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Chapter 1

Introduction

Nonlinear problems have always tantalized scientists and engineers: they
fascinate, but oftentimes elude exact treatment. A great majority of non-
linear problems are described by systems of nonlinear partial differential
equations (PDEs) together with appropriate initial/boundary conditions;
these model some physical phenomena. In the early days of nonlinear sci-
ence, since computers were not available, attempts were made to reduce
the system of PDEs to ODEs by the so-called “similarity transformations.”
The ODEs could be solved by hand calculators. The scenario has since
changed dramatically. The nonlinear PDE systems with appropriate ini-
tial/boundary conditions can now be solved effectively by means of so-
phisticated numerical methods and computers, with due attention to the
accuracy of the solutions. The search for exact solutions is now motivated
by the desire to understand the mathematical structure of the solutions
and, hence, a deeper understanding of the physical phenomena described
by them. Analysis, computation, and, not insignificantly, intuition all pave
the way to their discovery.

The similarity solutions in earlier years were found by direct physical
and dimensional arguments. The two most famous examples are the point
explosion and implosion problems (Taylor (1950), Sedov (1959), Guderley
(1942)). Simple scaling arguments to obtain similarity solutions, illustrating
also the self-similar or invariant nature of the scaled solutions, were lucidly
given by Zel’dovich and Raizer (1967). Their work was greatly amplified
by Barenblatt (1996), who clearly explained the nature of self-similar solu-
tions of the first and second kind. More importantly, Barenblatt brought out
manifestly the role of these solutions as intermediate asymptotics; these so-
lutions do not describe merely the behaviour of physical systems under cer-
tain conditions, they also describe the intermediate asymptotic behaviour
of solutions of wider classes of problems in the ranges where they no longer
depend on the details of the initial/boundary conditions, yet the system is
still far from being in a limiting state.
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The early investigators relied greatly upon the physics of the problem
to arrive at the similarity form of the solution and, hence, the solution
itself. This methodology underwent a severe change due to the work of
Ovsyannikov (1962), who, using both finite and infinitesimal groups of
transformations, gave an algorithmic approach to the finding of similar-
ity solutions. This approach is now readily available in a practical form
(Bluman and Kumei (1989)). A recent direct approach, not involving the
use of the groups of finite and infinitesimal transformations, may be found
even more convenient in the determination of similarity solutions; the fi-
nal results via either approach are, however, essentially the same (Clarkson
and Kruskal (1989); Hood (1995)). So the reduction to ODEs (if the PDEs
originally involved two independent variables) is a routine matter, but then
the ODEs have to seek their own initial/boundary conditions to be solved
and used to explain some physical phenomenon. On the other hand, given
a mathematical model, one must use both algorithmic and dimensional
approaches suitably to discover if the problem is self-similar, solve the re-
sulting ODEs subject to appropriate boundary conditions, and prove the
asymptotic character of the solution. Since, in the process of reduction to
self-similar form, the nonlinearity is fully preserved, the self-similar solution
provides important clues to a wider class of solutions of the original PDE.

As a mathematical model is made more comprehensive to include other
effects and extend its applicability, it may lose some of its symmetries, and
the groups of infinitesimal or finite transformations to which the model is
invariant may shrink. As a result, the self-similar form may either cease to
exist or may become restricted. A simple example is the system of gasdy-
namic equations in plane geometry. As soon as the spherical or cylindrical
geometry term is included in the equation of continuity, there is a diminu-
tion in the scale invariance (Zel’dovich and Raizer (1967)). Therefore, one
must relinquish the self-similar hypothesis and assume a more general form
of the solution; that is, one must go beyond self-similarity. In the gasdy-
namic context, several problems in nonplanar geometry, such as flow of a
gas into vacuum or a piston motion leading to strong converging shock, are
solved by assuming an infinite series in one of the independent variables,
time, say, with coefficients depending on a similarity variable (Nageswara
Yogi (1995); Van Dyke and Guttman (1982)). This results in an infinite
(instead of finite) system of ODEs with appropriate boundary conditions;
the zeroth order term in the series is the (known) solution in planar ge-
ometry. The series, of course, must be shown to converge in the physically
relevant domain. The infinite system of ODEs, in a sense, reflects loss of
some symmetry and, hence, greater complexity of the solution.

Another way to overcome the limitations imposed by invariance require-
ment is to exactly linearise the PDE system when possible, or choose a “nat-
ural” coordinate system such that the boundaries of the domain are level
lines. The linearisation process immediately gives access to the principle
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of linear superposition and, hence, the ease of solution associated with it.
Hodograph transformations for steady two-dimensional gasdynamic equa-
tions and Hopf-Cole transformation for the Burgers equation are well-known
examples of exact linearisation. Linearisation, of course, imposes its own
constraints, particularly with regard to initial and/or boundary conditions.
An example of natural coordinated is again from gas dynamics where the
shock trajectory and particle paths may be chosen as preferred coordinates.
The transformed system is nonlinear, but has its own invariance properties
leading to new classes of exact solutions of the original system of PDEs
(Sachdev and Reddy (1982)).

There is yet another way of extending the class of similarity solutions.
This is to embed the similarity solutions, suitably expanded, in a larger
family; this family is obtained by varying the constants and introducing
an infinite number of unknown functions into the expanded form of the
similarity solution. These functions are then determined by substituting
the assumed form of the solution into the PDEs and, hence, solving the
resulting (infinite) system of ODEs appropriately. Thus, the similarity
solution becomes a special (embedded) case of the larger family. What is
the role and significance of the extended family of solutions must of course
be carefully examined (Sachdev, Gupta, and Ahluwalia (1992); Sachdev and
Mayil Vaganan (1993)). This embedding is analogous to that for nonlinear
ODEs (see, for example, Hille (1970) and Bender and Orszag (1978) for the
solution of Thomas-Fermi equation).

Exact asymptotic solutions can also be built up from the (known) linear
solutions (Whitham (1974)). The scheme or form of the nonlinear solutions
is chosen such that they extend far back (in time, say) the validity of the
linear asymptotic solution. For example, for generalised Burgers equations,
the exact solution of the planar Burgers equation for N wave neatly moti-
vates the form of the solution for the former (Sachdev and Joseph (1994)).
In exceptional circumstances, a “composite” solution may be written out
which spans the infinitely long evolution of the N wave, barring a finite ini-
tial interval during which the initial (usually discontinuous) profile loosens
its gradients (Sachdev, Joseph, and Nair (1994)).

The activist approach to nonlinear ODEs (Bender and Orszag (1978);
Sachdev (1991)) suggests how one may build up large time approximate
solutions of nonlinear PDEs by a balancing argument. For this purpose,
one introduces some preferred variables, the similarity variable and time for
instance, into the PDE and looks for possible solutions of truncated PDE
made up of terms which balance in one of the independence variables. The
simpler PDE thus obtained is usually more amenable to analysis than the
original equation. The approximate solution so determined can be improved
by taking into account the neglected lower order terms. Usually, a few terms
in this analysis give a good description of the asymptotic solution (Grundy,
Sachdev, and Dawson (1994); Dawson, Van Duijn, and Grundy (1996)).
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We may revert and say that whenever similarity solutions exist, their
existence theory greatly assists in the understanding of the original PDE
system. These solutions also help in the quantitative estimation of how
the solutions of certain classes of initial/boundary value problems evolve in
time (Sachdev (1987)).

The role of numerical solution of nonlinear problems in discovering the
analytic structure of the solution need hardly be emphasised; very often
the numerical solution throws much light on what kind of analytic form
one must explore. Besides, understanding the validity and place of ex-
act/approximate analytic solution in the general context can be greatly
enhanced by the numerical solution. In short, there must be a continu-
ous interplay of analysis and computation if a nonlinear problem is to be
successfully tackled.

The approaches outlined in the above go beyond self-similarity, but
the exact solutions they yield are still generally asymptotic in nature; these
solutions, per se, satisfy some special (singular) initial conditions but evolve
to become intermediate asymptotics to which solutions of a certain larger
but restricted class of initial/boundary value problems tend as time goes
to infinity (Sachdev (1987)).

Chapter 2 deals with first-order PDEs, illustrating with the help of
many examples the place of similarity solutions in the general solution.
Exact similarity solutions via group theoretic methods and the direct sim-
ilarity approach of Clarkson and Kruskal (1989) are discussed in Chapter
3, while travelling wave solutions are treated in Chapter 4. Exact lineari-
sation of nonlinear PDEs, including via hodograph methods, is dealt with
in Chapter 5. In Chapter 6, construction of more general solutions from
special solutions of a given or a related problem is accomplished via nonlin-
earisation or embedding methods. Chapter 7 uses the balancing argument
for nonlinear PDEs to find approximate solutions of nonlinear problems.
The concluding chapter expounds series solutions for nonlinear PDEs with
the help of several examples; the series are constructed in one of the inde-
pendent variables, often the time, with the coefficients depending on the
other independent variable.

The approach in the present monograph is entirely constructive in na-
ture; there is very little by way of abstract analysis. The analytic and
numerical solutions are often treated alongside. Most examples are drawn
from real physical situations, mainly from fluid mechanics and nonlinear dif-
fusion. The idea is to illustrate and bring out the main points. To highlight
the goals of the present book we could do no better than quote from the
last chapter on exact solutions in the book by Whitham (1974), “Doubtless
much more of value will be discovered, and the different approaches have
added enormously to the arsenal of ‘mathematical methods.’ Not least is
the lesson that exact solutions are still around and one should not always
turn too quickly to a search for the ε.”
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Chapter 2

First-Order Partial
Differential Equations

2.1 Linear Partial Differential Equations of
First Order

The most general first-order linear PDE in two independent variables x and
t has the form

aux + but = cu+ d (2.1.1)

where a, b, c, d are functions of x and t only. We single out the variable t
(often “time” in physical problems) and write the first-order general PDE
in the “normal” form

ut + F (x, t, u, ux) = 0.

The general solution of a first-order PDE involves an arbitrary function. In
applications one is usually interested not in obtaining the general solution
of a PDE, but a solution subject to some additional condition such as an
initial condition (IC) or a boundary condition (BC) or both.

A basic problem for first-order PDEs is to solve

ut + F (x, t, u, ux) = 0, x ∈ R, t > 0 (2.1.2)

subject to the IC
u(x, 0) = u0(x), x ∈ R (2.1.3)

where u0(x) is a given function. (The interval of interest for x may be
finite.) This is called a Cauchy problem; it is a pure initial value problem.
It may be viewed as a signal or wave at time t = 0. The initial signal
or wave is a space distribution of u, and a “picture” of the wave may be
obtained by drawing the graph of u = u0(x) in the xu-space. Then the PDE
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(2.1.2) may be interpreted as the equation that describes the propagation
of the wave as time increases.

We first consider the wave equation

ut + cux = 0 (2.1.4)

with the IC
u(x, 0) = u0(x), (2.1.5)

where c is a constant.
If x = x(t) defines a smooth curve C in the (x, t) plane, the total

derivative of u = u(x, t) along a curve is found by using the chain rule:

du

dt
=
∂u

∂t
+
∂u

∂x

dx

dt
.

The left-hand side of (2.1.4) is a total derivative of u along the curves

defined by the equation
dx

dt
= c. Therefore, equation (2.1.4) is equivalent

to the statement

du

dt
= 0 along the curves

dx

dt
= c. (2.1.6)

From (2.1.6) we find that

u = constant along the curves x− ct = ξ (2.1.7)

where ξ is constant of integration. For different values of ξ we get a family
of curves in the (x, t) plane. A curve of the family through an arbitrary
point (x, t) intersects the x-axis at (ξ, 0). Since u is constant on this curve,
its value u(x, t) is equal to its value u(ξ, 0) at the initial time:

u = u(x, t) = u(ξ, 0) = u0(ξ) = u0(x− ct) (2.1.8)

u0(x− ct) is the solution to the IVP (2.1.4) - (2.1.5).
The curves defined by (2.1.6) are called “characteristic curves” or simply

characteristics of the PDE (2.1.4). A characteristic in the xt-space repre-

sents a moving wavelet in the x-space,
dx

dt
being its speed. The greater the

inclination of the line with the t-axis, the greater will be the speed of the
corresponding wavelet. Signals or wavelets are propagated along the char-
acteristics. Also, along the characteristics the PDE reduces to a system of
ODEs (see (2.1.6)). At the initial time t = 0 the wave has the form u0(x).
At a later time t the wave profile is u0(x − ct). This shows that in time t
the initial profile is translated to the right a distance ct. Thus, c represents
the speed of the wave.
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Example 1

∂u

∂t
+ t2

∂u

∂x
= 0, u(x, 0) = f(x).

It is clear that
du

dt
= 0 along the characteristic curves

dx

dt
= t2. On

integration we get x =
t3

3
+ ξ so that

u = constant on x = ξ +
t3

3
.

Therefore,

u(x, t) = u(ξ, 0) = f(ξ) = f

(
x− t3

3

)
.

The solution u(x, t) = f

(
x− t3

3

)
has a travelling wave form u(x, t) =

f(η), η = x − t3

3
. The travelling wave moves with a nonconstant speed t2

and a nonconstant acceleration 2t.
The method of characteristics can also be applied to solve IVP for a

nonhomogeneous PDE of the form ut + c(x, t)ux = f(x, t), x ∈ R, t > 0,
u(x, 0) = u0(x).

Example 2

∂u

∂t
+ c

∂u

∂x
= e−3x, u(x, 0) = f(x).

We note that
du

dt
= e−3x along

dx

dt
= c.

This pair of ODEs can be solved subject to the IC x = ξ, u = f(ξ) at t = 0.
We get

x = ct+ ξ

and
du

dt
= e−3(ct+ξ).

On integration we have

u(x, t) =
e−3ct

−3c
e−3ξ + g(ξ)

where g is the function of integration. Applying the IC we get

g(ξ) =
e−3ξ

3c
+ f(ξ).
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Thus,

u(x, t) =
e−3ξ

3c
(1− e−3ct) + f(ξ)

=
e−3(x−ct)

3c
(1− e−3ct) + f(x− ct).

The solution here is of the similarity form u(x, t) = α(x, t) + β(η), where
η = x−ct is the similarity variable, a linear combination of the independent
variables x and t.

Example 3

∂u

∂t
+ x

∂u

∂x
= t, u(x, 0) = f(x).

Here
du

dt
= t along

dx

dt
= x,

which on integration yields
x = ξet

and

u(x, t) =
t2

2
+ g(ξ).

At t = 0, x = ξ, u = f(ξ); therefore, g(ξ) = f(ξ). Thus

u =
t2

2
+ f(ξ) =

t2

2
+ f(xe−t).

The solution here has the similarity form

u = α(x, t) + β(η)

where η = xe−t is the similarity variable.

Example 4

xux + (x2 + y)uy +
(y
x
− x
)
u = 1.

The characteristics are given by

dx

dt
= x,

dy

dt
= x2 + y,

du

dt
+
(y
x
− x
)
u = 1,

the first two of which give the locus in the (x, y) plane, the so-called traces,

dy

dx
= x+

y

x
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which on integration become

y

x
− x = constant.

It is often easier to find the general solution of the PDE by introducing
the variable describing the trace curves as a new independent variable:
φ =

y

x
− x. The given PDE then becomes

x

(
∂u

∂x

)
φ

+ φu = 1

which on integration with respect to φ gives

u = φ−1 + x−φf(φ)

where f is an arbitrary function of φ.

2.2 Quasilinear Partial Differential Equations
of First Order

The general first-order quasilinear equation has the form

aux + but = c, (2.2.1)

where a, b, and c are functions of x, t, and u. Quasilinear PDEs are simpler
to treat than fully nonlinear ones for which ux and ut may not occur linearly.
The solution u = u(x, t) of (2.2.1) may be interpreted geometrically as a
surface in (x, t, u) space, called an “integral surface.”

The Cauchy problem for (2.2.1) requires that u assume prescribed values
on some plane curve C. If s is a parametric on C, its representation is
x = x(s), t = t(s). We may prescribe u = u(s) on C. The ordered triple
(x(s), t(s), u(s)) defines a curve Γ in the (x, t, u)-space; C is the projection of
Γ onto the (x, t) plane. Thus, generally, the problem is to find the solution
or an integral surface u = u(x, t) containing the three-dimensional curve
Γ. The direction cosines of the normal ~n to the surface u(x, t) − u = 0
are proportional to the components of grad (u(x, t) − u) = (ux, ut,−1).
If we define the vector ~e = (a, b, c), then the PDE (2.2.1) can be written
as ~e · ~n = 0. In other words, the vector direction (a, b, c) is tangential to
the integral surface at each point. The direction (a, b, c) at any point on
the surface is called the “characteristic direction.” A space curve whose
tangent at every point coincides with the characteristic direction is called
a “characteristic curve” and is given by the equations

dx

a
=
dt

b
=
du

c
. (2.2.2)
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The characteristics are curves in the (x, t, u)-space and lie on the integral
surface. The projections of the characteristic curves onto the (x, t) plane
are called “base characteristics” or “ground characteristics.” Integration
of (2.2.2) is not easy as a, b, c; now depend upon u as well. Prescribing u
at one point of the characteristic enables one to determine u all along it.
We assume that all the smoothness conditions on the functions a, b, and
c are satisfied so that the system of ODEs (2.2.2) has a unique solution
starting from a point on the initial curve. Lagrange proved that solution
of Equation (2.2.1) is given by

F (φ, ψ) = 0 or φ = f(ψ),

where φ(x, t, u) and ψ(x, t, u) are independent functions (that is, normals
to the surfaces φ = constant and ψ = constant are not parallel at any point
of intersection) such that

aφx + bφt + cφu = 0, aψx + bψt + cψu = 0 (2.2.3)

(The functions F and f are themselves arbitrary). F (φ, ψ) = 0, called the
“general integral,” is an implicit relation between x, t, and u. Oftentimes it
is possible to solve for u in terms of x and t. If φ = constant is a first integral
of (2.2.2), it satisfies (2.2.3). A second integral of (2.2.2), ψ = constant,
also satisfies (2.2.3). Equation (2.2.2) represents the curves of intersection
of the surfaces φ = c1 and φ = c2, where c1 and c2 are arbitrary constants.
We thus have a two-parameter family of curves. If we impose the condition
F1(c1, c2) = 0 we get a one-parameter family of characteristics. An integral
surface can be constructed by drawing characteristics from each point of
the initial curve. Note that (2.2.2) may be written in the parametric form

dx

dτ
= a,

dt

dτ
= b,

du

dτ
= c (2.2.4)

where τ is a parameter measured along the characteristic.
One may also obtain a solution of (2.2.4) in the form x = x(s, τ), t =

t(s, τ), and u = u(s, τ), where s is a parameter measured along the initial
curve. Solving for s and τ in terms of x and t from the first two equations
and substituting in u = u(s, τ), one gets u as a function of x and t.

Example 1

Find the general solution of (t+ u)ux + tut = x− t. Also find the integral
surface containing the curve t = 1, u = 1 + x,−∞ < x <∞.

The characteristics of the given PDE are given by

dx

t+ u
=
dt

t
=

du

x− t
.
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It is easy to see that
d(x+ u)
x+ u

=
dt

t
.

On integration we have
x+ u

t
= c1

where c1 is a constant. Again

d(x− t)
u

=
du

x− t
,

implying
(x− t)2 − u2 = c2,

where c2 is another constant.
The general solution, therefore, is

(x− t)2 − u2 = f

(
x+ u

t

)
.

If the integral surface contains the given curve t = 1, u = 1 + x, we have

(x− 1)2 − (1 + x)2 = f(1 + 2x),

or
f(1 + 2x) = −4x

implying that
f(z) = −2(z − 1)

and so

f

(
x+ u

t

)
= −2

(
x+ u

t
− 1
)
.

The solution therefore is

(x− t)2 − u2 = −2
t
(x+ u− t).

Solving for u, we have

u =
1
t
±
(
x− t+

1
t

)
.

The condition u = 1 + x when t = 1 is satisfied only if we take the positive
sign. Thus, the solution of the IVP is

u =
2
t

+ x− t.

Clearly, the solution is defined only for t > 0.
While the general solution is quite implicit, the solution of IVP has the

form u = f(t) + g(η), η = x− t, and may be found by similarity methods.
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Example 2

Find the general solution of

(t2 − u2)ux − xtut = xu.

Also find the integral surface containing the curve x = t = u, x > 0.
The characteristics of the given PDE are

dx

t2 − u2
=

dt

−xt
=
du

xu
.

A first integral obtained from the second pair is φ(x, t, u) ≡ ut = c1, say.
Each of the above ratios is equal to

xdx+ tdt+ udu

x(t2 − u2) + t(−xt) + u(xu)
=
xdx+ tdt+ udu

0
.

Therefore, a second integral is ψ(x, t, u) ≡ x2 + t2 + u2 = c2, say. The
general solution, therefore, is φ = f(ψ), that is,

ut = f(x2 + t2 + u2).

Applying the initial condition x = t = u, we get

x2 = f(3x2),

giving
f(z) =

z

3
.

Therefore we get the special solution satisfying the IC as

ut =
x2 + t2 + u2

3
.

Solving the quadratic in u we find that

u =
3t− (5t2 − 4x2)1/2

2
,

the root with the negative sign satisfying the given conditions.
Here, again, the general solution is rather implicit. The special solution

satisfying given IC may be obtained by the similarity approach.

Conservation Laws

Considerable interest attaches to the quasilinear equations of the form

ut + (f(u))x = 0;
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it is a divergence form or a conservation law. A simple model of traffic on
a highway yields a conservation law of this type.

Consider a single-lane highway occupied by moving cars. We can define
a density function u(x, t) as the number of cars per unit length at the point
x measured from some fixed point on the road at time t. The flux of vehicles
φ(x, t) is the number of cars per unit time (say, hour) passing a fixed place
x at time t. Here we regard u and φ as continuous functions of the distance
x. If we consider an arbitrary section of the highway between x = a and
x = b, then the number of cars between x = a and x = b at time t is equal
to
∫ b
a
u(x, t)dx. Assuming that there are neither entries nor exits on this

section of the road, the time rate of change of the number of cars in the
section [a, b] equals the number of cars per unit time entering at x = a
minus the number of cars per unit time leaving at x = b. That is

d

dt

∫ b

a

u(x, t)dx = φ(a, t)− φ(b, t)

or ∫ b

a

∂u

∂t
dx = −

∫ b

a

∂φ

∂x
(x, t)dx.

This yields the conservation law

∂u

∂t
+
∂φ

∂x
= 0 (2.2.5)

since the interval [a, b] is arbitrary. If we assume that the flux φ depends
on the traffic density u, then the conservation equation becomes

∂u

∂t
+ φ′(u)

∂u

∂x
= 0

or
∂u

∂t
+ c(u)

∂u

∂x
= 0

where c(u) = φ′(u).

Considering this, we see that
du

dt
= 0 along the characteristic

dx

dt
= c(u).

Unlike the linear case, the characteristic curves cannot in general be deter-
mined in advance since u is yet unknown. But, in the special case considered
here, since u and c(u) remain constant on a characteristic, the latter must
be a straight line in the (x, t) plane. If, through an arbitrary point (x, t),
we draw a characteristic back in time, it will cut the x-axis at the point
(ξ, 0). If u = u0(x) at t = 0, the equation of this characteristic is

x = ξ + c(u0(ξ))t. (2.2.6)

Since u remains constant along this characteristic,

u(x, t) = u(ξ, 0) = u0(ξ). (2.2.7)
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As ξ varies, we get different characteristics. Equations (2.2.6) and (2.2.7)
give the implicit solution u(x, t) = u0[x− c(u0(ξ))t].

Shock waves

In the case of quasilinear equations, two characteristics may intersect. Con-
sider the characteristics C1 and C2, starting from the points x = ξ1 and
x = ξ2, respectively. Along C1, u(x, t) = u0(ξ1) = u1, say. Along C2,
u(x, t) = u0(ξ2) = u2. The speeds of the characteristics are c(u1) and
c(u2). If c(u1) > c(u2), the angle characteristic ξ1 makes with the t-axis
is greater than that which the characteristic ξ2 makes with it, and so they
intersect. This means that, at the point of intersection P, u has simultane-
ously two values, u1 and u2. This is unphysical since u (usually a density in
physical problems) cannot have two values at the same time. To overcome
this difficulty we assume that the solution u has a jump discontinuity. It
is found that the discontinuity in u propagates along special loci in space
time. The trajectory x = xs(t) in the (x, t) plane along which the dis-
continuity, called a shock, propagates is referred to as the “shock path”

or “shock trajectory;”
dxs(t)
dt

is the shock speed. The shock path is not a
characteristic curve.

Let u(x, 0) be the initial distribution of u (some density). The depen-
dence of c on u produces nonlinear distortion of the wave as it propagates.
When c′(u) > 0 (c is an increasing function of u), higher values of u propa-
gate faster than the lower ones. As a result, the initial wave profile distorts.
The density distribution becomes steeper as time increases and the slope
becomes infinite at some finite time, called the “breaking time.”

We now determine how the discontinuity is formed and propagates. At
the discontinuity the PDE itself does not apply (We assume that all the
derivatives exist in the flow region). Equation ut + c(u)ux = 0 holds on
either side. It may be written in the conservation form

ut + φx = 0

where φ′(u) = c(u). If v(x, t) is the velocity at (x, t), then the flux φ(x, t) =
u(x, t)v(x, t). Conservation of density at the discontinuity requires (relative
inflow equals relative outflow)

u(xs−, t)
[
v(xs−, t)−

dxs
dt

]
= u(xs+, t)

[
v(xs+, t)−

dxs
dt

]
.

Solving for
dxs
dt

, we get the shock velocity as

©2000 CRC Press LLC



dxs
dt

=
φ(xs+, t)− φ(xs−, t)
u(xs+, t)− u(xs−, t)

=
[φ]
[u]

(2.2.8)

where [φ] and [u] denote jumps in φ and u across the shock, respectively.
Consider the IVP

ut + uux = 0 (2.2.9)

u(x, 0) =
1
0

x < 0
x > 0 .

Equation (2.2.9) can be written in the conservation form as

ut + φx = 0

where the flux φ =
u2

2
. The jump condition (2.2.8) becomes

dxs
dt

=
[φ]
[u]

=
φ+ − φ−
u+ − u−

=
u2

+
2 − u2

−
2

u+ − u−

=
u+ + u−

2

where the subscripts + and − indicate that the quantity is evaluated at
xs+ and xs−, respectively. Thus, the shock speed is the average of the
values of u ahead of and behind the shock.

Again, (2.2.9) implies that
du

dt
= 0 along the characteristic

dx

dt
= u;

in other words, u = constant along the straight line characteristics having
speed u. Characteristics starting from the x-axis have speed unity if x < 0
and zero if x > 0. So at t = 0+, the characteristics intersect and a shock is

produced. The shock speed
dxs
dt

=
0 + 1

2
=

1
2
, and hence the shock path is

x =
t

2
. The initial discontinuity at x = 0 propagates along this path with

speed
1
2
. A solution to the IVP is

u(x, t) = 1 if x <
1
2
t; u(x, t) = 0 if x >

1
2
t.

In the present example there is a discontinuity in the initial data and a shock
is formed immediately. Even when the initial condition u(x, 0) = u0(x) is
continuous, a discontinuity may be formed in a finite time.
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Consider the characteristics coming out of point x = ξ on the initial line

x = ξ + F (ξ)t,

where F (ξ) = c(u0(ξ)). Differentiating this equation with respect to t we
get

0 = ξt + F (ξ) + F ′(ξ)ξt t

or

ξt =
−F (ξ)

1 + F ′(ξ)t
.

Since
u = u0(ξ),

we have

ut = u′0(ξ)ξt

=
−u′0(ξ)F (ξ)
1 + F ′(ξ)t

.

It is clear that for ut (and hence ux) to become infinite we must have
F ′(ξ) < 0. The breaking of the wave first occurs on the characteristic
ξ = ξB for which F ′(ξ) < 0 and |F ′(ξ)| is a maximum. The time of first
breaking of the wave is

tB = − 1
F ′(ξB)

.

Example 1

ut + 2uux = 0

u(x, 0) =
{

3 x < 0
2 x > 0

The given PDE in conservation form is

ut + φx = 0

where φ = u2. Here,
du

dt
= 0 along

dx

dt
= 2u, that is, u is constant along

the straight line characteristics having speed 2u. For x < 0 the speed

of the characteristic is
dx

dt
= 6, an integration yields the equation of the

characteristic as
x = 6t+ ξ

where ξ is constant of integration. For x > 0 the characteristic speed is
4 and the corresponding characteristics are x = 4t + ξ. For t > 0 the
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characteristics collide immediately and a shock wave is formed. The slope
of the shock is given by

dxs
dt

=
[φ]
[u]

=
φ(3)− φ(2)

3− 2
= 5.

The shock path is clearly x = 5t. The solution of the problem is u(x, t) = 3
for x < 5t and u(x, t) = 2 for x > 5t.

We now consider examples of the form

ut + c(x, t, u)ux = f(x, t, u), x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R.

Example 2

ut − u2ux = 3u, x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R

Here,
du

dt
= 3u along the characteristics

dx

dt
= −u2. This system of ODEs

must be solved subject to the IC u = u0(ξ), x = ξ at t = 0. We have, on
integration of the first, the result u = ke3t where k is constant of integration.
Since u = u0(ξ) at t = 0, we have

u = u0(ξ)e3t. (2.2.10)

Now
dx

dt
= −u2

0(ξ)e
6t. Therefore, using the initial condition x = ξ at t = 0,

we get

x = ξ +
u2

0(ξ)
6

(1− e6t). (2.2.11)

Equations (2.2.10) and (2.2.11) constitute (an implicit) solution of the given
initial value problem.

Example 3

ut + uux = −u, x ∈ R, t > 0

u(x, 0) = −x
2
, x ∈ R

Here,
du

dt
= −u along

dx

dt
= u.
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Solving the first equation with 1C x = ξ, u = −ξ
2

at t = 0 we have

u = −ξ
2
e−t. (2.2.12)

Integrating
dx

dt
= −ξ

2
e−t and using the initial conditions, we get

x =
ξ

2
(1 + e−t). (2.2.13)

Substituting ξ from (2.2.13) into (2.2.12) we get the solution

u(x, t) = − xe−t

1 + e−t
.

Example 4

Consider the IVP
ut + uux = 0, x ∈ R, t > 0

u(x, 0) = 0, if x < 0; u(x, 0) = 1 if x > 0.

Here,
du

dt
= 0 along characteristics

dx

dt
= u. Characteristics issuing from

the x-axis have speed zero if x < 0 and 1 if x > 0. There is a void
between x = 0 and x = t for t > 0. We can imagine that all values of u
between 0 and 1 are present initially at x = 0. In this void, continuous
solution can be constructed which connects the solution u = 1 ahead to
the solution u = 0 behind. We insert a fan of characteristics (which are
straight lines here) passing through the origin. Each member of the fan
has a different (constant) slope. The value of u these characteristics carry
varies continuously from 0 to 1. That is, u = c (constant), 0 < c < 1, on
the characteristic x = ct. Thus, the solution is

u(x, t) = 0 for x < 0
=

x

t
for 0 <

x

t
< 1 (2.2.14)

= 1 for x > t.

A solution of this form is called a “centred expansion wave”; it is clearly a
similarity solution.

Example 5

x(y2 + u)ux − y(x2 + u)uy = (x2 − y2)u

u = 1 on x+ y = 0
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The characteristic equations are

dx

x(y2 + u)
=

dy

−y(x2 + u)
=

du

(x2 − y2)u

which, on some manipulation, give

dx

x
+
dy

y
+
du

u
= 0 (2.2.15)

and
xdx+ ydy − du = 0. (2.2.16)

Equations (2.2.15) and (2.2.16) integrate to give

xyu = C1

and
x2 + y2 − 2u = C2

where C1 and C2 are arbitrary constants. The general solution therefore is

x2 + y2 − 2u = f(xyu). (2.2.17)

The initial data u = 1 on x + y = 0 gives f(−x2) = 2x2 − 2 or f(x2) =
−2x2 − 2. Thus, the general solution (2.2.17) in this case reduces to

2xyu+ x2 + y2 − 2u+ 2 = 0.

Example 6

xux + yuy = x exp(−u)

u = 0 on y = x2

The characteristic equations are

dx

x
=
dy

y
=

du

x exp(−u)
(2.2.18)

and have the first integrals
y

x
= C1

and
eu = x+ C2

from the first and second and first and third of (2.2.18), respectively. C1

and C2 are arbitrary constants. The general solution of the given PDE
therefore is

eu = x+ g(y/x), (2.2.19)
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which is a similarity form for the dependent variable U = eu. If we use the
given 1C, we get g(x) = 1− x, and so (2.2.19) in this case becomes

eu = x+ 1− y

x

or
u = ln

(
x+ 1− y

x

)
.

Direct Similarity Approach for First-Order PDEs

Although we discuss self-similar solutions in detail in Chapter 3, here we
give two examples to illustrate the simple approach of Clarkson and Kruskal
(1989) which is direct and does not require group theoretic ideas.

Example 1

ut + uux = 0. (2.2.20)

We assume that (2.2.20) has solution of the form

u(x, t) = α(x, t) + β(x, t)H(η), η = η(x, t), β(x, t) 6= 0. (2.2.21)

Differentiating (2.2.21) to get ut and ux and, hence, substituting in (2.2.20),
we have

β2ηxHH
′ + ββxH

2 + β(ηt + αηx)H ′

+ (βt + αβx + βαx)H + (αt + ααx) = 0. (2.2.22)

Equation (2.2.22) becomes an ODE for the determination of the similarity
function H(η) if

ββx = β2ηxΓ1(η) (2.2.23)
β(ηt + αηx) = β2ηxΓ2(η) (2.2.24)

βt + αβx + βαx = β2ηxΓ3(η) (2.2.25)
αt + ααx = β2ηxΓ4(η). (2.2.26)

Equation (2.2.22) then becomes

HH ′ + Γ1(η)H2 + Γ2(η)H ′ + Γ3(η)H + Γ4(η) = 0. (2.2.27)

We solve (2.2.23) - (2.2.26) to obtain the unknown functions α, β, η,Γ1,Γ2,Γ3,
and Γ4. In the process of solution the following remarks are found useful.

Remark 1

If α(x, t) has the form α(x, t) = α̂(x, t) + β(x, t)Ω(η), then we may set
Ω ≡ 0.
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Remark 2

If β(x, t) is to be determined from an equation of the form β(x, t) =
β̂(x, t)Ω(η), then we may put Ω ≡ 1.

Setting Γ1(η) =
Ω′1(η)
Ω1(η)

in (2.2.23) and integrating with respect to x, we

obtain
β = B(t)Ω1(η). (2.2.28)

Using Remark 2 in (2.2.28), we set Ω1(η) ≡ 1 so that

Γ1(η) = 0 (2.2.29)

and from (2.2.23)
β = B(t). (2.2.30)

Substituting (2.2.30) in (2.2.25) we get

αx = B(t)ηxΓ3(η)−
B′(t)
B(t)

. (2.2.31)

Setting Γ3(η) = Ω′3(η) in (2.2.31) and integrating with respect to x, we
obtain

α = B(t)Ω3(η)−
B′(t)
B(t)

x+A(t). (2.2.32)

Making use of Remark 1 in (2.2.32) we set Ω3 ≡ 0, and so

Γ3 ≡ 0 (2.2.33)

from (2.2.31) and (2.2.32). Equation (2.2.32) now reduces to

α = A(t)− B′(t)
B(t)

x. (2.2.34)

Using (2.2.30), (2.2.24) is written as a first-order PDE for η,

ηt + [α−B(t)Γ2(η)]ηx = 0,

with the characteristic equations

dt

1
=

dx

α−BΓ2(η)
=
dη

0
. (2.2.35)

The second equation in (2.2.35) gives

η = constant = S, say, (2.2.36)

as the similarity variable. Setting Γ2(η) = l, where l is a constant, the first
equation in (2.2.35) becomes

dx

dt
+
B′

B
x = A(t)− lB(t). (2.2.37)
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Here we have used (2.2.34) for α. The general solution of (2.2.37) is

η = xB(t)−
∫
A(t)B(t)dt+ l

∫
B2(t)dt (2.2.38)

where η, the constant of integration, serves as the similarity variable. Using
(2.2.30) and (2.2.34), the solution form (2.2.21) becomes

u(x, t) = A(t)− x
B′(t)
B(t)

+B(t)H(η). (2.2.39)

Using (2.2.30), (2.2.34), and (2.2.38) in (2.2.26), we get(
A′ − B′

B
A

)
+ x

(
2
B′2

B2
− B′′

B

)
= B3Γ4(η). (2.2.40)

Equations (2.2.38) and (2.2.40) imply that

Γ4(η) = mη + k (2.2.41)

where m and k are arbitrary constants. Substituting (2.2.38) and (2.2.41)
in (2.2.40), we get(
A′ − B′

B
A

)
+x
(

2B′2

B2
− B′′

B

)
= B3

[
mxB −m

∫
ABdt+ml

∫
B2dt+ k

]
.

Equating coefficients of x and terms free of x on both sides of this equation,
we get

BB′′ − 2B′2 +mB6 = 0 (2.2.42)

A′ − B′

B
A = B3

[
k −m

∫
ABdt+ml

∫
B2dt

]
. (2.2.43)

Equations (2.2.42) and (2.2.43) are solved for two special cases.

(i) m = 0

In this case, equation (2.2.42) becomes

BB′′ − 2B′2 = 0, (2.2.44)

giving
B(t) = bt−1 (2.2.45)

where b is an arbitrary constant.
Using (2.2.45) and m = 0 in (2.2.43), we have

dA

dt
+

1
t
A =

kb3

t3
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yielding a special solution

A(t) = −kb3t−2. (2.2.46)

On using (2.2.45) and (2.2.46) in (2.2.38) and (2.2.39), we have the simi-
larity variable and the solution as

η(x, t) = bxt−1 − kb4

2
t−2 − lb2t−1 (2.2.47)

and
u(x, t) = −kb3t−2 + xt−1 + bt−1H(η), (2.2.48)

respectively. Using (2.2.29), (2.2.33), (2.2.41), and Γ2(η) = l in (2.2.27),
we find that H(η) satisfies the first order ODE

(H + l)H ′ + k = 0 (2.2.49)

with the solution
H2

2
+ lH + kη = p

where p is the constant of integration; solving for H we have

H(η) = −l ±
√
l2 + 2p− 2kη. (2.2.50)

Substituting (2.2.50) and (2.2.47) into (2.2.48), we get an explicit solution
of (2.2.20) as

u(x, t) = xt−1−kb3t−2+bt−1
[
−l ±

√
l2 + 2p− 2kxbt−1 + 2klb2t−1 + k2b4t−2

]
.

(ii) l = k = 0

Another special solution of (2.2.42) is

B(t) = qt−1/2 (2.2.51)

provided
4q4m+ 1 = 0 (2.2.52)

where q is a constant. Correspondingly, a solution of (2.2.43) may be found
to be

A(t) = c− at−1 (2.2.53)

where a and c are arbitrary constants. Making use of (2.2.51)–(2.2.53) in
(2.2.38) and (2.2.39), we get the following similarity reduction of (2.2.20):

η(x, t) = q(x− 2a)t−1/2 − 2qct1/2 (2.2.54)

u(x, t) = c− at−1 +
x

2
t−1 + qt−1/2H(η). (2.2.55)
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The ODE for this special case l = k = 0 governing H(η) is obtained by
using the results Γi(η) = 0, i = 1, 2, 3, Γ4(η) = mη, 4q4m + 1 = 0, and
(2.2.54) in (2.2.27):

HH ′ − 1
4q4

η = 0

which immediately integrates to give

H(η) = ±

√
η2

4q4
+ r (2.2.56)

where r is constant of integration. Using (2.2.56) and (2.2.54) in (2.2.55),
we get another explicit solution of (2.2.20):

u(x, t) = c− at−1 +
x

2
t−1 ± qt−1/2

√
r +

1
4q2

[(x− 2a)t−1/2 − 2ct1/2]2.

(2.2.57)

Example 2

(t+ u)ux + tut = x− t (2.2.58)

Assume a solution of the form

u(x, t) = α(x, t) + β(x, t)H(η), η = η(x, t), β(x, t) 6= 0. (2.2.59)

Differentiating (2.2.59) to get ux and ut and substituting in (2.2.58) and
rearranging terms, we get

β2ηxHH
′ + β(tηx + αηx + tηt)H ′ + ββxH

2

+(tβx + αβx + tβt + αxβ)H

+(tαx + ααx + tαt − x+ t) = 0. (2.2.60)

Equation (2.2.60) will be an ODE for H(η) only if

β[(t+ α)ηx + tηt] = β2ηxΓ1(η) (2.2.61)
ββx = β2ηxΓ2(η) (2.2.62)

(t+ α)βx + tβt + αxβ = β2ηxΓ3(η) (2.2.63)
(t+ α)αx + tαt − x+ t = β2ηxΓ4(η). (2.2.64)

It then takes the form

HH ′ + Γ1(η)H ′ + Γ2(η)H2 + Γ3(η)H + Γ4(η) = 0. (2.2.65)
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In (2.2.62), let Γ2(η) =
Ω′2(η)
Ω2(η)

so that it integrates and gives

β(x, t) = B(t)Ω2(η). (2.2.66)

Using Remark 2 in Example 1, we may put Ω2 ≡ 1 in (2.2.66) and obtain

β(x, t) = B(t) (2.2.67)

and
Γ2(η) ≡ 0. (2.2.68)

In (2.2.63) we put Γ3(η) = Ω′3(η), use (2.2.67), and integrate with respect
to x to get

α(x, t) =
[
A(t)− xt

B′(t)
B(t)

]
+B(t)Ω3(η). (2.2.69)

Using Remark 1 of Example 1, we may put Ω3 ≡ 0 in (2.2.69) and have

α(x, t) =
[
A(t)− xt

B′(t)
B(t)

]
. (2.2.70)

Since Γ3(η) = Ω′3(η), we also have

Γ3(η) ≡ 0. (2.2.71)

Substituting (2.2.70) in (2.2.61), we get[
t+A(t)− xt

B′(t)
B(t)

−B(t)Γ1(η)
]
ηx + tηt = 0. (2.2.72)

The characteristics of (2.2.72) are

dx

t+A(t)− xtB
′

B −BΓ1(η)
=
dt

t
=
dη

0
. (2.2.73)

A first integral from (2.2.73) is clearly η = constant; this is the similarity
variable.

Setting
Γ1(η) = l, a constant (2.2.74)

in the first equation of (2.2.73), we have

dx

dt
+
B′(t)
B(t)

x = 1 +
A(t)− lB(t)

t
. (2.2.75)

The solution of (2.2.75) gives the similarity variable

η = xB(t)−
∫ [

1 +
A(t)− lB(t)

t

]
B(t)dt . (2.2.76)
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Substituting (2.2.76) into (2.2.64) and using (2.2.70), we get

−
[
t+A(t)− xt

B′(t)
B(t)

]
tB′(t)
B(t)

+t
[
A′(t)− x

B′(t)
B(t)

− xt
B′′(t)
B(t)

+ xt
B′2(t)
B2(t)

]
−x+ t = B3(t)Γ4(η). (2.2.77)

Equations (2.2.76) and (2.2.77) imply that

Γ4(η) = mη + k (2.2.78)

where m and k are constants. Equations (2.2.76) and (2.2.78), when used
in (2.2.77), give

−t2B
′

B
− t

AB′

B
+ xt2

B′2

B2
+ tA′ − xt

B′

B
− xt2

B′′

B
+ xt2

B′2

B2
− x+ t

= B3

[
mxB −m

∫ {
1 +

A− lB

t

}
Bdt+ k

]
. (2.2.79)

Equating coefficients of x and terms free of x on both sides of (2.2.79), we
get

2t2B′2 − tBB′ − t2BB′′ −B2 = mB6, (2.2.80)

−t2B′ − tAB′ + tA′B + tB = kB4 −mB4

∫ [
1 +

A− lB

t

]
Bdt. (2.2.81)

For the special case m = 0, (2.2.80) gives

B(t) = bt. (2.2.82)

Substituting (2.2.82) in (2.2.81), we get

dA

dt
− 1
t
A = kb3t2.

A special solution of this linear equation is

A(t) =
k

2
b3t3. (2.2.83)

On using (2.2.82), (2.2.83), (2.2.70), and (2.2.67) in (2.2.76) and (2.2.59),
we get

η = bxt− bt2

2
− k

8
b4t4 +

lb2

2
t2 (2.2.84)

u =
k

2
b3t3 − x+ btH(η). (2.2.85)
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On using (2.2.67), (2.2.70), and (2.2.82), Equation (2.2.60) becomes

HH ′ + lH ′ + k = 0 (2.2.86)

and integrates to give

H = −l ±
√
l2 + 2p− 2kη (2.2.87)

where p is the constant of integration. Using (2.2.87) and (2.2.84) in
(2.2.85), we get a similarity solution of the given PDE. It may be explicitly
written as

u(x, t) =
k

2
b3t3 − x− lbt

±bt
√
l2 + 2p− 2kbxt+ kbt2 − klb2t2 +

k2

4
b4t4.

We have obtained some special exact solutions of (2.2.58) via the direct
similarity approach. A richer class of solutions may be obtained if the
intermediate equations can be solved more generally.

2.3 Reduction of ut + unux + H(x, t, u) = 0
to the form Ut + UnUx = 0

A large number of physical models are described by special cases of the
generalised Burgers equation (GBE) (see Chapter 6)

ut + unux +H(x, t, u) =
δ

2
uxx, (2.3.1)

where δ is the coefficient of viscosity. The inviscid limit of (2.3.1) as δ → 0
is

ut + unux +H(x, t, u) = 0. (2.3.2)

The term H(x, t, u) in (2.3.2) may represent the effects of damping, ge-
ometrical spreading, or sources of some sort. Equation (2.3.2) plays an
important role in the analytical theory of GBEs.

We seek the most general transformation of the type

τ = τ(x, t) (2.3.3)
y = y(x, t) (2.3.4)

U(y, τ) = f(x, t)u(x, t) (2.3.5)

which reduces (2.3.2) to the form

Uτ + UnUy = 0. (2.3.6)
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A more general form U = F (x, t, u) is not considered in order that Rankine-
Hugoniot conditions for (2.3.2) and (2.3.6) remain the same.

We assume that f(x, t) > 0 and

J =
∣∣∣∣ yt yx
τt τx

∣∣∣∣ 6= 0. (2.3.7)

Differentiating (2.3.5) with respect to x and t, we get

Uyyx + Uττx = fux + fxu

Uyyt + Uττt = fut + ftu. (2.3.8)

Solving for Uτ and Uy from (2.3.8), we have

Uτ = − 1
J

[(yxft − ytfx)u+ yxfut − ytfux]

Uy = − 1
J

[(τtfx − τxft)u+ τtfux − τxfut] .

(2.3.9)

Substituting (2.3.9) in (2.3.6), we get

− 1
J

[(yxft−ytfx)u+yxfut−ytfux]−
fnun

J
[(τtfx−τxft)u+τtfux−τxfut] = 0

or

ut +
(
ft
f
− ytfx
yxf

)
u− yt

yx
ux

+fnun
[(

τtfx
yxf

− τxft
yxf

)
u+

τt
yx
ux −

τx
yx
ut

]
= 0. (2.3.10)

For (2.3.10) to be of the form (2.3.2), we must have

yt = 0, τx = 0, and
fnτt
yx

= 1. (2.3.11)

Equation (2.3.10) then takes the form

ut + unux +
ft
f
u+

fx
f
un+1 = 0. (2.3.12)

From (2.3.11) we see that y is a function of x alone and τ is a function of
t alone. Equation (2.3.113) then becomes

f =
[
y′(x)
τ ′(t)

]1/n
. (2.3.13)
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Let

G(t) =
ft
f

= − 1
n

d2τ
dt2

dτ
dt

= − d

dt
ln

[(
dτ

dt

) 1
n

]
(2.3.14)

and

F (x) =
fx
f

=
1
n

d2y
dx2

dy
dx

=
d

dx
ln

[(
dy

dx

) 1
n

]
. (2.3.15)

Equation (2.3.12) can now be written as

ut + unux +G(t)u+ F (x)un+1 = 0 (2.3.16)

where G(t) and F (x) are given by (2.3.14) and (2.3.15). Thus, H(x, t, u) in
(2.3.2) must be of the form G(t)u + F (x)un+1. Conversely, for given G(t)
and F (x), the relations (2.3.14) and (2.3.15) determine the transformation
functions τ and y in (2.3.3) and (2.3.4).

Equation (2.3.14) may be written as

τ(t) =
∫ t(

exp
(∫ s

G(s1)ds1

))−n
ds. (2.3.17)

Similarly, from (2.3.15)

y(x) =
∫ x(

exp
(∫ s

F (s1)ds1

))n
ds. (2.3.18)

Therefore,

f(x, t) = exp
(∫ t

G(s)ds
)

exp
(∫ x

F (s1)ds1

)
. (2.3.19)

Thus, we have the following result: the most general equation of the form
(2.3.2) that can be reduced to (2.3.6) by the transformation (2.3.3)-(2.3.5)
is (2.3.16); the transformation itself is given by (2.3.17) - (2.3.19).

Equations of the form (2.3.16) appear in many physical applications.
Nimmo and Crighton (1986) considered the case n = 1 with F (x) ≡ 0 and

G(t) =
(
j

2t
+ α

)
, j = 0, 1, 2. In this case, (2.3.16) takes the form

ut + uux +
(
j

2t
+ α

)
u = 0. (2.3.20)

From (2.3.17), (2.3.18), and (2.3.19) we get the transformation

τ =
∫ t{

exp
(∫ s( j

2s1
+ α

)
ds1

)}−1

ds
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=
∫ t

s−j/2e−αsds

y =
∫ x

(e0)1ds = x;U(y, τ) = f(x, t)u (2.3.21)

where

f(x, t) = exp
∫ t( j

2s
+ α

)
ds. exp

∫ x

0ds1 = tj/2eαt.

This changes (2.3.20) to the form

Ut + UUy = 0.

