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Preface

The purpose of this monograph is to offer a comprehensive presentation of methods
for solving systems of linear algebraic equations that typically arise in (but are not
limited to) the numerical solution of partial differential equations (PDEs). Focus is
on the finite element (or f.e.) method, although it is not presented in detail. It would,
however, help the readers to be familiar with some basic knowledge of the finite
element method (such as typical error estimates for second-order elliptic problems).
There are a number of texts that describe the finite element method with various
levels of detail, including Ciarlet [Ci02], Brenner and Scott [BS96], Braess [BO1], Ern
and Guermond [EGO04], Solin [So06], and Elman, et al. [ESWO06]. The presentation
here utilizes matrix—vector notation because this is the basis of how the resulting
solution methods are eventually implemented in practice. The choice of the material
is largely based on the author’s own work, and is also aimed at covering a number of
important achievements in the field that the author finds useful one way or another.
Among those are the most efficient methods, such as multigrid (MG), especially its
recently revived “algebraic” version (or AMG), as well as domain decomposition
(DD) methods. The author found a common ground to present both as certain block-
matrix factorizations. This framework originates in some more classical methods
such as the (block-) approximate (or incomplete) LU (or block-ILU) factorization
methods. This led to the somewhat unusual title of the book. The approach, as well
as the specific topics covered, should offer a different view on topics covered in other
books that deal with preconditioned iterative methods.

This book starts with a motivational introductory chapter that describes the class
of matrices to which this book is mainly devoted and sets up the goals that the author
tries to achieve with the remainder of the text. In particular, it describes sparsity, condi-
tioning, assembly from local element matrices, and the Galerkin relation between two
matrices coming from discretization of the same PDE on coarse and fine meshes (and
nested finite element spaces). The introduction ends with a major strong approxima-
tion property inherited from the regularity property of the underlining PDE. A classical
two-grid method is then introduced that is illustrated with smoothing iterations and
coarse-grid approximation. The motivational chapter also contains some basic facts
about matrix orderings and a strategy to generate a popular nested dissection ordering
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viii Preface

arising from certain element agglomeration algorithms. The element agglomeration is
later needed to construct a class of promising algebraic multigrid methods for solving
various PDEs on general unstructured finite element meshes. Also discussed is the
important emerging topic in practice of how to generate the f.e. discretization systems
on massively parallel computers, and a popular mortar f.e. method is described in a
general algebraic setting. Many other auxiliary (finite element and numerical linear
algebra) facts are included in the seven appendices of the book.

The actual text starts with some basic facts about block-matrices and introduces a
general two-by-two, block-factorization scheme followed by a sharp analysis. More
specific methods are then presented. The focus of the book is on symmetric positive
definite matrices, although extensions of some of the methods, from the s.p.d. case to
nonsymmetric, indefinite, and saddle-point matrices, have been given and analyzed.
In addition to linear problems, the important case of problems with constraints, as
well as Newton-type methods for solving some nonlinear problems, are described
and analyzed. Some of the topics are only touched upon and offer a potential for
future research. In this respect, the text is expected to be useful for advanced graduate
students and researchers in the field. The presentation is rigorous and self—contained
to a very large extent. However, at a number of places the potential reader is expected
to fill in some minor (and obvious) missing details either in the formulation and/or in
the provided analysis.

Specific comments due to Yvan Notay, David Silvester, Joachim Schoberl, Xiao—
Chuan Cai, Steve McCormick, and Ludmil Zikatanov are gratefully acknowledged.
Special thanks are due to Tzanio Kolev for his comments and for providing numerous
illustrations used throughout the book.

The author is thankful to Arnold Gatilao for his invaluable help with editing major
part of the text.

Finally, the help of Vaishali Damle, Editor, Springer is greatly appreciated.

Portions of this book were written under the auspices of the U.S. Department of
Energy by University of California Lawrence Livermore National Laboratory under
Contract W-7405-Eng-48.

Livermore, California
March 2007 Panayot S. Vassilevski
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1

A Finite Element Tutorial

This introductory chapter serves as a motivation for the remainder of the book. In
particular, we illustrate the type of matrices that we focus on (but are not limited to)
and describe the need for methods for fast solution of associated linear systems of
equations. In particular, this chapter provides a brief finite element tutorial focusing
on a matrix-vector presentation.

1.1 Finite element matrices

To be specific, consider the Poisson equation here

A 9%u n 9%u n 9%u f (1.1
— M = — —_— _— = N .
0x2  9y? 972

posed on a polygonal domain @ C R¢. Here, d = 3, but we often consider the case
d = 2. To be well posed, the Poisson equation needs some boundary conditions, and
to be specific, we choose

u=00ndxQ. (1.2)

Norms of functions in Sobolev spaces

In what follows, we consider functions that have derivatives up to a certain order
(typically, first- and second-order) in the L;-sense. The formal definitions can be
found, for example, in Ciarlet [Ci02] and Brenner and Scott [BS96]. We use the
following norms

1/2
2 2 2\1/2
llull = llullo = fu dx dydz and [lull; = (lullg + 1Vulig) "
Q
P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 3
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4 1 A Finite Element Tutorial

where

2+ ou 2+ ou
ay 0z

ou 2\ /2
Vv = — .
Vullo (H o )

The latter expression is only a seminorm and is frequently denoted by |u|;. Finally,

1/2
luelly = (lull} + 1uf3)"

’

where |u|§ stands for the sum of the squares of the Ly-norms of all second deriva-
tives of u.
In general, we may want to explicitly denote the domain 7 C €2, for example,

lulle = fu2 dx

T

1/2

If the domain is omitted, it is assumed that the integration is taken over the given
domain €.

The spaces of functions that are complete in the above norms give rise to the
so-called Sobolev spaces of the given order.

Also, sometimes we use the Ly-inner product of functions denoted by (-, -).

The construction of finite element spaces
The popular finite element method consists of the following steps.

e Partition the domain €2 into a number of simply shaped elements t in the sense
that they cover €2 and have the property that two adjacent elements can share
only a vertex, a face, or an edge (in 3D). In other words, two elements cannot
have a common interior, partial face, or part of an edge only. In what follows, in
two dimensions (2D), we consider triangular elements t. Denote the set of these
elements by 7. The elements are often assumed to be quasiuniform in the sense
that their diameter is proportional to a characteristic mesh-size #. We denote this
property by 7 = 7. A 3D tetrahedral mesh is illustrated in Figure 1.4.

The goal is to select an & small enough to obtain a suitable approximation to the
continuous (infinitely dimensional) problem (1.1)—(1.2).

* Construct a finite element space V = Vj,. For this purpose, we introduce a set of
nodes V;, = {x;}/_,, typically the vertices of all elements t € 7}, in the interior
of Q (because of the boundary condition (1.2)). With each vertex x; € N}, we
associate a basis function ¥;, which is supported in the union of the triangles that
share vertex x;. The function y; restricted to any of the triangles 7 is linear. Also,
¥i(x;) = 1 and, by construction, ¥;(x;) = 0 forany x; € N\ {x;}, so the basis
{1} is often called nodal or Lagrangian. Some nodal basis functions in 2D are
illustrated in Figures 1.1 to 1.3.
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Fig. 1.1.  Fine-grid piecewise linear basis function.

Fig. 1.2.  Fine-grid piecewise quadratic basis function associated with a midpoint of an
element edge.

Then, any function in the finite element space V}, (by definition) takes the form

n
V= Zvi lﬁi.

i=1

Because v; is a Lagrangian basis, we see that v; = v(x;). Thus, there is a one-to-
one mapping between v € V), and its coefficient vector v = (v;)}_, represented
by the nodal values of v on Nj,.

In what follows, we adopt the convention (unless otherwise specified) that the
same letter is used for the f.e. function and in boldface for its coefficient vector with
respect to a given Lagrangian basis.
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Fig. 1.3.  Fine-grid piecewise quadratic basis function associated with a vertex node.
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Fig. 1.4. A 3D mesh.

Weak form and Galerkin finite element discretization

To derive the finite element approximation to the continuous problem (1.1)-(1.2),
we use its “weak formulation”. The PDE is multiplied (tested) by functions ¢ and
integrated over €2, so that after using integration by parts, we end up with the desired

“weak form™:

Q £l Q

du d du d du o
=/ _u_<p+_u_<p i dxdydz
dx dx dy dy 0z 0z
Q
—/ansodé?:(f, w)szcodx. (1.3)
Bl Q



1.1 Finite element matrices 7

Here, n stands for a unit vector normal to €2 (pointing outward from €2). Note
that the integrals above make sense even for functions that are only once piecewise
differentiable. The latter fact is used by the finite element method. Assuming that
¢ = 0 on 9€2, we end up with

a(u, ¢) = (Vu, Vo) =/ Vu-Vodx = (f, ¢) =f fodx. (1.4)
Q Q

The finite element discretization of (1.4) is obtained by the Galerkin method (equiv-
alent to the Ritz method in the present setting); we approximate u with uy € Vj
determined from

/Vuh~Vwidx=/f1/f,-dx, foralli =1,...,n.
Q

Q

Because u, = Z?:l u(x;)yj, we get n equations for the n unknowns uj(x;),
j=1 ..., n

n

> un(x)) f V- Vi dx:fflﬂi, dx, fori=1,...,n.
Q Q

j=1
Introducing A = (a;, ;) with

a,-,,:/vl/fj-vw,-dx= > /vw,»-vwidx,

Q Tix,',xj'ETr

the vector of unknowns X = (u;,(x;))/_,, and the r.h.s. vectorb = ( [, f¥i dx):’zl,
we end up with the discrete problem of our main interest,

Ax =b.

Degrees of freedom (dofs)

It is customary, in finite elements, to use the notion of “degrees of freedom” or simply
dofs. In our setting dofs can be identified with the vertices x;. In general, dofs are
equivalent to unknowns. In some situations we may have several degrees of freedom
associated with a vertex. This is the typical case for systems of PDEs, such as elasticity
equations. Then, in 2D, we have two dofs associated with every vertex of the mesh.

Properties of f.e. matrices
S.p.d.

The finite element method guarantees (by construction) that A is symmetric positive
definite (s.p.d.). Symmetry follows because, from the relation between A and the
bilinear form a(., .) defined in (1.3), we have

wl Av = a(v, w) =a(w, v).
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We also have that v Av = a(v, v) > 0 and that v Av = a(v,v) = 0 implies
Vv = 0. The latter means that v = const and, because v = 0 on 9€2, that v = 0,
hence, v = (v(x;)) = 0. Thus, A is also positive definite.

Sparsity

Another important property is that A has a bounded number of nonzero entries per
row. Notice that row i of A has nonzero entries a; ; only for vertices x; such that x;
and x ; belong to acommon element 7. That s, the number y; of nonzero entries in row
i of A, equals the number of edges of the triangles that meet at vertex x;. This number
is bounded by a topological constant x > 1 (depending on the triangulation 7j),
which can stay bounded when 4 — 0 if, for example, the minimal angle of the
triangles is bounded away from zero.

For the matrix A corresponding to the f.e. Laplacian on a uniform mesh 7 =
1/(n + 1) and 2 = (O, 1)2, it is well known that every row’s nonzero entries, up
to an ordering, equal (—1, —1, 4, —1, —1) (some off-diagonal entries are missing
for rows that correspond to vertices near the boundary of €2).

Matrix diagonal and matrix norm estimate
‘We need the next result in what follows.

Proposition 1.1. Let x; be the number of nonzero entries of row i of A, and let
D = diag(a;;) be the diagonal of A. Then,

v Ay < vl xDyv,
where yx is either the diagonal matrix diag(x;) or simply the constant max; x;.
Proof. We first use the Cauchy—Schwarz inequality in the A-inner product for the
coordinate vectors e; and e;: aiz/. = (eTAei)2 < eiTAeieJTAej = aj;ajj. Then the
sparsity of A, and one more application of the Cauchy—Schwarz inequality confirm

the result:
VTAV = Z V; Z a,:/vj
i J:aij#0

< il Y lagl vl

i Jiaij#0

12, . 1)2
=2 20 @i luila Tl

i j:ai#0

(XY W) (2% wi)”

i jai#0 i jraii#0
2
= Z XidiiV;
i

< max x; v Dv. (1.5)
1
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Remark 1.2. We can actually prove (see Proposition 1.10) a more accurate estimate
of the form (1.5) with x; = max;¢7;. ;e |T], where | - | stands for cardinality; that is,
|7 is the number of dof’s that belong to 7. Thus, for linear triangular elements, x; = 3.

We also have the following property of A.

Proposition 1.3. The norm of the f.e. matrix A exhibits the behavior that:
1Al ~ n9=2,

which is asymptotically (for h +— 0) sharp.

Proof. The proof follows from the estimate (1.5), which reads

x” Ax < x” y Dx < max y;ai; [|Ix]%.
1

Recall that x; is the number of nonzero entries of A in row i. Let €2; be the support of
the ith basis function 1/;. Note that €2; is the union of a bounded number of elements.
Due to quasiuniformity of 7, (i.e., | 7| >~ h?) we have that €2; has measure |$2;| >~ h?.
Thena;; = ||V ||> == || h~? ~ h?~2; thatis, ||A|| ~ h?2. This estimate is sharp
asymptotically inasmuch as

Al > ai; = IV l? = 7% || = k972 O

1.2 Finite element refinement

Consider now two nested finite element spaces Vg C Vj. Let Vg = Span (wi(cH))Z": 1
and V, = Span (wi(h));’zl with their respective nodal (Lagrangian) bases. Because

each 1/11.(({1) € Vg C V), we have the expansion

n

1/’,'((,11) = Z 1/f,~((,H)(xz') 1/’,'(}[)~

i=1

Interpolation matrix

Consider the coefficient (column) vector ¢; = (1/11.?1) (x;))?_,. The matrix P =
(lllic)?;:l is referred to as the interpolation matrix. It relates the coefficient vector
v. € R" of any function v, € Vp,expanded in terms of the coarse basis {1/fl.(f1)}, to the
coefficient vector Pv, of v. € V},, expanded in terms of the fine-grid basis {lpl.(h)}. The
finite element bases are local, thus the n x n. rectangular matrix P is sparse. The num-

ber of nonzero entries of P per column depends on the support of each wi(fH), namely,

on the number of fine-grid basis functions wi(h) that intersect that support. That is, the

sparsity pattern of P is controlled by the topology of the triangulations 7y and 7p,.
Finite elements often use successive refinement, which refers to the process of

constructing 7 from 75, by subdividing every element (triangle) of 73, into four
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geometrically similar triangles of half the size. Then, by construction, Vo, C Vj,
because if a continuous function v is linear on a triangle T € 75y, it is linear on the
smaller triangles t C T, t € 7. The interpolation mapping P in this case is linear.
Its columns have the form

= O

v

L0
The coefficients % appear at rows j of ¥; for which x; is a midpoint of an edge
(xl" , x" ) of a coarse triangle 7 (such that one of its endpoints is xi"c). We note that
the coarse nodes x i are also fine-grid nodes. That is, x; ;. = x; for some i. The latter
means that the coarse indices i are naturally embedded into the fine-grid indices
ic > i(ic). Theentry 1 of ¥; appears exactly at the positioni = i (i.). All remaining

entries of ¥; are zero.

Galerkin relation between A and A,

Based on Vg and its basis, we can compute A, (a(w(H) W(H)))"f o=l Similarly,
based on V}, and its basis, we can compute A = (a(l//(h) w(h)))l =1 We easily see

that a(w;:{), Iﬂi(CH)) = ¢T Al/IlL PTAP),( j.» which yields the variational (also
called Galerkin) relation

Ac. = PTAP. (1.6)

1.3 Coarse-grid approximation

The fact that geometrically smooth functions can accurately be represented on coarse
grids is inherent to any approximation method; in particular, it is inherent to the f.e.
method. Some illustrations are found in Figures 1.7 to 1.10.

We summarize the following fundamental finite element error estimate result (cf.,
e.g., Ciarlet [Ci02], Brenner and Scott [BS96], and Braess [BO1]). Our goal is to prove
at the end of this section a “strong approximation property” in a matrix—vector form.

Because a(u — uj, ¢) = 0forall ¢ € V), we have the following estimate,

IV@—un) > = a@u—up, u—up) =a@@—up, u—¢) < |Vu—up)|[|V—p)l.

It implies the following characterization property of the finite element solution u;,.
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Fig. 1.5. Coarse-grid basis function.

Proposition 1.4. The finite element solution uy, is an a(-, -)-orthogonal projection of
the PDE solution u on the f.e. space Vy,. In other words, we have the characterization,

IV —up)ll = inf ||V — @)l (1.7
weVy
Assuming now that u has two derivatives in L (£2), we immediately get the first-order
error estimate
IV —up)ll = Chllul.

To be more precise, we first form a nodal interpolant I, u = Zi u(x;)y;. Then, based
on (1.7) we have ||V(u — up)|| < |[V(u — Ihu)||. Therefore, to estimate the latter
term, splitting it over every triangle t € 7j, yields

IV — B> =Y | V@ = dx < Y Co h?|ul3,, < Ch*|lul3.

el T ey
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Fig. 1.6. Level 2 coarse-grid basis function.

Here, we use the Taylor expansion on every triangle t and the fact that the triangles
are geometrically similar to a fixed number of an initial set of coarse triangles. Hence,
C. will run over a fixed number of mesh-independent constants. The estimate above
shows that for smooth functions u (e.g., having two derivatives) the finite element
approximations on grids 7y will give approximations u i such that the error u — uy
behaves as H |[u]2.

For a given f.e. function uj, consider now its coarse finite element projection u
defined from a(uy, — ug, ¢) = 0 for all ¢ € Vy. We want to measure the coarse-
grid approximation, that is, to estimate u;, — up. The preceding argument is not
immediately applicable because uj does not have two derivatives. To overcome this
difficulty we introduce the f.e. function A,u;, € V), defined on the basis of the matrix
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0.0736671
0.0690363
0.0644593
—v} 0.0598551
0.0552509
0.0506466
L 0.0460424
0.0414381
0.0368339
0.0322297
0.0276254
0.0230212
0.018417
0.0138127
0.00920848
0.00460424

7.36678e-07

Fig. 1.7. Solution to —Au = 1.

A = (a; ;) and the coefficient vector X = (u;,(x;)) of u;,. Let AX = (¢;). Define then,

Anun =3, (Lcim) vi

Because

ci=(AX); =Y aijun(x)) =Y a(;, yi)un(x;) = alun, ¥i),
J J

we have

@ v

Ahuh — Z a(”hi '(/,l)

Introduce now the quasi-interpolant éh 1 Ly(R2) — V), defined as follows,

~ (U, 1//1)
Opv = Z m Vi

13
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Fig. 1.8.  Finite element approximate solution to —Au = 1 on a coarse mesh.

We then have, for any v € L,($2),

(A, v) = alun, Opv).
It is easy to see the following result.

Theorem 1.5. Q;, : V), — V}, is a symmetric and uniformly coercive operator;
that is,

(Qv, w)= (v, Qw), allv, w € Ly(K),
QY. v)= 8 Ilyll>  forallyr € V.

Proof. Consider the basis {1;, x; € N},} of V. Recall that N, is the set of degrees
of freedom (the vertices x; of the elements T € 7 in the interior of ). We also
consider N, which is A}, augmented with the vertices of T € 7}, on the boundary
of Q. The coefficient vectors v = (v;) of functions v € V}, (that vanish on 02) are
extended with zero entries whenever appropriate; that is, we let v; = v(x;) = 0 for
xi € NpyNoS. Similarly, we use basis functions v; associated with boundary nodes
x; € Nj, (Whenever appropriate).
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— ==
// =l
/ ———(1,1,0.0734458)

Fig. 1.9. Finite element approximate solution to —Au = 1 on a refined mesh.

The symmetry is trivially seen because

o 0= Y zpl,-)(::.,) v

which is a symmetric expression for v and w.
We prove the uniform coercivity of Qy, in the following section. O

1.4 The mass (Gram) matrix

To prove the uniform coercivity of é on Vj, introduce the Gram (also called mass)
matrix G = {(Y i Vi)} xix €N Due to the properties of 7y, it is easily seen to be
uniformly well conditioned. Similarly, to estimate (1.5), we prove that (recalling that
xi is the number of elements t sharing the node x;)

vIGy < max (i llyillP)v v = h? |Iv))>. (1.8)
X;ENyp
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—=(1,1,0.0736147)

DT
SRR
'&J&f"ﬂﬁ#‘%

I/

Fig. 1.10.  Finite element approximate solution to —Au = 1 on a more refined mesh.

For any vector v, define its restriction v; = (v(x;))y;er to every element 7. We then
have,

vIGv = (v, v) = Z v2dx = Z vIG.v,.

€T T €7,
Here, G; = ([, ;¥ dx)_ . is the so-called element mass matrix. For the
i»Xj
particular case of triangular elements t and piecewise linear basis functions ¥;, we get
. 7| 211
G, = T 1 21
112

Because the minimal eigenvalue of this matrix is | t|/12, we get the following estimate
from below,

€Ty
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In general (under the assumption of quasiuniform 7;), we get an estimate
vI'Gv > ch? |v|>. (1.9)

Both estimates (1.8) and (1.9) imply the following result.

Theorem 1.6.

(v,v) =vI Gv ~ h? Z v} =hivTy, allv = Z vivi, V= (), 7,
x,—eﬁh Xieﬁh
(1.10)

In other words the scaled inner product h—d (v, v) is bounded above and below
by the coefficient vector inner product v v uniformly w.rt. h +— 0. Alternatively,
we have

Cond (G) = O(1).

As a corollary, consider G, the principal submatrix of G corresponding to the
nodes in N, (i.e., in the interior of Q). We then have Ayin[G] > Amin[G].

Finally, under the assumption that the number of elements in T, which share
a given node is kept bounded, it follows that G is uniformly sparse, namely, that
the number x; of nonzero entries of any row i of G is bounded by a fixed number
X = max; x;, independent of h — 0.

Proof (of the uniform coercivity of @h). Consider the coordinate unit vectors
€ = (5 /)xj N, Yi € Ny Similarly, let € = (8;j)x;en; be the unit coordi-

nate vectors corresponding to x; € N, (the boundary nodes excluded). It is clear
then, that the following matrix—vector representation holds,

~ vI'Ge;)? _
@w.v) = ) = 1= ) &
xi €Ny € xieNy,

Based on the decomposition for any v € Vj, (i.e., vanishing on 9R2), Gv =
Yen;, (GTee, andv =Y\ ((GV)Te))Ge;, we get

(v,v) = v Gv
T
= ( Z (vTGei)e,-) G‘1< Z (VTGei)ei)
xieNy xieNy,

< dmax[GT'1 Y (V1 Gey)?
xi €Ny

< tmalG 1) (v Gey)?
x;eNy



18 1 A Finite Element Tutorial

Therefore, the following estimate is obtained.

(Onv, ) — .
— > AminlG] min —_—
.0 - min [ ]xiej\/h lTGé,'

At most x terms é?@éi in the first sum below are nonzero (these indices j define the
set Z(i)), therefore we get

1"Ge; =) €/ Ge;
j

< Y (@Ge))"” (€ Ge)'?

JEL()
<max[G1 Y IIE; e |
JEL()
=< Amax [6] X-
That is, the desired uniform coercivity estimate takes the final form,
Oy 1 o, .

(v,v) ~ XCond(E) -

1.5 A “strong” approximation property

In what follows, we proceed with the proof of the following main result.

Theorem 1.7. Assume that the Poisson equation —Au = f, posed on a polygonal
region Q2 with u = 0 on 0%, satisfies the full regularity estimate ||u||2 < C || f|. Let
Vu C Vi be two nested f.e. spaces equipped with Lagrangian f.e. bases. Assume that
h is a constant fraction of H. Let the corresponding finite element matrices be; A, the
fine-gridmatrixand A. = PT AP, the coarse-grid matrix, where P is the interpolation
matrix that relates the coefficient vector of a coarse f.e. function expanded first in terms
of the coarse basis and then in terms of the fine-grid basis. Then, the following strong
approximation property holds, for a constant n, ~ (H /h)?.

Ix — PAZ'PT Ax| <

L Ax).

A

The matrix wy = PA;1 PT A is the so-called coarse-grid projection. Equivalently,
we have

Na
Al

For less regular problems (see (1.14)), we have that for an o € (0, 1], the following
weaker approximation property holds.

A~ x — PAZ'PTx| < lIx12.

n.
Ix — x|} < W A+ 2|2,

Here n, >~ (H/ h)*.
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Proof. First, estimate the Ly-norm of Ajuy, € V. We have

(Apup, V)
|Apunll = sup ———
vev, ¥l
a(un T gy )
= sup
eV, (Al
b’ A ;
= sp 22X b=, b= YY)
vev, Il (1, i)
2012
Wi )
(= (2))
< [|[AX]| sup
VeV Il
2 172
(= || wiz)
< ||AX]| sup
YveVy Il
2 \1/2
< ||Ax|| sup i ‘ sup —(Zl ”wHQi)
- xieNy, (17 wl) veV, ||W||

< ||Ax|| Ch™“/).
Here, Q; = U{r € 7, : x; € t} stands for the support of ;. Note that they

have bounded overlap, hence ( Yol ||§zl_)1/2 < C||¥||. Also, by assumption on 7y,
7] >~ k9, and |Qi| = Y, g, It = h?. Finally, note that

Il 11 12| _
@ e~ © <|9i|2> = 0.

We use next the fact that for any ¢ € Hol(SZ) we can choose a finite element
function ¢ such that |[gnll1 < Colle|li and [[¢ — @nllo < Coh @l (cf., [Br93]).

Then, based on the Ly-norm bound of Aj,uy, the coercivity of Oy, and Proposition 1.3
(i.e., that |A| ~ h?~2), the following estimate is readily seen.

~ (0; ' Apun, @)
10, Apupll—1 = sup —L 0
(pGH&(Q) llelh

(0 " Anun, on) llonl

on llonll el
~_ lo — @rllo
+ 110, Apunllo sup  ————
(ﬁGHOl(Q) llelh
a(up, on) ~_
< C()(sup ———— +h|Q, lAhuh”O)
o lenlh

= € (Valun, un) +n'=4/ jax|

< C(1+ |AIZR =) x4
< C |x|a.
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Now solve the Poisson equation
—Au=f=0; Ay € Vy C La(Q). (1.11)

Because (Qny, ¥) > 8 W% forany ¢ € Vj (ie., | Q) Il < (1/5), based on the
assumed a priori estimate

lullz < CILfII, (1.12)

we get that
lulla < Ch=“/2 ) Ax]|.

Note now that uj, and u g with corresponding coefficient vectors x and Px, are the f.e.
solutions to the Poisson problem (1.11). The latter is seen because for any ¥ € Vj,

a(u, ¥) = (f, ¥) = (05 Apun, ¥) = (Apup, O;') = alup, V).

Then, because [[up —unllt < lu —uply + llu —ugly < C (h+ H) |lul2 <
C H h=4/2)| Ax|, the following strong approximation property holds,

Ix — Pxclla < C Hh™“?)Ax|. (1.13)
In the less regular case, we have for an o € (0, 1], the following estimate,

lulliva < Clfl-14a- (1.14)

Recall, that / = Q' Aju;,. We showed that | f[|—1 < C [[AY?x| and ||f]lo <
Ch~“/? || Ax||. Now using a major estimate for the space H~'t2 which is an
interpolation space between L, (€2) and H ~1(Q) (the dual of Hé (£2)), the following
estimate is seen (cf., e.g., Theorem B.4 in Bramble [Br93])

1 fll-t4a <C (h*(d/Z))vt||A(1*0t)(1/2)+0tx|| — Ch™@W/2) ||A(1+°‘)/2x||.

The latter two estimates, combined with a standard error estimate ||u — ugl|; <
CH” ||u]l1+«, lead to the following approximation property, in the less regular case,

H 1

o o
Ix — Px.a < C (;) (hd—_Q) AT 2. (1.15)

In what follows, we find a simple relation between X, and x, namely, that x, =
AC’IPTAX. Indeed, from the definition of uy € Vg, we have that it satisfies the
Galerkin equations

a(up, ¥) = (f, ¥) =a(up, ) forally € Vy.

Because i has a coarse coefficient vector g. and hence Pg, is its fine-grid coefficient
vector, we then have

gl Acx, = a(uy, V) = a(up, ¥) = (Pg.)" Ax.
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That is,
Acx. = PT Ax.
Hence,
PX, = max = PA;lPTAx.
The strong approximation property then takes the following matrix—vector form,
Ix — waxlla < C H h™ %] Ax].

Now use Proposition 1.3, that is, that ||A| =~ h9=2, to conclude with the desired
estimate,

Na

141 | Ax|1?, (1.16)

2
Ix — axlly <

where n, ~ (H/ h)? = O(1), if h is a constant fraction of H.
In the less regular case, based on estimate (1.15) and Proposition 1.3 (i.e., that
|A|l = h?2) we arrive at the following weaker approximation property,

Ul
lIx — ax|% < A A2, (1.17)
where n, ~ (H/ h)2°‘ = O(1), if h is a constant fraction of H. O

1.6 The coarse-grid correction

Let x be a current approximation for solving Ax = b. Note that x is a coefficient
vector of some finite element function u € Vj,. To look for a coarse-grid correction,
in terms of finite elements means, we seek a u. € Vg (with coarse coefficient vector
X.), which solves the coarse finite element problem with an r.h.s. » computed on the
basis of the current approximation u, for any wi(cH) € Vy, as follows.

aue ™) = . ")
= (f, wl(cH)) _ a(u’ I)01((‘11))
= Z Wi(CH)(xi)(f, wi(h)) —au, wi(cH))~

l
The latter system, in terms of vectors, reads
AcX. =T,
Recalling that v = Y0 v Gyy®, and b = ) with b; = (f, y™),

we get

(Acx)i, = Y ui b —yl Ax =y (b — Ax).

l
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That is,
Axe=r1c= (Y] (b— Ax))l’.’::1 =PT(b- Ax) = P'r.
Hence,
X, = A;lPTr.
Then, the new iterate is u := u + u.. In terms of vectors we have
X:=x+ Px. =x+ PA_'PTr,
We have the following relation between the errors (initial and final),
e=A"'pb— X,
noting thatr = b — Ax = Ae,
e:=(A""b—x)— PAT'PTAA D —x) = (I — PA'PT A)e.
The matrix w4 = PAC_1 PTAisa projection; that is (recall that A, = PTAP),
75 =PANPTAP)AZ'PTA = PAT'PTA =54
Thus, we have

Proposition 1.8. The error matrix corresponding to a coarse-grid correction is given
by I — s, where my = PA;1 PT A is the coarse-grid projection matrix.

1.7 A f.e. (geometric) two-grid method

The coarse-grid correction, combined with a few steps of a stationary iterative method,
defines the classical two-grid method. In the present f.e. setting, we explore the natural
(defined from two nested f.e. spaces Vi C V},) interpolation matrix P, the fine-grid
matrix A and the coarse one A, = PTAP. In addition, we need the iteration matrix M
that defines a stationary iterative procedure. A typical case is a matrix M that satisfies
the following conditions.

(i) M provides a convergent method in the A-norm; namely |/ — AY2M~!
A2 <1.

(ii) M gives rise to an s.p.d. matrix M = M(MT + M — A)~'MT which is assumed
spectrally equivalent to the diagonal D of A (see (1.18) for a motivation).

The conditions (i) and (i) define the notion of smoother. The definition comes from
the fact that the lower part of the spectrum of D~!A corresponds to eigenvectors
that are geometrically smooth. Recall, that here we consider matrices A that come
from f.e., discretization of second-order Laplacian-like PDEs. Therefore, an iterative
method with w =~ | D~1/2AD~1/2),

Xp = Xg—1 + (@D)~! (b — Axg_1),
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rewritten in terms of the errors ey = A~!b — x;, takes the form
er = (I — (WD) 'A)er_;.
Consider the generalized eigenvalue problem
Aq; = 1 Dq;,

withd] <Ay <--- <A,
Note that if we expand ey = ) _; ﬂ,gk) qi, we see that

k k
Ai Ai
k 0 0
:31‘()2(1__[>'3i():<1__[>'3i()
w An

forlarge i are reduced very quickly, whereas the entries corresponding to the lower part
of the spectrum hardly change. This effect is referred to as smoothing. The combined
effect of reducing the highly oscillatory components of the error by the smoother and
approximating the smooth components of the error on a related coarse grid gives an
intuitive explanation of the potential for the mesh-independent rate of convergence of
the two-grid, and by recursion, of the (geometric) multigrid methods. The combined
effect of smoothing and coarse-grid approximation lies at the heart of the two-grid
(and multigrid) methods as originally observed by R. P. Fedorenko [Fe64, Fe64]
and led A. Brandt, originally in [AB77], to generalize and promote it as a general
methodology for solving a wide range of problems in the natural sciences. More on
the history of MG is found in [TOS, pp. 23-24].
To explain item (ii) above consider the composite iteration

Xk—(1/2) = Xk—1 + M~ (b — Axe_y),

o, (1.18)
Xk = Xg—(172) T M~" (b — AXp_(1/2)).

Rewritten in terms of the errors e, = A~!'b — x,, the above composite iteration reads,

e—p=U~- M~ Aey_1,
ex = — M T Aer_q1 2.

The composite iteration matrix E, relating e and e;_; as ey = Eei_1, has then the
following productform E = (I =M TAY I -M'A)=T1—-MT4+M ' —Mm~T
AM YA =1 —M 'Awith M = MMT +M— A)~"MT 1tis easily seen then that
| I—AY2M~1AY2|| < 1based ontheidentity (/—M~TAY(I-M~'A) = - 'A
is equivalentto MT 4+ M — A being s.p.d. Also, we have then || ] — A 12pM=1AY2)2 =
11— AV AV = 1 = a7 A).

In conclusion, we can formulate the following proposition.

Proposition 1.9. To have M be a convergent smoother for A (in the A-norm) it is
equivalent to say that M T4 M— Aiss.p.d., and hence, M — A is symmetric positive
semidefinite where M = M(M + MT — A)~'MT.
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A main example of M is the scaled Jacobi smoother wD with o =~ | D~1/2)
AD~1/2)|| or the Gauss—Seidel smoother, defined from A = D — L — LT, where D is
the diagonal of A, and —L is the strictly lower triangular part of A. Then M = D — L
is the forward Gauss—Seidel iteration matrix and M = M(M + MT — A)~'MT =
(D—L)D™Y(D— L") is the symmetric Gauss—Seidel matrix.

To illustrate the smoothing process, we start with eq as a linear combination of a
smooth and an oscillatory component, and then one, two, and three symmetric Gauss—
Seidel iterations applied to Ae = 0 are run in succession. That is, we run the iteration
e, = (I — H_lA)ek_l for k = 1,2, 3. The resulting smoothing phenomenon is
illustrated in Figures 1.11 to 1.14.

At the end, we formulate an algorithm implementing the classical two-grid
method.

Algorithm 1.7.1 [Tio-grid algorithm]

Let Ax = b be the fine-grid problem.

Given is A, the coarse-grid matrix, related to A via the interpolation matrix P
as Ac = PT AP, and let M and MT be the given smoother and its transpose.

'"“‘---)(1 11,1.09039)

AN
NN

Fig. 1.11.  Initial nonsmooth function.
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1,1,1.02292)

Fig. 1.12.  Result after one step of symmetric Gauss—Seidel smoothing.

For a current fine-grid iterate X, the (symmetric) two-grid algorithm computes a
next fine-grid iterate Xpext, in the following steps.

(i) “Presmooth”, that is, compute X| = Xo + M~ (b — Ax).
(ii) “Coarse-grid correction”, that is, compute X, from

Acxe = PT(b — Ax)).

(iii) “Interpolate” coarse-grid approximation, that is, compute Xy = X1 + PX,.
(iv)(An optional) “Postsmoothing” step, that is, compute

x3 =%+ M T (b— Ax»).

(v) The next two-grid iterate is Xpext = X3. O

1.8 Element matrices and matrix orderings

‘We next introduce the notion of “element matrix”. We recall that the matrix A was
computed from a bilinear form a(u, ) = fQ Vu - Vi dx. We can define element
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T =(1,1,1.00298)

Fig. 1.13.  Result after two steps of symmetric Gauss—Seidel smoothing.

bilinear forms a. (-, -), by restricting the integration over individual elements t € 7j,.
We then trivially have a(u, ¥) = ZreTh ar(u, V).

Assembly

Let x;,, k = 1,2, 3 be the vertices of triangle 7. We can compute the 3 x 3 matrix
A = (a: (Y, Wik))?c ;—1- Define now for any vector v its restriction v; to ; that s,
let v, = (v(x,-k))zzl. The following identity follows from the definition of element
matrices,

wl Av = Z WTTATVT.
T

Using this identity for basis vectors ¥; and ¥ ; representing the basis functions v;
and ¥ ; refers to the popular procedure in the finite element method called assembly.
The latter means that every nonzero entry a; ; of A is obtained by proper summation
of the corresponding entries of the element matrices A (for all elements 7 that have
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Fig. 1.14.  Result after three steps of symmetric Gauss—Seidel smoothing.

an edge (x;, x;), or vertex if x; = x;). This in particular implies that the diagonal
entries of A, defining D, contribute exactly to the diagonal entries of A; thatis, D
(the diagonal of A) is assembled from D (the diagonal of the element matrix A;).

By applying estimate (1.5) to A; and D, we get the following improved version
of (1.5) for A and D.

Proposition 1.10. The following estimate holds,
vl Av < vl xDv,

where either x = max; x; or x = diag(x;), with ; = Mmaxc7,. ier |T|, where | - |
stands for cardinality; that is, |t| equals the number of dofs that belong to t. Thus,
in particular, for triangular elements, x; = 3.

Proof. Let A, = (ai(fj))i,jef and A = (a;). We have a; = Zr:i,jer al.(/.r). In
particular, a;; = Y ..., a'P. From (1.5) applied to A; and D, we get

12
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vI'Arv < |7| vl D;v,, which after summation reads,
viAv = ZVZATVT
T
< Z t| v! Dv,
- Z w3 @ v

iet

- Zv > Itlaf

TiieT

< Zvlz max Z a(f)

- TIiET

i TiieT

2

= Z Vi Xi dii

i
= VTXDV. O

Sparse matrices, graphs, separators, and respective block-orderings

As originally noticed by S. Parter [Pa61], a sparse matrix has a one-to-one description
by a graph. For simple linear triangular finite elements, the sparse matrix A can be
easily identified with the triangular mesh, where each nonzero entry a;;can be assigned
as a weight on the edge of the triangle(s) that share the (neighboring) vertices x; and
x;. If the matrix A is symmetric the corresponding graph is undirected; that is, the
ordering of the vertices of the edge (x;, x;) is insignificant because a;; = a;;.

We can define a separator I" for a given graph. In our main 2D example, the latter
can be described geometrically as follows. We want to partition the given geomet-
ric domain 2 into two pieces 21 and €2, by drawing a connected path of edges
[xi;, Xi,.,] (the latter connected path defines the separator I'). The separators are
useful for generating special ordering, sometimes referred to as a domain decompo-
sition (or DD) block ordering of the corresponding matrix A. It is easily seen that
the entries a, ¢ of A, for vertices x, € 1 and x; € 2 satisfy a, ; = 0. That is, the
following block structure of A (see Figure 1.15) by grouping the vertices first in 21,
then in €27 and finally those on I', is then very natural;

Al 0 Air
A= 0 Ay Ar |- (1.19)
Ar,1 Arp Ar

‘We notice that the block Ar has much a smaller size than the subdomain blocks A1
and Aj.

Also the blocks Ar, ; = AiT,r ={aj; : J € Qi, ix € I'} have nonzero entries
only for indices j corresponding to vertices adjacentto I'.

There is one more block partition of A. We can group the element matrices A
into two groups: elements that have vertices in €21 and I' and elements that have
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Fig. 1.15. An L-shaped domain partitioned into two squares €21 and €2, by an interface I'.

vertices from 2 and I. Splitting the quadratic form v/’ Av = > N4 vIAv, +
p vl A;v., we can get the following block form for A.

A=AM 4 AN (1.20)

The superscript N stands for the fact that “natural” (or “no essential”’) boundary condi-
tions are imposed on I". The matrices A,(CN ), k =1, 2, have the following block form.

A 0 Air]
AM=1 0 0 0 |,

N

ars 0 A%

and

[0 O 0 7]

AEN)z 0 Ay Apr

N

0 Ar2 A |

We notice that A and Az, and Ar, | and Ar, 2 are the same as in (1.19). The other
important observation is that

(N) (N) _
Al;r"‘Az;r = Ar.

Also, both matrices A,(CN), k = 1, 2 are positive semidefinite (because the local ma-
trices A; are symmetric positive semidefinite). The latter implies that A,(CNI)- are also
symmetric positive semidefinite.

1.9 Element topology

On several occasions throughout the book, we use the fundamental property of the
finite element matrices A, namely, that the corresponding quadratic forms v’ Aw
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can be represented as a sum of small (local) quadratic forms, resulting from small
matrices A;. Consider two vectors v = (v;)7_; and w = (w;)?_,. In what follows,
the elements 7 are viewed as small (local) sets of indices i. Then the set of all s
provides an overlapping partition of all indices i. Then, we can define v, = v|; that

is, V¢ = (v;)jer. Then, we have

T T
viAw = Z V. AW
T

The above property of A is explored to generate sets 7 that are a union of ts such
that {T'} also provides an overlapping partition of the index set {1, 2, ..., n}. Also,
for the purpose of generating counterparts of coarse triangulations on the basis of
a given fine-grid triangulation, we define the fopology of the sets T (referred to
as agglomerated elements or agglomerates). In particular, we define faces of the
agglomerated elements. One application of the “element topology” is to generate a
special, so-called nested dissection ordering of the given matrix A. Further application
of the element matrix topology is to construct element agglomeration algorithms used
in element agglomeration AMG (algebraic multigrid) methods in a later chapter.

1.9.1 Main definitions and constructions

By definition, in what follows, an element is a list of degrees of freedom (or list of
nodes), e = {di, ..., dy,,}, and we are given an overlapping partition {e} of D (the
set of degrees of freedom or nodes).

In practice, each element e is associated with an element matrix A, an n, X n,
matrix; then the given sparse matrix A is assembled from the individual element
matrices A, in the usual way. That is,

wl Av = Z weTAeve.
e

Here, v, = v|,, that is, restricted to subset (e C D).

In what follows, we do not assume explicit knowledge of the element matrices
A.; more precisely, the element matrices are needed only in one of the applications
but not in the construction of the element topology.

As an illustration, seen in Figure 1.16, we have the following elements as lists (or
sets) of nodes.

e1 =1{1,2,6,7},
er» =1{2,3,7,8},
e3 ={3,4,8,9},
es =1{4,5,9, 10},

es = 1{6,7, 11, 12},
e6 = {7,8, 12, 13},
e7 = 18,9, 13, 14},
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Fig. 1.16. Sample grid: 12 elements, 31 faces, and 20 nodes.

es = {9, 10, 14, 15},
eo = {11, 12, 16, 17},
ero = {12,13, 17, 18},
enn = {13, 14, 18, 19},
e1r = {14, 15, 19, 20}.

Assume that the following relation (in the sense of [C099]) “element_node” is
given; that is, the incidence “element” i (rows) contains “node” j (columns), that is,
“element_node” can be viewed as the rectangular (Boolean) sparse matrix of ones in
the (7, j)-position if element i contains node j and zeros elsewhere. The size of the
matrix is (number of elements) x (number of nodes).

The relation “element_node” corresponding to Figure 1.16 is shown in Table 1.1.
The incidence “node” i belongs to “element” j is simply given by the transpose of
the above rectangular sparse matrix; that is, node_element = (element_node)T.

We can consider a number of useful relations (easily computable as operations
between sparse matrices).

“element_element” = “element_node” x “node_element”,
“node_node” = “node_element” x “element_node”.
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Table 1.1. Relation “element_node” corresponding to Figure 1.16

| [[1[2[3]4]5]6]7[8]o[10[11]12]13]14]15]16]17[18[19]20]]

1|1]1 11

2 |11 11

3 111 11

4 111 11

5 11 11

6 1)1 11

7 11 1)1

8 1)1 1)1

9 11 11
10 11 11
11 1)1 1)1
12 1)1 1)1

The first one shows the incidence “element” i intersects “element” j; that is, the
(i, j) entry of the “element_element” is one if “element” i and “element” j have a
common node; otherwise the entry is zero.

The second relation (“node_node”) shows the sparsity pattern of the (assembled)
finite element matrix A = (a;;). This is seen as follows. The nonzero entries (i, j)
of “node_node” show that “node” i is connected to “node” j in the sense that they
belong to a common element. Hence the corresponding entry a;, ; of A is possibly
nonzero. This is exactly the case because a; j can be nonzero only if the nodes i and
J belong to the same element. Here, we assume that each node represents a degree of
freedom; in other words, it is associated with a finite element basis function whose
support is contained in the union of elements sharing that node.

The relation “node_node” corresponding to Figure 1.16is illustrated in Table 1.2.

In practice, we can implement these relations using any available sparse matrix
format, such as the popular CSR (compressed sparse row) format (cf., [Sa03]). For
parallel implementation, we have to use the appropriate parallel sparse matrix format.

1.9.2 Element faces

In practice, it is typical that a finite element mesh generator can provide the fine-grid
element topology, namely the relations

“element_face”, “face_element”, “face_node”, “face_face”, and so on.

If the initial set of element faces is not given, we can define a “face” (as a list
of nodes) as a maximal intersection set. Recall that every element is a list (set) of
nodes. Consider all pairwise intersections of elements such as e N ey, e; # e. Then
all maximal sets form the faces of e. Here “maximal” stands for a set that is not
a proper subset of any other intersection set. The above definition only gives the
set of interior faces. We may assume that additional information about the domain
boundary is given in terms of lists of nodes called boundary surfaces. Then, a face is
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Table 1.2. Relation “node_node” corresponding to Figure 1.16

| [[1[2[3]4]5]6]7[8]o[10[11]12]13]14]15]16]17[18[19]20]]

1|1]1 11

2111 111

3 1111 1111

4 1111 111 1

5 1|1 1)1

6 (|11 1)1 1|1

7111 1111 1|1]1

81 [1|1]1 1|1)1 1111

9 1111 111 1 1111

10 1)1 11 1)1

11 11 11 11

12 1111 11]1 11]1

13 1111 111 111
14 1|11 111]1 111]1
15 11 1)1 1)1
16 1|1 1|1

17 111]1 111]1

18 1111 1111
19 1111 1111
20 1)1 1)1

Table 1.3. Relation “boundarysurface_node” corresponding to Figure 1.16. Boundary sur-
face 1 is the left vertical, boundary surface 2 is the bottom horizontal, boundary surface 3 is
the right vertical, and boundary surface 4 is the top horizontal

[1RTA5[6]7 B[O 10 T1]12[13]14]15]16]17[18[19]20]
1 1 1 1
1(1]1]1]1

Bl W N =
—
—_
—_
—_

a maximal intersection set of the previous type, or a maximal intersection set of the
type e N “boundary surface”.

In Figure 1.16, we can define four boundary surfaces and can construct the relation
“boundarysurface_node” shown in Table 1.3.

At any rate, we assume that the faces of the initial set of elements are given either
by a mesh generator or they can be computed as the maximal intersection sets. That
is, we assume that the relations “element_face” and “face_node” are given.

We can then construct, based on sparse matrix manipulations, the following
relations.

“face_element” = (“element_face”)T, “node_face” = (“face_node”)T and
“face_face” = “face_node” x “node_face”.
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1.9.3 Faces of AEs

The purpose of constructing AEs is to define similar topological relations for them
and perform further agglomeration steps by recursion. For this reason, we have to
be able to define faces of AEs, which we call “AEfaces”. Assume that the relation
“AE_element” has been constructed; then we can build the relation (as a Boolean
sparse matrix) “AE_face” = “AE_element” x “element_face”. This represents the
AEs in terms of the faces of the original elements. The idea is that every two AEs
that share a face of the original elements should also share an “AEface”. That is,
we can define faces of agglomerated elements, “AEfaces”, based on “AE_face” by
simply intersecting the lists (sets) of every two AEs that share a common face, or
if the relation “boundarysurface_face” is given, by intersecting every AE with a
boundary surface if they share a common face of the original elements. By doing so
(intersecting two different AEs in terms of faces or intersecting an AE in terms of
faces and a boundary surface also in terms of faces), we get the “AEfaces” of the
“AE”s in terms of the faces of the original elements. In this way we construct the new
relations “AEface_face” and “AE_AEface”. The above definition of the (interior)
AEfaces, can be formalized in the following algorithm.

Algorithm 1.9.1 (Creating interior AEfaces) Given are the relations,
“AE_element”, “element_face”,

implemented as Boolean sparse matrices. In order to produce as an output the new
relations
“AEface_AE”, and “AEface_face”,

we perform the following steps.

e Form the relations:
1.
“AE_face” = “AE_element” x “element_face”;

“AE_AE” = “AE_face” x (“AE_face”)".

e Assign an “AEface” to each (undirected) pair (AE1, AE;) of different AEs
from the relation “AE_AE". The new relation “AEface_AE” is also stored as a
Boolean rectangular sparse matrix.

*  Form the product (including the numerical part of the sparse matrix—matrix
multiply):

“AEface_AE_face” = “AEface_AE” x “AE_face”.
e Finally, the required relation
“AEface_face”

is obtained by deleting all entries of “AEface_AE_face” with numerical value 1.
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The last step of the above algorithm is motivated as follows. The nonzero entries of
the sparse matrix “AEface_AE_face” are either 1 or 2 (because a face can belong to
at most two AEs). An entry a;; of “AEface_AE_face” with value 2 indicates that the
“AEface” corresponding to the row index “i” of a;; has a face corresponding to the
column index “j” with a weight 2. This means that the face ““;j” is common to the two
AEs that deﬁne the AEface “i”. Therefore the face *;” “belongs” to the AEface “i”
(because it is a shared face by the two neighboring AEs which form the AEface “i”).

The entries a;; of “AEface_AE_face” with value one correspond to a face *“j”, which
is interior to one of the AEs (from the undirected pair of AEs that forms the AEface
“1”) and hence is of no interest here.

Remark 1.11. If the relation “boundarysurface_face” is given we can use it to define

the boundary AEfaces. We first form the relation
“AE_boundarysurface” = “AE_face” x ("boundarysurface_face”)T ,

and then to each AE that is connected to a boundary surface (i.e., to each pair (AE,

boundarysurface) from the relation “AE_boundarysurface”) we assign (a boundary)

AEface. Thus the relation “AE_AEface” obtained from Algorithm 1.9.1 is augmented

with the boundary AEfaces. The list “AEface_face” is augmented with the intersec-
tion sets

(“AE_face”) N (“boundarysurface_face”)

for every related pair (AE, boundarysurface) from the relation “AE_boundary-
surface”. This means that we intersect every row of “AE_face” with any (related
to it) row of “boundarysurface_face”.

1.9.4 Edges of AEs

We may define edges of AEs. A suitable topological relation for this is the “AE-
face_edge” defined as the product of the relations “AEface_face” and “face_edge”.
Thus, we assume that at the fine grid, we have access to the relation faces of elements
in terms of the edges of the elements. After we have created the faces of the agglom-
erates in terms of the faces of the fine-grid elements, we can then generate edges of
the agglomerates. The algorithm is based on pairwise intersecting lists for any given
AEface F, viewed as a set of fine-grid edges, with its neighboring AEfaces F, again
viewed as sets of fine-grid edges. Any intersection & = F N F is a set of fine-grid
edges. The set £ 7 is a likely candidate for an edge of the agglomerates that share
all these edges. The actual definition is as follows.

Definition 1.12 (Definition of AEedges). For any fine-grid edge e consider the in-
tersection of all AEfaces F (viewed as a set of fine-grid edges) that contain e. It may
happen that a fine-grid edge belongs to several such intersection sets. A minimal one
defines an AEedge.
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1.9.5 Vertices of AEs

We can further refine the definition of AEedges by splitting the minimal intersection
sets into connected components. To do this we need additional information; namely,
we need the fine-grid relation “edge_vertex”. A connected component then is a set
of edges that can be ordered into a connected path of 1D fine edges, where two
neighboring edges have a single fine-grid vertex in common. Then each connected
component of a minimal intersection set from Definition 1.12 is now called a (con-
nected) AEedge. The endpoints (vertices) of the AEedges are referred to as coarse
vertices.

1.9.6 Nested dissection ordering

We now adopt a dual notation. First, we consider any given relation “objl_obj2” as
a rectangular Boolean sparse matrix, and second, each row of this matrix gives a set
of “obj2”s; that is, the rows “obj1” can be considered as sets consisting of “obj2”
entries. Hence, we can operate with these rows as sets and in particular we can find
their intersection and union. We in particular view a relation “obj1_obj2” as the set
obtained by the union of its rows.

Assume now that we have generated a sequence of agglomerated elements and
their topology. In particular, we need {(“face_node”);}, and {(“AEface_face”);},
k > 0. (For convenience, we let (“AEface_face”)( be the identity Boolean matrix;
that is, at the initial fine level k = 0 “AEface” equals “face”. Similarly, for other
purposes, it is also convenient to let (“AE_element”) be the identity relation; that is
“AE” equals “element” on the initial level.)

Having the topological information at fine-level & = 0, in addition to the nodal
information (“face_node”)(, we first create the topological information recursively;
in particular, we create {(“AEface_face”);}, k > 0. Then, by definition, we set
(“face_node”); = (“AEface_face”); x (“face_node”);_| fork > 0.

Note that, by construction, (“face_node”); C (“face_node”);_;. This means
that each coarse face (i.e., a face at the coarse level k) contains nodes only from the
fine-level k — 1 faces.

Definition 1.13. The splitting,

e So=7D\ (“face_node”)q;
e Andfork >0, Sy = (“face_node”);_; \ (“face_node”),

provides a direct decomposition of the original set of nodes D.

In the case of regular refinement (elements of fine-level k — 1 are obtained by
geometrical refinement of coarse-level k elements) the above splitting gives rise to the
so-called nested dissection ordering (cf., e.g., Chapter 8 of [GL81]). Thus in a gen-
eral unstructured grid case, our sparse matrix element topology leads to the following
natural extension.
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Fig. 1.17. Typical sparsity pattern in the nested dissection ordering.

Definition 1.14 (Nested dissection ordering). Consider the sets Sy defined in Defi-
nition 1.13. The splitting

D= Usk, (1.21)

gives rise to a block ordering of the assembled sparse matrix A (or of the relation
“node_node”) called nested dissection ordering.

Two examples of a sparsity pattern of the fine-grid assembled matrix in the nested
dissection ordering are shown in Figure 1.17.

Nested dissection ordering is useful in direct sparse factorization of A because it
tends to minimize the fill-in throughout the factorization (cf. [GL81]). It is also useful
in approximate factorization algorithms, due to the same reason.

1.9.7 Element agglomeration algorithms

In what follows, we need some relation tables implemented as Boolean sparse matrices
that reflect the topology of the fine-grid elements. Given two sets of objects, “obj1”
and “obj2” indexed from 1 to n; and from 1 to nj, respectively, we construct a
Boolean matrix, denoted “obj1_obj2”. The rows of this matrix represent the entries
of “obj1” and the columns represent the entries of “obj2”. We place a nonzero entry
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at position (i, j) of this table if entry i from “obj1” is related to entry j of “obj2”.
All remaining entries are zero. To implement such relation tables, we may use the
well-known compressed sparse row (or CSR) format (cf., [Sa03]) suitable for sparse
matrices, and because we are not interested in the actual values of the nonzero entries,
only the integer part of the CSR matrix storage is sufficient in most of the consideration
below.

We next describe an agglomeration algorithm that exploits the topology of the
fine-grid elements. More specifically, we need the relation “element_face”, its trans-
pose “face_element”, and the transient one “face_face” defined as the product of the
Boolean matrices “face_dof” x “dof_face”. Once the three relations are defined on
the fine grid, we can automatically define their coarse counterparts without using any
dof information. That is, the coarse topology is uniquely determined by the fine-grid
topology and the relation “AE_element” that lists the agglomerated elements (or AE)
in terms of the fine-grid elements.

Assume that we have assigned an integer weight to each face. An algorithm that
eliminates a face with maximal weight and puts the elements that share that face (based
on the relation “face_element”) into a current agglomerate, is easy to formulate.
After a face has been eliminated, we increment the weights of the faces related to
the eliminated face (based on the relation “face_face”). If the faces of the already
eliminated agglomerates have weights less than or equal to the weight of the most
recently eliminated face, the process of building the current agglomerate is terminated.
We then repeat the procedure by eliminating a face with a maximal weight (outside
the set of faces of already agglomerated elements). To use the algorithm recursively,
we have to create the coarse counterparts of the used relations. In particular, we
have to define faces of agglomerated elements. Those are easily defined from the
relations “AE_element” and “element_face”. We first compute the transient relation
“AE_face” as the product “AE_element” x “element_face”. Then, we compute
numerically the product “AE_AE”=“AE_face” x “(AE_face)T”. The sparse matrix
“AE_AE” has nonzero entries equal to one or two. For every entry with a value two,
we define an AEface (face of an agglomerated element) by the pair of AEs coming
from the row and column indices of the selected entry with value 2. All faces that are
shared by the specific pair of AEs (or equivalently by their AEface) define the row of
the relation table “AEface_face”. We define the transient relations, “AEface_AE”, as
the Boolean product “AEface_face” x “(AE_face)T”. The latter product defines the
coarse relation “coarse face”— “coarse element”. Finally, computing the triple product
“AEface_face” x “face_face” x “face_AEface” defines the coarse relation “coarse
face”— “coarse face”. Thus, the three coarse counterparts of the needed relation to
apply the agglomeration recursively have been defined.

We can define some more sophisticated agglomeration algorithms by labeling
some faces as unacceptable to eliminate, thus preventing some elements from being
agglomerated. In this way, we can generate coarse elements that get coarsened away
from certain domains, boundaries, or any given set of given topological entities (i.e.,
faces of elements).

Other agglomeration algorithms are also possible, for example, based on graph-
partitioners. We can use for this purpose the transient relation “element_element”
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Fig. 1.18. Initial fine-grid unstructured mesh.

defined at the initial fine-grid level as the product of the Boolean matrices “element_
face” x “face_element”. Once an agglomeration step has been performed (i.e.,
the relation “AE_element” constructed), we define the coarse relation “coarse el-

(LI T]

ement”_"coarse element” by“AE_AE” which equals the triple product:
“AE_element” x “element_element” x “(AE_element)T”.

Another approach is taken in [Wab03], where a bisection algorithm is recursively
applied as follows. First, partition the set of elements into two groups. Then each
newly created set of elements is further partitioned into two subgroups and so on. At
the end, we have £ levels of partitioned element sets, which serve as agglomerates in
a multilevel hierarchy.

In Figure 1.18, we show a model unstructured mesh, and in Figures 1.19—-1.21,
one, two, and three levels of agglomerated meshes are shown.

1.10 Finite element matrices on many processors

With the current development of parallel computers having many (sometimes thou-
sands) of processors, the actual generation of the finite element problem (matrix and
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Fig. 1.19. One level of agglomerated coarse elements.

r.h.s.) may become a nontrivial task. The common practice to generate the problem
on a single processor and after proper partitioning to distribute it over the remaining
processors has limited applicability due to memory constraints (that single processor
has limited memory).

A feasible approach is to derive the pieces of the global problem in parallel, one
piece per processor. Thus, we end up with matrices AE,N) similar to the decomposi-
tion (1.20) (with p = 2). We need a Boolean mapping P that identifies dofs on a
given processor p with their copies in the neighboring processors g. These multiple
copies of dofs are identified with a single (master) one, which is sometimes called
truedof. Then, the actual matrix A corresponding to the truedofs only is obtained by
performing the triple-matrix product

AM oo 0
(V)
0o A o
p7 S P.
(N)
0 ... 0 AY

The matrix P” has for every row (corresponding to a truedof) a number of unit
entries identifying it with its copy in the neighboring processors. The latter procedure
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Fig. 1.20. Second level of agglomerated coarse elements.

represents the so-called parallel assembly of the global matrix. Note that we can
use different matrices P (not necessarily the above Boolean one) to specify how the
remaining degrees of freedom are defined from a set of master dofs (or truedofs).

The procedure for assembling the problem r.h.s. b is similar. We have locally
computed r.h.s. by,; then the global one equals

by
pT b2

b,
1.11 The mortar method

A more sophisticated way to generate the finite element problem in parallel that,
in general, can also utilize nonmatching meshes, is based on the so-called mortar
method (cf., [Wo00]). Here, we handle two neighboring processors i and j at a
time. Let I' = T';; be the geometrical interface between the subdomains €21 and €2
triangulated by elements {r} on processor i and elements {7} on processor j. There
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Fig. 1.21.  Third level of agglomerated coarse elements.

are degrees of freedom associated with t elements and degrees of freedom associated
with T elements. The dofs on one side of I' are chosen as “master” ones, whereas
dofs on the other side of I" are “slave”. In the mortar method, the degrees of freedom
from both sides of I" that happen to belong to other interfaces I', s are considered to
be master dofs. That is, even on a slave side of I, the dofs on 9T (i.e., belonging to
other interfaces as well) are considered as master dofs. Next, we select the dofs in the
interiorto I' = I" \ 9I" of one of its sides (say, on processor i, assuming i < j ) to be
slave. Then, we have to define a mapping Pr that interpolates at these slave dofs from
the master (mortar) side (j) and the boundary dofs (on dT") from the same side i so that

‘ _ Vi, ar
vii rar = Pr [v,-; F} . (1.22)

The global problem is formulated as a constrained minimization one as follows. Find
{v;} that solves

1
Z |:§V[~TA§N)V,' — vin,-] > min, (1.23)

i

subject to the constraints (1.22).
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That s, we have a quadratic form, a sum of subdomain quadratic forms a; (v;, v;)—
fQi v fi dx = %ViTAEN)V,‘ — vini (as in (1.23)), and we impose continuity to define
the slave variables in terms of the master ones. In the present finite element setting,
the constraints are imposed on every interface I' = I';; via another quadratic form
(-, -)o, r» which is assembled from local (small) quadratic forms. In practice, (-, -)o,
corresponds to an integral L,-inner product on any interface boundary I" between two
subdomains.

1.11.1 Algebraic construction of mortar spaces

In this section, we present an algebraic element-based construction of dual mortar
multiplier spaces (originated in [KPVb]). This construction generalizes the dual basis
approach from [KLPV, Wo00, Wo00] to any type of meshes and (Lagrangian) finite
element spaces that are generated independently on each subdomain.

Note that any interface I';; is the union of faces from the mortar or the nonmortar
side. Thus, we can define finite element spaces on both sides of the interface by taking
the trace of the corresponding subdomain finite element spaces V; and V.

Anodeon I';; is called a boundary if it also belongs to another interface. The nodes
on I';; that are not boundaries are called interior (to the interface). A face on I';; is
called an interior if it does not contain any boundary nodes, it is called a boundary
face if it contains interior and boundary nodes, and finally, it is called a corner face
if it does not contain any interior nodes. This is illustrated in Figure 1.22.

For any given interface I';;, the space M| l.o. is defined to be the set of functions on
the nonmortar (slave) mesh on I';; that vanish on the boundary nodes of I';;. Let T
be a nonmortar face of I';; and define M;;(T) to be the restriction of the nonmortar
functions to 7'. We define M;; = &M;;(T) where the sum is taken over all faces of
the nonmortar mesh on I';;. The space Mj; is a subset of M;;.

corner

N

Ccorner interior boundary</>

Fig. 1.22. Different types of faces on a nonmortar interface.
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The dual basis functions in the finite element case have two important properties:

1. The dual basis functions are constructed locally.
2. The dual basis functions can reproduce constants locally.

These properties are fundamental in the analysis of the approximation properties
of the mortar method used as the discretization method (for details cf., [Wo00]
or [KLPV]).

To be specific, we consider 3D subdomains €2; that are polytopes, triangulated by
tetrahedral meshes. Then each interface I';; between two subdomains €2; and €; is
triangulated by two sets of triangular meshes (the restriction of the tetrahedral meshes
to I';;). The mortar constraints are imposed on the basis of the L (I';;) form, denoted
by (.,.) and by (., .)r if the integration is restricted to an element 7. Assuming we
have constructed a mortar f.e. space M;;, we impose “weak” continuity conditions as
follows,

([v], w) = i —vj, w) =0.

Here, 1, € Mj; runs over a basis of M;; and [v] = v; — v; stands for the jump of v
on I';;. In what follows, we also use the notation v,, = v; for the mortar side of I';;
and vy, = v; for the nonmortar side of I';;.

Also, let 6; define a Lagrangian basis on the nonmortar side of I';; and similarly
let {ék} define a basis on the mortar (master) side of I';;.

This relation forces the interior nodes on the nonmortar interface to be slaves of
those on the boundary and those on the mortar side. This is illustrated in Figure 1.23.

non-mortar

@ degrees of freedom

O slave nodes

Fig. 1.23. Mortar interface and degrees of freedom.
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A local biorthogonal basis

There is a unique function i; € M;;(T) satisfying

1, [=k,

(A1, 0T = 8ij = {O £k

Here {6} are the basis functions for M;;(T) (these basis functions are restrictions of
the basis functions of the nonmortar subdomain to 7°). In fact,

=) cubh
k

where the coefficients ¢; = (cy) solve the system
Gre, =e = (i)

where G = ((0k, 0;)7) denotes the local mass matrix for the element 7. This system
has a unique solution because G is invertible.
Using the biorthogonality property (ii;, 6x)T = S, it follows that

T
a=a =1, 0)r
satisfies

ZO[[/?L[ =1 onT.
1

The biorthogonal mortar basis

The mortar multiplier basis functions {u;} are defined only for nodes x; that are
interior to I';;. We first assign corner faces T to nearby interior vertices; For example,
T is assigned to the nearest interior vertex. For each interior node x; and face T, we
define u; on T as follows.

1. If T is a corner face assigned to x; then u; = lon 7.

2. If T is a face that does not contain x; (excluding the case of (1) above) then

ur=0onT.
3. If T is a boundary face containing x; then

~ —1 ~
W =0 +m Z agiug onT
k: xpedl’NT

where m is the number of interior nodes in 7.
4. If T is an interior face containing x; then u; = ayfi; on T.

We then have

lzz,ul onT,

where the sum is taken over / such that u; #0Oon T.
The dual basis mortar formulation defines M;; to be a subspace of discontinu-
ous piecewise linear functions on I';; (with respect to the nonmortar mesh) that are
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generated by a dual basis, {x;},/ =1, ..., n;; satisfying
1 ifl =k
O xrds = ’ 1.24
/ LXK {O otherwise. ( )
Here {6;}, [ = 1,...,n; is the usual nodal finite element basis for the space of

functions M 8. which are piecewise linear (with respect to the nonmortar mesh) and
vanish on 9T';;.

The construction of the dual basis functions only requires the use of the local mass
matrices Gt and local geometric information, such as relations between nodes, edges,
and triangles, and whether a node and a face are on the boundary of an interface.

Implementation of the mortar interpolation

The condition (1.24) implies that the nodal value of a finite element function v on the
interior node x; (corresponding to the basis function 6;) is given by

o = f o () 1 dx — f Va0 () 1 dx (125)

where vy, (x) denotes the trace of v to I';; from the mortar subdomain and vjm,o
denotes v on the nonmortar side, cut down to zero on the interior nodes. Equation
(1.25) defines a row of the desired mortar interpolation (cf., (1.22)). The computation
of the right-hand side of (1.25) requires information about how the elements on the
subdomain are connected to those on the boundary, as well as the geometric relation
between the triangles (faces) on the mortar and those on the nonmortar side and an
“interaction mass matrix”

Mt = / 0%omdx,  k, m=1,2,3. (1.26)
- NTs

Here 7, and 7 are triangles on I';; on the mortar and nonmortar side, respectively,
and Q,k and 5:" run over the nodal basis functions on 7, and 7. In our particular case,
there are three linear basis functions Hf per triangle 7, and also three basis functions
5;" per triangle .

The space of mortar multipliers M;; is defined to be the span of {y;}. Note that
the dimension of M;; equals the number of interior nodes x; on I'. The dual basis
functions {;} satisfying (1.24) are obtained from {u;} by obvious scaling.

Note that in general, {{¢;} are discontinuous across the element boundaries. Two
examples with piecewise linear finite elements and a nonmortar interface with uniform
triangulation in one and two dimensions are presented in Figures 1.24 and 1.25.

Note that the construction here is quite general in that it extends to any element-
by-element defined interface functions as long as the element mass matrices are
available. Thus, it extends to the types of interface functions resulting from element
agglomeration-based (AMGe) procedures described in Section 1.9. For more details,
cf. [KPVb].
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Fig. 1.24.
a uniform grid.

Mortar basis functions for one-dimensional nonmortar interface discretized with

I

a uniform grid.

Fig. 1.25. Mortar basis functions for two-dimensional nonmortar interface discretized with

In conclusion, because the dual basis for M;; and the basis for Ml-(]). are related by
(1.24), the values of the slave nodes on the interior of the nonmortar interface are
matrices (1.26).

given by (1.25). The implementation of this requires the corresponding interaction

47
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A Main Goal

Given a sparse matrix, for example, symmetric positive definite (or s.p.d. for short)
A = (a; )} j=1-0ur main goal is to devise efficient algorithms for solving the system
of linear equations,

Ax =Db.

In practice, n can be very large (e.g., in the range of millions). A first comment then
is that in a massively parallel environment direct solvers are out of the question due
to their prohibitive memory requirements.

The fact that A is sparse means that an inexpensive operation is “matrix times
vector.” Therefore, iterative methods for solving Ax = b are appealing because they
involve computing at every iteration the residual

r =b — Ax,

corresponding to a current iterate X. The next iterate is obtained by computing a
correction based on r. A stationary iterative method exploits a mapping (sometimes
explicitly represented by a matrix) B, which has an easily computable inverse action
B~! (in some cases implicitly represented only by a procedure). Then, the new iterate
Xpew equals,

Xnew = X + B_ll'.
The corresponding new residual rneww = b — Axpew equals
rnew = (I — B~ A)r.

By making the successive residuals r — 0 (in some norm), we get more accurate
approximations X to the exact solution A~'b.

If B is s.p.d. (symmetric positive definite), the method of choice is the (precondi-
tioned) CG, which initially computes p = B~ 'r and at every successive step updates
it based on the preconditioned residual ¥ = B~ 'r as p := B~ !r + g p for a proper
scalar . At any rate, major operations here are again (as in a stationary iteration) the

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 49
doi: 10.1007/978-0-387-71564-3_2,
© Springer Science+Business Media, LLC 2008
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actions of B! and matrix vector products with A in addition to some vector inner
products. The actual preconditioned CG iteration takes the form:

(0) Initiate: Given a tolerance € and an integer n"®* that gives the maximal number

iter

of iterations allowed, for an initial iterate x, which we choose x = B~ !b, we

1. Compute 8y = x”b.
2. Computer = b — Ax,
3. Computer = B~ lr,
4. Letp =T.
5. Compute § = F' r.
6. Test for convergence, if § < €2 80 stop.
7. Setn,,, = 0;
(i) Loop: until convergence or max number of iterations reached
1. Compute h = Ap.
2. Compute « = §/p’h.
3. Compute X := X + op.
4. Computer :=r — oh.
5. Compute ¥ = B~ 'r.
6. Set 5, =6,
7. Compute § =¥/ r.
8. Setny =Ny + 1;
9. Check for convergence: if either § < €2 8,4 OF Ny > nin, stop.

10. Compute B = §/84-
11. Compute p :=T + 8 p and go to (i).

We have the following popular convergence rate result after n,, steps,
2qniler 2 e
(SSK'(m) 60§4Kq 50,
where ¢ = \/k — 1//k + 1 and k = Cond(B~'A).
In practice, we typically prove (spectral equivalence) estimates
c1 vl Ay < vl By < vI Av forallv.

Then, because the eigenvalues of B~'A are in [1/c2, 1/c1], we clearly have ¥ <
ca/ct.

A simple candidate for an iteration matrix B is based on the diagonal D of A. For
example, we can use the diagonal matrix x D, where x is either a diagonal matrix
with entries ; = > J i #0 1 or just the scalar max; x;. We have

c1 vl Av < vl Bv < vl Av

with ¢; = 1. Unfortunately, for f.e. matrices A, such as the discretized Poisson
equation, the estimate from below is mesh-dependent; that is, we typically have
1 vl Ay 5
¢, =min — ~h"— 0.
v vliyDv

Hence, Cond (B~'A) < ¢2/c1 ~ h™2 + oo with h > 0.
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The goal then is to construct a B such that:

(i) The action of B—! costs as little as possible, the best being O(n) flops.

(ii) The constants ¢ and ¢; in the spectral equivalence estimate are such that ¢ /cy
is as close as possible to one, for example, being independent of various problem
parameters, in particular being independent of .

(iii)* In a massively parallel computer environment, we also want B~! to be com-
posed of local actions, essentially based on a “hierarchy” of sparse matrix vector
products. The latter is achieved by the multilevel preconditioners that are a main
topic of the present book.

Based on the convergence estimate, it is clear then that to get an approximate solution
to Ax = b within tolerance e, it is sufficient to perform as many as n,, iterations such
that g"er < %K_l € orn,, = O(log 1/€). The constant in the O symbol is reasonable
as long as « is kept under control (not too far away from one).

For large sparse matrices A that come from finite element discretization of elliptic
PDEs (partial differential equations), like the Poisson equation, we can achieve both
(1) and (ii) (and to a certain extent (iii)*) based on the multilevel preconditioning
methods that are the main topic of the present book. Such methods are often referred
to as scalable iterative methods.
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Two-by-Two Block Matrices and Their
Factorization

The topics that are covered in this chapter are as follows. We first study some funda-
mental properties of block matrices and their Schur complements. We next consider
a popular product iteration method, and then the concept of approximate block-
factorization is introduced. A main relation between a familiar product iteration algo-
rithm and a basic block-factorization preconditioner is then established. This relation
is a cornerstone in proving the spectral equivalence estimates. Next, a sharp spectral
equivalence result is proved in a general setting. It provides necessary and sufficient
conditions in an abstract form for a preconditioner to be spectrally equivalent to the
given matrix. Then two major examples, a two-level and a two-grid preconditioner, are
considered and analyzed. Finally the more classical two-by-two (two-level) block-
factorization preconditioners are introduced and analyzed. The chapter concludes
with a procedure to generate a stable block form of matrices and with an analysis of
a respective block-factorization preconditioner.

3.1 Matrices of two-by-two block form

3.1.1 Exact block-factorization. Schur complements

In this section, we consider general s.p.d. matrices of the form
AR
A=A 7).
Assuming that A4 is square and invertible, introduce the Schur complement

S=B-LA'R.

A standard block-factorization of A reads

=[N Sl )

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 55
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This shows that S is invertible if A is invertible. Moreover S is s.p.d. if A is s.p.d. A
straightforward computation shows the identity

A1 [1 AR A0 I 0
) I 0 S '|-cAt T
AT+ ARSI LA AT IRS!
B -S7lcA! S '

This, in particular, implies the identities for the blocks of

-1 _ |V F
[ )
Wehave W =S8, F = -A'RS1, G =-8'LA  and A7! =V — FSG.
We may introduce the following Schur complement of A,

S'=A-RB'L.
It is clear then that V = (S’ )_1. That is, A~! and B~! are Schur complements of
A~!. Alternatively, we may say the following.

Proposition 3.1. The inverse of a principal submatrix of a given matrix is a respective
Schur complement of the inverse of the given matrix.

Another form of the explicit inverse of A is as follows.

—1 -t
A7l = [Ao 8}+[ A R]S‘l[—u—l, 1.

The latter shows that A~ can be computed as a “low-rank” update to
A7 o
0 o

Theorem 3.2. The Schur complement S of a s.p.d. matrix A is better conditioned
than the matrix. Moreover, we have

)\min(A) = )\min(S) = )\max(S) = )\max(B) = kmax(A)-

T T
0 A 0 VI AlY
x'Sx  xT'(B- LA LT)x - x! Bx X x| _ X X
— = u - L 4
xTx xTx — xI'x 0T0+x"x ~y, I,Z viv+xTx

Proof. The last two inequalities are straightforward because

implies

)\max (S) S )\max (B) S )\max (A)'
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Now using the fact that S~! is a principal submatrix of A~!, we can apply the proved
inequality Amax (B) < Amax(A) for A := A~!land B := S~!, which gives

L, (S < Amax (A1 = !
Amin(S) -  Amin(A)’
That is, the remaining inequality Amin(A) < Amin(S) is proved. O

In what follows, we often use the following properties of A.

Lemma 3.3. Given are two rectangular matrices (less columns than rows) J and
P, such that [J, P] is square and invertible. In other words, any vector v can be
uniquely decomposed as v = Jw + PX. This shows that the vector spaces Range(J)
and Range(P) have a nontrivial angle in a given inner product generated by any
s.p.d. matrix A. Let y € [0, 1) measure that abstract angle; that is, the following
strengthened Cauchy—Schwarz inequality holds.

wlJAPx < y(w! JTAIW)' 2 (xT PTAPX)'/2,  forall w, x. (3.1

The following inequality is an equivalent statement of (3.1)

inf vl Av. (3.2)
— yY< xiv=Jw+Px

wlJTAJw <

Due to symmetry, we also have that the following statement is equivalent to (3.1),

inf vl Av. (3.3)

x! PT APx <
1— )/2 w: v=Jw+Px

Finally, consider the special case [J, P] = I, that is,

I 0
Jz[o], Pz[l], (3.4)

and let A = JTAJ, R = JTAP, £ = PTAJ, and B = PTAP. Consider also the
Schur complement S = B — LA™'R. Then

wl' [A R][w
inf vl Av = inf = x"(B- LA 'R)x = x Sx.
w: v=Jw+Px w X L B X

(3.5)

Proof. We look at the quadratic form, for any t € R,

0() = (Uw+Px)TA(Jw +tPx) — (1 — yH)yw! JTAJw
= 2x" PTAPx + 2twT JTAPx + 12wl JT AJw.
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An equivalent statement Q(¢) to be nonnegative is its discriminant
wliTarx)? — 2wl T AJwx” PTAPx,

to be nonpositive. This shows that (3.1) and (3.2) are equivalent.
Finally, in the case (3.4), the “energy”” minimization property (3.5) of the Schur
complement S of A follows from the identity

(Jw+ Px)TA(Uw + Px) = x' Sx + (Aw + Rx)T A7 (Aw + Rx).

It is clear then that X’ Sx = miny (JW + Px)T A(Jw + Px) with the minimum
attained at w = — A1 Rx. O

The following result was proved in [FVZ05].

Lemma 3.4. Let T+NT N be invertible, with T being symmetric positive semidefinite
and N a rectangular matrix such that for any vector v (of proper dimension) the
equation Nw = v has a solution. Introduce the matrix Z = N(T + NTN)"INT. we
have that Z is s.p.d., and the following identity holds.

viz-ly . wlTw
T =1+ inf T
A\ w: Nw=v V'V

Proof. We first mention that N being onto implies that N7 has a full column
rank. Indeed, assume that for some vector vg we have that N'vy = 0. Because
by assumption, the equation Nwg = vg has a solution wy, it follows then that
0= (N"vo)Twy = vl (Nwo) = v]'vo. That is, ||vo|| = 0, which implies v = 0.
Thus, the columns of N7 must be linearly independent, and hence, NN T is invertible.
It is clear also that the matrix Z = N(T + NTN)_lNT is s.p.d., hence invertible.
This follows from the simple inequalities,

wINT + NN 'NTw=(NTw) (T + NTN)"Y(NTw)

> ————— [N"w|*=0.
Amax(T + NTN)

The last expression can be zero only if N7 w = 0, that is, only if w = 0 due to the
fact that N7 has a full column rank.

Consider now the following constrained minimization problem.
For a given v find the solution of

1
J(w) = 3 w! Tw — min,

subject to the constraint Nw = v. Let w, be a solution of this quadratic constrained
minimization problem. Introducing the Lagrange multiplier A and taking derivatives
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of the respective Lagrangian L(w, ) = J(w) + AT(Nw — v), we end up with the
following saddle-point problem for (w,, 1),

& =B

The latter system is equivalent to the following transformed one (obtained by multi-
plying the second equation with N7 and adding it to the first equation),

T+NI'N NTQ[w] _[NTv
N 0 AT v T
The transformed matrix has (by assumption) an invertible (1,1)-block, 7 + N TN,
and also it has a (negative) Schur complement Z = N(T + NTN)~!NT which we
showed (above) is invertible.

Thus, the solution of the constrained minimization problem w, coincides with the
w-component of the solution of the last saddle-point problem. Because w, = (T +
NTN)"INT(v=1), wehavev = Nw, = Z(v—X\), which shows thatA = v—Zlv.
Thus, using again that v = Nw, and N7 A = —Tw,, we end up with the equalities,

viZ7lv=vlv—vTa
=vliv— (Nwo) A
=vly— wf(NTl)
=vlv+ WZ Tw,.

Using now the characterization of w,, namely, that

WZTW*= min wTTw,
w: Nw=v

we end up with the desired identity,

viz-ly . wl Tw
=1+ min

. O
VTV w: Nw=v VTV

Finally, we derive a symmetric version of the popular Sherman—Morrison formula.

Proposition 3.5. Given are three matrices, X, T, and F, such that X and T are
invertible; then the following formula holds,

X+FIT ')y ' =x ' - x '"FT(T+ FX'FYy"'Fx~,
provided T + FX~VFT is invertible.

Proof. Consider the following factored matrix

S|
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We have the following explicit expression for A
A x=t ol[r FT
T LFXTt T[|l0 1

X! X-'FT
- [FXl T+ FXIFT} '

Form the Schur complement of A,
S=x"'—x'"FI(r+ Fx 'FTy"'Fx~1.

Now, let us derive an explicit expression for A~L. Based on the factored form of A,

we get
e “rx-t o171 o]
0 I 0 T| |F I
[ -FT7[x o I 0
o 1 |0 T |-F I
[x —-FTT7Y|[ 1 o0
— o 7! —F I

(X + FTT7-1Fp —fTT-!
—T-'F 7!

Then, Proposition 3.1 tells us that (X + F rr-1f )_1 = S which is the desired
Sherman—Morrison formula. O

3.1.2 Kato’s Lemma

We often use the following classical result of Kato (see Lemma 4 in the appendix of
[Kato]). For a survey on this topic we refer to [Sz06].

Lemma 3.6. Let 7w be a projection; that is, 7> = w and © # I, 0. Then for any
inner-product norm ||.|| = +/(:, -), we have ||x|| = ||I — ||.

Proof. For any vector v and any ¢ € R, consider v, = 7v + ¢(/ — 7)v. Notice that
vy = mv. Then,

2 2 2 2 2 2
e vll™ = v I” < [l [IZIvell” = I [IFllwv 42 (1 = 7)v|]~.

The latter expression shows that

o) = (1 - ﬁ) lzv|? 4+ 2t (zv, (I —7)v) +2||(I — 7)v|> > 0.
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This implies that the discriminant of the quadratic form Q(#) must be nonnegative;
that is, the following strengthened Cauchy—Schwarz inequality holds,

(v, (I —m)v)? < (1 ) vl — v

|l

We prove in the same way

(v, (I —m)v)* < (1 - %) VIl = v
— x|

Thus, ||z || = || — ||, because the strengthened Cauchy—Schwarz inequality
(v, (I =mv)* <y” |mvlPId —m)vl? (3.6)

(i.e., with the best constant y € [0, 1)) would imply, by following the above steps in
areverse order, that || ||> = || — 7||> = 1/(1 — y?). O

The above proof also shows the following corollary.

Corollary 3.7. Consider a vector space equipped with a norm ||.|| generated by an
inner product (-, -). The norm || || of a nontrivial projection w in that vector space,
is related to the cosine y € [0, 1) of the angle between the complementary spaces
Range(w) and Range(I — 1) in the inner product (-, -) (defined in (3.6)), as

Il !
7| =
1—y2

The latter implies ||| = ||I — x| (for ® # I, 0).

3.1.3 Convergent iteration in A-norm

In this section we formulate an auxiliary result that is used many times throughout
the book.

Proposition 3.8. Let A be a s.p.d. matrix. Assume, that for a given nonsingular matrix
M the iteration matrix I — M~ A has an A-norm less than one. Equivalently, (because
A is s.p.d.) assume that

11— AYVPM=TAY?) < 1.

Consider the matrix M = M(M + MT — A)flMT (sometimes referred to as a

symmetrization of M ).
The following properties hold.

(i) I M A= (I—-MTAUI-MTA).

(ii) M — A is symmetric positive semidefinite.

(iii) ||l — AV2M PAV2 ) = |1 — A2 AV2)2,

(iv) |I — AV2PM=YAY2| < 1is equivalent to M + MT — A being s.p.d.



62 3 Two-by-Two Block Matrices

In particular, a stationary iteration for solving systems with A based on M is con-
vergent in the A-norm, if and only if a stationary iteration for solving systems with A
based on M is convergent in the A-norm. The convergence factor of the latter equals
the square of the convergence factor of the former.

Similar results hold for M = MT(M + MT — A)~'M which is in general
different from M (if M # MT) based on the fact | X|| = |XT|| (used here for
X =1—-AY2M~1A172),

Proof. From the explicit expression M = M~ + M~T — M~'AM~T, letting
E=1—-M"A,itfollowsthat —M 'A=E—M-TAE = (I —M~" A)E, which
is the first desired identity. This identity admits the following more symmetric form

7 A2 A2 = (I — AV2MT AV (1 — A2 )T A1/,

This is exactly the third item of the proposition. It actually shows that / — A!/2
M AV2 = XTX (for X = I — AY2M~1A'/2). From the identity / — XTX =
AV2317 " A1/2 and the fact that | X|| < 1 it follows that A'/2M 'A1/2 = 1 — xTx
is s.p.d. This implies that M is s.p.d. Equivalently, we have that M + M7 —
A = MMM is sp.d. The identity XTX = I — AV2M ' A'/2 implies that
AT2XTX A2 = A= — 3 s symmetric positive semidefinite which is equiv-
alent to M — A is symmetric positive semidefinite. This shows the second item of the
proposition.

We already showed that || X|| < 1 implies M + MT — A being s.p.d. The con-
verse statement follows from the fact that M + M7 — A being s.p.d. implies that M

and hence AV2M 'AV2 = [ — XT X are s.p.d. Therefore, || X|| < 1, which is the
converse statement. O

At the end we prove one more auxiliary result.

Proposition 3.9. Let A be a given s.p.d. matrix and M provide a convergent iteration
method for A in the A-norm; that is, let |I — M~ A4 < 1. Let

ol

specify a principal submatrix A = (Ip)T Al of A. Finally, let Mg be such that
1 — M;lAFHAF < 1. Then, the product iteration matrix E = (I — M—"A)(I —
IpM 5 (Ip)T A) satisfies

IEIa < Il —M'Alls < L.
That is, the product iteration method based on M 1 and Iy M;l Ip)T is convergent

in the A-norm. In particular, the matrix M defined implicitly I — M~'A = E is well
defined; that is, I — E is invertible.
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Proof. If we show that |[E||4 < 1 then the convergence of the series (I — E y =
pyadt E* < 0o would imply that M = A~'(I — E)~! is well defined.
We first use the fact that |/ — M ;1A Fllar < 1lisequivalent to the statement that
M;l + M;T — AF is s.p.d. (see Proposition 3.8).
If we show that |7 — Ir My (IF)T Alla < 1then |E|la < I — M~ 'Alla < 1
the result is proven. Consider the expression
I = 1eME U T AV
— T —
=vI (I = 1pMZ Up) T A) A(I — Ip M (Ip)T A)v
=vI(A— AIpMZTIFA — ALp M TFA + ALpMET (I ALY M TE A)v
=vI(A—AIpM;TIFA — Alp M TEA + AIp M T Ap M TE A)v
=viAv — A 1p(MpT + M - M Ap M) Ip Ay

< vl Av.

That is, || — IFM;1(IF)TA||A < 1 which was the desired result. O

3.2 Approximate block-factorization

Given the s.p.d. matrix A operating on vectors in R”, let J and P be two rectangular
matrices such that their number of rows equals n. Simple examples are the rectangular

matrices
1 0
1= =[]

In what follows, we consider general rectangular matrices J and P. Form the sub-
space matrices A = JTAJ and B = PTAP and let M and D be their respective
approximations (sometimes called preconditioners).

In the following sections, we show that there is a close relation between certain
block-factorization preconditioners that exploit solvers based on M, D, and MT and
subspace product iteration algorithms of inexact block Gauss—Seidel form.

3.2.1 Product iteration matrix formula

More specifically, consider the problem
Au = b,

with a given initial approximation ug. The procedure to generate a new approximation
Upew exploits updates from two subspaces Range (J) and Range (P), which require
approximate solutions of problems with the respective subspace matrices A = J7AJ
and B = PTAP.
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Assume that M is an approximation to A and that D is a s.p.d. approximation
to B. Note that M does not have to be symmetric.
For practical purposes we often assume that

11— AVPM AV <1, (3.7)
and
11 —B72D7 18172 <1; (3.8)

that is, both M and D provide convergent splittings for A and 5 in the “energy”
norms ||.|| 4 and ||.||5, respectively. The latter is motivated by the fact that the best
approximation to the solution u from the subspace Range (P), defined as |ju —
Px| o — minis given by the Ritz—Galerkin projection mqu = P(PTAP)~! PT Au =
PB~'PTb. In the case of approximate solutions, that is, using D~! instead of B!,
it is natural to assume that D! is close to B~! in the B-norm. The same argument
applies to M~ and M~ used as approximations to A",

The inexact symmetric block Gauss—Seidel procedure of interest takes the fol-
lowing familiar form.

Algorithm 3.2.1 (Product iteration method)

(0) Let ug be a current iterate and ro = b — Aug be the corresponding residual.
We perform steps (m), (w), and (m') (corresponding to iterations in subspaces
Range(J), Range(P), and Range(J)) to define the new approximation Wye.

(m) Solve approximately for a correction JX,, from the subspace residual equation,

JTADx = JTro;

that is, compute X, = M= VJTry and let v, = g + JXp. Compute the new
residual ¥,y =b — Au,, =b — Aug — AJx, = (I — AJM I T)r,.
(w) Solve approximately for a correction Pw from the subspace residual equation

(PTAP)W = PTr,,;

that is, let w = D' PTr,, and let u,, = u,, + Pw. Compute the next residual
ry =b— Au, =b — Au,, —APw = (I — APD'PTY(I — AJIM~1JT)r,.
(m') Solve approximately for a correction JX,, from the subspace residual equation,

JTADx = JTry;

that is, let X,y = MT Ty, and the final new iterate equal Wyey, = Wy, + J X,y
Compute the new residual Ypey = b — Alyey = b — Auy, — AJX,y = (I —
AIM™TJTYI —APD'PTYI — AIM I T)ry.

Thus the residual iteration matrix E, of the above composite iteration uy >
Upew, Which maps rgp — TIpew, has the product form E, = (I — AIM™TJT)
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(I —APD'PTY(I — AJM~1JT). For the error iteration matrix E defined from
u—ug=A"lrg ~ u— tew = A rpew, noticing that AE = E, A, we obtain

E=U—-JMTITAUI - PD'PTAYI —IM ' JTA) = ATE, A.

We can easily show the above algorithm does not diverge if (3.7) and (3.8) hold.
We have the following.

Lemma 3.10. Assume that M and D satisfy (3.7) and (3.8). Then ||Ee|ls < |le| a-

Proof. Due to the product form of E, it is sufficient to prove that || (I — JM~1JT A)
ella < llella, (1 = JM™TITA)ella < llella, and ||| — PD~'PT A)el|a < [le]|a.
Equivalently, it is sufficient to prove that
11— AZIMYITAYV2 = 11 = AV2IMTJTAY?) <1, and
|11 —AYV2PDIPTAY? < 1.
We prove the inequality involving M (the result for D is analogous). From the
identity
I - AI/ZMfTAl/Z)(I _ A1/2M71A1/2)
=1 - APM T+ M =M AMTH AV,
we see that the assumption || 7 —. A2 M~ A/2|| < 1isequivalentto M~ 4+ M~T —
M~ AM™! being symmetric positive semidefinite.
Consider then the expression
I =M™ T Al
=eT U= IMITAHTAU = IMIT A)e
=el(A—AIM TITA—AIM VITA+ AIMTUTADM T IT A)e
=el (A—ATMTITA—ATMUITA+ ATMTTAMT I Ae
=elAe — (A) TM T + M= MTTAM I Ae

< e’ Ae.

Thatis, || — JM~'JT A|4 < 1, which was the desired result. ]

3.2.2 Block-factorizations and product iteration methods

Define implicitly a matrix B~! from the equation
I—-B'"A=E=U—-JMTJTA)UI -PD'PTAYI —-IMITA). (3.9

We show next that B~! can be constructed as a certain approximate block-
factorization matrix given below.
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Theorem 3.11. Let M = M(M 4+ MT — A)~' MT. Consider the following block-

Jfactored matrix.

(3.10)

[ M O[M+M =~ 0] [M" JTAP
T | PTAT 1 0 Dl 0 I |

Then, the matrix B~ = [J, P]§_1[J, P17 solves the equation (3.9). Also, B!
admits the following more explicit form,
Bl =M T+ (U —IMTITAPD'PT (1 —aIMIT).  (3.11)

‘We remark that if the matrix [J, P]idoes not have full column rank, then B~! is
just a notation for the product [/, P]B~![J, P]T, which is only symmetric positive
semidefinite, and not invertible.

Proof. The following explicit expression of B lis easily derived,

F-1_[1 —mTuTap Moo I 0
0 I o D !||-PTAIM™ I|"

Next, form the product [J, P1B~'[J, P]7. We have

[J, P1B'1J, PI”

=[J. P] [1 _M_TJTAP] MT
- 0 I DIPT (I —ATM™IIT)
__1 T
_ = ~T ;T A\p M T
L, @ =JMTJ7A) ]|:D‘1PT(I—AJM‘1JT)

—IM T = IMTITAPD P — AIMTIT),
which proves (3.11).
Notice next, that

M =M TM+M = M = M T M = MTAM,

which shows,

I—JM JTA=1—JM T+ M = M TAM T A
=I—JM T+ M- MTJTAIM HITA
= —=JIMTITAU - IM T A).
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Therefore,

I—1[J, PIB~'[J, PI"A
I —IM JTA— U —IMTITAPD ' PT (I — AT M ITHA
— I JM ITA— U —IMTITAHPD ' PTAU — JM™IT A)
=1 —JM ITA— (I —IMTITAYI — IM ™ IT 4)
+ I = IMTITAYI = PD'PTAYT — IM T IT A)
= —JIMTIJTAYU - PD'PTAYI —IMITA)
=E.

Thus, B~ = [/, P]E*I[J, P17 solves the equation / — B~'A = E, which
concludes the proof. O

In conclusion, we proved that the block-factorization preconditioner B defined
as B~! = [J, P1B~'[J, P]T, where B comes from the approximate block-
factorization of the two-by-two block matrix A = [J, PITA[J, P], as defined
in (3.10), leads to an iteration matrix / — B~'A that admits the product form
(I —JMYITAYUI — PD'PTAYI — JM™TJT A), composed of three simpler
iteration matrices coming from M, D, and M7, acting on the subspaces Range(J),
Range(P), and Range(J), respectively.

3.2.3 Definitions of two-level By and two-grid Brg preconditioners

Next, we consider two special cases of full-column rank matrices J and P. The first
one corresponds to [J, P] being a square invertible matrix. The corresponding pre-
conditioner B = Bryy is referred to (cf., [BDY88]) as the “two-level” or “hierarchical
basis multigrid” (or HBMG).

Definition 3.12 (Two-level preconditioner). Given an approximation M for A =
JTAJ and an “interpolation” matrix P, such that [J, P] is square and invertible,
and let D be an s.p.d. approximation to B = PT AP, such that

o M4+ MT — Aiss.p.d., orequivalently ||[I — A2 M~ TAV?|| < 1.
» D — B is symmetric positive semidefinite.

We first form

3. _[ M 0 MT +M—a)"1 01[MT JTAP
L=1pTay | 0 DIl 0 1 |

and then define B;Ll = [J, P]E;LI[J, P1T. Or, more explicitly (based on (3.11)),
letting M = M(M + MT — A~ MT,

By = I M I (1= IMTITAYPDT PT (1 — ATM T,



68 3 Two-by-Two Block Matrices

The case J = I leads to [J, P]T with full column rank, because [I, P][I, P]T =
I+PPT  whichiss.p.d., hence invertible. The corresponding preconditioner B = Brg
is referred to as the “two-grid” preconditioner.

Definition 3.13 (Two-grid preconditioner). Given a “smoother” M for A and an
interpolation matrix P, and let D be a s.p.d. approximation to B = PT AP, such that

o M+ MT — Aiss.p.d., orequivalently | I — AYV2M~1AY?|| < 1.
» D — B is symmetric positive semidefinite.

We first form

.| M O MT +M -~ 0[MT AP
T6=1pTA | 0 Dl o 1|

and then define BT_é = [, P]§T_C}[I, P1T. Or, more explicitly (based on (3.11))
letting M = M(M + MT — A)~'MT,

Byl =M '+ —AMTYPD'PT(I — M~ A).

Proposition 3.14. 7o implement B~ !p, for both B = Brp, and B = Brg, we can use
Algorithm 3.2.1 starting with ug = 0. We have then B~ b = uypy. Alternatively, we
may use the explicit expression given by (3.11).

Proof. Thisis seen from the fact that E, = I — AB~! relates the initial and final resid-
uals via Ipew = E,ro. Noting then thatrg = b— Aug = b gives rpew = b — Atlpew =
I — AB‘l)b (i.e.,AlUpey = AB‘lb), and therefore upew = B~ !b, which is the
desired result. O

3.2.4 A main identity

Consider the block-factorization preconditioner B leading to the product iteration
matrix E=1— B 1A= (I —JMTJTA)(I — PD'PTAYI — TM71ITA).
‘We assume here /t\hat [/, P]T has a full column rank, hence B is well defined
from B~! = [J, P1B~'[J, P]”, which is now s.p.d.
The present section is devoted to the proof of the following main characterization
result for B.

Theorem 3.15. The following main identity holds.
vIBv=  min [VCTDVC + M v+ JTAPVHT (M 4+ MT — 47!
v=Jvs+Pv,

x (MTvs + JTAPvV,)].

Recall that D was a s.p.d. approximation to PT AP.
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Proof. We use the equivalent block-factorization definition of B = Bry, Defini-
tion 3.12; that is,

B~ =17, PIB '[J, P .

Then, because [|X|| = X7 || = 1is used for X = BY2[J, P1B~'/2, we get the
inequality

STB-Y21y, PITBJ, P1B Y/ <+7¥,
or equivalently,
3T1J, PITB[J, PV <7 BV. (3.12)

Given v decomposed as

v=Jv,+ Pv. =[J, P] [V‘Y] ,
Ve

based on inequality (3.12) used for

we obtain,
VvV TA vV,
viBv=v'[J, PITB[J, PN < [v*} B[ S].

That is, we showed that (see (3.10)),

T
vIBv < min |:Vsi| B |:vs]
v=Jvs+Pv. | Ve Ve
=  min [VCTDVC + MTvg+JTAPVHOT M + MT — 47!
v=Jvs+Pv,
x (MTvs + JTAPv,)]. (3.13)

It remains to show that this upper bound is sharp. For this, consider the problem
for v,

BV =1[J, P]"Bv.

Wehave[J, PIV=[J, P1B~![J, P]T Bv = v.Thatis, [J, P]V providesadecom-
position for v. For that particular decomposition, we have viBv=vT[J, P]TBv =
v BV. The latter shows that the upper bound in (3.13) is sharp, which is the desired
result. m]
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3.2.5 A simple lower-bound estimate

Recall the product formula E = (I—J M~ TJT A)(I—PD~' PT A)(I—-J M~ 1JT A).
We also note that when J = I, A = JTAJ = A, then we let M = M for a given M.
We assume (as in Definitions 3.12-3.13), that

w! Dw > w! Bw. (3.14)

The following simple lower-bound result holds.

Theorem 3.16. If D — B is symmetric positive semidefinite, then AE and B — A are
symmetric positive semidefinite.

Proof. We have the identity,
AE = XT(1 — AV2pD7 ' PT AV X, X =AYV20 —JMITA).
If we show that
viaA~lv > (PTwID ' (PTv), (3.15)

then the middle term I — AY2PD=1PT A2 in AE = X7 (x) X will be symmetric
positive semidefinite, which would imply then that AE itself is symmetric positive
semidefinite.
We next prove (3.15). From the definition B = PTAP, we have I = Y'Y, for
YT =B~12pT A2 Thus, |YT| = ||Y| = 1, implies
(PTAI/ZV)TBfl(PTAl/ZV) S VTV,
1/2

or equivalently (letting v := A™"/“v),

(PTVTB'(PTv) <vlA™lv,
Now use the corollary from (3.14)
(PTWTB~Y(PTv) = (PT)TD 1 (PTV),
to obtain
viaATlv > (pTv)ID 1(PTy),

which is inequality (3.15) The final result follows then from the fact that AE =
A—AB7'A = A(A7! — B~1)A is symmetric positive semidefinite is equivalent to
A~!' — B~ or for that matter, to B — A being symmetric positive semidefinite. The
latter concludes the proof. O

3.2.6 Sharp upper bound

Here we assume that D = B = PTAP. To establish an estimate from above for B in
terms of A, we first assume (as in Definitions 3.12) that M + MT — A'is s.p.d. This
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is equivalent to saying that the iteration matrix / — M~7 A has a norm g less than
one, in the A-inner product, n; that is,

(I = MTAHAWMT AU = M T AHw) < 0> w! Aw.

Because D = B = PTAP and ||I — A2 M~TA2|| < 1, it is clear then (from
Lemma 3.10) that £ will have a spectral radius no greater than one. More specifi-
cally (recalling that AE is symmetric positive semidefinite shown in Theorem 3.16),
we have

v AEv < vl Av.
‘We want to find a sharp bound for the spectral radius of E. The largest eigenvalue of
AV2ZEAV2 — (1 — AV MT JT A2y (1 — AV2PB=1 PT A2y
x (I —AYVPgM1JT A2
equals the largest eigenvalue of
©=(—AV2PB ' PTAV2(1 — A2 M1 T AV2)
X (I —AV2IM™TJT A2y (1 — AV2PB=1PT AV2)1/2)

therefore we estimate the last expression.
We notice then that 74 = A'/2PB~1PT A1/2 is a projection. Hence, we can re-
move the square root, such that I — w4 = (I — AV2pD=1PpT A1/2)1/2 Tntroduce

M=MM+MT — M.

Note that M is in general different from M = M(M + MT — A~ MT.
Consider now the expression

viov=vI (I -T2y —vI (I —T)AV2IM T AV — 7 4)v
VI (I —Fa— U —-TOAIMITAV2( — 7))y

<1 ! vi(I =7 )V

- = — TTA)V.
= K A
Here,

vi(I —T )V
K = max — , (3.16)
VovI((I =T A)AVZIMUIT A2 =T 0)v

is the best (minimal) possible constant. Letting v := A!/?v and introducing the new

projection m4 = A~'/27 4 A1/? = PB~1PT A the above formula takes the form

(=7 )VTAU — 7 a)v
K = max

— . (3.17)
VvT (I = )AIMVIT A — 7))V




72 3 Two-by-Two Block Matrices

3.2.7 The sharp spectral equivalence result

Here we simplify the expression for K (3.17), obtained in the previous section, where
K is the best constant taking part in the spectral equivalence relations between A
and B,

viAv <vIBv < K v Av. (3.18)
We can avoid the inverses in (3.17) and show the following equivalent result.

