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Preface

The purpose of this monograph is to offer a comprehensive presentation of methods
for solving systems of linear algebraic equations that typically arise in (but are not
limited to) the numerical solution of partial differential equations (PDEs). Focus is
on the finite element (or f.e.) method, although it is not presented in detail. It would,
however, help the readers to be familiar with some basic knowledge of the finite
element method (such as typical error estimates for second-order elliptic problems).
There are a number of texts that describe the finite element method with various
levels of detail, includingCiarlet [Ci02], Brenner and Scott [BS96], Braess [B01], Ern
and Guermond [EG04], Solin [So06], and Elman, et al. [ESW06]. The presentation
here utilizes matrix–vector notation because this is the basis of how the resulting
solution methods are eventually implemented in practice. The choice of the material
is largely based on the author’s own work, and is also aimed at covering a number of
important achievements in the field that the author finds useful one way or another.
Among those are the most efficient methods, such as multigrid (MG), especially its
recently revived “algebraic” version (or AMG), as well as domain decomposition
(DD) methods. The author found a common ground to present both as certain block-
matrix factorizations. This framework originates in some more classical methods
such as the (block-) approximate (or incomplete) LU (or block-ILU) factorization
methods. This led to the somewhat unusual title of the book. The approach, as well
as the specific topics covered, should offer a different view on topics covered in other
books that deal with preconditioned iterative methods.
This book starts with a motivational introductory chapter that describes the class

of matrices to which this book is mainly devoted and sets up the goals that the author
tries to achievewith the remainder of the text. In particular, it describes sparsity, condi-
tioning, assembly from local elementmatrices, and the Galerkin relation between two
matrices coming from discretization of the same PDE on coarse and fine meshes (and
nested finite element spaces). The introduction ends with a major strong approxima-
tion property inherited from the regularity property of the underliningPDE.Aclassical
two-grid method is then introduced that is illustrated with smoothing iterations and
coarse-grid approximation. The motivational chapter also contains some basic facts
about matrix orderings and a strategy to generate a popular nested dissection ordering
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arising from certain element agglomeration algorithms. The element agglomeration is
later needed to construct a class of promising algebraic multigrid methods for solving
various PDEs on general unstructured finite element meshes. Also discussed is the
important emerging topic in practice of how to generate the f.e. discretization systems
on massively parallel computers, and a popular mortar f.e. method is described in a
general algebraic setting. Many other auxiliary (finite element and numerical linear
algebra) facts are included in the seven appendices of the book.
The actual text starts with some basic facts about block-matrices and introduces a

general two-by-two, block-factorization scheme followed by a sharp analysis. More
specific methods are then presented. The focus of the book is on symmetric positive
definite matrices, although extensions of some of the methods, from the s.p.d. case to
nonsymmetric, indefinite, and saddle-point matrices, have been given and analyzed.
In addition to linear problems, the important case of problems with constraints, as
well as Newton-type methods for solving some nonlinear problems, are described
and analyzed. Some of the topics are only touched upon and offer a potential for
future research. In this respect, the text is expected to be useful for advanced graduate
students and researchers in the field. The presentation is rigorous and self–contained
to a very large extent. However, at a number of places the potential reader is expected
to fill in some minor (and obvious) missing details either in the formulation and/or in
the provided analysis.
Specific comments due to Yvan Notay, David Silvester, Joachim Schöberl, Xiao–

Chuan Cai, Steve McCormick, and Ludmil Zikatanov are gratefully acknowledged.
Special thanks are due to Tzanio Kolev for his comments and for providing numerous
illustrations used throughout the book.
The author is thankful to ArnoldGatilao for his invaluable help with editingmajor

part of the text.
Finally, the help of Vaishali Damle, Editor, Springer is greatly appreciated.
Portions of this book were written under the auspices of the U.S. Department of

Energy by University of California Lawrence Livermore National Laboratory under
Contract W-7405-Eng-48.

Livermore, California
March 2007 Panayot S. Vassilevski
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1

A Finite Element Tutorial

This introductory chapter serves as a motivation for the remainder of the book. In
particular, we illustrate the type of matrices that we focus on (but are not limited to)
and describe the need for methods for fast solution of associated linear systems of
equations. In particular, this chapter provides a brief finite element tutorial focusing
on a matrix-vector presentation.

1.1 Finite element matrices

To be specific, consider the Poisson equation here

−�u ≡ ∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
= f, (1.1)

posed on a polygonal domain � ⊂ Rd . Here, d = 3, but we often consider the case
d = 2. To be well posed, the Poisson equation needs some boundary conditions, and
to be specific, we choose

u = 0 on ∂�. (1.2)

Norms of functions in Sobolev spaces

In what follows, we consider functions that have derivatives up to a certain order
(typically, first- and second-order) in the L2-sense. The formal definitions can be
found, for example, in Ciarlet [Ci02] and Brenner and Scott [BS96]. We use the
following norms

‖u‖ = ‖u‖0 =

⎛
⎝
∫

�

u2 dx dy dz

⎞
⎠
1/2

and ‖u‖1 =
(
‖u‖20 + ‖∇u‖20

)1/2
,

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 3
doi: 10.1007/978-0-387-71564-3_1,
© Springer Science+Business Media, LLC 2008
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where

‖∇u‖0 ≡
(∥∥∥∥
∂u

∂x

∥∥∥∥
2

+
∥∥∥∥
∂u

∂y

∥∥∥∥
2

+
∥∥∥∥
∂u

∂z

∥∥∥∥
2
)1/2

.

The latter expression is only a seminorm and is frequently denoted by |u|1. Finally,

‖u‖2 =
(
‖u‖21 + |u|22

)1/2
,

where |u|22 stands for the sum of the squares of the L2-norms of all second deriva-
tives of u.
In general, we may want to explicitly denote the domain τ ⊂ �, for example,

‖u‖τ =

⎛
⎝
∫

τ

u2 dx

⎞
⎠
1/2

.

If the domain is omitted, it is assumed that the integration is taken over the given
domain �.
The spaces of functions that are complete in the above norms give rise to the

so-called Sobolev spaces of the given order.
Also, sometimes we use the L2-inner product of functions denoted by (·, ·).

The construction of finite element spaces

The popular finite element method consists of the following steps.

• Partition the domain � into a number of simply shaped elements τ in the sense
that they cover � and have the property that two adjacent elements can share
only a vertex, a face, or an edge (in 3D). In other words, two elements cannot
have a common interior, partial face, or part of an edge only. In what follows, in
two dimensions (2D), we consider triangular elements τ . Denote the set of these
elements by T . The elements are often assumed to be quasiuniform in the sense
that their diameter is proportional to a characteristic mesh-size h. We denote this
property by Th = T . A 3D tetrahedral mesh is illustrated in Figure 1.4.
The goal is to select an h small enough to obtain a suitable approximation to the
continuous (infinitely dimensional) problem (1.1)–(1.2).

• Construct a finite element space V = Vh. For this purpose, we introduce a set of
nodes Nh = {xi}ni=1, typically the vertices of all elements τ ∈ Th in the interior
of � (because of the boundary condition (1.2)). With each vertex xi ∈ Nh, we
associate a basis functionψi , which is supported in the union of the triangles that
share vertex xi . The functionψi restricted to any of the triangles τ is linear. Also,
ψi(xi) = 1 and, by construction,ψi(xj ) = 0 for any xj ∈ Nh \ {xi}, so the basis
{ψi} is often called nodal or Lagrangian. Some nodal basis functions in 2D are
illustrated in Figures 1.1 to 1.3.
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Fig. 1.1. Fine-grid piecewise linear basis function.

Fig. 1.2. Fine-grid piecewise quadratic basis function associated with a midpoint of an

element edge.

Then, any function in the finite element space Vh (by definition) takes the form

v =
n∑

i=1
vi ψi .

Because ψi is a Lagrangian basis, we see that vi = v(xi). Thus, there is a one-to-
one mapping between v ∈ Vh and its coefficient vector v = (vi)

n
i=1 represented

by the nodal values of v on Nh.

In what follows, we adopt the convention (unless otherwise specified) that the
same letter is used for the f.e. function and in boldface for its coefficient vector with
respect to a given Lagrangian basis.
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Fig. 1.3. Fine-grid piecewise quadratic basis function associated with a vertex node.

Fig. 1.4. A 3D mesh.

Weak form and Galerkin finite element discretization

To derive the finite element approximation to the continuous problem (1.1)–(1.2),
we use its “weak formulation”. The PDE is multiplied (tested) by functions ϕ and
integrated over�, so that after using integration by parts, we end up with the desired
“weak form”:

a(u, ϕ) ≡
∫

�

∇u · ∇ϕ dx −
∫

∂�

∇u · n ϕ d̺ =
∫

�

f ϕ dx

=
∫

�

(
∂u

∂x

∂ϕ

∂x
+ ∂u

∂y

∂ϕ

∂y
+ ∂u

∂z

∂ϕ

∂z

)
dxdydz

−
∫

∂�

∇u · n ϕ d̺ = (f, ϕ) ≡
∫

�

f ϕ dx. (1.3)



1.1 Finite element matrices 7

Here, n stands for a unit vector normal to ∂� (pointing outward from �). Note
that the integrals above make sense even for functions that are only once piecewise
differentiable. The latter fact is used by the finite element method. Assuming that
ϕ = 0 on ∂�, we end up with

a(u, ϕ) = (∇u, ∇ϕ) =
∫

�

∇u · ∇ϕ dx = (f, ϕ) =
∫

�

f ϕ dx. (1.4)

The finite element discretization of (1.4) is obtained by the Galerkin method (equiv-
alent to the Ritz method in the present setting); we approximate u with uh ∈ Vh
determined from

∫

�

∇uh · ∇ψi dx =
∫

�

fψi dx, for all i = 1, . . . , n.

Because uh =
∑n
j=1 u(xj )ψj , we get n equations for the n unknowns uh(xj ),

j = 1, . . . , n:

n∑

j=1
uh(xj )

∫

�

∇ψj · ∇ψi dx =
∫

�

fψi , dx, for i = 1, . . . , n.

IntroducingA = (ai,j ) with

ai,j =
∫

�

∇ψj · ∇ψi dx =
∑

τ : xi , xj∈τ

∫

τ

∇ψj · ∇ψi dx,

the vector of unknowns x = (uh(xi))ni=1, and the r.h.s. vector b =
( ∫
� fψi dx

)n
i=1,

we end up with the discrete problem of our main interest,

Ax = b.

Degrees of freedom (dofs)

It is customary, in finite elements, to use the notion of “degrees of freedom” or simply
dofs. In our setting dofs can be identified with the vertices xi . In general, dofs are
equivalent to unknowns. In some situations we may have several degrees of freedom
associatedwith a vertex. This is the typical case for systems of PDEs, such as elasticity
equations. Then, in 2D, we have two dofs associated with every vertex of the mesh.

Properties of f.e. matrices

S.p.d.

The finite element method guarantees (by construction) that A is symmetric positive
definite (s.p.d.). Symmetry follows because, from the relation between A and the
bilinear form a(., .) defined in (1.3), we have

wTAv = a(v, w) = a(w, v).
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We also have that vTAv = a(v, v) ≥ 0 and that vTAv = a(v, v) = 0 implies
∇v = 0. The latter means that v = const and, because v = 0 on ∂�, that v = 0,
hence, v = (v(xi)) = 0. Thus, A is also positive definite.

Sparsity

Another important property is that A has a bounded number of nonzero entries per
row. Notice that row i of A has nonzero entries ai,j only for vertices xj such that xi
and xj belong to a common element τ . That is, the numberχi of nonzero entries in row
i ofA, equals the number of edges of the triangles that meet at vertex xi . This number
is bounded by a topological constant χ ≥ 1 (depending on the triangulation Th),
which can stay bounded when h �→ 0 if, for example, the minimal angle of the
triangles is bounded away from zero.
For the matrix A corresponding to the f.e. Laplacian on a uniform mesh h =

1/(n + 1) and � = (0, 1)2, it is well known that every row’s nonzero entries, up
to an ordering, equal (−1, −1, 4, −1, −1) (some off-diagonal entries are missing
for rows that correspond to vertices near the boundary of �).

Matrix diagonal and matrix norm estimate

We need the next result in what follows.

Proposition 1.1. Let χi be the number of nonzero entries of row i of A, and let

D = diag(aii) be the diagonal of A. Then,

vTAv ≤ vT χDv,

where χ is either the diagonal matrix diag(χi) or simply the constantmaxi χi .

Proof. We first use the Cauchy–Schwarz inequality in the A-inner product for the
coordinate vectors ei and ej : a2ij =

(
eTj Aei

)2 ≤ eTi Aeie
T
j Aej = aiiajj . Then the

sparsity of A, and one more application of the Cauchy–Schwarz inequality confirm
the result:

vTAv =
∑

i

vi
∑

j : aij 
=0
aijvj

≤
∑

i

|vi |
∑

j : aij 
=0
|aij| |vj |

≤
∑

i

∑

j : aij 
=0
a
1/2
ii |vi |a1/2jj | |vj |

≤
(∑

i

∑

j : aij 
=0
aiiv

2
i

)1/2(∑

i

∑

j : aij 
=0
ajjv

2
j

)1/2

=
∑

i

χiaiiv
2
i

≤ max
i
χi vTDv. (1.5)

�
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Remark 1.2. We can actually prove (see Proposition 1.10) a more accurate estimate
of the form (1.5) with χi = maxτ∈Th: i∈τ |τ |, where | · | stands for cardinality; that is,
|τ | is the number of dofs that belong to τ . Thus, for linear triangular elements,χi = 3.

We also have the following property of A.

Proposition 1.3. The norm of the f.e. matrix A exhibits the behavior that:

‖A‖ ≃ hd−2,

which is asymptotically (for h �→ 0) sharp.

Proof. The proof follows from the estimate (1.5), which reads

xTAx ≤ xT χDx ≤ max
i
χiaii ‖x‖2.

Recall that χi is the number of nonzero entries ofA in row i. Let�i be the support of
the ith basis functionψi . Note that�i is the union of a bounded number of elements.
Due to quasiuniformity of Th (i.e., |τ | ≃ hd ) we have that�i has measure |�i| ≃ hd .
Then aii = ‖∇ψi‖2 ≃ |�i | h−2 ≃ hd−2; that is, ‖A‖ ≃ hd−2. This estimate is sharp
asymptotically inasmuch as

‖A‖ ≥ aii = ‖∇ψi‖2 ≃ h−2 |�i| ≃ hd−2. �

1.2 Finite element refinement

Consider now two nested finite element spacesVH ⊂ Vh. LetVH = Span (ψ(H)ic
)
nc
ic=1

and Vh = Span (ψ(h)i )
n
i=1 with their respective nodal (Lagrangian) bases. Because

each ψ(H)ic
∈ VH ⊂ Vh, we have the expansion

ψ
(H)
ic

=
n∑

i=1
ψ
(H)
ic
(xi) ψ

(h)
i .

Interpolation matrix

Consider the coefficient (column) vector ψ ic = (ψ
(H)
ic
(xi))

n
i=1. The matrix P =

(ψ ic )
nc
ic=1 is referred to as the interpolation matrix. It relates the coefficient vector

vc ∈ Rnc of any function vc ∈ VH , expanded in terms of the coarse basis {ψ(H)ic
}, to the

coefficient vectorPvc of vc ∈ Vh, expanded in terms of the fine-grid basis {ψ(h)i }. The
finite element bases are local, thus the n×nc rectangularmatrixP is sparse. The num-
ber of nonzero entries of P per column depends on the support of eachψ(H)ic

, namely,

on the number of fine-grid basis functionsψ(h)i that intersect that support. That is, the
sparsity pattern of P is controlled by the topology of the triangulations TH and Th.
Finite elements often use successive refinement, which refers to the process of

constructing Th from T2h by subdividing every element (triangle) of T2h into four
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geometrically similar triangles of half the size. Then, by construction, V2h ⊂ Vh,
because if a continuous function v is linear on a triangle T ∈ T2h, it is linear on the
smaller triangles τ ⊂ T , τ ∈ T . The interpolation mapping P in this case is linear.
Its columns have the form

ψ ic =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2
...

0
...

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The coefficients 12 appear at rows j of ψ ic for which xj is a midpoint of an edge
(xcic , x

c
jc
) of a coarse triangle T (such that one of its endpoints is xcic ). We note that

the coarse nodes xcic are also fine-grid nodes. That is, x
c
ic

= xi for some i. The latter
means that the coarse indices ic are naturally embedded into the fine-grid indices
ic �→ i(ic). The entry 1 ofψ ic appears exactly at the position i = i(ic). All remaining
entries of ψ ic are zero.

Galerkin relation between A and Ac

Based onVH and its basis, we can computeAc = (a(ψ(H)jc
, ψ

(H)
ic
))
nc
ic, jc=1. Similarly,

based on Vh and its basis, we can compute A = (a(ψ(h)j , ψ
(h)
i ))

n
i,j=1. We easily see

that a(ψ(H)jc
, ψ

(H)
ic
) = ψTjcAψ ic = (P TAP)ic, jc , which yields the variational (also

called Galerkin) relation

Ac = P T AP. (1.6)

1.3 Coarse-grid approximation

The fact that geometrically smooth functions can accurately be represented on coarse
grids is inherent to any approximation method; in particular, it is inherent to the f.e.
method. Some illustrations are found in Figures 1.7 to 1.10.
We summarize the following fundamental finite element error estimate result (cf.,

e.g., Ciarlet [Ci02], Brenner and Scott [BS96], and Braess [B01]). Our goal is to prove
at the end of this section a “strong approximation property” in a matrix–vector form.
Because a(u− uh, ϕ) = 0 for all ϕ ∈ Vh, we have the following estimate,

‖∇(u−uh)‖2 = a(u−uh, u−uh) = a(u−uh, u−ϕ) ≤ ‖∇(u−uh)‖‖∇(u−ϕ)‖.

It implies the following characterization property of the finite element solution uh.
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Fig. 1.5. Coarse-grid basis function.

Proposition 1.4. The finite element solution uh is an a(·, ·)-orthogonal projection of

the PDE solution u on the f.e. space Vh. In other words, we have the characterization,

‖∇(u− uh)‖ = inf
ϕ∈Vh

‖∇(u− ϕ)‖. (1.7)

Assuming now that u has two derivatives inL2(�), we immediately get the first-order
error estimate

‖∇(u− uh)‖ ≤ Ch‖u‖2.

To be more precise, we first form a nodal interpolant Ihu =
∑
i u(xi)ψi . Then, based

on (1.7) we have ‖∇(u − uh)‖ ≤ ‖∇(u − Ihu)‖. Therefore, to estimate the latter
term, splitting it over every triangle τ ∈ Th, yields

‖∇(u− Ihu)‖2 =
∑

τ∈Th

∫

τ

|∇(u− Ihu)|2 dx ≤
∑

τ∈Th
Cτ h

2‖u‖22, τ ≤ Ch2‖u‖22.
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Fig. 1.6. Level 2 coarse-grid basis function.

Here, we use the Taylor expansion on every triangle τ and the fact that the triangles
are geometrically similar to a fixed number of an initial set of coarse triangles. Hence,
Cτ will run over a fixed number of mesh-independent constants. The estimate above
shows that for smooth functions u (e.g., having two derivatives) the finite element
approximations on grids TH will give approximations uH such that the error u− uH
behaves as H ‖u‖2.
For a given f.e. function uh, consider now its coarse finite element projection uH

defined from a(uh − uH , ϕ) = 0 for all ϕ ∈ VH . We want to measure the coarse-
grid approximation, that is, to estimate uh − uH . The preceding argument is not
immediately applicable because uh does not have two derivatives. To overcome this
difficulty we introduce the f.e. functionAhuh ∈ Vh defined on the basis of the matrix



1.3 Coarse-grid approximation 13

0.0736671

0.0690363

0.0644593

0.0598551

0.0552509

0.0506466

0.0460424

0.0414381

0.0368339

0.0322297

0.0276254

0.0230212

0.018417

0.0138127

0.00920848

0.00460424

7.36678e-07

(0,0,0)

(1,1,0.0736678)

Fig. 1.7. Solution to −�u = 1.

A = (ai,j ) and the coefficient vector x = (uh(xi)) of uh. LetAx = (ci). Define then,

Ahuh =
∑

i

ci

(1, ψi)
ψi .

Because

ci = (Ax)i =
∑

j

ai,j uh(xj ) =
∑

j

a(ψj , ψi)uh(xj ) = a(uh, ψi),

we have

Ahuh =
∑

i

a(uh, ψi)

(1, ψi)
ψi .

Introduce now the quasi-interpolant Q̃h : L2(�) �→ Vh defined as follows,

Q̃hv =
∑

i

(v, ψi)

(1, ψi)
ψi .
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(1,1,0.0727826)

Fig. 1.8. Finite element approximate solution to −�u = 1 on a coarse mesh.

We then have, for any v ∈ L2(�),

(Ahuh, v) = a(uh, Q̃hv).

It is easy to see the following result.

Theorem 1.5. Q̃h : Vh �→ Vh is a symmetric and uniformly coercive operator;

that is,

(Q̃v, w)= (v, Q̃w), all v, w ∈ L2(�),
(Q̃ψ, ψ)≥ δ ‖ψ‖2 for all ψ ∈ Vh.

Proof. Consider the basis {ψi , xi ∈ Nh} of Vh. Recall that Nh is the set of degrees
of freedom (the vertices xi of the elements τ ∈ Th in the interior of �). We also
consider Nh, which is Nh augmented with the vertices of τ ∈ Th on the boundary
of �. The coefficient vectors v = (vi) of functions v ∈ Vh (that vanish on ∂�) are
extended with zero entries whenever appropriate; that is, we let vi = v(xi) = 0 for
xi ∈ Nh ∩ ∂�. Similarly, we use basis functions ψi associated with boundary nodes
xi ∈ Nh (whenever appropriate).
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(1,1,0.0734458)

Fig. 1.9. Finite element approximate solution to −�u = 1 on a refined mesh.

The symmetry is trivially seen because

(Q̃v, w) =
∑

i

(v, ψi)(w, ψi)

(1, ψi)
,

which is a symmetric expression for v and w.
We prove the uniform coercivity of Q̃h in the following section. �

1.4 The mass (Gram) matrix

To prove the uniform coercivity of Q̃ on Vh, introduce the Gram (also called mass)
matrix G = {(ψj , ψi)}xi ,xj∈N h

. Due to the properties of Th, it is easily seen to be

uniformly well conditioned. Similarly, to estimate (1.5), we prove that (recalling that
χi is the number of elements τ sharing the node xi)

vTGv ≤ max
xi∈Nh

(χi‖ψi‖2)vT v ≃ hd ‖v‖2. (1.8)
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(1,1,0.0736147)

Fig. 1.10. Finite element approximate solution to −�u = 1 on a more refined mesh.

For any vector v, define its restriction vτ = (v(xi))xi∈τ to every element τ . We then
have,

vTGv = (v, v) =
∑

τ∈Th

∫

τ

v2 dx =
∑

τ∈Th
vTτ Gτvτ .

Here, Gτ =
( ∫
τ ψjψi dx

)
xi , xj∈τ is the so-called element mass matrix. For the

particular case of triangular elements τ and piecewise linear basis functionsψi , we get

Gτ = |τ |
12

⎡
⎣
2 1 1
1 2 1
1 1 2

⎤
⎦ .

Because theminimal eigenvalue of this matrix is |τ |/12,we get the following estimate
from below,

vTGv ≥
∑

τ∈Th

|τ |
12

vTτ vτ .
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In general (under the assumption of quasiuniform Th), we get an estimate

vTGv ≥ Chd ‖v‖2. (1.9)

Both estimates (1.8) and (1.9) imply the following result.

Theorem 1.6.

(v, v) = vTGv ≃ hd
∑

xi∈N h

v2i = hdvT v, all v =
∑

xi∈N h

viψi , v = (vi)xi∈N h
.

(1.10)

In other words the scaled inner product h−d (v, v) is bounded above and below

by the coefficient vector inner product vT v uniformly w.r.t. h �→ 0. Alternatively,

we have

Cond (G) = O(1).

As a corollary, consider G, the principal submatrix of G corresponding to the

nodes in Nh (i.e., in the interior of �). We then have λmin[G] ≥ λmin[G].
Finally, under the assumption that the number of elements in Th which share

a given node is kept bounded, it follows that G is uniformly sparse, namely, that

the number χi of nonzero entries of any row i of G is bounded by a fixed number

χ = maxi χi , independent of h �→ 0.

Proof (of the uniform coercivity of Q̃h). Consider the coordinate unit vectors
ei = (δi,j )xj∈N h

, xi ∈ N h. Similarly, let ei = (δi,j )xj∈Nh
be the unit coordi-

nate vectors corresponding to xi ∈ Nh (the boundary nodes excluded). It is clear
then, that the following matrix–vector representation holds,

(Q̃hv, v) =
∑

xi∈Nh

(vTGei)
2

1TGei
, 1 =

∑

xi∈N h

ei .

Based on the decomposition for any v ∈ Vh (i.e., vanishing on ∂�), Gv =∑
xi∈Nh

((Gv)T ei)ei , and v =
∑
xi∈Nh

((Gv)T ei)G
−1ei , we get

(v, v) = vTGv

=
( ∑

xi∈Nh

(vTGei)ei

)T
G−1

( ∑

xi∈Nh

(vTGei)ei

)

≤ λmax[G−1]
∑

xi∈Nh

(
vTGei

)2

≤ λmax[G
−1
]
∑

xi∈Nh

(
vTGei

)2·
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Therefore, the following estimate is obtained.

(Q̃hv, v)

(v, v)
≥ λmin[G] min

xi∈Nh

1

1TGei
·

At most χ terms eTj Gei in the first sum below are nonzero (these indices j define the
set I(i)), therefore we get

1TGei =
∑

j

eTj Gei

≤
∑

j∈I(i)

(
eTj Gej

)1/2 (
eTi Gei

)1/2

≤ λmax[G]
∑

j∈I(i)
‖ej‖‖ei‖

≤ λmax[G] χ.
That is, the desired uniform coercivity estimate takes the final form,

(Q̃hv, v)

(v, v)
≥ 1

χCond(G)
= O(1). �

1.5 A “strong” approximation property

In what follows, we proceed with the proof of the following main result.

Theorem 1.7. Assume that the Poisson equation −�u = f , posed on a polygonal

region � with u = 0 on ∂�, satisfies the full regularity estimate ‖u‖2 ≤ C ‖f ‖. Let

VH ⊂ Vh be two nested f.e. spaces equipped with Lagrangian f.e. bases. Assume that

h is a constant fraction ofH . Let the corresponding finite element matrices be;A, the

fine-grid matrix andAc = P T AP, the coarse-grid matrix, whereP is the interpolation

matrix that relates the coefficient vector of a coarse f.e. function expanded first in terms

of the coarse basis and then in terms of the fine-grid basis. Then, the following strong

approximation property holds, for a constant ηa ≃ (H/h)2.

‖x − PA−1
c P

TAx‖2A ≤ ηa

‖A‖ ‖Ax‖2.

The matrix πA = PA−1
c P

TA is the so-called coarse-grid projection. Equivalently,

we have

‖A−1x − PA−1
c P

T x‖2A ≤ ηa

‖A‖ ‖x‖2.

For less regular problems (see (1.14)), we have that for an α ∈ (0, 1], the following

weaker approximation property holds.

‖x − πAx‖2A ≤ ηa

‖A‖α ‖A(1+α)/2x‖2.

Here ηa ≃ (H/h)2α .
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Proof. First, estimate the L2-norm of Ahuh ∈ Vh. We have

‖Ahuh‖ = sup
ψ∈Vh

(Ahuh, ψ)

‖ψ‖

= sup
ψ∈Vh

a
(
uh,

∑
i
(ψi , ψ)
(1, ψi )

ψi

)

‖ψ‖

= sup
ψ∈Vh

bTAx

‖ψ‖ , b = (bi), bi = (ψi, ψ)

(1, ψi)
,

≤ ‖Ax‖ sup
ψ∈Vh

(∑
i

(
(ψi , ψ)
(1, ψi )

)2)1/2

‖ψ‖

≤ ‖Ax‖ sup
ψ∈Vh

(∑
i

∥∥∥ ψi
(1, ψi )

∥∥∥
2
‖ψ‖2�i

)1/2

‖ψ‖

≤ ‖Ax‖ sup
xi∈Nh

∥∥∥∥
ψi

(1, ψi)

∥∥∥∥ sup
ψ∈Vh

(∑
i ‖ψ‖2�i

)1/2

‖ψ‖
≤ ‖Ax‖ Ch−(d/2).

Here, �i = ∪{τ ∈ Th : xi ∈ τ } stands for the support of ψi . Note that they
have bounded overlap, hence

(∑
i ‖ψ‖2�i

)1/2 ≤ C‖ψ‖. Also, by assumption on Th,
|τ | ≃ hd , and |�i | =

∑
τ⊂�i |τ | ≃ hd . Finally, note that

‖ψi‖2
(1, ψi)2

= O

( |�i |
|�i |2

)
= O(h−d ).

We use next the fact that for any ϕ ∈ H 1
0 (�) we can choose a finite element

function ϕh such that ‖ϕh‖1 ≤ C0‖ϕ‖1 and ‖ϕ − ϕh‖0 ≤ C0h ‖ϕ‖1 (cf., [Br93]).
Then, based on theL2-norm bound ofAhuh the coercivity of Q̃h, and Proposition 1.3
(i.e., that ‖A‖ ≃ hd−2), the following estimate is readily seen.

‖Q̃−1
h Ahuh‖−1 ≡ sup

ϕ∈H 10 (�)

(Q̃−1
h Ahuh, ϕ)

‖ϕ‖1

≤ sup
ϕh

(Q̃−1
h Ahuh, ϕh)

‖ϕh‖1
‖ϕh‖1
‖ϕ‖1

+ ‖Q̃−1
h Ahuh‖0 sup

ϕ∈H 10 (�)

‖ϕ − ϕh‖0
‖ϕ‖1

≤ C0
(
sup
ϕh

a(uh, ϕh)

‖ϕh‖1
+ h ‖Q̃−1

h Ahuh‖0
)

≤ C
(√
a(uh, uh)+ h1−(d/2) ‖Ax‖

)

≤ C
(
1+ ‖A‖ 12 h1−(d/2)

)
‖x‖A

≤ C ‖x‖A.
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Now solve the Poisson equation

−�u = f ≡ Q̃−1
h Ahuh ∈ Vh ⊂ L2(�). (1.11)

Because (Q̃hψ, ψ) ≥ δ ‖ψ‖2 for any ψ ∈ Vh (i.e., ‖Q̃−1
h ‖ ≤ (1/δ), based on the

assumed a priori estimate

‖u‖2 ≤ C‖f ‖, (1.12)

we get that

‖u‖2 ≤ Ch−(d/2) ‖Ax‖.

Note now that uh and uH with corresponding coefficient vectors x andPxc are the f.e.
solutions to the Poisson problem (1.11). The latter is seen because for any ψ ∈ Vh,

a(u, ψ) = (f, ψ) = (Q̃−1
h Ahuh, ψ) = (Ahuh, Q̃−1

h ψ) = a(uh, ψ).

Then, because ‖uh − uH ‖1 ≤ ‖u − uh‖1 + ‖u − uH ‖1 ≤ C (h + H) ‖u‖2 ≤
C H h−(d/2)‖Ax‖, the following strong approximation property holds,

‖x − Pxc‖A ≤ C H h−(d/2)‖Ax‖. (1.13)

In the less regular case, we have for an α ∈ (0, 1], the following estimate,

‖u‖1+α ≤ C‖f ‖−1+α . (1.14)

Recall, that f = Q̃−1
h Ahuh. We showed that ‖f ‖−1 ≤ C ‖A1/2x‖ and ‖f ‖0 ≤

Ch−(d/2) ‖Ax‖. Now using a major estimate for the space H−1+α, which is an
interpolation space between L2(�) and H−1(�) (the dual of H 1

0 (�)), the following
estimate is seen (cf., e.g., Theorem B.4 in Bramble [Br93])

‖f ‖−1+α ≤ C (h−(d/2))α‖A(1−α)(1/2)+αx‖ = Ch−α(d/2) ‖A(1+α)/2x‖.

The latter two estimates, combined with a standard error estimate ‖u − uH‖1 ≤
CH α ‖u‖1+α , lead to the following approximation property, in the less regular case,

‖x − Pxc‖A ≤ C
(
H

h

)α ( 1

hd−2

)α
‖A(1+α)/2x‖. (1.15)

In what follows, we find a simple relation between xc and x, namely, that xc =
A−1
c P

TAx. Indeed, from the definition of uH ∈ VH , we have that it satisfies the
Galerkin equations

a(uH , ψ) = (f, ψ) = a(uh, ψ) for all ψ ∈ VH .

Becauseψ has a coarse coefficient vector gc and hence Pgc is its fine-grid coefficient
vector, we then have

gTc Acxc = a(uH , ψ) = a(uh, ψ) = (Pgc)
TAx.



1.6 The coarse-grid correction 21

That is,

Acxc = P TAx.

Hence,

Pxc = πAx = PA−1
c P

TAx.

The strong approximation property then takes the following matrix–vector form,

‖x − πAx‖A ≤ C H h− d
2 ‖Ax‖.

Now use Proposition 1.3, that is, that ‖A‖ ≃ hd−2, to conclude with the desired
estimate,

‖x − πAx‖2A ≤ ηa

‖A‖ ‖Ax‖2, (1.16)

where ηa ≃ (H/h)2 = O(1), if h is a constant fraction of H .
In the less regular case, based on estimate (1.15) and Proposition 1.3 (i.e., that

‖A‖ ≃ hd−2) we arrive at the following weaker approximation property,

‖x − πAx‖2A ≤ ηa

‖A‖α ‖A(1+α)/2x‖2, (1.17)

where ηa ≃ (H/h)2α = O(1), if h is a constant fraction of H . �

1.6 The coarse-grid correction

Let x be a current approximation for solving Ax = b. Note that x is a coefficient
vector of some finite element function u ∈ Vh. To look for a coarse-grid correction,
in terms of finite elements means, we seek a uc ∈ VH (with coarse coefficient vector
xc), which solves the coarse finite element problem with an r.h.s. r computed on the
basis of the current approximation u, for any ψ(H)ic

∈ VH , as follows.

a(uc, ψ
(H)
ic
) = (r, ψ(H)ic

)

≡ (f, ψ(H)ic
)− a(u, ψ(H)ic

)

=
∑

i

ψ
(H)
ic
(xi)(f, ψ

(h)
i )− a(u, ψ(H)ic

).

The latter system, in terms of vectors, reads

Acxc = rc.

Recalling that ψ(H)ic
=
∑n
i=1 ψ

(H)
ic
(xi)ψ

(h)
i , and b = (bi) with bi = (f, ψ

(h)
i ),

we get

(Acxc)ic =
∑

i

ψ
(H)
ic
(xi)bi − ψTicAx = ψTic (b − Ax) .
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That is,

Acxc = rc ≡
(
ψTic (b − Ax)

)nc
ic=1 = P T (b − Ax) = P T r.

Hence,

xc = A−1
c P

T r.

Then, the new iterate is u := u+ uc. In terms of vectors we have

x := x + Pxc = x + PA−1
c P

T r.

We have the following relation between the errors (initial and final),

e = A−1b − x,

noting that r = b − Ax = Ae,

e := (A−1b − x)− PA−1
c P

TA(A−1b − x) = (I − PA−1
c P

TA)e.

The matrix πA = PA−1
c P

TA is a projection; that is (recall that Ac = P T AP),

π2A = PA−1
c (P

TAP)A−1
c P

TA = PA−1
c P

TA = πA.

Thus, we have

Proposition 1.8. The error matrix corresponding to a coarse-grid correction is given

by I − πA, where πA = PA−1
c P

TA is the coarse-grid projection matrix.

1.7 A f.e. (geometric) two-grid method

The coarse-grid correction, combinedwith a few steps of a stationary iterativemethod,
defines the classical two-gridmethod. In the present f.e. setting,we explore the natural
(defined from two nested f.e. spaces VH ⊂ Vh) interpolation matrix P , the fine-grid
matrixA and the coarse oneAc = P T AP. In addition, we need the iteration matrixM
that defines a stationary iterative procedure. A typical case is a matrixM that satisfies
the following conditions.

(i) M provides a convergent method in the A-norm; namely ‖I − A1/2M−1

A1/2‖< 1.
(ii)M gives rise to an s.p.d. matrixM = M(MT +M −A)−1MT which is assumed
spectrally equivalent to the diagonalD of A (see (1.18) for a motivation).

The conditions (i) and (ii) define the notion of smoother. The definition comes from
the fact that the lower part of the spectrum of D−1A corresponds to eigenvectors
that are geometrically smooth. Recall, that here we consider matrices A that come
from f.e., discretization of second-order Laplacian-like PDEs. Therefore, an iterative
method with ω ≃ ‖D−(1/2)AD−(1/2)‖,

xk = xk−1 + (ωD)−1 (b − Axk−1) ,
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rewritten in terms of the errors ek = A−1b − xk takes the form

ek = (I − (ωD)−1A)ek−1.

Consider the generalized eigenvalue problem

Aqi = λiDqi ,

with λ1 ≤ λ2 ≤ · · · ≤ λn.
Note that if we expand ek =

∑
i β
(k)
i qi , we see that

β
(k)
i =

(
1− λi

ω

)k
β
(0)
i ≃

(
1− λi

λn

)k
β
(0)
i

for large i are reduced very quickly,whereas the entries corresponding to the lower part
of the spectrum hardly change. This effect is referred to as smoothing. The combined
effect of reducing the highly oscillatory components of the error by the smoother and
approximating the smooth components of the error on a related coarse grid gives an
intuitive explanation of the potential for the mesh-independent rate of convergence of
the two-grid, and by recursion, of the (geometric) multigrid methods. The combined
effect of smoothing and coarse-grid approximation lies at the heart of the two-grid
(and multigrid) methods as originally observed by R. P. Fedorenko [Fe64, Fe64]
and led A. Brandt, originally in [AB77], to generalize and promote it as a general
methodology for solving a wide range of problems in the natural sciences. More on
the history of MG is found in [TOS, pp. 23–24].
To explain item (ii) above consider the composite iteration

xk−(1/2) = xk−1 +M−1(b − Axk−1),

xk = xk−(1/2) +M−T (b − Axk−(1/2)).
(1.18)

Rewritten in terms of the errors es = A−1b−xs , the above composite iteration reads,

ek−(1/2) = (I −M−1A)ek−1,

ek = (I −M−TA)ek−(1/2).

The composite iteration matrix E, relating ek and ek−1 as ek = Eek−1, has then the
following product formE = (I −M−TA)(I −M−1A) = I − (M−T +M−1−M−T

AM−1)A = I−M−1
AwithM = M(MT +M−A)−1MT . It is easily seen then that

‖I−A1/2M−1A1/2‖ < 1 based on the identity (I−M−TA)(I−M−1A) = I−M−1
A

is equivalent toMT +M−A being s.p.d. Also, we have then ‖I−A1/2M−1A1/2‖2 =
‖I − A1/2M−1

A1/2‖ = 1− λmin(M
−1
A).

In conclusion, we can formulate the following proposition.

Proposition 1.9. To have M be a convergent smoother for A (in the A-norm) it is

equivalent to say thatMT +M−A is s.p.d., and hence,M−A is symmetric positive

semidefinite whereM =M(M +MT − A)−1MT .
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A main example of M is the scaled Jacobi smoother ωD with ω ≃ ‖D−(1/2)

AD−(1/2)‖ or the Gauss–Seidel smoother, defined fromA = D−L−LT , whereD is
the diagonal ofA, and−L is the strictly lower triangular part ofA. ThenM = D−L
is the forward Gauss–Seidel iteration matrix and M = M(M +MT − A)−1MT =
(D − L)D−1(D − LT ) is the symmetric Gauss–Seidel matrix.
To illustrate the smoothing process, we start with e0 as a linear combination of a

smooth and an oscillatory component, and then one, two, and three symmetricGauss–
Seidel iterations applied toAe = 0 are run in succession. That is, we run the iteration

ek = (I − M
−1
A)ek−1 for k = 1, 2, 3. The resulting smoothing phenomenon is

illustrated in Figures 1.11 to 1.14.
At the end, we formulate an algorithm implementing the classical two-grid

method.

Algorithm 1.7.1 [Two-grid algorithm]

Let Ax = b be the fine-grid problem.

Given is Ac the coarse-grid matrix, related to A via the interpolation matrix P

as Ac = P TAP , and letM andMT be the given smoother and its transpose.

(1,1,1.09039)

Fig. 1.11. Initial nonsmooth function.
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(1,1,1.02292)

Fig. 1.12. Result after one step of symmetric Gauss–Seidel smoothing.

For a current fine-grid iterate x0, the (symmetric) two-grid algorithm computes a

next fine-grid iterate xnext, in the following steps.

(i) “Presmooth”, that is, compute x1 = x0 +M−1(b − Ax0).

(ii) “Coarse-grid correction”, that is, compute xc from

Acxc = P T (b − Ax1).

(iii)“Interpolate” coarse-grid approximation, that is, compute x2 = x1 + Pxc.

(iv)(An optional) “Postsmoothing” step, that is, compute

x3 = x2 +M−T (b − Ax2).

(v) The next two-grid iterate is xnext = x3. �

1.8 Element matrices and matrix orderings

We next introduce the notion of “element matrix”. We recall that the matrix A was
computed from a bilinear form a(u, ψ) =

∫
�

∇u · ∇ψ dx. We can define element
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(1,1,1.00298)

Fig. 1.13. Result after two steps of symmetric Gauss–Seidel smoothing.

bilinear forms aτ (·, ·), by restricting the integration over individual elements τ ∈ Th.
We then trivially have a(u, ψ) =

∑
τ∈Th aτ (u, ψ).

Assembly

Let xik , k = 1, 2, 3 be the vertices of triangle τ . We can compute the 3 × 3 matrix
Aτ = (aτ (ψil , ψik ))3k,l=1. Define now for any vector v its restriction vτ to τ ; that is,

let vτ = (v(xik ))
3
k=1. The following identity follows from the definition of element

matrices,

wTAv =
∑

τ

wTτ Aτvτ .

Using this identity for basis vectors ψ i and ψj representing the basis functions ψi
and ψj refers to the popular procedure in the finite element method called assembly.
The latter means that every nonzero entry ai,j of A is obtained by proper summation
of the corresponding entries of the element matrices Aτ (for all elements τ that have
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(1,1,0.992543)

Fig. 1.14. Result after three steps of symmetric Gauss–Seidel smoothing.

an edge (xi, xj ), or vertex if xi = xj ). This in particular implies that the diagonal
entries of Aτ , definingDτ , contribute exactly to the diagonal entries of A; that is, D
(the diagonal of A) is assembled fromDτ (the diagonal of the element matrix Aτ ).
By applying estimate (1.5) to Aτ andDτ , we get the following improved version

of (1.5) for A and D.

Proposition 1.10. The following estimate holds,

vTAv ≤ vT χDv,

where either χ = maxi χi or χ = diag(χi), with χi = maxτ∈Th: i∈τ |τ |, where | · |
stands for cardinality; that is, |τ | equals the number of dofs that belong to τ . Thus,

in particular, for triangular elements, χi = 3.

Proof. Let Aτ = (a
(τ )
i,j )i,j∈τ and A = (aij). We have aij =

∑
τ : i,j∈τ a

(τ )
ij . In

particular, aii =
∑
τ : i∈τ a

(τ )
ii . From (1.5) applied to Aτ and Dτ , we get
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vTτ Aτv ≤ |τ | vTτ Dτ vτ , which after summation reads,

vTAv =
∑

τ

vTτ Aτvτ

≤
∑

τ

|τ | vTτ Dvτ

=
∑

τ

|τ |
∑

i∈τ
a
(τ )
ii v

2
i

=
∑

i

v2i

∑

τ : i∈τ
|τ |a(τ )ii

≤
∑

i

v2i max
τ : i∈τ

|τ |
∑

τ : i∈τ
a
(τ )
ii

=
∑

i

v2i χi aii

= vT χDv. �

Sparse matrices, graphs, separators, and respective block-orderings

As originally noticed by S. Parter [Pa61], a sparse matrix has a one-to-one description
by a graph. For simple linear triangular finite elements, the sparse matrix A can be
easily identifiedwith the triangularmesh,where each nonzero entryaij can be assigned
as a weight on the edge of the triangle(s) that share the (neighboring) vertices xi and
xj . If the matrix A is symmetric the corresponding graph is undirected; that is, the
ordering of the vertices of the edge (xi, xj ) is insignificant because aij = aji .
We can define a separator Ŵ for a given graph. In our main 2D example, the latter

can be described geometrically as follows. We want to partition the given geomet-
ric domain � into two pieces �1 and �2, by drawing a connected path of edges
[xik , xik+1 ] (the latter connected path defines the separator Ŵ). The separators are
useful for generating special ordering, sometimes referred to as a domain decompo-
sition (or DD) block ordering of the corresponding matrix A. It is easily seen that
the entries ar,s of A, for vertices xr ∈ �1 and xs ∈ �2 satisfy ar,s = 0. That is, the
following block structure of A (see Figure 1.15) by grouping the vertices first in �1,
then in �2 and finally those on Ŵ, is then very natural;

A =

⎡
⎣
A1 0 A1,Ŵ
0 A2 A2,Ŵ
AŴ,1 AŴ,2 AŴ

⎤
⎦ · (1.19)

We notice that the block AŴ has much a smaller size than the subdomain blocks A1
and A2.
Also the blocks AŴ, i = ATi, Ŵ = {aj,ik : j ∈ �i, ik ∈ Ŵ} have nonzero entries

only for indices j corresponding to vertices adjacent to Ŵ.
There is one more block partition of A. We can group the element matrices Aτ

into two groups: elements that have vertices in �1 and Ŵ and elements that have
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Fig. 1.15. An L-shaped domain partitioned into two squares �1 and �2 by an interface Ŵ.

vertices from �2 and Ŵ. Splitting the quadratic form vTAv =
∑
τ∩�2 
=∅ vTτ Aτvτ +∑

τ∩�1 
=∅ vTτ Aτvτ , we can get the following block form for A.

A = A(N)1 + A(N)2 . (1.20)

The superscriptN stands for the fact that “natural” (or “no essential”) boundary condi-
tions are imposed on Ŵ. The matricesA(N)k , k = 1, 2, have the following block form.

A
(N)
1 =

⎡
⎣
A1 0 A1,Ŵ
0 0 0

AŴ, 1 0 A
(N)
1; Ŵ

⎤
⎦ ,

and

A
(N)
2 =

⎡
⎣
0 0 0
0 A2 A2,Ŵ

0 AŴ, 2 A
(N)
2; Ŵ

⎤
⎦ .

We notice that A1 and A2, and AŴ, 1 and AŴ, 2 are the same as in (1.19). The other
important observation is that

A
(N)
1; Ŵ + A(N)2; Ŵ = AŴ.

Also, both matrices A(N)k , k = 1, 2 are positive semidefinite (because the local ma-

trices Aτ are symmetric positive semidefinite). The latter implies that A
(N)
k, Ŵ are also

symmetric positive semidefinite.

1.9 Element topology

On several occasions throughout the book, we use the fundamental property of the
finite element matrices A, namely, that the corresponding quadratic forms vTAw
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can be represented as a sum of small (local) quadratic forms, resulting from small
matrices Aτ . Consider two vectors v = (vi)

n
i=1 and w = (wi)

n
i=1. In what follows,

the elements τ are viewed as small (local) sets of indices i. Then the set of all τ s
provides an overlapping partition of all indices i. Then, we can define vτ = v|τ ; that
is, vτ = (vi)i∈τ . Then, we have

vTAw =
∑

τ

vTτ Aτwτ .

The above property of A is explored to generate sets T that are a union of τ s such
that {T } also provides an overlapping partition of the index set {1, 2, . . . , n}. Also,
for the purpose of generating counterparts of coarse triangulations on the basis of
a given fine-grid triangulation, we define the topology of the sets T (referred to
as agglomerated elements or agglomerates). In particular, we define faces of the
agglomerated elements. One application of the “element topology” is to generate a
special, so-called nested dissection ordering of the givenmatrixA. Further application
of the element matrix topology is to construct element agglomeration algorithms used
in element agglomeration AMG (algebraic multigrid) methods in a later chapter.

1.9.1 Main definitions and constructions

By definition, in what follows, an element is a list of degrees of freedom (or list of
nodes), e = {d1, . . . , dne }, and we are given an overlapping partition {e} of D (the
set of degrees of freedom or nodes).
In practice, each element e is associated with an element matrix Ae, an ne × ne

matrix; then the given sparse matrix A is assembled from the individual element
matrices Ae in the usual way. That is,

wTAv =
∑

e

wTe Aeve.

Here, ve = v|e, that is, restricted to subset (e ⊂ D).
In what follows, we do not assume explicit knowledge of the element matrices

Ae; more precisely, the element matrices are needed only in one of the applications
but not in the construction of the element topology.
As an illustration, seen in Figure 1.16, we have the following elements as lists (or

sets) of nodes.

e1 = {1, 2, 6, 7},
e2 = {2, 3, 7, 8},
e3 = {3, 4, 8, 9},
e4 = {4, 5, 9, 10},
e5 = {6, 7, 11, 12},
e6 = {7, 8, 12, 13},
e7 = {8, 9, 13, 14},
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Fig. 1.16. Sample grid: 12 elements, 31 faces, and 20 nodes.

e8 = {9, 10, 14, 15},
e9 = {11, 12, 16, 17},
e10 = {12, 13, 17, 18},
e11 = {13, 14, 18, 19},
e12 = {14, 15, 19, 20}.

Assume that the following relation (in the sense of [Co99]) “element_node” is
given; that is, the incidence “element” i (rows) contains “node” j (columns), that is,
“element_node” can be viewed as the rectangular (Boolean) sparse matrix of ones in
the (i, j)-position if element i contains node j and zeros elsewhere. The size of the
matrix is (number of elements) × (number of nodes).

The relation “element_node” corresponding to Figure 1.16 is shown in Table 1.1.
The incidence “node” i belongs to “element” j is simply given by the transpose of
the above rectangular sparse matrix; that is, node_element = (element_node)T .

We can consider a number of useful relations (easily computable as operations
between sparse matrices).

“element_element” = “element_node”× “node_element”,

“node_node” = “node_element”× “element_node”.
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Table 1.1. Relation “element_node” corresponding to Figure 1.16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1
5 1 1 1 1
6 1 1 1 1
7 1 1 1 1
8 1 1 1 1
9 1 1 1 1
10 1 1 1 1
11 1 1 1 1
12 1 1 1 1

The first one shows the incidence “element” i intersects “element” j ; that is, the
(i, j) entry of the “element_element” is one if “element” i and “element” j have a
common node; otherwise the entry is zero.
The second relation (“node_node”) shows the sparsity pattern of the (assembled)

finite element matrix A = (aij). This is seen as follows. The nonzero entries (i, j)
of “node_node” show that “node” i is connected to “node” j in the sense that they
belong to a common element. Hence the corresponding entry ai,j of A is possibly
nonzero. This is exactly the case because ai,j can be nonzero only if the nodes i and
j belong to the same element. Here, we assume that each node represents a degree of
freedom; in other words, it is associated with a finite element basis function whose
support is contained in the union of elements sharing that node.
The relation “node_node” corresponding to Figure 1.16 is illustrated in Table 1.2.
In practice, we can implement these relations using any available sparse matrix

format, such as the popular CSR (compressed sparse row) format (cf., [Sa03]). For
parallel implementation,we have to use the appropriate parallel sparse matrix format.

1.9.2 Element faces

In practice, it is typical that a finite element mesh generator can provide the fine-grid
element topology, namely the relations

“element_face”, “face_element”, “face_node”, “face_face”, and so on.

If the initial set of element faces is not given, we can define a “face” (as a list
of nodes) as a maximal intersection set. Recall that every element is a list (set) of
nodes. Consider all pairwise intersections of elements such as e ∩ e1, e1 
= e. Then
all maximal sets form the faces of e. Here “maximal” stands for a set that is not
a proper subset of any other intersection set. The above definition only gives the
set of interior faces. We may assume that additional information about the domain
boundary is given in terms of lists of nodes called boundary surfaces. Then, a face is
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Table 1.2. Relation “node_node” corresponding to Figure 1.16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1
6 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1
16 1 1 1 1
17 1 1 1 1 1 1
18 1 1 1 1 1 1
19 1 1 1 1 1 1
20 1 1 1 1

Table 1.3. Relation “boundarysurface_node” corresponding to Figure 1.16. Boundary sur-
face 1 is the left vertical, boundary surface 2 is the bottom horizontal, boundary surface 3 is
the right vertical, and boundary surface 4 is the top horizontal

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1
4 1 1 1 1 1

a maximal intersection set of the previous type, or a maximal intersection set of the
type e ∩ “boundary surface”.
In Figure 1.16,we can define four boundary surfaces and can construct the relation

“boundarysurface_node” shown in Table 1.3.
At any rate, we assume that the faces of the initial set of elements are given either

by a mesh generator or they can be computed as the maximal intersection sets. That
is, we assume that the relations “element_face” and “face_node” are given.
We can then construct, based on sparse matrix manipulations, the following

relations.

“face_element” = (“element_face”)T , “node_face” = (“face_node”)T and
“face_face” = “face_node”× “node_face”.
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1.9.3 Faces of AEs

The purpose of constructing AEs is to define similar topological relations for them
and perform further agglomeration steps by recursion. For this reason, we have to
be able to define faces of AEs, which we call “AEfaces”. Assume that the relation
“AE_element” has been constructed; then we can build the relation (as a Boolean
sparse matrix) “AE_face” = “AE_element”× “element_face”. This represents the
AEs in terms of the faces of the original elements. The idea is that every two AEs
that share a face of the original elements should also share an “AEface”. That is,
we can define faces of agglomerated elements, “AEfaces”, based on “AE_face” by
simply intersecting the lists (sets) of every two AEs that share a common face, or
if the relation “boundarysurface_face” is given, by intersecting every AE with a
boundary surface if they share a common face of the original elements. By doing so
(intersecting two different AEs in terms of faces or intersecting an AE in terms of
faces and a boundary surface also in terms of faces), we get the “AEfaces” of the
“AE”s in terms of the faces of the original elements. In this way we construct the new
relations “AEface_face” and “AE_AEface”. The above definition of the (interior)
AEfaces, can be formalized in the following algorithm.

Algorithm 1.9.1 (Creating interior AEfaces) Given are the relations,

“AE_element”, “element_face”,

implemented as Boolean sparse matrices. In order to produce as an output the new

relations

“AEface_AE”, and “AEface_face”,

we perform the following steps.

• Form the relations:

1.

“AE_face” = “AE_element” × “element_face”;
2.

“AE_AE” = “AE_face” × (“AE_face”)T .

• Assign an “AEface” to each (undirected) pair (AE1, AE2) of different AEs

from the relation “AE_AE”. The new relation “AEface_AE” is also stored as a

Boolean rectangular sparse matrix.

• Form the product (including the numerical part of the sparse matrix–matrix

multiply):

“AEface_AE_face” ≡ “AEface_AE” × “AE_face”.

• Finally, the required relation

“AEface_face”

is obtained by deleting all entries of “AEface_AE_face” with numerical value 1.
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The last step of the above algorithm is motivated as follows. The nonzero entries of
the sparse matrix “AEface_AE_face” are either 1 or 2 (because a face can belong to
at most two AEs). An entry aij of “AEface_AE_face” with value 2 indicates that the
“AEface” corresponding to the row index “i” of aij has a face corresponding to the
column index “j” with a weight 2. This means that the face “j” is common to the two
AEs that define the AEface “i”. Therefore the face “j” “belongs” to the AEface “i”
(because it is a shared face by the two neighboring AEs which form the AEface “i”).
The entries aij of “AEface_AE_face”with value one correspond to a face “j”, which
is interior to one of the AEs (from the undirected pair of AEs that forms the AEface
“i’) and hence is of no interest here.

Remark 1.11. If the relation “boundarysurface_face” is givenwe can use it to define
the boundary AEfaces. We first form the relation

“AE_boundarysurface” = “AE_face”× (“boundarysurface_face”)T ,

and then to each AE that is connected to a boundary surface (i.e., to each pair (AE,
boundarysurface) from the relation “AE_boundarysurface”)we assign (a boundary)
AEface. Thus the relation “AE_AEface” obtained fromAlgorithm1.9.1 is augmented
with the boundary AEfaces. The list “AEface_face” is augmented with the intersec-
tion sets

(“AE_face”) ∩ (“boundarysurface_face”)

for every related pair (AE, boundarysurface) from the relation “AE_boundary-

surface”. This means that we intersect every row of “AE_face” with any (related
to it) row of “boundarysurface_face”.

1.9.4 Edges of AEs

We may define edges of AEs. A suitable topological relation for this is the “AE-

face_edge” defined as the product of the relations “AEface_face” and “face_edge”.
Thus, we assume that at the fine grid, we have access to the relation faces of elements
in terms of the edges of the elements. After we have created the faces of the agglom-
erates in terms of the faces of the fine-grid elements, we can then generate edges of
the agglomerates. The algorithm is based on pairwise intersecting lists for any given
AEface F , viewed as a set of fine-grid edges, with its neighboring AEfaces F , again
viewed as sets of fine-grid edges. Any intersection EF, F = F ∩F is a set of fine-grid
edges. The set EF, F is a likely candidate for an edge of the agglomerates that share
all these edges. The actual definition is as follows.

Definition 1.12 (Definition of AEedges). For any fine-grid edge e consider the in-

tersection of all AEfaces F (viewed as a set of fine-grid edges) that contain e. It may

happen that a fine-grid edge belongs to several such intersection sets. A minimal one

defines an AEedge.
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1.9.5 Vertices of AEs

We can further refine the definition of AEedges by splitting the minimal intersection
sets into connected components. To do this we need additional information; namely,
we need the fine-grid relation “edge_vertex”. A connected component then is a set
of edges that can be ordered into a connected path of 1D fine edges, where two
neighboring edges have a single fine-grid vertex in common. Then each connected
component of a minimal intersection set from Definition 1.12 is now called a (con-
nected) AEedge. The endpoints (vertices) of the AEedges are referred to as coarse
vertices.

1.9.6 Nested dissection ordering

We now adopt a dual notation. First, we consider any given relation “obj1_obj2” as
a rectangular Boolean sparse matrix, and second, each row of this matrix gives a set
of “obj2”s; that is, the rows “obj1” can be considered as sets consisting of “obj2”
entries. Hence, we can operate with these rows as sets and in particular we can find
their intersection and union. We in particular view a relation “obj1_obj2” as the set
obtained by the union of its rows.
Assume now that we have generated a sequence of agglomerated elements and

their topology. In particular, we need {(“face_node”)k}, and {(“AEface_face”)k},
k ≥ 0. (For convenience, we let (“AEface_face”)0 be the identity Boolean matrix;
that is, at the initial fine level k = 0 “AEface” equals “face”. Similarly, for other
purposes, it is also convenient to let (“AE_element”)0 be the identity relation; that is
“AE” equals “element” on the initial level.)
Having the topological information at fine-level k = 0, in addition to the nodal

information (“face_node”)0, we first create the topological information recursively;
in particular, we create {(“AEface_face”)k}, k ≥ 0. Then, by definition, we set
(“face_node”)k = (“AEface_face”)k × (“face_node”)k−1 for k > 0.
Note that, by construction, (“face_node”)k ⊂ (“face_node”)k−1. This means

that each coarse face (i.e., a face at the coarse level k) contains nodes only from the
fine-level k − 1 faces.

Definition 1.13. The splitting,

• S0 ≡ D \ (“face_node”)0;

• And for k > 0, Sk ≡ (“face_node”)k−1 \ (“face_node”)k ,

provides a direct decomposition of the original set of nodes D.

In the case of regular refinement (elements of fine-level k − 1 are obtained by
geometrical refinement of coarse-level k elements) the above splitting gives rise to the
so-called nested dissection ordering (cf., e.g., Chapter 8 of [GL81]). Thus in a gen-
eral unstructured grid case, our sparse matrix element topology leads to the following
natural extension.



1.9 Element topology 37

Fig. 1.17. Typical sparsity pattern in the nested dissection ordering.

Definition 1.14 (Nested dissection ordering). Consider the sets Sk defined in Defi-

nition 1.13. The splitting

D =
⋃

k≥0
Sk, (1.21)

gives rise to a block ordering of the assembled sparse matrix A (or of the relation

“node_node”) called nested dissection ordering.

Two examples of a sparsity pattern of the fine-grid assembled matrix in the nested
dissection ordering are shown in Figure 1.17.
Nested dissection ordering is useful in direct sparse factorization of A because it

tends to minimize the fill-in throughout the factorization (cf. [GL81]). It is also useful
in approximate factorization algorithms, due to the same reason.

1.9.7 Element agglomeration algorithms

Inwhat follows,weneed some relation tables implemented asBoolean sparsematrices
that reflect the topology of the fine-grid elements. Given two sets of objects, “obj1”
and “obj2” indexed from 1 to n1 and from 1 to n2, respectively, we construct a
Boolean matrix, denoted “obj1_obj2”. The rows of this matrix represent the entries
of “obj1” and the columns represent the entries of “obj2”. We place a nonzero entry
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at position (i, j) of this table if entry i from “obj1” is related to entry j of “obj2”.
All remaining entries are zero. To implement such relation tables, we may use the
well-known compressed sparse row (or CSR) format (cf., [Sa03]) suitable for sparse
matrices, and becausewe are not interested in the actual values of the nonzero entries,
only the integer part of theCSRmatrix storage is sufficient inmost of the consideration
below.
We next describe an agglomeration algorithm that exploits the topology of the

fine-grid elements. More specifically, we need the relation “element_face”, its trans-
pose “face_element”, and the transient one “face_face” defined as the product of the
Boolean matrices “face_dof” × “dof_face”. Once the three relations are defined on
the fine grid, we can automatically define their coarse counterparts without using any
dof information. That is, the coarse topology is uniquely determined by the fine-grid
topology and the relation “AE_element” that lists the agglomerated elements (or AE)
in terms of the fine-grid elements.
Assume that we have assigned an integer weight to each face. An algorithm that

eliminates a facewithmaximalweight and puts the elements that share that face (based
on the relation “face_element”) into a current agglomerate, is easy to formulate.
After a face has been eliminated, we increment the weights of the faces related to
the eliminated face (based on the relation “face_face”). If the faces of the already
eliminated agglomerates have weights less than or equal to the weight of the most
recently eliminated face, the process of building the current agglomerate is terminated.
We then repeat the procedure by eliminating a face with a maximal weight (outside
the set of faces of already agglomerated elements). To use the algorithm recursively,
we have to create the coarse counterparts of the used relations. In particular, we
have to define faces of agglomerated elements. Those are easily defined from the
relations “AE_element” and “element_face”. We first compute the transient relation
“AE_face” as the product “AE_element” × “element_face”. Then, we compute
numerically the product “AE_AE”= “AE_face”× “(AE_face)T ”. The sparsematrix
“AE_AE” has nonzero entries equal to one or two. For every entry with a value two,
we define an AEface (face of an agglomerated element) by the pair of AEs coming
from the row and column indices of the selected entry with value 2. All faces that are
shared by the specific pair of AEs (or equivalently by their AEface) define the row of
the relation table “AEface_face”.We define the transient relations, “AEface_AE”, as
the Boolean product “AEface_face”× “(AE_face)T ”. The latter product defines the
coarse relation “coarse face”– “coarse element”. Finally, computing the triple product
“AEface_face” × “face_face”× “face_AEface” defines the coarse relation “coarse
face”– “coarse face”. Thus, the three coarse counterparts of the needed relation to
apply the agglomeration recursively have been defined.
We can define some more sophisticated agglomeration algorithms by labeling

some faces as unacceptable to eliminate, thus preventing some elements from being
agglomerated. In this way, we can generate coarse elements that get coarsened away
from certain domains, boundaries, or any given set of given topological entities (i.e.,
faces of elements).
Other agglomeration algorithms are also possible, for example, based on graph-

partitioners. We can use for this purpose the transient relation “element_element”
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Fig. 1.18. Initial fine-grid unstructured mesh.

defined at the initial fine-grid level as the product of the Boolean matrices “element_
face” × “face_element”. Once an agglomeration step has been performed (i.e.,
the relation “AE_element” constructed), we define the coarse relation “coarse el-
ement”_”coarse element” by“AE_AE” which equals the triple product:

“AE_element” × “element_element” × “(AE_element)T ”.

Another approach is taken in [Wab03], where a bisection algorithm is recursively
applied as follows. First, partition the set of elements into two groups. Then each
newly created set of elements is further partitioned into two subgroups and so on. At
the end, we have ℓ levels of partitioned element sets, which serve as agglomerates in
a multilevel hierarchy.
In Figure 1.18, we show a model unstructured mesh, and in Figures 1.19–1.21,

one, two, and three levels of agglomerated meshes are shown.

1.10 Finite element matrices on many processors

With the current development of parallel computers having many (sometimes thou-
sands) of processors, the actual generation of the finite element problem (matrix and
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Fig. 1.19. One level of agglomerated coarse elements.

r.h.s.) may become a nontrivial task. The common practice to generate the problem
on a single processor and after proper partitioning to distribute it over the remaining
processors has limited applicability due to memory constraints (that single processor
has limited memory).
A feasible approach is to derive the pieces of the global problem in parallel, one

piece per processor. Thus, we end up with matrices A(N)p similar to the decomposi-
tion (1.20) (with p = 2). We need a Boolean mapping P that identifies dofs on a
given processor p with their copies in the neighboring processors q . These multiple
copies of dofs are identified with a single (master) one, which is sometimes called
truedof. Then, the actual matrix A corresponding to the truedofs only is obtained by
performing the triple-matrix product

P T

⎡
⎢⎢⎢⎢⎣

A
(N)
1 0 . . . 0

0 A
(N)
2 0

. . .

0 . . . 0 A
(N)
p

⎤
⎥⎥⎥⎥⎦
P.

The matrix P T has for every row (corresponding to a truedof) a number of unit
entries identifying it with its copy in the neighboring processors. The latter procedure
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Fig. 1.20. Second level of agglomerated coarse elements.

represents the so-called parallel assembly of the global matrix. Note that we can
use different matrices P (not necessarily the above Boolean one) to specify how the
remaining degrees of freedom are defined from a set of master dofs (or truedofs).
The procedure for assembling the problem r.h.s. b is similar. We have locally

computed r.h.s. bp; then the global one equals

P T

⎡
⎢⎢⎢⎣

b1
b2
...

bp

⎤
⎥⎥⎥⎦ .

1.11 The mortar method

A more sophisticated way to generate the finite element problem in parallel that,
in general, can also utilize nonmatching meshes, is based on the so-called mortar
method (cf., [Wo00]). Here, we handle two neighboring processors i and j at a
time. Let Ŵ = Ŵij be the geometrical interface between the subdomains �1 and �2
triangulated by elements {τ } on processor i and elements {τ̃} on processor j . There
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Fig. 1.21. Third level of agglomerated coarse elements.

are degrees of freedom associated with τ elements and degrees of freedom associated
with τ̃ elements. The dofs on one side of Ŵ are chosen as “master” ones, whereas
dofs on the other side of Ŵ are “slave”. In the mortar method, the degrees of freedom
from both sides of Ŵ that happen to belong to other interfaces Ŵr,s are considered to
be master dofs. That is, even on a slave side of Ŵ, the dofs on ∂Ŵ (i.e., belonging to
other interfaces as well) are considered as master dofs. Next, we select the dofs in the
interior to Ŵ = Ŵ \ ∂Ŵ of one of its sides (say, on processor i, assuming i < j ) to be
slave. Then, we have to define a mappingPŴ that interpolates at these slave dofs from
themaster (mortar) side (j ) and the boundarydofs (on ∂Ŵ) from the same side i so that

vi; Ŵ\∂Ŵ = PŴ
[

vi; ∂Ŵ
vj ; Ŵ

]
. (1.22)

The global problem is formulated as a constrained minimization one as follows. Find
{vi} that solves

∑

i

[
1

2
vTi A

(N)
i vi − vTi bi

]
�→ min, (1.23)

subject to the constraints (1.22).
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That is,wehave a quadratic form, a sumof subdomainquadratic formsai(vi, vi)−∫
�i
vifi dx = 1

2vTi A
(N)
i vi − vTi bi (as in (1.23)), and we impose continuity to define

the slave variables in terms of the master ones. In the present finite element setting,
the constraints are imposed on every interface Ŵ = Ŵij via another quadratic form
(·, ·)0, Ŵ , which is assembled from local (small) quadratic forms. In practice, (·, ·)0, Ŵ
corresponds to an integralL2-inner product on any interface boundaryŴ between two
subdomains.

1.11.1 Algebraic construction of mortar spaces

In this section, we present an algebraic element-based construction of dual mortar
multiplier spaces (originated in [KPVb]). This construction generalizes the dual basis
approach from [KLPV, Wo00, Wo00] to any type of meshes and (Lagrangian) finite
element spaces that are generated independently on each subdomain.
Note that any interface Ŵij is the union of faces from the mortar or the nonmortar

side. Thus, we can define finite element spaces on both sides of the interface by taking
the trace of the corresponding subdomain finite element spaces Vi and Vj .
A node onŴij is called a boundary if it also belongs to another interface. The nodes

on Ŵij that are not boundaries are called interior (to the interface). A face on Ŵij is
called an interior if it does not contain any boundary nodes, it is called a boundary

face if it contains interior and boundary nodes, and finally, it is called a corner face
if it does not contain any interior nodes. This is illustrated in Figure 1.22.
For any given interface Ŵij , the spaceM0

ij is defined to be the set of functions on
the nonmortar (slave) mesh on Ŵij that vanish on the boundary nodes of Ŵij . Let T
be a nonmortar face of Ŵij and define Mij(T ) to be the restriction of the nonmortar
functions to T . We define M̃ij = ⊕Mij(T ) where the sum is taken over all faces of
the nonmortar mesh on Ŵij . The spaceMij is a subset of M̃ij .

corner

corner

interior boundary

Fig. 1.22. Different types of faces on a nonmortar interface.
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The dual basis functions in the finite element case have two important properties:

1. The dual basis functions are constructed locally.
2. The dual basis functions can reproduce constants locally.

These properties are fundamental in the analysis of the approximation properties
of the mortar method used as the discretization method (for details cf., [Wo00]
or [KLPV]).
To be specific, we consider 3D subdomains�i that are polytopes, triangulated by

tetrahedral meshes. Then each interface Ŵij between two subdomains �i and �j is
triangulated by two sets of triangularmeshes (the restriction of the tetrahedralmeshes
to Ŵij ). The mortar constraints are imposed on the basis of theL2(Ŵij ) form, denoted
by (., .) and by (., .)T if the integration is restricted to an element T . Assuming we
have constructed a mortar f.e. spaceMij, we impose “weak” continuity conditions as
follows,

([v], µl) = (vi − vj , µl) = 0.

Here, µl ∈ Mij runs over a basis of Mij and [v] = vi − vj stands for the jump of v
on Ŵij . In what follows, we also use the notation vm = vi for the mortar side of Ŵij
and vnm = vj for the nonmortar side of Ŵij .
Also, let θl define a Lagrangian basis on the nonmortar side of Ŵij and similarly

let {θ̃k} define a basis on the mortar (master) side of Ŵij .
This relation forces the interior nodes on the nonmortar interface to be slaves of

those on the boundary and those on the mortar side. This is illustrated in Figure 1.23.

Γ

Ω

Ω  j

i

mortar

non-mortar

Γ
degrees of freedom

slave nodes

Fig. 1.23. Mortar interface and degrees of freedom.
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A local biorthogonal basis

There is a unique function µ̂l ∈ Mij(T ) satisfying

(µ̂l, θk)T = δij =
{
1, l = k,
0, l 
= k.

Here {θk} are the basis functions forMij(T ) (these basis functions are restrictions of
the basis functions of the nonmortar subdomain to T ). In fact,

µ̂l =
∑

k

clkθk

where the coefficients cl = (clk) solve the system

GT cl = el = (δlk)
whereGT = ((θk, θl)T ) denotes the localmassmatrix for the elementT . This system
has a unique solution becauseGT is invertible.
Using the biorthogonality property (µ̂l, θk)T = δlk , it follows that

αl ≡ α(T )l = (1, θl)T
satisfies

∑

l

αlµ̂l = 1 on T .

The biorthogonal mortar basis

The mortar multiplier basis functions {µl} are defined only for nodes xl that are
interior to Ŵij . We first assign corner faces T to nearby interior vertices; For example,
T is assigned to the nearest interior vertex. For each interior node xl and face T , we
define µl on T as follows.

1. If T is a corner face assigned to xl then µl = 1 on T .
2. If T is a face that does not contain xl (excluding the case of (1) above) then
µl = 0 on T .

3. If T is a boundary face containing xl then

µl = αlµ̂l +m−1 ∑

k: xk∈∂Ŵ∩T
αkµ̂k on T

where m is the number of interior nodes in T .
4. If T is an interior face containing xl then µl = αlµ̂l on T .
We then have

1 =
∑
µl on T ,

where the sum is taken over l such that µl 
= 0 on T .
The dual basis mortar formulation defines Mij to be a subspace of discontinu-

ous piecewise linear functions on Ŵij (with respect to the nonmortar mesh) that are
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generated by a dual basis, {χl}, l = 1, . . . , nij satisfying

∫

Ŵij

θlχk ds =
{
1 if l = k,
0 otherwise.

(1.24)

Here {θl}, l = 1, . . . , nij is the usual nodal finite element basis for the space of
functions M0

ij which are piecewise linear (with respect to the nonmortar mesh) and
vanish on ∂Ŵij .
The construction of the dual basis functions only requires the use of the localmass

matricesGT and local geometric information, such as relations between nodes, edges,
and triangles, and whether a node and a face are on the boundary of an interface.

Implementation of the mortar interpolation

The condition (1.24) implies that the nodal value of a finite element function v on the
interior node xl (corresponding to the basis function θl) is given by

cl =
∫

Ŵij

vm(x)χl dx −
∫

Ŵij

vnm,0(x)χl dx (1.25)

where vm(x) denotes the trace of v to Ŵij from the mortar subdomain and vnm,0
denotes v on the nonmortar side, cut down to zero on the interior nodes. Equation
(1.25) defines a row of the desired mortar interpolation (cf., (1.22)). The computation
of the right-hand side of (1.25) requires information about how the elements on the
subdomain are connected to those on the boundary, as well as the geometric relation
between the triangles (faces) on the mortar and those on the nonmortar side and an
“interaction mass matrix”

Mrksm =
∫

τr∩τ̃s

θkr θ̃
m
s dx, k, m = 1, 2, 3. (1.26)

Here τr and τ̃s are triangles on Ŵij on the mortar and nonmortar side, respectively,
and θkr and θ̃

m
s run over the nodal basis functions on τr and τ̃s . In our particular case,

there are three linear basis functions θkr per triangle τr and also three basis functions
θ̃ms per triangle τ̃s .
The space of mortar multipliersMij is defined to be the span of {µl}. Note that

the dimension of Mij equals the number of interior nodes xl on Ŵ. The dual basis
functions {χl} satisfying (1.24) are obtained from {µl} by obvious scaling.
Note that in general, {µl} are discontinuous across the element boundaries. Two

exampleswith piecewise linear finite elements and a nonmortar interfacewith uniform
triangulation in one and two dimensions are presented in Figures 1.24 and 1.25.
Note that the construction here is quite general in that it extends to any element-

by-element defined interface functions as long as the element mass matrices are
available. Thus, it extends to the types of interface functions resulting from element
agglomeration-based (AMGe) procedures described in Section 1.9. For more details,
cf. [KPVb].
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Fig. 1.24. Mortar basis functions for one-dimensional nonmortar interface discretized with
a uniform grid.

Fig. 1.25. Mortar basis functions for two-dimensional nonmortar interface discretized with
a uniform grid.

In conclusion, because the dual basis forMij and the basis forM0
ij are related by

(1.24), the values of the slave nodes on the interior of the nonmortar interface are
given by (1.25). The implementation of this requires the corresponding interaction
matrices (1.26).
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A Main Goal

Given a sparse matrix, for example, symmetric positive definite (or s.p.d. for short)
A = (ai,j )ni,j=1, our main goal is to devise efficient algorithms for solving the system
of linear equations,

Ax = b.

In practice, n can be very large (e.g., in the range of millions). A first comment then
is that in a massively parallel environment direct solvers are out of the question due
to their prohibitive memory requirements.
The fact that A is sparse means that an inexpensive operation is “matrix times

vector.” Therefore, iterative methods for solving Ax = b are appealing because they
involve computing at every iteration the residual

r = b − Ax,

corresponding to a current iterate x. The next iterate is obtained by computing a
correction based on r. A stationary iterative method exploits a mapping (sometimes
explicitly represented by a matrix) B, which has an easily computable inverse action
B−1 (in some cases implicitly represented only by a procedure). Then, the new iterate
xnew equals,

xnew = x + B−1r.

The corresponding new residual rnew = b − Axnew equals

rnew = (I − B−1A)r.

By making the successive residuals r �→ 0 (in some norm), we get more accurate
approximations x to the exact solution A−1b.
If B is s.p.d. (symmetric positive definite), the method of choice is the (precondi-

tioned) CG, which initially computes p = B−1r and at every successive step updates
it based on the preconditioned residual r = B−1r as p := B−1r + β p for a proper
scalar β. At any rate, major operations here are again (as in a stationary iteration) the
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actions of B−1 and matrix vector products with A in addition to some vector inner
products. The actual preconditioned CG iteration takes the form:

(0) Initiate: Given a tolerance ǫ and an integer nmaxiter that gives the maximal number
of iterations allowed, for an initial iterate x, which we choose x = B−1b, we
1. Compute δ0 = xT b.
2. Compute r = b − Ax,
3. Compute r = B−1r,
4. Let p = r.
5. Compute δ = rT r.
6. Test for convergence, if δ ≤ ǫ2 δ0 stop.
7. Set niter = 0;

(i) Loop: until convergence or max number of iterations reached
1. Compute h = Ap.
2. Compute α = δ/pT h.
3. Compute x := x + αp.
4. Compute r := r − αh.
5. Compute r = B−1r.
6. Set δold = δ,
7. Compute δ = rT r.
8. Set niter := niter + 1;
9. Check for convergence: if either δ ≤ ǫ2 δold or niter > nmaxiter , stop.
10. Compute β = δ/δold.
11. Compute p := r + β p and go to (i).

We have the following popular convergence rate result after niter steps,

δ ≤ κ
(

2qniter

1+ q2niter

)2
δ0 ≤ 4κ q2niter δ0,

where q = √
κ − 1/√κ + 1 and κ = Cond(B−1A).

In practice, we typically prove (spectral equivalence) estimates

c1 vTAv ≤ vTBv ≤ c2 vTAv for all v.

Then, because the eigenvalues of B−1A are in [1/c2, 1/c1], we clearly have κ ≤
c2/c1.
A simple candidate for an iteration matrixB is based on the diagonalD ofA. For

example, we can use the diagonal matrix χD, where χ is either a diagonal matrix
with entries χi =

∑
j : ai,j 
=0 1 or just the scalar maxi χi . We have

c1 vTAv ≤ vTBv ≤ c2 vTAv

with c1 = 1. Unfortunately, for f.e. matrices A, such as the discretized Poisson
equation, the estimate from below is mesh-dependent; that is, we typically have

c−12 = min
v

vTAv

vT χDv
≃ h2 �→ 0.

Hence, Cond (B−1A) ≤ c2/c1 ≃ h−2 �→ ∞ with h �→ 0.
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The goal then is to construct a B such that:

(i) The action of B−1 costs as little as possible, the best beingO(n) flops.
(ii) The constants c1 and c2 in the spectral equivalence estimate are such that c2/c1
is as close as possible to one, for example, being independent of various problem
parameters, in particular being independent of n.

(iii)∗ In a massively parallel computer environment, we also want B−1 to be com-
posed of local actions, essentially based on a “hierarchy” of sparse matrix vector
products. The latter is achieved by the multilevel preconditioners that are a main
topic of the present book.

Based on the convergence estimate, it is clear then that to get an approximate solution
toAx = bwithin tolerance ǫ, it is sufficient to perform as many as niter iterations such
that qniter < 1

2κ
−1 ǫ or niter = O(log 1/ǫ). The constant in theO symbol is reasonable

as long as κ is kept under control (not too far away from one).
For large sparse matricesA that come fromfinite element discretization of elliptic

PDEs (partial differential equations), like the Poisson equation, we can achieve both
(i) and (ii) (and to a certain extent (iii)∗) based on the multilevel preconditioning
methods that are the main topic of the present book. Such methods are often referred
to as scalable iterative methods.



3

Two-by-Two Block Matrices and Their

Factorization

The topics that are covered in this chapter are as follows. We first study some funda-
mental properties of block matrices and their Schur complements. We next consider
a popular product iteration method, and then the concept of approximate block-
factorization is introduced. Amain relation between a familiar product iteration algo-
rithm and a basic block-factorization preconditioner is then established. This relation
is a cornerstone in proving the spectral equivalence estimates. Next, a sharp spectral
equivalence result is proved in a general setting. It provides necessary and sufficient
conditions in an abstract form for a preconditioner to be spectrally equivalent to the
givenmatrix. Then twomajor examples, a two-level and a two-grid preconditioner, are
considered and analyzed. Finally the more classical two-by-two (two-level) block-
factorization preconditioners are introduced and analyzed. The chapter concludes
with a procedure to generate a stable block form of matrices and with an analysis of
a respective block-factorization preconditioner.

3.1 Matrices of two-by-two block form

3.1.1 Exact block-factorization. Schur complements

In this section, we consider general s.p.d. matrices of the form

A =
[
A R

L B

]
.

Assuming that A is square and invertible, introduce the Schur complement

S = B − LA−1R.

A standard block-factorization of A reads

A =
[
I 0

LA−1 I

] [
A 0
0 S

] [
I A−1R
0 I

]
.
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This shows that S is invertible if A is invertible. Moreover S is s.p.d. if A is s.p.d. A
straightforward computation shows the identity

A−1 =
[
I −A−1R
0 I

] [
A−1 0
0 S−1

] [
I 0

−LA−1 I

]

=
[
A−1 + A−1RS−1LA−1 −A−1RS−1

−S−1LA−1 S−1

]
.

This, in particular, implies the identities for the blocks of

A−1 =
[
V F

G W

]
.

We haveW = S−1, F = −A−1RS−1, G = −S−1LA−1, and A−1 = V − FSG.
We may introduce the following Schur complement of A,

S ′ = A − RB−1L.

It is clear then that V =
(
S ′)−1. That is, A−1 and B−1 are Schur complements of

A−1. Alternatively, we may say the following.

Proposition 3.1. The inverse of a principal submatrix of a given matrix is a respective

Schur complement of the inverse of the given matrix.

Another form of the explicit inverse of A is as follows.

A−1 =
[
A−1 0
0 0

]
+
[
−A−1R
I

]
S−1[− LA−1, I

]
.

The latter shows that A−1 can be computed as a “low–rank” update to
[
A−1 0
0 0

]
.

Theorem 3.2. The Schur complement S of a s.p.d. matrix A is better conditioned

than the matrix. Moreover, we have

λmin(A) ≤ λmin(S) ≤ λmax(S) ≤ λmax(B) ≤ λmax(A).

Proof. The last two inequalities are straightforward because

xT Sx

xT x
= xT (B − LA−1LT )x

xT x
≤ xTBx

xT x
=

[
0
x

]T
A

[
0
x

]

0T 0+ xT x
≤ sup

v, x

[
v

x

]T
A

[
v

x

]

vT v + xT x

implies

λmax(S) ≤ λmax(B) ≤ λmax(A).
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Now using the fact that S−1 is a principal submatrix ofA−1, we can apply the proved
inequality λmax(B) ≤ λmax(A) for A := A−1 and B := S−1, which gives

1

λmin(S)
= λmax(S−1) ≤ λmax(A−1) = 1

λmin(A)
.

That is, the remaining inequality λmin(A) ≤ λmin(S) is proved. �

In what follows, we often use the following properties of A.

Lemma 3.3. Given are two rectangular matrices (less columns than rows) J and

P , such that [J, P ] is square and invertible. In other words, any vector v can be

uniquely decomposed as v = Jw +Px. This shows that the vector spaces Range(J )

and Range(P ) have a nontrivial angle in a given inner product generated by any

s.p.d. matrix A. Let γ ∈ [0, 1) measure that abstract angle; that is, the following

strengthened Cauchy–Schwarz inequality holds.

wT JAPx ≤ γ (wT J T AJw)1/2(xT P T APx)1/2, for all w, x. (3.1)

The following inequality is an equivalent statement of (3.1)

wT J T AJw ≤ 1

1− γ 2 inf
x: v=Jw+Px

vTAv. (3.2)

Due to symmetry, we also have that the following statement is equivalent to (3.1),

xT P T APx ≤ 1

1− γ 2 inf
w: v=Jw+Px

vTAv. (3.3)

Finally, consider the special case [J, P ] = I , that is,

J =
[
I

0

]
, P =

[
0
I

]
, (3.4)

and let A = J T AJ,R = J T AP, L = P T AJ, and B = P T AP. Consider also the

Schur complement S = B − LA−1R. Then

inf
w: v=Jw+Px

vTAv = inf
w

[
w

x

]T [
A R

L B

] [
w

x

]
= xT (B − LA−1R)x = xT Sx.

(3.5)

Proof. We look at the quadratic form, for any t ∈ R,

Q(t) ≡ (Jw + tPx)TA(Jw + tPx)− (1− γ 2)wT J T AJw

= t2xT P T APx + 2twT J T APx + γ 2wT J T AJw.
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An equivalent statementQ(t) to be nonnegative is its discriminant

(wT J TAPx)2 − γ 2wT J TAJwxT P T APx,

to be nonpositive. This shows that (3.1) and (3.2) are equivalent.
Finally, in the case (3.4), the “energy” minimization property (3.5) of the Schur

complement S of A follows from the identity

(Jw + Px)TA(Jw + Px) = xTSx + (Aw + Rx)T A−1 (Aw + Rx) .

It is clear then that xTSx = minw (Jw + Px)TA(Jw + Px) with the minimum
attained at w = −A−1Rx. �

The following result was proved in [FVZ05].

Lemma 3.4. LetT +NTN be invertible, with T being symmetric positive semidefinite

and N a rectangular matrix such that for any vector v (of proper dimension) the

equationNw = v has a solution. Introduce the matrix Z = N(T +NTN)−1NT . We

have that Z is s.p.d., and the following identity holds.

vTZ−1v

vT v
= 1+ inf

w: Nw=v

wT Tw

vT v
.

Proof. We first mention that N being onto implies that NT has a full column
rank. Indeed, assume that for some vector v0 we have that NT v0 = 0. Because
by assumption, the equation Nw0 = v0 has a solution w0, it follows then that
0 = (NT v0)

Tw0 = vT0 (Nw0) = vT0 v0. That is, ‖v0‖ = 0, which implies v0 = 0.
Thus, the columns ofNT must be linearly independent, and hence,NNT is invertible.
It is clear also that the matrix Z = N(T + NTN)−1NT is s.p.d., hence invertible.
This follows from the simple inequalities,

wTN(T +NTN)−1NTw = (NTw)T (T + NTN)−1(NTw)

≥ 1

λmax(T +NTN) ‖NTw‖2 ≥ 0.

The last expression can be zero only if NTw = 0, that is, only if w = 0 due to the
fact that NT has a full column rank.
Consider now the following constrained minimization problem.
For a given v find the solution of

J (w) = 1

2
wT Tw �→ min,

subject to the constraint Nw = v. Let w∗ be a solution of this quadratic constrained
minimization problem. Introducing the Lagrange multiplier λ and taking derivatives
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of the respective Lagrangian L(w, λ) ≡ J (w)+ λT (Nw − v), we end up with the
following saddle-point problem for (w∗, λ),

[
T NT

N 0

] [
w∗
λ

]
=
[
0
v

]
.

The latter system is equivalent to the following transformed one (obtained by multi-
plying the second equation with NT and adding it to the first equation),

[
T +NTN NT

N 0

] [
w∗
λ

]
=
[
NT v

v

]
.

The transformed matrix has (by assumption) an invertible (1,1)-block, T + NTN ,
and also it has a (negative) Schur complement Z = N(T + NTN)−1NT which we
showed (above) is invertible.
Thus, the solution of the constrainedminimization problemw⋆ coincides with the

w-component of the solution of the last saddle-point problem. Because w∗ = (T +
NTN)−1NT (v−λ), we have v = Nw∗ = Z(v−λ), which shows thatλ = v−Z−1v.
Thus, using again that v = Nw⋆ and NT λ = −Tw⋆, we end up with the equalities,

vTZ−1v = vT v − vT λ

= vT v − (Nw⋆)
T λ

= vT v − wT⋆ (N
T λ)

= vT v + wT⋆ Tw⋆.

Using now the characterization of w⋆, namely, that

wT⋆ Tw⋆ = min
w: Nw=v

wT Tw,

we end up with the desired identity,

vTZ−1v

vT v
= 1+ min

w: Nw=v

wT Tw

vT v
. �

Finally, we derive a symmetric version of the popular Sherman–Morrison formula.

Proposition 3.5. Given are three matrices, X, T , and F , such that X and T are

invertible; then the following formula holds,

(X + F T T −1F)−1 = X−1 − X−1F T (T + FX−1F T )−1FX−1,

provided T + FX−1F T is invertible.

Proof. Consider the following factored matrix

A ≡
[
I 0
F I

] [
X−1 0
0 T

] [
I F T

0 I

]
.



60 3 Two-by-Two Block Matrices

We have the following explicit expression for A

A =
[
X−1 0
FX−1 T

] [
I F T

0 I

]

=
[
X−1 X−1F T

FX−1 T + FX−1F T

]
.

Form the Schur complement of A,

S = X−1 −X−1F T (T + FX−1F T )−1FX−1.

Now, let us derive an explicit expression for A−1. Based on the factored form of A,
we get

A−1 =
[
I F T

0 I

]−1 [
X−1 0
0 T

]−1 [
I 0
F I

]−1

=
[
I −F T
0 I

] [
X 0
0 T −1

] [
I 0

−F I

]

=
[
X −F T T −1

0 T −1

] [
I 0

−F I

]

=
[
X + F T T −1F −F T T −1

−T −1F T −1

]
.

Then, Proposition 3.1 tells us that (X + F T T −1F)−1 = S which is the desired
Sherman–Morrison formula. �

3.1.2 Kato’s Lemma

We often use the following classical result of Kato (see Lemma 4 in the appendix of
[Kato]). For a survey on this topic we refer to [Sz06].

Lemma 3.6. Let π be a projection; that is, π2 = π and π 
= I, 0. Then for any

inner-product norm ‖.‖ =
√
(·, ·), we have ‖π‖ = ‖I − π‖.

Proof. For any vector v and any t ∈ R, consider vt ≡ πv + t (I − π)v. Notice that
πvt = πv. Then,

‖πv‖2 = ‖πvt‖2 ≤ ‖π‖2‖vt‖2 = ‖π‖2‖πv + t (I − π)v‖2.

The latter expression shows that

Q(t) ≡
(
1− 1

‖π‖2
)

‖πv‖2 + 2t (πv, (I − π)v)+ t2‖(I − π)v‖2 ≥ 0.
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This implies that the discriminant of the quadratic form Q(t) must be nonnegative;
that is, the following strengthened Cauchy–Schwarz inequality holds,

(πv, (I − π)v)2 ≤
(
1− 1

‖π‖2
)

‖πv‖2‖(I − π)v‖2.

We prove in the same way

(πv, (I − π)v)2 ≤
(
1− 1

‖I − π‖2
)

‖πv‖2‖(I − π)v‖2.

Thus, ‖π‖ = ‖I − π‖, because the strengthened Cauchy–Schwarz inequality

(πv, (I − π)v)2 ≤ γ 2 ‖πv‖2‖(I − π)v‖2 (3.6)

(i.e., with the best constant γ ∈ [0, 1)) would imply, by following the above steps in
a reverse order, that ‖π‖2 = ‖I − π‖2 = 1/(1− γ 2). �

The above proof also shows the following corollary.

Corollary 3.7. Consider a vector space equipped with a norm ‖.‖ generated by an

inner product (·, ·). The norm ‖π‖ of a nontrivial projection π in that vector space,

is related to the cosine γ ∈ [0, 1) of the angle between the complementary spaces

Range(π) and Range(I − π) in the inner product (·, ·) (defined in (3.6)), as

‖π‖ = 1√
1− γ 2

·

The latter implies ‖π‖ = ‖I − π‖ (for π 
= I, 0).

3.1.3 Convergent iteration in A-norm

In this section we formulate an auxiliary result that is used many times throughout
the book.

Proposition 3.8. LetA be a s.p.d. matrix. Assume, that for a given nonsingular matrix

M the iteration matrix I−M−1A has anA-norm less than one. Equivalently, (because

A is s.p.d.) assume that

‖I − A1/2M−1A1/2‖ < 1.

Consider the matrix M = M(M + MT − A)−1MT (sometimes referred to as a

symmetrization ofM).

The following properties hold.

(i) I −M−1
A = (I −M−TA)(I −M−1A).

(ii) M − A is symmetric positive semidefinite.

(iii) ‖I − A1/2M−1
A1/2‖ = ‖I − A1/2M−1A1/2‖2.

(iv) ‖I − A1/2M−1A1/2‖ < 1 is equivalent toM +MT − A being s.p.d.
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In particular, a stationary iteration for solving systems with A based on M is con-

vergent in theA-norm, if and only if a stationary iteration for solving systems with A

based onM is convergent in theA-norm. The convergence factor of the latter equals

the square of the convergence factor of the former.

Similar results hold for M̃ = MT (M + MT − A)−1M which is in general

different from M (if M 
= MT ) based on the fact ‖X‖ = ‖XT ‖ (used here for

X = I − A1/2M−1A1/2).

Proof. From the explicit expression M
−1 = M−1 +M−T − M−1AM−T , letting

E = I−M−1A, it follows that I−M−1
A = E−M−TAE = (I−M−TA)E, which

is the first desired identity. This identity admits the following more symmetric form

I − A1/2M−1
A1/2 = (I − A1/2M−TA1/2)(I − A1/2M−1A1/2).

This is exactly the third item of the proposition. It actually shows that I − A1/2

M
−1
A1/2 = XTX (for X = I − A1/2M−1A1/2). From the identity I − XTX =

A1/2M
−1
A1/2 and the fact that ‖X‖ < 1 it follows that A1/2M−1

A1/2 = I − XTX
is s.p.d. This implies that M is s.p.d. Equivalently, we have that M + MT −
A = M−1MM−T is s.p.d. The identity XTX = I − A1/2M

−1
A1/2 implies that

A−1/2XTXA−1/2 = A−1 −M−1
is symmetric positive semidefinite which is equiv-

alent toM −A is symmetric positive semidefinite. This shows the second item of the
proposition.
We already showed that ‖X‖ < 1 implies M +MT − A being s.p.d. The con-

verse statement follows from the fact thatM +MT − A being s.p.d. implies thatM
and hence A1/2M

−1
A1/2 = I − XTX are s.p.d. Therefore, ‖X‖ < 1, which is the

converse statement. �

At the end we prove one more auxiliary result.

Proposition 3.9. LetA be a given s.p.d. matrix andM provide a convergent iteration

method for A in the A-norm; that is, let ‖I −M−1A‖A < 1. Let

IF =
[
I

0

]

specify a principal submatrix AF = (IF )
TAIF of A. Finally, let MF be such that

‖I −M−1
F AF ‖AF < 1. Then, the product iteration matrix E = (I −M−1A)(I −

IFM
−1
F (IF )

TA) satisfies

‖E‖A ≤ ‖I −M−1A‖A < 1.

That is, the product iteration method based onM−1 and IFM
−1
F (IF )

T is convergent

in the A-norm. In particular, the matrix M̂ defined implicitly I − M̂−1A = E is well

defined; that is, I − E is invertible.
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Proof. If we show that ‖E‖A < 1 then the convergence of the series (I − E)−1 =∑∞
k=1E

k <∞ would imply that M̂ = A−1(I − E)−1 is well defined.
We first use the fact that ‖I −M−1

F AF‖AF < 1 is equivalent to the statement that
M−1
F +M−T

F − AF is s.p.d. (see Proposition 3.8).
If we show that ‖I − IFM−1

F (IF )
TA‖A ≤ 1 then ‖E‖A ≤ ‖I −M−1A‖A < 1

the result is proven. Consider the expression

‖(I − IFM−1
F (IF )

TA)v‖2A
= vT

(
I − IFM−1

F (IF )
TA
)T
A
(
I − IFM−1

F (IF )
TA
)
v

= vT
(
A− AIFM−T

F ITF A− AIFM−1
F I

T
F A+ AIFM−T

F (ITF AIF )M
−1
F I

T
F A
)
v

= vT
(
A− AIFM−T

F ITF A− AIFM−1
F I

T
F A+ AIFM−T

F AFM
−1
F I

T
F A
)
v

= vTAv − (Av)T IF
(
M−T
F +M−1

F −M−T
F AFM

−1
F

)
IFAv

≤ vTAv.

That is, ‖I − IFM−1
F (IF )

TA‖A ≤ 1 which was the desired result. �

3.2 Approximate block-factorization

Given the s.p.d. matrix A operating on vectors in Rn, let J and P be two rectangular
matrices such that their number of rows equals n. Simple examples are the rectangular
matrices

J =
[
I

0

]
, P =

[
0
I

]
.

In what follows, we consider general rectangular matrices J and P . Form the sub-
space matrices A = J TAJ and B = P T AP and let M and D be their respective
approximations (sometimes called preconditioners).
In the following sections, we show that there is a close relation between certain

block-factorization preconditioners that exploit solvers based onM,D, andMT and
subspace product iteration algorithms of inexact block Gauss–Seidel form.

3.2.1 Product iteration matrix formula

More specifically, consider the problem

Au = b,

with a given initial approximationu0. The procedure to generate a new approximation
unew exploits updates from two subspaces Range (J ) and Range (P ), which require
approximate solutions of problems with the respective subspace matricesA = J TAJ

and B = P T AP.
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Assume thatM is an approximation to A and that D is a s.p.d. approximation
to B. Note thatM does not have to be symmetric.
For practical purposes we often assume that

‖I − A1/2M−1A1/2‖ < 1, (3.7)

and

‖I − B1/2D−1B1/2‖ < 1; (3.8)

that is, both M and D provide convergent splittings for A and B in the “energy”
norms ‖.‖A and ‖.‖B , respectively. The latter is motivated by the fact that the best
approximation to the solution u from the subspace Range (P ), defined as ‖u −
Px‖A �→ min is given by theRitz–Galerkin projectionπAu = P(P T AP)−1P TAu =
PB−1P T b. In the case of approximate solutions, that is, using D−1 instead of B−1,
it is natural to assume that D−1 is close to B−1 in the B-norm. The same argument
applies toM−1 andM−T used as approximations to A−1.
The inexact symmetric block Gauss–Seidel procedure of interest takes the fol-

lowing familiar form.

Algorithm 3.2.1 (Product iteration method)

(0) Let u0 be a current iterate and r0 = b − Au0 be the corresponding residual.

We perform steps (m), (w), and (m′) (corresponding to iterations in subspaces

Range(J ), Range(P ), and Range(J )) to define the new approximation unew.

(m) Solve approximately for a correction Jxm from the subspace residual equation,

(J T AJ)x = J T r0;

that is, compute xm = M−1J T r0 and let um = u0 + Jxm. Compute the new

residual rm = b − Aum = b − Au0 − AJxm = (I − AJM−1J T )r0.
(w) Solve approximately for a correction Pw from the subspace residual equation

(P T AP)w = P T rm;

that is, let w = D−1P T rm and let uw = um + Pw. Compute the next residual

rw = b − Auw = b − Aum − APw = (I − APD−1P T )(I − AJM−1J T )r0.
(m′) Solve approximately for a correction Jxm′ from the subspace residual equation,

(J T AJ)x = J T rw;

that is, let xm′ = M−T J T rw and the final new iterate equal unew = uw + Jxm′ .

Compute the new residual rnew = b − Aunew = b − Auw − AJxm′ = (I −
AJM−T J T )(I − APD−1P T )(I − AJM−1J T )r0.

Thus the residual iteration matrix Er of the above composite iteration u0 �→
unew, which maps r0 �→ rnew, has the product form Er = (I − AJM−T J T )
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(I − APD−1P T )(I − AJM−1J T ). For the error iteration matrix E defined from
u − u0 = A−1r0 �→ u − unew = A−1rnew, noticing that AE = ErA, we obtain

E = (I − JM−T J TA)(I − PD−1P TA)(I − JM−1J TA) = A−1ErA.

We can easily show the above algorithm does not diverge if (3.7) and (3.8) hold.
We have the following.

Lemma 3.10. Assume that M and D satisfy (3.7) and (3.8). Then ‖Ee‖A ≤ ‖e‖A.

Proof. Due to the product form ofE, it is sufficient to prove that ‖(I − JM−1J TA)
e‖A ≤ ‖e‖A, ‖(I − JM−T J TA)e‖A ≤ ‖e‖A, and ‖(I − PD−1P TA)e‖A ≤ ‖e‖A.
Equivalently, it is sufficient to prove that

‖I − A1/2JM−1J TA1/2‖ = ‖I − A1/2JM−T J TA1/2‖ ≤ 1, and

‖I − A1/2PD−1P TA1/2‖ ≤ 1.

We prove the inequality involving M (the result for D is analogous). From the
identity

(I − A1/2M−TA1/2)(I − A1/2M−1A1/2)

= I − A1/2(M−T + M−1 − M−TAM−1)A1/2,

we see that the assumption ‖I−A1/2M−1A1/2‖ ≤ 1 is equivalent toM−1+M−T −
M−1AM−1 being symmetric positive semidefinite.
Consider then the expression

‖(I − JM−1J TA)e‖2A
= eT (I − JM−1J TA)TA(I − JM−1J TA)e

= eT (A− AJM−T J TA− AJM−1J TA+ AJM−T (J TAJ)M−1J TA)e

= eT (A− AJM−T J TA− AJM−1J TA+ AJM−TAM−1J TA)e

= eTAe − (Ae)T J (M−T + M−1 − M−TAM−1)J TAe

≤ eTAe.

That is, ‖I − JM−1J TA‖A ≤ 1, which was the desired result. �

3.2.2 Block-factorizations and product iteration methods

Define implicitly a matrix B−1 from the equation

I − B−1A = E = (I − JM−T J TA)(I − PD−1P TA)(I − JM−1J TA). (3.9)

We show next that B−1 can be constructed as a certain approximate block-
factorization matrix given below.
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Theorem 3.11. Let M = M(M+MT −A)−1MT . Consider the following block-

factored matrix.

B̂ =
[

M 0
P T AJ I

] [
(M + MT − A)−1 0

0 D

] [
MT J T AP

0 I

]
. (3.10)

Then, the matrix B−1 = [J, P ]B̂−1[J, P ]T solves the equation (3.9). Also, B−1

admits the following more explicit form,

B−1 = JM−1
J T + (I − JM−T J TA)PD−1P T (I − AJM−1J T ). (3.11)

We remark that if the matrix [J, P ]T does not have full column rank, then B−1 is
just a notation for the product [J, P ]B̂−1[J, P ]T , which is only symmetric positive
semidefinite, and not invertible.

Proof. The following explicit expression of B̂−1 is easily derived,

B̂−1 =
[
I −M−T J T AP

0 I

][
M

−1
0

0 D−1

][
I 0

−P T AJM−1 I

]
.

Next, form the product [J, P ]B̂−1[J, P ]T . We have

[J, P ]B̂−1[J, P ]T

= [J, P ]

[
I −M−T J T AP

0 I

][
M

−1
J T

D−1P T (I − AJM−1J T )

]

= [J, (I − JM−T J TA)P ]

[
M

−1
J T

D−1P T (I − AJM−1J T )

]

= JM−1
J T + (I − JM−T J TA)PD−1P T (I − AJM−1J T ),

which proves (3.11).
Notice next, that

M
−1 = M−T (M + MT − A)M−1 = M−T + M−1 − M−TAM−1,

which shows,

I − JM−1
J TA = I − J (M−T + M−1 − M−TAM−1)J TA

= I − J (M−T + M−1 − M−T J T AJM−1)J TA

= (I − JM−T J TA)(I − JM−1J TA).
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Therefore,

I − [J, P ]B̂−1[J, P ]TA

= I − JM−1
J TA− (I − JM−T J TA)PD−1P T (I − AJM−1J T )A

= I − JM−1
J TA− (I − JM−T J TA)PD−1P TA(I − JM−1J TA)

= I − JM−1
J TA− (I − JM−T J TA)(I − JM−1J TA)

+ (I − JM−T J TA)(I − PD−1P TA)(I − JM−1J TA)

= (I − JM−T J TA)(I − PD−1P TA)(I − JM−1J TA)

= E.

Thus, B−1 ≡ [J, P ]B̂−1[J, P ]T solves the equation I − B−1A = E, which
concludes the proof. �

In conclusion, we proved that the block-factorization preconditioner B defined
as B−1 = [J, P ]B̂−1[J, P ]T , where B̂ comes from the approximate block-
factorization of the two-by-two block matrix Â = [J, P ]TA[J, P ], as defined
in (3.10), leads to an iteration matrix I − B−1A that admits the product form
(I − JM−1J TA)(I − PD−1P TA)(I − JM−T J TA), composed of three simpler
iteration matrices coming fromM, D, andMT , acting on the subspaces Range(J ),
Range(P ), and Range(J ), respectively.

3.2.3 Definitions of two-level BTL and two-grid BTG preconditioners

Next, we consider two special cases of full-column rank matrices J and P . The first
one corresponds to [J, P ] being a square invertible matrix. The corresponding pre-
conditionerB = BTL is referred to (cf., [BDY88]) as the “two-level” or “hierarchical
basis multigrid” (or HBMG).

Definition 3.12 (Two-level preconditioner). Given an approximation M for A =
J T AJ and an “interpolation” matrix P , such that [J, P ] is square and invertible,

and let D be an s.p.d. approximation to B = P T AP, such that

• M + MT − A is s.p.d., or equivalently ‖I − A1/2M−1A1/2‖ < 1.

• D − B is symmetric positive semidefinite.

We first form

B̂TL =
[

M 0
P T AJ I

] [
(MT + M − A)−1 0

0 D

] [
MT J T AP

0 I

]
.

and then define B−1
TL = [J, P ]B̂−1

TL [J, P ]
T . Or, more explicitly (based on (3.11)),

letting M = M(M + MT − A)−1MT ,

B−1
TL = JM−1

J T + (I − JM−T J TA)PD−1P T (I − AJM−1J T ),
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The case J = I leads to [J, P ]T with full column rank, because [I, P ][I, P ]T =
I+PPT , which is s.p.d., hence invertible. The corresponding preconditionerB = BTG

is referred to as the “two-grid” preconditioner.

Definition 3.13 (Two-grid preconditioner). Given a “smoother” M for A and an

interpolation matrix P , and let D be a s.p.d. approximation to B = P T AP, such that

• M +MT − A is s.p.d., or equivalently ‖I − A1/2M−1A1/2‖ < 1.

• D − B is symmetric positive semidefinite.

We first form

B̂TG =
[
M 0
P TA I

] [
(MT +M − A)−1 0

0 D

] [
MT AP

0 I

]
.

and then define B−1
TG = [I, P ]B̂−1

TG [I, P ]
T . Or, more explicitly (based on (3.11))

lettingM =M(M +MT − A)−1MT ,

B−1
TG = M−1 + (I − AM−T )PD−1P T (I −M−1A).

Proposition 3.14. To implement B−1b, for both B = BTL and B = BTG, we can use

Algorithm 3.2.1 starting with u0 = 0. We have then B−1b = unew. Alternatively, we

may use the explicit expression given by (3.11).

Proof. This is seen from the fact thatEr = I − AB−1 relates the initial and final resid-
uals via rnew = Err0. Noting then that r0 = b−Au0 = b gives rnew = b−Aunew =
(I − AB−1)b (i.e.,Aunew = AB−1b), and therefore unew = B−1b, which is the
desired result. �

3.2.4 A main identity

Consider the block-factorization preconditioner B leading to the product iteration
matrix E = I − B−1A = (I − JM−T J TA)(I − PD−1P TA)(I − JM−1J TA).
We assume here that [J, P ]T has a full column rank, hence B is well defined

from B−1 = [J, P ]B̂−1[J, P ]T , which is now s.p.d.
The present section is devoted to the proof of the followingmain characterization

result for B.

Theorem 3.15. The following main identity holds.

vTBv = min
v=Jvs+Pvc

[
vTc Dvc + (MT vs + J T APvc)

T (M + MT − A)−1

× (MT vs + J T APvc)
]
.

Recall that D was a s.p.d. approximation to P T AP.
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Proof. We use the equivalent block-factorization definition of B = BTL , Defini-
tion 3.12; that is,

B−1 = [J, P ]B̂−1[J, P ]T .

Then, because ‖X‖ = ‖XT ‖ = 1 is used for X = B1/2[J, P ]B̂−1/2, we get the
inequality

v̂T B̂−1/2[J, P ]TB[J, P ]B̂−1/2v̂ ≤ v̂T v̂,

or equivalently,

v̂T [J, P ]TB[J, P ]̂v ≤ v̂T B̂v̂. (3.12)

Given v decomposed as

v = Jvs + Pvc = [J, P ]

[
vs
vc

]
,

based on inequality (3.12) used for

v̂ =
[

vs
vc

]
,

we obtain,

vTBv = v̂T [J, P ]TB[J, P ]̂v ≤
[

vs
vc

]T
B̂

[
vs
vc

]
.

That is, we showed that (see (3.10)),

vTBv ≤ min
v=Jvs+Pvc

[
vs
vc

]T
B̂

[
vs
vc

]

= min
v=Jvs+Pvc

[
vTc Dvc + (MT vs + J TAPvc)

T (M + MT − A)−1

× (MT vs + J T APvc)
]
. (3.13)

It remains to show that this upper bound is sharp. For this, consider the problem
for v̂,

B̂v̂ = [J, P ]TBv.

We have [J, P ]̂v = [J, P ]B̂−1[J, P ]TBv = v. That is, [J, P ]̂v provides a decom-
position for v. For that particular decomposition, we have vTBv = v̂T [J, P ]TBv =
v̂T B̂v̂. The latter shows that the upper bound in (3.13) is sharp, which is the desired
result. �
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3.2.5 A simple lower-bound estimate

Recall the product formulaE=(I−JM−TJ TA)(I−PD−1P TA)(I−JM−1J TA).
We also note that when J = I ,A = J T AJ = A, then we letM = M for a givenM .
We assume (as in Definitions 3.12–3.13), that

wTDw ≥ wT Bw. (3.14)

The following simple lower-bound result holds.

Theorem 3.16. If D − B is symmetric positive semidefinite, then AE and B − A are

symmetric positive semidefinite.

Proof. We have the identity,

AE = XT (I − A1/2PD−1P TA1/2)X, X = A1/2(I − JM−1J TA).

If we show that

vTA−1v ≥ (P T v)TD−1(P T v), (3.15)

then the middle term I − A1/2PD−1P TA1/2 in AE = XT (∗)X will be symmetric
positive semidefinite, which would imply then that AE itself is symmetric positive
semidefinite.
We next prove (3.15). From the definition B = P T AP, we have I = Y T Y , for

Y T = B−1/2P TA1/2. Thus, ‖Y T ‖ = ‖Y‖ = 1, implies

(P TA1/2v)TB−1(P TA1/2v) ≤ vT v,

or equivalently (letting v := A−1/2v),

(P T v)TB−1(P T v) ≤ vTA−1v.

Now use the corollary from (3.14)

(P T v)TB−1(P T v) ≥ (P T v)TD−1(P T v),

to obtain

vTA−1v ≥ (P T v)TD−1(P T v),

which is inequality (3.15) The final result follows then from the fact that AE =
A−AB−1A = A(A−1 − B−1)A is symmetric positive semidefinite is equivalent to
A−1 − B−1, or for that matter, to B −A being symmetric positive semidefinite. The
latter concludes the proof. �

3.2.6 Sharp upper bound

Here we assume that D = B = P T AP. To establish an estimate from above for B in
terms of A, we first assume (as in Definitions 3.12) thatM+MT −A is s.p.d. This
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is equivalent to saying that the iteration matrix I − M−TA has a norm ̺ less than
one, in the A-inner product, n; that is,

((I − M−TA)w)TA((I − M−TA)w) ≤ ̺2 wTAw.

Because D = B = PTAP and ‖I − A1/2M−1A1/2‖ < 1, it is clear then (from
Lemma 3.10) that E will have a spectral radius no greater than one. More specifi-
cally (recalling that AE is symmetric positive semidefinite shown in Theorem 3.16),
we have

vTAEv ≤ vTAv.

We want to find a sharp bound for the spectral radius of E. The largest eigenvalue of

A1/2EA−1/2 = (I − A1/2JM−T J TA1/2)(I − A1/2PB−1P TA1/2)

× (I − A1/2JM−1J TA1/2)

equals the largest eigenvalue of

� ≡ (I − A1/2PB−1P TA1/2)1/2(I − A1/2JM−1J TA1/2)

× (I − A1/2JM−T J TA1/2)(I − A1/2PB−1P TA1/2)1/2,

therefore we estimate the last expression.
We notice then that πA=A1/2PB−1P TA1/2 is a projection. Hence, we can re-

move the square root, such that I − πA = (I − A1/2PD−1P TA1/2)1/2. Introduce

M̃ = MT (M + MT − A)−1M.

Note that M̃ is in general different fromM = M(M + MT − A)−1MT .
Consider now the expression

vT�v = vT (I − πA)2v − vT (I − πA)A1/2JM̃−1J TA1/2(I − πA)v
= vT (I − πA − (I − πA)A1/2JM̃−1J TA1/2(I − πA))v

≤
(
1− 1

K

)
vT (I − πA)v.

Here,

K = max
v

vT (I − πA)v
vT
(
(I − πA

)
A1/2JM̃−1J TA1/2(I − πA)

)
v
, (3.16)

is the best (minimal) possible constant. Letting v := A1/2v and introducing the new
projection πA = A−1/2πAA1/2 = PB−1P TA the above formula takes the form

K = max
v

((I − πA)v)TA(I − πA)v
vT ((I − πA)AJM̃−1J TA(I − πA))v

. (3.17)
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3.2.7 The sharp spectral equivalence result

Here we simplify the expression forK (3.17), obtained in the previous section, where
K is the best constant taking part in the spectral equivalence relations between A
and B,

vTAv ≤ vTBv ≤ K vTAv. (3.18)

We can avoid the inverses in (3.17) and show the following equivalent result.

Theorem 3.17. Assume that J and P are such that any vector v can be decomposed

as v = Jw + Px and this does not have to be a direct decomposition. Introduce the

projections πA = PB−1P TA, (B = P T AP), and πA = A1/2PB−1P TA1/2, and let

M̃ = MT (M + MT − A)−1M.

The best constantK in (3.18) is given by the expression,

K = sup
v∈Range(I−πA)

inf
w: v=(I−πA)Jw

wT M̃w

vTAv

= sup
v

inf
w: v=(I−πA)Jw

wT M̃w

vTA(I − πA)v
. (3.19)

In the case of J and P providing unique decomposition, that is [J, P ] being an

invertible square matrix, the following simplified expression for K holds.

K = sup
w

wT M̃w

wT J TA(I − πA)Jw
. (3.20)

Proof. Let N = (I − πA)A1/2J . Then

NTN = J T (A1/2(I − πA)2A1/2)J = J TA(I − πA)J.

Define

T = M̃ − J TA(I − πA)J = M̃ − A + J TAπAJ .

It is clear that T is symmetric positive semidefinite. We also have

M̃ = T +NTN.

The key point in what follows is to notice that we considerZ = N(T +NTN)−1NT
as a mapping from Range(N) = Range((I − πA)A1/2J ) into the same space.
Then the “saddle-point” lemma 3.4 gives us the identity for Z = N(T +

NTN)−1NT (for any v in the range of N),

vTZ−1v

vT v
= 1+ inf

w: Nw=v

wT Tw

vT v
.
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This implies

max
v∈Range(N)

vT v

vTZv
= max

v∈Range(N)

vTZ−1v

vT v

= 1+ sup
v∈Range(N)

inf
w: Nw=v

wT Tw

vT v
. (3.21)

Note that Z = (I − πA)A1/2JM̃−1J TA1/2(I − πA). We also have v = Nw =
(I − πA)A

1/2Jw. Replace now v := A1/2v. This implies, A−(1/2)Nw = v, or
v = (I − πA)Jw. That is, now v belongs to the space Range((I − πA)J ). It is
clear that because any vector z admits the decomposition z = Jx + Py and because
(I − πA)P = 0, that (I − πA)z = (I − πA)Jx. Therefore, Range(I − πA) =
Range((I−πA)J ). Similarly, Range(I−πA) = Range((I−πA)1/2J ) = Range(N),
seen from the fact that any vector z admits the decomposition z = A1/2Jx +A1/2Py

which implies (I −πA)z = (I −πA)A1/2Jx using the fact that (I −πA)A1/2P = 0.
Identity (3.16), combined with (3.21), takes the form,

K = sup
v∈Range(I−πA)

vT v

vT (I − πA)TA
1
2 JM̃−1J TA

1
2 (I − πA)v

= sup
v∈Range(N)

vT v

vTZv

= 1+ sup
v∈Range(I−πA)

inf
w: v=(I−πA)Jw

wT Tw

vTAv
.

We have

wT Tw = wT M̃w − wTNTNw = wT M̃w − vTAv.

That is,

K = sup
v∈Range(I−πA)

inf
w: v=(I−πA)Jw

wT M̃w

vTAv
.

This shows the first desired identity (3.19).
To prove the second one (3.20), note that v = (I−πA)Jw = Jw+P(−B−1P TA)

(Jw). Then, in the casewhen J andP provide unique decomposition of v = Jw+Px,
the latter shows that the second component of v, Px, satisfies x = −B−1(P TA)(Jw)

and it is unique. That is,

K = sup
w

wT M̃w

wT J TA(I − πA)Jw
,

which is (3.20). �
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3.2.8 Analysis of BTL

We now derive an upper bound ofK in the case of J and P providing unique decom-
position; that is, we bound K = KTL corresponding to the two-level preconditioner
BTL defined in Definition 3.12.
Let γ 2 ∈ [0, 1) be the best constant in the following strengthened Cauchy–

Schwarz inequality

(wT J T APx)2 ≤ γ 2 wT J T AJw xT P T APx. (3.22)

An equivalent form of this inequality reads (see Lemma 3.3, inequality (3.2)),

wTAw ≤ 1

1− γ 2 infx (Jw + Px)T A (Jw + Px) .

The latter minimum is attained at Px = −πAJw. Therefore,

wTAw ≤ 1

1− γ 2 wT (J T (I − πA)TA(I − πA)J )w

= 1

1− γ 2 wT (J TA(I − πA)J )w.

Using the latter estimate in (3.20), forD = B, we arrive at the following upper bound,

K ≤ sup
w

wT M̃w

wTAw

1

1− γ 2 .

In general, we have the following result.

Theorem 3.18. Assume that M provides a convergent splitting for A in the A-inner

product (i.e., that (M + MT − A) is s.p.d.). Let also γ ∈ [0, 1) be the constant in

the strengthened Cauchy–Schwarz inequality (3.22). Then B, with D = B, andA are

spectrally equivalent and the following bounds hold,

vTAv ≤ vTBv ≤ KvTAv,

where

K ≤ 1

1− γ 2 supw

wT M̃w

wTAw
.

We recall that M̃ = MT (M + MT − A)−1M. In the case of the inexact second

block D which satisfies

0 ≤ xT (D − B)x ≤ δ xTBx,

the following perturbation result holds,

vTAv ≤ vTBv ≤
(
K + δ

1− γ 2
)

vTAv.
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Proof. Denote with Bexact the preconditioner with D = B. We have for v =
Jw + Px,

0 ≤ vT (B − A)v = vT (Bexact − A)v + xT (D − B)x,

≤ vT (Bexact − A)v + δxTBx

≤ vT (Bexact − A)v + δ

1− γ 2 xT Sx

≤ vT (Bexact − A)v + δ

1− γ 2 vTAv

≤
(
K − 1+ δ

1− γ 2
)

vTAv.

We used the fact that the Schur complement S of A is spectrally equivalent to the
principal submatrix B of A which is an equivalent statement of the strengthened
Cauchy–Schwarz inequality (3.22). �

3.2.9 Analysis of BTG

The analysis for B = BTG defined in Definition 3.13, follows from estimate (3.19)
proved in Theorem 3.17. We have now J = I ,M = M is a given smoother for A.
We assume here that D = B = P T AP.
We are estimating the best constant K = KTG such that

vTAv ≤ vTBTGv ≤ KTG vTAv.

Based on estimate (3.19), the best constantK = KTG in the present case (with J = I
andM = M), is given by the identity

K = sup
v

inf
w: v=(I−πA)w

wT M̃w

vTAv
.

That is,

K = sup
v

inf
w
(πAw + (I − πA)v)T M̃(πAw + (I − πA)v)

((I − πA)v)TA((I − πA)v)
.

Introduce the projectionπM̃ = P(P T M̃P )−1P T M̃ . Let M̃c = P T M̃P . The inf over
w is attained at w : πA(v − w) = πM̃v; that is,

A−1
c P

TA(v − w) = M̃−1P T M̃v.

Then πM̃ = PM̃−1
c P

T M̃ . Let w = Pwc, where

wc = A−1
c P

TAv − M̃−1
c P

T M̃ v.

We then have πAw = w = Pwc = (πA − πM̃)v. Therefore, πAw + (I − πA)v =
(I − πM̃)v. Thus we arrived at the final estimate which is formulated in the next
theorem.
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Theorem 3.19. The two-grid preconditioner BTG defined from the iteration matrix

I − B−1
TGA = (I −M−1A)(I − PB−1P TA)(I −M−TA) with B = P T AP or as

in Definition 3.13, is spectrally equivalent to A and the following sharp estimate

holds,

vTAv ≤ vTBTGv ≤ KTG vTAv,

where

KTG = sup
v

((I − πM̃ )v)T M̃(I − πM̃)v
((I − πA)v)TA(I − πA)v

= sup
v

vT M̃(I − πM̃)v
vTAv

, (3.23)

is the best possible constant. We recall, that M̃ = M(M +MT − A)−1MT is the

symmetrized “smoother” and πM̃ = P(P T M̃P )−1P T M̃ is the M̃-based projection.

Proof. It remains to show that the two formulas are the same. Note first that (I−πM̃)
P (∗) = 0, hence (I − πM̃)(I − πA) = I − πM̃ . Thus

KTG = sup
v=(I−πA)v

((I − πM̃)v)T M̃(I − πM̃)v
vTAv

≤ sup
v

vT M̃(I − πM̃)v
vTAv

.

On the other hand, vTAv ≥ vTA(I − πA)v, hence

sup
v

vT M̃(I − πM̃)v
vTAv

≤ sup
v

vT M̃(I − πM̃)v
vTA(I − πA)v

= KTG. �

Corollary 3.20. Let M̃ be spectrally equivalent to a s.p.d. matrixD, such that

c1 vTDv ≤ vT M̃v ≤ c2 vTDv for all v.

Then, with πD = P(P TDP)−1P TD being the D-based projection on the coarse

space Range (P ), the following two-sided estimates hold for KTG,

c1 sup
v

vTD(I − πD)v
vTAv

≤ KTG ≤ c2 sup
v

vTD(I − πD)v
vTAv

.

Proof. The proof readily follows from identity (3.23), the property of the projec-
tion πM̃ ,

‖(I − πM̃)v‖2
M̃

= min
vc

‖v − Pvc‖2M̃ ,

the spectral equivalence relations between D and M̃ , and similar property of the
projection πD; that is,

‖(I − πD)v‖2D = min
vc

‖v − Pvc‖2D. �
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The following two examples often appear in practice.

Example 3.21. LetM be s.p.d. such thatM − A is positive semidefinite. Then M̃ =
M (2M − A)−1M is spectrally equivalent to M such that 12 vTMv ≤ vT M̃v ≤
vTMv. Note that with the scaling M − A being positive semidefinite, we guarantee
that M is an A-convergent smoother for A. From Corollary 3.20 we have then the
estimates

1

2
sup

v

vTM(I − πM)v
vTAv

≤ KTG ≤ sup
v

vTM(I − πM)v
vTAv

.

The second example deals with the Gauss–Seidel smoother.

Example 3.22. ConsiderM = D−L coming from the splitting ofA,A = D−L−U
where D is the diagonal of A and −L is the strictly lower triangular part of A. Then
M̃ = (D−U)D−1(D−L) is spectrally equivalent toD. More specifically, as shown
in Proposition 6.12, we have

1

4
vTDv ≤ vT M̃v ≤ κ2 vTDv,

where κ is bounded by the maximum number of nonzero entries of A per row. Then,
to estimate KTG it is sufficient to estimate

κ2 sup
v

vTD(I − πD)v
vTAv

.

Necessary conditions for two-grid convergence

Using the inequalities

‖(I − πA)w‖A = inf
v∈Range(P )

‖v − w‖A ≤ ‖(I − πM̃ )w‖A,

and (see Proposition 3.8)

vTAv ≤ vT M̃v,

we obtain the followingmain corollaries from estimate (3.23) of Theorem3.19,which
are hence necessary conditions for two-grid convergence.
Assume that for an A-convergent smootherM and interpolation matrix P the re-

sulting two-grid preconditionerBTG is spectrally equivalent to A and letKTG ≥ 1 be
an upper bound of the spectral equivalence relations vTAv ≤ vTBTGv ≤ KTG vTAv.
Then the following two corollaries are necessary conditions for this spectral equiva-
lence to hold.

Corollary 3.23. For any v in the space Range(I − πM̃ ), we have the spectral equiv-

alence relations,

vTAv ≤ vT M̃v ≤ KTG vTAv.
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That is, in a space complementary to the coarse space Range(P ) the symmetrized

smoother M̃ is an efficient preconditioner forA. If we introduce the matrix J such that

Range(J ) = Range(I − πM̃), we have the following spectral equivalence relations

between J TAJ and J T M̃J ,

vTs J
T AJvs ≤ vTs J

T M̃Jvs ≤ KTG vTs J
T AJvs .

Corollary 3.24. The operator I−πM̃ is bounded in theA-norm; that is, the following

estimate holds.

((I − πM̃)v)TA(I − πM̃)v ≤ KTG vTAv.

It is equivalent also to say (due to Kato’s Lemma 3.6) that πM̃ is bounded in energy

norm (with the same constantKTG); that is,

(πM̃v)TAπM̃v ≤ KTG vTAv.

Finally, another equivalent statement is that the spaces Range(J ) ≡ Range(I −πM̃)
and Range(P ) have a nontrivial angle in the A inner product; that is,

(
vTs J

T APx
)2 ≤

(
1− 1

KTG

)
vTs J

T AJvs xT P T APx, for any vs and x.

Proof. The last equivalence statements are proved in the same way as Lemma 3.3,
by considering the quadratic form Q(t) = (πM̃v + tJvs)

TA(πM̃v + tJvs) −
(1/KTG)(πM̃v)TAπM̃v. Note that πM̃Jvs = 0, hence πM̃ (v + tJvs) = πM̃v. This
shows that Q(t) ≥ 0 for any real t if πM̃ is A-bounded. Then, the fact that its dis-
criminant is nonpositive shows the strengthenedCauchy–Schwarz inequality because
Range(πM̃) = Range(P ). The argument goes both ways. Namely, the strengthened
Cauchy–Schwarz inequality implies that the discriminant is nonpositive, henceQ is
nonnegative; that is, πM̃ is bounded in energy. Due to the symmetry of the strength-
ened Cauchy–Schwarz inequality, we see that I − πM̃ has the same energy norm as
πM̃ if KTG > 1. �

3.3 Algebraic two-grid methods and preconditioners; sufficient

conditions for spectral equivalence

The last two corollaries 3.23 and 3.24 represent the main foundation of constructing
efficient two-grid preconditioners. They motivate us to formulate conditions for two-
grid convergence.We show in the remainder of this section that the conditions below
are sufficient for two-grid convergence.
Motivated byCorollaries 3.23–3.24,weneed to construct a coarse spaceRange(P )

such that there is a complementary one, Range(J ), with the properties:

(i) The symmetrized smoother restricted to the subspace Range(J ), that is, J T M̃J ,
is spectrally equivalent to the subspace matrix J T AJ.
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(ii) The complementary spaces Range(J ) and Range(P ) have nontrivial angle in the
A-inner product; that is, they are almost A-orthogonal.

In practice, we need a sparse matrix P so that the coarse matrix P T AP is also sparse,
whereas the explicit knowledge of the best J is not really needed. If P and J are
constructed based solely on A and the smoother M (or the symmetrized one, M̃),
the resulting method (or preconditioner) belongs to the class of “algebraic” two-grid
methods (or preconditioners).
In order to guarantee the efficiency of the method,we only need a J (not necessar-

ily the best one defined as Range(I − πM̃)) in order to test if the subspace smoother
J T M̃J is efficient on the subspace matrix J T AJ. That is, we need an estimate (for
the particular J )

vTs J
T AJvs ≤ vTs J

T M̃Jvs ≤ κ vTs J
T AJvs, (3.24)

with a reasonable constant κ . The efficiency of the smoother on a complementary
space Range(J ) is sometimes referred to as efficient compatible relaxation. The latter
notion is due to Achi Brandt (2000), [B00].
The second main ingredient is the energy boundedness of P in the sense that for

a small constant η, we want the bound,

xT P T APx ≤ η inf
vs : v=Jvs+Px

vTAv. (3.25)

Then, we can actually prove the following main result (cf., [FV04]).

Theorem 3.25. Assume properties (i) and (ii), that is, estimates (3.24) and (3.25).
Then two-grid preconditioner BTG is spectrally equivalent to A with a constant

K = KTG ≤ ηκ .

Proof. Wehave to estimateK defined in (3.23). BecauseRange(J ) is complementary
to Range(P ) (by assumption), then any v can be uniquely decomposed as v = Jvs +
Px. Then the term in the numerator of (3.23) can be estimated as follows.

((I − πM̃)v)T M̃((I − πM̃)v = inf
y
(v − Py)T M̃(v − Py)

≤ (v − Px)T M̃(v − Px)

= vTs J
T M̃Jvs

≤ κ vTs J
T AJvs .

In the last line we used (3.24).
The energy boundedness of (3.25) implies a strengthened Cauchy–Schwarz

inequality for Range(J ) and Range(P ). That inequality implies (see Lemma 3.3)
the following energy boundedness of J ,

vTs J
T AJvs ≤ η inf

x: v=Jvs+Px
vTAv.
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Using the projection πA, we get

vTs J
T AJvs ≤ η ((I − πA)Jvs)

TA(I − πA)Jvs.

Finally, because (I − πA)Px = 0, we arrive at the following bound for the denomi-
nator of (3.23),

vTs J
T AJvs ≤ η ((I − πA)(Jvs + Px))TA(I − πA)(Jvs + Px)

= η ((I − πA)v)TA(I − πA)v.

Thus, (3.23) is finally estimated as follows.

KTG = sup
v

((I − πM̃)v)T M̃(I − πM̃ )v
((I − πA)v)TA(I − πA)v

≤ sup
vs

κ vTs J
T AJvs

1
η

vTs J
T AJvs

= κ η. �

A two-grid convergence measure

For a given P and smoother M , let R be a computable restriction matrix such that
RP = I . This implies thatQ = PR is a projection (onto the coarse space Range (P )).
Then, Range (I − Q) is a complementary space to the coarse space Range (P ) =
Range (Q). A typical example is

P =
[
W

I

]
and R = [0, I ]

so that RP = I .
Based on a computable projection Q, the following quantity (cf., [FV04]) is

sometimes referred to as a measure

µM̃ (Q, e) = (e −Qe)T M̃(I −Q)e
eTAe

.

Using the minimal distance property of the projection πM̃ in the M̃-norm, we have
the estimate

‖(I − πM̃)e‖2M̃ = min
ec

‖e − P ec‖2M̃ ≤ ‖(I −Q)e‖2
M̃
.

Theorem 3.19 then implies the upper bound KTG ≤ supe µM̃ (Q, e). That is,
the quantity

sup
e
µM̃ (Q, e), (3.26)

can be used to measure the convergence of the respective two-grid method.
We conclude this section with the comment that we have not so far assumed any

particular structure of P . The above example of

P =
[
W

I

]
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is typical in the case of the algebraic multigrid method (or AMG). Here, the second
(identity) block corresponds to rows of A, referred to as “c”, or coarse dofs, and the
remaining ones to “f”, or fine dofs. The latter structure of P is further exploited in the
setting of the algebraic multigrid in Chapter 6, especially when specific smoothers
of type “c”–“f” relaxation are considered (as in Section 6.8), as well as some other
specific topics.