Lefloch (1988) considered the special case of (2.3.16) for n = 1, G(t) ≡ 0,

and F (x) =
β

x
:

ut + uux +
β

x
u2 = 0. (2.3.22)

The transformation which reduces (2.3.22) to Uτ + UUy = 0 is

y =
∫ x(

exp
(∫ s β

s1
ds1

))
ds

=
xβ+1

β + 1

τ =
∫ t(

exp
∫ s

0.ds1

)−1

ds

= t

U = f(x, t)u = xβu

since

f(x, t) = exp
(∫ t

0.ds
)
· exp

(∫ x β

s1
ds1

)
= xβ .

The inviscid limit of Burgers-Fisher equation

ut + uux + u(u− 1) =
δ

2
uxx (2.3.23)

is
ut + uux + u2 − u = 0. (2.3.24)

This is a special case of (2.3.16) with n = 1, F (x) = 1, and G(t) = −1.
The transformation which changes (2.3.24) to Uτ + UUy = 0 is

y =
∫ x(

exp
(∫ s

1ds1

))
ds =

∫ x

esds = ex
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τ =
∫ t(

exp
(∫ s

(−1)ds1

))−1

ds =
∫ t

(e−s)−1ds = et

U(y, τ) = f(x, t)u = ex−tu(x, t)

since

f(x, t) = exp
(∫ t

(−1)ds
)

exp
(∫ x

1.ds1

)
= e−t · ex.

Murray (1970) considered the equation ut+g(u)ux+λuα = 0 where g′(u) >
0 for u > 0 and λ > 0 is a constant (see Section 2.4). We consider a special
case g(u) = u and α = 2, namely ut + uux + λu2 = 0. This is (2.3.16) with
F (x) = λ,G(t) = 0 and n = 1:

ut + uux + λu2 = 0. (2.3.25)

The transformation which reduces (2.3.25) to Uτ + UUy = 0 is

y =
∫ x(

exp
(∫ s

λds1

))
ds =

∫ x

eλsds =
eλx

λ

τ =
∫ t(

exp
(∫ s

0.ds1

))−1

ds =
∫ t

ds = t

U = f(x, t)u = eλxu

since

f(x, t) = exp
(∫ t

0.ds
)
· exp

(∫ x

λds1

)
= eλx.

In the problem of propagation of waves in tubes we get the following equa-
tion for right-running waves (Shih (1974)):

ut +
(
a0 +

γ + 1
2

u

)
ux +

F

4D
u2 = 0 (2.3.26)

where F,D are a constants (see also Crighton (1979)).
With

t′ =
F

4D
t and x′ =

2
γ + 1

F

4D
x,

Equation (2.3.26) reduces (after dropping primes) to

ut + (a+ u)ux + u2 = 0, a =
2a0

γ + 1
. (2.3.27)

With x = x− at, (2.3.27) changes to

ut + uux + u2 = 0. (2.3.28)
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Equation (2.3.28) is a special case of (2.3.25) with λ = 1. Therefore, the
transformation t̄ = t, y = ex̄, U = ex̄u(x, t) = yu(ln y, t) reduces (2.3.28)
to the form Ut + UUy = 0; here we assume that y > 0, t > 0.

We carried out a detailed analysis for the reduction of ut+uux = 0 to an
ODE by the direct approach of Clarkson and Kruskal (1989) in Section 2.2.
A similar analysis may be done for (2.3.6) for n ≥ 2 to find its symmetries
and, hence, the solution.

2.4 Initial Value Problem for
ut + g(u)ux + λh(u) = 0

An obvious generalization of the equation ut+unux = 0 discussed in detail
in Section 2.3 is

ut + g(u)ux + λh(u) = 0 (2.4.1)

where λ ≥ 0 is a parameter and g(u) and h(u) are nonnegative functions of
u such that gu(u) > 0, hu(u) > 0 for u > 0.

Many model equations in applications are special cases of (2.4.1). In
particular, when h(u) can be negative for some u, interesting phenomena
appear; they occur in a model for the Gunn effect (Murray (1970)) (see also
Section 2.3). While it is not possible to give an explicit general discussion
of (2.4.1), much progress can be made when h(u) = O(uα), α > 0, 0 <
u << 1. Indeed, Murray (1970) has shown that in this case, a finite initial
disturbance zero outside a finite range in x decays (i) within a finite time
and finite distance for 0 < α < 1 and is unique under certain conditions,
(ii) within an infinite time like O(exp −λt) and in a finite distance for
α = 1, and (iii) within an infinite time and distance like O(t−1/(α−1)) for
1 < α ≤ 3 and O(t−1/2) for α ≥ 3. The asymptotic speed of propagation of
the discontinuity was given in each case together with its role in the decay
process. We follow Murray (1970) closely in this section. After giving
some results regarding the general Equation (2.4.1), we give a detailed
analysis for the simpler case ut + (u+ a)ux + λu = 0, which displays many
interesting features and is itself a descriptor of some physical phenomenon.
It is a limiting case of the Burgers equation with damping, ut+(u+a)ux+

λu =
δ

2
uxx, as δ → 0, and plays an important role in its analysis. In the

following section we shall discuss more recent work of Bukiet, Pelesko, Li,
and Sachdev (1996), where special cases of (2.4.1) admitting similarity form
of solutions would be studied. In this work, a numerical scheme for (2.4.1)
was developed and the asymptotic nature of the exact solutions confirmed.

An initial-boundary value problem for (2.4.1) is posed as follows:

u(0, t) = 0, t > 0
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u(x, 0) = u0(x) =

 0 x < 0
f(x) 0 < x < X
0 X < x

(2.4.2)

where f(x) is such that
0 ≤ f(x) ≤ 1. (2.4.3)

With g(u) a monotonic increasing function, weak or discontinuous solutions
of (2.4.1) occur when λ = 0 for some value of t > 0, even for smooth
functions u0(x) (see Section 2.2). If a discontinuity exists at t = 0, its
propagation and decay are considered from the beginning.

Let the path of the shock discontinuity in the (x, t)-plane be given by

x = xs(t). (2.4.4)

The Rankine-Hugoniot condition which holds across the shock is

dxs
dt

=
1

u1 − u2

∫ u1

u2

g(u)du (2.4.5)

where u1(t) and u2(t) are the values of u(x, t) at xs− and xs+, respectively.
This can be obtained by applying the Gauss theorem to (2.4.1) across the
shock. For simplicity we require u = 0 to be a solution of (2.4.1), implying
that h(0) = 0. Equation (2.4.1) shows that, along the characteristics, we
have

dx

dt
= g(u)

du

dt
+ λh(u) = 0.

(2.4.6)

In parametric form we have

dx

dσ
= g(u),

dt

dσ
= 1

du

dσ
= −λh(u)

(2.4.7)

where σ is a parameter measured along the characteristics.
The solution of (2.4.7) may be obtained as

x(σ) = ξ +
∫ σ

0

g[u(x(τ), τ)]dτ

t(σ) = σ (2.4.8)∫ u

f(ξ)

ds

h(s)
= −λσ.
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Here, t = 0 when σ = 0, and ξ is the value of x at t = 0. Let tc be the
critical time beyond which the solution (2.4.8) ceases to be single-valued
and a shock is formed.

Let ∫ u

f(ξ)

ds

h(s)
= H(u)−H(f(ξ)) (2.4.9)

so that
H ′(u) =

1
h(u)

. (2.4.10)

The integration of (2.4.8) yields

H(u) = H(f(ξ))− λσ (2.4.11)

u(σ) = H−1[H(f(ξ))− λσ]

= G[H(f(ξ))− λσ] (2.4.12)

where the inverse function G = H−1 exists since H is monotonic. On using
(2.4.12), we get from (2.4.81)

x = ξ +
∫ t

0

g[G{H(f(ξ))− λτ}]dτ. (2.4.13)

To find when the solution ceases to be single-valued, we differentiate (2.4.13)
with respect to ξ and equate the result to zero. We find that the earliest
time tc at which the shock is formed satisfies

0 = 1 +
∫ tc

0

g′[G{H(f(ξ)− λτ}]G′{H(f(ξ))− λτ}H ′(f(ξ))f ′(ξ)dτ,

that is,

1 =
∫ tc

0

d

dτ
g[G{H(f(ξ))− λτ}] 1

h(f(ξ))
f ′(ξ)dτ

=
1
λ

f ′(ξ)
h(f(ξ))

[g(G{H(f(ξ))− λtc})− g(f(ξ))]. (2.4.14)

Here we have made use of the fact that GH(f(ξ)) = f(ξ). When λ = 0,
(2.4.12) gives u(σ) = GH(f(ξ)) = f(ξ). Therefore, from (2.4.12) and
(2.4.14) we get

tc =
{

[−g′(f(ξ)) f ′(ξ)]−1
}

min
. (2.4.15)

Now we consider in some detail the special case

ut + (u+ a)ux + λu = 0, a ≥ 0, λ > 0; (2.4.16)
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here g(u) = u+ a and h(u) = u, and so

H(u) =
∫
du

u
= lnu

G(u) = H−1(u) = eu

H(f(ξ))− λσ = ln(f(ξ))− λσ

u(σ) = G{H(f(ξ))− λσ} = eln(f(ξ))−λσ

= f(ξ)e−λσ.
(2.4.17a)

Using (2.4.8) we have

x(σ) = ξ +
∫ σ

0

[u(x(τ), τ) + a]dτ

t = σ.

(2.4.17b)

With smooth initial data, a shock will form at the time t = tc obtained
from (2.4.14):

1 =
1
λ

f ′(ξ)
f(ξ)

[f(ξ)e−λtc + a− (f(ξ) + a)]

or
λ = f ′(ξ)(e−λtc − 1).

The earliest time for shock formation, therefore, is

tc =
1
λ

[
ln

f ′(ξ)
f ′(ξ) + λ

]
min

. (2.4.18)

For tc to be positive we must have −f ′(ξ) > λ for some 0 ≤ ξ < X.
If a tc does not exist, then the solution of IVP is given by (2.4.17a) for

all t ≥ 0. It decays exponentially as t→∞. When a = 0, (2.4.17b) gives

x = ξ +
∫ σ

0

u(x(τ), τ)dτ

= ξ +
∫ σ

0

f(ξ)e−λτdτ

= ξ +
f(ξ)
λ

(1− e−λσ).

Recalling that σ = t, we have

x→ ξ +
f(ξ)
λ

as t→∞.
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From this it follows that in the limit t→∞,

x ≤ xm =
[
ξ +

1
λ
f(ξ)

]
max

, 0 ≤ ξ ≤ X. (2.4.19)

Thus, the solution u(x, t) decays to zero in a finite distance but exponen-
tially in time. The solution does not decay in a finite distance if a > 0.

We consider a form of initial condition u0(x) with a shock present at
x = X having u2 = 0 for all t ≥ 0. The characteristic solution (2.4.17a)-
(2.4.17b) holds for all x and t, including x = xs±, that is, u(xs−, t) = u1(t),
u(xs+, t) = u2(t) = 0. The shock speed is given by (2.4.5):

dxs
dt

=
1

u1 − 0

∫ u1

0

(u+ a)du =
1
2
u1(t) + a. (2.4.20)

Put x = xs(≡ xs−) in (2.4.17b) to get

xs = ξ +
∫ t

0

[u(x(τ), τ) + a]dτ, σ = t (2.4.21)

just behind the shock.
On differentiation xs with respect to t, we have

dxs
dt

=
d

dt
ξ(xs, t) + u(xs, t) + a+

∫ t

0

∂

∂t

[
f(ξ(xs, t))e−λτ + a

]
dτ

=
dξ

dt
+ u1(t) + a− 1

λ
(e−λt − 1)

df(ξ)
dt

. (2.4.22)

From (2.4.17a) we get
f(ξ(xs, t)) = eλtu1(t) (2.4.23)

and
d

dt
f(ξ(xs, t)) = eλt

[
du1

dt
+ λu1

]
.

Since f(x) is a monotonic increasing function for 0 ≤ x < X, its inverse
exists. Let f−1 = F . Then (2.4.23) becomes

ξ(xs, t) = F (eλtu1(t)). (2.4.24)

Differentiating (2.4.24), we get

d

dt
ξ(xs, t) = F ′(eλtu1)

[
du1

dt
+ λu1

]
eλt. (2.4.25)

Equating (2.4.20) and (2.4.22) and using (2.4.25) and (2.4.23) therein, we
get
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1
2
u1(t) + a = F ′(eλtu1)

[
du1

dt
+ λu1

]
eλt + u1(t) + a

− 1
λ

(e−λt − 1)eλt
[
du1

dt
+ λu1

]
or

1
λ

du1

dt
= (1− eλt)−1

{
u1

(
eλt − 1

2

)
+ eλtF ′(eλtu1)

[
du1

dt
+ λu1

]}
.

(2.4.26)
The solutions u1(t) of equation (2.4.26) will now be studied. Considering
f(x) as in Figure 2.1 and letting δ → 0, we get the top-hat situation as
shown in Figure 2.2. For δ = 0 we have initially u = 0 for x < 0 and u = 1
for 0 < x < X. Thus, we have a centered simple wave at x = 0. Therefore,
for t ≥ 0, (2.4.17a) holds with u = u1 and f(ξ) = 1 and, since σ = t, we
have

u1(t) = e−λt. (2.4.27)

Equation (2.4.20) now becomes

dxs
dt

=
1
2
e−λt + a

which, on integration from 0 to t, gives

xs(t) = X + at+
1
2λ

(1− e−λt) (2.4.28)

where xs(0) = X.

Figure 2.1. Typical initial profile for u(x, 0).
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Figure 2.2. Top hat initial condition u(x, 0).

Figure 2.3. u(x, t) when the point A never overtakes B, and for all

x such that u(x, t) > 0, x−X− at < 1/(2λ) for all t ≥ 0.

Equation (2.4.27) can be obtained also from (2.4.26) by letting F ′ →∞.
The solution at this stage is shown in Figure 2.3.

This solution is valid for t ≤ t0 where t0 is the time at which the first
characteristic of the centred wave at x = 0 catches up with the shock, that
is, when the point A in the Figure 2.3 catches up with the shock at B. From
(2.4.12) we get the distance travelled by A by putting ξ = 0 and f(ξ) = 1.
At t = t0 (2.4.17b) gives

x(t0) =
∫ t0

0

(e−λτ + a)dτ

= at0 +
1
λ

(1− e−λt0). (2.4.29)
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From (2.4.28) we get

xs(t0) = X + at0 +
1
2λ

(1− e−λt0)

= at0 +
1
λ

(1− e−λt0)

on using (2.4.29). Therefore,

e−λt0 = 1− 2λX. (2.4.30)

The equation satisfied by u1(t) for t ≥ t0 is given by (2.4.26) (assuming t0
exists) with F ′ = 0:

1
λ

du1

dt
= (1− e−λt)−1u1

(
eλt − 1

2

)
. (2.4.31)

This solution must match the solution obtained from (2.4.27) at t = t0.
Therefore, on using (2.4.30), we have

u1(t0) = e−λt0 = 1− 2λX. (2.4.32)

We consider two cases arising from (2.4.30).

i) 2λX > 1.

In this case, t0 in (2.4.30) does not exist, so u1(t) given by (2.4.27) is
valid for all t ≥ 0, xs(t) is given by (2.4.28), and u is found parametrically
from (2.4.17) as

u(ξ, t) = f(ξ)e−λt

x =
∫ t

0

[f(ξ)e−λτ + a]dτ

= at+
f(ξ)
λ

(1− e−λt). (2.4.33)

ii) 2λX < 1.

A finite t0 exists, and u1(t) is given by (2.4.27) for t < t0. For t > t0,
we solve (2.4.31) subject to (2.4.32) and obtain

xs(t) = X+at+
1
2λ

(1− e−λt0)1/2[2(1− e−λt)1/2− (1− e−λt0)1/2] (2.4.34)

where we have used the condition xs(t0) from (2.4.28). It follows from
(2.4.34) that
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xs(t)−X − at ≤ 1
2λ

(1− e−λt0)1/2
[
2− (1− e−λt0)1/2

]
=

1
2λ

(2λX)1/2[2− (2λX)1/2]

=
(

2X
λ

)1/2

−X (2.4.35)

where we have used (2.4.32). For t ≥ t0, the solution for u(x, t) for at ≤
x < xs(t) is given parametrically by (2.4.33).

As mentioned in the introduction to this section, Murray (1970) also
considered the general Equation (2.4.1) with h(u) = uα, α > 0, u << 1,
including the limiting case λ→ 0.

Bukiet, Pelesko, Li, and Sachdev (1996) devised a characteristic-based
numerical scheme for first-order PDEs and verified the asymptotic results
of Murray with reference to the following initial conditions for the special
case of (2.4.1), namely

ut + (γuβ)x + λuα = 0. (2.4.36)

(i) Smooth IC

u(x, 0) =


0 x < 0
sin2(πx) 0 ≤ x ≤ 1
0 1 < x

(2.4.37)

The parameters in (2.4.36) were chosen to be γ = 1/2, β = 2, λ = π/2,
and α = 1.

(ii) Top hat IC

u(x, 0) =

 0 x < 0
h 0 < x < X
0 X < x

(2.4.38)

The parameters in (2.4.36) for this IC were

γ =
1
2
, β = 2, λ = 1, and α = 1.5, 2.5, 4.

For the continuous IC (2.4.37), the formation of the shock and its subse-
quent propagation were studied numerically. Asymptotic decay law agreed
with the analytic formulae of Murray (1970).

For the top hat IC (2.4.38), different cases were considered: when the
rarefaction wave catches up to the shock and when it does not. Again, the
analytic results of Murray (1970) were confirmed numerically.
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2.5 Initial Value Problem for
ut + uαux + λuβ = 0

In this section we continue the analysis of Section 2.4, but restrict ourselves
to Equation (2.5.1) below, which is a special case of (2.4.1) with g(u) =
uα, h(u) = uβ . With this choice it becomes possible to find explicit solutions
for many cases either by the method of characteristics or by reduction
to an ODE via similarity analysis. Apart from finding explicit solutions,
the concern here is to demonstrate the limiting nature of the similarity
solution. We follow the work of Bukiet, Pelesko, Li, and Sachdev (1996). An
important contribution of this paper is the development of a characteristic-
based numerical scheme for nonlinear scalar hyperbolic equations, which
involves the solving of ODEs. The solution thus computed displays sharp,
well-defined shocks when they exist. The analytic solutions found here
demonstrate the efficacy of the numerical scheme developed by Bukiet et
al. (1996).

Consider the equation

ut + uαux + λuβ = 0 (2.5.1)

with the top hat initial data

u(x, 0) =

 0 x < 0
h 0 < x < X
0 X < x

(2.5.2)

where h, α and β are positive constants; λ > 0 is the dissipative constant.
If α = 0, the solution is a decaying travelling wave moving to the right

with speed 1. For λ = 0, (2.5.1) reduces to

ut + uαux = 0, (2.5.3)

and so
du

dt
= 0 along the characteristic curves

dx

dt
= uα. (2.5.4)

That is, u is constant along the characteristics
dx

dt
= uα which are straight

lines in the (x, t) plane. The initial condition u = 0 for x < 0 and u = h for
x > 0 give rise to a rarefaction wave centred at x = 0. All values from 0 to
h propagate along the characteristics of the rarefaction wave. Since α > 0,

the characteristic with value h for u has the highest speed:
dx

dt
= hα. The

equation of this characteristic is obtained by integrating (2.5.4):

xF = hαt (2.5.5)
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where we have used the condition xF = 0 at t = 0, xF denoting the front of
the rarefaction wave. A shock originates at x = X (since u = h for x < X
and u = 0 for x > X). The motion of this shock is given by

dxs
dt

=
1

0− ub

∫ 0

ub

uαdu

=
uαb
α+ 1

. (2.5.6)

Here, ua and ub are values of u immediately ahead of and behind the shock,
respectively. Before the rarefaction catches up with the shock, the value of
ub is h. Therefore,

dxs
dt

=
hα

α+ 1
or

xs =
hα

α+ 1
t+X, 0 ≤ t ≤ t0, (2.5.7)

since xs = X at t = 0; t0 is the time at which the rarefaction catches up
with the shock. Thus the solution for xF < x < xs is u = h. In order to
solve for u in the rarefaction (0 ≤ x ≤ xF ), we use (2.5.4). Thus,

dx

dt
= uα, u = C (constant),

therefore,
x = Cαt,

since x = 0, t = 0 in the rarefaction wave. We readily have

u =
(x
t

) 1
α

. (2.5.8)

From (2.5.5) and (2.5.7) we find that the rarefaction wave catches up with
the shock at the time t0 when xs = xF , that is,

hα

α+ 1
t0 +X = hαt0

or

t0 =
(α+ 1)X
αhα

. (2.5.9)

At this time the position of the shock is

xs =
hα

α+ 1
(α+ 1)X
αhα

+X

=
α+ 1
α

X (2.5.10)

where we have used (2.5.7) and (2.5.9).
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For t > t0, the motion of the shock can be found from Equations (2.5.6)
and (2.5.8). The value of ub is now less than h. On using (2.5.8), (2.5.6)
becomes

dxs
dt

=
1

α+ 1

(xs
t

)
which, on integration, yields

xs = Kt
1

α+1 (2.5.11)

where K is a constant. From (2.5.10) we have xs =
α+ 1
α

X at t = t0;
therefore,

α+ 1
α

X = Kt
1

α+1
0 . (2.5.12)

Equation (2.5.12) gives the value of K as

K =
α+ 1
α

X

t
1

α+1
0

= (α+ 1)
[

1
α+ 1

(
hX

α

)α] 1
α+1

where we have made use of (2.5.9). Using this value of K in (2.5.11), we
have

xs = (α+ 1)
[

t

α+ 1

(
hX

α

)α] 1
α+1

. (2.5.13)

The results can now be summarised as follows:

u(x, t) =


(x
t

)1/α

0 ≤ x ≤ xF

h xF < x < xs, t ≤ t0
0 x > xs

(2.5.14)

and

u(x, t) =

{ (x
t

)1/α

0 ≤ x ≤ xs

0 x > xs, t ≥ t0.
(2.5.15)

ii) λ 6= 0, β = 1. Here we have the equation

ut + uαux + λu = 0 (2.5.16)

so that

du

dt
+ λu = 0 along the characteristic curves

dx

dt
= uα. (2.5.17)
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Integration of (2.5.17) gives

u = u0e
−λt

where u = u0 at t = 0. Since u varies from 0 to h in the rarefaction
wave, decay of the height of the top hat is given by maxu = he−λt. Using
this result in the characteristic direction in (2.5.17), the position of the
wavefront is found to be

xF =
hα

λα
(1− e−λαt), (2.5.18)

where we have inserted the 1C xF = 0 at t = 0. The equation for the
motion of the shock wave is

dxs
dt

=

∫ 0

ub
uαdu

0− ub
=

(he−λt)α

α+ 1
(2.5.19)

which, on integration and use of 1C xs = X at t = 0, gives

xs = X +
hα

λα(α+ 1)
(1− e−λαt). (2.5.20)

Equation (2.5.20) gives the shock trajectory. The time t0 at which the
front of the rarefaction catches up with the shock is obtained by equating
(2.5.18) and (2.5.20),

hα

λα
(1− e−λαt0) = X +

hα

λα(α+ 1)
(1− e−λαt0), (2.5.21)

yielding

t0 = − 1
λα

ln
[
1− (α+ 1)λX

hα

]
. (2.5.22)

Thus, the rarefaction wave catches up with the shock only if

1− (α+ 1)λX
hα

> 0,

that is,
h > [(α+ 1)λX]

1
α . (2.5.23)

If t0 exists, the location of the shock at this time is given by

xs = X +
hα

λα(α+ 1)
· λ(α+ 1)X

hα
,

=
(α+ 1)
α

X,
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where we have used (2.5.20) and (2.5.22). Suppose a characteristic in the
rarefaction has a value u = c at time t. Then, as in (2.5.17), we have

dx

dt
= (ce−λt)α = cαe−λαt

which, on integration and use of the IC x = 0, t = 0, gives

x =
cα

λα
(1− e−λαt).

The solution in the rarefaction wave is

u(x, t) = ce−λt

=
(

λαx

eλαt − 1

) 1
α

. (2.5.24)

After t = t0, the motion of the shock is given by

dxs
dt

=
uαb
α+ 1

=
λαxs

(α+ 1)(eλαt − 1)

=
λαe−λαtxs

(α+ 1)(1− e−λαt)
. (2.5.25)

On integrating (2.5.25), using the condition xs =
α+ 1
α

X at t = t0 and

recalling (2.5.22), we get

xs =
α+ 1
α

(hX)α/(α+1)

[λ(α+ 1)]1/(α+1)
(1− e−λαt)1/(α+1), t > t0. (2.5.26)

It is clear that, whether the rarefaction catches up with the shock or not,
the shock decays in infinite time but in finite distance.

If the rarefaction does not catch up with the shock, it follows from
(2.5.20) that the location of the shock, as t→∞, is

xs,∞ = X +
hα

λα(α+ 1)
. (2.5.27)

If the rarefaction does catch up with the shock, that is, if t0 exists, then
the location of the shock from (2.5.26) in the limit t tending to infinity is

xs,∞ =
α+ 1
α

1
[λ(α+ 1)]1/(α+1)

(hX)α/(α+1). (2.5.28)

To summarise, if β = 1,

u(x, t) =


(

λαx

eλαt − 1

)1/α

0 ≤ x ≤ xF

he−λt xF < x < xs, t ≤ t0
0 x > xs

(2.5.29)
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where t is less than t0 and

u(x, t) =


(
λαxe−λαt

1− e−λαt

)1/α

0 ≤ x ≤ xs

0 x > xs, t ≥ t0

(2.5.30)

where t ≥ t0.

(iii) β 6= 1, β 6= α 6= 1

Here the solution with top hat initial data will be found. Along the
characteristic curves we have

dx

dt
= uα,

du

dt
+ λuβ = 0. (2.5.31)

Integrating (2.5.31) subject to conditions u = h at t = 0, we get

u = [h1−β − λ(1− β)t]1/(1−β). (2.5.32)

The wavefront, whose location is xF = 0 at t = 0, is obtained by integrating
dXF

dt
= uF , etc. We have

xF =
1

λ(α+ 1− β)

[
hα+1−β − {h1−β − λ(1− β)t}

α+1−β
1−β

]
. (2.5.33)

Now the equation of motion of the shock wave is found from (2.5.32) as

dxs
dt

=
uαb
α+ 1

=
[h1−β − λ(1− β)t]α/(1−β)

α+ 1
. (2.5.34)

Integrating (2.5.34) and using the condition xs = X at t = 0, we have

xs = X +
1

λ(α+ 1)(α+ 1− β)

[
hα+1−β − {h1−β − λ(1− β)t}

α+1−β
1−β

]
.

(2.5.35)
The time t0 at which the front of the rarefaction catches up with the

shock is found by equating (2.5.33) and (2.5.35):

t0 =

[
hα+1−β − λ(α+1)(α+1−β)

α X
] 1−β

α+1−β − h1−β

λ(β − 1)
. (2.5.36)

For t0 to exist we must have the right side of (2.5.36) greater than zero;
besides, the expression in square brackets must be positive. This requires
that

h >

[
λ(α+ 1)(α+ 1− β)X

α

]1/(α+1−β)

. (2.5.37)
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From (2.5.35) and (2.5.36) the shock position at t = t0 is found to be

xs = X +
1

λ(α+ 1)(α+ 1− β)
· λ(α+ 1)(α+ 1− β)

α
X

=
α+ 1
α

X.

This is in agreement with the result (2.5.10).
The characteristic solution in an implicit form may easily be found to

be

x =
1

λ(α+ 1− β)

{[
u1−β + λ(1− β)t

]α+1−β
1−β − uα+1−β

}
. (2.5.38)

(iv) β = α+ 1

As for the derivation of (2.5.33), we have in this case

xF =
1

λ(1− β)
ln
[

h1−β

h1−β − λ(1− β)t

]
. (2.5.39)

The equation of motion of the shock wave is

dxs
dt

=
1

h1−β − λ(1− β)t

which, on integration and use of 1C xs = X at t = 0, gives

xs = X +
1

λβ(1− β)
ln
[

h1−β

h1−β − λ(1− β)t

]
. (2.5.40)

The time t0 at which the front of the rarefaction wave catches up with the
shock is obtained by equating (2.5.39) and (2.5.40):

λβ(1− β)X = (β − 1) ln
[

h1−β

h1−β − λ(1− β)t0

]
(2.5.41)

or

t0 =
h1−β(eλβX − 1)

λ(β − 1)
. (2.5.42)

The value t0 in (2.5.42) always exists since β = α+1 > 1, α being positive.
From (2.5.40) and (2.5.42) the location of the shock at t = t0 is

xs =
(α+ 1)X

α
.
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Some smooth solutions of ut + uαux + λuβ = 0

We investigate the conditions under which nonnegative, bounded C1 solu-
tions of (2.5.1) exist on a semi-infinite domain: ε < x ≤ ∞, δ < t ≤ ∞,
where ε and δ are positive. These are some classes of initial and boundary
conditions for which shock waves do not arise. First we study solutions of
the form u(x, t) = F (x) and u(x, t) = G(t), that is, solutions which are
functions of one variable only. Consider solutions of the form u(x, t) =
F (x). On substitution of this into (2.5.1) we get

FαF ′ + λF β = 0. (2.5.43)

Therefore,

u(x, t) = F (x) = [(α+ 1− β)(C − λx)]
1

α+1−β (2.5.44)

where C is constant of integration.
If β > α + 1 and C < 0 (so that the expression within the square

brackets in (2.5.44) is positive and the exponent is negative), the solution
u(x, t) is bounded. If β = α + 1, (2.5.43) integrates to give the bounded
solution

u(x, t) = F (x) = Ce−λx (2.5.45)

where C is the constant of integration.
If α+1 > β, there are no bounded solutions of the form u(x, t) = F (x).
Consider now solutions of the form u(x, t) = G(t). Substitution into

(2.5.1) gives
G′ + λGβ = 0. (2.5.46)

If β < 1, there exist bounded solutions

u(x, t) = G(t) ≥

 [(1− β)(C − λt)]
1

1−β t < C
λ

0 t ≥ C
λ

(2.5.47)

where the constant of integration C is greater than zero.
These solutions decay to zero in a finite time C/λ. If β = 1, Equation

(2.5.46) integrates to give

u(x, t) = G(t) = Ce−λt, (2.5.48)

a solution which decays to zero in infinite time.
If β > 1, (2.5.46) may be integrated to yield

u(x, t) = G(t) =
1

[(β − 1)(λt+ C)]1/(β−1)
(2.5.49)

where C > 0 is constant of integration. The solution (2.5.49) is bounded
and decays to zero in infinite time.
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Special exact solutions of the equation
ut + uαux + λuβ = 0

Consider the one-parameter family of stretching transformations (see Chap-
ter 3)

x = εax, t = εbt, u = εcu

∂u

∂t
= εb−c

∂u

∂t
,
∂u

∂x
= εa−c

∂u

∂x
. (2.5.50)

Substituting (2.5.50) into (2.5.1), we get

εb−cut + εa−cux · ε−cαuα + λε−cβuβ = 0.

For invariance of (2.5.1) we must have

b = c(1− β), a = c(1 + α− β).

For β 6= 1, 1 + α we have solutions of the form

u(x, t) = tc/bH(η) = t1/(1−β)H(η)

where
η = xt−a/b = xt(β−α−1)/(1−β). (2.5.51)

Substituting (2.5.51) into (2.5.1), we get

H ′ =
H − (β − 1)λHβ

(α+ 1− β)η + (β − 1)Hα
. (2.5.52)

For α+ 1 > β and β > 1, H(η) approaches the constant solution

H∗ = [λ(β − 1)]1/(1−β) (2.5.53)

of (2.5.52) as η →∞.
There are no bounded solutions of (2.5.52) as η → ∞ for α + 1 < β,

since, in this case, either the denominator in (2.5.53) becomes zero at some
finite point or H ′ is proportional to 1/η for large η so that H ≈ O(ln η) as
η →∞. There are also no bounded solutions for β < 1 since u grows with
time.

If β 6= 1, α+ 1 we also have solutions of the form

u(x, t) = xc/aH(η) = x1/(1+α−β)H(η)

η = xt(β−α−1)/(1−β).
(2.5.54)

Substituting (2.5.54) in (2.5.1) we get, after some simplification,

H ′ =
(β − 1)[(α+ 1− β)λHβ +Hα+1]

η(α+ 1− β)[(β − α− 1)η
β−1

β−α−1 + (1− β)Hα]
. (2.5.55)
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For α+ 1 > β and β > 1, H(η) → 0 exponentially as η →∞. So bounded
solutions exist. There are no bounded solutions to (2.5.55) for α + 1 < β
or β < 1 since the denominator in the RHS in these cases vanishes at some
finite point η. Some additional similarity solutions of (2.5.16) exist if α = 1.

Bukiet et al. (1996) have studied numerically most of the special cases
of (2.5.1) which have exact solutions. Specific values of parameters in the
PDEs, IC, and BC (wherever applicable) were chosen. In each case the
numerical results agreed closely with the analytic ones. However, the main
point of their study was to show the superiority of the proposed numerical
scheme over other schemes such as the Lax-Wendroff scheme. The shocks
when they formed were accurately located and their progression in time
predicted. The shocks were sharp, showing no spurious oscillations. The
only drawback of this scheme is that, in its present form, it is applicable
only to scalar hyperbolic PDEs.

We conclude this chapter by referring to a result due to Logan (1987)
regarding the general first-order, nonlinear PDE

F (x, t, u, p, q) = 0 (2.5.56)

where p = ux and q = ut.
For this purpose we need the following definition. Equation (2.5.56) is

constant conformally invariant under the one-parameter family of stretching
Tc,

x = εax, t = εbt, u = εcu (2.5.57)

if, and only if,

F (x, t, u, ux, ut) = A(ε)F (x, t, u, ux, ut) (2.5.58)

for all ε in I, for some function A with A(1) = 1. If A(ε) ≡ 1, then we say
that (2.5.56) is absolutely invariant.

If Equation (2.5.56) is constant conformally invariant under the one-
parameter family of stretching transformation (2.5.57), then it can be changed
to an ODE of the form

H(s, f, f ′) = 0 (2.5.59)

where
u = tc/bf(s), s = (xb/ta). (2.5.60)
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Chapter 3

Exact Similarity Solutions
of Nonlinear PDEs

PART A

3.1 Reduction of PDEs by Infinitesimal Trans-
formations

The similarity method is one of the standard methods for obtaining ex-
act solutions of PDEs. The number of independent variables in a PDE is
reduced by one by making use of appropriate combinations of the origi-
nal independent variables as new independent variables, called “similarity
variables.” The similarity variables can themselves be identified by using
the invariance properties of PDEs when subjected to finite or infinitesimal
transformations.

Consider the one-parameter (ε) group of finite transformations

x̄ = ε2x, t̄ = εt, ū = εu. (3.1.1)

If we apply the transformations (3.1.1) to the scalar nonlinear transport
equation

ut + uux = 0 (3.1.2)

we find that it simply becomes

ūt̄ + ūūx̄ = 0, (3.1.3)

that is, the form of Equation (3.1.2) is unaltered. We say that Equation
(3.1.2) is invariant under the transformations (3.1.1).

We explain below the theory of infinitesimal transformations given orig-
inally by Ovsiannikov (1982) and explained more clearly by Bluman and
Cole (1974).
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Lie Group Transformations

Let (x, y) be the coordinates of a point in the plane. We consider a set of
one-parameter transformations, T , of the plane onto itself:

T : x1 = φ(x, y;α)
y1 = ψ(x, y;α) (3.1.4)

where α is a parameter which can vary continuously over a given range. An
example of such a transformation is the one-parameter family of rotations,
R, about the origin in the xy-plane which takes a point P (x, y) to another
point P1(x1, y1) through an angle α:

R : x1 = x cosα− y sinα
y1 = x sinα+ y cosα, 0 ≤ α < 2π. (3.1.5)

This is a one-parameter group of rotations. We consider the set of all one-
parameter transformations, T , which form a continuous group (Lie group).
Here the identity transformation (x, y) → (x, y) may be characterised by
the parameter value α = 0:

x = φ(x, y; 0), y = ψ(x, y; 0). (3.1.6)

The Infinitesimal Transformation

For many purposes it suffices to study only transformations close to the
identity. We assume that the functions φ and ψ in (3.1.4) are differentiable
a sufficient number of times with respect to α. If ε is an infinitesimally
small value of α, then the transformation

x1 = φ(x, y; ε)
y1 = ψ(x, y; ε) (3.1.7)

differs only infinitesimally from the identity transformation.
We can expand (3.1.7) and write it as

x1 = φ(x, y; 0) + ε
∂φ

∂α
(x, y;α)

∣∣∣∣
α=0

+
ε2

2!
∂2φ

∂α2
(x, y;α)

∣∣∣∣
α=0

+ · · · (3.1.8)

y1 = ψ(x, y; 0) + ε
∂ψ

∂α
(x, y;α)

∣∣∣∣
α=0

+
ε2

2!
∂2ψ

∂α2
(x, y;α)

∣∣∣∣
α=0

+ · · ·

and have the infinitesimal transformation

x1 = x+ εX +O(ε2)

©2000 CRC Press LLC



y1 = y + εY +O(ε2) (3.1.9)

where

X = X(x, y) =
∂φ

∂α
(x, y;α)

∣∣∣∣
α=0

Y = Y (x, y) =
∂ψ

∂α
(x, y;α)

∣∣∣∣
α=0

. (3.1.10)

In the rotation group (3.1.5) with α = ε� 1, we have

x1 = x cos ε− y sin ε ≈ x− εy +O(ε2),
y1 = x sin ε+ y cos ε ≈ y + εx+O(ε2). (3.1.11)

Here,
X = −y, Y = x. (3.1.12)

Application to PDEs

We first study a system, S, consisting of the general second-order PDE in
the dependent variable u and independent variables x and t, namely

H(x, t, u, ux, ut, uxx, uxt, utt) = 0 (3.1.13)

and appropriate boundary conditions, left unspecified here. Now consider
a one-parameter group of infinitesimal transformations which takes the
(x, t, u)-space into itself so that a given solution, u = φ(x, t) of (3.1.13),
is transformed into another solution, ū = φ̄(x̄, t̄):

x̄ = x+ εX,
t̄ = t+ εT, (3.1.14)
ū = u+ εU.

We require that Equation (3.1.13) is invariant under the transformations
(3.1.14). That is,

H(x̄, t̄, ū, ūx̄, ūt̄, ūx̄x̄, ūx̄t̄, ūt̄t̄) = 0. (3.1.15)

We have

ū = u+ εU = φ(x̄, t̄) = φ(x+ εX, t+ εT )

= φ(x, t) + εX
∂φ

∂x
+ εT

∂φ

∂t
+O(ε2). (3.1.16)

Equating terms of order ε on both sides, we get

X
∂u

∂x
+ T

∂u

∂t
= U. (3.1.17)

©2000 CRC Press LLC



Equation (3.1.17) is called the “invariant surface condition.” Its character-
istic equations are

dx

X
=
dt

T
=
du

U
. (3.1.18)

The general solution of (3.1.17) is obtained by finding two independent
integrals

η(x, t, u) = constant
h(x, t, u) = constant. (3.1.19)

The general solution of (3.1.17), therefore, is

h(x, t, u) = f(η) (3.1.20)

where f is an arbitrary function of its argument. If X/T is a function of x
and t alone, then the integral of the first equality in (3.1.18) will be of the
form

η = η(x, t) = constant. (3.1.21)

Here, η is the so-called “similarity variable,” and the general solution of
(3.1.17) is

u = F (x, t, f(η)). (3.1.22)

The function f(η) is determined by substituting the form (3.1.22) into the
given PDE (3.1.13). In the case of two independent variables, the resulting
equation will be an ODE in f(η). Each solution of the ODE yields a
similarity solution for the PDE.

To find the generators X,T, U of the group of transformations, we have
to determine how the derivatives transform under the infinitesimal trans-
formation (3.1.14).

In the following calculations, x, t, and u are regarded as independent
variables. Thus,

∂X

∂x
= Xx +Xuux,

∂X

∂t
= Xt +Xuut. (3.1.23)

From (3.1.14) we have

∂x

∂x̄
=

∂

∂x̄
[x̄− εX(x, t, u) +O(ε2)]

= 1− ε(Xx +Xuux)
∂x

∂x̄
+O(ε2) (3.1.24)

or
∂x

∂x̄
= 1− ε(Xx +Xuux) +O(ε2).
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Similarly, we find that

∂x

∂t̄
= −ε(Xt +Xuut) +O(ε2) (3.1.25)

∂t

∂x̄
= −ε(Tx + Tuux) +O(ε2) (3.1.26)

∂t

∂t̄
= 1− ε(Tt + Tuut) +O(ε2). (3.1.27)

Also,
∂u

∂x̄
= [1− ε(Xx +Xuux)]ux − ε(Tx + Tuux)ut.

We now have the operator

∂

∂x̄
= [1− ε(Xx +Xuux)]

∂

∂x
− ε(Tx + Tuux)

∂

∂t

+[{1− ε(Xx +Xuux)}ux − ε(Tx + Tuux)ut]
∂

∂u
(3.1.28)

keeping terms up to order ε. Thus,

∂ū

∂x̄
=

∂

∂x̄
[u+ εU(x, t, u)]

= [1− ε(Xx +Xuux)]ux − ε(Tx + Tuux)ut
+ε[Ux + Uuux] +O(ε2)

or

∂ū

∂x̄
= ux + εŨx +O(ε2) (3.1.29)

Ũx = Ux + Uuux −Xxux −Xuu
2
x − Txut − Tuuxut. (3.1.30)

Similarly, we get

∂ū

∂t̄
= ut + εŨt +O(ε2) (3.1.31)

Ũt = Ut + Uuut −Xtux −Xuutux − Ttut − Tuu
2
t . (3.1.32)

From (3.1.29) we have
∂2ū

∂x̄2
=

∂

∂x̄
[ux + εŨx]. Using (3.1.28), we find, on

simplification, the second derivative

∂2ū

∂x̄2
= uxx + εŨxx +O(ε2) (3.1.33)
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where

Ũxx = Uxx + (2Uxu −Xxx)ux − Txxut + (Uuu − 2Xxu)u2
x

−2Txuuxut −Xuuu
3
x − Tuuu

2
xut + (Uu − 2Xx)uxx

−2Txuxt − 3Xuuxxux − Tuuxxut − 2Tuuxtux. (3.1.34)

In a similar manner we get

∂2ū

∂x̄∂t̄
= uxt + εŨxt +O(ε2) (3.1.35)

where

Ũxt = Uxt + (Utu −Xtx)ux + (Uxu − Ttx)ut
+(Uuu −Xxu − Ttu)uxut −Xtuu

2
x −Xuuu

2
xut − Txuu

2
t

−Tuuuxu2
t + (Uu −Xx − Tt)uxt −Xtuxx − 2Xuuxuxt

−Xuutuxx − Txutt − Tuuxutt − 2Tuutuxt (3.1.36)

and
∂2ū

∂t̄2
= utt + εŨtt +O(ε2) (3.1.37)

where Ũtt is obtained from Ũxx by simply interchanging x and t as well as
X and T .

The twice-extended group is a group of transformations of the eight
variables

{x, t, u, ux, ut, uxx, uxt, utt}.

The infinitesimal operator is

U∗ = X
∂

∂x
+ T

∂

∂t
+ U

∂

∂u
+ Ũx

∂

∂ux
+ Ũt

∂

∂ut

+Ũxx
∂

∂uxx
+ Ũxt

∂

∂uxt
+ Ũtt

∂

∂utt
. (3.1.38)

The PDE (3.1.13) will be invariant under the group of transformations
(3.1.14) if

H(x̄, t̄, ū, ūx̄, ūt̄, ūx̄x̄, ux̄t̄, ūt̄ t̄) = 0

for any solution u = H(x, t) of (3.1.13). The condition for this is

U∗H = 0 when H = 0, (3.1.39)

where U∗ is given by (3.1.38). Substituting (3.1.29) - (3.1.37) into (3.1.39),
using (3.1.13) and equating to zero the coefficients of like derivative terms in
u, we get an overdetermined system of linear PDEs to obtain the generators
X, T , and U . After finding X,T , and U , the invariant surface condition
(3.1.17) is used to find the similarity form of the solution. These results can
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be generalised to systems of PDEs involving arbitrary number of dependent
and independent variables.

In the absence of any boundary conditions, the invariant surface condi-
tion helps us to find a class of solutions of the PDE.

The above remarks may be illustrated by considering the one-dimensional
heat equation

ut = uxx. (3.1.40)

If we apply the transformation (3.1.14) to (3.1.40), the latter becomes (to
order ε)

ut + εŨt = uxx + εŨxx, (3.1.41)

from which it follows that
Ũt = Ũxx. (3.1.42)

In the classical similarity method as explained by Bluman and Cole (1974),
uxx in Ũxx is replaced by ut, and the coefficients of like derivative terms,
ut, ux, utx, etc., are equated to zero. The equation Ũt = Ũxx, with (3.1.32)
and (3.1.34) in view, may be written out as

Ut + Uuut −Xtux −Xuutux − Ttut − Tuu
2
t = Uxx + (2Uxu −Xxx)ux

−Txxut + (Uuu − 2Xxu)u2
x − 2Txuuxut −Xuuu

3
x − Tuuu

2
xut

+(Uu − 2Xx)ut − 2Txuxt − 3Xuutux − Tuu
2
t − 2Tuuxtux. (3.1.43)

Equating to zero the coefficients of different products of derivatives of u,
etc. gives an overdetermined system for the generators, which, however,
must be solved in a consistent manner. For example, from the coefficients
of uxuxt, uxut, and u2

x, we get

Tu = 0, Xu = 0 and Uuu = 0. (3.1.44)

It may be noted that, here, H = ut − uxx, and the infinitesimal operator
U∗ in (3.1.38) in the present case is

U∗ = Ũt
∂

∂ut
+ Ũxx

∂

∂uxx
.

Therefore,

U∗H =
(
Ũt

∂

∂ut
+ Ũxx

∂

∂uxx

)
(ut − uxx)

= Ũt − Ũxx (3.1.45)

so that U∗H = 0 implies that Ũt− Ũxx = 0. Thus, the condition (3.1.39) is
satisfied. The method is illustrated with full details through the following
example.
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Example

We consider the nonlinear diffusion equation

∂u

∂t
=

∂

∂x

(
D(u)

∂u

∂x

)
(3.1.46)

which may be written as

∂u

∂t
= D(u)

∂2u

∂x2
+D′(u)

(
∂u

∂x

)2

. (3.1.47)

We seek a one parameter group of infinitesimal transformations which takes
the (x, t, u)-space into itself and under which Equation (3.1.47) is invariant:

x̄ = x+ εX, t̄ = t+ εT, ū = u+ εU (3.1.48)

where the generators X,T , and U are functions of x, t, and u. Invariance
of Equation (3.1.47) under (3.1.48) gives (after substituting for uxx from
(3.1.47))

Ut + Uuut −Xtux −Xuutux − Ttut − Tuu
2
t = UD′(u)

[
ut
D(u)

− D′(u)
D(u)

u2
x

]
+D(u)

[
Uxx + (2Uxu −Xxx)ux − Txxut + (Uuu − 2Xxu)u2

x − 2Txuuxut

−Xuuu
3
x − Tuuu

2
xut + (Uu − 2Xx)

ut
D(u)

− (Uu − 2Xx)
D′(u)
D(u)

u2
x − 2Txuxt

−3Xuux
ut
D(u)

+ 3Xu
D′(u)
D(u)

u3
x − Tu

u2
t

D(u)
+ Tu

D′(u)
D(u)

u2
xut − 2Tuuxtux

]
+D′(u)[2Uxux + 2Uuu2

x − 2Xxu
2
x − 2Xuu

3
x − 2Txuxut − 2Tuu2

xut]

+UD′′(u)u2
x. (3.1.49)

Equating to zero the coefficients of uxtux, uxt, u3
x, u

2
xut, u

2
x, u

2
t , uxut, ux, ut,

and u0, we get the determining equations:

Tu = 0 (3.1.50)

Tx = 0 (3.1.51)

D(u)Xuu −D′(u)Xu = 0 (3.1.52)

D(u)Tuu +D′(u)Tu = 0 (3.1.53)[
Uu − 2Xx + U

D′(u)
D(u)

]
u

= 0 (3.1.54)

Tu − Tu = 0 (3.1.55)
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Xu +D(u)Txu +D′(u)Tx = 0 (3.1.56)

Xt −D(u)Xxx + 2D(u)Uxu + 2D′(u)Ux = 0 (3.1.57)

Tt −D(u)Txx − 2Xx + U
D′(u)
D(u)

= 0 (3.1.58)

Ut −D(u)Uxx = 0. (3.1.59)

From (3.1.50), (3.1.51) and (3.1.56) we have

X = X(x, t), T = T (t). (3.1.60)

From (3.1.54) and (3.1.60) we get

Uu + U
D′(u)
D(u)

= φ(x, t) (3.1.61)

where φ is an arbitrary function of x and t. Equations (3.1.58) and (3.1.60)
yield

T ′(t)− 2Xx + U
D′(u)
D(u)

= 0. (3.1.62)

Using (3.1.61) in (3.1.62) we get

Uu = T ′(t)− 2Xx + φ(x, t). (3.1.63)

It follows that
Uuu = 0. (3.1.64)

From (3.1.58) and (3.1.60) we get

U =
D(u)
D′(u)

(2Xx − T ′(t)). (3.1.65)

Since Uuu = 0, we have either

2Xx = T ′(t) (3.1.66)

or [
D(u)
D′(u)

]′′
= 0. (3.1.67)

It follows that
D(u) = α(u+ β)m, (3.1.68)

where α, β, and m are arbitrary constants. Equations (3.1.66) and (3.1.65)
imply that

U = 0. (3.1.69)

Now (3.1.66) gives

X =
1
2
T ′(t)x+ f(t) (3.1.70)
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so that (3.1.57) becomes

x

2
T ′′(t) + f ′(t) = 0, (3.1.71)

from which we get
T (t) = γt+ δ (3.1.72)

f(t) = constant = k (3.1.73)

where γ, δ and k are constants. Thus, the generators explicitly are

X =
γ

2
x+ k, (3.1.74)

T = γt+ δ, (3.1.75)
U = 0. (3.1.76)

This group is applicable to all functions D(u).
If D(u) has the form (3.1.68), then from (3.1.62) we have

U =
1
m

(u+ β)(2Xx − T ′(t)). (3.1.761)

Substituting (3.1.761) into (3.1.57) we get

Xt −D(u)Xxx + 4D(u)
1
m
Xxx + 4D′(u)

1
m

(u+ β)Xxx = 0 (3.1.77)

which, on simplification, becomes

Xt = −D(u)
(

3 +
4
m

)
Xxx. (3.1.78)

Substituting (3.1.761) into (3.1.59) and making use of (3.1.78), we get

T ′′(t) = −8D(u)
(

1 +
1
m

)
Xxxx. (3.1.79)

Equations (3.1.78) and (3.1.79) give rise to two distinct cases:

(i) For all constants m we have

Xt = Xxx = T ′′(t) = 0 (3.1.80)

so that

X = λx+ k (3.1.81)
T = γt+ δ. (3.1.82)
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Also,

U =
1
m

(u+ β)(2λ− γ) (3.1.83)

where β, λ, γ, δ, and k are arbitrary constants.

