modulus) sampling rate).
12 axis([0500 0 0.55])
13 figure(2); Plot the modulus of the DFT of x;(kA) for the
plot(f1, abs(X1)/100/T) frequency range O Hz to 100 Hz (sampling rate of
14  xlabel('"Frequency (Hz)"); x1(KA)).
ylabel(‘Modulus)
15 axis([0 100 00.55])
16  figure(3); plot(f2, abs(X2)/50/T)  Plot the modulus of the DFT of x,(kA) for the
17 xlabel('Frequency (Hz)"); frequency range OHz to 50 Hz (sampling rate of
ylabel(‘Modulus) Xa2(kA)).
18 axis([0500 0.55])
Results
05
04 2 p=40Hz
é 0.3
202
0.1

(a) DFT of x(nA) = sin 27(40)nA with f; (= 1/A) = 500 Hz

0 . . . . .
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Frequency (Hz)
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0.5 0.5
=40 Hz i =
04 p \ 04 v Alias of p=40 Hz
2 g
303 303
= =
0.2 0.2
0.1 0.1
0 0
0O 10 20 30 40 50 60 70 80 90 100 0 5 10 15 20 25 30 35 40 45 50
Frequency (Hz) Frequency (Hz)
(b) DFT of xy (kA) = X[(5K)A] (c) DFT of x, (kA) = x[(10k)A]

Comments: Note that aliasing occursin the third case, i.e. p = 40Hz appears at 10Hz
because the sampling rateis 50 Hz in this case.

Example 5.3: Demonstration of ‘digital’ anti-aliasing filtering

This example demonstrates amethod to overcome the problem addressed in the previous
MATLAB example.

We use the MATLAB function ‘resample’ to avoid the aliasing problem. The
‘resample’ function applies the digital anti-aliasing filter to the sequence before the
sampling.

Consider a sampled sinusoidal sequence x(nNA) = SiN2rpiNA + Sin27rponA
where p; = 10Hz and p, = 40Hz and the sampling rate is fs = 500Hz (fs = 1/A).
Generate new sequences x;(kA1) and xz(kAjz) from x(nA) such that A;/A =5 and
A,/ A = 10 without causing aliasing using the ‘resample’ function.

Line MATLAB code Comments

1 clear al Define the sampling rate fs= 500 Hz, total

2 fs=500; T=10; record time T = 10 seconds, and the time

3 t=0:Vfs.T-1/fs; p1=10; p2=40; variablet from 0 to ‘ T-1/fs’ seconds. Also

4 X=sin(2* pi* p1*t) + sin(2* pi* p2*1); generate the sampled signal whose frequency

components are 10Hz and 40 Hz.

x1=resample(x,100,500); Perform the ‘resampling’ as described above.

x2=resampl &(x,50,500); For example, the function ‘ resample(x,100,500)’
takes the sequence ‘x’, applies alow-pass filter
appropriately to the sequence, and returns the
resampled sequence, where ‘100 isthe new
sampling rate and ‘500’ is the original sampling
rate.

[e2Ne)]

7 N=length(x); N1=Ilength(x1);
N2=length(x2);
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8 X=fft(x); X1=fft(x1); X2=fft(x2);
9 f=fs*(0:N-1)/N; f1=100* (0:N1-1)/N1;
f2=50" (0:N2-1)/N2;
10 figure(1); plot(f, abs(X)/fs/T)
11 xlabel(‘Frequency (Hz)"); Exactly the same code as in the previous
ylabel(‘Modulus)) example.
12 axis([0 500 0 0.55])
13 figure(2); plot(f1, abs(X1)/100/T)
14 xlabel(‘Frequency (Hz)");

ylabel('Modulus))
15 axis([0 100 0 0.55])
16 figure(3); plot(f2, abs(X2)/50/T) Exactly the same code asin the previous
17 xlabel(‘Frequency (Hz)"); example.
ylabel (‘M odulus) Note that, due to the low-pass filtering, the
18 axis([050 0 0.55]) 40Hz component disappears on this graph.
Results
05
p, =10 Hz
0.4
«
p, =40 Hz
203 e
%02
01

0
0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)
(a) DFT of x(nA) = sin 27(10)nA + sin 27z(40)nA with fs (=1/A) = 500 Hz

0.5 0.5

04 04
E E
.§ 0.3 _§ 0.3
= =

0.2 0.2

0.1 0.1

0 - . - 0 - . . . .
0 10 20 30 40 50 60 70 80 90 100 0 5 10 15 20 25 30 35 40 45 50
Frequency (Hz) Frequency (Hz)
(b) DFT of xi(kA,) (using digital anti-aliasing filter), (c) DFT of xy(kA,) (using digital anti-aliasing filter),
where A = 5A (i.e. f;=100 Hz) where A, =10A (i.e. f,=50Hz)

Comments. Note that, in Figure (c), only the 10 Hz component is shown, and the 40 Hz
component disappears owing to the inherent low-pass (anti-aliasing) filtering processin
the ‘resample’ function.
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The Discrete Fourier Transform

Introduction

Inthischapter we devel op the properties of afundamental tool of digital signal analysis —
the discrete Fourier transform (DFT). This will include aspects of linear filtering, and
relating the DFT to other Fourier representations. The chapter concludes with an intro-
duction to the fast Fourier transform (FFT).

6.1 SEQUENCESAND LINEAR FILTERS

Sequences

A sequence (or digital signa) is a function which is defined at a discrete set of points.
A sequence results from: (i) a process which is naturally discrete such as a daily posted
currency exchangerate, and (ii) sampling (at A secondintervals(say)) an analogue signal
asin Chapter 5. We shall denote a sequences as x(n). Thisis an ordered set of numbers
as shown in Figure 6.1.

x(n)

v
S

Figure6.1 Example of asequence

Some examples are listed below:

Fundamentals of Sgnal Processing for Sound and Vibration Engineers
K. Shinand J. K. Hammond. ~ © 2008 John Wiley & Sons, Ltd
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(8 The unit impulse sequence or the Kronecker delta function, §(n), is defined as

s(n)=1 ifn:O}

—0 ifn0 6.1)

It can be depicted asin Figure 6.2

()

Figure6.2 The unit impulse sequence, §(n)

Thisis the digital impulse or unit sample, i.e. it is the digital equivalent of the Dirac
delta 5(t). If the unit impulse sequence is delayed (or shifted) by k, then

Sn—K) =1 wnzk}

—0 ifn#£k (6.2

If kis positive the shift is k steps to the right. For example, Figure 6.3 shows the case for
k=2

5(n-2)

Figure6.3 The delayed unit impulse sequence, §(n— 2)

(b) The unit step sequence, u(n), is defined as

uin) =1 ifnzo}

=0 ifn<O 6.3)

The unit sample can be expressed by the difference of the unit step sequences, i.e. §(n) =
u(n) — u(n — 1). Conversely, the unit step can be expressed by the running sum of the unit
sample, i.e.un) = > 1___ 8(K).

k=—00

Starting with the unit sample, an arbitrary sequence can be expressed asthe sumof scaled,
delayed unit impulses. For example, consider the sequence x(n) shown in Figure 6.4, where
the values of the sequence are denoted as a,,.

This sequence can be written as x(n) = a_38(n + 3) + a18(n — 1) + a5(n — 2) +
as8(n — 5), i.e. in general form any sequence can be represented as

o0

x() = > x(k)s(n —k) (6.4)

k=—o00
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a’l.

Figure6.4 An arbitrary sequence, x(n)

Linear Filters

Discrete Linear Time (Shift) Invariant Systems™ 61

The input—output relationship for a discrete LTI system (a digital filter) is shown in
Figure 6.5.

Discrete LTI system

x(n) —» h(n)

Input sequence

— Y(n)
Output sequence

Figure6.5 A discrete LTI system

Similar to the continuous LTI system, we define the impul se response sequence of
thediscrete LTI system as h(n). If theinput to the system is a scaled and delayed impulse
at k, i.e. x(n) = axd(n — k), then the response of the system at nis y(n) = axh(n — k).
So, for ageneral input sequence, the response at n dueto input x(k) ish(n — k)x(k). Since
any input can be expressed as the sum of scaled, delayed unit impulses as described in
Equation (6.4), the total response y(n) to the input sequence x(n) is

n
y(n) = Z h(n — k)x(k) if thesystemiscausal (6.54)
k=—o00
or
y(n) = Z h(n — k)x(k) if thesystemisnon-causal (6.5b)
k=—00

We shall use the latter notation (6.5b) which includes the former (6.5a) as a special
case when h(n) =0, if n < 0. This expression is called the convolution sum, which
describes the relationship between the input and the output. That is, the input—output
relationship of the digital LTI system is expressed by the convolution of two sequences
x(n) and h(n):

y(n) = x(n) x h(n) = Z h(n — k)x(k) (6.6)
k=—oc0
Note that the convolution sum satisfies the property of commutativity, i.e.
y(n)= > h(n—kx(k)= > h(r)x(n—r) (6.7a)
k=—oc0 r=—co

or simply
y(n) = x(n) « h(n) = h(n) % x(n) (6.7b)
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The above expressions for the convolution sum are analogous to the convolution integral
for a continuous system (see Equations (4.51), (4.53)). An example of the convolution sum
is demonstrated graphically in Figure 6.6. In this figure, note that the number of non-zero
elements of sequence y(n) is‘12’" which is one element shorter than the sum of the lengths of
non-zero elements of sequences x(n) and h(n).

X(n) h(n)

..

0-0-0-6-66-6-6 0.0-0-6-6-6-

y(n) = x(n) *h(n) = i h(n—k)x(k) (not to scale)

. k=—co

[ ]

—0000000000 n
0 11

Figure6.6 Illustrations of a convolution sum ™61

Relationship to Continuous Systems

Starting from y(t) = h(t) = x(t) = ffzo h(t)x(t — t)dr, consider that the signals are sam-
pled such that y(nA) = h(nA) % x(nA). Then the approximation to the convolution integral
becomes

y(nA)~ > h(ra)x((n—r)a)- A (6.8)
r=—00
Note the scaling factor A, i.e. if the discrete LTI system h(n) results from the sampling of the
corresponding continuous system h(t) with sampling rate 1/A and the input x(n) is also the
sampled version of x(t), then it follows that

y(nA) = y(n) - A (6.9)

where y(n) = h(n) * x(n).
The concept of creating a digital filter h(n) by simply sampling the impulse response of
an analoguefilter h(t) iscalled ‘impulse-invariant’ filter design (see Figure 5.6 in Section 5.1).
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Stability and Description of a Digital LTI System

Many digital systems are characterized by difference equations (analogous to differential
equations used for continuous systems). The input—output relationship for a digital system
(Figure 6.5) can be expressed by

N M
y(n) = - ay(h—k+> bx(n-r) (6.10)
k=1 r=0
Taking the z-transform of Equation (6.10) gives
N M
Zlym}=Y@ =-Y@ Y az*+X@> bz" (6.11)
k=1 r=0

Note that we use the time shifting property of the z-transform, i.e. Z{x(n —r)} = z7" X(2), to
obtain Equation (6.11). Rearranging Equation (6.11) gives the transfer function of the digital
system as

M
S bz
HE = @ _ = (6.12)
X@ 1+ % az
k=1

whichisthe z-transform of impul se response h(n). Since Equation (6.12) isarational function,
i.e. theratio of two polynomials, it can be written as

v @Z-2)z-2)...(2— 2zv)

_ N
H(2) = boz Z—p)(z—p2)...(z— pn)

(6.13)

Note that H(2) has M zeros (roots of the numerator) and N poles (roots of the denominator).
From Equation (6.13), the zeros and poles characterize the system. A causal system is BIBO
(Bounded Input/Bounded Output) stable if all its poles lie within the unit circle | z| = 1. Or
equivalently, thedigital LTI systemisBIBO stableif > o2 |h(n)| < oo, i.e. output sequence
y(n) is bounded for every bounded input sequence x(n) (Oppenheim et al., 1997).

The system described in theform of Equation (6.10) or (6.12) iscalled an auto-regressive
moving average (ARMA) system (or model) which is characterized by an output that depends
on past and current inputs and past outputs. The numbers N, M are the orders of the auto-
regressive and moving average components, and characterize the order with the notation (N,
M). This ARMA model is widely used for general filter design problems (e.g. Rabiner and
Gold, 1975; Proakis and Manolakis, 1988) and for ‘parametric’ spectral estimation (Marple,
1987).

If all the coefficients of the denominator arezero, i.e. ax = O for all k, the systemiscalled
a moving average (MA) system, and has only zeros (except the stack of trivial poles at the
origin, z= 0). Notethat this system isalways stable since it does not have apole. MA systems
always have a finite duration impulse response. If al the coefficients of the numerator are
zero except by, i.e. by = 0 for k > 0, the system iscalled an auto-regressive (AR) system, and
has only poles (except the stack of trivial zeros at the origin, z= 0). The AR systems have a
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feedback nature and generally have an infinite duration impulse response. In general, ARMA
systems also have an infinite duration impul se response.

Sometimes, the ARMA representation of the system can be very useful, especially for
real-time processing. For example, if the estimated impulse response sequence h(n) based
on the methods in Chapter 9, which can be considered as an MA system, is very large, one
can fit the corresponding FRF data to a reduced order ARMA model. This may be useful for
some real-time digital signal processing (DSP). (See Comments2in MATLAB Example 9.4,
Chapter 9.)

6.2 FREQUENCY DOMAIN REPRESENTATION OF DISCRETE
SYSTEMSAND SIGNALS

Consider the response of a digital filter to a harmonic signal, i.e. x(n) = e/?*". Then the
output is

y(n) = i h(k)x(n — k) = i h(k)ei 27—k

k=—o00 k=—o00

N (6.14)
— ej2:'rfn h(k)e—jank
k;oo
We define H(e/2"") = 322 h(k)e™ 127k Then
y(n) = e MHE>") = x(H(E>") (6.15)

H(el?"") is called the frequency response function (FRF) of the system (compare this with
Equation (4.57)).

Consider an example. Suppose we have a discrete system whose impul se response
ish(n) = a"u(n), |a|] < 1, asshown for examplein Figure 6.7(a). Then the FRF of the
systemis

o0 00
HE>") =) ale 127 =% " (ae 12" (6.16)
n=0 n=0

Thisis ageometric series, and using the property of a geometric series, i.e.

oo

1
Zr”:—, Irl <1
— 1—r

Equation (6.16) can be written as

1

e = 1—ae izf

(6.17)
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The modulus and phase of Equation (6.17) are shown in Figures 6.7(b) and (c), respec-
tively.

h(n)=a"u(n), 0<a<1

Y Vs s
\ ' \ ’
\ ' \ ’
\ ’ N ’
\\ ,/ \\ ,/
Seoo? ! ; + ~Scod > f
0 0.5 1.0
(b)
arg H (1)
,/’\\I ’/"\
Ay 7 - - /\\ 7 - Ly f
\ . 0 0.5 1.0\ .

()

Figure6.7 Example of discrete impulse response and corresponding FRF

Note that, unlike the FRF of a continuous system, H (el?" ") is periodic (with period
1, or 27t if w isused instead of ), i.e.

H(ejan) — H(ej27r(f+k)) — H(ej2nfej2nk) — H(eJZHf) (618)

wherekisinteger. Note al so that thisisaperiodic continuousfunction, whereasits correspond-
ing impulse response h(n) is discrete in nature. Why should the FRF be periodic? The answer
isthat the system input is x(n) = €27 f" which is indistinguishable from x(n) = el @7 f+27kn
and so the system reacts in the same way to both inputs. This phenomenon is very similar
to the case of sampled sequences discussed in Chapter 5, and we shall discuss their relation
shortly.

Since H(el?"") isperiodicit hasa‘ Fourier series’ representation. From Equation (6.14),
we already have

HEe? ") = i h(n)e~12*fn (6.19)

nN=—00
The values h(n) are the Fourier coefficients and this expression can be inverted to give
1/2
h(n) = / H(e'Z ez ndf (6.20)
—1/2
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Equation (6.20) is easily justified by considering the Fourier series pair given in Chapter 3,
i.e

00
X(t): Z CneJZJ'mt/Tp
Nn=—00

and
Tp
1 —j2rnt/T
Ch=— [ x(t)e™! Pdt
Tp
0
The two expressions (6.19) and (6.20) are the basis of the Fourier representation of
discrete signals and apply to any sequence provided that Equation (6.19) converges. Equation
(6.19) is the Fourier transform of a sequence, and is often called the discrete-time Fourier
transform (Oppenheim et al., 1997). However, this should not be confused with discrete
Fourier transform (DFT) for finite length signals that will be discussed in the next section.
Alternatives to Equations (6.19) and (6.20) are

H(e?) = i h(n)e~J“" (6.21)
h(n) = % / H(e'“)el“"dw (6.22)

—TT

Note that, similar to the Fourier integral, if h(n) isreal, |H(e!>"")| isan evenand arg H (e!>")
isan odd function of ‘f’.

The Fourier Transform of the Convolution of Two Sequences

Let us consider an output sequence of adiscrete LTI system, which is the convolution of two
sequences h(n) and x(n), i.e. y(n) = h(n) = x(n) = >_p2_ . h(k)x(n — k). Since the sequence
X(n) has a Fourier representation, i.e. x(n) = /7, X(e12"")el2"ndf, substituting this into
the convol ution expression gives

1/2

y(n) = Z h(k)x(n — k) = Z h(k) f X(e]27rf)ej2nf(n—k)df
k=—00 SIS
~1/2
12 o 1/2
— / X(ejZTrf) Z h(k)e—j2ﬂfkej2nfndf= / X(ej2ﬂf)H(ej2ﬂf)ej2ﬂfndf
~1/2 k=—o00 P
H(ei2t)
(6.23)
Thus,
‘Y(eian) — X(ejan)H(eerrf)‘ (624)

i.e. theFourier transform of the convol ution of two sequencesisthe product of their transforms.
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Relation to Sampled Sequences, Xx(nA)

If timeisinvolved, i.e. asequence results from sampling a continuous signal, then Equations
(6.19) and (6.20) must be modified appropriately. For a sample sequence x(nA), the Fourier
representations are

o0

X(e?4) = 3" x(na)e Iz (6.25)
N=-—00
1/2A
x(nA) = A / X(e/Z T 2)gl2rinag £ (6.26)

—1/2A

which correspond to Equations (6.19) and (6.20), with A = 1. Note that we have already seen
these equations in Chapter 5, i.e. they are the same as Equations (5.6) and (5.7) which are the
Fourier transform pair for a‘ sampled sequence’.

6.3 THE DISCRETE FOURIER TRANSFORM

So far we have considered sequences that run over the range —oo < n < oo (n integer).
For the specia case where the sequence is of finite length (i.e. non-zero for a finite
number of values) an alternative Fourier representation is possible called the discrete
Fourier transform (DFT).

It turns out that the DFT is a Fourier representation of afinite length sequence and
isitself a sequence rather than a continuous function of frequency, and it corresponds to
samples, equally spaced in frequency, of the Fourier transform of the signal. The DFT
is fundamental to many digital signal processing algorithms (following the discovery of
the fast Fourier transform (FFT), which is the name given to an efficient algorithm for
the computation of the DFT).

We start by considering the Fourier transform of a (sampled) sequence given by
Equation (6.25). Suppose x(nA) takessomevaluesforn=0, 1, ..., N—1,i.e. N points
only, and is zero elsewhere. Then this can be written as

N—1
X2 1%) =) " x(na)e iemina (6.27)
n=0

Note that this is still continuous in frequency. Now, let us evaluate this at frequencies
f = k/NA where k is integer. Then, the right hand side of Equation (6.27) becomes
SN x(nA)e 1@/NIk and we write this as

N—-1
X(K) =) x(na)e1G/Nrk (6.28)
n=0
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Thisisthe DFT of afinite (sampled) sequence x(nA). For more usual notation, omitting
A, the DFT of x(n) isdefined as

N—-1
X(k) = x(n)eIGr/Nnk (6.29)
n=0

Asaresult, the relationship between the Fourier transform of a sequence and the DFT of
afinite length sequence can be expressed as

X(K) = |:X(ej2’”A) evaluatedat f = N—kAHz] (kinteger) (6.30)

i.e. X(K) may be regarded as the sampled version of X(el272) in the frequency domain. Note
that, since X (el?772) is periodic with 1/A, we may need to evaluate for k=0, 1, ..., N—1,
i.e. N points only.

Theinverse DFT can be found by multiplying both sides of Equation (6.29) by el (27/N)rk
and summing over k. Then

pzd
o
U

N-1 —1N-1
X(n)e—i(Zn/N)nkei (2r/N)yrk _ X(n)e—j(Zn/N)k(n—r)

0 n= k=0 n=

_ N—
X(k)ej (27 /N)rk —
k=

i
o

(6.31)
Interchanging the summation order on the right hand side of Equation (6.31) and noting that

N-1

— (27 /N)k(n—r) _ i _

2 e =N ifn=r 6.32)
=0 otherwise
gives Y 1y X(k)el @ /Nrrk — N . x(r). Thus, the inverse DFT is given by

135 (2 /Ny
x(n) = — Y X(k)el@ /N 6.33
(n) N g () (6.33)

Notethat in Equation (6.33), since el @7/N)n+N)k — @i(27/N)nk \ye seethat both X (k) and
x(n) are periodic with period N. It is important to realize that whilst the original sequence
x(n) iszeroforn < 0and n > N, the act of ‘sampling in frequency’ hasimposed a periodic
structure on the sequence. In other words, the DFT of afinite length x(n) impliesthat x(n) is
one period of aperiodic sequence x,(n), wherex(n) = xp(n) for0 < n < N — 1and xp(n) =
Xp(n+1N) (r integer).

As an example, the DFT of afinite length sequence is shown in Figure 6.8 where the
corresponding Fourier transform of a sequence is also shown for comparison. Suppose x(n)
has the form shown in Figure 6.8(a); then Figures 6.8(b) and (c) indicate the (continuous)
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amplitude and phase of X(el?*'2). Figures 6.8(e) and (f) are the corresponding | X (k)| and
arg X(k) — the DFT of x(n) (equivalently the DFT of xp(n) in Figure 6.8(d)). These correspond
to evaluating Figures 6.8(b) and (c) at frequencies f = k/NA. Note that the periodicity is
present in all figures except Figure 6.8(a).

x(n)
x(n)=0 forn<Oand n>N-1

X (ei27fA _
‘ ( )‘ argx(eJZﬂfA)

e T /\: .

‘ . <
0 Y2a YA f |\/

(b) (©)

Figure 6.8 Fourier transform of a sequence and the DFT of afinite length (or periodic) sequence

Data Truncation"6:2

We assumed above that the sequence x(n) was zero for noutsidevaluesOto N — 1. Ingeneral,
however, signals may not be finite in duration. So, we now consider the truncated sampled
data xr(nA). For example, consider afinite (N points) sequence (sampled and truncated) as
shown in Figure 6.9.

Aswewould expect from the windowing effect discussed in Chapter 4, therewill be some
distortion in the frequency domain. Let xp(n) and w(n) be the equivalent periodic sequences
of x(nA) and w(nA) for 0 < n < N — 1 (omitting A for convenience). Then the DFT of the
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x(nA)

X (NA) = x(nA) - w(nA)

where w(nA)=1 0<n<N-1
=0 otherwise

Figure6.9 Sampled and truncated sequence xt(nA)

truncated signal, Xt (k), becomes

X1 (K) = DFT [Xp(n)wp(n)]

1 N-1N-1 . N—1 - -
= m X p(kl)eJ (27 /N)nkq Z Wp(kz)ej (Zﬂ/N)nKZe*](Zﬂ/N)nk
n=0 k]_:O k2:O

1 N=1 N-1 N-1 1 N=2
= 3 Xplke) Y Wi(kp) Y ei@r/Nintk—lala) — N > Xp(kn)Wp(k — ki)
k1=0 kz:o n=0 k1=0

1
X (k) OWy(K) (6.34)

It is the convolution of the two periodic sequences — hence the distortion in the frequency
domain, where the symbol ® denotes circular convolution (this will be explained in Section
6.5). The windowing effect will be demonstrated in MATLAB Example 6.2.

Alternative Representation of the DFT

Starting with the z-transform of x(n), i.e. X(z), then when z = /2" 72 acircleis picked out of
unit radius, and X(e/?7f2) is the value of X(2z) evaluated at points on the unit circle. When
f = k/NA, thisamountsto evaluating X(z) at specific points on the unit circle, i.e. N evenly
spaced points around the unit circle. This gives the DFT expression X(k) as illustrated in
Figure 6.10.

Im(z)
X(Z) A X(ejZﬂfA)

/ jz/N)ky _
/—4*\/)((9 @Y = X (k)
K\#jf}m » Re(z)

z-plane

Figure6.10 Representation of the DFT in the z-plane
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Freguency Resolution and Zero Padding

As we have seen earlier in Chapter 4, the frequency resolution of Fourier transform X1 (f)
depends on the data length (or window length) T. Note that the data length of the truncated
sampled sequence x7(nA) is T = NA, and the frequency spacing in Xt (k) is 1/NA =
1/T Hz. Thus, we may have an arbitrary fine frequency spacingwhen T — oco.

If the sequence x(nA) is finite in nature, then the Fourier transform of a sequence
X(el?7T2) is fully representative of the original sequence without introducing truncation,
because

00 N-1
X(e]anA) — Z X(nA)efﬂnan — Z X(nA)efﬂnan
N=—00 n=0

Then, the DFT X(k) = X(e/2"4)| t_i/na divesthe frequency spacing 1/N A Hz. This
spacing may be considered sufficient because we do not lose any information, i.e. we can
completely recover x(nA) from X(K).

However, we often want to see more detail in the frequency domain, such as finer fre-
guency spacing. A convenient procedure issimply to ‘add zeros' to x(n), i.e. define

X(n)=x(n) 0<n<N-1

(6.35)
=0 N<n<L-1
Then the L-point DFT of X(n) is
A~ L-1 . N-1 .
X(k) — Z )’{(n)e—l(ZN/L)nk — Z x(n)e—l(ZN/L)”k (6.36)
n=0 n=0

Thus, weseethat X(k) = X(el@/Lk) k=0,1,...,L — 1,i.e. ‘finer’ spacing round the unit
circlein the z-plane (see Figure 6.10), in other words, zero padding in the time domain results
in the interpolation in the frequency domain (Smith, 2003). In vibration problems, this can be
used to obtain thefine detal near resonances. However, care must betaken with thisartificially
made finer structure — the zero padding does not increase the ‘true’ resolution (see MATLAB
Example 4.6 in Chapter 4), i.e. the fundamental resolution isfixed and it isonly the frequency
spacing that is reduced.

Aninteresting featureisthat, with zero padding in the frequency domain, performing the
inverse DFT resultsin interpolation in the time domain, i.e. an increased sampling rate in the
time domain (note that zeros are padded symmetrically with respect to N /2, and it isassumed
that X(N/2) = 0 for an even number of N). So zero padding in one domain resultsin afiner
structure in the other domain.

Zero padding is sometimes useful for analysing atransient signal that dies away quickly.
For example, if we estimate the FRF of asystem using theimpact testing method, the measured
signal (from the force sensor of an impact hammer) quickly fallsinto the noise level. In this
case, we can artificially improve the quality of the measured signal by replacing the data in
the noiseregion with zeros (see MATLAB Example 6.7); note that the measurement time may
also be increased (in effect) by adding more zeros. This approach can also be applied to the
free vibration signal of a highly damped system (see MATLAB Example 6.5).



158 THE DISCRETE FOURIER TRANSFORM

Scaling EffectsV162

If the sequence x(nA) results from sampling a continuous signal x(t) we must consider the
scaling effect on X (k) ascompared with X( f ). Weneedto consider thescaling effect differently
for transient signals and periodic signals. For a transient signal, the energy of the signal is
finite. Assuming that the data window is large enough so that the truncation of data does not
introduce aloss of energy, the only scaling factor isthe sampling interval A. However, if the
original signal is periodic the energy isinfinite, so in addition to the scaling effect introduced
by sampling, the DFT coefficients will have different amplitudes depending on the length of
the data window. This effect can be easily justified by comparing Parseval’s theorems for a
periodic signal (Equation (3.39)) and for atransient signal (Equation (4.17)). The following
example shows the relationship between the Fourier integral and the DFT, together with the
scaling effect for a periodic signal.

Consider a periodic continuous signal x(t) = Acos2rzpt, p=1/Tp, and its Fourier
integral, as shown in Figure 6.11(a). Suppose we use the data length T seconds; then its
effect isapplying the rectangular window as shown in Figure 6.11(b). Note that the magnitude
spectrum of W( ) dependsonthewindow length T. The Fourier integral of thetruncated signal
is shown in Figure 6.11(c), and the Fourier transform of a truncated and sampled signa is

-p ' p
(@) A periodic signal and its Fourier integral
W ()
w(t) -
A
1.0 3
>
> t Y > f
0 T 2.1l12
TT

T T
(b) Data window and its Fourier integral
X ()]

X (1) = w(t) - x()

(c) Truncated signal and its Fourier integral

‘XT (ejanA)‘

X (NA) =w(nA) - x(nA)

(d) Truncated and sampled signal and its Fourier transform of a sequence

Figure6.11 Various Fourier transforms of a sinusoidal signal
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showninFigure6.11(d). Notetheperiodicity inthisfigure. Note al so thewindowing effectsand
the amplitude differences for each transform (especially the scaling factor in Figure 6.11(d)).

Now consider the DFT of the truncated and sampled sequence. The DFT results in
frequenciesat fy = k/NA,k=0,1,..., N — 1,i.e thefrequency range coversfrom0Hz to
(fs — fs/N) Hz. Thus, if we want frequency p to be picked out exactly, weneed kK/NA = p
for some k. Suppose we sample at every A = Tp/10 and take one period (10-point DFT)
exactly, i.e. T(=NA) = Tp(= 1/p). As shown in Figure 6.12, the frequency separation is
1/NA =1/Tp = p (H2), thus p= f; = 1/NA which is the second line on the discrete
frequency axis (fx = k/NA). Note that thefirst lineis fo = 0 (Hz), i.e. the d.c. component.
All other frequencies ( fx except f; and fg) are ‘zeros', since these frequencies correspond to
the zero points of the side lobes that are separated by 1/ T = 1/Tp. Thus, the resulting DFT
isonesingle spike (upto k = N/2).

N =10 AT A(xT,) _

A=T,/10 24 2(T,/10)

Figure6.12 The 10-point DFT of the truncated and sampled sinusoidal signal, T = Tp

Since the DFT has a periodic structure, X(10) (if it is evaluated) will be equal to X(0).
Also, due to the symmetry property of the magnitude spectrum of X(k), the right half of
the figure is the mirror image of the left half such that | X(1)| = | X(9)|, |X(2)| = |X(8)|,...,
| X(4)| = | X(6)|. Note that the magnitude of X(1) is5A. Also notethat X(5) isthevalue at the
folding frequency fs/2. From the fact that we have taken an ‘even’-numbered DFT, we have
the DFT coefficient at thefol ding frequency. However, if wetakean ‘ odd’ -numbered DFT, then
it cannot be evaluated at the folding frequency. For example, if we take the nine-point DFT,
the symmetric structure will become | X(1)| = |X(8)[, |X(2)| = | X, ..., |X(@)| = |X(5)|
(see Section 6.4 and MATLAB Example 6.4).

For the same sampling interval, if we take five periods exactly, i.e. T(=NA) = 5Tp
(50-point DFT), then the frequency separation is 1/NA =1/(50- Tp/10) = 1/5Tp =
p/5 (Hz) as shown in Figure 6.13. Thus, p = fs = 5/NA which is the sixth line on the
discrete frequency axis. Again, all other frequencies fy (except fs and fss) are ‘ zeros', since
these frequencies also correspond to the zero points of the side lobes that are now separated by

AT o PHz N=50 AT A(GXT,) _

A=T,/10 2A  2(T,/10)

25A

0 5 —l | N-5 N-1

Figure6.13 The 50-point DFT of the truncated and sampled sinusoidal signal, T = 5Tp
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1/T = 1/5Tp. Note the magnitude change at the peak frequency, which isnow 25A (compare
this with the previous case, the 10-point DFT).

If a non-integer number of periods are taken, this will produce all non-zero frequency
components (as we have seen in MATLAB Example 4.6 in Chapter 4; see also MATLAB
Example6.2b). The‘scaling’ effectisdueto both‘sampling’ and ‘windowing'’, and so different
window types may produce different scaling effects (see MATLAB Examples 4.6 and 4.7
in Chapter 4). Since the DFT evaluates values at frequencies fx = k/NA, the frequency
resolution canonly beimproved by increasing NA (=window length, T). Thus, if thesampling
rateisincreased (i.e. smaller A isused), then we need moredata(larger N) in order to maintain
the same resolution (see Commentsin MATLAB Example 6.3).

6.4 PROPERTIESOF THE DFT

The properties of the DFT are fundamental to signal processing. We summarize afew here:

(@) The DFT of the Kronecker deltafunction §(n) is
N-1
DFT[5(n)] = Y _ 8(n)e17/Nnk = g1 (r/N)Ok — 1 (6.37)
n=0
(Note that the Kronecker delta function §(n) is analogous to its continuous counterpart,

the Dirac delta function §(t), but it cannot be related as the sampling of 5(t).)
(b) Linearity: If DFT [x(n)] = X(k) and DFT [y(n)] = Y(K), then

DFT [ax(n) + by(n)] = aX(k) + bY (k) (6.38)
(c) Shifting property: If DFT [x(n)] = X(k), then
DFT [x(n — no)] = e} /Ninok i (k) (6.39)

Special attention must be given to the meaning of atime shift of afinite duration sequence.
Shown in Figure 6.14 is the finite sequence x(n) of duration N samples (marked o). The
N-point DFT of x(n) is X(k). Also shown are the samples of the ‘equivalent’ periodic
sequence xp(n) with the same DFT as x(n).

If wewant the DFT of x(n — ng), ng < N, we must consider a shift of the periodic se-
quence X, (N — N) and the equivalent finite duration sequence with DFT e~ (27/N)nok X ()
is that part of x,(n —ng) in the interval 0 < n < N — 1, as shown in Figure 6.15 for
no = 2 (for example), i.e. shift to right.

x(n)
T

B

0 N

Figure6.14 Finite sequence x(n) and equivalent periodic sequence X,(n)
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1
1 1
1 1
1
. f
I - ITFTTI g
-1
Figure6.15 Shifted finite sequence x(n — ng) and equivalent shifted periodic sequence x,(n — No)

Examining Figures 6.14 and 6.15, we might imagine the sequence x(n) as displayed
around the circumference of a cylinder in such away that the cylinder has N points on it.
Asthe cylinder revolves we see x,(n), i.e. we can talk of a‘circular’ shift.

(d) Symmetry propertiesM®4: For real data x(n), we have the following symmetry properties.
An exampleis shown in Figure 6.16 (compare the symmetric structures for even and odd
numbers of N). Note that, at N/2, the imaginary part must be ‘zero’, and the phase can
be either ‘zero or =’ depending on the sign of real part:

Re[X(K)] = Re[X(N — k)] (6.40a)
IM[X(K)] = —Im[X(N — k)] (6.40b)

IX(K)| = [X(N = K)]| (6.419)
arg X(k) = —arg X(N — k) (6.41b)

Or, we may express the above results as (* denotes complex conjugate)

| X(N = K) = X*(K)| (6.42)
X (k) X (k)
N=9 N=8
hTTTT”; ITTTTM X
01234567(,\?_1) 0123456(N7_1)
arg X (k) arg X (k) -
A N=9 A =
1234,TIL 123{TII > k
01116567(,\?_1) o“l 56(N7_1)

Figure6.16 Symmetry properties of the DFT
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6.5 CONVOLUTION OF PERIODIC SEQUENCESM66

Consider two periodic sequences with the same length of period, x,(n) and hp(n), and their
DFTsasfollows:

N-—1

Xp(k) = ) xp(n)e I Gr/Nnk (6.434)
n=0
N—-1 )

Hp(k) = > hp(n)e™ 1 Gr/Nnk (6.43b)
n=0

Then, similar to the property of Fourier transforms, the DFT of the convolution of two periodic
sequences is the product of their DFTS, i.e. DFT [yp(n) = Xp(n) * hp(n)] is

Yp(k) = Xp(k)Hp(k) (6.44)

The proof of thisis given below:

N-1
Yp(K) = DFT [Xp(n) * hp(n)] = DFT [Z Xp(r)hp(n — r)}
r=0

—1N-1
Xp(r)hp(n — r)el@r/Nnk
r=

I
z
AN

=}
o

P4
-

N-1

— Z Xp(r) Z hp(n _ r.)efj(27r/N)(nfr)ke7j(27'[/N)rk
r=0 n=0
N-1 ) N—-1 )

=) xp(r)e 1ENH N (0 — r)e 1 FNOOK = X (k) - Hp(k)  (6.45)
r=0 n=0

This is important — so we consider its interpretation carefully. yp(n) is called a circular
convolution, or sometimes a periodic convolution. Let uslook at the result of convolving two
periodic sequencesin Figure 6.17.

Now, from y,(n) = Xp(n) * hp(n) = Zr'\':_ol Xp(r)hp(n —r), we draw the sequences in
question as functions of r. To draw hp(n —r), we first draw hp(—r), i.e. we ‘reverse’ the
sequence h,(r) and then move it n placesto the right. For example, hp(0 —r), hp(2 —r) and
Xp(r) are as shown in Figure 6.18.

X, (n)

One period

Figure6.17 Two periodic sequences x,(n) and h,(n)
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x,(r) and h, (0—r) x,(r) and h, (2—)

A A

v

-5 -101234 9 -5 -101234 9

Figure6.18 |Illustration of the circular convolution process

Asnvaries, h,(n —r) sidesover xp(r) andit may be seenthat theresult of theconvolution
isthesameforn = Oasitisforn = N andsoon,i.e. yp(r) isperiodic—hencethetermcircular
or periodic convolution. The resulting convolution is shown in Figure 6.19.

Y, (n) =x,(n)#*h,(n)

A

gl

-5 -101234 9

Figure6.19 Resulting sequence of the convolution of x,(n) and hy(n)

Often the symbol ® is used to denote circular convolution to distinguish it from linear
convolution. Let usconsider another simple example of circular convolution. Suppose we have
two finite sequences x(n) = [1, 3, 4] and h(n) = [1, 2, 3]. Then the values of the circular
convolution y(n) = x(n)®h(n) are

2
y(0) = Zx(r)h(O— ry=18, whereh(0—r)=1[1, 3, 2]
r=0
2
y(1) = Zx(r)h(l —r)=17, whereh(1—-r)=[2, 1, 3] (6.46)
r=0
2
y(2) = Zx(r)h(z —r)=13, whereh(2—-r)=1[3, 2, 1]
r=0
Note that y(3) = y(0) and h(3 —r) = h(0 —r) if they are to be evaluated.

If we are working with finite duration sequences, say x(n) and h(n), and then take DFTs
of these, there are then ‘equivalent’ periodic sequences with the same DFTS, i.e. Xp(k) =
X(k) and Hp(k) = H(K). If we form the inverse DFT (IDFT) of the product of these, i.e.
IDFT [Hp(K)Xp(K)] or IDFT [H(K)X(K)], then the result will be circular convolution of the
two finite sequences:

| x(n)® h(n) = IDFT [X(K)H (K)] | (6.47)

Sometimes, wemay wishto formthelinear convol ution of the two sequences asdiscussed
in Section 6.1. Consider two finite sequences x(n) and h(n), wheren =0,1,...,N — 1 as
shown in Figures 6.20(a) and (b). Note that these are the same sequences as in Figure 6.17,
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but their lengths are now only one period. The linear convolution of these two sequences,
y(n) = x(n) x h(n), results in a sequence with nine points as shown in Figure 6.20(c).

x(n), n=0,1,..,N-1 h(n),n=0,1,..,N -1 y(n),n=0,1,...,L-1

N=5 N=5 L=2N-1=9

>
>S5

n HE N
01234 01234 012345678
@ (b) ©

Figure6.20 Linear convolution of two finite sequences

The question is: can we do it using DFTs? (We might wish to do this because the FFT
offers a procedure that could be quicker than direct convolution.)

We can do thisusing DFTsonce we recogni ze that the y(n) may be regarded as one period
of a periodic sequence of period 9. To get this periodic sequence we add zeros to x(n) and
h(n) to make x(n) and h(n) of length 9 (as shown in Figures 6.21(a) and (b)), and form the
nine-point DFT of each. Then wetakethe IDFT of the product to get the required convolution,
i.e. X(n)® h(n) = IDFT [ X(K)H (k)]. The result of this approach is shown in Figure 6.21(c)
which is the same as Figure 6.20(c).

x(n) h(n) y(n) = IDFT[X (K)H (k)]
N=9 N=9 N=9
n R n n
012345678 012345678 012345678

@ (b) (©

Figure6.21 Linear convolution of two finite sequences using the DFT

More generally, suppose we wish to convolve two sequences x(n) and h(n) of length
Nz and Ny, respectively. The linear convolution of these two sequences is a sequence y(n) of
length N; + N, — 1. To obtain this sequence from acircular convolution we require x(n) and
h(n) to be sequences of N1 + N, — 1 points, which isachieved by simply adding zerosto x(n)
and h(n) appropriately. Then we take the DFTs of these augmented sequences, multiply them
together and take the IDFT of the product. A single period of the resulting sequence is the
required convolution. (The extra zeros on x(n) and h(n) eliminate the ‘wrap-around’ effect.)
This processis called fast convolution. Note that the number of zeros added must ensure that
x(n) and h(n) are of length greater than or equal to N; + N, — 1 and both the same length.

6.6 THE FAST FOURIER TRANSFORM

A set of algorithms known as the fast Fourier transform (FFT) has been devel oped to reduce
the computation time required to evaluate the DFT coefficients. The FFT algorithm was
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rediscovered by Cooley and Tukey (1965) — the same algorithm had been used by the German
mathematician Karl Friedrich Gauss around 1805 to interpolate the trajectories of asteroids.
Owing to the high computational efficiency of the FFT, so-called real-time signal processing
became possible. This section briefly introduces the basic ‘ decimation in time’ method for
aradix 2 FFT. For more details of FFT algorithms, see various references (Oppenheim and
Schafer, 1975; Rabiner and Gold, 1975; Duhamel and Vetterli, 1990).

TheRadix 2 FFT

Since the DFT of a sequence is defined by X(k) = 35 x(n)e 1@ /Nnk 'k =0, 1,...,
N — 1, by defining Wy = e i7/N) the DFT can be rewritten as

N-1

X(k) = x(mW« (6.48)
n=0

It is this expression that we shall consider. Note that WRK is periodic with period N (in both
kand n), and the subscript N denotesthe periodicity. Thenumber of multiply and add operations
to calculate the DFT directly is approximately N2, so we need more efficient algorithms to
accomplish this. The FFT algorithms use the periodicity and symmetry property of W2, and
reduce the number of operations N2 to approximately N log, N (e.g. if N = 1024 the number
of operationsis reduced by afactor of about 100).

Inparticular, we shall consider the case of N to bethe power of two, i.e. N = 2”. Thisleads
to the base 2 or radix 2 algorithm. The basic principle of the algorithm isthat of decomposing
the computation of a DFT of length N into successively smaller DFTs. This may be done in
many ways, but we shall ook at the decimation in time (DIT) method.

The name indicates that the sequence x(n) is successively decomposed into smaller sub-
sequences. We take ageneral sequence x(n) and define x;(n), X2(n) as sequenceswith half the
number of points and with

N
xi(nN) =x(2n), n=0,1, ..., 5~ 1, i.e evennumber of x(n) (6.49a)
N
xo(nN)=x(2n+1), n=0,1, ..., 5~ 1, i.e oddnumber of x(n) (6.49Db)
Then
N-1 -1 N-1
X(K) = XMWk = X(MWRE+ >~ x(n)WiK
n=0 n= n=1
(even) (odd)
N/2—1 N/2—1
= Y x@mWE*+ Y x(2n+ Hwrx (6.50)
n=0 n=

Noting that W3 = [e71@7/N)|2 = g~1[27/(N/2] — W ,, Equation (6.50) can be written as

N/2-1 N/2-1

X)) = D xa(MWR, + WE Y xa(n)WR, (6.51)
n=0 n=0
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X(K) = X1(k) + WE Xa(K) (6.52)

where X1 (k) and X,(k) are N /2-point DFTsof x;(n) and x,(n). Notethat, since X (k) isdefined
for 0 < k < N — 1land X3(Kk), X2(Kk) are periodic with period N /2, then
N N N

X(k)=X1<k—E)+W'§,X2<k—E) Efka—l (6.53)
The above Equations (6.52) and (6.53) can be used to develop the computational procedure.
For example, if N = 8 it can be shown that two four-pont DFTs are needed to make up the
full eight-point DFT. Now we do the same to the four-point DFT, i.e. divide x;(n) and xx(n)
each into two sequences of even and odd numbers, e.g.

X1(k) = AK) + WY ,B(k) = Ak) + WIB(k) for 0 <k < g -1 (6.54)

where A(K) is atwo-point DFT of even numbers of x;(n), and B(k) is atwo-point DFT of odd
numbers of x;(n). This resultsin four two-pont DFTs in total. Thus, finally, we only need to
compute two-point DFTSs.

In general, the total number of multiply and add operations is N log, N. Finaly, we
compare the number of operations N?(DFT) versus N log, N (FFT) in Table 6.1.

Table6.1 Number of multiply and add operations, FFT versus DFT

N N2 (DFT) N log, N (FFT) N2/(N log, N)
16 256 64 40
512 262144 4608 56.9
2048 4194304 22528 186.2

6.7 BRIEF SUMMARY

1. Theinput—output relationship of adigital LTI systemisexpressed by the convolution
of two sequences of h(n) and x(n), i.e.

y(n) = i h(n — k)x(k) = i h(r)x(n—r) or

k=—o00 r=—o0
y(n) = x(n) x h(n) = h(n) * x(n)
The Fourier transform of the sequence h(n), H (el?" "), is called the system frequency
response function (FRF), where
o 1/2
HE?> ) = > hme ™ and h(n) = / H(e/#")el#ndf
n=—0o0

-1/2

Note that H (/2" ") is continuous and periodic in frequency.
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10.

. The Fourier transform of the convolution of two sequences is the product of their

transforms, i.e.

F {y(n) = x(n) * h(n)} = Y(€Z") = X(eZ")H (/")

. The DFT pair for afinite (or periodic) sequenceis
1 N—1 N—1
S j (27 /N)nk — —j (27 /N)nk
X(n) = k; X(K)e and  X(K) nZ:ox(n)e

Notethat theN-point DFT of afinitelength sequencex(n) imposesaperiodic structure
on the sequence.

. Frequency spacing in X(K) can be increased by adding zeros to the end of sequence

x(n). However, care must betaken sincethisisnot a‘true’ improvement in resolution
(ability to distinguish closely spaced frequency components).

. The relationship between the DFT X(k) and the Fourier transform of a (sampled)

sequence X (el272) is
‘ k
_ j2rfA _
X(k) = [X(e ) evaluated at f = NAHZ:|
Note that this sampling in frequency imposes the periodicity in the time domain (as

does the sampling in the time domain which results in periodicity in the frequency
domain).

. If asignal is sampled and truncated, we must consider the windowing effect (distor-

tion in the frequency domain) and the scaling factor as compared with the Fourier
transform of the original signal.

. Symmetry properties of the DFT are given by

X(N — k) = X*(K)

. Thecircular convolution of two finite sequences can be obtained by the inverse DFT

of the product of their DFTS, i.e.
x(n) ® h(n) = IDFT [ X(k)H (k)]

The linear convolution of these two sequences, y(n) = x(n) x h(n), can aso be ob-
tained viathe DFT by adding zeros to x(n) and h(n) appropriately.

. Thefast Fourier transform (FFT) is an efficient algorithm for the computation of the

DFT (the same algorithm can be used to compute the inverse DFT). There are many
FFT agorithms. There used to be arestriction of datalength N to be a power of two,
but there are algorithms available that do not have this restriction these days (see
FFTW, http://www.fftw.org).

Finally, we summarize the various Fourier transforms in Figure 6.22 (we follow
the display method given by Randall, 1987) and the pictorial interpretation of
the DFT of a sampled and truncated signa is given in Figure 6.23 (see Brigham,
1988).
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Fourier series

x(t) . o
N Continuous, periodic
x(t)="Y cel# N\ N\
A / ~~ ~ > !
I‘_TP_’l
c,| _
Discrete
N |¢1/TP

1% ,
C, == J x(t)e 127 Teit
T arntt U e - v

Fourier integral

t
o0 o X Continuous
X(t)= [ X(f)el*""df
e > t
X ()]
Continuous
X ()= [ x(t)e >t
S » f
Fourier transform of a (sampled) sequence
T X(n) Discrete
X(nA) —A J X (eJZIrfA)eJZIrandf > NT A
—4/2a “TT??no... , Lor
index n
|X (7271 Continuous, periodic

X (ejZIIfA) — 2 X(nA)e—jZIIfHA

N=—co
YA -1)2A Y2A YA 32a
Discrete Fourier transform (DFT)
1 x(n) 4 Discrete, periodic
x(n)=—3 X (k)e /N
N &
tor
0 N-1 index n
[X (k)| Discrete, periodic
N-1
X (k) =Y x(n)e 1NN
n=0 [ [ h
ﬁTTT?ww?TTTﬂ TTT for
0 N-1 index k

Figure6.22 Summary of various Fourier transforms
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Fourier transform of original signal

x(t)
Data x(t) V\
\//\V/\ t

[X(1)

X(f)=F{x(v)}

Fourier transform of truncated signal
X (1) = x(OW(t) 0 wtt)

w(t) is a data window N A

X ()[4

X; (f)=F {x ()}

Fourier transform of sampled, truncated signal

X (nA) 4

X, (t) is sampled Ty s
every A seconds [ lT, e

0 &1 I U

A‘XT (eszrm)‘ 4

Xs (ejhm)z F{XT (nA)} /\V\Aﬁf/\w

, ’

N “av

A RN > f
>

—1/2A 1/2A 1A
DFT of sampled, truncated signal
x(n) 4
DFT imposes periodicity .
in the time domain tor
index n
k 4
X (k) = DFT [x(n)], o A o
4 j 1% yNa Iy A
X; (e727*) is sampled I e { ] [ I*l L, [ “H .
every 1/NAHz [H” ”T‘” , for
0 N-1 " index k

Figure6.23 Pictorial interpretations (from the Fourier integral to the DFT)
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6.8 MATLAB EXAMPLES

Example 6.1: Example of convolution (see Figure 6.6)

In this example, we demonstrate the convolution sum, y(n) = x(n) * h(n), and its com-
mutative property, i.e. X(n) x h(n) = h(n) x x(n).

x(n)

Line MATLAB code Comments
1 clear all Define a sequence x(n) whose total lengthis
2 x=[111110000]; 9, but the length of non-zero elementsis 5.
3 h=[87654321000]; Also define a sequence h(n) whose total
4 nx=[0:length(x)-1]; length is 11, but the length of non-zero
5 nh=[0:length(h)-1]; elementsis 8. And define indices for x(n)
and h(n).
Note that MATLAB uses theindex from 1,
whereas we define the sequence fromn = 0.
6 y1l=conv(h,x); Perform the convolution sum using the
7 y2=cornv(x,h); MATLAB function ‘conv’, where
8 ny=[0:length(y1)-1]; y1(n) = h(n) * x(n) and
¥2(n) = x(n) % h(n).
Both will give the same results. Note that
thelength of ‘conv(h,x)" is ‘length(h) +
length(x) —1'. And define the index for both
y1(n) and yz(n).
9 figure(1); stem(nx,x, 'd', filled’) Plot the sequences x(n), h(n), y.1(n) and
10 xlabel (\itn"); ylabel ("\itx\rm(\itn\rm)") Yo(n).
11 figure(2); stem(nh,h, filled") Notethat y;(n) and y»(n) are the same, the
12 xlabel(\itn"); ylabel ("\ith\rm(\itn\rm)") total length of y;(n) is 19, whichis‘11 + 9
13 figure(3); stem(ny,y1, 'filled") —1', and the length of the non-zero
14 xlabel (\itn'); ylabel (\ity_1\rm(\itn\rm)")  elementsis 12, whichis‘8+ 5 — 1'.
15 figure(4); stem(ny,y2, filled’)
16 xlabel ('\itn'); ylabel ('\ity_2\rm(\itn\rm)")
Results
1 8 .
7 [ ]
0.8 6
06 5
£ 4
04 A
02 2y [ I
. !
% §§$3001234ge7§§10
b

@

—~
=
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30

y,(n) and y,(n)

10 12 14 16 18

Example 6.2a: DFT of a sinusoidal signal

Case A: Truncated exact number of periods. (see Figures 6.12 and 6.13).

Consider asinusoidal signal x(t) = Asin2zpt, p = 1/Tp Hz. Samplethissignal at the
sampling rate fs = 10/Tp Hz. We examine two cases: (i) data are truncated at exactly
one period (10-point DFT), (ii) dataare truncated at exactly five periods (50-point DFT).
For this example, we use A = 2 and p = 1Hz. Note that the Fourier integral gives the

vaue A/2 =1at pHz.

