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Preface

In many places in engineering or science or mathematics we are faced
with a version of the following archetypical problem. We are given
a function f(t) defined for t € R. Let us imagine that this function
describes some real-life phenomenon. To make things mathematically
simple let us assume that f € L2(R). Our aim (admittedly vague) is to
transmit (or store or analyze) this function using some ‘finite’ device. A
good illustration might be that f represents a voice signal and we want
to transmit it over the telephone lines or put it on a compact disk. The
whole function f is given by the totality of its values at points of R, and
this makes it a continuum of points — we can not do much with ‘finite’
device. So let us suppose that as our background knowledge we have
some orthonormal basis (f,.)nen in L2(R). Then we know that we can

write
f = Z an.fn

nenN

where the series converges in Ly(R) and the coefficients are uniquely
determined by the formulas a, = (f, f,) for n € N. Thus instead
of transmitting the function f it suffices to transmit the sequence of
coefficients (ay)nen and let the recipient sum the series himself. It is
still not a finite procedure but it looks better. To make it really finite we
have to choose a finite set A C N such that ZueA a, fn will be ‘almost
equal’ to Z,‘EN a, fn. But life is not perfect, so we cannot expect to
have perfect tranmission every time. This means that the recipient is
really forming the sum EnEA ay, fy., where a,, is ‘close’ to a,,, and has to
hope that the result is still ‘almost equal’ to EuEN ay, fn. But what does
‘almost equal’ mean? If we are in any real situation we have to decide
and base this decision on our experience. Mathematically speaking we

vii
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need a distance between functions, which very often is provided by some
norm, usually different from the hilbertian norm.

This is a very general story and there were and are many ways to
deal with various special instances of different aspects of this archetyp-
ical problem. Wavelets are just one new tool to deal with this type of
problem.

The subject of wavelets appeared in the mid 1980s influenced by ideas
from both pure mathematics (harmonic analysis, functional analysis, ap-
proximation theory, fractal sets etc.) and applied mathematics (signal
processing, mathematical physics etc.). Almost instantanously it be-
came a success story with thousands of papers written by now and wide
ranging applications. The reader may learn some history of this subject
from [87} or [86] or from introductions and comments in [24], [84] or
(85]. 1 do not want to discuss the history in any detail. Let me simply
state that by now wavelets find applications in many areas of mathemat-
ics, science or technology. Just to show how diverse are applications of
wavelets let me say that Wavelet Liternture Survey [92] divides its en-
tries into the following categories: acoustics, astronomy, atomic decom-
positions, az + b group, Bernoulli-Gaussian processes, chord-arc curves,
fractal and Cantor sets, frames, Franklin wavelets, Gabor representa-
tions, image processing, irregular sampling, non-orthogonal expansions,
numerical algorithms, partial differential equations, seismology, signal
processing, splines, theory, wavelet bases, and wavelet transform.

In order to make this discussion a bit more precise let us state here (in
the case of one variable only) the definition of a wavelet which (naturally
enough) is the main concept discussed in this book.

Definition 2.1 A wavelet i3 a function ¥(t) € Lo(R) such that the
family of functions

W, = 21202 — k)

where 7 and k are arbitrary integers, is an orthonormal basis in
the Hilbert space Lo(R).

If we look at this definition we can guess how wavelets fit into the
general scheme depicted above. They provide the orthonormal system
that we wanted to have as our ‘background knowledge’.

When one looks at the above definition for the first time, one question
arises immediately: do wavelets exist at all? 'To this question we will
give an affirmative answer many times in this book. We start with some
examples in Chapter 1 and will give mnore in subsequent chapters. Let us
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assume for the time being that wavelets exist. Then the next question
springs to mind: why bother with them?

Well, the first and really the most important answer is that wavelets
fit very well into many concrete cases of our archetipical story. In short:
they are useful. Naturally this answer can be justified only after work-
ing with wavelets on some concrete problems.

The second answer is: simply for the fun of it. To be more serious; it is
not clear that such a function exists, so when it turns out that it indeed
exists we have a mild surprise. Thus we may wish to investigate such
functions in some detail, to know how many such strange functions exist,
what additional properties they may have etc. Also each such function
gives us an orthonormal basis in Lo(IR). So it may be interesting to in-
vestigate such bases. There is also a natural question of generalizations,
e.g. what happens in R?. All this will be studied in this book and I hope
that the reader will be convinced that wavelets are interesting.

Since I am a pure mathematician by profession, education and char-
acter this second answer is close to my heart. Thus I study wavelets
as a beautiful mathematical idea. It seems to me that it is this beauty
and simplicity of the wavelet concept that has attracted so many peo-
ple. This intrinsic simplicity makes wavelets a convenient framework
unifying various earlier methods.

Even from this Preface it should be clear that the literature on wavelets
in enormous and is growing at a tremendous rate. Nevertheless when in
1993 | began preparing a Part II1 (beginning graduate students in math-
ematics) course on wavelets at Cambridge University, I had difficulties
in finding a text appropriate for such students. Out of [24], [85], [27] and
many expository and research papers, and out of my own experience I
put together a course which, with many additions, 1 repeated in 1994/95
for senior undergraduates in mathematics at Warsaw University. The
present book is an outgrowth of those efforts. My idea was to present
the essential mathematical core of theory of wavelets. I decided to con-
centrate on orthonormal wavelets as the most complete and ‘cleanest’
part of the theory. My aim was to give detailed constructions of the
most important wavelets and present the usefulness of wavelet bases in
decomposing functions. All this is done in the framework of function
spaces.

So this is a purely mathematical book, although constantly 1 try to
make my calculations as explicit as possible and I concentrate on theo-
retical questions that should have relevance to applications. But regret-
tably 1 discuss no real applications.
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In other words, I take it for granted that wavelets are useful, and
this belief is one of the motivations for studying wavelets, but I explain
only their basic mathematical theory. [ hope that each reader will find
a favorite application for wavelets. I also believe that the knowledge
of orthogonal wavelets discussed in this book should make the study of
various generalizations much easier.

This book is basically a course of lectures aimed at students of math-
ematics (maybe even pure mathematics). Thus [ start rather slowly but
as the book progresses the pace quickens a bit. There are also more than
a hundred exercises for the reader to solve.

Let me explain the content and organization of this book in more
detail.

Chapters 1-4 discuss one-variable orthonormal wavelets (as defined
above). This is the backbone of the mathematical theory. Chapter 1 in
a sense presents an overview of the book. Without any general theory
we discuss two wavelets: the Haar wavelet and the Stromberg wavelet.
They were invented and investigated well before the emergence of the
general theory or indeed the notion of wavelet. We present the construc-
tion and properties of those wavelets and show some sample theorems
about convergence of wavelet expansions. As its title suggests, the aim
of this chapter is to convey the general spirit of the book by present-
ing important but relatively easy and explicit examples. Formally its
results are not used later except as a motivation or in examples and ex-
ercises. Chapter 2 discusses the general theory. We present and discuss
here the concept of multiresolution analysis and the scaling function.
Then we describe all wavelets associated with a given multiresolution
analysis. We also show how the scaling function can be used to build
the multiresolution analysis. Here we also discuss in general terms pe-
riodic wavelets. In Chapter 3 we show how the above general theory
can be applied in concrete cases. We construct Meyer’s wavelets and
spline wavelets and discuss in detail their smoothness and decay. This
chapter also includes a self-contained introduction to spline functions.
We also discuss in this chapter examples of wavelets not associated with
any multiresolution analysis. Chapter 4 discusses wavelets with compact
support. We present a general approach to constructing compactly sup-
ported wavelets and apply this to a construction of smooth, compactly
supported wavelets. We also present an ‘elementary’ construction of a
continious wavelet whose support is [0, 3]. These Chapters use only the
rudiments of llilbert spaces and the Fourier transform on the real line.
Chapter 5 discusses multivariable generalizations. We discuss briefly a
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tensor product technique and next generalize to R? the concept of multi-
resolution analysis. Then we discuss the general procedures leading from
multiresolution analysis to wavelets in this context. It turns out that in
general we need a finite wavelet set instead of one wavelet. We exhibit
many examples of Haar-like wavelets on R?, i.e. wavelets ¥ such that
|¥(z)| is the characteristic function of a set. Then we construct more
smooth examples.

These five chapters constitute an introduction to constructions of or-
thogonal wavelets. The rest of the book deals with wavelet expansions.
In Chapter 6 we give a self-contained presentation of the basic theory of
L, spaces and H; and BMO. Our main results are the necessary inter-
polation theorems. In Chapter 7 we introduce unconditional convergence
of series in Banach spaces and discuss the concept of unconditional basis.
In Chapter 8 we prove that good wavelets provide unconditional bases
in L,(R?) and in Hy(R?) and we show the equivalence of various wavelet
bases. We also give a characterization of those function spaces in terms
of wavelet expansions. We also discuss periodized Meyer wavelets since
they lead to systems of trigonometric polynomials. We conclude with
Chapter 9 where, on R only, we discuss moduli of continuity and Besov
norms and their connections with wavelets.

The obvious prerequisite to reading this book is a sound understand-
ing of real analysis, functions, series of functions etc. A familiarity with
Lebesgue integration is very useful, in particular the Lebesgue domi-
nated convergence theorem is used several times. Additionally some
elementary knowledge of the Fourier transform and Hilbert spaces are
needed. All the facts needed are summarized in Sections A 1 and A 2.
To read Chapters 1-4 (with the exception of some portions of Chapter
1) one needs only to know the Fourier transform on R and be familiar
with the Hilbert space L.(R). To read Chapter 5 one needs to know the
Fourier transform on R?. To read the remaining chapters one needs the
concept and very basic properties of Banach spaces. They are summa-
rized in Section A.3. The more advanced facts are carefully presented
when needed. In particular Chapter 6 contains a detailed and selfcon-
tained presentation of the necessary parts of the theory of L, spaces
and the theory of [, and BMO. The concept of unconditional basis is
introduced and presented in some detail in Chapter 7.

As the reader could have guessed anyway, the book is organized into
chapters, which are divided into sections. The numbering is decimal
by chapter. Displayed formulas (if numbered) are numbered consecu-
tively. There is a single nuinbering sequence for theorems, propositions,
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lemmas, corollaries and definitions. Each chapter ends with a section
‘Sources and comments’ and with exercises. Exercises range from quite
easy and routine to rather difficult. The last chapter of the book is
an Appendix which contains sections listing results used about Hilbert
spaces, Fourier transforms and Banach spaces. It also contains list of
symbols and list of spaces. References to a result from the Appendix are
easily recognizable by the presence of the letter A and Roman numerals,
e.g. A.2-1I

Since this is clearly a textbook the Bibliography lists only works actu-
ally referred to in the text, mostly in ‘Sources and comments’. [ have not
tried to give full bibliography of the subject and it would be impossible
anyway. For readers looking for more information on the mathematical
part of wavelet literature I can only offer the following suggestions:

e To check recent volumes of Mathematical Reviews or Zentralblatt
fur Mathematik. If possible this should be done using the corre-
sponding computer data base. The search for the keyword wavelet
will immediately exhibit hundreds of items.

o The book Wavelet Literature Survey [92] lists more than 1000 items
of the wavelet literature. They cover both the theory and many diverse
applications.

e There is a whole series Wavelet analysis and its applications pub-
lished by Academic Press, which contains books on various aspects of
wavelets. The book [15] was the first publication in this series.

o There are mathematical journals which regularly publish papers con-
nected with wavelets. Browsing through volumes of Applied and
Computational Harmonic Analysis, The Journal of Fourier Anal-
ysis and Applications, Constructive Approrimation or Studia
Mathematica should easily yield many interesting papers.

Aknowledgements. Part of the work on this book was done while I
was a Central and East European Fellow under the Human Capital and
Mobility Programme of the Commision of the European Communities
and while I was a Visiting Scholar of St. John’s College, Cambridge. I
would like to thank St. John’s College, for the hospitality that was ex-
tended to me and my family. During work on this book I was partially
supported by KBN grant no 2P301004.06. I would like to thank Dr K.
Nowiriski of the Interdisciplinary Center for Mathematical Modelling,
Warsaw University, for his help in preparing the computer graphics ap-
pearing in this book.




1

A small sample

The main point of this introductory chapter is to present two wavelets:
the Haar wavelet and the Stromberg wavelet. We do so without using
any general theory and without even giving the definition of a wavelet.
We present the construction of these wavelets and indicate how they can
be used to represent functions from some simple, natural classes. This
(as the chapter title indicates) represents a sample of this book. Such
an approach is also justified historically. Both these wavelets were well
known (without the use of the word ‘wavelet’) before the emergence of
the general theory.

1.1 The Haar wavelet

In this section we will discuss in some detail the most elementary wavelet,
called the Haar wavelet.

DEFINITION 1.1 The Haar wavclct is the function defined on
the real line R as
1 fort€[0,3)
H(t)y={ =1 forte[},1] (1.1)
0 otherwise.

We are interested in the family {29/211(27t _k)}jEZ rcz- To simplify

the notation let us denote Hjx(t) =: 2//2H (27t — k). Observe that
suppHjx = [k277, (k + 1)277]. (1.2)

The intervals (k27,(k + 1)2?] for k,j € Z form the family of dyadic
intervals. This family of intervals splits naturally into levels; the j-th
level consists of intervals whose length is 277. Inside each level distinct
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dyadic intervals are non-overlapping. The following two properties of
dyadic intervals will be useful in further considerations:

(i) either two dyadic intervals do not overlap or one is contained in
the other

(if) if one dyadic interval is strictly contained in the other, then it is
contained either in the left half or in the right half of it.

Those observations easily give the following proposition.

Proposition 1.2 The system {27/2H (27t — k)}jez recz '8 orthonor-
mal in Ly(R). '

Proof Let us look at the scalar products (Hj x, Hj k). We can assume
that j < j'. Using the substitution & = 27 — k we see that

o0
(Hjx, Hy x) =/ 2Y2H (t)H (2% — r)dt (1.3)
— 00
where s = 7 —j and r = 2" ~7k — k’. If j = j' and k = k’ then the
integral in 1.3 clearly equals 1. If j = j' but k % k' then 7 # 0 so
suppH(2*t —r)NsuppH (t) = @ and the integral in 1.3 is 0. When j’ > j
then we have either suppH (2*t — r) NsuppH(t) = @ so the integral is
0 or suppH (2*t — r) € suppH(t). But in this case H(t) is constant on
suppH (2°t — r), so the integral is also 0 because fjnw H(t)dt =0. ]

In order to show that {2//2H (291 — k) }{ez.kez is an orthonormal basis

in Ly(R) let us consider two families of closed subspaces of La(R):
S,, = span {”J-*)j<n,kez (1.4)
and

all functions in L,(R) constant on all
= { 2(R) } i (1.5)

intervals [k27",(k +1)27"],fork € Z

Both these families have the following properties (we formulate them for
the S,,’s only, but the same holds for the L,,’s).

.CS1CSCS C... (1.6)
f(t) €S, <= f(2t) € S (1.7)
f(t) € So <= f(t+k)eSo for ke Z. (1.8)

Lemma 1.3 For alln € Z we have L,, = S,,.
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Proof From 1.7 above we see that it suffices to show that So = Ly.
Since each Hj, for j < 0 is constant on any interval [r,r + 1] we see
that Sg C Ly. On the other hand each function from Lo can be written
as 3,z &r1y,r41) 5o by 1.8 it suffices to show that 1 5 € So.
To show this let us consider the series

S ¥Hj o= P H2).

7<0 i<0
Since ||21'H(2-7'I,)||2 =29/ and j < 0 this series is absolutely convergent
in L2(R). One can easily see from the definition of H(t) that

> 2PHjp(t) =0 for t <0,

j<0

221'/2"].’0@) = Z'zf =1for0<t<1

3<0 i<o0

and for 2" <t < 2'*! where r =0,1,2,... one has

> 2 PHo(1) = -2 + i 277 =0.

i<0 j=r+2
This shows that So = Logso L,, = S,, for all n € Z. O
From Proposition 1.2 and Lemma 1.3 and the fact that U,T:_w L, is
dense in Ly(R) we get immediately:
Theorem 1.4 The system {27/2[1(27t - k)}j€l,kEZ is an orthonor-

mal basis in Ly(R).

This means that for a function f € L2(R) we have a decomposition

F=3"3"(f Hye) Hyn. (1.9)
JEZ kEZ

Since H € Ly(R) for all p, 1 < p < 0o, we can write the right hand
side for any f € Ly(R), 1 < p < oo. For the rest of this section we will
investigate the convergence of this series for f € L,(R). Later (Section
8.2) we will show that for 1 < p < co this series converges when arranged
in any order. For the time being we will discuss only the most natural
order. Thus we will study operators Q;‘ and P, defined as

Q¥(f) = (fs Hp) Hje (1.10)

k<p
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and

Po(f) =30 (f Hok) . (1.11)

7<r k€Z

Theorem 1.5 If f € Lp(R) with 1 < p < 0o or f € Co(R), then
limy oo P(f) = f and for each r € Z lim,_.o0o P (f) + QU(f) =

P, .1(f). The convergence is in the norm of the space.

Proof For 1 < p < oo let us denote by SP and L the spaces defined
by 1.4 and 1.5 where the closure is taken in L,(R) not in Ly(R). The
proof of Lemma 1.3 can be easily modified to show that L2 = S? for all
n € Z. Since P,.(f) is an orthogonal projection onto S, and S, = L, we
can write a different representation of the operator P,, namely we have

(k+1)27"

P = Zz’/ S0 Yy - (kg 1y2-ry-

keZ k2=

The validity of this representation follows immediately from the fact
that the right hand side of the above cquation defines an orthogonal
projection onto L, . Let us also note that | J, ¢z L. is dense in Ly(R) for
1 <p < oo.

Tlus the first claim for 1 </ p < oo follows from the fact that the norm
of P, as an operator on L,(R) equals 1. This is a simple consequence of
Holder’s inequality as follows:

P 1/p
e s, = (22'” 2“’)
kCZ

(k+1)2°"
/ J(#)dt
(ky2r r
(ZT”(/ 3 lf(f)l”d1>2”2”’""’)
k2-"

IN

k2-"
kEZ

(/" uowa) "

If f € Co(R) then it is uniformly continuous. Thus given e > 0 we can
find an N such that for » > N and for each k € Z

Il

sup {|f(z) = f)] : wye[k2 " (k +1)2 "]} <e.
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For a given r > N and each t € R we fix an integer k such that t €
k277, (k+1)2 7). Then

o -sor = P [ s 0

2-r

|27-/k(lc+1)27r IOESI0)) d3| <e.

2-+
This implies that

sup P, (f)(t) = (1) = 0 as r — oo.
tCR

This proves the first claim of the theorem.
Since for a fixed j the functions {I{,x}rez have disjoint supports, we
have

1
“Z(fv”jk)”jk”,, =(Zkg;.l(fylijk)lp”II]"C”;,) i

k<p
Li(k_L 1/p
= (Zkgn 2GR (S, "jk)'P) .

This shows that lim,-.co Q5 (f) exists in the norm of the space. Clearly
it equals P;,1(f) — P;(f). This completes the proof of the theorem. O

The Haar wavelet is very well localized. The supports of the functions
12 :
{P7PH@t—k)}, g vez
The chief drawback is that H is not continuous. This implies that even
for f € Co(R) the functions P, f are not continuous. They are step
functions.

are dyadic intervals and are easily understood.

1.2 The Stromberg wavelet

In this section we discuss the Strémberg wavelet, which is a continuous,
piecewise linear function. Its definition is much more involved than the
definition of the Haar wavelet.

Let us start by defining some subsets of R. Let us put

z, = {1,2,...}

z = -7,

Ao = Z,U{0}U3Z_
A = A"U{%}.

Note that in the above definitions we use our standard notation that
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for a number a and a subset A C R we have ad = {ax : = € A} and
a+A={a+z : zc A}

Given a discrete subset V' C R let S(V) be the space of all functions
f € La(R) which are continuous on R and linear on every interval I C R
such that INV = @. It is clear that S(V) is non-empty if |V| > 3. Also
if V; C V; are discrete subsets of R then S(V,) C S(V;). In particular
S(Ap) C S(A}) are non-trivial closed subspaces of Ly(R), and it is easy
to see that S(Ao) has codimension 1 in S(A4,). One can simply write
each function f € S(A;) asasum f = g+aA where g € S(Ay) is defined
as g(r) = f(r) for r € Ag and A € (A) is defined as

0 ifre Ao
A(r) ={ . (1.12)
1 ifr= %

DEFINITION 1.6 The Stromberg wavelet is a function S € S(A;)
such that ||S||, =1 and S is orthogonal to S(Aq).

REMARK 1.1. Such a function S is actually defined only up to a unimodular
multiplicative constant, but this will not matter.

We will proceed analogously to Section 1.1 and show that the system
{29/285(29¢t - k)}JEZ,kEZ is an orthonormal basis in La(R). First let us
check that this system is orthonormal.

The argument for this is similar to the argument given in the previous
section for the orthogonality of {2//2F(27¢ — k)}JeZ,keZ' Let us take
two pairs (j,k) and (j’,k’). Let us assume that j < j'. Using the
substitution u = 27t — k we see that

{> 5]
(S)ks Syrr) = 2*/2/ S(H)S(2t —r)dt (1.13)
- oa
where s = j' — jand r =27 Tk —k'.
If s> 1 (i.e. j# j') then for each r € Z
8(2°t — 1) € S$(32) C S(Aop)

so the integral in 1.13 equals zero. If s = 0 (i.e. 7 = 7') and k # k'
then we can assume that k¥ > k. In this situation » = k — k' < 0 so
St —1) € S(A, —7) C S(Ao). This means that the integral in 1.13
equals zero, so {27/25(27¢ — k)}jEZ,kEZ

The fact that {27/25(27x ~ k)}; xez is an orthonormal basis follows
inmediately from the following three facts:

U S(27"Z) is dense in Ly(R) (1.14)

neZ

is an orthonormal system.
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N s@™z) = {0} (1.15)
nez
and
S(277-12) = S(277Z) ® span{Sjk ) kez. (1.16)
The proof of 1.14 is a routine approximation argument, e.g. we know
that continuous functions with compact support are dense in L, (R) and
each such function can be approximated by functions from S(2-"Z).
To see 1.15 note that if f € S(2"Z) for an integer n then f is linear
on the intervals [—2",0] and [0,2"], so if f € [,z S(2"Z) then f is
linear on both half-lines [0,00) and (—00,0]. For a function in L,(R)
this means that f =0.
One easily checks, using an obvious change of variables, that the map
f > 27/2f(29x) is a unitary map of L,(R). One also checks that it maps
S(3Z) onto $(277-1Z) and S(Z) onto S(277Z) and span{So x}kez onto
span{S;x}rez. Thus 1.16 will follow once we establish

S(32) = S(Z) @ span{Sp k}kez- (1.17)

To show 1.17 we will use the translation operator Ty defined by the
formula (T f)(z) = f(z — N). This is clearly a unitary operator on
Lo(R). Applying the translation operator Ty to the definition of S we
see that for each N € N

S(A;1 — N) =8(Ag— N)®span{Sp, _n}. (1.18)

Since Ap = A, — 1, we can repeatedly apply 1.18 and obtain that for
each Nandr>0

(Al —(N-r))
S(Ao — (N — 1)) @span{So,-N+:}
= S(Ay (N =r+1) ®span{So_wsv)
= S(Ao— (N —r+1))®span{So, -N4+,S0,- Nyr-1}

= S(Ao— N)@span{So )i/ 1%.
If we take N > 0 and r = 2N we get
S(A, + N) = S(Ao — N) ® span{Sox} . _n.

Letting N — co we obtain 1.17.
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So we know that {27/25(27t — k)}jez,kez is an orthonormal basis
in Ly(R).

The definition of S gives no direct clue to what it looks like. Our next
task is to compute the function S explicitly. It turns out that although
S is supported on the whole real line R, it decays very fast at infinity.
We have the following:

Theorem 1.7 At points of the set A; the values of the Stromberg
wavelet S are given by
S(k) SM(V3=2*1 for k=1,2,3,...
sy = -sV3+1)
S(0) = S1)2V3I-2)
S(-%) = sSMEVI-2)(V3-2)¢ for k=1,2,3,...

where 5(1) has to be fized so that ||S||, = 1. Note that since S €
S(A;) the above values determine S completely.

Let us point out some facts which follow immediately from this Theorem.

(a) The Stromberg wavelet S oscillates; because v/3 — 2 < 0 it changes
sign between any two consecutive points of A;.

(b) The Stromberg wavelet S has exponential decay, i.e. there exist
constants C and a > 0 such that

IS(©)] < Cexp(—alt) (1.19)

for all t € R. Clearly a = — In(2 — v/3) ~ 1.316 works.

(c) The Strémberg wavelet S is in L,(R) for all 1 < p < co.

(d) We have S(—£) = (10 — 6v/3)S(k) for k = 1,2,3,.... This shows
that S admits a certain symmetry. This symmetry mirrors the
fact that A; is twice as dense in (—00,0] as in [0, 00).

Proof of Theorem 1.7. For o € Ag let the function A, € S(Ao) be
defined as
1 ift=0
A(t)=<¢ 0 ifte Ay andt#o (1.20)

linear otherwise

Such functions are called simple tents in S(Ag). Clearly (S,A,) = 0
for all o € Ag. Since S is piecewise linear, these scalar products can
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easily be computed explicitly in terms of values of S on A;. From these
calculations we obtain

0=(S,A,)=8(c—1)+45(c) +S(c +1) (1.21)
for 0 = 2,3,4,..., and
[)=(S,Av)=S(o'—%)+4S(v)+S(U+%) (1.22)

foro=-4,-1,-2,-2,...
The remaining two tents Ag and A; are a bit more involved. We
obtain

0 = (S, Ao) = 25(—3) +95(0) + 6S(3) + S(1) (1.23)

and
0= (S,A;) =S(0) + 6S(3) + 135(1) + 45(2). (1.24)

It is natural to look for the solution of the system of equations 1.21
in the form S(o) = S(1)q°~!. When we substitute this into 1.21, all
equations give for q the same quadratic equation 1+44g+ ¢% = 0. It has
two solutions ¢ = —2 % /3. However, S should be in Ly(R) so we need
lgl < 1; thus we must take ¢ = v/3 — 2.

Now we try to find the solution of 1.22 in the form S(—%) = S(0)¢*
for k=1,2,3,... and in the same way we obtain the same ¢ = V3-2.
If we substitute the values obtained so far for S(—3) and S(2) into 1.23
and 1.24 we obtain the system

2(V3 — 2)S(0) + 95(0) + 65(3) + S(1)
S(0) +65(3) +135(1) + (V3 - 2)5(1).

0
0

I

Solving this system we obtain
S

©
5(

(2v3-2)S(1)
~(V3+1)S().

)
)
Thus we obtain a sequence (S(0)), 4, satisfying all the equations 1.21-
1.24. This sequence yields a function § € S(A,) which is orthogonal
to all simple tents in S(Ap). Since, as is easily seen, all simple tents in
S(Ao) are linearly dense in S(An), we obtain that S is orthogonal to
S(Ao). This S when properly normalized is the Stromberg wavelet. (]

i
2

Because S € L,(R) for all p, 1 < p < oo, the coefficients with respect
to the Stromberg basis, namely (f,S;x) = f:o f(t)S;k(t) dt, can be
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computed for any function f which is in some L,(R) for 1 < p < co. So
we can consider the convergence of the series

ST S0 Sk (1.25)
jezkez

for f in various function spaces. We will discuss here only the case
f € Co(R). Analogously to what we did with the Haar wavelet we start
by considering operators P, defined as

R.f:ZZ(LSjk)SJ-k (126)

j<rkeZ

which in this case are orthogonal projections onto S(27"Z). We have

Theorem 1.8 There exists a constant C' such that for any f €
Co(R) N La(R) the operator P, defined by 1.26 satisfies

1P f oo = Cll Moo
for allr € Z.

The technicalities of the proof of Theorem 1.8 are contained in the fol-
lowing two lemmas.

Lemma 1.9 If gupc i3 a continuous, pieceunse linear function on
[~1,1] given by

a x=—1
(z) =4 ¢ z=0 (.27
GabelT) =19 z=1 27)
linear otherwise
then
1 2 2 2
a® +b% +2c¢? +ac+be
1 =:/ |g“b(.(:l‘)|2d$= .
-1 3
Proof Simply compute
0 1
I = / (c—a)z + )P dz + / (b= c)x + ) dz
1 JO
— )2 b—c)?
= (a—,;:)‘+c(a—c)«}—r:2-+—(——,‘—(1—4-(:(IJ—C)+(:2
@+ 42 +ac+be o

3
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Lemma 1.10 Suppose we have a positive real number c and real
numbers a,b with |a|,|b] < c. Then

1 1/2
AcisnthC (/:1 ]g,,,,a(g;)|2dz)

i 1/2
2 C
S(/.1'9"""“)' “) NN (1.28)

where the function gupa 19 defined by 1.27 above.

Proof We divide 1.28 by ¢ and from Lemma 1.9 infer that we need to
prove that

2+ b2+ 24a+b)'? . a2 + b2 + 202 + aa + ab)'/?
( 3 ) - -llsn«-f.«( 3 )
1
6v2+2/6

for all numbers a,b with |al,|b} < 1. Minimizing the quadratic polyno-
mial in & on the left hand side, we see that the minimum is attained for
a= —'J?I’—", so we need to prove

L

i

(a2+b2+2+a+b V2 ra? 4 b2~ La4 5)2\?
3 3
1

6v2+2V6
But for |a, [b] < 1 we have
24+a+b+ L(a+b)?
3 (a2 +b2 + 2+ a+ b)Y/2 4 (a2 + b2 — §(a + b)2)}/2
1 24a+b+3a+b)?
V3 V6 +12
1 1 1

1
V32V6+vV2  6vZ+2/6

L =

5l

\%

\Y

O

Proof of the Theorem 1.8 Let us start with r = 0 and let us take
f € Co(R) with compact support and || f]|,, = 1 and let ¢ = || Pof]] .
Replacing f by an appropriate translation of it and multiplying by 1
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we can assume that Fo(f)(0) = c¢. We also know that P is an orthogonal
projection onto S(Z), so

[ u=nse = el [T 1r-oi g s@)
wt{ [T 1= < g € 5(@) ana
g(k) = Po(f)(k) for k € Z\ {o}}. (1.29)

Let us denote Po(f)(—1) = a and Po(f)(1) = b. From 1.29 we get

In

1 1/2 1 1/2
(/1 |f —gnbr|2) = l<"rff (/A1 If_gnbu|2>
Applying the triangle inequality we obtain
1 1/2 1 1/2
(/ o) = ([ wr)
-1 i
1 1/2 1 1/2
<(four) it (] o)
Since (fjl [£19? < V2 (because |[fll oo = 1) we get
1/2 1/2

1 1
2 9./ . 2
<./:| ]galml ) = Z\/E+ '”l<"“f<" (./—1 Ignbal )

From Lemma 1.10 we obtain

1 1 1/2 ¢

2 o /i 2 g
Fabe ;2\/3+(/ ) SR S—
(/.1| bl) ] o] 273 + 26

This implies that ¢ < 2v/2- (2v/3 4 2V/6). Since functions with compact
support are dense in Co(R) we conclude that || P < 2v2- (2v3+ 2V6).
To prove the estimate for r # 0 let us observe that

Pof(z) =" 3 /m F(O2PS(2t — k) dt 2728(Px — k).

F<r kCZY T

1/2

Substituting 2 'u =t and 2 "y = x we get
oo .
=y > "/ FRTTWS T u— k) duS(2 Ty — k)
<1 k€Z o
= (Rg)(2' )




1.2 The Stromberg wavelet 13
where g(z) = f(27"z). This implies

1P flloo Poglloe = I1Pollllglles
NI Poll 1/ 1loo

O

REMARK 1.2. This argument is quite wasteful and gives || Po|| much too big.
One can improve Lemma 1.10 and get a better constant — for some improvements
see Exercise 1.6.

Since UJ.EZS(2-‘"Z) is dense also in Co(R) we get

Corollary 1.11 If f € Co(R) then P.(f) converges uniformly to f

when r tends to oo.

Now we will analyze the operators Q;‘ given by
Qi) =3 (f,S) Sk
k<p

Our aim is to show that Q}(f) — P;.1(f) - P;(f) as r — oo. First let
us look at the operators Q. Observe that for every f € Co(R)

pm, (> Sox) IS0 kll o = 0. (1.30)

To see this note that

[{f, S0} | So,kl

(""/:: f(z)S(z — k)dz

(1.31)

Cl[: (e + k)S(u)du

and this expression tends to zero by the Lebesgue Dominated Conver-
gence Theorem because S(u) is integrable (see remark (c) after Theorem
1.7) and | f(u+ k)| < ||| 0 and for each u € R lim o [f(u+ k)| =0
because f € Co(R). It also follows from 1.31 that

I{f, Sox) S0kl < Cllf N oo (1.32)

for all k € Z.
Also for any sequence of scalars (ag)rcz we have

Z S0k Sok
S0,k [l oo

keZ

< Csup |ag). (1.33)
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This follows from the fact that S decays exponentially (see remark (b)
after Theorem 1.7), i.e.

S0,k ()] < C IS0 kllo exp(—arlu — k[)

so for every u € R we have

Z e 10kl oo So k()
keZ
< Csup ok Zexp(-a|u — k|) < Cysup |ogl.
ke k€Z keZ
Putting together 1.30, 1.32 and 1.33 we obtain that ||Q4] < C for all
1 € Z and the series Ek<;‘ (f,Sox) Sox converges in Co(R) and

Jim " (f. Sok) Sok = P1f — Pof.
k<r
The passage to general j’s is accomplished exactly as at the end of the
proof of Theorem 1.8.

Sources and comments

As was noted in the text, both wavelets discussed in this chapter were
really introduced well before the emergence of the general theory. In his
paper [52] A. Haar introduced an orthonormal system of functions on
the interval [0, 1], which is now generally called the Haar system. It is
the system 29/2H(27t—k) | [0,1] with j = 0,1,...and k =0,1,...,2/ —1
supplemented by the constant function. In the terminology of our book
it is a periodic Haar wavelet as discussed in Section 2.5. Haar’s main
aim was to construct an orthonormal system such that each continuous
function on {0, 1] has a uniformly convergent Fourier series with respect
to this system. Thus he showed a version for continuous functions on
the interval [0,1] of our Theorem 1.5, with basically the same proof
(cf. Exercise 1.9). The convergence in L,[0,1] for 1 < p < oo was
shown later by M. J. Schauder [99]. An orthogonal system of continuous,
piecewise linear functions on [0, 1} was constructed by Ph. Franklin [41].
He also showed the uniform convergence of the Franklin-Fourier series
of any continuous function, i.e. our Theorem 1.8 and Corollary 1.11. In
fact our proofs closely follow ideas of Franklin [41]. Although in the
Haar system the passage from [0, 1] to R is quite obvious, it is not so
for the Franklin system. This step (and much more) was done by J.-
O. Stromberg [107]. His real aim was to construct unconditional bases
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in Hy(RY) for 0 < p < 1, so he considered not only piecewise linear
continuous functions but also smoother splines (see Section 3.3). Hardy
spaces H,,(R"), but only for p = 1, are discussed later in this book, in
Sections 6.2, 8.2 and 8.3. Both the Haar system and the Franklin system
on [0,1] are among the most important orthogonal systems and have
been investigated in great detail, cf. [56]. In particular the fact that the
classical Franklin system on {0,1] has exponential decay was shown by
Z. Ciesielski [16], the proof being somewhat similar to the Strémberg’s
proof of Theorem 1.7, which we give. Since the Franklin system is not
a wavelet, each function has a slightly different shape, so one can not
attain the precision and simplicity of Theorem 1.7. T would also like to
mention the paper [82] where Stromberg wavelets are computed in terms
of the Fourier transform and equation 2.45.

About the ezercises. Exercise 1.8 is a part of Stromberg’s [107] con-
struction of wavelets on R?. Exercise 1.9 is Haar’s [52] original formu-
lation and result. Exercise 1.6 is a step towards the exact computation
of |Po|| and || Po + Q3| on Co(R). These values are formally unknown,
but in the (probably similar) case of the classical Franklin system such
calculations were done in [17].

Exercises

1.1 Suppose ¢ € Lo (cf. 1.5) is such that the system {®(z —k)}rez
is orthonormal and supp® is compact. Show that for some s € Z
we have &(z) = £1j,5)(z — 3).

1.2 Let X be the closed span of the set {27/2H (27t — k)}
the space L;(R). Show that
o If f € X then [T f(x)dr =0, whence 1o ¢ X.
e The function H(z — 1) is not in X.

jezkez M

1.3 Suppose that the function f on R satisfies Holder’s condition
with exponent a, 0 < a < 1, i.e. there exists a constant C such
that

1f(z) = f(¥)| £ Clz —y|*

for all z,y € R. Show that (f, Hx) = [0 f(t)Hjk(t) dt exists
for all j,k € Z and satisfies

[{f, Hix)| < C - 273t 1/D),

1.4 Suppose that f € Ly(R). Show that f is even if and only if
(fiHjk) = —(f, H,,.x_1) for all j,k € Z. Show that f is odd
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if and only if (f, Hye) = (f,H; _x_1) for all jk € Z. Let g =
f +1j0,00)- Show that

9= (f Hy) k.

JEZ k>0

Let S denote the Stromberg wavelet.

e Show that
/ S(t)dr:/ tS(t)dt = 0.

e Show that for all z € R with |z| > 1 we have S(—z/2) =
(10 — 6V3)S(z)
Let P be an orthonormal projection onto S(Z).

o Improve Lemma 1.10 and show e.g. that (6v/2 4 2v/6)~! can
be replaced by )%2, which is a bit better but still not opti-
mal.

o How does this improve the estimate for ||P%]|?

e Show that ||Poljoc > 1.

Suppose that f € S(Z) has compact support. Show that the
system {f(t — m)}, ., is not an orthonormal basis in S(Z).
Let ¥ € S(Z; U {0}) be such that ||¢]; =1 and v L S(Z,).

o Show that {y(t — m)},, <z is an orthonormal basis in S(Z).
e Show that 1 has exponential decay.

For n = 1,2,... write n = 2/ + k with = 0,1,... and k =
0,1,...,27 — 1 and define I, (t) =: 22 (Pt—k) | [0,1]. Define
also ho(t) =: 1. Show that ()2, is a complete orthonor-
mal system in L3[0,1]. Show that for f € C[0,1] the series
00 o {fs hu) by, converges uniformly to f.
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General constructions

2.1 Basic concepts

Let us start this chapter with the definition of a wavelet — the main
concept discussed in this book.

DEFINITION 2.1 A wavelet is a function ¥(t) € Ly(R) such that
the family of functions

W, = 21202t — k),

where j and k are arbitrary integers, is an orthonormal basis in
the Hilbert space Ly(R).

Let me stress that for a function W the notation ¥, to denote the func-
tion 2//2W(2%¢ — k) will be used throughout this book. According to the
above definition, with each wavelet we have associated an orthonormal
system {27/2W(27t — k)}jez.kez which will be called a wavelet basis.
As we remarked in the Preface, the very existence of wavelets is not
clear. Two examples of wavelets were given in Sections 1.1 and 1.2 and
many more will be constructed in subsequent chapters. Good wavelets
are usually constructed starting from a multiresolution analysis. Let us

give the definition of this concept.

DEFINITION 2.2 A multiresolution analysis is a sequence (V;);ez
of subspaces of L2(R) such that
G)..cviacvycvic...
(ii) spanU;ez Vs = L2(R)
(iti) Njez Vs = {0}
(iv) f(z) € V; if and only if f(277z) € Vg
(v) fe€Vo if and only if f(x—m) € Vp for allm e Z

17
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(vi) there exists a function & € V,, called a scaling function,
such that the system {®(t — m)}, . ., is an orthonormal basis
in Vo.

It would be good to give at this point some interesting examples of
multiresolution analyses. 1 will not do so, because the next two chapters
will be devoted to this task. So I will only point out that the spaces
(L)% _ o defined by 1.5 form a multiresolution analysis. In this case
the function 1jg ;) can be taken to be the scaling function. Also, the
spaces {S(27Z)};ez considered in Section 1.2 clearly satisfy conditions
(1)—(v) of Definition 2.2. In this case there is a problem with the choice
of scaling function. We will return to this problem at the end of Section
2.2 and we will show that they form a multiresolution analysis. It is clear
from Definitions 2.1 and 2.2 that operators of dilation and translation
of functions should be essential to studying wavelets. In this section we
will define those operators. The notations established in the process will
be used throughout the whole book. Let us formally define translation
and dilation operators.

DEFINITION 2.3 Given a real number h we define the translation
operator T), acting on functions defined on R by the formula

Tu(f)(=z) = f(z = 1).

DEFINITION 2.4 Given an integer 8 we define the dyadic dilation
operator J, acting on functions defined on R by the formula

Jo()(=) = f(2'2).

REMARK 2.1. Clearly we can define a dilation by any real number, not only
by 2*. We restrict our definition to the dyadic case simply because in this and
the next two chapters we will use ouly such dilations.

Clearly all the above operators are formally invertible; we have 'l‘,:‘ =
T_j and J71 = J_,. Let us also note how they act on Ly(R). A simple
change of variables gives the proof of the following lemma.

Lemma 2.5 (a) For every number h € R the operator T, iz an
isometry on Ly(R).

(b) For every integer s € Z the operator 2°/2], is an isometry on
L(R).
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Equipped with the above definitions, let us make some comments about
multiresolution analyses. Let us note that conditions (i)—(iii) mean that
every function in L,(R) can be approximated by elements of the sub-
spaces Vj, and as j increases to oo the precision of approximation in-
creases. Conditions (iv) and (v) express the invariance of the system
of subspaces (Vj);ez with respect to translation and dilation operators.
Using the notation introduced in Definitions 2.3 and 2.4 we can rephrase
conditions (iv) and (v) of Definition 2.2 as conditions

(iv) Vi=J_;(Vo) foralljel
vy Vo=T.(Vo) forallnel

From Lemma 2.5 or simply using the change of variables we see that
condition (vi) can be rephrased as

(vi') for each j € I the system {29/2®(27z — k)}rez 15 an orthonormal
basts in V.

The concept of multiresolution analysis as defined above forms a very
natural and transparent scheme. However, the definition given above is
not ‘minimal’ in the sense that some of the conditions (i)—(vi) follow from
the remaining conditions. It is clear at the first glance that (v) follows
from (vi). We will see later in Proposition 2.15 that the condition (iii)
is superfluous. The interdependence of the other conditions is partially
discussed in exercises at the end of this chapter.

It is immediately clear that we can adopt two ways of looking at a
multiresolution analysis.

o We take the subspaces (V;);cz as our basic, given objects. They have
to satisfy conditions (i)-(v) which usually are rather easy to check.
Then we need to find a scaling function satisfying (vi). This is usually
not so obvious.

e We start with the function ®. We define V5 as span {®(t —m)}, .
and the other spaces V, are defined by condition (iv) or (iv’). Con-
dition (v) is automatically satisfied and we need to check conditions
(1)—(iii) and (vi).

There is also a third way, not so clear directly from the definition. It is to

start with the scaling equation (which is the expression of the fact that

Vo C V1) and to build the scaling function from there. This is discussed

in detail in Remark 2.6. Whichever point of view we adopt, it is clear

that we will need to know something about the system of translates of a
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given function and the subspaces spanned by such systems. This topic
will be discussed in Section 2.2.

2.2 Multiresolution analyses

Let us start with the following concept from the geometry of Hilbert
spaces.

DEFINITION 2.6 A sequence of vectors (x,,)nca in a Hilbert space
H i3 called a Riesz sequence if there exist constants 0 < c < C such

that
1/2
¢ (Z lanlz) <

neA

E Ay Ty,

neA

1/2
<C (Z |a..|2> (2.1)

neA

for all sequences of scalars (a,)nca. A Riesz sequence is called a
Riesz basis if additionally span(z,,),ca = H.

Since any orthonormal system satisfies 2.1 with ¢ = C = 1, the concept
of a Riesz system is a generalization of the notion of orthonormal system,
and a Riesz basis is a generalization of an orthonormal basis.

REMARK 2.2. Let us also note a reformulation of Definition 2.6. A Riesz
sequence in H is the image of the unit vector basis in ¢ under an iso-
morphic embedding. Using this language we can also say that an orthonormal
sequence is the image of the unit vector basis in £; under an isometric operator.

Lemma 2.7 (a) If we have a Riesz basis (x,,)nez in H then there
exist biorthogonal functionals (z;)ncz, i.e. vectors in H such that
(zy,,Tm) = 6n,m. The sequence (z),cz is also a Riesz basis in H.

(b) If (z,)nez 18 a Ricsz basis in H then there ezist constants
0 < ¢ £ C such that

1/2
cfl=ll < (Z | (=, ) I2) = el (22)

nez
forallz e H.

REMARK 2.3. A system of vectors (x,)nc 4 in a Hilbert space I is called a
frame if there exist constants 0 < ¢ < (" such that 2.2 holds for each z € H.
If ¢ = C the frame is called a tight frainc. Sometimes frames are used as a
substitute for a Riesz basis. The important difference between frames and Riesz
bases is that if (,)nea is a frame, the vectors (z,)neca need not be linearly
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independent; as a trivial example take (€,)nea to be the disjoint union of two
orthonormal systems. We will not discuss this concept in this book, except in
the Exercises (cf. Exercises 2.15 and 4.12).

Proof Let £2(Z) denote as usual the Hilbert space of all sequences
(@n)nez such that 3 o [@.]? < oo, and let e, denote the n-th unit
vector in €2(Z), i.e. the sequence which has all coordinates equal to 0
except the n-th coordinate which equals 1. Let us consider the operator
I : £2(Z) — H defined by the condition I(e,) = =, for all n € Z.
Since (zn)ncz is a Riesz basis, we see that | is an isomorphism of £,(Z)
onto H. Thus the operator (1~!)* mapping ¢2(Z) onto H is also an
isomorphism. We define x}, = (I17')*(e,.). Then we have

(ILI,,,) = <(1_1)‘(€n): l(em» = (en)em)

30 (z})nez is the sequence of biorthogonal functionals to (z,,)nez. It is
a Riesz basis because the operator (77!)* is an isomorphism. This gives
part (a) of the Lemma. To get (b) we use (a) and write x =37, a,x;..

Then we have
Z | (:’:1 In) |2 = Z Ianl2
n€Z neZ

and since we already know from part (a) that (z},),.cz is a Riesz basis
we get 2.2. (]

In order to understand and efficiently apply condition (vi) of Definition
2.2 we need to understand sets of the form {®(t —m)} ., and the
spaces they span. Let us take a finite sequence of scalars (a,). From
A1.2-11I we see that

F (E Pz -—11)> = (Z a,.(’“‘f) ®(¢). (2.3)

Since the Fourier transform F is a unitary operator on L2(R) and the
function ¥, a,e~**¢ is 2m-periodic, we infer that

{e 4]
[t = (/[ S
n Y
27
= (/ Za,,r’"‘{
o "

. 1/2
I‘i’(é)lzdf>

1/2
22|<i>(5+2m)|2d§> . @a)

€2
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Note that the series ), |B(€ + 2n1)|2 converges almost everywhere to
a finite value, because

2n o0
[ Xtbe e = [ i <oo.
0 ez -0

These observations allow us to characterize functions ¢ € L,(R) such
that {®(t — m)},, .z is a Riesz sequence, namely we have:

Proposition 2.8 Let & be a function in Ly(R) and let 0 < a < A be
two constants. The following two conditions are equivalent:

(i) for every sequence of scalars (an)necz we have

1/2 oo 1/2
a (Z [a,f) < <f IS and(z - )|’ d.z)
nez ™ uez
1/2
< A (Z |a..|2) (2.5)
nezl
(ii) for almost all £ € R
2 2
a N 2 A
5 < é (€ +2aD)” < . (2.6)

Proof If 2.6 holds then we infer from 2.4 that for each finite sequence
of scalars we have

a o 1/2
—_ § —ing |2
2m (/o ! ™ e | df)

IA

z a, (x —n)
n

A 27 1/2

kel iné 24

2 </o ! Z e f) '

o 1/2
< i |Zanf"‘“‘|’df) = Vor (Zlaulz)
0 " n

we obtain 2.5 for all finite sequences of scalars. But this easily implies
that 2.5 holds for all infinite sequences of scalars as well. To prove the
other implication, consider the set

Aa={t€(0,2n] : Z |+ 2nD)? > o).
leZ

IA

Since
1/2
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If for some « this set has positive measure we take a sequence of scalars
(@n)nez € £2(Z) such that 14, = ¥, 7 ane™™ for £ € [0,2n]. From

2.4 we obtain
1/2
(/ D1 + 2m)| )

1€Z

ValAq|'?. (27)

Z a, O(x — n)

nezZ

v

Since
1/2
a2 =—— =1 ~——A /2

we infer that

Z a, ®(x —n)

n€Z

>\/_J_<ZIm.l2)l/2.

neZ

Comparing this with 2.5 we obtain that 2ma < A2. This gives the right
hand inequality in 2.6. Analogously, considering the set
Ba={¢€(0,2n] : Y |®(¢+2n)]’ < a}
ez

we obtain the left hand inequality in 2.6. O

Corollary 2.9 The system {®(t —m)}, .z is an orthonormal system
if and only if
- 1
2 - —
Z (€ +2ml)” = o (2.8)
ez

for almost all £ € R.

Proof Irom Proposition 2.8 we infer that condition 2.8 is equivalent to
the fact that ||, cz . ®(z — n)||, = (X,.ezlan]?)"/? for all sequences
of scalars. This is clearly equivalent to the system {®(t —m)},, . being
orthonormal.

It will be essential in our future arguments that we understand clearly
which functions are in the span of {®(t —m)}, ., when the system
{®(t — m)},,¢z is a Riesz sequence. For future reference we will formu-
late it in the form of the following, practically self-evident proposition.
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Proposition 2.10 Suppose that {®(t —m)} ., is a Riesz sequence
satisfying condition 2.5. Then

i) Any function g € span {®(t —m can be written as
mez

9(z) =Y @, &(z - n)
nez
and the series converges in La(R).
(ii) g € span {®(t —m)}, ., if and only if

(€)= $(6)D(&) (2.9)

for some 2m-periodic function ¢(€) with 02" |#(€)|2 d¢ < oo.
(i) If 9(z) = ¥.,.czan®(xz — n) and H(£) is given by 2.9 above
then ¢(€) =3, cz ane ™ and conversely.
(iv) The norms of g and ¢ are related as follows:
1/2

2n
Al s (5 [ w@rd) <l 210

7

where a and A are the constants appearing in 2.5. Con-
versely, if 2.10 holds for some constants a and A and all
g € span {®(t —m)}, ., and corresponding ¢ given by (iii)
above, then 2.5 holds with constants a and A.

Using the above description we can prove:

Proposition 2.11 Suppose that ® € Ly(R) 78 a function such that
{®(t —m)},,cz i3 a Riesz sequence. Then there ezists a function
®; €span {®(t —m)}, 7 such that {®((t —m)}, ., is an orthonor-
mal system. For each such ®; the system {®1(t —m)}, 7z is an
orthonormal basis in the space span {®(t —m)}, 4.

Proof From Corollary 2.9 we see that in order to have {®(t —m)}, .,
orthonormal we have to define the Fourier transform of ®; as

$1(6) = h(OP©)
with h(§) a 27-periodic function such that

_1/2
[h(8)] = \/% (Z L3 +27rl)|2)

1€Z
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It is clear from Proposition 2.8 that any such h() satisfies
0<bz|h()<B (2.11)

for some constants b and B. From Proposition 2.10 and 2.11 we obtain
that @, € span {®(t —m)}, 5. Also we easily see that such a choice
ensures that Y., [®;(§ + 2nl)[> = 7—, so by Corollary 2.9 the system
{®1(t —m)},,cz is orthonormal. From 2.11 we infer that the set of
functions § which can be written as §(§) = f(£)®(€) with f(&) 2n-
periodic and fh |£(€)]? < oo is equal to the set of functions which can
be written as §(¢) = f(£)®,(§) with f as above. Thus Proposition 2.10
tells us that span {®,(t —m)}, ., = span {®(t —m)}, .4 O

REMARK 2.4. Clearly the most natural choice for ¢, giving an orthonormal
basis in span {$(t — m)}, 7 is given by

-1/2
16 = f(ZI¢(E+2wl)l’) #(6). (2.12)

‘eZ

We will use this choice repeatedly in our constructions of wavelets.

REMARK 2.5. It follows from the above arguments that if ®(z) 1s a scaling
function of a multiresolution analysis then this multiresolution analysis has many
other scaling functions. A function ®,(z) is a scaling function of this multi-
resolution analysis if and only if &, (£) = m(€)$(€) for some 2n-periodic function
m(€) such that |m(¢)| = 1 ae.