Theorem 3.17. Assume that J and P are such that any vector v can be decomposed
as v = Jw + Px and this does not have to be a direct decomposition. Introduce the
projections T4 = PB7'PTA, (B= PTAP), andmwa = AV?>PB='PT A2, and let
M =MI M+ M"— A~ M.

The best constant K in (3.18) is given by the expression,

. wl Mw

inf _—

(I-mp)Jw  vIAv
. wl Mw

= sup inf _ .

v wiv=(I—-m0)Jw VI A — )V

K = sup
veRange(I—my) W' V=

(3.19)

In the case of J and P providing unique decomposition, that is [J, P] being an
invertible square matrix, the following simplified expression for K holds.

wl Mw
K = sup .
w WIJTA(I —mp)Jw

(3.20)

Proof. Let N = (I — 7 4)A'/2J. Then
NN = JTAY2U =7 0)? AV T = JTAU — 7a)J.
Define
T=M-—JTAUI —7a)d = M— A+ JT Anay.
It is clear that T is symmetric positive semidefinite. We also have
M=T+N"N.

The key point in what follows is to notice that we consider Z = N(T + NT N)~'NT
as a mapping from Range(N) = Range((I — 74)A!/2J) into the same space.

Then the “saddle-point” lemma 3.4 gives us the identity for Z = N(T +
NTN)’lNT (for any v in the range of N),

viz-ly . wl Tw
T =14 inf -
Vv w: Nw=v V'V
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This implies

viy viz-ly
max oo max ———
veRange(N) V! ZvV  vyecRange(ny) V'V
. wlTw
1+ sup inf T
veRange(n) W* Nw=v ViV

(3.21)

Note that Z = (I — ﬁA)Al/QJ/ﬁ_lJTAl/Q(I — T74). We also have v = Nw =
I — ﬁA)Al/ZJW. Replace now v = A2y, This implies, A~ UDNw = v, or
v = (I — ms)Jw. That is, now v belongs to the space Range((/ — m4)J). It is
clear that because any vector z admits the decomposition z = Jx 4+ Py and because
(I —mg)P = 0, that (I — ma)z = (I — ma)JX. Therefore, Range(I — m4) =
Range((I —m4)J). Similarly, Range(/ —7 4) = Range((/ -T2 = Range(N),
seen from the fact that any vector z admits the decompositionz = A'/2Jx+ Al/2 Py
which implies (I —74)z = (/ —TA)AY2Jx using the fact that (/ —TAV2P = 0.
Identity (3.16), combined with (3.21), takes the form,

T

viv
K = sup —= :
veRange(I-74) VI(I —TA)TAZIMVITAZ(I —TT4)v
viy
= sup e
veRange(N) vIZv
1+ w!l Tw
= sup n _—
veRange(]—nA) w:v=(I—my)JwW VTAV
‘We have
wlTw = WTMW —wINTNw = WTMW —vl Av.
That is,

wl Mw

K = su inf _.
p (I-mp)Jw  vIAv

veRange(I-my) W' V=

This shows the first desired identity (3.19).
To prove the second one (3.20), note thatv = (I —14)Jw = Jw+P(—B~ ' PT A)
(Jw). Then, in the case when J and P provide unique decomposition of v = Jw+ Px,

the latter shows that the second component of v, PX, satisfies x = —B “L(PT A)(Jw)
and it is unique. That is,

wl Mw
wlJTA(I —mp)Jw’

K = sup
w

which is (3.20). O
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3.2.8 Analysis of Bry,

We now derive an upper bound of K in the case of J and P providing unique decom-
position; that is, we bound K = K7y, corresponding to the two-level preconditioner
B7y defined in Definition 3.12.

Let y2 € [0, 1) be the best constant in the following strengthened Cauchy—
Schwarz inequality

wlJTAPx)? <2 wluTasw xT PTAPx. (3.22)
An equivalent form of this inequality reads (see Lemma 3.3, inequality (3.2)),

1
wl Aw < 12 inf (Jw+ Px)T A (Jw + PX).
_y X

The latter minimum is attained at Px = —m4 Jw. Therefore,

wl Aw < g wl (T —a )T AU — a) W

1
= wT(JTA(I —ma)J)w.
1—y2

Using the latter estimate in (3.20), for D = B, we arrive at the following upper bound,

WTMW 1

K <sup ——— ——.
- wp wliAw 1 —y2

In general, we have the following result.

Theorem 3.18. Assume that M provides a convergent splitting for A in the A-inner
product (i.e., that (M + MT — A) is s.p.d.). Let also y € [0, 1) be the constant in
the strengthened Cauchy-Schwarz inequality (3.22). Then B, with D = B, and A are
spectrally equivalent and the following bounds hold,

vl Av < v Bv < KVTAV,
where ~
1 wl Mw

K < su .
T 1—y2 W WT Aw

We recall that M = MT (M 4+ MT — A=Y M. In the case of the inexact second
block D which satisfies
0 <x'(D—-B)x <8 x'Bx,

the following perturbation result holds,

)
vl Av < vl Bv <K+ vl Av.
1—y2
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Proof. Denote with Bexgct the preconditioner with D = B. We have for v =
Jw + Px,

0 < v/ (B = AV =v"(Bexact — AV +x' (D - B)x,
< VT(Bexact — A)v + 8x” Bx

< v (Bexact — AV + x! Sx

1—y2

vl Av

< v! (Bexact — AV + =2

<(K-1+ 5 TA
—_ A\ V.

We used the fact that the Schur complement S of A is spectrally equivalent to the
principal submatrix B of A which is an equivalent statement of the strengthened
Cauchy-Schwarz inequality (3.22). O

3.2.9 Analysis of Brg

The analysis for B = Brg defined in Definition 3.13, follows from estimate (3.19)
proved in Theorem 3.17. We have now J = I, M = M is a given smoother for A.
We assume here that D = B = PTAP.

We are estimating the best constant K = K¢ such that

vl Av < vTBTGv < Krg vl Av.

Based on estimate (3.19), the best constant K = K7¢ in the present case (with J = /
and M = M), is given by the identity

. w! Mw
K = sup inf —
v wiv=(I—-m0)w VI AvV
That is, N
inf(maw + (I — tA)V)T M(aw + (I — 4)V)
w
(I =7V AI = 74)V)

Introduce the projection 7 j; = P(PTZVIP)_1 PTM. Let 1\70 = PT M P. The inf over
w is attained at w : A (Vv — W) = 7 ;v; thatis,

K =sup
v

AZ'PTAY —w) =M~ PT Mv.
Then 7 j; = PA7IC’1PTA71. Let w = Pw,, where
W, = A;lPTAV - MZIPTM v.

We then have maw = w = Pw, = (ma — mj;)v. Therefore, maw + (I — wa)v =
(I — wg;)v. Thus we arrived at the final estimate which is formulated in the next
theorem.
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Theorem 3.19. The two-grid preconditioner Brg defined from the iteration matrix
I —ByaA=(—-M"'A)U - PB'PTAYI — M~ A) with B = PTAP or as
in Definition 3.13, is spectrally equivalent to A and the following sharp estimate
holds,

vl Av < VTBTGV < Krg VTAV,

where

K = sup (I —apW'MU =y VIMUI —7)v

v —7TA)V)TA(I — TA)V - lip vT Av ’ (3.23)

is the best possible constant. We recall, thatNM = M(M + MT~— A)flMT is the
symmetrized “smoother” and wy; = P (PTMP)~'PT M is the M-based projection.

Proof. Itremains to show that the two formulas are the same. Note first that (/ — 7 ;)
P(x) =0,hence (I — )l —ma) =1 — my;. Thus

I—]T“‘VTMI—JT“‘V VTMI—TL’NV
Kig =  sup (( ) )T ( ) < sup (T ) .
v=(I—74)V v Av v vl Av

On the other hand, v/ Av > vTA(I — wA)V, hence

T 17 .y
ViM( — )V ViM — )V
S‘ip v Av - sgp vIA(I — )V G
Corollary 3.20. Let M be spectrally equivalent to a s.p.d. matrix D, such that

c1 vl Dv < v Mv < vl Dv forallv.

Then, with mp = P(PT DP)~'PT D being the D-based projection on the coarse
space Range (P), the following two-sided estimates hold for Krg,

vID(I — 7p)v vID(I — mp)v

c1 su < Krg <c su
vp vl Av vp vl Av

Proof. The proof readily follows from identity (3.23), the property of the projec-
tion 7 ;,

2 : 2
I = 7)vI% = min IV = Pyell.

the spectral equivalence relations between D and M, and similar property of the
projection 7 p; that is,

2 : 2
I = 7p)vllh = min IV = Pyl 0
c
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The following two examples often appear in practice.

Example 3.21. Let M be s.p.d. such that M — A is positive semidefinite. Then~1\71 =
M (2M — A)~' M is spectrally equivalent to M such that § vI' Mv < v/ Mv <
vl Mv. Note that with the scaling M — A being positive semidefinite, we guarantee
that M is an A-convergent smoother for A. From Corollary 3.20 we have then the
estimates

1 vIiM(I — )V vIiM(I —ny)v

—sup ——————— " < Krg <su
2 vp vl Av = 26 = vp vl Av

The second example deals with the Gauss—Seidel smoother.

Example 3.22. Consider M = D — L coming from the splittingof A,A = D—-L—-U
where D is the diagonal of A and —L is the strictly lower triangular part of A. Then
M = (D—U)D~ (D — L) is spectrally equivalent to D. More specifically, as shown
in Proposition 6.12, we have

1 ~
1 vI Dv < v Mv < 2 vTDv,

where k is bounded by the maximum number of nonzero entries of A per row. Then,
to estimate K¢ it is sufficient to estimate
D -
5 v D( Tp)V

K~ sup
v VTAV

Necessary conditions for two-grid convergence

Using the inequalities

(I —mwa)Wlla = _inf lv—=wla =1 —7g)Wla,
veRange(P)

and (see Proposition 3.8)
vl Av < VTA71V,

we obtain the following main corollaries from estimate (3.23) of Theorem 3.19, which
are hence necessary conditions for two-grid convergence.

Assume that for an A-convergent smoother M and interpolation matrix P the re-
sulting two-grid preconditioner Brg is spectrally equivalent to A and let K76 > 1 be
an upper bound of the spectral equivalence relations v Av < v/ Brgv < K76 v! Av.
Then the following two corollaries are necessary conditions for this spectral equiva-
lence to hold.

Corollary 3.23. For any v in the space Range(I — mj;), we have the spectral equiv-
alence relations,

v Ay < vI My < Krg vl Av.
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That is, in_a space complementary to the coarse space Range(P) the symmetrized
smoother M is an efficient preconditioner for A. If we introduce the matrix J such that
Range(J) = Range(l — mj;), we have the following spectral equivalence relations
between JTAJ and JTM J,

vIIT A <vIJTMIv, < Krg v JT Alv;.

Corollary 3.24. The operator I — j; is bounded in the A-norm; that s, the following
estimate holds.

(I =T AU — 757)v < Kr v! Av.

It is equivalent also to say (due to Kato’s Lemma 3.6) that 7 j; is bounded in energy
norm (with the same constant Krg); that is,

(JTAZ,V)TATL'MV < K76 vl Av.

Finally, another equivalent statement is that the spaces Range(J) = Range(l — ;)
and Range(P) have a nontrivial angle in the A inner product; that is,

1
(VSTJTAPX)2 < <1 — K—> VSTJTAJVS XTPTAPX, for any vg and X.
TG

Proof. The last equivalence statements are proved in the same way as Lemma 3.3,
by considering the quadratic form Q(t) = (wz;v + t]vs)TA(nAqv + tJvg) —
(1/KTG)(7TA7IV)TA7TM‘V. Note that w; Jvy = 0, hence mj; (v + tJvy) = my;v. This
shows that Q(r) > 0 for any real 7 if 75; is A-bounded. Then, the fact that its dis-
criminant is nonpositive shows the strengthened Cauchy—Schwarz inequality because
Range(mj;) = Range(P). The argument goes both ways. Namely, the strengthened
Cauchy—-Schwarz inequality implies that the discriminant is nonpositive, hence Q is
nonnegative; that is, 7 ;; is bounded in energy. Due to the symmetry of the strength-
ened Cauchy—Schwarz inequality, we see that / — 7r;; has the same energy norm as
i if Kpg > 1. O

3.3 Algebraic two-grid methods and preconditioners; sufficient
conditions for spectral equivalence

The last two corollaries 3.23 and 3.24 represent the main foundation of constructing
efficient two-grid preconditioners. They motivate us to formulate conditions for two-
grid convergence. We show in the remainder of this section that the conditions below
are sufficient for two-grid convergence.

Motivated by Corollaries 3.23-3.24, we need to construct a coarse space Range( P)
such that there is a complementary one, Range(J), with the properties:

(1) The symmetrized smoother restricted to the subspace Range(J), that is, J TMJ R
is spectrally equivalent to the subspace matrix JTAJ.
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(i1) The complementary spaces Range(J) and Range(P) have nontrivial angle in the
A-inner product; that is, they are almost A-orthogonal.

In practice, we need a sparse matrix P so that the coarse matrix P7 AP is also sparse,
whereas the explicit knowledge of the best J is not really needed. If P and J are
constructed based solely on A and the smoother M (or the symmetrized one, M),
the resulting method (or preconditioner) belongs to the class of “algebraic” two-grid
methods (or preconditioners).

In order to guarantee the efficiency of the method, we only need a J (not necessar-
ily the best one defined as Range(/ — 7)) in order to test if the subspace smoother
JT M1 is efficient on the subspace matrix JTAJ. That is, we need an estimate (for
the particular J)

vIigTArvg <vI T MIvg <k v ITAdvs, (3.24)

with a reasonable constant k. The efficiency of the smoother on a complementary
space Range(J) is sometimes referred to as efficient compatible relaxation. The latter
notion is due to Achi Brandt (2000), [B0OO].

The second main ingredient is the energy boundedness of P in the sense that for
a small constant 1, we want the bound,

x" PTAPXx <1 inf vl Av. (3.25)
Vg v=JVi+PXx

Then, we can actually prove the following main result (cf., [FV04]).

Theorem 3.25. Assume properties (i) and (ii), that is, estimates (3.24) and (3.25).
Then two-grid preconditioner Brg is spectrally equivalent to A with a constant
K = K76 < n«.

Proof. We have to estimate K defined in (3.23). Because Range(J) is complementary
to Range(P) (by assumption), then any v can be uniquely decomposed as v = J v, +
Px. Then the term in the numerator of (3.23) can be estimated as follows.

(I =M = 7))V = inf (v - Py)' M(v — Py)

< (v-— PX)TM(V — Px)
= VST JTr M AL
<k vEITATv;.
In the last line we used (3.24).
The energy boundedness of (3.25) implies a strengthened Cauchy—Schwarz

inequality for Range(J) and Range(P). That inequality implies (see Lemma 3.3)
the following energy boundedness of J,

VSTJTAJVS <n inf vl Av.
x: v=Jvs+Px
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Using the projection 4, we get
T ;T T
Vo JTAIVs = (U —ma)Jvg)” AU —1wa) Vs

Finally, because (I — m4) Px = 0, we arrive at the following bound for the denomi-
nator of (3.23),

viITATVs <0 (I = 7a) (U Vs + PX)T AU = 74) (Vs + PX)
=n (I =7 AU = 7p)v.
Thus, (3.23) is finally estimated as follows.

I - MU — 75 TITATvq
K16 = sup (( ”M)V)T (I —7)v < sup M =K. o
v ((U—=mav)T A —my)v Vg EVA?JTAJVS

A two-grid convergence measure

For a given P and smoother M, let R be a computable restriction matrix such that
RP = I.Thisimplies that Q = P R is a projection (onto the coarse space Range (P)).
Then, Range (I — Q) is a complementary space to the coarse space Range (P) =
Range (Q). A typical example is

P = [W] and R =10, I]

sothat RP = 1.
Based on a computable projection Q, the following quantity (cf., [FV04]) is
sometimes referred to as a measure

(e — Q)T M(I — Q)e

el Ae

wi (O, €)=

Using the minimal distance property of the projection 7 7; in the M -norm, we have
the estimate

I = el =min lle = Pecll; < I — Q)ellf;.

Theorem 3.19 then implies the upper bound K¢ < sup, wuj; (Q, e). That is,
the quantity

sup 7 (Q. e). (3.26)

can be used to measure the convergence of the respective two-grid method.
We conclude this section with the comment that we have not so far assumed any
particular structure of P. The above example of

-1
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is typical in the case of the algebraic multigrid method (or AMG). Here, the second
(identity) block corresponds to rows of A, referred to as “c”, or coarse dofs, and the
remaining ones to “f”, or fine dofs. The latter structure of P is further exploited in the
setting of the algebraic multigrid in Chapter 6, especially when specific smoothers
of type “c’—“f” relaxation are considered (as in Section 6.8), as well as some other

specific topics.

3.4 Classical two-level block-factorization preconditioners

If the matrix admits a stable two-by-two block, in the sense that the off-diagonal block

L=TRTof
A R
A=z 5]

is dominated by its main diagonal such that for a constant y € [0, 1) we have
wIRx)? <y wl Aw x” Bx, (3.27)

we can approximate A and the Schur complement S = B — LA~!'R with s.p.d.
matrices M and D and the resulting approximate block-factorization matrix

M 011 MR
p=[4 ][ M%), o

is spectrally equivalent to A.

We note that B is different from By, (or Brg) because it does not correspond to
a product iteration method (if M # A). Recall that a corresponding Brg takes the
following explicit form,

’

B — [M O][CM=AH7IM O[T MT'R
=1 D 0 /o 1

that is, the (minor) difference is the extra factor involving 2M — A)~ ! M. In the case
of M being spectrally equivalent to .A and also M giving an .A-convergent iteration
for solving systems with A so that the resulting Brg is spectrally equivalent to A,
then the middle factor in question can be dropped out without losing overall spectral
equivalence. The definition (3.28) of B does not require that M be scaled so that
2M — Ais s.p.d. (which is equivalent to [/ — M~ A| 4 < 1).

To implement B~ 1, we use the standard forward and backward elimination
sweeps.

Algorithm 3.4.1 (Computing actions of B~1) Consider

dNaH
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To compute w and X, we perform the following steps.

o Compute w = M~'f.
o Computex =D~ (g — Lw).
o Computew :=w — M~ 'Rx.

The following is a classical result originated by Axelsson and Gustafsson [AG83].

Theorem 3.26. Let M and D be s.p.d. spectrally equivalent preconditioners to A
and B, respectively,

aw! Mw < wl Aw < B w!l Mw,
and
oxIDx <x'Bx < n x! Dx.

Then, if A is “stable” in the sense of inequality (3.27), then B defined in (3.28) is
spectrally equivalent to A, and the following spectral equivalence estimates hold.

by vl By < vl Av <by vl By

for positive constants by, by depending on «, B, o, and n (see the proof). We can
also consider the block-diagonal preconditioner

M 0
D= [0 D]. (3.29)

We similarly have the estimates, for two positive constants d| and dp depending on
o, B, o, and n (see the proof),

di vI Dv < v Ay <dy vl Dv.
Proof. We have, for any ¢ > 0,

viAv = wl Aw + 2wT Rx + xT Bx

<w!l Aw + 2% \/WTAW<\/E \/XTBX> +x!”Bx

V\r|\<

2
< (1 + ) wl Aw + (1 +¢) x" Bx

2
< (1 + —) B wl Mw+ (1+¢)nx Dx

w =

<dp vl Dv.

The upper bound d5 is minimal for

B—n+v(B—mr+dynp
2n

¢ =
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and then

2 — 5 42
dz=<1+y?)/3=(1+;)n=ﬂ+”+¢(ﬂ2nn) +4y°nB.

Similarly, we have the estimate from below:
viAv = wl Aw + 2w! Rx + x Bx
> wl Aw — 2% v WT.AW(\/E \/XTBX> +x! Bx
)/2
> (1 — ?> wl Aw + (1 — ¢) x" Bx
)/2
> (1 — ?> aw! Mw+ (1 — C)o x!I Dx

> dy vl Dv.

The lower bound is maximal for

a—a+\/(0 —a)? +4y%0a
20

;=
and then

2 2
d1=<1—y—)a=(l—§)a= 2(1 — y9)oa ‘
¢ o+a++(o—a)?+4y’0a

To analyze B, we proceed similarly. We have v/ Bv = w!/ Mw + 2 w/Rx +
x"Dx + xT LM~ 'Rx. Because x’ LM~ 'Rx < B x" LA 'Rx < By? x"Bx <
By*n x'Dx, we can easily estimate v/ Bv from above in terms of v/ Dv =
w! Mw + x” Dx. More specifically,

vIBv < wl Mw + 2w  Rx + (1 + Bny?) x" Dx
2
< (1 + %ﬂ) wl Mw + (1 + Bny? + ¢n) x" Dx
<d, vl Dv.

Here, d) = 1 4 (y%/¢)B = 1 + Bny? + ¢n which gives

_ =By’ +V(Bny?? + 4nBy?

¢ 2

anddy =1+ 3 (Bny? +V(Buy D2+ 4npy?).
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Finally, in the other direction, we first notice that vI' Bv > xTDx inasmuch as
D is its Schur complement. Then, proceeding as before, we arrive at the inequalities,

viBv = wl Mw +2 wI Rx + xIDx + xT LM~ 'Rx

2
> wl Mw — y? wl Aw — z x"Bx + x"Dx + xT LM~ 'Rx

2

> (1 — ”? ,3) wl Mw + (—=¢n+ 1) x" Dx
)/_2
¢

= (1-

Here, we assume that £n > 1. Thus,

ﬁ) wl Mw + (=¢n+ 1) v7 By.

2
-2 B

{n
Letting ¢ = (1/n) +y28 > (1/1), we get

vl Bv > wl Mw.

T Mw,

VTBV > PNV V) w
I+ y=pn

which together with v/’ Bv > x” Dx shows

—0
T T T
ViBy> ———— w Mw+0 v Dx.
(1 +y2pn)?
The latter estimate for
1—-6 1

o=~ ixa+ 282 - 01

gives
v Bv > d; vl Dv,

withd] = 1/(1 + (1 +y2Bn)?).

To bound v Bv in terms of vI Av, we combine the proven estimates di vl Dv <
vI'Bv < d)vI Dvandd, v Dv < v! Av < d» vI Dv. Thatis, we canletb, = d»/d;
and by = d; /dé, to demonstrate the final desired estimates b; vI Bv < v Av <
by vI Bv. O

3.4.1 A general procedure of generating stable block-matrix partitioning

In practice, to construct good-quality block-factorization preconditioners a given
block partitioning of a given matrix may not be suitable. In particular, we may not
be able to establish a strengthened Cauchy—Schwarz inequality (3.27) with a good
constant y. A general way to achieve a stable form of A is to use “change of variables”
in the following sense (cf., [EVI1], [VA94], or [ChV03]). Let P be a rectangular
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matrix (fewer columns than rows) with bounded A-norm. We assume that P has
full-column rank. We may then assume that

r=7]

Then, consider the square, invertible transformation matrix ¥ = [J, P], where

1
=[]
The A-boundedness of P then can be stated as follows,

x' PTAPx < n min v’ Av.
w: v=Jw+Px

Finally, let A = YT AY be the transformed matrix. We have
~ [AR
A=~ <X|.
z 5]
More explicitly,
A=A, B=Plap, L=r+W'A R=R+AW.

We notice that S = B — E;l\’lﬁ; that is, A and the transformed matrix A have
the same first principal blocks and the same Schur complements.

Sometimes A is called the HB (“hierarchical basis”) matrix. We can then prove
(see Lemma 3.3) that A has a stable block form, in the sense that

~ 1 —~ -~
wl' Rx)? < (1 — —) wl Aw xT Bx,
n
or equivalently,
T 2 1 T T
(UWTAPx) < (1——=) (Uw) A(Jw) (Px)" A(PX).
n
Next, we can first construct a spectrally equivalent preconditioner B to A based

on spectrally equivalent preconditioners M to A and D to B = PTAP. Then

B=YTBYylisa spectrally equivalent block-factorization preconditioner to the
original matrix A. To summarize, let

-1

T
xI PTAPx < nmin |:w:| A |:w:| ,
w X

satisfy

X
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and M and D are based on .4 and P/T\AP. Then the transformed inexact block-
factorization preconditioner B = YT BY ™! is spectrally equivalent to A with the

same constants established in Theorem 3.26 applied to B and A. More specifically,

consider
5_[M O[T M7'R
|1 £ DI|0 1 ’

Then we have the following explicit form for the transformed preconditioner

B=y TBy!
_[ 1 o][m o[1 M'R|[1 -W
“|-wT 1| £ DI||O I 0 I
_ M 0117 MR- - M1THw
“L+WTA-M) DO I :

The following algorithm can be used to implement

NIEEH]
X g
Algorithm 3.4.2 (Transformed two-level block-factorization preconditioner)

o Compute w = M~f.

o Computex =D~ (g— Lw+WT(f — Aw)).
e Compute u = WX.

s Compute w = w+u — M~ (Rx + Au).

It is clear that B~! exploits solutions with M and D in addition to matrix—vector
products based on £, R, A (the original blocks of A), and W.

There is one special case in practice (originally noted by Y. Notay [Not98], and
independently used in [Mc01]) when we can avoid the explicit use of the transforma-
tion matrix Y, namely, if we can find a s.p.d. approximation M to the first block .4
of A, which is spectrally equivalent to .4 such that

(1) A — M is symmetric positive semidefinite, so that
(i1) The perturbed matrix [/Zl ?] is still s.p.d.

In that case, we can show that P with W = —M 'R leads to a B that is spectrally
equivalent to the exact Schur complement S = B — LA~ R of A, and the following
block-factored matrix

M R M 0][1 MR
B—[c B+£M‘1R}_[£ B][O I ] (3.30)

can be used as a spectrally equivalent approximation to A. Note, that the latter matrix
is a perturbation to A and the perturbations occur only on the main diagonal of A.
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Theorem 3.27. Under the assumptions (i) and (ii) above, the block-factorization
preconditioner B, (3.30) is spectrally equivalent to A and the following bounds hold,

ClVTAV < vl By < cszAv.

We can further replace B (or the exact Schur complement S = B — LA™'R) with
a spectrally equivalent s.p.d. matrix D and still end up with a spectrally equivalent

preconditioner
p_|M O] MR
| £ D||0O 1 ’

Proof. A main observation is that A = YTAY with

I —M R
r=lo 7]

has a stable 2-by-2 block form because we have for its second entry on the diag-

onal the representation B=PlAP = B— LA'R + LA — M HAAT —
M~HR, which can be viewed as a perturbation of the exact Schur complement S =

B — LA™'R of A. The following estimates then hold, letting X = A'/2M~1 A/2,

X' B-8x=x"LA = M HAUA - M HRx
=xIRT A= W2(x — 12 A~ V2IRx
< IX =1 x"RTA= WD (x — nA-VDRx
=X =1 x"RTM 'R -RT A 'R)x
<X =1 x"B-RTA'R)x
=X —I| x"Sx
= |Ix — 1] x"3x.

Above, we first used assumption (i), that is, that X — [ is symmetric positive

semidefinite, and second, assumption (ii), which implies that the Schur complement
B — LM™!R of the perturbed symmetric positive semidefinite matrix

M R
L B

is positive semidefinite, that is, that x"RT M~'Rx < x” Bx. Thus we showed that
xTBx < (1+ X — I xTSx Equivalently,

x"PTAPx <y inf vl Av, withn=1+|X —1I|.
v=Jw-+Px

The latter is true, because the Schur complements S of A and S of A are the same.
Thus the matrix A = YTAY can be preconditioned by the block-diagonal matrix

M Q~ or equivalently b M 0
0 B quvalentydy 1o p|
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Therefore, A can be preconditioned by

_yr[M 0] [ 1 O][M 0][1 MT'R
B=Y [OBY_EMll o Bllo 1 |

or by

g |M O I MR
|l pflo 1 |

which is the desired result. O

We comment at the end that the construction of M that satisfies both (i) and (ii)
is a bit tricky in practice. Some possibilities are outlined in Section 4.7 of Chapter 4,
where other types of approximate block-factorization matrices are considered as well.



4

Classical Examples of Block-Factorizations

4.1 Block-ILU factorizations

Consider a block form of
AR
=[5

in which A is sparse and well conditioned. Then, as is well-known, A~! has a cer-
tain decay rate (cf., Appendix A.2.4). The latter, in short, means that it admits a
good polynomial approximation in terms of A. Alternatively, we may say that A~
can be well approximated with a sparse matrix M~!. Thus, the approximate Schur
complement § = B — LM™!R will also be sparse. This procedure is attractive,
if £ (and R) have a single nonzero diagonal. Thus the sparsity pattern of S de-
pends on B and how accurately we want M~! to approximate A~!. If we keep
the sparsity pattern of LM ~!R the same as that of B, the procedure can be re-
cursively applied to S, which leads to the classical block-ILU factorization precon-
ditioners. Those are well defined for M-matrices, which naturally arise from finite
difference approximations of second-order elliptic PDEs. It seems that the block-ILU
methods were first introduced in Kettler [K82] but have become most popular after
the papers [ABI], [CGMSS5], [AP86], and others have appeared. These methods are
very robust and perhaps the most efficient (and parameter-(to estimate) free) precon-
ditioners for matrices coming from 2D second-order elliptic PDEs. By expanding
the sparsity pattern (or half-bandwidth) of the approximate Schur complements, we
improve the quality of the preconditioner, which in the limit case becomes exact
factorization.

We point out that any finite element discretization matrix coming, for example,
from elliptic PDEs, can always be reordered so that it admits a block-tridiagonal form
with sparse blocks. The blocks are actually banded matrices for 2D meshes. A typical
situation is illustrated in Figure 4.1. In summary, the block-tridiagonal case covers
the general situation.

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 89
doi: 10.1007/978-0-387-71564-3_4,
© Springer Science+Business Media, LLC 2008
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Fig.4.1. Block-tridiagonal ordering of finite element matrix on unstructured triangular mesh.
The blocks correspond to degrees of freedom associated with nodes on each interface boundary

obtained by intersecting any two neighboring contiguous slabs of elements (triangles) of two
different colors.

Consider the block-tridiagonal matrix

A Az 0 0
Azl Ax A3 0
A=

Anfl,an Anfl,nfl Anfl,n
0 0 An,nfl Ann

For a five-point, finite difference discretization of 2D second-order elliptic PDEs on
arectangular mesh, the matrices on the diagonal of A are scalar tridiagonal matrices,
and the upper and lower diagonals of A are scalar diagonal matrices. In a similar
situation in 3D (7-point stencil), the off-diagonal blocks of A are scalar diagonal
whereas the blocks on the diagonal of A have now the sparsity pattern of a 2D block-
tridiagonal matrix. In either case the A;; are well conditioned, because they are strictly
diagonally dominant. To be specific, we concentrate now on the 2D case.

The approximate block-factorization of A can be written in the form (X —
L)X (X — U), where X = diag(X;) and X; are the approximate Schur com-
plements computed throughout the factorization, —U is the strictly upper triangular
part of A, and —L is correspondingly the strictly lower triangular part of A. Note that
L and U have only one nonzero block diagonal. The recursion for X; reads

(0) Fori = 1set X; = A; ;.
(i) Fori =1,..., n — 1 compute a banded approximation ¥; to X, and compute
the product

Ai1,iYiAiiv-
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(i) In order to keep the sparsity under control, we may need to further approximate
the above product by a sparser matrix H;+1 (e.g., by dropping the nonzero entries
of A;4+1,;Y:i A; i+1 outside a prescribed sparsity pattern). Finally, define

Xit1 = Ait1,i+1 — Hit1.

Then the actual block-factorization matrix M = (X — L)X 1 (X — U) has the fol-
lowing more explicit block-tridiagonal form,

X1 Ao 0 0
Ay Xo+ A X[ 1A Ax 0
Anfl,n72 anl +An71,n72X,17712An72,n71 Anfl,n
0 0 Apn—1 Xn +An,n71X;,11An71,n

.1

In particular, it is clear that M has the same off-diagonal blocks as A. The differ-
ence M — A is block diagonal with blocks

Xi — Aii + Ai,iflxi__llAifl,i = Ai,iflxi__llAifl,i — H;
= Ai,i—l(Xl:ll - Yi—l)Ai—l,i
+ Aji—1Yic1Ai; — H;. 4.2)

It is clear then, if we keep the differences Xf_ll —Yi1and A;;—1Yi-1Ai—1i — H;
symmetric positive semidefinite, the block-ILU matrix M will provide a convergent
splitting for A; that is, M — A will be symmetric positive semidefinite. This is in
general difficult to ensure, however, for the case of A being a s.p.d. M -matrix; we can
ensure that 2 — A is positive definite, hence || — M ' A||4 < 1;thatis, M provides
a convergent iterative method in the A-norm (see Corollary 4.6). Alternatively, we
can use low rank approximations Y;_; to le_ll (and H; = A;;—1Yi—1A;—1,;) asin
Section 4.6, thus leading to a matrix M such that M — A is indeed symmetric positive
semidefinite.

The purpose of constructing the block-factorization matrix M is so that it can be
used as a preconditioner in an iterative method. At every step of the iterative method,
we have to solve a system

Mv=w

for some (residual) vector w. Because M is factored, the above system is solved in
the usual forward and backward recurrences.

(i) Forward. Solve,

X1 0 up w1
Ay X2 u w2

0 An,nfl Xy uy, Wp
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in the following steps,

u = X;lwl,

-1 .
=X, (W —Aji—1wj—1), i>1

¢ Backward. Solve

I X{'An 0] [wi u
I X5'An V2 w
0 1 Vn u,

in the following steps,

Vi = Uy,

Vi =u; — XflA,-,,-HviH, fori =n —1downto 1.

For a (2p + 1)-banded matrix X, we can construct various (2p + 1)-banded approxi-
mations of its inverse based, for example, on the standard LD~ U factorization of X.
We can actually compute the exact innermost 2p + 1 banded part of X~! without
computing the full inverse.

Details about implementation of algorithms that compute approximate band in-
verses are given in Section 4.4.

4.2 The M-matrix case

We begin with the definition of an M-matrix.
Definition 4.1 (M-matrix). A matrix A = (a,'j)f” j=1 is called an M-matrix if

(0) A has nonpositive off-diagonal entries.
(i) A is nonsingular.
(ii) A~ has nonnegative entries.

If A is s.p.d., and M-matrix, A is sometimes called the Stieltjes matrix.

In what follows in the next few sections by A > 0 or v > 0 we mean componen-
twise inequalities.

Theorem 4.2. A main property of an M -matrix A is that there exists a positive vector
¢ = (c))i (ie, c; > 0) such that b = Ac = (b;) is also positive (i.e., b; > 0 for
alli). Conversely, if A = (a;) witha;; <0 fori # j andb = Ac is a positive vector
for a given positive vector ¢ then A is an M-matrix.

Proof. The fact that for an M -matrix A there is a positive vector ¢ such thatb = Acis
also positive follows from the following simple observation. Because A~! exists and



4.2 The M-matrix case 93

has nonnegative entries, it is clear that A~! has at least one strictly positive entry per
row (otherwise A~! would have a zero row, which is not possible for a nonsingular
matrix). Then for the constant vector b = (1), we have ¢ = A~'b > 0 (the row-sums
of A~! are strictly positive). The latter shows that for the positive vector ¢, Ac = b
is also positive.

The converse statement is seen by first forming the diagonal matrix C = diag(c;)
and looking at the diagonally scaled matrix AC = (a; jc;). Itis easily seen that AC
is strictly diagonally dominant. Indeed, because

bi = ajc;i + Zai,jcj' > 0,
J#
we get (using the fact that —a; jc; = |a; jc;| for j # i)
aj,ici > Z lai,jcjl.
J#

The latter implies that AC is invertible, hence A is invertible. Moreover, because AC
is strictly diagonally dominant, it admits an L DU factorization, or more specifically,
the following product expansion holds,AC = Ly ---L,—1DU,_; - - - U1, where each

1 00 100
Li=|0 1 0|, and U;={0 1 ul
0 ¢ I 00 I

i

We can easily see that £; < 0 and w; < 0. Also the diagonal matrix D has positive
entries. For a proof of the last fact, see the next lemma, 4.3. Then,

-1 -1 -1 n—17-1 —1
At=curtu DT L =0,

as a product of nonnegative matrices. We notice that

I 0 O
L;'=]10 1 of=0,
0 —¢ 1
and similarly,
[7 0 0
u'=101 —u’|>0. o
00 1

In the proof above, we used the following well-known result.

Lemma 4.3. Given a strictly diagonally dominant matrix

_[p "
so[0 ],
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Then its Schur complement S = G — £’ is also strictly diagonally dominant.
Also B admits the LDU factorization

10 L
r=Lallo sl 77 )
gﬁ I[(0 S||lo I
from which it is clear that (1/B)€ < 0 and (1/B)u’ < 0 if the off-diagonal entries

of B are nonpositive, and p > 0.

Proof. Let S = (s;,;), G = (gi,j), £ = (I;), and u = (u;). Here, B is a scalar. We
have

sij=gij— LB "u;.
‘We would like to show that

-1
Isi il > Z |i,j — LB~ ujl.

JH#
Because B is strictly diagonally dominant, using this property for its first row, we get
i lujl
Z/ ! <1
I

Using the strict diagonal dominance for the (i 4+ 1)st row of B, we get
1giil > il + Y 18i.jl-
J#i
Combining the last two inequalities, we end up with
Z j |u j |
1Bl

lgiil > Y Igijl + 1Ll
J#
The result then follows from the triangle inequality,

Isiil = |gii — LB ui
> Ll — 11 14!
1B
> lujl |uj |
>Z|gi,j|+|li| ! — il —=
oy 1Bl 1B

i1l
UCTEE
J#

> gy — LB uyl
JF#i

= ZIS[,/L
J#i

That is, we showed the strict inequality |s; ;| > > i 1801 a.
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Let us return to the M-matrix case. The following result is immediate.

AR
a-[e 3
be an M-matrix. Then, both A and the Schur complement S = B — LA™'R are
M -matrices.

Lemma 4.4. Let

Proof. We have for a positive vector ¢, b = Ac > 0. Let

_ C1 _ b1
c= |:c2} and b= |:b2] .
Then, because R < 0, the inequality

AC1=b1—RC22b1 >0

shows that A is an M-matrix. (Note that its off-diagonal entries are nonpositive.)
From S = B — LA™'R, we get that S < B because we already proved that A
is an M-matrix; that is, A~! > 0, and also £ < 0 and R < 0. Therefore, because the
off-diagonal entries of B are nonpositive from S < B, it follows that the off-diagonal
entries of S are also nonpositive. Finally, from the fact that S~! is a principal sub-
matrix of A~! (Proposition 3.1) it is clear that S ~1 has nonnegative entries (because
A1 >0). O

Armed with the above main properties of M-matrices, it is not hard to show the
existence of block-ILU factorization of block-tridiagonal matrices, a result originally
proven in [AP86], and earlier in [CGMS835] for diagonally dominant M -matrices.

The following main result holds.

Theorem 4.5. Let A = [Aii—1, Aii, Aiit1] be a block-tridiagonal M-matrix.
Consider the following algorithm.

Algorithm 4.2.1 (Block-ILU factorization).
(0) Let X1 = Ay,1. For i > 1, consider an approximation Y; ofol that satisfies

0<v, <Xx; " 4.3)
(i) Also, choose an approximation H; 41 of the product A;+1,;Y; Ai i+1 that satisfies
0<Hiy1 <Aiq1iYiAiiq. (4.4)

Therole of H; 1 is to control the possible fill-in in the product A;+1,;Y; Ai i+1. That
is, in practice, we compute only the entries of Aj41,;Y; A i+1 within a prescribed
sparsity pattern of Xjy1.

(ii) Finally, define the (i 4 1)th approximate Schur complement as

Xiy1 = Ait1,i+1 — Hiq1.
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The above algorithm is well defined; that is, X; are M-matrices for all i > 1, and
hence, a matrix Y;, which satisfies condition (4.3), always exists and therefore the
choice of Hi+; as in (4.4) is also feasible.

Proof. Because A is an M-matrix, its principal submatrix

A1 Aip O 0

Ay Axp A 0

i = 0 0
0 . 0 A,",'_l A,",'

is also an M-matrix. Let Z; be the exact Schur complements obtained by exact block-
factorization of A; thatis, Z; = A1 and

-1
Zigv1 = Aivrit1 — Aig1iZ; Aiig

= Ait1it1 — [0, ..., 0, Ajyr 1A
Aiit1

Assuming (by induction) that Z; is a Schur complement of A;, then Z,~ Uisa principal
submatrix of Ai_ 1; that is,

It is clear then that the product

[0, ..., 0, Appr A7
0
Aiit1
equals AH_L,'Zi_lA,",'_H. Thatis, Z;+1 = Aj41,i+1 — AH_L,'Zi_lA,',,'_H is indeed a
Schur complement of

0

A .

Aiyr = l 0
At
[0, ..., 0, Ajx1,i] Aig1it

(which confirms the induction assumption).
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As a Schur complement of the M-matrix A; (a principal submatrix of the M-
matrix A), Z; itself is an M-matrix, and hence there is a positive vector ¢; such that
Zic; > 0.

The remainder of the proof proceeds by induction. Assume, now that for some
i>1,X; >Z;.Notethat X1 = Z; = Aq1.

It is clear that for any choice of ¥; such that Y; > 0, we have A; 11 ;Y;A;iy1 >0
and hence a nonnegative choice of H;y is feasible. With such a choice of H; | we
have X; 1 < A;t1,i+1, hence the off-diagonal entries of X; 1 are nonpositive.

Because X; has nonpositive off-diagonal entries (by construction) and for a
positive vector ¢; we have X;¢; > Z;¢; > 0, it follows then that X; is an M-
matrix. From X; > Z;, because both Zlfl > 0 and lel > 0, it follows that
z7' = x7' = X7N X — 2z = 05 thatis, Z7' > X', Now choose ¥; as

in (4.3). Then, because —Y; > —lel > —Zfl, we have

Xiv1 = Aiy1,i+1 — Hin
> Ait1iv1 — Air1,iYiAi i+
-1
> Aitni+1 — Aiv1,i Xy Aiil

-1
> Airli+1 — Ait1iZ; Ajitl

=Ziy1. 4.5)
That is, the induction assumption is confirmed for i := i + 1 and thus the proof is
complete. O

Corollary 4.6. Assume now that A is a symmetric M-matrix. Then, the block-ILU
factorization matrix M = (X — L)X~ (X — U) provided by Algorithm 4.2.1 is such
that 2M — A is symmetric positive definite; that is, M provides a convergent splitting
for A in the A-inner product. Equivalently, we have |I — M~ "A||4 < 1.

Proof. We firstnotice that M = (X — L)X ' (X —U) is s.p.d. because the symmetric
M -matrices X; are s.p.d. This holds, because any symmetric M -matrix V allows for an
LDLT factorization with a positive diagonal matrix D. Indeed, V being an M-matrix
implies that there is a positive vector ¢ such that Ve is also positive. Let ¢ = (¢;)
and form the diagonal matrix C = diag(c;). Then CTVC is symmetrical and a
strictly diagonally dominant matrix (see the proof of Theorem 4.2). Then Lemma 4.3,
modified accordingly, implies the existence of the desired factorization of C* VC and
hence of V (because C is diagonal).

The desired result follows from a main result of Varga [Var62] (for a proof, see
Theorem 10.3.1 in [Gr97]). In what follows by o, we denote spectral radius. Namely,
because A = M — R with R > 0 (see (4.2)) and A~ > 0, Varga’s result states that

o(A7'R)

M) = —lpy
ol —M " A)=0o(M 'R) = T+ oA TR <

Therefore, in our symmetric case, Amin(/ — M ’IA) > —1, which is equivalent to
Amax(M~1A) < 2 or 2M — A being symmetric positive definite. O
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4.3 Decay rates of inverses of band matrices

A main motivation for the block-ILU methods is based on the observation that the
inverse of a band matrix can be well approximated by a band matrix. The latter can be
more rigorously justified by the decay rate estimate provided at the end of the present
section.

Ilustration of decay rates

We first demonstrate by graphical representation the decay behavior of the inverse of

a number of tridiagonal matrices. Consider first,

4
—1

0

—1
4
—1

—1
4

-1

—1

4
—1

—1
4

The decay behavior of Tn_1 for n = 32 is shown in Figure 4.2.
Consider now the tridiagonal matrix, which is only weakly diagonally dominant,

2

Ty =

—1

0

—1
2
—1

—1
2

—1

—1

2
-1

0

—1
2

Its decay behavior for n = 32 is shown in Figure 4.3.

Fig. 4.2. Decay behavior of the inverse of 73;.
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Decay behavior of the inverse of 737.
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Fig. 4.3.

35,
30,
25,
20,
20

we should expect a very fast (e.g

>

Fig. 4.4. Decay behavior of the inverse of 03,.
Based on the above examples, we may draw the conclusion, that for strictly

Finally, consider the following tridiagonal matrix,
diagonally dominant matrices

rate, whereas for weakly dominant matrices, the decay rate may not be as fast, as in

the case shown in Figure 4.4 where we only see a linear decay rate.

Its decay behavior for n = 32 is shown in Figure 4.4.
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An algebraic decay rate result

We complete this section with a sharp result that bounds the decay rate of the
(block)entries of the inverse of s.p.d. block-tridiagonal matrices. We note that any
band matrix can be written as a block-tridiagonal matrix with blocks that are equal
size to the half-bandwidth of the matrix. Hence it is sufficient to consider the case of
block-tridiagonal matrices A.

Let A be a given symmetric positive definite block-tridiagonal matrix with entries
{A;j}ofsizen; xnj,i,j=1,2,...,n. Weareinterestedin V = Al = {Vij}. The
entries V; ; are also of size n; x n ;. For any rectangular matrix B, consider its norm

V(BV)T Bv
| B]l = sup —
v vliv
We are interested in the behavior of the norm of V. ; when k gets large. Introduce

now the block partitioning of any vector v compatible with the given tridiagonal
matrix A,

That is, v; € R™. Consider the vector space

Hi ={v={(vj), v;j =0 forj > i},
and also its complementary one,

H ={v=(v;), v; =0 forj <i}.
Because A is assumed symmetric positive definite, A can define an inner product. It is
then clear that the linearly independent spaces H; and H; will have a nontrivial angle
in the A-inner product. That is, there exists a constant y; € [0, 1) (i.e., strictly less
than one) such that the following strengthened Cauchy—Schwarz inequality holds.

v Aw < )/,'(VTAV)l/2(WTAW)1/2, forallve H;,w e Hl./.

Then the following main result holds ([V90]).

Theorem 4.7.

k
||Vi+k,i|| < l_[V' )
= i+j-
Vi IV Vi i 112 i<l
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Proof. Because the matrix A is block-tridiagonal, the strengthened Cauchy—Schwarz
inequality actually reads,

ViT+1Ai+1,iViS)/i min (VTAV)1/2 min (WTAw)l/z-
nin-_ L

Vi
Vi1 0
v=| vV W= Viy]
0 Vit2
L 0 | L Vo |

The respective minimums are first taken with respect to the first i — 1 components
and in the second term with respect to the last n — i — 1 components.
Now using the Schur complements,

Si = Ai,i — [0, e, 0, Ai,i—l]
-1

Al A 0 0
« Axp Ax Anz : ’
0 Ai1i—2 Aic1i Ai-1,i

and

S; = Aisrit1 — [Ais1,i42.0,...,0]

Aiv2,i+2 Ait2,i+3 0 A,+(2),,+1
Aip3iv2 Ait3i+3 Ait3ita
0 An,n—l An,n 0

the strengthened Cauchy inequality above takes the simpler form,
1/2 / 1/2
viT+1Ai+1,iVi < Vi(V,'TSiVi) / (V,~T+1S,~Vi+1) 2.

The next useful observation is the identity,

-1
Sio Aviw| o _ | Vi Viin |,
Ait1i S Vieri Vigritt

The latter is seen from the fact that the matrix on the left is a Schur complement of A,
and the matrix on the right is a corresponding principal matrix of A~!. The inverse of
any Schur complement of a matrix is a corresponding principal matrix of the inverse
matrix (cf. Proposition 3.1), therefore the above identity follows. As a corollary of
the strengthened Cauchy—Schwarz inequality valid for the Schur complement

|:Si Ai,i+1:|
Aivi S ]
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we get the inequality,

Ty—1_
Vi Viivi

> 1 -y (4.6)

inf
vi vISv;

The latter inequality is seen from the fact that Vl_l1 equals the Schur complement
Si — Aiit1(SH T Aigri

Next, we use the explicit formulas for computing the entries of A~!, based on the
recursively computed successive Schur complements S;, S1 = Aj,1, and fori > 1,
Si = A — A,-,,-,lSi__llA,-,l,i. Then, the entries of A~} are computed as V,, ,, = Sn’1
andfori =n — 1, ..., 1 based on the recurrence,

1, ol -1
Vii=38"+S8 Aii+1Vitrit14i+1,S; ",
Viidk = =SiAiit1Vittitk, k=1,2,...,n—i

-1 .
Vidki = —Vitki+t14i+1iS; k=1,2,....,n—1.
Therefore, by recursion, we get

Vitki = Vizkir2(— Ai+2,i+1S,-_+11)(—Ai+1,iSi_l)

k
-1
o= Vitk,itk l_[(_Ai+j,i+ijS,~+j_1)'
j=1

We can then get the identity

i+k—1
1/2 —172,-12| (,1/2
Vieki = Vigrit l_[ R;S; 7V, Vi
j=i
Here R; = —V;3 ., Aj41,;S; /P Note that RTR; = $,2(v; ; — s}/ =
1/2 12
—1+5;/7V;;S;'". Therefore
—(1/2) ,~(1/2) ; VIV
T e TR I T Y g R
” J=j JiJ ” v V;SJVJ — )/]

where we have used inequality (4.6). This completes the proof of the theorem. O

Let us apply the above theorem to the strictly diagonally dominant matrix 7,,. We
can show that all y; < %; that is, they are uniformly bounded away from unity. This
is seen from the fact that the Schur complement

[Si Ai,i+1:|
Ait1i S
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345 —1
-1 3+s£

. ! .
for some nonnegative numbers s;, ;. This shows that

in the present case equals

1 1 <1
3+si 3+, ~3

i

Vi =

]

Therefore, we indeed get a uniform exponential decay rate of the entries v; « ; of Tn’1 .
Actually, we can show that s;, s; > limo;, whereo; = 1,0;+3 = 4—(1/(0i—1+3)).
The latter comes from the two-by-two matrix

4 -1
—1 o143’

and o; is defined so that o; 43 is the Schur complement4 — (—1)(0;—1 + 3)’1 (—=1)of
the above matrix. In other words, we have the recursiono; +3 =4 — (1/(0i—1 +3)),
o1 = 1. By induction, we get that o; > —1 + V3 =lim o;. Hence,

1 1
Vi = - = .
3+1lims; 3+ (/3-1)

This shows that

1
2+3
The latter bound incidentally coincides with the quotient «/k — 1/4/k + 1, where

k = cond(7,) =~ 3. Decay rates of the entries of A~ based on the square root of the
condition number of A, were originally developed in [DMS84].

=2 —+/3~0.2679.

Vi =

4.4 Algorithms for approximate band inverses

In this section, we present a number of algorithms that provide banded approximate
inverses to banded matrices. Such approximations can be useful in case where the
blocks A;; of a block-tridiagonal matrix A are banded. Then, if we have Algorithm
4.2.1 in mind, we need banded approximations Y; to the inverses of the successive
approximate Schur complements X;. The bandwidth of X ;1 can be kept under control
by choosing appropriate banded approximation H; to the product A;11;Y; A; i+1.
The latter is typically obtained by dropping the nonzero entries of A;1;Y;A;i+1
outside a prescribed sparsity pattern (or bandwidth of certain size 2p + 1).
Given a (2p + 1)-banded matrix n x n matrix 7, consider its

LiLy-- Ly D7 'Up_y --- Uy, 4.7
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factorization. Here

I 00
L;=10 1 0
0 ¢ I
is an elementary unit lower triangular matrix;
I 0 0
Ui=|0 1 ul
00 1

is an elementary unit upper triangular matrix; and D = diag(d;) is a diagonal matrix.
We also have

Lit,i [ i41 ]
Livai Ui i+2
bi=|Lixpi|, W= |Uiitp]|- (4.3)
0 0

The entries €;x ; and u; ;1 are precisely the entries of the unit triangular factors L
and U coming from the LD~ U (Cholesky) factorization of 7. The main observation
here is that if the matrix is banded, then its L and U factors are also banded. Assuming
that the factorization (4.7) has been computed, we can then derive a number of banded
approximations to 7! based on the identity

-1 —17,—1 —1 —1 —17-1
r=vU, ---U, DL, ;---L, L

We use the fact that

I 0 0 10 0
L7'=10 1 0f and U7'=]0 1 —u
0 —¢ 1 00 1

We begin with an algorithm found in [ABI].

Algorithm 4.4.1 (ABI, the exact 2p + 1-banded innermost part of T-1). The
algorithm ABI computes the entries viyi; of T~ for |k| < p without complete
inversion of T.

Let

Vi i Vii+1 ...  VUin
Vit+l,i Vi+l,i+1 --. Vitln

v,,,i Un,i+1 e Un,n
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Then starting with V, = d,, fori =n — 1, ..., 1 we have the identity,
Vo= 1 —uiT d 0 1 0
! 0 1 0 Vig||—t 1|’

V= di +ul Vigt; —ul' Vi )
' —Vit1ti Vit1

or

It is clear then that to compute V;, the 2p + 1 banded part of V;, we need only the

2p + 1 banded part of V41 (i.e., Viy1) because w; and £; have the special sparse
Sform (4.8). Therefore the following algorithm is applicable, denoting by I, the matrix
that zeros the jth, j > p, entries of a vector.

e V,=d,.
e Fori =n—1downtol computethe productI,V;1€; = I,Vit11pl; = Ip\7i+1ﬁi
and similarly ul.TViHIp = ul.TIpViHIp = ul.TViHIp. Then

V= |:di +ug‘7i+1fi _uiT~‘7i+le:|.
—1pVitili Vit

. f_l = ‘71.
It is clear that the cost of the algorithm is O(np?).

A possible disadvantage of the above algorithm ABI is that if the decay rate of 7!
is not that strong, the approximation [T~!](?) = T—! (as defined above) may fail
to be positive definite. Alternatives to the algorithm ABI are the CHOL and the
INVFAC algorithms. The CHOL algorithm (considered in [CGM85]) provides the
exact p lower diagonals of L™! (i.e., L), and the exact p upper diagonals of
U-! (ie., 0‘1) from the factorization T = LD~ 'U,or T~ = U~'DL~!. Hence
[T_l]CHOLp = U~'DL~!, which is seen to be symmetric positive definite if T is
symmetric positive definite.

Algorithm 4.4.2 (CHOL, a factored banded approximate inverse of 7). Let

Ly, =1, andfori < n set
1 0
L = .
' [—Eiﬂﬁi £i+1:|

Introduce again the projection matrix I, (the matrix that zeros all jth, j > p, entries
of a vector). We then have I,L;14; = I,L;i11pl; = Ipii+1£i, which immediately
implies that
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In other words, to compute L, the 2p + 1 banded part of L;, we only need £i+1, the
2p + 1 banded part of L 1. The same holds for

0 U

where U, = 1. Then, because uiTU; I, = uiT I,Ui I, = uiTZ;{,' Iy, we get the identity

d[ _ |:1 —uiT~U,~+,~Ip:| .
0 Uit

The CHOL, approximation to T~ is then defined by UiDLy. It is clear that the
latter product gives a 2p + 1 banded matrix. We summarize:

o SetL,=1.
e Fori =n—1downto I, compute

< 1 0
G = . 2.
[—Ipﬁiﬂﬁi £i+1i|

. Z_l =L
Similarly,
J SetZ;{n =1.

e Fori =n—1downto I, compute

Z][ _ |:1 —uiT~U,~+,~Ip:| .
0 Uit

e SeaU'= Z;[].
Finally
[T~ IlcHoL, = U™' DL~

The cost of the algorithm is readily seen to be O (np?)
Because in both algorithms we drop certain quantities, in the M-matrix case the
approximations [T ~!] (both ABI and CHOL) will satisfy the (entrywise) inequality,

r-1<rn (4.9)

The last algorithm that we consider is based on the 2 p + 1 banded approximation
to the U and L factors from the factorization of 7! that is,

T-'=LiLy---Ly_yDU,_,---UsU, = LDU.
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In this latter case, the elementary matrices

1 00 I 0 0
Li=[0 1 0| and U;=[0 1 u!
0 ¢ I 00 I

are not generally banded. One algorithm to compute the vectors ¢; and u;, as well as
the entries d; of the diagonal matrix D, reads as follows.

LetT, =t, , bethe (n, n)thentryof T = (; ;)
submatrix of T'; that is,

Let 7; be the lower principal

n
i,j=1"

T = |t b/ '
a; Tip

Here,
(i1 ] [ tiiv1]
a, = 0 and similarly b; = 0

The vectors ¢; and u; are determined from the identity
T -1
b Il et
T 0 U D Ly
The latter implies

|:l,'y,' — u.Tai — biTKi + lliTTi+1Ki biT — uiTTiJrl] _ |:di_l 0 i| .

1
o0 u-lplrc!

a — Tin14; Tin1 i+1Pir1&ir1

This gives us the relations

T T
b; —u; Tiy1 =0,
a, — T;11¢; =0,
T =U\ D o)
i+l =Y Mg ~ige
-1 T T T
d[, = li,i — ui a; — bi Ki + ui T‘i+1£i.

Or equivalently,

-1

T [y = LiviDipUiyi,
T _ 4T

u; =b; Lip1Dit1liy1,

L = Liy1Dig1li1a;,

—1
di = ([i,i - biT‘CiJrlDiJrlui+1ai) .

(4.10)
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Finally,

0 et 7]
i T 0 LiviDiyilhiv1 |01

(v o0& o [t o .,
g _[ﬁi £i+1:| [0 Di+1] |:0 Uit = LiDith “1D)

Now assume that we store at each step the 2p + 1 banded parts of £; 11 and U;41.
Then, we have the equations I, ¢; = I, L1 Di1Uiv1a8; = [, L1 D ili11pa; =
I, Li1 Dit1liy1a;. Similarly, u! 1, = b7 L1 Di1Uiv1 1, = bl I, Li41 D 1Uis
I, = b Lis1Dis1lis11,. In other words, the exact first p entries of ¢; and u!
are computable from the exact 2p + 1 banded parts of £;y; and U;+1. The latter
is sufficient to compute the exact 2p + 1 banded part of £; and of I/; based on the
identity (4.11). The so-called INVFAC approximation to 7! is then defined as

Therefore,

[T_l]INVFAC,, = L1D1U- 4.12)

Identity (4.11) provides an alternative way to compute the exact 2p + 1 banded
part T;l of T;l. Indeed, we have

-1 _ d; dilliT .
i = [ﬁidi L; Dilh; + €;diu! (4.13)

Therefore,

F-1_[ di dial'I, [ 4 diul'l, .
b T Uptidi 1,LiDilhiI, + Iptidiu] 1, | ™ | Ipid;  LiDitd + Ip¢;diu! 1,

Then,
—1 p 7 —1

Therefore, the following algorithm provides enough information to compute both the
INVFAC and the ABI approximations to 7.

Algorithm 4.4.3 (Banded approximate inverse factorization of 7T'). Given is the

2p + 1 banded matrix T = (li»j);lj:r Introduce,
[tiv1] [ tiit1 ]
a; = IBP’I ;b= uo+p
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e [nitiate:

e Fori =n—1downto I, compute
T T 5 Y
w I, =b; Liy1Dip1lUiq1;
Ipti = Liv1DiilUiq ag;

; Y —1
di = (li,i - biT‘CiJrlDiJrlui+lai) .

e Then set
< M1 0
L= < ;
C Lt £i+1:|
Z;l,' = ! ujTI‘n:| ;
10 Uit
_ (di 0
by = 10 Di+1:|.

It is clear, because in the above algorithm we drop certain quantities, that in the
M-matrix case the INVFAC approximation, [T_I]INVFAC,,’ of T~ satisfies the
entrywise inequality

7~ "IiNvEaC, =T 7" (4.14)

4.5 Wittum’s frequency filtering decomposition

A general scheme

Here we briefly describe an approximate block-factorization algorithm that utilizes
certain vectors throughout the factorization process. With a certain choice of the vec-

tors, the method was originally proposed by Wittum in [Wi92], and further developed
in [Wag97] and [WWO97].

Consider a two-by-two block matrix A,

A:[“Zl 7;}

We assume that A is s.p.d.. Given is a block-vector

-f)
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‘We begin with the case where the first component x is chosen to satisfy the equation
Ax + Ry = 0 fora given y.
Let M be an s.p.d. approximation to .4 such that

Mx = Ax.

Finally, let Y be an s.p.d. matrix (specified later on). The matrix ) is in general an
approximation to the exact Schur complement Z = B — LA™!"R of A. To this end,
define the block-factored approximation matrix M to A, assuming in addition that
2M — Aiss.pd.,

M—|MO eM—-A"" 07[M R
Lo 0 yifo 1|

Below, we formulate conditions on M and ) which guarantee that M1 = Al.
More specifically, the following result holds.

Proposition 4.8. Let x satisfy Ax + Ry = 0 and M be constructed such that Mx =
Ax. Also, let Y satisfy Yy = Zy. Then, M1 = Al.

Proof. We have

ulXl [ MeM-—AHHMx+Ry)
v LM = AT Mx+Ry) + Yy |

Because
A% = Ax + Ry
y| | Lx+ By |’
we see that if Ax = Mx andx : Ax + Ry = 0 that Mx + Ry = 0. Hence, to

guarantee that M1 = A1, we need to satisfy Yy = Lx+By = (B—LA™'R)y = Zy,
which we have assumed. O

We next construct an approximation ) to the Schur complement Z = B— LA~
of A, which has the property

Yy = Zy.

The approximate Schur complement ) can be constructed as follows. Let

-1

for a block-matrix W to be determined. Then )) = PT AP, that is, obtained variation-
ally from A. It is clear that 27 Yz > 27 Zz > 0 for any z (due to the minimization
property of the s.p.d. Schur complement Z).
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We select W such that Py = 1. Then, by construction

_ pT T 44 T |AX+Ry| T 0]
Yy = PTA(Py) = PTA1=P |:LX+By:|_[W,I]|:Zy:|_Zy.

To summarize:

(1) Constructa )V such that Py = 1. One algorithm for computing P = (¥;), where
¥; stands for the ith column of P, can be based on constrained minimization
(studied in detail in Section 6.3),

Zl/fiTAwi > min,
i

subject to the constraint Py = 1.
(i1) The approximate Schur complement ) is then computed as

Y=PAP=B+WIR+ W+ WT AW.

Now, let us consider the more general case for vectors x and y. The following result
holds.

Proposition 4.9. Assume that M has been constructed such that
Mx = Ax,

and let Ae = r = Ax 4+ Ry. Assume in addition that
Me = Ae.

That is, now M and A have the same actions on two vectors, X and e = X + A*IRy.
Then, assuming in addition that Yy = 2y, we have that A1 = M1.

Proof. We first show that M(2M — A)~'r = r or equivalently, r = QM —
MM r = 2r— AM~r. Thatis, M~ 'r = A~ !r. The latter is true, because Me =
Ae = r. Because Mx = Ax, it is clear that r = Mx + Ry. Thus, we showed that

MM = A" Mx 4+ Ry) = MM — A~ 'r =r = Ax + Ry.

That is, M1 and A1 have the same first block component (equal to r). The second
block component of M1 equals

LM — HT'Mx+Ry) +Vy = LM — A7 e + Yy
=LA 'r 4+ Yy
= LA™ (Ax + Ry) + Vy
=[x+ LA 'Ry + Dy.

The second block component of A1 equals By + £x. Thus if Yy + LA™ 'Ry + Lx =
By + L£x, that is, Yy = Zy, we finally get that A1 = M1. O
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Some applications

The factorization process from the preceding section can be applied to a two-by-two
block structure of A where A is a sparse well-conditioned matrix. Then, we need
an easily invertible matrix M that has the same actions as .4 on two vectors, x and
e: Ae =r = Ax + Ry. This imposes two conditions on M. In [Wi92], Wittum
proposed an algorithm that constructs a (scalar) symmetric tridiagonal matrix M that
has the same action as a given s.p.d. matrix .A on two prescribed vectors. Applying the
same algorithm recursively (now to V), we can end up with a multilevel block-ILU
factorization matrix. For various possible venues in this direction we refer to [BW99]
and [BaS02].

‘We observe that there is one vector (1) that drives the construction of the block-
ILU factored matrix M. Namely, after partitioning 1 gives rise to two smaller vectors
x and y that are then used to define r = Ax + Ry. The pair x, r is used to construct
a suitable M, whereas the block y, extended to

X()_
1o =
o=

where Axg + Ry = 0, is used to construct

W
r=[

such that Py = 1¢. To get the vector 1¢, we need to solve a system with 4. This can
be practical if, for example, A is well conditioned. With a P in hand, the approximate
Schur complement ) is computed as P AP. The latter choice of 1o and the construc-
tion of P such that Py = 1p guarantees that Yy = Zy. As proved in the preceding
section, we have ensured at the end that M1 = Al. By setting A := Yand1: =y
after a successive two-by-two partitioning of A and respective partitioning of 1, we
can apply the same construction by recursion.

Another application is considered in the following section where we formally
have M = A; hence, we only need to construct an approximation ) to the exact
Schur complement Z that has the same action on a prescribed vector y.

Application of the “filtering”’ approximate block-factorization to
block-tridiagonal matrices

Consider the block-tridiagonal matrix

Al Ap 0
Ayl Ax A3 0

A=

(e

Anfl,an Anfl,nfl Anfl,n
0 0 An,nfl Ann
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Let A; be the principal submatrix of A containing its first i x i blocks, B = Aj41,i+1-
Finally, let

Ajit1

and £ = RT be the resulting off-diagonal blocks of A;,, which is the principal
submatrix of A consisting of its first (i + 1) x (i + 1) blocks. That is, we have

Ai R
Ai+1=|:£ B]

Let 1 = (1;)}_, be a given block vector.
Assume that we have constructed a block-factored matrix M; such that M;x; =
A;Xx;, where x; = (lk)fcz |- Consider then the partially factored matrix

-~ M; R
Ai+1=|:£ B:|

We obvigusly have Zi+1Xi+1 = A;;+1X;+1. Based on the two-by-two blo/qk struc-
ture of A;41, we construct a block-factored matrix M, to approximate A;4 and
hence A;+1 such that M;+1X;+1 = ;4\;+1x,~+1 = Aj+1Xi+1. As demonstrated in the
previous section, for this to hold, we needed to construct an approximate Schur
complement ) such that Yy = Zy where Z = B — EMi_lR is the exact Schur
complement of A\i+l- Because we deal with block-tridiagonal matrices, we have
Z = Aitli+1 — A,-H,iYi_lA,-,,-H. We denote Y;+1 = Y to be that approximation,
which hence satisfies

-1
Yirrdivr = (Aiprit1 — Aip1i¥ Avipr) g

The latter is referred to as a “filter condition” (cf., e.g., [WW97]) and the resulting
block-factorization, sometimes referred to as “tangential frequency filtering” decom-
position if the vectors 1; come from a lower part of the spectrum of the Schur com-
plements Z. For vectors 1; chosen adaptively, we end up with the so-called “adaptive
filtering” method as proposed in [WW97]. An adaptive vector is constructed by look-
ing at the error 1w = (I — M_lA)l. Then, based on the new vector 1,ew, a new
tangential frequency filtering decomposition matrix Myey, is constructed. The proce-
dure is repeated with M~ := M~ + M} — M L AM™!, and if needed, a new
adaptive vector is computed based on the thus modified M~

4.6 Block-ILU factorizations with block-size reduction

Another way to keep the complexity of the block-ILU factorization algorithms as
described in Section 4.1, is to construct a low-rank matrix Y; that approximates the
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inverse of the previously computed approximate Schur complement X;. In this case,
we do not need to further approximate the product A;11;Y; A; ;+1 by another matrix
H; 1. That is, formally, we can let H;11 = A;41,iYi Aiit1.

The way we construct low-rank approximations ¥; to X, ! exploits the concept
of block-size reduction ([ChV95]). Let { R;} be a set of reduction matrices. These are
rectangular matrices that have a relatively small number of rows. A typical choice is
a block-diagonal rectangular matrix

-

1 0 o0 ... 0

T
o 1 0 ... o0
R; = ,
.0
T
L0 0 ... 0 1y

for a small integer m > 1. The vectors ll(f), k=1,...,m, can come from a nonover-

lapping partition of a single vector 1¥) = (1,(:)). A simple choice is 1) = (1), and
hence, all 1,(:) = (1) being constant vectors. That is, RiT corresponds to a piecewise
constant interpolation.

Having the (full-rank) matrix R; in hand and X; being computed at the preceding
step (X1 = Ay,1), we define

-1
Yi = R (RiX;R]) " R;. (4.15)

Then, as before, we let
Xt = At o1 —Ainy YA i1 = Ay i1 — Ain RI(R: X RT *IR.AH
i+1 = Ai+1,i+1 i+1,i i Aqi+1 = Aj+1,i+1 i+1,i 1Y ( A RAY] ) iAqi+1-

Note that R; X; Rl.T is a dense matrix but of small size, hence its explicit inverse is

computationally feasible. The low-rank approximation Y; to Xfl has the following
key property. For any vector v;, we have

0<vlvivi <vIX'v. (4.16)
This is seen from the fact that ||C; || = ||CI.T|| appliedto C; = )~(l._1/2R,- Xl.l/z, where
Xi = RiX;R!.

Note now that C; CZ.T = I, hence ||CiT|| =1 =||Cj|l. Using ||C;|| = 1 implies,

Vl-TV,' > ViTCiTC,'V,'
1/2

i

1/2

i

RIX'RX)Pv;.

Y,'Xil/zvi.

=ViTX
=Vl~TX

The latter is equivalent to (4.16).
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Assuming by induction that X; — Z; are symmetric positive semidefinite, based on
property (4.16), we easily show that X; | — Z; 4 is also symmetric positive semidef-
inite. We recall that Z; is the successive Schur complement computed during an exact
factorization of A;thatis, Z1 = Aj1and Z; 1 = Ai+1.i+1 —Ai+1,,-Zl._1A,-,,-+1. More
specifically, we have the following main result.

Theorem 4.10. The block-size reduction algorithm based on Y; defined as in (4.15),
and Xi41 = Aj+1,i+1 — Ai+1,Yi A iv1 is well defined. It provides a block-ILU
factorization matrix M = (X — L)X*1 (X —U) that is s.p.d., and also the difference
M — A is symmetric positive semidefinite.

Proof. To demonstrate the existence of the factorization means to show that X; are
s.p.d., hence invertible. Following the proof of Theorem 4.5, we show by induction
that X; — Z; are symmetric positive semidefinite. We have to interpret the inequalities
in (4.5) not entrywise but in terms of inner products.

Looking at the expression (4.2) (recall that now H; = A;;—1Yi—1Ai—1,), we
immediately see (due to (4.16)) that M — A is symmetric positive semidefinite. O

Because M is meant to be used as a preconditioner, we need efficient algorithms
to solve systems with M, which is based on solving systems with the blocks X;; that
is, we need algorithms to evaluate the actions of X, ! Here, we can take advantage
of the fact that X; is a low-rank update of the original block A; ;. Assuming that the
inverse actions of A; ; are easy to compute, the Sherman—Morrison formula can be
handy here to compute the inverse actions of X;. In general though, we may need to
further approximate A;; with some s.p.d. matrices B;; such that B;l.l have readily
available actions.

A computational version of the block-size reduction ILU algorithm is as follows.
Compute the coarse block-tridiagonal matrix A = (R; A,JRT) It is reasonable to

assume that its exact block-factorization A= (X L)X (X - U ) is inexpensive
because the blocks A,] =R; A,]R have a relatively small size. Here X = diag(X))

and L = lower triangular with blocks on the first lower diagonal —A; ;_1, and sim-
ilarly, the upper triangular part U is defined from the blocks — ,,1 i. Then the
following approximations of the Schur complements of A are feasible,

X; = Aii — Aii1 R 1X Rl—lAl—l i

Note that based on the symmetric version of the Sherman—Morrison formula (see
Proposition 3.5), we have

Xi_1 = A;1 + A,»lei,i—lRiT,lVi—lRi—lAi—l,iA;l-
Here,
‘7,:11 zii—l l—lAl—llA 1All—1R

That is, the inverse actions of X; are based on the inverse actions of A;; and on

the inverse of the small matrix Vl ! Let m x m be the size of Vl_ll, its entries
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then can be computed by m actions of Al-;l. Thus, the resulting block-factorization
preconditioner is practical if m is really small. A second step would be to approximate
A;l with computationally feasible matrices B;; ! We assume that

B = [ Xi-1 RilAil,i]
' Aii-1R! Bi;

is s.p.d. The latter can be ensured if
vl Aivi <v] Biivi, 4.17)

which is the case, for example, for B;; coming from a block-factored form of Aj;
described in the previous sections or simply being a symmetric Gauss—Seidel pre-
conditioner for A;;. To see that B; is s.p.d., with the above choice (4.17) of By, it is
sufficient to show that the matrix

1= Xi-1 Ri—1Ai—1
' Aii-1R], A
is s.p.d. Letting A; = (A, ;)
observation is that Xi is a Schur complement of the following partially coarse s.p.d.
matrix,

i s be the ith principal submatrix of A, then the main

R 0 0 Rl 0 0
0 . 0 Al 0 -0

0 Ri-1 0 0 R, 0

0 I 0 I

With the choice (4.17) of Bj;, the following more practical version of the block-size
reduction ILU algorithm is of interest.
Algorithm 4.6.1 (Block-size reduction ILU).
(i) Compute the coarse matrix A= (RiA;,jRJT) and its factorization, gl = XU,
Xit1 = Aig1,i+1 — f}jﬂ,inlAi,iH-
(ii) Compute the inverse Vi of the Schur complement of the partially coarse matrix
B;; that is, compute,
~ ~ _ -1
Vit = (X1 — RiciAi—1,: B A R
(iii) Define -
Xi = Bij — Ai,i—lRiT_le,llRi—lAi—l,i,
which is not really needed. What we need is the expression for the inverse action
of Xi, based on the Sherman—Morrison formula:

Xi_l = Biz_'l + B;lA,',,'_lRinlVi_lR,'_lA,'_l,,'B;l. (4.18)

Note that we do not carry out the matrix multiplications in (4.18), which can be
costly in terms of storage and flops. We use the expression to compute X; ly; for
a given vector v;. The latter involves two solutions with B;; and matrix—vector
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products with A; 1, Rl » Vl;l, Ri_1, and A;_1 ;. The latter matrices are either
sparse, or dense but small.

This resulting block-ILU factorization matrix is well defined as long as X,- is s.p.d.,
which we can ensure. Because X; = Bj; — A;;—1Yi—1A;—1,;, we have that the
difference M — A is block-diagonal with blocks on the diagonal equal to X; +
A,~,,~_1Xi_711A,~_1,,~ —Aji =B —A;; +A,',,'_1(Xi_711 —Y;_1)A;_1,;, which shows that
M — A will be symmetric positive semidefinite as long as B; ; — A;; are symmetric
positive semidefinite (recalling (4.16)). We summarize as follows.

Theorem 4.1 11 The block—stze reduction ILU algorlthm based on inexactblocks { B; ;}
leading to V 1 = X, 1 — Ri—1Ai-1,iB;; A,, 1R 1 and corresponding X; as in
(4.18) is well defined. Moreover, the dlﬁerence M — A is symmetric positive semidef-
inite. This holds for any full-rank restriction matrices R; and matrices B; ; such that
B;; — A, ; are symmetric positive semidefinite.

4.7 An alternative approximate block-LU factorization

Let
A R
A=z 5
be s.p.d. and assume that we can derive s.p.d. approximations M to A~! and A, to

the exact Schur complement S = B — LA~!"R. With a special choice of M, the
following approximate block-factorization matrix,

Mmoo [T MR
M_[E ACMO 1]’

leads to a spectrally equivalent preconditioner to A. This type of preconditioner was
introduced and analyzed in Section 3.4.1. Here, we specify some ways to construct
M so that the conditions (assumed in Section 3.4.1) both A — M ™!

MR
L B
are symmetric positive semidefinite, are met.

A local procedure for choosing the first block

In the setting of two-grid methods, we typically define A. = PTAP to be a coarse
matrix obtained from A by an interpolation matrix P. We then have to guarantee that
x" PTAPx < 1 infy.—jwipx V! Av, where

-1
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It is clear that this energy boundedness of

p=[¥]

implies the estimate x” A.x < 1 x’ Sx. Another more specific choice is given later
on in this section.

The construction of M is a bit tricky because it has to satisfy two types of
inequalities, namely, v A=y < v Mv, and

a x'Sx < x' (B — LMR)x.

These two estimates, in particular, mean that the approximate Schur complement
B — LMR should be spectrally equivalent to the exact Schur complement S; that is,

ax'Sx <x'' (B—- LMR)x < x!Sx.

Such a construction is possible if A is assembled from local matrices {4;} in the
sense
viAv="> "vlA.v,, (4.19)
T

where v; = v|;; thatis, v; is the restriction of v to the subset of indices 7. We assume
here that {t} provides an overlapping partition of the indices of the vectors v. Next,
partition the local matrices A; as A accordingly,

Ar R
war %]

Let D be a s.p.d. local matrix such that
T T T -1
w, Acwr > W Dewy > w, Re(Br)™ Lowe. (4.20)

For example, it may be possible to choose D; being diagonal. The latter estimate
implies the spectral equivalence

w.] T4 R.][w: oW "o, R [we
X, L: Byl x| = | x¢ L: B: || x;
o5 | W TTa, R [we
- X, L: B || x|’
inasmuch as both matrices are symmetric positive semidefinite and (4.20) imply that
they have a common potential null space. We assume that the constant § is uniform

with respect to 7.
Define now the global matrix D by assembling {D.}

T T
w' Dw = ZWTDTWT.
T
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Then let M = D~!. Note that if {D} are diagonal, then D, and hence M, is also
diagonal. It is clear that

wlAv > wi M~ w,

and that
X! (B~ LMR)X = inf Z [Z T [IE) 72 } [Z‘v]
[ E
s3] 8 B[]
Y ZXTTSrXr
=

~ x!8x.

We have also assumed that the matrix assembled from the local Schur complements
{Sz} (which is another good choice for A.) is spectrally equivalent to the global
Schur complement. This can be rigorously proved if we can construct a bounded in
A-norm, element-based, interpolation matrix P. The latter means that Px|; = PrX.,
where Xx; = X|;, for some local interpolation matrices P;. (For more details, cf.,
Section 6.9.)

For the purpose of the present analysis, assume that we can construct an element-
based P such that its restrictions to every ,

W,
P‘[ = [ Ir] I
for a t—independent constant 1, satisfy

W, + WTXTi|T A |:WT + Wex,
T

T pT :
X, P. A; Prx; < n inf
I rrr_an X, X,

i| =7 ererf.

Then, because S; is a Schur complement of the symmetric positive semidefinite
matrix A;, and
W
P = ,

we easily get
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That is, we see that the matrix obtained by assembling the element-based Schur
complements is spectrally equivalent to 4. because

T T pT T T
ZXT Six; < Z X, Pl ArPrx, =X  Acx <1 ZXTSTXT.
T T T

On the other hand, it is also straightforward to prove that A, is spectrally equivalent
to the exact Schur complement S. We have

T
x! Sx = inf |:W:| A |:W:|
w X X
<x"PTAPx
= Z XZPTTATPTXT
T

SZ nXZSrXr
T
w T w
T T
SN N
T

= [3] a[2]

Because w can be arbitrary, by taking inf over it, we obtain that xI'Sx < XTACX <
n xT Sx. That is, the global Schur complement S is spectrally equivalent to A, and
hence, is also spectrally equivalent to the matrix obtained by assembling the local
Schur complements S;.

Thus, we showed that if M is spectrally equivalent to .4 and based on D; such
that (4.20) holds, the two conditions on M are met, which implies that the corre-
sponding two-grid preconditioner M will be spectrally equivalent to A. We comment
that to implement M ~!, we do not need the interpolation matrix P once A. has
been constructed (either by PT AP or by assembling the local element Schur com-
plements S; ), which makes the method somewhat different from the two-grid AMG
methods.

‘We conclude this section with the following simple example of local matrices that
satisfy the local condition (4.20).

Consider,
_ Ar RI‘
AT_|:£-[ Bri|’
where
4 -1 -1 -1 -1 O 200
Ar=|[-1 4 -—-1]1, R;.=10 -1 —1], B:=(0 2 0],
-1 -1 4 -1 0 -1 002
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and £, = RI. Define then

We first see that

200
D=0 20
00 2
2 -1 -1
A —-D,=|—-1 2 -1
-1 -1 2

121

is positive semidefinite, and it is readily seen that the approximate Schur complement
B, — L. D7 LT is also positive semidefinite. Indeed,

1
B, — £, D7 =B, — Ecrcf

2 0 0 !

1
=lo20(-]4
002 1
- 2
N 1 1
I =3 =
_ 1 1
=|—2 | —3
1 1
-3 =7 1

NI— = =

—_ = =

which is positive semidefinite. This shows that the block-matrix

D, R.
ve= 2 5

is positive semidefinite. Finally notice that A; and M, have the same null space (the
constant vectors in Rﬁ). Alternatively, we have

1
D, — R B 'L, =D, — S ReLe

2 0 0 1
=020]|—|3
002 1
- 2
r 1 1
I =3 —3
_ 1 1
=|-2 | —3
1 1
-2 =2 1

D= = D=

—_ = D=

which is positive semidefinite. This shows the r.h.s. inequality in (4.20).

A reduction to an M -matrix

As demonstrated by the example at the end of the preceding section, the local construc-
tion of M ~! seemed feasible, in general, for (Stieltjes) symmetric M-matrices. This
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gives a motivation to replace A with a spectrally equivalent M-matrix A and apply
the method studied in the present section to A instead. The M-matrix approximation
can be achieved as follows. By adding semidefinite matrices of the type

0 0 0 0 O
0 d 0 —d 0|} i"thposition
0 0 0 0 O
0 —d 0 d 0]} j"thposition
0 0 0 0 O

to A, we can make all positive off-diagonal entries a;; = d of A zero. The resulting
matrix A is a s.p.d. M-matrix that satisfies v/ Av > v! Av, and it is likely spectrally
equivalent to A. This is a typical case for finite element matrices A coming from
second-order elliptic PDEs. This fact s easily seen if the above positive-entry diagonal
compensation is performed on an element matrix level, that is, on A, (see (4.19)).
Thus, at least in theory, we may reduce the problem of constructing preconditioners for
A to a problem of constructing preconditioners to the s.p.d. M (or Stieltjes) matrix
‘A. We also notice that in the M-matrix case (i.e., when the local matrices A, are
semidefinite M-matrices), their Schur complements S; are semidefinite M-matrices
as well. Thus, if we define A, based on {S:}, it will be an M-matrix, and in principle,
a recursion involving only M -matrices (i.e., factorizing A, in the same way as A
and ending up with a new A, that is an M-matrix) is feasible. Such a procedure
will lead to a multilevel approximate block-factorization of A. We have not specified
how the two-by-two block structure of A (and later on A.) can be chosen. One
viable choice of block structure of A can be based, for example, as described in
Section 6.9.

4.8 Odd—-even modified block-ILU methods

One approach that can be applied to 3D discretization matrices on tensor product
meshes is using the unknowns as blocks within planes parallel to each other. Each
plane block can be accurately approximated by a 2D block-ILU factorization matrix.
The approximate Schur complements can then be computed in a Galerkin way, that s,
in the form PT AP, for appropriate matrix P. More specifically, partition the block-
tridiagonal matrix A as follows.

Aodd Ao e
A= el
|:Ae,0 Aeven:|

The matrices Aogq and Aeyen are block-diagonal and equal to diag(Az;—1,2;—1) and
diag(A»y; 2;), respectively. For a positive vector

_ 1o
=[]



4.8 Odd-even modified block-ILU methods 123

typically chosen such that Aogql, + Aevenle = 0, we construct an interpolation matrix

oy

such that P1, = 1. Then the approximate Schur complement A, = PTAP =
WT AgaaW + Ae oW + WTAO,L, + Acven, 1S positive definite and again easily seen
to be block-tridiagonal if W couples only two neighboring odd-planes. We also have
that Ac1, = (Aeven — Ae,oA;dldAo,e)le-

In our particular case of block—tridiagonal matrices, a suitable way to construct
P (or rather W) in order to keep the sparsity pattern of A, under control relies on the
following observation. Let

_ 0 _
Wai—3.2i-2 0
Waic12i—2 Wai—1i 0
0 Waiv1,2i Waiti12i42
0 Waii3,2i42
P =
0
I 0
0 1 0
0 I
L 0 _

That is, for any column (2i) of P, there are only two nonzero block entries of W,
denoted by Wa;_1,2; and Wa; 11, 2;. Then, a direct computation of the product A, =
PTAP shows that the resulting matrix is also block-tridiagonal with block entries
[Asi,zi—z’ A%i,2i’ AE:’,ZH—Z] and is defined as follows.

%i2i 2= WZT,-,LZi (Azi—12i—1Wai—10i—2 + A2i—12i-2) + A2ipi—1 Wai—12i-2,
Sini = Wai_1 2 (Asim1.2i-1 Wai—12i + Asi—1.2i)
+ WzTi+1,2i(A2i+1,2i+1W2i+1,2i + A2it1,2i)
+ A2i2i—1Wai—12i + A2i 2i+1 Wait1,2i + A2i2is
ASigitn = WzTiH,zi (A2i4+1,2i+1 Wait1,2i42 + A2ig1,2i42) + A2i2i41 Wait1,2i42.
The simplest choice for Wo;_1 2; and Wp;41,2; is to be diagonal.
It is clear then that the sparsity pattern of A3, ,; , is determined by the sparsity
pattern of Ao; 1 2;—1, A2i—1,2i—2,and A; 2;—1. The sparsity pattern of Agi,Zi is deter-

mined by the one of A2; 1,21, A2i—1,2i, A2i+1,2i+1, A2i+1,2i» A2i2i—1, A2i2i+1,and
A2i1.2i+2 . In conclusion, if the original matrix A has blocks with a regular sparsity
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pattern, the choice of W with diagonal blocks W»;_1 2; and Wa; 11 2; will lead to a
matrix A, again with blocks having the same regular sparsity pattern.
The entries of Wa;_12; and Wp;412; can be determined from the conditions
(cf., [SS98])
-1
Wai—12ilai = —Ay ;1 Azi—1,2i12i,
-1
Wait12iloi = —Ay 5i 1 A2it12i12i

It is clear then that

(PD)l2i—1 = Wai—1,2i—210i—2 + Wai—12i12
= —Az_,-l,l’Zi,l(A2i—1,2i—212i—2 + Agi—1,2i12i)
= 1yi—1;
that is, P1, = 1.
The two-level scheme is then applied to define the actual two-level modified
block-ILU preconditioner.

As mentioned above, we may derive a very accurate block-ILU factorization
matrix (X — L)X~ 1(X — U) for the block-diagonal matrix

. A 0
diag(A;, ;) = [ g“ }.

Aeven
Let
_ Modd 0
X-LXx'x-uv)y=|"° .
(X —L)X~'( ) [0 M}

Consider then the following block upper-triangular matrix

Modd Ae 0
M = ’ .
|: 0 Meven:|

Such an M is referred to as a “c—f” plane relaxation. Then, following the general
definition of two-level methods, we first define

=~ [ M Ol[M+MT—a)t o][MT AP
| PTA I 0 Al 0 1|

and then B! = [I, P]E’l[l, P]T. The above method is well defined as long as
M + MT — A is positive definite. In our particular case, we have

2Mogq — Aodd 0 ]

M4+MT —A=
|: O 2MCV€H - Aeven

Because the block-ILU methods provide convergent splittings (Corollary 4.6) the
differences 2Moqd — Aodd and 2Meyen — Aeven are symmetric positive definite, hence
M+ MT — Aiss.p.d.
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As already mentioned, A, is also block-tridiagonal, and in principle, we can apply
recursion to it if its sparsity pattern is being kept under control.

Alternatively, we may simply define a block-ILU factorization of A by using a
block-ILU factorization of Ayqq only. In other words, let (Xodd — Lodd) X O_dld(X odd —
Uodd) be an accurate block-ILU factorization of the block-diagonal matrix Aggq. Let
Moga = Xodd — Lodd- The following more traditional way of defining a block-ILU
factorization matrix then reads,

—1 24T
B:[ ! - 0} |:M0ddX0ddModd 0}
AcoMyy 1 0 Ac
! Ml A,
0 1

The difference between the two-grid definition of B and the more classical block-
ILU definition is that the latter does not use the interpolation matrix P after the
approximate Schur complement A, has been constructed. Another difference is that
in the more classical block-ILU definition, we use “smoothing” only on the odd
blocks.

For more details, regarding 3D finite difference matrices A on tensor product
meshes, we refer here to [SS98].

4.9 A nested dissection (approximate) inverse

A nested dissection solver

Given an s.p.d. matrix A partitioned by two separators “b” and “B”, as follows

A A
A= :
|:ABI Ap :|

where A; is typically block-diagonal, which by itself is partitioned by the separator
“b” in a similar fashion,
Ai Aip
Ar=|." 7.
! |:Abi Ap ]

We now compute (approximately) A~! based on some partial knowledge of A;l. We
only need specific entries of A~!, namely, the entries (A_l),:/ fori, j € “B”U“b”.
The entries that we need from AI_1 correspond to the set “b” and the set 9/ = {j €
I; a;j # O0forsomei € “B”}. The latter is motivated by the fact that in order to
compute the Schur complement Sp = Ap — Ap 1A;1A 18, we only need the entries

of A;l from exactly the set 9/. Also, in order to compute the required entries of A~
based on the formula

. AT AT ARSE Apr AT —AT ALpSy!
—S5'ApAT! S5! ’
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it is clear that we need (A;l)ij for i, j € “b” U dl and all the entries of Sgl, in
order to be able to compute the entries of A~! corresponding to B U I for any set
' c (“b”uUal).

We now comment on the fact that having the above-mentioned entries of A~! and
AI_1 available is sufficient to solve the following problem with sparse r.h.s.,

0
Ax=b= | Dby
bp

for x on “B” and “b”. We can proceed as follows.

1. Solve
0
A[X[ = b[ = |:bb:|

for x; on d/. Because we have (by assumption) the entries (Al_l)i, jfori e dl
and j € “b”, the latter equals (x;); = Zje“b”(Afl)tj(bb)ﬁ
2. Compute the residual

0 X
r=|by —A|:01i|.
bp

It is clear that r is nonzero only on the separator set B and its entries on B are
equal to

*
bg — Apix; =bp — Ap; |:X1|31:| .

These entries are computable inasmuch as Apy is nonzero only on 91/.
3. Solve

Ay =,

for yp = y|p (and perhaps for some other entries). We notice, because

that yp = Xxp is the true solution on the separator set B.
4. After xp has been computed, we solve

A]X] = b] — A]BXB.

The latter r.h.s. is nonzero on b U d 1. Therefore, we can compute x;, because AI_l
is available for entries (i, j),i e band j € bUII.
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The complete solution algorithm is then obtained by applying the same process re-
cursively, now to Ay based on the separator b and A; replacing A;. If the separators
are used as in the nested dissection ordering (cf., Section 1.9.6), we end up with a
nested dissection-based (approximate) inverse of A, which can also be used to solve
the system Ax = b with a general r.h.s. The assumed sparsity of b is automatically
obtained (seen by induction; e.g., the sparsity of b implied that the residual r is also
sparse; r is nonzero only on the separator B).

Approximate inverses based on low-rank matrices

The idea is to compute both the Schur complement Sz and its inverse S;l only
approximately by saving memory and operations.

Assume, for example, that the needed principal submatrix of AI_1 is approximated
by a low-rank matrix Q; A;l Q; where Q; has m > columns, for a small m. Then,
the Schur complement Sp can be approximated by the expression

Xp=App — ABIQ%JIA;1 QgIAIB'

We recall that low-rank updates to compute approximate Schur complements were
used in Section 4.6. In general, given an approximate inverse X 1_1 to Ay and letting
X BTI be another approximate inverse to Sp & App — A B]AZIA 1B, the required and
now only approximate entries of A~! can be computed from

XU X ApXptAp Xt X ApXy!
—X5' A x;! X5 ’

where the multiplications are carried out only approximately.

For more details on how to operate on a certain class of matrices exploiting “low-
rankness”, referred to as hierarchical matrices, see, for example, [HOS5], or referred
to as “semiseparable” matrices, see, for example, [ChGO05].
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Multigrid (MG)

5.1 From two-grid to multigrid

We recall now the classical two-grid method from a matrix point of view introduced
in Section 3.2.3. We are given a n x n s.p.d. matrix A. The two-grid method exploits
an interpolation matrix P : R" +— R" and a smoother M. Then, we define the coarse
matrix A. = PTAP. The smoother M is assumed to provide convergent iteration in
the A-norm. As we well know (cf. Proposition 3.8), this is equivalent to having the
symmetrized smoother M = M(M + MT — A)~'MT satisfy the inequality,

viAv < v Mv. (5.1)

The classical two-grid method is defined as a stationary iterative procedure, which
is based on composite iterations; a presmoothing step with M, coarse-grid correction,
and a postsmoothing step with M T . This leads to an iteration matrix E that admits
the following product form

E=(—-MTA)UI - PA'PTAYI —M'A).

A corresponding two-grid matrix B can be defined from the equation £ =
I — B~ A which leads to the expression

Bl=MTM+MT —A )M+ -MTAHPAZ'PT(I —AM™Y),
We may equivalently define B as a block-factorization of A. Namely, introduce

B I O] [MM+M" —A)~'M"  0][1 M~TAP]
| PTAMT! T 0 A0 I

Note that B has bigger size than B and A; namely, its size equals the fine-grid vector
size plus the coarse-grid vector size. Then, a straightforward computation shows the
following identity

_ ——1
B~'=[, PIB I, PI".
P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 129

doi: 10.1007/978-0-387-71564-3_5,
© Springer Science+Business Media, LLC 2008
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This definition shows that B is s.p.d. if M+MT — A is positive definite, or equivalently
if M is a convergent smoother in the A inner product (which we have assumed).

The above two-grid (or TG) definitions are the basis for extending the TG method
to multiple levels by simply replacing the exact inverse AC_1 with an approximate one
exploiting the same procedure defined by recursion on the preceding coarse levels,
which leads to various definitions of multigrid (or MG).

Assume that we have £ > 1 levels (or grids). To be specific, we define next a
symmetric V (1, 1)-cycle MG. Let Ay = A and P be the interpolation matrices from
coarse-grid k + 1 to fine-grid k and Ax4+1 = PkT Ay Py be the coarse-grid k + 1 matrix.
We assume that Py : Vi1 — Vi thatis, Py Vi1 C Vi. Here, each vector space
Vi is identified with R"*, and nyy; < ny are their respective dimensions. Finally,
for any k, let M be a convergent smoother for Ay so that || — A,lc/szflA,lc/zH < 1.
The symmetric V (1, 1)-cycle MG that we define below exploits smoothing iterations
based on the inverse actions of both M; and M kT .

The traditional definition of MG is based on an algorithm that provides actions of
an approximate inverse B, "to Ay.

Definition 5.1 (MG algorithm). At the coarsest level, we set By = Ay. Then for
k=¢—1,...,0, assuming that B,;:l has been defined, we perform the following
steps to define the actions Bk_lrfor any given vector r.

(i) “Presmooth;” that is, solve
Mpx; =r.

(ii) Compute the residuald =r — Agxy = (I — AkMk_l)r.
(iii) Compute a coarse-grid correction by applying B,;ll to the restricted residual
PkT d; that is, compute

Xi+1 = B PL(I — ArM M.

(iv) Interpolate the coarse-grid correction and update the current approximation,
that is, compute

X 1= Xk + PieXip1 = My 'v + PeBL PE(T— AeM .
(v) “Postsmooth;” that is, solve
My =r — Aex,
and finally set
B, 'r=x¢ + y. O
The following more explicit form of B, Lis readily seen from

xc = M 'v+ PeBL PE (1 — AeM ),



5.1 From two-grid to multigrid 131
and
T
y=M; " (r— Arxp),

based on the definition B, 'r=x; + y. We have

B,:lrzxk+y

=x¢ + M T (r — Agxp)
=M 'v+ B\ PL (I — ArM )r
+ M (e = Ac(M '+ PeB PE(T — AcM )r))
= (M M T - M AT
+ (1 = M T A PeB PE(T =AM )
Thus, the following recursive definition can be used instead.

Definition 5.2 (Recursive definition ﬂf MG). Set By = Ay. Fork =¢—1,...,0,
introduce the symmetrized smoothers My = My, (MkT + M — Ak)_leT, and then let,

B =W+ (1= T A Pl B (1 ) -

Definition 5.2 and Theorem 3.11 give us one more equivalent definition of the symmet-
ric V (1, 1)-cycle MG as a recursive two-by-two block-factorization preconditioner,
which is a direct generalization of the TG one.

Definition 5.3 (MG as block-factorization preconditioner). Starting with By = Ay
and assuming that By for k < £ — 1, has already been defined, we first form

B, — I 0\ [My (Mo +MI —A) " M 0 (1 M Ak
PracM " 1 0 Biy1] [0 1 ’
5.2)
and then By is defined from,

_ —-1
"=, PAB, (I, P o

Introduce next the composite interpolation matrices Py = Py--- P from kth-
level coarse vector space Vy all the way up to the finest-level vector space V = V.
The following result allows us to view the symmetric V (1, 1)-cycle MG as a product
iterative method performed on the finest-level. The iterations exploit corrections from
the subspaces PV of the original vector space V = V. Such methods are sometimes
called subspace correction methods (cf. [Xu92a]).

Proposition 5.4. The following recursive relatlon between the subspace iteration ma-

trices I — PyBy ' Py A and I — Pyy1 B!, Pyyy A holds,

I =B Py A= (I—PeMy TPy A)(I = Prri B Proy A) (1 — PeMy ' Py A).



132 5 Multigrid (MG)

Proof. We have, from Definition 5.2,

- 15T - ——1=T - _ _ T
PiB'P, = PiM; Py + Pr(l — M T A PB P (T — A )P

Now use the fact that A, = F{ APy and Py = Py Py to arrive at the expression
— 5T = ——1=T — =T \= R — =T
PeB'Py = PiM; Py +(I—PiM; " Py A)Pis1 By Py (1 — APM'P).
Then forming I — Py B, 1F,ZA gives
[-PB'P,A=1-P,M, P, A
= =T \= 15T = . 1=T
— (I = PxM{ TP A)Pry1 B P A(T — PrM Py A).
It remains to notice that M, = M + M7 — M7 AcMt = M T
k=M k v AM =M+ M
M,:TF,{AF/CM,:I implies
— ——1=T — =T — =T
I —PiMy, P A= (I—PiM_"PA)(I—PM_ P A),
which combined with the previous identity gives the desired result. O

The following proposition shows that the symmetric V (1, 1)-cycle MG precon-
ditioners By provide convergent splittings for Ax. More specifically, the following
result holds.

Proposition 5.5. Under the assumption that the smoothers My are convergent in the

Ag-norm(i.e., |1 —A},i/QMk_lA},i/2 | < 1), the symmetric V (1, 1)-cycle preconditioner

By is such that By — Ay is symmetric positive semidefinite.

Proof. From Proposition 5.4, letting E; = I — PiM © 17,{A, we have that
— =T — _1 =T
A— APB;'"P A= E[(A— APru1B. !\ Py A)Ex,

which shows by induction that A — A P, B, IFZ A is symmetric positive semidefinite.
For k = ¢, we have By = A, = FZAF@. Letting G = AI/ZFgAZI/z, we have
GTG = I.Because |G| = ||GT|| = 1, we also have
VTA1/2F[A21FZA1/2V =vI'GGTv < vlv.
Letting v := A!/%y above, we arrive at
VTAF[AzlﬁgAV < vl Av.

Thatis, A— AP;B i IF,Z A for k = £ is symmetric positive semidefinite. The fact that
A—APiB; IFZ A is symmetric positive semidefinite (for all k) implies that F,Z (A—
AFkBk_lﬁgA)Fk = Ar— AkBk_lAk, or equivalently, that A,:l — Bk_1 is symmetric
positive semidefinite. Therefore, we have that By — Ay is symmetric positive semi-
definite (because we showed that By is s.p.d.). Thus the proof is complete. O
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5.2 MG as block Gauss—Seidel

The following relation between MG and a certain inexact block Gauss—Seidel fac-
torization of an extended matrix was first explored by M. Griebel in [Gr94]. Namely,
consider the composite interpolation matrices P = Po,..., Pr_; from coarse-level
k vector space Vy all the way up to the finest-level vector space V = V. Let also
‘P = I. Then, form the following extended block-matrix 7 = (T,:/)f’ =0 with blocks

T; = FiT AP ;. Note that the diagonal blocks T;; = A; are simply the ith coarse-
level matrices. Let M; be the smoother at level i < £ and at the coarsest-level ¢ let
My = Ay. Then form the block-lower triangular matrix,

My 0 0
Tio M, 0
Lg=] .
: . 0
Teo ... Tee—1 My

The inverse of the MG preconditioner Bﬁjlé; satisfies the identity,

Byt = [Po, ..., PaLy" (diag(MT + M; — AD_) L3 [Po, ..., Pd".  (5.3)
The fact that By defined in (5.3) actually coincides with the one in (5.2) follows by
induction from Theorem 3.11. We also have then the familiar product representation
of the iteration matrix / — B;;é;A,

I—ByLA=(1—PoMyTPyA)--- (I — PeM; TP, A)
= 15T = 15T
x (I —PoeiM; Py A)--- (I = PoMy Py A).
Because My = Ay = FZAFL we notice that [ — F[_lM[TFg_lA is a projection.
Hence the following more symmetric expression for B;Ié; holds.
- — =T — 1T
I—BysA=(I-PoMy"PyA)--- (I —PeyM;"P,_|A)
< (I =P M Py A) - (I — PoMy Py A).

In [Gr94], it was actually proposed to transform a given system Ax = b based
on the fact that any x allows for a (nonunique) decomposition x = Zi:() Fkxkf and

then after forming FZAX = Zfzo F,Z Aﬁlxlf = F,{b to end up with the following
consistent extended system,

X(])( FO b

IR
~
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Note that the matrix of this system 7" is symmetric and only positive semidefinite.
The latter consistent semidefinite system is solved then by the CG method using the
symmetric Gauss—Seidel matrix

Ly (diag(MT + M; — A))_,) "' LE,

as preconditioner. The original solution is recovered then as

S 2 A
X=[P(),...,P@] =ZP/€X£.
X.é‘ k=0

5.3 A MG analysis in general terms

The multilevel convergence analysis relies on stable multilevel decompositions of
the form
=X,
k

where V{ € Vi, the kth-level coarse space viewed as a subspace of the fine-grid

vector space V = V. That is, V; = Range(Py, ..., Pr_1). The stability means that
for a desirably level independent constant o > 0, we have

Z (V{)TAka <o vl Av.

k
Equivalently, because V,{ = (Py,..., Pr— 1)v,{ , With v,{ € V (the actual coarse
vector space) the same estimate reads
Z (v{)TAkv;: <o vl Av. (5.4

k

Introduce, for the purpose of the following analysis, the subspace V{ C V;, which
is complementary to the coarse space P;V ;1. The space ij is chosen so that the
symmetrized smoother M = M;(M] + M; — Aj)~'M] when restricted to V/f is
efficient. The latter means that A; and M ; are spectrally equivalent uniformly w.r.t.