(ii) m = −4/3

In this case Xt = Xxxx = T ′′(t) = 0, leading to the generators

X = µx2 + λx+ k (3.1.84)
T = γt+ δ (3.1.85)

U = −3
4
(u+ β)(4µx+ 2λ− γ) (3.1.86)

where µ, λ, k, γ, δ, and β are arbitrary constants.
We now consider a special case of (3.1.46) with D(u) = um, where

m is positive. Using the generators (3.1.81) - (3.1.83) from Case (i), the
characteristic equations (3.1.18) become

dx

λx+ k
=

dt

γt+ δ
=

du

(1/m)(u+ β)(2λ− γ)
. (3.1.87)

Let k = 0 = δ, and γ = 2λ, then we have

dx

x
=
dt

2t
=
du

0
. (3.1.88)

The first equation in (3.1.88) gives the similarity variable

η =
x

t1/2
. (3.1.89)

Since u = constant in view of the last of (3.1.88), we have the following
form of the similarity solution

u = φ(η). (3.1.90)

Putting (3.1.90) into (3.1.47) with D(u) = um, we get

d

dη
(φmφ′) +

η

2
φ′ = 0, (3.1.91)

which can be written as

d

dφ
(φmφ′) +

η

2
= 0. (3.1.92)

Putting u∗ = φ′ in (3.1.92) and differentiating, we get

d2

dφ2
(φmu∗) +

1
2u∗

= 0. (3.1.93)
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Now put u∗ = vφ1−m/2 in (3.1.93) to get the equation

φ2 d
2v

dφ2
+ (m+ 2)φ

dv

dφ
+
m(m+ 2)

4
v +

1
2v

= 0. (3.1.94)

We consider special cases of (3.1.94).

a) m = −2

Equation (3.1.94) becomes

φ2 d
2v

dφ2
+

1
2v

= 0. (3.1.95)

Now, writing v = φV , φ = 1/θ in (3.1.95) we have

d2V

dθ2
+

1
2V

= 0, (3.1.96)

which integrates to yield (
dV

dθ

)2

+ log V = C1 (3.1.97)

or

θ =
∫ V dV√

C1 − log V
+ C2, (3.1.98)

that is,
1
φ

=
∫ v/φ dV√

C1 − log V
+ C2. (3.1.99)

But with m = −2, v = uφ−3 = φ′/φ3 so that

1
φ

=
∫ φ′/φ3

dV√
C1 − log V

+ C2. (3.1.100)

C1 and C2 in the above are constants. Now we put ψ = 1/φ2 in (3.1.100)
and obtain ∫ −ψ′/2 dV√

C1 − log V
= ψ1/2 − C2. (3.1.101)

Therefore, for some function F , we may write F (ψ′) = ψ1/2 − C2 or ψ′ =
f1(ψ1/2 − C2). That is,

η + C3 =
∫ 1/φ2

dψ

f(ψ1/2 − C2)
. (3.1.102)
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Here, C3 is another constant. Only two of Ci(i = 1, 2, 3) are arbitrary since
Equation (3.1.91) must also be satisfied.

b) m = −1

In this case (3.1.94) becomes

φ2 d
2v

dφ2
+ φ

dv

dφ
− v

4
+

1
2v

= 0. (3.1.103)

Put θ = log φ in (3.1.103) to obtain

d2v

dθ2
− v

4
+

1
2v

= 0. (3.1.104)

Multiplying (3.1.104) by 2dv/dθ and integrating, we get(
dv

dθ

)2

− v2

4
+ log v = c1 (3.1.105)

where c1 is constant of integration. An integration of (3.1.105) gives

log φ =
∫ φ′/φ3/2

dv√
c1 + v2/4− log v

+ c2. (3.1.106)

If we write, ψ = φ−1/2 in (3.1.106), then, as for Case (a), we may write it
as

ψ′ = f2(c2 + 2 logψ) (3.1.107)

for some function f2. Integrating (3.1.107) we get

η + c3 =
∫ φ−1/2

dψ

f2(c2 + 2 logψ)
; (3.1.108)

ci(i = 1, 2, 3) in (3.1.105)-(3.1.108) are arbitrary constants. In the above
derivation, we have taken the positive sign in the square roots in the first
integrals for both Cases (a) and (b). We could also have taken the negative
sign in the square roots. The appropriate sign must be decided by reference
to a given physical problem.

3.2 Systems of Partial Differential Equations

Logan and Pérez (1980) gave an equivalent treatment for the invariance of
a system of PDEs under a group of infinitesimal transformations. For con-
venience we consider a system of two first-order PDEs in two independent
variables x, t and two dependent variables u, v:

H1(x, t, u, v, ux, ut, vx, vt) = 0
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H2(x, t, u, v, ux, ut, vx, vt) = 0. (3.2.1)

Consider a one-parameter group of transformations

x̄ = x+ εX, t̄ = t+ εT
ū = u+ εU, v̄ = v + εV. (3.2.2)

We define the operator

L = X
∂

∂x
+ T

∂

∂t
+ U

∂

∂u
+ V

∂

∂v

+Ũx
∂

∂ux
+ Ũt

∂

∂ut
+ Ṽx

∂

∂vx
+ Ṽt

∂

∂vt
. (3.2.3)

The system of PDEs (3.2.1) is said to be constantly conformally invari-
ant under the infinitesimal group of transformations (3.2.2) if there exist
constants αij(i, j = 1, 2) such that

LH1 = α11H1 + α12H2

LH2 = α21H1 + α22H2.
(3.2.4)

Equating in (3.2.4) the coefficients of like derivative terms to zero, we get a
system of linear PDEs to determine the generators X,T, U , and V . We can
then proceed as for the case of a single PDE discussed in Section 3.1. In
this formulation the equations Hk = 0(k = 1, 2, ) need not be substituted
after calculating LHk; the Hk’s appear on the right-hand sides of (3.2.4) in
linear combinations.

To illustrate the use of infinitesimal trasformations to systems of PDEs,
we consider invariance properties of unsteady two- dimensional flow equa-
tions in the hydraulic approximation, namely

ux + vy = 0 (3.2.5a)

ut + uux + vuy + ghx = 0 (3.2.5b)

where x and y are Cartesian coordinates measured along and perpendicular
to the uniform horizontal bottom, and u and v are the associated velocity
components; g is the acceleration due to gravity. The fluid depth h(x, t)
is to be determined such that the boundary conditions given below are
satisfied.

At the bottom of the channel

v = 0 on y = 0. (3.2.6)

On the free surface we must have

v = ht + uhx on y = h(x, t). (3.2.7)
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Using the transformations

z =
y

h(x, t)
, w =

Dz

Dt
= v − z(ht + uhx), (3.2.8)

Equations (3.2.5a) and (3.2.5b) change to

ht + uhx + h(ux + wz) = 0 (3.2.9)

ut + uux + wuz + ghx = 0 (3.2.10)

while the boundary conditions become

w = 0 on z = 0, 1. (3.2.11)

Sachdev and Philip (1986) have used infinitesimal transformations, as for-
mulated by Logan and Pérez (1980), to obtain similarity solutions of the
system of Equations (3.2.9) - (3.2.10).

We seek a one-parameter infinitesimal group of transformations which
takes the (t, x, z, u, w) - space into itself, and under which the sytem (3.2.9)
- (3.2.10) is invariant:

t̄ = t+ εT, x̄ = x+ εX, z̄ = z + εZ
ū = u+ εU, w̄ = w + εW

where the generators T,X,Z, U , and W are functions of t, x, z, u, and w.
Using Equations (3.1.17) - (3.1.22) of Section 3.1 modified to include

three variables t, x, z, the invariance of (3.2.9) gives

T = T (t, x, z), X = X(t, x, z), Z = Z(t, x, z) (3.2.12)

h(Uu −Xx) +Xhx + Tht = α11h+ α12u (3.2.13)

h(Wu − Zx) = α12W (3.2.14)
−hTx = α12 (3.2.15)

h(Uw −Xz) = 0 (3.2.16)
h(Ww − Zz) + (Xhx + Tht) = α11h (3.2.17)

hTz = 0 (3.2.18)
Xhtx + Thtt + u(Xhxx + Thxt)

+Uhx + hUx + hWz = α11(ht + uhx) + α12ghx. (3.2.19)

Invariance of (3.2.10) yields

U + u(Uu −Xx)− wXz −Xt = α21h+ α22u (3.2.20)
W + w(Uu − Zz)− uZx − Zt = α22w (3.2.21)

Uu − Tt − uTx − wTz = α22 (3.2.22)
uUw = 0 (3.2.23)
wUw = α21h (3.2.24)
Uw = 0 (3.2.25)
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Ut + uUx + wUz + g(Xhxx + Thxt) = α21(ht + uhx) + α22ghx. (3.2.26)

We now solve the determining differential equations. Differentiating (3.2.14)
with respect to w and (3.2.17) with respect to u, we get α12 = Wuw = 0.
Equations (3.2.25) and (3.2.24) imply α21 = 0, since h 6= 0. Differenti-
ating (3.2.20) with respect to w and using (3.2.25) and (3.2.12), we get
X = X(x, t). Equations (3.2.18), (3.2.15), and (3.2.12) now imply that
T = T (t). Further, (3.2.13) gives Uuu = 0. Equations (3.2.17), (3.2.19),
and (3.2.14) give Www = Wzw = Wuu = Wuw = 0. These equations yield

W = k(x, t)w + l1(x, z, t)u+m(x, z, t) (3.2.27)

where k, l, and m are functions of their arguments to be determined. Equa-
tion (3.2.26) differentiated with respect to w gives Uz = 0, which implies
that U = U(x, t, u). Equation (3.2.22) now gives

U = [α22 + T ′(t)]u+ f(x, t) (3.2.28)

where f(x, t) is an arbitrary function. Differentiating (3.2.20) with respect
to u and using (3.2.28) we obtain

X = [α22 + 2T ′(t)]x+ β(t) (3.2.29)

where β is an arbitrary function of t. The equations obtained by differen-
tiating (3.2.20) with respect to x and (3.2.26) with respect to u, and use of
(3.2.28) and (3.2.29), yield f = f(t) and

T = at+ b (3.2.30)

where a and b are arbitrary constants. Differentiating (3.2.21) with respect
to w and using (3.2.27), (3.2.28), and (3.2.30), we get Z = [k(x, t) + a]z +
γ(x, t) where γ is an arbitrary function of x and t. Invariance of the bound-
ary z = 0 implies z̄ = z + εZ = 0 when z = 0; this implies that Z = 0
when z = 0 which, in turn, requires that γ(x, t) = 0. Invariance of the
other boundary z = 1 implies that z̄ = z + εZ = 1 when z = 1, requiring
that Z = 0 when z = 1. This implies that k(x, t) = −a. Thus, we have
Z = 0. Equations (3.2.14) and (3.2.27) now give l1 = 0, and (3.2.21) yields
m = 0. Equation (3.2.20) leads to f(t) = β′(t). Thus, the generators of the
invariance group for Equations (3.2.9) - (3.2.11) are

T = at+ b,X = (c+ a)x+ β(t),

Z = 0, U = cu+ β′(t),W = −aw
(3.2.31)

where a, b, c = α22 + a are arbitrary constants and β(t) is an arbitrary
function of t.

Using (3.2.31) in (3.2.13) we get

(at+ b)ht + [(c+ a)x+ β(t)]hx − (α11 + a)h = 0. (3.2.32)
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Differentiating (3.2.32) with respect to x and combining it with the equation
obtained by substituting (3.2.31) in (3.2.26), we get

(2c− a− α11)hx =
β′′(t)
g

. (3.2.33)

From (3.2.33) we get the following alternatives:

(i) 2c = a+ α11. In this case,

β(t) = a0t+ a1 (3.2.34)

where a0 and a1 are arbitrary constants.

(ii) h =
β′′(t)

g(2c− a− α11)
+ β1(t),

where β1(t) is an arbitrary function of t. But this does not lead to any new
solution.

The invariant surface conditions for u and w, respectively, are (see
(3.1.17))

T
∂u

∂t
+X

∂u

∂x
+ Z

∂u

∂z
= U (3.2.35)

T
∂w

∂t
+X

∂w

∂x
+ Z

∂w

∂z
= W. (3.2.36)

Case (i) l = c/a 6= −1.
The characteristic system corresponding to (3.2.35) becomes

dt

at+ b
=

dx

(c+ a)x+ a0t+ a1
=
dz

0
=

du

cu+ a0
. (3.2.37)

Integration of the first two equations gives the similarity variables

ξ =
[
x+A+

a0

c

(
t+

B

l + 1

)]
(t+B)−l−1, η = z (3.2.38)

where A =
a1

c+ a
,B =

b

a
(a 6= 0). Integration of the third equation of the

characteristic system (3.2.37) gives the similarity form

u = (t+B)lF (ξ, η)− a0

c
(3.2.39)

where F (ξ, η) is an arbitrary function of ξ and η. In a similar manner,
(3.2.36) gives

w = (t+B)−1G(ξ, η) (3.2.40)
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where G(ξ, η) is another arbitrary function of ξ and η. The characteristic
system of (3.2.32) with β(t) as given by (3.2.34) and 2c = a+ α11 is

dt

at+ b
=

dx

(c+ a)x+ a0t+ a1
=

dh

2ch

from which we get
h = (t+B)2ls(ξ) (3.2.41)

where s is an arbitrary function of ξ.
By substituting (3.2.39) and (3.2.40) in (3.2.9) and (3.2.10), we obtain

a system of PDEs with two independent variables ξ and η (for convenience,
we designate ξ, η, F , and G as x, z, u, and w, respectively):

ux + wz + [u− (l + 1)x]
(sx
s

)
+ 2l = 0 (3.2.42)

[u− (l + 1)x]ux + wuz + lu+ gsx = 0. (3.2.43)

Again we seek a one-parameter infinitesimal group of transformations

x̄ = x+ εX, z̄ = z + εZ

(3.2.44)
ū = u+ εU, w̄ = w + εW

under which the system (3.2.42) - (3.2.43) is invariant. The generators
X,Z,U , and W are functions of x, z, u, and w.

Invariance of (3.2.42) yields

X = X(x, z), Z = Z(x, z) (3.2.45)

Uu −Xx = β11 + β12[u− (l + 1)x] (3.2.46)

Wu − Zx = β12w (3.2.47)

Uw −Xz = 0 (3.2.48)

Ww − Zz = β11 (3.2.49)

Ux +Wz + [u− (l + 1)x]X
(sx
s

)
x

+ [U − (l + 1)X]
(sx
s

)
= β11[u− (l + 1)x]

(sx
s

)
+ 2lβ11 + β12(lu+ gsx). (3.2.50)

Invariance of (3.2.43) gives

U−(l+1)X+[u−(l+1)x](Uu−Xx)−wXz = β21+β22[u−(l+1)x] (3.2.51)

W + w(Uu − Zz)− [U − (l + 1)x]Zx = β22w (3.2.52)

[U − (l + 1)x]Uw = 0 (3.2.53)
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wUw = β21 (3.2.54)

[u−(l+1)x]Ux+Uz+lU+gXsxx = β21[u−(l+1)x]
(sx
s

)
+2lβ21+β22(lu+gsx).

(3.2.55)
Equations (3.2.47) and (3.2.49) imply that Wwu = β12 = 0. Equations

(3.2.53) and (3.2.54) yield Uw = 0, U 6= (l + 1)x, β21 = 0. Differentiation
of (3.2.46) with respect to u gives Uuu = 0. Differentiating (3.2.47) with
respect to u and (3.2.49), and (3.2.50) with respect to w, we get Wuu =
Www = Wzw = 0. These equations together with Wuw = 0 imply that

W = m(x)w + p(x, z)u+ q(x, z) (3.2.56)

where m, p and q are arbitrary functions of the indicated arguments. Em-
ploying (3.2.56) in (3.2.49) and integrating with respect to z, we get Z =
[m(x)−β11]z+ f1(x), where f1(x) is an arbitrary function of x. Invariance
of z = 0 implies f1 = 0, and invariance of z = 1 implies m(x) = β11, so
that

Z = 0. (3.2.57)

Equations (3.2.47) and (3.2.57) give Wu = 0 which, by the use of (3.2.56),
implies that p = 0. Equation (3.2.55) differentiated with respect to w gives
Uz = 0 so that U = U(x, u). Equation (3.2.51) differentiated with respect
to w yields Xz = 0 so that X = X(x). Differentiating (3.2.51) with respect
to w and using (3.2.46), we get

2Uu = β22 +X ′(x) = 2[β11 +X ′(x)] (3.2.58)

from which we get X = a1x+b1 where a1(= β22−2β11) and b1 are arbitrary
constants. Therefore, from (3.2.58)

U = (β11 + a1)u+ f2(x) (3.2.59)

where f2 is an arbitrary function of x. Equations (3.2.56), (3.2.57), (3.2.59),
and (3.2.52) now give q = 0, so that

W = β11w. (3.2.60)

Equation (3.2.52), with the help of (3.2.59) and (3.2.60), gives f2(x) =
(l + 1)(b1 − β11x), and so from (3.2.51)

U = (β11 + a1)u+ (l + 1)(b1 − β11x). (3.2.61)

Substituting (3.2.58), (3.2.60), and (3.2.61) in (3.2.50), and differentiat-
ing the resulting equation with respect to u, we get (a1x + b1)(sx/s)x =
−a1(sx/s), from which it follows that

s(x) = k2(a1x+ b1)k1/a1 (3.2.62)
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where k1 and k2 are arbitrary constants. Substituting (3.2.62) in (3.2.55)
and equating to zero the coefficient of u and the terms independent of u,
respectively, we get β11 = 0, provided that l 6= −1/2, and

l(l + 1)b1 = gk1k2(a1x+ b1)k1/a1−1(2a1 − k1). (3.2.63)

The only meaningful relation arising from (3.2.63) is b1 = 0, k1 = 2a1.
Therefore, the infinitesimal generators in terms of the original variables
ξ, η, F and G are

X = a1ξ, Z = 0, U = a1F,W = 0 (3.2.64)
h = (t+B)2ls(ξ) = (t+B)2lk2(a1ξ)2

= k(t+B)2lξ2

= k

[
x+A+

(a0

c

)(
t+

B

l + 1

)]2
/(t+B)2 (3.2.65)

where k = k2a
2
1. The invariant surface conditions for F and G are (see

(3.1.17))

X
∂F

∂ξ
+ Z

∂F

∂η
= U (3.2.66)

X
∂G

∂ξ
+ Z

∂G

∂η
= W. (3.2.67)

The characteristic system for (3.2.66) is

dξ

a1ξ
=
dη

0
=

dF

a1F
.

The first equation gives the similarity variable as η. Also, we get

F = ξP (η) (3.2.68)

where P is an arbitrary function of η. Similarly, from (3.2.67) we get

G = Q(η) (3.2.69)

where Q is an arbitrary function of η. Substituting (3.2.68) and (3.2.69) in
(3.2.42) and (3.2.43) (after changing x, z, u, and w back to ξ, η, F , and G,
respectively in (3.2.42) and (3.2.43)) and using (3.2.65) for h, we get the
system of ODEs

3P +Q′ − 2 = 0 (3.2.70)

QP ′ − P + P 2 + 2gk = 0. (3.2.71)

where prime denotes differentiation with respect to η. Denoting gk by
1/(4α2) in (3.2.71) we get

Q =
P − P 2 − 1/2α2

P ′
. (3.2.72)
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Substituting (3.2.72) in (3.2.70) and writing P = S/2α, the latter becomes

(S2 − 2αS + 2)S′′ + (S − 2α)S′2 = 0. (3.2.73)

Interchanging the independent and dependent variables in (3.2.73) we have

(S2 − 2αS + 2)
d2η

dS2
+ (2α− S)

dη

dS
= 0

or

(S − λ1)(S − λ2)
d2η

dU2
+ (2α− S)

dη

dS
= 0 (3.2.74)

where λ1 and λ2 are roots of the quadratic

λ2 − 2αλ+ 2 = 0, (3.2.75)

assumed to be real, requiring α2 > 2. We also assume that F 6= (l + 1)ξ.
This is the condition for the absence of critical levels in the flow. Making the
substitution τ = (S − λ1)/(λ2 − λ1) in (3.2.74) we get the hypergeometric
equation

τ(1− τ)
d2η

dτ2
+
(

2
λ2

1 − 2
+ τ

)
dη

dτ
= 0. (3.2.76)

The solution of (3.2.76) can be expressed as

η = A1 +B1β

(
4− λ2

1

2− λ2
1

,
2− 2λ2

1

2− λ2
1

,
S − λ1

2λ−1
1 − λ1

)
(3.2.77)

where A1 and B1 are arbitrary constants. β is the incomplete beta function.
Equation (3.2.72) may be written as

Q =
S2 − 2αS + 2

2αS′
=

(S − λ1)(S − λ2)
2αS′

so that the boundary conditions become η = 0 at S = λ1 and η = 1 at
S = λ2 = 2/λ1. Using these boundary conditions in (3.2.77) we get the
solution as

η =
β
(

4−λ2
1

2−λ2
1
,

2−2λ2
1

2−λ2
1
, S−λ1

2λ−1
1 −λ1

)
β
(

4−λ2
1

2−λ2
1
,

2−2λ2
1

2−λ2
1
, 1
) . (3.2.78)

We now consider the case l = c/a = −1. The characteristic system for
(3.2.35) in this case is

dt

at+ b
=

dx

a0t+ a1
=
dz

0
=

du

−au+ a0
. (3.2.79)

Integrating the first two of these equations we have the similarity variables

ξ = x−A0t− (A1 −A0B) ln(t+B) (3.2.80)
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η = z (3.2.81)

where A0 = a0/a, A1 = a1/a and B = b/a. The last two of the character-
istic relations (3.2.79) integrate to give

u = A0 + (t+B)−1F (ξ, η) (3.2.82)

where F is an arbitrary function of ξ and η. Similarly, from the character-
istic system for (3.2.36) we get

w = (t+B)−1G(ξ, η) (3.2.83)

where G is another arbitrary function of ξ and η. The characteristic system
for (3.2.32) now is

dt

at+ b
=

dx

a0t+ a1
=

dh

−2ah
. (3.2.84)

The general solution of (3.2.32), therefore, is

h = (t+B)−2s(ξ) (3.2.85)

where s is an arbitrary function of ξ. Substituting (3.2.82), (3.2.83), and
(3.2.85) in (3.2.9) and (3.2.10), we get

Fξ +Gη + (F −A2)
(sξ
s

)
− 2 = 0 (3.2.86)

(F −A2)Fξ +GFη + gsξ = 0 (3.2.87)

where A2 = A1 − A0B. The determining differential equations for the
transformation group (3.2.44) which leave (3.2.86) and (3.2.87) invariant
can be obtained from (3.2.45) - (3.2.55) by replacing (l + 1)x by A2 and l
by −1. Proceeding as in the above case, we get A2 = 0 and

ξ = x−A0t. (3.2.88)

The generators in the present case are

X = a1ξ + b1, Z = 0, U = a1F,W = 0. (3.2.89)

We also get

h =
k2(a1ξ + b1)2

(t+B)2

=
k(x+B1 −A0t)2

(t+B)2
(3.2.90)

where B1 = b1/a1. The characteristic system for the invariant surface
condition (3.2.66) is

dξ

a1ξ + b1
=
dη

0
=

dF

a1F
. (3.2.91)
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From the system (3.2.91) we get η as the similarity variable and

F = (ξ +B1)P (η) (3.2.92)

where P (η) is an arbitrary function of η. In a similar manner, we get from
(3.2.67)

G = Q(η) (3.2.93)

where Q(η) is another arbitrary function of η. Substituting (3.2.92) and
(3.2.93) into (3.2.86) and (3.2.87), we get the ODEs

3P +Q′ − 2 = 0
P 2 +QP ′ − P + 2gk = 0,

which are the same as (3.2.70) and (3.2.71) and, hence, may be solved in
the form (3.2.78). The solutions of Freeman (1972) and Sachdev (1980) are
thus recovered and generalised.

3.3 Self-Similar Solutions of the Second Kind
- Viscous Gravity Currents

We conclude our analysis of self-similar solutions by discussion of a special
class of self-similar solutions: “self-similar solutions of the second kind.”
The first kind of self-similar solutions are those for which the exponent
in the similarity variable is determined by dimensional arguments alone;
a famous example of this kind of solution is the Taylor-Sedov self-similar
solution describing the point explosion in a uniform medium. An excellent
discussion of these two classes of solutions in gasdynamic context is given
by Zel’dovich and Raizer (1967). We quote from Zel’dovich’s foreword to
Barenblatt’s book on intermediate asymptotics, giving the characterising
property of self-similar solutions of second kind: “We shall reserve the
name solution of the second kind for the large and evergrowing class of
solutions for which the exponents are found in the process of solving the
problem, analogous to the determination of eigenvalues for linear equations.
For this case, conservation laws and dimensional considerations prove to be
insufficient.”

A more recent review of this topic is due to Peletier (1998), who discusses
mainly nonlinear diffusion equations with special reference to turbulent
outbursts.

Here we content ourselves with the discussion of one nonlinear diffusion
equation which occurs in many applications, namely

∂h

∂t
= x−n

∂

∂x

(
xnhm

∂h

∂x

)
. (3.3.1)
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Equation (3.3.1) may be interpreted as a nonlinear heat conduction
equation if h is taken to be the temperature and λ = λ0h

m as the coeffi-
cient of heat conduction: n = 0, 1 for plane and axisymmetric geometry,
respectively. We shall, however, follow the work of Gratton and Minotti
(1990) who consider (3.3.1) as a model for the spreading of viscous gravity
currents over a rigid horizontal surface. Actually, we can rewrite (3.3.1) for
m = 3 as the system

h2hx + v = 0 (3.3.2)

ht + (vh)x + n

(
vh

x

)
= 0 (3.3.3)

where, in the gravity current context, h(x, t) denotes the thickness of the
current and v(x, t) is the average horizontal velocity. A derivation of (3.3.2)
- (3.3.3) may be found in Smith (1969). The basic assumptions in this
derivation are that the viscous gravity flow on a rigid horizontal surface is
slow and the motion is essentially horizontal so that the pressure is purely

hydrostatic
(
∂p

∂z
= −ρg

)
, the inertial effects are negligible, and the length

of the current is much larger than its depth.
Since Equations (3.3.2) - (3.3.3) do not contain any constant dimensional

parameter and involve only quantities having the dimensions of length [L]
or time [T] or combinations thereof, the dependent variables h and v can
be expressed as

h = (x2t−1Z)1/3, v = xt−1V (3.3.4)

where Z and V are dimensionless functions of x, t and the constant param-
eters of the problem, which arise from the initial and boundary conditions.
Substituting (3.3.4) into (3.3.2) - (3.3.3), we get

x
∂Z

dx
+ 2Z + 3V = 0 (3.3.5)

t
∂Z

∂t
+ 3xZ

∂V

∂x
+ xV

∂Z

∂x
+ (5 + 3n)V Z − Z = 0. (3.3.6)

If the boundary/initial conditions are such that they involve two (or more)
constant parameters with independent dimensions, enabling forming of two
combinations l̂ and t̂ of them such that [l̂] = L, [t̂] = T , then Z and V will
in general depend on two dimensionless independent variables x/l̂, t/t̂; they
may also depend on some other dimensionless parameters π1, π2, . . ., etc.
In this case, the problem is non-self-similar, and no reduction to ODEs is
possible.

On the other hand, suppose that the problem depends only on one
parameter b with independent dimensions, which without loss of generality
may be written as

[b] = LT−δ
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where δ is a numerical constant. In this case there will be a single dimen-
sionless combination of x, t, and b, which may be written as

ζ = x/btδ. (3.3.7)

This is the similarity variable and the functions Z and V depend only on
ζ : Z = Z(ζ) and V = V (ζ). Equations (3.3.5) - (3.3.6) reduce to the ODEs

ζZ ′ + 2Z + 3V = 0 (3.3.8)

3ζZV ′ − ζZ ′(δ − V ) + (5 + 3n)V Z − Z = 0 (3.3.9)

where prime denotes derivative with respect to ζ. Eliminating ζ from the
system (3.3.8) - (3.3.9), we can write it in the (V,Z) plane as

dV

dZ
=
Z(2δ − 1) + 3(1 + n)V Z + 3(δ − V )V

3Z(2Z + 3V )
. (3.3.10)

The variation of V and Z with ζ is obtained with the help of (3.3.8), written
as

d

dZ
(ln |ζ|) = − 1

2Z + 3V
. (3.3.11)

Typically, for self-similar solutions of the second kind, the analysis reduces
to the discussion of an ODE in the phase plane, Equation (3.3.10) in the
present case, and a connecting Equation (3.3.11) which relates the depen-
dent variables with the independent variable ζ (See Sachdev (1991)). A
curve in the (V,Z) (phase) plane represents an integral curve. If it passes
through some particular points representing the boundary conditions, it
represents the solution of the corresponding physical problem. Each such
piece represents the flow in a certain domain of the independent variables.
The discussion of all the singular points of (3.3.10) and solutions in their
neighborhoods would indicate what kind of self-similar problems may be
solved. One of the earliest and most exhaustive discussions of the phase
plane for solutions of the self-similar kind in the context of one-dimensional
spherical and cylindrical flows, with or without shocks, may be found in
the classical work of Courant and Friedrichs (1948).

Equation (3.3.10) has six singular points. We discuss each of them
separately.

(i) Point O(Z0 = 0, V0 = 0). This point for δ 6= 0 represents points at
infinity, namely ζ = ∞.

If Z > 0, the point O is a node, and as it is approached all integral
curves (except Z = 0) converge to the curve

V = −2δ − 1
3δ

Z

[
1− (5 + 3n)δ − 4

3δ2
Z + · · ·

]
. (3.3.12)
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If Z < 0, O is a saddle and only a single curve given by (3.3.12) reaches O.
For both Z > 0 and Z < 0, the asymptotic solution near O for δ 6= 0, 1/2
(see (3.3.12)) may be found to be

Z = K ′ζ−1/δ

h = (K ′)1/3(b/3)1/3δx(2δ−1)/3δ (3.3.13)

v = −K ′ 2δ − 1
3δ

b1/δx(δ−1)/δ.

K and K ′ here and in the following are arbitrary constants. It may be
observed that h and v in (3.3.13) do not depend on t as x→∞.

For the special case δ = 1/2 and Z > 0, the integral curve near O may
be found to be

V = K exp(−1/4Z), (3.3.14)

with the corresponding asymptotic formulae

Z = K ′ζ−2, h = (3b2K ′)1/3, v = (Kx/t) exp(−ζ2/4K ′). (3.3.15)

For Z < 0, only the curve corresponding to the trivial solution V = 0
arrives at O.

For the other special case δ = 0, the point O is a saddle. Ignoring the
trivial solution Z = 0, the integral curves near O are described by

V = ±
(

1
9
KZ−2/3 − 2

15
Z

)1/2

, (3.3.16)

and the only curves that pass through O are

V = ±
(
−2Z

15

)1/2

(3.3.17)

corresponding to K = 0. For n = 0, (3.3.17) is an exact solution of (3.3.10).

(ii) Point A (ZA = 0, VA = δ) is a saddle.

If δ = 0, the point A coalesces with O; therefore, only the case δ 6= 0
may be considered. Again ignoring the trivial solution Z = 0, we obtain
the other approximate solution near this point, namely

V = δ +
(5 + 3n)δ − 1

12δ
Z. (3.3.18)

The point A represents an advancing front of a gravity viscous current
with the locus xf = ζfbt

δ, where ζf is a constant. Introducing the notation
η = x/xf = ζ/ζf , the solution near the front may be found to be
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Z = 3δ(1− η) (3.3.19)

h = ζ
2/3
f (9b2δ)1/3t(2δ−1)/3(1− η)1/3

×
[
1− (1 + 3n)δ − 1

24δ
(1− η) + · · ·

]
(3.3.20)

v = δxf t
−1η

[
1 +

(5 + 3n)δ − 1
4δ

(1− η) + · · ·
]
. (3.3.21)

For Z > 0, the integral curves in the present case correspond to currents
produced by sources whose flux depends on time according to a power law.
Here, too, there are special exact solutions of (3.3.10):

a) n = 0, δ = 1
Z = 3V (V − 1). (3.3.22)

This curve represents a current whose profile moves with constant velocity
without change in shape.

(b) n = 0, δ = 1/8

In this case, (3.3.18) with the above values of n and δ is an exact solution
of (3.3.10) and represents a current that is drained from the origin and that
has a front moving away.

(iii) Point B (ZB = −3/2(5 + 3n), VB = 1/(5 + 3n) is a node for δ ≤ δ−
and for δ ≥ δ+ where δ± = 13/10± (6/5)1/2 if n = 0 and δ± = 1±

√
3/2 if

n = 1. With Z∗ = Z − ZB , V ∗ = V − VB , the approximate representation
of the integral curves in the neighbourhood of B is

(V ∗ − γ+Z
∗)γ(V ∗ − γ−Z

∗) = K (3.3.23)

γ± =
1
18

(1 + 3n)− 1
9
(δ ±∆)(5 + 3n) (3.3.24)

γ = (∆ + Γ)/(∆− Γ) (3.3.25)

∆ = [(δ − δ+)(δ − δ−)]1/2, Γ = δ − (13 + 3n)/2(5 + 3n). (3.3.26)

Near point B, we have
Z∗ζ2+3γ± = K ′. (3.3.27)

Since 2 + 3γ± is positive for δ ≤ δ− and negative for δ ≥ δ+, point B
corresponds to ζ = +∞ in the former, and to ζ = 0 in the latter. The
asymptotic behaviour of h and v near B for t < 0 is given by

h = −
(

9
10 + 6n

x2

t

)1/3

(3.3.28)

v =
1

5 + 3n
xt−1. (3.3.29)
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For δ− < δ < δ0 and δ0 < δ < δ+ where δ0 = 13/10 for n = 0 and δ0 = 1 for
n = 1, B is a focus; the integral curves spiral counterclockwise as ζ tends
to infinity in the first case (stable focus), and away from B as ζ increases
starting from zero at B in the second case (unstable spiral). The phase
variables V and Z near B have an oscillatory behaviour that, as may be
verified, the physical variables themselves do not exhibit.

We also note that Z = ZB , V = VB is an exact solution of (3.3.8) -
(3.3.9) for any n and δ, so that (3.3.28) - (3.3.29) are exact solutions of
(3.3.2)-(3.3.3). This special solution, represented by a single point in the
phase plane, describes a current with a fixed front at x = 0, as does (3.3.17).

(iv) Point C (ZC = 0, VC = ∞) is a node. The integral curves near C are
given by Z1/3V = K, where K is constant. C represents a point of the
fluid at a finite distance xf = ζfbt

δ, ζf = constant, from the origin. With
η = x/xf = ζ/ζf , the asymptotic solution near C is

Z = (4K)3/4(1− η)3/4 (3.3.30)

h = ζ
1/3
f (3b2)1/3

(
4K
3

)1/4

t(2δ−1)/3(1− η)1/4
[
1− 13

24
(1− η)

]
(3.3.31)

v = ζf
Kb

3

(
3

4K

)1/4

tδ−1η(1− η)−1/4. (3.3.32)

As η → 1 so that C is approached, we have h → 0, v → ∞ such that
(2πx)nhv is finite.

(v) Point D (ZD = ∞, VD = (1 − 2δ)/3(1 + n)) is a saddle. The integral
curves in the neighbourhood of this point are

Z−(3+n)/2(ZV ∗ − γ0) = K, γ0 =
(2δ − 1)[(5 + 3n)δ − 1]

9(3 + n)(1 + n)2
(3.3.33)

where V ∗ = V − VD. In this case, the only curve which reaches D from
points in the finite (Z, V ) plane is V ∗ = γ0Z

−1. If we move along this curve,
D represents the origin x = 0, and the following asymptotic formulae hold
there:

Z = K ′ζ−2 (3.3.34)
h = (3K ′b2)1/3t(2δ−1)/3 (3.3.35)

v = −
[

(2δ − 1)
3(1 + n)

]
x/t. (3.3.36)

This solution represents spreading due to gravity with no mass inflow at
the origin.
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(vi) Point E (ZE = ∞, VE = ∞) is a saddle node. It represents the origin
x = 0. Equation (3.3.10) in the present case approximates to

dY

dW
=

Y (2W + 3Y )
W [(1 + n)W − Y ]

, Y = Z−1,W = V −1. (3.3.37)

For n = 0, (3.3.37) integrates to yield

W 3Y −4(Y +
1
4
W )5 = K, (3.3.38)

where K is a constant. It has the following approximate representation
near the point E:

V = −1
4
Z (K = 0) (3.3.39)

V = ±4−5/8K−1/8Z1/2 (K 6= 0). (3.3.40)

For the curve (3.3.39), the asymptotic formulae near E are

Z = K ′ζ−5/4

h = (3K ′b5/4)1/3x1/4t(5δ/4−1)/3 (3.3.41)
v = −(K ′b5/4/4)x−1/4t5δ/4−1. (3.3.42)

This solution represents a current with an outflow at the origin. Corre-
sponding to (3.3.40), we have the following approximate behaviour near
E:

Z = K ′ζ−2 (3.3.43)
h = (3K ′b2)1/3t(2δ−1)/3 (3.3.44)
v = ±4−5/8K−1/8(K ′)1/2btδ−1. (3.3.45)

This solution describes currents with inflow or outflow at the origin cor-
responding to + or − sign in (3.3.45), respectively. For n = 1, Equation
(3.3.37) exactly integrates to give

YW 3 exp(2W/Y ) = K (3.3.46)

where K is constant of integration. We may check from (3.3.46) that the
integral curves that reach E are given approximately by

V = Z/ ln(Z2). (3.3.47)

The following asymptotic formulae hold in the neighbourhood of the point
E:

Z = K ′ζ−2| ln ζ|3/4 (3.3.48)
h = (3K ′b2)1/3t(2δ−1)/3| ln ζ|1/4 (3.3.49)

v =
(

1
4
K ′b2

)
x−1t2δ−1| ln ζ|−1/4. (3.3.50)
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These describe a current with inflow at the origin. No integral curves can
enter E via second and fourth quadrants.

Gratton and Minotti (1990) illustrate, with the help of several figures,
different flows in the V −Z plane as obtained by the numerical integration
of (3.3.10). They also list various types of trajectories that connect pairs of
singular points with short descriptions of the currents they represent. Their
general conclusion regarding the physical validity of these solutions, partic-
ularly in the lubrication theory, is that these solutions are in good agreement
with the experiments as supported by the work of Huppert (1982).

To check whether a given boundary value problem can be solved in the
phase plane, one must identify, by inspection of the boundary or initial
conditions, the parameter b that determines the self-similar variable ζ and
the exponent δ defining it, and then select the appropriate integral curve
among the (n, δ) family, that is, the curve whose asymptotic behaviour
corresponds to the boundary condition at hand. If the boundary or initial
conditions do not determine the parameter b, the self-similar exponent δ
must be found by other methods. In this case, we say the self-similar
solution is of the second kind (see Sachdev (1991)).

Here, we give a specific example which has a close analogy to the classical
problem of converging shock waves first considered by Guderley (1942). We
consider a pool of fluid outside a circular wall; inside the wall there is no
fluid. Suppose the wall is suddenly removed so that the fluid rushes in, with
a convergent front whose radius decreases to zero as the fluid moves in. We
consider the asymptotic behaviour when the converging fluid is close to the
center. During this stage the characteristic length is too small compared
to any other length parameter, say the initial radius of the collapsing wall.
Initial conditions also do not provide any characteristic parameters in this
flow regime. Therefore, even if the flow is self-similar, the parameter δ
cannot be found from initial or boundary conditions, a situation typical of
the second kind of self-similar flows.

Since we are concerned with an advancing front, the solution must be
represented by a trajectory leaving the singular point A. Besides, t < 0
before the collapse time t = 0; therefore, the integral curve must lie in
the half-plane Z < 0. In this domain, the trajectory leaving A can go to
B,O, or C. The trajectories from A to B or from A to C represent flows
tending to infinity and zero, respectively, and, therefore, must be ruled out.
The trajectory joining A and O has the required property that it reaches
the center with a finite (non-zero) velocity v at a finite distance h behind
the front, as t → 0. The value of δ = δc for which the trajectory from A
reaches O must be found by numerical integration of (3.3.10), starting with
the local solution near A. The latter solution is

h =

(
−9δc

x2
f

t

)1/3

(1− η)1/3
[
1− 4δc − 1

24δc
(1− η) + · · ·

]
(3.3.51)
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v = −δcxf
t
η

[
1 +

8δc − 1
4δc

(1− η) + · · ·
]

(3.3.52)

where η = x/xf and xf = K(−t)0.762. The exponent δc = 0.762 is found
by integration of (3.3.10) from A so as to reach the point O by suitable
interpolation, etc. It is clear that the front has infinite velocity as it reaches
the center.

In the present case, the similarity exponent is found by solving a non-
linear eigenvalue problem, and not by dimensional considerations.

Gratton and Minotti (1990) solve several other physical problems —
mostly self-similar solutions of the first kind — by either solving (3.3.10)
numerically, or by considering its special exact solutions.

There are two cases for which it is possible to solve (3.3.2) - (3.3.3)
explicitly.

(a) n = 0, δ = 0 in (3.3.8) - (3.3.9)

This case with plane symmetry occurs when b has the dimension of
length so that b = l and ζ = ξ/l. If we write Z(ζ) = W (ζ)ζ−2, Equation
(3.3.8) becomes simply

V = − 1
3ζ
dW

dζ
. (3.3.53)

Equation (3.3.9) then becomes

d2W

dζ2
+ 1 +

1
3W

(
dW

dζ

)2

= 0. (3.3.54)

Equation (3.3.54) is autonomous and has the first integral

1
2

(
dW

dζ

)2

= −3
5
W +

1
2
KW−2/3 (3.3.55)

where K is the constant of integration. The case K = 0 yields the exact
solution (3.3.17). For K 6= 0, (3.3.55) can be integrated to yield

ζ = ζ0 ±
3

|K|1/2

(
5
6
K

)4/5 ∫ w(ζ)

w(ζ0)

|w|3dw
[sgn(K)(1− w5)]1/2

(3.3.56)

where w = (6/5K)1/5W 1/3 and K(1− w5) ≥ 0.
The integral in (3.3.56) must be evaluated numerically. Upon inversion

of (3.3.56) one may write w = w(ζ) and, hence, the solution.

(b) Travelling wave solutions
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The basic system (3.3.2)-(3.3.3) for n = 0 is translation-invariant and
so admits progressive or travelling wave solutions

h = h(ξ), v = v(ξ), ξ = ct− x (3.3.57)

where c is constant. Putting (3.3.57) into (3.3.2) - (3.3.3), we get

v = h2h′ (3.3.58)

(h3h′)′ − ch′ = 0 (3.3.59)

where prime denotes derivative with respect to ξ. Equation (3.3.59) imme-
diately integrates to give

h3h′ − ch = K (3.3.60)

where K is constant of integration. For the special case K = 0, the solution
of (3.3.60) and (3.3.58) is

h = [(9c)(ξ − ξ0)]1/3, v = c, ξ0 = constant. (3.3.61)

For K 6= 0, we consider the cases K < 0 and K > 0 separately.

(i) K < 0. We let

K = −ch0, h = h0H(φ), φ = cξ/h3
0. (3.3.62)

Equation (3.3.60) changes to

dφ

dH
=

H3

H − 1
, (3.3.63)

which integrates differently depending upon whether H ≥ 1 or 0 ≤ H ≤ 1.
For the former we have

φ =
1
3
(H − 1)3 +

3
2
(H − 1)2 + 3(H − 1) + ln(H − 1)− 29

6
(3.3.64)

where the integration constant has been chosen such that H(φ = 0) = 2.
The profile (3.3.64) represents a gravity current moving with constant speed
c with no change in shape.

For 0 ≤ H ≤ 1, the solution of (3.3.63) is

φ = −1
3
(1−H)3 +

3
2
(1−H)2 − 3(1−H) + ln(1−H) +

11
6

(3.3.65)

where we have chosen H = 0 when φ = 0. This profile has a well-defined
front at φ = 0.
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(ii) K > 0. In this case we let K = ch0 in (3.3.62). Equation (3.3.60) then
reduces to

dφ

dH
=

H3

H + 1
(3.3.66)

and integrates to yield

φ =
1
3
(1 +H)3 − 3

2
(1 +H)2 + 3(1 +H)− ln(1 +H)− 11

6
. (3.3.67)

Here, H(φ = 0) = 0. The solution (3.3.67) is interpreted as arising out of
some piston motion.

Gratton and Minotti (1990) also consider steady flows of the basic sys-
tem (3.3.2)-(3.3.3) and interpret them appropriately.
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PART B

The Direct Similarity Approach

3.4 Introduction

The method using the group of infinitesimal transformations to identify
the similarity form of the solution has been much in vogue in the last three
decades. Now, computer programs are available to lead directly to the
form, thus mitigating the considerable effort involved in the procedure. A
more direct and intuitive approach to finding similarity solutions, requiring
no knowledge of the group invariance property of PDEs, was proposed
by Clarkson and Kruskal (1989). This approach is a direct extension of
the intuitive argument which was adopted by scientists before the group
theoretic method became popular. It is simply assumed, with reference to
a single PDE in two independent variables, for example, that the solution
is expressible in the form u(x, t) = α(x, t) + β(x, t)f(η), where η = η(x, t)
is the similarity variable. This expression is substituted into the given
PDE. It is then required that the PDE reduces to an ODE in f with η
as the independent variable. This leads to an overdetermined system of
PDEs for the coefficient functions Γi(η) appearing in the reduced ODE,
and α, β, and η. This overdetermined system is easily solved with the
help of some preliminary remarks. The functions α, β, and η as well as
the coefficients Γi(η) are thus determined. It has been shown that this
approach leads essentially to the same class of ODEs that the method of
infinitesimal transformation does. However, the direct approach is more
transparent and requires less effort to arrive at the final results.

3.5 A Nonlinear Heat Equation in Three Di-
mensions

We discuss in this section the nonlinear heat equation in Cartesian co-
ordinates

ut =
(

1 +
β

(1 + ux)2

)
uxx + uyy + uzz

(3.5.1)

= ∆u−
(

β

1 + ux

)
x
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and its analogue

ut =
1
r

(
1 +

β

(1 + rur)2

)
(rur)r +

1
r2
uθθ + uzz

= ∆u− 1
r

(
β

1 + rur

)
r

(3.5.2)

in cylindrical coordinates, where β > 0 is the nonlinearity parameter; it is
assumed that 1 + ux > 0. This equation was originally derived by Stikker
(1970) to describe the conduction of heat in steel coils during the batch
annealing process, and was rederived by Willms (1995).

Our purpose in discussing (3.5.1) is to show that sometimes a direct
separation of variables does not lead to a sensible result, and an additive
separation term may instead yield a solution to some initial/boundary value
problems. This example thus motivates the ansatz in the so-called direct
method of finding similarity solution presented in the following sections.
Following Willms (1995), we write

u(x, y, z, t) = X(x)V (y, z, t) (3.5.3)

in (3.5.1) to obtain

XVt = V X ′′
(

1 +
β

(1 + V X ′)2

)
+X(Vyy + Vzz) (3.5.4)

or
Vt − Vyy − Vzz

V
=
X ′′

X

(
1 +

β

(1 + V X ′)2

)
. (3.5.5)

It is clear that V and X do not completely separate, but one possible
solution is

X ′′ = 0 = Vt − Vyy − Vzz (3.5.6)

yielding
X(x) = Ax+B (3.5.7)

where A and B are arbitrary constants. The solutions governed by (3.5.6)
are not very interesting since they also solve the linear heat equation, the
case β = 0 in (3.5.1). We may now seek additive separability

u(x, y, z, t) = X(x) + V (y, z, t). (3.5.8)

The form (3.5.8) is again a rather special case of the so-called direct method
(see Section 3.6). Substitution of (3.5.8) into (3.5.1) gives

Vt = X ′′ + Vyy + Vzz − β
∂

∂x

(
1

1 +X ′

)
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or

Vt − Vyy − Vzz =
d

dx

(
1 +X ′ − β

1 +X ′

)
. (3.5.9)

Writing the constant of separation as 4λ, (3.5.9) separates into

Vt − Vyy − Vzz = 4λ (3.5.10)

1 +X ′ − β

1 +X ′ = 4(λx+A) (3.5.11)

where A is constant of integration. Equation (3.5.10) is an inhomogeneous
heat equation in two space variables and may be treated by standard meth-
ods (see Friedman (1964)) given a set of boundary and initial conditions.

Equation (3.5.11) has the two branches

1 +X ′
± = 2λx+ 2A±

√
4(λx+A)2 + β (3.5.12)

which, on integration, yields

X± = λx2 + (2A− 1)x±
∫ √

4(λx+A)2 + β dx+B (3.5.13)

where B is constant of integration. It may be observed that, since β > 0,
1+X ′ in (3.5.12) is either always positive or always negative. In (3.5.1) it is
also assumed that 1 + ux > 0; we conclude that X+ is the only meaningful
solution. We also assume that λ 6= 0, since otherwise we again have only
the solution relating to the heat equation. Carrying out the integration in
(3.5.13) we have

X± = λx2 + (2A− 1)x+B ± 1
2λ

[
(λx+A)

√
4(λx+A)2 + β

+
β

2
ln
∣∣∣2(λx+A) +

√
4(λx+A)2 + β

∣∣∣] . (3.5.14)

The exact solutions are therefore given by

u±(x, y, z, t) = X±(x) + V (y, z, t) (3.5.15)

where V (y, z, t) is any solution of (3.5.10). It may be shown that the fol-
lowing asymptotic behaviours of 1 +X ′

± hold:

lim
x→0

(
1 +X ′

±
)

= 2A±
√

4A2 + β

lim
x→∞

(1 +X ′
+) =

{
∞ if λ > 0
0 if λ < 0

lim
x→∞

(1 +X ′
−) =

{
0 if λ > 0
−∞ if λ < 0 (3.5.16)
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lim
x→−∞

(1 +X ′
+) =

{
0 if λ > 0
∞ if λ < 0

lim
x→−∞

(1 +X ′
−) =

{
−∞ if λ > 0
0 if λ < 0.