EXAMPLE 2.1. Let us conclude this section with one more example
of a multiresolution analysis. Namely we want to show that the spaces
S§(277Z) discussed in Section 1.2 form a multiresolution analysis. We
have already remarked, and it is almost obvious, that they satisfy con-
ditions (i)—(v) of Definition 2.2. We only have to ensure that (vi) holds
also. From Proposition 2.11 we see that it suffices to find a function
® € S(Z) such that {®(t —m)}, . is a Riesz basis in S(Z). The very
natural candidate for such ¢ is a simple tent A defined by the conditions

A€eS(Z), A(0)=1,A(n)=0forn €Z)\ {0}.

We already know from Section 1.2 that S(Z) = span {A(t —m)}, .z
There are at least two ways to check that {A(t —m)}, ., is a Riesz
system. One is to calculate directly [ |3, a,A(z—n)|2dz for a finite
sequence (a,). Since Y, a,A(z — n) is a continuous, piecewise linear
function having the value a,, for z = n, a direct calculation (like the one
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in Lemma 1.9) gives

00
1
/ |§ a,,A(z_n);2dI=§§:(aﬁ+a3+,+a,,a,,+,).
0o g

"

From Hélder’s inequality we obtain |}, anani1| £ Y, |an|? so

/:i | Za”A(z - n)|2dz < Z ]a,.|2.

On the other hand we have

1 1
3 D (a+al, +anen) 2 3 D (a2 + a2y, — laullansal)
n n
1 2
2 3 Zan‘
“n

So we obtain that {A(t —m)}, ., is a Riesz basis in S(Z). Another
argument can be obtained using the Fourier transform. One can easily
compute directly A(€) and check condition 2.6. I will not present details
here because they will be presented in greater generality in the next
chapter. .

It should be also noted that we exhibited a scaling function for this
multiresolution analysis in Exercise 1.8.

2.3 From scaling function to multiresolution analysis

An inspection of Definition 2.2 shows that a scaling function ® deter
mines the multiresolution analysis completely. Also, as we will see later
2.47 gives an explicit formula for a wavelet in terms of the scaling func
tion. Thus, if we are interested in constructing wavelets it may be es
sential to be able to recognize a scaling function of an multiresolutiol
analysis. Let us concentrate now on the scaling function ® appearing i1
Definition 2.2. From conditions (i) and (vi) of Definition 2.2 we see tha
the scaling function ® is in V), so (iv) gives $(z/2) € Vp. From (vi) w
obtain

(z/2) = Y an®(z —n) (2.1:
nel
or equivalently
O(z) =) an®(2z —n). (2.1

nez
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Using Proposition 2.10 the above equations can be rewritten equivalently

as
B() = ma(6/2)B(¢/2) (2.15)
or equivalently as
b(2) = ma(6)9(¢) (2.16)
where mg is a 2r-periodic function given by
me(§) = % > ane™. (217)
nez

Naturally, the coefficients a,, in 2.17 are the same as in 2.13 and 2.14.
Since [|[®(x/2)|| = V2 we infer from 2.13 that ¥,z |an|? =2 so

=/ |m@<e>|2ds)m -5

Each of the equivalent equations 2.13-2.16 is called a scaling equation.
They play a fundamental role in the theory of wavelets. Before we
proceed, we will prove a lemma about the function mg(€) appearing in
the scaling equations 2.15 and 2.16.

Lemma 2.12 [me ()| + |me (€ + 7)) =1 for almost all € € R.

Proof From Corollary 2.9 we know that
- 1
I +2ml)? = — (2.18)
2r
lez

for almost all £. Using 2.15 and the fact that mg(£) is 2m-periodic, we
get

1 N
5 = > Ime(§ +m)? - |(5 + wD)?
1€z
= Y [mo(§ +2km)2d(§ + 2km)[?
k€Z
+Y[moa(§ +m+ 2km)|B(5 + 7 + 2km)[?
keZ
= [ma($)P D 185+ 2km)P?

kez

Hlmo(§ +m)" D |B(5 + 7+ 2km)?
keZ
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Using 2.18 once more we obtain the lemma. [}

Each of equations 2.13-2.16 means that ® € V), so if we want condition
(i) of Definition 2.2 to hold we need to assume 2.14 (or any other of
the equivalent conditions 2.13-2.16). The other condition that a scaling
function has to satisfy is that {®(t —m)}, .z is an orthonormal system.
But we saw in Proposition 2.11 that we can easily pass from a function ®
such that {®(t — m)},,z is a Riesz sequence to a function ®, such that
{®1(t —m)},,cz is an orthonormal system spanning the same space.
These considerations set the stage for the following theorem, which is
the main result of this section.

Theorem 2.13 Suppose we have a function ® in L(R) such that

(i) {®(t —m))},.cz is a Riesz sequence in L(R)
(i) P(x/2) = Y 4z arP(x—k) with the convergence of the series
understood as the norin convergence in La(R)
(iii) &)(f) is continuous at 0 and ‘i’(O) #0.

Then the spaces
V; = span{®(2’x — k) }rez (2.19)
with j € Z form a multiresolution analysis.

Condition (iii) can be relaxed a bit, see Exercise 2.13. The main part of
the proof of this theorem is contained in the following two propositions.

Proposition 2.14 Suppose we have a function ® € La(R) satisfying
condition (i) of Theorem 2.13. Let the spaces V; be defined by 2.19
and let P; be an orthonormal projection onto V;. Then for each
f € L2(R) we have lim;_,_co P;f =0, in particular ();cz V; = {0}.

Proposition 2.15 Suppose we have a function ® € L,(R) satisfying
conditions (i) and (iii) of Theorem 2.13. Then UjEZ V; is dense in
Lo(R), where the spaces V; are defined by 2.19.

Assume for the moment that both these propositions are true. The proof
of Theorem 2.13 is then simply a matter of checking the conditions of
Definition 2.2. The very definitions of V4 and V; show that (iv) of Defi-
nition 2.2 holds. Condition (ii) of Theorem 2.13 ensures that condition
(i) of Definition 2.2 holds. Proposition 2.14 shows that condition (iii)
of Definition 2.2 holds and Proposition 2.15 shows that condition (ii) of
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Definition 2.2 holds. From Proposition 2.11 we infer that condition (vi)
of Definition 2.2 holds.

Proof of Proposition 2.14 Since functions with compact support are
dense in Lo(R) it suffices to show that for such a function g we have
limjc0 || 9]l = 0. Let us say that supp ¢ C [-R, R]. From Lemma
2.5(b) we infer that for each j € Z the system

@@z = {P20@2- B}

is a Riesz basis in V; with constants independent of j. Thus from Lemma
2.7 we get for arbitrary j € Z

1Pal? < CY [(Pig, )

k€Z . .
= e ool =cy / ()@ ds
keZ kez|/-R
R
< lo()Pds - [ |0 (s)Pds (2.20)
gz/ g /_ s+
= oY / |6(2s - )|2ds
keZ -
2?R—k
= clary [ 19wl
keZ

Observe that there exists a jo € Z such that for j < jp we have 27R < %
For such j’s the integrals in the last line of 2.20 are taken over disjoint
sets, so from 2.20 we obtain

1759l < Clal? | 9P du (221)

B
where U; = Ugez[~27R — k, %R — k]. Since [ |®(u)|?du < oo
from the Lebesgue dominated convergence theorem we easily infer that
fu,- |®(u)|*du — 0 as j — —oo. This means that ||P;g|| — 0 as j — —oo.
For f € (;ezV; we have P;f = ffor all j € Zso f =0. |

Proof of Proposition 2.15 Take f L Ujel Vj. Let g € La(R) be such
that § = f<l|_ r,R) for some R > 0 and ||f — gl| < e. This is possible
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because, by Plancherel’s theorem, the Fourier transform is a unitary op-
erator. As in the previous proof let P; denote the orthogonal projection
onto V;. Clearly P;f =0 for all j € Z, so

||Pig|l < € for all j € Z. (2.22)

From Lemma 2.5(b) we infer that for each j € Z the system
{®54(2) gz = {27202 - )}

is a Riesz basis in V; with constants independent of j. Thus from Lemma
2.7 using A1.2-11I and A1.2-1V we get for arbitrary j € Z

IPgl® 2 €Y 1{Pyg. @) P =C Y [{g, %) *
keZ keZ

oo [— 2
ey |[ st

kez 'Y~

c

k€Z

keZ

(2.23)

2

IR T

-0

Now let us assume that j is such that 277 > R. Then the integrals in
the last line of 2.23 can be written as

2n

/ @(E)MQ—J'OEMT:{ df.
237

We interpret this integral as the (—k)-th Fourier coefficient of the func-
tion \/ng(ﬁ)@(Z"jf) on the interval [—277, 277] with respect to the

system
1 12 k27
____‘27]/2(,&2 5}
{ V2 kez

which is a complete orthonormal system in Lo(—27m, 277) (cf. A1.2-XII).
Thus from 2.23 and our assumption about supp § we get

277 —_—
IBal? 2 c2n [ laeR@ 0P

_2n

R S
Y GEEEDRS (2.21)

Since ® is continuous at 0 we see that <i>(2”§) tends uniformly on
[-R,R] to ®(0) as j — oo. So from 2.22 and 2.24 we get

e? 2 C2n|9(0)]llg}>.
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Since ¢ is arbitrary and $(0) # 0 we get ligl = 0. This implies that
f=0,50;czV; is dense in Ly(R). O

Using arguments from the above proof we can easily establish the fol-
lowing fact, which is interesting in itself and will be used later.

Proposition 2.16 Let ®(z) be a scaling function of a multiresolu-
tion analysis and assume additionally that d(¢) is continuous at 0.
Then |9(0)| = 7‘; In particular, if ® € L,(R) then

I/_:¢(z)dxl=1.

Proof Let P; denote the orthogonal projection onto V; and let g be a
fixed non-zero function in Lz(R) such that supp § C [-1,1]. Repeating
arguments used in the proof of Proposition 2.15 and using the orthonor-
mality of each of the systems

(@ @)pez = {202 -0}

we get equality in 2.23 with C = 1, so for j > 0 we get (exactly as we
got 2.24, only using R=1)

1 —-—
1Psol = 2r [ laceyba-seas (225)

As j — oo the left hand side of 2.25 tends to ||g||?> (the V;'s are dense)
while the right hand side tends to 27 fll |9(€)2 d¢ - |®(0)|? (since & is
continuous at 0, $(2-7£) tends to &J(O) uniformly on [-1,1]). Since by
Plancherel's theorem A1.2-1V

ol = [ REGIE

the claim is established. (]

Now let us return once more to equations 2.13-2.17, this time under
the additional assumption that & is continuous at 0. In particular this
covers the case ® € L;(R) N Lz(R). From the above Proposition 2.16 we
know that |$(0)] # 0, so from 2.16 we infer that mg(£) is continuous
at 0 and mg(0) = 1. From Lemma 2.12 we conclude that [mg(£)| is
continuous at 7 and

me(w) =0. (2.26)




32 General constructions

Note that this implies that mg(€) is continuous at .
The following proposition lists some interesting and very useful prop-
erties of a scaling function ® € L, (R) N L2(R).

Proposition 2.17 Suppose that & € L;(R)N L2(R) is a scaling func-
tion of a multiresolution analysis. Then

(i) |®(0)] = 7= and d2mk)=0fork#0, k€Z

(i) Yopez ®(r + k) = . where o 15 a constant of absolute value 1.

Proof From Corollary 2.9 we know that Y, ., |®(€ + 27k)[2 = &
almost everywhere. Since &’({) is continuous (recall that & € L;(R) )
and we know from Proposition 2.16 that |$(0)] = —\7’27 we infer that
|$(27k)| = 0 for k # 0, k € Z, which gives (i). Condition (ii) actually
follows from (i). From the Poisson summation formula A1.2-XIV we
infer that the Fourier coefficients of the function 3, ., ®(z + k) | [0,1]
are all zero except 0-th which has modulus 1. This gives (ii). |}

REMARK 2.6. Let us observe also that equation 2.15 offers the possibility
of building a scaling function @ given a function me(£), or equivalently the
sequence of scalars (an),cz appearing in 2.13 and 2.17. Simply observe that
substituting 2.15 into itself N times we get

N
#(©) = [[me 20827 "e). (227)

1=1

Thus if $ is to be a scaling function such that & is continuous at 0 we must have
L=
d(6) = —= [ ma(277¢). 2.28
©= 7 [Imetro (228)

Clearly only very special sequences (an)nez yield my(€) (via 2.17) such that
2.28 actually is a scaling function of a multiresolution analysis. Nevertheless this
approach will be used succesfully in Chapter 4 to construct smooth compactly
supported wavelets.

2.4 Construction of wavelets

Our main aim in this section is to construct wavelets, given a multires-
olution analysis. Of course we want our wavelet to be closely connected
with the given multiresolution analysis. Suppose we are given a mul-
tiresolution analysis (V;)jcz in Lo(R) with the scaling function ®(z).
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We want to find a wavelet ¥ € V) such that span{¥;;}icz j<s = V,
for all 3 € Z. Let us introduce subspaces W; of L,(R) defined by the
condition

V;@W; =V (2.29)
Let J; denote the dilation operator defined in Definition 2.4. From

Lemma 2.5 we know that 29/2J; is a unitary map, and we know from
Definition 2.2 that J;(V;) = Vj41. Thus we have

Vier = J;(Vo ® Wo) = J;(Vo) @ J;(Wo) = V; @ J;(Wo).

This gives

W, = J;(W,) forall jeZ (2.30)
From conditions (i)-(iii) of Definition 2.2 we see that we obtain an or-
thogonal decomposition

L(R) =0 W, (2.31)
j€z

Thus we need to find a function ¥ € Wy such that {¥(t —m)}, 5 is
an orthonormal basis in Wy. Any such function ¥ is a wavelet; this
follows directly from 2.30 and 2.31. If a wavelet is obtained from a
multiresolution analysis in the way described above we will say that it
is associated with this multiresolution analysis.

Our construction of ¥ will be given in terms of the Fourier transform.
We start with an explicit description of the subspaces V; and Vj in terms
of the Fourier transform. From the description given in Proposition 2.10
we know that g € V, if and only if

(&) = p(e)d() (2.32)

for some 27-periodic function ¢(£), and
1/2

1 2n
ol = (52 [ looPdc) (239
T Jo
From condition (iv) of Definition 2.2 we know that f € V,; if and only if
f(@) = V2g(2z) (2.34)

for some g € Vq; clearly we have ||f|| = ||gl|l. From 2.32 and 2.34 and
elementary properties of the Fourier transform (see A1.2- VII) we obtain
immediately that f € V; if and only if

f&)y =m;(&/2)- 9(¢/2) (2.35)
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where m;(£) is a 2m-periodic function and

(% / " lmf(e)F) = %"fllw

Now we want to describe the space Wy = V1 &V} in terms of the Fourier

1/2
(2.36)

transform.

Proposition 2.18 A function f belongs to Wy if and only if
f(©) = e/ v(©ma(§ + m)d(¢/2) (2.37)
where mg is the function defined by 2.15 and v(£) is a 2n-periodic
1/2
function. We have || f]| = (% 02" |1!(E)|2d5) .

REMARK 2.7. The reader should compare 2.37 with 2.35 and note that
my(£/2) is actually a 4x-periodic function of £, while in 2.37 we have a 2x-
periodic function v(€). This reflects the fact that W is only a ‘half’ of V;.

Proof Clearly f € Wy if and only if f € V; and f L Vp. This in turn is
equivalent to f € V; and (f, ®(z — k)) = 0 for all k € Z. We have

ea-r) = [ joFEE-R
= [ i e (2.38)
= /2" etkd (Z f(e+2nl) - e+ 27(1)) de.
0 ez
Note that

2n . .
) ] |+ 2n)1 (e + 27D

1€Z

< [ 1HO19©1 < 1kl ol
-0

so the series 3_, , f(e+2r1)d(€ + 2nl) represents an integrable function
on [0,2n], call it F(£). Looking at 2.38 we realize that (f, ®(z — k))
equals the (—k)-th Fourier coefficient (multiplied by 27) of the function
F. So we can say that f € W, if and only if f € V} and

Y fe+2m)d(e+2ml) =0 ae. (2.39)

lezZ




2.4 Construction of wavelets 35

because when all Fourier coefficients of F are zero, then the function F
itself has to be zero (cf. A1.2-XII). Since f € V; equation 2.35 holds, so
we can substitute 2.35 and 2.15 into 2.39 to obtain

0= my(€/2+ n)®(E/2 + nl)me(E/2 + n)D(£/2 + 7).
1€Z
Let us call 7 = £/2 and split this sum into two; odd numbered summands
and even numbered summands. We get
0 = Z |B(n + 27k)|2mys (n + 2nk)me (n + 2nk)
kez
+ Z [®(n + 7 + 27k)Pmy (n + 7 + 2nk)yme(n + 7 + 27k).
keZ
Since my and mg¢ are 2m-periodic, and & as a scaling function satisfies
2.8, we obtain
0 = my(mma(n) Y 1B+ 2rk)|?
keZ
+my(n+mmae(n+m) Y |+ 7 +27k)*  (2.40)
keZ

= % (mi(ﬂ)nw(fl) +my(n+ ")m) )

The above argument is reversible, so f € Wy if and only if f € V; and
2.40 holds. But 2.40 means that the 2-dimensional vector

(ms(m),ms(n +m))
is orthogonal to the 2-dimensional vector
((ma(m), mae(n+m))

for almost all 7 € R. Note that Lemma 2.12 shows that the vector
(m@(n),m.;,(r) + 7)) is not zero. This means that

(my@),ms(n+ 7)) = a(n) ('m@(n + ), —m¢(1))) (2.41)

for some 2m-periodic, complex valued function a(n). Replacing in 2.41
1 by 7+ 7 and using the fact that all functions involved are 27-periodic
we obtain

(ms(m+ ), ms®)) = a(n+m) (mq,(n), —me(n + 7r)) . (2.42)

Comparing 2.41 and 2.42 we obtain that my(y) = a(n)ms(n + n) and
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a(n) = —a(n + 7). Once again the above reasoning is reversible and we
can summarize our considerations as follows: f € W, if and only if
(&) = my(e/d(e/2) (2.43)
with
my(n) = a(n)me () + ) (2.44)

where a(n) is a 2m-periodic function satisfying a(n) = —a(n + 7). Ob-
serve that this last condition is equivalent to h(n) =: e a(n) being
m-periodic. Writing v(€) = h(£/2) we see that 2.37 is equivalent to 2.43
and 2.44. If 2.37 holds, then from 2.36 we obtain

Il = V2 (l /02” [v(2w)yma (u + m)|? du) v

27

N 172
- (%/0 (@) [Jma ()] + [ma(u + m)[?] du) .

From Lemma 2.12 we get
v/__ 1 .l . 1/2 1 2n )
=V2|— 2 d =|— d
= V2 (55 [ heorad = (5 [P )

Now that we have a description of Wy, we need to identify those functions
¥ € Wy such that {¥(t —m))}, ., is an orthonormal system. This we
can do with the help of Corollary 2.9.

1/2

O

Lemma 2.19 Suppose f € Wy and f(f) 13 written as in 2.87. The
system {f(t —m)}, ., i3 an orthonormal basis in Wy if and only if
v =1 a.e.

Proof Clearly we want to check condition 2.8 of Corollary 2.9. Writing
f in the form 2.37 and splitting the sum into even and odd summands
we get

DI +2mk)?

keZ

= () (Im(f/z + M2 Y $(E/2 + 20k) 2

keZ

Hme (/D1 Y |9E/2+ 7 + 2vrk)|2) :

k€Z
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Since @ is a scaling function of a multiresolution analysis we get from
Corollary 2.9 and next from Lemma 2.12 that

STIf + 2nk)?

keZ

i

PO 5= (Ime(E/2+ M + male/2)1?)
(@)

Now Corollary 2.9 tells us that { f(t — m)},, .z is an orthonormal system
if and only if |v| =1 a.e. We still need to show that for each such f the
system {f(t —m)},, .z is actually an orthonormal basis in Wp. But this

Il

follows directly from Proposition 2.10 and the form of f; if we compare
2.9 with 2.37 we infer that Wy = span {f(t —m)},.cz. O

Now we will summarize our considerations in this Section in the following
Theorem.

Theorem 2.20 Suppose that ... CV_, C Vo C V) C ... 138 a multi-
resolution analysis with the scaling function & € V. The function
Y eWy=V,0V is a wavelet if and only if

(€)= /(e ma(E/2 + M(E/2) (2.45)

for some 2m-periodic function v(€) such that |v(€)] =1 a.e. Fach
such wavelet ¥ has the property that span{V;x}rcz j<s = Vo for
every s € L.

REMARK 2.8. It follows from our discussion at the beginning of this section
that the set of wavelets we get using Theorem 2.20 does not depend on the
choice of the scaling function @, it depends only on the multiresolution analysis.
It is clear that different functions v(€) give different wavelets. However, when
v (£) = emvy(£) for some r € Z, the resulting wavelets are just translations

of each other. This implies that the resulting wavelet bases are the same (only
labeled differently), so the wavelets are essentially the same.

If we want to construct a wavelet using Theorem 2.20 we need to fix
the function v. Clearly the most obvious choice is v = 1. This gives a
wavelet ¥ such that

() = e/ ma (€/2 + ) b(£/2). (2.46)
Using 2.17 we obtain
‘i’(f) = %rie/'z Z a_"rm(e/%n)é,({/z)

nez




38 General constructions

= ) @(-1)" eI 20 (g/2)
nez
s0
V() = Za:(_l)"q’(?x +n+1) (2.47)
neZ
where a,, = [ O(z/2)®(x — n) dz. It is worth noting that 2.47 gives
a formula for a wavelet directly in terms of the scaling function.
Assume now that we have a multiresolution analysis with a scaling
function ® € L1 (R) N L2(R). Let ¥ be any wavelet associated with this
multiresolution analysis. From 2.26 we know that mg(€) is continuous
at m and mg(m) = 0. Using this and 2.45 (remember that v(£) and
me(&) are bounded, see Lemma 2.12) we see that ‘i’(f) is continuous at 0
and ¥(0) = 0. We also know that $(£) is continuous and $(27k) = 0 for
k € Z, k # 0 (see Proposition 2.17(i) ) so analogously \il(f) is continuous
at points 4kr with k # 0 and W(4k7) = 0. Thus we have

¥(€) is continuous at points 4kw, and V(4kr) =0, k€Z. (2.48)

2.5 Periodic wavelets

The aim of this section is to present ‘periodic wavelets’, i.e. ‘wavelets’
on the circle T. Although the circle T is a group, so we can define
translations, it does not admit dilations. Thus we cannot repeat our
general procedure. Instead, we will use the fact (used already many
times) that the real line R can be ‘wrapped around’ the circle T; the map
is t + €2", This provides the identification between functions on the
circle T and 1-periodic functions on R. Our main point in this section
is that a good wavelet basis on R yields a nicely structured complete
orthonormal system on T (identified quite often with [0,1)). There is a
very natural procedure, which given a function on R gives a function on
T. We have encountered this procedure many times already. If fis a
function on R we define a 1-periodic function on R, that is a function
onT, as

PLt) =D f(t+F). (2.49)

kez

It is not defined for every function on R, but it is obviously well defined
when f € Li(R). Now let us assume that we have a multiresolution
analysis on R, call it ... C V.1 C Vp C V; C ..., with a scaling function
® and an associated wavelet W.
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In order to ensure that P® and PV are well defined let us assume
throughout this section that ®,¥ € L,(R).

Now we want to know what the operator P does to the function ¢
and ¥, or more precisely to the wavelet basis

{21'/2\11(271 - k)}
JEZ keZ
and to bases in the spaces V; given as
D4 (t) = 2729(27L — k) with k€ Z.

First let us observe that for j > 0 we have

P¥j(z) = Y 2102 (z+3s)-k)

ez S (2.50)
Z?J/Z\ll(21$+2’3——k).

acZ

It

Since the same formulas as 2.50 also hold for ®;, we see immediately
that

PUk(t) = PWes2(t) (2.51)
PUkn(t) = PY(t+277) (2.52)
PP(t) = PPjii20(t) (2.53)
POjpia(t) = POy(t+277). (2.54)

Using A1.2-XIV and A1.2-VII we get for 3,5,k € Z

—— — -5, 2
PUja(s) = V2rUsp(—2ns) = V2ra—I/2e~2rink2 ’q:(--%’) (2.55)

and
Po;r(s) = V2 (—2ms) = \/znz-ﬂze-z'"“"é(—z—;—"). (2.56)

Observe that 2.55 and 2.48 give that for j < 0 and any k € Z we have
P¥jk(s)=0forall s€Z, so0

PV =0 forj<0 andallkeZ. (2.57)
Analogously from 2.56 and Proposition 2.17 we get
Pd; =2/ forj<0 andallkeZ. (2.58)
Now for j = 0,1,2,... let us denote

Vj=span{'P¢jk : k=0,1,...,2j—1}. (2.59)
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From 2.53 we sce that V; = span{P®;, : k € Z} and 2.58 means that
170 consists of constant functions.

REMARK 2.9. One usually thinks, and it is very natural thing to do, that
\—’J = PV,. One has to be aware that usually there are functions f € V, for which
Pf is not properly defined.

Proposition 2.21 With the above definitions and under the as-
sumption that

P|¥| and P|®| are bounded functions (2.60)

the following hold
M VecWc...
(ii) for 7=0,1,2,... the system Py with k=0,1,...,27 — 1 ia
an orthonormal basis in V;

(iii) for j =0,1,2,... the system
1,P¥y fors=0,1,...,5—1 k=0,1,...,2°7" (2.6])

13 an orthonormal basis in ‘_/J

(iv) U;ozo‘—/j is dense in L3[0,1], so the systemn 1, PV, with j =
0,1,2,... and k = 0,1,...,27! is a complete orthonormal
system in L,[0,1].

Proof Since clearly fol Pf(z)dz = f:o f(z) dz, condition 2.60 implies
that &, ¥ € L;(R). Observe that for s < j we have o = 3, .7 P
and Vo = 3, 7 fr®jy. From 2.60 we infer that

2 len] D1 ®50) |

reZ reZ
2’/“1'/72/ [®@2"z — k)| - [Pz — )| dz
rezY -

= 2"/2+J/2/ |92z — k)| Pl9|(27x) dx

IA

IA

= <]
c-z’/“f/?/ [9(2"z — k)| dz < o0

and the same argument gives ), .7 || < co. This implies that Pd., €

V; and PV € f/_, This gives (i). Thus we have to check orthogonality
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in (ii) and (iii) and (iv). For j > 0 we have

1 —_— 1 -
/w,-,:(z)w,-,k,(z).u - Z/ Vot + ) Ve () dt
0 r,a€Z 0
= Z/ Vit +8) Ve (t)dt  (2.62)
IT Al
-3 / W ks () V500 B) .
Y7 Adiaiad

This shows that PW¥;. and PV . are orthogonal unless j = ;' and
k' = k — 527 for some s € Z. Thus the system 2.61 is orthonormal.
Repeating the calculation 2.62 with j = ;' and ® instead of ¥ we infer
that (ii) holds. Thus dim f/, = 27 so counting dimensions we conclude
that the system 2.61 is actually a basis in (/J Note also that all changes
of order of summation and integration in calculation 2.62 are easy to
justify using 2.60. It remains to show (iv). To this end let us consider
P;, the orthogonal projection from L»[0,1) onto ‘7] From (ii) we infer
that
221
Pif = 3 (£, POsi) Py (2.63)

k=0

Let us fix an exponential €2*** and let us calculate the r-th Fourier
coefficient of P;(e2¥"*). From 2.63 and 2.56 we get

27-1

Pj(e21ir¢)l\(r) = Z<821(v~t'»p¢jk>(p¢jk182m’v-t>
k=0
271

= Z |(P¢jk'f2”ir‘) 12 (264)
k=0

271
= Y Pouf
k=0

= anld(-3p)”.

Using Proposition 2.16 we infer from the above that Pj(eZ"" )" (r) — 1
as j — oo. Since ||P;|| = 1 (because P; is an orthogonal projection) and
(62'")”62 is an orthonormal system in L»[0, 1) we infer that P;(e?*i"t)
tends in L2[0, 1) to €™ as j — oco. This implies that for every trigono-
metric polynomial f P;(f) — f in L2[0,1). Since (by the Weierstrass
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theorem) trigonometric polynomials are dense in L,[0,1) we infer that

U_:Zo V; is dense in L,[0,1). O

Sources and comments

The general concept of wavelet emerged in the mid 1980s in the work of
Y. Meyer, who constructed wavelets which are called in the next chapter
Meyer wavelets; cf. [81]. Almost immediately, different constructions
of exponentially decaying spline wavelets were given by P. G. Lemarie
[66] and G. Battle [2]. These authors were not aware of Strémberg's
paper [107]. Their wavelets were different from Stromberg’s but have the
same properties. The concept of multiresolution analysis was introduced
by S. Mallat [77] and thus the paradigm for constructing wavelets was
established. Practically everything we say in Sections 2.1, 2.2 and 2.4 is
contained in [77]. Naturally this story was retold many times and I have
taken advantage of various improvements and modifications. There are
many books and expository papers dealing with the subject of Chapter
2. Our presentation has been greatly influenced by the books {85], [24]
and [27] and the expository paper [32]. Everything in this chapter can
be found in some or all of those references. The notion of frame defined
in Remark 2.3 is used extensively in the theory of wavelets (cf. [24]). For
more recent results of a rather abstract nature see {12] and [13].

In our presentation of Theorem 2.13 using Propositions 2.14 and 2.15
we follow Daubechies [24]. Under stronger assumptions these results
were known earlier and they follow the folk wisdom of harmonic analysts.
In Section 2.5 we follow a well traveled route. Stromberg’s wavelets were
periodized in [18]. A brief discussion of the general case can be found in
[85] or [24]. Also a theory of ‘wavelets’ on T independent of the theory on
R (i.e. not involving periodization) can easily be built. For an account
see e.g. [93].

There is also a necessary and sufficient condition for a function ¥ to
be a wavelet (independent of any multiresolution analysis), formulated
in terms of the Fourier transform ¥. This can be found, presented in
detail, in [51].

Connected with the scaling equation there is also the following prob-
lem: given a sequence of numbers (a,)nez find (all) functions h on R
such that h(z/2) = 3, cz @anh(z — n). This is a special case of a well
known general problem with various ramifications. Let us mention that
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the solution of the equation
fE)=f@+3f(z-D+3fle -2+ 3/(z-3) + [(z—4)

was studied by de Rham [31] as an example of a continuous non-differ-
entiable function. For a reader interested in this problem we suggest
[63] or [26] where various aspects of the problem are discussed and some
history of the problem and bibliographical references are presented. A
more general ‘continuous’ version of this problem is discussed in {30].

About the exercises. Exercise 2.4 is taken directly from Annex A of
[68]. Exercise 2.5 is taken from [24] page 145.

Exercises
2.1 Let L; denote the space of all functions f € Lp(R) such that
fl[279n,279(n + 1)] is linear for each n € Z (we do not assume
that they are continuous).

o Show that the subspaces L; satisfy conditions (i)-(v) of Def-
inition 2.2.
e Show that they do not satisfy condition (vi) of Definition 2.2.
2.2 Find an example of a subspace Vo C L2(R) satisfying conditions
(v) and (vi) of Definition 2.2 and such that the subspaces Vj
defined by condition (iv) of Definition 2.2 satisfy neither (i) nor
(if) of the definition.
2.3 Show that there does not exist a function ¥ € Ly(R) such that
{¥(t —m)}, cz is a Riesz basis in La(R).
2.4 Let N > 1 be given and let ¢ € L,(R) be such that
(@) [|lz* || < 00 for s=1,2,...,N and k€ N
(b) {®(t —m)}, ez is a Riesz sequence
(©) ¥(5) =Y rcz x®(z—k).
Define M(z) =: 3", .o '(x — k). Show that
(8) ¢'(x) = M(z+1) — M(x)
(b) b2 + 4kn) =0 for k € Z
(c) m(§) =: %Zkezakrﬁ“‘é is a C*°, 27-periodic function
and m(x) =0
(d) M satisfies (a)—(c) above with N replaced by N — 1.
Show by induction that for every polynomial p(z) of degree < N
there exists a sequence f3; such that |B¢] < C(1 + |k)V and
P(z) = Yokez Ped(z — k).
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2.6

2.7

2.8

2.9

2.11

2.12

2.13

General constructions

Suppose that @ € L,(R)N L, (R) is a scaling function of a multi-
resolution analysis. Let a,,’s be the coefficients appearing in the
scaling equation 2.14. Assume additionally that -, ]e.] <
co. Show that - ., a, =2and ), ,(—1)"a, = 0.

Let S be a Stromberg wavelet. Show that {S'(t —m)}, ,is a
Riesz sequence.

Let us consider the multiresolution analysis V; = S(2/Z) dis-
cussed in Section 1.2 and in Example 2.1 at the end of Section
2.2,

e Show that there exists an even function ¥ € Vu such that
{¥(t — m)},.cz is an orthonormal basis in Vo.

e Show that there exists an even wavelet associated with this
multiresolution analysis.

e Show that there does not exists an odd wavelet associated
with this multiresolution analysis.

Show that the function 1 = 1|_, 57 is not a scaling function
of a multiresolution analysis.

Suppose that d is a scaling function of a multiresolution analysis
such that & € Ly(R) N Ly(R) and P|®| € L;[0,1]. Show that
there exists an associated wavelet ¥ € L,(R) N L, (R).

Let ¥ be a wavelet associated with a multiresolution analysis
...CV_1 C Vo CVC.... Show that there exists a scaling
function @ for this multiresolution analysis, such that ¥ is given
by formula 2.47.

Suppose that & is a function such that P|®| € L [0,1] and
{®(t — m)},.cz is a Riesz sequence. Show that &, defined by
2.12 also satisfies P|®;| € Loa[0,1].

Let ¥ € Lo(R) N L;(R) be a wavelet associated with a multi-
resolution analysis with a scaling function ® € L(R) N L (R).
Show that for g(z) = ¥(z/2) we have Pg = 0.

Let ®; be a function in Ly(R) which satisfies (i) and (ii) of
Theorem 2.13 and such that

[&)l(é)| is continuous at 0 and &, (0) # 0. (E2.1)

Show that there exists a function & € Ly(R) which satisfies
(i) - (iii) of Theorem 2.13 and such that span {®;(t — m)}, ., =
span {®(t —m)}, .. Conclude that Theorem 2.13 holds when
condition (iii) is replaced by E2.1.
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Improve Proposition 2.15 and show that if P; is an orthogonal
projection onto Vj, then for every f € Ly(R) P;f — f in norm
as j — oo.

Let ¢(z) = ljp 2. Show that {p(t —m)}, o, is a frame (cf.
Remark 2.3) in the space Lo defined by 1.5. Let f(z) = H(%)
where H is the Haar wavelet. Show that

{221 -k))

is a tight frame in Ly(R). Show that the system of vectors (1,0),
(-3, ’2@), (—%,——‘?) is a tight frame in R2.

FEZ,kEZ
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Some important wavelets

In this chapter we will present in detail constructions and properties of
some important classes of wavelets. The constructions will follow the
general theory established in the previous chapter.

3.1 What to look for in a wavelet?

The answer to the question in the title of this section clearly depends on
what we want to use the wavelet for. Our approach taken in Chapter 1
and later in Chapters 8 and 9 is to analyze functions from some function
space, very often different from L,(R), using wavelets. We will base our
answer upon the analysis of arguments given later. This however is only
a matter of motivation. Our mathematics will in no way rely on things
presented in later chapters.

It is clear from our arguments given in Chapters 8 and 9, and has al-
ready been mentioned in chapter 1, that good decay of wavelets plays a
crucial role in investigating wavelet expansions of a function. Tt is obvi-
ously also crucial in the following question of clear practical importance
but not discussed in any detail in this book. Suppose a function f on R
(or on RY) is given with supp f C [0,1] (or some cube Q). How can we
recognize it from its wavelet coefficients? Suppose we approximate f by
a finite subsum of its wavelet expansion. How will this approximation
look outside [0,1]? We will use this type of estimate to estimate p in
the proof of the fundamental Proposition 8.8.

The other important property of wavelets used extensively in Chapters
8 and 9 is that [¥(z)dz = 0 for wavelets and [ ®(z)dz = 1 a for
scaling function. If we attempt to analyze smoother functions than we
do in Chapter 9 (e.g. using moduli of continuity of higher order) or when
we investigate Hardy spaces H, with p < 1 (in Chapters 6 and 8 we

46
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talk only about H;) we encounter the need for more restrictive moment
conditions

/ z*¥(z)dx =0 fork=0,1,...,s. (3.1)
—00

Clearly, in order to talk about these conditions (even for s = 0) we have
to assume that ffom |z|*|¥(z)| dx < o0, so practically we need to assume
some decay of the wavelet W. It is also clear that if we want analyze
smooth functions efficiently our wavelets should be smooth.

Thus we are interested in three qualities of wavelets:

e decay
e vanishing moments
e smoothness.

Actually, under appropriate decay assumptions, vanishing moments fol-
low from smoothness. We have:

Proposition 3.1 Suppose that ¥ is a function on R such that
{27927t - k)} is orthonormal in Ly(R). Assume that for

j€Z,keZ
some 1 =0,1,2,... we have:
¥ is of class C' (3.2)
all derivatives \I'(‘)(:z:) wunth 3=0,1,2,...,1 are (3.3)
bounded on R
|¥(z)| < ¢ for some a > 141 (3.4)
N — S € . o
T A+

Then [% z"¥(z)dz=0 for s=0,1,...,1.

Proof Let us choose s to be the smallest integer among {0,1,...,1}
such that f:o z"¥(z)dz # 0. If there is no such an s the proposition
clearly holds. Since ¥ is not a polynomial ¥(*)(x) is not identically 0.
Let us fix a number @ = k-2~ with k,J € Z and J > 0 such that
¥(*)(a) # 0. Using the Taylor formula we write

¥(z) =) a(z—a) + R(z) (3.5)

r=0

where the remainder R(z) satisfies that for each € > 0 there exists a
6 > 0 such that

|R(z)| < €|z — a|* for |a — x| < 6. (3.6)
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Note also that

|R(x)] £ Clz —a|" for all z € R. (3.7

Since ¥(*)(a) # 0 the Taylor formula yields a, # 0. For j > J let
k, = 2a = 29-7k. 1t is an integer. From orthogonality we have for
i>J
<]
/ V(z)¥(29x — k;)dz = 0. (3.8)
—oco

Using the change of variables u = £ — a and substituting 3.5 into 3.8 we
get

oo A
0= / ( Z a,u” + R(u+ a)) ¥(27u) du.
— »=0

Our choice of = gives that for r < & we have [*7_u"¥(27u) du = 0 so we
get

{o o] —_— (o <] —_—
—a,/ w* V(27 u) du =/ R(u + a)¥(27u) du.
Putting 2/u = z in the left hand integral we arrive at
oo 1 . oo ———
/ z"U(z)dr = -—21('“)/ R(a + u)¥(27u) du. (3.9)
—oo s --00
We will show that the right hand side of 3.9 tends to 0 as j — oo.
This will give ffow z*W¥(z) dz = 0, contradicting the choice of s and thus
proving the proposition.

From 3.6 and 3.7 we obtain

{o <]
’2,<.+1)/ R(a+“)\ll(2ju)du|

1] oo v
. du . Clu|* du
< ¢ (a+|)/ 9. J(”l)/ i
=7 il e 22 s (0 + (2]
<o e o e
_2s (1 +|z[)® 28 (14 [2))*

Since TlJﬁHF € L,(R), taking ¢ sufficiently small and then j sufficiently
large we sce that the right hand side of 3.9 tends to zero. m}
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3.2 Meyer’s wavelets
In this section we want to present an important class of multiresolution
analyses and wavelets introduced by Y. Meyer. Among those wavelets
are wavelets belonging to the Schwartz class S. We start with the func-
tion ©(£) defined on R and satisfying the following conditions:

1

026K < T (3.10)
e(§) = ©(-f) (3.11)
1 2
e(¢) = T for |€] < 3" (3.12)
() = 0 for [g]> 37 (3.13)
%) + O (¢ —2m) = 2% for 0<¢<2m (3.14)

Clearly there exists a function ® € L2(R) such that & = 6. Because ©
is compactly supported ® is always a C*-function, cf. A1.2-1X.

Proposition 3.2 If © satisfies 3.10-3.14 above then the function
® = 8 is a scaling function of a multiresolution analysis. The cor-
responding function mg(€) (cf. 2.15-2.17) is a 2n-periodic function
which on the nterval -, ) equals V2mO(2€).

REMARK 3.1. Each such multiresolution analysis is called a Meyer multi-
resolution analysis.

Proof The easiest way to prove this proposition is to apply Theorem
2.13. Thus we need to check the assumptions of that theorem. Clearly
6 = $ is continuous at 0 and o(0) = :7‘2: # 0. It follows directly from
condition 3.13 that there are at most two non-zero summands in the
series Y oz ©%(€ + 2nl). Thus condition 3.14 immediately gives that

> e e+2nl) = 51;

leZ
so from Corollary 2.9 we infer that {®(t — m)}, ., is an orthonormal
system. Let ¥ be a 2m-periodic function which for ¢ € [—m, 7] equals
V270(2¢). Since supp ©(2¢) C [—2, 2] conditions 3.12 and 3.13 im-
ply that ©(2¢) = ¥(£)6(€). This is condition 2.16 which, as we know,
gives the last assumption of Theorem 2.13. This also shows that mg = 1.

u]
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REMARK 3.2. Theorem 2.13 is not really needed in the above proof. One
can easily define spaces V, directly in terms of the Fourier transform, namely
f €V, if and only if

fle)y=g(277)0(277¢)

for some 2w-periodic function g. Then one easily checks conditions (i)-(vi) of
Definition 2.2.

To construct a wavelet we apply Theorem 2.20 for v = 1. This gives a
wavelet ¥ such that
¥(6) = P ma (/2 + )O(E/2)- (3.15)
From Proposition 3.2 we infer that supp mg C Uyez[2kn— 27, 2kn +27]
so from condition 3.13 we easily get that
supp W(¢) C [~&m, —2n] U [2m, &n). (3.16)

The following proposition lists formal properties of the wavelet ¥ defined
by 3.15.

Proposition 3.3 With every function ©(¢) satisfying 3.10-3.14 we
can associate a wavelet ¥ given by 3.15 which has the following
properties
(i) supp ¥(¢) C [-37,—2n] U [3x, §n]
(ii) ¥ is a real-valued C™ function
(i) (-1 —2) =¥(-1 +2) forallzeR.

REMARK 3.3. Each such wavelet will be called a Meyer’s wavelet.

Proof Condition (i) is just 3.16. The fact that ¥ is C* follows from
(i) and properties of the Fourier transform (cf. A1.2-IX). To see that it
is real-valued let us call a(€) = mg(€/2 + 7)©(£/2) and observe that
a(=¢§) me(—£/2+ m)O(~£/2) = me(~£/2 + 7 — 2m)O(-¢/2)
me(—€/2—m)O(=£/2) = me(€/2+7)O(E/2)  (3.17)
= aff).
The second equality holds because mg is 2m-periodic, and the last but

one because © and so also mg is even. From Proposition 3.2 we see that
my is real-valued so also a(¢) is real-valued. Using 3.15 and 3.17 we

have

V(z) = el et/ 20(¢) df

vl
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I

\/% [-m [cos(z + )¢ + isin(z + 1)¢] a(€) d€
= # /_w cos(z + $)& a(€) df

which is clearly real. This gives (ii). Using 3.15 and 3.17 once more we
obtain
1

o0
Tn ef(—m—z)eewza(f) dé

- L / et = 2= [ eate)de
A=V 5E 20 () e

¥(-3-2)

i

7/
= V-3

so (iii) holds. a

The most important special case of the above construction is when ©, in
addition to satisfying 3.10--3.14, is also C™. It is well known that such
a O exists. Some constructions of such functions are given in Exercises
3.2 and 3.3. If © is C™ then ¥(¢) is also C™ so ¥ is in the Schwartz
class S. From A1.2-VIII we get that ¥ itself is in S. Thus we have

Theorem 3.4 There exists a real-valued wavelet ¥ such that

e V¥ i3 in the Schwartz class S, i.e. ¥ is a C® function and
for any non-negative integers k andl there exists a constant

C = C(k,1) such that

LCU+ )

forallt € R
e U(-L+z)=w(-1-1) forallzeR
® supp ¥ c [—5‘”, —g’”] u [%7" %W]’

3.3 Spline wavelets

In this section we will describe the construction and properties of multi-
resolution analyses and wavelets constructed using spline functions
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3.3.1 Spline functions.

Let us present first a self-contained account of the basic theory of spline
functions. We start with the definition.

DEFINITION 3.5 Let a be a positive real number and let n =
0,1,2,... be an integer. A spline of order n with nodes in aZ 1is a
function f defined on R which is of class C™*~! and is a polynomial
of degree at most n when restricted to each interval [ja, (j +1)a] for
j € Z. The space of all splines of order n uwith nodes in aZ will be
denoted by S™(aZ).

Some comments about this definition are in order. As usual in this
book, by functions of class C~! we mean measurable functions and by
functions of class C® we mean continuous functions. This means that
splines of order 0 are functions which are constant on all intervals of
the form [ja, (j + 1)a] for j € Z, and splines of order 1 are continuous
piecewise linear functions with nodes in aZ. Thus in this section we will
generalize some of the results of Sections 1.1 and 1.2. Clearly we can
equally well define splines taking an arbitrary discrete subset of R as a
set of nodes. We can also define splines on intervals. We can also relax
smoothness conditions, cf. Exercise 3.12. All this is standard practice
in spline theory. Our Definition 3.5 is only a very simple case which
however is all that we will need for our construction of wavelets. It is
clear from this definition that splines are invariant under appropriate
translations and dilations. More precisely we have

Jo (8" (aZ)) = S™(27"aZ)
and
Tyo (S"(aZ)) = S"(aZ)

where the operators J, and 7), are defined in Definitions 2.3 and 2.4.
We will base our introduction to splines on the concept of B-splines.

DEFINITION 3.6 Forn = 0,1,2,... we define functions N,(z),
called B-splines of order n, as follows:
(i) No=1jppy
(ii) for n > 0 we define N, inductively as Ny = N, * No. It
18 clear that N,, is a convolution product Ng * ... * Ny with
n+1 factors.
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The following theorem summarizes elementary properties of B-splines.

Theorem 3.7 For n =0,1,2,... the functions N, (z) have the fol-
lowing properties:

Nu(z) > 0 for z€(0,n+1) (3.18)

supp N, = [0,n+1] (3.19)

N, € S§"(zZ) (3.20)

S Nu(z-k) = 1 (3.21)

kez
N, (% - 1) Ny (®2 +2z) JorallzeR (3.22)
Nia(@) = Nu(z)— N.(z-1). (3.23)

Proof Observe that properties 3.18-3.22 hold for n = 0. Thus we will
proceed by induction. From Definition 3.6 we can write

Noir(z) = /_ " No(z = )No(t) d
1 x
= /o N,(z—t)dt = /z-x N,(u) du. (3.24)

From 3.24 we see immediately that if 3.18 and 3.19 hold for n they
also hold for n + 1. Equation 3.24 also shows that if N,, € C*~! then
Ny41 € C*. To see that N,,;1(z) is a polynomial on any interval [k, k+1]
take z € (k,k + 1) and use 3.24 to write

k x 1
Nopr(a) = /k N du+ /k Nou(u) du — /k No(u)du.  (3.25)

Since N, (u) is a polynomial of degree at most n on the intervals [k—1, k]
and [k, k + 1] we see that N, ,1(z) is a polynomial of degree at most
n+1 on the interval (k, k4 1). This gives 3.20. To get 3.21 we use 3.24
and the inductive hypothesis and obtain

1
Y Nunilz—k) = Z/ﬂ Nu(z—k—t)dt

keZ kezZ

1 1
/ZN,,(z—a—k)dr:/ 1dt=1.
() o

k€Z

i
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Property 3.22 is a general property of convolution. Using changes of
variables and the inductive hypothesis we obtain

2 b 2
Nuu(Pge —2) = / Nu()No(" 5= — 7~ u) du

= / N,,(n+1+v)N0(—1——z-—v)dv
o 2 2
oo

= / Nu(n+l—v)No(l+z+v)dv
- 2 2
oo

= / N,.(u)No(n;-2+:z:—u)du

n+2
= Nyl ) + ).
Differentiating 3.25 we obtain 3.23. O

The following easy observation will be used several times in what
follows.

Lemma 3.8 Suppose that f € 8"(Z) and f | [-1,0] = 0. Then
f1[0,1] = ct" for some constant c € R.

Proof Clearly all left hand derivatives of f at 0 are 0. Since f € S"(Z)
we infer that the first (n — 1) derivatives of f at 0 exist, so they are
equal to 0. This means that f | [0,1] is a polynomial of degree at most
n whose first (n — 1) derivatives are zero at 0. This clearly establishes
the claim. )

Theorem 3.9 If f € §*(Z) and supp f C [0,n+1], then f =cN,, for
some c € R.

Proof We will proceed by induction. The theorem is clearly true for
n =0, so let us assume that it is true for (n — 1). Translating f by an
integer to the left if needed we can assume that f | [0, 1] is not identically
zero. From Lemma 3.8 we see that f | [0, 1] = ¢;t" for some ¢; # 0 and
also N,, | [0, 1] = cat™ for some ¢z # 0. Thus there exists a € R such that
(f—aN,) | [0,1] =0. If f—aN,, = 0 the proof is finished. Otherwise
f'—aN}, € $"~}(Z) and supp (f'—aN},) C [1,n+1]. From the inductive
hypothesis we get that f' — aN] = caN,..1(z + 1) for some constant
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c3 # 0. But this is impossible, since [*_(f'(z) — aN/(z))dz = 0 but
it follows from 3.18 and 3.19 that f_°°w e3Ny_1(z +1)dz # 0. (]

REMARK 3.4. Let us note the following easy consequence of Theorem 3.9:
if f € S™(Z) and supp f C I for some interval | with |I| <n +1, then f =0.

Theorem 3.10 Suppose that ¢ is a polynomial of degree at most n.
There ezists a unique apline f € §"(Z) such that

0
f=Y aNu(z—k)

k=-n

and f|[0,1] = ¢ | [0,1]. In particular supp f C [-n,n+1].

Proof Let X,, = span{N,,(z—k)}?__,,. From 3.19 we easily see that the
functions {N,,(z —k)}{__,, are linearly independent, so dimX,, =n+1.
Let W,, denote the space of polynomials of degree at most n considered
as functions on [0,1). The restriction map T : X,, — W, defined as
T(f) = f | [0,1] is clearly linear. We will show that this map is 1-1.
Assume the contrary, that for some sequence (ax)}_ _,,, not all of them
zero, we have T(g) = 0 where g = Y"%__ a;N,(z — k). This means
that

-n

0
> aNu(@—k)|[0,1]=0. (3.26)
k=-n
But it follows from 3.19 that supp g C [-n,n+1], so from 3.26 we obtain
supp g C [-n,0] U [1,n + 1]. From the definition of a spline (Definition
3.5) we see that the function g, defined as

_J 9(z) forz<0
g'(z)_{o forz >0

belongs to S™(Z). From Remark 3.4 we infer that g; = 0. Thus supp g C
[1,n), and the same argument gives that g = 0. This shows that T is 1-1,
and since dimX,, = dimW,, = n 4 1 we infer that T is an isomorphism
from X,, onto W,,. This gives the theorem. ]

Theorem 3.11 Suppose that f € S*(Z). Then f can be written in
a unique way as

f() =Y axNu(z - k). (3.27)

keZ
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Note that for each z € R there are at most (n + 1) non-zero summands
in the above sum, so there is no problem with convergence.

Proof From Theorem 3.10 we obtain that there exists a spline

0
=3 BeNu(z—k)

k=-n

such that ¢ | [0,1] = f | [0,1],s0 f—¢ | [0,1] = 0. From Lemma 3.8 we
see that there are constants ¢; and c_; such that

f—p—aNuy(z-1)—c_1Ny(z+1)|[-1,2] =0.

Continuing in this way we get a sequence of coefficients (¢;);iez\o such
that

0
f=w+ Y alNu(z=i)= ) BeNu(@—k)+ ) ciNu(z—1i)

1€Z\D k=-n i€Z\O

which is 3.27. If there is no uniqueness of representation, then there
exists a sequence of numbers (ak)rez, not all of them zero, such that
Y kez @k No(z — k) = 0. Translating, we can assume ao # 0. Looking at
the supports of N, (z ~ k) we infer from 3.19 that

0

> aNu(z—k)[0,1]= > axNu(z—k)|[0,1]=0.

k€Z k=—n
From Theorem 3.10 we infer that 3°%__, axN,(z — k) = 0, so in par-

ticular ag = 0. This contradiction shows that the representation 3.27 is
unique. O

3.8.2 Spline wavelets

Now we want to construct wavelets which are splines. We will do this by
showing that the spline spaces 5" (277Z) form a multiresolution analysis.
Let us start with the following proposition.