3.4 Classical two-level block-factorization preconditioners

If thematrix admits a stable two-by-twoblock, in the sense that the off-diagonal block
L = RT of

A =
[
A R

L B

]

is dominated by its main diagonal such that for a constant γ ∈ [0, 1) we have

(wTRx)2 ≤ γ wTAw xTBx, (3.27)

we can approximate A and the Schur complement S = B − LA−1R with s.p.d.
matricesM and D and the resulting approximate block-factorization matrix

B =
[
M 0
L D

] [
I M−1R
0 I

]
, (3.28)

is spectrally equivalent to A.
We note that B is different from BTL (or BTG) because it does not correspond to

a product iteration method (ifM 
= A). Recall that a corresponding BTG takes the
following explicit form,

BTG =
[
M 0
L D

] [
(2M − A)−1M 0

0 I

] [
I M−1R
0 I

]
;

that is, the (minor) difference is the extra factor involving (2M−A)−1M. In the case
ofM being spectrally equivalent to A and alsoM giving anA-convergent iteration
for solving systems with A so that the resulting BTG is spectrally equivalent to A,
then the middle factor in question can be dropped out without losing overall spectral
equivalence. The definition (3.28) of B does not require that M be scaled so that
2M − A is s.p.d. (which is equivalent to ‖I − M−1A‖A < 1).
To implement B−1, we use the standard forward and backward elimination

sweeps.

Algorithm 3.4.1 (Computing actions of B−1) Consider

B

[
w

x

]
=
[

f

g

]
.
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To compute w and x, we perform the following steps.

• Compute w = M−1f .

• Compute x = D−1 (g − Lw).

• Compute w := w − M−1Rx.

The following is a classical result originated by Axelsson and Gustafsson [AG83].

Theorem 3.26. Let M and D be s.p.d. spectrally equivalent preconditioners to A

and B, respectively,

α wTMw ≤ wTAw ≤ β wTMw,

and

σ xTDx ≤ xTBx ≤ η xTDx.

Then, if A is “stable” in the sense of inequality (3.27), then B defined in (3.28) is

spectrally equivalent to A, and the following spectral equivalence estimates hold.

b1 vTBv ≤ vTAv ≤ b2 vTBv

for positive constants b1, b2 depending on α, β, σ , and η (see the proof). We can

also consider the block-diagonal preconditioner

D =
[
M 0
0 D

]
. (3.29)

We similarly have the estimates, for two positive constants d1 and d2 depending on

α, β, σ , and η (see the proof),

d1 vTDv ≤ vTAv ≤ d2 vTDv.

Proof. We have, for any ζ > 0,

vTAv = wTAw + 2wTRx + xTBx

≤ wTAw + 2 γ√
ζ

√
wTAw

(√
ζ
√

xTBx
)

+ xTBx

≤
(
1+ γ 2

ζ

)
wTAw + (1+ ζ ) xTBx

≤
(
1+ γ 2

ζ

)
β wTMw + (1+ ζ )η xTDx

≤ d2 vTDv.

The upper bound d2 is minimal for

ζ = β − η +
√
(β − η)2 + 4γ 2ηβ
2η
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and then

d2 =
(
1+ γ 2

ζ

)
β = (1+ ζ )η = β + η +

√
(β − η)2 + 4γ 2ηβ
2η

.

Similarly, we have the estimate from below:

vTAv = wTAw + 2wTRx + xTBx

≥ wTAw − 2 γ√
ζ

√
wTAw

(√
ζ
√

xTBx
)

+ xTBx

≥
(
1− γ 2

ζ

)
wTAw + (1− ζ ) xTBx

≥
(
1− γ 2

ζ

)
α wTMw + (1− ζ )σ xTDx

≥ d1 vTDv.

The lower bound is maximal for

ζ = σ − α +
√
(σ − α)2 + 4γ 2σα
2σ

and then

d1 =
(
1− γ 2

ζ

)
α = (1− ζ )σ = 2(1− γ 2)σα

σ + α +
√
(σ − α)2 + 4γ 2σα

.

To analyze B, we proceed similarly. We have vTBv = wTMw + 2 wTRx +
xTDx + xTLM−1Rx. Because xTLM−1Rx ≤ β xTLA−1Rx ≤ βγ 2 xTBx ≤
βγ 2η xTDx, we can easily estimate vTBv from above in terms of vTDv =
wTMw + xTDx. More specifically,

vTBv ≤ wTMw + 2wTRx + (1+ βηγ 2) xTDx

≤
(
1+ γ 2

ζ
β

)
wTMw + (1+ βηγ 2 + ζη) xTDx

≤ d ′
2 vTDv.

Here, d ′
2 = 1+ (γ 2/ζ )β = 1+ βηγ 2 + ζη which gives

ζ = −βηγ 2 +
√
(βηγ 2)2 + 4ηβγ 2
2η

and d ′
2 = 1+ 1

2

(
βηγ 2 +

√
(βηγ 2)2 + 4ηβγ 2

)
.



84 3 Two-by-Two Block Matrices

Finally, in the other direction, we first notice that vTBv ≥ xTDx inasmuch as
D is its Schur complement. Then, proceeding as before, we arrive at the inequalities,

vTBv = wTMw + 2 wTRx + xTDx + xTLM−1Rx

≥ wTMw − γ 2

ζ
wTAw − ζ xTBx + xTDx + xTLM−1Rx

≥
(
1− γ 2

ζ
β

)
wTMw + (−ζη+ 1) xTDx

≥
(
1− γ 2

ζ
β

)
wTMw + (−ζη+ 1) vTBv.

Here, we assume that ζη ≥ 1. Thus,

vTBv ≥
1− γ 2

ζ
β

ζη
wTMw.

Letting ζ = (1/η)+ γ 2β > (1/η), we get

vTBv ≥ 1

(1+ γ 2βη)2 wTMw,

which together with vTBv ≥ xTDx shows

vTBv ≥ 1− θ
(1+ γ 2βη)2 wTMw + θ vTDx.

The latter estimate for

θ = 1− θ
(1+ γ 2βη)2 = 1

1+ (1+ γ 2βη)2 ∈ (0, 1]

gives

vTBv ≥ d ′
1 vTDv,

with d ′
1 = 1/(1+ (1+ γ 2βη)2).

To bound vTBv in terms of vTAv, we combine the proven estimates d ′
1 vTDv ≤

vTBv ≤ d ′
2v
TDv and d1 vTDv ≤ vTAv ≤ d2 vTDv. That is, we can let b2 = d2/d ′

1
and b1 = d1/d

′
2, to demonstrate the final desired estimates b1 vTBv ≤ vTAv ≤

b2 vTBv. �

3.4.1 A general procedure of generating stable block-matrix partitioning

In practice, to construct good-quality block-factorization preconditioners a given
block partitioning of a given matrix may not be suitable. In particular, we may not
be able to establish a strengthened Cauchy–Schwarz inequality (3.27) with a good
constant γ . A generalway to achieve a stable formofA is to use “change of variables”
in the following sense (cf., [EV91], [VA94], or [ChV03]). Let P be a rectangular
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matrix (fewer columns than rows) with bounded A-norm. We assume that P has
full-column rank. We may then assume that

P =
[
W

I

]
.

Then, consider the square, invertible transformation matrix Y = [J, P ], where

J =
[
I

0

]
.

The A-boundedness of P then can be stated as follows,

xT P T APx ≤ η min
w: v=Jw+Px

vTAv.

Finally, let Â = Y T AY be the transformed matrix. We have

Â =
[
Â R̂

L̂ B̂

]
·

More explicitly,

Â = A, B̂ = P T AP, L̂ = L +WTA, R̂ = R + AW.

We notice that S = B̂ − L̂Â−1R̂; that is, A and the transformed matrix Â have
the same first principal blocks and the same Schur complements.
Sometimes Â is called the HB (“hierarchical basis”) matrix. We can then prove

(see Lemma 3.3) that Â has a stable block form, in the sense that

(wT R̂x)2 ≤
(
1− 1

η

)
wT Âw xT B̂x,

or equivalently,

((Jw)TA(Px))2 ≤
(
1− 1

η

)
(Jw)TA(Jw) (Px)TA(Px).

Next, we can first construct a spectrally equivalent preconditioner B̂ to Â based
on spectrally equivalent preconditioners M to A and D to B̂ = P T AP. Then
B = Y−T B̂ Y−1 is a spectrally equivalent block-factorization preconditioner to the
original matrix A. To summarize, let

P =
[
W

I

]

satisfy

xT P T APx ≤ ηmin
w

[
w

x

]T
A

[
w

x

]
,
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and M and D are based on A and P T AP. Then the transformed inexact block-
factorization preconditioner B = Y−T B̂Y−1 is spectrally equivalent to A with the
same constants established in Theorem 3.26 applied to B̂ and Â. More specifically,
consider

B̂ =
[
M 0
L̂ D

] [
I M−1R̂
0 I

]
.

Then we have the following explicit form for the transformed preconditioner

B = Y−T B̂Y−1

=
[
I 0

−WT I

] [
M 0
L̂ D

] [
I M−1R̂
0 I

] [
I −W

0 I

]

=
[

M 0
L + WT (A − M) D

] [
I M−1R − (I − M−1A)W
0 I

]
.

The following algorithm can be used to implement

[
w

x

]
= B−1

[
f

g

]
.

Algorithm 3.4.2 (Transformed two-level block-factorization preconditioner)

• Compute w = M−1f .

• Compute x = D−1(g − Lw + WT (f − Aw)).

• Compute u = Wx.

• Compute w = w + u − M−1(Rx + Au).

It is clear that B−1 exploits solutions with M and D in addition to matrix–vector
products based on L, R, A (the original blocks of A), andW .
There is one special case in practice (originally noted by Y. Notay [Not98], and

independently used in [Mc01]) when we can avoid the explicit use of the transforma-
tion matrix Y , namely, if we can find a s.p.d. approximationM to the first block A
of A, which is spectrally equivalent to A such that

(i) A − M is symmetric positive semidefinite, so that
(ii) The perturbed matrix

[
M R
L B

]
is still s.p.d.

In that case, we can show that P withW = −M−1R leads to a B̂ that is spectrally
equivalent to the exact Schur complement S = B −LA−1R of A, and the following
block-factored matrix

B =
[
M R

L B̂ + LM−1R

]
=
[
M 0
L B̂

] [
I M−1R
0 I

]
(3.30)

can be used as a spectrally equivalent approximation toA. Note, that the latter matrix
is a perturbation to A and the perturbations occur only on the main diagonal of A.
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Theorem 3.27. Under the assumptions (i) and (ii) above, the block-factorization

preconditionerB, (3.30) is spectrally equivalent toA and the following bounds hold,

c1v
TAv ≤ vTBv ≤ c2vTAv.

We can further replace B̂ (or the exact Schur complement S = B − LA−1R) with

a spectrally equivalent s.p.d. matrix D and still end up with a spectrally equivalent

preconditioner

B =
[
M 0
L D

] [
I M−1R
0 I

]
.

Proof. A main observation is that Â = Y T AY with

Y =
[
I −M−1R
0 I

]

has a stable 2-by-2 block form because we have for its second entry on the diag-
onal the representation B̂ = P T AP = B − LA−1R + L(A−1 − M−1)A(A−1 −
M−1)R, which can be viewed as a perturbation of the exact Schur complement S =
B − LA−1R of A. The following estimates then hold, letting X = A1/2M−1A1/2.

xT (B̂ − S)x = xTL(A−1 − M−1)A(A−1 − M−1)Rx

= xTRTA−(1/2)(X − I)2A−(1/2)Rx

≤ ‖X − I‖ xTRTA−(1/2)(X − I)A−(1/2)Rx

= ‖X − I‖ xT (RTM−1R − RTA−1R)x

≤ ‖X − I‖ xT (B − RTA−1R)x

= ‖X − I‖ xT Sx

= ‖X − I‖ xT Ŝx.

Above, we first used assumption (i), that is, that X − I is symmetric positive
semidefinite, and second, assumption (ii), which implies that the Schur complement
B − LM−1R of the perturbed symmetric positive semidefinite matrix

[
M R

L B

]

is positive semidefinite, that is, that xTRTM−1Rx ≤ xTBx. Thus we showed that
xT B̂x ≤ (1+ ‖X − I‖) xT Ŝx. Equivalently,

xT P T APx ≤ η inf
v=Jw+Px

vTAv, with η = 1+ ‖X − I‖.

The latter is true, because the Schur complements S of A and Ŝ of Â are the same.
Thus the matrix Â = Y T AY can be preconditioned by the block-diagonal matrix

[
M 0
0 B̂

]
or equivalently by

[
M 0
0 D

]
.
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Therefore, A can be preconditioned by

B = Y−T
[
M 0
0 B̂

]
Y−1 =

[
I 0

LM−1 I

] [
M 0
0 B̂

] [
I M−1R
0 I

]
,

or by

B =
[
M 0
L D

] [
I M−1R
0 I

]
,

which is the desired result. �

We comment at the end that the construction ofM that satisfies both (i) and (ii)
is a bit tricky in practice. Some possibilities are outlined in Section 4.7 of Chapter 4,
where other types of approximate block-factorizationmatrices are considered as well.



4

Classical Examples of Block-Factorizations

4.1 Block-ILU factorizations

Consider a block form of

A =
[
A R

L B

]

in which A is sparse and well conditioned. Then, as is well-known, A−1 has a cer-
tain decay rate (cf., Appendix A.2.4). The latter, in short, means that it admits a
good polynomial approximation in terms of A. Alternatively, we may say that A−1

can be well approximated with a sparse matrixM−1. Thus, the approximate Schur
complement S ≡ B − LM−1R will also be sparse. This procedure is attractive,
if L (and R) have a single nonzero diagonal. Thus the sparsity pattern of S de-
pends on B and how accurately we want M−1 to approximate A−1. If we keep
the sparsity pattern of LM−1R the same as that of B, the procedure can be re-
cursively applied to S, which leads to the classical block-ILU factorization precon-
ditioners. Those are well defined for M-matrices, which naturally arise from finite
difference approximations of second-order elliptic PDEs. It seems that the block-ILU
methods were first introduced in Kettler [K82] but have become most popular after
the papers [ABI], [CGM85], [AP86], and others have appeared. These methods are
very robust and perhaps the most efficient (and parameter-(to estimate) free) precon-
ditioners for matrices coming from 2D second-order elliptic PDEs. By expanding
the sparsity pattern (or half-bandwidth) of the approximate Schur complements, we
improve the quality of the preconditioner, which in the limit case becomes exact
factorization.
We point out that any finite element discretization matrix coming, for example,

from elliptic PDEs, can always be reordered so that it admits a block-tridiagonal form
with sparse blocks. The blocks are actually bandedmatrices for 2Dmeshes. A typical
situation is illustrated in Figure 4.1. In summary, the block-tridiagonal case covers
the general situation.

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 89
doi: 10.1007/978-0-387-71564-3_4,
© Springer Science+Business Media, LLC 2008
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Fig. 4.1. Block-tridiagonal ordering of finite element matrix on unstructured triangular mesh.
The blocks correspond to degrees of freedom associated with nodes on each interface boundary
obtained by intersecting any two neighboring contiguous slabs of elements (triangles) of two
different colors.

Consider the block-tridiagonal matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 0 . . . 0
A21 A22 A23 . . . 0

. . .
. . .

. . .

An−1,n−2 An−1,n−1 An−1,n
0 . . . 0 An,n−1 Ann

⎤
⎥⎥⎥⎥⎥⎦
.

For a five-point, finite difference discretization of 2D second-order elliptic PDEs on
a rectangular mesh, the matrices on the diagonal ofA are scalar tridiagonal matrices,
and the upper and lower diagonals of A are scalar diagonal matrices. In a similar
situation in 3D (7-point stencil), the off-diagonal blocks of A are scalar diagonal
whereas the blocks on the diagonal ofA have now the sparsity pattern of a 2D block-
tridiagonalmatrix. In either case theAii arewell conditioned, because they are strictly
diagonally dominant. To be specific, we concentrate now on the 2D case.
The approximate block-factorization of A can be written in the form (X −

L)X−1(X − U), where X = diag(Xi) and Xi are the approximate Schur com-
plements computed throughout the factorization, −U is the strictly upper triangular
part ofA, and−L is correspondingly the strictly lower triangular part ofA. Note that
L and U have only one nonzero block diagonal. The recursion for Xi reads

(0) For i = 1 set Xi = Ai,i .
(i) For i = 1, . . . , n − 1 compute a banded approximation Yi to X−1

i and compute
the product

Ai+1,iYiAi,i+1.
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(ii) In order to keep the sparsity under control, we may need to further approximate
the above product by a sparser matrixHi+1 (e.g., by dropping the nonzero entries
of Ai+1,iYiAi,i+1 outside a prescribed sparsity pattern). Finally, define

Xi+1 = Ai+1,i+1 −Hi+1.

Then the actual block-factorization matrix M = (X − L)X−1(X − U) has the fol-
lowing more explicit block-tridiagonal form,
⎡
⎢⎢⎢⎢⎣

X1 A12 0 . . . 0
A21 X2 +A21X−1

1 A12 A23 . . . 0
. . .

. . .
. . .

An−1,n−2 Xn−1 + An−1,n−2X−1
n−2An−2,n−1 An−1,n

0 . . . 0 An,n−1 Xn +An,n−1X−1
n−1An−1,n

⎤
⎥⎥⎥⎥⎦
.

(4.1)

In particular, it is clear thatM has the same off-diagonal blocks as A. The differ-
enceM − A is block diagonal with blocks

Xi − Aii + Ai,i−1X−1
i−1Ai−1,i = Ai,i−1X−1

i−1Ai−1,i −Hi
= Ai,i−1

(
X−1
i−1 − Yi−1

)
Ai−1,i

+ Ai,i−1Yi−1Ai−1,i −Hi . (4.2)

It is clear then, if we keep the differences X−1
i−1 − Yi−1 and Ai,i−1Yi−1Ai−1,i − Hi

symmetric positive semidefinite, the block-ILU matrixM will provide a convergent
splitting for A; that is, M − A will be symmetric positive semidefinite. This is in
general difficult to ensure, however, for the case ofA being a s.p.d.M-matrix; we can
ensure that 2M−A is positive definite, hence ‖I−M−1A‖A < 1; that is,M provides
a convergent iterative method in the A-norm (see Corollary 4.6). Alternatively, we
can use low rank approximations Yi−1 to X

−1
i−1 (and Hi = Ai,i−1Yi−1Ai−1,i) as in

Section 4.6, thus leading to a matrixM such thatM−A is indeed symmetric positive
semidefinite.
The purpose of constructing the block-factorization matrixM is so that it can be

used as a preconditioner in an iterative method. At every step of the iterative method,
we have to solve a system

Mv = w

for some (residual) vector w. Because M is factored, the above system is solved in
the usual forward and backward recurrences.

(i) Forward. Solve,
⎡
⎢⎢⎢⎣

X1 0
A21 X2

. . .
. . .

0 An,n−1 Xn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u1
u2
...

un

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

w1
w2
...

wn

⎤
⎥⎥⎥⎦ ,
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in the following steps,

u1 = X−1
1 w1,

ui = X−1
i (wi − Ai,i−1ui−1), i > 1.

• Backward. Solve
⎡
⎢⎢⎢⎣

I X−1
1 A12 0
I X−1

2 A23
. . .

. . .

0 I

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v1
v2
...

vn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

u1
u2
...

un

⎤
⎥⎥⎥⎦ ,

in the following steps,

vn = un,

vi = ui − X−1
i Ai,i+1vi+1, for i = n− 1 down to 1.

For a (2p+ 1)-bandedmatrixX, we can construct various (2p+ 1)-banded approxi-
mations of its inverse based, for example, on the standardLD−1U factorization ofX.
We can actually compute the exact innermost 2p + 1 banded part of X−1 without
computing the full inverse.
Details about implementation of algorithms that compute approximate band in-

verses are given in Section 4.4.

4.2 The M-matrix case

We begin with the definition of anM-matrix.

Definition 4.1 (M-matrix). A matrix A = (aij)
n
i,j=1 is called an M-matrix if

(o) A has nonpositive off-diagonal entries.

(i) A is nonsingular.

(ii) A−1 has nonnegative entries.

If A is s.p.d., andM-matrix, A is sometimes called the Stieltjes matrix.

In what follows in the next few sections by A ≥ 0 or v ≥ 0 we mean componen-
twise inequalities.

Theorem 4.2. A main property of anM-matrixA is that there exists a positive vector

c = (ci)
n
i=1 (i.e., ci > 0) such that b = Ac = (bi) is also positive (i.e., bi > 0 for

all i). Conversely, if A = (aij) with aij ≤ 0 for i 
= j and b = Ac is a positive vector

for a given positive vector c then A is an M-matrix.

Proof. The fact that for anM-matrixA there is a positive vector c such that b = Ac is
also positive follows from the following simple observation. Because A−1 exists and
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has nonnegative entries, it is clear that A−1 has at least one strictly positive entry per
row (otherwise A−1 would have a zero row, which is not possible for a nonsingular
matrix). Then for the constant vector b = (1), we have c = A−1b > 0 (the row-sums
of A−1 are strictly positive). The latter shows that for the positive vector c, Ac = b

is also positive.
The converse statement is seen by first forming the diagonal matrix C = diag(ci)

and looking at the diagonally scaled matrix AC = (ai,jcj ). It is easily seen that AC

is strictly diagonally dominant. Indeed, because

bi = ai,ici +
∑

j 
=i
ai,jcj > 0,

we get (using the fact that −ai,jcj = |ai,jcj | for j 
= i)

ai,ici >
∑

j 
=i
|ai,jcj |.

The latter implies that AC is invertible, hence A is invertible. Moreover, because AC

is strictly diagonally dominant, it admits an LDU factorization, or more specifically,
the following product expansion holds, AC = L1 · · ·Ln−1DUn−1 · · ·U1, where each

Li =

⎡
⎣
I 0 0
0 1 0
0 ℓi I

⎤
⎦ , and Ui =

⎡
⎣
I 0 0
0 1 uTi
0 0 I

⎤
⎦.

We can easily see that ℓi ≤ 0 and ui ≤ 0. Also the diagonal matrix D has positive
entries. For a proof of the last fact, see the next lemma, 4.3. Then,

A−1 = CU−1
1 · · ·U−1

n−1D
−1L−1

n−1 · · ·L−1
1 ≥ 0,

as a product of nonnegative matrices. We notice that

L−1
i =

⎡
⎣
I 0 0
0 1 0
0 −ℓi I

⎤
⎦ ≥ 0,

and similarly,

U−1
i =

⎡
⎣
I 0 0
0 1 −uTi
0 0 I

⎤
⎦ ≥ 0. �

In the proof above, we used the following well-known result.

Lemma 4.3. Given a strictly diagonally dominant matrix

B =
[
β uT

ℓ G

]
.
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Then its Schur complement S = G − ℓβ−1uT is also strictly diagonally dominant.

Also B admits the LDU factorization

B =
[
1 0
1
β
ℓ I

] [
β 0
0 S

] [
1 1

β
uT

0 I

]
,

from which it is clear that (1/β)ℓ < 0 and (1/β)uT < 0 if the off-diagonal entries

of B are nonpositive, and β > 0.

Proof. Let S = (si,j ), G = (gi,j ), ℓ = (li), and u = (ui). Here, β is a scalar. We
have

si,j = gi,j − liβ−1uj .

We would like to show that

|si,i | >
∑

j 
=i
|gi,j − liβ−1uj |.

Because B is strictly diagonally dominant, using this property for its first row, we get
∑
j |uj |
|β| < 1.

Using the strict diagonal dominance for the (i + 1)st row of B, we get

|gi,i | > |li | +
∑

j 
=i
|gi,j |.

Combining the last two inequalities, we end up with

|gi,i | >
∑

j 
=i
|gi,j | + |li |

∑
j |uj |
|β| .

The result then follows from the triangle inequality,

|si,i | = |gi,i − liβ−1ui |

≥ |gi,i | − |li |
|ui|
|β|

>
∑

j 
=i
|gi,j | + |li |

∑
j |uj |
|β| − |li |

|ui |
|β|

=
∑

j 
=i

(
|gi,j | + |li ||uj |

|β|

)

≥
∑

j 
=i
|gi,j − liβ−1uj |

=
∑

j 
=i
|si,j |.

That is, we showed the strict inequality |si,i | >
∑
j 
=i |si,j |. �.
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Let us return to theM-matrix case. The following result is immediate.

Lemma 4.4. Let

A =
[
A R

L B

]

be an M-matrix. Then, both A and the Schur complement S = B − LA−1R are

M-matrices.

Proof. We have for a positive vector c, b = Ac > 0. Let

c =
[

c1
c2

]
and b =

[
b1
b2

]
.

Then, becauseR ≤ 0, the inequality

Ac1 = b1 − Rc2 ≥ b1 > 0

shows that A is anM-matrix. (Note that its off-diagonal entries are nonpositive.)
From S = B − LA−1R, we get that S ≤ B because we already proved that A

is anM-matrix; that is,A−1 ≥ 0, and also L ≤ 0 andR ≤ 0. Therefore, because the
off-diagonal entries of B are nonpositive from S ≤ B, it follows that the off-diagonal
entries of S are also nonpositive. Finally, from the fact that S−1 is a principal sub-
matrix of A−1 (Proposition 3.1) it is clear that S−1 has nonnegative entries (because
A−1 ≥ 0). �

Armed with the above main properties of M-matrices, it is not hard to show the
existence of block-ILU factorization of block-tridiagonalmatrices, a result originally
proven in [AP86], and earlier in [CGM85] for diagonally dominantM-matrices.
The following main result holds.

Theorem 4.5. Let A = [Ai,i−1, Ai,i, Ai,i+1] be a block-tridiagonal M-matrix.

Consider the following algorithm.

Algorithm 4.2.1 (Block-ILU factorization).

(0) Let X1 = A1,1. For i ≥ 1, consider an approximation Yi of X−1
i that satisfies

0 ≤ Yi ≤ X−1
i . (4.3)

(i) Also, choose an approximationHi+1 of the product Ai+1,iYiAi,i+1 that satisfies

0 ≤ Hi+1 ≤ Ai+1,iYiAi,i+1. (4.4)

The role ofHi+1 is to control the possible fill-in in the productAi+1,iYiAi,i+1. That

is, in practice, we compute only the entries of Ai+1,iYiAi,i+1 within a prescribed

sparsity pattern of Xi+1.
(ii) Finally, define the (i + 1)th approximate Schur complement as

Xi+1 = Ai+1,i+1 −Hi+1.
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The above algorithm is well defined; that is, Xi are M-matrices for all i ≥ 1, and

hence, a matrix Yi , which satisfies condition (4.3), always exists and therefore the

choice of Hi+i as in (4.4) is also feasible.

Proof. Because A is anM-matrix, its principal submatrix

Ai ≡

⎡
⎢⎢⎢⎣

A1,1 A1,2 0 . . . 0
A2,1 A2,2 A2,3 . . . 0

0
. . .

. . .
. . . 0

0 . . . 0 Ai,i−1 Ai,i

⎤
⎥⎥⎥⎦

is also anM-matrix. LetZi be the exact Schur complements obtained by exact block-
factorization of A; that is, Z1 = A1,1 and

Zi+1 = Ai+1,i+1 − Ai+1,iZ−1
i Ai,i+1

= Ai+1,i+1 − [0, . . . , 0, Ai+1,i]A−1
i

⎡
⎢⎢⎢⎣

0
...

0
Ai,i+1

⎤
⎥⎥⎥⎦ .

Assuming (by induction) thatZi is a Schur complement ofAi , thenZ
−1
i is a principal

submatrix of A−1
i ; that is,

A−1
i =

⎡
⎢⎢⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
...
. . .

. . .
...

∗ ∗ ∗ Z−1
i

⎤
⎥⎥⎥⎦ ·

It is clear then that the product

[0, . . . , 0, Ai+1,i]A
−1
i

⎡
⎢⎢⎢⎣

0
...

0
Ai,i+1

⎤
⎥⎥⎥⎦

equals Ai+1,iZ
−1
i Ai,i+1. That is, Zi+1 = Ai+1,i+1 − Ai+1,iZ−1

i Ai,i+1 is indeed a
Schur complement of

Ai+1 =

⎡
⎢⎢⎢⎢⎢⎣

Ai

⎡
⎢⎢⎢⎣

0
...

0
Ai,i+1

⎤
⎥⎥⎥⎦

[0, . . . , 0, Ai+1,i] Ai+1,i+1

⎤
⎥⎥⎥⎥⎥⎦

(which confirms the induction assumption).
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As a Schur complement of the M-matrix Ai (a principal submatrix of the M-
matrix A), Zi itself is anM-matrix, and hence there is a positive vector ci such that
Zici > 0.
The remainder of the proof proceeds by induction. Assume, now that for some

i ≥ 1, Xi ≥ Zi . Note that X1 = Z1 = A11.
It is clear that for any choice of Yi such that Yi ≥ 0, we have Ai+1,iYiAi,i+1 ≥ 0

and hence a nonnegative choice of Hi+1 is feasible. With such a choice of Hi+1 we
have Xi+1 ≤ Ai+1,i+1, hence the off-diagonal entries of Xi+1 are nonpositive.
Because Xi has nonpositive off-diagonal entries (by construction) and for a

positive vector ci we have Xici ≥ Zici > 0, it follows then that Xi is an M-
matrix. From Xi ≥ Zi , because both Z

−1
i ≥ 0 and X−1

i ≥ 0, it follows that
Z−1
i − X−1

i = X−1
i (Xi − Zi)Z−1

i ≥ 0; that is, Z−1
i ≥ X−1

i . Now choose Yi as
in (4.3). Then, because −Yi ≥ −X−1

i ≥ −Z−1
i , we have

Xi+1 = Ai+1,i+1 −Hi+1
≥ Ai+1,i+1 − Ai+1,iYiAi,i+1
≥ Ai+1,i+1 − Ai+1,iX−1

i Ai,i+1

≥ Ai+1,i+1 − Ai+1,iZ−1
i Ai,i+1

= Zi+1. (4.5)

That is, the induction assumption is confirmed for i := i + 1 and thus the proof is
complete. �

Corollary 4.6. Assume now that A is a symmetric M-matrix. Then, the block-ILU

factorization matrixM = (X−L)X−1(X−U) provided by Algorithm 4.2.1 is such

that 2M−A is symmetric positive definite; that is,M provides a convergent splitting

for A in the A-inner product. Equivalently, we have ‖I −M−1A‖A < 1.

Proof. Wefirst notice thatM = (X−L)X−1(X−U) is s.p.d. because the symmetric
M-matricesXi are s.p.d. This holds, because any symmetricM-matrixV allows for an
LDLT factorization with a positive diagonal matrixD. Indeed, V being anM-matrix
implies that there is a positive vector c such that V c is also positive. Let c = (ci)

and form the diagonal matrix C = diag(ci). Then CT VC is symmetrical and a
strictly diagonally dominantmatrix (see the proof of Theorem 4.2). Then Lemma 4.3,
modified accordingly, implies the existence of the desired factorization ofCT VC and
hence of V (because C is diagonal).
The desired result follows from a main result of Varga [Var62] (for a proof, see

Theorem 10.3.1 in [Gr97]). In what follows by ̺, we denote spectral radius. Namely,
because A = M − R with R ≥ 0 (see (4.2)) and A−1 ≥ 0, Varga’s result states that

̺(I −M−1A) = ̺(M−1R) = ̺(A−1R)

1+ ̺(A−1R)
< 1.

Therefore, in our symmetric case, λmin(I −M−1A) > −1, which is equivalent to
λmax(M

−1A) < 2 or 2M − A being symmetric positive definite. �



98 4 Classical Examples of Block-Factorizations

4.3 Decay rates of inverses of band matrices

A main motivation for the block-ILU methods is based on the observation that the
inverse of a bandmatrix can be well approximated by a bandmatrix. The latter can be
more rigorously justified by the decay rate estimate provided at the end of the present
section.

Illustration of decay rates

We first demonstrate by graphical representation the decay behavior of the inverse of
a number of tridiagonal matrices. Consider first,

Tn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0
−1 4 −1

−1 4 −1
. . .

. . .
. . .

−1 4 −1
0 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

·

The decay behavior of T −1
n for n = 32 is shown in Figure 4.2.

Consider now the tridiagonal matrix, which is only weakly diagonally dominant,

τn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

·

Its decay behavior for n = 32 is shown in Figure 4.3.
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Fig. 4.2. Decay behavior of the inverse of T32.
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Fig. 4.3. Decay behavior of the inverse of τ32.
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Fig. 4.4. Decay behavior of the inverse of θ32.

Finally, consider the following tridiagonal matrix,

θn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

·

Its decay behavior for n = 32 is shown in Figure 4.4.
Based on the above examples, we may draw the conclusion, that for strictly

diagonally dominant matrices, we should expect a very fast (e.g., exponential) decay
rate, whereas for weakly dominant matrices, the decay rate may not be as fast, as in
the case shown in Figure 4.4 where we only see a linear decay rate.
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An algebraic decay rate result

We complete this section with a sharp result that bounds the decay rate of the
(block)entries of the inverse of s.p.d. block-tridiagonal matrices. We note that any
band matrix can be written as a block-tridiagonal matrix with blocks that are equal
size to the half-bandwidth of the matrix. Hence it is sufficient to consider the case of
block-tridiagonal matrices A.
LetA be a given symmetric positive definite block-tridiagonalmatrix with entries

{Ai,j } of size ni×nj , i, j = 1, 2, . . . , n. We are interested in V ≡ A−1 = {Vi,j }. The
entries Vi,j are also of size ni × nj . For any rectangular matrix B, consider its norm

‖B‖ = sup
v

√
(Bv)TBv√

vT v
.

We are interested in the behavior of the norm of Vi+k,i when k gets large. Introduce
now the block partitioning of any vector v compatible with the given tridiagonal
matrix A,

v =

⎡
⎢⎢⎢⎣

v1
v2
...

vn

⎤
⎥⎥⎥⎦ ·

That is, vi ∈ Rmi . Consider the vector space

Hi = {v = (vj ), vj = 0 for j > i},

and also its complementary one,

H
′
i = {v = (vj ), vj = 0 for j ≤ i}.

BecauseA is assumed symmetric positive definite,A can define an inner product. It is
then clear that the linearly independent spacesHi andH

′
i will have a nontrivial angle

in the A-inner product. That is, there exists a constant γi ∈ [0, 1) (i.e., strictly less
than one) such that the following strengthened Cauchy–Schwarz inequality holds.

vTAw ≤ γi(vTAv)1/2(wTAw)1/2, for all v ∈ Hi,w ∈ H ′
i .

Then the following main result holds ([V90]).

Theorem 4.7.

‖Vi+k,i‖
‖Vi,i‖1/2‖Vi+k,i+k‖1/2

≤
k∏

j=1
γi+j .
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Proof. Because thematrixA is block-tridiagonal, the strengthenedCauchy–Schwarz
inequality actually reads,

vTi+1Ai+1,ivi ≤ γi min

v=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
.
.
.

vi−1
vi
0
.
.
.

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(vTAv)1/2 min

w=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
.
.
.

0
vi+1
vi+2
.
.
.

vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(wTAw)1/2·

The respective minimums are first taken with respect to the first i − 1 components
and in the second term with respect to the last n− i − 1 components.
Now using the Schur complements,

Si = Ai,i − [0, . . . , 0, Ai,i−1]

×

⎡
⎢⎢⎣

A11 A12 . . . 0
A21 A22 A23

0 Ai−1,i−2 Ai−1,i−1

⎤
⎥⎥⎦

−1 ⎡
⎢⎣

0
...

Ai−1,i

⎤
⎥⎦ ,

and

S
′
i = Ai+1,i+1 − [Ai+1,i+2, 0, . . . , 0]

×

⎡
⎢⎢⎣

Ai+2,i+2 Ai+2,i+3 . . . 0
Ai+3,i+2 Ai+3,i+3 Ai+3,i+4

0 An,n−1 An,n

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎢⎣

Ai+2,i+1
0
...

0

⎤
⎥⎥⎥⎦ ,

the strengthened Cauchy inequality above takes the simpler form,

vTi+1Ai+1,ivi ≤ γi
(
vTi Sivi

)1/2(
vTi+1S

′
ivi+1

)1/2·

The next useful observation is the identity,

[
Si Ai,i+1

Ai+1,i S
′
i

]−1
=
[
Vi,i Vi,i+1
Vi+1,i Vi+1,i+1

]
·

The latter is seen from the fact that the matrix on the left is a Schur complement ofA,
and the matrix on the right is a corresponding principal matrix ofA−1. The inverse of
any Schur complement of a matrix is a corresponding principal matrix of the inverse
matrix (cf. Proposition 3.1), therefore the above identity follows. As a corollary of
the strengthened Cauchy–Schwarz inequality valid for the Schur complement

[
Si Ai,i+1

Ai+1,i S
′
i

]
,
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we get the inequality,

inf
vi

vTi V
−1
i,i vi

vTi Sivi
≥ 1− γ 2i . (4.6)

The latter inequality is seen from the fact that V−1
i,i equals the Schur complement

Si − Ai,i+1(S
′
i)

−1Ai+1,i .
Next, we use the explicit formulas for computing the entries ofA−1, based on the

recursively computed successive Schur complements Si , S1 = A1,1, and for i > 1,
Si = Ai,i −Ai,i−1S−1

i−1Ai−1,i . Then, the entries of A
−1 are computed as Vn,n = S−1

n

and for i = n− 1, . . . , 1 based on the recurrence,

Vi,i = S−1
i + S−1

i Ai,i+1Vi+1,i+1Ai+1,iS
−1
i ,

Vi,i+k = −SiAi,i+1Vi+1,i+k, k = 1, 2, . . . , n− i
Vi+k,i = −Vi+k,i+1Ai+1,iS−1

i , k = 1, 2, . . . , n− i.

Therefore, by recursion, we get

Vi+k,i = Vi+k,i+2
(
− Ai+2,i+1S−1

i+1
)(

−Ai+1,iS−1
i

)

= · · · = Vi+k,i+k
k∏

j=1

(
−Ai+j,i+j−1S−1

i+j−1
)
·

We can then get the identity

Vi+k,i = V 1/2i+k,i+k

⎛
⎝
i+k−1∏

j=i
RjS

−1/2
j V

−1/2
j,j

⎞
⎠V 1/2i,i ·

Here Rj = −V 1/2j+1,j+1Aj+1,jS
−(1/2)
j . Note that RTj Rj = S

1/2
j (Vj,j − S−1

j )S
1/2
j =

−I + S1/2j Vj,jS
1/2
j . Therefore

‖RjS−(1/2)
j V

−(1/2)
j,j ‖ =

√√√√1− inf
vj

vTj V
−1
j,j vj

vTj Sjvj
≤ γj ,

where we have used inequality (4.6). This completes the proof of the theorem. �

Let us apply the above theorem to the strictly diagonally dominant matrix Tn. We
can show that all γi ≤ 1

3 ; that is, they are uniformly bounded away from unity. This
is seen from the fact that the Schur complement

[
Si Ai,i+1

Ai+1,i S
′
i

]
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in the present case equals
[
3+ si −1
−1 3+ s ′i

]

for some nonnegative numbers si, s
′
i . This shows that

γi = 1√
3+ si

1√
3+ s ′i

≤ 1

3
.

Therefore, we indeed get a uniform exponential decay rate of the entries vi+k,i of T −1
n .

Actually, we can show that si , s
′
i ≥ lim σi , whereσ1 = 1, σi+3 = 4−(1/(σi−1+3)).

The latter comes from the two-by-two matrix
[
4 −1

−1 σi−1 + 3

]
,

and σi is defined so that σi+3 is the Schur complement 4−(−1)(σi−1+3)−1(−1) of
the above matrix. In other words, we have the recursion σi +3 = 4− (1/(σi−1+3)),
σ1 = 1. By induction, we get that σi ≥ −1+

√
3 = lim σi . Hence,

γi ≤ 1

3+ lim si
= 1

3+ (
√
3− 1)

.

This shows that

γi ≤ 1

2 +
√
3

= 2−
√
3 ≃ 0.2679.

The latter bound incidentally coincides with the quotient
√
κ − 1/

√
κ + 1, where

κ = cond(Tn) ≃ 3. Decay rates of the entries ofA−1, based on the square root of the
condition number of A, were originally developed in [DMS84].

4.4 Algorithms for approximate band inverses

In this section, we present a number of algorithms that provide banded approximate
inverses to banded matrices. Such approximations can be useful in case where the
blocks Ai,i of a block-tridiagonal matrix A are banded. Then, if we have Algorithm
4.2.1 in mind, we need banded approximations Yi to the inverses of the successive
approximate Schur complementsXi. The bandwidth ofXi+1 can be kept under control
by choosing appropriate banded approximationHi+1 to the product Ai+1,iYiAi,i+1.
The latter is typically obtained by dropping the nonzero entries of Ai+1,iYiAi,i+1
outside a prescribed sparsity pattern (or bandwidth of certain size 2p + 1).
Given a (2p + 1)-banded matrix n× n matrix T , consider its

L1L2 · · ·Ln−1D−1Un−1 · · ·U2U1, (4.7)
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factorization. Here

Li =

⎡
⎣
I 0 0
0 1 0
0 ℓi I

⎤
⎦

is an elementary unit lower triangular matrix;

Ui =

⎡
⎣
I 0 0
0 1 uTi
0 0 I

⎤
⎦

is an elementary unit upper triangular matrix; andD = diag(di) is a diagonal matrix.
We also have

ℓi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℓi+1,i
ℓi+2,i
...

ℓi+p,i
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ui =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui,i+1
ui,i+2
...

ui,i+p
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· (4.8)

The entries ℓi+k,i and ui,i+k are precisely the entries of the unit triangular factors L
andU coming from the LD−1U (Cholesky) factorization of T . The main observation
here is that if the matrix is banded, then itsL andU factors are also banded.Assuming
that the factorization (4.7) has been computed,we can then derive a number of banded
approximations to T −1 based on the identity

T −1 = U−1
1 U

−1
2 · · ·U−1

n−1DL
−1
n−1 · · ·L−1

2 L
−1
1 ·

We use the fact that

L−1
i =

⎡
⎣
I 0 0
0 1 0
0 −ℓi I

⎤
⎦ and U−1

i =

⎡
⎣
I 0 0
0 1 −uTi
0 0 I

⎤
⎦ .

We begin with an algorithm found in [ABI].

Algorithm 4.4.1 (ABI, the exact 2p + 1-banded innermost part of T −1). The

algorithm ABI computes the entries vi+k,i of T −1 for |k| ≤ p without complete

inversion of T .

Let

Vi =

⎡
⎢⎢⎢⎢⎢⎣

vi,i vi,i+1 . . . vi,n
vi+1,i vi+1,i+1 . . . vi+1,n

...
...

. . .
...

vn,i vn,i+1 . . . vn,n

⎤
⎥⎥⎥⎥⎥⎦

·
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Then starting with Vn = dn for i = n− 1, . . . , 1 we have the identity,

Vi =
[
1 −uTi
0 I

] [
di 0
0 Vi+1

] [
1 0

−ℓi I

]
,

or

Vi =
[
di + uTi Vi+1ℓi −uTi Vi+1

−Vi+1ℓi Vi+1

]
·

It is clear then that to compute Ṽi , the 2p + 1 banded part of Vi , we need only the

2p + 1 banded part of Vi+1 (i.e., Ṽi+1) because ui and ℓi have the special sparse

form (4.8). Therefore the following algorithm is applicable, denoting by Ip the matrix

that zeros the j th, j > p, entries of a vector.

• Vn = dn.
• For i = n−1 down to 1 compute the product IpVi+1ℓi = IpVi+1Ipℓi = IpṼi+1ℓi

and similarly uTi Vi+1Ip = uTi IpVi+1Ip = uTi Ṽi+1Ip. Then

•

Ṽi =
[
di + uTi Ṽi+1ℓi −uTi Ṽi+1Ip

−IpṼi+1ℓi Ṽi+1

]
·

• T̃ −1 = Ṽ1.

It is clear that the cost of the algorithm is O(np2).

A possible disadvantage of the above algorithm ABI is that if the decay rate of T −1

is not that strong, the approximation [T −1](p) ≡ T̃ −1 (as defined above) may fail
to be positive definite. Alternatives to the algorithm ABI are the CHOL and the
INVFAC algorithms. The CHOL algorithm (considered in [CGM85]) provides the
exact p lower diagonals of L−1 (i.e., L̃−1), and the exact p upper diagonals of
U−1 (i.e., Ũ−1) from the factorization T = LD−1U , or T −1 = U−1DL−1. Hence
[T −1]CHOLp ≡ Ũ−1DL̃−1, which is seen to be symmetric positive definite if T is
symmetric positive definite.

Algorithm 4.4.2 (CHOL, a factored banded approximate inverse of T ). Let

Ln = 1, and for i < n set

Li =
[

1 0
−Li+1ℓi Li+1

]
.

Introduce again the projection matrix Ip (the matrix that zeros all j th, j > p, entries

of a vector). We then have IpLi+1ℓi = IpLi+1Ipℓi = IpL̃i+1ℓi , which immediately

implies that

L̃i =
[

1 0
−IpL̃i+1ℓi L̃i+1

]
.
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In other words, to compute L̃i , the 2p+ 1 banded part of Li , we only need L̃i+1, the

2p + 1 banded part of Li+1. The same holds for

Ui =
[
1 −uTi Ui+i
0 Ui+1

]
,

where Un = 1. Then, because uTi UiIp = uTi IpUiIp = uTi ŨiIp , we get the identity

Ũi =
[
1 −uTi Ũi+iIp
0 Ũi+1

]
·

The CHOLp approximation to T −1 is then defined by Ũ1DL̃1. It is clear that the

latter product gives a 2p + 1 banded matrix. We summarize:

• Set L̃n = 1.

• For i = n− 1 down to 1, compute

L̃i =
[

1 0
−IpL̃i+1ℓi L̃i+1

]
.

• L̃−1 = L1.

Similarly,

• Set Ũn = 1.

• For i = n− 1 down to 1, compute

Ũi =
[
1 −uTi Ũi+iIp
0 Ũi+1

]
·

• Set Ũ−1 = Ũ1.

Finally

[T −1]CHOLp = Ũ−1DL̃−1·

The cost of the algorithm is readily seen to beO(np2)
Because in both algorithms we drop certain quantities, in theM-matrix case the

approximations [T −1] (both ABI and CHOL) will satisfy the (entrywise) inequality,

[T −1] ≤ T −1. (4.9)

The last algorithm that we consider is based on the 2p+ 1 banded approximation
to the U and L factors from the factorization of T −1; that is,

T −1 = L1L2 · · ·Ln−1DUn−1 · · ·U2U1 = LDU.
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In this latter case, the elementary matrices

Li =

⎡
⎣
I 0 0
0 1 0
0 ℓi I

⎤
⎦ and Ui =

⎡
⎣
I 0 0
0 1 uTi
0 0 I

⎤
⎦

are not generally banded. One algorithm to compute the vectors ℓi and ui , as well as
the entries di of the diagonal matrixD, reads as follows.

Let Tn = tn,n be the (n, n)th entry of T = (ti,j )ni,j=1. Let Ti be the lower principal
submatrix of T ; that is,

Ti =
[
ti,i bTi
ai Ti+1

]
.

Here,

ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ti+1,i
...

ti+p,i
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and similarly bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ti,i+1
...

ti,i+p
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The vectors ℓi and ui are determined from the identity
[
1 −uTi
0 I

]
Ti

[
1 0

−ℓi I

]
=
[
d−1
i 0
0 U−1

i+1D
−1
i+1L

−1
i+1

]
·

The latter implies
[
ti,i − uTi ai − bTi ℓi + uTi Ti+1ℓi bTi − uTi Ti+1

ai − Ti+1ℓi Ti+1

]
=
[
d−1
i 0
0 U−1

i+1D
−1
i+1L

−1
i+1

]
·

This gives us the relations

bTi − uTi Ti+1 = 0,

ai − Ti+1ℓi = 0,

Ti+1 = U−1
i+1D

−1
i+1L

−1
i+1,

d−1
i = ti,i − uTi ai − bTi ℓi + uTi Ti+1ℓi .

Or equivalently,

T −1
i+1 = Li+1Di+1Ui+1,

uTi = bTi Li+1Di+1Ui+1,

ℓi = Li+1Di+1Ui+1ai,

di =
(
ti,i − bTi Li+1Di+1Ui+1ai

)−1
.

(4.10)
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Finally,

T −1
i =

[
1 0
ℓi I

] [
di 0
0 Li+1Di+1Ui+1

] [
1 uTi
0 I

]
·

Therefore,

T −1
i =

[
1 0
ℓi Li+1

] [
di 0
0 Di+1

] [
1 uTi
0 Ui+1

]
= LiDiUi · (4.11)

Now assume that we store at each step the 2p + 1 banded parts of Li+1 and Ui+1.
Then, we have the equations Ipℓi = IpLi+1Di+1Ui+1ai = IpLi+1Di+1Ui+1Ipai =
IpL̃i+1Di+1Ũi+1ai . Similarly, uTi Ip = bTi Li+1Di+1Ui+1Ip = bTi IpLi+1Di+1Ui+1
Ip = bTi L̃i+1Di+1Ũi+1Ip . In other words, the exact first p entries of ℓi and uTi
are computable from the exact 2p + 1 banded parts of Li+1 and Ui+1. The latter
is sufficient to compute the exact 2p + 1 banded part of Li and of Ui based on the
identity (4.11). The so-called INVFAC approximation to T −1 is then defined as

[T −1]INVFACp = L1D1U1· (4.12)

Identity (4.11) provides an alternative way to compute the exact 2p + 1 banded
part T̃ −1

i of T −1
i . Indeed, we have

T −1
i =

[
di diu

T
i

ℓidi LiDiUi + ℓidiuTi

]
· (4.13)

Therefore,

T̃ −1
i =

[
di diu

T
i Ip

Ipℓidi IpLiDiUiIp + IpℓidiuTi Ip

]
=
[
di diu

T
i Ip

Ipℓidi L̃iDiŨi + IpℓidiuTi Ip

]
·

Then,

[T −1](p) = T̃ −1
1 .

Therefore, the following algorithm provides enough information to compute both the
INVFAC and the ABI approximations to T −1.

Algorithm 4.4.3 (Banded approximate inverse factorization of T ). Given is the

2p + 1 banded matrix T = (ti,j )ni,j=1. Introduce,

ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ti+1,i
...

ti+p,i
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ti,i+1
...

ti,i+p
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

·
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• Initiate:

dn = 1

tn,n
, L̃n = 1, Ũn = 1.

• For i = n− 1 down to 1, compute

uTi Ip = bTi L̃i+1Di+1Ũi+1;
Ipℓi = L̃i+1Di+1Ũi+1 ai;
di =

(
ti,i − bTi L̃i+1Di+1Ũi+1ai

)−1
.

• Then set

L̃i =
[
1 0
Ipℓi L̃i+1

]
;

Ũi =
[
1 uTi Ip

0 Ũi+1

]
;

Di =
[
di 0
0 Di+1

]
.

It is clear, because in the above algorithm we drop certain quantities, that in the
M-matrix case the INVFAC approximation, [T −1]INVFACp , of T

−1 satisfies the
entrywise inequality

[T −1]INVFACp ≤ T −1. (4.14)

4.5 Wittum’s frequency filtering decomposition

A general scheme

Here we briefly describe an approximate block-factorization algorithm that utilizes
certain vectors throughout the factorization process. With a certain choice of the vec-
tors, the methodwas originally proposed byWittum in [Wi92], and further developed
in [Wag97] and [WW97].
Consider a two-by-two block matrix A,

A =
[
A R

L B

]
.

We assume that A is s.p.d.. Given is a block-vector

1 =
[

x

y

]
.
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Webeginwith the casewhere thefirst componentx is chosen to satisfy the equation
Ax + Ry = 0 for a given y.
LetM be an s.p.d. approximation to A such that

Mx = Ax.

Finally, let Y be an s.p.d. matrix (specified later on). The matrix Y is in general an
approximation to the exact Schur complement Z = B − LA−1R of A. To this end,
define the block-factored approximation matrix M to A, assuming in addition that
2M − A is s.p.d.,

M =
[
M 0
L I

] [
(2M − A)−1 0

0 Y

] [
M R

0 I

]
.

Below, we formulate conditions onM and Y which guarantee thatM1 = A1.
More specifically, the following result holds.

Proposition 4.8. Let x satisfy Ax +Ry = 0 and M be constructed such that Mx =
Ax. Also, let Y satisfy Yy = Zy. Then,M1 = A1.

Proof. We have

M

[
x

y

]
=
[

M(2M − A)−1(Mx + Ry)

L(2M − A)−1(Mx + Ry)+ Yy

]
.

Because

A

[
x

y

]
=
[
Ax + Ry

Lx + By

]
,

we see that if Ax = Mx and x : Ax + Ry = 0 thatMx + Ry = 0. Hence, to
guarantee thatM1 = A1, we need to satisfyYy = Lx+By = (B−LA−1R)y = Zy,
which we have assumed. �

Wenext construct an approximationY to the Schur complementZ = B−LA−1U
of A, which has the property

Yy = Zy.

The approximate Schur complement Y can be constructed as follows. Let

P =
[
W

I

]

for a block-matrixW to be determined. ThenY = P T AP, that is, obtained variation-
ally from A. It is clear that zT Yz ≥ zTZz ≥ 0 for any z (due to the minimization
property of the s.p.d. Schur complementZ).
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We selectW such that Py = 1. Then, by construction

Yy = P TA(Py) = P TA1 = P T
[
Ax + Ry

Lx + By

]
= [WT , I ]

[
0
Zy

]
= Zy.

To summarize:

(i) Construct aW such that Py = 1. One algorithm for computingP = (ψ i), where
ψ i stands for the ith column of P , can be based on constrained minimization
(studied in detail in Section 6.3),

∑

i

ψTi Aψ i �→ min,

subject to the constraint Py = 1.
(ii) The approximate Schur complement Y is then computed as

Y = P T AP = B + WTR + LW + WTAW .

Now, let us consider the more general case for vectors x and y. The following result
holds.

Proposition 4.9. Assume that M has been constructed such that

Mx = Ax,

and let Ae = r ≡ Ax + Ry. Assume in addition that

Me = Ae.

That is, now M and A have the same actions on two vectors, x and e = x +A−1Ry.

Then, assuming in addition that Yy = Zy, we have that A1 = M1.

Proof. We first show that M(2M − A)−1r = r or equivalently, r = (2M −
A)M−1r = 2r−AM−1r. That is,M−1r = A−1r. The latter is true, becauseMe =
Ae = r. BecauseMx = Ax, it is clear that r = Mx + Ry. Thus, we showed that

M(2M − A)−1(Mx + Ry) = M(2M − A)−1r = r = Ax + Ry.

That is, M1 and A1 have the same first block component (equal to r). The second
block component ofM1 equals

L(2M − A)−1(Mx + Ry)+ Yy = L(2M − A)−1r + Yy

= LA−1r + Yy

= LA−1(Ax + Ry)+ Yy

= Lx + LA−1Ry + Yy.

The second block component ofA1 equalsBy +Lx. Thus if Yy +LA−1Ry +Lx =
By + Lx, that is, Yy = Zy, we finally get that A1 = M1. �
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Some applications

The factorization process from the preceding section can be applied to a two-by-two
block structure of A where A is a sparse well-conditioned matrix. Then, we need
an easily invertible matrixM that has the same actions as A on two vectors, x and
e : Ae = r = Ax + Ry. This imposes two conditions onM. In [Wi92], Wittum
proposed an algorithm that constructs a (scalar) symmetric tridiagonal matrixM that
has the same action as a given s.p.d.matrixA on two prescribed vectors. Applying the
same algorithm recursively (now to Y), we can end up with a multilevel block-ILU
factorization matrix. For various possible venues in this direction we refer to [BW99]
and [BaS02].
We observe that there is one vector (1) that drives the construction of the block-

ILU factored matrixM . Namely, after partitioning 1 gives rise to two smaller vectors
x and y that are then used to define r = Ax +Ry. The pair x, r is used to construct
a suitableM, whereas the block y, extended to

10 ≡
[

x0
y

]

whereAx0 + Ry = 0, is used to construct

P =
[
W

I

]

such that Py = 10. To get the vector 10, we need to solve a system with A. This can
be practical if, for example,A is well conditioned.With a P in hand, the approximate
Schur complementY is computed as P T AP. The latter choice of 10 and the construc-
tion of P such that Py = 10 guarantees that Yy = Zy. As proved in the preceding
section, we have ensured at the end thatM1 = A1. By setting A := Y and 1 : = y

after a successive two-by-two partitioning of A and respective partitioning of 1, we
can apply the same construction by recursion.
Another application is considered in the following section where we formally

have M = A; hence, we only need to construct an approximation Y to the exact
Schur complementZ that has the same action on a prescribed vector y.

Application of the “filtering” approximate block-factorization to

block-tridiagonal matrices

Consider the block-tridiagonal matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 0 . . . 0
A21 A22 A23 . . . 0

. . .
. . .

. . .

An−1,n−2 An−1,n−1 An−1,n
0 . . . 0 An,n−1 Ann

⎤
⎥⎥⎥⎥⎥⎦
.
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LetAi be the principal submatrix ofA containing its first i× i blocks,B = Ai+1,i+1.
Finally, let

R =

⎡
⎢⎢⎢⎣

0
...

0
Ai,i+1

⎤
⎥⎥⎥⎦

and L = RT be the resulting off-diagonal blocks of Ai+1, which is the principal
submatrix of A consisting of its first (i + 1)× (i + 1) blocks. That is, we have

Ai+1 =
[
Ai R

L B

]
.

Let 1 = (1k)nk=1 be a given block vector.
Assume that we have constructed a block-factored matrixMi such that Mixi =

Aixi , where xi = (1k)ik=1. Consider then the partially factored matrix

Âi+1 =
[
Mi R

L B

]
.

We obviously have Âi+1xi+1 = Ai+1xi+1. Based on the two-by-two block struc-
ture of Âi+1, we construct a block-factored matrix Mi+1 to approximate Âi+1 and
hence Ai+1 such that Mi+1xi+1 = Âi+1xi+1 = Ai+1xi+1. As demonstrated in the
previous section, for this to hold, we needed to construct an approximate Schur
complement Y such that Yy = Zy where Z = B − LM−1

i R is the exact Schur
complement of Âi+1. Because we deal with block-tridiagonal matrices, we have
Z = Ai+1,i+1 − Ai+1,iY−1

i Ai,i+1. We denote Yi+1 = Y to be that approximation,
which hence satisfies

Yi+11i+1 =
(
Ai+1,i+1 − Ai+1,iY−1

i Ai,i+1
)
1i+1.

The latter is referred to as a “filter condition” (cf., e.g., [WW97]) and the resulting
block-factorization, sometimes referred to as “tangential frequency filtering” decom-
position if the vectors 1i come from a lower part of the spectrum of the Schur com-
plementsZ . For vectors 1i chosen adaptively, we end up with the so-called “adaptive
filtering” method as proposed in [WW97]. An adaptive vector is constructed by look-
ing at the error 1new = (I −M−1A)1. Then, based on the new vector 1new, a new
tangential frequency filtering decomposition matrixMnew is constructed. The proce-
dure is repeated with M−1 := M−1 +M−1

new − M−1
newAM

−1, and if needed, a new
adaptive vector is computed based on the thus modifiedM−1.

4.6 Block-ILU factorizations with block-size reduction

Another way to keep the complexity of the block-ILU factorization algorithms as
described in Section 4.1, is to construct a low-rank matrix Yi that approximates the
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inverse of the previously computed approximate Schur complementXi . In this case,
we do not need to further approximate the productAi+1,iYiAi,i+1 by another matrix
Hi+1. That is, formally, we can let Hi+1 = Ai+1,iYiAi,i+1.
The way we construct low-rank approximations Yi to X

−1
i exploits the concept

of block-size reduction ([ChV95]). Let {Ri} be a set of reduction matrices. These are
rectangular matrices that have a relatively small number of rows. A typical choice is
a block-diagonal rectangular matrix

Ri =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
(i)T

1 0 0 . . . 0

0 1
(i)T

2 0 . . . 0
. . .

. . .

. . . 0

0 0 . . . 0 1
(i)T

m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

for a small integerm ≥ 1. The vectors 1
(i)
k , k = 1, . . . ,m, can come from a nonover-

lapping partition of a single vector 1(i) = (1
(i)
k ). A simple choice is 1(i) = (1), and

hence, all 1
(i)
k = (1) being constant vectors. That is, RTi corresponds to a piecewise

constant interpolation.
Having the (full-rank) matrix Ri in hand andXi being computed at the preceding

step (X1 = A1,1), we define

Yi = RTi
(
RiXiR

T
i

)−1
Ri . (4.15)

Then, as before, we let

Xi+1 = Ai+1,i+1 − Ai+1,iYiAi,i+1 = Ai+1,i+1 − Ai+1,iRTi
(
RiXiR

T
i

)−1
RiAi,i+1.

Note that RiXiRTi is a dense matrix but of small size, hence its explicit inverse is
computationally feasible. The low-rank approximation Yi to X

−1
i has the following

key property. For any vector vi , we have

0 ≤ vTi Yivi ≤ vTi X
−1
i vi . (4.16)

This is seen from the fact that ‖Ci‖ = ‖CTi ‖ applied to Ci = X̃−1/2
i RiX

1/2
i , where

X̃i ≡ RiXiRTi .

Note now that CiCTi = I , hence ‖CTi ‖ = 1 = ‖Ci‖. Using ‖Ci‖ = 1 implies,

vTi vi ≥ vTi C
T
i Civi

= vTi X
1/2
i RTi X̃

−1
i RiX

1/2
i vi .

= vTi X
1/2
i YiX

1/2
i vi .

The latter is equivalent to (4.16).
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Assuming by induction thatXi−Zi are symmetric positive semidefinite, based on
property (4.16), we easily show thatXi+1−Zi+1 is also symmetric positive semidef-
inite. We recall thatZi is the successive Schur complement computed during an exact
factorization ofA; that is,Z1 = A1,1 andZi+1 = Ai+1,i+1−Ai+1,iZ−1

i Ai,i+1. More
specifically, we have the following main result.

Theorem 4.10. The block-size reduction algorithm based on Yi defined as in (4.15),
and Xi+1 = Ai+1,i+1 − Ai+1,iYiAi,i+1 is well defined. It provides a block-ILU

factorization matrixM = (X−L)X−1(X−U) that is s.p.d., and also the difference

M − A is symmetric positive semidefinite.

Proof. To demonstrate the existence of the factorization means to show that Xi are
s.p.d., hence invertible. Following the proof of Theorem 4.5, we show by induction
thatXi−Zi are symmetric positive semidefinite.We have to interpret the inequalities
in (4.5) not entrywise but in terms of inner products.
Looking at the expression (4.2) (recall that now Hi = Ai,i−1Yi−1Ai−1,i), we

immediately see (due to (4.16)) thatM − A is symmetric positive semidefinite. �

BecauseM is meant to be used as a preconditioner, we need efficient algorithms
to solve systems withM , which is based on solving systems with the blocksXi ; that
is, we need algorithms to evaluate the actions of X−1

i . Here, we can take advantage
of the fact that Xi is a low-rank update of the original block Ai,i . Assuming that the
inverse actions of Ai,i are easy to compute, the Sherman–Morrison formula can be
handy here to compute the inverse actions of Xi . In general though, we may need to
further approximate Ai,i with some s.p.d. matrices Bi,i such that B

−1
i,i have readily

available actions.
A computational version of the block-size reduction ILU algorithm is as follows.

Compute the coarse block-tridiagonal matrix Ã = (RiAijR
T
j ). It is reasonable to

assume that its exact block-factorization Ã = (X̃ − L̃)X̃−1(X̃ − Ũ) is inexpensive
because the blocks Ãij = RiAijR

T
j have a relatively small size. Here, X̃ = diag(X̃i)

and L̃ = lower triangular with blocks on the first lower diagonal−Ãi,i−1, and sim-
ilarly, the upper triangular part Ũ is defined from the blocks −Ãi−1,i . Then the
following approximations of the Schur complements of A are feasible,

Xi = Aii − Ai,i−1RTi−1X̃−1
i−1Ri−1Ai−1,i .

Note that based on the symmetric version of the Sherman–Morrison formula (see
Proposition 3.5), we have

X−1
i = A−1

ii + A−1
ii Ai,i−1R

T
i−1Ṽi−1Ri−1Ai−1,iA

−1
ii .

Here,

Ṽ−1
i−1 = X̃i−1 − Ri−1Ai−1,iA−1

ii Ai,i−1R
T
i−1.

That is, the inverse actions of Xi are based on the inverse actions of Aii and on
the inverse of the small matrix Ṽ−1

i−1. Let m × m be the size of Ṽ−1
i−1; its entries
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then can be computed by m actions of A−1
ii . Thus, the resulting block-factorization

preconditioner is practical ifm is really small. A second step would be to approximate
A−1

ii with computationally feasible matrices B−1
ii . We assume that

B̂i ≡
[

X̃i−1 Ri−1Ai−1,i
Ai,i−1RTi−1 Bii

]

is s.p.d. The latter can be ensured if

vTi Aiivi ≤ vTi Biivi, (4.17)

which is the case, for example, for Bii coming from a block-factored form of Aii

described in the previous sections or simply being a symmetric Gauss–Seidel pre-
conditioner for Aii. To see that B̂i is s.p.d., with the above choice (4.17) of Bii, it is
sufficient to show that the matrix

Âi ≡
[

X̃i−1 Ri−1Ai−1,i
Ai,i−1RTi−1 Aii

]

is s.p.d. Letting Ai = (Ar,s)
i
r,s=1 be the ith principal submatrix of A, then the main

observation is that Âi is a Schur complement of the following partially coarse s.p.d.
matrix,

⎡
⎢⎢⎢⎣

R1 0 0

0
. . . 0
0 Ri−1 0

0 I

⎤
⎥⎥⎥⎦Ai

⎡
⎢⎢⎢⎣

RT1 0 0

0
. . . 0
0 RTi−1 0

0 I

⎤
⎥⎥⎥⎦ .

With the choice (4.17)ofBii, the followingmore practical version of the block-size
reduction ILU algorithm is of interest.

Algorithm 4.6.1 (Block-size reduction ILU).

(i) Compute the coarse matrix Ã = (RiAi,jR
T
j ) and its factorization, X̃1 = Ã1,1,

X̃i+1 = Ãi+1,i+1 − Ãi+1,iX̃−1
i Ãi,i+1.

(ii) Compute the inverse Ṽi−1 of the Schur complement of the partially coarse matrix

B̂i ; that is, compute,

Ṽi−1 =
(
X̃i−1 − Ri−1Ai−1,iB−1

ii Ai,i−1R
T
i−1
)−1
.

(iii) Define

Xi = Bii − Ai,i−1RTi−1X̃−1
i−1Ri−1Ai−1,i,

which is not really needed. What we need is the expression for the inverse action

of Xi , based on the Sherman–Morrison formula:

X−1
i = B−1

ii + B−1
ii Ai,i−1R

T
i−1Ṽi−1Ri−1Ai−1,iB

−1
ii . (4.18)

Note that we do not carry out the matrix multiplications in (4.18), which can be

costly in terms of storage and flops. We use the expression to computeX−1
i vi for

a given vector vi . The latter involves two solutions with Bi,i and matrix–vector
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products withAi,i−1,RTi−1, Ṽi−1,Ri−1, andAi−1,i . The latter matrices are either

sparse, or dense but small.

This resulting block-ILU factorization matrix is well defined as long as Âi is s.p.d.,
which we can ensure. Because Xi = Bii − Ai,i−1Yi−1Ai−1,i , we have that the
difference M − A is block-diagonal with blocks on the diagonal equal to Xi +
Ai,i−1X

−1
i−1Ai−1,i−Ai,i = Bi,i−Ai,i+Ai,i−1(X−1

i−1−Yi−1)Ai−1,i , which shows that
M − A will be symmetric positive semidefinite as long as Bi,i − Ai,i are symmetric
positive semidefinite (recalling (4.16)). We summarize as follows.

Theorem 4.11. The block-size reduction ILU algorithm based on inexact blocks {Bi,i}
leading to Ṽ−1

i−1 = X̃i−1 − Ri−1Ai−1,iB−1
i,i Ai,i−1R

T
i−1 and corresponding Xi as in

(4.18) is well defined. Moreover, the differenceM −A is symmetric positive semidef-

inite. This holds for any full-rank restriction matrices Ri and matrices Bi,i such that

Bi,i − Ai,i are symmetric positive semidefinite.

4.7 An alternative approximate block-LU factorization

Let

A =
[
A R

L B

]

be s.p.d. and assume that we can derive s.p.d. approximationsM to A−1 and Ac to
the exact Schur complement S = B − LA−1R. With a special choice of M, the
following approximate block-factorization matrix,

M =
[
M−1 0
L Ac

] [
I MR

0 I

]
,

leads to a spectrally equivalent preconditioner to A. This type of preconditioner was
introduced and analyzed in Section 3.4.1. Here, we specify some ways to construct
M so that the conditions (assumed in Section 3.4.1) bothA − M−1, and

[
M−1 R

L B

]

are symmetric positive semidefinite, are met.

A local procedure for choosing the first block

In the setting of two-grid methods, we typically define Ac = P T AP to be a coarse
matrix obtained fromA by an interpolation matrix P . We then have to guarantee that
xT P T APx ≤ η infv:=Jw+Px vTAv, where

J =
[
I

0

]
.
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It is clear that this energy boundedness of

P =
[
W

I

]
,

implies the estimate xTAcx ≤ η xT Sx. Another more specific choice is given later
on in this section.
The construction of M is a bit tricky because it has to satisfy two types of

inequalities, namely, vTA−1v ≤ vTMv, and

α xT Sx ≤ xT (B − LMR)x.

These two estimates, in particular, mean that the approximate Schur complement
B−LMR should be spectrally equivalent to the exact Schur complement S; that is,

α xTSx ≤ xT (B − LMR)x ≤ xTSx.

Such a construction is possible if A is assembled from local matrices {Aτ } in the
sense

vTAv =
∑

τ

vTτ Aτvτ , (4.19)

where vτ = v|τ ; that is, vτ is the restriction of v to the subset of indices τ . We assume
here that {τ } provides an overlapping partition of the indices of the vectors v. Next,
partition the local matrices Aτ as A accordingly,

Aτ =
[
Aτ Rτ
Lτ Bτ

]
.

Let Dτ be a s.p.d. local matrix such that

wTτ Aτwτ ≥ wTτ Dτwτ ≥ wTτ Rτ (Bτ )
−1Lτwτ . (4.20)

For example, it may be possible to choose Dτ being diagonal. The latter estimate
implies the spectral equivalence

[
wτ
xτ

]T [
Aτ Rτ
Lτ Bτ

] [
wτ
xτ

]
≥
[

wτ
xτ

]T [
Dτ Rτ
Lτ Bτ

] [
wτ
xτ

]

≥ δ
[

wτ
xτ

]T [
Aτ Rτ
Lτ Bτ

] [
wτ
xτ

]
,

inasmuch as both matrices are symmetric positive semidefinite and (4.20) imply that
they have a common potential null space. We assume that the constant δ is uniform
with respect to τ .
Define now the global matrix D by assembling {Dτ }

wTDw =
∑

τ

wTτ Dτwτ .
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Then letM = D−1. Note that if {Dτ } are diagonal, then D, and henceM, is also
diagonal. It is clear that

wTAv ≥ wTM−1w,

and that

xT (B − LMR)x = inf
w

∑

τ

[
wτ
xτ

]T [
Dτ Rτ
Lτ Bτ

] [
wτ
xτ

]

≥
∑

τ

min
wτ

[
wτ
xτ

]T [
Dτ Rτ
Lτ Bτ

] [
wτ
xτ

]

≥
∑

τ

min
wτ

δ

[
wτ
xτ

]T [
Aτ Rτ
Lτ Bτ

] [
wτ
xτ

]

= δ
∑

τ

xTτ Sτxτ

≃ xT Sx.

We have also assumed that the matrix assembled from the local Schur complements
{Sτ } (which is another good choice for Ac) is spectrally equivalent to the global
Schur complement. This can be rigorously proved if we can construct a bounded in
A-norm, element-based, interpolation matrix P . The latter means that Px|τ = Pτxτ ,
where xτ = x|τ , for some local interpolation matrices Pτ . (For more details, cf.,
Section 6.9.)
For the purpose of the present analysis, assume that we can construct an element-

based P such that its restrictions to every τ ,

Pτ =
[
Wτ
I

]
,

for a τ–independent constant η, satisfy

xTτ P
T
τ AτPτ xτ ≤ η inf

wτ

[
wτ +Wτ xτ

xτ

]T
Aτ

[
wτ +Wτxτ

xτ

]
= η xTτ Sτxτ .

Then, because Sτ is a Schur complement of the symmetric positive semidefinite
matrix Aτ , and

Pτ =
[
Wτ
I

]
,

we easily get

xTτ Sτxτ = inf
wτ

[
wτ
xτ

]T
Aτ

[
wτ
xτ

]
≤ xTτ P

T
τ AτPτ xτ .
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That is, we see that the matrix obtained by assembling the element-based Schur
complements is spectrally equivalent to Ac because

∑

τ

xTτ Sτxτ ≤
∑

τ

xTτ P
T
τ AτPτ xτ = xTAcx ≤ η

∑

τ

xTτ Sτxτ .

On the other hand, it is also straightforward to prove that Ac is spectrally equivalent
to the exact Schur complement S. We have

xT Sx = inf
w

[
w

x

]T
A

[
w

x

]

≤ xT P T APx

=
∑

τ

xTτ P
T
τ AτPτxτ

≤
∑

τ

η xTτ Sτxτ

≤ η
∑

τ

[
wτ
xτ

]T
Aτ

[
wτ
xτ

]

= η
[

w

x

]T
A

[
w

x

]
.

Because w can be arbitrary, by taking inf over it, we obtain that xT Sx ≤ xTAcx ≤
η xT Sx. That is, the global Schur complement S is spectrally equivalent to Ac, and
hence, is also spectrally equivalent to the matrix obtained by assembling the local
Schur complements Sτ .
Thus, we showed that ifM is spectrally equivalent to A and based on Dτ such

that (4.20) holds, the two conditions on M are met, which implies that the corre-
sponding two-grid preconditionerM will be spectrally equivalent toA. We comment
that to implement M−1, we do not need the interpolation matrix P once Ac has
been constructed (either by P T AP or by assembling the local element Schur com-
plements Sτ ), which makes the method somewhat different from the two-grid AMG
methods.
We conclude this section with the following simple example of local matrices that

satisfy the local condition (4.20).
Consider,

Aτ =
[
Aτ Rτ
Lτ Bτ

]
,

where

Aτ =

⎡
⎣
4 −1 −1

−1 4 −1
−1 −1 4

⎤
⎦ , Rτ =

⎡
⎣

−1 −1 0
0 −1 −1

−1 0 −1

⎤
⎦ , Bτ =

⎡
⎣
2 0 0
0 2 0
0 0 2

⎤
⎦ ,
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and Lτ = RTτ . Define then

Dτ =

⎡
⎣
2 0 0
0 2 0
0 0 2

⎤
⎦ .

We first see that

Aτ − Dτ =

⎡
⎣
2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎦

is positive semidefinite, and it is readily seen that the approximate Schur complement
Bτ − LτD

−1
τ LTτ is also positive semidefinite. Indeed,

Bτ − LτD
−1
τ LT = Bτ − 1

2
LτL

T
τ

=

⎡
⎣
2 0 0
0 2 0
0 0 2

⎤
⎦−

⎡
⎢⎣
1 1

2
1
2

1
2 1 1

2
1
2

1
2 1

⎤
⎥⎦

=

⎡
⎢⎣
1 − 1

2 − 1
2

− 1
2 1 − 1

2

− 1
2 − 1

2 1

⎤
⎥⎦ ,

which is positive semidefinite. This shows that the block-matrix

Mτ =
[
Dτ Rτ
Lτ Bτ

]

is positive semidefinite. Finally notice that Aτ andMτ have the same null space (the
constant vectors in R6). Alternatively, we have

Dτ − RτB
−1
τ Lτ = Dτ − 1

2
RτLτ

=

⎡
⎣
2 0 0
0 2 0
0 0 2

⎤
⎦−

⎡
⎢⎣
1 1

2
1
2

1
2 1 1

2
1
2

1
2 1

⎤
⎥⎦

=

⎡
⎢⎣
1 − 1

2 − 1
2

− 1
2 1 − 1

2

− 1
2 − 1

2 1

⎤
⎥⎦ ,

which is positive semidefinite. This shows the r.h.s. inequality in (4.20).

A reduction to an M-matrix

Asdemonstrated by the example at the end of the preceding section, the local construc-
tion ofM−1 seemed feasible, in general, for (Stieltjes) symmetricM-matrices. This
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gives a motivation to replace A with a spectrally equivalentM-matrix A and apply
the method studied in the present section to A instead. TheM-matrix approximation
can be achieved as follows. By adding semidefinite matrices of the type

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 d 0 −d 0
0 0 0 0 0
0 −d 0 d 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

} i ′′th position

} j ′′th position

to A, we can make all positive off-diagonal entries aij = d of A zero. The resulting
matrix A is a s.p.d.M-matrix that satisfies vTAv ≥ vTAv, and it is likely spectrally
equivalent to A. This is a typical case for finite element matrices A coming from
second-order elliptic PDEs. This fact is easily seen if the above positive-entry diagonal
compensation is performed on an element matrix level, that is, on Aτ (see (4.19)).
Thus, at least in theory,wemay reduce the problemof constructing preconditioners for
A to a problem of constructing preconditioners to the s.p.d. M (or Stieltjes) matrix
A. We also notice that in the M-matrix case (i.e., when the local matrices Aτ are
semidefiniteM-matrices), their Schur complements Sτ are semidefiniteM-matrices
as well. Thus, if we defineAc based on {Sτ }, it will be anM-matrix, and in principle,
a recursion involving only M-matrices (i.e., factorizing Ac in the same way as A
and ending up with a new Ac that is an M-matrix) is feasible. Such a procedure
will lead to a multilevel approximate block-factorization of A. We have not specified
how the two-by-two block structure of A (and later on Ac) can be chosen. One
viable choice of block structure of A can be based, for example, as described in
Section 6.9.

4.8 Odd–even modified block-ILU methods

One approach that can be applied to 3D discretization matrices on tensor product
meshes is using the unknowns as blocks within planes parallel to each other. Each
plane block can be accurately approximated by a 2D block-ILU factorization matrix.
The approximate Schur complements can then be computed in a Galerkin way, that is,
in the form P T AP, for appropriate matrix P . More specifically, partition the block-
tridiagonal matrix A as follows.

A =
[
Aodd Ao,e
Ae,o Aeven

]
.

The matrices Aodd and Aeven are block-diagonal and equal to diag(A2i−1,2i−1) and
diag(A2i,2i), respectively. For a positive vector

1 =
[

1o
1e

]
,



4.8 Odd–even modified block-ILU methods 123

typically chosen such thatAodd1o+Aeven1e = 0, we construct an interpolationmatrix

P =
[
W

I

]

such that P1e = 1. Then the approximate Schur complement Ac = P T AP =
WTAoddW + Ae,oW +WTAo,e + Aeven, is positive definite and again easily seen
to be block-tridiagonal ifW couples only two neighboring odd-planes. We also have
that Ac1e = (Aeven − Ae,oA−1

oddAo,e)1e.
In our particular case of block–tridiagonal matrices, a suitable way to construct

P (or ratherW ) in order to keep the sparsity pattern of Ac under control relies on the
following observation. Let

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. . . W2i−3,2i−2 0
. . . W2i−1,2i−2 W2i−1,2i 0

0 W2i+1,2i W2i+1,2i+2
0 W2i+3,2i+2

0

I 0
. . .

0 I 0
. . . 0 I

. . .
. . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

That is, for any column (2i) of P , there are only two nonzero block entries of W ,
denoted by W2i−1,2i and W2i+1, 2i . Then, a direct computation of the product Ac =
P T AP shows that the resulting matrix is also block-tridiagonal with block entries
[Ac2i,2i−2, A

c
2i,2i , A

c
2i,2i+2] and is defined as follows.

Ac2i,2i−2 = WT
2i−1,2i(A2i−1,2i−1W2i−1,2i−2 + A2i−1,2i−2)+ A2i,2i−1W2i−1,2i−2,

Ac2i,2i = WT
2i−1,2i(A2i−1,2i−1W2i−1,2i + A2i−1,2i)

+WT
2i+1,2i(A2i+1,2i+1W2i+1,2i + A2i+1,2i)

+ A2i,2i−1W2i−1,2i + A2i,2i+1W2i+1,2i + A2i,2i,
Ac2i,2i+2 = WT

2i+1,2i(A2i+1,2i+1W2i+1,2i+2 + A2i+1,2i+2)+ A2i,2i+1W2i+1,2i+2.

The simplest choice forW2i−1,2i andW2i+1,2i is to be diagonal.
It is clear then that the sparsity pattern of Ac2i,2i−2 is determined by the sparsity

pattern ofA2i−1,2i−1,A2i−1,2i−2, andA2i,2i−1. The sparsity pattern ofAc2i,2i is deter-
mined by the one ofA2i−1,2i−1,A2i−1,2i ,A2i+1,2i+1,A2i+1,2i ,A2i,2i−1,A2i,2i+1, and
A2i+1,2i+2 . In conclusion, if the original matrix A has blocks with a regular sparsity
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pattern, the choice of W with diagonal blocks W2i−1,2i and W2i+1,2i will lead to a
matrix Ac again with blocks having the same regular sparsity pattern.
The entries of W2i−1,2i and W2i+1,2i can be determined from the conditions

(cf., [SS98])

W2i−1,2i12i = −A−1
2i−1,2i−1A2i−1,2i12i,

W2i+1,2i12i = −A−1
2i+1,2i+1A2i+1,2i12i .

It is clear then that

(P1)|2i−1 = W2i−1,2i−212i−2 +W2i−1,2i12i
= −A−1

2i−1,2i−1(A2i−1,2i−212i−2 + A2i−1,2i12i)
= 12i−1;

that is, P1e = 1.
The two-level scheme is then applied to define the actual two-level modified

block-ILU preconditioner.
As mentioned above, we may derive a very accurate block-ILU factorization

matrix (X − L)X−1(X − U) for the block-diagonal matrix

diag(Ai, i) =
[
Aodd 0
0 Aeven

]
.

Let

(X − L)X−1(X − U) =
[
Modd 0
0 Meven

]
.

Consider then the following block upper-triangular matrix

M =
[
Modd Ae,o
0 Meven

]
.

Such an M is referred to as a “c–f” plane relaxation. Then, following the general
definition of two-level methods, we first define

B̂ =
[
M 0
P TA I

] [
(M +MT − A)−1 0

0 Ac

] [
MT AP

0 I

]
,

and then B−1 = [I, P ]B̂−1[I, P ]T . The above method is well defined as long as
M +MT − A is positive definite. In our particular case, we have

M +MT − A =
[
2Modd − Aodd 0

0 2Meven − Aeven

]
.

Because the block-ILU methods provide convergent splittings (Corollary 4.6) the
differences 2Modd−Aodd and 2Meven−Aeven are symmetric positive definite, hence
M +MT − A is s.p.d.
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As alreadymentioned,Ac is also block-tridiagonal, and in principle, we can apply
recursion to it if its sparsity pattern is being kept under control.
Alternatively, we may simply define a block-ILU factorization of A by using a

block-ILU factorization of Aodd only. In other words, let (Xodd−Lodd)X−1
odd(Xodd −

Uodd) be an accurate block-ILU factorization of the block-diagonal matrix Aodd. Let
Modd = Xodd − Lodd. The following more traditional way of defining a block-ILU
factorization matrix then reads,

B =
[

I 0
Ae,oM

−1
odd I

] [
ModdX

−1
oddM

T
odd 0

0 Ac

]

×
[
I M−T

oddAo,e
0 I

]
·

The difference between the two-grid definition ofB and the more classical block-
ILU definition is that the latter does not use the interpolation matrix P after the
approximate Schur complement Ac has been constructed. Another difference is that
in the more classical block-ILU definition, we use “smoothing” only on the odd
blocks.
For more details, regarding 3D finite difference matrices A on tensor product

meshes, we refer here to [SS98].

4.9 A nested dissection (approximate) inverse

A nested dissection solver

Given an s.p.d. matrix A partitioned by two separators “b” and “B”, as follows

A =
[
AI AIB

ABI AB

]
,

where AI is typically block-diagonal, which by itself is partitioned by the separator
“b” in a similar fashion,

AI =
[
Ai Aib
Abi Ab

]
.

We now compute (approximately)A−1 based on some partial knowledge ofA−1
I . We

only need specific entries of A−1, namely, the entries (A−1)ij for i, j ∈ “B” ∪ “b”.
The entries that we need from A−1

I correspond to the set “b” and the set ∂I ≡ {j ∈
I ; ai,j 
= 0 for some i ∈ “B”}. The latter is motivated by the fact that in order to
compute the Schur complement SB = AB − ABIA−1

I AIB , we only need the entries
ofA−1

I from exactly the set ∂I . Also, in order to compute the required entries ofA−1

based on the formula

A−1 =
[
A−1
I + A−1

I AIBS
−1
B ABIA

−1
I −A−1

I AIBS
−1
B

−S−1
B ABIA

−1
I S−1

B

]
,
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it is clear that we need (A−1
I )ij for i, j ∈ “b” ∪ ∂I and all the entries of S−1

B , in
order to be able to compute the entries of A−1 corresponding to B ∪ Ŵ for any set
Ŵ ⊂ (“b” ∪ ∂I).
We now comment on the fact that having the above-mentioned entries ofA−1 and

A−1
I available is sufficient to solve the following problem with sparse r.h.s.,

Ax = b =

⎡
⎣
0
bb
bB

⎤
⎦

for x on “B” and “b”. We can proceed as follows.

1. Solve

AIxI = bI =
[
0

bb

]

for xI on ∂I . Because we have (by assumption) the entries (A
−1
I )i,j for i ∈ ∂I

and j ∈ “b”, the latter equals (xI )i =
∑
j∈“b”(A

−1
I )ij(bb)j .

2. Compute the residual

r =

⎡
⎣
0

bb
bB

⎤
⎦− A

[
xI
0

]
.

It is clear that r is nonzero only on the separator set B and its entries on B are
equal to

bB − ABIxI = bB − ABI
[

∗
xI |∂I

]
.

These entries are computable inasmuch as ABI is nonzero only on ∂I .
3. Solve

Ay = r,

for yB = y|B (and perhaps for some other entries). We notice, because

A

(
y +

[
xI
0

])
= b,

that yB = xB is the true solution on the separator set B.
4. After xB has been computed, we solve

AIxI = bI − AIBxB .

The latter r.h.s. is nonzero on b∪∂I . Therefore, we can compute xb becauseA
−1
I

is available for entries (i, j), i ∈ b and j ∈ b ∪ ∂I .
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The complete solution algorithm is then obtained by applying the same process re-
cursively, now to AI based on the separator b and Ai replacing AI . If the separators
are used as in the nested dissection ordering (cf., Section 1.9.6), we end up with a
nested dissection-based (approximate) inverse of A, which can also be used to solve
the system Ax = b with a general r.h.s. The assumed sparsity of b is automatically
obtained (seen by induction; e.g., the sparsity of b implied that the residual r is also
sparse; r is nonzero only on the separator B).

Approximate inverses based on low-rank matrices

The idea is to compute both the Schur complement SB and its inverse S
−1
B only

approximately by saving memory and operations.
Assume, for example, that the needed principal submatrix ofA−1

I is approximated
by a low-rank matrix QI�

−1
I Q

T
I where QI has m ≥ columns, for a small m. Then,

the Schur complement SB can be approximated by the expression

XB ≡ ABB − ABIQ∂I�
−1
I Q

T
∂IAIB.

We recall that low-rank updates to compute approximate Schur complements were
used in Section 4.6. In general, given an approximate inverse X−1

I to AI and letting
X−1
B be another approximate inverse to SB ≈ ABB − ABI�

−1
I AIB, the required and

now only approximate entries of A−1 can be computed from
[
X−1
I + X−1

I AIBX
−1
B ABIX

−1
I −X−1

I AIBX
−1
B

−X−1
B ABIX

−1
I X−1

B

]
,

where the multiplications are carried out only approximately.
For more details on how to operate on a certain class of matrices exploiting “low-

rankness”, referred to as hierarchical matrices, see, for example, [H05], or referred
to as “semiseparable” matrices, see, for example, [ChG05].
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Multigrid (MG)

5.1 From two-grid to multigrid

We recall now the classical two-grid method from a matrix point of view introduced
in Section 3.2.3. We are given a n× n s.p.d. matrix A. The two-grid method exploits
an interpolationmatrix P : Rnc �→ Rn and a smootherM . Then, we define the coarse
matrix Ac = P T AP. The smootherM is assumed to provide convergent iteration in
the A-norm. As we well know (cf. Proposition 3.8), this is equivalent to having the
symmetrized smootherM = M(M +MT − A)−1MT satisfy the inequality,

vTAv ≤ vTMv. (5.1)

The classical two-gridmethod is defined as a stationary iterative procedure,which
is based on composite iterations; a presmoothing step withM , coarse-grid correction,
and a postsmoothing step with MT . This leads to an iteration matrix E that admits
the following product form

E = (I −M−TA)(I − PA−1
c P

TA)(I −M−1A).

A corresponding two-grid matrix B can be defined from the equation E =
I − B−1A which leads to the expression

B−1 = M−T (M +MT − A)M−1 + (I −M−TA)PA−1
c P

T (I − AM−1).

We may equivalently define B as a block-factorization of A. Namely, introduce

B =
[

I 0
P T AM−1 I

] [
M(M +MT − A)−1MT 0

0 Ac

] [
I M−T AP

0 I

]
·

Note that B has bigger size than B and A; namely, its size equals the fine-grid vector
size plus the coarse-grid vector size. Then, a straightforward computation shows the
following identity

B−1 = [I, P ]B
−1
[I, P ]T .

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 129
doi: 10.1007/978-0-387-71564-3_5,
© Springer Science+Business Media, LLC 2008
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This definition shows thatB is s.p.d. ifM+MT−A is positive definite, or equivalently
ifM is a convergent smoother in the A inner product (which we have assumed).
The above two-grid (or TG) definitions are the basis for extending the TGmethod

to multiple levels by simply replacing the exact inverseA−1
c with an approximate one

exploiting the same procedure defined by recursion on the preceding coarse levels,
which leads to various definitions of multigrid (or MG).
Assume that we have ℓ ≥ 1 levels (or grids). To be specific, we define next a

symmetric V (1, 1)-cycle MG. LetA0 = A and Pk be the interpolation matrices from
coarse-grid k+1 to fine-grid k andAk+1 = P Tk AkPk be the coarse-grid k+1 matrix.
We assume that Pk : Vk+1 �→ Vk; that is, PkVk+1 ⊂ Vk . Here, each vector space
Vk is identified with Rnk , and nk+1 < nk are their respective dimensions. Finally,
for any k, letMk be a convergent smoother forAk so that ‖I −A1/2k M−1

k A
1/2
k ‖ < 1.

The symmetric V (1, 1)-cycle MG that we define below exploits smoothing iterations
based on the inverse actions of bothMk andMT

k .
The traditional definition of MG is based on an algorithm that provides actions of

an approximate inverse B−1
k to Ak .

Definition 5.1 (MG algorithm). At the coarsest level, we set Bℓ = Aℓ. Then for

k = ℓ − 1, . . . , 0, assuming that B−1
k+1 has been defined, we perform the following

steps to define the actions B−1
k r for any given vector r.

(i) “Presmooth;” that is, solve

Mkxk = r.

(ii) Compute the residual d = r − Akxk = (I − AkM−1
k )r.

(iii) Compute a coarse-grid correction by applying B−1
k+1 to the restricted residual

P Tk d; that is, compute

xk+1 = B−1
k+1P

T
k

(
I − AkM−1

k

)
r.

(iv) Interpolate the coarse-grid correction and update the current approximation;

that is, compute

xk := xk + Pkxk+1 = M−1
k r + PkB−1

k+1P
T
k

(
I − AkM−1

k

)
r.

(v) “Postsmooth;” that is, solve

MT
k y = r − Akxk,

and finally set

B−1
k r = xk + y. �

The following more explicit form of B−1
k is readily seen from

xk = M−1
k r + PkB−1

k+1P
T
k

(
I − AkM−1

k

)
r,
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and

y = M−T
k (r − Akxk),

based on the definition B−1
k r = xk + y. We have

B−1
k r = xk + y

= xk +M−T
k (r − Akxk)

= M−1
k r + PkB−1

k+1P
T
k

(
I − AkM−1

k

)
r

+ M−T
k

(
r − Ak

(
M−1
k r + PkB−1

k+1P
T
k

(
I − AkM−1

k

)
r
))

=
(
M−1
k +M−T

k −M−1
k AkM

−T
k

+
(
I −M−T

k Ak
)
PkB

−1
k+1P

T
k

(
I − AkM−1

k

))
r.

Thus, the following recursive definition can be used instead.

Definition 5.2 (Recursive definition of MG). Set Bℓ = Aℓ. For k = ℓ − 1, . . . , 0,

introduce the symmetrized smoothersMk =Mk(MT
k +Mk−Ak)−1MT

k , and then let,

B−1
k = M−1

k +
(
I −M−T

k Ak
)
PkB

−1
k+1P

T
k

(
I − AkM−1

k

)
. �

Definition 5.2 andTheorem3.11give us onemore equivalent definitionof the symmet-
ric V (1, 1)-cycle MG as a recursive two-by-two block-factorization preconditioner,
which is a direct generalization of the TG one.

Definition 5.3 (MG as block-factorization preconditioner). Starting withBℓ = Aℓ
and assuming that Bk+1 for k ≤ ℓ− 1, has already been defined, we first form

Bk =
[

I 0
P Tk AkM

−1
k I

] [
Mk

(
Mk +MT

k − Ak
)−1

MT
k 0

0 Bk+1

] [
I M−T

k AkPk
0 I

]
,

(5.2)

and then Bk is defined from,

B−1
k = [I, Pk]B

−1
k [I, Pk]

T . �

Introduce next the composite interpolation matrices P k = P0 · · ·Pk−1 from kth-
level coarse vector space Vk all the way up to the finest-level vector space V = V0.
The following result allows us to view the symmetric V (1, 1)-cycle MG as a product
iterativemethod performed on the finest-level. The iterations exploit corrections from
the subspacesP kVk of the original vector spaceV = V0. Suchmethods are sometimes
called subspace correction methods (cf. [Xu92a]).

Proposition 5.4. The following recursive relation between the subspace iteration ma-

trices I − P kB−1
k P

T

k A and I − P k+1B−1
k+1P

T

k+1A holds,

I −P kB−1
k P

T

k A =
(
I −P kM−T

k P
T

k A
)(
I −P k+1B−1

k+1P
T

k+1A
)(
I −P kM−1

k P
T

k A
)
.
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Proof. We have, from Definition 5.2,

P kB
−1
k P

T

k = P kM
−1
k P

T

k + P k
(
I −M−T

k Ak
)
PkB

−1
k+1P

T
k

(
I − AkM−1

k

)
P
T

k .

Now use the fact that Ak = P Tk AP k and P k+1 = P kPk to arrive at the expression

P kB
−1
k P

T

k = P kM
−1
k P

T

k +
(
I −P kM−T

k P
T

k A
)
P k+1B

−1
k+1P

T

k+1
(
I −AP kM−1

k P
T

k

)
.

Then forming I − P kB−1
k P

T

k A gives

I − P kB−1
k P

T

k A = I − P kM
−1
k P

T

k A

−
(
I − P kM−T

k P
T

k A
)
P k+1B

−1
k+1P

T

k+1A
(
I − P kM−1

k P
T

k A
)
.

It remains to notice that M
−1
k = M−1

k +M−T
k −M−T

k AkM
−1
k = M−1

k +M−T
k −

M−T
k P

T

k AP kM
−1
k implies

I − P kM
−1
k P

T

k A =
(
I − P kM−T

k P
T

k A
)(
I − P kM−1

k P
T

k A
)
,

which combined with the previous identity gives the desired result. �

The following proposition shows that the symmetric V (1, 1)-cycle MG precon-
ditioners Bk provide convergent splittings for Ak. More specifically, the following
result holds.

Proposition 5.5. Under the assumption that the smoothersMk are convergent in the

Ak-norm (i.e., ‖I−A1/2k M−1
k A

1/2
k ‖ < 1), the symmetricV (1, 1)-cycle preconditioner

Bk is such that Bk − Ak is symmetric positive semidefinite.

Proof. From Proposition 5.4, letting Ek = I − P kM−1
k P

T

k A, we have that

A− AP kB−1
k P

T

k A = ETk
(
A− AP k+1B−1

k+1P
T

k+1A
)
Ek,

which shows by induction thatA−AP kB−1
k P

T

k A is symmetric positive semidefinite.

For k = ℓ, we have Bℓ = Aℓ = P
T

ℓ AP ℓ. Letting G = A1/2P ℓA
−1/2
ℓ , we have

GTG = I . Because ‖G‖ = ‖GT ‖ = 1, we also have

vTA1/2P ℓA
−1
ℓ P

T

ℓ A
1/2v = vTGGT v ≤ vT v.

Letting v := A1/2v above, we arrive at

vTAP ℓA
−1
ℓ P

T

ℓ Av ≤ vTAv.

That is,A−AP kB−1
k P

T

k A for k = ℓ is symmetric positive semidefinite. The fact that
A−AP kB−1

k P
T

k A is symmetric positive semidefinite (for all k) implies that P
T

k (A−
AP kB

−1
k P

T

k A)P k = Ak−AkB−1
k Ak , or equivalently, thatA

−1
k −B−1

k is symmetric
positive semidefinite. Therefore, we have that Bk − Ak is symmetric positive semi-
definite (because we showed that Bk is s.p.d.). Thus the proof is complete. �
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5.2 MG as block Gauss–Seidel

The following relation between MG and a certain inexact block Gauss–Seidel fac-
torization of an extended matrix was first explored by M. Griebel in [Gr94]. Namely,
consider the composite interpolation matrices P k = P0, . . . , Pk−1 from coarse-level
k vector space Vk all the way up to the finest-level vector space V = V0. Let also
P 0 = I . Then, form the following extended block-matrix T = (Tij)

ℓ
i,j=0 with blocks

Tij = P
T

i AP j . Note that the diagonal blocks Tii = Ai are simply the ith coarse-
level matrices. Let Mi be the smoother at level i < ℓ and at the coarsest-level ℓ let
Mℓ = Aℓ. Then form the block-lower triangular matrix,

LB =

⎡
⎢⎢⎢⎣

M0 0 . . . 0
T10 M1 . . . 0
... . . .

. . . 0
Tℓ,0 . . . Tℓ,ℓ−1 Mℓ

⎤
⎥⎥⎥⎦ .

The inverse of the MG preconditioner B−1
MG satisfies the identity,

B−1
MG = [P 0, . . . , P ℓ]L

−T
B (diag(MT

i +Mi − Ai)ℓi=0)L−1
B [P 0, . . . , P ℓ]

T . (5.3)

The fact that BMG defined in (5.3) actually coincides with the one in (5.2) follows by
induction from Theorem 3.11. We also have then the familiar product representation
of the iteration matrix I − B−1

MGA,

I − B−1
MGA =

(
I − P 0M−T

0 P
T

0 A
)
· · ·
(
I − P ℓM−T

ℓ P
T

ℓ A
)

×
(
I − P ℓ−1M−1

ℓ−1P
T

ℓ−1A
)
· · ·
(
I − P 0M−1

0 P
T

0 A
)
.

BecauseMℓ = Aℓ = P Tℓ AP ℓ, we notice that I − P ℓ−1M−T
ℓ P

T

ℓ−1A is a projection.
Hence the following more symmetric expression for B−1

MG holds.

I − B−1
MGA =

(
I − P 0M−T

0 P
T

0 A
)
· · ·
(
I − P ℓ−1M−T

ℓ P
T

ℓ−1A
)

×
(
I − P ℓ−1M−1

ℓ P
T

ℓ−1A
)
· · ·
(
I − P 0M−1

0 P
T

0 A
)
.

In [Gr94], it was actually proposed to transform a given system Ax = b based
on the fact that any x allows for a (nonunique) decomposition x =

∑ℓ
k=0 P kx

f
k and

then after forming P
T

k Ax =
∑ℓ
l=0 P

T

k AP lx
f
l = P

T

k b to end up with the following
consistent extended system,

T

⎡
⎢⎣

x
f
0
...

x
f
ℓ

⎤
⎥⎦ =

⎡
⎢⎢⎣

P
T

0 b
...

P
T

ℓ b

⎤
⎥⎥⎦ .
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Note that the matrix of this system T is symmetric and only positive semidefinite.
The latter consistent semidefinite system is solved then by the CG method using the
symmetric Gauss–Seidel matrix

LB
(
diag

(
MT
i +Mi − Ai

)ℓ
i=0
)−1
LTB ,

as preconditioner. The original solution is recovered then as

x =
[
P 0, . . . , P ℓ

]
⎡
⎢⎣

x
f
0
...

x
f
ℓ

⎤
⎥⎦ =

ℓ∑

k=0
P kx

f
k .

5.3 A MG analysis in general terms

The multilevel convergence analysis relies on stable multilevel decompositions of
the form

v =
∑

k

v
f
k ,

where v
f
k ∈ Vk , the kth-level coarse space viewed as a subspace of the fine-grid

vector space V = V0. That is, Vk = Range(P0, . . . , Pk−1). The stability means that
for a desirably level independent constant σ > 0, we have

∑

k

(
v
f
k

)T
Av

f
k ≤ σ vTAv.

Equivalently, because v
f
k = (P0, . . . , Pk−1)v

f
k , with v

f
k ∈ Vk (the actual coarse

vector space) the same estimate reads
∑

k

(
v
f
k

)T
Akv

f
k ≤ σ vTAv. (5.4)

Introduce, for the purpose of the following analysis, the subspace V
f
j ⊂ Vj , which

is complementary to the coarse space PjVj+1. The space V
f

j is chosen so that the

symmetrized smootherMj = Mj (M
T
j +Mj − Aj )−1MT

j when restricted to V
f
j is

efficient. The latter means that Aj andMj are spectrally equivalent uniformly w.r.t.

j on the subspace V
f
j . Then, we can replace (5.4) with an estimate that involves the

symmetrized smoothers
∑

k

(
v
f
k

)T
Mkv

f
k ≤ σ vTAv. (5.5)

Note that the subspaces V
f
j are not needed in the actual MG algorithm.
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Decompose vj = v
f
j + Pjvj+1, with v

f
j ∈ Vj and vj+1 ∈ Vj+1, for j = k,

k + 1, . . . , ℓ− 1. From the definition of B−1
k = [I, Pk]B

−1
k [I, Pk]T , we have that

I = GGT , where G = B1/2k [I, Pk]B
−(1/2)
k . This shows that G has a spectral norm

not greater than 1. Therefore, the following inequality holds,

[
v
f
k

vk+1

]T
[I, Pk]Bk [I, Pk]

T

[
v
f
k

vk+1

]
≤
[

v
f
k

vk+1

]T
Bk

[
v
f
k

vk+1

]
. (5.6)

Because

vk = [I, Pk]

[
v
f

k

vk+1

]
,

based on the above inequality and the explicit form ofBk , one arrives at the estimates

0 ≤ vTk (Bk − Ak)vk
≤
(
(Mk)

T v
f
k + AkPkvk+1

)T (
Mk +MT

k − Ak
)−1(

(Mk)
T v
f
k + AkPkvk+1

)

+ vTk+1(Bk+1 − Ak+1)vk+1 +
(
vTk+1Ak+1vk+1 − vTk Akvk

)

≤
ℓ−1∑

j=k

[(
(Mj )

T v
f
j + AjPjvj+1

)T (
Mj +MT

j − Aj
)−1(

(Mj )
T v
f
j + AjPjvj+1

)]

+ vTℓ Aℓvℓ − vTk Akvk.

(5.7)

Note that we have the freedom to choose the decomposition vj = v
f

j + Pjvj+1. In

particular, we can choose v
f
j ∈ V

f
j ⊂ Vj so thatwe have (by assumption) the estimate

∑

j≥k

(
v
f
j

)T
Mjv

f
j ≤ σ vTk Akvk. (5.8)

If it happens also that
∑

j≥k
vTj+1P

T
j Aj

(
Mj +MT

j − Aj
)−1
AjPjvj+1 ≤ µ vTk Akvk. (5.9)

and

vTℓ Aℓvℓ ≤ σc vTk Akvk, (5.10)

we would then have the following spectral equivalence result,

0 ≤ vTk (Bk − Ak)vk ≤ (σc + 2(σ + µ)− 1) vTk Akvk. (5.11)

Note that typically, for a constant δ > 0, we can ensure that

δ vTj Ajvj ≤ vTj
(
Mj +MT

j − Aj
)
vj . (5.12)



136 5 Multigrid (MG)

Equivalently, we can ensure (1 + δ)vTj Ajvj ≤ 2 vTj Mjvj generally achievable by
scalingMj . IfMj is s.p.d. andMj − Aj is symmetric positive semidefinite, we can
simply let δ = 1 in (5.12). Estimate (5.12) together with the following strong stability
estimate

∑

j>k

vTj Ajvj ≤ η vTk Akvk, (5.13)

imply estimate (5.9) with µ = η/δ.
We remark that (5.13) follows from (5.8) with level-dependent constant (of order

O((ℓ − k)2). Because Mj comes from an Aj -convergent smoother, we first have

vTj Ajvj ≤ vTj Mjvj . Then, because by construction vj = v
f
j + Pjvj+1, we easily

get the estimate ‖vk‖Ak ≤
∑
j≥k ‖v

f

j ‖Aj + ‖vℓ‖Aℓ . Hence,

(‖vk‖Ak − ‖vℓ‖Aℓ)2 ≤ (ℓ− k)
∑

j≥k

(
v
f
j

)T
Ajv

f
j ≤ (ℓ− k)

∑

j≥k

(
v
f
j

)T
Mjv

f
j .

Therefore,

∑

j>k

vTj Ajvj ≤ 2
∑

j>k

(‖vj‖Aj − ‖vℓ‖Aℓ)2 + (2(ℓ− k)− 1)vTℓ Aℓvℓ

≤ (2(ℓ− k)− 1)vTℓ Aℓvℓ + 2
∑

j>k

(ℓ− j)
∑

s≥j

(
v
f
s

)T
Msv

f
s

≤ (2(ℓ− k)− 1)vTℓ Aℓvℓ + (ℓ− k − 1)(ℓ− k)
∑

j≥k

(
v
f

j

)T
Mjv

f

j .

Thus, if only estimate (5.12) holds (provided the smoothers are also properly scaled
as in (5.12) and the coarse component is “energy” stable as in (5.10)), we still have
MG convergence, however, with weakly level-dependent bounds.

Remark 5.6. In practice, the most difficult estimate with a level-independent bound
is (5.9). In the case of matrices Aj coming from second-order elliptic bilinear form
a(·, ·) and respective finite element space Vj , withMj simply being the diagonal of
Aj (properly scaled), estimate (5.9) reads

∑

j

h2j‖ÂjPjvj+1‖20 ≤ C‖v‖2A.

Here, ‖.‖0 comes from the inner product based on the L2-mass matrix Gj , hj is the
j th-level mesh-size, and Âj = G−1

j Aj are the operators typically used in the finite
element analysis of MG. If Pjvj+1 stands for the vector representation of Qj+1v
whereQj+1 is the L2-projection onto the (j + 1)st-level finite element space Vj+1,
the above estimate in terms of finite element functions v, finite element operators
Âj : Vj �→ Vj defined via the relation (Âjvj , wj )0 = a(vj , wj ) = (∇vj ,∇wj )0



5.3 A MG analysis in general terms 137

for all vj , wj ∈ Vj , and the L2-projectionsQj : L2 �→ Vj defined via (Qjv, vj )0 =
(v, vj )0 for all vj ∈ Vj , reads

∑

j

h2j‖ÂjQjv‖20 ≤ C‖∇v‖20.

Such an estimate with uniform bound C was proven in [VW97] based on a well-
known strengthened Cauchy–Schwarz inequality (cf., [Y93], or see Proposition F.1
in the appendix).

We conclude with the following main MG convergence result formulated in gen-
eral terms.

Theorem 5.7. Consider Aj -convergent smoothersMj , j = 0, . . . , ℓ− 1 used in the

definition of the symmetric V (1, 1)-cycle MG preconditionerB = B0 for A = A0. If

any fine-grid vector v = v0 allows for a decomposition based on vector components

v
f
j = vj − Pjvj+1, j = 0, 1, . . . , ℓ− 1, such that:

• The smoothersMj are efficient on the components v
f

j in the sense that the estimate

∑

j

(
v
f
j

)T
Mjv

f
j ≤ σ vTAv,

holds.

• The smoothersMj are scaled as follows,

(1+ δ)vTj Ajvj ≤ vTj
(
MT
j +Mj

)
vj = 2vTj Mjvj .

• The coarse component vℓ is stable in energy; that is,

vTℓ Aℓvℓ ≤ σc vTAv.

Then, the symmetric V (1, 1)-cycle MG preconditioner B = B0 is spectrally equiva-

lent to A = A0 with the following suboptimal bound,

vTAv ≤ vTBv ≤
(
σc

[
1+ 2(2ℓ− 1)

δ

]
+ σ

[
2(ℓ− 1)ℓ

δ
+ 1

])
vTAv.

If, in addition, the smoothersMj are efficient on the components AjPjvj+1 so that

there holds
∑

j

vTj+1P
T
j Aj

(
Mj +MT

j − Aj
)−1
AjPjvj+1 ≤ µ vTAv,

then the MG preconditioner B is uniformly spectrally equivalent to A; that is, we

have

vTAv ≤ vTBv ≤ (σc + 2(σ + µ))vTAv.

Stable decomposition of vectors can generally be derived based on the finite
element functions from which they come. The latter was a topic of intensive research
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in the last 20 years. Some details about computable stable decomposition of functions
in various Sobolev norms are found in Appendix C, and specific applications of
Theorem 5.7 to a number of finite element bilinear forms and spaces are found in
Appendix F. Stable vector decompositions are further investigated in Section 5.7.
A different analysis ofMGexploiting its relationwith the product iterationmethod

was originally developed in [BPWXii] and [BPWXi]. Those were breakthrough re-
sults that led to the understanding of the importance of providing stable multilevel
decompositions of finite element spaces.

On the sharpness of (5.7)

We show that for some special decompositions vk = [I, Pk] vk , where

vk =
[

v
f
k

vk+1

]

inequalities (5.6) and hence (5.7) hold as equalities.
ConsiderBk andBk . We drop the subscript k whenever appropriate.We also need

the following useful lemma.

Lemma 5.8. Consider B−1 = [I, P ]B
−1
[I, P ]T . For any given vector v solve

Bw = [I, P ]T Bv,

for w. Then,

(i) [I, P ]w = v. That is,

w =
[

vf

vc

]

represents a decomposition of v = vf + Pvc.

(ii) The decomposition from (i) has some minimal norm property; namely, we have

wTBw = vTBv = min
v:v=[I, P ]v

vTBv.

Proof. We have
[I, P ]w = [I, P ]B

−1
[I, P ]T Bv = v,

which is (i). Also, from the definition of w and (i), we get

wTBw = wT [I, P ]T Bv = ([I, P ]w)T Bv = vTBv.

Finally, we already showed in (5.6), that for any decomposition v = [I, P ] v, we
have vTBv ≤ vTBv. The latter two facts represent the proof of (ii). �

In conclusion, for vectors
[

v
f
k

vk+1

]
≡ wk = B−1

k [I, Pk]
T Bkvk
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(i.e., defined as inLemma5.8 (used recursively)), the estimates (5.7)hold as equalities.
Thus the following main result holds.

Theorem 5.9. Consider for any v decompositions of the form:

(o) v0 = v.

(i) For k = 0, . . . , ℓ− 1 let vk = [I, Pk]

[
v
f

k

vk+1

]
.

Then the following main identity holds, for any k ≥ 0 and ℓ ≥ k,

vTk Bkvk = inf
(vj=v

f
j +Pj vj+1)

ℓ−1
j=k

[
vTℓ Bℓvℓ +

ℓ−1∑

j=k

(
MT
j v
f
j + AjPjvj+1

)T

×
(
Mj +MT

j − Aj
)−1(

MT
j v
f
j + AjPjvj+1

)]
.

Note that at the coarsest-level ℓ, we typically set Bℓ = Aℓ.

If we use the representation (5.3) for BMG = B0, we can reformulate Theorem 5.9 as
follows.

Theorem 5.10. LetP k = P0, . . . , Pk−1 be the composite interpolation matrices from

coarse-level k all the way up to the finest-level 0. Consider the extended matrix

T = (Ti,j ) =
(
P
T

i AP j
)ℓ
i,j=0

and form the following block-lower triangular matrix

LB =

⎡
⎢⎢⎢⎣

M0 0 . . . 0
T10 M1 . . . 0
... . . .

. . . 0
Tℓ,0 . . . Tℓ,ℓ−1 Mℓ

⎤
⎥⎥⎥⎦ .

Then, the following identity holds

vTBMGv

= inf
v=
∑ℓ
k=0 P kv

f
k

⎡
⎢⎣

v
f
0
...

v
f
ℓ

⎤
⎥⎦

T

LB
(
diag

(
MT
k +Mk − Ak

)ℓ
k=0
)−1
LTB

⎡
⎢⎣

v
f
0
...

v
f
ℓ

⎤
⎥⎦ .

(5.14)

The following corollary is needed later on.

Corollary 5.11. For any ℓ ≥ k, let Kℓ �→k
MG bound the condition number of the MG V-

cycle with exact coarse solution at level ℓ. This V -cycle exploits the same smoothers

as the original MG V-cycle at levels ℓ − 1, . . . , k. Assume that Kℓ is the bound of

the condition number of Bℓ in terms of Aℓ; that is, vTℓ Bℓvℓ ≤ Kℓ vTℓ Aℓvℓ. Then
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Theorem 5.9 applied to any vector decompositions starting with vk = v, and for

j = k, k + 1, . . . , ℓ− 1, vj = v
f

j + Pjvj+1, gives (noting that Kℓ ≥ 1)

vTBkv ≤ inf
(vj )

[
vTℓ Bℓvℓ +

ℓ−1∑

j=k

(
MT
j v
f
j +

(
Aj −MT

j

)
Pjvj+1

)T

×
(
Mj +MT

j − Aj
)−1(

MT
j v
f
j +

(
Aj −MT

j

)
Pjvj+1

)]

≤ Kℓ inf
(vj )

[
vTℓ Alvℓ +

ℓ−1∑

j=k

(
MT
j v
f

j +
(
Aj −MT

j

)
Pjvj+1

)T

×
(
Mj +MT

j − Aj
)−1(

MT
j v
f
j +

(
Aj −MT

j

)
Pjvj+1

)]

= Kℓ Kℓ �→k
MG vTAkv.

That is,

Kk ≤ KℓKℓ �→k
MG .

Here, Kℓ �→k
TG is the relative condition number of the exact V-cycle MG method cor-

responding to fine matrix Ak , smoother Mk , and coarse-level ones Aj , Mj , and

interpolation matrices Pj from level j + 1 to level j , and exact coarse grid solution

with Aℓ at level ℓ.

5.4 The XZ identity

In this section, we relate the identity proven in [XZ02] in its simplified equivalent
form found in [LWXZ] with a subspace correction block-factorization preconditioner
in the form defined in [V98] now in a somewhat more general setting.
Let A be a given n × n s.p.d. matrix. For k = 1, 2, . . . , ℓ, let P k : Rnk �→ Rn

be given full column rank interpolation matrices, where nk ≤ n. Introduce the nk×
nk s.p.d. matrices Ak = P

T

k AP k and let Mk be given matrices that provide Ak-
convergent iteration for solving systems with Ak. Consider also Mk = Mk(M

T
k +

Mk − Ak)−1MT
k , the symmetrized versions ofMk .

Let Vk ≡ Rnk and V ≡ Rn. Define the vector spaces Vk = Range P k ⊂ V.
As an example, in the setting of the MG method from the preceding sections we can
define P k = P0, . . . , Pk−1. With this definition the resulting spaces Vk are nested;
that is, Vk+1 ⊂ Vk . In what follows, to derive the XZ identity the spacesVk need not
be nested. Another example is given in Chapter 7.
We introduce the following auxiliary spaces V̂k = Vk + Vk+1 + · · · + Vℓ. They

are not needed in the implementation of the resulting product iteration method, but
are useful in its analysis.
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The inner product v̂Tk Âkŵk ≡ v̂Tk Aŵk for any v̂k, ŵk ∈ V̂k defines an operator
Âk : V̂k �→ V̂k . Let Q̂k : V �→ V̂k be the ℓ2-projection onto V̂k; that is, Q̂kv ∈ V̂k is
defined via the identity ŵTk Q̂kv = ŵTk v for any ŵk ∈ V̂k . We have Q̂k = Q̂Tk ,

Q̂2k = Q̂k , and Q̂kP k = P k . Define Ak,k+1 = P Tk AQ̂k+1 and Ak+1,k = Q̂k+1AP k .
Using the decomposition V̂k = Vk + V̂k+1, the actions of the operator Âk can be

computed based on the following two-by-two block form,

(
P kwk + ŵk+1

)T
Âk
(
P kvk + v̂k+1

)
=
[

wk
ŵk+1

]T [
Ak Ak,k+1

Ak+1,k Âk+1

] [
vk

v̂k+1

]
.

The above two-by-two block form of Âk serves as a motivation for the next definition
of the preconditioner of Âk as an approximate block-factorization.

Definition 5.12 (Subspace correction preconditioner). Let B̂ℓ : V̂ℓ �→ V̂ℓ be de-

fined from the identity

(
P ℓwℓ

)T
B̂ℓ
(
P ℓvℓ

)
= wTℓMℓvℓ, for all vℓ, wℓ ∈ Vℓ.

Recall that V̂ℓ = Vℓ = Range (P ℓ).

For k < ℓ, assuming (by induction) that B̂k+1 : V̂k+1 �→ V̂k+1 has been defined,

we first define a mapping B̃k : [Vk, V̂k+1] �→ [Vk, V̂k+1] in the following factored

form,

B̃k =
[

I 0
Ak+1,kM

−1
k I

] [
Mk 0
0 B̂k+1

] [
I M−T

k Ak,k+1
0 I

]

and then let

B̂−1
k =

[
P k, Q̂k+1

]
B̃−1
k

[
P k, Q̂k+1

]T
.

More explicitly, because

B̃−1
k =

[
I −M−T

k Ak,k+1
0 I

][
M

−1
k 0
0 B̂−1

k+1

][
I 0

−Ak+1,kM−1
k I

]
,

where we have assumed (by induction) that B̂k+1 is invertible on V̂k+1, we have

B̂−1
k = P kM

−1
k P

T

k +
(
Q̂k+1 − P kM−T

k Ak,k+1
)
B̂−1
k+1
(
Q̂k+1 − Ak+1,kM−1

k P
T

k

)
.

This expression shows that in fact B̂−1
k is s.p.d. (and invertible) on B̂k . Based on the

properties P
T

k Q̂k = P Tk and Q̂k+1Q̂k = Q̂k+1, and the identity

I − P kM
−1
k P

T

k A =
(
I − P kM−T

k P
T

k A
)(
I − P kM−1

k P
T

k A
)
,
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it is straightforward to show the following product iteration formula.

I − B̂−1
k Q̂kA =

(
I − P kM−T

k P
T

k A
)(
I − B̂−1

k+1Q̂k+1A
)(
I − P kM−1

k P
T

k A
)
.

(5.15)

We show next that B̂−1
ℓ Q̂ℓA can be computedwithout the knowledge of Q̂ℓ. More

specifically, we derive the expression

I − B̂−1
ℓ Q̂ℓA =

(
I − P ℓM−T

ℓ P
T

ℓ A
)(
I − P ℓM−1

ℓ P
T

ℓ A
)
. (5.16)

Clearly, the above expression holds if we show that

B̂−1
ℓ Q̂ℓ = P ℓM−T

ℓ P
T

ℓ + P ℓM−1
ℓ P

T

ℓ − P ℓM−T
ℓ AℓM

−1
ℓ P

T

ℓ ,

or equivalently,

Q̂ℓ = B̂ℓP ℓ
(
M−T
ℓ +M−1

ℓ −M−T
ℓ AℓM

−1
ℓ

)
P
T

ℓ = B̂ℓP ℓM
−1
ℓ P

T

ℓ .

Based on the definition of B̂ℓ
(
P ℓwℓ

)T
B̂ℓ
(
P ℓvℓ

)
= wTℓMℓvℓ,

we will have then, for any wℓ ∈ Vℓ and v ∈ V,

(
P ℓwℓ

)T
Q̂ℓv =

(
P ℓwℓ

)T
B̂ℓP ℓM

−1
ℓ P

T

ℓ v

= wTℓMℓM
−1
ℓ P

T

ℓ v

= wTℓ P
T

ℓ v.

That is, we have to show that P
T

ℓ Q̂ℓ = P
T

ℓ or its transpose Q̂ℓP ℓ = P ℓ which is
the case. It is clear that we can repeat the above steps in reverse order thus ending up
with the desired expression (5.16). In conclusion, combining (5.15) and (5.16), we
end up with the following result.

Theorem 5.13. The subspace correction preconditioner B̂k, defined in Definition 5.12,

for any k ≤ ℓ, can be implemented as a subspace iteration algorithm for solving sys-

tems with A giving rise to the product iteration formula

I − B̂−1
k Q̂kA =

(
I − P kM

−T
k P

T

k A
)
· · ·
(
I − P ℓM

−T
ℓ P

T

ℓ A
)

×
(
I − P ℓM

−1
ℓ P

T

ℓ A
)
· · ·
(
I − P kM

−1
k P

T

k A
)
.

The definition of B̂k implies I = B̂1/2k [P k, Q̂k+1]B̃
−1
k [P k, Q̂k+1]T B̂

1/2
k . From this

equality, based on the fact that ‖G‖ = ‖GT ‖ used for G = B̃
−(1/2)
k

[P k, Q̂k+1]T B̂
1/2
k it follows that the difference

[
P k, Q̂k+1

]T
B̂k
[
P k, Q̂k+1

]
− B̃k
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is symmetric negative semidefinite on [Vk, V̂k+1]. Therefore, we have for any v̂k ∈
V̂k decomposed as

v̂k = P kvk + v̂k+1 =
[
P k, Q̂k+1

] [ vk
v̂k+1

]
, for v̂k+1 ∈ V̂k+1,

v̂Tk B̂k v̂k =
[

vk
v̂k+1

]T [
P k, Q̂k+1

]T
B̂k
[
P k, Q̂k+1

] [ vk
v̂k+1

]

≤
[

vk
v̂k+1

]T
B̃k

[
vk

v̂k+1

]
.

Using the explicit form of B̃k , we obtain

v̂Tk B̂k v̂k ≤ v̂Tk+1B̂k+1v̂k+1 +
(
vk +M−T

k P
T

k Av̂k+1
)T
Mk

(
vk +M−T

k P
T

k Av̂k+1
)
.

Using recursion on k, for any decomposition v̂k = P kvk + · · · + P ℓvℓ setting v̂j =
P jvj + · · · + P ℓvℓ for j ≥ k, we arrive at the inequality

v̂Tk B̂k v̂k ≤ vTℓMℓvℓ +
ℓ−1∑

j=k

(
vj +M−T

j P
T

j Av̂j+1
)T
Mj

(
vj +M−T

j P
T

j Av̂j+1
)
.

Equivalently, because the decomposition v̂k = P kvk + · · · + P ℓvℓ was arbitrary, we
have

v̂Tk B̂k v̂k

≤ min
v̂k=P kvk+···+P ℓvℓ

⎡
⎣vTℓMℓvℓ +

ℓ−1∑

j=k
‖MT

j vj + P Tj Av̂j+1‖2(MT
j +Mj−Aj )−1

⎤
⎦ .

The fact that this is actually an equality is proven similarly as in Lemma 5.8 (or
Theorem 3.15). That is, we have the following main identity which is sometimes
referred to as the XZ identity.

Theorem 5.14. The subspace correction preconditioner B̂k defined in Definition 5.12

satisfies, for any k ≤ ℓ, the identity:

v̂Tk B̂k v̂k = min
v̂k=P kvk+ ···+P ℓvℓ

×

⎡
⎣vTℓMℓvℓ +

ℓ−1∑

j=k
‖MT

j vj + P Tj Av̂j+1‖2(MT
j +Mj−Aj )−1

⎤
⎦ .

(5.17)

The XZ identity is traditionally formulated in terms of the operators Tk = P kM
−1
k

P
T

k A, T
∗
k = P kM

−T
k P

T

k A and T k = P kM
−1
k P

T

k A. The operators T k are invertible

on Vk . By definition, T
−1
k P kvk = P kxk where xk is determined from the equation
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P kvk = T kP kxk . Equivalently, we havePkvk = P kM
−1
k P

T

k AP kxk. That is, because
P k has full column rank, we obtain xk = A−1

k Mkvk. Hence, we have the following

explicit expression for T
−1
k P k ,

T
−1
k P k = P kA−1

k Mk.

The operators Tj and T ∗
j give rise to the following product iteration formula for any

k ≤ ℓ,

(I − T ∗
k ) · · · (I − T ∗

ℓ )(I − Tℓ) · · · (I − Tk).

We proved in Theorem 5.13 that this formula defines a preconditioner B̂k for the op-
erator Âk . The preconditioner B̂k is s.p.d. on V̂k and can be defined either (implicitly)
via the relation

I − B̂−1
k Q̂kA = (I − T ∗

k ) · · · (I − T ∗
ℓ )(I − Tℓ) · · · (I − Tk),

or more explicitly as in Definition 5.12.
We are now in a position to formulate the XZ identity in the form found

in [LWXZ].

Theorem 5.15. The subspace correction preconditioner B̂k defined in Definition 5.12

satisfies, for any k ≤ ℓ, the identity:

v̂Tk B̂k v̂k = min
v̂k=P kvk+···+P ℓvℓ

[(
T

−1
ℓ P ℓvℓ, P ℓvℓ

)
A

+
ℓ−1∑

j=k

(
T

−1
j

(
P jvj + T ∗

j v̂j+1
)
,
(
P jvj + T ∗

j v̂j+1
))
A

]
.

(5.18)

Here, Tj = P jM
−1
j P

T

j A, T ∗
j = P jM

−T
j P

T

j A, and T
−1
j : Vj �→ Vj is such that

T
−1
j P j = P jA−1

j Mj . We also used the notation (u, w)A = wTAu.

5.5 Some classical upper bounds

We next prove an upper bound that is useful in the analysis of theV -cycle with several
smoothing steps. We consider for the time being two consecutive levels k and k + 1.
For this reason, we omit the subscript k, and for the coarse quantities, the subscript
k + 1 is replaced with “c”.
We recall two matrices that combine smoothing withM andMT ,

M = M(M +MT − A)−1MT ,

and

M̃ = MT (M +MT − A)−1M.
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The following identities for the corresponding iteration matrices hold,

I −M−1
A = (I −M−TA)(I −M−1A) and

I − M̃−1A = (I −M−1A)(I −M−TA).
(5.19)

IntroducingE = I − A1/2M−1A1/2, we then have

A1/2(I −M−1
A)A−(1/2) = ETE and A1/2(I − M̃−1A)A−(1/2) = EET . (5.20)

By definition, the following explicit relation betweenB−1 and the coarse oneB−1
c

holds.

B−1 = M−1 + (I −M−TA)PB−1
c P

T (I − AM−1).

Using the identity A1/2M
−1
A1/2 = I −ETE, we end up with the following relation

A1/2B−1A1/2 = I − ETE + ETA1/2PB−1
c P

TA1/2E.

Assume now, by induction, that

0 ≤ vTc (Bc − Ac)vc ≤ ηc vTc Acvc.

Then, the following upper bound holds, introducing the projection πA =
A1/2PA−1

c P
TA1/2,

vTBv

vTAv
≤ sup

v

vTA−1/2BA−1/2v

vT v

≤ sup
v

vT
(
I − ETE + 1

1+ηcE
T
πAE

)−1
v

vT v

= sup
v

vT v

vT
(
I − ETE + 1

1+ηcE
T
πAE

)
v

= (1+ ηc) sup
v

vT v

vT
[
ηc
(
I − ETE

)
+ I − ET (I − πA)E

]
v
. (5.21)

The assumption (A) below provides perhaps the shortest convergence proof for
the V -cycle MG. We show next that (A) is equivalent to assumption (A∗) originally
used in [Mc84, Mc85]. Assumption (A) is found as inequality (4.82) in [Sh95].

(A) There is a constant ηs > 0 such that,

vTA(I −M−TA)(I − πA)(I −M−1A)v

≤ ηs [vTAv − vTA(I −M−TA)(I −M−1A)v].
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This assumption can equivalently be stated as

vTE
T
(I − πA)Ev ≤ ηs

[
vT v − vTE

T
Ev
]
. (5.22)

Using the latter inequality in (5.21), we get

1

1+ ηc
vTBv

vTAv
≤ sup

v

vT v

vT
(
ηc
(
I − ETE

)
+ I − ηs I + ηsE

T
E
)
v

= sup
v

vT v

vT
(
I + (ηc − ηs)

(
I − ETE

))
v
.

Assuming (by induction) that ηc ≥ ηs , the induction assumption vTc Bcvc ≤
(1 + ηc) vTc Acvc is confirmed at the next level, because with η = ηc, we get from
the last estimate above, vTBv ≤ (1+ η) vTAv.
Thus we proved the following main theorem.

Theorem 5.16. Under the assumption (A), valid for A = Ak at levels k ≤ ℓ, the

V -cycle preconditioner B := Bk is uniformly (in k ≤ ℓ) spectrally equivalent to

A := Ak , and the following estimate holds

vTAv ≤ vTBv ≤ (1+ ηs) vTAv,

where ηs > 0 is from the main assumption (A).

The following is a sufficient condition for (A) to hold.

Lemma 5.17. If the smootherM is efficient on the A-orthogonal complement to the

coarse space Range (I − πA), in the sense that

vTs Mvs ≤ ηs vTs Avs for any vs = (I − πA)v, (5.23)

then condition (A) holds. IfM is symmetric and properly scaled so that

vTAv ≤ vTMv,

then (5.23) can equivalently be formulated in terms ofM instead.

Proof. We have, for any w,

wTA(I − πA)w ≤
(
M

−1/2
Aw
)T
M
1/2
(I − πA)w

≤ ‖Aw‖
M

−1((I − πA)w)TM(I − πA)w)1/2

≤ √
ηs ‖Aw‖

M
−1(((I − πA)w)TA(I − πA)w)1/2

= √
ηs ‖Aw‖

M
−1(wTA(I − πA)w)1/2.

That is, we have

wTA(I − πA)w ≤ ηs wTAM
−1
Aw. (5.24)
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Choose now w = (I − M−1A)v. The left-hand side above becomes then the left-
hand side of (A). For the r.h.s. of (5.24) use the identity (see (5.19)) AM

−1
A =

AM−T (M + MT − A)M−1A = A − A(I − M−TA)(I − M−1A) which equals
exactly the r.h.s. of (A).
In the case M = MT and M − A being positive semidefinite, we have that M

and M̃ = M = M(2M − A)−1M are spectrally equivalent because then

1

2
vTMv ≤ vTMv ≤ vTMv.

Also,M−A being positive semidefinite implies thatM is anA-convergent smoother
(for A). Finally, if vTs Mvs ≤ ηs vTs Avs for any vs = (I − πA)v, we also have
vTs Mvs ≤ vTs Mvs ≤ ηs vTs Avs and the proof proceeds as before. �

Remark 5.18. We comment here that the assumption (5.23) is much stronger than one
of the necessary conditions for two-grid convergence formulated in Corollary 3.23 in
the caseM =MT , hence M̃ = M . This is seen from the estimates

‖(I − πM̃)v‖2
M̃

= min
vc

‖v − Pvc‖2M̃ ≤ ‖(I − πA)v‖2
M̃

≤ ηs ‖(I − πA)v‖2A ≤ ηs ‖v‖2A.

That is, we have then

TTG = sup
v

vT M̃(I − πM̃)v
vTAv

≤ ηs .