J on the subspace Vf . Then, we can replace (5.4) with an estimate that involves the
symmetrized smoothers

Z (v,{)TﬁkV,{ <o vl Av. (5.5)
k

Note that the subspaces V‘Jf are not needed in the actual MG algorithm.
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Decompose v; = V/f + Pjvjt1, with V‘Jf € Vijand vjy1 € Vjyy, for j =k,
k+1,...,¢— 1. From the definition of Bk_1 = 1[I, Pt] F,;l [1, Pk]T, we have that

I = GGT, where G = B,:ﬂ [1, Py] _,:(1/2). This shows that G has a spectral norm

not greater than 1. Therefore, the following inequality holds,
1t s VAR N
[V" ] (1, P Bill, Pk]T[Vk }s[vk ] Bk[vk } (5.6)
Vk+1 Vk+1 Vi+1 Vk+1
Because

f
vi = [, Pk][vk],

Vi+1
based on the above inequality and the explicit form of By, one arrives at the estimates
0 < Vi (Bx — Avi
< (M)TV] + A Povicer)” (M + MF = A) " (MO TV + AcPevisn)

+ Vi (Bt — Ak D Vi1 + (Vo Aks1 Vi1 — Vi Akve)
-1
Tf T T -1 TS
= S [(MDT] + Ay Prvin) (M + MT = 45)7 (MDTV] + APy ) ]
j=k
+ VZAZVZ — VZAka.
(5.7)

Note that we have the freedom to choose the decomposition v; = Vf + Pjvjy1.In

particular, we can choose V'/}-( € Vf C V; sothat we have (by assumption) the estimate

Z (V{)Tﬁjv{ <o VkTAkvk. (5.8)
j=k
If it happens also that
-1
S VI PTA(Mj+M] = Aj)) APV < v Agvi (5.9)
jzk
and
vl Agve < oc v Agvi, (5.10)

we would then have the following spectral equivalence result,
0 < vl (Bx — Ak < (00 +2(0 + ) — 1) vl Apvy. (5.11)
Note that typically, for a constant § > 0, we can ensure that

SVIAV; <V (Mj+M] —Aj)v,. (5.12)
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Equivalently, we can ensure (1 + 8)vJTA jvj <2 V/T M v; generally achievable by
scaling M;. If M is s.p.d. and M; — A; is symmetric positive semidefinite, we can
simply let § = 1in (5.12). Estimate (5.12) together with the following strong stability
estimate

D oviAv; < v Awvi (5.13)
j>k

imply estimate (5.9) with u = /4.

We remark that (5.13) follows from (5.8) with level-dependent constant (of order
o — k)?). Because M comes from an A j-convergent smoother, we first have
\s Ajvj < Vi ijj. Then, because by construction v; = v]f + Pjvjy1, we easily

get the estimate ||vg|l4, < ijk ||V§ lla; + lIvella,. Hence,

(Villa, = Ivella)? < € =k Y (vD) apv! <@ > (vI) M;v]

j=k j=k

Therefore,

DoViAN =2 (villa; = IVella)? + Q€ = k) = D] Apve
Jj>k Jj>k

<QE—k = vl A +2> - HY (W) My
Jj>k §>j

SQU-K) - DV A+ —k—D(C =k (vff)TM,vf.

j=k

Thus, if only estimate (5.12) holds (provided the smoothers are also properly scaled
as in (5.12) and the coarse component is “energy” stable as in (5.10)), we still have
MG convergence, however, with weakly level-dependent bounds.

Remark 5.6. In practice, the most difficult estimate with a level-independent bound
is (5.9). In the case of matrices A; coming from second-order elliptic bilinear form
a(-, -) and respective finite element space V;, with M; simply being the diagonal of
A (properly scaled), estimate (5.9) reads

Y hIA; Pl < ClIVI-
J
Here, ||.[lo comes from the inner product based on the L;-mass matrix G, h; is the
Jjth-level mesh-size, and A j= G;IA j are the operators typically used in the finite
element analysis of MG. If P;v;; stands for the vector representation of Q;11v
where Q1 is the L;-projection onto the (j + 1)st-level finite element space V11,

the above estimate in terms of finite element functions v, finite element operators
A : Vi = V; defined via the relation (A vi,wjlo = aj, w;) = (Vvj, Vw;)o
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forallv;, w; € V;, and the Ly-projections Q; : Ly > V; defined via (Q v, vj)o =
(v, vj)o forallv; € V;, reads

D RIA;Q vl < CIIVVIG.
J

Such an estimate with uniform bound C was proven in [VW97] based on a well-
known strengthened Cauchy—Schwarz inequality (cf., [Y93], or see Proposition F.1
in the appendix).

We conclude with the following main MG convergence result formulated in gen-
eral terms.

Theorem 5.7. Consider A j-convergent smoothers M;, j =0, ..., £ — 1 used in the
definition of the symmetric V (1, 1)-cycle MG preconditioner B = By for A = Ay. If
any fine-grid vector v = v allows for a decomposition based on vector components

Vi =V = Pivjy1, j =0,1,...,€ — 1, such that:

f

e The smoothers M j are efficient on the components v i in the sense that the estimate

NT77r of T
Z(Vj) Mjv; <o Vv Av,
j
holds.
e The smoothers M are scaled as follows,

T T (T —wIM.v.
L+ 8V Ajv; < Vi (M] +Mj)v; =2v M;v,.
e The coarse component vy is stable in energy; that is,
V{Asz <o, vl Av.

Then, the symmetric V (1, 1)-cycle MG preconditioner B = By is spectrally equiva-
lent to A = Ay with the following suboptimal bound,

220 —1 204 — 1)L
VTAVSVTBVS <oc [1—!—%}—!—0[%4—1]) vl Av.

If, in addition, the smoothers M are efficient on the components A P;v ;1 so that
there holds

—1
S VI PTA (M +M] —A))T APy < vl Ay,
i

then the MG preconditioner B is uniformly spectrally equivalent to A; that is, we
have

viAv <vI'Bv < (0. +2(c + ,u))vTAv.

Stable decomposition of vectors can generally be derived based on the finite
element functions from which they come. The latter was a topic of intensive research
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in the last 20 years. Some details about computable stable decomposition of functions
in various Sobolev norms are found in Appendix C, and specific applications of
Theorem 5.7 to a number of finite element bilinear forms and spaces are found in
Appendix F. Stable vector decompositions are further investigated in Section 5.7.

A different analysis of MG exploiting its relation with the product iteration method
was originally developed in [BPWXii] and [BPWXi]. Those were breakthrough re-
sults that led to the understanding of the importance of providing stable multilevel
decompositions of finite element spaces.

On the sharpness of (5.7)

‘We show that for some special decompositions vy = [1, Px] Vi, where

f
Vi+1

inequalities (5.6) and_hence (5.7) hold as equalities.
Consider By and By. We drop the subscript k whenever appropriate. We also need
the following useful lemma.

Lemma 5.8. Consider B~! = [I, P] F_l (7, P1T. For any given vector v solve
Bw =11, P]" Bv,

forw. Then,
(i) [1, PIW = v. That is,

—[v/
W= e
represents a decomposition of v.= v/ + Pv°.

(ii) The decomposition from (i) has some minimal norm property; namely, we have

W/ Bw=v Bv=  min v Bv.
v.v=[I, P]v

Proof. We have .
[I, Plw=1[I, P1B [I, P]T Bv=yv,

which is (i). Also, from the definition of W and (i), we get
w! Bw=w![I, P]" Bv= (I, PlW)! Bv=v'Bv.

Finally, we alreachf showed in (5.6), that for any decomposition v = [/, P]V, we
have v/ Bv < ¥ BV. The latter two facts represent the proof of (ii). O

In conclusion, for vectors

f _
[ Vi } =w, =B [I. P]” Buv
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(i.e.,defined asin Lemma 5.8 (used recursively)), the estimates (5.7)hold as equalities.
Thus the following main result holds.

Theorem 5.9. Consider for any v decompositions of the form:
(0) vo = V.

f
(i) Fork=0,...,0—1letvi = [I, Pk][vk }
Vi+1

Then the following main identity holds, for any k > 0 and £ > k,

-1

) T

v,{Bka = ; inf |:VgTBeVe + Z (MjTV]f + AijVj+1)
(vj=vj +PjVj+1)§;}( j=k

-1
x (M + M7 — 47)" M7V AijVj+1):|.
Note that at the coarsest-level £, we typically set By = Ay.

If we use the representation (5.3) for By = By, we can reformulate Theorem 5.9 as
follows.

Theorem 5.10. Let Py = Py, . .., Pr_; be the composite interpolation matrices from
coarse-level k all the way up to the finest-level 0. Consider the extended matrix

T =(T;,;) = (FiTAF/)f,j:O

and form the following block-lower triangular matrix

My 0 0
Tio M, 0
Lg=] .
: . 0
Teo ... Tee—1 My

Then, the following identity holds

vI Bygv
T
vy vy
. ) . T ¢ \-1,7]| . (5.14)
= 1nf7 : Lp (d1ag(Mk + My — Ak)k:o) Ly -
V=240 Pevl | g f
Vi Vi

The following corollary is needed later on.

Corollary 5.11. For any £ > k, let K;f,}gk bound the condition number of the MG V-
cycle with exact coarse solution at level £. This V-cycle exploits the same smoothers
as the original MG V-cycle at levels £ — 1, ..., k. Assume that K is the bound of
the condition number of By in terms of Ay, that is, V{B[V[ < Ky VZAng. Then
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Theorem 5.9 applied to any vector decompositions starting with v = v, and for
J=kk+1, ..., -1, =V‘]f + Pjvj41, gives (noting that K¢ > 1)

-1
VI By < %?Jf) [VZB[V[ + JZ::k (MJTV/}( +(A; - M/-T)PjVjH)T

x (M + M = A5)" (M]v] + (4 - MJ-T)PJ'VHI)}
-1 '
< Ky (l‘Illf) [VZA[V( + Z (M]TVJ}( + (Aj — MJT)PJ'V/'-H)T
J j=k

x (M + M7 — 457 (MTV] 4 (4 - M]-T)Pjvj-+1)i|
= K¢ Kok vl Apv.
That is,
Ki < KoKk,

Here, K ;G’_’k is the relative condition number of the exact V-cycle MG method cor-
responding to fine matrix Ay, smoother My, and coarse-level ones Aj, M;, and
interpolation matrices P; from level j + 1 to level j, and exact coarse grid solution
with Ay at level £.

5.4 The XZ identity

In this section, we relate the identity proven in [XZ02] in its simplified equivalent
form found in [LWXZ] with a subspace correction block-factorization preconditioner
in the form defined in [V98] now in a somewhat more general setting.

Let A be a given n x n s.p.d. matrix. For k = 1,2,...,¢, let P R% > R”
be given full column rank interpolation matrices, where n; < n. Introduce the nj x

ng s.p.d. matrices Ay = F,{Aﬁk and let M be given matrices that provide A-
convergent iteration for solving systems with A;. Consider also M) = Mk(MkT +
My — Ak)_leT, the symmetrized versions of M.

Let Vi = R" and V = R”". Define the vector spaces Vi = Range P C V.
As an example, in the setting of the MG method from the preceding sections we can
define Py = P, ..., Pr_;. With this definition the resulting spaces V. are nested;
that is, Vk-H C V. In what follows, to derive the XZ identity the spaces V need not
be nested. Another example is given in Chapter 7.

We introduce the following auxiliary spaces ?k = Vi + Vg1 +---+ Vi They
are not needed in the implementation of the resulting product iteration method, but
are useful in its analysis.
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The inner product A Akwk = Vk T Awy for any Vi, Wi € Vk defines an operator
Vk — Vk Let Qk \ = Vk be the ¢,-projection onto Vk, that is, ka € Vk is
deﬁned via the identity wk ka = wk v for any Wi € Vk We have Qk = Qk,

Qk = Oy, and Qx Py = Py. Define Ak k1 = Pk AQ41 and Akt1k = Qk+1AFk
Using the decomposition Vk Vi + Vk+ 1, the actions of the operator Ak can be
computed based on the following two-by-two block form,

T

— - T~ — — Wy A Apkyr Vi
Prwi +w A (Prvi +v, =| ~ —~ .
(Pwe + Fes1)” Ae (Pav +e11) [wm] [AW AMHVM]

The above two-by-two block form of A, k serves as a motivation for the next definition
of the preconditioner of Ay as an approximate block-factorization.

Definition 5.12 (Subspace correction preconditioner). Let §g : Vz — Vg be de-
fined from the identity

(F@Wz)T §g (F(Vz) = WZM(V(, for all Ve, Wy € Vg.

Recall that Vg =V, = Range (Py).

For k < ¢, assuming (by Bzduction)lhat §k+1 : vk;tl — ?kﬂ has been defined,
we first define a mapping By : [Vk, Vit1] = [Vk, Vi41] in the following factored

form,
~ |: 1 0:| [Mk 0 :| |:I Mk_TAk k+1:|
B, = - ~ )
Apr1aeM; T 0 Biy1 |0 1

and then let
-1 _ 17 A 5115 A T
B =[Pk, Qis1] By [Pk, Oit1]

More explicitly, because

_ ——1
Elz[l —MkTAk,kH] My 0 [ 1 1 0}
k 0 1 0 B |L-AcriaM 1]

where we have assumed (by induction) that §k+1 is invertible on vk+1, we have
»-1_ 5 37157 ) - =T a1 (A —15T
B = PiM; P, + (Qis1 — PiMy " A1) By (Okst — Ak aM  Py).

This expression shows that in fact §k_ Vis s.p.d. (and invertible) on Ek. Based on the

properties F,Z Ok = F,{ and Q41 Or = O 1, and the identity

[—PM, P A= (I -PM; TP, A)(I - PyM; " P, A),
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it is straightforward to show the following product iteration formula.

[ B ' OwA = (1 —PeM;TPLA)(I — B, Ox1 A) (I — P ' Py A).
(5.15)

We show next that B, i ! @ ¢ A can be computed without the knowledge of @ ¢. More
specifically, we derive the expression

I—B;'0cA = (1-PeM; TP, A)(I — PeM; " P, A). (5.16)
Clearly, the above expression holds if we show that
B/ Oy =PM;TP] +PM;\ Pl —Pym; T AM; P
or equivalently,
~ == - - nsT _ 55 15T
Q¢ =B Pe(M; " +M;' —M;"AM; )P, =B, P/M, P,.
Based on the definition of E@
J— T —~ p— J—
(Pewe)” Be(Pove) = wi Movy,
we will have then, for any wy, € Vpyandv € V,
- TA - Ts— ——1=T
(P@W@) Qv = (PgWg) ByPeM, P,V
—w/'M,M,'P,v
=wlP,v.
That is, we have to show that FKT 0 = FKT or its transpose Q¢ P¢ = Py which is
the case. It is clear that we can repeat the above steps in reverse order thus ending up

with the desired expression (5.16). In conclusion, combining (5.15) and (5.16), we
end up with the following result.

Theorem 5.13. The subspace correction preconditioner By, defined in Definition 5.12,
forany k < £, can be implemented as a subspace iteration algorithm for solving sys-
tems with A giving rise to the product iteration formula

~ 1A — ——T—T — ——T—T
I =B 'OxA=(1-PM; P A)---(1-PM, P,A)
x (I =P M, P, A)-- (I - PiM, P A).
The definition of By implies I = E,i/z[Fk, QkH]E,;l[Fk, @kH]TE,:ﬂ. From this

equality, based on the fact that |G| = [GT|| used for G = B, /%
[Pk, Q117 B,/ it follows that the difference

~

[Pe. Oii1]” Be[Pr. Oui] - B
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is symmetric negative semidefinite on [V, Vi41]. Therefore, we have for any Vi €
Vi decomposed as

P ~ —  ~ Vi ~ N
Vi = Pivi +Vir1 = [Pr, Okt |:/V\k+1i| . for Vip1 € Vi,

T
Vi ] [Pr. Ocni]” Bi [P ékﬂ][lk ]

k+1 Vi+1

A T v
< |~ k By | ~ ko
Vi+1 Vi+1

Using the explicit form of §k, we obtain

B = [?

~T 5 ~ ~T 5 =~ 75T ~ T 15T ,~
Vi BeVie < Vi Bry1 Vi1 + (Vk + M, P, AVk+1) Mk(Vk + M, P, AVk+1)-

Using recursion on k, for any decomposition v = Pivi+ -+ Pyvy setting ?j =
7/-Vj + -+ Pyv, for j > k, we arrive at the inequality

£—1
~T 5 ~ — 75T ~ T 7T ~
VIBIVE < Vi Meve+ ) (vi+ M7 P AV ) My(vi+M;TP AV ).
j=k

Equivalently, because the decomposition vy = Pipvi+ -+ Ppvy was arbitrary, we
have

?{B,ﬁk
-1 .
- T37 T BT 4o 12
< _ min _ v, Move + Z IMjvj+ Py AVjtllr g
Vi=Ppvi+-+Pyvy =k Jjor

The fact that this is actually an equality is proven similarly as in Lemma 5.8 (or
Theorem 3.15). That is, we have the following main identity which is sometimes
referred to as the XZ identity.

Theorem 5.14. The subspace correction preconditioner Ek definedin Definition 5.12
satisfies, for any k < £, the identity:

/V\,ZB](/V\]( = _ min
Vi=Prvi+--+Pevy
-1 . (5.17)
T57 T )
X | VEMove+ Y MG+ P AV Iy g
J

j=k

The XZ identity is traditionally formulated in terms of the operators Ty = Py M. © !
Pl A, T} = PkM; TP, Aand Ty = PxM; P, A.The operators T are invertible

= R B —= . . .
on V. By definition, T  Pxvy = PrX; where x; is determined from the equation
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Puvi = Ti Prxy. Equivalently, we have Prvy = Fkﬁk_lﬁz APyxy. Thatis, because
‘P has full column rank, we obtain x; = A;lﬁkvk. Hence, we have the following
explicit expression for Tk_lﬁk,
T, Pr = PrA; My
The operators 7; and Tj* give rise to the following product iteration formula for any
k=<t
=T U ~THU ~ Ty~ To).

We proved in Theorem 5.13 that this formula defines a preconditioner §k for the op-

erator Ay. The preconditioner By is s.p.d. on V. and can be defined either (implicitly)
via the relation

or more explicitly as in Definition 5.12.
We are now in a position to formulate the XZ identity in the form found
in [LWXZ].

Theorem 5.15. The subspace correction preconditioner Ek defined in Definition 5.12
satisfies, for any k < £, the identity:

s~ . S R —
Vi Brvi = min _ |:(T£ Pyvy, P@Vg)A
Vi=Pivi+-+Pyvy

-1
— 1 — ~ — o~
+ 3 (T By + TV). (Pvj+ Tj*vj+1))A:|'
=k

(5.18)
Here, Tj = ?/Mj_lﬁjT'A’ T; _ Fij—TﬁfA, and T;l . Vj — Vj is such that

T;lﬁj = FjA;IMj. We also used the notation (u, w)4 = w! Au.

5.5 Some classical upper bounds

We next prove an upper bound that is useful in the analysis of the V -cycle with several
smoothing steps. We consider for the time being two consecutive levels k and k + 1.
For this reason, we omit the subscript k, and for the coarse quantities, the subscript
k 4 1 is replaced with “c”.

We recall two matrices that combine smoothing with M and M T

M=MM+M" —A)~'M",
and

M=M'M+MT —A)~"'M.
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The following identities for the corresponding iteration matrices hold,

I—M 'A=U-MTA)I -—M"'A) and 519
I—M A= —=M"'A)U-MTA). '
Introducing E = I — AY/?M~1A1/2 we then have
AV =M A~V —ETE and AV2(1 = ' A)A~/D —EET . (5.20)

By definition, the following explicit relation between B~ ! and the coarse one B !
holds.

B =M '+ -MTAPBPT (I —AMTY).
Using the identity A!/ A= - FTF, we end up with the following relation
AVBTIA2 = | _E"E+E AV2pB7 pT AVE.
Assume now, by induction, that
0 <V (Be = Ao)Ve < e VI Acve.

Then, the following upper bound holds, introducing the projection w4 =
AV2PAZIPT AL2,

v Bv vIA-2ZBA-12y

< sup
vl Av v vly

T . _\—1
vT<1 —E'E+ ﬁETﬁAE> v

< sup
v vly
vy
= sup

V(1 -EE+ o E 7AE)v

VTV

= (1 + n¢) sup (5.21)

v VI[n(I—E E)+1-E (I —7)EJ]v

The assumption (A) below provides perhaps the shortest convergence proof for
the V-cycle MG. We show next that (A) is equivalent to assumption (A*) originally
used in [Mc84, Mc85]. Assumption (A) is found as inequality (4.82) in [Sh95].

(A) There is a constant ng > 0 such that,

vIAUL =M TAYI —7a)I — M Ay
<ns[vVIAV = vT AL = M~TAY(I — M~ A)v].
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This assumption can equivalently be stated as
VIE (I —7a)Ev < 5, [VIv =V E Ev]. (5.22)

Using the latter inequality in (5.21), we get

1 vIBv vy
—— o~ <suwp —7— —7—
Ltne VEAV = v T (0 (1 —E'E)+ 1 —ns I +n,E E)v
vy
= sup =T =\
v VT(I—i-(nc—'?s)(I - E E))v

Assuming (by induction) that n. > ny, the induction assumption VCT B.v, <
(1 4+ ne) VZACVC is confirmed at the next level, because with n = n., we get from
the last estimate above, v Bv < (14 n) v! Av.

Thus we proved the following main theorem.

Theorem 5.16. Under the assumption (A), valid for A = Ay at levels k < ¢, the
V-cycle preconditioner B := By is uniformly (in k < £) spectrally equivalent to
A = Ay, and the following estimate holds

viAv <vIBv < (14 ny) v Av,
where ng > 0 is from the main assumption (A).

The following is a sufficient condition for (A) to hold.

Lemma 5.17. If the smoother M is efficient on the A-orthogonal complement to the
coarse space Range (I — 1y), in the sense that

vIMvs < ns vI Avg forany vy = (I — ma)v, (5.23)
then condition (A) holds. If M is symmetric and properly scaled so that
vl Av < viMm Vv,
then (5.23) can equivalently be formulated in terms of M instead.

Proof. We have, for any w,

wl Al — p)w < (Mﬁl/zAw)Tﬁl/z(l — AW

< AW]| -1 (I = m)W) M — )W)/
< Vs 1AW (0 = )W) AU = )W)/
= V5 AWl WAL = 7ayw)' /2,

That is, we have

wl A — mw < s wAM ' Aw. (5.24)
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Choose now w = (I — M~ A)v. The left-hand side above becomes then the left-
hand side of (A). For the r.h.s. of (5.24) use the identity (see (5.19)) AMAA =
AM™T(M + MT — AM'A = A — AJ — M~TA)(I — M~ A) which equals
exactly the r.h.s. of (A).

In the case M = M T and M — A being positive semidefinite, we have that M
andM=M=M (2M — A)~'M are spectrally equivalent because then

1 —
3 v Mv < vIMv < v Mv.

Also, M — A being positive semidefinite implies that M is an A-convergent smoother
(for_ A). Finally, if VSTMVS < ns VSTAVS for any vy = (I — m4)v, we also have
VST Mvg < VSTM Vi < 1 VSTAVS and the proof proceeds as before. O

Remark 5.18. We comment here that the assumption (5.23) is much stronger than one
of the necessary conditions for two-grid convergence formulated in Corollary 3.23 in
the case M = M7 hence M = M. This is seen from the estimates

2 . 2 2
I =gVl = min v = Pvellf; < 11— ma)vIy
2 2
<ns I —ma)vily < ns IvI;.
That is, we have then

TArcT — o
viM(( JTM)V<

= S
vl Av

Trg = sup
v
Therefore, the two-grid convergence factor satisfies o7 = 1 —(1/K7g) < 1—(1/75).
The condition (5.23), however, implies much more than a two-grid convergence be-
cause it also implies condition (A) and hence, we have a uniform V -cycle convergence
(due to Theorem 5.16).

Consider now the following assumption.

(A*) There is a constant §; € [0, 1) such that,
I —M~TAWIE <8 I — ma)VII5 + I7avl3.

Assumption (A*) has the following interpretation. The smoother M” reduces (in
energy norm) by a factor of §; /2 the “oscillatory” error components (referring to the
space Range(I — m4)), whereas at the same time it does not amplify the “smooth”
error components (referring to the coarse space Range(P) = Range(ry)).

We note that (A*) implies (5.24) forw = v = (I —mw4)vand n; = 1/(1 — &)
and therefore condition (A) holds. Moreover, the following equivalence result actually
holds.

Proposition 5.19. Assumptions (A) and (A*) are equivalent with §s = ns/(1 + ns).
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Proof. Consider assumption (A) in the form (5.22). By rearranging terms, we arrive at

vIE" (I -

ﬁA)fV< Is VT, (5.25)

I+ 7 T I+

Using the fact that 7 4 is a projection, that is, that T 4 (I — 7 4) = 0, we also have

T Ta=U—-TA) 48, Ta=U—-Ta)+8 75 = —-Ta+/8 Ta).
A

Therefore (because 7 4 is symmetric), we can rewrite (5.25) as follows.

(I —Ta) + /85 TA)EV]* < 85 vTv.

The fact | X|| = | X7 used for X = E' ((I — a) + /35 74) shows then the
estimate

—T __ —

IE" (I —7a) + /8 Ta)W|? < 6w w. (5.26)

Finally, using again the orthogonality of / — 7 4 and 7 4, we first see that (I — 7T 4) +
V8,7a) " = (I —Ta) + (1/4/85)T 4, which together with (5.26) then shows

—=T _ -1

IE"VI? < 8 I(( = Ta) +V/8,7a) " I

1
=, (1 =7a) + —=7a)v[’
N

N

=8 (I =Fa)WVI* + |Tav]?

Letting v := A!/?v the estimate (A*) is finally obtained.
The converse statement follows by repeating the above argument in a reverse
order. O

Some auxiliary estimates

Assumption (A) is commonly verified (see Lemma 5.21) based on a boundedness
assumption of the projection 74, namely,

(B) “£>-Boundedness” of 4:
AN I = wa)vll < np [[AV]].

‘We can prove an estimate such as (B) if the following strong approximation property
holds.

(C) “Strong approximation property”:
For every v, there is a coarse interpolant Pv, such that

(v — Pvo)T A — Pv,) < % || Av|2.

— 1Al
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We verified such an estimate for f.e. matrices coming from the Poisson equation
—Au = finQandu = 0on 02, which admits full regularity; thatis, ||u]» < C || f]|
Such regularity estimates are available for convex polygonal domains 2 (cf., e.g.,
[TWOS5]). We proved estimate (1.16) in that case.

Estimate (C) is also proved for a purely algebraic two-grid method described
in Section 6.11. More precisely, we show there (see the second inequality from the
bottom in (6.47)) that for any e, there is an € € Range (P) such that,

)
e—e)fAe—e) < |Allle—el* < —— [Ae|?
nllAll

Lemma 5.20. Assumption (C) implies (B) with np, = n,.

Proof. The proof is based on the so-called Aubin—Nitsche trick. Consider e = (1 —
m4)vand letu : Au = e. We have, noting that e is A-orthogonal to the coarse space,
letting 7, = na/IlAll,

lel* = e’ Au
=el A(u— Pu,)
< lleflallu — Pulla
< llellay/7, | Aul|
= llelav/Tallel.
That is,
lell* <7, e’ Ae =7, eT Av <7, | Av]|e]|.

This implies the required boundedness estimate (B) of the projection 4,

— n
(I = m)vll =77, [AV] = ”:” [ Avll. o

At the end, we prove an estimate of the form (A).
Lemma 5.21. Assumption (B) implies (A) with ny = np ||1\7I||/||A||
Proof. We have, withVv=Ev,E =1 — M~1A,

~ ~ ~ ~ Nb ~
VIA(L — )V < AV — ma)¥] < TAT | AV 1%

Also, recalling that A2 ~1AV2 =1 — EE' ((5.20))
IAV|? < |\M | v'ET AM~"AEv
= M| (AT ATV2PET AM~YAEA~ (/D (A1 2y)
— | M| (AV*W)TE" (I ~EE')E(A'?v)
= M| (AW (E'E — (E' E)*)(A?v)
< 1M (A>T (1 —E"E)(4?v)
= IM|| VI (A — AU — M~ T AT — M A)v.
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. . . . =TI
We used the elementary inequality  — t> < 1 — ¢ for the symmetric matrix E E
(because its eigenvalues are between zero and one). Thus, we proved (A) with g =

(IMII/IAL np. o

More smoothing steps

Here, we consider a smoother My that can be a combined one; that is, My is implicitly
defined from m > 1 steps of a given (not necessarily symmetric) smoother M ,EO), as
follows.

I M A = (1 _Ml(co):iAk)mo’ L m=me
(1 =M AN =" a)™" m=2mp—1.
Recall that
M =mMOMO" + m© — a)" M’
and

~ T T —
MO =M (M + M — a)" M0

!
Also, in the above formula for / — M,:lAk, we have I — M,(CO) Ay = I —

(O 7! . : (0) (O :
M Ap)(I — M, Ay); that is, we use both M, and M, in an alternating
fashion. We notice that (in both cases),

-7 -1 . —O)7
Al — M A — M A = A — My, A™.

That is, the resulting symmetrized smoother My = Mg(My + MF — A~ 'MT
satisfies the identity

—1 — (0 —1
(T =M A) = A(1 =1 AQ)™.
We omit in what follows the level index k.
Introduce the smoothing iteration matrices

(0)

EO =1 _A2MO'A2 and E=1-M'A.

We then have,

(F(O)TF(O))mO, m = 2m,

F(O) (F(O)T F(O))mo -1

E=AYV?EA"1/2 =
, m=2mg— 1.

Fora givenm > 1, the resulting MG preconditioner is referredtoas a V (m, m)-cycle

one.
T 0T —
We observe that in both cases (m odd or even) ETE = (E © E (0))’”. Also,

because I — MO A = (1 — MO A) T — MO A), we get

AI/Z(A’;'I(O)"A)Af(l/Z) —J —f(o)f(O)T.



5.5 Some classical upper bounds 151

Similarly,

o~ O7—=(0)

AV AV =1 -EV E

With this combined smoother, the following strong smoothing property can be proved.

First, consider the case m-odd; that is, m = 2mg — 1. We have, with V = EVv,

~ _ T
recalling that A1/2p(© TAV2 = E(O)E(O)

IAV)? < ||A7<0>||<AEv>TM‘O>’ (AEV)
_ ”M(O)”(AI/ZV)TA—(1/2)ETAM(O)*1AEA—(1/2)(A1/2V)
= 1O (AT (E" (1 - EVE”))Ea )
— | (AI/ZV)T((E(O) E(O)) (E(O)TF(O))’"H)(A”ZV)

1O (AT (1 = EE)(AV?v)

”M(m”V(A AL = M~ T AT — M~ A))v.

We used above the elementary inequality (as in [Br93] or [BS96]) for any ¢ € [0, 1],
" < t*,0 <k <m — 1, which implies

1 1
(=0 <=0~ i =—1-1"),
m m
k=0
— ()T —(0
noticing that the spectrum of the symmetric matrix £ O ED is contained in [0, 1].
The case m-even is handled analogously. We start then with the inequality

~ —(0) —(0)~!
IAVI? < M| (AEV)' M (AEv).

0)~! —(0)

Using the fact that AV/2(M " A)A=U/2) = — £V E

type of inequality as before;
14912 < 1M (a2 (E (1 - BV ") By
= 1M a2 (EEC) - Y EO) )@y
||H(O)|| (AI/ZV)T(I _ (F(O) (0)) )(A1/2 )

+70)

, we end up with the same

) (A2 (1 —EE) Ay

= ||M v (A= AU = M~TAYT — M~ A))y.
Thus, we proved a smoothlng property (A) (assuming (B)) with

v =70
by QUL
s — — s — .

jAl m 1Al m
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This shows uniform convergence of the resulting V—cycle MG with a rate that im-
proves with increasing m, the number of smoothing steps. That is, we have the fol-
lowing result, originating in Braess and Hackbusch [BH83].

Theorem 5.22. Under the assumption (B), which holds if the strong approxima-
tion property (C) holds, using m combined pre- and postsmoothing steps as de-
fined in (5.27), we have the following uniform estimate for the resulting V-cycle
preconditioner,

MO 1\
1+ AT — )V AV, m =2mo—1,

——(0)

IM 7 1Y 7 _

1+ — | v Av, m =2my.
Al m

vl Av < v By <

In particular, the following corollary holds for the window spectral AMG method,
because a strong approximation property (C) holds for it (proved in Theorem 6.19).

Corollary 5.23. The two-level window-based spectral AMG method from Section 6.11
improves its convergence factor ot linearly with increasing m, the number of smooth-
ing steps; that is, we have

M) s 1
1Al ~ 0 02— )

o
co+m’

8

0TG = o= —

n

The constants § and n are defined in Theorem 6.19. The last inequality for cy holds if
the Richardson smoother M©) = ||A||/w I, w € (0, 2) is used.

5.5.1 Variable V-cycle

In this section, we present a first attempt to stabilize the V -cycle by increasing the
number of smoothing steps at coarse levels. The latter is referred to as a variable
V-cycle originating in Bramble and Pasciak [BP87]. We first analyze the complexity
of a V-cycle with a variable number of smoothing steps.

Let ny be the number of degrees of freedom at level k& and the smoothing and
interpolation procedures take O(ny) operations. Assume also, a geometric ratio of
coarsening; that is, ngy¢ ~ c/ ng, for some g € (0, 1). Then the asymptotic work
wo (at the finest-level & = 0) of the resulting variable V-cycle preconditioner with
my > 1 (level-dependent) number of smoothing steps, can be readily estimated as

wo > ka n.

k=0

Assume now that for an « € (0, 1] and a given o > 0, my, for a fixed my > 0,
Srows as,

(my + 1 —mo) ™ = (1 + k)~ (5.28)
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that is,
me 4+ 12~ my+ (1 + k)t (5.29)
Then, the work estimate takes the form

wo =~ no qu(k + DHd+o)e ~ 0
k>0

That is, at the finest-level k = 0, the total work wy is of optimal order.

Theorem 5.24. Let Ky, be the relative condition number of the V-cycle preconditioner
By with respect to Ay at level k, and let K1, . be the one of the respective two-grid
preconditioners at level k (i.e., with exact coarse solution at level k + 1). Both exploit
the same smoother at level k with the same number of smoothing steps my > 1.
Assume that at coarser levels, the two-grid methods get more accurate, so that, for a
constant n > 0 and a fixed o > 0,

U

K <14 ——
TG, k = (1 + k)1+a

at all levels k > 0,

The latter can be guaranteed (as shown later on, depending on certain approximation
properties of the coarse spaces, cf., Theorem 5.27), if we perform myp > 1 (ie.,
level-dependent) number of smoothing steps. More specifically, we assume that the
following asymptotic TG convergence behavior holds,

Krg r=1+4n m;a, (5.30)

forafixed o € (0, 1]. Then, if we select my, for a fixed my > 0, as in (5.28) or (5.29),
then the resulting variable V-cycle is both of optimal complexity and its spectral
relative condition number is bounded independently of the number of levels. More
specifically, the following bound holds,

Ko~ Krg,0=1 —l—nmaa.
The latter can be made sufficiently close to one by choosing mq sufficiently large.

Proof. For any two levels, a fine-level k and a coarse-level £ > k, we have (see, e.g.,
Corollary 5.11),

Ky < K76, kK76, k+1 - K16, -1 Ko.

Then from the assumption (5.30) and the choice of my in (5.28)—(5.29), we immedi-
ately get

n —a
Ko <K || I+ ————— | ~K =1 .
0= TG,0k>1< +(1+k)1+"> TG, 0 +nm

The choice of my as in (5.29) as already shown guarantees that the variable V-cycle
is of optimal complexity. m|



154 5 Multigrid (MG)

Less regular problems

In this section, we consider a little more sophisticated case of less regular problems;
namely, we assume the following.

(D) “Weaker approximation property’:
For an o € (0, 1], there is a constant 1, such that the following weaker approxi-
mation property holds,

n.
I —7a)VI4 < (v—Pvo)T A(v — Pv,) < W A 2y 2,

Here, for a given v, Pv, is some coarse interpolant that satisfies the above ap-
proximation property.

We show next that the following boundedness estimate holds.

Corollary 5.25. Estimate (D) implies the following corollary,

_ n
[AQ=2(1 — zpyv| < W AT 2y,

Proof. Let e = (I — m4)v and consider the problem Au = A!~%e. With n =
na/IIA]|%, noticing the e is A-orthogonal to the coarse space Range (P), we have

efAl=%e = el Au
=el A(u— Pu,)
< lleflallu— Puc|la
< llellay/n [AMH 2y
= 7 lleflall A" %e].
That is, we have,
eTAl—Ole S n eTAe = eTAV S n ||A(1—Ol)/2e”||A(l+(¥)/2v”’
which implies the desired result. O

Lemma 5.26. The less strong approximation property (D) implies the following
weaker version of (A); namely,

(Aw)
vIAL =M TAYI —7a) I —M Ay
<n[v' Av—avT AU — M~T AT — M A)v].
where 0y = na | M| /IIA]1%.

In the case of a combined smoother as defined in (5.27), we have the following im-
proving withm +— oo upperboundng = n, (|M|*/1|A%) (1/m®) form = 2my—1

—(0
and ng = ng (I /I A1) (1/m®) for m = 2mo.
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Proof. Consider the series (1 — )% =1 — Zkzl ok, noticing that oy > 0, and
a1 = o. Then the following estimate for any ¢ € [0, 1] is immediate

t(l—Zaktk> Sl—Zaktksl—altzl—at. (5.31)
k>1

k>1
Use now estimate (D). It gives, for V= Ev, E = [ — M1A,

vIAErGy = (EV)T A(I — mp)(EV) < ﬁ AU+ 252,

We apply next Lemma G.3, that is, the fact that for any two symmetric positive
definite matrices U and V, the inequality v Uv < vI Vv implies viU*y <vlvey,
for any o € [0, 1]. Choosing U = Aand V = ||M||A1/2M 'A1/2 we then have

wl A%w < M| W (A2 AV w = | M wT (1 - EE )*w.  (532)

We let now w = A/?¥ = A/2Ev = EA'/?v. The desired result then follows using
inequality (5.31) for the eigenvalues of the matrix E' (I — EE )*E = E' E —
D kel % (E"E)**!, which have the form (1 — Y k=1 axt®) for t € [0, 1] being an
eigenvalue of the symmetric positive semidefinite matrix E'E.

Next, we analyze the case of the combined smoother defined in (5.27). The term

|A0+0/25)12 = || AYZE(A1/2v)|)? is estimated below. Consider the case m = 2my
—1 (thecasem =2myisanalyzed analogously). Use as before (see (5.32)) the inequality

||A(l+a)/2 ” < ”M(O)” (A1/2 )T ( E E(O) ) EA 2y

—=(0) =07 (0)

We have E = E (E ymo=1 Therefore, because ||E || |E (O) I <1, we
also have
E(1-E"E" ) E
(E(O) E(O))mo lE(O)T(I E(O)E(O)T) E(O)(E(O)TE(O))mo 1
(F(O) E(O))mo 1+ Z“ 7O0F (0>T) F‘O)(F(O)TF(O))’”O_I
k>1
(E(O) E(O))m()(l _ F(O)TF(O))OI(F(O)TF(O))WO*l
= EVE")" (1 - EV E”). (5.33)

Next, use the elementary inequalities for ¢ € [0, 1] (and & € (0, 1])

m—1
M1 — 1) <" (1—t)<—Zt (1—t)<—(1—tm).

k=0
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It implies,

1 1
"1 —-n* < g 1—-% < o 1 —at™).

T
Applying the last inequality for the symmetric positive semidefinite matrix EV Y
in (5.33) proves estimate (Ay) with 7, = 14 (| M© )¢ /||A|| ) (1/m%). In the case

m = 2mg, we have similar estimate with ny = n, (||M || /A% (1/m%). O

Next, we show that (A,,) implies two-grid convergence if 7, is sufficiently small,
such that

1

ns < . (5.34)
l—«
Recalling estimate (5.21) for n; > 0,
vl Bv
vl Av
vIiA—1/2 g A—(1/2)y
< sup T
v A\
1
<I—E E+ - E nAE> v
<
=< SléP Ty
VTV
= sup
v vT(I—E E+ -E nAE)
vy
= (1 4+ ns)sup
v v [neI — E' E)+1— E (I —TA)E]v
vly
= (1+ns)sup
v v, —« E E)—ns(1 —a) E E+1 —E (I —TA)E]v
T
viv

< (I + ns) sup —T—  —T p—
VVIIA = A =) +ns(I —a EE) = E (I =Ta)ElV

Using the fact that ny(] — « E'E) — FT(I — 7A)E is symmetric positive
semidefinite (due to (A, )) the following TG convergence result follows (with n; as
in (5.34))

(1 +ns)

I — (1 —a)ns
To ensure inequality (5.34), we use the combined m-step smoother as defined in
(5.27). We showed in Lemma 5.26 that ny, = n, (|IM||*/|A|*)(1/m®*) for m =
2mo — 1 and ng = 1, (|M||*/||A|*)(1/m®) for m = 2my. Therefore, in conclusion
we proved that assumption (A,,) implies uniform convergence of the resulting TG
method with a rate that improves when increasing the number of smoothing steps .

VTBTGV < vl Av.
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Theorem 5.27. Under the assumption (Ay,), using combined m + 1 pre—and post-
smoothing steps as defined in (5.27), we have the following uniform estimate for the
resulting T G preconditioner, form = 2mgy — 1,

O 1
L T

13O
1- (1 Ol)na |A||°‘ mloz

vl Av < VTBTGV <

Ifm = 2my, the same estimate holds with ||M(0) | replaced by ||M || It is clear that
when m +— oo the upper bound tends to unity.

5.6 MG with more recursive cycles; W-cycle

5.6.1 Definition of a v-fold MG-cycle; complexity

We can generalize the definition of the MG preconditioner by replacing the Schur
complement By | of By with a more accurate approximation to Ay thus ending up
with a multilevel preconditioner that is much closer to the respective two-grid one (at
a given level k). A simple choice is to use, for a given integer v > 1, the following

polynomial approximation to A, +1 ,

v—1

(! -1 -1
Bki1 (1 - = Bk+1Ak+1) ) k+1 = Z(l - Bk+1Ak+1) By (5.35)
1=0

It is clear that with v — oo, we get B,Ei)l = Akt1.
The modified By reads

= _ I 07| My (M +MI —A) "' MF 0 |[1 M7 AP
FELPTAM T 0 B, | L0 1 ’

and then By, is defined as before,
_ ——1
"=1[1, P1 B, [I. PJ"

The case of v = 1 gives the original, called a V-cycle MG preconditioner, whereas
the multilevel preconditioner corresponding to v = 2 is referred to as a W-cycle MG.

It is clear that we cannot choose v too large due to the increasing cost to imple-
ment the resulting v-fold multilevel preconditioner. The latter cost can be estimated
as follows.

Let wy stand for the cost in terms of number of flops to implement one action of
B, ' The following assumptions are met for uniformly refined triangulations 7, the
resulting matrices Ay, and for reasonably chosen smoothers My (such as Gauss—Seidel
or scaled Jacobi).

e Let ny ~ ungy1 be the number of nodes N (or degrees of freedom) corre-
sponding to the triangulation 7. In the case of 2D uniformly refined triangular
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meshes, we can let © = 4. In three dimensions (d = 3) a typical behavior
isu=38.

¢ Let one action of the smoother M, ! (and M, T) take O(ny) flops.

e Let the restriction PkT and interpolation P; require O(ny) flops.

* Finally, one action of Ay is O(ny) flops.

From the formula
-1 _ 71 -7 m'pT -1
B =My + (I - M A)PB P (I —AM )
-1
and the definition of B,Ei)l (which is based on v actions of B,_ +11, v residual compu-

tations on the basis of A1, and respective v vector updates at a cost ny41 each), we
easily get the recursion

wi < Cyng + v Wi -

The latter implies

t v j—k
wy < Cyng Z (—) .
j=k

Thusifv < u, (i.e., v < 4 for 2D problems, and v < 8 for 3D problems) the resulting
v-fold preconditioner can be implemented with optimal cost; that is, wx = O(ng).

5.6.2 AMLI-cycle multigrid

Other types of cycles, in general varying with the level index, that is, v = v (see the
definition in the preceding Section 5.6.1), are also possible. Also, if we are willing
to estimate the spectrum of the preconditioner at a given level k, we can then use the
best (appropriately scaled and shifted Chebyshev) polynomials instead of the simpler
one (I —t)¥ (used in (5.35)). The resulting technique, leading to a multilevel cycle,
sometimes referred to as the algebraic multilevel iteration (or AMLI), described in the
present section, was first applied to the hierarchical basis MG method; see [V92b],
and for a special case, earlier in [AV89] and [AV90]. The word “algebraic” in AMLI
stands for the fact that certain inner polynomial iterations are used in the definition of
the multilevel cycle. It is not be confused with the “algebraic” in AMG, which stands
for the way of constructing the coarse spaces (or interpolation matrices).

The main assumption that leads to AMLI-cycle MG methods of optimal condition
number is that all V-cycles based on exact solutions at their coarse-level ¢ up to
finer-level k < ¢ with bounded-level difference £ — k < kg, have bounded condition
number K f,l'gk . The latter may in general grow with ko > 1 but for a fixed k¢ is assumed
bounded. Such estimates are feasible for finite element discretizations of second-order
elliptic PDEs, as well as, for some less standard forms such as H (div) (cf., [CGP]),
without assuming any regularity of the underlined PDE. Moreover, the constants
involved in the estimates can typically be estimated locally (on an element-by-element
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basis) and can be shown to be independent of possible jumps in the PDE coefficients
(provided that those occur only across element boundaries on the coarsest mesh).

In geometric multigrid, applied to second-order finite element elliptic problems,
denoting H = hy and h = hj the mesh-sizes at respective levels, and using the linear
interpolation inherited by the f.e.m. between two consecutive levels, and for example,
using a Gauss—Seidel smoother, the following asymptotic estimate holds,

2 (H

ok log o) d=2,
Kyc" ~ o (5.36)
—, d=3.

h
Details about the last two estimates (d = 2 and d = 3) are found in Appendix B. We
note that typically (for uniform refinement) H/h ~ 2t
We are now in position to define the AMLI-cycle.

Definition 5.28 (AMLI-cycle MG). For a given v > 1 and a fixed-level difference
ko > 1, let p, = py(t) be a given polynomial of degree v, which is nonnegative
in [0, 1] and scaled so that p,(0) = 1. We also assume the standard components
of a MG, that is, kth-level matrices Ay, smoothers My and M T and coarse-to-fine
interpolation matrices Py, such that Ay4+1 = PkT Ay Pr.

The AMLI-cycle is defined as a v—fold MG cycle with a variable v = vi. More
specifically, for a given integer v > 1, and another fixed integer ko > 1, we set
Vskg =V > L fors =1,2,..., and vy = 1 otherwise.

Let By = Ay and assume that for k + 1 < £, Bxy1 has already been defined. If
k+ 1= (s + 1)ko, based on Byy1 we let

-1
) -1 -1
(B(;—H)ko) = (1 — Py (B<s+1)koA<s+1>ko)> (A+ik)

For all other indices k + 1, v = 1, and hence B,Ei)l = Bi+1. Then, at the kth level,
we set

B ' = M+ (1 - M,:TAk)PkB;Ei);IPkT(I — AM).

We recall that My = M, (MkT + M — Ak)_leT is the symmetrized smoother.

5.6.3 Analysis of AMLI

Theorem 5.29. With proper choice of the parameters ko and v, all fixed for the AMLI-
cycle, but sufficiently large in general, and for a proper choice of the polynomial
Dv(t), the condition number of B, YAy can be uniformly bounded provided the V-cycle
preconditioners with bounded-level difference £ — k < ko have uniformly bounded
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condition numbers Kﬁgk. More specifically, let for a fixed ko, v > ,/Kf,}gk, and

choose o > 0, such that

aK Uk + Kbk (1 e S<1. (5.37)
[X0_1 (0 + V=il — Jayi—!]

Then, consider the polynomial

1+ 7 (L)

o
14T, (}%g)

Here, T, is the Chebyshev polynomial of the first kind of degree v. If p,(t) = (1 —1)",

forv > Kf,l'_G)k, we can choose o € (0, 1) such that

>k >k (1-a)"
j:

The resulting AMLI-cycle preconditioner B = By, as defined in Definition 5.28 for
both choices of polynomial p,, is spectrally equivalent to A = Ag and the following
estimate holds,

po(t) = (5.38)

(5.39)

1
vl Av < v By < — VTAV,
(07

with the respective « € (0, 1] depending on the choice of the polynomial.

Proof. First, it is clear that inequality (5.37) has a solution & > 0. This is seen
because for @ — 0 the left-hand side of (5.37) tends to K f,['_G)k / 2, which is less than

one due to the choice of v. It is also clear that aKjf;I’Zk < 1;thatis, o < 1/K1€1’Zk < 1.
Choose s > 0 and assume that for some 6541 > 0 the eigenvalues of A(_S{H)ko

B(s+1)k, arein the interval [1, 14-6,41]. Next, we estimate the spectrum of A;kt Bgy-
Let ¢ = (s + 1)ko and k = sko. Assume, by induction that

b
14 8541
The latter holds for the V-cycle K Zﬁ’_G’k starting from the coarsest level £ because
aK ﬁl’_G’k < 1.
The eigenvalues of A,:lBk are contained in an interval [1, 1 + §;] which we
want to estimate. First, we have that the eigenvalues of AZIBEV) are contained in the

interval [1, 1+ 351)1], where
~ 1 1
CEY R S R |
1 —py(0) 1+ 8541
pu(t)
<sup { ——, t € e, 1]},
P {l—pv(t)

where we have used [1/(1 + 8,41), 1] C [a, 1].
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Because
1 — 2t
sup |7, <+a7>‘ =1,
refa, 1] -«
we obtain
2
sup  py(f) = ————
tefa, 1] 1+ 7T, (J_g)
B 2 1= Ja
_1+1;qf”’ 4 Y
q
_ 4’
(L4 g0)?

Hence, because p/(1 — p) is an increasing function of p € [0, 1), we have

50 sup {pv(1). t € [a, 1]}
s+1 = —
1 —sup {py(1), t € e, 1]}
4q"
(1+4¢")? —4q"
_ 4
S (g"—1)?

I-o)"

.
o T+ Vi - it

Now, use the estimate based on Corollary 5.11, to bound the multilevel cycle by an
inexact with fixed level—difference cycle, which gives

L+8 < (1+30 K (5.40)

and therefore,

1 1—a)
146, < Kigk |14+ = 1=

@ T . 2
[0+ var—ia - ]

In order to confirm the induction assumption, we need to choose v and « such that

! | — o)
148, < Kbk 14— d-e) <

a p , 11
(o V=i — a1

which is equivalent to inequality (5.37).

)

Q| =
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Consider now the simpler polynomial p, () = (1 — ). Inequality (5.39) has
a solution ¢ > O (sufficiently small) for v > K f,l'gk. That solution satisfies
a<1/K ﬁgk The remainder of the proof is the same as before with the only differ-
ence being

sW < {L(’),, 1 }: - . O
s+1 = Sup 1= po(0) € [a, 1] o Z;:l(l—a)/_l

5.6.4 Complexity of the AMLI-cycle

The complexity of the AMLI-cycle MG is readily estimated as follows. Let ny be the
number of degrees of freedom (dofs) at level £ and assume uniform refinement; that
is, ny = u? ny_1,d =2, ord = 3, and typically u = 2.

Assume that the V-cycle from coarse-level ¢ and fine-level k, with bounded-level
difference can be implemented for wﬁ,l'_éko =~ ny flops. The latter cost does not involve
coarse-grid solution at level £. At that level, we use v inner iterations based on By in
the AMLI method and their cost can be estimated by vwg11 + Cvny flops. Here w
stands for the cost of implementing B;kt

Thus, letting £ = (s + 1)ko and k = sko, the recursive work estimate holds:

wy < vwsy] + Cong + wﬁ,}éko < vwgy| + Cvony.
Then,

v

N ]
Wy < Vw1 + Cvngry < C ngig Z <Tko> .
j=0 MM

Thus, to have a method of optimal complexity, we have to balance v and k¢ as follows,
V< ,udk" = 2k, (5.41)

On the other hand, for optimal condition number (based on Theorem 5.29), we have
to choose v sufficiently large such that

ko, d =2,
v>,/1<%k:{2‘220 s (5.42)

s =

The last expression comes from (5.36) in the case of second-order finite element
elliptic problems.

It is clear then that for sufficiently large but fixed ko, we can choose v such
that both (5.41) and (5.42) hold, which implies that the AMLI-cycle preconditioner
is optimal for second-order finite element elliptic problems in the case of uniform
refinement.
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If we use the simple polynomial p, () = (1 — t)" to define the AMLI-cycle, the
condition for v, which implies uniform bound 1/« on the condition number of the
respective AMLI-cycle MG, reads

k3, d=2,

b=k ~
R e PO

(5.43)

It is again clear that for sufficiently large but fixed ko, we can choose v such that
both (5.43) and (5.41) hold, which implies that the AMLI-cycle preconditioner is
optimal for second-order finite element elliptic problems in the case of uniform re-
finement and simple polynomial (1 — #)". The latter choice of polynomial does not
need the explicit knowledge of « in order to construct the polynomial.

The AMLI-cycle MG with the optimal choice of polynomial p, has more or less
mostly theoretical value. In practice, we should use either the simple polynomial
(1 — )" or the variable-step multilevel preconditioner presented in Section 10.3. The
latter one is more practical because in its implementation no estimation of « is needed
and no polynomial is explicitly constructed.

5.6.5 Optimal W-cycle methods

For kyp = 1 and v = 2 the AMLI-cycle MG has the complexity of a W-cycle MG and
for the simple polynomial p, = (1 — #)" (and v = 2), it is actually identical with a
W-cycle MG. Applying Theorem 5.29 with kg = 1, hence K7g = Kf,l‘gl'_)k stands
for uniform bound of the TG method (exact solution at coarse-level & + 1), tells us
that if K7 < 2 then the inequality (5.39) has a solution @ > 0 (sufficiently small)
forv=2> Krg > K f,l'gk and the respective W-cycle preconditioner B satisfies the
spectral equivalence relations

1
vl Av < vl Bv < — vl Av.
o
Inequality (5.39) with the best « reduces to
(I-—a? 1
ot 2—a K1’
or (1/K16)(2 —a) =a(2 —a) + (1 — a)?> = 1. That s,
a=2—Krg.

In terms of convergence factors ow.cycle = 0(I — B7'A) < 1 —« and 076 =
1 — (1/Krc), we have

oT1G
I —or6

OW-cycle = l—a=Kig—-1=

In conclusion, we have the following result.
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Corollary 5.30. If the two-grid method at any level k (with exact solution at coarse
level k4 1) has a uniformly bounded convergence factor org < %, then the respective
W-cycle MG has a uniformly bounded convergence factor Qw.cycle that satisfies the
estimate

oT1G
— 071G

OW-cycle = 1

An alternative, more qualitative analysis of the W-cycle methods (or AMLI-
cycle with kg = 1) is based on the following approach. Assume that B, is a s.p.d.
approximation to A, such that

vIBeve < (1+68.) vEAcve.

Consider the inexact two-grid preconditioner with A, approximated by B.. The fol-
lowing characterization of B holds (use Theorem 5.9 in the case of two levels).

v Bv =inf [vI Bove + (M7 (v — Pve) + APvO)T (MT + M — A)7!
Ve
x (MT (v — Pvo) + APv,)].

Let v, be a vector that is constructed on the basis of any given v, such that the following
two estimates hold,

(i) Stability,
VCTACVC <n* vl Av,
and

(ii) Approximation property, with M = M(MT + M — A)~'MT being the sym-
metrized smoother, we have

(v—Pvo)IM(v— Pv,) <8 vl Av.

In other words, Pv, is a stable and accurate interpolant of v. Assume in addition to
(1)—(ii), the following estimate for the smoother M and A,

SoviAv <vI(MT + M — A)v.
The latter estimate, can always be guaranteed by proper scaling of the smoother M

(such that (1 4+ 80)vI Av < v (MT + M)v = 2v! Mv).
Then B can be estimated in terms of A as follows, for any choice of v,

T T T37 L 7
VBV <(1+4+68)v,Acve+2|(v—Pv.) M(V—PVc)+8—VCAch .
0
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Based on our assumptions for the particular choice of v., the following additive
estimate then holds,

*
v By < [n*sc ) (5* + ’;—)] vT Av. (5.44)
0
In other words, the error §. that we commit with inexact coarse-grid solvers affects
only the term involving the particular coarse interpolant Pv, of v and does not involve
the quality of the smoother. Then, an optimal AMLI-cycle MG will be feasible with
the simple polynomial p, () = (1 — )" if n*/v < 1.
This is seen by using (5.44) in place of (5.40) and §, in place of § fi)l in the proof
of Theorem 5.29. This observation leads to the following inequality for o > 0,

*

(1—a) 7\
* ' * 4o [ s* U
Tar et T ) =

which indeed has a solution for v > 1*; just multiply the above inequality by o > 0
and then let & > 0, which leads to (n*/v) < 1. In particular, for v = 2 we can have
an optimal W-cycle MG if n* < 2. With the optimal choice of p, the estimate then
becomes v = 2 > /n¥; that is, n* < 4.

It is unclear that we can always find a coarse-grid interpolant such that (i)—(ii)
hold with the stability constant n* independent of the quality of the exact two-grid
preconditioner Brg, that is, to have n* < 4. However, based essentially on the main
result in [AV89]-[AVI0], reformulated now in terms of the AMLI-cycle MG, the
following optimal convergence result is available.

Theorem 5.31. Consider matrices coming from triangular piecewise linear elements
and second-order elliptic finite element problems. Estimates (i) and (ii) are feasible
with PV, being the standard nodal interpolant. More specifically, we have then n* =
1/(1 —y?2), where y < (\/3/2) is the constant in the strengthened Cauchy—-Schwarz
inequality between the coarse f.e. space Vo, and its hierarchical complement in Vy,
(see (B.29)—(B.30) in the appendix). Also, (ii) holds with M being any smoother
spectrally equivalent to the diagonal of A, for example, the Gauss—Seidel smoother
(see Proposition 6.12 for such conditions). The choicev = 2 > /n* = {/1/(1 — y?)
gives an optimal Chebyshev polynomials-based (see (5.38)) AMLI-cycle MG that has
the complexity of the W-cycle.

5.7 MG and additive MG

We present here an additive version of MG and an additive representation of the
traditional MG. We use the recursive matrix factorization definition of MG found in
Section 5.1. The same notation introduced there is used here.

5.7.1 The BPX-preconditioner

Based on a sequence of smoothers M}, we can define the following, somewhat simpler
than the traditional, multilevel preconditioner, originally proposed in [BPX].
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Definition 5.32 (The BPX method). Let By = Ay and assume that Bj41, for k <
£ — 1, has already been defined. We first define

— T LT
Bk=|:Mk(Mk+Mk—Ak) Ml 0 ]
0 By
and then By, the kth-level BPX preconditioner, is defined from

1

_ . —1y -1 -
B! =11, PB; |:PT:| = (M(My + M| — Ay)” M) + PB P
k

It is clear that the BPX preconditioner is obtained from the MG one by simply re-
moving the off-diagonal blocks M, TAk P and PkT ApM, Uof By defined in (5.2).
More explicitly, we have for ¢ levels, (with By = Ay),

—1 _
-1

D Poe - P M (M MT =AM P B
k=1

+ My T (Mo + ME — AgyMy .

The symmetrized smoother is not really needed here, because (Bf,%i)_l (unless prop-
erly scaled) does not provide convergent splitting for A = Ag. Thus, we need a s.p.d.
smoother Ay for A, and the resulting additive MG takes then the form,

-1 -
(31?/1%1) =P0"'P€*1A131P6T71"'P0T

—1
+Y Py P A PP+ A (5.45)
k=1

If Ay is such that Ak_1 is sparse, the simplest choice being diagonal, for example,

Ay = diag(Ag), it is clear then that (Badd)’1 is a linear combination of products of
sparse matrices plus the term involving the inverse of A,, which is dense but typically
has very small size.

5.7.2 Additive representation of MG

If we introduce the so-called “smoothed” interpolant Pr=U-M © TAk)Pk, and
let Ay = M; (MkT + M; — Ak)_leT be the symmetrized smoother, formula (5.2)
reduces to one of the additive MGs (the difference is only in the interpolation matrices
used); that is,

_ IR
Bl = A+ PrB Py

Therefore, if both M, ! and M; are explicitly available and sparse, then both P
and A,:l will be explicitly available and sparse. This is a rare case in general and
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essentially means that My is diagonal. If only M, lis explicitly available and sparse,
we can explicitly form Py = (I — M . T Ax) P, which then will be sparse (as a product

of sparse matrices), and use a different smoother Ay coming from Ay, such that A;l
is s.p.d. and sparse. That is, we can view the traditional MG as an additive one because
the following explicit formula holds for B~! = By L

-1
1 = — 1T =T - - =T —T _
B™'=Po-PeyA]'Py_ Py + Y Py Proa A Py Py + Agl
k=1

This representation of the MG preconditioner offers the flexibility to utilize one
smoother My in the construction of Py = (I — M~ TAk)Pk and another one (Ay)
that does not have to be necessarily related to M.

5.7.3 Additive MG; convergence properties

Similarly to the traditional MG, the following main result holds.

Theorem 5.33. Consider for any v decompositions of the form:

(0) vo = v.
(i) Fork =0,...,¢ — 1 let

f
vi =1, Pk][vk }

Vi+1

Then for the additive MG based on s.p.d. smoothers Ay for Ay (e.g., A = My (MkT +
My — Ak)’leT) the following identity holds. For any k > 0 and { > k,

-1
T padd,, __ : T NT A f
vl Baddy, — inf v[Bng—i-E (Vj) Ajvi
=k

(V.f=Vf+P.ij+1)f;}c j
Note that at the coarsest-level £, we typically set By = Ay.

Proof. We have!g 1note that because the additive MG is also defined via a relation
B, - [, P]B, [I, P17 the same proof as for the standard MG applies in this
case, as well. O

Based on the last theorem the following estimate of A in terms of B for the additive
MG holds.

Corollary 5.34. Let Ay be s.p.d. smoothers for Ay scaled such that V,{Aka <
v,{Aka. The following estimate then holds,

viAwvk < (€ + 1 — k) v] BAy, |

Proof. Consider any decomposition sequence v; = V‘jf + Pjvjyq for j > O starting

with a given vo. Assuming by induction that vJTA jvi < +1-)) vJT B;ﬂ.‘ddv j
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(which trivially holds for j = £), we get, based on Cauchy—Schwarz inequalities,
VA v = (VI + Piav) A (v + Piavy)
2
= ||v;—1 + Pj*lvj ”Aj,l
< (IV/oilla,, +1Pi1vila, )
= (Iv/_illa,., +1villay)®
= (I la, , + €+ 1= 7 195 jada)’
J
<A@+ 1= (V3 + 1912 a0)
J

= 41 G =) () Asav] L+ BY)).

Because we can take the minimum over the decompositionof v; 1 = Vi s 1+ Pj—1v;
based on Theorem 5.33, we get

Vi IA/ 1Vj— 1<(E+1—(J—1))Vj lBj 1V/ 1-

The latter confirms the induction assumption for j := j — 1 and the proofis complete.
O

Based on the above result, the following suboptimal relation between the con-
ventional (multiplicative) MG preconditioner B and its additive counterpart padd g
easily seen.

Theorem 5.35. Consider the multiplicative MG preconditioner B and let Badd pe
the additive one that exploits the symmetrized smoothers

—1 —
A = My (M + My — Ay)” M| = M.

Assume also that My is properly scaled such that vk (M + Mk — ARV =8 vy, T Apvy.
Then, the following upper bound of B in terms of B4 (s,

e+ 1 45
vl Bv < (1 + % <3 +,/1+ 7)) yT gaddy,

Proof. For any decomposition v; = v,{ ~+ Pyviy1, starting with vo = v for any
given v, we have

-1

vIBv < v} Agve + Z (M V] + AcPivienn) (Mic+ M — Ak)il (5.46)
k=0 .

X (MkTV]f + AkPka+1).
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By assumption, v,{ (M + MkT —Apvp =36 VkTAka. Then, use the Cauchy—Schwarz
inequality and Corollary 5.34 for Ay and B,?dd to get for any 7 > 0,
-1
vl By < V{A[Vz +({1+1) Z (v,{)TMkV[
k=0
-1

1
+ (1 + ;) 3 ka+1Ak+lvk+l
k=0
-1 ,
<vIAwvi+1+7) Z (v,{) MkV]{

k=0
-1

1 1 4d
+ (1 + ;> 3 ];(z — k) vi BMvis.

Therefore,

o~

—1
viBy <vI A+ (1+1) (V,{)Tﬁkvf

k
k=0
1 1 -1 -1 AT f
’ _
+(1+;) 3 Z(Z—k) vl Agve + Z (vI) MV
k=0 j=k+1
-1
e +1 1 _
- (1 + (25 )<1 + —))v{AgvH(l +0 Y (v]) Miv]
T k=0
1 1 —1 r —1
+ <1+;> 5 (v{) ijjf 3 w—h.
j=1 k=j—1
That is,
-1
L+ 1 1 T—  f
vIBv < <1 + ( 55 )<1 + ;)) viAwve+ (1 +71) Z (v;f)TMkv;f
k=0
-1
(-1 1 AT— f
+ 55 <1 + ;) (V'j) M;v;
j=1
-1
L€+ 1 1 _
< <1 + ( 75 ) <1 + ;)) <VZTAng + Z (V,{)TMkvf) .
k=0

Heret > Oissuchthat I+(€(£+1)/28)(14+(1/1)) = 1+14+(K(£—1)/26)(1+(1 /1)),
which gives T = (£/8)(1 + (1/7)) and after solving the quadratic equation for 7 > 0,
we get T = 20/(£ + V€2 + 4£5).

Because the decomposition of v based on {v{ } was arbitrary, by taking minimum
(based on Theorem 5.33) we arrive at the desired result. O
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Thus, based on the above result, if we are able to bound the additive preconditioner
B2 in terms of A, we can get a bound for the multiplicative preconditioner B in
terms of A with an extra factor of order £

Itis also clear, from the above proof, that if V,{Akvk <C v,{ B,?ddvk, we can bound
B interms of B2dd only with a factor of order £. The latter can be further (substantially)
improved to O(1 + (log £/2)), based on the following lemma by Griebel and Oswald
([GO9s)).

L+1

Lemma 5.36. Consider a symmetric, positive semidefinite block-matrix T = (Tj); =1

with square diagonal blocks T;;. Let L = (L,-j)ijfi | be its strictly lower-triangular

part, that is, Lijj = Tjj fori > jand Ljj =0 otherwise. Then, the following estimate
holds,

1
1Ll = 3 log € ||IT].
Here, for any matrix B we define | B|| = sup,_,, w! Bv/|[v|[|w], and ||v]* = vTv.
Proof. Partition L into a two-by-two block structure as follows.
Ly O
L= .

|:L21 Lz]
The proof proceeds by induction with respect to the block—size of L and L; and L,
and is based on the following two observations. First, consider the diagonal of L,

We have, using the definition of norm and the Cauchy—Schwarz inequality,

WITL1V1 + W%Lsz

DLl = sup
viove wiowa /v 4 a2V w2 + (w2

IVelliwell + lvaliwal
< max {|[L1]l, [IL2]I}  sup > 5 5 5
vieveowiowa /v 4 V2PV w2+ ([wa ]

< max {||Li]l, [IL2]l}-

The second observation concerns the norm of the strictly lower triangular part
L1 of L, which is also a strictly lower triangular part of 7. We have

T
Wi 0 Of(vi|_ .71
) L o[ e

Now, use the identity L = [0, I]1T[ (I)] and hence, due to the symmetry of T,

T T
wan=[2] ][ L)
w2 w2 —W2 —W2
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The fact that T is positive semidefinite then shows the inequality

|| I IT]
wy Latvi = == (Ivill® + 1w211?) = == (Vi + V20 + I l® + w2 ).

That is, based on the last inequality for [|[v{||> + [|[v2||? = [[w1]|> + [[w2]|> = 1, the
following estimate is obtained,

In conclusion, we proved the following estimate for ||L|| < ||[L21]| + IILp]l,

Il
ILIF = max (I L1l [IL20} + ==

Assume now by induction that ||Lq||, [|L2|] < ((k — 1)/2) ||T| where the
block-size of L and L, is not greater than 2! then we get for any L of block-size

two times bigger than that of L and L, the estimate ||L|| < ||T||(((k — 1)/2) +
1/2) = ||T'|| (k/2), which confirms the induction assumption and hence the proof is
complete. a

Introduce now the composite interpolants Pr =Py, ..., Pr_ that map the kth-

level coarse vector space into the finest vector space and let Py = I. We can then
consider the block-matrix 7' = (T};)

Note that the block-diagonal part Dy of T has entries T;; = A; (the ith-level matrices).

Recall the block Gauss—Seidel matrix appearing in the characterization of B =
By in (5.14). The quadratic form Q corresponding to this block Gauss—Seidel matrix
can be given in terms of T = Dr + L1 + Ur, where L7 has nonzero blocks equal
to Tj; fori > j. More specifically, we have

T
vy vy
oM =00l,...v[Y=| | @r+Lp)D;'(Dr+U)| : |. (547
v/ v/

Here,v =Y "¢_, Pyv].
Define now Tij = A;(l/z)E/A;(l/z) andlet T = (T,:/). Based on Lemma 5.36

D;(I/Z)LTD;(UZ)

applied to L7 = , the following bound holds,

— logt¢ —
L7 < % IT]. (5.48)

The latter results in the following estimate for the quadratic form Q; that is,

14

2
ow)=0w/,...vhH < (1 4+ == ||T||) S (v]) A (5.49)

k=0
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It is easily seen that ||| is the best upper bound in the estimate,
viAv < |T| inf ST Awv].
vl )v=y, Prvi
k kPkVe  k
Now, we are in position to improve Theorem 5.35 as follows ([GO95]).
Theorem 5.37. Consider the multiplicative MG preconditioner B and let Badd p,
the additive one that exploits the symmetrized smoothers

- -1
Ak = My = M (M| + My — Ay)” M.

Assume also that My is properly scaled such that vk (M + Mk — ARV = 8 vy, T Apvy.
Then, the following upper bound on B in terms of B4 polds,

1 log¢

vy < (1+— 2227 * 7 padd,,
V52

Here, | T|| can be characterized as the (best) upper bound in the estimate

4
viAv< |T|  inf S A (5.50)
VOv=Yt_ Pv] =0

A trivial estimate is | T || < €+ 1. That is, the following suboptimal result holds then,

1
v Bv < (1 b+ )2 ) v7 paddy, (5.51)
NG
Proof. Use the main identity of Theorem 5.10 (which is equivalent to (5.46))
T
v v
T . . . T -1, 7
v Bv < inf _ : LB(dlag(Mk + My — Ak)) Lg| :
(v,{):v:Zﬁzo ka,{ V[ sz
(5.52)
Here,
My 0 - 0
Tio M, . 0
Lg=| .
: . . 0
Teo ... Tee1 My

Let M = diag(Mp)!_,, A = diag(Ap){_y, and A = diag(M[ + My — Ap)¢_,. Then
the following estimate is readily seen based on the coercivity of My + M, kT — Ag in
terms of Ay,

—~ —~ 1
[A=DA2)12 < (5.53)
)
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Also, let

Then the desired estimate would follow if we bound the norm of the symmetric
Gauss—Seidel matrix Lg A~'LT = (M + L7)A~Y(M + L7)T where L7 is exactly
the strictly lower triangular part of 7', which was the matrix representation of the
quadratic form Q (see (5.47)). Based on the triangle inequality, estimate (5.53), and the
fact that M — Ay, is symmetric positive semidefinite, and the proven estimate for the
diagonally scaled strictly off-diagonal part of 7', (5.48) (i.e., ||;4\_(1/2)L§;4\_(1/2) | =
IA=2 Ly A=) < log€/2 T, we get

302" + 139

-~ o~ 1 ~ ~ ~ /7
< [A-ORRTS] + 2 | 30D LA RV

A
1
-
—_
<
e
SN—
ﬂ
=
<
El
| I |
=
S
+
R
—_
>
=)
N‘m
~
Nl
1
-
—
<
T
SN
ﬂ
S
=~
<
=~
| I |
=
S

Now, using Theorem 5.33, that is, the identity

inf Z (v,{)TﬁkV,{ — vy paddy
Frves Boof
V)v= 1 Pivip &

in the previous estimate to bound (5.52), gives the desired one. O

The level-independent boundedness of ||| in (5.50) can be proved (see Ap-
pendix E) for matrices Ay corresponding to the discrete Laplacian which is a funda-
mental result due to Oswald [0s94]; see also [DK92].

We conclude with the comment that for geometric MG applied to second-order
elliptic finite element problems, all extra factors containing weak dependence on the
number of levels in estimating B in terms of B2 can be removed due to the following
strengthened Cauchy—Schwarz inequality for a § € (0, 1),

()" 7)) = € 8% (vf) v (v]) " Anv]

That is, the block entries of T have certain decay away from its main diagonal for
certain particular decomposition v =), Fk—lVI{ . To prove such a strengthened
Cauchy-Schwarz inequality some additional properties of the finite element spaces
are needed. For the respective details, we refer to Proposition F.1 in the appendix, or to
the survey papers by Yserentant [Y93] and Xu [Xu92a]; see also [Zh92] and [BP93].
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5.7.4 MG convergence based on results for matrix subblocks

Let A be a given s.p.d. matrix and let /; and I, be extensions by zero of vector
of smaller dimension to the dimension of A. Consider the principal subblocks of

A = ITAL, i =1,20f A,
We assume that every vector v can be decomposed as

v=1vi+ Ihvy, (5.54)
such that for a constant n; > 0, we have
ZviTAEO)vi = ZViTIiTAIiVi <7 vl Av. (5.55)
j i
Assume that we have constructed a MG method for A such that the interpolation

matrices Py respect the local vector spaces Range (/;), i = 1, 2. That is, there is a
sequence of zero extension matrices / i(k), i =1, 2, foreverylevel k > 0, such that the

restriction Pl.(k), i = 1,2 of the interpolation matrices Py to the local vector spaces
satisfies the property,

1&V p®y, — p®y,.

That is, if we first interpolate locally a vector v; obtaining a local fine-grid vector
P( )vl and then extend it by zero giving rise to /; = 1)P(k)vl, it is the same as if we
first extend by zero the local coarse vector v; to a global coarse vector / [.( )V, and then

interpolate it to end up with a (global) fine-grid vector Px Ii(k)vi.
A typical case is that the set of dofs N at every level k > 0 is partitioned into
two overlapping groups N = N, fk) U /\/'z(k), and we then have

0 _ m PN AN
i } M(k) ’

and

(k—1) (k)
= [* (k)] R R B LA S
YN 0 P |IN

In other words Py interpolates local coarse-grid vectors

} NG AN
Ve = } /\/(k) ,

that is, that vanish outside /\/i(k) based only on Pi(k) keeping the result zero outside
NE=D
1 b

0 0 T} Nt \ N
Py V¢ P(k) c }N(k 1) .

l



5.7 MG and additive MG 175

Based on P( ) and the smoothers M, ® =1 (k)TMin(k), we can define V-cycle
MG preconditioners B; for the local matrices Af ),

We assume that B; are spectrally equivalent to AEO). Then our goal is to show that
B is spectrally equivalent to A.

One application of the above result would be if A corresponds to a discretization
of the Poisson equation on an L-shaped domain 2. Note that €2 can be decomposed
as Q = Q1 U Qy, where Q; are rectangles (i.e., convex polygonal domains). For
each of 2; (because the Dirichlet problem for the Poisson equation on €2; allows for
solutions with two derivatives (as in (1.11)-(1.12)), a MG V -cycle preconditioner B;
will be spectrally equivalent to Ago) (the local submatrices of A corresponding to the
convex polygonal subdomains €2;). Then the result we prove gives that the V-cycle
preconditioner B is spectrally equivalent to A, as long as we can prove the assumed
estimate (5.54)—(5.55). For the latter, see Example E.1 in the appendix due to Lions
(cf., [Li87], pp. 8-9) and the related Section E.1.1.

In what follows, we consider the additive MG (or BPX) only and prove a uniform
upper bound for B in terms of A.

Theorem 5.38. Let Py and Ay and Ay fork = 0,1, ..., ¢; define an additive MG
preconditioner B for A = Ag. Let I;, i = 1, 2 induce submatrices AEO) = IiTAI; and

the Py induce local interpolation matrices Pi(k), i = 1, 2 such that for zero extension
matrices

;o _ [0 }/\/k\/\/,-(k)
i }j\/’i(k)

we have Pkl(k) I(k 1)P(k) This implies A(k) = I(k)TA I(k) P(k)TA(kH)P(k)

Let Agk) = Ii(k) Ak Ii(k) be the respective principal submatrices of the s.p.d. smoother
Ay. Then Agk), Pi(k), and Al(k) define spectrally equivalent additive MG precondition-
ers B; for the principal submatrices ZEO) = IiTAIi, i =1, 2. Let K; be bounds on the

-1
maximal eigenvalue of B; Afo) . (Recall that the minimal eigenvalue can be estimated
at the worst as 1 /(£ + 1); cf., Corollary 5.34.)

Then under the stability estimates (5.54)—(5.55) valid for any vector v .= vy, the
global additive MG preconditioner B is bounded from above in terms of A. More
specifically, the following upper bound holds,

v Bv <2n; ‘mlaxz K; vl Av.
=1,

Proof. To prove the stated result, we use our main identity from Theorem 5.9:

-1

v By = inf vIAeve + Z ,-v]f . (5.56)
(VJ—Vf+P iv +1)Z_(1) =0
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By assumption we have vo = / 1V )+ Izv(o) with stable components vfo), i=1,2.

Now use Theorem 5.9 applied to all of the blocks Ago) and their respective additive
MG preconditioners B;. Itimplies thatfori = 1, 2, there is a multilevel decomposition
v =vP 4+ PPV j =0, £~ 1, such that

—1
0, _(© 0T 0 ol () INT A (DG
K; vf ) AE )vf ) > VE ) B,’VE ) = vf ) AE )V§ )+ Z (V;j’)i) AEJ)V(f{)i
j=0
Consider now the vectors
vj = Il(j)vij) + Iz(j)véj), v (6] I(]) (]) L+ I(]) (j)

We have
Pivji1 = Pj(]f”l)vijﬂ) + Iz(jﬂ)véjﬂ))
() p() G+D () p() (G+D
:]1 Pi Vi +I2 P2 \D) .

Therefore, we have the decompositions,
vj = 11(/') (j)+1(j) ()
— 1(/)( (/)1 —i—P(/) (/+1))+1(/)( ) +P(/) (/+1))
(f + Pivji.

Now use this particular decomposition in (5.56). We have, (v = vy),

vl Bv <|v Am + Z

<2 ZVWA“) (K)JFZZ 1(/) (/) A (IDv (f/)l)

j=0i=1

2
— (Z)T (&) (K) (/) Dy
=22 v A +Z AV
i=1 j=0

[\S]

T
<2 3 K v A0V
i=1

T
() A 0) (0)

IA

[N}
an
s
il <V}
o™
=
N—"
N
~<,.\
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5.8 Cascadic multigrid

The cascadic multigrid has been proposed by Deuflhard et al. [DLY89] (see also
[Df194]), and analyzed in Shaidurov [Sh94], and [BD96].

The main ingredient is the following smoothing property of the CG method. The
CG method applied to Av = b with zero initial iterate leads to an approximation vy,
after m > 1 iterations, that satisfies the estimate

Ayt ||1/2

IV="mlla = 5= VIl

(A) Assume now that v = (I —m4)v is A-orthogonal to the coarse space Range(P).
Here, w4 = P(PTAP)~! PT A. Then, assume that
(B) ma = PAZ'PT Ais £5-bounded,

TANI — 7a)V]* < 1q VT Av.

Based on Lemma 5.20, we can ensure (B) if the following strong approximation
property holds.

(C) Strong approximation property:
for every v, there is a coarse interpolant Pv, such that

(v—Pv))TA(v = Pv,) <

IIAII

We verified such an estimate (cf. (1.16)) for f.e. matrices coming from the Poisson
equation —Au = f in Q and ¥ = 0 on 9€2, which admits full regularity; that
is, lull2 < C || f]l. Such regularity estimates are available for convex polygonal
domains 2 (cf., e.g., [TWO05]).

The following “cascadic” two-grid (or CTG) algorithm is of interest.

Algorithm 5.8.1 (Two-grid cascadic method)Consider Ax = b. Let P be an in-
terpolation matrix, and A. = PT AP the respective coarse matrix. Let also A be a
s.p.d. preconditioner to A (such as symmetric Gauss—Seidel, or simply Jacobi). The
two-grid cascadic algorithm computes an approximation Xcrg to the exact solution
x = A~'b in the following steps.

(i) Solve the coarse-grid problem
Acxc = PTb.

(ii) Interpolate and compute the residual, v = b — APx, = (I — 7a)Th, where
A= PAC_1 PT A is the coarse-grid projection.

(iii) Applym > 1 PCG iterations to Av = r with initial iterate vo = 0. Let v, be the
resulting mth iterate.

(iv) Compute the cascadic TG approximation XcrG = Vi, + PXc to the exact solution
x=A"'b.
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The following error estimate is immediate, letting A = A~(1/2AA~(1/2),

[ la < A)" [Ivll
V—VullA = 1 VIilA
1Az
= AT 'r
el lla
[PARE .
= I —7m4)A™'b
1 1€ 4) lla
A1 (1 x|
= — TTA)X
2m + 1 AJZIA
[AI'2
< ——||A I —
= 5 I = 7ax]
_ _ 1/2
< M |a=02AA- O Ay (I — x|
= 2m+1 YRE AJTIA-

In the last step, we used the £2-boundedness (B) of 4.
Letting

”A7(1/2)AA7(1/2) ||1/2||A||1/2

Via = Ve IA[T72 ’

the overall error then can be estimated as follows.

X = XcrGlla = [[A(X = PXc) — AVp || o-1
= [AV = Vi)l 41

=[V—="Vmla

VT

< I — .
T (I —ma)x]la

The multilevel version of the cascadic MG (or CMG) replaces the exact solution at
Step (i) above with a Px., which is the coarse-grid approximation at hand (at the
initial coarse-level £ > 1 we use the exact solution).

The analysis then is similar as before. We have forr = b —APx, = b — Amax+
A(mgx — PX.). Note that here mw4x is the exact coarse-grid solution. Then using the
best polynomial approximation property of the PCG method, we have the estimate

vy < inf A~ ANy
IV=vulla < inf | o ( v 4
V1a
< ——— ||IXx — waX|l4a + ||[TaX — PX . 5.57
= 1 Il AX[[a + lla clla (5.57)

Here, we use p,, () coming from the Chebyshev polynomial 75,,+; defined as (cf.,
section 6.13.2),

Tom1 () = (=1)” @m + Dt py(IA]1£%).
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Above, we used the following optimal property of p,,,

) IA]
min max_ V1 pm(t)| = max V1 pm()| = .
Pm:pm(O=L re[0, |A4]] 1[0, | A|] 2m +1

In a multilevel setting, we let Ag = A be the finest-grid matrix, P be the interpolation
matrix from coarse-level k + 1 to fine-level k and let Ax+1 = PkT Ay Py be the coarse
k 4 1-level matrix. Finally, let A be the s.p.d. preconditioner that will be used for the
kth-level PCG iterations. Simple examples of Ay are the symmetric Gauss—Seidel

or Jacobi preconditioners for Ai. The resulting cascadic MG algorithm takes the
following form.

Algorithm 5.8.2 (Cascadic MG) Consider Ax = b. The cascadic MG algorithm
computes XcpyG = Xo in the following steps.

e Letbg=b. Fork=1,...,¢ compute by, = PkT_lbkfl.

(0) Solve the coarse-grid problem
A¢Xp = by.
Fork=1¢—1,...,0 perform the following steps:
(i) Interpolate x(0 = PiXp+1.
(ii) Compute residual r = by, — Arx©.
(iii) Apply m = my > 1 PCG iterations to Apv = r with initial iterate vo = 0. Let

Vi be the resulting mth iterate.
(iv) Compute the kth-level cascadic MG approximation X = v, +x.

* Finally, set Xcpuc = Xo.

Introducing the composite level k-to-0 interpolation matrices Pi_1=Py...Pr_jand
respective projections my = Fk_lAlzlﬁlilA, noticing then that 7 ;x (j =k — 1, k)
represent the jth-level exact solutions P j— 1A;lb ;j interpolated to the finest-level,
the last two-level estimate (5.57) translates to (with m = my),

VT

l7mr—1Xx — Xp—1lla < I —1X — mex |4 + l7ex — Xg |l 4,
2my + 1

where x; = P j—1X; stands for the approximation computed at level j, interpolated
to the finest-level O (for X; see Step (iv) of Algorithm 5.8.2). Note also, that

| Ag—1111/2 ’

—(1/2) =(1/2)y1/2 1/2
= (PSR s VS PAVARE I I AV |
\/Ea = Vna

and 7, is a uniform constant that relates two consecutive levels, k and k — 1,

1A=t I = Pect AR PE A DVIP < nallviig, - (5.58)
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Also,

—(1/2 —(1/2
1AL A ALY P A
A1l

can be assumed bounded independently of k (recall that A;_; was the preconditioner
for Ai_1 at level k — 1, such as the diagonal of A;_1, e.g.). Therefore, we have the
following bound on the multilevel error X — X, assuming that at level k we have
performed m; > 1 PCG smoothing iterations, and because m¢yx = X¢ (i.e., we use
exact solve at the coarsest level ¢),

Na = Na

¢
1
- <./7n —_— 1 — . 5.59
Ix —xcmella < V7, kE=1 Imr 1 |(ri—1 — m)x|la (5.59)

Using the Cauchy—Schwarz inequality, we have the following estimate as a
corollary,

Y, 1/2
1
— <./7 S .
Ix = Xcwalla < v <k§_1 T +1)2> Ix]l4

Here, we used the fact that 3 [|(zx—1 — mOxX[13 = 2 (Ime—1xlf — llmex]3) <
IxI3.

The latter estimate will provide a uniform bound (less than one) if the number of
smoothing steps increases geometrically with k; that is, we have the following main
result.

Theorem 5.39. Let my. be the number of smoothing PCG iterations at level k that
satisfy 2my+1 = 2mo+ 1) u, fora u > 1. Then, under the uniform assumption (B)
(valid, at every two levels k — 1 and k as in (5.58)), the cascadic MG method provides
an approximation Xcyc to the exact solution x of AX = b (A = Ay), such that

1/

nw—1 2mog+1

Ix — xcmclla < lIxI[4-

Thus, if mg is sufficiently large, the CMG method provides an approximate inverse to
A defined as b — XcyG ~ X = A7'b. Assuming that n, the number of unknowns
at level k, satisfy ny = B nig41 for a f > 1, we have the restriction < B in order
to have optimal complexity O(ng) of the resulting CMG.

Proof. The complexity of the CMG is readily seen to be of order ), myn; =
no Y my/B% < no(mo + %) >k (n/B)¥, which is of order O(ng) if u < B. ]

Cascadic MG with stationary smoothing

The PCG smoothing steps in Algorithm 5.8.2 can be replaced by a more standard
stationary method. The “smoothing” rate of ~1/(2m + 1) will then be generally
reduced. More specifically, the following result holds.



5.8 Cascadic multigrid 181

Let M be a matrix (not necessarily symmetric), which provides a convergent iter-
ation for Ax = b in the A-norm. That is, let ||/ — A'/2M~1AY/?|| < 1. Equivalently,
let MT + M — Abes.p.d. Let

L=MM+M" —A)~ 2 AT 'AT", and b=T 'b.
Consider the following iteration, starting with xo = 0, for k > 1,
—T —T - — =T
(L Xk) = (L Xk—l) + (b — A(L Xk—l))-
Its computationally feasible equivalent version reads,
—T——1
Xy =X—1+L L (b— Ax;_1)
=xp_ 1+ M TM+MT — )M (b- Axi_1)
=x1 + (M T+ M = MTTAMTY) (b - Axi—1).
Another, more familiar form of the above iteration reads,
Xi—(1/2) = Xk—1 + M1 (b — Ax_1)
(/2 . (5.60)
Xk = Xg—(172) + M~ (b — Axp_(1/2)).
Introducing E=1—-—A,e =x—%X,e) = x = A~lb, noticing that ZTek =
F(ZTek,l ), after m iterations, we have the following error estimate,
—T —m —T
IZ" enllz = 1E" L eolix
—1/2 — =T
— |22 = A" T el

—T
max /21 = )" |[L el
t€[0,1]

1 1 m T
1 - 1L eoll.
m+ 1 m+1

That is, with the symmetrized smoother M=MM+MT — A)flM T the
following smoothing rate holds.

IA

Lemma 5.40. Consider M that provides a convergent iteration in the A-norm, for
AX = b; that is, ||I — A'2M~YAY2|| < 1 (or equivalently, let M + MT — A be
s.p.d.). Perform m > 1 combined smoothing steps as in (5.60), that is, effectively
based on the symmetrized smoother M = M(M + MT — A)~"'M7T, starting with
xo = 0. The error e,, = X — X, satisfies the estimate,

1
llemlla < NCES lleollz7-

Assuming now the same estimate (5.58) letting n, (|[Mx_1ll/||Ax—1l]) < 7,, which
we assume bounded independently of k, estimate (5.59) takes the following form,

l
Ix = Xcmalla < Ve Y
k=1

1
\/ﬁ |(Te—1 — mi)x] A (5.61)
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Using again the Cauchy—Schwarz inequality as a corollary, we have the following
estimate,

1/2
Ix — xcmclla < Vi (Z +1> x4

Finally, the following analogue of Theorem 5.39 holds.

Theorem 5.41. Let my be the number of stationary smoothing iterations based on
My and MkT atlevel k. Let my, satisfy my+ 1 = (mo+ 1),uk,f0ra w > 1. Then, under
the uniform assumption (B) (valid, at every two levels k — 1 and k as in (5.58)), the
cascadic MG method (with stationary smoothing) provides an approximation Xcyc
to the exact solution x of AX = b (A = Ay), such that

Nalb

1
Ix = xXcmclla < —— Ix]|a.
w—1 mo+1

Thus, for mq sufficiently large, the CMG method provides an approximate inverse to
A defined as b — Xcyg & X = A~ b, Assuming that ng, the number of unknowns
at level k, satisfy ny = B nx41 fora p > 1, we have the restriction i < B in order
to have optimal complexity O(ng) of the resulting CMG.

5.8.1 Convergence in a stronger norm

We can also prove convergence of CMG in a stronger norm.
Based on the strong approximation property (C) as stated in Theorem 1.7, we
have that

TANGri—1 — x5 < nallAX]1>.

Here 1, depends on the ratio of the fine-grid mesh-size 1 = h¢ and the kth-level mesh-
size hy = 2Fho. That is, 1, ~ (hk/h())2 = 22k Next, because ||A(X — Xcme) || <
IAI'/2|1x — xcpmGlla, based on estimate (5.61), for example, and the above strong
approximation property, we arrive at

1A = xema)ll < v/, <Z ) 1AX]|.

If we use PCG as a smoother based on estimate (5.59), the following estimate is
similarly derived,

¢ k
— 2
A —xema) | = V1, <§ e 1 1) [ Ax]].

k=1

Thus the following results hold.
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Theorem 5.42. Consider the CMG algorithm with either PCG or stationary iteration
as smoother. Assume that degrees of freedom ny_1 and ny, at level k and level k — 1,
respectively, satisfy ny_1 =~ Zdnk, d = 2,3, and let the constants 1, in the level
k to finest-level O, ||(I — nk)x||i < (a/lAl) IIAX||* grows like 22k (based on
Theorem 1.7). Then, choose 2my + 1 = (2mgo + )k in the case of PCG as the
smoother or my + 1 = (mg + 1),uk in the stationary smoother case. For optimal
complexity (i.e., the total work to be of order ny), we need

kank >~ ng Z (%)k >~ ng.
k k

That is, ;u < 2%. To have the CMG method convergent in the ||A(.)||-norm (i.e.,

c
AX —xemo) |l < ——— | Ax]|,
AC l 5 2me (| Ax]|
with PCG as smoother), we need |1 > 2, and in the case of a stationary smoother, in
order to have an estimate of the form

AX —xcmo)ll = lAx][,
0

c
V1+m
we need /it > 2. In summary, for the PCG smoother the conditions 2¢ > > 2are

possible for d = 2, 3, whereas in the case of a stationary smoother both inequalities
2¢ > > 4 are possible only for d = 3.

Relation to the variable V-cycle

We should note that the cascadic MG with stationary smoothing can be seen to
give the second (coarse-to-fine) half of a variable V-cycle method as described in
Theorem 5.24. The latter is seen because both are product iteration methods with
subspaces Range (Py_1), k = £, ..., 1 and the original vector space itself. More
specifically, the iteration matrix Ecyc of the CMG with stationary smoothers My
admits the product form (cf. Section 3.2.1),

(I — My Ay (1 — PoM PEAY™ (1 — F@,ZM;_HET,ZA)'"H(I — ).

Whereas, the iteration matrix Ejsg of the variable V-cycle MG admits the following
product form,

Eyc = ECMc;A_lEgMGA.

The (minor) difference is that the cascadic MG solves at the coarsest-level problem
with a particular r.h.s., namely, FeT_lb, whereas the variable V-cycle coarse-level ¢

problem has generally a different r.h.s. It is given by FZ_ 1(b — Axq), where X is
the approximation provided by the first (fine-to-coarse) half of the variable V -cycle.
Note, that x( will generally be nonzero.



184 5 Multigrid (MG)

Let Eyjg = 1 — B;lé;A be the error propagation matrix of the variable V-cycle.
Note that the relation Eyg = EcucA~ Y (Ecom)! A allows us to analyze nonsym-
metric smoothers in cascadic MG because we have the following identity,

el AEyge = |A~VDEL, - Ae|”.

Thus, with X = AY2EcucA~1/? based on fact that || X|| = || X7, we have
0y = 1A EcuA=D|2 = |A=WEL (A2 = ||A12EygA=1/D)| =
omc- That is, the convergence factor of the cascadic MG equals the square root of
the convergence factor of the corresponding variable V-cycle MG. The latter was
estimated in Theorem 5.24.

Cascadic MG as discretization method

Another feature of the CMG is that it can be used as a discretization procedure. If
we solve the Poisson equation —Au = f on a sequence of uniformly refined meshes
of size hx4+1 = 2hy, we typically have the following error behavior, |u — up|; <
Ch || flo. Here ||.|lo stands for the integral Ly-norm, and |v|; = ||Vv|o is the
Ly-norm of the gradient of v. The latter error estimate, translates to the following
matrix—vector analogue (at discretization level k), assuming that the initial coarse
mesh size hy = O(1),

1
(I —mi)via < C 30X I f1lo-
Then, it is clear, we can get an estimate (based on (5.59))

1
Ix —xcmglla < C 7 Il f o,

if (2my + 1) = (2mg + D such that 37, 2% /u* is finite, that is, if 1 > 2. Let ng
be the number of unknowns at level k. We typically have ny = 2¢ ny, where d = 2
or d = 3 is the dimension of the domain where the Poisson equation is posed.

The complexity of the cascadic MG is then readily seen to be of order ) ", myny =
no Y k274K (d = 2 or 3). Thus, if we can satisfy the following inequalities,

2<u< 24
(possible for d > 1; e.g., u = 3) the CMG provides a discretization method of
optimal complexity.
If we use a stationary smoother, the inequalities read

4<u<2d,

which is possible for d = 3. The case d = 2 leads to suboptimal estimates. The latter
can be avoided if a different coarsening factor is used, for example, h; = %hk+1.
Then, the conditions are 4 < u < 49 which is possible for d > 1.



5.9 The hierarchical basis (HB) method 185

5.9 The hierarchical basis (HB) method

5.9.1 The additive multilevel HB

The multilevel counterpart of Br, defined in Definition 3.12 and analyzed in Section
3.2.8 leads to the classical hierarchical basis (or HB) method, originally considered
by Yserentant in [Yhb] and its multiplicative version (referred to as the HBMG) in
[BDY8S].

Assume a fine-grid vector space V and a coarse one V. such that for a given
interpolation matrix P, PV, C V. We assume that P admits a natural block form,

-l

where the identity block reflects the embedding of the coarse dofs (or nodes) NV, into
the fine-grid dofs AV That is, for any i, € N there is a unique i = i (i) € N, so that
we can write N C N (for details refer to Section 1.2).

We consider a two-level direct decomposition v = Jv ¢ + Pv., where

1] wa n=[]

Let R = [0, I].Define thenZ = PR, the so—called nodal interpolation operator. Note
that Z is a projection (i.e., Z> = Z), because RP = I. Using the nodal interpolation
operator Z, we can rewrite the above direct decomposition as follows,

v=U—-1D)v+1Iv.

e

has the same range as J and Z has the same range as P, it is clear that the two direct
decompositions are the same.

For vector spaces V. and V corresponding to two nested finite element spaces
Vu and Vj, the corresponding nodal interpolation operator Z = I}? is not stable
in energy (A-norm) when (H/h) =~ 2k grows (for details, see (G.5) and (G.4)).
Assume now a sequence of finite element spaces Vi = Vj,, and respective kth-level

Because

interpolation operators Z; = Ih(’)‘, (hy = 2¥hg), which relates the kth coarse-level
and the finest-level 0 vector spaces. Denote the vector spaces V. corresponding to
the finite element space V. Note that we view here V; as subspaces of the fine-grid
vector space V = V.

The direct multilevel decomposition of interest then reads,

-1
V= (T — Tey)V + Lov. (5.62)
k=0
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The following estimate is easily derived (based on (G.5), and (G.4)),

£—1

IZevla + D 1@k = Ter)VIE < Ce VI, (5.63)
k=0

where C; grows like £2 in two dimensions (the main result in [Yhb]) and like 2¢ in
three dimensions (see [097]).

To bound the sum on the left is a necessary and sufficient condition for a convergent
additive multilevel HB method. The latter is defined similarly to Definition 5.32. More
specifically, let Ax be the stiffness matrix coming from the space Vj and the bilinear
form a(-, -). The matrix A; admits a natural two-by-two block form (referred to as
an “f”—“c” block form),

A, = Ak, ff Ak, fe } “f”—dOfSE./\/k \Nk+1
KT Ao Akee |} “c-dofs = Niy :

In the finite element case, we have that Ai yr is spectrally equivalent to its diagonal
(proven on an element matrix level). For more details, see Appendix B. Hence, we can
easily find a s.p.d. matrix Ay that is spectrally equivalent to Ay 4, for example, the
symmetric Gauss—Seidel one. Denote by Ji the extension by zero of vectors defined
on N \ Ni+1 to vectors in Np; that is, let

0]} M\ M
Je= 1|} Ne\Nigr -
0]} Nt

Note that for k = £, we have

1]}y N

Then the additive multilevel HB preconditioner Byp is defined as

Jz=[o]} No\ NVe _

-1
Byp = TeJeA; I @D + ) @k = Tirt) b I @ = Tie)” . (5.64)
k=0

To implement Bgé, we need to be able to identify the Ny as subset of Ny
represented by a mapping / ,f 1 and to interpolate from level k + 1 to the next fine-
level k. The latter is typically represented by the interpolation mapping Px.

The definition of the “nodal interpolation” operator in matrix form translates to

Tk = PoPy - Py (1Y) ... 11571)7' (5.65)
Note that up to a proper reordering, we have

Koo} N\ Nit1
LT Ny
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and similarly

I} Niq '

The latter is based on the fact Py is the identity at the coarse nodes Ny . Therefore,
04 ,f 11 )T P, = I. The latter property implies the following result.

Lemma 5.43. The nodal interpolation operators defined in (5.65) are projections
(i.e., I,? = T ) and satisfy the identity Tk 1Lk = Li+1.

Our goal is to derive the following representation of the additive multilevel HB
preconditioner.

Theorem 5.44. Introducing Py = PyP--- Pr_y, the composite interpolation matrix
from level k all the way to the finest-level 0, we have the representation

-1
_ - 15T - _ =T
By =PeA;'Py + Y PrafT A TP (5.66)
k=0

Here,

g _ 1]} Ni \ Nit1
k0] N ’

represents the extension by zero of vectors defined on the set of “f —dofs (i.e., on

Ni \ Nia1), to vectors defined on Ny.
Proof. The representation (5.65) implies the identity,
“I\T
Tk — Ti1 = PoPy - Py (1 — P(tf 7Y (10 - 1F71) 7

Note next that

0]} M\M
D Je= |11} N\ Niga
0]} Nt
and similarly
0 g-n\T, [T} MA\NMs1 _ i
(Il"'lk ) Jk—[o_} Nis1 =Ji

We also have ZyJ; = Py P; - - - Pi—1. Recalling that P = PyP;--- Pr_y,the expres-
sion for BI;ZI; reduces to

-1
_ — 1= — _ —T
By = PeA; (Po)T + § Pe(l =PI DDYIE A YT - 1 PDP,
k=0
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Finally, noticing that

k1 gk 1 [T O]} N\ Nisa
CRN B P N

and hence (J,f“)TI ,f 1 = 0, we obtain the desired simplified expression for BI;]_};
(5.66). m]

If we compare Blgé and (Bj‘l,i,de)’1 from expression (5.45) the seemingly small

difference is the term JF ' A1 (75T in the former. We have

_ AL O] M\
J,ﬁ‘“Akl(J,f“)T=[5 OB M]i+\1 S

In the expression for (Bj‘f‘,i,dc‘;i)_1 in (5.45) we have a Ak_1 that is defined for vectors on

N and not only on the subset of “f”—dofs (i.e., on the hierarchical complement N, \
Nit1 of Mig1 in NVg). In summary, in the HB method, we smooth only the “f”” matrix
block, whereas in the additive MG (or BPX), we smooth all the dofs at a given level.

5.9.2 A stable multilevel hierarchical (direct) decomposition

Assume now that we have a hierarchy of projections O, for k = 1, ..., ¢ and let
Qo = I, that provide a decomposition

-1

V= Z(Qk — Qk1)V + Qpy,

k=1

which is more stable than the HB one (5.62), in the sense the constant Cg in the
estimate

£—1

1QevIa + D 1(Qk = Qur)VIE < Co IVl (5.67)
k=1

is much smaller than C, from estimate (5.63). In practice, the projections Oy may
give rise to dense matrices (see next section), and therefore they may not be compu-
tationally feasible (as Zj, e.g.) to define a multilevel preconditioner that is based only
on sparse matrix operations and hence have optimal complexity.

The abstract setting is that we have access to {Qf} which have sparse matrix
representation and at the same time approximate the true projections Q; well. We
assume that in a given norm ||.||o, the following uniform in v estimate holds,

1(Qk — Q)vllo = T [1QkVllo, (5.68)

for a sufficiently small constant T € [0, 1).
‘We assume that

Q19 = Dkt1- (5.69)
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The latter property holds if the projections Qi are computed from a same inner
p_roduct G, .)0_; that is, Qv is defined from the Galerkin relation (recalling that
Vi = Range (Py)),

(Qkv, Wi)o = (V, Wi)o,  forall Wy € Vi. (5.70)
Because Vi1 C Vi, we see then that property (5.69) holds.