Proposition 3.12 For eachn = 0,1,2,... the system {N,,(t — m)},..,
is a Riesz system in Lp(R).
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Proof Let us compute the Fourier transform of Ng. We have

1 ! iz

—_— e dx

V2 /0
1 1 i 1

= ﬁ./o coszfdz—7—2_;/o sinzé dz
1 3 ; 3

= \/2—_5»/ cosudu — ﬁ/ sinu du (3.28)
27 Jo e Jo

! : (cos¢ —1).

Vare " Vame

Directly from 3.28 one can obtain that for some A and each n =1,2,...

No(¢)

we have

> INo(€ + 27D < A (3.29)
leZ
The other way to see this is to note that {No(t —m)}, o, is clearly
orthonormal, so Corollary 2.9 gives that 3, , |No(€ + 2n1)|? = 51; and
3.29 follows with A =A#. Either from 3.28 or from the fact that Ny €
Ly (R) we infer that No(¢) is continuous (cf. A1.2-1I). Note that from

3.28 we clearly see that |[Ng(¢)| > 0 for £ € (=2, 27). This immediately

implies that for each n = 1,2,... there exists a constant ¢,, > 0 such
that
- 2n
) INO(§ +21rl)| > e (3.30)
1€z

From Definition 3.6 and properties of the Fourier transform and convo-
lution (cf. A1.2-XI) we obtain that N,,(¢) = (2m)"/2No(£)*+V, so our
Proposition follows from 3.29 and 3.30 using Proposition 2.8. O

By S3(27Z) we will denote the spaces S™(27Z) N Ly(R). It follows from
Theorem 3.11 and Proposition 3.12 that the S}(2/Z) are closed sub-
spaces of Ly(IR).

Theorem 3.13 For eachn = 0,1,2,... spaces S} (277Z) with j € Z
form a multiresolution analysis.

Proof We have already done all the pieces. Condition (vi) of Definition
2.2 follows from Proposition 3.12 and Proposition 2.11. The remaining
conditions are easy to check directly, except perhaps (ii). But this follows
easily from Proposition 2.15. O
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Thus from the general construction summarized in Theorem 2.20 we
know that there are wavelets which are splines of any given order. In
the rest of this section we will show that they can be chosen to have
exponential decay.

3.3.3 Ezponential decay of spline wavelets

Actually the most natural spline wavelets do have exponential decay. We
will show that if we start with N, (z) and construct the scaling function
using formula 2.4 and then take the wavelet given by 2.47 we obtain a
wavelet with exponential decay. To prove this in this subsection we will
use some elementary facts about analytic functions.

Proposition 3.14 Suppose g(z) is a function on R satisfying |g(z)| <
Ce="=l for some constants C and v > 0. Then there exists a 2n-
periodic function G(z) analytic in |Sz| < v such that for all ¢ €R

G(&) =Y li(e+2m)f.

leZ

Before we present the proof of this proposition we will prove two lemmas.

Lemma 3.15 If g € Ly(R) then

Siate-2mf =3 ([

lez kez MW

00

oz — km«n) ke,

Proof Let us compute the Fourier coefficients of the left hand side. For
each k € Z we have from A1.2-1IT and A1.2-1V

27
/D (E lg(¢ — w)P) e *de

leZ
= [T latereas= [ st *ate de
= [ To©i@de = [ ate - R

Thus the equality follows. [}

REMARK 3.5. This Lemma clearly provides another proof of Corollary 2.9.
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Lemma 3.16 Suppose that |g(z)| < Ce="*| for some constants C
and v > 0. Then

/_m oz — K)3(@) do

oo

< Cpe P* for each 0 < B < v (3.31)

and conversely, if a sequence (ar)rez Jatisfies |ag] < Ce=°l*l then
also

< Cge™®™! for each B < min(a, 7). (3.32)

Z arg(z — k)

k€Z

Proof Assume k > 0. The argument for k < 0 is exactly the same or
we can use a change of variables. Since

k ifo<z<k
| +lz—k|=¢ 2c—k ifk<z
k—2z ifz<0

we obtain
L —
[ ot —k)g(z)dx]

{s o} oo
Cz/ elel | ekl g sz e-(izl+lz—kD) 4o
o _

oo

k 0
c? (/ e~ dx +/ e_"’("'h)d2+/we"’(2’_” da;)
o —oco k

< Crke™ 7k,

IA

I

This gives 3.31. To show the other statement we observe that

Zakg(z —-k)| < sze"’]kle"l"kl
keZ keZ
= ze—ulkl—vlz—kl.
keZ
And this, by a similar argument, implies the claim. 0

Proof of Proposition 8.14 From Lemma 3.15 and 3.31 we see that

Z {§(¢ +2nD)f® = Z a,e™

leZ nez
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where |a,,| < Cge -Binl for every 3 < v. We define

G(2) =) a e (3.33)

nezZ

Because |a,ei*| < Cge~8I"l . e=nl92] we easily see that the series in
3.33 converges almost uniformly in the strip |32| < v, so it defines an
analytic function. Clearly G(z) is 2m-periodic. O

Proposition 3.17 There erists a function ® € S}¥(Z) such that the
system {®(t —m)}, , s an orthonormal basis in the space Sy (Z)
and |®(z)| < Ce~2l for some C and a > 0.

Proof We define ® by the condition

-1/2

b(6) = (ZIN,.(e - 2n1)|2) N (€). (3.34)
ez

From Proposition 3.12 and Remark 2.4 we see that {®(t —m)}, . is

orthonormal. Since N,,(z) has compact support, Proposition 3.14 shows

that there exists a 2n-periodic function G(z) analytic in C, such that

for € € R
G(&) =) IN.(€ - 2n1)|%.

ez
Since { N, (t —m)}, . is a Riesz system (cf. Proposition 3.12) we infer
from Proposition 2.10 that G(£) > 6 for all £ € R and some § > 0.
Because G(z) is 2n-periodic, this implies that there exists an a > 0 such
that the analytic branch of G(z)~1/2 exists in |3z| < a. From 3.27 and
Proposition 2.10 we know that

®(z) =Y axNy(z— k)

kcZ
where
n :
ay = / G V2g)e ke de.
-7
For any fixed 8 with |8) < a we apply the Cauchy integral theorem to
the function G~'/2(2)e~** in the rectangle with vertices

—m,m,w + i3, —n + i3,
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Since this function is 27-periodic (because G was), the integrals along
the vertical sides cancel each other and we obtain

o= [ G+ ipemiieio ag

so we have

) < 2neP* - sup |GV2(€ + i SCeB".
6li’

Since this holds for 3 both positive and negative we obtain |ax] <
Cge™#* for any 0 < B < a. So from Lemma 3.16 we obtain that &(z)
decays exponentially. O

If we define a wavelet by the formula 2.47 we obtain

Theorem 3.18 For each n=10,1,2,... one can construct a wavelet
¥ € S*(4Z) such that |¥(x)| < Ce=l for some a > 0.

REMARK 3.6. Our construction does not give directly any estimate for a
in Theorem 3.18. The value of a depends on the possibility of defining the
analytical square root of G in the strip |9z| < a. Note however that Lemma
3.15 and the fact that basic splines have compact support show that G(z) is a
polynomial in e***. It is also not difficult to calculate Gi(z) explicitly, at least
for splines of low order.

REMARK 3.7. It follows from Proposition 3.1 that there is no wavelet ¥(x)
with exponential decay such that ¥ € C™ and has all derivatives bounded. Here
is a sketch of an argument. We note that the inequality |W(z)| < Ce™""*! implies
that the integral 7%; f_mm W(z)e~*** dx makes sense for all z € C with |9z| < v
and defines an analytic function F(z) which clearly on R coincides with ¥(€), so
is not identically 0. On the other hand Proposition 3.1 implies that ‘il("(O) =0
for s =0,1,..., so also F*)(0) =0 for s =0, 1,..., which is possible only when
F = 0. This shows that both Meyer’s wavelets and spline wavelets are almost
at the boundary of the possible if we want both decay and smoothness.

3.3.4 Ezxponential decay of spline wavelets — another approach

In this subsection we will present a different argument for exponential
decay of spline wavelets. As we present it, this approach uses almost
no analytic functions and avoids almost entirely the use of the Fourier
transform. It relies on the theory of operators on Hilbert space and on
the theory of matrices. Naturally in this subsection we will use more of
the theory of operators on Hilbert spaces than is explained in Appendix
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A 1. Nonetheless all that we are going to use is well known and can be
found in many textbooks, e.g. [98}], [119].

In our discussion we will identify and denote by the same symbol an
operator A on the Hilbert space £2(Z) and its matrix A = (a;x)j.kez-
Naturally, this identification is given by the formula

A((u)kez) = (Zajkak) - (3.35)
kez jez
For a fixed integer n = 0,1,2,... let us consider the Gram matrix of the
system {N,,(t — m)}, .z, that is the matrix A = (a;k)jkez where

ajr = (Nn(z — k), N (z - j)) = /.w No(z - k)N, (z— j)dz. (3.36)

Proposition 3.19 For each n = 0,1,2,... the matriz A defined by
3.36 defines a positive, self-adjoint invertible operator on £,(Z).

Proof Let us consider an operator S : £3(Z) — S}(Z) defined by
S(ex) = N,(z — k) where e, is the unit vector in £,(Z), i.e. e is a
sequence of zeros except that in the k-th place there is 1 (cf. A1.1-IV).
Since {N,,(t — m)} ¢z is a Riesz basis in S3'(Z) (see Proposition 3.12)
we know that S is an isomorphism. Since

(S°Sle) e5) = (S(ex), S(e;) = (Nu(z ~ k), Nu(z — ) = aze

we see that A = S*S. This shows that A is a positive, self-adjoint
isomorphism. 0O

This proposition and the spectral theorem allow us to form functions of
an operator A. We will be interested in A~! and A~'/2. The reason for
this is made clear by the following proposition.

Proposition 3.20 Let A = (a)k), kcz be given by 3.36 and suppose
that A™! is given by the matriz (bjx)jkcz and that A~'? is given
by the matriz (c,x), kez. Let

b =SA7Y(e,) =Y buNu(z - k) € S3(2) (3.37)
kE€Z
and let
¢, =SA2e,) =Y culNu(z - k) € S;(2). (3.38)

keZ
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Then (¥;)jcz are biorthogonal functionals (for definition see Lem-
ma 2.7) to {N,(t —m)}, ..z and (¢;)jez is an orthonormal basis in
S3(2).

Proof Using the definitions and the above Proposition 3.19 we obtain
for each j,k € Z

(‘[’jl N,,(m - k)) <SA~l(ej)v S(ek» = (A_l(ei)v S.s(ek»

(A7 ez), Alex)) = (ej, ex)

and
(@5,00) = (SAT%(ep), SATVA(er))
= (57547%(e;), A7V2(en))
= <Al/2(ej),A_l/2(ek)> = (ej,ex)

so indeed (¥;)jez is a system of biorthogonal functionals to the sys-
tem {N,(t —m)},.cz and (¢;)jez is an orthonormal system. It is an
orthonormal basis in S3(Z) because SA~/2 is an isomorphism. O

In order to estimate the decay of the functions (¥;)jez and (¢;);ez we
must study the decay of the elements of the matrices (bjr);rez and
(cjk)jkcz. To do this we will need the following easy approximation
lemma.

Lemma 3.21 Let f(t) be either t™! ort /2. Given0<a<b< oo
there exist constants C and q, 0 < q < 1, such that for each natural
number k there exists an algebraic polynomial p, of degree at most
k such that

sup |f(t) — pe(t)] < Cq~.
tefa,b)

Proof The only property of the function f(t) which we are going to use
in this proof is that it can be expanded into a power series

10 =Y aye— 212y (3.39)
a=0

convergent for all t such that |t — 248| < 28, The elementary theory of
power series shows that both t=! and £~1/2 have this property. Let 1 be
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any real number between 25 and ‘—’%‘1 From our assumption about the

convergence of the series 3.39 and from elementary properties of power
series it follows that sup, |a,|n* < co. We put ¢ = 12—“"-“ < 1. Given k we
take pe(t) = 2 _0aa(t — &£2)" and we have

oo

a+b
sup [f(0) =pe(®)] = sup | D7 au(t———)"
t€[a,b] t€ (a,b] a=mki1
b
B
tElnb]. k+1
b—a\”
< 3 ei(%59)
A=kl
o0
<Y Jantet < Cot
a=k+1

O

DEFINITION 3.22 A matriz A = (ajr),kez 13 called banded if

there erists a constant C such that a;x = 0 whenever |j — k| > C.

Theorem 3.23 Suppose that A is a banded matriz which induces
an invertible, positive, self-adjoint operator A on €,(Z). Let the
operator A™! be given by the matriz (bjx);rez and let the operator
AY? be given by the matriz (cjx)jrez. There exist constants C
and a > 0 such that |bj| < Ce U~k and |c;i| < Ceoli-*I,

Proof We will give the proof for A~!/2, The proof for A~! is exactly
the same. Since A is a positive, invertible operator its spectrum o(A4) is
contained in some interval [a, ] with 0 < a < b. Let C be the constant
appearing in Definition 3.22. Given (j,8) € Z x Z let us fix the largest
integer k such that k- ¢ < |j — s|. Let p; be the polynomial given by
Lemma 3.21 with f(t) = t~'/2. Since p is a polynomial of degree at
most k, we easily see that the matrix px(A4) has the entry 0 at the place
(4,8). Thus from the spectral theorem and Lemma 3.21 we obtain

< s 712 —pe()} < Cig*. (3.40)

Jegal < [ 47172 ~ pa(a)|
t€fa,b

This readily implies the theorem. 0O
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DEFINITION 3.24 A matriz A = (aj)jkcz 9 called a Toeplitz
matriz if for each r,j,k € Z we have aj_,x_, = k.

Lemma 3.25 A product of Toeplitz matrices is a Toeplitz matriz.

Proof This is a straightforward and well known exercise in matrix mul-
tiplication. O

Now we have all the pieces needed to construct an alternative proof of
Proposition 3.17.

Proof of Proposition 3.17 Let us take the matrix A given by 3.36 and
form the orthonormal basis (¢;)jez in S} (Z) given by 3.38. This is
possible since Proposition 3.19 says that A is invertible and positive.
Since A~1/2 is the limit of a sequence of polynomials in A (cf. 3.40) and
A is clearly a Toeplitz matrix, we infer from Lemma 3.25 that A~1/2 is
a Toeplitz matrix. This gives immediately that ¢;(x) = ¢o(x — j) for
every j € Z. The matrix A is clearly banded (cf. 3.19), so Theorem 3.23
and Lemma 3.16 show that there exist constants C and a > 0 such that
[¢o(z)] < Ce ek, ]

3.4 Unimodular wavelets

In this section we want to discuss a series of examples of wavelets ¥(z)
such that \/ﬁ&l(f) is the characteristic function of a set. I do not
think that these wavelets are of great practical importance, but they are
interesting and provide examples of wavelets not associated with any
multiresolution analysis.

To define our series of examples we start (naturally enough) with
definitions of some sets. For r =1,2,3,... let

r 2"
I"= [mm 7r] (3.41)
and
o+l L or+l _

N PO 2" L 2 )
J' = 27r,27r+——1-7r =2 FI 1" (3.42)

Next we define
Kf=ruJg (3.43)
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and
K,=Kru-K;}. (3.44)

We define the function ¥"(x) by the condition

- 1
Y€)= —1k,. 3.45
Q) W (3.45)
Since \i"(f) € Ly(R) and is compactly supported we infer that ¥ €
La(R) N C™=(R) N Co(R). Since ¥"(€) is not continuous we see that
¥r ¢ L1(R). One easily checks (cf. calculation 3.28) that for any finite
interval I we have |1;(z)| < iTC]H' so we can conclude that

1+ |z|

(¥ (@) <
The following theorem is one of the main reasons for introducing the

functions ¥"(z).

Theorem 3.26 The function ¥"(x) for r = 1,2,3,... i3 a wavelet.
This wavelet i3 associated with a multiresolution analysis only for
r=1.

Naturally the proof of this theorem depends on properties of the sets

K, so we will isolate them in a lemma.

Lemma 3.27 Let us fitr =1,2,3,.... The sets 2K,, j € Z do not
overlap and U].GZ 2K, =R up to a set of measure zero.

Proof Consider the family of intervals
L =201", J,=:2"J", j,s€Z. (3.46)
From 3.41 and 3.42 we see that

=:L;.

2 2!
ljUJ,--,.=2J[ 17] ;

or+1 "’ or+t
It is easy to see that ;5 L; = o Ujez 2l 27] = (0,00) so

000 = JLuJ=LuJ;

j€Z JEZ
= U2ruuvrm =27k}
JEZ JEZ

This implies that |J,, =27 K} = (=00,0), so U,z 2K, = R\ {0}.
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N Y

+

-t U

2% - 0 x r

Fig. 3.1. The sets I, and J,.

Note also that L;’s do not overlap, so the family 3.46 does not overlap
and this implies that 2/ K,., j € Z do not overlap. O

Proof of Theorem 3.26 To show that ¥"(x) is a wavelet we have
to show that the system {2//2¥r (27t — k)}jez ccz is an orthonormal
basis in Lp(R). From Plancherel’s theorem A1.2-1V we infer that this

is the same as checking that the system {2j/2\il'(2jt - k)} is an
JEZ,keZ

orthonormal basis in Lz(R). From A1.2-VII we see that
o 9-3 TrEgrio-7 1 -3 -2
V7 (6) = 279226 (277 g) = \/_5;2 i2eik276 e . (3.47)

From Lemma 3.27 and 3.47 we see that it suffices to make sure that for
each j € Z the functions \TI;k(f) with & € Z form an orthonormal basis
in L2(2/K,). Using an appropriate dilation (or a change of variables)
we see that it suffices to check it for j = 0, i.e. we have to make sure
that {T;;e“‘fl,{,)kez is an orthonormal basis in L2(K,). Note that
the set K, is a disjoint union of four intervals. Shifting J,, by —2"n
and —J, by 2"r we can transform K, onto [—m,n] (see Figure 3.1).
This transformation induces an isometry between Ly(K,.) and La[—, 7]
which maps e*¢1x_ onto e'*¢ | [—x,n]. This implies in particular that
(7’273""51,(,)‘,@ is an orthonormal basis in Ly(K,). Thus ¥"(z) is a
wavelet for r =1,2,3,....

Now let us check that ! is associated with a multiresolution analysis.
The only candidate for such a multiresolution analysis is given by

V;- = span {‘l’;k }j<r,kEZ )

These spaces clearly satisfy conditions (i)—(v) of Definition 2.2, so we
have to exhibit a scaling function. It follows from our previous arguments
that f € Vp if and only if

supp f C U VK, = [~ —n|U[-En, Za]U[m $n] = L. (3.48)
<0
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This indicates that a natural candidate for a scaling function is
P(z) = A=1i(2). (3.49)

It follows directly from 3.48 and 3.49 that 3, |B(€ + 222 = =
so from Corollary 2.9 we infer that {®(t — m)}, .., is an orthonormal
system. From Proposition 2.10 we see that f € span {®(t —m)}, 5 if
and only if

F(&) =m(e) -1..6) (3.50)

for some 27-periodic function m(€). Thus m | [-3m, 7] is the same as
m | [3,7] and m | [r, $x] is the same as m | [~m, ~Zx]. This implies
that every g € Ly(L) is of the form 3.50. This shows that ®(z) is a
scaling function and so ¥! is indeed associated with a multiresolution
analysis.

Now suppose that for some r = 2,3,... the wavelet ¥"(z) is associ-
ated with a multiresolution analysis with a scaling function ®(x). Then
W (x/2) and ¥ (x/4) belong to span {®(t —m)}, .,. From Proposition
2.10(ii) using A1.2-VII we obtain

V7 (26) = my (£)D(€) (3.51)
and
V7 (4€) = my(£)B(€) (3.52)

for some 27-periodic functions m,(€) and m,(€). Since @"(25) =1 for
€ € LK, we must have m(£) # 0 on

27-—1

+ m'ﬂ']

1 .
51(,. S tm 2 i

Because m () is 27-periodic and r > 2 we infer that m;(£) # 0 on

2
o, mﬁ] > [0, 7/4].
Using this we can solve 3.51 and 3.52 and obtain

i ma(€) ¢ r
Pr(4¢) = —=207(2 3.53
(16) = T2 (29) (35)
for £ € [0,m/4]. But 3.53 cannot be true. It follows readily from 3.41-
3.45 that for £ in the interval

g2 ,
[mw,zw} c [0,7/4]
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$7(4€) # 0 while ¥7(26) = 0. This shows that for r = 2,3,... the
wavelet ¥" is not associated with any multiresolution analysis. ]

REMARK 3.8. Formulas 3.41-3.45 make perfect sense for r = 0 also. The
wavelet we obtain in this case is one of Meyer’s wavelets discussed in Proposition
3.3. This particular wavelet is the subject of Exercise 3.4.

Sources and comments

Philosophically Proposition 3.1 is well known. In the context of wavelets
it can be found in Meyer [85], Battle [3] or Daubechies [24], page 153.
Our proof is a version of the last two proofs. The Meyer’s wavelets pre-
sented in Section 3.2 were constructed by Y. Meyer [81], and are the
starting point of the whole theory. Their construction and properties
are presented in detail in [83], [85]. The spline wavelets are also pri-
mary examples discussed in [85] and in [24]. They are also discussed
in great detail in {15]. The introduction to the spline functions given
in Section 3.3.1 is of course well known to specialists. I have tried to
make the presentation here as easy and accessible as possible. The basic
book about spline functions is Schumaker {100]. As already remarked,
spline wavelets were first constructed by Stromberg [107]) and next by
Lemarie [66] and Battle [2]. Al those constructions gave exponential
decay. Stromberg’s argument for exponential decay was an extension of
arguments presented in Section 1.2. Fourier transform methods to show
exponential decay like those presented in Section 3.3.3 were already used
in [66], [2] and [83] and are also presented in detail in [24], where such
wavelets are called Battle-Lemarie wavelets.

The method presented in Section 3.3.4 showing exponential decay by
using inverses of banded matrices appeared in the work of Ciesielski and
Domsta [19] on orthogonal spline systems on the interval. [0,1]. The
fundamental Theorem 3.23 was proved by S. Demko {28] but the proof
we present is due to S. Demko, W. F. Moss and Ph. Smith [29]. This
technique was also used by P. G. Lemarie [67] to construct wavelet bases
on Lie groups. The Fourier transform techniques are not available in
this context.

The results of Section 3.4 are taken from the paper {51], where a
detailed study of wavelets ¥ such that 27 (€) = 1x(€) is presented.
It should be pointed out that the wavelet W2 discussed in this section
was discovered earlier by J. L. Journe and presented in Mallat [77] as
an example of a wavelet not associated with a multiresolution analysis.
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Let us also remark that wavelets ¥ with ‘f/(f) compactly supported were
studied by A. Bonami, F. Soria and G. Weiss in [7]. This covers both
Meyer’s wavelets and unimodular wavelets. The wavelets ¥"(z) with
r = 2,3,... are not associated with any multiresolution analysis. On
the other hand, all the other wavelets we construct are associated with
a multiresolution analysis and are constructed using one. Actually good
wavelets are always associated with a multiresolution analysis. This is
made precise by the following theorem proved by P. G. Lemarie-Rieusset
in [69] and by P. Auscher in [1].

Theorem 3.28 If for some n > 1 a wavelet V(z) satisfies
o0
/ [ (z)|2(1 + |z|)"dz < oo

and

[P+l de <oo

then the wavelet W(z) is associated with a multiresolution analysis.

The following necessary and sufficient condition for a wavelet to be as-
sociated with a multiresolution analysis was given by G. Gripenberg
(46].

Theorem 3.29 A wavelet ¥ in Ly(R) is associated with o multi-
resolution analysis if and only if

‘Zz |¥ (2% (€ + 2nk)))* > 0 ae.

p=1keZ

In this case it i3 actually true that

i SO F e +2mR)| = % ae.

p~lk€eZ

About the ezercises. Exercises 3.6 and 3.7 can be found in (28] or
[29]. Exercise 3.15 is taken from [51]. Exercise 3.14 is largely taken from
[107].

Exercises

3.1 Give in detail the direct proof of Proposition 3.2 on page 49 as
indicated in Remark 3.2 after the proof this proposition.
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Construct a C™ function O satisfying 3.10-3.14 by the following
procedure:
(a) Show that

e V" ifz>0
f(m)_{o ifz<0

is a C™ function.
(b) Let fi(z) = f(z)- f(1 — z) where f is defined above.
Show that the function

o(@) = (/_:fl(t)a)_lj_;f,<t>dz

1L.0<g(x) <1
2. g(z)=0forz <0and g(z) =1forz > 1
3. g9(z)+g(1—z)=1forallz€R

4. g is a C* function.

satisfies

(c) Suppose that the function g(z) satisfies 1-4 above. Show
that the function

o (Fotlel - 1)

is a C™ function satisfying 3.10-3.14.

(o) =

Another construction of a C function ©(§) satisfying 3.10-
3.14.

(a) Using the previous exercise construct a C* function f
such that § < f(z) < 1 and f(z) = 1 for z < 0 and
f@)y=4forz>1

(b) Show that © defined by the following conditions is a C®
function satisfying 3.10-3.14.

7127 for0<z < Znm
‘/2%_{(%1—2) forfr<z <

6(z) = o(2n —x) form <z <3
0 for:z:?_%'n

O(—z) for z < 0.
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3.4

3.5

3.6

3.7

3.8

3.9
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Take ©(z) = 1j_, x- Check that it satisfies conditions 3.10-
3.14. Compute explicitly the scaling function and the Meyer
wavelet W corresponding to this ©. Show that ¥ € L,(R) for
all 1 <p < oobut¥¢L(R).
Let ¥ be any Meyer wavelet from the Schwartz class S. Show
without using Proposition 3.1 that for each k£ = 0,1,2,... we
have ff; =F¥(z)dz = 0.
Let A be an invertible (not necessarily self-adjoint) operator
on €3(Z) with a banded matrix. Show that A~' = (bjx)jkez
satisfies |bje| < Ce~2l5-*| for some constants C and a > 0.
Prove Theorem 3.23 on page 64, replacing the assumption that
the matrix A is banded by the assumption that it has exponen-
tial decay.
Let ap < a; < ... < a, < an41 be real numbers. Define
1i =140, fori=10,1,2,...n.
(a) Show that there exists a function g = Y i~ a:1; such
that [% g(¢)t"dt =0 for s=0,1,2,...,n~ 1.
(b) Define By(z) = [*_ g(t)dt and inductively B,,,(z) =
ffm B.(t)dt. Show that B, (x) satisfies
e B, (z) has (n — 1) continuous derivatives
e B, | lai, ai4.1] is a polynomial of degree n for each
i=0,1,2,...,n.
e supp B, (z) = [ao, an+1]
e B,(z)>0.

Let (1;)jez be given by 3.37.
(a) Show that ;(z) = yo(z — j).
(b) Show that the orthogonal projection P onto S}(Z) can
be expressed as Pf(z) = E,’ez {f, %) Nu(z - 3).
(c) Show that
Y Nuz =0 =Y 6i(=)6;(0)
Jj€z jEZ
where the ¢;’s are defined by 3.38.
(d) Write Pf(z) as [ K(z,y)f(y)dy and show that

|K (2, y)| < Ceolx=¥l

for some o > 0.
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For g(x) = Ny(x) (B-spline of order 1) compute explicitly G(z)
given in Proposition 3.14. Show that G(z)"/2 exists in each
strip |Sz| < v with v < In(24v/3) and this estimate for v is best
possible. Trace this through the construction and arguments
leading to Theorem 3.18 and estimate the decay of a piecewise
linear wavelet. Compare this with the decay of the Stromberg
wavelet. For g(z) = N2(z) (the B-spline of order 2) compute
explicitly G(z) given in Proposition 3.14 and estimate in what
strip G(z) /2 exists.

Show without using the Fourier transform that {N,,(t — m)}, .,
is a Riesz sequence in Ly(R).

Let Vp be the following space: f € V; if and only if f € Lo(R)N
C!'(R) and f'(k) = Ofor all k € Z and for each k € Z, f | [k, k+1)
is a polynomial of degree at most 3. Show that there exists a
multiresolution analysis generated by this V.

Show that when we apply 2.12 to ® = N; we obtain a scaling
function in S}(Z) different from the one obtained in Exercise
1.8. Show also that applying 2.47 to the scaling function in
S3(Z) obtained from N; using 2.12 we get a wavelet different
from the Stromberg wavelet.

Show that there does not exist a function g € S%(Z) with com-
pact support and such that {g(t —m)}, ., is an orthonormal
sequence. Let ¢ € S}(Z) be such that ||¢|lz =1, ¢ | (1,00) =0
and ¢ is orthogonal to all f € S}(Z) such that f | (0,00) = 0.
Show that such a ¢ exists and is unique up to a unimodular
constant. Show that {¢(t — m)}, . is an orthonormal basis in
S3(Z). Show that ¢ has exponential decay.

Let 0 < a < 27 and let K(a) =: [2a — 4m,a — 27] U [a, 2a].
Show that ¥, =: .7-'“‘(715:1,((“)) is a wavelet associated with a
muitiresolution analysis.

Fill in the details of the argument skeched in Remark 3.7 on
page 61.

Using Theorem 3.29 show that the wavelets ¥" (cf. 3.45) for
r =2,3,... are not associated with any multiresolution analysis.
Let a(€) be a real-valued, measurable function. Show that for
each r = 1,2,3,... the function ¥ defined by

. 1
‘l’(f) - \/T—,”e’a(olx"’

where the set K, is defined in 3.44, is a wavelet.
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3.19 Formula for the natural piecewise linear wavelet in terms of the
Fourier transform.
() Show that I(_1/21/2(€) = 2(v2m€)~'sin€/2 and that
Yorez(€ +2km)~% = (4sin?£/2) 1.
(b) Let Ao(t) be the simple tent defined in 1.20. Show that
4sin® 5/2
A i Vit
©= 75
(c) Show that
ST(€+2km)* = (16sin* £/2) 71 (1 — Zsin¢/2).

keZ
(d) Show that the function ®(z) such that

L4sin2 £/2 1
\/-2; 62 \ﬁ — %Sinz 5/2

is a scaling function of multiresolution analysis S1(2-7Z),
j € Z. Note that this is a translation of the function ¢
given by 3.34 withn =1

Show that the corresponding function mg(€) (see 2.16)
is given by

b(e) =

(e

N

2sin?¢/2
1- 2sin¢

me(€) = cos® £/2

(f

~

Show that this gives the Fourier transform of the natural
piecewise linear wavelet ¥(z) as

e—i€/2 lﬂ(qin2 5/2)(1 - 2(:0325/2)”2

Var €2(1 - Zsin?¢/2)1/2(1 — Zsinf¢/4)1/2"

This is the same wavelet that was discussed in Subsection
33.2forn=1

V(e =
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Compactly supported wavelets

In this chapter we will discuss wavelets which have compact support. It
is a surprising fact that such wavelets, other than Haar wavelet, exist
and moreover can be chosen arbitrarily smooth.

4.1 General constructions

In this section we will present a general construction of a compactly
supported wavelet. The question of the smoothness of these wavelets
will be discussed in the next section. We will follow our usual approach
and construct an appropriate multiresolution analysis. From formula
2.47 we see that it suffices to construct a multiresolution analysis with
a compactly supported scaling function ®. This is done in the following
theorem.

Theorem 4.1 Suppose that m(§) = Ef:’r are~*¢ is a trigonometric
polynomaial such that

) + ImE+m? = 1 forall £€R (1)
m(0) = 1 (4.2)
m@) # 0 for £€([-5,3] (4.3)

Then the infinite product
8(¢) = [[ m(2%¢) (4.9)
j=1

converges almost uniformnly. The function ©(€) is thus continuous.
Moreover it is in Ly(R). The function ® given by d = #9 has

75
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the support contained in [T, S] and is a scaling function of a multi-
resolution analysis. In particular it has orthonormal translates.
The formula

El
V() =2 T(-1)*62z +k+1) (4.5)
k=T
gives a compactly supported wavelet with supp ¥ C [hzs’—', %]
REMARK 4.1. The formula for m(£) with ‘—’ in the exponents is used to
conform with the notation appearing in the scaling equation 2.17

REMARK 4.2. We know from Remark 4.6 below that § — T is odd. This
implies that supp V¥ is an interval with integer endpoints of the same length as
supp ®.

REMARK 4.3. 1. Hidden in this theorem is another approach to the con-
struction of a scaling function of multiresolution analysis, already alluded to in
Section 2.1. We start from the scaling equation 2.14. Suppose that we are given
a sequence of numbers (ai).cz and we want to find the function @ (z) such that

¥(z) =) ad(2z - k).
kel
We know that this is equivalent to
$(6) = m(e/2)8(¢/2) (46)
where m(£) = 3, .7 axe ™. Substituting 4.6 into itself (and assuming that ]
is continuous at 0 and $(0) = 1), we obtain @(E) = H:il m(277¢). This shows
that 4.4 is a very natural thing to analyze.

2. Observe that we have to assume 4.1 and 4.2 because if ® is a scaling
function then 4.6 will hold, so taking £ = 0 we get 4.2. From Lemma 2.12 we
see that 4.1 must also hold.

3. It is clear from the scaling equation 4.6 that different polynomials m(§)
give different scaling functions. Note however that if we take m,(£) = e'"¢m(§)
then we get

8.0 = [[meve
=1

= Jleme 00 = eore)
1=1

which gives ©,(z) = ©(z+r). This shows that the scaling function obtained with
my(£) is a translate of the scaling function obtained with m(£). Thus essentially
we get the same scaling function and the same wavelet given by 4.5. Note also
that it follows from Lemma 4.4 on page 81 that unless m; (£) = e™¢m(£), we get
different multiresolution analyses.
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Lemma 4.2 If m(£) is a trigonometric polynomial and 4.1 and 4.2
hold, then the product 4.4 converges almost uniformly and

[ IImeer é <om. (a7)
—o0 j)
In particular 8(£) is continuous and ©(0) = 1. If we assume also
4.3 then for each k € Z
o 2 o or k=0
[ M maseeca={ 20 ¥ (48)
i=1

oo otherwise.

Proof Since m(£) is a trigonometric polynomial, it satisfies the Lipschitz
condition, i.e. there exists a constant C such that |m(§) — 1| < CJ¢|,
so in particular for each ¢ € R we have [m(277¢) — 1| £ C2-7|¢|. This
shows that the product 4.4 converges almost uniformly on R and thus
6 is continuous. Now let us introduce some notation to be used in the
proof of this Lemma:

N
y@E) = [[m@e7e
j=1
gn(€) = TNELzvranm(§) =TN ()1 _r/zn/9(27N7'€)
k 2% 2 -2wik§ * 2, —2nik§
I = e ™ = e .
b [ P = [ (et g

Observe that Iy (€) is a 2/V. 2m-periodic function for each N =1,2,....
Using this and 4.1 we get

2N+, }
% = /0 Ty (€)[2e274K€ de

2N 7 aN i,

= / IHN(§)|2€—21{k£dE+/ [T (€)[Pe=27 k¢ de
0 28
2N

N /0 Ty 1 ()22 *¢m(2~ N ¢)[2 dt

2N

+ / M1 (6)[2e~ 2 *€[m(2 Mg + )2 de
0

]

2N x
/0 My 4 (€)Pe 25 (m(2-NE)[2 + (2~ Ve + m)[?) de

k
% .
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Continuing in this way we get

2r
o= tf= [ meaperae

2 [ (m(@F +im(e+ PR (09)
_ { 2n ifk=0

0 otherwise.

Since 4.1 clearly implies [m(¢)| < 1 for all ¢ € R we get for each natural
number N

/ |Hm(2 i) de < 1% < 2n
2Nz

50 4.7 holds. To obtain 4.8 note that because m(§) is continuous 4.3 im-
plies that there exists a ¢ > 0 such that [m(€)| > c for & € [-7/2,7/2].
Since H > 1 m(277€) converges uniformly on {—m, 7] there exists an in-
teger A{ such that |HJ (27 75)] 3 for £ € [—m,w]. This implies
that for € € [, 7]

M-1 oo
1o@©)l = [] Im@2¢)l- [] Im@7e)| 2 M =< >0
2=1 =M

Writing ©(£) = Tn(€) - O(2° V¢) we see that for ¢ € [-2V7,2V7] we
have [[Ix(€)] < 118(¢)|, which implies

lon(©)] < 510(@)] for €€ R (4.10)

It is clear that gn (§) — O(€) pointwise, so using the Lebesgue dominated
convergence theorem (which is valid because of 4.7 and 4.10) we get

[ le@re i = [t joviof'etrae

I

lim / |gN(£)|2F" 2miké d{

= lim I¥
N—ooo N

Comparing this with 4.9 we get 4.8. O

Lemma 4.3 Let m(¢) = Ef—_r axe *¢ be a trigonometric polyno-
mial which satisfies 4.1 and 4.2 and let ©(€) = H?‘l, m(272€). Then
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supp © C [T, S]. Moreover if all the coefficients a; are real then 6
is also real.

Proof In this proof we will be using the Fourier transform of measures
(although in the most simple case). For a measure u of bounded variation
on R we have (cf. A1.2-XI)

RO = VI = [ e du(a).
As we know, this normalization gives

F]([J*V)=f1(p)']:1(ll). (4.1])

Let us define measures py = Y 5_r ax8(k2~7) where (a) is the Dirac
delta measure concentrated at the point a. A straightforward calculation
shows that Fy(u;) = m(277¢). Thus 4.11 gives that for each natural
number N we get

N
Flur*pzx...xuy)= Hm(2'j£).

j=1
On the other hand a direct calculation using the linearity of the convo-
lution gives

My *p2*...xuN

= 3 Ay k8@ )+ e 827 VEy)  (4.12)
ky,..kn : T<k,<S
= Z Ak,,k,_“_,k,,,é(z"k, + 2_2k2 +.. .+ 2_NkN).

ki, kn : T<ki<S

This implies in particular that

supp p1 * pa ... x puy C [T, 8] —27N~1

Now let us take f, a C* function with compact support such that
supp f N[T,S] = 0. Since f € S, from Plancherel’s theorem A1.2-1V,
Lemma 4.2 and the above observations we have

[T ewraa = [ ewied

o N o
Jim [ T m(z-ie)7 de (4.13)
o
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lim / Filpey #pa* ... *ltN)(f)?(T)df

hm

i

/ F@d(s sz .. v 1) (@)

0.

Since f was arbitrary we infer that supp © C [T, S]. If we assume that
all ax’s are real then from the calculation leading to 4.12 we sce that the
measure fiy * jip * ... pp is real. If we take f a real-valued C* function
with compact support, then calculation 4.13 shows that f:o Q) f(t)dt
is real. This implies that ©(t) is real. O

REMARK 4.4. For a reader familiar with some functional analysis it should
be clear that O is the weak* limit of the measiires jt, % jup % ... % jun.

Proof of Theorem 4.1 We will use Theorem 2.13 on page 28. We
know from Lemma 4.2 that $(€) is continuous and $(0) # 0. It is
clear from 4.4 and the definition of & that &(€) = m(£/2) - &)(6/2) 50
conditions (ii) and (iii) of Theorem 2.13 hold. Lemma 4.3 shows that
supp ® C [T, S]. This means that the only thing left to show is that
{®(t — m)}, g is an orthonormal system. But writing the left hand
side of 4.8 as f:" Y 1ez |O(& + 2nl))%e - 2"*¢ dg we infer from properties
of Fourier caefficients (cf. A1.2-XII) that 3", [©(6 + 2#1)|? = 1. From
Corollary 2.9 we infer that {®(t — m)}, ., is orthonormal. Iormula 4.5
is just formula 2.47 adapted to the present situation. The evaluation of
supp ¥ follows directly from 4.5 and the evaluation of supp . O

If we look at Theorem 4.1 it is clear that there is no problem with finding
polynomials m(€) satisfying 4.2 and 4.3. It may not be clear that we
can find any polynomials satisfying 4.1. We will produce examples of
polynomials satisfying 4.1-4.3 in the next section and in the Exercises.
Let us note here one easy example m(£) = $(1 + ¢*¢), which however is
not very exciting since it gives our old friend the Iaar wavelet (see Ex-
ercise 4.1). We want to conclude this section with some general remarks
about compactly supported wavelets (assuming they do exist). First we
will show that for a given multiresolution analysis there is at most one
(up to translation) scaling function and wavelet with compact support.
This inmediately follows from the following lemma.
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Lemma 4.4 If &, and &, are compactly supported functions such
that {®,(t —m)}, c, and {®z(t —m)}, ., are orthonormal bases in
the same subspace of La(R), then &4(z) = ®2(x—k) for some k € Z.

Proof Since {®3(t —m)},, .z is orthonormal and both ®; and &, have
compact supports we can write

Di(z) = ) a;Pa(z—j)

j€A
for some finite subset A C Z. Taking the Fourier transform we get
,(6) = m()2(6)

for some trigonometric polynomial m(€). Using orthonormality and
Corollary 2.9 we get

= = Y lbie+anf
leZ
= m©P Y a6+ 272 = o Im(@)P.

ez

Thus [m(¢)|? = m(€)-m(€) = 1. From this we easily get that m(€) = ef*¢
for some k € Z. This implies ®,(x) = ®o(x — k). 0

REMARK 4.5. Note that it follows from Exercise 3.13 that the above lemma
is false even for functions with exponential decay. This is connected with the
fact that we can have nontrivial rational function f(z) analytic in |z| <1+ 8
(for some § > 0) such that for |2| = 1 we have |f(z)] = 1. A simple example of
such a function is f(z) = (z — a)/(1 — @2) with |e| < 1.

The following theorem contains some information about the support of
a compactly supported scaling function. To formulate this theorem we
will use the following notation: Supp f will denote the smallest closed
interval containing the support of f.

Theorem 4.5 Let ®(z) be a scaling function of a multiresolution
analysis. If & has compact support, then Supp® = (B, B + C] for
some B,C € Z and C odd.

Proof Let us write Supp ® = [a,b). Let us look at the scaling equation
O(z/2) = Z"Ez a,,®(z — n). Since {d(t — m)}mez is orthonormal and
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® is compactly supported, this is a finite sum, so

E
d(z/2) = Z a, (x —n) (4.14)

n=pB

with B,E € Z and ap # 0 and ag # 0. Since Supp®(zx — n) =
{a +n,b+ n] we infer from 4.14 that Supp ®(z/2) C [a + B,b+ E| and
also that

®(z/2) | [a+ B,a+ B+ 1]
O(z/2) | [+ E—1,b+ E]

ap®P(z— B)|[a+ B,a+ B+1]
ap®(x—E)|[b+ E—1,b+ E).

]

This implies that

Supp®(z/2) =la+ B,b+ E]. (4.15)
On the other hand, we see directly that Supp ®(z/2) = [2a,2b]. Compar-
ing this with 4.15 we get a = B and b = E. In particular Supp ® = [B, E|
with B, E € Z. Taking an appropriate translation we can assume B = 0.

We still need to show that E (in general E — B) is odd. After this
translation equation 4.14 becomes

E

D(x/2) =) a,b(z—n) (4.16)

n=0

with ap # 0 and ag # 0. This gives that for any integer [

x—?l Et+2
P( Za,.CD(x—Zl—n Z Ay ®(z - n). (4.17)
=0 n=21

An easy change of variables yields that for [ # 0 the function ®(z/2)
is orthogonal to ®(23%). Since {®(t —m)},, 5 is orthonormal, this
together with 4.16 and 4.17 gives

D and, u=0. (4.18)

Now suppose that E is even and take 2 = E in 4.18. With this choice
of | equation 4.18 becomes ag - ap = 0, which is impossible. O

REMARK 4.6. Note that the above argument also shows that a polynomial

m(€) satisfying 4.1-4.3 must have the form m(¢) = Zk 5 e ¥ with C odd.
This is a reformulation of 4.16 just as 2.16 and 2.17 are reformu]ations of 2.13.
Clearly the Supp of the corresponding scaling function equals [B, B + C)|.
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4.2 Smooth wavelets
If we look at Theorem 4.1 it is clear that it is very easy to find poly-
nomials m(£) satisfying 4.2 and 4.3. It may not be clear at first glance
that we can find polynomials satisfying 4.1. This is possible. Otherwise
we would not bother with compactly supported wavelets. A very useful
tool to produce trigonometric polynomials satisfying 4.1 is the following
classical lemma.

Lemma 4.6 (Riesz) If g(¢) = Z:i,T’Ykeiké is a non-negative
trigonometric polynomial with the 7’s real, then there exists a
polynomial m(§) = E:=0 are’*€ with all ap’s real and such that

[m(€)[* = g(&) for all £ €R.

Proof Since g(£) is real and the 4,’s are also real we infer that
e =7_x =7 forallkeZ. (4.19)

To fix our notation let us assume also that 4 # 0. We consider a
rational function on C,

T
G =Y mr=zT(rr+vrnz+...+w2T).  (4.20)
k=-T
Using the fundamental theorem of algebra we can factor G(z) as

2T
G(2)=2z"T[](z~¢)
i=1
Since we have yr # 0 we infer from 4.19 that y_1 # 0, so zero is not a
root of the polynomial y_r 4+ ¥_r112 + ... + 17227, Thus we see that
c; #0 for j=1,2,...,2T. Note that 4.19 and 4.20 imply that for any
z€C,2#0

G(2) =G() (4.21)
and
G =G(). (4.22)

This implies that if zo is a zero of the function G(2), i.e. if 20 = c; for
some j, then Zo, 2o~ and 2, are also zeros of G(z). Note also that if
J]zo| = 1 and G(z0) = 0, then 2z is a zero of G(z) of even multiplicity.
To see this write zo = e*% and note that g(&) = 0. Since g(€) > 0 this
implies that g(£) has a local minimum at &. By a well known calculus
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criterion for local minima, this implies that the polynomial g(¢) has a
zero of even muitiplicity at &. Since g(£) = G(e%) we see that G(z) has
zero of even multiplicity at zp = e®°. Thus we can write

2T
[[e=c)=]]a= (4.23)
=1 ~

where either

g.(2)=(z—)(z—&)(z—c ) z—¢ ') forsome c€ C\R (4.24)

" 9.(2) = (z~)(z—c7!) forsomeceR. (4.25)
When |z = 1 and ¢ € C\ {0} we can write
(2= )z — %)] = |- c)"‘éé" (4.26)
= ae =)
- |1_||z — .

From 4.26 we see that if g.(z) is given by 4.24 then for |z| = 1 we can
write

1 2

fel
and the polynomial (z — ¢)(z — €) has real coefficients. From 4.26 we see
that if g.(2) is given by 4.25 then for |z| = 1 we can write

(z—c)(z—0) (4.27)

[94(2)| =

2

|94(2)] = (4.28)

1
m(z )

From 4.24-4.28 we see that for each g, which appears in 4.23 there exists
a polynomial p,(2) (either linear or quadratic) with real coefficients, such
that for |z| = 1 we have |g,(2)| = |p.(2)|?. Since

9(6) = G(e®) = [[1ga ()l

we see that we can take m(€) = [], pa(c™). 0

REMARK 4.7. 1. Observe that in general the polynomial m(£) given by
Lemma 4.6 is not unique. Indeed the polynomials p, are not uniquely determined
by the polynomials g,. This happens if |c| # 1 because in formulas 4.24 and
4.25 we can choose ¢ to be either one of the roots with absolute value greater
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than 1 or ope of the roots with absolute value less then 1. This choice results in
different polynomials m(§).

2. Comparing Lemma 4.6 with Theorem 4.1 we see that in order to construct
a compactly supported wavelet we need to construct a positive trigonometric
polynomial m(£) satisfying 4.2 and 4.3 and

m(é) +m(¢+n)=1. (4.29)

Observe that condition 4.29 is very easy to check on coefficients. It is easy and
well known (we used it in the above proof) that m(¢) = Z:;_N aie'* is a real
trigonometric polynomial if and only if ax = a_s for k = 1,2,...,N. If 4.29
holds then

N

N
1= Z ape'*é + Z ak(—l)ke'kf

k=—N k=-N

which is clearly equivalent to ay = % and a; = 0 for all other even k’s.

Now we will state and start the proof of the main result of this chapter.

Theorem 4.7 There ezists a constant C such that for each r =
1,2,... there ezists a multiresolution analysis in Ly(R) with scaling
function ®(z) and an associated wavelet ¥(x) such that

(i) ®(z) and ¥(z) are C" functions
(ii) ®(z) and V() are compactly supported and both supp ® and
supp ¥ are contained in [—-Cr,Cr).

REMARK 4.8. It follows directly from Remark 3.7 that there does not exist
a C™ wavelet with compact support.

The rest of this section will be devoted to the proof of this theorem.
In order to give the reader the general idea we first present the strategy.

Strategy of the proof. We will give an explicit definition of a
polynomial fi(¢) = E,’:’:_N a,e™¢ > 0 such that fi satisfies 4.29, 4.2
and 4.3. From Lemma 4.6 we will get a polynomial m(¢) = Zﬁ:o b, ei"¢
satisfying 4.1-4.3. We will make sure that N < Ck so Theorem 4.1 will
give condition (ii) of Theorem 4.7 for the scaling function. Condition (i)
for the scaling function will follow from the estimate |[[52, m(27€)} <
C(1 + |€)"%~!. This will also show (cf. Theorem 4.1) that the wavelet
satisfies (i) and (ii). End of strategy

Now let us start the execution of the above strategy. Fork =1,2,3,...
let us define trigonometric polynomials

3
k(&) =1- ck/o (sint)®*+' dt (4.30)
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where ¢ = (fy (sint)?*+1 dt)
It is clear that gx(£) is a trigonometric polynomial of degree 2k + 1.
Note also that

gk(§)=ck/ (sint)2k+ldt=c,,/ (1 — cos®t)* sint dt. (4.31)
£ 3

-1

Making the substitution u = cost we get

k(&) = pr(cos€) (4.32)

where pi(z) is an algebraic polynomial of degree 2k + 1 defined as
T
pr(z) = uk/ (1 — u?)* du. (4.33)
-1

REMARK 4.9. In what follows we will not be very careful with constants,
but we will show that there exists an integer L such that we can take f described
in the above ‘Strategy of the proof’ to be grs.

In the following lemma we will collect for future use some properties

of the polynomials gi.

Lemma 4.8 The polynomials g(€) defined by 4.30 have the follow-
ing properties

0<ge(§) <1 and gi(§) = gx(—§) (4.34)
9x(€) # O for (€ (—mm) (4.35)

gx(0) = 1 (4.36)

1 = g(&)+g(€+7) forall £E€R  (4.37)

a < 3Vk (4.38)

Also we can factor

s k+1
w© = (225) e (139)

where ¢i(€) is a trigonometric polynomial.

Proof Properties 4.34-4.36 for every k = 1,2,3,... immediately follow
from the definition of g, and elementary properties of the sin function.
Also for each k= 1,2,3,... we have

3 4
(&) + ge(E+7m) = 2- ck/ (sint)?**+1 dt — ¢, / (sint)2¥+1 dt
0 0
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3 £ 4x

= l—ck/ (sint)z"“dt—ck/ (sint)Z*+1 gt
[} E3

= 1

where the last equality follows from the relation sint = —sin(t + ).
This gives 4.37. We have

x 5+
/ (sint)?*+'dt > /, Y (sint)2k+1 gt
[1} z

LR Ty

2k+1
1 +

2 ™
2 = sin( + ——=—=
= R+l [s'"(z VR TT)

2 1
- (L‘OS )2k+l
V2k +1 V2k+1
2 1
> 1— 2k+1
- \/2k+l( 2k+])
2 1

>
ev2k+1  3vk

so 4.38 follows. It follows directly from 4.33 that pi () has zero of order
k+1 at z = —1 so we can factor pi(z) = (z + 1)¥+1f,(z) with f(z) an
algebraic polynomial. Thus 4.32 gives 4.39.

k

Lemma 4.9 Denote m = 5 and rewrite {.39 as
14+cos€\™
9k(§) = (_T_é) M, (8). (4.40)

Then there exists an integer N and a constant a < 1 such that for

k>N
sup |Mi(8)| < 2°%. (4.41)
£ER

Proof From 4.40 we see that

Mi(§) = 27gi(§)(1 + cos§)™™

so using 4.32 we infer that

sup |Me(€)| = 2™ sup pe(z)(1 + )™ (4.42)
£€R -1<z<1
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Using 4.33 we get for -1 <z <1

T (1 — u?)k
(A +2)™™pelz) = » %
= Ck[~1 (:::) (1 +w)™1 —u)rdu
< ok /I A+ )™ - u)* du (4.43)

ck/r [\/1+u(1—u)]lc du

A standard calculation shows that on the interval [—1,1] the function
V1 + u(l — u) has an absohite maximum equal to g\/g This and 4.43

imply that
k
max (1 +2) "pe(z) < 2ck ﬂﬁ (4.44)
1<z <1 - 7T\ \3V3/ ’

Since ;—\/g < /2 the lemma follows easily from 4.38,4.44 and 4.42. [J

REMARK 4.10. Looking more carefully at these calculations we can conclude
that N = 12 suffices. It also follows that for large k we can take as a any number
> log, 5“7_: ~ (0.299.