Therefore, the two-grid convergence factor satisfies̺TG = 1−(1/KTG) ≤ 1−(1/ηs).
The condition (5.23), however, implies much more than a two-grid convergence be-
cause it also implies condition (A) and hence,we have a uniformV -cycle convergence
(due to Theorem 5.16).

Consider now the following assumption.

(A∗) There is a constant δs ∈ [0, 1) such that,

‖(I −M−TA)v‖2A ≤ δs ‖(I − πA)v‖2A + ‖πAv‖2A.

Assumption (A∗) has the following interpretation. The smoother MT reduces (in
energy norm) by a factor of δ1/2s the “oscillatory” error components (referring to the
space Range(I − πA)), whereas at the same time it does not amplify the “smooth”
error components (referring to the coarse space Range(P ) = Range(πA)).
We note that (A∗) implies (5.24) for w = v = (I − πA)v and ηs = 1/(1 − δs),

and therefore condition (A) holds.Moreover, the following equivalence result actually
holds.

Proposition 5.19. Assumptions (A) and (A∗) are equivalent with δs = ηs/(1+ ηs).
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Proof. Consider assumption (A) in the form(5.22). By rearranging terms,we arrive at

vTE
T
(
I − 1

1+ ηs
πA

)
Ev ≤ ηs

1+ ηs
vT v. (5.25)

Using the fact that πA is a projection, that is, that πA(I − πA) = 0, we also have

I − 1

1+ ηs
πA = (I −πA)+ δs πA = (I −πA)2+ δs π2A = (I −πA+

√
δs πA)

2.

Therefore (because πA is symmetric), we can rewrite (5.25) as follows.

‖((I − πA)+
√
δs πA)Ev‖2 ≤ δs vT v.

The fact ‖X‖ = ‖XT ‖ used for X = E
T
((I − πA) +

√
δs πA) shows then the

estimate

‖ET ((I − πA)+
√
δs πA)w‖2 ≤ δs wTw. (5.26)

Finally, using again the orthogonality of I −πA and πA, we first see that ((I −πA)+√
δsπA)

−1 = (I − πA)+ (1/
√
δs)πA, which together with (5.26) then shows

‖ET v‖2 ≤ δs ‖
(
(I − πA)+

√
δsπA

)−1
v‖2

= δs
∥∥((I − πA)+

1√
δs
πA
)
v
∥∥2

= δs ‖(I − πA)v‖2 + ‖πAv‖2.

Letting v := A1/2v the estimate (A∗) is finally obtained.
The converse statement follows by repeating the above argument in a reverse

order. �

Some auxiliary estimates

Assumption (A) is commonly verified (see Lemma 5.21) based on a boundedness
assumption of the projection πA, namely,

(B) “ℓ2-Boundedness” of πA:

‖A‖ ‖(I − πA)v‖ ≤ ηb ‖Av‖.

We can prove an estimate such as (B) if the following strong approximation property
holds.

(C) “Strong approximation property”:
For every v, there is a coarse interpolant Pvc such that

(v − Pvc)
TA(v − Pvc) ≤ ηa

‖A‖ ‖Av‖2.
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We verified such an estimate for f.e. matrices coming from the Poisson equation
−�u = f in� and u = 0 on ∂�, which admits full regularity; that is, ‖u‖2 ≤ C ‖f ‖.
Such regularity estimates are available for convex polygonal domains � (cf., e.g.,
[TW05]). We proved estimate (1.16) in that case.
Estimate (C) is also proved for a purely algebraic two-grid method described

in Section 6.11. More precisely, we show there (see the second inequality from the
bottom in (6.47)) that for any e, there is an ǫ ∈ Range (P ) such that,

(e − ǫ)TA(e − ǫ) ≤ ‖A‖‖e − ǫ‖2 ≤ δ

η‖A‖ ‖Ae‖2.

Lemma 5.20. Assumption (C) implies (B) with ηb = ηa .

Proof. The proof is based on the so-called Aubin–Nitsche trick. Consider e = (I −
πA)v and let u : Au = e. We have, noting that e is A-orthogonal to the coarse space,
letting ηa = ηa/‖A‖,

‖e‖2 = eTAu

= eTA(u − Puc)

≤ ‖e‖A‖u − Puc‖A
≤ ‖e‖A

√
ηa‖Au‖

= ‖e‖A
√
ηa‖e‖.

That is,

‖e‖2 ≤ ηa eTAe = ηa eTAv ≤ ηa ‖Av‖‖e‖.
This implies the required boundedness estimate (B) of the projection πA,

‖(I − πA)v‖ ≤ ηa ‖Av‖ = ηa

‖A‖ ‖Av‖. �

At the end, we prove an estimate of the form (A).

Lemma 5.21. Assumption (B) implies (A) with ηs = ηb ‖M̃‖/‖A‖.

Proof. We have, with ṽ = Ev, E = I −M−1A,

ṽTA(I − πA)̃v ≤ ‖Aṽ‖‖(I − πA)̃v‖ ≤ ηb

‖A‖ ‖Aṽ‖2.

Also, recalling that A1/2M̃−1A1/2 = I − EET ((5.20))
‖Aṽ‖2 ≤ ‖M̃‖ vTETAM̃−1AEv

= ‖M̃‖ (A1/2v)TA−1/2ETAM̃−1AEA−(1/2)(A1/2v)

= ‖M̃‖ (A1/2v)TET
(
I − EET

)
E(A1/2v)

= ‖M̃‖ (A1/2v)T
(
E
T
E −

(
E
T
E
)2)
(A1/2v)

≤ ‖M̃‖ (A1/2v)T
(
I − ETE

)
(A1/2v)

= ‖M̃‖ vT
(
A− A(I −M−TA)(I −M−1A)

)
v.



150 5 Multigrid (MG)

We used the elementary inequality t − t2 ≤ 1 − t for the symmetric matrix ETE
(because its eigenvalues are between zero and one). Thus, we proved (A) with ηs =
(‖M̃‖/‖A‖) ηb. �

More smoothing steps

Here, we consider a smootherMk that can be a combined one; that is,Mk is implicitly
defined from m ≥ 1 steps of a given (not necessarily symmetric) smootherM(0)

k , as
follows.

I −M−1
k Ak =

⎧
⎨
⎩

(
I −M(0)−1

k Ak
)m0 , m = 2m0,(

I −M(0)−1
k Ak

)(
I −M(0)−1

k Ak
)m0−1, m = 2m0 − 1.

(5.27)

Recall that

M
(0)
k = M(0)

k

(
M
(0)T

k +M(0)
k − Ak

)−1
M
(0)T

k

and

M̃
(0)
k = M(0)T

k

(
M
(0)T

k +M(0)
k − Ak

)−1
M
(0)
k .

Also, in the above formula for I − M−1
k Ak , we have I − M

(0)−1

k Ak = (I −
M
(0)−T
k Ak)(I − M(0)−1

k Ak); that is, we use both M
(0)
k and M(0)T

k in an alternating
fashion. We notice that (in both cases),

Ak(I −M−T
k Ak)(I −M−1

k Ak) = Ak(I −M(0)−1

k Ak)
m.

That is, the resulting symmetrized smoother Mk = Mk(Mk + MT
k − Ak)

−1MT
k

satisfies the identity

Ak
(
I −M−1

k Ak
)

= Ak
(
I −M(0)−1

k Ak
)m
.

We omit in what follows the level index k.
Introduce the smoothing iteration matrices

E
(0) = I − A1/2M(0)−1A1/2 and E = I −M−1A.

We then have,

E ≡ A1/2EA−(1/2) =

⎧
⎨
⎩

(
E
(0)T
E
(0))m0 , m = 2m0,

E
(0)(
E
(0)T
E
(0))m0−1, m = 2m0 − 1.

For a givenm ≥ 1, the resultingMG preconditioner is referred to as a V (m, m)-cycle
one.

We observe that in both cases (m odd or even) E
T
E = (E

(0)T
E
(0)
)m. Also,

because I − M̃(0)−1A = (I −M(0)−1A)(I −M(0)−TA), we get

A1/2
(
M̃(0)−1A

)
A−(1/2) = I − E(0)E(0)

T

.
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Similarly,

A1/2(M
(0)−1

A)A−(1/2) = I − E(0)
T

E
(0)
.

With this combined smoother, the following strong smoothing property can be proved.
First, consider the case m-odd; that is, m = 2m0 − 1. We have, with ṽ = Ev,

recalling that A1/2M̃(0)−1A1/2 = I − E(0)E(0)
T

,

‖Aṽ‖2 ≤ ‖M̃(0)‖(AEv)T M̃(0)−1(AEv)

= ‖M̃(0)‖(A1/2v)TA−(1/2)ETAM̃(0)−1AEA−(1/2)(A1/2v)

= ‖M̃(0)‖ (A1/2v)T
(
E
T (
I − E(0)E(0)

T ))
E(A1/2v)

= ‖M̃(0)‖ (A1/2v)T
((
E
(0)T
E
(0))m −

(
E
(0)T
E
(0))m+1)

(A1/2v)

≤ 1

m
‖M̃(0)‖ (A1/2v)T

(
I −

(
E
(0)T
E
(0))m)

(A1/2v)

= 1

m
‖M̃(0)‖ (A1/2v)T

(
I − ETE

)
(A1/2v)

= 1

m
‖M̃(0)‖ vT (A− A(I −M−TA)(I −M−1A))v.

We used above the elementary inequality (as in [Br93] or [BS96]) for any t ∈ [0, 1],
tm ≤ tk , 0 ≤ k ≤ m− 1, which implies

(1− t)tm ≤ (1− t) 1
m

m−1∑

k=0
tk = 1

m
(1− tm),

noticing that the spectrum of the symmetric matrix E
(0)T
E
(0)
is contained in [0, 1].

The case m-even is handled analogously. We start then with the inequality

‖Aṽ‖2 ≤ ‖M (0)‖ (AEv)TM
(0)−1

(AEv).

Using the fact thatA1/2(M
(0)−1

A)A−(1/2) = I −E(0)
T

E
(0)
, we end up with the same

type of inequality as before;

‖Aṽ‖2 ≤ ‖M(0)‖ (A1/2v)T
(
E
T (
I − E(0)

T

E
(0)))

E(A1/2v)

= ‖M (0)‖ (A1/2v)T
((
E
(0)T
E
(0))m −

(
E
(0)T
E
(0))m+1)

(A1/2v)

≤ 1

m
‖M(0)‖ (A1/2v)T

(
I −

(
E
(0)T
E
(0))m)

(A1/2v)

= 1

m
‖M(0)‖ (A1/2v)T (I − ETE)(A1/2v)

= 1

m
‖M(0)‖ vT (A− A(I −M−TA)(I −M−1A))v.

Thus, we proved a smoothing property (A) (assuming (B)) with

ηs = ηb
‖M̃(0)‖
‖A‖

1

m
or ηs = ηb

‖M(0)‖
‖A‖

1

m
.
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This shows uniform convergence of the resulting V –cycle MG with a rate that im-
proves with increasing m, the number of smoothing steps. That is, we have the fol-
lowing result, originating in Braess and Hackbusch [BH83].

Theorem 5.22. Under the assumption (B), which holds if the strong approxima-

tion property (C) holds, using m combined pre- and postsmoothing steps as de-

fined in (5.27), we have the following uniform estimate for the resulting V -cycle

preconditioner,

vTAv ≤ vTBv ≤

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
1+ ηb

‖M̃(0)‖
‖A‖

1

m

)
vTAv, m = 2m0 − 1,

(
1+ ηb

‖M(0)‖
‖A‖

1

m

)
vTAv, m = 2m0.

In particular, the following corollary holds for the window spectral AMG method,
because a strong approximation property (C) holds for it (proved in Theorem 6.19).

Corollary 5.23. The two-level window-based spectral AMG method from Section 6.11

improves its convergence factor̺TG linearly with increasingm, the number of smooth-

ing steps; that is, we have

̺TG ≤ c0

c0 +m, c0 = δ

η

‖M̃(0)‖
‖A‖ ≤ δ

η

1

ω(2 − ω) .

The constants δ and η are defined in Theorem 6.19. The last inequality for c0 holds if

the Richardson smootherM(0) = ‖A‖/ω I , ω ∈ (0, 2) is used.

5.5.1 Variable V -cycle

In this section, we present a first attempt to stabilize the V -cycle by increasing the
number of smoothing steps at coarse levels. The latter is referred to as a variable
V -cycle originating in Bramble and Pasciak [BP87]. We first analyze the complexity
of a V -cycle with a variable number of smoothing steps.
Let nk be the number of degrees of freedom at level k and the smoothing and

interpolation procedures take O(nk) operations. Assume also, a geometric ratio of
coarsening; that is, nk+ℓ ≃ qℓ nk , for some q ∈ (0, 1). Then the asymptotic work
w0 (at the finest-level k = 0) of the resulting variable V -cycle preconditioner with
mk ≥ 1 (level-dependent) number of smoothing steps, can be readily estimated as

w0 ≃
∑

k≥0
mk nk.

Assume now that for an α ∈ (0, 1] and a given σ > 0, mk , for a fixed m0 ≥ 0,
grows as,

(mk + 1−m0)−α ≃ (1+ k)−(1+σ); (5.28)
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that is,

mk + 1 ≃ m0 + (1+ k)(1+σ)/α. (5.29)

Then, the work estimate takes the form

w0 ≃ n0
∑

k≥0
qk(k + 1)(1+σ)/α ≃ n0.

That is, at the finest-level k = 0, the total work w0 is of optimal order.

Theorem 5.24. LetKk be the relative condition number of theV -cycle preconditioner

Bk with respect to Ak at level k, and let KTG, k be the one of the respective two-grid

preconditioners at level k (i.e., with exact coarse solution at level k+1). Both exploit

the same smoother at level k with the same number of smoothing steps mk ≥ 1.

Assume that at coarser levels, the two-grid methods get more accurate, so that, for a

constant η > 0 and a fixed σ > 0,

KT G, k ≤ 1+ η

(1+ k)1+σ , at all levels k ≥ 0,

The latter can be guaranteed (as shown later on, depending on certain approximation

properties of the coarse spaces, cf., Theorem 5.27), if we perform mk ≥ 1 (i.e.,

level-dependent) number of smoothing steps. More specifically, we assume that the

following asymptotic TG convergence behavior holds,

KTG, k ≃ 1+ η m−α
k , (5.30)

for a fixed α ∈ (0, 1]. Then, if we selectmk , for a fixedm0 ≥ 0, as in (5.28) or (5.29),
then the resulting variable V -cycle is both of optimal complexity and its spectral

relative condition number is bounded independently of the number of levels. More

specifically, the following bound holds,

K0 ≃ KT G, 0 = 1+ η m−α
0 .

The latter can be made sufficiently close to one by choosingm0 sufficiently large.

Proof. For any two levels, a fine-level k and a coarse-level ℓ ≥ k, we have (see, e.g.,
Corollary 5.11),

Kk ≤ KTG, kKTG, k+1 · · ·KTG, ℓ−1 Kℓ.

Then from the assumption (5.30) and the choice of mk in (5.28)–(5.29), we immedi-
ately get

K0 ≤ KT G, 0
∏

k≥1

(
1+ η

(1+ k)1+σ
)

≃ KTG, 0 = 1+ η m−α
0 .

The choice of mk as in (5.29) as already shown guarantees that the variable V -cycle
is of optimal complexity. �
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Less regular problems

In this section, we consider a little more sophisticated case of less regular problems;
namely, we assume the following.

(D) “Weaker approximation property”:
For an α ∈ (0, 1], there is a constant ηa such that the following weaker approxi-
mation property holds,

‖(I − πA)v‖2A ≤ (v − Pvc)
TA(v − Pvc) ≤ ηa

‖A‖α ‖A(1+α)/2v‖2.

Here, for a given v, Pvc is some coarse interpolant that satisfies the above ap-
proximation property.

We show next that the following boundedness estimate holds.

Corollary 5.25. Estimate (D) implies the following corollary,

‖A(1−α)/2(I − πA)v‖ ≤ ηa

‖A‖α ‖A(1+α)/2v‖.

Proof. Let e = (I − πA)v and consider the problem Au = A1−αe. With η =
ηa/‖A‖α , noticing the e is A-orthogonal to the coarse space Range (P ), we have

eTA1−αe = eTAu

= eTA(u − Puc)

≤ ‖e‖A‖u − Puc‖A
≤ ‖e‖A

√
η ‖A(1+α)/2u‖

= √
η ‖e‖A‖A(1−α)/2e‖.

That is, we have,

eTA1−αe ≤ η eTAe = η eTAv ≤ η ‖A(1−α)/2e‖‖A(1+α)/2v‖,

which implies the desired result. �

Lemma 5.26. The less strong approximation property (D) implies the following

weaker version of (A); namely,

(Aw)

vTA(I −M−TA)(I − πA)(I −M−1A)v

≤ ηs
[
vTAv − α vTA(I −M−TA)(I −M−1A)v

]
.

where ηs = ηa ‖M̃‖α/‖A‖α .

In the case of a combined smoother as defined in (5.27), we have the following im-

proving withm �→ ∞ upper bound ηs = ηa (‖M̃‖α/‖A‖α) (1/mα) form = 2m0−1
and ηs = ηa (‖M

(0)‖α/‖A‖α)(1/mα) for m = 2m0.
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Proof. Consider the series (1 − t)α = 1 −
∑
k≥1 αkt

k , noticing that αk > 0, and
α1 = α. Then the following estimate for any t ∈ [0, 1] is immediate

t

(
1−

∑

k≥1
αk t

k

)
≤ 1−

∑

k≥1
αk t

k ≤ 1− α1t = 1− αt. (5.31)

Use now estimate (D). It gives, for ṽ = Ev, E = I −M−1A,

vTAETGv = (Ev)TA(I − πA)(Ev) ≤ ηa

‖A‖α ‖A(1+α)/2̃v‖2.

We apply next Lemma G.3, that is, the fact that for any two symmetric positive
definite matrices U and V , the inequality vTUv ≤ vT V v implies vTUαv ≤ vTV αv,
for any α ∈ [0, 1]. Choosing U = A and V = ‖M̃‖A1/2M̃−1A1/2, we then have

wTAαw ≤ ‖M̃‖α wT
(
A1/2M̃−1A1/2

)α
w = ‖M̃‖α wT

(
I − EET

)α
w. (5.32)

We let now w = A1/2̃v = A1/2Ev = EA1/2v. The desired result then follows using
inequality (5.31) for the eigenvalues of the matrix E

T
(I − EE

T
)αE = E

T
E −∑

k≥1 αk(E
T
E)k+1, which have the form t (1 −

∑
k≥1 αk t

k) for t ∈ [0, 1] being an
eigenvalue of the symmetric positive semidefinite matrix E

T
E.

Next, we analyze the case of the combined smoother defined in (5.27). The term
‖A(1+α)/2̃v‖2 = ‖Aα/2E(A1/2v)‖2 is estimated below. Consider the case m = 2m0
−1(thecasem=2m0 isanalyzedanalogously).Useasbefore(see (5.32)) the inequality

‖A(1+α)/2̃v‖2 ≤ ‖M̃(0)‖α(A1/2v)TET
(
I − E(0)E(0)

T )α
EA1/2v.

We have E = E(0)(E(0)
T

E
(0)
)m0−1. Therefore, because ‖E(0)‖ = ‖E(0)

T

‖ < 1, we
also have

E
T (
I − E(0)E(0)

T )α
E

=
(
E
(0)T
E
(0))m0−1E(0)

T (
I − E(0)E(0)

T )α
E
(0)(
E
(0)T
E
(0))m0−1

=
(
E
(0)T
E
(0))m0−1E(0)

T

⎛
⎝I −

∑

k≥1
αk
(
E
(0)
E
(0)T )k

⎞
⎠E(0)

(
E
(0)T
E
(0))m0−1

=
(
E
(0)T
E
(0))m0(I − E(0)

T

E
(0))α(

E
(0)T
E
(0))m0−1

=
(
E
(0)T
E
(0))m(

I − E(0)
T

E
(0))α

. (5.33)

Next, use the elementary inequalities for t ∈ [0, 1] (and α ∈ (0, 1])

tm/α(1− t) ≤ tm(1− t) ≤ 1

m

m−1∑

k=0
tk(1− t) ≤ 1

m
(1− tm).



156 5 Multigrid (MG)

It implies,

tm(1− t)α ≤ 1

mα
(1− tm)α ≤ 1

mα
(1− αtm).

Applying the last inequality for the symmetric positive semidefinite matrixE
(0)T
E
(0)

in (5.33) proves estimate (Aw) with ηs = ηa (‖M̃(0)‖α/‖A‖α) (1/mα). In the case
m = 2m0, we have similar estimate with ηs = ηa (‖M

(0)‖α/‖A‖α) (1/mα). �

Next, we show that (Aw) implies two-grid convergence if ηs is sufficiently small,
such that

ηs <
1

1− α . (5.34)

Recalling estimate (5.21) for ηs > 0,

vTBv

vTAv

≤ sup
v

vTA−(1/2)BA−(1/2)v

vT v

≤ sup
v

vT
(
I − ETE + 1

1+ηsE
T
πAE

)−1
v

vT v

= sup
v

vT v

vT
(
I − ETE + 1

1+ηsE
T
πAE

)
v

= (1+ ηs) sup
v

vT v

vT [ηs(I − ETE)+ I − ET (I − πA)E]v

= (1+ ηs) sup
v

vT v

vT [ηs(I − α ETE)− ηs(1− α) ETE + I − ET (I − πA)E]v

≤ (1+ ηs) sup
v

vT v

vT [(1− (1− α)ηs ))I + ηs(I − α ETE)− ET (I − πA)E]v
.

Using the fact that ηs(I − α E
T
E) − E

T
(I − πA)E is symmetric positive

semidefinite (due to (Aw)) the following TG convergence result follows (with ηs as
in (5.34))

vTBTGv ≤ (1+ ηs)
1− (1− α)ηs

vTAv.

To ensure inequality (5.34), we use the combined m–step smoother as defined in
(5.27). We showed in Lemma 5.26 that ηs = ηa (‖M̃‖α/‖A|α)(1/mα) for m =
2m0 − 1 and ηs = ηa (‖M‖α/‖A|α)(1/mα) for m = 2m0. Therefore, in conclusion
we proved that assumption (Aw) implies uniform convergence of the resulting TG
method with a rate that improves when increasing the number of smoothing steps m.
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Theorem 5.27. Under the assumption (Aw), using combined m + 1 pre–and post-

smoothing steps as defined in (5.27), we have the following uniform estimate for the

resulting TG preconditioner, form = 2m0 − 1,

vTAv ≤ vTBTGv ≤
1+ ηa ‖M̃(0)‖α

‖A‖α
1
mα

1− (1− α)ηa ‖M̃(0)‖α
‖A‖α

1
mα

vTAv.

Ifm = 2m0, the same estimate holds with ‖M̃(0)‖ replaced by ‖M(0)‖. It is clear that

when m �→ ∞ the upper bound tends to unity.

5.6 MG with more recursive cycles; W -cycle

5.6.1 Definition of a ν-fold MG-cycle; complexity

We can generalize the definition of the MG preconditioner by replacing the Schur
complementBk+1 of Bk with a more accurate approximation to Ak+1 thus ending up
with a multilevel preconditioner that is much closer to the respective two-grid one (at
a given level k). A simple choice is to use, for a given integer ν ≥ 1, the following
polynomial approximation to A−1

k+1,

B
(ν)−1
k+1 =

(
I − (I − B−1

k+1Ak+1)
ν
)
A−1
k+1 =

ν−1∑

l=0

(
I − B−1

k+1Ak+1
)l
B−1
k+1. (5.35)

It is clear that with ν �→ ∞, we get B(ν)k+1 �→ Ak+1.
The modified Bk reads

Bk =
[

I 0
P Tk AkM

−1
k I

][
Mk

(
Mk +MT

k − Ak
)−1

MT
k 0

0 B
(ν)
k+1

][
I M−T

k AkPk
0 I

]
,

and then Bk is defined as before,

B−1
k = [I, Pk] B

−1
k [I, Pk]

T .

The case of ν = 1 gives the original, called a V -cycle MG preconditioner, whereas
the multilevel preconditioner corresponding to ν = 2 is referred to as aW -cycle MG.
It is clear that we cannot choose ν too large due to the increasing cost to imple-

ment the resulting ν-fold multilevel preconditioner. The latter cost can be estimated
as follows.
Let wk stand for the cost in terms of number of flops to implement one action of

B−1
k . The following assumptions are met for uniformly refined triangulations Tk , the
resultingmatricesAk, and for reasonably chosen smoothersMk (such asGauss–Seidel
or scaled Jacobi).

• Let nk ∼ µnk+1 be the number of nodes Nk (or degrees of freedom) corre-
sponding to the triangulation Tk . In the case of 2D uniformly refined triangular
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meshes, we can let µ = 4. In three dimensions (d = 3) a typical behavior
is µ = 8.

• Let one action of the smootherM−1
k (andM−T

k ) take O(nk) flops.
• Let the restriction P Tk and interpolation Pk requireO(nk) flops.
• Finally, one action of Ak is O(nk) flops.

From the formula

B−1
k = M−1

k +
(
I −M−T

k Ak
)
PkB

(ν)−1
k+1 P

T
k

(
I − AkM−1

k

)

and the definition of B(ν)
−1

k+1 (which is based on ν actions of B−1
k+1, ν residual compu-

tations on the basis of Ak+1, and respective ν vector updates at a cost nk+1 each), we
easily get the recursion

wk ≤ Cνnk + ν wk+1.

The latter implies

wk ≤ Cνnk
ℓ∑

j=k

(
ν

µ

)j−k
.

Thus if ν < µ, (i.e., ν < 4 for 2D problems, and ν < 8 for 3D problems) the resulting
ν-fold preconditioner can be implemented with optimal cost; that is, wk = O(nk).

5.6.2 AMLI-cycle multigrid

Other types of cycles, in general varying with the level index, that is, ν = νk (see the
definition in the preceding Section 5.6.1), are also possible. Also, if we are willing
to estimate the spectrum of the preconditioner at a given level k, we can then use the
best (appropriately scaled and shifted Chebyshev) polynomials instead of the simpler
one (I − t)ν (used in (5.35)). The resulting technique, leading to a multilevel cycle,
sometimes referred to as the algebraicmultilevel iteration (or AMLI), described in the
present section, was first applied to the hierarchical basis MG method; see [V92b],
and for a special case, earlier in [AV89] and [AV90]. The word “algebraic” in AMLI
stands for the fact that certain inner polynomial iterations are used in the definition of
the multilevel cycle. It is not be confused with the “algebraic” in AMG, which stands
for the way of constructing the coarse spaces (or interpolation matrices).
Themain assumption that leads to AMLI-cycleMGmethods of optimal condition

number is that all V -cycles based on exact solutions at their coarse-level ℓ up to
finer-level k < ℓ with bounded-level difference ℓ− k ≤ k0, have bounded condition
numberKℓ �→k

MG . The lattermay in general growwith k0 ≥ 1but for a fixed k0 is assumed
bounded. Such estimates are feasible for finite element discretizations of second-order
elliptic PDEs, as well as, for some less standard forms such as H(div) (cf., [CGP]),
without assuming any regularity of the underlined PDE. Moreover, the constants
involved in the estimates can typically be estimated locally (on an element-by-element
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basis) and can be shown to be independent of possible jumps in the PDE coefficients
(provided that those occur only across element boundaries on the coarsest mesh).
In geometric multigrid, applied to second-order finite element elliptic problems,

denotingH = hℓ and h = hk the mesh-sizes at respective levels, and using the linear
interpolation inherited by the f.e.m. between two consecutive levels, and for example,
using a Gauss–Seidel smoother, the following asymptotic estimate holds,

Kℓ �→k
MG ≃

⎧
⎪⎨
⎪⎩

log2
(
H

h

)
, d = 2,

H

h
, d = 3.

(5.36)

Details about the last two estimates (d = 2 and d = 3) are found in Appendix B. We
note that typically (for uniform refinement)H/h ≃ 2ℓ−k .
We are now in position to define the AMLI-cycle.

Definition 5.28 (AMLI-cycle MG). For a given ν ≥ 1 and a fixed-level difference

k0 ≥ 1, let pν = pν(t) be a given polynomial of degree ν, which is nonnegative

in [0, 1] and scaled so that pν(0) = 1. We also assume the standard components

of a MG, that is, kth-level matrices Ak, smoothers Mk and MT
k , and coarse-to-fine

interpolation matrices Pk , such that Ak+1 = P Tk AkPk .
The AMLI-cycle is defined as a ν–fold MG cycle with a variable ν = νk . More

specifically, for a given integer ν ≥ 1, and another fixed integer k0 ≥ 1, we set

νsk0 = ν > 1 for s = 1, 2, . . . , and νk = 1 otherwise.

Let Bℓ = Aℓ and assume that for k + 1 ≤ ℓ, Bk+1 has already been defined. If

k + 1 = (s + 1)k0, based on Bk+1 we let

(
B
(ν)
(s+1)k0

)−1
=
(
I − pν

(
B−1
(s+1)k0A(s+1)k0

)) (
A(s+1)k0

)−1
,

For all other indices k + 1, ν = 1, and hence B
(ν)
k+1 = Bk+1. Then, at the kth level,

we set

B−1
k =M−1

k +
(
I −M−T

k Ak
)
PkB

(ν)−1

k+1 P
T
k

(
I − AkM−1

k

)
.

We recall thatMk = Mk(MT
k +Mk − Ak)−1MT

k is the symmetrized smoother.

5.6.3 Analysis of AMLI

Theorem 5.29. With proper choice of the parameters k0 and ν, all fixed for the AMLI-

cycle, but sufficiently large in general, and for a proper choice of the polynomial

pν(t), the condition number ofB−1
k Ak can be uniformly bounded provided the V-cycle

preconditioners with bounded-level difference ℓ − k ≤ k0 have uniformly bounded
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condition numbers Kℓ �→k
MG . More specifically, let for a fixed k0, ν >

√
Kℓ �→k

MG , and

choose α > 0, such that

αKℓ �→k
MG +Kℓ �→k

MG

(1− α)ν
[∑ν

j=1(1+ √
α)ν−j (1− √

α)j−1
]2 ≤ 1. (5.37)

Then, consider the polynomial

pν(t) =
1+ Tν

(
1+α−2t
1−α

)

1+ Tν
(
1+α
1−α

) . (5.38)

Here, Tν is the Chebyshev polynomial of the first kind of degree ν. If pν(t) = (1− t)ν ,
for ν > Kℓ �→k

MG , we can choose α ∈ (0, 1) such that

αKℓ �→k
MG +Kℓ �→k

MG

(1− α)ν∑ν
j=1(1− α)j−1 ≤ 1. (5.39)

The resulting AMLI-cycle preconditioner B = B0, as defined in Definition 5.28 for

both choices of polynomial pν , is spectrally equivalent to A = A0 and the following

estimate holds,

vTAv ≤ vTBv ≤ 1

α
vTAv,

with the respective α ∈ (0, 1] depending on the choice of the polynomial.

Proof. First, it is clear that inequality (5.37) has a solution α > 0. This is seen
because for α �→ 0 the left-hand side of (5.37) tends toKℓ �→k

MG /ν2, which is less than
one due to the choice of ν. It is also clear that αKℓ �→k

MG < 1; that is, α < 1/Kℓ �→k
MG ≤ 1.

Choose s ≥ 0 and assume that for some δs+1 ≥ 0 the eigenvalues of A−1
(s+1)k0

B(s+1)k0 are in the interval [1, 1+δs+1]. Next, we estimate the spectrum ofA−1
sk0
Bsk0 .

Let ℓ = (s + 1)k0 and k = sk0. Assume, by induction that

α ≤ 1

1+ δs+1
.

The latter holds for the V -cycle Kℓ �→k
MG starting from the coarsest level ℓ because

αKℓ �→k
MG < 1.
The eigenvalues of A−1

k Bk are contained in an interval [1, 1 + δs] which we

want to estimate. First, we have that the eigenvalues of A−1
ℓ B

(ν)
ℓ are contained in the

interval [1, 1+ δ̃(ν)s+1], where

δ̃
(ν)
s+1= sup

{
1

1− pν(t)
− 1, t ∈

[
1

1+ δs+1
, 1

]}

≤ sup

{
pν(t)

1− pν(t)
, t ∈ [α, 1]

}
,

where we have used
[
1/(1+ δs+1), 1

]
⊂ [α, 1].
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Because

sup
t∈[α, 1]

∣∣∣∣Tν
(
1+ α − 2t
1− α

)∣∣∣∣ = 1,

we obtain

sup
t∈[α, 1]

pν(t) = 2

1+ Tν
(
1+α
1−α

)

= 2

1+ 1+q2ν
2qν

, q = 1− √
α

1+ √
α

= 4qν

(1+ qν)2 .

Hence, because p/(1− p) is an increasing function of p ∈ [0, 1), we have

δ̃
(ν)
s+1 ≤ sup {pν(t), t ∈ [α, 1]}

1− sup {pν(t), t ∈ [α, 1]}

= 4qν

(1+ qν)2 − 4qν

= 4qν

(qν − 1)2

= (1− α)ν

α
[∑ν

j=1(1+ √
α)ν−j (1− √

α)j−1
]2 .

Now, use the estimate based on Corollary 5.11, to bound the multilevel cycle by an
inexact with fixed level–difference cycle, which gives

1+ δs ≤ (1+ δ̃(ν)s+1)Kℓ �→k
MG (5.40)

and therefore,

1+ δs ≤ Kℓ �→k
MG

⎛
⎜⎝1+ 1

α

(1− α)ν
[∑ν

j=1(1+ √
α)ν−j (1− √

α)j−1
]2

⎞
⎟⎠ .

In order to confirm the induction assumption, we need to choose ν and α such that

1+ δs ≤ Kℓ �→k
MG

⎛
⎜⎝1+ 1

α

(1− α)ν
[∑ν

j=1(1+ √
α)ν−j (1− √

α)j−1
]2

⎞
⎟⎠ ≤ 1

α
,

which is equivalent to inequality (5.37).
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Consider now the simpler polynomial pν(t) = (1 − t)ν . Inequality (5.39) has
a solution α > 0 (sufficiently small) for ν > Kℓ �→k

MG . That solution satisfies
α < 1/Kℓ �→k

MG . The remainder of the proof is the same as before with the only differ-
ence being

δ
(ν)
s+1 ≤ sup

{
pν(t)

1− pν(t)
, t ∈ [α, 1]

}
= (1− α)ν
α
∑ν
j=1(1− α)j−1 . �

5.6.4 Complexity of the AMLI-cycle

The complexity of the AMLI-cycleMG is readily estimated as follows. Let nk be the
number of degrees of freedom (dofs) at level k and assume uniform refinement; that
is, nk = µd nk−1, d = 2, or d = 3, and typically µ = 2.
Assume that the V -cycle from coarse-level ℓ and fine-level k, with bounded-level

difference can be implemented forwℓ �→k0
MG ≃ nk flops. The latter cost does not involve

coarse-grid solution at level ℓ. At that level, we use ν inner iterations based on Bℓ in
the AMLI method and their cost can be estimated by νws+1 + Cνnℓ flops. Here wj
stands for the cost of implementing B−1

jk0
.

Thus, letting ℓ = (s + 1)k0 and k = sk0, the recursive work estimate holds:

ws ≤ νws+1 + Cνnℓ +wℓ �→k0
MG ≤ νws+1 + Cνnℓ.

Then,

ws ≤ νws+1 + Cνnsk0 ≤ C nsk0
s∑

j=0

(
ν

µdk0

)j
.

Thus, to have amethod of optimal complexity,we have to balance ν and k0 as follows,

ν < µdk0 = 2dk0 . (5.41)

On the other hand, for optimal condition number (based on Theorem 5.29), we have
to choose ν sufficiently large such that

ν >

√
Kℓ �→k

MG ≃
{
k0, d = 2,

2
k0
2 , d = 3.

(5.42)

The last expression comes from (5.36) in the case of second-order finite element
elliptic problems.
It is clear then that for sufficiently large but fixed k0, we can choose ν such

that both (5.41) and (5.42) hold, which implies that the AMLI-cycle preconditioner
is optimal for second-order finite element elliptic problems in the case of uniform
refinement.
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If we use the simple polynomial pν(t) = (1− t)ν to define the AMLI-cycle, the
condition for ν, which implies uniform bound 1/α on the condition number of the
respective AMLI-cycle MG, reads

ν > Kℓ �→k
MG ≃

{
k20, d = 2,

2k0 , d = 3.
(5.43)

It is again clear that for sufficiently large but fixed k0, we can choose ν such that
both (5.43) and (5.41) hold, which implies that the AMLI-cycle preconditioner is
optimal for second-order finite element elliptic problems in the case of uniform re-
finement and simple polynomial (1 − t)ν . The latter choice of polynomial does not
need the explicit knowledge of α in order to construct the polynomial.
The AMLI-cycle MG with the optimal choice of polynomial pν has more or less

mostly theoretical value. In practice, we should use either the simple polynomial
(1− t)ν or the variable-step multilevel preconditioner presented in Section 10.3. The
latter one is more practical because in its implementation no estimation of α is needed
and no polynomial is explicitly constructed.

5.6.5 Optimal W -cycle methods

For k0 = 1 and ν = 2 the AMLI-cycle MG has the complexity of aW -cycle MG and
for the simple polynomial pν = (1 − t)ν (and ν = 2), it is actually identical with a
W -cycle MG. Applying Theorem 5.29 with k0 = 1, hence KTG = Kk+1 �→k

MG stands
for uniform bound of the TG method (exact solution at coarse-level k + 1), tells us
that if KTG < 2 then the inequality (5.39) has a solution α > 0 (sufficiently small)
for ν = 2 > KTG ≥ Kℓ �→k

MG and the respectiveW -cycle preconditionerB satisfies the
spectral equivalence relations

vTAv ≤ vTBv ≤ 1

α
vTAv.

Inequality (5.39) with the best α reduces to

α + (1− α)2
2− α = 1

KTG

,

or (1/KTG)(2 − α) = α(2 − α)+ (1− α)2 = 1. That is,

α = 2 −KTG.

In terms of convergence factors ̺W-cycle = ̺(I − B−1A) ≤ 1 − α and ̺TG =
1− (1/KTG), we have

̺W-cycle ≤ 1− α = KTG − 1 = ̺TG

1− ̺TG

.

In conclusion, we have the following result.
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Corollary 5.30. If the two-grid method at any level k (with exact solution at coarse

level k+1) has a uniformly bounded convergence factor ̺TG <
1
2 , then the respective

W -cycle MG has a uniformly bounded convergence factor ̺W-cycle that satisfies the

estimate

̺W-cycle ≤ ̺TG

1− ̺TG

< 1.

An alternative, more qualitative analysis of the W -cycle methods (or AMLI-
cycle with k0 = 1) is based on the following approach. Assume that Bc is a s.p.d.
approximation to Ac such that

vTc Bcvc ≤ (1+ δc) vTc Acvc.

Consider the inexact two-grid preconditioner with Ac approximated by Bc. The fol-
lowing characterization of B holds (use Theorem 5.9 in the case of two levels).

vTBv = inf
vc

[
vTc Bcvc + (MT (v − Pvc)+ APvc)

T (MT +M − A)−1

× (MT (v − Pvc)+ APvc)
]
.

Let vc be a vector that is constructed on the basis of any given v, such that the following
two estimates hold,

(i) Stability,

vTc Acvc ≤ η∗ vTAv,

and
(ii) Approximation property, with M = M(MT + M − A)−1MT being the sym-

metrized smoother, we have

(v − Pvc)
TM(v − Pvc) ≤ δ∗ vTAv.

In other words, Pvc is a stable and accurate interpolant of v. Assume in addition to
(i)–(ii), the following estimate for the smootherM and A,

δ0 vTAv ≤ vT (MT +M − A)v.

The latter estimate, can always be guaranteed by proper scaling of the smootherM
(such that (1+ δ0)vTAv ≤ vT (MT +M)v = 2vTMv).
Then B can be estimated in terms of A as follows, for any choice of vc,

vTBv ≤ (1+ δc) vTc Acvc + 2
[
(v − Pvc)

TM(v − Pvc)+
1

δ0
vTc Acvc

]
.
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Based on our assumptions for the particular choice of vc, the following additive
estimate then holds,

vTBv ≤
[
η∗δc + η∗ + 2

(
δ∗ + η∗

δ0

)]
vTAv. (5.44)

In other words, the error δc that we commit with inexact coarse-grid solvers affects
only the term involving the particular coarse interpolantPvc of v and does not involve
the quality of the smoother. Then, an optimal AMLI-cycle MG will be feasible with
the simple polynomial pν(t) = (1− t)ν if η∗/ν < 1.
This is seen by using (5.44) in place of (5.40) and δc in place of δ

(ν)
s+1 in the proof

of Theorem 5.29. This observation leads to the following inequality for α > 0,

η∗ (1− α)ν
α
∑ν
j=1(1− α)j−1 + η∗ + 2

(
δ∗ + η∗

δ0

)
≤ 1

α
,

which indeed has a solution for ν > η∗; just multiply the above inequality by α > 0
and then let α �→ 0, which leads to (η∗/ν) < 1. In particular, for ν = 2 we can have
an optimalW -cycle MG if η∗ < 2. With the optimal choice of pν the estimate then
becomes ν = 2 >

√
η∗; that is, η∗ < 4.

It is unclear that we can always find a coarse-grid interpolant such that (i)–(ii)
hold with the stability constant η∗ independent of the quality of the exact two-grid
preconditioner BTG, that is, to have η∗ < 4. However, based essentially on the main
result in [AV89]–[AV90], reformulated now in terms of the AMLI-cycle MG, the
following optimal convergence result is available.

Theorem 5.31. Consider matrices coming from triangular piecewise linear elements

and second-order elliptic finite element problems. Estimates (i) and (ii) are feasible

with Pvc being the standard nodal interpolant. More specifically, we have then η∗ =
1/(1− γ 2), where γ < (

√
3/2) is the constant in the strengthened Cauchy–Schwarz

inequality between the coarse f.e. space V2h and its hierarchical complement in Vh
(see (B.29)–(B.30) in the appendix). Also, (ii) holds with M being any smoother

spectrally equivalent to the diagonal of A, for example, the Gauss–Seidel smoother

(see Proposition 6.12 for such conditions). The choice ν = 2 >
√
η∗ =

√
1/(1− γ 2)

gives an optimal Chebyshev polynomials-based (see (5.38)) AMLI-cycle MG that has

the complexity of theW -cycle.

5.7 MG and additive MG

We present here an additive version of MG and an additive representation of the
traditional MG. We use the recursive matrix factorization definition of MG found in
Section 5.1. The same notation introduced there is used here.

5.7.1 The BPX-preconditioner

Based on a sequence of smoothersMk, we can define the following, somewhat simpler
than the traditional, multilevel preconditioner, originally proposed in [BPX].
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Definition 5.32 (The BPX method). Let Bℓ = Aℓ and assume that Bk+1, for k ≤
ℓ− 1, has already been defined. We first define

Bk =
[
Mk

(
Mk +MT

k − Ak
)−1

MT
k 0

0 Bk+1

]
,

and then Bk , the kth-level BPX preconditioner, is defined from

B−1
k = [I, Pk]B

−1
k

[
I

P Tk

]
=
(
Mk
(
Mk +MT

k − Ak
)−1
MT
k

)−1 + PkB−1
k+1P

T
k .

It is clear that the BPX preconditioner is obtained from the MG one by simply re-
moving the off-diagonal blocksM−T

k AkPk and P Tk AkM
−1
k of Bk defined in (5.2).

More explicitly, we have for ℓ levels, (with Bℓ = Aℓ),
(
BaddMG

)−1 = P0 · · ·Pℓ−1A−1
ℓ P

T
ℓ−1 · · ·P T0

+
ℓ−1∑

k=1
P0 · · ·Pk−1M−T

k (Mk +MT
k − Ak)M−1

k P
T
k−1 · · ·P T0

+ M−T
0 (M0 +MT

0 − A0)M−1
0 .

The symmetrized smoother is not really needed here, because (BaddMG )
−1 (unless prop-

erly scaled) does not provide convergent splitting forA = A0. Thus, we need a s.p.d.
smoother�k for Ak and the resulting additive MG takes then the form,

(
BaddMG

)−1 = P0 · · ·Pℓ−1A−1
ℓ P

T
ℓ−1 · · ·P T0

+
ℓ−1∑

k=1
P0 · · ·Pk−1�−1

k P
T
k−1 · · ·P T0 +�−1

0 . (5.45)

If �k is such that �
−1
k is sparse, the simplest choice being diagonal, for example,

�k = diag(Ak), it is clear then that (Badd)−1 is a linear combination of products of
sparse matrices plus the term involving the inverse ofAℓ, which is dense but typically
has very small size.

5.7.2 Additive representation of MG

If we introduce the so-called “smoothed” interpolant P k = (I −M−T
k Ak)Pk , and

let �k = Mk(M
T
k +Mk − Ak)−1MT

k be the symmetrized smoother, formula (5.2)
reduces to one of the additiveMGs (the difference is only in the interpolationmatrices
used); that is,

B−1
k = �−1

k + P kB−1
k+1P

T

k .

Therefore, if both M−1
k and Mk are explicitly available and sparse, then both P k

and �−1
k will be explicitly available and sparse. This is a rare case in general and
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essentially means thatMk is diagonal. If onlyM
−1
k is explicitly available and sparse,

we can explicitly formP k = (I−M−T
k Ak)Pk , which thenwill be sparse (as a product

of sparse matrices), and use a different smoother�k coming fromAk , such that�
−1
k

is s.p.d. and sparse. That is, we can view the traditionalMG as an additive one because
the following explicit formula holds for B−1 = B−1

0 ,

B−1 = P 0 · · ·P ℓ−1A−1
ℓ P

T

ℓ−1 · · ·P T0 +
ℓ−1∑

k=1
P 0 · · ·P k−1�−1

k P
T

k−1 · · ·P T0 +�−1
0 .

This representation of the MG preconditioner offers the flexibility to utilize one
smoother Mk in the construction of P k = (I −M−T

k Ak)Pk and another one (�k)
that does not have to be necessarily related toMk .

5.7.3 Additive MG; convergence properties

Similarly to the traditional MG, the following main result holds.

Theorem 5.33. Consider for any v decompositions of the form:

(o) v0 = v.

(i) For k = 0, . . . , ℓ− 1 let

vk = [I, Pk]

[
v
f
k

vk+1

]
.

Then for the additive MG based on s.p.d. smoothers�k forAk (e.g.,�k = Mk(MT
k +

Mk − Ak)−1MT
k ) the following identity holds. For any k ≥ 0 and ℓ ≥ k,

vTk B
add
k vk = inf

(vj=v
f
j +Pj vj+1)

ℓ−1
j=k

⎡
⎣vTℓ Bℓvℓ +

ℓ−1∑

j=k

(
v
f
j

)T
�jv

f
j

⎤
⎦ .

Note that at the coarsest-level ℓ, we typically set Bℓ = Aℓ.

Proof. We have to note that because the additive MG is also defined via a relation
B−1
k = [I, Pk]B

−1
k [I, Pk]T the same proof as for the standard MG applies in this

case, as well. �

Based on the last theorem the following estimate ofA in terms ofB for the additive
MG holds.

Corollary 5.34. Let �k be s.p.d. smoothers for Ak scaled such that vTk Akvk ≤
vTk �kvk. The following estimate then holds,

vTk Akvk ≤ (ℓ+ 1− k) vTk B
add
k vk.

Proof. Consider any decomposition sequence vj = v
f
j + Pjvj+1 for j ≥ 0 starting

with a given v0. Assuming by induction that vTj Ajvj ≤ (ℓ + 1 − j) vTj B
add
j vj
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(which trivially holds for j = ℓ), we get, based on Cauchy–Schwarz inequalities,

vTj−1Aj−1vj−1 =
(
v
f
j−1 + Pj−1vj

)T
Aj−1

(
v
f
j−1 + Pj−1vj

)

=
∥∥v
f
j−1 + Pj−1vj

∥∥2
Aj−1

≤
(∥∥v

f
j−1
∥∥
Aj−1

+ ‖Pj−1vj‖Aj−1
)2

=
(∥∥v

f

j−1
∥∥
Aj−1

+ ‖vj‖Aj
)2

≤
(∥∥v

f
j−1
∥∥
�j−1

+ (ℓ+ 1− j) 12 ‖vj‖
Baddj

)2

≤ (1+ (ℓ+ 1− j))
(∥∥v

f
j−1
∥∥2
�j−1

+ ‖vj‖2
Baddj

)

= (ℓ+ 1− (j − 1))
((

v
f
j−1
)T
�j−1v

f
j−1 + vTj B

add
j vj

)
.

Because we can take the minimumover the decomposition of vj−1 = v
f

j−1+Pj−1vj
based on Theorem 5.33, we get

vTj−1Aj−1vj−1 ≤ (ℓ+ 1− (j − 1)) vTj−1B
add
j−1vj−1.

The latter confirms the induction assumption for j := j−1 and the proof is complete.
�

Based on the above result, the following suboptimal relation between the con-
ventional (multiplicative) MG preconditioner B and its additive counterpart Badd is
easily seen.

Theorem 5.35. Consider the multiplicative MG preconditioner B and let Badd be

the additive one that exploits the symmetrized smoothers

�k =Mk
(
MT
k +Mk − Ak

)−1
MT
k = Mk.

Assume also thatMk is properly scaled such that vTk (Mk+MT
k −Ak)vk ≥ δ vTk Akvk .

Then, the following upper bound of B in terms of Badd holds,

vTBv ≤
(
1+ ℓ(ℓ+ 1)

4δ

(
3+

√
1+ 4δ

ℓ

))
vTBaddv.

Proof. For any decomposition vk = v
f
k + Pkvk+1, starting with v0 = v for any

given v, we have

vTBv ≤ vTℓ Aℓvℓ +
ℓ−1∑

k=0

(
MT
k v
f
k + AkPkvk+1

)T (
Mk +MT

k − Ak
)−1

×
(
MT
k v
f
k + AkPkvk+1

)
.

(5.46)
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By assumption, vTk (Mk+MT
k −Ak)vk ≥ δ vTk Akvk. Then, use the Cauchy–Schwarz

inequality and Corollary 5.34 for Ak and Baddk to get for any τ > 0,

vTBv ≤ vTℓ Aℓvℓ + (1+ τ )
ℓ−1∑

k=0

(
v
f
k

)T
Mkv

f
k

+
(
1+ 1

τ

)
1

δ

ℓ−1∑

k=0
vTk+1Ak+1vk+1

≤ vTℓ Aℓvℓ + (1+ τ )
ℓ−1∑

k=0

(
v
f

k

)T
Mkv

f

k

+
(
1+ 1

τ

)
1

δ

ℓ−1∑

k=0
(ℓ− k) vTk+1B

add
k+1vk+1.

Therefore,

vTBv ≤ vTℓ Aℓvℓ + (1+ τ )
ℓ−1∑

k=0

(
v
f
k

)T
Mkv

f
k

+
(
1+ 1

τ

)
1

δ

ℓ−1∑

k=0
(ℓ− k)

⎛
⎝vTℓ Aℓvℓ +

ℓ−1∑

j=k+1

(
v
f
j

)T
Mjv

f
j

⎞
⎠

=
(
1+ ℓ(ℓ+ 1)

2δ

(
1+ 1

τ

))
vTℓ Aℓvℓ + (1+ τ )

ℓ−1∑

k=0

(
v
f
k

)T
Mkv

f
k

+
(
1+ 1

τ

)
1

δ

ℓ−1∑

j=1

(
v
f

j

)T
Mjv

f

j

ℓ−1∑

k=j−1
(ℓ− k).

That is,

vTBv ≤
(
1+ ℓ(ℓ+ 1)

2δ

(
1+ 1

τ

))
vTℓ Aℓvℓ + (1+ τ )

ℓ−1∑

k=0

(
v
f
k

)T
Mkv

f
k

+ ℓ(ℓ− 1)
2δ

(
1+ 1

τ

) ℓ−1∑

j=1

(
v
f

j

)T
Mjv

f

j

≤
(
1+ ℓ(ℓ+ 1)

2δ

(
1+ 1

τ

)) (
vTℓ Aℓvℓ +

ℓ−1∑

k=0

(
v
f
k

)T
Mkv

f
k

)
.

Here τ > 0 is such that 1+(ℓ(ℓ+1)/2δ)(1+(1/τ))= 1+τ+(ℓ(ℓ−1)/2δ)(1+(1/τ)),
which gives τ = (ℓ/δ)(1+ (1/τ)) and after solving the quadratic equation for τ > 0,
we get τ = 2ℓ/(ℓ+

√
ℓ2 + 4ℓδ).

Because the decomposition of v based on {vfk } was arbitrary, by taking minimum
(based on Theorem 5.33) we arrive at the desired result. �
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Thus, based on the above result, if we are able to bound the additive preconditioner
Badd in terms of A, we can get a bound for the multiplicative preconditioner B in
terms of A with an extra factor of order ℓ2.
It is also clear, from the above proof, that if vTkAkvk ≤ C vTk B

add
k vk , we can bound

B in termsofBadd onlywith a factor of order ℓ. The latter can be further (substantially)
improved toO(1+ (log ℓ/2)), based on the following lemma by Griebel and Oswald
([GO95]).

Lemma 5.36. Consider a symmetric, positive semidefinite block-matrixT=(Tij)
ℓ+1
i,j=1

with square diagonal blocks Tii. Let L = (Lij)
ℓ+1
i,j=1 be its strictly lower-triangular

part, that is, Lij = Tij for i > j and Lij = 0 otherwise. Then, the following estimate

holds,

‖L‖ ≤ 1

2
log ℓ ‖T ‖.

Here, for any matrix B we define ‖B‖ = supv, w wTBv/‖v‖‖w‖, and ‖v‖2 = vT v.

Proof. Partition L into a two-by-two block structure as follows.

L =
[
L1 0
L21 L2

]
.

The proof proceeds by induction with respect to the block–size of L and L1 and L2,
and is based on the following two observations. First, consider the diagonal of L,

DL =
[
L1 0
0 L2

]
.

We have, using the definition of norm and the Cauchy–Schwarz inequality,

‖DL‖ = sup
v1, v2, w1, w2

wT1 L1v1 + wT2 L2v2√
‖v1‖2 + ‖v2‖2

√
‖w1‖2 + ‖w2‖2

≤ max {‖L1‖, ‖L2‖} sup
v1, v2, w1, w2

‖v1‖‖w1‖ + ‖v2‖‖w2‖√
‖v1‖2 + ‖v2‖2

√
‖w1‖2 + ‖w2‖2

≤ max {‖L1‖, ‖L2‖}.

The second observation concerns the norm of the strictly lower triangular part
L21 of L, which is also a strictly lower triangular part of T . We have

[
w1
w2

]T [ 0 0
L21 0

] [
v1
v2

]
= wT2 L21v1.

Now, use the identity L21 = [0, I ]T
[ I
0

]
and hence, due to the symmetry of T ,

4wT2 L21v1 =
[

v1
w2

]T
T

[
v1
w2

]
−
[

v1
−w2

]T
T

[
v1

−w2

]
.
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The fact that T is positive semidefinite then shows the inequality

wT2 L21v1 ≤ ‖T ‖
4

(
‖v1‖2 + ‖w2‖2

)
≤ ‖T ‖

4

(
‖v1‖2 + ‖v2‖2 + ‖w1‖2 + ‖w2‖2

)
.

That is, based on the last inequality for ‖v1‖2 + ‖v2‖2 = ‖w1‖2 + ‖w2‖2 = 1, the
following estimate is obtained,

‖L21‖ ≤ ‖T ‖
2
.

In conclusion, we proved the following estimate for ‖L‖ ≤ ‖L21‖ + ‖LD‖,

‖L‖ ≤ max {‖L1‖, ‖L2‖} + ‖T ‖
2
.

Assume now by induction that ‖L1‖, ‖L2‖ ≤ ((k − 1)/2) ‖T ‖ where the
block-size of L1 and L2 is not greater than 2k−1, then we get for any L of block-size
two times bigger than that of L1 and L2 the estimate ‖L‖ ≤ ‖T ‖(((k − 1)/2) +
1/2) = ‖T ‖ (k/2), which confirms the induction assumption and hence the proof is
complete. �

Introduce now the composite interpolants P k = P0, . . . , Pk−1 that map the kth-
level coarse vector space into the finest vector space and let P 0 = I . We can then
consider the block-matrix T = (Tij)

Tij = P Ti AP j .

Note that the block-diagonal partDT ofT has entriesTii = Ai (the ith-levelmatrices).
Recall the block Gauss–Seidel matrix appearing in the characterization of B =

BMG in (5.14). The quadratic formQ corresponding to this blockGauss–Seidelmatrix
can be given in terms of T = DT + LT + UT , where LT has nonzero blocks equal
to Tij for i > j . More specifically, we have

Q(v) = Q
(
v
f
0 , . . . , v

f

ℓ

)
=

⎡
⎢⎣

v
f
0
...

v
f

ℓ

⎤
⎥⎦

T

(DT + LT )D−1
T (DT + UT )

⎡
⎢⎣

v
f
0
...

v
f

ℓ

⎤
⎥⎦ . (5.47)

Here, v =
∑ℓ
k=0 P kv

f
k .

Define now T ij = A
−(1/2)
i TijA

−(1/2)
j and let T = (T ij). Based on Lemma 5.36

applied to LT = D−(1/2)
T LTD

−(1/2)
T , the following bound holds,

‖LT ‖ ≤ log ℓ

2
‖T ‖. (5.48)

The latter results in the following estimate for the quadratic formQ; that is,

Q(v) = Q(vf0 , . . . , v
f
ℓ ) ≤

(
1+ log ℓ

2
‖T ‖

)2 ℓ∑

k=0

(
v
f
k

)T
Akv

f
k . (5.49)
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It is easily seen that ‖T ‖ is the best upper bound in the estimate,

vTAv ≤ ‖T ‖ inf(
v
f
k

)
:v=

∑
k P kv

f
k

∑

k

(v
f
k )
TAkv

f
k .

Now, we are in position to improve Theorem 5.35 as follows ([GO95]).

Theorem 5.37. Consider the multiplicative MG preconditioner B and let Badd be

the additive one that exploits the symmetrized smoothers

�k =Mk = Mk
(
MT
k +Mk − Ak

)−1
MT
k .

Assume also thatMk is properly scaled such that vTk (Mk+MT
k −Ak)vk ≥ δ vTk Akvk .

Then, the following upper bound on B in terms of Badd holds,

vTBv ≤
(
1+ 1√

δ

log ℓ

2
‖T ‖

)2
vTBaddv.

Here, ‖T ‖ can be characterized as the (best) upper bound in the estimate

vTAv ≤ ‖T ‖ inf
(v
f
k ):v=

∑ℓ
k=0 P kv

f
k

ℓ∑

k=0

(
v
f
k

)T
Akv

f
k . (5.50)

A trivial estimate is ‖T ‖ ≤ ℓ+ 1. That is, the following suboptimal result holds then,

vTBv ≤
(
1+ 1√

δ
(ℓ+ 1) log ℓ

2

)2
vTBaddv. (5.51)

Proof. Use the main identity of Theorem 5.10 (which is equivalent to (5.46))

vTBv ≤ inf
(v
f
k ):v=

∑ℓ
k=0 P kv

f
k

⎡
⎢⎣

v
f
0
...

v
f
ℓ

⎤
⎥⎦

T

LB
(
diag

(
MT
k +Mk − Ak

))−1
LTB

⎡
⎢⎣

v
f
0
...

v
f
ℓ

⎤
⎥⎦ .

(5.52)

Here,

LB =

⎡
⎢⎢⎢⎣

M0 0 . . . 0
T10 M1 . . . 0
... . . .

. . . 0
Tℓ,0 . . . Tℓ,ℓ−1 Mℓ

⎤
⎥⎥⎥⎦ .

Let M̂ = diag(Mk)ℓk=0, Â = diag(Ak)ℓk=0, and �̂ = diag(MT
k +Mk −Ak)ℓk=0. Then

the following estimate is readily seen based on the coercivity ofMk +MT
k − Ak in

terms of Ak ,

‖�̂−(1/2)Â1/2‖2 ≤ 1

δ
. (5.53)
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Also, let

v̂ =

⎡
⎢⎣

v
f
0
...

v
f

ℓ

⎤
⎥⎦ .

Then the desired estimate would follow if we bound the norm of the symmetric
Gauss–Seidel matrix LB�−1LTB = (M̂ + LT )�̂−1(M̂ + LT )T where LT is exactly
the strictly lower triangular part of T , which was the matrix representation of the
quadratic formQ (see (5.47)). Based on the triangle inequality, estimate (5.53), and the
fact thatMk −Ak is symmetric positive semidefinite, and the proven estimate for the
diagonally scaled strictly off-diagonal part of T , (5.48) (i.e., ‖Â−(1/2)LTT Â

−(1/2)‖ =
‖Â−(1/2)LT Â−(1/2)‖ ≤ log ℓ/2 ‖T ‖), we get

∥∥�̂−(1/2)(M̂T + LTT )̂v
∥∥

≤
∥∥�̂−(1/2)M̂T v̂

∥∥+ 1√
δ

∥∥Â−(1/2)LT Â−(1/2)∥∥∥∥Â1/2̂v
∥∥

≤
[
ℓ∑

k=0

(
v
f

k

)T
Mkv

f

k

]1/2
+ 1√

δ

log ℓ

2
‖T ‖

[
ℓ∑

k=0

(
v
f

k

)T
Akv

f

k

]1/2

≤
(
1+ 1√

δ

log ℓ

2
‖T ‖

) (
ℓ∑

k=0

(
v
f
k

)T
Mkv

f
k

)1/2
.

Now, using Theorem 5.33, that is, the identity

inf
(v
f
k ):v=

∑
k P kv

f
k

∑

k

(
v
f
k

)T
Mkv

f
k = vTBaddv

in the previous estimate to bound (5.52), gives the desired one. �

The level-independent boundedness of ‖T ‖ in (5.50) can be proved (see Ap-
pendix E) for matrices Ak corresponding to the discrete Laplacian which is a funda-
mental result due to Oswald [0s94]; see also [DK92].
We conclude with the comment that for geometric MG applied to second-order

elliptic finite element problems, all extra factors containing weak dependence on the
numberof levels in estimatingB in terms ofBadd can be removeddue to the following
strengthened Cauchy–Schwarz inequality for a δ ∈ (0, 1),

((
v
f
k

)T
Tklv

l
l

)2 ≤ C δ|k−l|
(
v
f
k

)T
Akv

f
k

(
v
f
l

)T
Alv

f
l .

That is, the block entries of T have certain decay away from its main diagonal for
certain particular decomposition v =

∑
k P k−1v

f
k . To prove such a strengthened

Cauchy–Schwarz inequality some additional properties of the finite element spaces
are needed. For the respective details, we refer to Proposition F.1 in the appendix, or to
the survey papers by Yserentant [Y93] and Xu [Xu92a]; see also [Zh92] and [BP93].
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5.7.4 MG convergence based on results for matrix subblocks

Let A be a given s.p.d. matrix and let I1 and I2 be extensions by zero of vector
of smaller dimension to the dimension of A. Consider the principal subblocks of
A
(0)
i ≡ ITi AIi , i = 1, 2 of A.
We assume that every vector v can be decomposed as

v = I1v1 + I2v2, (5.54)

such that for a constant ηs > 0, we have
∑

i

vTi A
(0)
i vi =

∑

i

vTi I
T
i AIivi ≤ ηs vTAv. (5.55)

Assume that we have constructed a MG method for A such that the interpolation
matrices Pk respect the local vector spaces Range (Ii), i = 1, 2. That is, there is a
sequence of zero extensionmatrices I (k)i , i = 1, 2, for every level k ≥ 0, such that the

restriction P (k)i , i = 1, 2 of the interpolation matrices Pk to the local vector spaces
satisfies the property,

I
(k−1)
i P

(k)
i vi = PkI (k)i vi.

That is, if we first interpolate locally a vector vi obtaining a local fine-grid vector
P
(k)
i vi and then extend it by zero giving rise to I

(k−1)
i P

(k)
i vi , it is the same as if we

first extend by zero the local coarse vector vi to a global coarse vector I
(k)
i vi and then

interpolate it to end up with a (global) fine-grid vector PkI
(k)
i vi .

A typical case is that the set of dofs Nk at every level k ≥ 0 is partitioned into
two overlapping groupsNk = N

(k)
1 ∪ N

(k)
2 , and we then have

I
(k)
i =

[
0
I

]
} Nk \ N

(k)
i

} N (k)
i

,

and

Pk =
[∗ 0

∗ P
(k)
i

]
} Nk−1 \ N

(k−1)
i

} N (k−1)
i

, P Tk =
[
∗ ∗
0 P

(k)T

i

]
} Nk \ N

(k)
i

} N (k)
i

.

In other words Pk interpolates local coarse-grid vectors

vc =
[
0
vci

]
} Nk \ N

(k)
i

} N (k)
i

,

that is, that vanish outside N (k)
i based only on P (k)i keeping the result zero outside

N
(k−1)
i ,

Pk

[
0
vci

]
=
[

0

P
(k)
i vci

]
} Nk−1 \ N

(k−1)
i

} N (k−1)
i

.



5.7 MG and additive MG 175

Based on P (k)i and the smoothers M(k)
i = I

(k)T

i MkI
(k)
i , we can define V -cycle

MG preconditioners Bi for the local matrices A
(0)
i .

We assume that Bi are spectrally equivalent toA
(0)
i . Then our goal is to show that

B is spectrally equivalent to A.
One application of the above result would be if A corresponds to a discretization

of the Poisson equation on an L-shaped domain �. Note that � can be decomposed
as � = �1 ∪ �2, where �i are rectangles (i.e., convex polygonal domains). For
each of �i (because the Dirichlet problem for the Poisson equation on�i allows for
solutions with two derivatives (as in (1.11)–(1.12)), a MG V -cycle preconditionerBi
will be spectrally equivalent to A(0)i (the local submatrices of A corresponding to the
convex polygonal subdomains �i). Then the result we prove gives that the V -cycle
preconditioner B is spectrally equivalent to A, as long as we can prove the assumed
estimate (5.54)–(5.55). For the latter, see Example E.1 in the appendix due to Lions
(cf., [Li87], pp. 8–9) and the related Section E.1.1.
In what follows, we consider the additiveMG (or BPX) only and prove a uniform

upper bound for B in terms of A.

Theorem 5.38. Let Pk and �k and Ak for k = 0, 1, . . . , ℓ; define an additive MG

preconditionerB forA = A0. Let Ii , i = 1, 2 induce submatricesA
(0)
i = ITi AIi and

the Pk induce local interpolation matrices P
(k)
i , i = 1, 2 such that for zero extension

matrices

I
(k)
i =

[
0
I

]
} Nk \ N

(k)
i

} N (k)
i

we have PkI
(k)
i = I (k−1)i P

(k)
i . This implies A

(k)
i ≡ I

(k)T

i AkI
(k)
i = P (k)

T

i A
(k+1)
i P

(k)
i .

Let�
(k)
i = I (k)

T

i �kI
(k)
i be the respective principal submatrices of the s.p.d. smoother

�k . Then�
(k)
i , P

(k)
i , andA

(k)
i define spectrally equivalent additive MG precondition-

ersBi for the principal submatricesA
(0)
i = ITi AIi , i = 1, 2. LetKi be bounds on the

maximal eigenvalue ofBiA
(0)−1
i . (Recall that the minimal eigenvalue can be estimated

at the worst as 1/(ℓ+ 1); cf., Corollary 5.34.)

Then under the stability estimates (5.54)–(5.55) valid for any vector v = v0, the

global additive MG preconditioner B is bounded from above in terms of A. More

specifically, the following upper bound holds,

vTBv ≤ 2 ηs max
i=1, 2

Ki vTAv.

Proof. To prove the stated result, we use our main identity from Theorem 5.9:

vTBv = inf
(vj=v

f
j +Pj vj+1)

ℓ−1
j=0

⎡
⎣vTℓ Aℓvℓ +

ℓ−1∑

j=0

(
v
f
j

)T
�jv

f
j

⎤
⎦ . (5.56)
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By assumption we have v0 = I1v
(0)
1 + I2v(0)2 with stable components v

(0)
i , i = 1, 2.

Now use Theorem 5.9 applied to all of the blocks A(0)i and their respective additive
MGpreconditionersBi. It implies that for i = 1, 2, there is amultilevel decomposition
v
(j)
i = v

(j)
f, i + P

(j)
i v

(j+1)
i , j = 0, . . . , ℓ− 1, such that

Ki v
(0)T

i A
(0)
i v

(0)
i ≥ v

(0)T

i Biv
(0)
i =

⎡
⎣v

(ℓ)T

i A
(ℓ)
i v

(ℓ)
i +

ℓ−1∑

j=0

(
v
(j)
f, i

)T
�
(j)
i v

(j)
f, i

⎤
⎦ .

Consider now the vectors

vj = I (j)1 v
(j)
1 + I (j)2 v

(j)
2 , v

(f )

j = I (j)1 v
(j)

f, 1 + I (j)2 v
(j)

f, 2.

We have

Pjvj+1 = Pj
(
I
(j+1)
1 v

(j+1)
1 + I (j+1)2 v

(j+1)
2

)

= I (j)1 P
(j)
i v

(j+1)
1 + I (j)2 P

(j)
2 v

(j+1)
2 .

Therefore, we have the decompositions,

vj = I (j)1 v
(j)
1 + I (j)2 v

(j)
2

= I (j)1
(
v
(j)
f, 1 + P (j)1 v

(j+1)
1

)
+ I (j)2

(
v
(j)
f, 2 + P (j)2 v

(j+1)
2

)

= v
(f )

j + Pjvj+1.

Now use this particular decomposition in (5.56). We have, (v = v0),

vTBv ≤

⎡
⎣vTℓ Aℓvℓ +

ℓ−1∑

j=0

(
v
f
j

)T
�jv

f
j

⎤
⎦

≤ 2

⎡
⎣

2∑

i=1
v
(ℓ)T

i A
(ℓ)
i v

(ℓ)
i +

ℓ−1∑

j=0

2∑

i=1

(
I
(j)
i v

(j)
f, i

)T
�j
(
I
(j)
i v

(j)
f, i

)
⎤
⎦

= 2
2∑

i=1

⎡
⎣v

(ℓ)T

i A
(ℓ)
i v

(ℓ)
i +

ℓ−1∑

j=0

(
v
(j)
f, i

)T
�
(j)
i v

(j)
f, i

⎤
⎦

≤ 2
2∑

i=1
Ki v

(0)T

i A
(0)
i v

(0)
i

≤ 2
(
max
i=1, 2

Ki

) 2∑

i=1
v
(0)T

i A
(0)
i v

(0)
i

≤ 2
(
max
i=1, 2

Ki

)
ηs vT0 A0v0

= 2
(
max
i=1, 2

Ki

)
ηs vTAv. �
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5.8 Cascadic multigrid

The cascadic multigrid has been proposed by Deuflhard et al. [DLY89] (see also
[Dfl94]), and analyzed in Shaidurov [Sh94], and [BD96].
The main ingredient is the following smoothing property of the CG method. The

CG method applied to Av = b with zero initial iterate leads to an approximation vm
after m ≥ 1 iterations, that satisfies the estimate

‖v − vm‖A ≤ ‖A‖1/2
2m+ 1 ‖v‖.

(A) Assume now that v = (I −πA)v isA-orthogonal to the coarse space Range(P ).
Here, πA = P(P T AP)−1P TA. Then, assume that

(B) πA = PA−1
c P

TA is ℓ2-bounded,

‖A‖‖(I − πA)v‖2 ≤ ηa vTAv.

Based on Lemma 5.20, we can ensure (B) if the following strong approximation
property holds.

(C) Strong approximation property:
for every v, there is a coarse interpolant Pvc such that

(v − Pvc)
TA(v − Pvc) ≤ ηa

‖A‖ ‖Av‖2.

We verified such an estimate (cf. (1.16)) for f.e. matrices coming from the Poisson
equation −�u = f in � and u = 0 on ∂�, which admits full regularity; that
is, ‖u‖2 ≤ C ‖f ‖. Such regularity estimates are available for convex polygonal
domains� (cf., e.g., [TW05]).
The following “cascadic” two-grid (or CTG) algorithm is of interest.

Algorithm 5.8.1 (Two-grid cascadic method)Consider Ax = b. Let P be an in-

terpolation matrix, and Ac = P T AP the respective coarse matrix. Let also � be a

s.p.d. preconditioner to A (such as symmetric Gauss–Seidel, or simply Jacobi). The

two-grid cascadic algorithm computes an approximation xCTG to the exact solution

x = A−1b in the following steps.

(i) Solve the coarse-grid problem

Acxc = P T b.

(ii) Interpolate and compute the residual, r = b − APxc = (I − πA)T b, where

πA = PA−1
c P

TA is the coarse-grid projection.

(iii) Applym ≥ 1 PCG iterations toAv = r with initial iterate v0 = 0. Let vm be the

resulting mth iterate.

(iv) Compute the cascadic TG approximation xCTG = vm+Pxc to the exact solution

x = A−1b.
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The following error estimate is immediate, letting A = �−(1/2)A�−(1/2),

‖v − vm‖A ≤ ‖A‖1/2
2m+ 1 ‖v‖�

= ‖A‖1/2
2m+ 1 ‖A−1r‖�

= ‖A‖1/2
2m+ 1 ‖(I − πA)A−1b‖�

= ‖A‖1/2
2m+ 1 ‖(I − πA)x‖�

≤ ‖A‖1/2
2m+ 1 ‖�‖1/2 ‖(I − πA)x‖

≤
√
ηa

2m+ 1

∥∥�−(1/2)A�−(1/2)∥∥1/2‖�‖1/2

‖A‖1/2 ‖(I − πA)x‖A.

In the last step, we used the ℓ2-boundedness (B) of πA.
Letting

√
ηa = √

ηa

∥∥�−(1/2)A�−(1/2)∥∥1/2‖�‖1/2
‖A‖1/2 ,

the overall error then can be estimated as follows.

‖x − xCTG‖A = ‖A(x − Pxc)− Avm‖A−1

= ‖A(v − vm)‖A−1

= ‖v − vm‖A

≤
√
ηa

2m+ 1 ‖(I − πA)x‖A.

The multilevel version of the cascadic MG (or CMG) replaces the exact solution at
Step (i) above with a Pxc, which is the coarse-grid approximation at hand (at the
initial coarse-level ℓ ≥ 1 we use the exact solution).
The analysis then is similar as before. We have for r = b − APxc = b −AπAx +

A(πAx − Pxc). Note that here πAx is the exact coarse-grid solution. Then using the
best polynomial approximation property of the PCG method, we have the estimate

‖v − vm‖A ≤ inf
pm:pm(0)=1

∥∥pm
(
�−(1/2)A�−(1/2))v

∥∥
A

≤
√
ηa

2m+ 1 ‖x − πAx‖A + ‖πAx − Pxc‖A. (5.57)

Here, we use pm(t) coming from the Chebyshev polynomial T2m+1 defined as (cf.,
section 6.13.2),

T2m+1(t) = (−1)ν (2m+ 1)t pm
(
‖A‖t2

)
.
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Above, we used the following optimal property of pm,

min
pm:pm(0)=1

max
t∈[0, ‖A‖]

|
√
t pm(t)| = max

t∈[0, ‖A‖]
|
√
t pm(t)| =

√
‖A‖

2m+ 1 .

In a multilevel setting, we letA0 = A be the finest-gridmatrix,Pk be the interpolation
matrix from coarse-level k + 1 to fine-level k and let Ak+1 = P Tk AkPk be the coarse
k+1-level matrix. Finally, let�k be the s.p.d. preconditioner that will be used for the
kth-level PCG iterations. Simple examples of �k are the symmetric Gauss–Seidel
or Jacobi preconditioners for Ak . The resulting cascadic MG algorithm takes the
following form.

Algorithm 5.8.2 (Cascadic MG) Consider Ax = b. The cascadic MG algorithm

computes xCMG = x0 in the following steps.

• Let b0 = b. For k = 1, . . . , ℓ compute bk = P Tk−1bk−1.

(o) Solve the coarse-grid problem

Aℓxℓ = bℓ.

For k = ℓ− 1, . . . , 0 perform the following steps:

(i) Interpolate x(0) = Pkxk+1.
(ii) Compute residual r = bk − Akx(0).

(iii) Apply m = mk ≥ 1 PCG iterations to Akv = r with initial iterate v0 = 0. Let

vm be the resulting mth iterate.

(iv) Compute the kth-level cascadic MG approximation xk = vm + x(0).

• Finally, set xCMG = x0.

Introducing the composite level k-to-0 interpolationmatricesPk−1 = P0 . . . Pk−1 and
respective projections πk = P k−1A−1

k P
T

k−1A, noticing then that πjx (j = k− 1, k)
represent the j th-level exact solutions P j−1A

−1
j bj interpolated to the finest-level,

the last two-level estimate (5.57) translates to (with m = mk),

‖πk−1x − xk−1‖A ≤
√
ηa

2mk + 1 ‖πk−1x − πkx‖A + ‖πkx − xk‖A,

where xj = P j−1xj stands for the approximation computed at level j , interpolated
to the finest-level 0 (for xj see Step (iv) of Algorithm 5.8.2). Note also, that

√
ηa = √

ηa
‖�−(1/2)

k−1 Ak−1�
−(1/2)
k−1 ‖1/2‖�k−1‖1/2

‖Ak−1‖1/2
,

and ηa is a uniform constant that relates two consecutive levels, k and k − 1,

‖Ak−1‖‖(I − Pk−1A−1
k P

T
k−1Ak−1)v‖2 ≤ ηa‖v‖2Ak−1 . (5.58)
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Also,

ηa = ηa
‖�−(1/2)

k−1 Ak−1�
−(1/2)
k−1 ‖‖�k−1‖

‖Ak−1‖
can be assumed bounded independently of k (recall that�k−1 was the preconditioner
for Ak−1 at level k − 1, such as the diagonal of Ak−1, e.g.). Therefore, we have the
following bound on the multilevel error x − xCMG, assuming that at level k we have
performed mk ≥ 1 PCG smoothing iterations, and because πℓx = xℓ (i.e., we use
exact solve at the coarsest level ℓ),

‖x − xCMG‖A ≤
√
ηa

ℓ∑

k=1

1

2mk + 1 ‖(πk−1 − πk)x‖A. (5.59)

Using the Cauchy–Schwarz inequality, we have the following estimate as a
corollary,

‖x − xCMG‖A ≤
√
ηa

(
ℓ∑

k=1

1

(2mk + 1)2

)1/2
‖x‖A.

Here, we used the fact that
∑
k ‖(πk−1 − πk)x‖2A =

∑
k(‖πk−1x‖2A − ‖πkx‖2A) ≤

‖x‖2A.
The latter estimate will provide a uniform bound (less than one) if the number of

smoothing steps increases geometrically with k; that is, we have the following main
result.

Theorem 5.39. Let mk be the number of smoothing PCG iterations at level k that

satisfy 2mk+1 = (2m0+1)µk, for aµ > 1. Then, under the uniform assumption (B)

(valid, at every two levels k−1 and k as in (5.58)), the cascadic MG method provides

an approximation xCMG to the exact solution x of Ax = b (A = A0), such that

‖x − xCMG‖A ≤
µ
√
ηa

µ− 1
1

2m0 + 1 ‖x‖A.

Thus, ifm0 is sufficiently large, the CMG method provides an approximate inverse to

A defined as b �→ xCMG ≈ x = A−1b. Assuming that nk , the number of unknowns

at level k, satisfy nk = β nk+1 for a β > 1, we have the restriction µ < β in order

to have optimal complexity O(n0) of the resulting CMG.

Proof. The complexity of the CMG is readily seen to be of order
∑
k mknk =

n0
∑
k mk/β

k ≤ n0(m0 + 1
2 )
∑
k (µ/β)

k , which is of orderO(n0) if µ < β. �

Cascadic MG with stationary smoothing

The PCG smoothing steps in Algorithm 5.8.2 can be replaced by a more standard
stationary method. The “smoothing” rate of ∼1/(2m + 1) will then be generally
reduced. More specifically, the following result holds.



5.8 Cascadic multigrid 181

LetM be a matrix (not necessarily symmetric), which provides a convergent iter-
ation for Ax = b in the A-norm. That is, let ‖I −A1/2M−1A1/2‖ < 1. Equivalently,
letMT +M − A be s.p.d. Let

L =M(M +MT − A)−(1/2), A = L−1
AL

−T
, and b = L−1

b.

Consider the following iteration, starting with x0 = 0, for k ≥ 1,
(
L
T

xk
)

=
(
L
T

xk−1
)
+
(
b − A

(
L
T

xk−1
))
.

Its computationally feasible equivalent version reads,

xk = xk−1 + L−T
L

−1
(b − Axk−1)

= xk−1 +M−T (M +MT − A)M−1 (b − Axk−1)

= xk−1 +
(
M−T +M−1 −M−T AM−1) (b − Axk−1) .

Another, more familiar form of the above iteration reads,

xk−(1/2) = xk−1 +M−1(b − Axk−1)

xk = xk−(1/2) +M−T (b − Axk−(1/2)).
(5.60)

Introducing E = I − A, ek = x − xk, e0 = x = A−1b, noticing that L
T

ek =
E(L

T
ek−1), after m iterations, we have the following error estimate,

‖LT em‖A = ‖Em LT e0‖A
= ‖A1/2(I − A)m LT e0‖

≤ max
t∈[0,1]

t1/2(1− t)m ‖LT e0‖

= 1√
m+ 1

(
1− 1

m+ 1

)m
‖LT e0‖.

That is, with the symmetrized smoother M = M(M + MT − A)−1MT , the
following smoothing rate holds.

Lemma 5.40. Consider M that provides a convergent iteration in the A-norm, for

Ax = b; that is, ‖I − A1/2M−1A1/2‖ < 1 (or equivalently, let M +MT − A be

s.p.d.). Perform m ≥ 1 combined smoothing steps as in (5.60), that is, effectively

based on the symmetrized smoother M = M(M + MT − A)−1MT , starting with

x0 = 0. The error em = x − xm satisfies the estimate,

‖em‖A ≤ 1√
m+ 1

‖e0‖M .

Assuming now the same estimate (5.58) letting ηa (‖Mk−1‖/‖Ak−1‖) ≤ ηa , which
we assume bounded independently of k, estimate (5.59) takes the following form,

‖x − xCMG‖A ≤
√
ηa

ℓ∑

k=1

1√
mk + 1

‖(πk−1 − πk)x‖A. (5.61)
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Using again the Cauchy–Schwarz inequality as a corollary, we have the following
estimate,

‖x − xCMG‖A ≤
√
ηa

(
ℓ∑

k=1

1

mk + 1

)1/2
‖x‖A.

Finally, the following analogue of Theorem 5.39 holds.

Theorem 5.41. Let mk be the number of stationary smoothing iterations based on

Mk andMT
k at level k. Letmk satisfymk+1 = (m0+1)µk, for aµ > 1. Then, under

the uniform assumption (B) (valid, at every two levels k − 1 and k as in (5.58)), the

cascadic MG method (with stationary smoothing) provides an approximation xCMG

to the exact solution x of Ax = b (A = A0), such that

‖x − xCMG‖A ≤
√
ηaµ

µ− 1
1√

m0 + 1
‖x‖A.

Thus, for m0 sufficiently large, the CMG method provides an approximate inverse to

A defined as b �→ xCMG ≈ x = A−1b. Assuming that nk , the number of unknowns

at level k, satisfy nk = β nk+1 for a β > 1, we have the restriction µ < β in order

to have optimal complexity O(n0) of the resulting CMG.

5.8.1 Convergence in a stronger norm

We can also prove convergence of CMG in a stronger norm.
Based on the strong approximation property (C) as stated in Theorem 1.7, we

have that

‖A‖‖(πk−1 − πk)x‖2A ≤ ηa‖Ax‖2.

Here ηa depends on the ratio of the fine-gridmesh-sizeh= h0 and the kth-levelmesh-
size hk = 2kh0. That is, ηa ≃ (hk/h0)

2 = 22k . Next, because ‖A(x − xCMG)‖ ≤
‖A‖1/2‖x − xCMG‖A, based on estimate (5.61), for example, and the above strong
approximation property, we arrive at

‖A(x − xCMG)‖ ≤
√
ηa

(
ℓ∑

k=1

2k√
mk + 1

)
‖Ax‖.

If we use PCG as a smoother based on estimate (5.59), the following estimate is
similarly derived,

‖A(x − xCMG)‖ ≤
√
ηa

(
ℓ∑

k=1

2k

2mk + 1

)
‖Ax‖.

Thus the following results hold.
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Theorem 5.42. Consider the CMG algorithm with either PCG or stationary iteration

as smoother. Assume that degrees of freedom nk−1 and nk , at level k and level k − 1,

respectively, satisfy nk−1 ≃ 2dnk , d = 2, 3, and let the constants ηa in the level

k to finest-level 0, ‖(I − πk)x‖2A ≤ (ηa/‖A‖) ‖Ax‖2 grows like 22k (based on

Theorem 1.7). Then, choose 2mk + 1 = (2m0 + 1)µk in the case of PCG as the

smoother or mk + 1 = (m0 + 1)µk in the stationary smoother case. For optimal

complexity (i.e., the total work to be of order n0), we need

∑

k

mknk ≃ n0
∑

k

( µ
2d

)k
≃ n0.

That is, µ < 2d . To have the CMG method convergent in the ‖A(.)‖-norm (i.e.,

‖A(x − xCMG)‖ ≤ c

1+ 2m0
‖Ax‖,

with PCG as smoother), we need µ > 2, and in the case of a stationary smoother, in

order to have an estimate of the form

‖A(x − xCMG)‖ ≤ c√
1+m0

‖Ax‖,

we need
√
µ > 2. In summary, for the PCG smoother the conditions 2d > µ > 2 are

possible for d = 2, 3, whereas in the case of a stationary smoother both inequalities

2d > µ > 4 are possible only for d = 3.

Relation to the variable V -cycle

We should note that the cascadic MG with stationary smoothing can be seen to
give the second (coarse-to-fine) half of a variable V -cycle method as described in
Theorem 5.24. The latter is seen because both are product iteration methods with
subspaces Range (P k−1), k = ℓ, . . . , 1 and the original vector space itself. More
specifically, the iteration matrix ECMG of the CMG with stationary smoothers Mk
admits the product form (cf. Section 3.2.1),

(I −M−1
0 A)

m0(I − P0M−1
1 P

T
0 A)

m1 · · · (I − P ℓ−2M−1
ℓ−1P

T

ℓ−2A)
mℓ−1(I − πℓ).

Whereas, the iteration matrix EMG of the variable V -cycle MG admits the following
product form,

EMG = ECMGA
−1ETCMGA.

The (minor) difference is that the cascadic MG solves at the coarsest-level problem

with a particular r.h.s., namely, P
T

ℓ−1b, whereas the variable V -cycle coarse-level ℓ

problem has generally a different r.h.s. It is given by P
T

ℓ−1(b − Ax0), where x0 is
the approximation provided by the first (fine-to-coarse) half of the variable V -cycle.
Note, that x0 will generally be nonzero.
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Let EMG = I − B−1
MGA be the error propagation matrix of the variable V -cycle.

Note that the relation EMG = ECMGA
−1(ECGM)

TA allows us to analyze nonsym-
metric smoothers in cascadic MG because we have the following identity,

eTAEMGe = ‖A−(1/2)ETCMGAe‖2.

Thus, with X = A1/2ECMGA
−(1/2) based on fact that ‖X‖ = ‖XT ‖, we have

̺2CMG = ‖A1/2ECMGA
−(1/2)‖2 = ‖A−(1/2)ETCMGA

1/2‖2 = ‖A1/2EMGA
−(1/2)‖ =

̺MG. That is, the convergence factor of the cascadic MG equals the square root of
the convergence factor of the corresponding variable V -cycle MG. The latter was
estimated in Theorem 5.24.

Cascadic MG as discretization method

Another feature of the CMG is that it can be used as a discretization procedure. If
we solve the Poisson equation−�u = f on a sequence of uniformly refined meshes
of size hk+1 = 2hk , we typically have the following error behavior, |u − uh|1 ≤
Ch ‖f ‖0. Here ‖.‖0 stands for the integral L2-norm, and |v|1 = ‖∇v‖0 is the
L2-norm of the gradient of v. The latter error estimate, translates to the following
matrix–vector analogue (at discretization level k), assuming that the initial coarse
mesh size hℓ = O(1),

‖(I − πk)v‖A ≤ C 1

2ℓ−k
‖f ‖0.

Then, it is clear, we can get an estimate (based on (5.59))

‖x − xCMG‖A ≤ C 1

2ℓ
‖f ‖0,

if (2mk + 1) ≃ (2m0 + 1)µk such that
∑
k 2
k/µk is finite, that is, if µ > 2. Let nk

be the number of unknowns at level k. We typically have nk = 2d nk , where d = 2
or d = 3 is the dimension of the domain where the Poisson equation is posed.
The complexity of the cascadicMG is then readily seen to be of order

∑
k mknk =

n0
∑
k µ

k2−dk (d = 2 or 3). Thus, if we can satisfy the following inequalities,

2 < µ < 2d

(possible for d > 1; e.g., µ = 3) the CMG provides a discretization method of
optimal complexity.
If we use a stationary smoother, the inequalities read

4 < µ < 2d ,

which is possible for d = 3. The case d = 2 leads to suboptimal estimates. The latter
can be avoided if a different coarsening factor is used, for example, hk = 1

4hk+1.
Then, the conditions are 4 < µ < 4d , which is possible for d > 1.
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5.9 The hierarchical basis (HB) method

5.9.1 The additive multilevel HB

The multilevel counterpart of BT L defined in Definition 3.12 and analyzed in Section
3.2.8 leads to the classical hierarchical basis (or HB) method, originally considered
by Yserentant in [Yhb] and its multiplicative version (referred to as the HBMG) in
[BDY88].
Assume a fine-grid vector space V and a coarse one Vc such that for a given

interpolation matrix P , PVc ⊂ V. We assume that P admits a natural block form,

P =
[
∗
I

]

where the identity block reflects the embedding of the coarse dofs (or nodes)Nc into
the fine-grid dofsN . That is, for any ic ∈ Nc there is a unique i = i(ic) ∈ N , so that
we can write Nc ⊂ N (for details refer to Section 1.2).
We consider a two-level direct decomposition v = Jvf + Pvc, where

J =
[
I

0

]
and P =

[
∗
I

]
.

LetR = [0, I ]. Define then I = PR, the so–called nodal interpolation operator. Note
that I is a projection (i.e., I2 = I), because RP = I . Using the nodal interpolation
operator I, we can rewrite the above direct decomposition as follows,

v = (I − I)v + Iv.

Because

I − I =
[
∗
0

]

has the same range as J and I has the same range as P , it is clear that the two direct
decompositions are the same.
For vector spaces Vc and V corresponding to two nested finite element spaces

VH and Vh, the corresponding nodal interpolation operator I = IHh is not stable
in energy (A-norm) when (H/h) ≃ 2k grows (for details, see (G.5) and (G.4)).
Assume now a sequence of finite element spaces Vk = Vhk and respective kth-level

interpolation operators Ik = I
hk
h0
, (hk = 2kh0), which relates the kth coarse-level

and the finest-level 0 vector spaces. Denote the vector spaces Vk corresponding to
the finite element space Vk . Note that we view here Vk as subspaces of the fine-grid
vector space V = V0.
The direct multilevel decomposition of interest then reads,

v =
ℓ−1∑

k=0
(Ik − Ik+1)v + Iℓv. (5.62)
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The following estimate is easily derived (based on (G.5), and (G.4)),

‖Iℓv‖2A +
ℓ−1∑

k=0
‖(Ik − Ik+1)v‖2A ≤ Cℓ ‖v‖2A, (5.63)

where Cℓ grows like ℓ2 in two dimensions (the main result in [Yhb]) and like 2ℓ in
three dimensions (see [O97]).
To bound the sumon the left is a necessary and sufficient condition for a convergent

additivemultilevel HBmethod. The latter is defined similarly toDefinition 5.32.More
specifically, let Ak be the stiffness matrix coming from the space Vk and the bilinear
form a(·, ·). The matrix Ak admits a natural two-by-two block form (referred to as
an “f”–“c” block form),

Ak =
[
Ak, ff Ak, f c
Ak, cf Ak, cc

]
} “f ′′-dofs ≡ Nk \ Nk+1
} “c′′-dofs ≡ Nk+1

.

In the finite element case, we have that Ak, ff is spectrally equivalent to its diagonal
(proven on an elementmatrix level). Formore details, see AppendixB. Hence,we can
easily find a s.p.d. matrix �k that is spectrally equivalent to Ak, ff , for example, the
symmetric Gauss–Seidel one. Denote by Jk the extension by zero of vectors defined
on Nk \ Nk+1 to vectors in N0; that is, let

Jk =

⎡
⎣
0
I

0

⎤
⎦

} N0 \ Nk
} Nk \ Nk+1
} Nk+1

·

Note that for k = ℓ, we have

Jℓ =
[
0
I

]
} N0 \ Nℓ
} Nℓ

.

Then the additive multilevel HB preconditioner BHB is defined as

B−1
HB = IℓJℓA

−1
ℓ J

T
ℓ (Iℓ)

T +
ℓ−1∑

k=0
(Ik − Ik+1) Jk�

−1
k J

T
k (Ik − Ik+1)T . (5.64)

To implement B−1
HB , we need to be able to identify the Nk+1 as subset of Nk

represented by a mapping I kk+1 and to interpolate from level k + 1 to the next fine-
level k. The latter is typically represented by the interpolation mapping Pk .
The definition of the “nodal interpolation” operator in matrix form translates to

Ik = P0P1 · · ·Pk−1(I 01 . . . I k−1k )T . (5.65)

Note that up to a proper reordering, we have

I kk+1 =
[
0
I

]
} Nk \ Nk+1
} Nk+1
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and similarly

Pk =
[
∗
I

]
} Nk \ Nk+1
} Nk+1

.

The latter is based on the fact Pk is the identity at the coarse nodesNk+1. Therefore,
(I kk+1)

T Pk = I . The latter property implies the following result.

Lemma 5.43. The nodal interpolation operators defined in (5.65) are projections

(i.e., I2k = Ik) and satisfy the identity Ik+1Ik = Ik+1.

Our goal is to derive the following representation of the additive multilevel HB
preconditioner.

Theorem 5.44. IntroducingP k = P0P1 · · ·Pk−1, the composite interpolation matrix

from level k all the way to the finest-level 0, we have the representation

B−1
HB = P ℓA−1

ℓ P
T

ℓ +
ℓ−1∑

k=0
P kJ

k+1
k �−1

k (J
k+1
k )T P

T

k . (5.66)

Here,

J k+1k =
[
I

0

]
} Nk \ Nk+1
} Nk+1

,

represents the extension by zero of vectors defined on the set of “f”–dofs (i.e., on

Nk \ Nk+1), to vectors defined on Nk .

Proof. The representation (5.65) implies the identity,

Ik − Ik+1 = P0P1 · · ·Pk−1
(
I − Pk(I kk+1)T

)(
I 01 · · · I k−1k

)T
.

Note next that

(I 01 )
T Jk =

⎡
⎣
0
I

0

⎤
⎦

} N1 \ Nk
} Nk \ Nk+1
} Nk+1

,

and similarly

(
I 01 · · · I k−1k

)T
Jk =

[
I

0

]
} Nk \ Nk+1
} Nk+1

= J k+1k .

We also have IℓJℓ = P0P1 · · ·Pℓ−1. Recalling that P k = P0P1 · · ·Pk−1, the expres-
sion for B−1

HB reduces to

B−1
HB = P ℓA−1

ℓ (P ℓ)
T +

ℓ−1∑

k=0
P k(I −Pk(I kk+1)T )J k+1k �−1

k (J
k+1
k )T (I − I kk+1P Tk )P

T

k .
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Finally, noticing that

[
J k+1k , I kk+1

]
=
[
I 0
0 I

]
} Nk \ Nk+1
} Nk+1

and hence (J k+1k )T I kk+1 = 0, we obtain the desired simplified expression for B−1
HB

(5.66). �

If we compare B−1
HB and (B

add
MG )

−1 from expression (5.45) the seemingly small
difference is the term J k+1k �−1

k (J
k+1
k )T in the former. We have

J k+1k �−1
k (J

k+1
k )T =

[
�−1
k 0
0 0

]
} Nk \ Nk+1
} Nk+1

.

In the expression for (BaddMG )
−1 in (5.45) we have a�−1

k that is defined for vectors on
Nk and not only on the subset of “f”–dofs (i.e., on the hierarchical complementNk \
Nk+1 ofNk+1 inNk). In summary, in the HB method, we smooth only the “f” matrix
block, whereas in the additive MG (or BPX), we smooth all the dofs at a given level.

5.9.2 A stable multilevel hierarchical (direct) decomposition

Assume now that we have a hierarchy of projections Qk , for k = 1, . . . , ℓ and let
Q0 = I , that provide a decomposition

v =
ℓ−1∑

k=1
(Qk − Qk+1)v + Qℓv,

which is more stable than the HB one (5.62), in the sense the constant CQ in the
estimate

‖Qℓv‖2A +
ℓ−1∑

k=1
‖(Qk − Qk+1)v‖2A ≤ CQ ‖v‖2A, (5.67)

is much smaller than Cℓ from estimate (5.63). In practice, the projections Qk may
give rise to dense matrices (see next section), and therefore they may not be compu-
tationally feasible (as Ik , e.g.) to define a multilevel preconditioner that is based only
on sparse matrix operations and hence have optimal complexity.
The abstract setting is that we have access to {Qak} which have sparse matrix

representation and at the same time approximate the true projections Qk well. We
assume that in a given norm ‖.‖0, the following uniform in v estimate holds,

‖(Qk − Qak )v‖0 ≤ τ ‖Qkv‖0, (5.68)

for a sufficiently small constant τ ∈ [0, 1).
We assume that

Qk+1Qk = Qk+1. (5.69)
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The latter property holds if the projections Qk are computed from a same inner
product (., .)0; that is, Qkv is defined from the Galerkin relation (recalling that
Vk = Range (P k)),

(Qkv, wk)0 = (v, wk)0, for all wk ∈ Vk. (5.70)

Because Vk+1 ⊂ Vk , we see then that property (5.69) holds.

Definition 5.45 (Modified nodal projections). Letting π0 = I and for k = 1, . . . , ℓ
define

π k = (Ik + Qak(Ik−1 − Ik))πk−1.

Note that if Qak = 0, we have π k = Ikπk−1, which due to Lemma 5.43 equals
Ik . That is, πk = Ik in that case. The other limiting case is when Qak = Qk . Then
assuming by induction that πk−1 = Qk−1, we have, again due to Lemma 5.43, that
πk = (Ik+Qk(Ik−1−Ik))Qk−1 = (Ik+QkIk−1−QkIk)Qk−1 = QkIk−1Qk−1 =
QkQk−1 = Qk . The last identity is by assumption (5.69). That is, the operators πk
can be viewed as “interpolation” between the two projections Ik and Qk . The first
one is unstable (see estimate (5.63)), whereas the second one is stable (by assumption
(5.67)).

Lemma 5.46. The operators π k are projections that satisfy πkπk−1 = πk .
Proof. Because for any vk ∈ Vk ⊂ Vk−1, we have Ik−1vk = Ikvk = vk due to
Lemma 5.43, therefore, by induction πk−1vk = vk (because vk ∈ Vk−1), we have
πkvk = (Ik +Qak(Ik−1−Ik))vk = vk . The latter fact implies that πk is a projection
(similar to Ik). �

We are interested in the direct multilevel decomposition based on the projections
πk , namely,

v =
ℓ−1∑

k=0
(πk − πk+1)v + πℓv. (5.71)

We want to show a stability estimate of the form

‖π ℓv‖2A +
ℓ−1∑

k=1
‖(π k − πk+1)v‖2A ≤ C ‖v‖2A. (5.72)

Recall that if Qak = Qk then πk = Qk . Thus estimate (5.72) can be viewed as a
perturbation of (5.67) for Qak ≈ Qk .
To analyze the stability of the decomposition (5.71) we need the following addi-

tional assumptions.

(e) The following estimate holds in the ‖ · ‖0–norm,

‖(Qk − Qk−1)v‖0 ≤ Ce hk ‖v‖A,

where hk+1 = 2hk , hence hk = 2kh0. Here, h0 = 2−ℓ H is the fine-grid mesh
size and H = hℓ = O(1) is the coarsest mesh-size.
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(b) The operator Ik − Ik+1 restricted to Vk is bounded in ‖ · ‖0 norm; that is, we
have the estimate

‖(Ik − Ik+1)vk‖0 ≤ CR ‖vk‖0 for all vk ∈ Vk.

The analysis relies on the following two lemmas.

Lemma 5.47. Define the deviation ek = (πk − Qk)v for any given vector v. The

following recursive relation then holds.

es+1 = (Qs+1 + Rs+1)es + Rs+1(Qs − Qs+1)v, (5.73)

where Rs+1 = (Qs+1 − Qas+1)(Is+1 − Is).

Proof. We have the following identities.

es+1= π s+1v − Qs+1v

=
(
Is+1 + Qas+1(Is − Is+1)

)
π sv − Qs+1v

=
(
Qs+1 − Qas+1

)
Is+1π sv + Qas+1π sv − Qs+1v.

Thus, we have

es+1=
(
Qs+1 − Qas+1

)
Is+1(π sv − Qsv)+ Qas+1(π sv − Qsv)

+
(
Qs+1 − Qas+1

)
Is+1Qsv + Qas+1Qsv − Qs+1v

=
(
Qs+1 − Qas+1

)
Is+1es + Qas+1es +

(
Qs+1 − Qas+1

)(
Is+1Qsv − Qsv

)

=
(
Qs+1 − Qas+1

)
(Is+1 − Is)es +

(
Qs+1 − Qas+1

)
es + Qas+1es

+
(
Qs+1 − Qas+1

)
(Is+1 − Is)Qsv

=
(
Qs+1 − Qas+1

)
(Is+1 − Is)es +Qs+1es +

(
Qs+1 − Qas+1

)
(Is+1 − Is)Qsv

=
[
Qs+1 +

(
Qs+1 − Qas+1

)
(Is+1 − Is)

]
es+

(
Qs+1 − Qas+1

)
(Is+1 − Is)Qsv·

The latter togetherwith the fact that (Is+1−Is)Qs+1 = 0 implies the desired recursive
relation (5.73). �

The next lemma estimates a weighted sum of the squared norms of the deviations.

Lemma 5.48. Under the assumptions (e) and (b) and the uniform estimate (5.68), the

following bound holds,

ℓ∑

j=1
h−2
j ‖ej‖20 ≤ C2R

(1− q)2 τ
2
ℓ−1∑

j=1
h−2
j ‖(Qj −Qj+1)v‖20, ∀v ∈ V0 = V· (5.74)

The constant q ∈ (0, 1) is chosen such that (1 + CRτ )/2 ≤ q , which is possible for

sufficiently small τ ∈ [0, 1) (independently of the level index k).
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Proof. Recall that CR is a level-independent bound of the ‖.‖0-norm of Is − Is+1 :
Vs �→ Vs . Then,

‖Rs+1vs‖0 ≤ CRτ‖vs‖0 for all vs ∈ Vs . (5.75)

For sufficiently small τ ∈ [0, 1), we have

1+ CRτ
2

≤ q = Const < 1· (5.76)

Next, observe that e0 = 0. Then a recursive use of (5.73) leads to

‖es+1‖0 ≤ (1+ CRτ )‖es‖0 + CRτ‖(Qs − Qs+1)v‖0

≤ CRτ
s∑

j=0
(1+ CRτ )s−j‖(Qj − Qj+1)v‖0·

Therefore, with hj = 2j−ℓhℓ and hℓ = H = O(1) being the coarsest mesh-size,

‖es+1‖0 ≤ CRτhs+1
s∑

j=0
(1+ CRτ )s−jh−1

s+1‖(Qj − Qj+1)v‖0

= CRτhs+1
s∑

j=0
(1+ CRτ )s−j

hj+1
hs+1

h−1
j+1‖(Qj − Qj+1)v‖0

= CRτhs+1
s∑

j=0
(1+ CRτ )s−j

(
1

2

)s−j
h−1
j+1‖(Qj − Qj+1)v‖0

≤ CRτhs+1
s∑

j=0
qs−jh−1

j+1‖(Qj −Qj+1)v‖0

≤ CRτhs+1
1√
1− q

⎡
⎣

s∑

j=0
qs−jh−2

j+1‖(Qj − Qj+1)v‖20

⎤
⎦
1/2

· (5.77)

The latter inequality shows

ℓ−1∑
s=0
h−2
s+1‖es+1‖20≤ C2Rτ 2 1

1−q
ℓ−1∑
s=0

s∑
j=0
qs−jh−2

j+1‖(Qj − Qj+1)v‖20

≤ C2Rτ 2 1
(1−q)2

ℓ−1∑
j=0
h−2
j+1‖(Qj − Qj+1)v‖20·

which proves the lemma. �

To prove the final stability estimate, notice that πkv = ek + Qkv, which implies
‖(πk−πk+1)v‖0 ≤ ‖ek‖0+‖ek+1‖0+‖(Qk−Qk+1)v‖0. Thus the following stability
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estimate is immediate,

‖πℓv‖2A +
ℓ−1∑

k=0
h−2
k ‖(πk − πk+1)v‖20

≤ C
(

‖Qℓv‖2A + ‖eℓ‖2A +
ℓ−1∑

k=0
h−2
k+1‖(Qk − Qk+1)v‖20

)
.

Define for any k = 0, . . . , ℓ,

̺(Ak) = sup
vk∈Vk

vTk Avk

‖vk‖20
. (5.78)

Then, from (5.77), we get

‖eℓ‖2A ≤ C2Rτ 2̺(Aℓ) H 2 1

1− q

ℓ−1∑

j=0
h−2
j+1‖(Qj − Qj+1)v‖20.

Assuming that the coarsest problem is of fixed size, we then have ̺(Aℓ) H 2 = O(1).
Moreover, the following main stability result holds based on (e) and (5.67).

Theorem 5.49. Assume that the spectral radius ̺(Ak) (defined in (5.78)) of Ak (the

matrix A restricted to the subspace Vk) satisfies the condition ̺(Ak) ≃ h−2
k+1; then

the following main stability estimate (see (5.72)) holds.

‖πℓv‖2A +
ℓ−1∑

k=0
‖(π k − π k+1)v‖2A ≤ C

(
‖Qℓv‖2A +

ℓ−1∑

k=0
‖(Qk − Qk+1)v‖2A

)

≤ C vTAv.

Remark 5.50. The assumption (e) and the estimate ̺(Ak) ≃ h−2
k are valid for finite

element matrices and ‖.‖0 coming from the integral L2-norm. The projections Qk
correspond then to the matrix representation of the L2-based projectionsQk : L2 �→
Vk where Vk is the kth-level finite element space. The latter form ofQk is studied in
some detail in the following section. Finally, the fact that Qk and hence Qk provide
estimates of the form (e) can be found in [Br93]. Assumption (b) follows from the fact
that the integral L2-norm, and the discrete ℓ2 one, up to a weighting, are equivalent
when restricted to Vk (see Theorem 1.6).

5.9.3 Approximation of L2-projections

In the present section, we consider the case of finite element matricesA in the setting
of the introductory Chapter 1. We have a sequence of nested finite element spaces
Vk ⊂ Vk−1, and Vk is spanned by the standard nodal (Lagrangian) basis functions
{φ(k)i }xi∈Nk

. Nk stands for the set of vertices xi of the triangles τ from the kth-level
triangulation Tk . Due to the refinement construction of Nk−1 from Nk , we have
that Nk ⊂ Nk−1. The vector spaces Vk correspond to the coefficient vectors of the
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functions v ∈ Vk expanded in terms of the kth-level basis {φ(k)i }xi∈Nk
. The vector

spaceVk corresponds to the coefficient vectors of functions v ∈ Vk expanded in terms
of the nodal basis of the finest f.e. space V = V0. We have interpolation matrices
Pk−1 that relate the coarse space Vk and Vk−1 in the sense that for any v ∈ Vk , if
vk is its coefficient vector from Vk , then Pk−1vk ∈ Vk is its coefficient vector as a
function from Vk−1 (in terms of the the (k − 1)th-level nodal basis).
Consider the well-conditioned Gram (or mass) matrices Gk (as defined in Sec-

tion 1.4). More specifically Gk is defined based on the L2-inner product (·, ·), as
follows,Gk = {(φ(k)j , φ

(k)
i )}xj ,xi∈Nk

.
Define the L2-projectionQk : L2 �→ Vk as (Qkv, φ) = (v, φ) for all φ ∈ Vk .
We show that there is a certain relation between Gk and G0 coming from the

equation (Qkv, w) = (v, w) for allw ∈ Vk, for any v ∈ V = V0. More specifically,
the latter problem admits the following matrix–vector form,

wTk Gkvk = (P kwk)TG0v, ∀vk ∈ Vk·

Here vk and wk are the nodal coefficient vectors ofQkv and w ∈ Vk at the kth level,
respectively. Therefore, we need to solve the following mass matrix problem.

Gkvk = P Tk G0v· (5.79)

In other words, the exact L2-projectionQkv has a coefficient vector that is actually
given by

G−1
k P

T

k G0v.

In the preceding section, we used the projections Qk : V �→ Vk . Recall that
Vk ⊂ V0 = V. Therefore, the matrixQk as a mapping from V �→ V has the form

P kG
−1
k P

T

k G0.

Then

‖Qkv‖20 = vTQTk G0Qkv = vTGT0 P kG
−1
k P

T

k G0v. (5.80)

If we defineQak = P kG̃−1
k P

T

k G0 where G̃
−1
k is a (sparse) approximation toG−1

k , the
estimate (5.68) takes the following particular matrix–vector form.

‖(Qk − Qak)v‖20 = vTQTk G0Qkv

= vTGT0 P k
(
G−1
k − G̃−1

k

)
Gk
(
G−1
k − G̃−1

k

)
P
T

k G0v

≤ τ 2 ‖Qkv‖20
= τ 2 vTQTk G0Qkv

= τ 2 vTGT0 P kG
−1
k P

T

k G0v.

Because vk = P Tk G0v can be any vector in Vk the above estimate actually reads

vTk (G
−1
k − G̃−1

k )Gk(G
−1
k − G̃−1

k )vk ≤ τ 2 vTk G
−1
k vk.
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To have computationally feasible projections πk , we approximateQk with a Qak
by replacing G−1

k by some approximations G̃−1
k whose actions can be computed

by simple iterative methods applied to (5.79). Such iterative methods lead to the
following polynomial approximations of G−1

k ,

G̃−1
k = [I − pm (Gk)]G−1

k .

Here pm is a polynomial of degreem ≥ 1 such that pm satisfies pm(0) = 1 and 0 ≤
pm(t) < 1 for t ∈ [α, β]. The latter interval contains the spectrum of the mass matrix
Gk . Because Gk is well conditioned, we can choose the interval [α, β] independent
of k. Thus, the polynomial degree m can be chosen to be level-independent so that
a given prescribed accuracy τ > 0 in (5.68) is guaranteed. More precisely, given a
tolerance τ > 0, we can choosem = m(τ) satisfying

‖Qakv − Qkv‖0 =
∥∥G1/2k

(
G−1
k − G̃−1

k

)
P
T

k G0v
∥∥

=
∥∥G1/2k pm (Gk)G

−1
k P

T

k G0v
∥∥

≤ max
t∈[α,β]

pm(t)
∥∥G−(1/2)

k P
T

k G0v
∥∥

= max
t∈[α,β]

pm(t) ‖Qkv‖0·

Here we have used identity (5.80) and the properties of pm. The last estimate implies
the validity of (5.68) with

τ ≥ max
t∈[α,β]

pm(t)·

A simple choice of pm(t) is the truncated series

(1− pm(t))t−1 = pm−1(t) ≡ β−1
m−1∑

k=0

(
1− 1

β
t

)k
, (5.81)

which yields G̃−1
k = pm−1(Gk). We remark that (5.81) was obtained from the fol-

lowing expansion,

1 = tβ−1
∞∑

k=0
(1− tβ−1)k, t ∈ [α, β].

With the above choice on the polynomial pm(t), we have

pm(t) = 1− tpm−1(t) = tβ−1∑

k≥m
(1− β−1t)k = (1− β−1t)m.

It follows that

max
t∈[α,β]

pm(t) =
(
1− α

β

)m
·
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In general, by a careful selection on pm we have maxt∈[α,β] pm(t) ≤ Cqm for some
constants C > 0 and q ∈ (0, 1), both independent of k. Because the restriction on τ
was that τ be sufficiently small, then we must have

m = O(log τ−1)· (5.82)

The requirement (5.82) obviously imposes a very mild restriction on m. In practice,
we expect to use reasonably small m (e.g.,m = 1, 2). This observation is confirmed
by the numerical experiments performed in [VW99].

5.9.4 Construction of bases in the coordinate spaces

Based on the projectionsQk and their sparse approximationsQak (as defined in the pre-
vious section) and the nodal interpolationmappingsIk (see (5.65)), we canmodify the
nodal basis {φ(k)i }xi∈Nk\Nk+1 , or rather their vector representations as elements of the
hierarchical coordinate spaces Range(Ik −Ik+1). The latter is complementary to the
coarse space Range(Ik+1) = Range(P k+1). Note that the basis functions {φ(k)i }xi∈Nk

span the kth-level finite element space Vk. The procedure described in what follows
gives rise to a computable basis of the “coordinate” spaces Range(πk − πk+1) from
the direct decomposition (5.71). In what follows, we construct a computable basis in
the “coordinate” space Range(πk − πk+1). First, note the following result.

Lemma 5.51. The range of πk −πk+1 is the same as the range of (πk −πk+1)(Ik −
Ik+1). More specifically, it coincides with the range of (I −Qak+1)(Ik −Ik+1). Also,

any basis {ϕi} of the space Range(Ik − Ik+1) provides a basis of Range(πk −πk+1)
defined by {(I − Qak+1)ϕi}.

Proof. Based on Lemma 5.46, we have for the components in the direct decomposi-
tion (5.71),

π k − πk+1 = π2k − πk+1π k = (πk − πk+1)πk.

That is, Range (πk−πk+1) = (πk−πk+1)Vk.BecauseVk can be decomposedbased
on the componentsRange (Ik−Ik+1) andVk+1, and because (πk−π k+1)Vk+1 = 0,
we see that Range (πk − πk+1) = Range (πk − πk+1)(Ik − Ik+1), which proves
the first statement of the lemma.
Recalling Definition 5.45,

πk+1 = (Ik+1 + Qak+1(Ik − Ik+1))πk,

with π0 = I , and noting that Ikπ k = πk (due to Lemma 5.43), the following
representation holds,

πk − πk+1 = Ikπk − (Ik+1 + Qak+1(Ik − Ik+1))πk
= (Ik − Ik+1)πk − Qak+1(Ik − Ik+1)πk
= (I − Qak+1)(Ik − Ik+1)πk.
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From Lemma 5.46, we have πkvk = vk if vk ∈ Vk . This shows that πk(Ik−Ik+1) =
Ik − Ik+1. Similarly, Lemma 5.43 implies that Ik+1Ik = I2k+1 = Ik+1; that is,
Ik+1(Ik − Ik+1) = 0 and (Ik − Ik+1)2 = Ik − Ik+1. Thus we end up with the
following main identity (which is the second statement of the lemma)

(πk − πk+1)(Ik − Ik+1) = (I − Qak+1)(Ik − Ik+1).

It is clear then that any basis {ϕi} of the space Range (Ik−Ik+1)will produce a basis
{(I −Qak+1)ϕi} of Range (I −Qak+1)(Ik − Ik+1) because (I −Qak+1)

∑
i ciϕi = 0

would imply then that ϕ ≡
∑
i ciϕi = Qak+1ϕ ∈ Vk+1.

Note now that ϕ ∈ Range (Ik − Ik+1), which is a complementary space to
Range (Ik+1) = Vk+1. Thus ϕ = 0, and therefore ci = 0 for all i. That is, the set
{(I−Qak+1)ϕi} is linearly independent, hence provides a basis of the coordinate space
Range (πk − πk+1). �

5.9.5 The approximate wavelet hierarchical basis (or AWHB)

Let the nodes in Nk be ordered by first keeping the nodes from Nk+1 and then
adding the complementary ones from Nk \ Nk+1. The latter nodes are labeled i =
nk+1 + 1, . . . , nk . Here, nk stands for the number of nodes Nk at level k. Because
level k + 1 (in our notation) is coarser than level k, we have nk+1 < nk .
Then, we can consider the following modified multilevel hierarchical basis:

{φ(ℓ)i , i = 1, . . . , nℓ}
⋃

k=ℓ−1,...,1, 0

{
(I −Qak+1)φ

(k)
i , i = nk+1 + 1, . . . , nk

}
· (5.83)

Note that here we consider every basis function φ(k)i as a vector fromV (i.e., interpo-

lated all the way up to the finest-level 0). That is, as-such, a vector φ(k)i actually has
the form

�Pk

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where the vector
⎡
⎢⎢⎢⎢⎢⎢⎣

0
...

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦



5.9 The hierarchical basis (HB) method 197

0
5

10
15

20

0

5

10

15

20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
5

10
15

20

0

5

10
15

20
0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5.1. AnHB function (nomodification) left, and awavelet-modifiedHB function (m = 2),
right.

is the ith coordinate vector in Rnk . The above components {(I − Qaj+1)φ
(j)

i , i =
nj+1 + 1, . . . , nj } can be seen as a modification of the classical hierarchical basis
components based on the nodal interpolation operator Ik because (I −Qaj+1)φ

(j)

i =
(I − Qaj+1)(Ij − Ij+1)φ

(j)
i . The modification of the classical hierarchical basis

components {(Ij−Ij+1)φ
(j)
i , i = nj+1+1, . . . , nj } comes from the additional term

Qaj+1(Ij−Ij+1)φ
(j)

i . In other words, the modificationwasmade by subtracting from

each nodal hierarchical basis function φ(j)i its approximate L2-projection Qaj+1φ
(j)
i

onto the coarse level j + 1.
An illustration of an HB function and its modification by an approximate mass

matrix inverse provided by m = 2 steps of the CG method is shown in Figure 5.1.
It can be seen that the modified hierarchical basis functions are close relatives of
the known Battle–Lemarié wavelets [D92]. Based on the similarity with the wavelet
bases, sometimes the basis (5.83) is referred to as a waveletlike modified HB or
approximate wavelet HB (AWHB).

Concluding comments for the chapter

A detailed list of references and additional results on MG, as well as notes on the
history ofMG, are found, for example, in Hackbusch [H85], Bramble [Br93], Oswald
[0s94], Trottenberg et al. [TOS], and Shaidurov [Sh95].
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Topics on Algebraic Multigrid (AMG)

The algebraic multigrid (or AMG) concept was introduced in [BMcRr, BMcR] (see
also [B86]), and gained popularity after the paper [RS87] appeared. Since then, much
progress has been made and the present chapter reflects a number of major develop-
ments in this area.
There is no singleAMGmethod.Loosely speaking, if the coarse hierarchydefined

by respective interpolation matrices {Pk} is constructed by the user, the resulting MG
method defines a class of AMG. AMG is typically defined as a two-level method, and
the construction is used recursively, thus ending up with a multilevel AMG. That is
why, for the most part of the presentation, we omit the level subscript k in the present
chapter.

6.1 Motivation for the construction of P

Typically, to construct the interpolation matrices P , we utilize some (very often as-
sumed) a priori knowledge of the lower part of the spectrum of D−1A where D is,
for example, the diagonal part of A (or the symmetrized smoother to be used, which
comes from a convergent splitting of A). The vectors that are spanned by the eigen-
vectors corresponding to the lower part of the spectrum of D−1A (sometimes called
“algebraically smooth” vectors) are attempted to be approximated well by the coarse
space Range (P ) for a proper choice of P (assuming a two-level setting). The latter
condition is more rigorously studied in this section.
We are given a sparse s.p.d. matrix A and a convergent in ‖.‖A-norm smoother

M . The latter property, as we have very often used it, is equivalent toM +MT − A
being s.p.d. The two-grid algorithm, based onM , its transposeMT , an interpolation
matrixP , and respective coarsematrixAc = P T AP, gives rise to the product iteration
matrix

ETG = (I −M−TA)(I − πA)(I −M−1A), πA = PA−1
c P

TA.

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 199
doi: 10.1007/978-0-387-71564-3_6,
© Springer Science+Business Media, LLC 2008
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Equivalently, the two-grid preconditioner BTG is defined from the identity ETG =
I − B−1

TGA or more explicitly,

B−1
TG = M−1 + (I −M−TA)PA−1

c P
T (I − AM−1), (6.1)

whereM = M(M +MT − A)−1MT is the symmetrized smoother.
Given A andM , to motivate the construction of P , we start from the characteri-

zation of the two-grid convergence factor ̺(ETG) studied in Section 3.2.9; namely,
Theorem 3.19 states, that ̺(ETG) = 1− (1/KTG) where

KTG = sup
v

vT M̃(I − πM̃)v
vTAv

, πM̃ = P(P T M̃P )−1P T M̃.

We recall that M̃ = MT (M +MT − A)−1M for a givenM , is also a symmetrized
smoother. Note that, in general, M̃ is different fromM (used in (6.1)). Also, note that
πM̃ (similarly to πA) is a projection onto the coarse space, now based on the M̃-inner
product.
Traditionally, we assume that P has the form

P =
[
W

I

]
.

Let {δic } be the basis of unit coordinate vectors in Rnc . It is clear that ψ ic = P δic ,
ic = 1, . . . , nc form a basis in the space Range (P (P T M̃P )−1P T M̃). Indeed, we
have (P T M̃P )−1P T M̃ψ ic = δic , which shows that {ψ i} are linearly independent.
Consider now the direct decomposition

v =
[

vf
0

]
+ Pvc.

Hence,

KTG = sup
v

vT M̃(I − πM̃)v
vTAv

= sup
v

[
vf
0

]T
M̃(I − πM̃)

[
vf
0

]

vTAv

= sup
vf

sup
vc

sup
t∈R

[
vf
0

]T
M̃(I − πM̃)

[
vf
0

]

([
vf
0

]
+ tPvc

)T
A
([

vf
0

]
+ tPvc

)

= sup
vf

sup
vc

[
vf
0

]T
M̃(I − πM̃)

[
vf
0

]

[
vf
0

]T
A
[

vf
0

]
−

([
vf
0

]T
APvc

)2

vTc P
T APvc

.
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If we drop the term πM̃ in the numerator, we get an upper bound forKTG. That is, we
get then

KTG ≤ sup
vf

sup
vc

[
vf
0

]T
M̃
[

vf
0

]

[
vf
0

]T
A
[

vf
0

]
−

([
vf
0

]T
APvc

)2

vTc P
T APvc

.

Notice now that the numerator no longer depends on P . If we want to minimize the
above upper bound for KTG without imposing any restrictions on P , the best bound
we can get is to choose P such that

[
vf
0

]T
APvc = 0 for all vc and vf .

The latter shows, if we partition A as

A =
[
Aff Afc

Acf Acc

]
,

thatW solves the equation

AffW + Afc = 0,

or equivalently the “best” P , P∗, is given by

P∗ =
[
−A−1

ff Afc

I

]
.

For P∗, we get the following upper bound for KTG,

KTG ≤ sup
vf

vTf M̃ff vf

vTfAff vf
= 1

λmin(M̃
−1
ff Aff )

.

It is clear then that if the symmetrized smoother M̃ restricted to the “f” set is spectrally
equivalent to Aff , then we have a spectrally equivalent two-grid method (based on
P∗).We actually know (see Theorem3.25) that if M̃ has the above property, plus if for
some P , PR (for R = [0, I ]) is bounded in theA-norm, then the respective two-grid
method is also spectrally equivalent to A with KTG ≤ ‖PR‖A (1/λmin(M̃−1

ff Aff )).
For now, we can conclude that a reasonable guideline to construct P is to find,

for any coarse unit coordinate vector δic ∈ Rnc , an approximate solution to

Aff wic = −Afcδic .

Then

ψ ic =
[

wic
δic

]

defines the icth column of P .
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6.2 On the classical AMG construction of P

Here we assume that the setNc of coarse dofs has been selected. Given a dof i ∈ Nf
(the set of dofs complementary toNc), consider a given neighborhood�(i) that con-
tains all coarse dofs ic allowed to interpolate to i (denoted by Ci), the dof i, plus pos-
sibly some other dofs. The ith entry of the interpolation (Wvc)i =

∑
ic∈Ci wi,ic (vc)ic

will be determined from the ith row of the equation

Aff vf = −Afcvc.

The ith rowof the above equation takes the form, after introducingAff |i = [aii, aT
i, X
]

and Afc|i = aTi,c,

aiivi = −aTi, X vi, X − aTi, cvc.

If we have values assigned to vi, X in terms of vc (cf., [HV01]), then from the
above equation, we can compute the needed mapping vc �→ (vf )i , which will give
the ith row of P . In other words, if we have an “extension” mapping (cf., [HV01])
E = [EX , i , EX , c] that for given vi , vc defines the values

vX = [EX , i, EX , c]

[
vi
vc

]
,

we then get

(
aii + aTi, XEX , i

)
vi = −

(
aTi, XEX , c + aTi, c

)
vc.

That is, assuming aii + aT
i, X
EX , i 
= 0, we obtain the following expression for the

ith row of P ,

−
(
aii + aTi, XEX , i

)−1 (
aTi, XEX , c + aTi, c

)
.

The classical Ruge–Stüben interpolation rule corresponds to the following exten-
sion mapping E. We first partition the dofs in set X into two groups; dofs that are
“weakly” connected to i, and dofs that are “strongly” connected to i.
We mention here one possible definition of the notion of “strong dependence” as

introduced in [RS87].

Definition 6.1 (Strong dependence). For a chosen tolerance θ ∈ (0, 1], we say that

a dof i is strongly influenced by (or depends strongly on) dof j 
= i if

−aij ≥ θ max
k 
=i

(−aik)

Equivalently, we say then that dof j is strongly connected to dof i. For all other dofs

k, we say that k is weakly connected to i.
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The extension mapping [vi, vc] �→ (viX ) = E[vi , vc] then reads,

viX =

⎧
⎪⎨
⎪⎩

vi , if iX is weakly connected to i,∑
ic∈Ci aiX ,icvic∑
ic∈Ci aiX ,ic

, if iX is strongly connected to i.

Introducing Wi = {j ∈ �i : j is weakly connected to i} and Si = {j ∈ �i : j is
strongly connected to i}, the resulting (i, ic) entry of the Ruge–Stüben interpolation
matrix reads,

−

⎛
⎝aii +

∑

iX∈Wi
ai, iX

⎞
⎠

−1⎛
⎝ai, ic +

∑

iX∈Si
ai, iX

aiX , ic∑
jc∈Ci aiX , jc

⎞
⎠ .

The above formula is well defined if ai, iX are either positive or small negative for
all iX weakly connected to i, and if aiX , ic have the same sign for all iX strongly
connected to i. These conditions are met in practice for matrices A that are close to
M-matrices. The above extension mapping has the property if [vi , vc] is a constant
vector, then E[vi, vc] is also (the same) constant.
Given a vector 1, we can easily construct extension mapping E such that it has a

prescribed value 1X = E[1i , 1c]. The corresponding formula reads

viX =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(1)iX
(1)i

vi , if iX is weakly connected to i,

1iX

∑
ic∈Ci aiX ,icvic∑
ic∈Ci aiX ,ic (1)ic

, if iX is strongly connected to i.

The resulting interpolation matrix P (cf., [aAMG]) has its (i, ic) entry equal to

−

⎛
⎝aii +

∑

iX ∈Wi
ai, iX

(1)iX
(1)i

⎞
⎠

−1⎛
⎝ai, ic +

∑

iX ∈Si
ai, iX

aiX , ic (1)iX∑
jc∈Ci aiX , jc (1)jc

⎞
⎠ .

The following property holds (cf., [aAMG]).

Proposition 6.2. The following identity holds,

(P1c)i = (1)i −
(A1)i

aii +
∑
iX ∈Wi ai, iX

(1)iX
(1)i

.

Then if (A1)i = 0, we have that (P1c)i = (1)i . In particular, if 1f = −A−1
ff Afc1c

then

P1c = 1 =
[

1f
1c

]
.
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Proof. We have, letting � = −1
/
(aii +

∑
iX ∈Wi ai, iX ((1)iX /(1)i)),

(P1c)i = �

⎛
⎝∑

ic∈Ci
ai, ic (1)ic +

∑

ic∈Ci

∑

iX ∈Si
ai, iX (1)iX

aiX , ic (1)ic∑
jc∈Ci aiX , jc(1)jc

⎞
⎠

= �

⎛
⎝∑

ic∈Ci
ai, ic (1)ic +

∑

iX ∈Si
ai, iX (1)iX

∑

ic∈Ci

aiX , ic (1)ic∑
jc∈Ci aiX , jc (1)jc

⎞
⎠

= �

⎛
⎝∑

ic∈Ci
ai, ic (1)ic +

∑

iX∈Si
ai, iX (1)iX

⎞
⎠

= �

⎛
⎝(A1)i − aii(1)i −

∑

iX ∈Wi
ai, iX (1)iX

⎞
⎠

= (1)i −
(A1)i

aii +
∑
iX ∈Wi ai, iX

(1)iX
(1)i

. �

Assume that Aff is anM-matrix and let Afc ≤ 0. Then for any positive vector 1c

the vector 1f ≡ −A−1
ff Afc1c will be positive.

Note that even if A is anM-matrix, its coarse counterpart P T AP may not be. We
can instead construct an auxiliaryM-matrix A associated with A for the purpose of
constructingP , for example, by adding toA symmetric positive semidefinitematrices
ai,jVi,j , where

Vi,j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . .

α −1
. . .

−1 1
α

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

} i

} j

has only four nonzero entries. Here, (i, j) runs over all positive off-diagonal entries
ai,j of A. The coefficient α is chosen so that Vij1 = 0, hence α(1)i − (1)j =
0 and −(1)i + (1/α)(1)j = 0. This gives α = (1)j/(1)i > 0, for any vector 1

with positive entries. Note that the eigenvalues λ of Vi,j solve the equation (α − λ)
((1/α) − λ) − 1 = 0. That is, λ(λ − α − (1/α)) = 0 which gives either λ = 0
or λ = α + (1/α) > 0. This shows that Vi,j is positive semidefinite. It is clear
then that A := A + ai,jVij is s.p.d. and has zero entry at position (i, j). Moreover,
(A + ai,jVij)1 = A1. After running over all pair of indices (i, j), i < j , such that
ai,j > 0, we end up with an M-matrix A = A +

∑
i<j : ai,j>0 ai,jVi,j for which

A1 = A1. In addition, A− A is symmetric positive semidefinite. We can then build
a P on the basis of A and the positive vector 1. If we have (A1)f = 0, then the same
would apply to A, and all the formulas for P (based on A) will then be well defined.
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Note that A will have exactly the entry aii = aii +
∑
iX
ai, iX (((1)iX )/((1)i)) for all

positive off-diagonal entries ai, iX of A if treated as weakly connected to i.

6.3 On the constrained trace minimization construction of P

Consider a given s.p.d. sparse matrix A and a “f”–“c” partitioning of the index setN
into two disjoint groupsNf andNc. We want to construct the interpolation matrix P
with columns ψ i for i ∈ Nc that have a prescribed sparsity pattern, referred to as the
support of ψ i . It is assumed that ψ i |Nc

equals the ith unit coarse coordinate vector.
This gives rise to the form

P =
[
W

I

]

of the interpolationmatrix. The construction ofP under consideration exploits a given
vector 1, which P is supposed to recover, that is, if

1 =
[

1f
1c

]

then the condition is that P1c = 1, or equivalentlyW1c = 1f .
After a sparsity pattern ofW , or equivalently the support of the columnsψ i of P

is chosen, the actual entries ofW are computed from a norm-minimization principle,
as originally proposed in [WCS00]; see also [Wag96]. The actual algorithm that we
present here was analyzed in [XZ04].
The constrained trace norm minimization problem under consideration reads:
Find

P =
[
W

I

]
= (ψ i)i∈Nc

,

with prescribed sparsity pattern ofW , such that

trace (P T AP) ≡
∑

i∈Nc

ψTi Aψ i �→ min, (6.2)

subject to the constraint

P1c = 1. (6.3)

The solution to this problem was given in [XZ04].

Theorem 6.3. Let Ii be the mapping representing extension by zero outside the (pre-

scribed fixed) support of ψ i . Introduce then Ai = ITi AI i , which is the principal sub-

matrix ofA corresponding to the support of ψ i . Finally, define the symmetric positive

semidefinite matrices Ti = IiA−1
i I

T
i . Then, the solution to the constrained minimiza-

tion problem (6.2)–(6.3) is given by ψ i = (1c)iTiT
−11, where T =

∑
i∈Nc

(1c)
2
i Ti

is the so–called additive Schwarz operator. Here, (1c)i stands for the ith entry of 1c.