Line MATLAB code Comments
1 clear all Define parameters and the sampling rate fs
2 A=2; p=1; Tp=LUp; fs=10/Tp; such that 10 samples per period Tp. Truncate
3 T1=1"Tp; T2=5"Tp, the data exactly one period (T1) and five
4 t1=[0: Vfs:T1-V/fg); periods (T2). Define time variables t1 and t2
5 t2=[0: Vs T2-1/fs]; for each case.
6 Xx1=A* cos(2* pi* p*t1); Generate the sampled and truncated signals x1
7 Xx2=A" cos(2* pi* p* t2); (one period) and x2 (five periods). Perform the
8 X1=fft(x1); X2=fft(x2); DFT of each signal.
9 N1=length(x1); N2=length(x2); Calculate the frequency variables f1 and f2 for
10 f1=fs* (0:N1-1)/N1; each case.

f2=fs* (0:N2-1)/N2;
11 figure(1)
12 stem(f1, abs(X1), fill")
13 xlabel (‘Frequency (Hz)")

14 ylabel("Modulus of \itX\rm(\itk\rm)");

axis ([0 9.9 0 10])

Plot the results (modulus) of 10-point DFT.
Note the frequency range 0 to 9Hz

(fs — fs/N) and the peak amplitude

AT /2A = 5A = 10 (see Figure 6.12). Since
exact number of period istaken for DFT, all
the frequency components except p = 1Hz
(and 9Hz, which is the mirror image of pHz)
are zero.
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15 figure(2) This plots the same results, but now the
16 stem(f1, abs(X1)/fs/T1, fill'); % thisisthe DFT coefficients are scaled appropriately.
same as stem(f1, abs(X1)/N1, fill") Note that the modulus of X(k) is divided
17 xlabel (‘"Frequency (Hz)") by the sampling rate (fs) and window
18 ylabel("Modulus (scaled)"); length (T1). Note that it also gives
axis([09.90 1)) the same scaling effect if X(k) isdivided
by the number of points N1. The result
correspondsto the Fourier integral, i.e. the
peak amplitudeisnow A/2 = 1 at pHz.
19 figure(3) Plot the results (modulus) of 50-point
20 stem(f2, abs(X?2), fill") DFT. Note that the peak amplitudeis
21 xlabel (‘"Frequency (Hz)") AT /2A = 25A = 50. In this case, we
22 ylabel (‘Modulus of \itX\rm(\itk\rm)') used the data five times longer in ‘time’
than in the previous case. Thisresultsin
an increase of frequency resolution, i.e.
the resolution is increased five times that
in the previous case.
23 figure(4) This plots the same results, but, as before,
24 stem(f2, abs(X2)/f5/T2, fill'); % thisisthe the DFT coefficients are scaled
same as stem(f2, abs(X2)/N2, 'fill") appropriately, thus A/2 = 1 at pHz.
25 xlabel (‘Frequency (H2)");
ylabel("Modulus (scaled)")
Results
10 1
z \ sa=10 N=10 @D gz N =10 (a2)
! Magnitude is scaled appropriately
= 7 < 07
e = 06
§ 5 Z 05
§ 4 g 0.4
23 S 03
2 p=1Hz N/2,(f;/2) N-1,(fs—fs/N) 02
1 0.1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Frequency (Hz) Frequency (Hz)
50 1
4 \ N =50 (a3) 09 N =50 (a4)
© 25A=50 08 o _
o3 =07 Magnitude is scaled appropriately
E 30 % 0.6
22 é’ 05
3 2 3 04
215 =03
10 p=1Hz N/2,(fs/2) N -1, (fs— f/N) 0.2
5 0.1
ol 3 MU

Frequency (Hz)

3 4 5 6

Frequency (Hz)
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Comment: In this example, we applied the scaling factor 1/(fsT) = 1/N to X(k) to
relate its amplitude to the corresponding Fourier integral X(f). However, thisisonly true
for periodic signals which have discrete spectrain the frequency domain. In fact, using
the DFT, we have computed the Fourier coefficients (amplitudes of specific frequency
components) for aperiodic signal, i.e. cx = X/N (see Equation (3.45) in Chapter 3).

For transient signals, since we compute the amplitude density rather than ampli-
tude at a specific frequency, the correct scaling factor is 1/ fs or A (assuming that the
rectangular window is used), although there is some distortion in the frequency domain
due to the windowing effect. The only exception of this scaling factor may be the delta
function. Note that §(n) is not the result of sampling the Dirac delta function §(t) which
isamathematical idealization.

Example 6.2b: DFT of a sinusoidal signal

Case B: Truncated with a non-integer number of periods. (See a so the windowing effect
in Sections4.11 and 3.6.)

We use the same signal as in MATLAB Example 6.2a, i.e. X(t) = Asin2xpt,
p=1/TpHz, fs =10/Tp Hz, A = 2, and p = 1Hz. However, we truncate the datain
two cases. (i) dataare truncated one and a half periods (15-point DFT), (ii) dataare trun-
catedthreeand ahalf periods(35-point DFT). Notethat we usean odd number for the DFT.

Line MATLAB code Comments

1 cleardl Exactly the same as previous example

2  A=2; p=1; Tp=Up; fs=10/Tp; (Case A), except T1isone and a half

3 T1=15Tp; T2=35Tp; periods of the signal and T2 is three and

4 t1=[0:VfsT1-1/fs); ahalf periods of the signal.

t2=[0:1/fs: T2-1/fg];

5 x1=A%cos(2" pi* p*tl); x2=A" cos(2* pi* p*t2);

6 X1=fft(x1); X2=fft(x2);

7 N1l=length(x1); N2=length(x2);

8 fl1=fs"(0:N1-1)/N1;

f2=fs* (0:N2-1)/N2;

9 Xi1z=fft([x1zeros(1,5000-N1)]); % zeropadding  Perform 5000-point DFT by adding
10 X2z=fft([x2zeros(1,5000-N2)]); % zeropadding  zeros at the end of each sequence x1
11 Nz=length(X12); and X2, i.e. ‘zero padding’ is applied for
12 fz=fs" (0:Nz-1)/Nz demonstration purpose. Calculate new

frequency variable accordingly.
13 figure(l) Plot the results (modulus) of 15-point
14 stem(f1, abs(X1)/f9/T1, fill*); DFT (stem plot) and DFT with zero
hold on padding (dashed line). Magnitudes of
15 plot(fz, abs(X12)/f9T1, 'r:"); hold off DFT coefficients are scaled
16 xlabel('Frequency (H2)"); appropriately. Examine the effect of
ylabel (‘M odulus (scaled)’) windowing in this figure. Note the
17 axis([0100 1.02]) change of magnitude at the peak

(compare this with the previous
example). Also, note that we do not have
the value at the frequency p = 1Hz.
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18 figure(2) Plot the results (modulus) of 35-point
19 stem(f2, abs(X2)/f9/T2, fill"); hold on DFT (stem plot) and DFT with zero
20 plot(fz, abs(X22)/f5/T2, 'r:"); hold off padding (dashed line). Note that the
21 xlabel('Frequency (Hz)"); resolution isimproved, but thereis still
ylabel (‘M odulus (scaled)’) asignificant amount of smearing and
22 axis([01001.02]) |eakage due to windowing. Again, we
do not have the DFT coefficient at the
frequency p = 1Hz.
Results
1F ™ T T T s 1F ¥ T T T
oof 1% N =15 (b1) % 09 N =35 (b2) i
08F 1} P 08}
goTf ," 4 q "‘ = 0.7f
ER | < 06
5 05f \ i ‘2 05
3 o4 | : 1t 304 i
Sosft i i it S 03 11
02f 1 ;;T.‘ 2 ' ‘I"I ' 02 I ! |
Al!\: u s Vi ST T S \ll‘\:’ i " ! X .": "“:fu il o
OO vl Ly T VT TT»T T‘ F ! 4 001 L JJF-'T‘-'T‘-:?JM‘J“'?(1*'?'?.'1'.:?‘.?«1(-1'\%’FJET‘-:'T‘: {HHR fhl
0 1 2 3 4 5 6 7 9 10 2 3 4 5 6 7 8 9 10
Frequency (Hz) Frequency (Hz)

Example 6.3: DFT of a sinusoidal signal

Increase of sampling rate does not improve the frequency resolution; it only increases
the frequency range to be computed (with a possible benefit of avoiding aliasing, see
aliasing in Chapter 5).

Weusethesamesignal asinthe previousMATLAB example,i.e. x(t) = Asin2xpt,
p=1/Tp Hz, A= 2and p = 1Hz. However, the sampling rate is increased twice, i.e.
fs = 20/Tp Hz. We examine two cases: (a) data length T = Tp (20-point DFT; this
corresponds to the first case of MATLAB Example 6.2a), (b) data length T = 1.5Tp
(30-point DFT; this corresponds to the first case of MATLAB Example 6.2b).

Line MATLAB code Comments

clear all

A=2; p=1; Tp=1p; fs=20/Tp;
T1=1*Tp; T2=15*Tp;
t1=[0:1/fs:T1-1/fs]; t2=[0: V/fs:T2-1/fg);
x1=A" cos(2* pi* p*t1);

x2=A* cos(2* pi* p* t2);

X1=fft(x1); X2=fft(x2);

N1=length(x1); N2=length(x2);

f1=fs" (0:N1-1)/N1; f2=fs* (0:N2-1)/N2;

Exactly the same as previous examples
(MATLAB Examples 6.2aand 6.2b),
except that the sampling rate fsis now
doubled.

GO WNPE

o0 ~N O
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10
11

12

13

15

figure(1)

stem(f1, abs(X1)/fs/T1, fill)
xlabel ('Frequency (Hz)");
ylabel("Modulus (scaled)’)
axis([02001])

figure(2)

stem(f2, abs(X2)/fs/T2, 'fill")
xlabel ('Frequency (Hz)");
ylabel("Modulus (scaled)")

Plot the results (modulus) of 20-point DFT
(i.e. for thecase of T = Tp). Note that the
frequency spacing is 1 Hz which is exactly
the same as MATLAB Example 6.2a
(when N = 10), and the folding frequency
isnow 10Hz (5Hz in the previous
example).

Plot the results (modulus) of 30-point DFT
(i.e. for thecaseof T = 1.5Tp). Again, the
result is the same as MATLAB Example
6.2b (when N = 15), within the frequency

16 axis([02001]) range 0 to 5Hz.
Results
T e———— STl —
| \ h \
1 0.9 ! 1 0.9 '
I ! I !
! 0.8 ' ' 08 H
107 | This region is exactly the same as g o7 | This region is exactly the same as
! g 0.6 | previous example (Example 6.2a, 1 806 | previous example (Example 6.2b,
1% 05 | see Figure (a2)) 1'% 05 1 see Figure (b1))
= 1 H g !
1304 i 1504 !
1203 i 1= 03 :
'oo2 : !0z '
R i V01 h ‘ [ I
1 g L.
;o : P [eteeeeeerereret?]
. 0__2 _4.’6 8 10 12 14 16 18 20 «_.__0__2 4/ 6 8 10 12 14 16 18 20

Frequency (Hz)
(b) f,=20/T,,N =30 (i.e. T =1.5T;)

Frequency (Hz)
(a) f,=20/T,,N=20(i.e. T=T,)

Comments: Comparetheseresultswith thepreviousexamples(MATLAB Example6.2a,
6.2b). Recall that the only way of increasing frequency resolution is by increasing data
length (in time). Note that, since the sampling rate is doubled, double the amount of data
is needed over the previous example in order to get the same frequency resolution.

Example 6.4: Symmetry properties of DFT (see Section 6.4)

Consider adiscrete sequence x(n) =a"u(n), 0 <a<1, n=0,1,..., N — 1 Inthis
example, we use a = 0.3 and examine the symmetry properties of the DFT for two
cases: (@) Nisan odd number (N = 9), and (b) N is an even number (N = 10).

Line MATLAB code Comments
1 clear al Define the parameter a, and variables nl (for
2 a=0.3; the odd-numbered sequence) and n2 (for the
3 n1=0:8; % 9-point sequence even-numbered sequence).
4 n2=0:9; % 10-point sequence




176

THE DISCRETE FOURIER TRANSFORM

11

12
13

14

15

17

18
19

20

22
23

24

25
26

27

28
29

30

31

x1=a"nl; x2=a."n2;
X1=fft(x1); X2=fft(x2);

figure(1)

subplot(2,2,1);

stem(nl, real(X1), fill")
axis([-0.58501.6])

xlabel (\itk');

ylabel (‘Re[\itX\rm(\itk\rm)]")

subplot(2,2,2);

stem(nl, imag(X1), fill")
axis([-0.58.5-0.40.4])

xlabel ("\itk');

ylabel CIm[\itX\rm(\itk\rm)]")

subplot(2,2,3);

stem(nl, abs(X1), 'fill")
axis([-0.58.501.6])

xlabel ("\itk');

ylabel (\itX\rm(\itk\rm)|")

subplot(2,2,4);

stem(nl, angle(X 1), fill')
axis([-0.58.5-0.40.4])
xlabel (\itk");

ylabel (‘arg\itX\rm(\itk\rm)")

figure(2)

subplot(2,2,1);

stem(n2, real (X2), fill")
axis([-0.59.501.6])

xlabel (\itk");

ylabel (‘Re[\itX\rm(\itk\rm)]’)

subplot(2,2,2);

stem(n2, imag(X2), fill*)
axis([-0.59.5-0.40.4])

xlabel (\itk');

ylabel ('ITm[\itX\rm(\itk\rm)]")

subplot(2,2,3);

stem(n2, abs(X2), fill")
axis([-0.59.501.6])

xlabel (\itk');

ylabel (\itX\rm(\itk\rm)[")

subplot(2,2,4);

stem(n2, angle(X2), fill")
axis([-0.59.5-0.40.4])
xlabel (\itk");

ylabel (‘arg\itX\rm(\itk\rm)")

Create two sequences x1 and x2 according to
the above equation, i.e. x(n) = a"u(n).
Perform the DFT of each sequence, i.e.

X(k) = DFT[x(n)].

Plot thereal part of the DFT of the first
sequence x1. The MATLAB command
‘subplot(2,2,1)" divides the figure(1) into four
sections (2x 2) and allocates the subsequent
graph to thefirst section.

Plot theimaginary part of the DFT of the first
sequence x1. Note that, since N/2 isnot an
integer number, we cannot evaluate the DFT
coefficient for this number. Thus, the
Zero-crossing point cannot be shown in the
figure.

Plot the modulus of the DFT of thefirst
sequence x1.

Plot the phase of the DFT of thefirst sequence
x1. Similar to the imaginary part of the DFT,
there is no zero-crossing point (or ) in the
figure.

Plot the real part of the DFT of the second
sequence x2.

Plot the imaginary part of the DFT of the
second sequence x2. Since N /2 is an integer
number, we can evaluate the DFT coefficient
for this number. Note that the value is zero at
n=N/2.

Plot the modulus of the DFT of the second
sequence X2.

Plot the phase of the DFT of the second
sequence x2. Similar to the imaginary part of
the DFT, thereis a zero-crossing point at

n = N/2. (Thevaueis zero because the rea
part is positive. If thereal part is negative the
vauewill ber.)
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Results
16 0.4
14 @D 03 (@2)
12 02
= 1 — 0.1 [
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£
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0.4 02
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12 02
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(a) The 9-point DFT

16 04
14 (b1) 03 (b2)
12 02
-1 —01 T
g =
X o8 X ol .
=
“ 06 =01 J.
0.4 02
0.2 03
0071 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
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16 0.4
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12 0.2
_1 ~ 01 I
= <
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06 ®_01 l
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=T 2 3 4 5 6 7 8 9 %0 1 2 3 4 5 6 7 & 0
K K

(b) The 10-point DFT

Comments. Compare the results of the even-numbered DFT and odd-numbered DFT.
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Example 6.5: Zero-padding approach to improve (artificially) the quality of a
measured signal

Consider the free response of a single-degree-of-freedom system

x(t):w—’ze-wnfsjn(wdt) and F (x(t)) =

A
®E — w?+ 2t wqw

where A = 200, wn, = 27 f, = 27(10) and wg = wn+/1 — 2. Inorder tosimulateaprac-
tical situation, a small amount of noise (Gaussian white) is added to the signal. Suppose
the system is heavily damped, e.g. ¢ = 0.3; then the signal x(t) fallsinto the noise level
quickly.

Now, there are two possibilities of performing the DFT. One is to use only the

beginning of the signal where the signal-to-noise ratio is high, but this will give a poor
freguency resolution. The other isto uselonger data (including the noi se-dominated part)
to improve the frequency resolution. However, it is significantly affected by noise in the
frequency domain.

The above problem may be resolved by truncating the beginning part of signal and

adding zerosto it (thisincreases the measurement time artificially).

Line MATLAB code Comments

1 clear al Define the sampling rate fs = 100Hz,

2 fs=100; T=5; total record time T = 5 seconds, and the

3 t=[0:1/fs.T-Vf]; timevariablet from 0 to ‘ T-1/fs' seconds.

4 A=200; zeta=0.3; wn=2"pi* 10; Also generate the sampled signal

wd=sgrt(1-zeta"2)* wn; according to the equation above.

5 x=(A/wd)* exp(-zeta* wn*t).* sin(wd* t);

6 var_x=sum((x-mean(x))."2)/(length(x)-1);  Calculate the variance of the signal (note

% var_x=var(x) that the MATLAB function ‘var(x)’ can
a so be used).

7 randn('state',0); MATLAB function ‘randn(size(x))’
generates the normally distributed random
numbers with the same size as x, and
‘randn(‘state’, 0)’ initializes the random
number generator.

8 noise=0.05" sgrt(var_x)* randn(si ze(x)); Generate the noise sequence whose power

9 XN=X+nN0iSse; is0.25% of the signal power that gives
the SNR of approximately 26 dB (see
Equation (5.30)). Then, add this noise to
the original signal.

10 figure(1) Plot the noisy signal. It can be easily

11 plot(t, xn) observed that the signal fallsinto the noise
12 axis([02-0.82.2]) level at about 0.4 seconds. Note that 0.4
13 xlabel ("\itt\rm (seconds)’); seconds corresponds to the 40 data points.

ylabel ("\itx\rm(\itt\rm)")

Thus, for the DFT, we may use the signal
up to 0.4 seconds (40-point DFT) at the
expense of the frequency resolution, or
use the whole noisy signal (500-point
DFT) to improve the resolution.
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19
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22

23

24

25

26

28

29

30
31

32
33

Xn1=fft(xn,40); % 40 corresponds to

0.4 secondsintime
N1=length(Xnl);
f1=fs* (0:N1-1)/N1;
Xn2=fft(xn);
N2=length(xn);
f2=fs" (0:N2-1)/N2;

Xa=A.[(Wn'2 - (2* pi*£2).2 +
i* 2% zeta" wn* (2" pi* 2));

figure(2)

plot(f1(1:N1/2+1),

20" log10(abs(Xn1(1:N1/2 +1)/fs)))
hold on

plot(f2(1:N2/2+1),

20" log10(abs(Xa(1:N2/2+4-1))), 'r:")
xlabel ('Frequency (Hz)");
ylabel("Modulus (dB)'); hold off

figure(3)

plot(f2(1:N2/2+1),

20" log10(abs(Xn2(1:N2/24-1)/fs)))
hold on

plot(f2(1:N2/2+1),

20* 1og10(abs(Xa(1:N2/24-1))), 'r:")
xlabel ('Frequency (Hz)");
ylabel('Modulus (dB)"); hold off

Xnz=fft(xn(1:40),N2);

figure(4)

plot(f2(1:N2/2+1),

20" 10og10(abs(X nz(1:N2/2+-1)/fs)))
hold on

plot(f2(1:N2/2+1),

20" log10(abs(X a(1:N2/24-1))), 'r:")
xlabel (‘Frequency (H2)");

ylabel ("Modulus (dB)'); hold off

First, perform the DFT using only the first
40 data points of the signal. The
MATLAB function ‘fft(xn, 40)’ performs
the DFT of xn using the first 40 elements
of xn. Next, perform the DFT using the
whole noisy signal (500-point DFT).
Calculate the corresponding frequency
variables.

Calculate the Fourier integral according to
the formula above. Thiswill be used for
the purpose of comparison.

Plot the modulus of the 40-point DFT
(solid line), and plot the true magnitude
spectrum of the Fourier transform (dashed
line). Note the poor frequency resolution
in the case of the 40-point DFT.

Plot the modulus of the DFT of the whole
noisy signal (solid line), and plot the true
magnitude spectrum of the Fourier
transform (dashed line). Note the effect of
noise in the frequency domain.

Now, perform the DFT of the truncated
and zero-padded signal. The MATLAB
function ‘fft(xn(1:40),N2)’ takes only the
first 40 data elements of xn, then adds
zeros up to the number N2.

Plot the modulus of the DFT of the
zero-padded signal (solid ling), and plot
the true magnitude spectrum of the
Fourier transform (dashed line). Note the
improvement in the frequency domain.
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Results
2
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(a) Time signal with additive noise (SNR is about 26dB) (b) The 40-point DFT (truncated at 0.4 seconds)
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() The 500-point DFT (truncated at 5 seconds) (d) The 500-point DFT (truncated at 0.4 seconds, and

added zeros up to 5 seconds)

Comments: Inthisexample, apart from the zero-padding feature, thereis another aspect
to consider. Consider the DFT of the noise-free signal (i.e. noise is not added), and

compare it with the Fourier integral. To do this, add the following lines at the end of the
above MATLAB code:

X=fft(x);

figure(5)

plot(f2(1:N2/2+1), 20* log10(abs(X (1:N2/2+1)/fs))); hold on
plot(f2(1:N2/2+1), 20* log10(abs(X a(1:N2/2+1))), 'r:")
xlabel ("Freguency (Hz)"); ylabel (‘Modulus (dB)'); hold off

The results are shown in Figure (€). Note the occurrence of aliasing in the
DFT result. In computer simulations, we have evaluated the values of x(t) at t =
0,1/fs,2/fs, ..., T — 1/fs simply inserting the time variable in the equation without
doing any preprocessing. In the MATLAB code, the act of defining the time variable
“t=[0:Ufs:T-1/fg];’ isthe ‘sampling’ of the analogue signal x(t). Since we cannot (in a
simple way in computer programming) apply the low-passfilter before the sampling, we
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alwayshaveto facethealiasing problemin computer simulations. Note that aliasing does
occur even if the signal is obtained by solving the corresponding ordinary differential
equation using a numerical integration method such as the Runge—Kutta method. Thus,
wemay use amuch higher sampling rate to minimize the aliasing problem, but we cannot
avoid it completely.

Note also that aliasing occurs over the ‘entire’ frequency range, since the original
analogue signal isnot band-limited. It isalso interesting to compare the effect of aliasing
inthelow-frequency region (compared with the natural frequency, f, = 10Hz) andinthe
high-frequency region, i.e. the magnitude spectrum isincreased at high frequencies, but
decreased at low frequencies. Thisis due to the phase structure of the Fourier transform
of the original signal, i.e. arg X( f). Note further that there is a phase shift at the natural
frequency (see Fahy and Walker, 1998). Thus the phase difference betweenX( f )and its
mirror image is approximately 2z at the folding frequency and is approximately = at
zero frequency. In other words, X( f) and the aliased part arein phase at high frequencies
(increase the magnitude) and out of phase at low freguencies (decrease the magnitude),
as can be seen from Figures (f) and (g).
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() Magnitude spectrum of the DFT in full frequency range (g) Phase spectrum of the DFT in full frequency range
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Example 6.6: Circular (periodic) and linear convolutionsusing the DFT

Consider the following two finite sequences of length N = 5:

x(n) = [13531]

and h(n)=[97531]

Perform the circular convolution and the linear convolution using the DFT.

Line MATLAB code Comments
1 clear al Define the sequences x(n) and h(n).
2 x=[13531]; h=[97531];
3 X=fft(x); H=fft(h); Perform the DFT of each sequence. Take the
4 yp=ifft(X.* H); inverse DFT of the product X(k) and H(k) to
5 np=0:4; obtain the circular convolution result. Define
the variable for the x-axis.
6 figure(1) Plot the sequences x and h, and the results of
7 subplot(3,1,1); stem(np, X, 'd', fill") circular convolution. Note that the sequences
8 axig([-0.44.406)) x and h are periodic in effect.
9 xlabel (\itn');
ylabel (\itx_p\rm(\itn\rm)")

10 subplot(3,1,2); stem(np, h, fill")

11 axis([-0.4 4.4 0 10])

12 xlabel (\itn');

ylabel (\ith_p\rm(\itn\rm)")

13 subplot(3,1,3); stem(np, yp, fill")

14 axis([-0.4 4.4 0 90])

15 xlabel (\itn');

ylabel (\ity_p\rm(\itn\rm)")

16 Xz=fft([x zeros(1,length(h)-1)]); Perform the linear convolution using the

17 Hz=fft([h zeros(1,length(x)-1)]); DFT. Note that zeros are added appropriately

18 yz=ifft(Xz.* Hz); when calculating DFT coefficients.

19 nz=0:8; Also, note that the MATLAB function
“conv(x, h)” will give the same result (in fact,
this function uses the same algorithm).

20 figure(2) Plot the zero-padded sequences, and the

21 subplot(3,1,1); results of linear convolution using the DFT.

stem(nz, [x 00 00], 'd', fill")

22 axis([-0.4 8.4 0 6])

23 xlabel ('\itn');

ylabel (\itx\rm(\itn\rm)")
24 subplot(3,1,2);

stem(nz, [h000Q], fill')
25 axis([-0.4 8.4 0 10])
26 xlabel ("\itn');

ylabel ("\ith\rm(\itn\rm)")

27 subplot(3,1,3); stem(nz, yz, 'ill")

28 axis([-0.4 8.4 0 90])

29 xlabel ("\itn');

ylabel (\ity\rm(\itn\rm)")
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(b) Linear convolution using the DFT, y(n) = x(n) = h(n)
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Example 6.7: System identification (impact testing of a structure)

conditioning modul es.

Consider the experimental setup shown in Figure (a) (see aso Figure 1.11 in Chapter 1),
and suppose we want to identify the system (FRF between A and B) by the impact
testing method. Note that many modern signal analysers are equipped with built-in signal
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(a) Experimental setup

If the measurement noise is ignored, both input and output are deterministic and
transient. Thus, provided that the input x(t) is sufficiently narrow in time (broad in fre-
guency), we can obtain the FRF between A and B over a desired frequency range from
the relationship

;
Y(f) = H(F)X(f) — H(f):% (6.55)

However, asillustrated in Figure (8), the actual signalsare contaminated with noise. Also,
the system we are identifying is not the actual physical system H (between A and B) but
the H that includestheindividual frequency responses of sensorsand filters, the effects of
guantization noise, measurement (external) noise and the experimental rig. Nevertheless,
for convenience we shall use the notation H rather than H.

Measurement noise makes it difficult to use Equation (6.55). Thus, we usually
perform the same experiment several times and average the results to estimate H(f).
The details of various estimation methods are discussed in Part |1 of this book. Roughly
speaking, one estimation method of FRF may be expressed as

Xa(F)Ya(F)
Hi(f) ~

(6.56)
Xa(f)Xa(f)

Zlr| Z|~

M=

Il
i

n

where N isthe number of timesthe experiment isreplicated (equivalently it isthe number
of averages). Note that different values of X,(f) and Y,(f) are produced in each experi-
ment, andif N = 1 Equations (6.55) and (6.56) are the same. InthisMATLAB example,
we shall estimate the FRF based on both Equations (6.55) and (6.56), and compare the
results.

THE DISCRETE FOURIER TRANSFORM
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The experiment is performed 10 times, and the measured data are stored in the
file ‘impact_data_raw.mat’ ,* where the sampling rateis chosen as fs = 256 Hz, and each
signal isrecorded for 8 seconds (whichresultsinthefrequency resolutionof Af = 1/8 =
0.125Hz, and each signal is2048 elementslong). Thevariablesinthefileare‘inl,in2, .. .,
in10" (input signals) and ‘outl, out2, . . ., outl0’ (output signals). The anti-aliasing filter
isautomatically controlled by the signal analyser according to the sampling rate (in this
case, the cut-off frequency is about 100Hz). Also, the signal analyser is configured to
remove the d.c. component of the measured signal (i.e. high-pass filtering with cut-on at
about 5Hz).

Before performing the DFT of each signal, let us investigate the measured signals.
If we type the following script in the MATLAB command window:

load impact_data_raw

fs=256; N=length(inl); f=fs" (0:N-1)/N;

T=N/fs; t=0:Ufs.T-1/fs,

figure(1); plot(t, inl); axis([-0.1 8 -1.5 2.5])

xlabel ('\itt\rm (seconds)"); ylabel ("\itx\rm(\itt\rm)")
figure(2); plot(t, outl); axis([-0.1 8 -4 4])

xlabel (\itt\rm (seconds)"); ylabel ("\ity\rm(\itt\rm)")

The results will be as shown in Figure (b1) and (b2).

25 4
2 (b1) Input signal 3 (b2) Output signal
15 2
1 1
Zos go
-1
05 -2
-1 -3
_ 4 U
15 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
t (seconds) t (seconds)

Note that the output signal is truncated before the signal dies away completely.
However, the input signal dies away quickly and noise dominates | ater. If we typein the
following script we can see the effect of noise on the input signd, i.e. the DFT of the
input signal shows a hoisy spectrum asin Figure (c):

In1=fft(inl);

figure (3); plot(f(1:N/24-1), 20* log10(abs(In1(1:N/24-1))))
xlabel ('"Frequency (Hz)"); ylabel(‘Modulus (dB)")

axis([0 128 -70 30])

1 The data files can be downloaded from the Companion Website (www.wiley.com/go/shin_hammond)
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Modulus (dB)

20 40 60 80 100 120
Frequency (Hz)

Now let uslook at the input signal in more detail by typing

plot(in1(1:50)); grid on

As shown in Figure (d1), the input signal after the 20th data point and before the
4th data point is dominated by noise. Thus, similar to MATLAB Example 6.5, the data
in thisregion are replaced by the noise level (note that they are not replaced by zeros due
to the offset of the signal). Thefollowing MATLAB script replaces the noise region with
constant values and compensates the offset (note that the output signal is not offset, so it
is replaced with zeros below the 4th data point):

in1(1:4)=in1(20); in1(20:end)=in1(20); in1=in1-in1(20);
out1(1:4)=0;

The result is shown in Figure (d2).

25 ‘ ‘ 25
2 [*\ (d1) 2 (d2)
15 15
= =
£ 05 \ =< 05
(o] SEEE A 0
|V
05 v -0.5
-1 -1
-15 -15 - ’ - v - v - :
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Index (n) Index (n)

Now we type the script below to see the effect of this preprocessing, which is a
much cleaner spectrum as in Figure (€). Note that each signal has a different transient
characteristic, so it is preprocessed individually and differently. The preprocessed data
set isstored in thefile ‘impact_data_pre_processed.mat’.

In1=fft(inl);

plot(f(1:N/2+1), 20" log10(abs(In1(1:N/2+1))))
xlabel ('Frequency (Hz)"); ylabel(‘Modulus (dB)")
axis([0 128 -70 30])
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Modulus (dB)

0 20

Now, using these two data sets, we shall estimate the FRF based on both Equations

(6.55) and (6.56).

0 60 80 100 120
Frequency (Hz)

Case A: FRF estimate by Equation (6.55), i.e.

H(f) = @
X(f)
Line MATLAB code Comments
1 clear al L oad the data set which is not preprocessed.
2 load impact_data_raw Define frequency and time variables.
3 fs=256; N = length(inl);
f=fs* (0:N-1)/N;
4 T=NI/fs; t=0:1/fs.T-1/fs;
5 In1=fft(in1); Outl=fft(out1); Perform the DFT of input signal and output
6 H=0utl1./In1; signal (only one set of input—output records).
Then, calculate the FRF according to
Equation (6.55).
7 figure(1) Plot the magnitude and phase spectra of the
8 plot(f(41:761), FRF (for the frequency range from 5Hz to
20" log10(abs(H(41:761)))) 95Hz).
9 axis([5 95 -30 50])
10 xlabel (‘"Frequency (H2)");
ylabel"FRF (Modulus, dB)')
11 figure(2)
12 plot(f(41:761),
unwrap(angle(H(41:761))))
13 axis([595-3.53.5])
14 xlabel (‘'Frequency (Hz)");
ylabel ('FRF (Phase, rad)’)
15 load impact_data_pre_processed Load the preprocessed data set, and perform
16 In1=fft(inl); Outl=fft(outl); the DFT. Then, calculate the FRF according
17 H=0ut1./In1; to Equation (6.55).
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Comments. Note that the preprocessed data produce a much cleaner FRF.

18 figure(3) Plot the magnitude and phase spectraof the FRF.
19 plot(f(41:761),
20" log10(abs(H(41:761))))
20 axis([595-3050])
21 xlabel('Frequency (H2)");
ylabel‘'FRF (Modulus, dB)")
22 figure(4)
23 plot(f(41:761),
unwrap(angle(H(41:761))))
24 axis([595-3.53.5])
25 xlabel(‘Frequency (H2)");
ylabel(‘FRF (Phase, rad))
Results
50 50
40} Without preprocessing (f1) 1 40 With preprocessing (f3) 1
g | g% 1
g g2
g g
2 =3
L w °
& £ 10
-20
0020 30 40 50 60 70 80 90 073020 30 40 50 60 70 80 90
Frequency (Hz) Frequency (Hz)
3t 1 3 1
) Without preprocessing (f2) ) With preprocessing (f4)
g 4] g
£ ol L - 2o
e =
ey el
! Sl
3} 3t
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Frequency (Hz) Frequency (Hz)

1
N

Case B: FRF estimate by Equation (6.56), i.e.

N
X (F)Yn(f)
1

n=

Hi(f) ~

1
N

N

D Xa(F)Xa(f)
n=1
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Line MATLAB code Comments
1 clear all Load the data set which is not preprocessed
2 load impact_data_raw (Line 2).
3 % load impact_data_pre_processed Later, comment out this line (with %), and
4 fs= 256; N = length(inl); uncomment Line 3 to load the preprocessed
f=fs* (O:N-1)/N; data set.
5 T=N/fs; t=0:1/fs.T-1/fs; Define frequency and time variables.
6 Navg=10; Define the number of averages N = 10 (see
% Navg=3 for preprocessed data set Equation (6.56)). Later, use N = 3 for the
preprocessed data set.
7 for n=1:Navg This‘for’ loop produces variables: In1,
8 In=['In", int2str(n), '= fft(in', In2,...,Inl10; Outl, Out2, ..., Outl0; Sxx1,
int2str(n), ";'; SXX2, ..., Sxx10; Sxyl, Sxy2, ..., Sxy10.
9 eva(ln); They are the DFTs of input and output signals,
10 Out = ['Out’, int2str(n), '= fft(out', and the elements of the numerator and
int2str(n), ;'; denominator of Equation (6.56), such that, for
11 eval (Out); example, In1 = X;, Outl = Vi,
12 Sxx = ['Sxx', int2str(n), '=conj(In', Sxx1 = X;X; and Sxyl = X;Yi.
int2str(n), ") ¥ In', int2str(n), ;; For more details of the ‘eval’ function see the
13 eval (Sxx); MATLAB help window.
14 SXxy = ['Sxy', int2str(n), '= conj(In’,
int2str(n), )" .* Out', int2str(n), ;'];
15 eval (Sxy);
16 end
17 Sxx=[]; Sxy=[]; Define empty matrices which will be used in
18 for n=1:Navg the ‘for’ loop.
19 tmpl= ['Sxx', int2str(n), :;1; The ‘for’ loop produces two matrices Sxx and
20 Sxx=[Sxx; eval(tmpl)]; Sxy, where the nth row of the matricesis
21 tmp2= ['Sxy', int2str(n), ";; XX and XY, respectively.
22 Sxy=[Sxy; eval (tmp2)];
23 end
24 Sxx=mean(Sxx); Sxy=mean(Sxy); First calculate the numerator and denominator
25 H1=Sxy./Sxx; of Equation (6.56), and then H; is obtained.
26 figure(1) Plot the magnitude and phase spectra of the
27  plot(f(41:761), FRF.
20" |og10(abs(H(41:761)))) Run this MATLAB program again using the
28 axis([595-3050]) preprocessed data set, and compare the results.
29 xlabel (‘"Frequency (H2)");
ylabel(‘"FRF (Modulus, dB)")
30 figure(2)
31 plot(f(41:761),
unwrap(angle(H1(41:761))))
32 axis([5 95-3.53.5])
33 xlabel (‘"Frequency (H2)");

ylabel(‘'FRF (Phase, rad)")
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Results
50 50 T T
20 No. of averages = 10 (g1) A 40 No. of averages = 3 (93) 1
2 (without preprocessing) (with preprocessing)
3
g 20
3
2 10
o
2 0
'
fF-10
20 1 -20
_30 : . . . . . . : ol . L L L L L . L
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
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3t _ 1 3t _ 1
No. of averages = 10 (92) No. of averages = 3 (94)
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Comments. Comparing Figures (g1), (g2) with (f1), (f2) in Case A, it can be seen that

averaging improves the FRF estimate. The effect of averaging is to remove the noises

which are ‘uncorrelated’ with the signals x(t) and y(t), as will be seen later in Part |1 of

this book. Note that preprocessing resultsin amuch better FRF estimate using far fewer

averages, as can be seen from Figures (g3) and (g4).
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Random Processes

I ntroduction

In Part 1, we discussed Fourier methods for analysing deterministic signals. In Part |1,
our interest moves to the treatment of non-deterministic signals. There are many waysin
which a signal may be characterized as non-deterministic. At this point we shall say that
the time history of the signal cannot be predicted exactly. We may consider the signal
shown in Figure 7.1 as a sample of a non-deterministic signal.

X(t)
AW J/\/\/\ AR
\/\/\/ \/l V/ v

Figure7.1 A sample of a non-deterministic signal

An example of such asignal might be the time history measured from an accel erom-
eter mounted on a ventilation duct. In order to be able to describe the characteristics of
such atime history we need some basic ideas of probability and statistics. So we shall
now introduce relevant concepts and return to showing how we can use them for time
historiesin Chapter 8.

7.1 BASIC PROBABILITY THEORY

Themathematical theory of describing uncertain (or random) phenomenaisprobability theory.
It may be best explained by examples — games of chance such as tossing coins, rolling dice,

Fundamentals of Sgnal Processing for Sound and Vibration Engineers
K. Shinand J. K. Hammond. ~ © 2008 John Wiley & Sons, Ltd
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etc. First, we define afew terms:

(a8 An experiment of chance is an experiment whose outcome is not predictable.

(b) The sample space is the collection (set) of all possible outcomes of an experiment, and
is denoted by Q2. For example, if an experiment is tossing a coin, then its sample space
is2 = (H, T),where H and T denote head and tail respectively, and if an experiment is
rolling adie, then its sample spaceisQ2 = (1, 2, ..., 6).

(c) An event is the outcome of an experiment and is the collection (subset) of points in the
sample space, and denoted by E. For example, ‘the event that a number < 4 occurs when
adieisrolled isindicated in the Venn diagram shown in Figure 7.2. Individual eventsin
the sample space are called elementary events, thus events are collections of elementary
events.

Sample space, Q

Event, E o |
(containing n; elements) (containing n, elements)

Figure7.2 Sample space (2) and event (E)

The sample space 2 is the set of al possible outcomes, containing ng elements. The
event E isasubset of 2, containing ng elementary events.

(d) Probability: To each event E in a sample space 2, we may assign a number which
measures our belief that E will occur. Thisis the probability of occurrence of event
E, which iswritten as Prob[ E] = P(E). In the case where each elementary event is
equally likely, thenitis‘logical’ that
P(E) = 1€ (7.0)
No
Thisisameasure of the ‘likelihood of occurrence’ of an ‘event’ in an ‘ experiment of
chance’, and the probability of event E in the above example is P(E) = ng /ng =
2/3. Notethat P(E) isa‘number’ such that

0<P(E)=1 (7.2)

From this, we conclude that the probability of occurrence of a‘certain’ event is one
and the probability of occurrence of an ‘impossible’ event is zero.

Algebra of Events

Simple ‘set operations' visualized with reference to Venn diagrams are useful in setting up
the basic axioms of probability. Given events A, B, C, ...inasample space 2, we can define
certain operations on them which lead to other eventsin 2. These may be represented by Venn
diagrams. If event A is a subset of © (but not equal to ©2) we can draw and write A and Q
asin Figure 7.3(a), and the complement of Ais A’ (i.e. not A) denoted by the shaded area as
shown in Figure 7.3(b).
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D o) Bed

Figure7.3 Event A asasubset of €2 and its complement

o 10QY

AU B=C (Cis the shaded area) NAAB=D

Figure7.4 Union and intersection of two sets A and B

The union (sum) of two sets A and B is the set of elements belonging to A or B or
both, and is denoted by AU B. The intersection (or product) of two sets A and B is the set
of elements common to both A and B, denoted by AN B. In Venn diagram terms, they are
shown asin Figure 7.4.

If two sets have no elementsin common, wewrite AN B = @ (the null set). Such events
are said to be mutually exclusive. For example, inrolling adie, if A isthe event that anumber
< 2 occurs, and B isthe event that anumber > 5 occurs, then AN B = @, i.e. ® corresponds
to an impossible event.

Some properties of set operations are:

(8 AU(BNC)=(AUB)N(AUC) (7.3)
(b) AN(BUC) =(ANB)U(ANC) (7.4)
© (AUB)Y = ANB (7.5)

(d) For any set A, let n(A) denote the number of elementsin A; then
n(AuU B) =n(A) +n(B) —n(AN B) (7.6)

Two different cases are shown in Figure 7.5 to demonstrate the use of Equation (7.6).

Case (a): Case (b):

) D
A and B are disjoint, i.e. n(A N B) =0. These elements are counted twice and
Thus, n(A U B) =n(A) + n(B) so n(A N B) must be subtracted.

Figure7.5 Demonstration of n(A U B) for two different cases
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Algebra of Probabilities

The above intuitive ideas are formalized into the axioms of probability as follows. To
each event E; (in a sample space 2), we assign a number called the probability of E;
(denoted P(E;)) such that

@0=<PE)=<1 (7.7)
(b) If Ei and E; are mutually exclusive, then

P(Ei U Ej) = P(Ei) + P(Ej) (7.8)

(¢) f UEi = €, then
P(UE)=1 (7.9
(d) P(®) =0 (7.10)

(e) For any events E;1, E,, not necessarily mutually exclusive,

P(E1U Ey) = P(E1) + P(E2) — P(E1 N Ey) (7.11)

Equally Likely Events
If nevents, Eq, Ey, ...,En, arejudged to be equally likely, then

P(E) = % (7.12)

As an example of this, throw two dice and record the number on each face. What is
the probability of the event that the total score is 5? The answer is P(Es) = ng,/ng =
4/36 = 1/9.

Joint Probability

The probability of occurrence of events A and B jointly is called a joint probability and is
denoted P(A N B) or P(A, B). With reference to Figure 7.6, this is the occurrence of the
shaded ares, i.e.

NanB

P(ANB) = (7.13)

Ng

JaON

Figure7.6 Theintersection of two sets A and B in a sample space Q2




BASIC PROBABILITY THEORY 197

Conditional Probability

The probability of occurrence of an event A given that event B has occurred is written as
P(A|B), and is called a conditional probability. To explain this, consider the intersection of
two sets A and B in asample space 2 as shown in Figure 7.6. To compute P(A|B), in effect
we are computing a probability with respect to a‘ reduced sample space’, i.e. it istheratio of
the number of elements in the shaded area relative to the number of elementsin B, namely
Nang/Ng, Wwhich may be written (nans/nq)/(Ns/Ng), or

P(ANB) _ P(A B)

PAR="5@ = e

(7.14)

Statistical | ndependence

If P(AIB) = P(A), we say event A and B are statistically independent. Note that thisis so
if P(AN B) = P(A)P(B). Asan example of this, tossa coin and roll adie. The probability
that acoinlandshead and adiescores3isP(AN B) = 1/2-1/6 = 1/12 sincethe eventsare
independent, i.e. knowing the result of the first event (a coin lands head or tail) does not give
us any information on the second event (score on the die).

Relative Frequencies\ !

As defined in Equations (7.1) and (7.2), the probability of event E in a sample space
Q, P(E) is atheoretical concept which can be computed without conducting an exper-
iment. In the simple example above this has worked based on the assumption of equal
likelihood of occurrence of the elementary events. When this is not the case we resort
to measurements to ‘estimate’ the probability of occurrence of events. We approach this
viathe notion of relative frequency (or proportion) of timesthat E occursin along series
of trials. Thus, if event E occurs ng timesin N trials, then the relative frequency of E is
given by
Ne

fg = N (7.15)
Obviously, as N changes, so doesfg. For example, toss a coin and notefy (the relative
frequency of a head occurring) as N increases. Thisis shown in Figure 7.7.

f,

0 1 — N
1 200 400 600

Figure7.7 lllustration of fy; as N increases

This graph suggests that the error is ‘probably’ reduced as N gets larger.
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The above notion of relative frequency isnot useful as adefinition of probability because
its values are not unique, but it is intuitively appealing and is used to estimate probabilities
where applicable, i.e. fg is often taken as an estimate of P(E). The relative frequency is
sometimes referred to as the ‘empirical’ probability since it is deduced from observed data.
This estimate has the following properties:

(a) For al events A,
fa > 0(non-negativity) (7.16)

(b) For al mutually exclusive events,

fasp = 22 JNF 8 _ fpt fo (additivity) (7.17)
(c) For any set of collectively exhaustive events, A;, Az, ..., i.e AU A U--- =[JA,
N
fua = N= 1 (certainty) (7.18)

i.e.a‘certain’ event has arelative frequency of ‘1.

7.2 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

In many cases it is more convenient to define the outcome of an experiment as a set of
numbers rather than the actual elements of the sample space. So we define arandom variable
as a function defined on a sample space. For example, if @ = (H, T) for a coin tossing
experiment, we may choose to say we get anumber ‘1" when ahead occurs and ‘0" when the
tail occurs, i.e. we ‘map’ from the sample space to a ‘range space’ or a new sample space as
shown in Figure 7.8. We may write the function such that X(H) = 1 and X(T) = 0. More
generaly, for any element w; in 2, we define afunction X(w;).

Notethat the number of elementsof €2 and the number of valuestaken by X(w;) need not
be the same. For an example, toss two coins and record the outcomes and define the random
variable X as the number of heads occurring. Thisis shownin Figure 7.9.

H X(@) 1
o T OQX

Sample space Range space

Figure7.8 A random variable X that maps from a sample space 2 to arange space Qx

(H.H) (H.T)
TH)_TT)
Q

Figure7.9 An example of arandom variable X
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We note that the values taken by a random variable are denoted Xx;, i.e. X(wj) = X;, and
the notation X(wj;) is often abbreviated to X. In many cases the sample space and the range
space ‘fuse’ together, e.g. when the outcome is aready a number (rolling a die, recording a
voltage, etc.).

There are two types of random variable. If the sample space Qx consists of discrete
elements, i.e. countable, X is said to be a discrete random variable, e.g. rolling adie. If Qx
consistsof ‘ continuous’ values, i.e. uncountable (or non-denumerable), then X isacontinuous
random variable, e.g. the voltage fluctuation on an ‘analogue’ meter. Some processes may be
mixed, e.g. abinary signal in noise.

Probability Distributions for Discrete Random Variables

For adiscrete random variable X (which takes on only adiscrete set of values xy, o, .. .),
the probability distribution of X is characterized by specifying the probabilities that the
random variable X is equal to x;, for every X, i.e.

P[X =x] forx =xg, Xo,... (7.19)

where P[X = x;] describes the probability distribution of a discrete random variable X
and satisfies ) ; P[X = x] = 1, e.g. for rolling a die, the probability distribution is as
shown in Figure 7.10.

Figure7.10 Probability distribution for rolling adie

The Cumulative Distribution

Random variables have a (cumulative) distribution function (cdf). Thisis the probability
of arandom variable X taking a value less than or equal to x. Thisis described by F(x)
where

F(x) = P[X < x] = Prob[ X taking on a value up to and including X] (7.20)

For a discrete random variable there are jumps in the function F(x) as shown in
Figure 7.11 (for rolling a di€).

1
5/6 —
F(x) 1/2 .—._

Y61 —
1 2 3 4 5 6

Figure7.11 Cumulative distribution function for rolling adie
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Since probabilities are non-negative the cumulative distribution function is mono-
tonic non-decreasing.

Continuous distributions

For a continuous process, the sample space is infinite and non-denumerable. So the
probability that X takesthevalue x iszero, i.e. P[ X = x] = 0. Whilst technically correct
thisisnot particularly useful, since X will take specific values. So amore useful approach
is to think of the probability of X lying within intervals on the x-axis, i.e. P[X > a,
P[a < X < D], etc.

We start by considering thedistribution function F (x) = P[X < x]. F(x) must have
ageneral shape such as the graph shown in Figure 7.12.

F(x)=P[X <£x]

A

1
l
I
I
|
0 a b

Figure7.12 An example of adistribution function for a continuous process

From Figure 7.12, some properties of F(x) are:

(@ F(—00) =0, F(o0)=1 (7.21)
(b) F(x2) = F(x1) forxz > x (7.22)
() Pla< X <b]=P[X<b]—P[X<a]=F(b)—F(a) fora<b (7.23)

Probability Density Functions

Using the propertiesof distribution function F(x), theprobability of X lyinginaninterval
X to x 4 §x can be written as

P[x < X < X+ 6x] = F(x + 6x) — F(x) (7.24)

which shrinksto zeroaséx — 0. However, consider P[x < X < X + §x]/éX. Thisisthe
probability of lying in aband (width §x) divided by that bandwidth. Then, if the quantity
limsy_—.o P[X < X < X + 8x]/8x existsit is called the probability density function (pdf)
which is denoted p(x) and is (from Equation (7.24))

P[x < X <x+48x] dF(x)
8X ~ dx

p() = lim (7.25)

From Equation (7.25) it follows that

F(x) = / p(u)du (7.26)
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Some properties of the probability density function p(x) are:

(@ p(x) =0 (7.27)
i.e. the probability density function is non-negative;
(b) 70 p(x)dx = 1 (7.28)
foef the area under the probability density function is unity;
(c) Pla< X <b] = ; p(x)dx (7.29)
a

As an example of Equation (7.29), P[a < X < b] can be found by evaluating the
shaded area shown in Figure 7.13.

p(x)

ol a b <o

Figure7.13 An example of a probability density function
Notethat we can al so definethe probability density function for adiscreterandom variable

if the properties of deltafunctions are used. For example, the probability density function for
rolling adieis shown in Figure 7.14.

1 — 000=3E® _L 50 x), x =12,....6
5/6 — dx 6
FO9 17 —_ —> 1
ol — AEREEN
1 2 3 4 5 6 1 2 3 4 5 6

Figure7.14 Probability density function for rolling adie

Joint Distributions

The above descriptionsinvolve only asingle random variable X. Thisisaunivariate process.
Now, consider a process which involves two random variables (say X and Y), i.e. abivariate
process. The probability that X < x occursjointlywithY < vyis

P[X <xNY <y]=F(x,y) (7.30)
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Note thatF (—oo, y) = F(X, —00) = 0, F(co0, 00) =1, F(X, o0) = F(x) and F(oo, y) =
F(y). Similar to the univariate case the ‘joint probability density function’ is defined as

Plx < X <x+68xNy<Y<y+8y] 9°F(x, )

— i = 7.31
p(X, y) lgg) 5X3y axdy (7.31)
and
X Yy
F(x, y)= / / p(u, v)dvdu (7.32)
Note that
oo 00 X o0
/ / p(x, y)dydx =1 and / / p(u, v)dvdu = F(x)
hence
P09 = [ plx. y)dy (7.39)
Thisiscalled a‘margina’ probability density function.
These ideas may be extended to n random variables, X3, X, ..., X, i.e. we may define
p(X1, X2, - . ., Xn). We shall only consider univariate and bivariate processes in this book.

7.3 EXPECTATIONS OF FUNCTIONS OF A RANDOM VARIABLE

So far, we have used probability distributions to describe the properties of random vari-
ables. However, rather than using probability distributions, we often use averages. This
introduces the concept of the expectation of a process.

Consider adiscrete random variable X which can assume any values x1, Xz, . . . with
probabilities p1, p2, .... If X; occurs n; times in N trials of an experiment, then the
average value of X is

X = % IZ N X (7.34)

where x is called the sample mean. Since nj /N = f; (the empirical probability of oc-
currence of x;), Equation (7.34) can bewrittenasX = ) ; x; fi. ASN — oo, the empir-
ical probability approaches the theoretical probability. So the expression for X becomes
> X pi and this defines the theoretical mean value of X.

For a continuous process, the probability p; may be replaced by the probability den-
sity multiplied by thebandwidth, i.e. pi — p(x;)dxi. S0 Y ; Xi pi becomes ) ; X p(Xi )X
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which aséx; — 0iswritten ffooo xp(x)dx. This defines the theoretical mean value of X
which we write as E[ X], the expected value of X, i.e.

E[X] = / Xp(x)dx (7.35)

—0Q

Thisisthe'meanvalue' or the*first moment’ of arandom variable X. Moregenerally, the
expectation operation generalizesto functionsof arandom variable. For example, if Y = g(X),
i.e. asshown in Figure 7.15,

X a() Y =9(X)
—_—> —
Input System Output

Figure7.15 System with random input and random output

then the expected (or average) value of Y is
E[Y] = E[9(X)] = / g(x) p(x)dx (7.36)

For a discrete process, this becomes

E[g(X)] =) _g()p (7.37)

This may be extended to functions of several random variables. For example, in a bivariate
process with random variables X and Y, if W = g(X, Y), then the expected value of W is

E[W] = E[g(X. V)] = / f g(x. Y)p(x. y)dxdy (7.38)

—00 —00

Moments of a Random Variable

The probability density function p(x) contains the complete information about the prob-
ability characteristics of X, but it is sometimes useful to summarize this information in
afew numerical parameters— the so-called moments of a random variable. Thefirst and
second moments are given below:

(a) First moment (mean value):

o0

ux = E[X] = / Xp(x)dx (7.39)

—0Q
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(b) Second moment (mean square value):

(o]

E[X?] = / x2p(x)dx (7.40)

—0Q

Note that, instead of using Equation (7.40), the ‘ central moments’ (moments about
the mean) are usually used. The second moment about the meanisthe called the variance,
which iswritten as

Var(X) = o = E[(X — ux)?] = / (x — mx)? p(x)dx (7.41)

where oy, = /Var(X) iscalled the standard deviation, and is the root mean square (rms)
of a‘zero’ mean variable.

In many cases, the above two moments 1, and o2 are the most important measures of
arandom variable X. However, the third and fourth moments are useful in considerations of
processes that are non-Gaussian (discussed later in this chapter).

The first moment 14 is a measure of ‘location’ of p(x) on the x-axis; the variance o2
is a measure of dispersion or spread of p(x) relative to uy. The following few examples
illustrate this.