Proposition 4.10 Let gi(€), k = 1,2,... be trigonometric polynomi-
als defined by 4.80 and let us define G (£) = H;ilgk(?‘j{). Then
for |§| > 1 and k > N we have

(G (€)] < Celel(==* (4.45)

where N and a are given in Lemma 4.9.

Proof Using 4.40 we can write

1+ cos277¢ " o

G =|[1—=—] [Im@79 (4.46)
=1 i=1

which makes sense provided both products converge. The first product

can be computed explicitly; note first that

- sinz
[Jcos2 iz = T (4.47)
i=1
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because using the elementary formula sin 2z = 2cosz sinz we can write

m

1'—"1 93 H sin277+1g sinz
cos27 i = - — = -
ol 2sin2-7z  2™sin2-"z

i=1
and because limy, 00 2™ sin2"™z = z we get 4.47. Because ‘—‘% =
c052§ we get from 4.47

ﬁ 1+cos279¢ _ 4sin?¢/2

5 & (4.48)

=1
Now let us look at the second product. It follows directly from 4.40 and
4.39 that M (€) is a continuous function which satisfies

IMi(§) — 1| = CIE]

This implies (exactly as in the proof of Lemma 4.2) that the product
H;’;, M (277¢) converges almost uniformly to a continuous function. In
particular

o0
sup | [ ] Me(277€)| < C. (4.49)
et i

For |€| > 1 let us fix an integer r such that 2"~! < {£] < 2". From 4.49
and 4.41 we obtain

o0 r 00
[TIMe@28)] = []IMe277)]- T[] [Me(277277¢))
i=1 i=1 i=1
< 290, <ICElk. (4.50)
Putting together 4.46, 4.48 and 4.50 we get 4.45. O

Proof of Theorem 4.7. Let us start with the polynomials gi(£) defined
in 4.30. Since gx(€) > 0 we use Lemma 4.6 to obtain a polynomial
mi(€) of degree 2k 41 such that |mk(£)|2 = gk (). It follows from 4.37,
4.36 and 4.35 that the polynomial m(£) satisfies 4.1-4.3. We apply
Theorem 4.1 to get a scaling function ®; and a wavelet ¥ supported
on the interval [—2k — 1,2k + 1]. From 4.4 and Proposition 4.10 we infer
that

l&k(f)| < Gyl
for [¢} > 1. From properties of the Fourier transform (cf. A1.2-1V) we

infer that &, € C" with r < l’T"k — 1. From 4.5 it is clear that also
W € C". This readily gives the theorem. O
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REMARK 4.11. It follows from Lemma 4.6 and Remark 4.6 that actually
Supp @, and Supp ¥, have length 2k+1. Thus the argument above and Remark
4.10 show that in order to have a compactly supported wavelet of class C" the
above construction requires k > 1¥L‘2 so we get Supp ¥, of length > _Ml 1.
For large r we get k > 14(r+1). There is no reason to believe that these numbers
are close to the optimum.

REMARK 4.12. The proof of Theorem 4.7 uses only estimates for g, (£). The
actual scaling function and wavelet depend on the polynomial m(£) obtained
from gx(£) using Lemma 4.6. This polynomial, as we know from Remark 4.7,
is not unique. Thus for each k our construction actually applies to the whole
family of wavelets.

4.3 Bare hands construction

Our aim in this section is to present an ‘elementary’ construction of a
continuous, compactly supported wavelet. The construction is elemen-
tary in the sense that it does not use any tools developed so far. It also
allows extremely easy calculation of an approximation to the resulting
scaling function and wavelet. On the other hand the numerical values
from which the construction starts are lifted directly from the general
theory. Otherwise we would have to invoke illumination to get them.
Actually we are constructing one of the scaling functions associated with
g1(€) from the previous section (cf. Exercise 4.6). This construction also
makes evident the self-similar nature of the graph of a compactly sup-
ported scaling function. This is present in our general construction in
formula 4.12. The construction proceeds through a series of elementary
lemmas with relatively easy and straightforward proofs. Thus we will
be more brief in this section than usual in this book. Lct us start with
the following notation: D; = {k277 : k € Z} and

D=|4D;= UD, (4.51)

j€z
Observe that 1D C R is dense. It is also a ring, i.e. sums, differences and
products of elements of D are also in D. In the construction we will use
two explicit numbers

(4.52)

and

b=: (4.53)
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Clearly

1<a<l and —i<b<o. (4.54)
Proposition 4.11 There ezists a unique function ® : D — R satis-
fying the following three conditions:

®(z) = ad(2z) +(1-0)P(2z—1) + (1 —a)®(2x — 2) + bP(2z —3) (4.55)

S ek) =1 (4.56)
keZ
®(d)=0 ifd<0 or d>3. (4.57)

Proof We first try to calculate the values of our function on the integers
Z = Dy. Condition 4.57 says that we need to find values of ® at k =
0,1, 2, 3. Thus condition 4.55 leads to the following system of equations:

&(0) a 0 0 0 ®(0)

(1) [ _| 1—a) (1-0) a 0 ®(1)

@) |~ 0 b (1-a) (1-b) ®(2)

(3) 0 0 0 b d(3)

(4.58)
If A denotes the 4 x 4 matrix on the right hand side of 4.58 then
1-b—-2A a
det(A—AI) = (a—A)(b—A)det b l—a—

i

(@=A)(b—A)(1=A)(1—A—a—b).

If we compare this with 4.52 and 4.53 we see that A =1 is an eigenvalue
of A with multiplicity 1, so there exists a unique (up to scalar multipli-
cation) non-zero solution of 4.58. Such a unique solution satisfying 4.56
is given by

1443
2 (4.59)

®(0) 0 ®(1)
o2 = 58 »3) = 0

Observe that once we have determined ® on the integers (i.e. on Dp) we
can use 4.55 to find values of ® on D;. Observe that in this process we
also obtain 4.57. Continuing in this way we obtain values on Dy and
we easily check that they satisfy 4.57. We continue in this way and by
induction we get ® : ) — R. Since ® | Dy is unique, it is unique in
general. (]
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Lemma 4.12 For every z € D we have

> o -k) =1 (4.60)
keZ
and
2(3_2\/§+k)¢(r—k) = (4.61)

kez

Proof In order to simplify the notation in this proof we will introduce
the number c defined by

c=: 3 _ ﬁ (4.62)
2

The proof is by induction on j. Let us start with 7 = 0. For z € Do =
Z 4.60 is already proven (it is 4.56). When = € Do we use 4.57 and 4.59
and see that the left hand side of 4.61 becomes
1+\/§+(c+x—2)1_\/§.
2 2
After a routine calculation using 4.62 this gives z, so 4.61 holds for
z € Do. Now assume that 4.60 holds for x € D; and take xp € Dj,;.
Then 2z¢ — k € D; for every k € Z, so substituting 4.55 into 4.60 we
easily get 4.60 for zg. Thus 4.60 holds for all z € D by induction. The
proof of 4.61 also proceeds by induction. Assume that it holds for all
x € D; and take 2o € Dj,3\ Dj. Write xp = N + a with 0 < @ < 1 and
N € Z. Then using 4.57 equation 4.61 becomes

(e+ N)¥(a)+ (c+ N-1)P(a+1)+ (c+ N — 2) d(a +2).

(e+z-1)

Using 4.60 which we have already proved, this can be written as
c®(a) + (e —1)P(a+ 1)+ (c—2) P(a+2) + N.
Into this we substitute 4.55 and using 4.57 we get
N + ®Q2a-1{(1=-b)c+b(c—1)
+ ®Q2a)[ac+ (1 —-a)(c—1)]
+ 8Cat {1 -b)(c—1)+bc—2)
+ PQa+2)a(c—1)+ (1 -a)(c-2)].
Into this we substitute 4.52, 4.53 and 4.62 to obtain
N 4+ e+ 1)2Q2a—1)+cd(2a)
+ (e=1)PRa+1)+(c—2)d(2a +2)].
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Since 2a + k € Dj for all k € Z, we apply the inductive hypothesis to
obtain
N+%2(1=N+a=zoA

This shows that 4.61 holds. [}

Lemma 4.13 Jfz € D and 0 <z <1, then

20(z) + (@ +1) = m+1+2‘/§ (4.63)
20(x+2)+P(z+1) = -z 3_2‘/5 (4.64)
O(z) ~ Bz +2) = z+“1+‘/§. (4.65)

Proof For x € D, 0 < = < 1 relations 4.60 and 4.61 give us two
equations connecting ®(z), ®(x+ 1) and ®(x +2). Eliminating &(x +2)
from those equations we get 4.63, eliminating ®(x) we get 4.64, and
eliminating ®(x + 1) we get 4.65. [}

Lemma 4.14 For 0 <z <1 and x € D the following relations hold:

d>(0+m) = ad(x)

2

‘I’(l+z) = bd>(:z)-}-a:1:—+-———2_+'\/§
2 4

d>(2+z) = ad>(1+:c)+b:t+i§
2 4
3+x 1

d>( 2 ) = bd)(l+z)—am+z

¢(4+$) = ad>(2+:c)—brc+Eﬂi
2 4

<1>(°;"") = b2+1)

Proof The proof of each of the six equations is basically the same and
consists of the following three steps:
o Using 4.55 and 4.57 we write the left hand side in terms of &(z),
d(z + 1) and &z + 2).
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e Using the appropriate two of equations 4.63- 4.65 we eliminate two
of those values and retain only the desired one. An appropriate
linear function appears.

o Using 4.52 and 4.53 we explicitly calculate the numbers appear-
ing.

a

This lemma will be the basis of the proof that the function & extends
to a continuous function on R. To do this formally we introduce a non-
linear operator K acting on functions on R. It is defined as follows:
when z € [0, 1] then we define K(f) by the following set of conditions:

K (52) = o@

K(f)( ; ) = bf(r)+a:x:+2+4ﬁ
ki (357) - of (1 +3) 41z + 22
i (*35) - bm+z>_az+3
K(f)(‘ijx) = af(2+z)—bx o4 223 2‘/_
K(f)( H) = bf(2+7)

=
—~
N
=
-~
(S
<

= 0 for y¢[0,3].

This definition can produce two values for I((f) at the points 0, %, 1, 1%,
2, 2— 3. Let us denote by ®;, j = 0,1,2,..., the continuous, piecewise
]mear function on R which on Dj; equals d>. It follows from Lemma 4.14
and Proposition 4.11 that for al] Jj =0,1,2,... the function K(®,) is
well defined at each point and actually K(®;) = ®,,,. Let = € [0,3]
and j > 0. From the definition of K(f) we immediately see that

Pj11(x)=05(x) = K(9;)(2)—K(P;-1)(x) = (%, (y)—®;_1(1)) (4.66)

where 7 = a or n = b and y € R is a point which depends on z (and
for given = can be easily deduced from the definition of K). Since
K(f)(z) =0 for x ¢ [0,3] and max(|al, |b]) = a, from 4.66 we get

lld)j+l - q’]"C’f’ < a“d)j - d’]*l“m
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so inductively we get

@541 — @jlloo < &7 [|P1 — Polloo-
Since ||®; — ®ol} < oo, this shows that the sequence (®;)52, converges

uniformly to a continuous function which we will call . Thus we have:

Theorem 4.15 The function & defined on the set D C R by Propo-
gition {.11 extends to a continuous function on R, which we will
also denote by ®.

Clearly all formulas which we have proved for function ®(z) with x € D

extend by continuity to z € R.

Theorem 4.16 If &(z) is the function on R given by Theorem .15
then

/w ®(z)ds = 1 (4.67)
and
/_ ¥(z) - B(x ~ k) dw = { : 5: p o (4.68)

Proof We know that 4.60 holds for each z € R. Also, since supp & C
[0,3], for each = € R there are at most three non-zero terms in the sum
Y kez P(x—k). Given a positive integer K let Fx(z) = Z,I;_K d(z—k).
From the above remarks and 4.56 we infer that |Fx(z)| < C for some
constant C and

_f1 if|zg|<K-3
F"(I)“{ 0 if [x| > K +3.

Thus for every integer K
2K —3) - 1205/ Fy(e)do < 2(K —3) +12C.  (4.69)
From the definition of Fx we also infer that

/w Fe(z) do = (2K + 1)f°° ¥(z) da. (4.70)

Since 4.69 and 4.70 hold for every positive integer K, letting K tend to

infinity we obtain
oo
/ &(x)dz = 1.

oo




96 Compactly supported wavelets

In order to prove 4.68 let us denote
00
Li= / ¥(z) - B(z — k) dz. (4.71)
— 00
Since supp @ C [0, 3] we see that
Ly =0 for |k| >3. (4.72)
It is also clear that
Li=L_g (4.73)

so we need to investigate only Lo, L and L;. An easy change of variables
gives that for any k,r,3 € Z we have

00
/ ®(2z — 1) - (25 — 2k — &) dov = LLogynr (a.74)
-0

Substituting 4.55 into 4.71 for k = 0,1,2 and using 4.724.74 we obtain
the following three equations:
(all —a) + (1 —=b))Ly = (1—ab)Ly + (a(l — a) +b(1 — b)) Lo
2L, (a(1 —a) +b(1 = b)) Lo + (1= b) L,
+H(1 =82+ (1 —a)? +b?) L,
2L, = abL; + (a(1 —a) +b(1 - b)) L,.

A direct calculation using 4.52 and 4.53 gives
a(l—a)+b(1—b)=0 (4.75)
so the above system of equations becomes
0 = (1-ab)l;
2L = (1 =bLi+((1 =62+ (1 —a)?+b?)L,
2L, = abLy.

So we obtain L} = L, = 0 and no condition on Ly. This implies that

L, = 0 for all k 3 0. 'To compute Lg let us use 4.67, 4.56 and 4.68 and
write

1= /md)(m)dz:/w¢(m)-z¢(x—k)dx

- keZ

ZLk = L.

kez
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If we now recall the material explained in Section 2.3 we see that ®(x)
is a scaling function of a multiresolution analysis. As we know from
Theorem 4.1, the corresponding wavelet can be given by the formula

V(z) = —bd(22)+(1—a)d(2z—1)—(1-b)B(2z—2) +ad(2z—3). (4.76)

However, we can proceed in our elementary spirit and show:

Theorem 4.17 The function ¥(z) defined by the formula 4.76 sat-
isfies the following conditions:

supp ¥(z) C [0,3] (4.77)
-/:oo\ll(a:)-\ll(z—k)dz={? g:zg (4.78)
/00 Y(x—k) - ®(x)dz=0 forall k€Z. (4.79)

Thus {27/2% (27t — k)}jEZ.kGZ is an orthonormal system in L,(R).

Proof Property 4.77 immediately follows from 4.76 and the fact that
supp & C [0, 3]. To obtain 4.78 we substitute 4.76 into the left hand side
of 4.78 and calculate using 4.74, 4.68, 4.75 and the values of a and b. To
obtain 4.79 we proceed analogously, but we substitute both 4.76 and 4.55
into the left hand side of 4.79. The fact that {29/2W¥(27¢t — k) }jez.kez is
orthonormal follows directly from 4.78 and 4.79. (m}

Sources and comments

The first compactly supported wavelets different from the Haar wavelet,
in particular smooth compactly supported wavelets, were constructed by
I. Daubechies in [25]. Almost immediately the whole theory developed
and the construction was simplified in various ways. Our argument
given in Sections 4.1 and 4.2 is an adaptation of arguments presented
in [25], (85], [27) and (24]. A very detailed presentation of the theory
of compactly supported wavelets is given in Chapters 6-8 of [24]. The
interested reader should consult that book and references given there.
It should be pointed out that for each N = 2,3,... there are many
trigonometric polynomials of degree N satisfying 4.1 and 4.2 and giv-
ing wavelets. Various choices give compactly supported wavelets with
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different properties; examples are discussed extensively in [24]. A full
parametrization of such polynomials is given by R. O. Wells [112]. In
Section 4.2, following [27] and [85] we concentrate on one concrete se-
quence of polynomials which is easy to write down and to manipulate.

The elementary construction presented in Section 4.3 is taken from
Pollen [94]. As is clear from our presentation and Exercises 4.4, 4.5 and
4.7 the detailed study of the regularity of a compactly supported wavelet
is a delicate problem. For some recent results on this subject see e.g.
{110]. Cohen’s condition in Exercise 4.8 was introduced by A. Cohen in
[20]. Tt is also necessary, i.e. if m(£) satisfies 4.1 and 4.2 and if  given by
d(¢) = 7‘5;6(5), where ©(¢) is given by 4.4, is a scaling function then
m(£) satisfies Cohen’s condition. Other equivalent conditions were given
by W. Lawton in [64]. A nice presentation of various such equivalent
conditions is given (with simple proofs) in [48].

About the exercises. As already mentioned, Exercise 4.8 is part of a
result of Cohen [20]. The results of Exercise 4.9 can be found in [71] and
[70]. Exercise 4.10 can be found in [94], while Exercise 4.12 is a result
of W. Lawton [65] which can also be found in [24] Proposition 6.2.3.

Exercises
4.1 Let m(£) = 1(1 +€¥).

Show that m(¢) satisfies 4.1-4.3.

Show that []72, m(277¢) = 0‘5/2%2/—2.

e Conclude that m(£) gives 1;_, ¢ as a compactly supported
scaling function, so it gives a Haar wavelet as a compactly
supported wavelet.

Take m;(€) = m(3¢). Show that it satisfies 4.1 and 4.2 but
not 4.3. Show that J]72, m;(277€) is the Fourier transform
of 1j_3)- This shows that some condition like 4.3 is needed
to ensure the orthogonality of translates.

4.2 Suppose that my(€) and m2(€) are two polynomials satisfying
4.14.3 which via Theorem 4.1 yield the same multiresolution
analysis. Show that m; (€) = e'*¢m,(£) for some s € Z.

4.3 Let @ with a compact support be a scaling function of a multi-
resolution analysis.

e Show that if supp® C [0,1] then & = 1y ,).
e Show that if #(a+z) = #(a—=x) for somea € Rand all x € R
then &(z) = 1 k1) for some k € Z.
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Consider g, defined by 4.30.

Factor it explicitly as in 4.39.

Show that maxger |¢1(€)] = 3.

Use the factorization 4.39 and the above to show that for
[€] > 1 one has []52, g1(277¢) < Clg|~4+Mma3,

o Note that any corresponding scaling function and wavelet are
supported on an interval of length 3. Show that they are
continuous and satisfy Holder’s condition of any order less
than 1 — Iny V3.

Find all trigonometric polynomials m(£) satisfying 4.14.3
such that |m(€)|2 = g1 (€).

Arguing as in the previous exercise show that any wavelet cor-
responding to g2(£) satisfies Holder’s condition of any order less
than 2 — Iny /10. Note that 1 — Inp V3 < 2 —In, V10.

Let @(x) denote the scaling function constructed in Section 4.3.
Find the polynomial mg(€) such that

b(e) = \/—11=7r T mo(z%¢).
j=1

Show that |mg(£)|? = g1(€) where g, is defined in 4.30.
Suppose that ®(z) is a continuous scaling function such that
Supp® = [0, 3], so that

&(z) = co®(2z) + 1 P2z — 1) + c2P(2z — 2) + c3P(2z - 3).

e Observe that ¢ # 0 and c3 # 0.

e Show that ®(1) # 0 and (2) # 0.

Note that &(277) = J&(1) so & does not satisfy Hélder’s
condition at 0 with any exponent > —In; |cg|.

o Note that co, ¢y, ¢z, c3 satisfy the following equations

co+cp+catcz = 2
A+c+cd+ci = 2
o l-c
I—Cl - C3 '

Suppose that & has continuous derivatives at integer points
and that (1) # 0. Show that this implies |co| < 1 and
Jeal < 4 and also

2(‘0 _ 1-— 2C2

1— 2¢; 2c3
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o Show that the above conditions on cg, ¢y, ¢z, c3 are contradic-
tory, so ¢ can not be continuously differentiable.

Prove Theorem 4.1 when condition 4.3 is replaced by the follow-

ing condition called Cohen’s condition: there exists a compact

set K C R such that

o |[K|=2n

e for each t € [—m, 7] there exists | € Z such that t + 27l € K

e K contains a neighborhood of 0

[} l‘nfj:Lg‘m infth |m(2'7£)| > 0.

Using this show (by constructing an appropriate K) that we can

replace w/2 in 4.3 by 7/3. Observe (use Exercise 4.1) that the

constant 7/3 is smallest possible.

Suppose we have a multiresolution analysis with compactly sup-

ported scaling function ¢ with Supp ¢ = [0, N].

e Suppose f € Vo and f | [0,2N + 1] = 0. Show that fljo o) €
Vo.

e Suppose f € Vo and f | {a,b] = 0 with a < b. Show that
fl[h'm) € Vo.

e Conclude that supp ® = [0, N] and that for the associated
wavelet ¥ we have Supp ¥ = supp V.

e Show that V; | [~1,1] is a linear space of dimension N + 1.

Let W be the wavelet given by 4.76. Show that
00
/ z¥(z)dr = 0.
00

Show that the function f(x) =: max(0,x) cannot be written

as f(z) = Y, 1cz uP(xz — 1) where ¢ is a compactly supported

scaling function of a multiresolution analysis.

Let m(€) be a trigonometric polynomial satisfying 4.1 and 4.2,

let ©(€) be given by 4.4, let ®(z) be given by & = 70 and

let ¥(x) be given by 4.5. Show that
{27/2\1/(21: - k)}

1€ZkCT
is a tight frame in Lo(R). For the definition of tight frame see
Remark 2.3.
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Multivariable wavelets

Our aim in this Chapter is to obtain multivariable generalizations of
one-variable wavelets. This can be done in many different ways. The
most natural way to pass from one variable to several is to use tensors,
i.e. functions of the form f(x1,...,2z4) = fi(z1) - ... - fa(za). This
idea we can employ at two different levels: for wavelets and for scaling
functions. We will present this in Section 5.1. In Section 5.2 we will
present a genuinely multivariate theory of multiresolution analyses on
RY, together with some examples. Actually we will present our theory in
such generality that even for d = 1 we will get a more general theory than
presented so far. The fundamental difference between the above three
aproaches is the way we generalize the one-dimensional dyadic dilations

Jof(z) = f(2*z). Tensoring at the level of wavelets corresponds to
dilations
J,.h,z,”",d(f)(::l, coazd) = f(2% 3y, .., 2%y). (5.1)
Tensoring at the level of the scaling function corresponds to dilations
Jof(z1, . za) = f(2'3q, ..., 2'2y). (5.2)

Our more general approach uses dilations of the form
Jaf (@1, zq) = f(Alz1, .. 2a)) (5.3)

where A is a suitable linear transformation of RY. The last two ap-
proaches force us to use instead of one wavelet a finite ‘wavelet set’. Our
translations will always be the same as before: for h € R? we define

() = [~ ). (5.4)

To generate wavelets we will use h € Z*.

101
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In Section 5.2 we will show how to construct wavelet sets from multi-
resolution analysis in our most general framework. In our last Section
5.3 we will construct many examples of multiresolution analyses and in
particular we will give the construction of smooth, fast decaying wavelets
on R?.

It should be stated at the outset place that the multivariable theory is
much less developed and much more complicated than the one-variable
theory presented in Chapters 1 4. Nevertheless in many places in this
chapter we will use arguments which are similar to arguments used in
earlier chapters. In such cases we will be more brief than usual. This
should not prevent more mathematically experienced readers from start-
ing their reading from this chapter if they wish to do so. The reader
who is familiar with earlier chapters should have no problems at all.

5.1 Tensor products

The most natural way to pass from the one-variable situation to a mul-
tivariable situation is to form tensor products. This is a very general
concept which we will use in the most simple context only - really we
will only use the notation.

Given d functions of one variable f7(z) for j = 1,...,d we will form
the function of d variables f! ® f2®...® f¢= ®;:1 f? defined as

4 d
®jj(x,,...,md) = Hfj(-fa)'
i=1 =1

If we have d closed subspaces X; C Lp(R) for j = 1,2,...,d we can form
a closed subspace of Ly(R?) denoted by ®;:l Xjorby X;@X2®...0Xq
and defined as the closed linear span in Lp(R?) of all functions of the
form f!(z) ... f¥(zq) where f7 € X; forall j=1,2,...,d.

It is easy to check that if the systems (H)ueA, are orthonormal bases
in subspaces X; C L2(R) for j =1,2,...,d then the system

d
X1
A

i=1 (311, %a)€ AL X ... X Ag

is an orthonormal basis in ®‘;=1 X;. It is also easy and well known that
d
®j:l L2(R) = Lo(RY).
If our aim is to obtain an orthonormal basis in L2(R?), then the most
natural approach is to take d orthonormal bases (¢4 (z)), ., in L2(R)
7
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for j =1,2,...,d and to form an orthonormal system ®;.i:1 v.‘, indexed
by the set A = A; x ... x Aq. It follows from what we have said above
that this system is an orthonormat basis in Ly(R?). When we apply this
procedure to wavelet bases we get the following:

Proposition 5.1 Let (\Ilj);zl be wavelets on R and let

d
Y(zy,...,xq) = H Wy (x;).
j=1

Then the system

nt+ +ig
E]

2 V(2 ) —kiy.n ., D2y — ky) (5.5)

for all 3y,...,ja and ky,..., kg in Z forms an orthonormal basis in

La(RY).

The basis given by 5.5 looks very appealing: it is naturally generated
by one function ¥. It is actually quite useful in many instances. Its
drawback, which is quite serious in many situations, is that the integers
J1,-.+,Ja are totally independent, so the decay of elements of the basis
in different directions can be markedly different. The easiest way to see
what I mean is to take d = 2 and ¥, = ¥; = H, the Haar wavelet
defined in Definition 1.1 on page 1. In this special case the supports of
the functions given by 6.5 are all dyadic rectangles, so we have squares
like [0, 2"] x {0, 2"*] but also rectangles arbitrarily narrow in one direction
like [0,1] x [0,2"]. This may cause problems. The way to avoid this is
not to tensor wavelets but multiresolution analyses. As an introductory
example of this approach let us try to construct a two-dimensional Haar
wavelet.

EXAMPLE 5.1. When we try to build a two-dimensional Haar wavelet
basis the natural choice is to use squares in the plane R2. When we want
to divide a square into equal squares we need to divide it into at least
four squares. To be more precise let Vg be the space of all functions in
L>(R?) which are constant on each square (n,n+1)x (k, k+1). When we
divide each square into four equal squares we obtain the space V) of all
functions in Lz(R?) which are constant on all squares (%, ’%’—’) X (-’25, "lzl)
Thus to complement V, to V; we need three functions on each square
(n,n+1) x (k, k+1). These three orthogonal functions can be given as

¥y(x,y) H(z) - 1i0.1)(y)
Vo(z,y) Y.y (x) - H(y)

I

I
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VYa(z,y) = H(z) H(y)

where H(t) is the Haar wavelet defined by 1.1. Clearly these three
functions are in V;. The functions ¥;(z—k,y—!) for all k,l € Z and j =
1,2,3 form an orthonormal system. This system spans the orthogonal
complement of V; in V. To see this let us observe that two such functions
Vi(z — k1,y — 11) and ¥;(z — kg,y — l2) have disjoint supports unless
ky = ko and l; = l;. But in this case they are orthogonal whenever
i # j. Since every function from V4 is constant on the support of each
function from our system and fm Vi(z,y)dxdy =0 for i = 1,2,3, we
see that all functions from our system are orthogonal to Vy. The fact
that our system spans the whole complement of V4 in V] can be checked
on each square separately, where it is obvious. .
We will try to follow the procedure indicated in the above example in
the general setting, assuming for simplicity of notation that d = 2.
Suppose that on R we are given two multiresolution analyses, say ... C
Vi, c V§ C Vi C ... with scaling functions ®;(z) and corresponding
wavelets ¥;(z) where i = 1,2. Let us define subspaces F; C L(R?) as

F=VieV. (5.6)

The sequence of subspaces (F;),cz has the following properties:

..CF i CcRhRCcFHhC... (5.7)
U F = L2(R?) (5.8)
j€Z

N F=0) (5.9)

€2
flz,y) € Fj &= f277z,279y) e Ry (5.10)
Sy EFRv<= flzx—ky—l)e Fpforallk,leZ (5.11)

the system {®,(z — k)P2(y — )}k icz is an

5.1
orthonormal basis in Fp. (5.12)

If we write V| = V{§ @ W{ for i = 1,2 then we infer that

Fio= Vew=(lew)e(Wdaowd
(Vo @ V) & (Vi @ W) @ (Wg @ V) @ (W) ® W3)

R (VoW e (W, oVd)e (W, @We).
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We also infer that
{¥i(z — k)Wa(y — )}, 4cz is an orthonormal basis in Wy ® W¢
{¥1(z — k)®2(y — D}, ez Is an orthonormal basis in Wj ® V§
{®1(z — k)¥a(y — D}, ez is an orthonormal basis in V' ® W¢.

Using properties 5.7-5.12 we get three functions f; = ¥V, ® ¥, fo =
¥; ® d; and fa = ®; ® ¥ such that the system {f;(2/z — k, 27y — 1)}
with j,k,1 € Z and i = 1,2,3 is an orthonormal basis in L,(R?).

The above considerations indicate that if we use dilations of the form
5.2 in the multivariable situation, we should not require one wavelet but
several.

To conclude this section we will state without detailed proof what the
above procedure gives for d variables.

Proposition 5.2 Suppose we have d multiresolution analyses in
L2(R) with scaling functions $™7(z) and associated wavelets &1 (z)
forj=1,2,...,d. Let E ={0,1}\(0,...,0). Fore=/(e,...,eq) € E
let ¥° = ®';=l <3, Then the system
4 .
24 ez — )}
{ ( 7) c€E,j€Z,v€24
is an orthonormal basis in L,(R%). Here, as usual we use the no-
tation Xz — v = (Px; —v1,..., 224 — 7a).
REMARK 5.1. If we apply this procedure to a fixed multiresolution analysis
with a C* compactly supported scaling function and a corresponding compactly

supported C* wavelet we obtain a wavelet set (‘II‘)’:;' consisting of C* functions
such that supp W* C [-C,C}* for some constant C. It follows from Theorem
4.7 that C depends linearly on k.

5.1.1 Multidimensional notation

Naturally the notation in R? tends to be more cumbersome than in R.
We will try to make it as user friendly as possible by employing the
following conventions:

o Generally we will use one letter, e.g. ¢, z, £, to denote a point in
R?. Only when coordinates are really essential will we write = =
(z1,y-- ., Ta)-

e The same will apply to elements of Z4, which will be generically de-
noted by 7.
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Addition and subtraction of points from R? will be understood coor-
dinatewise, i.e. £+ y denotes (z; +yy,..., 24 + ya). For a number ¢
and x € R? by cx we mean (cxy,...,czq).

e For asct A C R? and a point z € RY, by = + A we mean the set
{a+z : a € A}. Analogously for a set A C R? and a real number c,
by cA we mean the set {ca : a € A}.

A d x d matrix A acts on R? naturally.

For a point = € RY, by |z| we mean a euclidean norm of z, i.e. |z| =:
v Z;L; <.

e For a d x d matrix A, by || A|| we mean the norm of this matrix treated

as an operator on (R%,].]), i.e.
1Al = sup{|Az]| : =z € RY, || =1}.

For a function f(z) defined on some subset U C R? (in particular on
the whole of RY) f,, f(x) dz means the natural d-dimensional Lebesgue
integral of f, so dr = dx; dzy ...dzx,.

o For a subset A C R?, by |A| we will mean its Lebesgue measure. This
should not come into any conflict with the notation |z| to denote the
euclidean norm of a point z.

Suppose G C R? is an additive subgroup, i.e. if a,b € G then a+b and
a—bare also in G. A function f(z) defined on R is called G-periodic
if for each a € G we have f(z 4 a) = f(z) for almost all z € R%. We
will use this notation most often when G = Z% or G = 2nZ°%.

5.2 Multiresolution analyses

It would be quite natural (and is often done) to define a multiresolution
analysis in L»(R?) as a sequence of subspaces satisfying 5.7-5.12, with
obvious modifications required by the passage from R? to R%. We will
however adopt a more general definition. I see at least three reasons to
do so:

e we will have many more interesting examples

e we will avoid trivial repetitions from previous chapters

o we will get a theory which for d = 1 will allow us to treat dilations of
the form e.g. z +— 3z.

Underlying our considerations in one variable were two types of maps of
R - dilations defined in Definition 2.4 and discrete translations defined in
Definition 2.3. Those two classes of maps are related. In order to present
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a coherent generalization we need to preserve the general outlines of this

structure.
Our translations will be given by elements of Z¢. Our basic dilation
will be z +— Az with A a fixed linear map A : R? — R? such that

Az cz? (5.13)

and

all (complex) eigenvalues of A have absolute values

5.14
greater than 1. (5.14)

Condition 5.13 ensures the proper coordination between translations and
dilations, while 5.14 means that the dilations are in fact expansions.
Condition 5.13 clearly implies that the matrix A has integer entries.

Every invertible linear map A : R — R induces a unitary operator
on Ly(R?) by the formula

Uaf(z) = |det A|'/? f(Az). (5.15)

Now we are ready to define the multivariable generalization of our basic

concept.

DEFINITION 5.3 A wavelet set associated with a dilation matriz
A is a finite set of functions ¥"(z) € Lo(R?), r =1,2,...,8 such that
the system

{|det APLPYT (Aiz - )}

withrt = 1,2,...,3, ] € Z and v € Z% is an orthonormal basis in
Lo(R9).

REMARK 5.2. This is clearly a generalization of the notion of wavelet, which
is simply a wavelet set consisting of one element. In the previous section we saw
the need for this generalization. We will use the word wavelet to denote any
element of some wavelet set.

By analogy with the one-dimensional case we will use the following no-
tation: for a function F (&, ¥ etc.) on R?, by Fj., we will mean

Fjo(z) =: |det AP/2F(A7z — )

where naturally 5 € Z and v € Z%. The dilation matrix A has to be
understood from the context.
A multidimensional multiresolution analysis is defined as follows.
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DEFINITION 5.4 A multiresolution analysis associated with a
dilation matriz A is a sequence of closed subspaces (Vy),cz of Lo(R?)

satisfying
(i) LL.CVaaCcWCcViC...
(ii) Uj&.z V, is dense in Lo(RY)
(iii) ﬂ,-gz Vv, = {0}
(iv) feV; < f(Ax) € Vjyy, i.e. V, = ULV,
(V) feEVo<= flx~7) €V, for ally € 27
(vi) there exists a function & € Vg called a scaling function, such

that the system {®(t —v)}
Vo.

ozt is an orthonormal basis in

REMARK 5.3.  The reader may wonder if it is possible to generalize the
notion of translations. Oue can replace Z¢ everywhere above by any discrete
lattice ' ¢ RY, i.e. T = S(Z?) for some invertible matrix S, and define a mul-
tiresolution analysis associated with A and T. This is not a real geueralization,
however, because the spaces \-’J = Ug. 1V, would form a multiresoltion analysis
in the scnse of Definition 5.4, associated with the dilation matrix A, = S™1AS.

We will produce many examples of multiresolution analyses later in this
chapter. For the moment let us indicate only few simple examples.

1. Let us take the dilation on R given by Az = 3x. Starting from
this dilation we can produce spline multiresolntion analyses. We simply
start with the same Vo and the same scaling function as for the dilation
z + 2z and produce the other Vj's using the dilation A.

2. We can also observe that if (V}),cz is a multiresolution analysis
associated with the matrix A then (Va;)j z is a multiresolution analysis
associated with the matrix A2,

3. On R? let us consider the dilation A = 2Id. Let us fix a triangu-
lation of the plane R? given by the family of all triangles with vertices
{(k, ), (k+ 1,1), (k,1 + 1)} or {(k,1),(k~1,1),(k,l = 1)} for k.l € Z,
see Figure 5.1. The space V, is defined as the space of all continuous,
L2(R?) functions which are affine on each of the above triangles. The
Riesz basis in V, is given by translations of the ‘hexagonal pyramid’
that is the function f from V4 given hy the conditions f(0,0) = 1 and
f(k,1) =0 for all other k,l € Z.

Now we want to present the general theorem about the existence of L,-
wavelets associated with a multiresolution analysis. Our general strategy
will be parallel to the one-dimensional construction given in Chapter 2.
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Fig. 5.1. The triangulation of the plane giving the ‘hexagoual pyramid’ and its
support

An important role will be played in our consideration by the number
g =:|det A|. Since A(Z?) C Z? we see that A is an integer matrix so q is
an integer and ¢ > 1. This last inequality follows from our assumption
5.14 about the eigenvalues of A. We will treat Z% as an additive group.
Then A(Z%) is a normal subgroup, so we can form the cosets of A(Z%) in
Z2. They naturally form a group. A subset of Z% consisting of exactly
one element of each coset of A(Z?) in Z¢ will be called a sct of digits.

Proposition 5.5 The number of diffcrent cosets of A(Z%) in Z°¢

equals q = |det Af.

Surprisingly enough the proof of this algebraic fact is entirely analytic.

It is based on the following lemnma which will be also used later.

Lemma 5.6 Suppose that Q C R? is a measumble subset such that

U,eze(@+7) = Re. Then the following conditions are equivalent
QN (Q+7)| =0 for everyy€Z%, v#0 (5.16)

Q] =1. (5.17)




110 Multivariable wavelets

Proof Let us consider the function f(2) = 3. .74 1o(z — 7). We have

0 = / lo@)ds= 3 1o(z) dz
R4 Sezd 10119+
- [ 1@

[0,1)¢
In view of our general assumption about the set @, condition 5.16 is
equivalent to f = 1, so we get |Q| = 1 which is 5.17. Conversely our
assumption implies that f is Z¢ periodic and f > 1. Thus, if |Q| = 1 we
get f =1 a.e., so we get 5.16. 0O

Proof of Proposition 5.5 Let k),..., k., be a set of digits. Let Qo =
[0,1]¢ and let @ =2, A= (ki + Qo). For v € Z?%, v # 0 we have

A@Q@N(Q+7)) AQ) N (A(Q) + A())
U(ki + Qo) N U(ki + A(7) + Qo).

i=1 i=1

Since translations of Qg are disjoint and k; # k, + A(y) for all i, 7,
(remember v # 0) we infer that A(QN(Q+7)) = @ so also QN(Q+7) = 0.
Since also

U (Q+~r)=A"‘( U U(ki+A(v)+Q0))
~E€Z4 ~eZdi=1

= A”( U (Qo+‘1)) = A7'(RY) =R¢

~€ezd

we infer from Lemma 5.6 that |Q| = 1. But Q is the union of m disjoint
sets A~1(k; + Qo), each having measure 1/q. This gives m = ¢ a

Before we proceed we need to state an analog of Propositions 2.8-2.11.
Proposition 5.7 Let F be a function in Ly(R%). Then
(i) {F(t —7)},cz¢ is a Riesz sequence if and only if

0<ex Y |FE+2mDP <C < oo (5.18)
lezd

for some constants ¢ and C and almost all £ € R?,
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(ii) {F(t—7)},ezs 18 an orthonormal sequence if and only if

z 1R + 2nl)? = (2n) ¢ aee. (5.19)
lezd
(iii) If {F(t — 7))} ez¢ 15 a Riesz basis in a subspace X C Ly(RY)
then there ezists a function Fy such that {Fy(t — )}, cz4 19
an orthonormal basis in X.

Proof The proof that follows is basically the same as given in Chapter
2. Let us start with the following calculation, which follows from basic
properties of the Fourier transform (cf. A1.2-IV and A1.2-1II) and the
fact that 3, 5. axe **%=) is always a 27Z%-periodic function:

/ | ) akF(:c—k)l / | T ane 0 )| de

kezd kczd
/ |3 aeee *>| 3 1B (e + 2mi)|? de
[0.27) kezd leZd

From the above calculation (i) and (ii) routinely follow, while to get (iii)

we define
1/2

e = ( ST IR+ 2 |2) F(£).

lezd

(]

Lemma 5.8 Let (V;)jcz be a multiresolution analysis with a scaling
function ®(z). The function f belongs to V; if and only if f(A £) =
ms(£)D(€) where ms(€) is a 2nZ?-periodic function and we have

or\d
‘/[;2 4 |m!(5)l2df = (z%)-/';d U(:")lz dr. (5'20)

REMARK 5.4. This is a direct analog of 2.35.

Proof From Definition 5.4 we get that f € V; if and only if f(A~'z) €
Vo. This means that

f(A7 ') = " a,P(z— ). (5.21)

~y€Z2
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'T'aking the Fourier transform and using A1.2 VII we obtain

af(A'€) = 3 aye €M de) (5.22)

~€Z4

which clearly gives ms(€) = q7' }°. cza a,e* 6™ From this we see that

[ m@rde= 2L 5 o
f0,2x)4

v€Z4

and from 5.21 we get

3 Jao? / f(A D) dz = q / /(@) dz

~€Z4

5.20 follows. 0

Let us now fix the notation to be used throughout the rest of this
chapter.

Let Eg, By, ..., E,_ be different cosets of A(Z?) in Z%. Assume that
we have a function G € V. From Lemma 5.8 we get a 2rZ%periodic
function

ma(§) = 3 b e
~€Zd
such that G(A"€) = me(€)®(€). By mL;(€) for r=0,1,...,q—1 let us
denote the function Y. .p b(y)e*¢™. Clearly mq(€) = Y71 > m%(6).
Since each coset E, can be written as T', + A(Z%) for appropriate I', € Z¢
we get

mpE) = O T et

YE A(ZT)

= el Z c(y)et{ATEm

~eZd
Writing ug(€) =3, z¢ c(7)ei€) we have
mg(€) = T (4%¢).

Proposition 5.9 Let Go, G, ...,G,-y be functions in V) and let us
shorten the above notation to mg, (€) = mi(§) and pg, (6) = pi(6).
With the notation established above we have
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(i) The system {Go(t — 7)}%2, 18 an orthonormal system if and
only if

q-1
Z 5 =1 ae. (5.23)
1=0

(ii) The system {G;(t — ")} cze, joo.1,..» 18 Orthonormal if and
only if the vectors v;(§) = (uj(€));=0 are orthonormal in C?
for almost all £ € RY

(iii) The system {G;(t— 7)), ez, juoy,. o1 I8 an orthonormal
basis in Vi if and only if the matriz

U = [“;(5)]1‘,]:0,1,, a1
is unitary for almost all € € R%.

REMARK 5.5. Observe that condition (i) of the above proposition corre-
sponds to Lemma 2.12 while condition (iii) generalizes 2.40.

Proof The main part of the proof is the computation of the scalar
product. Fix ji,j2 € {0,1,...,9—1} and 7,, 12 € Z%. We are interested
in

I=:(Gj(z— 1), Gi(z—72)).
From Plancherel’s theorem A1.2-1V and A1.2-11T we get
r= [ Ga@Gn@cem g
Substituting £ = A*n and using Lemma 5.8 we get
1=a [ oy GIREF)A 7
Since m, () and mj, (7)) are 2nZ9-periodic we get

I=q / my, (), e A =2 $™ d(y + 2n) [ di.
[0-2"|" lezd

Since @ is a scaling function, from Definition 5.4 and formula 5.19 we
obtain

q 3. 1
I = W./[oz . m;, ()ymy, ()€ (1. A(mi- v2)) dy

- /=
q r ] i 1-72
- o (i) )
“n »=0

r=0
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q-1 -
i_ 1, Al -z r
= (2,”),1 f0.20]4 (72:(:)9 {m, Ay ))nl]-‘ (7[)) (Zm (7)))

Since
m_',fl ) = Z b('y)f’i(""')
YEE,.
and E, is a coset of A(Z%) in Z? we infer that
i Al — . i,
eimAln -vz))m;l(n) = Z c(y)eitnm,
~€E.
Since also
m, ) = 3 bt
~€E,.
and cosets are disjoint, using orthogonality of exponentials we get

q-1
_ q i(, Ay -72))
I = —/ el n)m’; (1))d1]
(2m)4 {0,2n]4 ;, ] (1)

q-1
= Gy /[ AP LA OL

r=0
q i e
= (A (n),(v1 - v2)) v . T .
= — € wh (A*n)t (A*n) dn
(27|.)d -/[(",Zvr]‘ ; N ) 12
1 q-1
- i€, (v1-2)) v v d.
i A)‘m‘r ;,“" (O)nl, (6) d€

Thus putting all the above together we get

(GJI (:E - "l)v G]; (-’D - '72))

-1
! W12 S 1 (YT
= eitl ), (E)nel, (6) dE. 5.24
(2,)4/[0’2"14 ICACTAGECEY

Now let us prove (i). For j, = j = 0 we interpret the right hand side of

5.24 as an appropriate Fourier coefficient of the funumn Y ;10(5 2.
Thus if {Go(t — 7)), ¢z« is orthonormal we get 3 !2¢ |;10(£)|2 1ae.
and conversely if Y2720 [uh(€)]2 = 1 ae we get orthogonality of the
system {Go(t —¥)}, ¢z« We infer (ii) from 5.24 in a similar fashion. To
prove (iii) let us take q functions Go,Gy,..., G,y in V) such that the
system {G,(t — 7)}752-‘, j=o.1,. 4.1 15 orthonormal and suppose that it
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is not a basis in V;. Thus we can take a function, call it Gy, in V; such
that

Ge L{Gi(t —=M}yeze, jo0,..0-1"

From 5.24 with j; = q we get that
q-~1
Do ©uE) =0 ae.
=0

for all = 0,1,2,...,9 — 1. This gives us (q + 1) orthogonal vectors
in €%, which is impossible. This contradiction shows that the vector

(pg(f), .. .,ug"(f)) =0ae. 50G,=0. O

Now let us see what is needed to construct a wavelet set associated
with a multiresolution analysis. Let us write W; = V;,, © V;. Then we
have Ly(R?) = @3z W;. From condition (iv) of Definition 5.4 we see
that W; = Uf; Wo. Thus in order to find a wavelet set associated with
a multiresolution analysis it clearly suffices to construct a finite set of
functions ¥*(z) € Wy for s € C such that {¥*(t —¥)},czq, 4ec is an
orthonormal basis in Wy. But then

{¥*(t — 1)} yeze, nec VAP — M) ezas

where @ is a scaling function, is an orthonormal basis in V;. Now
Proposition 5.9 tells us that such a wavelet set has to have cardinality
(g — 1) and gives us a way to construct it. We simply take functions
15(€) = pp(€) for r = 0,1,...,9 — 1 as described before Proposition
5.9 and choose 27 Z%-periodic functions #5(€) forr=10,1,...,g—1 and
7=1,2,...,q9 — 1 so that the matrix

U(E) = [“;(E)] r7=01,..,q~-1

is unitary. There is no difficulty finding such measurable pj's. This
simply requires building a unitary matrix whose first row is given. Hav-
ing done this we define functions ¥*(z) for s = 1,2,...,q — 1 by the
condition
q-1
VA = YT Ay (e) (5.25)
=0
where the I',’s are representatives of different cosets of A(Z%) in Z°.
It follows directly from Proposition 5.9 (iii) and our earlier discussion
that (\ll‘)z;: is & wavelet set associated with the given multiresolution
analysis. We can summarize our considerations in the following theorem.
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Theorem 5.10 For cuvery multiresolution analysis on R associ-
ated with a dilation matriz A there erists an associated wavelet set
(consisting of q — 1 functions).

REMARK 5.6. The above theorem says nothing about the smoothness and
decay of the wavelet set obtained. Since the functions uf(¢) are bounded, formula
5.25 shows that the decay of ¥* is the same as the decay of ®(€), so (see A1.2
VII and A1.2-IX) the wavelet set is basically as smooth as the scaling function.
The question of the decay of W* translates into the question of the smoothness
of ¥*. Thus formula 5.25 tells us that we need smooth pf’s. Here however is
the problem. Suppose that the fiinction v(£) = (u,‘j)z;(l] maps R? onto the unit
sphere in C9. This is perfectly possible for continnous v. If 2g — 1 < d we can
have such situation even for v of class ("™, But then it is impossible to build a
unitary matrix U/(¢) with the first row equal v(£) in a continuous fashion, except
for very special values of q.

We will present only a very limited discussion of the regularity of mul-
tivariable wavelets. It will be done in the framework of the following
definitions.

DEFINITION 5.11 The function F on R? is r-regular, if F is of

class (", r=-1,0,1,... and

o Cr
ZF <k
FEtl R
for each k = 0,1,2,... and each multiindex o with |a| < max(r,0)

1

and some constant C'y. As usual class ' means measurable func-

tion and class C® means continuous function.

DEFINITION 5.12 A multivesolution analysis on R? is called r-
regular if it has an r-regular scaling function.

Lemma 5.13 If F(z) is an r-regular function on R? and we define
G(z) by the condition G(€) = m(E)F(£) for a €, 2nZ%-periodic
Sunction m(€), then G(z) is r-regular.

Proof Since m(£) is 2nZ%periodic it can be written as a Fourier series
m(€) =3 ez a(y)e™ | and because it is (™ we have

Ca

m foreach k =0,1,2,.... (5.26)
Y

la(m)| <
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Since we have G(z) = 3, ¢4 a(v)F(z — ), from 5.26 and Definition
5.11 we infer that for each multiindex a with |a| < max(r,0) and for
any natural number k& > d + 1 we have

5«

Oz

1 1
o Z (+ R0+ —aD)F

y 1 1
G X+ X TTRF AR

Ir>2jz]  vi<2lz]

IN

c@), (5.27)

IN

Note that there are at most C|z|¢ elements v € Z¢ with |y| < 2}z| so we
get

e 1
’—G(a:) =G Y
x> 1 k
k4 hisae 1+ 1D
+Clz)¢ max L !
lnl<2lxl (14 Y% (14 = — vk
1 1
< CGp———a— + Clz|f———— 5.28
= Caapee P ey C
e C‘
= ([
This shows that G is r-regular. O

REMARK 5.7. The above calculation is analogous to the proof of 3.32.

Corollary 5.14 If ®(z) ts an r-regular function on R® such that
{®(t — 1)}, cz¢ 15 a Riesz sequence, then the function &\ (z) defined

by

. A 12
b0 = (bt +2m0P) dee

lezd

i3 also r-regular.

Proof From Lemma 5.13 we see that it suffices to show that the function
Yoicze |P(€ + 27D)|? is of class C™. As in Lemma 3.15 we see that

S b+ 2m) = e 3 / @0 - ) dz - €,

ic2d ~eZd
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Since ¢ is (—1)-regular, repeating 5.27 and 5.28 with integrals instead
of sums we easily estimate
C

/kd O(z)P(z —7) dz| < mﬁ-

Since k is arbitrary we get the corollary. O

(5.29)

Now we are ready to state the next theorem of this section.

Theorem 5.15 For every r-regular multiresolution analysis on R¢
associated with a dilation matriz A, |det A| = q, such that 2g—1 > d,
there exists an associated wavelet set consisting of ¢ — 1 r-regular
Sfunctions.

REMARK 5.8. Note that always g > 2 so for d = 1 and d = 2 there exists
an r-regular wavelet set associated with any r-regular multiresolution analysis
associated with any dilation. In the most important case of dyadic dilations we
have g = 2¢ so the r-regular wavelet set always exists.

As we know from the proof of Theorem 5.10 and the remark following
it, the main obstacle in the construction of r-regular wavelets is the
necessity of building a smooth unitary matrix-function given its first
row. So let us first address this question.

Proposition 5.16 Let S be the unit sphere in C* or R* and let BCS
be an open subset. There exists a map F : S\ B — U(3) (unitary
& X 8 matrices) such that

(i) F is of class C™°

(ii) for each z € S\ B the first row of the matriz F(z) equals z.

Proof Without loss of generality we can assume that (1,0,...,0) € B.
Let us define s functions from S into C* (or R") as follows:

'”l(:':) = (27], Ty ..., :r.)
v(z) = (Z,,0,...,0)
v3(r) = (%3,0,0,0,...,0)
va(z) = (%a,0,...,0,c)
where = (;,72,...,%,) and « is a positive real number to be fixed

A
=1
pendent for each z € S\ B. To see this, note that (v;(z))}_, are always

later. For a sufficiently small, the vectors (v;(x)) are linearly inde-
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linearly independent. If we attempt to write v;(z) as a linear combina-
tion of them we get =, = ):j o |z;|%. This forces z; to be real, and
since z is separated from (1 0,...,0) we get 2 < 16 for some posmve
6 (depending on B). This imphm that 21':2"’.1' > 6. For a < 6
get 2y > 2 which is a clear contradiction.