The analysis of (3.5.2) is entirely analogous to that for (3.5.1) and the
reader may refer to Willms (1995) for details. Willms (1995) has also indi-
cated what kind of initial/boundary conditions for the additively separable
solutions of (3.5.2) (and similarly of (3.5.1)) may be imposed.

It is quite likely that Equation (3.5.1) (as also (3.5.2)) has more general
solutions of the form

u = A(x, y, z, t) +B(x, y, z, t)U(ζ(x, y, z, t)) (3.5.17)

where ζ(x, y, z, t) is the similarity variable.

3.6 Similarity Solution of Burgers Equation
by the Direct Method

Sachdev and his collaborators (See Sachdev (1987), (1991)) have studied
similarity solutions of a class of GBEs:

ut + uux +
ju

2t
= uxx (3.6.1)

ut + u2ux +
ju

2t
= uxx (3.6.2)

ut + u2ux = uxx (3.6.3)

ut + uux + f(x, t) = g(t)uxx (3.6.4)

ut + uβux + f(t)uα = g(t)uxx (3.6.5)

Each of the equations simulates some physical situation (Sachdev (1987)).
We derived ODE forms of these equations via similarity assumption with
a view to finding single hump solutions, themselves governed by a special
class of ODEs we denominated as Euler-Painlevé transcendents. Here we
show how the entire class of similarity solutions may be obtained by the
direct approach, extending the ones known by intuitive arguments.

We begin with Burgers equation itself, that is

ut + uux = uxx (3.6.6)

wherein we let δ = 2 to make the coefficient of uxx unity in the original
equation (see Section 6.2).
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Let
u(x, t) = A(x, t) +B(x, t)U(z(x, t)), B(x, t) 6= 0 (3.6.7)

where z = z(x, t) is the similarity variable. Putting (3.6.7) into (3.6.6), we
get

Axx −At −AAx + (Bxx −Bt −ABx −BAx)U −BBxU
2

−B2zxUU
′ + [2Bxzx +Bzxx −B(zt +Azx)]U ′ +Bz2

xU
′′ = 0. (3.6.8)

For (3.6.8) to reduce to an ODE in U as a function of the similarity variable
z alone, we introduce functions Γn(z), n = 1, 2, . . . 5 such that (3.6.8)
becomes

Γ1(z) + Γ2(z)U + Γ3(z)U2 + Γ4(z)UU ′ + Γ5(z)U ′ + U ′′ = 0. (3.6.9)

Comparing (3.6.8) and (3.6.9), we get

Axx −At −AAx = Bz2
xΓ1(z) (3.6.10)

Bxx −Bt −ABx −BAx = Bz2
xΓ2(z) (3.6.11)

−Bx = z2
xΓ3(z) (3.6.12)

−B = zxΓ4(z) (3.6.13)

2Bxzx +Bzxx −Bzt −ABzx = Bz2
xΓ5(z). (3.6.14)

The following remarks help simplify the system (3.6.9) - (3.6.14).

(i) If A(x, t) has the form A(x, t) = Â(x, t)+B(x, t)Γ(z), we put Γ(z) ≡ 0.

(ii) If B(x, t) is found to have the form B(x, t) = B̂(x, t)Γ(z), then we
may choose Γ(z) ≡ 1.

(iii) If z(x, t) is determined from the implicit relation f(z) = ẑ(x, t) where
f(z) is an invertible function, then we may simply put f(z) ≡ z.

The following cases arise.

(a) In the first instance we may assume that zxx = 0 so that z
is a linear function of x. Let Γ3(z) = Λ′3(z); we may easily
integrate (3.6.12) and obtain B(x, t) = −zxΛ3(z). Remark (ii)
then permits us to write

B(x, t) = −zx. (3.6.15)

Since zxx = 0, we have Bx = 0 from (3.6.15), so that B = B(t).
It is easy to check that (3.6.13) and (3.6.11), with the help of
Remarks (iii) and (i), give Γ4(z) = 1, Γ2(z) = 0 so that

z(x, t) = −xB(t) +D(t) (3.6.16)

A(x, t) = −x[B′(t)/B(t)] +K(t) (3.6.17)
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where the functions D(t) and K(t) must be determined. On
using (3.6.16) - (3.6.17) in (3.6.10) and (3.6.14), we get

βB2 +D′ −KB = 0 (3.6.18)

[(B−1B′)′ − (B−1B′)2]x−K ′ +B−1B′K = B3Γ1(z) (3.6.19)

provided we choose Γ5(z) = β, a constant. The accent in (3.6.18)
and (3.6.19) denotes derivative with respect to t. Since LHS of
(3.6.19) is linear in x, and z is given by (3.6.16), we must have
Γ1(z) = αz, where α is a constant.
Equating coefficients of x and x0 on both sides of (3.6.19) we get

BB′′ − 2B′2 + αB6 = 0 (3.6.20)

BK ′ −KB′ + αDB3 = 0. (3.6.21)

Equations (3.6.20)-(3.6.21), being highly nonlinear, are difficult
to solve generally. However, a special solution is easily obtained
as

B(t) = a(bt+b0)−1/2, D(t) = 0 and K(t) = aβ(bt+b0)−1/2

(3.6.22)
where a, b and b0 are arbitrary constants. All the functions
A(x, t), B(x, t) and z(x, t), are now fully determined (see (3.6.16),
(3.6.17), and (3.6.22)) and the similarity form (3.6.7) is therefore
found to be

u(x, t) =
b

2
x(bt+ b0)−1 + a(bt+ b0)−1/2[β + U(z)] (3.6.23)

where
z(x, t) = −a(bt+ b0)−1/2x. (3.6.24)

Putting Γn, n = 1, 2, 3, 4, 5 thus obtained, namely Γ1 = αz,
Γ2 = 0,Γ3 = 0,Γ4 = 1,Γ5 = β into (3.6.9), we get

U ′′ + (β + U)U ′ − b2

4a4
z = 0. (3.6.25)

We may rewrite (3.6.23) as

u(x, t) = (bt+ b0)−1/2F (z) (3.6.26)

where
F (z) = a[β + U(z)]− (b/2a)z. (3.6.27)

Equation (3.6.25) now becomes

F ′′ + (1/a)FF ′ + (b/2a2)(zF )′ = 0. (3.6.28)
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(b) Here we solve (3.6.10)-(3.6.14) in a different manner. Making
use of Remark (ii), we may put Γ4(z) = 1 in (3.6.13); it then
reduces to

B(x, t) = −zx. (3.6.29)

Further, we may put Γ3(z) = Λ′3(z) in (3.6.12), use (3.6.29), and
integrate with respect to x. We obtain

Λ3(z) = K(t) + logB(x, t) (3.6.30)

where K(t) is the function of integration. Now we make use of
Remark (iii) and let Λ3(z) = z. Thus, (3.6.30) becomes

z = K(t) + logB(x, t). (3.6.31)

Eliminating z from (3.6.29) and (3.6.31), we have

Bx +B2 = 0 (3.6.32)

which integrates to give

B(x, t) = b0[b0x+D(t)]−1 (3.6.33)

where b0 is an arbitrary constant; the function D(t) remains to
be determined. If we insert (3.6.31) and (3.6.33) into (3.6.14)
and use Remark (i), we find that we may put Γ5 = 0, and the
function A from (3.6.14) then is

A(x, t) = −3b0[b0x+D(t)]−1+b−1
0 [b0x+D(t)]K ′−D′. (3.6.34)

On substituting B(x, t) and A(x, t) from (3.6.33) and (3.6.34)
into (3.6.11) and (3.6.10), we have Γ2(z) = −4 and

Γ1(z) = 3− K ′′ +K ′2

b40[b0x+D(t)]−4
+

D′′

b40[b0x+D(t)]−3
. (3.6.35)

In view of the expression (3.6.31) for z, Equation (3.6.35) may
be satisfied provided that

Γ1(z) = 3 (3.6.36)

K ′′ +K ′2 = 0 (3.6.37)

D′′ = 0. (3.6.38)

Equations (3.6.37) and (3.6.38) integrate to give

K(t) = b+ log(b1t+ a) (3.6.39)

D(t) = ct+ d (3.6.40)
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where a, b, c, d, and b1 are arbitrary constants. Equations (3.6.31),
(3.6.33), (3.6.34), (3.6.39), and (3.6.40) give the similarity form
of the solution (3.6.7) as

u(x, t) = − c

b0
+ (b1/b0)

b0x+ ct+ d

b1t+ a

+b0(b0x+ ct+ d)−1[U(z)− 3] (3.6.41)

z(x, t) = b+ log(b1t+ a) + log b0(b0x+ ct+ d)−1. (3.6.42)

Substituting for Γn(z), n = 1, . . . 5, thus found, namely 3, −4, 1,
1, 0, respectively, into (3.6.9), we get the following equation for
the similarity function U(z):

3− 4U + U2 + UU ′ + U ′′ = 0. (3.6.43)

(c) Sometimes a (known) special solution guides the choice of de-
pendent and independent variables so that the direct similarity
method when applied to the new form of PDE generalizes the
existing solution. For example, suppose we choose

w(ξ, η) = u(x, t) + 1 (3.6.44)

ξ(x, t) = x+ t, (3.6.45)

η = t1/2 (3.6.46)

as the new dependent and independent variables (ξ is the moving
coordinate). Then Equation (3.6.6) becomes

1
2η
wη + wwξ = wξξ. (3.6.47)

We substitute (3.6.7) into (3.6.47), with w, ξ and η replaced by
u, x, and t, respectively. Proceeding in the manner described
above, Equation (3.6.47) changes to

Γ1(z) + Γ2(z)U + Γ3(z)U2 + Γ4(z)U ′ + Γ5(z)UU ′ + U ′′ = 0
(3.6.48)

where, as before, the functions Γi(z), i = 1, 2, 3, 4, 5 are intro-
duced such that

(1/2t)At +AAx −Axx = −Bz2
xΓ1(z) (3.6.49)

(1/2t)Bt +ABx +BAx −Bxx = −Bz2
xΓ2(z) (3.6.50)

Bx = −z2
xΓ3(z) (3.6.51)

B = −zxΓ4(z) (3.6.52)

(1/2t)Bzt +ABzx − 2Bxzx −Bzxx = −Bz2
xΓ5(z). (3.6.53)
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Here, again, if we assume that zxx = 0, then it is easy to
check that (3.6.51), (3.6.53), and (3.6.50) give, on the use of Re-
marks (ii), (iii), and (i), respectively, Γ3(z) = 0, Γ5(z) = 1 and
Γ2(z) = 0; therefore, B(x, t) = B(t) and

B(t) = −zx (3.6.54)

z(x, t) = −xB(t) (3.6.55)

A(x, t) = − x

2t
B′

B
+D(t). (3.6.56)

On substituting (3.6.55) into (3.6.52), we get Γ4(z) = D(t) = 0.
Therefore, (3.6.56) reduces to

A(x, t) = − x

2t
B′

B
. (3.6.57)

Putting (3.6.57) into (3.6.49) we get

Γ1(z) = − x

4t3
B−4B′ +

x

4t2
B−5(BB′′ − 2B′2). (3.6.58)

Since the right-hand side of (3.6.58) is linear in x, we must have
Γ1(z) = αz, where α is a constant, and so (3.6.58) reduces to

BB′′ − 2B′2 − t−1BB′ = −4αt2B6. (3.6.59)

A special solution of (3.6.59) is

B(t) = −α1t
−1, 4αα4

1 + 1 = 0. (3.6.60)

Equation (3.6.57) now gives A = x/2t2. Now, reverting to the
variables w, ξ, and η of Equation (3.6.47), we have the similarity
solution as

w(ξ, η) =
ξ

2η2
+
α1

η
U(z), z(ξ, η) =

α1ξ

η
. (3.6.61)

Equation (3.6.48), with Γ1 = αz, Γ2 = 0, Γ3 = 0, Γ4 = 0, and
Γ5 = 1, reduces to

U ′′ + UU ′ − 1
4α4

1

z = 0. (3.6.62)

If we write f(z) = z/(2α)− 1− α1U(z), then (3.6.62) becomes

f ′′ − α−1
1 ff ′ + (1/2α2

1)(zf)′ = 0. (3.6.63)
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(d) Another interesting solution of Burgers equation obtained via
the Cole-Hopf transformation has one of the forms

u =
x

t
− 2
t

tanh
x

t

u =
x

t
+

2
t

tan
x

t
(3.6.64)

u =
x

t
− 2
t

coth
x

t

u =
x

t
− 2
t

cot
x

t
.

To generalize (3.6.64), we let zxx = 0 in (3.6.7) so that z is linear
in x. Set Γ3(z) = Λ′3(z) in (3.6.12) and integrate with respect
to x to obtain B = −zxΛ3(z) where the function of integration
has been chosen to be zero. Using Remark (ii), we may put
Λ3(z) = 1 and thus have

B = −zx. (3.6.65)

Remarks (iii) and (i) used in Equations (3.6.13) and (3.6.14),
respectively, give Γ4(z) = 1 and Γ5(z) = 0. Since Γ3 = Λ′3 = 0,
(3.6.12) shows that B = B(t). From (3.6.13) and (3.6.14) we get

z(x, t) = −xB(t) +D(t) (3.6.66)

A(x, t) = −xB
′(t)

B(t)
+
D′(t)
B(t)

(3.6.67)

where the function D(t) remains to be determined. Equations
(3.6.11), (3.6.66), and (3.6.67) imply that Γ2(z) = 0, and so
(3.6.11) becomes

B′(t) +B(t)Ax = 0 (3.6.68)

implying that
A(x, t) = A0(t)x. (3.6.69)

Equation (3.6.10) now becomes

B3Γ1(z) = −x(A′0 +A2
0). (3.6.70)

We may assume Γ1(z) = 0 so that A0 = (t+ c)−1 where c is an
arbitrary constant. From (3.6.69), we have

A(x, t) = x(t+ c)−1 (3.6.71)

and hence from (3.6.68)

B(t) = b(t+ c)−1 (3.6.72)
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where b is an arbitrary constant. On use of (3.6.71) and (3.6.72),
(3.6.67) gives D(t) = d, a constant. The similarity form of the
solution of (3.6.6), therefore, is

u(x, t) = (t+ c)−1[x+ bU(z)], (3.6.73)

z(x, t) = −bx(t+ c)−1 + d. (3.6.74)

The ODE (3.6.9) in this case is

U ′′ + UU ′ = 0. (3.6.75)

Equation (3.6.75) has solutions of the form tan, cot, tanh, coth,
and, therefore, (3.6.73)-(3.6.74) generalize (3.6.64). The cases
considered so far cover and generalize the entire catalogue of sim-
ilarity forms of solutions of Burgers equation prepared by Benton
and Platzman (1972). Mayil Vaganan (1994) has applied the di-
rect similarity analysis to several generalized Burgers equations.
We give below a summary of his results.

1. ut + uux +
ju

2t
= uxx, j > 0 (3.6.76)

u(x, t) =
x

2t
+
αd0

b0
tα−1/2 + b0t

−1/2U(z) (3.6.77)

z = −b0xt−1/2 + d0t
α (3.6.78)

U ′′ + UU ′ − λU + az = 0, (3.6.79)

where α, d0, b0, and a are constants; α satisfies the quadratic

α2 +
jα

2
+
j − 1

4
= 0. (3.6.80)

2. ut + u2ux +
ju

2t
= uxx (3.6.81)

u(x, t) = t−1/4U(z) (3.6.82)

z = xt−1/2 (3.6.83)

U ′′ − U2U ′ + 2zU ′ + 2
(

1
2
− j

)
U = 0 (3.6.84)

Observe the diminution of symmetries because of the cubic non-
linearity in (3.6.81) in contrast to those for the quadratic case
in (3.6.76).

3. ut + u2ux = uxx (3.6.85)
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u(x, t) = t−1/4U(z), (3.6.86)

z = xt−1/2 (3.6.87)

U ′′ − U2U ′ +
1
2
zU ′ +

1
4
U = 0 (3.6.88)

4. ut + uux + f(x, t) = g(t)uxx (3.6.89)

u(x, t) = −xB′(t)/B(t) +K(t) +B(t)U(z) (3.6.90)

z = −xB(t)/g(t) +D(t) (3.6.91)

where
gD′ + aB2D −KB = 0. (3.6.92)

The function g(t) is prescribed; Equation (3.6.92) relates the
functions B(t), D(t), and K(t). a is an arbitrary constant. The
functions g(t) and f(x, t) appearing in the given PDE satisfy the
equations

g′(t) = aB2 (3.6.93)

f(x, t) =

[(
B′

B

)′
−
(
B′

B

)2
]
x−K ′

+
KB′

B
− g−1B3F (z) (3.6.94)

where F (z) depends on x and t through the similarity variable
z = −xB(t)/g(t) +D(t). The reduced ODE for U(z) is

U ′′ + UU ′ + azU ′ + F (z) = 0. (3.6.95)

5. ut + uβux + f(t)uα = g(t)uxx (3.6.96)

where α and β are real.
Equation (3.6.96) must first be simplified to have integral powers
of the dependent variable and its derivatives. So if we write

u = v−1/β , (3.6.97)

we get

g(t)
[
vvxx −

α+ 1
α− 1

v2
x

]
= vvt + vx −

α− 1
2

f(t) (3.6.98)

provided that

β =
α− 1

2
. (3.6.99)
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α and β in (3.6.96) must satisfy (3.6.99). Applying the direct
similarity method, we get the similarity form for v(x, t):

v(x, t) = t1−aH(z) (3.6.100)
z = (a/b)xt−a (3.6.101)

provided that

f(t) =
2λ
α− 1

t1−2a (3.6.102)

g(t) = t2a−1. (3.6.103)

The ODE for the function H(z) in (3.6.100) is

HH ′′ − α+ 1
α− 1

H ′2 − (1− a)
a2

b2H2 +
b2

a
zHH ′ − b

a
H ′ +

λb2

a2
= 0.

(3.6.104)
In the above, a, b, and λ are arbitrary constants.

3.7 Exact Free Surface Flows for Shallow-Wa-
ter Equations via the Direct Similarity
Approach

Now we extend the approach of Clarkson and Kruskal (1989) to systems of
PDEs involving three independent variables. Here we take up the system
of nonlinear PDEs which governs flows generated by large amplitude, long
gravity waves as they propagate over a horizontal bed into a region where
the flow is steady but sheared in a vertical direction. The interesting fea-
ture of this study is that the wave speed depends on the local height of the
wave, which itself must be found as part of the solution. Freeman (1972)
and Sachdev (1980) found simple wave and time-dependent self-similar so-
lutions by an intuitive argument. Here the forms of these solutions will
be determined (and to some extent generalised) by the direct approach.
Moreover, the method of solving the resulting ODEs is quite different from
that of Freeman (1972) and Sachdev (1980). We closely follow the work
of Sachdev and Mayil Vaganan (1994). The governing equations of motion
are

ux + vy = 0 (3.7.1)

ut + uux + vuy +
1
ρ
px = 0 (3.7.2)

py + gρ = 0 (3.7.3)

©2000 CRC Press LLC



where x is horizontal distance in the direction of wave propagation and y
is the vertical distance measured from the horizontal bottom. The (incom-
pressible) fluid has density ρ and pressure p; g denotes acceleration due to
gravity.

The flow is bounded below by the horizontal bottom y = 0 and above
by the free surface y = h(x, t). The boundary conditions, therefore, are

v = 0 on y = 0 (3.7.4)

v = ht + uhx on y = h(x, t). (3.7.5)

On the free surface, the pressure is assumed to be constant, equal to p0,
say. The hydrostatic equation (3.7.3) therefore integrates to yield

p = p0 + gρ(h− y). (3.7.6)

Elimination of p from (3.7.2) with the help of (3.7.6) yields

ut + uux + vuy + ghx = 0. (3.7.7)

Equations (3.7.1) and (3.7.7) must be solved subject to BCs (3.7.4) and
(3.7.5), and the free surface y = h(x, t) must be found as part of the solu-
tion. We have already incorporated the BC p = p0 on the free surface.

It is convenient to introduce the so-called σ-variables

z =
y

h
(3.7.8)

w(x, z, t) =
1
h

[v − z(ht + uhx)] (3.7.9)

into the given PDEs and BC so that (3.7.1) and (3.7.7) become

ht + uhx + h(ux + wz) = 0 (3.7.10)

ut + uux + wuz + ghx = 0. (3.7.11)

The BCs (3.7.4) and (3.7.5) become homogeneous:

w = 0 on z = 0, 1. (3.7.12)

This is the major advantage accruing from the introduction of the σ-
variables.

Freeman (1972) introduced simple waves on shear flows by an intuitive
argument. We shall derive their form by the direct similarity approach. We
let

u = A(z) +B(z)F (ξ, η), B(z) 6= 0 (3.7.13)

w = I(x, z, t) + J(x, z, t)G(ξ, η), J(x, z, t) 6= 0 (3.7.14)

ξ = ξ(x, t) (3.7.15)

η = η(z) (3.7.16)
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and substitute these in (3.7.10) and (3.7.11). We get

(ht +Ahx + hIz) +BhxF + hJzG+ hBξxFξ + hJη′Gη = 0 (3.7.17)
(IAz + ghx) + IBzF + JAzG+ JBzFG+B(ξt +Aξx)Fξ

+BIη′Fη +B2ξxFFξ +BJη′GFη = 0. (3.7.18)

For (3.7.17) - (3.7.18) to reduce to PDEs in two independent variables ξ and
η for the determination of the function F (ξ, η) and G(ξ, η), the coefficients
of F and G and their derivatives must be functions of ξ and η alone. We
should therefore be able to write (3.7.17) and (3.7.18) as

Γ1 + Γ2F + Γ3G+ Γ4Fξ +Gη = 0 (3.7.19)

Γ5 + Γ6F + Γ7G+ Γ8FG+ Γ9Fξ + Γ10Fη + Γ4FFξ +GFη = 0 (3.7.20)

where the functions Γn = Γn(ξ, η), n = 1, 2, . . . 10 are defined by comparison
of (3.7.19)-(3.7.20) with (3.7.17)-(3.7.18):

ht +Ahx + hIz = hJη′Γ1 (3.7.21)

Bhx = hJη′Γ2 (3.7.22)

Jz = Jη′Γ3 (3.7.23)

Bξx = Jη′Γ4 (3.7.24)

BAz + ghx = BJη′Γ5 (3.7.25)

IBz = BJη′Γ6 (3.7.26)

Az = Bη′Γ7 (3.7.27)

Bz = Bη′Γ8 (3.7.28)

ξt +Aξx = Jη′Γ9 (3.7.29)

I = JΓ10. (3.7.30)

Equations (3.7.21) - (3.7.30) may be solved forA(z), B(z), I(x, z, t), J(x, z, t),
ξ(x, t), η(z), and Γn(ξ, η), n = 1, 2, . . . 10 in the light of the following re-
marks.

Remark 1

If the function A(z)(I(x, z, t)) is found to have the form A(z) = Â(z) +B(z)
× Γ(ξ, η)(I(x, z, t) = Î(x, z, t) + J(x, z, t)Ω(ξ, η)), we may set Γ(ξ, η) ≡ 0
(Ω(ξ, η) ≡ 0).

Remark 2

If B(z)(J(x, z, t)) is found to have the form B(z) = B̂(z)Γ(ξ, η)(J(x, z, t)
= Ĵ(x, z, t)Ω(ξ, η)), then we may set Γ(ξ, η) ≡ 1(Ω(ξ, η) ≡ 1).
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Remark 3

If ξ(x, t)(η(z)) is to be determined from f(ξ) ≡ ξ̂(x, t)(g(η) ≡ η̂(z)), where
f(ξ)(g(η)) is an invertible function, then we may simply take f(ξ)
≡ ξ (g(η) ≡ η).

Now we shall attempt to solve the system (3.7.21) - (3.7.30) in some
convenient order. If in (3.7.23) we set Γ3(ξ, η) = Ω′3(η)/Ω3(η) and integrate
with respect to z, we get J = Ĵ(x, t)Ω3(η) where Ĵ(x, t) > 0 is the function
of integration. We use Remark 2 to set Ω3(η) = 1 so that J = J(x, t). In
the same way, (3.7.28) gives Γ8(ξ, η) = 0 and B = B0, a constant. If we
put Γ7(ξ, η) = Ω′7(η) in (3.7.27) and integrate with respect to z, we get
A = A0 +B0Ω7(η) where A0 is another constant. In view of Remark 1, we
may set Ω7(η) = 0 so that A = A0. We may similarly deduce from (3.7.30)
that Γ10(ξ, η) = 0 and, therefore, I(x, z, t) = 0. Without loss of generality
we choose A0 = 0 and B0 = 1. Therefore, we arrive at the determination

A = 0, B = 1, I = 0 and J = J(x, t). (3.7.31)

Since we have shown that I(x, z, t) = 0, (3.7.26) gives Γ6 = 0. In view
of (3.7.31), (3.7.24) separates to give J(x, t) = ξx and η′Γ4 = 1, if the
separation constant is chosen to be 1. Again, if we let Γ4 = Ω′4(η) in
η′Γ4 = 1 and integrate with respect to z, we get Ω4(η) = z; here we have
put the constant of integration equal to zero. Using Remark 3, we can
choose Ω4(η) ≡ η and so η = z. In a similar manner, (3.7.25) yields Γ5 = g
and ξ(x, t) = h(x, t). Thus, we find that

ξ(x, t) = h(x, t), η(z) = z and J(x, t) = hx(x, t). (3.7.32)

Using (3.7.31) and (3.7.32), (3.7.22) reduces to Γ2 = 1/h, and (3.7.21) and
(3.7.29) each reduce to

ht + c(h)hx = 0 (3.7.33)

provided that hΓ1 = Γ9 = −c(h). Thus, the solution of the system (3.7.10)-
(3.7.11) has the form

u = F (h, z) (3.7.34)

w = hxG(h, z). (3.7.35)

It is easy to check from (3.7.33) and (3.7.34) that u(x, z, t) satisfies the
one-dimensional wave equation

ut + c(h)ux = 0 (3.7.36)

proving analytically the existence of simple wave form of the solution. In-
troducing Γn(z), n = 1, 2, . . . 10 thus found into (3.7.19) - (3.7.20), we get
the PDEs governing F and G:
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h(Fh +Gz) + F − c = 0 (3.7.37)

(F − c)Fh +GFz + g = 0. (3.7.38)

The boundary conditions (3.7.12) (see (3.7.35)) reduce to

G(h, 0) = 0 and G(h, 1) = 0. (3.7.39)

The system (3.7.37) - (3.7.38) in two independent variables may be reduced
in the usual manner

F (h, z) = M(h, z) +N(h, z)P (η), N(h, z) 6= 0 (3.7.40)

G(h, z) = U(h, z) + V (h, z)Q(η), V (h, z) 6= 0 (3.7.41)

where η = η(z) is the new independent variable. Since we have now dealt
with several examples in two independent variables, we skip the details (see
Mayil Vaganan (1994)) and give the final results. It is found that

M(h, z) = (2n1 − α0)h1/2

N(h) = h1/2

V (h) =
1
2
h−1/2 (3.7.42)

c(h) = (3n1 − 2α0)h1/2

where n1 and α0 are arbitrary constants; the form of h = h(x, t) remains
arbitrary. We discuss a special case of (3.7.40)-(3.7.42) which conforms to
that of Freeman (1972) and Sachdev and Philip (1986) through a simple
scaling. Here we have

c(h) = 2α(gh)1/2, F (h, z) = (gh)1/2P (z)

G(h, z) =
1
2
g1/2h−1/2Q(z) (3.7.43)

so that the system (3.7.37)-(3.7.38) reduces to

Qz + 3P − 4α = 0 (3.7.44)

QPz + P 2 − 2αP + 2 = 0. (3.7.45)

The boundary conditions (3.7.39), in view of the last of (3.7.43), become

Q(0) = 0, Q(1) = 0. (3.7.46)

Eliminating Q(z) from (3.7.44) and (3.7.45), we have

(P 2 − 2αP + 2)
d2P

dz2
+ (P − 2α)

(
dP

dz

)2

= 0. (3.7.47)
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Interchanging the dependent and independent variables in (3.7.47), we have

(P − a)(P − b)
d2z

dP 2
+ (2α− P )

dz

dP
= 0 (3.7.48)

where a and b are roots of P 2 − 2αP + 2 = 0. For a and b to be real we
must have α2 > 2; this is the condition for the absence of critical levels in
the flow (Freeman (1972)). In view of (3.7.45) and (3.7.46), the conditions
on P are

P (0) = a, P (1) = b. (3.7.49)

Introducing the variable

τ =
P − a

b− a
(3.7.50)

in (3.7.48) and using the formula 2α = a + b = a + 2/a, we arrive at the
hypergeometric equation satisfied by z(τ):

τ(1− τ)
d2z

dτ2
+
(

2
a2 − 2

+ τ

)
dz

dτ
= 0. (3.7.51)

It is clear from (3.7.49) and (3.7.50) that τ = 0 at z = 0 and τ = 1 at
z = 1. The solution of (3.7.51) satisfying these BCs is

z =
β(p, q; τ)
β(p, q; 1)

= τp
2F1(p, 1− q, 1 + p; τ)
2F1(p, 1− q, 1 + p; 1)

=
∞∑
k=0

λkτ
p+k (3.7.52)

where

λk =
Γ(1 + p)Γ(k + p)Γ(1 + k − q)

k!2F1(p, 1− q, 1 + p; 1)Γ(p)Γ(1− q)Γ(1 + k + p)
, k ≥ 0. (3.7.53)

Here, β(p, q; τ) is the incomplete beta function with p = (a−2b+2)/(a−b)
and q = (2a− b− 2)/(a− b).

The analysis so far follows Sachdev and Philip (1986). Here, we proceed
further in a manner which permits generalisation of the solution expressed
in terms of the incomplete beta function.

The (implicit) incomplete beta function solution (3.7.52)-(3.7.53) may
be inverted by using the method described by Keener (1988). We let

τ =
∞∑
n=1

σnZ
n, z = ZP . (3.7.54)

Now substitute (3.7.54) in (3.7.52) and equate coefficients of Zk for k ≥ p
on both sides. We get

λ0σ
p
1 − 1 = 0,

j∑
k=0

λj−kµj−k,k = 0, j ≥ 1 (3.7.55)
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where

µj0 = σj+p1

µjk =
1
kσ1

k∑
l=1

(l(j + p)− k + l)σl+1µj,k−l, k ≥ 1. (3.7.56)

The algebraic system (3.7.55) - (3.7.56) may be solved to express σj , j ≥ 1
in terms of λk, k = 0, 1, . . . j − 1. Since τ = (P − a)/(b− a), (3.7.54) may
be rewritten in terms of P (z):

P (z) = a+ (b− a)
∞∑
n=1

σnz
n/p. (3.7.57)

We may also obtain an equation for Q alone from (3.7.44)-(3.7.45). We
have

3QQzz −Q2
z + 2αQz + 8α2 − 18 = 0. (3.7.58)

The solution of (3.7.58) may be obtained by inserting (3.7.57) in (3.7.44),
integrating and putting the constant of integration equal to zero: We obtain

Q(z) = z

[
4α− 3a− 3(b− a)

∞∑
n=1

pσn
n+ p

zn/p

]
. (3.7.59)

We may now write the explicit solution of shallow-water equations (3.7.10) -
(3.7.11) satisfying the BC (3.7.12) using (3.7.34), (3.7.35), (3.7.40), (3.7.41),
(3.7.57), and (3.7.59):

u(x, z, t) = (gh)1/2
[
a+ (b− a)

∞∑
n=1

σnz
n/p

]
(3.7.60)

w(x, z, t) =
1
2
hx(g/h)1/2z

[
4α− 3a− 3(b− a)

∞∑
n=1

pσn
n+ p

zn/p

]
.

(3.7.61)

The solution (3.7.60) -(3.7.61) of the original PDE system is the simple
wave solution, arising from its reduction to the ODEs (3.7.44) and (3.7.45)
and their solution subject to BCs (3.7.46). It is possible to generate more
general solutions of the “reduced” PDE system (3.7.37)-(3.7.38), satisfying
(3.7.39). That becomes possible by generalising the form (3.7.60)-(3.7.61).
We write the solution of (3.7.37) - (3.7.38) as

F (h, z) =
∞∑
n=0

Fn(h)znr (3.7.62)

G(h, z) = z(1− zr)
∞∑
n=0

Gn(h)znr (3.7.63)
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where r is a (real) positive number. The series form (3.7.63) is written
so that the boundary conditions (3.7.39) on G at z = 0 and z = 1 are
automatically satisfied. We rewrite (3.7.63) for convenience of subsequent
calculations as

G(h, z) =
∞∑
n=0

Kn(h)znr+1 (3.7.64)

where
K0(h) = G0(h),

Kn(h) = Gn(h)−Gn−1(h), n ≥ 1
(3.7.65)

or

Gn(h) =
n∑
k=0

Kk(h), n ≥ 0. (3.7.66)

Substituting (3.7.62) and (3.7.64) into (3.7.37) - (3.7.38) and equating
coefficients of znr, n ≥ 0 to zero, we get

hK0 + hF ′0 + F0 − c = 0 (3.7.67)

(nr + 1)hKn(h) + hF ′n(h) + Fn(h) = 0, n ≥ 1 (3.7.68)

(F0 − c)F ′0 + g = 0 (3.7.69)
n∑
k=0

Fk(h)[F ′n−k(h) + krKn−k(h)]− cF ′n(h) = 0, n ≥ 1.(3.7.70)

Equations (3.7.69) - (3.7.70) are ODEs while (3.7.67) - (3.7.68) are algebraic
relations which together give the solution for Fn(h) and Kn(h), n ≥ 0. The
general solution can be found to be

c(h) = c0h
1/2 (3.7.71)

Fn(h) = anh
1/2+n(λ−1/2) (3.7.72)

Kn(h) =
1

1 + nr

(
cn −

[
3
2

+ n

(
λ− 1

2

)]
an

)
h−1/2+n(λ−1/2)

(3.7.73)

where c0 and λ are arbitrary constants; cn = 0, n ≥ 1, while an, n ≥ 0 are
to be found from the following algebraic equations:

a0(a0 − c0) + 2g = 0 (3.7.74)(
c0

[
1
2

+ n

(
λ− r − 1

2

)]
− a0

{
1 + n

(
λ− 3

2
r − 1

2

)})
an

=
n−1∑
k=1

ak

{
an−k

[
1
2

+ (n− k)
(
λ− 1

2

)]
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− kr

1 + (n− k)r

[
3
2

+ (n− k)
(
λ− 1

2

)]
an−k

}
, n ≥ 1. (3.7.75)

For n = 1, (3.7.75) gives

r =
(
a0

(
λ+

1
2

)
− λc0

)(
3
2
a0 − c0

)−1

, (3.7.76)

requiring, however, that a1 is a (nonzero) arbitrary constant. The functions
Gn(h), n ≥ 0 are obtained from (3.7.65), (3.7.66), and (3.7.73) as

Gn(h) =
n∑
k=0

1
1 + kr

(
ck −

[
3
2

+ k

(
λ− 1

2

)]
ak

)
h−1/2+k(λ− 1

2 ), n ≥ 0.

(3.7.77)
Thus, a new class of progressive wave solutions of the shallow-water

equations (3.7.10)-(3.7.11) subject to the boundary conditions (3.7.12) is
found to be

u(x, z, t) = h1/2
∞∑
n=0

anh
n(λ−1/2)znr (3.7.78)

w(x, z, t) = h−1/2hxz(1− zr)×
∞∑
n=0

[
n∑
k=0

ck − [3/2 + k(λ− 1/2)]ak
1 + kr

hk(λ−1/2)

]
znr

= h−1/2hxz
∞∑
n=0

cn − [3/2 + n(λ− 1/2)]an
1 + nr

hn(λ−1/2)znr.

(3.7.79)

It is not difficult to check that the solution (3.7.60) - (3.7.61) is embedded
in the more general solution (3.7.78) - (3.7.79) and may be recovered from
the latter by putting λ = 1/2 and appropriately choosing the constant a1.

The present approach has been much exploited for several other so-
lutions, including the time-dependent similarity solutions, in the work of
Sachdev and Mayil Vaganan (1994). Several limiting cases leading to sin-
gular solutions have also been identified. The entire gamut of analysis
for the free surface flows for shallow-water equations has been extended
to the more complicated situation when the medium is compressible and
barotropic. The work of Sachdev and Philip (1988) showed that for this
medium, the neat beta function form of the solution does not exist. How-
ever, the present general approach is readily adapted to the study of simple
waves and time-dependent self-similar flows for the compressible medium
(Sachdev and Mayil Vaganan (1995)).
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3.8 Multipronged Approach to Exact Solu-
tions of Nonlinear PDEs – an Example
from Gasdynamics

We give below a formulation of the set of non-isentropic one-dimensional
gasdynamic equations due to Ustinov (1982), (1984), (1986), which arises
from one of its conservative forms and admits exact treatment as well as
comparison of different approachs to exact solutions. We shall seek in-
termediate integrals which generalise Riemann invariants to non-isentropic
flows, obtain exact solutions by the direct approach, and compare them
with those found by the group theoretic approach; we also use some intu-
itive ideas for obtaining the solution (Sachdev, Dowerah, Mayil Vaganan,
and Philip (1997)).

We begin with one-dimensional adiabatic motion of an ideal gas. The
governing PDEs are

ρt + (ρu)r = 0 (3.8.1)

ut + uur +
1
ρ
pr = 0 (3.8.2)

(pρ−γ)t + u(pρ−γ)r = 0 (3.8.3)

where ρ, u, and p are density, particle velocity, and pressure at a point r
and time t; γ is the ratio of specific heats. First, we recast the system
(3.8.1) - (3.8.3), by making use of the following conservation laws arising
from them:

(ρu)t + (p+ ρu2)r = 0 (3.8.4)(
p

γ − 1
+

1
2
ρu2

)
t

+
(

γ

γ − 1
pu+

ρu3

2

)
r

= 0. (3.8.5)

Equation (3.8.1) is already in a conservation form. Equations (3.8.1) and
(3.8.4) are equivalent to the differential relations

dτ = ρdr − ρudt = mdy (3.8.6)

dξ = ρudr − (p+ ρu2)dt = −ma0dx, say, (3.8.7)

where m and a0 are positive constants, having dimensions ML−2 and LT−2,
respectively. Using (3.8.6) and (3.8.7) and the equation of state

f(τ) =
p1/γ

(γ − 1)ρ
, (3.8.8)

we can replace (3.8.5) by the total differential

dη = udξ +
(
fv − 1

2
u2

)
dτ = ma2

0dz, v = p(γ−1)/γ . (3.8.9)
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It is clear from (3.8.6), (3.8.7), and (3.8.9) that x, y, and z are dimensionless
variables. We manipulated these equations to obtain a single equation for
z as a function of x and y. From (3.8.9), we get

u = −a0zx (3.8.10)

1
γ − 1

p

ρ
− 1

2
u2 = a2

0zy. (3.8.11)

On elimination of u from (3.8.10) and (3.8.11), we get

p

ρ
= a2

0(γ − 1)
[
zy +

1
2
(zx)2

]
. (3.8.12)

Differentiating (3.8.12) with respect to x and y, respectively, we have

1
ρ
px −

p

ρ2
ρx = a2

0(γ − 1)(zxy + zxzxx) (3.8.13)

1
ρ
py −

p

ρ2
ρy = a2

0(γ − 1)(zyy + zxzxy). (3.8.14)

Similarly, from (3.8.8) we have

1
ρ
ρx =

1
γp
px (3.8.15)

1
ρ
ρy =

1
γp
py −

m

f

df

dτ
(3.8.16)

(see (3.8.6)). On inserting (3.8.15) into (3.8.13) and (3.8.16) into (3.8.14),
respectively, we eliminate ρx and ρy:

1
ρ
px = γa2

0(zxy + zxzxx) (3.8.17)

1
ρ
py = γa2

0(zyy + zxzxy)−
mγ

γ − 1
1
f

df

dτ

p

ρ
. (3.8.18)

From (3.8.6) and (3.8.7) we have

dt =
ma0

p
dx+

mu

p
dy (3.8.19)

so that
a0py = upx − pux. (3.8.20)

On using (3.8.10) in (3.8.20), we get

py + zxpx − pzxx = 0. (3.8.21)
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Finally, using (3.8.12), (3.8.17), and (3.8.18) in (3.8.21), we arrive at a
single PDE for z:

zyy + 2zxzxy +
[
γ + 1
2γ

(zx)2 −
γ − 1
γ

zy

]
zxx − φ(y)

[
zy +

1
2
(zx)2

]
= 0

(3.8.22)

φ(y) =
m

f

df

dτ
. (3.8.23)

The Rankine-Hugoniot (RH) relations across a normal plane shock are

u =
2U
γ + 1

− 2γp0

(γ + 1)ρ0U
(3.8.24)

p =
2ρ0U

2

γ + 1
− γ − 1

(γ + 1)
p0 (3.8.25)

ρ =
(γ + 1)ρ2

0U
2

2γp0 + (γ − 1)ρ0U2
(3.8.26)

where U is the shock velocity and the subscript zero denotes conditions
immediately ahead of the shock. The shock locus is defined by

dr

dt
= U. (3.8.27)

We must now transform the RH conditions (3.8.24) - (3.8.26) in terms of
the variables x, y, and z. Let the shock locus be given by y = y0(x). On
inserting (3.8.24) - (3.8.27) into the differential relations (3.8.6), (3.8.7),
and (3.8.9), we get

Uρ0dt = mdy0 (3.8.28)

p0dt = ma0dx (3.8.29)

p0U

γ − 1
dt = ma2

0dz. (3.8.30)

From (3.8.28) and (3.8.29) we get

dy0
dx

=
γU

a0
(3.8.31)

where we have used the relation a2
0 =

γp0

ρ0
. Dividing (3.8.30) by (3.8.29)

and integrating with respect to x and using the condition z = 0 at y = 0,
we get

z(x, t)|y=y0(x) =
1

γ(γ − 1)
y0(x). (3.8.32)
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Equations (3.8.10), (3.8.24) and (3.8.31) give

zx|y=y0(x) = 2
γ2 − [y′0(x)]

2

γ(γ + 1)y′0(x)
. (3.8.33)

We thus have relations (3.8.31)-(3.8.33) holding along the shock y = y0(x).
As is usual for this class of problems, the shock locus itself must be found
as part of the solution.

The other boundary condition arises from the piston motion which
drives the flow. Let the velocity of the gas at the piston be denoted by
V (t). Therefore, we have the relation

m
dV

dt
= −p, V (0) = u0 (3.8.34)

where u0 is the initial velocity of the gas. Integrating (3.8.34) and using
(3.8.6) - (3.8.7) at y = 0, we obtain

z(x, 0) =
1
2
x2 − u0

a0
x. (3.8.35)

The corresponding strong shock condition is

z(0, y) = 0, y ≥ 0. (3.8.36)

Thus, we must solve the nonlinear PDE (3.8.22) subject to the two
conditions (3.8.32)-(3.8.33) at the shock y = y0(x), and (3.8.35) at the
piston y = 0. The third condition helps determine the shock locus y =
y0(x). The problem is now sensibly posed. The present derivation is due
to Ustinov (1982, 1984).

We may observe that the sound speed a2 =
γp

ρ
follows easily from

(3.8.12),

a2 = γ(γ − 1)a2
0

(
zy +

1
2
z2
x

)
, (3.8.37)

while the density follows from a2 =
γp

ρ
and (3.8.8):

ρ =
a2/(γ−1)

γ1/(γ−1)(γ − 1)γ/(γ−1)
[f(y)]−γ/(γ−1). (3.8.38)

We first attempt to find intermediate integrals for (3.8.22), even though the
form of the latter does not immediately suggest their existence. We look
for first integrals

q = I(x, y, z, p) (3.8.39)
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where, in the usual notation, p = zx and q = zy. Differentiating (3.8.39) to
obtain zxy and zyy and putting the latter into (3.8.22), we have

Iy + qIz + (Ix + pIz)(2p+ Ip)− φ(y)
(
q +

1
2
p2

)
+
[
I2
p + 2pIp − n

(
q +

1
2
p2

)
+ p2

]
zxx = 0, n =

γ − 1
γ

.

(3.8.40)

Therefore, the necessary conditions for (3.8.39) to be an intermediate inte-
gral of (3.8.22) are

Iy + qIz + (Ix + pIz)(2p+ Ip)− φ(y)
(
q +

1
2
p2

)
= 0 (3.8.41)

I2
p + 2pIp − n

(
q +

1
2
p2

)
+ p2 = 0. (3.8.42)

Solving (3.8.42) for Ip and integrating with respect to p, we get

q ≡ I =
[
F (x, y, z)±

√
n

2
p

]2
− 1

2
p2 (3.8.43)

where F (x, y, z) is the function of integration. Using (3.8.10) and (3.8.37)
for expressing p and q in terms of u and a, we can write (3.8.43) as

u± 2a
γ − 1

=
2a0√
n
F (x, y, z). (3.8.44)

Equations (3.8.44) generalise the definition of Riemann invariants for non-
isentropic flows. These reduce to the usual Riemann invariants for isen-
tropic flows when F (x, y, z) in (3.8.44) is constant. To obtain the unknown
function F (x, y, z) we substitute (3.8.43) into (3.8.41) and equate coeffi-
cients of different powers of p to zero. We obtain

Fy ±
√
nFFx −

1
2
φ(y)F = 0 (3.8.45)(n

2
+ 1
)
Fx ∓

√
n

4
φ(y) = 0 (3.8.46)

Fz = 0. (3.8.47)

Integrating (3.8.46) with respect to x we have

F (x, y) = ±n0

2
xφ(y) +

1
2
K(y), n0 =

√
n

(n+ 2)
(3.8.48)

©2000 CRC Press LLC



where K(y) is a function of integration. Putting F (x, y) into (3.8.45) and
equating coefficients of different powers of x to zero, etc., we get

dφ

dy
+ l0φ

2 = 0, (3.8.49)

dK

dy
+ l0φK = 0 (3.8.50)

where
l0 = − 1

n+ 2
.

The solution of the system (3.8.49)-(3.8.50) is

φ(y) = (α0 + l0y)−1 (3.8.51)

K(y) = β0(α0 + l0y)−1 (3.8.52)

where α0 and β0 are arbitrary constants. With (3.8.48), (3.8.51), and
(3.8.52), the intermediate integrals (3.8.43) become

q =
1
4

[
β0 ± n0x

α0 + l0y
±
√
np

]2
− 1

2
p2 (3.8.53)

or, in physical variables, the Riemann invariants are

u± 2a
γ − 1

=
a0√
n

β0 + n0x

α0 + l0y
. (3.8.54)

We write the first integral (3.8.53) with positive sign more explicitly as

l0zY + α1z
2
X − β1

X

Y
zX −

X2

4Y 2
= 0 (3.8.55)

where X = β0 + n0x, Y = α0 + l0y, α1 = [n(2 − n)/(4(n + 2)2)] and
β1 = n/2(n+ 2).

Following Charpit’s method, the characteristics of (3.8.55) are written
as

dX

ds
= β1Y

−1X − 2α1p

dY

ds
= −l0

dz

ds
= β1Y

−1Xp− 2α1p
2 − l0q (3.8.56)

dp

ds
= −1

2
Y −2X − β1Y

−1p

dq

ds
=

1
2
Y −3X2 + β1Y

−2Xp

©2000 CRC Press LLC



where the parameter s is measured along the characteristics. A solution of
the system (3.8.56) is

X(s) =
γ + 1
3γ − 1

c0 −
γ − 1
3γ − 1

c1S

Y (s) = S

z(s) =
(γ − 1)2

2γ(3γ − 1)
c0c1 logS − γ − 1

3γ − 1
c21S +

γ + 1
2(3γ − 1)

c20S
−1 + c4

p(s) = c0S
−1 + c1 (3.8.57)

q(s) =
γ − 1
3γ − 1

c0c1S
−1 − γ + 1

2(3γ − 1)
c20S

−2

S =
(

γ

3γ − 1
s+ c3

)
where c0, c1, c3 and c4 are arbitrary constants. Eliminating s from X(s),

Y (s), and p(s)
(

=
∂z

∂X

)
, we get

γ − 1
2γ

Y
∂z

∂X
+

3γ − 1
2γ

X − c1 = 0. (3.8.58)

Solving for
∂z

∂X
and

∂z

∂Y
from (3.8.55) and (3.8.58), putting them into

dz = pdx+ qdy, and integrating, we get the solution

z(x, y) =
(
α0 −

γ

(3γ − 1)
y

)−1 [
− γ

2(3γ − 1)
x2

+

(
c1

√
γ(γ − 1)
3γ − 1

− β0

√
γ

γ − 1

)
x+ c1β0 −

3γ − 1
2(γ − 1)

β2
0

− γ2 − 1
4γ(3γ − 1)

c21

]
(3.8.59)

where we have changed X and Y back to x and y via the relations X = β0

+n0x, Y = α0 + l0y (see below (3.8.55)).
The sound speed is obtained from (3.8.37) and (3.8.59) and, hence, ρ

from (3.8.23), (3.8.38), and (3.8.51):

a2 = γ(γ − 1)a2
0

[
c1(γ − 1)
4(3γ − 1)

]2(
α0 −

γ

3γ − 1
y

)−2

ρ =
a2/(γ−1)

γ1/(γ−1)(γ − 1)γ/(γ−1)

(
α0 −

γ

3γ − 1
y

)(3γ−1)/(γ−1)

. (3.8.60)
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We may also seek the solution of the first-order PDE (3.8.55) in the simi-
larity form

z(x, y) = Y m1g(ξ), ξ = XY m2 . (3.8.61)

It is easily checked that for this purpose we must have m1 = 1, m2 = −1
and then g(ξ) satisfies the first-order ODE

g′2 +
2(n+ 2)

n
ξg′ +

4(n+ 2)2

n(n− 2)

(
1

n+ 2
g +

1
4
ξ2
)

= 0. (3.8.62)

The quadratic (3.8.62) in g′ may be solved and, hence, g found by integra-
tion. However, a simple solution of this equation is

g(ξ) = c24 ±
[
− 4(n+ 2)
n(n− 2)

]1/2
c4ξ −

n+ 2
2(n− 2)

ξ2 (3.8.63)

where c4 is a constant. Again expressing X and Y in terms of x and y etc.,
we may write this solution of (3.8.22) as

z(x, y) =
γ(γ − 1)

2(γ + 1)(3γ − 1)

(
α0 −

γ

(3γ − 1)
y

)−1

x2

+

[
± 2c4γ√

(γ + 1)(3γ − 1)
+ β0

√
γ(γ − 1)
γ + 1(

α0 −
γ

(3γ − 1)
y

)−1
]
x

+c24

(
α0 −

γ

3γ − 1
y

)
+

3γ − 1
2(γ + 1)

β2
0

(
α0 −

γ

(3γ − 1)
y

)−1

±c4β0

√
4γ(3γ − 1)
γ2 − 1

. (3.8.64)

The sound speed and density of the gas, etc. for this case may be found as
for (3.8.59).