206 6 Topics on Algebraic Multigrid (AMG)

Proof. To solve the problem, we form the Lagrangian

L(P, λ) =
∑

i∈Nc

ψTi Aψ i + λT (P1c − 1).

Recall that P = [ψ1, ψ2, . . . , ψnc ] and hence λ ∈ Rn. Then, by varying ψ i :=
ψ i+Iigi for any vector gi defined on the support ofψ i , from the necessary conditions
for a minimum, we get

(Iigi)
T (Aψ i + (1c)iλ) = 0,

for all i = 1, . . . , nc. The derivative w.r.t. λ gives the constraint,

P1c − 1 =
nc∑

i=1
(1c)iψ i − 1 = 0.

The first set of equations actually reads, based on the fact that ψ i = IiITi ψ i ,

AiI
T
i ψ i = −(1c)iITi λ.

Therefore, multiplying by IiA
−1
i , we obtain

ψ i = IiITi ψ i = −(1c)iIiA−1
i I

T
i λ = −(1c)iTiλ. (6.4)

Multiplying the latter equation by (1c)i and summing over all i = 1, . . . , nc we end
up with the expression

nc∑

i=1
(1c)iψ i =

nc∑

i=1
(1c)iIiI

T
i ψ i = −

(
nc∑

i=1
(1c)

2
i Ti

)
λ.

That is, using the constraint 1 = P1c =
∑nc
i=1(1c)iψ i and the definition of T =∑nc

i=1(1c)
2
i Ti , the following expression for the Lagrangian multiplier λ is obtained,

λ = −T −11.

Using the latter expression in (6.4), the desired result

ψ i = (1c)iTiT −11

follows. It is clear that P1c =
∑nc
i=1(1c)iψ i =

∑nc
i=1(1c)

2
i TiT

−11 = 1; that is, the
constraint is satisfied. �

To actually compute T −11 in practice, we can use the preconditioned CGmethod
with the following diagonal matrix

∑nc
i=1(1c)

2
i IiD

−1
i I

T
i as a preconditioner. Here,

Di stands for the diagonal of Ai . The inverses of Ai can be approximated by a fixed
number of symmetric Gauss–Seidel steps. Thus, in practice, P can be based onM−1

i

where M−1
i represents a fixed number of symmetric Gauss–Seidel iterations, for
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example, one or two. That is, the modified additive Schwarz operator reads T =∑nc
i=1(1c)

2
i IiM

−1
i I

T
i and henceψ i = (1c)iIiM−1

i I
T
i T

−11. The preconditioner for T
is again the diagonal matrix

∑nc
i=1(1c)

2
i IiD

−1
i I

T
i with Di being the diagonal of Ai .

Numerical experiments with the inexact additive Schwarz-based construction of P
are found in [VZ05]. A final comment is that we have (implicitly) assumed that 1c
has nonzero entries (otherwise T may not be invertible). A common case in practice
is 1c being the constant vector [1, . . . , 1]T ∈ Rnc .

6.4 On the coarse-grid selection

The selection of coarse-gridNc is the least rigorous part of AMG. Part of the problem
is that many choices of coarse grids can lead to AMG methods with comparable
performance. For the element agglomeration AMG (in Section 6.9) and the window-
based spectral AMG (in Section 6.11), we provide coarse-grid selection algorithms
that guarantee provable two-grid AMG convergence.
For some practical coarse-grid selection algorithms, we refer to [RS87], the chap-

ter on AMG by K. Stüben in [TOS], or the tutorial [MGT00]. State-of-the-art parallel
coarse-grid selection algorithms are found in [PMISi], and in combination with scal-
able (“distance-two”) interpolation algorithms, are found in [PMISii].

6.5 On the sparsity pattern of P

After a coarse setNc has been selected, lettingNf = N \Nc be the complementary
set of f dofs, we want to compute the sparsity pattern of P , that is, the support set
of each column ψ i of P . One possible strategy is to look at the decay behavior of
−A−1

ff Afc, where the blocks Aff and Afc come from the natural “f”–“c” partitioning
of A, given by

A =
[
Aff Afc

Acf Acc

]
} Nf
} Nc.

The latter strategy has been utilized in [BZ06]. Namely, we perform source PCG
iterations

Aff xf = −Afcec, i, ec, i =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where the only nonzero entry of ec, i is at position i ∈ Nc. Then, after computing
an approximation xf to −A−1

ff Afcec, i , we look at the decay of the entries of xf
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around dof i. The entries at positions j ∈ Nf that have relatively large values, form
the support of ψ i . More specifically, with Dff being the diagonal of Aff , we look

at the magnitude of the entries of D1/2ff xf . The reason for this is that D
1/2
ff xf ≈

A
−1
ff D

1/2
ff Afcec, i , where Aff is Aff scaled symmetrically by D

−(1/2)
ff so that A

−1
ff has

a more uniform decay rate. If we can chooseNc such thatAff is spectrally equivalent

to its diagonalDff , thenAff will be well conditioned. A geometric decay ofA
−1
ff with

a rate depending only on the condition number of Aff can be proved (see Section
A.2.4 or estimate (6.56)).
After the support of ψ i has been determined, the actual entries of ψ i can then

be computed (as in [BZ06]) based on the constrained trace minimization based on a
given vector 1 that was described in Section 6.3.

6.6 Coarsening by compatible relaxation

The goal of the compatible relaxation (or CR) is to select a set of coarse degrees of
freedom, based solely on the smoother, such that after a proper interpolationmatrix is
constructed later, then the resulting two-grid method exhibits fast convergence. The
notion of compatible relaxation was introduced by Achi Brandt in [B00] and studied
later on in some detail in [Li04] and [FV04].
We outline the main principles of CR and show some basic estimates.
If we look at the characterization of KTG, we have that for a matrix J∗ such that

Range (J∗) = Range (I − PR∗), R∗ = (P T M̃P )−1P T M̃ , we have the inequality

vTs J
T
∗ M̃J∗vs ≤ KTG vTs J

T
∗ AJ∗vs .

This shows that A has a principal matrix that is spectrally equivalent to the same
principal submatrix of the symmetrized smoother M̃ . CR refers to the process of
selecting a J based on a preselected R, typically R = [0, I ], such that the constant
κCR in the inequality

vTs J
TAJvs ≤ vTs J

T M̃Jvs ≤ κCR vTs J
T AJvs,

is close to one. If

J =
[
I

0

]
,

we indeed look for a principal submatrix Aff of A that is spectrally equivalent to the
corresponding principal submatrix of M̃ . However, we may look for more sophis-
ticated choices of R and J . They can change adaptively throughout an iterative
procedure.
In the following few sections, we provide algorithms that test if a given (tentative)

coarse space (associated with a given (tentative) interpolationmatrix P ) provides fast
to converge CR.
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6.6.1 Smoothing property and compatible relaxation

Consider an n × n s.p.d. matrix A and an A-convergent smootherM for A (forward
Gauss–Seidel, e.g.) in the sense that ‖I − M−1A‖A < 1. Let M̃ = MT (MT +
M −A)−1M denote the symmetrized smoother that gives rise to the iteration matrix
I − M̃−1A = (I −M−1A)(I −M−TA).
The following “smoothing” property was derived in Lemma 5.40. For anym ≥ 1

and any vector e, we have

‖(I − M̃−1A)me‖A ≤ 1√
m+ 1

‖e‖M̃ .

Note that the left-hand side uses the A-norm, whereas the right-hand side uses the
M̃-norm.
Note also that, for standard smoothers such as Gauss–Seidel, ‖.‖M̃ ≃ ‖.‖D where

D = diag(A) (for more details, see Proposition 6.12). Now, let e = (I −Q)e, where
Q is any projection onto a given coarse space. Assuming thatQ provides a standard
approximationproperty given by ‖(I−Q)e‖M̃ ≤ δ ‖e‖A, then the following estimate
is obtained.

‖(I − M̃−1A)m(I −Q)e‖A ≤ 1√
m+ 1

‖(I −Q)e‖M̃ ≤ δ√
m+ 1

‖e‖A.

For the case thatQ is a coarse-grid projection based on the M̃-inner product, we can
derive estimates in the M̃-norm, which is our focus from now on. We first prove an
auxiliary estimate.

Lemma 6.4. Let Q be an M̃-orthogonal projection that satisfies the following weak

approximation property,

‖(I −Q)e‖M̃ ≤ δ ‖e‖A. (6.5)

Then the following estimate holds,

‖(I −Q)e‖M̃A−1M̃ ≤ δ ‖(I −Q)e‖M̃ . (6.6)

Proof. Consider the problem

Au = M̃(I −Q)e.
The following estimates are readily obtained using the fact that M̃(I −Q)e is orthog-
onal to any vector in Range (Q),

uTAu = uT M̃(I −Q)e = (u −Qu)T M̃(I −Q)e ≤ ‖(I −Q)u‖M̃ ‖(I −Q)e‖M̃ .
Using now the approximation property (6.5) leads to

uTAu ≤ δ ‖u‖A‖(I −Q)e‖M̃ .
That is,

‖u‖A ≤ δ ‖(I −Q)e‖M̃ .

Because u = A−1M̃(I −Q)e, the desired estimate (6.6) follows. �
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The following result holds for any M̃-orthogonal projectionQ.

Lemma 6.5. Assume that Q is an M̃-orthogonal projection onto the coarse space

satisfying the weak approximation property (6.5). Then, for any e = (I −Q)e and

any integer m ≥ 1, the following estimate holds,

‖(I − M̃−1A)me‖M̃ ≤ ̺ ‖e‖M̃ ,

where ̺ = δ/
√
m+ 1 and δ is the constant in the weak approximation property (6.5).

Proof. Let pm(t) = (1− t)m and T = M̃−(1/2)AM̃−(1/2). Note that the spectrum of
T is contained in (0, 1]. Then

‖(I − M̃−1A)me‖M̃ = ‖M̃1/2(I − M̃−1A)mM̃−(1/2)M̃1/2e‖

= ‖
(
pm(T )T

1/2)
T

−(1/2)
M̃1/2e‖

≤ max
t∈[0,1]

t1/2(1− t)m ‖(I −Q)e‖M̃A−1M̃

≤ 1√
m+ 1

δ ‖(I −Q)e‖M̃ .

In the last line, we used (6.6). �

Consider the following two-grid process.

Algorithm 6.6.1 (Smoothing coarse-grid corrected error). Consider the homoge-

neous equationAx = 0. Letting e be a random initial iterate andm = 1, perform the

following steps.

1. Compute

e0 = (I −Q)e.

2. Smooth:

em = (I −M−1A)(I −M−TA)em−1.

3. Monitor convergence in the M̃-norm; that is, compute ‖em‖M̃/‖e0‖M̃ . If con-

vergence is “slow”, use the error em to augment the current coarse space by

constructing a new Q, and then increment m and go to Step (2). Otherwise,

consider the process to have converged and exit.

Note that Step (1) is performed only once, outside the inner smoothing loop on m.

Also, when ‖.‖M̃ ≃ ‖.‖D , we can monitor the convergence in ‖.‖D-norm in Step (3)

above.

Lemma 6.5 implies that if m ≥ 1 is sufficiently large, then the above two-grid
process must be convergent for the case that Q is an M̃-orthogonal projection satis-
fying (6.5).
The following compatible relaxation result holds, whereQ now is any projection

(not necessarily an M̃-orthogonal one).
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Lemma 6.6. Suppose for a reasonably small m ≥ 1 and a given projection Q that

Algorithm 6.6.1 provides a convergent process in the M̃-norm, so that for some

̺ ∈ [0, 1), the following estimate holds.

‖(I − M̃−1A)m(I −Q)e‖M̃ ≤ ̺ ‖e‖M̃ .

Then the following spectral bound holds for some positive constant δ that depends

only on m,

‖(I −Q)e‖M̃ ≤ δ ‖(I −Q)e‖A.

A simpler bound, where the roles of A and M̃ are reversed (and δ = 1), follows from

our assumption that M is an A-convergent smoother. Thus, A and the symmetrized

smoother M̃ are spectrally equivalent on the subspace Range (I −Q).

Proof. Let pm(t) = (1− t)m and T = M̃−(1/2)AM̃−(1/2). Then

‖(I −Q)e‖M̃ ≤ ‖(I − pm(M̃−1A))(I −Q)e‖M̃ + ‖pm(M̃−1A)(I −Q)e‖M̃
= ‖(I − pm(T ))T −(1/2)T 1/2M̃1/2(I −Q)e‖ + ̺ ‖(I −Q)e‖M̃
≤ max
t∈(0,1]

1− pm(t)√
t

‖T 1/2M̃1/2(I −Q)e‖ + ̺ ‖(I −Q)e‖M̃

= max
t∈(0,1]

1− pm(t)√
t

‖(I −Q)e‖A + ̺ ‖(I −Q)e‖M̃ .

Noting that pm(0) = 1, we havemaxt∈(0,1] ((1−pm(t))/
√
t) ≤ δm for some positive

constant δm. Therefore, we finally obtain

(1− ̺) ‖(I −Q)e‖M̃ ≤ δm ‖(I −Q)e‖A.

Note that δm increases with m, but, for a fixed m, it is a fixed constant. �

The following result holds for the desired weak approximation property (6.5).

Corollary 6.7. In addition to the assumptions of Lemma 6.6, suppose that Q is

bounded in energy, so that for some η <∞, we have

‖(I −Q)e‖A ≤ η ‖e‖A.

Then Lemma 6.6 implies the weak approximation property

‖(I −Q)e‖M̃ ≤ δmη

1− ̺ ‖e‖A.

We recall the fact that the weak approximation property implies two-grid conver-
gence. It is in fact a measure (upper bound) for the TG convergence (cf., (3.26)).

6.6.2 Using inexact projections

Here we assume that the projection π = πM̃ is approximated by a mapping π
a that

is close to π in the sense that, for some given tolerance τ ∈ [0, 1) and any e, the
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following deviation estimate holds,

‖(π − πa)e‖M̃ ≤ τ ‖πe‖M̃ .

We assume that Range (πa) ⊂ Range (P ); that is, πa = P(∗).
LetQ = PR be a simple projection operator for which RP = I , such as

P =
[
W

I

]
and R = [0, I ].

The constant δQ in the weak approximation property forQ,

‖(I −Q)e‖M̃ ≤ δQ ‖e‖A, (6.7)

may not be as good the one for π = πM̃ ,

‖(I − π)e‖M̃ ≤ δ ‖e‖A. (6.8)

Consider then the new modified (projection) operator

π = Q+ πa(I −Q). (6.9)

We show below that π gives a more stable version of Q. Note that if πa = π , then
π = π and, if πa = 0, then π = Q. The construction in (6.9) was introduced (in a
geometric MG setting) in [VW97].
We first show that π is indeed a projection. Because Q is a projection, then

Q(I −Q)= 0. Also, QP =P implies (I −Q)πa = (I −Q)P(∗) = 0 and Qπa =
QP(∗)=P(∗)= πa . It is clear then that π2=Q2 + Qπa(I − Q)=Q + πa(I −
Q)=π ; that is, π is indeed a projection.
To show that π satisfies a “weak approximation property” with a better constant

than Q, first note that the actions of π involve actions of Q and πa , which are
assumed to be much less expensive than the actions of the exact projection π itself.
The following identity holds,

(π − π)e = (πa − π)(I −Q)e.

Thus, the desired result follows from the inequalities

‖(I − π)e‖M̃ ≤ ‖(I − π)e‖M̃ + ‖(π − π)e‖M̃ ≤ (δ + τ δQ)‖e‖A.

Note that δ ≡ δ + τδQ ≪ δQ if δ ≪ δQ for τ sufficiently small.
With the projection π , Algorithm 6.6.1 takes the following modified form.

Algorithm 6.6.2 (Smoothing approximate projection corrected error). Consider

the homogeneous equation Ax = 0, the simple projectionQ = PR, and the approx-

imation πa to the M̃-based projection π . Letting e be a random initial iterate and

m = 1, perform the following steps.

1. Compute

e0 = (I − π)e = (I − πa)(I −Q)e.
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2. Smooth:

em = (I −M−1A)(I −M−TA)em−1.

3. Monitor convergence in the M̃-norm; that is, compute ‖em‖M̃/‖e0‖M̃ . If con-

vergence is “slow”, use the error em to augment the current coarse space by

constructing a new P (which leads to newQ and π), and then incrementm and

go to Step (2). Otherwise, consider the process to have converged and exit.

Note that Step (1) is again performed only once, outside the inner smoothing loop onm.

Finally, we comment on a possible choice for πa . Recall that π = PM̃−1
c P

T M̃ ,
where M̃c = P T M̃P . Given an approximation M̃a

c to M̃c such that the actions of
(M̃a

c )
−1 are readily available, that is, based on one or a few Gauss–Seidel iterations

applied to M̃c, then a natural candidate for πa is

P
(
M̃a
c

)−1
P T M̃.

6.7 The need for adaptive AMG

Consider the compatible relaxation process (Algorithm 6.6.1 with m = 1)

x := (I − M̃−1A)(I − πM̃)x. (6.10)

Based on the identity I − M̃−1A = (I −M−1A)(I −M−TA), (6.10) can be refor-
mulated (slightly modified) as

x := (I −M−TA)(I − πM̃ )(I −M−1A)x. (6.11)

The latter process has the same convergence properties as (6.10).
The iteration (6.11) resembles the exact (symmetric) two-grid cycle

x := (I −M−TA)(I − πA)(I −M−1A)x.

The difference is in the projections used. In general, aV -cycle iteration takes the form

x := (I −M−TA)(I − PB−1
c P

TA)(I −M−1A)x.

Here,B−1
c stands for the next (coarse) level V -cycle. The last iterations make sense if

we have already built an initial V -cycle. By testing the current method available, we
eventually end up with a component x that the current level V -cycle cannot handle;
that is, the A-norms of two successive iterates x and xnew are not too different;
that is,

xTnewAxnew ≃ xTAx.
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The reasons for this to happen could be, either,

• The current coarse space cannot approximate well

e = x − Pxc =
[

ef
0

]
,

and/or

• The coarse V -cycle Bc cannot successfully damp the coarse interpolant xc of x.

A possible remedy to the above is to improve the coarse space and/or the coarse solver
B−1
c by augmenting the interpolation matrix P = [P, Pnew], where

P =
[
W P new
I 0

]
.

The new columns of P are based on additional coarse dofsNc, new ⊂ N \Nc. Note
that e vanishes at the current coarse dofs set Nc; that is, e|Nc

= 0.
The additional coarse dofs can be chosen by some independent set algorithm,

utilizing a pointwise (or any other locally computable) measure of the interpolation
error e = x − Pxc. Some details are found in Section 6.10.
We comment at the end that adaptive AMG algorithms originated in [BR02] (the

“Bootstrap” AMG) and were developed in [aSA], [aAMG], and [Mc01].

6.8 Smoothing based on “c”–“f” relaxation

Consider the case of interpolation matrix

P =
[
W

I

]

and let

M =
[
MT

ff Afc

0 MT
cc

]
(6.12)

be the so-called “c”–“f” relaxation matrix. It comes from the natural two-by-two
block partitioning of

A =
[
Aff Acf

Afc Acc

]

induced by the interpolation matrix P . Note that the blocksMff andMcc need not be
symmetric. A special case of interest is whenW ≈ −M−T

ff Afc. Another limit case is
obtained forMcc = τ Dcc, whereDcc is the diagonal ofAcc and τ > 0 is sufficiently
large. We denoteM = Mτ in this case. Noting that

M−1
τ =

[
I −M−T

ff Afc

0 I

]⎡
⎣
M−T

ff 0

0
1

τ
D−1

cc

⎤
⎦ �→

[
M−T

ff 0

0 0

]
, τ �→ ∞,
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the results of the present section, as long as they do not depend on τ , also apply to
the following two-grid operator

B−1
τ = M−1

τ +
(
I −M−T

τ A
)
PA−1
c P

T
(
I − AM−1

τ

)
,

and its limit one, as τ �→ ∞, referred to as the “hierarchical basis MG” (or HBMG,
[BDY88]). We have, letting

J =
[
I

0

]
, and M ff =MT

ff

(
Mff +MT

ff − Aff

)−1
Mff ,

B−1
HBMG = J TM−1

ff J + (I − JM−1
ff J

TA)PA−1
c P

T (I − AJM−T
ff J

T ). (6.13)

We recall the definition of the symmetrized smoother M̃ = MT (M+MT −A)−1M ,
which takes part in the exact convergence factor of the two-grid method based onM
and P for a given matrix A (given in Theorem 3.19).
The goal of the analysis in the present section is to compare the exact two-grid

convergence factor ̺TG = 1− 1/KTG, where

KTG = sup
v

vT M̃(I − πM̃)v
vTAv

= sup
v

vT M̃(I − PR⋆)v

vTAv
,

where R∗ = M̃−1
c P

T M̃ with M̃c = P T M̃P , as characterized in Theorem 3.19, and
its upper bound given by the maximum over e of the measure (in the form introduced
in [FV04]):

µM̃ (Q, e) = ((I −Q)e)T M̃(I −Q)e
eTAe

, (6.14)

whereQ = PR with R = [0, I ] being the trivial injection mapping.
We first derive some useful identities to be needed in the analysis. We have, for

the symmetrized smoother,

M̃ =MT (M +MT − A)−1M

=
[
Mff 0
Acf Mcc

][(
Mff +MT

ff − Aff

)−1
0

0
(
Mcc +MT

cc − Acc

)−1

]

×
[
MT

ff Afc

0 MT
cc

]
. (6.15)

Then,

M̃c = P T M̃P
=
(
MT

ff W + Afc

)T (
Mff +MT

ff − Aff

)−1(
MT

ff W + Afc

)

+ Mcc

(
Mcc +MT

cc − Acc

)−1
MT

cc. (6.16)
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Compute next P T M̃ . We have, lettingDf = Mff +MT
ff −Aff andDc = MT

cc +
Mcc − Acc,

P T M̃ = [WT , I ]

[
Mff 0

Acf Mcc

][
D−1
f 0

0 D−1
c

][
MT

ff Afc

0 MT
cc

]

=
[
WTMff + Acf , Mcc

]
[
D−1
f M

T
ff D−1

f Afc

0 D−1
c M

T
cc

]

=
[
(WTMff + Acf )D

−1
f M

T
ff ,
(
WTMff + Acf

)
D−1
f Afc +MccD

−1
c M

T
cc

]

=
[
(WTMff + Acf )D

−1
f M

T
ff , M̃c − (WTMff + Acf )D

−1
f M

T
ff W

]
.

We readily see then thatR∗ ≡ M̃−1
c P

T M̃ = [Xcf , I−XcfW ] = [0, I ]+Xcf [I,−W ],
where

Xcf = M̃−1
c (Acf +WTMff )(Mff +MT

ff − Aff )
−1MT

ff

= M̃−1
c

(
AcfM

−1
ff +WT

)
M̃ff . (6.17)

Here, M̃ff = MT
ff D

−1
f Mff . Note that Xcf is close to zero if W ≈ −M−T

ff Afc. The

optimal J∗ ≡ I − πM̃ = I − PM̃−1
c P

T M̃ gets the following form,

J∗ ≡ I − PR∗ =
[
I 0
0 I

]
−
[
W

I

]
[Xcf , I −XcfW ]

=
[
I −WXcf −(I −WXcf )W

−Xcf XcfW

]

=
([
I

0

]
−
[
W

I

]
Xcf

)
[I, −W ] .

It is clear that

J∗P = (∗) [I, −W ]
[
W

I

]
= 0.

Finally, it is also clear that

Range(J∗) = Range

([
I

0

]
−
[
W

I

]
Xcf

)
.

We formulate the latter results in the following theorem.

Theorem 6.8. Let

P =
[
W

I

]
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be a general interpolation mapping (i.e.,W 
= −M−T
ff Afc). Define Xcf as in (6.17).

Then the optimal R∗ = M̃−1
c P

T M̃ and optimal J∗ = I − PR∗ are given by the

formulas:

(i)

R∗ =
[
Xfc, I −XcfW

]
= [0, I ]+Xcf [I, −W ],

(ii)

J∗ =
[
I − WXcf −(I − WXcf )W

−Xcf XcfW

]

=
([
I

0

]
−
[
W

I

]
Xcf

)
[I, −W ].

Formulas (i) and (ii) in the above Theorem 6.8 can be viewed as perturbations of the
commonly used mappings

R = [0, I ] and J0 =
[
I

0

]
[I, −W ] = I − PR.

Estimates of KTG

We estimate below how much we can overestimateKTG when using R and J instead
of their optimal values R∗ and J∗. To do this, assume that
“PR is bounded in M̃–norm”; that is,

vT (PR)T M̃(PR)v ≤ ηM̃ vT M̃v.

Because PR is a projection, the same norm bound holds for I − PR (due to Kato’s
lemma 3.6); that is, we have vT (I − PR)T M̃(I − PR)v ≤ ηM̃ vT M̃v.
Letting

J =
[
I

0

]
,

the latter norm bound can equivalently be stated as

vTf J
T M̃Jvf ≤ 1

1− γ 2
M̃

inf
vc
(Jvf + Pvc)

T M̃(Jvf + Pvc),

for γ 2
M̃

= 1− (1/ηM̃) ∈ [0, 1). The left-hand side expression actually simplifies and
the estimate reduces to

vTf M̃ff vf ≤ 1

1− γ 2
M̃

vT M̃v, for any v = Jvf + Pvc. (6.18)

With

J =
[
I

0

]
,
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we have J∗ = (J − PXcf )[I, −W ]. Based on inequality (6.18) for v := (J−
PXcf )̂vf , v̂f = [I, −W ]v, we get

v̂Tf (J − PXcf )
T M̃(J − PXcf )̂vf ≥

(
1− γ 2

M̃

)
v̂Tf J

T M̃J v̂f

=
(
1− γ 2

M̃

)
((I − PR)v)T M̃(I − PR)v.

We used the fact that J v̂f = J [I, −W ]v = (I − PR)v.
The latter implies the following important lower bound for KTG (recall that

Q = PR),

KTG = sup
e

eT J T∗ M̃J∗e

eTAe
≥
(
1− γ 2

M̃

)
sup

e
µM̃ (Q, e).

That is, the following result holds.

Theorem 6.9. Assume that P is bounded in the M̃-norm as in (6.18). Then the fol-

lowing relations hold,

(
1− γ 2

M̃

)
sup

e
µM̃(Q, e) ≤ KTG ≤ sup

e
µM̃(Q, e).

The latter result shows that the two-grid convergence factor bound predicted by the
measure (see (6.14)) can overestimate ̺TG at the most by

1− 1

supe µM̃(Q, e)
≤ 1−

1− γ 2
M̃

KTG

= ̺TG + γ 2
M̃
(1− ̺TG) = ̺TG

(
1− γ 2

M̃

)
+ γ 2

M̃
.

We show in the next section, that under reasonable assumptions (which guarantee
good two-grid convergence) that γM̃ cannot get too close to one. Thus the overesti-
mation of KTG by supe µM̃(Q, e) cannot be too pessimistic.

Estimating P in M̃-norm

We show in the present section how bad γ 2
M̃
, or equivalently, η = 1/(1− γ 2

M̃
), could

actually get. The following result holds.

Theorem 6.10. Let

P =
[
W

I

]
, R = [0, I ].

Assume that PR is bounded in the A-norm; that is, for a constant γ ∈ [0, 1), we have

‖PRv‖2A ≤ 1

1− γ 2 vTAv,

and that the compatible relaxation (or CR for short) for Aff is convergent; that is,

for another constant ̺CR ∈ [0, 1) we also have ‖I − A
1/2
ff M

−T
ff A

1/2
ff ‖ =
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‖I − A
1/2
ff M

−1
ff A

1/2
ff ‖ ≤ ̺CR, or equivalently, the symmetrized smoother M̃ff =

Mff (M
T
ff +Mff − Aff )

−1MT
ff satisfies

vTfAff vf ≤ vTf M̃ff vf ≤ 1

1− ̺2CR

vTfAff vf .

Similarly, assume thatMcc is a convergent smoother for Acc in the Acc-norm, which

implies that

vTc Mcc

(
MT

cc +Mcc − Acc

)−1
MT

ccvc ≥ vTAccvc. (6.19)

Then, the following norm bound holds,

‖PRv‖2
M̃

≤ η vT M̃v,

with η ≤ (1/(1− γ 2))(1/(1− ̺2CR)).

Proof. The estimate we are interested in reduces to the following one,

vTc P
T M̃Pvc ≤ η vTc SM̃vc = η vTc Mcc

(
Mcc +MT

cc − Acc

)−1
MT

ccvc,

because SM̃ = Mcc(Mcc +MT
cc − Acc)

−1MT
cc is the Schur complement of M̃ . Fur-

thermore, using formula (6.16), we see that the above norm estimate reduces to

vTc
(
MT

ff W+Afc

)T (
Mff +MT

ff −Aff

)−1(
MT

ff W+Afc

)
vc ≤ (η−1) vTc SM̃vc. (6.20)

Alternatively, in terms of M̃ff = Mff (M
T
ff +Mff − Aff )

−1MT
ff , we have

vTc
(
W +M−T

ff Afc

)T
M̃ff

(
W +M−T

ff Afc

)
vc ≤ (η − 1) vTc SM̃vc.

Because by assumption,

wTf M̃ff wf ≤ 1

1− ̺2CR

wTfAff wf ,

it is clear that it is sufficient to prove the bound

1

1− ̺2CR

vTc
(
W +M−T

ff Afc

)T
Aff

(
W +M−T

ff Afc

)
vc ≤ (η − 1) vTc SM̃vc.

Also, by assumption, we have that P is bounded in the A-norm, that is, that for a
constant γ ∈ [0, 1), we have

vTc P
T APvc ≤ 1

1− γ 2 vTc SAvc.
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Here, SA = Acc − AcfA
−1
ff Afc is the Schur complement of A. The latter estimate,

combined with the identity (recalling that

P =
[
W

I

]
),

vTc P
T APvc = (Pvc)

T

[
Aff 0
Acf I

] [
A−1

ff 0
0 SA

] [
Aff Afc

0 I

]
Pvc

= vTc SAvc + vTc (Acf +WTAff )A
−1
ff (AffW + Afc)vc,

imply

vTc (Acf +WTAff )A
−1
ff (AffW + Afc)vc ≤ γ 2

1− γ 2 vTc SAvc,

or equivalently,

vTc
(
W + A−1

ff Afc

)T
Aff

(
W + A−1

ff Afc

)
vc ≤ γ 2

1− γ 2 vTc SAvc. (6.21)

Then, because the compatible relaxation is convergent, based on the identity

I − M̃−1
ff Aff =

(
I −M−T

ff Aff

)(
I −M−1

ff Aff

)
,

the assumption on M̃ff

vTfAff vf ≤ vTf M̃ff vf ≤ 1

1− ̺2CR

vTfAff vf ,

can be reformulated as ‖I −A1/2ff M
−1
ff A

1/2
ff ‖ = ‖I −A1/2ff M

−T
ff A

1/2
ff ‖ ≤ ̺CR. Hence,

we have the estimate

wTf
(
M−T

ff − A−1
ff

)T
Aff

(
M−T

ff − A−1
ff

)
wf ≤ ̺2CR wTfA

−1
ff wf . (6.22)

Using (6.22) for wf = Afcvc, together with (6.21) and the triangle inequality,
gives

vTc
(
W +M−T

ff Afc

)T
Aff

(
W +M−T

ff Afc

)
vc

= vTc
(
W + A−1

ff Afc +
(
M−T

ff − A−1
ff

)
Afc

)T
Aff

×
(
W + A−1

ff Afc +
(
M−T

ff − A−1
ff

)
Afc

)
vc

=
∥∥(M−T

ff − A−1
ff

)
(Afcvc)+

(
W + A−1

ff Afc

)
vc
∥∥2
Aff

≤
(
̺CR

(
vTc AcfA

−1
ff Afcvc

)1/2 + γ√
1− γ 2

(vTc SAvc)
1/2

)2
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≤
(
̺2CR + γ 2

1− γ 2
)[

vTc AcfA
−1
ff Afcvc + vTc SAvc

]

=
(
̺2CR + γ 2

1− γ 2
)

vTc Accvc

≤ (1− ̺2CR)(η − 1) vTc SM̃vc.

Above, we used also the elementary inequality (ab + cd)2 ≤ (a2+ c2)(b2+ d2), the
fact that SA + AcfA

−1
ff Afc = Acc, and inequality (6.19). This shows that we can let

ηM̃ = η = 1+ 1

1− ̺2CR

(
̺2CR + γ 2

1− γ 2
)

= 1

1− γ 2
1

1− ̺2CR

. �

Therefore, for γ 2
M̃

= 1− 1/η, we have

1− γ 2
M̃

= 1

η
= (1− γ 2)(1− ̺2CR);

that is, γ 2
M̃
cannot get too close to one.

Corollary 6.11. Assume that we use the “c”–“f” relaxation (as in (6.12)) and that

we can construct a

P =
[
W

I

]

such that for R = [0, I ],

• PR is bounded in the M̃ norm.

Then, a necessary condition for a two-grid convergence is that

• The compatible relaxation be convergent, or equivalently that M̃ff be spectrally

equivalent to Aff ,

and that

• PR be bounded in A-norm.

Proof. We proved (in Theorem 6.9) that ifQ = PR is bounded in the M̃-norm, then

KTG ≥
(
1− γ 2

M̃

)
sup

e
µM̃(Q, e).

Thus, the measure µM̃(Q, e) is bounded by KTG/(1 − γ 2
M̃
). Boundedness of the

measure ([FV04]) implies that the compatible relaxation is convergent and that PR is
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bounded in the A-norm. This is seen as follows. Based on the fact that (I −Q)e =
(I − PR)e = Jvf , for any e = Jvf , we get

sup
e
µM̃(Q, e) = sup

e

eT (I −Q)T M̃(I −Q)e
eTAe

≥ sup
e=Jvf

vTf J
T M̃Jvf

vTf J
T AJvf

= 1

1− ̺2CR

.

That is, (1/(1−̺2CR)) ≤ (KTG/(1−γ 2
M̃
)). This shows that the compatible relaxation

convergence factor is bounded as follows.

̺CR = ‖I − A1/2ff M
−1
ff A

1/2
ff ‖ ≤

√

1−
1− γ 2

M̃

KTG

.

Because by assumptionM is a convergent smoother in the A-norm for A, hence
M̃ − A is positive semidefinite, we also have,

eT (I − PR)TA(I − PR)e ≤ eT (I − PR)T M̃(I − PR)e ≤ ηM̃KTG eTAe.

That is, I − PR, hence PR as a projection (due to Kato’s lemma 3.6)) is bounded in
the A-norm by ηM̃ KTG. �

We also showed in Theorem 6.10, that PR is bounded in the M̃-norm, if (i) PR is
bounded in the A-norm, and (ii) the compatible relaxation is convergent.
We note that very oftenM is such that M̃ is spectrally equivalent toD (the diagonal

of A). For example, the following conditions onM lead to an M̃ which is spectrally
equivalent to D.

Proposition 6.12. LetM be such that

vT (M +MT − A)v ≥ δ0 vTDv,

and

‖D−(1/2)MD−(1/2)‖ ≤ δ1.

Then M̃ is spectrally equivalent to D. In particular, for the example M = D + L
being the lower-triangular part of A = D + L + LT , giving rise to the forward

Gauss-Seidel smoother, then δ0 = 1 because then M + MT − A = D, and δ1 is

bounded by the maximum number of nonzero entries per row of A.

Proof. We have

vT M̃v = vTMT (M +MT − A)−1Mv

≤ δ−10 (D1/2v)TD−(1/2)MTD−(1/2)D−(1/2)MD−(1/2)(D1/2v)

≤ δ21

δ0
vTDv.
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On the other hand, for X = D−(1/2)MD−(1/2), we have

2vTXv = vT (XT +X)v ≥ δ0vT v.

Therefore, with v := X−1v, we get

δ0 ‖X−1v‖2 ≤ 2(X−1v)T v ≤ 2 ‖X−1v‖‖v‖.

That is, ‖X−1‖ = ‖X−T ‖ ≤ 2/δ0. Then,

vTD1/2M̃−1D1/2v = vT (X−1 +X−T −X−TD−(1/2)AD−(1/2)X−1)v

≤ 2‖X−1‖vT v ≤ 4

δ0
vT v.

Thus, we proved the spectral equivalence relations,

δ0

4
vTDv ≤ vT M̃v ≤ δ21

δ0
vTDv. �

Proposition 6.13. Assume that

P =
[
W

I

]

is such that
∥∥D1/2ff WD

−(1/2)
cc

∥∥ ≤ C,

where Dff andDcc are the diagonals of Aff and Acc. Consider a “c”–“f” smoother

M =
[
MT

ff Afc

0 MT
cc

]

and assume that Mff and Dff , as well as Mcc and Dcc, satisfy the conditions of

Proposition 6.12. Then,M and

D =
[
Dff 0

0 Dcc

]

satisfy the conditions of Proposition 6.12, as well. Moreover, PR with R = [0, I ] is

bounded in the M̃-norm.

Wefirst comment on the assumption onP (orW ). Very often in practice, assuming
good CR convergence (note that then Aff is spectrally equivalent to Dff ), we can
choose a sparseW ≈ −A−1

ff Afc. Thus the estimate

∥∥D1/2ff WD
−(1/2)
cc

∥∥ ≤
∥∥D1/2ff A

−1
ff D

1/2
ff

∥∥∥∥D−(1/2)
ff AfcD

−(1/2)
cc

∥∥

≤ cond(D−(1/2)Aff )
∥∥∥∥D−(1/2)

ff AfcD
−(1/2)
cc

∥∥ ≤ const,

reduces to ‖D−(1/2)
ff AfcD

−(1/2)
cc ‖ to be uniformly bounded, which is the case for any

sparse s.p.d. matrix A.
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Proof. We have
[

wf
wc

]T
M

[
vf
vc

]
= wTf

(
MT

ff vf + Afcvc
)
+ wTc M

T
ccvc

≤ δ1
[
wTfDff wf

]1/2[
vTfDff vf

]1/2 + wTfAfcvc

+ δ1
[
wTc Dccwc

]1/2[
vTc Dccvc

]1/2
.

The boundednessofD−(1/2)MD−(1/2) follows then from the boundednessofD−(1/2)
ff

AfcD
−(1/2)
cc due to the sparsity of A. The coercivity also holds, because

vT (M +MT − A)v = vTf (Mff +MT
ff − Aff )vf + vTc (Mcc +MT

cc − Acc)vc

≥ δ0
[
vTfDff vf + vTc Dccvc

]

= δ0 vTDv.

In the present case of M leading to an M̃, which is spectrally equivalent to D (the
diagonal of A), the condition on PR to be bounded in the M̃-norm is equivalent to
PR being bounded in the D-norm. The latter simply means

vTc (W
TDffW +Dcc)vc ≤ ηD vTc Dccvc.

That is, ‖D1/2ff WD
−(1/2)
cc ‖ ≤

√
ηD − 1, which holds by assumption. �

Proposition 6.14. Consider the smoother

M =Mτ =
[
MT

ff Afc

0 τ Dcc

]

for τ > 0 sufficiently large. Assume thatMff and Aff satisfy the conditions of Propo-

sition 6.12. Then

PR =
[
W

I

]
[0, I ]

is bounded in the M̃-norm as long as τ is sufficiently large and the blockW of P is

such that ‖D1/2ff WD
−(1/2)
cc ‖ ≤ const.

Proof. The estimate (6.20) reads in the present setting

vTc
(
MT

ff W + Afc

)T (
Mff +MT

ff − Aff

)−1(
MT

ff W + Afc

)
vc

≤ (η − 1) τ vTc Dcc

(
2Dcc − 1

τ
Acc

)−1
Dccvc. (6.23)

Note that the left-hand side is independent of τ . Then, if τ is sufficiently large, we
have thatDcc−(1/τ)Acc is positive definite andDcc(2Dcc−(1/τ)Acc)

−1Dcc ≃ Dcc.
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It is clear then that it is sufficient to show

sup
vc

vTc
(
MT

ff W + Afc

)T (
Mff +MT

ff − Aff

)−1(
MT

ff W + Afc

)
vc

vTc Dccvc
≤ const.

First, fromProposition 6.12,we haveMff (Mff +MT
ff −Aff )

−1MT
ff ≃ Dff ≤ const.

Estimate (6.23) reduces then to
∥∥D1/2ff

(
W +M−T

ff Afc

)
D−(1/2)

cc

∥∥ ≤ const.

Then, noticing that ‖D1/2ff M
−T
ff D

1/2
ff ‖ ≤ const, (see the proof of Proposition 6.12),

and by assumption ‖D(1/2)ff WD
−(1/2)
cc ‖ ≤ const, based on the triangle inequality, we

arrive at,
∥∥D1/2ff

(
W +M−T

ff Afc

)
D−(1/2)

cc

∥∥ ≤
∥∥D1/2ff WD

−(1/2)
cc

∥∥+
∥∥D1/2ff M

−T
ff AfcD

−(1/2)
cc

∥∥

≤ C +
∥∥D1/2ff M

−T
ff D

1/2
ff

∥∥∥∥D−(1/2)
ff AfcD

−(1/2)
cc

∥∥

≤ C + C
∥∥D−(1/2)

ff AfcD
−(1/2)
cc

∥∥.

Finally noticing that ‖D−(1/2)
ff AfcD

−(1/2)
cc ‖ ≤ const (equal to the maximum number

of nonzeros per row) for any sparse matrix, the desired result then follows. �

In conclusion, for smoothersMτ (and τ > 0 sufficiently large) the M̃-boundedness
of PR is straightforward to achieve based on mild restrictions onW (the block of P ).
Thus, the conditions in Corollary 6.11 onMff and PR are necessary practical guide-
lines to guarantee a good two-grid convergence. In particular, this holds for theHBMG
(i.e., τ = ∞) two-level method in (6.13).

6.9 AMGe: An element agglomeration AMG

In this section, we consider the practically important case when a s.p.d. matrix A can
be assembled from local symmetric positive semidefinitematrices {Aτ }, where τ runs
over a set of “elements” T . The latter means that each τ is a set of degrees of freedom
(indices) and {τ } provide an overlapping partition of the set of degrees of freedom (or
the given index set). Let vτ stand for the restriction of a vector v to the set of indices τ .
Then, by “assembly” we mean that the quadratic form vTAv can be computed by
simply summing up the local quadratic forms vTτ Aτvτ , or more generally,

vTAw =
∑

τ

vTτ Aτwτ ,

for any two vectors v and w.
AMG methods that exploit element matrices were proposed in [AMGe] and

[Ch03]; see also [Br99]. Methods that generate element matrices on coarse levels
and hence allow for recursion were proposed in [JV01] and [Ch05]; see also [VZ05].



226 6 Topics on Algebraic Multigrid (AMG)

In what follows, we focus on the second class of methods in as much as they allow
for recursion.
Given the set of elements {τ }, it is natural to consider a coarsening procedure that

first constructs agglomerated elements T by joining together a small number of con-
nected fine-grid elements τ . Here, T is viewed as a set of fine degrees of freedom (or
fine dofs). If we can select a subset of the degrees of freedom to define the coarse dofs,
denoted byNc, such that everyT has some coarse dofs, then T ∩Nc defines the actual
coarse element. Finally, if we are able to construct a set of local interpolationmatrices
PT for every T such that PT maps a vector defined on the coarse set T ∩ Nc into a
vector defined on T , and in addition the collection of {PT } is compatible in the sense
that for every shared dof, the values of PT (vc)T∩Nc

at that dof are the same for any
T that shares it, the resulting global interpolation matrix P exhibits the property that

vTc P
T APvc =

∑

T

((vc)T∩Nc
)T P TT AT PT (v

c)T∩Nc
.

Here, AT are assembled from {Aτ } for all τ s that form T ; that is,

vTTATwT =
∑

τ⊂T
(vτ )

TAτwτ .

The matrices P TT AT PT naturally define coarse element matrices. The latter property
allows for recursive use of the respective algorithm.

6.9.1 Element-based construction of P

We next study ways to construct element-based interpolation matrices P . We adopt
a columnwise approach; that is, let P = (ψ i) for i = 1, . . . , nc be the columns of P
that have to be computed. In general, we are looking at

P =
[
W

I

]

where the identity block I defines the coarse dofs as subset of the fine dofs. Then,

ψ i =
[

wi
ei

]

where ei is the ith unit coordinate vector in Rnc .
We have to first select the sparsity pattern of the component wi and second, the

actual entries of wi have to be eventually computed. Actually, to begin with, first we
have to choose the coarse dofs in terms of the fine-grid dofs, which reflects the choice
of the identity block in the block structure of P .
The algorithm that we describe in what follows exploits the coarsening process

that will be guided by an “algebraically smooth” vector x. For example, x can be
an approximation to the minimal eigenvector of the problem Ax = λminMx, where
M = M(M + MT − A)−1MT is the symmetrized smoother that appears in the
resulting multigrid method.
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Assume that an element agglomeration step has been performed (see Section
1.9.7) and a set of agglomerated elements {T } has been constructed. Based on the
overlapping sets {T }, we can partition the fine-degrees of freedom into nonoverlap-
ping groups {I} such that the dofs in a given group I belong to the same sets of
agglomerated elements T and only to them. Based on the vector x = (xi), we look
at the numbers dix2i , where di is the ith diagonal entry of A. For every group I, we
select a dof imax as a coarse one such that dimaxx

2
imax

= maxi∈I dix2i . We can select
more dofs by allowing a portion of the dofs in a given group I with values close to
dimaxx

2
imax

to form the set of coarse dofsNc.
Assume that a coarse set Nc has been selected. We next decide on the sparsity

pattern of ψ i . Because, we are restricted to choose PT that are element-compatible
in a given sense (explained earlier), the nonzero entries of a column ψ i should be in
∪T for all T s that share the group I where I is the unique set that contains i. From
the set ∪{T : T ∩ I 
= ∅}, we exclude all coarse dofs different from i as well as all
other dofs that belong to a different T which does not intersect I. The resulting set
defines the row indices of ψ i where it is allowed to have nonzero entries.
Now, having the sparsity pattern of all ψ i defined, we can compute the actual

entries of ψ i . We adopt the following local procedure. For every agglomerate T and
all coarse dofs i ∈ T , we first compute a P T = (ϕi) where ϕi (defined only on T )
have the same sparsity pattern as ψ i restricted to T . The vectors ϕi are computed by
solving the following local constrained minimization problem,

∑

i∈T∩Nc

ϕTi AT ϕi �→ min, (6.24)

subject to
∑

i∈T∩Nc

xi ϕi = xT . (6.25)

It is clear that xi are the ith entries of x. This is the case, because we seek ϕi to form a
Lagrangian basis on T ; that is,ϕi has zero entry at any other coarse dof different from i
and has entry one at the particular coarse dof i. Thus the ith row of the above constraint
on the left equals xi and on the right equals the ith entry of x (which is xi). The above
constrained minimization problem has a small size and obviously has a computable
solution. The solution {ϕi} depends on T , which we indicate by ϕi = ϕ

(T )
i .

After ϕi = ϕ
(T )
i are computed, we are not yet done with the construction of PT .

The problem is that we cannot let ψ i |T = ϕ
(T )
i because ϕ

(T )
i for different T s do not

necessarily match at dofs that are shared by two (or more) agglomerates. To fix this
problem, we choose weights dT , j = ‖AT ‖/(

∑
T ′: j∈T ′ ‖AT ′‖) for every j ∈ T .

Other choices are also possible, but the important thing is to ensure the following
averaging property,

∑

T : j∈T
dT , j = 1.
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Then, the j th entry of ψ i equals the averaged value

∑

T : j∈T
dT , j

(
ϕ
(T )
i

)
j
.

The above formula defines ψ i uniquely with nonzero entries only at its prescribed
support. Finally, we notice, that

∑
i xiψ i = x holds because the averaging preserves

the constraint. Due to the same reason, {ψ i} form a Lagrangian basis; that is, ψ i
vanishes at all coarse dofs different from i and has value one at coarse dof i. The
latter property translates to the fact that P = (ψ i) admits the block form

[
W

I

]
.

6.9.2 On various norm bounds of P

In this section, following [KV06], we derive energy norm bounds for projections
Q = PR, whereP is an interpolation andR is a restrictionmapping such thatRP = I .

A general local to global norm bound

We recall our main assumptions. We are given a set of coarse degrees of freedom
(or coarse-grid dofs) Nc. We view Nc, as a subset of N . We have vectors (or grid
functions) defined on N (fine-grid vectors) and vectors defined on Nc (coarse-grid
vectors). Let n = |N | and nc = |Nc|, and nc < n be the respective size (cardinality)
ofN and Nc. On each agglomerated element T , let nT = |T | and nT ,c = |T ∩ Nc|.
The space of coarse-grid vectors is identified with Rnc , and similarly, the fine-
grid vectors are identified with Rn. We have global mappings R : Rn �→ Rnc and
P : Rnc �→ Rn. Respectively, there are local mappings RT : RnT �→ RnT ,c and
PT : RnT ,c �→ RnT such that RT restricts a local fine-grid vector defined on T to
a local (coarse-grid) vector defined on T ∩ Nc, whereas the local interpolation map-
ping PT interpolates a local coarse vector defined on T ∩Nc to vectors defined on T .
Let I cT : RnT ,c �→ Rnc be the extension by zero of coarse vectors defined on T ∩ Nc
to a vector defined on Nc. Therefore, (I cT )

T restricts a coarse vector defined on Nc
to a coarse vector defined on T ∩ Nc. The following matrix definitions are then in
place,

RT =
[
0
I

]
} N \ Nc
} Nc

, RTT =
[
0
I

]
} (N \ Nc) ∩ T
} Nc ∩ T , and I cT =

[
0
I

]
} Nc \ T
} T ∩ Nc

.

We seek local interpolation PT that has the following form,

PT =
[
∗
I

]
} T \ Nc
} T ∩ Nc.

(6.26)

Note that, in general, PT may not agree on dofs that are shared by more than one
subdomain T . That is why we need a partition of unity nonnegative diagonal weight
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matricesDT = (dT , i)i∈T that are defined for vectors restricted to T . Let also

IT =
[
0
I

]
} N \ T
} T

,

be the n × nT matrix representing extension by zero outside of T . It is clear that
vT = ITT v and A =

∑
T ITAT I

T
T . Note that we have also assumed that the row

indices of PT are in T . Partition of unity means that

∑

T

ITDT I
T
T = I.

In other words,
∑
T : i∈T dT , i = 1 for every dof i. With the help of the partition of

unity diagonal matrices, we are in a position to define a global P as follows,

P =
∑

T

ITDT PT
(
I cT
)T
. (6.27)

The globalQ = PR takes the form

Q =
∑

T

ITDT PTRT I
T
T .

The latter holds because RT ITT = (I cT )
TR. We can also see that RP = I , which

implies thatQ is a projection.

From local to global estimates

We assume that for another s.p.d. matrix M , which can be assembled from {MT } in
the same way as A, there is a stable local procedure that defines PT such that for a
mapping RT : RT PT = I , we have the bound

(vT − PTRT vT )
TMT (vT − PTRT vT ) ≤ ηT vTTAT vT , (6.28)

for any vT ∈ RnT . A simple example ofM can be the (scaled) diagonal of A. Then,
MT will be the (scaled) diagonal of AT . Another choice isMT = AT . In either case,
we assume that PTRT recovers exactly any potential null vectors of AT . For given
local matrices {MT }, we let

dT , i = ‖MT ‖∑
T

′ : i∈T ′ ‖MT ′ ‖ . (6.29)

Assuming that PT , or rather QT = PTRT , are bounded in the MT -energy norm in
terms of AT as in (6.28), we prove a similarM-energy bound for the global P .
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Based on the partition of unity property of {DT }, we havev−Qv =
∑
T ITDT (I−

PTRT )I
T
T v. Hence, letting wT = (I − PTRT )ITT v, we get

((I −Q)v)TM(I −Q)v = ((I −Q)v)TM
∑

T

ITDT (I − PTRT )ITT v

≤ (((I −Q)v)TM(I −Q)v)1/2

×
((∑

T

ITDTwT

)T ∑

T
′
I
T

′M
T

′ IT
T

′
∑

T

ITDTwT

)1/2
.

Introduce for a moment the quantity (cf. [Man93] for a different application)

K = sup
(wT : PTRT wT=0)

∑
T

′
∥∥IT
T

′
∑
T ITDTwT

∥∥2
M
T

′
∑
T wTTMTwT

. (6.30)

Then the following bound on P (orQ = PR) holds.

((I −Q)v)TM(I −Q)v ≤
∑

T
′

(∑

T

ITDTwT

)T
I
T

′M
T

′ IT
T

′
∑

T

ITDTwT

≤ K
∑

T

(
(I − PTRT )ITT v

)T
MT (I − PTRT )ITT v

≤ K
∑

T

ηT vT ITAT I
T
T v

≤ K
(
max
T

ηT
)

vTAv. (6.31)

Next, we show how to estimate K in (6.30).

Lemma 6.15. Let Cond(MT ) = λmax(MT )/λmin(MT ) denote the condition number

ofMT , and let κ ≥ 1 be the maximum number of subdomains T that share any given

dof. Then, assuming the specific form (6.29) of the weight matrices, the quantity K

defined in (6.30) can be estimated as K ≤ κ maxT Cond(MT ).

Proof. Let wT , i stand for the ith entry of wT . We have

∥∥∥∥ITT ′
∑

T

ITDTwT

∥∥∥∥
2

M
T

′
≤ ‖M

T
′ ‖
∥∥∥∥ITT ′

∑

T

ITDTwT

∥∥∥∥
2

= ‖M
T

′ ‖
∑

i∈T ′

( ∑

T : i∈T
dT , iwT , i

)2

=
∑

i∈T ′

( ∑

T : i∈T
‖MT ′ ‖1/2dT , iwT , i

)2
.
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Therefore,

∑

T
′

‖IT
T

′
∑

T

ITDTwT ‖2M
T

′ ≤
∑

T
′

∑

i∈T ′

( ∑

T : i∈T
‖MT ′ ‖1/2dT , iwT , i

)2
.

Because ‖M
T

′ ‖dT , i ≤ ‖MT ‖ for i ∈ T ∩ T ′
and

∑
T : i∈T dT , i = 1 using the

Cauchy–Schwarz inequality and noting that wT = (I − QT )wT , (QT = PTRT ),
we get

∑

T
′

∥∥∥∥ITT ′
∑

T

ITDTwT

∥∥∥∥
2

M
T

′
≤
∑

T
′

∑

i∈T ′

( ∑

T : i∈T
‖MT ‖1/2(dT , i)1/2|wT , i |

)2

≤
∑

T
′

∑

i∈T ′

∑

T : i∈T
‖MT ‖w2T , i

∑

T : i∈T
dT , i

=
∑

T
′

∑

i∈T ′

∑

T : i∈T
‖MT ‖w2T , i .

Therefore, withQTwT = 0, we have

∑

T
′

∥∥∥∥I
T

T
′
∑

T

ITDTwT

∥∥∥∥
2

M
T

′
≤
∑

T
′

∑

i∈T ′

∑

T : i∈T
Cond(MT )λ

+
min(MT ) w

2
T , i

≤ max
T
Cond(MT )

∑

T
′

∑

i∈T ′

∑

T : i∈T
λ+
min(MT ) w

2
T , i

= max
T
Cond(MT )

∑

T

∑

i∈T
λ+
min(MT ) w

2
T , i

∑

T
′ : i∈T∩T ′

1

≤ max
T
Cond(MT ) κ

∑

T

∑

i∈T
λ+
min(MT ) w

2
T , i

= max
T
Cond(MT ) κ

∑

T

λ+
min(MT )‖wT ‖2

= max
T
Cond(MT ) κ

∑

T

λ+
min(MT )‖(I −QT )wT ‖2

≤ max
T
Cond(MT ) κ

∑

T

‖(I −QT )wT ‖2MT

= max
T
Cond(MT ) κ

∑

T

wTTMTwT .

Thus,we showed thatK ≤ κ maxT Cond(MT )where κ ≥ 1 is themaximumnumber
of subdomains that share any given dof, and Cond(MT ) = λmax(MT )/λ

+
min(MT ),

denotes the effective condition number ofMT .More specifically,λ
+
min(MT ) > 0 is the

minimal (nonzero) eigenvalue ofMT in the subspace Range (PTRT ); that is, we have

λ+
min(MT ) ‖wT ‖2 ≤ wTTMTwT , for all wT = (I − PTRT )wT .
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Note that to have λ+
min(MT ) > 0, this means that the projection PTRT should

recover exactly the potential null vectors ofMT that we have assumed. �

In summary, estimate (6.31), based on Lemma 6.15, gives the following main
result.

Theorem 6.16. Let M be an s.p.d. matrix such that the local estimates (6.28) hold.

Let P be defined by (6.27) based on the local interpolation matrices {PT } and the

diagonal weight matrices {DT } with coefficients given in (6.29). Then the following

global norm bound holds,

vT (I −Q)TM(I −Q)v ≤ κ max
T

Cond(MT )
(
max
T
ηT

)
vTAv,

where κ ≥ 1 is the maximal number of subdomains T that contain any given

dof. Here, Cond(MT ) stands for the effective condition number of MT defined as

λmaxMT /λ
+
min(MT ), where λ+

min is the minimal eigenvalue of MT in the subspace

Range (I − QT ). This minimal eigenvalue is positive if QT = PTRT recovers ex-

actly the potential null vectors ofMT .

In addition, suppose that the local matricesMT have uniformly bounded effective
condition number; that is,

max
T
Cond(MT ) ≤ CM . (6.32)

This is trivially the case, for example, if M is the diagonal of A, hence MT is the
diagonal of AT . Furthermore, let

vTAv ≤ vTMv for all v ∈ R
n, (6.33)

which can be ensured after proper scaling of M . Suppose also that the constants in
the local estimates (6.28) are bounded

max
T
ηT ≤ Cη . (6.34)

Then the global estimate in Theorem 6.16 shows thatA is spectrally equivalent toM
in the subspace Range(I−Q). The latter space is complementary to the coarse space.
Therefore, the following corollary holds (based on Theorem 3.25).

Corollary 6.17. The two-grid method based on P defined by (6.27) and a smoother

M satisfying (6.32) through (6.34) is optimally convergent with a convergence factor

bounded by 1− 1/θ , where θ = κ CM Cη.

On a local element level, for finite element matrices AT , it is very often the case
when AT and its diagonalMT are spectrally equivalent (independently of the mesh-
size) on the subspace complementary to the potential null space ofAT . In such a case,
assuming that PTRT recovers exactly the potential null space of AT , we also have
thatMT and AT are spectrally equivalent on the subspace Range (I −PTRT ). Then,
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assume that we have established a local energy boundedness of I − PTRT , that is,
an estimate

‖(I − PTRT )vT ‖2AT ≤ η′
T vTTAT vT ,

for some mesh-independent constants η
′
T . Due to the spectral equivalence of AT and

MT on the subspace Range (I − PTRT ), we then have similar estimates for MT ;
that is,

‖(I − PTRT )vT ‖2MT ≤ ηT vTTAT vT .

Based on the above Corollary 6.17, we obtain then a uniform two-grid conver-
gence for these finite element matrices A. This covers the case of elliptic-type finite
element matrices, either scalar elliptic, or systems such as elasticity. For the scalar
elliptic case, the assumption on PTRT is that it should recover locally the constant
vectors exactly, whereas for the elasticity case, the assumption is that PTRT should
recover the so-called rigid bodymodes (or r.b.m.) locally. In 2D, we have three r.b.m.,
whereas in 3D, there are six such modes.
The rest of this section dealswith the practical construction of interpolation,which

fits the null vectors of AT exactly. One way to do this is to first coarsen the null space
and then proceed with the rest of the interpolation as described below.
Assume an initial coarse gridN 0

c such that its restriction to everyT is rich enough;
that is, there are at least as many coarse dofs per element T as the dimension of the
null space of AT . For example, in the 3D elasticity example, it is sufficient to have
six coarse dofs per element T . Let P0, T be local interpolation matrices (having the
form (6.26)) such that a subset of its columns provides a basis for the nullspace of
AT . Together with the restriction mappingR0, T = [0, I ] and the projectionQ0, T =
P0, TR0, T based on P0,T using averaging, we can define a global initial interpolation
matrix P0 via (6.27). We construct interpolation matrices PT that are defined on a
complementary coarse gridN

′
c; that is,N

′
c∩N 0

c = ∅. The resulting composite coarse
grid Nc equals N 0

c ∪ N
′
c. It is natural to assume that for every T , R0, T PT = 0. In

particular, we assume that PT have zero rows corresponding to the set N 0
c (viewed

as a subset of the fine-grid dofs).
Define the composite interpolation

P T = [P0, T , PT ] ,

and the composite restriction mapping

RT =
[

R0, T
RT (I − P0, TR0, T )

]
.

Then the following simple identity holds,

I − P TRT = (I − PTRT )(I − P0, TR0, T ). (6.35)

Therefore, the composite interpolation satisfies vT = P TRT vT for any vT in the null
space of AT as needed in the local estimate (6.28) (with MT = AT ). Furthermore,
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QT = P TRT is a projection. Indeed,

RT P T =
[

R0, T
RT (I − P0, TR0, T )

]
[P0, T , PT ]

=
[

R0, T P0, T R0, T PT
RT (I − P0, TR0, T )P0, T RT (I − P0, TR0, T )PT

]

=
[
R0, T P0, T 0

0 RT PT

]

=
[
I 0
0 I

]
.

We used the fact that R0, T P0, T = I , RT PT = I , and R0, T PT = 0.
Now, let Q be the global mapping defined using the partition of unity diagonal

matrices as in (6.27). The conclusion of Theorem 6.16 is that based on local estimates
such as

‖(I −QT )vT ‖2AT ≤ ηT ‖vT ‖2AT ;

the global one,

‖(I −Q)v‖2A ≤ η ‖v‖2A,

follows, where η depends only on local quantities (ηT and the nonzero spectrum
of AT ).

6.10 Multivector fitting interpolation

In Section 6.2, we described an algorithm that constructs a P that fits (approximately)
one given “algebraically” smooth vector in the sense of Proposition 6.2. A procedure
that gives a P that fits a given vector exactly, both locally and globally, was described
in Section 6.9.
Assume now, that we have constructed a P that contains in its range a number

of vectors x1, . . . , xm−1, and we want to construct a modified P that keeps in its
range the previous vectors x1, . . . , xm−1 and one additional vector xm. The idea is
(cf., [VZ05]) to construct a Pnew = Pm and augment P to P = [P, Pm] such that
P has a full column rank. To ensure that P has a full column rank, let us assume (by
induction) that P has the following block form P = [P1, . . . , Pm−1], and overall:

P =

⎡
⎢⎢⎢⎢⎢⎣

∗ ∗ . . . ∗
∗ ∗ . . . I
...
...
. . . 0

∗ I 0 0
I 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

} N \
(
N1 ∪ . . .Nm−1

)

} Nm−1

}
...

} N2
} N1

·
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That is, every block column Pk of P comes with its own coarse set Nk that is com-
plementary to the previous coarse sets. This hierarchical structure ensures that the
resulting P has a full column rank.
The next step is clear then. We compute the interpolation error e = em−1 in the

following steps.

(i) Let e0 = xm.
(ii) For k = 1, . . . , m− 1 compute

ek = ek−1 − Pk(ek−1|Nk−1).

We notice that ek vanishes at N1 ∪ · · · ∪ Nk−1.
At the end, e = em−1 vanishes at the current global coarse-gridN1∪· · ·∪ Nm−1.

Based on the entries ofD1/2e with maximal absolute values, whereD is the diagonal
ofA, we select a complementary coarse setNm (i.e.,Nm ⊂ N \ (N1∪· · ·∪Nm−1)).
The latter can be done, utilizing a certain partitioning ofN into nonoverlapping sets
(groups) {I} by selecting a new dof iI per I such that D1/2e|I has a local (in I)
maximal value at iI . Then, we construct a Pm that fits e. For this, we may use any
interpolation algorithm that fits a single vector. It is a simple observation to show
that xm is in the range of P . This is indeed easily seen, because by construction
e ∈ Range(Pm), and the rest follows from the identity

x =
m−1∑

k=1
Pkek−1 + e ∈ Range[P1, . . . , Pm−1, Pm].

6.11 Window-based spectral AMG

In the present section, we provide a purely algebraic way of selecting coarse degrees
of freedom and a way to construct an energy-bounded interpolation matrix P (cf.,
[FVZ05]). In the analysis, we use a simple Richardson iteration as a smoother. If
local element matrices are available (as in Section 6.9) the following construction and
analysis simplifies (cf., [Ch03]). All definitions and constructions below are valid in
the case whenA is positive and only semidefinite; that is, Amay have nonempty null
space Null(A).
We consider the problem Ax = b and reformulate it in the following equivalent

least squares minimization,

x = argmin
v

∑

w

‖Awv − bw‖2Dw . (6.36)

In the least squares formulation, each w is a subset of {1, . . . , n}, and we assume that

∪w = {1, . . . , n},

where the decomposition can be overlapping. The sets w are called windows, and
represent a grouping of the rows of A. The corresponding rectangular matrices we
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denote byAw; that is,Aw = {Aij}i∈w, 1≤j≤n. Thus, we have thatAw ∈ R|w|×n, where
| · | (in the present section) stands for cardinality. Accordingly in (6.36), bw = b|w =
{bi}i∈w denotes a restriction of b to a subset and Dw = (Dw(i))i∈w are diagonal
matrices with nonnegative entries, such that for any i,

∑
w: i∈wDw(i) = 1; that is,

{Dw}w provides a partition of unity. Vanishing the first variation of the least squares
functional, we obtain that the solution to the minimization problem (6.36) satisfies

∑

w

(Aw)
TDwAwx =

∑

w

(Aw)
TDwbw. (6.37)

With the specific choice of {Dw}w, it is clear that (6.36) is equivalent to the standard
least squares problem,

∑

w

‖Awv − bw‖2Dw = ‖Av − b‖2.

Therefore, we obtain the identity

vT
(∑

w

(Aw)
TDwAw

)
v = vTATAv. (6.38)

We emphasize that we do not solve the equivalent least squares problem (6.37),
and it has only been introduced as a motivation to consider the “local” matrices
(Aw)

TDwAw as a tool for constructing sparse (and hence local) interpolationmapping
P , which we explain below. Of interest are the Schur complements Sw , that are
obtained from the matrices (Aw)TDwAw by eliminating the entries outside w. More
specifically, let (after possible reordering of the columns of Aw)

Aw = [Aww Aw,χ ], (6.39)

whereAww is the square principal submatrix of A corresponding to the subsetw and
Aw,χ corresponds to the remaining columns of Aw with indices outside w. As any
Schur complement of symmetric positive semidefinite matrices, Sw is characterized
by the identity

vTwSwvw = inf
vχ

[
vw
vχ

]T
(Aw)

TDwAw

[
vw
vχ

]
. (6.40)

An explicit expression for Sw is readily available. Let ATw,χDwAw,χ = QT�Q

withQT = Q−1 and� = diag(λ) being a diagonal matrix with eigenvalues that are
nonnegative. Letting �+ = diag(λ+), where λ+ = 0 if λ = 0, and λ+ = λ−1 if
λ > 0, we have the expression

Sw = (Aww)TDwAww − (Aww)TDwAw,χQT�+QATw, χDwAww.

Note that Sw is symmetric and positive semidefinite by construction (see (6.40)), and
we have the inequality

(vw)
T Swvw ≤ vT (Aw)

TDwAwv, vw = v|w.
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Hence,

∑

w

(vw)
T Swvw ≤ vT

(∑

w

(Aw)
TDwAw

)
v = vTATAv ≤ ‖A‖ vTAv. (6.41)

This inequality implies (letting v = 0 outside w) that

(vw)
T Swvw ≤ ‖A‖ vTAv ≤ ‖A‖2 vT v = ‖A‖2 vTwvw;

that is,

‖Sw‖ ≤ ‖A‖2. (6.42)

Selecting coarse degrees of freedom

Our goal is to select a coarse space. The way we do that is by fixing a window and
associatingwith it a numbermw ≤ |w|. Thenwe constructmw basis vectors (columns
of P ) corresponding to this window in the following way. All the eigenvectors and
eigenvalues of Sw are computed and the eigenvectors corresponding to the first mw
eigenvalues are chosen. Because generally the windows have overlap, another par-
tition of unity is constructed, with nonnegative diagonal matrices {Qw} where each
Qw is nonzero only on w and the set {Qw} satisfies

∑
wQw = I . From the first mw

eigenvectors of Sw extended by zero outside w, we form the local interpolation ma-
trix Pw columnwise, which hence has mw columns. The global interpolation matrix
is then defined as

P =
∑

w

Qw[0, Pw, 0].

Here, for a global coarse vector vc = (vcw), the action of [0, Pw, 0] is defined such
that [0, Pw, 0]vc = Pw(vc|w) = Pwvcw.
The first result concerns the null space of A, namely, that it is contained in the

range of the interpolation P .

Lemma 6.18. Suppose that mw is such that mw ≥ dim Null (Sw) for every window

w. Then Null (A) ⊂ Range (P ); that is, if Av = 0, then there exists a vc ∈ Rnc such

that v = Pvc.

Proof. Let Av = 0. Then from inequality (6.41) it follows that Swvw = 0, where
vw = v|w and we extend vw by zero outside w whenever needed. Hence, by our
assumption on mw there exists a local coarse grid vector vcw such that vw = Pwvcw.
Let vc be the composite coarse grid vector that agrees with vcw onw, for eachw. This
is simply the collection vc = (vcw). Then,

Pvc =
∑

w

QwPwvcw =
∑

w

Qwvw =
∑

w

Qwv = v. �
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Two-grid convergence

First, we prove a main coarse-grid “weak-approximation property.”

Lemma 6.19. Assume that the windows {w} are selected in a “quasiuniform” manner

such that for all w, the following uniform estimate holds,

‖Sw‖ ≥ η‖A‖2. (6.43)

Note that η ≤ 1 (see (6.42)). Assume that we have chosen mw so well that for a

constant δ > 0 uniformly in w, we have

‖Sw‖ ≤ δλmw+1(Sw). (6.44)

Here λmw+1(Sw) denotes the (mw + 1)st smallest eigenvalue of Sw . It is clear that

δ ≥ 1. Then, for any vector e ∈ Rn, there exists a global interpolant ǫ in the range

of P such that

(e − ǫ)TA(e − ǫ) ≤ ‖A‖‖e − ǫ‖2 ≤ δ

η
eTAe. (6.45)

Before we present the proof of the lemma, we illustrate how the assumptions
(6.43) and (6.44) can be verified. Consider the simple example, when A corresponds
to a finite element discretization of the Laplace operator on uniform triangular mesh
on the unit square domain�with Neumann boundary conditions.We first notice that
the entries of A are mesh-independent. Therefore ‖A‖ is bounded above by a mesh-
independent constant (‖A‖ ≤ 8). Let h = 1/m0m be the fine-grid mesh-size for a
given integerm and a fixed (independently ofm) integerm0 > 1. LetH = 1/m. This
implies that� can be covered exactly bym2 equal coarse rectangles of sizeH = m0h.
Each coarse rectangle defines a window as the set of indices corresponding to the
fine-grid nodes contained in that coarse rectangle. There are (m0 + 1)2 nodes per
rectangle, and all the rectangles form an overlapping partition of the grid. A simple
observation is that any such rectangle can have 0, 1, or 2 common sides with the
boundary of� and therefore, there are only three different types of windowmatrices
Aw and respective Schur complements Sw . It is clear then that inequalities of the
type (6.43) and (6.44) are feasible for a mesh-independent constant η and for a mesh-
independent choice ofmw. For the simple example in consideration, fixm0 > 3, hence
(m0+1)2 > 4(m0+1); that is, let the number of nodes inw be larger than the number
of its outside boundary nodes (i.e., nodes outside w, that are connected to w through
nonzero entries of Aw, χ ). From (6.40) it is clear that if Swvw = 0, then there is a vχ
such thatAwwvw+Aw,χvχ = 0. Because in our caseAww is invertible, we have then
that the dimension of the null space of Sw equals the dimension of Range(Aw, χ ).
The latter is bounded above by 4(m0 + 1) (which is the number of nodes outside w
that are connected tow through nonzero entries ofAw, χ ). Therefore, we may choose
any fixed integer mw ≥ 4(m0 + 1) (and mw < (m0 + 1)2) to guarantee estimate
(6.44) because then λmw+1(Sw) > 0. The number of coarse degrees of freedom



6.11 Window-based spectral AMG 239

(or dofs) then equals mwm2. This implies that the coarsening factor, defined below,
will satisfy

# fine dofs

# coarse dofs
= (mm0 + 1)2

mwm2
=
(
m0 + 1

m

)2

mw
≃ m20

mw
.

For example, if we choose mw = 4(m0 + 1), the coarsening factor is
≃ m0/(4 + 4

m0
). It is strictly greater than 1 if m0 > 4, and it can be made as

large as needed by increasing m0. (The latter, of course, reflects the size of the win-
dows.) In conclusion, in this simple example, we can easily see that the bounds
η = minw(‖Sw‖/‖A‖2) ≤ 1 and δ = maxw(‖Sw‖/λmw+1(Sw)) ≥ 1 are fixed mesh-
independent constants. This is true, because the matrices Sw are a finite number, the
numbermw is fixed, and therefore the eigenvaluesλmw+1(Sw) are also a finite number,
and all these numbers have nothing to do with m (or the mesh-size h �→ 0). Similar
reasoning can be applied to more general quasiuniformmeshes. This is the case if the
windows can be chosen such that the matrices (Aw)TDwAw and Sw are spectrally
equivalent to a finite number of mesh-independent reference ones. The constants in
the spectral equivalence then will only depend on the angles in the mesh.

Proof of Lemma 6.19. Let e ∈ Rn be given. Note that our assumption onmw is equiv-
alent to the assumption that for any window w, there exists a ǫw in the range of Pw
such that

‖Sw‖‖ew − ǫw‖2 ≤ δ eTwSwew, (6.46)

where ew = e|w and whenever needed, we consider ew and ǫw extended by zero
outside w. We now construct an ǫ in the range of P that will satisfy (6.45). Namely,
we set ǫ =

∑
wQwǫw. We notice that

∑
wQwǫ = ǫ =

∑
wQwǫw. Hence,

‖e − ǫ‖2 = (e − ǫ)T
(∑

w

Qw(e − ǫ)

)

= (e − ǫ)T
(∑

w

Qw(ew − ǫw)

)

=
∑

w

(
Q1/2w (e − ǫ)

)T (
Q1/2w (ew − ǫw)

)
.

Therefore,

‖e − ǫ‖2 ≤
[∑

w

(e − ǫ)TQw(e − ǫ)

]1/2 [∑

w

‖Q1/2w (ew − ǫw)‖2
]1/2

= ‖e − ǫ‖
[∑

w

‖Q1/2w (ew − ǫw)‖2
]1/2

.

That is,

‖e − ǫ‖2 ≤
∑

w

‖Q1/2w (ew − ǫw)‖2.
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Therefore, based on (6.46), the quasiuniformity of {w}, and inequality (6.41),
we get

‖e − ǫ‖2 ≤
∑

w

‖Q1/2w (ew − ǫw)‖2 ≤
∑

w

‖ew − ǫw‖2

≤ δ
∑

w

eTwSwew

‖Sw‖ ≤ δ

η‖A‖2
∑

w

eTwSwew

≤ δ

η‖A‖2 eTATAe ≤ δ

η‖A‖ eTAe. (6.47)

�

We use estimate (6.45) to show that the two-gridmethodwith the Richardson iteration
matrix M = (‖A‖/ω)I , ω ∈ (0, 2), which leads to M̃ = M(2M − A)−1M =
(‖A‖2/ω2)(2(‖A‖/ω)I −A)−1, is uniformly convergent.More specifically, we have
the following main spectral equivalence result.

Theorem 6.20. The algebraic two-grid preconditioner B, based on the Richardson

smootherM = (‖A‖/ω) I , ω ∈ (0, 2), and the coarse space based on P constructed

by the window spectral AMG method, is spectrally equivalent to A and the following

estimate holds.

vTAv ≤ vTBv ≤ δ

ηω(2 − ω) vTAv.

The term δ/η comes from the coarse-grid approximation property (6.45).

Proof. We first notice that

wT M̃w = ‖A‖2
ω2

wT
(
2
‖A‖
ω
I − A

)−1
w ≤ ‖A‖

ω(2 − ω) wTw = 1

2− ω wTMw.

Then, based on the M̃-norm minimization property of the projection πM̃ , we have

((I − πM̃ )v)T M̃(I − πM̃)v = inf
ǫ∈Range(P )

(v − ǫ)T M̃(v − ǫ)

≤ 1

2− ω inf
ǫ∈Range(P )

(v − ǫ)TM(v − ǫ)

= ‖A‖
ω(2 − ω) inf

ǫ∈Range(P )
‖v − ǫ‖2

≤ 1

ω(2 − ω)
δ

η
vTAv.

Thus, based onTheorem3.19,we have that the corresponding two-grid preconditioner
B is spectrally equivalent to A with the best constant

KTG = sup
v

((I − πM̃ )v)T M̃(I − πM̃)v
vTAv

≤ δ

η ω(2 − ω) . �
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As it has been shown earlier (see Theorem 5.22 in Section 5.6), we know that
the two-grid window-based spectral AMG method improves its convergence by in-
creasing the number of smoothing steps. This is due to the “strong approximation
property” (see (6.47) one inequality before the last); namely, given e, there is a coarse
interpolant ǫ such that

‖e − ǫ‖2A ≤ ‖A‖‖e − ǫ‖2 ≤ δ

η‖A‖ ‖Ae‖2.

6.12 Two-grid convergence of vector-preserving AMG

This section provides a two-grid convergenceanalysis of a constant vector-preserving
AMG with application to matrices coming from second-order elliptic PDEs.

Problem formulation

Here,we first describe the particularAMGmethod of interest. Consider a s.p.d. sparse
matrix A partitioned into the common two-by-two block form,

A =
[
Aff Afc

Acf Acc

]
} Nf
} Nc

· (6.48)

As usual,Nc is the set of coarse degrees of freedom, or coarse dofs. In our application
to follow, we assume thatAff is s.p.d. and spectrally equivalent to its diagonal partDff .
We describe next a two-grid AMG. Let 1c be a given vector with indices fromNc.

In the application to follow, it is assumed that 1c is a vector with constant entries.
Define

1f = −A−1
ff Afc1c.

Then, by definition

1 =
[

1f
1c

]
.

Given is a rectangular matrix W with the same dimension as the off-diagonal block
Afc of A. Our next main assumption is thatW satisfy

Afc1c + AffW1c = 0. (6.49)

For each coarse dof i, we associate a neighborhood set Ai ⊂ N ≡ Nf ∪ Nc,
such that ∪i∈Nc

Ai = N . The sets {Ai}i∈Nc
can be overlapping. Also, consider

neighborhood sets �c, i ⊂ Nc, which have large enough support about the coarse
dof i. More specifically, we define�c,i to contain the set

∪k∈Ai {j ∈ Nc : (AffW)k, j 
= 0 or (Afc)k, j 
= 0}.

How large this set is depends on the sparsity of AffW and Afc.
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Define the coarse vector (supported in �c, i),

1c, i =

⎡
⎣

0
1|�c, i
0

⎤
⎦ .

Then, due to the choice of �c, i , and recalling (6.49), we have

(AffW1c, i)|Ai =

⎛
⎝AffW

⎡
⎣

0
1|�c, i
0

⎤
⎦
⎞
⎠
∣∣∣∣∣∣
Ai

=

⎛
⎝AffW

⎡
⎣

⋆

1|�c, i
⋆

⎤
⎦
⎞
⎠
∣∣∣∣∣∣
Ai

= (AffW1c)|Ai
= −(Afc1c)|Ai
= −(Afc1c, i)|Ai . (6.50)

The latter identities use the fact that 1c, i coincides with 1 on �c, i , and due to the
choice of �c, i to be a sufficiently large neighborhood of the coarse dof i. That is, to
compute AffW1c restricted to Ai due to the sparsity of AffW , we need the entries
of 1c only from a subset of �c, i . A similar argument applies to the vector Afc1c, i
restricted to Ai .
In what follows, our goal is to estimate the deviation between W∗ ≡ −A−1

ff Afc

andW . More specifically, we are interested in bounding the inner product (Aff (W∗ −
W)ec, (W∗ −W)ec), for any vector ec in terms of (Sec, ec). Here,

S = Acc − AcfA
−1
ff Afc (6.51)

is the Schur complement of A.
In the present section, (u, v) denotes the standard Euclidean vector inner product

vT u. Also, by definition ‖w‖Ai = ‖w|Ai ‖.
With Dff being the diagonal of Aff , letting α = ‖D1/2ff A

−1
ff D

1/2
ff ‖, we have

(Aff (W∗ −W)ec, (W∗ −W)ec) ≤ α (Aff (W∗ −W)ec, D−1
ff Aff (W∗ −W)ec)

≤ α
∑

i∈Nc

∥∥(D−(1/2)
ff Aff (W∗ −W)ec

)∣∣
Ai

∥∥2

= α
∑

i∈Nc

∥∥D−(1/2)
ff (Afc + AffW)ec

∥∥2
Ai

·

Let now ec, i = const 1c, i be the average value of ec restricted to �c, i . By the
definition of average value, we then have

‖ec − ec, i‖�c, i = min
t∈R

‖ec − t 1c, i‖�c, i . (6.52)



6.12 Two-grid convergence of vector-preserving AMG 243

Then, because (see (6.50)) (AffWec, i)|Ai = −(Afcec, i)|Ai , we get

(Aff (W∗ −W)ec, (W∗ −W)ec) ≤ α
∑

i∈Nc

‖D−(1/2)
ff (Afc + AffW)(ec − ec, i)‖2Ai .

LetDcc be the diagonal ofAcc andDi be the diagonal ofA restricted to any fixed
neighborhood that contains �c, i . Then ‖Dcc|�c, i‖ ≤ ‖Di‖. Let V (G) stand for the
vector space of vectors defined on a given index set G. By definition, the notation
‖B‖V (G) �→V (D) stands for the norm of the mapping (matrix) B with domain V (G)
and range V (D). With this notation and the choice of Di , we then have

(Aff (W∗ −W)ec, (W∗ −W)ec)
≤ αmax

i∈Nc

‖D−(1/2)
ff (Afc + AffW)D

−(1/2)
cc ‖2V (�c, i ) �→V (Ai)

×
∑

i∈Nc

‖Di‖ ‖ec − ec, i‖2�c, i . (6.53)

Our goal is to bound the sum
∑
i∈Nc

‖Di‖ ‖ec−ec, i‖2�c, i , in the case of Laplace-like
discretization matricesA, by a constant times (Sec, ec). This seems feasible because
ec, i is an average value of ec restricted to�c, i . The constant will generally depend on
the overlap of �c, i , which is assumed bounded. This fact is proven in the following
section.

Boundedness of P assuming weak approximation property for

Laplacian-like matrices

In this section, we assume that A can be assembled from local element matrices Aτ
where the set of elements {τ } provides an overlapping partition of the global set of
dofsN . Note that the two-grid method based on a

P =
[
W

I

]

withW that satisfies the main equation (6.49) does not require the explicit knowledge
of any element matrices Aτ .
Let A(N)i be a local matrix assembled from element matrices for elements that

cover a sufficiently large set �i such that �c, i ⊂ �i ∩ Nc. Then, without loss of
generality, we can assume thatDi is a principal submatrix of the diagonal of A

(N)
i (if

�i is sufficiently large).
Assume that the piecewise constant interpolant satisfies the local weak approxi-

mation property,

‖Di‖‖ei − ei‖2�i ≤ δ (A(N)i ei, ei), (6.54)

for any vector ei supported in �i . Here (and in what follows), for any vector v by v,
we denote its average value over a given set. Here, A(N)i stands for the local stiffness
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matrix corresponding to �i (viewed as union of fine-grid elements that cover the set
of fine-grid dofs from�i).
We choose�i as a set, union of fine-grid elements, such that�i ∩Nc covers the set

�c, i . Let� = ∪i�i be the domain where the elliptic boundary value problem under
consideration is posed. ThematrixA then comes from a finite element approximation
of an underlined elliptic PDE. Let κ ≥ 1 be the maximal number of overlapping
subdomains�i , which is assumed bounded.
Given a vector ec define ef = −A−1

ff Afcec. Introduce also

e =
[

ef
ec

]

and let

ef, i = −(A−1
ff Afcec)|�i∩Nf

, and ei = e|�i .

For a fixed i define t∗, i ∈ R such that

‖ei − t∗, i1i‖2�i = min
t∈R

∥∥∥∥
[

ef, i
ec, i

]
− t

[
1f, i
1c, i

]∥∥∥∥
2

�i

= ‖ei − ei‖2�i .

It is clear then, from the definition (6.52) of average value and the assumption�c, i ⊂
�i ∩ Nc, that

‖ec, i − ec, i‖2�c, i ≤ ‖ec, i − t∗, i1c, i‖2�c, i
≤ ‖ec, i − t∗, i1c, i‖2�c, i + ‖ef, i − t∗, i1f, i‖2�i∩Nf

≤ ‖ec, i − t∗, i1c, i‖2�i∩Nc
+ ‖ef, i − t∗, i1f, i‖2�i∩Nf

= min
t

∥∥∥∥
[

ef, i
ec, i

]
− t

[
1f, i
1c, i

]∥∥∥∥
2

�i

= ‖ei − ei‖2�i . (6.55)

Now, given a vector ec, define ef = −A−1
ff Afcec and let ei be the restriction of

e =
[

ef
ec

]

to �i for i ∈ Nc. Then, based on (6.54) and the last estimate (6.55), we have
∑

i

‖Di‖ ‖ec, i − ec, i‖2�c, i ≤
∑

i

‖Di‖ ‖ei − ei‖2�i

≤ δ
∑

i

(
A
(N)
i ei, ei

)

≤ κ δ (Ae, e)

= κ δ (Sec, ec).
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Recall that

ef : Ae = A
[

ef
ec

]
=
[
0
Sec

]

(see (6.51) for S). Also, κ ≥ 1 stands for the maximal number of overlapping subdo-
mains �j that share the coarse dof i.
Combining the last estimate with (6.53), we arrive at

(Aff (W∗ −W)ec, (W∗ −W)ec)
≤ α max

i∈Nc

‖D−(1/2)
ff (Afc + AffW)D

−(1/2)
cc ‖2V (�c, i) �→V (Ai)

κ δ (Sec, ec).

Now, introduce the “optimal” interpolation matrix

P∗ =
[
−A−1

ff Afc

I

]
} Nf
} Nc

,

its sparse approximation

P =
[
W

I

]
} Nf
} Nc

,

and the restriction matrix R = [0, I ]. We get the following deviation estimate.

(A(P∗ − P)Re, (P∗ − P)Re) = (Aff (W∗ −W)ec, (W∗ −W)ec)
≤ α max

i∈Nc

∥∥D−(1/2)
ff (Afc + AffW)

×D−(1/2)
cc

∥∥2
V (�c, i ) �→V (Ai )

κ δ (Sec, ec)

≤ α max
i∈Nc

∥∥D−(1/2)
ff (Afc + AffW)

×D−(1/2)
cc

∥∥2
V (�c, i ) �→V (Ai )

κ δ (Ae, e).

Thus, the following main result holds.

Theorem 6.21. The projection PR is bounded in energy and the following estimate

holds,

(A(e − PRe), e − PRe) ≤ K (Ae, e),

where

K = 1+ α κ δ max
i∈Nc

∥∥D−(1/2)
ff (Afc + AffW)D

−(1/2)
cc

∥∥2
V (�c, i ) �→V (Ai )

,

and α = ‖D1/2ff A
−1
ff D

1/2
ff ‖.
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It is clear that the local constants ‖D−(1/2)
ff (Afc + AffW)D

−(1/2)
cc ‖2

V (�c, i ) �→V (Ai )

can be bounded (or evenmade small) ifWI�c, i approximates−A−1
ff AfcI�c, i on every

local set Ai . Here, I�c, i stands for the characteristic matrix (function) of the local
coarse set �c, i .

In conclusion, assuming that D−(1/2)
ff AffD

−(1/2)
ff is well conditioned based on

Theorem 3.25 used for

J =
[
I

0

]
} Nf
} Nc

,

the above Theorem 6.21 then implies the following TG convergence result.

Corollary 6.22. The two-grid AMG method based on P and ωD (scaled Jacobi)

smoother has a convergence factor ̺TG = 1 − 1/(KTG), where KTG ≤ ω/(λmin

(D
−(1/2)
ff AffD

−(1/2)
ff )) ‖I − PR‖2A. The term ‖I − PR‖2A = ‖PR‖2A was bounded by

the constant K in Theorem 6.21. Here, ω ≥ ‖D−(1/2)AD−(1/2)‖ ≃ λmax(D
−(1/2)
ff

AffD
−(1/2)
ff ).

On the constrained trace minimization construction of P

Here, we study the boundedness of the factors

‖D−(1/2)
ff (Afc + AffW)D

−(1/2)
cc ‖2V (�c, i) �→V (Ai)

,

when W is constructed based on trace minimization of P T AP (described in Sec-
tion 6.3). In that case, the constraint readsW1c = 1f ≡ −A−1

ff Afc1c, or equivalently
P1c = 1. Note that our main assumption (6.49) holds then.
The constrained trace norm minimization problem (cf. Section 6.3) reads:
Find

P =
[
W

I

]
= (ψ i)i∈Nc

,

with prescribed sparsity pattern ofW , such that

trace(P T AP) ≡
∑

i∈Nc

ψTi Aψ i �→ min

subject to the constraint P1c = 1. The solution to this problem is given by (see
Section 6.3) ψ i = TiT

−11, where T =
∑
i∈Nc

Ti , Ti = IiA
−1
i I

T
i , and Ii is the

characteristic matrix (function) of the (prescribed fixed) support of ψ i . The matrix
Ai = ITi AI i is the principal submatrix of A corresponding to the support of ψ i .
We next study the decay behavior of T −1 following a main result in [DMS84]

(see also Section A.2.4 in the appendix). We first note that T is sparse. For example,
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we can partition T into blocks Ti,j according to the aggregatesAi . It is clear that for
any i there are only a bounded number of indices j such that Ti,j 
= 0.
Given a matrix B, for any two vectors vi and vj corresponding to indices from

two given sets (row indices)�i and (column indices)Nj for the corresponding block
Bi,j of B, we then have

vTi Bi,jvj =

⎛
⎝
⎡
⎣
0
vi
0

⎤
⎦

}
} �i
}

⎞
⎠
T

B

⎛
⎝
⎡
⎣
0
vj
0

⎤
⎦

}
} Nj
}

⎞
⎠ ≤ ‖B‖‖vi‖vj‖.

That is, ‖Bi,j ‖ ≤ ‖B‖. In the application below, we have Nj = Aj (aggregate)
whereas the row index set �i is the support of ψ i which is contained in a union of
bounded number of aggregatesAk .
Next, we apply the above-mentioned result from [DMS84] (or see Section A.2.4)

in our setting. Let B = T −1 and let [α, β] be an interval that contains the spectrum
of T . For any polynomial pk of degree k ≥ 0, consider the matrix B − pk(T ). Let
�i and Aj be at a large enough graph distance apart from each other so that for any
pair of indices i

′ ∈ �i and j
′ ∈ Aj , the entry (pk(T ))i′ ,j ′ = 0. Note that pk(T ) has

the sparsity pattern of T k . Then, we have

‖Bi,j ‖ ≤ ‖B − pk(T )‖ = ‖T −1 − pk(T )‖ ≤ sup
λ∈[α, β]

|λ−1 − pk(λ)|.

Because pk is arbitrary, we also have

‖Bi,j ‖ ≤ min
pk

sup
λ∈[α, β]

|λ−1 − pk(λ)|.

Thus, the following simple upper bound holds,

‖Bij‖ ≤ 1

α
inf
pk

sup
λ∈[α, β]

|1− λpk(λ)| = 1

α

2qk+1

1+ q2(k+1) , q =
√
κ − 1√
κ + 1 , κ = β

α
.

(6.56)

In the last estimate, we use

pk : 1− tpk(t) =
Tk+1

(
α+β−2t
β−α

)

Tk+1
(
α+β
β−α

) ,

where Tk+1 is the well-known Chebyshev polynomial of degree k + 1.
Thus, we have the geometric decay ‖Bi,j‖ ≤ (2/α) qk+1, where k : (T k)i′ ,j ′ = 0

for all i
′ ∈ �i and j

′ ∈ Aj . That is, if the graph distance between i and j denoted by
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d(i, j) is large, then ‖Bi,j‖ is small. This shows that the estimate forψ i = TiT −11 is

‖ψ i‖ ≤ ‖A−1
i ‖‖ITi

(
T −11

)
‖

≤ ‖A−1
i ‖

∥∥∥∥
∑

j

Bi,j 1j

∥∥∥∥

≤ max
j

‖1j‖ ‖A−1
i ‖

∑

j

‖Bi,j ‖

≤ max
j

‖1j‖ ‖T ‖ 2
α

∑

j

qd(i,j)

≤ max
j

‖1j‖
2β

α

∑

j

qd(i,j)

≤ Cmax
j

‖1j‖. (6.57)

It is clear that the constant C depends only on the decay rate of T −1, which based
on estimate (6.56) is seen to depend only on the condition number of T . Because for
small Schwarz blocks Ai is spectrally equivalent to its diagonal part, it is clear then
that T is spectrally equivalent to a diagonal matrix, and hence, T (up to a diagonal
scaling) is well conditioned, which we assume.
Consider WT = (pj, i)j∈Nc, i∈Nf

, where pj, i 
= 0 for a bounded number of
indices i ∈ �j . We have, for any vector v = (vi),

‖WT v‖2 =
∑

j

(∑

i∈�j
pj, ivi

)2

≤
∑

j

∑

i∈�j
p2j, i

∑

i∈�j
v2i

≤ max
j

(∑

i∈�j
p2j,i

) ∑

j

∑

i∈�j
v2i

≤ max
j

‖ψj‖2 C ‖v‖2,

where the constant C depends on the sparsity pattern ofW .
Thus, based on the last estimate, ‖W‖ = ‖WT ‖ ≤ C maxi ‖ψ i‖ (with a constant

C that depends only on the sparsity ofW ), estimate (6.57), and the triangle inequality,
we get the required boundedness

‖D−(1/2)
ff (Afc + AffW)D

−(1/2)
cc ‖V (�c, i ) �→V (Ai )

≤ ‖D−(1/2)
ff AfcD

−(1/2)
cc ‖V (�c, i ) �→V (Ai ) + ‖D−(1/2)

ff AffD
−(1/2)
ff ‖V (�i) �→V (�i )

× ‖D−(1/2)
ff WD−(1/2)

cc ‖V (�c, i) �→V (�i)

≤ κ + C‖W‖,



6.13 The result of Vaněk, Brezina, and Mandel 249

where the constant κ depends only on the sparsity of A (see Proposition 1.1). There-
fore, we proved the following corollary.

Corollary 6.23. The constrained trace minimization construction leads to a P that

has bounded blockW , which leads to a bounded constantK in Theorem 6.21. This is

under the assumption of D
−(1/2)
ff AffD

−(1/2)
ff being well conditioned, the basis func-

tions (columns of P ) ψ i having bounded support with bounded overlap, which hence

leads to a well-conditioned additive Schwarz operator T .

Remark 6.24. Note that based on Proposition 6.2, it is feasible to prove two-grid con-
vergence for M-matrices A coming from second-order diffusion type elliptic equa-
tions. Then A1 = 0 for the interior dofs i, where 1 = [1, 1, . . . , 1]T is the constant
vector. That is, the classical (Ruge–Stüben) AMG interpolation, is vector preserving
(in the interior of the domain) and for such problems we can ensure the local weak
approximation property (6.54).

6.13 The result of Vaněk, Brezina, and Mandel

The smoothed aggregation (or SA) algebraicMGmethodwas proposedby Petr Vaněk
in [VSA] who was motivated by some early work on aggregation-basedMG studied
by R. Blaheta in [Bl86] and in his dissertation [Bl87]; see also the more recent paper
[DB95].
We present here perhaps the only known multilevel convergence result for the

algebraicmultigrid, namely, the suboptimal convergenceof the smoothed aggregation
AMG. The original proof is found in [SA].
The construction of coarse bases exploits smoothing of pieces of a null space

vector of a given sparse positive semidefinite matrix A. The pieces of the vector
correspond to a number of sets, called aggregates. These aggregates form a nonover-
lapping partition of the original set of degrees of freedom, N . The aggregates are
assumed to satisfy certain properties that later reflect the sparsity of the coarse-level
matrices. At every coarsening level k ≥ 0, in order to construct the coarse (k + 1)th-
level basis, we use certain Chebyshev-like optimal polynomials with argument the
matrix Ak (diagonally scaled) applied to every piece of the respectively partitioned
vector. Due to the properties of the matrix polynomial, the thus-constructed local
basis vectors have a guaranteed energy bound, and the resulting ℓ levels smoothed
aggregation V (1, 1)-cycle method has a provable convergence factor bounded by
1− C/ℓ3.

6.13.1 Null vector-based polynomially smoothed bases

This section illustrates a typical construction of polynomially smoothed bases utiliz-
ing null vectors. We note that after this introductory section, the vectors that are used
to construct the SA method need not necessarily be null vectors of a given symmetric
positive semidefinite matrix. One of the main assumptions will be a “weak approx-
imation property” of certain coarse spaces of piecewise constant vectors. Namely,
that a finite element function v can be approximated in L2 by a piecewise constant
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interpolant IHvwith orderO(H). The interpolant is defined based on setsAi (referred
to as aggregates) with diameter O(H). On each such set Ai , IHv is constant equal
to an average value of v over Ai ; for example, we can set IH v = 1/|Ai |

∫
Ai
v dx.

Then, if A comes from a Laplace-like discrete problem, the following is a standard
estimate in L2 in terms of the energy norm ‖.‖A,

‖v − IH v‖0 ≤ caH ‖v‖A.

Rewriting this in terms of coefficient vectors leads to the following one

hd/2 ‖v − IH v‖ ≤ caH ‖v‖A,

where d = 2 or d = 3 stands for the dimension of the (geometrical) domain where
the corresponding PDE (Laplacian-like) is posed. Then, because ‖A‖ ≃ hd−2 (see
Proposition 1.3), we arrive at

‖v − IH v‖ ≤ ca
H

h

1

‖A‖1/2 ‖v‖A.

In the application of the SA, we have (H/h) ≃ (2ν + 1)k+1, where ν ≥ 1
is the polynomial degree of the polynomial used to smooth out the piecewise con-
stant interpolants with which we start. Also, k = 0, 1, . . . , ℓ stands for the coarsening
level.We summarize this estimate as our main assumption. Given are the nonoverlap-
ping setsA(k)i (aggregates) at coarsening level k ≥ 0 that we view as sets of fine-grid
dofs. Let Qk be the block-diagonal ℓ2-projection that for every vector v restricted
to an aggregate A(k)i assigns a scalar value vi , the average of v|Ai over Ai . Finally,
let Ik interpolate them back all the way up to the finest-level as constants over A

(k)
i

(equal to the average value vi). Finally, assume that the diameter of A
(k)
i is of order

(2ν + 1)k+1h where h is the finest mesh-size. Then, the following approximation
property is our main assumption

‖v − IkQkv‖ ≤ ca
(2ν + 1)k+1

‖A‖1/2 ‖v‖A. (6.58)

The latter assumption is certainly true if the matrix A comes from elliptic PDEs
discretized on a uniformly refined mesh, and the corresponding aggregates at every
level k are constructed based on the uniform hierarchy of the geometric meshes. In
the applications, when we have access to the fine-grid matrix only (and possibly to
the fine-grid mesh) when constructing the hierarchy of aggregates, we have to follow
the rule that they are “quasiuniform” in the sense that their graph diameter grows as
(2ν + 1)k+1. A common choice in practice is ν = 1.

Construction of locally supported basis by SA

To illustrate the method, we assume in the present section thatA is a given symmetric
positive semidefinite matrix, and let 1 be a given null vector of A; that is, A1 = 0.
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The method is applied to a matrix A0 that is obtained from A (after certain boundary
conditions are imposed).
For a given integer ν ≥ 1, partition the set of degrees of freedom of A, that is,

the fine-grid into nonoverlapping sets Ai such that Ai contains an index i with the
following polynomial property. Namely, for any integer s ≤ ν, the entries of (As)ij
away from i are zero. More specifically, we assume

(As)ij = 0 for all indices j outside Ai . (6.59)

Let 1i = 1|Ai and extend it by zero outsideAi . It is clear that
∑

i

1i = 1. (6.60)

For a given diagonal matrixD (specified later on), let A = D−(1/2)AD−(1/2).
The method utilizes a polynomial of degree ν ≥ 1 (also, specified later on)

ϕν(t) = 1− tqν−1(t). Note that ϕν(0) = 1.
Sometimes we use the notation v(xi) to denote the ith entry of the vector v. The

latter notation is motivated by the fact that very often in practice the vectors v are
coefficient vectors of functions v expanded in terms of a given (e.g., Lagrangian finite
element) basis.
Define now,

ψ i = (I −D−1Aqν−1(D−1A))1i . (6.61)

We have
∑

i

ψ i = (I −D−1Aqν−1D
−1A)

∑

i

1i = (I −D−1Aqν−1(D
−1A))1 = 1, (6.62)

becauseA1=0. Also, 1(xi)=
∑
j (ψj )(xi) = (1i)(xi)−(D−1Aqν−1(D−1A)1i)(xi),

because (As1j )i = 0, for all s ≤ ν and j 
= i. The latter implies

(D−1Aqk−1(D−1A)1i)(xi) = 0,

and hence

ψ i(xi) = 1(xi).

The vectors ψ i form our coarse basis. Note that these have local support and
form a partition of unity (in the sense of identity (6.62)) and they also provide a
Lagrangian basis. Thus, we can at least expect reasonable two-grid convergence (cf.,
Theorem 6.21).
To continue the process by recursion, define 1c = [1, . . . , 1]T ∈ Rnc . We have,

Ac1c = P TA
∑
i ψ i = P TA1 = 0. Here P = [ψ1, . . . , ψnc ] is the interpolation

matrix. Due to the Lagrangian property of the basis {ψ i} (i.e.,ψ i(xj ) = δij) it follows
that P has a full column rank.
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We then generate coarse aggregates with the corresponding polynomial property
(6.59). Note that we have the flexibility to change ν (i.e., to have ν = νk depending on
the level number).This choice, however, is not considered in what follows. That is, we
assume that ν ≥ 1 is fixed independently of k. The classical SA method corresponds
to the choice ν = 1.
Assume that we have generated ℓ ≥ 1 levels and at every level k, we have

constructed the respective interpolation matrices Pk . Then, after a proper choice of
smoothers Mk , we end up with a symmetric V (1, 1)-cycle smoothed aggregation
AMG. Our goal is to analyze the method by only assuming that the vector 1 ensures
the multilevel approximation property (6.58). The fact that it is in the (near)-null
space of A is not needed. That is why the resulting coarse bases are not necessarily
Lagrangian. Nevertheless, convergence is guaranteed as we show next.

6.13.2 Some properties of Chebyshev-like polynomials

Consider the Chebyshev polynomials Tk(t) defined by recursion as follows, T0 = 1,
T1(t) = t , and for k ≥ 1, Tk+1(t) = 2tTk(t) − Tk−1(t). Letting t = cosα ∈
[−1, 1], we have the explicit representation Tk(t) = cos kα, which is seen from the
trigonometric identity cos(k + 1)α + cos(k − 1)α = 2 cosα cos kα.
We now prove some properties of Tk that are needed in the analysis of the SA

method. The polynomial of main interest that we introduce in (6.63) below was used
in [BD96] (see also [Br99]). Similar polynomials were used in [Sh95] (p. 133).

Proposition 6.25. We have the expansion T2k+1(t) = c2k+1t + tQk(t
2), c2k+1 =

(−1)k(2k+1), for k ≥ 0, whereQk is a polynomial of degree k such thatQk(0) = 0.

Similarly, T2k(t) = (−1)k + Pk(t2), where Pk is a polynomial of degree k such that

Pk(0) = 0.

Proof. We have T1 = t , T2 = 2tT1 − T0 = 2t2 − 1, and T3 = 2tT2 − T1 =
2t (2t2 − 1)− t = 4t3 − 3t . That is, assume by induction that for k ≥ 1, T2k−1(t) =
c2k−1t + tQk−1(t

2) and T2k(t) = (−1)k + Pk(t2) for some polynomials Qk−1 and
Pk of respective degrees k − 1 and k, and such that Qk−1(0) = 0 and Pk(0) = 0.
Then, from T2k+1 = 2tT2k − T2k−1, we get

T2k+1 = 2t ((−1)k + Pk(t2))− (−1)k−1(2k − 1)t − tQk−1(t2)
= (−1)k(2k + 1)t + t

(
2Pk(t

2)−Qk−1(t2)
)
.

That is, the induction assumption for T2k+1 is confirmed withQk(t) = 2Pk −Qk−1,
and hence,Qk(0) = 0. Similarly, for T2k+2, we have

T2k+2 = −T2k + 2tT2k+1
= −(−1)k − Pk(t2)+ 2t ((−1)k(2k + 1)t + tQk(t2))
= (−1)k+1 + (2(−1)k(2k + 1)t2 + 2t2Qk(t2)− Pk(t2)).

The latter confirms the induction assumption forT2k+2 withPk+1(t2) = 2(−1)k(2k+
1)t2 + 2t2Qk(t2)− Pk(t2) and hence Pk+1(0) = 0. �
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Proposition 6.26. The following estimate holds for any t ∈ [0, 1],

|T2k+1(t)| ≤ (2k + 1)t.

Proof. Note that for t = cosα ∈ [−1, 1], |Tk(t)| = | cos kα| ≤ 1. Therefore,
assuming by induction that |T2k−1(t)| ≤ (2k − 1)t for t ∈ [0, 1], we have

|T2k+1(t)| = |2tT2k(t)− T2k−1(t)| ≤ 2t + (2k − 1)t = (2k + 1)t,

which confirms the induction assumption. �

Proposition 6.27. For a given b > 0, consider for t ∈ [0, b] the function

ϕν(t) = (−1)ν 1

2ν + 1

√
b√
t
T2ν+1

(√
t√
b

)
. (6.63)

We have that ϕν(t) is a polynomial of degree ν such that ϕν(0) = 1; that is, ϕν(t) =
1− tqν−1(t) for some polynomial qν−1(t) of degree ν − 1.

Proof. For ν = 0, ϕν = 1. Consider the case ν ≥ 1. Due to Proposition 6.25, we
have with λ = √

t/b ∈ [0, 1], that ϕν(t) = (1/(c2ν+1))(1/λ) λ(c2ν+1 +Qν(λ)) =
1− λqν−1(λ), becauseQν(0) = 0 hence (1/(c2ν+1))Qν(λ) = −λqν−1(λ) for some
polynomial qν−1(λ) of degree ν − 1. That is, we showed that ϕν(t) as defined in
(6.63) is a polynomial of degree ν such that ϕν(0) = 1. �

Proposition 6.28. The polynomial ϕν defined in (6.63) has the following optimality

property.

min
pν : pν (0)=1

max
t∈[0, b]

|
√
t pν(t)| = max

t∈[0, b]
|
√
t ϕν(t)| =

√
b

2ν + 1 . (6.64)

We have ϕν(0) = 1 and also

max
t∈[0, b]

|ϕν(t)| = 1. (6.65)

Proof. The first fact follows from the optimality property of the Chebyshev polyno-
mials, because letting λ = √

t/b ∈ [0, 1]
√
tϕν(t) equals T2ν+1(λ) times a constant.

The fact that |ϕν(t)| ≤ 1 follows from Proposition 6.26. �

Here are some particular cases of the polynomials ϕν .
Using the definition of the Chebyshev polynomials, T0 = 1, T1 = t , Tk+1 =

2tTk − Tk−1, for k ≥ 1, we get T2 = 2t2 − 1 and hence

T3(t) = 4t3 − 3t .

Thus,

ϕ1(t) = −1
3

√
b

(
4
t

b3/2
− 3√

b

)
= 1− 4

3

t

b
.
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This in particular shows that

sup
t∈(0, b]

|1− ϕ1(t)|√
t

= 4

3

1√
b
.

The next polynomial is based on T5 = 2tT4 − T3 = 2t (2tT3 − T2) − T3 = (4t2 −
1)(4t3 − 3t)− 4t3 + 2t = 16t5 − 20t3 + 5t . Therefore,

ϕ2(t) = 1

5

√
b

t

(
16

√
tt2

1

b5/2
− 20

√
tt
1

b3/2
+ 5

√
t
1√
b

)
.

This shows,

ϕ2(t) = 16

5

t2

b2
− 4 t

b
+ 1.

We also have,

sup
t∈(0, b]

1− ϕ2(t)√
t

= 4√
b

sup
x∈(0,1]

(
x − 4

5
x3
)

= 4

3

√
5

3

1√
b
.

In general, it is clear that the following result holds.

Proposition 6.29. There is a constant Cν independent of b such that the following

estimate holds,

sup
t∈(0, b]

|1− ϕν(t)|√
t

≤ Cν
1

b1/2
. (6.66)

Proof. We have 1 − ϕν(t) = tqν−1(t), that is, (1 − ϕν)/
√
t =

√
t qν−1(t) and

therefore the quotient in question is bounded for t ∈ (0, b]. More specifically, the
following dependence on b is seen,

sup
t∈(0, b]

|1− ϕν(t)|√
t

= 1

b1/2
sup

λ∈(0, 1]

∣∣∣1− (−1)ν
2ν+1

T2ν+1(
√
λ)√

λ

∣∣∣
√
λ

.

Clearly, the constant

Cν = sup
λ∈(0, 1]

∣∣∣1− (−1)ν
2ν+1

T2ν+1(
√
λ)√

λ

∣∣∣
√
λ

is independent of b. �
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6.13.3 A general setting for the SA method

In this section, we select the parameters of the smoothed aggregation method.
To simplify the analysis, we assume that ν ≥ 1 is independent of k. We assume

that we are given a set of block-diagonal matrices I k−1 : Rnk �→ Rnk−1 ,

I k−1 =

⎡
⎢⎢⎢⎢⎢⎣

11 0 0 . . . 0
0 12 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1nk−1 0
0 0 . . . 0 1nk

⎤
⎥⎥⎥⎥⎥⎦

} A1
} A2

}
...

} Ank−1
} Ank

where, for k > 1,

1i =

⎡
⎢⎣
1
...

1

⎤
⎥⎦ .

Note that the vector 1i ∈ R|Ai | has as many entries of ones as the size of the fine-grid
set (called aggregate)Ai to which they interpolate. Once the first piecewise-constant
interpolant I 0 is specified, then the SA method is well defined. We outlined, in the
first section, a choice of I 0 based on a null vector of A. In practice, we can select
other initial coarse-level interpolants, for example, ones that can fit several a priori
given vectors, such as the rigid body modes in the case of elasticity problem.
Let I k−1 be the piecewise constant interpolant from level k to level k− 1, and let

Ik−1 = I 0 · · · I k−1 be the composite one. We define Dk = ITk−1Ik−1. Denote then

Ak−1 = D
−(1/2)
k−1 Ak−1D

−(1/2)
k−1 . Then, the interpolation matrix Pk−1 is constructed

as before on the basis of Ak−1, Dk−1 and the norm of Ak−1 for our fixed ν. More
specifically, we have

Pk−1 = Sk−1I k−1,

where

Sk−1 = ϕν
(
D−1
k−1Ak−1

)
,

and

ϕν(t) = (−1)ν 1

2ν + 1

√
b√
t
T2ν+1

(√
t√
b

)
for b = bk−1 ≥ ‖Ak−1‖.

We show later (in Lemma 6.30) that b = bk−1 ≤ ‖A‖/((2ν + 1)2(k−1)).
The smootherMk is chosen such that

Mk ≃ ‖Ak‖ Dk .
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More specifically, we assume that,Mk is s.p.d. and spectrally equivalent to the diag-
onal matrix ‖Ak‖ Dk , and scaled so that,

vTAkv ≤ ‖Ak‖vTDkv ≤ vTMkv. (6.67)

Based on the above choice of Pk , Ak, and Mk , for 0 ≤ k ≤ ℓ, starting with
Bℓ = Aℓ, for k = ℓ − 1, . . . , 1, 0, we recursively define a V -cycle preconditioner
Bk to Ak in the following standard way,

I − B−1
k Ak =

(
I −M−T

k Ak
)(
I − PkB−1

k+1P
T
k Ak

)(
I −M−1

k Ak
)
.

Letting B = B0, we are concerned in what follows with the (upper) boundK∗ in the
estimate

vTAv ≤ vTBv ≤ K⋆ vTAv. (6.68)

Preliminary estimates

Our second main assumption is that we can construct at every level k ≥ 1 aggregates
with the polynomial property (6.59). The latter is needed to keep the sparsity pattern
of the resulting coarse matrices under control. We also assume that the composite
aggregates are quasiuniform, that is, that the size of the composite aggregates coming
from level k onto the finest level satisfy the estimate:

max
i∈Nk

|Ai | ≃ min
i∈Nk

|Ai | ≃ (2ν + 1)dk. (6.69)

Here d ≥ 1 is the dimension of the grids Nk . As already mentioned, the above as-
sumption is easily met in practice formeshes that are obtained by uniform refinement.
For more general unstructured finite element meshes, this assumption is only a rule
on how to construct the coarse-level aggregates. Assumption (6.69) implies that the
diagonal matricesDk are uniformly well conditioned; that is,

min
i∈Nk

|Ai | ≤ λmin(Dk) ≃ λmax(Dk) ≤ max
i∈Nk

|Ai | ≃ (2ν + 1)dk, (6.70)

and hence
∥∥D−(1/2)

k

∥∥∥∥D1/2k
∥∥ ≤ κD ≃ 1. (6.71)

Our analysis closely follows [SA].

Lemma 6.30. The following main estimate holds,

‖Ak‖ ≤ ‖Dk‖
‖A‖

(2ν + 1)2k ≃ (2ν + 1)(d−2)k ‖A‖,

assuming that the composite aggregates are quasiuniform (i.e., estimates (6.70)–
(6.71)).
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Proof. Recall that Dk+1 = ITk Ik . Then, with Sk = I − D−1
k Akqν(D

−1
k Ak), using

the fact that Pk = SkI k and Dk+1 = I Tk DkI k , we have

∥∥D−(1/2)
k+1 Ak+1D

−(1/2)
k+1

∥∥ = sup
v

vTAk+1v

vTDk+1v

= sup
v

vT I
T

k S
T
k AkSkI kv

(I kv)TDk(I kv)

≤ sup
v

vT STk AkSkv

vTDkv
.

Therefore, based on property (6.64) of ϕν , we get

vTD
−(1/2)
k STk AkSkD

−(1/2)
k v ≤ sup

t∈
[
0, ‖D−(1/2)

k AkD
−(1/2)
k ‖

] t (1− tqν−1(t))2 ‖v‖2

≤
‖D−(1/2)

k AkD
−(1/2)
k ‖

(2ν + 1)2 ‖v‖2.

That is, by recursion (with D0 = I , A0 = A), we end up with the estimate
∥∥D−(1/2)

k+1 Ak+1D
−(1/2)
k+1

∥∥ ≤ ‖A‖
(2ν + 1)2(k+1) .

We conclude with the estimates

‖Ak+1‖ ≤
∥∥D1/2k+1

∥∥2∥∥D−(1/2)
k+1 Ak+1D

−(1/2)
k+1

∥∥

≤ ‖A‖
(2ν + 1)2(k+1)

∥∥D1/2k+1
∥∥2 ≃ (2ν + 1)(d−2)(k+1) ‖A‖.

The latter inequality is based on the assumption that the composite aggregates are
quasiuniform (see (6.70)). Thus the proof is complete. �

We use the main result regarding the relative spectral condition number of the
ℓth-level V -cycle preconditioner B with respect to A given by Theorem 5.9, which
we restate here.
Assume that smoothers Mj , interpolation matrices Pj , and respective coarse

matrices related as Aj+1 = P Tj AjPj are given. Each smoother Mj is such that

MT
j +Mj − Aj is s.p.d.. Then, the following main identity holds

vTAv ≤ vTBv = inf
(vk)

[
vTℓ Aℓvℓ +

∑

j<ℓ

(
MT
j v
f
j + AjPjvj+1

)T

×
(
MT
j +Mj − Aj

)−1(
MT
j v
f
j + AjPjvj+1

)]
.

(6.72)
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The inf here is taken over the components (vk) of all possible decompositions of v

defined as follows:

(i) Starting with v0 = v.
(ii) For k ≥ 0, vk = v

f
k + Pkvk+1.

Introduce now the following averaging operators,

Qk−1 =
(
ITk−1Ik−1

)−1
ITk−1 : R

n0 �→ R
nk . (6.73)

Note that Ik−1Qk−1 are ℓ2-orthogonal projections.
We are interested in a particular recursive decomposition for any given fine-grid

vector v. Based on the characterization identity (6.72) utilizing an energy stable
particular decomposition of the fine-grid vectors, we can get an upper bound of K∗,
which is our goal. Introduce Q−1 = I , and for k ≥ 0, let vk = Qk−1v ∈ Rnk . We
have the recursive two-level decomposition

vk =
(
Qk−1v − PkQkv

)
+ PkQkv = v

f

k + Pkvk+1.

In order to bound the relative condition number of the V -cycle preconditioner B
with respect to A (due to estimate (6.72)), based on our choice of the smoother as in
(6.67), it is sufficient to bound the expressions (i) and (ii) below:

(i)
∑
k<ℓ(v

f

k )
TMkv

f

k =
∑
k<ℓ(Qk−1v − PkQkv)TMk(Qk−1v − PkQkv),

(ii)
∑
k≤ℓ vTk Akvk =

∑
k<ℓ vTQ

T

k−1AkQk−1v,

both in terms of vTAv.

Estimating the first sum (i)

Recall that Pk = SkI k , Sk = I −D−1
k Akqν−1(D

−1
k Ak), Ik = I 0I 1 · · · I k and Dk =

(Ik−1)T Ik−1. Note that (see (6.65)) ‖D1/2k SkD
−(1/2)
k ‖ = supt∈[0, ‖Ak‖] |ϕν(t)| = 1.

We start with the inequality

‖(Qk−1 − PkQk)v‖ = ‖(Qk−1 − SkI kQk)v‖
= ‖Sk(Qk−1 − I kQk)v + (I − Sk)Qk−1v‖
≤ ‖Sk(Qk−1 − I kQk)v‖ + ‖(I − Sk)Qk−1v‖
≤
∥∥D−(1/2)

k

∥∥∥∥D1/2k (Qk−1 − I kQk)v
∥∥+ ‖(I − Sk)Qk−1v‖.

Let (0, b] be the interval that contains the eigenvalues of Ak = D
−(1/2)
k AkD

−(1/2)
k ,

which is used to construct the optimal polynomial ϕν(t) = 1 − tqν−1(t); that is,
b ≥ ‖Ak‖. Notice that

I − Sk = D−(1/2)
k (Akqν−1(Ak))D

1/2
k

= D−(1/2)
k

(
A

−(1/2)
k (I − ϕν(Ak))

)
A
1/2
k D

1/2
k .



6.13 The result of Vaněk, Brezina, and Mandel 259

Based on estimate (6.66), we then get

‖(I − Sk)Qk−1v‖ ≤ ‖D−(1/2)
k ‖ max

t∈(0, b]
1− ϕν(t)√

t
‖Qk−1v‖Ak

≤ Cν
1√
b

∥∥D−(1/2)
k

∥∥ ‖Qk−1v‖Ak

≤ Cν‖D−(1/2)
k ‖ 1

‖Ak‖1/2
‖Qk−1v‖Ak .

Thus we arrived at the estimate

‖(Qk−1 − PkQk)v‖ ≤
∥∥D−(1/2)

k

∥∥‖(Ik−1Qk−1 − IkQk)v‖

+
Cν
∥∥D−(1/2)

k

∥∥
‖Ak‖1/2

‖Qk−1v‖Ak . (6.74)

The final bound on sum (i) is derived after an estimate of the terms in sum (ii) is
obtained.

Estimating the second sum (ii)

Next, we bound ‖Qkv‖Ak+1 .
Because ‖A1/2k D−1

k A
1/2
k ‖ = ‖Ak‖, we have ‖A1/2k SkA

−(1/2)
k ‖ = ‖ϕν(A1/2k D−1

k

A
1/2
k )‖ ≤ 1 and similarly ‖D1/2k SkD

−(1/2)
k ‖ = ‖ϕν

(
D

−(1/2)
k Ak D

−(1/2)
k

)
‖ =

‖ϕν(Ak)‖ ≤ 1. The first estimate shows that

wT STk AkSkw ≤ wTAkw.

Then, based on Lemma 6.30, we obtain

‖Qkv‖Ak+1 = ‖PkQkv‖Ak
= ‖SkI kQkv‖Ak
≤ ‖Sk(I kQk −Qk−1)v‖Ak + ‖SkQk−1v‖Ak
≤ ‖Sk(I kQk −Qk−1)v‖Ak + ‖Qk−1v‖Ak
≤ ‖Ak‖1/2‖Sk(I kQk −Qk−1)v‖ + ‖Qk−1v‖Ak
≤ ‖Ak‖1/2 ‖D−(1/2)

k ‖
∥∥D1/2k (I kQk −Qk−1)v

∥∥+ ‖Qk−1v‖Ak

≤
‖A‖1/2 ‖D1/2k ‖
(2ν + 1)k

∥∥D−(1/2)
k

∥∥ ‖Ik−1(I kQk −Qk−1)v‖ + ‖Qk−1v‖Ak

≤ κD
‖A‖1/2
(2ν + 1)k ‖Ik−1(I kQk −Qk−1)v‖ + ‖Qk−1v‖Ak . (6.75)

Here, κD is a uniformboundof the condition number ofD
1/2
k (see assumption (6.71)).

We also have

‖v − IkQkv‖2 = ‖(Ik−1Qk−1 − IkQk)v‖2 + ‖v − Ik−1Qk−1v‖2,
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because ITk−1Ik−1Qk−1 = ITk−1 and Ik = Ik−1I k , which implies that

(v − Ik−1Qk−1v)T (Ik−1Qk−1 − IkQk)v = (v − Ik−1Qk−1v)T Ik−1(⋆) = 0.

Therefore,

‖(Ik−1Qk−1 − IkQk)v‖ ≤ ‖v − IkQkv‖.

That is, if we bound ‖v−IkQkv‖, the result will follow. Here, we use estimate (6.58),
which was one of our main assumptions. It reads

‖v − IkQkv‖2 ≤ σ 2a
(2ν + 1)2(k+1)

‖A‖ vTAv.

Then,

‖(Ik−1Qk−1 − IkQk)v‖ ≤ σa
(2ν + 1)k+1

‖A‖1/2 ‖v‖A. (6.76)

Substituting the latter estimate in (6.75), leads to the following main recursive
estimate,

‖Qkv‖Ak+1 ≤ ‖Qk−1v‖Ak + σa
(2ν + 1)k
‖A‖1/2 κD

‖A‖1/2
(2ν + 1)k ‖v‖A.

That is, we proved the following main estimate with� = σaκD ,

‖Qkv‖Ak+1 ≤ ‖Qk−1v‖Ak +� ‖v‖A ≤ (1+�k) ‖v‖A. (6.77)

Thus the second sum is bounded as follows.
∑

l≤ℓ
vTk Akvk =

∑

k≤ℓ
‖Qk−1v‖2Ak ≤ Cℓ3 vTAv. (6.78)

Completing the bound of the first sum (i)

We showed (see estimate (6.74)) that

‖(Qk−1 − PkQk)v‖ ≤
∥∥D−(1/2)

k

∥∥ ‖(Ik−1Qk−1 − IkQk)v‖

+
Cν‖D−(1/2)

k ‖
‖Ak‖1/2

‖Qk−1v‖.

This estimate, together with (6.76) and (6.77), implies that

‖(Qk−1−PkQk)v‖ ≤ σa
(2ν + 1)k
‖A‖1/2 ‖D−(1/2)

k ‖ ‖v‖A+
Cν‖D−(1/2)

k ‖
‖Ak‖1/2

(1+�k) ‖v‖A.
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We need to bound ‖Mk‖1/2‖(Qk−1 − PkQk)v‖. Recall that (by assumption)Mk ≃
‖Ak‖ Dk . This implies that

‖Mk‖1/2‖(Qk−1 − PkQk)v‖

≤ ‖Ak‖1/2‖D1/2k ‖‖D−(1/2)
k ‖

(
σa
(2ν + 1)k
‖A‖1/2 + Cν

‖Ak‖1/2
(1+�k)

)
‖v‖A

≤ κD
‖A‖1/2
(2ν + 1)k σa

(2ν + 1)k
‖A‖1/2 ‖v‖A + CνκD(1+�k) ‖v‖A

= κD [σa + Cν (1+�k)] ‖v‖A. (6.79)

Final estimates

In conclusion, we are ready to complete the proof of the following main result (given
for ν = 1 in [SA]).

Theorem 6.31. Assume the following properties.

• The aggregates A
(k)
i at every coarse level k are quasiuniform in the sense of

estimates (6.70).
• The approximation property (6.58)of the piecewise constant interpolants Ik (from

coarse level k + 1 all the way up to finest-level 0) holds.

• The choice of smoother is Mk ≃ ‖Ak‖ Dk , where Dk = ITk−1Ik−1 and Ak =
D

−(1/2)
k AkD

−(1/2)
k .

• The polynomials ϕν are based on (6.63) with b = ‖Ak‖ at every level k.

They are used in the construction of the smoothed interpolation matrices Pk =
ϕν(D

−1
k Ak)I k , where I k is the piecewise constant interpolant from coarse level

k + 1 to the next fine level k.

Then, the resultingV(1, 1)-cycle MG preconditionerB is nearly spectrally equivalent

to A with K∗ ≤ Cℓ3, where K∗ is the constant in (6.68).

Proof. It remains to use the estimates (6.79) and (6.78) for the particular decom-
position vk = (Qk−1 − PkQk)v + PkQkv and vk+1 = Qkv. We have (see identity
(6.72)),

vTBv ≤
[
‖PℓQℓv‖2Aℓ + 2

∑

k

‖Mk‖‖(Qk−1 − PkQk)v‖2 + 2
∑

k

‖PkQkv‖2Ak
]

≤
(
2
∑

k≤ℓ
‖Qk−1v‖2Ak + 2κ2D

∑

k<ℓ

(σa + Cν(1+ k�))2 ‖v‖2A
)

≤ C
[
ℓ3 +

∑

k<ℓ

k2
]

‖v‖2A

≤ Cℓ3 ‖v‖2A. �
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Domain Decomposition (DD) Methods

Domain decomposition (or DD) methods can generally be viewed as block versions
of the Gauss–Seidel or Jacobi method that in addition may exploit overlap. If in the
implementation, we use exact block inverses, the resulting algorithms are not gener-
ally of optimal complexity. For small blocks (corresponding to subdomains) to make
the DD method of optimal order, we need a substantial in size coarse problem, and in
order to have an overall optimal complexity of the method, we need an optimal solver
for the coarse problem, which generally can be achieved by a multilevel method. For
subdomain problems giving rise to large blocks, the coarse problem can be consid-
ered fixed. Then, in order to end up with an overall optimal complexity method, the
subdomain problems have to be solved by an optimal method, which again can be a
multilevel one. In summary, with DD-type methods to end up with an overall optimal
complexity algorithm, we need in some of the components (such as subdomain or
coarse-grid solutions) to employ some multilevel strategy.
This chapter also covers preconditioners based on domain embedding, auxiliary

space methods, as well as preconditioners for problemswith (multilevel) local refine-
ment. In some cases, the subdomain problems allow for the use of fast (direct) elliptic
solvers. We provide one such solver, as well.

7.1 Nonoverlapping blocks

In this section, we consider the following block structure of A

A =
[
A0,0 A0,b
Ab,0 Ab,b

]
,

where A00 is a block-diagonal matrix. Such a partitioning occurs in practice when
A comes from a discretization of a PDE, where the dofs corresponding to index b
form a separator (interface) Ŵ. For more details, see Section 1.8 (formula (1.19), in
particular). That is, the domain is partitioned into a number of subdomains�i by an
interfaceŴ so that any entry ars ofAwith indices r, s corresponding to nodes xr ∈ �i
and xs ∈ �j is zero for i 
= j .
P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 263
doi: 10.1007/978-0-387-71564-3_7,
© Springer Science+Business Media, LLC 2008
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In order to achieve a stable block-form of A (cf. Section 3.4.1), we need an
extension mapping

E =
[
E0,b
I

]

that is almost “harmonic”. The latter means that for a constant η ≥ 1, we have

vTb E
T AEvb ≤ η inf

v0

[
v0
vb

]T
A

[
v0
vb

]
= η vTb Svb, with S = Abb−Ab,0A−1

0,0A0,b.

If η = 1, we have that E0,b = −A−1
0,0A0,b, which is sometimes called (A–) harmonic

extension. In the latter case,ET AE = S. The block-factorizationpreconditioner from
Section 3.4.1 (modified to allow for nonsymmetricM0,0) reads

B =
[

I 0
Ab,0M

−1
0,0 − ET0,b(I − A0,0M−1

0,0) I

] [
M0 0
0 Bb

]

×
[
I M−T

0,0 A0,b − (I −M−T
0,0 A0,0)E0,b

0 I

]
.

Here

M0 = M0,0
(
M0,0 +MT

0,0 − A0,0
)−1
MT
0,0

is the symmetrized inexact subdomain solver, whereas Bb is a spectrally equivalent
preconditioner to the interface Schur complement S, or equivalently, to ET AE.

7.2 Boundary extension mappings based on solving

special coarse problems

One way to construct computable extension mappings is by solving a coarse problem
based on a bounded interpolation mapping which is identity at the boundary. Such a
situation can arise if we coarsen the grid gradually away from the boundary Ŵ of a
given domain �. An example is shown in Figure 7.1.
More specifically, let

P =
[

P

I

]
} Nf –the set of fine dofs
} Nc–the set of coarse dofs

be the interpolation matrix, and assume that Ŵ ⊂ Nc. Let

A =
[
A0,0 A0,b
Ab,0 Ab,b

]
} � \ Ŵ
} Ŵ

be the fine-grid matrix. Similarly, let

Ac = P T AP =
[
Ac0,0 Ac0,b
Acb,0 Acb,b

]
} Nc \ Ŵ
} Ŵ
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Fig. 7.1. Gradually coarsened mesh away from a boundary. The coarse degrees of freedom
are the vertices of the agglomerated (coarse) elements. A typical coarse element has four or
five coarse degrees of freedom.

be the coarse-grid matrix. The extension mapping of interest is defined by

E = P
[

−
(
Ac0,0

)−1
Ac0,b

I

]
.

The following result holds.

Theorem 7.1. Assume that the interpolation matrix P is bounded in energy; that is,

there is a restriction matrix R : v �→ vc = Rv, such that

vTc P
T APvc ≤ η inf

v: Rv=vc
vTAv.

Assuming thatR and P are identity nearŴ (see below), then the energy boundedness

of PR implies energy boundedness of the extension mapping E; that is, we have

vTb E
T AEvb ≤ η inf

v: v|Ŵ=vb
vTAv. (7.1)

Proof. Because Ŵ ⊂ Nc, it is natural to assume that R has similar structure to P ,
that is, that P and R act as the identity near Ŵ. More specifically, we considerR such
that

R =
[
∗ 0
0 I

]
} N \ Ŵ
} Ŵ

.

The proof then proceeds as follows. Given vb, let v solve the minimization problem

vTAv = inf
w: w|Ŵ=vb

wTAw.
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Let vc = Rv. Note that vc|Ŵ = vb (due to the special structure of R near Ŵ). Then
due to the assumed energy boundedness of PR, we have

vTc P
T APvc ≤ η inf

w: Rw=vc
wTAw ≤ η vTAv.

Now take inf over vc : vc|Ŵ = vb, on the left-hand side above. Then,

inf
vc|Ŵ=vb

vTc P
T APvc ≤ η vTAv.