Some ‘Well-known’ Distributions

A Uniform Distribution (Figure 7.16)
Thisis often used to model the errors involved in measurement (see quantization noise dis-
cussed in Chapter 5).

p(x) b
1 Mean value: , =%
b-a b—a)?
Variance: o7 = (b-2)
X 12

I a b

Figure7.16 Probability density function of a uniform distribution

Rayleigh Distribution (Figure 7.17)
Thisisused in fatigue analysis, e.g. to model cyclic stresses.

p(x)

p(x) ==&/ for x20 Mean value: z, =c./z/2
c
=0 otherwise Variance: o7 = —4;7[ c?
X

Figure7.17 Probability density function of a Rayleigh distribution
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Gaussian Distribution (Normal Distribution)

This is probably the most important distribution, since many practical processes can
be approximated as Gaussian (see a statement of the central limit theorem below). If a
random variable X is normally distributed, then its probability distribution is completely
described by two parameters, its mean value i, and variance o2 (or standard deviation
ox), and the probability density function of a Gaussian distribution is given by

p(x) = e )/ 20 (7.42)

OxN 27T
If uy = 0and 0X2 =1, then it is called the ‘standard normal distribution’. For uy = 0,
some exampl es of the Gaussian distribution are shown in Figure 7.18.
p(x)
2/\em -1

N2z 1]
1

2\2n

-6 -4 -2 0 2 4 6
Figure7.18 Probability density functions of Gaussian distribution

Theimportance of the Gaussian distributionisillustrated by aparticular property: let
X1, Xz, ... beindependent random variablesthat have their own probability distributions;
then the sum of random variables, S, = Zﬂzl Xk, tends to have a Gaussian distribution
as n gets large, regardless of their individual distribution of Xy. This is a version of
the so-called central limit theorem. Moreover, it is interesting to observe the speed with
which this occurs as n increases.M7-2

For aGaussian bivariate process (random variables X and Y), thejoint probability density
function is written as

1 1 1 -
PK.3) = -+ s 0 [‘5(” TS - uv)} (7.43)

21

where

S— of Ux;/ Cov= X ad = Mx
Oxy Oy y Ky

AlSO 1 = E[X], ty = E[Y], 02 = E[(X — 1)7], 02 = E[(Y — 124,)?] and o5y = E[(X —
wx)(Y — wy)] (thisis discussed shortly).
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Bivariate ProcessesV -3

The concept of moments generalizesto bivariate processes, essentially based on Equation
(7.38). For example, the expected value of the product of two variables X and Y is

E[XY] = f /xyp(x, y)dxdy (7.44)

Thisis ageneralization of the second moment (see Equation (7.40)). If we centralize the
process (i.e. subtract the mean from each) then

oo

Cov(X,Y) = oxy = E[(X = i)Y — y)]l = [ (X = (Y — my) P(X, y)dxdy
o (7.45)
E[X Y] iscalledthe correlation between X and Y, and Cov(X, Y) iscalled thecovariance
between X and Y. They are related by

Cov(X,Y) = E[X Y] — pxjey = E[X Y] — E[X]E[Y] (7.46)

Note that the covariance and correlation are the same if 1, = 1y = 0. Some definitions
for jointly distributed random variables are given below.
Xandy are:

(@) uncorrelated if E[X Y] = E[X] E[Y] (or Cov(X,Y) = 0)
(note that, for zero-mean variables, if X and Y are uncorrelated, then E[ X Y] = 0);

(b) orthogonal if E[X Y] = 0;
(c) independent (statistically) if p(x, y) = p(x)p(y).

Note that, if X and Y are independent they are uncorrelated. However, uncorrelated
random variables are not necessarily independent. For example, Let X be arandom variable
uniformly distributed over therange —1to 1. Note that the mean value E[ X] = 0. Let another
random variable Y = X2. Then obviously p(x, y) # p(x)p(y),i.e. X and Y are dependent (if
X isknown, Y isalso known). But Cov(X, Y) = E[X Y] — E[X]E[Y] = E[X?®] = 0 shows
that they are uncorrelated (and also orthogonal). Note that they are related nonlinearly.

An important measure called the correlation coefficient is defined as

_ Cov(X.Y)  E[(X— )Y — py)]
Pry = Ox Oy B Ox Oy (7.47)

Thisisameasure (or degree) of alinear relationship between two random variables, and the
correlation coefficient has values in the range —1 < pyxy < 1. If |pxy| = 1, then two random
variables X and Y are ‘fully’ related in alinear manner, e.g. Y = aX + b, wherea and b are
constants. If pyy = O, thereisnolinear relationship between X and Y. Notethat the correlation
coefficient detects only linear relationships between X and Y. Thus, even if p,, = 0, X and
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Y can be related in anonlinear fashion (see the above example, i.e. X and Y = X?, where X
is uniformly distributed on —1 to 1).

Some | mportant Properties of Moments

(8 E[aX + b] =aE[X] + b (a, b are some constants) (7.48)
(b) E[aX 4+ bY] = aE[X] + bE[Y] (7.49)
(©) Var(X) = E[X?] — uf = E[X?] — E?[X] (7.50)

Proof: Var(X) = E[(X — ux)?] = E[X® — 2ux X + 1]
= E[X?] — 2uxE[X] + pZ = E[X?] — 12

(d) Var(aX + b) = a?Var(X) (7.52)
(€) Cov(X,Y) = E[XY] — uxuy = E[XY] — E[X]E[Y] (7.52)
(f) Var(X +Y) = Var(X) + Var(Y) 4+ 2Cov(X, Y) (7.53)

Proof: Var(X +Y) = E[(X + Y)?] — E?[(X + Y)]
= E[X? + 2XY + Y?] — E?[X] — 2E[X]E[Y] — E?[Y]
= (E[X?] — E?[X]) + (E[Y?] — E?[Y]) +2(E[XY] — E[X]E[Y])
= Var(X) + Var(Y) + 2Cov(X, Y)

Notethat, if X and Y areindependent or uncorrelated, Var(X + Y) = Var(X) + Var(Y).

Higher Moments

We have seen that the first and second moments are sufficient to describe the probability
distribution of a Gaussian process. For a non-Gaussian process, some useful information
about the probability density function of the process can be obtained by considering higher
moments of the random variable.

The generalized kth moment is defined as

M, = E[X"] = / xKp(x)dx (7.54)

—00

The kth moment about the mean (central moment) is defined as

[ee)

M = E[(X — )] = / (X — 1) pOQYdx (7.55)

—00

In engineering, the third and fourth moments are widely used. For example, the third
moment about the mean, E[(X — 1x)%], is a measure of asymmetry of a probability
distribution, so it is called the skewness. In practice, the coefficient of skewnessis more
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often used, and is defined as
_ EI(X - )]

3
Oy

V1 (7.56)
Notethat, in many texts, Equation (7.56) issimply referred to as skewness. Also note that
y1 = 0 for aGaussian distribution since it has a symmetric probability density function.
Typical skewed probability density functions are shown in Figure 7.19. Such asymmetry
could arise from signal ‘clipping’.

p(X) i POt A
| |
| |
| |
+ X + X
o, o 4,
(a) Negative skewness (b) Positive skewness

Figure7.19 Skewed probability density functions

Thefourth moment about themean, E[(X — 114)*], measuresthe degree of flattening
of a probability density function near its mean. Similar to the skewness, the coefficient
of kurtosis (or simply the kurtosis) is defined as

4
oo EX =Yg @57
O—X
where ‘=3 is introduced to make y», =0 for a Gaussian distribution (i.e.
E[(X — ux)¥ /oy = 3 for aGaussian distribution, thus E[(X — ux)*]/oy is often used
and examined with respect to the value 3).
A distribution with positive kurtosis y, > 0 is called leptokurtic (more peaky than
Gaussian), and a distribution with negative kurtosis y» < 0 is called platykurtic (more
flattened than Gaussian). Thisisillustrated in Figure 7.20.

p(x) > 0 (leptokurtic)

% Gaussian (y, =0)

77X 7, <0 (platykurtic)
/ : '
e : \ .

of My

Figure7.20 Probability density functions with different values of kurtosis

Since 1 = 0 and y», = 0 for a Gaussian process, the third and fourth moments (or
y1 and y,) can be used for detecting non-Gaussianity. These higher moments may also be
used to detect (or characterize) nonlinearity since nonlinear systems exhibit non-Gaussian
responses.

The kurtosis (fourth moment) iswidely used as a measure in machinery condition moni-
toring —for example, early damage in rolling elements of machinery often resultsin vibration
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signalswhose kurtosis valueis significantly increased owing to the impacts occurring because
of the faultsin such rotating systems.

Asafurther example, consider alarge machine (in good condition) that has many compo-
nents generating different types of (periodic and random) vibration. In this case, the vibration
signal measured on the surface of the machine may have a probability distribution similar to
a Gaussian distribution (by the central limit theorem). Later in the machine’s operationa life,
one of the components may produce a repetitive transient signal (possibly due to a bearing
fault). This impact produces wide excursions and more oscillatory behaviour and changes
the probability distribution from Gaussian to one that is leptokurtic (see Figure 7.20). The
detection of the non-Gaussianity can be achieved by monitoring the kurtosis (see MATLAB
Example 7.4). Note that, if there is severe damage, i.e. many components are faulty, then the
measured signal may become Gaussian again.

Computational Considerations of Moments (Digital Form)

We now indicate some ways in which the moments described above might be estimated from
measured data. No attempt is made at this stage to give measures of the accuracy of these
estimates. Thiswill be discussed later in Chapter 10.

Suppose we have a set of data (X1, X2, ..., Xn) collected from N measurements of a
random variable X. Then the sample mean X (which estimates the arithmetic mean, uy) is
computed as

1 N
X==3 X (7.58)
N n=1

For the estimation of the variance 0.2, one may use the formula

1 N
2 _ A2
=N Z(xn ~X) (7.59)
n=1
However, this estimator usually underestimates the variance, so it is a biased estimator. Note
that X is present in the formula, thus the divisor N — 1 is more frequently used. This gives an
unbiased sample variance, i.e.

1 N
£=——") (X —X)? (7.60)
N1

where s, isthe sample standard deviation. Since
N N
Z (X0 — %)% =

n=1 n=1

x2 — 2NX? + Nx?

the following computationally more efficient form is often used:

N
ot (3)
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The above estimation can be generalized, i.e. the kth sample (raw) moment is defined as

1 N
my, = N > xk (7.62)
=il

Note that m; = X and m, is the mean square value of the sample. Similarly the kth sample
central moment is defined as

N

M = % > —%)F (7.63)
n=1

Notethat m; = 0 and m; isthe (biased) sample variance. Asin the above equation, the divisor
N is usualy used for the sample moments. For the estimation of skewness and kurtosis
coefficients, the following biased estimators are often used:

1 N
=3 > —%)° / s (7.64)

Kurt = (% —x)* / sj}) (7.65)

isused.
Finaly, for bivariate processes, the sample covariance is computed by either

Z X0 — X)(Yn — V) = [(Z xnyn> - ny] (biased estimator)  (7.66)

or

Sy =g 7 Z (X0 =X)(Yn —Y) = [(Z Xnyn> — Nx_y:|

(unbiased estimator)  (7.67)

Note that, although we have distinguished the biased and unbiased estimators (the divisor is
N or N — 1), their differences are usually insignificant if N is‘large enough’.
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7.4 BRIEF SUMMARY

1. Therelative frequency (or empirical probability) of event E is

fe — NE
FTN

2. A random variable is a function defined on a sample space, i.e. a random variable
X maps from the sample space 2 to a range space Qx such that X(w;j) = ;. There
are two types of random variable: a discrete random variable (2 consists of discrete
elements) and a continuous random variable (22 consists of continuous values).

3. The central limit theorem (roughly speaking) states that the sum of independent ran-
dom variables (that have arbitrary probability distributions) S, = >_y_; X« becomes
normally distributed (Gaussian) as n gets large.

4. The moments of arandom variable are summarized in Table 7.1.

Table7.1 Summary of moments

Moment (central) Estimator Measures
1 N
1st moment: X=— X Mean (location
fl n; n ( )
mx = E[X]
1 N
2nd moment: &= N=1 Z (Xn — X)? Variance (spread or dispersion)
T o=l

of = E[(X = )]

N
3rd moment: mz = % Z (Xn — X)® Degree of asymmetry (skewness)
n=1
E[(X — ux)®
M3 — E[(X _ Mx)s] Y= M
GX
18 —u . .
4th moment: m; = N Z Xn —X) Degree of flattening (kurtosis)
n=1
E[(X — ux)?
My = E[(X — 11,)%] yp = ELX =] 4

4
Oy

5. The correlation of X and Y is defined as E[ X Y], and the covariance of X and Y is
defined as

Cov(X. Y) = oy = E[(X — m)(Y — 1y)]
These are related by
Cov(X,Y) = E[X Y] — uxpy = E[X Y] — E[X]E[Y]
6. Two random variables X and Y are uncorrelated if
E[X Y] = E[X] E[Y] (or Cov(X, Y) = 0)
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7. The correlation coefficient is defined as
_ Cov(X,Y) _ E[(X — ux)(Y — py)]

p =
i 00y

0x0y

Thisisameasure of alinear relationship between two random variables. If | oyy| = 1,
then two random variables X and Y are ‘fully’ related linearly. If pxy = O, they are
not linearly related at all.

7.5 MATLAB EXAMPLES

Example 7.1: Relative frequency fg = ng/N asan estimate of P(E)

In this MATLAB example, we consider an experiment of tossing a coin, and observe
how the relative frequency changes as the number of trials (N) increases.

Line MATLAB code Comments
1 clearall Initialize the random number generator. The
2 rand('state',0); MATLAB function ‘rand’ generates
uniformly distributed random numbers, while
‘randn’ is used to generate normally
distributed random numbers.
3 X=round(rand(1,1000)); % 1: head, O: tail  Define the random variable X whose
4 id_head=find(X==1); id_tail=find(X==0);  elements are either 1 or 0, and 1000 trials are
performed. We regard 1 as the head and 0 as
thetail. Find indices of head and tail.
5  N=ones(size(X)); The vector ‘head’ has ones that correspond to
6  head=N; head(id_tail)=0; the elements of vector X with 1, and the
7  tail=N; tail(id_head)=0; vector ‘tail’ has ones that correspond to the
elements of vector X with 0.
8  fr_head=cumsum(head)./cumsum(N); Calculate the relative frequencies of head and
9  fr_tail=cumsum(tail)./cumsum(N); tail. The MATLAB function ‘cumsum(N)’
generates a vector whose elements are the
cumulative sum of the elements of N.
10 figure(l)
11 plot(fr-head)
12 xlabel('\itN \rm(Number of trials)’) Plot the relative frequency of head.
13 ylabel('Relative frequency (head)")
14 axis([0length(N) 0 1])
15 figure(2)
16 plot(fr_tail)
17 xlabel('\itN \rm(Number of trials)’) Plot the relative frequency of tail.
18 ylabel('Relative frequency (tail)")
19  axis([0length(N) 0 1])
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Results
1 1
0.9 0.9
g o8 < 08
& o7 E o7
> Py
2 06 S o6
k5 =]
S o0s — 305 ]
D =
S o4 3 04
E 03 g 03
& 02 X 0.2
01 01
00100 200 300 400 500 600 700 800 900 1000 09100 200 300 400 500 600 700 800 900 1000

N (Number of trials)

@)

N (Number of trials)

(b)

Comments: Note that the relative frequency approaches the theoretical probability (1/2)
as N increases.

Example 7.2: Demonstration of the central limit theorem

Thesum of independent random variables, S, = ZE=1 Xk, becomesnormally distributed
asn getslarge, regardless of individual distribution of Xk.

Line MATLAB code Comments

1 clear all Initialize the random number generator, and generate

2 rand('state’,1); amatrix X whose elements are drawn from a

3 X=rand(10,5000); uniform distribution on the unit interval.

The matrix is 10x 5000; we regard this as 10
independent random variables with a sample length
5000.

4 S1=X(1,’); Generate the sum of random variables, e.g. S5isthe

5 S2=sum(X(1:2,:)); sum of five random variables.

6 S5=sum(X(1:5,%)); In this example, we consider four cases: S1, S2, S5

7 S10=sum(X); and S10.

8 nbin=20; N=length(X);

9 [n1 s1]=hist(S1, nbin); Define the number of bins for the histogram. Then,
10 [n2 s2]=hist(S2, nbin); calculate the frequency counts and bin locations for
11 [n5 s5]=hist(S5, nbin); S1, S2, S5 and S10.

12 [n10 s10]=hist(S10, nhin);

13 figure(1) Plot the histograms of S1, S2, S5 and S10. A

14 bar(sl, n1/N) histogram is a graph that shows the distribution of
15 xlabel ("\itS\rm_1") data. In the histogram, the number of countsis

16 ylabel ('Relative frequency’); normalized by N.

axis([0 1 00.14])
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17 figure(2)
18 bar(s2, n2/N) Examine how the distribution changes as the number
19 xlabel ('\itS\rm_2) of sum n increases.
20 ylabel ('Relative frequency');
axis([0200.14])
21 figure(3)

22 bar(s5, n5/N)

23 xlabel(\itS\rm_5")

24 ylabel (‘'Relative frequency');
axis([0.4 4.7 0 0.14])

25 figure(4)

26 bar(s10, n10/N)

27 xlabel ("\itS\rm_1_0")

28 ylabel (‘'Relative frequency');

axis([1.8800.14])
Results

0.14 0.14

0.12 0.12
Z 01 z 01
g 5
g 008 g o008
£ 006 £ 006
= R
S S
T 004 & 0.04

0.02 0.02

00 01 02 03 04 05 06 07 08 09 1 00 02 04 06 08 1 12 14 16 18 2

S; S,
(a) Number of sums: 1 (b) Number of sums: 2

0.14

012

o
[

0.08

Relative frequency
Relative frequency

0 0
0.5 1 15 2 25 3 35 4 45
Sg Sio
(c) Number of sums: 5 (d) Number of sums: 10

Comments: Note that it quickly approaches a Gaussian distribution.
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Example7.3: Correlation coefficient asa measureof thelinear relationship between

two random variables X and Y

Consider the correlation coefficient (i.e. Equation (7.47))

_ Cov(X,Y) _ EL(X = m)(Y = iy)]

Px
y Gxgy

Gny

We shall compare three cases: (a) linearly related, |oxy| = 1; (b) not linearly related,
loxyl = 0; (c) partialy linearly related, 0 < |pxy| < 1.

Line MATLAB code Comments
1 clear al Initialize the random number generator,
2 randn('state’ ,0); and define arandom variable X.
3 X=randn(1,1000); Then, define arandom variable Y1 that is
4 a=2; b=3; Y 1=a* X+b; % fully related linearly related to X, i.e. Y1 = aX+h.
5 Y 2=randn(1,1000); % unrelated Define another random variable Y 2
6 Y3=X+Y2; % partialy related whichisnot linearly related to X. Also,

N=length(X);

s xyl=sum((X-mean(X)).*

(Y1-mean(Y 1)))/(N-1);

9 s xy2=sum((X-mean(X)).*

(Y2-mean(Y 2)))/(N-1);

10 s xy3=sum((X-mean(X)).*
(Y3-mean(Y 3)))/(N-1);

11 rxyl=s.xyl/(std(X)*std(Y 1))

12 r-xy2=s.xy2/(std(X)*std(Y 2))

13 r_xy3=s.xy3/(std(X)*std(Y 3))

o ~

14 figure(1)
15 plot(X,Y1,".")
16 xlabel ("\itX"); ylabel ("\itY \rm1')

17 figure(2)

18 plot(X,Y2,".)

19 xlabel (\itX"); ylabel ("\itY \rm2’)
20 figure(3)

21 plot(X,Y3, ")

22 xlabel (\itX"); ylabel ("\itY \rm3')

define arandom variable Y3 whichis
partialy linearly related to X.

Calculate the covariance of two random
variables, Cov(X, Y1), Cov(X, Y2) and
Cov(X, Y3).

See Equation (7.67) for a computational
formula.

Calculate the correlation coefficient for
each case. Theresults are:

rxyl =1 (fully linearly related),
rxy2=—0.0543 (=~ 0, not linearly
related),

r-xy3=0.6529 (partially linearly related).
The degree of linear relationship between
two random variablesis visually
demonstrated.

First, plot Y1 versus X; this gives a
straight line.

Plot Y2 versus X; the result shows that
two random variables are not related.

Plot Y3 versus X; the result shows that
there is some degree of linear
relationship, but not fully related.
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Results
10 4
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o1 -2
-2t ., -3 °
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X X
(a) py, =1 (Xand Y1 are fully related (b) pyy = O (there is no linear relationship
linearly, i.e. Y1 =aX + b) between X and Y2)
5 s
4
3
2
1
Lo
-1
-2
-3
-4
=3 -2 -1 0 1 2 3
X
(c) pyy =0.6529 (not fully related, but obviously there is some degree of linear relationship)

Example 7.4: Application of the kurtosis coefficient to the machinery condition
monitoring

EIX — 1)

Kurtosis coefficient : y», = 7
GX

3
In this example, we use a ‘real’ measured signal. Two acceleration signals are stored
in the file ‘ bearing_fault.mat’:* one is measured on a rotating machine in good working
order, and the other is measured on the same machine but with afaulty bearing that results
in a series of spiky transients. Both are measured at a sampling rate of 10kHz and are
recorded for 2 seconds. The signals are then high-pass filtered with a cut-on frequency
of 1kHz to remove the rotating frequency component and its harmonics.

Since the machine has many other sources of (random) vibration, in ‘normal’
condition, the high-pass-filtered signal can be approximated as Gaussian, thus the
kurtosis coefficient has avalue close to zero, i.e. y, ~ 0.

1 The data files can be downloaded from the Companion Website (www.wil ey.com/go/shin_hammond).
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However, if the bearing is faulty, then the signal becomes non-Gaussian due to the

transient componentsin the signal, and its distribution will be more peaky (near its mean)
than Gaussian, i.e. y» > 0 (Ieptokurtic).

Line MATLAB code Comments
1 clear all Load the measured signal, and let x be
2 load bearing_fault the signal in good condition, y the
3 x=br_good; y=br _fault; signal with abearing fault.
4 N=length(x);
5 kur_x=(sum((x-mean(x))."4)/N)/(std(x,1)"4)-3  Calculate the kurtosis coefficients of
6 kur_y=(sum((y-mean(y))."4)/N)/(std(y,1)"4)-3 both signals (see Equation (7.65)).
Theresults are: kur_x = 0.0145 (i.e.
y, & 0) and kur_y = 1.9196 (i.e.
leptokurtic).
7 [nx x1]=hist(x,31); Calculate the frequency counts and bin
8 [ny y1]=hist(y,31); locations for signalsx and y.
9 figure(1); subplot(2,1,1)
10 plot(t,x)
11 xlabel(‘'Time (9)"); ylabel ("\itx\rm(\itt\rm)") Plot the signal x, and compare with the
12 subplot(2,1,2) corresponding histogram.
13 bar(x1, nx/N)
14 xlabel(\itx'); ylabel ('Relative frequency")
15 axis([-1100.2])
16 figure(2); subplot(2,1,1)
17 plot(t,y)
18 xlabel ('Time (s)'); ylabel (\ity\rm(\itt\rm)") Plot the signal y, and compare with the
19 subplot(2,1,2) corresponding histogram. Also
20 bar(y1, ny/N) compare with the signal x.
21 xlabel(\ity"); ylabel ('Relative frequency’)
22 axis([-1100.2])

Results
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(a) Signal measured on a machine in good condition, y, = 0.0145
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(b) Signal measured on a machine with a bearing fault, y, = 1.9196

Comments: In thisexample, we have treated the measured time signal as arandom vari-
able. Time-dependent random variabl es (stochasti ¢ processes) are discussed in Chapter 8.




8

Stochastic Processes; Correlation
Functions and Spectra

I ntroduction

In the previous chapter, we did not include ‘time’ in describing random processes. We
shall now deal with measured signals which are time dependent, e.g. acoustic pressure
fluctuations at a point in a room, a record of a vibration signal measured on a vehicle
chassis, etc. In order to describe such (random) signal's, we now extend our considerations
of the previous chapter to a time-dependent random variable.

Weintroduce thisby asimple example. Let uscreate atime history by tossing acoin
every second, and for each ‘head’ we record a unit value and for each ‘tail’ we record a
zero. We hold these ones and zeros for a second until the next coin toss. A sample record
might look Figure 8.1.

bocoocos

Figure8.1 A sampletime history created from tossing a coin

The sample spaceis (H, T), therange space for X is (1, 0) and we have introduced
time by parameterizing X (w) as X;(w), i.e. for each t, X isarandom variable defined on
a sample space. Now, we drop » and write X(t), and refer to this as a random function
of time (shorthand for a random variable defined on a sample space indexed by time).

Fundamentals of Sgnal Processing for Sound and Vibration Engineers
K. Shinand J. K. Hammond. ~ © 2008 John Wiley & Sons, Ltd
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x ()1

Ob-mme—— .

[

S S S S >t

Figure8.2 An example of an ensemble

We shall carry over the ideas introduced in the last chapter to these time series which
display uncertainty referred to as stochastic processes. The temporal aspects require us to
bring in some additional definitions and concepts.

Figure 8.1 depicts asingle ‘realization’ of the stochastic process X(t) (obtained by the
coin tossing experiment). It could befinitein length or infinite, i.e. —oo <t < oo. Itsrandom
character introduces us to the concepts (or necessity) of replicating the experiments, i.e.
producing additional realizations of it, which we could imagine as identical experiments run
in parallel as shownin Figure 8.2.

The set of such redizations is called an ensemble (whether finite or infinite). Thisis
sometimes written as { X(t)} where —oco < t < 0.

8.1 PROBABILITY DISTRIBUTION ASSOCIATED WITH A
STOCHASTIC PROCESS

We now consider a probability density function for a stochastic process. Let x be a
particular value of X(t); then the distribution function at time't is defined as

F(x,t) = P[X(t) < x] (8.1
and
P[x < X(t) < x +8x] = F(x + 8x,t) — F(x, t) (8.2
Since

lim P[x < X(t) < X+ 8X] — lim F(X +6x,t) — F(x, 1) _ dF(x,t)

5x—0 8X 5x—0 85X dx
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the probability density function can be written as
dF(x,t)
M 8.3
piX. 1) = —— (83)

Note that the probability density function p(x, t) for a stochastic processis time depen-
dent, i.e. it evolves with time as shown in Figure 8.3.

\P(X.H) N(X,tz)
/ol

4 b L

p(X,ts)

Figure8.3 Evolution of the probability density function of a stochastic process

Alternatively, we may visualize this as below. We project the entire ensemble onto
asingle diagram and set up a gate as shown in Figure 8.4.

Figure8.4 A collection of time histories

Now, we count the number of signals falling within the gate (say, k). Also we count
thetotal number of signals (say, N). Then the relative frequency of occurrence of X(t) in
the gate at timet isk/N. So, as N gets large, we might say that P[x < X(t) < X + §X]
isestimated by k/N (for large N), so that

b0, 1) = lim PX=XO =x+] _ K (8.4)
Sx—0 OX N—oo N X

8x—0

Itisat thispoint that the temporal evolution of the processintroduces concepts additional
to those in Chapter 7. We could conceive of describing how a process might change as time
evolves, or how aprocessrelatesto itself at different times. We could do this by defining joint
probability density functions by setting up additional gates.

For example, for two gates at timest; and t;, this can be described pictorially asin Figure
8.5. Let ky, be the number of signals falling within both gates in the figure. Then, the relative
frequency ky/N estimates the joint probability for large N, i.e.

k
P[x1 < X(t1) < X3+ 8X1 N X2 < X(t2) < X2 + %] ~ Nz (8.5)
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Figure8.5 Pictorial description of the joint probability density function

Thus, the joint probability density function iswritten as

. Plx; < X(t1) < X1 + 86X N Xo < X(tp) < X5 + 8%
p(X1, t1; X2, t2) = lim [X1 < X(tz) = X1+ X1 N X2 < X(t2) = X2 + 3%;]
8X1,8%—0 5X15X2
— i ka
T New N&§X16%2

8%1.,8xp—0

(8.6)

Also, the joint distribution function is F(Xg, ty; X2, t2) = P[X(t1) < x1 N X(t2) < x2], so
Equation (8.6) can be rewritten as

32F (X1, t1; X2, 1)
X1, 1) Xo, b)) = ———— =172 20 8.7
p(X1, t1; X2, 1) %10% (8.7)

For a‘univariate’ stochastic process, Equation (8.7) can be generalized to the kth-order
joint probability density function as
P(X1, t1; X2, t2; ... 5 Xk, tk) (8.8)

However, we shall only consider the first and second order, i.e. p(x, t) and p(Xxy, t1; X2, t2).

8.2 MOMENTSOF A STOCHASTIC PROCESS

As we have defined the moments for random variables in Chapter 7, we now define
moments for stochastic processes. The only differenceisthat ‘time’ isinvolved now, i.e.
the moments of a stochastic process are time dependent. The first and second moments
are asfollows:

() First moment (mean):

palt) = EIX©] = [ xpx.tydx (89)
(b) Second moment (mean square):
E[X2(t)] = [ x2p(x, t)dx (8.10)

—0Q0
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(c) Second central moment (variance):
Var(X(t)) = o(t) = E[(X(t) — ux(t))’] = f (X — ux()*p(x, t)dx  (8.11)

Note that E[(X(t) — ux(t))?] = E[X2(t)] — u2(t),i.e
g (t) = E[X3(1)] — p4(t) (812

Ensemble Averages

We noted the concept of theensembleearlier, i.e. replications of the realizations of the process.
We now relate the expected value operator E to an ensemble average. Consider the ensemble
shown in Figure 8.6.

Then, from the ensemble, we may estimate the mean by using the formula

_ 1
X(0) = > Xat) (8.13)
n=1
We now link Equation (8.13) to the theoretical average asfollows. First, for a particular time
t, group signals according to level (e.g. the gate defined by x and x + §x). Suppose all X;(t)

in the range x; and x; + 8x; are grouped and the number of signals in the group is counted
(say ki). Then, repeating this for other groups, the mean value can be estimated from

_ k k ki
X(t) ~ Xlﬁl + Xzﬁ2 +-= Xi:xi NI (8.14)

where ki /N is the relative frequency associated with the ith gate (x; to x; + 8x;). Now, as
N — oo, ki/N — p(xi, t)dx;, so

oy r
,JLmooﬁnZ;Xn(t)—) f xp(x, t)dx (8.15)

50 i
Mﬁ&vﬂv Time
X2 © 1 x+6x
%VAVAVAUAL’ Time
Xo(t)

X, (1) :
M&%ﬂvﬂvﬂvﬂw&ﬂv Time
X, (t) .

Figure8.6 An example of ensemble average
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Thus, an average acrossthe ensemble (theinfinite set) isidentified with thetheoretical average,
ux(t), i.e

N
) = EIX(O] = Jim > %0 (8.16)

So, the operator E[ ] may be interpreted as the Expectation or Ensemble average.

8.3 STATIONARITY

As we have seen in previous sections, the probability properties of a stochastic process
are dependent upon time, i.e. they vary with time. However, to simplify the situation, we
often assume that those statistical propertiesarein a’‘ steady state’, i.e. they do not change
under a shift in time. For example:

(@ p(x,t) = p(x). Thismeansthat 1x(t) = ux and o2(t) = o2, i.e. the mean and vari-
ance are constant.

(b) p(xq,t1; X0, t) = p(Xq, t1 + T; Xp, to + T), i.e. p(Xg, t1; X2, t2) is afunction of time
difference (t, — t;) only, and does not explicitly depend onindividual timest; and t,.

(©) p(Xg, t1; %o, to; .. s Xk tk) = p(Xe, t1 + T %o, to + T ... Xk, t + T) for al k.

If a process satisfies only two conditions (a) and (b), then we say it is weakly stationary
or simply stationary. If the process satisfies the third condition also, i.e. all the kth-
order joint probability density functions are invariant under a shift in time, then we say
it is completely stationary. In this book, we assume that processes satisfy at least two
conditions (a) and (b), i.e. we shall only consider stationary processes. Typical records
of non-stationary and stationary data may be as shown in Figure 8.7.

X(t)

Non-stationary (varying mean)

X(t)

Non-stationary (varying variance)

‘Probably’ stationary

Figure8.7 Typical ‘sample’ of non-stationary and stationary processes
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In general al practical processes are non-stationary, thus the assumption of stationarity
is only an approximation. However, in many practical situations, this assumption gives a
sufficiently close approximation. For example, if we consider a vibration signal measured on
acar body when the car isdriven at varying speeds on rough roads, then the signal is obviously
non-stationary since the statistical properties vary depending on the types of road and speed.
However, if we locate a road whose surface is much the same over a‘long’ stretch and drive
the car over it at constant speed, then we might expect the vibration signal to have similar
characteristics over much of its duration, i.e. ‘approximately’ stationary.

As we shall see later, the assumption of stationarity is very important, especially when
we do not have an ensemble of data. In many situations, we have to deal with only asingle
record of data rather than a set of records. In such a case, we cannot perform the average
across the ensemble, but we may average along time, i.e. we perform atime average instead of
ensembl e average. By implication, stationarity isanecessary condition for thetime averageto
be meaningful. (Note that, for stationary processes, the statistical properties are independent
of time.) The problem of deciding whether aprocessis stationary or not is often difficult and
generally relieson prior information, though observations and statistical testson time histories
can be helpful (Priestley, 1981; Bendat and Piersol, 2000).

8.4 THE SECOND MOMENTSOF A STOCHASTIC PROCESS,
COVARIANCE (CORRELATION) FUNCTIONS

The Autocovariance (Autocorrelation) Function

Asdefined in Equation (8.11), the variance of arandom variable for a stochastic process
is written o2(t) = E [(X(t) — ux(t))?]. However, a smple generalization of the right
hand side of this equation introduces an interesting concept, when written as E[(X(ty) —
ux (1)) (X(t2) — ux(t2))]. Thisisthe autocovariance function defined as

Cux(t1, t2) = E[(X(t1) — mx(t2))(X(t2) — nx(t2))] (8.17)

Similar to the covariance of two random variabl esdefined in Chapter 7, theautocovariance
function measures the ‘ degree of association’ of the signal at time t; with itself at time
to. If the mean value is not subtracted in Equation (8.17), it is called the autocorrelation
function as given by

Rux(ta, t2) = E[X(t) X(t2)] (8.18)

Note that, sometimes, the normalized autocovariance function, Cyx(is,t2)/
[ox(t1)ox(t2)], is called the autocorrelation function, and it is also sometimes called an
autocorrelation coefficient. Thus, care must be taken with the terminology.

If welimit our interest to stationary processes, since the statistical propertiesremain
the same under a shift of time, Equation (8.17) can be simplified as

Cux(tz — t2) = E[(X(t) — nx)(X(t2) — 11x)] (8.19)
Note that thisis now afunction of the time difference (t, — t;) only. By lettingt; =t and
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t, =t + 7, it can be rewritten as
Cux(7) = E[(X(t) — wx)(X(t + 7) — ux)] (8.20)

where t iscalled thelag. Notethat when T = 0, Cy«(0) = Var(X(t)) = o2. Similarly, the
autocorrelation function for a stationary processis

Rux(7) = E[X(t)X(t + 7)] (8.21)

Note that Ryx(7) is a continuous function of ¢ for a continuous stochastic process, and
Cxx (1) and Ryx(t) are related such that

Cux(t) = Rux(7) — :U«i (8.22)

I nterpretation of the Autocorrelation Function in Terms of the Ensemble

In Section 8.2, we have already seen that the mean value might be defined as an ensemble
average (see Equation (8.16)), i.e.

o1y
) = lim ; Xn(t)

We now apply the same principle to the autocorrelation function for a stationary process. For
simplicity, we assume that the mean value is zero, i.e. we set ux = 0.

For the nth record, we form X, (t) X,(t + ) as shown in Figure 8.8, and average this
product over all records, i.e. an ensemble average.

Then, we can write the autocorrelation function as

N
Rux(7) = E[X()X(t + 7)] = ,\}i_)mw% [; Xn(t) Xn(t + f)} (8.23)

Since we assumed that uy = O, the autocorrelation function at zero lag is Rux(0) =
Var(X(t)) = 02. Also, as 7 increases, it may be reasonable to say that the average

t
Xl()I X Xtrap  FormXiOX(ten)
R A N /\ /\ /\> Time

X(t) Xt +7) Form X,(t) X »(t +7)

\ o X0 pf\ N AL Time
TN

/V\/X”\(t)l\ Xp(t) Xp(t+7) Form X, (t) X (t +7)
N /\ FAY r\/\'\/\ > Time
' | MEAW b

t+7

Figure 8.8 Ensemble average for the autocorrelation function
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Ru(7)
o2 (for zero mean)

Figure8.9 A typical autocorrelation function

E[X(t) X(t + 7)] should approach zero, since the values of X(t) and X(t + 7) for large lags
(time separations) are ‘less associated (related)’ if the process is random. Thus, the gen-
eral shape of the autocorrelation function Ryx(7) may be drawn as in Figure 8.9. Note that,
as can be seen from the figure, the autocorrelation function is an even function of t since
E[X({t)X(t 4+ )] = E[X(t — ) X(1)].

We note that the autocorrel ation function does not always decay to zero. An example of
when this does not happen is when the signal has a periodic form (see Section 8.6).

The Cross-covariance (Cross-correlation) Function

If we consider two stochastic processes {X(t)} and {Y(t)} simultaneously, e.g. an
input—output process, then we may generalize the above joint moment. Thus, the cross-
covariance function is defined as

Cuy(ta, t2) = E[(X(te) — mx(t))(Y (t2) — 1y(t2))] (8.24)
and, if the mean values are not subtracted, the cross-correlation function is defined as
Ruy(te, t2) = E[X(t) Y (t2)] (8.25)

Equation (8.24) or (8.25) isameasure of the association between the signal X(t) at time
t; and the signal Y(t) at time ty, i.e. it is a measure of cross-association. If we assume
both signals are stationary, then Cyy(t1, to) or Rey(t1, to) isafunction of time difference
t, — t1. Then, asbefore, lettingt; =t andt, =t + 7, the equations can be rewritten as

Cxy(r) = E[(X(t) — m)(Y(t + 7) — py)] (8.26)
and
Rey(t) = E[X()Y(t + 7)] (8.27)
where their relationship is
Cuy(t) = Ruy(r) — pxity (8.28)
Also, the ensemble average interpretation becomes

N
Rey(t) = EIX®)Y(t +7)] = Nll_)ﬁgo% [Z Xn(t)Yn(t + T)] (8:29)
n=1
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We shall consider examples of this later, but note here that Ryy(z) can have a general
shape (i.e. neither even, nor odd) and Ryy(t) = Ryx(—71).

The cross-correlation (or cross-covariance) function is one of the most important
concepts in signa processing, and is applied to various practical problems such as
estimating time delaysin a system: radar systems are a classical example; leak detection
in buried plastic pipe is a more recent application (Gao et al., 2006). Moreover, as we
shall seelater, together with the autocorrelation function, it can be directly related to the
system identification problem.

Properties of Covariance (Correlation) Functions

We now list some properties of covariance (correlation) functions; the examplesto follow in
Section 8.6 will serveto clarify these properties:

(a) Theautocovariance (autocorrelation) function: First, we define the autocorrelation coef-
ficient as

Cxx(1) Rux(T)

= = f 8.30
Pxx(T) o2 R 0) or zero mean (8.30)
where pyx () isthe normalized (non-dimensional) form of the autocovariance function.
(i) Cux(t) = Cyx(—1); Rux(t) = Ryx(—7) (i.e. the autocorrelation function is‘even’)

(8.31)
(i) pxx(0) = 1; Cxx(0) = 0,7(= Rux(0) for zero mean) (832)
(iii) |ICxx(7)] < sz; [Rux(7)] < Rux(0), thus — 1 < pyx(7) < 1 (8.33)

Proof: E[(X(t) £ X(t + 1))?] = E[X?(t) + X3(t + ) £ 2X(t)X(t + )] > O, thus
2Ryx(0) > 2| Ryx(7)| which gives the above result.

(b) The cross-covariance (cross-correlation) function: We define the cross-correlation coef-
ficient as

_ ny(f) B ny(f)
Poxy(T) = o0y (_ R OR.0 for zero mean) (8.34)
(i) Cuy(—71) = Cyx(1); Ry(—7) = Ryx(r) (neither odd nor even in general) (8.35)
(i) |ny(f)|2 =< UXZO’)?; |ny("-')|2 < R (0) ny(O), thus— 1 < ny(f) <1 (8.36)

Proof: For real valuesa and b,
E[(aX(t) + bY(t + 7)) = E[a®X*(t) + b?Y2(t + 7) + 2abX(t)Y(t + 7)] = O
i.e. a%Ryx(0) + 2abRyy () + b?Ryy(0) > 0, 0rif b # 0
(a/b)?Rx(0) + 2(a/b) Rey(t) + Ryy(0) > 0
The |eft hand side is a quadratic equation in a/b, and this may be rewritten as
[Rux(0)(a/b) + Rey(1)]? = RE,(r) — R(0)Ryy(0)



ERGODICITY AND TIME AVERAGES 229

For any values of a/b, thisinequality must be satisfied. Thus
Rfy(f) — Rx(O)Ryy(0) <0

and so the result follows.
(i) 1f X(t) and Y (t) are uncorrelated, Cyy(t) = 0; Rey(T) = 1ixity.

Note that the above correlation coefficients are particularly useful when X(t) and Y (t)
have different scal es. Although we have distinguished the covariance functionsand correlation
functions, their difference is the presence of mean values only. In most practical situations,
the mean values are usually subtracted prior to some processing of data, so the correlation
functions and the covariance functions are the same in effect. Consequently, the ‘ correlation’
functions are often preferably used in engineering.

8.5 ERGODICITY AND TIME AVERAGES

The moments discussed in previous sections are based on the theoretical probability
distributions of the stochastic processes and have been interpreted as ensembl e averages,
i.e. we need an infinite number of records whose statistical properties are identical.
However, in general, ensemble averaging is not feasible as we usually have only asingle
realization (record) of limited length. Then, the only way to perform the average is along
the time axis, i.e. a time average may be used in place of an ensemble average. The
question is: do time averages along one record give the same results as an ensemble
average? The answer is ‘sometimes’, and when they do, such averages are said to be
ergodic.

Note that we cannot simply refer to a process as ergodic. Ergodicity must be related
directly to the particular average in question, e.g. mean value, autocorrelation function
and cross-correlation function, etc. Anticipating aresult from statistical estimationtheory,
we can state that stationary processes are ergodic with respect to the mean and covariance
functions. Thus, for example, the mean value can be written as

T

= TILTO % / x(t)dt (8.37)
0
i.e. thetime average over any singletime history will give the same value asthe ensemble
average E[ X(t)].
If we consider a signal with afinite length T, then the estimate of the mean value
can be obtained by

.
fix = X = % f x(t)dt (8.39)
0
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or if thesignal is digitized using samples every A secondsso that T = NA, then
N-1

_ 1
NA &=

thus

_ 1 N—-1
X=3 D X(nA) (8.39)

n=

Note that the mean value X is asingle number characterizing the offset (or d.c. level) as being
the same over the whole signal.

If the offset changes at some poaint (i.e. a smple type of non-stationary signal), e.g. at
t = Ty asshown in Figure 8.10, then the ‘ estimate’ of the mean value using all T seconds will
produce a mean for the whole record — whereas it might have been preferable to split up the
averaging into two segment to obtain x; and X.

Figure8.10 A varying mean non-stationary signal

This idea may be generalized to estimate a ‘drifting’ or ‘slowly varying’ mean value
by using local averaging. The problem with local averaging (or local smoothing) is that, of
necessity, fewer sample values are used in the computation and so the result is subject to more
fluctuation (variability). Accordingly, if onewantsto ‘track’ some feature of a non-stationary
process then there is atrade-off between the need to have alocal (short) average to follow the
trends and along enough segment so that sample fluctuations are not too great. The details of
the estimation method and estimator errors will be discussed in Chapter 10.

Similar to the mean value, the estimate of time-averaged mean squarevalueis (wefollow
the notation of Bendat and Piersol, 2000)

-
x2 =2 = % f x2(t)dt (8.40)
0

and in digital form

7.2 1 — 2
V= > x%(nA) (8.41)
n=0
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The root mean square (rms) is the positive square root of this. Also, the variance of the signal
can be estimated as

-
62 = % / (x(t) — X)2dt (8.42)
0

In digital form, the unbiased estimator is

62=—"— Z (x(nA) — X)? (8.43)

where 6y is the estimate of the standard deviation.
For the joint moments, the ensembl e averages can also be replaced by the time averages
if they are ergodic such that, for example, the cross-covariance function is

T

Cyl®) = fim = / (X(V) — )Yt + 7) — ay)elt (8.44)
0

i.e. the time average shown above is equal to E[(X(t) — ux)(Y(t + ) — iy)] and holds for
any member of the ensemble. The (unbiased) estimate of the cross-covariance functionis

Co) =7 [CO-DOE+D-Hdt  0=c<T
0
(8.45)

y)dt —T<17<0

7|

In Equation (8.45), if the divisor T is used, it is called the biased estimate. Since ny(r)
ny( 7) we may need to define the ny(r) for positive T only. The corresponding digital
version can be written as

N—-m-1

Y (A =X)(y(h+mA)—y) 0<m<N-1 (846

n=0

Colma) = g

In this section, we have only defined unbiased estimators. Other estimators and corre-
sponding errors will be discussed in Chapter 10. Based on Equations (8.44)—8.46), the same
form of eguations can be used for the autocovariance function Cyx () by simply replacing y
with x, and for correlation functions Ryy(r) and Ryy(r) by omitting the mean values in the
eXpressions.
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8.6 EXAMPLES

Wenow demonstrateseveral examplestoillustrate probability density functionsand covariance
(correlation) functions.

Probability Distribution of a Sine WaveM8!

A sinewave x(t) = Asin(wt + 8) may be considered random if the phase angle 6 is random,
i.e. 6 isnow arandom variable, and so each reali zation hasaphase drawn from some probability
density function p(0) (A and w are known constants).

For afixed value of t we shall computethe probability density function of x. Todothis, we
work from thefirst principles. Wewant p(x, t) = dF(x, t)/dx where F(x, t) = P[X(t) < X].
Let usfirst calculate F(x, t) and then differentiate with respect to x. We shall assume that

1
0)=— for0<6 <2r
p()2n0r§§

(8.47)
=0 otherwise
i.e. 0 isuniformly distributed. Then the distribution function is
0 6 <0
o 0<6<?2
= - T
F() o <0< (8.48)
1 6 > 27

Since it is a stationary process, an arbitrary value of t can be used, i.e. F(x,t) = F(x) and
p(x,t) = p(x), solett = O for convenience. Then

F(x) = PIX < x] = P[Asing < x] = P [sing < /i;] (8.49)
This condition is equivalent to
../ X
P [9 <snt (K)] = F(0)lp=sn1x/n and
« (8.50)
Plr—sin (%) <0=27| = FO)lsozr = FOlimr-sni00n
Note that, in the above ‘equivalent’ probability condition, the values of sin~1(x/A) are de-

fined in the range —7/2to /2. Also F(0)], is alowed to have negative values. Then, the
distribution function F(x, t) becomes

F(x,t) = F(x) = % + %sin* (%) (851)
and this leads to the probability density function as
dF(x) 1 1
dx 7 JA -2

which hasthe U shapeof theprobability density function of asinewaveasshowninFigure8.11.

p(x) = (8.52)
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p(x) F(x)
E : 1
i i 12
: t : > X t 1 t > X
-A 0 A -A 0 A

Figure8.11 Probability density function and distribution function of asine wave

As an alternative method, we demonstrate the use of a time average for the probability
density calculation (assuming ‘ergodicity’ for the probability density function). Consider
the sine wave above (and set the phase to zero for convenience, i.e. 6 = 0 for a particular
realization). Then, we set upagate (x < x(t) < x + dx) asshownin Figure8.12, and eval uate
the time spent within the gate. Then

p(x)dx ~ probability of lying in the gate ~ % (8.53)

where T = thetotal record length, and 3 dt; = total timein the gate.

X (1) = Asin(et)

A
At X+ dx
\ X
» t
>l ¢ > |«
dt, dt,

<+ T

Figure8.12 A sinewave with agate

For the sinewave, wetakeoneperiod,i.e. T = Tp. Sincedx = wAcos(wt)dt, it follows
that

dx dx

dt = = 8.54
wAcost)  wA/1— (x/A)? (859)

A|SO, let dtj_ = dtz = dt, SO
ox)dx = 2 2dx dx (8.55)

Tr  (2r/0)oAVI— (/A2 avAZ_x2

which is the same result as Equation (8.52), i.e.

X)= —————
P(X) T/ AZ — X2
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The Autocorrelation (Autocovariance) Function

A Sine WaveM82
Let x(t) = Asin(wt + 6) where 6 is a random variable with a uniform probability density
function as discussed above. For any fixed value of t, let

X(t) = Asin(wt + 0) = x1(0)

X(t 4+ 1) = Asin[ow(t + 1) + 0] = x2(60) (8:56)
The mean valueis
ux = E[x(t)] = E[x(0)] = / Asin(wt + 0)p(0)do =0 (8.57)
Then the autocorrel ation function becomes
Rux(t) = E[X(®)X(t + 7)] = E [x1(0)%2(0)]
= / A? sin(wt + 0) sin[w(t + 1) + 6] p(0)do
s .
AZ 1
= — | =[cos(wt) — cos(2wt + wt + 26)]d6
2 2
0
= A; cos(wt) (8.58)

which is a cosine function as shown in Figure 8.13. Note that this is an example where the
autocorrel ation does not decay to zeroast — .

Assuming ‘ergodicity’ for the autocorrelation function, thetime averagefor asingletrace
X(t) = Asin(wt + 0) gives the same result:

T T
1 1
Rx(7) :TIer;o?/‘x(t)x(H—r)dt =TILrQOE/x(t)X(t+r)dt
0 -T

T

. 1 . .
= lim —/Azsn(wt+9)sn(a)t+a)t+9)dt
T—oo 2T
1

T

= lim al 1[cos( ) — cos(2wt + +20)]dt—Azcos( ) (8.59)

_Teoo oT 2 wT w wT = 2 wT .
-7

Figure8.13 Autocorrelation function of asine wave
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It isappropriate to emphasize the meaning of the autocorrel ation function by considering
Rux(t) asthe *average’ of the product x(t)x(t + ). Theterm x(t + 7) isashifted version of
X(t), so this product is easily visualized asthe original time history x(t) whichis‘overlad by
ashifted version of itself (when t is positive the shift isto the left). So the product highlights
the “match’ between x(t) and itself shifted by = seconds.

For the sine wave, which is periodic, thismatching is‘ perfect’ for t = 0. Whent = 1/4
period (i.e. T = 7 /2w), the positive and negative matches cancel out when integrated. When
t = 1/2 period thisis perfect matching again but with asign reversal, and so on. This shows
that the periodic signal has a periodic autocorrelation function. Note that, as can be seen in
Equation (8.59), the autocorrelation (autocovariance) function does not depend on 6, i.e. itis
‘phase blind’.

Asynchronous Random Telegraph Signal

Consider atime function that switches between two values +a and —a as shown in Figure
8.14. The crossing timest; are random and we assume that it is modelled as a Poisson process
with arate parameter A. Then, the probability of k crossingsintime t is

e Ml K
D = % (8.60)

where A isthe number of crossings per unit time.

X(t)

+a 11
I I [

1 1 [

1 1 [

1 [

1 [

1 [

]

t.

I

I

1

+ >t
1 1
1 1
1 1

| — ]

C

-a | I—"

Figure8.14 Asynchronous random telegraph signal

If we assume that the process is in steady state, i.e. t — oo, then P[X(t) = a] =
P[X(t) = —a] = 1/2. Sothemean value uy = E[x(t)] = 0. And the product x(t)x(t + ) is
either a® or —a?, i.e. itisa? if the number of crossingsisevenintime r and —a? if the number
of crossings is odd in time 7. The total probability for a2 (i.e. an even number of crossings
occurs) isy - Pak, and thetotal probability for —a?is - ) pak+1. Thus, the autocorrelation
function becomes

[e.¢]

Ru(t) = E[xOX(t + )] = > [8®px — 8% paks1]
k=0
o S TDE TDEN | o e | o (AT
=ae [g( @ (2 + D) )} =ate [g K }
— a2 2l (8.61)

which isan exponentially decaying function as shown in Figure 8.15, where the decay rateis
controlled by the parameter A.
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Re(7)

aZ

] » 7

Figure8.15 Autocorrelation function of an asynchronous random telegraph signal

White Noise

Thisis avery useful theoretical concept that has many desirable features in signal pro-
cessing. In the previous example of the Poisson process, the autocorrelation function is
defined as Ry (7) = a%e~ 27|, Note that, as the parameter A gets larger (i.e. the number
of crossings per unit time increases), Ryx(t) becomes narrower. We may relate this to
the concept of white noise by considering a limiting form. As A — oo, the process is
very erratic and Ryx(t) becomes ‘spike-like'. In order that Ryx(z) does not ‘ disappear
completely’ we can alow the value a to become large in compensation. This gives an
idea of a ‘completely erratic’ random process whose autocorrelation (autocovariance)
function is like a delta function, and the process that has this property is called white
noise, i.e.

Autocorrelation function of white noise: Ryx(t) = ké(t) (8.62)

An example of the autocorrelation function of white noise is shown in MATLAB
Example 8.10 which demonstrates some important aspects of correlation analysisrelated
to system identification. Note, however, that in continuous time such processes cannot
occur in practice, and can only be approximated. Thus, we often refer to ‘band-limited
white noise’ whose spectral density function is constant within aband as we shall seein
Section 8.7.

Synchronous Random Telegraph Signal

Consider aswitching signal where now thesignal canonly changesign at ‘ event points' spaced
A seconds apart. At each event point the signal may switch or not (with equal probability) as
shown in Figure 8.16.

Figure8.16 Synchronous random telegraph signal
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Since this has equal probability, the mean value is uy = 0. We shall calculate Ryx(t)

using time averages. For 0 < t < A, the product x(t)x(t 4+ 7) is

A — .
‘ of thetime

X(t)x(t 4+ ) = a? for afraction
1
= a® for afraction = (1) of thetime
2 \A
.1 .
= —a?for afraction = (L> of thetime
2\A

Thus, the autocorrel ation function becomes
1 T
— lim = _2(1_ =
Rec(r) = lim = /x(t)x(t fo)dt=a (1 A) O<t<A
0

Note that for |7| > A, the probabilities of a? and —a? are the same, so
Rx(t) =0 |t|> A

As aresult, the autocorrelation function is as shown in Figure 8.17.

Ru(7)

—A I A

Figure8.17 Autocorrelation function of a synchronous random telegraph signal

A Simple Practical ProblemM83

(8.63)

(8.64)

(8.65)

To demonstrate an application of the autocorrelation function, consider the simple acous-
tic problem shown in Figure 8.18. The signal at the microphone may be written as

X(t) = as(t — Ap) + bs(t — Ap)

Hard reflector

Path (2)
Source, s(t) (delay, A,)
&‘\\ Path (1)
(delay, A;) Mic. x(t)

Figure8.18 A simple acoustic example

(8.66)
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We assume that the source signal is broadband, i.e. Rss(7) is narrow. By letting
A = A, — A; the autocorrelation function of the microphone signal x(t) is

Rux(t) = E[x(t)x(t + 7)]
= E[(as(t — Ap) + bs(t — Ap)) (@s(t — A1 + ) + bs(t — Az + 7))]
(a2 + bz) Rss(t) + abRes(t — (A2 — A1) + abRes(7 + (A2 — Ap))
= (a® + b?)Rss(7) + abRss(t — A) + abRs(7 + A) (8.67)

That is, it consists of the autocorrelation function of the source signal and its shifted
versions as shown in Figure 8.19. For this particular problem, the relative time delay
A = A, — A; can be identified from the autocorrelation function of x(t), and also the
relative distance can be found if the speed of sound is multiplied by A.