Equation (3.8.22) provides a good opportunity to learn about the effec-
tiveness of the direct method of Clarkson and Kruskal (1989). We let

z(x, y) = α(x, y) + β(x, y)H(η(x, y)), β(x, y) 6= 0. (3.8.65)

Substituting (3.8.65) into (3.8.22) and requiring the resulting equation to
be an ODE for H(η), we write it as

(H ′2 + Γ1HH
′ + Γ2H

′ + Γ3H
2 + Γ4H + Γ5)H ′′ +

+Γ6H
′3 + (Γ7H + Γ8)H ′2 + (Γ9H

2 + Γ10H + Γ11)H ′

+Γ12H
3 + Γ13H

2 + Γ14H + Γ15 = 0 (3.8.66)
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where the functions Γn = Γn(η) are introduced in the following manner:

2βx = βΓ1 (3.8.67)

2αxηx + (2− n)ηy = βη2
xΓ2 (3.8.68)

β2
x = β2η2

xΓ3 (3.8.69)

2αxβxηx + 2βxηy − nβyηx = β2η3
xΓ4 (3.8.70)

α2
xη

2
x + 2αxηxηy − nαyη

2
x + η2

y = β2η4
xΓ5 (3.8.71)

βηxx + 2βxηx = βη2
xΓ6 (3.8.72)

2ββxηxx + 4β2
xηx + ββxxηx = β2η3

xΓ7 (3.8.73)

4βαxηxηxx − 2nβηyηxx + 4βηxηxy

+8αxβxηx − 4(n− 1)βxηxηy + 4βyη2
x

+2βαxxη2
x − φ(y)βη2

x = 2β2η4
xΓ8 (3.8.74)

βx(ββxηxx + 2β2
xηx + 2ββxxηx) = β3η3

xΓ9 (3.8.75)

4βαxβxηxx − 2nββyηxx + 4ββxηxy

+8αxβxηx + 4βαxβxxηx + 4βxηy

−4(n− 1)βxβyηx + 4βαxxβxηx

−2φ(y)ββxηx + 4ββxyηx − 2nββxxηy = 2β3η4
xΓ10 (3.8.76)

2βα2
xηxx + 2nβαyηxx + 2βηyy

+4βαxηxy + 4α2
xβxηx + 4αxβxηy

+4αxβyηx + 4βαxαxxηx − 4nαyβxηx

+4βyηy + 4βαxyηx − 2nβαxxηy

−2φ(y)β(αxηx + ηy) = 2β3η4
xΓ11 (3.8.77)

β2
xβxx = β3η4

xΓ12 (3.8.78)

4αxβxβxx + 2αxxβ2
x + 4βxβxy

−2nβyβxx − φ(y)β2
x = 2β3η4

xΓ13 (3.8.79)

2αxβxx + 4αxαxxβx + 4αxβxy

−2nαyβxx + 4βxαxy − 2nαxxβy

+2βyy − 2φ(y)(αxβx + βy) = 2β3η4
xΓ14 (3.8.80)

2αyy + 4αxαxy + 2α2
xαxx

−2nαyαxx − φ(y)(α2
x + 2αy) = 2β3η4

xΓ15 (3.8.81)

where = (γ + 1)/(2γ) = 1− n/2.
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The following remarks help to solve the system (3.8.67) - (3.8.81) for
α(x, y), β(x, y), η(x, y), and Γn(η), n = 1, 2, . . . 15.

Remark 1

If α(x, y) has the form α(x, y) = α̂(x, y) + β(x, y)Ω(η), we may choose
Ω = 0.

Remark 2

If β(x, y) is found to have the form β(x, y) = β̂(x, y)Ω(η), we may put
Ω(η) = 1.

Remark 3

If η(x, y) is determined from the equation f(η) = η̂(x, y), where f(η) is
any invertible function, then we may put f(η) = η without any loss of
generality.

Setting Γ1(η) = 2Ω′1(η)/Ω1(η) in (3.8.67) and integrating with respect
to η, we get β = β̂(y)Ω1(η) where β̂(y) is a function of integration. Using
Remark 2, we put Ω1(η) = 1 so that

β = β(y) (3.8.82)

where we have dropped the hat from β. Putting Γ6(η) = −Ω′′6(η)
Ω′6(η)

in (3.8.72)

and integrating twice with respect to x, we get Ω6(η) = xθ(y)+ψ(y) where
θ(y) and ψ(y) are functions of integration. In view of Remark 3, we put
Ω6(η) = η and arrive at the similarity variable

η = xθ(y) + ψ(y). (3.8.83)

Putting Γ2(η) = 2Ω′2(η) in (3.8.68) and integrating with respect to x,
we get α = βΩ2 − (x/2θ)(xθ′ + 2ψ′) + λ(y) where we have used (3.8.83).
λ(y) is a function of integration. Using Remark 1, we may put Ω2(η) = 0.
Thus, we have

α(x, y) = − x

2θ(y)
[xθ′(y) + 2ψ′(y)] + λ(y). (3.8.84)

It is easily shown from (3.8.67)-(3.8.69), (3.8.72), (3.8.73), (3.8.75), (3.8.76),
(3.8.78), (3.8.79), and (3.8.82) that

Γn(η) = 0, n = 1, 2, 3, 6, 7, 9, 10, 12, 13. (3.8.85)

In view of (3.8.82)-(3.8.84), (3.8.70) requires that Γ4(η) = k, a constant,
and then it becomes

β′ = −0kθ
2β2, 0 = /n. (3.8.86)
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On insertion of (3.8.83) and (3.8.84), (3.8.71) becomes

(xθ′ + ψ′)2 − θ(x2θ′′ + 2xψ′′) + θ′(x2θ′ + 2xψ′) + 2θ2λ′ = −20β
2θ4Γ5(η).

(3.8.87)
Since LHS of (3.8.87) is quadratic in x, Γ5(η) must have the form Γ5(η) =
aη2 + bη+c, where a, b, and c are constants. With this choice, (3.8.87) may
be satisfied provided

θθ′′ − 2θ′2 = 2a0β
2θ6 (3.8.88)

ψ′′ − 2θ−1θ′ψ′ = 0β
2θ4(2aψ + b) (3.8.89)

2θ2λ′ + ψ′2 = −20β
2θ4(aψ2 + bψ + c). (3.8.90)

Again, in view of (3.8.82) - (3.8.84), (3.8.74) requires that Γ8(η) = l, a
constant, and then it becomes

φ(y) = 2(2−)θ−1θ′ − 2(2k0 + l)θ2β, k0 = k/n. (3.8.91)

After substitution of (3.8.88) and (3.8.89) into (3.8.77) and (3.8.81), we find
that

Γ11(η) = (−1/n)(2aη + b) (3.8.92)

Γ15(η) = −20(2k/n+ l)(aη2 + bη) + d (3.8.93)

and

λ′′ − 2θ−1θ′λ′ = [2k2
0(aψ

2 + bψ) + 20(2k0 + l)c+ d]θ4β3

−20β
2θ2ψ′(2aψ + b) (3.8.94)

where d is an arbitrary constant. Further, Equation (3.8.80) requires that
Γ14 = h, a constant, and then it reduces to

β′′ − 2θ−1θ′β′ = [h+ (20k)(2k/n+ l)]θ4β3. (3.8.95)

We now have six equations (3.8.86), (3.8.88), (3.8.89), (3.8.90), (3.8.94),
and (3.8.95) for the determination of four functions θ(y), β(y), ψ(y), and
λ(y). If we choose the constants h and d suitably, this overdetermined
system can be made determinate. If we let h = (−2k0)(k/n+ l), Equation
(3.8.95) can be obtained from (3.8.86) by differentiation. Similarly, with
d = (−20)(k/n + l)c, (3.8.94) can found by differentiating (3.8.90) with
respect to y and using (3.8.86) and (3.8.89). Thus, the solution (3.8.65) of
(3.8.22) may be written as

z(x, y) = λ(y)− x

2θ(y)
[xθ′(y) + 2ψ′(y)] + β(y)H(η) (3.8.96)

η(x, y) = xθ(y) + ψ(y) (3.8.97)
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where the functions β(y), θ(y), ψ(y), and λ(y) are governed by the system
(3.8.86), (3.8.88) - (3.8.90). The function H(η) is governed by (3.8.66) with
Γn(η), n = 1, 2, . . . 15, found above, appropriately substituted into it:

(H ′2 + kH + aη2 + bη + c)H ′′ + lH ′2 − 1
n

(2aη + b)H ′

−2kw0(k0 + l)H − 2w0(k0 + l)(aη2 + bη + c) = 0. (3.8.98)

Equation (3.8.98) seems difficult to solve generally. However, a special
solution may be easily found if we assume that

H(η) = Aη2 +Bη + C (3.8.99)

and substitute into (3.8.98), here, A,B, and C are constants. Then the
coefficients of η2, η, η0, etc. put equal to zero give

4A3 + (2l + k)A2 + (a− k2
0 − lk0)A− a0(k0 + l) = 0 (3.8.100)

[4A2 + (2l + k)A− a/n− kk00 − kl0]B

+b(1− 1/n)A− b0(k0 + l) = 0 (3.8.101)

2k(A− k00 − l0)C + (2A+ l)B2 − (b/n)B

+2cA− 20(k0 + l)c = 0. (3.8.102)

The algebraic system (3.8.100) - (3.8.102) will be solved for those cases
for which the system of ODEs (3.8.86), (3.8.88), (3.8.89), and (3.8.90) for
β(y), θ(y), ψ(y), and λ(y) can be solved. The following simple cases may
be noted.

1. The following power law solutions of the ODEs are easily found:

θ(y) = m0(m1y +m2)n1 ,

β(y) =
nm1(2n1 + 1)

km2
0

(m1y +m2)−2n1−1

ψ(y) = −b/2a,

λ(y) = − (b2 − 4ac)nm1(2n1 + 1)
4ak2m2

0

(m1y +m2)−2n1−1 (3.8.103)

wherem0, m1, andm2 are arbitrary constants and n1 satisfies the quadratic
n2

1 +n1 +2an/(8an+ k2) = 0. When (3.8.103) is inserted into (3.8.96) and
(3.8.97), we get the similarity form of the solution
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z(x, y) = − (b2 − 4ac)nm1(2n1 + 1)
4ak2m2

0

(m1y +m2)−2n1−1

−1
2
n1m1(m1y +m2)−1x2

+
nm1(2n1 + 1)

km2
0

(m1y +m2)−2n1−1H(η) (3.8.104)

η(x, y) = m0(m1y +m2)n1x− b/(2a). (3.8.105)

Equations (3.8.104), (3.8.105), and (3.8.99) yield

z(x, y) = m1

[
−n1

2
+
n

k
(1 + 2n1)m2

0A
]
(m1y +m2)−1x2

+
n

k
(1 + 2n1)m2

0

[
− b
a
A+B

]
(m1y +m2)−n1−1x

+
[
b2A

4a2
− bB

a
+ C − b2 − 4ac

4ak

]
×n
k

(1 + 2n1)m2
0m1(m1y +m2)−2n1−1. (3.8.106)

The function

φ(y) = 2m1[n1(2−)− k−1
0 (2k0 + l)(1 + 2n1)](m1y +m2)−1. (3.8.107)

2. If we let b = c = 0 in (3.8.86) and (3.8.88) - (3.8.90), we can find an
exponential type of solution

θ(y) = m0e
−m1y

β(y) = −2nm1

km2
0

e2m1y (3.8.108)

ψ(y) = d0e
−m1y

λ(y) = λ0 −
d2
0m

2
1

2m2
0

(
1 +

8an
k2

)
y

where m0,m1, d0, and λ0 are arbitrary constants. Substituting (3.8.108)
into (3.8.96) and (3.8.97), we get the similarity form

z(x, y) = λ0 −
d2
0m

2
1

2m2
0

(
1 +

8an
k2

)
y +

1
2
m2

1x
2

+
m1d0

m0
x− 2nm1

km2
0

e2m1yH(η)

η(x, y) = (m0x+ d0)e−m1y. (3.8.109)
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If we use the form (3.8.99) for H(η), we have the explicit solution

z(x, y) = λ0 −
2nm1d

2
0A

km2
0

− d2
0m

2
1

2m2
0

(
1 +

8an
k2

)
y − 2nm1d0

km2
0

×(B + Cem1y)em1y +
m1

m0

[
d0 −

2n
k

(2d0A+Bem1y)
]
x

+m1

(
1
2
− 2nA

k

)
x2. (3.8.110)

Here the function ϕ(y) = 2m1(+lk−1
0 ).

Since the details are entirely similar, we summarise the results for some
other sets of parameters a, b, c, and k appearing in (3.8.86) and (3.8.88) -
(3.8.90) (see Sachdev et al. (1997) for details).

3. k = 0, b2 = 4ac

z(x, y) = m1

(
1
4

+A

√
n

8a

)
(m1y +m2)−1x2

+m0m1

(
−bA
a

+B

)√
n

8a
(m1y +m2)−1/2x

+λ0 +m2
0m1

(
b2A

4a2
− bB

a
+ C

)√
n

8a
(3.8.111)

φ(y) = −m1

[
2−+(2k0 + l)

√
n

2a

]
(m1y +m2)−1

4. k = b = c = 0

z(x, y) = m1

(
1
4
− l

2

√
n

8a

)
(m1y +m2)−1x2

+
(
d0m0m1

(
1
4
− l

√
n

8a

)
(m1y +m2)−1

)
x

+d0

(
1
4
m2

0m1 −
ld0

2

)
(m1y +m2)−1 + C (3.8.112)

where C is an arbitrary constant.

φ(y) = −m1

(
2−+(2k0 + l)

√
n

2a

)
(m1y +m2)−1 (3.8.113)

5. a = b = c = 0

z(x, y) = m1

(
1
2
− nA

k

)
(m1y +m2)−1x2 − nm1B

km0
x

−nm1C

km2
0

(m1y +m2)
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where A satisfies the quadratic

4A2 + (2l + k)A− k0(k/n+ l) = 0

and

C = −(1/2k)
[
(2l +A)/

{
A−0

(
k

n
+ l

)}]
B2;

B is an arbitrary constant.

φ(y) = 2m1[+k−1
0 l](m1y +m2)−1 (3.8.114)

6. a = 0.
In this case, two distinct possibilities arise

(i) z(x, y) =
nm1A

k
(m1y +m2)−1x2

+
[
nm1

km0

(
b

k
+B − 2bnA

k2
log(m1y +m2) + 2A(d0y + d1)

)
− d0

m0
(m1y +m2)

]
(m1y +m2)−1x

+
nm1

km2
0

[
1
k

(
c− nb2

2k2

)
+
b

k
(d0y + d1)

− nb2

k3m2
0

log(m1y +m2) +
n2b2A

2k4
[log(m1y +m2)]2

+A(d0y + d1)2 −
2nbA
k2

(d0y + d1) log(m1y +m2)

−nbB
k3

log(m1y +m2) +B(d0y + d1) + C

]
(m1y +m2)−1

− d2
0

2m2
0

y + λ0 (3.8.115)

φ(y) = −(2nm1/k)(2k0 + l)(m1y +m2)−1 (3.8.116)

(ii) z(x, y) = m1

(
1
2
− nA

k2

)
(m1y +m2)−1x2

+

[
− nm1

k2m0

(
b(m1y +m2)−1 + 2d1A+B

+
2nbA
k2

log(m1y +m2)

)
+
d0

m0

(
2nA
k2

− 1
)

(m1y +m2)−1

]
x
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+
d2
0

m1m2
0

(
1
2
− nA

k2

)
(m1y +m2)−1

+
nm1

k2m2
0

(
nb2

2k2
− bd1 − c+ d2

1A+ d1B + C

)
(m1y +m2)

+
bn2

2k4m2
0

(
2d0A log(m1y +m2)−m1(b+ 2d1A+B)

×(m1y +m2) log(m1y +m2)

−bnm1A

k2
(m1y +m2)[log(m1y +m2)]2

)
+
nd0

k2m2
0

(2d1A+B) + λ0 (3.8.117)

φ(y) = 2m1(+k−1
0 l)(m1y +m2)−1 (3.8.118)

7. a = b = c = k = 0

z = C +
1
2
(m1 − ld1m

2
0(m1y +m2)−1)(m1y +m2)−1x2

+
[
d0m1

m0
+m0d1(−ld0(m1y +m2)−1 +B)

]
(m1y +m2)−1x

+
[
m1d

2
0

2m2
0

+ d0d1

(
− ld0

2
(m1y +m2)−1 +B

)]
(m1y +m2)−1

(3.8.119)

where B and C are arbitrary constants.

φ(y) = −2m1(2−)(m1y+m2)−1− 2d1m
2
0(2k0 + l)(m1y+m2)−2 (3.8.120)

Solutions Quadratic in x

The boundary condition on the piston (3.8.35) suggests that we may seek
solutions of (3.8.22) in the form

z(x, y) = F0(y) +G(y)x+
1
2
H(y)x2. (3.8.121)

Substituting (3.8.121) into (3.8.22) and equating coefficients of x2, x, x0,
etc. to zero, we get the following coupled system of nonlinear ODEs for
F0(y), G(y) and H(y):

H ′′ + [(4− n)H − φ]H ′ + (2− n)H3 − φH2 = 0 (3.8.122)
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G′′ + [(2− n)H − φ]G′ + [(2− n)H2 − φH + 2H ′]G = 0 (3.8.123)

F ′′0 − (nH + φ)F ′0 −
1
2
[φ− (2− n)H]G2 + 2GG′ = 0. (3.8.124)

If we choose φ = 4A0H, where A0 is a constant, Equation (3.8.122) is easily
solved:

H = (C0 +B0y)−1, B0 = −2A0 (3.8.125)

where C0 is a constant.
Equations (3.8.123) and (3.8.124) then yield

G(y) = D0(C0 +B0y)m1 , m1 = −1− 2B−1
0 (3.8.126)

F0(y) =
1
6
D2

0(C0 +B0y)2m1+1 (3.8.127)

where D0 is another arbitrary constant. The solution in the present case
can be written as

z(x, y) = (1/6)D2
0(C0 +B0y)2m1+1 +D0(C0 +B0y)m1x

+(1/2)(C0 +B0y)−1x2. (3.8.128)

The speed of sound and the gas density are now given by

a2 = γ(γ − 1)a2
0{(1/2)D2

0[1 + (1/3)(2n2 + 1)B0](C0 +B0y)2n2

+D0(n2B0 + 1)(C0 +B0y)n2−1x

+(1/2)(1−B0)(C0 +B0y)−2x2} (3.8.129)

ρ =
a2/(γ−1)

γ1/(γ−1)(γ − 1)γ/(γ−1)
(C0 +B0y)4γA0/(γ−1)B0 (3.8.130)

(see (3.8.37) and (3.8.38)).

Solutions by Equation – Splitting

In a rather ad hoc manner we split (3.8.22) into two equations

z2
x − nzy = 0 (3.8.131)

zyy + 2zxzxy − φ(y)
(
zy +

1
2
z2
x

)
= 0. (3.8.132)

We recall that =
γ + 1
2γ

, n =
γ − 1
γ

, and φ(y) =
1
f

df

dy
(see (3.8.23)). We

manipulate (3.8.131) and (3.8.132) to enable us to integrate. We thus get

zyy + 2zxzxy − 21ϕ(y)zy = 0, 1 = 1/2 (3.8.133)
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which may be written as

∂

∂y

(
z2
x −

1
0
zy

)
= 21

f ′(y)
f(y)

zy −
(

1 +
1
0

)
zyy (3.8.134)

where 0 is an arbitrary constant. Taking (3.8.131) into account, (3.8.134)
reduces to

21f
−1f ′zy −

(
1 +

1
0

)
zyy = 0 (3.8.135)

which, on integration twice with respect to y, gives

z = v(x)
∫ y

fα2(t)dt+ w(x), α2 = 2γ/(3γ − 1) (3.8.136)

where v(x) and w(x) are functions of integration. We substitute (3.8.136)
into (3.8.131) to find that

v(x) = (b0x+ b2)2, w(x) = b0b1x
2 + 2b1b2x+ b3. (3.8.137)

The function f(y) is obtained by using (3.8.131), (3.8.136), and (3.8.137):

f(y) =
(

1
2b1
√

0
− 2

√
0Ay

)(−3γ+1)/γ

(3.8.138)

where A is an arbitrary constant. The solution of (3.8.22) may now be
written as

z(x, y) =
1

2A√0
(b0x+ b2)2

(
1

2b1
√

0
− 2

√
0Ay

)−1

+b0b1x2 + 2b1b2x+ b3. (3.8.139)

The equation of state (3.8.8) in the present case becomes

p = (γ − 1)γργ
(

1
2b1
√

0
− 21/2

0 Ay

)−3γ+1

. (3.8.140)

An alternative splitting of (3.8.22) leads to

nzxx + φ(y) = 0 (3.8.141)

zyy + 2zxzxy −
1
n
φ(y)z2

x = 0. (3.8.142)

Equation (3.8.141) integrates immediately to give

z(x, y) = − 1
n

[
1
2
φ(y)x2 + V (y)x+W (y)

]
. (3.8.143)
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To get the functions φ(y), V (y), and W (y), we substitute (3.8.143) into
(3.8.142) and equate coefficients of x2, x, x0 to zero. We get

n2φ′′ − 4nφφ′ + 2φ3 = 0 (3.8.144)

n2V ′′ − 2n
d

dy
(φV ′) + 2φ2V = 0 (3.8.145)

n2W ′′ − 2nV V ′ + φV 2 = 0. (3.8.146)

The system (3.8.144) - (3.8.146) integrates consecutively to give

φ(y) = −γ − 1
γ

β

α+ βy

V (y) = b4(α+ βy)−1 + b5 (3.8.147)

W (y) =
γ

γ − 1

[
b6y + b7 +

b25
β

(α+ βy)[−1 + log(α+ βy)]

− 1
2β
b24(α+ βy)−1

]
(3.8.148)

where b4, b5, b6, and b7 are arbitrary constants. The solution (3.8.143) of
(3.8.22) can now be written as

z(x, y) = − 1
n

{
− γ − 1

2γ
β

α+ βy
x2 + (b4(α+ βy)−1 + b5)x

+
γ

γ − 1

[
(b6y + b7) +

b25
β

(α+ βy)[−1 + log(α+ βy)]

− 1
2β
b24(α+ βy)−1

]}
. (3.8.149)

The equation of state in the present case becomes

p = (γ − 1)γ(α+ βy)1−γργ . (3.8.150)

The main point of finding the whole gamut of solutions for the compli-
cated nonlinear PDE (3.8.22) is to show that even though it seems to have
no apparent symmetries, it admits considerable analysis – by Lie group
transformations, direct similarity approach, method of intermediate inte-
grals, and the ad hoc approach of equation-splitting. The nonlinear ODEs
(3.8.122) - (3.8.124) governing the quadratic form (3.8.121) of the solution
has not been solved generally; it seems difficult to handle analytically. But
even its special cases give rise to a variety of exact solutions of (3.8.22).

Sachdev et al. (1997) also demonstrated the effectiveness of the direct
similarity approach which recovers all the solutions obtained by the classi-
cal Lie group approach. More recently it has been shown that the direct
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approach and the general group theoretic approach do not always lead to
the same results (Ludlow, Clarkson and Bassom (1999)).

Thus, one must explore all methods of solving a nonlinear problem
analytically before resorting to numerical solution and relying upon the
computer-generated numbers alone. However, the latter may give a clue to
what kind of exact or asymptotic solutions one may look for.

Here we have not treated specific shocked solutions, but it is not difficult
to generalise those found earlier by Ustinov (1986). All his solutions are
contained in the large families of solutions reported here.
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Chapter 4

Exact Travelling Wave
Solutions

4.1 Travelling Wave Solutions

1. A wave form which describes waves of permanent shape, that is, waves
that do not change with time, is often written as

u(x, t) = f(x− ct) (4.1.1)

where c > 0 is a constant. This profile or wave has form f(x) at t = 0 and
simply (and bodily) propagates as it is, with speed c to the right. f(x+ ct)
describes a similar wave moving to the left with speed c. It is easy to see
that (4.1.1) is a solution of the first-order linear PDE (often called advection
equation)

ut + cux = 0. (4.1.2)

As we shall see later, in more complicated situations c may depend on u.
Then (4.1.2) describes the well-known phenomenon of shock formation from
a smooth initial profile (see Equation (2.2.10)). The function f is usually
required to hold for all time t, and satisfy some finite boundary conditions
at x = +∞ and x = −∞:

f(+∞, t) = c1, f(−∞, t) = c2, (4.1.3)

where c1 and c2 are finite constants. Not all PDEs may have solutions of
the form (4.1.1) satisfying (4.1.3). The simplest example of this kind is the
diffusion equation

ut = Duxx (4.1.4)

where D is a constant. If we write u = f(η), η = x−ct, then (4.1.4) reduces
to

−cf ′(η)−Df ′′(η) = 0, −∞ < η <∞. (4.1.5)
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Equation (4.1.5) easily integrates to give

f(η) = a+ b exp
(
−cη
D

)
(4.1.6)

where a and b are arbitrary constants.
To satisfy (4.1.3) we must have b = 0. Therefore, there is no nonconstant

travelling wave solution of the diffusion equation (4.1.4): simple diffusion
is unable to transmit information of the present kind over long distances.
As we shall show later, if nonlinear convection and/or reaction kinetics are
coupled with diffusion, meaningful travelling wave solutions do exist.

We shall discuss in the sequel travelling or simple waves for hyperbolic
and diffusive systems. For historical reasons, we first discuss the simple
wave solutions in the context of one-dimensional gasdynamics, which we
shall generalize later to systems of both homogeneous and inhomogeneous
hyperbolic systems.

4.2 Simple Waves in 1-D Gasdynamics

The equations governing compressible flows in one dimension are

ρt + uρx + ρux = 0 (4.2.1)

ut + uux +
1
ρ
px = 0 (4.2.2)

St + uSx = 0 (4.2.3)

where ρ, u, p, and S are density, particle velocity, pressure, and entropy at a
position x and time t. If we assume that no shocks are present and the gas
is homogeneous at some initial time such that S = constant, then (4.2.3)
implies that S is constant at all later times and we have to deal with (4.2.1)

and (4.2.2) along with the relation c2 =
(
∂p

∂ρ

)
S

, giving the square of the

speed of sound. Equation (4.2.2) can then be written as

ut + uux +
c2

ρ
ρx = 0. (4.2.4)

Now we use an argument due originally to Earnshaw (1858). We look for
solutions of (4.2.1) and (4.2.4) in the form p = p(ρ), u = V (ρ); this system
then reduces to

ρt + (V + ρV ′)ρx = 0 (4.2.5)

(ρt + V ρx)V ′ +
c2

ρ
ρx = 0. (4.2.6)

Equations (4.2.5)-(4.2.6) are consistent only if

V ′ = ± c
ρ
. (4.2.7)
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In view of (4.2.7), (4.2.5) becomes

ρt + (V ± c)ρx = 0. (4.2.8)

On using the definition c2(ρ) = γp/ρ = kργ−1 in (4.2.7), where k is a
constant, we get

u = V (ρ) =
∫ ρ

ρ0

c(ρ)
ρ
dρ =

2
γ − 1

[c(ρ)− c0]. (4.2.9)

Using (4.2.9) and the relation between c and ρ above, we arrive at an
exact equation in u alone governing simple wave motions in isentropic 1-D
gasdynamic flows:

ut +
(
c0 +

γ + 1
2

u

)
ux = 0. (4.2.10)

Equation (4.2.10) can be reduced to the form Ut + UUx = 0 by a sim-
ple change of variables (see Section 2.2 for a discussion of (4.2.10)). The
solution of (4.2.10) by the method of characteristics has the implicit form

x = t

(
c0 +

γ + 1
2

u

)
+ f(u) = t(c+ u) + f(u) (4.2.11)

where f(u) is an arbitrary function. A similar solution may be found if
we choose the lower sign in (4.2.7) and (4.2.8). For a given value of u,
we may write (4.2.11) as x = At + B so that u is constant along this line
and, hence, in this sense (4.2.11) represents a travelling wave. We have
(using (4.2.7) and (4.2.8)) two types of waves moving with speeds c−u and
c + u, respectively. Using thermodynamic relations for an isentropic flow
and (4.2.9), we have the corresponding results for other physical variables:

c = c0 ±
1
2
(γ − 1)u (4.2.12)

ρ = ρ0

(
1± 1

2
(γ − 1)u

c0

)2/(γ−1)

(4.2.13)

p = p0

(
1± 1

2
(γ − 1)u

c0

)2γ/(γ−1)

. (4.2.14)

If it is possible to invert the function f(u), we may write (4.2.11) in a more
transparent form:

u = F

[
x− t

(
c0 +

(γ + 1)
2

u

)]
. (4.2.15)

The solution (4.2.15) shows that for the nonlinear PDE (4.2.10), the pro-
file has a wave speed which itself depends on u and is responsible for the
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phenomenon of wave breaking and shock formation. In the special case
f(u) = 0 in (4.2.11), u (and hence c, ρ, and p) are functions of (x/c0t) and
we have a centered simple wave. One could directly find this solution from
the original system (4.2.2) and (4.2.4) by assuming that all the functions
u, p, and ρ depend on the combination (x/c0t) only, that is, seek the self-
similar solution with x/c0t as the similarity variable. It is again not difficult
to see that the travelling wave solutions of the form

u = f(ζ − λτ + c), (4.2.16)

where ζ and τ are variables and λ and c are arbitrary constants, can be
put in a self-similar form by the change of variables

ζ = lnx, τ = ln t, (4.2.17)

and renaming c as − lnA. Then (4.2.16) becomes

u = f
(
ln

x

Atλ

)
= F

( x

Atλ

)
, (4.2.18)

the form F
( x
At

)
of a centered simple wave with λ = 1 being a special case

(see Barenblatt (1979)).
Several physical problems governed by the nonlinear PDE

ut + uux = 0, (4.2.19)

or its generalization ut + unux = 0, may have solutions expressible as
travelling waves or in a self-similar form. Here we consider a simple IVP:

u(x, 0) = 0 if x < 0; u(x, 0) = 1 if x > 0.

For this Riemann problem one may easily draw the characteristic diagram.
As the characteristic relations

dt

1
=
dx

u
=
du

0
(4.2.20)

shows, u is constant along the characteristic
dx

dt
= u. It is clear that the

data u = 1 is carried into the region x > t along the characteristics x = t+x0

issuing from various points x0. Similarly, the value u = 0 is carried along
the lines x = x0 into the region x0 < 0. There is a region 0 < x < t
which remains void of characteristics. This void can be filled by drawing
characteristics, all passing through 0, in the form of a centered fan: x =
ct, 0 < c < 1. Each of these characteristics carries the value u = c along it.
Thus the solution may be made up as
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u(x, t) = 0 if x < 0
u(x, t) =

x

t
if 0 < x/t < 1 (4.2.21)

u(x, t) = 1 if x > t.

The solution (4.2.21) is self-similar, depending on x/t only, and describes
a centered expansion fan or a rarefaction wave, the fan spreading out from
the point x = 0.

Other solutions of (4.2.19) and its generalisations describing flows with
or without shocks may be found in Section 2.5.

4.3 Elementary Nonlinear Diffusive Travel-
ling Waves

We observed in Section 4.1 that the linear diffusion equation (4.1.4) therein
does not support a travelling wave satisfying the end conditions (4.1.3). We
shall now add various nonlinear physical terms to that equation to see how
the situation changes. First, if we put in a nonlinear convection term (see
(4.2.19)), we get the celebrated Burgers equation

ut + uux = Duxx (4.3.1)

which is the simplest equation describing the balance between nonlinear
convection and linear diffusion (see Sachdev (1987) for a formal derivation
of (4.3.1) in the gas dynamic context); the diffusion coefficient D is small
but finite. We seek what are referred to as shock wave solutions of (4.3.1),
assuming values u1, u2 as x→ +∞ and −∞, respectively. Introducing the
travelling wave form u = u(x− Ut) ≡ u(ξ) into (4.3.1), we have

−Uuξ + uuξ = Duξξ. (4.3.2)

Equation (4.3.2) must satisfy the end conditions u→ u1, u2 as ξ → +∞,−∞,
respectively. Integrating this equation once we have

1
2
u2 − Uu+ C = Duξ (4.3.3)

where C is the constant of integration. Imposing the conditions at ξ = ±∞,
we get

1
2
u2

1 − Uu1 =
1
2
u2

2 − Uu2 = −C. (4.3.4)

Equation (4.3.4) yields the constants

U =
1
2
(u1 + u2), C =

1
2
u1u2. (4.3.5)
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Putting (4.3.5) into (4.3.3), we get

(u− u1)(u2 − u) = −2Duξ (4.3.6)

which, on integration, gives

ξ

2D
=

1
u2 − u1

ln
u2 − u

u− u1
. (4.3.7)

On solving (4.3.7) for u, we have

u = u1 +
u2 − u1

1 + exp
[
u2−u1

2D (x− Ut)
] , U =

u1 + u2

2
. (4.3.8)

Equation (4.3.8) describes the structure of a uniformly moving shock with
end conditions u1 and u2, its speed being the average of these values: u =
u1 + u2

2
. The solution (4.3.8), in the terminology of Zel’dovich and Raizer

(1967), is a self-similar solution of the first kind since it becomes fully known
in terms of the data, the end conditions u1 and u2. It is also an intermediate
asymptote to which a class of solutions arising out of a certain special set
of initial conditions with the asymptotically same end conditions converge
as t → ∞. This can be shown with the help of the following example.
Consider the initial conditions

u(x, 0) = f(x) =
{
u1 x > 0
u2 x < 0 (4.3.9)

where u2 > u1. In view of the Cole-Hopf transformation (see Section 6.2),
the conditions for the corresponding transformed (heat) equation become

φ(x, 0) =
{
e−u1x/2D x > 0
e−u2x/2D x < 0.

(4.3.10)

Substituting (4.3.10) in the general solution of the heat equation and using
the Cole-Hopf transformation again, we arrive, after some rearrangement
(see Sachdev (1987), p. 25), at the solution

u = u1 +
u2 − u1

1 +
{
exp

[
u2−u1

2D

(
x− u1+u2

2 t
)]} ∫∞

−(x−u1t) e
−y2/4Dtdy∫∞

x−u2t
e−y2/4Dtdy

. (4.3.11)

If we let t → ∞ in the integrals in (4.3.11) such that u1 < x/t < u2, the
lower limits become large and negative so that the ratio of the integrals
tends to 1. Under this limiting process, the solution (4.3.11) tends to the
travelling wave solution (4.3.8). Here is one set of initial conditions (4.3.9)
subject to which the solution of the Burgers equation (4.3.1) tends in the
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limit t→∞ to the travelling wave solution. This result was more rigorously
proved by Oleinik (1957).

The solution (4.3.8) is referred to as the “Taylor shock structure,” since
it was first derived by G.I. Taylor (1910). This solution plays an important
role in the construction of matched asymptotic solutions for generalised
Burgers equations by Crighton and his collaborators (see Crighton and
Scott (1979), for example).

Instead of the nonlinear convective term, if we add a reaction term to
the linear diffusion equation we get, instead of (4.3.1), the most well-known
reaction-diffusion equation

ut = ku(1− u) +Duxx (4.3.12)

where k and D are positive parameters. Equation (4.3.12) was proposed by
Fisher (1937) as a deterministic model for the spatial spread of a favoured
gene in a population, and is one of the best studied equations for travelling
waves. The most classical paper in this context is that of Kolomogoroff,
Petrovsky, and Piscounoff (1937), who investigated a more general model
with f(u) replacing ku(1− u) but retaining all the properties of the latter
function.

Although (4.3.12) is referred to as the “Fisher’s equation,” there is much
history to it (see Murray (1989)), particularly in the context of chemical
waves.

If we introduce the variables

t∗ = kt, x∗ = x

(
k

D

)1/2

(4.3.13)

into (4.3.12) and omit asterisks, we obtain the equation

ut = u(1− u) + uxx (4.3.14)

without any parameters. In the spatially homogeneous case (uxx = 0),
(4.3.14) has two steady states u = 0, u = 1 which can be shown to be
respectively stable and unstable. Since u > 0 from physical description,
we seek a travelling wave solution of (4.3.14) for which 0 ≤ u ≤ 1. We
seek a travelling wave solution of (4.3.14) over the whole real line; we shall
later discuss how this wave actually arises from a certain class of initial
conditions. Putting

u(x, t) = U(z), z = x− ct (4.3.15)

where c is a real constant, which, for convenience, we choose to be positive.
The wave speed c is unknown at this stage and must be determined from
the analysis. Substituting (4.3.15) into (4.3.14), we have

−cU ′ − U ′′ = U(1− U), ′ =
d

dz
. (4.3.16)
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Equation (4.3.16) cannot be solved in a closed form, but, since it is au-
tonomous, it can be discussed in the phase plane (It also admits consider-
able approximate analysis). Writing (4.3.16) as the system

U ′ = V
V ′ = −cV − U(1− U), (4.3.17)

we immediately observe that it has two critical points in the U-V plane:
P : (0, 0) and Q : (1, 0). Linearising the system (4.3.12) about each point
and finding the corresponding eigenvalues etc. (see Sachdev (1991)), we
find that the eigenvalues of the linear systems are as follows. For P (0, 0),
we have

λ± =
1
2

[
−c± (c2 − 4)1/2

]
, (4.3.18)

therefore, P is a stable node if c2 ≥ 4 and a stable spiral if c2 < 4. The
point Q(1,0) has eigenvalues

λ± =
1
2

[
−c± (c2 + 4)1/2

]
(4.3.19)

and, therefore, is always a saddle point. The phase portrait for c > 2 is
shown in Figure 4.1. It can be seen that the unique separatrix joining the
saddle point Q(1,0) with the node P (0, 0) gives a unique solution. This solu-
tion in the (U, z) plane is shown in Figure 4.2. It is well known (see Sachdev
(1991)) that the independent variable z must tend either to +∞ or −∞ as
the trajectory enters or leaves a critical point. As the direction of the tra-
jectory shows, U → 1 as z → −∞ as the point Q is approached while U → 0
as z → +∞ as the point P is attained. Moreover, U ′ < 0 and tends to 0 as

Figure 4.1. Phase plane trajectories for equation (4.3.16) for the

travelling wave front solution with c2 > 4.
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Figure 4.2. Travelling wave front for equation (4.3.16) where c ≥ 2.

|z| → ∞, thus we have a monotonic solution joining the end points u = 1, 0,
as shown in Figure 4.2.

Since the physical model (describing chemical reaction or population
growth) demands U > 0, the other case c < 2, which gives P as a stable
spiral, leading both to positive and negative values of U , is unrealistic and
is therefore ignored.

As for the travelling wave solution of the Burgers equation, we enquire
what kind of initial conditions for u(x, 0) will evolve to the travelling waves
discussed here. This question was answered by Kolmogoroff et al. (1937):
if u(x, 0) has compact support

u(x, 0) = u0(x) ≥ 0, u0(x) =
{

1 x ≤ x1

0 x ≥ x2
(4.3.20)

where x1 < x2 and u0(x) is continuous in x1 < x < x2, then the solution
u(x, t) of (4.3.14) evolves to a travelling wave front solution U(z) with
z = x−2t, i.e., it evolves to the wave solution with minimum speed cmin = 2.
For initial data other than (4.3.20), the asymptotic (wave) solution depends
critically on the behaviour of u(x, 0) as x→ ±∞.

The critical dependence of the solution on the initial data at infinity can
be seen easily by the following simple argument due to Mollison (1977). At
the leading edge of the wave (x → ∞), the wave amplitude u is small,
therefore the u2 term in (4.3.14) may be neglected and we have the linear
PDE

ut = u+ uxx (4.3.21)

Considering the initial condition

u(x, 0) ∼ Ae−ax as x→ +∞ (4.3.22)

where a,A > 0 are arbitrary, we may easily find a travelling wave solution
of (4.3.21) in the form

u(x, t) = Ae−a(x−ct). (4.3.23)
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The form (4.3.23) satisfies (4.3.21) provided

c = a+
1
a
. (4.3.24)

From (4.3.24) it follows that c as a function of a attains its minimum at
a = 1, i.e., cmin = 2. For all other values of a(> 0) the wave speed c > 2.
Let us consider min[e−ax, e−x] for x large and positive. Two cases arise.
If a < 1, then e−ax > e−x, and the velocity (4.3.24) of propagation with
asymptotic initial conditions like (4.3.22) will depend on the leading edge
of the wave. If, on the other hand, a > 1, then e−ax is bounded above by
e−x (corresponding to a = 1); the wave front speed in this case is c = 2.
To summarise,

c = a+
1
a
, 0 < a ≤ 1; c = 2, a ≥ 1. (4.3.25)

These results have been proved more rigorously by Mckean (1975) and Lar-
son (1978) and have been verified numerically by Manoranjan and Mitchell
(1983).

Equation (4.3.16) admits a rather neat perturbation analysis (Logan
(1994)) based on the fact that c ≥ 2. We seek solution of (4.3.16) over
−∞ < z <∞ with the boundary condition

U(−∞) = 1, U(+∞) = 0. (4.3.26)

Since (4.3.16) is autonomous, if U(z) is a solution, so is U(z + z0). We
translate the solution curve suitably such that

U(0) =
1
2
. (4.3.27)

Now identify the small parameter

ε =
1
c2
. (4.3.28)

In terms of ε, Equation (4.3.16) becomes
√
εU ′′ + U ′ +

√
εU(1− U) = 0. (4.3.29)

To the lowest order (4.3.29) gives U= constant, an appropriate form in the
neighbourhood of z = +∞ or −∞ (see Equation (4.3.26)). To shrink the
infinite domain we introduce the variable

s =
√
εz =

z

c
(4.3.30)

so that the solution has the form

g(s) = U

(
s√
ε

)
. (4.3.31)
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Equation (4.3.29) now becomes

εg′′ + g′ + g(1− g) = 0, ′ =
d

ds
. (4.3.32)

Although (4.3.32) looks like a singular ODE, the last two terms, which
dominate, have the appropriate form for the boundary conditions:

g(−∞) = 1, g(0) =
1
2
, g(+∞) = 0. (4.3.33)

Writing the solution in the (regular) perturbation form

g(s) = g0(s) + εg1(s) + ε2g2(s) + . . . (4.3.34)

and substituting it in (4.3.32) and (4.3.33), we get

g′0 = −g0(1− g0), g0(0) =
1
2
, g0(−∞) = 1, g0(+∞) = 0 (4.3.35)

g′1 = −g1(1− g0) + g′′0 , g1(−∞) = g1(0) = g1(+∞) = 0, etc.

The system (4.3.35) can be solved explicitly:

g0(s) = (1 + es)−1

g1(s) = es(1 + es)−2 ln
4es

(1 + es)2
, etc. (4.3.36)

In terms of the original variable z, we can write

U(z) =
1

1 + ez/c
+

1
c2
ez/c(1 + ez/c)−2 ln

4ez/c

(1 + ez/c)2
+O

(
1
c4

)
. (4.3.37)

The solution (4.3.37) is found to be remarkably accurate even for c = 2 for
all z, for which it is supposed to be least accurate. The first term (1+ez/c)−1

itself is found to be remarkably close to a numerically-computed solution,
even for c = 2 (Logan (1994)).

A similar analysis for (4.3.16) was carried out in the phase plane by
Canosa (1973). He showed that the travelling wave solutions of the Fisher’s
equation are stable to perturbations of compact support, that is, to pertur-
bations which are zero outside a finite domain including the wave front; the
perturbations are also required to be in the moving frame of reference. On
the other hand, the simple solution (4.3.23) for large x also shows that the
speed of propagation of the wavefront solutions depends sensitively on the
explicit behaviour of the initial conditions as |x| → ∞, implying that the
travelling wave solutions are unstable to perturbations in the far field (see
also Sachdev (1987)). Since most of the numerical simulations are carried
out with a finite extent of the initial conditions, and since travelling waves
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of Fisher’s equation are stable to disturbances on finite domains, the large
time solutions of IVP come out to be stable wave front solutions with speed
c = 2.

Fisher’s equation has been generalised in diverse ways. We first consider
a couple of simple generalisations which admit exact solutions (Murray
(1989)). The equation

ut = u(1− uq) + uxx, q > 0 (4.3.38)

is one such extension. Since u = 0 and u = 1 are steady-state solutions of
(4.3.38), we look for its travelling wave solutions

u(x, t) = U(z), z = x− ct, U(−∞) = 1, U(∞) = 0 (4.3.39)

where the wave speed c > 0 must be found as part of the solution. Substi-
tuting (4.3.39) into (4.3.38), we get

U ′′ + cU ′ + U(1− Uq) = 0. (4.3.40)

Equation (4.3.40), like (4.3.16) for the Fisher’s equation, may be studied
in the phase plane. Inspired by the good accuracy of the first term in the
solution (4.3.37) for the Fisher’s equation, we seek a solution of (4.3.40) in
the form

U(z) =
1

(1 + aebz)s
(4.3.41)

where a, b, and s are positive constants to be found. The conditions (4.3.26)
for (4.3.40) are automatically satisfied by (4.3.41). Substituting (4.3.41)
into (4.3.40) we get

(1 + aebz)−s−2
{
[s(s+ 1)b2 − sb(b+ c) + 1]a2e2bz

+[2− sb(b+ c)]aebz + 1− [1 + aebz]2−sq
}
. (4.3.42)

The coefficients of e0, ebz, and e2bz in the curly bracket must identically be
zero. This gives the balances

2− sq = 0, 1 or 2, (4.3.43)

that is,

s =
2
q
,

1
q

or sq = 0. (4.3.44)

Since s and q are positive, sq = 0 is not admissible. Considering s = 1/q,
we have the following coefficients of ebz and e2bz:

ebz : 2− sb(b+ c)− 1 = 0 (4.3.45)
e2bz : s(s+ 1)b2 − sb(b+ c) + 1 = 0. (4.3.46)
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Equations (4.3.45) and (4.3.46) imply that

s(s+ 1)b2 = 0 (4.3.47)

or b = 0 since s > 0. This case also is not possible since we must have
b > 0. If s = 2/q, the coefficients are

ebz : sb(b+ c) = 2
e2bz : s(s+ 1)b2 = 1 (4.3.48)

which together yield

s =
2
q
, b = [s(s+ 1)]−1/2, c =

2
sb
− b. (4.3.49)

In terms of q we have

s =
2
q
, b = q[2(q + 2)]−1/2, c = (q + 4)[2(q + 2)]−1/2, (4.3.50)

the last in (4.3.50) defining the wave speed c uniquely. Let us see what the
special solution (4.3.41) with (4.3.50) reduces to for the special case q = 1,
corresponding to the Fisher’s equation. In this case we get

s = 2, b =
1√
6
, c =

5√
6
. (4.3.51)

The arbitrary constant a in (4.3.41) can be chosen so that z = 0 corresponds
to 1/2; this leads to the value a =

√
2 − 1 and the exact solution (4.3.41)

for the Fisher’s equation becomes

U(z) =
1

[1 + (
√

2− 1)ez/
√

6]2
. (4.3.52)

The expansion solution (4.3.37), in contrast, is so different, although the
first term therein is a good approximation to the exact solution. The wave

speed here is
5√
6
≈ 2.04 in contrast to 2 for (4.3.37). It is not clear what

the role of the special (exact) solution (4.3.52) is in the class describing the
asymptotic character of the solutions of IVPs for the Fisher’s equation.

It is interesting to note (and it may be verified as for (4.3.38)) that

U(z) =
1

(1 + aebz)s
, s =

1
q
, b =

q

(q + 1)1/2
, c = (q + 1)−1/2 (4.3.53)

is an exact solution of the generalised Fisher’s equation

ut = uq+1(1− uq) + uxx. (4.3.54)

©2000 CRC Press LLC



Sherratt and Marchant (1996) have considered the case

ut = uxx + u2(1− u) (4.3.55)

in some detail. They find that the travelling wave solutions of (4.3.55) have
algebraically decaying tails and wavefronts with varying shape and speed.
This was demonstrated mainly by the numerical solution of the appropriate
initial value problem.