It remains to notice that vTb E
T AEvb = infvc|Ŵ=vb vTc P

T APvc. Thus, we proved the
desired estimate (7.1). �

One way to construct an energy-boundedP in the case illustrated in Figure 7.1 is
as follows. Herewe assume thatA is assembled from the localmatrices {Aτ }. Assume
also that we can build Pτ for every coarse element τ (union of fine-grid elements),
such that ‖Aτ‖‖vτ − Pτ vcτ‖2τ ≤ δ vTτ Aτvτ . We then construct a partition of unity
diagonalmatrices {Qτ }where eachQτ is nonzero only on τ and the set {Qτ } satisfies∑
τ Qτ = I . Let P̂τ bePτ extendedwith zero rows outside τ . The global interpolation

matrix is then defined as
P =

∑

τ

Qτ
[
0, P̂τ , 0

]
.

Then, in precisely the sameway as in Section 6.11,we show that the local estimates

‖Aτ‖‖vτ − Pτvcτ‖2 ≤ δ vTτ Aτvτ

imply a global one

‖v − Pvc‖2 ≤ δ

η‖A‖vTAv.

Here η ≤ 1 is such that

‖Aτ‖ ≥ η ‖A‖.

(Note that ‖Aτ‖ ≤ ‖A‖.) Then Theorem 6.20 shows that a two-grid preconditioner
based on P and the Richardson smoother M = (‖A‖/ω)I , ω ∈ (0, 2) (hence
M̃ = (‖A‖2/ω2)(2(‖A‖/ω)I − A)−1 is the symmetrized smoother) is spectrally
equivalent to A. Finally, Corollary 3.24 shows that πM̃ = PM̃−1

c P
T M̃ is bounded

in energy. The latter shows the result we needed. Indeed, because

P =
[
∗ 0
0 I

]
,

(i.e., P acts as the identity near Ŵ), we have that first

Mc = P TMP =
[
∗ 0
0 I

]
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acts as the identity near Ŵ, and hence,

M−1
c P

TM =
[
∗ 0
0 0

]

also acts as the identity near Ŵ. Thus, if we defineR = M−1
c P

TM , then we have that
R acts as the identity nearŴ. Finally, becausePR is bounded in energy (becauseπM̃ is
bounded in energy, and M̃ ≃ I ) the assumptions of Theorem 7.1 have been verified.
Note also that the elements τ are obtained by a standard “uniform” coarsening

and a local Pτ bounded in Aτ -norm is feasible.

7.3 Weakly overlapping blocks

Here we assume that A = P T ÂP ; that is, A is obtained by a Galerkin (also called
RAP) procedure from a bigger matrix Â based on a simple interpolation matrix P . In
most of the applications, P has columns of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

0
1
0
...

0
1
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

That is, each column of P has at the mostm ≥ 1 nonzero entries equal to 1. Thus, we
may say that every dof i ofA is repeatedm = m(i) times in Â. Assume that there is a
set of indices “b” (further referred to as a separator boundary) and a set of indices “c”
(further referred to as coarse dofs). The remaining dofs are denoted by “0” dofs. We
can then reorder Â as follows

Â =

⎡
⎣
Â0,0 Â0,b Â0,c
Âb,0 Âb,b Âb,c
Âc,0 Âc,b Âc,c

⎤
⎦

} dofs outside the separator boundary
} dofs on the separator boundary
} coarse dofs

.

Similarly, let

P =

⎡
⎣
I 0 0
0 P0,b 0
0 I I

⎤
⎦ .

That is, only dofs on the separator boundary are allowed to have“multiple” copies in Â.
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An interesting case in practice is when the block

A =
[
Â0,0 Â0,b
Âb,0 Âb,b

]

admits a block-diagonal structure (which is the case of “b” being a true separator),
and the remaining diagonal block B = Âc,c has a small size (hence the name coarse
dofs for the set “c”).
We first use the exact inverse of Â. It can be obtained by its exact factorization.

Denoting L = [Âc,0, Âc,b], and similarly

R =
[
Â0,c
Âb,c

]
,

we arrive at

Â =
[
I 0

LA−1 I

] [
A 0
0 S

] [
I A−1R
0 I

]
.

Then the block preconditioner for A, or rather its inverse, takes the familiar form:

B−1 = (P T P)−1P T Â−1P(P T P)−1. (7.2)

Lemma 7.2. The construction ofB in (7.2) ensures thatA−B is positive semidefinite.

Proof. Indeed, from A = P T ÂP , we have I = GGT with G = A−(1/2)P T Â1/2,
which implies that I−GTG is positive semidefinite. That is, I−Â1/2PA−1P T Â1/2 is
positive semidefinite, orwhich is equivalent, Â−1−PA−1P T is positive semidefinite.
The latter finally implies that (P T P)−1P T Â−1P(P T P)−1 −A−1 = B−1 − A−1 is
positive semidefinite as well. �

Note that Â−1 involves the exact inverse ofA, which has a simple structure (i.e.,
block-diagonal). Also, it uses S−1, that is, the inverse of the exact Schur complement
of Â. The latter has a small size by assumption. We also note that P T P in the present
setting is diagonal and P(P T P)−1 can be interpreted as a weight (or averaging)
matrix. In the case of inexact inversesM−1 andM−T ofA, we use the symmetrized
preconditioner

M = M(M + MT − A)−1MT

and a bounded extension mapping

π =

⎡
⎣
I 0 E0,c
0 I Eb,c
0 0 I

⎤
⎦ =

[
I E

0 I

]
, E =

[
E0,c
Eb,c

]
.

Introduce also the natural coarse matrix

Âc =
[

E

I

]T
Â

[
E

I

]
.
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The resulting preconditioner inverse, B−1, then reads:

B−1 = (P T P)−1P T
[
I −M−TR + (I − M−TA)E
0 I

][
M

−1
0

0 Â−1
c

]

×
[

I 0
−LM−1 + ET (I − AM−1) I

]
P(P T P)−1. (7.3)

Consider first the following simple example. Let

A =

⎡
⎢⎢⎣

A aT 0 pT

a d bT rT

0 b B qT

p r q C

⎤
⎥⎥⎦

and

P =

⎡
⎢⎢⎢⎢⎣

I 0 0 0
0 I 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎤
⎥⎥⎥⎥⎦
.

Finally, let d = α + β and r = η + θ . Consider then the following extended matrix.

Â =

⎡
⎢⎢⎢⎢⎣

A aT 0 0 pT

a α 0 0 ηT

0 0 β bT θT

0 0 b B qT

p η θ q C

⎤
⎥⎥⎥⎥⎦
.

We can easily check that A = P T ÂP . In the case of finite element matrices, we
can naturally split d = α + β and r = η + θ such that Â, and hence the resulting
blocks of Â,

[
A aT

a α

]
and

[
β bT

b B

]
,

are symmetric positive semidefinite ifA is symmetric positive semidefinite. These two
major blocks of Âmaybeviewed asweakly overlapping inAbecause their shared dofs
are from the set “b”, which in practice has much smaller size than the nonoverlapping
dofs “0” (giving rise to A and B in the present example). The above procedure of
constructing Â and the respectiveM is referred to as a class of “Neumann–Neumann”
methods. The variational relation between A and Â to specify unique value of the
dofs on the separator ”b” can be replaced by constraints. The latter procedure is
sometimes called “tearing and interconnecting” and is a popular method in the finite
element literature referred to as the FETI (finite element tearing and interconnecting)
preconditioner (originated in [FETI] and in the presence of “coarse” dofs, commonly
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referred to as primal dofs; in [FETIdp0, FETIdp]). We have focused here on the
possibility for inexact subdomain solvers (referring toM−1 andM−T in (7.3)) as
well as on the choice of the natural coarse matrix Âc = ET ÂE. Detailed descriptions
and finite element analysis of a variety of Neumann–Neumann and FETI (and FETI-
DP) methods are found in [TW05].

7.4 Classical domain-embedding (DE) preconditioners

In this section, we also assume that A = P T ÂP , in the sense that A can be viewed
as a principal submatrix of Â. Namely, let

Â =
[
A R

L T

]
.

Then with

P =
[
I

0

]
,

we get A = P T ÂP . Note that this simple P may not be uniformly bounded in the
Â-norm. Namely, the constant η in the bound

vTAv = vT P T ÂPv ≤ η inf
v0

[
v0
v

]T
Â

[
v0
v

]

may be mesh-dependent for a finite element matrix Â. This is the case because a prin-
cipal matrix of Â is not typically spectrally equivalent to a corresponding Schur
complement (A−RT−1L) of Â (in a standard f.e. basis). In conclusion, thematrix em-
bedding preconditioner (as defined in (7.2)) (P T P)P T Â−1P(P T P)−1 = P T Â−1P
will not generally be spectrally equivalent to A−1.
That is why in the present case, we need an extension mapping

E =
[

E

I

]

such that based on

π =
[
I E

0 I

]

the transformedmatrix πT Âπ admits a stable two-by-two block form. Constructions
of bounded extension mappings are bound in Section 7.2 and in Appendix D. The
resulting “domain embedding” (DE), or rather, matrix-embedding preconditioner,
takes the form

B−1 =
[
I

0

]T
π−1Â−1π−T

[
I

0

]

= [I, −E] Â−1
[

I

−ET

]
. (7.4)
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It is clear also that we can use in (7.4) any available spectrally equivalent precondi-
tioner B̂ for Â instead. Thus, we come up with the following inexact DE precondi-
tioner,

B−1 = [I, −E]B̂−1
[

I

−ET

]
. (7.5)

The analysis of the resulting preconditioner is simple because with a bounded
extension mapping E, we ensure that

πT Âπ =
[

A AE + R
ETA+ L ET ÂE

]

is spectrally equivalent to its block-diagonal part

D̂ =
[
A 0
0 ET ÂE

]
.

More specifically, let

xTET ÂEx ≤ η inf
v

=
[

v

x

]T
Â

[
v

x

]
. (7.6)

The above Â-norm boundedness of E implies the following strengthened Cauchy–
Schwarz inequality (simply examine the sign of the discriminant of the quadratic
form,

Q(t) =
[
tv

x

]T
Â

[
tv

x

]
− 1

η
xTET ÂEx ≥ 0 for any t ∈ R),

vT (AE + R)x =
[

v

0

]T
Â

[
0
x

]
≤
√
1− 1

η

(
vTAv

)1/2(
xTET ÂEx

)1/2
.

Therefore, we have
(
1−

√
1− 1

η

)
v̂T D̂v̂ ≤ v̂T Â̂v ≤

(
1+

√
1− 1

η

)
v̂T D̂v̂.

This shows that A−1 is spectrally equivalent to

[
I

0

]T
(πT Âπ)−1

[
I

0

]
= [I, −E]Â−1

[
I

−ET

]
= B−1.

More specifically, the following bounds hold.
(
1−

√
1− 1

η

)
vTAv ≤ vTBv ≤

(
1+

√
1+ 1

η

)
vTAv.

Thus the following result is easily seen (cf., [V96]).
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Theorem 7.3. Let B̂ be a spectrally equivalent preconditioner to Â such that for two

positive constants α and β, we have

α v̂T B̂ v̂ ≤ v̂T Â̂v ≤ β v̂T B̂v̂.

Consider the inexact DE preconditioner B defined in (7.5) based on an extension

mapping

E =
[

E

I

]
,

which satisfies the norm bound (7.6). Then the following spectral equivalence rela-

tions between A and B hold,

1−
√
1− 1

η

β
vTAv ≤ vTBv ≤

1+
√
1− 1

η

α
vTAv.

7.5 DE preconditioners without extension mappings

In some cases, A can be derived from a matrix

Â =
[
A+ C R

L B

]
where

[
C R

L B

]

is symmetric positive semidefinite. More specifically, we assume that

A =
[
A aT

a α

]
(7.7)

and let

R =
[
0
rT

]
and C =

[
0 0
0 β

]
.

That is, the extended matrix admits the form

Â =

⎡
⎢⎣

[
A aT

a α + β

] [
0
rT

]

[
0 r

]
B

⎤
⎥⎦ =

⎡
⎣

A aT 0
a α + β rT

0 r B

⎤
⎦ . (7.8)

Assuming now that the Schur complements α = α− aA−1aT and β = β − rTB−1r
are related as in (7.9), then the same construction as in (7.4) or (7.5) gives a spectrally
equivalent preconditionerB to A. Introduce the vectors

v̂ =

⎡
⎣

v0
vb
x

⎤
⎦ and v =

[
v0
vb

]
.

The analysis proceeds as follows. We first have

inf
x

[
v

x

]T
Â

[
v

x

]
= vTAv + vTb βvb ≥ vTAv,
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whereβ = β−rTB−1r as a Schur complement of the symmetric positive semidefinite
matrix

[
β rT

r B

]

is also positive semidefinite. Similarly, because by assumption β and α are spectrally
equivalent, we have that for some constant κ > 0,

vTb βvb ≤ κvTb αvb, (7.9)

which implies vTb βvb ≤ κvTAv. The last inequality holds because α is a Schur
complement of the symmetric positive definite matrix A. Therefore,

inf
x

[
v

x

]T
Â

[
v

x

]
= vTAv + vTb βvb ≤ (1+ κ)vTAv.

Thus, we proved that A and the Schur complement A + C − RB−1L of Â are
spectrally equivalent. It is equivalent to say thatA−1 and the exact DE preconditioner

B−1 =
[
I

0

]T
Â−1

[
I

0

]
,

which is a principal submatrix of Â−1, are spectrally equivalent. Finally, it is clear
that we can instead use the inexact DE preconditioner

B−1 =
[
I

0

]T
B̂−1

[
I

0

]
(7.10)

based on any given spectrally equivalent preconditioner B̂ for Â and still have spectral
equivalence between A and B. That is, we proved the following main result.

Theorem 7.4. Consider the matrix A given in (7.7), which is embedded in matrix Â

given in (7.8). Assume that the two Schur complements on the separator set (denoted

with index “b”) satisfy (7.9). Then the DE preconditioner B defined as in (7.10) is

spectrally equivalent to A and the following bounds hold.

δ

1+ κ vTBv ≤ vTAv ≤ σ vTBv.

Here, the constants σ and δ are from the spectral equivalence relations between Â

and B̂,

δ v̂T B̂v̂ ≤ v̂T Â̂v ≤ σ v̂T B̂v̂,

and κ is from (7.9).

We comment at the end that estimates of the form (7.9) are readily available
in the finite element literature, and they represent the fact that the interface Schur
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complementsα andβ define equivalent norms on the interface boundary (or separator)
Ŵ under consideration. For second-order elliptic PDEs, this is an equivalent norm in
the fractional-order Sobolev spaceH 1/2

0,0 (Ŵ). Finally, in the example of second-order
elliptic PDEs, the finite element stiffness matrix A corresponds to a discrete problem
with Neumann boundary conditions imposed on Ŵ. Thus the DE in the latter case is
called DE through a Neumann boundary (perhaps first considered in [A78]).

7.6 Fast solvers for tensor product matrices

Here, we present a fast direct solver for special-type matrices that frequently appear
in domain decompositionmethods (e.g. as subdomain solvers). More specifically, we
are interested in matrices

A = T ⊗ I|B| + I|T | ⊗ B,

where I|B| and I|T | are identity matrices of size m = |B| (the size of B) and |T |
(the size of T ), respectively. The matrix T = (Tr,s)

n
r,s=1 is (block-)tridiagonal and

B = (bi,j )
m
i,j=1 is (scalar-) tridiagonal. Generalizations for (block-)banded matrices

are straightforward. The product Q ⊗ P stands for the block matrix (pijQ) where
P = (pij). We assume that T and B are s.p.d., but one of them is allowed to be only
semidefinite. In other words, we assume that λmin(T )I + B is s.p.d.
Assume that the eigendecomposition of T is computed so that we can utilize it

for the solution of Ax = b as follows.
Let T qk = λkqk , k = 1, 2, . . . , |T |. The eigenvectors qk form an orthonormal

system (i.e., qTk ql = δk,l). The system Ax = b can be rewritten as follows (letting
b1,0 = 0 and bm,m+1 = 0),

T xi + bi,i−1xi−1 + bi,ixi + bi,i+1xi+1 = bi , i = 1, . . . ,m. (7.11)

The vectors xi ∈ R|T |, i = 1, . . . ,m are unknown and bi ∈ Rn, i = 1, . . . ,m are
given.
Using the orthogonal basis {qk}, we can expand both xi and bi as follows,

xi =
∑

k

ηi,kqk,

bi =
∑

k

βi,kqk.

The coefficients βi,k are computed from the inner products

βi,k = qTk bi . (7.12)

Substituting the above expressions for xi and bi in the original system (7.11), after
rearranging the terms, we get
∑

k

((λk + bi,i)ηi,k + bi,i−1ηi−1,k + bi,i+1ηi+1,k) qk =
∑

k

βi,k qk, i= 1, . . . ,m.
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By comparing the coefficients in front of qk , we end up with the following system
for the unknown coefficients {ηi,k}:

(λk + bi,i)ηi,k + bi,i−1ηi−1,k + bi,i+1ηi+1,k = βi,k, i = 1, . . . ,m,

for k = 1, . . . , |T |. Introducing the vectors ηk = (ηi,k)
m
i=1 ∈ Rm and βk =

(βi,k)
m
i=1 ∈ Rm, we end up with |T | (decoupled) tridiagonal systems:

(λkI + B)ηk = βk, k = 1, . . . , |T |. (7.13)

We can solve these systems for |T | Ctridiag m flops.
Then, the solution vectors xi are recovered from the formula xi =

∑
k ηi,k qk .

The total cost of this evaluation is 2m|T |2 flops. The same cost, 2m|T |2 flops, is needed
to compute the coefficients βi,k = qTk bi .

In summary, the standard method of separation of variables requires O(m|T |2)
flops in changing the basis plus Ctridiag |T |m flops to compute the unknowns after
the change of basis. The latter cost is an order of magnitude less than the cost of the
actual change of basis.
In what follows, we describe a fast algorithm for separation of variables (FASV)

originating in [V84]. It takes advantage of the fact that T is also (block-)tridiagonal.
To explain the main idea, partition T into three blocks as follows,

T =

⎡
⎣
T1 T1,0 0
T0,1 T0,0 T0,2
0 T2,0 T2

⎤
⎦ .

Let n = 2ℓ − 1. Note now that |T | = nN where N stands for the size of the
blocks Ti,i of the block-tridiagonal matrix T . We break T in the middle by using
its 2ℓ−1th row to define the blocks T0,1, T0,0, T0,2. That is, T0,0 = T2ℓ−1,2ℓ−1 and
T0,1 = [0, . . . , 0, T2ℓ−1,2ℓ−1−1], and similarly T0,2 = [T2ℓ−1,2ℓ−1+1, 0, . . . , 0]. Then,
T1 and T2 are the major principal submatrices of T (which are also block-tridiagonal)
but now with half the block size of the original matrix T .
The FASV exploits the following principal steps of Gaussian elimination realized

on the basis of the standard separation of variableswith paying attention to the nonzero
pattern of the computed r.h.s. and utilizing the fact that we need to evaluate the sums
only for specific components of the intermediate solutions. These observations are
the key ingredients of the so-called “partial solution technique” developed by Y. A.
Kuznetsov and A. M. Matsokin in [KM78]; see also [Ba78]. The method was further
studied in [Ku85], and more recently in [KR96] and [RTa, RTb].
Use the above block partitioning of T = T2ℓ−1 and respective blocking of

xi =

⎡
⎢⎣

x
(1)
i

x
(0)
i

x
(2)
i

⎤
⎥⎦ and bi =

⎡
⎢⎣

b
(1)
i

b
(0)
i

b
(2)
i

⎤
⎥⎦ .
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Let xi = (xi, j )
n
j=1 and bi = (bi, j )

n
j=1, (n = 2ℓ − 1); then x

(0)
i = xi, 2ℓ−1 , x

(1)
i =

(xi, j )
2ℓ−1−1
j=1 , and x

(2)
i = (xi, j )

2ℓ−1
j=2ℓ−1+1 and similarly, b

(0)
i = bi, 2ℓ−1 , b

(1)
i =

(bi, j )
2ℓ−1−1
j=1 , and b

(2)
i = (bi, j )2

ℓ−1
j=2ℓ−1+1.

The following algorithm is of interest.

Algorithm 7.6.1. Solve the systems

T1y
(1)
i + bi,i−1y(1)i−1 + bi,iy(1)i + bi,i+1y(1)i+1 = b

(1)
i , i = 1, . . . ,m,

and

T2y
(2)
i + bi,i−1y(2)i−1 + bi,iy(2)i + bi,i+1y(2)i+1 = b

(2)
i , i = 1, . . . ,m,

and form

yi =

⎡
⎣

y
(1)
i

0

y
(2)
i

⎤
⎦ .

Compute the residuals ri = bi − (T yi +bi,i−1yi−1+bi,iyi +bi,i+1yi+1). Notice

that the residuals ri have only one nonzero block component; namely,

ri,2ℓ−1 = bi,2ℓ−1 − T2ℓ−1,2ℓ−1−1y
(1)
i,2ℓ−1−1 − T2ℓ−1,2ℓ−1+1y

(1)
i,2ℓ−1+1.

Solve the residual equation

T zi + bi,i−1zi−1 + bi,izi + bi,i+1zi+1 = ri , i = 1, . . . ,m. (7.14)

The desired solution is then xi = yi + zi .

Noticing that (by construction) yi,2ℓ−1 = 0 implies that xi,2ℓ−1 = zi,2ℓ−1 , we solve

system (7.14) only for zi,2ℓ−1 . By the method of separation of variables this is possible,

because we have explicit formulas to compute zi,j =
∑
k ηi, kqk,j .

The latter sums for a set of indices j that form the middle block 2ℓ−1 of zi can

be evaluated for 2nm|N | flops. Recall that N stands for the size of the block zi,2ℓ−1

(equal to the size of T0,0 = T2ℓ−1,2ℓ−1). To compute the coefficients βi,k = qTk ri , we

use the fact that ri has only one component that is nonzero. This reduces the cost

from 2n2m to only 2nmN flops, (where again N stands for the size of the nonzero

component of ri .)

After x
(0)
i = xi,2ℓ−1 = zi,2ℓ−1 has been computed, the original problem decom-

poses into two decoupled pieces; namely, we have

T1x
(1)
i + bi,i−1x(1)i−1 + bi,ix(1)i + bi,i+1x(1)i+1 = b

(1)
i − T1,0x(0)i , i = 1, . . . ,m,

and

T2x
(2)
i + bi,i−1x(2)i−1 + bi,ix(2)i + bi,i+1x(2)i+1 = b

(2)
i − T2,0x(0)i , i = 1, . . . ,m,

which have two times smaller block-size.
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Applying the above algorithm recursively with respect to the block size of the
blocks of T , we end up with the so-called fast algorithm for separation of variables
(originating in [V84]).
We now give a fairly detailed description and motivation for the key steps that

we have to take into account in order to implement FASV efficiently.

Algorithm 7.6.2 (FASV: Fast algorithm for separation of variables). For every

k = 1, . . . , ℓ, we introduce the principal submatrices of T ,

T (k)s

=

⎡
⎢⎢⎢⎢⎢⎢⎣

T(s−1)2k+1,(s−1)2k+1 T(s−1)2k+1,(s−1)2k+2
T(s−1)2k+2,(s−1)2k+1 T(s−1)2k+2,(s−1)2k+2 T(s−1)2k+2,(s−1)2k+3

. . .

. . .
. . .

. . .

Ts2k−1,s2k−2 Ts2k−1,s2k−1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

for s = 1, . . . , 2ℓ−k . Assume that all the eigenvalues and all the eigenvectors of

T
(k)
s have been precomputed. The eigenvectors use the same block-ordering as the

matrices T
(k)
s . In FASV, the eigenvectors are needed only partially; namely, only the

first, the last (i.e., the (2k − 1)th) and middle block-entry (i.e., the 2k−1th) of each

eigenvector need to be stored. Note that if T itself is separable, additional storage

savings can be utilized.

(i) Forward recurrence. Assume that at step k, we have a r.h.s. b(k) such that b
(k)
i

have nonzero components at positions s2k−1. Form the vectors b
(k,s)
i of length

2k − 1 by partitioning the b
(k)
i , namely, b

(k,s)
i,r = b

(k)

i,(s−1)2k+r , r = 1, . . . , 2k − 1.

Then, it is clear that only b
(k,s)

i,2k−1; that is, the middle component of each b
(k,s)
i will

be nonzero.

1. Solve for the first, middle, and last components of y
(k,s)
i , the systems

T (k)s y
(k,s)
i + bi,i−1y(k,s)i−1 + bi,iy(k,s)i + bi,i+1y(k,s)i+1 = b

(k,s)
i , i = 1, . . . ,m,

exploiting the fact that b
(k,s)
i has only one nonzero component (the one in the

middle, 2k−1th).

2. Form

y
(k)
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
(k,1)
i

0

y
(k,2)
i

0
...

0

y
(k,2ℓ−k)
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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and compute the next residual

b
(k+1)
i = b

(k)
i −

(
T y

(k)
i + bi,i−1y(k)i−1+ bi,iy(k)i + bi,i+1y(k)i+1

)
, i = 1, . . . ,m.

We see (by induction) that b
(k+1)
i has nonzero entries at positions s2k ,

s = 1, . . . , 2ℓ−k − 1. Those entries equal

b
(k+1)
i, s2k

= b
(k)

i,s2k
−
(
Ts2k,s2k−1y

(k)

i,s2k−1 + Ts2k,s2k+1y
(k)

i,s2k+1
)
,

for i = 1, . . . ,m. Noticing that y
(k)

i,s2k−1 = y
(k,2s−1)
i,2k−1 (i.e., the last entry of

y
(k,2s−1)
i ) and y

(k)

i,s2k+1 = y
(k,2s)
i,1 (the first entry of y

(k,2s)
i ), we see that the

r.h.s. b
(k+1)
i are actually computable without full knowledge of y

(k,s)
i ; that

is, we need only their first and last (i.e., the (2k − 1)th) components. For

computational efficiency (of the backward substitution), we also compute their

middle component (the 2k−1th one) here.

(ii) Backward substitution. By construction, we have

b(k+1) = b(k) − Ay(k).

Therefore, letting b(ℓ+1) = 0 and b(1) = b, we get

A

(∑

k

y(k)

)
= b.

That is, the exact solution x = (xi)mi=1 has been decomposed as

xi =
∑

k

y
(k)
i .

We recall that by construction y
(l)

i, s2k
= 0 for l ≤ k. This, in particular implies

that

xi,s2k =
∑

l>k

y
(l)

i, s2k
.

In the backward substitution steps for k = ℓ, . . . , 1, we recover the exact solution

xi,s2k utilizing the above formula.

1. Compute the r.h.s. vectors r
(k,s)
i that have nonzero components only at their

first and last position, namely,

r
(k,s)
i,1 = −T(s−1)2k+1,(s−1)2kxi, (s−1)2k

r
(k,s)

i,2k−1 = −Ts2k−1,s2kxi, s2k .
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2. Solve, only for the middle component of z
(k,s)
i , (for s = 1, . . . , 2ℓ−k) the

systems

T (k)s z
(k,s)
i + bi,i−1z(k,s)i−1 + bi,iz(k,s)i + bi,i+1z(k,s)i+1 = r

(k,s)
i , i = 1, . . . ,m,

3. Recover xi, s2k−1 as

xi, s2k−1 = z
(k,s)

i,2k−1 + y
(k,s)

i,2k−1 .

We recall that the middle components (i.e., the 2k−1th) of y
(k,s)
i have been

computed in the forward recurrence.

Proposition 7.5. We recall that |B| = m stands for the size of B, N stands for the

size of each block Tii of T , and n is the number of blocks of T . That is, the size of T

is |T | = nN, and the size of the overall problem is |T ||B| = mnN.

Following the steps of Algorithm 7.6.2, we can estimate the storage requirements

and number of flops of a straightforward implementation of FASV as follows (the

leading terms only).

Forward step (1) and backward step (2), can be implemented (using the sparsity

of the r.h.s. and the fact that only certain components of the solutions are needed) for
∑

k

2ℓ−k[8(2k − 1)Nm+ 6(2k − 1)Nm] ≃ 14(nNm) ℓ flops.

The corresponding (scalar) tridiagonal systems can be solved for
∑

k

2ℓ−k Ctridiag (2k − 1)m ≃ Ctridiag (nNm) ℓ flops.

That is, the FASV algorithm can be implemented with a cost

≃ (14+ Ctridiag) |T ||B| logn,
where n is the block-size of T . Note that |T ||B| is the original problem size. The latter

shows that FASV is nearly optimal direct solver.

The storage requirements at every step k for the needed 3N components of the

(2k − 1)N eigenvectors of the matrices T (k,s) equal

2ℓ−k(2k − 1)N × (3N) ≃ 3N2n.

If these components are stored in advance (for all ks), we would need storage ≃
3N2nℓ, which can be prohibitively large ifN is of the same order as n ≃ m. However,

if T is itself separable (as a sum of two tensor products of smaller matrices similarly

to A) then the storage requirement reduces by an order of magnitude and hence

is negligible. If N = 1, that is, T is also scalar tridiagonal (as B) the storage is

negligible.

The storage for all 2k−1N eigenvalues of T (k,s) gives
∑
k 2
ℓ−k(2k−1)N ≃ nN ℓ,

which is negligible.

Finally, we need to store T andB, and we also need two additional vector arrays,

one for the r.h.s. and one for the solution. Customarily, the solution can overwrite the

r.h.s. if the latter is not needed at the end.
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7.7 Schwarz methods

The classical (multiplicative) Schwarz methods are most commonly described as
product iteration methods that exploit solutions corresponding to principal subma-
trices of A of relatively small size and for a large number of blocks, for optimal
convergence, a global coarse solution is used in addition. For various algorithmic de-
tails, we refer to [DD]. In the present section, we give an equivalent formulation based
on the relation we established in Section 3.2.1 between product iteration methods and
certain (approximate) block-factorizations of A.
Given an n × n s.p.d. sparse matrix A, let �k, k = 1, . . . , J be an overlapping

partition of the set of indices {1, . . . , n}. Also, let Ik be the extension by zero of
vectors defined on the set �k to a vector in Rn. Denote by Ak = ITk AIk the principal
submatrix of A corresponding to the index set �k . Very often, as is customary in the
DD literature, we call �k subdomains.
Finally, letMk be preconditioners forAk such thatMT

k +Mk−Ak are s.p.d. Recall
(see Section 3.1.3) that the latter is equivalent to ‖I −A1/2k M−1

k A
1/2
k ‖ < 1. IfMk =

Ak, the corresponding Schwarz preconditioner is said to exploit exact subdomain
solutions. Note that our definition and subsequent analysis allow not only for inexact
but also nonsymmetric subdomain and coarse-grid solvers.

Denote the local vector spaces V
(0)
k = {v|�k : v ∈ Rn}, and form the following

auxiliary subspaces of Rn,

Vk =
∑

j≥k
IjV

(0)
j .

Note that the vectors in Vk are zero outside

�̃k ≡ �J ∪�J−1 ∪ · · · ∪�k.

To define the overlapping Schwarz preconditioner B for A, we also need a coarse
spaceV0 = Range(P ) for a given interpolation matrixP : Rm �→ Rn wherem ≤ n.
Let A0 = P T AP and M0 be a preconditioner for A0 such that MT

0 +M0 − A0 is
s.p.d. A typical case is M0 = A0. Alternatively,M0 can be the downward part of a
V -cycle multigrid based on A0.
The overlapping Schwarz preconditionerB exploits solutions withMk ,MT

k , k =
1, . . . , J , and the coarse matricesM0 andMT

0 , all being of smaller size compared to
n (the size of A). The following recursive definition defines an overlapping Schwarz
preconditioner with a coarse solution and inexact subdomain solutions (referring to
actions ofM−1

k andM−T
k ).

Definition 7.6 (Multiplicative Schwarz preconditioner). For k = J, J − 1, . . . , 1,

let Ĩk be the extension by zero of vectors defined on �̃k = �J ∪ �J−1 · · · ∪ �k to

vectors in Rn. Note that Ĩ0 = I , and recall that I0 = P .

Let Ãk = ĨTk AĨk be the principal submatrix of A corresponding to the auxiliary

subdomain �̃k for k > 0, or the coarse matrix A0, if k = 0.
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Set B̃J = MJ ≡ MJ (MT
J +MJ −AJ )−1MT

J . Assume that B̃k+1, for k < J has

been defined for vectors on �̃k+1 only. In order to define B̃k (for vectors defined on

�̃k), we first form

B̂k =
[
Mk 0

ĨTk+1AIk I

][(
MT
k +Mk − Ak

)−1
0

0 B̃k+1

][
MT
k ITk AĨk+1
0 I

]
,

and then let

B̃−1
k = ĨTk [Ik, Ĩk+1]B̂−1

k [Ik, Ĩk+1]T Ĩk .

We notice that [Ik, Ĩk+1]B̂
−1
k [Ik, Ĩk+1]T is s.p.d. when restricted to vectors

defined on �̃k. The latter is seen from the facts that�k ⊂ �̃k and �̃k+1 ⊂ �̃k , hence

for any vector ṽk defined on �̃k , we have ITk Ĩk ṽk = ṽk|�k , the restriction to �k , and

ĨTk+1Ĩk ṽk = ṽk|�̃k+1 , the restriction to �̃k+1. That is, [Ik, Ĩk+1]T Ĩk ṽk = 0 implies

ṽk = 0, hence [Ik, Ĩk+1]T Ĩk has a full column rank. Therefore, B̃k is a well-defined

s.p.d. matrix.

The following result holds as an application of the result in Section 3.2.1.

Lemma 7.7. Consider the iteration matrixEk = I− ĨkB̃−1
k Ĩ

T
k A. Then, the following

relation holds,

Ek = (I − IkM−T
k ITk A)Ek+1(I − IkM−1

k I
T
k A).

Proof. We notice that [Ik, Ĩk+1]T Ĩk ĨTk = [Ik, Ĩk+1]T (because �k, �̃k+1 ⊂ �̃k).
Therefore,

Ek = I − [Ik, Ĩk+1]B̂−1
k [Ik, Ĩk+1]TA.

Then based on the equivalence of the product iteration method exploiting solutions
in the subspaces Range(Ik), Range(Ĩk+1), and Range(Ik), based on Mk , B̃k+1, and
MT
k respectively, and the block-factorization matrix B̂k on the other hand (as shown

in Section 3.2.1), we have the identity

I − [Ik, Ĩk+1]B̂−1
k [Ik, Ĩk+1]TA

= (I − IkM−T
k ITk A)(I − Ĩk+1B̃−1

k+1Ĩ
T
k+1A)(I − IkM−1

k I
T
k A)

= (I − IkM−T
k ITk A)Ek+1(I − IkM−1

k I
T
k A),

which is the desired result. �

To analyze the Schwarz preconditioner, we need stable vector decomposition in
the following sense. Let v =

∑J
j=0 Ijvj be such that

J∑

j=0
vTj I

T
j AIjvj =

J∑

j=0
vTj Ajvj ≤ σ vTAv.

Then, we also need the partial sums restricted to �̃k; that is, ṽk = ĨTk
∑J
j=k Ijvj .



282 7 Domain Decomposition (DD) Methods

Let I(k) be the set of indices j such that ITk AIj is nonzero. Due to the spar-
sity of A, we can assume that maxk≥1 |I(k)| = κ is a bounded integer constant. It
defines the maximal number of overlapping subdomains�j with �k . Introduce, for
completeness, the set I(0) = {0, 1, . . . , J }.
In what follows, we estimate the term (ITk AĨk+1̃vk+1)

TA−1
k (I

T
k AĨk+1̃vk+1). We

first notice that Ĩk+1ĨTk+1Ij = Ij , because�j ⊂ �̃k+1 for j ≥ k + 1. Hence,

ITk AĨk+1̃vk+1 = ITk AĨk+1ĨTk+1
J∑

j=k+1
Ijvj

= ITk A
J∑

j=k+1
Ijvj

= ITk A
∑

j>k, j∈I(k)
Ijvj .

Next, use the fact that Ak = ITk AIk and also use ‖X‖ = ‖XT ‖ = 1 for X =
A

−(1/2)
k ITk A

1/2 to see that

wT IkA
−1
k I

T
k w ≤ wTA−1w.

For w = A
∑
j>k, j∈I(k) Ijvj , we end up with the inequality

(
ITk AĨk+1̃vk+1

)T
A−1
k

(
ITk AĨk+1̃vk+1

)
≤

⎛
⎜⎜⎝
∑

j∈I(k)
j>k

Ijvj

⎞
⎟⎟⎠

T

A

⎛
⎜⎜⎝
∑

j∈I(k)
j>k

Ijvj

⎞
⎟⎟⎠ .

(7.15)

We need next the following technical assumption

vTk (M
T
k +Mk − Ak)vk ≥ δ vTk Akvk. (7.16)

IfMk is s.p.d. preconditioner forAk such that vTkMkvk ≥ vTk Akvk the above assump-
tion holds with δ = 1. In general, if Mk is a nonsymmetric matrix, we may prove
the above inequality if Mk is a convergent splitting matrix for Ak . For example, if
‖I − A1/2k M−1

k A
1/2
k ‖ ≤ ̺ < 1, we can show (see Lemma 7.8 below) that (7.16)

holds with δ = ((1− ̺)/(1+ ̺)) > 0.
Lemma 7.8. Assume thatA is s.p.d. and letM provide anA-convergent iteration for

solving systems with A. More specifically, let

‖I − A1/2M−1A1/2‖ ≤ ̺ < 1.
Then,

vT (MT +M − A)v ≥ 1− ̺
1+ ̺ vTAv. (7.17)
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Proof. The result is seen from the inequalities ‖X− I‖ ≤ ̺ forX = A1/2M−1A1/2.
The norm inequality implies

̺2 ‖v‖2 ≥ vT (I − XT )(I −X)v = vT v − 2vTXv + ‖Xv‖2. (7.18)

That is, 2‖Xv‖‖v‖ ≥ (1 − ̺2) ‖v‖2 + ‖Xv‖2, or equivalently 2t ≥ t2 + (1 − ̺2)
for t = ‖Xv‖/‖v‖. This shows (t − 1)2 ≤ ̺2, which implies 1 + ̺ ≥ t ≥ 1 − ̺.
Using then ‖v‖ ≥ (1/(1+ ̺)) ‖Xv‖ in inequality (7.18) implies

2vTXv ≥ (1− ̺2) ‖v‖2 + ‖Xv‖2 ≥
[
1− ̺
1+ ̺ + 1

]
‖Xv‖2.

Letting v := X−1v, we get

vT (X−T +X−1)v = 2vTX−1v ≥
[
1+ 1− ̺

1+ ̺

]
‖v‖2,

which is (7.17) (by letting v := A 1
2 v). �

In summary, the following result can be formulated.

Theorem 7.9. Assume that any v admits a decomposition v =
∑J
j=0 Ijvj , which is

stable; that is,
J∑

j=0
vTj Ajvj ≤ σ vTAv. (7.19)

Also, let the subdomain solvers Mj , j > 0 and the coarse-grid solver M0 provide

‖.‖Aj convergent splittings for Aj , respectively. That is, we have

∥∥I − A1/2j M−1
j A

1/2
j

∥∥ ≤ ̺ < 1.

The latter implies the following coercivity estimate,

wTj (M
T
j +Mj − Aj )wj ≥ 1− ̺

1+ ̺ wTj Ajwj ,

as well as the following bounds for the symmetrized (subdomain or coarse-grid)

solversMj = Mj (MT
j +Mj − Aj )−1MT

j ,

wTj Ajwj ≤ wTj Mjwj ≤ 1

1− ̺2 wTj Ajwj .

Finally, let the subdomains �k satisfy the condition of bounded overlap, that is,

that the sets I(k) = {j > 0; ITk AIj 
= 0} have a bounded number of entries, in the

sense that maxk>0 |I(k)| ≤ κ for a bounded integer κ . Then, the following spectral

equivalence result holds, for B = B̃0,

vTAv ≤ vTBv ≤ 2

[
σ

(
1

1− ̺2 + κ2 1+ ̺
1− ̺

)
+ 21+ ̺

1− ̺

]
vTAv.
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Proof. From the definition of B̃k , we have XXT = I for

X = B̃1/2k ĨTk [Ik, Ĩk+1]B̂
−(1/2)
k .

Hence from ‖X‖ = ‖XT ‖ = 1, we get the inequality

[Ikvk + Ĩk+1̃vk+1]T ĨkB̃k ĨTk [Ikvk + Ĩk+1ṽk+1]

=
[

vk
ṽk+1

]T
[Ik, Ĩk+1]

T ĨkB̃k Ĩ
T
k [Ik, Ĩk+1]

[
vk

ṽk+1

]

≤
[

vk
ṽk+1

]T
B̂k

[
vk

ṽk+1

]
.

For any given v, consider its stable decomposition v =
∑
j≥0 Ijvj and the cor-

responding restricted partial sums ṽk = ĨTk
∑
j≥k Ijvj . We have, ṽk = ĨTk (Ikvk +

Ĩk+1ṽk+1), hence,

ṽTk B̃k ṽk =
[

vk
ṽk+1

]T
[Ik, Ĩk+1]

T ĨkB̃k Ĩ
T
k [Ik, Ĩk+1]

[
vk

ṽk+1

]

≤
[

vk
ṽk+1

]T
B̂k

[
vk

ṽk+1

]

= ṽTk+1B̃k+1ṽk+1 + (MT
k vk + ITk AĨk+1̃vk+1)T (MT

k +Mk − Ak)−1

× (MT
k vk + ITk AĨk+1ṽk+1).

Therefore, by recursion, we get the inequality

vTBv = ṽT0 B̃0ṽ0

≤
J−1∑

k=0

(
MT
k vk + ITk AĨk+1̃vk+1

)(
MT
k +Mk −Ak

)−1(
MT
k vk + ITk AĨk+1̃vk+1

)

+ ṽTJ B̃J ṽJ

=
J−1∑

k=0

(
MT
k vk + ITk AĨk+1̃vk+1

)(
MT
k +Mk −Ak

)−1(
MT
k vk + ITk AĨk+1̃vk+1

)

+ vTJMJ vJ . (7.20)

Now, use Cauchy–Schwarz inequality, the estimate for Mk , the coercivity estimate
forMT

k +Mk−Ak, and the estimate (7.15) for the restricted partial sums, the Cauchy–
Schwarz inequality using the bound on the cardinality of the sets I(k), to end up with
the following upper bound,

vTBv ≤ 2
J∑

k=0
vTkMkvk + 21+̺

1−̺

J−1∑

k=0
ṽTk+1Ĩ

T
k+1AIkA

−1
k I

T
k AĨk+1ṽk+1

≤ 2
1

1−̺2
J∑

k=0
vTk Akvk + 1+̺

1−̺

J−1∑

k=0
2

( ∑

j>k,j∈I(k)
Ijvj

)T
A

( ∑

j>k,j∈I(k)
Ijvj

)
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= 2
1

1− ̺2
J∑

k=0
vTk Akvk + 21+ ̺

1− ̺ (v − I0v0)TA(v − I0v0)

+ 1+ ̺
1− ̺

J−1∑

k=1
2

⎛
⎝ ∑

j>k, j∈I(k)
Ijvj

⎞
⎠
T

A

⎛
⎝ ∑

j>k, j∈I(k)
Ijvj

⎞
⎠ .

That is,

vTBv ≤ 2
1

1− ̺2
J∑

k=0
vTk Akvk + 41+ ̺

1− ̺ (v
TAv + vT0 A0v0)

+ 1+ ̺
1− ̺

J−1∑

k=1

⎛
⎝ ∑

j1, j2>k, j1, j2∈I(k)
(vTj1Aj1vj1 + vTj2Aj2vj2)

⎞
⎠

≤ 2
1

1− ̺2
J∑

k=0
vTk Akvk + 41+ ̺

1− ̺
(
vTAv + vT0 A0v0

)

+ 1+ ̺
1− ̺

J−1∑

k=1
2κ

∑

j>k, j∈I(k)
vTj Ajvj

≤ 2

[
1

1− ̺2 + κ2 1+ ̺
1− ̺

] J∑

k=0
vTk Akvk + 41+ ̺

1− ̺ vTAv.

Thus, based on the assumed stability of the decompositionv =
∑J
k=0 Ikvk the desired

upper bound follows.
The lower bound vTAv ≤ vTBv follows from the fact that the block-factorization

preconditioner leads to an iteration matrix EDD = I − B−1A, which admits the
following product form (proven in Lemma 7.7),

EDD = (I − I0M−T
0 IT0 A) · · · (I − IkM−T

k ITk A) · · · (I − IJ−1M
−T
J−1I

T
J−1A)

× (I − IJM
−1
J I

T
J A)(I − IJ−1M

−1
J−1I

T
J−1A) · · · (I − IkM−1

k I
T
k A) · · ·

× (I − I0M−1
0 I

T
0 A).

Noticing that

(I − IJM−T
J ITJ A)(I − IJM−1

J I
T
J A)

=
(
I − IJ

(
M−T
J +M−1

J −M−T
J ITJ AIJM

−1
J

)
ITJ A

)

=
(
I − IJ

(
M−T
J +M−1

J −M−T
J AJM

−1
J

)
ITJ A

)

= I − IJM
−1
J I

T
J A,

we obtain that AEDD = ETAE , with

EDD = (I − IJM−1
J I

T
J A) · · · (I − IkM−1

k I
T
k A) · · · (I − I0M−1

0 I
T
0 A). (7.21)
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Thus, we see that A − AB−1A = ETDDAEDD is symmetric positive semidefinite.
Hence, the positive definiteness of B implies that vTAv ≤ vTBv. �

As a side result, we also proved the following identity.

Corollary 7.10. The nonsymmetric Schwarz iteration matrix EDD defined in (7.21),
exploiting solutions with Mk in the subspaces Range(Ik), k = 0, . . . , J , has a con-

vergence factor equal to the square root of ̺(EDD), the convergence factor of EDD.

Noticing that inequality (7.20) holds as equality for special vectors (proven in the
same way as in Lemma 5.8), we can formulate the following corollary.

Corollary 7.11. The following characterization of the Schwarz preconditioner holds.

vTBv = inf
v=
∑J
k=0 Ikvk

[
J−1∑

k=0

(
MT
k vk + ITk AĨk+1̃vk+1

)T (
MT
k +Mk − Ak

)−1

×
(
MT
k vk + ITk AĨk+1̃vk+1

)
+ vTJMJ vJ

]
.

Here, ṽk+1 = ĨTk+1
∑
j≥k+1 Ijvj are the partial sums

∑
j≥k+1 Ijvj restricted to the

union of subdomains �̃k+1 = �J ∪ · · · ∪ �k+1, that is, to their support.

7.8 Additive Schwarz preconditioners

Similar results (as in Theorem 7.9 and Corollary 7.11) hold for the additive Schwarz
method defined by simply deleting the off-diagonal blocks of B̂k in Definition 7.6. For
some pioneering works on additive Schwarz methods, we refer to [Li87], [MN85],
and [DW87].
In this section, we present one specific version of the additive Schwarz method

proposed in [CDS03]. It utilizes a nonoverlapping partition {�i} of the degrees of
freedom N and a overlapping one {�̃i} where each �̃i is obtained by extending
each �i by a few neighboring grid lines (or matrix graph level sets). The method is
referred to as restricted additive Schwarz with harmonic overlap (or RASHO). It can
be summarized as follows. Let Ik be the characteristic diagonal matrices that extend
a local vector defined on �k to a global vector with zero entries outside �k. Let Ãk
be the principal submatrix of A corresponding to the extended subdomain �̃k . Based
on a two-by-two block partitioning of Ãk ,

Ãk =
[
Ak Uk
Lk Xk

]
} �k
} �̃k \�k

,

we introduce the s.p.d. Schur complement matrices Sk = Ak − UkX−1
k Lk . Then,

B−1
RASHO =

∑

k

IkS
−1
k I

T
k .
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In practice, we do not have to explicitly form Sk (nor S
−1
k ). The actions of S−1

k are
computable through the inverse actions of Ã−1

k . More specifically, we can use the
relation

S−1
k vk =

(
Ã−1
k

[
vk
0

])∣∣∣∣
�k

.

That is, we extend the r.h.s. vector vk (defined on �k only) to a vector defined on the
extended domain �̃k with zero entries outside �k, then apply Ã

−1
k to the extended

vector, and finally restrict the result to �k.
The RASHO preconditioner has some advantages over the more traditional

Schwarz methods (with overlap) because it requires less communication in a par-
allel implementation. It can be analyzed in the same way as the traditional Schwarz
methods as long as one can derive stable decompositions with components that are
“Ãk”-harmonic in �̃k\�k .
To analyze the spectral equivalence properties ofBRASHO w.r.t.A, we also include

a coarse space V0 such that for an interpolation matrix P , PV0 ⊂ V. The role of the
coarse space is such that for any v ∈ V, a coarse approximation v0 exists so that the dif-
ference v−Pv0 can be decomposed as a sum of local componentsvk supported in�k .
In order to prove spectral equivalence, we need to construct a decomposition

v = Pv0 +
∑

k

Ikvk. (7.22)

which is stable, that is, such that
∑
k ‖vk‖2Sk ≤ σ ‖v‖2A and vT0 A0v0 = vT0 P

T APv0 ≤
σ vTAv.
Let Ĩk be the characteristic diagonal matrix that extends a vector defined on �̃k

with zero entries outside �̃k . We derive a stable decomposition as in (7.22), assuming
that there is one suitable for the traditional Schwarz method; that is,

v = Pv0 +
∑

k

Ĩkw̃k, (7.23)

where
∑
k ‖Ĩkw̃k‖2A ≤ σ̃ ‖v‖2A and ‖Pv0‖2A ≤ σ̃ ‖v‖2A. Note that w̃k is supported in

the extended subdomain �̃k .
Assuming that a stable decomposition (7.23) exists, we construct a stable decom-

position with components that are supported in the original subdomains �k. Let the
setN (k) consist of indices j such that�j intersects �̃k . We assume that |N (k)| ≤ κ
for a fixed integer κ .
We decompose each component in (7.23) Ĩkw̃k =

∑
j∈N (k) vk; j where each

vk; j is now supported in �j . The construction utilizes the local additive Schwarz
operators Tk =

∑
j∈N (k) IjS

−1
j I

T
j . We note that Tk as a mapping from the vector

space Ṽk consisting of vectors supported in ∪j∈N (k)�j into itself is s.p.d. and hence,
invertible. Therefore, the following vectors are well defined

vk; j = IjS−1
j I

T
j T

−1
k Ĩkw̃k, for j ∈ N (k).
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It is clear that
∑

j∈N (k)
vk; j = Ĩkw̃k.

If we prove that ‖vk; j‖A ≤ C ‖Ĩkw̃k‖A, the desired result will then easily follow.
Another realistic assumption is that T −1

k (as a local additive Schwarz preconditioner)
is spectrally equivalent to A restricted to the vector space Ṽk (the vectors supported
in ∪j∈N (k)�j ). Thus, we can assume the uniform in k ≥ 1 estimates, for vectors
supported in ∪j∈N (k)�j ,

‖Ĩkw̃k‖2
T −1
k

≤ η ‖Ĩkw̃k‖2A.

By construction, letting vk; j = Ijvk; j , vk; j = S−1
j I

T
j T

−1
k Ĩkw̃k, we have

vTk; jSjvk; j = vTk; j I
T
j T

−1
k Ĩkw̃k ≤ ‖vk; j‖Sj ‖S

−(1/2)
j ITj T

−1
k Ĩkw̃k‖.

That is,

vTk; jSjvk; j ≤ ‖S−(1/2)
j ITj T

−1
k Ĩkw̃k‖2.

After a summation, we end up with the estimate
∑

j∈N (k)
‖vk; j‖2Sj ≤

∑

j∈N (k)
(Ĩkw̃k)

T T −1
k IjS

−1
j I

T
j T

−1
k Ĩkw̃k

= (Ĩkw̃k)T T −1
k Ĩkw̃k

≤ η ‖Ĩkw̃k‖2A.

The final decomposition is then based on the components

vj =
∑

k: j∈N (k)
vk; j = IjS−1

j I
T
j

∑

k: j∈N (k)
T −1
k Ĩkw̃k

that are supported in �j . We also have
∑

j

vj =
∑

j

∑

k: j∈N (k)
vk; j =

∑

k

∑

j∈N (k)
vk; j =

∑

k

Ĩkw̃k = v − Pv0.

Thus, from the main identity for additive Schwarz preconditioners, utilizing the
particular decomposition derived above, we have the first desired estimate (with
vj = S−1

j I
T
j

∑
k: j∈N (k) T

−1
k Ĩkw̃k):

vTBRASHOv = min
v=Pv0+

∑
j Ij vj

⎛
⎝vT0 A0v0 +

∑

j

vTj Sjvj

⎞
⎠

≤ vT0 A0v0 + κ
∑

k

∑

j∈N (k)
‖vk; j‖2Sj
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≤ vT0 A0v0 + κ η
∑

k

‖Ĩkw̃k‖2A

≤ vT0 A0v0 + η κ σ̃ ‖v‖2A
≤ σ̃ (1+ η κ) ‖v‖2A. (7.24)

The estimate in the other direction uses the traditional additive Schwarz estimate
(based on a bounded overlap assumption); namely, for any decomposition v = Pv0+∑
k Ikvk,

vTAv ≤ 2vT0 A0v0 + 2κ
∑

k

vTk I
T
k AIkvk

Without any additional assumptions, the analysis can proceed as follows. Use the
fact that for relatively small subdomains �k , Ak = ITk AIk and Ãk = ĨTk AĨk are
spectrally equivalent to their diagonals. Therefore, Sk as a Schur complement of Ãk
will be spectrally equivalent to the diagonal of Ak . In conclusion, we may assume
that Ak is spectrally equivalent to Sk . This is reflected in the constant σ below. It is
clear that σ will be a reasonable constant if diam(�k) is relatively small. With the
last assumption, we have the estimate

vTAv ≤ 2vT0 A0v0 + 2κ σ
∑

k

vTk Skvk

≤ 2 max{1, κ σ }
(

vT0 A0v0 +
∑

k

vTk Skvk

)
.

By taking the minimum over all possible decompositions, we arrive at the second
desired estimate

vTAv ≤ 2 max{1, κ σ } min
v=Pv0+

∑
k

Ikvk

(
vT0 A0v0 +

∑

k

vTk Skvk

)

= 2 max{1, κ σ } vTBRASHOv. (7.25)

In the model case of finite element matricesA coming from second-order elliptic
equations, the precise dependence of the constants in the spectral equivalence relations
between BRASHO and A in terms of the maximal diameter H of the subdomains,
the fine-grid mesh-size h, and the size of the overlap δ are studied in [CDS03].
Moreover, in [CDS03] it was shown that by solving local problems a computable
w can be constructed such that the difference w − u∗ (u∗ is the exact solution)
can be decomposed as a sum of local functions that are harmonic in the extended
subdomains. That is, RASHO can be implemented by keeping all iterates in terms of
sum of components that are harmonic in the extended subdomains.

On the stability estimate (7.19) in a model finite element case

Given are a domain� ⊂ Rd , a plane polygon (d = 2), or a polytope (d = 3) and let
TH be a coarse triangulation of�. Assume thatwe are given a nonoverlapping partition
{�′
j }Jj=1 of � with each �

′
j being coarse-grid domains, that is, completely covered
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by elements from TH . By extending each �
′
j to �j , again coarse-grid domains, we

get an overlapping domain decomposition of�. Let δ ≃ distance(∂�j , ∂�
′
j ) be the

size of the overlap. Let Th be a triangulation of � obtained by a refinement of TH .
Also, let V = Vh be a finite element space associated with Th and Ṽ = VH be a
coarse finite element space corresponding to TH . We assume that VH ⊂ Vh. Consider
finally the spaces Vj of finite element functions ϕ ∈ V that are supported in �j
and for convenience let V0 = VH . Then, we can write that V =

∑J
j=0 Vj . We may

prove (cf., e.g., Dryja andWidlund [DW87]), that given a v ∈ V , the following stable
decomposition exists,

v =
J∑

j=0
vj , vj ∈ Vj ,

in the sense that there is a positive constant C independent of J and h, such that,

J∑

j=0
‖vj‖21 ≤ C‖v‖21. (7.26)

Here ‖.‖1 stands for the norm in the Sobolev space H 1(�). The constant C satis-
fies C = O((H/δ)2) where δ is the size of the overlap. That is, if the overlap is
generous (δ ≃ H ), C remains bounded uniformly in H → 0. The proof is based
on the construction of partition of unity functions θj ≥ 0 supported in �j such that
‖∇θj‖∞ ≤ C/δ. Partition of unity means that

∑
j θj = 1. Let Vh be spanned by the

Lagrangian (nodal) basis {ϕi} associated with the nodes xi of the triangulation Th. Let
Ih stand for the nodal interpolation operator defined for any continuous function θ
as Ihθ =

∑
xi
θ(xi) ϕi . Then, for appropriately chosen coarse function vH , consider

the expansion

v − vH =
∑

i

Ih(θi(v − vH )).

Note that vi ≡ Ih(θi(v − vH )) ∈ Vi . For the model case of second-order elliptic f.e.
problems, we can easily show (exploiting the fact that the derivative of any piecewise
linear function restricted to an element can be estimated by differences of its nodal
values), that

|vi |21 ≤ C(‖∇θi‖2∞ ‖v − vH ‖20, �i + |v − vH |21, �i ).

This estimate, after summation (based on bounded overlap assumption, i.e., that
a domain �i intersects a bounded number of subdomains �j ) shows the stability of
the decomposition of v − vH ,

∑

i

|vi |21 ≤ C
(
1

δ2
‖v − vH ‖20 + |v − vH |21

)
.

The desired result then follows by choosing the coarse space component vH such that

H−1‖v − vH‖0 + |v − vH |1 ≤ C |v|1.
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7.9 The domain decomposition paradigm of Bank and Holst

Here we present the DD paradigm of Bank and Holst [BH03]. It was introduced as a
tool for parallel adaptivemesh generation.Herewe take the linear algebra solver point
of view. For the lowest-order (piecewise linear) finite elements the resulting matrix
graph can be identifiedwith the correspondingfinite elementmesh. TheDD paradigm
exploits several meshes. There is a final fine mesh that corresponds to the matrix A in
question. It is assembled from a number of subdomain matrices Ai , i = 1, 2, . . . , p.
That is, the mesh domain � is composed of a set of subdomains �i . We view these
as sets of vertices of the mesh restricted to some (closed) geometric subdomains�i
covered exactly by a number of finite elements from the final fine mesh. For our goal,
the latter knowledge is not needed.We only need to know that there is a separator set
Ŵ = ∪pi=1∂�i , and every two subdomains �i and �j can have common nodes only
from Ŵ.
Another ingredient is a global coarse mesh denoted by �c and an associated

coarse matrix Ac. This global coarse mesh is used only implicitly in the construction
that follows. A main property of �c is that it coincides with � on a strip around Ŵ.
Denote this strip by Ŵδ . The width of the strip is assumed of order 2m+ 1 times the
fine-grid mesh-size h. In geometric terms, we have δ ≃ (2m+ 1)h. This assumption
is equivalent to the following property of Ac and A. Let

vc =
[
0
vb

]
} �c \ Ŵ
} Ŵ

and similarly v =
[
0
vb

]
} � \ Ŵ
} Ŵ

.

Then, (Ac)kvc and Akv, 0 ≤ k ≤ m are zero outside the strip Ŵδ , and also they
coincide on Ŵδ .
The main ingredients of the paradigm are the partially coarse global meshes�(i)

and respective matrices A(i). Let the global coarse matrix Ac be assembled from the
matrices A(c)i coming from �(c)i (the part of �c contained in �i). Similarly, let A
be assembled from the local (subdomain) matrices Ai . Then, the composite mesh
matrices A(i) are assembled from Ai and A

(c)
j for all j 
= i. Due to our assumption

about the coarse mesh, A(i) coincides with both A and Ac on the strip Ŵδ .
To describe the linear system setting, we introduce vectors vi defined on�i . The

vectors vi and vj do not necessarily match on �i ∩ �j ⊂ Ŵ. We enforce continuity
by proper constraints by simply identifying the values of vi coming from different
subdomainswith a single (master) unique value on the common node on Ŵ. The latter
is represented by the equation

∑

i

Bivi = 0.

Here, the matrices Bi have entries equal to 0, −1, or 1. More specifically, the above
equation rewritten entrywise, reads (vi(s))s − (vj )s = 0 for every master node s,
coming from a unique subdomain �i(s), a number of simple equations of the form
for all indices j 
= i(s) such that �j and �i(s) meet at the node s on Ŵ.
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The linear system of equations then reads
⎡
⎢⎢⎢⎢⎢⎣

A1 0 . . . 0 BT1
0 A2 0 BT2
...
. . .

. . .
. . .

...

0 0 Ap BTp
B1 B2 . . . Bp 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u1
u2
...

up
λ

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

f1
f2
...

fp
0

⎤
⎥⎥⎥⎥⎥⎦
.

The two-domain case

We describe the solution iterative method for the two-domain case first. Let V =
V1 ⊕ V2 be the vector space of our interest. There is also an auxiliary space 	

of Lagrange multipliers. The matrix of the problem under consideration admits the
saddle-point form,

A =

⎡
⎢⎣
A1 0 BT1

0 A2 BT2
B1 B2 0

⎤
⎥⎦ .

There are two coarse versions of this matrix, A1 and A2, corresponding to the
spaces V(1) = V1 ⊕ P2Vc2 and V(2) = P1V

c
1 ⊕ V2, where P1Vc1 ⊂ V1 and P2Vc2 ⊂

V2, for two given interpolation matrices P1 and P2. Note the special form of the
interpolation matrices P1 and P2; namely, they have an identity block corresponding
to the strip Ŵδ (restricted to the respective subdomain�i). For example,

P1 =
[
∗ 0
0 I

]
} �1 \ Ŵδ
} Ŵδ ∩�1 . (7.27)

We have

A1 =

⎡
⎣
A1 0 BT1
0 P T2 A2P2 P T2 B

T
2

B1 B2P2 0

⎤
⎦ and A2 =

⎡
⎣
P T1 A1P1 0 P T1 B

T
1

0 A2 BT2
B1P1 B2 0

⎤
⎦ .

We are interested in a iterative procedure (described below) for solving

A

⎡
⎣

x1
x2
λ

⎤
⎦ =

⎡
⎣

f1
f2
0

⎤
⎦ .

ThematricesB1 andB2 are chosen in practice such thatB1u1 = B2u2, which ensures
that u1 and u2 coincide on the separator Ŵ (specified in (7.33) below).

Algorithm 7.9.1 (Bank–Holst DD paradigm). Let (x1, x2, λ) be a current iterate,

such that the respective residual admits the form

R ≡ F − AX =

⎡
⎣

f1
f2
0

⎤
⎦− A

⎡
⎣

x1
x2
λ

⎤
⎦ =

⎡
⎣

r1
r2
0

⎤
⎦ .
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Let

Q1 =

⎡
⎣
P1 0 0
0 I 0
0 0 I

⎤
⎦ , Q2 =

⎡
⎣
I 0 0
0 P2 0
0 0 I

⎤
⎦ .

The next iterates y1, y2 are defined as follows.

1. Solve for Yk , k = 1, 2,

AkYk = QTk R.

2. Set

y1 = x1 + [I, 0, 0] Y1, y2 = x2 + [0, I, 0] Y2.

In matrix notation, we have

y1 = x1 + [I, 0, 0] A−1
1 Q

T
1 (F − AX),

y2 = x2 + [0, I, 0] A−1
2 Q

T
2 (F − AX).

That is, the iteration matrix reads

⎡
⎣
[I, 0, 0](I − A−1

1 Q
T
1A)

[0, I, 0] (I − A−1
2 Q

T
2A)

⋆

⎤
⎦ .

The following factorization holds.

A1 =

⎡
⎣

I 0 0
0 I 0

B1A
−1
1 B2P2(P

T
2 A2P2)

−1 I

⎤
⎦

×

⎡
⎣
A1 0 0
0 P T2 A2P2 0
0 0 −B1A−1

1 B1 − B2P2(P T2 A2P2)−1P T2 BT2

⎤
⎦

×

⎡
⎣
I 0 A−1

1 B
T
1

0 I (P T2 A2P2)
−1P T2 B

T
2

0 0 I

⎤
⎦ .

A similar expression holds forA2. We need to compute the first row ofA
−1
1 Q

T
1A.

We have, letting

S1 = B1A−1
1 B

T
1 + B2P2(P T2 A2P2)−1P T2 BT2 ,

and

S2 = B1P1(P T1 A1P1)−1P T1 BT1 + B2A−1
2 B2,
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[
I, 0, −A−1

1 B
T
1

]

×

⎡
⎣
A−1
1 0 0
0 (P T2 A2P2)

−1 0
0 0 −S−1

1

⎤
⎦
⎡
⎣

I 0 0
0 I 0

−B1A−1
1 −B2P2(P T2 A2P2)−1 I

⎤
⎦

=
[
I, 0, −A−1

1 B
T
1

]
⎡
⎣

A−1
1 0 0
0 (P T2 A2P2)

−1 0
S−1
1 B1A

−1
1 S−1

1 B2P2(P
T
2 A2P2)

−1 −S−1
1

⎤
⎦

=
[
A−1
1 (I − BT1 S−1

1 B1A
−1
1 ), −A−1

1 B
T
1 S

−1
1 B2P2(P

T
2 A2P2)

−1, A−1
1 B

T
1 S

−1
1

]
.

Now note that

QT1A =

⎡
⎢⎣
A1 0 BT1

0 P T2 A2 P T2 B
T
2

B1 B2 0

⎤
⎥⎦

Then, [I, 0, 0]A−1
1 Q

T
1A = [M1, M2, M3] where,

M1 = A−1
1 (I − BT1 S−1

1 B1A
−1
1 )A1 + A−1

1 B
T
1 S

−1
1 B1

= I
M2 = A−1

1 B
T
1 S

−1
1 B2 − A−1

1 B
T 1S−1

1 B2P2(P
T
2 A2P2)

−1P T2 A2

= A−1
1 B

T
1 S

−1
1 B2(I − P2(P T2 A2P2)−1P T2 A2)

M3 = A−1
1 (I − BT1 S−1

1 B1A
−1
1 )B

T
1 − A−1

1 B
T
1 S

−1
1 B2P2(P

T
2 A2P2)

−1P T2 B
T
2

= A−1
1 B

T
1 − A−1

1 B
T
1 S

−1
1

[
B1A

−1
1 B

T
1 + B2P2

(
P T2 A2P2

)−1
P T2 B

T
2

]

= A−1
1 B

T
1 − A−1

1 B
T
1 S

−1
1 S1

= 0.

A similar expression holds for [0, I, 0]A−1
2 Q

T
2A. Thus, we showed the following

formula for the iteration matrix EDD,

EDD =

⎡
⎣

0 −A−1
1 B

T
1 S

−1
1 B2π2 0

−A−1
2 B

T
2 S

−1
2 B1π1 0 0

0 0 I

⎤
⎦ .

Here, πk = I −Pk(P Tk AkPk)−1P Tk Ak is theAk-projection onto the coarse spaceVck ,
k = 1, 2.

A norm estimate

We are interested in the following principal submatrix of EDD,

EDD =
[

0 −A−1
1 B

T
1 S

−1
1 B2π2

−A−1
2 B

T
2 S

−1
2 B1π1 0

]
.
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For the following analysis, introduce the block-diagonal matrices A = diag(Ai) and
π = diag(πi).

Lemma 7.12. The following inequality holds,

wT AEDDv ≤ (wTAw)1/2
(
‖π1v1‖2

BT1 S
−1
2 B1

+ ‖π2v2‖2
BT2 S

−1
1 B2

)1/2
,

for any

v =
[

v1
v2

]
, w =

[
w1
w2

]
and A =

[
A1 0
0 A2

]
.

Proof. We have, using the Cauchy–Schwarz inequality,

(wT AEDDv)2 =
(
wT1 B

T
1 S

−1
1 B2π2v2 + wT2 B

T
2 S

−1
2 B1π1v1

)2

≤
(
wT1 A1w1 + wT2 A2w2

)

×
(
(π2v2)

TBT2 S
−1
1 B1A

−1
1 B

T
1 S

−1
1 B2(π2v2)

+ (π1v1)TBT1 S−1
2 B2A

−1
2 B

T
2 S

−1
2 B1(π1v1)

)
(7.28)

�

Lemma 7.13. Let EAk be the Ak-harmonic extensions of vectors defined on Ŵ =
∂�1 ∩ ∂�2 into the interior of �k . Let δ > 0 be such that

δ zTB2A
−1
2 B

T
2 z ≤ zTB1P1(P

T
1 A1P1)

−1P T1 B
T
1 z, for all z. (7.29)

Similarly, we assume that δ > 0 is such that

δ zTB1A
−1
1 B

T
1 z ≤ zTB2P2(P

T
2 A2P2)

−1P T2 B
T
2 z, for all z. (7.30)

Then, the following estimate holds,

wT AEDDv ≤ 1

1+ δ ‖w‖A
[
‖EA2 (π1v1)Ŵ‖2A2 + ‖EA1 (π2v2)Ŵ‖2A1

]1/2
. (7.31)

Proof. We first comment that the estimates (7.29) and (7.30) hold if the Schur com-
plements of A1 and A2 on Ŵ are spectrally equivalent in the case of the special
coarsening around Ŵ. The special coarsening can ensure that the Schur complements
ofA1 and its special coarse versionP T1 A1P1 onŴ are spectrally equivalent, and simi-
larly the Schur complements ofA2 and its respective coarse versionP T2 A2P2 onŴ are
spectrally equivalent. Therefore, we have that the mixed pairs of Schur complements
of A1 and P T2 A2P2, as well as A2 and P

T
1 A1P1, are spectrally equivalent. We also

have then that their respective inverses are spectrally equivalent. Then because BT1
and −BT2 are simply matrices with identity and zero blocks (as in (7.33) below), we
can see that the latter fact (about the inverses of the Schur complements) implies that
the principal submatrices of the respective matrix inverses are spectrally equivalent,
which in fact (based on the identity (7.34) below) represent the assumed inequalities
(7.29) and (7.30).
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Recall now the formulas

S1 = B1A−1
1 B

T
1 + B2P2

(
P T2 A2P2

)−1
P T2 B

T
2 ,

S2 = B1P1
(
P T1 A1P1

)−1
P T1 B

T
1 + B2A−1

2 B
T
2 .

Consider the following problem for u2,

S2u2 = B1π1v1. (7.32)

Estimate (7.31) is seen, by first noticing that for,

BT1 =
[
0
I

]
�1 \ Ŵ
Ŵ

and BT2 =
[
0

−I

]
�2 \ Ŵ
Ŵ

, (7.33)

using the fact that P1 is identity near Ŵ, (cf. (7.27), due to the special choice of the
coarse mesh near Ŵ), implies

P T1 B
T
1 =

[
0
I

]
�1 \ Ŵ
Ŵ

· (7.34)

We now estimate the solution u2 of (7.32). We have (recalling that BT2 is extension
by zero in �2),

(1+ δ) uT2 B2A
−1
2 B

T
2 u2 ≤ uT2 S2u2

= uT2 B1π1v1

= uT2 (π1v1)Ŵ

= −(BT2 u2)
TEA2 (π1v1)Ŵ

≤
(
uT2 B2A

−1
2 B

T
2 u2

)1/2‖EA2 (π1v1)Ŵ‖A2 .

Thus, we proved that

(
uT2 B2A

−1
2 B

T
2 u2

)1/2 ≤ 1

1+ δ ‖EA2 (π1v1)Ŵ‖A2 .

Because u2 = S−1
2 B1π1v1, we get that

(
(π1v1)

TBT1 S
−1
2 B2A

−1
2 B

T
2 S

−1
2 B1(π1v1)

)1/2 ≤ 1

1+ δ ‖EA2 (π1v1)Ŵ ‖A2 . (7.35)

In the same way, we prove

(
(π2v2)

TBT2 S
−1
1 B1A

−1
1 B

T
1 S

−1
1 B2(π2v2)

)1/2 ≤ 1

1+ δ ‖EA1 (π2v2)Ŵ ‖A1 . (7.36)

Substituting estimates (7.35)–(7.36) in (7.28), we arrive at the desired estimate

wT AEDDv ≤ 1

1+ δ ‖w‖A
[
‖EA2 (π1v1)Ŵ‖2A2 + ‖EA1 (π2v2)Ŵ‖2A1

]1/2
. �
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Based on Lemma 7.30, because

w =
[

w1
w2

]

can be arbitrary, by letting w := πw, using the inequality ‖πw‖A ≤ ‖w‖A and the
identity πTA = Aπ , we get the estimate

wTAπEDDv ≤ 1

1+ δ ‖w‖A
[
‖EA2 (π1v1)Ŵ‖2A2 + ‖EA1 (π2v2)Ŵ‖2A1

]1/2
.

Again, because w is arbitrary, by choosing w1 = EA1 (g2)Ŵ and w2 = EA2 (g1)Ŵ ,
gk|Ŵ = (πEDDv)k|Ŵ , we get the convergence rate estimate formulated in the next
theorem, letting v := xk−1 and xk := EDDv.

Theorem 7.14.

|||πxk||| ≤ 1

1+ δ |||πxk−1|||.

Here ||| · ||| is defined for vectors

v =
[

v1
v2

]

restricted to Ŵ, as follows,

|||v|||2 = ‖EA2 (v1)Ŵ‖2A2 + ‖EA1 (v2)Ŵ‖2A1 .

An algorithm in the general case

The two-domain case analysis presented in the previous section cannot be generalized
to the multidomain case without using the fact that the coarse problem has actually a
certain approximation property.Also, the saddle-point formulation can be avoided due
to the simple form of the constraint matricesBi . In this section, we use the equivalent
unconstrained setting of the problem. We assume that the global coarse problem on
the mesh �c defined by the matrix Ac admits the following weak approximation
property. Introduce the coarse-grid correction operator πH = I −PA−1

c P
TA, where

Ac = P T AP, then the following estimate (a standard L2-error estimate for finite
element approximations) to hold is assumed,

‖πHu‖0 ≤ C H ‖u‖A.

Here, H is the characteristic coarse mesh-size associated with the coarse mesh
�c = �H . The corresponding fine-grid mesh-size is h associated with the mesh
� = �h. The following relation holds between the vector norm ‖ · ‖ (defined by
‖v‖2 = vT v) and the weak norm ‖ · ‖0, (assuming two-dimensional geometric do-
main �),

‖v‖ ≤ Ch−1 ‖v‖0.
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That is, combining both estimates, the following weak approximation property is
assumed to hold,

‖πHu‖ ≤ CH
h

‖u‖A. (7.37)

The matrix A corresponds to the problem that we are interested in, which formulated
without Lagrange multipliers reads as follows,

∑

k

IkAkI
T
k u = b.

Here, Ik stands for zero extension of a vector defined on�k onto the entire domain�.
In what follows, to stress the fact that a subdomain contains its boundary nodes
(namely, that it is covered completely by a set of finite elements and contains all their
degrees of freedom or nodes), we use overbars. Above,Ak stands for the subdomain
matrix assembled from the individual element matrices corresponding to fine-grid
elements contained in the subdomain�k . The following decompositions of A are of
interest.

A = IkAkITk + I extk Aextk
(
I extk

)T
.

Here, I extk stands for zero extension of vectors defined on � \�k into (the interior
of) �k . Similarly, Aextk stands for the matrix assembled from the element matrices
corresponding to the fine-grid elements contained in the subdomain complementary
to �k. We also need the global coarse matrix A = Ac = P T AP. Let I k be the
extension by zero of vectors defined on �k into the remaining part of the kth global
coarsened-away mesh �(c)k (which outside�k coincides with �c). We can also have
the coarsened-away stiffness matrices

Ak = I kAkI
T

k + I extk A
ext
k

(
I
ext
k

)T
. (7.38)

We have Ak = P
T

k AP k for some interpolation matrices P k that act as identity near
�k , and as P outside �k .
Finally, we are interested in the Schur complements ofAk on�k , which have the

form

Sk = Ak + JkSextk J Tk .

Here, Jk is the trivial extension by zero from ∂�k into the interior of�k . We can use
also the notation P 0 = P and A0 = Ac.
The iterative method of interest can be formulated as follows.

Algorithm 7.9.2 (A Neumann–Neumann algorithm). Let {Wk} be a set of global

diagonal matrices with Wk having nonzero entries only on �k . We assume that they

provide “partition of unity;” that is,

∑

k

Wk = I.
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Consider the fine-grid problemAu = b. Without loss of generality, we assume that b

is nonzero only on Ŵ. We perform:

(0) Global coarse-grid solution; that is, solve

Acu = P T b.

(i) For every k ≥ 1 solution, in parallel, the coarsened-away problems

Akuk = P Tk (b − APu) =

⎡
⎣
⋆

0
0

⎤
⎦

} �k
} ∂�k
} everywhere else

Take the “good” part of uk , namely, I
T

k uk . The latter is a vector defined on �k .

(ii) “Average” the results to define a global conforming next iterate; that is, form
∑

k

WkIkI
T

k uk.

(iii) The next iterate is unext = Pu +
∑
k

WkIkI
T

k uk .

We comment on the crucial observation that the r.h.s. in item (i) is zero outside �k .
This is due to the fact that P k coincides with P outside the subdomain �k \ Ŵδ of
�k. Hence P

T

k (b − APu) = P T b − Acu = 0 outside �k .
Noting thatWk is the identity in the interior of �k , P k is the identity on �k , and

that the r.h.s. in item (i) is zero outside�k because

I
T

k A
−1
k I k = S−1

k ,

we easily get that

I
T

k uk = S−1
k I

T
k W

T
k (b − APu).

Therefore,

unext = Pu +
∑

k

WkIkS
−1
k I

T
k W

T
k (b − APu).

Consider the following mapping

M−1 =
∑

k

WkIkS
−1
k I

T
k W

T
k ,

with the purpose of using πM−1πT as a preconditioner for πTAπ , where

π = I − PA−1
c P

TA,

is the global coarse-grid correction operator. Mappings such asM above were origi-
nally analyzed in [Man93]; see also [DW95] and [DT91].
The method by Bank and Holst ignores the averaging matricesWk . The reason is

that the values of the vectors uk near the strip Ŵδ are actually negligible due to the
special features of the composite meshes�(c)i ; that is, they contain a strip Ŵδ near the
interface Ŵ being part of the fine-grid�h with width δ = O(H) ≃ (2m+ 1)h.
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7.9.1 Local error estimates

In this section, we show that the solution of problems such as shown in item (i) of
Algorithm 7.9.2 are essentially local. More specifically, assuming that the coarse-
mesh of size H is refined near Ŵ = ∪ ∂�k so that it coincides with the fine-mesh in
a strip of width O(H) around Ŵ.
Consider a s.p.d. matrixA and let π = I −P(P T AP)−1P TA be anA-projection,

for a given interpolationmatrixP ; that is, π2 = π . It is clear also thatAπ = πTA. In
our application, P corresponds to the interpolation from the special global coarse
space used in the Bank–Holst DD paradigm into the space associated with the
composite coarsened-away mesh �(c)k . The matrix A : = Ak is any of the global
composite-grid matrices. We notice that the r.h.s. in item (i) has a special form

πT bk := (I − AkPA−1
c P

T )bk . Here, bk = P Tk b.
In what follows, we omit the subscript k.
Consider now the following problem with a special r.h.s.,

Au = πT b.

It is clear that u = πu, because πT b = (π2)T b = πTAu = A(πu). Thus, if we
apply the CG method to solve the above problemwith zero initial iterate, afterm ≥ 1
steps we get an approximation um, which will satisfy the following estimate,

‖u − um‖A ≤ min
ϕm: ϕm(0)=1

max
t∈[0, ‖A‖]

|
√
tϕm(t)| ‖u‖,

where ϕm is a polynomial of degree m, which is normalized at the origin. Because
u = π u and in our application (assuming a two-dimensional domain), with ‖.‖0
being the integral L2-norm and u being the finite element function corresponding to
the vector u, we end up with the estimate

‖u‖ ≤ Ch−1 ‖πHu‖0 ≤ CH
h

‖u‖A.

Here, we use the L2-error estimate for the coarse-grid elliptic projection πH
(assuming full regularity); that is, ‖πHu‖0 ≤ CH ‖u‖A. The final convergence rate
estimate, for a proper polynomial ϕm, then takes the form

‖u − um‖A ≤ ‖A‖1/2
2m+ 1 C

H

h
‖u‖A. (7.39)

The best polynomial ϕm is defined through the Chebyshev polynomials of degree
2m+ 1 (cf., Section 6.13.2) as follows; for t ∈ [−1, 1],

T2m+1(t) = (−1)m(2m+ 1)tϕm(‖A‖t2).

Now, concentrate on the solution of problems such as shown in item (i). Note that
the r.h.s. has the form πT b, where A : = Ak and a π that comes from a P that
interpolates from the global coarse space into the partially fine space (on a mesh-
coarsened way from �k). That is, this P is identity outside a subdomain�

(0)
k of �k .
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Under our refinement assumption, we have dist(�(0)k , � \�k) ≃ O(H) ≥ 2m0h for
some integerm0, which we assume is of order H/h. Thus, we have a problem

Akuk = b = πT b.

The important observation is that b is supported in �(0)k . Applying m0 standard CG

iterations (with zero initial guess) to the last system leads to an approximation u
(m0)
k .

It is clear that u
(m0)
k is supported in �k (because Am0b is supported in �k). More

specifically, we have

dist
(
support(u(m0)k ), � \�k

)
≃ O(H) ≥ m0h.

Applying the CG convergence rate estimate (7.39), we can get (because ‖A‖ = O(1))
for an a priori chosen tolerance ǫ < 1, the estimate

‖uk − u
(m0)
k ‖Ak ≤ ǫ ‖uk‖Ak , (7.40)

if we have chosen

m0 ≃ H

h

1

ǫ
.

We also want m0h ≃ CH ; thus for C ≃ 1/ǫ, the error estimate (7.40) is feasible.
In conclusion, because the solutions uk in item (i) are essentially local (due to the

error estimate (7.40)) the averaging involved in Step (ii) does not really need to take
place.
The actual counterpart of Algorithm7.9.1 is an approximationofAlgorithm7.9.2.

The global coarse matrixAc is not used. Nevertheless, the r.h.s. for the composite grid
problems involving Ak is kept orthogonal to the global coarse space. Thus, we get

subdomainupdates I
T

k uk that are essentially supported in�k in the sense that they can

be approximatedwith local u0k such that (see (7.38)) an estimate ‖I Tk (uk−u
(0)
k )‖Ak ≤

‖uk − u
(0)
k ‖Ak ≤ ǫ ‖uk‖Ak for an a priori chosen ǫ < 1 holds. That is, the terms

uk|�k∩Ŵδ = (uk − u
(0)
k )|�k∩Ŵδ are small, of relative order ǫ.

A perturbation analysis in the general case

The principal submatrix EDD of the iteration matrix EDD, in the case of p > 1
subdomains, takes the form

EDD =

⎡
⎢⎢⎢⎣

0 −E1B2π2 . . . −E1Bpπp
−E2B1π1 0 −E2Bpπp

...
. . .

−EpB1π1 −EpB2π2 0

⎤
⎥⎥⎥⎦ , (7.41)
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where

Ak = P Tk AkPk
πk = I − PkA

−1
k P

T
k Ak

Bk = BkPk
Sk = BkA−1

k B
T
k +

∑

j 
=k
BjA

−1
j B

T

j

Ek = A−1
k B

T
k S

−1
k .

Let w = (wk), v = (vk) and A = diag(Ak). We have

(wT AEDDv)2

=

⎛
⎝∑

k

wTk B
T
k S

−1
k

∑

j 
=k
Bjπjvj

⎞
⎠
2

≤
∑

k

wTk Akwk
∑

k

⎛
⎝∑

j 
=k
Bjπjvj

⎞
⎠
T

S−1
k BkA

−1
k B

T
k S

−1
k

⎛
⎝∑

j 
=k
Bjπjvj

⎞
⎠ .

Consider now the problem for uk ,

Skuk =
∑

j 
=k
Bjπjvj .

The above estimate then reads

(wT AEDDv)2 ≤
∑

k

wTk Akwk
∑

k

uTk BkA
−1
k B

T
k uk. (7.42)

To estimate uk , we proceed as follows,

uTk Skuk = uTk

⎛
⎝∑

j 
=k
Bjπjvj

⎞
⎠

=
∑

j 
=k
(BTj uk)

T

[
⋆

(πjvj )|∂�j

]

=
∑

j 
=k
(B
T

j uk)
T

[
⋆

(πjvj )|∂�j

]

≤

⎛
⎝∑

j 
=k
uTk BjA

−1
j B

T

j uk

⎞
⎠
1/2⎛
⎝∑

j 
=k
‖EHj (πjvj )∂�j ‖2Aj

⎞
⎠
1/2
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Here,E
H

j stands for a coarse-grid extension of vectors on ∂�j into the interior of�j .
Thus,

uTk Skuk ≤
∑

j 
=k
‖EHj (πjvj )∂�j ‖2Aj .

Assume now the estimate,

δk zTBkA
−1
k B

T
k z ≤

∑

j 
=k
zTBjA

−1
j B

T

j z, (7.43)

for any Lagrange multiplier vector z on Ŵ. The latter estimate implies

(1+ δk) uTk BkA
−1
k B

T
k uk ≤

∑

j 
=k
‖EHj (πjvj )∂�j ‖2Aj ,

which used in (7.42) leads to

(wT AEDDv)2 ≤ 1

1+mink δk
∑

k

wTk Akwk
∑

k

∑

j 
=k
‖EHj (πjvj )∂�j ‖2Aj

≤ p − 1
1+mink δk

∑

k

wTk Akwk
∑

j

‖EHj (πjvj )∂�j ‖2Aj .

By choosing wj = EHj (πEDDv)∂�j , we get the final estimate

∑

j

‖EHj (πj (EDDv)j )∂�j ‖2Aj ≤ p − 1
1+mink δk

∑

j

‖EHj (πjvj )∂�j ‖2Aj .

It is clear then that if p = 2, the method is convergent as a stationary iterative
process. Note that here the norm is different from the norm in Theorem 7.14. Here
we use coarse-grid extension mappings, whereas in Theorem 7.14, the norm involves
fine-grid extension mappings.

Taking into account the constraints

Another observation is that if
∑
j 
=k Bjπjvj = −Bkπkvk , that is, πv = (πkvk)

satisfies the constraints, the estimate for uk simplifies as follows.

uTk Skuk = uTk

(∑

j 
=k
Bjπjvj

)

= −uTk Bkπkvk

= −(BTk uk)
T

[
⋆

(πkvk)|∂�k

]

≤
(
uTk BkA

−1
k B

T
k uk

)1/2 ‖Ehk (πkvk)∂�k‖Ak .

However, based on the argument leading to estimate (7.40), we can only as-
sume that πv = (πjvj ) satisfies the constraint only approximately, that is, that
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∑
j Bjπjvj ≈ 0. Then, assuming the estimate

∑

k

‖S−1
k

∑

j

Bjπjvj‖2
BkA

−1
k B

T
k

≤ ǫ
∑

k

‖S−1
k Bkπkvk‖

2
BkA

−1
k B

T
k

, (7.44)

used first in (7.42), letting Sk ûk = −Bkπkvk leads to

|wT AEDDv|

≤ ‖w‖A

⎡
⎢⎣
(∑

k

ûTk BkA
−1
k B

T
k ûk

)1/2
+

⎛
⎝∑

k

∥∥∥∥S
−1
k

∑

j

Bjπjvj

∥∥∥∥
2

BkA
−1
k B

T
k

⎞
⎠
1/2
⎤
⎥⎦

≤ ‖w‖A(1+
√
ǫ)

(∑

k

ûTk BkA
−1
k B

T
k ûk

)1/2
.

In a similar fashion as above, we obtain that

‖̂uk‖2
BkA

−1
k B

T
k

= ‖S−1
k Bkπkvk‖2BkA−1

k B
T
k

≤ 1

1+ δk
‖Ehk πkvk‖2Ak .

This finally shows the estimate

∑

k

‖Ehk (πk(EDDv)k)∂�k ‖2Ak ≤ (1+ √
ǫ)2

1+mink δk
∑

k

‖Ehk (πkvk)∂�k ‖2Ak .

Thus, the DD method of Bank and Holst will be convergent if ǫ is sufficiently small.
The latter can be ensured by proper choice of the coarse mesh-size H . Note that H
reflects the width δ = O(H) of the strip Ŵδ covered by the fine mesh.
For a more precise finite element analysis we refer to [BV06].

7.10 The FAC method and related preconditioning

In the present section, we describe the fast adaptive composite-grid method (or FAC)
proposed in [SMc84], [McT86], and its preconditioning versions [BEPS] and [ELV]
suitable for solving discretization problems on meshes with patched local refinement
(as shown in Figure 7.2). The method combines features of both a two-grid method
and a domain decomposition method. Using matrix notation, the method can be
summarized as follows.
Let A be the given matrix. There is a coarse version of A denoted by Ac. The

fact that A corresponds to a discretization to a same problem as Ac but on a partially
refined mesh can be expressed with the relation Ac = P T AP for an interpolation
matrix P that has a major block being the identity; that is,

P =

⎡
⎣
PFF PF,Ŵ 0
0 I 0
0 0 I

⎤
⎦

} �F
} Ŵ

} �C \ Ŵ.
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ΩC

Ω

Γ

Γ

F

Fig. 7.2. Locally refined mesh; �F consists of the top right corner fine-grid nodes (nodes
on the interface Ŵ excluded). Nodes on Ŵ that are not coarse are not actual degrees of freedom.

The block-matrix

PF =
[
PFF PF,Ŵ
0 I

]

represents a “standard” interpolationmatrix in a subdomain�F ∪Ŵ of the original do-
main�. Here, Ŵ is a part of the boundary of the subdomain�C where� = �F ∪�C
is a direct decomposition. Here, we assume that the coarse–fine interface boundary
Ŵ consists only of coarse dofs. We also need the set�Fc consisting of the coarse dofs
in �F . Because Ŵ is assumed to be a separator, we have the following common DD
block structure of A and Ac, corresponding to the ordering �F , Ŵ, �CI ≡ �C\Ŵ,
and �Fc , Ŵ, �CI , respectively.

A =

⎡
⎣
AFF AF, Ŵ 0
AŴ, F AŴ, Ŵ AŴ, CI
0 ACI , Ŵ ACI , CI

⎤
⎦ and Ac =

⎡
⎣
Ac, FF Ac, F, Ŵ 0
Ac, Ŵ, F Ac, Ŵ, Ŵ Ac, Ŵ, CI
0 Ac, CI , Ŵ Ac, CI , CI

⎤
⎦.

Due to the special form of P , we easily see that

Ac = P T AP =

⎡
⎣

∗ 0 0
∗ I 0
0 0 I

⎤
⎦
⎡
⎣
AFF AF, Ŵ 0
AŴ, F AŴ, Ŵ AŴ, CI
0 ACI , Ŵ ACI , CI

⎤
⎦
⎡
⎣

∗ ∗ 0
0 I 0
0 0 I

⎤
⎦

=

⎡
⎣

∗ ∗ 0
∗ ∗ AŴ, CI
0 ACI , Ŵ ACI , CI

⎤
⎦
⎡
⎣

∗ ∗ 0
0 I 0
0 0 I

⎤
⎦

=

⎡
⎣

∗ ∗ 0
∗ ∗ AŴ, CI
0 ACI , Ŵ ACI , CI

⎤
⎦ .
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Therefore, we have Ac, CI , Ŵ = ACI , Ŵ , Ac, Ŵ, CI = AŴ, CI , and ACI , CI =
Ac, CI , CI .
We also need the following block form of A and Ac partitioned with respect to

the ordering�F ∪�C and �Fc ∪�C , respectively,

A =
[
AFF AFC

ACF ACC

]
and Ac =

[
Ac, FF Ac, FC

Ac, CF Ac, CC

]
.

The (symmetrized) FAC preconditioner B utilizes a “smoother” MF coming from
the major block AFF of A, as well as the Schur complement

Sc = Ac, CC − Ac, CFA
−1
c, FFAc, FC

coming from the coarse matrix Ac.
Assume first thatMF = AFF . Then the FACpreconditionerwith exact subdomain

solutions, B, is defined as the following block-factored matrix,

B =
[
AFF 0
ACF I

] [
I A−1

FFAFC

0 Sc

]
. (7.45)

Note that to implement the actions of B−1, we need the inverse actions of Sc,
which are readily available based on

A−1
c =

[
∗ ∗
∗ S−1

c

]
.

That is, in order to solve a system with Sc we can instead solve a system with Ac,
based on the formula S−1

c = [0, I ]A−1
c [0, I ]

T , where [0, I ] stands for restriction to
�C = �\�F . Also, another important feature ofB is that the interpolationmatrix P
is not explicitly used in the definition ofB once the coarsematrixAc (giving rise to Sc)
is being given. The preconditioner B is efficient if there are efficient algorithms that
compute the inverse actions of AFF and Ac (the latter giving rise to inverse actions
of Sc without actually having to form Sc).
For example, in the case of tensor product meshes (and separable variables

PDEs), the matrices AFF and Ac may allow for fast direct solvers as described in
Section 7.6.
In the case when AFF is not as easy for solving systems, we need to approximate

it, and then it is natural to use smoothersMF and the interpolationmatrix (or rather its
local block PF ) to define an efficient two-grid iteration process that takes advantage
of special properties, such as data storage of AFF ,MF , and PF on uniform grids�F
andAc as well. To illustrate the FACmethodwithout exact inverses ofAFF , introduce
the matrix

I�F =
[
I

0

]
} �F
} �C

.

Then, one step of the FAC method consists of performing the following composite
iteration.
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Algorithm 7.10.1 (FAC). Let u be a current iterate for solving Ax = b. Then:

(i) Solve for a subdomain correction uF ,

MFuF = (I�F )T (b − Au)

and update u := u + I�F uF .

(ii) Solve for a coarse-grid correction uc,

Acuc = P T (b − Au),

and update u := u + Puc .

(iii) Optionally, to symmetrize the iteration, solve for one more subdomain correction

uF from

MT
F uF = (I�F )T (b − Au)

and update u := u + I�F uF .

It is clear that the iteration matrix of the above process reads:

EFAC = (I − I�FM−T
F (I�F )

TA)(I − PA−1
c P

TA)(I − I�FM−1
F (I�F )

TA).

Equivalently, if we introduce the FAC preconditionerBFAC from I −B−1
FACA = EFAC ,

we obtain, lettingMF = MF (MF +MT
F − AFF)

−1MT
F ,

B−1
FAC = [I�F , P ]

[
I −M−T

F (I�F )
T AP

0 I

][
M

−1
F 0
0 A−1

c

]

×
[

I 0
−P TAI�FM−1

F I

] [
(I�F )

T

P T

]

= [I�F , (I − I�FM−T
F (I�F )

TA)P ]

[
M

−1
F 0
0 A−1

c

]

×
[

(I�F )
T

P T (I − AI�FM−1
F (I�F )

T )

]

= I�FM
−1
F (I�F )

T

+ (I − I�FM−T
F (I�F )

TA)PA−1
c P

T (I − AI�FM−1
F (I�F )

T ). (7.46)

The following identity holds (cf., Theorem 3.15 with J = I�F and D = P T AP,
M =MF , A = AFF),

vTBFACv = min
v=I�F vF+Pvc

[
vTc Acvc +

(
MT
F vF + (I�F )T APvc

)T

×
(
MF +MT

F − AFF

)−1(
MT
F vF + (I�F )T APvc

)]
. (7.47)

Because the FAC method does not exploit smoothing on the entire domain, we
cannot use directly our general two-grid result (cf. Theorem 3.25). However, based
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on (7.47), similar assumptions lead to spectral equivalence estimates between A and
BFAC . The main one is, if we can find a stable decomposition v = J0vs + Pvc such
that vc|�C = v|�C

(
hence J0vs =

[
∗
0

]
} �F
} �C

)
,

and such that the local symmetrized smoother MF is spectrally equivalent to AFF

restricted to the subspace Range((I�F )
T J0), that is,

(vs)
T J T0 I�FMF (I�F )

T J0vs ≤ κ (vs)T J T0 I�FAFF(I�F )
T J0vs,

with a bounded coarse component, that is, that

(Pvc)
TA(Pvc) ≤ η vTAv.

We also assume thatMF is properly scaled so that

wTF (MF +MT
F − AFF)wF ≥ δ wTFAFFwF .

Then, based on the identity (7.47) and the above assumptions, we immediately get
the following spectral equivalence between BFAC and A,

vTAv ≤ vTBFACv ≤ [(1+ 2δ−1)η + 2κ(1+ √
η)2] vTAv.

Thus, we proved the following main result.

Theorem 7.15. Assume that every vector v admits a special decomposition v =
J0vs + Pvc such that

J0vs =
[

∗
0

]
= I�F (∗)

is being localized in �F , with the additional following properties.

(i) The symmetrized local smootherMF is spectrally equivalent to AFF restricted to

the local subspace Range(IT�F J0); that is,

wTFAFFwF ≤ wTFMFwF ≤ κ wTFAFFwF , for all wF = IT�F J0ws .

(ii) The coarse-grid extension Pvc of vC in �Fc (i.e., vc|�C = v|�C = vC), is subop-

timal; that is,

vTc ACvc = vTc P
T APvc ≤ η inf

wF

[
wF
vC

]T
A

[
wF
vC

]
.

Assume also that the smootherMF is scaled such that

vTF (MF +MT
F − AFF)vF ≥ δ vTFAFFvF .
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Then the FAC preconditioner BFAC is spectrally equivalent to the composite grid

matrix A and

vTAv ≤ vTBFACv ≤
[(
1+ 2

δ

)
η + 2κ(1+ √

η)2
]

vTAv.

We now use the special features of BFAC to specify the above assumptions. First,
we assume that for any vector

vC =
[

vŴ
v0C

]
} Ŵ

} �C \ Ŵ

defined on �C , we can find a “bounded coarse extension”

Pvc = P
[

vFc
vC

]
;

that is, (Pvc)
TA(Pvc) ≤ σ vTCSCvC . Here, SC = ACC − ACFA

−1
FFAFC is the Schur

complement of A.
In the finite element case, the following decomposition of the global quadratic

form holds,

vTAv = vTCA
(N)
C vC +

[
vF
vŴ

]T
A
(N)
F

[
vF
vŴ

]
.

The matrices A(N)C and A(N)F are symmetric (semi)definite and defined for vectors on
�C and �F ∪ Ŵ, respectively. Because in this case A, AC , and SC have a common
major block, the estimate (Pvc)

TA(Pvc) ≤ σ vTCSCvC can be rewritten as

(PF vFc )
TA

(N)
F PF vFc ≤ σ vTŴSŴvŴ.

Here, vFc |Ŵ = vŴ ≡ vC |Ŵ . Also, SŴ = A(N)Ŵ, Ŵ −A(N)Ŵ, FA
−1
FFA

(N)
F, Ŵ is the Schur comple-

ment of the matrix

A
(N)
F =

[
AFF A

(N)
F, Ŵ

A
(N)
Ŵ, F A

(N)
Ŵ, Ŵ

]
} �F
} Ŵ

,

which represents the contribution to A coming from the subdomain �F . Note that
vC has the same interface component vŴ (i.e., vC |Ŵ = vŴ). We also have vTCSCvC =
vTCA

(N)
C vC + vTŴSŴvŴ.
In summary, we have the following main convergence result.

Theorem 7.16. Assume:

(i) There is an energy bounded coarse extension mappingE from Ŵ into the interior

of �F , that is, EvC = Pv0c for some vector v0c , which coincides with vC on �C .

The boundedness means that

vTCE
T AEvC ≤ ‖E‖2 inf

wF

[
wF
vC

]T
A

[
wF
vC

]
.
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(ii) The local two-grid method based on MF , PFF applied to AFF is convergent in

the sense that the respective two-grid preconditionerBTG
F satisfies for any vF the

estimate:

(vF )
TBTG

F vF ≤ KTG
F (vF )

TAFFvF .

Finally, assume thatMF is properly scaled so that

wTF (MF +MT
F − AFF)wF ≥ δ wTFAFFwF . (7.48)

Then the FAC preconditioner BFAC is spectrally equivalent to the composite grid

matrix A.

Proof. We recall the following main identity for BTG
F .

(vF )
TBTG

F vF = min
vF=vFs +PFF vFc

[(
PFFvFc

)T
AFFPFFvFc

+
(
MT
F vFs + AFFPFFvFc

)T (
MF +MT

F − AFF

)−1

×
(
MT
F vFs + AFFPFFvFc

)]
. (7.49)

Using the fact that we have a bounded extension mapping E that is in the range
of the interpolation matrix P (i.e., EvC = Pv0c ), we start with the decomposition
v = EvC + I�F v0F = Pv0c + I�F v0F . By assumption, we have the norm bound

vTCE
T AEvC ≤ ‖E‖2 inf

wF

[
wF
vC

]T
A

[
wF
vC

]
.

Now, use any local decomposition for v0F = vFs + PFFvFc , to arrive at the global
decomposition v = Pvc + I�F vFs with

vc =
[

vFc
0

]
} �Fc
} �C

+ v0c .

Recall that�Fc stands for the coarse dofs in�F . Using the latter decomposition in the
identity (7.47), the norm bound for EvC , the Cauchy–Schwarz inequality, estimate
(7.48), the fact that A−1 − I�FA

−1
FF(I�F )

T is positive semidefinite, and the esti-
mate ‖v0F ‖AFF = ‖I�F v0F ‖A = ‖v − EvC‖A ≤ (1 + ‖E‖) ‖v‖A, we arrive at the
estimates

vTBFACv

≤ 2(1+ δ−1) (EvC)
T AEvC + 2 inf

v0F=vFs +PFF vFc

[
(vFc )

T P TFFAFFPFFvFc

+ (MT
F vFs + AFFPFFvFc )

T (MF +MT
F − AFF)

−1(MT
F vFs + AFFPFFvFc )

]

= 2(1+ δ−1) (EvC)
T AEvC + 2(v0F )TBTG

F v0F

≤ 2(1+ δ−1)‖E‖2 vTAv + 2KTG
F (v0F )

TAFFv0F

≤ 2
[
(1+ δ−1)‖E‖2 +KTG

F (1+ ‖E‖)2
]
vTAv.

Above, we used identity (7.49) for the local two-grid preconditioner BTG
F . �
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Multilevel FAC

We conclude the present section with the comment that the FAC method allows for
multilevel extensions. We introduce the kth-level composite grid �(k) = �

(ℓ)
C ∪

�
(ℓ−1)
C ∪· · ·∪�(k+1)C ∪�(k)F for k = ℓ−1, . . . , 0 and�(ℓ) = �(ℓ)C (hence�(ℓ)F = ∅).

Letting �(k)C = �
(ℓ)
C ∪ �(ℓ−1)C ∪ · · · ∪ �(k+1)C , we have the decomposition �(k) =

�
(k)
C ∪ �(k)F . The portion �

(k)
F of �(k) is assumed to have some regular structure. In

practice,�(k)F corresponds to a uniformly refined part of the computational domain.

The k+ 1st-level coarse composite matrix is A(k+1), and the interpolation matrix
Pk that relates A(k) and A(k+1) = P Tk A(k)Pk has the special form

Pk =

⎡
⎢⎣
P
(k)
FF P

(k)
F, Ŵk

0

0 I 0

0 0 I

⎤
⎥⎦

} �
(k)
F

} Ŵk

} �
(k)
CI

≡ �(k)C \ Ŵk .

Here Ŵk ⊂ �(k) is a separator so that A(k) admits the following DD block-form,

A(k) =

⎡
⎢⎢⎢⎣

A
(k)
FF A

(k)
F, Ŵk

0

A
(k)
Ŵk, F

A
(k)
Ŵk, Ŵk

A
(k)
Ŵk, CI

0 A
(k)
CI , Ŵk

A
(k)
CI , CI

⎤
⎥⎥⎥⎦

} �
(k)
F

} Ŵk

} �
(k)
CI
.

The major block A(k)FF of A
(k) corresponds to the subdomain �(k)F , which has some

regular structure. We then assume that there is an easily invertible matrixM(k)
F to be

used as a smoother forA(k)FF. Asbefore, letM
(k)

F = M(k)
F (M

(k)
F +M(k)T

F −A(k)FF)
−1M(k)T

F

stand for the symmetrized smoother, which is assumed s.p.d.

Definition 7.17 (Multilevel FAC preconditioner). Starting with B
(ℓ)
FAC = A(ℓ), the

coarsest matrix, we then define by recursion for k = ℓ− 1, . . . , 0, introducing

I kF =
[
I

0

]
} �

(k)
F

} �
(k)
C

,

B
(k)−1
FAC = I kFM

(k)−1

F (I kF )
T +

(
I − I kFM

(k)−T
F (I kF )

TA(k)
)
PkB

(k+1)−1
FAC P Tk

×
(
I − A(k)I kFM

(k)−1

F (I kF )
T
)
.

Exploiting locality, assuming that the actions of M(k)−1
F and M(k)−T

F can be imple-

mented in O(|�(k)F |) flops, and based on the sparsity of Pk we can assume that the
actions of Pk and P Tk can also be implemented in O(|�

(k)
F |) flops; it is easily seen

then that one action ofB(0)
−1

FAC can be implemented forO(|�(ℓ)|+
∑ℓ−1
k=1 |�(k)F |) flops.
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By construction, we have the product form of the FAC iteration matrix E(k)FAC ≡
I − B(k)

−1
FAC A(k),

E
(k)
FAC = I − B(k)

−1
FAC A(k)

=
(
I − I kFM

(k)−T

F (I kF )
TA(k)

)(
I − PkB(k+1)

−1
FAC P Tk A

(k)
)

×
(
I − I kFM

(k)−1
F (I kF )

TA(k)
)
.

We can show (by induction) based on the representation

B
(k)−1
FAC =

[
I kF , Pk

]
B̂
(k)−1
FAC

[
I kF , Pk

]T
,

where

B̂
(k)
FAC =

[
M
(k)
F 0

P Tk A
(k)I kF I

]

×

⎡
⎣
(
M
(k)
F +M(k)T

F − A(k)FF

)−1
0

0 B
(k+1)
FAC

⎤
⎦

×
[
M
(k)T

F (I kF )
TA(k)Pk

0 I

]
,

that vTA(k)v ≤ vTB
(k)
FACv, hence ‖E(k)FAC‖A(k) < 1. To prove the first fact, we first

define B̂(k)TG in the same way as B̂
(k)
FAC with B

(k+1)
FAC replaced by the exact coarse matrix

A(k+1). Then define B(k)TG as

B
(k)−1
TG =

[
I kF , Pk

]
B̂
(k)−1
TG

[
I kF , Pk

]T
,

that is, in the same way as in (7.46). Note that because [I kF , Pk][I
k
F , Pk]

T is s.p.d.,

and because B̂(k)FAC is s.p.d., then B(k)FAC is s.p.d. Similarly B
(k)
TG is s.p.d. From the

product representation of I − B(k)
−1

TG A(k), we see that A(k)(I − B(k)
−1

TG A(k)) = (I −
I kFM

(k)−1

F (I kF )
TA(k))T (A(k) −A(k)PkA(k+1)

−1
P Tk A

(k))(I − I kFM
(k)−1

F (I kF )
TA(k)) =

ETF (A
(k)−A(k)PkA(k+1)

−1
P Tk A

(k))EF . The latter matrix will be symmetric positive
semidefinite if the middle term

A(k) − A(k)PkA(k+1)
−1
P Tk A

(k)

is symmetric positive semidefinite. From the relation A(k+1) = P Tk A
(k)Pk and the

fact that ‖X‖ = ‖XT ‖ = 1 used for X = A(k)
1/2
PkA

(k+1)−(1/2) , the middle term is
seen to be symmetric positive semi definite. Thus,

vTB
(k)
TGv ≥ vTA(k)v.
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Assuming now by induction that B(k+1)FAC − A(k+1) is positive semidefinite, we
first observe that B̂(k)FAC − B̂(k)TG is positive semidefinite, as well. Hence, the following
inequalities are immediate.

vTB
(k)−1
FAC v ≤ vT [I (k)F , Pk]B̂

(k)−1
TG [I (k)F , Pk]

T v = vTB
(k)−1
TG v ≤ vTA(k)

−1
v.

The latter confirms the induction assumption that B(k)FAC −A(k) is symmetric positive
semidefinite.
Estimates from above for B(k)FAC in terms of A

(k) would require proving the ex-
istence of stable multilevel decompositions of vectors with terms supported in the
refined regions �(k)F . Such decompositions are typically derived based on stable de-
composition of finite element functions that then give rise to corresponding stable
decomposition of their coefficient vectors. For multilevel analysis of some versions
of FAC, see [BP04] (and the references therein), and for some respective numerical
results, see [BP04e].

7.11 Auxiliary space preconditioning methods

Given a vector space V and an s.p.d. matrix A operating on vectors from V , also let
the (auxiliary) space V̂ together with another s.p.d. matrix Â be well understood in
the sense that we know how to construct preconditioners B̂ for the matrix Â. Then,
we may want to take advantage of this fact to construct preconditioners B for A. To
achieve this goal, we need some additional assumptions found in what follows.

Construction of the auxiliary space preconditioner

Assume that there is a computablemappingπ : V̂ �→ V , which relates the two spaces.
Note thatV+πV̂ gives an overlapping decomposition of the original spaceV . Assume
that π is a bounded mapping; that is,

(π v̂)TAπ v̂ ≤ σ v̂T Â̂v, for all v̂ ∈ V̂ . (7.50)

We also assume that the space V̂ canwell approximate elements from V in a norm
‖.‖0 weaker than ‖.‖A. That is, for any v ∈ V , there is a v̂ ∈ V̂ such that:
• π v̂ provides an approximation to v; that is,

‖v − π v̂‖20 ≤ δ ̺(A)−1 vTAv. (7.51)

Here,

̺(A) ≥ ‖A‖ sup
v∈V

vT v

‖v‖20
≥ sup

v∈V

vTAv

‖v‖20
and ‖A‖ = sup

v∈V

vTAv

vT v
.

• The component v̂ is stable; that is,

v̂T Â̂v ≤ η vTAv. (7.52)
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Note that the decomposition v = (v − π v̂)+ π v̂ satisfies the condition that the first
componentw = v −π v̂ is small (referring to 1 ≪ ̺(A)), and the second component
π v̂ is bounded, both in terms of ‖v‖A. The auxiliary space preconditioner exploits
a smoother M intended to handle the oscillatory small component v − π v̂ and a
preconditioner B̂ that is assumed readily available for the operator Â.
Consider then the following transformationmatrix [I, π]. Our scheme of two-by-

two block-factorization preconditioners for A utilizing the decomposition based on

[I, π] leads to the following (inverse of) preconditioner B−1 = [I, π]B
−1
[I, π]T

defined by

B =
[

I 0
πTAM−1 I

] [
M(M + MT − A)−1MT 0

0 B̂

] [
I M−TAπ
0 I

]
, (7.53)

where B̂ is a given preconditioner to ÂandM is a simple preconditioner (“smoother”)
for A. More explicitly, we get

B−1 = M−T (M+MT −A)M−1+ (I −M−TA)πB̂−1πT (I −AM−1). (7.54)

Introduce the symmetrized smootherM = M(M+MT −A)−1MT . To analyze the
preconditioner B, we need the additional assumptions on the smootherM (orM),

0 ≤ vTMv ≤ κ ̺(A) ‖v‖20, (7.55)

and

θ vT (M + MT − A)v ≥ vTAv. (7.56)

Note that the r.h.s. inequality in (7.55) is trivially satisfied withM = (‖A‖/ω) I ,
ω ∈ (0, 2), and κ = 1/(ω(2− ω)). We have

M = M(M + MT − A)−1MT = ‖A‖2
ω2

(
2‖A‖
ω

I − A
)−1

.

Therefore,

‖A‖2
ω2

wT
(
2‖A‖
ω

I − A
)−1

w ≤ ‖A‖
ω(2 − ω) wTw ≤ 1

ω(2 − ω) ̺(A) ‖w‖20.

The left-hand side of (7.55) means that M is a convergent smoother for A in the
A-inner product. That is, vT (I − M−1A)TA(I − M−1A)v ≤ ̺ vTAv for some
̺ < 1, which is true for M = (‖A‖/ω) I with ω ∈ (0, 2). Simply note that the
eigenvalues of I − M−1A are in (−1, 1). Finally, assumption (7.56) can be ensured
for anyM by proper scaling. For the particular exampleM = (‖A‖/ω) I , it holds
with θ = ω/(2− ω).
For the preconditioner B̂ to Â, we need the equivalence relations,

v̂T πTAπ v̂ ≤ v̂T B̂ v̂ ≤ σ̂ v̂T Â̂v, for all v̂. (7.57)
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The above inequality includes the assumed boundedness (7.50) of the operatorπ . The
estimate (7.57) can be obtained if B̂ is a spectrally equivalent preconditioner to Â,
that is, if

σ v̂T Â̂v ≤ v̂T B̂v̂ ≤ σ̂ v̂T Â̂v.

The latter relations, togetherwith the boundedness ofπ , that is, estimate (7.50), imply
the equivalence relations (7.57).
We first have (from the assumption v̂T πTAπ v̂ ≤ v̂T B̂v̂) based on Theo-

rem 3.16 that

0 ≤ vT (B − A)v.

Next, consider the special decomposition v = w + π v̂, or equivalently,

v = w + π v̂ = [I, π]

[
w

v̂

]
.

Therefore, for the upper bound, we get

vTBv ≤
[

w

v̂

]T
B

[
w

v̂

]

= (MTw + Aπ v̂)T (M + MT − A)−1(MTw + Aπ v̂)+ v̂T B̂ v̂

≤ 2 wTMw + 2 v̂TπTA(M + MT − A)−1Aπ v̂ + v̂T B̂v̂.

Then, based on (7.55) and (7.56), using the estimate wTAw ≤ ̺(A) ‖w‖20 and the
boundedness of π , we arrive at the final estimates:

vTBv ≤ 2 κ̺(A) ‖w‖20 + 2θ v̂T πTAπ v̂ + v̂T B̂v̂

≤ 2κ̺(A) ‖w‖20 + (2θ + 1) v̂T B̂v̂

≤ 2κ̺(A) ‖w‖20 + (2θ + 1)̂σ v̂T Â̂v

≤ [2κδ + (1+ 2θ )̂ση] vTAv.

We used in the last line above that ‖w‖20 ≤ δ(̺(A))−1 vTAv and v̂T B̂v̂ ≤ η vTAv,
that is, the assumptions that w = v − π v̂ is small in the sense of estimate (7.51) and
that the second component v̂ in the decomposition is stable in the sense of (7.52).
The last estimate completes the proof that the auxiliary space preconditioner B is
spectrally equivalent to A.
A somewhat simpler auxiliary space preconditioner is the additive one (proposed

in Xu [Xu96b]). For a symmetric smootherM, (e.g.,M = (‖A‖/ω) I ) it takes the
form

B−1
add = M−1 + πB̂−1πT . (7.58)

It can be analyzed analogously (under the same assumption). We have

I = B1/2add [I, π]
[
M−1 0
0 B̂−1

]
[I, π]TB1/2add .
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Therefore,

([
M−1 0
0 B̂−1

]−(1/2)
[I, π]TB1/2add

)([
M−1 0
0 B̂−1

]−(1/2)
[I, π]TB1/2add

)T
− I

is symmetric negative semidefinite; that is,

[I, π]TBadd[I, π]−
[
M 0
0 B̂

]

is symmetric negative semidefinite. This shows, that for any decomposition

v = w + π v̂ = [I, π]

[
w

v̂

]
,

we have

vTBaddv =
[

w

v̂

]T
[I, π]TBadd[I, π]

[
w

v̂

]

≤
[

w

v̂

]T [
M 0
0 B̂

] [
w

v̂

]

= wTMw + v̂T B̂ v̂

= 2 wTM(2M)−1Mw + v̂T B̂v̂

≤ 2 wTM(2M − A)−1Mw + σ̂ v̂T Â̂v

= 2 wTM(M + MT − A)−1MTw + σ̂ v̂T Â̂v

= 2 wTMw + σ̂ v̂T Â̂v

≤ 2̺(A)κ ‖w‖20 + σ̂ v̂T Âv̂.

Now, use the estimates for the components of the decompositionv = v+π v̂, ‖w‖20 =
‖v − π v̂‖20 ≤ δ(̺(A))−1 vTAv and v̂T Â̂v ≤ η vTAv, to arrive at the lower bound

vTAv ≥ 1

σ̂ η + 2κδ vTBaddv.

The estimate from above is similarly derived. We have

vTB−1
addv = vTM−1v + vT πÂ−1πT v

≤ 2θ

1+ θ vTA−1v + σ̂ vTA−1v

=
(
σ̂ + 2θ

1+ θ

)
vTA−1v.

Here we used that (Â−(1/2)πTA1/2)(Â−(1/2)πTA1/2)T − σ̂ I is negative semidef-
inite (by assumption), hence (Â−(1/2)πTA1/2)T (Â−(1/2)πTA1/2) − σ̂ I is negative
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semidefinite, which implies that πÂ−1πT − σ̂A−1 is negative semidefinite. Also
(again by assumption)M+MT − (1+ (1/θ)) A is positive semidefinite, therefore
vTMv ≥ ((1+ θ)/2θ) vTAv.
To summarize, the following main result holds.

Theorem 7.18. Consider two vector spaces V and V̂ and let π : V̂ �→ V relate the

auxiliary space V̂ with V . Let the given s.p.d. matrix A of main interest, acting on

vectors from V , be related to a s.p.d. matrix Â defined on V̂ . Finally, let Â admit

a spectrally equivalent preconditioner B̂ that is properly scaled, such as in (7.57).
Under the assumptions that any v ∈ V admits a decomposition v = w + π v̂ where

the first component w is small in the sense of (7.51), and the second component v̂

is stable in the sense of estimate (7.52), provided that A also allows for a smoother

M (e.g., M = (‖A‖/ω) I , for any ω ∈ (0, 2)), which satisfies (7.55) and (7.56),
then both the additive auxiliary space preconditioner Badd defined in (7.58) and the

multiplicative one B defined in (7.53) are spectrally equivalent to A.

An H(curl) auxiliary space preconditioner

Examples of auxiliary space preconditioners for finite element problems rely on im-
portant finite element decompositions.The power of the auxiliary space precondition-
ing method can be illustrated with the following H(curl) example. A main result in
[HX06] shows that vector functions in H(curl)-conforming Nédélec spaces Vh (cf.,
Section B.6 in the appendix for definition of the f.e. spaces) allow for decompositions
based on three components,

vh = wh + ∇zh +�hzh, (7.59)

where we have two auxiliary spaces, Sh and Sh. Sh is a scalar finite element space
suitable for Poisson-like problems and Sh = (Sh)3 is a vector one. The mapping
h

relates the dofs in Sh with the dofs in the original space Vh.
Note that all spaces use the original triangulation (set of elements) Th. The com-

ponent wh is small, in the sense that ‖wh‖0 ≤ Ch ‖vh‖H(curl), and the remaining
components are stable, namely, ‖∇zh‖0 ≤ C ‖vh‖H(curl) and ‖zh‖1 ≤ C ‖vh‖H(curl).
The additive auxiliary space preconditioner for the originalH(curl) form,

(Ahvh, vh) ≡ (curl vh, curl vh)+ (vh, vh), vh ∈ Vh,

utilizes the subspaces Vh, ∇Sh, and 
hSh of Vh, and respective operators 	h,
Bh, and Bh, coming from the symmetric Gauss–Seidel smoother for the origi-
nal H(curl) operator (matrix) Ah, a MG preconditioner for the Laplace-like form
(Ah∇zh, ∇zh) = (∇zh, ∇zh) with zh ∈ Sh, and similarly, a MG preconditioner
for the (vector) Laplace-like form (Ah
hzh, 
hzh) ≃ (∇zh, ∇zh), zh ∈ Sh. Intro-
ducing the matrix representationGh of the embedding∇Sh ⊂ Vh, that is, the matrix
representation of the mapping of the dofs in Sh into dofs ofVh (based on∇Sh ⊂ Vh),
the additive auxiliary space preconditioner Badd takes the form

B−1
add = 	−1

h +Gh B−1
h G

T
h + 
hB−1

h 
T
h .
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The fact thatBadd is an optimal preconditioner forA= Ah follows from the properties
of the decomposition (7.59) and the fact that with ‖.‖0 being the L2-norm, we have
then ̺(A) ≃ h−2.
The performance of both additive and multiplicative auxiliary space precondi-

tioners for H(curl)-type problems is documented in detail in [KV06i] and [KV06ii].
General approaches for constructing auxiliary space preconditionerswere studied

in [Nep91a], [Nep91b], [Xu96b], and [BPZ]. Applications to H(div)-bilinear forms
were considered in [RVWb] and based on auxiliary meshes forH(curl) in [KPVa].

Concluding remarks for this chapter

For more details on DD methods, we refer to the books [DD], [Wo00], and [TW05].



8

Preconditioning Nonsymmetric and Indefinite

Matrices

This chapter describes an approach of preconditioning nonsymmetric and indefinite
matrices that can be treated as perturbations of symmetric positive definite ones.
Namely, we assume that A = A0 + R where A0 is a s.p.d. matrix and R can be
treated as a perturbation of A. More specifically, the main assumption is that in a
space complementary to a coarse space of a fixed size, R has a small norm. This is
made more precise in what follows.
An additive version of the approach described in what followswas originally con-

sidered by Yserentant [Y86]. The Schur complement preconditioner that we present
next is found in [V92a]. An equivalent finite element type preconditioner was con-
sidered in [Xu92b].
The assumptions made in the present chapter are verified for finite element (non-

symmetric and possibly indefinite) matrices corresponding to general second-order
elliptic bilinear forms in Appendix B; see in particular, Theorems B.3 and B.4 for the
perturbation approach described in Section 8.2.

8.1 An abstract setting

Partition the set of indices (dofs) into a fixed small set of “c” dofs and a large com-
plementary set of “f ” dofs. Let

P =
[

P

I

]
} “f ” dofs
} “c” dofs

be a given interpolation matrix. Let Ac = P TAP be the coarse matrix, which we
assume to be invertible.
Consider the transformation matrix

π =
[
I P

0 I

]
,

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 319
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and the corresponding transformed matrix

Â = πTAπ =
[

Aff Afc + Aff P

Acf + PTAff Ac

]
.

Because Ac is assumed of small size, we are actually interested in the reduced Schur
complement

Wf = Aff − (Afc + AffP)A
−1
c

(
Acf + PTAff

)
.

Our goal is to construct an efficient preconditioner toWf based on preconditioners
for the same Schur complementW 0

f coming from the transformed form Â0 = πTA0π
of the given s.p.d. matrix A0. The first main assumption is the following Gärding
inequality, valid for two constants γ0 ∈ [0, 1) and δ0 > 0,

vTAv ≥ (1− γ0)vTA0v − c0‖v‖20· (8.1)

Here, ‖v‖0 is a given norm weaker than
√

vTA0v. In a typical finite element appli-
cation, ‖v‖0 comes from the integral L2-norm of the finite element function v that v

represents. Then, in d dimensions (d = 2, or d = 3), ‖v‖20 ≃ hdvT v, where h �→ 0
is the mesh-size.
Our second main assumption is that for any given v, the solutions of Ax = v and

Acxc = P T v are close in the weaker norm. That is, for some small δ > 0, we have

‖x − Pxc‖20 ≤ δ xTA0x,

which is the same as

‖(A−1v − PA−1
c P

T )Ax‖20 ≤ δ xTA0x. (8.2)

Equivalently, we may say that the coarse-grid projection πA = PA−1
c P

TA satisfies

‖(I − πA)v‖20 ≤ δ vTA0v. (8.3)

In what follows we assume δ is sufficiently small such that δc0 < 1− γ0.
For more details, in the case of second-order elliptic equations, see Theorem B.7

in the appendix.
Using inequality (8.3) in (8.1) for v = (I − πA)v leads to

vTAv ≥ (1− γ0 − δc0)vTA0v. (8.4)

That is (for δ > 0 sufficiently small),A becomes coercive in terms ofA0 in a subspace
complementary to the coarse space; namely, for v ∈ Range (I − πA).
Next, we find a representation of the solution to the equation v = (I − πA)v.

We have 0 = πAv = PA−1
c P

TAv, which is equivalent to P TAv = 0. Recall the
transformation matrix

π =
[
I P

0 I

]
.
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Because π is invertible, we can seek v = πv, where

v =
[

vf
vc

]
.

Then,

v =
[

vf + Pvc
vc

]
.

From the equation

0 = P TAv = P TA
(
Pvc +

[
vf
0

])
,

we get

Acvc + P TA
[

vf
0

]
= 0.

That is,

Acvc + (Acf + PTAff )vf = 0.

This shows that

Âv =
[
Wf vf
0

]
.

Therefore, vTAv = vT πTAπv = vT Âv = vTfWf vf . Thus, we proved the following
coercivity estimate for the Schur complementWf of A,

vTfWf vf ≥ (1− γ0 − δc0)vT πTA0πv.

Now, becauseπTA0π is s.p.d. for its Schur complementW 0
f , we have the estimate

vT πTA0πv ≥ min
vc

[
vf
vc

]T
Â0

[
vf
vc

]
= vTfW

0
f vf . (8.5)

Thus, we finally arrive at the main coercivity estimate for the Schur complementsWf
andW 0

f :

vTfWf vf ≥ (1− γ0 − δc0)vTfW 0
f vf . (8.6)

In order to complete the proof that W 0
f is a good s.p.d. preconditioner for the

coercive nonsymmetric matrix Wf , we need some bounds from above. A natural
assumption is as follows,

vTAw ≤ (1+�)
(
vTA0v

)1/2(
wTA0w

)1/2
. (8.7)

This can be equivalently stated that A0 is the principal (leading) term in A.
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The above inequality used for w = πw and v = πv, shows the boundedness of
Â in terms of Â0. Next, for w:

Âw =
[
Wfwf
0

]

used in the boundedness estimate for Â in terms of Â0, we get

vTfWfwf ≤ (1+�)(vT Â0v)1/2(wT Â0w)1/2

≤ 1+�√
1− γ0 − δc0

(vT Â0v)
1/2(wT Âw)1/2

= 1+�√
1− γ0 − δc0

(vT Â0v)
1/2(wTfWfwf

)1/2
.

We first used inequality (8.4) becausew = πw is in the proper subspace and then the
fact that wT Âw = wTfWfwf . The left-hand side is independent of vc by taking the
minimum over vc based on (8.5), thus we arrive at the estimate

vTfWfwf ≤ 1+�√
1− γ0 − δc0

(
vTfW

0
f vf

)1/2(
wTfWfwf

)1/2
. (8.8)

Finally, letting vf = wf in (8.8) implies

(
wTfWfwf

)1/2 ≤ 1+�√
1− γ0 − δc0

(
wTfW

0
fwf

)1/2
.

Then using the last inequality back in (8.8) leads to the final estimate, which bounds
Wf in terms ofW 0

f :

vTfWfwf ≤ (1+�)2
1− γ0 − δc0

(
vTfW

0
f vf

)1/2(
wTfW

0
fwf

)1/2
. (8.9)

To summarize:

Theorem 8.1. LetA = A0+R be a nonsymmetric and possibly indefinite matrix and

A0 be its principal s.p.d. part in the sense of inequalities (8.1) and (8.7). The norm

‖.‖0 is assumed weaker than
√
(.)TA0(.) such that an error estimate (8.3) holds for

sufficiently small δ > 0 and proper coarse subspace Range(P ),

P =
[

P

I

]
.

Then, A and its principal s.p.d. part A0 are spectrally equivalent in a subspace

complementary to the coarse space. More precisely, based on

π =
[
I P

0 I

]
,
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after transforming A and A0 to πTAπ and πTA0π , respectively, the transformed

matrices have Schur complementsWf andW 0
f that satisfy the coercivity and bound-

edness estimates (8.6) and (8.9). Therefore, usingW 0
f as a preconditioner for solving

systems with Wf in a preconditioned GCG-type method (see Appendix A) will have

a convergence rate no worse than

(
1− (1− γ0 − δc0)4

(1+�)4
)1/2

.

8.2 A perturbation point of view

At this point, we emphasize that we actually need an inequality of the type (8.7) for
special w; namely, for πAw = 0. If we assume that A − A0 = R can be bounded
above as follows,

vT (A− A0)w ≤ σ
(
vTA0v

)1/2‖w‖0,

which implies a similar lower bound estimate

vT (A− A0)w ≥ −σ
(
vTA0v

)1/2‖w‖0,

forw such thatw = (I−πA)w. These estimates imply estimates that demonstrate that
A can be viewed as a perturbation ofA0 in the subspace πAw = 0. More specifically,
we have

vTAw ≤ (1+
√
δσ )(vTA0v)

1/2(wTA0w)
1/2, for any v and any w : πAw = 0.

(8.10)
Similarly,

wTAw ≥ (1−
√
δσ ) wTA0w, for any w : πAw = 0. (8.11)

Then, the coercivity estimate forWf in terms ofW 0
f reads

vTfWf vf ≥ (1−
√
δσ )vTfW

0
f vf . (8.12)

Following the analysis from the preceding section, we end up with the following
sharper boundedness estimate forWf in terms ofW 0

f ,

vTfWfwf ≤ (1+
√
δσ )2

1−
√
δσ

(
vTfW

0
f vf

)1/2(
wTfW

0
fwf

)1/2
. (8.13)

We can actually provemore than coercivity and boundedness estimates. From the
inequality valid for w : πAw = 0,

vT (A0 − A)w ≤ σ
√
δ(vTA0v)

1/2(wTA0w)
1/2, (8.14)
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used for special v = πv; namely such that

πTA0v =
[
W 0
f vf

0

]
,

and because πAw = 0 with w = πw, we get vTAw = vTfWfwf , and therefore,

vTf
(
W 0
f −Wf

)
wf ≤ σ

√
δ
(
vTfW

0
f vf

)1/2(
wT πTA0πw

)1/2
. (8.15)

Finally, from the same estimate (8.14), used for v = πv = w = πw, we also
have

wT πTA0πw ≤ wTfWfwf + σ
√
δ wT πTA0πw.

That is, together with the boundedness estimate (8.13) (used for vf = wf ), we
arrive at

(1− σ
√
δ) wT πTA0πw ≤ wTfWfwf ≤ (1+ σ

√
δ)2

1− σ
√
δ

wTfW
0
fwf .

Substituting this inequality in (8.15) the following main perturbation estimate is
obtained.

vTf
(
W 0
f −Wf

)
wf ≤ σ

√
δ
1+ σ

√
δ

1− σ
√
δ

(
vTfW

0
f vf

)1/2(
wTfW

0
fwf

)1/2
. (8.16)

The latter estimate is equivalent to the fact that the norm of

I −
(
W 0
f

)−(1/2)
Wf
(
W 0
f

)−(1/2)

is less than σ
√
δ((1+ σ

√
δ)/(1 − σ

√
δ)) < 1. The latter can be equivalently stated

in the following compact form.

Theorem 8.2. For a constant δf ≤ σ
√
δ((1 + σ

√
δ)/(1 − σ

√
δ)) = O(

√
δ), the

following main deviation estimate holds,
∥∥(W−1

f − (W 0
f )

−1)vf
∥∥
W 0
f

≤ δf ‖vf ‖(W 0
f )

−1 .

Remark 8.3. It is clear that W 0
f can be replaced by an accurate preconditioner S

0
f ,

such as a corresponding Schur complement coming from a few (ν ≥ 1) V -cycles
applied to the s.p.d. matrix A0 (see the next section for more details). Then we have
an estimate

(1− ̺ν)vTf S0f vf ≤ vTfW
0
f vf ≤ vTf S

0
f vf ,

where ̺ ∈ (0, 1) is, for example, the convergence factor of the V -cycle MG. Then it
is clear that a result similar to that of Theorem 8.2 will hold withW 0

f replaced by S
0
f

and a different constant δf := ̺ν + δf /(1− ̺ν), which can be made arbitrary close
to σ

√
δ((1+ σ

√
δ)/(1− σ

√
δ)) by increasing ν. Thus, we can use the variable-step

preconditioned CG (conjugate gradient) method (see Chapter 10) to solve systems
with Wf using S0f as a preconditioner. The convergence rate will be close to that of

the V -cycle MG perturbed by the value of
√
δ.
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8.3 Implementation

A main example for nonsymmetric and possibly indefinite matrices A comes from
discretized second-order elliptic PDEs, where A0 would refer to the principal sym-
metric and definite part of the PDE, and the remainingpartwould come from the terms
with lower-order (first and zeroth) derivatives. It is then straightforward to prove an
estimate of the form (8.1) for constants γ0 ∈ [0, 1) and δ ≥ 0 where the norm ‖.‖0
comes from the integral L2-norm of functions. It is clear then if we use a coarse
space, we should be able to prove an estimate of the form (8.2) with δ �→ 0 when
the coarse mesh gets smaller and smaller (for more details see Theorem B.7 in the
appendix). Note that we need δ (or the coarse mesh-size) to be sufficiently small to
compensate for the coefficient c0/(1−γ0), which is mesh-independent. The quantity
c0/(1− γ0) depends only on the coefficients of the underlined PDE. Hence, δ (or the
coarse mesh-size) can be considered fine mesh independent and therefore fixed. In
the case when the lower-order derivative terms of the differential operator are dom-
inating, such as the convection–diffusion operator −ǫ�u+ b · ∇u for small ǫ > 0,
or the Helmholtz operator −�u − k2u for large k, the coarse mesh that reflects the
coefficient δ will become practically unacceptably fine. The terms with lower-order
derivatives in these operators cannot be treated as perturbations of the principal el-
liptic part and therefore require other approaches that, however (so far), have limited
partial success (cf., [BW97], [HP97], [BL97], [BL00]).
It is also clear that we do not have to work withA0 and its Schur complement.We

can instead use any spectrally equivalent preconditionerM0 forA0 and work with its
corresponding Schur complement.
To implement the actions of Wf , we have to solve a coarse problem with Ac,

which is of small size. We solve, for a given vf , the coarse-grid equation for vc,

Acvc = −P TA
[

vf
0

]
.