Definition 5.45 (Modified nodal projections). Letting wo = I andfork =1, ..., ¢
define

Tk = Tk + Qf Ti—1 — Li))Tk—1.

Note that if Qf = 0, we have 7y = Z;7—1, which due to Lemma 5.43 equals
Tk. That is, Ty = Zy in that case. The other limiting case is when Q7 = Q. Then
assuming by induction that 7x_1 = Q_1, we have, again due to Lemma 5.43, that
Tk = Tk + Qe Li—1—1L1)) Q-1 = @i+ QuLi—1— Q1 Tic) Qk—1 = QuZk—1 Q-1 =
QrQk—1 = k. The last identity is by assumption (5.69). That is, the operators Ty
can be viewed as “interpolation” between the two projections Z; and Q. The first
one is unstable (see estimate (5.63)), whereas the second one is stable (by assumption
(5.67)).

Lemma 5.46. The operators 7wy are projections that satisfy Txwk—1 = Tk.

Proof. Because for any v € Vi C Vi1, we have Ty_ 1V = IkV_k = Vi due to
Lemma 5.43, therefore, by induction w;_1Vy = Vi (because vy € Vi_1), we have
TiVk = (Tk + Qf (Lg—1 — L))V = V. The latter fact implies that 77 is a projection
(similar to Zg). O
We are interested in the direct multilevel decomposition based on the projections
T, namely,
-1
V=) @k — Thr)V + Tev. (5.71)
k=0
We want to show a stability estimate of the form
-1
IZevld + Y I — Ter)vIS < C IVIE- (5.72)
k=1

Recall that if Qf = Oy then w; = Q. Thus estimate (5.72) can be viewed as a
perturbation of (5.67) for QF ~ Q.

To analyze the stability of the decomposition (5.71) we need the following addi-
tional assumptions.

(e) The following estimate holds in the || - ||p-norm,

1(Qx — Qk—1)Vllo < Ce hy IVl a,

where A1 = 2hyg, hence hy = 2%hg. Here, hg = 2~¢ H is the fine-grid mesh
size and H = hy = O(1) is the coarsest mesh-size.
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(b) The operator Z; — Ty restricted to V is bounded in || - ||p norm; that is, we
have the estimate

I(Zk — Z+1)Vkllo < Cr |[Vkllo for all Vi € V.

The analysis relies on the following two lemmas.

Lemma 5.47. Define the deviation e, = (wx — Qr)V for any given vector v. The
Jfollowing recursive relation then holds.

€11 = (Qst1 + Rot1)es + Rot1(Qs — Q1) (5.73)
where Rst1 = (Qs+1 — Q) Ts1 — Ly).
Proof. We have the following identities.
€1 =Ty11V— Qsp1V
= (Zop1 + Q1 Ty — T4 D)) Tsv — Qs41V
= (Qs41 — Q4 )T 1TV + Q4 Tsv — Qs 41V.
Thus, we have
g1 = (Qsy1 — QL )L (Tev — Quv) + Q7 | (Tsv — Q)
+(Qst1 — Q4 ) Le11Qsv + Q7 Qv — Qs 1V
= (Qs41— Q4 ) Tsr1es + Q7 e + (Qst — Q%)) (Zir1Q5v — Qsv)
= (Qot1 — Q%) Tsg1 — To)es + (o1 — Q% )es + Q7 e
+(Qs 41 — Q4 1) T — L) Qsv
= (Qs+1— Q) Tsr1 — Lo)es + Qries + (o1 — Q) Tyt — L) Quv
= [Qst1 + (D51 — Q4 ) Tsv1 — I Jes+(Qs 41 — Q%) Tsr1 — L) Qv

The latter together with the fact that (Zs+1—Z5) Os+1 = Oimplies the desired recursive
relation (5.73). O

The next lemma estimates a weighted sum of the squared norms of the deviations.

Lemma 5.48. Under the assumptions (e) and (b) and the uniform estimate (5.68), the
following bound holds,

¢ 5 -1
. c } _

> k7l < q _Rq)2r2 S h1Q) — QievIR, Vv e Vo = V- (5.74)

j=1 j=1

The constant g € (0, 1) is chosen such that (1 + Crt)/2 < q, which is possible for
sufficiently small T € [0, 1) (independently of the level index k).
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Eroof. _Recall that Cp is a level-independent bound of the ||.||p-norm of Z; — Zg 1 :
Vs — V. Then,

Rs+1Vsllo < CrTlVsllo for all vy € vs~ (5.75)

For sufficiently small T € [0, 1), we have

1+ Cgt

5 < g =Const < I (5.76)

Next, observe that ey = 0. Then a recursive use of (5.73) leads to

lles+illo < (1 4+ Cr)llesllo + CrTl(QDs — Ls+1)Vllo

< Crt ) (14 CrD'IIQ) — Qjr)VIo-

j=0
Therefore, with h; = 2] ’th and hy = H = O(1) being the coarsest mesh-size,
les+1llo < CrThsst Z(l + CrO R IQ) — Qj)vllo

j=0

1, —
= Crthsi1 Z<1+c T)'” th]H”(Q/ Qj+Dvllo
j=0

N /1 s—j B
= Crths41 Z(l + Cgrr)*™/ (E) hj+11||(Qj —Qj+vlo

=0

< cRrhqu TR IQ) = @+l

j=0
. 1/2
< Crthysi D@ TRHNQ - QvIE | - (BT
j=0
The latter inequality shows
-1 9 2 s 5
Z 5+1||ev+1||()_ C Z Z q'" jhj+1||(Qj - Qj+l)v||()
s=0 s=| 0/—
< Gy Zh,ﬂn@, Qj+vlg:
which proves the lemma. O

To prove the final stability estimate, notice that Txv = e + Qxv, which implies
@k —Tk+)Vlo < llexllo+Ilek+1llo+11(Qk — Qk+1)Vllo- Thus the following stability
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estimate is immediate,
—1

—— 2= _ = 2
IZevllh + Y h 1@ — T VG
k=0

-1
<cC (ngevnA +lleeld + > h2 Qi — kavn%) .

k=0
Define forany k =0, ..., ¢,

_T —_
vV, AV
0(Ay) = k

. (5.78)
weve ¥l

Then, from (5.77), we get

-1
1 _
leclly < Cxr’o(Ar) H? e Y Q) — Qv
j=0
Assuming that the coarsest problem is of fixed size, we then have o(A¢) H 2=0).
Moreover, the following main stability result holds based on (e) and (5.67).

Theorem 5.49. Assume that the spectral radius 0(Ay) (defined in (5.78)) ofAk (the
matrix A restricted to the subspace V) satisfies the condition 0(Ay) ~ h_;,; then
the following main stability estimate (see (5.72)) holds.

k+1’

-1 -1
ITevlii + ) Ik — Tap)vlR < C (ngzvni + D I - Qm)vni)

k=0 k=0
T
<Cv' Av.

Remark 5.50. The assumption (e) and the estimate o(Ax) >~ hk_2 are valid for finite
element matrices and ||.||o coming from the integral Ly-norm. The projections Oy
correspond then to the matrix representation of the L,-based projections Qy : Ly —
Vi where Vj is the kth-level finite element space. The latter form of Qy is studied in
some detail in the following section. Finally, the fact that Qj and hence Qj provide
estimates of the form (e) can be found in [Br93]. Assumption (b) follows from the fact
that the integral Ly-norm, and the discrete £ one, up to a weighting, are equivalent
when restricted to Vi (see Theorem 1.6).

5.9.3 Approximation of L;-projections

In the present section, we consider the case of finite element matrices A in the setting
of the introductory Chapter 1. We have a sequence of nested finite element spaces
Vi C Vi1, and Vi is spanned by the standard nodal (Lagrangian) basis functions
{¢’,~(k)}x,- N, Nk stands for the set of vertices x; of the triangles 7 from the kth-level
triangulation 7;. Due to the refinement construction of A;_; from Ny, we have
that Ay C Nk—1. The vector spaces Vi correspond to the coefficient vectors of the
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functions v € Vj expanded in terms of the kth-level basis {¢,~(k)}x,- eN, - The vector
space V corresponds to the coefficient vectors of functions v € Vj expanded in terms
of the nodal basis of the finest f.e. space V = V(. We have interpolation matrices
Py_1 that relate the coarse space Vi and Vi_1 in the sense that for any v € Vg, if
vi is its coefficient vector from Vi, then Pr_;vy € Vy is its coefficient vector as a
function from Vj_; (in terms of the the (k — 1)th-level nodal basis).

Consider the well-conditioned Gram (or mass) matrices G (as defined in Sec-
tion 1.4). More specifically Gy is defined based on the Ly-inner product (-, -), as

follows, Gx = (@1, /), vens
Define the Ly-projection Q : Ly +— Vi as (Qkv, ¢) = (v, ¢) forall ¢ € V.
We show that there is a certain relation between Gy and G coming from the
equation (Qyv, w) = (v, w) forallw € Vi, forany v € V = V. More specifically,
the latter problem admits the following matrix—vector form,

wl Givi = (Pewi)T Gov, Vi € V-

Here v; and wy, are the nodal coefficient vectors of Q;v and w € Vj at the kth level,
respectively. Therefore, we need to solve the following mass matrix problem.

Guvi = P Gov- (5.79)

In other words, the exact L2-projection Qv has a coefficient vector that is actually
given by

G 'P; Gov.

_In the preceding section, we used the projections Q : V > V. Recall that
Vi € Vo = V. Therefore, the matrix Oy as a mapping from V + V has the form

?ka_lﬁgG().
Then
10V 12 = v QT GoQuv = v GE PG ' P, Gov. (5.80)

If we define Q) = Fkéljlf,{ Go where 5;1 is a (sparse) approximation to G;l, the
estimate (5.68) takes the following particular matrix—vector form.

1(Qx — Qv = v O GoQxv
- ~_ _ ~_1\=T
=vIGI P (G — G )Gi(G " — GNPy Gov
<7 | Qi3
=72 VTQZG()QkV
= 2V GI PGP, Gov.
Because v = F,{ Gov can be any vector in Vj the above estimate actually reads

viG = GGG = G v < 2 VG i
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To have computationally feasible projections 7, we approximate QO with a Q}
by replacing le by some approximations le whose actions can be computed
by simple iterative methods applied to (5.79). Such iterative methods lead to the
following polynomial approximations of Gk_1 ,

= I — pm (GG}

Here p,, is a polynomial of degree m > 1 such that p,, satisfies p,,(0) = 1 and 0 <
pm(t) < lfort € [«, B]. The latter interval contains the spectrum of the mass matrix
G. Because Gy is well conditioned, we can choose the interval [«, 8] independent
of k. Thus, the polynomial degree m can be chosen to be level-independent so that
a given prescribed accuracy T > 0 in (5.68) is guaranteed. More precisely, given a
tolerance T > 0, we can choose m = m(t) satisfying

19y — Quvllo = |Gy* (G — G ') Py Gov |

= [ G\* pm (G) G; ' Py Gov |

IA

— —=T
max. pu (0GP Gov|

max pp, (¢) | Qrvllo-
tela,B]

Here we have used identity (5.80) and the properties of p,,. The last estimate implies
the validity of (5.68) with

T > max 1)
= o Pm (1)

A simple choice of p,(¢) is the truncated series

(A= pn@t" = pui() = B~ Z( ——r) , (5.81)

which yields 5;1 = pm-1(Gk). We remark that (5.81) was obtained from the fol-
lowing expansion,

=g Y a—1p™Hr  tele Bl

k=0
With the above choice on the polynomial p,,(¢), we have

P =1=tp, (1) =17 Y A =p 'k =1 - p )"

k>m

max (1) = (1 — g>m .
re€la, B i) = B

It follows that
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In general, by a careful selection on p,, we have max;e(q,8) pm(t) < Cq™ for some
constants C > 0 and g € (0, 1), both independent of k. Because the restriction on t
was that 7 be sufficiently small, then we must have

m = 0(ogt™ ) (5.82)

The requirement (5.82) obviously imposes a very mild restriction on m. In practice,
we expect to use reasonably small m (e.g., m = 1, 2). This observation is confirmed
by the numerical experiments performed in [VW99].

5.9.4 Construction of bases in the coordinate spaces

Based on the projections Qy and their sparse approximations Qf (as defined in the pre-
vious section) and the nodal interpolation mappings Zx (see (5.65)), we can modify the
nodal basis {d)i(k) }xi €N\ Ny » OF rather their vector representations as elements of the
hierarchical coordinate spaces Range(Z; — Zy+1). The latter is complementary to the
coarse space Range(Z;.+1) = Range(Py1). Note that the basis functions {¢i(k) xieN;
span the kth-level finite element space V. The procedure described in what follows
gives rise to a computable basis of the “coordinate” spaces Range(wy — mTk+1) from
the direct decomposition (5.71). In what follows, we construct a computable basis in
the “coordinate” space Range(7wy — mk+1). First, note the following result.

Lemma 5.51. The range of Ty — T+1 is the same as the range of (T — Ti+1) Lk —
Zi+1)- More specifically, it coincides with the range of (I — Q¢ |)(Zk — Li+1). Also,
any basis {@;} of the space Range(Ly — Ti+1) provides a basis of Range(Tx — Tk+1)
defined by {(I — Q% )¢i).

Proof. Based on Lemma 5.46, we have for the components in the direct decomposi-
tion (5.71),
Tk — Tkt = Tp — Tht Tk = (T — Ths1) Tk
Thatis, Range (7w —7k+1) = (Tk —ﬁk_H)_Vk. Because Vy can be decompo_sed based
on the components Range (Zy —Zx+1) and Vi1, and because (my — 7T x+1)Vi+1 =0,
we see that Range (7w — mx+1) = Range (wy — Tx+1) Tk — Zk+1), which proves
the first statement of the lemma.
Recalling Definition 5.45,

Tit1 = @1 + Q1 @k — Li+1)) 7k

with Typ = I, and noting that Z; 7y = 7} (due to Lemma 5.43), the following
representation holds,

Tk — Tk+1 = Lk — Trr1 + iy @k — Ti+1)7k
= Tk — v )Tk — Q1 @k — Tk )T
= - Qi )Tk — Li41)Tk-
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From Lemma 5.46, we have T vy = V if V¢ € V. This shows that 77y (Z; — Ti+1) =
Tk — Tk+1. Similarly, Lemma 5.43 implies that 717y = II?H = Ty+1; that is,
Ti+1(Tk — Zi+1) = 0 and (T — Ik+1)2 = Ty — Zk+1. Thus we end up with the
following main identity (which is the second statement of the lemma)

Tk — Tk 1)@k — i) = (I — Qi D@k — Tie+1).

Itis clear then that any basis {¢;} of the space Range (Zy — Zj+1) will produce a basis
(I — Q. D¢i) of Range (I — Q¢ )(Tk — Tks1) because (1 — Q% ) Y ¢ipi =0
would imply then that p =} cip; = OF, ¢ € Viil.

Note now that ¢ € Range (Zy — Zy+1), which is a complementary space to
Range (Zy+1) = Vk_H. Thus ¢ = 0, and therefore ¢; = 0 for all i. That is, the set
{(I — Q. 1)¢i} is linearly independent, hence provides a basis of the coordinate space
Range (Tx — Tk+1)- O

5.9.5 The approximate wavelet hierarchical basis (or AWHB)

Let the nodes in A} be ordered by first keeping the nodes from Nj4| and then
adding the complementary ones from Ny \ Ni41. The latter nodes are labeled i =
nk+1 + 1,..., ng. Here, ng stands for the number of nodes N at level k. Because
level k + 1 (in our notation) is coarser than level k, we have ny41 < ng.

Then, we can consider the following modified multilevel hierarchical basis:

=1 | U= i = 1) (5.83)
k=¢—1,...,1,0

Note that here we consider every basis function qbl.(k) as a vector from V (i.e., interpo-

lated all the way up to the finest-level 0). That is, as-such, a vector ¢i(k) actually has
the form

where the vector
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Fig.5.1. An HB function (no modification) left, and a wavelet-modified HB function (m = 2),
right.

is the ith coordinate vector in R"*. The above components {(/ — Q¢ n l)qbl.(j ), i =
nj+1+1,...,n;} can be seen as a modification of the classical hierarchical basis

components based on the nodal interpolation operator Z; because (I — ;’ +1)¢l.(j ) =
- ? DI -7 jH)qﬁl.(j ) The modification of the classical hierarchical basis
components {(Z; —Ij+1)¢i(j), i =nji1+1,..., n;}comesfromthe additional term

1 @i—Zjn )qbl.(j ) In other words, the modification was made by subtracting from

each nodal hierarchical basis function qbl.(/ ) its approximate L>-projection Qj‘. n lqﬁl.(J )
onto the coarse level j + 1.

An illustration of an HB function and its modification by an approximate mass
matrix inverse provided by m = 2 steps of the CG method is shown in Figure 5.1.
It can be seen that the modified hierarchical basis functions are close relatives of
the known Battle-Lemarié wavelets [D92]. Based on the similarity with the wavelet
bases, sometimes the basis (5.83) is referred to as a waveletlike modified HB or
approximate wavelet HB (AWHB).

Concluding comments for the chapter
A detailed list of references and additional results on MG, as well as notes on the

history of MG, are found, for example, in Hackbusch [H85], Bramble [Br93], Oswald
[0s94], Trottenberg et al. [TOS], and Shaidurov [Sh95].
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Topics on Algebraic Multigrid (AMG)

The algebraic multigrid (or AMG) concept was introduced in [BMcRr, BMcR] (see
also [B86]), and gained popularity after the paper [RS87] appeared. Since then, much
progress has been made and the present chapter reflects a number of major develop-
ments in this area.

There is no single AMG method. Loosely speaking, if the coarse hierarchy defined
by respective interpolation matrices { Py} is constructed by the user, the resulting MG
method defines a class of AMG. AMG is typically defined as a two-level method, and
the construction is used recursively, thus ending up with a multilevel AMG. That is
why, for the most part of the presentation, we omit the level subscript & in the present
chapter.

6.1 Motivation for the construction of P

Typically, to construct the interpolation matrices P, we utilize some (very often as-
sumed) a priori knowledge of the lower part of the spectrum of D~ A where D is,
for example, the diagonal part of A (or the symmetrized smoother to be used, which
comes from a convergent splitting of A). The vectors that are spanned by the eigen-
vectors corresponding to the lower part of the spectrum of D' A (sometimes called
“algebraically smooth” vectors) are attempted to be approximated well by the coarse
space Range (P) for a proper choice of P (assuming a two-level setting). The latter
condition is more rigorously studied in this section.

We are given a sparse s.p.d. matrix A and a convergent in [|.||4-norm smoother
M. The latter property, as we have very often used it, is equivalent to M + MT — A
being s.p.d. The two-grid algorithm, based on M, its transpose M’ , an interpolation
matrix P, and respective coarse matrix A. = PT AP, givesrise to the productiteration
matrix

Erg=I—-MTAUI —ma)I —M'4), 7a=PA'PTA.

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 199
doi: 10.1007/978-0-387-71564-3_6,
© Springer Science+Business Media, LLC 2008
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Equivalently, the two-grid preconditioner Brg is defined from the identity Er¢ =
I— B;Gl A or more explicitly,

"= MTTAPAZTPT(1 — AMTY), 6.1)

—1 ——
Brg =M
where M = M(M + MT — A)~'MT is the symmetrized smoother.
Given A and M, to motivate the construction of P, we start from the characteri-
zation of the two-grid convergence factor o(E7¢) studied in Section 3.2.9; namely,
Theorem 3.19 states, that o(E7g) = 1 — (1/K7g) where

vIM(I — )V

o T 75 py—1 pT 17
T Av , JTM—P(P MP)""P" M.

K76 = sup
v

We recall that M = M7 M+ M T — A)~'M for a given M, is also a symmetrized
smoother. Note that, in general, M is different from M (used in (6.1)). Also, note that
7t 7 (similarly to 7 4) is a projection onto the coarse space, now based on the M-inner
product.

Traditionally, we assume that P has the form

r=["]

Let {4;.} be the basis of unit coordinate vectors in R". It is clear that ¢; = PJ;,,
ic=1,.. e form aLbasis in the space Range (P(PTZVIP)_lPTZVI). Indeed, we
have (PTMP)~'PT M ¥;. = di., which shows that {;} are linearly independent.
Consider now the direct decomposition

V.
V=|:(-)":|+Pvc.

Hence,

:S}lpsupsup — T _
Vi Ve teR <|:V0f:|+tPVC> A(I:VOf:I—FIPVC>
f

= sup sup

) G
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If we drop the term 7 j; in the numerator, we get an upper bound for K7¢. Thatis, we

get then
4] Ay
[y
K76 < supsup 0 0

T agy)- Gl

0 0 vI PTAPv,

<

Notice now that the numerator no longer depends on P. If we want to minimize the
above upper bound for K7¢ without imposing any restrictions on P, the best bound
we can get is to choose P such that

_ AT
[Vof} APv. =0 forallveandvy.

The latter shows, if we partition A as

A= " .
[ACJ" Avc}
that W solves the equation
AgW + A =0,

or equivalently the “best” P, Py, is given by
—1 4
P, = [‘Aﬁ} Af“} :

For P, we get the following upper bound for K7,

KrG < sup ‘_,;Mﬁjf = ~1 .
Y VAARYS (M Ag)

Itis clear then that if the symmetrized smoother M restricted to the “f” set is spectrally
equivalent to Ay, then we have a spectrally equivalent two-grid method (based on
P,.). We actually know (see Theorem 3.25) that if M has the above property, plus if for
some P, PR (for R = [0, I])is bounded in the A-norm, then the respective two-grid
method is also spectrally equivalent to A with K7g < ||[PR|[4 (1 /kmin(MﬁT 1Aﬁc)).

For now, we can conclude that a reasonable guideline to construct P is to find,
for any coarse unit coordinate vector §;, € R"¢, an approximate solution to

AﬁfW,'c = —Afc(s,'c.

Wi,
Wic = |:5i(,:|

Then

defines the i.th column of P.
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6.2 On the classical AMG construction of P

Here we assume that the set V.. of coarse dofs has been selected. Given a dof i € ./\/ f
(the set of dofs complementary to N,.), consider a given neighborhood €2 (i) that con-
tains all coarse dofs i allowed to interpolate to i (denoted by C;), the dof i, plus pos-
sibly some other dofs. The ith entry of the interpolation (Wv,); = Zif ec; Wi (Ve)i,
will be determined from the ith row of the equation

AV = —AfcVe.
The ithrow of the above equation takes the form, after introducing Ag|; = [aii, al.T X]
and Ag|i =a]
T T
ajiv; = —aiy xYi,x — ai’ Ve

If we have values assigned to v; x in terms of v, (cf., [HVO1]), then from the
above equation, we can compute the needed mapping v, > (vs);, which will give
the ith row of P. In other words, if we have an “extension” mapping (cf., [HVO01])
E =[Eyx, i, Ex, .]thatfor given v;, v, defines the values

s
vy =I[Ex, i, Ex, ] [vl} ,
C
we then get
(a,',' + ai]:XE)(y i)v,' = —(al.T’XEX, c+ agc)vc.

That is, assuming a;; + aiT vEx i # 0, we obtain the following expression for the
ith row of P,

—(aii+a! yEx,;)”" (al vEx . +al ).

The classical Ruge—Stiiben interpolation rule corresponds to the following exten-
sion mapping E. We first partition the dofs in set X into two groups; dofs that are
“weakly” connected to i, and dofs that are “strongly” connected to i.

We mention here one possible definition of the notion of “strong dependence” as
introduced in [RS87].

Definition 6.1 (Strong dependence). For a chosen tolerance 0 € (0, 1], we say that
a dof'i is strongly influenced by (or depends strongly on) dof j # i if

—ajj >0 r}?z( (—air)

Equivalently, we say then that dof j is strongly connected to dof i. For all other dofs
k, we say that k is weakly connected to i.
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The extension mapping [v;, V¢] — (viy) = E[v;, V] then reads,

Vi, if i y is weakly connected to i,
viX = ZifeCi aiXsic vi(‘

, if i y is strongly connected to i.
ZZ}GC,' Aiy,ic

Introducing W; = {j € €2;: j is weakly connectedto i} and S; = {j € ;: j is
strongly connected to i}, the resulting (i, i) entry of the Ruge—Stiiben interpolation
matrix reads,

-1

a; [
X5 Lle
— | @i+ E Qi iy ai, i + E ijiy &=

. ai .
ixeW; ixesS; ZJCEC,' L Je

The above formula is well defined if a; ;, are either positive or small negative for
all iy weakly connected to i, and if a;, ;, have the same sign for all iy strongly
connected to i. These conditions are met in practice for matrices A that are close to
M -matrices. The above extension mapping has the property if [v;, v.] is a constant
vector, then E[v;, v.] is also (the same) constant.

Given a vector 1, we can easily construct extension mapping E such that it has a
prescribed value 1y = E[1;, 1.]. The corresponding formula reads

(l)iX
1);

v, if i y is weakly connected to 7,

Viy = ..oy

) ZiCeCi Qi ,ic Vi

Ly K i i L)
Zi(,eC,- iy i (l)lc

The resulting interpolation matrix P (cf., [aAMG]) has its (i, i.) entry equal to

1

if i x is strongly connected to i.

-1

@); iy, i.(1);
—|ai+ Z i, iy ai, i, + Z Qi iy —

ixeW; @ ijeCi Aiy, je (l)jc

ix€eS;
The following property holds (cf., [aAMG]).
Proposition 6.2. The following identity holds,

Al);
(Ple)i = ()i — “b

iy *
aii + ZiXer- i, ix <),

Then if (A1); = 0, we have that (P1.); = (1);. In particular, if 15 = —A;lAfclc

then
EY;
Pl.=1= |:lc:| .
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Proof. We have, letting A = —1/(aii + X . ew. @i, ix (Dix/(D)i)),

iy, i (D,
(P1); = A ai i+ Y Y i iy PR
uec iceC; ixeSi Ljeeci @iz e Wi
iz, i (D,
= A Z aj, ic(l)ic + Z ai, i/y(l)ix Z s [; l 1 .
iceC; ixeS; iceCi ijeci iz je e

(Z ai, i, (D, + Z ai, iy (Diy

eC, ix€S;

((Al)z a;(1); — Z ai, iy (Diy

ixeW;

(AD);
aji + ZiXEW di,ix M),

Assume that Aj is an M-matrix and let A < 0. Then for any positive vector 1.
the vector 15 = —A;Afclc will be positive.

Note that even if A is an M-matrix, its coarse counterpart P7 AP may not be. We
can instead construct an auxiliary M-matrix A associated with A for the purpose of
constructing P, for example, by adding to A symmetric positive semidefinite matrices
a;,j Vi, j, where

}o

Q=

has only four nonzero entries. Here, (7, j) runs over all positive off-diagonal entries
aj,j of A. The coefficient « is chosen so that V;;1 = 0, hence a(1); — (1); =
0 and —(1); + (1/a)(1); = 0. This gives « = (1);/(1); > 0, for any vector 1
with positive entries. Note that the eigenvalues A of V; ; solve the equation (o — A)
(/) —2) — 1 = 0. That is, A(A — a — (1/a)) = 0 which gives either A = 0
or A = a + (I/a) > 0. This shows that V; ; is positive semidefinite. It is clear
then that A := A + a;,jVij is s.p.d. and has zero entry at position (i, j). Moreover,
(A +a;,jVij)1 = Al. After running over all pair of indices (i, j), i < j, such that
a;,j > 0, we end up with an M-matrix A=A+ ZK/-: a0 a;,jVi,j for which
Al = Al. In addition, A — A is symmetric positive semidefinite. We can then build
a P on the basis of A and the positive vector 1. If we have (A1) r =0, then the same

would apply to A, and all the formulas for P (based on A) will then be well defined.
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Note that A will have exactly the entry a;; = a;; + ZiX aj, i (1)) /((1);)) forall
positive off-diagonal entries a;, ;, of A if treated as weakly connected to i.

6.3 On the constrained trace minimization construction of P

Consider a given s.p.d. sparse matrix A and a “f”—*‘c” partitioning of the index set \/
into two disjoint groups Ny and N,.. We want to construct the interpolation matrix P
with columns ¥; for i € A, that have a prescribed sparsity pattern, referred to as the
support of ¥;. It is assumed that ¥;|n;. equals the ith unit coarse coordinate vector.
This gives rise to the form
w
e

of the interpolation matrix. The construction of P under consideration exploits a given
vector 1, which P is supposed to recover, that is, if

=[3]

then the condition is that P1. = 1, or equivalently W1, = 1¢.

After a sparsity pattern of W, or equivalently the support of the columns ¥; of P
is chosen, the actual entries of W are computed from a norm-minimization principle,
as originally proposed in [WCSO00]; see also [Wag96]. The actual algorithm that we
present here was analyzed in [XZ04].

The constrained trace norm minimization problem under consideration reads:

Find

P= m = Fienr
with prescribed sparsity pattern of W, such that
trace (PTAP) = Z v Ay; — min, 6.2)
ieN.
subject to the constraint
Pl. =1 (6.3)
The solution to this problem was given in [XZ04].

Theorem 6.3. Let I; be the mapping representing extension by zero outside the (pre-
scribed fixed) support of ¥ ;. Introduce then A; = IiTAI i, which is the principal sub-
matrix of A corresponding to the support of ¥;. Finally, define the symmetric positive
semidefinite matrices T; = I; A;l Il.T. Then, the solution to the constrained minimiza-
tion problem (6.2)—(6.3) is given by ¥; = (lc),-Tinll, where T = Zie]\/’c(IC)iZTi
is the so—called additive Schwarz operator. Here, (1.); stands for the ith entry of 1..
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Proof. To solve the problem, we form the Lagrangian

LP, W= ¥/ A¥y; +2" (P11
ieN.

Recall that P = ¢, ¥,,..., ¥, ] and hence o € R". Then, by varying ¥; :=
¥, +1;g; for any vector g; defined on the supportof ¥;, from the necessary conditions
for a minimum, we get

(Lig)" (A¥; + (1)) =0,

foralli =1,..., n.. The derivative w.r.t. A gives the constraint,
ne
Ple—1=) (1), —1=0.
i=1
The first set of equations actually reads, based on the fact that ¥; = [; IiT v,
Al Y = =il
Therefore, multiplying by I; A;” !, we obtain
Vi=L1TY; =~ AT I L = —(10)i Tk (6.4)

Multiplying the latter equation by (1.); and summing over alli =1, ..., n, we end
up with the expression

ne ne ne
Y Ai¥ =Y ALl ¥ = - (Z(L)?ﬂ) A
i=1 i=1 i=1
That is, using the constraint 1 = P1. = Y '*  (1.);¥; and the definition of T =
27;'1 (lc)l.zT,-, the following expression for the Lagrangian multiplier A is obtained,
r=-T""1.
Using the latter expression in (6.4), the desired result
¥ =) T '

follows. It is clear that P1. = 1 (1)i¥; = > < (1.)?T; T~ 11 = 1; that is, the
constraint is satisfied. m|

To actually compute 7 ~'1 in practice, we can use the preconditioned CG method
with the following diagonal matrix Z?;l (lc)izli D; 1IiT as a preconditioner. Here,
D; stands for the diagonal of A;. The inverses of A; can be approximated by a fixed
number of symmetric Gauss—Seidel steps. Thus, in practice, P can be based on M fl

where Mfl represents a fixed number of symmetric Gauss—Seidel iterations, for
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example, one or two. That is, the modified additive Schwarz operator reads T =
Z?;’l (lc)izli Mfl IiT and hence ¢; = (1.); [; M;lliT T-'1.The preconditioner for T
is again the diagonal matrix Z:‘l;1 (lc)%li D; 1IiT with D; being the diagonal of A;.
Numerical experiments with the inexact additive Schwarz-based construction of P
are found in [VZ05]. A final comment is that we have (implicitly) assumed that 1.
has nonzero entries (otherwise 7 may not be invertible). A common case in practice
is 1. being the constant vector [1, ..., 117 e Re.

6.4 On the coarse-grid selection

The selection of coarse-grid . is the least rigorous part of AMG. Part of the problem
is that many choices of coarse grids can lead to AMG methods with comparable
performance. For the element agglomeration AMG (in Section 6.9) and the window-
based spectral AMG (in Section 6.11), we provide coarse-grid selection algorithms
that guarantee provable two-grid AMG convergence.

For some practical coarse-grid selection algorithms, we refer to [RS87], the chap-
ter on AMG by K. Stiiben in [TOS], or the tutorial [MGTOO]. State-of-the-art parallel
coarse-grid selection algorithms are found in [PMISi], and in combination with scal-
able (“distance-two”) interpolation algorithms, are found in [PMISii].

6.5 On the sparsity pattern of P

After a coarse set \V.. has been selected, letting Ny = N\ N, be the complementary
set of f dofs, we want to compute the sparsity pattern of P, that is, the support set
of each column ¥; of P. One possible strategy is to look at the decay behavior of
—A/}lAfc, where the blocks Ay and Ag. come from the natural “f”—*c” partitioning
of A, given by

Ao |Ar Arld Ny
N Acf Acc } M

The latter strategy has been utilized in [BZ06]. Namely, we perform source PCG
iterations

AgXp = —Afpec i, e ;= 1],
0

where the only nonzero entry of €., ; is at position i € N.. Then, after computing
an approximation Xy to —AglAfCeC, i» we look at the decay of the entries of xy
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around dof i. The entries at positions j € N that have relatively large values, form
the support of ¥ ;. More specifically, with Dy being the diagonal of Az, we look

at the magnitude of the entries of D];c/ ’x 7. The reason for this is that Djlf/ ’x o
Z}l Dé/ ®Age.. i, where Ay is Agy scaled symmetrically by Dy (/2 50 that Z&l has

a more uniform decay rate. If we can choose V.. such that Az is spectrally equivalent
to its diagonal Dy, then Zﬁc will be well conditioned. A geometric decay of ZZ;I with

a rate depending only on the condition number of Kﬁr can be proved (see Section
A.2.4 or estimate (6.56)).

After the support of ¥; has been determined, the actual entries of ¥; can then
be computed (as in [BZ06]) based on the constrained trace minimization based on a
given vector 1 that was described in Section 6.3.

6.6 Coarsening by compatible relaxation

The goal of the compatible relaxation (or CR) is to select a set of coarse degrees of
freedom, based solely on the smoother, such that after a proper interpolation matrix is
constructed later, then the resulting two-grid method exhibits fast convergence. The
notion of compatible relaxation was introduced by Achi Brandt in [BOO] and studied
later on in some detail in [Li04] and [FV04].

We outline the main principles of CR and show some basic estimates.

If we look at the characterization of K TG, We have tIElt for a matrix J, such that
Range (J,) = Range (I — PRy), R, = (PTMP)~'PT M, we have the inequality

vIIT M J.vg < Krg v I ATy,

This shows that A has a principal matrix that is spectrally equivalent to the same
principal submatrix of the symmetrized smoother M. CR refers to the process of
selecting a J based on a preselected R, typically R = [0, I], such that the constant
kcg in the inequality

VSTJTAJVS < VZJTMJVS < KCR VSTJTAJVS,

=[]

we indeed look for a principal submatrix Ag of A that is spectrally equivalent to the
corresponding principal submatrix of M. However, we may look for more sophis-
ticated choices of R and J. They can change adaptively throughout an iterative
procedure.

In the following few sections, we provide algorithms that test if a given (tentative)
coarse space (associated with a given (tentative) interpolation matrix P) provides fast
to converge CR.

is close to one. If
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6.6.1 Smoothing property and compatible relaxation

Consider an n x n s.p.d. matrix A and an A-convergent smoother M for A (forward
Gauss—Seidel, e.g.) in the sense that | — M~ 'A|4 < 1.Let M = MT(MT +
M — é)*l M denote the symmetrized smoother that gives rise to the iteration matrix
I—-M'A=U-M""AU-MTA).

The following “smoothing” property was derived in Lemma 5.40. For any m > 1
and any vector e, we have

~ 1

_ —1 m - -
(I —M""A)"ella < NoES llell 77-
Note that the left-hand side uses the A-norm, whereas the right-hand side uses the
M -norm.

Note also that, for standard smoothers such as Gauss—Seidel, ||| 57 = I|.| p where
D = diag(A) (for more details, see Proposition 6.12). Now, lete = (I — Q)e, where
Q is any projection onto a given coarse space. Assuming that Q provides a standard
approximation property givenby ||[(I — Q)e| ;; < 6 €| 4, then the following estimate
is obtained.

1 8
vm+1 vm+1

For the case that Q is a coarse-grid projection based on the M-inner product, we can
derive estimates in the M-norm, which is our focus from now on. We first prove an
auxiliary estimate.

(I — M~'AY"(I — Q)ella < (I — Qellj < llela.

Lemma 6.4. Let Q be an M -orthogonal projection that satisfies the following weak
approximation property,

(I — Qellzz =6 lella. (6.5)
Then the following estimate holds,
(I — Q)elljza-157 =8 I — Qell 7. (6.6)

Proof. Consider the problem
Au= M — Q)e.

The following estimates are readily obtained using the fact that M (I — Q)eis orthog-
onal to any vector in Range (Q),

u'Au=u"M(I — Q)e = - Q' M — Qe < |1 - Qullz (I - Q)ell -
Using now the approximation property (6.5) leads to
ul Au <8 Jullal (I = Qell ;-
That is,
lulla <8 I(1 = Q)ell -

Becauseu = A~ M (I — Q)e, the desired estimate (6.6) follows. O
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The following result holds for any M -orthogonal projection Q.

Lemma 6.5. Assume that Q is an M -orthogonal projection onto the coarse space
satisfying the weak approximation property (6.5). Then, for any e = (I — Q)e and
any integer m > 1, the following estimate holds,

I — M~ A el < o llell 7,
where 0 = §/+/m + 1 and § is the constant in the weak approximation property (6.5).

Eroof. Let pp(t) =(1—t)" and T = M~ ApM~1/2 Note that the spectrum of
T is contained in (0, 1]. Then
I =M~ Ay el = 1M1 — M~ Ay M~ DR e
= == 1/2\=—(1/2) ~
= (T )T 2512

1/2 m -~
=< t 1—1t 1 — —
< max 200" U = Qelijaijg

1
< NoES § (11 — Q)ell j7-

In the last line, we used (6.6). O
Consider the following two-grid process.

Algorithm 6.6.1 (Smoothing coarse-grid corrected error). Consider the homoge-
neous equation AX = 0. Letting e be a random initial iterate and m = 1, perform the
following steps.

1. Compute
e = (I — Qe.
2. Smooth:
em = —M AT — M T A)e,_.

3. Monitor convergence in the 1\7I-n0rm; that is, compute |\ex | 5;/ll€oll 37- If con-
vergence is “slow”, use the error e, to augment the current coarse space by
constructing a new Q, and then increment m and go to Step (2). Otherwise,
consider the process to have converged and exit.

Note that Step (1) is performed only once, outside the inner smoothing loop on m.
Also, when |||l iz = ||.llp, we can monitor the convergence in ||.|| p-norm in Step (3)
above.

Lemma 6.5 implies that if m > 1 is sufficiently large, then the above two-grid
process must be convergent for the case that Q is an M-orthogonal projection satis-
fying (6.5).

The following compatible relaxation result holds, where Q now is any projection
(not necessarily an M-orthogonal one).
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Lemma 6.6. Suppose for a reasonably small m > 1 and a given projection Q that
Algorithm 6.6.1 provides a convergent process in the M-norm, so that for some
o € [0, 1), the following estimate holds.

(I — M~'AY" (I — Qellj; <o llell -

Then the following spectral bound holds for some positive constant § that depends
only on m,

(I — Qelljz =8 11 — Q)ella.

A simpler bound, where the roles of A and M are reversed (and 6 = 1), follows from
our assumption that M is an A-convergent smoother. Thus, A and the symmetrized
smoother M are spectrally equivalent on the subspace Range (I — Q).

Proof. Let p,,(t) = (1 — )" and T = M~/ AM~1/2)_ Then
I — el < I — Pn(MTANUT — el j; + | pm (MY AT — el iz

I = pu(TNT~VDT20MV2(1 — Q)e|| + 0 (I — Q)ell
1 - pm(t)

< — T2 MY2(1 - Q)e 1 — Qel s
= max, NG Il (=0l +o - el
1 — pm(t)
= ——— || (I — Q)e 1 — 0)e|:;.
max, NG (I — Qella+o I — Qellj;

Noting that p,, (0) = 1, we have max;¢(,1] (1 — pm (t))//1) < 8, for some positive
constant §,,. Therefore, we finally obtain

(I—0) I —0Oellz; <ém I — Q)ella.
Note that §,, increases with m, but, for a fixed m, it is a fixed constant. O

The following result holds for the desired weak approximation property (6.5).

Corollary 6.7. In addition to the assumptions of Lemma 6.6, suppose that Q is
bounded in energy, so that for some n < 0o, we have

(7 — Q)ella =1 lella.
Then Lemma 6.6 implies the weak approximation property

Sm

7 ella.
I-o

(I = Q)ell 7 <

We recall the fact that the weak approximation property implies two-grid conver-
gence. It is in fact a measure (upper bound) for the TG convergence (cf., (3.26)).

6.6.2 Using inexact projections

Here we assume that the projection w = m; is approximated by a mapping 7 that
is close to 7 in the sense that, for some given tolerance t € [0, 1) and any e, the
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following deviation estimate holds,
[(r —Dellj; <t llmell -

We assume that Range (7“) C Range (P); thatis, 7 = P (x).
Let QO = PR be a simple projection operator for which RP = I, such as

P = |:V1Vi| and R =10, I].
The constant 8¢ in the weak approximation property for Q,
(I — Qellj; =8¢ llella, (6.7)
may not be as good the one for r = 7,
(I —mell; < b llella. (6.8)
Consider then the new modified (projection) operator
T=0+4+7U - 0). (6.9)

We show below that 7 gives a more stable version of Q. Note that if 7¢ = 7, then
7 = and, if 7% = 0, then ¥ = Q. The construction in (6.9) was introduced (in a
geometric MG setting) in [VWI7].

We first show that 7 is indeed a projection. Because Q is a projection, then
O — Q)=0. Also, QP =P implies (/ — Q)n*=(I — Q)P(x) = 0 and On“ =
QP(%) = P(%) =% It is clear then that 7> = Q% + Qn%(I — Q)= Q + 7n%(I —
Q) =T; that is, 7 is indeed a projection.

To show that 7 satisfies a “weak approximation property” with a better constant
than Q, first note that the actions of 7 involve actions of Q and 7%, which are
assumed to be much less expensive than the actions of the exact projection 7 itself.
The following identity holds,

(T—me=(x—nm)I — Q)e.
Thus, the desired result follows from the inequalities
(I =Tl < I —melly + Ix —Tell; < S+ 7 dp)lella.

Note that § = § + 189 K 8¢ if § K 8¢ for 7 sufficiently small.
With the projection 77, Algorithm 6.6.1 takes the following modified form.

Algorithm 6.6.2 (Smoothing approximate projection corrected error). Consider
the homogeneous equation Ax = 0, the simple projection Q = PR, and the approx-
imation % to the M-based projection 1. Letting e be a random initial iterate and
m = 1, perform the following steps.

1. Compute
eg=UI-me=U—-7 — Q)e.
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2. Smooth:
en=U—-M"'A)UT-MTAe,_.

3. Monitor convergence in the M—norm; that is, compute ||ey || 5;/ll€oll 5. If con-
vergence is “slow”, use the error e, to augment the current coarse space by
constructing a new P (which leads to new Q and m ), and then increment m and
go to Step (2). Otherwise, consider the process to have converged and exit.

Note that Step (1) is again performed only once, outside the inner smoothing loop onm.

Finally, we comment on a possible choice for 7. Recall that 7 = PM 'pT M,
where M, = PTMP. Given an approximation M @ to M. such that the actions of
(M )=l are > readily available, that is, based on one or a few Gauss—Seidel iterations
applied to M., then a natural candidate for 7¢ is

P(M%) ™' PT M.

6.7 The need for adaptive AMG
Consider the compatible relaxation process (Algorithm 6.6.1 with m = 1)
= — M 'A)I —7j)x. (6.10)

Based on the identity 1 — M~'A = (I — M~ YA — M~T A), (6.10) can be refor-
mulated (slightly modified) as

= —M AT -7 - M 'A)x. (6.11)

The latter process has the same convergence properties as (6.10).
The iteration (6.11) resembles the exact (symmetric) two-grid cycle

= -MTAU -7 - M TA)x.
The difference is in the projections used. In general, a V -cycle iteration takes the form

= —-MTA)UT - PB'PTAYI — M A)X

Here, B, ! stands for the next (coarse) level V-cycle. The last iterations make sense if
we have already built an initial V-cycle. By testing the current method available, we
eventually end up with a component x that the current level V-cycle cannot handle;
that is, the A-norms of two successive iterates X and Xpew are not too different;
that is,

newAxnew ~ x! Ax.
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The reasons for this to happen could be, either,

e The current coarse space cannot approximate well

e=x—PxC=|:e({i|,

e The coarse V-cycle B, cannot successfully damp the coarse interpolant x. of x.

and/or

A possible remedy to the above is to improve the coarse space and/or the coarse solver
B ! by augmenting the interpolation matrix P = [P, Pyew], where

o _ w Fnew

P[]
The new columns of P are based on additional coarse dofs Ne, new C N\ NVe. Note
that e vanishes at the current coarse dofs set \V; that is, e| N, =0.

The additional coarse dofs can be chosen by some independent set algorithm,

utilizing a pointwise (or any other locally computable) measure of the interpolation
error € = X — PX.. Some details are found in Section 6.10.

We comment at the end that adaptive AMG algorithms originated in [BRO2] (the
“Bootstrap” AMG) and were developed in [aSA], [AAMG], and [McO1].

6.8 Smoothing based on *“‘c”’—*‘f’ relaxation

Consider the case of interpolation matrix
w
e

ML A
M= [ Otf Mf;} (6.12)
cc

and let

be the so-called “c”—“f” relaxation matrix. It comes from the natural two-by-two
block partitioning of

A= |0 “c
[Afc Ace

induced by the interpolation matrix P. Note that the blocks My and M. need not be
symmetric. A special case of interest is when W ~ —M_ " A;.. Another limit case is
obtained for M. = t D, where D, is the diagonal of A.. and T > 0 is sufficiently
large. We denote M = M in this case. Noting that

-T

I —M:TA | My 0 M7 0

Mt = S 1 | , T 00,
0 I 0 -D! 0 0

T

cc
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the results of the present section, as long as they do not depend on 7, also apply to
the following two-grid operator

B =W, + (1 — M7TA)PAZ PT (1 — AMY),

and its limit one, as T — o0, referred to as the “hierarchical basis MG” (or HBMG,
[BDY88]). We have, letting

J = [(I)] and My = Mf (Mg + Mj — Ag)~ My,
Bty = JTM;J + - JMZ;IJTA)PAzlPT(I —AJM_I;TJT). (6.13)

We recall the definition of the symmetrized smoother M=MT M+MT —A)"'M,
which takes part in the exact convergence factor of the two-grid method based on M
and P for a given matrix A (given in Theorem 3.19).

The goal of the analysis in the present section is to compare the exact two-grid
convergence factor o7 = 1 — 1/K7g, where

vIM(I — )V vIM(I — PR,)v
= Su
vl Av v vl Av

’

K76 = sup
v
where R, = 1\7[6_1 PT M with 1\70 = PTMP, as characterized in Theorem 3.19, and

its upper bound given by the maximum over e of the measure (in the form introduced
in [FV04]):

) (-0 MU - Qe
H’M(Q’ e) - eTAe ’ (614)

where O = PR with R = [0, I] being the trivial injection mapping.
We first derive some useful identities to be needed in the analysis. We have, for
the symmetrized smoother,

M=M"M+M" —A)'M

_ [Mﬁ 0 ] (My + ML — Ag)™" 0
Acf M, 0 (MCC + MCTC - A“)il
ML Ay
« | f; _ (6.15)
0 ML
Then,
M.=PTMP

= (MIW + Ap)" (Mg + MJ — Ag) ™ (MEW + Ay)
+ Meo(Mee + ML — Ao) ' ME. (6.16)



216 6 Topics on Algebraic Multigrid (AMG)

Compute next P7 M. We have, letting Dy = My + Mﬁ — Agand D, = ML +
Mee — Acc’

- My 0 |[D;Y o |[MI 4
P =w’, |7 f B
Ag¢ Me|| 0 D7U|| 0 MI
= [WT My + Ay, Me] Dy My Dyl A
= ' cfs cc 0 DZIMZ;
=[(W" My + A D} M, (WTMf,» + A) D7 A+ Mee D' M

= (W' My + A D' My, M — (W' My + Ayp) D' Mg W].

We readily see then that R, = M ' PTM = [Xf, [ =Xy W1 = [0, [T+ X1, —W],
where

Xep = M7 (Ar + W' M) (Mg + My — Ag) ™' My

= M (AgMy" + W) My. (6.17)

Here, Mﬁc = Df Mﬁc Note that X is close to zero if W ~

optimal J, = I - wp=1- PMC 'pT M gets the following form,

Jy = PR*_[ } [}[xcf, — Xy W]

-WXy —(I—-WXpW
—X¢r XfW

(- [5)xp m

=) [, —W] |:Wi| =0.

—Mf;TAfC. The

It is clear that

1

Finally, it is also clear that

Range(J,) = Range ([(I)] — [V;/] ch> .

We formulate the latter results in the following theorem.

oy

Theorem 6.8. Let
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be a general interpolation mapping (i.e., W # —MﬁTTAfC). Define X as in (6.17).
Then the optimal R, = A7IC_1PT1\7I and optimal J, = I — PR, are given by the
formulas:

(i)
Re=|[Xpe, I —XgW] =10, 11+ X1, —W],
(it)

J = I —WXy —(—WXp)W
* —X¢r XW

SR

Formulas (i) and (ii) in the above Theorem 6.8 can be viewed as perturbations of the
commonly used mappings

1

R =10, I] and J0=|:0

i|[1, —W]=1-PR

Estimates of K7¢

We estimate below how much we can overestimate K7 when using R and J instead
of their optimal values R and J,. To do this, assume that
“PR is bounded in M—norm”’; that is,

vT(PR)TZ\7I(PR)V <Ny v Mv.

Because PR is a projection, the same norm bound holds for / — PR (due to Kato’s
lemma 3.6); that is, we have v (I — PR)T M (I — PR)v < N viMv.

Letting
r=o]:

the latter norm bound can equivalently be stated as

viITMIvy < s inf (Jvs + Pv)TM(Jvy + Pv,),
2w

for yn%[ =1—(1/n4) € [0, 1). The left-hand side expression actually simplifies and
the estimate reduces to

vfrﬁzﬁ-Vf < ) vI'Mv, foranyv = Jvy+ Pv. (6.18)
M

With
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we have J, = (J — PX)[I, —W]. Based on inequality (6.18) for v := (J—
PX Vi, V=1, —W]v, we get

Vi = PXep)TM(J = PXpWy = (1= yE) V5T MUV,

= (1—y%) (U =PRIV M(I — PR)v.

We used the fact that JVy = J[I, —W]v = (I — PR)v.

The latter implies the following important lower bound for K7 (recall that
Q =PR),
e’ J*TIVIJ*e

K76 =s
TG l:;p eTAe

> (1-v}) SUp 457 (0, ).

That is, the following result holds.

Theorem 6.9. Assume that P is bounded in the M-norm as in (6.18). Then the fol-
lowing relations hold,

(1—v%) suppjz(Q. e < Krg <supuj(Q. e).
e e

The latter result shows that the two-grid convergence factor bound predicted by the
measure (see (6.14)) can overestimate o7 at the most by

1 1—y2

— <1- M — o1 + v:(1 — o016) = o16(1 — %) + V2.
supe i (Q. @) K16 M (1=7i) + 7

‘We show in the next section, that under reasonable assumptions (which guarantee
good two-grid convergence) that y;; cannot get too close to one. Thus the overesti-
mation of K7 by sup, i 7(Q, €) cannot be too pessimistic.

Estimating P in M-norm

We show in the present section how bad y}%l, or equivalently,n = 1/(1 — y11271)’ could
actually get. The following result holds.

Theorem 6.10. Let

w
P=|:Ii|, R =10, I].

Assume that PR is bounded in the A-norm; that is, for a constant y € [0, 1), we have

T
5V Av,

IPRVI = 5

and that the compatible relaxation (or CR for short) for Ay is convergent; that is,

for another constant ock € [0,1) we also have |I — A}/zMﬁTTAjlfﬂH =
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" — A}/zMﬁTIA];/ZH < ocg, or equivalently, the symmetrized smoother Iqﬁ =

My (M) + My — Ag)~' M[ satisfies

T T 17 T
ViAgpvy = ViMpvy < 2 ViAfVy
Ocr

Similarly, assume that M. is a convergent smoother for A.c in the Aqc.-norm, which
implies that

-1
VIMee(ME 4 Mee — Ace)” MIve > v Aceve. (6.19)
Then, the following norm bound holds,
IPRV|%; < n v7 My,
withn < (1/(1 = y?)(1/(1 = o).
Proof. The estimate we are interested in reduces to the following one,
~ —1
VEPTMPve < v Spve =nviMee(Mee + ML — Acc)™ MLy,

because Sj; = Mcc(Mee + MCTC — Acc)_lMCTC is the Schur complement of M. Fur-
thermore, using formula (6.16), we see that the above norm estimate reduces to

T -1
Ve (MEW+AR)" (My+Mg —Ag) ™ (MgW+Ag)ve < (n—1) v/ Sizve. (6.20)
Alternatively, in terms of Mﬁ = Mﬁr(M; + My — Aﬁc)_lMT, we have
- T~ _
Ve (W + M Ap) My (W + My T Ag)ve < (0= 1) vl Sigve.

Because by assumption,

WEAFW

WTMﬁ'Wf < !
7 T 1oz

it is clear that it is sufficient to prove the bound

1

I_Q%R

_ T _
vi(W+ MﬁTAfC) Ap(W + MﬁTAﬂ.)vc < -1 vIsgve

Also, by assumption, we have that P is bounded in the A-norm, that is, that for a
constant y € [0, 1), we have

VZPTAPVC < VZSAVC.

)/2
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Here, S4 = Ay — ACnglAfC is the Schur complement of A. The latter estimate,
combined with the identity (recalling that

=)

T pT _ r[Ar O1[A;" 07[As Ag
v. P"APv. = (Pv,) |:Acf /] 0 S 0 7 Pv,

=V Save + VI (Ay + WTAﬁ) YAgW + Ap)ve,

imply
T T 1 ’
Ve (A + WEAg) Ay (AgW + Ae)Ve = ——5 Ve Save,
or equivalently, )
1 T —1 14 T
Ve(W+ AZ AR) A (W + Azt Ag)ve < T v Save. (6.21)

Then, because the compatible relaxation is convergent, based on the identity
~ -T —1
I — M/f Ay = (1 _Mﬁ Aﬁ‘)(l _Mﬁ Aﬁ‘)’

the assumption on Mﬁ

ViAgvy S ViMpVy S 5 ViApYy,

CR

A2

12 1/2
PM AP = 11— A My T AN < ock. Hence,

can be reformulated as || — ﬁ
we have the estimate

T T _INT -7 —1 2 T -1
wy(My" —Agp') Ag(My~ — Ap)Wr < ocr WAy W (6.22)

Using (6.22) for wy = Agv,, together with (6.21) and the triangle inequality,

gives

V(W + My Ar) " Ag(W + My Ap)ve

=vI(W+ Az A+ (Mz" — Az AR) Ap
x (W+ Az Ap + (M — AL ) Ag)ve
= [(Mz" — AZ") (Areve) + (W + Ay Age)ve ||Aﬁ_

2
_ 1/2 Y
< (QCR (VT A Az Apeve) " + = VT SAvc)W)

N
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2

= (otut 727 ) [ A A7 A TS

)/2
= (Q%‘R + T2 yz) VCTACCVC
< (1 2 T o

< —-oer)n—1)v.Spve.

Above, we used also the elementary inequality (ab + cd)? < (a* 4 c*) (b +d?), the
fact that S4 + AcfAﬁlAfC = A¢c, and inequality (6.19). This shows that we can let

I (2 L )
Ny =N= — | @ 5
1 1

S l—y? -0

Therefore, for yﬂ%l =1—1/n, we have

1
=vf =1 =072 - ot

that is, yﬂ%l cannot get too close to one.

Corollary 6.11. Assume that we use the “c”—“f" relaxation (as in (6.12)) and that

we can construct a
w
r=|
1

such that for R = [0, I],
e PR is bounded in the M norm.
Then, a necessary condition for a two-grid convergence is that

e The compatible relaxation be convergent, or equivalently that Mﬁ be spectrally
equivalent to Ay,

and that

e PR be bounded in A-norm.

Proof. We proved (in Theorem 6.9) that if O = PR is bounded in the M -norm, then

K16 > (1 —yZ)sup pi(Q. e).
(3

Thus, the measure 1 5;(Q, e) is bounded by Krg/(1 — y]%). Boundedness of the
measure ([FV04]) implies that the compatible relaxation is convergent and that PR is
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bounded in the A-norm. This is seen as follows. Based on the fact that (I — Q)e =
(I —PR)e = Jvy, forany e = Jvy, we get

e’ (I —O)TM(I — Q)e
el Ae
VJCJTZVIJvf 1

> sup = .

e=rv; VEJTAIVE 1 —o0¢g

sup uj(Q, ) =sup
(3 €

Thatis, (1/(1 — Q%R)) < (Krg/(1— yﬂ%l)). This shows that the compatible relaxation
convergence factor is bounded as follows.

1—y2
1/2 3y ,—1 41/2
ocr = I1 = AP Mz AP <\ [1— — 1

_ Because by assumption M is a convergent smoother in the A-norm for A, hence
M — A is positive semidefinite, we also have,

e’ (I — PRTA(I — PR)e < e (I — PR\ M(I — PR)e < n;; K1 e Ae.

That is, I — PR, hence PR as a projection (due to Kato’s lemma 3.6)) is bounded in
the A-norm by n5; Krc. O

‘We also showed in Theorem 6.10, that PR is bounded in the M -norm, if (i) PR is
bounded in the A-norm, and (ii) the compatible relaxation is convergent.

We note that very often M is such that M is spectrally equivalent to D (the diagonal
of A). For example, the following conditions on M lead to an M which is spectrally
equivalent to D.

Proposition 6.12. Let M be such that
vIi(M + MT — A)yv > 8y v! Dv,
and
ID=PMD= V2| < 8.

Then M is spectrally equivalent to D. In particular, for the example M = D + L
being the lower-triangular part of A = D + L + LT, giving rise to the forward
Gauss-Seidel smoother, then 8y = 1 because then M + MT — A = D, and 8, is
bounded by the maximum number of nonzero entries per row of A.

Proof. We have
vIiMv = vimMT M+ mT — A)*IMV
< 80_1 (DI/ZV)TD*(l/z)MTD*(l/z)D’(I/Z)MD’“/Z)(DUZV)
82

< <1vT Dv.
3o
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On the other hand, for X = D=2y D~(1/2) e have
vl xv=vI(XT + X)v > §v'v.
Therefore, with v := X ~ly, we get
So 1XMvlF = 2(xT'W)Tv <2 X7 v[llIv].
Thatis, || X~'|| = || X~T| < 2/80. Then,
VTDI/ZA’Zlel/ZV — vT(Xfl + XfT _ XfTDf(l/Z)ADf(l/Z)Xfl)v

4
<2x 'vliv < = vlv.
8o

Thus, we proved the spectral equivalence relations,

S r T 57 5% T
— v Dv<v Mv<—v'Dv. ]
4 8o

Proposition 6.13. Assume that
w
e=[7]

D} wp 7 < .

is such that

where Dy and D are the diagonals of Ay and A.c. Consider a “c”="f” smoother

T
m= M A
O MCC
and assume that My and Dy, as well as M. and D, satisfy the conditions of
Proposition 6.12. Then, M and
Dy O
p=|"7
0 Dcc

satisfy the conditions of Proposition 6.12, as well. Moreover, PR with R = [0, I] is
bounded in the M-norm.

We first comment on the assumption on P (or W). Very often in practice, assuming
good CR convergence (note that then Ay is spectrally equivalent to D), we can

choose a sparse W ~ —AglAfc. Thus the estimate
|Djf?w D2 < |y az! Dy 05" 4D |

< cond(D~ 2 4) || ;" 4D | < cons.

reduces to || Dﬁ_(l/ 2)Achc_c(1/ 2 || to be uniformly bounded, which is the case for any
sparse s.p.d. matrix A.
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Proof. We have

T
w Vs
[wf] M |:vf] = WMV + Apve) +w. MEve
c c X
12 12
<81 [whDgw ] [vi D]+ whApve

+ 01 [WZDCCWC]1/2 [VZDCCVC]1/2.

The boundedness of D~(/2 M D~1/2) follows then from the boundedness of Df; (1/2)
AfCD;C(l/ ? due to the sparsity of A. The coercivity also holds, because

VIM +MT — Ay = Vi (M + M — Ap)vy + V] (Mee + MY — Aco)ve
> 80 [Vi DyVy + Vi Decve]

=4 vl Dv.

In the present case of M leading to an M , which is spectrally equivalent to D (the
diagonal of A), the condition on PR to be bounded in the M-norm is equivalent to
PR being bounded in the D-norm. The latter simply means

VCT(WTDﬁW + Dee)Ve < 0p VZDccvc'
That is, ||DJ;/2WD;(1/2)|| < +/np — 1, which holds by assumption. =]

Proposition 6.14. Consider the smoother

MI Ay
M:MT=|:-/7 f‘}

0 7 D

Sfor T > O sufficiently large. Assume that My and Ay satisfy the conditions of Propo-

sition 6.12. Then
PR = [VIV }[0, 1

is bounded in the M-norm as long as t is sufficiently large and the block W of P is
such that ||Df17‘/2WD;C(1/2) || < const.

Proof. The estimate (6.20) reads in the present setting
T -1
Ve (MEW + Ar)" (Mg + M — Agr) ™ (Mg W + Ag)ve
1 —1
<m-Dr VZDCC <2Dcc - ; Acc) Decve. (6.23)

Note that the left-hand side is independent of 7. Then, if 7 is sufficiently large, we
have that D.. — (1/7) A, s positive definite and D (2D, — (1/r)ACC)*1 D.c >~ Dge.
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It is clear then that it is sufficient to show

vI(MEW + Ar)" (Mg + Ml — Ag)”! (MEW + Ag)v.

Ve VI Deeve

< const.

First, from Proposition 6.12, we have My (M —I—MT Ag)~'ML ~ Dy < const.
Estimate (6.23) reduces then to

”Dl/z Wt MﬁjTAf")DC_C(I/Z) | < const.

Then, noticing that ||D M TD || < const, (see the proof of Proposition 6.12),
and by assumption || D(l/ 2 WD (1/ 2 || < const, based on the triangle inequality, we
arrive at,

[y (W + My" A) D2 < [ D 2w DLV |+ | Dyl My T A D

= €+ oy uy D1 Dy P D]

< C+C D apD ).

Finally noticing that || D —/2) Afe D“(l/ 2 || < const (equal to the maximum number
of nonzeros per row) for any sparse matrix, the desired result then follows. O

In conclusion, for smoothers M (and T > O sufficiently large) the M-boundedness
of PR is straightforward to achieve based on mild restrictions on W (the block of P).
Thus, the conditions in Corollary 6.11 on My and PR are necessary practical guide-
lines to guarantee a good two-grid convergence. In particular, this holds for the HBMG
(i.e., T = 00) two-level method in (6.13).

6.9 AMGe: An element agglomeration AMG

In this section, we consider the practically important case when a s.p.d. matrix A can
be assembled from local symmetric positive semidefinite matrices {A}, where t runs
over a set of “elements” 7. The latter means that each 7 is a set of degrees of freedom
(indices) and {7} provide an overlapping partition of the set of degrees of freedom (or
the given index set). Let v, stand for the restriction of a vector v to the set of indices 7.
Then, by “assembly” we mean that the quadratic form v’ Av can be computed by
simply summing up the local quadratic forms v! A, v, or more generally,

v Aw = Z VZATWT,

for any two vectors v and w.

AMG methods that exploit element matrices were proposed in [AMGe] and
[ChO3]; see also [Br99]. Methods that generate element matrices on coarse levels
and hence allow for recursion were proposed in [JVO1] and [ChO5]; see also [VZ05].
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In what follows, we focus on the second class of methods in as much as they allow
for recursion.

Given the set of elements {7}, it is natural to consider a coarsening procedure that
first constructs agglomerated elements 7 by joining together a small number of con-
nected fine-grid elements 7. Here, T is viewed as a set of fine degrees of freedom (or
fine dofs). If we can select a subset of the degrees of freedom to define the coarse dofs,
denoted by AV, such that every T has some coarse dofs, then T NN/, defines the actual
coarse element. Finally, if we are able to construct a set of local interpolation matrices
Pr for every T such that Pr maps a vector defined on the coarse set T N N, into a
vector defined on 7', and in addition the collection of { Pr} is compatible in the sense
that for every shared dof, the values of Pr(v’)rny/. at that dof are the same for any
T that shares it, the resulting global interpolation matrix P exhibits the property that

VEPTAPY. =) (V) rew)" P A7 Pr(¥) o,
T

Here, A7 are assembled from { A} for all ts that form T'; that is,

T T
Vv ATWr = Z (Vo))" Acwr.
T

The matrices PTT At Pr naturally define coarse element matrices. The latter property
allows for recursive use of the respective algorithm.

6.9.1 Element-based construction of P

We next study ways to construct element-based interpolation matrices P. We adopt
a columnwise approach; thatis, let P = (¢;) fori =1, ..., n. be the columns of P
that have to be computed. In general, we are looking at

.y

where the identity block 7 defines the coarse dofs as subset of the fine dofs. Then,

Wi
vi= ]

where e; is the ith unit coordinate vector in R,

We have to first select the sparsity pattern of the component w; and second, the
actual entries of w; have to be eventually computed. Actually, to begin with, first we
have to choose the coarse dofs in terms of the fine-grid dofs, which reflects the choice
of the identity block in the block structure of P.

The algorithm that we describe in what follows exploits the coarsening process
that will be guided by an “algebraically smooth” vector x. For example, X can be
an approximation to the minimal eigenvector of the problem AX = Api, MX, where
M = M(M + MT — A)~'MT is the symmetrized smoother that appears in the
resulting multigrid method.
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Assume that an element agglomeration step has been performed (see Section
1.9.7) and a set of agglomerated elements {7} has been constructed. Based on the
overlapping sets {T'}, we can partition the fine-degrees of freedom into nonoverlap-
ping groups {Z} such that the dofs in a given group Z belong to the same sets of
agglomerated elements 7 and only to them. Based on the vector x = (x;), we look
at the numbers dixl.z, where d; is the ith diagonal entry of A. For every group Z, we
select a dof imax as a coarse one such that d,-maxxl.zmax = max;c7 dixl.z. ‘We can select
more dofs by allowing a portion of the dofs in a given group Z with values close to
dimaxxizmax to form the set of coarse dofs V.

Assume that a coarse set A, has been selected. We next decide on the sparsity
pattern of ¥,. Because, we are restricted to choose Pr that are element-compatible
in a given sense (explained earlier), the nonzero entries of a column ¥, should be in
UT for all T's that share the group Z where 7 is the unique set that contains i. From
the set U{T : T NZ # @}, we exclude all coarse dofs different from i as well as all
other dofs that belong to a different 7 which does not intersect Z. The resulting set
defines the row indices of ¥; where it is allowed to have nonzero entries.

Now, having the sparsity pattern of all ¥; defined, we can compute the actual
entries of ¥;. We adopt the following local procedure. For every agglomerate 7 and
all coarse dofs i € T, we first compute a Pr = (¢;) where ¢; (defined only on T')
have the same sparsity pattern as ¥; restricted to 7'. The vectors ¢; are computed by
solving the following local constrained minimization problem,

Z (piTATq)i > min, (6.24)
ieTNN,
subject to
> xie=xr. (6.25)
ieTNN;

It is clear that x; are the ith entries of x. This is the case, because we seek ¢; to form a
Lagrangian basis on T'; that is, ¢; has zero entry at any other coarse dof different from i
and has entry one at the particular coarse dof i. Thus the i th row of the above constraint
on the left equals x; and on the right equals the ith entry of x (which is x;). The above
constrained minimization problem has a small size and obviously has a computable

solution. The solution {¢,} depends on T, which we indicate by ¢; = (oET).

(1)

After ¢; = @; ’ are computed, we are not yet done with the construction of Pr.

The problem is that we cannot let ¥, |7 = (pET) because (oET) for different T's do not
necessarily match at dofs that are shared by two (or more) agglomerates. To fix this
problem, we choose weights dr, ; = A7/} ¢ jer’ |A7/||) for every j € T.
Other choices are also possible, but the important thing is to ensure the following
averaging property,

Y odr =1

T: jeT
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Then, the jth entry of ¥; equals the averaged value

Z dr, j ((pz(T))j'

T: jeT

The above formula defines ¥; uniquely with nonzero entries only at its prescribed
support. Finally, we notice, that ) ; x;¥; = x holds because the averaging preserves
the constraint. Due to the same reason, {¥;} form a Lagrangian basis; that is, ¥;
vanishes at all coarse dofs different from i and has value one at coarse dof i. The
latter property translates to the fact that P = (¢ ;) admits the block form

7]

6.9.2 On various norm bounds of P

In this section, following [KV06], we derive energy norm bounds for projections
Q = PR, where P is aninterpolation and R is arestriction mapping such that RP = I.

A general local to global norm bound

We recall our main assumptions. We are given a set of coarse degrees of freedom
(or coarse-grid dofs) AN.. We view N, as a subset of /. We have vectors (or grid
functions) defined on N (fine-grid vectors) and vectors defined on N, (coarse-grid
vectors). Let n = |N| and n. = |N,|, and n. < n be the respective size (cardinality)
of N and ;. On each agglomerated element T, let ny = |T| and ny . = |T N N¢|.
The space of coarse-grid vectors is identified with R"¢, and similarly, the fine-
grid vectors are identified with R". We have global mappings R: R" +— R and
P: R* - R". Respectively, there are local mappings Rr: R"" + R"7< and
Pr: R"¢ - R"" such that R restricts a local fine-grid vector defined on T to
alocal (coarse-grid) vector defined on T N N, whereas the local interpolation map-
ping Pr interpolates a local coarse vector defined on T N A/, to vectors defined on 7.
Let I5.: R"7< > R be the extension by zero of coarse vectors defined on T N N,
to a vector defined on N;. Therefore, (I;')T restricts a coarse vector defined on N,
to a coarse vector defined on T N N. The following matrix definitions are then in
place,

P[0V NN pr _ [0 VAND AT o _[O])NAT
R_[ILM ,RT_M}NCQT , and IT_M}TQNC.

We seek local interpolation Pr that has the following form,

[+ T\
PT_[]}} T NN,. (6.26)

Note that, in general, Pr may not agree on dofs that are shared by more than one
subdomain 7'. That is why we need a partition of unity nonnegative diagonal weight
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matrices Dt = (dr, ;)ier that are defined for vectors restricted to 7. Let also

o [0]) MAT
=T )

be the n x nr matrix representing extension by zero outside of 7'. It is clear that
vr = ITTV and A = ZT ITATI{. Note that we have also assumed that the row
indices of Pr are in T'. Partition of unity means that

Y IrDrif =1.
T

In other words, ..y dr, i = 1 for every dof i. With the help of the partition of
unity diagonal matrices, we are in a position to define a global P as follows,

P=>" 1DrPr(f). (6.27)
T

The global QO = PR takes the form

Q=Y IrDrPrRrIf.
T

The latter holds because RTITT = (I;)TR. We can also see that RP = I, which
implies that Q is a projection.

From local to global estimates

We assume that for another s.p.d. matrix M, which can be assembled from {M7} in
the same way as A, there is a stable local procedure that defines Pr such that for a
mapping R7 : Ry Pr = I, we have the bound

(vr — PrRrvr) My (vr — PrR7vr) < n1 VR ATvE, (6.28)

for any vz € R"7. A simple example of M can be the (scaled) diagonal of A. Then,
Mt will be the (scaled) diagonal of A7. Another choice is My = Ar. In either case,
we assume that Pr R recovers exactly any potential null vectors of Ar. For given
local matrices {M7}, we let

| Mz ||

dr,i=
ZT’:ieT’ Ml

(6.29)

Assuming that Pr, or rather OQr = Pr R, are bounded in the Mr-energy norm in
terms of A7 as in (6.28), we prove a similar M-energy bound for the global P.
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Based on the partition of unity property of { D7}, wehavev—Qv = > " It D7 (I —
PTRT)IYY:V. Hence, letting wr = (I — PTRT)ITTV, we get

(U= QWM = Qv =(I-0Ww' MY IrDr(I - PrRp)Ifv
T

< (U - MU - w)'/?

T 1/2
X ((Z ITDTWT> ZIT'MT’ITT’ ZITDTWT> .
T T’ T

Introduce for a moment the quantity (cf. [Man93] for a different application)

Yo 1L S trDrwr 3,
K = sup z

- (6.30)
(wr: PrRrwr=0) ZT WTMTWT

Then the following bound on P (or Q = PR) holds.

T
(1 = QW) MU~ Q)v < Z(Z ITDTwT> Iy My 1l " Iy Drwy
! T T

T
T
<K Z ((I = PrRr)IFV) Mr(I — PrRp)Ifv
T
<K Y nrv'IrArifv
T
< K(mTax nr) vl Av. (6.31)

Next, we show how to estimate K in (6.30).

Lemma 6.15. Let Cond(M7) = Amax (MT)/Amin(MT) denote the condition number
of Mr, and let k > 1 be the maximum number of subdomains T that share any given
dof. Then, assuming the specific form (6.29) of the weight matrices, the quantity K
defined in (6.30) can be estimated as K < k maxy Cond(Mr).

Proof. Let wr, ; stand for the ith entry of wr. We have

2 2

= [IMy |l ‘

I]]:/ ZITDTWT 177:/ ZITDTWT
T T

2
= Myl Z( > dT,in,,)

jer’ T:ieT

2
= Z( > ||MT/||“2dT,in,,-) :

ier’ T:ieT

T/
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Therefore,

lel ZITDTWTHM <ZZ< > My Pdr, wr, ,)2.

7" ier’ “T:ieT

Because |M,|ldr,; < |[Mr|| fori € T N T' and Y r.ierdr,i = 1 using the
Cauchy—-Schwarz inequality and noting that wr = (I — Qr)wr, (O = PrR7),
we get

3 zg,ZITDTwT <ZZ( Y IMrll P dr P lwr, |)

T/ T T:ieT

<Y YD IMrlwE ;Y dr

7' ier T:ieT T:ieT

=Y 3> IMrjwy ;.

7" jer' T:ieT

2

Therefore, with Q7w = 0, we have

2
oy ITDTWT <> > > Cond(Mp)rk, (M) wy

T/ T T e T:ieT

< mje_GCond(MT) Z Z Z At (Mr) wT i

7" jer T:ieT

= max Cond(Mr) DD M wi o Y1

T ieT T':ieTnT’
< max Cond(Mr) « Z Z A (M) w%i
T T ieT
= max Cond(M7) « Z A (M7 [wr |1?
T T
= mje_GCond(MT) K Z AL MO = Or)wrll?
T
2
< mje_GCond(MT) K ZT: (1 — Q)W Iy,

= mje_GCond(MT) K ZT: w%MTwT.

Thus, we showed that K < ¥ max7 Cond(M7) where x > 1 is the maximum number
of subdomains that share any given dof, and Cond(M7) = Amax(M7T) /A+ (M7),

min

denotes the effective condition number of M. More specifically, )‘:un (M7) > Oisthe

minimal (nonzero) eigenvalue of Mt in the subspace Range (Pr Rr); thatis, we have

)‘Itnn(MT) ||WT||2 < WTMTWT, for all Wr = (I — PTRT)WT.
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Note that to have A:lin(MT) > 0, this means that the projection Pr Rt should

recover exactly the potential null vectors of M7 that we have assumed. O

In summary, estimate (6.31), based on Lemma 6.15, gives the following main
result.

Theorem 6.16. Let M be an s.p.d. matrix such that the local estimates (6.28) hold.
Let P be defined by (6.27) based on the local interpolation matrices { Pr} and the
diagonal weight matrices { Dt} with coefficients given in (6.29). Then the following
global norm bound holds,

v/ (1 = Q)" M(I = Q)v =« max Cond(Mr) (m]a}x 77T> vT Ay,

where k > 1 is the maximal number of subdomains T that contain any given
dof. Here, Cond(Mrt) stands for the effective condition number of Mt defined as
AmaxMT/)L;;m(MT), where )Ll'gm is the minimal eigenvalue of Mt in the subspace
Range (I — Qr). This minimal eigenvalue is positive if Qr = Pr Rt recovers ex-
actly the potential null vectors of M.

In addition, suppose that the local matrices M have uniformly bounded effective
condition number; that is,
nglx Cond(M71) < Cyy . (6.32)

This is trivially the case, for example, if M is the diagonal of A, hence M7 is the
diagonal of A7. Furthermore, let

viAv <vI'Mv forallv e R”, (6.33)

which can be ensured after proper scaling of M. Suppose also that the constants in
the local estimates (6.28) are bounded

mTax nr < Cy. (6.34)

Then the global estimate in Theorem 6.16 shows that A is spectrally equivalent to M
in the subspace Range(/ — Q). The latter space is complementary to the coarse space.
Therefore, the following corollary holds (based on Theorem 3.25).

Corollary 6.17. The two-grid method based on P defined by (6.27) and a smoother
M satisfying (6.32) through (6.34) is optimally convergent with a convergence factor
bounded by 1 — 1/0, where 0 =k Cy Cy,.

On a local element level, for finite element matrices A, it is very often the case
when A7 and its diagonal M7 are spectrally equivalent (independently of the mesh-
size) on the subspace complementary to the potential null space of Ar. In such a case,
assuming that Pr R recovers exactly the potential null space of A7, we also have
that Mt and At are spectrally equivalent on the subspace Range (I — Pr R7). Then,
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assume that we have established a local energy boundedness of I — PrRr, that is,
an estimate

I = PrRr)vVT I3, < ny VRATVT,

for some mesh-independent constants r;,T. Due to the spectral equivalence of A7 and
Mt on the subspace Range (I — PrR7), we then have similar estimates for Mr;
that is,

2 T
(I = PrRr)Vrily, <nr Vi ATVT.

Based on the above Corollary 6.17, we obtain then a uniform two-grid conver-
gence for these finite element matrices A. This covers the case of elliptic-type finite
element matrices, either scalar elliptic, or systems such as elasticity. For the scalar
elliptic case, the assumption on Pr R7 is that it should recover locally the constant
vectors exactly, whereas for the elasticity case, the assumption is that Pr R7 should
recover the so-called rigid body modes (or r.b.m.) locally. In 2D, we have three r.b.m.,
whereas in 3D, there are six such modes.

The rest of this section deals with the practical construction of interpolation, which
fits the null vectors of A7 exactly. One way to do this is to first coarsen the null space
and then proceed with the rest of the interpolation as described below.

Assume an initial coarse grid /\/? such that its restriction to every T is rich enough;
that is, there are at least as many coarse dofs per element 7" as the dimension of the
null space of Ar. For example, in the 3D elasticity example, it is sufficient to have
six coarse dofs per element 7. Let Py 7 be local interpolation matrices (having the
form (6.26)) such that a subset of its columns provides a basis for the nullspace of
Ar. Together with the restriction mapping Ro, 7 = [0, /] and the projection Qp, 7 =
Po, T Ro, T based on Py 7 using averaging, we can define a global initial interpolation
matrix Py via (6.27). We construct interpolation matrices Pr that are defined on a
complementary coarse grid /\/C’; that s, V, C/ ﬂ/\/co = {). The resulting composite coarse
grid AV equals /\fLO U /\/L' It is natural to assume that for every 7, Ro, 7 Pr = 0. In
particular, we assume that Pr have zero rows corresponding to the set MQ (viewed
as a subset of the fine-grid dofs).

Define the composite interpolation

Pr =[P, 1, Prl,

and the composite restriction mapping

Ry = Ry, 7
Rr(I — Py, 7Ro, 1) |’
Then the following simple identity holds,
I—PrRr =~ PrRr)I — Po. 7Ro. 7). (6.35)

Therefore, the composite interpolation satisfies vy = PrRrvy for any v7 in the null
space of A7 as needed in the local estimate (6.28) (with M7 = Ar). Furthermore,



234 6 Topics on Algebraic Multigrid (AMG)

Q7 = PrRry is a projection. Indeed,

== _| Ro, T
RrPr = | Ry (I — Po, 7Ry, T):| [Po, T, Pr]
_ [ Ro, 7P, T Ro. 17 Pr
| Rr(I — Po,TRo, 7)Po, 7 Rr(I — Po, 7Ro, 7)Pr
_ [Ro, 7Po, 1 0
| 0 Rt Pr
1 o
=lo 1]

We used the fiCt that Ry, rPo,7 = I, RrPr = 1,and Ry, r Pr = 0.

Now, let O be the global mapping defined using the partition of unity diagonal
matrices as in (6.27). The conclusion of Theorem 6.16 is that based on local estimates
such as

I = Op)vrlla, < nr Ivrli,:

the global one,

I =0l < nlIviA,

follows, where n depends only on local quantities (nr and the nonzero spectrum
of AT).

6.10 Multivector fitting interpolation

In Section 6.2, we described an algorithm that constructs a P that fits (approximately)
one given “algebraically” smooth vector in the sense of Proposition 6.2. A procedure
that gives a P that fits a given vector exactly, both locally and globally, was described
in Section 6.9.

Assume now, that we have constructed a P that contains in its range a number
of vectors Xj, ..., Xm—_1, and we want to construct a modified P that keeps in its
range the previous vectors Xi, ..., X,;,—1 and one additional vector x,,. The idea is
(cf., [VZ05]) to construct a Ppew = Py, and augment P to P =[P, P,] such that
P has a full column rank. To ensure that P has a full column rank, let us assume (by

induction) that P has the following block form P = [Py, ..., Pn—1], and overall:
* ok 1} N\ (M U...Nu1)
* ok I } Nmfl
P = : o) :
*x I 0 0|} M
I 0 0 O} M
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That is, every block column P, of P comes with its own coarse set NV that is com-
plementary to the previous coarse sets. This hierarchical structure ensures that the
resulting P has a full column rank.

The next step is clear then. We compute the interpolation error € = e,,—; in the
following steps.

(i) Letey = xyy,.
(i) Fork =1,..., m — 1 compute

e =ex—1 — Prler—1ln;_))-

We notice that e; vanishes at N7 U ---U Nj_1.

Atthe end, e = e,,_ vanishes at the current global coarse-grid N1 U- - -U N, _1.
Based on the entries of D!/?e with maximal absolute values, where D is the diagonal
of A, we select a complementary coarse set N;, (i.e., Ny C N\ (N1 U---UN,—1)).
The latter can be done, utilizing a certain partitioning of A/ into nonoverlapping sets
(groups) {Z} by selecting a new dof i7 per Z such that D'/2e|7 has a local (in Z)
maximal value at i7. Then, we construct a P, that fits e. For this, we may use any
interpolation algorithm that fits a single vector. It is a simple observation to show
that x,, is in the range of P. This is indeed easily seen, because by construction
e € Range(P,,), and the rest follows from the identity

m—1
X = Z Prey—1 + e € Range[ Py, ..., Pp—1, Pul.
k=1

6.11 Window-based spectral AMG

In the present section, we provide a purely algebraic way of selecting coarse degrees
of freedom and a way to construct an energy-bounded interpolation matrix P (cf.,
[FVZ05]). In the analysis, we use a simple Richardson iteration as a smoother. If
local element matrices are available (as in Section 6.9) the following construction and
analysis simplifies (cf., [Ch03]). All definitions and constructions below are valid in
the case when A is positive and only semidefinite; that is, A may have nonempty null
space Null(A).

We consider the problem Ax = b and reformulate it in the following equivalent
least squares minimization,

X = arg mvin Z [|[Ayv — bw||%)w. (6.36)
w

In the least squares formulation, each w is a subset of {1, . .., n}, and we assume that
Uw ={1,...,n},

where the decomposition can be overlapping. The sets w are called windows, and
represent a grouping of the rows of A. The corresponding rectangular matrices we
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denote by A; thatis, Ay, = {Ajj}icw, 1<j<n. Thus, we have that A,, € RIWIX" where
| - | (in the present section) stands for cardinality. Accordingly in (6.36), b,, = b|,, =
{b;}icw denotes a restriction of b to a subset and D,, = (D (i));en are diagonal
matrices with nonnegative entries, such that for any i, Zw: icw Pw(@) = 1; that is,
{Dy, }w provides a partition of unity. Vanishing the first variation of the least squares
functional, we obtain that the solution to the minimization problem (6.36) satisfies

Y (A DuAux =) (Aw)" Dubu. (6.37)

With the specific choice of { Dy}, it is clear that (6.36) is equivalent to the standard
least squares problem,

> 1AWy = by 5, = AV — b,
w
Therefore, we obtain the identity
vl (Z(Aw)TDwAw>v = vl AT Av. (6.38)
w

We emphasize that we do not solve the equivalent least squares problem (6.37),
and it has only been introduced as a motivation to consider the “local” matrices
(Ay)T Dy, Ay asatool for constructing sparse (and hence local) interpolation mapping
P, which we explain below. Of interest are the Schur complements S,,, that are
obtained from the matrices (Aw)T D,, Ay, by eliminating the entries outside w. More
specifically, let (after possible reordering of the columns of A,,)

Aw = [Aww Aw,x], (6.39)

where A, is the square principal submatrix of A corresponding to the subset w and
Ay, y corresponds to the remaining columns of A, with indices outside w. As any
Schur complement of symmetric positive semidefinite matrices, S,, is characterized
by the identity
T
vl Syvy = inf [VW} (Aw)T Dy Ay [VW} : (6.40)
Ve [Vx Vy
An explicit expression for S, is readily available. Let AZJ, yDwAw,y = 0TAQ
with Q7 = 0~! and A = diag()) being a diagonal matrix with eigenvalues that are
nonnegative. Letting At = diag(AT), where AT = 0if A = 0, and AT = A~ if
A > 0, we have the expression

Sw = (Aww)" D Auw — (Aww) DuyAu x QT AT QAL DAy

Note that S, is symmetric and positive semidefinite by construction (see (6.40)), and
we have the inequality

(Vw)TSwVw = VT(Aw)TDwAst Vi = V]y.
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Hence,
> ) Syv < v7 (Z(AW)TDwAw>V = viATAv < A vT Av. (6.41)
w w

This inequality implies (letting v = 0 outside w) that

T T 2 T 2 Ty .
(Vu)" SwVw = Al VI AV < A" vV = [[A]I7 vy, Vs

that is,

ISwll < 1A% (6.42)

Selecting coarse degrees of freedom

Our goal is to select a coarse space. The way we do that is by fixing a window and
associating with it anumber m,, < |w|. Then we construct m,, basis vectors (columns
of P) corresponding to this window in the following way. All the eigenvectors and
eigenvalues of S, are computed and the eigenvectors corresponding to the first m,,
eigenvalues are chosen. Because generally the windows have overlap, another par-
tition of unity is constructed, with nonnegative diagonal matrices {0, } where each
Q. is nonzero only on w and the set {Q,,} satisfies ), O, = I. From the first m,,
eigenvectors of S, extended by zero outside w, we form the local interpolation ma-
trix P, columnwise, which hence has m,, columns. The global interpolation matrix
is then defined as

P =3"0,I0, Py, Ol

Here, for a global coarse vector v¢ = (v¢,), the action of [0, P,,, 0] is defined such
that [0, Py, O0]v¢ = Py, (v“|w) = PyVy,.

The first result concerns the null space of A, namely, that it is contained in the
range of the interpolation P.

Lemma 6.18. Suppose that my, is such that m,, > dim Null (S,,) for every window
w. Then Null (A) C Range (P), that is, if Av = 0, then there exists a v¢ € R" such
that v = Pv°.

Proof. Let Av = 0. Then from inequality (6.41) it follows that S,,v,, = 0, where
vy = V| and we extend vy, by zero outside w whenever needed. Hence, by our
assumption on m,, there exists a local coarse grid vector v¢, such that v, = P, v¢,.
Let v¢ be the composite coarse grid vector that agrees with v{, on w, for each w. This
is simply the collection v¢ = (v¢,). Then,

PVCZZQwaVZ)ZZQwvaZQwVZV- O
w w w
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Two-grid convergence

First, we prove a main coarse-grid “weak-approximation property.”

Lemma 6.19. Assume that the windows {w} are selected in a “quasiuniform” manner
such that for all w, the following uniform estimate holds,

ISl = nllAl>. (6.43)

Note that n < 1 (see (6.42)). Assume that we have chosen m,, so well that for a
constant § > 0 uniformly in w, we have

1Swll < 8Am,+1(Sw)- (6.44)

Here Ay, +1(Sy) denotes the (my, + 1)st smallest eigenvalue of Sy,. It is clear that
8 > 1. Then, for any vector e € R", there exists a global interpolant € in the range
of P such that

8
e—e)TAe—e) < ||A|lle —€|*> < — e Ae. (6.45)
n

Before we present the proof of the lemma, we illustrate how the assumptions
(6.43) and (6.44) can be verified. Consider the simple example, when A corresponds
to a finite element discretization of the Laplace operator on uniform triangular mesh
on the unit square domain 2 with Neumann boundary conditions. We first notice that
the entries of A are mesh-independent. Therefore || A|| is bounded above by a mesh-
independent constant (||A] < 8). Let 4 = 1/mom be the fine-grid mesh-size for a
given integer m and a fixed (independently of m) integer mog > 1.Let H = 1/m. This
implies that 2 can be covered exactly by m? equal coarse rectangles of size H = mh.
Each coarse rectangle defines a window as the set of indices corresponding to the
fine-grid nodes contained in that coarse rectangle. There are (mo + 1)* nodes per
rectangle, and all the rectangles form an overlapping partition of the grid. A simple
observation is that any such rectangle can have 0, 1, or 2 common sides with the
boundary of 2 and therefore, there are only three different types of window matrices
A, and respective Schur complements S,,. It is clear then that inequalities of the
type (6.43) and (6.44) are feasible for a mesh-independent constant  and for a mesh-
independent choice of m,,. For the simple example in consideration, fix mo > 3, hence
(mo+1)? > 4(mo+ 1); that is, let the number of nodes in w be larger than the number
of its outside boundary nodes (i.e., nodes outside w, that are connected to w through
nonzero entries of Ay, ). From (6.40) it is clear that if S,,v,, = 0, then there is a v,
such that A, vy + Ay, y vy, = 0. Because in our case Ay, is invertible, we have then
that the dimension of the null space of S,, equals the dimension of Range(A,, ).
The latter is bounded above by 4(mg + 1) (which is the number of nodes outside w
that are connected to w through nonzero entries of A, ). Therefore, we may choose
any fixed integer m,, > 4(mo + 1) (and m,, < (mg + D3) to guarantee estimate
(6.44) because then A, +1(Sw) > 0. The number of coarse degrees of freedom
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(or dofs) then equals m,,m?. This implies that the coarsening factor, defined below,
will satisfy

#finedofs  (mmo+1)? (mo + ;41_1)2 ~ mg

# coarse dofs Mym? Moy Moy

For example, if we choose m, = 4(mo + 1), the coarsening factor is
~ mo/(4 + mio). It is strictly greater than 1 if my > 4, and it can be made as
large as needed by increasing mg. (The latter, of course, reflects the size of the win-
dows.) In conclusion, in this simple example, we can easily see that the bounds
n = miny, ([Swll/1AI*) < 1and § = maxy, (||Sw |/Am,+1(Sw)) = 1 are fixed mesh-
independent constants. This is true, because the matrices Sy, are a finite number, the
number m,, is fixed, and therefore the eigenvalues A,,,,,+1 (S ) are also a finite number,
and all these numbers have nothing to do with m (or the mesh-size 4 +— 0). Similar
reasoning can be applied to more general quasiuniform meshes. This is the case if the
windows can be chosen such that the matrices (Ay)? Dy Ay and S, are spectrally
equivalent to a finite number of mesh-independent reference ones. The constants in
the spectral equivalence then will only depend on the angles in the mesh.

Proof of Lemma 6.19. Lete € R" be given. Note that our assumption on m1,, is equiv-
alent to the assumption that for any window w, there exists a €,, in the range of P,
such that

ISwllllew — €wll® < 8 el Sye,, (6.46)

where e,, = e[, and whenever needed, we consider e,, and €,, extended by zero
outside w. We now construct an € in the range of P that will satisfy (6.45). Namely,
wesete =) Oy€,. Wenotice that ), O,€ =€ =) 0y€,. Hence,

le —€]* = (e — e)T<Z Qu (e — e))
= (e—e)T<Z Qu ey —ew))

= (0 —e)" (0 (ew — €w)).

Therefore,

1/2
le —el? < [Z(e —6) Qu(e— e)] [Z 10,/ (ew — ew>||2}

1/2
= Jle— e||[Z 103/ (ew — ew>||2] :

1/2

That is,
lle — €l < > 101/ (ew — €)1
w
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Therefore, based on (6.46), the quasiuniformity of {w}, and inequality (6.41),
we get

2 1/2 2 2
le—ell> <> 101 (ew —€)l* <D llew — €yl
w w

T

e Syew 1) T
<5y o < Y el Sue

ISwll = nllA]> &= 70

w

el AT Ae <

< T
~ nllAlR — nllAll

e’ Ae. (6.47)

O

We use estimate (6.45) to show that the two-grid method with the Richardson iteration
matrix M = (|Al|/w)], ® € (0,2), which leads to M = M(Q2M — A)~'M =
(A2 /0®) QAN /)T —A)~ L, is uniformly convergent. More specifically, we have
the following main spectral equivalence result.

Theorem 6.20. The algebraic two-grid preconditioner B, based on the Richardson
smoother M = (||All/w) I, w € (0, 2), and the coarse space based on P constructed

by the window spectral AMG method, is spectrally equivalent to A and the following
estimate holds.

8
vl Av < v By < — vl Av
nw2 — w)

The term & /1 comes from the coarse-grid approximation property (6.45).
Proof. We first notice that

- Al? A -1 A 1
w!l Mw = 1Al wl ZMI —A w < & wiw=— wlMmw.
w? 1) w2 — w) 2—w

Then, based on the M-norm minimization property of the projection 7 ;;, we have

(=7 MU —n)v=_inf  (v—e)Mv—e)
ecRange(p)
1
< — inf (V—e)TM(V—e)
2 — w ¢cRange(p)
A
_ AL v — el
®(2 — w) ecRange(P)
1 T
<— — V' Avw.
w2 —-—w) n

Thus, based on Theorem 3.19, we have that the corresponding two-grid preconditioner
B is spectrally equivalent to A with the best constant

) (=) MU =7y _ 8

K716 = su .
16 =2 vT Av T ne@-—o)
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As it has been shown earlier (see Theorem 5.22 in Section 5.6), we know that
the two-grid window-based spectral AMG method improves its convergence by in-
creasing the number of smoothing steps. This is due to the “strong approximation
property” (see (6.47) one inequality before the last); namely, given e, there is a coarse
interpolant € such that

)
le —elld < llAllle — ell* < —— [l Ae||*.
Nl Al

6.12 Two-grid convergence of vector-preserving AMG

This section provides a two-grid convergence analysis of a constant vector-preserving
AMG with application to matrices coming from second-order elliptic PDEs.

Problem formulation

Here, we first describe the particular AMG method of interest. Consider a s.p.d. sparse
matrix A partitioned into the common two-by-two block form,

_Ar A} Ny
A_[ A Am]} N (6.48)

As usual, NV, is the set of coarse degrees of freedom, or coarse dofs. In our application
to follow, we assume that Az is s.p.d. and spectrally equivalent to its diagonal part Dy.

We describe next a two-grid AMG. Let 1, be a given vector with indices from NV.
In the application to follow, it is assumed that 1. is a vector with constant entries.
Define

1y = —AglAfclc.

1- [llf].

Given is a rectangular matrix W with the same dimension as the off-diagonal block
Ay of A. Our next main assumption is that W satisfy

Then, by definition

Afclc + A_ﬁ'WIC =0. (6.49)

For each coarse dof i, we associate a neighborhood set 4; ¢ N = N U N,
such that U, Ai = N. The sets {A;};cn; can be overlapping. Also, consider
neighborhood sets €., ; C N, which have large enough support about the coarse
dof i. More specifically, we define 2. ; to contain the set

UkeA; {j e M : (A_ﬁ'W)k,j # 0 or (Afc)k, j # 0}.

How large this set is depends on the sparsity of AyW and Af..
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Define the coarse vector (supported in 2., ;),

0
1= |1,
0

Then, due to the choice of €2., ;, and recalling (6.49), we have

0
(AgWle Dl = | AgW | g, ;
L0 /4
-, T
= | agw | 1lg,
L * 1/ 4
= (AgW1o)| 4,
= —(Arlo)l 4
= —(Arle, )4 (6.50)

The latter identities use the fact that 1. ; coincides with 1 on €2., ;, and due to the
choice of €2, ; to be a sufficiently large neighborhood of the coarse dof i. That is, to
compute Ay W1, restricted to 4; due to the sparsity of AzW, we need the entries
of 1. only from a subset of €2, ;. A similar argument applies to the vector Azl ;
restricted to A;.

In what follows, our goal is to estimate the deviation between W, = —AglAfC
and W. More specifically, we are interested in bounding the inner product (Ag (W, —
Wye., (Wi, — W)e,.), for any vector e, in terms of (Se., e.). Here,

S = A — ALfAI;lAfC (6.51)

is the Schur complement of A.
In the present section, (u, v) denotes the standard Euclidean vector inner product
vl u. Also, by definition [|w|l 4, = lIW|4; II.

With Dy being the diagonal of Ay, letting & = || D;/* A" D/ ||, we have

(Ag (W, — W)e., (W, —W)e.) < a (Ap(Wy — We,, Df}lAﬁf(W* — We.)
<a Y (07 agWe = we)| 4 |

ieN;
—(1/2 2
—a )y HDﬁ'( / )(Afc+Aﬁ'W)eCHA,-'
ieN.
Let now e, ; = const 1. ; be the average value of e, restricted to 2. ;. By the

definition of average value, we then have

llec —ec illq.; = min [lec —1 1 illq, ;- (6.52)
teR
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Then, because (see (6.50)) (AgWec, i)|4, = —(Agec, i)]4,, we get

(Ap(We — Whee, (Wa = Wiee) <o Y D7V (Ap + AgW)tee —ec DI -
ieN;

Let D, be the diagonal of A, and D; be the diagonal of A restricted to any fixed
neighborhood that contains . ;. Then || Declg, ;|| < | D;|l. Let V(G) stand for the
vector space of vectors defined on a given index set G. By definition, the notation
I Bllv(G)—v(p) stands for the norm of the mapping (matrix) B with domain V (G)
and range V(D). With this notation and the choice of D;, we then have

(Ag(Wy — Wiee, (Wi — Wec)
—(1/2 _
= ”Dﬁ'( P (Ap + AﬁW)Dcc(l/z)”zvmf_l-)wvwl-)

x> IDil llee —ec. il1g, - (6.53)
ieN.

Our goal is to bound the sum Zie/\/c ID: |l llec —ec, ”%Zc > in the case of Laplace-like
discretization matrices A, by a constant times (Se,, ec).’ This seems feasible because
e. ; is an average value of e, restricted to 2. ;. The constant will generally depend on
the overlap of €2., ;, which is assumed bounded. This fact is proven in the following
section.

Boundedness of P assuming weak approximation property for
Laplacian-like matrices

In this section, we assume that A can be assembled from local element matrices A;
where the set of elements {r} provides an overlapping partition of the global set of
dofs V. Note that the two-grid method based on a

[

with W that satisfies the main equation (6.49) does not require the explicit knowledge
of any element matrices A.

Let AgN) be a local matrix assembled from element matrices for elements that
cover a sufficiently large set €; such that Q. ; C €; N A,. Then, without loss of
generality, we can assume that D; is a principal submatrix of the diagonal of AEN) af
Q; is sufficiently large).

Assume that the piecewise constant interpolant satisfies the local weak approxi-
mation property,

IDilllle; — €15, <8 (A" e, e, (6.54)

for any vector e; supported in Q;. Here (and in what follows), for any vector v by Vv,
we denote its average value over a given set. Here, AEN) stands for the local stiffness
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matrix corresponding to €; (viewed as union of fine-grid elements that cover the set
of fine-grid dofs from ;).

We choose €; as a set, union of fine- grid elements, such that Q; NN, covers the set
Qc, ;. Let Q = U; Q; be the domain where the elliptic boundary value problem under
consideration is posed. The matrix A then comes from a finite element approximation
of an underlined elliptic PDE. Let « > 1 be the maximal number of overlapping
subdomains €2;, which is assumed bounded.

Given a vector e. define ey = —Af}lAfceC. Introduce also
=[]
ec
and let
er ;= —(AglAfCecﬂﬁiﬁNf, and e; = e|§i.

For a fixed i define 7. ; € R such that

efi|_ [ Lri

€ i lc, i
Itis clear then, from the definition (6.52) of average value and the assumption €2¢, ; C
Q; NN, that

2

2 .
llei — 1 i1illg, = min

=12
= lle; —¢€ll5 .
min lei — & 1%

Q

<2 2
lec,i —€cillg, ; < llec,i =t ile,illg,
2 2
= lleci =t ileille, , +leri =t ilrillg qy,

2 2
< llec, i =t il illﬁiﬁf\/:r + ”ef, i — Iy, ilf, i”§iﬁ/\/f

dFARIEA
= min =t 1 T
t € i cillg,
= lle; — &llg, - (6.55)
Now, given a vector e, define ey = —AﬁlAfcec and let e; be the restriction of

to Q; fori € N,. Then, based on (6.54) and the last estimate (6.55), we have
D IDil e, i —&e.illg, , = Y IDi] llei — &1,
i i
<4 Z (AEN)ei, ei)

l
<k 6 (Ae, e)
=k § (Se., e.).
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e 0
er: Ae:A[ei] = |:Seci|

(see (6.51) for S). Also, k > 1 stands for the maximal number of overlapping subdo-
mains €2 that share the coarse dof i.
Combining the last estimate with (6.53), we arrive at

Recall that

(Ag (W — W)e., (W, — W)e.)
<o max DY (Ap + AgW)DLVP IR 6 pa K 8 (See, €.

ieN.

Now, introduce the “optimal” interpolation matrix

~AZ'AL Y N
— o e f
P [ 1 }} Ne’

its sparse approximation

_ W Ny
P‘[l}}/\/u

and the restriction matrix R = [0, I]. We get the following deviation estimate.
(A(Px — P)Re, (Px — P)Re) = (Ay (Wi — W)ec, (Wi — W)ec)
—(1/2)
< D, A+ AgW
= lngi}i H fF ( fe Sl )

— 2
x DY g K 8 (Sec. e)

e, i) V(A)
—(1/2)

<o max ||[D, A+ AgW

=% N ” g (Are W)

—(1/2)112
x DY g Kk 8 (Ae, e).

e, i) V(A
Thus, the following main result holds.

Theorem 6.21. The projection PR is bounded in energy and the following estimate
holds,

(A(e — PRe),e — PRe) < K (Ae, e),
where

_ —(1/2) —(1/2) 112
K=1+axs ln;%}i ” Dﬁ (AfC + AﬁW)Dcc ”V(QC,,-)i—)V(.Ai)’

N2 4 —1.1/2
anda = ||Dﬁ Aﬁ Dﬁ Il
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It is clear that the local constants ||D_/}(1/2) (Are + Ay W)D;C(l/z) ”%/(Qc, D VA
can be bounded (or even made small) if W I, ; approximates —A . ! Afclg, ; onevery
local set A;. Here, Ig, ; stands for the characteristic matrix (function) of the local

coarse set 2, ;.