We now discuss the model which combines both the above effects, namely
nonlinear convection and simplest reaction, that is, the Burgers-Fisher
equation

ut + kuux = u(1− u) + uxx. (4.3.56)

The parmeteric value k = 0 reduces (4.3.56) to the Fisher equation. We
seek the travelling wave solution of (4.3.56),

u(x, t) = U(z), z = x− ct, (4.3.57)

with c as the wave speed to be determined subject to the boundary condi-
tions as in (4.3.39). Equation (4.3.56) in the variable z reduces to

U ′′ + (c− kU)U ′ + U(1− U) = 0 (4.3.58)

and the boundary conditions become

lim
z→∞

U(z) = 0 lim
z→−∞

U(z) = 1. (4.3.59)

With V = U ′, (4.3.58) in the (U, V ) plane becomes

dV

dU
=
−(c− kU)V − U(1− U)

V
. (4.3.60)

In the present case we look for the relation c = c(k) such that (4.3.56) has
a monotonic solution with 0 ≤ U ≤ 1 and U ′(z) ≤ 0. Usual linear analysis
shows that the condition c ≥ 2 guarantees that (0,0) is a node while (1,0) is
a saddle point. Murray (1977, 1989) has shown that a solution for (4.3.60)
subject to (4.3.59) exists for all c = c(k) where

c(k) =
{

2 2 > k > −∞
k
2 + 2

k 2 ≤ k <∞.
(4.3.61)

We conclude this section by transforming (4.3.56) into a form where the
diffusion term becomes less important. With k > 0, we set

ε =
1
k2
, y =

x

k
= ε1/2x (4.3.62)

so that (4.3.56) becomes

ut + uuy = u(1− u) + εuyy. (4.3.63)
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If u(x, t) is a solution of (4.3.56), then u(ky, t) is a solution of (4.3.63). The
solution U(x − ct) of (4.3.56) satisfying U(−∞) = 1, U(∞) = 0 becomes
the solution U(ky − ct) of (4.3.63) with the wave speed λ = c/k = cε1/2.
Therefore, using the wave speed estimates (4.3.61), we find that (4.3.63)
has travelling wave solutions for all

λ ≥ λ(ε) =
c(k)
k

= c(ε−1/2)ε1/2 (4.3.64)

and so

λ(ε) =
{

2ε1/2 ε > 1
4

1
2 + 2ε 1

4 ≥ ε > 0.
(4.3.65)

In the limit ε→ 0, (4.3.63) becomes

ut + uuy = u(1− u). (4.3.66)

Equation (4.3.66) can develop discontinuous (shock) solutions. For ε small,
although (4.3.63) can develop (steep) shock-like solutions, it does not have
discontinuous travelling wave solutions (see Murray (1989)).

Another generalisation of the Fisher’s equation

ut =
∂

∂x
(D(u)ux) + f(u) (4.3.67)

has attracted much attention; here, typically D(u) = D0u
m and f(u)

= kup(1−uq), whereD0,m, p, and q are positive constants (Murray (1989)).
Here we summarize the results for a special case of (4.3.67), namely

ut = (uux)x + u(1− u) (4.3.68)

(where the coefficients have been suitably scaled out) due to Sherrat and
Marchant (1996) and Rothe (1978). Rothe (1978) proved that if u(x, 0)
decreases with x and tends to 1 as x → −∞, and u(x, 0) = O(e−ξx) as
x → ∞, then the solution tends to a travelling wave as t → ∞; the speed
of the wave is related to the initial conditions as follows:

c =
{

2 if ξ > 1
ξ + 1

ξ if ξ < 1. (4.3.69)

Sherrat and Marchant (1996), with Rothe’s results in view, solved the IVP

u(x, 0) =
{

1 x < 0
e−ξx x > 0 (4.3.70)

numerically. The solution did evolve to a travelling wave for ξ ≥ 2. The

travelling wave speed approaches the value c ≈ 1√
2
, the minimum speed

of the travelling wave solutions, according to their analysis, which have a
sharp front. Unlike Fisher’s equation, (4.3.68) admits both smooth and
sharp-fronted solutions. We recall that sharp-fronted solutions are those
for which ux is discontinuous at some finite point x.
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4.4 Travelling Waves for Higher-Order Diffu-
sive Systems

We consider an example of a fourth-order nonlinear diffusive system which
not only admits travelling waves but other phenomena, including some
chaotic regimes. We follow closely the work of Merkin and Sadiq (1996).
The system

at = DAaxx +mA(a0 − a)− kab2, (4.4.1)
bt = DBbxx + kab2 −mBb, (4.4.2)

describes in plane geometry a flow reactor, where a and b are the concentra-
tions of reactant A and autocatalyst B, and k is a constant. It is assumed
that the reactant A is flowing over the reactor at a constant concentration
a0, with A initially present at the same uniform concentration everywhere
in the reactor. The reaction is then assumed to be initiated by some lo-
cal input of autocatalyst. It is further assumed that the interchange of
reactant A between the flow and the reactor and the loss of autocatalyst
B from the reactor can both be described by linear diffusive mechanisms
with mass-transfer coefficients mA and mB , respectively. Thus, the system
(4.4.1)-(4.4.2) is to be solved subject to the following initial and boundary
conditions:

a = a0 (t = 0,−∞ < x <∞)

b =
{
b0g(x) if |x| < l
0 if |x| > l,

at t = 0 (4.4.3)

a → a0 and b → 0 as |x| → ∞ (t ≥ 0) where a0 and b0 are constants and
g(x) is continuous and differentiable on |x| < l with a maximum value of
unity.

Taking a0, the concentration of A in the flow, as the control variable,
we nondimensionalise (4.4.1)-(4.4.3) according to

a =
a

a0
, b =

b

a0
, t = mAt, x =

(mA

D

)1/2

x (4.4.4)

and drop the bars in the sequel. We get

at = axx + 1− a− µab2 (4.4.5)
bt = bxx + µab2 − φb (4.4.6)

where

µ =
ka2

0

mA
, φ =

mB

mA
(4.4.7)

are the nondimensional parameters. The bifurcation parameter in the fol-
lowing is µ since only this parameter involves a0, the controlling parameter.
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The initial and boundary conditions become

a = 1 (−∞ < x <∞, t = 0) (4.4.8)

b =
{
β0g(x) if |x| < σ
0 if |x| > σ

(t = 0) (4.4.9)

b → 0 and a→ 1 as |x| → ∞(t ≥ 0) (4.4.10)

where β0 = b0/a0 and σ =
(
mAl

2

D

)1/2

are other dimensionless parameters.

The behaviour of the solution is assumed to be symmetric about x = 0; it
suffices, therefore, to discuss the region x > 0, with the symmetry condi-
tions

ax = bx = 0 on x = 0, t > 0. (4.4.11)

Although our main concern is with travelling waves, we also carry out some
other (simple) analysis which throws light on the system (4.4.5)-(4.4.6),
generally. This is quite instructive and may be applied to other systems.

First we discuss the dynamical behaviour of (4.4.5)-(4.4.6) which is spa-
tially homogeneous; we have the ODEs

ȧ = 1− a− µab2, (4.4.12)
ḃ = µab2 − φb, (4.4.13)

in a, b ≥ 0, µ > 0, φ ≥ 0.
The system (4.4.12)-(4.4.13) has the stationary state

as = 1, bs = 0 (4.4.14)

for all values of µ and φ. For φ = 0, a simple balancing argument shows
that the behaviour of (4.4.12)-(4.4.13) for t→∞ is

a ∼ 1
µt2

and b ∼ t. (4.4.15)

For φ > 0, apart from the (trivial) stationary solution (4.4.14), we also have
nontrivial stationary states

b+s =
µ+ (µ2 − 4µφ2)1/2

2µφ
, a+

s =
µ− (µ2 − 4µφ2)1/2

2µ
(4.4.16)

b−s =
µ− (µ2 − 4µφ2)1/2

2µφ
, a−s =

µ+ (µ2 − 4µφ2)1/2

2µ
(4.4.17)

provided µ ≥ 4φ2. Usual linear analysis shows that (4.4.16) is a stable node
for all µ and φ, while (4.4.17) is an (unstable) saddle point for all µ > 4φ2.
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The (local) stability of stationary state (a+
s , b

+
s ) is determined by the

eigenvalues given by

λ2 +
(
µ

φ
b+s − φ

)
λ+ µb+s − 2φ = 0. (4.4.18)

It then follows from (4.4.16) and (4.4.18) that there is a saddle-node bifur-
cation at

µs = 4φ2 (φ > 0) (4.4.19)

and a Hopf bifurcation at

µH =
φ4

φ− 1
(φ > 2) (4.4.20)

with a double-zero-eigenvalue point at

µ = 16, φ = 2. (4.4.21)

Our concern here is not with bifurcation analysis of (4.4.12)-(4.4.13).
Merkin and Sadiq (1996) discuss how two limit cycles are created and sub-
sequently destroyed at the periodic orbit bifurcation.

We now consider the PDE system (4.4.5)-(4.4.6) for the case φ = 0.
The asymptotic form (4.4.15) and the numerical solutions suggest the in-
troduction of the variables

a = A(y, t)/t2, b = tB(y, t), y = x/t. (4.4.22)

Substitution of (4.4.22) into (4.4.5)-(4.4.6) and expansion in inverse powers
of t leads to the asymptotic solution

A =
1

µ(1− c0y)2
− 2c1t−1

µ(1− c0y)2
+ . . . (4.4.23)

B = (1− c0y) + c1t
−1 + . . . (4.4.24)

with constants c0 and c1 to be determined. The solution (4.4.23)-(4.4.24)

does not hold near x = 0; it becomes singular at y =
1
c0

, i.e., x =
t

c0
. To

consider that domain, we write, using a balancing argument again, the
solution as

a = f(η, t)/t2, b = tg(η, t), η = x/t1/2. (4.4.25)

The functions f and g may be expanded in the form

f(η, t) = f0(η) + t−1/2f1(η) + . . . (4.4.26)
g(η, t) = g0(η) + t−1/2f1(η) + . . . (4.4.27)
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The resulting equations must be solved and matched with (4.4.23) and
(4.4.24) for η →∞, that is,

f ∼ 1
µ

(1 + 2c0ηt−1/2 + . . .), (4.4.28)

g ∼ 1− c0ηt
−1/2 + . . . , (4.4.29)

as η →∞. After all the details are worked out, the result is

g0 = 1, f0 =
1
µ
, (4.4.30)

g1 =
c0
π1/2

(
η

∫ ∞

η

exp
(
−1

4
s2
)
ds− 2 exp

(
−1

4
η2

)
− ηπ1/4

)
, (4.4.31)

f1 = − 2
µ
g1. (4.4.32)

Equations (4.4.25)-(4.4.32) give

a(0, t) ∼ 1
µt2

(
1− 4c0

π1/2
t−1/2 + . . .

)
(4.4.33)

b(0, t) ∼ t

(
1− 2c0

π1/2
t−1/2 + . . .

)
(4.4.34)

as t→∞.
To determine the constant c0, we must consider the solution in the

reaction-diffusion front, x ∼ t/c0. For this purpose, we introduce the mov-
ing coordinate

ξ = x− t/c0 (4.4.35)

leaving a and b unscaled. The system (4.4.5)-(4.4.6) (with φ = 0) reduces
to

a′′ + c−1
0 a′ + 1− a− µab2 = 0, (4.4.36)

b′′ + c−1
0 b′ + µab2 = 0, (4.4.37)

where ′ ≡ d

dξ
. The system (4.4.36)-(4.4.37) must be solved subject to the

conditions
a→ 1 and b→ 0 as ξ →∞ (4.4.38)

and matched with (4.4.23), that is,

a ∼ 1
µc20ξ

2
+ . . . and b ∼ −c0ξ + . . . as ξ → −∞. (4.4.39)

This would determine the wave speed c−1
0 .
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It is clear from (4.4.39) that this form will not be accurate for small
µ. For this case µ one must solve (4.4.36)-(4.4.39) in a different manner.
Writing

b = µ−1/2b̄, c0 = µ−1/4c̄0, ξ̄ = µ1/4ξ, (4.4.40)

(4.4.36)-(4.4.37) reduce to

1− a− ab̄2 + µ1/2(a′′ − (c̄0)−1a′) = 0 (4.4.41)

b̄′′ + c̄−1
0 b̄

′
+ ab̄2 = 0. (4.4.42)

To leading order, (4.4.41) gives a = 1/(1 + b̄2), which, on substitution in
(4.4.42), leads to

b̄′′ + c−1
0 b̄′ +

b̄2

1 + b̄2
= 0. (4.4.43)

Equation (4.4.43) must be solved subject to

b̄→ 0 as ξ̄ →∞, b̄ ∼ −c̄0ξ̄ as ξ̄ → −∞. (4.4.44)

The numerical solution of (4.4.43)-(4.4.44) gives c̄0 = 0.9239. Thus,

c−1
0 ∼ 1.0824µ1/4 + . . . as µ→ 0. (4.4.45)

This expression agrees well with the numerical solution and also shows the
singular nature of the solution for µ→ 0.

Merkin and Sadiq (1996) also give some qualitative results for the gen-
eral case φ > 0. Now we turn to our main concern, namely the travelling
wave solutions of (4.4.5)-(4.4.6). Merkin and Sadiq (1996) call a subset of
this class “permanent-form travelling waves:” these are nonnegative, non-
trivial solutions to the ODEs

a′′ + va′ + 1− a− µab2 = 0 (4.4.46)
b′′ + vb′ + µab2 − φb = 0 (4.4.47)

obtained from (4.4.5)-(4.4.6) by writing y = x− vt as the only independent
variable. The accent in (4.4.46)-(4.4.47) denotes derivative with respect to
y. The boundary conditions at the front of the wave are

a→ 1, b→ 0 as y →∞, (4.4.48)

while at the rear there are two possibilities:

a→ a+
s and b→ b+s as y → −∞ (4.4.49)

or
a→ a−s and b→ 0 as y → −∞. (4.4.50)

We shall have to examine which of the BCs are applicable in different para-
metric regimes. The conditions (4.4.49) are applicable only when µ ≥ 4φ2
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(see the statement following (4.4.17)). The boundary conditions (4.4.48)-
(4.4.49) would give a front wave, joining the initial unreacted state to the
fully reacted, nontrivial state (a+

s , b
+
s ). With the BC (4.4.50), the system

returns to its unreacted state (1,0) behind a propagating nonzero reaction-
diffusion event. This kind of wave is called a “pulse” (or a “single hump”).

We consider the special case with φ = 1 in (4.4.47) in some detail,
since it is relatively simple, and is reflective of results for general φ. In
this case, if we add (4.4.46) and (4.4.47), we easily conclude that the only
solution which satisfies (4.4.48) and either (4.4.49) or (4.4.50) has a+b = 1.
Eliminating a from (4.4.47) with the help of this relation we get

b′′ + vb′ + µb2(1− b)− b = 0, (4.4.51)

which must satisfy (4.4.48). Multiplying (4.4.51) by b′, integrating and
applying the condition (4.4.48), we get

b′
2 − 2v

∫ ∞

y

b′
2
dy +

b2

6
[µ(4b− 3b2)− 6] = 0. (4.4.52)

For (4.4.52) to satisfy b′ → 0 as y → −∞, we must have v = 0. And then

b→ b+s =
µ+ (µ2 − 4µ)1/2

2µ
as y → −∞ (4.4.53)

requiring that µ ≥ 4. This shows that only front waves are possible. In the
limit y → −∞, (4.4.52) gives

v

∫ ∞

−∞
b′2dy =

(b+s )2

12
[µ− 6 + (µ2 − 4µ)1/2] ≥ 0. (4.4.54)

For the RHS of (4.4.54) to be positive, we must have

µ ≥ 9
2
. (4.4.55)

Besides φ = 1, we must have µ ≥ 9/2 for a front wave to emerge as a
long-time solution of the initial value problem (4.4.5)-(4.4.11).

To get an idea of the solution for µ > 9/2, we write

µ =
9
2

+ δ (0 < δ << 1) (4.4.56)

b(y; δ) = b0(y) + δb1(y) + δ2b2(y) + . . . , v = v1δ + . . . (4.4.57)

Equation (4.4.51) then gives

b0(y) =
2e−y

1 + 3e−y
(4.4.58)
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to leading order. Equation (4.4.58) shows that b0 → 0 as y → ∞ and

b0 →
2
3

as y → −∞ (see (4.4.53)). At O(δ) we get

b
′′

1 +
[
9
2
(2b0 − 3b20)− 1

]
b1 = −v1b′0 − b20(1− b0) (4.4.59)

subject to

b1 → 0 as y →∞, b1 →
4
27

as y → −∞, (4.4.60)

the latter by putting (4.4.56) into (4.4.53), etc. We observe that b′0 is a
complementary solution of (4.4.59) satisfying homogeneous boundary con-
ditions; a solution can be obtained only by meeting a compatibility condi-
tion. This gives v1 = 2/3.

The above analysis is based on regular perturbation technique. Al-
though (4.4.51) also admits solution for negative value of v, these do not
appear as long-time solutions to initial value problems, as demonstrated by
the numerical solution.

Numerical solution of (4.4.51) shows that a solution exists with v > 0
for all µ > 9/2.

For general values of φ, both pulse waves and front waves exist for dif-
ferent sets of (φ, µ). About the pulse wave, the general result is that they
will be formed when µ = O(φ) for large φ. Pulse waves do not seem to exist
for smaller values of φ(≤ 3). The discussion of ODEs governing permanent
waves is supplemented by Merkin and Sadiq (1996) by the numerical solu-
tions of IVP for original PDE to determine which kind of travelling waves
finally emerge as large-time asymptotics. This treatment also reveals the
possibility of a stable travelling wave propagating through the system, leav-
ing behind a temporally unstable stationary state: under these conditions,
spatiotemporal chaotic behaviour is seen to develop after the passage of the
wave.

4.5 Simple Wave Flows in Multidimensional
Systems of Homogeneous Partial Differ-
ential Equations

The following discussion is due to Schindler (1970), specifically directed to
multidimensional gas flows, although the argument goes through for other
nonlinear homogeneous and autonomous systems of PDEs. It generalises
the 1-dimensional case discussed in Section 4.2.

The system governing n-dimensional gas flows in a nonviscous, noncon-
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ducting compressible medium is

ρt +
n∑
j=1

(ρuj)xj
= 0 (4.5.1)

ρ

(ui)t +
n∑
j=1

uj(ui)xj

+ pxi
= 0, i = 1, 2, · · · , n (4.5.2)

St +
n∑
j=1

ujSxj
= 0 (4.5.3)

S = S(pρ−γ). (4.5.4)

Here, p and ρ are pressure and density, respectively, at the spatial point
(x1, · · · , xn) and time t. u1, · · · , un are components of the particle velocity.
S is the specific entropy, a function of the combination pρ−γ of pressure
and density; γ is the ratio of specific heats.

Generalising the argument of Section 4.1, we let the (n+ 2) dependent
variables p, ρ, ui, · · · , un be functions of one generating function
q = q(x1, · · · , xn, t):

p = P (q) (4.5.5)
ρ = Ω(q) (4.5.6)
ui = Ui(q). (4.5.7)

Putting (4.5.5)-(4.5.7) into (4.5.1)-(4.5.3), we get a linear homogeneous
algebraic system in the (n+ 1) derivatives qt, qxi

, i = 1, 2, · · · , n:

Ω′qt +
n∑
j=1

(ΩUj)′qxj
= 0 (4.5.8)

ΩU ′i

qt +
n∑
j=1

Ujqxj

+ P ′qxi
= 0, i = 1, 2, · · · , n (4.5.9)

[
P ′ − γP

Ω
Ω′
]qt +

n∑
j=1

Ujqxj

 = 0. (4.5.10)

The prime in the above denotes differentiation with respect to q. The second
factor in (4.5.10) gives a constant flow and is therefore of no interest. The
first factor, on integration, gives an isentropic flow:

PΩ−γ = pρ−γ = p0ρ
−γ
0 = constant. (4.5.11)

(In Section 4.1, for historical reasons, we had assumed the one-dimensional
flow to be isentropic. Here, isentropy follows from the analysis.) We
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rewrite (4.5.8)-(4.5.9) to make the form of algebraic system in qt and
qxi
, i = 1, 2, · · · , n more explicit:

Ω′qt +
n∑
j=1

(
ΩU ′j + Ω′Uj

)
qxj

= 0 (4.5.12)

ΩU ′iqt +
n∑
j=1

(ΩU ′iUj + δijP
′) qxj

= 0 (4.5.13)

where δij is Kronecker’s delta. The homogeneous algebraic system (4.5.12)
-(4.5.13) for the derivatives of q has a nontrivial solution only if the deter-
minant of coefficient matrix vanishes identically:

Dn+1 =

∣∣∣∣∣∣∣∣∣∣
Ω′ ΩU ′1 + Ω′U1 ΩU ′2 + Ω′U2 · · · (ΩU ′n + Ω′Un)

ΩU ′1 (ΩU ′1U1 + P ′) ΩU ′1U2 · · · ΩU ′1Un
ΩU ′2 ΩU ′2U1 · · · · · · · · ·
· · · · · · · · · · · · · · ·

ΩU ′n ΩU ′nU1 · · · · · · Ω(U ′nUn + P ′)

∣∣∣∣∣∣∣∣∣∣
= 0

(4.5.14)
There is considerable algebra in simplifying Dn+1. One may multiply the
first column by Uk and subtract the same from the (k + 1)st column, k =
1, · · ·n. Then, Dn+1 is obtained in a symmetrical form:

Dn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ω′ ΩU ′1 ΩU ′2 · · · ΩU ′n
ΩU ′1 P ′

ΩU ′2
. . . 0

· · · 0
. . .

ΩU ′n P ′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (4.5.15)

Multiplying the first row by P ′ and subtracting from it ΩU ′n times the last
row, we have

Dn+1 =
1
P ′
·

∣∣∣∣∣∣∣∣∣∣

Ω′P ′ − Ω2U ′2n ΩP ′U ′1 . . . ΩP ′U ′n−1

ΩU ′1 P ′ 0
...

. . .

ΩU ′n 0 P ′

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

Ω′P ′ − Ω2U ′2n ΩP ′U ′1 . . . ΩP ′U ′n−1

ΩU ′1 P ′
. . . 0

...
. . .

ΩU ′n−1 0 P ′

∣∣∣∣∣∣∣∣∣∣∣
= 0 (4.5.16)
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Applying this procedure n− 1 times, we can arrive at the result

Dn+1 = (P ′)n−1

Ω′P ′ − Ω2
n∑
j=1

(U ′j)
2

 = 0. (4.5.17)

If the condition (4.5.17) is satisfied, the system (4.5.12)-(4.5.13) can be
solved for derivatives of q provided the matrix of coefficients has rank n.
For example, the determinant obtained from Dn+1 in (4.5.14) by crossing
out the first row and the first column, namely

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣

ΩU ′1U1 + P ′ ΩU ′1U2 ΩU ′1U3 · · · ΩU ′1Un

ΩU ′2U1 (ΩU ′2U2 + P ′) ΩU ′2U3 · · · ΩU ′2Un
...

...
. . .

ΩU ′nU1 · · · (ΩU ′nUn + P ′)

∣∣∣∣∣∣∣∣∣∣∣∣
,

(4.5.18)
after considerable manipulation, becomes

∆n = P ′∆n−1. (4.5.19)

Repeating this reduction procedure n− 2 times, we get

∆n = (P ′)n−1

Ω
n∑
j=1

UjU
′
j + P ′

 . (4.5.20)

The case P ′ = 0 is clearly inadmissible since it leads to constant pressure
and density. The other factor

G = Ω
n∑
j=1

UjU
′
j + P ′

= Ω
d

dq

1
2

n∑
j=1

U2
j +

γ

γ − 1
P

Ω

 (4.5.21)

in view of (4.5.11). For G = 0, we must have

1
2

n∑
j=1

U2
j +

γ

γ − 1
P

Ω
= constant. (4.5.22)

Equation (4.5.22) expresses Bernoulli’s law for steady flow of a poly-
tropic gas, which, in general, will not hold for an unsteady flow. Therefore,
G 6= 0, and, hence, ∆n 6= 0 generally for the flows that we consider. After
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further manipulation (Schindler (1970)), the system (4.5.9) can be solved

for
∂q

∂xi
in terms of

∂q

∂t
. For example,

∂q

∂x1
= − ΩU ′1

Ω
∑n
j=1 UjU

′
j + P ′

· ∂q
∂t
. (4.5.23)

The same formula holds for
∂q

∂xi
, i = 2, · · · , n if the subscript 1 in (4.5.23)

is replaced by i. The system of PDEs (4.5.8)-(4.5.10) reduces toΩ
n∑
j=1

UjU
′
j + P ′

 ∂q

∂xi
+ ΩU ′i

∂q

∂t
= 0, i = 1, · · · , n. (4.5.24)

Equation (4.5.24) must hold along with the isentropy condition (4.5.11) and
the necessary condition in (4.5.17):

P = p0

(
Ω
ρ0

)γ
(4.5.25)

Ω′P ′ − Ω2
n∑
j=1

(U ′j)
2 = 0. (4.5.26)

Introducing the new variable (a nondimensional sound speed)

q =
[
Ω(q)
ρ0

](γ−1)/2

=
[
P (q)
p0

](γ−1)/2γ

=
1
c0

[
γP (q)
Ω(q)

]1/2
, (4.5.27)

where

c20 =
γp0

ρ0
, (4.5.28)

Ui(q) = U i(q) (4.5.29)

and equivalent expressions for the derivatives, we find that

dq

dq
=
(
γ − 1

2

)
1
c20

1
q̄

P ′(q)
Ω(q)

=
(
γ − 1
2c0

)[
Ω′(q)P ′(q)

Ω2(q)

]1/2
(4.5.30)

and, hence, (4.5.24)-(4.5.26) can be written as

Ω


 n∑
j=1

U j
dU j
dq

+
(

2
γ − 1

)
c20q

 ∂q

∂xi
+
dU i
dq

∂q

∂t

 = 0, i = 1, · · · , n

P = p0q
(2γ)/(γ−1)

Ω = ρ0q
2/(γ−1) (4.5.31)

Ω2

(
dq

dq

)2

(

2c0
γ − 1

)2

−
n∑
j=1

(
dU j
dq

)2
 = 0.
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Suppressing the bar, Equations (4.5.31) may be rewritten as n∑
j=1

UjU
′
j +

(
2

γ − 1

)
c20q

 ∂q

∂xi
+ U ′i

∂q

∂t
= 0, i = 1, · · · , n

P = p0q
(2γ)/(γ−1)

Ω = ρ0q
2/(γ−1) (4.5.32)

n∑
j=1

(U ′j)
2 =

(
2c0
γ − 1

)2

where

q =
(
c

c0

)
=

1
c0

[
γP

Ω

]1/2
=

1
c0

(
γp

ρ

)1/2

.

The first of (4.5.32) is a quasilinear system of equations for q which
do not involve xi or t in their coefficients. Hence, the complete integral is
linear in these variables. Thus, we may write the solution for q as n∑

j=1

Uj(q)U ′j(q) +
2

γ − 1
c20q

 t− n∑
j=1

U ′j(q)xj = A(q) (4.5.33)

where A(q) is an arbitrary function of q. We can finally write the simple
wave solutions of the original n-dimensional system of gasdynamic equa-
tions as

p = P (q) = p0q
(2γ)/(γ−1) (4.5.34)

ρ = Ω(q) = ρ0q
2(γ−1) (4.5.35)

ui = Ui(q), i = 1, · · · , n (4.5.36)
n∑
j=1

[
U ′j(q)

]2 =
(

2c0
γ − 1

)2

(4.5.37) n∑
j=1

Uj(q)U ′j(q) +
2

γ − 1
c20q

 t− n∑
j=1

U ′j(q)xj = A(q). (4.5.38)

The number of arbitrary functions of q in (4.5.34)-(4.5.38) is n, namely
Uj(q), j = 1, · · ·n, subject to the constraint (4.5.37), and A(q). Specific
flow problems may be solved with information in hand.

Schindler (1970) considered some general properties of the solution
(4.5.34)-(4.5.38). For example, the surface of constant q are (n − 1) di-
mensional planes (4.5.38) moving in the n-dimensional space. This puts a
restriction on the types of flows one may consider. There are several gas-
dynamic applications appended to this work, but they are not particularly
relevant to our discussion here.
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4.6 Travelling Waves for Nonhomogeneous Hy-
perbolic or Dispersive Systems

The systems of nonlinear PDEs describing physical problems, particularly
in geophysics, have (unlike the homogeneous systems developed in Section
4.5) some inhomogeneous term(s) on the right-hand sides arising from ex-
ternal forces such as gravity and frictional effects.

One such system was first considered by Seshadri and Sachdev (1977)
where travelling waves (or quasi-simple waves as these were denominated
to contrast them with simple waves) were considered in an undisturbed
isothermal atmosphere. The system of PDEs governing this phenomenon,
like that in Section 4.4, is autonomous, that is, it does not explicitly involve
independent variables in its coefficients. This work was developed more
systematically by Sachdev and Gupta (1990), where an approach similar
to that of Schindler (1970) not only helped to reduce the systems of PDEs
to those of ODEs, but also yielded first integrals when they existed. We
consider two examples to illustrate this method: the travelling acoustic
gravity waves in an isothermal atmosphere, and hydromagnetic travelling
waves in the following section.

Exact travelling waves in an isothermal atmosphere

For such an atmosphere, the basic equation governing an inviscid compress-
ible flow under gravity are

ρt + uρx + wρz + ρ(ux + wz) = 0 (4.6.1)

ut + uux + wuz +
1
ρ
px = 0 (4.6.2)

wt + uwx + wwz +
1
ρ
pz + g = 0 (4.6.3)

pt + upx + wpz + γp(ux + wz) = 0. (4.6.4)

Here, u and w are fluid velocity components in the horizontal (x) and
vertical (z) directions, respectively; p is the pressure, ρ is the density, and
γ is the ratio of specific heats. g is the acceleration due to gravity.

We first render the system (4.6.1)-(4.6.4) nondimensional by introducing
the capital variables

X =
x

H
, Z =

z

H
, T = (g/H)1/2t,

U =
u

(gH)1/2
, W =

w

(gh)1/2
,

P =
p

p0e−z/H
, R =

ρ

ρ0e−z/H
, (4.6.5)

γp0

ρ0
= c20 = γgH.
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The nondimensionalising of P and R also scales out exponentially de-
creasing pressure and density in the undisturbed atmosphere where p =
p0e

−z/H , ρ = ρ0e
−z/H .

The new system of PDEs is

UT + UUX +WUZ +
1
R
PX = 0 (4.6.6)

WT + UWX +WWZ +
1
R
PZ +

(
1− P

R

)
= 0 (4.6.7)

PT + UPX +WPZ + γPUX + γPWZ −WP = 0 (4.6.8)
RT + URX +WRZ +RUX +RWZ −WR = 0. (4.6.9)

We seek solutions of the system (4.6.6)-(4.6.9) which depend only on a
function φ = φ(X,Z, T ), which itself must be determined. In terms of φ,
the system (4.6.6)-(4.6.9) becomes

UφφT + UUφφX +WUφφZ +
1
R
PφφX = 0 (4.6.10)

WφφT + UWφφX +WWφφZ +
1
R
PφφZ =

P

R
− 1 (4.6.11)

PφφT + UPφφX +WPφφZ + γPUφφX + γPWφφZ = WP (4.6.12)
RφφT + URφφX +WRφφZ +RUφφX +RWφφZ = WR (4.6.13)

where suffixes denote partial derivatives. To determine the form of φ(X,Z, T )
we treat (4.6.10)-(4.6.13) as a system of four inhomogeneous algebraic equa-
tions for the derivatives φT , φX , and φZ . Considering any three of these,
say, (4.6.10), (4.6.12), and (4.6.13), the determinant of the associated ma-
trix, namely

Det = WφPφ(γPRφ −RPφ)/R, (4.6.14)

is not zero except when either the flow is isentropic or W and P (and
similarly R) are constants. Disallowing these cases, we solve the system
(4.6.10)-(4.6.13) and find that the derivatives are functions of φ only:

φT = φT (φ), φX = φX(φ), φZ = φZ(φ). (4.6.15)

Since φTX = φXT etc., we get

dφT
dφ

φX =
dφX
dφ

φT

dφT
dφ

φZ =
dφZ
dφ

φT .
(4.6.16)

Treating each of (4.6.16) as a PDE for φ(X,Z, T ), we conclude that the
general solution for φ is

φ = λ0T + λ1X + λ2Z (4.6.17)
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where λ0, λ1, and λ2 are arbitrary constants. Substituting for φ from
(4.6.17) into (4.6.10)-(4.6.13), we get the following system of algebraic equa-
tions for the derivatives,

Aij
dUj
dφ

= Bi (i, j = 1, 2, 3, 4), (4.6.18)

where the matrices in (4.6.18) are

U =


U
W
R
P

 , A =


δ 0 0 λ1/R
0 δ 0 λ2/R
λ1R λ2R δ 0
γλ1P γλ2P 0 δ

 (4.6.19)

B =


0
P
R − 1
WR
WP

 ,
and

δ = λ0 + λ1U + λ2W. (4.6.20)

The basic idea of the present approach is that we may consider (4.6.18)
as a linear inhomogeneous algebraic system in dUj/dφ, j = 1, 2, 3, 4. If the
determinant of coefficient matrix, |Aij |, is nonzero, we may uniquely solve

for the coefficients
dUj
dφ

. If, however, |Aij | = 0, the system (4.6.18) has a

rank less than 4 and we must use the Kronecker-Capelli theorem, namely
that the system (4.6.18) is consistent if the rank of the matrix A is equal to
that of the augmented matrix [A,B]. The system does not have a solution
if the rank of A is less than that of [A,B].

The following cases arise

(a) First of all, it may be checked that the conditions for the coefficient
matrix Aij to be of maximum rank are

δ 6=

{
0
ε
(
γnPR

)1/2 , ε = ±1, n = (λ2
1 + λ2

2)
1/2 (4.6.21)

(see (4.6.20) for the definition of δ).

For Aij to be of rank 3, one of the following sets of conditions must
be satisfied:

(b) δ = ε

(
γn
P

R

)1/2

and Wδ = γλ2

(
P

R
− 1
)
, (4.6.22)

(c) δ = 0 and
dP

dφ
6= 0 (4.6.23)
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(d) δ = 0 and
dP

dφ
= 0, R = P (4.6.24)

We discuss each of these cases separately.

(a) δ 6= 0 or ε

(
γn
P

R

)1/2

; ε = ±1;n =
(
λ2

1 + λ2
2

)1/2
.

In this case, solving the system (4.6.18) for (Uj)φ, j = 1, 2, 3, 4, we get

dU

dφ
= −λ1

P/R

δ(δ2 − γnP/R)

[
γλ2

(
1− P

R

)
+Wδ

]
(4.6.25)

dW

dφ
=

1
δ(δ2 − γnP/R)

[(
1− P

R

)(
γλ2

1

P

R
− δ2

)
− λ2Wδ

P

R

]
(4.6.26)

d logR
dφ

=
1

δ(δ2 − γnP/R)

[
Wδ2 + λ2δ

(
1− P

R

)
− (γ − 1)nW

P

R

]
(4.6.27)

d logP
dφ

=
1

(δ2 − γnP/R)

[
Wδ + γλ2

(
1− P

R

)]
. (4.6.28)

Introducing K =
P

R
, essentially the sound speed square, and suitably

combining (4.6.27) and (4.6.28), we get

d logK
dφ

=
γ − 1

δ(δ2 − γnK)
[nKW + λ2δ(1−K)]. (4.6.29)

Manipulating (4.6.25), (4.6.26), and (4.6.29), we get the intermediate
integral

δK1/(γ−1) = const = −σ, say, (4.6.30)

where σ is positive. Now using (4.6.30) in (4.6.26) and dividing the resulting
equation by (4.6.29), we get a first-order equation in the W −K plane:

dW

dK
= [λ2σWK1−1/(γ−1) + (1−K)(λ2

1γK − σ2K−2/(γ−1)]

×{(γ − 1)K[nWK + λ2σ(K − 1)K−1/(γ−1)]}−1. (4.6.31)

Equation (4.6.31) has the following singular points:

(i) W = 0, K = 1 (4.6.32)
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(ii) K ≡ Kb =
(
σ2

γn

)(γ−1)/(γ+1)

,

W = Wb ≡ (1−Kb)(σK
−1/(γ−1)
b )

(
nKb

λ2

)−1

. (4.6.33)

The points (i)-(ii) coincide when Kb = 1.
A rather complete W − K phase plane study of (4.6.31) was carried

out by Seshadri and Sachdev (1977), wherein the parameter σ2/γn plays a
crucial role. Not unexpectedly, it was shown that (since basically the system
in the linearized form is dispersive) no shock solutions are possible. For
σ2λ1

γ
< 1 and λ2 → 0, there exist periodic waves propagating horizontally

with an arbitrary speed λ1.

(b) δ = ε(γnP/R)1/2,Wδ = γλ2(P/R− 1)

Combining the conditions (4.6.22) with (4.6.6)-(4.6.8), we have

dK

dφ
=

(γ − 1)K
γ

[
d logP
dφ

− λ2

γn
(γ − 1)(K − 1)

]
. (4.6.34)

On differentiating the second of (4.6.22), we get

dW

dφ
=
γλ2

2
(K + 1)
Kδ

dK

dφ
. (4.6.35)

Equation (4.6.11), on use of (4.6.35), gives

d logP
dφ

=
1

λ2K

[
K − 1− γλ2(K + 1)

2K
dK

dφ

]
(4.6.36)

or, equivalently via (4.6.34),

dK

dφ
=
IK(K − 1)
(1 +KJ)

(4.6.37)

where

I =
2λ2

1

γnλ2
, J =

γ + 1
γ − 1

. (4.6.38)

Using (4.6.37) in (4.6.10), (4.6.35), (4.6.36), and (4.6.12), we get the system

dU

dφ
= −λ1ψ

ε

K − 1
(γnK)1/2

1 + θK

1 + JK
(4.6.39)

dW

dφ
=

λ2
1

ε

K2 − 1
(γn2K)1/2

1
1 + JK

(4.6.40)

d

dφ
logR =

K − 1
1 + JK

[
(1 + θK)

ψ

K
− I

]
(4.6.41)

d logP
dφ

=
(K − 1)ψ

K

1 + θK

1 + JK
(4.6.42)
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where

ψ =
λ2

n
and θ =

2λ2
1

λ2
2

+ J. (4.6.43)

The special solution of the system (4.6.39)-(4.6.43), namely, K = 1 and
U,W,R, and P constants, represents an isothermal atmosphere moving
with a constant speed.

For K 6= 1, we can rewrite the system (4.6.39)-(4.6.43) as

dU

dK
= − 1

2ε

( γ

nK3

)1/2 λ2
2

λ1
(1 + θK) (4.6.44)

dW

dK
=

λ2

2ε

( γ

nK2

)1/2

(1 +K) (4.6.45)

d

dK
logR =

1
IK

[
(1 + θK)

ψ

K
− I

]
(4.6.46)

d

dK
logP =

ψ

IK2
(1 + θK). (4.6.47)

The system (4.6.44)-(4.6.47) can be explicitly integrated in terms of K:

U =
1
ε

( γ

nK

)1/2 λ2
2

λ1
[θK + (1− θ)K1/2 − 1] (4.6.48)

W =
λ2

ε

( γ

nK

)1/2

(K − 1) (4.6.49)

R = exp
[
ψ

I

(
1− 1

K

)]
K(θψ/I)−1 (4.6.50)

P = exp
[
ψ

I

(
1− 1

K

)]
Kθψ/I . (4.6.51)

The solution (4.6.48)-(4.6.50) satisfies the initial conditions U = W = 0,
P = R = 1 (see Equation (4.6.5)) pertaining to a quiescant isothermal
atmosphere. To find the distribution of K (and hence of other variables)
with respect to φ, we put K = 1 + ξ in (4.6.37) and obtain

dξ

dφ
=
γ − 1
λ2n

(
λ1

γ

)2
ξ(1 + ξ)

1 + (γ + 1)/2γ
(4.6.52)

which integrates to yield

(K + 1)K(1−γ)/(2γ) = C1 exp(Cφ) (4.6.53)

where C1 is the constant of integration and

C =
γ − 1
λ2n

(
λ1

γ

)2

. (4.6.54)
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It is easy to check from (4.6.37) and its solution (4.6.53) that K has a
monotonic behaviour and joins the equilibrium states K = 1 and K = 0
corresponding to φ = −∞ and φ = +∞, respectively, provided C > 0. The
transition between these states is described by (4.6.52).

(c) δ = 0 and
dP

dφ
6= 0.

In this case, the solution of the system is easily found to be

U = U(φ), W = −λ0

λ2
, R = P − λ2

dP

dφ
, P = P (φ), (4.6.55)

provided that γ = 1. Here, U(φ) and P (φ) are arbitrary functions of

φ = λ0T + λ2Z. (4.6.56)

In terms of the original variables, we can write (4.6.55) as

u = (gH)1/2U(φ), w = −λ0

λ2
(gH)1/2, p = p0e

−z/HP (φ),

ρ = − λ2

gH

dP

dφ
, γ = 1 (4.6.57)

where

φ = λ0

( g
H

)1/2

t+
λ2

H
Z. (4.6.58)

If, for example, we let P (φ) = sinφ, then p = p0e
−z/H sinφ and

ρ = ρ0e
−z/H

[
cosφ− 1

λ2
sinφ

]
. This solution describes the propagation of

acoustic gravity waves in an isothermal atmosphere with constant vertical
velocity equal to (−λ0/λ2)(gH)1/2 and a variable horizontal velocity equal
to (gH)1/2U(φ). The pressure and density distribution are p0e

−z/H sinφ
and ρ0e

−z/H [cosφ− 1
λ2

sinφ], respectively.

(d) δ = 0,
dP

dφ
= 0, R = P

This case yields the isothermal equilibrium state

U = −λ0

λ1
, W = 0, P = R = 1, γ = 1 (4.6.59)

which, in original variables, is

u = −λ0

λ1
(gH)1/2, w = 0, p = p0e

−z/H

ρ = ρ0e
−z/H , γ = 1.

(4.6.60)

This describes an isothermal atmosphere moving with a constant horizontal
speed −λ0/λ1.

The paper of Sachdev and Gupta (1990) describes several other geo-
physical models and their travelling wave solutions; these include inertial
waves, internal waves, and nondivergent Rossby waves in stratified fluids.
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4.7 Exact Hydromagnetic Travelling Waves

The system of nonlinear PDEs to be presented is another neat example
wherein the application of the analysis similar to that in Section 4.6 leads
to a rather tractable second-order ODE. The original system of nonlinear
PDEs is a coupled eighth-order one; thus, the exact reduction to a single
second-order ODE is rather unusual. We consider the motion of a two-
dimensional compressible, nonviscous, and perfectly electrically-conducting
fluid which is stratified in the vertical direction (Venkatachalappa, Rudra-
iah, and Sachdev (1992)). The governing equations of motion are

ρ
D~q

Dt
= −∇P + ρ~g + µ( ~H · ∇) ~H, (4.7.1)

∂ρ

∂t
+ (~q · ∇)ρ = 0 (4.7.2)

∇ · ~q = 0 (4.7.3)

D ~H

Dt
= ( ~H · ∇)~q (4.7.4)

∇ · ~H = 0 (4.7.5)

where
D

Dt
=

∂

∂t
+ (~q · ∇), ~q = (u, v) is velocity vector with components

in the horizontal and vertical directions, ~H = (Hx,Hz) is the magnetic

field, ρ is the fluid density, P = p+
µH2

2
is the pressure head, p is the

hydrodynamic pressure, ~g is the acceleration due to gravity, and µ the
magnetic permeability. This model has been much studied in literature
(see Acheson (1972), for example).

The undisturbed fluid is at rest with mass density ρ0(z) and horizontal
magnetic field H0(z):

ρ0(z) = ρc exp(−z/H̄) (4.7.6)
H0(z) = Hc exp(−z/2H̄) (4.7.7)

where H̄ is the constant scale height, and ρc and Hc are the reference
density and magnetic field at z = 0. The structure (4.7.6)-(4.7.7) has
been very useful in the investigation of magnetoatmospheric waves (see
Nye and Thomas (1976a, 1976b)). From (4.7.2) and (4.7.6) we find that
the corresponding pressure distribution is given by

P0(z) = Pc exp(−z/H̄) (4.7.8)

where Pc = gρcH̄.
We may reduce the system (4.7.1)-(4.7.5) by the use of the scales H̄,

(H̄/g)1/2, (gH̄)1/2, Pc exp(−z/H̄), ρc exp(−z/H̄), and Hc exp(−z/2H̄) for
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length, time, velocity, pressure, density, and magnetic field, respectively,
and write it more explicitly as

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

1
ρ

∂P

∂x
−A2(Hx/ρ)

∂Hx

∂x

−A2(Hz/ρ)
∂Hx

∂x
+A2HzHx/(2ρ) = 0 (4.7.9)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+

1
ρ

∂P

∂z
− P

ρ
+ 1

−A2(Hx/ρ)
∂Hz

∂x
− (A2Hz/ρ)

∂Hz

∂z
+A2H2

z/(2ρ) = 0, (4.7.10)

∂ρ

∂t
+ u

∂ρ

∂x
+ w

∂ρ

∂z
− ρw = 0 (4.7.11)

∂u

∂x
+
∂w

∂z
= 0 (4.7.12)

∂Hx

∂t
+ u

∂Hx

∂x
+ w

∂Hx

∂z
−Hx

∂u

∂x
−Hz

∂u

∂z
−Hx

w

2
= 0 (4.7.13)

∂Hz

∂t
+ u

∂Hz

∂x
+ w

∂Hz

∂z
−Hx

∂w

∂x
−Hz

∂w

∂z
−Hz

w

2
= 0 (4.7.14)

∂Hx

∂x
+
∂Hz

∂z
− Hz

2
= 0. (4.7.15)

Here, A =
√
µH2

c /(ρcgH̄) is the nondimensional Alfv́en velocity. The
system (4.7.9)-(4.7.15) is of the type discussed in Section 4.6. We seek
travelling wave solution of the form

u = u(φ), w = w(φ), ρ = ρ(φ), P = P (φ),Hx = Hx(φ),Hz = Hz(φ)
(4.7.16)

where φ = φ(x, z, t) = kx + mz − t, as may be confirmed in the manner
of Section (4.6). k and m are wave numbers in the horizontal and vertical
directions, respectively. These waves may be referred to as “Alfv́en gravity
waves.” We examine whether the system (4.7.9)-(4.7.15) admits this type
of wave subject to the (normalised) initial conditions

u = w = Hz = 0, P = ρ = Hx = 1. (4.7.17)

Putting (4.7.16) into (4.7.9)-(4.7.15) and remembering that φ = kx +
mz − t, we get the following system of nonlinear ODEs for u,w, ρ, P,Hz,
and Hx :

(−1 + ku+mw)uφ + (k/ρ)Pφ − (A2/ρ)

×(kHx +mHz)(Hx)φ +
A2

2
HxHz/ρ = 0 (4.7.18)

(−1 + ku+mw)wφ + (m/ρ)Pφ − P/ρ− (A2/ρ)

×(kHx +mHz)(Hz)φ +
A2

2
H2
z/ρ+ 1 = 0 (4.7.19)
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(−1 + ku+mw)ρφ − ρw = 0 (4.7.20)
kuφ +mwφ = 0 (4.7.21)

(−1 + ku+mw)(Hx)φ − (kHx +mHz)uφ − (Hx/2)w = 0 (4.7.22)
(−1 + ku+mw)(Hz)φ − (kHx +mHz)wφ − (Hz/2)w = 0 (4.7.23)

k(Hx)φ +m(Hz)φ −Hz/2 = 0. (4.7.24)

Integrating (4.7.21), we have

ku+mw = 0 (4.7.25)

if we use the IC (4.7.17). The constant on RHS of (4.7.25) may be chosen to
be different from zero if we wish to consider (constant) winds in the ambient
state. On use of (4.7.25), Equations (4.7.18)-(4.7.20) and (4.7.22)-(4.7.24)
simplify:

uφ − kPφ/ρ−A2(kHx +mHz)(Hx)φ/2− (A2HxHz)/(2ρ) = 0 (4.7.26)
wφ − kPφ/ρ+ P/ρ+ (A2/2)(kHx +mHz)(Hz)φ

−(A2H2
z )/(2ρ)− 1 = 0 (4.7.27)

ρφ + ρw = 0 (4.7.28)
(Hx)φ + (kHx +mHz)uφ +Hxw/2 = 0 (4.7.29)
(Hz)φ + (kHx +mHz)wφ +Hzw/2 = 0 (4.7.30)

k(Hx)φ +m(Hz)φ −Hz/2 = 0. (4.7.31)

Multiplying (4.7.29) by k and (4.7.30) bym, adding them and using (4.7.21)
and (4.7.31), we get an integral

Hz + (kHx +mHz)w = 0. (4.7.32)

Again multiplying (4.7.26) by k, (4.7.27) by m, adding them, and making
use of (4.7.21) and (4.7.31), we have

Pφ/P +
(m
n̄

)(
1− P

ρ

)(
P

ρ

)
= 0 (4.7.33)

where
n̄ = k2 +m2 (4.7.34)

is the effective wave number. Writing (4.7.28) as

ρφ
ρ

+ w = 0 (4.7.35)

and combining it with (4.7.33) suitably, we get

Kφ = Kw −m(1−K)/n (4.7.36)
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where
K = P/ρ. (4.7.37)

On using (4.7.30) and (4.7.33), we can write (4.7.27) as

wφ = (1−K)k2/n̄(1−A2H2
z/ρw

2). (4.7.38)

Equation (4.7.30) can now be simplified as

(Hz)φ =
k2(Hz/w)(1−K)
n(1−A2H2

z/ρw
2)
− Hzw

2
. (4.7.39)

Combining (4.7.35), (4.7.38), and (4.7.39), we may write

d

dφ

(
H2
z

ρw2

)
= 0 (4.7.40)

yielding the second first integral

H2
z/ρw

2 = constant = Q, say. (4.7.41)

Thus, we are able to reduce the discussion of the system of ODEs (4.7.18)-
(4.7.24) with the help of first integrals (4.7.25) and (4.7.41) to just two
equations, namely

wφ = k2(1−K)/[n̄(1− E)], (4.7.42)
Kφ = m[n̄Kw/m− (1−K)]/n̄ (4.7.43)

where E = A2Q (see (4.7.41) and below (4.7.15)). E can be shown to
be the ratio of kinetic to magnetic energy in the vertical direction and is
constant in the present case.