Then,

Wf vf = [I, 0]Âv = [I, 0]πTAπv = [I, 0]A

[
vf + Pvc

vc

]
.

The inverse actions of the Schur complement S0f of π
TM0π are computed as

follows.

(
S0f
)−1

vf = [I, 0]π−1M−1
0 π

−T
[
I

0

]
vf = [I, −P]M−1

0

[
I

−PT

]
vf .

Here, we used the fact that the inverse of a Schur complement of a matrix is a principal
submatrix of the inverse of the given matrix.
In summary, the implementation of an iterative method based on the Schur com-

plements of πTAπ and πTM0π requires only actions of A−1
c , A,M

−1
0 , P , and PT ;

that is, the iterations can be implemented in terms of the original matrix, the coarse
matrix, the original s.p.d. preconditionerM0 (its inverse action), and the interpolation
matrix P and its transpose.
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Preconditioning Saddle-Point Matrices

In the present chapter, we consider problems with symmetric (nonsingular) matrices
that admit the following two-by-two block form,

A =
[
A BT

B −C

]
.

Here, A and C are symmetric and positive semidefinite, which makes A indefinite.
A common case in practice is C = 0. Matrices A of the above form are often
called saddle-point matrices. In the following sections, we study the construction
of preconditioners that exploit the above block structure ofA. We consider both cases
of definite and indefinite preconditioners.
There is extensive literature devoted to the present topic. We mention only the

more recent surveys [AN03] and [BGL].

9.1 Basic properties of saddle-point matrices

We assume thatBT has full column rank; that is,BBT is invertible.Then the following
result is easily seen.

Theorem 9.1. A necessary and sufficient condition for A to be invertible is that

A + BTB be invertible.

Proof. Indeed, if there is a nonzero vector w such that simultaneously Aw = 0 and
Bw = 0 then

A

[
w

0

]
=
[
0
0

]
,

that is, A has a nontrivial null space. Thus,A+BTB being only semidefinite implies
that A is singular.
The converse is also true. Assume thatA+BTB is invertible. We show then that

A is invertible. Because C is positive semidefinite, for a sufficiently small constant

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 327
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δ > 0 we can guarantee that I − δC is s.p.d. Consider the system
[
A BT

B −C

] [
w

x

]
= 0.

We can transform it as follows. Multiply the second block row with δBT and add it
to the first block row, and then multiply the second block row with I − δC; we get

[
A + δBTB BT (I − δC)
(I − δC)B −(I − δC)C

] [
w

x

]
= 0.

Note that A and B having only the zero vector as a common null vector implies that
A + δBTB is invertible, and hence, we get the following reduced problem for x,

[(I − δC)C + (I − δC)B(A+ δBTB)−1BT (I − δC)]x = 0.

Observe now that the matrix (I − δC)C is symmetric positive semidefinite, hence
(I −δC)B(A+δBTB)−1BT (I −δC)x = 0. That is, BT (I −δC)x = 0, and due to the
full-column rank of BT , we get (I − δC)x = 0. Finally, because I − δC is invertible,
we get x = 0. Then w = −(A + δBTB)−1BT (I − δC)x = 0. Thus, we proved that
A has only a trivial null space that completes the proof. �

In some applications BT is rank deficient. This is the case, for example, when B
corresponds to a discrete divergence operator. Then 1TB = 0 for any constant vector
1 (assuming that essential boundary conditions were imposed). Strictly speaking, A
may be singular then (the case for C = 0). To avoid nonuniqueness of the solution
we add additional constraints, namely, for all vectors qk , k = 1, . . . ,m, providing a
basis of the null space of BT , we impose

qTk x = 0.

We may assume thatQ = [q1, . . . ,qm] is orthogonal; that is, QTQ = I .
The original problem

A

[
w

x

]
=
[

f

g

]

with a possibly nonunique solution is transformed to one with a unique solution
⎡
⎣
A 0 BT

0 0 QT

B Q −C

⎤
⎦
⎡
⎣

w

λ

x

⎤
⎦ =

⎡
⎣

f

0
g

⎤
⎦ . (9.1)

Here, λ ∈ Rm is the vector of the so-called Lagrange multipliers. The new saddle-
point matrix has a full-column rank off-diagonal block

[
BT

QT

]
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ensured by construction. Indeed, (BBT+QQT )x = 0 impliesBT x = 0 andQT x = 0.
The first equation BT x = 0 implies that x = Qσ ∈ Null(BT ) for some σ ∈ Rm.
Then, the second equation 0 = QT x = QT (Qσ ) shows that σ = 0. That is, x = 0.
This proves that BBT + QQT is invertible, which is equivalent to

[
BT

QT

]

having full-column rank. Finally, notice that the principal block of the expanded
saddle-point matrix is

[
A 0
0 0

]
,

which is symmetric positive semidefinite. The result of Theorem 9.1 then tells us that
the new problem has a unique solution if (and only if)

[
A 0
0 0

]
+
[
BT

QT

] [
BT

QT

]T
=
[
A + BTB BTQ

QTB QTQ

]
=
[
A + BTB 0

0 I

]

is invertible, that is if (and only if) A + BTB is invertible. In practice, we do not
form the expanded (three-by-three) system (9.1) explicitly. During the computation,
the vectors x are considered (and kept explicitly) orthogonal to q1, . . . ,qm.
Consider the special case C = 0. If the second r.h.s. component g is orthogonal

to null(BT ), we can prove that λ = 0. Indeed, the last equation of the three-by-three
system implies thatQT (Bw +Qλ) = QT g = 0. BecauseQTB = 0, we have λ = 0.
Therefore, as we proved above, the following result holds in the case of rank-

deficient BT and C = 0.

Theorem 9.2. Consider the saddle-point problem
[
A BT

B 0

] [
w

x

]
=
[

f

g

]
.

Here, A is symmetric positive semidefinite. Let {qk}mk=1 form a basis of null(BT ). The

above saddle-point problem for any given f and g : qTk g = 0, k = 1, . . . ,m, will

have a unique solution (w, x) with second component x satisfying the constraints

qTk x = 0, k = 1, . . . ,m, if and only if A + BTB is invertible.

The case of general positive semidefinite C is considered in the final theorem.

Theorem 9.3. Consider the saddle-point problem
[
A BT

B −(I − QQT )C

] [
w

x

]
=
[

f

g

]
. (9.2)

Here, A and C are symmetric positive semidefinite and Q = [q1, . . . ,qm] is such

that {qk}mk=1 form an orthogonal basis of null(BT ). The above saddle-point problem

for any given f , and g orthogonal to null(BT ), has a unique solution (w, x) with

second component x satisfying the constraints qTk x = 0, k = 1, . . . ,m, if and only if

A + BTB is invertible.
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Proof. We showed that the necessary and sufficient condition for the expanded
saddle-point problem (9.1) to have a unique solution isA+BTB to be s.p.d.We show
next that (9.1) in the caseQT g = 0 having a unique solution (w, x)withQT x = 0 is
equivalent to (9.2) having a unique solution (w, x) such thatQT x =0 (ifQT g = 0).
It is clear that QT g = 0 is a necessary condition for solvability of (9.2). This

is seen by multiplying its second equation by QT using the fact that QTB = 0 and
QT (I − QQT ) = 0.
Consider the expanded system (9.1) with g : QT g = 0. Multiplying its third

equation Bw + Qλ − Cx = g with the projection I − QQT , based on the facts
that QTB = 0, QTQ = I and QT g = 0, leads to the desired second equation
Bw − (I − QQT )Cx = g of (9.2). This and the first equation of (9.1) show that
(w, x) with QT x = 0 give a solution to the problem (9.2).
On the other hand, any solution (w, x) of (9.2) such thatQT x = 0 together with

λ = QT Cx, provides a solution to (9.1) that we know is unique if A + BTB is s.p.d.
Thus, (w, x) with QT x = 0 must be the unique solution to (9.2). �

Remark 9.4. Based on the above result, we can in principle transform a problem

A

[
w

x

]
=
[

f

g

]

to the following equivalent one,
[
A + δBTB BT (I − δC)
(I − δC)B −(I − δ C)C

] [
w

x

]
=
[

f + δBT g

(I − δ C)g

]
.

The transformed matrix is again of saddle-point type. It has the property that
BT (I−δ C) has a full-column rank, and finally, its first blockA+δ BTB is invertible.
Thus, at least in theory, we can assume without loss of generality that the original
matrix A has invertible first block A.

9.2 S.p.d. preconditioners

Consider the following saddle-point problem

AX = F,

where

X =
[

v

x

]
and F =

[
w

b

]
.

It is typical to derive a priori estimates for the solutionX in a norm ‖.‖D whereas the
r.h.s. F is taken in the dual space, that is, in the norm ‖F‖D−1 = maxY(Y

TF/‖Y‖D).
The a priori estimate reads:

‖X‖D ≤ κ ‖F‖D−1 . (9.3)
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From this a priori estimate used for X = A−1F, we get the first spectral relation
between A andD

1

κ2
XTDX ≤ XTATD−1AX. (9.4)

The latter estimate represents coercivity of ATD−1A in terms of D.
Note that the norm ‖.‖2D is typically a sum of squares of two norms; that is, D is

a block-diagonal s.p.d. matrix with blocksM and D. Then, for

V =
[

v

x

]
,

we have ‖V‖2D = vTMv + xTDx.
Assume now, that we can construct a block-diagonal matrixM that is spectrally

equivalent to D. The coercivity estimate (9.4) implies a similar estimate with D
replaced byM; namely, we have

FTMF ≤ κ̂2 FTATM−1AF. (9.5)

Because AT = A, the above estimate, by letting F =M−(1/2)V, is equivalent to

VTV ≤ κ̂2 VT (M−(1/2)AM−(1/2))2V.

That is, the absolute value of the eigenvalues ofM−(1/2)AM−(1/2) is bounded frombe-
low by 1/̂κ. Or equivalently, the eigenvalues of M−(1/2)AM−(1/2) stay away from
the origin. The latter property is a main reason to use block-diagonal s.p.d. precondi-
tionersM that come from the norm ‖.||D in which the saddle-point problem is well
posed.
To complete the spectral equivalence relations between A and M , we need an

estimate from above for the absolute value of the eigenvalues ofM−(1/2)AM−(1/2).
This comes from the following (assumed) boundedness estimate of A in terms ofD;
namely,

VTAW ≤ σ (VTDV)1/2(WTDW)1/2. (9.6)

Because M is spectrally equivalent to D, a similar estimate holds with D re-
placed byM ,

VTAW ≤ σ̂ (VTMV)1/2(WTMW)1/2. (9.7)

Thus, the eigenvalues ofM−(1/2)AM−(1/2) (because AT = A) are bounded in abso-
lute value by σ̂ .
To summarize, we have the following result.

Theorem 9.5. The construction of block-diagonal s.p.d. preconditioners for the sym-

metric saddle-point (indefinite) block-matrixA can be reduced to the construction of

preconditionersM for the block-diagonal matrixD. The matrixD first defines a norm



332 9 Preconditioning Saddle-Point Matrices

in which the saddle-point problem is well posed; namely, an a priori estimate (9.3)
holds for any r.h.s. F, and second, the saddle-point operatorA is bounded in terms of

D in the sense that a boundedness estimate such as (9.6) holds. The thus-constructed

s.p.d. preconditionersM when used in a MINRES iterative method (cf., Appendix A)

will exhibit a rate of convergence dependent only on the constants involved in the

spectral equivalence relations (9.5) and (9.7).

9.2.1 Preconditioning based on “inf–sup” condition

We assume here that C = 0. The case of nonzero (symmetric positive semidefinite)
C is treated as a perturbation of the case C = 0 at the end of this section.
Introduce the block-diagonal matrix

D =
[
M 0
0 D

]
.

We also need the Schur complements S = BA−1BT and SAD
= BA−1

D
BT with

AD = A + BTD−1B.
We have the following important result.

Lemma 9.6. The a priori estimate (9.3) implies the following well-known LBB

(Ladyzhenskaya–Babuška–Brezzi) or simply “inf–sup” condition

1

κ
≤ inf

y
sup

w

yTBw

‖w‖M‖y‖D
. (9.8)

Proof. For any y, solve the saddle-point problem

Av +BT x = 0,

Bv = −Dy.

The solution components are x = S−1Dy and v = −A−1BTS−1Dy. The assumed
a priori estimate (9.3) rewritten as in (9.4) implies that

vTMv + xTDx ≤ κ2 yTDy.

In particular, we have vTMv ≤ κ2 yTDy. Consider finally,

sup
w

(yTBw)2

wTMw
≥ (yTBv)2

vTMv

= (yTBA−1BTS−1Dy)2

vTMv

= (yT Dy)2

vTMv

≥ (yT Dy)2

κ2yTDy

= 1

κ2
yTDy.

The latter estimate is the desired “inf–sup” (or LBB) condition. �
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The converse is also true in the following sense.

Theorem 9.7. The “inf–sup” condition (9.8) and boundedness of A in terms ofD as

in (9.6) imply the a priori estimate for AX = F in the pair of norms generated by

AD = A + BTD−1B and D.

Proof. The boundedness of A in terms of D (9.6) used for

V = W =
[

w

0

]

implies that

wTAw ≤ σ wTMw. (9.9)

The boundedness of A in terms of D (9.6) now used for

V = W =
[

w

y

]

implies

wTAw + 2yTBw ≤ σ (wTMw + yTDy).

Substituting y := ty for any real number t , we get that the quadratic form Q(t) ≡
σ t2 yTDy−2t yTBw+wT (σ M−A)w is nonnegative.This shows, based on (9.9),
that the discriminant D ≡ (yTBw)2 − σ yTDy wT (σ M − A)w is nonpositive;
that is, we have

(yTBw)2 ≤ σ yTDy wT (σ M − A)w. (9.10)

Letting y = D−1Bw in the last estimate gives

wTBTD−1Bw ≤
√
σ (wT (σ M − A)w)1/2(wTBTD−1Bw)1/2,

or

wT BTD−1Bw ≤ σ wT (σ M − A)w.

Equivalently,

wT (σ A + BTD−1B)w ≤ σ 2 wTMw. (9.11)

The “inf–sup” condition (9.8) implies then that

1

κ
‖y‖D ≤ sup

w

wTBT y

‖w‖M

≤ σ sup
w

wTBT y

(wT (σ A + BTD−1B)w)1/2

≤ σ

min{1, √
σ }

wTBT y

(wT (A + BTD−1B)w)1/2
. (9.12)



334 9 Preconditioning Saddle-Point Matrices

That is, we have an “inf–sup” condition also when ‖.‖M is replaced by the norm
generated by AD = A + BTD−1B with a different “inf–sup” constant

κ̂ = κ σ

min{1, √
σ } .

Consider now the saddle-point problem AX = F with a general r.h.s.

F =
[

f

g

]

and let

X =
[

v

x

]

be its solution. We transform the system AX = F by multiplying its second block
equation with BTD−1 and adding the result to the first one to arrive at

(A+ BTD−1B)v + BT x = f + BTD−1g,
Bv = g.

(9.13)

We can estimate the first block of the r.h.s. above as follows.

‖f + BTD−1g‖
A−1

D
≤ ‖f‖

A−1
D

+ ‖A−(1/2)
D

BTD−(1/2)‖‖g‖D−1

= ‖f‖
A−1

D
+ ‖D−(1/2)BA−(1/2)

D
‖‖g‖D−1

≤ ‖f‖
A−1

D

+ ‖g‖D−1 . (9.14)

Also with SAD
= BA−1

D
BT , the following reduced equation for x is obtained

from (9.13),

−SAD
x = −BA−1

D
(f + BTD−1g)+ g.

From the “inf–sup” condition (9.12), with κ̂ = κ (σ/(min{√σ, 1})), we easily
obtain

1

κ̂2
xTDx ≤ xTBA−1

D
BT x = xT SAD

x. (9.15)

Therefore,

1

κ̂2
xTDx ≤ xT SAD

x

= −xT g + xTBA−1
D
(f + BTD−1g)

≤ ‖g‖D−1‖x‖D + ‖x‖D‖D−(1/2)BA−(1/2)
D

‖‖(f + BTD−1g)‖
A

−1
D

≤ ‖x‖D
(
2‖g‖D−1 + ‖f‖

A
−1
D

)
.
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Thus we arrive at the first a priori estimate,

1

κ̂2
‖x‖D ≤ 2‖g‖D−1 + ‖f‖

A
−1
D
. (9.16)

Finally, because

wTBT x ≤ ‖A1/2
D

w‖‖A−(1/2)
D

BTD−(1/2)‖‖x‖D
= ‖A1/2

D
w‖‖D−(1/2)BA−(1/2)

D
‖‖x‖D

≤ ‖w‖AD
‖x‖D,

from the first equation of (9.13), we get

vTADv = −vTBT x + vT (f + BTD−1g)

≤ ‖v‖AD
‖x‖D + ‖v‖AD

‖f + BTD−1g‖
A−1

D
.

That is,

‖v‖AD
≤ ‖x‖D + ‖f + BTD−1g‖

A
−1
D
.

Based on (9.14) and the proven estimate (9.16) for ‖x‖D , we then arrive at the
other desired a priori estimate,

‖v‖AD
≤ ‖x‖D + ‖f + BTD−1g‖

A−1
D

≤ (̂κ2 + 1)‖f‖
A−1

D

+ (2̂κ2 + 1)‖g‖D−1 . �

The following result (see (9.15)) also holds.

Corollary 9.8. Assume the “inf–sup” condition (9.8) with M = AD = A +
BTD−1B. Then, the Schur complement SAD

= B(AD)
−1BT of the transformed

saddle-point problem (9.13) is spectrally equivalent to D; namely, we have

1

κ2
xTDx ≤ xT SAD

x ≤ xTDx.

In particular, if D is well conditioned then SAD
is also well conditioned.

We also need the following auxiliary result.

Lemma 9.9. Assume that an a priori estimate (9.3) in the pair of norms ‖.‖M, ‖.‖D
holds (i.e., ‖.‖2D = ‖.‖2

M
+‖.‖2

D
), together with a boundedness estimate (9.6). Then,

M is spectrally equivalent to AD .

Proof. The boundedness estimate (9.6) implies estimate (9.11), which shows
min{1, σ } wTADw ≤ σ 2 wTMw. The latter represents one side of the desired
spectral equivalence between AD andM. To prove an estimate in the other direc-
tion, consider the saddle-point problem

Av + BT x = Af

Bv = Bf .
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It is clear that x = 0 and v = f . Based on the assumed a priori estimate (9.3), we
have for some κ ,

κ−2 vTMv ≤ (Af)TM−1(Af)+ (Bf)TD−1Bf .

This estimate, togetherwith the boundedness estimate(9.9)vTAv ≤ σ vTMv, imply
for v = f that

κ−2 fTMf ≤ σ fTAf + (Bf)TD−1Bf ≤ max{1, σ } fTADf .

This is the desired second spectral relation betweenM and AD . �

We conclude with the following main result that characterizes a s.p.d. block-
diagonal preconditionerD for the saddle-point matrix A.

Theorem 9.10. Consider the saddle-point matrix A (with C = 0) and a block-

diagonal matrix D with blocks M and D. The saddle-point problem AX = F is

well posed and bounded in the D-norm so that estimates (9.3) and (9.6) hold (or

equivalently the spectral equivalence relations (9.4) and (9.6) hold) if and only if:

1. The pair (M, D) ensures an “inf–sup” condition of the form (9.8) for the blockB.

2. M is spectrally equivalent to AD = A + BTD−1B.

Proof. The fact that an a priori estimate and boundedness estimate imply thatM is
spectrally equivalent toAD is given byLemma9.9.Also, that an a priori estimate(9.3)
implies the “inf–sup” condition (9.8) is given by Lemma 9.6.
Assume now that (M, D) ensures an “inf–sup” condition of the form (9.8) and

that AD is spectrally equivalent toM. If we show that A is bounded in terms of the
pair of norms ‖.‖D and ‖.‖M, then from Theorem 9.7 we get that for some κ an a
priori estimate κ−1 ‖X‖D ≤ ‖F‖D−1 holds for AX = F and ‖.‖2D = ‖.‖2

AD
+ ‖.‖2

D
.

Then, because AD is spectrally equivalent toM, a similar a priori estimate holds in
the pair of norms ‖.‖M and ‖.‖D , which is in fact the desired result. Thus, the proof is
complete if we show that A is bounded in terms of the block-diagonal matrixD with
blocksM andD. The latter is seen as follows. We have that BTD−1B = AD −A is
positive semidefinite, and hence,

(vTAw)2 ≤ vTAvwTAw ≤ vTADvwTADw.

Also,

xTBw ≤ ‖x‖D‖D−(1/2)Bw‖ = ‖x‖D(wT (AD − A)w)1/2 ≤ ‖x‖D‖w‖AD
.

For any two vectors

V =
[

v

x

]
and W =

[
w

y

]
,
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combining the last two estimates gives

VTAW = vT (Aw + BT y)+ xTBw

≤ (vTADv)1/2(wTADw)1/2 + ‖x‖D‖w‖AD
+ yTBv

≤ (‖v‖2AD
+ ‖x‖2D)1/2(‖w‖2AD

+ ‖y‖2D)1/2 + ‖v‖AD
‖y‖D

≤ 2(‖v‖2AD
+ ‖x‖2D)1/2(‖w‖2AD

+ ‖y‖2D)1/2

= 2‖V‖D‖W‖D . �

Consider at the end the more general case

A =
[
A BT

B −C

]
.

Denote by A0 the matrix with zero C block. Because then

A = A0 +
[
0
I

]
T −1[0, I ]

with T = (−C)−1, based on the Sherman–Morrison formula (see Proposition 3.5),
we have

A−1 = A−1
0 − A−1

0

[
0
I

](
T + [0, I ]A−1

0

[
0
I

])−1
[0, I ]A−1

0 .

Because [0, I ]A−1
0 [

0
I ] = −S−1 = −(BA−1BT )−1 (the inverse of the Schur com-

plement of A0), the above formula for A−1 takes the following form,

A−1 = A−1
0 − A−1

0

[
0
I

]
(−C−1 − S−1)−1[0, I ]A−1

0 ,

which can be rewritten as

A−1 = A−1
0 + A−1

0

[
0
I

]
C1/2(I + C1/2S−1C1/2)−1C1/2[0, I ]A−1

0 . (9.17)

The latter expression makes sense also for singular C.
The following result holds for A.

Corollary 9.11. Let (M, D) satisfy the same properties for A0 as in Theorem 9.10.

Assume also that C is bounded in terms of D. Then, the block-diagonal matrix D

with blocks M and D provides a uniform preconditioner for A in the sense that the

spectral equivalence relations (9.4) and (9.6) hold.

Proof. The fact that C is bounded in terms of D and the boundedness assumption on
A0 in terms of D implies that A is bounded in terms ofD, which proves (9.6).
By assumption, we have

‖D1/2A−1
0 D

1/2‖ ≤ κ.
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Also by assumption there is a σ > 0 such that

‖D−(1/2)CD−(1/2)‖ ≤ σ.

Also, because C1/2S−1C1/2 is symmetric positive semidefinite, we have

‖D−(1/2)C1/2(I + C1/2S−1C1/2)−1C1/2D−(1/2)‖ ≤ ‖D−(1/2)CD−(1/2)‖ ≤ σ.

To prove (9.4), we use the representation of A−1 in (9.17). We have

‖D1/2A−1D1/2‖ ≤ ‖D1/2A−1
0 D

1/2‖ + ‖D1/2A−1
0 D

1/2‖‖D−(1/2)

× C1/2(I + C1/2S−1C1/2)−1C1/2D−(1/2)‖‖D1/2A−1
0 D

1/2‖
≤ κ + κ2 ‖D−(1/2)CD−(1/2)‖
≤ κ + κ2 σ.

Thus, for the solution X of the problem AX = F, the following a priori estimate
holds.

‖X‖D = ‖D1/2A−1F‖ ≤ ‖D1/2A−1D1/2‖ ‖F‖D−1 .

Because we proved that boundedness of ‖D1/2A−1D1/2‖, the proof is complete. �

The following result provides a natural norm for well posedness of the saddle-
point problem of our main interest in the case of s.p.d. major blockA.

Proposition 9.12. LetA be s.p.d. and C be positive semidefinite. Consider the saddle-

point problem

[
A BT

B −C

] [
w

x

]
=
[

f

g

]
.

This problem is well posed in the pair of normsM = A andD = SA ≡ C+BA−1BT

and A is bounded in terms of

DA =
[
M 0
0 SA

]
.

Proof. After eliminating w = A−1(f − BT x) the reduced problem for x reads

−SAx = g − BA−1f .

Then,

‖x‖SA ≤ ‖g‖
S−1
A

+ ‖S−(1/2)
A BA−(1/2)‖‖f‖A−1

= ‖g‖
S

−1
A

+ ‖A−(1/2)BTS−(1/2)
A ‖‖f‖A−1

≤ ‖g‖
S−1
A

+ ‖f‖A−1 .
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The second a priori estimate is obtained fromAw = f − BT x, which gives

‖w‖A ≤ ‖f‖A−1 + ‖A−(1/2)BT x‖ ≤ ‖f‖A−1 + ‖x‖SA .

Thus, the two estimates combined show the desired final a priori estimate
∥∥∥∥
[

w

x

]∥∥∥∥
DA

≤
√
8

∥∥∥∥
[

f

g

]∥∥∥∥
D−1
A

.

The boundedness of A in terms of DA is also easily seen. For any

V =
[

v

y

]
and W =

[
w

x

]

using the inequality zT Bu = uTBT z ≤ ‖A−(1/2)BT z‖‖u‖A ≤ ‖z‖SA‖u‖A and the
Cauchy–Schwarz inequality, we have

WTAV = wTAv + wTBT y + xTBv − xT Cy

≤ ‖w‖A‖v‖A + ‖x‖SA‖y‖SA + ‖w‖A‖y‖SA + ‖x‖SA‖v‖A
≤ 2 (‖w‖2A + ‖x‖2SA)

1/2(‖v‖2A + ‖y‖2SA)
1/2

= 2 ‖V‖DA‖W‖DA . �

Concluding remarks

Block-diagonal preconditioners for solving saddle-point problems were considered
in [RW92], [SW93], and [VL96]; see also the book [ESW06].

9.3 Transforming A to a positive definite matrix

In this section, we outline an approach originally proposed in Bramble and Pasciak
(1988) ([BP88]), which utilizes a preconditionerM for the major blockA such that
A−M is symmetric positive definite and transforms the original saddle-pointmatrix
A to a positive definite one Â. The transformation reads

Â ≡
[
AM−1 − I 0
BM−1 −I

] [
A BT

B −C

]
=
[
AM−1A − A (AM−1 − I)BT
B(M−1A − I) C + BM−1BT

]
.

(9.18)

We first notice that the Schur complement Ŝ of Â equals the negative Schur comple-
ment S = C + BA−1BT of A. Indeed, we readily see that Â admits the following
block-factorization,

Â =
[
I 0
∗ I

] [
∗ 0
0 S

] [
I ∗
0 I

]
.
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The same result is seen by direct computation,

Ŝ = C + BM−1BT − B(M−1A − I)A−1(AM−1 − I)−1(AM−1 − I)BT

= C + BA−1BT .

Because AM−1A − A is s.p.d. (due to the choice ofM) and Ŝ = S is also s.p.d.,
we conclude that the transformed matrix Â is s.p.d., as well.
There are several possible choices that naturally ensure vTMv ≤ vTAv. One

construction is found in Section 7.3 (see Lemma 7.2). With this choice, in some
cases, we may even be able to constructM so thatM−1 is explicitly available and
sparse, for example, by letting the subdomains used in the FETI method be of size
comparable to a single fine-grid element andwithout coarse-grid. The latter is the case
ifA is assembled from respective element matrices {Aτ } that are invertible. Another
possible choice is based on the element-by-element construction ofM described in
Section 4.7. To actually end up with anM such thatM−1 is efficiently computable,
we may have to apply the procedure recursively and thus end up with a multilevel
block-factoredM. In the latter case,M−1 is not feasible in an explicit (sparse) form.
In either case, the actualM has to be scaled by some θ ∈ (0, 1); that is,M :=

θM. The latter is needed to ensure that the resultingA−M is positive definite (not
only semidefinite).
IfM provides a convergent splitting forA, then the block formof the transformed

matrix Â is stable. More specifically, the following main result holds.

Theorem 9.13. Assume that M provides a convergent splitting for A, such that for

a constant γ ∈ [0, 1), we have

0 ≤ wT (A1/2M−1A1/2 − I)w ≤ γ 2 wTw. (9.19)

Then the following strengthened Cauchy–Schwarz inequality holds,

yTB(M−1A − I)w ≤ γ (wT (AM−1A − A)w)1/2(yT (C + BM−1BT )y)1/2.

Note that B(M−1A − I) is the strictly block lower-triangular part of Â and

AM−1A − A and C + BM−1BT are the principal blocks on the main diagonal

of Â. In other words, the two-by-two block form of Â in (9.18) is stable.

Proof. The proof uses the standard Cauchy–Schwarz inequality. Letting E = A1/2

M−1A1/2 − I , we have

yTB(M−1A − I)w = (A−(1/2)BT y)T (EA1/2w)

≤ (yTBA−1BT y)1/2(wTA1/2E2A1/2w)1/2

≤ (yTBM−1BT y)1/2γ (wTA1/2EA1/2w)1/2

≤ γ (yT (C + BM−1BT )y)1/2(wT (AM−1A − A)w)1/2. �

Thus, what is left is that we need in general a good preconditioner for Ŝ ≡
C + BM−1BT in order to complete the construction of preconditioners for Â.
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IfM−1 is explicitly available and sparse, this is feasible by the methods described
in the preceding sections for s.p.d. matrices. To ensure both,M being efficient forA
(with a good γ in estimate (9.19)) andM−1 being sparse, this basically means that
A is well conditioned. This is the case, for example, for matrices A coming from
mixed finite element discretizations of second-order elliptic PDEs. Otherwise,M−1

is not sparse and the second block on the diagonal of Â, Ŝ, is also not feasible.
But as it often happens, Ŝ turns out to be well conditioned then. In that case, good
approximations to Ŝ−1 can be derived by iterations, which generally leads to “inner–
outer” iterativemethods because the actions ofM−1 can typically come from another
iterative procedure.

Final comments

In certain applications coming frommixed finite element discretizations, it is feasible
to consider a least squares form of the saddle-point problem. A more feasible ap-
proach is to change the discretization procedure and then use least squareswith proper
weights in the norms (sometimes using certain “negative” Sobolev space norms).
For some original papers utilizing least squares approaches, see [BPL], [CLMM],
and [CPV].

9.4 (Inexact) Uzawa and distributive relaxation methods

Consider the saddle-point problem of the form

A =
[
A BT

B −C

]
. (9.20)

Here, A is s.p.d. and C is symmetric positive semidefinite.

9.4.1 Distributive relaxation

Given a transformationmatrixG such thatAG is easier to handle (i.e., block triangular
with s.p.d. blocks on the diagonal, or simply being s.p.d.), we can use it to define a
smoothing procedure. Such an ideaoriginated in [BD79] (see also [Wi89] and [Wi90]),
and was referred to as “distributive” relaxation or transforming smoothers.
In what follows, we assume that AG is s.p.d. Consider an initial iterate x0 for

Ax = b. Letting x = Gy, we get AGy = b. Finally, letD be an s.p.d. matrix such that
the transformed iteration matrix I −D−1(AG) corresponds to a convergent method.
In terms of the original variables, we have the iteration

x = x0 + GD−1(b − Ax0).

The respective iteration matrix reads

E = I − GD−1A.
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We notice that in the inner product defined by the s.p.d. matrixG−TA,E is symmetric
positive semidefinite. We have, using the fact that AG = GTA,

vTG−T AEw = vTG−TA(I − GD−1A)w = vT (G−TA− AD−1A)w,

which is a symmetric form. We also have

vTG−TAEv = vTG−T [AG − (AG)D−1(AG)]G−1v ≥ 0.

The latter shows the positive semidefiniteness of E in the G−TA-inner product.

9.4.2 The Bramble–Pasciak transformation

Now, consider the Bramble–Pasciak transformation matrix (see Section 9.3),

G =
[
M−1A − I M−1BT

0 −I

]
.

HereM is a given s.p.d. matrix such that for a constant γ ∈ (0, 1),

uTMu ≤ γ uTAu, for all u. (9.21)

Note that at this point, we do not assume thatM is necessarily spectrally equiv-
alent to A. Nevertheless, a γ ∈ (0, 1) uniformly bounded away from unity can
be found even for M that is not spectrally equivalent to A. A simple example is
M = γ λmin(A) I .
Compute the transformed matrix

AG =
[
AM−1A − A (AM−1 − I)BT
B(M−1A − I) BM−1BT + C

]
. (9.22)

As we showed earlier (see Section 9.3), AG is s.p.d., because the main block
AM−1A − A is s.p.d., and the Schur complement S of AG equals the (negative)
Schur complement SA of the original saddle-point matrix A, hence is s.p.d.
Next, computeG−TA explicitly. We have

G−T =
[
AM−1 − I 0
BM−1 −I

]−1

=
([

I 0
BM−1(AM−1 − I)−1 I

] [
AM−1 − I 0

0 −I

])−1

=
[
(AM−1 − I)−1 0

0 −I

] [
I 0

−BM−1(AM−1 − I)−1 I

]

=
[

(AM−1 − I)−1 0
BM−1(AM−1 − I)−1 −I

]
.
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Then,

G−TA =
[

(AM−1 − I)−1 0
BM−1(AM−1 − I)−1 −I

] [
A BT

B −C

]

=
[

(AM−1 − I)−1A (AM−1 − I)−1BT
B(M−1(AM−1 − I)−1A − I) C + BM−1(AM−1 − I)−1BT

]

=
[
(M−1 − A−1)−1 (AM−1 − I)−1BT
B(M−1A − I)−1 C + B(A− M)−1BT

]
.

Use the inequality wT (X − X 2)w ≤ γ wT (I − X )w, for X = A−(1/2)MA−(1/2)

based on (9.21) to show that

zTM(A − M)−1Mz ≤ γ zT (M−1 − A−1)−1z.

Therefore, based on the Cauchy–Schwarz inequality, we get

(vTB(M−1A − I)−1z)2 = (vTB(A− M)−1Mz)2

≤ vTB(A− M)−1BT v zTM(A − M)−1Mz

≤ γ vTB(A− M)−1BT v zT (M−1 − A−1)−1z

≤ γ vT (C + B(A − M)−1BT )v zT (M−1 − A−1)−1z.

The latter represents a strengthenedCauchy–Schwarz inequality forG−TA in the sense
that the off-diagonal block of G−TA is dominated by the principal block-diagonal
part of G−TA. Therefore,G−TA is spectrally equivalent to its block-diagonal part

[
(M−1 − A−1)−1 0

0 C + B(A − M)−1BT

]
.

The latter block-diagonal matrix can be further simplified based on the inequalities
wTA−1w ≤ wT (A − M)−1w ≤ (1/(1 − γ )) wTA−1w (using again (9.21)). That
is, G−TA is spectrally equivalent to the block-diagonal matrix

[
(M−1 − A−1)−1 0

0 C + BA−1BT

]
.

Finally, using again (9.21), we have

wTMw ≤ wT (M−1 − A−1)−1w ≤ 1

1− γ wTMw,

which proves at the end the following result.

Lemma 9.14. Assume that (9.21) holds. The matrix G−TA is spectrally equivalent

to the block-diagonal one,
[
M 0
0 C + BA−1BT

]
. (9.23)

The constants in the spectral equivalence relations depend only on γ ∈ (0, 1) and

they deteriorate if γ gets close to unity.
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As a corollary, we have that if M is spectrally equivalent to A then G−TA is
spectrally equivalent to

DA ≡
[
A 0
0 C + BA−1BT

]
.

The latter matrix is typically the one used to define a norm in which the saddle-point
problem Ax = b is well posed (cf., Proposition 9.12), that is, to have an a priori
estimate of the form

‖x‖DA ≤ σ ‖b‖
D−1
A
.

To find a simple M (i.e., M−1 explicitly given sparse matrix) that is spectrally
equivalent to A, this is feasible if A itself is well conditioned. This is the case, for
example, for matrices A coming from a mixed f.e. method applied to second-order
scalar elliptic PDEs. ThenA is a mass matrix andM can be chosen to be its properly
scaled diagonal part. In general, M can be obtained by an optimal V (1, 1)-cycle
multigrid applied to A and scaled so that (9.21) to hold.

9.4.3 A note on two-grid analysis

Our goal is to study the convergence of the two-grid method utilizing the so-called
“distributive relaxation” based on the transformation matrix G (defined below) and
a standard coarse grid correction.
We assume thatM is spectrally equivalent to A such that for two uniform con-

stants γ < 1 < γ−1 ≤ κ , the following estimates hold,

wTMw ≤ γ wTAw, wTAw ≤ κ wTMw, for all w. (9.24)

We study the convergence in the natural “energy” norm ‖.‖G−T A, which we showed
is spectrally equivalent to the norm defined from the block-diagonal matrix (9.23) or

DA =
[
A 0
0 SA

]

(because we assumed thatM is spectrally equivalent to A). Let

x =
[

u

p

]

and define ‖x‖2 = ‖u‖2 + ‖p‖2. The interpolation matrix P is assumed to be block-
diagonal; that is,

P =
[
P 0
0 Q

]
.

In practice, we have the property that the (negative) Schur complement SA = C +
BA−1BT of A is spectrally equivalent to a sparse matrix (either a mass matrix for
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Stokes problems, cf., e.g., [LQ86], or a matrix defining a discrete counterpart of
H 1-Sobolev norm, cf., e.g., [RVWa]).
Define the coarse grid matrix

Ac = P T AP =
[
Ac BTc
Bc −Cc

]
.

It is clear thatAc is also a saddle-point. Define next the “distributive relaxation”matrix
Mdistr = DG−1 where D is a “standard” smoother (e.g., Richardson as in (9.25)
below) for AG = GTA. Then, MTR ≡ G−TMdistr = G−TDG−1 can be used as a
smoother for the transformed s.p.d. matrix ATR = G−TA.
We are interested in the two-grid method defined by the product iteration matrix

Em(I − πA),

where E = I −M−1
distrA = I − GD−1A is the smoothing iteration matrix, m ≥ 1

is the number of smoothing iterations, and πA = I − PA−1
c P

TA is the standard
coarse-grid projection onto the space Range(P ).
To be specific, we define the following smoother D coming from AG, letting

κ = λmax (M−1A) > 1,

D = 2

[
(κ − 1)κ M 0

0 ‖SA‖κ I

]
. (9.25)

It is easily seen from (9.22) that D is a convergent smoother for AG; that is, we
have VT AGV ≤ VTDV for any V. Hence G−TDG−1 is a convergent smoother for
G−TA. Next, we computeMTR = G−TDG−1. We have

MTR =
[
(AM−1 − I)−1 0
B(A − M)−1 −I

]
D

[
(M−1A − I)−1 (A − M)−1BT

0 −I

]

=
[
2κ(κ − 1)M(A − M)−1M(A − M)−1M YT

Y X

]

where

X = 2κ‖SA‖ I + 2κ(κ − 1) B(A − M)−1M(A − M)−1BT ,

Y = 2κ(κ − 1) B(A − M)−1M(A − M)−1M.

BecauseM is spectrally equivalent to A, it is clear then thatMTR = G−TDG−1 is
bounded above (in terms of inner product) by the block-diagonal matrix

[
M 0
0 ‖SA‖ I

]

times a constant δ depending only on κ . That is, we proved that

‖MTR‖ = ‖G−TDG−1‖ ≤ δ ‖DA‖. (9.26)
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Note now that

E = I − GD−1A = I − GD−1GT (G−TA) = I −M−1
TRATR.

To analyze the convergenceof the two-gridmethod in the natural energy normcoming
from ATR = G−TA, we utilize the classical approach due to Hackbusch (cf., [H82],
[H85], [H94]) based on establishing a so-called “smoothing property” and an “ap-
proximation property”.
The following “smoothing property” is standard. We have

∥∥A1/2TR

(
I −M−1

TR ATR

)m
e
∥∥ ≤

∥∥A1/2TR

(
I −M−1

TR ATR

)m
A

−(1/2)
TR

(
A
1/2
TR M

−1
TR A

1/2
TR

)1/2∥∥

×
∥∥(A1/2TR M

−1
TR A

1/2
TR

)−(1/2)
A
1/2
TR e

∥∥

≤ max
t∈[0,1]

(1− t)mt1/2
∥∥(A1/2TR M

−1
TR A

1/2
TR

)−(1/2)
A
1/2
TR e

∥∥

= max
t∈[0,1]

(1− t)mt1/2 ‖M1/2
TR e‖

≤ 1√
2m

‖M1/2
TR e‖

≤ ‖MTR‖1/2√
2m

‖e‖.

Consider finally the estimate

‖ETGe‖ATR = ‖A1/2TR E
m(I − πA)e‖

≤ ‖MTR‖1/2√
2m

‖(I − πA)e‖

≤
√
δ

2m
‖DA‖1/2‖(I − πA)e‖.

Here we used estimate (9.26).
Assume now the following “approximation property”

‖DA‖1/2‖(I − πA)e‖ ≤ ηa ‖e‖DA . (9.27)

Recall that DA defines the norm in which the saddle-point problem is well posed
(Proposition 9.12), hence the above estimate is a natural one. In the application of
mixed finite element discretizations, such an approximation property typically re-
quires L2-error estimates that can be obtained by duality argument.
The convergence of the two-grid method then follows (recalling that ATR =

G−TA is spectrally equivalent to DA), because for sufficiently largem ≥ 1, we have
that the bound provided by the estimate

‖ETRe‖ATR ≤
√
δ√
2m

ηs λ
1/2
max(A

−1
TRDA) ‖e‖ATR

will be strictly less than unity.
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We summarize as follows.

Theorem 9.15. Let the coarse-grid projection πA = PA−1
c P

TA, Ac = P TAP ,

possess an “approximation property” as in (9.27). Assume also that M used in

the Bramble–Pasciak transformation matrix G is spectrally equivalent to A (as in

(9.24)). Consider the distributive relaxation Mdistr = DG−1, where D is defined in

(9.25). Then the two-grid method giving rise to the iteration matrix ETG = (I −
M−1
distrA)

m(I − πA) has a convergence factor measured in the ATR = G−1A-norm

that behaves asm−(1/2) wherem ≥ 1 is the number of smoothing steps. This estimate

in particular implies uniform two-grid convergence for sufficiently large m.

9.4.4 Inexact Uzawa methods

The distributive relaxation-based, two-grid method presented earlier is suitable in
practice if the major block A of A is well conditioned. In the present section, we
present inexact Uzawa algorithms suitable for more general A. In particular, we
assume that SA is well conditioned. We comment that the Schur complement SA can
be guaranteed to be well conditioned (or rather spectrally equivalent to a matrix D)
by proper transformation of the saddle-point matrixA, namely, by adding the second
block row of A multiplied by BTD−1 to the first block row of A (see Corollary 9.8).
The Uzawa algorithm (originating in [AHU]) is referred to the iteration process

for solving

A

[
u

p

]
=
[

f

g

]
,

described in what follows. Namely, for a givenM−1, an approximate inverse to A,
and a suitable parameter τ from a current approximation uk, pk , we compute the
next one as follows:

uk+1 = uk + M−1(f − Auk − BT pk),

pk+1 = pk + τ (Buk+1 − g).

We consider a symmetrized version of the above Uzawa algorithm, namely:

uk+1/2= uk + M−1(f − Auk − BT pk),

pk+1= pk + τ (Buk+1/2 − g),

uk+1= uk+1/2 + M−1(f − Auk+1/2 − BT pk+1).
(9.28)

In general, we may consider M−1 to be a nonlinear mapping, for example, one
obtained by auxiliary (inner) CG-type iterations that provide approximations to the
inverse action of A. We use the notationM−1[.] to indicate the latter fact.
Assume now the following estimate

‖u − M−1[Au]‖A ≤ δ ‖u‖A,

or equivalently, (letting u = A−1v),

‖A−1v − M−1[v]‖A ≤ δ ‖v‖A−1 . (9.29)
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In the analysis to follow, δ ∈ [0, 1) is assumed sufficiently small. The construction of
the respective inexact Uzawa algorithm and the analysis to follow is based on [AV91].
Based on the exact factorization of A−1,

A−1 =
[
I −A−1BT

0 I

] [
A−1 0

S−1
A BA−1 −S−1

A

]
,

we can define the mapping r �→ B[r] as an approximate inverse toA by replacing the
actions ofA−1 withM−1[.] and S−1

A by an appropriate constant τ . More specifically,
the actions of B[·] are computed based on the following approximate inverse,

[
2I − M−1A −M−1BT

0 I

] [
M−1 0
τ BM−1 −τ

]
,

as implemented in the following algorithm.

Algorithm 9.4.1 (A nonlinear approximate inverse). Given r =
[

f
g

]
compute:

1. u0 = M−1[f];
2. q0 = Bu0 − g;

3. p = τ q0;

4. v = f − Au0 − BT p;

5. u1 = M−1[v];
6. u = u0 + u1.

Then,

B[r] =
[

u

p

]
.

We notice that one step of the symmetrized (inexact) Uzawa algorithm (9.28) with
uk = 0, pk = 0 reduces to the above Algorithm 9.4.1, which defines a nonlinear
approximate inverse (or preconditioner) of A.
We have the representation

AB[r] =
[
A BT

B −C

] [
u

p

]
=
[
Au + BT p

Bu − Cp

]

=
[
A(u0 + u1)+ BT p

B(u0 + u1)− Cp

]

=
[

f

g

]
+
[
A(u0 + M−1[v])− f + BT p

B(u0 + M−1[v])− Cp − g

]

=
[

f

g

]
+
[
(Au0 + M−1[v])− v − Au0 − BT p + BT p

B(u0 + M−1[v])− g − Cp

]

=
[

f

g

]
+
[

(AM−1[v])− v

B(u0 + M−1[v])− g − Cp

]
.
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We can first show that for a proper τ > 0, there is a δ0 ∈ [0, 1) such that the
following estimate holds,

‖S−1
A q − τq‖SA ≤ δ0 ‖q‖

S−1
A
. (9.30)

We can choose τ = 2/(λmin[SA]+ λmax[SA]) and have

δ20 = λmax[SA]− λmin[SA]
λmax[SA]+ λmin[SA]

< 1.

These are “good” constants if SA is well conditioned. Later, we consider a choice of
τ as a nonlinear mapping, which makes the resulting inexact Uzawa algorithm fairly
parameter free.
Our next goal is to estimate the deviation AB[r]− r in an appropriate norm. We

choose the norm defined from

D−1
A =

[
A−1 0
0 S−1

A

]
.

We first estimate ‖v‖A−1 . We have, recalling that v = f − Au0 − BT p = (f −
AM−1[f])− BT p,

‖v‖A−1 ≤ ‖f − AM−1[f]‖A−1 + ‖BT p‖A−1

≤ δ ‖f‖A−1 + ‖A−(1/2)BT p‖
≤ δ ‖f‖A−1 + ‖p‖SA .

For the term ‖p‖SA , we have

‖p‖SA = ‖τ (BM−1[f]− g)‖SA
=
∥∥(τ − S−1

A

)
(BM−1[f]− g)+ S−1

A (BM
−1[f]− g)

∥∥
SA

≤ (1+ δ0) ‖BM−1[f]− g‖
S−1
A

≤ (1+ δ0)
∥∥S−(1/2)
A BA−(1/2)∥∥‖M−1[f]‖A + (1+ δ0)‖g‖

S
−1
A

≤ (1+ δ0)(1+ δ) ‖f‖A−1 + (1+ δ0)‖g‖
S−1
A
.

We used above the fact that ‖X‖ = ‖X T ‖ ≤ 1 for X = S
−(1/2)
A BA−(1/2).

Next, we estimate B(u0 + M−1[v]) − g − Cp, which we rearrange as B(u0 +
M−1[v])− g − (Cp + BA−1BT p + q0)− g + BA−1BT p − q0. Because p = τq0
and q0 = Bu0 − g, v = f − Au0 − BT p, we arrive at

B(u0 + M−1[v])− g − Cp = (SAτq0 − q0)+ B(M−1[v]+ A−1BT p)

= (SAτq0 − q0)+ B(M−1[v]− A−1v)

+ BA−1(f − Au0)

= (SAτq0 − q0)+ B(M−1[v]− A−1v)

+ BA−1(f − AM−1[f]). (9.31)
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Estimating the term

‖(SAτq0 − q0)‖S−1
A

≤ δ0‖q0‖S−1
A

≤ δ0 ‖BM−1[f]‖
S

−1
A

+ δ0‖g‖
S

−1
A

and using again the norm bound ‖S−(1/2)
A BA−(1/2)‖ ≤ 1, leads to

‖(SAτq0 − q0)‖S−1
A

≤ δ0(1+ δ) ‖f‖A−1 + δ0‖g‖
S−1
A
.

From the identity (9.31), we can see that

‖B(u0 + M−1[v])− g − Cp‖
S−1
A

≤ δ0[(1+ δ)‖f‖A−1 + ‖g‖
S−1
A
]

+ δ (‖v‖A−1 + ‖f‖A−1)

≤ [(1+ δ)[δ + δ0(1+ δ)]+ δ2]‖f‖A−1

+ [δ(1+ δ0)+ δ0]‖g‖
S

−1
A

≤ [δ0(1+ δ)+ Cδ][‖f‖A−1 + ‖g‖
S−1
A
].

Thus, we proved the following main result.

Theorem 9.16. The nonlinear inexact Uzawa algorithm 9.4.1 is convergent if δ > 0
in (9.29) is sufficiently small, for any δ0 ∈ [0, 1) from estimate (9.30); that is, there

is a constant q ∈ [0, 1) such that,

‖AB[r]− r‖
D−1
A

≤ q ‖r‖
D−1
A
.

Note that the result in Theorem 9.16 holds with no condition on δ0 to be small
enough. However, the choice of the parameter τ (in (9.30)) remains a bit unclear.
To resolve this issue, we may want to replace τ with another (generally) nonlinear
mapping T [·], which is close to S−1

A in the sense that the following estimate holds
for a tolerance δ0 ∈ [0, 1),

‖S−1
A q − T [q]‖SA ≤ δ0 ‖q‖

S
−1
A
.

We notice that the proof above does not change if we consider τ to be a nonlinear
mapping (with the proper understanding of Step 3 in Algorithm 9.4.1).
ThemappingT [q] is computed by performing a few steps of the following steepest

descent-type algorithm (as proposed and analyzed in [AV92]). Define the nonlinear
mapping S̃[·] = C + BM−1[B(·)]. We have

qT S̃[q] = qT (S̃[q]− SAq))+ qT SAq

= qTBA−(1/2)(A1/2(M−1[BT q]− A−1BT q))+ qT SAq

≥ (1− δ) ‖q‖2SA .

Similarly, qT S̃[q] ≤ (1+ δ) qT SAq.

Algorithm 9.4.2 (Steepest descent definition of T).

(0) Initiate: choose x0 and compute r0 = q − S̃[x0].
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(i) Iterate: for k ≥ 1, compute:

1. r̃k−1 = S̃[rk−1];

2. αk−1 = rTk−1rk−1
rTk−1̃rk−1

;

3. xk = xk + αk−1 rk−1;

4. rk = q − S̃[xk].

After sufficiently many steps k ≥ 1, we let T [q] := xk.

Theorem 9.17. Under the coercivity and boundedness properties of S̃[·] for δ suffi-

ciently small, the above steepest descent algorithm can terminate for a δ0 ∈ [0, 1)
in the sense that if we define T [q] ≡ xk for a sufficiently large k, an estimate of the

form ‖q − S̃[T [q]]‖
S−1
A

≤ δ0 ‖q‖
S−1
A

holds for a δ0 ∈ [0, 1). More specifically, the

following estimate holds,

‖q − S̃[T [q]]‖
S−1
A

≡ ‖rk‖S−1
A

≤
(
qk + 1

1− q
2δ

1− δ

)
‖q‖

S−1
A
,

where

q =

√

1− 1− 2δ
1− δ2

(
2
√
κ

1+ κ

)2
+ 3δ

1− δ .

The constant κ stands for the condition number of SA, whereas δ ∈ [0, 1), generally,

sufficiently small, is such that

(1− δ) qT SAq ≤ qT S̃[q] ≤ (1+ δ) qT SAq.

Proof. We have

(1− δ) ‖xk‖2SA ≤ xTk S̃[xk] ≤ ‖xk‖S−1
A

‖q − rk‖S−1
A
.

That is,

(1− δ) ‖xk‖SA ≤
(
‖r0‖S−1

A
+ ‖rk‖S−1

A

)
. (9.32)

Next,

‖rk‖S−1
A

= ‖q − S̃[xk]‖S−1
A

= ‖q − S̃[xk−1]+ S̃[xk−1]− S̃[xk]‖S−1
A

≤ ‖rk−1 − αk−1 SArk−1‖S−1
A

+ ‖SAxk−1 − S̃[xk−1]‖S−1
A

+ ‖SAxk − S̃[xk]‖S−1
A

≤ ‖rk−1 − αk−1 SArk−1‖S−1
A

+ δ ‖xk−1‖SA + δ ‖xk‖SA
≤ ‖rk−1 − αk−1 SArk−1‖S−1

A
+ 2δ ‖xk−1‖SA + δ αk−1 ‖rk−1‖SA .
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Use now the inequality

αk−1 ‖rk−1‖SA ≤
‖rk−1‖S−1

A
‖rk−1‖2SA

rTk−1S̃[rk−1]
≤ 1

1− δ ‖rk−1‖S−1
A

and the bound (9.32) to arrive at

‖rk‖S−1
A

≤ ‖rk−1 − αk−1 SArk−1‖S−1
A

+ δ

1− δ (2‖r0‖S−1
A

+ 3‖rk−1‖S−1
A
).

It is clear that the term ‖rk−1 − αk−1 SArk−1‖2
S−1
A

= ‖rk−1‖2
S−1
A

− 2αk−1‖rk−1‖2 +
α2k−1r

T
k−1SArk−1 ≤ ‖rk−1‖2

S−1
A

−2αk−1‖rk−1‖2+α2k−1(1/(1−δ)) rTk−1S̃[rk−1] can

be estimated by q2 ‖rk−1‖2
S

−1
A

with a q ∈ [0, 1), similarly to the steepest descent

algorithm. More specifically, we have

‖rk−1− αk−1 SArk−1‖2
S−1
A

≤ ‖rk−1‖2
S−1
A

− 2αk−1‖rk−1‖2+ α2k−1
1

1− δ rTk−1S̃[rk−1]

≤ ‖rk−1‖2
S

−1
A

−
[
2 − 1

1− δ

]
αk−1‖rk−1‖2

≤ ‖rk−1‖2
S−1
A

1− 2δ
1− δ

(rTk−1rk−1)
2

(1− δ)rTk−1SArk−1
.

Now use the Kantorovich’s inequality (Proposition G.1)

rTk−1S
−1
A rk−1rTk−1SArk−1 ≤

(
κ + 1
2
√
κ

)2
(rTk−1rk−1)

2,

where κ = (λmax[SA])/(λmin[SA]) is the condition number of SA, to arrive at the
desired estimate

‖rk−1 − αk−1 SArk−1‖S−1
A

≤ q ‖rk−1‖S−1
A
,

with

q =

√

1− 1− 2δ
1− δ2

(
2
√
κ

κ + 1

)2
≃ κ − 1
κ + 1 < 1, when δ �→ 0.

Thus, we have

‖rk‖S−1
A

≤
[
q + 3δ

1− δ

]
‖rk−1‖S−1

A
+ 2δ

1− δ ‖q‖
S

−1
A
.

The desired result then follows by recursion, assuming that q = q+ (3δ/(1−δ)) < 1
(valid for a sufficiently small δ). �
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In order to match estimate (9.30) (with T [·] in place of τ ), we can use the fol-
lowing corollary easily obtained from Theorem 9.17. We first show that S̃[·] =
C + BM−1[BT (·)] and SA = C + BA−1BT are close in the following sense,

‖S−1
A (S̃[v]− SAv)‖SA ≤ ‖S−(1/2)

A BA−(1/2)‖‖A1/2)(M−1[BT v]− A−1(Bv))‖
≤ δ ‖A−(1/2)BT v‖
≤ δ ‖v‖SA . (9.33)

We used the fact that M−1[·] is close to A−1 (estimate (9.29)) and that ‖X‖ =
‖X T ‖ ≤ 1 for X = S

−(1/2)
A BA−(1/2).

To prove the desired analogue of (9.30), we proceed as follows. Letting

δ0 = qk + 1

1− q
2δ

1− δ , δ0 = δ0 + (1+ δ0)
δ

1− δ ,

and T [q] = xk, using estimates (9.32) and (9.33),

‖S−1
A q − T [q]‖SA ≤ δ0 ‖q‖

S
−1
A

+ ‖xk − S−1
A S̃[xk]‖SA

≤ δ0 ‖q‖
S−1
A

+ δ ‖xk‖SA

≤ δ0 ‖q‖
S−1
A

+ δ

1− δ
(
‖q‖

S−1
A

+ ‖rk‖S−1
A

)

≤
(
δ0 + (1+ δ0)

δ

1− δ

)
‖q‖

S
−1
A

= δ0 ‖q‖
S−1
A
.

Implementations of inner–outer methods of the above type for solving saddle-point
problems are found in [ChV99]. Other related results that provide inexactUzawa-type
methods are found in [LQ86], [BWY], [EG94], and [BPV97].

9.5 A constrained minimization approach

A monotone subspace minimization scheme

In the present section, we consider the saddle-point problem,

[
A BT

B 0

] [
u

x

]
=
[

f

0

]
,

recast as the following equivalent constrained minimization problem for u.
Find the solution u of

J (u) ≡ 1

2
uTAu − fT u �→ min
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subject to the equality constraint

Bu = 0.

Consider an overlapping partitioning {�i} of the set of indices of the vector u cor-
responding to the first block A of A. Let Ii be the characteristic diagonal matrix
corresponding to �i . The latter means that

Iivi =

⎡
⎣
0
vi
0

⎤
⎦ } �i .

That is, Ii extends a local vector vi defined on �i by zero outside �i . Let QTi be a
restrictionmatrix onto the support ofBIi .We assume thatQi is such thatQTi BIiui =
0 impliesBIiui = 0. Define thenBi = QTi BIi and letAi = ITi AIi . The assumption
on Qi implies that if Biui = 0 then BIiui = 0, that is Iinull(Bi) ⊂ null(B).
We assume that the local saddle-point matrices

Ai =
[
Ai BTi
Bi 0

]

are invertible.
Consider the following local constrained minimization problem. Let u0 be a cur-

rent approximation to the original (global) problem. Solve for a local correction Iiui
such that

J (u0 + Iiui) �→ min subject to BIiui = 0. (9.34)

Because J (u0 + Iiui) = J (u0) + 1
2 uTi I

T
i AIiui − (ITi (f − Au0))T ui , it is clear

that (9.34) is equivalent to the following local minimization problem,

Ji(ui) ≡ 1

2
uTi Aiui − (ITi (f − Au0)T ui �→ min subject to Biui = 0. (9.35)

Equivalently, to determine ui , we can instead solve the local saddle-point problem
[
Ai BTi
Bi 0

] [
ui
xi

]
=
[
ITi (f − Au0)

0

]
. (9.36)

Moreover, assume that the sets Ii(null(Bi)) provide an (overlapping) partition of
null(B). In other words, we assume that null(B) allows for a basis, locally supported
with respect to the partition {�i}, which we formulate in the following assumption,
(n) any v ∈ null(B) admits a decomposition

v =
∑

i

Iivi, vi ∈ null(Bi).

For a given interpolation matrix P , define

Ac = PTAP .

Wealso need a restrictionmatrixQTc such thatQ
T
c BPcuc = 0 impliesBPcuc = 0.

Define then Bc = QTc BPc. The assumptions on Bi and Bc constructed on the basis
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of the restriction matrices Qi and Qc that Biui implies BIiui = 0 and Bcuc = 0
implies Buc = 0 are naturally met for mixed finite element discretization matrices
based on Raviart–Thomas spaces, andQTi andQ

T
c are restrictions onto the associated

discontinuous (piecewise constants) spaces. Formore details, seeSectionsB.4 andB.5
in the appendix.
Because A is sparse, the products ITj AIi can be nonzero for a finite number of

indices.We assume that the number of indices j for which ITj AIi is nonzero for any
i is bounded by an integer κ ≥ 1.
Similarly to the local problems (9.34)–(9.35), in order to find a coarse correction,

we can solve the following coarse subspace constrained minimization problem,

J (u0 + Puc) �→ min subject to BPuc = 0. (9.37)

It is clear that it can be rewritten as

Jc(uc) ≡ 1

2
uTc Acuc − (PT (f − Au0))T uc �→ min subject to Bcuc = 0,

which leads to the following coarse saddle-point problem
[
Ac BTc
Bc 0

] [
uc
xc

]
=
[
PT (f − Au0)

0

]
. (9.38)

The following subspace minimization-type algorithm is of interest.

Algorithm 9.5.1 (A subspace minimization algorithm).

• For a given iterate u0, set u = u0 and perform the following subspace correction

steps running over all sets �i ,

J (u + Iiui) �→ min,

subject to BIiui = 0, or equivalently Biui = 0. Then, update u := u + Iiui .

• Compute a “coarse subspace correction.” For a given initial coarse approxima-

tion u
(0)
c (e.g., u

(0)
c = 0) such that Bcu

(0)
c = 0,

1. First form

fc = PT (f − A u)+ Acu
(0)
c .

2. Then, solve the coarse constrained minimization problem:

Jc(uc) ≡ 1

2
uTc Acuc − fTc uc �→ min

subject to Bcuc = 0.

• The new iterate is

unew = u + P(uc − u(0)c ).

The above subspace correction technique based on solving local saddle-point prob-
lems was originally used in [M92i] and [M92ii] as an overlapping Schwarz method.
The above two-grid scheme can be generalized in a straightforward manner to

a multilevel one. This is done in a later chapter devoted to inequality constrained
quadratic minimization problems.
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Lemma 9.18. The following monotonicity property holds.

J (unew) = J (u)+ Jc(uc)− Jc(u
(0)
c ) ≤ J (u).

Proof. By a straightforward computation, we have

J (unew) = 1

2

(
u + P

(
uc − u(0)c

))T
A
(
u + P

(
uc − u(0)c

))

− fT
(
u + P

(
uc − u(0)c

))

= 1

2
uTAu − fT u − fTP

(
uc − u(0)c

)

+
(
uc − u(0)c

)T
PTAu + 1

2

(
uc − u(0)c

)T
Ac
(
uc − u(0)c

)

= J (u)−
(
uc − u(0)c

)T (
PT (f − Au)+ Acu

(0)
c

)

+
(
uc − u(0)c

)T
Acu

(0)
c + 1

2
uTc Acuc − u(0)

T

c Acuc + 1

2
u(0)

T

c Acu
(0)
c

= J (u)− fTc
(
uc − u(0)c

)
+ 1

2
uTc Acuc − 1

2
u(0

T

c Acu
(0)
c

= J (u)+ Jc(uc)− Jc
(
u(0)c

)
.

Then, because Jc(uc) ≤ Jc
(
u
(0)
c

)
, the desired monotonicity property follows. �

Convergence rate analysis

We are interested in the quadratic functional

J (u) = 1

2
uTAu − fT u

for u ∈ K. In our case, K = null(B) is a linear space. The following characterization
result holds.

Lemma 9.19. Let u be the solution of the constrained minimization problemJ (u) �→
min subject to u ∈ K. Then, for any g ∈ K

gT (Au − f) = 0.

Proof. For any g ∈ K and any real t , tg is also inK. Then, from J (u + tg) ≥ J (u),
we obtain

0 ≤ J (u + tg)− J (u) = t2 1
2

gTAg + tgT (Au − f).

Varying t �→ 0 with positive and negative values shows that in order to maintain the
nonnegativity of the expression, we must have gT (Au − f) = 0. �

In what follows, we describe a simplified version of a main result in [BTW]. We
make the following assumption.
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(d) The space K is decomposed into subspaces Ki , i = 1, . . . ,m,m+ 1 such that

u = um+1 +
m∑

i=1
ûi .

In our application, um+1 = Puc, and ûi = Iiui , for i ≤ m where ui belongs to
the local spaces null(Bi). We assume that every z ∈ K allows for a decomposition
z = zm+1 +

∑
i≤m zi such that zi ∈ Ki and

‖zm+1‖2A +
∑

i≤m
‖zi‖2A ≤ C21 ‖z‖2A.

In the particular application of our main interest, the above estimate takes the
form, using the fact that Ai = ITi AIi and Ac = PTAP , zm+1 = Pyc and
zi = Iiyi ,

‖yc‖2Ac +
∑

i≤m
‖yi‖2Ai ≤ C21 ‖z‖2A.

Using the fact that the spaces Ki for i ≤ m are local, the following estimate is
straightforward; for any w = wm+1 +

∑
i≤m wi ,

‖w‖2A ≤ 2wTm+1Awm+1 + 2
∑

i,j≤m
wTj Awi

= 2wTm+1Awm+1 + 2
∑

i≤m

∑

{j≤m: �j∩�i 
=∅}
wTj Awi

≤ 2wTm+1Awm+1 + 2κ
∑

i≤m
‖wi‖2A

≤ 2κ
m+1∑

i=1
‖wi‖2A.

Recall that κ ≥ 1 stands for the maximum number of subdomains �j that intersect
any given subdomain�i in the sense that ITj AIi 
= 0, which due to assumed locality
is a bounded number. In a similar fashion, we prove that for any two decompositions
w = wm+1 +

∑
i≤m wi and g = gm+1 +

∑
i≤m gi , we have the estimate

m+1∑

i=1
gTi A

m+1∑

j=i+1
wj

= gTm+1Awm+1 + gTm+1A
m∑

j=1
wj +

m∑

i=1
gTi Awm+1 +

m∑

i=1
gTi A

m∑

j=i+1
wj

≤ ‖gm+1‖A‖wm+1‖A + ‖gm+1‖A
∥∥∥∥
m∑

j=1
wj

∥∥∥∥
A

+ ‖wm+1‖A
∥∥∥∥
m∑

i=1
gi

∥∥∥∥
A

+
m∑

i=1
‖gi‖A

∑

{j>i, j≤m: �j∩�i 
=∅}
‖wj‖A.
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That is,

m+1∑

i=1
gTi A

m+1∑

j=i+1
wj ≤

[
2wTm+1Awm+1 + 2κ

∑

i≤m
‖wi‖2A

]1/2

×
[
2gTm+1Agm+1 + 2κ

∑

i≤m
‖gi‖2A

]1/2

≤ 2κ

(
m+1∑

i=1
‖wi‖2A

)1/2 (m+1∑

i=1
‖gi‖2A

)1/2
(9.39)

For a given current iterate u0 consider Algorithm 9.5.1 and let

u
i

m+1 = u
i−1
m+1 + Iiui for i ≤ m,

and

u
i

m+1 = unew = u
m
m+1 + Puc for i = m+ 1.

Thus letting Im+1 = P and um+1 = uc, ui solves the problem,

J (u((i−1)/(m+1)) + Iiui) = min
gi∈Ki

J (u((i−1/)(m+1)) + gi).

The latter problem is equivalent to the local one

Ji(ui) = 1

2
uTi Aiui −

(
ITi
(
f − Au

i−1
m+1
))T

ui �→ min subject to Iiui ∈ Ki .

Then, due to Lemma 9.19, we have

gTi (A(u
((i−1)/(m+1)) + Iiui)− f) = 0, for all gi ∈ Ki . (9.40)

We have the identity

J (w)− J (u) = (Au − f)T (w − u)+ 1

2
‖w − u‖2A. (9.41)

Letting w = u((i−1)/(m+1)), u = ui/m and from (9.40) used for gi = −Iiui , we get

J (u((i−1)/(m+1)))− J (ui/m) = 1

2
‖Iiui‖2A.

Therefore,

J (u)− J (unew) =
m+1∑

i=1
(J (u((i−1)/(m+1)))− J (ui/(m+1))) ≥ 1

2

m+1∑

i=1
‖Iiui‖2A.

(9.42)
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In particular, we obtain the monotonicity (which we already proved in Lemma 9.18),

J (u0) ≥ J (unew).

Let u be the exact solution of the constrainedminimization problemJ (u) �→ min
subject to u ∈ K. Use the assumed stable decomposition (d) for

u − u0 = zm+1 +
∑

i≤m
zi .

Then,

(Aunew − f)T (unew − u) = (Aunew − f)T

(
m+1∑

i=1
Iiui + u0 − u

)

=
m+1∑

i=1
(Aunew − f)T (Iiui − zi).

Use now (9.40) for gi = zi−Iiui , which then reads (zi−Iiui)
T (Aui/(m+1)−f) = 0.

Because unew− ui/(m+1) =
∑
j>i Ijuj , we get, based on (9.39) used forwj = Ijuj

and g =
∑m+1
i=1 gi with gi = Iiui − zi ,

(Aunew − f)T (unew − u) =
m+1∑

i=1
(Aunew − f − (Aui/(m+1) − f))T (Iiui − zi)

=
m+1∑

i=1

∑

j>i

(AIjuj )
T (Iiui − zi)

≤ 2κ

⎛
⎝∑

j

‖Ijuj‖2A

⎞
⎠
1/2 (∑

i

‖Iiui − zi‖2A

)1/2

≤ 2κ

⎛
⎝∑

j

‖Ijuj‖2A

⎞
⎠
1/2

×

⎛
⎝
(∑

i

‖Iiui‖2A

)1/2
+ C1 ‖u0 − u‖A

⎞
⎠ . (9.43)

In the last line, we used the triangle inequality and the assumed stability estimate∑
i ‖zi‖2A ≤ C21 ‖u0 − u‖2

A
. Now use the estimate (9.42) in (9.43) to arrive at

(Aunew − f)T (unew − u)≤ 4κ (J (u0)− J (unew))

+ 2κ
√
2 C1

√
J (u0)− J (unew) ‖u0 − u‖A.

(9.44)
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At this point, use the fact that u is the exact solution, hence due to Lemma 9.19
(Au − f)T (u0 − u) = 0. Then from identity (9.41), we obtain,

J (u0)− J (u) = (Au − f)T (u0 − u)+ 1

2
‖u0 − u‖2A ≥ 1

2
‖u0 − u‖2A.

The latter estimate combined with (9.44) leads to

J (unew)− J (u) ≤ (Aunew − f)T (unew − u)

≤ 4κ (J (u0)− J (unew))

+ 4
√
2κ C1

√
J (u0)− J (unew)

√
2
√
J (u0)− J (u).

Introduce d0 = J (u0) − J (u) ≥ 0 and dnew = J (unew) − J (u) ≥ 0 and let
µ ∈ (0, 1). In terms of d0 and dnew, the latter inequality reads

dnew ≤ 4κ (d0 − dnew)+ 8κ C1
√
d0 − dnew

√
d0

≤
(
4κ + 16κ2C21

µ

)
(d0 − dnew)+ µd0

≤ C∗µ
−1(d0 − dnew)+ µd0.

Here, C∗ = 4κ + 16κ2C21 . Then the latter inequality reads

dnew ≤
(
1− µ(1− µ)

µ+ C∗

)
d0.

Consider the scalar function g(µ) ≡ µ(1−µ)/(µ+C∗). Based on (µ+C∗)2g
′
(µ) =

(1− 2µ)(µ+ C∗)− µ(1− µ) = 0, that is, µ2 + 2C∗µ− C∗ = 0, we see that with
the choice µ = µ∗ ≡ −C∗ +

√
C2∗ + C∗ = C∗/(C∗ +

√
C2∗ + C∗) ∈ (0, 1), we get

the following expression for the maximum of g(µ):

max
µ∈[0,1]

µ(1− µ)
µ+ C∗

= 1− 2µ∗ = 1+ 2C∗ − 2
√
C2∗ + C∗

= 1

1+ 2C∗ + 2
√
C2∗ + C∗

∈ (0, 1).

That is, we proved the following convergence rate estimate

dnew ≤ 2µ∗ d0 = 2C∗

C∗ +
√
C2∗ + C∗

d0 < d0.

Equivalently,

dnew ≤
(
1− 1

1+ 2C∗ + 2
√
C2∗ + C∗

)
d0 =

(
1− 1

(
√
1+ C∗ +

√
C∗)2

)
d0.
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The following main result then holds.

Theorem 9.20. Under the assumption (d) providing for any z ∈ K, a stable decom-

position z = Pzc +
∑
i Iizi , in the sense that for a constant C1, the estimate

‖Pzc‖2A +
m∑

i=1
‖Iizi‖2A ≤ C21 ‖z‖2A

holds. The matrices Ii and P are such that there are restriction matrices QTi and QTc
with the property QTi BIiui = 0 and QTc BPuc = 0 imply BIiui = 0 and BPuc = 0.

Define Bi = QTi BiIi and Bc = QTc BP , Ai = ITi AIi and Ac = PTAP . We also

assume that the local saddle-point problems based on

Ai =
[
Ai BTi
Bi 0

]

and the coarse one,

Ac =
[
Ac Bc
Bc 0

]
,

are solvable. Finally, we assume that the interaction matrices ITj AIi for any i are

nonzero for a bounded number of indices j denoted by κ ≥ 1. Let uk be obtained by

applying k ≥ 1 steps of Algorithm 9.5.1. Then the following geometric convergence

in the A-norm holds,

1

2
‖uk − u‖2A ≤ J (uk)− J (u) ≤ (̺TR)

k (J (u0)− J (u)),

with

̺TR ≡ 1− 1

1+ 2C∗ + 2
√
C2∗ + C∗

, and C∗ = 4κ + 16κ2 C21 .

We comment at the end that the main ingredient in the proof is establishing
a proper stable decomposition. The latter can be verified in practice for a number
of finite element discretization problems (e.g., for mixed methods for second-order
elliptic PDEs) based on proper stable decompositions for finite element functions.
For more details, we refer to Section F.3 in the appendix.

Final remarks

Other approaches to solving saddle-point problems exploiting distributive relaxation
are found in [Wi89] and [Wi90]. For the use of indefinite smoothers or preconditioners,
see [Van86], [ELLV], [BS97], and [SZ03].
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Variable-Step Iterative Methods

In this chapter, we consider iterative methods that exploit preconditioners or
approximate inverses that are of fixed quality but may change from step to step
(hence the name variable-step). These are generally represented by nonlinear map-
pings. Examples of such mappings are given by solutions obtained by a few steps of
variational (or CG) methods applied to some auxiliary problems.
In particular we consider block-preconditioners for matrices

A =
[
A R

L B

]

that exploit linear preconditioners (or smoothers) for A and variable-step precondi-
tioners for the Schur complement S = B − LA−1R of A. The procedure can also
be applied recursively to define variable-step multilevel preconditioners as well as to
AMLI-cycle MG with variable-step recursive calls to coarse levels.
We use the terminology introduced in the original paper [AV91]. Y. Saad has

introduced the name “flexible” preconditioning (in [Sa93]; see also [Sa03]), which
is more popular today. Other papers that deal with the topic of variable-step/flexible
preconditioning are [VV94], [GY99], [Not0b], [SSa], and [SSb].
The variable-step multilevel preconditioners were originally proposed in [AV94]

(additive versions), and later in [JK02] the multiplicative case was analyzed. Here,
we also introduce and analyze the variable-step AMLI-cycle MG method.

10.1 Variable-step (nonlinear) preconditioners

LetD[.] be generally a nonlinear mapping that is close to D−1. We assume thatD is
s.p.d. and impose that the following measure of the deviation of D[.] from D−1 be
small, in the sense that

‖D[x]− D−1x‖D ≤ δ ‖D−1x‖D, for all x. (10.1)

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 363
doi: 10.1007/978-0-387-71564-3_10,
© Springer Science+Business Media, LLC 2008
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Consider the following preconditioner,

B[.] =
[
I −M−TR
0 I

] [
M

−1
0

0 D[.]

][
I 0

−LM−1 I

]
. (10.2)

To be specific, we define the actions of B[v] as follows. Let

v =
[

w

x

]

Then

B[v] =
[
I −M−TR
0 I

][
M

−1
w

D[x − LM−1w]

]

=
[
M

−1
w − M−TRD[x − LM−1w]
D[x − LM−1w]

]
.

We prove a bound for the deviation of B[.] from the corresponding linear
preconditioner

B−1 =
[
I −M−TR
0 I

][
M

−1
0

0 D−1

][
I 0

−LM−1 I

]
.

We have

B[v]− B−1v =
[
−M−TR

I

]
(D[x − LM−1w]− D−1(x − LM−1w)).

Therefore,

B(B[v]− B−1v) =
[
0
D

]
(D[x − LM−1w]− D−1(x − LM−1w)),

which implies

‖B[v]− B−1v‖B = ‖D[x − LM−1w]− D−1(x − LM−1w)‖D
≤ δ ‖D−1(x − LM−1w)‖D.

Finally, noticing that

‖B−1v‖2B = vTB−1v = wTM
−1

w + (x − LM−1w)TD−1(x − LM−1w),

we end up with the following result.

Theorem 10.1. Consider the nonlinear preconditioner B[.] defined in (10.2) and

the corresponding linear one B−1, which differ by their Schur complements D[.]
and D−1, respectively. Then, under the assumption (10.1) of small deviation of D[.]
from D−1, the same estimate of the deviation between B[.] and B−1 holds:

‖B[v]− B−1v‖B ≤ δ ‖B−1v‖B. (10.3)
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In a following section, we describe a procedure to improve on the variable-step
(nonlinear) preconditioner defined in (10.2) by applying the CG-like procedure
described in the next section.

10.2 Variable-step preconditioned CG method

In the present section, we describe a somewhat standard preconditioned CG (con-
jugate gradient) method where the preconditioner B[.] is a nonlinear mapping that
is assumed to approximate the inverse of a linear one B, which we assume is s.p.d.
A more general case (that includes nonsymmetric and possibly indefinite matrices)
was considered in [AV91].
We now formulate an algorithm that can be used to provide iterated approximate

inverses toA on the basis of a given initial (nonlinear) mappingB[·] that approximates
a given s.p.d. matrix B. Our main application is B = A.
For any ν ≥ 1, choose a fixed sequence of integers {mk}νk=0, 0 ≤ mk ≤ mk−1 +

1 ≤ k − 1. A typical choice is mk = 0. We define the ν-times iterated nonlinear
preconditioner Bν[v] = uν+1 where uν+1 is the ν + 1st iterate obtained by the
following variable-step preconditioned CG (conjugate gradient) procedure.

Algorithm 10.2.1 (Variable-step preconditioned CG). For a given v, define

Bν[v] = uν+1, where uν+1 is computed as follows.

1. Let v0 = v and u0 = 0. Compute r0 = B[v0] and let d0 = r0. Then let

u1 = dT0 v0

dT0 Ad0
d0 and v1 = v0 − dT0 v0

dT0 Ad0
Ad0.

2. For k = 1, . . . , ν, compute rk = B[vk] and then based on {dj }kj=k−1−mk form

dk = rk −
k−1∑

j=k−1−mk

rTk Adj

dTj Adj
dj .

Then the next iterate is

uk+1 = uk +
dTk vk

dTk Adk
dk,

and the corresponding residual equals

vk+1 = v − Auk = vk −
dTk vk

dTk Adk
Adk.

3. Finally, we let Bν[v] = uν+1.
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Here, B[·] approximates the inverse of B = A, with accuracy δ ∈ [0, 1), that is,

‖A−1v − B[v]‖A ≤ δ ‖v‖A−1 . (10.4)

We have the following convergence result for Algorithm 10.2.1.

Theorem 10.2. Consider Algorithm 10.2.1 for a given v. Assume that the s.p.d. matrix

A has an approximate inverse B[·] satisfying (10.4). In Algorithm 10.2.1, define the

kth step search direction dk to be A-orthogonal to the mk + 1 most recent search

directions. The integers {mk} satisfy 0 ≤ mk ≤ mk−1 + 1 ≤ k − 1. That is, we have

dk = rk −
k−1∑

j=k−1−mk
βk,j dj ,

with βk,j = (rTk Adj )/(d
T
j Adj ). Recall, that v0 = v, vk = vk−1 − αk−1 Adk−1

for αk−1 = (dTk−1vk−1)/(d
T
k−1Adk−1), and rk = B[vk]. Also with u0 = 0,

Algorithm 10.2.1 computes uk = uk−1 + αk−1 dk−1, and the kth step iterated

approximate inverse Bk[.] is defined as Bk[v] = uk+1. Note that B0[v] = α0B[v];
that is, B0[v] differs from B[v] by a scalar factor.

The following convergence rate estimate holds,

‖vk‖A−1 ≤ δ ‖vk−1‖A−1 .

Equivalently, because vk+1 = v − Auk+1 = v − ABk[v], the following deviation

estimate between A−1v and Bk[v] holds,

‖A−1v − Bk[v]‖A = ‖v − ABk[v]‖A−1 ≤ δk+1 ‖v‖A−1 .

Proof. Assuming by induction that vk−1 is orthogonal to dj for k−2−mk−1 ≤ j <
k − 1, we have then that

vTk dj = vTk−1dj − αk−1dTk−1Adj = 0, for all j < k− 1 and j ≥ k− 2−mk−1.

For j = k − 1, we also have

vTk dk−1 = vTk−1dk−1 − αk−1 dTk−1Adk−1 = 0

due to the choice of αk−1. That is, vk is orthogonal to dj for all j : k > j ≥
k − 1−mk ≥ k − 2−mk−1, which confirms the induction assumption.
Note then, that

αk−1 = 1

dTk−1Adk−1
vTk−1

⎛
⎝rk−1 −

k−2∑

j=k−2−mk−1
βk−1,j dj

⎞
⎠

= 1

dTk−1Adk−1
vTk−1rk−1

=
vTk−1B[vk−1]

dTk−1Adk−1
.
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Another observation is that

‖rk‖2A = ‖dk‖2A +
k−1∑

j=k−1−mk
β2k,j ‖dj‖2A ≥ ‖dk‖2A.

Now we are ready to proceed with the convergence rate estimate in the case when
B[.] provides an approximate inverse to A as in (10.4). We have

‖v − ABk[v]‖A−1 = ‖v − Auk+1‖A−1 = ‖vk+1‖A−1 .

Also,

‖vk+1‖2A−1 = ‖vk − αk Adk‖2A−1 = ‖vk‖2A−1 −
(

vTk dk

‖dk‖A

)2
.

Because vTk dk = vTk B[vk] and ‖dk‖A ≤ ‖rk‖A = ‖B[vk]‖A, the following estimate
is seen.

‖vk+1‖2A−1 ≤ ‖vk‖2A−1 −
(

vTk B[vk]

‖B[vk]‖A

)2
= min
α ∈R

‖vk − α AB[vk]‖2A−1 . (10.5)

Estimate (10.4) upon expanding reads,

‖v‖2
A−1 − 2vTB[v]+ ‖B[v]‖2A ≤ δ2 ‖v‖2

A−1 ,

or equivalently

2vTB[v] ≥ (1− δ2) ‖v‖2
A−1 + ‖B[v]‖2A.

Based on the Cauchy–Schwarz inequality a2 + b2 ≥ 2ab, we also get

vTB[v] ≥
√
1− δ2 ‖v‖A−1‖B[v]‖A.

Using the last estimate for v := vk , in (10.5) gives the desired convergence rate
estimate:

‖vk+1‖2A−1 ≤ ‖vk‖2A−1 − (1− δ2) ‖vk‖2A−1 = δ2 ‖vk‖2A−1 . �

Based on the convergence property of the above variable-step preconditioned
CG method,

‖vk+1‖A−1 ≤ min
α

‖vk − αAB[vk]‖A−1 ≤ �‖vk‖A−1 ≤ · · · ≤ �k+1 ‖v0‖A−1,

we obtain an improved estimate for the iterated approximate inverse Bν[·] for A,
that is,

‖A−1v − Bν[v]‖A ≤ �ν+1 ‖A−1v‖A.
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That is, by enlarging ν, we can always achieve that �ν ≡ �ν+1 ≤ δ. Because
� ≤ 1− (2/(1+ Cδκ)), we get

(ν + 1) log
(
1− 2

1+ Cδκ

)
≤ log δ.

That is,

ν + 1 ≥ log δ−1

log Cδκ+1
Cδκ−1

. (10.6)

The following modification of Theorem 10.2 holds due to R. Blaheta [Bl02].

Corollary 10.3. Under the main assumptions of Theorem 10.2, assume that the

variable-step (nonlinear preconditioner) B[.] is close to a fixed s.p.d. matrix B−1

such that

‖B[v]− B−1v‖B−1 ≤ δ ‖v‖B−1 .

Let κ ≥ 1 be an upper bound of the condition number of B−1A. Then the following

convergence rate estimate holds,

‖vk‖A−1 ≤ δ ‖vk−1‖A−1, with δ =

√

1− 1− δ2
κ

.

Proof. The following coercivity of B[·] is established in the same way as in the
proof of Theorem 10.2. We have

vTB[v] ≥
√
1− δ2 ‖v‖B−1‖B[v]‖B .

The latter implies

vTB[v] ≥

√
1− δ2
κ

‖v‖A−1‖B[v]‖A.

The remainder of the proof is the same as of Theorem 10.2, replacing 1 − δ2 with
(1− δ2)/κ . �

At the end, we present one more corollary to Theorem 10.2 which is due to Notay
(cf., [Not0b]).

Corollary 10.4. Under the main assumptions of Theorem 10.2 assume in addition that

the variable-step (nonlinear preconditioner)B[.] is close to a fixed s.p.d. matrix B−1

such that

‖B[v]− B−1v‖B−1 ≤ δ ‖v‖B−1 .

Let κ ≥ 1 be an upper bound of the condition number of B−1A. Then the following

convergence rate estimate holds,

‖vk‖2A−1 ≤
(
1− 4κ(1− δ)2

((κ − 1)δ2 + (1− δ)2 + κ)2
)

‖vk−1‖2A−1 .



10.2 Variable-step preconditioned CG method 369

Note that in the case of δ = 0, the above estimate reduces to the familiar steepest

descent convergence result estimate

‖vk‖2A−1 ≤
(
κ − 1
κ + 1

)2
‖vk−1‖2A−1 .

Proof. In the proof of Theorem 10.2, we derived the estimate (10.5)

‖vk+1‖2A−1 ≤ min
α ∈R

‖vk − α AB[vk]‖2A−1 .

We have (letting v = vk)

‖v − αAB[v]‖2
A−1 = ‖v − αAB−1v + αA(B−1v − B[v]‖2

A−1

= ‖v − αAB−1v‖2
A−1 + 2α (v − αAB−1v)T (B−1v − B[v])

+ α2 ‖B−1v − B[v]‖2A
≤ ‖v − αAB−1v‖2

A−1

+ 2α ‖v − αAB−1v‖B−1‖B−1v − B[v]‖B
+ α2 ‖B−1v − B[v]‖2A.

Let r = B−1v − B[v]. Then,

‖r‖2A ≤ λmax(B−1A) ‖r‖2B ≤ δ λmax(B−1A) ‖v‖2B−1 .

We also have,

‖v − αAB−1v‖2B−1 ≤ ‖I − α B−(1/2)AB−(1/2)‖‖v‖2B−1 .

Thus,

‖v−αAB[v]‖2
A−1 ≤ ‖v − αAB−1v‖2

A−1 + 2α δ ‖I − α B−(1/2)AB−(1/2)‖ ‖v‖2
B−1

+ α2δ2 λmax(B−1A)‖v‖2
B−1 .

Because for α ≥ 0

β = ‖I − α B−(1/2)AB−(1/2)‖ = max{|1− αλmin(B−1A)|, |1− αλmax(B−1A)|},
(10.7)

the last estimate reads,

‖v − αAB[v]‖2
A−1 ≤ ‖v − αAB−1v‖2

A−1 + (α2λmax(B−1A) δ2 + 2αβδ)‖v‖2B−1

= vT (A−1 − (2α − α2λmax(B−1A)δ2 − 2αβδ)B−1

+ α2 B−1AB−1)v

≤ max
t∈[λmin(B−1A), λmax(B−1A)]

Q(t) vTA−1v,
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where

Q(t) = 1− (2α − α2λmax(B−1A)δ2 − 2αβδ)t + α2 t2. (10.8)

Now choose

α = 2

(1− δ)λmin(B−1A)+ λmax(B−1A)+δ2(λmax(B−1A)−λmin(B−1A))
1−δ

.

This choice ensures that

α ∈
(
0,

2

λmin(B−1A)+ λmax(B−1A)

)
,

which implies (see (10.7)) that

β = 1− α λmin(B−1A).

We also have

2α − α2λmax(B−1A)δ2 − 2αβδ
= 2α − α2λmax(B−1A)δ2 − 2α(1− α λmin(B−1A))δ

= α (2(1− δ)− αλmax(B−1A)δ2 + 2αλmin(B−1A)δ)

= α (λmin(B−1A)+ λmax(B−1A)).

To see the last equality, it is equivalent to show that

2(1− δ) = α (λmin(B−1A)+ λmax(B−1A)− δ(2λmin(B−1A)− δ λmax(B−1A)))

= α (λmax(B−1A)+ δ2 (λmax(B−1A)− λmin(B−1A))

+ λmin(B−1A) (1− δ)2).

The latter equation coincides exactly with the definition of α,

α = 2

λmin(B−1A)(1− δ)+ λmax(B−1A)+δ2 (λmax(B−1A)−λmin(B−1A))
1−δ

.

With the choice of α we havemade, the quadratic formQ(t) from (10.8) simplifies to

Q(t) = 1− α (λmin(B−1A)+ λmax(B−1A))t + t2α2.

It is clear then that for t ∈ [λmin(B−1A), λmax(B−1A)], we have

Q(t) = 1− α2λmin(B−1A)λmax(B−1A)+ α2(t − λmin(B−1A))(t − λmin(B−1A))

≤ 1− α2λmin(B−1A)λmax(B−1A).
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Therefore, the final estimate reads,

‖v − αAB[v]‖2
A−1 ≤

[
1− α2λmin(B−1A)λmax(B−1A)

]
vTA−1v

=
(
1− 4κ(1− δ)2

((κ − 1)δ2 + (1− δ)2 + κ)2
)

‖v‖2
A−1 . �

10.3 Variable-step multilevel preconditioners

Consider a sequence of matrices {Ak} related in the following hierarchical fashion,

Ak =
[
Ak Rk
Lk Ak+1

]
.

If the above two-by-two block form of Ak is stable, which in particular means that
Ak is spectrally equivalent to its block-diagonal part, and hence, Ak+1 is spectrally
equivalent to the exact Schur complement Sk = Ak+1 − LkA

−1
k Rk , the following

two-level preconditioner is viable.

BT L =
[
Mk 0
Lk I

] [(
Mk + MT

k − Ak
)−1

0
0 Ak+1

] [
MT
k Rk
0 I

]
,

whereMk comes from a convergent splitting for Ak such that

‖I − A
1/2
k M−1

k A
1/2
k ‖ < 1.

We recall also the symmetrized preconditioners

Mk = Mk

(
Mk + MT

k − Ak
)−1

MT
k .

The following recursivemultilevel procedure can be utilized to define amultilevel
factorization variable-step preconditioner of guaranteed quality.
Let Bk+1[.] be a given (defined by induction) variable-step preconditioner for

Ak+1 and consider the better quality preconditioner obtained by ν = νk ≥ 0 steps
of the variable-step preconditioned CG algorithm 10.2.1, B(ν)k+1. Then the kth-level

variable-step preconditioner approximatingA−1
k , is defined as follows.

Bk[.] =
[
I −M−T

k Rk
0 I

][
M

−1
k 0

0 B
(ν)
k+1[.]

][
I 0

−LkM
−1
k I

]
.

Based on the result of the preceding section, we can guarantee a fixed quality
of the preconditioner at every level k by properly choosing ν = νk at every level.
In particular, if we knew that there is a fixed (linear) multilevel preconditioner with
a guaranteed quality then, the nonlinear one will also have a guaranteed quality, as
well, because the estimate for ν = νk given in (10.6) will be level-independent.
The nonlinear preconditioner has a potential advantage of being a parameter

(to estimate) free one.
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10.4 Variable-step AMLI-cycle MG

Here we construct recursively nonlinear approximate inverses to Ak used in an
AMLI-cycle MG.
We first define a variable-step AMLI-cycle MG.

Definition 10.5 (Variable–step AMLI–cycle MG). Let Ak , Pk , and Mk for k =
0, . . . , ℓ where Ak+1 = P Tk AkPk , be the parameters of a MG hierarchy. Introduce

also the symmetrized smoothersMk = Mk(MT
k +Mk −Ak)−1MT

k . The AMLI-cycle

also exploits a sequence of integers νk ≥ 0, k = 0, 1, . . . , ℓ.
At the coarsest level, set Bℓ = A−1

ℓ . Then, assume that Bk+1[·] for some k < ℓ

has been defined as an approximate inverse toAk+1. On its basis construct an iterated

one,B
(νk)
k+1[·] implemented as in Algorithm 10.2.1, lettingB[·] = Bk+1[·] as input and

B
(νk)
k+1[·] = Bνk [·] as output. If νk = 0, we simply let B

(0)
k+1[·] = Bk+1[·]; that is, we

do not use Algorithm 10.2.1.

Then, define first

Bk[·] =
[
I −M−T

k AkPk
0 I

] [
M

−1
k 0

0 B
(νk)
k+1[·]

][
I 0

−P Tk AkM
−1
k I

]
,

and then for the approximate inverse of Ak let

Bk[·] = [I, Pk]Bk[·]
[
I

P Tk

]

=
[
I,
(
I −M−T

k Ak
)
Pk

][
M

−1
k 0
0 B

(νk)
k+1[·]

][
I

P Tk

(
I − AkM−1

k

)
]

= M−1
k +

(
I −M−T

k Ak
)
PkB

(νk)
k+1

[
P Tk
(
I − AkM−1

k

)
(·)
]
.

The following monotonicity property holds (similarly to Theorem 10.1).

Lemma 10.6. Consider the (linear) MG preconditioner Bk defined as follows,

B−1
k = M−1

k +
(
I −M−T

k Ak
)
PkB

−1
k+1P

T
k

(
I − AkM−1

k

)
.

The deviation B−1
k v − Bk[v] does not increase from level k + 1 to level k; that is,

we have

‖B−1
k v − Bk[v]‖Bk ≤ ‖B−1

k+1v − Bk+1[v]‖Bk+1 . (10.9)

Here, v = P Tk (I − AkM−1
k )v, and it can be estimated as

‖v‖
B−1
k+1

≤ ‖v‖
B−1
k
. (10.10)
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Proof. We have

‖v‖2
B−1
k+1

=
∥∥B−(1/2)
k+1 P Tk

(
I − AkM−1

k

)
v
∥∥2

≤ vTMkv + vT
(
I −M−T

k Ak
)
PkB

−1
k+1P

T
k

(
I − AkM−1

k

)
v

= ‖v‖2
B−1
k

,

which proves (10.10). It also shows that ‖B−(1/2)
k+1 P Tk (I − AkM−1

k )B
1/2
k ‖ ≤ 1. For

the deviation in question, we have

‖B−1
k v − Bk[v]‖2Bk =

∥∥(I −M−T
k Ak

)
Pk
(
B−1
k+1v − Bk+1[v]

)∥∥
Bk

≤
∥∥B1/2k

(
I −M−T

k Ak
)
PkB

−(1/2)
k+1

∥∥∥∥B−1
k+1v − Bk+1[v]

∥∥
Bk+1

=
∥∥B−(1/2)

k+1 P Tk
(
I − AkM−1

k

)
B
1/2
k

∥∥∥∥B−1
k+1v − Bk+1[v]

∥∥
Bk+1

≤
∥∥B−1
k+1v − Bk+1[v]

∥∥
Bk+1

,

which proves the desired monotonicity property (10.9). �

We are now ready to prove our main result (see [NV07]).

Theorem 10.7. Given an integer parameter k0 ≥ 1 and another integer ν ≥ 1. Let

νk = ν for k = sk0, s = 1, . . . , [ℓ/k0], and νk = 0 otherwise. Consider for a

given MG hierarchy of matrices {Ak}, interpolation matrices {Pk} such that Ak+1 =
P Tk AkPk , and smoothers {Mk}. They define fixed-length symmetricV (1, 1)-cycle MG

matrices B
(k+k0) �→k
MG , from any coarse-level k + k0 to level k with exact solution at

level k + k0. Assume that the convergence factor of such fixed length V-cycles are

uniformly in k ≥ 0 bounded by a δk0 ∈ [0, 1). Let ν and k0 be related such that the

inequality

(1− (1− δ2)(1− δk0))ν/2 ≤ δ (10.11)

has a solution δ ∈ (0, 1). A sufficient condition for this is

ν >
1

1− δk0
. (10.12)

Then the variable-step AMLI-cycle MG as defined in Definition 10.5 for the sequence

{νk} above, provides an approximate inverse forAk with guaranteed quality δ; that is,

we have the uniform deviation estimate

‖A−1
k v − B(ν)k [v]‖Ak ≤ δ ‖v‖

A−1
k
.

Proof. We first show that (10.12) implies the existence of a δ ∈ [0, 1), which solves
(10.11). Indeed, letting δ = δ2/ν inequality (10.11) reads

1− (1− δν)(1− δk0) ≤ δ,
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or equivalently,

ϕ(δ) ≡ 1− (1− δk0) (1+ δ + · · · + δν−1) ≤ 0.

Because ϕ(1) = 1 − (1 − δk0)ν < 0 (due to (10.12)) and ϕ(0) = 1 − (1 − δk0) =
δk0 > 0, there is a δ ∈ [0, 1) such that ϕ(δ) = 0. Hence any δ ∈ [δ

2/ν
, 1) will

satisfy (10.11).
Applying Lemma 10.6 recursively, we end up with the deviation estimate

‖B−1
k v − Bk[v]‖Bk ≤ ‖B−1

k+k0v − B(ν)k+k0 [v]‖Bk+k0
for a vector v such that

‖v‖
B−1
k+k0

≤ ‖v‖
B−1
k
. (10.13)

Because at level k + k0 we use an exact solution (in the definition of B
−1
k ) (i.e.,

Bk+k0 = Ak+k0), the above estimate becomes

‖B−1
k v − Bk[v]‖Bk ≤ ‖A−1

k+k0v − B(ν)k+k0 [v‖Ak+k0 . (10.14)

Assume now by induction that there is a δ ∈ [0, 1) such that

‖A−1
k+k0v − B(ν)k+k0 [v]‖Ak+k0 ≤ δ ‖v‖

A−1
k+k0
.

The last estimate, together with (10.14) and (10.13), implies that

‖B−1
k v − Bk[v]‖B−1

k
≤ δ ‖v‖

B−1
k
.

By assumption, the k0th-length V-cycle has a certain quality, such as
∥∥(B−1

k − A−1
k

)
v
∥∥
Ak

≤ δk0 ‖v‖
A−1
k
.

That is, κk0 = 1/(1− δk0) is a (uniform) upper bound on the condition number of Bk
with respect to Ak . Corollary 10.3 implies then the following convergence estimate
for the iterated nonlinear mapping B(ν)k [·],

‖A−1
k v − B(ν)k [v]‖Ak ≤

(
1− 1− δ2

κk0

)ν/2
‖v‖

A−1
k
.

To confirm the induction assumption, we need the inequality

(
1− 1− δ2

κk0

)ν/2
≤ δ,

which as we already shown has a solution for ν > κk0 = 1/(1− δk0). Thus the proof
is complete. �
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Theorem 10.7 assumes that ν > 1/(1− δk0), but increasing k0 may deteriorate
the k0th-length V (1, 1)-cycle in general; that is, δk0 can get closer to unity and hence
ν needs to be chosen sufficiently large. However, if ν gets too large then the com-
plexity of the AMLI-cycle may become unacceptable. To address both the quality of
the variable-step AMLI-cycle MG and its complexity, consider now the example of
matrices Ak coming from second-order finite element elliptic equations posed on a
domain � ⊂ Rd , d = 2 or d = 3. In that case, δk0 has the following asymptotic
behavior (cf., Section 5.6.2),

K
(k+k0) �→k
MG ≤ κk0 = 1

1− δk0
≃
{
k20, d = 2,

2k0 , d = 3.
(10.15)

Then, the following result holds.

Corollary 10.8. Consider the variable-step AMLI-cycle as defined in Theorem 10.7

for matrices Ak coming from second-order elliptic finite element equations on

uniformly refined meshes and Mk being the Gauss–Seidel smoother, or any other

smoother giving rise to Mk that is spectrally equivalent to the diagonal of Ak .

The second-order elliptic PDE is assumed to have coefficients that vary smoothly

within each element from the coarsest triangulation TH = Tℓ. Assume that hk+1 =
2hk where h0 = h is the finest mesh-size and hℓ = H is the coarsest mesh-size.

Finally, assume that the number of dofs at level k are nk = 2d nk+1, where d = 2
or d = 3 is the dimension of the domain (where the PDE is posed). Then, we can

select ν < 2dk0 for k0 sufficiently large so that the inequality (10.11) has a solu-

tion δ ∈ (0, 1). This choice of ν guarantees uniform quality of the variable-step

preconditioner Bk[·] and at the same time ensures its optimal complexity.

Proof. We have the following asymptotic inequality for ν coming from (10.12) as
δk0 �→ 1 based on (10.15),

ν >
1

(1− δk0)
≃
{
k20, d = 2,

2k0 , d = 3.

From complexity restrictions, we have (estimated in the sameway as in Section 5.6.4)
ν < 2dk0 . It is clear then that in both cases, d = 2 and d = 3, we can choose ν, for
k0 sufficiently large, such that the variable-step AMLI-cycle MG are of fixed quality
δ (from (10.11)) and at the same time have optimal complexity. �

We remark at the end that because δk0 is bounded independently of possible
jumps in the coefficients of the PDE (which are assumed to vary smoothly within the
elements of the initial coarse triangulation TH ) the resulting δ ∈ (0, 1) will also be
coefficient independent.
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Preconditioning Nonlinear Problems

11.1 Problem formulation

We are interested in the following nonlinear operators,

A[.] = A0 + B[.],

where B[.] is treated as a perturbation to the linear one A0 similarly to the case
of nonsymmetric and possibly indefinite matrices we considered in Chapter 8. This
means that in a norm ‖.‖0 coming from an inner product (·, ·)0, we have

(A[v], v)0 ≥ (1− γ0)(A0v, v)0 − c0‖v‖20. (11.1)

The linear operator A0 is assumed coercive in the norm ‖.‖0; that is, ‖v‖20 ≤
�(A0v, v)0 for a constant � > 0. We also assume that A0 is (·, ·)0-symmetric
which together with its coercivity imples that ‖v‖A0 ≡ ((A0v, v)0)

1/2 is a norm
stronger than ‖.‖0. In the analysis to follow we make use of a third norm ‖.‖ which
is assumed stronger than ‖.‖A0 . To avoid technical details we assume that B[.] is
positive; that is

(B[v], v)0 ≥ 0. (11.2)

Then the estimate (11.1) is trivially satisfied with γ0 = c0 = 0.
We are interested in the solution of the nonlinear problem A[u] = f which we

assume is uniquely solvable. We make some assumptions about differentiability ofA
in a neighborhood of the exact solutionu⋆ofA[u] = f , aswell as on the approximation
of a coarse-grid solution Puc defined variationally by the identity (A[Puc], Py)0 =
(f, Py)0 for any coarse vector y.
More specifically, the nonlinear mapping B[.] is assumed differentiable in the

sense that for some σ > 0, for any g uniformlywith respect v0 in a ball near the exact
solution A[u∗] = f , we have

B[v0 + g] = B[v0]+ B ′(v0)g + O(‖g‖1+σ ).

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 377
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Here, B ′(v0) is the derivative of B[.] at v0. More specifically, for the derivative A′

(or B ′), we assume that for any v0 in a ball near the exact solution u∗ of A[u] = f ,
we have the estimate

(A[v0 + g]− A[v0]− A′(v0)g, v)0 ≤ γ ‖g‖‖v‖0.

Here, ‖.‖ is the norm (introduced above) that is stronger than ‖.‖A0 . The latter in-
equality implies

‖A[v0 + g]− A[v0]− A′(v0)g‖0 ≤ γ ‖g‖. (11.3)

Because A[.] = A0 + B[.], we also have

(B[v0 + g]− B[v0]− B ′(v0)g, v)0 ≤ γ ‖g‖‖v‖0. (11.4)

In some cases (as in semilinear second-order elliptic PDEs), we can actually prove
a stronger estimate,

(B[v0 + g]− B[v0]− B ′(v0)g, v)0 ≤ L‖g‖‖g‖0‖v‖0. (11.5)

Then for ‖g‖0 sufficiently small, we can achieve L‖g‖ ≤ γ < 1. Finally, we assume
that the derivative B ′ is continuous; that is,

((B ′(u0)− B ′(v0))g, v)0 ≤ L‖u0 − v0‖‖g‖0‖v‖0,

for any v0 and u0 close to the exact solution u⋆ ofA[u] = f . This in particular implies

‖(A′(u0)− A′(v0))g‖0 ≤ L‖u0 − v0‖‖g‖0. (11.6)

The following error estimate is our next assumption.Consider the coarse problem,
for any given v0 in a small neighborhood of the exact solution A[u∗] = f ,

(A[Px], Py)0 = (A[v0], Py)0, for all y. (11.7)

Then, we assume that for a small δ > 0, which gets smaller with increasing the size
of the coarse problem,

‖v0 − Px‖0 ≤ δ ‖A[v0]‖0.

We also assume an error estimate in the stronger norm ‖.‖, namely, for a small α < 1,

‖v0 − Px‖ ≤ δα ‖A[v0]‖0. (11.8)

We prove next an a priori estimate for the solution Px of the coarse problem.
Because the norm ‖.‖0 is weaker than ‖.‖A0 , we have

�−1‖Px‖20 ≤ (A0Px, Px)0

≤ (A0Px + B[Px], Px)0

= (A[Px], Px)0

= (A[v0], Px)0

≤ ‖A[v0]‖0‖Px‖0.
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Therefore,

‖Px‖0 ≤ � ‖A[v0]‖0.

All the assumptions made in the present section can be verified for a certain class of
semilinear second-order elliptic PDEs and proper choice of the norms ‖.‖0 and ‖.‖,
cf. [BVW03] or Section B.2.

11.2 Choosing an accurate initial approximation

Under the assumption made in the previous section, consider the linearized problem

(A0 + B ′(Px))u = r ≡ A[v0]− B[Px]+ B ′(Px)Px. (11.9)

It approximates the nonlinear problemA[v] = A[v0]. Due to (11.3) and the stronger
error estimate (11.8), we have

‖r‖0 = ‖A[v0]−B[Px]+B ′(Px)Px‖0 ≤ γ ‖v0−Px‖ ≤ γ δα ‖A[v0]‖0. (11.10)

The difference v0 − u solves the linear system

A′(Px)(v0 − u) = A′(Px)v0 − A[v0]+ B[Px]− B ′(Px)Px

= A′(Px)(v0 − Px)− A[v0]+ A′(Px)Px

+ A[Px]− A′(Px)Px

= −A[v0]+ A[Px]+ A′(Px)(v0 − Px).

Therefore, based on (11.3), (11.6), and the error estimates for Px − v0,

‖A′(Px)(v0 − u)‖0 ≤ ‖(A′(Px)− A′(v0))(v0 − Px)‖0
+ ‖ − A[v0]+ A[Px]+ A′(v0)(v0 − Px)‖0

≤ γ ‖v0 − Px‖ + L ‖v0 − Px‖‖‖v0 − Px‖0
≤ δα(γ + Lδ) ‖A[v0]‖0.

The linear system (11.9) can be solved by ν ≥ 0 iterations thus ending up with a
sufficiently accurate approximation u0 to u such that (using (11.10))

‖A′(Px)(u0 − u)‖0 ≤ C 1

1+ ν ‖r‖0 ≤ C 1

1+ ν ‖A[v0]‖0.

Note that here, we need an iterative method that reduces the residual in the weaker
norm ‖.‖0 with an optimal rate. In the application of semilinear second-order elliptic
equations giving rise to s.p.d. matrices A′(Px) = A0 + B ′(Px), we may use the
cascadic MG to get optimal convergence for the residuals by increasing the number
of smoothing steps (for details, see Section 5.8.1).
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Recall thatA′(Px) is coercive, hence, we have the estimate ‖g‖20 ≤ � (A′(Px)g,

g)0 ≤ � ‖A′(Px)g‖0‖g‖0. That is,

‖g‖0 ≤ � ‖A′(Px)g‖0.

Using this coercivity estimate, and because Px and v0 are close, then A′(v0) and
A′(Px) are also close (see (11.6)). Therefore, for γ = L� δα‖A[v0]‖0, we have

‖A′(v0)(v0 − u0)‖0 ≤ ‖(A′(v0)− A′(Px))(v0 − u0)‖0 + ‖A′(Px))(v0 − u0)‖0
≤ ‖A′(Px)(v0 − u0)‖0 + L ‖v0 − Px‖‖v0 − u0‖0
≤ ‖A′(Px)(v0 − u0)‖0 + Lδα‖A[v0]‖0� ‖A′(Px)(v0 − u0‖0
≤ (1+ L� δα‖A[v0]‖0) ‖A′(Px)(v0 − u0‖0
≤ (1+ γ )‖A′(Px)(v0 − u)‖0 + (1+ γ )‖A′(Px)(u − u0)‖0

≤ (1+ γ )C 1

1+ ν ‖r‖0 + (1+ γ )γ δα‖A[v0]‖0

≤ (1+ γ )max
{
C

1+ ν , γ δ
α

}
‖A[v0]‖0

≤ η < 1,

for any η < 1 chosen a priori.
In summary, consider the nonlinear problem,

A[v0] = f .

Here, f is given and v0 unknown.We can find a sufficiently accurate approximationu0
to v0 in the following steps. First by solving the coarse nonlinear problem (11.7), we
obtain Px. Then, we can form the linearized fine-grid problem (11.9) and solve it ap-
proximately by ν ≥ 0 iterations thus ending up with u0. Then, for any a priori chosen
η < 1, if the coarse problem is sufficiently accurate (hence, we have sufficiently small
δ in the error estimates), and if ν is sufficiently large, the approximationu0will be suffi-
ciently close to the unknown solution v0 in the sense that the following estimate holds:

‖A′(v0)(v0 − u0)‖0 ≤ (1+ γ )max
{
C

1+ ν , γ δ
α

}
‖f‖0 ≤ η < 1. (11.11)

The thus-constructed approximation u0 can be used as a sufficiently accurate initial
guess in an inexact Newton method that we present in the following section.
General two-level discretization schemes for certain finite element problemswere

presented in [Xu96a]. They provide accurate approximations from a coarse space, and
at the fine-level, we need to solve a linearized problem only.

11.3 The inexact Newton algorithm

Consider the nonlinear equation,
A[u] = f .



11.3 The inexact Newton algorithm 381

The nonlinear mapping A[.] is considered as a mapping from a given (infinite-
dimensional) space X equipped with a strong norm ‖.‖ to another (infinite-
dimensional) space Y equipped with a weaker norm ‖.‖0. We assume that X ⊂ Y .
We recall that a discrete counterpart of A[·] is sometimes denoted by F .
Let u0 be an accurate initial approximation to u⋆, the exact solution of the above

problem.

Algorithm 11.3.1 (Modified inexact Newton method).

• For n = 0, 1, . . . , until convergence, compute the inexact Newton correction sn
such that

A′(u0)sn = f − A[un]+ rn where ‖rn‖0 ≤ η‖A[un]− f‖0. (11.12)

• Then, set

un+1 = un + sn. (11.13)

We make now the following main assumptions.

(A1) The mapping A[.] acting from the space (X , ‖.‖) �→ (X , ‖.‖0) is invertible
in a small neighborhood of a given f ∈ (X , ‖.‖0). Let u⋆ be the exact solution
of A[u] = f .

(A2) ThemappingA[.] is differentiable in a neighborhoodofu⋆ and (A′(u))−1 exists
and is uniformly bounded for any u in a neighborhood of u⋆; that is,

‖(A′(u))−1v‖ ≤ µ ‖v‖0.

Note that if v ∈ (X , ‖.‖), then v ∈ (X , ‖.‖0). Therefore, we also have,

‖v‖ ≤ µ ‖A′(u)v‖0. (11.14)

(A3) For any ǫ > 0 there is a δ > 0 such that the derivativeA′ satisfies the estimates,

‖A[u]− A[u⋆]− A′(u⋆)(u − u⋆)‖0 ≤ ǫ ‖u − u⋆‖,

and

‖(v − A′(u⋆)(A′(u))−1)v‖0 ≤ ǫ ‖v‖0, all v ∈ Y,

‖(v − (A′(u))−1A′(u⋆))v‖ ≤ ǫ ‖v‖, all v ∈ X ,
(11.15)

whenever ‖u − u⋆‖ < δ. Note that (11.15) and (11.14) imply (with ǫ := ǫµ)

‖((A′(u))−1 − (A′(u⋆))−1)v‖ ≤ ǫ ‖v‖0, all v ∈ X .

It is clear that without loss of generality, we may assume that f = 0, otherwise we
can consider the shifted nonlinear operator A[u] := A[u]− f . The derivative of the
shifted nonlinear operator does not change, nor do the assumptions (A2)–(A3).
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The following main result holds (in the spirit of [DES] as modified in [BVW03]).

Theorem 11.1. Let the assumptions (A1)–(A3) hold and let η, t satisfying 0 ≤ η <

t < 1 be given. Then, there is an δ > 0 such that if ‖u0 − u∗‖0 < δ, then the

sequence of iterates {uk} generated by (11.12)–(11.13), converges to u∗. Moreover,

the convergence is linear in the sense that

‖uk+1 − u∗‖∗ ≤ t‖uk − u∗‖∗, (11.16)

where ‖v‖∗ = ‖A′(u∗)v‖0, provided the initial iterate satisfies the (stronger) estimate

µ‖A′(u∗)(u0 − u∗‖0 < δ. (11.17)

Here µ is such that

‖v‖ ≤ µ‖A′(u)v‖0,

for any u in a neighborhood of u⋆ (see (11.14)).

Proof. Because 0 < η < t , there is a ǫ > 0 such that

ǫ + µǫ(ǫ + 1)+ (ǫ + 1)η(1+ µǫ) < t. (11.18)

Based on the properties of A′ and (A′)−1, (A2), and (A3), now choose a δ > 0
sufficiently small such that for any v : ‖v − u⋆‖ < δ,

‖I − (A′(v))−1A′(u⋆)‖ ≤ ǫ, (11.19)

‖I − A′(u⋆)(A′(v))−1‖ ≤ ǫ, (11.20)

and

‖A[v]− A[u⋆]− A′(u⋆)(v − u⋆)‖0 ≤ ǫ ‖v − u⋆‖. (11.21)

The norms in (11.19) and (11.20) are the corresponding operator norms induced
by (11.15).
Note now that if we choose the initial iterate u0 such that (11.17) holds, then we

also have ‖u0 − u⋆‖ ≤ µ ‖A′(u⋆)(u0 − u⋆)‖0 < δ. The proof proceeds then by
induction. Because A′(u0) is invertible (by assumption (A2)), the system A′(u0)s =
−A[u0] has a solution, and hence, we can find a s0 such thatA′(u0)s0 = −A[u0]+r0
with ‖r0‖0 ≤ η ‖A[u0]‖0. We then define, with G = A′(u0),

u1 = u0 −G−1(r0 − A[u0]).

Next,

u1 − u⋆ = u0 − u⋆ −G−1A[u0]+ (G−1 − (A′(u⋆))−1)r0 + (A′(u⋆))−1r0.
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Replace nowA[u0] byA′(u⋆)(u0− u⋆)+ [A[u0]−A[u⋆]−A′(u⋆)(u0− u⋆)]. Then,

u1 − u0 = u0 − u⋆ −G−1A′(u⋆)(u0 − u⋆)

−G−1[A[u0]− A[u⋆]− A′(u⋆)(u0 − u⋆)]

+ (G−1 − (A′(u⋆))−1)r0 + (A′(u⋆))−1r0. (11.22)

Thus, we end up with the identity

A′(u⋆)(u1 − u0) = (I − A′(u⋆)G−1)A′(u⋆)(u0 − u∗)

− A′(u⋆)G−1[A[u0]− A[u⋆]− A′(u⋆)(u0 − u⋆)]

+ (A′(u⋆)G−1 − I)r0 + r0.

Therefore,

‖u1 − u0‖∗ ≤ ‖I − A′(u⋆)G−1‖‖u0 − u⋆‖∗ + ‖A′(u⋆)G−1‖ ǫµ ‖u0 − u⋆‖∗

+ ‖A′(u⋆)G−1r0‖0
≤ ǫ ‖u0 − u⋆‖∗ + µǫ(ǫ + 1) ‖u0 − u⋆‖∗ + (ǫ + 1)‖r0‖0. (11.23)

Because,

‖r0‖0 ≤ η ‖A[u0]‖0
= η ‖A′(u⋆)(u0 − u⋆)+ [A[u0]− A[u⋆]− A′(u⋆)(u0 − u⋆)]‖0
≤ η (‖A′(u⋆)(u0 − u⋆)‖0 + ‖A[u0]− A[u⋆]− A′(u⋆)(u0 − u⋆)‖0)
≤ η(‖u0 − u⋆‖∗ + ǫ‖u0 − u⋆‖)
≤ η(1+ ǫµ) ‖u0 − u⋆‖∗,

we have from (11.23) that

‖u1 − u0‖∗ ≤ [ǫ + µǫ(ǫ + 1)+ (ǫ + 1)η(1+ µǫ)]‖u0 − u∗‖∗
≤ t ‖u0 − u∗‖∗.

Then it is clear that

‖uk − u∗‖ ≤ µ ‖uk − u∗‖∗ ≤ µtk ‖u0 − u∗‖∗ ≤ µ ‖u0 − u∗‖∗ ≤ δ.

That is, all iterates remain in the δ neighborhood of u⋆, and the induction argument
can be repeated. Thus the proof is complete. �

We remark at the end that the computation of a sufficiently accurate initial iterate
u0 was considered in the preceding section under additional assumptions that A[.]
was semilinear and that the linearized problems can be solved by an optimal-order
iterativemethod that reduces the residuals in the ‖.‖0- norm. Such an iterativemethod
can be a cascadic MG or a W -cycle MG with sufficiently many smoothing steps
provided the underlined linearized PDE is regular enough. Then all the bounds in
Theorem (11.1) are mesh-independent and the resulting iteration method defined by
Algorithm11.3.1 has an optimal complexity. Formore details, we refer to Section B.2
(or see [BVW03]). Other choices of norms ‖.‖0 and ‖.‖ were considered in [KPV].
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Quadratic Constrained Minimization Problems

This chapter deals with solving quadratic minimization problems defined from a
s.p.d. matrix A subject to box inequality constraints that model Signorini’s problems
in contact mechanics. In particular, we investigate the use of preconditioners B for
A incorporated in the commonly used projection methods. The latter methods are
also quadratic minimization problems involving the preconditioner B to define the
quadratic functional. To make the projection methods computationally feasible (for
more general than diagonal B) an equivalent dual formulation is introduced that
involves the inverse actions of B (and not the actions of B). For the special case
when the constrained set involves a small subset of the unknowns a reduced problem
formulation is introduced and analyzed. Our presentation of these topics is based on
the results by J. Schoeberl in [Sch98] and [Sch01]. We conclude the chapter with a
multilevel FAS (full approximation scheme) based on monotone smoothers (such as
projected Gauss–Seidel) providing a monotonicity proof from [IoV04].

12.1 Problem formulation

For a convex setK and a quadratic functional based on a symmetric positive definite
matrix A,

J (v) = 1

2
vTAv − bT v,

solve the following optimization problem.

Find u ∈ K : J (u) = min
v∈K

J (v). (12.1)

Lemma 12.1. The solution u of the above problem is characterized by the variational

inequality,

uTA(v − u) ≥ bT (v − u), for all v ∈ K. (12.2)

Proof. The proof follows from the minimization property of u and convexity of K
by considering for any v the element tv + (1 − t)u ∈ K for t ∈ (0, 1). We have
P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 385
doi: 10.1007/978-0-387-71564-3_12,
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J (u) ≤ J (tv + (1− t)u), which leads first to
1

2
t2vTAv + t (1− t)vTAu + 1

2
(1− t)2uTAu − bT (tv + (1− t)u)

≥ 1

2
uTAu − bT u.

Equivalently, we have

1

2
t2vTAv + t (1− t)vTAu − tbT v ≥ 1

2
t (2 − t)uTAu − tbT u,

which leads to

1

2
tvTAv + (1− t)vTAu − bT v ≥ 1

2
(2 − t)uTAu − bT u,

and by letting t �→ 0 we end up with,

vTAu − bT v ≥ uTAu − bT u,

which is the desired result. �

12.1.1 Projection methods

We are interested in the following projection method. Given a symmetric positive
definite matrix B, a preconditioner to A, define the projection

PBv : V �→ K,

as the solution of the minimal distance problem:

‖PBv − v‖B = min
w∈K

‖w − v‖B . (12.3)

Let αmin and αmax be the spectral bounds

αminv
TBv ≤ vTAv ≤ αmax vTBv.

For a proper parameter τ > 0 consider the following iteration process.

Algorithm 12.1.1 (Projection Iteration). Given v0 ∈ K , for k = 0, 1, . . . , until

convergence, compute:

1. v̂k = vk + τB−1(b − Avk),

2. vk+1 = PB v̂k.

We study next the convergence of this algorithm. Assume that (1/τ)B − A is
positive semidefinite (or nonnegative). That is, let 1 ≥ ταmax.
The following result has been proved by Schöberl in [Sch98].

Theorem 12.2. The following convergence rate holds, for k ≥ 0,

J (vk)− J (u) ≤ ̺k (J (v0)− J (u)), ‖vk − u‖2A ≤ 2̺k(J (v0)− J (u)),
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where

̺ ≤ 1− ταmin

2
≃ 1− 1

2κ
, κ = αmax

αmin
≃ cond(B−1A).

Proof. We have, from the first step of Algorithm 12.1.1,

b = Avk + 1

τ
B(̂vk − vk),

and

J (vk+1) = 1

2
vTk+1Avk+1 − bT vk+1

= 1

2

[
(vk+1 − vk)

TA(vk+1 − vk)+ 2(vk+1 − vk)
TAvk + vTk Avk

]

− bT vk −
(
Avk + 1

τ
B(̂vk − vk)

)T
(vk+1 − vk)

= J (vk)+
1

2
(vk+1 − vk)

TA(vk+1 − vk)−
1

τ
(B(̂vk − vk))

T (vk+1 − vk).

Using the fact that 1
τ
B − A is nonnegative, we arrive at

J (vk+1) ≤ J (vk)+
1

2τ
(vk+1 − vk)

TB(vk+1 − vk)−
1

τ
(B(̂vk − vk))

T (vk+1 − vk)

= J (vk)+
1

2τ
(vk+1 − v̂k)

TB(vk+1 − vk)−
1

2τ
(̂vk − vk)

TB(vk+1 − vk)

= J (vk)+
1

2τ
(vk+1 − v̂k)

TB((vk+1 − v̂k)+ (̂vk − vk))

− 1

2τ
(̂vk − vk)

TB((̂vk − vk)+ (vk+1 − v̂k))

= J (vk)+
1

2τ

[
(vk+1 − v̂k)

TB(vk+1 − v̂k)− (̂vk − vk)
TB(̂vk − vk)

]
.

A principal step in the proof is the following estimate for vk+1 = PB v̂k,

‖PB v̂k − v̂k‖2B ≤ ‖P[u, vk ]̂vk − v̂k‖2B
≤ −ταmin (u − vk)

TB(̂vk − vk)+ ‖vk − v̂k‖2B . (12.4)

Here, P[u, vk] stands for the projection on the segment with endpoints u and vk (a
convex subset of K). That is, we have

‖vk+1 − v̂k‖2B ≤ min
t∈[0,1]

‖tu + (1− t)vk − v̂k‖2B

≤ t2‖u − vk‖2B − 2t (̂vk − vk)
TB(u − vk)+ ‖̂vk − vk‖2B . (12.5)
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Due to the variational representation of the solution u, we have (b−Au)T (u−vk) ≥ 0,
hence,

(̂vk − vk)
TB(u − vk) = τ (b − Avk)

T (u − vk)

= τ (b − Au)T (u − vk)+ τ‖u − vk‖2A
≥ ταmin ‖u − vk‖2B . (12.6)

This shows,

‖vk+1 − vk‖2B ≤ min
t∈[0,1]

[
t2‖u − vk‖2B − 2tταmin ‖u − vk‖2B + ‖̂vk − vk‖2B

]
.

The last expression indicates that choosing t = ταmin ≤ 1 is appropriate. Estimate
(12.5) with this choice of t implies the desired one, (12.4),

‖vk+1 − vk‖2B ≤ (ταmin)2‖u − vk‖2B
− 2ταmin(̂vk − vk)

TB(u − vk)+ ‖̂vk − vk‖2B
≤ ‖̂vk − vk‖2B − ταmin (̂vk − vk)

TB(u − vk),

where we have used the estimate (12.6). Thus we proved the following estimate,

J (vk+1) ≤ J (vk)+
1

2τ
(−ταmin (u − vk)

TB(̂vk − vk)).

Finally,

J (vk+1) ≤ J (vk)+
1

2τ
(−ταmin) (u − vk)

TB(̂vk − vk)

= J (vk)−
ταmin

2

(
(b − Au)T (u − vk)+ ‖u − vk‖2A

)

= J (vk)−
ταmin

2

(
bT u − bT vk + vTk Avk − uTAvk

)

≤ J (vk)−
ταmin

2

(
bT u − bT vk − 1

2
uTAu + 1

2
vTk Avk

)

=
(
1− ταmin

2

)
J (vk)+

ταmin

2
J (u)

= ̺J (vk)+ (1− ̺)J (u).

Therefore,
J (vk+1)− J (u) ≤ ̺(J (vk)− J (u)).

The iterates are estimated as follows,

‖vk − u‖2A = 2(J (vk)− J (u)− (Au − b)T (vk − u))

≤ 2(J (vk)− J (u))
≤ 2̺k(J (v0)− J (u)). �
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12.1.2 A modified projection method

We present here a modification of Algorithm 12.1.1 proposed in [DJ05] that re-
sults in a better convergence rate estimate. Let B be a s.p.d. preconditioner for A
such that

α vTBv ≤ vTAv ≤ vTBv. (12.7)

Consider then the following algorithm.

Algorithm 12.1.2 (Modified Projection Iteration). Consider the original problem

J (v) = 1

2
vTAv − fT v �→ min subject to v ∈ K. (12.8)

Given v0 ∈ K , for k = 0, 1, . . . , until convergence, compute vk+1 by solving the

constrained minimization problem:

Jk(x) = J (x)+ 1

2
‖x − vk‖2B−A �→ min subject to x ∈ K.

We have

Jk(x) = J (x)+ 1

2
‖x − vk‖2B−A

= 1

2
xTAx − fT x + 1

2
(x − vk)

T (B − A)(x − vk)

= 1

2
(x − vk)

TB(x − vk)+
1

2
xTAx − fT x

− 1

2
xTAx − 1

2
vTk Avk + xTAvk

= 1

2
(x − vk)

TB(x − vk)− xT (f − Avk)−
1

2
vTk Avk.

That is,

Jk(x) = 1

2
(x − vk)

TB(x − vk)+ xT (Avk − f)− 1

2
vTk Avk (12.9)

is a quadratic functionalwith quadratic term that involves onlyB. Hence Jk is compu-
tationally similar to the quadratic functional involved in theminimal distance problem
‖v − PKv‖B = minx∈K ‖v − x‖B that defines the projection PK .

Theorem 12.3. The following convergence result holds for the iterates computed by

Algorithm 12.1.2,

J (vk)− J (v∗) ≤ (1− α)k (J (v0)− J (v∗)),
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where v∗ is the exact solution of (12.8)andα ∈ (0, 1] is from the spectral equivalence

relation (12.7).

Proof. Using the convexity of K and that α ∈ [0, 1] gives

J (vk+1)− J (v∗)≤ Jk(vk+1)− J (v∗)
≤ min
t∈[0,1]

Jk(vk + t (v∗ − vk))− J (v∗)

≤ Jk(vk + α(v∗ − vk))− J (v∗).

Use the left-hand side of (12.7) and the identity (12.9) for x = vk + α(v∗ − vk) to
arrive at the estimates

Jk(vk + α(v∗ − vk))− J (v∗)

= α2

2
(v∗ − vk)

TB(v∗ − vk)+
(
vk + α(v∗ − vk)

)T
(Avk − f)

− 1

2
vTk Avk − J (v∗)

≤ α

2
(v∗ − vk)

TA(v∗ − vk)+ α (v∗ − vk)
T (Avk − f)+ vTk (Avk − f)

− 1

2
vTk Avk − J (v∗)

= α

2
(v∗ − vk)

TA(v∗ − vk)+ α (v∗ − vk)
T (Avk − f)+ J (vk)− J (v∗)

= α

2

(
(v∗)TAv∗ + vTk Avk − 2vTk Av∗)+ α (v∗)TAvk − α (v∗)T f

+ αvTk f − α vTk Avk + J (vk)− J (v∗)

= α

2
(v∗)TAv∗ − α (v∗)T f − α

2
vTk Avk + α vTk f + J (vk)− J (v∗)

= (1− α) (J (vk)− J (v∗)).

That is, we have

J (vk+1)− J (v∗) ≤ (1− α) (J (vk)− J (v∗)),

which is the desired result. �

12.2 Computable projections

The problem of computing the actions of projection PBv for a given B, is again a
constrained minimization problem; namely,

1

2
wTBw − (Bv)Tw �→ min, (12.10)

over w ∈ K . Note that if B is a diagonal matrix diag(di), di > 0, and K =
{w : wi ≤ gi, for i ∈ Ŵ}, for a given index set Ŵ, then the above minimization
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problem decouples and reduces to a number of one-dimensional quadratic constrained
minimization problems; namely,

∑

i

(
1

2
diw

2
i − diviwi

)
�→ min (12.11)

subject to {wi ≤ gi} where i ∈ Ŵ.
The latter one-dimensional problems are trivially solved; we have wi = vi for

indices outside Ŵ, and for i ∈ Ŵ, either wi = vi if vi ≤ gi or wi = gi .

12.3 Dual problem approach

The solution of the projection problem (12.10) for a general (nondiagonal) B may
be as difficult as the original problem. We may want to apply a projection method
(with a simpler matrix) to solve the constrained minimization problem (12.10),
for example, based on a (block-)diagonal preconditioner to B.

12.3.1 Dual problem formulation

There is one more difficulty with problem (12.10). Typically, for a general B defined
by an algorithm (such as multigrid) we do not have the actions of B on vectors
available, rather we have the inverse actions of B; that is, B−1v is easily computable.
The dual method was used in [Sch98] to reformulate (12.10) to involve B−1.

Lemma 12.4. Given is the original problem,

1

2
wTBw − (Bv)Tw �→ min, (12.12)

subject to w ∈ K = {wi ≤ gi, i ∈ Ŵ}. Then the following formulation is equivalent

to the original one, in the sense that the solution of the B-projection problem is given

by PBv = v − B−1IŴq, where also,

IŴvŴ =
[
0

vŴ

]
} � \ Ŵ
} Ŵ

is the trivial extension of vectors vŴ defined on Ŵ by zero in the rest of�, and q solves

the following (dual) problem,

1

2
qT (IŴ)

TB−1IŴq − qT (IŴ)
T (v − IŴg) �→ min, (12.13)

subject to q ≥ 0. Here, q and g are vectors defined only on Ŵ.