In conclusion, assuming that DJ;W Z)A_ﬁ-DJ;(l/ 2 is well conditioned based on
Theorem 3.25 used for
J = [’ ]} Ny

0]} Ne
the above Theorem 6.21 then implies the following TG convergence result.

Corollary 6.22. The two-grid AMG method based on P and wD (scaled Jacobi)
smoother has a convergence factor o7¢ = 1 — 1/(Krg), where K¢ < @/(Amin

(Dﬁj“/” Aﬁ»Dﬁ‘“/z))) II — PRI%. The term ||I — PR|% = ||[PR|| was bounded by

the constant K in Theorem 6.21. Here, > | D~V AD~(1/D|| ~ Amax(D}(l/z)
—(1/2)

Ag Dy,

On the constrained trace minimization construction of P

Here, we study the boundedness of the factors
—(1/2) —(1/2) 2
1D (Age + AgW) D IV Q. v

when W is constructed based on trace minimization of PTAP (described in Sec-
tion 6.3). In that case, the constraint reads W1, =1 = —A/;IAfCIC, or equivalently
P1. = 1. Note that our main assumption (6.49) holds then."

The constrained trace norm minimization problem (cf. Section 6.3) reads:

Find

w
with prescribed sparsity pattern of W, such that

trace(PTAP) = Z wiTAllfi > min
ieN.

subject to the constraint P1, = 1. The solution to this problem is given by (see
Section 6.3) ¥; = T;T~11, where T = Zie/\/c T;, T; = IiA;IIiT, and /; is the
characteristic matrix (function) of the (prescribed fixed) support of ;. The matrix
A = IiTAI ; 1s the principal submatrix of A corresponding to the support of ¥;.

We next study the decay behavior of 7~! following a main result in [DMS84]
(see also Section A.2.4 in the appendix). We first note that 7 is sparse. For example,
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we can partition T into blocks T; ; according to the aggregates A; . It is clear that for
any i there are only a bounded number of indices j such that 7; ; # 0.

Given a matrix B, for any two vectors v; and v; corresponding to indices from
two given sets (row indices) Q; and (column indices) \; for the corresponding block
B; j of B, we then have

T

01} 0|}
vIBi v = ‘(’)z i Q; B ‘8 i Ni | < IBlvillvll.

That is, ||B; j|I < |IB]. In the application below, we have N; = A; (aggregate)
whereas the row index set €2; is the support of ¥; which is contained in a union of
bounded number of aggregates Ay.

Next, we apply the above-mentioned result from [DMS84] (or see Section A.2.4)
in our setting. Let B = T~ ! and let [, 8] be an interval that contains the spectrum
of T. For any polynomial py of degree k > 0, consider the matrix B — px(T). Let
; and A; be at a large enough graph distance apart from each other so that for any

pair of indices i e Q; and j, € A;, the entry (pr(T)); i = 0. Note that px(T') has
the sparsity pattern of 7%, Then, we have

I1Bijll < 1B = pi(T)| = IT~" = pr(T)|| < sup ]l)»_1 — (V)|

r€la, B
Because py is arbitrary, we also have

IBijll <min sup [A7' — pe(M)I.
Pk rela, Bl

Thus, the following simple upper bound holds,

zqk+l
a 1+ g2kt

B
L
RI™

1.
[Bijll = —inf sup [l —Apr(W)| =
o Pk rela, Bl

q =
(6.56)

In the last estimate, we use

where 7i is the well-known Chebyshev polynomial of degree k + 1.
Thus, we have the geometric decay || B; ;|| < (2/a) g+, wherek: (Tk)[./ j = 0

foralli' € ©; and j, € A;. Thatis, if the graph distance between i and j denoted by
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d(i, j)islarge, then || B; ;|| is small. This shows that the estimate for ¢; = T; T '1is

il < A7 iz (T~

‘ Y Bijl
J

—1
= max 1] [14; 1> 1B
J

-1
=IIA; |

2 .
< max [ 171 > qte)
J

28 di

< 1 2= @.J)

= max [1;1] = ;q

< Cmax|[1;]. (6.57)
J

It is clear that the constant C depends only on the decay rate of T~!, which based
on estimate (6.56) is seen to depend only on the condition number of 7. Because for
small Schwarz blocks A; is spectrally equivalent to its diagonal part, it is clear then
that 7 is spectrally equivalent to a diagonal matrix, and hence, T (up to a diagonal
scaling) is well conditioned, which we assume.

Consider W1 = (Pj, i) jeN,, ieN;» Where p; i 3 0 for a bounded number of
indices i € ;. We have, for any vector v = (v;),

Iw7v)? = Z(Z p,-,,-vi)2

Jo e
2 2
DI
j iEQj iEQj
2 2
<mx(Y 03) T X v
iGQj / iGQj

2 2
= max 19017 C lIvil®

where the constant C depends on the sparsity pattern of W.
Thus, based on the last estimate, | W|| = [|[WT || < C max; |1¥; || (with a constant
C that depends only on the sparsity of W), estimate (6.57), and the triangle inequality,
we get the required boundedness
-(1/2 -
”D/f( P A+ agWID Py, povidy
—(1/2 - —-(1/2 —(1/2
< 1052 4D v o v + 1052 ArDE Py v
—(1/2) —(1/2
x 1D WD Py g, vy
<k +ClW],
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where the constant x depends only on the sparsity of A (see Proposition 1.1). There-
fore, we proved the following corollary.

Corollary 6.23. The constrained trace minimization construction leads to a P that
has bounded block W, which leads to a bounded constant K in Theorem 6.21. This is
under the assumption of Dﬁ_(l/Q)AﬁDﬁ_(l/z) being well conditioned, the basis func-
tions (columns of P) ¥; having bounded support with bounded overlap, which hence
leads to a well-conditioned additive Schwarz operator T.

Remark 6.24. Note that based on Proposition 6.2, it is feasible to prove two-grid con-
vergence for M-matrices A coming from second-order diffusion type elliptic equa-
tions. Then A1 = 0 for the interior dofs i, where 1 = [1, 1,..., 1]7 is the constant
vector. That is, the classical (Ruge—Stiiben) AMG interpolation, is vector preserving
(in the interior of the domain) and for such problems we can ensure the local weak
approximation property (6.54).

6.13 The result of Vanék, Brezina, and Mandel

The smoothed aggregation (or SA) algebraic MG method was proposed by Petr Vanék
in [VSA] who was motivated by some early work on aggregation-based MG studied
by R. Blaheta in [BI86] and in his dissertation [B187]; see also the more recent paper
[DB95].

We present here perhaps the only known multilevel convergence result for the
algebraic multigrid, namely, the suboptimal convergence of the smoothed aggregation
AMG. The original proof is found in [SA].

The construction of coarse bases exploits smoothing of pieces of a null space
vector of a given sparse positive semidefinite matrix A. The pieces of the vector
correspond to a number of sets, called aggregates. These aggregates form a nonover-
lapping partition of the original set of degrees of freedom, N. The aggregates are
assumed to satisfy certain properties that later reflect the sparsity of the coarse-level
matrices. At every coarsening level k > 0, in order to construct the coarse (k 4 1)th-
level basis, we use certain Chebyshev-like optimal polynomials with argument the
matrix Ay (diagonally scaled) applied to every piece of the respectively partitioned
vector. Due to the properties of the matrix polynomial, the thus-constructed local
basis vectors have a guaranteed energy bound, and the resulting ¢ levels smoothed
aggregation V (1, 1)-cycle method has a provable convergence factor bounded by
1—C/e.

6.13.1 Null vector-based polynomially smoothed bases

This section illustrates a typical construction of polynomially smoothed bases utiliz-
ing null vectors. We note that after this introductory section, the vectors that are used
to construct the SA method need not necessarily be null vectors of a given symmetric
positive semidefinite matrix. One of the main assumptions will be a “weak approx-
imation property” of certain coarse spaces of piecewise constant vectors. Namely,
that a finite element function v can be approximated in L, by a piecewise constant
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interpolant /v with order O(H ). The interpolant is defined based on sets .4; (referred
to as aggregates) with diameter O(H). On each such set A;, Igv is constant equal
to an average value of v over A;; for example, we can set Igv = 1/|.A4;| f AV dx.
Then, if A comes from a Laplace-like discrete problem, the following is a standard
estimate in L in terms of the energy norm ||.| 4,

lv—Tgvllo < caH [lv]la-
Rewriting this in terms of coefficient vectors leads to the following one
W2 \lv — Inoll < caH |I¥lla.

where d = 2 or d = 3 stands for the dimension of the (geometrical) domain where
the corresponding PDE (Laplacian-like) is posed. Then, because ||A| =~ h4=2 (see
Proposition 1.3), we arrive at
H 1
v — IH_U” = Caz —||A||1/2 (Ivla-

In the application of the SA, we have (H/h) >~ (2v + l)kH, where v > 1
is the polynomial degree of the polynomial used to smooth out the piecewise con-
stant interpolants with which we start. Also, k = 0, 1, .. ., £ stands for the coarsening
level. We summarize this estimate as our main assumption. Given are the nonoverlap-
ping sets Agk) (aggregates) at coarsening level k > 0 that we view as sets of fine-grid
dofs. Let Qy be the block-diagonal £,-projection that for every vector v restricted
to an aggregate .Agk) assigns a scalar value V;, the average of v| 4, over A;. Finally,

let I interpolate them back all the way up to the finest-level as constants over Agk)

(equal to the average value V;). Finally, assume that the diameter of Afk) is of order
(2v + 1)**1h where & is the finest mesh-size. Then, the following approximation
property is our main assumption

Qv + k1

T IVl (6.58)

IV =T Qpvll < ca
The latter assumption is certainly true if the matrix A comes from elliptic PDEs
discretized on a uniformly refined mesh, and the corresponding aggregates at every
level k are constructed based on the uniform hierarchy of the geometric meshes. In
the applications, when we have access to the fine-grid matrix only (and possibly to
the fine-grid mesh) when constructing the hierarchy of aggregates, we have to follow
the rule that they are “quasiuniform” in the sense that their graph diameter grows as
(2v + D)**!. A common choice in practice is v = 1.

Construction of locally supported basis by SA

To illustrate the method, we assume in the present section that A is a given symmetric
positive semidefinite matrix, and let 1 be a given null vector of A; that is, A1 = 0.
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The method is applied to a matrix Ao that is obtained from A (after certain boundary
conditions are imposed).

For a given integer v > 1, partition the set of degrees of freedom of A, that is,
the fine-grid into nonoverlapping sets .A; such that .4; contains an index i with the
following polynomial property. Namely, for any integer s < v, the entries of (A*);
away from i are zero. More specifically, we assume

(A%);; =0 for all indices j outside A;. (6.59)

Let 1; = 1] 4, and extend it by zero outside A;. It is clear that

Z 1, =1. (6.60)

For a given diagonal matrix D (specified later on), let A = D~(1/2Ap=1/2),

The method utilizes a polynomial of degree v > 1 (also, specified later on)
¢y(t) =1 —1tgy,—1(t). Note that ¢, (0) = 1.

Sometimes we use the notation v(x;) to denote the ith entry of the vector v. The
latter notation is motivated by the fact that very often in practice the vectors v are
coefficient vectors of functions v expanded in terms of a given (e.g., Lagrangian finite
element) basis.

Define now,

¥, = —D"Ag,_ (D" AN, (6.61)
‘We have

Z ¥, = —-D""Aq,_1D'A) Z 1,=U—-D"Aq,_1(D7'AN1 =1, (6.62)

1

because A1=0. Also, 1(x)) =" ; (¥ ) (xi) = (1) (xi)—(D ™ Agy—1 (DT A)1;) (xp),
because (A°1;); =0, forall s < v and j # i. The latter implies

(D' Aqr—1 (D™ A1) (i) = 0,
and hence
¥ () = 1(x).

The vectors ¥; form our coarse basis. Note that these have local support and
form a partition of unity (in the sense of identity (6.62)) and they also provide a
Lagrangian basis. Thus, we can at least expect reasonable two-grid convergence (cf.,
Theorem 6.21).

To continue the process by recursion, define 1, = [1, ..., l]T € R". We have,
Adl, =PTAY ¥, =PTA1=0.Here P = [y, ..., ¥ .1 is the interpolation
matrix. Due to the Lagrangian property of the basis {¢;} (i.e., 'ﬁf (xj) = d;) itfollows
that P has a full column rank.
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We then generate coarse aggregates with the corresponding polynomial property
(6.59). Note that we have the flexibility to change v (i.e., to have v = v; depending on
the level number). This choice, however, is not considered in what follows. That is, we
assume that v > 1 is fixed independently of k. The classical SA method corresponds
to the choice v = 1.

Assume that we have generated ¢ > 1 levels and at every level k, we have
constructed the respective interpolation matrices P. Then, after a proper choice of
smoothers My, we end up with a symmetric V (1, 1)-cycle smoothed aggregation
AMG. Our goal is to analyze the method by only assuming that the vector 1 ensures
the multilevel approximation property (6.58). The fact that it is in the (near)-null
space of A is not needed. That is why the resulting coarse bases are not necessarily
Lagrangian. Nevertheless, convergence is guaranteed as we show next.

6.13.2 Some properties of Chebyshev-like polynomials

Consider the Chebyshev polynomials 7k (¢) defined by recursion as follows, Tp = 1,
Ti(t) = ¢, and for k > 1, Ty 1(t) = 2tTi(t) — Tx—1(t). Letting t = cosa €
[—1, 1], we have the explicit representation 7y (f) = cos ka, which is seen from the
trigonometric identity cos(k + 1) + cos(k — 1)a = 2 cos « cos ko.

We now prove some properties of Ty that are needed in the analysis of the SA
method. The polynomial of main interest that we introduce in (6.63) below was used
in [BD96] (see also [Br99]). Similar polynomials were used in [Sh95] (p. 133).

Proposition 6.25. We have the expansion Trry1(t) = cok+1t + tQk(tz), Cokt1 =
(—DXQk+1), fork > 0, where Qy is a polynomial of degree k such that Qi (0) = 0.
Similarly, Ty (t) = (—l)k + Py (12), where Py is a polynomial of degree k such that
Pr(0) = 0.

Proof. We have T} = 1, T» = 2tT) — Ty = 2t> — l,and T3 = 2tTh — T} =
2t (2[2 — 1) —t = 4¢3 — 3¢. That is, assume by induction that for k > 1, Tox—1(¢) =
Cok—1t + tQk,l(tz) and Ty (1) = (—l)k + Pk(tz) for some polynomials Qj_1 and
Py of respective degrees k — 1 and k, and such that Qx—1(0) = 0 and P¢(0) = 0.
Then, from Tox41 = 2t Tox — Tox—1, we get
Toer = 20((=1D* + Pe(t?) — (=D 12k — Dt — 1Qx1(1)
= (=D*Qk + Dt +1(2Pe(1*) — Qr—1(1%).
That is, the induction assumption for 7ok is confirmed with Qx () = 2Pr — Qk—1,
and hence, Qk(0) = 0. Similarly, for Tox42, we have
Top42 = —Tog + 2t Top41
= —(=DF = P(t®) + 20 (= DF 2k + Dt + 1 0 (17))
= (=DM (=D @k + 1) + 2201 (1)) — Pe(1h)).

The latter confirms the induction assumption for 754, with Py (12) =2(-1 )k 2k+
D% + 21204 (1%) — Pi (%) and hence Pi41(0) = 0. m]
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Proposition 6.26. The following estimate holds for any t € [0, 1],
| Tok+1(1)| = 2k + Dr.

Proof. Note that for r = cosa € [—1, 1], |[Tx(¢)] = |coska| < 1. Therefore,
assuming by induction that | Tox—1(¢)| < (2k — 1)t for ¢ € [0, 1], we have

[Tor+1@) = 12t Tox (1) — Top—1()| < 2t + 2k — 1)t = 2k + D,
which confirms the induction assumption. m|

Proposition 6.27. For a given b > 0, consider for t € [0, b] the function
()
2 1 \/— 2v+1 \/_ .

We have that ¢, (t) is a polynomial of degree v such that ¢, (0) = 1; that is, ¢, (t) =
1 — tqy—1(t) for some polynomial q,—1(t) of degree v — 1.

pu(t) = (=1)" (6.63)

Proof. For v = 0, ¢, = 1. Consider the case v > 1. Due to Proposition 6.25, we
have with A = /1/b € [0, 1], that ¢, (1) = (1/(c20+1))(1/2) A(c2v41 + Qv(R)) =
1 — Agy—1(A), because 0, (0) = 0 hence (1/(c2v+1)) Qv (A) = —Agy—1(X) for some
polynomial g, _1(A) of degree v — 1. That is, we showed that ¢,(¢) as defined in
(6.63) is a polynomial of degree v such that ¢, (0) = 1. O

Proposition 6.28. The polynomial ¢, defined in (6.63) has the following optimality
property.

\/E
min 1| = ma 1| = . 6.64
,,min - max X Vi pu(n)] = x VT oo (1)) = " (6.64)
We have ¢,(0) = 1 and also
max |, (1) = 1. (6.65)

t€l0, b]

Proof. The first fact follows from the optimality property of the Chebyshev polyno-
mials, because letting A = /1/b € [0, 1] /1@, (t) equals T5, 1 (A) times a constant.
The fact that |, (#)| < 1 follows from Proposition 6.26. O

Here are some particular cases of the polynomials ¢,,.
Using the definition of the Chebyshev polynomials, 7o = 1, T1 = ¢, Txy1 =
2tTy — Tk—1, fork > 1, we get T, = 2¢/%2 — 1 and hence

T3(t) = 4¢3 — 31.

Thus,

Il
_
I
(SYN

S| o~

1 t 3
p1(t) = —5«/E<4m - ﬁ)
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This in particular shows that

1—pi)] 4 1

sup ————— )
1€(0, b] NG Vb

The next polynomial is based on 75 = 2Ty — T3 = 2t (2tT3 — Tr) — T3 = (4t2 —
1) (413 — 3t) — 413 + 2t = 1615 — 2013 + 5¢. Therefore,

1 [b , 1 1 1
This shows,
=100 4ty
U= Sr T

We also have,

L—g() 4 ( 4 3> 4 /51
sup —————=— sup |(x—=x" )= /z—.
e, b VT Vb xe.1] 5 3V3Vb
In general, it is clear that the following result holds.

Proposition 6.29. There is a constant C, independent of b such that the following
estimate holds,

1 — ()] 1
sup — 2 <0y (6.66)
te(0, b] \/; '

Proof. We have 1 — ¢,(t) = tq,_1(t), thatis, (1 — ¢,)/t = /t gv_1(t) and
therefore the quotient in question is bounded for r € (0, b]. More specifically, the
following dependence on b is seen,

_ (DY Ty (V)
LopOl _ 1 |1 - G L)

sup ————
1€(0, b] NG b2 5 c0. 11 Vi

Clearly, the constant

‘1_%%@
+
C, = sup ! VA

1€(0, 1] v

is independent of b. O
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6.13.3 A general setting for the SA method

In this section, we select the parameters of the smoothed aggregation method.
To simplify the analysis, we assume that v > 1 is independent of k. We assume
that we are given a set of block-diagonal matrices /;_; : R™ > R™-1

1, O 0 0 }A
0o 1, O 0 b A
L= & . S B
0O ... 0 1, O b A1
o o0 ... 0 1., |} Ax
where, for k > 1,
1
1Li=|:
1

Note that the vector 1; € Rl has as many entries of ones as the size of the fine-grid
set (called aggregate) A; to which they interpolate. Once the first piecewise-constant
interpolant To is specified, then the SA method is well defined. We outlined, in the
first section, a choice of T based on a null vector of A. In practice, we can select
other initial coarse-level interpolants, for example, ones that can fit several a priori
given vectors, such as the rigid body modes in the case of elasticity problem.

Let 74— be the piecewise constant interpolant from level k to level k — 1, and let
Ii—1 = Io- -+ Ix—1 be the composite one. We define Dy = I | Ir_. Denote then
A = D,;_(ll/ 2)Ak,lD,:_(ll/ 2, Then, the interpolation matrix Py_; is constructed
as before on the basis of Ax_;, Dy_; and the norm of Ax_; for our fixed v. More

specifically, we have

Pt = Sk—11k—1,

where
Sk—1 = <Pv(Dk_,11Ak—1),
and
NG Vi —
1 =(-1" — T — ) forb=1br_1> ||Ar_1]l.
u(t) = ( )2‘)4_1 - 2u+1<ﬁ> or k-1 > | Ag—1ll

We show later (in Lemma 6.30) that b = by_1 < [|A||/((2v + 1)>*=D),
The smoother M}, is chosen such that

My >~ || Akl Dy.
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More specifically, we assume that, M is s.p.d. and spectrally equivalent to the diag-
onal matrix ||Ag|| Dy, and scaled so that,

v Ay < 1Ak IvT Drv < v Myv. (6.67)

Based on the above choice of Pk, Ax, and My, for 0 < k < ¢, starting with
By = Ap,fork =+¢—1,...,1, 0, we recursively define a V-cycle preconditioner
By to Ay in the following standard way,

I— B A= (1 — M{T A (1 — Bl PEA) (1 — M Ay).

Letting B = By, we are concerned in what follows with the (upper) bound K in the
estimate

vl Av < vl By < K, vl Av. (6.68)

Preliminary estimates

Our second main assumption is that we can construct at every level k > 1 aggregates
with the polynomial property (6.59). The latter is needed to keep the sparsity pattern
of the resulting coarse matrices under control. We also assume that the composite
aggregates are quasiuniform, that is, that the size of the composite aggregates coming
from level k onto the finest level satisfy the estimate:

Ai| ~ min |4;| ~ Qv + 1), 6.69
}2)’{}‘,{' il irgl\rfilll 2v+1) (6.69)

Here d > 1 is the dimension of the grids Ny. As already mentioned, the above as-
sumption is easily met in practice for meshes that are obtained by uniform refinement.
For more general unstructured finite element meshes, this assumption is only a rule
on how to construct the coarse-level aggregates. Assumption (6.69) implies that the
diagonal matrices Dy are uniformly well conditioned; that is,

min [A;| < Amin(Di) = Amax(Dg) < max |A;| = 2v + 1), (6.70)
ieN; ieNk
and hence
—(1/2 1/2
| 2D < kp 1. 6.71)

Our analysis closely follows [SA].

Lemma 6.30. The following main estimate holds,

Al

v+ DX ~ (2v+ DR A,

Akl < I Dill

assuming that the composite aggregates are quasiuniform (i.e., estimates (6.70)—

6.71)).
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Proof. Recall that Dyy1 = I Iy. Then, with Sy = I — D;"' Axq,(D; ' Ap), using
the fact that P, = S;Ix and Dy = 7,{ Dy 1, we have

T
—(1/2) —1/2)y _ Vi Ag41v
||Dk+1 Ak+1Dy || =su 7VTD/€+1V
VszsgAkSkaV
= up —_—
v ()T Dr(Ixv)
vl ST ApSkv
Ssup —————.
v v! Dyv

Therefore, based on property (6.64) of ¢, we get
—-(1/2 —-(1/2
viD VP ST A s D Py < sup t(1 = tqu1 (1) v
te[O, 1D,V 4, p 17 H]

—(1/2 —(1/2

2
S Tl A

That is, by recursion (with Dy = I, Ag = A), we end up with the estimate

—(1/2) (1/2) I A]l
| D™ Axr1 Dy ||—m'

‘We conclude with the estimates

Akl = | Difl || || D Ak DY

pl/2

—m | DA = @v 4 HEDED 4.

The latter inequality is based on the assumption that the composite aggregates are
quasiuniform (see (6.70)). Thus the proof is complete. O

We use the main result regarding the relative spectral condition number of the
£th-level V-cycle preconditioner B with respect to A given by Theorem 5.9, which
we restate here.

Assume that smoothers M, interpolation matrices P;, and respective coarse
matrices related as A1 = PjTA jPj are given. Each smoother M; is such that

M/.T + M — Aj is s.p.d.. Then, the following main identity holds

v Av < vI Bv = inf [v{Am + Z(MJ'TVJ-( + AijVj+1)T
(Vi) izt J

x (MT 4+ Mj— Ay~ (MIv] + A,»P,»vjﬂ)].

(6.72)
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The inf here is taken over the components (vi) of all possible decompositions of v
defined as follows:

(i) Starting with vop = v.
(i) For k > 0, vg = v/ + Pyviqr.

Introduce now the following averaging operators,
O = ()7L, R s R (6.73)

Note that I_1 Q_ are £»-orthogonal projections.

We are interested in a particular recursive decomposition for any given fine-grid
vector v. Based on the characterization identity (6.72) utilizing an energy stable
particular decomposition of the fine-grid vectors, we can get an upper bound of K,
which is our goal. Introduce Q_; = I, and for k > 0, let vy = Q;_;v € R*. We
have the recursive two-level decomposition

Vi = (Qp—1V — PcOyV) + P Opv = V;{ + PrVit1.

In order to bound the relative condition number of the V -cycle preconditioner B
with respect to A (due to estimate (6.72)), based on our choice of the smoother as in
(6.67), it is sufficient to bound the expressions (i) and (ii) below:

() Yoo VDM =3 (Qoyv — PLOVT Mi(Qp_yv — PLOyv),
.. —T —
(i) Y Vi Ak = 2p oo VI Q1 Ak Q1 Vv,

both in terms of v Av.

Estimating the first sum (i)
Recall that Py = STx, Sk = I — Dy ' Akqu—1(Dy " Ag), I = Tol 1 - T and Dy =
(Ie—1)" Ii—1. Note that (see (6.65) |D;/> S D2 |l = sup, 0. 1,y lov (0] = 1.
We start with the inequality
1(Qk—1 — Pc OVl = I1(Qk—1 — STk Q)|
= 1Sk (Qr—1 — 1k Q)V + (I — S) Q1 VI
< ISk(Qi—1 = Tk Q¥ + I — S) Qg1 V|
<[ V2N D2 (@t = TeQV| + 11U = STy vl

Let (0, b] be the interval that contains the eigenvalues of Ay = Dk_(l/ 2)Aka_ % 2),
which is used to construct the optimal polynomial ¢, (1) = 1 — 1gy—1(7); that is,
b > ||Ax||. Notice that

1— 8 = D, "? (Ago_1 (A1) D,*

—(1/2) ;——(1/2) — —1/2 1/2
=0, @& - o, @) D).
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Based on estimate (6.66), we then get

— ~(1/2) I — (1)
1 -5 vl <D max ————
10 = S0 Geavl < IDF 2 a2

1 _ _
=0 1D 2 || 101Vl A

| Qr—1vIla,

—(1/2
<c, Iy

VALE 1Qk—1VIl -

Thus we arrived at the estimate

10k—1 — PLOVI < | Dy 2 k1 Okt — OV
| p "7
[ Ax]/2

The final bound on sum (i) is derived after an estimate of the terms in sum (ii) is
obtained.

1Qk—1VIl ;- (6.74)

Estimating the second sum (ii)

Next, we bound || OVl , ., -

1/2 ~— 1/2 e 1/2 —(1/2 1/2 ~—

Because || A,/ D A, || = A, we have |A,/*Sy A 2| = llgu(A,* D!
1/2 .. 1/2 —(1/2 —(1/2 —(1/2

A < 1 and similarly |D,*S,D; VP = (D VP A DYDY =

llon (AR || < 1. The first estimate shows that
wTSkTAkSkw < wTAkw.
Then, based on Lemma 6.30, we obtain

1OVl arsy = 1P Okl A,

= 1Sk 1k Qxvlla,

< ISk Qx — Or—1Vlla, + 1Sk Q- 1Vl a,

< ISk Qx — Or—DVllax + 11Qk—1Vlla,

< A2 1S Tk @ — Ok D)V + 101Vl 4,

< JA2 D Y2 | D2 Tk = Que V]| + Qi1 vla
1/2 1/2

< % | DY ket Tk = Ok VI + 11k 1vlla,
A"/

<«p m”lkfl(Tk@k — Ok VI + 10k 1Vl A (6.75)

Here, k p is a uniform bound of the condition number of D,i/ 2 (see assumption (6.71)).
We also have

IV — I OxvI? = |(Tk=1 Qp—t — L QVIZ + IV — k1 Q1 VII%,
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because I | Ix—1 Q1 = I | and Iy = Ij—1 Tk, which implies that

V=T 1 Qi hm1 Qo1 — KOV = (v — i1 Op V) k1 (%) = 0.
Therefore,
I (le—1Qx—1 — Ik QVI < IV — L Oy vl

That s, if we bound ||v — I Q. V||, the result will follow. Here, we use estimate (6.58),
which was one of our main assumptions. It reads

o 2 1 2(k+1)
IV = LD < 03% T

Then,

Qv + D)kH

[(Tk—1Q—1 = Ik QIVI = Uuw

vila. (6.76)
Substituting the latter estimate in (6.75), leads to the following main recursive

estimate,

v+ DF A2
RE KD T F vl

1QkVllac: < I1Qk-1Vlla, + 0a
That is, we proved the following main estimate with A = o4« p,
[0kVll Ay < 1Qk—1¥lla, + Allvlia < (1+ Ak) [[v]a. (6.77)
Thus the second sum is bounded as follows.

Z v Apvy = Z 1Qk—1vII%, < CE v Ay, (6.78)
1<¢ k<t

Completing the bound of the first sum (i)

‘We showed (see estimate (6.74)) that

J— J— —(1/2 J— N
1(0k—1 — POOVI < | Dy 2| Ite1 Cp—y — OOV
c, 1D

12 1 Qk—1VIl.

This estimate, together with (6.76) and (6.77), implies that

Qu+DF
102 i+

—(1/2
c, 1D
K

e

1(Qk—1— POVl < 04 Tl

(I4+Ak) [Iv]la-
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We need to bound || My [|'/2(|(Qx—1 — PxQr)V|. Recall that (by assumption) My ~
I|Akll Dy. This implies that

IMI 210k — PEQIVII

k
— 172,111 n—(1/2) QQv+1) Cy
< 1AM 1D/ 1D ||(a + = (1+ Ak) JIIvia
k k CNANZE A2

JAIY2 v+ DF
(o}
=P DE A
= kp [04 + Cy (1 + MO V). 6.79)

IVlla + Cokp (1 + Ak) [[V]ia

Final estimates

In conclusion, we are ready to complete the proof of the following main result (given
forv = 1in [SA]).

Theorem 6.31. Assume the following properties.

The aggregates Agk) at every coarse level k are quasiuniform in the sense of
estimates (6.70).

The approximation property (6.58) of the piecewise constant interpolants Iy (from
coarse level k + 1 all the way up to finest-level 0) holds.

The choice of smoother is My ~ Akl Dx, where Dy = IkT_llk,1 and Ay =
D;(I/Z)Akaf(l/Z).

The polynomials ¢, are based on (6.63) with b = ||Ai|| at every level k.
They are used in the construction of the smoothed interpolation matrices P, =

oy (D,;1 A1k, where I is the piecewise constant interpolant from coarse level
k + 1 to the next fine level k.

Then, the resulting V (1, 1)-cycle MG preconditioner B is nearly spectrally equivalent
to Awith K, < Ce3, where K. is the constant in (6.68).

Proof. It remai&s to use tlﬁ estimates_(6.79) and (6.78)_f0r the particular decom-
position vy = (Qx_1 — Pt Op)V + PrOyv and vk = Q) v. We have (see identity

(6.72),
v By < [nP@vni[ +2) M@kt — POOVIF+2) ||Pk§kv||ik}
k k
< (22 10k 1vIR, + 263 Y (00 + Co(1 +kA))? ||v||i)
k=<t k<t
<c [ﬁ Py kz] IvI3

k<t
<CO|vI3. O
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Domain Decomposition (DD) Methods

Domain decomposition (or DD) methods can generally be viewed as block versions
of the Gauss—Seidel or Jacobi method that in addition may exploit overlap. If in the
implementation, we use exact block inverses, the resulting algorithms are not gener-
ally of optimal complexity. For small blocks (corresponding to subdomains) to make
the DD method of optimal order, we need a substantial in size coarse problem, and in
order to have an overall optimal complexity of the method, we need an optimal solver
for the coarse problem, which generally can be achieved by a multilevel method. For
subdomain problems giving rise to large blocks, the coarse problem can be consid-
ered fixed. Then, in order to end up with an overall optimal complexity method, the
subdomain problems have to be solved by an optimal method, which again can be a
multilevel one. In summary, with DD-type methods to end up with an overall optimal
complexity algorithm, we need in some of the components (such as subdomain or
coarse-grid solutions) to employ some multilevel strategy.

This chapter also covers preconditioners based on domain embedding, auxiliary
space methods, as well as preconditioners for problems with (multilevel) local refine-
ment. In some cases, the subdomain problems allow for the use of fast (direct) elliptic
solvers. We provide one such solver, as well.

7.1 Nonoverlapping blocks

In this section, we consider the following block structure of A

A= Ao, Ao
Apo App|’

where Agp is a block-diagonal matrix. Such a partitioning occurs in practice when
A comes from a discretization of a PDE, where the dofs corresponding to index b
form a separator (interface) I'. For more details, see Section 1.8 (formula (1.19), in
particular). That is, the domain is partitioned into a number of subdomains €2; by an
interface I so that any entry a,; of A with indices r, s corresponding to nodes x, € 2;
and x; € ; is zero fori # j.

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 263
doi: 10.1007/978-0-387-71564-3_7,
© Springer Science+Business Media, LLC 2008
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In order to achieve a stable block-form of A (cf. Section 3.4.1), we need an
extension mapping
| Eop
=]

that is almost “harmonic”. The latter means that for a constant n > 1, we have

T
T T . Vo Vo T . -1
v, E"AEv, <17 1‘1%f|: v i| A |: v i| =nv,Svp, with§ = Abb—Ab,OAo,()AO,lr
If n = 1, we have that £y, = —Aa (I)Ao,b, which is sometimes called (A—) harmonic

extension. In the latter case, ETAE = S. The block-factorization preconditioner from
Section 3.4.1 (modified to allow for nonsymmetric My o) reads

B — 1 0][My 0
ApoMyy — EL (I — AgoMyy) 1] 0 By
T Mog Ao — (I = Mg Aoo) Eop
0 I :
Here
A —1
Mo = Moo(Mo,o + Mgy — Aco) Mg,

is the symmetrized inexact subdomain solver, whereas Bj, is a spectrally equivalent
preconditioner to the interface Schur complement S, or equivalently, to ETAE.

7.2 Boundary extension mappings based on solving
special coarse problems

One way to construct computable extension mappings is by solving a coarse problem
based on a bounded interpolation mapping which is identity at the boundary. Such a
situation can arise if we coarsen the grid gradually away from the boundary I" of a
given domain 2. An example is shown in Figure 7.1.

More specifically, let

p_ P 1} Njy-the set of fine dofs
“ | I |} Nc—the set of coarse dofs

be the interpolation matrix, and assume that I' C AV.. Let

[Ao,o AO,bi| } QAT

A=
L Ab0 App ]} T

be the fine-grid matrix. Similarly, let

Abo Af Ne\T
AC=PTAP=[0~O gvbﬁ ¢\
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Fig. 7.1. Gradually coarsened mesh away from a boundary. The coarse degrees of freedom
are the vertices of the agglomerated (coarse) elements. A typical coarse element has four or
five coarse degrees of freedom.

be the coarse-grid matrix. The extension mapping of interest is defined by

-1
E=P _(A(C),O) Ag,b .
I
The following result holds.
Theorem 7.1. Assume that the interpolation matrix P is bounded in energy; that is,

there is a restriction matrix R : v+ v. = Rv, such that

VZPTAPVC <n inf vl Av.
V: Rv=v,

Assuming that R and P are identity near I (see below), then the energy boundedness

of PR implies energy boundedness of the extension mapping E; that is, we have

vIETAEv, <n inf v!Av, (7.1)

Vi V[p=vp

Proof. Because ' C M, it is natural to assume that R has similar structure to P,
that is, that P and R act as the identity near I". More specifically, we consider R such
that

[+ 0]} M\T
R—[o 1}}r '

The proof then proceeds as follows. Given vy, let v solve the minimization problem

viAv=inf wl Aw.
W W=V
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Let v. = Rv. Note that v.|r = v, (due to the special structure of R near I'). Then
due to the assumed energy boundedness of PR, we have

VZPTAPVC <n inf  wlAw <n vl Av.

w: Rw=v,
Now take inf over v, : v.|r = v, on the left-hand side above. Then,

inf VZPTAPVC <n vl Av.

Velp=Vp

It remains to notice that v} ETAEv), = infy,|.—v, v] PTAPv,. Thus, we proved the
desired estimate (7.1). O

One way to construct an energy-bounded P in the case illustrated in Figure 7.1 is
as follows. Here we assume that A is assembled from the local matrices {A;}. Assume
also that we can build P; for every coarse element 7 (union of fine-grid elements),
such that ||[A;||[lv; — Prv¢ 1?2 <& VZATVT. We then construct a partition of unity
diagonal matrices { O} where each Q- is nonzero only on t and the set { Q. } satisfies
Zr Q. = I.Let P; be P; extended with zero rows outside 7. The global interpolation
matrix is then defined as

P =300, P 0].
T
Then, in precisely the same way asin Section 6.11, we show that the local estimates
AL |lIve — Pove> <8 vIALv,
imply a global one

v —Pve|? < ——vlA
Al

Here n < 1 is such that
Al = n Al

(Note that ||[A;|| < ||A]l.) Then Theorem 6.20 shows that a two-grid preconditioner
based on P and the Richardson smoother M = (||A||/w)I, » € (0,2) (hence

= (|AII2/0®) QA /w)I — A)~! is the symmetrized smoother) is spectrally
equlvalent to A. Finally, Corollary 3.24 shows that 7j; = PM 'PT M is bounded
in energy. The latter shows the result we needed. Indeed, because

x 0]
r=[5 1]

(i.e., P acts as the identity near I'), we have that first

M, =pPTmp=|* O]
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acts as the identity near I', and hence,

M'PTM = [g 8}

also acts as the identity near I'. Thus, if we define R = M. LpT pm , then we have that
R acts as the identity near I". Finally, because PR is bounded in energy (because 7 j; is
bounded in energy, and M =~ I') the assumptions of Theorem 7.1 have been verified.

Note also that the elements T are obtained by a standard “uniform” coarsening
and a local P; bounded in A;-norm is feasible.

7.3 Weakly overlapping blocks

Here we assume that A = PT A P; thg\t is, A is obtained by a Galerkin (also called
RAP) procedure from a bigger matrix A based on a simple interpolation matrix P. In
most of the applications, P has columns of the form

—_—

[a—

That is, each column of P has at the most m > 1 nonzero entries equal to 1. Thus, we
may say that every dof i of A is repeated m = m (i) times in A. Assume that there is a
set of indices “b” (further referred to as a separator boundary) and a set of indices “c”
(further referred to as coarse dofs). The remaining dofs are denoted by “0” dofs. We

can then reorder A as follows

. Eo,o ;ﬁo,b ;{o,c } dofs outside the separator boundary
A=|Apo App Apc |} dofson the separator boundary
Aco Ach Acc |} coarse dofs

Similarly, let
I 0 O
P={(0 Pp O
0o I I

Thatis, only dofs on the separator boundary are allowed to have “multiple” copies in A.
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An interesting case in practice is when the block
Aoo A
A= 400 Zob
Apo Abb

admits a block-diagonal structure (which is the case of “b” being a true separator),
and the remaining diagonal block B = XC,C has a small size (hence the name coarse
dofs for the set “c”). R

We first use the exact inverse of A. It can be obtained by its exact factorization.
Denoting £ = [A¢,0, Ac,p], and similarly

XO c :|
R=| 20|,
|: Ab,c

T 1 o[A 0][1 AR
T leAatt r)lo Ss|lo 1|

Then the block preconditioner for A, or rather its inverse, takes the familiar form:

we arrive at

B~ =Py 'PTA~ PP P)L. (7.2)
Lemma 7.2. The construction of B in (7.2) ensures that A — B is positive semidefinite.

Proof. Indeed, from A = PT AP, we have I = GG” with G = A=(/DpT 4172,
which implies that I — G G is positive semidefinite. That s, / — Al/2p A=1 pT A1/2 55
positive semidefinite, or which is equivalent,/g —1_PA~1PT ispositive semidefinite.
The latter finally implies that (PT P)~'PTA=1P(PTP)"! — A"l =B~ 1 — A7 lis
positive semidefinite as well. O

Note that A—! involves the exact inverse of A, which has a simple structure (i.e.,
blogk—diagonal). Also, it uses S1, that is, the inverse of the exact Schur complement
of A. The latter has a small size by assumption. We also note that P” P in the present
setting is diagonal and P(PT P)~! can be interpreted as a weight (or averaging)
matrix. In the case of inexact inverses M~ and M~ of A, we use the symmetrized
preconditioner

M= MM+M" =4~ M"
and a bounded extension mapping
I 0 Ep.
7=|0 1 Ep. =[é ﬂ 5:[ go,c ]
00 I be

Introduce also the natural coarse matrix
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The resulting preconditioner inverse, B!, then reads:

B~ =(PTP) ' PT [1 _MTR+(1—MTA)5] [ﬂ‘l 0}

0 1 0 Al
1 0 T py—1
X[—£M1+5T(I—.AM1) I} PPy (7.3)
Consider first the following simple example. Let
A adl 0 pT
T T
A_]a a2 L.
0 b B ¢
p r g C
and
I 000
07100
P={0 11 00
0010
0001
Finally, letd = o + B and r = n + 6. Consider then the following extended matrix.
Aa” 0 0 pf
a o 0 0 QT
A=|0 0 g o o
0 0 b B q"
pon g C

We can easily check that A = PTAP. In the case of ﬁp\ite element matrices, we
can naturally splitd = o +  and r = n + 6 such that A, and hence the resulting

blocksof;l\,
A a’ B b"
[ﬂ ] and [é G|

are symmetric positive semidefinite if A is symmetric positive semidefinite. These two
major blocks of A may be viewed as weakly overlapping in A because their shared dofs
are from the set “b”, which in practice has much smaller size than the nonoverlapping
dofs “0” (giving rise to A and B in the present example). The above procedure of
constructing A and the respective M is referred to as a class of “Neumann—Neumann”
methods. The variational relation between A and A to specify unique value of the
dofs on the separator ’b” can be replaced by constraints. The latter procedure is
sometimes called “tearing and interconnecting” and is a popular method in the finite
element literature referred to as the FETI (finite element tearing and interconnecting)
preconditioner (originated in [FETI] and in the presence of “coarse” dofs, commonly

QR I”
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referred to as primal dofs; in [FETIdpO, FETIdp]). We have focused here on the
possibility for inexact subdomain solvers (referring to M~V and M~T in (7.3)) as
well as on the choice of the natural coarse matrix XC = ET AE. Detailed descriptions
and finite element analysis of a variety of Neumann—-Neumann and FETI (and FETI-
DP) methods are found in [TWO05].

7.4 Classical domain-embedding (DE) preconditioners

In this section, we also assume that A = PTA P, in the sense that A can be viewed
as a principal submatrix of A. Namely, let

-~ A R
i=[1 7]

=[1]

we get A = PTAP. Note that this simple P may not be uniformly bounded in the
A-norm. Namely, the constant 7 in the bound

Then with

T
viAv=v"PT APy <n inf |: Vo i| ;4\|: Vo i|
A0 \4 v
may be mesh-dependent for a finite element matrix A. This is the case because a prin-
cipal matrix of A is not typically spectrally equivalent to a corresponding Schur
complement (A — RT-'L)of A (in a standard f.e. basis). In conclusion, the matrix em-
bedding preconditioner (as defined in (7.2)) (PT P)PTA-1P(PTP)~! = PTA-!p
will not generally be spectrally equivalent to A~
That is why in the present case, we need an extension mapping

=[]
-l

the transformed matrix 77 A7 admits a stable two-by-two block form. Constructions
of bounded extension mappings are bound in Section 7.2 and in Appendix D. The
resulting “domain embedding” (DE), or rather, matrix-embedding preconditioner,
takes the form

such that based on

=1, —€] Al[ et } (7.4)
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It is clear also that we can use in (7.4) any available spectrally equivalent precondi-
tioner B for A instead. Thus, we come up with the following inexact DE precondi-
tioner,

-1 —11, —S]E—l[ _(I‘:T } (71.5)

The analysis of the resulting preconditioner is simple because with a bounded
extension mapping E, we ensure that

TR A AE+ R
T |ETA+L ETAE

is spectrally equivalent to its block-diagonal part

~ [A 0
D‘[o ETXE]

More specifically, let

T
xTETAExfninfz[v} A[V] (7.6)
v X X
The above A-norm boundedness of E implies the following strengthened Cauchy—

Schwarz inequality (simply examine the sign of the discriminant of the quadratic
form,

<

T
~ 1
0@) = [ t; ] A|: ! ——XTETAEX>0 for any ¢ € R),

v (AE + R)x = |: g /1 TAV 1/2 (x ETAEX)I/2

Therefore, we have

I\ oo g~ 1\ ax
<1— 1——) VTDVSVTAVS (l—l- 1——) vl Dv.
n n

This shows that A~! is spectrally equivalent to

T
[ (I) } (T Am)~! [ (I) } =1, —5]:4\1[ _é,T ]: B L

More specifically, the following bounds hold.

1 / 1
<1— 1——) VTAVSVTBVS <1+ 1+—) vl Av.
n n

Thus the following result is easily seen (cf., [V96]).
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Theorem 7.3. Let B be a spectrally equivalent preconditioner to A such that for two
positive constants o and B, we have

a VI BV <V AV < BV BV.

Consider the inexact DE preconditioner B defined in (7.5) based on an extension

mapping
E
=[50

which satisfies the norm bound (7.6). Then the following spectral equivalence rela-
tions between A and B hold,
1-/1— % 14+ /1 - %
vl Av < v Bv < vl Av.

B o

7.5 DE preconditioners without extension mappings
In some cases, A can be derived from a matrix

-~ A+C R C R

A_|: L B] where |:L B:|

is symmetric positive semidefinite. More specifically, we assume that

A= [“4 QT] (1.7)

a o

0 00
R=|:£T] and C=|:0 ﬂ]'

That is, the extended matrix admits the form

and let

o [ [ O
A=|la a+B] [ T a a+p T |. (7.8)
[0 r] B o r B

Assuming now that the Schur complements ¢ = o — a.A"'a” and B=B—- r’'B~r
are related as in (7.9), then the same construction as in (7.4) or (7.5) gives a spectrally
equivalent preconditioner B to A. Introduce the vectors

Yo
~ Yo
v=| Vv and v = .
Vb
X

The analysis proceeds as follows. We first have

T
. v >~V | _.T T T
12f|:x:| A|:X:|_v Av+vbévbzv Av,



7.5 DE preconditioners without extension mappings 273

where 8 = B—rT B~ !r as a Schur complement of the symmetric positive semidefinite

matrix
g r’
r B

is also positive semidefinite. Similarly, because by assumption 8 and « are spectrally
equivalent, we have that for some constant x > 0,

V) BYy < kV]avp, (7.9)

which implies VZﬂVb < kvl Av. The last inequality holds because « is a Schur

complement of the s symmetric positive definite matrix A. Therefore,
v1i~lv
inf |: X :| A |: X ] = vTAv—i-vZ,Bvb < (1 +w)vl Av.
X [

Thus, we proved that A and the Schur complement A + C — RB~'L of A are
spectrally equivalent. It is equivalent to say that A~! and the exact DE preconditioner

P[5 w ()

which is a principal submatrix of AL, are spectrally equivalent. Finally, it is clear
that we can instead use the inexact DE preconditioner

T
o [T saf1
B _[O]B [0} (7.10)

based on any given spectrally equivalent preconditioner B for A and still have spectral
equivalence between A and B. That is, we proved the following main result.

Theorem 7.4. Consider the matrix A given in (7.7), which is embedded in matrix A
given in (7.8). Assume that the two Schur complements on the separator set (denoted
with index “b”) satisfy (7.9). Then the DE preconditioner B defined as in (7.10) is
spectrally equivalent to A and the following bounds hold.

v Bv < vl Av <o vl Bv.
14+«

Here, the constants o and § are from the spectral equivalence relations between A
and B,

SV BV <V AV < o V! BY,
and « is from (7.9).

We comment at the end that estimates of the form (7.9) are readily available
in the finite element literature, and they represent the fact that the interface Schur
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complements « and 8 define equivalent norms on the interface boundary (or separator)
I" under consideration. For second-order elliptic PDEs, this is an equivalent norm in
the fractional-order Sobolev space HO%Z(F). Finally, in the example of second-order
elliptic PDEs, the finite element stiffness matrix A corresponds to a discrete problem
with Neumann boundary conditions imposed on I'. Thus the DE in the latter case is
called DE through a Neumann boundary (perhaps first considered in [A78]).

7.6 Fast solvers for tensor product matrices

Here, we present a fast direct solver for special-type matrices that frequently appear
in domain decomposition methods (e.g. as subdomain solvers). More specifically, we
are interested in matrices

A=TQ®Ip +Ii11®B,

where I|g| and I;7| are identity matrices of size m = |B| (the size of B) and |T|
(the size of T'), respectively. The matrix 7 = (Tr,s);”s: 1 is (block-)tridiagonal and
B = (b;, j)?f =1 is (scalar-) tridiagonal. Generalizations for (block-)banded matrices
are straightforward. The product Q ® P stands for the block matrix (p;; Q) where
P = (p;j). We assume that 7 and B are s.p.d., but one of them is allowed to be only
semidefinite. In other words, we assume that Ain (7)1 + B is s.p.d.

Assume that the eigendecomposition of 7 is computed so that we can utilize it
for the solution of Ax = b as follows.

Let Tqx = Mqi, kK = 1,2,...,|T|. The eigenvectors qx form an orthonormal
system (i.e., q,{ql = 8k.1). The system Ax = b can be rewritten as follows (letting
b1,o=0and by m+1 =0),

Tx; +bii—1Xi—1 + b;iiX; + b; i-1Xi+1 = b;, i=1,...,m. (7.11)

The vectors x; € RITI ;i = 1,..., m are unknown and b; e R",i =1,...,m are
given.
Using the orthogonal basis {qx}, we can expand both x; and b; as follows,

X; = Z NikQk»
k

bi =) Bik.
k

The coefficients §; x are computed from the inner products
Bik = qi b;. (7.12)

Substituting the above expressions for x; and b; in the original system (7.11), after
rearranging the terms, we get

D (O +biidmik+bii-ini1k+biivinic1 k) =Y Bik G i=1,....m.
k k
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By comparing the coefficients in front of qi, we end up with the following system
for the unknown coefficients {n; i }:

Ak +biidnix +bii—ini—ik +biivinivik =Bk, i=1,...,m,

for k = 1,...,|T|. Introducing the vectors n;, = ()7L, € R™ and B, =
(Bi.k)'L, € R™, we end up with |T'| (decoupled) tridiagonal systems:

Oxl + By, =B, k=1,...,|T|. (7.13)

We can solve these systems for |T'| Cyidiag m flops.

Then, the solution vectors X; are recovered from the formula x; = Zk Nik k-
The total cost of this evaluation is 2m|T'|> flops. The same cost, 2m|T'|? flops, is needed
to compute the coefficients f; x = q,{bi.

In summary, the standard method of separation of variables requires O(m|T|%)
flops in changing the basis plus Cyidiag |T'|m flops to compute the unknowns after
the change of basis. The latter cost is an order of magnitude less than the cost of the
actual change of basis.

In what follows, we describe a fast algorithm for separation of variables (FASV)
originating in [V84]. It takes advantage of the fact that T is also (block-)tridiagonal.
To explain the main idea, partition 7" into three blocks as follows,

n Tip O
T=|To1 Too To2
0 o I

Let n = 2% — 1. Note now that |T| = nN where N stands for the size of the
blocks T;; of the block-tridiagonal matrix 7. We break T in the middle by using
its 2¢~1th row to define the blocks To,1, To,0, Top. Thatis, Too = The-1 pe-1 and
To1 =10,...,0, Tye-1 pe-1_41, and similarly 72 = [The-1 pe-141, 0,...,0]. Then,
T and T, are the major principal submatrices of 7' (which are also block-tridiagonal)
but now with half the block size of the original matrix 7.

The FASV exploits the following principal steps of Gaussian elimination realized
on the basis of the standard separation of variables with paying attention to the nonzero
pattern of the computed r.h.s. and utilizing the fact that we need to evaluate the sums
only for specific components of the intermediate solutions. These observations are
the key ingredients of the so-called “partial solution technique” developed by Y. A.
Kuznetsov and A. M. Matsokin in [KM78]; see also [Ba78]. The method was further
studied in [Ku85], and more recently in [KR96] and [RTa, RTb].

Use the above block partitioning of T = T5¢_; and respective blocking of

X b

1 1
X; = Xl@) and b; = bgo)
i b
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Letx; = (x;, J)/ L and b; = (b;, ])/ (= 2t — 1); then xfo) = X; pt-1, xfl) =

1 @)

(x,-,j)j:1 ,and x;7 = (x;, j)j 2[,1“ and similarly, bfo) = b; -1, bfl) =

e—1_
(b, )3y and bP = (bi, ) 1
The following algorithm is of interest.

Algorithm 7.6.1. Solve the systems

1 1 1 1 .
T1y§ ) + bii- 1)’, 1 +bi, lY§ ) +bi,i+1y§+)1 = bl( ), i=1,...,m,
and ) ) )
Doy + biiy > + by + by, =b,  i=1....m,
and form
1
v
yi = 02
i
Compute the residualsy; =b; — (Ty; +b; j—1yi—1 +bi ;yi + bi i+1Yi+1)- Notice
that the residuals x; have only one nonzero block component; namely,

(1)
L o-1 = b ge1 = The1 pe- 1,1y 2@ = T2€*1,25*1+1yi,2571+1'
Solve the residual equation
Tzi +bii—12i—1 + biizi + biit1ziq1 =1x;, i=1,....,m. (7.14)

The desired solution is then X; = y; + z;.

Noticing that (by construction) y; ye-1 = 0 implies thatX; yi-1 = 2; ye-1, we solve
system (7.14) only for z; ye-1. By the method of separation of variables this is possible,
because we have explicit formulas to compute z; ; = Y i 0i, kG, j-

The latter sums for a set of indices j that form the middle block 2" of z; can
be evaluated for 2nm|N| flops. Recall that N stands for the size of the block z; e
(equal to the size of To,0 = Tye-1 pe-1). To compute the coefficients B; y = q,{ri, we
use the fact that r; has only one component that is nonzero. This reduces the cost
from 2n*m to only 2nmN flops, (where again N stands for the size of the nonzero
component of r;.)

After Xfo) = X;pt-1 = Z; 5e-1 has been computed, the original problem decom-
poses into two decoupled pieces, namely, we have

T, ()—i-b” 1x —i—b”x()—i-b,,ﬂx(i)l:b(l) Tl,oxfo), i=1,...,m,

and

Trx ( )—l—b” 1x +bl lx( ) +b,,+1x(_231 = b(z) szoxfo), i=1,...,m,

which have two times smaller block-size.
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Applying the above algorithm recursively with respect to the block size of the
blocks of T', we end up with the so-called fast algorithm for separation of variables
(originating in [V84]).

We now give a fairly detailed description and motivation for the key steps that
we have to take into account in order to implement FASV efficiently.

Algorithm 7.6.2 (FASV: Fast algorithm for separation of variables). For every
k=1,...,¢ weintroduce the principal submatrices of T,

7
s

Tis—1y2k 41, (s—1)2k+1 T(s—1)2k41,(s—1)2k42
Tis—1y2k42, (s—1)2k+1 Tis—1)2k42, (s—1)2642 T(s—1)2k42, (s—1)243

Ts2k—l,s2"'—2 Ts2k—1,s2k—l

fors = 1,...,2'7K Assume that all the eigenvalues and all the eigenvectors of
Ts(k) have been precomputed. The eigenvectors use the same block-ordering as the
matrices Tx(k). In FASYV, the eigenvectors are needed only partially; namely, only the
first, the last (i.e., the (2F — 1)th) and middle block-entry (i.e., the 2¥='th) of each
eigenvector need to be stored. Note that if T itself is separable, additional storage
savings can be utilized.

(i) Forward recurrence. Assume that at step k, we have a r.h.s. b® such that bl(k)

have nonzero components at positions s2=1. Form the vectors bfk’s) of length

e k k,s k
2K — 1 by partitioning the bg ), namely, bg’ré) = bg,(?r—l)2k+r’ r=1,...,2k—1.
Then, it is clear that only b?kz’,le ; that is, the middle component of each bfk’s) will
be nonzero.

1. Solve for the first, middle, and last components ofyl(k’s), the systems
k,s k,s k,s k,s ks .
Ts(k)Y,( ) +bi,ifIY,§_1Y) +bi,i3’,( ) +bi,i+IYE+f) = bf Do i=1,..,m,
exploiting the fact that bgk’s) has only one nonzero component (the one in the

middle, 2¥—1th).
2. Form

_ *k1D

") _ 0
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and compute the next residual
k+1 k k k k .
b[( + )zbl( )_(Tyl( )+bll lyl 1+bllyl( )+bl,l+1yl(_’_)l)1 l=11"'7m'

We see (by induction) that bgkﬂ) has nonzero entries at positions s2,

2[—](

s=1,..., — 1. Those entries equal

(k+1) () (k) (k)
bl 2k — bl g2k (Tsz,AYZk—lyiyszk,I + TY2k,AY2k+1yin2k+1)’

(k,25—1)
mzk 1= Yoo

y(k 25— 1)) and y(k)zl\+1 = yl(klb) (the first entry of y}k'zs)), we see that the
(k+1)
bi

fori = 1,...,m. Noticing that y (i.e., the last entry of

r.h.s. are actually computable without full knowledge of yfk’s); that
is, we need only their first and last (i.e., the (2K — 1)th) components. For
computational efficiency (of the backward substitution), we also compute their
middle component (the 2%=Lih one) here.

(ii) Backward substitution. By construction, we have

pHD = p®) _ gy ®)

Therefore, letting b+ = 0 and b = b, we get

’ (;yw) .

That is, the exact solution X = (X;)7*_| has been decomposed as
k
-

We recall that by construction y w = = 0 forl < k. This, in particular implies
that

— 0]
X2 =) Yi, sok-

1>k

In the backward substitution steps fork = £, ..., 1, we recover the exact solution

X; gok utilizing the above formula.

(k.s)

1. Compute the r.h.s. vectors x;"" that have nonzero components only at their

first and last position, namely,

r &)

5 = =T kg1, (s—1)2kXi, (s—1)2k
(k,s)
Lok = —Tgpk 1 52kX;, gok-
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2. Solve, only for the middle component of zgk’s), (for s = 1,...,2¢%) the

systems

k,s k,s k,s k,s k,s .
Ts(k)Z§ $) + bi,i—lzg,i) + b,',,'Zl( $) + b[,[+1Z§+i) = l‘i( A), i=1,...,m,
3. RecoverX; s ik-1 as
k,s k,s
Xi, §2k=1 = z;zljzl + YE’zzzl .
We recall that the middle components (i.e., the 2¥~'th) of yfk’s) have been
computed in the forward recurrence.

Proposition 7.5. We recall that |B| = m stands for the size of B, N stands for the
size of each block Ty; of T, and n is the number of blocks of T. That is, the size of T
is |T| = nN, and the size of the overall problem is |T || B| = mnN.

Following the steps of Algorithm 7.6.2, we can estimate the storage requirements
and number of flops of a straightforward implementation of FASV as follows (the
leading terms only).

Forward step (1) and backward step (2), can be implemented (using the sparsity
of the r.h.s. and the fact that only certain components of the solutions are needed) for

Zz“’c[S(zk — D)Nm + 62X — 1)Nm] ~ 14(nNm) € flops.
k

The corresponding (scalar) tridiagonal systems can be solved for

Z 2tk Cridiag (2k — Dm = Cuidiag (nNm) £ flops.
k

That is, the FASV algorithm can be implemented with a cost
>~ (14 + Cuidiag) 1T||B|logn,

where n is the block-size of T. Note that |T || B| is the original problem size. The latter
shows that FASV is nearly optimal direct solver.

The storage requirements at every step k for the needed 3N components of the
(2% — 1)N eigenvectors of the matrices T*®*) equal

267k _ 1)N x (3N) ~ 3N?n.

If these components are stored in advance (for all ks), we would need storage >~
3N?2nt, which can be prohibitively large if N is of the same order asn ~ m. However,
if T is itself separable (as a sum of two tensor products of smaller matrices similarly
to A) then the storage requirement reduces by an order of magnitude and hence
is negligible. If N = 1, that is, T is also scalar tridiagonal (as B) the storage is
negligible.

The storage for all 2= N eigenvalues of T**) gives >k 26Kk —1)N ~nN ¢,
which is negligible.

Finally, we need to store T and B, and we also need two additional vector arrays,
one for the r.h.s. and one for the solution. Customarily, the solution can overwrite the
r.h.s. if the latter is not needed at the end.
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7.7 Schwarz methods

The classical (multiplicative) Schwarz methods are most commonly described as
product iteration methods that exploit solutions corresponding to principal subma-
trices of A of relatively small size and for a large number of blocks, for optimal
convergence, a global coarse solution is used in addition. For various algorithmic de-
tails, we refer to [DD]. In the present section, we give an equivalent formulation based
on the relation we established in Section 3.2.1 between product iteration methods and
certain (approximate) block-factorizations of A.

Given an n x n s.p.d. sparse matrix A, let Q, k = 1,..., J be an overlapping
partition of the set of indices {1, ..., n}. Also, let I; be the extension by zero of
vectors defined on the set 2 to a vector in R”. Denote by Ay = [ kT Al the principal
submatrix of A corresponding to the index set ;. Very often, as is customary in the
DD literature, we call ; subdomains.

Finally, let My be preconditioners for Ay such that mr © T Mi— Ap ares.p.d. Recall

(see Section 3.1.3) that the latter is equivalent to || — Al/szflA,lc/zH <1.IfM; =
Ay, the corresponding Schwarz preconditioner is said to exploit exact subdomain
solutions. Note that our definition and subsequent analysis allow not only for inexact
but also nonsymmetric subdomain and coarse-grid solvers.

Denote the local vector spaces V,EO) = {vlg, : v € R"}, and form the following
auxiliary subspaces of R”,

=3 VO,

jzk
Note that the vectors in V} are zero outside
ﬁkEQJUQJ_IU"'UQk.

To define the overlapping Schwarz preconditioner B for A, we also need a coarse
space Vo = Range(P) for a given interpolation matrix P : R” — R" where m < n.
Let Ag = PTAP and My be a preconditioner for Ap such that MOT + My — Ag is
s.p.d. A typical case is My = Ay. Alternatively, M( can be the downward part of a
V-cycle multigrid based on Ag.

The overlapping Schwarz preconditioner B exploits solutions with My, M kT k=
1,...,J, and the coarse matrices Mo and M, all being of smaller size compared to
n (the size of A). The following recursive definition defines an overlapping Schwarz
preconditioner with a coarse solution and inexact subdomain solutions (referring to
actions of Mk_1 and Mk_T).

Deﬁmtlon 7.6 (Multiplicative Schwarz precondltloner) Fork=J,J—1,...,1,
let Ik be the extension by zero of vectors defined on Qp = QL UQ 1 --- U Qk to
vectors in R". Note that Iy = I, and recall that Iy = P.

Let Xk = ;ZAE( be the principal submatrix of A corresponding to the auxiliary
subdomain §~2k fork > 0, or the coarse matrix Ao, ifk =0
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Set Ej =M;= MJ(MJT +M; — Aj)’lMJT. Assume that §k+1,f0}’k < J has
been defined for vectors on Q1 only. In order to define By (for vectors defined on
Qp), we first form

B[ Me O (MF + M- A)~ 0 |[M] 1] ATy

and then let
B! = Il e, T 1B Uk, T ) T

We notice that [I, Ik+1] [Ik, Z<+1] is s.p.d. when restricted to vectors
defined on Qk The latter is seenfrom thefacts that Q C Qk and Qk+1 C Qk, hence
for any vector Vi defined on Qk, we have ITIka = Vk|QI\, the restriction to Q, and

i,;THIka = Vk|Qk v the restriction to Qk+1 That is, [I, 1k+1] Ikvk = 0 implies

Vi = 0, hence [ I, 1k+1] Ik has a full column rank. Therefore, Bk is a well-defined
s.p.d. matrix.

The following result holds as an application of the result in Section 3.2.1.

Lemma 7.7. Consider the iteration matrix E = I — INkEI:I};CTA Then, the following
relation holds,

Ex=( — kM TIT A E (I — IMIT A).

Proof. We notice that [, I7¢+1]TE(};€T = I, E(+1]T (because 2y, §k+1 C ﬁk).
Therefore,

Ep =1 —[I, 1~k+1]§k_1[lk, Li1lT A

Then based on the equivalence of the product iteration method exploiting solutions
in the subspaces Range(/y), Range(]k+1) and Range(]k) based on My, By+1, and
M, I respectively, and the block-factorization matrix Bk on the other hand (as shown
in Sectlon 3.2.1), we have the identity

I = Uk, T 1B Uk, Teen1" A
= — LM I AT = T BEL T AU — LM 1 A)
= — LM I A E (I — M T A),
which is the desired result. O

To analyze the Schwarz preconditioner, we need stable vector decomposition in
the following sense. Let v = ij':o Iv; be such that

J J

TiT ATy, — TA.v. r
E vil; AIJVJ—E ViAjvj<ov Av.
j=0 j=0

Then, we also need the partial sums restricted to Ezk; that is, Vx = ZCT ij':k Ijv;.
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Let Z(k) be the set of indices j such that I7 AI; is nonzero. Due to the spar-
sity of A, we can assume that maxx>; |Z(k)| = « is a bounded integer constant. It
defines the maximal number of overlapping subdomains €2; with €. Introduce, for
completeness, the set Z(0) = {0, 1,..., J}. _ _

In what follows, we estimate the term (IkTAIkHVkH)TA,:l (LE ALy 1 Viy1). We
first notice that Z{HFI;THI]' = I, because Q; C §k+1 for j > k + 1. Hence,

7
I Al Vi = IkTAIk+17kT+1 Z Ijvj
j=k+1

J
= IkTA Z Ijv;
k1

= kTA Z Ijv;.

j>k, jeT(k)

Next, use the fact that Ay = IkTAIk and also use ||X| = [|IXT|| = 1 for X =
A,:(l/z)IkTAl/2 to see that

WTIkAk_IIkTW < wl A= lw.
Forw = A Zj>k, jezu 1jvj. we end up with the inequality

T

(I/CTAEc+1Vk+1)TA;:1(IkTAZcHVkH) < Z Iivi| A Z Ijv;

jeZ(k) J€Z(k)
j>k j>k
(7.15)
We need next the following technical assumption
vl + My — Apvie = 8 v Agvi. (7.16)

If My is s.p.d. preconditioner for A, such that VkT Mivy > VkTA « Vi the above assump-
tion holds with § = 1. In general, if Mj is a nonsymmetric matrix, we may prove
the above inequality if M} is a convergent splitting matrix for Ay. For example, if
11— A*M7'A?| < 0 < 1, we can show (see Lemma 7.8 below) that (7.16)
holds with 6 = ((1 —0)/(1 +0)) > 0.

Lemma 7.8. Assume that A is s.p.d. and let M provide an A-convergent iteration for
solving systems with A. More specifically, let

11 —AYV2M=1AY2) <o < 1.
Then,

1_
VIMT + M — Ay > —C2vT Av. (7.17)
140
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Proof. The result is seen from the inequalities || X — /|| < o for X = AVZMTAL2,
The norm inequality implies

2 VP =vIa =Xy —X)v=vTv—2v Xv+ || Xv|°. (7.18)

That is, 2| Xv|[[[v]| = (1 — 02) ||v]|> 4 || XV]||%, or equivalently 27 > > + (1 — 0?)
for r = ||Xv||/||v]l. This shows (r — 1)> < o2, which implies 1 + ¢ > > 1 — p.
Using then ||v]| > (1/(1 + o)) || Xv] in inequality (7.18) implies

1_
2T Xv > (1—0% IvI* + I1Xv)? = [—Q + 1] XV,
1+o0
Letting v := X v, we get

1_
vVIXTT+x Hv=2ovTx v > [1 + —Q] Ivi2,
1+o0

which is (7.17) (by letting v := A%v). O
In summary, the following result can be formulated.

Theorem 7.9. Assume that any v admits a decomposition v = Z]J':() 1jv;, which is

stable; that is,
J

ZVJTA,V, <o vl Av. (7.19)
Jj=0
Also, let the subdomain solvers M, j > 0 and the coarse-grid solver My provide
I.lla; convergent splittings for Aj, respectively. That is, we have

1/2
J

1/2

[1—A/"M'A | <o <1

The latter implies the following coercivity estimate,
Tl - M — A ,>1—Q TA.ws
w; (Mj +Mj— /)W/—m“’j iV

as well as the following bounds for the symmetrized (subdomain or coarse-grid)
solvers M j = Mj(MjT +M; — Aj)_leT,

TA -w M -w
WjA]WJSWjM]WJSI_QZ

T
Wj Ajo.

Finally, let the subdomains Q. satisfy the condition of bounded overlap, that is,
that the sets T(k) = {j > 0; IkTAIj # 0} have a bounded number of entries, in the
sense that maxy~o |Z(k)| < « for a bounded integer k. Then, the following spectral
equivalence result holds, for B = By,

1 1 1
VTAVSVTBV§2|:O'(1 + k2 +Q)+2 +Q:| vl Av.

-0? 1-o 1-o
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Proof. From the definition of Ek, we have XXT = I for
~1/2 ~ L a—(1)2
X = B Uk, Tes11B 7.
Hence from || X | = | X7 || = 1, we get the inequality

v + Tt Ve 1) T B I Lvi + g1 Vi1

Vi+1

\ T A
<| F Bi| < ¢ |
Vi+1 Vit

For any given v, consider its stable decomposition v =) j=01jv; and the cor-

T
v ~ ~~ ~ v
= [ K } [k, Ik+l]TIkBk71;T[Ik, Ik+1]|: Vkil }

responding restricted partial sums v, = ZCT 3 ik Ijv;. We have, Vi = f,? (Ixvg +
Tx+1Vk+1), hence,

T
~T 5 ~ A ~ ~~ ~ A/
%&w=[%1}[mlﬂfhmam,MH[%L}

v T v
<| K Bi| - *
Vk+1 Vi+1
= Vi1 Bit Vit + (M v+ I AL ¥is) T (M + My — A~
x (MIvi + IT Al 1¥i1).
Therefore, by recursion, we get the inequality

v Bv = VO Bovo

J—1
Z MkTvk +IkTA7];+17k+1)(M]z + My — Ak)_l(Mng +IgAE(+1Vk+1)

+ﬁ§v
J—1
(M v+ IkTA1~k+1Vk+1)(MkT + My — Ak)_l(MkTVk + IkTAchVkH)
k=0
+viM vy (7.20)

Now, use Cauchy—Schwarz inequality, the estimate for M, the coercivity estimate
for M kT ~+ My — Ak, and the estimate (7.15) for the restricted partial sums, the Cauchy—
Schwarz inequality using the bound on the cardinality of the sets Z(k), to end up with
the following upper bound,

vl By < 2ka Mpvy + 2— Z Vk+11k+1AIkA,;11kTAI~k+1Vk+1

J T
gzlj—&kaAka-lr—Zz( Z IjVj> A( Z vaf)
k=0

k=0 Nj>k,jeZ(k) j>k,jeZ(k)
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+
- Z (v — Iovo)" A(v — Iovo)

T

+ — 2 Z Ijv; A Z Ijv;

=1 j>k, jeT(k) j>k, jeT(k)

1 / 140
T T
Bv <2 A +4
v' Bv E Vi Akvi T

(VTAV + vy ono)

—_
I
i)
~
=]

~
|
—_

I+e

+
1—o0 P

T a4 o T4 o
Z (Vi AjiVj TV, ApV))
=1 \Ji. o>k, j1, jo€Z(k)

~

1
Y

i_ z (VTAV + Vngvo)

<2

2

—

=0
-1

Ta v,
Z Vi AV

Jj>k, jeZ(k)

gz[l_g }kaAka—Q Av.

\»

Thus, based on the assumed stability of the decomposition v = Zl{:o Ii vk the desired
upper bound follows.

The lower bound vI Av < vT Bv follows from the fact that the block-factorization
preconditioner leads to an iteration matrix Epp = [ — B~ 1A, which admits the
following product form (proven in Lemma 7.7),

Epp=( —IoMy T ITAY - (I = LMT LT A) - (T — 1,2 M 1T A)
x (I = 1M, 1T AT = Iy M7 T A (= oM T A) -
x (I — IoMy "I A).
Noticing that
I - M;TIT AU - 1M T A)
=(I—1,(M;"+ M =M TIT AL M) IT A)
= (I -1 (M;T + M7 =M A MY A)
=1 -1,M, 17 A,
we obtain that AEpp = ET AE, with

Epp=U—LM] TAY (I = M'IEA) - (1= ToMy 1T A, (7.21)
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Thus, we see that A — AB™!A = EEDAEDD is symmetric positive semidefinite.
Hence, the positive definiteness of B implies that v Av < v’ Bv. O

As a side result, we also proved the following identity.

Corollary 7.10. The nonsymmetric Schwarz iteration matrix Epp defined in (7.21),
exploiting solutions with My in the subspaces Range(ly), k = 0, ..., J, has a con-
vergence factor equal to the square root of o(Epp), the convergence factor of Epp.

Noticing that inequality (7.20) holds as equality for special vectors (proven in the
same way as in Lemma 5.8), we can formulate the following corollary.

Corollary 7.11. The following characterization of the Schwarz preconditioner holds.

J—1
vIBv = inf |: (MkTvk + IkTAIkHVkH)T(MkT + My — Ak)_l
0

V=Yoo v iz

X (MIvi+ LT Al Vi) + V;MJVJ:| .

Here, Vit = Y+1 ZszH Ijvj are the partial sums y_ ;- 1 1;V; restricted to the
union of subdomains Qi1 = QU --- U Qi41, that is, to their support.

7.8 Additive Schwarz preconditioners

Similar results (as in Theorem 7.9 and Corollary 7.11) hold for the additive Schwarz
method defined by simply deleting the off-diagonal blocks of §k in Definition 7.6. For
some pioneering works on additive Schwarz methods, we refer to [Li87], [MN85],
and [DW87].

In this section, we present one specific version of the additive Schwarz method
proposed in [CDSO03]. It utilizes a nonoverlapping partition {€2;} of the degrees of
freedom A and a overlapping one {5;} where each €; is obtained by extending
each 2; by a few neighboring grid lines (or matrix graph level sets). The method is
referred to as restricted additive Schwarz with harmonic overlap (or RASHO). It can
be summarized as follows. Let /i be the characteristic diagonal matrices that extend
a local vector defined on €2, to a global vector with zero entries outside Q. Let Ak
be the principal submatrix of A corresponding to the extended subdomain €2;. Based
on a two-by-two block partitioning of Ay,

A= A Ur|} S
L Xi|} S\

we introduce the s.p.d. Schur complement matrices Sy = Ay — UkX,:ILk. Then,

-1 —147T
Brasto = Z IS, I
k
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In practice, we do not have to explicitly form Sk (nor S, 1. The actions of Sk are
computable through the inverse actions of A7 k . More specifically, we can use the

relation
-1 1| Vk
o= (%)

That is, we extend the r.h.s. vector v (defined on 4 only) to a Vector defined on the
extended domain Qk with zero entries outside €2, then apply A ! to the extended
vector, and finally restrict the result to €.

The RASHO preconditioner has some advantages over the more traditional
Schwarz methods (with overlap) because it requires less communication in a par-
allel implementation. It can be analyzed in the same way as the traditional Schwarz
methods as long as one can derive stable decompositions with components that are
“Ar”-harmonic in Q\ Q2.

To analyze the spectral equivalence properties of BRasHo W.I.t. A, we also include
a coarse space V such that for an interpolation matrix P, PVy C V. The role of the
coarse space is such that forany v € V, a coarse approximation v exists so that the dif-
ference v —Pv( can be decomposed as a sum of local components v, supported in 2.

In order to prove spectral equivalence, we need to construct a decomposition

Qe

v=Pvo+ Y Vi (7.22)
k

which s stable, that is, such that ", [k |5, < o V|5 and v§ Agvo = v§ PTAPvy <
ovliAv,

Let I be the characteristic diagonal matrix that extends a vector defined on ﬁk
with zero entries outside Q. We derive a stable decomposition as in (7.22), assuming
that there is one suitable for the traditional Schwarz method; that is,

v=Pvo+ ) TeWe, (7.23)
k

where )", 1 TeWe |2 <& vl and |[Pvoll4 <& [|v]|%. Note that W is supported in
the extended subdomain S~2k.

Assuming that a stable decomposition (7.23) exists, we construct a stable decom-
position with components that are supported in the original subdomains 2. Let the
set (k) consist of indices j such that Q; intersects ﬁk. We assume that |V (k)| < «
for a fixed integer «. -

We decompose each component in (7.23) Wy = Y JeN ) Vs j where each
Vi; j is now supported in £2;. The construction utilizes the local additive Schwarz
operators Ty, = Y . jeNw L S I . We note that Ty as a mapping from the vector

space V consisting of vectors supported inUjenr €25 into itself is s.p.d. and hence,
invertible. Therefore, the following vectors are well defined

Vi j = 1;S} ITTk Iewe, for j € N(k).
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It is clear that
Z Vi j = Liwy.
jeN (k)

If we prove that [|vg; jlla < C ||1~1ch|| A, the desired result will then easily follow.
Another realistic assumption is that Tk_1 (as a local additive Schwarz preconditioner)
is spectrally equivalent to A restricted to the vector space vk (the vectors supported
in Ujen(k)€2;). Thus, we can assume the uniform in k > 1 estimates, for vectors
supported in Uje nrx) 25,

T2 T2
Wil = 1 MWl
By construction, letting vi; j = I; Vi, j, Vi, j = Sj_lleTk_llvak, we have

~ _ —(1/2 U~ ~
VI Sk = Vh AT T TS < 19k s 187 Y2 1T T T,
That is,
= = -2 17~
Vi ;S j = IS; P Tw.
After a summation, we end up with the estimate
Dok IE = Y G TS T T
JEN (k) JeN (k)
= (LWo) " T TeW
< 1 1 TSl
The final decomposition is then based on the components
vi= 2, e =LS] ) T
k: jeN (k) k: jeN (k)
that are supported in €2 ;. We also have
Sr= ¥ w=E ¥ ow=Yisev-r
J ki jeN(k) k jeN (k)

Thus, from the main identity for additive Schwarz preconditioners, utilizing the
particular decomposition derived above, we have the first desired estimate (with

= —14T —1F ~ .
A Sj Ij Zk:jeN(k) Ty Ixwy):

vl Brasgov = min ngovo + ZVJT Siv;
V:PV(H—ZJ- IjVj 7

7 o 2
= Vo Aovo+« Z Z I¥k: jls;

k jeN(k)
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T T2
<viAovo+rn Y IhWil;
k

<vlAovo+n KT VI3
<G A+n) VI (7.24)

The estimate in the other direction uses the traditional additive Schwarz estimate
(based on a bounded overlap assumption); namely, for any decompositionv = Pvo+
>k v
viAvV < 2v{ Agvo + 2c Y VL I AL
k

Without any additional assumptions, the analysis can proceed as follows. Use the
fact that for relatively small subdomains 2k, Ay = [ kT Al and A, = ;Z Al are
spectrally equivalent to their diagonals. Therefore, Sy as a Schur complement of Zk
will be spectrally equivalent to the diagonal of Ax. In conclusion, we may assume
that Ay is spectrally equivalent to Si. This is reflected in the constant o below. It is
clear that o will be a reasonable constant if diam(€2y) is relatively small. With the
last assumption, we have the estimate

viAv < 2V§ono + 2k o ZV,{Ska
k

<2 max{l, « o} <V5AOV0 + ZV,{S}W}) .
k

By taking the minimum over all possible decompositions, we arrive at the second
desired estimate

vl Ay <2 max{l, « o} min VngVo + ZV,{ SkVi
v=Pvo+Y_ IiVk T
k

=2 max{l, k o} v! BRASHOV. (7.25)

In the model case of finite element matrices A coming from second-order elliptic
equations, the precise dependence of the constants in the spectral equivalence relations
between Brasgo and A in terms of the maximal diameter H of the subdomains,
the fine-grid mesh-size h, and the size of the overlap § are studied in [CDSO03].
Moreover, in [CDS03] it was shown that by solving local problems a computable
w can be constructed such that the difference w — u* (u™ is the exact solution)
can be decomposed as a sum of local functions that are harmonic in the extended
subdomains. That is, RASHO can be implemented by keeping all iterates in terms of
sum of components that are harmonic in the extended subdomains.

On the stability estimate (7.19) in a model finite element case

Given are a domain  C R, a plane polygon (d = 2), or a polytope (d = 3) and let
Ty be acoarse triangulation of Q2. Assume that we are given a nonoverlapping partition
{Q J.}JJ.:1 of Q with each Q i being coarse-grid domains, that is, completely covered
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by elements from 7. By extending each Q// to €2, again coarse-grid domains, we

get an overlapping domain decomposition of 2. Let § >~ distance(d €2, 89//.) be the
size of the overlap. Let 7, be a triangulation of €2 obtained by a refinement of 7.
Also, let V = V}, be a finite element space associated with 7, and V = Vg be a
coarse finite element space corresponding to 7. We assume that Vi C Vj,. Consider
finally the spaces V; of finite element functions ¢ € V that are supported in Q;
and for convenience let Vo = Vy. Then, we can write that V = ij':o V;. We may
prove (cf., e.g., Dryja and Widlund [DW87]), that givena v € V, the following stable
decomposition exists,

J
UZZU]', ijVj,
j=0

in the sense that there is a positive constant C independent of J and £, such that,
J
T < Clvli 7.26
lvillf = Clivlly. (7.26)
o

Here ||.||; stands for the norm in the Sobolev space H 1(Q). The constant C satis-
fies C = O((H/8)%) where § is the size of the overlap. That is, if the overlap is
generous (§ >~ H), C remains bounded uniformly in H# — 0. The proof is based
on the construction of partition of unity functions 6; > 0 supported in Q j such that
[VO;lloc < C/4. Partition of unity means that Zj 0; = 1. Let V), be spanned by the
Lagrangian (nodal) basis {¢; } associated with the nodes x; of the triangulation 7y,. Let
I;, stand for the nodal interpolation operator defined for any continuous function 6
as [0 = le, 0(x;) ¢;. Then, for appropriately chosen coarse function vy, consider
the expansion

vV—uvg = Zlh(Qi(v —vpg)).

Note that v; = I,(0; (v — vy)) € V;. For the model case of second-order elliptic f.e.
problems, we can easily show (exploiting the fact that the derivative of any piecewise
linear function restricted to an element can be estimated by differences of its nodal
values), that

2 2 2 2
luilf = CUIVOi g v —vall, o + v —valT o))

This estimate, after summation (based on bounded overlap assumption, i.e., that
a domain €2; intersects a bounded number of subdomains €2;) shows the stability of
the decomposition of v — vy,

1
dilf=c (5—2 ||v—vH||%+|v—vH|%>.
i

The desired result then follows by choosing the coarse space component vy such that

-1
H v —vgllo+ v —vuli = C 1.
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7.9 The domain decomposition paradigm of Bank and Holst

Here we present the DD paradigm of Bank and Holst [BHO3]. It was introduced as a
tool for parallel adaptive mesh generation. Here we take the linear algebra solver point
of view. For the lowest-order (piecewise linear) finite elements the resulting matrix
graph can be identified with the corresponding finite element mesh. The DD paradigm
exploits several meshes. There is a final fine mesh that corresponds to the matrix A in
question. It is assembled from a number of subdomain matrices A;,i = 1,2, ..., p.
That is, the mesh domain €2 is composed of a set of subdomains 2;. We view these
as sets of vertices of the mesh restricted to some (closed) geometric subdomains €;
covered exactly by a number of finite elements from the final fine mesh. For our goal,
the latter knowledge is not needed. We only need to know that there is a separator set
I' = Ulp: 10€2;, and every two subdomains €2; and €2; can have common nodes only
from I'.

Another ingredient is a global coarse mesh denoted by €2, and an associated
coarse matrix A.. This global coarse mesh is used only implicitly in the construction
that follows. A main property of €2, is that it coincides with €2 on a strip around I".
Denote this strip by I's. The width of the strip is assumed of order 2m + 1 times the
fine-grid mesh-size /4. In geometric terms, we have § >~ (2m + 1)h. This assumption
is equivalent to the following property of A, and A. Let

VC=|:\(’)b:|§ ?c\r and similarly V:|:‘(7)b:|§ 19\1“

Then, (Ac)kvc and A¥v, 0 < k < m are zero outside the strip I's, and also they
coincide on I's.

The main ingredients of the paradigm are the partially coarse global meshes Q)
and respective matrices A®). Let the global coarse matrix A. be assembled from the
matrices Afc) coming from QEC) (the part of 2, contained in €2;). Similarly, let A
be assembled from the local (subdomain) matrices A;. Then, the composite mesh
matrices AY) are assembled from A; and A;C) for all j # i. Due to our assumption

about the coarse mesh, A coincides with both A and A, on the strip T's.

To describe the linear system setting, we introduce vectors v; defined on €2;. The
vectors v; and v; do not necessarily match on 2; N 2; C I'. We enforce continuity
by proper constraints by simply identifying the values of v; coming from different
subdomains with a single (master) unique value on the common node on I". The latter
is represented by the equation

Z B;iv; = 0.
i

Here, the matrices B; have entries equal to 0, —1, or 1. More specifically, the above
equation rewritten entrywise, reads (v;(s))s — (vj)s = O for every master node s,
coming from a unique subdomain €2;(s), a number of simple equations of the form
for all indices j # i(s) such that 2; and ;) meet at the node s on I".
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The linear system of equations then reads

Ay 0 ... 0 BI u f)
0 Ay 0 Bl'|l| w f
0 0 A, BI|| w, f,
B, B ... B, O A 0

The two-domain case

We describe the solution iterative method for the two-domain case first. Let V =
Vi @ V, be the vector space of our interest. There is also an auxiliary space A
of Lagrange multipliers. The matrix of the problem under consideration admits the
saddle-point form,

Ay 0 BT
A= 0 A, BZT
By B, O

There are two coarse versions of this matrix, A; and A;, corresponding to the
spaces vilh = v, @ P2V§ and V@ = PlVi' ® V;,, where PlVi' C Vi and Png C
V,, for two given interpolation matrices P; and P». Note the special form of the
interpolation matrices Py and P»; namely, they have an identity block corresponding
to the strip I's (restricted to the respective subdomain €2;). For example,

_[* Of} @i\ Ts
P = [0 1}} rsna; - (7.27)
We have
Al 0 BT AP 0 PIBf
Ar=|0 PlA,P, PIBI'| and A= 0 A, BI
B, BP; 0 Bi1P, B 0

We are interested in a iterative procedure (described below) for solving

X1 f1
Al xp =| B
A 0

The matrices By and B; are chosen in practice such that Bju; = Byu, which ensures
that u; and uy coincide on the separator I (specified in (7.33) below).

Algorithm 7.9.1 (Bank—Holst DD paradigm). Let (X1, X2, A) be a current iterate,
such that the respective residual admits the form

f1 X1 I
R=F - AX = f2 - A X2 = I
0 A 0
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Let

P 0O
Qi=|0 10, 0O2=
0 01

S O~

0 0
P, 0
0 I
The next iterates y1, y» are defined as follows.

1. Solve for Yy, k =1, 2,

AYr = OIR.
2. Set

yi=x1+I[, 0, 01Y, y2=x2+4+10, I, 0] Y.

In matrix notation, we have

yi=xi+[I, 0, 0] A7 O] (F — AX),
Y2 =x +[0, 1, 0] A4, QF (F — AX).
That is, the iteration matrix reads

(1, 0, 01(1 — A7 0T A)
[0, 1, 01 (I — A;' 0T A)

*
The following factorization holds.
1 0 0
Ai=| o I 0
BiAT' BaPy(PJ ArP)™' T
A 0 0
x| 0 PlAP, 0
L0 0  —BiAT'BI — ByPy(P] Ay Py)~' P BT
1 0 AT BT
x |0 I (PfAyP)~'PIBI
[0 0 1

A similar expression holds for .4,. We need to compute the first row of .Al_l ol A.
We have, letting

Si = B1A{'B] + By (Pf AyPy) ' P BT,

and

Sy =B Py(PT A P) "' PTBI + ByA; ' B,
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(1. 0. —a7'B]]

A7! 0 0 I 0 0
x| 0 (PfAP)™ 0 0 I 0
0 0 —S7' ] L=BiAT" —BaPy(P] AaPy)7! T

A7 0 0

— [1, 0, —Al_lBlT] 0 (PT Ay P! 0

ST BIATY ST B PPl APy -8
= [A7'a = BT ST BiAT, —AT BT ST BaPa(P] A2 AT'BT ST
Now note that
A0 Bl
ofa=|o0 Pfa, P/Bf
B B 0
Then, [1, 0, 0JA7' QT A= [M), Ms, M3]where,

My =AT'( - BIST'BiATHA + AT B ST By
=1

My = AT'BI ST By — AT BT1ST By Py(P] AyPy) ™' PT Ay
= AT BT ST By(1 — Py(P] A2 Po) "1 PI Ay)

My =AY — BT s BiATHY BT — AT'BT ST By Py (P) Ay Py) T PY BT
= A7'BI — A7'BT ST [BIAT B + BaPa(PS AsPy) ' P BT ]
=A7'Bl —AT'BT S s,
=0.

A similar expression holds for [0, I, O]Ag ! Qg A. Thus, we showed the following
formula for the iteration matrix Epp,

0 —A7'BI S "By, 0
Epp = | —A5'BIS; ' Bim 0 0
0 0 1

Here, m, =1 — Pk(PkTAk Pk)f1 PkTAk is the A-projection onto the coarse space V,i,
k=1,2.

A norm estimate

We are interested in the following principal submatrix of Epp,

0 —A7'BT S Bom
EDD=|: 1 Prop P2z

—AS'BI'S;'Bimy 0
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For the following analysis, introduce the block-diagonal matrices A = diag(A;) and
m = diag(m;).

Lemma 7.12. The following inequality holds,

’

2 )1/2

T T 1/2 2
wlAEppv < (w' Aw)'/2 (vl +lmavaliy i
291 P2

Bl S8

v | w 1A O
v_[vz], w_|:wz] and A_[O Az].

Proof. We have, using the Cauchy—Schwarz inequality,

for any

Wl AEppv)? = (W] B S; ' Bymrava + wh BY S; ' Biivi )
< (wlTAlwl + WQTAzwz)
x ((m2v2)T BT ST B1AT BT S Ba(mav2)
+ (mv)) BT 8B A5 ' B Sy Bi(mivy) (7.28)
O

Lemma 7.13. Let E ,‘? be the Ap-harmonic extensions of vectors defined on I' =
921 N 0Ky into the interior of Q. Let § > 0 be such that

82" BoAy'Blz < 2" BiP(P] A1 P)T P Bl 2, forallz. (7.29)
Similarly, we assume that § > 0 is such that
82" BiAT'Blz < 2" ByPy(P Ay Py) ' P BYz, foralla. (7.30)

Then, the following estimate holds,

Wl AEDpY < —— Iwla[IEL (rivor R, + 1Ef G 3,12 3D
Proof. We first comment that the estimates (7.29) and (7.30) hold if the Schur com-
plements of A; and A on I' are spectrally equivalent in the case of the special
coarsening around I". The special coarsening can ensure that the Schur complements
of A and its special coarse version PIT A1 Py onT are spectrally equivalent, and simi-
larly the Schur complements of A; and its respective coarse version P2T Ay PyonT are
spectrally equivalent. Therefore, we have that the mixed pairs of Schur complements
of Ay and P2T Ao P>, as well as Ay and PlTAl P, are spectrally equivalent. We also
have then that their respective inverses are spectrally equivalent. Then because BlT
and —BZT are simply matrices with identity and zero blocks (as in (7.33) below), we
can see that the latter fact (about the inverses of the Schur complements) implies that
the principal submatrices of the respective matrix inverses are spectrally equivalent,
which in fact (based on the identity (7.34) below) represent the assumed inequalities
(7.29) and (7.30).
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Recall now the formulas
Si = BiAT' Bl + BaPs(P] A2Py) ' P BT,
Sy =B Pi(PI A P) ' PI BT + B,A;'BY.
Consider the following problem for up,
Srup = Bymyvy. (7.32)

Estimate (7.31) is seen, by first noticing that for,

=[PP wa s <[ O N s

using the fact that P; is identity near I', (cf. (7.27), due to the special choice of the
coarse mesh near I'), implies

PITBITZ|:(I)]1§—~21\F' (7.34)

We now estimate the solution uy of (7.32). We have (recalling that BzT is extension
by zero in €27),

(1+8) ul B,A Bl wp, < ul Srup
= uzTBlmvl
=u) (mv)r
= —(Byw)" E5 (mivi)r
< (u} B2AS BYw) P ES (rivirlLa,.

Thus, we proved that

- 1/2 1
(W} BA; ' B wy)'? < T5s IES Grivi)r |,

Because up, = Sz_lBlmvl, we get that

1 A
— IEY (miv)r la,.  (7.35)

(Griv)T BY S5 B AT B S5 By (ryvi) 2 < 5
In the same way, we prove
_ _ _ 1/2 1
(Grav2)" BY S7'B1AT B ST Ba(rava)) /2 < —— IEf (rava)r lla,. (7.36)

146
Substituting estimates (7.35)—(7.36) in (7.28), we arrive at the desired estimate

1 1/2
wlAEppv < 755 Wl IIES rivor I, + 1Ef (vorl3, ]2 o
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Based on Lemma 7.30, because

=]

can be arbitrary, by letting w := mw, using the inequality |[7w| 4 < ||W|/4 and the
identity 77 A = Am, we get the estimate

1 1/2
w! AmEppv < 755 Wl [IES Grivor I, + 1Ef (avor )3, ]2

Again, because w is arbitrary, by choosing w; = Ef‘(gg)r and wy, = E? (e)r,
grlr = (mEppV)k|r, we get the convergence rate estimate formulated in the next
theorem, letting v := x;_; and X := EppV.

Theorem 7.14.

1
I xill < T3 7z X1l

Vi
V2

IvI* = 1E8 (vor %, + 1Ef (v)rll3, -

Here || - || is defined for vectors

<
Il
| —

restricted to T, as follows,

An algorithm in the general case

The two-domain case analysis presented in the previous section cannot be generalized
to the multidomain case without using the fact that the coarse problem has actually a
certain approximation property. Also, the saddle-point formulation can be avoided due
to the simple form of the constraint matrices B;. In this section, we use the equivalent
unconstrained setting of the problem. We assume that the global coarse problem on
the mesh 2. defined by the matrix A, admits the following weak approximation
property. Introduce the coarse-grid correction operator rgy = I — PA;1 PT A, where
A, = PTAP, then the following estimate (a standard Ly-error estimate for finite
element approximations) to hold is assumed,

lraullo = C H |lufla.

Here, H is the characteristic coarse mesh-size associated with the coarse mesh
Q. = Qp. The corresponding fine-grid mesh-size is & associated with the mesh

Q = Q. The following relation holds between the vector norm || - || (defined by
[v||> = vI'v) and the weak norm || - ||, (assuming two-dimensional geometric do-
main £2),

vl < Ch™" |Ivo.
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That is, combining both estimates, the following weak approximation property is
assumed to hold,

H
lraull = €= lulla. (7.37)

The matrix A corresponds to the problem that we are interested in, which formulated
without Lagrange multipliers reads as follows,

> RAdfu=b.
k

Here, I; stands for zero extension of a vector defined on € onto the entire domain .
In what follows, to stress the fact that a subdomain contains its boundary nodes
(namely, that it is covered completely by a set of finite elements and contains all their
degrees of freedom or nodes), we use overbars. Above, A, stands for the subdomain
matrix assembled from the individual element matrices corresponding to fine-grid
elements contained in the subdomain Q. The following decompositions of A are of
interest.

A = AL + I8 AP (1)

Here, I,f’“ stands for zero extension of vectors defined on Q2 \ € into (the interior
of) Q. Similarly, AZ’“ stands for the matrix assembled from the element matrices
corresponding to the fine-grid elements contained in the subdomain complementary
to 2. We also need the global coarse matrix A = A, = PTAP. Let I be the
extension by zero of vectors defined on € into the remaining part of the kth global
coarsened-away mesh Q,(f) (which outside Q; coincides with .). We can also have
the coarsened-away stiffness matrices

A= LA, + TV A (T; (7.38)

—ext—ext (—ext) T

— =T  — . . .= . .
We have Ay = P; APy for some interpolation matrices Py that act as identity near
Q. and as P outside 2.
Finally, we are interested in the Schur complements of A; on 2, which have the
form

Sk = Ap + JkSEXthT.

Here, J is the trivial extension by zero from 92, into the interior of €2;. We can use
also the notation Py = P and Ag = A..
The iterative method of interest can be formulated as follows.

Algorithm 7.9.2 (A Neumann-Neumann algorithm). Lez {Wy} be a set of global
diagonal matrices with Wy having nonzero entries only on Q. We assume that they
provide “partition of unity;” that is,

Zszl.
k
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Consider the fine-grid problem Au = b. Without loss of generality, we assume that b
is nonzero only on I'. We perform:

(0) Global coarse-grid solution; that is, solve
Aa=PTb.
(i) Forevery k > 1 solution, in parallel, the coarsened-away problems
* |} S

A =P, (b—APW) =| 0 |} o
0 |} everywhere else

— -T_ . —
Take the “good” part of uy, namely, I, uy. The latter is a vector defined on Q.
(ii) “Average” the results to define a global conforming next iterate; that is, form

Z Wi IkTZﬁk .
k

. . _ —T_
(iii) The next iterate is Upexy = Pu+ Y Wi I 1 uy.
k

We comment on the crucial observation that the r.h.s. in item (i) is zero outside 2.
This is due to the fact that Py coincides with P outside the subdomain €2 \ I's of

Q. Hence P (b — APW) = PTb — A = 0 outside . B
Noting that Wy is the identity in the interior of Q, Py is the identity on €, and
that the r.h.s. in item (i) is zero outside 2 because
T A Te =5,
we easily get that
Tru =5, 1[FWl (b — APw).
Therefore,
Unew = PU+ Y Wil 1] Wl (b — APW).
k
Consider the following mapping
M~ =Y WS, W
k
with the purpose of using M ~'7 7 as a preconditioner for 7! AT, where
T=1-PA;'PTA,

is the global coarse-grid correction operator. Mappings such as M above were origi-
nally analyzed in [Man93]; see also [DW95] and [DT91].

The method by Bank and Holst ignores the averaging matrices Wy. The reason is
that the values of the vectors uy near the strip I's are actually negligible due to the
special features of the composite meshes ch); that is, they contain a strip I's near the
interface I' being part of the fine-grid 2, with width § = O(H) =~ 2m + 1)h.
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7.9.1 Local error estimates

In this section, we show that the solution of problems such as shown in item (i) of
Algorithm 7.9.2 are essentially local. More specifically, assuming that the coarse-
mesh of size H is refined near I' = U 92 so that it coincides with the fine-mesh in
a strip of width O(H) around I".

Consider a s.p.d. matrix A and let 7 = I — P(PTAP)~' PT A be an A-projection,
for a given interpolation matrix P; thatis, 72 = 7. Itisclearalso that Aw = 7T A. In
our application, P corresponds to the interpolation from the special global coarse
space used in the Bank—Holst DD paradigm into the space associated with the
composite coarsened-away mesh Q,((C). The matrix A : = Ay is any of the global
composite-grid matrices. We notice that the r.h.s. in item (i) has a special form
7 Tby := (I — A PAZ! PT)by. Here, by = P, b.

In what follows, we omit the subscript k.

Consider now the following problem with a special r.h.s.,

Au=nTh.

It is clear that u = mu, because 77b = (72)"b = 77 Au = A(u). Thus, if we
apply the CG method to solve the above problem with zero initial iterate, afterm > 1
steps we get an approximation u,,, which will satisfy the following estimate,

lu—wulla <  min max |v/1g, ()] Jull,
om: em(0)=1 1€[0, [A]]
where ¢, is a polynomial of degree m, which is normalized at the origin. Because
u = 7 u and in our application (assuming a two-dimensional domain), with ||.||o
being the integral Ly-norm and u being the finite element function corresponding to
the vector u, we end up with the estimate

_ H
lall < Ch™" lmgullo < C lulla.

Here, we use the Ly-error estimate for the coarse-grid elliptic projection wy
(assuming full regularity); that is, ||[mgullo < CH |[u| 4. The final convergence rate
estimate, for a proper polynomial ¢,,, then takes the form

u A- ;. 9

o —wplla <

The best polynomial ¢,, is defined through the Chebyshev polynomials of degree
2m + 1 (cf., Section 6.13.2) as follows; for r € [—1, 1],

Toms1(t) = (=)™ 2m + Dtgn (| A1)

Now, concentrate on the solution of problems such as shown in item (i). Note that
the r.h.s. has the form 7Zb, where A : = A and a 7 that comes from a P that
interpolates from the global coarse space into the partially fine space (on a mesh-

coarsened way from €2;). That is, this P is identity outside a subdomain Q,((O) of Q.
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Under our refinement assumption, we have dist(Q,(co), Q\ Q) >~ O(H) > 2moh for
some integer m(, which we assume is of order H/h. Thus, we have a problem

Ay =b=n"b.

The important observation is that b is supported in Q,(CO). Applying mg standard CG

iterations (with zero initial guess) to the last system leads to an approximation ﬁ,((m(’).

—(mo)
u

It is clear that is supported in ; (because A™b is supported in ;). More

specifically, we have
dist(support(ﬁ,((m")), Q\ ) ~ O(H) = moh.

Applying the CG convergencerate estimate (7.39), we can get (because || A|| = O(1))
for an a priori chosen tolerance € < 1, the estimate

e — 0" 15, < € [T, (7.40)

if we have chosen

We also want moh ~ C H; thus for C =~ 1 /e, the error estimate (7.40) is feasible.

In conclusion, because the solutions U in item (i) are essentially local (due to the
error estimate (7.40)) the averaging involved in Step (ii) does not really need to take
place.

The actual counterpart of Algorithm 7.9.1 is an approximation of Algorithm 7.9.2.
The global coarse matrix A is not used. Nevertheless, the r.h.s. for the composite grid
problems involving Ay is kept orthogonal to the global coarse space. Thus, we get
subdomain updates 7,{ uy that are essentially supported in €2 in the sense that they can
be approximated with local ﬁg such that (see (7.38)) an estimate ||7Z (ux — ﬁ]((())) la, <
(0)
k

lay —u ”Kk <e€ ”ﬁk”Xk for an a priori chosen € < 1 holds. That is, the terms

W |ounr, = (U — ﬁ,io)) |@.nr, are small, of relative order €.

A perturbation analysis in the general case

The principal submatrix Epp of the iteration matrix Epp, in the case of p > 1
subdomains, takes the form

0 —E\Bym, ... —E|Bpm,
—E>)Bim 0 —E>Bym,

Epp = , (7.41)

—E,Bimry —EpBym 0
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where
A= Pl APy
me=1— PiA, PT A
B = B P,
Sk = BeA;'Bf +Y B4, B,

J#k
Ex=A"Bl S

Let w = (wg), v = (v) and A = diag(Ax). We have
(wlAEppv)?