Now we perform the Schmidt orthonormalization of the vectors

n (z)vt’Z(x)t “ee ,U,(-’E)

(in this order) to get s orthonormal vectors v,(x),uz(x),...,u,(x). Since
the vectors v,(z), v2(z), ..., v,(z) were C™ functions of = we infer
that vectors vy (), uz(z),. .. ,us(x) are also C* functions of z. Thus the

matrix
vy (z)
Pla) = uz(x)
u,.&:c)
is the desired unitary matrix-function. O

Proof of Theorem 5.15 The argument follows exactly the argument
given for Theorem 5.10. We start with the r-regular scaling function
®(x). From estimate 5.29 we infer that the functions p5(§) = i (€) for
r=0,1,...,q— 1 are 2nZ%periodic C™ functions. Let u be the map
from R into the unit sphere S ¢ C9, given by

#® = (18©, .. 17©).

Since p is C* and 2nZ%periodic and 2q — 1 > d we infer that u(R9)
is a proper compact subset of S. So we can apply Proposition 5.16 to
conclude that

U = @) = [15©), ;-0n.. .01

is a C™ unitary ¢ x ¢ matrix whose first row is [u§(£), .. .,“g*'(g)]. We
define the wavelet set by the formula 5.25 and we infer from Lemma 5.13
that they are r-regular functions. a

The above argument shows that a crucial role is played by the set S\
1(R?), where as above u(€) = (1§(€), ..., ud " (£)). If this set contains
an open set then the above argument can be applied and there exists a
wavelet set with basically the same decay as the scaling function. One
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particular instance of this idea is when we start with a scaling function
@ such that &(¢€) is real. Then (using the notation established before
Proposition 5.9) me(€) = 3., cz4 b(7)e*67 is also real and b(y) = b(—7)
for 4 € Z%. 'This implies that i} (§) = Z%.z‘ e(7)e¥ e with ¢(y) =
c(—v). This implies that p%(€) is real for r = 0,1,...,¢ — 1. Thus we
have the following corollary.

Corollary 5.17 Assume that we have a multiresolution analysis on
RY associated with a dilation matriz A, |det A = q. Assume also
that this multiresolution analysis has an r-regular scaling function
&(z) such that &(€) is real. Then there ezists a wavelet set associ-
ated with this multiresolution analysis consisting of g —1 r-regular
functions.

5.3 Examples of multiresolution analyses

Our aim in this section is to produce examples, hopefully interesting,
of multiresolution analyses in R%. In a sense we want in this scction
to reproduce on R? the program carried out in Sections 1.1, 1.2 and
3.3. More precisely we start with discussion of multiresolution analy-
ses whose scaling functions are characteristic functions. It turns out
that this seemingly easy case is already very interesting. Next we use
convolution powers of the above scaling functions to produce r-regular
multiresolution analyses.

In this section we will often be manipulating subsets of RY. Cener-
ally speaking all our statements and equations involving sets are to be
understood almost everywhere. 1f we want to stress that somecthing
actually holds for every point we will use the word ‘exactly’. We will
use the notation = to indicate ‘exactly equal’.

Multiresolution analyses whose scaling function is a characteristic
function of a set are characterized by the following proposition.

Proposition 5.18 Let @ be a measumble subset of RY, Suppose that
the function clg i3 a scaling function of a multiresolution analysis
associated with a dilation A. Then
(i) Q and (Q + ) are non-overlapping for all Y € Z%, v £ 0
(ii) there exists a sct of digits, say ky,... kq, such that A(Q) =
UiLi(@ + ki)
(iii) U,eze(@+7) =RY;
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and conversely, if Q satisfies (i)—-(ii7) then 1 s a scaling function
of multiresolution analysis associated with A.

REMARK 5.9. Observe that we can directly construct a wavelet set associated
with any multiresolution analysis described in the above Proposition 5.18. From
(ii) we see that Q = UL, Q, where Q, = A~'(Q+k,). Clearly |Q,| = 5. Thus to
get a wavelet set it suffices to fix any ¢ — 1 functions ¥*(z) for s = 1,2,...,9—1
such that
o U*(x) are orthonormal
. fkd ¥ (z)dr=0fors=12,...,q—1
¢ V' (z) = ZLl aflg, (z).

There is a clear analogy between this construction and the definition of the Haar
wavelet (cf. Definition 1.1)

Proof Condition (i) follows directly from the orthogonality of translates;
if clg(z) is orthogonal to clg(z + v) then Q N (Q — ) has measure
zero. Condition (ii) is a consequence of the scaling equation. We have
19(A'z) € V_, C Vo so we can write

Ly (@) =1g(A'2) = 3 ayclo(z =) = Y ayclgiq(z). (5.30)
~€Z4 v€Z4

Since we already know that the sets {Q +~}.,¢z« do not overlap we infer
from 5.30 that ca., equals either 0 or 1 and that

AQ=U@+k) (5.31)

i=1

for some k; € Z%. The fact that we have exactly ¢ summands follows
from the fact that |A(Q)| = q|Q|. If two k;’s, say k, and kg, are in the
same coset, then k, = k2 + A(7y) for some non-zero y € Z%. In this case

q

AQ+7) =A@ + A4 = J@+ki+ A1) D Q + ki

i=1
This compared with 5.31 shows that
A@Q)NAQ+7) DQ+k.

Since A is 1-1 this implies that |Q N Q + v| > 0. This contradiction
shows that ky,...,k, are representatives of different cosets of A(Zd) in
Z? so they form a set of digits. To show (iii) let § = |, 7(Q +1)
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and let L,(S) denote the subspace of Ly(R?) consisting of all functions
whose support is contained in S. Using 5.31 we have

AS) = Al e+m=U 4@ +4m
~EZS ~€Z4
= YUUe+k+A4Am. (5.32)
~€Zdi=1

Since (k:){_, is a set of digits we obtain A(S) = S. Clearly Vo C L2(S),
and since V; = U{ (V) we obtain

V; CUL(L2(8)) = La(ATIS) = La(S).

From condition (iii) of Definition 5.4 we get S = R?.

To prove the converse statement observe that Lemma 5.6 implies that
|Ql =1, s0 {15t — 7))-,ez" is an lorthonormal system. We define Vp =
span {1g(t — 7)}%2, and V; = U (Vo). It is a routine exercise to check
that we have defined a multiresolution analysis. O

Note that this easy proposition links our problem with some interesting
geometric questions. The set Q satisfying (i) and (iii) of Proposition 5.18
is called a tile. It is very natural terminology since the sets {Q+ 7}, cz4,
i.e. all integer translates of @), cover the wlole space once, i.e. tile the
space. Condition (ii) tells us that the tile @ is self-similar using the
dilation A; the image of a tile is a union of translates of the tile.

Since our aim is to produce examples of sets Q satisfying (i)—(iii) of
Proposition 5.18 it is natural to start with sets satisfying only (ii). Here
are natural candidates. Let us fix a set of digits S = {ky,... ,k,} and
define the set

oo
Q={:1:E]Rd : z=ZA'j.wJ where 3,65}. (5.33)
j=1
Before we proceed let us observe that the series appearing in 5.33 is
always absolutely convergent. This clearly follows from the fact that for
all z € R*

|A™7z| < Cof|z| forsome a, 0 < a< 1 (5.34)

with some constant C. This is a consequence of the fact that all eigen-
values of A~! have absolute value strictly less than 1 (use 5.14), which
implies (either by the spectral radius formula or by direct calculation us-
ing the Jordan canonical form) that there exists an r such that |4 "7} < 1.
From this our claim follows.




5.8 Examples of multiresolution analyses 123

Proposition 5.19 Let S = {ky,...,k,} be the set of digits and let Q
be the set defined by 5.83. Then

(i) Q is a compact subset of R?,
(i) A@=UL,Q+k
(i) Uy eze(Q +7) =R

(iv) Q contains an open set.

Proof The proof of (i) is a standard exercise in metric spaces; if z,, =
Z;":l A~Is} is a sequence of points in  we pass to a subsequence (we
call it (z,) again) using a diagonal procedure and the fact that S is
finite and obtain a sequence (6;)72, C S such that s} = §; for j < n.
Let z = Z;‘;l A“jﬁ,- € Q. It easily follows from 5.34 that z,, — 2. To
get (ii) we simply calculate:

A@)

{mEIR" : z=s.+ZA"j3j+, where SjES}

=1

q
U@+kj).
j=1

To show (iii) we put K =) ¢z4(Q +7) and note that calculation 5.32
gives that A(K) = K. K is a closed subset of R%. To show this take
Ty + Y — 2z with z,, € Q and v, € Z%. Since Q is bounded the 7,,’s
are also bounded so we can assume (taking a subsequence) that they are
constant = v. This implies that z,, converges (on the same subsequence)
toxo € @, s0 z =1xz9+7 € K. From the definition of K we infer
that there exists a constant C such that for every = € R? there exists
zo € K with |z — 2| < C. Now let us fix an arbitrary y € R? and let
z, for n = 1,2,... be elements of K such that |[A"y — z,,| < C. Since
A(K) = K we infer that z,, = A"y, for some y,, € K. It follows from
5.34 that

ly —yol = |A7*(A"y — 2)| < Ca™

50 y» — ¥, and since K is closed we get y € K. This shows that K = R
Condition (iv) is a direct consequence of Baire’s theorem. O

REMARK 5.10. The set Q defined in 5.33 is essentially the only set satisfying
(ii) of Proposition 5.18 for a given set of digits. It does happen, however, that
different sets of digits give very different sets Q.
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Corollary 5.20 Let Q be the set defined in 5.39. The following
conditions are equivalent:
(i) 1¢ s a scaling function of a multiresolution analysis
@iy QI =1
(iii) QN (Q + )| =0 for every y € Z¢, v #0,

Proof This Corollary follows directly from Proposition 5.19, Lemma 5.6
and Proposition 5.18. O

Conditions (ii) and (iii) above seem very easy to check. Sometimes,
however, this is not so. Thus we will give a sufficient condition for the
set Q to satisfy (i)-(iii) above, expressed in terms of the Fourier trans-
form. Given the set of digits S = {k,,..., k,} we form a trigonometric
polynomial

m(€) = % Z e ek (5.35)

kes

Our aim now is to prove the following proposition.

Proposition 5.21 Let m(€) be given by 5.85. Suppose that there
exiats a compact set K C R? such that

(i) K contains a ncighborhood of 0
(ii) U,eze(K + 2m7) = R
(ili) [K N (K +277)| =0 for all y €ZF, v #0
(iv) m((A*) "9€) # 0 for all € € K and all integers j > 0.
Then for the set Q defined by 5.8% the function 1g is a scaling
function of a multiresolution analysis.

REMARK 5.11. The sufficient condition for 15 to be a scaling function
of a multiresolution analysis, expressed in this proposition, is called Cohen’s
condition. Actually it is also necessary, (Exercise 5.4).

REMARK 5.12. We are dealing here with special compactly supported scal-
ing functions on R¢, so naturally our arguments are parallel to some arguments
of Chapter 4. In particular the above proposition is an analog of Lemma 4.2 with
the set K replacing the interval [—Z, Z] from condition 4.3. See also Exercise
4.8.

Before we embark on the proof let us consider a sequence of ‘approxi-

mations’ to the set Q. Let us put Qp = [-1, %]" and define inductively

Qni={J A4 "@Qn+k).

kes
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Lemma 5.22 For each N =0,1,2,... the sets Qn satisfy

(i) @~ =1
(1) U,eze(@n +7) =R?
(iii) |Qn N(Qn + 7)| =0 for all non-zero y € Z°.

Proof We use induction. Clearly Qq satisfies (i)-(iii). If Qn satisfies
(i)-(iii) we use the fact that S is the set of digits and obtain

AU @i+ =U Uev+k+am =1 Qv +7=Rr
€24 YEZI kES ~€Zd
so
U ovn+r=4"'®R)=R"
y€Zd
Thus (ii) holds for Qn4y. From (iii) for Qn we infer that the sets
A Y(Qn + k) are disjoint, so
IQn 1| = [det A™1] - q-|Qn] =1
so we see that Q1 satisfies (i). An application of Lemma 5.6 completes

the proof. O

For the set Q given by 5.33 we have
1o(z) = Y lg(Ax k)
kes

so taking the Fourier transform (and denoting iQ(E) by ©(£) and A” by
B) we get

(&) = m(B E)e(B'€). (5.36)
When we iterate 5.36 we get for each N =1,2,...
N
(€)= [ m(B 76)p(BNe) = vn(€)p(B~Ne). (5.37)
-1

Since 0 < |Q| < oo we see that ¢ is continuous and ¢(0) = (27)~ %/2|Q|.
Trom 5.34 we infer that B N¢ — 0 for each £ € R?, so
27r)d/2

—ICTW(O- (5-38)

vn(€) tends pointwise to

Analogously for the sets Qn we have

1QN+| (J:) = Z 1QN(Ax - k)
k€S
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so taking the Fourier transform and denoting 1, (€) by ¢ n(€) and (as
before) A* by B we get

en+1(€) =m(B '€) - pn(B7E).

Iterating this we get

on () = vn(E)po(B~E). (5.39)
Proof of Proposition 5.21 We know from Proposition 5.7 that

3 Jpole — 2nm)[2 = (Q‘T)d ne. (5.40)

~€Z4

Let us denote €2 = [—m,7]%. From 5.39 we get
Lten@ras = [ lon@teon e ae
= loo(B~Ne)Pde.
> o (@) Plea(B )Pt

veza BN BN (q)2

Since vy (€) is 2n BV (Z%)-periodic, this equals
[ o (O - 5 foalis e = 2m) e
BNQ a
~€Z
which by 5.40 equals
1 2
—_— i€.
g7 [ o ©Pie

Using once more the fact that vy (€) is 2m B (Z4)-periodic and proper-
ties (ii) and (iii) of the set K we sce that

o w@pde= [ epde = [ (e 1amn(e)de

so putting things together we get

1
L ten@rte = o [ @ ami( e @)

Observe that (iv) of Proposition 5.21 implies that vy (€) # 0 for £ € K
and N =1,2,.... Thus from 5.37 we get that ¢(£) # 0 for £ € K. Since
K is compact, it follows that there exists a constant ¢ > 0 such that
lo(€)} > c for € € K. Thus for £ € BN K we have |p(B" N¢)| > c. Using
5.37 once more we get

lvw(@) < c ') for €€ BVK.
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This means that for all £ € R?

lvn (§) - 1w (€)] < ™' (€)). (5.42)

Recall that K contains a neighborhood of 0, so | Ji_, BY K = R?. This
observation together with 5.38 shows that vn(£) - 1~k (€) converges
pointwise to 2' <p(£) Since p(¢) € Ly(R?) we infer from 5.42 and
Lebesgue’s dnmm&tcd convergence theorem that

(@mn?

oF |<P(§)I2ri£

/ lon(€) - 1pw i (€) 2 —

This together with 5.41 gives that

2 2
/ low (@ d — oz / (O de.

But from Lemma 5.22 and Plancherel’s theorem (A1.2-1V) we infer that

/ lon(€)?de =1
Rd

s0 Jpa [0(€)?d€ = |Q*. But on the other hand we know from Planche-

rel’s theorem that [o, ¢(€)|2d€ = |Q|. Since |Q| > 0, we get |Q| =1, so
the proposition follows from Corollary 5.20. O

Now we are ready to present some examples.
EXAMPLE 5.2. Let us take d = 1 and consider the dilation Az = 3=z.
As a set of digits let us take S = {0,1,2}. Then, as is easily seen,

o0
Q= {:l: = ZS‘ij with ¢; = 0,1,2} =[0,1]
=1
which gives a multiresolution analysis. When we take S = {1,2,3} we
get using the above

={m—z3 Jsj—l)+z3 7 with g5 =1, 23}—[ l-lz-]

=1

This also gives a multiresolution analysis, but different from (although
rather similar to) the previous one.

When we take S = {0,1,5} the corresponding set @ is depicted in
Figure 5.2. It is disconnected. To see this formally, note that each
point z = 372 377s; with ay =0 or lis at most 4 +3°22,5.377 =,

5

while each z with ¢y = 5 is at least 3. Nevertheless the set Q also

gives a scaling function of a multiresolution analysis. This follows from
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Fig. 5.2. The 1-dimensional disconnected set giving the scaling function

Proposition 5.21. The polynomial m(§) equals %(1 + e % 4+ e7"%) and
we take K = [—m, 7]. Since B(z) = } it suffices to show that m(¢) # 0
for |6} < Z. But 3Rm(€) = 14 cos§ + cos5¢ > cosé so m(£) # 0 for
&l < 3- .

EXAMPLE 5.3. Now let us take d = 2 and the simplest dilation
A = 2Id. Taking the set of digits S as {(0,0), (0,1), (1,0), (1,1)} we
get Q = [0,1)2. This clearly gives a scaling function of a multiresolution
analysis. This is the natural 2-dimensional Haar multiresolution analysis
described in Example 5.1. Choosing the set S as

{(0,0), (1,1), (0,1), (1,2)}

we obtain as the set @@ the parallelogram with vertices from the set S.
This also gives a scaling function of a multiresolution analysis. If we
take the set S as

{(0,0), (1,0), (0,1), (=1,-1)}
then we get the set @ represented in Figure 5.3. To check that it gives
a scaling function we will use Proposition 5.21. The polynomial m(£) is
given by
m(g) = %(] +e % emitn  pilhitay
As the set K we take [—m,7]2. Thus we need to check that m(¢) # 0
for € € [-3,3]%. This we get immediately because

Rm(¢) = %(1 +cosé; + cos &y + cos(&r + £2))

1
2 Z(COSEI + cos €2).

L]
EXAMPLE 5.4. Let us take d = 2 and the dilation given by the matrix

L3
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Fig. 5.3. The set Q described in Example 5.3 corresponding to the dilation
A=2Id

Geometrically speaking this dilation is a rotation by 45° and expansion
by the factor v/2. The nice thing about this dilation is that det A = 2,
so we obtain one wavelet generating an orthonormal basis in L(R?)
(provided we have a multiresolution analysis associated with this dila-
tion). Taking S = {(0,0), (2,0)} we get the set Q depicted in Figure
5.4. This is the fractal set known as the ‘twin dragon’. To check that
it gives a scaling function we use Proposition 5.21. The polynomial
m(€) = §(1 + e~ has zeros at the lines & = (2n + )7 for n € Z.
The appropriate set K and the set B~'K (note that B~! = %A) are
depicted in Figure 5.5. .

We want to conclude this section with the construction of an r-regular
multiresolution analysis and associated wavelet sets. The general scheme
is similar to the construction of a spline multiresolution analysis. The
main step in the argument is the following proposition.

Proposition 5.23 Let Q be the set given by 5.83. Assume that
15(z) is a scaling function of a multiresolution analysis. There
erists an € > 0 and C such that

He(e) < Clel . (5.43)
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h

Fig. 5.4. The ‘twin dragon’ set Q obtained in Example 5.4

Let us start with some simplifying assumptions. If the set Q is given
by 5.33 with the set of digits S = {ky,ky,...,k,} with k; € A(Z4),
then the set given by 5.33 using the set 8’ = {0,ky — ky,...,kq — &y}
is a translation of the set Q. This shows that it also has measure 1, so
its characteristic function is also a scaling function of a multiresolution
analysis (perhaps a different one, cf. Example 5.2). Thus (see A1.2-111)
for our purpose we can and will assume that 0 € S, so also 0 € Q.

Observe also that if @ is given by 5.33 with a set of digits S, then for
each integer k we also have

o0
Q={a:€Rd : m=ZA;j3j where SjESk}
j=1

where the dilation matrix Ay equals A* and the set of digits Sy is given
by
Sk =: {81+A82+...+Ak715k.) D8y ey 8k ES}. (5‘44)

One can easily check that Sy really is a set of digits for Ax. Thus we can
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~

Fig. 5.5. The set K used to show that the ‘twin dragon’ gives a scaling function

replace the dilation matrix A by the matrix A* for a suitable integer k.
This gives us two advantages, First we can assume that “A'l “ < 1 (see
the argument for 5.34). Second we can assume that the additive group
generated by S equals Z%. This is not so obvious but can be seen as
follows.

First observe that for any zo € R? the set of all v € Z? such that
|zro—v| < 2d generates the group Z¢. From Proposition 5.19(iv) we know
that Q contains a ball. This implies (see the argument for 5.34) that
there exists a natural number k such that A*Q contains a ball B(zg,)
with radius r > 2max(2d, diam Q). For z € Z% N B(xo,r/2) we have
2+ Q C B(zo,7) C A¥(Q). Since we easily infer from 5.44 and 5.33 that
A Q) = U.es,,, ¢ + @ and we know that Q tiles the space we obtain
2 € Skqy- Thus 240 B(zo,7/2) C Sky), so in particular Si,, generates
z°.

Note that in Example 5.4 we saw a set of digits S giving a scaling
function but such that the group generated by S is not Z%. Thus we
really have to increase k.

Proof of Proposition 5.28 Using the above comments we will assume
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additionally that 0 € S, S generates Z% as a group and ||A l” < 1.

Writing m(€) = }l Les €1 we have (cf. 5.38)

@mige) = [ m(B *¢) (5.45)
k=1

with B = A*. Clearly we have |m(¢)] < 1 and moreover
[m(€)) =1 <= m(¢) =1 « £ € 2x7% (5.46)
To see 5.46 note that since 0 € S, |m(€)| = 1 if and only if e~H6m =

for all ¥ € S. But this is equivalent to €' =1 for all 5 in the group
generated by S, which is Z2. This forces € € 27Z%. Note also that

if y€2? but B~y ¢ Z%, then m(B '(2my)) = 0. (5.47)
To see this write

1 ,.,
m(b’ l(27r-y))2 - Z e (BTN 2n) k)
U RS

] -1 n -l7 A
= 52 i(emr. AT ) (5.48)

1,968

Ohserve that the individual exponentials in 5.48 depend only on the
coset to which (r +¢) belongs. Since S is a set of digits, we infer that for
each coset there are exactly ¢ pairs (r, s) with r,s € S such that r + g
belongs to this coset. Thus we get from 5.48

m(B '(2#7))2 = er “izera ) m(l '(2ny)).
€S

This shows that m(B '(27y)) equals either 0 or 1. But B "'(y) ¢ 24, so
we sce from 5.46 that it cannot equal 1. Now let us fix certain numbers.
We put

& = (max |grad m(&)]) ' A *. (5.49)

Since m is a non-zero trigonometric polynomial § is a well defined posi-
tive number. We also fix p < 1 such that for every &

either |[m(€)] < p or |¢ -] < § for some v € 2727 (5.50)

The existence of such a p follows from 5.46. Now we fix ¢, 0 < ¢ < 1,

such that
oA
< oA~ I A e (5.51)
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and
logp~!
log || A
This is the € for which 5.43 holds.
We will prove 5.43 by induction. When [(] < 1= ”A 1”70 then 5.43
holds for an appropriate C. Now assume that 5.43 holds (with the same
C) for le] < [|A~Y]| " and take £ such that ¢] < [|a=1]| """, we
want to show that |1 (€)] < CJ¢|¢. Let us denote { = B~ '¢. We will
consider two cases according to 5.50.
Case 1: |m(¢)| < p. Then we see from 5.45 that

1o (©) = Im(O)] - 1o (B9 < plig(B~'€)] (5.53)

Since [B~¢| < [|B7 €] < ||A° ‘HfN we can apply the inductive hy-
pothesis to obtain

so pll Al < 1. (5.52)

lie()l < pC1B" ¢l
Since |¢] < || B|| |B~€| we see that

18l
(B¢~ Jl
so using 5.52 we get
s Al
ool < peligh < cree.

Case 2: there erists 1 € 2nZ% such that [ — 7| < 8. Let k be the
smallest integer such that B~%y ¢ 27Z%. Then from 5.47 we see that
m(B~¥7n) = 0. So we have

Im(B~*71)] = |m(B*"'€) = m(B~ )
< max|grad m|-|B7* ¢ — B~¥%p)
< max|grad m|- | B7*|| 1B~ '€ — 9
= max |grad m|. ”B“"” I¢—n)|
< max|grad m|- ||B7*|| -6

-1 -
hAl=" | B*
Thus we see from 5.45, 5.46 and the choice of k that

PEIG] Im(B~* ) |ig(B~* "€l
A= |8 | 1e(B *e)L.

IN 1A
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Since

O R R e TR
_in-N+k _ -N

A=~ < flay

|B % Y¢|

IA

i

we can apply the inductive hypothesis in order to obtain
a -1 _1nk —k— -
He@l <Al A" 1B+ el
But
le) = |B*F Bkt < A B

SO
1 [
By = e
[B-k-1¢] &l
Using 5.51 and the above estimates we obtain
i -1 k o~ e(k+1 e
He© < 114174 '] C a4l D g
(A nary nane e < clee.

Since by 5.50 the above two cases cover all possibilities, the inductive

1A

I

argument is complete. 0O

Now let us define the function g,(z) =:1g *1_¢ and for n = 2,3,...
define the function g,, as the n-th convolution power of gy, or equivalently
Intt = gn * g1 The properties of the functions g, are summarized in
the following proposition.

Proposition 5.24

(i) gn 19 a compactly supported, positive L;(R?) function and

/ (@) de =1,
Rd

30 §r, i3 continuous, |9,.(€)] < T)dﬁ and §,(0) = 2,,)

(i) gu is of class C* for k < 24¢ — 1 where ¢ is given by Pmpo—
sition 5.23.

(iii) the system {gn(t — 7)), cza 19 @ Riesz sequence.

Proof Property (i) follows directly from the definition of convolution
A1.2-X, the definition of Fourier transform A1.2 1 and from A1.2-11.
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Property (ii) follows from A1.2-XI and A1.2-1X. To prove (iii) we check
condition (i) of Proposition 5.7. Let us consider the series

3 lig(e +2nm)P. (5.54)
v€zd

Since {1g(t — 7)}, ¢z« is an orthonormal system we see from Proposition

5.7 that this series converges a.e. to (2r)~%. Since

[F190(6)] = 1F10: ()" = | P11 (&)™
(cf. A1.2-XI) and |[F101(€)] < 1 we see that
T lue+ 2P < C. (5.55)
~€Z4

Observe also that for each multiindex o the function £*1g(x) also has
orthogonal translates, so the series

> 1D%ig(€ + 2m)P?
~ezd
converges a.e. to a non-zero constant. This implies that the series 5.54
converges uniformly on [0,27]%. Thus there exists a finite set I' C Z¢
such that
3 lote +2mm? > L2m) (5.56)
~€r
for all £ € [0,2n]%. Since |3,.(€)] = (2m)4"-V/2|ig(€)[> we see from
5.56 that for each n there exists a constant ¢, such that

Yol +2mf 2 e
~er
for £ € [0,2n]?. This clearly implies that Doveze [0 (€ + 279)[2 > ¢, for
all £ € RY, so from 5.55 we get (iii). O
The functions gy, n = 1,2,... are important for our purposes because
they are scaling functions of a multiresolution analysis with

Vo = span {gn(" - 1)}‘7624 .

From this definition and Propositions 5.7(iii) and 5.24 we see that (v)
and (vi) of Definition 5.4 hold. To ensure (i) and (iv) it suffices to check
that

gn(@) = aygu(Az — ). (5.57)
¥ES
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First let us check it for n = 1. Since 14, is a scaling function we have

19(z) = Y ay1g(Az — )

~€ES
and also
1o(@) =1g(-2) = Y a,lg(-Az =) = 3 a,1_o(Az + 7).
~ES YES
Since
S(Az — ) * g(Az — 72) = (f * 9)(Az — 71 — 72) (5.58)

we infer that g;(z) = lg * 1.¢(z) can be written as a finite sum of
the form 3 a(y)gi(Az — 7). Using 5.58 we inductively get 5.57 for
n=23,....

Conditions (ii) and (iii) of Definition 5.4 follow from Proposition 5.24
using standard arguments (cf. Section 2.3 or Theorem 8.4 and Proposi-
tion 8.5). L

Note also that iﬂq(f) = 1(¢), so §.(€) is real and positive for n =
1,2,.... From Proposition 5.24 and Corollary 5.14 we infer that for
r < 2= — 1 the multiresolution analyses described above have r-regular
scaling functions with real Fourier transforms. Applying Corollary 5.17
we get the following theorem.

Theorem 5.25 Suppose that A is a dilation matriz such that for
gome 3set of digits the set Q@ given by 5.99 has measure I, 1i.e.
the function 1g is a scaling function of a multiresolution analysis.
Then for each natural number r =1,2,... there ezxists an r-regular
wavelet set (consisting of |det A|—1 functions) associated with the
dilation matriz A.

Sources and comments

It was clear from the very beginning that various aspects of the theory of
wavelets generalize to several variables and/or to more general dilations.
The tensoring process is very common in mathematics. The procedure
indicated in Example 5.1 was already applied in [107] to construct spline
wavelet sets on R?. The general construction of multi-variable wavelets
associated with the dyadic dilation was given by K. Gréchenig in [47)
and reproduced in [85]. Multiresolution analyses with general matrix
dilation appear e.g. in [76], [50] and {21]. Our presentation of the general
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theory in Section 5.2 is an adaptation of one-dimensional theory and
multivariable theory for dyadic dilation to this more general context.
The notion of r-regular multiresolution analysis was used extensively
at the very beginning of the theory cf. [83], and our treatment of r-
regular multiresolution analyses and wavelets closely follows {85), [83] or
[24]. Our examples of multiresolution analyses with the scaling function
of the form ®(z) = 1o and connections with tilings follow the paper
[50). Similar two-dimensional examples are considered in detail in [21}.
From the pictures we present it is clear that the sets Q can be very
irregular. Such sets are called fractals. More about such sets can be
found e.g. in [38]. Connections with wavelets are discussed e.g. in [80].
Proposition 5.23 and Theorem 5.25 are due to R. S. Strichartz [106].
Our construction of wavelets is slightly different from his.

It should be pointed out that estimate 5.43 is really a special property
of the set Q. It follows from Exercise 3 on page 103 of [57] that there
exists a bounded set E' C R such that

limsup [1£(€) In j€]| = oo.
[l —o0

The geometric theory of self-affine tilings of R? is discussed e.g. in [9] or
(49).

It is an interesting question for which dilation matrix A there exists
a set of digits such that the function 1g, where @ is given by 5.33, is
a scaling function of a multiresolution analysis. An equivalent form of
this question is when |@Q| = 1, cf. Proposition 5.20. This is interesting
in itsell but also is of some practical importance since given such a set
Q@ we can construct smooth wavelets, cf. Proposition 5.23 and Theorem
5.25. This question has also close connections with some problems of
algebraic number theory. The series of papers by J. C. Lagarias and Y.
Wang [59]-[62] deal with various aspects of this problem. The answer
is known in dimension d = 1 and d = 2 when every dilation matrix A
admits a set of digits yielding a scaling function. For d = 1 this was
shown in [50] and for d = 2 in [62].

It is interesting to note that if we do not wish to work in the framework
of multiresolution analyses then there is no necessity to increase the
number of wavelets. It was shown in [23] that for each dilation matrix A
in R? there exists a function ¥ such that {| det A|j/2\ll(Ajr—'y)}j€z'_7ez‘
is an orthonormal basis in Ly(R?). This ¥ has quite bad decay, since
V= 1k for some set K C R%.

The general presentation in this chapter was influenced by (8).
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Multivariable wavelets

About the exercises. Exercise 5.7 is taken from [76] section 3. Exer-

cise 5.8 is a special case of some results of [59].

5.1

ot
N

.‘
w

[}

o
[<A U

[+
[=2]

Exercises
Let & € L;(R%) N Ly(R?) be a scaling function of a multi-
resolution analysis associated with dyadic dilations. Modify the
proofs of Propositions 2.16 and 2.17 to show that

/ d(z)dz=1and Y P(z—7)=1

R ~ezd

Modify the arguments further to show it for scaling functions
associated with arbitrary dilations.

Prove in detail both assertions made in the third paragraph of
Section 5.1.

Show that if ¥ is an r-regular wavelet on R? (associated with
any dilation) and p(z) is a polynomial on R? of degree < r then
Jpa P(2)¥(2) dz = 0.

Show the converse implication in Proposition 5.21.

Construct explicitly a Ilaar type (i.e. supp ¥ C [0,1]) and a
Stromberg type (i.e. continuous, piecewise linear) wavelet set
for the dilation = — 3z on R. Show that the Stromberg type
wavelets can have exponential decay. Construct periodic ver-
sions of these wavelet sets.

Suppose that ¢(z) is a scaling function of a multiresolution
analysis and satisfies d(a + z) = $(a — z) for some a € R,

(a) Show that ‘i’(f) = e¥*4)p(€) where p(€) is a purely imag-
inary function.

(b) Show that each of the functions s defined before Propo-
sition 5.9 on page 112 is of the form e*~¢} 5, (€) for some
b, € R? and a purely imaginary function g, (£).

(c) Assume additionally that @ is r-regular. Show that there
exists an r-regular wavelet set associated with this multi-
resolution analysis.

Let...CV_; C Vo CV,...beamultiresolution analysis on R%
associated with a dilation A.

(a) Show that if Vy is translation invariant, i.e. for every
f € Vo and every h € R? the function f(z — h) is also in
Vo, then F(Vp) = L(Q) for an appropriate Q C R%.
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(b) Show that the set © above satisfies the following condi-
tions, where B = A*.
1. QC BQ
2. |20 (R +277)| = 0 for all y € 27
3. U'yezﬂ (Q+ 2my) = R? ae.
4. limj 00 IB_'IJ'_QT fB_,Q 1a(€) d€ = 1 for every cube
Q of finite diameter.
(c) Show by exhibiting appropriate examples that conditions
1.4. above are independent
(d) Find an example of a set 2 satisfying 1.-4. above which
does not contain a neighborhood of 0.

Let Q be the set defined by 5.33 for some set of digits S and
dilation A. Show that

> lo-1=Q| ae.

v€Z4
so in particular |Q[ is an integer.
Let Az = 3z be a dilation on R. Show that {0,2,4} is a set of
digits for A. Show that the function 1¢ where Q is given by 5.33
for this set of digits is not a scaling function of a multiresolution
analysis.
Find explicitly an interval contained in the set considered in
Example 5.2 and depicted in Figure 5.2
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Function spaces

The aim of this chapter is to introduce some important function spaces
on R? and basic tools to investigate operators on those spaces.

6.1 L,-spaces

Let us recall that for a measurable function f on R? and 1 < p < 0o we
define the L, norm of f as

I, = ([, spas) i <p <o

and | ]l,o = supess |f(@)]-

By L,(R%) we mean the space of all functions such that || f]|, < oco.
Actually we identify functions equal almost everywhere and then L,(R?)
becomes a Banach space. Everywhere in this chapter we can think
about complex-valued or real-valued functions as well. Some facts will
be proved only for real-valued functions. Then the corresponding fact
for complex-valued functions can always be established by considering
real and imaginary parts separately.

As a first and easy observation let us note that a standard change of
variables argument gives

N7l =111 (6.1)

for 1 < p < 0o and every h € R?, where T, is the translation operator
defined in 5.4. For a dilation operator J.(f)(z) =: f(2°z) (cf. 5.2) we
have

N aflly = 27 11l (6.2)

so the operator 2*4/?J, is an isometry on l,p(le), 1 <p<oo.

110
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Intuitively speaking the L, norm measures the size of the function.
The other natural way to measure the size of the function is to use its
distribution, i.e. the function

dg(t) = {z € R? : |f(z)] > t}] (6.3)

defined for t > 0. Clearly ds(t) is a decreasing function on [0, 00). There
is a very close connection between ds(t) and || f[|,,, namely we have:

Proposition 6.1 If f is a function on R? and 1 < p < 0o then
ds(t) < PSP (64)

and

1712 = / T4y de. (6.5)

Proof Clearly

eedy) = [ vizs [ 11@Pds
(x€R? : |f(x)|>t} R4

so we get 6.4. To obtain 6.5 let us introduce the set A C R? x [0, o0)
defined as A = {(z,3) : s <|f(z)|P}. Using Fubini’s theorem we get

1£(x)i?
/ | f(z)|P d= / / 1dadz = / 14(z, s) dsdx
R4 R4 Jo R4 x(0,00)

/ 14(z, ¢) dzds
R4 x(0,00)
{e o]
[t s i@ > aa.
Making the substitution s = ¢? in the last integral we see that it equals
o0
p [ 07N s 1@ > 0l
0

which is 6.5. O

REMARK 6.1. Oue easily checks that for f(z) = |z|~'/? on R we have
dg(t) = 27t77 but f ¢ L,(R), so the condition ds(t) < ct~P is really weaker than
the condition | f||, < co. Inequality 6.4 is a well known inequality usually called
Markov’s inequality.

By a cube in R we mean a set [, x Iy x ... x Iq where the I; are
closed intervals in R all of the same length. In other words we assume
that the cube has sides parallel to the coordinate axes. Generally in
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this chapter we will reserve the letter Q to denote a cube in R%. For a
positive number ¢ and a cube Q, by c o Q we will mean the cube with
the same center as Q but whose sides are ¢ times longer than sides of
Q. More formally, if @ = I) x ... x Ig with I; = [a; — h,a; + k] then
coQ =J; x...x Jg where J; = [a; — ch,a; + ch].

REMARK 6.2. The notation c o Q makes sense only when Q is a cube. The
reader should be warned that it is an entirely ad hoc notation. In harmonic
analysis papers and books (cf. e.g. [42] or [108]) the notation cQ is used. This
however flatly contradicts another well established usage, namely cQ = {cz :

x € Q} which we also use in this book. To avoid possible collisions and
misunderstandings I decided to use some other notation. The symbol o is to
remind the reader that we mean expanded cube.

DEFINITION 6.2 For a function f on R we define its Hardy—
Littlewood mazimal function M f(z) by the formula

Alj(x):sup{lla/qlf(t)wt : Q@ CR?is a cube and:ceQ}.

It is clear from this definition that M f(z) has the following properties

0 < Mf(z)<oo (6.6)
M(f+9)(=) < Mf(z)+ Mg(z) (6.7)
MQAf)(@) = M), (68)

One can easily find a function f such that M f(z) = oo for each z € R¢
(see Exercise 6.1). We will be interested in M f for f € L,,(Rd). For
f € Leo(R?) we immediately see that M f € Loo(R?) and that for each
z e R?

Mf@) <l flle - (6.9)

The analogous statement is not true for f € Li(R?). For example for
f =1jp,;) we casily obtain that

ifz>1
ifo<z<1

7 ifz<o

1
Mf) =14 1

so M f ¢ Li(R). Nevertheless something remains, namely we have:

Theorem 6.3 For each function f on R® we have

{z : Mf(z) >t} < 6% " |If],-
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Proof 1f | f]l, = oo there is nothing to prove, so assume that || f||; is
finite. It follows from 6.8 that without loss of generality we can assume
Ifll, = 1. For afixedt > 0let By = {z : Mf(z) > t}. It follows
from Definition 6.2 that for each z € E; there is a cube @, such that
T E Qx C E‘( and

el /Q 1 ()] dy > t. (6.10)

This in particular gives |Q,| < ||f¢|| = % Let oy = max{|Q.| : = € E,},
so a; < t~1, and let us fix a cube Q,, call it Qy, such that |Q,| > %al.
Consider all cubes Q, such that Q. NQ, = . If there are no such cubes
we stop, if there are we put

az =max{|Q;] : z€ E;, and Q,NQ; =0}

and we fix such a cube Q,, call it Q2, satisfying |Q2| > %az. We continue
in this way and we get a sequence of cubes @Q;,Q2,... (possibly finite)
such that:

(i) the cubes Q; are disjoint
(i) 1Q;] > %max{lQ,| : and Q;NQ,=0fors=1,2,...,5~1}.
(iii) if Q2N Qa =B for s=1,2,...,5~ 1 then |Qs] < 2|Q;].

From (i) above and 6.10 we get

1 1
.‘=U1Qi =§|Qd$;§/@ f()ldy < T (6.11)

The important observation we have to make is that each Q, intersects
some Q;. To see this note that if there exists a Q, disjoint from all Q;’s,
then our process was infinite, so from 6.11 we see that |Q;| — oo, but
this contradicts (iii) above.

Now, given Q; let Q, be the first Q; that intersects Q;. Condition
iii) above implies that |Q:| < 2|Q,|, so easy geometry shows that Q. C
60 Q,. Thus from 6.11 we get

{z : Mf(z)>t}| <

Jsoo:

Ue-
1
§|6°Qil < Gdgl:lQi' <6l

This proves the theorem. O

IA
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As our first application of the above theorem we will present the fol-

lowing classical result.

Theorem 6.4 (Lebesgue differentiation theorem) Let f € Ly (R9)
be given. For almost all x € R? and for every decreasing sequence
of cubes (Q,)72, such that n;x;] Q; = {z} we have

1 e
Jim gy L S = 1@, (6.12)

Proof 1f f € Li(R%) N C(R?) then 6.12 holds for all x € R%. Given
f € L;i(R?) we take € such that 0 < ¢ < 1 and write f = g + h with
g € Li(R*) N C(R?) and ||h]|, < e. From the above observation and
the definition of Hardy- Littlewood maximal function (Definition 6.2) we

have
Ii;n—‘s:’p Ifjﬁfq, fdy - f(=)| =
Ii;njolp in_:i|~/Q, 9(y) dy — 9(z) + |%”/Q’ h(y) dy — h(z)
= liﬁf;p IC;T./Q, h(y) dy — h(z)
< @) +imsp o [ @)l
< |h(z)| + Mh(z).

Note however that Theorem 6.3 gives
{z : Mh(z) > V)| < S‘W\’/]—Ell <e6dy/e
and 6.4 gives
h
e+ @l > vat < b < 7

‘This shows that outside the set {x : Mh(z) > /e}u{z : [h(z)| > €}
which has measure at most C+/¢ we have

< 2V/e.

lim sup
Jj—o0

1
o /Q @y~ 1)

Since € can be as small as we wish we get 6.12. O
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Motivated by the properties of the Hardy-Littlewood maximal function
we introduce the following general definitions.

DEFINITION 6.5 An operator T defined on some class of measur-
able functions and mapping it into measurable functions is called
sublinear if

IT(f + g)(@)| < |T(S)(=)| + [T(g)(=)]
and
[TOS)(@)] < IMIT()(=)]

for all admissible functions f and g and all scalars A\. The above
inequalities are to be understood as holding almost everywhere.

DEFINITION 6.6 A sublinear operator T defined on L,(R%) is
of weak type (1,1) if there exists a constant C such that for each
f € Li(RY) and each t > 0 we have

e« ITf@I > < S/, (6.13)

It is clear that each linear operator is sublinear. It follows immediately
from 6.4 that if a sublinear operator T satisfies |[Tf||, < C||fl|, then T
is of weak type (1,1). The usefulness of the above notions stems from
the following interpolation theorem.

Theorem 6.7 (Marcinkiewicz) Suppose that T is a sublinear op-
erator defined on L1(R?) + Loo(R?) which is of weak type (1,1) and
for some C satisfies

ITflloo € Clifllo - (6.14)

Then for each p, 1 < p < 0o, there exists a constant C(p) such that

1711, < Cw) I,

Proof Multiplying the operator T by an appropriate constant we can
(and will) assume that it satisfies 6.13 and 6.14 with constant C = 1.
For f € L,(R?) and given t > 0 we write f(z) = fi(z) + ft(z) where
Je(z) = f(x) -1 . 5(a)1<t}- Since T is sublinear

{z : |Tf() >t} C{z : |[Tfplz)l > YUz : ITf/%(z)| > £}
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so from 6.5 we get

1715

[ rrop
= ,,/szr-'um TS (@) > t)|de (6.15)

IA

p / P (o ¢ [Thy@)| > §)ldt
s [T s @) >
0

But we have assumed that T satisfies 6.14 with constant 1, and this
implies ”ng/z“w < % and thus the second integral in the above is zero.
So using 6.13, 6.15 and Fubini’s theorem we obtain

had 2
p [T 2l @
[1]

=[] 1f ()] da e
o x - [ f(x)I>t/2}
2| F(=x)|
= [ @l [ et
JRd ()

= [ @l @) b

= o2 [Ler s

IT513

7N

Immediately from Theorem 6.7, 6.9 and Theorem 6.3 we obtain:

Corollary 6.8 For each p, 1 < p < oo, there exists a constant C(p)
such that ||Mfll, < C@)||f|l, where M is the Hardy-Littlewood
mazimal function.

The heart of the proof of Theorem 6.7 is the splitting of the function into
a ‘small’ and a ‘large’ part. In the future we will need a more refined
decomposition of this type. In order to obtain it we need to introduce
the family of dyadic cubes in R%. This is a direct generalization of the
family of dyadic intervals introduced in Section 1.1. By a dyadic cube in
R? we mean any cube Q = I x ... x Iqg where I; = [k;2", (k; +1)2"] for
an integer s and some integers kj. If Q = [ay,a; + 1] x ... X [aq, ag + h)
is any cube in R? then by a dyadic subcube of @ we will mean any cube
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of the form
kih ky + 1)k kah k.
for + 200y B o B, et DYy

where s = 0,1,2,... and k; = 0,1,...,2" — 1. All this simply means
that we take the cube Q itself, then we subdivide it naturally into 2¢
equal cubes, next each of those we subdivide into 2¢ equal subcubes,
etc. It is an easy but very important observation that two dyadic cubes
(dyadic subcubes of a given cube) are either non-overlapping or
one is contained in the other.

Theorem 6.9 (Calderén-Zygmund decomposition) Suppose we
are given a function f € L (R?) (or f € L,(Q) for some cube Q C
R?) and a number t > 0 (t > I-l—IfQ|f(a:)|d:z:). There exists a

family C(f,t) of non-overlapping dyadic cubes (dyadic subcubes of
Q) such that

(i) each Q € C(f,t) is a maximal, in the sense of inclusion,
dyadic cube (dyadic subcube of Q) such that

I—éi/;|f(m)|dz>t (6.16)

(ii) for each cube Q € C(f,t) we have

—L xT 2:<'l
[Q,fqu( )| da < 2%

(iii) the total measure covered by cubes from C(f,t) can be esti-
mated as

1
DO N O

QEC(£:t)
(iv) if x ¢ Ugec(ss @ then [f(z)] < t.

The above Calderén-Zygmund decomposition is a very powerful tool.
We can use it as stated in the above Theorem to get a collection of cubes
(in this way we will prove Theorem 6.16) but also for each t it yields a
very useful decomposition of functions. For each ¢ we define the ‘bad’
part of a function f to be

b(z)= Y (f(z) - fo)lo(x)
QeC(f.t)
where fo = T—fQ )dy, and the ‘good’ part to be f — b,. This
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decomposition will be used to prove Theorem 6.23 which is the improved
version of the Marcinkiewicz interpolation theorem.

Proof Since the argument is almost exactly the same for R? as for
Q, we will consider both cases simultaneously. We define C(f,t) to be
the family of all maximal dyadic cubes satisfying 6.16. This definition
obviously ensures that (i) holds. Our choice of t ensures that Q ¢ C(f,t).
For Q € C(f,t) let Q@ be the smallest dyadic cube strictly containing it.
By the maximality of Q we have Q' ¢ C(f,t) so

1 1 1
vz g [ VN2 g [ @de= s [ @)

which gives (i)). If 2 € Ugec(s.y @ then for each dyadic cube @ such
that z € Q we have

e

So taking a sequence of decreasing dyadic cubes Q; such that ﬂj Q; =
{z} we get from Theorem 6.4 that |f(z)| < t for almost all z. This gives
(iv). To see (iii) note that C(f,t) consists of non-overlapping cubes, so
using 6.16 and condition (iv) which is already proven, we get

1
@ s ¥ 3 [Ueie
QeC(£.1) Qec(fy U9
]
t JJt@ : eecirny

1 1
- dr < - .
t ‘/(’z 2 | f(z)>t) Vel ds < t ”flll

< /Qlf(x)ldw <t

|/ (=)l d=

IA

6.2 BMO and H;

In this section we will introduce and investigate two new spaces of
functions: BMO(R?) and H,(R?). We start with two series of spaces
BMO,(R?) and H{(R?) and after some effort we will show that each of
these series collapses into one space and that these spaces are in duality.

In this and in the next section we will very often use the notation fo
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to denote the mean value of the function f on the cube Q, i.e.

1
Jo=t1g /Q /(@) dz.

DEFINITION 6.10 We say that the function f on R? has bounded
p-mean oscillation, 1 <p < oo if

1 1/p
11y =t (17 [ 10 = saaz) " <o 0

The set of all functions of bounded p-mean oscillation will be de-

noted by BMO,(RY).
Let us make some observations about these definitions.

e The quantity ||.||, » has the following properties:

M +aller < W, +all.,
IAMllep = P-NAL,

1en

This shows that ||.||, , is & quasi-norm and it becomes a norm when we

identify functions which differ by a constant. With this identification
BMO,(R?) becomes a normed space.

e Each bounded function has bounded p-mean oscillation, in other words
Loo(R%) € BMO(R?) for 1 < p < o0.

e In 6.17 we can replace f; by other numbers, more precisely we have

the following: Suppose that for each cube Q C R there exists a

number cq such that

1 1/p
sup (—/ |j(:z:)—cQ]”da:> < oo.
Q \lQlJg
Then f € BMO,(R?). To see this, observe that

(i1 L v ser ) v

<( / 1f(2) - coP dx) +1fe - <ol

0 if and only if f = const. a.e

and

lfo—cal = ’ﬁﬂ(’(m"”)“ls|‘clz‘|/o'f(’”)‘°"'”
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< (g fve- CQI”dx)lp-

e There are unbounded functions in BMO(R?). In particular the func-
tion In|z| on R? is in BMO,(R?). In order to avoid cumbersome
calculations let us check this only for d = 1. Since In|z| is even it
suffices to assume that Q = [a,b] with |a| < b. We have

1 1

b b
b-a/,, [In|e] - Inb|dz b—_—‘;/ Inb — In || dz

= ﬁ [(6=a)1nb— z(injal ~ D]

1
= m[b—a+a(ln|a|—lnb)].

For a = —b this equals 1 while for |a| < b it is at most
b—1
14 ]a Iln n |a|
— laf

From the mean value theorem we infer that it equals 1+ |a|p~' for
some 7, |a| < n < b, so finally we see that ||In|z|||.,, < 2.

e Note also that f(z) = sgn z -In|z| ¢ BMO;(R). To see this take
Q@ = [—a,a], with a > 0. Since f is odd fg =0 so

|Q'/If(x) foldz——/ /(@) ds > min| /()] = indl

which is unbounded.

e Note that the above two observations point to an important difference
between BMO,(R?) and L,(R?) spaces. Namely there are functions
f and g such that |f(z)| < |g(z)| and g € BM(),(IR'{) while f ¢
BMO,(RY).

Now we will introduce the second series of spaces, namely H{(R?) for
1 < q¢ < oo. We start with the following

DEFINITION 6.11 Let q, 1 < q < o0, be given. A g-atom 13 a
function a(z) defined on R? such that there exists a cube Q C R?
such that
(i) supp a(x) € Q
(i) fpaa(z)dz =0
(iii) llall, < |QI'/9-" that is [y, la(z)|7dz < |Q|'~7. Note that for
q = oo we mean |afl  <|Q|7".
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Let us start with some remarks about this definition. We observe that
if 1 < g1 < g2 < 00 then each qp-atom is a q;-atom. The only thing
to check is condition (iii). Applying Holder’s inequality for s = gf- >1
and 7, s"1+ 771 =1 we have

/ lo(@)|® dz = / la(2)[® - 1g(2) do
R4 R4

([ @)™ ([ natras)”
([ )™

QIMTIQIE - = QP

Note also that the same argument for g; = 1 gives: if a(z) i3 a g-atom
for1 < g < oo then |||, <1.

IN

IA

DEFINITION 6.12 The space HI(R?) is the space of all functions
f on R? (identified when equal almost everywhere) which can be
written as

f= E/\ja,» with Z|/\j| < oo and a; q-atoms (6.18)
i J

80 the series converges in Ly(RY). We define |fl,, = inf}; |3
where the infimum is taken over all representations of f as the
series 6.18.

It is clear from the above definition that the following useful fact holds:
Proposition 6.13 If T is a linear map from H{(R?) into a Banach

space X such that ||Ta|| < C for each q-atom a then T is a contin-
uous linear operator and ||T| < C.

Our next proposition summarizes some functional analytic properties of

spaces H{(RY).

Proposition 6.14

(i) For 1< q £q2 < 00 we have || fll; < Wflyq S Uk, so the
identity i3 a continuous embedding

HP(RY) — H(R?Y) < Ly (RY)
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(ii) Foreachg, 1< g <o, I, , is anorm and H{(R?) equipped
with this norm is a Banach space

(iii) If £ € HI(RY) then [y, f(z)dz =0

(iv) If Q is a cube in R? and f € Ly(Q) with Jo f(z)dz =0 then
f € HJ(RY).