Figure8.19 Autocorrelation function for time delay problem

We shall see later that if we also measure the source signal, then A; can aso be
found by using the cross-correlation function. Thus, the complete transmission paths
can be identified as long as Rss(7) is narrow compared with the relative time delay
A = Ay — A;. Thiswill be demonstrated through aMATLAB example in Chapter 9.

The Autocorrelation (Autocovariance) Function of Non-stochastic Processes

It is worth noting that the time average definition may be utilized with non-random (i.e.
deterministic) functions and even for transient phenomena. In such cases we may or may not
usethedivisor T.

1. A square wave: Consider a square periodic signal as shown in Figure 8.20. This function
is periodic, so the autocorrelation (autocovariance) function will be periodic, and we use
the autocorrelation function as

Tp

Rec(t) = T—lp / X(O)X(t + 7)dt (8.68)
0

Toform Ry (7), wesketch x(t + t) and ‘dlideit over x(t)’ toformtheintegrand. Then,
it can be easily verified that Ry () isatriangular wave as shown in Figure 8.21.
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v
—

>
T

Figure8.20 A sguare periodic signal
R (7)
AZ
L T
' —Tp/\ 43 ¥4 T
/NI N

Figure8.21 Autocorrelation function of a square wave

2. Atransient signal: In such a case thereisno point in dividing by T, so the autocorrelation

function for atransient signal is defined as

oo

Reu(z) = / X(OX(t + 7)dt

—00

We note an important link with the frequency domain, i.e. if

X(t) = / X(f)eZtdf and X(f):/x(t)e—jznndt

then the Fourier transform of Ry () is

o]

F {Rux (1)} = / Rxx(f)e_jznhdf

—00

= / /x(t)x(t—l—r)e‘jz””drdt (lett; =t +417)

—00 —00
o0 oo

= / x(ty)e” 1 Mgty / x(t)e'Z tdt
—0o0 —0oQ0

= X(F)X*(f) = |X(F)P?

(8.69)

(8.70)
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Thus, the following relationship holds:

IX(f)? = / Ru(t)e 127 dr (8.71)
Rux(1) = f IX(f)2elZ T df (8.72)

i.e. the ‘energy spectral density’ and the autocorrelation function are Fourier pairs. This
will be discussed further in Section 8.7.

The Cross-correlation (Cross-covariance) Function

Two Har monic SignalsVé4
Consider the two functions

X(t) = Asin(wt + 64) + B

8.73
y(t) = Csin(wt + 6y) + D sin(nwt + ¢) 873)
We form the cross-correlation function using the time average, i.e.
1 T
Ry(r) = Jim = / X(O)y(t + 7)dt
0
1
= AC cos[wT — (65 — by)] (8.74)
and compare this with the autocorrel ation functions which are given as
A2
Rux(7) = > cos(wt) + B2
(8.75)

C? D2
Ryy(t) = - cos(wt) + - cos(nwt)

Note that the cross-correlation function finds the components in y(t) that match or fit
X(t). Moreimportantly, the cross-correlation preservesthe rel ative phase (0x — 6y), i.e. it
detects the delay that is associated with the ‘ correlated (in alinear manner)’ components
of x(t) and y(t).

Once again an intuitive idea of what a cross-correlation reveals arises from the
visualization of the product x(t)y(t + ) aslooking at the match between x(t) and the
shifted version of y(t). In the above example the oscillation with frequency w in y(t)
matches that in x(t), but the harmonic nw does not. So the cross-correlation reveals this
match and also the phase shift (delay) between these components.

STOCHASTIC PROCESSES; CORRELATION FUNCTIONS AND SPECTRA
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A Signal Buried in NoiseM8>
Consider asignal buried in noise, i.e. y(t) = s(t) + n(t), as shown in Figure 8.22.

Figure8.22 A sinusoidal signal buried in noise

We assume that the noise and signal are uncorrelated: for example, s(t) is a sine wave
and n(t) is wideband noise. Then, the cross-correlation function of the signal s(t) and noise
n(t) is Ran(7) = E[s(t)n(t + 7)] = psptn, i€ Can(7) = E[(S(t) — ps)(N(t + 7) — un)] = 0.
Note that the cross-covariance function of two uncorrelated signalsis zero for al . Thus, the
autocorrelation function of y(t) becomes

Ryy(t) = E[(s(t) + n(t)) (s(t + ) + n(t + 7))]

= E[s(t)s(t + 7)] + E[n(t)n(t + )] + 2usitn (8.76)
Assuming that the mean values are zero, thisis
Ryy(7) = Rss(7) + Ran(7) 8.77)

Since the autocorrelation function of the noise Ryn(7) decays very rapidly (see Equation
(8.62)), the autocorrelation function of the signal Rss(t) will dominate for larger values of 7,
as shown in Figure 8.23. This demonstrates a method of identifying sinusoidal components
embedded in noise.

Rot 2 () (dies out rapidly)
N

W Rg(7)

Figure8.23 Autocorrelation function of asinusoidal signal buried in noise

Time Delay ProblemM86
Consider awheeled vehicle moving over rough terrain as shown in Figure 8.24. Let the time
function (profile) experienced by the leading wheel be x(t) and that by the trailing wheel be
y(t). Also let the autocorrelation function of x(t) be Ry (7). We now investigate the properties
of the cross-correlation function Ry (7).

Assume that the vehicle moves at a constant speed V. Then, y(t) = x(t — A) where
A = L/V. Sothe cross-correlation function is

Ry(7) = E[X()Y(t + )] = E[X®)X(t + T — A)]
— R(t — A) (8.78)
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«—V

tx) y(t)

Figure8.24 A wheeled vehicle moving over rough terrain

Re(7)

Figure8.25 Autocorrelation and cross-correlation functions for time delay problem

That is, the cross-correlation function Ryy () becomes a delayed version of Ryy(z) as shown
in Figure 8.25. The cross-correl ation function detects the time delay between the two signals.

Thedetection of time delay using the cross-correl ation function has been applied to many
problems, e.g. radar systems, acoustic source localization, mechanical fault detection, pipe
leakage detection, earthquake location, etc. The basic concept of using the cross-correlation
function for asimplified radar system is demonstrated in MATLAB Example 8.7.

8.7 SPECTRA

So far we have discussed stochastic processes in the time domain. We now consider
frequency domain descriptors. In Part |, Fourier methods were applied to deterministic
phenomena, e.g. periodic and transient signals. We shall now consider Fourier methods
for stationary random processes.

Consider a truncated sample function X7 (t) of a random process x(t) as shown in
Figure 8.26, i.e.

xp(t) =x(t) Jt|<T/2

8.79
=0 otherwise ( )

X(t)

Figure8.26 A truncated sample function of a stochastic process
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We shall consider the decomposition of the power of this sample function in the
frequency domain. As seen from the figure, the truncated signal xr (t) ispulse-like, i.e. it
can be regarded as atransient signal. Thus, it can be represented by the Fourier integral

(0.¢]

xr(t) = / X1 (f)elZtdf (8.80)

—00

Since the total energy of the signal ffooo X2 (t)dt tendstoinfinity as T getslarge, we shall
consider the average power of the signal, i.e.

1 oo
= / X2 (t)dt

Then, by Parseval’s theorem it can be shown that

(o] o 1
Z | XE@)dt == | x3(t)dt = IXt(f))2df = | = |Xr(f)2df (8.81)
¢ [on= [ Jora- [

where the quantity |X1(f)[2/T is called the raw (or sample) power spectral density,
which is denoted as

A 1
Su(f) =+ X7 ()7 (8.82)
Note that the power of the signal in adata segment of length T is
1 o0 , OOA
?/XT(t)dt: / S (f)df (8.83)
Now, as T — oo Equation (8.81) can be written as
T/2 X (f 2
I|m— / x2(t)dt = / lim T( 45 (8.84)
7T/2

Note that the left hand side of the equation is the average power of the sample function,
thus it may be tempting to define limy_ .| X7(f)|?/T as the power spectral density.
However we shall see (later) that S (f) does not converge (in a statistical sense) as
T — oo, which is the reason that the term ‘raw’ is used. In Chapter 10, we shall see
that S(x( f) evaluated from a larger data length is just as erratic as for the shorter data
length, i.e. the estimate Sx(f) cannot be improved simply by using more data (even
for T — o0). We shall also see later (in Chapter 10) that the standard deviation of the
estimate is as great as the quantity being estimated! That is, it is independent of data
length and equal to the true spectral density asfollows:

. Var (S(f))
ar (Sx(f)) = S(f) (or IO 1) (8.85)
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In fact, we have now come across an estimate for which ergodicity does not hold, i.e.
S(X( f) isnot ergodic. So some method of reducing the variability is required.

We do this by averaging the raw spectral density to remove the erratic behaviour.
Consider the following average

T/2 [eo)
1 2 _ X7 ()P
E TIergo? / xf(t)dt | = E |:/ TILTO #df (8.86)
-T/2 —00

Assuming zero mean values, the left hand side of Equation (8.86) is the variance of the
process, thus it can be written as

Var (x(t)) = o = / Six(f)df (8.87)

where

2
E [IX7(f)%] (8.89)
T

Sa(f) = Iim
Thisfunctioniscalled the power spectral density function of the process, andit states
that the average power of the process (the variance) is decomposed in the frequency do-
main through the function S ( f), which hasaclear physical interpretation. Furthermore
thereis a direct relationship with the autocorrel ation function such that

o0

Sx(f) = / Ru(t)e1Z 7dr (8.89)
Rex(r) = / S )27 df (8.90)

These relations are sometimes called the Wiener—K hinchin theorem.

Notethat, if w isused, the equivalent result is

Sl = f Red(r)e 17 de (8.91)
Rxx(f):% / Six(@)e! dw (8.92)

Similar to the Fourier transform pair, the location of the factor 2r may be interchanged
or replaced with 1/+/27 for symmetrical form. The proof of the above Fourier pair
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(Equations(8.89)—8.92)) needs some el ementsdiscussed in Chapter 10, so thiswill bejustified
later.

Note that the function S (f) is an even function of frequency and is sometimes called
the two-sided power spectral density. If x(t) isin volts, S (f) has units of volts’/Hz. Often a
one-sided power spectral density is defined as

Gux(f) =2Sx(f) f>0
= S(f) f=0 (8.93)
=0 f<O

Examples of Power Spectral Density Functionst
(@ If Ryx(t) = ké(z), k > 0, i.e. white noise, then

Sx(f) = / Ru(t)e 127 7dr = / ks(r)e 1 Trdr = ke 12710 =k (8.94)
Ru(7) Sulf)

4

|
kl
> T » f

Figure8.27 Power spectral density of white noise

Notethat a‘ narrow’ autocorrelation function resultsin abroadband spectrum (Figure 8.27).
(b) If Rex(z) = o277, 1 > O, then

oo [ee]

Su(f) = / Ru(r)e 1% dr = /crxze_’\"'e_j%ffdf
0 00 2 9
2 t—j2nfr —AT —j2nfT _ 0
—00 0

Ru(?) Sl(f)

o} 205
A
i > T } > f

Figure8.28 Exponentialy decaying autocorrelation and corresponding power spectral density

The exponentially decaying autocorrelation function results in a mainly low-frequency
power spectral density function (Figure 8.28).

1 See examples in Section 4.3 and compare.
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(©) If Ryx(7) = (A?/2) cos(2r o), then

[e.¢] o0

. A2 1 . ) )
S(x(f) — / RXX(-L—)e*JZHde_L, _ 7 / E ( j2rfot + e*]anor)e*IanrdT
A2 T 2

. . A? A
= (e7i2r(f=Tor | gmi2r(i+forygy — 5 8(f = fo) + -5(f + fo)

—00

(8.96)

NI S
WALVALVAR VA T

e 0
yt,

Figure8.29 Sinusoidal autocorrelation and corresponding power spectral density

An oscillatory autocorrel ation function correspondsto spikesin the power spectral density
function (Figure 8.29).

(d) Band-limited white noise: If the power spectral density function is

Sx(f)=a —-B<f<B

8.9
=0 otherwise 897
then the corresponding autocorrelation function (shown in Figure 8.30) is
o0 B in(27 B
Rex(z) = / S (Feiz i df :/aejz’”’df _ 231 BY) g
27 Bt
—00 -B

Ry(?) S, (f)

A

2aB

1.
]

Figure8.30 Autocorrelation and power spectral density of band-limited white noise
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The Cross-spectral Density Function

Generalizing the Wiener—Khinchin theorem, the cross-spectral density function is
‘defined’ as

(e¢]

Sy(f) = f Rey(z)e 12" 7dr (8.99)
with inverse -
Rey(7) = /OO Sy (f)elz i df (8.100)
As with the power spectral density fun;tioon, if wisusedinplaceof f,then
Sy(@) = [ Rotre7dr (8.101)
Ry(1) = o= /Oo Sy(@)el"da (8.102)
21 s
Alternatively, S,y () isdefined as
Sy(f) = lim w (8.103)

where X1 (f) and Y1 (f) are Fourier transforms of truncated functions xt (t) and yr (t)
defined for |t| < T/2 (see Figure 8.26).

The equivalence of Equations(8.99) and (8.103) may bejustified in the same manner
as for the power spectral density functions as discussed in Chapter 10.

In general, the cross-spectral density function is complex valued, i.e.

Syl f) = |Se(f)| el 705N (8.104)

This can beinterpreted as the frequency domain equivalent of the cross-correlation func-
tion. That is, |S.y ()| is the cross-amplitude spectrum and it shows whether frequency
components in one signal are ‘associated’ with large or small amplitude at the same
frequency in the other signd, i.e. it is the measure of association of amplitude in x and
y at frequency f; arg S,y(f) is the phase spectrum and this shows whether frequency
components in one signal ‘lag’ or ‘lead’ the components at the same frequency in the
other signdl, i.e. it showslags/leads (or phase difference) between x and y at frequency f.

Properties of the Cross-spectral Density Function

(8 Animportant property is

Sy(f) = Sx(f) (8.105)
This can be easily proved using the fact that Ryy(7) = Ryx(—1).
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(b) A one-sided cross-spectral density function Gyy(f) is defined as

Gyy(f) =2Sy(f) f>0
=Sy(f) f=0 (8.106)
=0 f <O

(c) The coincident spectral density (co-spectrum) and quadrature spectral density (quad-
spectrum) are defined as (Bendat and Piersol, 2000)

[e.¢]

Gyy(f) = 2/ Rey(1)e7 12 1dt = Cyy(f) — jQuy(f) >0 (8.107)

—00

where Cyy(f) and Quy(f) are called the co-spectra and quad-spectra, respectively (the
reason for these names is explained later in the example given in page 249). C,y(f) isan
even function of f and Quy(f) isan odd function of f. Also, by writing R,y (7) as the
sum of even and odd parts (see Equation (3.18)), then

[e¢]

Cyy(f) =2 / [Ruy(7) + Ryx(7)] cos(2r f 1)dt = Cyy(— ) (8.108)

0
00

Qo(N =2 [ [Ro(0) - Ru(d] Sn2rfo)dr =-Qu(-1) (8109

0

Similar to S (f), the one-sided cross-spectral density function G,y (f) can be
written as

Gy(f) = [Gyy(f)| & *9CD (8.110)
Then, it can be shown that
Guy(F)] = /C3(F) + Q3(f) (8.111)
and
o1 Qu(f)
arg Gyy(f) = —tan (ny(f)> (8.112)

(d) Forthephaseof Sy (f) = |Sqy(f)| e @95(D, let6,(f)and 6y () bethe phase com-
ponentsat frequency f corresponding to x(t) and y(t), respectively. Then, arg S,y (f)
gives the phase difference such that

arg Sy () = — [6(f) — 6y(1)] (8.113)
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whichisfy(f) — 0x(f). Notethatitisnot oy (f) — 0y( ) (see Equation (8.103) where
X: (f)ismultiplied by Y1 (f), and also compareit with Equations (8.73) and (8.74)).
Thus, in some texts, S,y (f) is defined as

Sy(f) = |Sy(f)| 7l (8.114)
where Oy () = 6x(f) — 0y(f). So, care must be taken with the definitions.

(€) A useful inequality setisfied by S,y (f) is

|S(F)]? < Sex(F)Sy() (8.115)

or
|Gy () = Gue(F)Gyy (1) (8.116)

The proof of this result is given in Appendix B. We shall see later that this is a par-
ticularly useful result — we shall define, in Chapter 9, the ‘coherence function’ as

|Sy(f) ]2/(30(( f)S,y(f)) which isanormalized cross-spectral density function.

Examples of Cross-spectral Density Functions
Two examples are as follows:
(a) Consider two functions (see also Equation (8.73) in Section 8.6)M88

x(t) = Asin(2rpt + 6y)

. . (8.117)
y(t) = Csin(2zpt + 6y) + D sin(n2z pt + ¢)
In the previous section, it was shown that the cross-correlation function is
1
Ry(z) = EAC cos[2pr — (6x — 6y)] (8.118)
1
The cross-spectral density functionis
S(y(f) — / ny(-[)e—jZHfrdT — T / (ei(anr—Qxy) + e—i(anr—Qxy))e—ianrdT
—0o0 —0o0
AC [
— T (e*jZN(f*p)Te*jexy + e*jzn(fJFp)TejOXY)d-[
—0Q
AC

- [8(f — p)e % +5(f + p)el®] (8.120)
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(b)

and the one-sided cross-spectral density function is

Gyy(f) = A_;a(f — p)e % (8.121)

Thus, it can be seen that

[Gxy(f)] = A—;Mf -p (8.122)

—_—
Amplitude association

and

agGyy(f) = —bxy = —(0x — 6y) (8.123)
Phase difference

From Gyy( f) in Equation (8.121), we see that the co-spectra and quad-spectraare

Cyy(f) = A—ZC(S(f — P) coSbyy (8.124)
AC .
Qxy(f) = 78(1‘ — P)Sinbyy (8.125)

Since x(t) = Asin(2rpt + 6y) = Asin(2zpt + 6y + 6yy), Equation (8.117) can be writ-
ten as

X(t) = Asin(2zpt + 6y) cosbyy + Acos(2r pt + Oy) Sinbxy (8.126)
y(t) = Csin2rpt + 6y) + D sin(n2zpt + ¢) '
Comparing Equation (8.124) and (8.126), we see that Cyy( f) measures the correlation
of the in-phase components, i.e. between Asin(2rzpt + 6y) and C sin(2z pt + 6y), thus
it is called the coincident spectrum. Similarly, Qxy( f) measures the correlation between
sine and cosine components (A cos(2r pt + 0y) and C sin(2zpt + 6y)), i.e. quadrature
components, thusit is called the quadrature spectrum.

Consider the wheeled vehicle example shown previously, in Figure 8.24 shown again
hereM 8.9

«—V

txct) Fy(t)

Figure8.24 A wheeled vehicle moving over rough terrain
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We have seen that Ryy () = Ryx(t — A), where A = L/V. So the cross-spectral density
functionis

S(y(f): / RXX(-L—_A)e*J.Zﬂde.[ — / Rxx(u)eijJTf(UvLA)du

00
:e—jZHfA/ Rxx(u)e—jZTrfudu
—00

=e 1ZTAg () (8.127)

This shows that the frequency component f in the signal y(t) lags that component in
X(t) by phase angle 27 f A. Thisis obvious from simple considerations. for example, if
X(t) = Acos(wt) then y(t) = Acos[w(t — A)] = Acos(wt — wA), i.e. the lag angle is
wA =27fA.

Comments on the Time Delay Problem

At thispoint, it may be worth relating the time delay problem to the pure delay discussed
in Chapter 4, where we defined the group delay as ty = —d¢(w)/dw. We saw that a
pure delay (say, delay timeis A for al frequencies) produces a constant group delay, i.e.
tg == A .

The abovetime delay problem can be considered asidentifying apure delay system.
To see this more clearly, rewrite Equation (8.127) as

Sqy(f) = H(f)S«(f) (8.128)
where H( f) isthe frequency response function which can be written as
S<)/(f) —j2rfA
(f) Soc() (8.129)

i.e. H(f) isapure delay system. Note that we are identifying the system by performing
theratio Siy(f)/Sx( ). We shall compare the results of using arg S,y (f) and arg H(f)
in MATLAB Example 8.9. We shall also demonstrate a simple system identification
problem by performing H(f) = S,y (f)/S«(f)inMATLAB Example8.10. Moredetails
of system identification will be discussed in the next chapter.

8.8 BRIEF SUMMARY

1. A stochastic process X (t) isstationary if it satisfiestwo conditions: (i) p(x, t) = p(x)
and (i) p(xq, t1; X2, t2) = p(Xg, t1 + T %, to + T).

2. If certain averages of the processare ergodic, then ensembl e averages can bereplaced
by time averages.



252 STOCHASTIC PROCESSES; CORRELATION FUNCTIONS AND SPECTRA

3. Autocovariance and autocorrel ation functions are defined by
Cxx(t) = EL(X(t) — 1) (X(t + 7) — )]
Rux () = E[X(t)X(t + 7)]

where Cyx (1) = Rux(t) — 112. The corresponding time averages are

)
Cr) = lim 2 / (X() — )+ 7) — o)l
0

T

Rex(r) = lim % / X(O)X(t + 7)dt
0

4. Cross-covariance and cross-correlation functions are defined by

Cxy(7) = E[(X(t) — mx)(Y(t + 7) — y)]
Ry(t) = EIX®)Y(t + 7)]

where C,y () = Ryy(t) — uxity. The corresponding time averages are

)
. 1
Coy() = Jim £ [ (x(0) = i)yt + 7) = )t
0

-
1
Rey(z) = TILngo - / x(t)y(t + r)dt
0
5. An unbiased estimate of the cross-covariance function is
1 T—1
G =7 [(O-D+0 -t 0=r<T
0
where Cyy(—7) = Cyx(r). The corresponding digital form is

Cry(Ma) = Y x(A) - X)(y(n+mA)—y) 0<m<N-1

n

1 N-m-1
N—-m &~

6. The autocorrelation functions of a periodic signa and a transient signal are,

respectively,

Tp (0.¢]

Rux(t) = T—lp / x()x(t +7)dt and  Re(z) = / x(t)X(t + 7)dt

0 —00
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7. The autocorrelation function of white noiseis
Rux(t) = ké(7)
8. The cross-correlation function of two uncorrelated signals s(t) and n(t) is
Ran(t) = E[s(t)n(t + )] = 0 (assuming zero mean values)

9. The power spectral density and cross-spectral density functions are

2 E | X5 (f)Yr(f
E [IXr(f)?] ad Sy(1) = i [ T(T) 7( )]

and the corresponding raw (or sample) spectral density functions are

Sx(f) = T”—[Tc]o

Su(f) = < IXr(DF and Sy(f) = 2X(H¥r(1)

10. The Wiener—Khinchin theoremis

o0 o0

S(x(f): / Rxx(r)e—jan’df and Rxx(t)zfs(x(f)ejhfrdf
Also,

S(y(f): / ny(‘[)e_jZTrde‘[ and ny(‘c):/S(y(f)ejZNfrdf

—00

11. The cross-spectral density function is complex valued, i.e.

Sy(f) = |Sy(F)| /@99 and S, (f) = Sx(f)

where | Sy ( )| isthe measure of association of amplitudein x and y at frequency f,
andarg S,y ( f) showslags/leads (or phasedifference) between x andy at frequency f.

8.9 MATLAB EXAMPLES

Example 8.1: Probability density function of a sine wave

The theoretical probability density function of asine wave x(t) = Asin(wt + 0) is

(X)—;
PO= TR

In this MATLAB example, we compare the histograms resulting from the ensemble
average and the time average. For the ensemble average 6 is arandom variableand t is
fixed, and for the time average 0 isfixed and t isatime variable.
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Line MATLAB code Comments
1 clear all Define the amplitude and frequency of asine wave.
2 A=2; w=1; t=0; For the ensemble average, let timet = 0.
3 rand('state’,1); Initialize the random number generator, and then
4 theta=rand(1,20000)* 2* pi; generate & which is uniformly distributed on the
5 x1=A*sin(w*t+theta); range 0 to 2. The number of elementsof 6 is
20000.

Also generate a sequence x1 which can be
considered as an ensemble (only for the specified

time, t = 0).
6 nbin=20; N1=length(x1); Define the number of bins for the histogram. Then
7 [n1 s1]=hist(x1,nbin); calculate the frequency counts and bin locations.
8 figure(1) % Ensemble average Plot the histogram of x1. Note that it hasa U shape
9 bar(sl, nI/N1) as expected. One may change the number of
10 xlabel ("\itx\rm_1") elements of 6, and compare the resullts.
11 ylabel ('Relative frequency')
12 t=0:0.01:(2* pi)/w-0.01; For the time average, 6 isset to zero and asine
13 X2=A*sin(w*t); wave (x2) is generated for one period.
14 [n2 s2]=hist(x2, nhin); Calculate the frequency counts and bin locations for
15 N2=length(x2); X2.
16 figure(2) % Time average Plot the histogram of x2. Compare the result with
17 bar(s2, n2/N2) the ensembl e average.

18 xlabel ("\itx\rm_2")
19 ylabel (‘'Relative frequency')

Results
0.16 0.16
0.14 0.14
E0.12 5012
g o1 g 01
g g
=008 = 0,08
2 2
F0.06 2006
& &
0.04 0.04
0.02 0.02
0 0
2 15 -1 05 0 05 1 15 2 2 -15 -1 05 0 05 1 15 2
Xy Xz
(a) Ensemble average (b) Time average

Comments. The two results are very similar and confirm the theoretical probability
density function. Thisillustratesthat the processis ergodic with respect to the estimation
of the probability density function.
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Example 8.2: Autocorrelation function of a sinewave

We compare the autocorrelation functions of a sinusoidal signal x(t) = Asin(wt + 6),
resulting from the ensembl e average and thetime average. Thetheoretical autocorrelation
functionis

2

Rau(r) = 2 cos(or)

For the ensemble average 6 is arandom variable and t is fixed, and for the time average
0 isfixedandt isatime variable.

Line MATLAB code Comments
1 cleardl Define the amplitude and frequency of asine
2 A=2; w=2*pi*1; t=0; fs=100; wave. For the ensemble average, let timet = 0.
3 rand(‘state’,1); Also define the sampling rate.
4 theta=rand(1,5000)* 2* pi; Initialize the random number generator, and then
5  x1=A*sin(w*t+theta); generate 6 which is uniformly distributed on the
range O to 2r. The number of elementsof 6 is
5000. Then generate a sequence x1 which can be
considered as an ensemble (only for the
specified time, t = 0).
6  Rxx1=[]; maxlags=5; Define an empty matrix (Rxx1) whichisused in
7 for tau=-maxlags:1/fs:maxlags; the ‘for’ loop, and define the maximum lag
8 tmp=A*sin(w* (t+tau)+theta); (5 seconds) for the calculation of the
9 tmp=mean(x1.*tmp); autocorrelation function.
10 Rxx1=[Rxx1 tmp]; The ‘for’ loop calculates the autocorrelation
11  end function Rxx1 based on the ensemble average.
12 tau=-maxlags.l/fsmaxlags; Thevariable ‘tau’ isthelagin seconds (Line 12).
13 Rxx=A"2/2* cos(w*tau); Calculate the theoretical autocorrelation
function Rxx. Thisis used for comparison.
14 figure(1) % Ensemble average Plot the autocorrelation function Rxx1 obtained
15  plot(tau,Rxx1,tau,Rxx, 'r:") by ensemble average (solid line), and compare
16  xlabel('Lag (\it\tau)") this with the theoretical autocorrelation function
17  ylabel('Autocorrelation’) Rxx (dashed line).
18  t=0:1/fs:20-1fs; For the time average, 6 isset to zero and asine
19  x2=A*sin(w*t); wave (x2) is generated for 20 seconds. The
20 [Rxx2, tau2]=xcorr(x2,x2,maxlags*fs, MATLAB function ‘xcorr(y,x)" estimatesthe
‘unbiased'); cross-correlation function between x and y, i.e.
21 tau2=tau2/fs; Ry (7) (note that it is not Ryx(r)). Inthis
MATLAB code, the number of maximum lag
(maxlags*fs) is also specified, and the unbiased
estimator is used.
The variable ‘tau2’ is the lag in seconds
(Line 21).
22 figure(2) % Time average Plot the autocorrelation function Rxx2 obtained
23 plot(tau2,Rxx2,tau,Rxx, 'r:") by time average (solid line), and compare this
24 xlabel('Lag (\it\tau)") with the theoretical autocorrelation function Rxx
25  ylabel('Autocorrelation’) (dashed line).




256 STOCHASTIC PROCESSES; CORRELATION FUNCTIONS AND SPECTRA

Results
2 2
15 15
1 1
5 5
2 05 g 05
g 9 £ o
g g
Z-05 305
-1 -1
-15 -15
2 -2
5 4 -3 -1 0 1 3 4 5 5 4 -3 1 0 1 4 5
Lag (r) Lag (r)
(a) Ensemble average (b) Time average

Comments. The two results are amost identical and very close to the theoretical au-
tocorrelation function. This demonstrates that the process is ergodic with respect to the
estimation of the autocorrel ation function.

Example 8.3: Autocorrelation function of an echoed signal

Consider the following echoed signal (see Equation (8.66) and Figure 8.18):
X(t) = s1(t) + s(t) = as(t — Ay) + bs(t — Ay)

In this example, we use asine burst signal as the source signal, and demonstrate that the
autocorrelation function Ryx(7) detectstherelativetimedelay A = A, — Aj.
We shall also consider the case that some additive noiseis present in the signal.

Line MATLAB code Comments
1 clearadll Define the parameters of the above equation. The
2  a=2; b=1; fs=200; sampling rate is chosen as 200 Hz. Note that the
deltal=1; delta2=2.5; relative time delay is 1.5 seconds.
3 t=0:1fs.0.5-1/fs; Define the time variable up to 0.5 seconds, and
4 s=sin(2*pi*10*t); generate the 10 Hz sine burst signal.
5 N=4*fs Generate signals s;(t) = as(t — A;) and
6 sl=[zeros(1l,deltal*fs) a*g|; $(t) = bs(t — A,) up to 4 seconds. Then combine
sl=[s1 zeros(1,N-length(sl))]; these to make the signal x(t).
7 s2=[zeros(1l,delta2*fs) b*g];
s2=[s2 zeros(1,N-length(s2))];
8 X =s1+32;
9 % randn('state’,0); Thisisfor later use. Uncomment these lines then.
10 % noise = 1*std(s)*randn(size(x));  Initiaize the random number generator, then
11 % x=x+noise; generate the Gaussian white noise whose variance

isthe same as the source signal s(t), i.e. the
signal-to-noiseratio is 0 dB.
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12 L=length(x); t=[0:L-1]/fs; Define the time variable again according to the
13 maxlags=2.5*fs, length of the signal x(t).
14 [Rxx, tau]=xcorr(x,x,maxlags); The maximum lag of the autocorrelation function
15  tau=taulfs, isset to 2.5 seconds. The variable ‘tau’ isthelag
in seconds.
Note that the autocorrelation function is not
normalized in this case because the signal is
transient.
16 figure(1) Plot the signal x(t).
17 plot(t,x) Later, compare this with the noisy signal.
18 xlabel("Time (9)");
ylabel ("\itx\rm(\itt\rm)")
19  axis([04-44])
20  figure(2) Plot the autocorrelation function Ry (7).
21 plot(tau,Rxx) Note its symmetric structure, and the peak values
22 xlabel('Lag (\it\tau)"; occur at Ryx(0), Rx(A) and Ryx(—A).
ylabel ("Autocorrelation’) Run this MATLAB program again for the noisy
23 axis([-2.52.5-300 300]) signal (uncomment Lines 9-11, and compare
R () with the corresponding time signal).
Results
4 300
8 200
2
1 § 100
- 22100
-2
3 —200
4tO 0.5 1 15 2 2.5 3 35 4 _3092.5 -2 -15 -1 -05 0 05 1 15 2 25
Time (s) Lag (7)
(al) Clean time signal (a2) Autocorrelation function of the clean signal
300
200
§ 100
g o
E -100
= -200
_40 0.5 1 15 2 25 3 35 4 _30925 -2 -15 -1 -05 0 05 1 15 2 25
Time (s) Lag (7)
(b1) Noisy signal (b2) Autocorrelation function of the noisy signal
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Comments. Comparing Figures (bl) and (b2), it can be seen that the autocorrelation
function is much cleaner than the corresponding time signal, and detectstherelative time
delay even if a significant amount of noise is present. This is because the source signal
and the noise are not correlated, and the white noise contributesto Ry (t) at zerolag only
(in theory). This noise reduction will be demonstrated again in MATLAB Example 8.5.

Example 8.4: Cross-correlation function

Consider two signals (see Equation (8.73))
X(t) = Asin(wt + 64) + B
y(t) = Csin(wt + 6,) + D sin(nwt + ¢)

The cross-correlation function is Ryy(7) = %AC coglwt — (Bx — 6y)] (see Equation
(8.74)).

Line MATLAB code Comments
1 cleardll Define the parameters and time variable of the
2 A=1; B=1; C=2; D=2; above equation. The sampling rateis chosen as
thetax=0; thetay=-pi/4; 200 Hz.
phi=pi/2; n=2; Calculate the relative time delay for reference. Note
3 w=2*pi*1; fs=200; T=100; that the relative phase is 6x — 6y = 7 /4 that
t=0:1/fsT-1fs; corresponds to the time delay of 0.125 seconds.
4 rel _time_delay=(thetax-thetay)/w Generate signals x(t) and y(t) accordingly.
5  x=A*sin(w*t+thetax)+B;
6  y=C*sin(w*t+thetay)
+D*sin(n*w* t+phi);
7 maxlag=4*fs, The maximum lag of the cross-correlation function
8 [Rxy, tau]=xcorr(y,x,maxlag, is set to 4 seconds. The unbiased estimator is used
'unbiased); for the calculation of the cross-correlation function.
9 tau=tau/fs;
10  figure(1) Plot the signals x(t) and y(t).

11 plot(t(1:maxlag),x(1:maxlag),
t(L:maxlag),y(l:maxlag), 'r')
12 xlabel('Time(s));
ylabel ("\itx\rm(\itt\rm)

and \ity\rm(\itt\rm)")
13 figure(2) Plot the cross-correlation function R,y (7). Note that
14 plot(tau(maxlag+1:end), it showsthe values for positive lags only in the
Rxy(maxlag+1:end)); hold on figure.
15  plot([rel_time_delay rel _time_delay], Compare the figure with the theoretical
[-1.51.5], " cross-correlation function (i.e. Equation (8.74)).
16 hold off

17 xlabel('Lag (\it\tau)");
ylabel (‘Cross-correlation’)
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Results

15~

X(t) and y(t)
Cross-correlation

i L 7=01%5
" —154
0 05 1 15 2 25 3 35 4 o 05 1 15 2 25 3 35 4
Time (s) Lag (7)
(a) Time signals (b) Cross-correlation function

Comments: The cross-correlation function finds the componentsin y(t) that are corre-
lated with the componentsin x(t) and preserves the relative phase (i.e. time delay).

Example 8.5: A signal buried in noise

Consider the signal buried in noise (see Figure 8.22)

y(t) = s(t) + n(t)
Inthisexample, we useasinewavefor s(t) and aband-limited white noisefor n(t), where
s(t) and n(t) are uncorrelated and both have zero mean val ues. Thus, the cross-correlation
between s(t) and n(t) is E[s(t)n(t + )] = E[n(t)s(t + )] = O.

Then, the autocorrelation function is
Ryy('f) = Rss(7) + Ran(7)
It is shown that
Ryy(7) &~ Rss(t) for large t (see Figure 8.23)

Considering thetime-averaged form of correlation functions, we a so compare the results
for different values of T (total record time).

Line MATLAB code Comments
1 clear all Define the parameters of a sine wave and the sampling
2 A=1; w = 2*pi*1; fs=200; rate. The total record timeis specified by ‘T. Initially,
3 T=100; % T=1000; weuse T = 100 seconds (i.e. 100 periodsin total). Later,
4 t=0:Ufs. T-1/fs; we shall increase it to 1000 seconds. Also, define the
5 Ss=A*sin(w*t); time variable, and generate the 1 Hz sine wave.
6 randn('state',0); Generate the broadband white noise signal. (The
7 n=randn(size(s)); frequency band islimited by half the sampling rate, i.e.

zeroto fs/2Hz.)



260 STOCHASTIC PROCESSES; CORRELATION FUNCTIONS AND SPECTRA

8 fc=20; These lines convert the above broadband white noise
9 [b,al=butter(9, fc/(fs/2)); into a band-limited white noise by filtering with a digital
10 n = filtfilt(b,a,n); low-passfilter.

‘fc’ isthe cut-off frequency of the digital filter. The
MATLAB function ‘[b,a] = butter(9, fc/(f5/2))’ designs
aninth-order low-pass digital Butterworth filter (IIR),
where ‘b’ isavector containing coefficients of a moving
average part and ‘@ is avector containing coefficients of
an auto-regressive part of the transfer function (see
Equation (6.12)).

The MATLAB function *output = filtfilt(b,a,input)’
performs zero-phase digital filtering. (Digital filtering
will be briefly mentioned in Appendix H.) The resulting
sequence ‘n’ isthe band-limited (zero to 20 Hz) white

noise.
11 n=sgrt(2)* (std(s)/std(n))*n; Make the noise power twice the signal power, i.e. ‘Var(n)
% SNR=-3dB = 2xVar(9)'. Note that the signal-to-noiseratio is —3
12 y=stn; dB. Then, make the noisy signal ‘y’ by addingntos.
13 maxlags=4*fs; Calculate the autocorrelation function up to 4 seconds of
14 [Ryy, tau]=xcorr(y,y,maxlags, lag.
'unbiased’);
15 tau=taulfs;
16 figure(1) Plot the signals s(t) and y(t) up to 8 seconds on the same
17 plot(t(1:8*fs),y(1:8*fs), figure.

t(1:8*fs),s(1:8*fs), 'r:")
18 xlabel (‘Time (9)")
19 ylabel ("\its\rm(\itt\rm) and

\ity\rm(\itt\rm)")
20 figure(2) Plot the autocorrelation function Ryy(z) for the positive
21 plot(tau(maxlags+1:end), lags only.

Ryy(maxlags+1:.end), 'r') Run thisMATLAB program again for T = 1000 (change
22 xlabel (‘Lag (\it\tau)"); thevalue at Line 3), and compare the results.

ylabel (‘Autocorrelation’)

23 axis([04-1515))

4
Time (s)
(a) Clean time signal s(t) and noisy signal y(t)
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15 15

Autocorrelation
o

Autocorrelation
o

-05 -05
-1 -1
-15 -15
o 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
Lag (7) Lag (r)

(b) Autocorrelation function for T = 100 seconds  (c) Autocorrelation function for T = 1000 seconds

Comments: Comparing Figures (b) and (c), it can be seenthat as T increases the results
improve. Note, however, that it will not be so if the signal is atransient. For example, if
thetotal recordtimein MATLAB Example 8.3 isincreased the result getsworse (Line5,
N = 4*fs; of MATLAB Example8.3). Thisisbecause, after thetransient signal diesout, it
does not average ‘signal x noise’ but ‘ noisexnoise’. Thus, we must apply the correlation
functions appropriately depending on the nature of the signals.

Example 8.6: Application of the cross-correlation function (time delay problem 1)

Consider the wheeled vehicle example given in Section 8.6 (see Figure 8.24). We assume
that the surface profile results in a band-limited time function (or profile) s(t) and the
trailing wheel experiences the same profile A seconds later, i.e. s(t — A).
We measure both these signals, and include uncorrelated broadband noises ny(t)

and ny(t), i.e.

X(t) = s(t) + nx(t)

y(t) = st — A) + ny(t)
The cross-correlation function Ryy(7) is (assuming zero mean val ues)

Rey () = E[(s(t) + ny(t)) (s(t — A + 1) + ny(t + 7))]
= E[s(t)s(t + T — A)] = Rs(r — A)

Line MATLAB code Comments
1 cleardl The sampling rate is 1000 Hz, and the time variable
2  fs=1000; T=5; t=0:1/fs.T-1/fs; is defined up to 5 seconds.
3 randn('state’,0); Broadband white noise is generated, and then it is
4  s=randn(size(t)); low-pass filtered to produce a band-limited white
5  fc=100; [b,a=butter(9, fc/(fs/2)); noise s(t), where the cut-off frequency of thefilter is
6  s=filtfilt(b,as); 100 Hz.
7  s=smean(s); s=9std(s); Produce the signal s(t) such that it has zero mean

% Makes mean(s)=0 & std(s)=1; value and the standard deviation is one.
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8 ddta=0.2; Define the delay time A = 0.2 seconds, and generate
9  x=s(delta*fs+1:end); two sequences that correspond to s(t) and s(t — A).
10 y=s(l.end-delta*fs); Generate the broadband white noise ny(t) and ny(y).
11 randn('state',1); Then add these signals appropriately to make noisy
nx=1*std(s)* randn(size(x)); measured signals x(t) and y(t). Note that the

12 randn('state',2); signal-to-noiseratio is 0 dB for both signals.

ny=1*std(s)* randn(size(y));
13 x=Xx+nx; y=y+ny;

14  maxlagl=0.25*fs; Calculate the autocorrelation function Rss(7) and the
maxlag2=0.5*fs; cross-correlation function Ryy(r), where the

15  [Rss, taul]=xcorr(s,s,maxlagl, unbiased estimators are used.
'unbiased);

16  [Rxy, tau2]=xcorr(y,x,maxlag2,
'unbiased);

17 taul=taul/fs; tau2=tau2/fs,

18  figure(l) Plot the autocorrelation function Rss(t).

19  plot(taul,Rss)

20  axis([-0.250.25-0.4 1.2])

21 xlabel('Lag (\it\tau)")

22 ylabel('Autocorrelation
(\itR_s_s\rm(\it\tau\rm))"

23 figure(2) Plot the cross-correlation function Ryy(7), and
24 plot(tau2(maxlag2+1:end), compare this with the autocorrelation function
Rxy(maxlag2+1:end)) Rss(7).

25 axis([00.5-0.41.2])

26 xlabel('Lag (\it\tau)")

27  ylabel('Cross-correlation
(\itRx_y\rm(\it\tau\rmy)")

Results
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Lag (7) Lag (7)
(a) Autocorrelation function R (t) (b) Cross-correlation function R, (t)

Comments: Note that, although both signals x(t) and y(t) have avery low SNR (0 dB
in this example), the cross-correlation function gives a clear copy of Rgs(z) at © = 0.2
seconds.
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Example 8.7: Application of the cross-correlation function (time delay problem 2)

This example describes the basic concept of using the cross-correlation function in a
(radar-like) system. It is similar to the previous Example (MATLAB Example 8.6),
except that we shall use a pulse-like signal for this example.

Let x(t) be a pulse transmitted by the radar system, and y(t) be the received signal
that contains areflected pulse from atarget such that

y(t) = ax(t — A) + n(t)

where n(t) is uncorrelated broadband noise. Note that the amplitude of the reflected
pulsein y(t) may be very small compared with the original pulse, and so the SNR of the
received signal y(t) will also be very low.

To maximize the detectability, a special filter called a ‘matched filter’ is usually
used. The matched filter is known to be an optimal detector while maximizing the SNR
of asignal that is buried in noise (Papoulis, 1977; Bencroft, 2002).

If the length of the pulse x(t) is T seconds, the impulse response function of the
matched filter is defined by

h(t) = x(T —t)

i.e. the pulse x(t) is time reversed and shifted. Now, the received signal y(t) is filtered,
i.e. y(t) isaninput to the matched filter as shown in Figure (a).

y(t) out(t)
Input —— h(t) = x(T -t) ———— Output?

(a) Matched filtering

The output signal is the convolution of y(t) and x(T — t). Thus, it follows that
out(t) = / y()h(t — r)dr = / yE@)X(T = (t — 7))dr = / y(@)X(T —t + 7)dt

= f Yy()X(t + (T —t))dr = Rx(T —t) = Ry(t = T)

Notethat theresultisthecross-correl ation betweentheoriginal pulsex(t) and thereceived
signal y(t), which is shifted by the length of thefilter T.
Assuming zero mean values, the cross-correlation function Ryy () is

Rey(7) = E[X(t) (ax(t — A+ ) + n(t + 1))]
=aE[x()x({t +t — A)] = aRux(r — A)
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i.e. the cross-correlation function gives the total time delay A between the transmitter
and the receiver. Thus, the distance to the target can be estimated by multiplying half of
thetime delay A /2 by the speed of the wave. The filtered output is

out(t) = Ry(t — T) = aRu(t — T — A) = aRu(t — (T + A))

We will compare the two results: the direct cross-correlation function Ryy(r) and the
filtered output out(t). A significant amount of noise will be added to the received signal

(SNRis —6dB).
Line MATLAB code Comments
1 clearall The sampling rate is 200 Hz, and the time
2 fs=200; variableis defined up to 1 second. Thisisthe
3 t=0:Vfs1; duration of the pulse.
4  x=chirp(t,5,1,15); For the transmitted pulse, a chirp waveformis
5  h=fliplr(x); % Matched filter used. The MATLAB function ‘chirp(t,5,1,15)’
generates alinear swept frequency signal at the
time instances defined by ‘t’, where the
instantaneous frequency at time0is5Hz and at
time 1 second is 15 Hz.
Then, define the matched filter h. The MATLAB
function ‘fliplr(x)’ flips the vector x in the
left/right direction. Theresultis
h(t) = x(T —t), where T is 1 second in this
case.
6 figure(l) Plot the transmitted chirp waveform x(t).
7  plot(t,x)
8 xlabel('Time(s)")
9  ylabel(‘Chirp waveform,
\itx\rm(\itt\rm)")
10 figure(2) Plot the impul se response function of the
11 plot(t,h) matched filter h(t), and compare with the
12 xlabel('Time(s)") waveform x(t).
13 ylabel('Matched filter,
\ith\rm(\itt\rm)")
14 deta=2; a=0.1; Define the total time delay A = 2 seconds and
15  y=[zeros(1,delta*fs) a*x zeros(1,3*fs)]; the relative amplitude of the reflected waveform
16  t=[0:length(y)-1]/fs, a=01.
17  randn('stat€',0); Generate the received signal y(t). We assume
18  noise =2*std(a* x)* randn(size(y)); that the signal is measured for up to 6 seconds.
19 y=y+noisg Define the time variable again according to the

signal y(t).

Generate the white noise whose standard
deviation istwice that of the reflected
waveform, then add this to the received signal.
The resulting signal has an SNR of —6 dB, i.e.
the noise power is four times greater than the
signal power.
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20 figure(3) Plot the noisy received signal y(t). Note
21 plot(t,y) that the reflected waveform is completely
22 xlabel("Time (s)") buried in noise, and so is not noticeable
23 ylabel ('Received signal, (see Figure (d) below).
\ity\rm(\itt\rm)")
24 maxlags=5*fs, Define the maximum lags (up to
25 [Rxy, tau] =xcorr(y,x,maxlags); 5 seconds), and calculate the
26 tau=tau/fs, cross-correlation function Ry (7). Note
that Rey(7) isnot normalized.
27 figure(4) Plot the cross-correlation function Ryy (7).
28 plot(tau(maxlags+1:.end), Note that the peak occursat t = 2.
Rxy(maxlags+1:end))
29 xlabel (‘'Lag (\it\tau)")
30 ylabel(‘Cross-correlation,
\itRx_y\rm(\it\tau\rm)")
31 out=conv(y,h); out=out Now, calculate out(t) by performing
(L:length(y)); the convolution of y(t) and h(t).
% or out=filter(h,1,y); The same result can be achieved by
‘out=filter(h,1y)".
Notethat ‘h’ can be considered as an FIR
(Finite Impulse Response) digital filter (or
an MA system). Then, the elements of ‘h’
are the coefficients of the MA part of the
transfer function (see Equation (6.12)). In
this case, there is no coefficient for the
auto-regressive part, except ‘1’ in the
denominator of the transfer function.
32 figure(5) Plot the filtered signal out(t), and compare
33 plot(t(1:maxlags),out(1:maxlags)) this with the cross-correl ation function
34 xlabel (‘Time (9)") Ryy (7). Now, the peak occursat t = 3 and
35 ylabel(‘Filtered signal, the shape is exactly same as the
\itout\rm(\itt\rm)") cross-correlation function, i.e. Ry, (7) is
delayed by the length of thefilter T.
Results
1 1
0.8 0.8
0.6 0.6
g 04 = 04
E 02 ::, 02
g o =
g—o.z E 0.2
£ 04 € 04
-0.6 -0.6
-0.8 -0.8
-1 -1

0

01 02 03 04 05 06 07 08 09

Time (s)

(b) Transmitted chirp waveform, x(t)

0O 01 02 03 04 05 06 07 08 09 1
Time (s)

(c) The matched filter, h(t)
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0.5
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Reflected waveform is present here
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(e) Cross-correlation function R,(7) (f) Output signal of the matched filter, out(t)

Comments: Notethat Figure (f) issimply adelayed version of Figure (€). This example
demonstrates that the cross-correlation function maximizes the SNR of a signal that is
buried in noise.

Example 8.8: Cross-spectral density function (compare with MATLAB Example 8.4)

Consider two signals (see Equation (8.117))

X(t) = Asin(2rpt + 6y)
y(t) = Csin(2rpt + 6,) + D sin(n2r pt + ¢)

Thesearethesameasin MATLAB Example 8.4 except that the constant B isnot included
here. Thecross-correlation function and one-sided cross-spectral density function are(see
Equations (8.119) and (8.121))

1 AC .
Rey(7) = EAC cos(27 Pt — Byy) and Gyy(f) = 76(1‘ — pe %

where Oyy = 6y — by.
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Line MATLAB code Comments
1 cleardll Same asin MATLAB Example 8.4, except
2 A=1; C=2; D=2; thetax=0; that ‘T" isincreased by 10 times for better
thetay=-pi/4; phi=pi/2; n=2; estimation of the cross-correlation function.
3 p=1; w=2*pi*p; fs=200;

T=1000; t=0:1/fs.T-1/fs;

4 x=A*sin(w*t+thetax);

5  y=C*sin(w*t+thetay)+D*sin(n*w*t+phi);

6 maxlag=4*fs;

7 [Rxy, tau]=xcorr(y,x,maxlag,'unbiased’);

8 tau=tau/fs;

9 f=fs*(0:maxlag-1)/maxlag; Define the frequency variable.
10 Rxy=Rxy(maxlag+l.end-1); Discard the negative part of 7, i.e. we only

% makes exactly four periods take Ryy(7) for r > 0. This makesit exactly
11 Sxy=fft(Rxy); four periods. Then, obtain S, (f) viathe DFT
of the cross-correlation function.

12 format long The MATLAB command ‘format long’
13  thetaxy=thetax-thetay displays longer digits. Display the value of
14 ind=find(f==p); Oyy = 0 — Oy whichis /4, and find the index
15  arg-Sxy_at_p_Hz=angle(Sxy(ind)) of frequency pHz in the vector ‘f’.

Display the value of arg S (f) at pHz, and
compare with the value of 6,y.

Results
thetaxy=0.785 398 163 397 45
arg_Sxy_at_p_Hz=-0.785403 708 042 95

Comments: Thisdemonstratesthat arg S, (f) = —(6x — 6y). We can seethat the longer
the data length (T), the better the estimate of Ry () that results in a better estimate of
Sy (). Note, however, that we estimate S,y ( f) by Fourier transforming the product of
theestimate of Ry, (r) and the rectangular window (i.e. the maximum |ag is defined when
Rxy(r) is calculated (see Lines 7 and 10 of the MATLAB code)). The role of window
functionsis discussed in Chapter 10.

Example 8.9: Application of the cross-spectral density function (compare with
MATLAB Example 8.6)

Consider the same example asin MATLAB Example 8.6 (the wheeled vehicle), where
the measured signal is

X(t) = S(t) + ny(t)
y(t) = s(t — A) +ny(t)
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and the cross-correlation function and the cross-spectral density function are
Rey(t) = Rss(z — A) and Siy(f) = H(f)Ss(f) = eijzanSsS(f)

First, we shall estimate A using S,y(f). Then, by forming the ratio S, (f)/Sx(f) we
shall estimate the frequency response function H( f) from which the time delay A can
also be estimated. Note that we are not using Sy ( f)/Sss( ), but the following:

Sy(f) _ Sy(f)

M0 = 50 = SN+ 5D

D)

Since Ry, n, (7) isan even function, S,
can be shown that

(f)isrea vaued,i.e arg S, n (f) = 0. Thus, it

xNx

agH(f) =agHy(f)=-2xfA

Notethat H1( f) may underestimate the magnitude of H ( f) depending on the variance of
the noise. However, the phase of Hi( f) isnot affected by uncorrelated noise, i.e. we can
see that the phase of Hy( f) isless sensitive to noise than the magnitude of H,(f). More
details of the estimator Hy( f) defined by Equation (1) will be discussed in Chapter 9.

Line MATLAB code Comments
1 clear all Sameasin MATLAB Example 8.6,
2 fs=500; T=100; t=0:1/fs.T-U/fs; except that the sampling rateis reduced
3 randn('state’,0); and the total record time ‘T’ isincreased.
4 s=randn(size(t)); Note that the delay time A = 0.2 seconds
5 fc=100; [b,al=butter(9,fc/(f52)); as before.
6 s=filtfilt(b,a,9); Note also that the same number of lagsis
7 s=s-mean(s); s=9/std(s); used for both autocorrelation and

% Makes mean(s)=0 & std(s)=1; cross-correlation functions.

8 delta=0.2;

9 x=s(delta* fs+1:end);
10 y=s(1:end-delta*fs);
11 randn('state’,1);
nx=1* std(s)* randn(size(x));
12 randn('state',2);
ny=21*std(s)* randn(size(y));
13 X=X+NX; y=y+ny;
14 maxlag=fs;
15 [Rxx, tau]=xcorr(x,x,maxlag, 'unbiased;
16 [Rxy, tau]=xcorr(y,x,maxlag, 'unbiased');
17 tau=tau/fs;

18 f=fs*(0:maxlag-1)/maxlag; Define the frequency variable.
19 Rxy_1=Rxy(maxlag+1:end-1); Discard the negative part of 7, i.e. we
20 Sxy=fft(Rxy_-1); only take R,y(z) for = > 0. If weinclude

the negative part of ¢ when the DFT is
performed, then the result isa pure
delay. If thisisthe case, we must
compensate for this delay.
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figure(1)

plot(f(1:maxlag/2+1),
unwrap(angle(Sxy(1:maxlag/2+1))))
hold on

xlabel (‘Frequency (Hz)")

ylabel (‘arg\itSx_y\rm(\itf\rm) (rad)");
axis([0 fs/2 -160 0])

ind=find(f==fc);

Pl=polyfit(f(2:ind),
unwrap(angle(Sxy(2:ind))),1);

format long

t_delayl=-P1(1)/(2*pi)

plot(f(2:ind), P1(1)*f(2:ind)+P1(2), 'r:");
hold off

N=2*maxlag;

f=fs*(0:N-1)/N;

Sxx=fft(Rxx(L:N)); Sxy=fft(Rxy(L:N));
% Sxx=Ffft(Rxx(1:N)).