= Zw,{BkSk ZB iV

J#k

2

T

IA

Consider now the problem for ug,
Sruy = ZBjJTjVj.
j#k
The above estimate then reads

(WTAEDDV)2 < Z WZAka Z u,{ BkAllekTuk.
k k

To estimate uy, we proceed as follows,

T T
w;, Spup = wy Z Bjmjv;
J#k

_Z(B llk) |:(7T]Vj)|<9$2 :|

J#k

= B
;f v |:(7T/V/)|asz }
1/2

— —1—T —H
> u/BjA; B > IE, (ﬁjV/)asz,-H%j

J#k J#k

ZwkTAkwkZ SoBimivy | S BABISTT D B

ko \Jj#k J#k

1/2

(7.42)
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—H . . . . .
Here, £ j stands for a coarse-grid extension of vectors on €2 into the interior of €2;.

Thus,

T =H 2
u Sow < ) |E; (v )ag;lIF,
J#Fk
Assume now the estimate,

Sk zTBkAk_lBsz < ZZTEjZ;IEfZ,
J#k
for any Lagrange multiplier vector z on I'. The latter estimate implies

_ —H
(180 uf BeAy Bl we < 3 1IE ] (19)ve; 1 -
J#k '
which used in (7.42) leads to

(WTAEDDV)2 = m ZWZAkaZZ”E (7T/V/)asz ||
k j#k

L
— 1 4+ ming &

> owl AkwanE CANITAGS

k
By choosing w; = EJH (m EppV)ygq;. We get the final estimate

p—

EHA E 2 _
D NES (i (Eppv) ag, 13, < 5 - 5k

J

Z AR

(7.43)

It is clear then that if p = 2, the method is convergent as a stationary iterative
process. Note that here the norm is different from the norm in Theorem 7.14. Here
we use coarse-grid extension mappings, whereas in Theorem 7.14, the norm involves

fine-grid extension mappings.

Taking into account the constraints

Another observation is that if >, ., Bjm;vj = —Bgmivk, that is, 7v =
satisfies the constraints, the estimate for u; simplifies as follows.

ll]{Skllk = UZ(Z Bjﬂ’jVj)

J#k
_ T
= —wy, Brmpvi
— —(BTu)T *
(B wo) |: (Vi) lagy,

IA

_ 12
(uf Bi AL Bl w)' 2 I EL ievidagy Nl a,-

(7T Vi)

However, based on the argument leading to estimate (7.40), we can only as-
sume that 7v = (m;v;) satisfies the constraint only approximately, that is, that
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>_j Bjmjvj ~ 0.Then, assuming the estimate
—1 2 —1 2
NS DBV o S € QIS Bt elly s (T44)
k j k
used first in (7.42), letting S0y = — By vk leads to

\wl AEppv|

12
= lwlia <Zﬁ/{BkA,ZlBkTﬁk> +1> ‘
k k

1/2
5 /

-1
Se 2By
7 By A7 B]

1/2
< Iwlla(1+ e) (Zﬁ,{BkAlekTﬁk) :
k

In a similar fashion as above, we obtain that

2

h 2
BkA,:lBkT ||Ek 7Tka||Ak~

-~ —1
[l |l = S, Brxmwvill

2 -_
BAc B = T o
This finally shows the estimate

_ U+

E!' (mx(E aa I3
D IE (re(Eppvinag, I3, = —

h 2
E IEx Tevidaey la, -
k k

Thus, the DD method of Bank and Holst will be convergent if € is sufficiently small.
The latter can be ensured by proper choice of the coarse mesh-size H. Note that H
reflects the width § = O(H) of the strip I's covered by the fine mesh.

For a more precise finite element analysis we refer to [BV06].

7.10 The FAC method and related preconditioning

In the present section, we describe the fast adaptive composite-grid method (or FAC)
proposed in [SMc84], [McT86], and its preconditioning versions [BEPS] and [ELV]
suitable for solving discretization problems on meshes with patched local refinement
(as shown in Figure 7.2). The method combines features of both a two-grid method
and a domain decomposition method. Using matrix notation, the method can be
summarized as follows.

Let A be the given matrix. There is a coarse version of A denoted by A.. The
fact that A corresponds to a discretization to a same problem as A, but on a partially
refined mesh can be expressed with the relation A, = PTAP for an interpolation
matrix P that has a major block being the identity; that is,

Pprp Prr O} Qf
p=lo0o 1 o|yr
0 0 I|} Qc\T.
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r

Fig. 7.2. Locally refined mesh; Qf consists of the top right corner fine-grid nodes (nodes
on the interface I" excluded). Nodes on I' that are not coarse are not actual degrees of freedom.

The block-matrix

Prr P
=

represents a “standard” interpolation matrix in a subdomain Q y UT of the original do-
main . Here, I' is a part of the boundary of the subdomain Q¢ where Q = Qr U Q¢
is a direct decomposition. Here, we assume that the coarse—fine interface boundary
I" consists only of coarse dofs. We also need the set Qf consisting of the coarse dofs
in Qr. Because I' is assumed to be a separator, we have the following common DD
block structure of A and A, corresponding to the ordering Qr, I', Qc, = Qc\I,
and QF, ', Qc,, respectively.

Apr  Ap T 0 Ac FF Ac R T 0
A= |Ar r Arr Ar and A= |Acr, F Acr,r AT, c
0 AC[,F AC],C] 0 Ac, C;, T Ac, Cr, Cy

Due to the special form of P, we easily see that

* 0 0 AFF AF,F 0 * % 0
Ac=PlAP=|% I O||Ar.r Ar.r Arc ||0 I 0

_0 (V4 0 Ac,, v Acy, ¢ 00 I
[ * 0 J[x =0

= | % * Ar, ¢, 010
_0 Ac;,r AC,,C,_ 00 [
[ * 0 ]

= | % * Ar, ¢

_O AC], r AC[, Cr|
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Therefore, we have Ac c;,r = Ac, 1, Ae;1,c; = Ar,c;, and Ac, ¢, =
Ac ¢ e

We also need the following block form of A and A, partitioned with respect to
the ordering Q2r U Q¢ and Qf U Qc, respectively,

Afpr Apc Ac FF Ac, FC
A= and A, = ’ ’ .
[ACF Acc} ¢ [Ac, cr Ac cc }

The (symmetrized) FAC preconditioner B utilizes a “smoother” My coming from
the major block Arr of A, as well as the Schur complement

-1
Se = Ac, cCc — Ac, CFAC’ FFAC, FC

coming from the coarse matrix A..
Assume first that M = Apr. Then the FAC preconditioner with exact subdomain
solutions, B, is defined as the following block-factored matrix,

_ Arr O |1 A;}AFC
B = |:ACF I:| |:0 s, . (7.45)

Note that to implement the actions of B~1, we need the inverse actions of Se,
which are readily available based on

-1 * *
AC = |:* Sl:|
c

That is, in order to solve a system with S, we can instead solve a system with A,
based on the formula SC_1 = [0, I]AC_1 [0, 117, where [0, I]stands for restriction to
Qc = Q\ QF. Also, another important feature of B is that the interpolation matrix P
is not explicitly used in the definition of B once the coarse matrix A. (givingrise to S;)
is being given. The preconditioner B is efficient if there are efficient algorithms that
compute the inverse actions of Arr and A, (the latter giving rise to inverse actions
of S, without actually having to form S;).

For example, in the case of tensor product meshes (and separable variables
PDEs), the matrices Arr and A, may allow for fast direct solvers as described in
Section 7.6.

In the case when AFfr is not as easy for solving systems, we need to approximate
it, and then it is natural to use smoothers M and the interpolation matrix (or rather its
local block Pr) to define an efficient two-grid iteration process that takes advantage
of special properties, such as data storage of Arr, MF, and Pr on uniform grids Qr
and A, as well. To illustrate the FAC method without exact inverses of A gr, introduce

the matrix
Io — I |} QF
=10 |y Qe

Then, one step of the FAC method consists of performing the following composite
iteration.
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Algorithm 7.10.1 (FAC). Let u be a current iterate for solving AX = b. Then:
(i) Solve for a subdomain correction ur,
Mrpup = (Ig,)" (b — Aw)

and update u :=u + Ig ur.
(ii) Solve for a coarse-grid correction u.,

Acu. = PT(b — Au),

and update u :=u + Pu,.
(iii) Optionally, to symmetrize the iteration, solve for one more subdomain correction
ur from

Miup = (Ig;)" (b — Au)
and updateu :=u + Iq, ur.

It is clear that the iteration matrix of the above process reads:
_ -T T ~1pT -1 T
EFAC—(I_IQFMF (IQF) A)(]—PAC P A)(I—IQFMF (IQF) A).

Equivalently, if we introduce the FAC preconditioner Bpsc from [ — B ;AlCA = Epc,
we obtain, letting Mp=Mpr(Mp + M; — AFF)_lM;,

_ I Mo )TAP] | 313
Brac = gy, P][ r Uer) ][MF 0 }

0 1 0 Al
8 I 01[ Uqm)T
—PTAlg, M;" 1 pT
——1
= Ugy, (I — lo, M5 (Ig,)" A)P] [MOF A‘)l}
C

5 [ (o))" ]
PT(I — Alg, Mz " (Ig,)")
—1
=Io, My (I;)"
+ (I —Ig,MpT(Io )T APAZ PT (I — Alg, My (Ig,)T).  (7.46)

The following identity holds (cf., Theorem 3.15 with J = Iq, and D = PTAP,
M= Mg, A= Afr),

vl Bpacv = min [VEAcve + (MfvE + (IQF)TAPVC)T
v=IQpVF+Pv,
-1
x (Mg + M} — App) ™ (MEve + (Ig,)TAPV,)]. (7.47)

Because the FAC method does not exploit smoothing on the entire domain, we
cannot use directly our general two-grid result (cf. Theorem 3.25). However, based
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on (7.47), similar assumptions lead to spectral equivalence estimates between A and
Brac. The main one is, if we can find a stable decomposition v = Jyvg + PV, such

that velo. = vl]a,
(hence Jovs = |: ; :|i gi ),

and such that the local symmetrized smoother M r is spectrally equivalent to Agr
restricted to the subspace Range((/q, YT Jo), that is,

V) Jg Ia, Mr(a) Jovs <k (v Jg oy Apr(le,) " Jovs.
with a bounded coarse component, that is, that
(Pve)T A(Pv,) < v Av.
We also assume that M is properly scaled so that
WE(MEp + ME — App)wr > 8 WEAppwE.

Then, based on the identity (7.47) and the above assumptions, we immediately get
the following spectral equivalence between Bryc and A,

vI AV < VI Braev < [(1 + 287Dy + 26 (1 4+ /)1 vT Av.

Thus, we proved the following main result.

Theorem 7.15. Assume that every vector v admits a special decomposition v =
Jovs + Pv. such that

Jovs = [ 0 } = Ia, (%)

is being localized in QF, with the additional following properties.

(i) The symmetrized local smoother M p is spectrally equivalent to App restricted to
the local subspace Range(]éF Jo); that is,

T Vi T T
WEAFFWE S WeMpwp < K WpAppwp, forallwp = IQF Jows.

(ii) The coarse-grid extension Pv. of vc in Qf (ie, Veloe = VlQe = v¢), is subop-
timal; that is,

T
v/ Acve = v PTAPY, < inf [ Vvvg ] A[ Vvvg ]

Assume also that the smoother M is scaled such that

V}:-(MF + M}; — App)VE > 8 V};AFFVF.
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Then the FAC preconditioner Bpac is spectrally equivalent to the composite grid
matrix A and

2
vl Av < VTBFACv < |:(1 + 5) n+2x(+ ﬁ)z] vl Av.

‘We now use the special features of Brsc to specify the above assumptions. First,
we assume that for any vector

_ ve |} T
YCTL Ve ) aenr

defined on 2¢, we can find a “bounded coarse extension”

[ vF
Pv.=pP| Y ];
ve

that is, (Pve)T A(Pv.) < o vEScve. Here, Sc = Acc — AcrAppArc is the Schur
complement of A.

In the finite element case, the following decomposition of the global quadratic
form holds,

T
T Ay — yT AV) VF Ny | VF
VAV =VoAL Vc+|:vF:| Ay |:Vr]'

The matrices A(CN) and A%N) are symmetric (semi)definite and defined for vectors on
Qc and QF U T, respectively. Because in this case A, Ac, and S¢ have a common
major block, the estimate (Pvo)TA(Pv,) <o Vg Scvc can be rewritten as

(vaf)TA%N) vaf <o VIY:SFVF.

Here, Vflr = vr = vc|r. Also, St = A?N;ﬂ — A(FNapA;FIA%N)F is the Schur comple-
ment of the matrix

)
AN _ |:AFF AF, r:| } Qr
L ) (N) r -
ArF ArT J
which represents the contribution to A coming from the subdomain Q. Note that
vc has the same interface component vr (i.e., v¢|r = vr). We also have vg Scve =
ng(CN)VC + VIT:S]"VF.
In summary, we have the following main convergence result.

Theorem 7.16. Assume:

(i) There is an energy bounded coarse extension mapping E from T into the interior
of QF, that is, Evc = PV?. for some vector v?, which coincides with v¢ on Q.
The boundedness means that

T
vEETAEve < |E|? inf [ VVVF } A|: VVVF ]
WF C C
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(ii) The local two-grid method based on M, Prr applied to Apf is convergent in
the sense that the respective two-grid preconditioner B;G satisfies for any v the
estimate:

ve) ' BFvi < KIO (vi)T Appvr.
Finally, assume that M is properly scaled so that
WE(MF + ML — App)Wr > 8 WEAppwe. (7.48)

Then the FAC preconditioner Brac is spectrally equivalent to the composite grid
matrix A.

Proof. We recall the following main identity for B;G.

T pT ; F\T F
(Vr) BFGVF = min [(PFFVC ) Afrr Prrv,
VF:VSF+PFFVL’,:

+ (M};VAF + AFFPFFVf)T(MF + M; — AFF)7
x (MEvE + AppPpevl)]. (7.49)

1

Using the fact that we have a bounded extension mapping E that is in the range
of the interpolation matrix P (i.e., Evc = Pv?.), we start with the decomposition
v=Evc+ IQFV(I); =Pv0+ IQFV(;;. By assumption, we have the norm bound

T
vEETAEvVe < |E|? inf [ VVVF } A[ VVVF }
WF C C

Now, use any local decomposition for V% = Vf + Pvaf , to arrive at the global
decomposition v = Pv, + Iq, vl with

F F
— Ve } Qc 0
Ve = [ 0 ]} Qe +v,.

Recall that /" stands for the coarse dofs in Q p. Using the latter decomposition in the
identity (7.47), the norm bound for Evc, the Cauchy—Schwarz inequality, estimate
(7.48), the fact that A~ — Ig, Apr(Ig,)” is positive semidefinite, and the esti-
mate [V0]|lazr = IHopvella = v = Evclla < (1 + |E|) [[v]la, we arrive at the
estimates

VTBFAcV
<20 +8 Y (Eve)TAEve +2  inf (v Pl App PrrvE

VO.=vE o+ PepvE
+ (MEV] + App Pepvi)T (Mg + MY — App) ™ (MEV] + App Pepv))]
=2(14+8"" (Eve)TAEvc +2(v9) T BEGVY,
<201+ 8 HE|? v Av +2KEC V0T AppvY,
<2[A+8 HIEIP + KA+ IEN?]vT Av.

Above, we used identity (7.49) for the local two-grid preconditioner BICG. O
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Multilevel FAC

We conclude the present section with the comment that the FAC method allows for
multilevel extensions. We introduce the kth-level composite grid Q% = Q(Ce) U

Qi Vu-uelthuel fork = £—1,...,0and 2© = QX (hence Q) = ¢).
Letting Qgc) = Q(CZ) U Q(szl) U---u Qg{H), we have the decomposition QK*) =
Qg‘) U Qg(). The portion ng) of Q% is assumed to have some regular structure. In
practice, ng) corresponds to a uniformly refined part of the computational domain.

The k + Ist-level coarse composite matrix is A®+D_ and the interpolation matrix
Py that relates A% and A®+D = PI'A® P, has the special form

k k (k)
PISF) PI(*—',)Fk 0 } QF
Pi=1] 0 I 0f} Tk
0 0 1]} e¥ =P\

Here Ty, € Q% is a separator so that A®) admits the following DD block-form,

(k) (k) k
Apr Ap'r, 0 } 9%)

k) _ (k) (k) (k)
AV = AFk, F Ark, Tk Ark, Cy boT
(k) (k) (k)
0 ACI, Lk AC1, Cr } QC/'

The major block Af,k} of A® corresponds to the subdomain Q(k), which has some
regular structure. We then assume that there is an easily invertible matrix Ml(gk) to be

J— T T
used as a smoother for A}k} Asbefore, let Mg() = prk) (prk) +M1(pk) —Al(ka))_1 Ml(pk)
stand for the symmetrized smoother, which is assumed s.p.d.

Definition 7.17 (Multilevel FAC preconditioner). Starting with Bl = A©, the

coarsest matrix, we then define by recursion fork =€ — 1, ..., 0, introducing
F — )
0y @ pa

0! kO kT kT kT 4k k+D)7' T
Bige =1pMp (" +(I—1pMp) ()" AR P BRLY  P

—1
x (I —ARIEMP (8T,

-1 -7
Exploiting locality, assuming that the actions of Ml(,k) and M}k) can be imple-
mented in (’)(|Q§f)|) flops, and based on the sparsity of P, we can assume that the
actions of Py and PkT can also be implemented in (’)(|§2§f)|) flops; it is easily seen

-1
then that one action of prg)c can be implemented for O(QWY| 4+ Zﬁ;} |§2§f) |) flops.
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By construction, we have the product form of the FAC iteration matrix E}ﬁ)c =
—1
I—BY. A®,
*) _ I
Epc =1~ B A®
kg™ kT 4k k+D7' BT 4 (k
= (I —IpMp" (Ip) Al ))(1 — PBpac” Py Al ))
k -1
x (I —1EMP (15T A®).

We can show (by induction) based on the representation

B®. =1k, PBY. (15, "

)
g _| My 0
PET Pra®IE |

where

1

(k) Gl K\~
(M + M - 4 0
(k+1)
0 BFAC
kT
« [Mfw) (1£~>TA<'<>Pk]
0 1

that v A®y < vTBgZ)CV, hence ||E}~Z)C”A(k) < 1. To prove the first fact, we first
define 1/9\;]8 in the same way as E}]XC with Bl(pz'gl) replaced by the exact coarse matrix
A®+D _Then define B}lg as

By =ik RIBR [1f. B,
that is, in the same way as in (7.46). Note that because (15, PALIx, POT is s.p.d.,
and because ng)c is s.p.d., then B}]XC is s.p.d. Similarly B;kG) is s.p.d. From the
product representation of / — B;kG)ilA(k), we see that AKX (1 — B}lgilA(k)) = (I —
IlléMgc)*l(lé)TA(k))T(A(k) — A© p AGEDT pT A ( — IéMgcrl(I}/é)TA(k)) -
ET(A® — A® P AT PI'AW)E . The latter matrix will be symmetric positive
semidefinite if the middle term

A _ A(k)PkA(kJrl)*lPkTA(k)

is symmetric positive semidefinite. From the relation A*+1) = PkTA(k)Pk and the

fact that | X|| = || XT|| = 1 used for X = A®"> p AC+D™"? he middle term is
seen to be symmetric positive semi definite. Thus,

VTBT(!CG)V > viA®y,
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Assuming now by induction that ngzl) — A®*D s positive semidefinite, we
first observe that B, g‘)c - 1/9\;]2 is positive semidefinite, as well. Hence, the following

inequalities are immediate.
T pk)~! Tk S0k T T k)~ NG
vIBS v <vTU®, PABY 1P, Py =vIBY) v <vTAB Ty,
The latter confirms the induction assumption that Bgf‘)c — A% is symmetric positive
semidefinite.

Estimates from above for Bgfx)c in terms of A®) would require proving the ex-
istence of stable multilevel decompositions of vectors with terms supported in the
refined regions ng). Such decompositions are typically derived based on stable de-
composition of finite element functions that then give rise to corresponding stable
decomposition of their coefficient vectors. For multilevel analysis of some versions

of FAC, see [BP04] (and the references therein), and for some respective numerical
results, see [BP0O4e].

7.11 Auxiliary space preconditioning methods

Given a vector space V and an s.p.d. matrix A operating on vectors from V/, also let
the (auxiliary) space V' together with another s.p.d. matrix A be well understood in
the sense that we know how to construct preconditioners B for the matrix A. Then,
we may want to take advantage of this fact to construct preconditioners B for A. To
achieve this goal, we need some additional assumptions found in what follows.

Construction of the auxiliary space preconditioner

Assume that there is a computable mapping 7 : V — V, which relates the two spaces.
Note that V+m V gives an overlapping decomposition of the original space V. Assume
that 7 is a bounded mapping; that is,

N Anv < o VAV, forallve V. (7.50)

We also assume that the space V canwell approximate elements from V in anorm
|.llo weaker than ||.|| 4. That is, for any v € V, there isaV € V such that:

e 7V provides an approximation to v; that is,

v — 7Vl <8 0A)~ v Av. (7.51)
Here,
vly vl Av v Av
0(A) = |A]l sup — >sup —— and [A] =sup —
vev Ivllg — vev IVIlg veV V'V

e The component V is stable; that is,

VTAV < n vl Av. (7.52)
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Note that the decomposition v = (v — V) + 7V satisfies the condition that the first
componentw = v — 77V is small (referring to 1 < ¢(A)), and the second component
7V is bounded, both in terms of ||v||4. The auxiliary space preconditioner exploits
a smoother M intended to handle the oscillatory small component v — v and a
preconditioner B that is assumed readily available for the operator A

Consider then the following transformation matrix [/, 7 ]. Our scheme of two-by-
two block-factorization preconditioners for A utilizing the decomposition based on
[1, 7] leads to the following (inverse of) preconditioner B~ = [I, n]Eil[l , )T
defined by

— I 01 [MWM+MT —A)TMT 01 M TAx
B‘[nTAMl IH 0 B||0 I » (153

where Bisa given preconditioner to Aand Misa simple preconditioner (“smoother”)
for A. More explicitly, we get

T MTTMAM —AYM P+ U -MT 7B 7T (I —AM™Y). (7.54)

Introduce the symmetrized smoother M = M(M+MT —A)~TMT . To analyze the
preconditioner B, we need the additional assumptions on the smoother M (or M),

0 <vIMv <« o(A) IV|3, (7.55)
and
0 vIi( M+ MT — A)yv > vT Av. (7.56)

Note that the r.h.s. inequality in (7.55) is trivially satisfied with M = (||A|/w) I,
w € (0,2),andk = 1/(w(2 — w)). We have

2 -1
M=MM+M" - )~ M" = ”Aﬂ <—2”A” I- A) :

10) 1)

Therefore,
IAI> 7 (214l - Al T 1 2
A A < A < oA .
02 o) w_a)(Z—a))Ww_ 02— w) Q(A) liwlly

The left-hand side of (7.55) means that M is a convergent smoother for A in the
A-inner product. That is, vI' (I — M~'A)TA(I — M~ 1A)v < o vT Av for some
o < 1, which is true for M = (||A]|/w) I with ® € (0, 2). Simply note that the
eigenvalues of I — M~ A are in (—1, 1). Finally, assumption (7.56) can be ensured
for any M by proper scaling. For the particular example M = (||A|/w) I, it holds
withd = w/(2 — w).

For the preconditioner B to A we need the equivalence relations,

o~

TaT Anv <V BV <G v AV, forall V. (7.57)
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The above inequality includes the assumed boundedness (7.50) of the operator . The
estimate (7.57) can be obtained if B is a spectrally equivalent preconditioner to A,
that is, if

o VI AV <¥'Bv <5 v Av.
The latter relations, together with the boundedness of 7, that is, estimate (7.50), imply
the equivalence relations (7.57).

We first have (from the assumption v/ 77 Anv < VI BV) based on Theo-
rem 3.16 that

0<vI(B—A)v.

Next, consider the special decomposition v = w + 7V, or equivalently,
- w
v=w+nv=][I, 7r]|: 5 i|

Therefore, for the upper bound, we get

T
VTBV§|:Yi| F[Y}
v v
= MIw+ AT M+ MT = )" M w + Anv) +3T BV
<2wMw+ 2V 7T AM + MT — A)~'Anv +37 BY.
Then, based on (7.55) and (7.56), using the estimate wl Aw < o(A) ||w||% and the
boundedness of 7, we arrive at the final estimates:

vIBv <2 k0(A) [wlZ +20 ¥ 7T Anv +3T BV

< 2k0(A) W3+ 20 + )V BY

< 2k0(A) [[W]I3 + (26 + 1)5 ¥ AV

< [2«8+ (1 +20)6n] v! Av.
We used in the last line above that [wl|3 < 8(o(A))~! vT Av and VT BV < 5 vT Av,
that is, the assumptions that w = v — 7'V is small in the sense of estimate (7.51) and
that the second component vV in the decomposition is stable in the sense of (7.52).
The last estimate completes the proof that the auxiliary space preconditioner B is
spectrally equivalent to A.

A somewhat simpler auxiliary space preconditioner is the additive one (proposed

in Xu [Xu96b]). For a symmetric smoother M, (e.g., M = (||A||/w) I) it takes the
form

Bl=M"4+7B 'xT. (7.58)
It can be analyzed analogously (under the same assumption). We have

M0
I =B, n][ 0 El][l, 71T B3,
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Therefore,

T
M-l o 1702 s\ (Mo 0 770 s
<|: 0 §_1:| (1, 7] B,4q 0 B! 1, 1" B iq -1

is symmetric negative semidefinite; that is,

0
7. 71" Baaall. 7] — ﬁf §]

is symmetric negative semidefinite. This shows, that for any decomposition
~ w
v=w+4nv=][I, 71]|: 5 :|,
we have

T
VTBaddV=|: ] [, ”]TBadd[I’ 7T]|:

T M 0 w
< ~ =
- 0 B v
=wl Mw +vT BV
=2w' MeM)"'Mw+3" BV
<2wIMOeM — Ay " Mw+5 AV
2w MM+ ML — Ay " Mwrev AV
=2w/ Mw+5 v AV

<20(A)c |w|% +5 VAV,

<) =
[

<) =

<) =

Now, use the estimates for the components of the decompositionv = v+ 7V, |w ||(2) =
v —7vI3 < 8(0(A)~! vI Avand VT AV < 5 vT Av, to arrive at the lower bound

1
vl Av > vTBaddv.
on + 2ké
The estimate from above is similarly derived. We have
VTBa_di‘V =vIM v+ vz A 7Ty
26
<
“1+0

-~ 20 T 4—1
= — A .
<a+1+9>v v

Here we used that (Z’(l/z)nT/{ll/z)(z’(l/z)nTAAl/z)T — o1 is negative semidef-
inite (by assumption), hence (A~(1/2 7T AV (A=1/2 7T A1/2) — G is negative

viaTlv+svialy
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semidefinite, which implies that mA 2T —GA s negative semidefinite. Also
(again by assumption) M + MT —1+q@ /0)) A is positive semidefinite, therefore
vIiMv = (1 +6)/20) vT Av.

To summarize, the following main result holds.

Theorem 7.18. Consider two vector spaces V and Vandletw : Vv V relate the
auxiliary space V with V. Let the given s.p.d. matrix A of main interest, acting on
vectors from V, be related to a s.p.d. matrix A defined on V. Finally, let A admit
a spectrally equivalent preconditioner B that is properly scaled, such as in (7.57).
Under the assumptions that any v € V admits a decomposition v = w + v where
the first component w is small in the sense of (1.51), and the second component Vv
is stable in the sense of estimate (7.52), provided that A also allows for a smoother
M (e.g, M = (|A|l/w) I, for any w € (0, 2)), which satisfies (7.55) and (7.56),
then both the additive auxiliary space preconditioner Bagq defined in (7.58) and the
multiplicative one B defined in (7.53) are spectrally equivalent to A.

An H(curl) auxiliary space preconditioner

Examples of auxiliary space preconditioners for finite element problems rely on im-
portant finite element decompositions. The power of the auxiliary space precondition-
ing method can be illustrated with the following H(curl) example. A main result in
[HXO06] shows that vector functions in H (curl)-conforming Nédélec spaces Vj, (cf.,
Section B.6 in the appendix for definition of the f.e. spaces) allow for decompositions
based on three components,

vy, = wp + Vz, + Iz, (7.59)

where we have two auxiliary spaces, S, and Sj. Sy, is a scalar finite element space
suitable for Poisson-like problems and S;, = (Sj,)? is a vector one. The mapping II;,
relates the dofs in S, with the dofs in the original space V.

Note that all spaces use the original triangulation (set of elements) 7. The com-
ponent wy, is small, in the sense that ||wyllo < Ch ||V |lH(curl), and the remaining
components are stable, namely, [|Vzxllo < C [[Valla(cur) and [|zx]l1 < C [|[Va lH(cur)-
The additive auxiliary space preconditioner for the original H(curl) form,

(Apvy, vi) = (curl vy, curl vp) + (v, vp), vy, € Vp,

utilizes the subspaces Vj, VSy, and I1;,S; of Vj, and respective operators Ay,
By, and By, coming from the symmetric Gauss—Seidel smoother for the origi-
nal H(curl) operator (matrix) Aj;, a MG preconditioner for the Laplace-like form
(AnVzp, Vzp) = (Vzi, Vzp) with z; € Sy, and similarly, a MG preconditioner
for the (vector) Laplace-like form (A, z;, Opzy) ~ (Vz,, Vzp), 75 € Sy Intro-
ducing the matrix representation G, of the embedding VS;, C V,, that is, the matrix
representation of the mapping of the dofs in S, into dofs of V;, (based on V.S, C Vy),
the additive auxiliary space preconditioner Byqq takes the form

B =A;"+G, B 'GI + 1B, ']
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The fact that B,qq is an optimal preconditioner for A = Ay, follows from the properties
of the decomposition (7.59) and the fact that with ||.||o being the Ly-norm, we have
then p(A) ~ h™2.

The performance of both additive and multiplicative auxiliary space precondi-
tioners for H (curl)-type problems is documented in detail in [KV06i] and [KV06ii].

General approaches for constructing auxiliary space preconditioners were studied
in [Nep91a], [Nep91b], [Xu96b], and [BPZ]. Applications to H (div)-bilinear forms
were considered in [RVWb] and based on auxiliary meshes for H (curl) in [KPVa].

Concluding remarks for this chapter

For more details on DD methods, we refer to the books [DD], [Wo00], and [TWO05].
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Preconditioning Nonsymmetric and Indefinite
Matrices

This chapter describes an approach of preconditioning nonsymmetric and indefinite
matrices that can be treated as perturbations of symmetric positive definite ones.
Namely, we assume that A = Ag + R where Ao is a s.p.d. matrix and R can be
treated as a perturbation of A. More specifically, the main assumption is that in a
space complementary to a coarse space of a fixed size, R has a small norm. This is
made more precise in what follows.

An additive version of the approach described in what follows was originally con-
sidered by Yserentant [Y86]. The Schur complement preconditioner that we present
next is found in [V92a]. An equivalent finite element type preconditioner was con-
sidered in [Xu92b].

The assumptions made in the present chapter are verified for finite element (non-
symmetric and possibly indefinite) matrices corresponding to general second-order
elliptic bilinear forms in Appendix B; see in particular, Theorems B.3 and B.4 for the
perturbation approach described in Section 8.2.

8.1 An abstract setting

Partition the set of indices (dofs) into a fixed small set of “c” dofs and a large com-
plementary set of “f”” dofs. Let

P P 1} «f”dofs
T I |} “c”dofs

be a given interpolation matrix. Let A. = PT AP be the coarse matrix, which we
assume to be invertible.

Consider the transformation matrix

(1P
=10 1|

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 319
doi: 10.1007/978-0-387-71564-3_8,
© Springer Science+Business Media, LLC 2008
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and the corresponding transformed matrix
-~ Agr A + AgP

— T — ff fe ff

Ammdr= [Acf +PTAy A } '

Because A is assumed of small size, we are actually interested in the reduced Schur
complement
Wi = Ay — (Ar + AgP)A; (A + PT Ay).

Our goal is to construct an efficient preconditioner to Wy based on preconditioners
for the same Schur complement W(f) coming from the transformed form Ag = w7 Ao
of the given s.p.d. matrix Ag. The first main assumption is the following Girding
inequality, valid for two constants yp € [0, 1) and 9 > O,

vEAv > (1 — po)vT Agv — col|vI3- 8.1)

Here, ||v]|o is a given norm weaker than /vl Agv. In a typical finite element appli-
cation, ||v||p comes from the integral L;-norm of the finite element function v that v
represents. Then, in d dimensions (d = 2, or d = 3), ||v||(2) ~ h¥vTv, where h — 0
is the mesh-size.

Our second main assumption is that for any given v, the solutions of Ax = v and
AcX, = PTv are close in the weaker norm. That is, for some small § > 0, we have

Ix — Pxc[|§ < 8 x" Aox,
which is the same as
1A~y — PATT PTY A3 < 6 xT Apx. (8.2)
Equivalently, we may say that the coarse-grid projection m4 = P AC_1 PT A satisfies
17 = 7a)vllg < 8 v" Aov. (8.3)

In what follows we assume § is sufficiently small such that dco < 1 — yp.

For more details, in the case of second-order elliptic equations, see Theorem B.7
in the appendix.

Using inequality (8.3) in (8.1) for v = (I — m4)v leads to

vIAv > (1 — yy — 8co)v! Agv. (8.4)

Thatis (for é > O sufficiently small), A becomes coercive in terms of A in a subspace
complementary to the coarse space; namely, for v € Range (I — m4).

Next, we find a representation of the solution to the equation v = (I — m4)v.
We have 0 = mqv = PAc_lPTAV, which is equivalent to PT Av = 0. Recall the
transformation matrix

o [1 P]
=lo 11
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Because 7 is invertible, we can seek v = 7V, where

v:[jf]

Then,

From the equation
0=PTAv = PTA<PVC + [ Vof ])
we get
Ach+PTA|: Vof i|=0
That is,
Acve + (Acs + PTAfp)Vy =0.
This shows that
| Wrvr
AV = |: 0 ] .
Therefore, v Av = Vgl Agv =v! AV = V; WV ¢. Thus, we proved the following
coercivity estimate for the Schur complement W of A,
V};Wfo > -y — SCo)VTJTTAoﬂ’V.
Now, because 7T Ay is s.p.d. forits Schur complement W9, we have the estimate
vy r vy
T_T - . ” _ <Tw0<
vVin! Agnv > rr%n|: v. i| Ao|: V. ] = vafo. (8.5)

Thus, we finally arrive at the main coercivity estimate for the Schur complements W ¢
and W(f):

VWV > (1= yo — 8co)Vy Wivy. (8.6)

In order to complete the proof that W? is a good s.p.d. preconditioner for the
coercive nonsymmetric matrix Wy, we need some bounds from above. A natural
assumption is as follows,

1/2

viAw < (14 A)(vT Agv) ' (wT Agw) (8.7)

This can be equivalently stated that Ay is the principal (leading) term in A.
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The above inequality used for w = 7W and v = 7'V, shows the boundedness of
A in terms of Ao Next, for w:

| Wrwy
AW = [ 0 ]
used in the boundedness estimate for A in terms of Zo, we get

VW W < (1+ M) Agw) AW AW/
I+ A
< - @@
T V1T =y —3dco
1+ A ~
- +a " AW AW wewp)'
V1= Yo — 560 .
We first used 1nequahty (8.4) because w = 7w is in the proper subspace and then the
fact that W/ AW = W ¥ wa 7~ The left-hand side is independent of v by taking the
minimum over v, based on (8.5), thus we arrive at the estimate

& Ao 2w Aw) /2

T W) ) @)

Finally, letting Vs = W in (8.8) implies

V?]; Wewy <

1+ A
)1 /2 < + (W? WO
V1T =y —dco
Then using the last inequality back in (8.8) leads to the final estimate, which bounds
Wy in terms of W?:

1/2
(Wi Wsws )2,

1/2

(Vs Wfo)l/z(W Wowy) (8.9)

To summarize:

Theorem 8.1. Let A = Ao+ R be a nonsymmetric and possibly indefinite matrix and
Ay be its principal s.p.d. part in the sense of inequalities (8.1) and (8.7). The norm

Il.llo is assumed weaker than +/ ()T Ag(.) such that an error estimate (8.3) holds for
sufficiently small § > 0 and proper coarse subspace Range(P),

= 7]

Then, A and its principal s.p.d. part Ay are spectrally equivalent in a subspace
complementary to the coarse space. More precisely, based on

1
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after transforming A and Ao to 17 Aw and w7 Agw, respectively, the transformed
matrices have Schur complements Wy and W(f) that satisfy the coercivity and bound-

edness estimates (8.6) and (8.9). Therefore, using W as a preconditioner for solving
systems with W in a preconditioned GCG-type method (see Appendix A) will have
a convergence rate no worse than

U= sty
( (1+ Ay ) '

8.2 A perturbation point of view

At this point, we emphasize that we actually need an inequality of the type (8.7) for
special w; namely, for 4w = 0. If we assume that A — Agp = R can be bounded
above as follows,

1/2
V(4 = Apw < o (v Agv) " Iwllo,
which implies a similar lower bound estimate
T T 12
vi(A—Ap)w = —a (v Agv) "“llwllo,

for w such that w = (I —m4)w. These estimates imply estimates that demonstrate that
A can be viewed as a perturbation of A in the subspace 4w = 0. More specifically,
we have

v Aw <1+ «/5_0)(VTA0V)1/2(WTAOW)1/2, for any v and any w : maw = 0.

(8.10)
Similarly,
wl Aw > (1— \/go) WTA()W, foranyw: maw = 0. (8.11)
Then, the coercivity estimate for Wy in terms of W}(R reads
VWV, = (1= VooV WiV, (8.12)

Following the analysis from the preceding section, we end up with the following
sharper boundedness estimate for W in terms of wo,

(1 + /80)?
1— \/50

‘We can actually prove more than coercivity and boundedness estimates. From the
inequality valid for w : maw =0,

VWi < (Vywevy) P (whwpw ) (8.13)

vi(Ag — A)w < oSV Agw) 2 (wT Agw) /2, (8.14)
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used for special v = 7V; namely such that

7TTA()V _ |: W](()vf :|’

and because ma4w = 0 with w = 7w, we get v Aw = vf W¢Ww, and therefore,
VWO — W)W, < oo (T W) @ T Agrw) 2 (8.15)

Finally, from the same estimate (8.14), used for v = v = w = 7w, we also
have

Trl AonW < WEW Wy + oV W aT Agrw.

That is, together with the boundedness estimate (8.13) (used for vy = Wy), we
arrive at

(1+U\/—)2_T
1—0o/$ wf

Substituting this inequality in (8.15) the following main perturbation estimate is
obtained.

1
V;(W}( Wf) f<6\/_ to

1—0«/_) anTAonw<wa,«w,« < Wf

s
1-os

The latter estimate is equlvalent to the fact that the norm of
0\—(1/2) 0\—(1/2)
1= (Wy) "W (Wy)

is less than o +/8((1 + 0+/8)/(1 — 0+/38)) < 1. The latter can be equivalently stated
in the following compact form.
Theorem 8.2. For a constant 8y < o~/8((1 + 0+/8)/(1 — a+/8)) = OW9), the

following main deviation estimate holds,

(W7 = WD) Ly = 51l

@ wov,) AW wiw )2 8.16)

Remark 8.3. It is clear that W can be replaced by an accurate preconditioner S(},
such as a corresponding Schur complement coming from a few (v > 1) V-cycles
applied to the s.p.d. matrix Ag (see the next section for more details). Then we have
an estimate

(1= "WViSHvy < VW)V, <ViShvy,
where o € (0, 1) is, for example, the convergence factor of the V-cycle MG. Then it
is clear that a result similar to that of Theorem 8.2 will hold with W? replaced by S?
and a different constant § y := 0" + 8¢/(1 — @"), which can be made arbitrary close
to o/8((1 +0+/8) /(1 —a+/5)) by increasing v. Thus, we can use the variable-step
preconditioned CG (conjugate gradient) method (see Chapter 10) to solve systems
with Wy using S? as a preconditioner. The convergence rate will be close to that of

the V-cycle MG perturbed by the value of /3.
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8.3 Implementation

A main example for nonsymmetric and possibly indefinite matrices A comes from
discretized second-order elliptic PDEs, where Ag would refer to the principal sym-
metric and definite part of the PDE, and the remaining part would come from the terms
with lower-order (first and zeroth) derivatives. It is then straightforward to prove an
estimate of the form (8.1) for constants yp € [0, 1) and § > 0 where the norm ||.||o
comes from the integral Ly-norm of functions. It is clear then if we use a coarse
space, we should be able to prove an estimate of the form (8.2) with § — 0 when
the coarse mesh gets smaller and smaller (for more details see Theorem B.7 in the
appendix). Note that we need § (or the coarse mesh-size) to be sufficiently small to
compensate for the coefficient ¢ /(1 — ), which is mesh-independent. The quantity
co/(1 — y0) depends only on the coefficients of the underlined PDE. Hence, 6 (or the
coarse mesh-size) can be considered fine mesh independent and therefore fixed. In
the case when the lower-order derivative terms of the differential operator are dom-
inating, such as the convection—diffusion operator —e Au + b - Vu for small € > 0,
or the Helmholtz operator —Au — k”u for large k, the coarse mesh that reflects the
coefficient § will become practically unacceptably fine. The terms with lower-order
derivatives in these operators cannot be treated as perturbations of the principal el-
liptic part and therefore require other approaches that, however (so far), have limited
partial success (cf., [BW97], [HP97], [BL97], [BLOO]).

It is also clear that we do not have to work with A and its Schur complement. We
can instead use any spectrally equivalent preconditioner M for Ag and work with its
corresponding Schur complement.

To implement the actions of Wy, we have to solve a coarse problem with A,
which is of small size. We solve, for a given Vs, the coarse-grid equation for v,

AV, = —PTA[ Vof } .

Then,

WV, = [1,0]AV = [1,0]x AV = [I,0]A [ i t Pe ] .
c
The inverse actions of the Schur complement S(} of 7T My are computed as

follows.
—1 e[ 1] IR Y A I
() 7'V, =1 0 My ' T[ 0 ]vfz[l, —P]Mol[ T ]vf.

Here, we used the fact that the inverse of a Schur complement of a matrix is a principal
submatrix of the inverse of the given matrix.

In summary, the implementation of an iterative method based on the Schur com-
plements of 7T Am and nTMon requires only actions of Ac_l, A, Mo_l, P, and P
that is, the iterations can be implemented in terms of the original matrix, the coarse
matrix, the original s.p.d. preconditioner My (its inverse action), and the interpolation
matrix P and its transpose.
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Preconditioning Saddle-Point Matrices

In the present chapter, we consider problems with symmetric (nonsingular) matrices
that admit the following two-by-two block form,

A BT
A

Here, A and C are symmetric and positive semidefinite, which makes A indefinite.
A common case in practice is C = 0. Matrices A of the above form are often
called saddle-point matrices. In the following sections, we study the construction
of preconditioners that exploit the above block structure of A. We consider both cases
of definite and indefinite preconditioners.

There is extensive literature devoted to the present topic. We mention only the
more recent surveys [ANO3] and [BGL].

9.1 Basic properties of saddle-point matrices

We assume that B7 has full column rank; thatis, BB is invertible. Then the following
result is easily seen.

Theorem 9.1. A necessary and sufficient condition for A to be invertible is that
A+ BT B be invertible.

Proof. Indeed, if there is a nonzero vector w such that simultaneously .Aw = 0 and

Bw = 0 then
w 0
A[o]=lo]

that is, A has a nontrivial null space. Thus, A + B” B being only semidefinite implies
that A is singular.

The converse is also true. Assume that A + B7 B is invertible. We show then that
A is invertible. Because C is positive semidefinite, for a sufficiently small constant

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 327
doi: 10.1007/978-0-387-71564-3_9,
© Springer Science+Business Media, LLC 2008
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8 > 0 we can guarantee that / — §C is s.p.d. Consider the system

5 %2

We can transform it as follows. Multiply the second block row with 37 and add it
to the first block row, and then multiply the second block row with I — §C; we get

A+8BTB BT (1 -8C)][w _o
(I-8C)B —(I —8C)C o

Note that .4 and 55 having only the zero vector as a common null vector implies that
A + 8BT B is invertible, and hence, we get the following reduced problem for x,

[(I —8C)C+ (I —8C)BA+8BTB)'BT(1 —5C)]x = 0.

Observe now that the matrix (I — 8C)C is symmetric positive semidefinite, hence
(I —8C)B(A+8BTB)~'BT (I —58C)x = 0. Thatis, BT (I —8C)x = 0, and due to the
full-column rank of BT, we get (I — §C)x = 0. Finally, because I — 8C is invertible,
we getx = 0. Thenw = —(A + 8BTB)~'BT (I — 5C)x = 0. Thus, we proved that
A has only a trivial null space that completes the proof. O

In some applications B is rank deficient. This is the case, for example, when B
corresponds to a discrete divergence operator. Then 17 B = 0 for any constant vector
1 (assuming that essential boundary conditions were imposed). Strictly speaking, A
may be singular then (the case for C = 0). To avoid nonuniqueness of the solution
we add additional constraints, namely, for all vectors qx, k = 1, ..., m, providing a
basis of the null space of B, we impose

q/x=0.

We may assume that @ = [qq, ..., qx] is orthogonal; that is, orTg =1.
The original problem
UNEH
X | g

with a possibly nonunique solution is transformed to one with a unique solution

A0 BT\ [w f
00 QT||r|=]|0]. 9.1
B Q —C]||[x g

Here, A € R™ is the vector of the so-called Lagrange multipliers. The new saddle-
point matrix has a full-column rank off-diagonal block

o ]
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ensured by construction. Indeed, (BB”+QQ7)x = 0implies B/x = 0and Q7x = 0.
The first equation B7x = 0 implies that x = Qo € Null(B”) for some 0 € R”.
Then, the second equation 0 = oTx = QT(Q(T) shows that 0 = 0. That is, x = 0.
This proves that BBT + Q0T is invertible, which is equivalent to

&

having full-column rank. Finally, notice that the principal block of the expanded
saddle-point matrix is

A0

0 of

which is symmetric positive semidefinite. The result of Theorem 9.1 then tells us that
the new problem has a unique solution if (and only if)

A 0] [BT1[B"]" _[A+B"B B'Q] [A+B'B 0
ool Tlor||lor] T| o8B <@o|T| o 1

is invertible, that is if (and only if) A + BT B is invertible. In practice, we do not
form the expanded (three-by-three) system (9.1) explicitly. During the computation,
the vectors x are considered (and kept explicitly) orthogonal to qy, . . ., Q.

Consider the special case C = 0. If the second r.h.s. component g is orthogonal
to null(B7), we can prove that A = 0. Indeed, the last equation of the three-by-three
system implies that or (Bw+ O\) = QTg = 0. Because Q7B = 0, we have A = 0.

Therefore, as we proved above, the following result holds in the case of rank-
deficient BT and C = 0.

Theorem 9.2. Consider the saddle-point problem

ERdINEH]

Here, A is symmetric positive semidefinite. Let {qy};"_, form a basis of null(BT). The
above saddle-point problem for any given f and g : qkTg =0k=1,...,m wil
have a unique solution (w, X) with second component X satisfying the constraints
q/x=0k=1,...,m, ifand only if A+ BT B is invertible.

The case of general positive semidefinite C is considered in the final theorem.

Theorem 9.3. Consider the saddle-point problem

A BT w f
N 62

Here, A and C are symmetric positive semidefinite and Q = [qi, ..., qQu] is such
that {qx};—_, form an orthogonal basis of null(BT). The above saddle-point problem
for any given £, and g orthogonal to null(BT), has a unique solution (w, X) with
second component X satisfying the constraints q,{x =0 k=1,...,m, ifand only if

A+ BT B is invertible.
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Proof. We showed that the necessary and sufficient condition for the expanded
saddle-point problem (9.1) to have a unique solution is A+ B B3 to be s.p.d. We show
next that (9.1) in the case QTg = 0 having a unique solution (w, x) with OTx =0is
equivalent to (9.2) having a unique solution (w, x) such that oTx =0 (if QTg = 0).

It is clear that Q7 g = 0 is a necessary condition for solvability of (9.2). This
is seen by multiplying its second equation by Q7 using the fact that Q7 B = 0 and
or'(1—-9Q™) =o.

Consider the expanded system (9.1) with g : QTg = 0. Multiplying its third
equation Bw + QA — Cx = g with the projection / — Q0T based on the facts
that 9TB = 0, 9TQ = I and QTg = 0, leads to the desired second equation
Bw — (I — QQT)Cx = g of (9.2). This and the first equation of (9.1) show that
(w, x) with Q7x = 0 give a solution to the problem (9.2).

On the other hand, any solution (w, x) of (9.2) such that oT'x =0 together with
A = QT Cx, provides a solution to (9.1) that we know is unique if A + B7 B is s.p.d.
Thus, (w, x) with Q7x = 0 must be the unique solution to (9.2). O

Remark 9.4. Based on the above result, we can in principle transform a problem

X g
to the fOHOWiIlg equivalent one,

A+8BTB BT —-8C)1[w
(I-8C)B —(I—-80)0C||x

_[f+68"g
—la-50g]"

The transformed matrix is again of saddle-point type. It has the property that
BT (I -5 C) has a full-column rank, and finally, its first block A48 B” Bis invertible.
Thus, at least in theory, we can assume without loss of generality that the original
matrix A has invertible first block A.

9.2 S.p.d. preconditioners

Consider the following saddle-point problem

AX =F,

<< = =[]

It is typical to derive a priori estimates for the solution X in a norm ||.|| p whereas the
r.h.s. F is taken in the dual space, that is, in the norm ||F|| p-1 = maxy(Y'F/|| Y| p).
The a priori estimate reads:

where

IXllp <« [[Fllp-1. 9.3)
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From this a priori estimate used for X = A~'F, we get the first spectral relation
between A and D

1
—X"DX < X" AT D™ AX. (9.4)
K

The latter estimate represents coercivity of AT D™! A in terms of D.
Note that the norm ||. ||2D is typically a sum of squares of two norms; that is, D is
a block-diagonal s.p.d. matrix with blocks M and D. Then, for

v=l)
X
we have V]2, = vI Mv + x"Dx.
Assume now, that we can construct a block-diagonal matrix M that is spectrally
equivalent to D. The coercivity estimate (9.4) implies a similar estimate with D
replaced by M; namely, we have

FTMF <> FT AT M~ AF. 9.5)
Because A7 = A, the above estimate, by letting F = M~(1/2V, is equivalent to
VIV <@ Vi apm= 22y,

Thatis, the absolute value of the eigenvalues of M —(1/2) A p—1/2) js bounded from be-
low by 1/&. Or equivalently, the eigenvalues of M~(1/2 ApM~(1/2) stay away from
the origin. The latter property is a main reason to use block-diagonal s.p.d. precondi-
tioners M that come from the norm ||.||p in which the saddle-point problem is well
posed.

To complete the spectral equivalence relations between A and M, we need an
estimate from above for the absolute value of the eigenvalues of M~1/2 Ap—(1/2),
This comes from the following (assumed) boundedness estimate of A in terms of D;
namely,

ViAW <o (VIDV)'2(WT DW) /2, 9.6)

Because M is spectrally equivalent to D, a similar estimate holds with D re-
placed by M,

ViAW <& (VT M) 2(WT mw)!/2, 9.7)

Thus, the eigenvalues of M~ AM~U/D (because AT = A) are bounded in abso-
lute value by &.
To summarize, we have the following result.

Theorem 9.5. The construction of block-diagonal s.p.d. preconditioners for the sym-
metric saddle-point (indefinite) block-matrix A can be reduced to the construction of
preconditioners M for the block-diagonal matrix D. The matrix D first defines a norm
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in which the saddle-point problem is well posed; namely, an a priori estimate (9.3)
holds for any r.h.s. F, and second, the saddle-point operator A is bounded in terms of
D in the sense that a boundedness estimate such as (9.6) holds. The thus-constructed
s.p.d. preconditioners M when used in a MINRES iterative method (cf., Appendix A)
will exhibit a rate of convergence dependent only on the constants involved in the
spectral equivalence relations (9.5) and (9.7).

9.2.1 Preconditioning based on “‘inf-sup” condition

We assume here that C = 0. The case of nonzero (symmetric positive semidefinite)
C is treated as a perturbation of the case C = 0 at the end of this section.
Introduce the block-diagonal matrix

M 0
o[ 4)
We also need the Schur complements S = BA™'BT and Sy, = B.A;BT with
Ap =A+BTDB.
We have the following important result.
Lemma 9.6. The a priori estimate (9.3) implies the following well-known LBB
(Ladyzhenskaya—Babuska—Brezzi) or simply “inf-sup” condition

1 B
— <inf sup _ Y PW )
y o ow  Iwlamlyllp
Proof. For any y, solve the saddle-point problem
Av +BTx =0,
By = —Dy.

9.8)

The solution components are x = S~™'Dy and v = — A~ ! BT S~ Dy. The assumed
a priori estimate (9.3) rewritten as in (9.4) implies that

vIMv +xTDx < «? y' Dy.
In particular, we have v/ Mv < «? y! Dy. Consider finally,
' Bw)?* _ (' Bv)?
e S— Z T
w  wiMw vi Mv
(yTB.AleTSfIDy)Z
- v Mv
_ " Dy?
v My
_ 0" Dy
~ «k2yI'Dy

1 T
= — y'Dy.
=¥ Dy

The latter estimate is the desired “inf—sup” (or LBB) condition. O



9.2 S.p.d. preconditioners 333

The converse is also true in the following sense.

Theorem 9.7. The “inf-sup” condition (9.8) and boundedness of A in terms of D as
in (9.6) imply the a priori estimate for AX = F in the pair of norms generated by
Ap = A+ B'D'Band D.

Proof. The boundedness of A in terms of D (9.6) used for

v

implies that

wlAw < o wl Mw. 9.9)

The boundedness of A in terms of D (9.6) now used for

vy

wl Aw + 2y Bw < o (wf Mw + y' Dy).

implies

Substituting y := ty for any real number ¢, we get that the quadratic form Q(¢) =
o 12 y'Dy -2t y' Bw+w! (6 M — A)w is nonnegative. This shows, based on (9.9),
that the discriminant D = (y"Bw)? — o y' Dy w! (¢ M — A)w is nonpositive;
that is, we have

y'Bw)? <o y' Dy wl'(c M — Aw. (9.10)
Letting y = D~ ! Bw in the last estimate gives
w' BTDBw < Vo (Wl (0 M — Hw)Z(w' BTD 1 Bw)!/2,
or
w'B'"D '1Bw <o WT(U M — Aw.
Equivalently,
wl(c A+ B'D7'Byw < o2 wl Mw. 9.11)

The “inf—sup” condition (9.8) implies then that

1 TRy
—|lyllp < sup
K w o Iwllat
o s wl BTy
o su
=7 5P T At BTD1B)w)12
o wl BTy

9.12)

= min(l, Jo| W (A+BID-Byw) 2’
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That is, we have an “inf-sup” condition also when ||.|| o4 is replaced by the norm
generated by Ap = A + BTD~! B with a different “inf-sup” constant

o

min{l, /o}

Consider now the saddle-point problem AX = F with a general r.h.s.

K=k

and let

be its solution. We transform the system AX = F by multiplying its second block
equation with B7D~! and adding the result to the first one to arrive at

A+ B'D 'Byv+B'x = f+B'D g,
(9.13)
Bv = g
‘We can estimate the first block of the r.h.s. above as follows.
_ —(1/2 _
It +B D gl 1 < Il o + 145 VB D2 gl p
_ —(1/2
= Il 41 + 1D BAZ 2 lgllp-

< Il 41 + llglp-1- (9.14)

Also with S4,, = B.A;BT, the following reduced equation for x is obtained
from (9.13),

~Sapx = —BAL (£ +B"D'g) +g.

From the “inf-sup” condition (9.12), with ¥ = « (o/(min{,/o, 1})), we easily
obtain

1
7(TXTDX < XTB.Ai_)lBTX = XTSADX. (9.15)

Therefore,

1 T T
= x Dx <x' Sypx
=—x'g+ XTZS’A{)1 (f+BTD 'g)
_ —(1/2 _
< liglip-1Ixlip + Ixlp 1D~ PBAL ¢+ B"D'g)ll 4

< Ixlp(2liglp-1 + IIfIIA;)-
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Thus we arrive at the first a priori estimate,

1
= Ixllp <2|gllp-1 + IIfIIAg- (9.16)
Finally, because

wi B x < A wllAL P BT D=2 |1x|1p
= AL WD~ V2 BAS? Jlixlip
< Iwll.ap IXlID.
from the first equation of (9.13), we get
viApy = —vI B x +vI(f + BTD !g)
< IVllap IXllp + 1Vl If + BTD~'gll 41

That is,
IVllap < Ixllp + IIf + B"D7'g| 4.

Based on (9.14) and the proven estimate (9.16) for ||x||p, we then arrive at the
other desired a priori estimate,

IVlap < Ixllp + If + B'D7'gl 41 < @ + DIfY 41 + 2% + Dliglip-1. O

The following result (see (9.15)) also holds.

Corollary 9.8. Assume the “inf-sup” condition (9.8) with M = Ap = A +
BTD'B. Then, the Schur complement S Ap = B(Ap)~'BT of the transformed
saddle-point problem (9.13) is spectrally equivalent to D; namely, we have

1
) x! Dx < XTS_ADX < x! Dx.
In particular, if D is well conditioned then S 4, is also well conditioned.
We also need the following auxiliary result.

Lemma 9.9. Assume that an a priori estimate (9.3) in the pair of norms ||.|| pm, |- 1lD
holds (i.e., ||.||%) = ””.2/\/( + ||.||2D), together with a boundedness estimate (9.6). Then,
M is spectrally equivalent to Ap.

Proof. The boundedness estimate (9.6) implies estimate (9.11), which shows
min{l, o} w Apw < o2 w! Mw. The latter represents one side of the desired
spectral equivalence between Ap and M. To prove an estimate in the other direc-
tion, consider the saddle-point problem

Av + BTx = At
Bv = Bf.
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It is clear that x = 0 and v = f. Based on the assumed a priori estimate (9.3), we
have for some «,

k 2V My < (ADT M7 A + (BHT D BE.

This estimate, together with the boundedness estimate (9.9) viAv < o vI My, imply
for v = f that

k2T ME <o £TAf 4+ (B DT Bf < max{l, o} 7 Apf.
This is the desired second spectral relation between M and Ap. O

We conclude with the following main result that characterizes a s.p.d. block-
diagonal preconditioner D for the saddle-point matrix A.

Theorem 9.10. Consider the saddle-point matrix A (with C = 0) and a block-
diagonal matrix D with blocks M and D. The saddle-point problem AX = F is
well posed and bounded in the D-norm so that estimates (9.3) and (9.6) hold (or
equivalently the spectral equivalence relations (9.4) and (9.6) hold) if and only if:

1. The pair (M, D) ensures an “inf-sup” condition of the form (9.8) for the block B.
2. M is spectrally equivalent to Ap = A+ BT D71 B.

Proof. The fact that an a priori estimate and boundedness estimate imply that M is
spectrally equivalent to Ap is given by Lemma 9.9. Also, that an a priori estimate (9.3)
implies the “inf—sup” condition (9.8) is given by Lemma 9.6.

Assume now that (M, D) ensures an “inf—sup” condition of the form (9.8) and
that Ap is spectrally equivalent to M. If we show that A is bounded in terms of the
pair of norms ||.||p and ||.]| o¢, then from Theorem 9.7 we get that for some k¥ an a
priori estimate ¥ ! | X||p < [|F||p-1 holds for AX = F and |.||3, = ||.||§‘D + .13,
Then, because Ap is spectrally equivalent to M, a similar a priori estimate holds in
the pair of norms ||| o1 and ||.||p, which is in fact the desired result. Thus, the proofis
complete if we show that A is bounded in terms of the block-diagonal matrix D with
blocks M and D. The latter is seen as follows. We have that B D18 = Ap — Ais
positive semidefinite, and hence,

v Aw)? < v AvwT Aw < v Apvw! Apw.
Also,

x! Bw < |xlIpllD~ P Bw|| = |Ixlp(w' (Ap — AW)'/? < [xIIplIWllAp-

<[ v}

For any two vectors
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combining the last two estimates gives
VIAW = v (Aw + BTy) + x" Bw
< " Apw)' 2w Apw)!' % + |Ix[Ip Wl 4 + ¥ By
< (IVIZ, + IXIH) 2AWIZ, + I¥IH)Z + vIap Iy llp
< 2(IIVI12y, + IXIH) 2 AwlZy, + lIylp)'?
=2[VIpIWlip. O

Consider at the end the more general case
A BT
=[5 5

Denote by A the matrix with zero C block. Because then

A=Ay+ [O] 770, 1

1

with 7 = (—=C)~!, based on the Sherman—Morrison formula (see Proposition 3.5),
we have

-1
Al =A7 — a7t m (T +10, 11A7" [OD [0, 11A-!
0 0 Vi ’ 0 I ) 0 -

Because [0, I]Aal[(}] =-S1 = —(BA'BT)~! (the inverse of the Schur com-
plement of Ag), the above formula for A~ ! takes the following form,

Al = A S [(I)] (—c7' =570, 1a;",
which can be rewritten as
AT = A"+ 4, m c\2a+clrsTIctn e 20, nagt. 9.17)
The latter expression makes sense also for singular C.

The following result holds for A.

Corollary 9.11. Let (M, D) satisfy the same properties for Ag as in Theorem 9.10.
Assume also that C is bounded in terms of D. Then, the block-diagonal matrix D
with blocks M and D provides a uniform preconditioner for A in the sense that the
spectral equivalence relations (9.4) and (9.6) hold.

Proof. The fact that C is bounded in terms of D and the boundedness assumption on
Ao in terms of D implies that A is bounded in terms of D, which proves (9.6).
By assumption, we have

IDV2AGID < k.
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Also by assumption there is a 0 > 0 such that
”'D*(l/z)C'D*(l/z)” <o.
Also, because C'/2S~1C!/? is symmetric positive semidefinite, we have
D=1/l 2(f 4 cl/2g—1el2y =1t 2p=1/2) < |p~1/2ep=1/2) < 6.
To prove (9.4), we use the representation of A~1in (9.17). We have

ID'24=1 D12 < ”D1/2A61D1/2” n ||D1/2A51D1/2||||D*(1/2)
% C12(1 +CI/ZS—ICl/2)—lcl/2D—(1/2)””D1/2A51D1/2”
<k +K2 ||D*(1/2)CD*(1/2)”

SK+K20.

Thus, for the solution X of the problem AX = F, the following a priori estimate
holds.

IXllp = 1D AT'F| < |D'2A' DYV |Fl| p-i.
Because we proved that boundedness of || D'/2A~1D!/2|| the proof is complete. O

The following result provides a natural norm for well posedness of the saddle-
point problem of our main interest in the case of s.p.d. major block A.

Proposition 9.12. Let A be s.p.d. and C be positive semidefinite. Consider the saddle-

point problem
A BT [w]| _[f
B —C||x| |g]|

This problem is well posed in the pair of norms M = AandD = Sy = C+BA~'BT
and A is bounded in terms of
M 0
Dy = |: 0 SA] .

Proof. After eliminating w = A~!(f — B”x) the reduced problem for x reads
—Sux =g — BAf.
Then,
Ixlis, < llgls;t + 18,2 BA 2 g 40
= lgls,t + 1A~ 2 BTS2 E] 4

= llgllsr + N1l 4-1-
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The second a priori estimate is obtained from Aw = f — B”x, which gives
—(1/2) T
Iwlla < IFl g1+ 1A~ V2B x| < Ifll a1+ lIxlls,

Thus, the two estimates combined show the desired final a priori estimate

1], == 150,

The boundedness of A in terms of D4 is also easily seen. For any

<[] -]

using the inequality z” Bu = u? BTz < | A=Y/ BTg|||u|l 4 < |zl|s,|lull 4 and the
Cauchy-Schwarz inequality, we have

WAV =wlAv+w! BTy +x"Bv —x'Cy
< IWlallvlia + Ixlls, I¥lls, + Iwlalyls, + Ixlls, 1v].4
<2 (W2 + XDz )2 AVIZ + liylis)'?
=2 Vi, Wi, 0

Concluding remarks

Block-diagonal preconditioners for solving saddle-point problems were considered
in [RW92], [SW93], and [VLI6]; see also the book [ESWO06].

9.3 Transforming A to a positive definite matrix

In this section, we outline an approach originally proposed in Bramble and Pasciak
(1988) ([BP88]), which utilizes a preconditioner M for the major block .4 such that
A — M is symmetric positive definite and transforms the original saddle-point matrix
A to a positive definite one A. The transformation reads

X:[AM*—] 0“,4 BT]_[AM‘lA—A (AM—l—I)BT]
= o =

BM™! B —C BM'A-1) C+BM BT
(9.18)

We first notice that the Schur complement Sof A equals the negative Schur comple-
ment S = C + BA™!BT of A. Indeed, we readily see that A admits the following

block-factorization,
X— I O||x Of|1 =*
% I]]0 S||0 I|°
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The same result is seen by direct computation,

S=C+BM BT —BIM'A- DA AM — ) lAM™ — nBT
=C+BA'B.

Because AM 1A — A is s.p.d. (due to the choice of M) and S = & is also s.p.d.,
we conclude that the transformed matrix A is s.p.d., as well.

There are several possible choices that naturally ensure v/ Mv < v’ Av. One
construction is found in Section 7.3 (see Lemma 7.2). With this choice, in some
cases, we may even be able to construct M so that M~ is explicitly available and
sparse, for example, by letting the subdomains used in the FETI method be of size
comparable to a single fine-grid element and without coarse-grid. The latter is the case
if A is assembled from respective element matrices {.A;} that are invertible. Another
possible choice is based on the element-by-element construction of M described in
Section 4.7. To actually end up with an M such that M~ is efficiently computable,
we may have to apply the procedure recursively and thus end up with a multilevel
block-factored M. In the latter case, M ™! is not feasible in an explicit (sparse) form.

In either case, the actual M has to be scaled by some 6 € (0, 1); that is, M :=
6 M. The latter is needed to ensure that the resulting A — M is positive definite (not
only semidefinite).

If M provides a convergentsplitting for A, then the block form of the transformed
matrix A is stable. More specifically, the following main result holds.

Theorem 9.13. Assume that M provides a convergent splitting for A, such that for
a constant y € [0, 1), we have

0<wl (AVPMTAY2 — Dw < y? whw. (9.19)
Then the following strengthened Cauchy—Schwarz inequality holds,
Y BMA-Dw <y W (AMTTA - Hw)'2yT € +BM B Hy) /2.

Note that B(M™YA — 1) is the strictly block lower-triangular part of A and
AM™ '"A — A and C + BM™'BT are the principal blocks on the main diagonal
ofA In other words, the two-by-two block form ofA in (9.18) is stable.

Proof. The proof uses the standard Cauchy—Schwarz inequality. Letting £ = A!/2
M~TAY2 — I, we have
yTB(MflA —DHw = (Af(l/z)BTy)T(EAl/zw)

< (yT BA'BTy) 2wl AV2E2 A 2w)1/2

< (yTBM™1BTy) 12y (wl AV2E AV 2w)1/2

<y ¢ C+BMBH)FwW (AMTA - Hw)l2.

O

Thus, what is left is that we need in general a good preconditioner for S =
C + BM~!BT in order to complete the construction of preconditioners for A.
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If M~ is explicitly available and sparse, this is feasible by the methods described
in the preceding sections for s.p.d. matrices. To ensure both, M being efficient for A
(with a good y in estimate (9.19)) and M ~! being sparse, this basically means that
A is well conditioned. This is the case, for example, for matrices A coming from
mixed finite element discretizations of second-order elliptig PPES. Otherwise, M ™!
is not sparse and the sec/(\)nd block on the diagonal of A, S, is also not feasible.
But as it often hapRens, S turns out to be well conditioned then. In that case, good
approximations to S~! can be derived by iterations, which generally leads to “inner—
outer” iterative methods because the actions of M ~! can typically come from another
iterative procedure.

Final comments

In certain applications coming from mixed finite element discretizations, it is feasible
to consider a least squares form of the saddle-point problem. A more feasible ap-
proach s to change the discretization procedure and then use least squares with proper
weights in the norms (sometimes using certain “negative” Sobolev space norms).
For some original papers utilizing least squares approaches, see [BPL], [CLMM],
and [CPV].

9.4 (Inexact) Uzawa and distributive relaxation methods

Consider the saddle-point problem of the form

T
A= [“é f c]' (9.20)

Here, A is s.p.d. and C is symmetric positive semidefinite.

9.4.1 Distributive relaxation

Given a transformation matrix G such that AG is easier to handle (i.e., block triangular
with s.p.d. blocks on the diagonal, or simply being s.p.d.), we can use it to define a
smoothing procedure. Such anidea originated in [BD79] (see also [Wi89] and [Wi90]),
and was referred to as “distributive” relaxation or transforming smoothers.

In what follows, we assume that AG is s.p.d. Consider an initial iterate xo for
Ax = b. Letting x = Gy, we get AGy = b. Finally, let D be an s.p.d. matrix such that
the transformed iteration matrix / — D~ (AG) corresponds to a convergent method.
In terms of the original variables, we have the iteration

X = Xo + GD™ (b — Axo).
The respective iteration matrix reads

E=1-GD'A.
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We notice that in the inner product defined by the s.p.d. matrix G~7 A, E is symmetric
positive semidefinite. We have, using the fact that AG = GTA,

VvIGTTAEW =vIGTAU - GD 'A)w=vI (G TA—AD ' A)w,
which is a symmetric form. We also have
vIGTTAEV=vTGTIAG — (AG) D' (AG)1G~ v > 0.

The latter shows the positive semidefiniteness of E in the G~7 A-inner product.

9.4.2 The Bramble-Pasciak transformation

Now, consider the Bramble—Pasciak transformation matrix (see Section 9.3),

G- MTTA—T M'BT
- 0 -1 |

Here M is a given s.p.d. matrix such that for a constant y € (0, 1),
u’ Mu < y u’ Au, forall u. (9.21)

Note that at this point, we do not assume that M is necessarily spectrally equiv-
alent to A. Nevertheless, a y € (0, 1) uniformly bounded away from unity can
be found even for M that is not spectrally equivalent to 4. A simple example is
M=y tnin(A) I.

Compute the transformed matrix

(9.22)

—1 4 _ -1 _ T
AG:[AM A—A (AM I)B:|.

BMtA—1) BM-IBT 4+C

As we showed earlier (see Section 9.3), AG is s.p.d., because the main block
AM™'A — Ais s.p.d., and the Schur complement S of AG equals the (negative)
Schur complement S4 of the original saddle-point matrix A, hence is s.p.d.

Next, compute G~ A explicitly. We have

T [AMT =1 0 !
L BMTt g
B I 01 [AM =1 o\
“\[BMAMT -7 T 0 ~1I
_[am=t—=p=1t o I 0
1 0 1| |[-BM Y AM D~
B (AM~ =7t 0]
T BMTIAMT =Tt T
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Then,
oTa—| AM™ -t 01[A BT
T BMTAMT =Tt T || B —C
T (AM~' —Dn~1A (AM~ —~1BT
T |IBMTAM T - DTt A - C+ BM T AMT - DTIBT
. '(M—l _ .A_l)_l (.AM_l _ I)—IBT
T |BMTA-DTY C+ BA-M)TIBT "

Use the inequality w/ (X — X2)w < y wl (I — X)w, for ¥ = A=/ pmA-1/2
based on (9.21) to show that
T MA-M) Mz <yz" M —AH) Nz,
Therefore, based on the Cauchy—Schwarz inequality, we get
V' BMTTA-D7'2)? = v BA - M)~ Mz)?

< VI BA—- M)"'BTv 2 M(A - M)~ Mz

<y vIBA- M) 'BIvef M~ — A1z

<y viC+BA-MBYyvI (M — A H 1z
The latter represents a strengthened Cauchy—Schwarz inequality for G ~7A in the sense

that the off-diagonal block of G~7 A is dominated by the principal block-diagonal
part of G~T A. Therefore, G~ A is spectrally equivalent to its block-diagonal part

M —AH! 0
0 C+BA-MIBT|
The latter block-diagonal matrix can be further simplified based on the inequalities
wl A 'w < wl'(A— M) 'w < (1/(0 — y)) wT A~'w (using again (9.21)). That
is, GT A is spectrally equivalent to the block-diagonal matrix

(M*l _ A*l)*l 0
0 C+BABT |
Finally, using again (9.21), we have
wiMw<wI M- A H lw< 1 w! Mw,
-Y

which proves at the end the following result.

Lemma 9.14. Assume that (9.21) holds. The matrix G~T A is spectrally equivalent
to the block-diagonal one,
|:M 0 :| . (9.23)

0 C+BA'BT

The constants in the spectral equivalence relations depend only on y € (0, 1) and
they deteriorate if y gets close to unity.
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As a corollary, we have that if M is spectrally equivalent to A then G~T A is
spectrally equivalent to

b, _[A 0
A=l0o c+BABT|"

The latter matrix is typically the one used to define a norm in which the saddle-point
problem Ax = b is well posed (cf., Proposition 9.12), that is, to have an a priori
estimate of the form

IXlpy = o [Ibllp-1-

To find a simple M (i.e., M~! explicitly given sparse matrix) that is spectrally
equivalent to A, this is feasible if A itself is well conditioned. This is the case, for
example, for matrices A coming from a mixed f.e. method applied to second-order
scalar elliptic PDEs. Then A is a mass matrix and M can be chosen to be its properly
scaled diagonal part. In general, M can be obtained by an optimal V (1, 1)-cycle
multigrid applied to 4 and scaled so that (9.21) to hold.

9.4.3 A note on two-grid analysis

Our goal is to study the convergence of the two-grid method utilizing the so-called
“distributive relaxation” based on the transformation matrix G (defined below) and
a standard coarse grid correction.

We assume that M is spectrally equivalent to 4 such that for two uniform con-
stants y < 1 < y’l < «, the following estimates hold,

w! Mw < y w! Aw, wl Aw <k wI Mw, forall w. (9.24)

We study the convergence in the natural “energy” norm ||.|| ;-7 4, which we showed
is spectrally equivalent to the norm defined from the block-diagonal matrix (9.23) or

(because we assumed that M is spectrally equivalent to .A). Let

=

and define |x||> = |[u||? + ||p||*>. The interpolation matrix P is assumed to be block-
diagonal; that is,
P 0
p= [ ” Q} |

In practice, we have the property that the (negative) Schur complement S4 = C +
BA~'BT of A is spectrally equivalent to a sparse matrix (either a mass matrix for
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Stokes problems, cf., e.g., [LQ86], or a matrix defining a discrete counterpart of
H'-Sobolev norm, cf., e.g., [RVWal)).
Define the coarse grid matrix

T
A, = PTAP = [AC B, }

B. —C.

Itisclear that A, is also a saddle-point. Define next the “distributive relaxation” matrix
Mgise = DG™! where D is a “standard” smoother (e.g., Richardson as in (9.25)
below) for AG = GT A. Then, Myg = G~ Mgisy = G~TDG™! can be used as a
smoother for the transformed s.p.d. matrix A7gp = G TA.

We are interested in the two-grid method defined by the product iteration matrix

E"(I — ),

where £ = [ — McﬁsltrA =1 —GD A is the smoothing iteration matrix, m > 1
is the number of smoothing iterations, and 74 = I — PA;lPTA is the standard
coarse-grid projection onto the space Range(P).

To be specific, we define the following smoother D coming from AG, letting

K = Amax (MilA) > 1,

_ k — D M 0
D=2 |: 0 1S4 Ik Ii| . (9.25)

It is easily seen from (9.22) that D is a convergent smoother for AG; that is, we
have VTAGV < VT DV for any V. Hence G~ 7 DG ™! is a convergent smoother for
G~T A. Next, we compute Mg = G TDG~L. We have

Mo — AM — 7! 0] M A=) (A= M)7'BT
=L BA-MT 0 iy
_ [2ete = D) MA = M)TMA-M)TM YT
- y "
where

X = 2k||Sall T + 2k — 1) B(A— M) "MUA - M)~'BT,
Y =2k —1)BA—-M"T"MA-M"M.

Because M is spectrally equivalent to A, it is clear then that Mg = G~ DG~ is
bounded above (in terms of inner product) by the block-diagonal matrix

[0 s
0 lSall 1

times a constant § depending only on «. That is, we proved that

IMrgll = 1G"" DG < 8 IDall. (9.26)
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Note now that
E=1-GD'A=1-GD'GT(GTA) =1 — My Arx.

To analyze the convergence of the two-grid method in the natural energy norm coming
from A7r = G~ T A, we utilize the classical approach due to Hackbusch (cf., [H82],
[H85], [H94]) based on establishing a so-called “smoothing property” and an “ap-
proximation property”.

The following “smoothing property” is standard. We have

[AY2(1 = M Age)"e|| < |AY2(1 = M7 Agg)” A0/ (A2 0 A1) 12
” (A1/2MTRA1/2) (I/Z)Al/zeH

< ma (1= 0" [(Agud AR el

= max (1— 0"t My el

te[O
< F 1My ell
< WMl 72 ji'm el
2
Consider finally the estimate
IErGellar = IlAgg E™ (I — ma)el
< % I = el

V3

- IDAIY2I(T = 7a)e].
m

Here we used estimate (9.26).
Assume now the following “approximation property”

IDAIY2 (T = 7a)ell < 14 llellp,- (9.27)

Recall that D4 defines the norm in which the saddle-point problem is well posed
(Proposition 9.12), hence the above estimate is a natural one. In the application of
mixed finite element discretizations, such an approximation property typically re-
quires Ly-error estimates that can be obtained by duality argument.

The convergence of the two-grid method then follows (recalling that A7p =
G~T A is spectrally equivalent to D), because for sufficiently large m > 1, we have
that the bound provided by the estimate

5172
lETrellag < ——— m m/ax(ATRDA) llell Az

will be strictly less than unity.
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‘We summarize as follows.

Theorem 9.15. Let the coarse-grid projection wmy = PA;IPTA, A. = PTAP,
possess an “approximation property” as in (9.27). Assume also that M used in
the Bramble—Pasciak transformation matrix G is spectrally equivalent to A (as in
(9.24)). Consider the distributive relaxation Mgigr = DG~ where D is defined in
(9.25). Then the two-grid method giving rise to the iteration matrix Erg = (I —
Md_isltrA)’"(I — m4) has a convergence factor measured in the Atg = G~ 'A-norm
that behaves as m~1/?) where m > 1 is the number of smoothing steps. This estimate

in particular implies uniform two-grid convergence for sufficiently large m.

9.4.4 Inexact Uzawa methods

The distributive relaxation-based, two-grid method presented earlier is suitable in
practice if the major block .4 of A is well conditioned. In the present section, we
present inexact Uzawa algorithms suitable for more general .A. In particular, we
assume that Sy4 is well conditioned. We comment that the Schur complement S4 can
be guaranteed to be well conditioned (or rather spectrally equivalent to a matrix D)
by proper transformation of the saddle-point matrix A, namely, by adding the second
block row of A multiplied by BT D! to the first block row of A (see Corollary 9.8).

The Uzawa algorithm (originating in [AHU]) is referred to the iteration process

[ } [ } ,
p g

described in what follows. Namely, for a given M ™!, an approximate inverse to A,
and a suitable parameter v from a current approximation ux, Ppi, we compute the
next one as follows:

W =w A+ MU E— Ay — BT py),
Pit1 =Pk + T (Bugg1 — 8).
We consider a symmetrized version of the above Uzawa algorithm, namely:
Wep1p=w + MUE — Aw — BT py),

Pk+1 =Pk + 7 (Bugyi2 — 8), (9.28)
Wt = Wep12 + MTUE — Auggr 2 — BT prg).

In general, we may consider M~! to be a nonlinear mapping, for example, one
obtained by auxiliary (inner) CG-type iterations that provide approximations to the
inverse action of A. We use the notation M ~![.] to indicate the latter fact.

Assume now the following estimate

lu — M Aull 4 < 8 [l 4,
or equivalently, (letting u = A~ 1v),

IA™ Y = M7 V14 <8 (1v] g1 (9.29)
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In the analysis to follow, § € [0, 1) is assumed sufficiently small. The construction of
the respective inexact Uzawa algorithm and the analysis to follow is based on [AV91].
Based on the exact factorization of A~!,

Al = I —A"'BT Al 0
o 1 S;'BATY =St

we can define the mapping r — B[r] as an approximate inverse to A by replacing the
actions of A~! with M~![.] and SXI by an appropriate constant t. More specifically,
the actions of B[] are computed based on the following approximate inverse,

20 - MA —MIBTTT M=t 0
0 1 T BM™U —¢ |’

as implemented in the following algorithm.

Algorithm 9.4.1 (A nonlinear approximate inverse). Givenr = [ § | compute:
1. ug = M7f);
2. qo = Buy—g;
3. p=71qo
4. v=Ff— Auy — BTp;
5w = M7y,

6. u=ug+ uj.

Then,

u
B[r] = )
[r] [p}

We notice that one step of the symmetrized (inexact) Uzawa algorithm (9.28) with
uw; = 0, pr = 0 reduces to the above Algorithm 9.4.1, which defines a nonlinear
approximate inverse (or preconditioner) of A.

‘We have the representation

_[A BT][u] [Au+BTp
ABIrI = 5 —c} |:pi| = [ Bu—Cp]
_[A@mo+w)+BTp
| B(up+uy) —Cp

N [ Ao + M~'[v]) —f + BTp]

| B(ug+M~'[v) -Cp—g
[(Aug + M~ v]) —v — Aug — BTp+ B'p
B(ug + M~'[v]) —g—Cp
(AMIvD) — v
| Bug + M~'[v]) —g —Cp]’

+
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We can first show that for a proper © > 0, there is a 5o € [0, 1) such that the
following estimate holds,

185" a = alls, < o llalls; - (9.30)
We can choose T = 2/(Amin[Sa] + Amax[Sal) and have

2 _ Amax[Sa] — Amin[Sal

0 Amax [SA] =+ Amin [SA]

These are “good” constants if S4 is well conditioned. Later, we consider a choice of
T as a nonlinear mapping, which makes the resulting inexact Uzawa algorithm fairly
parameter free.

Our next goal is to estimate the deviation A B[r] — r in an appropriate norm. We
choose the norm defined from

-1
D' = [“40 801] .
A

We first estimate || v|| 4—1. We have, recalling that v = f — Aug — B'p = (f —
AMED — BTp,
IVllg-1 < If — AMTE g1 + 187 pll g
< 8 IIfll 4 + IA-V2B p|
<8 fll 41 + llplls,-

< 1.

For the term ||p||s,, we have

Iplls, = It BM'[f1-g)ls,
=[(r =Sy BMET—g) + S, BM 1 - g5,
< (1+80) IBM™'f] — gl g1
< L+ 80 [ S PBAYD M LA + (1 + 80) gl
< (14 80)(1+8) If 41 + (1 +80)gls -

We used above the fact that [|X|| = X7 || < 1 for X = S, /P BA~1/2).

Next, we estimate B(ug + M~![v]) — g — Cp, which we rearrange as B(ug +
M7V —g — (Cp+BA'BTp + qo) — g + BA'BTp — qo. Because p = 7qp
and qo = Bug — g, v =f — Aug — B p, we arrive at

B(ug + M™'[v]) — g — Cp = (Satqo — qo) + BM ' [v]+ A~ ' BT p)

= (Satqo — qo) + B(Mfl[v] — Aflv)
+ BA(f — Aug)
= (Satqo — qo) + BM ™ vl — A7)
+ BA~'(f — AM[E)). 9.31)
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Estimating the term

1(Sa7a0 = 40)ll g1 < Sollgolls=1 = do IBM ' [Elll g1 + bollgl 5

and using again the norm bound ||SX(1/2)B.A_(1/2) || < 1,leads to
(Satqo — (10)||le < o1 +6) [Ifll 41 + 50||g||5;1~
From the identity (9.31), we can see that
IBug +M'[v]) — g — CP||321 < Sol(1 +&)fll 4-1 + ||g||5;1]
+ & (vl g4=1 + Ifll 4-1)
<[+ 88+ 8o(1 + )] + 871[If | 41
+ [8(1 + d0) + 50]||g||521
< [6o(1 + &) + CSILIf]l 41 + ||g||3/;1]-

Thus, we proved the following main result.

Theorem 9.16. The nonlinear inexact Uzawa algorithm 9.4.1 is convergent if 5 > 0
in (9.29) is sufficiently small, for any 8o € [0, 1) from estimate (9.30); that is, there
is a constant g € [0, 1) such that,

AB[r] — < _1.
|ABIE] = rll 1 < q lIrl

Note that the result in Theorem 9.16 holds with no condition on §y to be small
enough. However, the choice of the parameter t (in (9.30)) remains a bit unclear.
To resolve this issue, we may want to replace T with another (generally) nonlinear
mapping 7 [-], which is close to 821 in the sense that the following estimate holds
for a tolerance §¢g € [0, 1),

IS3'a — Tlallls, <o llalls-

We notice that the proof above does not change if we consider t to be a nonlinear
mapping (with the proper understanding of Step 3 in Algorithm 9.4.1).

The mapping 7 [q] is computed by performing a few steps of the following steepest
descent-type algorithm (as proposed and analyzed in [AV92]). Define the nonlinear
mapping S[-] = C + BM~![B(-)]. We have

q"Slal = o" (Sla] - S49) + 4" Saq
= q' BATVPUPMTB gl - A7'B @) +q" Saq

> (1-29) llqll3, -
Similarly, q7 S[q] < (1 +8) q7 Suq.
Algorithm 9.4.2 (Steepest descent definition of T).

(0) Initiate: choose Xg and compute ro = q — S| [Xo]-
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(i) Iterate: for ]EVZ 1, compute:
1.t =S[rg1l;

T

r,_ Ti—1

2. Op—] = %,’
k—1 r;{,lrkfl

3. Xg = Xg + qp—1 Tp—1;

4. rp=q— g[xk].

After sufficiently many steps k > 1, we let T[q] := Xx.

Theorem 9.17. Under the coercivity and boundedness properties of §[~] for & suffi-
ciently small, the above steepest descent algorithm can terminate for a 8y € [0, 1)
in the sense that if we define T|q] = x¢ for a sufficiently large k, an estimate of the
form ||q — S[T[qllllg-1 < o llqllg-1 holds for a 3o € [0, 1). More specifically, the

A A
following estimate holds,

~ 1 25
— = k S —
lg = S7TTallllg, 1 = lIrells1 = (61 + =41 _5) lqllst,

where

2
1—-268 [ 2/« 36
q=,4/1- 5 v + .
1 -6 \1+« 1-36
The constant « stands for the condition number of Sy, whereas § € [0, 1), generally,
sufficiently small, is such that
(1-58)q'Saq < q'S] r
q Saq =q Slq] = (1 +6) q" Saq.
Proof. We have
(1= 8) Ixel, = x] STxel < Ixellgr lla = vl g
That is,
(1 —=196) lIxlls, = (Ill‘ollgxl + III’kIISXI)- (9.32)
Next,
Irells = lla = Sbxidls.
= llg = Sxk—1] + Sxe—1] = Sixelll 51
= lIrk—1 — a1 Sari-ill ;1 + Saxk—1 — §[Xk71]||521
+ 1Saxk = Stxelllg
< llrg—1 — k-1 SArkflng/;l + 6 Ixk—1lls, + 6 [IXklls,

< k-1 — k-1 SArkflng/;l + 28 [IXk—1lls, + 3 ok—1 lIti—1lls,-
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Use now the inequality

2
Ire—1ll s 1live—1lls, _ 1
r/ Sl T 198

-1 Ire-1lls, < I|l‘k71||3/;1

and the bound (9.32) to arrive at
1)
Irells 1 < -1 — ok—1 Sare—1lls; 15 (2||l'0||3 1+ 3lr-1lls ).

It is clear that the term |[ry—; — ax—1 Sarr—1 ”‘2371 = |Irr_1 ||2$,1 — 201 |Ire—1 1% +
A A -

1Ty Satk=t < Ikl =201kt 17 +erf_y (1/(1=8) 1 STre—1] can

be estimated by 62 [Irk—1 ”‘28*1 with a g € [0, 1), similarly to the steepest descent

algorithm. More speciﬁcally,Awe have

2
ekt — k-1 Sari—1llg-1
A

1 -

2 2, .2 T

< Ive—1llg—1 = 201 lex—1 1" + oy r;_Slri—1]
A 1-6

2 1 2
S lreillg =12 = 7= | @—1liretl
1—26 ] re1)?
1-6 (1- S)rkT_lSAl’kfl .

2
< re—1lle-
S;!

Now use the Kantorovich’s inequality (Proposition G.1)

+1
2k

where Kk = (Amax[S41)/(Amin[Sa]) is the condition number of S4, to arrive at the
desired estimate

2
T 2
) (e _1Tk—1)",

T -1 T
r,ﬁlSA rkflrk,lsArkfl < <

1 = ck—1 Sari—tlls1 = G lIre-tll g1,

with

2
1-28 (2 -1
6=\/1— ( ﬁ) :K <1, whené— 0.

1-682 \k+1 K41

Thus, we have

36 26
il =g+ 75 | Im-tllsp + 75 ldalls;-

The desired result then follows by recursion, assuming thatg = g+ (35/(1 —6)) < 1
(valid for a sufficiently small §). O
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In order to match estimate (9.30) (with 7[-] in place of 7), we can use the fol-
lowing corollary easily obtained from Theorem 9.17. We first show that S[-] =
C+BMBT()]and S4 = C + BA~'BT are close in the following sense,

187 SVl = Sav)ls, < 18P BA= /2 AVD M B v] — A (Bv) |
<8 |AW2BTy|
<8 |vlls,- (9.33)

We used the fact that M~![-] is close to A~! (estimate (9.29)) and that | X|| =
1XT | < 1for ¥ = S, V/PBA-0/2),
To prove the desired analogue of (9.30), we proceed as follows. Letting

S + I 2 80 = 80 + (1 + 8p) d
o—q 1—g1—35 0 = 00 015

and 7 [q] = X, using estimates (9.32) and (9.33),
155" = Tlallls, <30 llalls 1 + I = ;' Slxidls,
<o lalls 1+ 3 1xills,

< 8o lalls 1+ 77— (IIQIIS el )

11—
8
80+(1+80) lalls

= do llallg-1-
Implementations of inner—outer methods of the above type for solving saddle-point

problems are found in [ChV99]. Other related results that provide inexact Uzawa-type
methods are found in [LQ86], [BWY], [EG94], and [BPVI7].

9.5 A constrained minimization approach

A monotone subspace minimization scheme

In the present section, we consider the saddle-point problem,

A BT [u] _[f
B 0 ||x| |0]
recast as the following equivalent constrained minimization problem for u.
Find the solution u of

1
J) = 2 u’ Au — T — min
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subject to the equality constraint
Bu = 0.

Consider an overlapping partitioning {€2;} of the set of indices of the vector u cor-
responding to the first block A of A. Let Z; be the characteristic diagonal matrix
corresponding to €2;. The latter means that

0
Livi=|vi|} Q.
0
That is, Z; extends a local vector v; defined on €2; by zero outside €2;. Let QiT be a
restriction matrix onto the support of BZ;. We assume that Q; is such that Ql.T BZu; =
0implies BZ;u; = 0. Define then 5; = QiT BZ; andlet A; = IZ-T.AI[ . The assumption
on Q; implies that if Bju; = 0 then BZ;u; = 0, that is Z;null(B;) C null(B).
We assume that the local saddle-point matrices
_[A B
4 = [B,- 0

are invertible.

Consider the following local constrained minimization problem. Let u” be a cur-
rent approximation to the original (global) problem. Solve for a local correction Z; u;
such that

._7(u0 + Il;u;) — min subject to Bl;ju; = 0. (9.34)

Because J (u’ + L) = J @) + % ul.TIl.TAIiu,- — (Il.T(f — Au®) T, it is clear
that (9.34) is equivalent to the following local minimization problem,

1
Ji(w) = 3 ul.TA,-u,- — (IiT(f — AuO)Tu,- — min subjectto Bju; =0. (9.35)

Equivalently, to determine u;, we can instead solve the local saddle-point problem

. BT . Tf _ A0
E M k! ©30

Moreover, assume that the sets Z; (null(3;)) provide an (overlapping) partition of
null(B). In other words, we assume that null() allows for a basis, locally supported
with respect to the partition {€2;}, which we formulate in the following assumption,

(n) any v € null(B) admits a decomposition
v=> Tvi. v € ull(By).
i
For a given interpolation matrix P, define
AC = PTAP.

‘We also need arestriction matrix QZ such that QCT BP.u, = 0implies BP.u, = 0.
Define then B, = QZ BP.. The assumptions on B; and B, constructed on the basis
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of the restriction matrices Q; and Q. that B;u; implies BZ;u; = 0 and B.u, = 0
implies Bu, = 0 are naturally met for mixed finite element discretization matrices
based on Raviart-Thomas spaces, and QiT and QZ are restrictions onto the associated
discontinuous (piecewise constants) spaces. For more details, see Sections B.4 and B.5
in the appendix.

Because A is sparse, the products I/-T AZ; can be nonzero for a finite number of

indices.We assume that the number of indices j for which I]-T.AL is nonzero for any
i is bounded by an integer k > 1.

Similarly to the local problems (9.34)—(9.35), in order to find a coarse correction,
we can solve the following coarse subspace constrained minimization problem,

J @’ 4+ Pu.) — min subject to BPu, = 0. (9.37)

It is clear that it can be rewritten as
1
Je(up) = 3 uZAcuc — PT - Au®) v, — min subject to Bou, = 0,

which leads to the following coarse saddle-point problem
Ao B [u] _ [PT(f — Au)
|: B, 0 ||x|= 0 . (9.38)

The following subspace minimization-type algorithm is of interest.
Algorithm 9.5.1 (A subspace minimization algorithm).

s Foragiven iterate u’, set u = u® and perform the following subspace correction
steps running over all sets ;,

J(u +Zju;) — min,

subject to BZyu; = 0, or equivalently Biu; = 0. Then, update u := u + Z;u;.

*  Compute a “coarse subspace correction.” For a given initial coarse approxima-

tion u§°> (e.g., u§°> = 0) such that Bcugo) =0,

1. First form
f.=Pl(f - Auw + Au?.

2. Then, solve the coarse constrained minimization problem:
1 .
J(up) = 5 uZAcuc — fL.TuC — min
subject to Beu, = 0.
e The new iterate is
0
u" = u 4+ P(llc _ UE ))'

The above subspace correction technique based on solving local saddle-point prob-
lems was originally used in [M92i] and [M92ii] as an overlapping Schwarz method.

The above two-grid scheme can be generalized in a straightforward manner to
a multilevel one. This is done in a later chapter devoted to inequality constrained
quadratic minimization problems.
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Lemma 9.18. The following monotonicity property holds.
J @) = J@) + Je(u) - T @) < T (w).

Proof. By a straightforward computation, we have

1
T u"v) = 5 (u+P(u — uE.O)))TA(u +P(u. —ul?))
—t7 (u+P(u. — u§0>))

= % ' Au—fTu — 7P (u, — ul?)

+ (ue — ugo))TPTAu + % (ue — ugo))TAc(uc —ul?)
=JW) — (u. — ug.o))T(?T (f — Au) + .Acuﬁ.o))

+ (ue — u(o))TA.u(O) + ! ol A, —u®" Au, + lu(o)TA.u(O)

c ¢ cU. 5 e Aelle ¢ cUc ;e cWe

=JW) — £ (u. —u?) + % u! Acu. — % u® Au®
= JW) + Je(ue) — T (u?).

Then, because J.(u.) < J. (ug.o)), the desired monotonicity property follows.

Convergence rate analysis

We are interested in the quadratic functional

J ) = % u’ Au—fTa

foru € K. In our case, KL = null(B) is a linear space. The following characterization

result holds.

Lemma 9.19. Let u be the solution of the constrained minimization problem [J (u) +—

min subject to u € K. Then, for any g € K

gl (Au—1)=0.

Proof. Forany g € K and any real ¢, tg is also in K. Then, from J (u+1tg) > J (u),

we obtain

0<J+rg)—Jw = ﬂ%gTAg +1g” (Au—f).

Varying t — 0 with positive and negative values shows that in order to maintain the

nonnegativity of the expression, we must have g’ (Au — f) = 0.

In what follows, we describe a simplified version of a main result in [BTW]. We

make the following assumption.
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(d) The space K is decomposed into subspaces K;,i = 1, ..., m, m + 1 such that
m
u=u, + Z ;.
i=1

In our application, w1 = Pu., and W; = Z;u;, for i < m where u; belongs to
the local spaces null(B;). We assume that every z € K allows for a decomposition
Z=1Znq1+ ) ;., 2 suchthatz; € K; and

2 2 2 1,112
lzmi1 12+ Y Nzl < CF Izl
i<m
In the particular application of our main interest, the above estimate takes the

form, using the fact that A; = II.TAI,- and A. = PTAP, z,,,1 = Py, and
z; = 1pyi,
IyelZy, + D lyilsy, < CF Nzl
i<m
Using the fact that the spaces K; for i < m are local, the following estimate is

straightforward; for any w = w,,, 1 + Zi <m Wis

”W”il = 2W,{1+1Awm+l +2 Z WfAW,
i,j<m
= 2W:Z;+1Awm+1 +2 Z Z W]TAWi
i<m{j<m: QjﬂQi;ﬁV)}
<2wp AW +2c Y lwill%
i<m

m+1

2
<2 Y fwill%
i=1

Recall that « > 1 stands for the maximum number of subdomains 2; that intersect
any given subdomain €2; in the sense that I/-T AZ; # 0, which due to assumed locality
is a bounded number. In a similar fashion, we prove that for any two decompositions
W=Wuti+ ) o, Wiandg=gur1+ ., 8, we have the estimate

m+1 m+1

doglA D w,

i=1 j=i+l1

m m m m
= g;{1+1-/4wm+1 + g;{1+1AZWj + ZgiT-AWm+l + Zg;T-A Z W
j=1 i=1 i=1 Jj=i+1
m
D_Wi
=1 A

m
+) llgilla > 1w ; .4-

i=1 {j>i, j<m: Q;NQ; #0}

< ligm+1llallWmsilla =+ l1gm+1 ||A‘ + ||Wm+1||A‘

m
;gi y

1
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That is,
m+1 m+1 1/2
Yogla > wi< [zw,LlAme + 2 anina}
i=1 j=i+l i<m

12
x [ZgZHAgmH +2 Y IIgilli‘]

i<m
— V2 i 12
<2 (Z ||wl-||34> (Z llgi ||i> (9.39)
i=1 i=1

For a given current iterate u’ consider Algorithm 9.5.1 and let

i i1 .
untl =untl +7Z;w; fori <m,
and
i new _m_ .
untl =u =untl +Pu, fori =m—+ 1.

Thus letting Z,,+1 = P and u,,,41 = u,, u; solves the problem,

J@GD/HD) 7y min J@E1D0ED) 4 gy
gicNi

The latter problem is equivalent to the local one
1 T T i=1 \\T . .
Ji(u;) = 5 U Aju; — (Z/ (f — Aun+1))" u; > min subject to Z;u; € K.

Then, due to Lemma 9.19, we have

g/ (A =D/ D) 4 Tuy) —£) =0, forall g € K. (9.40)
We have the identity
1
Jw) —Jm) = (Au—HT(w—u) + 3 w —ul?. (9.41)
Letting w = u(@=D/m+D) "y — wi/™ and from (9.40) used for g; = —Z;u;, we get

. : 1
T @D — g @™ = 2 Ty

Therefore,

m+1 m+1
. ; 1
_ newy _ ((=1)/(m+1)y _ i/(m+1) - u; |2
J (@) — J ™) i§=1 (J(u )—=J Nz 5 i§=1 IZiw; [|74.
(9.42)
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In particular, we obtain the monotonicity (which we already proved in Lemma 9.18),
J @) = J "),

Let u be the exact solution of the constrained minimization problem 7 (u) — min
subject to u € K. Use the assumed stable decomposition (d) for

ll—ll0=Zm+1 +ZZ,'.

i<m

Then,

m+1
(Aunew _ f)T (unew —u) = (Aunew _ f)T <Z Tiu; + uO _ ll)
i=1

m+1
=Y (A" =0T (T —z),

i=1

Use now (9.40) fo; g; = z; —Z;u;, which then reads (zi—Zyu)T (Aui/(m+1)—f) =0.
Because u"V — ut/(n+1) — Zj>l~ Zju;, we get, based on (9.39) used forw; = Z;u;

andg = Y7 g with g; = Zw; — z;,

m+1
(Au™ — )T @Y —u) = Z (Au™ — £ — (Au/ "D N (Tiu; — z;)
i=1

m+1
= Z Z(AIjUj)T (Ziv; —z;)
i=1 j>i
1/2 12
<2k Z ||Ijllj ||%4 (Z IZiv; —z; ”%4)
F i
12

<2 | DO IZju)i%
J

1/2
x (ana&) +Ciu’ —ufa . (943)
i

In the last line, we used the triangle inequality and the assumed stability estimate
> llz; ||f4 < Cf lu® — u||f4. Now use the estimate (9.42) in (9.43) to arrive at

(Au™ — )T @Y —u) < 4« (J U0 — T u"v))
+26v/2 C1 VT @) — T(@¥) u® —ul| 4.
(9.44)
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At this point, use the fact that u is the exact solution, hence due to Lemma 9.19
(Au — £)T (u® — u) = 0. Then from identity (9.41), we obtain,

0 2
o™ —ull%.

| =

T~ T = (Au— 07 @ —w + 5 o —ul’ =

The latter estimate combined with (9.44) leads to

J @) — J(@) < (Au"™ — )T @"" —u)
<4k (J@’) — J"™))
+ 42k C1 VT W) — T @%) V2 /T W0 — T (u).

Introduce dy = J (%) — J () > 0 and dpew = J @™ Y) — J(u) > 0 and let
w € (0, 1). In terms of dy and dpey, the latter inequality reads

dnew < 4K (do — dpew) + 8k C1 V do — dnew\/CTO
16x2C?
< |4 + 0 (do — dnew) + 1do

= C*H_l (do — dyew) + udo.

Here, C,. = 4k + 16K2Cf. Then the latter inequality reads

u(l —p)
dhew < |1 — —— ) dp.
new_< M+C*) 0

Consider the scalar function g(u) = u(1—p)/(u+Cy). Based on (M+C*)2g, (n) =
(1 =2p) (1 + Cy) — (1 — ) =0, that is, u? + 2Cxu — Cy = 0, we see that with
the choice u = pyx = —Cy + /C2 + Cy = C/(Cx + /C2 + Cy) € (0, 1), we get

the following expression for the maximum of g(u):

u(l — )
max ————=1-2u, =1+2C, —2,/C2+C
pel01] g+ Cy M ¥ ¥

1
e (0,1).

C1+2C.+2,/C2FC,

That is, we proved the following convergence rate estimate

2C,
dpew < 2y dy = —————= dp < dp.
Cy+/CZ+C,

Equivalently,

1 1
d, <|1- dy = (1 — ) dop.
- < 142G, +2,/C2 + c*> (VIT Gy +/Co?
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The following main result then holds.