Proof. The derivation of the dual quadratic minimization problem (12.13) is given
in what follows in full detail.
Consider the Lagrangian

L(w, λ) = J (w)− λT
(
g − ITŴ w

)
,
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of the following constrained minimization problem,

J (w) = 1

2
wTBw − bTw �→ min,

subject to w ∈ K = {wi ≤ gi, i ∈ Ŵ}. In our application b = Bv. Note that λ is
defined only on Ŵ.
The (well-known) Karush–Kuhn–Tucker (KKT) conditions (cf., e.g., [SW97]),

in the present setting, take the form:

1.

0 = ∂L

∂w
= ∂J (w)

∂w
+ IŴλ = Bw − b + IŴλ.

2. g − ITŴ w ≥ 0 (componentwise).
3. λ ≥ 0 (componentwise).
4. λi(gi − wi) = 0, i ∈ Ŵ.
We now rewrite the above conditions to involve only actions of B−1.
Let w = IŴwŴ + w0 with w0 = 0 on Ŵ; that is, ITŴ w0 = 0. Let y = −g + wŴ .

We have y ≤ 0. Then the first condition takes the form

B(IŴ(y + g)+ w0) = b − IŴλ.

That is, after multiplyingwith ITŴ B
−1 and using the fact that ITŴ IŴ = I and ITŴ w0 = 0

we end up with

y + g = ITŴ B−1b − ITŴ B−1IŴλ,

or equivalently,

ITŴ B
−1IŴλ+ y = ITŴ B−1b − g. (12.14)

The second condition simply reads,

y ≤ 0 (componentwise). (12.15)

We also have,

λ ≥ 0 (componentwise), (12.16)

and

λiyi = 0, i ∈ Ŵ. (12.17)

Consider now the dual quadratic minimization problem

J ⋆(q) = 1

2
qT ITŴ B

−1IŴq − qT ITŴ (B
−1b − IŴg) �→ min,

subject to the constraints qi ≥ 0. Its Lagrangian reads,

L⋆(q, µ) = J ⋆(q)− µT q.
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The corresponding Karush–Kuhn–Tucker conditions read:

1.

0 = ∂L⋆

∂q
= ∂J ⋆(q)

∂q
− µ = ITŴ B−1IŴq − ITŴ (B−1b − IŴg)− µ.

This is exactly Equation (12.14) with λ = q and y = −µ.
2. q ≥ 0 (componentwise). This is exactly condition (12.16), λ ≥ 0, if λ = q.
3. µ ≥ 0 (componentwise), which is inequality (12.15) with y = −µ.
4. µ

i
qi = 0, i ∈ Ŵ. This is exactly condition (12.17) with λ = q and y = −µ.

Thus problem (12.13)provides a solutionqwhich givesw = B−1(b−IŴq) = v−
B−1IŴq as the solution to the original constrained minimization problem (12.12). �

We again stress the fact that solving the dual problem and recovering PBv =
B−1(b − IŴq) do not involve actions of B; only actions of B−1 are required.

12.3.2 Reduced problem formulation

If we introduce the Schur complement SB of B on Ŵ, that is, if

B−1 =
[
⋆ ⋆

⋆ (SB)
−1

]
} � \ Ŵ
} Ŵ

,

then problem (12.13) can be reformulated in the following reduced form,

1

2
qT (SB)

−1q − qT ((IŴ)
T v − g) �→ min, (12.18)

subject to q ≥ 0. This is a reduced problem and SB has in general a better condition
numberκ(SB) than the conditionnumber κ(B) ofB. Typically, formatricesA coming
from second-order elliptic finite element equations, assuming that B is spectrally
equivalent to A, the behavior is, from O(h−2) conditioning for B, it is reduced to
O(h−1) for its Schur complement SB . Here, h �→ 0 is the mesh size. Then, we may
use the projection method with diagonal matrix for defining the projection to solve
the reduced problem (12.18). Based on Theorem 12.2, we get that problem (12.18)
can be solved in O(κ(SB)) iterations. The cost of each iteration is proportional to
the cost of one action of S−1

B . To make the method efficient we must choose B such
that the actions of S−1

B are inexpensive to compute, for example, proportional to
|Ŵ| = O(h−d+1) where d = 2 or 3 is the dimension of �. One possibility is to
consider B−1 defined as follows. Let VŴ be a subspace of V and V0 be a subspace
of V with vectors vanishing on Ŵ. Let I0 and IŴ be extensions of vectors from V0
andVŴ into vectors of full dimension.More specifically let I0 be the trivial extension
with zero on Ŵ; that is, let

I0 =
[
I

0

]
} � \ Ŵ
} Ŵ

.
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In general IŴ can be viewed as an interpolation (or rather extension) mapping.
Define the respective subspace matricesA0 = (I0)TAI0 and AŴ = (IŴ)TAIŴ . Note
that V = V0 + VŴ may be an overlapping decomposition. To be specific in what
follows we introduce a “finite element” terminology. For so-called contact problems
in mechanics (cf., [HHNL]) Ŵ is considered to be part of the boundary of the domain
�where the corresponding PDE is posed. We consider thenVŴ to be a proper coarse
subspace ofV corresponding to a coarse meshNH gradually coarsened away from Ŵ
(and being not coarsened in a neighborhood of Ŵ). That is, in particular, this implies
that Ŵ ⊂ NH . We assume that the “interpolation” mapping IŴ is bounded in energy
in the sense that for a constant η ≥ 1 we have

(IŴvŴ)
TA(IŴvŴ) ≤ η min

v0: v0|NH =0
(v0 + IŴvŴ)

TA(v0 + IŴvŴ), for all vŴ.

(12.19)
Note that above we also have v0 = 0 on Ŵ (because Ŵ ⊂ NH ). In other words, by
defining

(RŴ)
T =

[
0
I

]
} � \ NH
} NH ⊃ Ŵ,

the above norm boundedness (12.19) can be rewritten as

vT (IŴRŴ)
TA(IŴRŴ)v ≤ η vTAv.

We now define B. Let B0 and BŴ be given preconditioners for A0 and AŴ (e.g.,
corresponding MG methods for the spaces V0 and VŴ). Then, consider

B−1 = [I0, IŴ]

[
B−1
0 0
0 B−1

Ŵ

]
[I0, IŴ]

T . (12.20)

The inverse action of B requires actions of B−1
0 and B−1

Ŵ . The Schur complement SB
of B on Ŵ is defined from

(SB)
−1 =

[
0
IŴ

]T
B−1

[
0
IŴ

]
=
[
0
IŴ

]T
(IŴ)B

−1
Ŵ (IŴ)

T

[
0
IŴ

]
.

Here,
[
0
IŴ

]

gets a vector defined on Ŵ and extends it by zero in the rest of � (the fine grid
mesh Nh).

Remark 12.5. Based on our general two-level results in “additive” form (cf., Sec-
tion 3.2.8) it is straightforward to prove that B and A are spectrally equivalent with
bounds depending on the spectral equivalence bounds betweenA0 and B0, the coarse
matrix AŴ and its preconditioner BŴ (which may equal AŴ), and the norm bound η
from (12.19). The same holds, if we consider B−1 that has multiplicative form, as
defined next.
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Let B0 = D0 + L0 and BT0 = D0 + U0 be given preconditioners to A0 such
that B0 + BT0 − A0 is positive definite. This in particular means that DT0 = D0 and
UT0 = L0. The multiplicative version of B then reads,

B−1 = [I0, IŴ]

[
I −(D0 + U0)−1IT0 AIŴ
0 I

]

×
[
(D0 + U0)−1(2D0 + L0 + U0 − A0)(D0 + L0)−1 0

0 B−1
Ŵ

]

×
[

I 0
−ITŴAI0(D0 + L0)−1 I

]
[I0, IŴ]

T . (12.21)

Note that in the applications we may haveD0 = 0 and LT0 = U0 be two nonsym-
metric preconditioners toA0. One example could be an L0 defined from a downward
(nonsymmetric) V -cycle multigrid applied to A0. Then U0 will correspond to an
upward V -cycle multigrid with a smoother applied in reverse order at every level.
Alternatively, we may have L0 = U0 = 0 and hence D0 = DT0 be a given positive
definite preconditioner to A0.
The inverse actions of the multiplicative B are computed by the following algo-

rithm, which can be seen as one step of a product subspace iteration method.

Algorithm 12.3.1 (Multiplicative preconditioner). Introduce the subspace resid-

ual iteration matricesE0 = I −AI0(D0+L0)−1IT0 , Ê0 = I −AI0(D0+L0)−T IT0 ,

and EŴ = I − AIŴB−1
Ŵ ITŴ .

Given v, we compute x = B−1v in the following steps.

• Forward elimination:

1. Compute y0 = (D0 + L0)−1IT0 v.

2. Compute residual v − AI0y0, restrict it to VŴ , and solve with BŴ; that is,

xŴ = B−1
Ŵ ITŴ (v − AI0y0)

= B−1
Ŵ ITŴ

(
v − AI0(D0 + L0)−1IT0 v

)

= B−1
Ŵ ITŴ

(
I − AI0(D0 + L0)−1IT0

)
v

= B−1
Ŵ ITŴE0v.

So far, we have computed the solution y0, xŴ of

[
(D0 + L0)y0
BŴxŴ

]
=
[

I 0
−ITŴAI0(D0 + L0)−1 I

]
[I0, IŴ]

T v.

• Backward recurrence:

1. Solve for x0 the equation

(D0 + L0)T x0 + IT0 AIŴxŴ =
(
2D0 + L0 + LT0 − A0

)
y0.
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That is, compute

x0 = −(D0 + L0)−T IT0 AIŴxŴ + y0 + (D0 + L0)−T (D0 + L0 − A0)y0
= y0 + (D0 + L0)−T IT0 (v − AI0y0)− (D0 + L0)−T IT0 AIŴxŴ

= y0 + (D0 + L0)−T IT0 (v − A(I0y0 + IŴxŴ)).

In this way, we have computed the expression
[

x0
xŴ

]
=
[
(D0 + L0)−T ((2D0 + L0 + LT0 − A0)y0 − IT0 AIŴxŴ)

xŴ

]
.

The latter represents the product

π ≡
[
I −(D0 + U0)−1IT0 AIŴ
0 I

]

×
[
(D0 + U0)−1(2D0 + L0 + U0 − A0)(D0 + L0)−1 0

0 B−1
Ŵ

]

×
[

I 0
−ITŴAI0(D0 + L0)−1 I

]
[I0, IŴ]

T v.

Indeed, we have

π =
[
I −(D0 + U0)−1IT0 AIŴ
0 I

]

×
[
(D0 + U0)−1(2D0 + L0 + U0 − A0)(D0 + L0)−1IT0 v

B−1
Ŵ ITŴ (v − AI0(D0 + L0)−1IT0 v)

]

=
[
I −(D0 + U0)−1IT0 AIŴ
0 I

]

×
[
(D0 + U0)−1(2D0 + L0 + U0 − A0)y0

xŴ

]

=
[
I −(D0 + U0)−1IT0 AIŴ
0 I

]

×
[
(D0 + U0)−1((D0 + U0)x0 + IT0 AIŴxŴ)

xŴ

]

=
[
I −(D0 + U0)−1IT0 AIŴ
0 I

] [
x0 + (D0 + U0)−1IT0 AIŴxŴ

xŴ

]

=
[

x0
xŴ

]
.

2. Compute the solution x = B−1v = [I0, IŴ]π = I0x0 + IŴxŴ . We have

x = I0x0 + IŴxŴ

= I0y0 + IŴxŴ + I0(D0 + L0)−T IT0 (v − A(I0y0 + IŴxŴ))

= I0(D0 + L0)−T IT0 v + ET0 (I0y0 + IŴxŴ)).
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The final residual equals

v − Ax = (I − AB−1)v

= Ê0(v − A(I0y0 + IŴxŴ))

= Ê0
(
v − AI0(L0 +D0)−1IT0 v − AIŴB−1

Ŵ ITŴE0v
)

= Ê0
(
I − AIŴB−1

Ŵ ITŴ
)
E0v

= Ê0EŴE0v.
That is, we have the product representation of the residual iteration matrix,

I − AB−1 = Ê0EŴE0.

The projection algorithm: A summary

Here we present the overall projection algorithm to solve the original constrained
minimization problem (12.1) based on the spectrally equivalent preconditioner B
defined in (12.20).

Algorithm 12.3.2 (Composite projection method).

• Given current iterate vk ∈ K , k = 0, 1, . . . , compute the following.

• v̂k = vk + τB−1(b − Avk) for a properly chosen iteration parameter τ , that is,

(1/τ)B − A positive semidefinite.

• Compute the next iterate vk+1 = PB v̂k, where the actions of PB are computed by

solving the projection minimization problem in its dual form (12.13)or rather in its

reduced form (12.18). This is done by iterations again using a projection method

with a simple diagonal matrix DŴ as a preconditioner for SB . Alternatively, we

may use any other conventional method for solving constrained minimization

problems, because this is a problem of relatively small size.

12.4 A monotone two-grid scheme

To define a two-grid scheme we need a coarse space and a smoothing procedure. The
coarse space we consider satisfies an important (special) property. The smoothing
procedure is monotone (described in what follows).
Consider a coarse space Vc ⊂ V and let P be an interpolation matrix that has the

form

P =
[
W

I

]
.

The degrees of freedom xi corresponding to the constraint set i ∈ Ŵ are denoted
by C. To carry around both i and a degree of freedom xi helps to associate the
vectors v = (vi) with an actual finite element grid Nh = {xi}, corresponding to a
finite element discretization of a respective PDE. One main example of the quadratic
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constrained minimization problems we consider in the present chapter comes from
contact problems in mechanics.
The identity block of P defines a natural embedding of the coarse degrees of

freedom xic into the fine degrees of freedom xi . We also assume that constrained
degrees of freedom xi ∈ C (or equivalently i ∈ Ŵ) are all present on the coarse grid.
This implies that

(Pvc)Ŵ = vc|Ŵ. (12.22)

12.4.1 Projected Gauss–Seidel

We next describe the projected Gauss–Seidel method. Mathematically it can be de-
scribed as a sequence of one-dimensionalminimization problems. Consider the func-
tional J (v). Given a current iterate v = (vi) which satisfies the constraints, we vary
only a single component vi (the remaining ones vj , j 
= i are kept fixed). This leads
to a scalar quadratic function ϕ(vi) = J (viei + v0) where v0 =

∑
j 
=i vjej , and {ei}

are the unit coordinate vectors. If i ∈ Ŵ then we have to satisfy the constraint vi ≤ gi .
Thus a problem of finding the minimum of a quadratic function subject to a simple
inequality constraint is obtained. More specifically, with x = vi , a = eTi Aei > 0,
b = eTi (b −Av0), a constant c = J (v0) = 1

2 (v
0)TAv0− bT v0 and d = gi , we have

to solve

ϕ(x) = 1

2
ax2 − bx + c �→ min

subject to x ≤ d.

The solution is x = b/a if b/a ≤ d , or x = d otherwise. The new iterate then is
v := v0 + viei with vi = x. After a loop over all indices i we complete the projected
Gauss–Seidel cycle. This procedure used iteratively is referred to as the projected
Gauss–Seidel method. We can also develop block versions of this method or even
use overlapping blocks, by solving small-size constrained minimization problems
for every block. An important property of the projected Gauss–Seidel is that every
intermediate iterate decreases the functional, and hence after a complete cycle, we
have that J (v) ≤ J (vinitial); that is, it is a monotone method.

12.4.2 Coarse-grid solution

Let vm−1, m ≥ 1, be a current iterate for solving our fine-grid problem

J (v) = 1

2
vTAv − bT v �→ min, v ∈ R

n, (12.23)

subject to the inequality constraints

vi ≤ gi for all i ∈ Ŵ.

Here Ŵ is a given subset of the index set {0, 1, 2, . . . , n − 1} and g = (gi) is a
given vector defined for indices in Ŵ. Finally,A is a given symmetric positive definite
matrix.
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After performing a few steps of theprojectedGauss–Seidel (or anyothermonotone
smoothing scheme) we end up with an intermediate iterate vm−(1/2) = (v

m−(1/2)
i )

which satisfies the constraints vm−(1/2)
i ≤ gi , i ∈ Ŵ, and we also have,

J (vm−(1/2)) ≤ J (vm−1).

The next iterate vm is sought as vm = vm−(1/2) + PCyC where yC is a coarse-
grid vector such that the resulting coarse-grid energy functional is minimized. More
specifically, because Ŵ is a subset of the set of coarse-grid degrees of freedom, due
to (12.22), we can solve the following coarse-grid minimization problem.
Find yC such that

1

2
(vm−(1/2) + PyC)

TA(vm−(1/2) + PyC)− bT (vm−(1/2) + PyC) �→ min (12.24)

subject to the constraints (yC)i ≤ gi − v
m−(1/2)
i for i ∈ Ŵ.

Let AC = P TAP and bC = P T (b − Avm−(1/2)). Then (12.24) is equivalent to
the following coarse quadratic constrained minimization problem,

JC(yC) = 1

2
yTCACyC − bTCyC �→ min

subject to the inequality constraints

(yC)i ≤ gi − (vm−(1/2))i for all i ∈ Ŵ.

The two-grid iteration method can be summarized as follows.

Algorithm 12.4.1 (Two-grid minimization method). Given an iterate vm−1, com-

pute the next iterate vm performing the following steps.

• Step 1: Compute vm−(1/2) = vm−1 + ỹ1+ ỹ2+ · · · + ỹn. Here ỹi , 1 ≤ i ≤ n, are

corrections spanned by the unit coordinate vectors ei , produced by the projected

Gauss–Seidel algorithm with initial approximation vm−1.
• Step 2: Compute vm = vm−(1/2) + PyC , where yC ∈ VC and VC is the coarse-

grid vector space. The coarse-grid correction yC solves the coarse quadratic

minimization problem,

JC(yC) = 1

2
yTCACyC − bTCyC �→ min

subject to the inequality constraints

(yC)i ≤ gi − (vm−(1/2))i for all i ∈ Ŵ.

The following main result holds.

Theorem 12.6. The Algorithm 12.4.1 provides a monotone scheme; that is, for any

two consecutive iterates, vm−1 and vm, produced by the algorithm, we have

J (vm) ≤ J (vm−1).
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Proof. Given the iterate vm−1 and applying the projected Gauss–Seidel algorithm
in Step 1, we get a new intermediate iterate vm−(1/2) for which we have:

1. The new intermediate iterate satisfies the inequality constraints due to the projection
operation in the projected Gauss–Seidel algorithm:

(vm−(1/2))i ≤ gi for all i ∈ Ŵ. (12.25)

2. The value of the functional at the new intermediate iterate is less than the one at
the previous one because the projected Gauss–Seidel algorithm provides a monotone
scheme:

J (vm−(1/2)) ≤ J (vm−1).

At the next step we look for a correction yC ∈ VC such that

(vm−(1/2) + PyC)i ≤ gi for all i ∈ Ŵ,

and

J (vm−(1/2) + PyC) ≤ J (vm−(1/2)).

Simplifying the the expression gives,

J (vm−(1/2) + PyC) = 1

2
(vm−(1/2))TAvm−(1/2) + 1

2
yTCP

TAPyC

+ yTCP
TAvm−(1/2) − bT (vm−(1/2) + PyC)

= J (vm−(1/2))+ JC(yC). (12.26)

It is clear that it is equivalent to solve the coarse-grid constraintminimization problem,

JC(yC) ≡ 1

2
yTCACyC − bTCyC �→ min

subject to

(yC)i ≤ gi − (vm−(1/2))i for all i ∈ Ŵ.

Note that here we use the fact that the constraints are exactly present on the coarse
level by our assumption on P , namely, that, (PyC)|Ŵ = yC |Ŵ . It is clear then that if
we choose the correction yC = y

opt

C where y
opt

C is the solution of the above constraint
minimization problem, we have that

J
(
vm−(1/2) + Py

opt

C

)
≤ J (vm−(1/2)). (12.27)

The latter is true because we may choose yC = 0 and satisfy the constraints due to
the inequality (12.25). We then have

JC
(
y

opt

C

)
≤ JC(0) = 0.
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Therefore from(12.26)wehaveJC(y
opt

C ) = J (vm−(1/2)+Py
opt

C )−J (vm−(1/2))which
implies (12.27). Thus from (12.4.2) and (12.27) because vm = vm−(1/2) + Py

opt

C the
proof is complete; that is, we have

J (vm) ≤ J (vm−(1/2)) ≤ J (vm−1). �

12.5 A monotone FAS constrained minimization algorithm

Because we can treat problem (12.23) as a nonlinear one, we could attempt to solve it
by applying the classical full approximation scheme (or simply FAS) by Achi Brandt
(cf., [AB77], [BC83]).
Let {Ak}ℓk=0, {Pk} be a MG hierarchy of matrices that satisfy Ak+1 = P Tk AkPk

withA0 = A being the given fine-grid s.p.d. matrix that defines the original quadratic
functional J (v) = 1

2 vTAv − bT v. Let Ŵk = Ŵ be the constraint sets at all levels;
that is, the main assumption is that the constraint set does not change from level to
level and hence that each Pk is an identity on Ŵ as assumed in (12.22). Let Nk be
the kth-level set of degrees of freedom. We haveNk+1 ⊂ Nk and for all k, Ŵ ⊂ Nk .
Finally, let Vk be the kth-level coarse vector space.
A corresponding FAS algorithm in the present context takes the following form.

Algorithm 12.5.1 (FAS constrained minimization algorithm). Consider the prob-

lem (12.23) with b0 = b and g0 = g given. Let ℓ be the coarsest level.

(0) For k ≥ 0 let v0k ∈ Vk be a current iterate at level k satisfying the constraints

(v0k)i ≤ (gk)i, i ∈ Ŵ. Let

Jk(y) = 1

2
yTAky − bTk y,

be the kth-level quadratic functional.

(1) If k < ℓ apply ν1 ≥ 1 projected Gauss–Seidel smoothing iterations with initial

iterate v0k . Denote the resulting iterate obtained after a full cycle of projected

Gauss–Seidel by vk . Go to Step (3).

(2) Else (i.e., if k = ℓ), then solve the corresponding constrained minimization prob-

lem exactly. Denote the resulting solution by vk . Set k := k−1 and go to Step (4).

(3) Based on a coarse-grid constrained minimization problem correct the kth-level

iterate vk. Define gk+1 and bk+1 for the next level coarse-grid problem as follows.

– Set gk+1 = gk = · · · = g and choose as initial approximation at level k + 1,

v0k+1 = vk|Nk+1 .

– Set bk+1 = P Tk (bk − Akvk)+ Ak+1v0k+1.
Set k := k + 1 and go to Step (1).

(4) Update level k iterate vk,

vnew
k = vk + Pk

(
vk+1 − v0k+1

)
.
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(5) Apply ν2 ≥ 1 projected Gauss–Seidel iterations with initial iterate vk . The result-

ing iterate is also denoted by vk. Set k := k−1. If k ≥ 0, go to Step (4), otherwise

one V-cycle is completed.

We can show that the above algorithm is well defined, that is, that all the intermediate
iterates in Algorithm 12.5.1 satisfy the appropriate constraints which is done in what
follows.
The resulting iterate vk after the application of the projected Gauss–Seidel algo-

rithm in Step 1 of Algorithm 12.5.1 satisfies the constraints (vk)i ≤ (gk)i, i ∈ Ŵ.
This is true due to the projection procedure in the projected Gauss–Seidel algorithm.
In Step 2 we again have that the resulting iterate satisfies the same constraints

because we use exact coarse-grid solution.
In Step 3 the constraint set does not change from level k to level k + 1 (by

assumption). Thus, v0k+1 satisfies the constraints because it is a restriction of vk and
the latter one satisfies the constraints.
In Step 4 we have to show that (vnewk )i ≤ (gk)i, i ∈ Ŵ. Indeed, due to the main

property of the interpolation matrix P ≡ Pk , (12.22),
(
vnewk

)
|Ŵ = vk

∣∣
Ŵ

+
(
Pk
(
vk+1 − v0k+1

))∣∣
Ŵ

= vk|Ŵ + vk+1|Ŵ − v0k+1
∣∣
Ŵ

= vk|Ŵ + vk+1|Ŵ − vk|Ŵ
= vk+1|Ŵ
≤ gk+1 = gk.

In Step 5 the resulting iterate vk satisfies the appropriate constraints again due to
the properties of the projected Gauss–Seidel.
The following main fact easily follows from the construction of the FAS iterates.

Theorem 12.7. Algorithm 12.5.1 provides a monotone scheme.

Proof. It is sufficient to prove that

Jk
(
vnewk

)
≤ Jk(vk).

Denote for brevityP = Pk . Based on the definition ofAk+1 = P TAkP , Jk and Jk+1,
and bk+1 = P T (bk − Akvk)+ Ak+1v0k+1, we can derive the identity,

Jk
(
vnewk

)
= Jk

(
vk + P

(
vk+1 − v0k+1

))

= 1

2

(
vk + P

(
vk+1 − v0k+1

))T
Ak
(
vk + P

(
vk+1 − v0k+1

))

− (bk)T
(
vk + P

(
vk+1 − v0k+1

))

= Jk(vk)+
1

2

(
vk+1 − v0k+1

)T
Ak+1

(
v0k+1 − vk+1

)

− (bk − Akvk)T P
(
vk+1 − v0k+1

)
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= Jk(vk)+
1

2
(vk+1)TAk+1vk+1

−
(
P T
(
bk − Akvk

)
+ Ak+1v0k+1

)T
vk+1

+ 1

2

(
v0k+1

)T
Ak+1v0k+1 + (bk − Akvk)T Pv0k+1

= Jk(vk)+ Jk+1(vk+1)+
1

2

(
v0k+1

)T
Ak+1v0k+1 + (bk − Akvk)T Pv0k+1.

We also have,

−Jk+1
(
v0k+1

)
= −1

2

(
v0k+1

)T
Ak+1v

0
k+1 + (bk+1)T v0k+1

= −1
2

(
v0k+1

)T
Ak+1v0k+1 +

(
P T
(
bk − Akvk

)
+ Ak+1v0k+1

)T
v0k+1

= 1

2

(
v0k+1

)T
Ak+1v0k+1 + (bk − Akvk)T Pv0k+1.

The latter two identities imply the following main one,

Jk
(
vnewk

)
= Jk(vk)+ Jk+1(vk+1)− Jk+1

(
v0k+1

)
.

Now, having in mind that in Algorithm 12.5.1 the vector vk+1 reduces the func-
tional Jk+1 (assumed by induction, true at the coarsest level, and because we use a
monotone smoother), that is,

Jk+1(vk+1) ≤ Jk+1
(
v0k+1

)
,

we arrive at the final desired inequality,

Jk
(
vnewk

)
≤ Jk(vk). �
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A

Generalized Conjugate Gradient Methods

In this chapter we summarize a general approach for solving a nonsymmetric and
possibly indefinite system of equations. We first present a general variational ap-
proach and then consider some special cases that lead to the most popular methods
of generalized conjugate gradient type.

A.1 A general variational setting for solving

nonsymmetric problems

A common approach to solve the nonsymmetric problem in question is to minimize
a certain norm of the current residual r = b − Axk where xk is a current kth-step
iterate, for k ≥ 0. We assume an arbitrary initial iterate x0. Given are two inner
products (·, ·) and 〈·, ·〉. Based on a current set of search vectors {dk}kj≥0, typically
a 〈·, ·〉-orthogonal system, we compute the next iterate xk+1 = xk +

∑k
j=0 α

(k)
j dj

such that

‖rk+1‖ = ‖rk − Axk+1‖ �→ min

over the set of coefficients {α(k)j }kj=0. The solution

αk =

⎡
⎢⎢⎢⎢⎣

α
(k)
0

α
(k)
1
...

α
(k)
k

⎤
⎥⎥⎥⎥⎦

solves the Gram system

�kαk = gk =

⎡
⎢⎢⎢⎣

(rk, Ad0)

(rk, Ad1)
...

(rk, Adk)

⎤
⎥⎥⎥⎦ . (A.1)

407
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The Gram matrix �k has entries

(�k)j,l = (Adj , Adl), j, l = 0, . . . , k.

The next search vector dk+1 is computed from rk+1 and the current set of search
vectors {d}kj=0. Due to the minimization procedure, we notice that if rk+1 
= 0 then

the the set of {dj }kj=0 ∪ {rk+1} is linearly independent. Hence, we can define

dk+1 = rk+1 −
∑

j<k+1
β
(k)
j dj (A.2)

such that dk+1 are 〈· , ·〉-orthogonal to all previous dj . Note that we have the option
to choose the inner product 〈· , ·〉. The choice A.2 is very natural (and most popular
in practice) because it implies that dk+1 = Pk+1(A)r0 for a proper polynomial Pk+1
of degree k + 1.
In the special case, most commonly used in practice,

〈· , ·〉 = (A· , A·), (A.3)

a mathematically equivalent choice of the search vectors, seen from the equality

rk+1 = rk − A
k∑

j=0
αjdj = −α(k)k Adk + Pk(A)r0,

and the fact that α(k)k 
= 0, is the Arnoldi construction of dk+1. Namely,

dk+1 = Adk −
k∑

j=0
β
(k)
j dj , (A.4)

such that 〈dk+1,dj 〉 = 0 for j = 0, . . . , k. Then,

β
(k)
j = 〈Adk, dj 〉

〈dj , dj 〉
.

In the special least squares choice of inner products (A.3), some simplifications occur
(cf. [EES83], [Ax87]). The major simplification is that the Gram matrix�k becomes
diagonal. We also have proved by induction that (rk, Adj ) = 0 for j < k, hence

(rk, Ark) = (rk, Adk)+
∑
j<k β

(k−1)
j (rk, Adj ) = (rk, Ark). Thus α

(k)
j = 0 for

j < k, and

αk ≡ α(k)k = (rk, Adk)

(Adk, Adk)
= (rk, Ark)

(Adk, Adk)
.

We easily see, for i < k,

(rk, Ari) = (rk, Adk)+
∑

j<k

β
(k−1)
j (rk, Adj ) = 0,
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We formulate the resulting algorithm, sometimes referred to as the generalized con-
jugate gradient, least squares (or GCG-LS) method. In [EES83] it was named the
GCR (generalized conjugate residual) method, and in one of the most popular papers
[SS86], the GMRES method. In the latter paper, the Arnoldi process (A.4) was used
to compute the search directions and the inner products 〈· , ·〉, (· , ·) were not re-
lated as in (A.3). Thus the GMRES method requires solving systems (A.1) with the
Gram matrix �k which differs from the one on the previous step k − 1 by its last
row and column. The latter allows for efficient solution of the system, for example,
by Householder orthogonal transformations as demonstrated in [Wal88]. The GCR
method with Arnoldi construction of search vectors was considered in [YJ80].
The presentation of the method based on two general inner products and the name

GCG-LS is due to Axelsson ([Ax87]).
We summarize the algorithm in the case (A.3).

Algorithm A.1.1 (GCG-LS algorithm). Given the system Ax = b and a general

inner product (· , ·).
• Initiate: let x0 be arbitrary; compute r0 = b − Ax0, and let d0 = r0.

• For k = 0, . . . , until convergence, compute:

1. α = (rk, Adk)
(Adk, Adk)

= (rk, Ark)
(Adk, Adk)

;

2. xk+1 = xk − αdk;

3. rk+1 = rk − αAdk .

• Compute the next search vector as

dk+1 = rk+1 −
k∑

j=0

(Ark+1, Adj )

(Adj , Adj )
dj .

The convergence of the method is seen from the minimization property of the
method. We have

‖rk+1‖ = min
α

‖rk − αAdk‖

= min
α0, ..., αk

∥∥∥∥r0 −
k∑

j=0
αjAdj

∥∥∥∥

= min
Pk

‖(I − APk(A))r0‖,

for any polynomial Pk of degree k. In other words,

‖rk+1‖ = min
Pk+1: Pk+1(0)=1

‖Pk+1(A)r0‖.

In the case when A is symmetric in the 〈·, ·〉 inner product substantial simplifica-
tion occurs because the Arnoldi process truncates; that is, it reduces to the Lanczos
algorithm

dk+1 = Adk − β(k)k dk − β(k)k−1dk−1.
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Practical choices for 〈v, w〉 are wT v and vTA2w. The choice 〈v, w〉 = wTA2v

equals to (A·, A·) for (·, ·) = (·)T (·). In that case the Gram matrix �k is diagonal
and the respective system (A.1) has solution α(k)j = 0 for j < k. The only nonzero

coefficient αk ≡ α
(k)
k is computed as in Algorithm A.1.1. The resulting method was

most probably first considered in [Ch78]. If we use the choice 〈v, w〉 = (v, w) =
wT v, we then end upwith a tridiagonalGrammatrix�k . The solution of systemswith
�k can efficiently be implemented based on orthogonal transformations as originally
proposed in [PS75]. The latter resulting method has the popular name MINRES. A
complete presentation of these and other CG-type methods is found in Saad [Sa03].

A.2 A quick CG guide

A.2.1 The CG algorithm

The popular CG (conjugate gradient)method is the fundamental tool for solving linear
systems of equations Ax = b with a s.p.d. matrix A. A computational form of the
algorithm is as follows.

Algorithm A.2.1 (CG algorithm). Given vectors x0 (an initial approximation),

residual vector r = b − Ax0, and an initial search direction p = r, and an aux-

iliary vector g = Ap, and also, given a tolerance ǫ > 0 and a maximal number of

iterations allowed,maxiter , we perform the following steps.

(0) Set iter = 0 and compute r = b − Ax0, p = r, and g = Ap.

Form the inner products δold = rT r, and γ = pT g = pTAp.

If δold ≤ ǫ2bT b go to (ix).

(i) Compute a step length,

α = δold

γ
= rT r

pTAp
.

(ii) Compute the next iterate,

x := x + αp.

(iii) Compute the next residual r = b − Ax as follows,

r := r − αg = r − αAp.

(iv) Compute the norm square of the new residual r by forming the inner product

δ = rT r.

(v) Check for convergence, that is, if δ < ǫ2 δold , or if the number of iterations iter

has reached the prescribed maximal valuemaxiter . If one of these conditions is

satisfied, go to Step (ix). Otherwise, set iter := iter + 1 and go to Step (vi).

(vi) Compute β = δ/δold and set δold = δ.
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(vii) Form a new search direction

p := r + βp.

(viii) Compute g = Ap and γ = pT g = pTAp, and then go to Step (i).

(ix) End.

A.2.2 Preconditioning

We can see that the problem Ax = b can be rewritten for any given s.p.d. matrix B
(called a preconditioner) as B−(1/2)AB−(1/2)(B1/2x) = B−(1/2)b. If we formally
apply the CG algorithm A.2.1 to the thus-transformed system and make appropriate
change of variables to get an algorithm in terms of the original unknowns, we end up
with the popular preconditioned CG (or PCG) algorithm below.

Algorithm A.2.2 (PCG algorithm). Given vectors x0 (an initial approximation),

residual vector r = b − Ax0, preconditioned residual r̃ = B−1r and an initial

search direction p = r̃, and an auxiliary vector g = Ap, and also, given a tolerance

ǫ > 0 and a maximal number of iterations allowed,maxiter , we perform the following

steps.

(0) Set iter = 0 and compute r = b − Ax0, r̃ = B−1r, p = r̃, and g = Ap.

Form the inner products δold = rT r̃ and γ = pT g = pTAp.

If δold ≤ ǫ2bTB−1b go to (ix).

(i) Compute a step length

α = δold

γ
= rT r̃

pTAp
.

(ii) Compute the next iterate

x := x + αp.

(iii) Compute the next residual r = b − Ax as follows,

r := r − αg = r − αAp.

(p) Preconditioning step: compute

r̃ = B−1r.

(iv) Compute the preconditioned norm square of the new residual r by forming the

inner product δ = rT r̃ = rTB−1r.

(v) Check for convergence, that is, if δ < ǫ2 δold , or if the number of iterations iter

has reached the prescribed maximal valuemaxiter . If one of these conditions is

satisfied, go to Step (ix). Otherwise set iter := iter + 1 and go to Step (vi).

(vi) Compute β = δ/δold and set δold = δ.
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(vii) Form a new search direction

p := r̃ + βp.

(viii) Compute g = Ap and γ = pT g = pTAp, and then go to Step (i).

(ix) End.

If we compare both algorithms, A.2.1 and A.2.2, they differ by Step (p) in the
latter, where we have to apply the preconditioner in order to compute the precondi-
tioned residual. They also differ in the initial step (o), where in Algorithm A.2.2 we
need one more inverse action of the preconditioner B. In terms of storage, the PCG
algorithm A.2.2 requires one more vector to store the preconditioned residual.

A.2.3 Best polynomial approximation property of CG

The CG exploits a number of properties which make it the efficient and popular
method it is, among which is its minimization property of the energy norm of the
error in a space spanned by powers of the matrix A times the initial error.

Proposition A.1. The CG method has the following main property. Let xk be the

kth iterate and ek = A−1b − xk be the corresponding error. We have, defining

‖v‖A = (vTAv)1/2,

‖ek‖A ≤ min
pk

‖pk(A)e0‖A,

where the minimum is taken over all polynomials pk = pk(t) of degree k normalized

at the origin; that is, pk(0) = 1.

For a proof, see any appropriate text on numerical methods, or [H94], for example.
The latter error estimatehas theproperty that ifwereplaceAwithB−(1/2)AB−(1/2),

and ek := B1/2ek , we obtain,

‖ek‖A ≤ min
pk

‖pk(B−(1/2)AB−(1/2))e0‖A.

That is, the norm of the error does not change but the argument of the polynomial pk
does; it is the preconditionedmatrix B−(1/2)AB−(1/2), which may have a much more
favorable spectrum than A for proper choice of the preconditioner B.

A.2.4 A decay rate estimate for A−1

Here we present a result originally proved in [DMS84] (already mentioned in Sec-
tion 6.12).
Let A be s.p.d. with spectrum contained in [α, β] ⊂ R+.
The result in question is based on two observations.

• First observation. Let B = (bij) be any matrix. Then for any vector norm ‖.‖
such that ‖ei‖ = 1 where ei is the ith unit coordinate vector, then

|bij| ≤ ‖B‖.

This follows from bij = eTi Bej ≤ ‖B‖‖ei‖ej‖ = ‖B‖.
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• Second observation. Let B = A−1 and let ‖.‖ be defined for any v = (vi) ∈ Rn

as ‖v‖2 = vT v =
∑
i v
2
i ; that is, ‖.‖ is the standard Euclidean vector norm.

Obviously, ‖ei‖ = 1.
Then, for any polynomialpk of degree k ≥ 0, consider the matrixB −pk(A). For
any entry bij of B = A−1 with indices (i, j) outside the nonzero sparsity pattern
of pk(A), we have (pk(A))ij = 0 and hence

|bij| ≤ ‖B − pk(A)‖ = ‖A−1 − pk(A)‖ ≤ sup
λ∈[α, β]

|λ−1 − pk(λ)|.

Note that we have the flexibility to choose the coefficients of the polynomial pk
(because this will not change the sparsity pattern of pk(A)). Therefore,

|bij| ≤ inf
pk

sup
λ∈[α, β]

|λ−1 − pk(λ)|.

Thus, the following simple upper bound holds

|bij| ≤ 1

α
inf
pk

sup
λ∈[α, β]

|1− λpk(λ)| = 1

α

2qk+1

1+ q2(k+1) , q =
√
κ − 1√
κ + 1 , κ = β

α
.

In the last estimate we use

pk : 1− tpk(t) =
Tk+1

(
α+β−2t
β−α

)

Tk+1
(
α+β
β−α

) ,

where Tk+1 is the well-known Chebyshev polynomial of degree k + 1.
In conclusion, if A is well conditioned (i.e., κ = β/α is a nice number) and

(i, j) is away from the sparsity pattern of A, say at distance k, for large k the entry
bij = (A−1)ij ≃ qk+1; that is, its value decays geometrically, with k �→ ∞.
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Properties of Finite Element Matrices.

Further Details

This chapter summarizes some additional properties of finite elementmatrices arising
in the finite element discretization of second-order elliptic PDEs. The topics covered
include:
• Piecewise linear Lagrangian basis functions; element stiffnessmatrices and global
matrix conditioning;mass matrices and equivalentL2-norms. Gärding inequality,
duality argument, L2-error estimates, and weak approximation property. This
material, in particular, supplements Chapter 8.

• A semilinear second-order elliptic PDE (supplements Chapter 11).
• Mixed finite elements for second-order elliptic PDEs; the space H(div), and the
related “inf–sup” condition. The (computable) Fortin projection. This material,
in particular, supplements Chapter 9.

• Nonconforming finite elements and Stokes problem (supplements part of
Chapter 9).

• Maxwell equations and H(curl)-problems (can be viewed as an addition to
Section 7.11).

B.1 Piecewise linear finite elements

Consider the following second-order elliptic operator

Lu ≡ −
d∑

r=1

∂

∂xr

(∑

s=1
ar,s(x)

∂u

∂xs

)
+

d∑

i=1
bi(x)

∂u

∂xi
+ c(x)u.

Here, the coefficient matrix A(x) = {ai,j (x)}di,j=1 is assumed symmetric positive
definite uniformly in x ∈ � where � is a plane polygon (d = 2) or a 3D polytope
(d = 3). The vector field b = (bi(x))di=1 and the low-order term coefficient c = c(x)
are also given boundedmeasurable functions in�. We associate withL the following
boundary value problem posed variationally. For a given function f ∈ L2(�), find a

415
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weak solution u, that is, u ∈ L2(�), ∂u/∂xi ∈ L2(�), such that for any sufficiently
smooth function ϕ, we have

a(u, ϕ) ≡
d∑

i,j=1

(
ai,j

∂u

∂xi
,
∂ϕ

∂xj

)
+
(
d∑

i=1
bi
∂u

∂xi
+ cu, ϕ

)
= (f, ϕ). (B.1)

We use the common notation (., .) for the L2(�)-inner product. The standard L2(�)
norm is denoted by ‖.‖0 =

√
(. .). Here, u and ϕ are assumed vanishing on ∂�. The

corresponding space of functions is the well-known Sobolev spaceH 1
0 (�). The norm

‖v‖1 for any v ∈ H 1(�) is defined as ‖v‖21 = ‖v‖20+
∑d
i=1 ‖∂u/∂xi‖20. For functions

that vanish on ∂� the following seminorm gives an equivalent norm

|v|21 =
d∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
2

0
.

Inhomogeneous Dirichlet boundary conditions are similarly treated. We first find
a functionu0 (explicitly) that satisfies the boundary conditions and then the difference
u−u0 will satisfy the homogeneous ones. This is easily achievable on a discrete level
(by approximating the boundary data to belong to the discrete space).
The finite element method of interest refers to the following Ritz–Galerkin

procedure. We construct a discrete (i.e., finite-dimensional) space V = Vh where
the parameter h �→ 0 and then V approximates the continuous (infinite-dimensional)
spaceH 1

0 (�). The functions in V are simple piecewise polynomials, that is why they
admit certain approximation properties. More specifically, let {τ } be a set of simple-
shaped polygons (or polytopes in 3D), called elements, which provide a nonover-
lapping partition of �. There is a requirement that every two elements either share
exactly a single common vertex, or a single common face (or a single common edge
in 3D) or their intersection is empty.With this property the set of elements T = {τ } is
called the triangulation of�. Then h is typically referred to the maximal diameter of
τ when τ runs over the elements in T . The functions v ∈ V restricted to any element
τ are polynomials of a given fixed degree p. For the class of problems we consider,
the functions in V should belong to H 1(�). This is guaranteed if we can construct V
such that for any v ∈ V the formula for integration by parts is valid. Namely, for any
two neighboring elements τ1 and τ2 sharing a common face, and any smooth function
ϕ vanishing outside τ1 ∪ τ2, we have

(
∂v

∂xi
, ϕ

)
= −

(
v,
∂ϕ

∂xi

)
+

∫

∂τ1∩∂τ2

[v] ϕ ni d̺.

Here [v] stands for the jump of v across the common face ∂τ1 ∩ ∂τ2 and ni is the ith
component of a unit vector n normal to that face. That is, in order to have the formula
of integration by parts valid we must ensure that [v] = 0. This imposes continuity of
the finite element functions v ∈ V .
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Lagrangian piecewise linear basis

Fromnowon,we consider themodel 2D case and triangular elements τ . The extension
to 3D is straightforward. A simple way to construct V being the space of piecewise
linear continuous functions is to construct a basis for V . Let {xi} be the set of vertices
of all triangles τ . Introduce also the (geometrical) coordinates (xi, yi) of the vertex
xi . For any element τ consider its three vertices xi1, xi2 , and xi3 with respective
coordinates (xis , yis ), s = 1, 2, 3. For each is , we define a basis function ϕis = ϕis
(x, y) locally, for now only on the element τ , as the solution of the following linear
equation

∣∣∣∣∣∣∣∣

x y ϕis 1
xi1 yi1 δi1, is 1
xi2 yi2 δi2, is 1
xi3 yi3 δi3, is 1

∣∣∣∣∣∣∣∣
= 0. (B.2)

Here, δq,r = 0 if q 
= r and 1 otherwise. It is clear that ϕis (xir , yir ) = δr,s . Simply let
x = xir and y = yir in (B.2). Then ϕis = δir , is solves (B.2) because the determinant
has two identical rows then. It is also clear that ϕis is a linear function of the form,

ϕis = as(x − xis )+ bs(y − yis )+ 1, as = ∂ϕis

∂x
and bs = ∂ϕis

∂y
. (B.3)

It is also trivial to see that ϕis being defined on all elements that share vertex xis is
actually continuous across the element boundaries. This is the case because on every
common edge of two such elements ϕis it is uniquely defined as a linear function
(effectively of one variable along that edge) that takes value one at vertex xis and
vanishes at the other endpoint of that edge. Because ϕis vanishes on the boundary
of ∪{τ : xis is a vertex of τ }, ϕis can be extended by zero in the rest of � and still
be continuous. The set of functions ϕis is easily seen to be linearly independent and
span the space of continuous piecewise linear functions V . If we want to satisfy
homogeneousDirichlet boundary conditions, we simply remove the functions ϕis for
nodes xis ∈ ∂� from the basis.
We can easily compute the partial derivatives as and bs of the basis function in

(B.2). We have

0 =

∣∣∣∣∣∣∣∣∣

1 0
∂ϕis

∂x
0

xi1 yi1 δi1, is 1
xi2 yi2 δi2, is 1
xi3 yi3 δi3, is 1

∣∣∣∣∣∣∣∣∣
= ∂ϕis

∂x

∣∣∣∣∣∣

xi1 yi1 1
xi2 yi2 1
xi3 yi3 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣

yi1 δi1, is 1
yi2 δi2, is 1
yi3 δi3, is 1

∣∣∣∣∣∣
, (B.4)

and

0 =

∣∣∣∣∣∣∣∣∣

0 1
∂ϕis

∂y
0

xi1 yi1 δi1, is 1
xi2 yi2 δi2, is 1
xi3 yi3 δi3, is 1

∣∣∣∣∣∣∣∣∣
= ∂ϕis

∂y

∣∣∣∣∣∣

xi1 yi1 1
xi2 yi2 1
xi3 yi3 1

∣∣∣∣∣∣
−

∣∣∣∣∣∣

xi1 δi1, is 1
xi2 δi2, is 1
xi3 δi3, is 1

∣∣∣∣∣∣
. (B.5)
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That is, the basis function ϕis takes the form (see (B.3)),

ϕis (x, y) = 1−

∣∣∣∣∣∣

yi1 δi1, is 1
yi2 δi2, is 1
yi3 δi3, is 1

∣∣∣∣∣∣
∣∣∣∣∣∣

xi1 yi1 1
xi2 yi2 1
xi3 yi3 1

∣∣∣∣∣∣

(x − xis )+

∣∣∣∣∣∣

xi1 δi1, is 1
xi2 δi2, is 1
xi3 δi3, is 1

∣∣∣∣∣∣
∣∣∣∣∣∣

xi1 yi1 1
xi2 yi2 1
xi3 yi3 1

∣∣∣∣∣∣

(y − yis ). (B.6)

We finally note that the determinant
∣∣∣∣∣∣

xi1 yi1 1
xi2 yi2 1
xi3 yi3 1

∣∣∣∣∣∣

is nonzero if the nodes {xir }3r=1 form a nondegenerated triangle.
Again, we note that the above construction is general and can be applied in 3D

as well. For basis functions on tetrahedral elements, we will end up with 4-by-4
determinants in place of (B.2).
In what follows, we derive an explicit expression (see (B.7)) for the three-by-three

element matrix Aτ computed from the Laplace bilinear form restricted to a general
triangle τ ; that is, Aτ = (

∫
τ ∇ϕir · ∇ϕis dx)3r,s=1. Consider the following triangle

τ with vertices (0, 0), (0, 1) and (X, Y ). For a general triangle τ , we can use the
transformation [

x

y

]
=
[
xi1
yi1

]
+ (xi2 − xi1) Q

[
x

y

]
.

HereQ is a rotation, that is, an orthogonalmatrixQTQ = I . Then the basis functions
on τ are given by ϕir (x) = ϕr ((1/(xi2 − xi1)) QT (x − xi1)) where ϕr(x), r = 1, 2, 3
are the Lagrangian basis functions associated with the vertices of the “reference”
triangle τ . The respective element integrals are related as follows,

∫

τ

∇ϕir · ∇ϕis dxdy =
∫

τ

∇ϕr · ∇ϕs dxdy.

We use here the fact thatQ is orthogonal. In other words, the element matrices for the
2DPoisson equation do not change if the triangle is translated, rotated, and replaced by
a geometrically similar one. Thus, without loss of generality, we can compute the ele-
mentmatrices for the trianglewith vertices (xi1, yi1) = (0, 0), (xi2 , yi2) = (0, 1) and
(xi3, yi3) = (X, Y ). Let the angles of τ associatedwith the vertices (0, 0) and (0, 1)be
α andβ. Then,X = cot α/(cot α+cot β) andY = 1/(cot α+cot β). Based on the ex-
pressions for the derivatives ofϕis, s = 1, 2, 3, given by (B.4)and (B.5), we readily get

∇ϕi1 =
[ −1

−1+X
Y

]
, ∇ϕi2 =

[
1

−X
Y

]
, and ∇ϕi3 =

[
0
1
Y

]
.

Then, because the gradients are constant vectors, we have
∫
τ
∇ϕir · ∇ϕis dxdy =

|τ | ∇ϕir · ∇ϕis with |τ | = (sin α sin β)/(2 sin(α + β)) being the area of τ .
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The resulting 3-by-3 element matrix equals

Aτ = |τ |

⎡
⎢⎢⎢⎢⎢⎢⎣

1+
(−1+X

Y

)2
−1+ (1−X)X

Y 2
−1−X

Y 2

−1+ X(1−X)
Y 2

1+ X2

Y 2
− X
Y 2

−1−X
Y 2

− X
Y 2

1

Y 2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

We first notice that
|τ |
Y

= sin α sin β

2 sin(α + β)(cot α + cot β) = 1

2
.

Also, we have

X

Y
= cot α and

X2 + Y 2
Y

= XX
Y

+ Y = cot2 α + 1
cot α + cot β = cot α + cot γ,

where γ = π −α−β is the third angle of τ (at the vertex (X, Y )). The latter follows
from the well-known identity

cot α cot β + cot α cot γ + cot β cot γ = 1.

Thus, we end up with the following expression for Aτ ,

Aτ = 1

2

⎡
⎣
cot β + cot γ − cot γ − cot β

− cot γ cot γ + cot α − cot α
− cot β − cot α cot α + cot β

⎤
⎦ . (B.7)

Element matrices and assembling

Once having a basis {ϕi}, we can derive the discrete system for the finite element
solution of (B.1). Namely, we seek uh =

∑
i uh(xi)ϕi ∈ V such that

a(uh, ϕ) = (f, ϕ) for all ϕ ∈ V.
It is sufficient above to have ϕ run over the basis {ϕi} of V . Upon expanding, we get

∫

�

⎡
⎣∑

xk∈N
uh(xk)

2∑

r,s=1
ar,s(x)

∂ϕk

∂xr

∂ϕi

∂xs
+
∑

r

br (x)
∂ϕk

∂xr
ϕi + c(x)ϕkϕi

⎤
⎦ dx

= (f, ϕi).
Splitting the integral on � as a sum over τ ∈ T , we get

a(uh, ϕi) =
∑

τ : xi∈τ

∑

xk∈τ
uh(xk)

⎡
⎣
∫

τ

2∑

r,s=1
ar,s(x)

∂ϕk

∂xr

∂ϕi

∂xs
dx

+
∫

τ

∑

r

br (x)
∂ϕk

∂xr
ϕi dx +

∫

τ

c(x)ϕkϕi dx

⎤
⎦

= (f, ϕi).
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For general coefficients ar,s(x), br (x), and c(x) a suitable approximation is to
assume that they are constants (generally, different) on every element τ . That is,
we assume ar,s(x) ≃ ar,s(xτ ), br (x) ≃ br (xτ ), and c(x) ≃ c(xτ ) for a node xτ ∈ τ .
Other (more accurate) approximations are also possible. Then the discrete bilinear
form takes the (approximate) form

a(uh, ϕi) ≃
∑

τ : xi∈τ

∑

xk∈τ
uh(xk)

⎡
⎣

2∑

r,s=1
ar,s(xτ )

∫

τ

∂ϕk

∂xr

∂ϕi

∂xs
dx

+
∑

r

br (xτ )

∫

τ

∂ϕk

∂xr
ϕi dx + c(xτ )

∫

τ

ϕkϕi dx

⎤
⎦

= (f, ϕi)

≃
∑

τ : xi∈τ
f (xτ )

∫

τ

ϕi dx.

Introduce now the three-by-three element matrices

Aτ =

⎛
⎝

2∑

r,s=1
ar,s(xτ )

∫

τ

∂ϕk

∂xr

∂ϕi

∂xs
dx

⎞
⎠

xk, xi∈τ

,

Bτ =

⎛
⎝∑

r

br (xτ )

∫

τ

∂ϕk

∂xr
ϕi dx

⎞
⎠

xk, xi∈τ

,

Cτ = c(xτ )

⎛
⎝
∫

τ

ϕkϕi dx

⎞
⎠

xk, xi∈τ

.

Note thatBτ is nonsymmetric and we should take care when computing its entries
(otherwisewemay end up computingBTτ instead). Because the derivatives of the basis
functions are constant on τ , some simplification occurs. We have

Aτ =

⎛
⎝

2∑

r,s=1
ar,s(xτ )|τ |

∂ϕk

∂xr

∂ϕi

∂xs

⎞
⎠

xk, xi∈τ

,

Bτ =

⎛
⎝∑

r

br (xτ )
∂ϕk

∂xr

∫

τ

ϕi dx

⎞
⎠

xk, xi∈τ

,

Cτ = c(xτ )

⎛
⎝
∫

τ

ϕkϕi dx

⎞
⎠

xk, xi∈τ

.
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Here (and in what follows), |τ | stands for the area of τ . Because |τ | = O(h2) and
∂ϕk/∂xr = O(h−1), it is clear then that the entries of Aτ are orderO(1), the entries
of Bτ are O(h), and the entries of Cτ are O(h2).
The global matrix is the sum of three matricesA, B, and C, which are assembled

from the respective element matrices in the following sense. Let vτ ∈ R3 be the re-
striction of v to τ ; that is, vτ = (v(xs))xs∈τ . Then, “assembly” refers to the following
representation of the global quadratic form as a sum of local quadratic forms,

vTAw =
∑

τ

vTτ Aτwτ ,

vTBw =
∑

τ

vTτ Bτwτ ,

vTCw =
∑

τ

vTτ Cτwτ .

The global (or assembled)matrix is called a stiffness matrix, and the elementmatrices
are sometimes called element stiffness matrices.
Introducing the vector of unknowns u = (uh(xk))xk∈N , and the right-hand side

vector

f = (fi)xi∈N , fi =
∑

τ : xi∈τ
f (xτ )

∫

τ

ϕi dx,

we end up with the following linear systems of equations,

(A+ B + C)u = f .

The element matrices that form the lower-order term matrix C,

Mτ =

⎛
⎝
∫

τ

ϕkϕi dx

⎞
⎠

xk,xi∈τ

,

are referred to as element mass matrices, and they play an important role in analyzing
the conditioning of the global stiffness matrix. We have the following explicit form
ofMτ ,

Mτ = |τ |
12

⎡
⎣
2 1 1
1 2 1
1 1 2

⎤
⎦ .

We notice thatMτ is equivalent toDτ = (|τ |/3)I in the sense that for any vector vτ ,
we have

1

4
vTτ Dτvτ ≤ vTτ Mτvτ ≤ vTτ Dτ vτ .
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LetD be the diagonalmatrix assembled from the element (diagonal)matricesDτ and
M be the assembled mass matrix. Then, we also have the global equivalence result

1

4
vTDv ≤ vTMv ≤ vTDv.

Note that vTMv = (v, v) = ‖v‖20, where v =
∑
viϕi is the finite element func-

tion that corresponds to the coefficient vector v. Finally assume that the triangulation
{τ } is quasiuniform in the sense that for two positive constants ν and µ,

νh2 ≤ |τ | ≤ µ h2.

Then, vTDv =
∑
τ |τ |vTτ vτ ≤ µh2m0v

T v, where m0 ≥ 1 is the maximal number
of elements that share a common vertex. Similarly vTDv ≥ ν h2vT v. That is, the
following estimate holds,

4µm0 ≥ h2 vT v

vTMv
≥ ν.

We often use the inner product (v, w)0 = wTMv = (v, w). The above estimates
show that the vector inner product wT v and the one generated by the mass matrix,
(w, v)0, are equivalent up to a scaling factor proportional to h−2. In 3D a similar
result holds; the scaling factor then is h−3.

Matrix conditioning

Assume for the time being that B = C = 0. The conditioning of the stiffness matrix
A is studied in what follows. Because we have assumed that the coefficient matrix
A(x) = {ar,s(x)}2r,s=1 is s.p.d., uniformly w.r.t. x, there are two constants µτ and ντ
such that for all x ∈ τ ,

ντ ξ
T ξ ≤

2∑

r,s=1
ar,s(x)ξrξs ≤ µτ ξT ξ, for all ξ ∈ R

2.

This estimate immediately implies that for the matrix

A(0)τ =

⎛
⎝
∫

τ

2∑

r=1

∂ϕk

∂xr

∂ϕi

∂xr
dx

⎞
⎠

xk, xi∈τ

,

the following spectral equivalence relations hold,

ντ vTτ A
(0)
τ vτ ≤ vTτ Aτvτ ≤ µτ vTτ A

(0)
τ vτ ,

and after summation over τ ∈ T , we arrive at the final estimate,

min
τ
ντ vTA(0)v ≤ vTAv ≤ max

τ
µτ vTA(0)v.
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Here A(0) is the matrix obtained by assembling the element matrices A(0)τ , that is,
corresponding to the Laplace operator L = −�.
We would like to compute an estimate of ̺(A) ≃ ‖A‖ supv vT v/‖v‖20. Because

‖A‖ = O(1) (because the entries of A are O(1) and A is sparse) it is sufficient to
find a good estimate of supv vT v/‖v‖20. The latter, as we already proved, is of order
O(h−2). That is, for finite element matrices for second order elliptic PDEs discretized
on quasiuniform triangulations, we have

̺(A) = sup
v

vTAv

‖v‖20
≃ ‖A‖ sup

v

vT v

‖v‖20
≃ O(h−2).

We can also show that minv vTAv/‖v‖20 = O(1). This is seen from the Friedrich’s
inequality valid for any function v ∈ H 1

0 (�)

‖v‖20 ≤ CF
∫

�

|∇v|2 dx.

In conclusion, the following main result has been proved.

Proposition B.1. For finite element matrices A coming from second-order elliptic

PDEs discretized on quasiuniform triangulations, we have Cond(A) = O(h−2). This

estimate used for the Laplace operator is sometimes referred to the following “inverse

inequality” valid for all v ∈ V ,

|v|21 ≡
∫

�

|∇v|2 dx = vTA(0)v ≤ Ch−2vTMv = Ch−2(v, v)0 = Ch−2‖v‖20.

The familiar Gärding inequality is immediately seen for a general (nonsymmetric and
possibly indefinite) operator L and respective stiffness matrix

vT (A+B+C)v ≥ vTAv−c0 ‖v‖20−
∑

τ

‖bTτ A
−1bτ‖1/2∞

(
vTτ Aτvτ

)1/2(
vTτ Mτvτ

)1/2
.

Here, we used the representation

wTτ Bτvτ =
∫

τ

(bT (x)∇v)w dx

=
∫

τ

(A−(1/2)b)T (A1/2∇v)w dx

≤
∫

τ

(bTA−1b)1/2((∇v)TA(x)∇v)1/2|w| dx

≤ max
x∈τ

(bT (x)A−1(x)b(x))1/2
∫

τ

(∇v)TA(x)∇v)1/2|w| dx·
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Furthermore, we have

wTτ Bτ vτ ≤ 1
√
ντ
max
x∈τ

‖b(x)‖
(
vTτ Aτvτ

)1/2(
wTτ Mτwτ

)1/2

≤ δ0
(
vTτ Aτvτ

)1/2(
wTτ Mτwτ

)1/2
.

We have assumed that

1
√
ντ
max
x∈τ

‖b(x)‖ ≤ δ0.

Then the Gärding inequality takes the form

vT (A+ B + C)v ≥ vTAv − c0 ‖v‖20 − δ0
∑

τ

(
vTτ Aτvτ

)1/2(
vTτ Mτvτ

)1/2

≥ vTAv − c0 ‖v‖20 − δ0(vTAv)1/2‖v‖0

≥ vTAv −
(
c0

√
CF

minτ
√
ντ

+ δ0
)(

vTAv
)1/2‖v‖0. (B.8)

It is clear that we can set δ0 = 0 if b = 0. Also, we can choose c0 = 0 if c(x) ≥ 0.
A similar estimate holds from above

wT (A+ B + C)v ≤ wTAv + c0 ‖v‖0‖w‖0 + δ0(vTAv)1/2‖w‖0

≤ wTAv +
(
δ0 +

√
CF

minτ
√
ντ
c0

)
(vTAv)1/2‖w‖0.

Combining both estimates show, with σ = δ0 + c0(
√
CF /(minτ

√
ντ )), that

wT (B + C)v ≤ σ (vTAv)1/2‖w‖0. (B.9)

L2-error estimates

The following error estimate has been proved in Schatz and Wang [SW96].

Theorem B.2. For every ǫ > 0 there is a mesh-size h0 = h0(ǫ) such that for every

finer mesh-size h < h0 and corresponding f.e. space Vh ⊂ H 1
0 (�), if uh ∈ Vh and

u ∈ H 1
0 (�) are such that

a(u− uh, ϕ) = 0, for all ϕ ∈ Vh,

then the following error bound holds,

‖u− uh‖0 ≤ ǫ1/2 ‖u− uh‖1.

Based on this result, given a fixed small ǫ, if we select a (fixed) coarse mesh-size H
such that H < h0(ǫ) and assuming that VH ⊂ Vh, (i.e., Th is a refinement of TH ), if
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a(u− uH , ϕ) = 0, for all ϕ ∈ VH , we would then have a(uh − uH , ϕ) = 0 for all
ϕ ∈ VH , and hence

‖uH − uh‖0 ≤ ǫ1/2 ‖uH − uh‖1. (B.10)

For now, we do not discuss the uniqueness of the solution uh of the finite element
problem of our main interest; namely, for a given f ∈ L2(�) find uh ∈ Vh such that

a(uh, ϕ) = (f, ϕ), for all ϕ ∈ Vh. (B.11)

We prove later, that (B.11) is actually uniquely solvable for a sufficiently small
mesh h (see further Lemma B.5).
The above general L2-error estimate implies the following main perturbation

result.

Theorem B.3. Given ǫ > 0. Let h0(ǫ) be the fixed mesh-size for which Theorem B.2

holds. Consider a coarse f.e. space VH with a fixed H such thatH < h0(ǫ). Finally,

let Vh be any f.e. space such that VH ⊂ Vh. Then, the vectors w in the linear space

θT (A+ B + C)w = 0 for all θ being the fine-grid coefficient vector of a

θ ∈ VH ,
and arbitrary v, satisfy the following perturbation estimate

vT (B + C)w ≤ σ
√
Cǫ (vTAv)1/2(wTAw)1/2.

Proof. To prove the estimate, we notice that θT (A+ B + C)w = 0 for all θ ∈ VH ,
or using finite element notation a(w, θ) = 0, for all θ ∈ VH , implies ‖w‖0 =
‖w‖0 ≤ ǫ1/2 ‖w‖1 = ǫ1/2 (wTA(0)w)1/2 ≤ (Cǫ)1/2 (wTAw)1/2, C = 1/minτ ντ .
The rest follows from the Gärding inequality (B.9). �

Because the adjoint operator of L (for functions in H 1
0 (�)) equals

L⋆u = −
d∑

r=1

∂

∂xr

(
d∑

s=1
ar,s(x)

∂u

∂xs

)
−

d∑

i=1
bi(x)

∂u

∂xi
+ (c(x)− div b)u,

a dual result similar to that in Theorem B.3 holds, namely, we have the following.

Theorem B.4. Given is ǫ > 0. Let h0(ǫ) be the fixed mesh-size for which Theorem B.2

holds. Consider a coarse f.e. space VH with a fixed H such thatH < h0(ǫ). Finally,

let Vh be any f.e. space such that VH ⊂ Vh. Then, the vectors w in the linear space

wT (A+ B + C)θ = 0 for all θ being the fine-grid coefficient vector of a

θ ∈ VH ,
and arbitrary v, satisfy the perturbation estimate

vT (BT + C)w = wT (B + C)v ≤ σ
√
Cǫ (vTAv)1/2(wTAw)1/2.

Here, we assume that the vector function b = b(x) is sufficiently smooth (i.e., its

divergence exists and is bounded).

Theorems B.3 and B.4 verify the main assumption needed in Chapter 8.
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Duality argument

Here, we consider the bilinear form a(., .) corresponding to the operator L, as well
as the adjoint operator L⋆ for functions in H 1

0 (�). We assume that they are uniquely
invertible for functions f ∈ L2(�). This is the case because the lower-order terms
in L and L∗ containing the coefficients b(x) and c(x) define compact operators for
functions in H 1

0 (�). Moreover, if we assume uniqueness, that is,

a(v, ϕ) = 0, for all ϕ ∈ H 1
0 (�) implies v = 0,

then the following “inf–sup” estimate holds (cf. [BPL]):

‖v‖1 ≤ C sup
w∈H 10 (�)

a(v, w)

‖w‖1
.

That is, uniqueness implies the a priori estimate,

‖u‖1 ≤ C
√
CF ‖f ‖0,

for the solution u ∈ H 1
0 (�) of the variationally posed problem a(u, ϕ) = (f, ϕ)

for all ϕ ∈ H 1
0 (�). Introduce now the Sobolev space H

2(�). This is the space of
functions in L2(�) that have all their derivatives up to order two also belonging to
L2(�). The norm in H 2(�), further denoted by ‖.‖2, is by definition the square root
of the sum of the squares of the L2-norms of the function and its derivatives (up to
order two). Assume that the adjoint problem, for any f ∈ L2(�), has a solution w,

L⋆w = f, (B.12)

which satisfies the (full) regularity estimate,

‖w‖2 ≤ C‖f ‖0.

The regularity is determined by the principal elliptic part of the operators L (and L⋆)
if the coefficients bi(x) and c0(x) are sufficiently smooth. For smooth coefficients
ar,s(x), and domains � being convex polygons such regularity estimates are known
in the literature.
The regularity estimate, combinedwith the “duality argument” (due to Aubin and

Nitsche) gives the following well-known L2-estimate for the finite element solution
uh ∈ Vh given by

a(u− uh, ϕ) = 0, for all ϕ ∈ Vh.

Consider problem (B.12) with f = u−uh. We then have, for any ϕh ∈ Vh, a(u−uh,
ϕh) = 0. Therefore,

(f, f ) = a(u− uh, w)
= a(u− uh, w − ϕh)
≤ C‖u− uh‖1‖w − ϕh‖1.
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Then because ϕh ∈ Vh is arbitrary we can get ‖w − ϕh‖1 ≤ Ch‖w‖2 and using the
regularity estimate, we finally arrive at

‖f ‖20 ≤ C‖u− uh‖1Ch‖w‖2 ≤ Ch‖u− uh‖1‖f ‖0.

That is, we have (f = u− uh) the desired error bound

‖u− uh‖0 ≤ Ch‖u− uh‖1. (B.13)

Based on the same argument as abovewe can compare two finite element solutions
uh ∈ Vh and uH ∈ VH , where VH ⊂ Vh. We have

‖uH − uh‖0 ≤ CH‖uH − uh‖1. (B.14)

We have not yet shown that the discrete problem has a unique solution uh for suffi-
ciently small h. It is clear that the discrete problem, at worst for a zero r.h.s., f = 0,
may have a nonzero solution (because the number of equations equals the number of
unknowns). If f = 0 then the continuous solution is u = 0 and a(uh, ϕ) = 0 for
all ϕ ∈ Vh. Based on the Gärding inequality, used for u − uh, and the general error
estimate ‖u− uh‖0 ≤ C√

ǫ ‖u− uh‖1 (or in the presence of full regularity, we can
let ǫ = h2), we arrive at the coercivity estimate, for any h < h0 = h0(ǫ),

a(u− uh, u− uh) ≥
(
min
τ
ντ − σ

√
ǫ
)

‖u− uh‖21. (B.15)

This coercivity estimate immediately implies, because u = 0 and a(uh, uh) = 0,
that 0 ≥ (minτ ντ − σ C√

ǫ) ‖uh‖21, and if ǫ is sufficiently small, we must have
uh = 0. That is, we have the following result.

Lemma B.5. The discrete problem (B.11) is uniquely solvable ifh is sufficiently small.

Based on the coercivity estimate (B.15) and the boundedness of the bilinear form,
we also get, for any ϕ ∈ Vh,

C‖u−uh‖21 ≤ a(u−uh, u−uh) = a(u−uh, u−ϕ) ≤ C‖u−uh‖1 inf
ϕ∈Vh

‖u−ϕ‖1.

That is, we proved the following result.

Lemma B.6. If the mesh-size is sufficiently small, under the full regularity assump-

tion, the following main error estimate holds

h−1 ‖u− uh‖0 + ‖u− uh‖1 ≤ C inf
ϕ∈Vh

‖u− ϕ‖1 ≤ Ch ‖u‖2 ≤ Ch ‖f ‖0. (B.16)

Theorem B.7. Consider the matrix Lh = A+ B + C and a coarse version of it LH
obtained by finite element discretization of the problem a(u, ϕ) = (f, ϕ), ϕ ∈
H 1
0 (�), corresponding to two finite element spaces Vh and VH where VH ⊂ Vh.

Let P be the interpolation matrix that relates the coefficient vector vc of a coarse

function vH ∈ VH expanded in terms of the coarse (Lagrangian) basis, and its
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coefficient vector v corresponding to the expansion of vH ∈ Vh in terms of the fine-

grid Lagrangian basis of Vh; that is, let v = Pvc. Consider then the coarse-grid

correction matrix I − π = I −P(LH )−1P TLh. It appears naturally, if we compare

the solutions uh and uH of the problems Lhuh = fh and LHuH = P T fh. We have

uh − PuH = uh − PL−1
H P

T fh = uh − PL−1
H P

TLhuh = (I − π)uh. Then the

following estimate holds

‖(I − π)uh‖0 = ‖uh − PuH ‖0 ≤ Cǫ1/2
(
uThAhuh

)1/2
.

Under the assumption of full regularity of problem (B.12), we can let ǫ = H 2 and

hence, have the estimate

‖(I − π)uh‖0 = ‖uh − PuH ‖0 ≤ CH
(
uThAhuh

)1/2
.

Proof. Let uh and uH be the finite element functions corresponding to the coefficient
vectors uh and uH . Also, let f be the finite element function corresponding to the
vectorM−1

h Lhuh (Mh is the mass matrix). That is, let f =
∑

xi∈Nh
fiϕ

h
i where fi is

the ith entry of the vectorM−1
h Lhuh and {ϕhi }xi∈Nh

is the nodal basis of Vh. Consider
the variationally posed second-order elliptic problem,

a(u, ϕ) = (f, ϕ).

Its finite element discretization based onVh takes the formLhuh=Mh(M−1
h Lhuh) =:

fh, and similarly for VH , LHuH = P TMh(M
−1
h Lhuh) = P T fh. That is, uH and uh

are finite element solutions of the above continuous problem. Using then the error
estimate (B.10), we get

‖(I − π)uh‖0 = ‖uh − uH ‖0 ≤ C
√
ǫ‖uh − uH ‖1. (B.17)

If we show that ‖uh − uH‖1 ≤ C‖uh‖1, then ‖(I − π)uh‖0 ≤ C
√
ǫ‖uh‖1 which

rewritten in terms of matrices and vectors will give the desired result.
From the Gärding inequality (B.9), we have

vTLhv ≥ vTAv − σ (vTAv)1/2‖v‖0.

Letting v = uh − PuH and using the estimate ‖v‖0 ≤ Cǫ1/2 (vTAv)1/2, we arrive
at the following coercivity estimate,

vTLhv ≥ (1− σ C
√
ǫ) vTAv. (B.18)

On the other hand, using the fact the uH is a finite element solution, together with the
H 1
0 × H 1

0 – boundedness of the bilinear form a(., .), because vTAv ≃ ‖uh − uH‖21,
we arrive at the following upper bound,

vTLhv = a(uh − uH , uh − uH )
= a(uh − uH , uh)
≤ C ‖uh − uH‖1‖uh‖1
≤ C (vTAv)1/2‖uh‖1.
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Combining the last estimate with the preceding one (B.18), for sufficiently small ǫ
(or equivalently, sufficiently small H ), we arrive at the desired estimate (needed
in (B.17))

‖uh − uH‖1 ≤ C(vTAv)1/2 ≤ C‖uh‖1. �

Theorem B.8. Under the full regularity assumption, we have the following stronger

approximation property in matrix–vector form (with ‖.‖ : ‖w‖ =
√

wTw),

‖(I − PL−1
H P

TLh)v‖ ≤ CH
2

h2

‖Lhv‖
‖Lh‖

. (B.19)

Proof. To prove the required estimate construct f ∈ Vh ⊂ L2(�) as in the proof
of Theorem B.7. That is, f has coefficient vector f equal to M−1

h Lhuh (where
Mh is the mass matrix). Use now the optimal L2-error estimate ‖uh − uH ‖0 ≤
CH 2‖f ‖0. Then because ‖f ‖20 ≃ hd ‖f‖2 (d = 2 or d = 3), we have ‖f ‖20 =
(M−1

h Lhuh)
TMh(M

−1
h Lhuh) ≤ Ch−d‖Lhuh‖2. Therefore,

hd/2 ‖(I − π)uh‖ ≤ C‖(I − π)uh‖0 ≤ C H
2

hd/2
‖Lhuh‖.

That is,

‖(I − π)uh‖ ≤ C H
2

h2
h2−d ‖Lhuh‖,

which completes the proof because v := uh can be arbitrary and it is easily seen
(looking at element matrix level, e.g.) that ‖Lh‖ ≃ hd−2. �

Corollary B.9. In the full regularity case, forH = 2h, or more generally forH ≤ Ch,

we have the uniform estimate

‖Lh‖ ‖(L−1
h − PL−1

H P
T )v‖ ≤ C‖v‖.

Note that ‖Lh‖‖L−1
h v‖ behaves as the condition number of Lh (for some vectors v).

That is, ‖Lh‖L−1
h is not uniformly bounded in h �→ 0, whereas the difference

‖Lh‖ (L−1
h − PL−1

H P
T ) is uniformly bounded.

B.2 A semilinear second-order elliptic PDE

Consider the following semilinear elliptic problem

Lu ≡ −�u+ b(x, u) = f (x), x ∈ �,

subject to Dirichlet boundary conditionsu= 0 on ∂�. The coefficient b = b(x, ·) is a
given scalar function, and f ∈ L2(�) is a given r.h.s. Under appropriate assumptions
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on b and� (cf., e.g., [Sh95]) the above problemhas a (unique) solution u⋆ ∈ H 2(�)∩
H 1
0 (�).
For the purpose of verifying the assumptions on the inexact Newton method

we made in Section 11.3, we further assume that b is smooth; namely, its partial
derivative bu(x, ·) exists and is nonnegative.Moreover, we also assume that bu(., u)
is Lipschitz; that is,

|bu(x, u)− bu(x, v)| ≤ L |u− v| uniformly in x ∈ �. (B.20)

Introducea finite element spaceV = Vh ⊂ H 1
0 (�) of piecewise linear basis functions

on a given triangulation Th. Consider the discrete nonlinear problem; find uh ∈ Vh
such that Lh(uh) = fh posed variationally,

(Lh(uh), ϕ) ≡ (∇uh, ∇ϕ)+ (b(·, uh), ϕ) = (f, ϕ), for all ϕ ∈ Vh. (B.21)

We additionally assume that � is a convex polygon (or polytope in 3D). Thus the
Poisson problem −�u = f for f ∈ L2(�) has a H 2(�) ∩ H 1

0 (�) solution that
satisfies ‖u‖2 ≤ C‖f ‖0. Note that the same holds for the linearized equation, for
any fixed u0 ∈ H 2(�) ∩ H 1

0 (�) (note that then u0 is a continuous function, cf.,
e.g., [BS96])

−�u+ bu(x, u0)u = f (x). (B.22)

That is, we have ‖u‖2 ≤ C‖bu(., u0)‖max ‖u‖0+C‖f ‖0 ≤ C(‖bu(., u0)‖max+ 1)
‖f ‖0. Define now two Banach spaces Xh and Yh. The first one, Xh, is Vh equipped
with the norm

‖v‖Xh = ‖v‖ ≡ max{‖v‖1, ‖v‖max},

and the second one, Yh, is simply Vh equipped with the L2-norm ‖v‖0 .
We are interested first in the properties of the linear mapping L

′
h(u0) and its

inverse.

Lemma B.10. The finite element linear operator defined variationally

(L
′
h(u0) v, ϕ) = (∇v, ∇ϕ)+ (bu(., u0) v, ϕ) for all ϕ ∈ Vh,

has the following properties.

(i) For any u0, v0 ∈ Xh such that ‖u0 − v0‖ ≤ δ < 1, and any v ∈ Xh,

∥∥(I −
(
L

′
h(u0)

)−1
L

′
h(v0)

)
v
∥∥ ≤ Cδ

[
1+ ‖bu(., u0)‖max

]
‖v‖.

(ii) For any u0, v0 ∈ Xh such that ‖u0 − v0‖ ≤ δ < 1 and any g ∈ Vh, we have

∥∥(I − L′
h(v0)

(
L

′
h(u0)

)−1)
g
∥∥
0 ≤ Cδ ‖g‖0.

(iii) For any u0, v0 ∈ Xh such that ‖u0 − v0‖ ≤ δ < 1 and any ϕ ∈ Vh, we have

(Lh(v0)− Lh(u0)− L
′
h(u0)(u0 − v0), ϕ) ≤ Cδ ‖v0 − u0‖ ‖ϕ‖0.



B.2 A semilinear second-order elliptic PDE 431

Proof. To prove (ii), let v = (L
′
h(u0))

−1g, or equivalently, solve for v ∈ Vh the
linear finite element problem

(∇v, ∇ϕ)+ (bu(., u0)v, ϕ) = (g, ϕ), for all ϕ ∈ Vh.

Because bu(., u0) ≥ 0, we have the a priori estimate ‖v‖0 ≤ CF ‖g‖0. We then have

‖g − L′
h(v0)(L

′
h(u0))

−1g‖0 = ‖L′
h(u0)v − L′

h(v0)v‖0
= ‖(bu(., u0)− bu(., v0))v‖0
≤ L‖u0 − v0‖max ‖v‖0
≤ LCF δ ‖g‖0.

The latter is estimate (ii).
To prove (iii), we have, for any ϕ ∈ Vh

(
Lh(v0)− Lh(u0)− L

′
h(u0)(u0 − v0), ϕ

)

= (b(., v0)− b(., u0)− bu(., u0)(u0 − v0), ϕ)
≤ L ‖u0 − v0‖max‖u0 − v0‖0‖ϕ‖0
≤ Lδ CF ‖u0 − v0‖ ‖ϕ‖0

which verifies (iii).
To prove (i), solve the following discrete problem for ψ ∈ Vh,

(L
′
h(u0)ψ, ϕ) = (L′

h(v0)v, ϕ), for all ϕ ∈ Vh.

We have that ((L
′
h(u0))

−1L
′
h(v0)− I)v = ψ − v ∈ Vh solves

(
L

′
h(u0)(ψ − v), ϕ

)
=
(
(L

′
h(v0)− L

′
h(u0))v, ϕ

)
, for all ϕ ∈ Vh.

Consider the solution w of the continuous problem (−�+ bu(., u0))w = g ≡ (L′
h

(v0)− L
′
h(u0))v ∈ L2(�). We have the error estimate

‖w − (ψ − v)‖1 ≤ Ch ‖w‖2
≤ Ch(‖g‖0 + C‖bu(., u0)‖max)
≤ Ch (‖bu(., u0)‖max + ‖bu(., v0)− bu(., u0)‖max‖v‖0)
≤ Ch(‖bu(., u0)‖max + ‖v0 − u0‖max ‖v‖0).

Introduce the nodal interpolation operator

Ihw =
∑

xi∈Nh

w(xi)ϕi ∈ Vh

where {ϕi}xiNh
is the nodal (Lagrangian) basis ofVh. The following familiar estimate

holds‖Ihw−w‖1 ≤ Ch‖w‖2 aswell as‖Ihw−w‖max ≤ Ch‖w‖2.Therefore,‖Ihw−
(ψ − v)‖1 ≤ ‖Ihw −w‖1 + ‖w − (ψ − v)‖1 ≤ Ch ‖w‖2 ≤ Ch(‖bu(., u0)‖max +
‖v0 − u0‖max‖v‖0). The desired result follows from the fact that ‖w‖∞ ≤ C‖w‖2
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(see, e.g., [BS96]) and the inverse inequality ‖ϕ‖max ≤ Ch−α ‖ϕ‖1 (see Section G.3
in the appendix) for ϕ ∈ Vh and an α < 1. More specifically,

‖ψ − v‖max ≤ ‖Ihw‖max + ‖Ihw − (ψ − v)‖max
≤ ‖Ihw‖max + Ch−α ‖Ihw − (ψ − v)‖1 ≤ C ‖w‖2.

That is, because ‖w‖0 ≤ C−1
F ‖g‖0 ≤ C‖v0 − u0‖max‖v‖0, we finally arrive at

‖ψ − v‖ ≤ C‖w‖2
≤ C(‖bu(., u0)‖max‖w‖0 + ‖g‖0)
≤ C(‖bu(., u0)‖max‖w‖0 + ‖v0 − u0‖max‖v‖0)
≤ Cδ (1+ ‖bu(., u0)‖max) ‖v‖0. �

Now, we provide precise estimates for the algorithm to compute accurate initial
approximations for solving the (fine-grid) nonlinear problem described earlier in
Section 11.2. For this purpose, consider two finite element spaces VH ⊂ Vh. The
mesh H will be sufficiently small but fixed, that is, independent of h �→ 0. Then the
fine-grid nonlinear problem can be treated as a “perturbation” of the linearized one in
the following sense. Solve the coarse-grid nonlinear problem

(LH (u
⋆
H ), ϕ) = (f, ϕ) for all ϕ ∈ VH .

Consider then g = b(., u⋆H )− bu(., u⋆H )u⋆H and the fine-grid linear problem
(
L

′
h(u

⋆
H )u

⋆
h, ϕ

)
= (g, ϕ) for all ϕ ∈ Vh. (B.23)

Rewrite the fine-grid nonlinear problem (L
′
h(u

⋆
h), ϕ) = (f, ϕ) for all ϕ ∈ Vh as

(
L

′
h(u

⋆
H )u

⋆
h, ϕ

)
= (f + bu(., u⋆H )u⋆h − b(., u⋆h), ϕ) for all ϕ ∈ Vh.

Therefore, the difference u⋆h − u⋆h solves
(
L

′
h(u

⋆
H )(u

⋆
h − u⋆h), ϕ

)
= (b(., u⋆h)− b(., u⋆H )

− bu(., u⋆H )(u⋆h − u⋆H ), ϕ) for all ϕ ∈ Vh.

We have the estimate

(
L

′
h(u

⋆
H )(u

⋆
h − u⋆h), ϕ

)
≤ L ‖u⋆h − u⋆H‖max‖u⋆h − u⋆H‖0‖ϕ‖0 for all ϕ ∈ Vh.

Hence
∥∥L′

h(u
⋆
H )(u

⋆
h − u⋆h)

∥∥
0 ≤ L ‖u⋆h − u⋆H‖max‖u⋆h − u⋆H‖0.

For h < H ≤ h0 and an α ∈ (0, 1), we have the error estimate ‖u⋆h − u⋆H‖max‖u⋆h −
u⋆H‖0 ≤ CH 1+α‖u⋆‖22. Finally, solve the linear problem (B.23) approximately
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(e.g., by a few iterations of an optimalMGmethod), with a guaranteed residual reduc-
tion. That is, for a small tolerance ̺ ∈ (0, 1), we compute an accurate u0h that satisfies

‖L′
h(u

⋆
H )(u

⋆
h − u0h)‖0 = ‖g − L′

h(u
⋆
H )u

0
h‖0 ≤ ̺ ‖g‖0.

The final estimate that we need reads using (ii) for u0 = u⋆H and v0 = u⋆h, and

g = L′
h(u

⋆
H )(u

⋆
h − u0h),

‖L′
h(u

⋆
h)(u

⋆
h − u0h)‖0 ≤ (1+ Cδ) ‖L′

h(u
⋆
H )(u

⋆
h − u0h)‖0

≤ 2
[
‖L′
h(u

⋆
H )(u

⋆
h − u⋆h)‖0 + ‖L′

h(u
⋆
H )(u

⋆
h − u0h)‖0

]

≤ 2
[
CH 1+α‖u⋆‖22 + ̺‖g‖0

]

≤ ǫ

µ
.

The quantity ǫ/µ for the purpose of the present analysis is a prescribed small tolerance
(for details cf. Section 11.2).
The last estimate can be guaranteed if H is sufficiently small, and (after H has

been chosen and fixed) by choosing the tolerance ̺ sufficiently small, because then
g is fixed and ‖u⋆‖22 is just a constant.

B.3 Stable two-level HB decomposition of finite element spaces

We analyze the stability property of the two-level HB decomposition of finite element
spaces Vh corresponding to a triangulation Th obtained by a refinement of a coarse
one TH and its corresponding coarse f.e. space VH ⊂ Vh.

B.3.1 A two-level hierarchical basis and related strengthened

Cauchy–Schwarz inequality

In what followswe consider a triangle T that is refined into four geometrically similar
triangles τs , s = 1, 2, 3, 4. We can associate with the vertices of T the three stan-
dard basis functions ϕ(H)i , i = 4, 5, 6, whereas with the midpoints of its edges, the

piecewise linear basis functions ϕ(h)i , i = 1, 2, 3, associated with the fine triangles
τs . It is clear that the two sets of functions are linearly independent. For example if
we have (on T )

c4ϕ
(H)
4 + c5ϕ(H)5 + c6ϕ(H)6 = c1ϕ(h)1 + c2ϕ(h)2 + c3ϕ(h)3 ,

for some coefficients cs , s = 1, . . . , 6, because ϕ(h)i , i = 1, 2, 3 vanish at the vertices
of the coarse triangle T , we have that c4 = c5 = c6 = 0. That is, we have then

c1ϕ
(h)
1 + c2ϕ(h)2 + c3ϕ(h)3 = 0,

which implies that c1 = c2 = c3 = 0 because ϕ(h)i are linearly independent.
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Consider the two finite-dimensional spaces VH, T = span {ϕ(H)4 , ϕ
(H)
5 , ϕ

(H)
6 }

and V fh, T = span {ϕ(h)1 , ϕ
(h)
2 , ϕ

(h)
3 }. We proved that they are linearly independent.

Therefore, the following estimate holds

max
vH∈VH,T ,vH 
=Const

v
(f )
h ∈V fh,T

(∇vH , ∇v(f )h )T

|v(f )h |1, T |vH |1, T
≤ γT < 1. (B.24)

It is clear that γT ∈ [0, 1) depends only on the angles of T and not on its size. The
following explicit expression has been derived in [MM82] for a triangle T with angles
α1, α2, and α3,

1− γ 2T = 5

8
− 1

8

√
4d − 3,

where d =
∑
i cos

2 αi . Because d < 3 (d = 3 for degenerated triangle α1 = α2 = 0
and α3 = π), we have the following uniform upper bound,

γ 2T <
3

4
.

Our goal is to apply the above estimate to the global matrix A corresponding
to a triangulation Th and its coarse version Ac corresponding to a triangulation TH
with H = 2h. That is, we assume that the fine-grid triangles τ are obtained by
refining the coarse triangles T into four geometrically similar ones. The vertices
of the coarse triangles form the coarse-grid and are denoted “c”-nodes, whereas
the fine-grid nodes that are not coarse are denoted “f”-nodes. We also have the
Galerkin relation Ac = P T AP for a proper (linear) interpolation matrix P (cf.
Section 1.2).
To do this, consider first AT , the 6 × 6 matrix corresponding to the triangle T

computedwith respect to the fine-grid piecewise linear basis functionsϕ(h)s associated
with the six fine-grid node xs , s = 1, 2, . . . , 6. Alternatively, we can use the two-
level hierarchical basis (or HB) {ϕ(H)4 , ϕ

(H)
5 , ϕ

(H)
6 } ∪ {ϕ(h)1 , ϕ

(h)
2 , ϕ

(h)
3 } introduced

earlier. This gives rise to another matrix (called the two-level HB matrix) AT . We
show below (see (B.26)) that it can be obtained from AT by a proper transformation.
The following observation is in order. Let v be the coefficient vector of a f.e. functionv
expanded in terms of the standard nodal basis ϕ(h)i . Let P be the interpolation matrix
that implements the embedding VH ⊂ Vh in terms of coefficient vectors; that is, if
v ∈ VH has a coefficient vector w.r.t. the coarse basis ϕ(H)ic

, then Pvc will be its

coefficient vector w.r.t. to the fine-grid nodal basis ϕ(h)i . It is clear that P admits the
following form

P =
[
W

I

]
} “f”-nodes
} “c”-nodes

·
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This is seen from the fact that the interpolation at the coarse nodes xi is an identity
because the coarse nodes are the subset of all nodes on the fine-grid. Then, if vc =∑
i v
c
i ϕ
(h)
i for every coarse node xi , we have vci = vc(xi). In other words, the ith entry

of the vector Pvc equals a corresponding entry of vc for any coarse node xi . That is,
P is the identity at the coarse nodes. The same argument applies to P restricted to an
individual coarse element T . We have

PT =
[
WT
I

]
.

We can rewrite the strengthened Cauchy–Schwarz inequality (see (B.24)),

(
∇ϕ(f )h , ∇ϕH

)
T

≤ γT |∇ϕ(f )h |1, T |∇ϕH |1, T ,

in terms of the local stiffness matrix AT and coefficient vectors

vf =
[

vf
0

]

and Pvc of ϕ
(f )
h and ϕH = vc ∈ VH , respectively. The first vector has zero en-

tries at the “c” nodes because ϕ(f )h vanishes at the coarse nodes. We have for their
restrictions to T ,

(
v
f
T

)T
AT Pvc, T ≤ γT

((
v
f
T

)T
AT v

f
T

)1/2(
vTc, T P

T
T AT PT vc, T

)1/2
.

We note that Ac, T = P TT ATPT is the coarse element matrix. Introducing

J =
[
I

0

]
,

with zero block corresponding to the “c” nodes, and letting JT be the restriction of
J to T , we finally arrive at the local strengthened Cauchy–Schwarz inequality of our
main interest

vTf, T J
T
T ATPT vc, T ≤ γT

(
vTf, T J

T
T AT JT vf, T

)1/2(
vTc, T P

T
T AT PT vc, T

)1/2
.

Introduce the transformed matrix

AT = [JT , PT ]
T AT [JT , PT ] =

[
J TT ATAT J TT AT PT
P TT AT JT P TT AT PT

]
=
[
Aff, T Af c, T
Acf, T Ac, T

]
.

We note (due to the special form of JT ) that Aff, T is actually a principal submatrix
of AT (corresponding to the “f” nodes in T ) and also that P TT AT PT is the coarse
element matrix Ac, T . This is one reason to have AT referred to as the two-level
hierarchical basis (orHB)matrix.Consider its Schur complementST = Ac, T−Acf, T
(Aff, T )

−1Af c, T . We know (cf., Lemma 3.3) that the strengthenedCauchy–Schwarz
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inequality can equivalently be stated as

vTc, TAc, T vc, T ≤ 1

1− γ 2T
vTc, T ST vc, T

= 1

1− γ 2T
min
vf, T

[
vf, T
vc, T

]T
AT

[
vf, T
vc, T

]

= 1

1− γ 2T
min
vf, T

[
vf, T
vc, T

]T
[JT , PT ]

T AT [JT , PT ]

[
vf, T
vc, T

]

= 1

1− γ 2T
min

vT=JT vf, T+PT vc, T
vTTAT vT . (B.25)

Finally, note that the f.e. function v ∈ Vh (restricted to T ) that has standard nodal
coefficient vector vT if expanded in the two-level HB {ϕ(H)4 , ϕ

(H)
5 , ϕ

(H)
6 } ∪ {ϕ(h)1 ,

ϕ
(h)
2 , ϕ

(h)
3 } will have coefficient vector

[
vf, T
vc, T

]

coming from the representation vT = JT vf, T + PT vc, T . That is, we have then

vTTAT vT =
[

vf, T
vc, T

]T
AT

[
vf, T
vc, T

]
,

or equivalently

AT = [JT , PT ]
TAT [JT , PT ]. (B.26)

Observe thatAT and AT are different. However, their first pivot blocksAff ,T and
Aff, T coincide.We show below that their Schur complements are also the same. Use
now the hierarchical decomposition of any fine-grid vector v,

v =
[

vf
0

]
+ Pvc,

where vc is the restriction of v to the “c” nodes. Using the matrix form of

P =
[
W

I

]
,

we get

v =
[
I W

0 I

] [
vf
vc

]
.

That is, if

v =
[

vf
vc

]
,

we will have vf = vf +Wvc.
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Introduce now the element Schur complement ST of AT . We have

vTc, T ST vc, T = min

vf, T : vT=
[

vf, T

vc, T

] vTTAT vT . (B.27)

It is clear that by using the hierarchical decomposition instead (restricted to T ), we
also have

vTc, T ST vc, T = min

vT=
[

vf, T

0

]
+PT vc, T

vTTAT vT

= min

vT=
[

vf, T

vc, T

] vTT

[
I WT
0 I

]T
AT

[
I WT
0 I

]
vT

= min

vT=
[

vf, T

vc, T

] vTTAT vT .

Here, we used the relation

AT =
[
I WT
0 I

]T
AT

[
I WT
0 I

]
·

Thus, we showed that ST , the Schur complement of AT equals the Schur comple-
ment ST of the two-level hierarchical matrix AT . Therefore, we can rewrite (B.25)
in the following final form relating the coarse element matrix Ac, T and the Schur
complement ST of the local (fine-grid) matrix AT . We have

vTc, TAc, T vc, T ≤ 1

1− γ 2T
vTc, T ST vc, T . (B.28)

Based on the estimate for λT ≡ 1/(1−γ 2T ), the following local-to-global analysis
is immediate, utilizing the minimization property (B.27) of the local Schur comple-
ments ST . We have

vTc Acvc =
∑

T

vTc, TAc, T vc, T

≤
∑

T

λT vTc, T ST vc, T

≤
∑

T

λT

[
vf, T
vc, T

]T
AT

[
vf, T
vc, T

]

=
∑

T

λT vTTAT vT

≤ max
T
λT

∑

T

vTTAT vT

= max
T
λT vTAv.
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Because λT < 4, we have the uniform (global) estimate

vTc P
T APvc ≤ 4 min

v=Jvf+Pvc
vTAv,

where

J =
[
I

0

]
.

The latter is equivalent (cf., Lemma3.3) to the (global) strengthenedCauchy–Schwarz
inequality,

vTf J
T APvc ≤ γ

(
vTf J

T AJvf
)1/2(

vTc P
TAPvc

)1/2
. (B.29)

Here γ = maxT γT . For the particular case of piecewise linear triangular elements,
we have

γ = max
T
γT <

√
3

2
. (B.30)

B.3.2 On the MG convergence uniform w.r.t. the mesh and

jumps in the PDE coefficients

We start with the observation that γ = maxT ∈TH γ
2
T stays away from unity is general.

Note that the local γT depends only on the shape of T and not on its size. That is, if we
keep the elements at every refinement level geometrically similar to a finite number
of coarse elements, then the global γ = maxT γT will be uniformly bounded away
from unity. This verifies one of two of the sufficient conditions (see (ii) in Section 3.3)
that imply two-grid convergence.With the simple choice of

J =
[
I

0

]
,

if we can also show that J TAJ and the symmetrized smoother M̃ restricted to
Range(J ) (i.e., J T M̃J ) are spectrally equivalent (see condition (i) in Section 3.3)
thenwe have amesh-independent two-grid convergenceestimate resultwhich follows
from Theorem 3.25. This was a result originally shown by R. Bank and T. Dupont
in 1980 ([BD80]) forH = 2h and finite element problems corresponding to second-
order self-adjoint elliptic problems.
For the simple J , we have that Aff = J TAJ corresponds to a principal submatrix

of A where we have deleted all rows and columns of A corresponding to the vertices
of the coarse triangles. We first show that Aff is spectrally equivalent to its diago-
nal part, independent of the mesh-size h. To prove this result, we notice that Aff is
assembled from the local matrices Aff, T . It is clear (see, e.g., (B.7)) that the local
s.p.d. matrices Aff, T are spectrally equivalent to its diagonal part with constants
of spectral equivalence that depend on the angles of T only. Hence, if we keep the
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triangles T geometrically similar to a fixed initial set of triangles, then the resulting
matricesAff will be spectrally equivalent to its diagonal part with mesh-independent
constants. Therefore ifM is a smoother such that the symmetrized one M̃ is spectrally
equivalent to the diagonalD of A (such as the Gauss–Seidel, cf., Proposition 6.12),
we have then that Aff and J T M̃J are both spectrally equivalent to Dff = J TDJ

which is the desired result.
In conclusion, we showed that the two-grid method forA based onM andP has a

uniformly bounded convergence factor. Moreover, because all estimates we derived
are based on properties of the local matrices AT the result does not change if we
replace them by any constant ωT > 0 times AT , that is, if we consider problems that
give rise to local matrices ωTAT (and AT referring to the ones corresponding to the
Laplace bilinear form). Thus, we have also proved uniform convergence of the two-
grid method for finite element problems coming from second-order elliptic bilinear
forms a(u, ϕ) =

∫
� ω(x) ∇u · ∇ϕ dx for given polygonal domain � (the local

analysis holds in 3D as well) where the coefficient ω(x) is piecewise constant over
the coarse elements from TH , no matter how large the jumps of ω across the coarse
element boundaries might be. This is one of the main attractive features of the (two-
and multilevel) HB methods. We showed here that the same holds for the standard
two-grid method. We also proved that this extends to the multilevel case, namely,
to the AMLI-cycle MG methods (see Section 5.6.3). Results regarding V -cycle MG
convergence for such problems are not as easy to obtain. We refer to [JW94] and
[WX94], or to [XZh07] for a more recent treatment of the topic.

B.4 Mixed methods for second-order elliptic PDEs

In this section, we consider the mixed finite element method applied to second-order
elliptic problems

Lu ≡ −
d∑

r=1

∂

∂xr

(
d∑

s=1
ar,s(x)

∂u

∂xs

)
= f.

Here f ∈ L2(�) and u ∈ H 1
0 (�). In the mixed finite element method, we first intro-

duce a new unknown (vector) function σ = −A(x)∇u, whereA(x) = (ar,s(x))dr,s=1
and rewrite the problem Lu = f as the following system of first-order PDEs posed
variationally, for appropriate test functions η and ϕ,

(A−1σ, η) +(∇u, η) = 0,
−(div σ, ϕ) = −(f, ϕ).

If we use integration by parts, assuming that η is sufficiently smooth (in order to
perform integration by parts) to arrive at (∇u, η) = −(u, div η) using the fact that
u ∈ H 1

0 (�), the above system admits the symmetric form,

(A−1σ, η) −(u, div η) = 0,
−(div σ, ϕ) = −(f, ϕ). (B.31)
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Because we assume f ∈ L2(�) and ∇u ∈ (L2(�))d a natural space for σ isH(div).
The latter is defined as the vector functions η ∈ (L2(�))d that also have divergence in
L2(�). Therefore the test functions aboveη and ϕ satisfy η ∈ H(div) and ϕ ∈ L2(�).
The system (B.31) does not contain any derivatives of u, therefore a minimal space
for u is L2(�).
Note that inhomogeneous Dirichlet boundary conditions for Lu = f , u = g on

∂�, are easily handled by themixedmethod. The correspondingmixed problem takes
the form, introducing n the unit vector normal to ∂� pointing outward�,

(A−1σ, η) −(u, div η) = −
∫

∂�

g η · n d̺,

−(div σ, ϕ) = −(f, ϕ).
(B.32)

Mixed finite elements for second-order elliptic problems

The discretization of (B.32) requires two finite element spaces, a vector one,R = Rh,
and a scalar one,W = Wh which are subspaces of H(div) and L2(�), respectively.
The discrete problem takes then the following form.
Find σ h ∈ Rh and uh ∈ Wh such that

(A−1σ h, ηh)− (uh, div η) = −
∫

∂�

g η
h

· n d̺ for all η
h

∈ Rh,

−(div σ h, χh) = −(f, χh) for all χh ∈ Wh.
(B.33)

For triangular elements τ a popular pair of spaces is the lowest-order Raviart–
Thomas spaces Rh and Wh. They are associated with a common triangulation Th =
{τ }. Any function η ∈ Rh restricted to a triangle τ has the form

[
a + cx

b + cy

]
;

that is, it has three degrees of freedom (dofs); namely, the coefficients a, b, and c.
We can define locally three basis functions η

ek
, associated with the three edges eik ,

k = 1, 2, 3 of any given triangle τ . Thus, globally, the number of the basis functions
will equal the numberof the edges of all triangles in T . The basis functions are defined
from the following edge-based integral conditions, for all three edges el of τ ,

∫

el

η
ek

· nel d̺ = δek, el , l = 1, 2, 3.

These conditions ensure that ηe associated with a particular edge e is supported in
the (possibly) twoneighboring elements τ+

e and τ
−
e that share e. (Oneof these triangles

may be empty if e is a boundary edge). Also, we automatically guarantee that ηe · ne
is continuous across e because it happens (see below Remark B.11) that ηe · ne is
constant on e and due to the integral condition

∫
e
ηe · ne = 1. Therefore the constant
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in question is uniquely specified (from the possibly two neighboring elements that
share e). Thus, the basis functions belong toH(div), because their normal components
are continuous. This is a characterization of H(div) (for piecewise smooth vector
functions). To prove it, consider any piecewise polynomial vector function η with
continuous normal components η · ne, for any e ∈ E (where E is the set of all edges).
By integration by parts, for any sufficiently smooth functionϕvanishing on ∂�, we get

(∇ϕ, η) =
∑

τ

∫

τ

(∇ϕ) · η dx

= −
∑

τ

∫

τ

ϕ div η dx +
∑

e∈E

∫

e

[η · ne] ϕ d̺ = −(ϕ, div η),

because the jump terms [η · ne] are zero. This shows that div η is well defined as a

function of L2(�) (due to the density of H 1
0 (�) in L2(�)).

The basis functions χτ of W , for every τ are trivially constructed because those
are piecewise constant functions; that is, for any given τ , χτ = 1 on τ and χτ = 0
outside τ .
We can derive the following more explicit equations for computing the basis

functions ofR. For any triangle τ with vertices xik , k = 1, 2, 3, consider themidpoints
xir ,is = 1

2 (xir + xis ). r = 1, s = 2, r = 2, s = 3, and r = 1, s = 3. Then, define
for each midpoint xir ,is , or equivalently, any edge e = (xir , xis ), a basis function

ηe = η
(xir , xis )

=

⎡
⎢⎣
ae + ce

1

h
(x − xir ,is )

be + ce
1

h
(y − yir ,is )

⎤
⎥⎦ .

The conditions for determining the three coefficients ae, be, ce read, for all three
edges e

′ = (ik, il),

δe, e′
1

|e′ | = ne′ ·
[
ae
be

]
+ ce

1

h

1

|e′ |

∫

e
′

ne′ ·
[
x − xir ,is
y − yir ,is

]
d̺.

The midpoint x(ik,il) has geometric coordinates xik,il = 1
2 (xik + xil ) and yik ,il =

1
2 (yik + yil ). Now, because

n
e
′ ·
[
x − xik ,il
y − yik ,il

]
= 0

for (x, y) on edge e
′
(because n

e
′ is normal to that edge), we get the somewhat

simplified system of three equations (for the three edges e
′
of τ ) and three unknowns,

(ae, be, ce),

δ
e, e

′
1

|e′ |
= n

e
′ ·
[
ae
be

]
+ cene′ ·

[
(xik,il − xir ,is )/h
(yik,il − yir ,is )/h

]
.

Here, δ
e, e

′ = 0 if e 
= e′
and δe, e = 1.
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Remark B.11. A general observation is that ae, be, and ce are orderO(h−1) because
1/|e′| = O(h−1). Also, div ηe = (2/h)ce = O(h−2). Also, we have

ne · ηe = ne ·
[
ae
be

]
+ ce

h
ne ·

[
x − xir ,is
y − yir ,is

]

and the latter term vanishes for (x, y) on e. That is,

ne · ηe = ne ·
[
ae
be

]
= Const on e.

Because the degrees of freedom for the space Rh are associated with the set E it
is convenient to have global numbering of the edges, that is, e1, e2, e3, . . . , ene .
Compute now for any element τ , having edges ei1, ei2 , ei3 , the element matrices,

Aτ =

⎛
⎝
∫

τ

ηT
eik
A(x) η

eil
dx

⎞
⎠
3

k,l=1

,

Bτ = −|τ |
[
div ηei1 , div ηei2 , div ηei3

]
.

Here |τ | is the area of τ and we used the fact that the div ηil for l = 1, 2, 3, are
constants on τ . Based on Remark B.11, we see that the entries of both Aτ and Bτ are
orderO(1).
Then after the usual assembly, we end up with the global matrices A and B,

wTAv =
∑

τ∈T
wTτ Aτvτ , and yTBv =

∑

τ∈T
yTτ Bτ vτ .

Note that vτ , wτ ∈ R3, whereas yτ is just a scalar. Finally, the finite element problem
(B.33) takes the following matrix–vector form

[
A BT

B 0

] [
v

x

]
=
[

g

f

]
. (B.34)

Here v = (ve)e∈E and x = (ξτ )τ∈T . The entries ve and xτ are scalars and they are the
coefficients in the expansion of σ h =

∑
e∈E ve ηe and uh =

∑
τ∈T ξτ χτ . The r.h.s.

g = (ge)e∈E has entries ge = −
∫
e g η ·ne d̺ that might be possibly nonzero only for

boundary edges e. Finally, for the second block of the r.h.s., f , we have f = (fτ )τ∈T
with fτ = −

∫
τ
f dx.

We introduce next the so-called Fortin projection (originated in [F77]). It is a
useful tool in proving then “inf–sup” condition as well as in deriving error estimates
in the mixed f.e. method.

Definition B.12 (Fortin projection). Consider, for any sufficiently smooth vector-

function η, the following edge-based defined projection π = πh : η �→ πη ∈ Rh
with dofs equal to

∫

e

(πη) · ne d̺ =
∫

e

(η) · ne d̺.
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The projection π = πh defines a unique function

πη =
∑

e∈E

⎛
⎝
∫

e

η · ne d̺

⎞
⎠ ηe ∈ R. (B.35)

It satisfies the important “commutativity” property

(div η, χ) = (div πη, χ), for any χ ∈ Wh.

The latter is true because both expressions equal (using the divergence theorem),

∑

e

∫

e

η · ne [χ]e d̺.

Weused here the fact that the jump term [χ]e is constant on e for anyχ ∈ W (becauseχ
is a piecewise constant function). Introducing theL2-projectionQh : L2(�) �→ Wh,
one can rewrite the above commutativity property as follows,

Qh div = div πh. (B.36)

We note that both πh and Qh are easily computable based on local operations. The
actions of πh are seen from the expression (B.35) whereas Qh is computable from
the following explicit expression,

Qhχ =
∑

τ

1

|τ |

∫

τ

χ dx χτ .

We can easily check that (Qhχ, θ) = (χ, θ) for any θ ∈ Wh.
In what follows, we verify an “inf–sup” estimate.
We assume, for simplicity, that the domain� is such that the Poisson equation

−�u = χ in � and u = 0 on ∂�,

for any given χ ∈ L2(�) admits full regularity (some minimal regularity is generally
sufficient); that is, we have

‖u‖2 ≤ C‖χ‖0.

This is the case for � being a convex polygon. Due to the identity ‖∇u‖2 =
(χ, u) ≤ CF ‖χ‖0‖∇u‖0 (using Schwarz and Friedrich’s inequalities), we also
have ‖u‖1 ≤ CF ‖χ‖0. Consider then w = πh(∇u) ∈ Rh. We first notice (because
div πh = Qhdiv) that

‖div w‖0 = ‖Qh∇u‖0 ≤ ‖∇u‖0 ≤ CF ‖χ‖0.
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Also, by the definition of πh, we have
∫
e(∇u) · ne d̺ =

∫
e w · ne d̺. Therefore

(based on Remark B.11),

‖w‖20 ≃
∑

e∈E

⎛
⎝
∫

e

(∇u) · ne d̺

⎞
⎠
2

‖ηe‖2τ−
e ∪τ+

e
≤ C

∑

e∈E

⎛
⎝
∫

e

(∇u) · ne d̺

⎞
⎠
2

.

Use now the following inequality for any function ψ ∈ H 2(τ−
e ∪ τ+

e ),

⎛
⎝
∫

e

(∇ψ) · ne d̺

⎞
⎠
2

≤ Ch

∫

e

(∇ψ · ne)
2 d̺

≤ C
(
‖∇ψ‖2

0, τ−
e ∪τ+

e
+ h2‖ψ‖2

2, τ−
e ∪τ+

e

)
.

This estimate is proved by first verifying the result on the unit-size domain (based on
a trace theorem result) and then changing the variables to get the domain of size h
which gives rise to the above powers of h. Therefore,

‖w‖20 ≤ C‖∇u‖20 + Ch2‖u‖22 ≤ (C + Ch2) ‖χ‖20.

That is, we proved

‖w‖2
H(div) ≤ β ‖χ‖20.

The latter estimate shows the first “inf–sup” estimate

‖χ‖0 ≤ β sup
w∈R

(χ, div w)

‖w‖H(div)
. (B.37)

However, another choice of norms is also possible. It gives a different “inf–sup”
condition. Consider the identity (χ, div w) = −

∑
e∈E

∫
e
[χ]e w · ne d̺. Choose

now

w = −
∑

e∈E
[χ]e ηe.

Then, (χ, div w) =
∑
e∈E [χ]

2
e . Again based on Remark B.11, we have

‖w‖20 ≃
∑

e∈E
[χ]2e ‖ηe‖2τ−

e ∪τ+
e

≤ C
∑

e∈E
[χ]2e,

and

‖div w‖20 ≃
∑

e∈E
[χ]2e ‖div ηe‖2τ−

e ∪τ+
e

≤ Ch−2∑

e∈E
[χ]2e .
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This shows, that for a mesh-independent constant β,

‖w‖20 + h2‖div w‖20 ≤ β
∑

e∈E
[χ]2e = β (χ, div w),

which implies the following alternative “inf–sup” estimate

‖χ‖1, h ≡
(
∑
e∈E

[χ]2e

)1/2
≤ β sup

w∈R

(χ, div w)
(
‖w‖20 + h2‖div w‖20

)1/2

≤ β sup
w∈R

(χ, div w)

‖w‖0
.

(B.38)

We next show that the norm ‖.‖1, h is stronger than the L2-norm.

Lemma B.13. The following inequality holds, for any χ ∈ Wh,

‖χ‖0 ≤ C‖χ‖1,h.

Proof. The space Wh is associated with triangular elements τ and let |τ | ≃ O(h2).
We refine the triangles (by connecting the midpoints of the edges of every triangle)
and we do this twice. The resulting triangulation is denoted Th/4. Next, we introduce
the space of piecewise linear functionsWh/4 associated with Th/4. Let Nh/4 denote
the set of all vertices of the triangles in Th/4. Define the mapping P : Wh �→ Wh/4
as follows. On the strictly interior triangle τ 0 ⊂ τ , τ ∈ Th, and τ 0 ∈ Th/4, we let
Pχ = χ . At all remaining nodes in Nh/4 that are shared by two or more triangles
from Th we let Pχ be a simple arithmetic average of the values of χ coming from the
triangles that share that node. Finally, define the “cut-off” function θ ∈ Wh/4 which
is 1 on all strictly interior nodes in Nh/4 and zero on ∂�. It is clear that

‖χ‖0 ≃ ‖θ(Pχ)‖0.

Based on the chain rule∇(θPχ) = θ∇(Pχ)+(Pχ)∇θ , and noticing that∇θ is zero
outside a strip �h near ∂� of widthO(h), and that within the strip |∇θ | ≤ Ch−1, we
obtain the estimate,

|θPχ |21 ≤ C|Pχ |21 + C

h2

∫

�h

χ2(x) dx

≤ C‖χ‖21,h + C
∑

e=∂�∩τ
χ2τ

≤ C‖χ‖21,h. (B.39)

We used that the |.|1 (semi)norm of a finite element function ϕ = Pχ is simply a
square root of the sum of squares of differences (ϕ(xi)−ϕ(xj )), for any neighboring
pair of nodes xi, xj ∈ Nh/4 (i.e., belonging to a common fine-grid element in Th/4).
And because all such differences can be expressed as a (fixed) sumof differences of the
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form χτ1 −χτ2 for neighboring elements τ1, τ2 ∈ Th, the estimate |Pχ |21 ≤ C‖χ‖21,h
is seen.
The desired norm bound follows from Friedrich’s inequality and estimate (B.39)

‖χ‖20 ≃ ‖θPχ‖20 ≤ CF |θPχ |21 ≤ C‖χ‖21, h. �

We complete the present section by summarizing the result for the “inf–sup”
conditions that we can exploit for the saddle-point matrix in (B.34).

Theorem B.14. The pair of lowest-order Raviart–Thomas spaces Rh, Wh, ensure

respective “inf–sup” conditions if equipped with the following norms.

• Rh equipped with the H(div)-norm andWh with the L2-norm; or

• Rh equipped with the (L2(�))
2-norm ‖.‖0, whereasWh equipped with the ‖.‖1,h-

norm (defined in (B.38)).
Also, the saddle-point operator (matrix) in (B.34) is bounded in both pairs of

norms.

Proof. To prove the boundedness of the saddle-point operator, in both pairs of norms,
we first notice that

wTAv ≤ C‖w‖0 ‖v‖0,

and second, let v and x be the coefficient vectors of v ∈ Rh and χ ∈ Wh, respec-
tively. Then,

xTBv = (div v, χ) ≤ ‖div v‖0‖χ‖0,

which proves boundedness of the saddle-point operator in the first pair of norms
‖.‖H(div), ‖.‖0. On the other hand, because (using integration by parts)

xTBv = (div v, χ) =
∑

e∈E

∫

e

v · ne [χ]e d̺ ≤ C‖v‖0 ‖χ‖1,h,

the boundedness of the saddle-point operator, in the second pair of norms,‖.‖0, ‖.‖1,h,
also follows. �

Corollary B.15. The pair of norms in ‖.‖H(div) and ‖.‖L2(�) used for the finite ele-

ment spaces Rh andWh give rise to the following block-diagonal matrix,

[
A+ BTM−1B 0

0 M

]
.

Here, M = diag(|τ |)τ∈Th ≃ h2 I is the diagonal mass matrix corresponding to the

spaceWh of piecewise constant functions. Due to our choice of basis {ηe}e∈Eh of Rh,

we haveA+BTM−1B ≃ I + h−2BTB (cf. Remark B.11). The other pair of norms,



B.4 Mixed methods for second-order elliptic PDEs 447

‖.‖(L2(�))2 and ‖.‖1,h, give rise again to a block-diagonal matrix

[
A 0
0 D

]
,

where A ≃ I and D corresponds now to a discrete (cell–centered) Laplace opera-

tor −�h.

The first pair of norms, ‖.‖H(div), ‖.‖L2(�), require constructing precondition-
ers for the Raviart–Thomas space Rh and the H(div) bilinear form. In Appendix F
we prove a general MG convergence result for the weighted H(div)-bilinear form
(u, v)+ τ (div u, div v). For the purpose of that analysis, consider the mass (Gram)
matrix G computed from the Raviart–Thomas space Rh. Consider also the diagonal
matrixD = ((div ηe, div ηe))e∈Eh . Because on a given element τ that shares an edge
(face in 3D) e ∈ Eh, div ηe is constant, we have the identity

|τ | |div ηe|2 =
∫

τ

|div ηe|2 dx = |div ηe|
∫

e

ηe · ne d̺ = |div ηe|.

Note that for e
′ ⊂ ∂τ ,

∫
e
′ ηe ·ne d̺ = 1 or 0. Therefore, we have that |div ηe| = 1/|τ |.

Note that div ηe 
= 0 for any basis function ηe. Indeed, if we assume that div ηe = 0
on an element τ such that e ⊂ ∂τ , then by the divergence theorem, we will have
0 =

∫
∂τ
ηe · n d̺ =

∫
e
ηe · n d̺ = 1, or − 1, which is a contradiction.

Therefore, the above diagonal matrix D is spectrally equivalent to the scaled
mass matrix h−2 G. Note that the part of the stiffness matrix that comes from the
(div ., div .) form is only semidefinite (with a large null space), however, its diagonal
D is s.p.d. Thus, we showed the following result.

Proposition B.16. The diagonal of A coming from the parameter-dependentH(div)-
bilinear form (u, v)+ τ (div u, div v) and the lowest-order Raviart–Thomas space

Rh is spectrally equivalent to the weighted mass matrix (1+ τh−2) G.

The choice of the second pair of norms ‖.‖0, ‖.‖1,h to define block-diagonal
preconditioners for the saddle-point matrix in (B.34) was considered in [RVWa].
Multigrid methods for spaces of discontinuous functions (giving rise to generaliza-
tions to the norm ‖.‖1,h) are found in [GK03].
An alternative to the block-diagonal preconditioning approach for the saddle-point

operator in (B.34) is to explore preconditioning by multigrid methods in a div-free
subspace. Assume that we have two nested pairs of finite element spaces, a coarse
one RH , WH , and a fine one Rh, Wh coming from two nested triangulations TH
and Th. That is, the elements in Th are obtained by refining the elements T of TH . We
notice that WH ⊂ Wh and RH ⊂ Rh. Therefore, from these embeddings, we have
interpolationmatricesQ andP defined naturally. The coarse saddle-pointmatrix reads

[
Ac BTc
Bc 0

]
,
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and due to the nestedness of the f.e. spaces, we haveAc = PTAP and Bc = QTBP .
Also, if a coarse function vH ∈ RH satisfies

(div vH , χH ) = 0 for all χH ∈ WH ,

this implies that (pointwise) div vH = 0. These facts, translated into a matrix–vector
form can be interpreted, first as Bcvc = 0, and second as BPvc = 0. This gives us
the opportunity to use the constrained minimization approach (see Section 9.5) for
solving the saddle-point problem (B.34) if f = 0. More details are given further in
Section F.3.

B.5 Nonconforming elements and Stokes problem

We are concerned in the present section with the following mixed system

−�σ − ∇p = f,

div σ = 0,

for σ ∈ (H 1
0 (�))

d and p ∈ L2(�). Here d = 2 or 3. The problem is seen to be well
posed if rewritten variationally,

(∇ σ, ∇θ)+ (p, div θ) = (f, θ)), for all θ ∈ (H 1
0 (�))

d

(div σ, χ) = 0 for all χ ∈ L2(�).

Note that there are no boundary conditions imposed onp. Also, because (1, div θ) =∫
∂�

n · θ d̺ = 0 for θ ∈ (H 1
0 (�))

d which implies (p + C, div θ) = (p, div θ) for
any constant C, it is clear that p is determined up to an additive constant.
We introduce now the popular P1 nonconforming triangular element (also called

the Crouzeix–Raviart element). The finite element space Vh (of scalar functions) con-
sists of piecewise linear basis functions that are continuous at the midpoints xme of
every edge e ∈ Eh of the triangles τ ∈ Th. That is, the functions from Vh are not
generally inH 1(�). However, a certain integration by parts formula still holds. Con-
sider the vector function space Vh = (Vh)2. LetWh be again the space of piecewise
constant functions (w.r.t. the triangles τ ∈ Th). For any η ∈ Vh and a χ ∈ Wh,
we have

∑

τ∈Th

∫

τ

div η χ dx = −
∑

τ∈Th

∫

∂τ

η · n χ d̺

= −
∑

τ∈Th

∑

e⊂∂τ

∫

e

η · ne χ d̺

=
∑

τ∈Th

∑

e⊂∂τ
|e| η(xme) · ne χ.
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Here we used the fact that η is a linear function on any edge e, therefore the midpoint
integration rule is exact for such functions. Thus, becaues η is continuous at the
midpoints xme , the following integration by parts formula holds,

∑

τ∈Th

∫

τ

div η χ d x =
∑

e∈Eh

∫

e

η · ne [χ]e d̺. (B.40)

We can also define a Fortin projection π = πh for any sufficiently smooth scalar
function and for each individual component of any (sufficiently smooth) vector func-
tion. The projection πh defines a function πhη ∈ Vh, where the degrees of freedom
(dofs) of πhη (one dof per edge e ∈ E) are specified from the equations

∫

e

πhη d̺ =
∫

e

η d̺ for all e ∈ E .

This means that (πhη)(xme) = 1/|e|
∫
e
η d̺. Then, for any sufficiently smooth vector

function η and any χ ∈ Wh, we have

(div η, χ) =
∑

τ∈Th

∫

τ

(div η) χ d x =
∑

τ∈Th

∫

τ

(div πhη) χ d x, (B.41)

because both last expressions equal
∑
e∈Eh

∫
e
η · ne [χ]e d̺, (see (B.40)). Intro-

duce the piecewise divergence operator divh; that is, for any piecewise smooth η,
divhη ∈ L2(�) is simply equal to div η, well-defined, piecewise on every element
τ ∈ Th. Also, let Qh : L2(�) �→ Wh be the L2-projection. We can then rewrite the
commutativity property (B.41) in the operator form,

Qhdiv = divhπh. (B.42)

The above product of operators is applied to smooth functions.
We are interested in the finite element problem which reads as follows.
Find σ h ∈ Vh and uh ∈ Wh, such that
∑
τ∈Th

∫
τ

∇σ h · ∇θ dx +(uh, divh θ) = (f, θ) for all θ ∈ Vh,

(divh σ h, χ) = 0 for all χ ∈ Wh.
(B.43)

Again, we stress the fact that uh is determined up to an additive constant if Vh
consist of functions vanishing at the midpoints of the edges on the boundary of �.
Introduce the stiffness matrices A and B which are computed by assembling the
element matrices

Aτ =
[
Aτ 0
0 Aτ

]
and Bτ =

[
Bxτ , B

y
τ

]
.

The element matrices are computed based on the scalar (edge-based) piecewise lin-
ear nonconforming basis functions {ϕe1, ϕe2, . . . , ϕene } and the trivially constructed
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basis functions {χτ }τ∈Th of Wh. More specifically, for any triangle τ with edges
ei1, ei2 , and ei3 , we have

Aτ =

⎛
⎝
∫

τ

∇ϕeil · ∇ϕeik dx

⎞
⎠
3

l,k=1

, Bxτ = |τ |
(
∂ϕei1

∂x
,
∂ϕei2

∂x
,
∂ϕei3

∂x

)
,

and similarly,

Byτ = |τ |
(
∂ϕei1

∂y
,
∂ϕei2

∂y
,
∂ϕei3

∂y

)
.

Note that Aτ corresponds to a nonconforming (scalar) Laplace element matrix. In-
troduce also the coefficient vectors

V =
[

Vx

Vy

]
of σ h =

[
σ xh
σ
y
h

]

and x of uh, and the r.h.s. vector

F =
[

Fx

Fy

]

coming from the r.h.s. of the continuous problem

f =
[
f x

f y

]
.

More specifically, we have Fx = ((f x, ϕe))e∈Eh and Fy = ((f y, ϕe))e∈Eh ,
The discrete problem (B.43) takes the following saddle-point matrix-vector

form

[
A BT

B 0

] [
V

x

]
=
[

F

0

]
. (B.44)

We shownext an “inf–sup” condition for the discrete saddle-point operator coming
from the finite element discretization of the Stokes problem.
Denote by E0 = E0h the set of all interior edges. Note first that πh is bounded in

the L2-norm

‖πhη‖20 ≃
∑

e∈E0
|τ−
e ∪ τ+

e |

⎛
⎝1
e

∫

e

η d ̺

⎞
⎠
2

≤ C
∑

τ

∫

τ+
e ∪τ−

e

(η2 + h2|∇η|2) dx ≤ C‖η‖21.
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Also, using the fact that the square of the L2-norm of the gradient of a finite element
function can be bounded by a sum of squared differences, we easily obtain the next
estimate

∑

τ

∫

τ

|∇πhη|2 dx ≃
∑

τ∈Th

∑

e1, e2⊂∂τ

⎛
⎝ 1
e1

∫

e1

η d ̺ − 1

e2

∫

e2

η d ̺

⎞
⎠
2

≤ C|η|21.

The second inequality is seen easily for smooth functions η, and in general, by con-
tinuity. Thus, we have

|πhη|21,h ≡
∑

τ∈Th

∫

τ

|∇πhη|2 dx ≤ C‖η‖21. (B.45)

We use the same estimate for vector functions η ∈ (H 1
0 (�))

2. Assume now that the
continuous “inf–sup” condition holds (cf., e.g., [B01])

|χ |0 ≡ inf
C=const

‖χ − C‖0 ≤ β sup
v∈(H 10 (�))2

(χ, div v)

|v|1
.

Recall (B.42) which reads (χ, div v) = (χ, Qhdiv v) = (χ, divh πhv) for
χ ∈ Wh. This commutativity property, the boundedness of πh (shown in (B.45)) used
in the continuous “inf–sup” condition implies the desired discrete one; that is, we have

|χ |0 ≤ β sup
v∈(H 10 (�))2

|πhv|1,h
|v|1

sup
η∈Vh

(χ, divhη)

|η|21,h
≤ Cβ sup

η∈Vh

(χ, divhη)

|η|21,h
. (B.46)

The boundedness of the discrete (finite element) Stokes operator in the pair of norms
‖.‖1,h, |.|0 is trivially seen. To summarize, we have the following main result.

Theorem B.17. The discrete Stokes operator in (B.44) is well posed in the pair of

norms |.|1,h, |.|0 that give rise to the block-diagonal matrix

[
A 0
0 M

]
.

Here,M = diag(|τ |)τ∈Th ≃ h2 I , is the diagonal mass matrix coming from the space

Wh of piecewise constants.

The s.p.d. matrix A (a pair of discrete nonconforming finite element Laplacian)
can be preconditioned very efficiently by MG methods that can be constructed based
on the fact that the nonconforming space contains the conforming one on the same
mesh. On coarse levels one can use conforming spaces.
Alternatively, the discrete problem (B.44) can be treated as a constrained mini-

mization one as in Section 9.5. For the purpose of defining a coarse space needed
for efficiency of the constrained minimization algorithm analyzed there, consider
two nested triangulations: a coarse one, TH = {T }, and a refinement of it, Th = {τ }.
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Introduce also the coarse and fine pairs of finite element spacesVH, WH andVh, Wh.
They lead to the fine-grid matrices A and B and to the coarse ones Ac and Bc,
respectively. We notice thatWH ⊂ Wh but VH 
⊂ Vh. That is why we need to define
an interpolation matrix P that maps a coarse coefficient vector vc into a coefficient
vector Pvc of the f.e. function from Vh. The interpolation mapping for the second
component of the solution Q is naturally defined from the embedding WH ⊂ Wh
simply as piecewise constant interpolation.
Our goal next is to define a P such that Bcvc = 0 implies BPvc = 0 (a condition

needed in Section 9.5). For every coarse edge eH = ∂T + ∩ ∂T −, T +, T − ∈ TH ,
define v+

H and v
−
H as the traces of a given coarse function vH ∈ VH coming from the

two neighboring coarse elements T + and T −. Also, for any coarse element T con-
sidered as a fine-grid subdomain (union of four similar fine-grid triangles) introduce
the local spaces Vh(T ) of functions from Vh restricted to T and similarly, letWh(T )
be the restriction of the functions fromWh to T . Finally, let V0h(T ) be the subspace
of Vh(T ) of functions that vanish at the midpoints of (fine-grid) edges e ⊂ ∂T .
Given vH ∈ VH , consider then for any T ∈ TH the following local problems.
Find vh ∈ Vh(T ) and uh ∈ Wh(T ) such that

∑

τ⊂T

∫

τ

(∇vh) · (∇η) dx +
∑

τ⊂T

∫

τ

uhdiv η dx

=
∑

τ⊂T

∫

τ

(∇vH ) · (∇η) dx, for all η ∈ V0h(T ),

∑

τ⊂T

∫

τ

divh vhχ dx =
∑

τ⊂T

∫

τ

(divH vH ) χ dx, for all χ ∈ Wh(T ),

(B.47)

subject to the Dirichlet boundary conditions on every coarse edge eH ⊂ ∂T , and any
e ⊂ eH , e ∈ Eh,

1

|e|

∫

e

vh d̺ = Const = 1

|eH |

∫

eH

v+
H d̺ = 1

|eH |

∫

eH

v−
H d̺. (B.48)

That is, vh is constant on every fine-grid edge e contained in a given coarse edge eH .
For edges eH on the boundary ∂� this expression is seen to be zero. The inhomoge-
neous Dirichlet problems (B.47)–(B.48) are solvable because

∑
τ⊂T

∫
τ
(divh vh −

divH vH ) dx = 0, which is equivalent to
∫
∂T vh · n d̺ =

∫
∂T vH · n d̺ ≡∫

∂T v
+
H ·n d̺ =

∫
∂T v

−
H ·n d̺. Because the boundary conditions on the coarse edges

eH ∈ EH are consistent, the local problems (B.47)–(B.48) define a global function
vh ∈ Vh.
The matrix representation of the mapping vH ∈ VH �→ vh ∈ Vh defines

our interpolation matrix P . It is clear that (by construction) P satisfies the prop-
erty “Bcvc = 0 implies BPvc = 0”. Also, because WH ⊂ Wh, we have that
(divh vh, χ) = (divH vH , χ) for any χ ∈ WH which in a matrix–vector form
translates to QTBPvc = Bcvc. That is, Bc = QTBP .
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The overall method (Algorithm 9.5.1 described in Section 9.5) explores solving
small fine-grid constrainedminimization problems in addition to a global coarse con-
strained minimization one. We note that here the coarse matrix used in the algorithm
is PTAP (which is different from Ac provided by the coarse discretization).

B.6 F.e. discretization of Maxwell’s equations

An H(curl) formulation for the electric field

Without entering into much detail, the time-dependent Maxwell equations are de-
scribed by five vector fields E, H, D, B, and J plus one scalar function ̺ which are
related as follows

curl E = −∂B

∂t
,

curl H = ∂D

∂t
+ J,

div D = ̺,
div B = 0,

div J = −∂̺
∂t
.

Here D and H are the densities of the electric and magnetic flux and under some
assumptions about linearity the following relations hold for some known positive
coefficients ǫ and µ,

D = ǫ E and H = µ−1B.

Theoretically, these equations are solved onR3. In practice, this is done on a bounded
domain � imposing boundary conditions such as

E × n = 0 and B · n = 0 on ∂�.

Using the above relations, assuming that J is known, we end up with the following
system

curl E = −∂B

∂t
,

curl µ−1B = ∂ǫE

∂t
+ J.

After a time discretization tn+1 − tn = �t , the following reduced problem for En+1
is obtained

ǫEn+1 + (�t)2 curl µ−1curl En+1 = ǫEn + (�t) (curl µ−1Bn − Jn+1).