We shall first study the system (4.7.42)-(4.7.43) in the (w,K) plane:

dw

dK
= mk2(1−K)/m[(1− E){n̄Kw − (1−K)}]. (4.7.44)

The only singular point of (4.7.44) corresponds to the isothermal atmo-
sphere at rest:

w = 0,K = 1. (4.7.45)

To determine the nature of this point, we linearise (4.7.42)-(4.7.43) about
(0, 1):

dw

dφ
= −k2K/[n̄(1− E)] (4.7.46)

dK

dφ
= [n̄w +mK]/n̄. (4.7.47)
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The eigenvalues of the linear sysem (4.7.46)-(4.7.47) are found to be

λ1,2 =
m

k2 +m2
±
[

m2

(k2 +m2)2
− 4k2

(k2 +m2)(1− E)

]1/2
, (4.7.48)

λ1, λ2 are real if E > 1 or < 1 − 4k2n̄/m2; they are complex if
1 − 4k2n̄/m2 < E < 1. They are pure imaginary in the limit m → 0
or k → ∞, E < 1. For m → 0, the waves propagate horizontally (recall
that φ = kx+mz − t) in a periodic fashion. As we show later, this is true
even when nonlinear terms are retained. The system (4.7.46)-(4.7.47) can
in this case be integrated to give

w2

c
+

K2

[c(1− E)]
= 1 (4.7.49)

where c is the constant of integration. The curves (4.7.49) are ellipses if
c > 0, and E < 1, and hyperbolas if c > 0 and E > 1.

If we let m→ 0 in the nonlinear system (4.7.42)-(4.7.43) and write the
latter in the (w,K) plane, we have

dw

dK
= (1−K)/[(1− E)Kw]. (4.7.50)

Equation (4.7.50) immediately integrates to yield

w2 +
2

(1− E)
(K − logK) = D, say. (4.7.51)

It may be observed that the curves represented by (4.7.51) are closed
in (w,K) plane provided K > 0 and E < 1 (see Figure 4.3). Remembering
that n̄ = k2 + m2 and letting k → ∞ in (4.7.42)-(4.7.44), etc., we again
arrive at Equation (4.7.50) in the phase plane, showing the existence of
periodic solutions in this limit as well. In the limit E → 0, that is, when
there is no magnetic field, Equations (4.7.42)-(4.7.43) show that there is
no qualitative change in the solution, and periodic solutions exist whenever
they do for the case with magnetic field.

It is interesting to note that the system (4.7.42)-(4.7.43) reduces to the
single ODE

wφφ −
m

n̄
wφ +

k2w

n̄(1− E)
− wwφ = 0 (4.7.52)

in w. If we introduce the scaling

w = −[n̄(1− E)/k2]1/2y (4.7.53)
φ = [n̄(1− E)/k2]−1/2τ, (4.7.54)

(4.7.52) becomes
y′′ + 2αy′ + y + yy′ = 0, (4.7.55)
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Figure 4.3. Phase portrait for equation (4.7.50) with E = 0.1 and

k →∞.

where α = m/[2n̄(n̄(1 − E)/k2)1/2] and the prime in (4.7.55) denotes dif-
ferentiation with respect to τ . Equation (4.7.55) appears quite frequently
in many other contexts: internal waves, Rossby waves, and topographic
Rossby waves where the parameter α represents stratification, rotation, or
topography (see Odulo et al (1977)). For α = 0, Equation (4.7.55) can be
solved in terms of the amplitude parameter a as,

y = a sinψ +
1
6
a2

(
1 +

1
144

a2

)
sin 2ψ +

1
32
a3 sin 3ψ

+
13

2160
a4 sin 4ψ +O(a4) (4.7.56)

ψ =
[
1− 1

24
a2 + . . .

]
τ + ψ0, ψ0 = constant (4.7.57)

by adopting the well-known Poincaré approach (Kevorkian and Cole (1996)).
Numerical results show that the solution (4.7.56)-(4.7.57) gives good de-
scription for a as large as 2. Venkatachalappa, Rudraiah, and Sachdev
(1992) have computed typical periodic and nonperiodic solutions for a vari-
ety of parametric values (particularly when α 6= 0 in (4.7.55)) and compared
them with the analytic ones. The agreement is excellent.

Following Sachdev and Gupta (1990), Venkatachalappa et al. (1992)
have also shown that no nontrivial travelling wave solutions exist for the
system (4.7.26)-(4.7.31) when the rank of the coefficient matrix is lower
than the maximum; one arrives at equilibrium states only.
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4.8 Exact Simple Waves on Shear Flows in a
Compressible Barotropic Medium

We discuss an example for which the travelling wave speed is not constant
but changes with the evolving flows. We consider equations of motions
describing shear flows in a compressible barotropic, homentropic (mixed)
atmosphere in the hydraulic or shallow-water approximation,

ut + uux + wuz +
1
ρ
px = 0 (4.8.1)

1
ρ
pz + ḡ = 0 (4.8.2)

ρt + uρx + wρz + ρ(ux + wz) = 0, (4.8.3)

where x is the horizontal distance, z is the vertical distance measured from
the ground, ḡ is the acceleration due to gravity, and

ρ−1 =
di

dp
(4.8.4)

where
i = i(p) (4.8.5)

is the enthalpy of the atmospheric gas.
We consider the case when the flow domain is bounded below by a rigid

boundary z = 0 and above by a free surface z = h(x, t) which evolves with
the flow. The pressure at the free surface is assumed to be zero. Thus, the
boundary conditions are

w = 0 on z = 0 (4.8.6)

p = 0 and w = ht + uhx on z = h(x, t). (4.8.7)

For isentropic flow of a polytropic gas we have

i =
γ

γ − 1
p0∞

ρ0∞

(
p

p0∞

)(γ−1)/γ

=
γ

γ − 1
RT (4.8.8)

where p0∞ and ρ0∞ denote the equilibrium pressure and density at the
ground (z = 0) ahead of the wave, and γ is the ratio of specific heats.
Equations (4.8.4) and (4.8.8) give

ρ0 = ρ0∞

(
p0

p0∞

)1/γ

, T0 = T0∞

(
p0

p0∞

)(γ−1)/γ

(4.8.9)

©2000 CRC Press LLC



where p0(x, t), ρ0(x, t), and T0(x, t) are the ground pressure, density, and
temperature, respectively. Away from the ground, we can find the distri-
bution by considering (4.8.2) and (4.8.8):

p = p0

(
1− z

A

)γ/(γ−1)

, ρ = ρ0

(
1− z

A

)1/(γ−1)

, T = T0

(
1− z

A

)
(4.8.10)

where

A(x, t) =
γ

γ − 1
p0∞

ḡρ0∞

(
p0

ρ0∞

)(γ−1)/γ

=
(
p0

p0∞

)(γ−1)/γ

A∞.

After further transformations for which we refer the reader to Varley
et al. (1977) and Sachdev and Philip (1988), the basic system (4.8.1) and
(4.8.3) and the BCs (4.8.6)-(4.8.7) reduce to

ut + uux + vuy +
(p0∞)1/γ

ρ0∞
h−1/γ

(
1− y

h

)−1/γ

hx = 0 (4.8.11)

ux + vy = 0 (4.8.12)

v = 0 on y = 0 (4.8.13)

v = ht + uhx on y = h(x, t). (4.8.14)

Introducing the nondimensional variables

x̄ =
x

l0
, t̄ =

t

t0
, ū =

u

u0
, v̄ =

v

v0

ȳ =
y

p0∞
and h̄ =

h

p0∞
(4.8.15)

where

l0 =
p0∞

ḡρ0∞
, t0 =

1
ḡ

(
p0∞

ρ0∞

)1/2

,

u0 =
(
p0∞

ρ0∞

)1/2

and v0 = ḡ(p0∞ρ0∞)1/2, (4.8.16)

Equations (4.8.11)-(4.8.12) reduce to

ut + uux + vuy + h−1/γ
(
1− y

h

)−1/γ

hx = 0 (4.8.17)

ux + vy = 0 (4.8.18)

where we have dropped the bars. The system (4.8.17)-(4.8.18) reduces
to that describing shear waves in an incompressible medium in the hy-
draulic approximation in the limit γ →∞ (see Freeman (1972) and Sachdev
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and Philip (1986)). The boundary conditions (4.8.13)-(4.8.14) remain un-
changed.

We now seek simple wave solution of (4.8.17) and (4.8.18) such that the
wave speed (in the horizontal direction) depends on the height of the free
surface:

u = u(x− ct, y) (4.8.19)
h = h(x− ct) (4.8.20)

where
c = c(h(x, t)). (4.8.21)

Equations (4.8.19) and (4.8.20) imply that

ut + cux = 0 (4.8.22)
ht + chx = 0. (4.8.23)

Using (4.8.22), (4.8.17) becomes

(u− c)ux + vuy + h−1/γ
(
1− y

h

)−1/γ

hx = 0. (4.8.24)

Introducing the variable ξ = x− ct into (4.8.24) and (4.8.18), we get

(u− c)uξ + w̃uy + h−1/γ
(
1− y

h

)−1/γ dh

dξ
= 0 (4.8.25)

uξ + w̃y = 0 (4.8.26)

where
w̃ = v(ξx)−1. (4.8.27)

The boundary conditions (4.8.13)-(4.8.14) become

w̃ = 0 on y = 0 (4.8.28)

w̃ = (u− c)
dh

dξ
on y = h. (4.8.29)

Since h = h(ξ), we may use y and h as the new independent variables so
that (4.8.25)-(4.8.26) can be written as

(u− c)uh + w1uy + h−1/γ
(
1− y

h

)−1/γ

= 0 (4.8.30)

uh + w1y = 0 (4.8.31)

where

w1 = w̃

(
dh

dξ

)−1

= v

(
∂h

∂x

)−1

. (4.8.32)

©2000 CRC Press LLC



The BCs (4.8.28)-(4.8.29) become

w1 = 0 on y = 0 (4.8.33)
w1 = u− c on y = h. (4.8.34)

Eliminating uh from (4.8.30) and (4.8.31), we get

∂

∂y

(
w1

u− c

)
=
h−1/γ(1− y/h)−1/γ

(u− c)2
. (4.8.35)

Integration of (4.8.35) with respect to y and use of (4.8.33) give

w1 = (u− c)h−1/γ

∫ y

0

(1− y/h)−1/γ

(u− c)2
dy. (4.8.36)

Using the other BC (4.8.34) in (4.8.36) we have

h−1/γ

∫ h

0

(1− y/h)−1/γ

(u− c)2
dy = 1. (4.8.37)

Eliminating w1 from (4.8.30) with the help of (4.8.36), we have

uh + uyh
−1/γ

∫ y

0

(1− y/h)−1/γ

(u− c)2
dy + h−1/γ (1− y/h)−1/γ

u− c
= 0. (4.8.38)

Introducing the function

I =
∫ y

0

(1− y/h)−1/γ

(u− c)2
dy (4.8.39)

(see (4.8.37)) into (4.8.38), we get an equation for I:

Iyh + h−1/γIIyy = 2Iy
[
h−1/γIy − c′(h)(Iy)1/2

]
+

1
γh2

(
1− y

h

)−1

Iy

(
1 + Ih1−1/γ

)
(4.8.40)

where
c′ =

dc

dh
. (4.8.41)

Introducing the scaled variable η =
y

h
into (4.8.40), we have

hIηh + (h−1/γI − η)Iηη = Iη + 2Iη
[
h−1/γIη − c′h1/2(Iη)1/2

]
+

1
γh

(1− η)−1(1 + h1−1/γI)Iη. (4.8.42)

Now, assuming that
I = h1/γJ(η) (4.8.43)
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where J is a function of η alone and putting it into (4.8.42), we get on ODE
for J(η):

(J − η)J
′′

=
γ − 1
γ

J ′ + 2J ′
[
J ′ − c′(h)h(γ+1)/2γ(J ′)1/2

]
+
h(1/γ)−1

γ
(1− η)−1[1 + hJ ]J ′. (4.8.44)

Equation (4.8.44) reduces to the case considered by Freeman (1972) in the
incompressible limit γ →∞. It is instructive to seek similarity solution of
(4.8.30)-(4.8.31) directly. It is easy to check that we may write

u = y(γ−1)/2γP (η), w1 = y(γ−1)/2γQ(η)
c = c(h) = c0h

(γ−1)/2γ (4.8.45)

where η = y/h and c0 is a dimensionless constant. Substituting (4.8.45)
into (4.8.30)-(4.8.31) we get the ODEs

Q =
η2PP ′ − c0η

(3γ+1)/2γP ′ − η1/γ(1− η)−1/γ

[(γ − 1)/2γ]P + ηP ′
(4.8.46)

η2P ′ − γ − 1
2γ

Q− ηQ′ = 0 (4.8.47)

where prime denotes differentiation with respect to η. Writing

U =
u

h(γ−1)/2γ
= η(γ−1)/2γP (η) (4.8.48)

in (4.8.46) and (4.8.47), we get

Q =
η(U − c0)U ′ − γ−1

2γ

(
U2 − c0U + 2γ

γ−1 (1− η)−1/γ
)

η(γ−1)/2γU ′
(4.8.49)

η2U ′ − γ − 1
2γ

ηU − γ − 1
2γ

η(γ−1)/2γQ− η(3γ−1)/2γQ′ = 0. (4.8.50)

Eliminating Q from (4.8.49) and (4.8.50), we get a single second-order ODE
for U : (

U2 − c0U +
2γ
γ − 1

(1− η)−1/γ

)
d2U

dη2
+
γ + 1
γ − 1

(U − c0)
(
dU

dη

)2

− 2
γ − 1

(1− η)−(1/γ)−1 dU

dη
= 0. (4.8.51)

The BC (4.8.34) in terms of the similarity variables P and Q in (4.8.45)
becomes

P (1)− c0 = Q(1). (4.8.52)
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The integral condition (4.8.37) on writing w1 = u − c on y = h and using
(4.8.45), etc., becomes

I1 =
∫ 1

0

(1− η)−1/γ

(P − c0)2
dη = 1. (4.8.53)

The other condition w1 = 0 on y = 0 is automatically satisfied (see (4.8.36)).
Unlike for the incompressible case (see Freeman (1972) and Sachdev and

Philip (1986)), it does not seem possible to solve (4.8.51) in a closed form.
We write it as the system

dU

dη
= V (4.8.54)

dV

dη
=

2
γ−1 (1− η)−(1/γ)−1 − γ+1

γ−1 (U − c0)V 2

U2 − c0U + 2γ
γ−1 (1− η)−1/γ

. (4.8.55)

To get the behaviour for η ∼ 1 and γ ∼ 1, Equation (4.8.51) is approximated
under these assumptions and, hence, integrated; we get

U ≈ D − γ

γ − 1
C(1− η)(γ−1)/γ

where D and C are integration constants. We fix D and find C such that
I1 is equal to 1. Thus, we get a single parameter family of solutions. The
other constant c0 (see (4.8.45)) is the second parameter. A typical member
of this two-parameter family of solutions is shown in Figure 4.4. It depicts

the normalised horizontal velocity Ū =
U − U0

U1 − U0
, where U0 and U1 are the

Figure 4.4. A typical wave profile for Equation (4.8.51).
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scaled horizontal velocities at the bottom and free surface, respectively. The
parameters chosen for Figure 4.4 are D = 2, C0 = 0.067089, and γ = 1.4.
The solution has the qualitative behaviour of an incomplete Beta function.

The main point of this example is to show that the wave speed is a
function of the disturbed water height h(x, t) (see (4.8.45)); the function
h(x, t) itself remains arbitrary in the solution of the travelling wave.
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Chapter 5

Exact Linearisation of
Nonlinear PDEs

5.1 Introduction

Nonlinear PDEs generally do not allow exact linearisation; one must deal
with them directly either by finding similarity solutions or their more gen-
eralised forms (see Chapter 8). However, there is a small class of nonlinear
PDEs which do admit linearisation either to PDEs with variable coeffi-
cients or to those with constant coefficients; sometimes it becomes feasible
to change the (transformed) PDEs with variable coefficients to those with
constant coefficients. Then, the whole arsenal developed to solve linear
PDEs with constant coefficients over the last 150 years or so becomes avail-
able for use for the original nonlinear PDEs (see Section 5.2). On the other
hand, the linear PDEs with variable coefficients are not much easier than
the nonlinear ones as far as their explicit solutions are concerned; their
major advantage is that they enjoy the principle of linear superposition.

There is another complicating factor: even when we may linearise a
nonlinear PDE, the corresponding initial/boundary conditions generally
transform in such a cumbersome way that the solution of the (exactly)
linearised problem is rendered difficult. For example, the hodograph trans-
formation for 1-dimensional, time-dependent, isentropic gasdynamic equa-
tions or two-dimensional, isentropic steady-flow equations, even though ex-
actly linearisable, are not much useful for solving physical problems; there
may be additional complications in the neighbourhood of points or curves
where the hodograph transformation breaks down (see Sections 5.5 and 5.7).
There are a few honourable exceptions such as the plane Burgers equation
or shallow-water equations describing flow up a uniformly sloping beach,
which admit neat (and readily usable) transformation of initial/boundary
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conditions (see Sections 5.3 and 5.7). It is the purpose of this chapter to
bring out some of these features with the help of some interesting model
equations. We shall carry out the analysis of these equations only to a
limited extent, the main purpose here being elucidation of the exact lin-
earisation process.

5.2 Comments on the Solution of Linear PDEs

Since much of the present chapter is devoted to transforming nonlinear
PDEs to linear PDEs exactly, some comments on the solution of the latter
will be in order. If the linear PDEs have constant coefficients, and the
relevant ICs/BCs are not too complicated, the integral transform techniques
usually suffice to solve them. This is a consequence of the principle of
linear superposition. However, if the linear PDEs have variable coefficients,
integral transform techniques can still be employed but finding the inverse
transform is not always feasible. One may still elicit some useful information
(usually of an asymptotic nature) about the behaviour of the dependent
variable for a particular range of one of the independent variables.

A good introduction to analytic methods for linear PDEs may be found
in Chapter 7 of Williams (1980). For a special class of PDEs, for example,

a1uxx + a2ux + a3u+ b1uyy + b2uy + b3u = 0 (5.2.1)

where ai’s are functions of x only and bi’s are functions of y only, clear
steps are given how one may solve initial-boundary value problems. It is
easy to see that (5.2.1) permits separable solutions u = X(x)Y (y) where

a1Xxx + a2Xx + a3X = λX (5.2.2)
b1Yyy + b2Yy + b3Y = −λY, (5.2.3)

λ being the separation constant. The next step is to find from the boundary
conditions an infinitely denumerable set of values of λ : (λ1, λ2, · · ·) such
that the solution can be represented, using the principle of linear superpo-
sition, as

u =
∞∑
n=1

Xn(x)Yn(y). (5.2.4)

In (5.2.4), one of the sets of functions Xn(X) or Yn(y)(n = 1, 2, · · ·) can be
specified uniquely and the representation (5.2.4) is such that some of the
boundary conditions on u are satisfied automatically. The third step is to
use the information u(x, y0) on one of the lines, y = y0, say,

u(x, y0) =
∞∑
n=1

Xn(x)Yn(y0), (5.2.5)

©2000 CRC Press LLC



to be able to find Yn(y0). If the set {Xn} is a complete orthogonal set, then
Yn(y0) can be found uniquely. The final step is to fully determine Yn(y) and
hence the complete series solution. Williams (1980) clearly gives conditions
on the nature of PDEs and the related boundary and initial conditions such
that these steps can be gone through fully.

Another possibility is to find transformations such that linear PDEs with
variable coefficients can be changed to those with constant coefficients, and
hence have access to the large literature that is available for the latter.
Varley and Seymour (1988) considered the class

α(x)
∂2g

∂x2
+ β(x)

∂g

∂x
+ γ(x)g = a

∂g

∂t
+ b

∂2g

∂t2
(5.2.6)

where α, β, and γ are functions of x while a and b are arbitrary con-
stants. Equation (5.2.6) is quite general and has many important linear
equations as special cases (see Varley and Seymour (1988); Bluman and
Kumei (1987)). It was first shown that (5.2.6) can be reduced to the sim-
pler form

C(X)
∂

∂X

(
1

C(X)
∂f

∂X

)
= a

∂f

∂t
+ b

∂2f

∂t2
(5.2.7)

through the transformation

X =
∫ x

|α(τ)|−1/2
dτ and f(X, t) =

g(x, t)
g0(x)

(5.2.8)

provided g = g0(X) is a nonzero equilibrium solution of (5.2.6) (a = b = 0
therein). The function C(X) in (5.2.7) is fully determined by the coefficients
α(x), β(x), and γ(x) appearing in (5.2.6). The main result of Varley and
Seymour (1988) is that for certain forms of C(X), any solution of (5.2.7)
may be expressed in terms of solution of the PDE

∂2F (X, t)
∂X2

= a
∂F (X, t)

∂t
+ b

∂2F (X, t)
∂t2

(5.2.9)

with constant coefficients in the form

f(X, t) =
N∑
n=0

fn(X)
∂nF (X, t)
∂Xn

, f0(X) ≡ a constant (5.2.10)

where the functions fn(X)(n = 1, 2, · · · , N) and C(X) satisfy a certain sys-
tem of coupled nonlinear ordinary differential equations. It was also shown
that by choosing N in (5.2.10) sufficiently large, it is possible to approxi-
mate any given C(X) in (5.2.7) by a function which, together with fn(X),
satisfies this system. The relation (5.2.10) is a Bäcklund transformation
(BT) connecting the solutions of Equations (5.2.7) and (5.2.9).
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The work of Varley and Seymour (1988) was generalised by Sachdev
and Mayil Vaganan (1992) in several significant ways. The latter dispensed
with the requirement that an equilibrium solution g0(X) of (5.2.6) must be
known. The transformation

X =
∫ x

|α(τ)|−1/2dτ, f(X, t) = g(x, t) (5.2.11)

changes (5.2.6) to the form

∂2f(X, t)
∂X2

+ α(X)
∂f(X, t)
∂X

+ β(X)f(X, t) = a
∂f(X, t)

∂t
+ b

∂2f(X, t)
∂t2

(5.2.12)
which includes (5.2.7) as a special case with α(X) = −C ′(X)/C(X) and
β(X) ≡ 0. A Bäcklund transformation was found in a systematic way which
connects solutions of the PDE (5.2.12) to those of (5.2.9) with constant
coefficients. This BT includes that found earlier by Varley and Seymour
(1988) as a special case. The theory developed was profusely illustrated
with examples describing some realistic linear problems.

It is clear from the brief discussion above that the reduction of PDEs
with variable coefficients to those with constant coefficients is a difficult
task and may not always be accomplished.

5.3 Burgers Equation in One and Higher Di-
mensions

The Burgers equation in one dimension

ut + uux =
δ

2
uxx (5.3.1)

is the most canonical model equation, describing a balance between (sim-
plest) nonlinear convection and constant viscous diffusion. Here, u is the
excess wavelet speed in the context of gasdynamics and δ is (small) co-
efficient of viscous dissipation. t and x are time and space coordinates,
respectively. The derivation of (5.3.1) in gasdynamic context may be found
in Sachdev (1987), where its properties and solutions are also detailed. This
equation and its various generalisations appear in many applications and
again may be found in Sachdev (1987) (see also Crighton (1979)).

Equation (5.3.1) is exactly linearized by the well-known Cole-Hopf trans-
formation (Cole (1951); Hopf (1950)); the motivation for the latter comes
from the first-order nonlinear ordinary differential equation

y′(x) = a(x)y2(x) + b(x)y(x) + c(x). (5.3.2)
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Equation (5.3.2) is linear if a(x) = 0, and is of Bernoulli type and therefore
easily solvable if c(x) = 0. There are no general ways of solving (5.3.2) as
it is. Assuming, thus, that a(x) 6= 0, c(x) 6= 0, we make the substitution

y(x) = − w′(x)
a(x)w(x)

(5.3.3)

in (5.3.2) to get a second-order linear equation

w′′(x)−
[
a′(x)
a(x)

+ b(x)
]
w′(x) + a(x)c(x)w(x) = 0. (5.3.4)

Equation (5.3.2) has been exactly linearised to the form (5.3.4) but its order
has been raised by one. If (5.3.4) can be solved explicitly, so can (5.3.2),
and vice versa. A simple (nontrivial) solution of (5.3.4) helps one to find
its general solution by a multiplicative transformation. The same holds for
(5.3.2) except that the transformation now is additive (see Sachdev (1991)).

Now we turn to Burgers equation (5.3.1). In the present case, there are
no variable coefficients. So we proceed with (5.3.3) as if a = 1 and employ
it in two steps. Write

u = ψx (5.3.5)

so that the order of (5.3.1) increases by one. It is fortunate that we can then
exactly integrate it once. Ignoring the function of integration, we obtain
the equation

ψt +
1
2
ψ2
x =

δ

2
ψxx (5.3.6)

for ψ. Now transform (5.3.6) by the second step

ψ = −δ(lnφ) (5.3.7)

to arrive at the well-known heat equation for the function φ :

φt =
δ

2
φxx. (5.3.8)

Combining (5.3.5) and (5.3.7), we observe that the transformation

u = −δ(lnφ)x (5.3.9)

changes the (nonlinear) Burgers equation (5.3.1) to the linear heat equation
(5.3.8). In Chapter 6, we shall discuss in detail initial value problems for
(5.3.1) via (5.3.9) and (5.3.8).

It is interesting to observe what happens if the Cole-Hopf transformation
is extended in a simple-minded way to the other famous model equation,
namely the Korteweg-deVries equation

ηt + σηηx + ηxxx = 0 (5.3.10)
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where σ is a constant. Equation (5.3.10) describes a balance between the
simplest forms of nonlinear convection and dispersion (Whitham (1974)).

The first step in the transformation is the same as before. We write
η = px and integrate once with respect to x, ignoring again the function of
integration. We get

pt +
1
2
σp2

x + pxxx = 0. (5.3.11)

The second step is to write

σp = 12(logF )x; (5.3.12)

the factor 12 can be determined by some guesswork. The equation for F
can be found to be

F (Ft + Fxxx)x − Fx(Ft + Fxxx) + 3(F 2
xx − FxFxxx) = 0. (5.3.13)

Equation (5.3.10) gets further nonlinearised, but two features become
prominent. Equation (5.3.13) is homogeneous of degree two in F and

its derivatives, and the linear operator
(
∂

∂t
+

∂3

∂x3

)
comes in bold relief.

Whitham (1974) has provided some reasoning for the writing of (5.3.12) by
reference to the solitary wave solution and its comparison with the steady
shock solution for the Burgers equation: “The working rule for finding ex-
act solutions in this area is to consider transformations which make the
special solitary wave solutions appear as simple exponentials.” Thus, if we
write

F = 1 + exp{−α(x− s) + α3t}
= 1 + exp{−(θ − θ0)} (5.3.14)

where θ = αx − α3t and s = θ0/α, and θ0 and α are parameters, we can
easily check that the solitary wave solution is

ση = 3α2 sech2αx− α3t− θ0
2

. (5.3.15)

Whitham (1974) also derived more general exact solutions of (5.3.13) de-
scribing N interacting solitary waves.

Now we show, following Nerney, Schmahl, and Musielak (1996), that
the Cole-Hopf transformation goes through quite generally for the vector
Burgers equation

∂~u

∂t
+ ~u · ∇~u = ν∇2~u (5.3.16)

where ν is again the coefficient of viscosity.
First we observe that

∇2~u = ∇(∇ · ~u)−∇×∇× ~u (5.3.17)
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and

~u · ∇~u = ∇u
2

2
− ~u×∇× ~u. (5.3.18)

In view of (5.3.17) and (5.3.18), (5.3.16) simplifies greatly if we assume that

~u×∇× ~u = ν∇×∇× ~u. (5.3.19)

If we also assume that the flow is irrotational, and use Cartesian coordi-
nates, then we have

∇× ~u = 0 (5.3.20)

so that
~u = ∇φ. (5.3.21)

Equation (5.3.21) extends (5.3.5) to three-dimensional flows.
Using (5.3.17)-(5.3.21), we can write (5.3.16) as

∇
[
∂φ

∂t
+

(∇φ)2

2
− ν∇2φ

]
= 0. (5.3.22)

Since the gradient of the function within the bracket is zero, it must be a
function of t alone:

∂φ

∂t
+

(∇φ)2

2
− ν∇2φ = E(t). (5.3.23)

The function E(t) may be suitably absorbed by writing φ1 = φ−
∫
E dt,

etc. Now, observing the vector identity for a scalar function α,

∇α =
∂α

∂θ
∇θ, (5.3.24)

writing α = φ in (5.3.24), and taking its divergence, we have

∇2φ =
∂2φ

∂θ2
(∇θ)2 +

∂φ

∂θ
∇2θ (5.3.25)

where we have used (5.3.24) again with α =
∂φ

∂θ
. Let θ satisfy the heat

equation in several variables :

∂θ

∂t
= ν∇2θ. (5.3.26)

Writing φ = φ(θ(x, t)) and using (5.3.23), (5.3.25), and (5.3.26), we finally
arrive at the generalized Cole-Hopf transformation

~u = −2ν
θ
∇θ. (5.3.27)

We recall that ~u = ∇φ.
We shall return to the discussion of solution of (5.3.16) in cylindrical

coordinates in Section 6.3.
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5.4 Nonlinear Degenerate Diffusion Equation
ut = [f(u)u−1

x ]x

The equation in the title

ut = [f(u)u−1
x ]x (5.4.1)

is a special case of a much-studied, more general nonlinear diffusion equa-
tion

ut =
∂

∂x
(f(u)g(ux))

= f(u)g′(ux)uxx + f ′(u)g(ux)ux (5.4.2)

where f and g are functions of u and ux, respectively. The case of special
interest in (5.4.2) is one for which f is strictly positive and g is a strictly
increasing function with lims→∞ g(s) = g∞ < ∞. In this case (5.4.2) is a
strongly degenerate parabolic equation and has been used as a model for
heat and mass transfer in a turbulent fluid.

Goard, Broadbridge, and Arrigo (1996) have studied (5.4.2) for its sym-
metries and have tabulated all functions f(u) and g(ux) which admit re-
duction of (5.4.1) to an ODE with explicit solutions.

Our interest here is limited to a special case of (5.4.2), namely Equation
(5.4.1), which enjoys infinite dimensional classical symmetry and, hence,
exact linearisation (Goard, Broadbridge, and Arrigo (1996)).

Indeed, if we introduce the hodograph transformation x = x(u, t) so that

ux =
1
xu

,

ut = −
(
xt
xu

)
, uxx = − 1

x3
u

xuu, etc., (5.4.1) immediately linearises to

f(u)xuu + f ′(u)xu + xt = 0 (5.4.3)

or

xuu +
f ′(u)
f(u)

xu +
xt
f(u)

= 0. (5.4.4)

Actually, (5.4.4) can be changed to an equation with constant coefficients
so that standard transform techniques may be used to solve it.

If we introduce a point transformation

x1 = x1(u, t)
x2 = x2(u, t) (5.4.5)
z = H(u, t)x,

then (5.4.4) can be transformed to (Bluman and Kumei (1989))

∂2z

∂x2
1

+
∂z

∂x2
+ w(x1, x2)z = 0 (5.4.6)
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where w is some function of x1 and x2. To obtain the transformation explic-
itly we substitute (5.4.5) into (5.4.6) and compare the resulting equation
with (5.4.4) to get

x1 =
∫

1√
αf(u)

du, αf > 0

x2 = t (5.4.7)
z = β(f(u))1/4x

where α and β are constants. The function w is simply

w = α

[
(f ′(u))2

16f(u)
− f ′′(u)

4

]
(5.4.8)

which, in view of first of (5.4.7), is a function of x1 alone. In the special
case when w is a quadratic in x1,

w = a0 + a1x1 + a2x
2
1, (5.4.9)

Equation (5.4.6) can be transformed to a linear PDE with constant coef-
ficients (Bluman and Kumei (1989)). Considering (5.4.7) and (5.4.8), this
would require that

α

{
(f ′(u))2

16f(u)
− f ′′(u)

4

}
= a0 + a1

∫
1√
αf(u)

du+ a2

(∫
1√
αf(u)

du

)2

.

(5.4.10)
If the function f(u) satisfies (5.4.10), we can reduce the nonlinear PDE
(5.4.1) to a linear PDE with constant coefficients. Goard et al. (1996)
give several examples to illustrate this interesting case of exactly linearis-
able equations. We consider two of them: the first leads to the standard
heat equation while the second requires the solution of a Sturm-Liouville
eigenvalue problem for a second-order linear ODE.

(i) If we choose f(u) = u4/3 in (5.4.1), then (5.4.10) is satisfied if a0 =
a1 = a2 = 0 so that w(x1) = 0. In this case (5.4.1) in the hodograph
plane becomes

xt +
4
3
u1/3xu + u4/3xuu = 0. (5.4.11)

Through the change of variables (see (5.4.7))

x1 = 3u1/3

x2 = t (5.4.12)
z = u1/3x,

Equation (5.4.11) transforms to the standard heat equation (with
opposite sign):

∂2z

∂x2
1

+
∂z

∂x2
= 0. (5.4.13)
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(ii) In the present example, we attempt to solve linear PDE (5.4.4) with
variable coefficients directly by reducing it to a Sturm-Liouville prob-
lem. If we put x(u, t) = φ(u)T (t) in (5.4.4) we get

(fφ′)′ − λφ = 0 (5.4.14)

and
T (t) = ce−λt (5.4.15)

where λ is the separation constant.
For (5.4.14) to be treated as a regular Sturm-Liouville problem for u1 <

u < u2, we must have f < 0 on this interval, and the solution should satisfy
the homogeneous boundary conditions

β1φ(u1) + β2
dφ

du
(u1) = 0

β3φ(u2) + β4
dφ

du
(u2) = 0, (5.4.16)

where β1, β2, β3, and β4 are constants (Haberman (1987)).
As a special case we let f(u) = −u2 so that (5.4.3) becomes

u2xuu + 2uxu − xt = 0. (5.4.17)

We choose the initial and boundary conditions to be

x(u, 0) =
u3

3
− 5u2

2
+ 4u (5.4.18)

dx

du
(1, t) = 0,

dx

du
(4, t) = 0 (5.4.19)

in the domain (1, 4) × [0,∞) of x(u, t). For the nonlinear problem (5.4.1)
with f(u) = −u2, the BCs (5.4.19) correspond to zero flux conditions on
free boundaries x1(t) and x2(t) where u assumes values 1 and 4, respectively.

Using the standard techniques of Sturm-Liouville theory (Haberman
(1987)), we arrive at the solution

x(u, t) =
∞∑
k=1

cke
−

(
1
4+ k2π2

4(ln 2)2

)
t
u−

1
2

{
kπ

ln 2
cos
(

kπ

2 ln 2
lnu
)

+sin
(

kπ

2 ln 2
lnu
)}

+A (5.4.20)

where

ck =

∫ 4

1

(
u3

3 − 5u2

2 + 4u
) [
u−

1
2
{
kπ
ln 2 cos

(
kπ

2 ln 2 lnu
)

+ sin
(
kπ

2 ln 2 lnu
)}]

du∫ 4

1

1
u

[
kπ
ln 2 cos

(
kπ

2 ln 2 lnu
)

+ sin
(
kπ

2 ln 2 lnu
)]2

du

(5.4.21)
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and A = −0.416.
The numerical evaluation of the solution shows that x → −0.416 as t

increases; u develops an infinite gradient at this point.
Goard et al. (1996) give several other examples where the original PDE

(5.4.1) can either be linearised to one with constant coefficients or is solvable
by reduction to a Sturm-Liouville problem.

5.5 One-Dimensional Motion of an Ideal Com-
pressible Isentropic Gas in the Hodograph
Plane

Hodograph methods are historically associated with gasdynamics. These
methods have not been of great practical use, as we shall have occasion
to explain, but have some mathematical interest. Courant and Friedrichs
(1948) considered a system of two nonlinear PDEs

A1ux +B1uy + C1vx +D1vy + E1 = 0 (5.5.1a)

A2ux +B2uy + C2vx +D2vy + E2 = 0 (5.5.1b)

where A1, A2, . . . , E2 are known functions of x, y, u, and v alone. When
E1 = E2 = 0 so that system (5.5.1) is homogeneous, and A1, . . . , D2 are
functions of u and v alone, the system is said to be reducible and the so-
called hodograph transformation (see (5.5.9)-(5.5.11) below) reduces (5.5.1)
to a linear form which is more amenable to analysis.

Here, we consider a special case of (5.5.1) which describes time-dependent
isentropic motion of an (ideal) compressible gas in one dimension (Here t
and x replace x and y, respectively). The Euler equations describing such
a flow are

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0 (5.5.2)

ρ

(
∂v

∂t
+ v

∂v

∂x

)
+
∂p

∂x
= 0 (5.5.3)

where ρ, v, and p are density, particle velocity, and pressure of the gas at
any point (x, t), respectively. We use the thermodynamic relation

dw = Tds+ V dp (5.5.4)

where w is the enthalpy per unit mass, V is the specific volume, T is the
temperature, and s is entropy. Since we assume that the flow is isentropic
and s = constant, we have

dw =
dp

ρ
. (5.5.5)
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From the equation of state, ρ is a function of two other state variables, s
and w, say, and since s is constant, we have ρ = ρ(w). The sound speed in
this case is given by cs =

√
p′(ρ). In view of (5.5.5), we have

dρ

dw
=
dρ

dp

dp

dw
=

ρ

c2s
. (5.5.6)

Equations (5.5.2) and (5.5.3) can now be written in terms of w and v:

∂w

∂t
+ v

∂w

∂x
+ c2s

∂v

∂x
= 0 (5.5.7)

∂v

∂t
+ v

∂v

∂x
+
∂w

∂x
= 0 (5.5.8)

where cs is a function of w via ρ = ρ(w). The system (5.5.7)-(5.5.8) is
a little simpler than (5.5.2)-(5.5.3). As we observed in Section 5.4, the
hodograph method, in principle, interchanges the role of dependent and
independent variables so that the given equations become linear with co-
efficients functions of the (new) independent variables. The easiest way
to accomplish this task is to write the derivatives in (5.5.7) and (5.5.8) in
terms of Jacobians:

∂(w, x)
∂(t, x)

− v
∂(w, t)
∂(t, x)

+ c2s
∂(t, v)
∂(t, x)

= 0 (5.5.9)

−∂(x, v)
∂(t, x)

+ v
∂(t, v)
∂(t, x)

− ∂(w, t)
∂(t, x)

= 0. (5.5.10)

Now, if we multiply (5.5.9) and (5.5.10) by the Jacobian of the transforma-
tion

∂(t, x)
∂(w, v)

=
∂t

∂w

∂x

∂v
− ∂t

∂v

∂x

∂w
6= 0 (5.5.11)

and remember that the Jacobians “behave” like fractions, we immediately
arrive at the linear form of the system (5.5.2)-(5.5.3), namely

∂x

∂w
+
∂t

∂v
− v

∂t

∂w
= 0 (5.5.12)

∂x

∂v
− v

∂t

∂v
+ h(w)

∂t

∂w
= 0 (5.5.13)

where h(w) = c2s(w). Rewriting (5.5.12) in the conservation form

∂t

∂v
− ∂

∂w
(x− vt) = 0, (5.5.14)

we are led to the “potential” function φ:

t =
∂φ

∂w
, x = v

∂φ

∂w
− ∂φ

∂v
. (5.5.15)
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Eliminating t and x from (5.5.13) with the help of (5.5.15), we arrive at the
single equation for φ:

h(w)
∂2φ

∂w2
+
∂φ

∂w
− ∂2φ

∂v2
= 0, h(w) = c2s(w). (5.5.16)

Equation (5.5.16) is well-known in gasdynamics, where for a polytropic gas
h(w) = (γ − 1)w. Once (5.5.16) is solved for φ as a function of w and v, t
and x can be found from (5.5.15).

While the task of linearising (5.5.7)-(5.5.8) to the form (5.5.16) has
been accomplished quite easily, solving an IVP for the former via (5.5.16)
is not straightforward. Suppose the initial conditions for (5.5.7)-(5.5.8) are
prescribed in the form

w(x, 0) = w0(x), v(x, 0) = v0(x), x ∈ R. (5.5.17)

Then (in principle), one may eliminate x from (5.5.17) to get the locus
of the given curve in the (w, v) plane along which t = 0 and x are given. We
have thus converted the IVP (5.5.7), (5.5.8), and (5.5.17) to a Cauchy prob-
lem for (5.5.16). In practice, such a task is generally difficult to accomplish
and it may turn out easier to solve (5.5.7), (5.5.8), and (5.5.17) numerically
using the method of characteristics or otherwise. For some problems, the
Jacobian (5.5.11) may vanish along some curve, making the mapping from
(x, t) plane to (u, v) plane rather complicated.

Carbonaro (1997) has studied in detail invariance properties of the sys-
tem (5.5.12)-(5.5.13) as well as the single equation (5.5.16) using the group
theoretic approach. The sound speed square c2s is kept free and is exploited
to maximize symmetries and, hence, reduction of PDEs to ODEs via a sim-
ilarity transformation. Carbonaro (1997) has also discussed the potential
symmetries of (5.5.12)-(5.5.13) via (5.5.16).

Logan (1994) adopted the same approach to linearise the related system

ht + uhx + hux = 0
(5.5.18)

ut + uux + hx = 0

describing shallow-water waves. Here, h and u are depth and particle ve-
locity at any point (t, x). The transformed equation for t = t(u, h) comes
out to be

tuu = h−1(h2th)h. (5.5.19)

In terms of the characteristic variables

ξ = 2h1/2 − u, η = 2h1/2 + u, (5.5.20)

(5.5.19) becomes
−4tξη = 0 (5.5.21)
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with the general solution

t = f(ξ) + g(η)
= f(2h1/2 − u) + g(2h1/2 + u) (5.5.22)

where f and g are arbitrary functions of their arguments. The difficulties
associated with solving an IVP for (5.5.18) via the solution (5.5.22), referred
to earlier, apply here as well.

It is of some interest to find whether hodograph-type transformations
are useful when the flow is nonisentropic. Such an attempt was made
by Ardavan-Rhad (1970) to study the effect of a centered simple wave
as it catches up with a plane shock. The one-dimensional, nonisentropic
equations were written in terms of particle speed u, sound speed c, and
entropy S:

ut + uux +
2

γ − 1
ccx −

c2

γ(γ − 1)cv
Sx = 0 (5.5.23)

ct + ucx +
γ − 1

2
cux = 0 (5.5.24)

St + uSx = 0 (5.5.25)

where γ is the ratio of specific heats. On introducing the variables

ξ = ln
[
c2/(γ−1) exp

(
−1

γ(γ − 1)
S − S0

cv

)]
η = ln c2/(γ−1), (5.5.26)

(5.5.23)-(5.5.25) change to

ut + uux + e(γ−1)ηξx = 0 (5.5.27)
ξt + uξx + ux = 0 (5.5.28)
ηt + uηx + ux = 0. (5.5.29)

As for the isentropic system, we may write (5.5.27)-(5.5.29) in terms of
Jacobians:

∂(u, x)
∂(t, x)

+ u
∂(t, u)
∂(t, x)

+ e(γ−1)η ∂(t, ξ)
∂(t, x)

= 0 (5.5.30)

∂(ξ, x)
∂(t, x)

+ u
∂(t, ξ)
∂(t, x)

+
∂(t, u)
∂(t, x)

= 0 (5.5.31)

∂(η, x)
∂(t, x)

+ u
∂(t, η)
∂(t, x)

+
∂(t, u)
∂(t, x)

= 0. (5.5.32)

It is clear from (5.5.26) that, for a nonisentropic flow, the variables ξ and
η are independent. We therefore use the hodograph transformation which
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introduces (ξ, η) as the independent variables in place of (t, x). Since we

assume that
∂(t, x)
∂(ξ, η)

6= 0, we multiply each of (5.5.30)-(5.5.32) by this Ja-

cobian and obtain

uξxη − uηxξ + u(uηtξ − uξtη)− e(γ−1)ηtη = 0 (5.5.33)
xη − utη + uηtξ − uξtη = 0 (5.5.34)
xξ − utξ − uηtξ + uξtη = 0. (5.5.35)

Introducing the expression

uηtξ − uξtη = ψ(ξ, η), say, (5.5.36)

as a new dependent variable and inserting xη and xξ from (5.5.34) and
(5.5.35) into (5.5.33), we arrive at the system

e(γ−1)ηtη + (uξ + uη)ψ = 0 (5.5.37)

xη = utη − ψ (5.5.38)
xξ = utξ + ψ. (5.5.39)

Assuming that xηξ = xξη, we get from (5.5.38) and (5.5.39) a linear first-
order PDE for ψ

ψξ + ψη + ψ = 0 (5.5.40)

with the general solution

ψ = e−ηg(ξ − η) (5.5.41)

where g is an arbitrary function of its argument. If we know the function
g, we may find x from (5.5.38) and (5.5.39) in terms of u and t. However,
here we derive an equation for u with ξ and η as the independent variables.
We derive from (5.5.36) and (5.5.41) the equation

uηtξ − uξtη − e−ηg(ξ − η) = 0 (5.5.42)

and from (5.5.37) and (5.5.41)

e(γ−1)ηtη + (uξ + uη)e−ηg(ξ − η) = 0. (5.5.43)

Solving (5.5.42) and (5.5.43) for tξ and tη, and using tξη = tηξ, we arrive at
a rather complicated equation for u alone with ξ and η as the independent
variables:

∂

∂η

[
e−γηg

(
uξ(uξ + uη)− e(γ−1)η

uη

)]
=

∂

∂ξ

[
e−γηg(uξ + uη)

]
. (5.5.44)
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Equation (5.5.44), which involves all the dependent variables of the original
system (5.5.23)-(5.5.25), namely u, ξ, and η (see (5.5.26)), is difficult to solve
generally. However, Ardavan-Rhad attempted a solution,

u =
2

γ − 1
e

(γ−1)
2 ηh(ξ − η) + constant, (5.5.45)

which introduces an arbitrary function h(ξ − η) in the usual definition of
a Riemann invariant for isentropic flows. ξ − η, it may be recalled, is
essentially the entropy function (see (5.5.26)). Substitution of (5.5.45) into
(5.5.44) leads to the following special solution (written in terms of the
original variables) which describes a centered simple wave:

x = [u+ ch(σ)]t
t = c−(γ+1)/(γ−1)f(σ)

f = (h2 − 1)−(γ+1)/2(γ−1) exp
[
γ + 1

2

∫
dσ

h2 − 1

]
(5.5.46)

u =
2

γ − 1
ch(σ) + constant

where the entropy variable now is

σ = − 1
γ(γ − 1)

S − S0

cv
. (5.5.47)

The solution (5.5.46) is essentially nonisentropic; it does not include σ =
constant, the isentropic flow, as a particular case since the entire derivation
assumes that the variables ξ and η in (5.5.26) are independent.

The solution (5.5.46) was used by Ardavan-Rhad (1970) to describe the
effect of a centered simple wave on an advancing plane shock. Although the
solution was approximate, it gave quite satisfactory results. This work was
generalised later by Sharma, Ram, and Sachdev (1987). Equation (5.5.44)
needs to be investigated more generally.

We may refer here also to the work of Steketee (1976), who used the La-
grangian form of one-dimensional gas dynamic equations and, in the manner
of Ardavan-Rhad, derived a host of new forms of gasdynamic equations. He
also gave some special solutions of his new equations.

5.6 The Born-Infeld Equation

The Born-Infeld equation

(1− φ2
t )φxx + 2φxφtφxt − (1 + φ2

x)φtt = 0 (5.6.1)

has some interest of its own: for this equation the hodograph transforma-
tion, in conjuction with characteristic coordinates, leads to a rather neat
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solution. Observe that (5.6.1) involves only derivatives of φ in the coeffi-
cients, and is also autonomous. It has travelling wave solutions of the form
φ = φ(X) where X = x − t or x + t. The ODE for φ(X) can be shown
to have single hump solutions, which look like solitary waves. It is easy to
check that (5.6.1) is of hyperbolic type if

φ2
xφ

2
t + (1 + φ2

x)(1− φ2
t ) > 0,

that is,
1 + φ2

x − φ2
t > 0. (5.6.2)

We shall assume that (5.6.2) is satisfied. In the sequel we closely follow
Whitham (1974). In the light of the above remarks, we introduce the
variables

ξ = x− t, η = x+ t,
u = φξ, v = φη (5.6.3)

in (5.6.1). The new system of equations assumes a rather simple form:

uη − vξ = 0 (5.6.4)
v2uξ − (1 + 2uv)uη + u2vη = 0. (5.6.5)

Equation (5.6.4) follows from (5.6.33) and (5.6.34), while (5.6.5) is the
new form of (5.6.1). Now we apply the hodograph transformation to (5.6.4)
-(5.6.5) so that the role of dependent and independent variables is inter-
changed. We get

ξv − ηu = 0 (5.6.6)
v2ηv + (1 + 2uv)ξv + u2ξu = 0. (5.6.7)

Eliminating η from (5.6.6) and (5.6.7) by differentiating, etc., we get a
single linear second-order PDE for ξ:

u2ξuu + (1 + 2uv)ξuv + v2ξvv + 2uξu + 2vξv = 0 (5.6.8)

which, in view of our assumption regarding the original system, is also
hyperbolic. The characteristic directions for (5.6.8) are given by

u2(dv)2 − (1 + 2uv)dudv + v2(du)2 = 0

or
dv

du
=

1 + 2uv ± [1 + 4uv]1/2

2u2
. (5.6.9)

On integration of (5.6.9) the characteristic curves are found to be
r = constant, s = constant, where

r =
√

1 + 4uv − 1
2v

, s =
√

1 + 4uv − 1
2u

. (5.6.10)
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Introducing the characteristic variables r and s in (5.6.6) and (5.6.7), we
get

r2ξr + ηr = 0 (5.6.11)
ξs + s2ηs = 0. (5.6.12)

Curiously, not only the hodograph method linearises the original system,
the latter reduces to the rather simple form (5.6.11)-(5.6.12) via character-
istic variables. The system (5.6.11)-(5.6.12) in ξ alone simply becomes

ξrs = 0. (5.6.13)

The general solution of (5.6.11)-(5.6.12) via that of (5.6.13) may be written
as

x− t = ξ = F (r)−
∫
s2G′(s)ds (5.6.14)

x+ t = η = G(s)−
∫
r2F ′(r)dr (5.6.15)

where F (r) and G(s) are arbitrary functions of their arguments. We may
now find

φr = uξr + vηr =
r

1− rs
ξr +

s

1− rs
ηr = rF ′(r) (5.6.16)

and, in the same manner,
φs = sG′(s). (5.6.17)

We can therefore write

φ =
∫
rF ′(r)dr +

∫
sG′(s)ds. (5.6.18)

To interpret the solution as an interaction of two waves incident from
x = −∞ and x = +∞, Whitham (1974) introduced the variables

F (r) = ρ, G(s) = σ
r = Φ′1(ρ), s = Φ′2(σ)

so that (5.6.18) becomes

φ = Φ1(ρ) + Φ2(σ), (5.6.19)

and

x− t = ρ−
∫ σ

−∞
Φ′22 (σ)dσ (5.6.20)

x+ t = σ +
∫ ∞

ρ

Φ′21 (ρ)dρ (5.6.21)
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(see (5.6.14)-(5.6.15)). If, further, Φ1(ρ) and Φ2(σ) are localised so that
they are nonzero only in −1 < ρ < 0, 0 < σ < 1, respectively, then

φ = Φ1(x− t) + Φ2(x+ t) for t < 0. (5.6.22)

The solution (5.6.22) is a superposition of two waves, Φ1 coming from
x = −∞ and Φ2 from x = +∞. In the limit t → +∞, the solution tends
to

φ = Φ1

{
x− t+

∫ ∞

−∞
Φ′22 (σ)dσ

}
+ Φ2

{
x+ t−

∫ ∞

−∞
Φ′21 (ρ)dρ

}
. (5.6.23)

The terms
∫∞
−∞ Φ′2i (τ)dτ (i = 1, 2) represent displacements in the direction

opposite the direction of propagation of the respective waves.