Theorem 9.20. Under the assumption (d) providing for any z. € K, a stable decom-
positionz = Pz, + Zi Tiz;, in the sense that for a constant C1, the estimate

m
1Pz + D 1 Tizi % < CF Nzl

i=1

holds. The matrices I; and P are such that there are restriction matrices QiT and QCT
with the property QiTBIi u; = 0and QZBPUC = 0imply BZ;u; = 0 and BPu, = 0.
Define B; = QiTB,'I,' and B, = QZBP, A = IiT.AI,' and A, = PTAP. We also

assume that the local saddle-point problems based on

_[A B
w=[5 ]

and the coarse one,

A B
ACZ[BC o]

are solvable. Finally, we assume that the interaction matrices IJ-T.AI,' for any i are

nonzero for a bounded number of indices j denoted by k > 1. Let u* be obtained by
applying k > 1 steps of Algorithm 9.5.1. Then the following geometric convergence
in the A-norm holds,

1
5 u* —ul% < T - T@) < (em)* (TW") — T W),

with
1

1420, +2/C2+ Gy

We comment at the end that the main ingredient in the proof is establishing
a proper stable decomposition. The latter can be verified in practice for a number
of finite element discretization problems (e.g., for mixed methods for second-order
elliptic PDEs) based on proper stable decompositions for finite element functions.
For more details, we refer to Section F.3 in the appendix.

omr =1 and C, = 4k + 161 C3.

Final remarks

Other approaches to solving saddle-point problems exploiting distributive relaxation
are found in [Wi89] and [Wi90]. For the use of indefinite smoothers or preconditioners,
see [Van86], [ELLV], [BS97], and [SZ03].
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Variable-Step Iterative Methods

In this chapter, we consider iterative methods that exploit preconditioners or
approximate inverses that are of fixed quality but may change from step to step
(hence the name variable-step). These are generally represented by nonlinear map-
pings. Examples of such mappings are given by solutions obtained by a few steps of
variational (or CG) methods applied to some auxiliary problems.

In particular we consider block-preconditioners for matrices

A R
=2 s
that exploit linear preconditioners (or smoothers) for .4 and variable-step precondi-
tioners for the Schur complement S = B — LA~'R of A. The procedure can also
be applied recursively to define variable-step multilevel preconditioners as well as to
AMLI-cycle MG with variable-step recursive calls to coarse levels.

We use the terminology introduced in the original paper [AV91]. Y. Saad has
introduced the name “flexible” preconditioning (in [Sa93]; see also [Sa03]), which
is more popular today. Other papers that deal with the topic of variable-step/flexible
preconditioning are [VV94], [GY99], [NotOb], [SSa], and [SSb].

The variable-step multilevel preconditioners were originally proposed in [AV94]

(additive versions), and later in [JKO2] the multiplicative case was analyzed. Here,
we also introduce and analyze the variable-step AMLI-cycle MG method.

10.1 Variable-step (nonlinear) preconditioners

Let D[.] be generally a nonlinear mapping that is close to D~!. We assume that D is
s.p.d. and impose that the following measure of the deviation of D[.] from D~! be
small, in the sense that

| D[x] — 'D_1X||D <34 ||D_1X||D, for all x. (10.1)
P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 363

doi: 10.1007/978-0-387-71564-3_10,
© Springer Science+Business Media, LLC 2008
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Consider the following preconditioner,

[ -MTRYI M o I 0
B[.]_[O . H o DL [—EMI 1] (10.2)

To be specific, we define the actions of B[v] as follows. Let

o[

1 -MTR M 'w
B[v] = [O I ] |:D[x—EM1W]:|

_ [M‘lw M IRD[x — EM‘IW]:| _

Then

D[x — LM~ w]

We prove a bound for the deviation of B[.] from the corresponding linear
preconditioner

gl [l —MTR Mo I 0
0 I o D l||-cmMmt oI

We have

-MTR

B[v]—B v = [ I

} (D[x — LM 'w] = D7 l(x — LM 'w)).
Therefore,
B(B[v] —B~'v) = [10)] (DIx — LM 'w] =D '(x — LM 'w)),

which implies

IBIvl = B~!v|g = || DIx — LM~ 'w] = D~ '(x — LM~ 'w)|p
<S8 ID7'x — LM W) |p.

Finally, noticing that
BV =vB v = w/AM w4+ x— LM 'w)T D (x — LM w),
we end up with the following result.

Theorem 10.1. Consider the nonlinear preconditioner B[.] defined in (10.2) and
the corresponding linear one B, which differ by their Schur complements D].]
and D=1, respectively. Then, under the assumption (10.1) of small deviation of DI.]
from D™, the same estimate of the deviation between B[.] and B~ holds:

BVl — B~ 'v|lg <& |B7v||p. (10.3)
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In a following section, we describe a procedure to improve on the variable-step
(nonlinear) preconditioner defined in (10.2) by applying the CG-like procedure
described in the next section.

10.2 Variable-step preconditioned CG method

In the present section, we describe a somewhat standard preconditioned CG (con-
jugate gradient) method where the preconditioner B[.] is a nonlinear mapping that
is assumed to approximate the inverse of a linear one B, which we assume is s.p.d.
A more general case (that includes nonsymmetric and possibly indefinite matrices)
was considered in [AVI91].

‘We now formulate an algorithm that can be used to provide iterated approximate
inverses to A on the basis of a given initial (nonlinear) mapping B[-] that approximates
a given s.p.d. matrix B. Our main applicationis B = A.

For any v > 1, choose a fixed sequence of integers {mk}};zo, 0<mp <mp_1+
1 < k — 1. A typical choice is my = 0. We define the v-times iterated nonlinear
preconditioner B,[v] = wu,y; where u,4 is the v + lIst iterate obtained by the
following variable-step preconditioned CG (conjugate gradient) procedure.

Algorithm 10.2.1 (Variable-step preconditioned CG). For a given v, define
By[V] = uy41, where w41 is computed as follows.

1. Letvop = vandug = 0. Compute ro = B[vo] and let dg = r¢. Then let

dl'v dl'v
u = TO 0 dy and vy =vy— TO 0 Adp.
dO Ady d() Ady
2. Fork =1,...,v, compute v = B[vi] and then based on {dj}I;:k—l—mk form
k—1 T
r, Ad;
de=rc— Y ——rd;
Jj=k—1—my d/ Adj
Then the next iterate is
d/ZVk
u =u; + d;,
k+1 k dkTAdk
and the corresponding residual equals
A AL
Vitl =V — Aug = vi — .
+1 k d,{Adk k

3. Finally, we let By[V] = uy41.
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Here, B[-] approximates the inverse of B = A, with accuracy § € [0, 1), that is,
IA™'v — B[V]lla <8 V)51 (10.4)
We have the following convergence result for Algorithm 10.2.1.

Theorem 10.2. Consider Algorithm 10.2.1 for a given v. Assume that the s.p.d. matrix
A has an approximate inverse B[-] satisfying (10.4). In Algorithm 10.2.1, define the
kth step search direction dy to be A-orthogonal to the my 4 1 most recent search
directions. The integers {my} satisfy 0 < my < my_1 + 1 < k — 1. That is, we have

k—1
dy =1 — Z Br,j dj,
j=k—1—my
with B, = (r,{Ad,-)/(d/TAd,»). Recall, that vo = V, Vi = Vi1 — ap—1 Adg_;
for ar—1 = (A{_,vi—)/(d]_,Adx_1), and vy = B[v]. Also with ug = 0,
Algorithm 10.2.1 computes 0y = Ui_1 + ax—1 dx—1, and the kth step iterated
approximate inverse Bi[.] is defined as Bi[V] = uky1. Note that Bo[v] = agB[V],
that is, Bo[v] differs from B[v] by a scalar factor.
The following convergence rate estimate holds,

IVilla-1 < 8 IVa—1llo-1-

Equivalently, because Vi1 = v — Augy1 = Vv — ABi[v], the following deviation
estimate between A~'v and By[v] holds,

ATV — Bi[vllla = IIv — ABi[V]l 41 < 8T (vl 41

Proof. Assuming by induction that v is orthogonaltod; fork —2—m;_| < j <
k — 1, we have then that

vid; =v]_d;j —a_1d]_;Ad; =0, forallj <k—1 and j>k—2—my_;.
For j =k — 1, we also have
vidiy =vl | dio1 — -1 d]_ [ Adg—; =0

due to the choice of ay—1. That is, v is orthogonal to d; for all j : k > j >
k —1—my >k —2 — my_1, which confirms the induction assumption.
Note then, that

1 k=2
T
Q-1 = T Ad Vieq | re—1 — Z Bk—1,; d;
k—141Gk=1 j=k—2—mi_
1
T
= ————— v T
d,{_lAdk,1 k=1

_ vl Blvi-i]
d,{_lAdk,1
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Another observation is that

k—1
2 2 2 2 2
Ieell = ldelld + > BZ; lldj1% = el
Jj=k—1—my

Now we are ready to proceed with the convergence rate estimate in the case when
B[.] provides an approximate inverse to A as in (10.4). We have

[V —ABi[v]ll4-1 = IV = Amq1ll 41 = Va1 lla-1-
Also,
2 2 2 Vi di ’
Vi 132 = vk — o Adel2, = Ivell3o — (ndknA> .
Because v,{dk = VkTB[vk] and ||dk|la < IIrklla = || B[Vk]lla, the following estimate
is seen.
2 , (vBva\ ,
IVl < Ivelly—r — <m) = min Vi —a AB[vi]lly . (10.5)
Estimate (10.4) upon expanding reads,
IVIA-r —2v7 BIvl + [ BIVII% < 8% VI3,

or equivalently
v BIvl = (1= 8%) [[VI5-1 + I BIVIII-

Based on the Cauchy—Schwarz inequality a® + b?> > 2ab, we also get

T /
VIB[V] = V1 =82 |[V] g1 | BIV]l|a-
Using the last estimate for v := vy, in (10.5) gives the desired convergence rate
estimate:
2 2 2 2 2 2
Vit =0 < IValliy—r = (=87 lIvilliy—r = 87 IVl g

Based on the convergence property of the above variable-step preconditioned
CG method,

. k1
IVirillg-1 < min Vi — @ AB[Villlg-1 < Allvillg=1 <o < A Ivoll 41,

we obtain an improved estimate for the iterated approximate inverse B, [-] for A,
that is,

A=V — By[vlla < AT A7 v 4.
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That is, by enlarging v, we can always achieve that A, = A'T! < §. Because
A <1—-(2/(1+ Csk)), we get

Dlog|1— < logs.
v+1) g( 1+C6K>_ g
That is,
Lys logd (10.6)
v > —\ .
log Gt

The following modification of Theorem 10.2 holds due to R. Blaheta [B102].

Corollary 10.3. Under the main assumptions of Theorem 10.2, assume that the
variable-step (nonlinear preconditioner) B[.] is close to a fixed s.p.d. matrix B~!
such that

IBIVI— B™'V|g-1 <8 |[vllg1.

Let k > 1 be an upper bound of the condition number of B~' A. Then the following
convergence rate estimate holds,

_ s 1— 82
Villa-t <8 Vk—1llg~1, withd =,[1— P

Proof. The following coercivity of B[-] is established in the same way as in the
proof of Theorem 10.2. We have

vIBIv] > V1 =82 vl g1 I BIV]ll5.
The latter implies

2

vl Blv] >

VIl 411 BLV]IlA-

The remainder of the proof is the same as of Theorem 10.2, replacing 1 — 82 with
(1—-8%/k. O

At the end, we present one more corollary to Theorem 10.2 which is due to Notay
(cf., [NotOb]).

Corollary 10.4. Under the main assumptions of Theorem 10.2 assume in addition that
the variable-step (nonlinear preconditioner) B[] is close to a fixed s.p.d. matrix B~
such that

IBIVl— B™'V|g-1 <8 |[vllg1.

Let k > 1 be an upper bound of the condition number of B~' A. Then the following
convergence rate estimate holds,

2 B 4k (1 —8)° ) )
Vil = (1 Dt A0 )7 IVe—1l7-1-
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Note that in the case of § = 0, the above estimate reduces to the familiar steepest
descent convergence result estimate

2

2 k—1 2
Villg=1 =\ —— Vi—114-1-
Vil (K+1) V-1

Proof. In the proof of Theorem 10.2, we derived the estimate (10.5)

2 . 2
IVk+1l5-1 < min vk —a AB[vi]ll-1-
11 4-1 o eR Al

We have (letting v = vi)

Iv—a«AB[VII5- = v —aAB™'v + «AB™'v — B[VI|I3 -,
= v —aAB V|3, + 20 (v —aAB~'W) BV — B[v])
+o® |B~'v = BIVII;
<|lv—aAB V|7,
+2a ||v — aABly|g-1|B” v — B[v]|
+ a2 [B™!v — B[v]|3.

Letr = B~!v — B[v]. Then,
Iel1% < Amax(B™1A) [ITlIF < 8 Amax(B™1A) [IVIF- .
We also have,

<1 —a B~ 2 AB"A v,

Iv —aAB~'VIE
Thus,

Iv—aABIVIIE .y < IV =« AB~'VIE +2a 8 |1 —a B-V/2AB~W2 vig

+ 0?82 Amax BT A VI .
Because fora > 0

B=I1—aB YPAB~V?| = max{|l — dAmin(B~'A)|, |1 — dAmax(B~1A)[},
(10.7)

the last estimate reads,

v —aABIVII - < Iv—aAB VI 4 (@ Amax(B™'A) 8% + 2088) V][5,

=vi (A7 = Qo — a®hmax (BT A)8% — 2088)B~!
+a?B'AB )y
o) vl A7y,

< max
1€[Amin(B™TA), Amax(B~1A)]
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where
0(1) =1— Qo — &®Amax B~1A)8% — 2a88)1 + o 1°. (10.8)
Now choose
2
o= 1 Jmax (B~1A)+62 (Amax B~ A)—Amin(B—1A))
(1 _ 8))\‘11'11[1(]37 A) _|’_ max mzix76 min

This choice ensures that

2
o€ <0, 1 i >,
Amin(B™1A) + Amax(B71A)
which implies (see (10.7)) that
B=1—ainn(B'A).
‘We also have
20 — o0? Amax (B~ A)8% — 2088
=20 — P Amax(B71A)8% — 2a(1 — & Amin(B™1A))8

=a 2(1 = 8) — Armax (B A)8% + 20Amin (B~ 4)8)
=a ()&min(BilA) + )\max(BilA)).

To see the last equality, it is equivalent to show that
2(1 = 8) = @ Cmin (B~ A) + Anax (B~ A) = 82Amin (B~ A) = § Amax (B A)))
= & (hmax(B™'4) + 8% (hnax (B~ A) — Amin (B~ 4))
+ hmin(B714) (1= 8)?).
The latter equation coincides exactly with the definition of «,

2
o= - 2 A1 (B-14)
)&min(B_lA)(l _ 6) + Amax(B~'A)+4 ()\mixi(? A)—Amin(B~1A))

With the choice of @ we have made, the quadratic form Q(#) from (10.8) simplifies to
0@t) =1 — & (min(B™1A) 4+ Amax B™LA))1 + 1202
It is clear then that for 7 € [Amin(B™'A), Amax(B~'A)], we have

0t) = 1 — & Amin(B™' A)Amax(B™1A) + @* (1 — Anin(B™1A)) (f — Amin(B™' A))
1 — & hmin(B™' A) Amax (B 4).

IA
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Therefore, the final estimate reads,

a < ((k — 1)62 + (1 — 5)2 +K)2> ”V”Afl'

IV —aABIVII; 1 < [1 = @ Amin(B™' A Amax B~ ) VT A7y

10.3 Variable-step multilevel preconditioners

Consider a sequence of matrices {Ay} related in the following hierarchical fashion,

A Rk
Ak = [Ek Ak+1]'

If the above two-by-two block form of Ay is stable, which in particular means that
Ay is spectrally equivalent to its block-diagonal part, and hence, A+ is spectrally
equivalent to the exact Schur complement S = Ag4+ — EkAllek, the following
two-level preconditioner is viable.

B — [Mi O] [(Me+MI =)™ 0 M R
L= e 1 0 AL O 1]

where Mj comes from a convergent splitting for Ay such that
1/2 4 —1 4172
11— AP MITA) < 1.
We recall also the symmetrized preconditioners
My = Mk(/\/lk + MI{ - Ak)_l./\/l]{.

The following recursive multilevel procedure can be utilized to define a multilevel
factorization variable-step preconditioner of guaranteed quality.

Let Bi+1[.] be a given (defined by induction) variable-step preconditioner for
Aj+1 and consider the better quality preconditioner obtained by v = v; > 0 steps

of the variable-step preconditioned CG algorithm 10.2.1, B,Ei)l. Then the kth-level

variable-step preconditioner approximating A,:l, is defined as follows.

I —M_TRk] Moo [ I o}
Bil]= k k _ .
- [0 1 [ 0o BM L L-LeMt T

Based on the result of the preceding section, we can guarantee a fixed quality
of the preconditioner at every level k by properly choosing v = vy at every level.
In particular, if we knew that there is a fixed (linear) multilevel preconditioner with
a guaranteed quality then, the nonlinear one will also have a guaranteed quality, as
well, because the estimate for v = v given in (10.6) will be level-independent.

The nonlinear preconditioner has a potential advantage of being a parameter
(to estimate) free one.
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10.4 Variable-step AMLI-cycle MG

Here we construct recursively nonlinear approximate inverses to A; used in an
AMLI-cycle MG.
We first define a variable-step AMLI-cycle MG.

Definition 10.5 (Variable-step AMLI-cycle MG). Let A, Px, and My for k =

0,...,¢ where Apy1 = PkTAk Py, be the parameters of a MG hierarchy. Introduce
also the symmetrized smoothers My = Mk(MkT + My — Ak)_leT. The AMLI-cycle
also exploits a sequence of integers vy >0, k=0, 1,...,¢.

At the coarsest level, set By = Azl. Then, assume that Bxy1[-] for some k < £
has been defined as an approximate inverse to Ayy1. On its basis construct an iterated

one, B,Eﬁ[ -] implemented as in Algorithm 10.2.1, letting B[-] = Bi+1l[-]1as input and

,Ei‘i[ -] = By [-] as output. If vy = 0, we simply let Bk+1[ 1 = Bis1l-]; that is, we

do not use Algorithm 10.2.1.
Then, define first

_ — 1
= a1 =M TAP] | M, 0 1 0
Bil[']= [0 It 0 B(ukl)[] _PkTAkMk—l Ik

and then for the approximate inverse of Ay let
— 1
Bi[-1 = 1[I, Px]Bl'] [ pr ]
k

——1
= [1, (1- M]:TAk)Pk] |:M(;c B(v(:)[ ]:| |:PkT (1 —IAkMk_l):|
=W, + (1= M A PGB [P (1= M) 6]
The following monotonicity property holds (similarly to Theorem 10.1).
Lemma 10.6. Consider the (linear) MG preconditioner By defined as follows,
By =M + (1 - M;TA)PB

k+1Pk (1 — AgMy ).

The deviation B,;lv — Bi[Vv] does not increase from level k + 1 to level k; that is,
we have

1By 'v — BeIVllig, < 1BV — Bis1 [Vl 3 - (10.9)
Here, Vv = PkT - AkMI:I)V, and it can be estimated as
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Proof. We have
I¥150 = B A1 = A v
<VIMv + v (1 — M T A) PeBLYL PE(T — Ay
= |vl

Bl’

which proves (10.10). It also shows that [|B,\/” PT (I — AxM")B"?|| < 1. For
the deviation in question, we have

1B 'v = BVl = (1 — M, " A P(BL Y — B V1) |,

= B2 T A P Bl — Bl

= [ By PO = b ) B B = B 9],
< | BV = Bir 9 -
which proves the desired monotonicity property (10.9). O

We are now ready to prove our main result (see [NVO7]).

Theorem 10.7. Given an integer parameter ko > 1 and another integer v > 1. Let

x = v fork = sko, s = 1,...,[€/kol, and v = 0 otherwise. Consider for a
given MG hierarchy of matrices { Ay}, interpolation matrices { Py} such that Ay =
PkTAk Py, and smoothers { My }. They define fixed-length symmetric V (1, 1)-cycle MG

matrices Bl(‘,];gk(’)'_)k, from any coarse-level k + ko to level k with exact solution at

level k + ko. Assume that the convergence factor of such fixed length V-cycles are
uniformly in k > 0 bounded by a &, € [0, 1). Let v and ko be related such that the
inequality

(1= (1 =81 = 8))"? <8 (10.11)
has a solution § € (0, 1). A sufficient condition for this is

1

V> .
1 — &g,

(10.12)

Then the variable-step AMLI-cycle MG as defined in Definition 10.5 for the sequence
{vi} above, provides an approximate inverse for Ay with guaranteed quality §; that is,
we have the uniform deviation estimate

-1
IAZ Y — B [V]lla, <8 Vi1

Proof. We first show that (10.12) implies the existence of a § € [0, 1), which solves
(10.11). Indeed, letting § = §*/V inequality (10.11) reads

1— (=81 —8) <3,
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or equivalently,

0@ =1—-(1—8,) 1+8+--+5 H<o0.

Because ¢(1) =1 — (1 — 84,)v < 0 (due to (10.12)) and ¢(0) =1 — (1 — 8ky)) =
8k, > 0, there is a § € [0, 1) such that ¢(§) = 0. Hence any § € 5", 1) will
satisfy (10.11).

Applying Lemma 10.6 recursively, we end up with the deviation estimate

-1 -1 = V) =
1By = BelVllls, < 1B, ¥ — Bio M5,
for a vector V such that

¥l < IVl (10.13)
0

Because at level k + ko we use an exact solution (in the definition of B, 1) (ie.,
By 1k, = Ak+k), the above estimate becomes

1BV = BelVills, < 1AL, ¥ = B Fll A, - (10.14)
Assume now by induction that there is a § € [0, 1) such that
14k ¥ = B P aras, =8 1950y, -
The last estimate, together with (10.14) and (10.13), implies that
1By = Bilvlll g < 8 [Vl -1
By assumption, the kgth-length V-cycle has a certain quality, such as
|8~ A?)VHAk = g IVl 4 -

That is, ki, = 1/(1 — 84, is a (uniform) upper bound on the condition number of By
with respect to Ay. Corollary 10.3 implies then the following convergence estimate

for the iterated nonlinear mapping B,E”) [-1,

-1 ) 1-5%\""?
A, v — B, [vllla, < (1— - ||V||A]:1~

ko

To confirm the induction assumption, we need the inequality

1—82 v/2
(1-=2) =
Kkg

which as we already shown has a solution for v > «y, = 1/(1 — 8k,). Thus the proof
is complete. O
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Theorem 10.7 assumes that v > 1/(1 — &), but increasing ko may deteriorate
the koth-length V (1, 1)-cycle in general; that is, 8k, can get closer to unity and hence
v needs to be chosen sufficiently large. However, if v gets too large then the com-
plexity of the AMLI-cycle may become unacceptable. To address both the quality of
the variable-step AMLI-cycle MG and its complexity, consider now the example of
matrices Ay coming from second-order finite element elliptic equations posed on a
domain @ C RY, d = 2 or d = 3. In that case, 8k, has the following asymptotic
behavior (cf., Section 5.6.2),

2
(k+ko)—k 1 kg, d=2,
K < =~ 10.15

MG =Fo =g {2k0, d=3. (16.15)

Then, the following result holds.

Corollary 10.8. Consider the variable-step AMLI-cycle as defined in Theorem 10.7
for matrices Ax coming from second-order elliptic finite element equations on
uniformly refined meshes and My being the Gauss—Seidel smoother, or any other
smoother giving rise to My that is spectrally equivalent to the diagonal of A.
The second-order elliptic PDE is assumed to have coefficients that vary smoothly
within each element from the coarsest triangulation Ty = Ty. Assume that hyy] =
2hj where hog = h is the finest mesh-size and hy = H is the coarsest mesh-size.
Finally, assume that the number of dofs at level k are ny = 2% nj41, where d = 2
or d = 3 is the dimension of the domain (where the PDE is posed). Then, we can
select v < 290 for ko sufficiently large so that the inequality (10.11) has a solu-
tion § € (0,1). This choice of v guarantees uniform quality of the variable-step
preconditioner By[-] and at the same time ensures its optimal complexity.

Proof. We have the following asymptotic inequality for v coming from (10.12) as
8k, — 1 based on (10.15),

1 K, d=2,
V> —
(1 —8ky) 2k 4 =3.

From complexity restrictions, we have (estimated in the same way as in Section 5.6.4)
v < 29k Tt is clear then that in both cases, d = 2 and d = 3, we can choose v, for
ko sufficiently large, such that the variable-step AMLI-cycle MG are of fixed quality
8 (from (10.11)) and at the same time have optimal complexity. O

We remark at the end that because g, is bounded independently of possible
jumps in the coefficients of the PDE (which are assumed to vary smoothly within the
elements of the initial coarse triangulation 7y ) the resulting § € (0, 1) will also be
coefficient independent.
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Preconditioning Nonlinear Problems

11.1 Problem formulation

We are interested in the following nonlinear operators,
Al.]= Ao+ B[.],

where B[.] is treated as a perturbation to the linear one Ag similarly to the case
of nonsymmetric and possibly indefinite matrices we considered in Chapter 8. This
means that in a norm ||.||o coming from an inner product (-, -)g, we have

(A[v], V)0 = (1 = y0)(AgV, V)o — collVIlg- (1L.1)

The linear operator Ag is assumed coercive in the norm ||.||o; that is, ||v||% <
A(Agv, Vv)o for a constant A > (. We also assume that Ag is (-, -)p-symmetric
which together with its coercivity imples that [|v] 4, = ((AgV, v)0)'/2 is a norm
stronger than ||.||o. In the analysis to follow we make use of a third norm ||.|| which
is assumed stronger than ||.]|4,. To avoid technical details we assume that B[.] is
positive; that is

(B[v], v)o = 0. (11.2)

Then the estimate (11.1) is trivially satisfied with yp = ¢ = 0.

We are interested in the solution of the nonlinear problem A[u] = f which we
assume is uniquely solvable. We make some assumptions about differentiability of A
inaneighborhood of the exact solution u* of A[u] = £, as well as on the approximation
of a coarse-grid solution Pu, defined variationally by the identity (A[Pu.], Py)o =
(f, Py)o for any coarse vectory.

More specifically, the nonlinear mapping B[.] is assumed differentiable in the
sense that for some o > 0, for any g uniformly with respect v in a ball near the exact
solution A[u*] = f, we have

B[vo + gl = Blvol + B (vo)g + O(llg[' ).

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 377
doi: 10.1007/978-0-387-71564-3_11,
© Springer Science+Business Media, LLC 2008
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Here, B’(vp) is the derivative of B[.] at vo. More specifically, for the derivative A’
(or B’), we assume that for any v in a ball near the exact solution u* of Alu] = f,
we have the estimate

(Alvo + gl — Alvol — A'(vo)g, V)o < ¥ liglllivlo-

Here, ||.|| is the norm (introduced above) that is stronger than ||.|| 4,. The latter in-
equality implies
| Alvo + g] — Alvol — A'(vo)gllo < ¥ ligll- (11.3)
Because A[.] = Ag + BJ.], we also have
(B[vo + gl — Blvol — B'(vo)g, v)o <y lglllvlo. (11.4)

In some cases (as in semilinear second-order elliptic PDEs), we can actually prove
a stronger estimate,

(Blvo + gl — Blvol — B'(vo)g, v)o =< LliglligllolIvllo- (11.5)

Then for ||g||o sufficiently small, we can achieve L|g|| < y < 1. Finally, we assume
that the derivative B’ is continuous; that is,

((B"(ug) — B'(v0))g. v)o < L|ug — vollligllollvllo.

for any vp and ug close to the exact solution u* of A[u] = f. This in particular implies

(A" (wo) — A’ (vo))gllo < Llluo — vollligllo- (11.6)

The following error estimate is our next assumption. Consider the coarse problem,
for any given vy in a small neighborhood of the exact solution A[u*] = f,

(A[Px], Py)o = (Alvo], Py)o, forally. 11.7)

Then, we assume that for a small § > 0, which gets smaller with increasing the size
of the coarse problem,

vo — Pxllo <3 | Alvolllo-
We also assume an error estimate in the stronger norm |.||, namely, forasmall @ < 1,
lvo — Px|| < & [|Alvolllo- (11.8)

We prove next an a priori estimate for the solution Px of the coarse problem.
Because the norm ||. || is weaker than ||| 4,, we have

ATNIPx|F < (AoPx, Px)o
< (AgPx + B[Px], Px)g
= (A[Px], Px)o
= (Alvol, Px)o
< I Alvollloll Pxllo.
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Therefore,
[ Pxllo < A lALvolllo-

All the assumptions made in the present section can be verified for a certain class of
semilinear second-order elliptic PDEs and proper choice of the norms ||.||o and ||.]|,
cf. [BVWO3] or Section B.2.

11.2 Choosing an accurate initial approximation

Under the assumption made in the previous section, consider the linearized problem
(Ao + B'(Px))u =r = A[vo] — B[Px] + B'(Px) Px. (11.9)

It approximates the nonlinear problem A[v] = A[v¢]. Due to (11.3) and the stronger
error estimate (11.8), we have

Irllo = I|A[vol — B[Px]+ B'(Px) Px|lo < yl[vo— Px|| <y 8" ||A[volllo. (11.10)
The difference vy — u solves the linear system

A'(Px)(vo —u) = A'(Px)vg — A[vo] + B[Px] — B'(Px)Px
= A'(Px)(vg — Px) — A[vo] + A'(PX) Px
+ A[Px] — A'(Px) Px
= —A[vg] + A[Px] + A’ (PX)(vo — PX).

Therefore, based on (11.3), (11.6), and the error estimates for Px — v,

[A"(Px)(vo —wllo < [I(A"(Px) — A"(vo)) (Vo — PX)lo
+ Il = Alvol + A[PX] + A’(Vo) (Vo — PX)llo
< vllvo = Px|| + L [Ivo — Px||[[Ivo — Pxllo
< 8%(y + L&) llAlvolllo.

The linear system (11.9) can be solved by v > 0 iterations thus ending up with a
sufficiently accurate approximation ug to u such that (using (11.10))

1
[rllo < C —— [lA[volllo-

A'(P — <C
[A°(Px)(ap —w)lo < Ty Ty

Note that here, we need an iterative method that reduces the residual in the weaker
norm ||.||p with an optimal rate. In the application of semilinear second-order elliptic
equations giving rise to s.p.d. matrices A’(Px) = Ao + B’(Px), we may use the
cascadic MG to get optimal convergence for the residuals by increasing the number
of smoothing steps (for details, see Section 5.8.1).
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Recall that A’( Px) is coercive, hence, we have the estimate ||g||% < A (A/(Px)g,
2)o < A A" (Px)glloligllo- That is,

lglo < A 1A"(Px)gllo.

Using this coercivity estimate, and because Px and vq are close, then A’(vg) and
A’(Px) are also close (see (11.6)). Therefore, for y = LA §%||A[vo]|lo, we have

A" (vo)(vo — uo)llo < [[(A(vo) — A"(Px))(Vo — uo)llo + [|A"(Px)) (Vo — uo)llo
< [IA"(Px)(vo — o) llo + L [[vo — Px||[|vo —uollo
< [IA"(Px)(vo — ug)llo + L[| A[vo]lloA [|A"(Px)(vo — ugllo
< (14 LA 5*||ALvolllo) |A"(Px)(vo — uollo
<A+ YIA(Px)(vo —wllo + (1 4+ y)[|A'(Px)(u — up)llo

={I+nC Irllo + (14 y)ys*llAlvolllo

14+v

C
< (1+V)maX{1—, V3°’} lAlvolllo
+v

<n<l,

for any n < 1 chosen a priori.
In summary, consider the nonlinear problem,

Alvol =f.

Here, f is given and v unknown. We can find a sufficiently accurate approximation ug
to vo in the following steps. First by solving the coarse nonlinear problem (11.7), we
obtain Px. Then, we can form the linearized fine-grid problem (11.9) and solve it ap-
proximately by v > 0 iterations thus ending up with ug. Then, for any a priori chosen
n < 1,if the coarse problem is sufficiently accurate (hence, we have sufficiently small
d in the error estimates), and if vis sufficiently large, the approximation ug will be suffi-
ciently close to the unknown solution v in the sense that the following estimate holds:

C
14" (v0) (Vo — wo)llo = (1 + ) max {H-—U V5“} Ifllo<n<1.  (LID

The thus-constructed approximation ug can be used as a sufficiently accurate initial
guess in an inexact Newton method that we present in the following section.

General two-level discretization schemes for certain finite element problems were
presented in [Xu96a]. They provide accurate approximations from a coarse space, and
at the fine-level, we need to solve a linearized problem only.

11.3 The inexact Newton algorithm

Consider the nonlinear equation,
Alu] =f.
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The nonlinear mapping A[.] is considered as a mapping from a given (infinite-
dimensional) space X equipped with a strong norm ||.|| to another (infinite-
dimensional) space ) equipped with a weaker norm ||.||o. We assume that X C ).
We recall that a discrete counterpart of A[-] is sometimes denoted by F.

Let ugp be an accurate initial approximation to u*, the exact solution of the above
problem.

Algorithm 11.3.1 (Modified inexact Newton method).

e Forn=0,1,..., until convergence, compute the inexact Newton correction sy,
such that
A'(ug)s, = £ — Alu,] + 1, where |[rallo < nllAlu,] —fllo. (11.12)
e Then, set
Wyt = U, +Sy,. (11.13)

We make now the following main assumptions.

(A1) The mapping A[.] acting from the space (X, |.|) — (X, ||.llo) is invertible
in a small neighborhood of a given f € (X, ||.|lp). Let u* be the exact solution
of Alu] =f.

(A2) The mapping A[.]is differentiable in a neighborhood of u* and (A’ () ! exists
and is uniformly bounded for any u in a neighborhood of u*; that is,

ICA" @)~ vIl < (¥l
Note thatif v € (X, ||.|)), thenv € (X, |.||o). Therefore, we also have,
IVl < s A" @)vllo. (11.14)
(A3) Foranye > Othereisad > 0 such that the derivative A’ satisfies the estimates,
[Alu] — A[u*] — A’'(W*)(w —u)[lp < € [lu—u*|,
and

||(V _ A/(u*)(A/(u))fl)v”() <e€ ||V||0, allv e yv (11 15)
v = A" @) A' @)l < e llvll, allve X, |

whenever [lu — u*|| < 8. Note that (11.15) and (11.14) imply (with € := €)
A’ @)™ = @)l <€ lvlo, allve X,

It is clear that without loss of generality, we may assume that f = 0, otherwise we
can consider the shifted nonlinear operator A[u] := A[u] — f. The derivative of the
shifted nonlinear operator does not change, nor do the assumptions (A2)—(A3).
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The following main result holds (in the spirit of [DES] as modified in [BVWO03]).

Theorem 11.1. Let the assumptions (Al)—(A3) hold and let n, t satisfying 0 < n <
t < 1 be given. Then, there is an § > 0 such that if |ug — u*|lo < &, then the
sequence of iterates {uy} generated by (11.12)—~(11.13), converges to w*. Moreover,
the convergence is linear in the sense that

hag1 — ¥l < ot — ¥, (11.16)
where ||V]|« = ||A’(W*)V||o, provided the initial iterate satisfies the (stronger) estimate
wlA'(*)(ag — u*|lp < 8. (11.17)

Here v is such that
vl < wllA"@)vllo,
for any u in a neighborhood of u* (see (11.14)).
Proof. Because 0 < n < t, there is a ¢ > 0 such that
€+ pee+ 1)+ (e+ Dn(1+ pne) < t. (11.18)

Based on the properties of A’ and (A’ )~1, (A2), and (A3), now choose a § > 0
sufficiently small such that for any v : ||[v —u*| <,

1 — (A'(v) A @] <e, (11.19)
11— A @) A ) <e (11.20)

and
|A[v] — A[u*] — A"(w*)(v —u")[lop < € [v —u*|. (11.21)

The norms in (11.19) and (11.20) are the corresponding operator norms induced
by (11.15).

Note now that if we choose the initial iterate ug such that (11.17) holds, then we
also have |lug — u*|| < u [|[A'(*)(uy — u*)|jp < 8. The proof proceeds then by
induction. Because A’(up) is invertible (by assumption (A2)), the system A’(up)s =
— A[ug] has a solution, and hence, we can find a sg such that A’ (ug)sg = —A[ug] +ro
with |rollo < 1 |A[ug]llo. We then define, with G = A’(up),

u; =up — G (ro — Afup)).
Next,

u —u =u—u — G Al + (G — (A W*) g + (A' @) 'ro.
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Replace now A[ug] by A’(u*)(up —u*) + [A[up] — A[u*] — A’ (u*) (up — u*)]. Then,
U —uy=ug—u* — G LA (W) (uy —u)
— G '[Alug] — A[u*] — A'(u*)(up — u*)]
+ (G = A @) Hrg + (A’ ) " ro. (11.22)
Thus, we end up with the identity
AW —ug) = (I — A@HGHA W) (ug — u*)
— A'(W")G ' [Alug] — Alu*] — A’ (W) (up — u*)]
+(A'@)G™! = Dro +ro.
Therefore,
lur —wolls < 11 — A'@)G[[[ug — u*[lx + 1A' @HG ™| ep g — u*|l
+1A4'@)HG rollo
<€ |lup —u*|lsx + pe(e + 1) lug —u*|lx + (e + Drollo. (11.23)
Because,
lIrollo < n [[A[uolllo
=n |A" (") (ug — u*) + [A[ug] — A[u*] — A"(u*)(up — u")]|lo
<n (JA"(a*)(ug — u*)[lo + [|Alug] — A[u*] — A" (u*)(ug — u*)llo)
< n(|lug — u*[|x + €lup — u*|})
< n(l+ep) Jlug —u*lx,
we have from (11.23) that
lur —ugll« < [€ 4+ pe(e + 1) + (e + Dn(l + we)lllug — u*|l,
<t Jlug — u*,.
Then it is clear that

k
lue — ™l < o flug — ¥l < pr® flug — u¥fls < Jlug —u*|lx < 6.

That is, all iterates remain in the § neighborhood of u*, and the induction argument
can be repeated. Thus the proof is complete. O

We remark at the end that the computation of a sufficiently accurate initial iterate
ug was considered in the preceding section under additional assumptions that A[.]
was semilinear and that the linearized problems can be solved by an optimal-order
iterative method that reduces the residuals in the ||.||o- norm. Such an iterative method
can be a cascadic MG or a W-cycle MG with sufficiently many smoothing steps
provided the underlined linearized PDE is regular enough. Then all the bounds in
Theorem (11.1) are mesh-independent and the resulting iteration method defined by
Algorithm 11.3.1 has an optimal complexity. For more details, we refer to Section B.2
(or see [BVWO03]). Other choices of norms ||.||op and ||.|| were considered in [KPV].
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Quadratic Constrained Minimization Problems

This chapter deals with solving quadratic minimization problems defined from a
s.p.d. matrix A subject to box inequality constraints that model Signorini’s problems
in contact mechanics. In particular, we investigate the use of preconditioners B for
A incorporated in the commonly used projection methods. The latter methods are
also quadratic minimization problems involving the preconditioner B to define the
quadratic functional. To make the projection methods computationally feasible (for
more general than diagonal B) an equivalent dual formulation is introduced that
involves the inverse actions of B (and not the actions of B). For the special case
when the constrained set involves a small subset of the unknowns a reduced problem
formulation is introduced and analyzed. Our presentation of these topics is based on
the results by J. Schoeberl in [Sch98] and [Sch01]. We conclude the chapter with a
multilevel FAS (full approximation scheme) based on monotone smoothers (such as
projected Gauss—Seidel) providing a monotonicity proof from [IoVO04].

12.1 Problem formulation

For a convex set K and a quadratic functional based on a symmetric positive definite
matrix A,

1
J(v) = 7 viAv —bTy,
solve the following optimization problem.
Findu € K : J(u) = min J(v). (12.1)
vek
Lemma 12.1. The solution u of the above problem is characterized by the variational
inequality,
wAv—uw) =b ' (v—u), forallveKk. (12.2)

Proof. The proof follows from the minimization property of u and convexity of K
by considering for any v the element tv 4 (1 —f)u € K forr € (0, 1). We have

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 385
doi: 10.1007/978-0-387-71564-3_12,
© Springer Science+Business Media, LLC 2008
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J(@) < J(tv+ (1 — t)u), which leads first to

1 1
5zszAv +1(1—)vl Au+ S - H?u’ Au—b7 (v + (1 — Hu)

1
> —u’ Au—bTu.
2
Equivalently, we have
1 1
5z2vTAv +1(1—0)v Au—rbTv > 1@ Hu’ Au — b u,
which leads to
1 1
EthAv + 1 —=0)vi Au—bTv > 5= Hu’ Au—bTu,
and by letting r — 0 we end up with,
v Au—bTv > u’ Au — bTu,

which is the desired result. O

12.1.1 Projection methods

We are interested in the following projection method. Given a symmetric positive
definite matrix B, a preconditioner to A, define the projection

Ppv:Vi—> K,
as the solution of the minimal distance problem:

| PV — V| p = min [[w — V| . (12.3)
wekK

Let omin and amax be the spectral bounds
ammvTBv < vl Av < O'max vl Bv.

For a proper parameter T > 0 consider the following iteration process.

Algorithm 12.1.1 (Projection Iteration). Given vo € K, for k = 0,1, ..., until
convergence, compute:

1. Vi = vk + B (b — Avp),
2. Viy1 = Ppvy.

We study next the convergence of this algorithm. Assume that (1/7)B — A is
positive semidefinite (or nonnegative). That is, let 1 > tamax-
The following result has been proved by Schoberl in [Sch98].

Theorem 12.2. The following convergence rate holds, for k > 0,

J(vi) — J() < 0% (J(vo) = J (), vk —ulg <205 (I (vo) — J(w)),
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where

o<1 Tmin ~1 1  — Omax
= - A — - 5 —

~ cond(BilA).
2 2K Qmin

Proof. We have, from the first step of Algorithm 12.1.1,

1
b = Avk + —B(Vk — Vi),
T

and
1 7 T
J(Viy1) = 5"k+1AVk+1 —b" Vi
1
= 5[(Vk+1 — VT AVig1 = Vi) + 2V — v T Avi + v Avi]

1 T
— bl — (Avk + ;B@k - Vk)) (Vk+1 — Vi)
1 T 1 T
= J(vp) + E(Vk+1 = Vi) A(Vig1 — Vi) — ;(B@k — Vi)' (Vi1 — V).

Using the fact that %B — A is nonnegative, we arrive at

1 T 1 T
J (Vi) < J V) + 5= (Viert = Vi) B(Vie1 = Vi) — ;(B@k = Vi))" (Vi1 — Vi)
1 ~\T 1 T
= J (Vi) + 5o (Vi1 = Vi) B(Vest = Vi) — E@k — V)" B(Vit1 — Vi)
1 o _
= J (Vi) + 5= (Vi1 = Vi)" B((Viert = Vi) + (Vi — Vi)
1 ~
= 57Ok = VO B(@k = VO + (Ves1 = Vo)
1 ~ ~
= J(vi) + E[(Vkﬂ — VO B(vir1 = Vi) — Ok — v T BV — Vi) .
A principal step in the proof is the following estimate for vi+| = PgVy,

| PVE — Villz < Il P, v1Vk — VI3

—Tamin (@ — V)T Bk — vi) + Vi — Viell3. (12.4)

IA

Here, Py, v;) stands for the projection on the segment with endpoints u and vy (a
convex subset of K). That is, we have

~ 12 . ~ 12
v -V < min |tu+ (1 —=10)vg—V
IVir1 — Vellg =, min, I ( Wi — Vil

< u—vil3 =2tk — V)T Ba — vi) + [V — w3, (12.5)
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Due to the variational representation of the solution u, we have (b— Au) T (u—vg) >0,
hence,

i — v B —vp) = (b — Av)T (u — wp)
=1(b—Aw) (u—wv) + T|u— vk||124

> Tomin U — vell5. (12.6)
This shows,

2 2 2 2 e 2
Vit1 — vkl < min [ llu — Vil — 2tTamin lw— Vil + Wk — Vkll3]-

The last expression indicates that choosing t = Tamin < 1 is appropriate. Estimate

(12.5) with this choice of # implies the desired one, (12.4),

2 2 2
Vir1 — Vellg < (Tomin)”[lu — vkl

T ’ 2

— 2Tamin(Vk — V&))" B(u — vg) + [V — Vil

< ¥k = Vil 5 = tmin Gk — V)" B(u = vi),
where we have used the estimate (12.6). Thus we proved the following estimate,
1 T
I Vi) = T (Vi) + - (—Temin (= Vi) B(Vk — Vk)).

Finally,

1
J (Vi) = J (V) + 5 (—Tamin) (u = v B — vi)

Olmln

=J(vk) — (b — Aw)" (= i) + [lu = vell)

T mln(

= J(vg) — Ty + vl Avy — uTAvk)

1 1
< J(vp) — Tzﬂ (bTu — bTvk — EuTAu + EVZAVk)

=<1_705min>J( )+ man( )
2
=o0J (Vi) + (1 —0)J ().

Therefore,
J (Vi) = J(w) = o(J (Vi) — J (w)).
The iterates are estimated as follows,
Vi —ul% = 2(J (Vi) — J (@) = (Au —b)" (v — w))
=2(J(vp) — J(w)
< 20" (J (vo) = J(w)). =
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12.1.2 A modified projection method
We present here a modification of Algorithm 12.1.1 proposed in [DJOS] that re-
sults in a better convergence rate estimate. Let B be a s.p.d. preconditioner for A
such that

avIBv <vlAv < v! Bv. (12.7)

Consider then the following algorithm.

Algorithm 12.1.2 (Modified Projection Iteration). Consider the original problem
1
J(v) = 3 viAV —tTv > min subjecttov € K. (12.8)

Givenvg € K, fork =0, 1, ..., until convergence, compute Vi1 by solving the
constrained minimization problem:

1
Jex) =T (0 + 5 lIx = Vill%_4 > min  subjecttox € K.

We have
1 2
Jk(x) = J(x) + 3 X — Villig_a
1 1
=3 x Ax — fTx + 5 (= vi) [ (B — A)(x — vp)
1 1
=5 x—vi) ' B(x—wv) + 7 x" Ax — fTx
1 1
-3 x! Ax — 3 v,{Avk —i—xTAvk
1 1
=5 x- vio T B(x — vp) —x'(f — Avg) — 5 vl Avy.
That is,
1 T T 1 7
Jr(x) = 3 X—=vi)' Bx—vg) +x" (Avp — f) — 7 v Avg (12.9)

is a quadratic functional with quadratic term that involves only B. Hence J; is compu-
tationally similar to the quadratic functional involved in the minimal distance problem
|lv — Px V| p = mingeg ||V — X|| p that defines the projection Pk.

Theorem 12.3. The following convergence result holds for the iterates computed by
Algorithm 12.1.2,

Jv) = IV < (1 =)' (J(vo) = T (VY)),



390 12 Quadratic Constrained Minimization Problems

where v* is the exact solution of (12.8) and o € (0, 1] is from the spectral equivalence
relation (12.7).

Proof. Using the convexity of K and that o € [0, 1] gives
J (V1) = J (V) < Tk (Vi) — J (V)
< min Jr(vk +1(v* —vg)) — J (V)
1€[0,1]
< k(v +a (v —vi) — J(v9).

Use the left-hand side of (12.7) and the identity (12.9) for x = v; + a(v* — v¢) to
arrive at the estimates

Je(Vi +a (v —vp) — J(vF)
2

“7 v = v BV = i) + (vi + (v —vo)) (Avg — )

IA Il
N R
~~
<
*
|
<
~
N
P\]
>
~~
<
*
|
<
~
N
+
S
~~
<
*
|
<
~
N
P\]
~
B
<
~
|
—
N—
+
<
~N
~
B
<
~
|
)
N

% v v T AV —vi) +a v — v  (Avg —£) + T (V) — J(v)
o
2
+avif—a vl Avi + J(vi) — J(v5)

((VHTAV + v Avi = 2vf AV¥) + o (V)T Avi — e (v)TE

- % T AV — o (v — % VIAVE + o VB4 T(vi) — T(vF)
= (1 —a) (J(vp) = J(v9)).
That is, we have
JVir) = J (V) = (1 —a) (J(vi) — J(VF)),

which is the desired result. O

12.2 Computable projections

The problem of computing the actions of projection Pgv for a given B, is again a
constrained minimization problem; namely,

1
EwTBw — (BV)"w — min, (12.10)

over w € K. Note that if B is a diagonal matrix diag(d;), d; > 0, and K =
{w:w; < g fori € I'}, for a given index set I, then the above minimization
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problem decouples and reduces to a number of one-dimensional quadratic constrained
minimization problems; namely,

1
> <§d,~wi2 — d,~v,~w,~) > min (12.11)
i
subject to {w; < g;} wherei € I'.
The latter one-dimensional problems are trivially solved; we have w; = v; for

indices outside I', and for i € I', either w; = v; if v; < g; orw; = g;.

12.3 Dual problem approach

The solution of the projection problem (12.10) for a general (nondiagonal) B may
be as difficult as the original problem. We may want to apply a projection method
(with a simpler matrix) to solve the constrained minimization problem (12.10),
for example, based on a (block-)diagonal preconditioner to B.

12.3.1 Dual problem formulation

There is one more difficulty with problem (12.10). Typically, for a general B defined
by an algorithm (such as multigrid) we do not have the actions of B on vectors
available, rather we have the inverse actions of B; thatis, B~ v is easily computable.
The dual method was used in [Sch98] to reformulate (12.10) to involve B~!.

Lemma 12.4. Given is the original problem,
l T _ T :
w’' Bw — (Bv)' w — min, (12.12)

subjecttow € K = {w; < g;, i € T'}. Then the following formulation is equivalent
to the original one, in the sense that the solution of the B-projection problem is given
by Ppv =v — Bilqu, where also,

IFVFZ[VOF“ 1{2\1"

is the trivial extension of vectors vr defined on I by zero in the rest of 2, and q solves
the following (dual) problem,

1 .
5qT(lp)TB—llpq—qT(lp)T(v— Irg) — min, (12.13)

subject to q > 0. Here, q and g are vectors defined only on T'.

Proof. The derivation of the dual quadratic minimization problem (12.13) is given
in what follows in full detail.
Consider the Lagrangian

Low, ») =J(w) — 2T (g — IF'w),



392 12 Quadratic Constrained Minimization Problems

of the following constrained minimization problem,
1
J(w) = EWTBW — b w > min,

subjecttow € K = {w; < g;, i € I'}. In our application b = Bv. Note that X is
defined only on I".

The (well-known) Karush—-Kuhn—Tucker (KKT) conditions (cf., e.g., [SW9I7]),
in the present setting, take the form:

1.

oL aJ(w)
0=—= + IrA=Bw—b+ IrA.
ow oW

2. g — IT'w > 0 (componentwise).
3. A > 0 (componentwise).
4. A(gi—w;)=0,iel.

We now rewrite the above conditions to involve only actions of B~
Let w = Irwr + wo with wo = 0 on T'; that is, IZwo = 0. Lety = —g + wr.
We have y < 0. Then the first condition takes the form

B(Ir(y +g) +wo) =b —IrA.

Thatis, after multiplying with IFT B~! and using the fact that IFT Ir = I and IFT wo =0
we end up with

y+g=I'B b~ 1f B~ Ira,
or equivalently,
B 'ra+y=I1B"'b—g. (12.14)

The second condition simply reads,

y <0 (componentwise). (12.15)
We also have,
A >0 (componentwise), (12.16)
and
Ay =0, i el (12.17)

Consider now the dual quadratic minimization problem
1
2

subject to the constraints q; > 0. Its Lagrangian reads,

£rq. w=Jq —u'q.

Jq) = = " IEB ' Irq — " IL(B™'b — Irg) > min,
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The corresponding Karush—Kuhn—Tucker conditions read:

1.
aL*  9J*(q) P T
0= = —u=IrB Irq— I (B 'b—1Irg) — u.
7q 7q n=Ir rq— I ( rg) — K
This is exactly Equation (12.14) with A = q and y = —p.
2. q > 0 (componentwise). This is exactly condition (12.16), A > 0, if A = q.
3. p > 0 (componentwise), which is inequality (12.15) with y = —pu.
4. w9 = 0,7 € I'. This is exactly condition (12.17) with A = q andy = —pu.

Thus problem (12.13) provides a solution q which givesw = B~ (b—Irq) = v—
B~!Irq as the solution to the original constrained minimization problem (12.12). O

We again stress the fact that solving the dual problem and recovering Ppv =
B~ (b — Itq) do not involve actions of B; only actions of B~! are required.

12.3.2 Reduced problem formulation

If we introduce the Schur complement Sz of B on I', that is, if

[« o« ]} e\r
B ‘[* (SB>—1L ro

then problem (12.13) can be reformulated in the following reduced form,
1 _ .
54" S5 ~'a—q" (UD)'v ~ ) > min, (12.18)

subject to @ > 0. This is a reduced problem and Sp has in general a better condition
number « (Sp) than the condition number « (B) of B. Typically, for matrices A coming
from second-order elliptic finite element equations, assuming that B is spectrally
equivalent to A, the behavior is, from O(h’z) conditioning for B, it is reduced to
(’)(h’l) for its Schur complement Sp. Here, i +— 0 is the mesh size. Then, we may
use the projection method with diagonal matrix for defining the projection to solve
the reduced problem (12.18). Based on Theorem 12.2, we get that problem (12.18)
can be solved in O(k (Sp)) iterations. The cost of each iteration is proportional to
the cost of one action of Sgl. To make the method efficient we must choose B such
that the actions of S;l are inexpensive to compute, for example, proportional to
IT| = O(h~9*!y where d = 2 or 3 is the dimension of €. One possibility is to
consider B~! defined as follows. Let VI be a subspace of V and V be a subspace
of V with vectors vanishing on I". Let /y and Zt be extensions of vectors from Vj
and Vr into vectors of full dimension. More specifically let /o be the trivial extension
with zero on I''; that is, let
o=[o]

} Q\T
y o
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In general Zr can be viewed as an interpolation (or rather extension) mapping.
Define the respective subspace matrices Ag = (IO)TAIO and Ar = (Ir)TAIr. Note
that V. = Vo + Vr may be an overlapping decomposition. To be specific in what
follows we introduce a “finite element” terminology. For so-called contact problems
in mechanics (cf., [HHNL]) I is considered to be part of the boundary of the domain
2 where the corresponding PDE is posed. We consider then Vr to be a proper coarse
subspace of V corresponding to a coarse mesh Ay gradually coarsened away from T
(and being not coarsened in a neighborhood of I'). That is, in particular, this implies
that ' C Npy. We assume that the “interpolation” mapping Zr is bounded in energy
in the sense that for a constant n > 1 we have

(Zrve)TAZrvr) <7 min 0(v0+Irvr)TA(Vo+Irvr), for all vr.

vo: Volny =
(12.19)
Note that above we also have vg = 0 on I" (because I' C Npg). In other words, by
defining

r_ 0]} Q\Nu
(RF) _|:I]} NHDIﬂ

the above norm boundedness (12.19) can be rewritten as
v (ZrRr)T AZrRr)v < n v! Av.

We now define B. Let By and Br be given preconditioners for Ag and Ar (e.g.,
corresponding MG methods for the spaces V¢ and V). Then, consider

. By' 0 T
B~ =1, Ir1| 70 gl | Uo, Trl' (12.20)
r

The inverse action of B requires actions of B, and B ! The Schur complement Sp
of B on I' is defined from

_ 01" _,To 0]" . 0
(Sm) 1=[,F] B 1[,J=[IF] (Ir) B ()" [,F].

i)

gets a vector defined on I' and extends it by zero in the rest of Q (the fine grid
mesh Ap,).

Here,

Remark 12.5. Based on our general two-level results in “additive” form (cf., Sec-
tion 3.2.8) it is straightforward to prove that B and A are spectrally equivalent with
bounds depending on the spectral equivalence bounds between Ag and By, the coarse
matrix Ar and its preconditioner Br (which may equal Ar), and the norm bound 7
from (12.19). The same holds, if we consider B! that has multiplicative form, as
defined next.
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Let By = Dy + Lo and BOT = Dy + Uy be given preconditioners to Ag such
that By + BOT — Ay is positive definite. This in particular means that Dg = D¢ and
UOT = L. The multiplicative version of B then reads,

_ —1 4T
B~' = [lo. Ir] |:I (Do +Uo)™ Iy AIF]
0 I
[P0+ Uo)~'(2Dg + Lo+ Uy — Ag)(Do + Lo)~' 0
0 Bgl
X |:_-,Z]Z:AIO(DO + LO)—I Ii| [107 IF] . (1221)

Note that in the applications we may have Dy = 0 and L] = Uy be two nonsym-
metric preconditioners to Ag. One example could be an L defined from a downward
(nonsymmetric) V-cycle multigrid applied to Ag. Then Uy will correspond to an
upward V-cycle multigrid with a smoother applied in reverse order at every level.
Alternatively, we may have Ly = Uy = 0 and hence Dy = Dg be a given positive
definite preconditioner to Ay.

The inverse actions of the multiplicative B are computed by the following algo-
rithm, which can be seen as one step of a product subspace iteration method.

Algorithm 12.3.1 (Multiplicative preconditioner). Introduce the subspace resid-
ual iteration matrices Eg = I — Aly(Dgy + Lo)*IIOT, Eo =1—Aly(Dy+ Lo)fTIOT,
and Er = I — AZrB;'TE.

Given v, we compute X = B~V in the following steps.

e Forward elimination:

1. Compute yo = (Do + Lo)’IIOTV.

2. Compute residual v — Alyyo, restrict it to Vr, and solve with Br; that is,
_ p—l4T

xr = Bp Iy (v — Alpyo)

= B'ZE (v — Alp(Do + Lo) ' I]'v)
= Br'ZE (1 — Alo(Do + Lo) ' 1T v
= By 'IL Egv.

So far, we have computed the solution yo, Xr of

_ 1

Brxr - [—IFT Alo(Do + Lo)~!

|:(Do + Lo)Y0:| (I):| Uo. Zr17v.

e Backward recurrence:
1. Solve for x¢ the equation

(Do + Lo)"x0 + I AZrxr = (2Do + Lo + L§ — Ao)yo.
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That is, compute
xo = —(Do + Lo)~ " I§ AZrxr + yo + (Do + Lo) ™" (Do + Lo — Ao)yo
= Yo+ (Do + Lo) "Iy (v — Aloyo) — (Do + Lo) ™" I§ AZrxr
= yo+ (Do +Lo) ™" Ig (v — A(loyo + Irxr)).
In this way, we have computed the expression

[XO] _ [(Do +Lo)~"(2Do + Lo+ L§ — Ao)yo — I AIer)]
Xr Xr .

The latter represents the product

o [1 —(Dg + Uo)lloTAIr]

0 1
o (Do + Up)~'(2Do + Lo + Uy — Ap)(Do + Lo)™! 0
0 B!
I 0 ;
x [—IFTAIO(DO + Lo)™! 1} o, Ir]'v.

Indeed, we have

_ —15T
L [(1) (Do + U(;) 1 Azr]

[P0+ U0 @Do + Lo + Up = A0)(Do + Lo) I v
Br'ZL (v — Aloy(Do + Lo)~' 1]'v)

B [1 —(Dg + Uo)lloTAIr]

0 1
o [(Po+Uo)~"(2Do + Lo + Uo — Ao)yo
Xr
[1 —(Do + Up)= 11T AZr ]
10 1 ]
y [(DO +U0) ™ (Do + Uo)xo + Iy AIm)}
Xr

(1 —(Do + Uop)~'1] AZr ] [xo + (Do + Uo)—IIOTAIer]
0 1 Xr

_[xo
=X

2. Compute the solution X = B~ v =[ly, Irlw = loxo + Zrxr. We have

x = IpXo + ZrXr
= Ioyo + Zrxr + Io(Do + Lo) T I] (v — A(loyo + Zrxr))
= Io(Do + Lo) " T 1l v+ EX (Ioyo + Zrxr)).
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The final residual equals
v—Ax= (I — AB v
= Eo(v — AUloyo + Irxr))
= Eo(v — Alo(Lo + Do) "' II'v — AZr By 'TL Eqv)
= Eo(I — AZrBr'ZE) Egv
= EoErEov.
That is, we have the product representation of the residual iteration matrix,

I — AB~! = EyErE,.

The projection algorithm: A summary

Here we present the overall projection algorithm to solve the original constrained
minimization problem (12.1) based on the spectrally equivalent preconditioner B
defined in (12.20).

Algorithm 12.3.2 (Composite projection method).

e Given current iterate vi € K, k =0, 1, ..., compute the following.

s Vi = vi + 1B~ (b — Avy) for a properly chosen iteration parameter t, that is,
(1/t)B — A positive semidefinite.

e Compute the next iterate Vi1 = PgVi, where the actions of Pg are computed by
solving the projection minimization problem in its dual form (12.13)or rather in its
reduced form (12.18). This is done by iterations again using a projection method
with a simple diagonal matrix Dr as a preconditioner for Sp. Alternatively, we
may use any other conventional method for solving constrained minimization
problems, because this is a problem of relatively small size.

12.4 A monotone two-grid scheme

To define a two-grid scheme we need a coarse space and a smoothing procedure. The
coarse space we consider satisfies an important (special) property. The smoothing
procedure is monotone (described in what follows).

Consider a coarse space V. C V and let P be an interpolation matrix that has the

form
w
p="]

The degrees of freedom x; corresponding to the constraint set i € I' are denoted
by C. To carry around both i and a degree of freedom x; helps to associate the
vectors v = (v;) with an actual finite element grid N}, = {x;}, corresponding to a
finite element discretization of a respective PDE. One main example of the quadratic
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constrained minimization problems we consider in the present chapter comes from
contact problems in mechanics.

The identity block of P defines a natural embedding of the coarse degrees of
freedom x;, into the fine degrees of freedom x;. We also assume that constrained
degrees of freedom x; € C (or equivalently i € I') are all present on the coarse grid.
This implies that

(Pve)r = velr. (12.22)

12.4.1 Projected Gauss—Seidel

We next describe the projected Gauss—Seidel method. Mathematically it can be de-
scribed as a sequence of one-dimensional minimization problems. Consider the func-
tional J(v). Given a current iterate v = (v;) which satisfies the constraints, we vary
only a single component v; (the remaining ones v;, j # i are kept fixed). This leads
to a scalar quadratic function ¢(v;) = J(v;e; + vY) where v0 = Z#i vje;, and {e;}
are the unit coordinate vectors. If i € I" then we have to satisfy the constraint v; < g;.
Thus a problem of finding the minimum of a quadratic function subject to a simple
inequality constraint is obtained. More specifically, with x = v;, a = eiT Ae; > 0,
b=el'(b— Av®),aconstantc = J(v0) = J (vO)T Av0 —b"v0 and d = g;, we have
to solve

1
o(x) = Eax2 —bx + ¢ — min
subject to x < d.

The solution is x = b/a if b/a < d, or x = d otherwise. The new iterate then is
v := vY 4 v;e; with v; = x. After a loop over all indices i we complete the projected
Gauss—Seidel cycle. This procedure used iteratively is referred to as the projected
Gauss—Seidel method. We can also develop block versions of this method or even
use overlapping blocks, by solving small-size constrained minimization problems
for every block. An important property of the projected Gauss—Seidel is that every
intermediate iterate decreases the functional, and hence after a complete cycle, we
have that J (v) < J(vititialy: that is, it is a monotone method.

12.4.2 Coarse-grid solution

Let v"~!, m > 1, be a current iterate for solving our fine-grid problem
1 T T . n
J(V)ZEV Av—Db' v min, veR", (12.23)
subject to the inequality constraints

v; <g; foralli eT.

Here T is a given subset of the index set {0, 1, 2,..., n — 1} and g = (g;) is a
given vector defined for indices in I'. Finally, A is a given symmetric positive definite
matrix.
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After performing a few steps of the projected Gauss—Seidel (or any other monotone

smoothing scheme) we end up with an intermediate iterate vr-1/2) = (vgnf(l/ 2))

m—(1/2)

which satisfies the constraints v, < gi,i € T', and we also have,

J(Vm—(l/Z)) S J(Vm_l).

The next iterate v is sought as v = vr=(/2) 4 Pcyc where yc is a coarse-
grid vector such that the resulting coarse-grid energy functional is minimized. More
specifically, because I' is a subset of the set of coarse-grid degrees of freedom, due
to (12.22), we can solve the following coarse-grid minimization problem.

Find y¢ such that

1
E(vm*“/z) + Pyc)T A2 4 pyc) — b (v =2 4 Pyc) > min (12.24)

subject to the constraints (yc); < g — Vf"f(l/z) fori eT.
Let Ac = PTAP and be = PT (b — Av"~(1/2) Then (12.24) is equivalent to
the following coarse quadratic constrained minimization problem,

1 .
Je(ye) = EygAcyc — bgyc — min
subject to the inequality constraints
(yo)i < g — (v 1/2); foralli e T\

The two-grid iteration method can be summarized as follows.

Algorithm 12.4.1 (Two-grid minimization method). Given an iterate v*~', com-
pute the next iterate v"" performing the following steps.

+  Step 1: Compute v"=(1/2) = ym=1 4yl L y2 4 ... 4 )7’ Hereyl, 1 <i <n, are
corrections spanned by the unit coordinate vectors e;, produced by the projected
Gauss—Seidel algorithm with initial approximation v~

o Step 2: Compute v = v~ /2 L Pyc, where yc € Ve and Ve is the coarse-
grid vector space. The coarse-grid correction yc solves the coarse quadratic
minimization problem,

1 .
Je(ye) = 5¥¢Acye = biye > min
subject to the inequality constraints
(yo)i < gi — (V"2 foralli eT.

The following main result holds.

Theorem 12.6. The Algorithm 12.4.1 provides a monotone scheme; that is, for any
two consecutive iterates, vV"~! and v", produced by the algorithm, we have

JV™) < J(v™h.
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Proof. Given the iterate v*~! and applying the projected Gauss—Seidel algorithm
in Step 1, we get a new intermediate iterate v ~(!/2) for which we have:

1. The new intermediate iterate satisfies the inequality constraints due to the projection
operation in the projected Gauss—Seidel algorithm:

vy, < g foralli €T. (12.25)

2. The value of the functional at the new intermediate iterate is less than the one at
the previous one because the projected Gauss—Seidel algorithm provides a monotone
scheme:

JV"A2y < gy,
At the next step we look for a correction yc € V¢ such that
v"=U/2 4 pyey < g foralli €T,
and
JO"A2 + Pye) < ST,

Simplifying the the expression gives,

1 1
Jov"=0/2 L pycy = 5(Vm—(l/z))TAvm—(l/z) n EYEPTAPYC

+yLPT Ay _pT (yn=(1/2) 4 pycy
= Jv" YD) 4 Je(yo). (12.26)

Itisclear thatitis equivalent to solve the coarse-grid constraint minimization problem,

1 .
Je(ye) = EygAcyc —blyc — min
subject to
o) < g — (V") foralli eT.

Note that here we use the fact that the constraints are exactly present on the coarse
level by our assumption on P, namely, that, (Pyc)|r = yc|r. It is clear then that if
we choose the correction yc = y¢' where y¢?" is the solution of the above constraint
minimization problem, we have that

T2 4 py®y < g1/, (12.27)

The latter is true because we may choose yc = 0 and satisfy the constraints due to
the inequality (12.25). We then have

Je(v") < Je(0) =0.
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Therefore from (12.26) we have Jc (') = J (v"~1/2 4 Py —J (v"=(/2)) which
implies (12.27). Thus from (12.4.2) and (12.27) because v = v"~(1/2 4 py?" the
proof is complete; that is, we have

J(vm) S J(vm—(1/2)) S J(Vm—l). O

12.5 A monotone FAS constrained minimization algorithm

Because we can treat problem (12.23) as a nonlinear one, we could attempt to solve it
by applying the classical full approximation scheme (or simply FAS) by Achi Brandt
(cf., [AB77], [BC83)).

Let {Ak}ﬁzo, {P;} be a MG hierarchy of matrices that satisfy Axy1 = PkT A Py
with Ag = A being the given fine-grid s.p.d. matrix that defines the original quadratic
functional J(v) = % v Av — bTv. Let Iy = I be the constraint sets at all levels;
that is, the main assumption is that the constraint set does not change from level to
level and hence that each Py is an identity on I' as assumed in (12.22). Let N} be
the kth-level set of degrees of freedom. We have Ny C Ny and for all k, ' C N.
Finally, let Vi be the kth-level coarse vector space.

A corresponding FAS algorithm in the present context takes the following form.

Algorithm 12.5.1 (FAS constrained minimization algorithm). Consider the prob-
lem (12.23) with by = b and g° = g given. Let { be the coarsest level.

(0) For k > 0 let v) € Vi be a current iterate at level k satisfying the constraints
V)i < (g5, i €T Let

1
Ji(y) = EyTAky —byy,

be the kth-level quadratic functional.

(1) If k < € apply vi > 1 projected Gauss—Seidel smoothing iterations with initial
iterate vg. Denote the resulting iterate obtained after a full cycle of projected
Gauss—Seidel by vi. Go to Step (3).

(2) Else (i.e., if k = £), then solve the corresponding constrained minimization prob-
lem exactly. Denote the resulting solution by vi. Setk := k — 1 and go to Step (4).

(3) Based on a coarse-grid constrained minimization problem correct the kth-level
iterate vi. Define gy 41 and by for the next level coarse-grid problem as follows.

— Setg"t! = gk = ... = g and choose as initial approximation at level k + 1,
0
Vir1 = VklNiy-
— Setbis1 = PkT (b — Apve) + Ak+1V2_H.
Setk :=k + 1 and go to Step (1).

(4) Update level k iterate vy,

ne 0
Vi =i+ Pr(Virt — Vig)-
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(5) Apply vy > 1 projected Gauss—Seidel iterations with initial iterate Vi. The result-
ing iterate is also denoted by vi. Setk := k — 1. Ifk > 0, go to Step (4), otherwise
one V-cycle is completed.

‘We can show that the above algorithm is well defined, that is, that all the intermediate
iterates in Algorithm 12.5.1 satisfy the appropriate constraints which is done in what
follows.

The resulting iterate vi after the application of the projected Gauss—Seidel algo-
rithm in Step 1 of Algorithm 12.5.1 satisfies the constraints (vg); < g5, i eT.
This is true due to the projection procedure in the projected Gauss—Seidel algorithm.

In Step 2 we again have that the resulting iterate satisfies the same constraints
because we use exact coarse-grid solution.

In Step 3 the constraint set does not change from level k to level k 4+ 1 (by
assumption). Thus, vg 11 satisfies the constraints because it is a restriction of v; and
the latter one satisfies the constraints.

In Step 4 we have to show that (v;*V); < (g");, i € I'. Indeed, due to the main
property of the interpolation matrix P = Py, (12.22),

new

(Vi) e = velp + (Pe(vierr = Vi)

= Vil + Vit lr = V|-
= Vk|r + Vit1lr — VkIr
= Vi+1lr

< gt = gk

In Step 5 the resulting iterate v, satisfies the appropriate constraints again due to
the properties of the projected Gauss—Seidel.
The following main fact easily follows from the construction of the FAS iterates.

Theorem 12.7. Algorithm 12.5.1 provides a monotone scheme.
Proof. It is sufficient to prove that
Je (Vi) < Je(vp).

Denote for brevity P = Py. Based on the definition of Ay41 = PT AP, Ji and Jk+1,
and by = PT (b — Arvi) + Ak+1vg 41> We can derive the identity,

Te(VE™) = Je (Ve + P (Vi1 = Vi)
= Lot P =) Ao+ Py —¥E4)
— )" (Vi + P(Vie1 — V1))
= Jk(vi) + %(Vk—H - V2+1)TAk+1(V2+1 — Vk+1)

— (bx — Aka)TP(Vk+1 - V2+1)
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= Ji(vi) + %(Vk+1)TAk+1Vk+l
- (PT (bx — Axvk) + Ak+1vg+1)TVk+1
+ %(VIQH)TA’CHVQH + (b — Aka)TP"gH
= T30 + Jip1 (Vis1) + 2 (vk+1) Arr1viy + (b — Awv) Py, .

We also have,

0 T.0
_Jk+1 (Vk+1) Vi+1 Ak+1vk+1 + (bk+1) Vi+1

NIHNI'—‘

—> 0"
—5 (Vi ) A1y + (PT (b — Acvi) + Ak+1"2+1)T"2+1

T

1
= §(V2+1 Ak1Vipr + (b — Aev) T PV .

The latter two identities imply the following main one,
Te(VEY) = JiVi) + Tkt (Vi) — Tt (Vi)

Now, having in mind that in Algorithm 12.5.1 the vector v reduces the func-
tional Jr41 (assumed by induction, true at the coarsest level, and because we use a
monotone smoother), that is,

Jiet1(Viy1) < Jk+1(V2+1),
we arrive at the final desired inequality,

Je (Vi) < Jie(v). o
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Generalized Conjugate Gradient Methods

In this chapter we summarize a general approach for solving a nonsymmetric and
possibly indefinite system of equations. We first present a general variational ap-
proach and then consider some special cases that lead to the most popular methods
of generalized conjugate gradient type.

A.1 A general variational setting for solving
nonsymmetric problems

A common approach to solve the nonsymmetric problem in question is to minimize
a certain norm of the current residual r = b — Ax; where X is a current kth-step
iterate, for k > 0. We assume an arbitrary initial iterate Xo. Given are two inner
products (-, -) and (-, -). Based on a current set of search vectors {dk}];>0, typically

a (-, -)-orthogonal system, we compute the next iterate X;+1 = X + Zf‘:() ai.k)d j
such that '

[rk+1ll = lIrx — AXg41]l = min
over the set of coefficients {a;k)}];.:o. The solution
(k)
%
o
o=
(k)
Y
solves the Gram system
(re, Ado)
(re, Adyp)
Ao = g = : : (A.1)
(re, Adg)

407
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The Gram matrix Ay has entries
(Ap)ji = (Adj, Ad)), j,1=0,..., k.

The next search vector dx4+; is computed from ry4+; and the current set of search
vectors {d}];.:o. Due to the minimization procedure, we notice that if ry41 7 O then

the the set of {d j}];:o U {r+1} is linearly independent. Hence, we can define

diy1 =141 — Z ﬂf-k) d; (A2)
j<k+1

such that dy4 are (-, -)-orthogonal to all previous d;. Note that we have the option
to choose the inner product (- , -). The choice A.2 is very natural (and most popular
in practice) because it implies that dy41 = Pi1(A)rg for a proper polynomial Py 1
of degree k + 1.

In the special case, most commonly used in practice,

a mathematically equivalent choice of the search vectors, seen from the equality

k
k
Iy =g — A E ajd; = —05,(c )Adk + P (A)ry,
J=0

and the fact that a,ﬁk) # 0, is the Arnoldi construction of dy1. Namely,

k
dip = Ade — Y pla;, (A4)
j=0

such that (dx41,d;) =0for j =0, ..., k. Then,

g _ (Ady, dj)
J (d;, dj)

In the special least squares choice of inner products (A.3), some simplifications occur
(cf. [EES83], [Ax87]). The major simplification is that the Gram matrix Ay becomes
diagonal. We also have proved by induction that (ry, Ad;) = 0 for j < k, hence
(re, Arg) = (re, Ad) + 3, BV (rx, Adj) = (1t Ary). Thus a§k> — 0 for

Jj < k,and

W (ri, Adyg) (ri, Arg)

C (Ady, Ady)  (Adg, Ady)

We easily see, fori < k,

(i, Ar) = (rp, Ad) + Y B, Ad)) =0,
j<k
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We formulate the resulting algorithm, sometimes referred to as the generalized con-
jugate gradient, least squares (or GCG-LS) method. In [EES83] it was named the
GCR (generalized conjugate residual) method, and in one of the most popular papers
[SS86], the GMRES method. In the latter paper, the Arnoldi process (A.4) was used
to compute the search directions and the inner products (- , -), (-, -) were not re-
lated as in (A.3). Thus the GMRES method requires solving systems (A.1) with the
Gram matrix Ay which differs from the one on the previous step k — 1 by its last
row and column. The latter allows for efficient solution of the system, for example,
by Householder orthogonal transformations as demonstrated in [Wal88]. The GCR
method with Arnoldi construction of search vectors was considered in [YJ80].

The presentation of the method based on two general inner products and the name
GCG-LS is due to Axelsson ([Ax87]).

We summarize the algorithm in the case (A.3).

Algorithm A.1.1 (GCG-LS algorithm). Given the system Ax = b and a general
inner product (- , -).

e Initiate: let Xo be arbitrary;, compute ro = b — Axo, and let dy = ry.
e Fork=0,..., until convergence, compute:

(i, Adg) (g, Arp) |
(Ady, Adg) — (Adg, Adg)’

2. Xp+1 = Xk — ady;
3. rgy1 =1 — aAdy.
e Compute the next search vector as

1. a=

k

(Ars1, Ad))
depr=rp — Y —— g,
k1 = Tkl jX::O (Ad;, Ad;)

The convergence of the method is seen from the minimization property of the
method. We have

k411l = min [[ry — cAdg]|

= min |(/ — AP (A))roll,
k

for any polynomial Py of degree k. In other words,

lte+1ll = min | Prt1(A)roll.
Pry1: Prey1(0)=1

In the case when A is symmetric in the (-, -) inner product substantial simplifica-
tion occurs because the Arnoldi process truncates; that is, it reduces to the Lanczos
algorithm

dit1 = Ady — ﬁ,ﬁ")dk - ﬁ;&’?lqu-
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Practical choices for (v, w) are w!'v and v/ A2w. The choice (v, w) = wl A%v

equals to (A-, A-) for (-, -) = ()T (). In that case the Gram matrix Ay is diagonal
and the respective system (A.1) has solution oc;k) = 0 for j < k. The only nonzero
coefficient oy = a,((k) is computed as in Algorithm A.1.1. The resulting method was
most probably first considered in [Ch78]. If we use the choice (v, w) = (v, w) =
w'v, we then end up with a tridiagonal Gram matrix A . The solution of systems with
Ak can efficiently be implemented based on orthogonal transformations as originally
proposed in [PS75]. The latter resulting method has the popular name MINRES. A

complete presentation of these and other CG-type methods is found in Saad [Sa03].

A.2 A quick CG guide

A.2.1 The CG algorithm

The popular CG (conjugate gradient) method is the fundamental tool for solving linear
systems of equations Ax = b with a s.p.d. matrix A. A computational form of the
algorithm is as follows.

Algorithm A.2.1 (CG algorithm). Given vectors xo (an initial approximation),
residual vector r = b — AXq, and an initial search direction p = r, and an aux-
iliary vector g = Ap, and also, given a tolerance € > 0 and a maximal number of
iterations allowed, max;.,, we perform the following steps.

(0) Setiter =0 and computer =b — Axg, p =r, and g = Ap.
Form the inner products 8,0 = r'r, andy = p'g = p’ Ap.
If So10 < 2b’b go to (ix).

(i)  Compute a step length,

Sold ri'r
o = = T
y  p Ap
(ii) Compute the next iterate,
X =X+ ap.

(iii) Compute the next residual r = b — AX as follows,
r:=r—ag=r—cAp.

(iv) Compute the norm square of the new residual v by forming the inner product
§=rlr.

(v)  Check for convergence, that is, if § < €2 8,14, or if the number of iterations iter
has reached the prescribed maximal value max;,. If one of these conditions is
satisfied, go to Step (ix). Otherwise, set iter := iter + 1 and go to Step (vi).

(vi) Compute B = §/38,14 and set 8,14 = 6.
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(vii) Form a new search direction
p:=r+ Bp.

(viii) Compute g = Ap and y = p’ g = p’ Ap, and then go to Step (i).
(ix) End.

A.2.2 Preconditioning

We can see that the problem Ax = b can be rewritten for any given s.p.d. matrix B
(called a preconditioner) as B~(1/2AB~(1/2(B1/2x) = B~U/2b. If we formally
apply the CG algorithm A.2.1 to the thus-transformed system and make appropriate
change of variables to get an algorithm in terms of the original unknowns, we end up
with the popular preconditioned CG (or PCG) algorithm below.

Algorithm A.2.2 (PCG algorithm). Given vectors Xo (an initial approximation),
residual vector r = b — Axq, preconditioned residual T = B~ 'r and an initial
search direction p =T, and an auxiliary vector g = Ap, and also, given a tolerance
€ > 0and a maximal number of iterations allowed, max;.r, we perform the following
steps.
(0)  Setiter = 0 and computer =b — Axo, T = B™'r, p =T, and g = Ap.

Form the inner products 8,9 = v T and y = p’ g = p” Ap.

If 8o1a < €2bT B=1b go to (ix).
(i)  Compute a step length

Sold r’'F
o = = T
y P Ap
(ii) Compute the next iterate
X =X+ ap.

(iii) Compute the next residual r = b — AX as follows,
r:=r—oag=r—aAp.
(p) Preconditioning step: compute
¥=B'r.

(iv) Compute the preconditioned norm square of the new residual r by forming the
inner product § = 't =r” B~ 'r.

(v)  Check for convergence, that is, if § < €2 8,14, or if the number of iterations iter
has reached the prescribed maximal value max;,. If one of these conditions is
satisfied, go to Step (ix). Otherwise set iter := iter + 1 and go to Step (vi).

(vi) Compute B = §/38,14 and set 8,14 = 6.
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(vii) Form a new search direction
p:=T+ 8p.

(viii) Compute g = Ap and y = p’ g = p! Ap, and then go to Step (i).
(ix) End.

If we compare both algorithms, A.2.1 and A.2.2, they differ by Step (p) in the
latter, where we have to apply the preconditioner in order to compute the precondi-
tioned residual. They also differ in the initial step (0), where in Algorithm A.2.2 we
need one more inverse action of the preconditioner B. In terms of storage, the PCG
algorithm A.2.2 requires one more vector to store the preconditioned residual.

A.2.3 Best polynomial approximation property of CG

The CG exploits a number of properties which make it the efficient and popular
method it is, among which is its minimization property of the energy norm of the
error in a space spanned by powers of the matrix A times the initial error.

Proposition A.1. The CG method has the following main property. Let Xi be the
kth iterate and e, = A~'b — x; be the corresponding error. We have, defining
IVila = vV A1/,

lexlla < Hg(ﬂ l pr(A)eolla,

where the minimum is taken over all polynomials pr = pi (t) of degree k normalized
at the origin; that is, px(0) = 1.

For a proof, see any appropriate text on numerical methods, or [H94], for example.
The latter error estimate has the property thatif we replace A with B=(1/2AB=(1/2)|
and e, := BY2e;, we obtain,

lexlla = min I pe (B~ AB~(1/2)eq 4.

That is, the norm of the error does not change but the argument of the polynomial py
does; it is the preconditioned matrix B~1/2 A B~(1/2) which may have a much more
favorable spectrum than A for proper choice of the preconditioner B.

A.2.4 A decay rate estimate for A~!

Here we present a result originally proved in [DMS84] (already mentioned in Sec-
tion 6.12).
Let A be s.p.d. with spectrum contained in [e, 8] C R™.
The result in question is based on two observations.
First observation. Let B = (b;;) be any matrix. Then for any vector norm ||.||
such that ||e;|| = 1 where e; is the ith unit coordinate vector, then

bijl < |IBI|.

This follows from b;; = el.TBej < |IBlllleille;ll = I B
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|bjjl = —inf sup |1 —Apr(M)] =
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Second observation. Let B = A~ and let |.|| be defined for any v = (v;) € R"
as v = vliv = ; vi2; that is, ||.|| is the standard Euclidean vector norm.
Obviously, |le;|| = 1.

Then, for any polynomial p; of degree k > 0, consider the matrix B — py(A). For
any entry b;; of B = A~! with indices (i, j) outside the nonzero sparsity pattern
of pr(A), we have (pi(A));; = 0 and hence

bijl < 1B — pe(A) | = 1A = pe(A) | < sup 271 = el
r€la, B]

Note that we have the flexibility to choose the coefficients of the polynomial py
(because this will not change the sparsity pattern of px(A)). Therefore,

byl <inf sup A7 — pe(W)I.
Pk yela, B]

Thus, the following simple upper bound holds

2qk+l

@ Pk el ] o 1+ q2k+D’

q:

S5
+ |1
R|I™

In the last estimate we use

i (<2

pr:l—ipp(t) = ————F,
T+ (Z%ﬁ)

where Tjy1 is the well-known Chebyshev polynomial of degree k + 1.

In conclusion, if A is well conditioned (i.e., k = B/« is a nice number) and

(i, j) is away from the sparsity pattern of A, say at distance k, for large k the entry
by = (A_l),j ~ g**1: that is, its value decays geometrically, with k > oo.
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Properties of Finite Element Matrices.
Further Details

This chapter summarizes some additional properties of finite element matrices arising
in the finite element discretization of second-order elliptic PDEs. The topics covered
include:

* Piecewise linear Lagrangian basis functions; element stiffness matrices and global
matrix conditioning; mass matrices and equivalent Ly-norms. Girding inequality,
duality argument, Lj-error estimates, and weak approximation property. This
material, in particular, supplements Chapter 8.

* A semilinear second-order elliptic PDE (supplements Chapter 11).

* Mixed finite elements for second-order elliptic PDEs; the space H (div), and the
related “inf—sup” condition. The (computable) Fortin projection. This material,
in particular, supplements Chapter 9.

e Nonconforming finite elements and Stokes problem (supplements part of
Chapter 9).

e Maxwell equations and H (curl)-problems (can be viewed as an addition to
Section 7.11).

B.1 Piecewise linear finite elements

Consider the following second-order elliptic operator

d d
0 ou ou
Lu = _Z 0x, (Zar,s(x)a—xS> + E bi(X)a—xi +c(X)u.
1 i=1

r=1 s=

Here, the coefficient matrix A(x) = {a;, j(x)};{ j=1 is assumed symmetric positive
definite uniformly in x € 2 where Q is a plane polygon (d = 2) or a 3D polytope
(d = 3). The vector field b = (b; (x))?z | and the low-order term coefficient ¢ = c¢(x)
are also given bounded measurable functions in 2. We associate with £ the following
boundary value problem posed variationally. For a given function f € L2(£2), find a

415
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weak solution u, that is, u € Ly(2), du/dx; € L2(2), such that for any sufficiently
smooth function ¢, we have

d d
ou Jp au
, = E P i—, — E bi — , = (f, ¢). B.1
au, ¢) = <at,j 9% 3xj> + <,~_1 laxi +cu ‘P) (f, 9 (B.1

We use the common notation (., .) for the L (€2)-inner product. The standard L, (£2)
norm is denoted by ||.|lo = +/(. .). Here, u and ¢ are assumed vanishing on 9. The
corresponding space of functions is the well-known Sobolev space HO1 (£2). The norm
lvl1 forany v € H'(2) is defined as [[v]|? = [[vl|3 4+ %, [|du/dx;|3. For functions
that vanish on 9€2 the following seminorm gives an equivalent norm

d

=)

i=1

au |?

ax;

0

Inhomogeneous Dirichlet boundary conditions are similarly treated. We first find
afunction ug (explicitly) that satisfies the boundary conditions and then the difference
u — ug will satisfy the homogeneous ones. This is easily achievable on a discrete level
(by approximating the boundary data to belong to the discrete space).

The finite element method of interest refers to the following Ritz—Galerkin
procedure. We construct a discrete (i.e., finite-dimensional) space V = V;, where
the parameter 4 — 0 and then V approximates the continuous (infinite-dimensional)
space H(} (£2). The functions in V are simple piecewise polynomials, that is why they
admit certain approximation properties. More specifically, let {t} be a set of simple-
shaped polygons (or polytopes in 3D), called elements, which provide a nonover-
lapping partition of 2. There is a requirement that every two elements either share
exactly a single common vertex, or a single common face (or a single common edge
in 3D) or their intersection is empty. With this property the set of elements 7 = {t} is
called the triangulation of 2. Then 4 is typically referred to the maximal diameter of
7 when 7 runs over the elements in 7. The functions v € V restricted to any element
T are polynomials of a given fixed degree p. For the class of problems we consider,
the functions in V should belong to H'(2). This is guaranteed if we can construct V
such that for any v € V the formula for integration by parts is valid. Namely, for any
two neighboring elements 71 and 7 sharing a common face, and any smooth function
¢ vanishing outside 71 U 15, we have

0 0
(—v, w) =—<v, —¢> + f [v] ¢ n; do.
ax,- ax,-

At NAT

Here [v] stands for the jump of v across the common face dt; N dtp and n; is the ith
component of a unit vector n normal to that face. That is, in order to have the formula
of integration by parts valid we must ensure that [v] = 0. This imposes continuity of
the finite element functions v € V.
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Lagrangian piecewise linear basis

From now on, we consider the model 2D case and triangular elements t. The extension
to 3D is straightforward. A simple way to construct V being the space of piecewise
linear continuous functions is to construct a basis for V. Let {x; } be the set of vertices
of all triangles 7. Introduce also the (geometrical) coordinates (x;, y;) of the vertex
x;. For any element 7 consider its three vertices X;;, X;,, and X;, with respective
coordinates (x;,, y;;), s = 1,2, 3. For each i, we define a basis function ¢;, = ¢;,
(x, y) locally, for now only on the element 7, as the solution of the following linear
equation

X y i
Xiy  Yip Oiy, s
Xiy  Yiy Sy, i
Xiy iy Sy, i

(B.2)

—
I
o

Here, 8, , = 0if g # r and 1 otherwise. Itis clear that ¢; (x;,, yi,) = ;5. Simply let
x =x;, and y = y;, in (B.2). Then ¢;, = §;,, i, solves (B.2) because the determinant
has two identical rows then. It is also clear that ¢;_ is a linear function of the form,
i i,
(pix = aS('x - xi.y) + bb(y - )’ix) + 11 as = 8—l and bs == 8; . (B3)

X

Itis also trivial to see that ¢;; being defined on all elements that share vertex x;; is
actually continuous across the element boundaries. This is the case because on every
common edge of two such elements ¢;, it is uniquely defined as a linear function
(effectively of one variable along that edge) that takes value one at vertex x;, and
vanishes at the other endpoint of that edge. Because ¢;, vanishes on the boundary
of U{t : X, is a vertex of 7}, ¢;, can be extended by zero in the rest of €2 and still
be continuous. The set of functions ¢;, is easily seen to be linearly independent and
span the space of continuous piecewise linear functions V. If we want to satisfy
homogeneous Dirichlet boundary conditions, we simply remove the functions ¢;, for
nodes x;; € 92 from the basis.

We can easily compute the partial derivatives ay and by of the basis function in
(B.2). We have

dyi,
1 o — 0
dx agi | X i 1 Yir i 1
0= xi Yy i i 1 =8—S Xip Yo 1 |+| v, 8 1], (B4
Xiy  Vip Oip iy 1 ol x ovi 1 Vi 8isi, 1
Xiy  Yis Oig iy 1
and
0Q;.
o 1 oy
ay a(pl Xiy Vi 1 Xiy 8!1 i 1
0=1 xi; Yy 5,‘1,,'5 1 28—S Xiy  Yip 1 |- Xiy 8i2,ix 1 (B.5)
Xiy  Yip Oipiy 1 Yol xiy vy 1 Xy 8iy,i, 1
Xiy  Yis Oig iy 1
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That is, the basis function ¢;, takes the form (see (B.3)),

i Gipip 1 Xip 8,y 1
Yio i iy 1 Xiy 8iy iy 1
o (x,y) =1— 128 % 1 (x —x;) 4 L0 Os.is (v — yi.). (B.6)
Xiy Vi 1 Xiy Vi 1
Xip Yiy 1 Xip Yir
Xis Vi 1 Xis Vi3

We finally note that the determinant

Xiy Yiy 1
Xiy  Yip 1
Xiy Vi3 1

is nonzero if the nodes {x;, }fz | form a nondegenerated triangle.

Again, we note that the above construction is general and can be applied in 3D
as well. For basis functions on tetrahedral elements, we will end up with 4-by-4
determinants in place of (B.2).

In what follows, we derive an explicit expression (see (B.7)) for the three-by-three
element matrix A; computed from the Laplace bilinear form restricted to a general
triangle 7; that is, A; = (/, . Vi, - Vi dx);”szl. Consider the following triangle
7 with vertices (0, 0), (0, 1) and (X, Y). For a general triangle 7, we can use the

transformation
X Xi\ x
= + (xi, — X —_1-
M [yn] (i = %) Q[y]

Here Q is a rotation, that is, an orthogonal matrix Q7 Q = I. Then the basis functions
on t are given by ¢;, (X) = @, ((1/(x;, —x;,)) 0T (x— X;,)) where 9, (x),r =1,2,3
are the Lagrangian basis functions associated with the vertices of the “reference”
triangle T. The respective element integrals are related as follows,

/V% Vi dxdy = / Vg, - Vo, dxdy.

T T

We use here the fact that Q is orthogonal. In other words, the element matrices for the
2D Poisson equation do not change if the triangle is translated, rotated, and replaced by
a geometrically similar one. Thus, without loss of generality, we can compute the ele-
ment matrices for the triangle with vertices (x;;, y;;) = (0, 0), (xi,, yi,) = (0, 1) and
(xi3, Yi;) = (X, Y).Letthe angles of 7 associated with the vertices (0, 0) and (0, 1) be
o and B. Then, X = cota/(cota+cot B) and Y = 1/(cot+cot ). Based on the ex-
pressions for the derivativesof ¢; , s = 1, 2, 3, given by (B.4)and (B.5), we readily get

—1 1
0
v¢i1=[—1+x] wiz:[—x}, and Vg0i3=|:1i|.
X -4 .

Y Y

Then, because the gradients are constant vectors, we have fr Vi, - Vo dxdy =
|t| Vi, - Vi, with |t] = (sinasinf)/(2sin(e + B)) being the area of t.
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The resulting 3-by-3 element matrix equals

—1+X\? 1-XX 1-X
1 —1 —
+( Y ) + Y2 Y2
2
A =T X(1-X) X X
T 7| —1+T 1+W _ﬁ
1-X X 1
T y2 T y2 Y2
We first notice that
k4| sin & sin 8

7 = m(cota +COt,3) = —

Also, we have
X X% +v? X cot?a + 1
—=cot¢ and ——=X—*+Y= ——— —— =cota + coty,
Y Y Y cota + cot B
where y = m — o — B is the third angle of 7 (at the vertex (X, Y)). The latter follows
from the well-known identity
cota cot B+ cotacoty +cotBcoty = 1.

Thus, we end up with the following expression for A,

cot B +coty —coty —cotf
A = 3 —coty coty + coto —cota . B.7)
—cot B —cota cota + cot B

Element matrices and assembling

Once having a basis {¢;}, we can derive the discrete system for the finite element
solution of (B.1). Namely, we seek u;, = Zi un(x;)e; € V such that

a(up, ) = (f, ¢) forallp € V.

It is sufficient above to have ¢ run over the basis {¢;} of V. Upon expanding, we get

/ mek)Za”(x) i ‘”’+Zbr<x> Lo+ e | dx

o LxeN rs=1

= (fv (pl)

Splitting the integral on €2 as a sum over T € 7, we get

aun o= 3 wxo) fZa”(mz‘;’k AL

T:X;ET XLET T Is= 1

d
+ / > b (05 dx + / c(X)prgi dx
T r d

T

= (fv Qol)
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For general coefficients a, ((x), b,(x), and c(x) a suitable approximation is to
assume that they are constants (generally, different) on every element t. That is,
we assume a, s(X) = a,5(X7), b (X) =~ b, (X;), and ¢(X) >~ c(x;) foranode x; € .
Other (more accurate) approximations are also possible. Then the discrete bilinear
form takes the (approximate) form

2
0@y 0
atun 0= 3 Y wnls0) a”(xf)f Sk dx
T:X;ET X} €T r,s=1
dor
+Zbr(xf)/ %(pi dx +C(Xr)/¢k¢i dx
r T o T

=/, ¢
~ 3 f(xr)/so, dx.

T:X;ET

Introduce now the three-by-three element matrices

dpy 0
A = ar v(xr)f Pk §01 s
s=1

ax, Bxb
¢ Xk, X;ET

Zbr(xf)/ —<pz dx :

Xk, X;ET

B,

Cr =c(x¢) / i dx
T Xk, Xi €T
Note that B; is nonsymmetric and we should take care when computing its entries

(otherwise we may end up computing B! instead). Because the derivatives of the basis
functions are constant on 7, some simplification occurs. We have

dpy 0
Ar — ‘pk 8§01 ’
Xs
rs=1 Xk, X;ET
Ik
Be=| Y brixo)o— [ gidx :
" ' T Xk, Xi €T

Cr =c(x¢) f‘pk¢i dx

T Xk, Xi €T



B.1 Piecewise linear finite elements 421

Here (and in what follows), |t| stands for the area of 7. Because |t| = O(h2) and
Qi /0x, = O(h™1), it is clear then that the entries of A, are order O(1), the entries
of B; are O(h), and the entries of C; are O(h?).

The global matrix is the sum of three matrices A, B, and C, which are assembled
from the respective element matrices in the following sense. Let v, € R? be the re-
striction of v to T; that is, v; = (v(X;))x,er. Then, “assembly” refers to the following
representation of the global quadratic form as a sum of local quadratic forms,

viAw = ZVZATWT,
T

T T
v Bw = ZVT B:w;,

T

vicw = ZVZCTWT.
T

The global (or assembled) matrix is called a stiffness matrix, and the element matrices
are sometimes called element stiffness matrices.

Introducing the vector of unknowns u = (u, (Xk))x, N> and the right-hand side
vector

f=(wen:  fim X 1o [ dx
T:X;E€ET T
we end up with the following linear systems of equations,

(A+ B+ Cu=H{.

The element matrices that form the lower-order term matrix C,

M, = /§0k§0i dx >

T Xk, X; ET

are referred to as element mass matrices, and they play an important role in analyzing
the conditioning of the global stiffness matrix. We have the following explicit form
of M,

201 1
7l

M= |12
207 1 2

We notice that M is equivalent to D; = (|t|/3)! in the sense that for any vector v,
we have

1
1 VZDTVT < VZMTVT < VZDTVT.
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Let D be the diagonal matrix assembled from the element (diagonal) matrices D, and
M be the assembled mass matrix. Then, we also have the global equivalence result

1
1 vl Dv < v Mv < vl Dv.

Note that v Mv = (v, v) = ||v||(2), where v = ) v;¢; is the finite element func-
tion that corresponds to the coefficient vector v. Finally assume that the triangulation
{r} is quasiuniform in the sense that for two positive constants v and u,

vh? < |t| < pu W%
Then, vI Dv = ZT |‘L'|VZVT < ,uhzmovTv, where mg > 1 is the maximal number

of elements that share a common vertex. Similarly vIDv > v h2vTv. That is, the
following estimate holds,

h2vTy
> .

dumg >
RO = STy =

We often use the inner product (v, w)g = wl' Mv = (v, w). The above estimates
show that the vector inner product w’'v and the one generated by the mass matrix,
(W, V)o, are equivalent up to a scaling factor proportional to 2. In 3D a similar
result holds; the scaling factor then is h3.

Matrix conditioning

Assume for the time being that B = C = 0. The conditioning of the stiffness matrix
A is studied in what follows. Because we have assumed that the coefficient matrix
AX) = {ars (x)}fys=1 is s.p.d., uniformly w.r.t. X, there are two constants p, and v,
such that forall x € 7,

2

Te < Y ans(0&E < g, forall € € R,

This estimate immediately implies that for the matrix

a‘pk 8‘pl
A0 _ / ’
t Z Xy Bx,

Xk, X; €T

the following spectral equivalence relations hold,
Ve v{AS”v, < VZATVT < Ut VZA&O)VT,
and after summation over T € 7, we arrive at the final estimate,

min v viAOy < vl Ay < max ¢ viAOy,
T T
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Here A© is the matrix obtained by assembling the element matrices A&O), that is,
corresponding to the Laplace operator £L = —A.

We would like to compute an estimate of 0(A) > ||A|l sup, VTv/||V||(2). Because
|A|l = O(1) (because the entries of A are O(1) and A is sparse) it is sufficient to
find a good estimate of sup, v/ v/ ||V||(2). The latter, as we already proved, is of order
O(h~?). That s, for finite element matrices for second order elliptic PDEs discretized
on quasiuniform triangulations, we have

v Av vy
o(A) = sup ~ [|A]| sup —

~ ~Oh™?).
v IvIg v v

We can also show that miny v/ Av/||v]|2 = O(1). This is seen from the Friedrich’s
inequality valid for any function v € H,) (£2)

w2 < Cr / Vol dx.
Q

In conclusion, the following main result has been proved.

Proposition B.1. For finite element matrices A coming from second-order elliptic
PDE: s discretized on quasiuniform triangulations, we have Cond(A) = O(h™2). This
estimate used for the Laplace operator is sometimes referred to the following “inverse
inequality” valid for allv € V,

|3 = / V2 dx =vI AQv < ch=2vT Mv = Ch=2(v, v)o = Ch2|v]|3.
Q

The familiar Gérding inequality is immediately seen for a general (nonsymmetric and
possibly indefinite) operator £ and respective stiffness matrix

1/2

_ 1/2 1/2
VI(A+B+OW = v Av—co V3= IbT A~ b |2 (V] Acve) (VI Move) 2.
T

Here, we used the representation

wl B.v, = /(bT(X)VU)w dx
= /(A‘<1/2>b)T(A1/2vU)w dx

< f(bTA_lb)1/2((VU)TA(X)VU)1/2|w| dx

T

< max (b" A~ (0b(x))!/? / Vo)l Ax) Vo) 2wl dx-

T
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Furthermore, we have

1 1
T T 20T 12
w. Bv, < o max b (v; Arve) '~ (Wy Mowy)

< & (VTTATVf)l/Z(WTTMTWf)l/z.

We have assumed that
1
——max [bX)[| < do.
VU X€T

Then the Girding inequality takes the form

VIA+B+ OV Av—co VI3 =80 Y (v Acve) P (v Move) V2
T

> vl Av — o |v[I§ — So(v" Av)'|Ivllo
Cr
T
>v' Av — _
- (CO ming /v
It is clear that we can set §o = 0 if b = 0. Also, we can choose ¢g = 0 if ¢(x) > 0.
A similar estimate holds from above

+ 80> (v" Av) v llo. (B.8)

wi(A+ B+ C)v <wh Av + o |VIollwllo + So(v" AV)/?lwllo

C
—wlAv 4 (50 += &7 AV 2wl

F
ing /v CO)
Combining both estimates show, with o = &g + co(+/Cr/(min; ,/v7)), that

wl(B+C)yv <o (v AV |lwllo. (B.9)

L;-error estimates

The following error estimate has been proved in Schatz and Wang [SW96].

Theorem B.2. For every € > 0 there is a mesh-size ho = ho(€) such that for every
finer mesh-size h < hg and corresponding f.e. space Vy, C Hé (), ifup, € Vy and
u e Hé (2) are such that

au—up, ¢) =0, forallp € Vy,
then the following error bound holds,

1/2
lu —unllo < €% lu — upl;.

Based on this result, given a fixed small €, if we select a (fixed) coarse mesh-size H
such that H < hg(€) and assuming that Vi C Vj, (i.e., 7y is a refinement of 7g), if
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alu—uy, ¢) =0, forall p € Vg, we would then have a(u;, —up, ¢) = 0 for all
¢ € Vg, and hence

lug —unllo < €% ug — uplh. (B.10)

For now, we do not discuss the uniqueness of the solution u, of the finite element
problem of our main interest; namely, for a given f € L2(2) find uj, € Vj, such that

a(up, ¢) = (f, ¢), forallg € V. (B.11)

We prove later, that (B.11) is actually uniquely solvable for a sufficiently small
mesh A (see further Lemma B.5).

The above general Ljy-error estimate implies the following main perturbation
result.