*exp(i* 2* pi.* f* (maxlag/fs));

% Sxy=fft(Rxy(1:N)).

*exp(i* 2* pi.* f* (maxlag/fs));
H1=5Sxy./SxX;

figure(2)

plot(f(1:maxlag+1),
unwrap(angle(H1(1:maxlag+1))))
hold on

xlabel ('"Frequency (Hz)")

ylabel (‘arg\itH\rm_1(\itf\rm) (rad)");
axis([0 fs/2 -160 0])

ind=find(f==fc);

P2=polyfit(f(2:ind),
unwrap(angle(H1(2:ind))), 1);
t_delay2=-P2(1)/(2* pi)

plot(f(2:ind), P2(1)*f(2:ind)+P2(2), 'r:");
hold off

Then, obtain the cross-spectral density
function viathe DFT of the
cross-correlation function.

Plot the unwrapped arg S, ( f) up to half
the sampling rate. Then hold the figure.
We can see the linear phase characteristic
up to about 100 Hz. Note that the signal
is band-limited (0 to 100 Hz), thus the
values above 100 Hz are meaningless.

Find the index of the cut-off frequency
(100Hz) in the vector ‘f’. Then, perform
first-order polynomial curvefitting to
find the slope of the phase curve.
Display the estimated time delay. Plot
the results of curve fitting on the same
figure, then release the figure.

Calculate S (f) and Siy( f) using the
DFT of R () and Ry (), respectively.
Since Ryx(t) isan even function, we
must include the negative part of t in
order to preserve the symmetric
property. Note that the last value of the
vector Rxx is not included to pinpoint
frequency valuesin the vector f. Then,
estimate the frequency response function
Ha(f) = Sy (f)/S«x(f) (Line 36).

As mentioned earlier, we must
compensate the delay dueto the
inclusion of the negative part of 7.
However, thisis not necessary for the
estimation of the frequency response
function, i.e. theratio Siy(f)/Six(f)
cancelsthe delay if Ry () and Ry (1)
are delayed by same amount.

Lines 34 and 35 compensate for the
delay, and can be used in place of Line
33.

Plot the unwrapped arg H1( ) up to half
the sampling rate. Then hold the figure.
Compare this with the previous result.

Perform first-order polynomial curve
fitting as before.

Display the estimated time delay, and
plot the results of curve fitting on the
same figure, then release the figure.
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Results
0 0
-2 Solid line:  args, (f) 20 Solid line: arg H,(f)
. —40 / Dashed line: results of curve fitting —40 / Dashed line: results of curve fitting
g -60 g -60
< -80 < 80
%y T
£-100 £-100
-120 -120
-140 -140
-1605 50 100 150 200 mo 0 50 100 150 200
Frequency (Hz) Frequency (Hz)
(a) Results of using S, (f), (b) Results of using H; (f),
t_delayl = 0.200 007 583 226 06 t_delay2 = 0.200 005 287 848 52

Comments. Note that the two methods give aimost identical results and estimate delay
time A = 0.2 very accurately.

250

Example 8.10: System identification using spectral density functions

In the previous MATLAB example, we saw that Hy(f) = Siy(f)/S«(f) estimates the
system frequency response function. Although we shall discuss this matter in depth in
Chapter 9, a simple example at this stage may be helpful for understanding the role of
correlation and spectral density functions.

Consider the input—output relationship of a single-degree-of-freedom system in
Figure (a).

A iuy
X(t) ——> h(t)=aje‘””‘Slnwdt — M
d

(a) A single-degree-of-freedom system

In this example, we use white noise as an input X(t), i.e. Ryx(t) = ké(z); then the
output y(t) isobtained by y(t) = h(t) * x(t).

Rux (1), Ryy(7), Rey(r) and Hi(f) = Sy (f)/Sx(f) areexamined for two different
values of measurement time. We shall seethat the estimation results get better asthetotal
record time T increases.

Line MATLAB code Comments
1 clear all Define parameters for the impulse
2 fs=100; t=[0:1/fs:2.5-1/f5]; response function h(t), and generate a
3 A=100; zeta=0.03; f=10; wn=2*pi*f; sequence accordingly. Note that the
wd=sqrt(1-zeta"2)*wn; impulse response is truncated at 2.5

4 h=(A/wd)* exp(-zeta* wn*t).* sin(wd*t); seconds.
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32

33

randn('state’,0);

T=100; % 100 and 2000
x=2*randn(1,T*fs);

y=conv(h,x); y=y(1:end-length(h)+1);
% y=filter(h,1,x);

maxlag=2.5*fs;

[Rxx, tau]=xcorr(x,x,maxlag, 'unbiased);
[Ryy, tau]=xcorr(y,y,maxlag, 'unbiased);
[Rxy, tau]=xcorr(y,x,maxlag, ‘unbiased’);
tau=taulfs;

N=2*maxlag;
f=fs*(0:N-1)/N;
Sxx=fft(Rxx(1:N));
Syy=fft(Ryy(1:N))/(fs"2);
Sxy=fft(Rxy(1:N))/fs;
H1=Sxy./Sxx;
H=fft(h,N)/fs;

figure(1)

plot(tau,Rxx)

xlabel('Lag (\it\tau)");

ylabel ("\itR-xx\rm(\it\tau\rm)")

figure(2)

plot(tau,Ryy)

xlabel('Lag (\it\tau)");

ylabel (\itR_y_y\rm(\it\tau\rm)")

figure(3)

plot(tau,Rxy)

xlabel (‘Lag (\it\tau)");

ylabel ('\itR_x_y\rm(\it\tau\rm)")

figure(4)

plot(f(1:N/2+1),
20*10g10(abs(H1(1:N/2+-1)))); hold on
xlabel (‘"Frequency (Hz)");

ylabel ('|\itH\rm_1(\itf\rm)| (dB)")

plot(f(1:N/2+1), 20*logl0(abs(H(1:N/2+1))),

'r:"); hold off

Generate a white noise signal for input
X(t). Note that the variance of x(t) is
four (in theory). Then obtain the output
signal by convolution of h(t) and x(t).
First, runthisMATLAB program using
the total record time T = 100 seconds.
Later run this program again using T
= 2000, and compare the results.

Note that the sequence ‘h’ isan FIR
filter, and Line 9 can be used instead of
Line8.

Calculate the correlation functions.
Note that we define the maximum lag
equal to the length of thefilter h.

Calculate the spectral density
functions.

Note that different scaling factors are
used for Sxx, Syy and Sxy in order to
relate to their continuous functions (in
relative scale). Thisis dueto the
convolution operationinLine 8, i.e.
the sequence 'y’ must be divided by
‘fs’ for the equivalent time domain
signal y(t).

Calculate Hy(f) = Sy (f)/Sw(f),
and also calculate H( f) by the DFT of
the impul se response sequence. Then
compare these two results.

Plot the autocorrel ation function

Rux (7). Itis close to the delta function
(but notethat itisnot a‘true’ delta
function), and R (0) ~ 4 which isthe
variance of x(t).

Plot the autocorrelation function
Ryy (7). Note that its shape is reflected
by the impulse response function.

Plot the cross-correlation function
Ruy(7). Note that its shape resembles
the impulse response function.

Plot the magnitude spectrum of both
Hy(f)and H(f) (in dB scale), and
compare them.
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34 figure(5) Plot the phase spectrum of both H;(f)
35 plot(f(1:N/2+1), and H( f), and compare them. Run
unwrap(angle(H1(1:N/2+1)))); hold on thisMATLAB program again for T =
36 xlabel (‘Frequency (Hz)"); 2000, and compare the results.
ylabel (‘arg\itH\rm_1(\itf\rm) (rad)’)
37 plot(f(1:N/24-1), unwrap(angle(H(1:N/24-1))),
'r:"); hold off
Results
T =100 T = 2000
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Lag () Lag (7)
(b1) Autocorrelation function, R, (7) (c1) Autocorrelation function, Ry, (7)
150 150
100 100
50 50
o op [[T—
o o
-50 -50
-100 -100
_1592.5 -2 -15 -1 05 0 05 1 15 2 25 _1592.5 -2 -15 -1 -05 0 05 1 15 2 25
Lag () Lag (z)
(b2) Autocorrelation function, Ry,(7) (c2) Autocorrelation function, Ryy(r)
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24 o
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_92.5 -2 -15 -1 -05 0 05 1 15 2 25 _§2.5 -2 -15 -1 -05 0 05 1 15 2 25
Lag (r) Lag (7)
(b3) Cross-correlation function, Ry (7) (c3) Cross-correlation function, R,(7)
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Solid line: | H,(f)]

Solid line: | H,(f)]

@ -20 /Dashed line:|H(f)| (DFT of h(t)) g_zo / Dashed line:|H (f)| (DFT of h(t)) -
=30 =
z T

—40 =
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(b4) Magnitude spectrum of H, (f) (c4) Magnitude spectrum of H; (f)
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Frequency (Hz) Frequency (Hz)
(b5) Phase spectrum of H, (f) (c5) Phase spectrum of H, (f)

Comments:

1.

By comparing the results of using T = 100 and T = 2000, it can be seen that as the
length of data (T) increases, i.e. asthe number of averagesincreases, we obtain better
estimates of correlation functions and frequency response functions.

Note particularly thet the cross-correlation function Ryy(r) has a shape sim-
ilar to the impulse response function h(t). In fact, in the next chapter, we shall
see that Ryy(r) = kh(z) where Kk is the variance of the input white noise. To see
this, type the following script in the MATLAB command window (use the result of
T = 2000):

plot(t,4*h); hold on
plot(tau(maxlag+1:end), Rxy(maxlag+1:end), 'r:"); hold off
xlabel(‘'Time (s) and lag (\it\tau\rm)"); ylabelCAmplitude’)

The results are as shown in Figure (d). Note that h(t) is multiplied by 4 which
is the variance of the input white noise. (Note that it is not true white noise,
but is band-limited up to ‘f§/2’, i.e. f§/2 corresponds to B in Equation (8.97) and
Figure 8.30.)
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6
. Solid line:  4h(t) = kh(t)
| Dashed line: R, (z
| / (D)
o2
2
g of
g
<
_2 3
a4t
55 05 2.5

1 15
Time (s) and lag (7)
(d) Comparison of h(t) and Ryy (z)

Also note that the autocorrelation function of the output is the scaled version of
the autocorrel ation function of the impulse response function, i.e. Ryy(7) = kRun (7).
Type the following script in the MATLAB command window to verify this:

Rhh=xcorr(h,h,maxlag);

plot(tau,4* Rhh); hold on

plot(tau, Ryy, 'r:"); hold off

xlabel('Lag (\it\tau\rm)"); ylabel CAmplitude’)

The results are shown in Figure (€). Note that Ry () is not normalized since h(t) is
transient.

150

Solid line: kR (7)
100 | x Dashed line: R,,(7) 1

50

0

Amplitude

50 }

-100 |

05 T 05 0 05 1 15 2 25
Lag (7)
(e) Comparison of Rnn () and Ryy (7)

Note that, in this MATLAB example, the system frequency response function is
scaled appropriately to match its continuous function. However, the correlation and
spectral density functions are not exactly matched to their continuous functions, they
are scaled relatively.

. Inthisexample, we have estimated the spectral density functions by taking the Fourier

transform of correl ation functions. However, there are better estimation methods such
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[Hy()] (dB)

as the segment averaging method (also known as Welch’'s method (Welch, 1967)).
Although this will be discussed in Chapter 10, the use of Welch’'s method is briefly
demonstrated. Type the following script in the MATLAB command window (use the
result of T =100):

Sxx_w=cpsd(x,x, hanning(N),N/2, N, fs, ‘twosided’);
Sxy_w=cpsd(x,y/fs, hanning(N),N/2, N, fs, 'twosided');

H1 w=Sxy_w./Sxx_w;

figure(1)

plot(f(1:N/2+1), 20*1og10(abs(H1 w(1:N/2+1)))); hold on
plot(f(1:N/2+1), 20*1og10(abs(H1(1:N/2+1))), 'r:"); hold off
xlabel (‘"Frequency (Hz)"); ylabel (‘|\itH\rm_1(\itf\rm)| (dB)")
figure(2)

plot(f(1:N/2+1), unwrap(angle(H1-w(1:N/2+1)))); hold on
plot(f(1:N/2+1), unwrap(angle(H1(1:N/2+-1))), 'r:"); hold off
xlabel ('"Frequency (Hz)"); ylabel (‘arg\itH\rm_1(\itf\rm) (rad)")

TheMATLAB function ‘cpsd’ estimatesthe cross-spectral density function using
Welch’'s method. In this MATLAB script, the spectral density functions are estimated
using a Hann window and 50% overlap. Then, the frequency response function es-
timated using Welch's method is compared with the previous estimate (shown in
Figures (b4) and (b5)). Note that the output sequenceis divided by the sampling rate,
i.e. 'y/fs isused in the calculation of cross-spectral density ‘Sxy_w’ to match to its
corresponding continuous function.

The results are shown in Figures (f1) and (f2). Note that the result of using
Welch's method is the smoothed estimate. This smoothing reduces the variability, but
the penalty for this is the degradation of accuracy due to bias error. In general, the
smoothed estimator underestimates peaks and overestimates troughs. The details of
bias and random errors are discussed in Chapter 10.

Solid line :  Welch’s method 0 Solid line:  Welch’s method
Dashed line: Using correlation functions 05 Dashed line: Using correlation functions

/ (T=100's, maxlag = 2.5 5) / (T =100s, maxlag =2.55)

argH, (f ) (rad)
|
t

5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Frequency (Hz) Frequency (Hz)
(f1) Magnitude spectrum of H,(f) (f2) Phase spectrum of Hy(f)

using Welch’s method using Welch’s method
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Linear System Response to Random
| nputs. System | dentification

I ntroduction

Having described linear systems and random signals, we are now able to model the
response of linear systemsto random excitations. We concentrate on single-input, single-
output systems, but can also consider how additional inputs in the form of noise on
measured signals might affect these characteristics. We shall restrict the systems to be
linear and timeinvariant, and all the signals involved to be stationary random processes.
Starting with basi cinput—output rel ationshi ps, weintroducethe concept and interpretation
of the ordinary coherence function. This leads on to the main aim of this book, namely
the identification of linear systems based on measurements of input and output.

9.1 SINGLE-INPUT, SINGLE-OUTPUT SYSTEMS

Consider the input—output relationship depicted as in Figure 9.1, which describes a linear
time-invariant system characterized by an impulse response function h(t), with input x(t) and
output y(t).

If the input starts at to, then the response of the systemis

t
y(t) = x(t)h(t) = / h(t — t)x(t)dt; (0.1)
to

If we assumethat the systemis stable and the response to the stationary random input x(t)
has reached a steady state, i.e. y(t) is aso a stationary process for to — —oo, then Equation

Fundamentals of Sgnal Processing for Sound and Vibration Engineers
K. Shinand J. K. Hammond. ~ © 2008 John Wiley & Sons, Ltd
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x(t) h(t) y(®)

Input —— System Output

Figure9.1 A single-input, single-output system
(9.1) can be written as
t 00
y(t) = / h(t — ty)x(ty)dt; = / h(z)x(t — 7)dz (9.2
—00 0

Whilst Equation (9.2) describes fully how input x(t) is related to the corresponding
response y(t), itismore hel pful to devel op relationshipsrelating the first and second moments
of the input and response. We shall do thisin both the time and frequency domains. We shall
include mean values, (auto and cross-) correlation functions and (power and cross-) spectral
density functions.

Mean Values

If the mean value of input x(t) is ux, then the mean value of the output y(t), .y, may be
obtained by taking expectations of Equation (9.2), i.e.

ny=E[y®)] = E { f h(x)x(t - r)dr} 93)
0

The expectation operation is linear and so the right hand side of Equation (9.3) can be
written as

h(z)E[x(t — t)]dt = [ h(z)uxdr = ux [ h(z)dz
/ [ o=
So it follows that
wy = ux [ h(z)dr (9.9
/

From this it is clear that if the input has a zero mean value then so does the output
regardless of the form of h(z).

It will be convenient to assume that the signals have zero mean values in what follows.
This keeps the equations from becoming unwieldy.
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Autocorrelation Functions

If x(t) is characterized by its autocorrelation function Ryx(7) it islogical to ask how the
output autocorrelation Ryy () is related to the Ry (7). So we need to evaluate Ryy(7) =
E[y(t)y(t + )], where y(t) is given by Equation (9.2). This follows, where again we
exploit the linear nature of the expected value operator which allows it under integral
operations:

Ryy(r) = Ely®)y(t +0)] = E { / / h(z)x(t — )h(e2)X(t + 7 - rz)drldzz}
0 0

= // h(z1)h(z2) E [X(t — t)X(t + T — 72)]dT1d2 (9.5)
00
Thus,
Ryy(1) = / / h(z)h(z2)Rex(z + 71 — 72)dmydrs (96)
0 0

Thisisrather complicated and isadifficult equation to eval uate, and we find that the frequency
domain equivalent is more useful.

Taking the Fourier transform of Equation (9.6) gives

o0

Sy(f) = / Ryy(z)e 1 dr
= / h(z1)e/# " ™dry / h(zz)e 1% 2dr, / Rt + 11 — mp)e 127 (Hmn)dy
0 0 —00
9.7)
Lett + 11 — o = uinthelast integral toyield
Sy(f) = [H(F)” Sx(f) (9.8)

where H(f) = /;° h(r)e 12""*dt is the system frequency response function. (Recall that
the Fourier transform of the convolution of two functions is the product of their transforms,
i.e. Y(f) = F{y(t)} = F{h(t) = x(t)} = H(f)X(f)whichgives|Y(f)|? = |H(f)|?|X(f)?,
and compare this with above equation.)
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We see that the frequency domain expression is much simpler than the corresponding
time domain expression. Equation (9.8) describes how the power spectral density of the input
is‘shaped’ by the frequency response characteristic of the system. The output variance is the
area under the Sy () curve, i.e. the output variance receives contributions from across the
frequency range and the influence of the frequency response function is apparent.

Cross-relationships

The expression in Equation (9.8) isreal valued (there is no phase component), and shows
only the magnitude relationship between input and output at frequency f . The following
expression may be more useful since it includes the phase characteristic of the system.

Let us start with the input—output cross-correlation function Ryy(t) = E[x(t)y(t +
7)]. Then

Ry(7) = E[x()y(t+ )] = E |:/ xOh(z)x(t + t — rl)drl:|

0

- f h(z0) E[XO)X(t + 7 — )]zt (9.9)
0
ie,
Rey(r) = / h(z)Ru(r — t2)des (9.10)
0

Whilst Equation (9.10) is certainly simpler than Equation (9.6), the frequency domain
equivalent is even simpler.
The Fourier transform of Equation (9.10) gives the frequency domain equivalent as

o0 oo o0

Sy(f) = / Ry(r)e 1% " dr :/h(tl)e’jz”f“dq/ Rux(t — 11)e 1277 - ¢
h i - (9.11)

thus
Sey(f) = H(f)S«(f) (9.12)

Equation (9.12) contains the phase information of the frequency response function such
that arg Siy(f) = arg H(f). Thus, this expression is often used as the basis of system identi-
fication schemes, i.e. by forming the ratio S,y (f)/S«(f) to give H(f). Note also that if we
restrict ourselvesto f > 0, then we may write the alternative expressions to Equations (9.8)
and (9.12) as

Gyy(f) = [H(F)I* Gxx(f) (9.13)
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and

Guy(f) = H(f)Gxx(f) (9.14)

Examples

A First-order Continuous System with White Noise | nput ™91

Consider thefirst-order system shown in Figure 9.2 where the system equation is
Tyt)+yt)=xt) T >0 (9.15)

nput ~__X® HO+yO=x0 | YO
(white noise) System P

Figure9.2 A first-order continuous system driven by white noise

We shall assume that x(t) has zero mean value and is ‘white', i.e. has a delta function
autocorrel ation whichwewrite Ry () = :28(t). Theimpul seresponsefunction of thesystem
is

1
ht)=-eT t>0
O = >

the transfer function is

H(s) =
(s) 1+Ts
and the frequency response function is
H(f)= 1 (9.16)
1+ j2nfT '
Using Equation (9.6), the autocorrel ation function of the output is
Ry(@) = [ [ heh(ez)aste + - rdndr,
0 0
= 0)(2/ h(rl)/ h(z2)8(t + 11 — 12)drod1y
0 0
= of [ h(mh(x + m)dn = ofRu(x) (0.17)
0

This shows that for awhite noise input, the output autocorrelation function is ascaled version
of the autocorrelation function formed from the system impul se response function.
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From Equation (9.8), the power spectral density function of the output is

1 2

— 2 —
Sy(1) = IH(DF SN = Ty

(9.18)

Note that
Ryy(0) =oy2=a)(2/h2(n)dr1=ax2f [H(f)|?df = / Syy(f)df
0 s %

i.e. the output variance is shaped by the frequency response characteristic of the system and
is spread across the frequencies as shown in Figure 9.3. A filter operating on white noise in
thisway is often called a‘ shaping filter’.

Sul(f) Sy ()

2a

2
oZ|H ()|
’ ‘\
/t s\\‘/

- ~
- ~,
- ~

[H(f )|2 Areais o2

==y f

Figure9.3 Power spectral density functions of input and output for the system in Figure 9.2.

Cross-relationships
Consider the cross-spectral density and the cross-correlation functions which can be written
as

_ -1,
3<y(f)—H(f)Sxx(f)—l+j2nfTax (9.19)
h 2
Rey(r) = /h(tl)oxz8(t —1)dry = gxzh(f) — (%Xe—r/T >0 020

0
=0 T<0

From these two equations, it is seen that, if the input is white noise, the cross-spectral
density function is just a scaled version of the system frequency response function, and
the cross-correlation function is the impul se response function scaled by the variance of
the input white noise (see also the commentsin MATLAB Example 8.10 in Chapter 8).
This result applies generally (directly from Equations (9.10) and (9.12)). Accordingly
white noise seemstheideal random excitation for system identification. Theseresultsare
theoretical and in practice band-limiting limits the accuracy of any identification.
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A First-order Continuous System with a Sinusoidal | nput™?°?2

Consider the same system as in the previous example. If the input is a pure sine function, e.g.
X(t) = Asin(2r fot + 6) with the autocorrelation function Ryx(t) = (A?/2) cos(2r fot) (see
Section 8.6), the power spectral density function S (f) = (A2/4)[8(f — fo) + 8(f + fo)]
and the variance 02 = A?/2, then the power spectral density function of the output is
(f)—IH(f)IZ&(f)—;ﬁ[é(f—f)+8(f+f)] (9.21)
it = AT 14 (2nfT)? 4 0 0 '

The variance and autocorrelation function of the output are

T A2 1
2 __ _
o = / SHDIl = 5 iy 9.22)
A2 1

Ry(r) = FH{Sy(f)} = cos(2r fot) (9.23)

2 14 (27 foT)?

The cross-spectral density and the cross-correlation functions are

2
&y(f)ZH(f)&x(f)Zm%[S(f — fo) + 8(f + fo)] (9.24)
A2 .
Ry() = F{Sy(f)} = 2/IT T sin(2r for + ) (9.25)
0

where

1
=tan?
¢ =tan <2nf0T>

Thus, it can be seenthat theresponseto asinusoidal input issinusoidal with the samefrequency,
the variance differs (Equation (9.23) with © = 0) and the cross-correlation (9.25) shows the
phase shift.

A Second-order Vibrating System

Consider the single-degree-of-freedom system shown in Figure 9.4 where the equation
of motionis

my(t) + cy(t) + ky(t) = x(t) (9.26)

Force, x(t)

3 c I Displacement, y(t)
m
k

Figure9.4 A single-degree-of-freedom vibration system
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The impulse response function of the system is
1
h(t) = —e*“'sinwgt t >0
Mg

and the frequency response function is

1
k—m2r7f)2+ je@rf)
where w, = /k/m, ¢ = ¢/2mwy, and wg = wn/1 — 2.

If the input is white noise with the autocorrelation function Rex(t) = 0:28(t), then
the power spectral density and the cross-spectral density functions of the output are

1 2

H(f) =

(f) = IH(F)I* Sx(f) = o (9-27)
W " [k — m@zf)2] + [c(2r )2
and
1 2
Sy(f) = H(f)S«x(f) = P S N S L (9.28)
The cross-correlation function of the output is
2
Ry(r) = 02h(r) = r:_:)de—wnf Snwgr 7 >0
=0 <0 (9.29)

whichisascaled version of theimpul seresponsefunction (seethecommentsin MATLAB
Example 8.10).

This and the other examples given in this section indicate how the correlation functions
and the spectral density functionsmay be used for systemidentification of single-input, single-
output systems (see also some other considerations given in Appendix C). Details of system
identification methods are discussed in Section 9.3.

9.2 THE ORDINARY COHERENCE FUNCTION

As a measure of the degree of linear association between two signals (e.g. input and
output signals), the ordinary coherence function is widely used. The ordinary coherence
function (or simply the coherencefunction) betweentwo signalsx(t) and y(t) isdefined as

y2,(f) = Gu(O" _ ISe(Of
4 Gux(f)Gyy(f)  Sux(f)Sy(f)

From the inequality property of the spectral density functions given in Chapter 8, i.e.
]S(y(f)]2 < Sx(f)Sy(f), it follows from Equation (9.30) that

0= pa(f)=1 (931)

(9.30)
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If x(t) and y(t) are input and output signas, then Sy, (f) = IH(f)|? Sx(f) and
Sy(f) = H(f)Sx(f). Sothe coherencefunction for the single-input, single-output sys-
tem given in Figure 9.1 is shown to be

H(OPS,
Se(f) IH(F)I? Sex(F)
Thus, it is shown that the coherence function is unity if x(t) and y(t) arelinearly related.
Conversely, if Sy(f) is zero, i.e. the two signals are uncorrelated, then the coherence
function is zero. If the coherence function is greater than zero but less than one, then
X(t) and y(t) are partially linearly related. Possible departures from linear relationship
between x(t) and y(t) include:

o (f) = (9.32)

1. Noise may be present in the measurements of either or both x(t) and y(t).
2. X(t) and y(t) are not only linearly related (e.g. they may also be related nonlinearly).
3. y(t) isan output due not only to input x(t) but also to other inputs.

Since yxzy( f) isafunction of frequency its appearance across the frequency range can be
very revealing. In some ranges it may be close to unity and in others not, e.g. see Figure
9.5, indicating frequency ranges where ‘linearity’ may be more or less evident.

o(f)

| > f

Figure9.5 A typical example of the coherence function

Effect of Measurement Noise

Case (a) Output Noise

Consider the effect of measurement noise on the output as shown in Figure 9.6, where y(t) is
ameasured signal such that ym(t) = y(t) + ny(t). We assumethat input x(t) and measurement
noise ny(t) are uncorrelated. Since y(t) islinearly related to x(t), then y(t) and ny(t) are also
uncorrelated. Then, the coherence function between x(t) and ym(t) is

|Sen( D[

2 f —
Ponl D) = 5 ()8 (D)

(9.33)

n,(t), noise

X)) —|  h) ﬂ.G)—» o

Figure9.6 The effect of measurement noise on the output
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where S,y (f) = Sy(f) + Sn,(f) = [H(f)2Sx(f) + Syn,(f). Using the standard
input—output relationship, i.e.

Sayn(F) = Siy(f) + Sin, (f) = Sey(F) = H(F)S«(f) (9.34)
the coherence function becomes
IH(f)1> (1) 1
2 (f)= = 9.3
el = S RO S + S (D] 7, Sl (6%
IH(f)” S ()
So
2 _ 1 _ Sy(f) _ Sy(f)
nym(f) - 1+ S‘Iyny(f) - S/y(f)‘i‘ $1yny(f) - Slmym(f) (936)
Sy(f)

From Equation (9.36), it can be seen that the coherence function nym( f) describes how much
of the output power of the measured signal yn(t) is contributed (linearly) by input x(t). Also,
since the noise portion is
Shyny(f) — S}’m)’m(f) - S/Y(f) —
%’mym(f) S’mym(f)

thequantity 1— szym( f) isthefractional portion of the output power that isnot duetoinput x(t).

1- szym(f)

Thus, auseful concept, called the coherent output power (spectral density function),
is defined as

Sy(f) = ¥4, (1) Symym( ) (9.37)

which describes the part of the output power fully coherent with the input. In words, the
power spectrum of the output that is due to the source is the product of the coherence
function between the source and the measured output, and the power spectrum of the
measured output. Similarly, the noise power (or uncoherent output power) is the part of
the output power not coherent with the input, and is

Siyn, (F) = [1 = %5, ()] Spyn( ) (9:39)
Theratio Syy(f)/Sn,(f) isthesignal-to-noiseratio at the output at frequency f. If this
islargethen y5, (f) — 1,andif itissmall then 3, (f) — 0,i.e

Syy(f)
Syn, ()

(f)
— oo and y3 (f)—> 0 as Si/:y(f) -0 (9.39)

Vig(F) — 1 &8

Case (b) Input Noise

Now consider the effect of measurement noise (assumed uncorrelated with x(t)) on the input
as shown in Figure 9.7, where xn(t) isameasured signal such that xy(t) = x(t) + n(t) and
Sixn(F) = Six(f) + Shon, (). Then, similar to the previous case, the coherence function
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X(t) ———» h(t) — y()

!
n, (t) —>®
!

Xn(t)

Figure9.7 The effect of measurement noise on the input

between xm(t) and y(t) is
1 Sx(f) Sx(f)

2 _ — —
Port D = 8l = S + SN S D) (040

Thus, the input power and noise power can be decomposed as
Su(F) = 12,y (1) St () (9.41)

and
Sin(f) = [1 - szmy(f)] S () (942)

Case (c) Input and Output Noise
Consider the uncorrelated noise at both input and output as shown in Figure 9.8, where xp(t)
and yn(t) are the measured input and outpuit.

X(t) —» h(t) — y(t)

! !
n,() »@ @« n, (1)
! |

Xn () Ym(®)

Figure 9.8 The effect of measurement noise on both input and output

The noises are assumed mutually uncorrel ated and uncorrelated with x(t). Then the coherence
function between X (t) and ym(t) becomes

2 (o SO 1
XmYm S(mxm(f)g,mym(f) 14 S1an(f) " S1yny(f) " S]an(f)sh,ny(f)
Sx(f)  Sy(f) Sx(1)Sy(f)
Note that, in this case, it is not possible to obtain the signal powers S () and Syy(f)

using the measured signals X, (t) and ym(t) without knowledge or measurement of the noise.
Some comments on the ordinary coherence function are given in Appendix D.

(9.43)

9.3 SYSTEM IDENTIFICATIONM?®4.95

The objective of this section is to show how we can estimate the frequency response
function of alinear time-invariant system when the input is a stationary random process.
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It is assumed that both input and output are measurable, but may be noise contaminated.
In fact, as we have seen earlier, the frequency response function H ( f) can be obtained by
forming the ratio Siy(f)/Scx(f) (see Equation (9.12)). However, if noise is present on
the measured signals Xm (t) and ym(t) asshownin Figure 9.8, then we may only ‘ estimate’
thefrequency responsefunction, e.g. by forming Sy, (f)/ Sqx.( ). Infact we shall now
see that this is only one particular approach to estimating the frequency response from
among others.

Figure 9.8 depicts the problem we wish to address. On the basis of making mea-
surements Xm(t) and ym(t), which are noisy versions of input x(t) and response y(t), we
wish to identify the linear system linking x and y.

To address this problem we begin by resorting to something very much simpler.
Forget for the moment the time histories involved and consider the problem of trying to
link two random variables X and Y when measures of this bivariate process are available
aspars(x,V),i =1,2, ..., N. Suppose we wish to find alinear relationship between
x and y of the form y = ax. We may plot the data as a scatter diagram as shown in
Figure 9.9. The parameter a might be found by adjusting the line to ‘ best-fit' the scatter
of points. In this context the points (X;, y;) could come from any two variables, but to
maintain contact with Figure 9.8 it is convenient to think of x as an input and y as the
output. With reference to Figure 9.9, the slope a isthe ‘gain’ relating x to y.

Tofindtheslopea that isbest means deciding on someobjectivemeasure of closeness
of fit and selecting the value of a that achievesthe ‘optimal’ closeness. So we need some
measure of the ‘error’ between the line and the data points.

y:ax\4

y

Figure9.9 Scatter diagram relating variable x (input) and y (output)

We choose to depict three errorsthat characterize the ‘ distance’ of a data point from
the line. These are shown in Figure 9.10:

* Casel: Thedistance (error) ismeasured in the y direction and denoted ey. Thisassumes
that offsets in the x direction are not important. Since x is identified with input and
y with output, the implication of this is that it is errors on the output that are more
important than errors on the input. This is analogous to the system described in Case
(a), Section 9.2 (see Figure 9.6).

e Case 2: In this case we reverse the situation and accentuate the importance of offsets
(errors) in the x direction, ey, i.e. errors on input are more important than on output.
Thisis analogous to the system described in Case (b), Section 9.2 (see Figure 9.7).

e Case 3: Now we recognize that errorsin both x and y directions matter and choose an
offset (error) measure normal to the line er. The subscript T denotes ‘total’. Thisis
analogous to the system described in Case (c), Section 9.2 (see Figure 9.8).
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Case 1 Case 2 Case 3
Figure9.10 Scatter diagram; three types of error, ey, & and er

For each of the cases we need to create an objective function or cost function
from these measures and find the slope a that minimizes the cost function. There are
an unlimited set of such functions and we shall choose the simplest, namely the sum of
squared errors. Thisresultsin three least squares optimisation problems as follows.

Case 1: Errorsinthe Output, ey (i.e. X; are known exactly but y; are noisy)

Inthiscase, wewill findthe parameter a; that fitsthedatasuchthaty = X and minimizes
the sum of squares of errors Zi'\‘:l (e'y)z, wheretheerror isdefined ase|, = yi — a1 . We
form an objective function (or a cost function) as

18 2 18
_N; _N; —31X| (944)

and minimize J; with respect to a;. J; is a quadratic function of a;, and has a single
minimum located at the solution of dJ;/da; = 0, i.e.

dJ

N
= 2> (- ax)(—x) =0 (0.45)
i=1

Thus, the parameter a; isfound by

N ] A
a = M (9.46)

YLy XP
Note that, if the divisor N isused in the numerator and denominator of Equation (9.46),
the numerator is the cross-correlation of two variables x and y, and the denominator is

the variance of x (assuming zero mean value). If N islarge then it islogical to write a
limiting form for a; as

E [xy]
E [x?]

a = = % (for zero mean) (9.47)
X

emphasizing the ratio of the cross-correlation to the input power for this estimator.

Case 2: ErrorsintheInput, e, (i.e. y; are known exactly but x; are noisy)
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Now we find the parameter a, for y = a,x. The error is defined aséx =X — Yi/ap, and
we form an objective function as

1 N 2 1 N 2
IO ( ) (948)
I=
Then, minimizing J, with respect to ay, i.e.
N
gl - 2 <xi—i>(y'>=o (9.49)
da2 N =1 ap a2

gives the value of parameter a, as

N 2
a, = i ¥ (9.50)

ZiNzl X Yi
Note that, in contrast to Equation (9.46), the numerator of Equation (9.50) represents the

power of the output and the denominator represents the cross-correlation between x and
y. Again, taking a limiting case we express this

E 2 2
a = [y ] =% (for zero mean) (9.51)
E[xy] oy

Case 3: Errorsin Both Input and Output, ey (i.e. both variables x; and y; are noisy)

In this case, the error to be minimized is defined as the perpendicular distance to the line
y = arx as shown in Figure 9.11. This approach is called the total least squares (TLS)
scheme, and from the figure the error can be written as

Yi —arXi

J1+a2

& =

(9.52)

& X
Yi—arX  x./l+a?

Figure9.11 Representation of error er normal to theliney = arx

Then the cost function Jr is

N N . )2
W= %Z(e;)z _ %Zw (9.53)
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Thisisanon-quadratic function of ar and so there may be more than one extreme value.
The necessary conditions for extrema are obtained from

dJr _ 2(yi — arxi)(—x;) _ 4 (yi — aTXI) (2ar)
dar Z (1+a2) 21: (1+a2)’

Thisyields a quadratic equation in ar as

N N N N
a‘%XlinYi +ar (2X?—_Xl:>’iz>—2;xiyi=0 (9.55)
I= 1= 1= =

Thus, we note that the non-quadratic form of the cost function Jr (9.53) results in two
possible solutions for ar, i.e. we need to find the correct a; that minimizes the cost
function. We resolve thisasfollows. If we consider N large then the cost function Jr can

be rewritten as
2] = [ —arx)?
e ()] - £ Y5
02+ a202 — 2ato
=X X T2 (for zero mean) (9.56)
1+ a7

=0 (9.54)

Jr

Then equation (9.55) becomes
a%oxy + ar (O‘XZ — 05) —oxy =0 (9.57)

The solutions of this are given by

a — o2 :i: \/ + 402
ar = (9.58)
20y

A typical form of the theoretical cost function (Equation (9.56)) may be drawn as in
Figure 9.12 (Tan, 2005), where 4,/ and —,/ denote the solutions (9.58) with positive
and negative square root respectively.

Figure9.12 Theoretical cost function Jr versus ar

From this we see that the correct parameter ar (in a limiting form) for y = arx
that minimizesthe cost function Jr is given by the solution (9.58) which has the positive
square root, i.e.

a —o? + \/ 24 402
ar = (9.59)
20y
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Accordingly, the correct parameter ar for Equation (9.55) is

N N N N 2 N 2

N
23 %Yl
1

=il

Freguency Response | dentification

The relationship between x(t) and y(t) in the time domain is convolution (not asimple gain) -
but it becomes again through the Fourier transform, i.e. Y(f) = H(f)X(f), and the previous
gain a is now the complex-valued H ( f) which is frequency dependent.

With reference to Figure 9.8, i.e. considering measurement noise, suppose we have a
series of measured results Xy, () and Yy (). Theindex i previously introduced now implies
each samplerealization that correspondsto each sampletime history of length T. Accordingly,
the form

1,
N2X
i=1
used in the previous analysis can be replaced by
1o Xai ()P
Ni; T

Aswe shall seein Chapter 10, thisis an estimator for the power spectral density function of
Xm(t), i.e.

N @
Sen(F) = % PR UL Xm'T(f)| (9.61)
i=1

Similarly, the cross-spectral density between xn(t) and ym(t) can be estimated by

N * ,
B 1) = 5 Y Zut N (D) 962

i=1

These results introduce three frequency response function estimators based on a;, a, and at.
A logical extension of the results to complex form yields the following:

1. Estimator H4(f): Based on Equation (9.46),

N N
a; = X:xiyi/in2
i=1 i=1
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the estimator Hy(f) is defined as

Sy (f
Hi(f) = ?‘mym( ) (9.63)
S(m)(m( f )
Weshall seelater that thisestimator is unbiased with respect to the presence of output
noise, i.e. ‘best’ for errors (noise) on the output. Once again, the limiting (theoretical)
version of thisis

S(mym( f )
Scrxn( 1)

This estimator is probably the most widely used.
2. Estimator Hy(f): Based on Equation (9.50),

N N
az=ZvF/ZXiyi
i=1 i=1

the estimator Hy( f) is defined as

Hi(f) = (9.64)

Ho(f) = Sy 1) (9.65)
Sy ()

This estimator isknown to be ‘best’ for errors (noise) on theinput, i.e. it is unbiased
with respect to the presence of input noise. Note that the denominator is éymxm(f) (not
S(mym( f)). Thisisdueto thelocation of the conjugate in the numerator of Equation (9.62),
S0 S, x,(f) must be used to satisfy the form H(f) = Y(f)/X(f) (see Appendix E for
acomplex-valued least squares problem). Similar to the Hy( f) estimator, the theoretical
form of Equation (9.65) is

%’m)’m( f)

Ha(f) S (1) (9.66)
3. Estimator Hy/(f) (asoknownas Hs( f) or H,(f)): Thisestimator issometimescalled
the total least squares estimator. It has various derivations with slightly different forms—
sometimesit isreferred to asthe H,(f) estimator (Leuridan et al., 1986; Allemang and
Brown, 2002) and asthe Hg( f) estimator (Wicks and Vold, 1986). Recently, White et al.
(2006) generalized this estimator as a maximum likelihood (ML) estimator. We denote
this ML estimator Hy (), whichis

Hw(f)
5 (0) = (D8 D) Bl D(F) = Sy (D 44 (B (DI (1)
- 25 x( )
(9.67)
where «(f) is the ratio of the spectra of the measurement noises, i.e. «(f)=
Shyn, (£)/Shen ().

Thisestimator is‘best’ for errors (noise) on both input and output, i.e. it is unbiased
with respect to the presence of both input and output noise provided that the ratio of
noise spectra is known. Note that if «(f) = 0 then Hy(f) = Ha(f), and if «(f) — oo
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then Hw(f) — Hi(f) (see Appendix F for the proof). In practice, it may be difficult
to know « (). Inthis case, «(f) = 1 may be alogical assumption, i.e. the noise power
intheinput signal isthe same asin the output signal. If so, the estimator Hy ( f) becomes
the solution of the TLS method which is often referred to as the H, (f) estimator (we
use the notation H+ () where the subscript T denotes ‘total’), i.e.

S (F) = St 1)+ Bt F) = Sy (D + 4 [y (D)
25 ()

Note that thisis analogous to a defined in Equation (9.60). The theoretical form of this
is

Hr(f) = (9.68)

Ssn(F) = St 1) &V [Sirtn(F) = Sy DI + 4| Serya (D)2
25,..(1)

Hr(f) = (9.69)

The Biasing Effect of Noise on the Frequency Response Function Estimators
H1(f) and Hy(f)

First, consider the effect of output noise only as described in Figure 9.6. The H,( ) estimator
is

Sym(f)  Sy(f) +Sa () Sy(f)
Sx(f) Sw(f) "~ Sw(f)

Thus, H1(f) isunbiased if the noiseis present on the output only. We assume that appropriate
averaging and limiting operations are applied for this expression, i.e. theoretical spectral
density functions are used. Now, consider the Hy( f) estimator which becomes

Sy (f) _ Sy(f) + Sy, (F) snyny(f))
Syux(f) Syx(f) Sy(f)

Notethat thisestimator isbiased and overestimates H ( f) if theoutput noiseis present, depend-
ing on the signal-to-noise ratio of the output signal (it may be different for each frequency).
If the input is white noise, then the input power spectral density function S (f) is constant
over the entire frequency range while the output power spectral density Syy( f) varies as the
frequency changes, depending on the frequency response characteristics.

Now consider the case when only the input noise is present as shown in Figure 9.7. The
Hy(f) and Hy(f) estimators are

Hi(f) =

— H(f) (9.70)

Hao(f) =

— H(f) <1+ (9.71)

Csu() Sy H(D
) = S (D) = Sl + Som 15 S/ S D) (.72)

Spn(f)  Sx(F) + S, ()~ Si(F)

Thus, itisshown that Hy( f) isunbiased with respect to input noise while Hy () isbiased and
underestimates H( f) if the input noise is present. Note that the bias of the Hi(f) estimator
depends on theratio S, n, (f)/S«( ). If both noise and input signal are white noise, then the
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ratio is constant for all frequencies, i.e. the Hy( f) estimator becomes simply ascaled version
of the true frequency response function H( f) (see MATLAB Example 9.4, Case (b)).

ExampleM94

Consider asystem (with reference to Figure 9.8) that displays resonant and anti-resonant
behaviour, i.e. as shown in Figure 9.13.

(D)

> f

' ]

r ar

Figure9.13 A system with resonant and anti-resonant behaviour

Assume that both input and response are noise contaminated. The input and output
signal-to-noise ratios (SNRs) are S (f)/Sn,(f) and Syy(f)/Sn,(f). Also, assume
the noises are white.

Whilst the input SNR is unaffected by the system response, the output SNR is
largest at resonance ( f;) and smallest at anti-resonance ( f5 ). Accordingly the ‘errors
at the output are (relatively) more significant at f,, than f, so estimator Hy(f) is more
appropriate than Hy(f) for this frequency. Conversely, at frequency f; the output SNR
ishigh, and so errors on input may be more significant and therefore Ha(f) may be more
appropriate.

Thus, H,(f) usually underestimates the frequency response function at resonances
of the structure but gives better estimates at anti-resonances than Hy(f). On the other
hand, as mentioned earlier, Ho(f) is relatively unbiased at resonances but significantly
overestimates near the anti-resonances (see MATLAB Example 9.4, Case (@)). Thus,
when both input and output noise are present the TLS estimator Hr(f) (or Hw(f) if
k() can be measured) may be preferably used (see MATLAB Example 9.4, Case (€)).
Alternatively, acombination of frequency response function estimates H1 (), Hy(f) and
H+ () may aso be used for different frequency regions appropriately.

Notethat the biasing effect of noise on theestimators Hi (), Ha( ) and Hw( f) islimited
to the magnitude spectrum only, i.e. the phase spectrum is unaffected by uncorrelated noise
andisnot biased. Thiscan beeasily verified from Equations (9.71) and (9.72), where §, n (),
Sy(f), Syn, (f) and S (f) aredll real valued. Thus, it follows that

95, (1) = 19 (g7 ) = @OHA(T) = g H(1) = g (1) = g H(T)

(9.74)
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Thisresult indicates that the phase spectrum isless sensitive to noise. However, note that this
is a theoretical result only. In practice we only have an estimate S;_y._(f). Thus, the phase
spectrum also has errors as we shall seein Chapter 10.

mYm

The Effect of Feedback

In some situations, there may be feedback in a dynamical system, as shown for example in
Figure 9.14. The figure might depict a structure with frequency response function H( f), with
x(t) theforceand y(t) theresponse (e.g. accel eration). The excitation isassumed to comefrom
an electrodynamic shaker with input signal r (t). The force applied depends on this excitation
but is also affected by the back emf (electromotive force) effect due to the motion. Thisis
modelled as the feedback path G( f). A second input (uncorrelated withr (t)) to the systemis
modelled by the signal n(t). This could come from another (unwanted) excitation.

n(t)
x(t) l

rt) — (+ )——>|  H(f) ﬂ.G)——»y(t)

y()
G(f) —

Figure9.14 A system with feedback

Theobjectiveisto determine H( f), i.e. theforward path frequency response function us-
ing themeasured signals x(t) (force) and y(t) (acceleration). Simply using the H, ( f) estimator
turns out not to be helpful as the following demonstrates.

Inthiscase, X(f)and Y(f) can bewritten as

R() + G(F)N(f
X(f) = R(f) + G(F)Y(f) = (11“;”()()5“() )
(9.75)
N(f) + H(f)R(f
Y(f) = H(F)X(f) + N(f) = (1_)7;”()6)“() )
Thus, the Hy () estimator based on the measured signals x(t) and y(t) gives
(= S0 _ HDS: (1) + G ()Su() 079

Su(f) S () +I1G(F)I* Sn(f)

which is not the required H( ). Rather than determining H ( f), note that as the noise power
getslarge, Hy(f) estimatestheinverse of G(f),i.e.

Sy(f) 1 . S(f)

R if —
Sa(f)  G(f)  Sn(f)
Itisclear, however, that in the absence of disturbance n(t), Hy(f) doesindeed resultin H(f)
even in the presence of feedback.

From this we see that (if the additional input n(t) is present) we need another approach
and this was provided by Wellstead (1981), who proposed using a third signal, namely the

Hi(f) =

0 (9.77)
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excitation to the shaker r (t). In essence he proposed an estimator referred to here as

wm

y(f
Sx(f)

~

Hs(f) = (9.78)

i.e. theratio of two cross-spectral density functions. Equation (9.75) can be rearranged as

X(f)[1 = G(f)H(F)] = R(f) + G(F)N(f)

(9.79)
Y(£)[1 - G(f)H(f)] = H(f)R(T) + N(f)
Then, the cross-spectral density functions are
_ S (f) __H(H)S(f)
Sx(f)—m and Sy(f)_—l—G(f)H(f) (9.80)

So Hs(f) = H(f) evenin the presence of disturbance n(t) and feedback.

9.4 BRIEF SUMMARY

1. Theinput—output relationship in the time domain for a stationary random process x(t)
is

Ryy(7) = // h(t1)h(r2) Rux(t + 71 — 12)d71d72  @nd
0 0

Rey(r) = f h(e1) R (7 —72)dlmy
0

and the corresponding frequency domain expressions are
Sy(f) = IH(F)I?Sx(f) and  Sy(f) = H(f)S«(f)
2. If theinput x(t) iswhite noise, then (for zero mean values)
Ry(t) = 0ZRun(r) and Ryy(r) = o2h(z)
3. The ordinary coherence function between input x(t) and output y(t) is defined as
[Sy(h)[*
S (F)Sy(f)

which measures the degree of linearity between x(t) and y(t).
4. When the effect of measurement noise on the output is considered, the coherent output
power is defined as

vy (f) = 0=<ys(f)=<1

Siy(1) = 1 (1) Sy (F)
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and the noise power (or uncoherent output power) is defined as

Siyn, (F) = [1 = 75, ()] Syuya(F)
5. Power spectral and cross-spectral density functions can be estimated by

N

- 1N | X (F)12 - 1N X (F) Yo (
SKme<f)=ﬁZ# and gmem(f)ZNZ#
i=1 i=1

6. The frequency response function is estimated by:
:S(m)’m( f )

S(mxm( f )

which is unbiased with respect to the output noise;

(@ Hi(f) =

S’m)’m(f)
b) Ha(f) = =
(b) Hz(f) g, (1)

which is unbiased with respect to the input noise;

8 (1) = k()80 (1) + 4/ [Sea (1) = Sy (D + 4By (DP (1)
25, ()

where k(f) = Sn, (f)/Sn, (f). Thisis unbiased with respect to both input and
output noise. If «(f) isunknown, «(f) = 1 may be used.

(¢) Hw(f)=

9.5 MATLAB EXAMPLES

Example 9.1: System identification using spectral density functions: a first-order
system

Consider the following first-order system (see Equation (9.15))
Ty(t) + y(t) = x(t)

where the impulse response function is h(t) = (1/T)e VT and the frequency re-
sponse function is H(f) = 1/(1+ j2x fT). In this example, we use the band-limited
white noise as an input x(t); then the output y(t) is obtained by the convolution, i.e.
y(t) = h(t) = x(t). The spectral density functions Six( f) and S,y( f) are estimated using
Welch’'s method (see Chapter 10 for details, and also see Comments 2 in MATLAB
Example 8.10).

Then, we shall estimate the frequency response function based on Equation (9.12),
Siy(f) = H(T)S«(f), i.e. Hi(f) = Siy(f)/Sx(f). This estimate will be compared
with the DFT of h(t) (we mean herethe DFT of the sampled, truncated impul se response
function).

InthisMATLAB example, we do not consider measurement noise. So, we note that
Hi(f) = Ha(f) = Hr(f).
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Line MATLAB code Comments
1 cleardl Define sampling rate and time variables t1
2 fs=500; T1=1; T2=40; t1=0:1/fs:T1; (for the impul se response function h(t)) and
t2=0:1/fsT2-1fs; t2 (for the band-limited white noise input
3 T=01; X(t)). Then, generate the impul se response
4  h=UT*exp(-tUT); sequence accordingly which is truncated at
1 second.
5  randn('state',0); Generate the band-limited white noise input
6  x=randn(1,T2*fs); signal x(t). The cut-off frequency is set to
7  fc=30; [b, a = butter(9,fc/(f52)); 30Hz for this example. The input sequence
8 x=filter(b,a,x); has a zero mean value, and the variance is
9  x=x-mean(x); x=x/std(x); one.
10  y=conv(h,x); y=y(1:end-length(h)+1); Then, obtain the output sequence by a
% or y=filter(h,1,x); convolution operation. Note that the output
11 y=ylfs; sequencey is scaled by the sampling rate in
order to match its corresponding continuous
function.
12 N=4*fs;, % N=10*fs; Calculate the spectral density functions
13 Sxx=cpsd(x,x, hanning(N),N/2, N, fs, using Welch's method; we use aHann
‘twosided'); window and 50 % overlap. The length of
14 Syy=cpsd(y,y, hanning(N),N/2, N, fs, segment is defined by N, and is 4 seconds
‘twosided'); long in this case.
15  Sxy=cpsd(x,y, hanning(N),N/2, N, fs, Note that we defined both negative and
‘twosided'); positive frequencies (Line 17), thus the
16 Sxx=fftshift(Sxx); Syy=fftshift(Syy); MATLAB function ‘fftshift’ is used to shift
Sxy=fftshift(Sxy); the zero-frequency component to the centre
17 f=fs*(-N/2:N/2-1)/N; of spectrum.
18  H1=Sxy./Sxx; Calculate Hy(f) = Sy(f)/S«(f), and also
19  H=fftshift(fft(h,N))/fs; calculate H (f) using the DFT of the impulse
20  Gamma=abs(Sxy)."2./(Sxx.* Syy); response sequence. Also, compute the
coherence function.
21 figure(l) Plot the ‘ calculated (estimated)’ power
22 plot(f, 10*1og10(Sxx)) spectral density function and the magnitude
23 xlabel('Frequency (Hz)"); spectrum of cross-spectral density function,
ylabel (\itS_x_x(\itf\rm) (dB)") for the frequency range —30 to 30 Hz.
24 axis([-3030-35-5]) Note that these functions are only estimates
25  figure(2) of true spectral density functions, i.e. they
26 plot(f, 10*10og10(abs(Sxy))) are S (f) and Sy (f). So, we may see some
27  xlabel('Frequency (Hz)"); variability as shown in the figures. Note that
ylabel('\itSx_y(\itf\rm)| (dB)") we use ‘ 10*1og10(Sxx)’ and
28  axig([-3030-35-15]) 10*10g10(abs(Sxy))’ for dB scale, since the
quantities are already power-like.
29  figure(3) Plot the magnitude spectrum of both Hy(f)
30  plot(f, 20*1og10(abs(H1))); hold on and H( f) for the frequency range —30 to
31  xlabel('Frequency (Hz)"); 30Hz.
ylabel (|\itH\rm_1(\itf\rm)| (dB)")
32 plot(f, 20*log10(abs(H)), 'r:"); hold off
33  axis([-3030-305])
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34  figure(4) Plot the phase spectrum of both H,(f) and
35  plot(f, unwrap(angle(H1))); hold on H (f) for the frequency range —30 to 30 Hz.
36  xlabel('"Frequency (Hz)");
ylabel (‘arg\itH\rm_1(\itf\rm) (rad)")
37 plot(f, unwrap(angle(H)), 'r:"); hold off
38  axig([-3030-1.6 1.6])
39  figure(b) Plot the coherence function.
40  plot(f, Gamma)
41 xlabel('Frequency (H2)");
ylabel ("Coherence function’)
42 axis([-150 1500 1.1])
Results
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Comments.