Proof Condition (i) follows directly from our observations about g-
atoms. It implies that if lfll’q = 0 then f =0 a.e., because || f||; = 0.
It is routine to check directly from the definition that |.|1' satisfies the
triangle inequality and that I’\f“m = |’\|'lf|1,q~ Thus ||.§, , is a norm.
To check that H{(R?) is complete, it suffices to check that if f,, € H(R?)
and 30, Bfully,, < oo then 37, f, is in H{(R?). But we can represent
each f, as ZJ. Ata} where a} are g-atoms and Zj |/\}‘| <2 Il!nl.,.,- Thus
the representation ), Ej A} a} shows that DI H}(R?). Condition
(iii) is clear because it holds for each atom and the integral exists because
f € Li(R?). To see (iv) note that each such f is an appropriate multiple
of a g-atom. O

Proposition 6.15 Let g be a function on R%. The formula o(f) =
Jra f(2)g(x) dz considered only when f is a finite sum of q-atoms
gives (extends to) a bounded linear functional on H{(R?) if and only
if g€ BMO,(R?) with ¢~ +p~! = 1. The norms are equivalent, i.e.
there exist two constants 0 < Cy < Cy such that C|lg|| < |lgll+p <
Calell-

REMARK 6.3.  Since BMO,(R%) may contain unbounded functions, we

have to be a bit careful in the formulation of the above proposition. It is not true
(cf. Exercise 6.6) that if f € H](R?) and g € BMO,(R?) then fg € L,(R9).

Proof Let us take g € BMO,(R®). For f =3, \ja; with a; g-atoms
supported on cubes Q; we have

<yl
]

f a;(2)(9(z) - gq,) dz
QJ

/ f(2)g() dz
Rd
=3 Il
7
1/q
< Z A1 ( fQ , e dx) ( /Q ’ lg(z) — gq,l’"dw)

L el

1/p
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1/p
<Y Isllesl et (_/(; l9(x) —gq,|"dz)
j 3

1 1/p
=3 Il (m/ l9(=) - 9q,I? d-f)
P 71 JQ;
<lgll.p 3 I1
j
This clearly implies
| s ds] < 1l (6.19)
In other words g gives a linear functional on H{(R?) with norm at most

llgll. 5
On the other hand for a function g on R? and a cube @ we have

(because Ly = Lg)

(I_Clﬂ /Q |.‘7(-’E)'§Q|”da;) =@ / (g(x) — go)b(x)dz  (6.20)

for some b(z) on Q such that

(ﬁ/q[b(x)r’)w =1 (6.21)

Since (g(z) — gq) has mean zero we can continue 6.20 as follows:

(i | lote) = scl dz)”’

ﬁ /Q (9(2) ~ 90) (b(z) — bg) d=
/Q o(@) gy (42) —bg) d. (52)

Note that
bol < 7 [ B@llds < 1. (6.23)
il Jo

From 6.21 and 6.23 we get

1/q
(/. 1iaote) - oy )
1/q
—oMe1 (L _ 1/g-1
Qe (IQI /Q Ib(2) bql"dx) < 2jQp/a
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which means that l—éﬂ(b(m) — bg)1g equals twice a g-atom. Thus using
6.22 we get

o)l 2 (ray- 2 sup { /,;4 g(z)a(x)dz : a(z)isa q—atom}

1 1 Y

2—sup(——/g:1:—g ”) = -|gl,,- 6.24
5o (jg [ o= —9aP) = 3lal, 20
Comparing 6.24 and 6.19 we see that a function on R? gives a functional
on HI(R?) if and only if ¢ € BMO,(R?) and the norms are equivalent.
0

The fundamental result about BMO(R?) is the following theorem.

Theorem 6.16 (John—Nierenberg) There ezxist two constants Cy
and C; (depending only on d) such that for every f € BMO,(R%)
and every cube Q C R? and every t >0

€@ : |f<z)—fQ|>t}|so.1Q|exp—HfC|—f‘l. (6.25)

Proof It suffices to show 6.25 for f with ||f||.,1 =1, so we will assume
this. Our basic tool will be the Calder6n—-Zygmund decomposition de-
scribed in Theorem 6.9. We apply it to the function f — fq on the cube
Q@ with t = e. We obtain a family of non-overlapping dyadic subcubes
Q;. of Q such that

e< IC;T fQ (0) = folds < 2 (6.26)

for x € Q\UQ} we have |f(z) — fo| < e (6.27)
J

RS [ 1@ - salee < el (6.29)

Note that 6.26 gives

2% >

1
@ /Q @) = o) de| 2 foy ~ Jal. (62)

Now for each cube Q}, exactly as before, we apply Theorem 6.9 to the
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function f(z) — fq: considered on the cube Q} with t = e. We get non-
overlapping dyadic subcubes of Q}, which we call Q} ,, such that (see
6.27, 6.28, 6.29)

for z € Q) \UQ}" we have |f(z) — fQ;I <e (6.30)
1

1Rkl <219}l (6.31)

lfor, — faul < 2%. (6.32)

Let us reindex all cubes Q;', and denote them by Q?. This is a family
of non-overlapping dyadic subcubes of Q such that

2

Si=Y s s (3) 1@
k A E

and

forz € Q\UQE we have |f(z) — fo| < 2-2%. (6.33)
k

To verify 6.33 note that if z belongs to no Q} then 6.27 implies 6.33 and
when z € Q; then from 6.27 and 6.32 we have

(@) = fal < 1f(=) = Jos| + Sy = fal S e+ 2% < 2- 2.

Now we apply Theorem 6.9 to each function f(z) — jQ: considered on
the cube Qf and with t = e. Continuing in this manner we get for each
N =1,2,... a family of non-overlapping dyadic subcubes of Q@ which we
call {Q;"'} such that

each Q}'*! is a dyadic subcube of some cube QY (6.34)
2lefse el (6.35)
i
and
for 2 € Q\|JQ} we have |f(z) — fol S N - 2%. (6.36)

i
Note that condition follows 6.34 directly from the construction, condi-
tion 6.35 is simply a repetitive application of 6.28 while 6.36 follows by
induction exactly like 6.33. Now we are ready to show 6.25. Let us start
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with ¢ > 2% and fix N = 1,2,... such that N2%e < t < (N + 1)2%.
Using 6.36 and 6.34 we obtain

HzeQ : If@-fol >} = [{z€Q : If(@) = fol > N2%e}]
|UeY| ze el
i

A

IA

Taking Cy = e 12791 this gives 6.25 for all t > 2% with C; = 1. It
is clear that we can increase C) to get 6.25 for all t > 0 (with the same
C,). m}

The above theorem shows that unbounded functions in BAI()I(IR") are
only ‘slightly’ unbounded. The sets where they differ very much from
the mean value take up only an exceedingly small part of each cube. In
particular it implies that it does not matter in what L, norm we measure
oscillation. This easily implies that the spaces BMO,(R?) are the same
for all p, 1 < p < 0o. This is proved in the following corollary.

Corollary 6.17 For each p, 1 < p < 0o, there erists a constant C,
such that for each f € BMO,(R?) we have

Il =0, 2 Gollfllaa (6.37)

Proof The left hand side inequality is clear. To get the right hand side
note that Proposition 6.1 and 6.25 yield

[ 1@ - sapas
Q

,,/O“’tr—';{xe Q : 1f(2)— fal >t} dt

""Q'/ Yoo (- .) at
1

Substituting u = Cot || ]|} we get

IA

C O
Ly -t ts < 0l G [Tt

QU CF

A

It

O

In view of the above corollary we will drop the subscript p and use the
notation BMO(R?). We will also talk about functions of bounded mean
oscillation to denote functions satisfying any of the equivalent conditions
6.17. Any of the equivalent BMO norms ||.|| ., will be denoted by |.|,.
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Since the spaces BMO,(R?) turn out to be just one space BMO(R®),
looking at Proposition 6.15 it is natural to expect that the spaces H{(R?)
are really one space. This is actually the case, namely we have:

Theorem 6.18 For 1 < q < oo the spaces HI(R?) coincide and
the norms .1, , are equivalent. This one space will be denoted by
Hy(R?) and any of the norms [.], , will be denoted by |.]. We have
also Hi(R?)* = BMO(R?) in the sense that for each continuous lin-
ear functional p on Hy(R?) there exists a unique (up to a constant)
function g € BMO(R?) such that if f is any finite sum of atoms
we have

o) = [ f@sta) s

The BMO norm ||g||, and the functional norm of ¢ are equivalent.

Proof Let us start with the case ¢ < oo. By Lg(Q) we denote the
subspace of L,(Q) consisting of all functions of mean zero. This is easily
seen to be a closed subspace, and since L,(Q)* = L,(Q) where —+— =1,
one can easily check that each linear, continuous functional ¢ on LD(Q)
is given by a function f € L,(Q). This function f however is not unique.
Two such functions f; and f; give the same functional if and only if
f1—f2 is constant. Let us take cubes Q,, = [—~2",2"]%. From Proposition
6.14(iv) we know that L3(Q,) C H{(R?). This implies that a functional
@ on H‘(]Rd) induces a functlonnl on each Lq(Q.,) Thus there exists a
function f,, on @,, which on Lg(Q,.) induces the same linear functional
as . ‘This implies that the function f,41|Q. gives ¢|L3(Q.), so f,
and f,,11|Q, differ by a constant. Since adding the constant does not
change the functional we can assume that f,,1|Q,, = f.. Doing this
inductively we find a function fy defined on R? by fo|Q. = f,, which
gives the functional ¢. This shows that ¢ is given by a function, so we
can apply Proposition 6.15 to see that foo € BMO,(R?). This means
that for ¢ < oo we have H}(R%)* = BMO,(R?).

For g = oo the above proof does not work, because functionals on LI,
are not functions. To treat this case let us denoteby I, ,,1 <r < s < 00,
the identity acting as a map from HJ(R?) into H}(R%). It follows from
Proposition 6.14(i) that I,, is a continuous, linear, 1-1 map. Thus

» : H(RY)* — H{(RY)". When1 < r < 5 < 0o we infer from the
above that I7,. is the identity between BMO,.(R%) and BM O, (R?),
that is an isomorphism (see Corollary 6.17). This implies that I, is an
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isomorphism, so I} (R?) coincides with H{(R?) for 1 <r < s < oo. For
1 < r < 5 = 0o we see from Proposition 6.15 that /7 is an isomorphic
embedding (possibly there are some functionals on H®(R?) not given
by a function). But by a standard duality result, this implies that I, ,. is
onto. Since it is also 1-1, we infer that ., is an isomorphism, in other
words H{®(R?%) = H{(R). O

Corollary 6.19 The space BMO(R?) is complete, so it is a Banach

space.

Proof Tt is a general fact that the dual of a normed space is a Banach
space. Actually it is almost obvious that a norm limit of continuous

linear functionals is a continuous linear functional. O

Now let us see how the dyadic dilations act on BMO and H, spaces.
Recall that J, is defined by 5.2, i.e. J,f(z) = f(2°x). Suppose that a(z)
is a g-atom supported on the cube Q. Then J,a is supported on the
cube 27*Q and [y, Jaa(z)dz = 0. Also

(./u-ed]J.a(a:)l"div)l/q _ (/Rd la(znf)lqd;,:)'/"
) (/m la(z)|927 dm) 1/q

_2d ~
< 27 fall, <27 ¥ Qi
27Ad24ad(l/q—l)lQ|l/q—l

2_‘d|2—'0Q|1/"_l~

This calculation tells us that J, maps atoms into fixed multiples of

atoms, so we get

Il‘lﬂjll,q=2"d Ulfll,q~ (6-38)
A similarly straightforward calculation gives for each p, 1 < p < o0, that
”‘]'f"o,p = "j"t,p (639)
Clearly
Translates are isometrics of H)(R?) and of
d (6.40)
BMO(RY).

One of the difficulties when working with H;(R?) is that it may be
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difficult to show that a given function is in H(R?). Let us offer one
easy but very useful result in this direction.

Proposition 6.20 Suppose that f is a function on R? such that
Joa f(@)dz = 0 and (Jpu |f@)P dz)"/> < C for some p > 1 and
|f(@)| < Clz|=™ for |z| > B > 0 with a > d. Then f € Hi(RY) and
171 can be estimated by a constant depending only on C, a and §.

Proof Clearly we have to write f as a series of atoms. Let @, =:
[-2", 24 forn =1,2,...and let L, =: Q,\Qy_y withn=2,3,.... Fix
r such that @, D {z € R? : |z| < 8}. Let us put g, =: (f — fg.)1q.-
Note that 1¢_ is, as always, the indicator function of the cube Q,,. Since

1= fladi= [, U@ldesc [ e
RAQn RA\Qn
we see that f-1q_ converges to f in Ll(Rd). Also

fade, = [ J@d g

/R‘\Q, f@)d: ga

30 fg.1q, converges to 0in L;(RY). This implies that g,, — f in L1 (RY)
S0 we can write

f‘—=gr+2(gn+1 _gn)~ (6'4])

n=r
Note that g, is a multiple of a p-atom with the multiplicity constant
depending only on C and 8. Clearly

/ (Gn41() = gu(@)) dz =0
R‘

and supp (gu+l - gn) C Q1. Writing g1 — gn explicitly as
gn-}-l(x) - gn(x) =f- 1Ln+l - fQ-.+| lQn+l + anIQn
we can estimate
llgvl+l e .‘7""00 S C2_u" + Ian+|| + Ianl'

Since

Vol = gl [ s@ ] <z [ e
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1A

2—(vx4|)dC/ Izro dr < C2—v.d2n(d—a)
RAQn

C24ha
we get
”gn+l - gn“m < c2men,

This means that C~12"@~9(g. , —g,) is an co-atom. Since the series
e, 2(d=e)n converges, formula 6.41 gives a representation of f as an
absolutely convergent series of atoms. O

Putting together 6.38 and the above Proposition 6.20 we obtain:

Corollary 6.21 If we have a function f on R? such that Jpa f(@)dz =
0, [Ifllz < C2¢N/2 and for |z| > f2-N we have for some a > d

lo=)| < c24- Nz
then | f| < const.

One of the reasons for introducing the spaces H;(R?) and BMO(R?)
is that quite often they successfully replace the spaces L; and L.
More precisely, many natural operators which are unbounded on L are
bounded on H; or operators which are unbotnded on Lo are bounded
on BMO. To emphasize this point and for future use we will conclude
this section with the interpolation theorem which generalizes Theorem
6.7. Let us start with the following definition, which extends ideas of
Definition 6.6.

DEFINITION 6.22 A sublinear operator T' is of weak type (Hy,1)
if there exists a constant C such that

e+ 1@ > 01 < S (6.42)

and is of weak type (p,p), 1 < p < 00, if there exists a constant C
such that

C 4
e+ 11> 1< (S (6.9

REMARK 6.4. We can repeat the remarks made after Definition 6.6. If T
is continuous on H,(R%), i.e. JTf) < C S}, or if T maps H,(R?) into L,(R%)
ie. [Tf|ly < c}fF, then T is of weak type (H,,1). Also if T maps L,(R?) into
itself i.e. |[Tf|l, < c||f]l, then T is of weak type (p,p). When the above does not
hold the condition 6.42 is not easy to check. In particular it cannot be checked
on atoms only, cf. Exercise 6.7,
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Now we can formulate:

Theorem 6.23 Suppose that T i3 a sublinear operator defined on
Hy(R?) + Lg(RY) for some g > 1 and assume that it is of weak type
(H1,1) and of weak type (q,q9). Then for all p, 1 < p < gq, the
operator T is continuous from Ly(R?) into itself, i.e. there exists
a constant C(p) such that TS|, < C(p)|If]l, for all f € L (RY).
Besides p this constant depends only on the constants appearing in
6.42 and 6.43.

REMARK 6.5. It follows from the proof given below that it suffices instead
of 6.42 to assume only the following weaker condition:

there exists a constant C such that if f = Z, X,a, where
the a,’s are atoms supported on dyadic cubes then

e s IT7@) > <0 T (640
2

Proof Let us fix a number 3, 1 < 8 < p. Let us consider a function
f € Ly(R?%) such that |f(z)|" € Li(R?). Since such functions are dense
in L,(RY) it suffices to consider only such functions. We apply the
Calderén-Zygmund decomposition (Theorem 6.9) to the function |f(z)|®
with the number t". We obtain a family of non-overlapping dyadic cubes
Q; (depending on t) such that

1/a
t< (]—é] /Q, ]f(m)|'d.1:) < 297, (6.45)

Writing E; = |J; @; we have |Ey| < t™" [I£12 and for = € R\ E; we
have |f(z)| < t. The heart of the proof is the splitting of the function
f(z) as f(z) = g:(z) + be(z) with

9(z) = [(2)  1pare, + 3 fo,1q,

J

and

bi(z) =Y (f(=) ~ fo;) 1g;-

j
It follows from 6.45 that ]ij( < 24/ so
lge(=)| < 2%/°¢. (6.46)

One also immediately observes that b,(x) looks like a sum of atoms.
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More precisely we get from 6.45 that

1/a 1/a
L - " ._]_ L Lod/a
(|QJ’|/Q, 1f(2) ~ fa,l d$> <2 (lQ;‘l /Q, £ )| d:n) <2.2%%

so

([ v =soaa)" <227,

which shows that
(f(2) = fo,)lq, = 2-2%/"1|Qjla;
where a; is an s-atom. Thus we obtain
Boel < )2 297|Q;) = 2- 2%/ B|. (6.47)
E)

Now we will estimate ]]Tf"’ using Proposition 6.1 and the fact that T

is sublinear.

1713

/R TI@P d (6.48)
= 5 [T @l ol
< pv/omt"“ll{z : Tg(z)| > t/2}]dt

+p/ P {z : |The(z)| > t/2}] dt
o
=: I1+ 1,

Using the fact that T is of weak type (q,q) and the properties of the
Calderén-Zygmund decomposition recalled at the beginning of this proof
we get

I < Cp/ #1479, |17 de
o q
= Cp/ 1"*"*’/ |g:(z)|* dz dt
1] R4
o0
c/ cr-q-lf If ()] dz dt
o (= : 1(x)5t)
+c/ w"*‘/ lg¢ ()| dz dt
0 E,
C// tP-a=lqt |j(z)|"dz+(f/ P11 Ey | dt
Rd J|f(x)| 0

IA

IA
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¢ [ @py@ie+c [ eina

I

C/;‘ |f(m)|”d:c+C/0 P~ E,| dt. (6.49)

Now let us estimate the second summand in the above. Recalling the
definition of Hardy-Littlewood maximal function (see Definition 6.2) we
see that

1Bl < [{= 2 (MIf]") (=) > "}
S0

/mw4wmu5/ww*uz;(Murx@>wnm.
1] 0

Making the substitution t* = u, using 6.5 and Corollary 6.8 for the
exponent £ > 1 we get

/ P~ E,|dt

0

IA

C/ @/ {z : (M|f]") (z) > u)|du
(1]
= o[ mamEr" s (6.50)
< o W@y
- c/1ﬂnth
Rd
Substituting 6.50 into 6.49 we get
n<Csl;. (8.51)
To estimate I, we use the fact that T is of weak type (Hy,1) to get
L < c/ tP 11 ||b,f dt.
o
Applying 6.47 and 6.50 we get
I < C/ tP | Ey| dt = c/ P E|dt < CISE. (6.52)
0 o

From 6.48, 6.51 and 6.52 we get the theorem. a
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Sources and comments

This chapter contains a quick intoduction to basic ideas and tools of
harmonic analysis on K?. This branch of mathematics grew up from the
classical theory of Fourier series and integrals. The subject is extensively
presented in numerous books, e.g. [105), [104], [108], [44], [40]. In this
chapter I have presented only those results which will be needed later.
The reader may have noticed that almost every result in Section 6.1 has
a name attached. This identifies the results according to the standard
usage in this area but also indicates the fundamental nature of those
results.

The space BMO was introduced by F. John and L. Nierenberg in [55]
where Theorem 6.16 is proved. The space H; has a very long history.
It appeared already in the work of G, H. ITardy and F. Riesz as a space
of analytic functions on the disk. Then its real-variable version was
investigated by C. Fefferman and E. Stein in [39]. In our definition of
this space and in extensive use of atoms in this book we follow the ideas
of R. R. Coifman and (i. Weiss [22). The fact that H} = BMO (cf.
Theorem 6.18) is usually called the Fefferman duality theorem. This
is a deep theorem when a more standard definition of H, is used; our
definition using atoms makes it almost a tautology.

Theorem 6.7 was obtained by J. Marcinkiewicz [79]. It, as well as its
generalization Theorem 6.23, is an example of the so-called real inter-
polation method.

There is a general theory of interpolation of operators. Its general
idea is that very often Banach spaces are organized in scales indexed
by parameters (like L,-spaces or Besov spaces, to mention the examples
discussed in this book) in such a way that if an operator behaves nicely
at two points of the scale, it behaves nicely in between. This general
theory is explained e.g. in [4] and its most important special cases also
in [40], [44], [73], [105] or [108].

About the erercises. 'The Hilbert transform discussed in Exercise 6.9
is a classical operator. It is discussed in detail in e.g. [57], [44], [105]
or [108]. The results of this exercise are classical. Hardy’s inequality
discussed in Exercise 6.13 is also a classical result to be found in e.g.
[57) or [108]. The argument using atoms is from [22]. The operators M,,
defined in Exercise 6.13 are called multipliers and are of fundamental
importance in harmonic analysis (sce eg. [105] or [108]). As previously
the use of atoms is from [22]. The space 611, (R?) discussed in Exercise
6.14 has intimate connections with martingale theory.
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Exercises
(a) Show that for f(t) = |t|* with @ > 0 we have M f(z) = oo
for each z € R.
(b) Let f be a function on R such that f(t) = 0 for x < 0
and f(t) is an increasing function with lim,_.o f(t) = oo.
Show that M f(t) = oo for all z € R.
(c) Give an example of an unbounded function f on R such
that M f(z) < oo for all z € R.
(d) Find a function f € L;(R) such that the support of f is
in {0,1] and such that M f | [0,1]) ¢ L1 ([0, 1}).
Show that we obtain the same classes BMO,(R?) when by Q
in Definition 6.10 we mean an arbitrary ball, not an arbitrary
cube.
Show that on R the function |ln|z|[' is in BMO(R) for s < 1
and is not in BMO(R) for s > 1.
Show that |z|* ¢ BMO,(R?) for any p and any o > 0. Show
also that the function
o log[z])® if|z] >1
ot < { (P 121
isin BMO if and only if a < 1.
Show that a 2r-periodic function on R with Fourier series f(t) =
Sonczane®t is in BMO(R) if and only if 3°,,c5la.]> < oo.
Show that f € Loo(R) if and only if 37 ., Ja,| < oo.
Let a function on R be defined as

_ | = ogl=| ™
/(@) —{ :

By considering f =3, f, where f,, = f -1p_ with

if |z} <1
otherwise.

D,‘ = (_2—n, _2—n—l] U [2—"fl,2—n],

show that f € H{(R) for all ¢ > 1. Conclude that there ex-
ist functions f € H;(RY) and ¢ € BMO(R?) such that fg ¢
Ly (RY).

Show that there exists a positive constant c such that for each
N = 1,2,... we have Z:’zllz - %lil > cNlog N on a set
of measure > 1. Using this, construct a sequence of functions
(f1.)2 | such that

He = 1] > 2} <A




166 Function spaces

for all A > 0 and n = 1,2,3,..., and a sequence of positive
numbers (a,, )%, such that 30 1@, = 1 and such that the
function Z"__‘l a, f,. is > 1 on a set of infinite measure.
6.8 (a) Construct a compactly supported C*™ function g on R¢
such that g(z) > 0 and [, g(z) dz = 1 (cf. Exercise 3.2).
(b) Let a be an atom on R?. Show that a*g,,, where g, (z) =
~4g(nz), tends to @ in Hy norm. Show also that axg, =
¢, by, where ¢,, < 2 and the b,,’s are atoms.
(c) Show that any f € H{(R?) can be written as 2jhie;
with 37,14 < 21/] and the a;’s are co-atoms of class
C™=.
6.9 For f € C}o(R) let us define its Hilbert transform as

< flz—u)— (a;+u)

u

Hi(z) =

(a) Show that for f € COO(R), H f is a well defined function
and that

F(H 1)(€) = sen€ f(£).

(b) Show that H extends to a unitary operator on L,(R).

(c) Show that there exists a constant C' such that |I1af < C
for every oco-atom of class C!. Conclude that H extends
to a bounded operator on H;(R).

(d) Show that I : Ly(R) — L,p(R) when 1 < p < oco.

(e) Show that H is not continuous on L;(R) or on Loo(R).

6.10 Suppose ¢ is a measurable function on R? such that for every
f € Hi(R?) we have Jof] < C|f}. Show that ¢ = const.

6.11  Show that the space BMO(R?) is not separable. Show that
there exists a function f € BMO(R) such that || f — g|f, > 1 for
every g € Loo(R).

6.12 Suppose 1 < p < q < oo and suppose that T is a sublinear
operator defined on L, (R%)+ L, (R?) which is of weak type (p, p)
and of weak type (q,q). Show that for p < s < q there is a
constant C(s) such that |T'f||, < C(s) |f]..

6.13 Let a be a 2-atom on R supported on an interval /.

(2) Show that |a(£)| < min(1, ¢]|7]).

(b) Show that
o _
[ e <<




(©

(d)

(e

N

(f

=

(g)
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Show Hardy’s inequality, i.e. for f € H;(R) we have

[ e <cu.

Let m € Lo (R). Define an operator M,, on Ly(R) by
the formula M,,,(f)(z) = F~'(m(€) - f(€)). Show that
M)l = Imll -

Suppose that f € Lo(R) and let fo(z) =: =f(z). Show
that |71l < (81712 - 1 oll2) .

Assume additionally that m € C!'(R) and satisfy the
Hormander condition, i.e.

sup R [’ (z)|? dz = Co < oo.
R>0  JR<|z|<2R
Assume also that the interval I on which the atom a is
supported is symmetric with respect to 0. Show that
- N 1/2
IMmally < (8limllool |~ "/?|(ma)'||2)
Show next that
l(maY'llz < [l all2 + mlleoll@’]]2-

Use the Hormander condition to show that ||d’||2 < /|7]
and also ||m'd|j, < CVT].

Using the above show that M,, : H{(R) — L,(R). Con-
clude that M, : L,(R) — L,(R) for 1 < p < oo.

Let us define a dyadic g-atom by Definition 6.11 with the ad-
ditional requirement that Q is a dyadic cube. Using dyadic

g-atoms we define the dyadic H, space 6 H{(R?) as in Definition

(a)

(b)
(©

6.12 but using only dyadic ¢g-atoms.

Modify the arguments given in Section 6.2 and show that
the space 6 H7(R?) does not depend on ¢ as a set and
that the appropriate norms are equivalent.

Show that translation operators are not continuous on
SH\ (R%).

Modify the arguments given in Section 6.2 and show that
the dual of 6 H;(R?) is the dyadic BMO space defined as
in Definition 6.10 but with the additional condition that
Q is a dyadic cube.
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Unconditional convergence

7.1 Unconditional convergence of series
When we want to sum a family of vectors (or numbers) the order of
summation is very important: see Exercise 7.1. Since in many cases
no natural order is apparent, this is a rather inconvenient situation.
In order to rectify this we introduce a stronger convergence of series,
namely unconditional convergence.

DEFINITION 7.1 Let (z,.),c 4 be a countable family of vectors in
a Banach space X. We say that the series Z"EA x,, 18 uncondi-
tionally convergent if for each 0 : N — A, a 1-1 and onto map, the
series Y oo To(k) COnverges.

The map o fixes the order in the set A, and naturally enough it will be
called an order in the rest of this chapter. It is a nice fact, expressed

precisely in the next theorem, that unconditionally convergent series
have many other useful properties.

Theorem 7.2 Let (x,.),4 be a countable family of vectors in a
Banach space X. The following conditions are equivalent:

(i) the series )., . 4 v is unconditionally convergent
(ii) there exists an order 0 : N — A such that the series

oo
Z EkTo(k)
k=0

converges for every choice of numbers e, = %1 for k =
0,1,2,...
(iii) for every choice of signs (€,)nea with €, = *1 the series

YA EnTy converges unconditionally
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(iv) there exists an order 0 : N — A such that the series

oo
z CkTo (k)
k=0

converges for every bounded sequence (ax)g2,

(v) for every bounded sequence of numbers (o )neca the series
Y nea OnTyn converges unconditionally

(vi) there exists an order o : N — A such that for every strictly
increasing sequence of integers ny the series 3 g, To(ny)
converges

(vii) for every 1-1 map v : N — A the series Zzt’zoz,,(k) con-
verges.

Proof We will prove this theorem by proving the following two chains
of implications

(iv) => (i) = (vii) = (vi) = (ii) = (iv)
and
(vii) = (iii) = (v) = (vi).
iv) = (i) Suppose that a series ) .z, satisfies (iv) but does not

satisfy (i). This means that there exists an order v : N — A and an
increasing sequence of integers n(k) and a § > 0 such that

n(2k+1)
Zaim] 2 & (7.1)
a=n(2k)
Let Ir = {n(2k),n(2k) + 1,...,n(2k + 1)}. We can find a subsequence
of integers (k, )72, such that (/) will lie in increasing blocks in the
order o, which means precisely that

max{o~'y(s) : s€ I} <min{o'y(s) : s € [k, }

for r =0,1,2,.... Now we fix a bounded sequence of numbers (a;);2,
defined as
o= {1 ifleUr2oo 1 y(Ie,)
Lo g Uz, 0 k)
Unwrapping what we did above we see that for each r = 0,1,2,...

n(2k.+1) M,

D T = ) amaq

a=n(2k,) I=N,
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for appropriate N, < M, < Ny, Thus 37,2, o T,(;) does not converge,
because it violates the Cauchy condition, see 7.1. So (iv) does not hold,
and this implication is proven.

(i) = (vii) Suppose (vii) does not hold, i.e. there exists a 1-1 map
7 : N — A and a strictly increasing sequence of integers (n(k))s2, and
6 > 0 such that

n(2k+1)
| '3 wam] >6 for k=02, (7.2)
2=n(2k)

As in the previous implication, let Iy = {n(2k),n(2k)+1,...,n(2k+1)}.
Taking a further subsequence we can assume that

0o
N\ U I is infinite. (7.3)
k=0
Now we define the order ¢ : N — A to be any 1-1 and onto map which
satisfies o | Iy = | Ii for all k =0,1,2,.... This is possible because of
7.3. From 7.2 we easily see that 3 > | T,(,,) diverges, so the implication
holds.

(vii) = (vi) is obvious.

(vi) = (ii) Take the order specified in (iv) and fix a sequence e, =
+1. Split the integers into two strictly increasing sequences ny and my
by the rule that €, = 1 and e, = —1. We infer from (vi) that both
series Y peoTo(ny) 80d Yoo To(m,) converge. Since each partial sum
of the series Y roq €kTo(k) equals a partial sum of the series E:.i—_o To(ny)
minus a partial sum of the series 322 Zo(mm,) We infer that 302 | exZo(x)
converges.

(if) = (iv) To prove this implication we need the following lemma.

Lemma 7.3 Suppose (o)., is a sequence of real numbers such
that joy] <1 for 1 =1,2,...,N. There exist sequences (e})I¥, such
that €] = %1 and positive numbers f3, with Er By = 1 such that
() = 3, Be(e]). In other words, each sequence (ay)fY., with || < 1
is a convex combination of sequences with entries +1.

Proof of Lemma 7.3 For readers who know the Krein-Milman theorem
it suffices to say that the sequences (;)jY, with e, = £1 are extreme
points of the convex set of all sequences ()Y, such that |oy| < 1. For
those who do not know or do not like the Krein—-Milman theorem, here
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is a direct proof by induction on N. For N = 1 the claim is easy: if
ja] <1 then
1+
o= —“(1)+————( 1). (7.4)
If our claim holds for N and we have (aq)/Y}! then we apply the inductive
hypothesis to get (o), =¥, B.(e]);. Then

()it = Zﬁy ok (7.5)
where (1);'){‘;41'1 = (e],..., €, an+1). Applying 7.4 to the last coordinate
we see that for each r

I = v () + (= 1) DY (7.6)
with €,6] = 1 and 0 < 7, < 1. Substituting 7.6 into 7.5 we get the
Lemma. [}

Now let us return to the implication (ii) = (iv). Suppose that (ii)
holds but (iv) does not hold for some order o, i.e. there exists a se-
quence ()2, such that 3777 ) axx,x) diverges. This implies that there
exists a § > 0 and an increasing sequence of integers n(l) such that

I Z"(Z‘“) agZTo(k)|l 2 6. To each sequence (ﬂk):(,_z,‘,g‘; we apply Lemma

k=n(21)
7.3 to obtain
n(2l+l) n(2041)
(o k—n(Zl) Zﬂ' k)k‘—u(zl)
with 8, > 0 and 3 g3, = 1. We have
n(20+1)

I ol =[5 3 e]

u(2l+ 1)

P |

k=n(21)

>
IA

A

Z Br

Since ¥, 5 = 1 we infer that for each [ there exists a sequence of £1's

w(2011 F(l)yn(20 41
L)kin(ﬂ)} = (Ek< )):(—,,.?2:; such that

n(2041)

Y o ” > 6 (7.7)

k=n(2()
Since n(l) is strictly increasing we can find a sequence ¢ = %1 for
k=0,1,2,... such that for n(2l) < k < n(2l + 1) we have e, = €}. It is
clear from 7.7 that 322, €%, (k) diverges.
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(vii) = (iii) is analogous to (vi) = (ii).
(iii) = (v) is proved in exactly the same way as (ii) = (iv).
(v) = (vi) For any order ¢ and any increasing sequence of integers

(nk) we can write the series Y27 To(n,) 85 Y 9o XeTo(s) Where

o = 1 if s =ny for some k
’ 0 otherwise.

a

Corollary 7.4 Suppose that the series Y, ., ¥, converges uncondi-
tionally. Then there exists a conatant C such that

“ E EnTn

nEA

<c (7.8)

for all (6,)nea with e, = £1.

Proof The fastest argument is to define an operator T : £o(A) — X
by T(ay) = 3, anzy,. It follows from Theorem 7.2 that T has a closed
graph, so the closed graph theorem implies 7.8. For those readers who
do not know or do not like the closed graph theorem here is a direct
proof. Let us fix an order so we can consider a series E:’;, z,, and let
ay = max{|| Z,’:’Zl €,2y] €, = £1}. It is clear that if 7.8 is violated
then any — oo as N — oo. So we can take a sequence N, tending to oo

+

and such that ap,,, > an, +1. We see that for a sequence (5")1’:,;.1’ such

L[R2}

N, N, .
that || 35,20 engull = an,,, we have | 35, enznll 2 1. Doing
this for each s and putting these pieces (e,‘)f;;}‘“ together we get a
sequence (g,,)%, such that the series Z:’:’:l €,y diverges. ad

REMARK 7.1. Let us make one very natural thing clear. If the series
Zn“ z,, is unconditionally convergent in a Banach space, then for each order
o the series E:o T4(k) cOnverges to the same sum, which naturally enough will
be called the sum of this series. The easiest way to see this is to observe that for
numerical series unconditional convergence is the same as absolute convergence
so the sum is the same in any order. Next, given a vector-valued geries an,« Tn
we consider all numerical series ZnEA z*(zn) with £* € X*. Since they have the
same surn in each order, from the Hahn-Banach theorem we infer that the series
En“ , has the same sum when summed in any order. Another argument fol-
lows from Exercise 7.3. Let us also note that when A = Une g A« with the A,'’s
disjoint and ZREA x,, is unconditionally convergent, then for each a € B the
series annn T converges unconditionally to some y, and the series 3 5 v
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converges unconditionally to E"“ z,. In fact Theorem 7.2 assures us that all
natural manipulations on unconditionally convergent series are legitimate.

EXAMPLE 7.1. Let us give some examples of unconditionally conver-
gent series.

o Every absolutely convergent series, i.e. a series E"EA x,, such that
3 wea leall < 0o, is unconditionally convergent.

o If (¥n)nea is any orthogonal system in a Hilbert space H such that
ZueA "1/’n||2 < 00 then ZnEA 1y, converges unconditionally in H.

o The series 322 n~le™te~*" is unconditionally convergent in L,(R).

It is not absolutely convergent.

Note that if 3 4 .. is unconditionally convergent in a Banach space
X and T : X — Y is a continuous linear operator, then the series
> wea T, is unconditionally convergent in Y. In this way we can easily
produce more examples. .

7.2 Unconditional bases

Our aim in this section is to discuss one way of representing all elements
of a Banach space as sums of unconditionally convergent series.

DEFINITION 7.5 A system (z,,z;)uca of elements x,, from X
and functionals z;, from X* is called a biorthogonal system if

. 1 ifn=m
:c,,(a:m)={ 0 ifn#m.

Let us give some examples. First note that each orthonormal system
can be thought of as a biorthogonal system. Namely if (¥, )ne4 is an
orthonormal system in Lp(R) then the system (v,, ¥y )nc4, Where the
first 1,, in each pair is treated as an element of Ly(R) and the second
as a functional on L2(R), is a biorthogonal system. If e.g. ¥, € L;(R) N
Lo (R) then in the same way we can treat (¥,,)nca as a biorthogonal
system in L (R) (or in Loo(R) as well). If (), )ne a is a Riesz sequence in
a Hilbert space H then there are biorthogonal functionals (¥} )nea (cf.
Lemma 2.7) so that (1,1} )ne4 is a biorthogonal system. Let us note
that a biorthogonal system allows us to associate with each x € X the
series 3  , Z; (z)x,. This is an entirely formal operation. In order to
ensure proper convergence we must impose additional restrictions. Thus
we are ready to define an unconditional basis. This is not the definition

(79)
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one is likely to find in books on functional analysis but it is equivalent
to the standard one and it will be easy to check later.

DEFINITION 7.6 A biorthogonal system (z,,, <, )nec 4 with a count-
able index sel A is an unconditional basis in X if

m{mn}uEA =X (710)

and there exists a constant C such that for every x € X and every
finite set BC A
IS =@ < Cll=- (7.11)

ne€R

As of now we can only give a few and rather easy examples.

e Every Riesz basis (in particular an orthonormal basis) in a Hilbert
space is an unconditional basis.

e For X = ¢, with 1 < p < oo, vectors e, = (0,...,0,1,0...) with 1 in
the n-th place together with the biorthogonal functionals e], (where
naturally e} (z) is the n-th coordinate of the sequence x) form an
unconditional basis in X.

It should be noted however that one of the aims of the next two chapters
is to show that good wavelet bases are unconditional bases in many

function spaces.

REMARK 7.2. If the biorthogonal system (zn, /,)ne is an unconditional ba-
sis in X then it follows from Definition 7.5 and formula 7.10 that the functionals
(zn)nea are determined by the vectors (€n)nea. Thus we will often abuse the
notation and say that the system of vectors (zn)nea is an unconditional basis
in X.

The following theorem shows why unconditional bases can be useful.
They provide an efficient way to represent an arbitrary function (element
of X) in terms of known functions (elements z,,).

Theorem 7.7 Suppose that (z,,, z},)nea 13 an unconditional basis in
X. Then

(i) for each x € X the series 3, . 4 T;.(x)T, converges uncondi-
tionally to «

(ii} there exists a constant C such that for every ¢ € X and
every bounded sequence of numbers (o4, )nea we have

I z an®y, (@) || < Csup|aw] - ||z (7.12)
neA neA
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Proof To prove (i) let us fix any order ¢. Given z € X and € > 0, using
7.10 we can find y = Z:I:lﬂk%(k) such that ||z — y|| < e. 1t follows
from 7.9 that for M > N we have 30 | ] ) (W)Ta(x) = y. Thus taking
B=0({1,2,...,M}) we get from 7.11 that

M M
” Zl;(k)(l - !l)%(k)“ = ” z T5 (k) (T)To (k) — y” < Ce,
k=1 k=1

which implies that
M
" Zz,’,(k)(x)ma(k) - z” <(C+1)e.
k=1

Since € and o were arbitrary (i) follows. To obtain (ii) note first that
from 7.11 we infer that for each finite B C A and each ,, = 41 we have

Y enzl(@)en]| < 2] .

neEB

Using Lemma 7.3 this yields

|| Z a,,x,’,(x)z,,” < 2C sup |ay,| - ||| (7.13)

neB "
for finite B C A. Since for a fixed bounded sequence (oy,)nea the
series ) . &,z (), converges unconditionally (use (i) and Theorem
7.2(v)) condition 7.12 follows from 7.13. O

7.3 Unconditional convergence in L, spaces

After the general discussion of the previous sections let us concentrate
on a more concrete problem of unconditional convergence in L,,(Rd) with
1 < p < co. Let me note at the very beginning that the results of this
section do not depend in any way on the fact that we consider functions
on R?%. Any other decent measure space is as good.

At the basis of our considerations lies the classical Khintchine’s in-
equality. In order to formulate it we need to define Rademacher func-
tions. These are a sequence of functions (7‘,,(t))°o defined on [0, 1] by
the formula

n=1

r,,(t) =: sgn sin 2"tm.

An alternative, perhaps more explicit description is that we define a
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function ¢(z) on R by

(@) = 1 ifn<t<n+iforsomeneZ
PEI= ifn+1<t<nforsomencZ

and we put r,(t) =: (2"~ 't) | [0,1]. We can also use probabilistic
language and say that (r,,(t:)):"";l is a sequence of independent random
variables each taking value 1 with probability % and value —1 with prob-
ability %

Whatever the description, we easily see that (r"(l!))“=l is an orthonor-
mal system in L[0,1]. Another important observation is that given
an arbitrary sequence (s]-)g":l with €; = £1 we have r;(t) = ¢; for
j=,1,..., N exactly on the set of measure 2~V. The basic result about
Rademacher functions is:

oo

Proposition 7.8 (Khintchine’s inequality) There exist constants
A, and By, 1 < p < 00, such that for all (finite) sequences of scalars
(a,)%2, and every p, 1 < p < co, we have

A,,H > e < (Z Ia..lz) < B,,“ > u..r.." . (7.14)
n=1 n=1 4

n=1
This is a classical inequality and its proof can be found in many places,
e.g. [72] Theorem 2.6.3 or {56] Chapter II Theorem 6.

14

Lemma 7.9 There ezxist constants 0 < ¢ < C such that for each
sequence of functions (£,)5, from L,(R?), 1 £ p < 0o, we have

| (Z::I lf..lz)§||’l < (/0 ”;r“(t)ﬁ.”:dt)t < c”(z_jl W)%”P.

(7.15)

Proof Writing the norm inside the central integral in terms of integrals
and changing the order of integration we get

('/"“ /“I | i ra(®u@)| dt dt) "

n=1

Applying Khintchine’s inequality to the inuer integral (for each point
z € R? separately) we get 7.15. O
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Corollary 7.10 Suppose that the series ZneA fu converyes uncon-
ditionally in L,(R%), 1 <p < oo. Then ||[(¥,.ca [f,.]z)‘/znp < oo.

Proof It follows from Theorem 7.2 that it suffices to consider se-
ries in one fixed order, so we can write our series as } .o f,. It
follows from Corollary 7.4 that there exists a constant C such that
” Yo, r,,(t)f,‘llp < C for every number ¢t € [0,1]. This implies that
cr > fol 1oz ra(®) fullB dt, so the claim follows directly from 7.15.

a

Corollary 7.11 Suppose that (fu)uea i3 an unconditional basis in
L,(R?%), 1 < p < co. Then there are constants 0 < ¢ < C such that
for all sequences of scalars (a,)nca we have

Az i, SISttt | 5] vt

(7.16)

Proof As usual we can fix an order and assume that we have (f,,)32,.
1t follows from 7.12 that for each t € [0, 1]

o0 o
(DIEROLWA el hyr s
w=1 L4 n=1 »

so in particular yp =t 3 pe; Tu(t)anfu € Ly(R?). Applying 7.12 for an
element y; and the same t € [0, 1] we get

(717)

” > a,.f..l < C|| > r..(t)a'.f,.” . (7.18)
n=1 P n=1 L4
Clearly 7.16 follows from 7.15 using 7.17 and 7.18. a

As the last observation in this section let us note the following duality
result.

Proposition 7.12 Suppose that (f,., fi)nea with f, € L,(Rd) and
€ Ly(RY), 1 < p< oo and i+ ;— =1, is an unconditional basis in
L,(R?). Then (f})nea is an unconditional basis in Lo(R?).

Proof First we need to show that span(f;).ec 4 is dense in Lo(R?). But
if not then by the Ilahn-Banach theorem there exists an h € Ly(R?),
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h # 0, such that [o, h(t)f;(t)dt = O for all n € A. But Theorem 7.7(i)
implies that

=3 [ mon@a-5.=o

neA

so we have a contradiction, i.e. span(f;)nca is dense in Lq(R%).
For any B C A consider the operator

o)=Y [ sOn@w 1.

n€B
Since (fu)nea is an unconditional basis in L,,(Rd) we can reformulate
7.11 to say that ||Pg|| < C. This implies that the adjoint operator
P ¢ Ly(R?) — Lo(RY) also satisfies ||P4|| < C. An easy calculation
shows that

P =Y [ aOn0a 1

neB
which shows that (f;}),.c 4 is an unconditional basis in L,(R?). O

REMARK 7.3. It is known that L; (R?) does not have an unconditional basis,
cf. [116] ILD.10. This partly explains our restriction on p in Corollary 7.11.

Sources and comments
The concept of unconditional convergence is one of the classical topics
in functional analysis. Everything in this chapter is classical and well
known. A more detailed exposition together with some further references
can be found in {116] or in {72] and {73].

About the erercises. Exercise 7.5 is a classical theorem of Orlicz
which was at the beginning of the theory of unconditionally convergent
series in Banach spaces. The fact that every unconditional basis in a
Hilbert space is a Riesz basis is a well known theorem of N. Bari.

Exercises
7.1 Consider the family of numbers {(—1)"n~'}52, and look at
three orders to sum this family:
o Y (=)t
b Z;cn:l(ﬁ + 4):1_-2 - Tl_l)

(k+1)?-1 4 1
« T (T ﬁ) =t
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Show that the first two series converge but to different sums
while the third series diverges.

Let X be a finite-dimensional Banach space. Show that the
series Y o | x, converges unconditionally in X if and only if
Yoo Mzl < co. Let ry(t) be Rademacher functions. Show
that the series

Z n” r,,(t)

n=1

converges unconditionally in L, (0, 1] for each p, 1 < p < oo, but
£l el = .

Suppose that ZnE 4 Tn converges unconditionally. Show that
there exists a constant C such that for each sequence (ay,)nea
with |ay,| < 1 we have ||}, 4 @nZn|l < C. Give an example
of elements (:c,, a2, in a Banach space and a constant C < oo
such that || 3N 1 &% [} < Csuplay,| for each integer N but
such that the series Y - | is not convergent.

Show that for each « > 0 the series E:’f___l n~letrte=l is uncon-
ditionally convergent in Ly(R). Show that it is unconditionally
convergent in L,(R) for 1 <p < 2.

[Orliczs theorem] Suppose that the series 3 .-, f, converges
unconditionally in L,(R?%), 1 < p < 2. Show that

S lfully < co.

n=1

Let (ey,)nez be the unit vector basis in £;(Z) and let (e} )nez
be coordinate functionals. Show that (e}, ),.cz is not an uncon-
ditional basis in £,(Z)* = £ (Z). This shows that Proposition
7.12 fails in general.

Show that if X has an unconditional basis then X is separable.
Thus Lo, (R?) does not have any unconditional basis.

Let {h;c} with j = 0,1,... and k = 0,...,29 — 1, be periodic
Haar wavelet basis. Let f =: 2V15 2-~). Calculate

27

Z 2_ f,’ljk) ’ljk.
3=0 k=0

Consider 520 500 " (f, hoj k) haje and show that (hse) is

not an uncondmona.l basis in L,10, 1].
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7.10

7.11
7.12
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For f1,..., fu € La(R) show that

([ ISmonfa)” = (i)
Jj=1 j=1

Using this, show that (f,,, f)nea is an unconditional basis in a
Hilbert space H if and only if f,.[| f.]| "} is a Riesz basis in H.
Suppose that (f,,)nc4 and (gm)mep are unconditional bases in
Ly(R), 1 < p < co. Show that (f,, ® gm)(n,m)cAxp is an uncon-
ditional basis in L,(R?).

Show that 7.14 fails for p = oco.

Show that the trigonometric system {f’“"}kez is not an uncon-
ditional basis in L, [0, 27] for p # 2.
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Wavelet bases in L, and H,

In this chapter we will discuss properties of wavelet bases in L,(R?),
1< p < oo, and in Hy(R?) and BMO(R?). To fix our attention let us
assume that we have a multiresolution analysis (V;);jez corresponding
to dyadic dilations 5.2. Let us assume that the scaling function ®(z)
satisfies

[(z)| < C(1+ [£])~4-1. (8.1)
We will also assume that
/ d(z)dz=1 and Y d(x—1)=1. (8.2)
Rd
Y€Zd

This actually follows from 8.1 (see Exercise 5.1). Since we did not prove
it in detail for d > 1, some readers may wish to treat it as an additional
assumption. Note however that we know that 8.2 holds in many special
cases:

e in the one-dimensional case (see Proposition 2.17)
e for a tensor product multiresolution analysis with the scaling function
a tensor product of one-dimensional scaling functions

e for all examples constructed in Chapter 5.

Let us assume also that we have a wavelet set (¥*(x)),=1,.. 2¢_1 With
wavelets ¥* satisfying

[¥* (@) < C(1 + |=f)~¢* (83)
and

a ., , —d-
[ V@] < 0O+l (8.4)

181
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In particular a 1-regular multiresolution analysis with a 1-regnlar wavelet
set will do, but 8.1-8.4 will easily suffice for our purposes. Actually in
8.1, 8.3 and 8.4 we assume more decay than is actually needed in our
proofs. The reader may check that all proofs in this chapter are valid if
we replace the exponent —d — 1 by an exponent —d — ¢ for some £ > 0.
Also we do not need the existence of the derivative of the wavelet. We
need only to control the oscillation of the wavelet. The reader may check
that we can replace 8.4 by the following condition

W (2) = ¥*(¥)| < Cla — y|min ((1+ |2])77%, (1 + [y])~47°).

This in particular implies that all results of this chapter are true also for
piecewise-linear wavelets with exponential decay described in Chapter
1 and 3. We will not discuss more general dilations, although in some
cases they can be treated by the same methods.

8.1 Projections associated with a multiresolution analysis
Our main topic in this ection is to investigate P, the orthogonal pro-
jections onto V;. We will do so under assumptions 8.1 and 8.3. In
this section we do not use any assumption about the smoothness of
the wavelets or acaling functions involved. Explicitly the projections
Pj can be written as

YCED Y FCr=0rE e (8.5)

~€Z4

Proposition 8.1 The projections P; with j € Z have the following
properties.
(i) For the dilation J, with r € Z (cf. Definition 2.4 or formula
5.2) we have
Py = J,P;_, (8.6)

in particular P; = J;PoJ_;
(ii) There exist constants C > ¢ > 0 such that for each j € Z
and 1 < p < 0o and each sequence of scalars (aq)ycze we

have
. 1/p
ngd(l/2~-1/):)( 3 ]a_y|r') < ” 3 a,yd)j',,(z)” (8.7)
vezd vezs 7
< cparam (Y |a~|p)’/”

~EZ®
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(iii) There exists a constant C such that for each 7 € Z and
fe Lv(Rd)» 1 <p £ 00, we have

1P, < CIAN, - (8.8)

Before we proceed with the proof let us establish for future use the
following lemma.