Theorem B.3. Given € > 0. Let ho(€) be the fixed mesh-size for which Theorem B.2
holds. Consider a coarse f.e. space Vy with a fixed H such that H < hq(€). Finally,
let Vi, be any f.e. space such that Vg C Vy. Then, the vectors W in the linear space

OT(A+B+C)w=0 forall 6 being the fine-grid coefficient vector of a
0 € Vy,

and arbitrary v, satisfy the following perturbation estimate
vI(B 4+ C)w <o V/Ce vV AV)2(w! Aw)!/2.

Proof. To prove the estimate, we notice that 6 T(A + B+ C)w=~0forall® € Vg,
or using finite element notation a(w, 6) = 0, forall® € Vg, implies |w|o =
lwllo < €2 lwll; = €72 (W AOw)1/2 < (Ce)1/? (Wl Aw)!/2, € = 1/ min, v;.
The rest follows from the Gérding inequality (B.9). O

Because the adjoint operator of £ (for functions in HO1 (2)) equals

E*uz—Xd: 0 Xd:a (x)a—u —Xd:b~(x)a—u+(c(x)—divb)u
0x A e 0Xg P ! 0x; ’

r=1 r s=1

a dual result similar to that in Theorem B.3 holds, namely, we have the following.

Theorem B.4. Givenis e > 0. Let ho(€) be the fixed mesh-size for which Theorem B.2
holds. Consider a coarse f.e. space Vy with a fixed H such that H < hq(€). Finally,
let Vi, be any f.e. space such that Vi C Vy. Then, the vectors W in the linear space

wl(A+ B+ C)d =0 forall @ being the fine-grid coefficient vector of a
0 e Vg,

and arbitrary v, satisfy the perturbation estimate
vI (BT + CO)w=wI' (B +C)v < 0 V/Ce (v AV)'/2(w! Aw)!/2,

Here, we assume that the vector function b = b(X) is sufficiently smooth (i.e., its
divergence exists and is bounded).

Theorems B.3 and B.4 verify the main assumption needed in Chapter 8.
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Duality argument

Here, we consider the bilinear form a(., .) corresponding to the operator £, as well
as the adjoint operator £* for functions in HO1 (£2). We assume that they are uniquely
invertible for functions f € L, (£2). This is the case because the lower-order terms
in L and L* containing the coefficients b(x) and ¢(x) define compact operators for
functions in HO1 (£2). Moreover, if we assume uniqueness, that is,

a(v, ) =0, forallg € H}(Q) impliesv =0,
then the following “inf—sup” estimate holds (cf. [BPL]):

a(v, w)

lvlli =€ sup
weH(}(Q) lwll

That is, uniqueness implies the a priori estimate,

lullh < Cv/CF |l fllo,

for the solution u € HO1 (€2) of the variationally posed problem a(u, ¢) = (f, ¢)
for all ¢ € Hé (€2). Introduce now the Sobolev space H 2(Q). This is the space of
functions in L, (€2) that have all their derivatives up to order two also belonging to
L>(2). The norm in H?(), further denoted by |. |2, is by definition the square root
of the sum of the squares of the L-norms of the function and its derivatives (up to
order two). Assume that the adjoint problem, for any f € L>(£2), has a solution w,

Lw = f, (B.12)
which satisfies the (full) regularity estimate,

lwll2 = Cll fllo-

The regularity is determined by the principal elliptic part of the operators £ (and £*)
if the coefficients b; (x) and co(x) are sufficiently smooth. For smooth coefficients
ar s(x), and domains €2 being convex polygons such regularity estimates are known
in the literature.

The regularity estimate, combined with the “duality argument” (due to Aubin and
Nitsche) gives the following well-known Lj-estimate for the finite element solution
up € Vy given by

alu —up, ¢) =0, forall p € Vj.

Consider problem (B.12) with f = u —uy. We then have, for any ¢, € Vj,, a(u —up,
¢n) = 0. Therefore,
(fs f)=alu—up, w)
=a( —up, w—ep)
< Cllu —uplillw —enli.



B.1 Piecewise linear finite elements 427

Then because ¢; € V), is arbitrary we can get |lw — ¢p||1 < Ch||lw]|2 and using the
regularity estimate, we finally arrive at

I£1I5 < Cllu — unlliChllwllz < Chllw — unlit]l f lo-
That is, we have (f = u — uj,) the desired error bound
lu —unllo < Chllu —un- (B.13)

Based on the same argument as above we can compare two finite element solutions
uy € Vyanduy € Vg, where Vg C Vj,. We have

lug —upllo < CHllug — upll1. (B.14)

We have not yet shown that the discrete problem has a unique solution uy for suffi-
ciently small 4. It is clear that the discrete problem, at worst for a zero r.h.s., f =0,
may have a nonzero solution (because the number of equations equals the number of
unknowns). If f = 0 then the continuous solution is ¥ = 0 and a(u,, ¢) = 0 for
all ¢ € Vj. Based on the Gérding inequality, used for u — u;, and the general error
estimate |lu — up|lo < C/€ |lu — up||1 (or in the presence of full regularity, we can
lete = hz), we arrive at the coercivity estimate, for any 7 < ho = ho(€),

al —up, u—up) > (minu, s ﬁ) e — upl). (B.15)
T

This coercivity estimate immediately implies, because u = 0 and a(u;, up) = 0,
that 0 > (min; v; — o C./€) ||uh||%, and if € is sufficiently small, we must have
up = 0. That is, we have the following result.

Lemma B.5. The discrete problem (B.11) is uniquely solvable if h is sufficiently small.

Based on the coercivity estimate (B.15) and the boundedness of the bilinear form,
we also get, for any ¢ € V),

2 .
Clu—upll]y <a(w—up, u—up) =au—up, u—@) < Cllu—upl lg lu—oll.
peV)

That is, we proved the following result.

Lemma B.6. If the mesh-size is sufficiently small, under the full regularity assump-
tion, the following main error estimate holds

Rl = unllo + llu — unll < Cwig lu =@l < Ch llull2 < Ch || fllo- (B.16)
h

Theorem B.7. Consider the matrix L, = A + B + C and a coarse version of it Ly
obtained by finite element discretization of the problem a(u, ¢) = (f, ¢), ¢ €
HO1 (R2), corresponding to two finite element spaces V, and Vg where Vg C V).
Let P be the interpolation matrix that relates the coefficient vector v. of a coarse
Sfunction vg € Vg expanded in terms of the coarse (Lagrangian) basis, and its
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coefficient vector v corresponding to the expansion of vy € V), in terms of the fine-
grid Lagrangian basis of Vy,; that is, let v .= Pv,.. Consider then the coarse-grid
correction matrix I — 7 = I — P(Ly)~' PT L. It appears naturally, if we compare
the solutions u and uy of the problems Lyuy, = £, and Lyuy = PTt,. We have
w, — Puy = w, — PL'PTt, = w, — PL;'PTLyu, = (I — m)wy,. Then the
following estimate holds

1/2
I — mwsllo = lluy — Pugllo < Ce'/? (uf Apuy)'/?.

Under the assumption of full regularity of problem (B.12), we can let € = H* and
hence, have the estimate

1/2
I — myupllo = lluy — Pugllo < CH (ul Apuy)'/?.

Proof. Letu;, and u i be the finite element functions corresponding to the coefficient
vectors uy and ug. Also, let f be the finite element function corresponding to the
vector Mh_thuh (M), is the mass matrix). That is, let f = in N ﬁ(pih where f; is

the ith entry of the vector M, ! Lpuy, and {(pl.h }x; eN;, 18 the nodal basis of V),. Consider
the variationally posed second-order elliptic problem,

a(, ¢) = (f, ¢).

Its finite element discretization based on V), takes the form Lyu, = M), (M, 'L puay) =:
f,, and similarly for Vg, Lyuy = PT M, (Mh_thuh) = PTf,. Thatis, uy and uy
are finite element solutions of the above continuous problem. Using then the error
estimate (B.10), we get

(I —mapllo = lup —ugllo < CNellup —ugllr. (B.17)

If we show that [lup — uplli < Cllupll, then [|[(1 — m)uyllo < C+/elluplly which
rewritten in terms of matrices and vectors will give the desired result.
From the Gérding inequality (B.9), we have

viLyv>vIAv —o vV AV 2 v 0.

Letting v = u, — Puy and using the estimate ||v]o < Cel’2 (vT Av)Y/2, we arrive
at the following coercivity estimate,

viLv > (1 — 0 C/e) vl Av. (B.18)

On the other hand, using the fact the u g is a finite element solution, together with the
Hé X Hol— boundedness of the bilinear form a(., .), because v Av =~ |lu), — uH||%,
we arrive at the following upper bound,

viLyv =a(uy —uy, up —up)
=a(up —uy, up)
< Cllup —upglillunlh

< C vV AV 2 lluplly.
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Combining the last estimate with the preceding one (B.18), for sufficiently small €
(or equivalently, sufficiently small H), we arrive at the desired estimate (needed
in (B.17))

lun —uplly < COTANYZ < Cllugl =
Theorem B.8. Under the full regularity assumption, we have the following stronger
approximation property in matrix—vector form (with ||| : |w| = Vwlw),

H? ||Lyv]
n Lall

I — PLG PT Lyl < C (B.19)

Proof. To prove the required estimate construct f € V;, C L»(2) as in the proof
of Theorem B.7. That is, f has coefficient vector f equal to M, 1Lhuh (where
Mj, is the mass matrix). Use now the optimal Ljy-error estimate ||up — ugllo <
CH?| fllo. Then because || f[13 ~ h? |If|? (d = 2 or d = 3), we have || fII} =
(M, ' Liyuy)” MM, Liywy) < Ch=?)| Lyuy||?. Therefore,

2
2|1 — <C|U - < CH— L
(I — oyl < CllU —m)ugllo < /2 I Lpuagl.

That is,

H? 5,
I —mu|| <C 7 h=" [ Lpug ],

which completes the proof because v := uy can be arbitrary and it is easily seen
(looking at element matrix level, e.g.) that || L || =~ hd=2, O

Corollary B.9. In the full regularity case, for H = 2h, or more generally for H < Ch,
we have the uniform estimate

ILull (L, — PLG PV < Cllv].

Note that || Ly || ||L;1V|| behaves as the condition number of L), (for some vectors v).
That is, ||L;,||L;1 is not uniformly bounded in h +— 0, whereas the difference
I Lnl (L;1 - PL;PT) is uniformly bounded.

B.2 A semilinear second-order elliptic PDE
Consider the following semilinear elliptic problem
Lu=—Au+b(x, u) = f(x), x€ Q,

subject to Dirichlet boundary conditions # = 0 on d€2. The coefficientb = b(x, -)isa
given scalar function, and f € L2(£2) is a given r.h.s. Under appropriate assumptions
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on b and €2 (cf., e.g., [Sh95]) the above problem has a (unique) solution u* € H 2N
HJ(Q).

For the purpose of verifying the assumptions on the inexact Newton method
we made in Section 11.3, we further assume that b is smooth; namely, its partial
derivative b, (X, -) exists and is nonnegative. Moreover, we also assume that b, (., u)
is Lipschitz; that is,

|by (X, u) —by(x, v)| <L |u— v| uniformly in x € Q. (B.20)

Introduce a finite element space V. = Vj, C HO1 (€2) of piecewise linear basis functions
on a given triangulation 7;,. Consider the discrete nonlinear problem; find u, € Vj
such that L, (u;,) = fp, posed variationally,

(Ln(up), @) = Vup, Vo) + b€, up), 9) =(f, @), forallg € Vi (B.21)

We additionally assume that 2 is a convex polygon (or polytope in 3D). Thus the
Poisson problem —Au = f for f € L(2) has a H%(Q) N HO1 (€2) solution that
satisfies [lull2 < C|| f|lo. Note that the same holds for the linearized equation, for
any fixed up € H 2N Hé (2) (note that then u( is a continuous function, cf.,
e.g., [BS96])

—Au + by(x, up)u = f(x). (B.22)

Thatis, we have |lull2 < Cllby (., u0)llmax llullo +Cll fllo < CUlbu(., u0)llmax + 1)
Il f llo. Define now two Banach spaces &), and },. The first one, A}, is Vj, equipped
with the norm

lvllx, = llvll = max{ljvll1, [vlmax},

and the second one, Yy, is simply Vj, equipped with the Ly-norm |[v||g.
We are interested first in the properties of the linear mapping L, (u0) and its
inverse.

Lemma B.10. The finite element linear operator defined variationally

(L), (u0) v, ) = (Vv, Vo) + (by(., up) v, 9) forallg € Vy,

has the following properties.
(i) For any ug, vo € X, such that |luop — vol| <8 < 1, and any v € &},

(7 = (L, @)~ Ly @w)v]| < €5 [1 + IbuCs 10)lmax] IV]-

(ii) For any ug, vo € Xy such that |\ug — vo|| < 8 < 1 and any g € Vi, we have

|(1 = Ly, wo) (L, o) ™) gy < €5 ligllo.

(iii) For any ug, vo € X, such that |\ug — vol|l <8 < 1 and any ¢ € Vy, we have

(L (v0) — Li(uo) — Ly, (o) (uo — vo). @) < C8 |lvo — uoll l|llo-



B.2 A semilinear second-order elliptic PDE 431

Proof. To prove (ii), let v = (L;l (uo))~'g, or equivalently, solve for v € Vj the
linear finite element problem

(Vv, Vo) + (bu(., uo)v, ¢) = (g, @), forall ¢ € V.

Because b, (., ug) > 0, we have the a priori estimate ||v|jo < Cr|gllo. We then have

lg — Ly, (wo)(Ly, o)) "' gllo = 1L, (o)v — Ly, (vo)vllo
= [ (Bu (s u0) = bu(., v0)vllo
< Lllug — vollmax lvllo
< LCFS ligllo-

The latter is estimate (ii).
To prove (iii), we have, for any ¢ € V},

(Ln(vo) — Li(uo) — Ly, (uo)(uo — vo). @)
= (b(., vo) — b(., ug) — by (., uo)(uo —vo), @)
< L |luo — vollmax lluo — volloll¢llo
< L3 Cr |lup — voll llello

which verifies (iii).
To prove (i), solve the following discrete problem for ¢ € Vj,,

(L/h(bto)l/f, @) = (L/h(vo)v, @), forallg € Vj.

We have that (L, (u0)) 'L, (v9) — )v = ¢ — v € Vj, solves

(Ly, o) (W — v), ¢) = ((L;,(v0) — Ly, (o))v, @), forallg € V.

Consider the solution w of the continuous problem (—A + b, (., up))w =g = (L;l
(vo) — L;l (uo))v € Lo(2). We have the error estimate

lw—= & —v)li = Chlwl2
= Ch(ligllo + Cllbu (., u0)llmax)
< Ch ([1bu (., uo)llmax + 1bu (., v0) = bu (., uo)llmax/lvllo)
< Ch(|[bu (., u0)llmax + llvo — o llmax [lv]l0)-

Introduce the nodal interpolation operator

Lw= Y wx)gi €V
X,'E./\/h

where {¢; }x, v, is the nodal (Lagrangian) basis of Vj,. The following familiar estimate
holds || Iyw—w]||1 < Ch||lw|2aswellas || I w—w|max < Ch|lwl|2. Therefore, || Iyw—

W =l = Hpw —wli + lw = @ = V)1 = Chllwll2 < Ch(l|by(., uo)llmax +
llvo — uollmax||v]lo). The desired result follows from the fact that ||w]c < C|lw]||2



432 B Properties of Finite Element Matrices. Further Details

(see, e.g., [BS96]) and the inverse inequality ||¢|lmax < CA™% |l¢|l1 (see Section G.3
in the appendix) for ¢ € Vj and an @ < 1. More specifically,

IV = vlimax < hwllmax + [ 1pw — (¥ — V) Imax
< Mpwllmax + CA~ [ Ihw — (f — v)[l1 = C [lw]>.

That is, because ||w]g < C;1||g||o < C|lvo — ug|lmax|lv]lo, we finally arrive at

[ —vll = Cllwli2
= CIbu (., uo)llmaxlwllo + llgllo)
= CIbu (.. uo)llmaxlwllo + llvo — uollmaxllvllo)
= C8 (1 + [1bu (., u0)llmax) Ilv]lo- o

Now, we provide precise estimates for the algorithm to compute accurate initial
approximations for solving the (fine-grid) nonlinear problem described earlier in
Section 11.2. For this purpose, consider two finite element spaces Vg C V. The
mesh H will be sufficiently small but fixed, that is, independent of 4 — 0. Then the
fine-grid nonlinear problem can be treated as a “perturbation” of the linearized one in
the following sense. Solve the coarse-grid nonlinear problem

(Luy), ¢) = (f, ¢) forallg € Vy.
Consider then g = b(., u}y;) — b, (., u})u}, and the fine-grid linear problem

(L, )iy, @) = (g, @) forallg € V. (B.23)
Rewrite the fine-grid nonlinear problem (L,h (uy), 9) = (f, ¢) forallp € Vj as

(L,h(u%)u;l, go) = (f +bu(., uyuy, —b(., up), ¢) forally € V.

Therefore, the difference "‘Z — Th solves

(Lo iy — ), @) = (bC, u}) — bl ufy)
— by (., wy) Wy, —uy), @) forallg € Vj.

‘We have the estimate
(L i)y —13), @) < L lluj, — uhyllmaxluj — ufyllollello forall g € V.
Hence
’
Ly i) gy =) | o < L gy — why lmaxlluy, — ulyllo-

Forh < H < hp andan «a € (0, 1), we have the error estimate |luj — u}; |Imax |4} —
uyllo < CH 1J”)‘||u‘*||%. Finally, solve the linear problem (B.23) approximately
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(e.g., by a few iterations of an optimal MG method), with a guaranteed residual reduc-
tion. That is, for a small tolerance ¢ € (0, 1), we compute an accurate ug that satisfies

1Ly i) @y — ufllo = llg — Ly @ipufllo < e Igllo-
The final estimate that we need reads using (ii) for u9 = u} and vo = uj, and
g = L, )@, — ul),
1Ly, ) @, — ullo < (1 + C8) |1y, () @y — ud)llo
< 2[ Ly, i Gy — ullo + 1L, i) @ — ullo]
<2[CH"™|u*|5 + ¢ligllo]

€
<—.

=

The quantity €/ for the purpose of the present analysis is a prescribed small tolerance
(for details cf. Section 11.2).

The last estimate can be guaranteed if H is sufficiently small, and (after H has
been chosen and fixed) by choosing the tolerance ¢ sufficiently small, because then
g is fixed and ||u* ||§ is just a constant.

B.3 Stable two-level HB decomposition of finite element spaces

We analyze the stability property of the two-level HB decomposition of finite element
spaces V}, corresponding to a triangulation 7, obtained by a refinement of a coarse
one Ty and its corresponding coarse f.e. space Vg C V.

B.3.1 A two-level hierarchical basis and related strengthened
Cauchy-Schwarz inequality

In what follows we consider a triangle 7 that is refined into four geometrically similar

triangles 75, s = 1,2, 3, 4. We can associate with the vertices of T the three stan-

)

dard basis functions gai(H , i = 4,5, 6, whereas with the midpoints of its edges, the

piecewise linear basis functions <pi(h), i =1, 2,3, associated with the fine triangles
7,. It is clear that the two sets of functions are linearly independent. For example if
we have (on T')

H H H h h h
64%(; : +05§0§ )+06‘P((, ) = Clcﬂf ) +02§0§ ) +C3<P§ ),

for some coefficients ¢5, s = 1, ..., 6, because <pi(h), i = 1, 2, 3 vanish at the vertices

of the coarse triangle 7', we have that c4 = ¢5 = ¢ = 0. That is, we have then

(h) (h)

h
ey + 29, M _ 0

+ 395

)

(h

which implies that ¢; = ¢ = ¢3 = 0 because ¢; ) are linearly independent.
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Consider the two finite-dimensional spaces Vg, r = span {<p(H), <p§H), <p(H)}

and Vhf = span {(p(h), <p§h), g03h)} We proved that they are linearly independent.

Therefore, the following estimate holds

(Vvy, Vv f))T

max ~T s " 7h L
vpeVur, vH;éConet |v(f)|1 rlvall, T
o Pev!
h,T

<yr<l. (B.24)

It is clear that yr € [0, 1) depends only on the angles of 7 and not on its size. The
following explicit expression has been derived in [MMS&2] for a triangle 7 with angles
ai, a2, and a3,

4d -3,

o0 | —

5
1—V%=§—

where d = Zi cos? ;. Because d < 3 (d = 3 for degenerated triangle ¢ = ap =0
and a3 = ), we have the following uniform upper bound,

3
y% < 7

Our goal is to apply the above estimate to the global matrix A corresponding
to a triangulation 7, and its coarse version A, corresponding to a triangulation 7y
with H = 2h. That is, we assume that the fine-grid triangles t are obtained by
refining the coarse triangles 7 into four geometrically similar ones. The vertices
of the coarse triangles form the coarse-grid and are denoted “c”’-nodes, whereas
the fine-grid nodes that are not coarse are denoted “f”-nodes. We also have the
Galerkin relation A, = PTAP for a proper (linear) interpolation matrix P (cf.
Section 1.2).

To do this, consider first A7, the 6 x 6 matrix corresponding to the triangle T
computed with respect to the fine-grid piecewise linear basis functions <p§h) associated
with the six fine-grid node x;, s = 1, 2, ..., 6. Alternatively, we can use the two-
level hierarchical basis (or HB) {ga(H), gaéH), <p6H)} U {ga(h), <p§h), ¥3 )} introduced
earlier. This gives rise to another matrix (called the two-level HB matrix) A7. We
show below (see (B.26)) that it can be obtained from A7 by a proper transformation.
The following observation is in order. Let v be the coefficient vector of a f.e. function v
expanded in terms of the standard nodal basis <p(h) Let P be the interpolation matrix
that implements the embedding Vg C V), in terms of coefficient vectors; that is, if

v € Vg has a coefficient vector w.r.t. the coarse basis gai(CH), then Pv, will be its

coefficient vector w.r.t. to the fine-grid nodal basis <pi(h). It is clear that P admits the
following form

p_ Wi} “f"-nodes
- } “c”-nodes
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This is seen from the fact that the interpolation at the coarse nodes X; is an identity
because the coarse nodes are the subset of all nodes on the fine-grid. Then, if v, =

M ; vic <pi(h) for every coarse node x;, we have vic = v.(X;). In other words, the i th entry
of the vector Pv, equals a corresponding entry of v, for any coarse node x;. That is,
P is the identity at the coarse nodes. The same argument applies to P restricted to an
individual coarse element 7. We have

_ |V
rr=[""].
We can rewrite the strengthened Cauchy—Schwarz inequality (see (B.24)),

(Vo). Vou), < vr IVl 1 IVouli, 1,

in terms of the local stiffness matrix A7 and coefficient vectors

W = |:V0f:|
o

and Pv. of ¢,”" and oy = v. € Vpg, respectively. The first vector has zero en-
tries at the “c” nodes because <p}(lf ) vanishes at the coarse nodes. We have for their

restrictions to T,
(V) ArPve = yr () Arvi) P (v PE AT Prve 1)

We note that A, 7 = PTT Ar Pr is the coarse element matrix. Introducing

=[]

with zero block corresponding to the “c” nodes, and letting Jr be the restriction of
J to T, we finally arrive at the local strengthened Cauchy—Schwarz inequality of our
main interest

1/2 1/2
VZ;’ TJ;ATPTVC’ T <Yr (VZ;’ TJ;ATJTVJ{ T) / (VZ: TP;ATPTVC’ T) / .

Introduce the transformed matrix

_ T T T
Ar = Jr. PriT Ar[Jr. Prl= |:‘]T ArAr  Jp ATPT] _ |:éff, T Age, T:|.

Py]:ATJT P7]:ATPT - Acf,T Ac T

We note (due to the special form of Jr) that A ¢y, 7 is actually a principal submatrix
of Ar (corresponding to the “f” nodes in 7') and also that PTT AT Pr is the coarse
element matrix A, 7. This is one reason to have ‘A7 referred to as the two-level
hierarchical basis (or HB) matrix. Considerits Schur complementﬁr = A, T—Zcf, T
(Ayy, A fe, T- We know (cf., Lemma 3.3) that the strengthened Cauchy—Schwarz
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inequality can equivalently be stated as

T 1 T <
Ve 7Ac, TVe, T < =2 V.. 7STVe, T
T
1 vir| 5 [vir
- —2 min [ Y ] AT [ Y }
1 — yr VAT Ve, T Ve, T
1 |\ VAT ! T Vi T
= ——5 min Jr, Pr]” Ar[Jr, Pr]
l—y; ver [Ve T Ve, T
1
= min vIATvT. (B.25)

1— )/7% vr=Jrvys 1+Prve, T

Finally, note that the f.e. function v € V}, (restricted to T') that has standard nodal

coefficient vector vr if expanded in the two-level HB {(prH), <p§H), <péH)} U {(pfh),

goéh), <p§h)} will have coefficient vector

v
Ve, T
coming from the representation vy = Jrvy, r + Prv,, 7. Thatis, we have then
T VT T Vi T
vr ATV = |:Vc T:| Ar |:Vc T:| ’
or equivalently

Ar = [Jr, Pl ArlJr, Prl. (B.26)

Observe that A7 and A7 are different. However, their first pivot blocks Ay r and

Ay,  coincide. We show below that their Schur complements are also the same. Use
now the hierarchical decomposition of any fine-grid vector v,

V= [Vof} + Pv,,
where v, is the restriction of v to the “c” nodes. Using the matrix form of
=",
we get
v [1 W:| 'Vf].
0 I ]|ve
That is, if

we will have vy = vy + Wv,.
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Introduce now the element Schur complement Sz of A7. We have

Vo pSrve = min vEArvr. (B.27)

Vi T VT=|:vf' T
Ve, T
It is clear that by using the hierarchical decomposition instead (restricted to 7'), we
also have

T p T
A\ STVe, T = - min V7 ATVT
VT
0

T
. I w I w
T T T
= min _ Vg |: ] At |: ]VT
Vi T 0 I 0 1
LYe, T ]

vr= +Prve, T

vr=
. T
min vz Arvr.

VAT
LVe, T |

Vr=

Here, we used the relation

T

- |1 Wr I Wr

o=l o ]
Thus, we showed that Sz, the Schur complement of Az equals the Schur comple-
ment S7 of the two-level hierarchical matrix Ar. Therefore, we can rewrite (B.25)
in the following final form relating the coarse element matrix A, r and the Schur
complement S7 of the local (fine-grid) matrix A7. We have

1

Ve A TVeT S TTog Ve pSTVe T (B.28)
T

Based on the estimate for A7 = 1/(1 — y%), the following local-to-global analysis
is immediate, utilizing the minimization property (B.27) of the local Schur comple-
ments S7. We have

VZAch = ZVZ TAc, TVe, T
< Z)\T VCT STVe, T
= Z}\.T VTATVT
T
< max A vEArv
< maxAr ZT: TATVT

= max Ay vl Av.
T
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Because At < 4, we have the uniform (global) estimate

VZPTAPVC <4 min VTAV,
v=JV;+Pv,

=[]

The latter is equivalent (cf., Lemma 3.3) to the (global) strengthened Cauchy—Schwarz
inequality,

where

vidTaPve <y (viaTArvy) (v PT APy

(B.29)
Here y = maxr yr. For the particular case of piecewise linear triangular elements,
we have

3
v = mjgx yr < \/7— (B.30)

B.3.2 On the MG convergence uniform w.r.t. the mesh and
jumps in the PDE coefficients

We start with the observation that y = maxrc7,, y% stays away from unity is general.
Note that the local 7 depends only on the shape of T and not on its size. That s, if we
keep the elements at every refinement level geometrically similar to a finite number
of coarse elements, then the global y = maxr y7 will be uniformly bounded away
from unity. This verifies one of two of the sufficient conditions (see (ii) in Section 3.3)
that imply two-grid convergence. With the simple choice of

=[]

if we can also show that J TAJ and the symmetrized smoother M restricted to
Range(J) (i.e., J TMJ) are spectrally equivalent (see condition (i) in Section 3.3)
then we have a mesh-independenttwo-grid convergence estimate result which follows
from Theorem 3.25. This was a result originally shown by R. Bank and T. Dupont
in 1980 ([BD80]) for H = 2h and finite element problems corresponding to second-
order self-adjoint elliptic problems.

For the simple J, we have that Ay = J TAJ corresponds to a principal submatrix
of A where we have deleted all rows and columns of A corresponding to the vertices
of the coarse triangles. We first show that A is spectrally equivalent to its diago-
nal part, independent of the mesh-size 4. To prove this result, we notice that Az is
assembled from the local matrices A rf, T- 1t is clear (see, e.g., (B.7)) that the local
s.p.d. matrices A rf, T are spectrally equivalent to its diagonal part with constants
of spectral equivalence that depend on the angles of 7 only. Hence, if we keep the
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triangles 7' geometrically similar to a fixed initial set of triangles, then the resulting
matrices Ay will be spectrally equivalent to its diagonal part with mesh-independent
constants. Therefore if M is a smoother such that the symmetrized one M is spectrally
equivalent to the diagonal D of A (such as the Gauss—Seidel, cf., Proposition 6.12),
we have then that Ay and J7 M J are both spectrally equivalent to Dy = JTDJ
which is the desired result.

In conclusion, we showed that the two-grid method for A based on M and P has a
uniformly bounded convergence factor. Moreover, because all estimates we derived
are based on properties of the local matrices Ar the result does not change if we
replace them by any constant w7 > 0 times A7, that is, if we consider problems that
give rise to local matrices wr A7 (and At referring to the ones corresponding to the
Laplace bilinear form). Thus, we have also proved uniform convergence of the two-
grid method for finite element problems coming from second-order elliptic bilinear
forms a(u, ¢) = fQ w(x) Vu - Vg dx for given polygonal domain €2 (the local
analysis holds in 3D as well) where the coefficient w(x) is piecewise constant over
the coarse elements from 7, no matter how large the jumps of w across the coarse
element boundaries might be. This is one of the main attractive features of the (two-
and multilevel) HB methods. We showed here that the same holds for the standard
two-grid method. We also proved that this extends to the multilevel case, namely,
to the AMLI-cycle MG methods (see Section 5.6.3). Results regarding V-cycle MG
convergence for such problems are not as easy to obtain. We refer to [JW94] and
[WX94], or to [XZh07] for a more recent treatment of the topic.

B.4 Mixed methods for second-order elliptic PDEs

In this section, we consider the mixed finite element method applied to second-order

elliptic problems
49
Lu=—
=3

r=1

d
ou
Z ar,s(x)_> = f
0xg
s=1

Here f € Ly(2) and u € Hé (€2). In the mixed finite element method, we first intro-
duce a new unknown (vector) function ¢ = —A(x) Vu, where A(X) = (a, ¢ (x))ﬁ{ =1
and rewrite the problem Lu = f as the following system of first-order PDEs posed
variationally, for appropriate test functions  and ¢,

(A™'a, ) +(Vu, ) =0,

If we use integration by parts, assuming that 7 is sufficiently smooth (in order to
perform integration by parts) to arrive at (Vu, n) = —(u, div n) using the fact that

ue HO1 (£2), the above system admits the symmetric form,

(A7, ) —(u, divn) =0,

_dive, ¢) - —(f.9). ®3D)
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Because we assume f € L>(€2) and Vu € (L»(2))? a natural space for ¢ is H (div).
The latter is defined as the vector functions n € (L2 (Q))d that also have divergence in
L, (£2). Therefore the test functions above 17_and @ satisfyn € H(div) and ¢ € Ly(£2).
The system (B.31) does not contain any derivatives of , therefore a minimal space
for u is Ly (2).

Note that inhomogeneous Dirichlet boundary conditions for Lu = f,u = g on
02, are easily handled by the mixed method. The corresponding mixed problem takes
the form, introducing n the unit vector normal to d€2 pointing outward €2,

(A7 la, n) —(u, divy) = —/g n-ndo,
= - Jo = (B.32)

Q
—(divo, ¢) =—(f, 9).

Mixed finite elements for second-order elliptic problems

The discretization of (B.32) requires two finite element spaces, a vector one, R = R,
and a scalar one, W = W}, which are subspaces of H (div) and L, (f2), respectively.
The discrete problem takes then the following form.

Find o), € Ry, and u;, € W), such that

(A lg,, n,) — (un, diVﬁ):—fgﬁh~ndQ foralln, € Ry,
Q2
—(divay,, xn) ==/, xn) for all x, € Wj.

(B.33)

For triangular elements T a popular pair of spaces is the lowest-order Raviart—
Thomas spaces Ry, and Wj,. They are associated with a common triangulation 7, =
{r}. Any function n € Ry, restricted to a triangle 7 has the form

a-+cx|.

b+cyl|’
that is, it has three degrees of freedom (dofs); namely, the coefficients a, b, and c.
We can define locally three basis functions n, associated with the three edges ¢;,,

k =1, 2, 3 of any given triangle 7. Thus, globally, the number of the basis functions
will equal the number of the edges of all triangles in 7. The basis functions are defined
from the following edge-based integral conditions, for all three edges ¢; of 7,

/ﬁek Ny do =04 ¢, =123

el

These conditions ensure that 1, associated with a particular edge e is supported in

the (possibly) two neighboring elements 7" and 7~ that share e. (One of these triangles
may be empty if e is a boundary edge). Also, we automatically guarantee that n, - n,
is continuous across e because it happens (see below Remark B.11) that 1, - n. is

constant on e and due to the integral condition [, n, - m, = 1. Therefore the constant
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in question is uniquely specified (from the possibly two neighboring elements that
share e). Thus, the basis functions belong to H (div), because their normal components
are continuous. This is a characterization of H (div) (for piecewise smooth vector
functions). To prove it, consider any piecewise polynomial vector function n with
continuous normal components 7 - n,, for any e € £ (where £ is the set of all edges).
By integration by parts, for any sufficiently smooth function ¢ vanishing on 92, we get

Zf(vm-gdx

—Z/(pdiVﬂdX—i—Z/[Q-ne]gon:—((p, div n),

ee€

Vo, n)

because the jump terms [n - n.] are zero. This shows that div 1 is well defined as a

function of L>(£2) (due to the density of HO1 (2) in Lo (£2)).

The basis functions x, of W, for every t are trivially constructed because those
are piecewise constant functions; that is, for any given t, x; = lont and x; =0
outside 7.

We can derive the following more explicit equations for computing the basis
functions of R. For any triangle = with vertices x;,, k = 1, 2, 3, consider the midpoints
Xi, iy = %(Xi, +x;).r=1, s=2,r=2, s=3,andr =1, s = 3. Then, define
for each midpoint x;, ; , or equivalently, any edge e = (X;,, X;,), a basis function

1
ae + CeE(x = Xi.iy)
Ne =1 =

—(Xiy, Xig)

1
be + CeE(y - yir,ix)

The conditions for determining the three coefficients a., b., c. read, for all three
edges e = (ix, i1),

1 a 11 X — Xi i
5, _n,.|% —i—c——,/nr- i | o,
e ¢ |:be:| ‘he| LY = Yiedg ¢

e

The midpoint x(;, ;) has geometric coordinates x;, ;, = %(xik + x;;) and y;, ;, =

%()’ik + yi,). Now, because
nel . [x - xik'il:| = 0
Y — Yi,i

for (x, y) on edge ¢ (because n is normal to that edge), we get the somewhat

simplified system of three equations (for the three edges ¢ of 7) and three unknowns,

(ae, be, ce),
! a Wiy = Xiyi)/ h
8, y——=mny-| “|+cemy | 1k Irsls i
“llel e [b} e [(yik,i, — Yini)/h

Here, 86’ s =0ife # ¢ and 8e, e = 1.
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Remark B.11. A general observation is that a., b,, and c, are order (’)(h’l) because
1/1¢'| = O™y, Also, div n, = (2/h)c, = O(h™?). Also, we have

de Ce X — X,
N -7, =N - + —n, - o
S 1 R
and the latter term vanishes for (x, y) on e. That is,

de

ne~Qe=ne~|:b ] = Const on e.

e

Because the degrees of freedom for the space R; are associated with the set £ it
is convenient to have global numbering of the edges, that is, e, ez, e3,...,é€p,.

e

Compute now for any element 7, having edges ¢;,, ¢;,, e;;, the element matrices,

3

T
fﬁeik A(x) n, dx ,
T k=1

Ac

Br = —It| [div ne, . div 7o, div e, ].

Here |7] is the area of v and we used the fact that the div n; for/ = 1,2, 3, are
constants on . Based on Remark B.11, we see that the entries of both A; and B; are
order O(1).

Then after the usual assembly, we end up with the global matrices A and B,

wl Av = Z WTTATVT, and yTBV = Z yTTB,v,.
teT el

Note thatv;, w; € R3, whereas ¥ is just a scalar. Finally, the finite element problem
(B.33) takes the following matrix—vector form

R INNE a4

Here v = (v.).cg and x = (&;),<7. The entries v, and X, are scalars and they are the
coefficients in the expansionof o), = D", ¢ Ve 1, and u, = ) .7 & x:. Therh.s.
g = (8¢)ece hasentries g, = — f « & 1N, do that might be possibly nonzero only for
boundary edges e. Finally, for the second block of the r.h.s., f, we have f = (f;) ;<7
withf, = — [ f dx.

We introduce next the so-called Fortin projection (originated in [F77]). It is a
useful tool in proving then “inf—sup” condition as well as in deriving error estimates
in the mixed f.e. method.

Definition B.12 (Fortin projection). Consider, for any sufficiently smooth vector-
Junction n, the following edge-based defined projection m = 7y : n+ 7 € Ry
with dofs equal to

f(”ﬁ)'ne dQZf(Q)'ne do.
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The projection m = mj, defines a unique function

nﬁzz /Q~nedg n, €R. (B.35)
ecE

e

It satisfies the important “commutativity” property
(divn, x) = (diven, x), foranyx € Wp.

The latter is true because both expressions equal (using the divergence theorem),
> [0 ne txle de
¢ e

We used here the fact that the jump term [ x ] is constant on e for any x € W (because x
is a piecewise constant function). Introducing the L,-projection Qp : L2(2) — W,
one can rewrite the above commutativity property as follows,

QO div = div 7. (B.36)

We note that both 7, and Qj are easily computable based on local operations. The
actions of my are seen from the expression (B.35) whereas Qj is computable from
the following explicit expression,

1
th=szxdxxr-
T T

We can easily check that (Qpx, 0) = (x, 0) forany 6 € Wj,.
In what follows, we verify an “inf-sup” estimate.
We assume, for simplicity, that the domain €2 is such that the Poisson equation

—Au=xinQ and u =0o0noas,

for any given x € L»(€2) admits full regularity (some minimal regularity is generally
sufficient); that is, we have

lull2 = Clixllo-
This is the case for  being a convex polygon. Due to the identity ||[Vu|?> =
(x, u) < CrlixllollVullo (using Schwarz and Friedrich’s inequalities), we also

have ||u|l1 < Cr|lx|lo. Consider then w = m;,(Vu) € Rj. We first notice (because
div m, = Qpdiv) that

ldiv willo = [1QrVullo < IVullo = Crlixllo-
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Also, by the definition of 7;, we have [,(Vu) - n, do = [, w - n, do. Therefore
(based on Remark B.11),

2 2

Iwig =~ /(vm-ne do| lnel2- s <CY f<Vu)~ne do

ec€ \, ee€ \,

Use now the following inequality for any function € H z(r; uth),

2

/ (Vy) -nedo | < Ch f (V¥ -n0)? do
<c(IVyl? —  ++Rryl? )-

0, t, Ut, 2, r;Ur;r

This estimate is proved by first verifying the result on the unit-size domain (based on
a trace theorem result) and then changing the variables to get the domain of size &
which gives rise to the above powers of /. Therefore,

Iwl2 < C|IVu|3 + Ch*|ul} < (C + Ch?) |Ix|2.
That is, we proved

2 2
IWI2, iy, < B 113,
The latter estimate shows the first “inf—sup” estimate

(x, divw)

Ixllo < B sup (B.37)

weR ”W”H(div) .

However, another choice of norms is also possible. It gives a different “inf—sup”
condition. Consider the identity (x, div w) = — Zeeg fe[X]e w - n, do. Choose
now

w=—>[xln.

ecE

Then, (x, divw) = Zeeg[x]g. Again based on Remark B.11, we have

WG = > L2 Imel2- v < €D Ix T2
eef eef

and

ldiv wiig = D X1 ldiv 12— s < Ch™2 ) [xT;.
eef eef
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This shows, that for a mesh-independent constant 3,

Iwllg + R lidiv wiig < B > [x1; =B (x, divw),
eef

which implies the following alternative “inf—sup” estimate

12 (r. divw)
x, divw
Ixlh, n= (Z [Xﬁ) =B sup 2 i /2
s weR ([|wll§ + A2(ldiv w]i§) (B.38)
<8 sup X, leW)'
werR  lIWllo

We next show that the norm ||.||1, 5 is stronger than the L>-norm.

Lemma B.13. The following inequality holds, for any x € Wy,

lxllo = Clixlltn-

Proof. The space Wj, is associated with triangular elements 7 and let [t| ~ O(h?).
We refine the triangles (by connecting the midpoints of the edges of every triangle)
and we do this twice. The resulting triangulation is denoted 7, /4- Next, we introduce
the space of piecewise linear functions Wj,,4 associated with 7y, /4. Let Ny /4 denote
the set of all vertices of the triangles in 7}, /4. Define the mapping P : Wj, — W4
as follows. On the strictly interior triangle Y cr,t ey and 0 e 7, /4, we let
Py = x. At all remaining nodes in /4 that are shared by two or more triangles
from 7, we let P x be a simple arithmetic average of the values of x coming from the
triangles that share that node. Finally, define the “cut-off” function 8 € Wj,/4 which
is 1 on all strictly interior nodes in Nj /4 and zero on 0€2. It is clear that

lIxllo = 18P x)llo-

Based on the chainrule V(O P x) = 6V (P x)+ (P x) V8, and noticing that V6 is zero
outside a strip €2, near 92 of width O(h), and that within the strip V6| < Ch_l, we
obtain the estimate,

C
0Px|? < C|Px|3+ 3 / x2(x) dx
Q2
<Clxli,+¢ > x
e=0QNT
< ClixlIf - (B.39)

We used that the |.|; (semi)norm of a finite element function ¢ = P is simply a
square root of the sum of squares of differences (¢(x;) — ¢(X;)), for any neighboring
pair of nodes x;, x; € Ni /4 (i.e., belonging to a common fine-grid element in 7j/4).
And because all such differences can be expressed as a (fixed) sum of differences of the
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form x;, — X+, for neighboring elements 71, 72 € 7, the estimate IPx|? <Clix ||% A
is seen.

The desired norm bound follows from Friedrich’s inequality and estimate (B.39)
x5 = 16 Px g < Cr 18Px 1T < ClixIIT, 4- o

We complete the present section by summarizing the result for the “inf-sup”
conditions that we can exploit for the saddle-point matrix in (B.34).

Theorem B.14. The pair of lowest-order Raviart-Thomas spaces Ry, Wy, ensure
respective “inf-sup” conditions if equipped with the following norms.
* Ry, equipped with the H (div)-norm and Wy, with the Ly-norm; or
o Ry, equipped with the (L (S2))?-norm ||.|lo, whereas Wy, equipped with the ||. || Lh-
norm (defined in (B.38)).
Also, the saddle-point operator (matrix) in (B.34) is bounded in both pairs of
norms.

Proof. To prove the boundedness of the saddle-point operator, in both pairs of norms,
we first notice that

T
woAv < Cliwllo [Ivllo,

and second, let v and x be the coefficient vectors of v € Ry, and x € W, respec-
tively. Then,

x" Bv = (divv, x) < |Idiv ullolixllo,

which proves boundedness of the saddle-point operator in the first pair of norms
Il g (divy> lI-llo- On the other hand, because (using integration by parts)

x' By = (ivy, x) = Z/y~ne [xle do = Cllvllo 1 xIl1,n,

ek,

the boundedness of the saddle-point operator, in the second pair of norms, || |0, ||-11,%,
also follows. O

Corollary B.15. The pair of norms in ||. ”H(div) and |||, (@) used for the finite ele-
ment spaces Ry, and W), give rise to the following block-diagonal matrix,

A+BTM-IB 0
0 M|

Here, M = diag(|7|);e7;, =~ h? I is the diagonal mass matrix corresponding to the
space Wy, of piecewise constant functions. Due to our choice of basis {n,}ccg, of Rp,

we have A+ BT M~'B ~ I + h=2BT B (c¢f. Remark B.11). The other pair of norms,
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-1z, ()2 and |I.111.n, give rise again to a block-diagonal matrix

A 0

0 D|’
where A >~ I and D corresponds now to a discrete (cell-centered) Laplace opera-
tor — Ay,

The first pair of norms, ||.|| adivy: L@, require constructing precondition-
ers for the Raviart—-Thomas space Ry, and the H (div) bilinear form. In Appendix F
we prove a general MG convergence result for the weighted H (div)-bilinear form
(u, v)+t (div u, div v). For the purpose of that analysis, consider the mass (Gram)
matrix G computed from the Raviart-Thomas space Ry,. Consider also the diagonal
matrix D = ((div n,, div 1,)).cg, - Because on a given element 7 that shares an edge
(face in 3D) e € &y, div 7, is constant, we have the identity

|T| |div Qe|2 = / |div Qe|2 dx = |div n,| /Qe'ﬂe do = |div n,|.
T e

Note thatfore' C Br,fe/ n,-ne do = 1 or0. Therefore, we have that |div n,| = 1/]z].
Note that div n, # O for any basis function 7,. Indeed, if we assume that div n, = 0
on an element 7 such that e C 37, then by the divergence theorem, we will have
0=/, n,-ndo = L, n,-mdo =1, or — 1, which is a contradiction.

Therefore, the above diagonal matrix D is spectrally equivalent to the scaled
mass matrix 272 G. Note that the part of the stiffness matrix that comes from the
(div ., div.) formis only semidefinite (with a large null space), however, its diagonal
D is s.p.d. Thus, we showed the following result.

Proposition B.16. The diagonal of A coming from the parameter-dependent H (div)-
bilinear form (u, v) 4+t (div u, div v) and the lowest-order Raviart—Thomas space
Ry, is spectrally equivalent to the weighted mass matrix (1 + th™?) G.

The choice of the second pair of norms ||.||o, |.|l1.» to define block-diagonal
preconditioners for the saddle-point matrix in (B.34) was considered in [RVWa].
Multigrid methods for spaces of discontinuous functions (giving rise to generaliza-
tions to the norm ||.||1,5) are found in [GKO3].

An alternative to the block-diagonal preconditioning approach for the saddle-point
operator in (B.34) is to explore preconditioning by multigrid methods in a div-free
subspace. Assume that we have two nested pairs of finite element spaces, a coarse
one Ry, Wy, and a fine one Ry, W, coming from two nested triangulations 7y
and 7j,. That is, the elements in 7}, are obtained by refining the elements 7 of 7. We
notice that Wy C Wj, and Ry C Rj,. Therefore, from these embeddings, we have
interpolation matrices Q and P defined naturally. The coarse saddle-point matrix reads

A. BT
B, 0]
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and due to the nestedness of the f.e. spaces, we have A, = PT AP and B, = QT BP.
Also, if a coarse function vy € Ry satisfies

(divvy, xu) =0 forall xy € Wy,

this implies that (pointwise) div vy = 0. These facts, translated into a matrix—vector
form can be interpreted, first as B.v. = 0, and second as BPv, = 0. This gives us
the opportunity to use the constrained minimization approach (see Section 9.5) for
solving the saddle-point problem (B.34) if f = 0. More details are given further in
Section F.3.

B.5 Nonconforming elements and Stokes problem

We are concerned in the present section with the following mixed system

—Aoc —Vp=H{,
divo =0,

foro € (Hol(SZ))d and p € Ly(€2). Here d = 2 or 3. The problem is seen to be well
posed if rewritten variationally,

(V. VO + (p, dive) = (f, 0)), foralld e (Hj(Q))?
divo, x) =0 forall x € La(R).

Note that there are no boundary conditions imposed on p. Also, because (1, div §) =
fsom -0 do = 0for@ e (Hj (Q)? which implies (p + C, div §) = (p, div ) for
any constant C, it is clear that p is determined up to an additive constant.

We introduce now the popular P; nonconforming triangular element (also called
the Crouzeix—Raviart element). The finite element space V), (of scalar functions) con-
sists of piecewise linear basis functions that are continuous at the midpoints X,,, of
every edge e € &, of the triangles T € 7. That is, the functions from Vj, are not
generally in H'($2). However, a certain integration by parts formula still holds. Con-
sider the vector function space V), = (V},). Let W), be again the space of piecewise
constant functions (w.r.t. the triangles t € 7). Forany n € Vy and a x € Wp,
we have B

Z/divgxdx:—Z/Q~nde

1€l 7 €Ty

-Y Y [anxde

€Ty eCoT

D lel n(xm,) - me x.

teTy, eCot
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Here we used the fact that 7 is a linear function on any edge e, therefore the midpoint
integration rule is exact for such functions. Thus, becaues 7 is continuous at the
midpoints X, , the following integration by parts formula holds,

Z/diVQXdX=Z/Q'De[X]edQ- (B.40)

€Ty ¢ e e

We can also define a Fortin projection 7 = mj, for any sufficiently smooth scalar
function and for each individual component of any (sufficiently smooth) vector func-
tion. The projection m;, defines a function 51 € V), where the degrees of freedom
(dofs) of ;1 (one dof per edge e € &) are specified from the equations

/m,ndg:/ndg foralle € €.

e e

This means that (77, 1) (X,) = 1/|e| fe ndo. Then, for any sufficiently smooth vector
function n and any x € W), we have

divn, x) = Z f(div nxdx= Z f(div mhn) x d X, (B.41)

el €Ty

because both last expressions equal Zeegh fe n-ne [xle do, (see (B.40)). Intro-
duce the piecewise divergence operator divy; that is, for any piecewise smooth 7,
divyn € Ly(R) is simply equal to div 5, well-defined, piecewise on every element
7 € 7. Also, let On: La(2) — W, be the L>-projection. We can then rewrite the
commutativity property (B.41) in the operator form,

Ondiv = divy 7y (B.42)

The above product of operators is applied to smooth functions.
We are interested in the finite element problem which reads as follows.
Find o), € Vj, and u;, € Wy, such that

> ngh -Vl dx +(up, divy 0) = (f, ) forallf € V,
€T, T (B.43)
(divy o, x) =0 forall y € Wj,.

Again, we stress the fact that uj is determined up to an additive constant if Vj
consist of functions vanishing at the midpoints of the edges on the boundary of €.
Introduce the stiffness matrices A and B which are computed by assembling the
element matrices

A 0
A,:[OT Af] and B; =[B}, BY].

The element matrices are computed based on the scalar (edge-based) piecewise lin-
ear nonconforming basis functions {@¢,, @e,, ..., (pene} and the trivially constructed
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basis functions {x:};c7, of Wj. More specifically, for any triangle r with edges
ei;, €, and ¢;;, we have

3

0@e;, 09, 09
A= ./v%"l'v%ik dx . Br=1tl ( Bxl’ sz’ 8x3>’

T lk=1

and similarly,

B = || 8§0e,-1 ’ a‘Pe,-z ’ a‘Pe,-3 .
t dy dy dy

Note that A, corresponds to a nonconforming (scalar) Laplace element matrix. In-
troduce also the coefficient vectors

V¥ oy
=[] e[
\& o)

and x of uy,, and the r.h.s. vector
FX

coming from the r.h.s. of the continuous problem

-[7)

More specifically, we have F* = ((f*, @¢))eeg, and F¥ = ((fY, @e))ees,s
The discrete problem (B.43) takes the following saddle-point matrix-vector

form
A BTV F
|:B 0 :| |:x :| = |:O:| (B.44)

We show next an “inf-sup” condition for the discrete saddle-point operator coming
from the finite element discretization of the Stokes problem.

Denote by £0 = 52 the set of all interior edges. Note first that 7, is bounded in
the L>-norm

2

_ 1
w3 iUl {5 [nde

ec&0 e

<cy / (* + h*|Vn?) dx < Clinll3.
T

r:r Ut,
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Also, using the fact that the square of the L>-norm of the gradient of a finite element
function can be bounded by a sum of squared differences, we easily obtain the next
estimate

2

mehm DY éfndg—ifndg < Clnli.

teTy e1, e2COT el &

The second inequality is seen easily for smooth functions 7, and in general, by con-
tinuity. Thus, we have

il = > | IVmnl® dx < Clinlli. (B.45)

el

We use the same estimate for vector functions 1 € (HO1 (2))2. Assume now that the
continuous “inf—sup” condition holds (cf., e.g., [BO1])

Ixlo=_ inf tllx—Cllofﬂ sup

=cons veH @2 1Uh

Recall (B.42) which reads (x, div v) = (x, Qpdiv v) = (x, divy, mv) for
X € Wj,. This commutativity property, the boundedness of ;, (shown in (B.45)) used
in the continuous “inf—sup” condition implies the desired discrete one; that is, we have

ThY (x, divyn) (x, divpn)
xlo<p sup LR G = < CBsup ——=.  (B.46)
ve(H) ()2 vl neVy |ﬂ|l,h nevy |Q|l,h

The boundedness of the discrete (finite element) Stokes operator in the pair of norms
I.ll1.n, |.lo is trivially seen. To summarize, we have the following main result.

Theorem B.17. The discrete Stokes operator in (B.44) is well posed in the pair of

norms |.|1,n,
A 0
0 M|

Here, M = diag(|t|);e7;, =~ h? I, is the diagonal mass matrix coming from the space
Wi, of piecewise constants.

The s.p.d. matrix A (a pair of discrete nonconforming finite element Laplacian)
can be preconditioned very efficiently by MG methods that can be constructed based
on the fact that the nonconforming space contains the conforming one on the same
mesh. On coarse levels one can use conforming spaces.

Alternatively, the discrete problem (B.44) can be treated as a constrained mini-
mization one as in Section 9.5. For the purpose of defining a coarse space needed
for efficiency of the constrained minimization algorithm analyzed there, consider
two nested triangulations: a coarse one, 7y = {T'}, and a refinement of it, 7, = {t}.
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Introduce also the coarse and fine pairs of finite element spaces Vg, Wy and 'V, W,.
They lead to the fine-grid matrices A and B and to the coarse ones A, and B,
respectively. We notice that Wy C W), but Vg ¢ Vj,. That is why we need to define
an interpolation matrix P that maps a coarse coefficient vector v, into a coefficient
vector Pv, of the f.e. function from V. The interpolation mapping for the second
component of the solution Q is naturally defined from the embedding Wy C W),
simply as piecewise constant interpolation.

Our goal next is to define a P such that B.v. = 0 implies BPv,. = 0 (a condition
needed in Section 9.5). For every coarse edge ey = 0T T NAT~, TT, T~ € Ty,
define y;; and v, as the traces of a given coarse function vy € Vg coming from the
two neighboring coarse elements 7" and T . Also, for any coarse element 7 con-
sidered as a fine-grid subdomain (union of four similar fine-grid triangles) introduce
the local spaces V;,(T') of functions from V, restricted to 7 and similarly, let Wy, (T)
be the restriction of the functions from W), to T. Finally, let Vg(T) be the subspace
of V;(T) of functions that vanish at the midpoints of (fine-grid) edges e C 97T

Given vy € Vg, consider then for any T' € 7y the following local problems.

Find v;, € V,(T) and u, € Wy (T) such that

> /(Vy,,) (V) dx+ Yy / updiv n dx

tCT 7 tCT 7
- Z f(VgH) - (V) dx, foralln e Vy(T), (B.A7)
tCT %
Zf divy vy x dx =) f(divH vy) x dx, forall x € Wy(T),
tCT % tCT %

subject to the Dirichlet boundary conditions on every coarse edge ey C 97, and any
eCey,ecéy,

1/ 1 /+ 1 / _
— [ v, do=Const=—— | v;, do=—— | v, do. (B.48)
A el ] 1T Jent J B0

e eH €H

That is, v, is constant on every fine-grid edge e contained in a given coarse edge e .
For edges ey on the boundary 92 this expression is seen to be zero. The inhomoge-
neous Dirichlet problems (B.47)—~(B.48) are solvable because fT (div, vy, —
divy vy) dx = 0, which is equivalent to [, v, -n do = [,;vy -n do =
Jor vl mdo = [;; vy -n do. Because the boundary conditions on the coarse edges
ey € &y are consistent, the local problems (B.47)—(B.48) define a global function
v, € Vh.

The matrix representation of the mapping vy € Vg — v, € V), defines
our interpolation matrix P. It is clear that (by construction) P satisfies the prop-
erty “B.ve = 0 implies BPv. = 07. Also, because Wy C W), we have that
(divy, vy, x) = (divyg vy, x) for any x € Wy which in a matrix—vector form
translates to Q7 BPv, = B.v.. Thatis, B. = QT BP.
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The overall method (Algorithm 9.5.1 described in Section 9.5) explores solving
small fine-grid constrained minimization problems in addition to a global coarse con-
strained minimization one. We note that here the coarse matrix used in the algorithm
is PT AP (which is different from A, provided by the coarse discretization).

B.6 F.e. discretization of Maxwell’s equations

An H (curl) formulation for the electric field

Without entering into much detail, the time-dependent Maxwell equations are de-
scribed by five vector fields E, H, D, B, and J plus one scalar function o which are
related as follows

oB
curlE = ——,
at
oD
curl H= — +]J,
at
divD = o,
divB =0,
do
div] =——.
iv]J o

Here D and H are the densities of the electric and magnetic flux and under some
assumptions about linearity the following relations hold for some known positive
coefficients € and p,

D=c¢E and H=p."'B.

Theoretically, these equations are solved on R>. In practice, this is done on a bounded
domain 2 imposing boundary conditions such as

Exn=0 and B-n=0o0nodS.

Using the above relations, assuming that J is known, we end up with the following
system

oB
curlE = ——,
at
oeE
1w 'B=—+1].
curl 5 +J

After a time discretization t,4+1 — t, = At, the following reduced problem for E,, 4|
is obtained

1

€E,i1 + (AD? curl ptcurl By = €E, + (A1) (curl ™ 'B, — Jug1).

Lettingu = E; 41, ¢ = fand o = (At)z,u’l, we have the following second-
order PDE

curl ¢ curlu + fu =f
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subject to u x n = 0 on 9$2. We consider it in a “weak sense”; that is, for any test
function v using integration by parts and the boundary conditions, we arrive at the
identity

(¢ curlu, curl v) + (B u, v) = (f, v). (B.49)

The space of vector functions from L, (€2) that have a well-defined curl in the L;-
sense is denoted by H (curl, €2) and if the functions satisfy the boundary condition
u x n = 0on df itis denoted by Hp(curl, €2).

We now describe the f.e. discretization process in more detail. Introduce a tri-
angulation 7, of Q consisting of tetrahedral elements 7. A popular choice of finite
element space is the lowest-order Nédélec space

Qn={p € Hy(curl, Q): ¢olr =a+bxx, T €7}.

Here, a, b € R? depend on T'. The latter definition more specifically means that the
tangential components ¢ - t, of any ¢ = a4 b x x are continuous on the edges e of all
T's. Note thatevery T has 6 edges and there are 6 degrees of freedom (the coefficients
a and b of ¢ restricted to 7') to be specified. A natural choice then seems to be the

quantities
f ¢ t.do

e

for all 6 edges e of T. Let 52 be the set of interior edges (w.r.t. 2). To define a
Lagrangian basis {(oe}eeg;l) of Q, weletg, = ¢,(x) = a.+1/|e| be X (X, —X) where
X, 1s the midpoint of the edge e. Then the Lagrangian condition fe’ @, tydo=34, ,
reads, for ¢ = e,

1
— = Qe tEa
le]

and for ¢ # e, based on the vector identity (p x q) -r =p - (q X 1),

1
0= (ae + — be X (X, — X’"e’)) “ty

le]

1
=a,-t, + H ((Xm, — me,) X t,)-be.
Note that a,, b, = O(h~') and hence curl ¢, = 1/le| (—2b,) is order Oh™?),
whereas ||goe||% ~ O(|T|h=2) = O(h). This shows that the entries of the element
stiffness matrix Az = (a(@,, @.)), ,/,r are of order O(« h~' + Bh). Finally,
notice that forx € el, 9.(x)-t; = (a,+1/|e| be X (X, —Xm ,)) -t = const, because
then x — x,, , is parallel to t, and hence b, x (X, , — X,) is orthogonal to t,. This
shows the global continuity of the tangential components of the basis functions ¢,.
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A direct construction of the Lagrangian basis {¢, } of Q, is as follows (e.g., [SLC]).
Introduce the scalar piecewise linear basis functions ¢y, associated with every vertex
X; € Nu. A compact definition is based on the nodes x; which are the orthogonal
projections of X, onto the opposite (to X ) face Fy of T. More specifically, we have

¢x, (X) = (X — X) - (X — x).

Xk — x|
We easily compute the gradient of the basis functions, namely, Vg = 1/(|xx —
x;|2) (xx — Xx}). Then, because t, = €, 1/(|xx — x;|)(xx — x;) (¢, = 1 or —1) and
(xx — x3) - (x; — xz) = 0 (noting that x;, x; € F), we have

1 1 €e

T*P (Xk —XZ) € ————(Xk — X)) =
k

——.  (B.50)
[Xk [xx — x| Xk — x|

V‘ka te =

Similarly,

€e

Voy - te = (B.51)

Xk — x7|°

The Nédélec (vector) basis function ¢, fora givenedge e = (Xx, X;)is then defined as
Ve = ¢x Vox, — 0x; Vox.

We notice that ¢, - t,; = 0 for any edge ¢ different from e. This is true because either

Voy, -ty = 0or gx, (x) = 0 for x on e. Also, for x on e, using (B.50) and (B.51),
we finally obtain

Q. te =0 Vo - t, — o5, Vi - te

76(‘;0&( + §0X1)
Ixr — x|
€e

Xk — x|

We used the fact that the scalar basis functions {gx;, }x;cA;, sum up to unity and the
only ones that are nonzero on e are ¢y, and @y, ; that is why ¢, + ¢x, = 1 one.
We are interested in solving the following variational problem,

Findue Q;, : (acurlu,curlv) + (Bu,v) = (f,v) forallve Q.

Once having a basis {¢,},. £ of Qy, , we can compute the stiffness matrix of (B.49).

It consists of two parts, a weighted mass matrix G = ((8 ¢, ¢.)), . c&? and

a curl-term C = ((« curl ¢, curl ¢,)), ,/.c0. Compute also the r.h.s. vector
’ h

f = ((f, ‘Pe))eeg;g and expand the unknown solutionu = )" gy e Pe in terms of

the basis of Q. The coefficient vector u = (), £ is the unknown vector. After the

discretization, we end up with the system of linear equations, letting A = C + G,

Au ="f.
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Each unknown (degree of freedom) is associated with an edge e from 8}?. The problem
can get very large when i — 0. Thus, we need an efficient (iterative) solver, of optimal
order if possible. We prove in Section F.2 an optimal MG convergence result for a
parameter-dependent H (curl)-form corresponding to § = 1 and « being a constant
T > 0 which can get large. For the purpose of that analysis we need to look at
the diagonal of C. It equals T diag((curl ¢,, curl ¢,)), £9- Because curl ¢, =
(1/1le])(=2b,) = 2Vx, x Vgy,, where e = (X¢, X;) it is clear that b, is nonzero
(because Vgy, and Vg, are nonparallel constant vectors for k # [). That is, although
C is only semidefinite with large null space, its diagonal is s.p.d. and it is spectrally
equivalent to the scaled mass matrix 2 ~2G. This shows the following result.

Proposition B.18. The diagonal of A coming from the parameter-dependent Ho(curl)
bilinear form (u, v) + t (curlwa, curl v) and the lowest-order Nédélec space Qp, is
spectrally equivalent to the weighted mass matrix (1 + th™?) G.



C

Computable Scales of Sobolev Norms

C.1 H*-stable decompositions

This chapter describes a simple construction of H°-stable computable decompositions
of functions based on easily computable quasi-interpolants Q. The main results
are found in [BPV99].

The quasi-interpolants ék we use in practice are inexpensive to realize because
they are based on local projections associated with locally supported basis functions.
The stability of the decompositions we prove is important in several applications
because we can use them to construct optimal-order preconditioners and stable ex-
tension mappings, tools that we frequently explored throughout the book.

C.2 Preliminary facts

Consider a given Hilbert space V, (.,.) and let {Vi} be given nested subspaces
of V(ie, Vi C V, C --- C Vi C V). In this section we first show that the
norm |(v)|f, = > A ll(Qk — Qk—1)v||* which is based on a given orthogonal (in
the given inner product (.,.)) projections Q: V + Vi can be characterized
|(v)|? ~ > Al (Qk — Qx_1)v||%, based on other (in some sense simpler) opera-
tors §k~ V + Vj such that ék are first uniformly coercive on Vj, the differences
Ok — QO have certain approximation properties, and finally, the following commu-
tativity property Qx Qr = Qy holds.

A main application of this result is a characterization of the norms in the Sobolev
spaces H* for real s in the (open) interval |s| < 3/2.

A specific choice of Qy in the case of nested finite element spaces Vj of continuous
piecewise linear functions obtained by successive steps of uniform refinement, is

(k)
~ v, @; . .
Orv = E ©.¢ ) ) {(pi(k), x; € Ni} isabasisof Vi, e= E goi(k).

(k) 7i
XieM (es goj ) Xie-/\/k
.1

457
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Here, Ny is the set of nodes (degrees of freedom) associated with the kth-level grid
and {(pi(k) }x;eN; form a Lagrangian (nodal) basis of V.
We are interested in the possible stability of the decomposition

Z(ék — Qk-1)v, (C.2)
k

for functions v € H* for all s in an interval. In the case of piecewise linear finite
elements we have |s| < 3/2. More specifically, we are interested in the stability of
the decomposition (C.2) with respect to the following norms,

()7 =D Ak — Qo]
k

where A; < A ;41 depend on the specific application.
In what follows we prove that the decomposition (C.2) defines an equivalent norm
to [(.)]s; namely,

o2 =3 25110k — Ox—1)vII%.
k

The latter one, in contrast to |(v)|s is easily computable if the actions of ék are easy
to compute. The latter is the case for the quasi-interpolants defined in (C.1).
In practice, we use finite sums for finite element functions; that is

J
v=" (O — Or1)v, letting0; =1, and Qo =0. (C.3)
k=1

Based on the above finite decomposition of V = V; we may construct iterative
methods (or preconditioners) if a computable basis is available in the coordinate
spaces Wi = (Qk — Qk—1)V. Other application of the decomposition is to construct
bounded extension mappings. That is, we have a function defined on a boundary of
a given domain, and then construct its extension in the interior of the subdomains by
trivially extending each component (Qy — Qk—1)v by zero in the interior kth-level
nodes. Note that this involves interpolation to represent the data on the finest-grid.

In both cases, the fact of main importance is to have the decomposition stable in
a proper Sobolev norm of interest for the particular application.

We finally mention that to build an additive preconditioner we do not actually
need a computable basis in the coordinate spaces Wj. Indeed, for a given bilinear
form a(.,.) on V x V, which defines an operator A : V +— V, we consider the
preconditioner 5 : V +— V based on the bilinear form

Bv,w) =Y 1 ((Ok = Ok-D)v. (Ok — Ok-Dw),  v,we V.
k

Here, 1; = SUPyey; (Av, v)/||lv||? stands for the spectral radius of A restricted to the

subspace V. Based on the symmetry of é ;j we come up with the following form of B,

B=Y 30k — Qr-1). (C4)
k
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It is clear that the actions of 5 are computationally available without explicit knowl-
edge of a basis of Wj.
Based on our norm-equivalence result (that we prove next)

a(BAv,v) ~a(v,v), allveV.

we obtain that B~ is spectrally equivalent to A.

As an example, consider the model bilinear form, a(v, w) = r’l(v, w) +
(Vu,Vv),u,v € Hé (2), where T > 0 is a parameter. We can show that the
energy norm (a(v, v))!/? is equivalent, uniformly with respect to z, to |(v)|; with
Aj =1 422/ The latter is the spectral radius of A restricted to V;. Based on the
analysis that follows, we are able to consider parameter-dependent norms with

A=t 42%, (C.5)

The estimates we prove [[v|l, =~ |(v)|s appear independent of 7. Examples of
parameter-dependent bilinear forms arise from discretizing time-dependent Stokes
problems. In summary, decomposition (C.2) or (C.3) is stable in H® for any
s: |s| < 3/2 uniformly with respectto T > 0.

The main result of the present chapter given in the following section proves
stability of the decomposition (C.2) in an abstract Hilbert space setting. We then
verify the assumption for uniform coercivity of the quasi-interpolants Qy (restricted
to Vi) provided the respective mass (or L-Gram) matrices are uniformly sparse. The
latter holds in the case of uniformly refined meshes.

C.3 The main norm equivalence result

In this section we prove the main norm equivalence result in an abstract Hilbert space
setting. Let V, (., .) be a given Hilbert space and V;_; C V; C V be subspaces
such that C = Zj V; is dense in V. Consider Q; : V + V; the (., .)-orthogonal
projections. Due to the density lim; . [|Qjv — v|| = 0 for any v € V. We assume
that _J « Vi 1s contained in a scale of spaces H for any real s € (—so, o), a given
interval. In our main application, so = 3/2. Let ||.||s be the norm of H.

For a given sequence {A;},0 < A; < 441, define the scale of norms

()7 =A@ — Q- vl* (C.6)
J

We notice that |(v)|o = ||.|| and we assume that Hy = V; thatis, ||v]lo = ||v]|. Finally
we assume that the spaces satisfy
(D “Inverse” inequality,

Ivlle < Crh;%llvllo, v eV

To be specific we let h; =27/,



460 C Computable Scales of Sobolev Norms

We assume now that there exists a sequence of operators ék : V = Vi which
satisfy:
(A) An “approximation property”:

160k = Ovllo < Cahfllvlle, o =0,
(C) “Uniform coercivity” of ék when restricted to Vj; that is,
5||vk||2 < (ékvk, vx) forall vy € V. (C.7)
(P) A “commutativity” property:
0k Ok = Ox.

Because Qy is a projecti0n~0n Vi, we have ék = Ok ék, which shows the
commutativity Oy O = QO Ok.

Theorem C.1. Under the assumptions (A), uniform coercivity (C), and the commuta-
tivity property (P) for Qx, based on property (1) of the spaces V|, the following main
norm characterization result holds.

Ioll? = 2510k — Oc-1vli§ =~ [w)I2,
k

if the unit lower triangular matrix L = (L, ), with nonzero entries,

(A s/2
b j= Q) (r) . k= (C.8)
J

forao = o(s) > 0, has a bounded spectral norm. That is, if

i B
1ol = sup bk bl B C9)

@), () (Zk 5}3)”(2]( §k2>1/2 -

Proof. Let vy = (Qy — ék)v. Assume that |(v)|s < oo for a given s (negative, zero,
or positive). Then choose o0 = o(s) > 0 such that (C.9). Consider the expression
with any finite number of entries,

DAk — Ol
k
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Then, based on the commutativity (P), Cauchy—Schwarz inequality, the approximation
Rgoperly (A), and the inverse inequality (I) used consecutively, letting vy = (Qx —
Qr)v, we obtain

D ROk = O0vlIG = Y 2 ((Qk — OOV, (Qk — Or) Qkv)
k k
=Y M (k= 00 Y _(Q) — Qj-1)v)
k

Jj<k

=31 ) @ (@ — B0(Q) — Qj-1)v)

k j<k
<Y A kol (Qk — Qi)(Qj — @j-1vllo
k Jj<k
<31 IwelloCahZ 1(Q; — Qj-Dvlla
k j<k
< DAY lwklloCakf CrhT7 Q) — Qj-vllo
k Jj<k
N a2 o 5/2
=CACIZZ<2—0> <x_> o oellon!
k j=<k J

% 1(Q; — Qj-Dvllo
s/2 s/2
=CaCr Y Y b2 P uellor’ 1@ = Qj-1)vlo.

k j<k
(C.10)

Therefore, based on the norm bound of the lower triangular matrix £, we get

N 1/2 1/2
> A0k — Covlif < ILICAC [Z x;invkn%} [Z A;H(Qj—Q,-_l)vn%]
k k j
1/2
= |LICACs [Z x;invku%} (V)] (C.11)
k
The latter inequality shows that

~ 12
[Z W10k — Qk>v||%] < ILICACI{V)l;- (C.12)
k

The estimate is independent of the number of terms in the above sums, thus by taking
the limit, the estimate remains valid for infinite series.
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Now, use the fact that é k are uniformly goercive on Vi, and because é ¥ Ok = é ks
we arrive at the inequalities (vx = (Qx — Qr)v),

ijx,in(Qk - 0ol

<571 M0k (Qk — Qn)v. (Qk — Ox)v)
k

=51 Z)\i(ék - é%)v, Vk)
k

=571 "2k = 00 Oxv, vi)
k

=51 Zki((Qk — 01 Z(é/ - éj_l)v, k)
k

j<k

=671 ") (k= 0(Q) — Qj—1)v. ve)
k j<k
1/2

1/2 - -
< a—1||£||cAc1[Zx;§||vk||%] [Zk‘}ll(Q/ - Q,_l)vn%}
k J
1/2
=8—1||£||CACI[ZAi||vkn%} ol
k

The last two rows of the above inequality are proved in the same way as the last six
rows of (C.10)—(C.11) combined. Therefore,

N 1/2
[Z M0k — Qk)vn%} <s7HLICaCrlvlly- (C.13)
k

Based on the decomposition (ék — ék—l)v = (ék — 0V — (ék—l — Ok_v +
(Qk — Qk—1)v, we get the estimate from above

- - 1/2
ol = [szn(Qk - Qk_ovn%} < (L+20LICACDIW)s-  (C.14)
k

Similarly, using the identity (Qx — Qx—1)v = —(Ok — Qi)v + (Ok—1 — Qk—1)v +
(Qk — Qk—1)v, we obtain the following lower bound,

1/2
|<v>|s=[meQk—Qk_l)vn%] < (1+257YIZIICACD V]l (C.15)
k

Thus the proof is complete. m|
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Corollary C.2. Consider the following particular cases
®H ;= 22J. Then the entries of the lower triangular matrix L read

1 \k—J A 5/2 1 \kJ
welx) () =(=)
J

It is clear then, thatif o > 0 and o > s, that ||| <2°75/(2°75 — 1).
(i) A parameter-dependent norm: Choose

Aj=1142%

for a given parameter T > 0. Then, if s < 0, we have { ; = (1/20)k=J
e /2j)? < (1/2°)%=J and it is clear then that | L] < (2°/(2° — 1)). For
s > 0we have (k > j):

1
20

(1 )
(=) ( )
1 k—j (23)/6 - 2k+‘L’ s/2
(2_0> @y ( )

()

It is clear then that ||L]| < 2°75/2°7% = 1)) ifo > s.
In conclusion, the spectral norm of L is bounded uniformly in T > 0 for any s if o is
appropriately chosen; namely, for s < 0 any positive o is appropriate, whereas for
positive s it is sufficient to choose 6 > s to bound the norm of L.

5/2

272 41

C.4 The uniform coercivity property

We show at the end that the quasi-interpolants é « defined in (C.1) satisfy the uniform
coercivity bound (C.7). The assumption is that any subspace Vi admits (., .)-stable
Riesz basis {(pi(k), x; € Ny}, foragiven set of degrees of freedom x; € Ny. In the case
of finite element spaces, Ny is the set of nodes associated with a standard Lagrangian
basis {<p.(k)} Also, as it is well known, the nodal Lagrangian basis is an L>-stable
Riesz basis. The latter means that the Gram matrices Gy = {(gajk), ga(k))}xl xjeN; are
uniformly well conditioned,

k
(v,v) = vTGkv >~ 6 Z vi2 = kaTV, allv = Z vigai( ), V = (Vi) x;eN;-
xi €N xi €Nk
(C.16)
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In other words the scaled inner product 6, 1(.,.) is bounded above and below by the
coefficient vector inner product v/ v uniformly w.r.t. k > 0.

Finally, we assume that G are uniformly sparse, namely, that the number of
nonzero entries per row is bounded by a number m( independent of k > 0.

~

The quasi-interpolants Qy of interest read

~ , o) (k) (k)
Q=Y —i—y veV.e= Y o (C.17)

(k) i i
xiENk (e’wi ) x,'G./\fk

k) (k)

In what follows we assume that (¢;"’, ¢ i ) > 0. This makes the operators in (C.17)

well defined.

We first remark that because (v, gai(k)) = (Qyv, <pi(k)) (by the definition of the

projection Q) we immediately get that Qxv = Qy Qv; that is, the commutativity
property (P) holds.

Consider the coordinate unit vectors ¢; = (§; ;) xjeNi> Xi € Ni. Itis clear then,
that the following matrix—vector representation holds,

~ v Gre)’
s = —_—, 1 = i
(@0 = 3 Sro Y e
xiENk xiENk

Based on the decomposition v = in Ny ((GkV)Tei)Glzle,', we get

(v,v) = v Ggv
T
= ( Z (VTeri)e,-) Gk1< Z (vTer,-)ei>
xi €Ny xi €N

<max[G{'T ) (VI Grei)?.
Xi GM

Therefore, the following estimate is obtained,

(Qrv, v) .
= > iminlG [
(v,v) — min[ G ] x?;lx{lfk 17Ge;

Based on the assumption of uniform sparsity of the Gram matrices Gy, that is,
that the number of nonzero entries per row of Gy is bounded by an integer my =
O(1), uniformly in k& — oo, the expression 1 /(ITer,-) is estimated below by
(1/mo)(1/(Amax[Gk])). Indeed, because at most m terms e/Teri in the first sum
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below are nonzero (these indices j define the set Z(i)), we get

lTeri = Z eJTer,-

J
1/2 1/2
< Z (eJTerj) / (e] Gre;) /
JEL()
< dmax[Gil ) llejlllle |
JEL()
< Amax[Gr] mo.

That is, the desired uniform coercivity estimate (C.7) takes the final form

(Qrv.v) 1

(v,v) ~ mpCond(Gyg) = oM.

465
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Multilevel Algorithms for Boundary Extension
Mappings

In the case of matrices A coming from a finite element discretization of second-order
elliptic PDEs, on a sequence of uniformly refined meshes the following construction
can provide a bounded extension mapping in the A-norm. We derive the matrix—vector
form of the resulting extension mapping E suitable for actual computations. It
becomes evident that E” also has computable actions. These are found in expressions
(D.3) and (D.4) that represent the main result of the present section.
Note that both
E= [E(I”’} and ET =[E},, 1]

are needed explicitly to get the stable two-by-two block form of the transformed
matrix [J, E1TA[J, E], J = [(I)] (cf., Section 3.4.1).

We assume that a finite element function v is defined on a boundary I'" of a
domain 2. We extend ¥ in the remaining part of €2 to a finite element function v,
achieving certain norm-boundedness of the extension. We assume that there is a
sequence of easily computable boundary operators gi : V|r +> Vi|r corresponding
to the restrictions (traces) of nested spaces Vy_1 C Vy C --- C VL = V. Let E,? be
the trivial extension of a kth-level function given on Vi |r to a function that vanishes
at the remaining dofs in €2. The coefficient vector of a function v is denoted v and if
v € Vi its kth-level coefficient vector is denoted vi. The coefficient vectors vi
restricted to the kth-level dofs on I', 'y, are denoted ﬂ P = Vilr,. The intergrid

transfer mappings for vectors in the domain €2 are denoted I,f“, I,f 4 = (I,f“)T,
whereas their restrictions to I' are i,f'“, illgﬂ = (i]k‘H)T. Note that here, k + 1 is a
fine-level and k is a next coarse-level. Finally, let Ay stand for the kth-level degrees
of freedom at the kth-level grid. We have I'y C N;. We need an inner product (., .)
defined for functions on I" and let {(pi(k) Jx;eN; be a Lagrangian basis of the space V.
This means <pl.(k)(xj) =§;jforx;, xj € N%. The restrictions of (pfk) forx;el"'toT
will then span the trace space Vi|r. Finally note that the coefficient vector of basis

467



468 D Multilevel Algorithms for Boundary Extension Mappings

function <p§k) is simply the coordinate unit vector

0

e =

S = O

0

with the only nonzero entry 1 at position s. Finally, let

1
1

T ST
xs€lx 1

_1_

To be specific we consider the following boundary operators,

k
(¥, %(' )) (k)

asz ) Ps
s )

st xs€lg (1’ %

In a matrix—vector form, we have

. k1Y (k)
ikw _ Z ﬂTgL(lIl“_l...lk+ )es e(k)'

T, oK) $
1

st xs€l 8k€s

Here, gk = (((pﬁk), <pl(k))) x;, xely 18 the kth-level boundary Gram matrix correspond-

ing to the basis {gofk)}xjerk.

Also, we let di = g; and for k < L introduce the diagonal matrices dy =
diag{(grlr)s : xs € I'}.

The extension mapping E is defined based on the following decomposition of any
function ¢ defined on T,

L
V= G — g1V
k=1

where g7, = i is the identity on I" and go = 0. Because E,? is the trivial extension (by
zero at the kth-level grid) of boundary data in the interior of the domain, then (E,?)T
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represents restriction to the domain boundary, at the kth-level grid. The extension
mapping E of our main interest is defined by

L
EY =Y E}G — G-V

k=1
For k = L we let ﬂL = ﬂ, d; =i = identity. For k < L, we let

Y, =ifeLy =ity -ip ey (D.1)

Let g, = i (the identity) The Vector representation of (Gk — Gr— 1)1ﬂ is d ! v, -

i]k(—ldk_—llfk,l = =ik a7 k )lﬂ Finally, introduce for k =

WL = (3L —if_qdp! 1% )gL@
and fork < L,
we = (d ' =iy d i 1)lllc{+1 if_lé’Lﬂ (D.2)

Then, the matrix—vector representation of the extension mapping takes the form

L
Ey =Y If - I E{w

L k1 20 =1y ik L1
=Y Iy BT ENd — i d i i i ey (D3)

Note that the matrix vector form of E,? has the simple form,

0i| N\ Tk

0
Eka = |:Wk Fk

Therefore the adjoint to E takes the form
k 1 1k g1 k=1 L—1
_3LZlL e =i i ED a1 D)

The boundedness of E in the A-norm can be proved by assuming that the energy
norm based on A can be characterized by a norm induced by certain projections

{Ok} : V +— Vi with respect to an inner product (., .)g, in the sense that we
first have

L L

Y WHEDTAERwe <) ha I EJwill

k=1 k=1

~ inf D alwlg~ inf vTAv.
p v vlp=y

v=) ; Ukt vlp=
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Here, Ay = 0(Ax) = maxy, (VkTAkvk/||vk||(2)). That is, we have assumed the norm
equivalence, v/ Av ~ ok Ak IOk — Qk,l)v||(2) and similarly, we have assumed that
the norm introduced by the Schur complement Si of Ay to Iy, is characterized by

YISy~ 0 @G — G0yl
k

Here, 0, ~ Ay supwk(||E,?1ﬂk||%/||1ﬁk||2). For finite element matrices coming from

second-order elliptic PDEs, we have A, = hk_2 and 6y = h;l where the |.|lo
norm stands for the integral L, (£2)-norm and ||.|| stands for the boundary integral
Lo (I")-norm. See the next section, for characterizing the HO1 Sobolev norm naturally
associated with the weak form of the Poisson problem. The motivation of using the
computable boundary operators g is that the trace norm on I is typically charac-
terized (for finite element matrices A coming from second-order elliptic PDEs) as
the Sobolev space H'!/?(I")-norm, and the latter has a computable counterpart as
described in the present chapter.

Multilevel extension mappings were considered in [HLMN], [0s94], and [Nep95].
The decomposition based on the quasi-interpolants g was analyzed in [BPV99].



E

Hol-norm Characterization

In this short appendix we present in a constructive way an HO1 (£2)-norm characteri-
zation. First the result is proven for a domain €2 which implies full regularity for the
Poisson problem,

—Au = f(x), x € Q,
subject to u = 0 on 9€2. Full regularity means that

lull2 = C 1l fllo-

Such a result is available in the literature for €2 being a convex polygon. Then, we
extend it to more general domains by using overlapping decomposition of €2 into
convex subdomains.

E.1 Optimality of the L,-projections

We assume that € is triangulated on a sequence of uniformly refined triangulations
with characteristic mesh-size h; = h02’k, k > 0, and it is well known that the
respective finite element spaces of piecewise linear functions Vi, = Vj,, satisfy UVy =
Hé (€2). Define the Ly-projections Qk : L2(€2) — Vi. Then, we can prove the
following main result,

> 10k — QeI =~ Ilvll7. (E.1)
k

More generally, we have the following main characterization of HO1 (),

llf~ _inf > R el (E.2)
k

”:Zk Vi, VK€ Vi

First, we prove the result for convex domain 2. To this end let us define the elliptic
projections 7 : HO1 (2) : > Vi in the standard way as

(Vmrv, Vo) = (Vv, Ve), forall g € V.
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Because Q2 is convex, we have full regularity for the Laplacian. Therefore, m;_;
exhibits an optimal Ljy-error estimate; that is, we have ||[v — mx—1v|lo < Chg|lv|l1.
Based on this estimate used for v := (my — 7mx—1)v and using the HO1 -orthogonality
of the projections w, we have

th (e — -l < € Z”(”k_”k Dol
= CZ livl? — Ime—1vl3) = Joll3.

This shows that the r.h.s. of (E.2) is bounded in terms of ||v ||f (for the convex domain).
For a more general domain €2, we assume that it can be split into overlapping convex
subdomains €2,,, m = 1, ..., mo for a fixed number m(. The decomposition is such
that for any v € HO1 (€2), we can find an Hol-stable decomposition v = Zm v, With
each term supported in the convex subdomain ,,. Stability here means that we
have the estimate ), ||, 1> < C ||v||%. Because for every component v, (which
is supported in the convex domain) we can find a stable multilevel decomposition
(also supported in £2,,), thus a stable decomposition of the finite sum v = > Um
is constructed which proves that the r.h.s. of (E.2) is bounded in terms of lvl1?,
now for the case of more general domains €2.

We show next that the decomposition based on the L-projections Qy is qua-
sioptimal (for a general, not necessarily convex domain). This follows from the
following chain of inequalities, using the fact that Oy are L,-symmetric and that

(Qk — Qk—1)* = Ok — Qi1 letting v; = (Q; — Q- 1,
D BNk — Qe-vlig =Yk (Qk — Qx-1)v, v)
k k

= th2<(Qk — Qk-1v, Zv/)

Jj=k
<th 10k = Q-1)vllo Y lIvjllo
j=k
-1 —1
—ZZ R @k = Qivllo) 5 vjllo
k ]>k
1 _ _
<C 22> 5 @i = Qeyvllo)h vj lo-
k j>k
That is,
1/2
_ I
D NQ = Qs < C | 300 57 hic*1(Qk = Qe)vll§
k k j=k

1/2

1 -2 2
I IECYTEI:
Jok=j
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1/2
< C(Zh,:2||<Qk - Qk_ovn%)
k

1/2
x (Z h;2||vk||%> :
k

That s, the decompositionv = Y j(Qj—Qj-1visquasioptimal. This (together with
(E.3) below) shows the well-known norm characterization (E.2) of Hé (€2) originally
proven by Oswald [0s94]; see also, [DK92].

To prove the other direction of (E.2), we proceed as follows. For any decom-
position v = Zj vj, v; € V;, and for a fixed a € (0, %), using the inequality
(P, q) < |Ipllellgll—« and appropriate inverse inequalities, we have

||U||% = Z <V(7Tk — Tk—1)V, Zij>

k j>k
<Y D = me )Vl 10)h-a
k j>k
<CY Y hlen — me-)vlhhT e vl
k j>k
1\/™* .
=CZZ<2—a> G = -l (A7 ;o)
k j>k
. 172
1)/ * 5
<cC ZZ(Z—C,) Gt = )l
k j>k
) 1/2
LY
<2225 ) Al
Jok=j
1/2
<C/1-27% ||v||1(Zh,2||vj||%) : (E3)
J

This shows the remaining fact that ||v ||% is bounded in terms of the r.h.s. of (E.2).

Explicit construction of a continuous HO1 -stable decomposition with components
supported in convex polygons was shown in Lions [Li87] for a model L-shaped
domain 2 with mo = 2. We present this example next.

Example E. 1. Given the L-shaped domain €2 shown in Figure E.1. Consider the fol-
lowing cut-off function

1, x<0,
bx b
1——, (x,)eT=31>y>—-x,0<x<ay,
X = ay a

b
0, y<-—-x,xel0,al]
a
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—a

Fig. E.1. L-shaped domain Q2 partitioned into two overlapping rectangles Q1 = (—c, a) X
0, b) and 2y = (0, a) x (—a, b).

Its gradient is nonzero only on 7" and it equals

1
Vx =g xy
12
On T, we have
ﬁ < ﬁ and ! ! .
y2 T b? x2+y2_;7l_;y2+y2

This shows that

v 2_b21 x2 b 1 a? a?
Var=an e s e el e

The decomposition of our main interest reads
v=xv+ (- v

Note that v = yv is supported in the convex domain (rectangle) 21 = (—c, a) x
(0,b) and v, = (1 — x)v is supported in the convex domain (rectangle) 2, =
(0, a) x (—a, b). To show the desired H(}—stability, we have to estimate |vq| in terms
of |v|1. We have

/|VU1|2 dx < 2/v2|Vx|2 dx+2/x2|Vv|2 dx
Q Q Q

2
<2 [t axee [ ot

Q Q
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The stability follows due to a classical inequality

2
/ ;}i dx < C v,
J dist” (x, 02)

valid for HO1 (2) functions.

A more general approach of establishing Hol—stable decompositions supported
in convex subdomains is based on the following simple construction. Let Q2 be a
polyhedral domain and let 21 U 2 provide an overlapping partition of 2. In the
application, when €2 comes with a triangulation Th we assume | that Q2 and € are
exactly covered by elements from 7j,. Let Q 1 = 21 N and Q=0 1\ Q 1. Then,
Q= 91 U Q is separated by an interface F Givena ¢ € H () then g = ¢|r

as a trace of HO1 function will belong to H0 o (F). Therefore, g, the zero extension

of g on 8@1 \ I will belong to H1/2(8?21). To construct a stable component vy
of v supported in €21, we extend v|q,\@, through I" into the remaining part of €2,
Q1 = Q1 N Qy, by solving the following Dirichlet boundary value problem,

-~

—AvY =0in Ql subject to V|5, = §.
The following a priori estimate holds

Wl < C I8N0 53, < C gl iy
Then, based on a trace inequality

I8l 502y < € 0l 3, < Clol,

we find that the harmonic extension is stable in H!. The function v 1 defined as v on Q I
asy on Q) and zero outside belongs to H() (£2) and by construction is stable; that is,
we have |v1|; < C |v|;. Assuming that 2 is convex, the problem is reduced to even-
tually further decompose vy = v —v; which is now supported in a smaller domain £25.
The process can be repeated several times until all “eliminated” subdomains are con-
vex and they cover 2. The constants in the stability estimates will depend on the size
and shape of the subdomains, which to a certain extent is under our control.

E.1.1 H(}-stable decompositions of finite element functions

Assume now that v is a finite element function from a f.e. space V}, vanishing on
a2 where 2 is a polygonal (in a general nonconvex) domain. Let {€2;} be a finite
set of convex polygons that cover 2. We assume that v = >, v; is a Hol(SZ)—stable
continuous decomposition such that the components v; are supported in ;. Stability

means that
2 2
> il = € i
i
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‘We want to construct an Hé (€2)-stable finite element decompositionv = ), vf’ with
vl.h supported in ; as well. We assume that the given triangulation 7}, is aligned with
the boundaries of the polygons ;. Let {¢;} be a nodal basis of V}. Denote the set
of interior (to ) nodes by N. Then the nodal basis function 19 is associated with
the (interior) node x; € Nj. Consider the quasi-interpolant Qh and let Q(l) be the
quasi-interpolant associated with the finite element space V; of functions from Vj,
that are supported in ;. The finite element H '-stable decomposition of v then is
constructed from the representation

v=uv-— hU+Z (0} — On) vl+ZQ§,')vl

Wenotethatw = v— Qh v—l—z (Q(’) @h)v,- is smallin L due to the approximation
properties of Qh and Q;l’). We have ||v — éhvno < Ch |vl|1, and ||(§g) — éh)vi lo <
||§§li)vi —villo + |lvi — éhvillo < Ch |vi|1. That is, based on the assumed stability
of {v;}, we have [w(3 < CR2([v[3 + Y, |vi|?) < Ch? |v|3. Finally, we decompose
w = Zi w; where w; = ijegj(l/dj)w(xj)gaj so that each wj; is supported in €2;
and d; stands for the number of subdomains that contain the node x;. It is clear that
{w;}is HO1 stable because based on a standard inverse inequality, and the equivalence
of the discrete ¢, and integral Ly norms, we have

D lwilf = €2 Y Hwillg < €AY wrph? < Ch flwli§ < [vlf
i i Jj

The final decomposition reads

= (i + 0} v,

i

which is Hol—stable. We already proved that {w;} are stable. Based on the Hol—stability
of Q(l) and because {v;} come from a continuous HO1 stable decomposition the over-

all stability follows. Finally, note the ith finite element function w; + Q 5 Vi 1s sup-
ported in €2;.
To summarize:

Theorem E.2. Under the assumption that the overlapping subdomains {2;} are mesh
domains, that is, they are covered exactly by the elements from a given quasiuniform
triangulation Ty, the existence of continuous H'-stable decomposition v = > vi
with functions v; supported in Q; implies the existence of a similar discrete H'-stable
decomposition.



F

MG Convergence Results for Finite Element Problems

In this chapter, we apply the MG analysis in general terms from Section 5.3 for three
particular examples, namely, to finite element problems corresponding to the weighted
Laplacian bilinear form a(u, ¢) = v (Vu, Vo) + (u, @), to the weighted H (curl)
bilinear form a(u, x) = v (curl u, curl x) 4+ (u, x), and to the weighted H (div)-
bilinear form a(u, x) = v (div u, div x) + (u, x).In all cases t is a positive
parameter that can get large. The bilinear forms are associated with respective f.e.
spaces S, (the HO1 -conforming space of nodal piecewise linear functions), Q;, (the
lowest-order Nédélec space) and R, (the lowest-order Raviart-Thoma space). We
substantially use the fact that the triple (S,, Qp, Rj) provides an “exact” sequence
which means that VSj equals the null space of the curl-operator restricted to Qy,
and similarly curl Qy, equals the null space of the div-operator restricted to Rj,. For
a proof of this result, we refer to [Mo03].

We follow the “recipes” of Theorem 5.7. Given the stiffness matrices Ay, the
smoothers My, and interpolation matrices Px, we need to find a multilevel decom-
position of any fine-grid vector y; that is, starting with Yo =Y for k > 0, we find
V. = X,{ + szkﬂ such that
(i) The (symmetrized) smoothers M}, are efficient on the components y,{ so that the

following estimate holds,

> ) My < Cy"ay.
k

(i) The smoothers M; are efficient on the coarse components Pkka so that the
following estimate holds,

Z | (M + M — Ak)_(l/z)AkP"XkH “2 =Cy'Ay.
k

(iii) The coarse-grid component y, is stable in energy; that is, we have,

Y,
y, Ay, = Cy" Ay.

477
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In all three applications, we assume that My is the (forward) Gauss—Seidel
smoother coming from Ay (or coming from Ay restricted to a proper subspace).
Then, we know (from Proposition 6.12) that M is spectrally equivalent to the diag-
onal of Ai. Moreover, M; + M kT — Ay is actually equal then to the diagonal of Ay.

In what follows we often use the following result (originally found in [Yhb]).

Proposition F.1. Consider the finite element space of our main interest, the standard
nodal-based H'-conforming Lagrangian space Sy, the lowest-order Nédélec space
Ny, and the lowest-order Raviart-Thomas space Ry, all associated with a triangula-
tion Ty, obtained by refinement of a coarser triangulation Ty. Let Sg, Ny, and Ry
be coarse counterparts of the fine-grid spaces Sy, Ny, and Ry,. Then, the following
strengthened inverse inequalities hold.

(i) Forany @y € Sy, and oy € Sy, we have

(Von, Vou) < Ch= Y2 Yigyllo H-Y2|Vey 0.
1) ror an n € Ny an H € Ry, we nave
(ii) For any ®, € Nj, and ¥y € R h
(curl @y, Wp) < Ch=V2 1@l H=V/2||W 4o
1) ror an n € Ry an H € Ry, we have
(iii) For any W), e R, and ¥y € R h
(div ¥y, div Wp) < Ch= V2 1wy, |l H=V2 || div W o

We first comment that (i)—(iii) are indeed strengthened versions of the directly obtained
inverse inequalities. For example, we can proceed as follows. Apply the Cauchy—
Schwarz inequality to arrive at (Von, Vo) < [IVerllollVer llo, Then, after using a
standard inverse inequality, we arrive at (Vgy,, Vog) < Ch~YenlolVeu llo which
is a much weaker estimate than (i) if h << H.

Proof. We prove only inequality (i). The remaining two inequalities (ii) and (iii) are
similarly proved. We only mention that to prove (ii), we notice that for the lowest-
order Raviart-Thomas space Ry, the elementwise curl of ¥ ; € Ry on every coarse
element T € 7y is zero. For every coarse element T € 7y use integration by parts
to reduce the integration to 7. We have

(Ven, Vo)t =fV¢h~V¢H dX=f¢h(V‘PH -n) do.
T oT

‘We used the fact that Vo is constanton 7. Now, use the Cauchy—Schwarz inequality
and standard inverse inequalities to bound boundary integrals in terms of volume
integrals (valid for f.e. functions), to arrive at the local strengthened inverse inequality

(Von, Vot < llgnllo. ar Vol a7 < Ch~ Y2 Youllo. 7H=Y? |Veullo, 7.

The global strengthened inverse inequality (i) is obtained by summation over T € 7y
and using the Cauchy—Schwarz inequality. O
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F.1 Requirements on the multilevel f.e. decompositions for
the MG convergence analysis

As a first step of the analysis, we reformulate the items (i)—(iii) in terms of bilinear
forms and f.e. functions, because we exploit specific multilevel decomposition of the
respective finite element spaces used, Vj. Here Vy = V}, stands for the f.e. space on
the finest-mesh (or triangulation) 75, and V, = Vj is the f.e. space on the coarsest-
mesh (triangulation) 7. The triangulations 7; are obtained by uniform refinement
from the initial coarse triangulation 7. We comment that our notation is a bit non-
standard to conform with the notation we used for AMG: level O is finest, and level £
is coarsest. Thus, the kth-level mesh-size is h; = h2k = H2=t k=0,...,¢ and
ho = h = 27 YH is the finest mesh-size, whereas hy = H is the coarsest one. That
is, V41 is a coarse subspace of V.

We use the following convention (unless specified otherwise), for a f.e. func-
tion yg, its coefficient vector is Y, (w.r.t. the given basis of V).

We introduce next the mass (Gram) matrices G associated with the f.e. space
Vi and the Ly-bilinear form (., .). The stiffness matrices A are computed from
the weighted bilinear forms (introduced earlier) and the respective f.e. spaces Vi
(specified later on). A main observation then is that the diagonal of Ay is spectrally
equivalent to Ay Gy where Ay = 1+ 1 h,;z. For the particular H (curl) and H (div)
examples, see Propositions B.16 and B.18, respectively.

From the definition of stiffness and mass matrices, we have for any yk e Vi,

Iy} = ke 0 = ¥ Gy, and a(yk, yi) = y7 Axy,. Let y = 3420 + e

Similarly, for k > 0, let y, = Zj:k ykf + y¢ € Vi. Then, the sum in (i) can be

replaced by

>k I3 5 < Caty, ». (E.1)
k

Similarly, sum (ii) can be replaced first by

Yol P apy, P = Caty, . (F2)
k

Introduce now ﬁ = Gk_lAk Let W, € Vj have coefficient vector i . We have

Yirr
¥, Gy, = W5

We also have, noting that Pk+1zk+l is the coefficient vector of y;4; viewed as an
element form Vi (because Viy1 C Vi),

¥ Gy, = L{Akpkﬂzkﬂ = a(ye+1, W)
That is, we have the identity

IWeld = a(is1, W),
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which used in (F.2) leads to the next equivalent form of (ii)

DO G =D A aOksr, W) < Caly, y). (F3)
k k

MG convergence for weighted H!-forms

We apply the above technique to the parameter-dependent Hé -bilinear form

a(y, ) =(y, @) +7(Vy, Vo), y,0 € 5.

Here 7 > 0 can be a large parameter. We use here the standard HO1 -conforming finite
element spaces Vi = S of continuous piecewise linear functions associated with the
vertices of the elements from corresponding triangulations 7; = 7, that are obtained
by uniform refinement of an initial coarse triangulation 7.

We use the multilevel decomposition y = >, _,(Qx — Qx+1)y + Q¢y based
on the Ly-projections onto the f.e. spaces Sx. We have the major stability estimate
(proven in the previous Chapter E)

D RNk — Qi)Y IG + QeI < C Iy, (F4)
k<t

fors =0, 1. Let y,{' = (Qk — Qk+1)y and yx = Qry for k > 0. Then estimate (F.1)
reads

> eyl 13 =Y + T D@k — Qesn)yIF < C aly. ),

k<t k

which follows directly from (F.4) uniformly in ¢ > 0. The next estimate is (F.3),
which for some W € Sy reads

DO I =D a " aerr, W) < Caly, y).
k k

We have, based on the strengthened inverse inequality (cf. Proposition F.1)
DO g =D A g, Wi

=Y Y0 W) e (Ve V)

Jj>k

— —(1/2 —(1/2
< 3t S () ol ilio + € i 2 wlion s Y21y o).
k j>k
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The sums involving L;-terms are bounded as follows.

A v, lollwillo
k

j>k
12 1/2
<C (Zxklnwkn%) ZA Y el + Z h3 Z s P
k Jj=k+1 Jj=k+1
H 1/2 12
<C— (Zxklnwkn%) (Iy13 + H> 1y13) 7~ (F5)
VT A\
For the remaining part, using A;(l/ 2 < hi/+/T, we have
_ —(1/2 —(1/2
x> i wlon vy o
k j>k
—(1/2) a2 f
<CJvT ZA 1%llo Z( ) 17 llo
Jj>k J
(1/2) -
=CJt ZAk KA 17 llo
NG
Jj>k
1 2 f2 /2
<CVt (Zxk ||wk||o) (Z IVy ||0)
3 j
. 5 (1/2)
<C (Zx,: ||wk||o> VTl (F.6)
k
In the last line, we used (F.4). Combining (F.5) and (F.6) leads to the estimate
1 2 1 H?
SO g =D a4 aur, W <€ (1+7> ay, ),
k k

which gives the desired resultif H?>z~! = O(1).In general, we can use decomposition
with zero components below a level £.. Here, £, is the maximal coarse mesh /4, for
which h%{ 7! < const < h%{ +1r’1. We can choose y,, = Qy, y and at coarse levels

k >E1,wecanlety,{ = 0 and hence yi =Zj>ky =0.

Note that at level £, the corresponding stiffness matrix A, is well conditioned
w.r.t. its diagonal (because then h[rzr =~ (O(1)). Then, the above estimates still hold.
The coarse component O,y (or Q. y) is energy stable, thus we can finally state the
following corollary to Theorem 5.7.

Corollary F.2. The symmetric V (1, 1)-cycle MG based on Gauss—Seidel smooth-
ing applied to the stiffness matrices Ay computed from the weighted bilinear form
a(y, ¢) = (v, @)+ 1 (Vy, Vo) and standard piecewise linear H'-conforming
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f.e. spaces Sy corresponding to triangulations Ty obtained by uniform refinement of
an initial coarse triangulatio