1. Note that the coherence function yxzy( f) ~ 1 within the frequency band of interest,
except at the peak (i.e. at zero frequency). The drop of coherencefunctionat f = Ois
dueto the bias error. This bias error can be reduced by improving the resolution (see
Chapter 10 for details). To improve the resolution, the length of the segment must be
increased (but note that this reducesthe number of averages). For example, replacethe
number 4 with 10in Line 12 of the MATLAB code. Thisincreases the window length
in the time domain, thus increasing the frequency resolution. The result is shown in
Figure (f), where the coherence function isalmost unity including thevalueat f = 0.

1

I =4 o
S =2 ©

Coherence function

o
)

9150 -100 -50 0 50 100 150

Frequency (Hz)

(f) Coherence function Viy () using segments
10 seconds long

2. From Figures (c) and (d), we see that we have an amost perfect estimate for the
frequency response function from Hy(f)=S(f)/S«(f). However, the individual
spectral density function estimates show a large variability as shown in Figures (a)
and (b). Notethat, in theory, S, (f) isconstant and S,y( f) isascaled versionof H(f)
if the input iswhite noise.

It is emphasized that the errors are not due to the noise (we did not consider
measurement noisein this example). In fact, these are the statistical errorsinherent in
the estimation processes (see Chapter 10). By comparing Figures (2)—c), we may see
that the estimate of H( f) isless sensitive to the statistical errors than the estimates of
spectral density functions. Thiswill be discussed in Chapter 10.

Notethat, evenif thereisno noise, theestimate of H( f) may havelarge statistical
errors if the number of averages (for the segment averaging method) is small. To
demonstrate this, change the length of time (T2) in Line 2 of the MATLAB code, i.e.
let T2 = 6. The result is shown in Figure (g), where we see relatively large random
errors near the peak.

[Hy (I (dB)

30 =0 =T 0 10 20 30
Frequency (Hz)
(9) Magnitude spectrum of H,(f), for T2 = 6
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Example 9.2: A first-order continuous system with a sinusoidal input

Consider the same first-order system asin MATLAB Example 9.1. Now, the input is a
sine function, i.e.

AZ
x(t) = Asin(2rfot) and  Re(r) = —- cos(2r for)

Then, the output y(t) can be written as

A
t)= ———sin@rfot +6) 6 =tan (=27 f,T
y(t) T @ihT) (27 fo ) ( ol)
In section 9.1, we have seen that the autocorrelation and cross-correlation functions are
(see Equations (9.23) and (9.25))

A2 1 A?

Ry(t) = — —————=cos(27 fpr) and Ryy(t) = ——————sin2x fot + ¢)
vy 2 1+ (2nfoT)2 o 2,/1+ (27 foT)2
where 1 1
= tan™
¢ (27'[ foT )
In this example, we shall verify this.
Line MATLAB code Comments
1 clearadl Sameasin MATLAB Example 9.1,
2 fs=500; T1=1; T2=40; t1=0:1/fsT1; except that the input isnow a1 Hz sine
t2=0:1/fs:T2-1/fs, function.
3 T=0.1;
4  h=UT*exp(-tUT);
5 A=2; f=1;, w=2*pi*f;
6 X=A*sin(w*t2);
7 y=filter(h,1,x)/fs,
8  maxlag=2*fs, Define the maximum lag and calculate
9 [Ryy, tau]=xcorr(y,y,maxlag, 'unbiased); the correlation functions.
10  [Rxy, tau]=xcorr(y,x,maxlag, 'unbiased’);

11 tau=tau/fs,

12 phi=atan(1/(w*T)); Calculate the true Ryy(r) and Ryy(7)
13 Ryy_a=(A"2/2)*(1/(1+(w*T)."2)).*cos(w*tau);  using Equations (9.23) and (9.25).
14  Rxy_a=(A"2/2)*(L/sgrt(1+(w*T)."2)).

*sin(w* tau+phi);

15  figure(l) Plot both estimated and true
16  plot(tau,Ryy,tau,Ryy_a, 'r:") autocorrelation functions (Ryy and
17 xlabel('Lag (\it\tau)"); Ryy_a, respectively).

ylabel (\itR_y_y\rm(\it\tau\rm)")
18  figure(2) Plot both estimated and true
19 plot(tau,Rxy,tau,Rxy_a, 'r:") cross-correlation functions (Rxy and
20  xlabel('Lag (\it\tau)"); Rxy_a, respectively).

ylabel (\itRx_y\rm(\it\tau\rm)")
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Results
15 2
15
1
1
05 05
2 =
= 0 > 0
o 24
-05
-05
-1
-1 15
S5 1 05 0 05 1 15 2 2“3 15 1 05 0 05 1 15 2
Lag (r) Lag ()
(@) Autocorrelation function Ryy (7) (b) Cross-correlation function Ryy ()
(solid line: estimated; dashed line: true function) (solid line: estimated; dashed line: true function)

Comments: Asmentioned in Section 9.1, this example has shown that the responseto a
sinusoidal input is the same sinusoid with scaled amplitude and shifted phase.

Example 9.3: Transmission path identification

We consider the simple acoustic problem as shown in Figure 9.15. Then, we may model
the measured signal as
M-ic. A = x(t) = as(t) (9.81)
Mic. B = y(t) = bs(t — A1) + cs(t — Ap)

where A1 and A, aretime delays.

Hard reflector

2777077722777777777777722 Rss(?)
Path (2)
Source, s(t) (delay, A,)
&\\iﬁ Path (1) sF z

Mic. A, x(t)  (delay, &) Mic. B, y(t)

Figure9.15 A simple acoustic example: transmission path identification

If the source signal s(t) is broadband, then the autocorrelation function Rss(7) is
narrow as depicted in the figure. By treating x(t) as an input and y(t) as an output,
i.e. y(t) =h(t) = x(t), as we have seen in Chapter 4, the impulse response function and
frequency response function are given by

h(t) = 28(’[ — A+ gé(t — A9 (9.82)

b . c .
— “pi2nta, ~a—i2nf(A—Ag)
H(f) = _e [1+ e ] (9.83)
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We now establish the delays and the relative importance of paths by forming the
cross-correlation between x(t) and y(t) as

Rey(7) = E[X()y(t + 7)] = abRss(r — A1) + acRss(r — A2) (9.84)
Thismay be drawn asin Figure 9.16.

Ry(?)

Figure9.16 Cross-correlation function between x(t) and y(t)

Note that A; and A, are identified if Rgs(z) is ‘narrow’ compared with A, — Ay,
and the relative magnitudes yield b/c. If the source signal has a bandwidth of B as shown
in Figure 9.17, then the autocorrelation function of s(t) can be written as

Res(7) = AB% cos(2r for) (9.85)

Thus, in order to resolve the delays, it is required that (roughly) A, — A1 > 2/B.

Ses(F)
| A 4%
— - —T

1 | I 2 I 1
[ 1 1
[ 1 1
1 | 1 1 1

1
1
!
T 1 7

0

Figure9.17 Power spectral density function of the band-limited signal s(t)

Time domain methods as outlined above are probably best — but we might also look
at frequency domain methods. First, consider the cross-spectral density function for the
simpler case of no reflector, i.e. as shown in Figure 9.18.

x(t) = as(t) Delay, A, y(t) =bs(t—A,)
Mic. A, x(t) Mic. B, y(t)

Figure9.18 A simple acoustic example with no reflector

Then, Ry (t) = abRss(r — A1) and S (f) = abe 12 72154(f). So arg Sy(f)
givesthe delay (see dlso MATLAB Example 8.9), but it turns out that the phase is more
sensitive to other reflections (not the uncorrelated noise) than the correlation function.

Now reconsider the first problem (with a hard reflector). Suppose that y(t) is noise
contaminated, i.e. ym(t) = y(t) + n(t). If n(t) is independent of y(t) then Ryy, () =
Rey(7) and S,y () = Siy(f). Thus, from Equation (9.84), the cross-spectral density
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functionis
Sya(f) = Syy(f) = abe 1 #14 [1 + ge‘jz’”‘AZ‘A”] Ss(f) (9:86)

So the delay information is contained in the phase. However, unlike the single delay
problem arg S,y(f) shows a mixture of two delay components. As will be seen later,
although it is possible to identify both delays A; and A, from the cross-spectral density
function, the frequency domain method is more difficult in this case. Also, consider the
coherence function (see Equation (9.33)), which is

VZ (f): |S(ym(f)’2 — Syy(f) — S/y(f)
o Sox(F)Smym () Sy(f) +Sn(f)  Spya(f)

For convenience, letb = cand A, — A1 = A; then
Sy(f) = 2b?[1 + cos(27 f A)] Sis(f) (9.88)

So we see that yfym(f) =0 at certain frequencies (f = n/2A, n=1,3,5,...), i.e
the coherence collapses owing to destructive interference (i.e. the measurement SNR
becomes very low).

In the above, we considered both individual transmission paths as non-dispersive.
(Notethat the two paths taken together are dispersive, i.e. the group delay is —d¢ /dw #
const.) In practical cases, we must first decide whether the paths are dispersive or non-
dispersive. If dispersive, the propagation velocity varies with frequency. In such cases,
broadband methods may not be successful since waves travel at different speeds. In
order to suppress the dispersive effect the cross-correl ation method is applied for narrow
frequency bands, though this too has a smearing effect.

(9.87)

We now examine the transmission path identification problem described above, where
the measured signal is

x(t) = as(t)
Ym(t) = y(t) + n(t) = bs(t — A1) + cs(t — Az) + n(t)
The cross-correlation function and the cross-spectral density function are
Ryym(7) = E[X(t)ym(t + 7)] = abRss(t — A1) + acRss(t — Ap)
and
Sy (f) = [abe 1274 4 acem127742] (1)

In this example, we shall compare the time domain method (using the cross-correlation
function) and the frequency domain method (using the cross-spectral density function).

Line MATLAB code Comments

1 clear al Define sampling rate and time variable.
2 fs=100; T=502; t=0:1/fs.T-1/fs; Generate a band-limited white noise

3 randn('state’,0); signal, where the (full) bandwidth

4 s=randn(size(t)); (equivalent to B in Figure 9.17) is

5 fc=10; [b,a] = butter(9,fc/(f5/2)); approximately 20Hz (— f. to f).

6 s=filtfilt(b,a,9);
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7  s=smean(s); s=9std(s);
% Makes mean(s)=0 & std(s)=1;
8 a=1; b=0.8; c=0.75; deltal=1; delta2=1.5; Define parameters for signals x(t) and

% delta2=1.07, y(t).
9 N1=2*fs; N2=T*fs-N1; Also, definetimedelays, A; = 1 and

10 x=a*s(N1+1:N1+N2); A, = 1.5 Notethat A, — A; = 0.5.

11 yl=b*s(N1-(deltal*fs)+1:N1- Later, use A, = 1.07, and compare the
(deltal*fs)+N2); cross-correlation functions.

12 y2=c*s(N1-(delta2*fs)+1:N1- Generate signals x(t) and y(t). Also, add
(delta2*fs)+N2); some noise to the signal y(t).

13 y=ylty2;

14 randn('state',10);
15 n=randn(size(y))*0.1;

16 y=y+n;
17 maxlag=2*fs; Calculate the cross-correl ation function.
18  [Rxy, tau]=xcorr(y,x,maxlag, ‘unbiased’);
19 tau=taulfs;
20 T1=50; Calculate the (one-sided) spectral density
21 [Gxx, fl=cpsd(x,x, hanning(T1*fs), T1*fs/2, functions and the coherence function.
T1*fs, f9);
22 [Gyy, f]=cpsd(y,y, hanning(T1*fs), T1*fs/2,
T1*fs, f9);
23 [Gxy, fl=cpsd(x,y, hanning(T1*fs), T1*fs/2,
T1*fs, f9);
24 Gamma=abs(Gxy)."2./(Gxx.* Gyy);
25  figure(l) Plot the cross-correlation function. As
26  plot(tau(maxlag+1l:end),Rxy(maxlag+l:end))  showninFigure(a), A; = 1and
27  xlabel('Lag (\it\tau)") A, = 1.5 areclearly identified. However,
28  ylabel('Cross-correlation’) if A, =1.07isused, itisnot possibleto
29 axis([02-0.20.8]) detect the delays as shown in Figure (d).

Note that the bandwidth of the signal s(t)
isapproximately 20Hz, thusit is required
that A, — A > 0.1 for this method to be

applicable.
30 figure(2) Plot the phase spectrum of the
31 plot(f,unwrap(angle(Gxy))) cross-spectral density function Gy ().
32 xlabel(‘Frequency (Hz)") As shown in Figure (b), the phase curve
33 ylabe(‘arg\itG_x_y\rm(\itf\rm) (rad)’) isno longer astraight line, but it has a
34 axis([015-900]) ‘periodic’ structure. In fact, the relative

delay A, — A; can befound by
observing this periodicity as described in
the figure, while A; can be obtained from
the overall slope of the phase curve.
Compare this phase spectrum with that of
asingle delay problem (see MATLAB

Example 8.9).
35 figure(3) Plot the coherence function. Note that the
36 plot(f, Gamma) coherence drops owing to the interference
37  xlabel('Frequency (Hz)"); between two delay components (see
ylabel ("Coherence function’) Equations (9.87) and (9.88)).

38 axis([01501])




MATLAB EXAMPLES 307
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(c) Coherence function (d) Cross-correlation ny (), Ay=1and A, =1.07

Comments: Note that the time domain method is much simpler and clearer. However,
the signal must be wideband if the relative delay A, — A; is small, otherwise the time
domain method may fail as shown in Figure (d).

Example 9.4: Frequency response function estimators H,(f), Ho(f) and H+(f)

Consider the following impul se response function of atwo-degree-of-freedom system:

Aq . A, .
h(t) = —e 4t singgit + —e 2“2t Sinegot
wd1 wd2

In this example, we use the white noise as an input x(t), and the output y(t) is obtained
by y(t)=h(t) * x(t). We a so consider the uncorrel ated measurement noise.

Three FRF estimators, H1(f), Ho(f), and Hy (), are compared for three different
cases. Case (a), output noise only; Case (b), input noise only; and Case (c), both input
and output noise.
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Equations (9.63), (9.65) and (9.68) are used in this example, i.e.

Hl(f)z NS(mYm(f), H2(f)= ?’m)’m(f),
S(me(.I:) S’mxm(f)
S’m}’m(f) - S(mxm( f) + \/[S(mxm(f) - %’m)’m(f)]z + 4 ’S(mym( f)|2
Hr(f) = z
2S,xn(f)
where the spectral density functions are estimated using the segment averaging method.
Line MATLAB code Comments
1 clearal Define parameters for the impul se response
2  Al1=20; A2=30; f1=5; f2=15; function h(t), and generate the sequence
wnl=2*pi*f1l; wn2=2*pi*f2; accordingly. The sampling rate is chosen as
3  zetal=0.05; zeta2=0.03; 50Hz, and the length of the impulse
4 wdl=sgrt(1-zetal"2)*wnl,; response function is 10 seconds.
wd2=sgrt(1-zeta2"2)*wn2;
5 fs=50; T1=10; t1=[0:1/fsT1-1/fs];
6 h=(Alwdl)*exp(-
zetal*wnl1*tl).*sin(wd1*t1) +
(A2/wd2)* exp(-
zeta2*wn2*t1).* sin(wd2*t1);
7  T=50000; Define the length of input signal, and
8 randn('stat€',0); generate input white noise sequence ‘X’
9  x=randn(1,T*fs); Then obtain the output sequence ‘y’.
10 y=filter(h,1,x); Note that we define very long sequencesto
% we do not scale for convenience minimize random errors on the estimation of
the spectral density functions. Thiswill be
discussed in Chapter 10.
11 randn(‘state’,10); Generate the uncorrelated input
12 nx=0.5*randn(size(x)); measurement noise and output measurement
% nx=0 for Case (a) noise. Note that we define the noise such that
13 randn('state',20); the variances of the input noise and the
14 ny=0.5*randn(size(y)); output noise are the same, i.e. «(f)=1. Add
% ny=0 for Case (b) these noises to the input and output
15  X=x+nx; y=y+ny; appropriately. Then clear the variables ‘nx’
16 clear nx ny and ‘ny’ (to save computer memory).
This script isfor Case (c). Replace Line 12
with ‘nx=0" for Case (), and replace Line
14 with ‘ny=0" for Case (b).
17 [Gxx, fl=cpsd(X(L:T*fs) x(L:T*fs), Calculate the (one-sided) spectral density
hanning(T1*fs), T1*fs/2, T1*fs, fs); functions using the segment averaging
18  [Gyy, fl=cpsd(y(1:T*fs),y(1:T*fs), method.
hanning(T1*fs), T1*fs/2, T1*fs, fs); Then calculate the frequency response
19  [Gxy, fl=cpsd(x(1:T*fs),y(1:T*fs), function estimates Hy(f), Hyo(f) and Hr (f).
hanning(T1*fs), T1*fg/2, T1*fs, fs); Notethat Hr(f) = Hw(f) sincex(f) =1.
20 [Gyx, fl=cpsd(y(L:T*fs),x(L:T*fs), Also calculate H( ) by the DFT of the
hanning(T1*fs), T1*fs/2, T1*fs, fs); impul se response sequence. Then compare
21 H1=Gxy./Gxx; the results.
22 H2=Gyy./Gyx;
23 HT=(Gyy-Gxx + sgrt((Gxx-Gyy)."2 +
4* abs(Gxy)."2))./(2* GyXx);
24 H=fft(h);
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[Hr ()] (dB)

25  figure (1) Plot the magnitude spectrum of both
26 plot(f,20* log10(abs(H1)), Hy(f)and H(f).
f,20*10g10(abs(H(1:length(f)))), 'r:")
27  xlabel('Frequency (H2)");
ylabel (|\itH\rm_1(\itf\rm)| (dB)’)
28  axis([025-3525])
29  figure(2) Plot the magnitude spectrum of both
30  plot(f,20*1og10(abs(H2)), Ho(f) and H(f).
f,20*log10(abs(H(1:length(f)))), 'r:"
31  xlabel('Frequency (H2)");
ylabel ('[\itH\rm_2(\itf\rm)| (dB)")
32  axis([025-3525])
33  figure(3) Plot the magnitude spectrum of both
34 plot(f,20*og10(abs(HT)), Hy(f) and H(f).
f,20*log10(abs(H(1:length(f)))), 'r:")
35  xlabel('Frequency (H2)");
ylabel ('\itH_T(\itf\rm)| (dB)")
36  axis([025-3525])
Results: Case (a) output noise only (Replace Line 12 with ‘nx=0’.)
20 Solid line: | H,(f)] 20 Solid line: | H,(f)]
Dashed line:| H(f)| (DFT of h(t)) Dashed line: | H(f)| (DFT of h(t))
10
%\ @ ¥ N
% 5 ’ \\\ //I \\\‘
e T -10 N /  TTe~==
z ./
-20 \ /]
-30
0 5 10 15 20 25 5 10 15 20 25
Frequency (Hz) Frequency (Hz)
(a1) Magnitude spectrum of H, (f) (a2) Magnitude spectrum of H, (f)
20 Solid line:  [H.(f)]

Dashed line: | H(f)| (DFT of h(t))

20

5 10 15 25

Frequency (Hz)
(a3) Magnitude spectrum of Hy ( f)
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[H1(f)I (dB)

Results: Case (b) input noise only (Replace Line 14 with ‘ny=0'.)

Solid line:  |H,(f)]

Solid line:  |H,(f)]

20 o
1 Dashed linez| H( f)| (DFT of h(t)) o Dashed line:| H(f)| (DFT of h(t))
10 y i i
o

0 =
-10 £
-20
-30

0 5 10 15 20 25 0 5 10 15 20 25
Frequency (Hz) Frequency (Hz)
(b1) Magnitude spectrum of H; (f) (b2) Magnitude spectrum of H, (f)
20 Solid line: | H, ()]
Dashed line:| H( f)| (DFT of h(t))
g
Z
0 5 10 15 20 25
Frequency (Hz)
(b3) Magnitude spectrum of Hy ()
Results: Case (c) both input and output noise
20 . Solid line: | H,(f)] 20 Solid line: [ H,(f)|
Dashed line:| H(f)| (DFT of h(t))

[Hy()] (dB)

Dashed line:| H(f)| (DFT of h(t))

o(1)l (dB)

H

20 25

10 15
Frequency (Hz)

(c2) Magnitude spectrum of H, ( f)

15 20 25 0 5

Frequency (Hz)
(c1) Magnitude spectrum of Hy (f)

Solid line:  [H;(f)]
Dashed line:|H (f)| (DFT of h(t))

[Hy (F)] (dB)

10 15 20 25

Frequency (Hz)
(c3) Magnitude spectrum of Hy (f)
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Comments.

1. We have demonstrated that Hi(f) is unbiased with respect to the output noise (see
Case (@), Ha( f) isunbiased with respect to theinput noise (see Case (b)), and Ht ()
is unbiased with respect to both input and output noise if «(f) = 1 (see Case (c)).
Notethat, for all different cases, the Hy () estimator gives more consistent estimates
of the frequency response function. Thus, the TLS estimator Hy(f) (or Hw(f) if
«(f) ismeasurable) is highly recommended. However, in practical applications, it is
always wise to compare all three estimators and choose the ‘best’ estimator based on
some prior knowledge.

As described in Equation (9.74) in Section 9.3, note that the phase spectrum of all
three estimators is the same. To see this, type the following script in the MATLAB
command window. The results are shown in Figure (d).

figure(4)

plot(f,unwrap(angle(H1)), f,unwrap(angle(H2)), f,unwrap(angle(HT)),
f,unwrap(angle(H(1:length(f)))), 'k:")

xlabel ('Frequency (Hz)"); ylabel (‘Phase spectrum (rad)")

Solid line: argH, (f), argH,(f) and argH, (f)

Dashed line: arg H (f)

Phase spectrum (rad)

0 5 10 15 20 25
Frequency (Hz)

(d) Phase spectra of Hy (), H, (f)and Hy (f)

2. Wenotethat theinverse DFT of the FRF estimate givesthe corresponding estimated
impul se response sequence. As mentioned in Chapter 6, this impulse response se-
quence can be regarded as an MA system (i.e. an FIR filter). In this MATLAB
example, it has 500 MA coefficients. In real-time signal processing (such as active
control), it may be useful if the number of coefficients can be reduced, especially for
the case of alarge number of filter coefficients. One approach to thisis by curve fit-
ting the estimated FRF data to areduced order ARMA model (see Equation (6.12)).
The basic procedure of the curve fitting algorithm can be found in Levi (1959). In
MATLAB, thefunction called ‘invfreqz’ findsthe coefficientsfor the ARMA model
based on the estimated frequency response function. Type the following script to
find the reduced order ARMA model (we usethe ARMA (4,4) model, which has 10
coefficientsin total):

[b,a=invfreqz(HT, 2*pi*f/fs, 4,4, [1, 30);
Hz=freqz(b,alength(f),fs);

figure(5)

plot(f,20*1og10(abs(Hz)),f,20* log10(abs(H(1:length(f)))), 'r:")
xlabel ('"Frequency (Hz)"); ylabel (‘M agnitude spectrum (dB)")
axis([0 25 -35 25])
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figure(6
plgot(ﬁ(ur)lwrap(angle(Hz)), f,unwrap(angle(H(1:length(f)))), 'r:")
xlabel ('Frequency (Hz)"); ylabel ('Phase spectrum (rad)’)

Thefirst line of the MATLAB script findsthe coefficientsfor the ARMA (4,4) model
based on the estimated FRF (we usetheresultsof Hy () inthisexample), and the second
line evaluates the frequency response Hz( f) based on the coefficient vectors‘a and ‘b’
obtained from the first line. Then, plot both magnitude and phase spectra of Hz(f) and
compare with those of H(f). Theresultsare asin Figures (e) and (f).

0
20 Solid line:  |H, (f)] Solid line:  argH, (f)

Dashed line:| H(f)| (DFT of h(t)) Dashed line:arg H (f)

s

&
=) =
£ £
g 5-15
=3 5
k= g 2
2 &-25
>
-3
-35
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(e) Magnitude spectra of H, () and H(f) () Phase spectra of Hz(f)and H(f)

Example 9.5: A practical example of system identification

We consider the same experimental setup used in MATLAB Example 6.7 (impact testing
of astructure), except that we use aband-limited white noisefor theinput signal asshown
in Figure (a). In this experiment, the frequency band of the signal isset at 5to 90 Hz and
the sampling rate is chosen as fq = 256 Hz.

e e e e,

7
I/ o o \\
{ o o \
ettt N ] |
i Banc-limited | T oo 1 Voltage . |
I | whitenoise {7 oMY —
I Noise @ ——— (PZT patch) |
[ Anti-aliasing filter A i |
I l— g Input x() Physical system i
i (voltage) H(s) !
|[ Data recorder :
I (with ADC) Output Y(t) ® :
1 - — X
| t Signal conditioner Accelerometer = | :
" : (with anti-aliasing filter B) | * |
\ Noise /

/

\ 7

e Estimated (digital) system, H(z) -——————————————= -
(a) Experimental set-up

Inthisexample, wewill comparetheresultsof threedifferent FRF estimators, Hy (),
H,(f) and Hy(f), using the measured data stored in the file ‘ beam_experiment.mat’ .

1The data files can be downloaded from the Companion Website (www.wiley.com/go/shin_hammond).
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Line MATLAB code Comments
1 cleardl Load the measured data (x and y) which
2 load beam_experiment are recorded for 20 seconds. Define the
3 fs=256; T=4, sampling rate and the length of segment
4 [Gxx, fl=cpsd(x,x, hanning(T*fs), T*fg/2, (4 seconds).
T*fs, fs); Calculate the (one-sided) spectral density
5  [Gyy, fl=cpsd(y,y, hanning(T*fs), T*fg/2, functions. We use a Hann window and
T*fs, fs); 50% overlap — this gives nine averages
6  [Gxy, fl=cpsd(x,y, hanning(T*fs), T*fs/2, for each estimate.
T*fs, fs); Then calculate the frequency response
7 [Gyx, fl=cpsd(y,x, hanning(T*fs), T*fs/2, function estimates H; (), Hy(f) and
T*fs, fs); Hy ().
8 H1=Gxy./Gxx;
9  H2=Gyy./Gyx;
10  HT=(Gyy — Gxx + sgrt((Gxx-Gyy)."2 +
4* abs(Gxy)."2))./(2* Gyx);
11 figure (1) Plot the magnitude spectra of Hy(f),
12 plot(f,20*logl0(abs(H1))) H,(f) and H () for the frequency range
13 xlabel('Frequency (Hz)"); 5t0 90 Hz.
ylabel ('\itH\rm_1(\itf\rm)| (dB)")
14 axis([590-45 25])
15  figure(2)
16  plot(f,20*logl0(abs(H2)))
17 xlabel('Frequency (Hz)");
ylabel (‘\itH\rm_2(\itf\rm)| (dB)")
18  axisg([590-45 25])
19  figure (3)
20  plot(f,20*1og10(abs(HT)))
21 xlabel('Frequency (Hz)");
ylabel (|\itH-T(\itf\rm)| (dB)")
22 axis([590-45 25])
23 figure(4) Plot thephase spectraof Hy(f), Ho( f)and
24 plot(f(21:361), unwrap(angle(H1(21:361))), H+ () for the frequency range 5 to 90 Hz.
f(21:361), unwrap(angle(H2(21:361))),  Note that they are almost identical.
(21:361), unwrap(angle(HT(21:361))));
25  xlabel('Frequency (Hz)");
ylabel (‘Phase spectrum (rad))
26  axis([590-70.5])

[Hy(f)] (dB)

Results

[H,(F)I (dB)

40
Frequency (Hz)

(b1) Magnitude spectrum of Hy (f)

50 60 70 80 90

40 50 60 70 80

Frequency (Hz)
(b2) Magnitude spectrum of H, (f)

20 30 90




314

LINEAR SYSTEM RESPONSE TO RANDOM INPUTS

[Hr ()] (dB)

argH, (f)=argH,(f)=argH. (f)

Phase spectrum (rad)

40 50 60 70 80

Frequency (Hz)

40 50 60 10 20 30

Frequency (Hz)
(b3) Magnitude spectrum of Hy (f)

70 80 90 90

(b4) Phase spectra of H; (f), H, (f)and Hy (f)

Comments:

1

Asshown in Figure (b4), the phase spectraof Hy(f), Hz(f) and Hr(f) arethe same.
However, the results of magnitude spectra show that Hi(f) considerably underes-
timates at resonances compared with other estimates H,(f) and Hr (). Figure (c)
shows the differences in detail.

Magnitude spectrum (dB)

40 50 60 70 80
Frequency (Hz)

(c) Magnitude spectra of Hy(f ), Hy(f) and Hy(f)

10 20 30 90

Also, plot the coherence function by typing the following script. The result is shown
in Figure (d).

figure(5)

Gamma=abs(Gxy)."2./(Gxx.* Gyy);

plot(f, Gamma); axis([5 90 0 1.1])

xlabel (‘"Frequency (Hz)"); ylabel (‘Coherence function')

Note that the value of the coherence function drops at resonances due to the bias
error, which will be discussed in Chapter 10 (see dso Comments 1 in MATLAB
Example 9.1).
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0.8f

061

0.4r

Coherence function

0.2f

10 20 30 40 50 60 70 80 90
Frequency (Hz)
(d) Coherence function

2. With referenceto the experimental setup in Figure (a), thereisanother practical aspect
to be considered. It is often the case that the anti-aliasing filters A and B introduce
different delays. For example, if the filter B introduces more delay than the filter A,
the phase spectrum becomes as shown in Figure (€). Thus, it isrecommended that the
same type of filter is used for both input and output.

0
-1
-2
-3
4
-5
-6
-7
-8
-9

Phase spectrum (rad)

lb 2b éO A{O E;O 60 7b 8b 90
Frequency (Hz)
(e) Phase spectrum of FRF (delay in the filter B > delay in the filter A)
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Estimation M ethods and Statistical
Congderations

Introduction

So far, we have discussed random processes in terms of ideal quantities: probability
density functions, correlation functions and spectral density functions. The results in
Chapter 9 used these theoretical concepts, and the MATLAB examples used estimation
methods that anticipated what is presented in this chapter. In this chapter, we introduce
statistical estimation methods for random signals based on asingle realization (record) of
the process, and show how the theoretical quantities may be estimated and the accuracy
of these estimates.

While omitting many mathematical justifications, the details of results quoted in
this chapter may be found in many of the references, especially in Jenkins and Watts
(1968) and Bendat and Piersol (2000). Readers who wish to know the details of statistical
properties of random processes should refer to these two excellent texts.

10.1 ESTIMATOR ERRORS AND ACCURACY
Supposewe only have asingletimerecord x(t) with alength of T, taken from astochastic

process. If we want to know the mean value .y of the process, then a logical estimate
(denoted by X) of uy is

.
X = % / x(t)dt (10.1)
0

Fundamentals of Sgnal Processing for Sound and Vibration Engineers
K. Shinand J. K. Hammond. ~ © 2008 John Wiley & Sons, Ltd



318 ESTIMATION METHODS AND STATISTICAL CONSIDERATIONS

The value obtained by Equation (10.1) is a sample value of a random variable, say X,
which has its own probability distribution (this is called the sample distribution). And
X is a single realization of the random variable X. Each time we compute a value X
from a different length of record we get a different value. If our estimation procedureis
‘satisfactory’, we may expect that:

(i) thescatter of values of X isnot too great and they lie close to the true mean value y;
(ii) the more datawe use (i.e. the larger T), the better the estimate.

We now formalize these ideas. Let ¢ be the parameter we wish to estimate (i.e. ¢
is the theoretical quantity, e.g. iy above) and let ® be an estimator for ¢. Then @ isa
random variablewith itsown probability distribution, e.g. asshownin Figure 10.1, where
$ isthe value (or estimate) of the random variable .

P(®)

(L ¢

Figure10.1 Probability density function of ¢

We see here that the estimates ¢ we would obtain can take awhole range of values
but would predominantly take values near «. It is often difficult to obtain the sampling
distribution p(¢), and so we shall settle for afew summarizing properties.

Bias
The bias of an estimator is defined as
b(®) = E[®] — ¢ (10.2)

i.e. the difference between the average of the estimator and the true value. Note that
E[®] is« in the cases shown in Figure 10.1. Thus, the bias is a measure of the average
offset of the estimator. If b(d) = 0, then the estimator ® is‘unbiased’ . Although it seems
desirable to use an unbiased estimator, we may need to allow some bias of the estimator
if the variability of the estimate can be reduced (relative to that of an unbiased estimator).

Variance
The variance of an estimator is defined as
Var(®) = E[(® — E[®])?] = E[®?] — E[®] (10.3)

This is a measure of the dispersion or spread of values of & about its own mean val ue
(see Section 7.3). Note that the square root of the variance isthe standard deviation o ()
of the estimator. In general, it is desirable to have a small variance, i.e. the probability
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density function should be ‘peaky’. This requirement often results in an increase of the
bias error.

Mean Square Error

The mean square error (mse) of an estimator is a measure of the spread of values of ®
about the true (theoretical) value ¢, i.e.

mse(®) = E [(® — ¢)?] (10.4)

Since E[(® — ¢)?] = E[(® — E[®] + E[®] — ¢)?] = E[(® — E[®])?] + E[(E[®] — ¢)?],
the above equation can be rewritten as

mse(®) = Var(®) + b?(d) (10.5)

which shows that the mean square error reflects both variance and bias. Thus, the mean
square error is often used as a measure of the relative importance of bias and variance.
For example, if an estimator has the property that its mean square error is less than any
other estimators, it is said to be more efficient than other estimators.

If the mean square error decreases as the sample size (amount of data) used to
compute the estimate increases, then the estimator is consistent. Sometimes the errors
are non-dimensionalized (normalized) by dividing them by the quantity being estimated
(for ¢ £ 0), e.g. as

Bias error: ey, = ? (10.6)
Random error: g, = ? (20.7)

RMS error: ¢ = (10.8)

Confidence I ntervals

The estimate ¢ we have discussed so far is a point estimate, i.e. a single value. It is
often desirable to define a certain interval of values in which the parameter is likely to
fall. For example, if we estimate a mean value x as 50, then perhapsiit is ‘likely’ that
ux liesin the interval 45 to 55. This estimate is an interval estimate, and is called the
confidence interval when we attach a number describing the likelihood of the parameter
falling within the interval.

For example, if wesay ‘a95 % confidenceinterval for wy is(45, 55)’, then thismeans
we are 95 % confident that u liesin the range (45, 55). Note that this does not mean that
the probability that uy liesin the interval (45, 55) is 0.95, because . is not a random
variable and so we cannot assign probabilities to it. Instead, we mean that if we could
realize alarge number of samples and find a confidence interval for uy for each sample,

319
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then approximately 95 % of these intervals would contain the true value . In order to
calculate confidenceinterval s, we need to know the sampling distribution of the estimator.
We shall return to this problem when we discuss the spectral density function estimates.

In the following sections, we shall give a summary of: (i) definitions of commonly used
estimators; (ii) some statistical properties of the estimators; and (iii) some computational
aspects for calculating the estimates. Unless otherwise stated, we shall assume we are
dealing with realizations of a continuous, stationary random process. Also, if the dataare
sampled we assume that the sampling rate is sufficiently high so that thereis no aliasing.

10.2 MEAN VALUE AND MEAN SQUARE VALUE

The Mean Value of x(t)

For astationary stochastic process x(t), the mean value (from datawith length T) is estimated
as

:
o1
fix= 7 0/ x(t)dt (10.9)

where the true mean value is ux. Note that we have changed our notation for sample mean
from X to jix to use the circumflex notation for an estimate. The average of this estimateis

.
E[x(t)]dt =

|~
=~

E [l’lx] =

T
T /uxdt = Uy (10.10)
0

o

i.e. [k isunbiased. Now consider the mean square error which is

T T
mse(f) = E [ — 1x)’] = E {% [ [ e - o txte) - ux)dtldtz}
0 0

1 T T 1 T Tt
= ﬁ / / Cxx(tz — tl)dtldtz = ﬁ / / CXX(‘E)d‘Edtl (10.11)
00 0 -t

where T = t, — t; and Cyx(t) is the autocovariance function. By reversing the integration
order and changing the limits of integration appropriately, this equation can be written as

T

0T TT-
R 1 1
mee(ji) = = / / Co(r)dltadr + = / / Con(r)dtade
T —1 0 0

_ % /T (1_ ';_') Cax(r)d7 (10.12)



MEAN VALUE AND MEAN SQUARE VALUE 321

The integrand is a triangular weighted covariance function, so the integral is finite. Thus
mse(jix) — 0as T — oo, i.e. thisestimator is consistent.
For example, if Cyy(7) = Ke /7!, then the power spectral density function is

2\

Sx(f) = Km

(assuming zero mean value)

and the 3dB bandwidth is B = A /7 Hz. The mean square error may be approximated as

o0
2K 2K

17 1
0 ~ — = — K_Mfl = — = — 10.1.
mse(fix) T /Cxx(t)dr T,/ e *fldr T = -BT (10.13)

—00

i.e. itisinversely proportiona to the bandwidth—time (BT) product of the data.
To perform the calculation using digitized data (sampled at every A seconds), the mean
value can be estimated by (as Equation (8.39))

N-1

fix = % > x(na) (10.14)
n=0

The Mean Square Value of x(t)

Asfor the mean value, the mean square value is estimated as

T
Vi = % / x*(t)dt (10.15)
0
The mean of thisestimateis
T
£[3]= 7 [ EDCQId = v (10.16
0

where the true mean square value is 2. Thus, the estimator is unbiased. The variance of the
estimateis

va(j2) = E[ (32 - v)*]| = E[ ()] - ()’
1 T

.
=72 / / E[Xz(tl)xz(tz)] - (¥9) )dtldtz (10.17)
0 0

If we assumethat x(t) is Gaussian we can use the following result to simplify theintegrand. If
the random variables X1, X, X3 and X4 arejointly Gaussian, it can be shown that (Papoulis,
1991)

E[X1 X2 X3 Xa] = E[X1 X2] E[ X3 X4] + E[X1 X3] E[X2 X4]
+E[X1 Xa] E[X2 X3] — 2E[X4] E[X2] E[X3] E[X4] ~ (10.18)
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Using this result, it follows that E[x?(t1)x?(t2)] = v + 2R2 (t2 — t1) — 2uy. After some
manipulation by letting r =t, —t;, Equation (10.17) becomes (Bendat and Piersol,
2000)

2 ||

;
Var(y2) = T / (1 - ?) (R& () — py)dr (10.19)
-7

Thus, for large T, if Ryx() diesout ‘quickly’ compared with T, then

o0

Var(i2) ~ % f (R, () — py)dr (10.20)

For example, if 1y = 0and Ry () = Ke 7!, then

L. 2K2 K2
Varl) ~ - = BT

(10.21)

Since /2 is an unbiased estimator, mse(y2) = Var(y/2), which is also inversely proportional
to the bandwidth—time product of the data. Note that the normalized rms error is

CYmsel) NaG) ik [z 102
‘Tz T vz kJaet VBT '

where

.
Y2 = % / R (0)dt = K (from Equation (10.16))
0

In practice, we often calculate the variance of the signal by subtracting the mean first
from the data. In digital form, we might estimate the variance of x(nA) by

N-1
(x(NA) — fix)? (10.23)

Z| =

Var(x) ~ 62 =
n=!

However, if the observations are independent the above can be shown to be a biased estimate.
Thus, the divisor N — 1 isfrequently used, i.e. the unbiased estimate is

1 N-1
68 = 11 2o X(A) — w? (10.24)
n=0
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10.3 CORRELATION AND COVARIANCE FUNCTIONS
The Autocorrelation (Autocovariance) Function
If asignal x(t) is defined for 0 <t < T, then there are two commonly used estimates

of the theoretical autocovariance function Cyx(z). They may be written as é)?x(r) and
Cxx (1), where

T—|7]|
&b (1) = % f (X() = ) (Xt + 7)) — A)dt 0<|r| <T (10.25)
_o ° ol > T
and
T—|7]
Culr) = — = / XO) = ) XA+ T = dt Ozl <T 1550
—0 i ol =17

Thesuperscript b in Equation (10.25) denotesabiased estimate. Oftenthelatter expression
isused since it is unbiased. However, both these estimators are used because they have
intuitive appeal and should be compared on the basis of some criterion (e.g. the mean
square error) to choose between them. The estimates for the theoretical autocorrelation
function Ryx(t) may be expressed as RP, (1) and Ry (r) in the same way as above by
omitting [ix in the equations.

For convenience, suppose that the process x(t) has zero mean (so that Cy«(7) = Rux(7)).
Then, asin Jenkins and Watts (1968), we can cal culate the bias and variance:
1. Bias: Since
T—l|
E[RL()] = % / EXOX(t+Iz)ldt 0=z <T
0
the expected value of the biased estimator is

E [AR)E’X(I)] = Rux(7) <1— |_1|:_—|) O<|t|<T

(10.27)
=0 ] > T
and the expected value of the unbiased estimator is
E [ﬁxx(r)] =Rx(t) O0=<|t|<T (10.28)

=0 It > T

That is, for t intherange 0 < |t| < T, Re(t) isan unbiased estimator, whilst R2 (r) is
biased but the biasis small when |r|/T « 1 (i.e. asymptotically unbiased).
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2. Variance: The variances of biased and unbiased estimators are

T-1
A 1
Var(RR, (1)) = = f (T =7 = Ir) (RE(r) + Rex(r + 1)Ra(r —7))dr  (10.29)
—(T-1)
1 T—1
Var(R(7)) = TR (T —7 = Ir) (RE(r) + Rx(r + 7)Rux(r — 7))dr
—(T-1)
(10.30)
When T islarge compared with t, auseful approximation for both equationsis
R . 17
Var(Re(r)) ~ Var (R(x)) ~ = / (RE(1) + Rex(r + 7)Ro(r — 7))dr  (10.31)

Note that the variance of the estimates is inversely proportional to the length of data, i.e.
Var (IA?XX (t)) o< 1/T. This shows that both estimators are consistent. Thus, the autocorre-
lation function may be estimated with diminishing error as the length of the dataincreases
(this also shows that the estimate of the autocorrelation function is ergodic).

Comparison of the Two Estimators, RP, () and Ryx(T)

For r < T, thereislittle difference between the two estimators, i.e. Rux(z) ~ R, (r). How-
ever, Jenkins and Watts conjecture that mse(Ryx (7)) > mse(R?, (z)). In fact, by considering
the divisor in Equation (10.30), it is easy to seethat ast — T the variance of the unbiased
estimator ﬁzxx(r) tends to infinity (i.e. diverges). It isthis behaviour that makes the unbiased
estimator unsatisfactory. However, we note that the unbiased estimator is often used in prac-
tical engineering despite the relatively larger mean square error. As a rough guide to using
R (7), theratio of the maximum lag to the total data length, Tmax/ T, should not exceed 0.1.

Another important feature of the estimators is that adjacent autocorrelation function
estimateswill have (in general) strong correl ations, and so the sample autocorrelation function
ﬁxx(r) (and ﬁzgx(r)) gives more strongly correlated results than the original time series x(t),
i.e. the estimate may not decay as rapidly as might be expected to (Jenkins and Watts, 1968).

The Cross-correlation (Cross-covariance) Function

If x(t) and y(t) are random signals defined for 0 <t < T, the sample cross-covariance
function is defined as

T—1
Col0) =+ [ (KO- AIYE+D) — )t Ot <T
0

1 (10.32)

T T -t
=0

)
/ (X() — B)YE+ 1)~ Ay)dt —T <7 <0
k4]

7] > T
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Thisis an unbiased estimator. The same integral but with divisor T can also be used, which
is then the biased estimator é)ﬁ’y(r). Similarly the sample cross-correlation function may be
expressed as Ry (r) or RY (r) without subtracting mean values.

Theestimatorsfor the cross-correl ation (cross-covariance) function have statistical prop-
erties that are very similar to those of the autocorrelation (autocovarlance) function: ny(r)
is unbiased whilst Rby(r) is as/mptoucally unbiased, and R y(r) has a smaller mean square

error, i.e. mse(ny(r)) > mse( V(7))

M ethods of Calculation Using Sampled Data

From sampled data, the autocovariance and cross-covariance functions are evaluated from

N-m-1
> X&) = m)x((n+m)A) — i) O<m<N-1

Cyx(MmA) = N_m 2
(10.33)
and
. 1 N—-m-1
Cxy(MA) = Nom (X(nA) — )(Y((n+m)A) —ay) 0<m=<N-1
n=0
(10.34)

where both x(nA) and y(nA) are N-point sequences, i.e. they are defined for n =
0,1,...,N —1, and misthe lag that may take valuesO < m < N — 1. Note that these are
unbiased estimators and the divisor is N for the biased estimators CP, (mA) and CP y(MA).
The same expressions are applied for the computation of autocorrel ation and cross-correl ation
functions, e.g. RXX(mA) and ny(mA) are obtained without subtracting mean valuesin Equa-
tions (10.33) and (10.34).

We note that the autocorrelation function is even, i.e. Ry(—mA) = Ry (MA), and the
cross-correlation function has a property that
N—m—-1

> yAX((+mA) 0<m<N-1

° (10.35)

Theaboveexpressionsaretheso-called meanlagged product’ formulaeand areevaluated

directly if there are not too many multiply and add operations. However, it turns out that it is
quicker to use FFT methods to evaluate these indirectly.

Rey(—MA) = Ry(mA) = Nom

=}

Autocorréelation via FFT?

The basis of thismethod liesin our earlier discussionsin Chapter 6 on the convolution of two
sequences (i.e. the convolution sum). Recall that if y(n) = >"N"2h(m)x(n — m), and h(n)
and x(n) are N-point sequences, then y(n) is a (2N — 1)-point sequence. Since the DFT of
the convolution of two sequences isthe product of the DFTs of two sequences, aslong asthe
sequences are padded out with zerosto avoid circular convolution, the sequence y(n) can be
obtained by y(n) = IDFT [H (k) X(k)].

1 See Bendat and Piersol (2000) for more details.
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The correlation calculation is very similar. In fact Zr’?:_ol x(n)y(n + m) is aconvolution
of x(—n) with y(n) and the DFT of thisis

N—1 N—-1N-1
DFT [Z x(n)y(n + m)} = > x(my(n+ m)e 1 ETN™ = X* ()Y (k) (10.36)
n=0 m=0 n=
Thus, the required correlation function Ry, (mA) isthe IDFT [ X* (k)Y (k)] and then scaled by
1/(N — m). Note that we must ensure that circular effects are removed by adding zeros.
Pictorialy, the computation of the autocorrelation function can be illustrated as in
Figure 10.2. Note that the sequence is effectively periodic when the DFT is used.

x(n) Zeros are padded
L N LT TTEEmmm T S
: 1 1 n
0 N -1 2N
x(n+m)

T T ™

| 1 : i 0
0

Figure 10.2 Pictorial description of the computation of the autocorrelation function

We can see that the correlation of these periodic sequences is the same as the linear
correlation if there are as many zeros appended as data points. So the autocorrel ation function
(without explicitly noting the sampling interval A)

R 1 N—m-1
Rux(m) = Nom g X(n)x(n + m)
is obtained by:

1. Takex(n) (N points) and add N zerosto it.
2. Form X(k) (2N-point DFT).
3. Form IDFT [ X* (k) X (k)] and then scale appropriately by 1/(N — m).

Theresult will havethe appearance asshownin Figure 10.3. Thisbasicideacan be generalized
to cross-correlation functions.

N This is ﬁxx(m) for positive lagsuptom=N -1

Figure 10.3 Results of autocorrelation computation using the DFT
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10.4 POWER SPECTRAL DENSITY FUNCTION

There are two main approachesto estimating the power spectral density function, namely
parametric (more recent) and non-parametric (traditional), as shown in Figure 10.4.

Estimation methods

| I
Non-parametric Parametric
| (ARMA, maximum entropy, etc.)

Filter bank method Indirect method Direct methods
(analogue method)  (Fourier transform of  (e.g. segment averaging)
autocorrelation function)

Figure 10.4 Classification of the estimation methods for the power spectral density function

Estimation methods for the power spectral density function considered here will
relate to the ‘traditional’ methods rather than ‘ parametric’ methods. We shall outline
three methods for the estimation of the power spectral density function:

e Method (1): ‘Analogue’ method (filter bank method)
e Method (2): Fourier transform of the autocorrelation function (indirect method)
e Method (3): Direct methods.

Note that Method (3) is the most widely used since with the advent of the FFT it is the
quickest.

Method (1): ‘Analogue’ Method (Filter Bank M ethod)

The word ‘analogue’ isin quotes because this method can also be implemented digitally, but
it is convenient to refer to continuous signals. The basic scheme isindicated in Figure 10.5.

The basis of this method is that the variance of the signal is the area under the power
spectral density function curve (assuming zero mean value), i.e.

Var (x(t)) = o = / Gux(f)df (10.37)
0

where Gy, (f) is regarded as a measure of the distribution of the power of the process over
frequency. Soif wewish to know the power in the signal over somefrequency band f. + B/2,

X(1) Tunable narrow x(t, f., B) Squarer, Gyl fo)
_ ! _ . —_—
band-pass filter integrator and averager

Centre frequency, f,
Bandwidth, B

Figure10.5 Concept of the filter bank method



328 ESTIMATION METHODS AND STATISTICAL CONSIDERATIONS

then we pass the signal through afilter with that passband, square (to get the power), average
to reduce the fluctuations and divide by the bandwidth to obtain the ‘ density’, i.e.

.
1
Gux(fe) = T f x(t, fe, B)dt (10.38)
0

The key elementsin any spectral estimation scheme are: (i) a procedure to “homein’ on
anarrow band, i.e. good resolution (low hias); (ii) the subsequent smoothing of the squared
estimate (i.e. low variance).

Let usassume an ideal band-pass filter and discuss the bias and variance of this estimate.
The frequency response function of an ideal band-passfilter is shown in Figure 10.6.

H(f)

B
«—>
| — 10 | —
: : : :
1 1 1 1

' | } > f
_fc fc

Figure 10.6 Freguency response function of an ideal band-pass filter

Bias

The bias of the smoothed estimator is obtained from averaging G (f.), i.e.

.
l 2 [Xz(t7 fCa B)]
E[Gu(fo)] = 5= [ EDE fo B)]dt = ————— (10.39)
0
Note that E [X2(t, fc, B)] isthe variance of the output of thefilter, i.e.
fe+B/2
E [Xz(t, fe, B)] = / Gux(f)df
fo—B/2
Thus,
L fo+B/2
E [Gux(fo)] = 5 / Gyx( f)df (10.40)
fo—B/2

So, in general, E[Gy(fo)] # Gux(fo), i.e. the estimate is biased. Expanding Gy, (f) in a
Taylor series about the point f = f. gives

(f —fo)?

Gux(f) ~ Gux(fe) + (f — fo)Gy(fe) + ol

G (fe) (10.41)
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Substituting this into the integral, we get (Bendat and Piersol, 2000)

- B2
E[Gux(fo)] & Gux(fe) + QG’X’X( fe) (10.42)
———

bias

Note that at a peak, G}, (f) < 0, so the power spectral density is underestimated (on
average); at atrough, G, (f) > 0, so we have an overestimate, i.e. the dynamic rangeis
reduced asillustrated in Figure 10.7. Note also that poor resolution (large B) introduces
more bias error.

Figure10.7 Demonstration of the bias error of Gy ( f)

As can be seen from Equation (10.42), bias depends on the resolution B (i.e. the filter
bandwidth) relative to the fine structure of the spectrum. As an example, consider a simple
oscillator (with adamping ratio of ¢ and aresonance at f; ) excited by white noise. The output
power spectral density may be as shown in Figure 10.8, where the hal f-power point bandwidth
isgivenby B, ~ 2¢f,. For agiven ideal filter with a bandwidth of B centred at frequency f;,
the normalized bias error at f, can be shown to be (Bendat and Piersol, 2000)

_b(Gu(f)  1(B)?
=g " 3 (E) (1043)

Note that if B = By, the normalized bias error is —33.3%, whereas the bias error may be
negligibleif B < B, /4 (where |ep| < 2.1%).

Gxx( fl') \ E |:G~xx( fr)]

dB —»/ghe— 3B bandwidthB, = 21,
/I' ‘\\
/ \ . .
_____ s <« Filter bandwidth B
e

| f,

Figure 10.8 Illustration of 3dB bandwidth and the filter bandwidth
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Variance and the Mean Square Error

Assuming that the process is Gaussian and Gyx( f) is constant over the bandwidth of
the filter, the variance of the estimate may be shown to be (Newland, 1984; Bendat and
Piersol, 2000)

Var (B.u(1)) ~ Sl (104

The mean square error is the sum of the variance and the square of bias, and we
normalize thisto give

Var (Gxx(f)) +02(Gu(h) _ 1 Gl (f)
e = G2 () ~ BT +576 (Gxx(f)>

Note the conflict — to suppress bias the filter bandwidth B must be small (i.e. fine res-
olution), but to reduce the variance the product BT must be large. Note also that the
product BT relates to controllable parameters, i.e. B isthe filter bandwidth (not the data
bandwidth), and the averaging time T obviously affects the variance. While maintaining
small filter bandwidth, the only way to reduce the mean sguare error is by increasing the
averagingtime T.

(10.45)

Comments on the Choice of Filter Bandwidth?

The basic choice is between the constant (absolute) bandwidth and the constant (relative)
percentage (%) bandwidth. The constant bandwidth gives uniform resolution on a linear
frequency scale, as shown in Figure 10.9.

%
—t ——t f(Hz), linear scale
100 110

" 10 20 50 60

Figure10.9 Constant bandwidth (10 Hz) filter

For constant bandwidth, the centre frequency of an ideal filter is defined as

fu + 1:I
2
where f, and f; are defined asin Figure 10.10. The centre frequency is simply the arithmetic
mean of the upper and the lower frequencies.
Constant bandwidth is useful if the signal has harmonically related components, i.e.
for detecting a harmonic pattern. However, note that if the bandwidth is satisfactory at high

frequencies, itis‘coarse’ at the one below and swamps the next lowest on alogarithmic scale
(see Figure 10.11).

fcz

(10.46)

2 See Randall (1987) for more details.
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t } : f(Hz)

Figure10.10 Centre frequency of the constant bandwidth filter

Solid line:  constant percentage (70.7 %)
Dashed line: constant bandwidth (10Hz)

=1 é‘ H L f (Hz), logarithmic scale

10 20 100 200

Figure10.11 Constant percentage (70.7 %) bandwidth filter

Sinceinmany casesitisnatural and efficient to anal yse spectrausing aconstant percentage
bandwidth, e.g. structural response, where if each mode has roughly the same damping, then
the 3dB bandwidth increases with frequency.