Lemma 8.2 Suppose ¢(x) is a function on R? such that |¢(z)| <
C(1 +|z|)=?"'. Then for any sequence of scalars (a,),cz« and any
p, 1 £ p < oo, we have

| £ wste-]| <l
yezd

Proof With q the conjugate exponent to p, i.e. ’l, + % =1, let us write

|5 e,

~€Z4
< [ (3 mliete =1 otz =10 da
~ezd
< [ (T hul(+le=a) (1 4o =) 7Y b

~€Zd
Using Holder’s inequality for series this can be majorized by
r/q
¢ [ Tlapa+iz=a =t (L a+fp-a)1)"
~€Z4 ~EZ4

Since for each x € R? we have J__ cz4(1 + |z — 7])74"! < C we get

|E wste-] < ¢Sl [ +le-ah e
~€Z4 ~€Z4
< Z oy [?.
~€ezd

O

Proof of Proposition 8.1 The argument for (i) is just the standard
change of variable argument. Since

153 a®)(@) =2 Y a,@(z )

~€Z4 ~€Z4
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we see from 6.2 that it suffices to check (ii) for j = 0. Then the right
hand inequality follows from Lemma 8.2 and our assumption 8.1. To
show the left side inequality we use elementary duality, namely given
a sequence of scalars (ay),¢z¢ we find a sequence (b,).,ez¢ such that
Yoyeze Ib4]9 = 1 and such that 3o zuayby = (3, ¢z lay|P)/?. From
what we have shown we know that || 2 ezd by P(z — 7)”‘1 < C so using
the orthogonality of translates and Holder’s inequality we have

( > Iﬂql”)l/r > aby

~E€Z4 A
- /R (T ate=—)( 3 byo(z—m)) ds
~€Zd ~€Zd
< (’.‘” Z a,d(x —1)””
vEZd

which shows the left hand inequality in (ii). Once more observe that 6.2
implies that to show 8.8 it suffices to check it for j = 0. From (ii) we
see that we have to prove

2

Y€Ze

P
2O

[ rone-ma
Rd

The argument for this is similar to the argument used in the proof of
Lemma 8.2, namely

> | [ ree-naf

A

r/a
s%fn ropiee-lae- ([ 166 -ia)
<c [ iror 3 -l

v€Z
<¢ [ opa.
Rd
(]

Note that the argument for the above proposition depends only on the
orthogonality of translates and the decay estimate 8.1. Thus the same
argument works for wavelets. For s =1,...,2% — 1 and j € Z we define
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the orthogonal projection
=Y [ 10T, By, (89)
~ezZd

Clearly when d = 1 we have only one wavelet and then we drop the
superscript s and consider the projections

@)=Y [ Z ST dt ¥ 54(2). (8.10)

kezZ¥ ~

The same argument as above gives:

Proposition 8.3 Projections Qf with j € Z and s =1,2,... ,2¢9 — 1
have the following properties.
(i) For the dilation J, with r € Z (c¢f. Definition 2.4 or formula
5.2) we have

QjJr = J,Q5_, (8.11)

in particular Q} = J;Q3J_;
(ii) There ezist constants C > ¢ > 0 such that for each j € Z
and 1 < p < oo and each sequence of scalars (ay)yeze we

have
c2jd(§_%)( Z |a—1|’)l/p < || Z a“v‘v;»'r("")” (8.12)
~ezd vezd i
< C2jd(§—§)( z |a_ylp)1/7

~€Z4
(iii) There exists @ constant C such that for each j € Z and
S € Ly(RY), 1< p< oo, we have

essll, < s, - (8.13)

Our aim now is to show that the projections P; approximate pointwise
the identity not only in L2(R?) but also in L,(R?). To show this we first
represent P; in terms of a kernel and establish some properties of this
kernel. We can rewrite 8.5 as

Pif@) = [ 10 4@T,0d

v€Z4

/ 102 @z, Pt) dt (8.14)
R‘

I
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where

3,0) = Y bz —1)BC=.

~€Z4

From 8.2 we infer that for each z € R?

'/R‘ &(z,t)dt =1

and from 8.1 we easily get
/ | ®(z,0)] df < C
Rd

From 8.1 we also see that

1

1
R D e Rl (e

IA

1

YEA ~€B ~H€C
where the sets A, B, C’ depend on z, t and are defined as
A = {7€Z': [z—v| < Yz —t]}
B o= {re2': =11 < bo—t])
C = Z*\(AUB).

Note that for 7y € A we have |t — 7] > |z — 1], so

1 1
; T+ ]z = A A+ [t =)+

1 1
S >
= Ll flyd+1 — ~[Yd+1
I+ o =)™ = T+ [z — %

C 1
<
1+ |z — tf)d+! 72; 1+ |z —5[)d+?
C
(1+ [z — a1’
Analogously we obtain

1 C

PRI z:(1+II W+ =)

1
< .
2 T G < G
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To the third sum we apply Holder’s inequality to get

1
;E:c 1+ I:D = (L4 ft -

1 1/2
< Y )
7 otz U F 1D

1 1/2
(1+]e —7I)2"+2)

x
1 2y—t2]z -t
1
< C Y /s (8.21)
= 1 2d+2
szt 1+ 1D
c

L ——,
= (4| —t])4t2
Putting 8.18-8.21 together we get the important estimate

C

TR (8.22)

| ®(=z,t)] <
Now we are ready to prove:

Theorem 8.4 Suppose that f € L,(R?) if 1 <p < 00, or f € Co(RY)
if p=oco. Then ||P_,j—f||P—>0 as j — oo.

REMARK 8.1. This theorem was anticipated by Theorem 1.5.
Proof First let us show that we have uniform convergence for f €
Co(R?). Since each such f is uniformly continuous for each € > 0 we can

find 2 6 > 0 such that |f(z) — f(t)] < 35 whenever |z —t| < §, where C
is the constant appearing in 8.17. Using 8.16 and 8.14 we can write

1@-PitE = [ e - o e@n 2

= [ s e - s e@s
|z-t|<é lz—t]>6
=t N(z) + (). (8.23)

Clearly from 8.17 and our choice of § we get

[1(=)| < -255/ 24| ®(2ix, 27t)|dt < = (8.24)
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Since f is bounded we get from 8.22

k@] < 2l [ P 82
lz-t|>6

2id
CIIfllmfl T T

-tj>s (1+ 2]z — t)4+1

IN

1
W0t Jose 506 (T B = a7

The integral in the last line does not depend on = and converges to 0
as j — oo. This together with 8.23 and 8.24 shows that for f € Co(R?)
the sequence P;f converges uniformly to f as j — 0o. So the theorem
holds for p = 0o

Now let us consider the case p = 1. Let us take f continuous and such
that f(z) =0 if |z| > R. We write

Is - PAl, = /.MR |f(2) - Py f(z)] d + /hl) P/ ()] da.

Since we already know that P;f tends uniformly to f the first integral
converges to 0 as j — co. Let us estimate the second integral.

[ ips@lds
|lx|>2R
< / c/ 24| B(2z, P1)|dt do
|z|>2R Iti<R
/ / 274(1 4+ 2|z — ¢|) "4~ da dt
lt|I<R J|x|>2R
c/ / 241 + e — 1))~V dxdt
|tlI<R J|jz~t|>R

= C/ / 2401 4 2 ju|) ¢V dudt
Iti<R J|u|>R

< c/ (¥R)™'dt < c277 R
|t|l<R

IA

IN

which clearly tends to zero as § — co. Since continuous functions with
compact support are dense in L,(R?), from 8.8 we infer that the Theo-
rem holds also for p = 1.

For the case 1 < p < 00, note that it follows from the case p =1 and
from 8.8 applied for p = oo that for f continuous with compact support
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we have

IS = Pifll»

IA

(/m |f(z) = P;f ()| f = Pifl| Bt d:z:) p

(TN Y el T ¥ g

which tends to 0 as j — oo from what we have proved already. Since

1A

continuous functions with compact support are dense in LP(RJ) the the-
orem follows from the above using 8.8. [}

Now we would like to comment on the convergence of P;f as j — —oo.
One would expect that || P;f||, — 0 for each f € Ly(R?). Actually for
p =1 and for p = oo this in not the case. To see this for p = co note
that from 8.2 it immediately follows that P;1 =1 for each 5 € Z. For
p =1 observe that

/R Pif(=)dz

L X [ 0% 0, (e de

~eZ4

> /R f(')de/w ®;(x) de

€24

SN WIOD=OE RIS

yezZd

[0 s@r=—a

vezd

/R Sy

so || P;f]|, does not tend to 0 for any function f € Ly(R?) thar satisfies
Jra £(t)dt # 0. For other p’s the situation from Ly(R?) prevails. We
have the following proposition whose proof is a straightforward general-

I

ization of the proof of Proposition 2.14.

Proposition 8.5 For 1 <p < oo and for any f € L,(R?) we have
1P, — 0

as j — —00.

Proof Since continuous functions with compact support are dense in
L,(RY) we see from A1.3-III and 8.8 that it suffices to consider only
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f continuous with compact support, i.e. f(z) = 0 for |xr| > R. Let
B={xeR?: |z| < R}. From 8.7 we get

P
IPfly s cpit/etn 37 / FOF;@) dt
~ezd VB
) r/q
< (2idr/2-1) Z (/ [f(r)|”dr) . (/ ld’,-‘.,(f,)]"dt)
~eze B B
) . rle
< el X ([ 24w -mpa)
~eze VB
r/q
= ey ([ recora)
neze W2 B

Now let us consider only j’s so small that the sets v 4+ 2/ B with y € Z¢
are disjoint. Then

r/y
(/ | P(u)|? du)
N+ B

Thus we get
IR < CUIIR299BP Y (1 + )74
~eZd

C ”/”z IBlp/qzrb‘p/q

IA

) rla
[2B1)

1
T+ P

C
((1 + [yt e
(;zdjr/qlmr/q

[N

A

IA

which clearly tends to 0 when j — —oo. O

REMARK 8.2. We could have appealed to the Lebesgue dominated conver-
gence theorem in the above proof as we did in the proof of Proposition 2.14 but
because we have the estimate 8.1, it was easy to avoid it.

One useful corollary of the above considerations is:

Corollary 8.6 Suppose {¥*} with s = 1,2,...,2% — 1 is a wavelet
set satisfying 8.3 associated with a mnulliresolution analysis with a
scaling function satisfying 8.1. Then the system {V¥] .} with j € Z
and y € Z% and s as above is lincarly dense in Lo(R?) for1 < p < oo.

d
Proof Clearly P,y — F; = Zzz'l'l Q5 so this corollary follows from
Theorem 8.4 and Proposition 8.5. O
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8.2 Unconditional bases in L, and H;

In this section we do not have to assume that our wavelets are associated
with a multiresolution analysis. So let us show:

Proposition 8.7 Suppose a function ¥ € Ly(R?) N Ly(R?) is such
that the system

2942 9(Dy — }
{ ( K jezyezd

is an orthonormal system. Then [, ¥(zx)dz =0.

Proof Multiplying ¥ by an appropriate constant we can and will assume
that [ V(z)dz =6 > 0. If § > 0 we can find a cube Q C R? with
center 0, Q@ D [—1,1]¢ and such that for every set A C R? with A D Q
we have R [, ¥(z) dx > 6/2. For each j € N let us define a set of indices
LGY={v=(1s . 72) €Z¢: =21 <y, <P ' for s=1,...,d}
and a function
fi= Z V(2 x —7).
YEL(F)

One easily checks that |[f,]|2 =1 for j > 1. Also

5= 5 [ v

~eL(s) 29
= Z 2_jd/ ¥(u) du.
v€EL(5) 24+1Q—ny

Since 27+'Q — v O Q we infer that §Rf2Q fj > 8/2. Since the fj's are
orthonormal, we see that for each M > 1

M
1
||j§ﬁfj”z =1
We also have

M
1 é
§R/ —_—fi > VM - 1=. 8.25
QZ i 5 (8.25)

From Holder’s inequality we get

M M
ILQ_;JI\;—— Tf](l')dxl = |'/R‘12Q(x)AJ_§\/%jj(x)dx
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(8.26)

IA

M
1
[12¢ll, jZZ ﬁb’
- 2
[2Q('72.

Since Q is fixed and M can be arbitrarily large, comparing 8.25 with
8.26 we get 6 = 0. 0O

IN

The aim of this section is to show that good wavelet bases (i.e. satisfying
our standing assumptions 8.3 and 8.4) are unconditional bases in L, (R?)
for 1 < p < oo and in H;(RY). We will also investigate some relations
between such bases. Our main tool and really the heart of our arguments
in this section is the following technical proposition.

Proposition 8.8 Suppose we have two wavelet sets (V*),—;  24_y
and (‘il")k:,_m_ga_, corresponding to dyadic dilations. Assume that
the wavelets V* satisfy 8.8 and 8.4 and assume that the wavelets
U satisfy 8.8. Then for each s and k and each cc-atom a the
series

> (av,) ¥, (8.27)

(jv)etxzd

converges unconditionally in Hy(R?) and moreover there exists a
constant C such that for each A C Z x Z% and each co-atom a

> (e ¥l <C (8.28)
GeA

Proof We will prove 8.27. The estimate 8.28 will follow from the same
proof. To simplify the notation we will omit the superscripts s and k.
Let us take an oo-atom a(z) supported on a cube @ with center g. Fix
an integer N € Z such that b — the length of the side of Q - satisfies
2°N-1 < b < 27N, Let us split the set of indices Z x Z% into three sets

A = {(4i7) : <N}
B = {(Gy) :i>N and 277y €300}
C = {(y7) : i>N and 277y ¢30Q}.

In accordance with this splitting we write the series 8.27 as

Z + Z + Z (0, ¥, ) ¥jn = +Zp+Tc. (829)

(€A  (37)€B  (j7)€C
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formula 8.3 we see that we can apply Proposition 6.20 and get I"‘i’l” <C.
From 6.38 and 6.40 we get

oo 2 s = i o o

. From Proposition 8.7 and

First let us find an estimate for I"\il_,-,,

Let us also estimate a single coeflicient in the series 8.27. We have
o ¥yl = | ]Q a(x)¥ (@) da
| [ e~ ¥ (a]

Nlalls sup |¥;+ (=) — ¥5,(q)]
T€EQ

il

1A

IN

bVd sup |grad ¥;,(z)|.
x€Q

Thus from 8.4 we obtain

| (@, ¥;,) | < CoVd2i4/2+i sug(] + |29z —4|)"4 1 (8.31)
x€

With the above two estimates we can show that the series ¥4 is abso-
lutely convergent. From the triangle inequality, 8.30 and 8.31 we get

DN BN SIRTCR 20N] 12N |
Grlea
S €Y Y AR sup(1 4 |2 — o)) 4 2
J<N ye2d €@
< CVAY P Y sup(l+ |27z —a)) 4 (8.32)
Q

JSN  yezd*€

Since we consider only j < N and z € Q we see that 27x—27¢ € [—1,1]%.
This implies that there exists a constant C such that

sup(l + |27z —4])" " OO+ [27g— )¢ (8.33)
x

Substituting 8.33 into the last expression of 8.32 we get

IZal < CoVdY 2 S (14 |2g—q)) !

JEN  qe2d
< cvd E 27 < covd2N < const.
J<N

Thus the series ¥ 4 is absolutely convergent.
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In order to estimate ¢ we will need another estimate for | (a, ¥;.,) |.
We use 8.3 to obtain

[{a,¥;,)|

I

| [ o]

ﬁ/oz'ﬁ/?(u|2fx-7|)*'“dz. (8.34)

Using the triangle inequality, 8.30 and 8.34 we get

el < Y Ha ]
Gv)ec
<cy ¥ 2'*'/2 f(1+|271—7[) d-1 gpp= 412

>N ~:2794¢30Q

IQIf Y 0+ [Zz—q) s (8.35)

>N ~:2-14¢30Q

Since z € Q and 277y ¢ 3 0 Q we see that |27z — 4| > 27b so we infer

that
DR P E ) RS el N 7 M
¥: 274 ¢30Q i lv>276
< @2yt (8.36)

Substituting 8.36 into the last line of 8.35 we obtain

/ C@y =Y 279 = const.
7] 2

This shows that ¢ is absolutely convergent.

Icl<cy’
>N

In order to show that g converges unconditionally let us fix any
sequence of signs €4 = £1 with (j,5) € B. For M > N consider the
series

=Y Y e (avn) ¥, (8.37)

i>M 4:2-7+4€30Q

Our proposition will be proved as soon as we show that there exists a
constant C' (valid for all signs €;, and all atoms a) such that

sMIl<C forall M > N (8.38)

and that
mEg [l—0 as M —oo. (8.39)
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We will do so using Corollary 6.21. First note that for any choice of
signs

o], < ool < s o P scren.

It is also clear that [|S¥|; — 0 as M — oo, so we can write
=¥, < w2 (8.41)

for some sequence iy — 0.
We will prove a pointwise estimate (valid for all signs and all atoms)
so that we can apply Corollary 6.21. We have

[SH@| = €Y X N0+ Rz -t

I>M ~:2-34€30Q

< (X2 lewar)”

i>M 4.2 14€30Q

(XX i)

F>M 4:2-34€30Q

1/2

Since the wavelets are orthonormal the first factor is at most |laf, <
|Q]~/2 so we get

Y@l <2y Y wa+ie-a) )" )
J>M y:2-34€30Q

Note that for fixed j > N there are at most G20~ N points v € Z¢
such that 2 7y € 30 Q. Also for x ¢ 60Q and 277y € 30 Q we see that

|2jz— 7| = 2j|:c— 2774 > CY |z —q|
(recall that ¢ is the center of Q). This implies that
(14 |27~ 7)) 47 < C(2] - gl) 242,

Using these observations and 8.42 we get that for z ¢ 60 Q

C|Q|~n/2( Z 96 -N)d2jd(2j|x —q)) ,u_z) 1/2

|E§'(r)’ <
i>M
< Cl—g M (QI Y 2 V)
i>M
< Cle—gl (X 2)"” (8.43)
i>M

IA

Clz—q|7¢ 127 M,
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From 8.41 and 8.43 and Corollary 6.21 conditions 8.38 and 8.39 easily
follow. This completes the proof of the proposition. O

REMARK 8.3. Note that the only place in the above proof where smoothness
of wavelets (i.e. 8.4) is used is the estimate 8.31 which in turn is used only to
estimate £ 4. This shows that the estimates for £5 and L¢ hold without any
change when about the wavelets ¥* we assume only 8.3.

As an easy corollary from what we have proved already we obtain:

Theorem 8.9 If a wavelet set (V*),_; ,4_; associated with the
dyadic dilation satisfies 8.8 and 8.4 then the system

{5

J‘Y};ez ~eZd, e=1,...,29-1 (8'44)

is an unconditional basis in H(R?) and in L,(RY) with 1 < p < co.

Proof Let us start with the case H,(R?%). From Proposition 8.8 we infer
that for each oo-atom a the series

241

> D (av5) ¥,

s=1 (j.7)
converges in H;(R%). We also know that in Ly(R?) it converges to a.
This implies that this series converges in the norm of H, (]Rd) to a. From
this and the definition of H;(R?) we immediately infer that the system
8.44 is linearly dense in H;(R?). So from 8.28 we see that this system is
an unconditional basis in I} (R?). Now let us consider the case of L,(RY)
with 1 < p < 2. First let us make sure that the system 8.44 is linearly
dense in L,,(]R‘i). If our wavelet set is associated with an appropriate
multiresolution analysis this is Corollary 8.6. If we do not know this
then we can use an argument outlined in Exercise 8.4. Once we know
that the system 8.44 is linearly dense we need to show that there exists
a constant C such that for each finite set of indices A we have

| vyl <cu,. (8.45)

It follows from 8.28 that such an inequality holds for the H;-norm and
from orthonormality of wavelets it follows for p = 2. So from Theorem
6.23 applied to the operator

Paf =3 {f,%}
A




8.2 Unconditional bases in L, and H, 197

we infer that 8.45 holds for 1 < p < 2. This means that the system
8.44 is an unconditional basis in L,(RY) when 1 < p < 2. The case
2 < p < oo follows from Proposition 7.12. O

Corollary 8.10 Suppose we have two wavelet sets (W*),_;  sa_y
and (V"),=; . o4_; both associated with the dyadic dilation. If the
set (U*),—;, 241 satisfies 8.8 and 8.4 and (V") 241 salisfies

8.8 then the map
Vi, - Vi (8.46)

eztends to a continuous map of Hi(R?) into itself and of L,(R?)
into itself, 1 < p < 2. If both wavelel sets satisfy 8.8 and 8.4 then
the map 8.46 extends to an isomorphism of H;(R?) and of L,(R?)
with 1 < p < oco.

Proof Clearly the second claim for 1 < p < 2 follows from the first
applied to both wavelet sets. This claim for 2 < p < oo follows from
easy duality arguments, as in the proof of Proposition 7.12. So it suffices
to show that the map defined by 8.46 is continuous. It follows from 8.28
that this map is continuous on Hl(JRd) and it follows from orthogonality
of wavelets that it is continuous on L,(R?). From Theorem 6.23 we infer
that it is continuous on L,(RY) when 1 < p < 2. 0O

Corollary 8.11 Let (W"),—;, 24_; be a wavelet set aszsociated with
the dyadic dilation and satisfying 8.3 and 8.4. Then for 1 <p < oo
there exist constants 0 < ¢ < C such that for any f we have

= ) 21y |2 12
(X X inw)rve) ™| <els, @am

A=l (jiv)€Zx24

el fll, <

For f € H\(R?) we have

291
L(Z Y W) P@r) Ca <o, s

=1 (j,7)€Zx24

Proof Theorem 8.9 tells us that 8.47 is just a special case of Corollary
7.11. For f € H;(R?) Theorem 8.9 and Proposition 6.14 show that the
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series
24 1

> X (e,

=1 (5,9)€Zx T4

converges unconditionally in L, (R%), so 8.48 follows from Corollary 7.10.

a

8.3 Haar wavelets

In this section we will discuss wavelet sets on R? obtained from the one-
dimensional Haar wavelet using the procedure described in Example 5.1
and Proposition 5.2. Just to state the properties we are going to use let
us say that we will consider a wavelet set (h*).;, ,2_; associated with
the dyadic dilation of R? such that

|h* ()] = L ypa(xr) for s=1,...,27—1 (8.49)
and such that
d
each h*(x) is constant on each cube H[%, B4 with k; € Z (8.50)
—

Clearly these wavelets satisfy 8.3 but do not satisfy 8.4. Our aim is
to show that the Haar wavelet set generates an unconditional basis in
I,p(Rd) for 1 < p < 0o. Our main tool is the following proposition.

Proposition 8.12 Suppose that (¥*),~q,  4_; i3 a wavelet set satis-
fying 8.3 and associated with dyadic dilations. For 1 < p < 2 there
exists a conatant Cp, such that for each sct V C {1,...,29-1} xZx2¢
and each f € Ly(R?) we have

| = e,

(23:1)€V

L (8.51)

Proof With each V as in the proposition we can associate an operator
— L] A
Pv(f) = Z <f' hﬁ) ‘llrw‘
(a3.7)eV

It is clear that Py has norm 1 as an operator on Lo(R9). To prove the
propasition we will use Theorem 6.23 together with Remark 6.5. Thus
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we need to check 6.44. Basically we will repeat the proof of Proposition
8.8 to show that for each s =1,...,2% — 1 we have

“ 3 (fimg s, <CZ|A[ (8.52)

(a,jy)eV

where f = }:j Aja; and the a;’s are co-atoms supported on dyadic
cubes. Since we are proving an estimate of the L;-norm, to show 8.52
it suffices to show that there exists a constant C such that for every V

and every s =1,...,2% — 1 and every oo-atom a supported on a dyadic
cube @ we have
Z (a,hj) Wil <C (8.53)
(s, meV

Since Q is dyadic its side has length 2-~¥-1 for some integer N. As
observed in Remark 8.3 we can use directly the estimates for £ and
¢ (the notation is as in the proof of Proposition 8.8) so the only thing

” Z (a, I‘;-v> Vi,

(8.3, v)EV jSN

left to prove is

<c (8.54)
1

But for j < N each h}, is supported on a dyadic cube of side > 2-N
Since a is supported on a cube of side 2~V ~! we infer from 8.50 that
each Ii]_ is constant on the support of a, so each (a, h;_y) is zero. This
clearly gives 8.54 with C = 0 and completes the proof of the Proposition.

a

Now we are ready for the first main theorem of this section.

Theorem 8.13 FEach of the Haar wavelct sets described in 8.49
and 8.50 gives an unconditional basis in L,(RY) for 1 < p < oo.
Moreover if (W*),—y, ,4_; i3 any wavelct set satisfying 8.3 and 8.4
then for any p, 1 < p < oo, there exist constants 0 < ¢ < C such
that

291
A
c” E : E :a”‘lln
=1 jy

291
= C“ Z Zaﬁ‘ll;,y‘
a=1 jv

(8.55)

241

<)Y S,
a=1 jy

Jor all sequences of scalars.

Proof It is clear, either directly from the definition or from Corollary 8.6,
that (h;-,)jEZ.—yel",.-:l ..... 24_y is linearly dense in L,(R?) for 1 < p < oo.
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Thus 8.51 applied for ¥* = h" shows that the Haar wavelet basis is an
unconditional basis in L,(JR") for1 < p < 2. Thecase 2 < p < oo follows
from Proposition 7.12. If 1 < p < 2 then the right hand inequality in
8.55 follows directly from Corollary 8.10 and the left hand inequality
follows from 8.51. For 2 < p < oo the formula 8.55 follows by duality
from the case 1 < p < 2. O

REMARK 8.4. The above results suggest the following notion of equivalence
of bases. Suppose (Tn)neca a0d (Ym)mep are unconditional bases in a Banach
space X. We say that these bases are equivalent if there exist constants 0 < ¢ <
C and a 1-1 and onto map 7 : A — B such that

Z nnxn“ < ” z @nYnin)|| < ('“ Z [N
nEA n€EA nEA

for all finitely non-zero sequences of scalars (an)nea. The condition 8.56 simply
means that there exists an isomorphism [ : X — X such that I(z,) = yx(n).

Using this notion we can say that all unconditional bases in L,(R%), 1 <p <
00, given by Theorem 8.9 are equivalent among themselves and with the Haar
wavelet bases discussed in this section.

c (8.56)

Before we proceed let us introduce some notation. For j € Z and v € Z¢
let
Ajy(x) = |15, ()]

It follows from 8.49 that A;, () oes not depend on s. It also follows
from 8.49 that

Bjy(z) = 2jd/210(1‘.’v) (8.57)
where Q(j,7) is the dyadic cube [[7_,[2 7, 2/ (7 + 1)] where v =
(71,...,74). Since this gives all dyadic cubes we may think of the family

A,., as characteristic functions, normalized in L, (R%), of all dyadic cubes
Q. Now we can formulate our next theorem.

Theorem 8.14 Let 1 < p < co. Then there exist constants0 < ¢ < C
such that for all |

201 1/2
(X X lnm)laz) | <cirl, @8

A=l (jy)€Zx24

il =

If (¥*)4-.1,.. 241 18 any wavelet set associated with dyadic dilation
and satisfying 8.3 and 8.4 then

(zz-n Z l(f,‘l';ﬁ)le?‘y)l/i’”PS(Z"f",]_ (8.59)

=1 (jr)€Zx24

cllfits <
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Proof Relation 8.58 follows directly from Theorem 8.13 and Corollary
7.11. To obtain 8.59 we apply 8.55 and Corollary 7.11. O

We can view the above Theorem 8.14 as a characterization of L,(R?)
in terms of wavelet coefficients <f, W;n)' Our next goal is to provide a
similar characterization for the space H,(R?). Before we state our next
technical proposition let us introduce some notation.

Let us fix a set W C [0,1]¢ of positive measure  and let us denote
R(z) = lw(x). As usual R;.(x) =: 279/2R(27z — 7). Let us denote
W(j,7) =:supp R;.. We will also use the notation Q(j,7) and A;,(x)
as explained before Theorem 8.14. Clearly

W(3,7) CQ>,Y) and |W(,7)| = alQy, )] (8.60)

Proposition 8.15 Let ('II")Z“’l be any compactly supported wavelet

a=1
set as described in Remark 5.1. For a family of numbers

(a(jv'Y))jEZ,'vEZ‘
let us write
1/2
p@=( X laGVPRLE)
(3, 7)€ZxZ4
and suppose that ¢ € Ly(R?). Then for each s =1,2,...,29 1 the
function

Y. alms,

(€224

is in H,(RY) and

S alin¥|l < Clivlh. (8.61)
(Gvezxzd

Proof Clearly in order to show that the function 3-; e, 74 a(5, 1)V,
is in H}(R?) and to estimate its norm we must write it as a sum of
atoms. This will be done by partitioning the index set Z x Z¢ into sets
D(k,1) in such a way that

Aa=: > aGm¥;, (8.62)
(G, v)€D(k 1)

will be an appropriate multiple of a 2-atom.
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For each k € Z let us define

=:{z€ R? @ p(z) > 2¢). (8.63)
Clearly Ex D Ej4) for all k € Z and we have
00 o

I

o0
> 2k > kN B\ Byl

k=—o00 k=—o00 i=k
00 o0
< Z 2k Z 277 / p(z)dz
k= -0 j=k E\Ej41

Rad J

= 3 3 2 / o(z)dz  (864)

j=-ook=-00 E,\E, 41

oo

= ZZ p(x)d:

j=-o E;\E, 41

= 2/” () de.

Now for each k € Z let us consider a collection Ci of indices (j,7) € Zx2Z¢
such that the dyadic cube Q(j,v) satisfies

BN QG| > F1RG . (8.65)
Since the F}'s decrease we see that
Ck DCryy foral keZ. (8.66)
We will denote
U QG (8.67)
GmeECs

It follows from the Lebesgue differentiation theorem (Theorem 6.4) ap-
plied to the function 1g, that for almost all € Ej there exists a dyadic
cube Q such that |Ex N Q| > $|Q], so

E; D Fx (8.68)

modulo a sct of measure zero.

Let us look at the family of dyadic cubes {Q(j,7) : (J,7) € Cx}. We
denote the maximal cubes of this family by Q4. The index ! runs through
some unspecified index set. From elementary properties of dyadic cubes
we infer that for each k € Z the cubes @ arc disjoint and

ri=Jak (8:)
i
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From 8.69, 8.65 and 8.68 it follows that
2
TP > !
IR NLLEA

= 2|enlel (8.70)
{

1Ex]

2 2
= ZIE.NE!N = Z|E.|.
a|k kl a| k|

Let us also note that if a(j,v) # 0 then the index (j,7) € Ci for some
k € Z. Namely, take k such that |a(j,7)|27¥/2 > 2¥. Then on the set
W(j,7) we have p(z) > 2%, so W(j,7) C Ex. From 8.60 we infer that
|Q(,Y) N Ex| = IW(3,7)| = «|Q3, 1)}
so (4,7) € Cg.
Let us denote Dy =: Ci \ Cx4 and write

D(k,l)=: {(,7) € Dx : QUj,7) C Qi}. (8.71)

This is the desired splitting. Since each (j,7) such that a(j,7) # 0
belongs to some Cy it belongs to some Dy so it belongs to some D(k, ).

So we get
DAu= Y. a(imV;,
k.l

(Gv)ezxzd

where the Ag's are defined by 8.62. Note that supp ¥* C R [0,1]¢
for some positive constant R. This implies that supp ¥}, C RoQ(j,7).
Thus the definition of D(k,!) and 8.62 show that

supp Ax C Ro QL. (8.72)
Now let us estimate || Al|2. Clearly
lal3= 3 laGnI* (8.73)
(5,7)€D(k,I)

Note that (j,v) € D(k,!) implies that Q(j,7) C Q% and Q(4,7) € Ck1),
so |Ex1 N QU7 £ $1Q(,7)|. This implies that for (j,7) € D(k,1)
we have

1RGN\ Bl 2 (1 - 2)1QG . (8.74)

Since

P> Y el IPR ()

(G,v)ED(k 1)
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we get

[ s
Qu\Ex 41

2 3 leGP? f  RL@ds (8.75)
(GA)€ED(k 1) Q\Ex 4y
> laGmPPUW ) 0@\ Era)l.

(7, )€ED(kH)

Il

Since W(j,7) C Q(4,7) C QL we see that
WG, 7) N (QL\ Exst) = W3 N (QUG) \ Branr)

so from 8.74 and 8.60 we get
. o a_ .
WG, N @\ Exan)| 2 510G = 5277 (876)

From 8.73, 8.75 and 8.76 we obtain

2
IAkllz < ;/‘;‘\ (@) de. (8.77)

 \Exr

For z ¢ Ex,) we have p(x) < 2%¥*! so
/ @ () dz < 220VNQ N Eipr| < 4-45Q4. (8.78)
QL\Eri

Note that 8.78 and 8.72 imply that Ay € Ly(R?) so o, Axi(z)dz = 0.
Thus Ak is a multiple of a 2-atom. If we write Ay, = A(k,l) A}, where

Atk D) = /IR o Q4| | Awill2 (8.79)
we get that A}, is a 2-atom supported on Ro@\. Thus in order to show

8.61 we must estimate 3., A(k,!). From 8.79 and 8.77 together with
8.78 we get

DAk = Y RIQL - 1 Aull
ki ki
df2 119,95 /2
R ZH:\/IQ'J 2:2 \/:\/IQU
= 21{4/2\@22"Z|QLI
k i

from 8.69 and 8.70

1A
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2
oRdr2 |2 k| e
JES M)
k
2
/2 -1 [2 k
4R?a ‘/azka |Ek|.

This estimate and 8.64 give

Ak, 1) < 8RV?2? 2 ) dz
%: ( \/:_/Rdw()

so 8.61 holds. O

IA

REMARK 8.5. The use of compactly supported wavelets in the above propo-
sition allowed us to estimate the support of Ay . If we assum that our wavelets
are not compactly supported but satisfy 8.3 instead, we can prove this Proposi-
tion by estimating | A || using proposition 6.20.

This proposition allows us to show the following theorem.

Theorem 8.16 Suppose that (‘ll")f‘;‘l1 is a wavelet set associated
with dyadic dilations and satisfying 8.3 and 8.4. The following
conditions are equivalent:

(i) f € H\(R?)
d
(ii) the series 322_7" P im)ezxze (f,¥3,) ¥} converges uncondi-
tionally in Ly (RY)

(i) (S5 Smeacas | (195 FIV3, @) € La(Re)

. d_ 2\ 1/2
(iv) (Ef:ll S mezxza | {f, V1124, ()] ) € Li(R?) where
Aj, () are defined in 8.57.

This theorem provides a characterization of H;(R?) in terms of wavelets.
Condition (iv) describes H,(R?) in terms of wavelet coefficients, while
(i) describes H,;(RY) in terms of convergence of wavelet expansions.
Note also that it follows from tracing the constants in our proof or
from the closed graph theorem that the integral of each of the functions
appearing in (iii) and (iv) gives a norm on H;(R?) equivalent to |.J. It
is a remarkable fact that very different wavelets give via (ii) or (iii) the
same space H1(RY).

Proof The implications (i)== (ii) and (ii)==(iii) have been already
proved (cf. Corollary 8.11 and its proof).
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To prove (i)==(iv) note that we can apply Corollary 8.10 with ¥* =
h* where h* is any of the Haar wavelets described at the beginning of
this section. This gives that the series

291

SO e,

#=1 (j,4)€ZxZ?

converges unconditionally in I7,(R¥), so also in L;(R?). Thus we can
apply Corollary 7.10 to get (iv).

Now let us prove (iii)==(i). Since we can replace each ¥" by an
appropriate translate ¥*(x — k) and ¥* is not identically zero, we can
assume that each ¥* is not identically zero on the set [0,1]%. Thus
for each s = 1,2,...,2% — 1 there exists a set W, C o, l]d of measure
> a > 0 such that for z € W, we have |¥*(z)| > 8 > 0. If we write
R* =: 1w, we infer that

2‘471 1/2
XY HnE) @
a=1 (jy)€ZxZd

1/2

2¢.1

2> X v IRL@P (8.80)

s=1 (j,7)€ZxZ4

Now let (¥* )2 1! be a fixed compactly supported wavelet set of class C*.
From our assumptions and 8.80 it follows that we can apply Proposition
8.15 and conclude that

2.1

SY (£9,) ¥, () € Hy(RY).

A=1 (jy)€ZxZ4

But now both wavelet sets (¥*)? 2 1! and (‘Il')f‘:i' satisfy 8.3 and 8.4.
Thus by Corollary 8.10 the map \IIJ.7 — Wi, extends to a continuous
linear map of H,(R?) into itself, which implies that

291
>3 (1) ¥, () € Hi(RY.

=1 (jy)€Zx24

The proof of (iv)==(i) is the same; we simply take W, = [0, 1}<. O
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8.4 Polynomial bases

In this section we want to discuss in some detail expansions of 2m-
periodic functions (or equivalently functions on the circle T) in terms of
periodized wavelets. Thus we continue our discussion from Section 2.5.
To fix our attention and because it leads to the most pleasing results
and to the solution of an old problem we will concentrate on Meyer’s
wavelets from the Schwartz class S.

Let ® € S be a scaling function given by Proposition 3.2 with 8 of
class C*, and let ¥ € S be the corresponding wavelet given by 3.15.
We define (cf. Section 2.5)

bik(x) = ‘/%P%k(z%) (8.81)
and
Yjk(x) =: ‘)—z—ﬂp‘l’jk(%) (8.82)

where j = 0,1,2,... and k = 0,1,...,27 — 1. Note that this definition
does not conform with our standard usage — neither the set {t;} nor
{d)jk) consists of translations and dilations of one function. But these
definitions are very natural and will be used only in this section and in
some exercises. From results obtained in Sections 2.5 and 3.2 we easily
see that the following hold:

the system ;i(z) with j = 0,1,2... and k =

0,1,...,27 — 1, with the constant function 7‘2-; (8.83)
appended, is a complete orthonormal system in ’
Lo(T)
for each j the system {;&}2 ' is an orthonormal (8.84)
system
1,27 - . _
span{ 4=, Wik }) ko = span{m) ;' for s = (8.85)
1,2,...
-5 2ms
(@) = 27772 Y etk Thyen (8.86)
lalga-12r41
. e, 2 ;
w]k(x) = 2*]/2 Z 872nuk2 ’W(___;Ts)enx (8.87)

3-127<}a| <4312

Let us note that 8.86 and 8.87 show that the functions ¢;x and v, are
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trigonometric polynomials. Those polynomials have good decay; this is
made precise in the following proposition.

Proposition 8.17 Let tjx =: —2%5 For each l = 1,2,... there exists
a constant C; such that

656 (O] < C22(1 + 2|t — tiu]) ™ (8.88)
and

[k (t)] < 2?21+ 27|t — )" (8.89)

Proof Since the proofs of both inequalities 8.88 and 8.89 are exactly
the same we write it only for 8.88. Since ®(z) is in the Schwartz class,
for each ! there exists a constant K; such that

[@(@)] < Ki(1+ |=})~
so we obtain
|#5(2)| < 22 Ki(1 4+ Ple — k/27]) "

This implies that

[Po(=)] < 27K Y (1+2le+s—k/?)7
a€Z
< 27/2K"(]+25|I_k/2j|)-l+1

which gives
bx(x)] < K22 (1 4+ 27 f2m|z — 1)) .

This easily implies 8.88 for | — 1, maybe with a different constant K.

Since | was arbitrary we get the claim. O
REMARK 8.6. Analogous estimates hold for the derivatives d"z—',élk and

7:;'7’/’3;.-; namely for each s,! = 1,2,... there exists a constant C,; such that

a v (a+1/2) ) -t

2o Ple)| S Cu2 (14 20z — )
and

d J(2+1/2) -t

T Vok(@)] S Cu2 (14202 -tul)

Now let us reorder the orthonormal system 8.83 so that it will be indexed




8.4 Polynomial bases 209
by integers. For n =2/ 4+ k with  =0,1,2,...and k=0,1,...,2 — 1
we put
fn(x) = l/ljk(ft).
This defines f,, for n = 1,2,.... We put fo(z) =: 712-—; From 8.83
we immediately see that (f,)72, is a complete orthonormal system in

L2(T). Some properties of this system are summarized in the following
theorem which is the main result of this section.

Theorem 8.18 The system (f,.)7%, defined above has the following
properties:
(i) each function f, is a trigonometric polynomial of degree at

4
most 3n

(i) if k > 2# then span(f,,)k_q D span{ei™® : |s| < 12¢}
(iii) if f € Lp(T), 1 < p < o0, or f € C(T) if p = oo, then the
series Z'AGZ (fy fu) fo converges to f in norm.

Proof From 8.87 we see that degy;x < 327, so for n = 27 + k we have
degf, < 327 < 4n. This gives (i). To show (ii) let us fix r € Z and
write
oo 27-1
et = (= )+ D T () v
7=0 k=0
From orthogonality of exponentials and 8.87 we infer that

v 27-1

et = (et «27> Y () v (390)

i=0 k=0
where v is the smallest natural number such that 12" > |r|. This implies
that et € span(f,,),z‘:(,l, so for each u € N
ir 1
span(f,,)2=, D span{c™® : |r| < 62“).

This gives (ii). To show (iii) let us denote Sk(f) =: Zﬁ-,o (fy fu) fu.
Since the trigonometric polynomials are dense in L,(T), 1 < p < oo,
and in C(T), from (ii) we see that to show (iii) it suffices to prove that
there exists a constant C such that

IS (O, = CHSI (8.91)
forall f € L,(T) and n =10,1,2,... and p, 1 < p < oo. For a given n let
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us fix j =0,1,... and s =0,1,. 7 — 1 such that n = 27 + s. Using
the definition of the f,,'s, 8.84 and 8.80 we can write

I
g

Su(f) Z Frvou) e+ Y (o se) Vs

k=0

[~

3 _

= Z (f5x) s + Z (F i) ik

k=0
= S{(f)+Si)
We will show that [|S}(f)||| < C|fll, for all £, n and p. The proof for

S2? is exactly the same and this gives 8.91. We rewrite S} (f) in terms
of the kernel as follows:

2x
SiN@ = [ 10K @0 (8.92)

N -

where K;(z,t) = 22 o 5k (t)Psx(x). From 8.88 we easily obtain (cf.
the proof of 8.22) that

|K;(z, )| < C2(1+ 2|z —1])°
From this we immediately see that there exists a (' such that
2n
/ |Kj(z,t)|dt < C forall x (8.93)
o
and

2n
/ |K;(z,t)|dz < C for all t (8.94)
o

Thus we have using 8.92- 8.94, Holder’s inequality (remember ’{+% =1)
and Fubini’s theorem

2n 2n
stz / SO K; (1) dt| ds
o i}

27 2%
< [T oK @ ore 1K @ op ) de
o 0
2n 27
< on [Tior [ e ot
< IR

O

REMARK 8.7. The proof of the above Theorem R8.18 is much simpler than
the proof of the corresponding Theorem 8.4. This is a consequence of two facts:
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o Working on the circle T we avoid extra complications resulting from the fact
that R has infinite measure.

e From (ii) we know that on polynomials the series converges to the identity
and we can use the Stone-Weierstrass theorem that polynomials are dense.
Note however that this theorem can be relatively easily proved using methods
at our disposal (cf. Exercise 8.13).

REMARK 8.8. Note that the periodic case offers some differences from the
non-periodic case. Most notably we have a natural one-index ordering of periodic
wavelets. Secondly our convergence results are valid also for p =1 and C(T).

Sources and comments

As already remarked, Theorem 8.4 for the Haar wavelet in one variable
was proved (essentially) by M. J. Schauder [99] and similar theorems
for other orthogonal systems were proved later. This means that the
techniques were well developed and with the emergence of wavelets it
was clear that the same methods can be applied. The situation was
similar with Theorem 8.9. For the Franklin system on the interval it
was proved by P. Wojtaszczyk [113] who built on the fundamental work
of L. Carleson [11]. After subsequent work on orthogonal spline systems
(cf. [114], {101], {102], [117]) it became clear that orthogonality and
some estimates like 8.3 and 8.4 is all that matters. It also became clear
that many different approaches to the proof can be taken. In this book
we use atoms, following ideas from [114]. In [85] the same and much
more is proved using the theory of Calderén-Zygmund operators while
in Chapter 9 of [24] a one-dimensional case for L, is presented also via
Calderdn—Zygmund operators. The reader interested in unconditional
bases in L, (but not in H;) should consult the paper [45] where wavelets
with no restriction on smoothness are discussed and [43] where weighted
L, spaces are considered.

Actually the one-dimensional Haar system on the interval was the first
known unconditional basis in any L, space, p # 2. This was proved by
J. Marcinkiewicz (78] building on the work of Paley [90]. A simple and
elementary proof yielding the best constant was given by D. Burkholder
(10], cf. also [116] I1.D.13. From the very beginning it was natural to
compare other unconditional bases with the Haar basis. In this sense
Theorems 8.13 and 8.14 are quite natural and have many predecessors.
Expressions like those occuring in the middle of 7.16 or 8.58, called the
square function, are widely used in various areas of analysis. Theorem
8.16 for orthogonal spline systems on the interval was proved by A.
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Chang and Z. Ciesielski {14]. Our proof incorporates some essential
modifications presented in [85).

In this chapter we have concentrated on norm convergence of wavelet
expansions. Pointwise (or almost everywhere) convergence can also be
considered. Technically this uses in a natural way the representation of
operators P; in terms of kernels (cf. 8.14) and estimates of those kernels
like 8.16-8.18. Some results along these lines are presented in [58] and
[111]

Besides serving as an example of how periodic wavelets behave, Sec-
tion 8.4 also offers a solution of a well known problem. The following
problem posed by P. L. Ulianov attracted a lot of attention starting from
the early 1960s (for a short history see [117]). Suppose that (f,,)32, is a
complete orthonormal system in Ly(T) consisting of trigonometric poly-
nomials and such that for each f € C(T) the series 3 oo (f, fu) fu con-
verges uniformly to f. What can be said about the degree of the f,,’s, or
more precisely how fast the sequence ay = max{deg f,, n = 0,1,2...,k}
does grow? Today the complete answer is known. It was shown by A. A.
Privalov [95] that there exists an € > 0 such that ax > (4 +)k for large
enough k. On the other hand for every € > 0 a suitable orthonormal
system such that ax < (% + €)k was constructed by K. WoZniakowski in
[118] and by R. A. Lorentz and A. Sahakian in [75].

Our Theorem 8.18 is a weaker result which was obtained earlier in
[117], [96] and [89]. It was this last paper which pointed out the close
connection of the problem with Meyer’s wavelets and whose ideas we
follow in Section 8.4.

It should be pointed out that all function spaces on R considered in
this book (and many others) have natural analogues on T, and all the
results we prove in this book about wavelet expansions on R have natural
analogues for periodized wavelets on T.

About the exercises. The characterisation of BMO from Exercise
8.8 was first proved (for his system) by L. Carleson in [11] and later for
the Franklin system on the interval in [113]. The special atom space
described in Exercise 8.11 was studied in detail in {103] and the references
quoted there. The characterization stated in this exercise for the Frank-
lin system on the interval was obtained in [115].
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Exercises

For d = 2 let us consider the dilation A given by the matrix

1 -1

ey
and discussed in Example 5.4 on page 128. Show that any
wavelet associated with this dilation and satisfying 8.3 and 8.4
gives an unconditional basis in H,(R?).
Let Tf(z,y) = 8f(4z,2y). Show that T is an isometry of L, (R?)
and is continuous on H;(R?). Show also that the norms of T™
acting on H,(R?) tend to infinity as n — oo.
Suppose ¢ is a function in Ly(R?) such that {6t -1} ez is
orthonormal and 3°_cz4 |¢(z — 7)| is bounded. Show that for
each p, 1 < p < oo, there are constants 0 < ¢ < C such that

o Z o) < S wtte=m], <0( 3 ful) ™
LI Ad yEZ4 ~EZA
and that

Pf(z)=Y_ /n« SOt —v) dt $(z —7)

yezd

is a continuous projection in LP(RJ).
Show that for 1 <p < 2 and f € L;(R?%) N L2(R?) we have

17l < AN+ A2 < ISR+ 1S D12

Show that this implies that if the series }_ f,, with f,, € LinL,
converges to f in the norm of L; and in the norm of L, then it
converges to f in the norm of Ly(RY).

Suppose that f is a continuous bounded function on R%. Show
that P;f — f as j — oo almost uniformly on R?, where the
Pj’s are given by 8.5.

By considering atoms 2—10—(1[_,,,0) — 1jo,q)) show that the Haar
wavelet basis is not an unconditional basis in Hi(R). Let P;
be the projection defined by 8.5 for the Haar wavelet. Show
that there exists a constant C such that |P; f| < C|f| for f €
H;(R) and that |f — P;f} — 0 as j — oo for each f € H,(R).
Show that the same holds for Haar wavelet bases on R? and
Hy(R%).

Let f € Co(R?). Show that || P} f|loc — 0 as j — —oo.
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8.8

8.9

8.10

8.12

Wavelet bases in L, and H,

Let ¥ be a wavelet on R satisfying 8.3 and 8.4. For pairs of
integers (j, k) and (I, s) let us write (j,) < (I, 5) when

277k, 27 (k4 1)) C [27's, 27 (s + 1))

Show that f € BMO(R) if and only if

sup(271 z |(f.‘1’,,k)|2)]/2<oo.

= (.Y<(19)

Suppose that (fu)nea and (gm)mep are wavelet bases on R
corresponding to wavelets satisfying 8.3 and 8.4. Show that
(f®Gm)ne 4 me B is not an unconditional basis in H,(R?). Com-
pare this result with Exercise 7.10.

Consider the dyadic H; space 6H,;(R) as described in Exercise
6.14. Show that the Haar wavelet is an unconditonal basis in
this space.

Let H(t) be the Haar wavelet on R defined in Definition 1.1. A
special atom is a function

A(r) =: éll(af +b)

for some a,b € R a > 0. Let us define a special atom space
X as the space of all functions f such that f =Y, AxAx with
3k |Ak] < 0o and the Ai’s special atoms. We define

Al =sinf{ ST Il = £ =3 AeAr}
3 3

Let ¥ be a wavelet on R satisfying 8.3 and 8.4. Show that f € X
if and only if

3 27 ) | < oo

PRI A

Prove Theorem 8.4 for multiresolution analyses corresponding
to an arbitrary dilation matrix A assuming that the scaling func-
tion ¢ satisfies 8.1 and 8.2.

Let S} be defined by 8.92. Show that [’" K;(z,t)dt = 1 for
each z € [0, 2r]. Using arguments similar to those used in the
proof of Theorem 8.4 show (without using the Stone-Weierstrass
theorem) that lim; .o ||/ — S}(f)”w = 0 for each f € C(T).
Deduce from this the Stone-Weierstrass theorem.
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For each € > 0 construct a C™ function © satisfying 3.10-3.14
and such that supp © C [—w—¢, 7+€]. Check how this improves
the estimates for the degree of the corresponding f,,’s.
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Wavelets and smoothness of functions

In this chapter we will discuss connections between smoothness of func-
tions (as measured by moduli of continuity) and properties of wavelet
expansions. For the sake of simplicity we consider the one-dimensional
case only.

9.1 Modulus of continuity
The main idea of modulus of continuity (present already in the notion
of derivative) is to measure the difference between the function and its
translate. Since there are many ways to measure the size of a function,
we can have many different moduli of continuity. In this chapter we will
only consider the following modulus.

DEFINITION 9.1 The p-modulus of continuity of a function f
defined on R, 1 < p < 00, 18 the function

wp(fi8) =: sup |If(z) - f(z— R, (9.1)
0<|hj<é

defined for 6 > 0.

Before we proceed let us note some properties of the p-modulus of con-
tinuity.

(i) For each f and p the function wy(f;6) is an increasing function
of 6.

i) If f € L,(R) for 1 < p < 00, or f € Cy(R), if p = oo then

(i) » » p
wy(f;6) — 0 as 6 — 0. This is almost obvious when f is continu-
ous and has compact support. Since such f’s are dense in L,(R)

216
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and in Co(R) our claim follows. Also for each § > 0 we have
wp(f38) < 2/ fl- (9-2)

(iii) Since for any positive integer m

m-1
f@) = f(z+mh) =3 [f(z+ kh) - f(z + kh + h)]
k=0
from 9.1 we infer that
wy (f3m8) < muwy(f;6). (9:3)
This gives
.5
m,,(_f;é):m},(j;m%)S&idiiﬁ (9.4)
so "
if lim,_0 s 'w,(f;9) = 0 then wy(f;6) = 0. (9.5)

The condition wy(f;6) = 0 clearly implies that f(z) = f(z + h)
a.e. for any h € R, so f is constant.
(iv) For translation and dilation operators we have

w(Thf;6) = wy(f;6) (9.6)
and
wy(Jaf;8) = 277w, (f;2°6). 9.7)

Note that it follows from 9.3 and (i) above that unless f = const. we
have w,(f;6) > 0 for all § > 0. Also 9.3 implies that if w,(f;6) < oo for
some & > 0 then it is finite for all 6 > 0.

DEFINITION 9.2 We will say that a function f defined on R has
a p-modulus of continuity if wy(f;6) < oo for some (equivalently for
all) 6 > 0. The set of all functions having a p-modulus of continuity
will be denoted by MC,(R).

1t is clear from Definition 9.1 and the above remarks that for each § > 0
wp([f;6) is a seminorm on MC,(R), i.e.

wp(af + Bg;6) < |ajwy(f;6) + |Blwp(g; 6) (9.8)

and
wp(f;6) =0 if and only if f = const. (9.9)
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REMARK 9.1. Note that M C,(R) contains many non-constant functions
not in Ly(R), cf. Exercise 9.4. Note also that the condition w(f;8) < C§*
means simply that f satisfies the Hélder’s condition with exponent a.

In view of the preceding remarks it is interesting to know how big a
function in MC,(R) can be.