Letting u = En+1, ǫ = β and α = (�t)2µ−1, we have the following second-
order PDE

curl α curl u + βu = f
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subject to u × n = 0 on ∂�. We consider it in a “weak sense”; that is, for any test
function v using integration by parts and the boundary conditions, we arrive at the
identity

(α curl u, curl v)+ (β u, v) = (f, v). (B.49)

The space of vector functions from L2(�) that have a well-defined curl in the L2-
sense is denoted by H(curl, �) and if the functions satisfy the boundary condition
u × n = 0 on ∂� it is denoted by H0(curl, �).
We now describe the f.e. discretization process in more detail. Introduce a tri-

angulation Th of � consisting of tetrahedral elements T . A popular choice of finite
element space is the lowest-order Nédélec space

Qh = {ϕ ∈ H0(curl , �) : ϕ|T = a + b × x, T ∈ Th}.

Here, a, b ∈ R3 depend on T . The latter definition more specifically means that the
tangential componentsϕ · te of any ϕ = a +b×x are continuous on the edges e of all
T s. Note that every T has 6 edges and there are 6 degrees of freedom (the coefficients
a and b of ϕ restricted to T ) to be specified. A natural choice then seems to be the
quantities

∫

e

ϕ · te d̺

for all 6 edges e of T . Let E0h be the set of interior edges (w.r.t. �). To define a
Lagrangian basis {ϕe}e∈E0h ofQh, we letϕe = ϕe(x) = ae+1/|e| be×(xme−x)where

xme is themidpoint of the edge e. Then the Lagrangian condition
∫
e
′ ϕe ·te′ d̺ = δ

e, e
′

reads, for e
′ = e,

1

|e| = ae · te,

and for e
′ 
= e, based on the vector identity (p × q) · r = p · (q × r),

0 =
(

ae + 1

|e| be × (xme − xm
e
′ )

)
· te′

= ae · t
e
′ + 1

|e| ((xme − xm
e
′ )× t

e
′ ) · be.

Note that ae,be = O(h−1) and hence curl ϕe = 1/|e| (−2be) is order O(h−2),
whereas ‖ϕe‖20 ≃ O(|T |h−2) = O(h). This shows that the entries of the element
stiffness matrix AT = (a(ϕ

e
′ , ϕe))e, e′⊂∂T are of order O(α h

−1 + βh). Finally,
notice that for x ∈ e′

,ϕe(x)·te′ = (ae+1/|e| be×(xme−xm
e
′ ))·te′ = const, because

then x − xm
e
′ is parallel to t

e
′ and hence be × (xm

e
′ − xe) is orthogonal to t

e
′ . This

shows the global continuity of the tangential components of the basis functions ϕe.
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Adirect construction of theLagrangian basis {ϕe}ofQh is as follows (e.g., [SLC]).
Introduce the scalar piecewise linear basis functions ϕxk associated with every vertex
xk ∈ Nh. A compact definition is based on the nodes x∗

k which are the orthogonal
projections of xk onto the opposite (to xk) face Fk of T . More specifically, we have

ϕxk(x) = 1

|xk − x⋆k|2
(xk − x⋆k) · (x − x⋆k).

We easily compute the gradient of the basis functions, namely, ∇ϕk = 1/(|xk −
x⋆k|2) (xk − x⋆k). Then, because te = ǫe 1/(|xk − xl|)(xk − xl) (ǫe = 1 or −1) and
(xk − x⋆k) · (xl − x⋆k) = 0 (noting that xl, x⋆k ∈ Fk), we have

∇ϕxk · te = 1

|xk − x⋆k|2
(xk − x⋆k) · ǫe

1

|xk − xl |
(xk − xl) = ǫe

|xk − xl|
. (B.50)

Similarly,

∇ϕxl · te = − ǫe

|xk − xl |
. (B.51)

TheNédélec (vector) basis functionϕe, for a given edge e = (xk, xl) is then defined as

ϕe = ϕxk ∇ϕxl − ϕxl ∇ϕxk .

We notice that ϕe · t
e
′ = 0 for any edge e

′
different from e. This is true because either

∇ϕxl · te′ = 0 or ϕxk(x) = 0 for x on e
′
. Also, for x on e, using (B.50) and (B.51),

we finally obtain

ϕe · te = ϕxk∇ϕl · te − ϕxl∇ϕk · te

= − ǫe

|xk − xl|
(ϕxk + ϕxl )

= − ǫe

|xk − xl|
.

We used the fact that the scalar basis functions {ϕxi }xi∈Nh
sum up to unity and the

only ones that are nonzero on e are ϕxk and ϕxl ; that is why ϕxk + ϕxl = 1 on e.
We are interested in solving the following variational problem,

Find u ∈ Qh : (α curl u, curl v)+ (β u, v) = (f, v) for all v ∈ Qh .

Once having a basis {ϕe}e∈E0h ofQh , we can compute the stiffness matrix of (B.49).
It consists of two parts, a weighted mass matrix G = ((β ϕe′ , ϕe))e, e′∈E0h

and

a curl-term C = ((α curl ϕ
e
′ , curl ϕe))e, e′∈E0h

. Compute also the r.h.s. vector

f = ((f, ϕe))e∈E0h
and expand the unknown solution u =

∑
e∈E0h

ue ϕe in terms of
the basis ofQh. The coefficient vector u = (ue)e∈E0h is the unknown vector. After the
discretization, we end up with the system of linear equations, letting A = C + G,

Au = f .



456 B Properties of Finite Element Matrices. Further Details

Each unknown (degree of freedom) is associatedwith an edge e from E0h . The problem
can get very largewhenh �→ 0. Thus,we need an efficient (iterative) solver, of optimal
order if possible. We prove in Section F.2 an optimal MG convergence result for a
parameter-dependentH(curl)-form corresponding to β = 1 and α being a constant
τ > 0 which can get large. For the purpose of that analysis we need to look at
the diagonal of C. It equals τ diag((curl ϕe, curl ϕe))e∈E0h

. Because curl ϕe =
(1/|e|)(−2be) = 2∇ϕxk × ∇ϕxl , where e = (xk, xl) it is clear that be is nonzero
(because∇ϕxk and∇ϕxl are nonparallel constant vectors for k 
= l). That is, although
C is only semidefinite with large null space, its diagonal is s.p.d. and it is spectrally
equivalent to the scaled mass matrix h−2G. This shows the following result.

Proposition B.18. The diagonal of A coming from the parameter-dependentH0(curl)

bilinear form (u, v)+ τ (curl u, curl v) and the lowest-order Nédélec space Qh, is

spectrally equivalent to the weighted mass matrix (1+ τh−2) G.



C

Computable Scales of Sobolev Norms

C.1 H s-stable decompositions

This chapter describes a simple construction ofH s-stable computable decompositions
of functions based on easily computable quasi-interpolants Q̃k . The main results
are found in [BPV99].
The quasi-interpolants Q̃k we use in practice are inexpensive to realize because

they are based on local projections associated with locally supported basis functions.
The stability of the decompositions we prove is important in several applications
because we can use them to construct optimal-order preconditioners and stable ex-
tension mappings, tools that we frequently explored throughout the book.

C.2 Preliminary facts

Consider a given Hilbert space V , (., .) and let {Vk} be given nested subspaces
of V (i.e., V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ V ). In this section we first show that the
norm |〈v〉|2s =

∑
k λ
s
k‖(Qk − Qk−1)v‖2 which is based on a given orthogonal (in

the given inner product (., .)) projections Qk : V �→ Vk can be characterized
|〈v〉|2s ≃

∑
k λ
s
k‖(Q̃k − Q̃k−1)v‖2, based on other (in some sense simpler) opera-

tors Q̃k : V �→ Vk such that Q̃k are first uniformly coercive on Vk, the differences
Qk − Q̃k have certain approximation properties, and finally, the following commu-
tativity property Q̃kQk = Q̃k holds.
A main application of this result is a characterization of the norms in the Sobolev

spaces H s for real s in the (open) interval |s| < 3/2.
A specific choice of Q̃k in the case of nested finite element spacesVk of continuous

piecewise linear functions obtained by successive steps of uniform refinement, is

Q̃kv =
∑

xi∈Nk

(v, ϕ
(k)
i )

(e, ϕ
(k)
i )

ϕ
(k)
i , {ϕ(k)i , xi ∈ Nk} is a basis of Vk, e =

∑

xi∈Nk

ϕ
(k)
i .

(C.1)

457



458 C Computable Scales of Sobolev Norms

Here, Nk is the set of nodes (degrees of freedom) associated with the kth-level grid
and {ϕ(k)i }xi∈Nk

form a Lagrangian (nodal) basis of Vk .
We are interested in the possible stability of the decomposition

∑

k

(Q̃k − Q̃k−1)v, (C.2)

for functions v ∈ H s for all s in an interval. In the case of piecewise linear finite
elements we have |s| < 3/2. More specifically, we are interested in the stability of
the decomposition (C.2) with respect to the following norms,

|〈v〉|2s =
∑

k

λsj‖(Qk −Qk−1)v‖2,

where λj < λj+1 depend on the specific application.
In what followswe prove that the decomposition (C.2) defines an equivalent norm

to |〈.〉|s ; namely,

|||v|||2s =
∑

k

λsj‖(Q̃k − Q̃k−1)v‖2.

The latter one, in contrast to |〈v〉|s is easily computable if the actions of Q̃k are easy
to compute. The latter is the case for the quasi-interpolants defined in (C.1).
In practice, we use finite sums for finite element functions; that is

v =
J∑

k=1
(Q̃k − Q̃k−1)v, letting Q̃J = I, and Q̃0 = 0. (C.3)

Based on the above finite decomposition of V = VJ we may construct iterative
methods (or preconditioners) if a computable basis is available in the coordinate
spaces W̃k = (Q̃k − Q̃k−1)V . Other application of the decomposition is to construct
bounded extension mappings. That is, we have a function defined on a boundary of
a given domain, and then construct its extension in the interior of the subdomains by
trivially extending each component (Q̃k − Q̃k−1)v by zero in the interior kth-level
nodes. Note that this involves interpolation to represent the data on the finest-grid.
In both cases, the fact of main importance is to have the decomposition stable in

a proper Sobolev norm of interest for the particular application.
We finally mention that to build an additive preconditioner we do not actually

need a computable basis in the coordinate spaces W̃k . Indeed, for a given bilinear
form a(., .) on V × V , which defines an operator A : V �→ V , we consider the
preconditioner B : V �→ V based on the bilinear form

(Bv,w) =
∑

k

λ−1
k ((Q̃k − Q̃k−1)v, (Q̃k − Q̃k−1)w), v,w ∈ V.

Here, λj = supv∈Vj (Av, v)/‖v‖2 stands for the spectral radius ofA restricted to the
subspaceVk . Based on the symmetry of Q̃j we come up with the following form ofB,

B =
∑

k

λ−1
k (Q̃k − Q̃k−1)2. (C.4)
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It is clear that the actions of B are computationally available without explicit knowl-
edge of a basis of W̃k .
Based on our norm-equivalence result (that we prove next)

a(BAv, v) ≃ a(v, v), all v ∈ V ·

we obtain that B−1 is spectrally equivalent to A.
As an example, consider the model bilinear form, a(v,w) = τ−1(v,w) +

(∇u,∇v), u, v ∈ H 1
0 (�), where τ > 0 is a parameter. We can show that the

energy norm (a(v, v))1/2 is equivalent, uniformly with respect to τ , to |〈v〉|1 with
λj ≃ τ−1 + 22j . The latter is the spectral radius of A restricted to Vj . Based on the
analysis that follows, we are able to consider parameter-dependent norms with

λj = τ−1 + 22j . (C.5)

The estimates we prove |||v|||s ≃ |〈v〉|s appear independent of τ . Examples of
parameter-dependent bilinear forms arise from discretizing time-dependent Stokes
problems. In summary, decomposition (C.2) or (C.3) is stable in H s for any
s : |s| < 3/2 uniformly with respect to τ > 0.
The main result of the present chapter given in the following section proves

stability of the decomposition (C.2) in an abstract Hilbert space setting. We then
verify the assumption for uniform coercivity of the quasi-interpolants Q̃k (restricted
to Vk) provided the respective mass (orL2-Gram)matrices are uniformly sparse. The
latter holds in the case of uniformly refined meshes.

C.3 The main norm equivalence result

In this section we prove the main norm equivalence result in an abstract Hilbert space
setting. Let V , (., .) be a given Hilbert space and Vj−1 ⊂ Vj ⊂ V be subspaces
such that C ≡

∑
j Vj is dense in V . Consider Qj : V �→ Vj the (., .)-orthogonal

projections. Due to the density limj→∞ ‖Qjv − v‖ = 0 for any v ∈ V . We assume
that

⋃
k Vk is contained in a scale of spaces Hs for any real s ∈ (−s0, s0), a given

interval. In our main application, s0 = 3/2. Let ‖.‖s be the norm ofHs .
For a given sequence {λj }, 0 < λj < λj+1, define the scale of norms

|〈v〉|2s =
∑

j

λsj‖(Qj −Qj−1)v‖2· (C.6)

We notice that |〈v〉|0 = ‖.‖ and we assume thatH0 = V ; that is, ‖v‖0 = ‖v‖. Finally
we assume that the spaces satisfy
(I) “Inverse” inequality,

‖v‖σ ≤ CIh−σ
j ‖v‖0, v ∈ Vj .

To be specific we let hj = 2−j .
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We assume now that there exists a sequence of operators Q̃k : V �→ Vk which
satisfy:

(A) An “approximation property”:

‖(Qk − Q̃k)v‖0 ≤ CAhσk ‖v‖σ , σ ≥ 0.

(C) “Uniform coercivity” of Q̃k when restricted to Vk; that is,

δ‖vk‖2 ≤ (Q̃kvk, vk) for all vk ∈ Vk. (C.7)

(P) A “commutativity” property:

Q̃kQk = Q̃k.

Because Qk is a projection on Vk , we have Q̃k = QkQ̃k , which shows the
commutativity Q̃kQk = QkQ̃k .

Theorem C.1. Under the assumptions (A), uniform coercivity (C), and the commuta-

tivity property (P) for Q̃k , based on property (I) of the spaces Vj , the following main

norm characterization result holds.

|||v|||2s ≡
∑

k

λsk‖(Q̃k − Q̃k−1)v‖20 ≃ |〈v〉|2s ,

if the unit lower triangular matrix L = (ℓk,j ), with nonzero entries,

ℓk,j = (2−σ )k−j
(
λk

λj

)s/2
, k ≥ j, (C.8)

for a σ = σ(s) > 0, has a bounded spectral norm. That is, if

‖L‖ ≡ sup
(ξk), (ζk)

∑
k

∑
j≤k ℓk,j ξkζj(∑

k ξ
2
k

)1/2(∑
k ζ

2
k

)1/2 <∞· (C.9)

Proof. Let vk = (Qk − Q̃k)v. Assume that |〈v〉|s <∞ for a given s (negative, zero,
or positive). Then choose σ = σ(s) > 0 such that (C.9). Consider the expression
with any finite number of entries,

∑

k

λsk‖(Qk − Q̃k)v‖20.



C.3 The main norm equivalence result 461

Then, based on the commutativity (P),Cauchy–Schwarz inequality, the approximation
properly (A), and the inverse inequality (I) used consecutively, letting vk = (Qk −
Q̃k)v, we obtain

∑

k

λsk‖(Qk − Q̃k)v‖20 =
∑

k

λsk((Qk − Q̃k)v, (Qk − Q̃k)Qkv)

=
∑

k

λsk(vk, (Qk − Q̃k)
∑

j≤k
(Qj −Qj−1)v)

=
∑

k

λsk

∑

j≤k
(vk, (Qk − Q̃k)(Qj −Qj−1)v)

≤
∑

k

λsk

∑

j≤k
‖vk‖0‖(Qk − Q̃k)(Qj −Qj−1)v‖0

≤
∑

k

λsk

∑

j≤k
‖vk‖0CAhσk ‖(Qj −Qj−1)v‖σ

≤
∑

k

λsk

∑

j≤k
‖vk‖0CAhσk CIh−σ

j ‖(Qj −Qj−1)v‖0

= CACI
∑

k

∑

j≤k

(
1

2σ

)k−j (
λk

λj

)s/2
λ
s/2
k ‖vk‖0λs/2j

× ‖(Qj −Qj−1)v‖0
= CACI

∑

k

∑

j≤k
ℓk,jλ

s/2
k ‖vk‖0λs/2j ‖(Qj −Qj−1)v‖0.

(C.10)

Therefore, based on the norm bound of the lower triangular matrix L, we get

∑

k

λsk‖(Qk − Q̃k)v‖20 ≤ ‖L‖CACI
[∑

k

λsk‖vk‖20
]1/2[∑

j

λsj‖(Qj−Qj−1)v‖20
]1/2

= ‖L‖CACI
[∑

k

λsk‖vk‖20
]1/2

|〈v〉|s · (C.11)

The latter inequality shows that

[∑

k

λsk‖(Qk − Q̃k)v‖20
]1/2

≤ ‖L‖CACI |〈v〉|s · (C.12)

The estimate is independent of the number of terms in the above sums, thus by taking
the limit, the estimate remains valid for infinite series.
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Now, use the fact that Q̃k are uniformly coercive onVk , and because Q̃kQk = Q̃k ,
we arrive at the inequalities (vk = (Qk − Q̃k)v),

∑

k

λsk‖(Qk − Q̃k)v‖2

≤ δ−1
∑

k

λsk(Q̃k(Qk − Q̃k)v, (Qk − Q̃k)v)

= δ−1
∑

k

λsk(Q̃k − Q̃2k)v, vk)

= δ−1
∑

k

λsk((Qk − Q̃k)Q̃kv, vk)

= δ−1
∑

k

λsk((Qk − Q̃k)
∑

j≤k
(Q̃j − Q̃j−1)v, vk)

= δ−1
∑

k

λsk

∑

j≤k
((Qk − Q̃k)(Q̃j − Q̃j−1)v, vk)

≤ δ−1‖L‖CACI
[∑

k

λsk‖vk‖20
]1/2[∑

j

λsj‖(Q̃j − Q̃j−1)v‖20
]1/2

= δ−1‖L‖CACI
[∑

k

λsk‖vk‖20
]1/2

|||v|||s ·

The last two rows of the above inequality are proved in the same way as the last six
rows of (C.10)–(C.11) combined. Therefore,

[∑

k

λsk‖(Qk − Q̃k)v‖20
]1/2

≤ δ−1‖L‖CACI |||v|||s · (C.13)

Based on the decomposition (Q̃k − Q̃k−1)v = (Q̃k −Qk)v − (Q̃k−1 −Qk−1)v +
(Qk −Qk−1)v, we get the estimate from above

|||v|||s =
[∑

k

λsk‖(Q̃k − Q̃k−1)v‖20
]1/2

≤ (1+ 2‖L‖CACI )|〈v〉|s · (C.14)

Similarly, using the identity (Qk −Qk−1)v = −(Q̃k −Qk)v+ (Q̃k−1 −Qk−1)v +
(Q̃k − Q̃k−1)v, we obtain the following lower bound,

|〈v〉|s =
[∑

k

λsk‖(Qk −Qk−1)v‖20
]1/2

≤ (1+ 2δ−1‖L‖CACI )|||v|||s · (C.15)

Thus the proof is complete. �
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Corollary C.2. Consider the following particular cases

(i) λj = 22j . Then the entries of the lower triangular matrix L read

ℓk,j =
(
1

2σ

)k−j (
λk

λj

)s/2
=
(

1

2σ−s

)k−j
.

It is clear then, that if σ > 0 and σ > s, that ‖L‖ ≤ 2σ−s/(2σ−s − 1).
(ii) A parameter-dependent norm: Choose

λj = τ−1 + 22j

for a given parameter τ > 0. Then, if s ≤ 0, we have ℓk,j = (1/2σ )k−j

(λk/λj )
s/2 ≤ (1/2σ )k−j and it is clear then that ‖L‖ ≤ (2σ /(2σ − 1)). For

s > 0 we have (k ≥ j ):

ℓk,j =
(
1

2σ

)k−j (
λk

λj

)s/2

=
(
1

2σ

)k−j (
τ−1 + 22k
τ−1 + 22j

)s/2

=
(
1

2σ

)k−j (2s)k
(2s)j

(
2−2k + τ
2−2j + τ

)s/2

≤
(

1

2σ−s

)k−j
.

It is clear then that ‖L‖ ≤ (2σ−s/(2σ−s − 1)) if σ > s.

In conclusion, the spectral norm of L is bounded uniformly in τ > 0 for any s if σ is

appropriately chosen; namely, for s < 0 any positive σ is appropriate, whereas for

positive s it is sufficient to choose σ > s to bound the norm of L.

C.4 The uniform coercivity property

We show at the end that the quasi-interpolants Q̃k defined in (C.1) satisfy the uniform
coercivity bound (C.7). The assumption is that any subspace Vk admits (., .)-stable
Riesz basis {ϕ(k)i , xi ∈ Nk}, for a given set of degrees of freedomxi ∈ Nk . In the case
of finite element spaces,Nk is the set of nodes associated with a standard Lagrangian
basis {ϕ(k)i }. Also, as it is well known, the nodal Lagrangian basis is an L2-stable
Riesz basis. The latter means that the Gram matricesGk = {(ϕ(k)j , ϕ

(k)
i )}xi,xj∈Nk

are
uniformly well conditioned,

(v, v) = vTGkv ≃ θk
∑

xi∈Nk

v2i = θkvT v, all v =
∑

xi∈Nk

viϕ
(k)
i , v = (vi)xi∈Nk

.

(C.16)
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In other words the scaled inner product θ−1
k (., .) is bounded above and below by the

coefficient vector inner product vT v uniformly w.r.t. k ≥ 0.

Finally, we assume that Gk are uniformly sparse, namely, that the number of
nonzero entries per row is bounded by a numberm0 independent of k ≥ 0.

The quasi-interpolants Q̃k of interest read

Q̃kv =
∑

xi∈Nk

(v, ϕ
(k)
i )

(e, ϕ
(k)
i )

ϕ
(k)
i , v ∈ V, e =

∑

xi∈Nk

ϕ
(k)
i . (C.17)

In what follows we assume that (ϕ(k)i , ϕ
(k)
j ) ≥ 0. This makes the operators in (C.17)

well defined.

We first remark that because (v, ϕ(k)i ) = (Qkv, ϕ
(k)
i ) (by the definition of the

projection Qk) we immediately get that Q̃kv = Q̃kQkv; that is, the commutativity
property (P) holds.

Consider the coordinate unit vectors ei = (δi,j )xj∈Nk
, xi ∈ Nk . It is clear then,

that the following matrix–vector representation holds,

(Q̃kv, v) =
∑

xi∈Nk

(vTGkei)
2

1TGkei
, 1 =

∑

xi∈Nk

ei .

Based on the decomposition v =
∑
xi∈Nk

((Gkv)
T ei)G

−1
k ei , we get

(v, v) = vTGkv

=
( ∑

xi∈Nk

(vTGkei)ei

)T
G−1
k

( ∑

xi∈Nk

(vTGkei)ei

)

≤ λmax[G−1
k ]

∑

xi∈Nk

(vTGkei)
2.

Therefore, the following estimate is obtained,

(Q̃kv, v)

(v, v)
≥ λmin[Gk] min

xi∈Nk

1

1TGkei
·

Based on the assumption of uniform sparsity of the Gram matrices Gk , that is,
that the number of nonzero entries per row of Gk is bounded by an integer m0 =
O(1), uniformly in k → ∞, the expression 1/(1TGkei) is estimated below by
(1/m0)(1/(λmax[Gk])). Indeed, because at most m0 terms eTj Gkei in the first sum
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below are nonzero (these indices j define the set I(i)), we get

1TGkei =
∑

j

eTj Gkei

≤
∑

j∈I(i)

(
eTj Gkej

)1/2 (
eTi Gkei

)1/2

≤ λmax[Gk]
∑

j∈I(i)
‖ej‖‖ei‖

≤ λmax[Gk] m0.

That is, the desired uniform coercivity estimate (C.7) takes the final form

(Q̃kv, v)

(v, v)
≥ 1

m0Cond(Gk)
= O(1).



D

Multilevel Algorithms for Boundary Extension

Mappings

In the case of matricesA coming from a finite element discretization of second-order
elliptic PDEs, on a sequence of uniformly refined meshes the following construction
can provide a bounded extensionmapping in theA-norm.We derive thematrix–vector
form of the resulting extension mapping E suitable for actual computations. It
becomes evident thatET also has computable actions. These are found in expressions
(D.3) and (D.4) that represent the main result of the present section.
Note that both

E =
[
E0,b
I

]
and ET =

[
ET0,b, I

]

are needed explicitly to get the stable two-by-two block form of the transformed
matrix [J, E]TA[J, E], J =

[
I
0

]
(cf., Section 3.4.1).

We assume that a finite element function ψ is defined on a boundary Ŵ of a
domain �. We extend ψ in the remaining part of � to a finite element function v,
achieving certain norm-boundedness of the extension. We assume that there is a
sequence of easily computable boundary operators q̃k : V |Ŵ �→ Vk|Ŵ corresponding
to the restrictions (traces) of nested spaces Vk−1 ⊂ Vk ⊂ · · · ⊂ VL = V . Let E0k be
the trivial extension of a kth-level function given on Vk|Ŵ to a function that vanishes
at the remaining dofs in �. The coefficient vector of a function v is denoted v and if
v ∈ Vk its kth-level coefficient vector is denoted vk . The coefficient vectors vk
restricted to the kth-level dofs on Ŵ, Ŵk , are denoted ψk = vk|Ŵk . The intergrid
transfer mappings for vectors in the domain � are denoted I k+1k , I kk+1 = (I k+1k )T ,

whereas their restrictions to Ŵ are ik+1k , ikk+1 = (ik+1k )T . Note that here, k + 1 is a
fine-level and k is a next coarse-level. Finally, let Nk stand for the kth-level degrees
of freedom at the kth-level grid. We have Ŵk ⊂ Nk . We need an inner product (., .)
defined for functions on Ŵ and let {ϕ(k)i }xi∈Nk

be a Lagrangian basis of the space Vk .

This means ϕ(k)i (xj ) = δi,j for xi, xj ∈ Nk . The restrictions of ϕ
(k)
s for xs ∈ Ŵ to Ŵ

will then span the trace space Vk|Ŵ . Finally note that the coefficient vector of basis
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function ϕ(k)s is simply the coordinate unit vector

e(k)s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
1
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with the only nonzero entry 1 at position s. Finally, let

1k =
∑

xs∈Ŵk
e(k)s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...

1
1
1
...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To be specific we consider the following boundary operators,

q̃kψ =
∑

s: xs∈Ŵk

(ψ, ϕ
(k)
s )

(1, ϕ(k)s )
ϕ(k)s .

In a matrix–vector form, we have

q̃
k
ψ =

∑

s: xs∈Ŵk

ψT gL
(
iLL−1 . . . i

k+1
k

)
e
(k)
s

1Tk gke
(k)
s

e(k)s .

Here, gk = ((ϕ(k)s , ϕ(k)l ))xs , xl∈Ŵk is the kth-level boundaryGrammatrix correspond-
ing to the basis {ϕ(k)s }xs∈Ŵk .
Also, we let dL = gL and for k < L introduce the diagonal matrices dk =

diag{(gk1k)s : xs ∈ Ŵ}.
The extensionmappingE is defined based on the following decomposition of any

function ψ defined on Ŵ,

ψ =
L∑

k=1
(̃qk − q̃k−1) ψ,

where q̃L = i is the identity on Ŵ and q0 = 0. BecauseE0k is the trivial extension (by
zero at the kth-level grid) of boundary data in the interior of the domain, then (E0k )

T
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represents restriction to the domain boundary, at the kth-level grid. The extension
mapping E of our main interest is defined by

Eψ =
L∑

k=1
E0k (̃qk − q̃k−1)ψ.

For k = L we let ψ
L

= ψ , dL = i = identity. For k < L, we let

ψ
k

= ikLgLψ = ikk+1 · · · iL−1
L gLψ. (D.1)

Let q̃L = i (the identity). The vector representation of (̃qk − q̃k−1)ψ is d−1
k ψk

−
ikk−1d

−1
k−1ψk−1 = (d−1

k − ikk−1d
−1
k−1i

k−1
k )ψ

k
. Finally, introduce for k = L

wL =
(
g−1
L − iLL−1d

−1
L−1i

L−1
L

)
gLψ,

and for k < L,

wk =
(
d−1
k − ikk−1d−1

k−1i
k−1
k

)
ikk+1 · · · iL−1

L gLψ. (D.2)

Then, the matrix–vector representation of the extension mapping takes the form

Eψ =
L∑

k=0
ILL−1 · · · I k+1k E0kwk

=
L∑

k=0
ILL−1 · · · I k+1k E0k

(
d−1
k − ikk−1d−1

k−1i
k−1
k

)
ikk+1 · · · iL−1

L gLψ. (D.3)

Note that the matrix vector form of E0k has the simple form,

E0kwk =
[
0

wk

]
Nk \ Ŵk
Ŵk

.

Therefore the adjoint to E takes the form

ET = gL
L∑

k=0
iLL−1 · · · ik+1k

(
d−1
k − ikk−1d−1

k−1i
k−1
k

)(
E0k
)T
I kk+1 · · · IL−1

L · (D.4)

The boundedness of E in the A-norm can be proved by assuming that the energy
norm based on A can be characterized by a norm induced by certain projections
{Qk} : V �→ Vk with respect to an inner product (., .)0, in the sense that we
first have

L∑

k=1
wTk (E

0
k )
T
k AkE

0
kwk ≤

L∑

k=1
λk ‖E0kwk‖20

≃ inf
v=
∑
k vk : v|Ŵ=ψ

L∑

k=1
λk‖vk‖20 ≃ inf

v: v|Ŵ=ψ
vTAv.
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Here, λk = ̺(Ak) ≡ maxvk (v
T
k Akvk/‖vk‖20). That is, we have assumed the norm

equivalence, vTAv ≃
∑
k λk ‖(Qk −Qk−1)v‖20 and similarly, we have assumed that

the norm introduced by the Schur complement Sk of Ak to Ŵk , is characterized by

ψT Skψ ≃
∑

k

θk ‖(̃qk − q̃k−1)ψ‖2.

Here, θk ≃ λk supψk (‖E0kψk‖20/‖ψk‖2). For finite element matrices coming from
second-order elliptic PDEs, we have λk = h−2

k and θk = h−1
k where the ‖.‖0

norm stands for the integral L2(�)-norm and ‖.‖ stands for the boundary integral
L2(Ŵ)-norm. See the next section, for characterizing theH 1

0 Sobolev norm naturally
associated with the weak form of the Poisson problem. The motivation of using the
computable boundary operators q̃k is that the trace norm on Ŵ is typically charac-
terized (for finite element matrices A coming from second-order elliptic PDEs) as
the Sobolev space H 1/2(Ŵ)-norm, and the latter has a computable counterpart as
described in the present chapter.
Multilevel extensionmappingswere considered in [HLMN], [0s94], and [Nep95].

The decomposition based on the quasi-interpolants q̃k was analyzed in [BPV99].



E

H 1
0 -norm Characterization

In this short appendix we present in a constructive way an H 1
0 (�)-norm characteri-

zation. First the result is proven for a domain � which implies full regularity for the
Poisson problem,

−�u = f (x), x ∈ �,
subject to u = 0 on ∂�. Full regularity means that

‖u‖2 ≤ C ‖f ‖0.
Such a result is available in the literature for � being a convex polygon. Then, we
extend it to more general domains by using overlapping decomposition of � into
convex subdomains.

E.1 Optimality of the L2-projections

We assume that � is triangulated on a sequence of uniformly refined triangulations
with characteristic mesh-size hk = h02−k , k ≥ 0, and it is well known that the
respective finite element spaces of piecewise linear functionsVk = Vhk satisfy∪Vk =
H 1
0 (�). Define the L2-projections Qk : L2(�) �→ Vk . Then, we can prove the

following main result,
∑

k

h−2
k ‖(Qk −Qk−1)v‖20 ≃ ‖v‖21. (E.1)

More generally, we have the following main characterization of H 1
0 (�),

‖v‖21 ≃ inf
v=
∑
k vk, vk∈Vk

∑

k

h−2
k ‖vk‖20. (E.2)

First, we prove the result for convex domain �. To this end let us define the elliptic
projections πk : H 1

0 (�) : �→ Vk in the standard way as

(∇πkv, ∇ϕ) = (∇v, ∇ϕ), for all ϕ ∈ Vk.
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Because � is convex, we have full regularity for the Laplacian. Therefore, πk−1
exhibits an optimal L2-error estimate; that is, we have ‖v − πk−1v‖0 ≤ Chk‖v‖1 .
Based on this estimate used for v := (πk − πk−1)v and using the H 1

0 -orthogonality
of the projections π , we have

∑

k

h−2
k ‖(πk − πk−1)v‖20 ≤ C

∑

k

‖(πk − πk−1)v‖21

= C
∑

k

(
‖πkv‖21 − ‖πk−1v‖21

)
= ‖v‖21.

This shows that the r.h.s. of (E.2) is bounded in terms of ‖v‖21 (for the convexdomain).
For a more general domain�, we assume that it can be split into overlapping convex
subdomains�m, m = 1, . . . ,m0 for a fixed number m0. The decomposition is such
that for any v ∈ H 1

0 (�), we can find an H
1
0 -stable decomposition v =

∑
m vm with

each term supported in the convex subdomain �m. Stability here means that we
have the estimate

∑
m ‖vm‖21 ≤ C ‖v‖21 . Because for every component vm (which

is supported in the convex domain) we can find a stable multilevel decomposition
(also supported in �m), thus a stable decomposition of the finite sum v =

∑
m vm

is constructed which proves that the r.h.s. of (E.2) is bounded in terms of ‖v‖21 ,
now for the case of more general domains�.
We show next that the decomposition based on the L2-projections Qk is qua-

sioptimal (for a general, not necessarily convex domain). This follows from the
following chain of inequalities, using the fact that Qk are L2-symmetric and that
(Qk −Qk−1)2 = Qk −Qk−1, letting vj = (Qj −Qj−1)v,
∑

k

h−2
k ‖(Qk −Qk−1)v‖20 =

∑

k

h−2
k ((Qk −Qk−1)v, v)

=
∑

k

h−2
k

(
(Qk −Qk−1)v,

∑

j≥k
vj

)

≤
∑

k

h−2
k ‖(Qk −Qk−1)v‖0

∑

j≥k
‖vj‖0

=
∑

k

∑

j≥k

hj

hk

(
h−1
k ‖(Qk −Qk−1)v‖0

)
h−1
j ‖vj‖0

≤ C
∑

k

∑

j≥k

1

2j−k
(
h−1
k ‖(Qk −Qk−1)v‖0

)
h−1
j ‖vj‖0.

That is,

∑

k

h−2
k ‖(Qk −Qk−1)v‖20 ≤ C

⎛
⎝∑

k

∑

j≥k

1

2j−k
h−2
k ‖(Qk −Qk−1)v‖20

⎞
⎠
1/2

×

⎛
⎝∑

j

∑

k≤j

1

2j−k
h−2
j ‖vj‖20

⎞
⎠
1/2
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≤ C
(∑

k

h−2
k ‖(Qk −Qk−1)v‖20

)1/2

×
(∑

k

h−2
k ‖vk‖20

)1/2
.

That is, the decomposition v =
∑
j (Qj−Qj−1)v is quasioptimal. This (togetherwith

(E.3) below) shows the well-known norm characterization (E.2) ofH 1
0 (�) originally

proven by Oswald [0s94]; see also, [DK92].
To prove the other direction of (E.2), we proceed as follows. For any decom-

position v =
∑
j vj , vj ∈ Vj , and for a fixed α ∈ (0, 12 ), using the inequality

(p, q) ≤ ‖p‖α‖q‖−α and appropriate inverse inequalities, we have

‖v‖21 =
∑

k

(
∇(πk − πk−1)v,

∑

j≥k
∇vj

)

≤
∑

k

∑

j≥k
‖(πk − πk−1)v‖1+α ‖vj‖1−α

≤ C
∑

k

∑

j≥k
h−α
k ‖(πk − πk−1)v‖1h−1+α

j ‖vj‖0

= C
∑

k

∑

j≥k

(
1

2α

)j−k
‖(πk − πk−1)v‖1

(
h−1
j ‖vj‖0

)

≤ C

⎛
⎝∑

k

∑

j≥k

(
1

2α

)j−k
‖(πk − πk−1)v‖21

⎞
⎠
1/2

×

⎛
⎝∑

j

∑

k≤j

(
1

2α

)j−k
h−2
j ‖vj‖20

⎞
⎠
1/2

≤ C/(1− 2−α) ‖v‖1
(∑

j

h−2
j ‖vj‖20

)1/2
. (E.3)

This shows the remaining fact that ‖v‖21 is bounded in terms of the r.h.s. of (E.2).
Explicit construction of a continuousH 1

0 -stable decomposition with components
supported in convex polygons was shown in Lions [Li87] for a model L-shaped
domain � with m0 = 2. We present this example next.

Example E.1. Given the L-shaped domain � shown in Figure E.1. Consider the fol-
lowing cut-off function

χ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, x ≤ 0,

1− bx

ay
, (x, y) ∈ T =

{
1 ≥ y ≥ b

a
x, 0 ≤ x ≤ a

}
,

0, y ≤ b

a
x, x ∈ [0, a].
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b

�a

�c a0

T

Fig. E.1. L-shaped domain � partitioned into two overlapping rectangles �1 = (−c, a) ×
(0, b) and �2 = (0, a)× (−a, b).

Its gradient is nonzero only on T and it equals

∇χ = b

a

⎡
⎢⎣

−1
y
x

y2

⎤
⎥⎦ .

On T , we have

x2

y2
≤ a2

b2
and

1

x2 + y2 ≥ 1
a2

b2
y2 + y2

.

This shows that

|∇χ |2 = b2

a2

1

y2

[
1+ x2

y2

]
≤ b2

a2

1

x2 + y2
[
1+ a2

b2

] [
1+ a2

b2

]
.

The decomposition of our main interest reads

v = χv + (1− χ)v.

Note that v1 = χv is supported in the convex domain (rectangle)�1 = (−c, a)×
(0, b) and v2 = (1 − χ)v is supported in the convex domain (rectangle) �2 =
(0, a)× (−a, b). To show the desiredH 1

0 -stability, we have to estimate |v1|1 in terms
of |v|1. We have

∫

�

|∇v1|2 dx ≤ 2
∫

�

v2|∇χ |2 dx + 2
∫

�

χ2|∇v|2 dx

≤ 2
∫

�

χ2|∇v|2 dx + C
∫

�

v2(x)

dist2 (x, ∂�)
dx.
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The stability follows due to a classical inequality

∫

�

v2(x)

dist2 (x, ∂�)
dx ≤ C |v|21,

valid forH 1
0 (�) functions.

A more general approach of establishing H 1
0 -stable decompositions supported

in convex subdomains is based on the following simple construction. Let � be a
polyhedral domain and let �1 ∪ �2 provide an overlapping partition of �. In the
application, when � comes with a triangulation Th we assume that �1 and �2 are
exactly covered by elements from Th. Let �̂1 = �1 ∩�2 and �̂

′ = �1 \ �̂1. Then,
�1 = �̂1 ∪ �̂′

1 is separated by an interface Ŵ. Given a ϕ ∈ H 1
0 (�) then g = ϕ|Ŵ

as a trace of H 1
0 function will belong to H

1/2
0,0 (Ŵ). Therefore, ĝ, the zero extension

of g on ∂�̂1 \ Ŵ will belong to H 1/2(∂�̂1). To construct a stable component v1
of v supported in �1, we extend v|�1\�2 through Ŵ into the remaining part of �1,
�̂1 = �1 ∩�2, by solving the following Dirichlet boundary value problem,

−�ψ = 0 in �̂1 subject to ψ|∂�̂1 = ĝ.

The following a priori estimate holds

|ψ|1 ≤ C ‖ĝ‖1/2, ∂�̂1 ≤ C ‖g‖
H
1/2
0,0 (Ŵ)

.

Then, based on a trace inequality

‖g‖
H
1/2
0,0 (Ŵ)

≤ C |v|1, �̂1 ≤ C|v|1,

wefind that the harmonic extension is stable inH 1. The function v1 defined as v on �̂
′
1,

asψ on �̂1 and zero outside�1 belongs toH 1
0 (�) and by construction is stable; that is,

we have |v1|1 ≤ C |v|1. Assuming that�1 is convex, the problem is reduced to even-
tually further decompose v2 = v−v1 which is now supported in a smaller domain�2.
The process can be repeated several times until all “eliminated” subdomains are con-
vex and they cover�. The constants in the stability estimates will depend on the size
and shape of the subdomains, which to a certain extent is under our control.

E.1.1 H 1
0

-stable decompositions of finite element functions

Assume now that v is a finite element function from a f.e. space Vh vanishing on
∂� where � is a polygonal (in a general nonconvex) domain. Let {�i} be a finite
set of convex polygons that cover �. We assume that v =

∑
i vi is a H

1
0 (�)-stable

continuous decomposition such that the components vi are supported in�i . Stability
means that

∑

i

|vi |21 ≤ C |v|21.
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We want to construct anH 1
0 (�)-stable finite element decomposition v =

∑
i v
h
i with

vhi supported in�i as well. We assume that the given triangulation Th is aligned with
the boundaries of the polygons �i . Let {ϕj } be a nodal basis of Vh. Denote the set
of interior (to �) nodes by Nh. Then the nodal basis function ϕj is associated with

the (interior) node xj ∈ Nh. Consider the quasi-interpolant Q̃h and let Q̃
(i)
h be the

quasi-interpolant associated with the finite element space Vi of functions from Vh
that are supported in �i . The finite element H 1-stable decomposition of v then is
constructed from the representation

v = v − Q̃hv +
∑

i

(
Q̃
(i)
h − Q̃h

)
vi +

∑

i

Q̃
(i)
h vi .

We note thatw ≡ v−Q̃hv+
∑
i(Q̃

(i)
h −Q̃h)vi is small inL2 due to the approximation

properties of Q̃h and Q̃
(i)
h . We have ‖v−Q̃hv‖0 ≤ Ch |v|1, and ‖(Q̃(i)h −Q̃h)vi‖0 ≤

‖Q̃(i)h vi − vi‖0 + ‖vi − Q̃hvi‖0 ≤ Ch |vi |1. That is, based on the assumed stability
of {vi}, we have ‖w‖20 ≤ Ch2(|v|21 +

∑
i |vi |21) ≤ Ch2 |v|21. Finally, we decompose

w =
∑
i wi where wi =

∑
xj∈�j (1/dj )w(xj )ϕj so that each wi is supported in �i

and dj stands for the number of subdomains that contain the node xj . It is clear that
{wi} isH 1

0 stable because based on a standard inverse inequality, and the equivalence
of the discrete ℓ2 and integral L2 norms, we have

∑

i

|wi |21 ≤ Ch−2 ∑

i

‖wi‖20 ≤ Ch−2∑

j

w2(xj )h
d ≤ Ch−2 ‖w‖20 ≤ |v|21.

The final decomposition reads

v =
∑

i

(wi + Q̃(i)h vi),

which isH 1
0 -stable.We already proved that {wi} are stable. Based on theH 1

0 -stability

of Q̃(i)h and because {vi} come from a continuousH 1
0 -stable decomposition the over-

all stability follows. Finally, note the ith finite element function wi + Q̃(i)h vi is sup-
ported in �i .
To summarize:

Theorem E.2. Under the assumption that the overlapping subdomains {�i} are mesh

domains, that is, they are covered exactly by the elements from a given quasiuniform

triangulation Th, the existence of continuous H 1-stable decomposition v =
∑
i vi

with functions vi supported in�i implies the existence of a similar discreteH 1-stable

decomposition.



F

MG Convergence Results for Finite Element Problems

In this chapter, we apply the MG analysis in general terms from Section 5.3 for three
particular examples, namely, to finite element problems corresponding to theweighted
Laplacian bilinear form a(u, ϕ) = τ (∇u, ∇ϕ)+ (u, ϕ), to the weighted H(curl)
bilinear form a(u, χ) = τ (curl u, curl χ)+ (u, χ), and to the weighted H(div)-
bilinear form a(u, χ) = τ (div u, div χ) + (u, χ). In all cases τ is a positive
parameter that can get large. The bilinear forms are associated with respective f.e.
spaces Sh (the H 1

0 -conforming space of nodal piecewise linear functions), Qh (the
lowest-order Nédélec space) and Rh (the lowest-order Raviart–Thoma space). We
substantially use the fact that the triple (Sh, Qh, Rh) provides an “exact” sequence
which means that ∇Sh equals the null space of the curl-operator restricted to Qh,
and similarly curl Qh equals the null space of the div-operator restricted to Rh. For
a proof of this result, we refer to [Mo03].
We follow the “recipes” of Theorem 5.7. Given the stiffness matrices Ak , the

smoothers Mk , and interpolation matrices Pk , we need to find a multilevel decom-
position of any fine-grid vector y; that is, starting with y

0
= y, for k ≥ 0, we find

y
k

= y
f
k + Pkyk+1 such that

(i) The (symmetrized) smoothersMk are efficient on the components y
f

k so that the
following estimate holds,

∑

k

(
yf
k

)T
Mky

f

k
≤ C yTAy.

(ii) The smoothers Mk are efficient on the coarse components Pkyk+1 so that the
following estimate holds,

∑

k

∥∥(MT
k +Mk − Ak

)−(1/2)
AkPkyk+1

∥∥2 ≤ C yTAy.

(iii) The coarse-grid component y
ℓ
is stable in energy; that is, we have,

yT
ℓ
Aℓyℓ

≤ C yTAy.
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In all three applications, we assume that Mk is the (forward) Gauss–Seidel
smoother coming from Ak (or coming from Ak restricted to a proper subspace).
Then, we know (from Proposition 6.12) thatMk is spectrally equivalent to the diag-
onal of Ak . Moreover,Mk +MT

k − Ak is actually equal then to the diagonal of Ak .
In what follows we often use the following result (originally found in [Yhb]).

Proposition F.1. Consider the finite element space of our main interest, the standard

nodal-based H 1-conforming Lagrangian space Sh, the lowest-order Nédélec space

Nh, and the lowest-order Raviart–Thomas space Rh all associated with a triangula-

tion Th obtained by refinement of a coarser triangulation TH . Let SH , NH , and RH
be coarse counterparts of the fine-grid spaces Sh, Nh, and Rh. Then, the following

strengthened inverse inequalities hold.

(i) For any ϕh ∈ Sh and ϕH ∈ SH , we have

(∇ϕh, ∇ϕH ) ≤ Ch−(1/2) ‖ϕh‖0 H−(1/2)‖∇ϕH‖0.

(ii) For any �h ∈ Nh and �H ∈ RH , we have

(curl �h, �H ) ≤ Ch−(1/2) ‖�h‖0 H−(1/2)‖�H‖0.

(iii) For any �h ∈ Rh and �H ∈ RH , we have

(div �h, div �H ) ≤ Ch−(1/2) ‖�h‖0 H−(1/2)‖div �H‖0.

Wefirst comment that (i)–(iii) are indeed strengthened versions of the directly obtained
inverse inequalities. For example, we can proceed as follows. Apply the Cauchy–
Schwarz inequality to arrive at (∇ϕh, ∇ϕH ) ≤ ‖∇ϕh‖0‖∇ϕH ‖0, Then, after using a
standard inverse inequality, we arrive at (∇ϕh, ∇ϕH ) ≤ Ch−1‖ϕh‖0‖∇ϕH ‖0 which
is a much weaker estimate than (i) if h ≪ H .

Proof. We prove only inequality (i). The remaining two inequalities (ii) and (iii) are
similarly proved. We only mention that to prove (ii), we notice that for the lowest-
order Raviart–Thomas spaceRH , the elementwise curl of�H ∈ RH on every coarse
element T ∈ TH is zero. For every coarse element T ∈ TH use integration by parts
to reduce the integration to ∂T . We have

(∇ϕh, ∇ϕH )T =
∫

T

∇ϕh · ∇ϕH dx =
∫

∂T

ϕh(∇ϕH · n) d .̺

We used the fact that∇ϕH is constant on T . Now, use the Cauchy–Schwarz inequality
and standard inverse inequalities to bound boundary integrals in terms of volume
integrals (valid for f.e. functions), to arrive at the local strengthened inverse inequality

(∇ϕh,∇ϕH )T ≤ ‖ϕh‖0, ∂T ‖∇ϕH ·n‖0, ∂T ≤ Ch−(1/2) ‖ϕh‖0, TH−(1/2) ‖∇ϕH ‖0, T .

The global strengthened inverse inequality (i) is obtained by summation over T ∈ TH
and using the Cauchy–Schwarz inequality. �
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F.1 Requirements on the multilevel f.e. decompositions for

the MG convergence analysis

As a first step of the analysis, we reformulate the items (i)–(iii) in terms of bilinear
forms and f.e. functions, because we exploit specific multilevel decomposition of the
respective finite element spaces used, Vk . Here V0 = Vh stands for the f.e. space on
the finest-mesh (or triangulation) Th, and Vℓ = VH is the f.e. space on the coarsest-
mesh (triangulation) TH . The triangulations Tk are obtained by uniform refinement
from the initial coarse triangulation TH . We comment that our notation is a bit non-
standard to conform with the notation we used for AMG: level 0 is finest, and level ℓ
is coarsest. Thus, the kth-level mesh-size is hk = h2k = H2k−ℓ, k = 0, . . . , ℓ, and
h0 = h = 2−ℓH is the finest mesh-size, whereas hℓ = H is the coarsest one. That
is, Vk+1 is a coarse subspace of Vk .
We use the following convention (unless specified otherwise), for a f.e. func-

tion yk, its coefficient vector is y
k
(w.r.t. the given basis of Vk).

We introduce next the mass (Gram) matrices Gk associated with the f.e. space
Vk and the L2-bilinear form (., .). The stiffness matrices Ak are computed from
the weighted bilinear forms (introduced earlier) and the respective f.e. spaces Vk
(specified later on). A main observation then is that the diagonal of Ak is spectrally
equivalent to λk Gk where λk = 1 + τ h−2

k . For the particular H(curl) and H(div)
examples, see Propositions B.16 and B.18, respectively.
From the definition of stiffness and mass matrices, we have for any yk ∈ Vk ,

‖yk‖20 = (yk, yk) = yT
k
Gkyk

and a(yk, yk) = yT
k
Akyk

. Let y =
∑ℓ−1
k=0 y

f
k + yℓ.

Similarly, for k ≥ 0, let yk =
∑ℓ−1
j=k y

f

k + yℓ ∈ Vk. Then, the sum in (i) can be
replaced by ∑

k

λk
∥∥yfk

∥∥2
0 ≤ C a(y, y). (F.1)

Similarly, sum (ii) can be replaced first by
∑

k

λ−1
k

∥∥G−(1/2)
k AkPkyk+1

∥∥2 ≤ C a(y, y). (F.2)

Introduce now ψ
k

= G−1
k Akyk+1. Let �k ∈ Vk have coefficient vector ψk . We have

ψT
k
Gkψk

= ‖�k‖20.

We also have, noting that Pk+1yk+1 is the coefficient vector of yk+1 viewed as an
element form Vk (because Vk+1 ⊂ Vk),

ψT
k
Gkψk

= ψT
k
AkPk+1yk+1 = a(yk+1, �k).

That is, we have the identity

‖�k‖20 = a(yk+1, �k),
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which used in (F.2) leads to the next equivalent form of (ii)

∑

k

λ−1
k ‖�k‖20 =

∑

k

λ−1
k a(yk+1, �k) ≤ C a(y, y). (F.3)

MG convergence for weighted H 1-forms

We apply the above technique to the parameter-dependentH 1
0 -bilinear form

a(y, ϕ) = (y, ϕ)+ τ (∇y, ∇ϕ), y, ϕ ∈ Sh.

Here τ > 0 can be a large parameter. We use here the standardH 1
0 -conforming finite

element spaces Vk = Sk of continuous piecewise linear functions associated with the
vertices of the elements from corresponding triangulationsTk = Thk that are obtained
by uniform refinement of an initial coarse triangulation TH .

We use the multilevel decomposition y =
∑
k<ℓ(Qk − Qk+1)y + Qℓy based

on the L2-projections onto the f.e. spaces Sk . We have the major stability estimate
(proven in the previous Chapter E)

∑

k<ℓ

h−2s
k ‖(Qk −Qk+1)y‖20 + ‖Qℓy‖2s ≤ C ‖y‖2s , (F.4)

for s = 0, 1. Let yfk = (Qk −Qk+1)y and yk = Qky for k ≥ 0. Then estimate (F.1)
reads

∑

k<ℓ

λk‖yfk ‖20 =
∑

k

(1+ τh−2
k )‖(Qk −Qk+1)y‖20 ≤ C a(y, y),

which follows directly from (F.4) uniformly in τ ≥ 0. The next estimate is (F.3),
which for some �k ∈ Sk reads

∑

k

λ−1
k ‖�k‖20 =

∑

k

λ−1
k a(yk+1, �k) ≤ C a(y, y).

We have, based on the strengthened inverse inequality (cf. Proposition F.1)

∑

k

λ−1
k ‖�k‖20 =

∑

k

λ−1
k a(yk+1, �k)

=
∑

k

λ−1
k

∑

j>k

((
y
f
j , �k

)
+ τ

(
∇�k, ∇yfj

))

≤
∑

k

λ−1
k

∑

j>k

(
‖yfj ‖0‖�k‖0 + Cτ h−(1/2)

k ‖�k‖0h−(1/2)
j ‖∇yfj ‖0

)
.
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The sums involving L2-terms are bounded as follows.

∑

k

λ−1
k

∑

j>k

‖yfj ‖0‖�k‖0

≤ C
(∑

k

λ−1
k ‖�k‖20

)1/2
⎛
⎝∑

k

λ−1
k

⎛
⎝‖yℓ‖20 +

ℓ−1∑

j=k+1
h2j

ℓ−1∑

j=k+1
h−2
j ‖yfj ‖20

⎞
⎠
⎞
⎠
1/2

≤ C H√
τ

(∑

k

λ−1
k ‖�k‖20

)1/2(
‖y‖20 +H 2 |y|21

)1/2
. (F.5)

For the remaining part, using λ−(1/2)
k ≤ hk/

√
τ , we have

∑

k

λ−1
k

∑

j>k

τ h
−(1/2)
k ‖�k‖0h−(1/2)

j ‖∇yfj ‖0

≤ C
√
τ
∑

k

λ
−(1/2)
k ‖�k‖0

∑

j>k

(
hk

hj

)(1/2)
‖∇yfj ‖0

= C
√
τ
∑

k

λ
−(1/2)
k ‖�k‖0

∑

j>k

(
1√
2

)j−k
‖∇yfj ‖0

≤ C
√
τ

(∑

k

λ−1
k ‖�k‖20

)1/2(∑

j

‖∇yfj ‖20
)(1/2)

≤ C
(∑

k

λ−1
k ‖�k‖20

)(1/2)√
τ |y|1. (F.6)

In the last line, we used (F.4). Combining (F.5) and (F.6) leads to the estimate

∑

k

λ−1
k ‖�k‖20 =

∑

k

λ−1
k a(yk+1, �k) ≤ C

(
1+ H 2

τ

)
a(y, y),

which gives the desired result ifH 2τ−1 = O(1). In general,we can use decomposition
with zero components below a level ℓτ . Here, ℓτ is the maximal coarse mesh hℓτ for
which h2ℓτ τ

−1 ≤ const < h2ℓτ+1τ
−1. We can choose yℓτ = Qℓτ y and at coarse levels

k > ℓτ , we can let y
f
k = 0 and hence yk =

∑
j≥k y

f
j = 0.

Note that at level ℓτ the corresponding stiffness matrix Aℓτ is well conditioned
w.r.t. its diagonal (because then h−2

ℓτ
τ ≃ O(1)). Then, the above estimates still hold.

The coarse componentQℓy (or Qℓτ y) is energy stable, thus we can finally state the
following corollary to Theorem 5.7.

Corollary F.2. The symmetric V (1, 1)-cycle MG based on Gauss–Seidel smooth-

ing applied to the stiffness matrices Ak computed from the weighted bilinear form

a(y, ϕ) = (y, ϕ) + τ (∇y, ∇ϕ) and standard piecewise linear H 1-conforming
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f.e. spaces Sk corresponding to triangulations Tk obtained by uniform refinement of

an initial coarse triangulation TH , has a convergence factor bounded independently

of both the number of refinement steps ℓ as well as the parameter τ > 0. The MG

cycle can be stopped (but does not have to) at level ℓ for which H = hℓ satisfies

H 2τ−1 = O(1).

Conditions for weighted H(curl) and H(div) forms

For the applications involving H(curl) and H(div), the MG method will exploit
intermediate subspaces Vk+(1/2)(related to the null spaces of the curl and div op-
erators). In other words, for two other f.e. spaces Sk and Nk (specified later on)
we have, either Vk+(1/2) = ∇Sk ⊂ Vk or Vk+(1/2) = curl Nk ⊂ Vk . The result-
ing MG method will exploit (explicitly) the matrices Pk+(1/2) that transform the
coefficient vector of a f.e. function φ, either from Sk or from Nk , to the coeffi-
cient vector, of either ∇φ or curl φ, considered as an element of the respective
f.e. space Vk. The stiffness matrix Ak+(1/2) then corresponds to the subspaces Sk
or Nk and the bilinear form (∇·,∇·) or (curl ·, curl ·), respectively. The remain-
ing part of the bilinear form a(., .) vanishes because ∇Sk or curl Nk represent the
null space components of that part of the bilinear form a(·, ·). Therefore, we have
Ak+(1/2) = P Tk+(1/2)AkPk+(1/2) = P Tk+(1/2)GkPk+(1/2).We use the (forward) Gauss–
Seidel smootherMk+(1/2) coming from Ak+(1/2). Its symmetrized versionMk+(1/2)
is spectrally equivalent to the diagonal of the mass matricesGk+(1/2) computed from
the f.e. spaces Sk or Nk (and the L2-bilinear form).
We are now in a position to define the MG algorithm of interest that exploits the

intermediate (fractional order) spacesVk+(1/2) representing the null space components
of the curl or div -components respectively.

Algorithm F.1.1 (A MG algorithm for H(curl) or H (div) problems). LetA = A0
and f be given. Consider the fine-grid discrete problem

Au = f .

For a current iterate u, compute the corresponding residual d = f − Au, and

in order to find a MG correction B−1
MGd, letting r0 = d and y

0
= 0, perform the

following steps starting with j = 0.

1. Presmooth withMj+(1/2); that is, solve

Mj+(1/2)xj+(1/2) = P Tj+(1/2)rj .

2. Update current level iterate y
j
:= y

j
+ Pj+(1/2)xj+(1/2) and compute the next

intermediate residual

rj := rj − AjPj+(1/2)xj+(1/2).

3. Presmooth withMj ; that is, solve

Mjyj
= rj .
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4. Update the current level residual

rj := rj − Ajyj .

5. Restrict the residual to the coarse level j + 1; that is, compute rj+1 = P Tj rj .

6. If j + 1 = ℓ solve the coarse problemAℓyℓ
= rℓ and after letting j := j − 1 go

to Step (7). Otherwise, with j := j + 1 go to Step (1).

7. Interpolate coarse-grid approximation; that is, compute y
j
:= y

j
+Pjy

j+1 and

update the residual, rj := rj − AjPjy
j+1.

8. Postsmooth withMT
j ; that is, solve

MT
j xj = rj .

9. Update the current approximation y
j
:= y

j
+xj and the corresponding residual

rj := rj − Ajxj .
10. Postsmooth withMT

j+(1/2); that is, solve

MT
j+(1/2)xj+(1/2) = P Tj+(1/2)rj .

11. Update the current approximation y
j
:= y

j
+Pj+(1/2)xj+(1/2) and compute the

corresponding intermediate residual rj := rj − AjPj+(1/2)xj+(1/2). If j > 0
set j := j − 1 and go to Step (7).

12. The next MG iterate equals u := u + y
0
.

The output of the above algorithm defines a mapping B−1
MG : d �→ y0 which is the

(inverse) of the MG preconditioner BMG; that is, we have B−1
MGd = y

0
.

The above algorithm can be viewed as a combination of recursive “two-level”
and “two-grid” preconditioners (see Definitions 3.12 and 3.13).More specifically, we
can define Bk from

B−1
k = [Pk+(1/2), I ]B

−1
k [Pk+(1/2), I ]

T ,

where

Bk =
[
Mk+(1/2) 0
AkPk+(1/2) I

][(
MT
k+(1/2) +Mk+(1/2) − Ak+(1/2)

)−1
0

0 Bk+(1/2)

]

×
[
MT
k+(1/2) P T

k+(1/2)Ak
0 I

]
.

Whereas the fractional step preconditioner Bk+(1/2) is defined as a two-grid precon-
ditioner (with inexact coarse solution corresponding to Bk+1) from

B−1
k+(1/2) =

[
I, Pk

]
B

−1
k+(1/2)

[
I, Pk

]T
,
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whereas Bk+(1/2) is defined as

Bk+(1/2) =
[
Mk 0
P Tk Ak I

] [(
MT
k +Mk − Ak

)−1
0

0 Bk+1

] [
MT
k AkPk
0 I

]
.

To analyze the above MG algorithm we use Theorem 5.7 modified accordingly
to take into account the intermediate (fractional order) preconditioners Bk+(1/2). For
any decomposition of y, defined recursively by first letting y

0
= y, and then for

k = 0, . . . , ℓ− 1,

y
k

= Pk+(1/2)x(f )k + y
k+(1/2), and

y
k+(1/2) = u

(f )
k + Pkyk+1,

(F.7)

we have first the following inequalities (apply Theorem3.15 forJ = Pk+(1/2),P = I
and D = Bk+(1/2))

yT
k
Bkyk

≤ yT
k+(1/2)Bk+(1/2)yk+(1/2)

+
(
MT
k+(1/2)x

(f )

k + P Tk+(1/2)Akyk+(1/2)
)T

×
(
MT
k+(1/2) +Mk+(1/2) − Ak+(1/2)

)−1

×
(
MT
k+(1/2)x

(f )

k + P Tk+(1/2)Akyk+(1/2)
)
.

We also have (apply now Theorem 3.15 for J = I , P = Pk , and D = Bk+1),

yT
k+(1/2)Bk+(1/2)yk+(1/2) ≤ yT

k+1Bk+1yk+1 +
(
MT
k u

(f )
k + AkPkyk+1

)

×
(
MT
k +Mk − Ak

)−1(
MT
k u

(f )
k + AkPkyk+1

)
.

It is clear then, by applying recursion and the Cauchy–Schwarz inequality in the same
way as in the proof of Theorem 5.7, that if we can bound the following sums, for a
particular multilevel decomposition (F.7) of y,
(A) ∑

k

x
(f )T

k Mk+(1/2)x
(f )

k ,

(B) ∑

k

‖(MT
k+(1/2) +Mk+(1/2) − Ak+(1/2))−(1/2)P Tk+(1/2)Akyk+(1/2)‖

2

(C) ∑

k

u
(f )T

k Mku
(f )
k ,

(D) ∑

k

‖(MT
k +Mk − Ak)−(1/2)AkPkyk+1‖

2,
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all in terms of yTAy, and if the coarse component y
ℓ
is stable in energy, that is,

(E)

yT
ℓ
Aℓyℓ

≤ C yTAy,

we then have a uniform upper bound for B = B0 in terms of A = A0.
For this we need to come up with a decomposition for any f.e. function y ∈ Vh

with some properties that lead to respective multilevel vector decomposition of the
coefficient vector y of y. In what follows, we list the conditions (A)–(E) on the
multilevel decomposition of interest in terms of finite element functions.
The multilevel decomposition of any f.e. function y ∈ V starts with y0 = y =

y(null) + u, where y(null) = y
′
1/2 belongs either to ∇Sh or to curl Nh. For k ≥ 0,

we have
yk = y ′

k+(1/2) + uk.

Here y
′
k+(1/2) belongs either to ∇Sk or to curl Nk; that is, there is a  k in either Sk

or Nk such that y
′
k+(1/2) = D k where eitherD = ∇ orD = curl. Each of the com-

ponents y
′
k+(1/2) and uk has an “f ” part (to be handled by the respective smoother)

and a coarse component. More specifically, we have

y
′
k+(1/2) = y(f )k+(1/2) + y

′
k+(3/2),

uk = u(f )k + uk+1.
(F.8)

In terms of coefficient vectors, we have

Pk+(1/2)xk = Pk+(1/2)x(f )k + PkPk+(3/2)xk+1.

Here, Pk+(1/2)xk is the coefficient vector of y
′
k+(1/2) = D k ∈ Vk+(1/2) ⊂ Vk . That

is, xk is the coefficient vector of  k (as an element of either Sk or Nk). Similarly,

Pk+(1/2)x
(f )

k is the coefficient vector of y(f)k+(1/2) ∈ Vk+(1/2) ⊂ Vk . Because y(f )k+(1/2) =
Dψ

(f )
k for some ψ(f )k in either Sk (with D = ∇ then) or in Nk (with D = curl), we

have that x(f )k is the coefficient vector ofψ(f )k (in the respective space, Sk or Nk). We
also have,

uk = u
(f )
k + Pkuk+1.

The overall recursive two-level vector decomposition reads

y
k

= y(f )
k

+ Pkyk+1,

where

y(f )
k

= Pk+(1/2)x(f )k + u
(f )
k ,

y
k+1 = Pk+(3/2)xk+1 + uk+1.
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Equivalently, we can let y
k

= Pk+(1/2)x(f )k + y
k+(1/2) and y

k+(1/2) = u
(f )
k +Pkyk+1

thus ending up with the multilevel vector decomposition (F.7)
For any y

0
= y of a f.e. function y ∈ Vh and its particular recursive multilevel

decomposition (F.8), based on conditions (A)–(E), it is clear that we need to prove
the following estimates,
(a) Let x

(f )

k be the coefficient vector of a f.e. function ψ(f )k from either Sk or Nk

such that y(f )
k+(1/2) = Dψ

(f )
k ∈ Vk+(1/2) ⊂ Vk is from the decomposition (F.8).

That is, y(f )k+(1/2) equals either∇ψ
(f )
k or curl ψ(f )k . Then, for the chosen particular

decomposition (F.8) of any given y ∈ Vh, using the fact that the symmetrized
smootherMk+(1/2) is spectrally equivalent to the scaledmassmatrixh

−2
k Gk+(1/2),

we need to prove the estimate (see (A))
∑

k

(
x
(f )
k

)T
Mk+(1/2)x

(f )
k ≃

∑

k

h−2
k

(
x
(f )
k

)T
Gk+(1/2)x

(f )
k

=
∑

k

h−2
k

∥∥ψ(f )k

∥∥2
0 ≤ C a(y, y).

That is, we have to prove the estimate
∑

k

h−2
k

∥∥ψ(f )k

∥∥2
0 ≤ C a(y, y) (F.9)

forψ(f )k (from either Sk orNk) defining y
(f )

k+(1/2) = Dψ(f )k (D = ∇ orD = curl )

and y(f )k+(1/2) are from the chosen particular decomposition (F.8).

(b) Let ψ
k

= G−1
k+(1/2)P

T
k+(1/2)Gkyk+(1/2) where y

k+(1/2) = u
(f )
k + Pkyk+1. Let the

f.e. functionψk from either Nk or Sk have ψ
k
as the coefficient vector. Using the

fact that the diagonal of Ak+(1/2) (which equalsMk+(1/2)+MT
k+(1/2)−Ak+(1/2)

for the Gauss–Seidel smootherMk+(1/2) for Ak+(1/2)) is spectrally equivalent to
h−2
k Gk+(1/2), the sum (B) takes the equivalent form,

∑

k

∥∥(Mk+(1/2) +MT
k+(1/2) − Ak+(1/2)

)−(1/2)
P Tk+(1/2)Gkyk+(1/2)

∥∥2

≃
∑

k

h2k

∥∥G−(1/2)
k+(1/2)P

T
k+(1/2)Gkyk+(1/2)

∥∥2

=
∑

k

h2kψ
T

k
P Tk+(1/2)Gkyk+(1/2)

=
∑

k

h2kψ
T

k
P Tk+(1/2)Gk

(
u
(f )

k + Pkyk+1
)

=
∑

k

h2k‖ψk‖20

=
∑

k

h2k (Dψk, yk+1 + u(f )k ).
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Here D = curl or D = ∇. That is, we need to prove the following estimate,
∑

k

h2k‖ψk‖20 =
∑

k

h2k (Dψk, u
(f )
k + yk+1)

=
∑

k

h2k (Dψk, yk+(1/2)) ≤ C a(y, y). (F.10)

(c) Condition (C) leads to the following estimate, using the fact thatMk is spectrally
equivalent to λk Gk,

∑

k

λk
∥∥u(f )k

∥∥2
0 ≤ C a(y, y). (F.11)

Recall, that λk = 1+ τh−2
k .

(d) We also need the estimate (ii) in the form (F.3) (see (D)) for the coarse components
yk+1 = uk+1 + y ′

k+(3/2) = uk+1 +D k+1; that is,
∑

k

λ−1
k ‖�k‖20 =

∑

k

λ−1
k a(yk+1, �k)

=
∑

k

λ−1
k (a(uk+1, �k)+ (D k+1, �k)) ≤ C a(y, y),

(F.12)

where �k is the f.e. function from Vk that has coefficient vector ψ
k

= G−1
k Ak

Pkyk+1.
(e) Finally, we need for the chosen particular decomposition (F.8) of y to have the
coarsest component yℓ = uℓ+D ℓ be bounded in energy in terms of y (see (E));
that is, it is sufficient to have

a(uℓ, uℓ)+ ‖D ℓ‖20 ≤ C a(y, y). (F.13)

F.2 A MG for weighted H(curl) space

Given a polyhedral domain� ⊂ R3, consider the space of vector functionsu that have
in the L2(�)-sense a well-defined curl u. That is, ‖curl u‖20, � = (curl u, curl u)

is well defined in addition to ‖u‖20, �. This space is denoted by H(curl, �) and if
u × n = 0 on ∂� by H0(curl, �). As used many times, n stands for a unit vector
normal to ∂�.
For a given parameter τ > 0, we are interested in the weighted H(curl) bilinear

form

a(u, w) = (u, w)+ τ (curl u, curl w), u, v ∈ H0(curl, �). (F.14)

For the purpose of defining the MG method of interest, we restrict the above bilinear
form to f.e. spaces Nh ⊂ H0(curl, �). That is, we assume that � is triangulated
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by a triangulation Th of tetrahedral elements obtained by ℓ ≥ 1 successive steps of
refinement of an initial coarse triangulation TH . Then, a(·, ·) gives rise to a sequence
of stiffness matrices Ak computed from the sequence of nested Nédélec spaces Nk ,
0 ≤ k ≤ ℓ. LetN0 = Nh be the Nédélec space associated with the fine-mesh T0 = Th
and hk ≃ h2k , k = 0, 1, . . . , ℓ be the kth-level mesh-size. The coarsest-mesh is
hℓ = H ≃ 2ℓh.
For the multilevel analysis to follow, we concentrate on the lowest-order Nédélec

spaces, however, the approach is general and can be extended to higher-orderNédélec
elements as well.
The MG method of interest exploits also the finite element spaces Nk+(1/2) ≡

∇Sk ⊂ Nk which represent the null space of the curl-operator restricted to Nk . Let
{ϕ(k)i } be the standard nodal basis of Sk . Here, i runs over the set of vertices Vk of
the elements from Tk . Because we consider essential boundary conditions, Vk stands
for the set of interior vertices (w.r.t. to the polyhedral domain �). The mapping that
transfers a function ϕ ∈ Sk expanded in terms of the standard nodal basis {ϕ(k)i } of Sk
into the vector f.e. function ∇ϕ ∈ Nk expanded in terms of the edge basis {�(k)e } of
Nk is denoted by Pk+(1/2). It is commonly referred to as a discrete gradient mapping
and is actually needed (explicitly) in the MG algorithm below.
For any h = hk , we need the natural interpolant
h, which for the lowest-order

Nédélec space is defined as follows. Let {�e} be the edge-based basis of Nh. Here e
runs over the set of edges Eh of the elements fromNh. Because we consider essential
boundary conditions,Eh stands here for the set of interior edges (w.r.t. to the polyhedral
domain �). Then, for any piecewise polynomial function z (i.e., z restricted to the
elements of Th is polynomial, and z has uniquely defined tangential components z · τe
over the edges e ∈ Eh), we define


hz =
∑

e

(∫

e

z · τe ds
)

�e ∈ Nh.

It is clear that
h is well defined for any sufficiently smooth vector functions z. For
higher-order Nédélec spaces, in addition to edge integrals the respective
h involves
face integrals and even volume integrals over the elements for sufficiently high-order
Nédélec spaces. Details are found in Section 5.5 of [Mo03]. We let 
k = 
hk and
Ek = Ehk .
Also, let Pk be the interpolation mapping that implements the natural embedding

Nk+1 �→ Nk . It transfers the coefficient vector vc = (vce)e∈Ek+1 of the f.e. function

v ∈ Nk+1 expanded in terms of the edge basis {�(k+1)e }e∈Ek+1 of Nk+1, that is, v =∑
e∈Ek+1 v

c
e�

(k+1)
e , to the coefficient vector v = Pkvc = (ve)e∈Ek where v =

∑
e∈Ek ve�

(k)
e . That is, in the second expansion, v is viewed as an element from

Nk (which contains Nk+1).
Introduce the mass (Gram) matricesGk computed from the L2-form (·, ·) using

the edge basis {�(k)e } ofNk. Finally, letAk+(1/2) be the stiffnessmatrix computed from

a(·, ·) using the set {∇ϕ(k)i }i∈Vk . Because the curl term vanishes on gradients, we
actually have that Ak+(1/2) = P Tk+(1/2)GkPk+(1/2) which is nothing but the stiffness
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matrix computed from the Laplace bilinear form (∇·, ∇·) from the nodal basis
{ϕ(k)i }i∈Vk of Sk . Let Mk+(1/2) be a given smoother for Ak+(1/2), for example, the
forwardGauss–Seidel. Similarly, letMk be also a given smoother forAk , for example,
the forward Gauss–Seidel. Then, we are in a position to define the MG method of
interest implemented as in Algorithm F.1.1.

F.2.1 A multilevel decomposition of weighted Nédélec spaces

Let {Nk}ℓk=0 be a sequence of nestedNédélec spaces associatedwith uniformly refined
tetrahedral triangulations Tk of a 3D polytope �. Here, T0 = Th is the finest-mesh
whereas Tℓ = TH is the coarsest-mesh. Associated with Tk considerH 1-conforming
Lagrangian finite element spaces Sk , a vector one, and Sk , a scalar one. To be specific,
we assume that the vector functions from Nk have vanishing tangential components
on ∂�. Similarly, we assume that vector functions from Sh and the scalar functions
from Sh vanish on ∂�.
The starting point of our multilevel decomposition is the HX decomposition (see

[HX06], or if no essential boundary conditions were imposed, see [Sch05]). It states,
that for any u ∈ Nh there is v ∈ Nh, z ∈ Sh, and a ϕ ∈ Sh such that

u = v + 
hz + ∇ϕ,

with all components being stable in the following sense,

h−1 ‖v‖0 ≤ C ‖curl u‖0,

‖z‖0 ≤ C ‖u‖0, |z|1 ≤ C‖curl u‖0,
and

‖∇ϕ‖0 ≤ C ‖u‖0.

Because we established stable multilevel decompositions for z ∈ Sh, z =∑ℓ
k=0(zk − zk+1) and ϕ ∈ Sh, ϕ =

∑ℓ
k=0 ψ

(f )
k , we can consider the following

one for u.

Definition F.3 (Multilevel decomposition of Nédélec spaces). For any u ∈ Nh
define

u =
ℓ−1∑

k=0
u
(f )

k +
ℓ−1∑

k=0
∇ψ(f )k + uℓ,

where, letting 
k = 
hk ,

u
(f )
0 = v + 
hz − 
1z1, for k = 0,

u
(f )
k = 
kzk − 
k+1zk+1, for 0 < k < ℓ,

and uℓ = 
ℓzℓ + ∇ψℓ. To be specific, we let ψ
(f )
k = (Qk −Qk+1)ϕ, for 0 ≤ k < ℓ

andψ
(f )

ℓ = Qℓϕ. Similarly, we let zk = Qkz. Here,Qk : Sh �→ Sk and Qk : Sh �→ Sk
are the corresponding scalar and vector L2-projections.
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The components zk satisfy the stability estimates,

∑

k

|zk − zk+1|21 ≤ C
∑

k

h−2
k ‖(Qk − Qk+1)z‖20 ≤ C|z|21, (F.15)

and also
∑

k

‖zk − zk+1‖20 ≤ ‖z‖20.

For the terms involving ψ(f )k , we have

∑

k

|ψ(f )k |21 ≤ C |ϕ|21 and ‖ψ(f )k ‖0 ≤ Chk |ψ(f )k |1, for k < ℓ.

To estimate the terms involving (
kQk − 
k+1Qk+1)z, we observe that

(
kQk − 
k+1Qk+1)z

= (
kQk − Qk)z + (Qk − Qk+1)z + (Qk+1 − 
k+1Qk+1)z. (F.16)

Because themiddle terms give rise to a stable decomposition inL2 and their curls also
give rise to a stable decomposition in L2 which is seen due to an inverse inequality,
we have

∑

k

‖curl(Qk − Qk+1)z‖20 ≤ C
∑

k

h−2
k ‖(Qk − Qk+1)z‖20 ≤ C |z|21, (F.17)

it is sufficient to estimate the terms involving the deviation (
kQk − Qk)z and
curl(
kQk − Qk)z.
The following result can be proved similarly to the major estimate (C.12), for

0 ≤ s < 3/2.

Lemma F.4. We have, for any s ∈ [0, 3/2), the multilevel deviation norm estimate

ℓ−1∑

k=0
h−2s
k ‖(
k − Qk)Qkz‖20 ≤ C |z|2s .

Proof. Here we need the L2-approximation property of
k . Notice that ‖(
kQk −
Qk)z‖0 = ‖(
k − I)Qkz‖0 ≤ Chσk ‖Qkz‖σ for any σ ∈ [0, 3/2). Then the proof
proceeds in the same way as for (C.12), �

Remark F.5. For the lowest-order spaces that we focus on, we have

curl(
kzk) = curl zk for all zk ∈ Sk.

For higher-order spaces, the decomposition based on the curl (
k − Qk)Qkz can be
estimated by a modification of estimate (C.12).
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Lemma F.6. For any s ∈ [0, 12 ) the following multilevel deviation estimate holds,

∑

k

h−2s
k ‖curl(
kQk − Qk)z‖20 ≤ C

∑

k

h
−2(1+s)
k ‖(Qk − Qk+1)z‖20 ≤ C‖z‖21+s .

Here z ∈ Sh ⊂ H 1+s
0 (�), s ∈ [0, 12 ).

Proof. Here, we need the commutativity property of 
k and the Fortin projection

RT
k associated with the respective Raviart–Thomas space Rk on the mesh Tk ,

curl 
k = 
RT
k curl. (F.18)

This equality holds applied to smooth functions, for example, applied to the contin-
uous vector piecewise polynomials in Sk .
Due to the commutativity property (F.18), we have �k = curl(
kQk − Qk)z =

(
RT
k − I)curl Qkz. Using the L2-approximation property of the projections
RT

k ,
for any σ < 1

2 , we have
‖�k‖0 ≤ Chσk ‖curl Qkz‖σ .

Below, we choose 0 ≤ s < σ < 1
2 . Proceeding similarly to (C.12), with Qℓ+1 = 0,

and letting hk = 2−ℓ+kH be the kth-level mesh-size, we derive the estimates,

∑

k

h−2s
k ‖�k‖20 =

∑

k

h−2s
k ‖�k‖0‖�k‖0

≤ C
∑

k

h−2s
k ‖�k‖0 hσk

∥∥∥∥
ℓ∑

j=k
curl(Qj − Qj+1)z

∥∥∥∥
σ

≤
∑

k

h−2s
k ‖�k‖0hσk

ℓ∑

j=k
h−1−σ
j ‖(Qj − Qj+1)z‖0

≤ C
∑

k

∑

j≥k

hσk

hσj

hsj

hsk
h−s
k ‖�k‖0h−1−s

j ‖(Qj − Qj+1)z‖0

= C
∑

k

∑

j≥k

(
1

2σ−s

)j−k
h−s
k ‖�k‖0h−1−s

j ‖(Qj − Qj+1)z‖0.

This shows the desired estimate,

∑

k

h−2s
k ‖�k‖20 ≤ C

[∑

k

h−2s
k ‖�k‖20

]1/2[∑

j

h−2−2s
j ‖(Qj − Qj+1)z‖20

]1/2

≤ C
[∑

k

h−2s
k ‖�k‖20

]1/2
|z|21+s . �
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We are now ready to prove estimates (a)–(e) from Section F.1. To conform to the
notation from Section F.1, letting y0 = y ≡ u, we introduce

yk = 
kQkz + ∇Qkϕ,

u
(f )

k =
{


kQkz − 
k+1Qk+1z, for k > 0,

v + 
kQkz − 
k+1Qk+1z, for k = 0,

ψ
(f )
k = (Qk −Qk+1)ϕ,

y
(f )

k+(1/2) = ∇ψ(f )k ,

yk+(1/2) = u
(f )

k + yk+1 = 
kQkz + ∇Qk+1ϕ.

To verify (F.9) of (a), we use the norm equivalence provided by theL2-projections
and the stability of the HX decomposition

∑

k

h−2
k ‖ψ(f )k ‖20 =

∑

k

h−2
k ‖(Qk−Qk+1)ϕ‖20 ≤ C ‖∇ϕ‖20 ≤ C ‖u‖20 ≤ C a(u, u).

Consider now condition (b). We have to estimate

∑

k

h2k ‖ψk‖20 =
∑

k

h2k (∇ψk, yk+(1/2)) =
∑

k

h2k (∇ψk, 
kQkz + ∇Qk+1ϕ).

Here ψk ∈ Sk is such that its coefficient vector (w.r.t. the nodal basis of Sk)
equals ψ

k
= G−1

k+(1/2)P
T
k+(1/2)Gkyk+(1/2). We have yk+(1/2) = ∇Qk+1ϕ
jQjz =

(
jQj − Qj )z + (Qjz) + ∇Qk+1ϕ. Using integration by parts and an inverse in-
equality for ψk ∈ Sk , we obtain

(yk+(1/2), ∇ψk) = ((
kQk − Qk)z, ∇ψk)− (div (Qkz), ψk)+ (∇Qk+1ϕ, ∇ψk)
≤
[
Ch−1

k ‖(
kQk − Qk)z‖0 + ‖div (Qkz)‖0
]
‖ψk‖0

+ (∇Qk+1ϕ, ∇ψk).

Use now the representation ∇Qk+1ϕ =
∑
j>k ∇(Qj − Qj+1)ϕ, (Qℓ+1 = 0) and

the strengthened inverse inequality (see Proposition F.1) to bound the sum

∑

k

h2k (∇Qk+1ϕ, ∇ψk) ≤ C
∑

k

h2k

∑

j>k

h
−(1/2)
k ‖ψk‖0h−(1/2)

j ‖∇(Qj −Qj+1)ϕ‖0

≤ C
∑

k

hk‖ψk‖0
∑

j>k

(
hk

hj

)1/2
‖∇(Qj −Qj+1)ϕ‖0

= C
∑

k

hk‖ψk‖0
∑

j>k

(
1√
2

)j−k
‖∇(Qj −Qj+1)ϕ‖0
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≤ C
(∑

k

h2k‖ψk‖20
)1/2(∑

j

‖∇(Qj −Qj+1)ϕ‖20
)1/2

≤ C
(∑

k

h2k‖ψk‖20
)1/2

‖∇ϕ‖0.

That is, we have the estimate
∑

k

h2k ‖ψk‖20 =
∑

k

h2k (yk+(1/2), ∇ψk)

≤ C
∑

k

‖(
kQk − Qk)z‖0(hk ‖ψk‖0)

+ C
∑

k

h2k‖ψk‖0|z|1 + C
(∑

k

h2k‖ψk‖20
)1/2

‖∇ϕ‖0.

Therefore, we proved the following bound

∑

k

h2k ‖ψk‖20 ≤ C
[∑

k

‖(
kQk − Qk)z‖20 + CH 2 |z|21 + ‖∇ϕ‖20
]
.

UsingLemmaF.4 for s = 0 and the stability of theHXdecomposition,we finally have

∑

k

h2k ‖ψk‖20 ≤ C
[
‖z‖20 +H 2 |z|21 + ‖∇ϕ‖20

]
≤ C

(
1+ H 2

τ

)
a(u, u),

which verifies estimate (F.10) if H 2/τ = O(1), which we assume.
Consider next condition (d). We have to bound the expression

∑

k

λ−1
k ‖�k‖20 =

∑

k

λ−1
k a(yk+1, �k), (F.19)

where �k ∈ Nk has coefficient vector ψ
k

= G−1
k AkPkyk+1. Recall that λk = 1 +

τh−2
k and yk+1 = 
k+1Qk+1z + ∇Qk+1ϕ.
We let zk+1 = Qk+1z and ϕk+1 = Qk+1ϕ. Then the following estimates hold,

‖�k‖20 = (�k, 
k+1zk+1 + ∇ϕk+1)+ τ (curl �k, curl(
k+1zk+1 + ∇ϕk+1)
= (�k, 
k+1zk+1 + ∇ϕk+1)+ τ (curl �k, curl(
k+1zk+1 − zk+1))

+ τ (curl �k, curl zk+1)

≤ (�k,
k+1zk+1 + ∇ϕk+1)+ τ‖�k‖0Ch−1
k ‖curl(
k+1zk+1 − zk+1)‖0

+ τ (curl �k, curl zk+1). (F.20)

Now, decompose zk+1 =
∑
j≥k+1(zj − zj+1) (zℓ+1 = 0). We use the following

strengthened inverse inequality (cf. Proposition F.1) valid for j ≥ k,

(curl �k, curl(zj − zj+1)) ≤ Ch
−(1/2)
k ‖�k‖0h−(1/2)

j ‖curl(zj − zj+1)‖0. (F.21)
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Then, we have the estimate
τ

λk
(curl �k, curl zk+1)

≤ C
∑

j≥k+1

1√
λk

‖�k‖0

(
τh−2
k

λk

)1/2 (
hk

hj

)1/2 (√
τ‖curl (zj − zj+1)‖0

)

≤ C 1√
λk

‖�k‖0
∑

j≥k+1

1
√
2
(j−k)

(√
τ‖curl (zj − zj+1)‖0

)
.

This implies the crucial estimate
∑

k

τ

λk
(curl �k, curl zk+1)

≤ C
(∑

k

λ−1
k ‖�k‖20

)1/2 (
τ
∑

j

‖curl (zj − zj+1)‖20
)1/2

.

Combining (F.20), the last estimate and (F.19), we end up with the main estimate
needed in (d):

∑

k

1

λk
‖�k‖20 =

∑

k

λ−1
k a(yk+1, �k)

≤ C
∑

k

1

λk
‖
k+1zk+1 + ∇ϕk+1‖20

+ Cτ
∑

k

τh−2
k

λk
‖curl (
k+1zk+1 − zk+1)‖20

+ Cτ
∑

j

‖curl (zj − zj+1)‖20.

Use now that
(
τh−2
k /λk

)
< 1, Lemma F.6 for s = 0, estimate (F.17), and the stability

of the L2-projectors in H 1, and the stability of the HX decomposition, we end up
with the following counterpart of (F.12)

∑

k

1

λk
‖�k‖20 =

∑

k

λ−1
k a(yk+1, �k) ≤ C

[
H 2

τ

(
‖z|20 + ‖∇ϕ‖20

)
+ τ |z|21

]

≤ C
(
1+ H 2

τ

)
a(u, u), (F.22)

Recall that we assumed H 2τ−1 = O(1).
Condition (c) requires the following estimate

∑

k

λk ‖u
(f )
k ‖20 = (1+ τh−2) ‖v‖20 +

∑

k

(1+ τh−2
k )‖(
kQk − 
k+1Qk+1)z‖20

≤ C
(
a(u, u)+ τ |z|21

)
≤ C a(u, u). (F.23)



F.3 A multilevel decomposition of div-free Raviart–Thomas spaces 495

Here, we used the representation (F.16), Lemma F.4 for s = 1 and the stability of the
zk terms (F.15), and finally the stability of the HX decomposition. Estimate (F.23) is
the counterpart of (F.11).
Finally, condition (e) is simply the energy stability of the coarse component yℓ =


ℓQℓz + ∇Qℓϕ which is the case due to the properties of the projections
ℓ, Qℓ,
andQℓ, and the stability of the HX decomposition.
Because we have estimated all the necessary terms by ‖u‖2A uniformly in ℓ and

τ > 0 (if H 2τ−1 = O(1)), we have the following main result valid for general
polygonal domains (nor necessarily convex).

Theorem F.7. Consider the parameter-dependent bilinear form (u, w) + τ (curl u,

curl w). Given a 3D polytope �, let Tk be a sequence of uniformly refined triangu-

lations of �. Let Ak be the stiffness matrices computed from the nested Nédélec f.e.

spaces Nk = span {�(k)e } where e runs over the interior edges of elements from Tk .

T0 = Th is the finest-mesh andTℓ = TH is the coarsest-mesh. Consider also the nodal-

based Lagrangian spaces Sk = span {ϕ(k)i } where xi runs over the (interior) vertices

of the elements in Tk . Consider the symmetric V (1, 1)-cycle geometric MG for the

Nédélec stiffness matrix A = A0 as described in Algorithm F.1.1. It requires explicitly

the matricesPj+(1/2) (discrete gradients) that transform the coefficient vector of a f.e.

functionϕ from Sj into the coefficient vector of ∇ϕ viewed as an element of Nj . It also

uses the Gauss–Seidel smoothersMj+(1/2) (referred to as the multiplicative Hiptmair

smoother) for the Laplace matrices Aj+(1/2) = P Tj+(1/2)AjPj+(1/2) at intermediate

(fractional) levels. The method also utilizes standard Gauss–Seidel smoothers Mj for

the Nédélec stiffness matrices Aj as well as the interpolation matrices Pj that im-

plement the embedding Nj+1 ⊂ Nj in terms of coefficient vectors. The thus-defined

geometricV (1, 1)-cycle MG for the (lowest-order) Nédélec spaces has a convergence

factor bounded independently of both the mesh-size h �→ 0 and the parameter τ > 0
as long as H 2τ−1 = O(1).

We conclude with the comment that originally the MGmethods forH(curl)were
analyzed in [AFW] and [H99]. Our presentation is based on the HX decomposition
found in [HX06].

F.3 A multilevel decomposition of div-free Raviart–Thomas

spaces

Given is a 3D polyhedral domain� triangulated into a tetrahedral mesh Th obtained
by ℓ ≥ 1 levels of uniform refinement. Let Rh be the lowest-order Raviart–Thomas
space associated with Th and to be specific assume that for v ∈ Rh essential boundary
conditions v ·n = 0 are imposed on ∂�. Let k = k(x) be a given s.p.d. three-by-three
coefficient matrix with spectrum bounded above and below uniformly in x ∈ �.
In this section, we are interested in solving the saddle-point problem: for a given

f ∈ L2(�) find v ∈ Rh such that

(k(x)−1 v, χ)+ (p, div χ) = (f, χ) for all χ ∈ Rh,
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subject to div v = 0. Here, p is an unknown piecewise constant function with respect
to Th (Lagrange multiplier or “pressure” in some applications). It can be determined
up to an additive constant (if needed). In order to apply the constrained minimization
method from Section 9.5 we need to select divergence-free subspaces of Rh of small
dimension and, in order to prove a convergence, we need to establish the existence
of a stable decomposition w.r.t. these subspaces. For this, we use the fact that any
div-free function v ∈ Rh is actually a curl of a function from the Nédélec space Nh.
Let Sh be the vector nodal based H1

0 = (H 1
0 )
3-conforming piecewise linear f.e.

space associatedwith the vertices of the elements fromTh. A result in [PZ02] states that
for simply connected polyhedral domains� for any u ∈ Nh there is a z ∈ (H 1

0 (�))
3

such that curl u = curl z = curl 
hz, and |z|1 ≤ C‖curl u‖0. Then, for a proper
interpolant zh ∈ Sh of z, the following decomposition

curl u = curl 
h(z − zh)+ curl 
hzh,

is also stable. All components are (obviously) divergence-free.Lettingψh = 
h(z−
zh), we have ψh ∈ Nh, ‖ψh‖0 ≤ Ch |z|1 ≤ Ch ‖curl u‖0 and ‖curl ψh‖0 ≤
C‖curl u‖0. Because now zh ∈ Sh, whereSh is the vector nodal-basedH1

0-conforming
f.e. space, the following multilevel decompositions are available.

curl 
hzh =
ℓ−1∑

k=0
curl (
kzk − 
k+1zk+1)+ curl 
ℓzℓ, zk = Qkzh.

Here, Qk are the vector L2-projection onto the (vector) f.e. spaces Sk of continuous
piecewise linear functions Sk . The components ψk = 
kzk − 
k+1zk+1 for 0 <
k < ℓ, and ψ0 = ψh + (
kzk − 
k+1zk+1) for k = 0, as already pointed out in

the preceding section (proven similarly to (F.23) where u
(f )

k = ψ
(f )

k ), satisfy for
s = 0, 1, the major estimate

∑

k<ℓ

h−2s
k ‖ψ (f )k ‖20 ≤ C|zh|2s ≤ C

(
(1− s)‖u‖20 + s‖curl u‖20

)
.

Also their curl is stable (due to Lemma F.6 for s = 0 and estimate (F.17)); that is,
we have

∑

k<ℓ

‖curl ψ(f )k ‖20 ≤ C|zh|21 ≤ C ‖curl u‖20.

In other words, letting ψℓ = ψ
(f )
ℓ = 
ℓzh, because ‖curl 
ℓzℓ‖0 ≤ C |zℓ|1 ≤

C ‖curl u‖0, we have the following main stability result.

Lemma F.8. For any u ∈ Nh, there is a multilevel decomposition u =
∑
k ψ

(f )
k ,

ψ
(f )
k ∈ Nk for k = 0, . . . , ℓ, for which the following stability estimate holds,

∑

k<ℓ

h−2
k ‖ψ (f )k ‖20 +

∑

k

‖curl ψ (f )k ‖20 ≤ C ‖curl u‖20.
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For the constrained saddle-point problem the decomposition of interest reads as
follows. Let {�he } be the edge-based basis of the Nédélec space Nh. Let NH be
a coarse Nédélec space which is a subspace of Nh. Then, for any divergence-free
function w ∈ Rh, we can use the following two-level decomposition

w = curl ψh = curl (ψh − ψH )+ curl ψH .

Its first component can be expanded in terms of the basis of Nh. That is, for some
coefficients {we}, we have

w
(f )
h = curl (ψh − ψH ) =

∑

e

curl ψe, where ψe = we �he .

In other words, w(f )h is decomposed as a sum of div-free functions curl ψe and each
one belongs to the one-dimensional space Range (curl �he ). If ψH approximatesψh
so that ‖ψh − ψH‖0 ≤ CH ‖curl ψh‖0, assuming thatH ≃ h, it is easy to show the
stability estimate

∑

e

‖curl ψe‖20 ≤ C
∑

e

h−2 ‖ψe‖20 ≤ Ch−2‖ψh − ψH‖20 ≤ C ‖w‖20.

As demonstrated earlier, we can choose ψH = 
H zh for proper zh ∈ Sh, so that the
estimate ‖ψh−ψH‖0 ≤ CH ‖curl ψh‖0 holds. Finally, it is clear that for a coefficient
k(x) that has a uniformly bounded spectrum (w.r.t. x ∈ �), a similar stability estimate
holds in terms of the k(x)−1-weighted L2-norm. The above process can be applied
recursively to any two consecutive meshes h = hk and H = hk+1.
To solve the constrained saddle-point problem, we can use the constrained min-

imization algorithm from Section 9.5. It involves a sequence of 1D subspace mini-
mization problems (at a given level) plus a coarse constrained minimization problem
(referring to the mesh-size H ). We do not have to form any saddle-point problems
because we have an explicit basis for the divergence-free functions in Rh. The overall
method involves recursion over the levels. The following observation is then in order.
The solution provided by the resultingmultilevel constrainedminimization algorithm
is obtained in terms of the curl of a function uh fromNh, and what is important, uh is
explicitly available. That is, at the end we have a particular solution of the following
problem,

(k−1(x) curl uh, curl ψh) = (f, curl ψh) for all ψh ∈ Nh.

In other words, if QRTh is the L2-projection onto the Raviart–Thomas f.e. space Rh,
we have a solution uh ∈ Nh to the equation

QRTh (f − k−1(x) curl uh) = 0.

In particular, if k(x) = 1 we have a particular solution to the equation curl uh =
QRTh f . Note that all other solutions are given by uh+ ∇ϕh for any ϕh ∈ Sh where Sh
is the standard nodal f.e. space of continuous piecewise linear functions.
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Alternatively, we can implement the above-describedmultilevel constrainedmin-
imization method as in Algorithm F.1.1 where the integer indexed smoothersMj and
MT
j are omitted and the coarse solution replaced by a divergence-free coarse-grid

solution. That is, the resulting MG algorithm is based on the div-free subspaces
curl Nk ⊂ Rk and utilizes a Hiptmair-like smoother. Its level-independent conver-
gence can be proved by modifying the analysis from Section F.4.

The case of more general mixed f.e. saddle-point problem

We consider here the more typical saddle-point problem corresponding to the mixed
f.e. discretization of −div k(x)∇p = f which takes the following form.
Introduce the spaceWh of piecewise constants w.r.t. Th. The mixed finite element

problem in question looks for v ∈ Rh and p ∈ Wh such that

(k−1v, χ)+ (p, div χ) = 0, for all χ ∈ Rh,

(div v, q) = −(f, q), for all q ∈ Wh,

We need to have (f, 1) = 0 (a necessary condition for solvability of the original
second-order PDE if homogeneousNeumann boundary conditions are imposed onp).
The above mixed f.e. problem can be reduced to one with a div-free constraint by
finding a particular solution v0 ∈ Rh of the second equation. Assume that we have
found one such solution v0; that is, we have (div v0, q) = −(f, q) for all q ∈ Wh.
Equivalently, we have div v0 = −Qhf whereQh is theL2-projection onto the space
of piecewise constantsWh. Then v = v − v0 ∈ Rh solves the div-free saddle-point
problem

(k−1v, χ)+ (p, div χ) = −(k−1(x)v0, χ), for all χ ∈ Rh,

(div v, q) = 0, for all q ∈ Wh.

A multilevel procedure, based on solving local saddle-point problems at every
discretization level k ≤ ℓ, for finding a particular solution of div v0 = −Qhf was
proposed in [VW92]. To describe it, let Qk be the L2-projection onto the space Wk
of discontinuous piecewise polynomials w.r.t. the kth-level triangulation Tk of certain
degree (zero for the lowest-order Raviart–Thomas space Rk). For any coarse element
T ∈ Tk+1 viewed as a kth-level (fine-grid) domain, solve (in some way) the local
problem

div v
(k)
0, T = −(Qk −Qk+1)f, on T ,

with boundary conditions v
(k)
0, T · n = 0 on ∂T . Because (Qk −Qk+1)f is orthogonal

to the constant functions on T , the above problem is solvable. Note that we need only
a particular solution. For example, we can solve the well-posed local saddle-point
problem,

(
k−1(x)v(k)0, T , χ

)
T

+ (pT , div χ)T = 0, for all χ ∈ Rk|T : χ · n|∂T = 0,

(div v
(k)
0, T , q)T = −((Qk −Qk+1)f, q)T , for all q ∈ Wk |T .
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Here, (., .)T stands for the L2-inner product restricted to T . For each T , we find a
v
(k)
0, T ∈ Rk|T such that v(k)0, T ·n|∂T = 0. There is no conflict on the interfaces between

any two neighboring elements T1 and T2, thus the set {v(k)0, T }T ∈Tk+1 actually defines

a global v
(k)
0 ∈ Rk which satisfies div v

(k)
0 = −(Qk −Qk+1)f .

Note that because we have assumed (f, 1) = 0, hence (Qℓf, 1) = 0. The latter
is a necessary condition for solvability of the last global coarse problem we solve to
determine v

(ℓ)
0 which reads

(k−1(x)v(ℓ)0 , χ)+ (p(ℓ)0 , div χ) = 0, for all χ ∈ Rℓ,

(div v
(ℓ)
0 , q) = −(Qℓf, q) = (−f, q), for all q ∈ Wℓ.

(F.24)

The desired particular solution then equals

v0 =
ℓ∑

k=0
v
(k)
0 .

By construction then, we have div v0 = −
∑ℓ−1
k=0(Qk−Qk+1)f −Qℓf = −Q0f =

−Qhf , which is the desired result.

F.4 A multilevel decomposition of weighted H(div)-space

In some applications it is of interest to solve s.p.d. problems coming from f.e. dis-
cretizations of the weighted H(div)-bilinear form

a(v, χ) = (v, χ)+ τ (div v, div χ),

using Raviart–Thomas spaces Rk corresponding to triangulations Tk of tetrahedral
elements obtained by successive refinement. We recall that Tℓ = TH is the coarsest
triangulation and T0 = Th is the finest one. The parameter τ is assumed either O(1)
or large. If it happens that τ ≤ Ch2k for ℓ ≥ k ≥ k0 at coarse levels k the respective
stiffness matrix Ak coming from a(·, ·) and the space Rk will be well conditioned
because due to a standard inverse inequality for v ∈ Rk we will have τ‖div v‖20 ≤
Cτh−2

k ‖v‖20 ≤ C‖v‖20. That is, the mass termwill dominate the spectrum ofAk. Then
we do not need to have a full multilevel cycle involving all ℓ levels; we can instead
stop at coarse-level k0 and use only smoothing at that final coarse-level and end up
with an optimal order k0-level MG method.
The MG method that we are interested in relies on a stable multilevel decom-

position v = v0 + curl u, where v0 ∈ Rh is such that div (v − v0) = 0, hence
because v − v0 being a div-free Raviart–Thomas function there is a function u from
the Nédélec spaceNh such that curl u = v − v0. For the div-free Nédélec component
we already derived a stable (div-free) multilevel decomposition. At every level k we
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need to smooth based on one-dimensional space spanned by curl �
(k)
e , where {�(k)e }

is the edge-based basis of the Nédélec f.e. space Nk .
The multilevel procedure presented in the previous section that defines the

needed v0 is actually “energy”-stable. We now give a brief description of the proof
from [VW92].
Given v ∈ Rh, consider f = −div v ∈ Wh and compute v

(k)
0 for k = 0, . . . , ℓ−1

as explained in Section F.3 and let at the coarsest level v
(ℓ)
0 be such that div v

(ℓ)
0 =

Qℓdiv v. Then, div
∑ℓ
k=0 v

(k)
0 = div v. By construction, because Qk are L2-

orthogonal projections, we have the identity

ℓ∑

k=0
‖div v

(k)
0 ‖20 =

ℓ−1∑

k=0
‖(Qk −Qk+1)div v‖2 + ‖Qℓdiv v‖20 = ‖div v‖20.

Use the fact that the local saddle-point problems are stable. The following a priori
estimate holds

‖v
(k)
0 ‖0 ≤ C hk ‖(Qk −Qk+1)div v‖0 for k < ℓ. (F.25)

The factor hk comes from a scaling argument because the diameter of the local
domains T ∈ Tk+1 isO(hk). The constantsC depend on the topology of the elements
in Tk which are geometrically similar to a finite set of coarse ones (by assumption).
Hence, C can be considered to be a fixed constant.
Let us now consider the case k = ℓwhich appears to be somewhat more involved.

We need to find a v
(ℓ)
0 ∈ Rℓ such that div v

(ℓ)
0 = Qℓdiv v and v

(ℓ)
0 be stable in terms

of v in the parameter-dependent norm. DenoteRH = Rℓ,WH = Wℓ, andQH = Qℓ.
Consider the following homogeneous Neumann problem posed on �,

�p = QHdiv v ∈ L2(�) with ∇p · n = 0 on ∂�.

Because (1, QH div v) = (1, div v) =
∫
∂� v · n d̺ = 0, the above Neumann prob-

lem is solvable. Use now the following regularity result valid for Lipschitz polyhedral
domains�, that for some δ ∈ (0, 12 ] the following a priori estimate holds,

‖p‖(3/2)+δ ≤ C‖QH div v‖−(1/2)+δ.

Such a result is formulated in Lemma A.53 in [TW05] and originates in [D88].
The Fortin projection
H∇p (cf., Definition B.12) is well defined because ∇p ·

n ∈ H δ(F ) for any face F of the elements in TH . Define v
(ℓ)
0 = 
H∇p. We have,

div ∇p = QH div v, hence due to the commutativity div 
H = QH div, we also have

div v
(ℓ)
0 = div (
H∇p) = QH div v.

Also, based on
H ’sL2-approximation property (because∇p is sufficiently smooth,
cf., e.g., Theorem 5.25 in [Mo03]), the a priori estimate for p in terms of QH div v,
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and an inverse inequality forQH div v, we arrive at,

‖v
(ℓ)
0 − ∇p‖0 = ‖(I − 
H )∇p‖0

≤ CH (1/2)+δ ‖p‖(3/2)+δ
≤ CH (1/2)+δ ‖QH div v‖−(1/2)+δ

= CH (1/2)+δ ‖QH div v‖−1+((1/2)+δ)
≤ C‖QH div v‖−1
≤ C‖(I −QH )div v‖−1 + C‖div v‖−1
≤ C(H‖div v‖0 + ‖v‖0).

We used the approximationproperty of the discontinuous (at least) piecewise constant
projectionQH in H−1(�); that is, for g = div v ∈ L2(�), we used the estimate

‖(I −QH )g‖−1 ≡ sup
ϕ∈H 1(�)

((I −QH )g, ϕ)
‖ϕ‖1

= sup
ϕ∈H 1(�)

((I −QH )g, (I −QH )ϕ)
‖ϕ‖1

≤ CH ‖(I −QH )g‖0 ≤ CH‖g‖0.

Finally, use the estimates ‖∇p‖20 = (QH div v, p) = (div v, QHp − p) +
(v, ∇p) ≤ C‖∇p‖0(H‖div v‖0+ ‖v‖0). That is, ‖∇p‖0 ≤ C(H‖div v‖0 + ‖v‖0).
This shows the L2-stability of v

(ℓ)
0 ,

‖v
(ℓ)
0 ‖0 ≤ ‖v

(ℓ)
0 − ∇p‖0 + ‖∇p‖0 ≤ C [H‖div v‖0 + ‖v‖0] . (F.26)

To conclude, we can say that there is a v
(ℓ)
0 ∈ Rℓ such that div v

(ℓ)
0 = Qℓdiv v and

v
(ℓ)
0 satisfies the stability estimate in the parameter–dependent norm

‖v
(ℓ)
0 ‖20 + τ‖div v

(ℓ)
0 ‖ ≤ C

[
‖v‖20 +

(
1+ H 2

τ

)
τ‖div v‖20

]
. (F.27)

So far, we have shown the following multilevel energy stability result,

ℓ∑

k=0

(
‖v
(k)
0 ‖20 + τ ‖div v

(k)
0 ‖20

)
≤ C

(
‖v‖20 +

(
1+ H 2

τ

)
τ ‖div v‖20

)
. (F.28)

Recall, that we have assumed that H 2τ−1 = O(1).
Because v − v0 ∈ Rh is divergence-free there is a u ∈ Nh (the lowest-order

Nédélec space) such that curl u = v − v0. Based on our analysis in the previous
sections (Lemma F.8), we can find a multilevel decomposition u =

∑
k ψ

(f )
k where

ψ
(f )
k ∈ Nk such that the following stability estimate holds:
∑

k<ℓ

h−2
k ‖ψ (f )k ‖20 +

∑

k

‖curl ψ(f )k ‖20 ≤ C ‖curl u‖20 = C ‖v − v0‖20. (F.29)

We let ψℓ = ψ
(f )
ℓ . This is the last coarse component of u.
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Our goal in this section is to prove the following MG convergence result.

Theorem F.9. Consider the parameter-dependentH(div) bilinear form

a(v, χ) = (v, χ)+ τ (div v, div χ).

It gives rise to a sequence of stiffness matrices Ak coming from the (lowest-order)

Raviart–Thomas spaces Rk , ℓ ≥ k ≥ 0 associated with tetrahedral triangulations

Tk obtained by uniform refinement of a polyhedral (not necessarily convex) domain

� ⊂ R3. Consider the geometric MG method for {Ak} with (forward) Gauss–Seidel

smoothers {Mk} (of the original Raviart–Thomas face degrees of freedom) plus

smoothing involving the curl of the basis functions of the respective (lowest-order)

Nédélec space Nk (associated with Tk). To do this, we need (explicitly) the matrix rep-

resentation of the mapping (discrete curl)Pk+(1/2) that transforms a coefficient vector

of a function u from the Nédélec space Nk to the coefficient vector of curl u viewed as

an element of the Raviart–Thomas space Rk. We also need the (forward) Gauss–Seidel

smoothers Mk+(1/2) coming from the matrices Ak+(1/2) = P Tk+(1/2)AkPk+(1/2). The

resulting MG of interest can be implemented as in Algorithm F.1.1. It gives rise to a

symmetric V (1, 1)-cycle that has the convergence factor bounded independently of

the number of levels ℓ as well as of the parameter τ > 0 if H 2τ−1 = O(1), where

H = hℓ is the coarsest mesh-size.

Proof. We follow the main steps (a)–(e) from Section F.1.
Given a f.e. vector function v ∈ Rh, let v0 =

∑
k v
(k)
0 be its stable decomposition

(constructed in the beginning of this section) such that div (v − v0) = 0 with com-
ponents v

(k)
0 that satisfy, for k < ℓ (F.25), and a coarse component v

(ℓ)
0 that satisfies

(F.27). Let u ∈ Nh be such that curl u = v − v0. We use its multilevel decomposition
u =

∑
k ψ

(f )

k , ψ (f )k ∈ Nk which is stable in the sense of (F.29) (its existence was
shown in Section F.3).
Starting with y0 = y ≡ v, we define (in order to conform with the notation in

Section F.1)

yk =
ℓ∑

j=k

(
v
(j)
0 + curl ψ (f )j

)
∈ Rk,

u
(f )
k = v

(k)
0 ,

uk =
∑

j≥k
u
(f )

k =
∑

j≥k
v
(j)
0 ,

y
(f )

k+(1/2) = curl ψ (f )k ,

yk+(1/2) = u
(f )

k + yk+1 =
ℓ∑

j=k
v
(j)
0 +

ℓ∑

j=k+1
curl ψ(f )j .

Condition (a) leads to the verification of following estimate,
∑

k

h−2
k ‖ψ (f )k ‖20 ≤ C a(y, y) = C a(v, v). (F.30)
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Because the components ψ (f )k satisfy (F.29), we have

∑

k

h−2
k ‖ψ (f )k ‖20 ≤ C ‖v − v0‖20.

That is, we need to bound v0 =
∑ℓ
k=0 v

(k)
0 in terms of v. We have, based on estimates

(F.25) and (F.26),

‖v0‖20 ≤
(

‖v
(ℓ)
0 ‖0 +

ℓ−1∑

k=0
‖v
(k)
0 ‖0

)2

≤ C

⎛
⎝‖v‖20 +H 2 ‖div v‖20 +

(∑

k

h2k

)1/2 (ℓ−1∑

k=0
h−2
k ‖v

(k)
0 ‖20

)1/2⎞
⎠
2

≤ C
[
‖v‖20 +

(
H 2

τ

)
τ ‖div v‖20

]
. (F.31)

By assumption H 2τ−1 = O(1), thus we proved (F.30).
Condition (b) leads to the following estimates (for some ψk ∈ Nk)

∑

k

h2k‖ψk‖20 =
∑

k

h2k (curl ψk, yk+(1/2))

=
∑

k

h2k

(
curl ψk,

∑

j≥k
v
(j)
0 +

∑

j>k

curl ψ (f )j

)
.

We use now the following strengthened inverse inequalities (cf. Proposition F.1)

(curl ψk, v
(j)
0 ) ≤ Ch

−(1/2)
k ‖ψk‖0h

−(1/2)
j ‖v

(j)
0 ‖0

and

(curl ψk, curl ψ
(f )
j ) ≤ Ch

−(1/2)
k ‖ψk‖0h

−(1/2)
j ‖curl ψ (f )j ‖0.

The last three estimates combined give,

∑

k

h2k‖ψk‖20 =
∑

k

h2k (curl ψk, yk+(1/2))

≤ C
∑

k

h2k

∑

j≥k
h

−(1/2)
k ‖ψk‖0h

−(1/2)
j

[
‖v
(j)
0 ‖0 + ‖curl ψ (f )j ‖0

]

= C
∑

k

hk‖ψk‖0
∑

j≥k

(
1√
2

)j−k [
‖v
(j)
0 ‖0 + ‖curl ψ (f )j ‖0

]

≤ C
(∑

k

h2k‖ψk‖20
)1/2(∑

j

‖v
(j)
0 ‖20 +

∑

j

‖curl ψ (f )j ‖20
)1/2
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≤ C
(∑

k

h2k‖ψk‖20
)1/2

×
(
H 2

∑

j<ℓ

h−2
j ‖v

(j)
0 ‖20 + ‖v

(ℓ)
0 ‖20 +

∑

j

‖curl ψ (f )j ‖20
)1/2

.

Based on estimates (F.25), (F.26), (F.29), and (F.31), we arrive at the counterpart of
estimate (F.10)

∑

k

h2k‖ψk‖20 ≤ C
(
1+ H 2

τ

)
a(v, v).

Condition (c) deals with the expression
∑
k<ℓ λk ‖u

(f )

k ‖20, where λk = 1+ τh−2
k .

Because u
(f )
k = v

(k)
0 , using (F.25), we have

∑

k<ℓ

λk ‖u
(f )

k ‖20 =
∑

k<ℓ

(
1+ τh−2

k

)
‖v
(k)
0 ‖20 ≤

(
1+ H 2

τ

)
τ
∑

k<ℓ

h−2
k ‖v

(k)
0 ‖20

≤ C
(
1+ H 2

τ

)
τ ‖div v‖20.

That is, we have proved the counterpart of (F.11) from condition (c).
Condition (d) deals with the following expression, for some �k ∈ Nk ,

∑

k

λ−1
k ‖�k‖20 =

∑

k

λ−1
k a(yk+1, �k)=

∑

k

λ−1
k a

(
�k,

∑

j≥k+1

(
v
(j)
0 +curl ψ(f )j

))
.

We first estimate the L2-part of a(., .). Expanded it reads

∑

k

λ−1
k

⎛
⎝(�k, v

(ℓ)
0

)
+
ℓ−1∑

j>k

(�k, v
(j)
0 )+

∑

j>k

(
�k, curl ψ

(f )

j

)
⎞
⎠ .

The first term is estimated as follows.

∑

k

λ−1
k (�k, v

(ℓ)
0 ) ≤

(∑

k

λ−1
k ‖�k‖20

)1/2(∑

k

λ−1
k

)1/2
‖v
(ℓ)
0 ‖0

≤
(∑

k

λ−1
k ‖�k‖20

)1/2 ( 1
τ

∑

k

h2k

)1/2
‖v
(ℓ)
0 ‖0

≤ C H√
τ

(∑

k

λ−1
k ‖�k‖20

)1/2
‖v
(ℓ)
0 ‖0. (F.32)
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Similarly, for the second term, using Cauchy–Schwarz inequalities and (F.25), we
have

∑

k

λ−1
k

ℓ−1∑

j>k

(�k, v
(j)
0 )

≤
(∑

k

λ−1
k ‖�k‖20

)1/2
⎛
⎜⎝
∑

k

λ−1
k

⎛
⎝
ℓ−1∑

j>k

‖v
(j)
0 ‖

⎞
⎠
2
⎞
⎟⎠

1/2

≤
(∑

k

λ−1
k ‖�k‖20

)1/2(∑

k

λ−1
k

ℓ−1∑

j>k

h2j

( ℓ−1∑

j>k

h−2
j ‖v

(j)
0 ‖2

))1/2

≤ C
(∑

k

λ−1
k ‖�k‖20

)1/2( 1
τ

∑

k

h2k H
2
)1/2( ℓ−1∑

j>k

h−2
j ‖v

(j)
0 ‖2

)1/2

≤ C
(∑

k

λ−1
k ‖�k‖20

)1/2
H 2

√
τ

‖div v‖0. (F.33)

To estimate the last L2-term, in addition to Cauchy–Schwarz inequalities, we also
use inverse inequality for the curl terms for j < ℓ. This leads to the estimates

∑

k

λ−1
k

∑

j>k

(�k, curl ψ
(f )

j ) ≤ C
∑

k

λ−1
k ‖�k‖0

ℓ−1∑

j=k+1
h−1
j ‖ψ (f )j ‖0

+
∑

k

λ−1
k ‖�k‖0‖curl ψℓ‖0

≤ C
∑

k

λ
− 1
2

k ‖�k‖0
1√
τ

∑

j>k

(
1

2

)j−k
‖ψ (f )j ‖0

+
∑

k

λ−1
k ‖�k‖0‖curl ψℓ‖0.

≤ C
(∑

k

λ−1
k ‖�k‖20

)1/2⎛
⎝1
τ

∑

j

‖ψ (f )j ‖20

⎞
⎠
1/2

+
∑

k

λ−1
k ‖�k‖0‖curl ψℓ‖0.

The term
∑
k λ

−1
k ‖�k‖0‖curl ψℓ‖0 above can be estimated as follows

∑

k

λ−1
k ‖�k‖0‖curl ψℓ‖0 ≤

(∑

k

λ−1
k ‖�k‖20

)1/2(∑

k

λ−1
k

)1/2
‖curl ψℓ‖0

≤ C H√
τ

(∑

k

λ−1
k ‖�k‖20

)1/2
‖curl ψℓ‖0.
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Combining the last two estimates, based on (F.29), gives the desired bound
∑

k

λ−1
k

∑

j>k

(�k, curl ψ
(f )
j )

≤ C
(∑

k

λ−1
k ‖�k‖20

)1/2
H√
τ

(∑

j

h−2
j ‖ψ (f )j ‖20

)1/2

+ C
H√
τ

(∑

k

λ−1
k ‖�k‖20

)1/2
‖curl ψℓ‖0

≤ C H√
τ

(∑

k

λ−1
k ‖�k‖20

)1/2
‖v − v0‖0. (F.34)

Now, we turn to the div part of a(., .). It reads

τ
∑

k

λ−1
k

∑

j>k

(div �k, div v
(j)
0 ).

Here, we use the strengthened inverse inequality (cf. Proposition F.1) valid for j ≥ k,

(div �k, div v
(j)
0 ) ≤ Ch

−(1/2)
k ‖�k‖0h−(1/2)

j ‖div v
(j)
0 ‖0,

This leads to the estimate

τ
∑

k

λ−1
k

∑

j>k

(div �k, div v
(j)
0 )

≤ C
√
τ
∑

k

λ
− 1
2

k ‖�k‖0‖
∑

j>k

(
1√
2

)j−k
‖div v

(j)
0 ‖0

≤ C
√
τ

(∑

k

λ−1
k ‖�k‖20

)1/2(∑

j

‖div v
(j)
0 ‖20

)1/2

≤ C
(∑

k

λ−1
k ‖�k‖20

)1/2√
τ ‖div v‖0. (F.35)

Combining (F.35), (F.34), (F.33), and (F.32) based on (F.31) and (F.26), we arrive at
the desired counterpart of estimate (F.12) of (d)

∑

k

λ−1
k ‖�k‖20 ≤ C

(
1+ H 2

τ
+
(
H 2

τ

)2)
a(v, v).

Because the coarse component yℓ = v
(ℓ)
0 + curl ψℓ is “energy”-stable, (due to (F.27)

and (F.29)), we also have that (e) is satisfied. Thus the proof is complete. �

MGmethods forH(div)-problemswere analyzed in [VW92] (2D only), in [H97]
(3D), as well as in [AFWii] and [AFW]. The presentation in this section extends the
approach from [VW92] based on the results available for H(curl) presented earlier
in Section F.2.



G

Some Auxiliary Inequalities

G.1 Kantorovich’s inequality

Another result that can be proved by looking at the sign of the discriminant of an
appropriate quadratic form, is the popular Kantorovich’s inequality.

Proposition G.1. For any s.p.d. A, let λmin = λmin[A] and λmax = λmax[A] stand

for its extreme eigenvalues, and let κ = (λmax[A])/(λmin[A]) be the condition number

of A. Then, the following Kantorovich’s inequality holds,

vTAv vTA−1v

(vT v)2
≤
(
κ + 1
2
√
κ

)2
.

Proof. Consider the quadratic form

Q0(λ) ≡ (λ− λmax)(λ− λmin).

We haveQ0(λ) ≤ 0 if λ ∈ [λmin, λmax]. Similarly,

Q(λ) ≡ (λ− λmax)(1− λ−1λmin) ≤ 0

for λ ∈ [λmin, λmax]. Therefore, the matrix

Q(A) ≡ (A− λmaxI)(I − A−1λmin),

is symmetric negative semidefinite; that is,

vTAv − (λmin + λmax)vT v + λminλmaxvTA−1v ≤ 0

for all v.
Finally, consider the quadratic form (for any real t)

ϕ(t) = vTAv t2 − (λmin + λmax)vT v t + λminλmaxvTA−1v.
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Because ϕ(0) > 0 and ϕ(1) ≤ 0 it follows that the quadratic equation ϕ(t) = 0 must
have a real root. Therefore its discriminantD must be nonnegative; that is,

D ≡ (λmin + λmax)2(vT v)2 − 4λminλmaxvTAvvTA−1v ≥ 0,

which is the Kantorovich’s inequality. �

G.2 An inequality between powers of matrices

Lemma G.2. Let A and B be two given s.p.d. matrices such that

vTAv ≤ vTBv.

Then,

vTA1/2v ≤ vTB1/2v.

Proof. Let X = A1/2 + B1/2 and Y = B1/2 − A1/2. Note that X is s.p.d. and Y is
symmetric. We also have the identity,

YX +XY = 2(B − A). (G.1)

Consider the generalized eigenvalue problem,

Yq = λX−1q.

Because X−1 is s.p.d., and Y is symmetric, the eigenvalues λ are real. Using the
symmetry of X and Y , we have qT YXq = qT (YX)T q = qTXYq = λ qT q. The
latter, together with (G.1), imply

0 ≤ 2qT (B − A)q = qT (XY + YX)q = 2λ qT q.

Thus, λ ≥ 0. Hence, X1/2YX1/2 is symmetric positive semidefinite, and therefore
Y = B1/2 − A1/2 is symmetric positive semidefinite, which is the desired result. �

The following more general result holds which can be proved by using theory of
interpolation spaces.

Lemma G.3. Let A and B be two given s.p.d. matrices such that

vTAv ≤ vTBv.

Then, for any α ∈ [0, 1], we have

vTAαv ≤ vTBαv.
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Proof. Following Appendix B of Bramble [Br93]), we can use the following con-
struction. Define the KA functional

K2A(t, v) = inf
w
(‖w‖2 + t2(v − w)TA(v − w))

= inf
w

[
v

w

]T [
t2A −t2A

−t2A I + t2A

] [
v

w

]
.

Using the main minimization property of the Schur complement

t2A− t2A(I + t2A )−1t2A = t2A(I + t2A)−1,

of the s.p.d. matrix
[
t2A −t2A

−t2A I + t2A

]
,

we get

K2A(t, v) = inf
w

[
v

w

]T [
t2A −t2A

−t2A I + t2A

] [
v

w

]
= t2vTA(I + t2A)−1v.

Let the eigenvectors {qk} of Aqk = λkqk , k ≥ 1, define an orthonormal basis. Then,
v =

∑
k≥1 qTk v qk , and hence

K2A(t, v) =
∑

k≥1
t2

λk

1+ t2λk
(qTk v)2. (G.2)

Let

Cα =

⎛
⎝

∞∫

0

t1−2α

1+ t2 dt

⎞
⎠

−(1/2)

=
(
2

π
sin πα

)1/2
.

Define now the norm

|||v|||A, α = Cα

⎛
⎝

∞∫

0

t−2αK2A(t, v)
dt

t

⎞
⎠
1/2

.

Based on identity (G.2), the following result is easily seen (see [Br93], TheoremB.2),

|||v|||A, α =
(
vTAαv

)1/2
.

Indeed,

∞∫

0

t−2αK2A(t, v)
dt

t
=
∑

k≥1
(qTk v)2

∞∫

0

t−2α t2
λk

1+ t2λk
dt

t

=
∑

k≥1
(qTk v)2λαk

∞∫

0

(
√
λkt)

−2α
√
λkt

1+ (t
√
λk)2

d(
√
λkt)
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=
∑

k≥1
(qTk v)2λαk

∞∫

0

x−2α x

1+ x2 dx

= C−2
α

∑

k≥1
(qTk v)2λαk .

Now, using the fact that vTAαv =
∑
k≥1(q

T
k v)2λαk , the desired identity follows,

|||v|||2A, α = C2α

∞∫

0

t−2αK2A(t, v)
dt

t
=
∑

k≥1
(qTk v)2λαk = vTAαv.

Finally, because xTAx ≤ xTBx, we have

K2A(t, v) = inf
w
(‖w‖2 + t2(v − w)TA(v − w))

≤ inf
w
(‖w‖2 + t2(v − w)TB(v − w))

= K2B(t, v).

The latter, implies that

vTAαv = |||v|||2A, α ≤ |||v|||2B, α = vTBαv,

which is the desired result. �

G.3 Energy bound of the nodal interpolation operator

Let T be a convex polygon. In our application, T is a simple finite element, such as
a tetrahedron. Then, there is an extension mapping that transforms any continuous
function v fromH 1(T ) to a function v̂ fromH 1

0 (�̂), where �̂ is a larger domain (with
diameter proportional to the diameter of T ) which preserves the norm. That is, we have

v̂|T = v, |̂v|2
1, �̂

≤ CT
(
|v|21, T +H−2 ‖v‖20, T

)
.

The constantCT may depend on the shape of T but not on its size (or diameter). Here,
H stands for a characteristic size of the diameter of T . For norm-preserving extension
mappings we refer to Grisvard ([Gri85], p. 25, and the references given therein).
All the estimates below are first derived for domains with unit size and the corre-

sponding result is obtained by transformation of the domain.
Let Th be a triangulation with characteristic mesh-size h which covers T exactly.

Choose a node x0 ∈ T from the mesh associated with Th. Let G(x, x0) = 1/r ,
r = |x − x0|. We have

−� G(x, x0) = 0, for all x ∈ R
3 \ {x0}.
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Now, choose an ǫ > 0 such that Kǫ(x0) ≡ {x : |x − x0| < ǫ} ⊂ �̂. The Green’s
formula then gives

0 = −
∫

�̂\Kǫ(x0)

v̂�G(x, x0) dx =
∫

�̂\Kǫ(x0)

∇G · ∇v̂ dx −
∫

∂Kǫ(x0)

v̂
∂G

∂r
dŴ.

Schwarz inequality, the fact that (∂G/∂r) = −(1/ǫ2) on ∂Kǫ(x0), imply

1

ǫ2

∣∣∣∣∣∣∣

∫

|x−x0|=ǫ

v̂ dŴ

∣∣∣∣∣∣∣
≤

⎛
⎜⎝

∫

�̂\Kǫ(x0)

|∇G|2 dx

⎞
⎟⎠

1/2

|̂v|1, �̂

≤ CT
(
|v|21, T +H−2 |v|20, T

)1/2
⎛
⎜⎝

∫

�̂\Kǫ(x0)

|∇G|2 dx

⎞
⎟⎠

1/2

.

Also, because |∇G| ≤ 1/r2, and after introducing spherical coordinates in the last
volume integral, we obtain,

1

ǫ2

∣∣∣∣∣∣∣

∫

|x−x0|=ǫ

v̂ dŴ

∣∣∣∣∣∣∣
≤ CT

(
|v|21, T +H−2 |v|20, T

)1/2
⎛
⎝

∞∫

ǫ

r2/r4 dr

⎞
⎠
1/2

,

which implies the inequality,

1

ǫ2

∣∣∣∣∣∣∣

∫

|x−x0|=ǫ

v̂ dŴ

∣∣∣∣∣∣∣
≤ 1√

ǫ
CT

(
|v|21, T +H−2 |v|20, T

)1/2
. (G.3)

Apply now estimate (G.3) for a function v + v0 where v0 is a piecewise linear finite
element function associated with the triangulation Th, such that it vanishes at the
vertices of T . Here, we view T as an element from a coarse triangulation TH . Also,
v is a piecewise linear function associated with TH , hence linear on T . Let ǫ ≃ h

and use Taylor’s expansion (noting that we may assume that the extension v̂ + v0 is
linear on T ∩Kǫ(x0)),

v(x0) = v(x)+ v0(x)+ (x0 − x) · ∇(v̂ + v0)(x), for x ∈ Kǫ(x0).

Then, because |v̂ + v0|1,Kǫ(x0) ≃ ǫ3/2|∇(v̂ + v0)|, |x−x0| ≤ ǫ, and
∫
|x−x0|=ǫ 1dŴ ≃

ǫ2, we have

|v(x0)| ≤ C

⎛
⎜⎝ǫ−2

∣∣∣∣∣∣∣

∫

|x−x0|=ǫ

v̂ + v0 dŴ

∣∣∣∣∣∣∣
+ ǫǫ−(3/2) |v̂ + v0|1, T

⎞
⎟⎠ .
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Using the fact that v is linear on T , we have that its maximal value on T is attained
at a vertex x0 of T , based on (G.3), we get

max
x∈T

|v(x)| = |v(x0)| ≤ C

⎛
⎜⎝ǫ−2

∣∣∣∣∣∣∣

∫

|x−x0|=ǫ

v̂ + v0 dŴ

∣∣∣∣∣∣∣
+ ǫ−(1/2) |v̂ + v0|1, T

⎞
⎟⎠

≤ ǫ−(1/2)CT
(
|v̂ + v0|21, T +H−2 |v̂ + v0|20, T

)1/2

≤ h−(1/2)CT
(
|v + v0|21, T +H−2 |v + v0|20, T

)1/2
.

Use now the expansion of v in terms of the nodal basis ϕi of the finite element space
associated with the vertices xi of the triangulation Th. We have

v =
∑

xi

v(xi)ϕi,

and

∇v =
∑

xi

v(xi) ∇ϕi .

Since |∇ϕi | ≃ 1/h and the fact that only finite number of entries take part in the
above sum for any x restricted to an element T , we get

|v|1, T ≤ CH 1/2 max
x∈T

|v(x)|

≤ CT
(
H

h

)1/2 (
|v + v0|21, T +H−2 |v + v0|20, T

)1/2
.

Now use Poincaré’s inequality,

H−3 |w|20, T −

⎛
⎝H−3

∫

T

w dx

⎞
⎠
2

≤ CH−1 |w|21, T ,

for w = v + v0 + const. By an appropriate choice of the const we can achieve∫
T
w dx = 0. Therefore, we proved the local estimate,

|v|1, T ≤ CT
(
H

h

)1/2
|v + v0|1, T . (G.4)

In 2D,weuseG(x, x0) = log 1/r . Repeating the above analysiswith appropriate
changes, we end up with the following local estimate,

|v|1, T ≤ CT
(
1+ log H

h

)1/2
|v + v0|1, T . (G.5)
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from a subdomain boundary, 256
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FAC, fast adaptive composite grid method,
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convergence, 301
multilevel FAC preconditioner
definition, 303
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FAS, full approximation scheme, 375
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Gärding inequality, 312, 413
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mixed f.e. method, 428
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functions, 282
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algorithm, 63
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projected Gauss-Seidel, 387

Raviart–Thomas, 346, 429, 435, 436, 465,
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saddle-point lemma, 58
Schur complement
conditioning, 56
definition, 55
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its inverse being principal part of the
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M-matrix, 92
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part, 314

two-level HB and standard basis Schur
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Sherman–Morrison, 59, 113, 114, 329
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Stokes, 437
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strong approximation property, 11, 18, 20,
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interpolation matrix, 199
norm boundedness, 239
local interpolation matrix, 220

Uzawa algorithm, 338, 339, 341
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153, 207, 241, 244, 248, 253, 272, 316,
335, 363, 364, 384, 428, 469, 482, 489

theorem of Braess and Hackbusch, 147
variable V-cycle, 148
variable-step AMLI–cycle MG
convergence, 363
definition, 361
optimality for 2nd order elliptic problems,
364

variable-step CG
algorithm, 355
convergence, 355
Blaheta’s estimate, 358
Notay’s estimate, 358
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multilevel, 360
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