The constant percentage bandwidth gives uniform resolution on alogarithmic frequency
scale, as shown in Figure 10.11.

For the constant percentage bandwidth, the centre frequency of an ideal filter is defined
as (see Figure 10.12)

__log f, +log f

5 (10.47)

log f¢
or

fo=vfu-fi (10.48)

We consider two specia cases: octave and third octave filters. The octave filters have a
passband such that f, = 2|, so fo = +/2f, and the relative bandwidth is

fu—f 1
Relative bandwidth = —- = — = — ~ 70.7% (for octave filters) (10.49)
fe fe ﬁ

i.e. a constant percentage of 70.7 %. Starting with a reference centre frequency of 1000 Hz,
it is possible to cover three decades in frequency with 10 octave bands ranging from 22.5Hz

log f

log f, log f, log f,

Figure 10.12 Centre frequency of the constant percentage bandwidth filter
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Third octave filter

,(/ |~ Octave filter

&

% > log f
log f;  log f,

Figure 10.13 Comparison of the third octave filter and the octave filter

(lower frequency for a centre frequency of 31.5Hz) to 22.5kHz (upper frequency for acentre
frequency of 16 kHz).

Third octavefilters (1/3 octavefilters) are obtained asillustrated in Figure 10.13, i.e. each
octave band is divided into three geometrically equal subsections.

Asshown in thefigure, log(f,/ fi) = log 2 for the octavefilter, so log (f,/ fi) = % log2
for the third octave filter, i.e. f, = 21/3f,. (Note that this is approximately 1/10 of a decade,

i.e. 2log2 ~ 0.1 = ;5 10g10.) The centre frequency is fo = /Ty~ fj = /2132 = 2Y/8f,,
and the bandwidth for the third octave filter is

Bandwidth = f, — fj = (2¥° - 1) f, (10.50)
and the relative bandwidth is
fu—f 23-1
Relative bandwidth = — f - Se ~ 231% (10.51)
C

Notethat, similar tothethird octavefilter, an m octavefilter may bedefined sothat f, = 2%/™f;.

The above considerations relate to ‘ideal’ filters. Various other definitions of bandwidth
exist, e.g. 3dB bandwidth and noise bandwidth as shown in Figure 10.14. As mentioned in
Section 4.6, the (effective) noi se bandwidth is defined asthe width of anideal rectangular filter
that would accumulate the same noise power from a white noise source as the practical filter
with the same reference transmission level. The 3dB bandwidth is the width of the practical
filter at the 3dB points. Although the noise bandwidth and the 3dB bandwidth are close to
each other, the 3dB bandwidth may be more useful when describing structural responses and

Noise bandwidth
NG i ) ) )
|H( )| 4—‘:‘/ Practical band-pass filter
[ N /\:/\ Al ) .
. e Ideal band-pass filter
3dB ;
Half power !
—3dB) O T~
( | N 3dB bandwidth
! of the practical filter
0 / : N\ f

f

C

Figure 10.14 Noise bandwidth and 3dB bandwidth of a practical filter
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is often preferably used since it is easier to measure. Later in this section, we shall define
another bandwidth for spectral windows, which is effectively the resolution bandwidth.

Asafina comment, note that the phase characteristics of the filters are unimportant for
power spectra measurements.

Method (2): Fourier Transform of the Autocorrelation Function
(Indirect Method)®

Consider a sample record x(t), where |t | < T/2, and the corresponding Fourier transform
given by X7(f) = _Tﬁz x(t)e~12ftdt. Then, the raw (or sample) power spectral density
function is
9 T/2 T/2
Su(f) = w = % f / x(t)e 127t (ty)el 2 Tudtdt, (10.52)
—-T/2-T/2

Now, transforming the double integral by setting u=1t —1t; and v =t;, as shown in
Figure 10.15, then Equation (10.52) may be rewritten as

T T/2—u

Sx(f)=/ %/X(u—i—v)x(v)dv e 127fudy

0 -T/2
0 T/2
+ / = f x(u 4 v)x(v)dv | e 127 udy (10.53)

-
-T —T/2-u

By definition, thetermin thefirst square bracket is ﬁgx(u) for0 < u < T, andtheterminthe
second square bracket is RY, (u) for —T < u < 0,i.e. Si(f) = [ 71 RE (U)e 12 udu.

TT u-v-plane
12 t—t,-plane _1/9
T/2N/ u=T/2-v
t, v
-T/2 T/2 —T/Z/‘ I T/2
T2 u=-T/2-v" -T/2
_T -+

Figure 10.15 Transformation of the regions of integration

3 See Jenkins and Wiatts (1968) for more details.
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Thus, an estimate of the power spectral density from alength of data T (we assume that
X(t) isdefined for |t | < T/2) can be written as

-
Sx(f) = [ RE(r)e12'7de (10.54)
-T

Note that the sample power spectral density S ( f) is related to the sample autocorrelation
function IA?QX(r) (biased estimator with divisor T). This relationship suggests that we might
estimate the power spectral density by first forming the sample autocorrelation function and
Fourier transforming this. (However, we do not presume the validity of the Wiener—Khinchin
theorem — which will follow shortly.) Note that IA?EX(‘L’) =0for || > T, thus

Su(f) = / RE (r)e 17 rde = F{RE (1)} (10.55)
However, as mentioned in Chapter 8, thisistermed the ‘raw’ power spectral density since

it turns out that the variability of this estimator isindependent of the datalength T aswe shall
see soon. Now, first consider the bias of this estimator.

Bias of S(f)
Averaging S (f) gives
.
E [S«(f)] = / E[R(1)] e 1> de (10.56)
-T
and using Equation (10.27), this becomes
T
E[Sx(f)] = / Rux(7) (1— '%') e 0<|e| <T (10.57)
-T
Thus, if T issufficiently large, i.e. T — oo, then
5 00
sim (0] = jim EPHOT g 6y~ [ Ry rotrar  aosg

So S (f) is an asymptotically unbiased estimator. The above result (10.58) proves the
Wiener—K hinchin theorem introduced in Chapter 8.

Variance of S (f)

Asaprerequisite we need to discuss the properties of arandom variable having the so-called
chi-squared distribution. We first outline some important results on this (Jenkins and Watts,
1968).
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The Chi-squared Distribution
Let X3, Xz, ..., Xy ben independent random variables, each of which has a normal distribu-
tion with zero mean and unit standard deviation, and define a new random variable

=X X X2 (10.59)

Thedistribution of 2 iscalled the chi-squared distribution with ‘ n degreesof freedom’, where
the number of degrees of freedom represents the number of independent random variables X;.
The general form of the x 2 probability density function with v degrees of freedom is

1
_ (v/2)—14—x/2
Pe2(X) = 72v/21_(v/2)x e 0<x=<o (10.60)

where I'(3) = [,° e't("/271dt is the gamma function. For some values of v, p,z(x) are
shown in Figure 10.16.

p;(vZ(X)

0.5}
0.4F
0.3}
0.2

0.1

0

Figure10.16 Chi-squared probability density functions

For a small value of v, the distribution is non-symmetrical, but as v increases the
chi-squared distribution tends to Gaussian, as predicted by the central limit theorem. The
first two moments of the x 2 random variable are

E[x?] = v (10.61)

v

Var(x2) = 2v (10.62)

We now summarize two important properties of the chi-squared distribution: (i) the
decomposition theorem for chi-sgquared random variables; (ii) approximation by achi-squared
distribution. Thefirst property statesthat if arandom variable x 2 isdecomposed into k random
variables according to x2 = x2 + x2 +---+ x2 and if vy + v+ -+ + v = v, then the
random variables szi aremutually independent. Conversely, if k independent random variables
xZ are added together, then the sum is x 7, where

D= vg Vgt (10.63)

The second property states that: suppose we have a positive-valued random variable
Y, and we wish to approximate its distribution by ax? where a and v are unknown, but
we may know the mean and variance of Y, i.e. uy and o are known. Then in this case,
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E[Y] = uy = E[ax?] = avando] = Var(ay?) = a*Var(x?) = 2a?v = 2u}/v. Thusaand
v arefound from

a=My (10.64)

p= (10.65)

Variance Consider ations .
Wenow returnto study thevarianceof S x( ). Thesample power spectral density function
can be written as (x(t) isdefined for |t | < T/2)

2

T/2 %) 2
& _ |XT(f)|2 _ 1 / —jonft _ 1 / —jonft
Sulf) =~ == x@e it = — | [ x(ne 12 dt
T/2 o0

00 2 0 2
=% |:/ x(t)cos(ant)dt:| 4F |:/ x(t)sin(ant)dt:|

—00 —00

= 2 DD + XE(N)] (10.66)

where X.(f) and Xs( ) are Fourier cosine and sine transforms of X(t).

Let us assume that x(t) is a Gaussian process with zero mean value; then X.(f)
and Xs(f) are also Gaussian and have zero mean values. Furthermore, it can be shown
that Xc(f) and Xs( f) are uncorrelated and have approximately equal variances (Jenkins
and Watts, 1968). Now if the variances were unity, we could use the properties of the
chi-squared distribution to say Si(f) isrelated to a x2 distribution (note that Sx(f) is
asquared quantity and so positive valued). We do this as follows. Let

%E [X4()] = %E [X2()] = o? (say, for each frequency f) (10.67)

and
E [Sw(f)] & S(f) = 202 (10.68)
Then, it can be shown that

2S5 () _OXE(f) | XE(f)
So(f) ~ To2 ' To?

(10.69)

whichisthe sum of two squared Gaussian random variableswith unit variances (note that
Xc(f) and Xs(f) arejointly normally distributed (see Appendix G for justification) and
uncorrelated, so they are independent). Therefore the random variable 2S,(f)/S«(f)
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is distributed as a chi-squared random variable with two degrees of freedom, i.e. x2 (for
al values of sample length T). Using Equation (10.62), the variance is

25.(H)\ _
Var( S 1) ) -

and so
4var83(j i ; 2 s (10.70)
ie
Var(S(f)) = S5 () (10.72)
or
o (S()) = Su(f) (10.72)

This important result states that the estimator S(X( f) has avariance that is independent
of sample length T, i.e. S (f) is an inconsistent estimate of Si(f). Furthermore, the
random error of the estimate is substantial, i.e. the standard deviation of the estimate is
as great as the quantity being estimated. These undesirable features lead to the estimate
S (f) being referred to as the ‘raw’ spectrum estimate or ‘raw periodogram’. As it
stands, S(X( f) is not auseful estimator and we must reduce the random error. This may
beaccomplished by ‘ smoothing’ asindicated bel ow. However, aswe shall see, the penalty
for thisis the degradation of accuracy due to bias error.

Smoothed Spectral Density Estimators

Aswe have already discussed, the averaged S( f) is given by Equation (10.57), where
theintegrandis Rex(7) (1 — |z|/ T). Thismotivates usto study the effect of introducing a
lag window, w(z), i.e. the estimate may be smoothed in the frequency domain by Fourier
transforming the product of the autocorrelation function estimate and w(t) which has a
Fourier transform W( f) (called a‘ spectral window’). This defines the smoothed spectral

estimator Sy(f) as

Sx(f) = / RC (r)w(r)e & dr (10.73)

Recall that

o0 o0

/ x(t)w(t)e & tdt = / X(g)W(f — g)dg

—0Q —0Q
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i.e. S (f) = S(f) * W(f), which is the convolution of the raw spectral density with
a spectral window. Thus the right hand side of Equation (10.73) has an alternative form

Sl f) = / S(@W(T — g)dg (10.74)

This estimation procedure may be viewed as a smoothing operation in the frequency
domain. Thusthelag window w(t) resultsin the spectral window W( f) ‘smoothing’ the
raw periodogram éxx( f) through the convolution operation. In fact, the above method is
the basis of the correlation method of estimating spectral density functions. In the time
domain, the lag window can be regarded as reducing the ‘importance’ of values of ﬁ)‘zx(r)
as t increases.

It is necessary to start all over again and study the bias and variance properties of this
new estimator S, ( f) where clearly the window function w(z) will now play an important
role. Jenkins and Watts (1968) and Priestley (1981) give adetailed discussion of this problem.
We shall only quote the main results here.

Some commonly used window functionsarelisted in Table 10.1. Therectangul ar window
is included for completeness, and other window functions may also be used. Note that the
discussions on window functions given in Chapter 4 are directly related to this case.

The lag windows w(t) are shown in Figure 10.17, where w(0) = 1 for al windows,
and the spectral windows W( f) are shown in Figure 10.18. Note that the spectral win-
dows which take negative values might give rise to negative spectral density estimatesin this
approach.

Table10.1 Commonly used lag and spectral windows

Window Lag window, u(r) Spectral window, W(f)
w(r) =1 Il < Ty sin(anTw)>
Rectangular W(f)=2T,
° = [t > Ty 8 ( 27fT,
_ |T| <T ; 2
Bartlett w(t) _1_ﬁ It] < Ty W(f):Tw<SIn(nfTw)>
=0 / [z] > Ty 7TfTuY
1 T .
) w(t) = = <1+cos—> [Tl = Ty sin(2rfT,) 1
H W(f)=T,
ann(ing) :§ Tu 7] > Ty S 271 T, 1—(2fT,)2
w(z) = 0.54+ 0.46c0s -0 el < To [0.5472 — 0.08(27 f T, )?] sin(2  T,)
Hamming Tw W(f) = 3 :
= IT| > Ty 27T, [712 — (anTw)z]
2 3
w(z)=1—6<Ti> +6<'Ti') MS% .
» w 3_ (sin(fT,/2)
3 Tur = - T+ A

lt] > Ty,
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w(7)
1.0 Rectangular
.
AN
Bartlett \\\\ Hamming
0.6} Q
\v\/
X
0.4} D
Parzen ‘\\\ Hann
0.2} RN
0 0.2T, 04T, 06T, 08T, Tw

W (f)

2T,

Figure10.17 Lag windows (for t > Q)

/ Rectangular

0.75T,, (for Parzen)
0.54 (for Hamming)

Bartlett

Bias Considerations

Figure 10.18 Spectral windows (for f > 0)

From Equation (10.74), the average of the smoothed power spectral density function is

E [Su(f)] = / Se(@W(f — g)dg

(10.75)

So, S,( f) isbiased. Note that this equation indicates how the estimate may be distorted
by the smearing and leakage effect of the spectral windows. In fact, for large T, biasis

shown to be

b (B(1)) = E [Sux(F)] = Sux(F) ~ / [w(r) — 1 Re(r)e 1> "dr  (10.76)

Note that the bias is different for each lag window. The details are given in Jenkins and
Watts (1968). We may comment broadly that the general effect is to reduce the dynamic
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range of the spectra asin the filter bank method of the spectral estimation, i.e. peaks are
underestimated and troughs are overestimated.

As can be seen from Equation (10.75), the bias is reduced as the spectral window
gets narrower, i.e. as the width of the lag window w(t) gets larger, the spectral window
becomesW(f) — 8(f). So, Six( f)isasymptotically unbiased (for T,, — oo). However,
the spectral windows cannot be made too narrow since then there islittle smoothing and
the random errors increase, so we need W( f) to have some width to do the smoothing.
Conseguently, once again we need a compromise between bias and variance, i.e. atrade-
off between the resolution and the random error. Note that, sometimes, the bias problem
isreferred to under ‘bandwidth considerations' since small biasis associated with small
bandwidth of the window function.

Variance Considerations

From Equation (10.74), S« () can be considered asaweighted sum of valuesof S, ( f).
Thus, it may beargued that NS (f)/ S ( f) isapproximately distributed asachi-squared
random variable with n degrees of freedom, x2, where the number of degrees of freedom
is defined as

2T 2T
T windr T G
which depends on the window and data length (Jenkins and Watts, 1968).
Also, since Var(nSix(f)/S(f)) = 2n, it can be shown that

& _ S%x(f) _ S%x(f)
Var(S(f)) = = 2 = T (10.78)

~ _ S«(f) _ S«(f)
o(S«x(f)) = N (10.79)

Now, 1/1 can be argued to be a measure of the resolution bandwidth B of the window
(see below for justification), so the number of degrees of freedomisn = 2BT. Thus, the
above equations can be rewritten as

Var(Su(f) _ 1

T (10.80)
oBulf) 1
So() VBT (108D)

To justify that 1/1 isameasure of bandwidth, consider an ideal filter shown in Figure 10.19,
where

o] o0

| = / w?(z)dr = f W2( f)df (10.82)

—00
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W(f)

1/B

[ ———>
B/2

Figure10.19 Anided filter with aresolution bandwidth of B

Since
r 1
W2(f)df = =
[ weat = 5
it can be shown that
1 1
1/l = — = — =B (10.83)
f w2(r)dt f W2(f)df

When the ‘non-ideal’ filters (Bartlett, Hann, Parzen, etc.) are used, then 1/ /% w?(r)dr
defines a generalized bandwidth. Thisis the effective resolution of the spectral window.

A summary of bandwidths, biases and variance ratios of some window functionsisgiven
in Table 10.2 (Jenkins and Watts, 1968; Priestley, 1981).

Table10.2 Properties of some spectral windows

Window  Bandwidth _ . Var (S(f)) _ _
name 1/l =B DOF  Varianceratio, 5. Approximate bias
X
0.5 T 2T,
Rectangular — — N/A
Tw TU) T
15 3T 0.667T 1 .
Barl - el e i R —j2nfr
arlett T, T T T / I7|Rux (7)€ dr
. 1.333 2.667T 0.75T, O 063
Hann(ing) T T — T2 Sk(f)
1.26 2.52T 0.795T, 0 058
Hammi — f
amming T T = T2 — S«(f)
1.86 3.71T 0.539T,, 0.152
Parzen Tw Tw 7 ~ T2 S(x(f)

Note: S, (f) isthe second derivative of the spectrum at frequency f, T isthetotal datalength and T,, isas defined in Table 10.1
(i.e. haf of the lag window length).
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General Comments on Window Functionsand S, ( f)

Although the rectangular window isincluded in Table 10.2, it israrely used since its spectral
window sidelobescauselarge’leakage’ effects. However, in Chapter 8, therectangul ar window
function isapplied to estimate the spectral density functionsin MATLAB Examples 8.8-8.10
(note that we have used avery long data length T).

Bias of the Bartlett window is of order 1/T,, and so will in general be greater than other
windows (order 1/T2). Among the Hann, Hamming and Parzen windows, the Parzen window
hasthe smallest variance but has the greatest bias. Since the bias of these windows depends on
S/, (), larger bias occurs at sharp peaks and troughs than other frequency regions. From the
table, we can easily see that the biasis reduced as T,, increases, but the variance is increased.
The variance can then be reduced by increasing the total datalength T.

We note that: (i) when the bias is small, Si(f) is said to reproduce Si(f) with high
fidelity; (ii) when the varianceis small, the estimator is said to have high stability (Jenkinsand
Watts, 1968). The choice of window functions should depend on whether the concern is for
statistical stability (low variance) or high fidelity (small bias), although in general we must
consider both. For example, if the spectral density function has narrow peaks of importance
we may willingly tolerate some loss of stability to resolve the peak properly, while if the
spectral density function is smooth then bias errors are not likely to be so important. Thus, we
may state that the estimator S, ( f) is approximately unbiased and has alow variance only if
the sufficiently narrow resolution bandwidth and yet long enough data are used.

When spectra are estimated via the autocorrelation function many texts give only ap-
proximate values for the degrees of freedom and the resolution bandwidth. For example, with
digital analysiswith N data points (sampled at every A seconds) and a maximum correlation
lag M, the number of degrees of freedom is usually quoted as 2N /M and the resolution
bandwidth as 1/(M A) (this may corresponds to the rectangular window function).

Finally, instead of multiplying the sample autocorrel ation function by thelag window and
Fourier transforming the weighted sample autocorrelation function, an alternative procedure
is to do the smoothing in the frequency domain, i.e. form the raw periodogram and perform
the frequency convolution. This ‘frequency smoothing’ will be referred to again soon.

Method (3): Direct Methods

We shall now discussthe basisfor forming smoothed power spectral density estimateswithout
first forming the autocorrelation functions. These methods are probably the most widely
used because of computational considerations. There are two methods, although they can be
combined if required, namely (i) segment averaging; (ii) frequency smoothing.

Segment Averaging (Welch’s Method)M102

The segment averaging method has become very popular mainly because of its fast
speed of computation. The method is discussed in Jenkins and Watts (1968) as Bartlett’'s
smoothing procedure and in Welch (1967) in somedetail. The basic procedureisoutlined
with reference to Figure 10.20.
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Figure10.20 The basis of the segment averaging method
Consider the data (length T) which is segmented into q separate time slices each

of length T, such that qT; = T (in this case non-overlapping). Now we form the raw
periodogram for each slice as

Sxi(f)=%|xm(f)}2 fori=1,2,....q (10.84)

We saw earlier that thisis distributed as a chi-squared random variable with two degrees
of freedom. We might expect that by averaging successive raw spectra the underlying
behaviour would reinforce and the variability would reduce, i.e. form

q
Sulf) = 2 Y- Sl (10.5)
i=1

We can estimate the variance reduction by the following argument. Note that for each
segment 2S,« ( f)/Six( f) isa x2 random variable. From Equation (10.85),

285x(f)-a L 28u(f)
S ) ‘; Su()

Thus, (25 (f) - 9)/S(f) is the sum of qx2 random variables and so assuming that
these are essentially independent of each other then this is approximated as X22q_ From
Equation (10.61),

2S5«(f)-a7 _
E [&7(1‘)} ~ 2q (10.86)

fromwhich E[Six(f)] ~ S (f) (i.e Si( f) isapproximately unbiased). From Equation
(10.62),

Zéxx(f) q ~
Var (T(l‘)) ~ 4q (10.87)

Thus,

4q2

%Var (Sxx(f)) ~ 4q

343
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i.e. it followsthat

Var (Su(f)) 1

s a3 (10.88)
o(f
(si(i))) ~ jq (10.89)

This can be expressed differently. For example, the resolution bandwidth of the
rectangular datawindow is B = 1/T, = q/T. Thus, Equation (10.88) can be written as

Var (Su(f)) 1
() BT

which is the same as Equation (10.80). Note that by segmenting the data, the resolution
bandwidth becomeswider since T, < T. We must be aware that the underlying assump-
tion of the above results is that each segment of the data must be independent (see the
commentsin MATLAB Example 10.1). Clearly thisisgenerally not the case, particularly
if the segmentsin the segment averaging overlap. Thisis commented on in the following
paragraphs.

To summarize the segment averaging method:

(10.90)

1. Resolution bandwidth: B ~ = = 4
2. Degrees of freedom: n = 2q = ZBT
3. Varianceratio: %%2 N o = %

While the above description summarizes the essential features of the method, Welch
(1967) and Bingham et al. (1967) give more elaborate procedures and insight. Since the use
of arectangular data window introduces leakage, the basic method above is usually modified
by using other datawindows. Thisis often called linear tapering. Theword ‘linear’ here does
not refer to the window shape but to the fact that it operates on the data directly and not on the
autocorrel ation function (see Equation (10.73)) whereitissometimescalled quadratictapering.

The use of a datawindow on a segment before transforming reduces leakage. However,
sincethewindows havetapering ends, the val ues obtained for S(XI (f) must be compensated for
the ‘ power reduction’ introduced by the window. This resultsin the calculation of ‘ modified’
periodograms for each segment of the form

2

x(t)w(t)e 12 dt

T

ith interval
T /2
1 2
— t)dt
= [ w0
—T/2

éxxi(f) =

(10.91)

where the denominator compensates for the power reduction, and is unity for the rectangular
window and 3/8 for the Hann window.
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Finally, we note that the use of a data window ignores some data because of the tapered
shape of the window. Intuitively the overlapping of segments compensates for this in some
way (Welch, 1967), though it isnot easy to relate these resultsto theindirect method of Fourier
transforming the autocorrelation function. We must remember that ideally segments should
be independent to obtain the variance reduction — and with overlapping this is compromised.
We simply quote the following results from Welch (1967) which is based on Gaussian white
noise. If the segments overlap by one-half of their length (50 % overlap), and the total data
lengthis N points and each individual segment length is L points, then

1. The number of degrees of freedomisn ~ 2(% -1
Va(Su(f)) o, 1

2. Thevarianceratiois ) n3

3. Theresolution is 1/(L Ai = fs/L, but note that this depends on the data window being
used.

Freguency Smoothing
This approach is based on the comments given in Method (2) (in the last paragraph). The
method is as follows:

1. Form the raw periodogram from the data length T.
2. Average| neighbouring estimates of this spectrum, i.e. form

|
Sef) = T 3" Sl 1) (1092)
i=1

wherethe f; surround f.
As before, we can argue that (2S5 (f) - 1)/ S ( f) isdistributed as Xﬁ and

varSu(f) _ 1
G

The resolution bandwidth before smoothing is approximately 1/ T, but after smoothing it is
approximately | /T sincel neighbouring values are averaged. This method is effectively the
same as the indirect method (Method (2)).

Note that one might combine both segment averaging and frequency smoothing to get
an estimate with 2Iq degrees of freedom and then the resolution bandwidth is approximately
lq/T.

(10.93)

Confidence Intervalsfor Spectral Estimates

We now discussthe‘interval estimates based on the point estimates for the smoothed spectral
density function S, (f). We have seen that NS (f)/Se(f) is distributed as a x2 random
variable where the probability density function for x?2 is of the form shown in Figure 10.21,
i.e. thevaluestaken by NS (f)/Sw( f) are much morelikely to fall within the hump than the
tail or near x = 0.
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Figure10.21 The creation of confidence intervals

If wechooseanumber « (0 < o < 1) suchthat sectionsof area« /2 are as shown marked
off by the points Xn «/2 @nd Xn 1«2, then the following probability statement can be made:

<
= (‘f )) < xn,l_a/z} —1-a (10.99

The points X, «/2 @nd Xn 14 /2 Can be obtained from tables of Xﬁ for different values of «. Now
theinequality can be solved for the true spectral density Si«( f) from the following equivalent
inequality:

P |:Xn,a/2 =

086(h) _ g gy - MSulD)

Xn,1-a/2 Xn,a/2

(10.95)

Thus, for a particular sample value S,,(f) (a point estimate), the 100(1 — &) % confidence
limits for S () are

n n

S«(f) and S(f) (10.96)

Xn,1-a/2 Xn,a/2

and the confidence interval is the difference between these two limits. 3
Note that on alinear scale the confidence interval depends on the estimate S ( f), but
on alog scale the confidence limits are

n & ~
log (Xn’lW) +1log (Sx(f)) and Iog( ) +log (Sx(f)) (10.97)

Xn,a/Z

and so the interval islog(n/Xn «/2) — 109(N/Xn 1-4/2) Which is independent of S (f). Thus,
if the spectral estimate S, (f) is plotted on a logarithmic scale, then the confidence interval
for the spectrum can be represented by a constant interval about the estimate. Figure 10.22
indicates the behaviour of n/X, «/2 and N/Xn 1-«/2 (Jenkins and Watts, 1968).

FromFigure 10.22, wecan clearly seethat the confidenceinterval decreasesasthe number
of degreesof freedom n increases. For example, if n = 100 (approximately 50 averagesfor the
segment averaging method), the 95% confidence interval is about [0.775 (), 1.3554( f)].
Sometimes, the number of degrees of freedom is referred to as the ‘statistical degrees of
freedom (Stat DOF)’, and more than 120 degrees of freedom is often required in many random
vibration testing standards (e.g. MIL-STD-810F and |EC 60068-2-64).



CROSS-SPECTRAL DENSITY FUNCTIONM10-1.103 347

4 5 6 78910 20 30 40 50 60 708090100
n (degrees of freedom)

Figure 10.22 Confidence interval limits

10.5 CROSS-SPECTRAL DENSITY FUNCTIONM10.1,10.3

The basic considerations given in Section 10.4 relate also to cross-spectral density function
estimation together with some additional features, but we shall not go into any detail here.
Detailed results can be found in Jenkins and Watts (1968). We shall merely summarize some
important features.

Theraw cross-spectral density function can be obtained by Fourier transforming the raw
cross-correlation function, i.e.

.
Sy(f) = / R, (r)e 1# rdr (10.98)
-T

and this has the same unsatisfactory properties as the raw power spectral density function.
Thus, as before, alag window w(t) isintroduced to smooth the estimate, i.e.

T

Sy(f) = / R (Dw(r)e 1# *dr (10.99)

-T
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Note that the unbiased estimator Ry, (r) may also be used in place of RE, (r) provided that the
maximum lag tmax IS relatively small compared with T. Alternatively, the smoothed estimate
can be obtained by the segment averaging method or by frequency smoothing of theraw cross-
spectral density. For example, if the segment averaging method is used the raw and smoothed
cross-spectral density functions are

S (f) == [XT(f)YT”(f)] fori=12...,q (10.100)
~ 13 .

Sy(f) = q > Su(f) (10.101)
i=1

The smoothed estimate Sy( f) may be written in the form
Sul(f) =[Sy ((f)] 05D (10.202)

Roughly speaking, one can show that the variances of the amplitude |S,y(f)| and the
phase arg Sq,(f) are proportional to 1/BT where B is the resolution bandwidth and T
is the data length.

Whilst the general effect of smoothing is much the same as for the power spectral
density estimate, we note in addition, though, that the amplitude and phase estimators
are also strongly dependent on the ‘true’ coherence function yxzy( f). So, as Jenkins and
Watts (1968) observed, the sampling properties of the amplitude and phase estimators
may be dominated by the ‘uncontrollable’ influence of the coherence spectrum yxzy( f)
rather than by the ‘controllable’ influence of the smoothing factor 1/BT. For example,
the variance of the modulus and phase of §xy( f) are shown to be (Bendat and Piersol,
2000)

Va(So(Hf) . 1 1
|Sq ()] v2(f) BT

(10.103)

1_V)(2y(f) ) 1
v2(f)  2BT

Var(arg Sy (f)) ~ (10.104)
Note the ‘uncontrollable’ influence of true coherence function yxy( f) on the variability
of the estimate. Note also that the variance of arg Sxy( f) isnot normalized. Particularly,
if x(t) and y(t) arefully linearly related, i.e. )/X (f) = 1, then Var(arg S(y(f)) ~ 0. Thus,
we see that the random error of the phase &eu mator is much smaller than that of the
amplitude estimator.

Similar to the power spectral density estimate, in general, the estimator S(y(f)
is approximately unbiased when T is sufficiently large and the resolution bandwidth
is narrow. However, there is another important aspect: since Ifzxy(r) is not (in general)
Ssymmetric, it is necessary to ensure that its maximum is well within the window w(z)
or serious bias errors result. For example, if y(t) = x(t — A), then it can be shown that
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(Schmidt, 1985b) for rectangular windows

E [Sq(f)] ~ (l - %) Suy(f) (10.105)

where T, is the length of window (or the length of segment). Note that the time delay
between signals results in biased estimates (see MATLAB Example 10.3). This problem
may be avoided by ‘aigning’ the two time series so that the cross-correlation function
Ryy(7) hasamaximum at v = 0.

10.6 COHERENCE FUNCTIONM10:2

The estimate for the coherence function is made up from the estimates of the smoothed power
and cross-spectral density functions as

BENOL
Sa(13y(h)

It should be noted that if ‘ raw’ spectral density functions are used on the right hand side of the
equation, it can be easily verified that the sample coherence function ;‘/Xy( f) isaways‘unity’
for al frequenciesfor any signals x and y (even if they are unrelated).

Detailed calculations are given in Jenkins and Watts (1968) for the sampling properties
of the smoothed coherence function (), but roughly speaking, the variance of 77XZy(f) is
proportional to 1/BT (which is known, so a controllable parameter) and also depends on
yxzy( f) (which is unknown, so is an uncontrollable parameter), where the variance of ;7XZy( f)
is shown to be

72(f) = (10.106)

Var (72(1)) _2(1-y3(1)° 1
W3(h)?  (MH BT (10.107)

This expression is sometimes used as an approximate guide after measurements have been
made by replacing 3 (f) with 72 ().

Jenkins and Watts (1968) show that the bias of this estimator is proportional to the square
of the derivative of the phase spectrum arg S, (). For example, if the Hann window is used
the normalized bias error can be expressed by

b(75(f)) 0126
Vay(f) U5

2
(% (arg Sy (f ))> (10.108)

for large T (total data length), where T,, is haf of the lag window length as defined in
Table 10.1. For the Parzen window, 0.126 is replaced by 0.304. The above equation means
that the estimator is sensitive to delays between x(t) and y(t). Similar to the cross-spectral
density function estimate, such bias can be reduced by realigning the processes, i.e. aligning
the peak in the cross-correl ation between x(t) and y(t) to occur at zero lag.
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Note also that, if x(t) and y(t) are the input and output of a lightly damped oscillator,
severe bias errors are likely to occur at resonant (and anti-resonant) frequencies where
the phase changes rapidly. Since the resolution bandwidth is inversely proportional to
the length of the lag window (e.g. for the Hann window B = 1.333/T,, as shown in
Table 10.2), the bias error can be reduced by improving the resolution of the estimate, i.e.
the resolution bandwidth B should be reduced (see MATLAB Example 10.2). In Figure
10.23, the coherence function is estimated for simulated input/output resultsfor alightly
damped oscillator (¢ = 0.02) with natural frequency at 1Hz. The theoretical value of
coherenceis unity and the resolutions used are shown in the figure, where it can be seen
that the biasis reduced as the resolution bandwidth B decreases.

If the resolution bandwidth is chosen adequately, the bias of 7 () may be approx-
imated (Carter et al., 1973) by

(1—2(f))

10.109
BT ( )

b (75()) ~

This shows that the estimate y,5, () is asymptotically unbiased (i.e. for large BT).

1
09r
08
0.7f

W

Resolution bandwidth, B = 0.02 Hz
B=0.2 Hz

06 B=0.5Hz
Vi 05} “NB-1Hz
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03t

0.2t
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Frequency (Hz)

Figure 10.23 Biasin the coherence function estimate

10.7 FREQUENCY RESPONSE FUNCTION

The frequency response function is estimated using smoothed spectral density functions. For
example, the estimate of Hy( f) can be obtained from
_ 50
Sx(f)
Note that we use the notation H;(f) to distinguish it from the theoretical quantity Hi(f),
though it is not explicitly used in Chapter 9. The results for errors and confidence limits can

H(f) (10.110)
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be found in Bendat and Piersol (1980, 2000) and Otnes and Enochson (1978). A few results
from Bendat and Piersol are quoted bel ow. ~
Bias errors in the frequency response estimate Hq( f) arise from:

(a) biasin the estimation procedure;

(b) nonlinear effects;

(c) biasin power spectral and cross-spectral density function estimators;

(d) measurement noise on input (note that uncorrelated output noise does not cause bias).

In connection with (&), we would get bias effects since

éxy(f)} # E [Sy(1)]
S(f)]” E[S«(f)]

i.e. E[H1(f)] # Hi(f). However, thiseffectisusually small if BT islarge. In connection with
(b), use of Equation (10.110) producesthebest linear approximation (intheleast squares sense)
for the frequency response function. In connection with (c), bias in the power spectral and
cross-spectral density function may be significant at peaks and troughs. These are suppressed
by having narrow resol ution bandwidth. I n connection with (d), we have already discussed this
in Chapter 9 (i.e. various FRF estimators Hy(f), Ha(f) and Hw(f) (or Hy(f)) are discussed
to cope with the measurement noise).

E[Fu(f)] = E[

Finally, the variances of the modulus and phase of H,(f) are

Var([Ay(f)))  1-we(h) 1
Hy(F)2 y2(f) 28T

(10.111)

1_y)(2y(f) 1

Var (arg Hy(f)) ~ :
o)~ =2 287

(10.112)

Thisshowsthat, similar to the estimates é(y( f)and );Xzy( f), the variances depend on both
the controllable parameter BT and the uncontrollable parameter yxzy( f). Note that the
right hand sides of Equations (10.111) and (10.112) are the same. Also, comparing with
the resuilts of the cross-spectral density estimate Sy, ( f) shown in Equations (10.103)
and (10.104), we see that the normalized variance of |Hy(f)| is smaller than that of
|S¢y()], while the variances of the phase estimators are the same, i.e. Var(arg Hy(f)) =
Var(arg éxy( f)). In practice, this implies that we may need shorter data length (or fewer
number of averages) for the FRF estimate than the cross-spectral density estimate. Note
that, if 2 (f) = 1, then both Var(| Hy(f)[) and Var(arg Hi( f)) approach zero.

The random errors of Hy( f) may be similar to those of Hy(f) sincethe Hy( ) estimator
can bethought of asreversing theroleof input and output defined for H ( f) inthe optimization
scheme (discussed in Chapter 9). The random errors of Hy( f) (or Fir( )) are not as obvious
as the others. However, if there is no measurement noise it can easily be seen that all three
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theoretical quantities arethe same, i.e. Hi(f) = Ha(f) = Hw(f). Thus, apart from the error
due to the measurement noise, we may anticipate that the random errors are similar to the
Hy(f) estimator. Details of the statistical properties of Hy () can be found in White et al.
(2006).

We summarize the normalized random errors of various estimates in Table 10.3, where
the factor BT can be replaced by the number of averages g for the segment averaging method
(assuming that the data segments used are mutually uncorrelated).

Table10.3 Random errors for some smoothed estimators

Estimator Randomerror, ¢, = @
- 1

f P —
Sey(f) N e
o 1
Sy ()]

&E N —mm—F——
" |y ()| VBT

[1-»3(D)]
lyxy(f)| v2BT

~ [1- szy( f )]1/2

1/2

arg Sy (f) o (argSy(f)) ~

}Hl(f)| BrNW
- - 1- 2 (O]
arg Fi () o (argh(f)) ~ %
Xy
V2[1—p2(f
72(1) ~ V2 ro0)]

o~ Y2 = r(D]
" ()| VBT

10.8 BRIEF SUMMARY

1. Estimator errors are defined by
Bias: b(®) = E[®] — ¢
Variance: Var(®) = E[$?] — E?[D]
Mean square error: mse(®) = Var(d) + b?(d)
The normalized errors are
Bias error: &, = b(®)/¢
Random error: g = o(®)/¢

RMSerror: & = /mse(®)/¢
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2. Rx(r) and Ifixy(r) are the unbiased autocorrelation and cross-correlation function
estimates; however, the biased (but asymptotically unbiased) estimators I?{EX(I) and
ﬁe‘;y(r) have asmaller mean square error. When unbiased estimators are used, theratio
of the maximum lag to the total data length, Tmax/ T, should not exceed 0.1.
Correlation functions may be estimated with arbitrarily small error if the length of the
datais sufficiently long.

3. The‘raw’ power spectral density function Sy( f) is an asymptotically unbiased esti-
mator; however, the variance of S () isVar (S(f)) = S (f).

4. The ‘smoothed’ power spectral density function S« ( f) can be obtained by

[oe]

Su(h = [ R @ulme 2 dr

—00

or
= 1 oL 4 A 1 2
S(X(f):aZS(X|(f)v Whefesxx.(f)z?|xT”(f)|
i=1 ¥

5. Thebiaserror of S (f) isusually small if S ( f) issmooth. However, the estimator
Six(f) usually underestimates the peaks and overestimates the troughs (i.e. dynamic
range is reduced). The bias error can be reduced by improving the resolution band-
width. The resol ution bandwidths and approximate bias errorsfor variouslag windows
are shown in Table 10.2.

6. Thevariance of S (f) isgiven by

Var (S(f)) 1

S () BT
where the BT can be replaced by the number of averages g for the segment averaging
method (thenumber of degreeisn = 2BT). Therandom error isreduced asthe product
BT becomes large. However, in general, we need to trade-off between the resolution
(bias error) and the variability (random error).
While maintaining the good resolution (low bias) the only way to reduce the random
error is by increasing the datalength T.

7. The cross-spectral density function estimate §Xy( f) has similar statistical properties
to those of S.( f). However, this estimator depends on the ‘true’ coherence function
¥y (f) whichisan ‘uncontrollable’ parameter.

Time delay between two signals x(t) and y(t) can introduce a severe bias error.

8. Thestatistical propertiesof the coherencefunction estimate ;7X2y( f) depend on both the
true coherence function yxzy( f) and the product BT. The random error is reduced by
increasing the product BT. However, significant bias error may occur if the resolution
bandwidth is wide when arg S,y () changes rapidly.

9. The estimator H;(f) also depends on both the controllable parameter BT and the
uncontrollable parameter ;5 ( f).

The random errors of various estimators are summarized in Table 10.3.
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10.9 MATLAB EXAMPLES

Example 10.1: Statistical errorsof power and cross-spectral density functions

Consider the same example (2-DOF system) asin MATLAB Example 9.4, i.e.

Au . A .
—e 4 snwgit + —e 22! sinwgot
wd1 wd2

h(t) =

Again, we use the white noise as an input Xx(t), and the output y(t) is obtained by
y(t) = h(t) = x(t). However, we do not consider the measurement noise.
Since we use the white noise input (band-limited up to fs/2, where fs isthe sam-

pling rate, i.e. 02 = fjsf/ 52 S (f)df = 1), the theoretical spectral density functions are

Sx(f) = 02/ fs, Sy(f) = |H(f)[?02/ fs and Sy (f) = H(f)o2/ fs. These theoretical
values are compared with the estimated spectral density functions.

Thesegment averaging method i s used to obtain smoothed spectral density functions
Sx(f), Syy(f) and S, (f). Then, for a given data length T, we demonstrate how the
biaserror and the random error change depending on theresolution bandwidth B ~ 1/T;,
where T, isthe length of the segment.

'twosided');

Line MATLAB code Comments
1 clearall Same as MATLAB Example 9.4, except
2 Al1=20; A2=30; f1=5; f2=15; wn1=2*pi*f1; that the damping ratios are smaller, i.e.
wn2=2*pi*f2; we use amore lightly damped system.
3 zetal=0.02; zeta2=0.01;
4 wdl=sgrt(1-zetal"2)*wnl,
wd2=sqgrt(1-zeta2" 2)*wn2;
5 fs=100; T1=10; t1=[0: Ufs:T1-1/fg];
6 h=(Al/wdl)*exp(-zetal*wnl*tl).
*sin(wd1*t1) 4+ (A2/wd2)
*exp(-zeta2*wn2*t1).* sin(wd2*t1);
7  T= 2000; % T=10000; Define the data length T seconds. First,
8 randn('state',0); use T = 2000, then compare the results
9  x=randn(1,T*fs); with the cases of T = 10000 (when Tr =
10  y=filter(h,1,x)/fs; % scaled appropriately. 20isused at Line 11).
Generate the white noise input sequence
‘X’ (02 = 1), and then obtain the output
sequence 'y’ (scaled appropriately).
11 Tr=4; N=Tr*fs, % Tr=20, Define the length of segment Tr
12 [Sxx, fl=cpsd(x,x, hanning(N),N/2, N, fs, seconds. First, use Tr = 4
‘twosided'); (approximately 1000 averages), then
13 [Syy, fl=cpsd(y,y, hanning(N),N/2, N, fs, compare the results with the cases of Tr

= 20 (approximately 200 averages).
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14

15
16

36

[Sxy, fl=cpsd(x,y, hanning(N),N/2,
N, fs, 'twosided);

H=fft(h)/fs;, % scaled appropriately.
f1=fs*(0:length(H)-1)/length(H);

figure (1)

plot(f,10*log10(fs* Sxx), f, zeros(size(f)), 'r:")
xlabel (‘"Frequency (Hz)")

ylabel (Estimate of \itS_x_x\rm(\itf\rm) (dB)")
axis([0 30 -10 10])

figure(2)

plot(f,10*1og10(Syy),
f1,10*log10(abs(H)." 2/fs), 'r:")

xlabel ('Frequency (Hz)")

ylabel (‘Estimate of \itS_y_y\rm(\itf\rm) (dB)")
axis([0 30 -100 -20])

figure(3)
plot(f,10*1og10(abs(Sxy)),
f1,10*log10(abs(H)/fs), 'r:")
xlabel (‘"Frequency (Hz)")

Obtain the spectral density
estimates using the segment
averaging method (Hann window
with 50 % overlap is used). Also,
calculate H( f) by the DFT of the
impul se response sequence (scaled
appropriately).

Plot the power spectral density
estimate S (f), where‘fs' is
multiplied. Also, plot the variance
of thesignal 02 = Si(f) - fs=1
(0dB) for comparison.

Plot the power spectral density

estimate Sy ( f) and the theoretical
power spectral density function

Sy(f) =H(H)P o7/ fs.

Plot the magnitude spectra of
Sy(f)and Sy(f) = H(f)o2/ .

ylabel (Estimate of |\itS_x_y\rm(\itf\rm)| (dB)")

axis([0 30 -60 -20])

figure(4)

plot(f,unwrap(angle(Sxy)),
f1,unwrap(angle(H)), 'r:")

xlabel ('Frequency (Hz)")

ylabel (‘Estimate of arg\itSx_y\rm(\itf\rm)
(rad)’)

axis([030-3.50])

Plot the phase spectraof S,,( ) and
Sy(f).

Results: Case(a) T, = 4 secondsat Line11and T = 2000 at Line 7 (1000 averages)

[N
o

o N b O ©

Estimate of Sy, (f) (dB)
iR Loy oL
o D BN

Solid line: S (f)
Dashed line: S,y (f)

15 20 25

Frequency (Hz)

5 10

(al) Power spectral density function §XX (f)

Solid line: ~ §(f)
Dashed line: Sy (f)

v

5 10 15

Frequency (Hz)

20 25 30

(a2) Power spectral density function §yy (f)
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20 0
-25 Solid line:  [S, ()| 05 Solid line:  arg S,(f)
=}
g 30 Dashed line:|S(F)] { S Dashed line: arg S,y( )
c -3 <
ES s -15
% -40 2
5 -2
£ -5 g
% - E -25
. i
_55 -3
60 5 10 15 20 25 30 -85 0 5 10 15 20 25 30
Frequency (Hz) Frequency (Hz)
(a3) Magnitude spectrum of §Xy (f) (a4) Phase spectrum of S, ()

Comments: Sincethe Hann window isusestheresoI utign bandwidthisB ~ 1.33/T,, ~
0.67Hz, where T,, ~ T, /2. Note that both Syy( f) and | Syy( f)| underestimate the peaks
and overestimate the trough owing to the bias error.

Results: Case (b) T, = 20 secondsat Line 11 and T = 2000 at Line 7 (200 averages)
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(b1) Power spectral density function §XX (f) (b2) Power spectral density function §yy (f)
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(b3) Magnitude spectrum of §xy (f) (b4) Phase spectrum of §yy (f)

Comments: In this case, the resolution bandwidth is B ~ 0.13Hz. It can be shown that
the biaserrors of spectral density estimates Sy ( f) and S,y ( f) are greatly reduced owing
to the improvement of the resolution. However, the random error is increased since the
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number of averagesis decreased. Note that arg S(y( f) has much less random error than
|Sxy(f)| (almost no random error is present in this example since 3, () = 1).

Results: Case(c) T, = 20 seconds at Line11and T = 10000 at Line 7 (1000 averages)
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8 Solid line: S, (f) -30 Solid line: §yy(f)
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(c1) Power spectral density function §XX (f) (c2) Power spectral density function §yy (f)
-20 0
25 Solid line: |§xy(f)| 05 Solid line:  arg S,,(f)
—~ 3 .
8 % Dashed line:[S ()] { S 4 Dashed line: arg S,y (f)
e £o15
< 40 g
S} s 2
£ -45 %
£ £25
& -50 7
55 -3
60 5 10 15 20 25 0 %0 5 10 15 20 % 30
Frequency (Hz) Frequency (Hz)
(c3) Magnitude spectrum of S;y (f) (c4) Phase spectrum of S, ()

Comments: While maintaining the narrow resol ution bandwidth, increasing the number
of averages resultsin better estimates.

Comments on the segment averaging method: As mentioned in Section 10.4, the
underlying assumption for the segment averaging method isthat each segment of the data
must be uncorrelated. If it is correlated, the random error will not reduce appreciably. To
demonstrate this, use T = 2000 and Tr = 20 (i.e. Case (b)), and add the following script
between Line 9 and Line 10. Then run this MATLAB program again and compare the
result with Case (b).

X=[x 2*x 3*X 4*x 5*X]; x=x-mean(x); Xx=x/std(x);

Now, thetotal datalengthis5 x 2000 = 10000 seconds, so the number of averages
is approximately 1000 which isthe same asin Case (c). However, the random error will
not reduce since correlated data are repeatedly used. For example, the results of S, (f)
and | S,y( )| are shown in Figures (d).
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Example 10.2: Biaserror of the coherence function estimate

InthepreviousMATLAB example, we did not consider the coherence function estimator
Py (). Weshall examinethebiaserror of 73 ( f ), usingthesamesystem asintheprevious
example. Note that the half-power point bandwidths at resonances (f; = 5and f, = 15)
ae By =2¢;f1 =0.2Hzand B, = 2¢, f, = 0.3Hz

Asmentioned in Section 10.6, considerabl e bias error may occur at resonances and
anti-resonances where the phase of the cross-spectral density function changes rapidly,
e.g. if the Hann window is used the normalized bias error is (i.e. Equation (10.108))

b (73(f)) 0.126 / d 2
20 T (ﬁ(args‘y(f))>

In this example, various resolution bandwidths are used: By = 1Hz, B, = 0.5Hz, B3 =
0.2Hz and B4 = 0.05Hz. For each resolution bandwidth, approximately 1000 averages
areused so that therandom error isnegligible. A Hann window with 50 % overlap isused.
Thelength of each segment for theHannwindow isobtainedby T, = 2T,, ~ 2 x 1.33/B,
where B is the resolution bandwidth (see Table 10.2).

Line MATLAB code Comments
1 clear all Same as MATLAB Example 10.1.
2 A1=20; A2=30; f1=5; f2=15; wn1l=2*pi*f1,

wn2=2*pi*{2;

3 zetal=0.02; zeta2=0.01;

4 wdl=sgrt(1-zetal"2)*wnl,
wd2=sgrt(1-zeta2" 2)*wn2;

5 fs=100; T1=10; t1=[0: Ufs: T1-1/fg];

6 h=(ALl/wd1)* exp(-zetal*wnl*t1).
*sin(wd1*tl) + (A2/wd2)* exp(-zeta2* wn2*t1).
*sin(wd2*tl);
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14

15

16

17

18

19
20

B1=1; B2=0.5; B3=0.2; B4=0.05;
N1=fix(1.33*2/B1*fs); N2=fix(1.33*2/B2*fs);
N3=fix(1.33*2/B3*fs); N4=fix(1.33*2/B4*fs);
Ns=500; Nt=N4*Ns;

randn('state',0);

x=randn(1,Nt);

y=filter(h,1,x);

% we do not scale for convenience.

[Gamma_1, f] = mscohere(x(1:Ns*N1),
y(1:Ns*N1), hanning(N1), [], N4, fs);
[Gamma_2, f] = mscohere(x(1:Ns*N2),
y(1:Ns*N2), hanning(N2), [], N4, fs);
[Gamma_3, f] = mscohere(x(1:Ns*N3),
y(1:Ns*N3), hanning(N3), [], N4, fs);
[Gamma_4,f] = mscohere(x(1:Ns*N4),
y(1:Ns*N4), hanning(N4), [], N4, fs);
H=fft(h, N4);

% we do not scale for convenience.

figure (1)

plot(f, [Gamma.l Gamma.2 Gamma.3
Gamma.4])

xlabel (‘"Frequency (Hz)")

ylabel (Estimate of \it\gammax_y\rm"
2(\itf\rm)")

axis([03001])

figure(2)
plot(f,unwrap(angle(H(1:length(f)))))
xlabel (‘"Frequency (Hz)")

ylabel (‘arg\itH\rm(\itf\rm) =
arg\itSx_y\rm(\itf\rm) (rad)")
axis([030-3.50])

Define the resolution bandwidths: B1,
B2, B3 and B4. Then, calculate the
number of points of a segment for each
bandwidth. Define the total number of
segments Ns = 500 that resultsin
approximately 1000 averages if 50 %
overlap is used.

Generate white noise input sequence
‘X" and the output sequence‘y’.

Calculate the coherence function
estimates ;7 ( f) for each resolution
bandwidth using the MATLAB
function ‘mscohere’ .

Also, calculate H( f) by the DFT of
the impul se response sequence. We
calculate this to compare 2 ( ) and
arg H(f). Note that arg H(¥) =
arg Sy (f).

Plot the coherence function estimates
75 (f) for each resolution bandwidth.

Plot arg H( f) which isthe same as

arg Sy (f).

Estimate of y %,(f)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

B ~0.05 Hz
B~0.2Hz

B~0.5Hz

arg Syy (f) (rad)

Resolution bandwidth, B ~1 Hz

arg H(f)
Ny
o

—1F

I
N

5 10 15 20 2 30
Frequency (Hz)
(a) Coherence function estimate «72Xy( f)

Comments: Note the large bias error at the resonances and anti-resonance. Also note
that the bias error decreases as the resol ution bandwidth gets narrower.

5 10 15 20 25 30
Frequency (Hz)

(b) Phase spectrum of H( f) or Sxy( f)
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Another point on the bias error in the coherence function is that it depends on the
‘window function’ used in the estimation (Schmidt, 1985a). For example, if we use a
rectangular window, i.e. replace ‘hanning’ in Lines 14-17 with ‘rectwin’, then we may
not see the drop of coherence at resonances as shown in Figure (c). Readers may care to
try different window functions.

1 T
0.9
08
07
£ 06
S os
£ 04
& 03
0.2
01
% 5 10 15 20 25 30

Frequency (Hz)
(c) Coherence function estimate szy (f) (rectangular window function is used)

Example 10.3: Biaserror of the cross-spectral density function estimate (time delay
problem)

In Section 10.5, we mentioned that the cross-spectral density function estimate S(y( )
produces a biased result if time delay is present between two signals. For example if
y(t) = x(t — A), then the average of S(y(f) is (i.e. Equation (10.105) for arectangular
window)

E[85(0] ~ (1- 7 ) So(h)

In this example, we use the white noise signal for x(t) (band-limited up to fs/2), and
y(t) = x(t — A) where A = 1 second. Sinceitisapuredelay problem, the cross-spectral
density functionis

Sy(f) =e 12125, (1)

i.e. |Sy(f)l = Sx(f) = 02/ fs (see MATLAB Example 10.1).