Proposition 9.3 Suppose f € MCy(R), 1 < p < 00. Then |f|P is
locally integrable if p < co and |f| is locally bounded if p = oo.
Moreover

n4l 1/p
([ w@pa)” scrprrugn. @)

"

Proof First let us prove that |f|? is locally integrable when p < oo.
From 9.6 we see that to show that |f|? is locally integrable it suffices
to show that fol |f(z)Pdz < co. Let us fix a > 0 such that the set
A =:{z € [0,1] : |f(z)] < a} has positive measure. Since for each ¢
with |t| < 1 we have

v

i) 2 ([ 1@ - fe-op )

v

i/p
([ @) - @ op dz)
a
from the triangle inequality we infer that for each t with |¢t| < 1 we have
i/p 1/p
(/ @ dx) (/ [fa— )P d)
A+t a

P 44 r
i+ ([ 1P ) @)
wp(fi1)+ alA|'P.

IA

IA

Now we define a function of two variables G(z,1) for z € [-1,2] and
t € [~1,1] by the formula

f(@P fzed+t
0

G(‘"‘"):{ fzg At

The point of this definition is that for a fixed ¢ the function G(z, t) equals
|f(2)|? on some translate of A and 0 ontside this translate, while for a
fixed z it takes the value | f(z)|P on the set —A + z which has the same
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measure as A. Using these remarks and 9.11 we get

]_:/:G(z,t)izdt /_II/M.V(’)'P'M
1

/ (wp(f31) + |7V dt  (9.12)
-1

2(wp (£31) + af8]'/?)?
C’ < 0.

IA

On the other hand

[i[tG(m,t)dtdx

2
[. If@)Pl(=A +z)n[-1,2]|d=

\%

> / f(=)P|A]ds

1
N / (@) do (9.13)

Putting together 9.12 and 9.13 and using Fubini’s theorem we get the
claim for p < co.
When p = oo and f|[0,1] is unbounded we take n > m such that the
sets
A" =: {z € [0,1] : |f(z)| > n}
and
A =:{zx€[0,1] : |[f(z)] <m}
have positive measure. There exists a number t, |t| < 1, such that the
set A =: (t+ A™)NA,, has positive measure. Clearly for £ € A we have
|f(z —t) — f(=)| > n — m. Since n can be arbitrarily large (because we
assume | is unbounded) we get woo(f;1) = oo.
To obtain 9.10 for p < co we write

f+n)=f@)+) Ja+k) = fle+k=1)

k=1

so using Holder’s inequality we get

([ i)

= ([ vernrs)”
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< ([ @ra)”
L. » 1/p
+(/0 ’;(f(x+k)—f(z+k—l))| dz)
< c+(/1|n|r/f1}i|f(z+k)_f(x+k—1)|Pd.z)”’
o k=1
< C+|n|’/"(2/1|f(z+k)—f(a:+k—l)l"dz)l/P
k=170

oo 1/
< C+ |n|’/v(/ (@)= Sz 1P ds)
—o0
< C+ |n|'/"w,,(f; 1).
The argument for p = oo is entirely analogous. O

A natural way to proceed is to consider functions with some restrictions
on some modulus of continuity. One such natural restriction, mentioned
earlier, is to require weo(f;8) < C8%, which gives Holder’s condition
with exponent a. As we have seen above, only a constant function
satisfies this restriction for & > 1. It should be noted that any reasonable
restriction on the modulus of continuity is less restrictive than say Cly.
In fact for f € C4(R) we easily check (see Exercise 9.5) that for each p,
1 < p < 0o, we have w,(f;6) < Cmin(1,6). On the other hand it follows
from 9.4 that for any non-constant function and any p, 1 < p < 00, we
have w,(f;8) > Cmin(1, 6) with some C > 0. A useful way to restrict
the modulus of continuity is to consider Besov norms. The definition
depends on three parameters which is clearly awfull, and seems quite
arbitrary. It happens however that Besov norms are useful as I hope to
demonstrate in this chapter.

DEFINITION 9.4 Suppose 0 < a < 1 and p,s are such that 1 <
p, 8 < 00. The Besov norm || fllp.a,« of the function f is defined as

1/a
= fe- L 4y] 2 dt
I llpan = (fo [f au,,(f,t,)] T) when 1< 5 < oo (9.14)
SUPoctcoo I Wp(fit) when 3 = oo.

Actually these are only semi-norms, for they vanish on a constant func-
tion. This follows from 9.8.

Using these norms we can define two families of Besov spaces. Homo-
genous Besov spaces Bg',(]R) consist of those functions f such that
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[lfllp.c,s < o0 and inhomogenous Besov spaces BE  (R) consist of those
functions from L,(R) such that ||f|l,,a,» < 00. Thus the natural norm
on B (R) is | fll, + | fllp,a,a- A proper study of homogenous Besov
spaces is beyond the scope of this book. The main reason is that in gen-
eral a homogenous Besov space is not complete when equipped with the
norm || . ||p,a,»- When we complete it it becomes a space of distributions
not a space of functions (cf. Exercise 9.9). For this and other reasons
we will discuss in this book only Besov norms per se, or inhomogenous
Besov spaces, which are clearly spaces of functions. As the first step of
this program we will conclude this section with a different expression for
[l - lIp,a,a- Namely we have:

Proposition 9.5 For any a, p and s as in Definition 9.4 there exist
constants 0 < ¢ < C such that for any f

. N1/
Al < (3 27wp(£279)) " < Cllflpam  (9:15)

j€Z

Proof The expression in the middle of 9.15 is really only a discrete
version of the integral defining ||. ||,a,» (for s < 00). We write

[ wanr g = [Cuvirgms

2-it1
s [ ot

jezve?

Using the fact that w,(f;6) is increasing this can be majorized by
22*%,(;; 2'J'+1)'2j(aﬁ+1) = z2ja~wy(f;2~j+l)n
jez j€Z

gan 22,70» f 2= J)

Jj€EZ

and minorized by
22 J‘-'J,,(f 2= 1)02(] 1)(ant1) __ — g-an— lzzjan (f 2~ J)
jez jez

The argument when s = oo is the same except that we replace the
integrals and the sums by suprema. O
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9.2 Multiresolution analyses and moduli of continuity

In this section we will work with a multiresolution analysis with a C!
scaling function ®(z) such that

[#(z)] < C(1 + o)~ (9.16)

and
[9'(z)] < CQ1 + |z])~ A 9.17)

for some A > 3. It follows from 9.16 and Proposition 2.17 that
/ d(z)dz = 1. (9.18)

REMARK 9.2. The above restriction on A can be relaxed somewhat (i.e.
we can use smaller A’s). In particular the constant A appearing in 9.17 can be
smaller than the one appearing in 9.16. For the sake of simplicity we will use
A>3

As we defined them in Section 2.1, the spaces V; constituting the
multiresolution analysis are subspaces of L,(R). However, with the as-
sumption 9.16 imposed on the scaling function we see that the series
Ykcz ax®(z — k) is absolutely and almost uniformly convergent for all
sequences (ax)kcz satisfying |ax| < C + |k[® with 8 < A — 1. In this
chapter we will use the extended definition of Vj as the space of all
functions of the form

@)=Y a2?02z k)
K€z

with |ag| < C + |k}? for some 8 < A — 1. It immediately follows
from 9.17 that each such function is a C! function, because the series
Yorez ak /2’ (2z — k) is also absolutely and almost uniformly con-
vergent, What we are doing here is particularly transparent for spline
multiresolution analyses. A spline is a spline and we know what it is
without any scaling functions. All the growth conditions imposed do not
change the nature of the spline. For compactly supported ®(z) every
series 3, 7 axP(x — k) converges so it is also clear what we are get-
ting. In general we have to restrict the growth of the function somehow,
because we do not have an ‘external’ description of the Vj’s.

As noted in Section 8.1, with each multiresolution analysis we can
associate projections

Pif(z) = /w (2 (21, V) dt (9.19)
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where ®(t,z) =3, ; P(t — k)®(z—k) (cf. 8.14 and 8.15 or 8.18-8.22).
It follows directly from 9.16 (cf. 5.27 and 5.28) that

1 1
&(t, < C
let=) < ,‘Z A+t —kDA( + [z — kDA
€Z
1
< Crr—m—r3-
T T (a+fe-aht
Also from 9.18, follows (cf. 8.16) that for each z € R we have

(9.20)

/w B(z,t)dt = 1. (9.21)

—o00
This implies that P; is well defined for much broader class of functions
than L(R). It is well defined for all functions f(t) such that

IF@)] < C+ A2

Also it follows from Proposition 9.3 that P; f is well defined for f € MC,
provided A > 3— ’l, S0 our assumption about A ensures that P; f always
makes sense for f € MC,. In the rest of this chapter we will apply P;
to a function as long as it makes sense. We have seen in Theorem 8.4
that for f € Ly(R) the sequence P;f approximates f in L, norm when
j — oo. We would like to see how good this approximation is. This is
contained in the following proposition.

Proposition 9.6 (Jackson’s inequality) There exists a constant
C such that for any f € MC, and P; as described above

I = Pifll, < Cup(f;277) (9.22)
forallje€Z.

REMARK 9.3. The surprising fact about this proposition is that we do not
assume that f € Ly(R).

Proof Suppose we have 9.22 for j = 0 with some constant C. Then
from 8.6, 6.2 and 9.7 we get

If = Pifll, = 27977051 — PoJ_sflly
< C27HPu(J_if31) = Cu,,(f;Z'j)

so it suffices to consider j = 0. From 9.19 using 9.21 we can write

1@ = Pos@) = | @) - £0)] B(t,2) .
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From 9.20 we get

Ilf = Pofll}

/_: I /:[f (@) - f(0)] ®(¢, z)a|” dz
C/w /:, %)Ph

Writing A —1 =a+b with a,b > 0, ap > p+ 1 and bg > 1 (where
as usual p~! + ¢~ = 1) and applying Hélder’s inequality to the inside
integral we get

17 = Pofl7

IA

f P < du »/
< of [ et e[ ) e
> C/_mW/_Z|f(x)—f(z+u)|’dn:du

o 1
< o f sy i

We split the last integral into two parts and estimate each part separately
as follows:

/_ wp(f;|ul)? W < Cwp(fi1)P

[+ [Tty W

2/l wp(fiu)? (1+u)“”
using 9.3

¢ [ wuriy

< (/wy(fll)’/l’
< Cuwp(fi1)P.

The last inequality follows from the choice of a. The case p = oo requires
the standard reinterpretation and is actually easier. O

and

+

IN

IN

1+ u)“P
u? du
(1 + u)er

REMARK 9.4. Note that the proof of Proposition 9.6 uses only 9.16. It
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uses neither 9.17 nor any other assumption about the smoothness of the scaling
function ®.

Proposition 9.7 (Bernstein’s inequality) Under the assumptions
about multiresolution analyses described at the beginning of this
section, for each p, 1 < p < 00, there exists a constant C such that
for f € V; we have

wp(f;t) < Cmin(2t, 1)||fll,. (9.23)

Proof Suppose we have 9.23 for j = 0 with some constant C. Then for

€ V; we have J_; f € Vp so from 6.2 and 9.7 we get
f f] j g
wp(f3t) 2737w, (1 £;27t) < C27 3P min(2 6 D5 /1

Cmin(2’t, 1)||fll,

so it suffices to show 9.23 for j = 0. It also follows from 9.2 that
for j = 0 it suffices to consider only |t|] < 1. Take f € Vo N Ly(R)
(if f ¢ Lp(R) there is nothing to prove). Then by 8.7 we can write
f =Y rezc(k)®(z — k) with C||fll, 2 (Xez |c(k)|”)l/", so for |h| £ 1

we have

()= flz+RIE = / " | otk —k—n)[ dz (9.20

™ kez
Since ® is a C! function we infer from the mean value theorem that
|®(z — k) — O(z - k — h)| = |h||®'(z — k + £)| for some £ between 0 and
h, so from 9.17 we get (remember that (h| < 1)
C C|h|
< .
—k+&NA T I+ ]z — kA

|®(z — k) —d(z—k—h)| < |h|(1 e
Substituting this into 9.24 we get
/ P
156 - s+ <C [ (X llggs) 4
kez

From Lemma 8.2 we get
1£(z) - f(z + W) < CIRP Y |e(k)P
kez

so || f(z) — f(z + h)|l, < Clh|||f|l, which clearly gives the claim. O
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Given a function f, by s;(f) we denote the error in the best approxi-
mation of f by elements of Vj. Specifying the norm we put

sF(fy=inf{|f —gll, : g € V;}. (9.25)

Observe that |f — P;f|l, is a quantity basically equivalent to .c;.’(f).
Since P;f € V; we clearly have s5(f) < [If — Pjf|lp. On the other hand
P; is a continuous projection from Ly(R) onto V; with || P;|| = || ||, so
for any g € V; we have

If = Piflle NS = glls + I1Pig = Piflle < (1 + 1PolDILf — gll,-
This clearly implies
FU) N = Piflls < 0+ RIDSE(S). (9.26)

Now we are ready for one of the main technical propositions of this
chapter, which in the framework of Besov norms ties together best ap-
proximation and multiresolution analyses and wavelets.

Proposition 9.8 Suppose we have a multiresolution analysis with
a scaling function ® satisfying 9.16 and 9.17 and an associated
wavelet ¥ also satisfying

[W(2)| < C(1+ [2) 4. (9.27)

Let Q; be the projection defined by 8.10. For0 < a <1 and 1<
p, s < 00 and any function f the following conditions are equivalent:

(T sn))” <o (9.29)

J€Z

(S en - rs)") " <o (9.29)
J€Z

> [2J'°I[ij||p]’)‘/‘ < oo (9.30)
j€z

1/s

Y [ (e mri e r) 7)) <o
€2 keZ

REMARK 9.5. As usual the expression (Z“Zhul‘)l/‘ for s = oo is inter-
preted as supg.z|ax]. Also it follows from inspection of the proof that there
exists a constant (' (which may depend on a,p, 3 but is independent of f) such
that if one of 9.28-9.31 equals B then all the other quantities are at most CB.
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It is also clear that all four quantities on the left hand sides of 9.28-9.31 are
semi-norms.

Proof The equivalence 9.284=9.29 follows directly from 9.26. The
fact that 9.30¢<=>9.31 follows directly from Proposition 8.3, in particu-
lar from 8.12. Thus really we have two distinct types of conditions in
Proposition 9.8: approximation conditions and wavelet expansion con-
ditions. Since ||Q;]| < C independently of j and Q;(f — P; f) = Q;f we
get [|Q;fll, < CIlf = Py f]l so 9.29=9.30.

Thus we only have to prove 9.30=9.29. To do this let us write
I1f = Piflly < 3272, 11Qwfllp. Using Hélder's inequality and summing
geometric series we have

S f - Pl

J€EZ
< 2PN N)
j€Z r=j
takinga >0 and a <
= 272 Q )
jez r=j
< Z 21'0"( Z 2—m'n’)"/" Z zm-n"Q'_f";
jez r=j r=j
< C‘Z 2jan2—-jnn Z 2“”"Qrf”;
j€z r=j
= C Z 2“”“Qrf"; Z 2jn(u—a)
rez i<r
< C z geragra(a=—a) ”Q.f";
re€Z
- Lzl
reZ

so the implication 9.30==9.29 is proved. This completes the proof of
Proposition 9.8. O

Now we would like to connect the above conditions 9.28-9.31 with
Besov norms. There is however one obstacle to this which depends on
the particular multiresolution analysis involved. With the definition of
the spaces V; we are using in this chapter (see the beginning of Section
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9.2) we have V_, =: ﬂj V; # {0}. It follows from Proposition 2.17 that
always 1 € V_,, but the space V_,, can be bigger and clearly depends
on the multiresolution analysis involved. It is clear that for f € V_
all four quantities 9.28-9.31 equal zero. On the other hand if f is not
constant, then w,(f;6) is not identically zero, so || f|lp,a,» > 0. Thus to
connect Besov norms with the quantities 9.28-9.31 we have to avoid this
difficulty and restrict the set of functions under consideration. Before we
discuss inhomogenous Besov spaces (where these difficulties disappear
completely) let us formulate one technical theorem.

Theorem 9.9 Suppose we have a multiresolution analysis with
a scaling function ® satisfying 9.16 and 9.17 and an associated
wavelet ¥ also satisfying

[¥(z)| < C(1 +|al)~*. (9.32)

Let Q; be the projection defined by 8.10. For 0 < a < 1 and
1 £ p,s < 00 and any function f such that ||f||pas < 0o all four
relations 9.28-9.31 hold.

Conversely, if f is a function such that

wp(P3fi1) =0 as j — —o0 (9.33)

and any one of 9.28-9.31 holds then || f||p a,» < 00.

Proof If || fllp,a,s < 0o then from Proposition 9.5 we get that
22j°‘w,,(f;2“")' < oo. (9.34)
jez

From this, using Jackson’s inequality (Proposition 9.6) we immediately

obtain 9.29. Thus Proposition 9.8 shows that all four conditions 9.28-

9.31 hold.

To prove the converse we will show that 9.29 implies 9.34 and use

Proposition 9.5. For each j € Z and s < j we can write

j-1
f=f“ij+Z(Pr+l—Pr)f‘pr

r=p
so using 9.8 and 9.2 we get

i-1
wp(£277) < 20f = Pifllp+ D wp((Praa = P)f;277) + wp(Puf;279).

r=p
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Using 9.3 and 9.33 we can pass to the limit as 4 — —oo and write
-1
wp(f:279) S 2 = Fiflls+ 3 wp((Pra = P)fi277).

r=-oo

Since (P41 — P.)f € V,41 we can use Bernstein’s inequality 9.23 to
obtain

Jj-1
wp(£;277) <20 = Pifllp+C D> 277 9|Prsrf = Pofll,.

r=—o0o0

Since [Prs1f = Poflly < IS = Prsafll + 1 = PoSllp we obtain

J
wp(f;27)<C Y 277 f = Pofllp (9.35)

r=-00

The rest is just an application of Holder's inequality and summing of
geometric series. We have from 9.35

22w (f3277)"

1€Z
j .
< oy v Y 2N - Raly)
J€Z r=—00
j L]
= C Z 2.1!(&—1)( Z 2r"f _ Prf"y)
JEZ r=-oo
takinga>0,a+b=1,a<1 -«
J L]
= oy (3 22t - RSl
j€Z r=—00
using II6lder’s inequality
j j o/a’
< C z 21»(0 - l)( Z 2v-ba”f _ P,f“;) ( E Zv-nn') /
j€Z r=-o00 r=—00
J
< oYy prtegen( 3 - P)
J€Z r=-00
= CY s - Py Yo 2rere
reZ i>r
< C Z grbsgra(ata ~l)”f _ P,f";

r€Z
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= CY 2" - Pl
rez
so 9.34 holds. The conclusion follows directly from Proposition 9.5. O

Now we are ready to give a characterization of inhomogenous Besov

spaces.

Corollary 9.10 Suppose we have a multiresolution analysis with
a scaling function ® satisfying 9.16 and 9.17 and an associated
wavelet ¥ also satisfying

V() < CO+Ja))”

Let Q; be the projection defined by 8.10. For 0 <a <1 and 1<
p, 8 < 00 and any function [ the following conditions are equivalent:

“fll}! + ”f”p.u..' < oo (9.36)
C1a 1/a
LAl + (Z [2°w,(f;279) ) " oo (9.37)
720

1Pusly + (3 o)) < oo (9.38)
7>0

1o 11l + (Z ol = rfly)") " < oo (9.39)

IPofll + (32 (27195 71) ) (9.40)
720

(1= k) )

keZ

+(sz(o+ V(ST (S, W) |ﬂ)’/”)l/" < oo (9.41)

j>0 k€Z

Proof This proof uses both Theorem 9.9 and some ideas of its proof.

9.36 <= 9.37 The implication 9.36 = 9.37 clearly follows from
Proposition 9.5. Conversely observe that if || f||, < co then from 9.2 we
obtain that 37, [Zjaw,,(f,2 7)]‘ < oo. Using this and Proposition 9.5
we see that 9.37 = 9.36.

9.36 = 9.38. If || f]|,, < oo then 8.8 gives that || P f|l, < 0. The rest
follows from Theorem 9.9.

9.38 = 9.39 follows directly from 9.26.
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9.39 => 9.40. Since |Q;}} < C independently of j (see Proposition
8.3) and Q;(f — P;f) = Q;f we get |Q;fll, < C||f — P;fll, so the
implication holds.

9.40 <= 9.41 follows directly from Proposition 8.1, in particular 8.7,
and from Proposition 8.3, in particular 8.12.

9.40 = 9.36. Note that from 9.40 we see that sup;5 27*[|Q; f||, < oo
so the series ngo Q, f is absolutely convergent in L,(R). This implies
that

Pof +3Q;f = f € Ly(R),
>0
and also that f satisfies 9.33. To see this note that for ;7 < 0 from
Bernstein’s inequality 9.23 we obtain
wp(P ;1) < CY|Psfllp < C2| f]lp

Since for j < 0 we have Q;f = Q;Pof and ||Q;|| < C for all j € Z (see
Proposition 8.3) we infer that ||Q;f|l, < C for j < 0. Together with
9.40 this gives

> [2o1Qs1]" < co.

7€Z
Thus we can use Theorem 9.9 to conclude that || f|lp.as < oco. This
implies that 9.36 holds. o]

REMARK 9.6. If in conditions 9.38-9.40 we replace [|Pof|l, by ||fll, we
obtain three more conditions equivalent to all the others. All this gives us nine
equivalent norms on BZ ,(R). Since the norms 9.36 and 9.37 do not depend on
the multiresolution analysis or wavelet involved it follows that all the other norms

are equivalent for all multiresolution analyses satisfying our general assumptions.
This is a rather surprising fact.

9.3 Compression of wavelet decompositions

In this section we want to discuss briefly and at the most elementary
level the following problem of non-linear approximation:

Suppose we have a wavelet ¥ on R. Given a function f
and € > 0, find a ‘small’ set of wavelet coefficients A so
that the function f and the sum Z(;‘ E)ea (f,¥5k) ¥ i are
within e,

Clearly we have to specify how we measure the distance between func-
tions. The simplest and quite often the most useful way is to use the
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Lo-norm. Since the wavelet basis is an orthonormal basis in Ly(R) any
f in Ly(R) can be approximated as closely as we wish by finite sums.
The real problem is how small the set A can be. Without any addi-
tional assumptions on the function f nothing sensible can be said. 1If
in= 2,’:;1 7‘ﬁ\ll(w—k) then ||fn|l2 =1 and for any A with cardinality

< & we have

1
Iiv— > UNv“’fk)“’jk”zZE-

(Gk)EA
The argument for this is quite obvious when we look at coeflicients; we
clearly have

b= 3 U ¥l 2 | e =,
(J.k)EA
where ¥’ is the sum over those k’s such that (0,k) ¢ A. Since there are
at least & such k’s the inequality follows.
On the other hand suppose that we have z = (xx)kcz € £2 such that
(Ekez|ark|”)'/" < C for some p < 2. Let us denote A =: {k € Z :

|zk] < 6} and B =:Z\ A. Then

1/
2 (Sleel)” 2 4BI7) > = o5y >
k€B

so |B| < CP677. Also

1/2 1/2
()" = (S )
ke A k€A
< 61—;7/2(2 |$klp)l/2 < § PI2CP/2,
keZ

Those remarks can be phrased in two equivalent ways:

e Suppose that = € £, and [|z]]z = 1. Suppose also that for some
p < 2 we have ||z|, < C. Fix a natural number N and choose the
N largest coefficients of z, i.e. define a set B C Z such that |B| =
and |zk| > |z;| whenever k € B and | ¢ B. Define the sequence
9 = (g )kez by the formula

{xk ifkeB
9k =

0 ifk¢B. (9-42)

Then maxyp [zx| < CN~'/? and

flz — gllz < P2 PR (R -p/2) o N1/2-1 P,
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Suppose that x € £; and }jz||; = 1. Suppose also that for some p < 2
we have ||z|l, < C. Fix a positive cut-off number £ > 0 and define
theset B C Z as B=: {k € Z : |zi| > €}. Define the sequence g
by 9.42. Then the number of non-zero coefficients in g (i.e. |B|) is at
most CPe~? and ||z — g|| < C*/2e'-7/2,

The conclusion of the above discussion is that if a sequence is in ¢, for
some p < 2 then it can be well approximated in £,. If we are interested
in functions, the same argument applies if f is a function such that
25k | {f,¥jk) P < CP for some p < 2. The language of Besov norms
allows us to figure out when this happens.

Proposition 9.11 Let o, 0 < a < } be given and put 7= (a+ })~'.
Then there exists a constant C such that

S KAYN < Cllf lrar- (9.43)

ik

Proof This is a direct consequence of Theorem 9.9. Substituting p =
s =7 into 9.31 we get 9.43. O

REMARK 9.7. The restriction a < % is forced on us because we need 7 > 1
to use Theorem 9.8. This restriction is not really necessary because most of the
content of the previous two sections can be also proved for 0 < p, s < oo.
Putting together our considerations at the beginning of this section and
Proposition 9.11 we get:

Theorem 9.12 Let a, 0 < a < } be given and let 7 = (a + 3)7'.
Suppose that f € L2(R) and that ||f||;.ar < C. Then there exists a
constant C' such that for every integer N we can find A CZx Z
with cartinality N such that

]|f S SIA TS \v,-k“ <C'CNe. (9.44)

(G.kyEA ?

The set A can be chosen by taking N coefficients (f, W,,) with
biggest absolute value.

Sources and comments

The modulus of continuity is a very classical and fundamental concept
used throughout analysis. It is introduced and its properties are studied
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in most books on approximation theory or real function theory, sce e.g.
[105], [88], [35], [4]. Besov spaces and Besov norms were defined in full
generality and investigated (naturally enough) by O. V. Besov in [5].
Today there is an extensive literature devoted to them, see e.g. [91]
or {109]. Usually they are defined using higher order moduli of conti-
nuity, which allows the parameter a to be any positive number. This
means that smoother functions can be handled. It results however in a
much more technically complicated theory. T have chosen the simplest
modulus of continuity because then the results are free from excessive
technicalities.

Proposition 9.6 is one of many ‘Jackson’s inequalities’ which deal with
the precision of approximation of a function by elements from a linear
subspace. Their forerunners are results of D. Jackson [53] where approx-
imation by polynomials was considered. Proposition 9.7 is one of many
‘Bernstein’s inequalities’ where the smoothness of functions from some
special subspace is estimated by their size. Its forerunner is the classical
Bernstein’s inequality that for a trigonometric polynomial f of degree
at most nn we have ||f'||,, < 1||f|lo- Our proofs of Propositions 9.6 and
9.7 exploit ideas standard in approximation theory, cf. [32], [42] or [33].
Our proof of Theorem 9.8 also follows and explains a well established
paradigm, although some details may be non-standard. It should be
stressed that the equivalence of conditions 9.28-9.31 and their connec-
tions with Besov norms in a non-wavelet context has been known for a
long time. In particular a characterization of Besov spaces on interval
via orthogonal spline systems similar to condition 9.31 was given by S.
Ropela [97].

Much more general Besov-type spaces are also studied (sce e.g. [109])
and properties of wavelet expansions in such spaces can also be investi-
gated, see e.g. [74]

In this chapter we have discussed so called global smoothness of func-
tions. This means that via the Besov norms we have taken the whole
function into account. We can naturally ask questions about the smooth-
ness of functions in the neighbourhood of one point (i.e. local smooth-
ness). A typical such question might he: Suppose that f satisfies a
Holder’s condition at one point, i.e. | f(x) — f(zq)] £ C|z — zo|* (and [
satisfies some general assumptions so that we can compute the wavelet
coefficients). Can we recognize this from the wavelet coefficients? The
answer is ‘basically yes'. The precise results were obtained by S. Jaffard
[564] and are presented also in [24] pp. 299fT.

Our treatment of compression of wavelet decomposition presented in
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Section 9.3 is very elementary and straightforward, mainly because we
use only the approximation in Hilbert space norm. A more sophisticated
treatment with some indication of applications to statistical estimates
can be found in [36]. Compression with approximation in L, norm is
treated in the paper [33]. Similar questions are discussed in [34].

About the exercises. Exercise 9.7 provides one of the standard def-
initions of Besov spaces while Exercise 9.8 give several instances of so
called embedding theorems. These are standard facts in the theory of
Besov spaces. Exercise 9.13 gives a glimpse of Besov spaces on the circle.
Some results related to Exercise 9.3 are contained in [43].

Exercises

9.1 Suppose that = € ¢,,, 0 <p < 0o and ||z[|, =1 and let ¢ > p be
given. Show that there exists a g € #4 such that g has at most
N non-zero coordinates and ||z — _(]“q < Nifa=\p,

9.2 Suppose that f € L,(R) and that ¥ is a wavelet satisfying 9.16
and 9.17. Assume also that 3, 2 [ (£ ¥5) |7 < oo for some
p < 2. Show that f € MC, and satisfies 9.33.

9.3 Let S™(27Z) be the spline multiresolution analysis described in
subsection 3.3.2. Show that ;. S"(27Z) consists of all C™~!
functions which are polynomials of degree at most n when re-
stricted to (—o0,0) and to (0,00). Show that for n > 1 con-
stants are the only such functions which are in MC,, for some
p, 1 < p < oco. Show that the same is true for n = 1 and
1 < p < co. Show that continuous functions which are linear
on both (—o0,0) and (0,00) have an oo-modulus of continuity.
Similarly analyze the case n = 0.

9.4 Show that the function

0 forr <0
fale) = { jz|*  forz >0

belongs to MCL(R) for p < co if and only if @ < 1";5‘ Show
that in this case w,(fa;8) < C8. Let go be a piecewise linear
function with nodes in Z such that go(n) = fo(n) for n € Z.
For what p do we have [|foa — gall » < 007

9.5 Let 1 < p < oo and let f € Ca(R). Show that w,(f;8) <
C'min(1, 8) for some constant C.

9.6 Let f(z) =: 1j0,00). Show that f satisfies wy(f;8) < C6 if and
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only if @ = 1/p. Show also that

1 ifz>1
flz)=<{ 2z ifo<z<1
0 ifz<O

satisfies w(f;8) < C6® if and only if a > 1/p.
9.7 (a) Show that there exists a function ¢ € S(R) such that

suppp ={€ : 271 <[] <2}

e(€) >0 for 27 < €] <2

Zcp(‘l'kf) =1 for each € #0.
k€Z
(b) Fix any Meyer’s wavelet from the Schwartz class S. Show
that any of the conditions 9.28-9.31 for this wavelet is
equivalent to

) ~1/n
(X Eles e 1)) " <00 (BON)
j€z
where @;(z) =: p(277z).
9.8 Let as usual BZ ,(R) denote the inhomogenous Besov space.
Show that:
(2) B, (R) C BE%,(R) for p1 < p2

(b) B, (R)C B, (R)for s < 3

(c) B, ,(R) C B2, (R) for a1 < a2
(d) BZ, .(R) C BY, ,(R) for a; < oz and arbitrary ¢,s > 1.

a

9.9 Let (aji) be a sequence of numbers such that
) . /s
(z [2)&(Zz)(l/Z—l/P)Plajklp)I/P]'> <oo.  (E9.2)
i€z kez

Let W be a wavelet satisfying 9.27.

(a) Show that
DY ¥ € Ly(R).

120 k€Z

(b) Show that for each j € Z

[Sensal. <2 Semm,
kez keZ 4
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(c) Show that for p < 0o and a < ,% the series
> (2 amws)
3<0 " kez
is an absolutely convergent series of bounded functions.
(d) Suppose that > +. For 8 such that l<p<ita —’1,
define ajo =: 2778 if j <0 and ajx = 0 otherwise. Show
that the sequence (a;¢);xez satisfies E9.2. Assuming ad-
ditionally that ¥ is continuous and ¥(0) # 0 show that

the series
a-k‘l/ ik = 2_jﬂ‘l’ i0
2> ¥ =3 270,

JEZ keZ 3<0
does not represent a function.
Let ¥ be a C! wavelet satisfying 9.27 and assume also that ¥’
satisfies
¥(@)] < €O+ |2,
Let (aji) be a sequence of numbers satisfying E9.2 of Exercise
9.9. Show that for each h € R the series

Z Zaf" [\Iljk(a:) — Wi (r — h)]
JEZ keZ
converges to an L,(R) function.

Suppose that f,, is a sequence of functions converging locally in
L, to f, i.e. for cach N > 0 we have

n—

i, [ 1)~ s de =0,

Show that liminf,, oo wy(fu;8) > wy(f;6) for each § > 0. Give
an example for which liminf,, _oo wp(fu;8) > wp(f;6).

Show that for 0 < a < 1 and 1 £ p,s < oo any wavelet basis
with wavelet satisfying 9.27 is an unconditional basis in B, ,(R).
For a function on the circle T we define

wy(f568) =2 sup ||f(z + h) = f(2)|l,.
|hl<6

For 0 < @ < 1and 1 < p,s < oo we define B, ,(T), Besov

spaces on T, as the space of all functions on T such that

(/0" e lor(fit) dt)u' < 00
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when s < 00, and supy ¢y <, 1°wp(f;t) < 00 when s = co.

(a) Show that if wy(f;1) < oo then f € L,(T).

(b) For the spaces ‘-/] = span{d)jk}z’:'al where the ¢, are
defined in 8.81 show analogs of Jackson's and Bernstein’s
inequalities.

(c) Let ¥;i be defined by 8.82. Show that f € B ,(T) with
0 < a < 1ifand only if

2.1 .
(e [ 1)) <o
j>0 k=0

9.14  Observe that inhomogenous Besov spaces Bg.Z(R) are Hilbert
spaces. Show that f € B2 ,(R) if and only if

[ tera + jede < o




Appendix

In the first three sections of this appendix we collect several facts and
notions used throughout this book. In no way is it intended to serve
as a crash course on any subject. It is supposed only to refresh the
reader’s memory when needed. If the reader really needs to learn some
of the subjects hinted at in this appendix he should consult any of the
appropriate books listed in the references at the end of each section or
any other appropriate textbook. The next two sections are a list of sym-
bols which collects all symbols constantly used in the book and a list of
spaces which lists some spaces of functions which are used throughout
the book. In the first part of the book they are used simply as a short-
hand for some properties of functions. In the second part some of them
become function spaces equipped with appropriate structures.

239
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A.1 Hilbert spaces
A I-1. Let H be a linear space over either the real numbers R or the
complex numbers C. A scalar product on H is a function (.,.) from
H x H into scalars such that

(z,y) = ('J'_I)

(az) + Bz y) = afz,y)+0(z2y)
(z,z) > 0
(z,z) = 0 ifand only if z=0.

In such a situation the function ||z|| = \/(z, z) is a norm, i.e. it satisfies

lz+ull = Nzl + sl
lazll = fa] i
[z = 0 ifandonly if z=0.
A linear space H equipped with a scalar product is a Hilbert space if
H is complete as a metric space with the metric d(z,y) = ||z — y||.
Al I There are two basic examples of Hilbert spaces. For any
subset A C R%, d = 1,2,..., in particular for the whole of R? or an

interval in R, L2(A) is the space of all (equivalence classes of equal a.e.)
measurable functions f such that

@) = 17l < oo,
(f,ver)

The scalar product is given by
(o) = [ J@E i,
A

If Ais an interval in R, e.g. A = (a,b], then we will save brackets and
write Lo(a, b] instead of the more formally correct Ly((a, b]).

If B is a countable set then the space ¢>(B) is the space of all sequences
(ap)be g indexed by the set B such that

bl =2 (3 lasl?)"/? < oo.

beB




{ | Hilbert spaces 241

The scalar product is given by

a,c) =: Z apCs.
beB
A.L-III. Two vectors = and y in a Hilbert space H are called or-
thogonal if (x,y) = 0. Two subsets A and B of a Hilbert space H are
orthogonal if {(a,b) = 0 for all @ € A and b € B. We denote this by
A L B. A system of non-zero vectors (T.).cs is called an orthogonal
system if (z,,z,) = 0 for s # 3'. If we have

0 if s#4
(z0r20) ={ 1 ifa=s
then the system is orthonormal. An orthonormal system (z,).cs is an
orthonormal basis in H if one of the following equivalent conditions
holds:

e every z € H can be written as a convergent series T = ) s @,%, for
some scalars a,

o if (z,z,) =0forall s € S thenz =0

o for every z € H the series ), < (,2.) z, converges to z.

A1 1V For any number I > 0 the system (L-e"*t/!)

orthonormal basis in the space L2[0,1]. If B is a countable set, then the
system (es)scp of sequences indexed by B where

0 ifa#b
e"(“):{l ifa:b

zlS&n

is an orthonormal basis in £2(B). This basis is called a unit vector basis
in £2(B).

A 1-V  If(z.}.es is an orthonormal basis in a Hilbert space H then
for any z € H we have

lzll = (31 ¢,z 12) 2.

€S

ALVl IfT : H— His a continuous linear operator then T is
a continuous linear operator defined by the relation (T'z,y) = (z,T"y)
for all z,y € H. We have ||T|| = |T*||. An operator T is called self-
adjoint if T = T". An operator U is called unitary if it is invertible and
(Uz,Uy) = (z,y). Also when T : H, — H, for two different Hilbert
spaces H, and H, we can define T* : I, — H; by the condition
(Tz,y) = (z, T"y) and then also |T*|| = ||IT].
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Al VII. LetT : Hy — H, be a continuous linear operator be-
tween two Hilbert spaces. We say that T is an isomorphism if ! exists
and is continuous. This is equivalent to T being onto and || Tz|| > c||z||
for some positive c. If T is an isomorphism then T is also an isomor-
phism.

A 1-VIII. Suppose that (X,).cs is a system of closed linear sub-
spaces of H which are pairwise orthogonal. If 0 is the only vector from
H which is orthogonal to all X, then each vector £ € H can be written
as T = ZnES z, with z, € X,.. If we have two orthogonal subspaces X,
and X in a Hilbert space H, then by X, ® X, we denote the direct sum
of X, and X, i.e. the subspace of H consisting of all vectors z; + =2
with z; € X;.

A.1-1X. For each closed linear subspace X C H there exists a
unique orthogonal projection P from H onto X which has the following
properties:

o P is a continuous linear operator and ||P|| =1
e P(H) C X and P(z) = z for every z € X

o kerP L X

e P*=P,

If X C Y are closed subspaces of a Hilbert space H then there exists
a unique subspace W C Y such that Y = X @ W. This subspace will
sometimes be denoted as W =: Y © X.

References. Everything mentioned above is well known and can be
found in many textbooks on functional analysis or Hilbert spaces, e.g.
[119], 6] or [98].
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A.2 Fourier transforms

The aim of this section is to collect some facts, formulas and theorems
about Fourier transforms and Fourier series.

A 2-1. For a function f € L,(R?) we define its Fourier transform,
denoted as f(€) or Ff(£), by the formula

J©) = 710 = m 42 [ 46 j(2) .

Clearly f(€) is a bounded function on R? and we have

1flleo = 21) 42111

We can easily extend the definition of a Fourier transform to finite mea-
sures on R%. For such a measure 2 we put

(8) =: (2m) =4/ /R‘ e 6D dy(z).

With this generalization ji(€) still is a bounded function on R%. It is
also clear that ¥ is a linear map.

A 21l If i is a finite measure on R? then i(£) is a continuous
function on R?. If we assume that f € L (R?) then f(£) € Co(RY), i.e.
is a continuous function vanishing at infinity.

A.2-I11 If h € R? we define a translation operator (cf. Definition
2.3) by the formula T), f(z) = f(z — h). Then

F(Tuf)(E€) = (Tuf)" (&) = ™9 f(&)
and
F(e' f(2))(€) = T f(€) = f(€ = h).
A2 IV (Plancherel’s theorem) If f,g € Ly (R) N Ly(R?) then

o = [ s = [ e =(1.9).

This shows that the map F extends to the unitary operator on Ly(R%).
For this extension we will use the same notation as for the original
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transform. Further, when f is in the Schwartz class S and p is a measure
on R? of bounded variation, we have

[ dua = [ i .
Rd Rd
A2-V The inverse Fourier transform F~! is given by
F (@) = @) = (om) 9 [ j(eeOaa,
Rd

Note that F~! f(z) = Fg(z) where g(£) =: f(—¢). This implies that the

properties of #~! are very similar to those of F. In particular all facts

mentioned in this Appendix about F have their counterparts for F~!.
A.2-VI  If Ais an invertible linear map A : R? — R? then

F(f 0 A)() = J(Az)"(€) = (det ) F((47)€).
In particular if Az = az for some a € R then
F(f(a2))(€) = la|=*f(¢/a).

A 2-VII. I we put together the above observations we get the for-
mula

F(f(Az + ) (€) = | det 4] HEAT0) f((A71)%).
In particular when d =1 we get
F(f(az +b))(€) = |a|~'*¢/*% f(¢/a).

A 2-VIII If we assume that 581{- exists and is integrable (or in
L»(R?)) then

(25)" @ = o).

Ok
If f(f) has an integrable partial derivative then
of
Ok
A 2- IX. In particular we have the following: if
lf@r=ca+h~r

for some ¢ > 0 then all partial derivatives of f of order not greater than
N — d are continuous and in Lo(R?). In particular when f is in the
Schwartz class S then f is also in S.

(&) = F(ize f(z)) (£)-
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A2-X If f,9 € L;(R?) then we can define their convolution as
7eo@ = [ = voti)dy.

This concept can be extended to finite measures on R%. If  and v are
finite measures on R? then p * v is the measure defined as

wuxv(A) = /nd (A = s)du(s).

The convolution has the following properties:

NF*=gllv < Al okl
frg = g+f
felagi+Bg2) = af xgi+ff * g
A.2 XI  There is a close connection between convolution and the
Fourier transform, namely if we define

AN© = o2 FN© = [ e ) da

then we have
Fi(f x9)=Fi(f) - Filg).

Analogously we can define F; for measures and with this generalization
the above formula still holds.

A 2-XI1  If we have an l-periodic function f on R, locally integrable,
then we can write its Fourier series

Z f(k)f,(h /U)ikt
k=-00

where
1
j =1 [ s0eemnma,
o

The Fourier coefficients (f(k))::
Also limx) —oo f(k) = 0. If the function f isin L-[0,!] (more formally we
mean that f|[0,{] € L2[0,1]) then the series converges to f in the norm
of L3[0,1]. Note that the notation f(k) does not reflect the period of the
function. This should be clear from the context. If nothing is said we

_ o Uniquely determine the function f.

mean 2m-periodic functions.
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A2-XIT If f is as in A1.2-XII and f’(z) exists and is locally in-
tegrable then f/(z) has the Fourier series
oo .
2o 2wtk o,
S e e,
k=—oo

[t implies that if f’(z) is locally integrable then
. C
k)| € ———.
T < g

Conversely, if |f(k)| < C(1+ik[)** for some & > 0 then f(*~1)(z) exists
and is continuous.

A 2-XIV ~ (Poisson summation formula) For f € L;(R) we
define a function P(f)(z) = 3.,z f(z+n). This is clearly a 1-periodic
function on R and P(f)|[0,1] € L;[0,1] so Pf is locally integrable. The
Fourier coefficients of P f are connected with the Fourier transform of f
as follows:

Pf(k) = V2 f(~2rk).

A2 XV A function f on R? is said to be {Z% periodic if f(z) =
f(z + ly) for each v € Z4. If such a function is locally integrable then
we can write its Fourier series

Z f (”" 18)i(y,x)

~€E€Ze

d
for = () [ steermen
l [0.1)4

The sequence of Fourier coefficients (f(",))%v uniquely determines the
function f. Also limj,|_oo f(y) = 0. 1f the function f is in L,[0,1}¢
(more formally we mean that f|(0,1]* € L,[0,1]%) then the series con-
verges in L,[0,1] norm.

A 2-XVI If fis as in A1.2-XV and g}) exists and is locally inte-

where

grable then (-%L has the Fouricr series
b

; 2r 2afl}i{y,x
Z f('Y)T"YJC(' /Didy,x)

yeZd

where ¥ = (y1,...,7q4). This implies that if each —L is locally integrable

then [F()] < C(1+ ). Conversely, if /()] < C(1 + 1))+ for
some € > 0, then f € C* 4(RY).
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A2 XVII  (Poisson summation formula) For f € L,(R%) we
can define a function Pf(z) = 3. ;. f(z + 7). This is clearly a Z4-
periodic function on R? and Pf | [0,1]¢ € L,[0,1]%, so Pf is locally
integrable. The Fourier coefficients of P f are connected with the Fourier
transform of f as follows:

PI(y) = (V2r)* f(=2m7).

References. Everything mentioned above is well known and can be
found in many textbooks, e.g. (37}, [57],[98], [105] or [108].
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A.3 Banach spaces

A3 1 Let X be a linear space over the real numbers R or complex
numbers C. A norm on X is a function z — |z|| from X into the
non-negative reals such that

lz+yll = izl + lvl
lazl = |a|-|lz|| for all numbers a
|zl = 0 ifandonlyif z=0.

A linear space equipped with a norm is called a normed space. Every
norm gives a metric on X by the formula d(z,y) =: [z —y||. If X
is complete when equipped with this metric we call (X, || .||} a Banach
space.

A3-1L If X and Y are two Banach spacesand T : X — Y is a
linear operator, then by ||T’|| we denote

sup{||Tz| : ||=|| < 1}.

An operator T is continuous if and only if ||Tf| < co. For this reason
we use the phrase ‘T’ is bounded’ as synonymous with ‘T is continuous’.
Clearly we have |Tz| < ||T| - |||

A 3-II1 Itisclear that if T is a linear map (into some Banach space)
defined on a dense linear subspace Z of a Banach space X and if

sup{||Tz]| : x€ Z and ||z <1} < oo

then T extends uniquely to a continuous linear operator from X into Y.
Also if a sequence of operators T;, : X — X is such that sup ||T,,]} < oo
and T, (z) — 2 for each z € Z, then T, (z) — z for every z € X.
Analogously if T),(z) — 0 for each z € Z, then T,,(z) — 0 for all z € X.

A3V An operator T : X — Y is an isomorphic embedding
if there are constants 0 < ¢ < C such that for all £ € X we have
dlz|l < ITz|| < Cljz||. T is an isomorphism if additionally it is onto Y.
An operator P : X — X is a projection if P2 = P. Two norms ||.|!
and || .]|? on a linear space X are called equivalent if there are constants
0 < ¢ < C such that c||zif* < ||z||2 < C|lz]|! for all z € X. Equivalent
norms define the same topological structure on X, i.e. the identity acts

as an isomorphism between (X, ||.|') and (X,||.||?). An operator T is
continuous with respect to the norm ||.||! if and only if it is continuous
with respect to the norm ||. ||°.

A 3-V A linear map from a Banach space X into the scalars is
called a linear functional on X. Since the scalars form a Banach space
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with absolute value as a norm, the above facts A1.3-11 and A1.3-11I
hold in particular for functionals. The space of all continuous (linear)
functionals on X is denoted by X* and is called the dual space of X. It
is a Banach space when equipped with the norm of a functional. The
Hahn-Banach theorem asserts in particular that for each closed, linear
subspace Y C X and each z € X \ Y there exists a linear functional
z® € X* such that z*(y) = O for all y € ¥ but z°(z) = 1. It also
asserts that for each z € X there exists a functional z* € X* such that
z*(z) = ||=*|| - ||\

A3 V1 Let us consider the space L,(A) for some subset A C R
For 1 < p < oo the dual space L,(A)" equals L,(A) where as usual
1 411 = 1. This means that for every continuous linear functional
¢ € Ly(A)* there exists a unique function g, € Ly(A) such that

wm=Aﬂmmﬂm

and the norm of the functional ¢ equals ||g,|lq. Conversely, each g €
Lq(A) gives by the above formula a functional on L,(A). The same
holds for sequence spaces £,. Note that the classical Holder’s inequality
can be stated as [o(/)] < |/l /-

A3-VII T : X — Y is a continuous linear operator between
Banach spaces then its adjoint operator T* : Y* — X°* is defined as
T*(y*)(x) =: y*(Tz). It is a continuous linear operator and ||T|| = ||T"||.
T maps X onto Y if and only if T* is an isomorphic embedding of Y*
into X*. P is a projection in X if and only if P* is a projection in X".

References. All the above facts can be found in (almost) every text-
book on functional analysis, e.g. (98] or [6].




5 6 2 N =B

14

71
-1l

ll-lloo

[I-li+.p

Appendiz

A.4 List of symbols

The set of real numbers, the real line
The set of integers

The set of natural numbers

The set of complex numbers

The unit circle in the complex plane C, i.e. the set of all
complex numbers of absolute value 1

The Fourier transform of a function or a measure normalized
to be a unitary map

(2m)¥/2F

The scalar product, either in the abstract Hilbert space or
in Lo(R?), ie. [ f(z)g(z)dz. Also in R? or C%, i.e. (z,y) =
Zf:l -

Either absolute value of a number or the euclidean norm of
a vector in R? or Lebesgue measure of a subset of R? or
cardinality of a discrete set

The indicator (or characteristic) function of the set A

1 ifzeA
1*‘(”")‘{ 0 ifxgA

The H, norm of the function f

The norm of the function in L,,(A) or the norm of a sequence
inf,, 1<p<oo

The sup-norm; the supremum of absolute value of a function
or a sequence

The norm in BAM O, defined in Definition 6.10
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The generic bounded mean oscillation norm; see comments
after Corollary 6.17

The Besov norm as defined in Definition 9.4

The equality which defines one side

The imaginary part of a complex number z

The real part of a complex number z

The support of a function f

The smallest closed interval containing the support of f

For a cube Q this denotes the cube with the same center
whose sides are ¢ times the sides of Q

The mean value of the function f on a cube Q, i.e.

1
Jo = @/Qf(x)dr

The periodization of a function f on R¢, i.e.

Pi(z)=: Y flz+7)

ve€Zd
For a function F on R this is 22/2F(2?z — k) where j,k € Z

For a function F on R? and a dilation matrix A (to be under-
stood from the context) this is |det AP/2F(A7z — «) where
j € Z and ¥ € Z%. In particular for the dilation matrix
Az = 2z this is 292F(2z — 7).




5

Ly(R?)

C(RY)

Co(R?)

Coo(R?)

Ck(R?)

C>*(R%)
Cee(RY)
Ca(RY)

S(RY)

Appendix

A.5 List of spaces

If A is any measurable subset of R?, in particular the
whole of R?, then L,(A4) with 1 < p < oo is the space
of all (classes of equal a.e.) measurable functions such
that when 1 < p < 00

Wy = ( [ @pda)” < o

If p= oo then Lo, (A) is the space of all (classes of equal
a.e.) essentially bounded measurable functions on A.
We use only A = R? or A an interval in R or a cube in
Re.

The space of all continuous functions on R?

The space of all continuous functions on R? such that
the limit limjz| o f(x) exists and equals 0

The space of all continuous functions on R? with com-
pact support, i.e. functions f € C(R?) such that f(z) =
0if |z| > R for some R (depending on the function)

For k = 1,2,... this denotes the space of all functions
on R? which have partial derivatives up to the order
k continuous. For k = 0 we mean C°(R?) = C(RY)
and for k = —1 we mean by C~'(R?) the space of all
measurable functions on R?

The space of all infinitely differentiable functions on R¢,
ie. C(R?Y) =2, C*(RY)

The space of all C*> functions with compact support,
ie. CH(RY) = C°(R?) N Coo(RY)

The space of all C* functions with compact support, i.e.
C*(R?) N Coo(R?)

The Schwartz class, i.e. the space of all functions f be-
longing to (;°(R?) such that for each multiindex o =
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(ay,...,0q) with a; > 0 and each k = 0,1,... there
exists a constant C = C(f, a, k) such that

10°f(2)| < CO1 + =) ~*.

H?(R?)  The Hardy space obtained using p-atoms, see Definition
6.12

Hi(R?) The Hardy space; see Theorem 6.18

BMO,(R%)  The space of functions with bounded p-mean oscillation,
see Definition 6.10

BMO(R?)  The space of functions of bounded mean oscillation, see
Corollary 6.17 and comments after it

MC,(R) The space of functions having p-modulus of continuity,
see Definition 9.2

B’ ,(R)  Aninhomogenous Besov space, see comments after Def-
inition 9.4 on page 220

Bg',(JR) A homogenous Besov space, see comments after Defini-
tion 9.4 on page 220

REMARK The reader may have observed that all the above symbols
denoting spaces of functions consist of two parts: the first indicating
the nature of the functions and the second ( R or R or A in the above
list) indicating the set on which the functions are defined. Quite often
we will omit the part indicating on which set the functions are defined.
Then the set should be clear from the context or nonessential. Thus
e.g. the phrase ‘C* function’ simply means ‘function all of whose partial
derivatives up to order k are continuous’. This is a standard usage with
which the reader is most likely already familiar. In any case it sheuld
not cause any problems.
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