We shall examine the bias error of éxx( f) for various values of T;. Note that the
bias error can only be reduced by increasing the window length (in effect, improving the
resolution) or by aligning two signal s (Jenkinsand Watts, 1968), e.g. y(t) may bereplaced
by y'(t) = y(t + A) if A can be found from the cross-correlation function (arg S(y(f)
must be compensated | ater).
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Line MATLAB code Comments
1 clearall Definethe delay A = 1 second and the
2 ddta=1; fs=20; window length T,. We compare the
3 Tr=11;%Tr=1.1, 2,5, 50; results of four different window
4  N=Tr*fs; Nt=1000*N; lengths T, = 1.1, 2, 5 and 50 seconds.

randn('state’,0);

x=randn(1,Nt+delta*fs);
y=xX(1:length(x)-delta*fs);
x=x(delta*fs+1:end);

[Sxy, fl=cpsd(x,y, rectwin(N), 0, 1000, fs,
‘twosided’);

©o0o~NO U

10 figure(2)

11 plot(f,fs*abs(Sxy), f, ones(size(f)), r:")

12 xlabel('Frequency (Hz)")

13 ylabel('Estimate of |\itS_x_y\rm(\itf\rm)|

(linear scale)")
14 axis([01001.1])
15 figure(2)

16  plot(f, unwrap(angle(Sxy)), [0 10],
[0 -2*pi*10*deltal, 'r:")

17  xlabel('Frequency (Hz)")

18  ylabel('Estimate of arg\itS_x_y\rm(\itf\rm)
(red)’)

19 axis([010-650])

‘N’ is the number of pointsin the
segment and ‘Nt' isthe total data
length.

Generate white noise sequence ‘x’ and
the delayed sequence 'y’ . (Note that
02 = a)? = 1.) Then, calculate the
cross-spectral density function
estimate S,y ( ). In this example, the
rectangular window with no overlap is
used. So, the number of averagesis
1000.

Plot the magnitude spectrum of §xy( f)
(multiplied by the sampling rate) and
the theoretical value which is unity
(notethat [Sy(f)| - fs =02 = 1).

Plot the phase spectrum of S,,( f) and
the theoretical value of arg S ( f)
whichis -2z f A.

Run this MATLAB program again
using different values of T,.

Solid line:  [S,,(1)| |

07 Dashed line: [S,y(f)|
= 0.6 1

-20

)| (linear scale)

Estimate of arg Sy (f) (rad)
&
o

0.1 \-’\/\/\,‘/\/\/\f’\,/\/\/\ -60

Solid line:  arg Sy(f)
Dashed line: arg S,(f)

0 1 2 3 4 5 6 7 8 9 10
Frequency (Hz)

(@1) [S,,( )| using T, = 1.1

1 2 3 4 5 6 7 8 9 10
Frequency (Hz)

(a2) arg S, (f) using T, = 1.1
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0
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e e %
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—— : ‘ 0
WWWW 10 Solid line:  arg §Xy(f) ,
k=]
- s ine:
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ISt % 30
3
o —40
<
£
Z -50
w
-60
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10

Frequency (Hz)
(d1) [S,,( )| using T, = 50

Frequency (Hz)
(d2) arg $, (f) using T, =50

Comments: Note that a significant bias error occurs if the window length T; is short.
However, it isinteresting to see that arg S,y( f) is almost unaffected aslongas T, > A,
as one might expect from Equation (10.105).
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Multiple-Input/Response Systems

I ntroduction

This chapter briefly introduces some additions to the work presented so far. The natural
extension is to multiple-input and multiple-output systems. The concepts of residual spectra
and partial and multiple coherence functions offer insight into the formal matrix solutions.
Finally principal component analysis is summarized and related to the total least squares
method of Chapter 9.

11.1 DESCRIPTION OF MULTIPLE-INPUT, MULTIPLE-OUTPUT
(MIMO) SYSTEMS

Consider the multiple-input, multiple-output system depicted in Figure 11.1.
Assuming that the system is composed of linear elements, then any single output y; (t)

(say) is

yj(t) = Z hji (t) * i (t) (11.1)

i=1

where hj; (t) is the impulse response function relating the i th input to the jth output. Fourier
transforming thisyields

Yi(f) =D Hi(f)Xi(f) (11.2)
i=1

where H;; () is the frequency response function relating the i th input to the jth response.
The Fourier transform of the set of all responses can be arranged as a vector as

Y(f) = H(f)X(f) (11.3)

Fundamentals of Sgnal Processing for Sound and Vibration Engineers
K. Shinand J. K. Hammond. ~ © 2008 John Wiley & Sons, Ltd
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X ———» — V1

System > Y2

Xg——> — L

Figure11l.1 A multiple-input, multiple-output system

where Y(f) is an n x 1 vector of responses, X(f) isan m x 1 vector of inputs and H( f)
isn x m matrix of frequency response functions. For simplicity of notation we write the

transforms as X( f) rather than X+ (f), implying a data length T. Also, we imply below the
proper limitationas T — oo €tc.
From thisthe n x n output spectral density matrix Syy(f) = E[Y*(f)YT(f)]is

[ Srv() = H(1Sx(MHT(1)] (11.4)

where Scx(f) is the m x m input spectral density matrix. This expression generalizes
Equation (9.8). Notethat both these matrices Scx (f) and Syy () include cross-spectrarelating
the variousinputs for Scx ( f) and outputs for Syv ().

Similarly, the input—output spectral density matrix may be expressed as Sxy(f) =
E[X*(f)YT ()], which becomes

| Sev(f) = Sx(HHT ()| (11.5)

Thisisthe generalization of Equation (9.12). It istempting to use this as the basis for ‘identi-
fication’ of the matrix HT (f) by forming

HT(f) = Sx(f)Srv(f) (11.6)

Immediately apparent is the potentia difficulty in that we need the inverse of Scx(f), which
might be singular. This arises if there is a linear dependency between inputs, i.e. if at least
one input can be regarded as a linear combination of the others. Under these circumstances
the determinant of Scx(f) iszero and therank of Sxx(f) islessthan m. The pseudo-inverse
of Skx(f) may be employed but thisis not followed up here.

11.2 RESIDUAL RANDOM VARIABLES, PARTIAL AND MULTIPLE
COHERENCE FUNCTIONS

The matrix formulation in Equation (11.6) is a compact approach to dealing with multiple-
input, multiple-output systems. However, there are other approaches aimed at revealing and
interpreting the nature and relative importance of signals and transmission paths in systems.
One such method is described below. This is demonstrated here by using a very simple
example, namely a two-input, single-output system. This can easily be generalized to more
inputs — and for more outputs each output can be taken in turn.

Let usstart by saying that we measure three signals (X1 (t), Xa(t), xs(t)) and wish to know
how these signals may be related. An approach to this would be to ‘strip out’ progressively
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the ‘effect’ of first one signal on the other two, and then what is left of the next from the
last remaining one (and so on if we had more signals). This *stripping out’ of one signal’s
effect on another yieldswhat iscalled a‘residua’ process. Comprehensive studies on residual
processes can be found in Bendat (1976a, 1976b, 1978) and Bendat and Piersol (1980, 2000).
We illustrate how this approach may be helpful by choosing any one of the three (say xs(t))
and identifying it as an ‘output’ y(t) arising from inputs x; (t) and x(t).

So we consider a two-input, single-output system with some uncorrelated output mea-
surement noise as shown in Figure 11.2.

X n

s OH j‘l

O—— %=y

I —

Figure11.2 Two-input, single-output system

X2

Onthebasisof themeasurementstaken, thisisathree-component process, X1, X2, X3(= Y),
wherewereiterate that it may be convenient (but not necessary) toregard y asan output. Based
on the assumed structure we might wish to quantify:

1. Therelative magnitude of noiseto ‘linear effects, i.e. how much of y is accounted for by
linear operations on x; and Xo.

2. Therelativeimportance of inputs x; and x», i.e. how much of y comesfrom each of x; and
X2.

3. Thefrequency response functions H; and H (i.e. estimate H; and H, from Xy, X, and y).

To start with, it isuseful to remind ourselves of the concept and use of the ordinary coherence

function. With referenceto Figure 11.3, suppose we have two signals x, y and we seek alinear
‘link’ between them. Then, Figure 11.3 may be redrawn as Figure 11.4.

ln

X——» H —>@—>y

Figure11.3 A single-input, single-output system with measurement noise on the output

X @ >

-L
Y. (fully coherent with x)
y _<i
—>
Yuc (uncoherent with x) =n

Figure11.4 Alternative expression of Figure 11.3
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If we try to estimate the ‘best’ linear operation (optimal filter L) on x that minimizes
E[y2.], then its frequency response function is given by

_ Sy(h)
Seu()

Also, the coherent output power is Sy () = yxzy( f)S,y( ) and the uncoherent (noise) power
iISS),.y.(f)=[1- yxzy(f)] Syy(f). Infact, y,c istheresidual random variable resulting from
y after alinear prediction of y based on x has been subtracted. Note that, in Figure 11.4,
the noise is interpreted as what is ‘left’ in the output after the linear effects of x have been
removed.

We now return to the problem of three processes xi, X, X3(= y). Figure 11.2 can be
decomposed into the two stages below, as shown in Figure 11.5.

L(f) A17)

Stage 1 Stage 2
Y1

Y2
y3(= X2. l)

- 5 54 (=%54) —— Y5
5 31 > y7(: X3~l,2 = n)

Figure11.5 Alternative expression of Figure 11.2

=Y

We should emphasize that we assume that we can only use the three measured signals
X1, X2 and x3(= y). Furthermore we restrict ourselves to second-order properties of stationary
random processes. Accordingly, the only information we have availableisthe 3 x 3 spectral
density matrix linking X1, X and X3(= y). All subsequent manipulations involve the elements
of this (Hermitian) matrix.

Stage 1

In Figure 11.5, Stage 1 depicts the ‘stripping out’ (in a least squares optimization sense) of
the signal x; from X, and x3(= y). The signal denoted X,.1 istherefore what isleft of x, when
the linearly correlated part of x; has been removed. The notation x,.; denotes the ‘residual’
random variable. Similarly, xs.; denotes what isleft of x3 when the linearly related part of x;
has been removed.

To put a physica interpretation on this—it is as though process x; is ‘ switched off’ and
X2.1 and 31 are what remains of X, and X3 when this is done. (Once again we emphasize
that this switching off isin aleast squares sense. Thusit picks out the linear link between the
signals.) Thelinear linksbetween x; and x,, X3 aredenoted L, and L ,. Theseand thefollowing
guantities can be expressed in terms of spectrarelating theresidual random variables. It should
be noted that thefilters L, and L, are mathematical ideal (generally non-causal) linear filters—
not ‘physical’ filters (and so should not be identified with H; and H,). This introduces the
concept of residual spectral densities and partial coherence functions:
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e Residual spectral density functions are ‘usual’ spectral density functions formed from
residual variables.
¢ Partial coherencefunctionsareordinary coherencefunctionsformed fromresidual variables.

First, for the pair x; and x, the ‘optimal’ linear filter linking x; and x is
Siz(f)
Su(f)

where Spp( ) isshort for S x,(f) etc. The power spectral density of that part of x, whichis
coherent with Xy is

Li(f) = (11.8)

Sy(F) = vi()Sa(f) (11.9)
The ‘noise’ output power is S,y,( f) which iswritten as $;.4(f), i.e.
Says(F) = S2a(f) = [1— v5(F)] S(f) (11.10)
Similarly, for the pair x; and xs, the optimal filter is
Si3(f)
Lo(f) = 11.11
0= 5. (1.1

The spectral density of y(= X3) is Syy(f) = Si3(f) = Sy, () + Sy (), where S,y (T) is
the power spectral density of that part of y that is coherent with x; and Sy, () = Sz1(f) is
the power spectral density of that part of y that is uncoherent with x4, i.e.

Sy f) = vi(f)Sea(f) (11.12)
Speys(f) = Ssaa(f) = [1— vi5(F)] Sss( ) (11.13)

From Equations (11.10) and (11.13), we see that the residual spectral density functions
So.1(f) and Ss3.1(f) are computed from the ‘usual’ spectral density functions and ordinary
coherence functions. Similarly, the residual spectral density function S3.1(f) which is the
cross-spectral density between Xo.1 and Xs.1 can aso be expressed in terms of the spectral
density functions formed from the measured signal x;, X, and x3. We do this as follows.

From the definition of the cross-spectral density function, S3.1(f) is
o E[XG () Xsa(F)]

Ssa(f) = Jim -
Since X2 =Y+ Xo1=L1X;+ Xo1 and Xz =Ys+ X33 =LoX;+ X33, and using
Equations (11.8) and (11.11), it can be shown that

Su(f)Sis(f)

Saa(f) = Sa(f) - T Su(f) (11.15)

Sotheresidual spectral density S3.1( f) can be computed in terms of the usual spectral density
functions.

We now introduce the concept of the partial coherence function. Thisis the ‘ordinary’
coherence function but linking residual random variables. The partial coherence function
between x,.; and x3.1 can be computed using the above results, and is

|S3a(f)I?
S2.1(f)Ss31(f)

(11.14)

vaa(f) = (11.16)
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Stage 2

In Figure 11.5, Stage 2 depictsthe ‘removal’ of x,.1 from xz.1. Asbefore, for the pair x,.1 and
X3.1, the optimal filter is

S31(f)
Soa(f)
Inthefigure, x3.1» denotes the residual variable arising when the linear effects of both x; and

Xz areremoved from X3. The output powers of uncoherent and coherent components with x;.1
are

La(f) = (11.17)

Sy (f) = Sn(f) = Ssr2(f) = [1— ¥5.1(F)] Saa(f) (11.18)
Sive(f) = vza1(f)Sma(f) (11.19)

Note that Ss3.1.2( ) isthe power spectral density of that part of y unaccounted for by linear
operations on x; and Xy, i.e. the uncorrelated noise power. Now, combining the above results
and using Figure 11.5, the power spectral density of y can be decomposed into

Sy(f) = Sa(f) = Spuyu() + Speye(F) + Sy ()

= yf3(f)Ssa(f) part fully coherent with x;
+ v51(1)Ssa(f) part fully coherent with x,
after x; has been removed from x, and X3
+[1— y21(f)] Sssa(f)  uncoherent with both x; and x (11.20)

This eguation shows the role of the partial coherence function.
Note that by following the signal flow in Figure 11.5, one can easily verify that

Hi(f) = La(f) — La(f)Ls(f) (11.22)
and
Hao(f) = Ls(f) (11.22)

A multiple coherence function is defined in a manner similar to that of the ordinary
coherence function. Recall that the ordinary coherence function for the system shown in
Figure 11.3 can be written as yxzy(f) = (Syy(f) — Sn(f))/Sy(f). Similarly, the multiple
coherence function denoted yy%X( f) isdefined as

Sy() = Sn(T)
Sy(f)
That is the multiple coherence function yyz:x( f) isthe fraction of output power accounted for
via linear operations on the inputs; it is a measure of how well the inputs account for the
measured response of the system. For the example shown above, it can be written as
S3(f) — Sg31.2(f)
S3(f)

Note that the nearer yy%X( f) is to unity, the more ‘completely’ does the linear model apply
to the three components. Using Equations (11.12) and (11.18), the above equation can be

7E(f) = (1123

vex(f) = (11.24)
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written as
V() = 1= (1= yf(H)) (1= v&4(1)) (11.25)

which showsthat it can be computed in terms of partial and ordinary coherence functions. See
Sutton et al. (1994) for applications of the multiple coherence function.

Computation of Residual Spectra and Interpretation in Terms
of Gaussian Elimination

The above example illustrates the methodology. A more general computational formulation
is given below which operates on the elements of the spectral density matrix of the measured
signals. The residual spectral density function S31(f) given in Equation (11.15) can be
generalized as

, C ey Sk(f)Sq(F)
Sik(f) = Sj(f) e (11.26)
This can be extended as
Sj~k,|(f):Sj-k(f)_M (11.27)

Sik(f)
We use the above expressions to ‘ condense’ successive cross-spectral density matrices, e.g.
Su(f)  So(f)  Ss(f)

S1(f)  So(f)  Ss(f)
S(f)  So(f)  Ss(f)

This can be extended to larger systems. This‘ condensation’ can be interpreted through Gaus-
sian elimination (row manipulations) as follows (wherer; istheith row):

Steplir, —>ro—rg X (Sﬂ(f)); 3 —rz—rpx <%l(f)) gives

N |:822~1(f) S31(f)

Se2(f) 533_1(f)} = [Swaa(f)] (11.28)

Su(f) Su(f)
Su(f)  Sw(f)  Si(f) Su(f)  Se(f) Ss(f)
Su(f)  S(f) Ssu(f) | = 0 S21(f)  S3a(f) (11.29)
Su(f)  So(f)  Ssa(f) 0 Spa(f)  Ssza(f)
e Spa(f) .
Step 2: r3 r3—rox <Szz.1(f)> gives

Su(f)  Sp(f)  Sws(f) Su(f)  Spf) Sis(f)
0 S21(f)  Sza(f) | = 0 S21(f)  Sza(f) (11.30)
0 Sa(f)  Ssa(f) 0 0 S3.1.2(f)

i.e. the residual spectral density functions arise naturally.
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Further interpretation can be obtained by starting from Figure 11.2 again. Since X3(f) =
Hy(f)Xq(f) 4+ Ha(F)Xo(f) + N(f), the cross-spectral density functions are written as

Sis(f) = Ha(F)Su(f) + Ha(f)Sia(f)
S3(f) = Hi(F)Sa(f) + Hao(F)Sa(f) (11.31)

Solving for Hy(f) and Hy(f) using Gaussian elimination (eliminate theterm Hi(f)S:(f)in
the second Equation of (11.31)) gives

Su(F)H(f) + Sa(f)Ha(F) = Sis(f)

S (f)Si2(f) _ ~ Su(f)Ss(f)
(&z(f) - W) (1) = Sa() - 2 (11.32)
Thus,
_ Sia(f) _ Ss(f) - S(f) Ssa(f)
(D=5 m ™ M= 0 ™ 5 %D

11.3 PRINCIPAL COMPONENT ANALYSIS

Although residual spectral analysis is useful in source identification, condition monitoring,
etc., the shortcoming of the method is that prior ranking of the input signalsis often required
(see Bendat and Piersol, 1980), i.e. apriori knowledge. Principal component analysis (PCA)
isageneral approach to explore correlation patterns (Otte et al., 1988).

Suppose we have three processes X3, Xz, X3. Then we start as before by forming the
cross-spectral density matrix

Su(f)  Sw(f)  Swe(f)
S=| Su(f) So(f) Ss(f) (11.33)
Su(f)  Sf)  Ssa(f)

Notethat thisisaHermitian matrix, i.e. S= S*T = SM, where S" isthe conjugate transpose.
If thereis alinear relationship between the processes x;, then the determinant of this matrix
iszero (i.e. itsrank islessthan three). If thereis no linear relationship then its rank is three.

Suppose the matrix isfull rank (i.e. rank 3). Then eigenvalue (or singular value) decom-
position gives

S= UAUM (11.34)

where A isadiagonal matrix that contains eigenvalues of S, and U is aunitary matrix whose
columns are the corresponding eigenvectors. We may describe the physical interpretation of
this as follows. Suppose there exist three (fictitious) processes z;, z,, z3 that are mutually
uncorrelated and from which x4, X, X3 can be derived, i.e. for each frequency f,

X1 (f) mu(f)  me(f)  maa(f) Zy(f)
Xo(F) | = | ma(f)  ma(f) maa(f) Zy(f) (11.39)
X3(f) mar(f)  ma(f)  mas(f) Z3(f)

i.e. X(f) =M(f)Z(f). Conceptually, this can be depicted asin Figure 11.6.
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) — — X
Uncorrelated Measured
. L) ———> M —> X, .
variables signals
Iy ———p —> X3

Figure11.6 Virtua signals and measured signals

Then, forming the spectral density matrix gives

| Sex(f) = S=M*(D)Sz(HMT (1) (11.36)

Since the z are mutually uncorrelated, Syz(f) is adiagonal matrix. Thus, Equation (11.36)
has the same form as Equation (11.34),i.e. Sz(f) = A and M*(f) = U. So, the eigenvalues
of S are the power spectra of these fictitious processes and their (relative) magnitudes serve
to define the principal components referred to, i.e. z are the principal components.

Note however, that, it isimportant not to think of these as physical entities, e.g. itisquite
possible that more than three actual independent processes combine to make up Xy, X2 and Xs.
The fictitious processes z;, z,, z3 are merely a convenient concept. These signals are called
virtual signals. Note also that the power of these virtual signalsis of course not the power
of the measured signals. It is therefore interesting to establish to what degree each principal
component contributesto the power of the measured signals. To seethis, for example, consider
X1(f) which can be written as (from Equation (11.35))

X1(f) = mua(f)Za(F) + maa(F)Zo(f) + maa(F)Zs(f) (11.37)

Then, sincethe z; are uncorrelated the power spectral density function S, ( f) can bewritten
as

Sext (F) = IM11(F)12 Syyz, (F) + IMaz( £)1% Spzp (F) + IMaa(F)12 Spazg (1) (11.38)
and the power dueto z; is y2, ()Sqx(f), where
S (D)?
Slel(f)S(lxl(f)

Thisisavirtual coherence function. More generally, the virtual coherence function between
theith virtual input z and the jth measured signal x; can be written as

Vi (f) = (11.39)

’SZin(f)|2

, _ =\
Vi (1) = Sz (1)Sqx ()

(11.40)

Since the cross-spectral density function between z and x; can be obtained by

| Suxy (D) = myi (82 (D)] (11.41)
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we see that the virtual coherence function: (i) can be computed from the eigenvalues and
eigenvectorsof S (ii) gives ameasure of what proportion of S, (f) comes from aparticular
component of z .

For the details of practical applications of principal component analysis, especially for
noise source identification problems, see Otte et al. (1988).

Relationship to the System I dentification M ethods*

It is interesting to relate principal component analysis (PCA) to the system identification
methods we described in Chapter 9. Let x denote a column vector of observations (e.g. x
(input) and y (output) in Figure 9.9 in Chapter 9) with correlation matrix

R = E [xx"] (11.42)
Let x be derived from a set of uncorrelated processes z (through the transformation matrix T)
by
x=Tz (11.43)
Then, the correlation matrix is
Rx =TE[zz"]TT = TR,T' (11.44)

Since the elements of zareuncorrelated, R,, = A, where A isadiagonal matrix that contains
eigenvalues of Ry. So,

Re=TATT (11.45)

This is an eigendecomposition of the correlation matrix Ry, and T is an orthogonal matrix
whose columns are the corresponding eigenvectors, i.e.

tn
T=[t tz]z[t21 tzz] (11.46)

Let us apply this to the pair of variables (x (input) and y (output)) asin Figure 9.9 in
Chapter 9. Assuming zero mean values, the correlation matrix is

X Elxx] E[xy] i sz Oxy
R« = E X = = 11.47
- Hy}[ y]} [E[xy] El |~ Lo oyz} (47
The eigenvalues are
2
— A
det(Rex — A1) = “Xa Y =0 (11.48)
Xy y
i.e
ol +o; i\/ o2 — +402
A2 = 5 (11.49)

1 See Tan (2005).
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Figure11.7 Eigenvectorst; and t,

The eigenvectors t; and t, corresponding to these eigenvalues are orthogonal and define a
basis set of the data, as shown in Figure 11.7.

From the figure, the slope of the eigenvector corresponding to the largest eigenvalue is
the PCA ‘gain’ relating y to x. Using the eigenvectors T = [t;  t»], Equation (11.43) can
be expanded as

X =11z +to2

Yy =1nzy +tn2 (11.50)
We note that the first principal component z; is related to the largest eigenvalue, and the part
dueto z; isty1z; for input x, and t,;z; for output y. The gain relating y to x (corresponding to
thefirst principal component z;) isthen given by theratio ty; /t11. Theratio can be found from

(R — Al)t1 = 0 (11.51)

and so

2
ta _ 0f—of+y(0f—0)* +403,
ti 2‘7xy
We see from thisthat Equation (11.52) isthetotal |east squares gain (at, see Equation (9.59)).

This equivalence follows from the fact that both the PCA approach and TLS minimize the
power ‘normal’ to the ‘principal’ eigenvector.

(11.52)






Appendix A

2raM _
Proof of f 2m3pzral gy — 1

Wefirst consider the contour integration of afunction F (z) = el f (z) = el?/zaround aclosed
contour in the z-plane as shown in Figure A.1, wherez = x + jy.

Cr
r\cp X
-R -pTp R

FigureA.1 A contour withasinglepoleat z= 0

Using Cauchy’s residue theorem, the contour integral becomes

) -p . ' R
iz elz elX elz elX
f_d —/ _dz+/—dx+/ —dz+/—dx:0 (A1)
z cr 2 X Cp z X
R 0

From Jordan’slemma, the first integral on the right of the first equality iszeroif R — oo, i.e.
limgo Jc, €% f(2)dz = 0. Letting z = pel” and dz = jpe!’ds, where 6 varies from 7 to
0, the third integral can be written as

eJZ jo
/ . —dz=j /eﬂﬂe )do (A.2)
C

P
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Taking the limit as p — O, this becomes

0
Iing)[j /eﬂﬂe“’)de] =jo° = —jn (A.3)
p—>

Now, consider the second and fourth integral together:

R R . —p R
el el COSX + j sinx CcosX + j sinx
[ Lo [ e oIS [ oo jsne

A4
< dx (A.4)
“R P

P
Since cos(x)/x is odd, the cosine terms cancel in the resulting integration. Thus, Equation
(A.4) becomes

R

R .
jX jX
/_e dx +/—ex dx=2j/—smxd

R p)

(A.5)

P
Combining the above results, for R — oo and p — 0, Equation (A.1) reduces to

R 0
sin sin
lim {Zj/—xdx} =2j/—xdx= i (A.6)
=0 X X
R—o0 0 0
Thus, we have the following result:

00 .

sinx T

—dx = — A7
[ Fax=7 (A7)
0

We now go back to our problem. We have written

sin2raM
lim 2M —— = §(a
M— o0 2maM ( )

in Chapter 3. In order to justify this, the integral of the function

sin2zavi
f(a) =2M —
@ 2mraM
must be unity. We verify this using the above result. Letting X = 2raM and dx = 27 Mda,
we have

—00

sin 2w avi r sinx dx 1 sinx

f = 2M 2M——— = — —_— A.

f(a)da / Znan 93 / X 27M 71/ dx (A-8)
From Equation (A.7),

o0 (o]

/ﬂdX=2/ﬂdX=n
X X

—00 0



APPENDIX A 377

thus Equation (A.8) becomes

r  sn2raM
oM a1 A9
/ 2aM (A-9)

—0Q

This proves that the integral of the function in Figure A.2 (i.e. Figure 3.11) is unity.
2M

1
a=—-
/ 2M
7AY

A a
\/\/l‘(/\/

Figure A.2 Representation of the delta function using a sinc function







Appendix B
Proof of | Sy (f)|* < Sx(F)Sy(f)

Suppose we have Z+(f) consisting of two quantities X+ () and Yt (f) such that
Z1(f) = up X7 (f) + u2Y7(f) (B.1)

where u; are arbitrary complex constants. Then the power spectral density function S,,(f)
can be written as

suf) = Jim EEDZOL_ i (0, (s 5 Sy + 0585w

- wl[e S]]

—u"sy (B.2)

where Sisthe cross-spectral density matrix.

S is a Hermitian matrix. Moreover, this cross-spectral density matrix is positive semi-
definite, i.e. for all non-zero (complex) vectors u, u™ Su > 0 since the power spectral density
function S,,( f) isnon-negative for all frequencies f.

Since the matrix Sis positive semi-definite, its determinant must be non-negative, i.e.

Su(f)  Sy(f)|_

Sx(f) Sy(f)| = ° (B3
or Sa(F)Sy () — Sy(F)Sx(f) > 0,ie.
Sy(F)Sx(f) < Su(F)Syy(f) (B.4)
Since S(f) = S (f), it follows that
Sy(F)]? < Sx(F)Sy(f) (B.5)

Note that it can easily be verified that a multi-dimensional cross-spectral density matrix S
(say, n x n) isaso apositive semi-definite Hermitian matrix.
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Appendix C

Wave Number Spectra
and An Application

Rather than a‘time series’ we may consider afunction of ‘ space’. This might be demonstrated
with height indications on a rough road, for example, as shown in Figure C.1.

z(x)

— ~—~
X, & X,

FigureC.1 Height profile of arough road

If the process is ‘spatialy stationary’ (homogeneous) we may characterize it by the
autocorrelation function

Rzz(X2 — X1) = E[2(X1)Z(x2)] (CY

or R(§) = E[z(x1)z(x1 + §)], where & = x2 — X3 which isthe spatial separation of the two
points.

Now we shall consider a spectral analysis of the process. If the independent variable is
time then we speak of w (rad/s). Here we shall use k (rad/m), and this is called the wave
number. Note that @ = 27 /T shows how fast it oscillates (in radians) in a second, while
k = 27 /A represents how many cycles (in radians) of the wave arein ametre, where 1 isthe
wavel ength. Then, the wave number spectrum is defined as

o0

Sa(k) = / Re(6)e 1 di (C2)

—00
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Compare this expression with the usual spectral density function, S (w) = ff"oo Rex (1)
e 1“Tdr. We note that period T = 27 /w is now replaced by wavelength » = 27 /k. (See
Newland (1984) for more details.)

Application

Consider avehiclemoving over rough ground at speed V asshown in Figure C.2. The equation
of motion for this simple model ismy(t) = —k[y(t) — z(t)] — c[y(t) — z(t)], so that

my(t) + cy(t) + ky(t) = cz(t) + kz(t) (C3)

The problem we are concerned with is: given a specific road property R, (£), calculate the
value of the variance of y(t) as the vehicle moves over the ground at constant speed V.

Ve _T y(t)

T 2(t)
FigureC.2 A vehicle moving over rough ground at speed V

If wetreat z(t) asastationary random variable, the variance of y(t) can be written as (we
assume y(t) has a zero mean value)

E0] = 5 [ Spedo = o [ IH@)P Sa@do 4

where the system frequency response function is
k+ jcw
H) = ———+—
@) K—mw?+ jcw

Now, it remains to obtain S,,(w) while we only have S,,;(k) at present, i.e. we must interpret
awave number spectrum as a frequency spectrum. We do this as follows. First, we convert a
temporal autocorrelation to a spatial one as

Rez(7) = E[z(t)z(t 4 )] = E [z(x()z(x(t + 7))] = E[2(X)z(X + V)] = Ry(V1)

(C5)
and so
Su(w) = / Ry(r)e *7dr = f Rz(Vr)e 1*tdr (C.6)

Letting Vt = &, this can be rewritten as

o0

1 ) 1
Sul) = / Ra(6)e 1V dE = o Suk)lcuy (C7)

—0Q
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Thus, to obtain the frequency spectrum from the wave number spectrum we simply replace k

by w/V and divide by V. Note that the speed can be expressed by
w w

V=Ffl=—>i=—

2 k

For a simple example, if the road property is Ry,(£) = e %2¢! then the wave number
spectrum and the power spectral density function are
0.4v

Sa(k) = 0.04V2 + o2

ooarie M9 Selo)=

respectively.






Appendix D

Some Commentson the Ordinary
Coherence Function ~5,( f)

The Use of the Ordinary Coherence Function

If we wish to estimate the transfer function linking two signals from S,y(f) = H(f)S«(f),
i.e. by formingtheratio H(f) = S(f)/S«(f), thenwemay compute the coherencefunction
whichisadirect measureof the‘validity’ of thisrelationship. Thatis, if yxzy(f) ~ 1thetransfer
function H(f) iswell estimated; if )/Xzy(f) islow, the estimate of H(f) isnot trustworthy.

Also, this concept can be applied to multiple-source problems. For example, let x(t) and
y(t) be the input and the output, and suppose there is another input z(t) which we have not
accounted for and it contributesto y(t) as shown in Figure D.1.

X0 h —

@—» y(t), output

2(t) o) 1 ny(t)

FigureD.1 Multiple-source problems

If z(t) is uncorrelated with x(t), then its effect on the coherence function between x(t)
and y(t) is the same as the measurement noise ny(t) asin Case (&), Section 9.2.

The Use of the Concept of Coherent Output Power

Consider the experiment depicted in Figure D.2. A measurement ym(t) is made of sound from
aplate being shaken with the addition of background noise n(t) from a speaker, i.e.

Ym(t) = y(t) + n(t) (b.1)
where y(t) is the sound due to the plate and n(t) is the noise due to the speaker.
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Accelerometer, x(t)

Speaker, n(t)
2
% %‘- Plate

Mic., yp,(t) Shaker
FigureD.2 Measurements of acoustic pressure resulting from avibrating plate

From the coherence measurement szym( f) and the power spectral density S, y,.(f) we
can calculate the power at the microphone due to the plate by

Sy(f) = ¥ (H) Sy (F) (D.2)
Thisisonly satisfactory if x(t) isa‘good’” measurement of the basic source, i.e. the vibration
signa x(t) must be closely related to the radiated sound y(t). An example where this might
not be so is as shown in Figure D.3.

Speaker, n(t) Accelerometer, x(t)

A
?

Mic., yi,(t) Motor/blower

FigureD.3 Measurements of acoustic pressure due to a motor/blower

Now x(t) will not be agood measurement of the primary noise sourcein general, i.e. the
accelerometer will not measure the aerodynamic noise.



Appendix E

L east Squares Optimization:
Complex-Valued Problem

Consider the least squares problem (Case 1 in Section 9.3) which finds the optimal parameter
a; that fitsthe data such that y = a; x, where the objective function is given by

1 N
= NZ(M — a1x)?
i=1

If x and y are complex valued, then we may find an optimal complex parameter a;, where the
objective function is

Zly.—am = Z(y. — i)y — aix) (ED)

Letxi =X r+ X1, Yi =VYi.r+ Vi ada; = ag + ja. Then Equation (E.1) can be
written as
N

1
J = N ; [(yﬁR + yﬁ,) — 2ar(Xi RYiR + Xi.1Yi1)
+2a (X 1Yi,R — Xi.RYi1) + (8% + a?) (xr + Xiz,l)] (E2)

Thisisareal quantity. To minimize J; with respect to both ag and a;, we solve the following
equations:

3y 18

o = N 2 [F2XRYLR + XuVi) + 28R (xR +X)] = O

aR i=1 E.3)
CIN -
dar NZ[Z(XI ViR = XiRYi1) + 28 (X'k + X7))] = 0
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Solving these equation gives
N N

> (X.RYiR + X1 Y1) 2 (Xi,RYil — Xi,1%i.R)
aR = = and a = =1

(Xiz,R + Xiz,l)

N
=1

=

(PR +x1)

Thus the optimal complex parameter a; can be written as

N N
. [(%rYi.R + X1 Yid) + ] (RYLI — X1 YiR)] 2 XY
a=ar+ja =" _ == (E4)
> (R + %) > Ixil?
i= i=1
Similarly, the complex form of a, and ar (Case 2 and Case 3 in Section 9.3) can be found as
N 2
2 Ivil
a="t— (E.5)
2 ¥X
i=1
NN NN 2 N 2
(Zlyil - 2 Ixil >+ (leil = 2 Il ) + 412 XY
i=1 i=1 i=1 i=1 i=1
ar = N (E6)
2 Y
i=1

Note the location of conjugates in the above equations, and compare with the frequency
response function estimators Hy (), Ha(f) and Hy () givenin Section 9.3.



Appendix F

Proof of Hy(f) — Hiy(f)ask(f) — oo

We start from Equation (9.67), i.e.

S (1) = (0B 1)+ B (D6 (1) = Gy (D] + 4[S( D] (1)
25,4 ()
Let «(f) = 1/¢; then the right hand side of the equation can be written as

Hw(f) =

(F1)

16) Siom(D2 = (D By (1) = 2in (N8 D + Gy (22 + 48 e

g(s) B 2s’mxm(f)8
(F2)
Now, taking the limit ¢ — 0 (instead of ¥k — o0) and applying L' Hopital’srule, i.e.
f(e) . fe)
M) ~ Byt
we obtain
Fe) S0+ 3 (& (1) (<280 (N8mn( ) + 4 (S (1N[)
SO 28, (1)
S0 = 8D +2 Gl ) SO S~ [Sam (O
28(1) ()
— :S:mYm(f):SWVm(f) — :S’mxm(f):S(mYm(f)
S (NSmin (1)~ Serin (NS (1)
- 25 = &

This proves the result.
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Appendix G

Justification of the Joint Gaussianity
of X(f)

If two random variables X and Y arejointly Gaussian, then theindividual distribution remains
Gaussian under the coordinate rotation. This may be seen from Figure G.1. For example, if

X" and Y’ are obtained by
X’ | cosg —sing | X
[Y/} B [simp cos¢ } [Y] ©D

then they are still normally distributed. For acomplex variable, e.9. Z = X + Y, the equiv-
alent rotation is e/? Z. If two random variables are Gaussian (individually) but not jointly
Gaussian, then this property does not hold. An example of thisisillustrated in Figure G.2.

p(x, y)

/{I}'h \
0

FigureG.1 Two random variables are jointly normally distributed

Now, consider a Gaussian process X(t). The Fourier transform of x(t) can be written as
X(F) = Xe() + 1 Xs(f) G2
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Figure G.2 Each random variableis normally distributed, but not jointly

where X.(f) and Xs( f) are Gaussian since x(t) isGaussian. If these arejointly Gaussian, they
must remain Gaussian under the coordinate rotation (for any rotation angle ¢). For example,
if el?X(f) = X/(f)=X.(f)+ jX,(f) then X/(f) and X.(f) must be Gaussian, where
XL(f) = Xe(f)cosg — Xs(f)sing and X (f) = Xc(f)sing + Xs(f) cose.

For a particular frequency f, let ¢ = —2nfto. Then e 127fo X () is a pure delay, i.e.
X(t — to) in the time domain for that frequency component. If we assume that x(t) is a sta-
tionary Gaussian process, then x(t — to) is also Gaussian, so both X (f) and X(f) remain
Gaussian under the coordinaterotation. Thisjustifiesthat X.(f)and Xs( ) arejointly normally
distributed.



Appendix H

Some Commentson Digital Filtering

We shall briefly introduce some terminology and methods of digital filtering that may be
useful. There are many good texts on this subject: for example, Childers and Durling (1975),
Oppenheim and Schafer (1975), Oppenheim et al. (1999) and Rabiner and Gold (1975). Also,
sound and vibration engineers may find some useful conceptsin White and Hammond (2004)
together with some other advanced topicsin signal processing.

The reason for including this subject is because we have used some digital filtering
techniques through various MATLAB examples, and also introduced some basic conceptsin
Chapter 6 when we discussed a digital LTI system, i.e. the input—output relationship for a
digital system that can be expressed by

N M
ym =—Y ayn-k+Y bxn-r) (H.2)
k=1 r=0

where x(n) denotes an input sequence and y(n) the output sequence. This difference equation
is the general form of a digital filter which can easily be programmed to produce an output
sequence for a given input sequence. The z-transform may be used to solve this equation and
to find the transfer function which is given by

M
bz
H = Y@ _ =0 (H.2)
X(2) 14 % —
k=1

By appropriate choice of the coefficientsa, and by and the orders N and M, the characteristics
of H(z) can be adjusted to some desired form. Note that, since we are using a finite word
length in the computation, the coefficients cannot be represented exactly. Thiswill introduce
some arithmetic round-off error.
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In the above equations, if at least one of coefficients ay is not zero the filter is said to be
recursive, while it is non-recursive if all the coefficients a, are zero. If the filter has a finite
memory then it is called an FIR (Finite Impulse Response) filter, i.e. the impulse response
sequence has a finite length. Conversely, an 1IR (Infinite Impulse Response) filter has an
infinite memory. Note that the terms ‘recursive’ and ‘non-recursive’ do not refer to whether
the memory is finite or infinite, but describe how the filter is realized. However, in general,
the usual implementation isthat FIR filters are non-recursive and | IR filters recursive.

There are many methods of designing both types of filters. A popular procedure for
designing IIR digital filtersis the discretization of some well-known analogue filters. One of
the methods of discretization is the ‘impulse-invariant’ method that creates a filter such that
its impulse response sequence matches the impulse response function of the corresponding
analogue filter (see Figure 5.6 for mapping from the s-plane to z-plane). It is simple and easy
to understand, but high-pass and band-stop filters cannot be designed by this method. It also
suffersfrom aliasing problems. Another discretization method, probably more widely used, is
the ‘bilinear mapping’ method, which avoids aliasing. However, it introduces some frequency
distortion (more distortion towards high frequencies) which must be compensated for (the
technique for the compensation is called ‘ prewarping’).

FIR filters are often preferably used since they are always stable and have linear phase
characteristics (i.e. no phase distortion). The main disadvantage compared with IIR filters
is that the number of filter coefficients must be large enough to achieve adequate cut-off
characteristics. There are three basic methods to design FIR filters: the window method, the
frequency sampling method and the optimal filter design method. The window method designs
adigita filter in theform of aFourier serieswhich isthen truncated. Thetruncation introduces
distortion inthefrequency domain which can be reduced by modifying the Fourier coefficients
using windowing techniques. The frequency sampling method specifies the filter in terms of
H (k), where H (k) isDFT[h(n)]. Thismethod isparticul arly attractivewhen designing narrow-
band frequency-sel ectivefilters. The principle of optimal filter design isto minimize the mean
square error between the desired filter characteristic and the transfer function of thefilter.

Finally, we note that IIR filters introduce phase distortion. This is an inevitable con-
sequence of their structure. However, if the measured data can be stored, then ‘ zero-phase’
filtering can be achieved by using the concept of ‘reverse time'. Thisis done by filtering the
data‘forward’ and then ‘backward’ with the same filter as shown in Figure H.1.

x(n) ¥1(n) Ti ¥2(n) AW, Ti y(n)
— @ > reverse m HE@) *| reverse ’

FigureH.1 Zero-phase digita filtering

The basic point of this scheme is that the reverse time processing of data ‘undoes’ the
delaysof forward timeprocessing. Thiszero-phasefilteringisasimpleand effective procedure,
though there is one thing to note: namely, the ‘ starting transients’ at each end of the data.
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Aliasing, 123, 126128, 140-144, 181
All-pass filter, see Filter, al-pass
Amplitude Modulation, see Modulation, amplitude
Analogue-to-digital conversion, 131-134
Analogue-to-digital converter (ADC), 130, 131
Analytic signal, 91
Anti-aliasing filter, see Filter, anti-aliasing
Anti-imaging filter, see Filter, reconstruction
Autocorrelation coefficient, 225, 228
Autocorrelation function, 225-227, 231

computational form, 231, 325

estimator, 323

examples, 234-240, 255-258, 259261, 274

properties, 228

sine wave, 234-235, 255-256

square wave, 238-239

time delay problem, 237-238, 256258

transient signal, 239-240

viaFFT, 325-326

white noise, 236
Autocovariance function, see Autocorrelation function
Auto-regressive (AR), 149
Auto-regressive moving average (ARMA), 149

Band-limited, 128. See also White noise, band-limited
Bandwidth

3dB, 99, 329, 332

noise, 99, 100, 332

resolution, 340, 341, 342, 344
Bandwidth-time (BT) product, see Uncertainty principle
Bias, 94, 318. See also Error; Estimator errors
Bivariate, 201, 205, 206

Bounded input/bounded output (BIBO) stable, 87, 149
Butterworth, see Filter, low-pass

Causal, 75, 76, 147
Central limit theorem, 205, 213-214
Central moment, see Moment, central
Cepstral anaysis, 73
Chebychev, see Filter, low-pass
Chi-squared (x2) distribution, 335-336
Coherence function, 284-287, 385

effect of measurement noise, 285-287

estimator, 349

multiple, 368

partial, 367

virtual, 371
Coherent output power, 286, 385
Confidenceinterval, 319

spectral estimates, 345-347
Conjugate symmetry property, see Symmetry property
Convolution, 3, 75-77, 147-148, 182-183

circular, see Convolution, periodic

fast, 164

integral, 75-76

linear, see Convolution, sum

periodic, 162163, 182-183

sequences, see Convolution, sum

sum, 147-148, 164, 170-171, 182-183
Correlation, 206

coefficient, 206, 215-216
Correlation function, see Autocorrelation function;

Cross-correlation function

Cost function, see Objective function
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Covariance, 206
Covariance function, see Autocorrelation function;
Cross-correlation function
Cross-correlation coefficient, 228
Cross-correlation function, 227-228, 231
computational form, 231, 325
estimator, 324
examples, 240-242, 258-266, 273-274
properties, 228-229
time delay problem, 241-242, 261-266
Cross-covariance function, see Cross-correlation
function
Cross-spectral density function, 247
estimator, 292, 347, 348
examples, 249-251, 266-275
properties, 247-249
raw, 347, 348
smoothed, 347, 348
time delay problem, 250251
Cumulative distribution function, see Distribution
function
Cut-off frequency, 129, 130

Data truncation, 94-96, 109-114, 155-156, 158160,
171-174. See also Fourier series, computational
consideration

Data validation, 136

Decimation in time (DIT), 165

Deconvolution, see Cepstral analysis

Degrees of freedom, 335, 340, 344, 345, 346

Delta function, 38—-39, See also Impulse

Dirac delta, 38

Fourier transform, see Fourier integral, Dirac delta;
Discrete Fourier Transform, Kronecker delta

Kronecker delta, 146

properties, 39-40

Deterministic, see Signal, deterministic

Digital filter, see Filter, digital

Digital-to-analogue converter (DAC), 135, 139

Discrete Fourier transform (DFT), 50, 153155,

156
inverse (IDFT), 51, 154
Kronecker delta, 160
properties, 160-161
scaling effect, 158-160

Dirichlet conditions, see Fourier series, convergence

Dispersion, see Group delay

Distribution function, 199, 200

Dynamic range, 130, 133, 134

Echo, 7273, 103-104

Ensemble, 220

Ensemble average, 223-224
autocorrelation function, 226227, 255-256
probability density function, 253-254

Envelope analysis, 91
Ergodic, 229
Error, see also Estimator errors
bias error, 319
random error, 319, 352
RMSerror, 319
Estimator errors, 317-320
autocorrelation function, 323-324
coherence function, 349-350, 358-360
cross-correlation function, 324-325
cross-spectral density function, 348-349, 354-358,
360-362
frequency response function, 351-352
mean square value, 321-322
mean value, 320-321
power spectral density function, 327-330, 334-337,
339-342, 343-344, 345, 354-358
table, 352
Even function, 37, 44, 59
Expectation, 202
Expected value, 203. See also Ensemble average
Experiment of chance, 194
Event, 194
agebra, 194-195
equally likely, 194, 196

Fast Fourier transform (FFT), 164-166. See also
Discrete Fourier transform
Filter
al-pass, 85
anti-aliasing, 128-131, 143
band-pass, 82
constant bandwidth, 330
constant percentage bandwidth, 331
digital, 148, 393-394
low-pass, 82, 129
octave, 331
reconstruction, 139
third (1/3) octave, 331
Filter bank method, 327. See also Power
spectral density function, estimation
methods
Finite Impulse Response (FIR), 265, 394
Folding frequency, 127
Fourier integral, 57-61
Dirac delta, 62
examples, 62-67
Gaussian pulse, 66
inversion, 60-61
pair, 59, 60
periodic function, 67
properties, 67-71
rectangular pulse, 64
sine function, 63
table, 68
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Fourier series, 31-34, 41, 42—43. See also Fourier
transform
complex form, 4243
computational consideration, 4648, 49, 54-56.
See also Data truncation
convergence, 36
even function, 38
odd function, 38
rectangular pulse, 44-45
relationship with DFT, 48, 50-51
square wave, 34-36, 49
Fourier transform
continuous signal, see Fourier integral
convolution, 70, 152
descrete-time, 152
differentiation, 70
discrete, see Discrete Fourier transform
product, 71
properties, see Fourier integral, properties; Discrete
Fourier transform, properties
sampled sequence, 121, 153
summary, 168-169
train of deltafunctions, 122
Frequency domain, 20
Frequency modulation, see Modulation, frequency
Frequency response function (FRF), see also System
identification
biasing effect of noise, 294295, 307-312
continuous system, 4, 77-78
curvefitting, 311-313
descrete (digital) system, 150
estimator Hi, 6, 184, 293, 350
estimator Hy, 6, 293
estimator Hz, see System identification, effect of
feedback
estimator Hr, 6, 294
estimator Hyy, 293
Frequency smoothing, 345. See also Power spectral
density function, estimation methods

Gaussian pulse, see Fourier integral, Gaussian pulse
Gaussian, see Probability distribution, Gaussian
Gibbs' phenomenon, 36, 52-53

Group delay, 72, 8285, 104-105

Group velocity, 84

Hilbert transform, 90-93, 106-109

Impulse-invariant, 125, 148
Impulse, see Deltafunction
Impulse response
continuous, 75
discrete, 147
Impulsetrain, 41, 42, 119, 120
Independent, see Statistically independent

Infinite Impulse Response (11R), 125, 394
Instantaneous amplitude, 91
Instantaneous frequency, 91
Instantaneous phase, 91

Inverse spreading property, 63, 64, 101

Kurtosis, 208, 216-218. See also Moment
computational form, 210

Laplace transform, 78, 124. See also z-transform
sampled function, 124, 125

Leakage, 94, 95

Least squares, 289. See also Total least squares
complex valued problem, 387-388

Leptokurtic, see Kurtosis

Linearity, 74

Linear phase, see Pure delay

Linear time-invariant (LTI) system, 73
continuous, 73-81
discrete, 147, 149-150
examples, 78-81

Matched filter, 263
Mean square error, 319. See also Estimator errors
Mean square value, 204, 222, 230, 321. See also
Moment
computational form, 230
Mean value, 32, 203, 222, 230, 278, 317, 321.
See also Moment
computational form, 209, 230
sample mean, see Mean value, computational
form
Minimum phase, 87-90
Modulation
amplitude, 70, 84, 91
frequency, 93
Moment, 203-204, 206, 207-210, 222-223
central, 204
computationa consideration, 209-210
properties, 207
summary, 211
Moving average (MA), 149
Multiple-input and multiple-output (MIMO) system,
363
Mutually exclusive, 195, 196

Noise power, 286

Non-stationary, 224. See also Signals, non-starionary
Nyquist diagram, see Polar diagram

Nyquist frequency, 127

Nyquist rate, 127

Objective function, 289
Odd function, 37, 44, 59
Optimisation, 5. See also Least squares
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Ordinary coherence function, see Coherence function
Orthogonal, 33, 43, 206
Overshoot, see Gibbs' phenomenon

Parseval’s theorem, 45, 61
Passband, 129
Periodogram, 337
modified, 344
raw, 337, 343
Phase delay, 83, 84, 105
Phase velocity, 84
Platykurtic, see Kurtosis
Poisson process, 235
Polar diagram, 60
Power spectral density function, 242245, 327-347
estimation methods, 327-345
estimator, 292, 328, 337-338, 343, 345
examples, 245-246, 270-275
raw, 243, 333, 334, 343
smoothed, 328, 337-338, 343, 345
Principal component analysis (PCA), 370-372, 373
Probability, 194
algebra, 196
conditional, 197
joint, 196
Probability density function, 200201, 220222
chi-sguared, 335
Gaussian bivariate, 205
joint, 202, 222
marginal, 202
sine wave, 232-233, 253-254
Probability distribution, 199. See also Distribution
function
Gaussian, 205
jointly Gaussian, 391-392
normal, see Probability distribution, Gaussian
Rayleigh, 204
standard normal, 205
uniform, 133, 204
Pure delay, 72. See also Group delay; Phase delay

Quantization 11, 131, 132
error, see Quantization, noise
noise, 132

Random, 8, 193. See also Signal, random
Random error, see Error; Estimator errors
Random variable, 198

continuous, 199

discrete, 199

residual, 366

time-dependent, see Stochastic process
Range space, 198
Reconstruction filter, see Filter, reconstruction
Relative frequency, 197, 212-213

Resolution, 157, 174-175. See also Data truncation
Root mean square (RMS), 204. See also Moment

Sample space, 194
Sampling, 119, 131
Sampling rate, 120, 127, 131
Sampling theorem, 137-139
Schwartz'sinequality, 101
Segment averaging, 275, 342—345. See also Power
spectral density function, estimation methods
Shannon’s sampling theorem, see Sampling theorem
Skewness, 207, 208. See also Moment
computational form, 210
Sifting property, 39. See also Delta function, properties
Signal, 6-14, 15, 16, 19-29
amost periodic, 10, 12, 21-24, 28-29
analogue, see Signal, continuous
classification, 7
clipped, 15
continuous, 6
deterministic, 7, 8, 10, 19
digital, see Signal, discrete
discrete, 6
low dynamic range, 14
non-deterministic, see Signal, random
non-stationary, 13
periodic with noise, 13
periodic, 12, 19-21, 26-27, 31
random, 8, 11
square wave, 34
transient with noise, 16
transient, 10, 16, 24, 25
Signal conditioning, 134
Signal reconstruction, see Sampling theorem
Signal-to-noiseratio (SNR), 133
Sinc function, 40, 41, 64, 138
Smearing, 94
Spectra, see Spectrum; Spectral density; Power spectral
density function; Cross-spectral density function
Spectral density, see also Power spectral density
function; Cross-spectral density function
coincident, 248
energy, 62
quadrature, 248
matrix, 364, 370, 379
residual, 367, 369
Spectrum, 43-46. See also Power spectral density
function; Cross-spectral density function
amplitude, 44, 59, 247
line, 44
magnitude, see Spectrum, amplitude
phase, 44, 59, 247
power, 45-46
Stability, see Bounded input/bounded output (BIBO)
stable
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Standard deviation, 204, 209
Stationary, 9, 11, 224
Statistical degrees of freedom, 346. See also Degrees of
freedom
Statistically independent, 197, 206
Stochastic process, 220
Stopband, 129
Symmetry property, 69, 159, 161, 175-177
System identification, 3-6, 183-190, 251,
287-297
effect of feedback, 296297
effect of noise, 294-295
examples, 183-190, 270275, 298-315

Time average, 229-231. See also Ensemble average;
Ergodic
autocorrelation function, 234, 255-256
probability density function, 233, 253-254
Timeinvariance, 74
Time series analysis, 8
Time shifting, 69. See also Pure delay
Total least squares (TLS), 290, 373
Transfer function
continuous system, 78
discrete system, 149
Transmission paths identification, 303-307

Uncertainty, 4
noise, 4-6, 14
Uncertainty principle, 100-101

Unit step function, 66
Unit step sequence, 146
Univariate, 201

Variance, 204, 209, 223, 231, 318. See also Moment;
Estimator errors
computationa form, 209, 231

Wave number spectra, 381
Welch method, see Segment averaging method
White noise, 236, 245, 281
band-limited, 246
Wiener-Khinchin theorem, 244, 247, 334
Window, 94, 96-100
Bartlett, 98, 339
Hamming, 98, 339
Hann (Hanning), 96, 98, 111, 112-117, 339
lag, 337
Parzen, 98, 339
rectangular, 94, 97, 109, 112-117, 339
spectral, 94, 337, 341
table, 100, 338, 341
Tukey, 96
Windowing, see Data truncation

z-transform, 123-124
relationship with the Laplace transform, 124-126
Zero-order hold, 139
Zero padding, 110, 157, 178
Zero phase filtering, 260, 394
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