5.7 Water Waves up a Uniformly Sloping Beach

The system of PDEs describing shallow-water waves up a uniformly sloping
beach are

∂v

∂t
+ v

∂v

∂x
+
∂η

∂x
= 0 (5.7.1)

∂η

∂t
+

∂

∂x
[(η − x)v] = 0. (5.7.2)

Here, all variables have been suitably nondimensionalised. v is the particle
velocity, η is the height of the wave above the undisturbed shoreline, and
x and t are space and time variables, respectively. The slope of the beach
is rendered equal to 1 after appropriate scaling. The hyperbolic system of
equations (5.7.1)-(5.7.2) has been derived and discussed in some detail by
Stoker (1948). Here we follow the work of Carrier and Greenspan (1958)
and some other investigators with respect to the transformation and ex-
act solution of (5.7.1) and (5.7.2). As in the example of the Born-Infeld
equation discussed in Section 5.6, the characteristics and hodograph trans-
formation both play a crucial role in the linearisation and simplification
of the system (5.7.1)-(5.7.2). An advantage of the present problem is that
the free boundary, the instantaneous shoreline, on which the depth is zero
becomes fixed in the new coordinate system and, therefore, the BC on it
can be easily satisfied.

It is not difficult to check that the hyperbolic system (5.7.1)-(5.7.2) can
be written in terms of the characteristic variables α and β, as

xβ − (v + c)tβ = 0 (5.7.3)
xα − (v − c)tα = 0 (5.7.4)
vβ + 2cβ + tβ = 0 (5.7.5)
vα − 2cα + tα = 0 (5.7.6)
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where c2 = η − x. Equations (5.7.3)-(5.7.4) define characteristic directions
while (5.7.5) and (5.7.6) are the relations holding along them, respectively.
Integration of (5.7.5) and (5.7.6) gives

v + 2c+ t = α (5.7.7)
v − 2c+ t = −β (5.7.8)

where the “functions” of integration have been chosen to introduce some
simplification. From (5.7.7) and (5.7.8) we get

v + t = (α− β)/2 = λ/2 (5.7.9)

and
c = (α+ β)/4 = σ/4 (5.7.10)

where new independent variables λ and σ have been introduced. Equations
(5.7.3)-(5.7.4) now become

xσ − vtσ + ctλ = 0 (5.7.11)
xλ + ctσ − vtλ = 0. (5.7.12)

Eliminating x from (5.7.11)-(5.7.12), we get a linear second-order PDE for
t:

σ(tλλ − tσσ)− 3tσ = 0. (5.7.13)

Since v + t = λ/2, v also satisfies (5.7.13). Indeed, if we introduce the
“potential” function φ via

v = σ−1φσ(σ, λ), (5.7.14)

then φ satisfies the equation

(σφσ)σ − σφλλ = 0 (5.7.15)

while other functions, by the use of (5.7.9)-(5.7.12), are expressed as

x = φλ/4− σ2/16− v2/2 (5.7.16)
η = c2 + x = φλ/4− v2/2 (5.7.17)
t = λ/2− v. (5.7.18)

Not only do we have a linear PDE (5.7.13) or (5.7.15) replacing the
original nonlinear system (5.7.1)-(5.7.2), the boundary condition on the
(moving) instantaneous shoreline c = 0 has also been replaced by the fixed
line σ = 0 in the (σ, λ) plane. Once Equation (5.7.15) for φ(σ, λ) has been
solved, x, η, and t are found explicitly from (5.7.16)-(5.7.18) as functions
of (σ, λ). To exclude the possibility of wave breaking, we assume that the

Jacobian
∂(x, t)
∂(σ, λ)

6= 0 for all σ > 0.
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Before we pose an IVP for (5.7.13) or (5.7.15), we observe that a simple
product solution of (5.7.15) is

φ = AJ0(wσ) cos(wλ− ψ) (5.7.19)

where J0 is a Bessel function of order zero. We choose the constants in
(5.7.19) to be ψ = 0 and w = 1 without loss of generality. It may be

easily checked that J =
∂(x, t)
∂(σ, λ)

for (5.7.19) is nonzero for σ > 0 if A ≤ 1.

Therefore, no breaking of the wave takes place under this condition. The
solution AJ0(σ) cosλ shows that the phenomenon is periodic in time and
the wave shape far out at sea is like J0(4

√
|x|). Near the shore, the wave is

considerably distorted. The shoreline, where the depth is zero, is given by
σ = 0 (see (5.7.10)). Accordingly, the maximum penetration of the wave is

x(λ, 0) = (φλ/4)− u2

2
is A/4 (see (5.7.16)).

Now we pose a simple problem: the release of a mound of water at time
t = 0. Here the initial shape of the mound η(x, 0) is prescribed; it is also
assumed to be at rest so that v(x, 0) = 0 everywhere. From the relation
v + t = λ/2, we find that v = 0, t = 0 imply that λ = 0 initially. We
must solve (5.7.13) for v (replacing t) with the conditions that v = 0 and
vλ prescribed on λ = 0, corresponding to t = 0. We also require that v
must remain finite on the free boundary σ = 0 corresponding to c = 0. To
find vλ, we note the relation

[η(x, 0)− x]1/2 = c(x, 0) =
1
4
σ. (5.7.20)

Since the initial height η(x, 0) is prescribed, we may solve (5.7.20) for x and
use the relation (5.7.11) to write

xσ = −ctλ

on λ = 0 where v = 0. Now, from (5.7.18) and (5.7.11), we have, for λ = 0,

vλ =
1
2
− tλ =

1
2

+ 4σ−1xσ = f(σ), say, (5.7.21)

where xσ (and hence f(σ)) is obtained from (5.7.20). Thus, all the data
required for the equation

σ(vλλ − vσσ)− 3vσ = 0 (5.7.22)

become available. We solve the linear PDE (5.7.22) by the Laplace trans-
form techniques. Writing

v =
∫ ∞

0

e−sλvdλ,
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Equation (5.7.22) and the conditions v = 0, vλ = f(σ) on λ = 0 give

σvσσ + 3vσ − s2σv = −σf(σ). (5.7.23)

With z = sσ and p = zv, (5.7.23) changes to

(zp′)′ − p

z
− zp = −z

2

s2
f(z/s). (5.7.24)

Now we use the Hankel transform

p =
∫ ∞

0

zJ1(ξz)p(z)dz

in (5.7.24) and, after some manipulation, obtain

p =
1

1 + ξ2

∫ ∞

0

β2

s2
J1(βs)f(β/s)dβ. (5.7.25)

Setting ξ = sτ and using the inverse Hankel transformation, we arrive at
the solution

v =
∫ ∞

0

σ−1J1(τσ) sin τλ dτ
∫ ∞

0

σ2
0J1(τσ0)f(σ0)dσ0. (5.7.26)

Recalling the relation (5.7.14), we obtain from (5.7.26) the potential func-
tion

φ = −
∫ ∞

0

τ−1J0(τσ) sin τλdτ
∫ ∞

0

σ2
0J1(τσ0)f(σ0)dσ0. (5.7.27)

Carrier and Greenspan (1958) choose particular forms of initial profile
η(x, 0) and, hence, f(σ) to find some explicit solutions (5.7.26) and illustrate
the evolution of this profile, starting from rest, under the shallow-water
equations (5.7.1)-(5.7.2). The results are shown graphically.

Spielvogel (1975), following closely the analysis of Carrier and Greenspan
(1958), considered the inverse problem: with the run-up data as the initial
state, he tried to identify the wave that gave rise to such a run-up. In this
case, an initial velocity equal to zero is interpreted to mean that all the ki-
netic energy of the wave has been transformed into potential energy of the
run-up. The solution is used to discover the possibilities of high shoreline
amplification and run-up. The implications in the context of generation of
tsunamis were also discussed.

The system (5.7.1)-(5.7.2), when transformed to (5.7.15), has some in-
teresting structures, as was shown by Sachdev and Narasimha Chari (1982).
Indeed, (5.7.15) has multinomial solutions. When the number of terms in
the multinomials is allowed to tend to infinity, the solutions for specific ini-
tial value problems for (5.7.15) may be found. Here, we discuss the multi-
nomial solutions and recover solution of an IVP found earlier by Spielvogel
(1975) using transform techniques.
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First we observe that (5.7.15) has the symmetry φ(−σ, λ) = φ(σ, λ).
Therefore, we seek multinomial solutions of degree 2n in σ and degree n
in λ:

φn(σ, λ) = constant +
n∑
i=0

n∑
j=0

ai,jσ
2iλj . (5.7.28)

Substituting (5.7.28) into (5.7.15) and using the zero initial condition
vn(σ, o) = 0 (see (5.7.14)) lead to

φn(σ, λ) = constant +
n∑
i=0

σ2i

n−i∑
j=0

ai,jλ
2j+1

 (5.7.29)

where

ai+1,j =
(2j + 3)(2j + 2)

(2i+ 2)2
ai,j+1. (5.7.30)

The solution (5.7.29)-(5.7.30) corresponds to the initial profile

ηn(σ, 0) =
(φn)λ(σ, 0)

4
=

n∑
i=0

ai,0σ
2i

4
(5.7.31)

with

x = ηn(σ, 0)− σ2

16
(5.7.32)

(see (5.7.16)-(5.7.17)). Successive use of (5.7.30) yields

ai,j =
(2i+ 2)2(2i+ 4)2 . . . (2i+ 2j)2

(2j + 1)(2j) . . . 3.2.1
ai+j,0

=
22j [(i+ j)!]2

(i!)2(2j + 1)!
ai+j,0 (5.7.33)

giving ai,j in terms of the coefficients ai+j,0 appearing in the initial profile.
The physical solution can be found with the help of (5.7.14), (5.7.16),

and (5.7.17). We give below the first few multinomial solutions and the
corresponding profiles. Here, ai are arbitrary constants.

n = 1.

φ = a0 + a1λ+ a3λ
3 +

3a3

2
σ2λ

v = 3a3λ

η =
1
4

(
a1 + 3a3λ

2 +
3a3

2
σ2

)
− (3a3λ)2

2

x = η(σ, λ)− σ2

16
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The initial profile is parametrically given by

η(σ, 0) =
1
4

(
a1 +

3a3

2
σ2

)
x(σ, 0) = η(σ, 0)− σ2

16

(5.7.34a)

n = 2.

φ = a0 + a1λ+ a3λ
3 + a5λ

5 + σ2

(
3a3

2
λ+ 5a5λ

3

)
+

15
8
a5λσ

4

v = 3a3λ+ 10a5λ
3 +

15
2
a5σ

2λ

η =
1
4

(
a1 + 3a3λ

2 + 5a5λ
4 +

3a3

2
σ2 + 15a5σ

2λ2 +
15
8
a5σ

4

)
− 1

2
v2

x = η − σ2

16
.

The initial profile is

η(σ, 0) =
a1

4
+

3a3

8
σ2 +

15
32
a5σ

4

x(σ, 0) = η(σ, 0)− σ2

16

(5.7.34b)

n = 3.

φ = a0 + a1λ+ a3λ
3 + a5λ

5 + a7λ
7

+σ2

(
3a3

2
λ+ 5a5λ

3 +
21
2
a7λ

5

)
+σ4

(
15a5

8
λ+

105
8
a7λ

3

)
+

35
16
a7σ

6λ

v = 3a3λ+ 10a5λ
3 + 21a7λ

5 + σ2

(
15
2
a5λ+

105
2
a7λ

3

)
+

105
8
a7σ

4λ

η =
1
4

[
a1 + 3a3λ

2 + 5a5λ
4 + 7a7λ

6 + σ2

(
3a3

2
+ 15a5λ

2 +
105
2
a7λ

4

)
+σ4

(
15a5

8
+

315
8
a7λ

2

)
+

35
16
a7σ

6

]
− 1

2
v2

x = η(σ, λ)− σ2

16
.

The initial profile in this case is

η(σ, 0) =
a1

4
+

3a3

8
σ2 +

15
32
a5σ

4 +
35
64
a7σ

6

x = η(σ, 0)− σ2

16

(5.7.34c)

Sachdev and Narasimha Chari (1982) have checked that the multinomial
solutions themselves do not give particularly useful physical solutions, but
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can be profitably used to validate the numerical scheme for a solution of
an arbitrary IVP.

We conclude the discussion of multinomial solutions by recovering a
solution of Spielvogel (1975), who considered the implicit initial profile

η0 = η(x, 0) = A exp [16p(x− η0)] (5.7.35)

or, in view of (5.7.16)-(5.7.17),

η0 = η(σ, 0) = A exp(−pσ2) = A
∞∑
k=0

(−pσ2)k

k!
. (5.7.36)

This initial condition generates the solution

η(σ, λ) ≡ η(σ, λ) +
σ2

16
=
φλ
4

= A
∞∑
k=0

∞∑
s=0

(−4pλ2)s(−pσ2)k(s+ k)!
2s!(k!)2

. (5.7.37)

The choice

ak,0 =
4A(−p)k

k!
(5.7.38)

in (5.7.33) immediately gives

ak,s =
4A(k + s)!

(2s+ 1)!(k!)2
(−p)k(−4p)s. (5.7.39)

The solution (5.7.37) easily follows from (5.7.28) as n is allowed to tend to
infinity.

Sachdev and Narasimha Chari (1982) also rederived some of the so-
lutions of Carrier and Greenspan (1958), obtained by them via integral
transform techniques.

The work of Carrier and Greenspan (1958) was extended by Tuck and
Hwang (1972) to take into account the ground motion where the bottom is
uniformly sloping and the resulting wave propagates away into the deeper
water. This situation is somewhat closer to common seismic tsunami-
generating mechanisms. Tuck and Hwang (1972) also generalised the trans-
formations due to Carrier and Greenspan (1958) in a small way for the case
of no ground motion and uniformly sloping beach such that the solutions
obtained for linear problem for small motions can be directly used for the
large amplitude case with merely a change of notation.

We conclude this section by referring to a general result regarding lin-
earising of a two-dimensional inhomogeneous system,

a1ux + b1ut + c1vx + d1vt + e1 = 0 (5.7.40)
a2ux + b2ut + c2vx + d2vt + e2 = 0, (5.7.41)
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due to Seymour and Varley (1984); here a1, a2, b1, b2, etc. are functions
of (u, v, x, t). It is claimed that, for certain types of nonlinear systems
(5.7.40)-(5.7.41), if x = X(u, v), t = T (u, v) is any particular solution, then
through the transformation

x = x−X(u, v), t = t− T (u, v) (5.7.42)

the system (5.7.40)-(5.7.41) may be changed to a linear form. They il-
lustrate this result with some examples. We consider the shallow-water
equations on a sloping beach, discussed earlier in this section, in the form

ηt + [u(η + αx)]x = 0 (5.7.43)
ut + uux + gηx = 0 (5.7.44)

where α and g are the (uniform) slope of the beach and acceleration due
to gravity, respectively. The system (5.7.43)-(5.7.44) is first rewritten in
terms of the variables

η = η + u2/2g (5.7.45)

and u:

ut + gηx = 0 (5.7.46)

ηt + uηx +
(
−u
g

)
ut +

(
αx+ η − 3u2

2g

)
ux + αu = 0. (5.7.47)

It is easy to see that Equations (5.7.43)-(5.7.44) possess the simple solution

η = −αx, u = gαt. (5.7.48)

In terms of η and u, the solution (5.7.48) becomes

η = −αx+
1
2
gα2t2 (5.7.49)

u = gαt (5.7.50)

which inverts to give

x = X(u, η) = −η/α+ u2/2gα (5.7.51)
t = T (u) = u/gα. (5.7.52)

Now, defining the new variables according to (5.7.42), we have

x = x−X(u, η) = x+ η/α− u2/2gα (5.7.53)
t = t− T (u) = t− u/gα. (5.7.54)

The system (5.7.46)-(5.7.47) in terms of the variables x and t becomes
linear:

ut + gηx = 0 (5.7.55)
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and
ηt + α(xu)x = 0. (5.7.56)

In fact, this is the linearisation first obtained by Tuck and Hwang (1972).
Seymour and Varley (1984) also discussed the linearisation of the (nonlin-
ear) telegraph equation

φxx − d(φt)φtt − e(φt) = 0. (5.7.57)

It is clear that the result enunciated by Seymour and Varley (1984) is
not applicable to all equations of the form (5.7.40)-(5.7.41).

5.8 Simple Waves on Shear Flows

We discuss the present example for two reasons: first to show how even
complicated nonlinear flows with free surfaces may have exact solutions,
and second to demonstrate that while the original PDE system may not
be linearisable, its changed ODE form in terms of similarity variable may
admit exact linearisation.

The system of PDEs governing free surface flows in the hydraulic ap-
proximation is

ut + uux + vuy + ghx = 0 (5.8.1)
ux + vy = 0 (5.8.2)

where (u, v) are velocity components in the x and y directions, the latter
being measured along and perpendicular to the uniform bottom, respec-
tively. The hydraulic approximation permits replacement of the pressure
term in the original momentum equation in terms of “uniform” gravita-
tion pressure gρh, where ρ is the density of water, g is acceleration due to
gravity, and h(x, t) is the depth of water in the channel. The boundary
conditions on the flow are

v = ht + uhx (5.8.3)
ut + uux + ghx = 0 (5.8.4)

on the free surface y = h(x, t), and

v = 0 on y = 0 (5.8.5)

at the bottom. The special (simple wave) solutions are sought such that u
and h are constant on the lines

dx

dt
= c(h(x, t)). (5.8.6)
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Thus,

u = u(x− ct, y) (5.8.7)
h = h(x− ct). (5.8.8)

The functions c(h) and h(x, t) are themselves unknown and must be found
as part of the solution.

By introducing the variables

w1 = v

(
∂h

∂x

)−1

, ξ = x− ct, h = h(ξ) (5.8.9)

in (5.8.1)-(5.8.2) and the boundary conditions (5.8.3)-(5.8.5), we arrive at
the system

(u− c)
∂u

∂h
+ w1

∂u

∂y
+ g = 0 (5.8.10)

∂u

∂h
+
∂w1

∂y
= 0 (5.8.11)

w1 = (u− c), (u− c)
∂u

∂h
+ g = 0 on y = h (5.8.12)

and
w1 = 0 on y = 0. (5.8.13)

Before we discuss the solution of the problem (5.8.10)-(5.8.13) by exact
linearisation, we briefly describe how it was first solved by Freeman (1972)
directly.

Eliminating
∂u

∂h
from (5.8.10) and (5.8.11), we have

∂

∂y

(
w1

u− c

)
=

g

(u− c)2
(5.8.14)

which, on integration, gives

w1 = g(u− c)
∫ y

0

dy

(u− c)2
(5.8.15)

where we have used the BC (5.8.13). The second BC (5.8.121) requires that∫ h

0

gdy

(u− c)2
= 1. (5.8.16)

Taking a cue from (5.8.16), one introduces the function

I = g

∫ y

0

dy

(u− c)2
(5.8.17)
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so that the former may be easily satisfied. Expressing u in terms of I from
(5.8.17) and using (5.8.15), Equation (5.8.10) transforms to

∂2I

∂h∂y
+ I

∂2I

∂y2
= 2

∂I

∂y

[
∂I

∂y
− c′(h)
g1/2

(
∂I

∂y

)1/2
]
. (5.8.18)

From (5.8.16) and (5.8.17) it immediately follows that

I(h, h) = 1, I(h, 0) = 0. (5.8.19)

The condition (5.8.122) is not imposed. The hyperbolic equation (5.8.18)
subject to (5.8.19), with appropriate BC, I = I(y, h0) on h = h0, seems
difficult to solve generally. This set of supernumerary conditions must be
imposed to find the function c = c(h) in the process as well. Here we
consider a special circumstance. First, we normalise y by introducing the
variable Y =

y

h
in (5.8.18). We obtain

h
∂2I

∂Y ∂h
+ (I − Y )

∂2I

∂Y 2
=

∂I

∂Y
+ 2

∂I

∂Y

[
∂I

∂Y
− c′(h)h1/2

g1/2

(
∂I

∂Y

)1/2
]
.

(5.8.20)

If we assume that
c′(h)h1/2

g1/2
= α, a constant, so that c = 2α(gh)1/2, and

let I be a function of Y alone, we get a nonlinear ODE for I with Y as the
independent variable:

(I − Y )
d2I

dY 2
=

dI

dY
+ 2

dI

dY

[
dI

dY
− α

(
dI

dY

)1/2
]
. (5.8.21)

The boundary conditions (5.8.19) now become

I(1) = 1, I(0) = 0. (5.8.22)

Equation (5.8.21) seems daunting but can be solved after several transfor-
mations. With J = I − Y , it can be shown to reduce to the first-order
ODE

JJ ′
dJ ′

dJ
= 2(1 + J ′)2 − 2α(1 + J ′)3/2 + (1 + J ′). (5.8.23)

Now, putting N2 = J ′ + 1 and integrating, we arrive at the solution

J = C(a−N)(a
2−1)/a(a−b)(N − b)(b

2−1)/b(b−a)/N1/ab (5.8.24)

where a and b =
1
2a

are roots of the quadratic

λ2 − αλ+
1
2

= 0, (5.8.25)
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and C is an arbitrary constant. Since
(
dJ

dY

)
= N2 − 1, we may use (5.8.24)

to find the solution as

Y = C1

∫
(a−N)−1/(2a2−1)

(
N − 1

2
a−1

)2a2/(2a2−1)
dN

N3
(5.8.26)

where C1 is another constant. We can write (5.8.26) in terms of incomplete
beta functions. Imposing the BCs (5.8.22) on this form, we arrive at the
solution

Y =
β
(

4a2−1
2a2−1 ,

2(a2−1)
2a2−1 ,

U−a−1

2a−a−1

)
β
(

4a2−1
2a2−1 ,

2(a2−1)
2a2−1 , 1

) . (5.8.27)

Here, β denotes the incomplete beta function. The solution (5.8.27) satisfies
the conditions (5.8.22). To see that, we note that

N2 =
dI

dY
=

gh

(u− c)2

so that
u = (2α−N−1)(gh)1/2. (5.8.28)

Writing U =
u

(gh)1/2
and noting (5.8.19), (5.8.24), and (5.8.25), as well as

the relation J = I − Y , we find that

U =
1
a

at Y = 0 (5.8.29)

U = 2a at Y = 1. (5.8.30)

The conditions (5.8.29) and (5.8.30) are clearly satisfied by the solution
(5.8.27). We also note that the (normalised) wave propagation speed

c =
c

(gh)1/2
= 2α = (a+ 2a−1). (5.8.31)

For a > 1, c > 2a > umax. Thus u 6= c anywhere in the range of u, and so
there is no critical point in the flow. We observe that (5.8.31) gives the wave
speed in terms of the free surface h(x, t), which itself remains arbitrary.

Now we derive the above solution by (exact) linearisation. For that
purpose, we seek the solution of (5.8.10), (5.8.11), (5.8.121), and (5.8.13)
directly in the self-similar form

u = y1/2P (Y ) (5.8.32)
w1 = y1/2Q(Y ) (5.8.33)
c = C0h

1/2, Y = y/h. (5.8.34)
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The form (5.8.32)-(5.8.34) is easily guessed by writing the power law sim-
ilarity forms (see Sachdev and Philip (1986) for derivation by the group
theoretic method). Equations (5.8.10)-(5.8.11) transform to

2Y 2P ′ − 2Y Q ′ −Q = 0 (5.8.35)(
1
2
P + Y P ′

)
Q− Y 2PP ′ + 2αg1/2Y 3/2P ′ + g = 0 (5.8.36)

where we choose c0 = 2αg1/2 to conform to the earlier form of the solution;
the prime denotes derivative with respect to Y . From (5.8.36), we have

Q =
Y 2PP ′ − 2αg1/2Y 3/2P ′ − g

1
2P + Y P ′ . (5.8.37)

Differentiating (5.8.37), we have

Q′ =
1(

1
2P + Y P ′

)2 [(1
2
Y 2P 2 − αg1/2Y 3/2P + gY

)
P
′′

+(Y P 2 − 3
2
αg

1
2Y

1
2P +

3
2
g)P ′ + Y 2PP

′2
+ Y 3P

′3
]
.

(5.8.38)

Eliminating Q and Q′ from (5.8.35) with the help of (5.8.37) and (5.8.38),
we have

(Y 3P 2 − 2αg1/2Y 5/2P + 2gY 2)P ′′

+(2gY + 2Y 2P 2 − 4αg1/2Y 3/2P )P ′

+(Y 3P − 2αg1/2Y 5/2)P ′
2
− 1

2
gP = 0. (5.8.39)

Equation (5.8.39) simplifies considerably if we introduce the normalised
variable

U = u/(gh)1/2 = g−1/2Y 1/2P (Y ); (5.8.40)

we obtain

(U2 − 2αU + 2)
d2U

dY 2
+ (U − 2α)

(
dU

dY

)2

= 0. (5.8.41)

If we interchange the dependent and independent variables in (5.8.41) (a
hodograph transformation) we get the linear ODE

(U2 − 2αU + 2)
d2Y

dU2
+ (2α− U)

dY

dU
= 0 (5.8.42)
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with the solution

Y = A1 +B1β

(
4− λ2

1

2− λ2
1

,
2− 2λ2

1

2− λ2
1

,
U − λ1

2λ−1
1 − λ1

)
, (5.8.43)

where λ1 is the smaller root of λ2−2αλ+2 = 0. The function Q in (5.8.37)
in terms of U is

Q =
g1/2Y (U − 2α)U ′ − 1

2g
1/2(U2 − 2αU + 2)

Y 1/2U ′
. (5.8.44)

The boundary condition (5.8.13) reduces to Y 1/2Q = 0 on Y = 0, and in
view of (5.8.44) becomes U = λ1 at Y = 0. The condition (5.8.121) in view
of (5.8.44) becomes U = λ2 at Y = 1. With these conditions, the solution
(5.8.43) assumes the form

Y = β

(
4− λ2

1

2− λ2
1

,
2− 2λ2

1

2− λ2
1

,
U − λ1

2λ−1
1 − λ1

)/
β

(
4− λ2

1

2− λ2
1

,
2− 2λ2

1

2− λ2
1

, 1
)
.

(5.8.45)
The above derivation requires that (6−2λ2

1)/(2−λ2
1) must not be a negative

integer or zero. We have thus recovered (5.8.27) with λ1 = a−1.

5.9 C-Integrable Nonlinear PDEs

Calogero (1991) called those nonlinear PDEs which can be linearised by
an appropriate change of variables “C-integrable:” this is in contrast to
S-integrable PDEs which require spectral transform techniques. A class of
C-integrable equations was obtained via the change of dependent variable

v(x, t) = u(x, t) exp

{∫ x

a(t)

dx′F [u(x′, t)]

}
(5.9.1)

which associates a nonlinear evolution PDE for u(x, t) to a linear evolution
PDE satisfied by v(x, t). Here, the function F (u) may be chosen arbitrar-
ily. The transformation (5.9.1) is not the most general but generates an
interesting class of equations of evolutionary type. It follows from (5.9.1)
that

u[a(t), t] = v[a(t), t] (5.9.2)

and
ux(x, t)
u(x, t)

+ F [u(x, t)] =
vx(x, t)
v(x, t)

. (5.9.3)

If F (u) and a(t) are known, then (5.9.1) gives v in terms of u. On the
other hand, if v(x, t), the solution of a linear PDE, is known, to find u(x, t)
one must solve (5.9.3), a nonlinear nonautonomous first-order PDE with
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(5.9.2) as the boundary condition. t, in the above, is a parameter. The
special choices F (u) = Auλ, A ln(u), where A and λ are constants, lead to
simple transformations

u(x, t) = v(x, t)

{
1 + λA

∫ x

a(t)

dx′[v(x′, t)]λ
}−1/λ

(5.9.4)

and

u(x, t) = v(x, t) exp

{
−A exp(−Ax)

∫ x

a(t)

exp(Ax′) ln[v(x′, t)]dx′
}
,

(5.9.5)
respectively.

As the simplest example, if v satisfies the heat equation

vt − vxx = 0, (5.9.6)

then it can be easily shown that u(x, t) satisfies the generalized Burgers
equation

ut − uxx + fu = 2uxF (u) (5.9.7)
fx + uF ′(u)f = −u2

xF
′′(u), (5.9.8)

where u = u(x, t), f = f(x, t), and the prime denotes differentiation with
respect to the argument. For consistency of (5.9.1), (5.9.6), (5.9.7), and
(5.9.8), a(t) must satisfy the ODE

{F ȧ(t) + F 2 + F ′ux + f}|x=a(t) = 0 (5.9.9)

or, in view of (5.9.2) and (5.9.3),

{F ȧ(t) + F 2 + F ′(vx − Fv) + f}|x=a(t) = 0. (5.9.10)

Here, dot denotes
d

dt
and F , etc., are evaluated at x = a(t), that is, F

stands for F{u[a(t), t]}.
Calogero gives a large number of simple second-order linear equations

with constant coefficients of both parabolic and hyperbolic types which,
with the help of (5.9.1), generate nonlinear PDEs of C-integrable type.
Some of the latter are solved explicitly.

The transformation (5.9.1) is clearly a generalisation of the Cole-Hopf
transformation and generates a large class of nonlinear PDEs whose poten-
tial must be carefully examined. A rather similar approach was adopted
much earlier by Sachdev (1978). A generalized Cole-Hopf transformation
was introduced into linear parabolic and hyperbolic equations with vari-
able coefficients to find what class of nonlinear PDEs would be generated,
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and hence find solutions of the latter via the known solutions of the for-
mer. Here we give details relating to the parabolic case and summarise the
results for the hyperbolic one.

We begin with the linear parabolic equation

φt + bφx + cφ+ f = εaφxx (5.9.11)

where a, b, and c are functions of x and t, and ε is a parameter. We introduce
the generalised Cole-Hopf transformation

F (u) = k(x, t)(lnφ)x (5.9.12)

into (5.9.11). The derivatives are easily found:

k
φx
φ

= F, k
φxx
φ

= F ′(u)ux −
kx
k
F +

F 2

k

k
φt
φ

= εa

(
F ′ux −

kx
k
F +

F 2

k

)
− bF − ck − fk

φ

k
φxt
φ

= F ′ut + εa
FF ′

k
ux

+F
(
−kt
k

+
εa

k

(
−kx
k
F +

F 2

k

)
− b

k
F − c− f

φ

)
k
φxxx
φ

=
(
F

k
− kx

k

)(
F ′ux −

kx
k
F +

F 2

k

)
+
(
F ′′u2

x + F ′uxx −
(
kx
k

)
x

F − kx
k
F ′ux

+
2FF ′

k
ux −

F 2

k2
kx

)
. (5.9.13)

Differentiating (5.9.11) with respect to x, we have

k
φxt
φ

+ (b− εax)k
φxx
φ

+ (bx + c)
kφx
φ

+ kcx +
kfx
φ

= εak
φxxx
φ

. (5.9.14)

Substituting the φ derivatives from (5.9.13) into (5.9.14), we get the non-
linear PDE for u alone provided that f = 0 :

ut +
(
b− εax + 2εa

kx
k
− 2εa

F

k

)
ux − εa

F ′′

F ′ u
2
x

+
F

F ′

[
εa

k2
(kkxx − 2k2

x)−
kt
k
− bkx

k
+ εax

kx
k

+ bx +
kcx
F

+ F

(
2εakx
k2

− εax
k

)]
= εauxx. (5.9.15)

We consider some special cases of (5.9.15).
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(i) The quadratic term u2
x is absent so that (5.9.15) is a generalised Burg-

ers equation if F ′′(u) = 0, that is, if F is a linear function of u. In
particular, if F = u and a is a constant, (5.9.15) can be written as an
exchange process (Murray (1968), (1970)):

ut + vx +
(
εa
kx
k2
u− εa

kxx
k
− kt
k
− bkx

k

)
u+ kcx = 0 (5.9.16)

v =
(
b+ 2εa

kx
k

)
u− εa

k
u2 − εaux. (5.9.17)

The system (5.9.16)-(5.9.17) generalises the Burgers equation expressed
as a system

ut + vx = 0 (5.9.18)

v = −εaux +
u2

2
(5.9.19)

and gives a class of nonlinear parabolic equations with constant vis-
cous coefficient, which may be transformed into a linear parabolic
equation via (5.9.12).

(ii) If we choose k = −2a so that the coefficient in the transformation
(5.9.12) conforms to that in the standard Cole-Hopf transformation,
then (5.9.15) reduces to

ut + (b+ εax + εF )ux − εa
F ′′

F ′ u
2
x +

F

F ′

[
ε

(
axx −

a2
x

a

)
−εF

2
ax
a
− at
a
− bax

a
+ bx −

2acx
F

]
= εauxx. (5.9.20)

With F = u, (5.9.20) is a GBE with damping and variable viscosity.
The term b + εax in the coefficient of ux, even when assumed to be
constant, plays a nontrivial role in the solution of (5.9.20), (Murray
(1970)). If we put b+ εax = 0 and F = u, (5.9.20) simplifies to

ut + εuux − u
(
εu
ax
a

+
at
a

)
− 2acx = εauxx (5.9.21)

so that we may have a damping term which is either a constant or a
linear function or a quadratic function of u, depending on the choice of
a and c. The variable a could be interpreted as a variable coefficient of
viscosity. In (5.9.21), if we further let a and (hence) k to be functions
of t alone, we arrive at the equation

ut + εuux −
at
a
u = εa(t)uxx. (5.9.22)

Equation (5.9.22) includes Burgers model for turbulence, but with a
variable viscosity (see Case and Chu (1969); Murray (1973)).
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(iii) If we let a, k, and c in (5.9.20) be constant, but allow b to be a function
of x and t, then it becomes

ut + (b+ εF )ux − εa
F ′′

F ′ u
2
x +

F

F ′ bx = εauxx, (5.9.23)

a useful equation with constant diffusivity, which, for F = u, repre-
sents a GBE with a linear damping term which may also depend on
x and t through bx.

For a discussion of the general solution of the linear parabolic equation
(5.9.11), one may refer to Friedman (1964) and Colton (1976). For similar-
ity solution of (5.9.11), when a, b, and c are functions of x alone, one may
refer to Lehnigk (1976) and Sachdev (1978). For the fundamental solution
of (5.9.11), Swan (1977) may be consulted.

In a subsequent study, Nimmo and Crighton (1982) sought, in a sys-
tematic way, Bäcklund transformations (BTs) for the nonlinear parabolic
equations of the form

ut + uxx +H(ux, u, x, t) ≡ q + r +H(p, u, x, t) = 0 (5.9.24)

with the usual notation

q = ut, p = ux, r = uxx, (5.9.25)

where H(ux, u, x, t) is an arbitrary function of the indicated variables.
Equation (5.9.24) includes BE with H = 2uux and an inhomogeneous BE
with H = 2uux − f(x, t) as special cases (after allowing for minor changes
in the sign of t and some scaling). Consider the transformation

p′ = f(t, x, u, u′, p, q)
(5.9.26)

q′ = ψ(t, x, u, u′, p, q)

where p′ =
∂u′

∂x
, q′ =

∂u′

∂t
. The functions f and ψ are sought such that the

pair of equations (5.9.26) is integrable if and only if u and u′ satisfy the
equations

r + q +H(p, u, x, t) = 0
(5.9.27)

r′ + q′ +G(p′, u′, x, t) = 0.

When this is the case, Equations (5.9.26) define a BT between the two
equations in (5.9.27).

The main conclusion of Nimmo and Crighton (1982) regarding (5.9.24)
is that the only nonlinear equations in this class that admit BTs are a
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slight generalisation of the Burgers equation, namely the inhomogeneous
Burgers equation. They specifically show that the BTs of the above type
do not exist for modified BE with cubic nonlinearity, for the spherical and
cylindrical Burgers equations, or, indeed, for any other equation of this
class (see also Sachdev (1987)).

Sachdev (1978) also attempted to generate nonlinear hyperbolic equa-
tions via (5.9.12) from the corresponding linear one, namely

φt + bφx + cφ+ f = εaφxt, (5.9.28)

where a, b, c, and f are functions of x and t only, and ε is a parameter.
Since the steps are entirely analogous to those for the parabolic case, we
skip the details here. Several exchange processes were identified, including
those treated by Goldstein and Murray (1959).
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Chapter 6

Nonlinearisation and
Embedding of Special
Solutions

6.1 Introduction

It is straightforward to first linearise a given nonlinear PDE, seek to solve
the resulting simpler PDE, and use it later to build up nonlinear effects
either approximately or (more rarely) exactly. Many a time the linear
solution is the large-time asymptotic solution describing the situation when
the nonlinear effects have become negligible. The improvised nonlinear
solution describes an earlier in time (or space) regime when the nonlinearity
is still important. Before we take up some well-known model equations that
use these ideas, we illustrate the approach with the help of some simple
examples (Whitham (1974)). This concept was used by Landau (1945) and
Whitham (1950), (1952) in the context of shock waves at large distances
from their place of origin. From an explosion, for example.

Starting with the first-order wave equation

ct + ccx = 0, (6.1.1)

we consider the situation when the disturbances upon the unperturbed state

c0 are small so that
c− c0
c0

� 1 and (6.1.1) may be replaced by

ct + c0cx = 0 (6.1.2)

with the solution
c− c0 = f(x− c0t). (6.1.3)
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The solution (6.1.3) completely misses out the nonlinear effects of build-up
of an initial profile, however smooth initially, into a shock (See Section 2.2).
Suppose we attempt the simple regular perturbation approach

c = c0 + εc1(x, t) + ε2c2(x, t) + . . . (6.1.4)

where ε is the maximum initial value of
c− c0
c0

. Substituting (6.1.4) into

(6.1.1) and equating coefficients of εn to zero, we have

c1t + c0c1x = 0 (6.1.5)
c2t + c0c2x = −c1c1x (6.1.6)
c3t + c0c3x = −c2c1x − c1c2x, etc. (6.1.7)

Each of these equations has the form

φt + c0φx = Φ(x, t). (6.1.8)

Introducing the variable y = x− c0t, (6.1.8) becomes(
∂φ

∂t

)
y=const

= Φ(y + c0t, t) (6.1.9)

with the solution

φ =
∫ t

0

Φ(y + c0τ, τ)dτ + Ψ(y). (6.1.10)

If we take specific IC
c(x, 0) = c0 + εP (x), (6.1.11)

the functions cn satisfy

c1 = P (x), cn = 0 (n > 1) at t = 0. (6.1.12)

The conditions (6.1.12) imply that the complementary functions Ψ(y) are
zero for solutions cn, n > 1. It is now easy to find first few cn:

c1 = P (y)
c2 = −tP (y)P ′(y) (6.1.13)

c3 =
t2

2
(P 2P ′)′, etc.

The general term in (6.1.13) will contain a term of the form tn−1Rn(y); the
general order of the terms in the expansion (6.1.4) will be εntn−1, showing
that the series is not uniformly valid for t→∞.

As we have discussed in detail in Section 2.2, the exact solution of (6.1.1)
subject to (6.1.12) has an implicit form, which may be written recursively
as
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c = c0 + εP (x− ct)
= c0 + εP (x− [c0 + εP ]t), etc. (6.1.14)

The naive form of the perturbation solution (6.1.4), as Whitham (1974)
points out, may be recovered from (6.1.14) by an inadvisable expansion of
the latter.

Whitham’s approximate nonlinearisation technique starts with the lin-
ear solution, say, for spherical and cylindrical waves. Assuming that the
nonlinear effects are relatively weak, the prescription is to introduce the
new characteristic variable such that it satisfies the characteristic condition
exactly; the amplitude factor is left uncorrected. We refer the reader to
Chapter 9 of Whitham (1974) for this simple and effective (approximate)
method of nonlinearisation, with applications to sonic boom theory and
supersonic flow past a body. Here we illustrate Whitham’s technique with
a simple example (Whitham (1974), p.322).

Consider the nonlinear PDE

φt + (c0 + c1φ)φx +
βc0
x
φ = 0. (6.1.15)

The linearised form of (6.1.15) is

φt + c0φx +
βc0
x
φ = 0. (6.1.16)

Using Lagrange’s method, we can write the solution of (6.1.16) as

φ =
f(t− x/c0)

xβ
. (6.1.17)

The original PDE has the characteristic form

(c0 + c1φ)
dφ

dx
= −βc0

x
φ (6.1.18)

dt

dx
=

1
c0 + c1φ

. (6.1.19)

Equation (6.1.18) has the exact solution

φec1φ/c0 =
f(τ)
xβ

(6.1.20)

where τ is the characteristic variable to be determined from (6.1.19). If we
assume that φ is small, then

φ =
f(τ)
xβ

(6.1.21)

is a uniformly valid approximation to (6.1.20). Comparing (6.1.17) and
(6.1.21), we verify Whitham’s first step, namely the change of a linearised
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solution such that the characteristic variable is required to satisfy the exact
characteristic equation. To determine τ , we expand (6.1.19) and (6.1.20)
in powers of ϕ, the expansions being convergent for |ϕ| < c0/c1. We thus
obtain

dt

dx
=

1
c0

+
γ1f(τ)
xβ

+
γ2f

2(τ)
x2β

+ . . . (6.1.22)

where the coefficients γn are functions of c0, c1; in particular, γ1 = −c1/c20.
Integrating (6.1.22), we have

t = T (τ) +
x

c0
+
γ1f(τ)
1− β

x1−β +
γ2f

2(τ)
1− 2β

x1−2β + . . . (6.1.23)

where we assume β 6= 1, 1
2 , for which logarithmic terms would appear in

(6.1.23). The first uniformly valid approximation is simply

t = T (τ) +
x

c0
+
γ1f(τ)
1− β

x1−β , (6.1.24)

and this agrees exactly with the result obtained from (6.1.21) and

dt

dx
=

1
c0
− c1
c20
φ. (6.1.25)

Equations (6.1.21) and (6.1.24) give the (first) uniformly valid approxima-
tion and are consistent with Whitham’s nonlinearisation procedure.

6.2 Exact Nonlinearisation of N Wave Solu-
tions for Generalised Burgers Equations

Before we take up the discussion of GBEs, we quickly review the results for
the IVP for the plane Burgers equation, which can be obtained exactly via
(exact) linearisation through the Cole-Hopf transformation.

We consider the discontinuous N wave IC for the Burgers equation

ut + uux =
δ

2
uxx (6.2.1)

u(x, 0) =
{
x if |x| < l0
0 otherwise. (6.2.2)

Here, δ is a (small) coefficient of viscosity.
Introducing the Cole-Hopf transformation

u = −δQx
Q

(6.2.3)
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into (6.2.1), integrating once with respect to x and ignoring the function of
integration, we arrive at the heat equation

Qt =
δ

2
Qxx. (6.2.4)

The IC (6.2.2) in view of (6.2.3) changes to

Q(x, 0) =

{
e−x

2/2δ if |x| < l0
e−l

2
0/2δ if |x| ≥ l0.

(6.2.5)

The solution of the heat equation (6.2.4) subject to IC (6.2.5) can be written
as

Q(x, t) =
1

(2πδt)1/2

[∫ l0

−l0
e−[y2+(x−y)2/t]/2δdy

+ e−l
2
0/2δ

{∫ −l0

−∞
e−(x−y)2/2δtdy +

∫ ∞

l0

e−(x−y)2/2δtdt

}]
.

(6.2.6)

Making use of the properties of error function and its asymptotics for large
t, we can write (6.2.6) as

Q(x, t) = e−l
2
0/2δ +

e−x
2/2δt

(πt)1/2

[
2
∫ l0/(2δ)

1/2

0

e−z
2
dz

−
(

2
δ

)1/2

l0e
−l20/2δ

]
+O

(
1
t

)
(6.2.7)

and

Qx(x, t) = −1
δ

x

t1/2
e−x

2/2δt

t

[
2

π1/2

∫ l0/(2δ)
1/2

0

e−z
2
dz

−
(

2
πδ

)1/2

l0e
−l20/2δ

]
+O

(
1
t2

)
(6.2.8)

as t→∞, uniformly with respect to the variable ξ = x/(2δt)1/2.
Equations (6.2.3), (6.2.7) and (6.2.8) give

u(x, t) =
x
t1/2

e−x2/2δt

t

[
2

π1/2

∫ `0/(2δ)1/2

0
e−z

2
dz −

(
2
πδ

)1/2
`0e

−`20/2δ
]

e−`
2
0/2δ + e−x2/2δt

t1/2

[
2

π1/2

∫ `0/(2δ)1/2

0
e−z2dz −

(
2
πδ

)1/2
`0e−`

2
0/2δ

]
+O

(
1
t

)
. (6.2.9)
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Defining

c0 =
2

π1/2
el

2
0/2δ

∫ l0/(2δ)
1/2

0

e−z
2
dz −

(
2
πδ

)1/2

l0, (6.2.10)

(6.2.9) simplifies to

u(x, t) =
(2δ)1/2ξ

t1/2
[
1 + t1/2

c0
eξ2
] +O

(
1
t

)
. (6.2.11)

It is easy to check that the first term in (6.2.11) is, in fact, an exact solution
of the Burgers equation; we refer to it as

u∞(x, t) =
x/t1/2

t1/2
[
1 + t1/2

c0
ex2/2δt

] . (6.2.12)

The decay of the solution (6.2.12) is described by the lobe Reynolds number
of the antisymmetric N wave defined by

R(t) =

∫∞
0
u∞(x, t)dx
δ

= log
(
1 +

c0
t1/2

)
. (6.2.13)

It is obtained on substituting for u∞(x, t) in (6.2.13) from (6.2.12), and
integrating with respect to x, etc. The N wave solution (6.2.12) skips the
early embryonic part of the evolution of IC (6.2.2), but describes it from
the point the shocks have assumed their Taylor structures, all the way to
the linear (old age) regime when the nonlinear term in (6.2.1) is small and
the solution is given simply by that of the heat equation, easily derived
from (6.2.12) in the large t limit:

u ∼ c0x

t3/2
e−x

2/2δt. (6.2.14)

Let the Reynolds number at some initial time t0 be defined by

R(t0) = log

(
1 +

c0

t
1/2
0

)
≡ R0, say; (6.2.15)

then, we can write
c0 = (eR0 − 1)t1/20 . (6.2.16)

The solution (6.2.12) can now be written as

u∞(x, t) =
x

t

[
1 +

(
t

t0

)1/2
ex

2/2δt

eR0 − 1

]−1

(6.2.17)
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which, for large R0, can be approximated by

u∞(x, t) ≈ x

t

[
1 +

(
t

t0

)1/2

eR0(x
2/2R0δt−1)

]−1

(6.2.18)

for all x and t. If we let R0 →∞ in (6.2.18), we have

u∞(x, t) ≈

{
x/t −(2R0δt)1/2 < x < (2R0δt)1/2

0 |x| > (2R0δt)1/2.
(6.2.19)

The limiting form (6.2.19) is the exact solution of the inviscid form of the
Burgers equation (6.2.1), namely

ut + uux = 0. (6.2.20)

We rewrite the solution (6.2.12) in the form

u∞(x, t) = (2δ)1/2ξ/V (η, T ) (6.2.21)

in terms of the “canonical” variables (belonging to the heat equation)

T = t1/2, η = ξ2 = x2/2δt, c0 = a−1, say; (6.2.22)

here, the function

V (η, T ) =
∞∑
i=0

fi(T )
ηi

i!
(6.2.23)

where
f0(T ) = T + aT 2 (6.2.24)

and
fi(T ) = aT 2 for all i ≥ 1. (6.2.25)

The first term in (6.2.24) is the contribution from the inviscid solution
(6.2.19) while the second term arises from the old-age solution (6.2.14).
fi(T ), i ≥ 1 in (6.2.25) have contribution only from the old-age solution
(6.2.14). The form (6.2.21) motivates the N wave solutions of generalised
Burgers equations for which, in general, we have no Cole-Hopf type of
transformation.

Thus, the Burgers equation and its (exact) solutions for different ICs
provide invaluable insight into the structure of the solutions and guide the
search for solutions of generalised Burgers equations (GBEs).

One could look upon fi(T ) in (6.2.23)-(6.2.25) in the following way.
Since fi(T ) appear in the denominator in (6.2.21), the most dominant con-
tribution T 2 for large time comes from the old-age (linear) solution. If the
idea is to extend the old-age solution backward in time, one could start
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with the contribution from the old age as the dominant term in fi(T ) and
write out a series in descending powers of T to include other influences such
as nonlinearity, damping, or geometrical spreading. This approach delivers
the exact solution u∞ of the Burgers equation. For other equations one
ends up with infinite series for the functions fi(T )(i = 0, 1, . . .) in descend-
ing powers of T , which are found by solving an infinite system of coupled
nonlinear ODEs.

This was the approach adopted by Sachdev, Joseph, and Mayil Vaganan
(1996) for the GBE

ut + unux +
(
α+

j

2t

)
u+

(
β +

γ

x

)
un+1 =

δ

2
uxx (6.2.26)

where j, α, β, and γ are nonnegative constants and n is a positive integer.
Equation (6.2.26) includes many important models of physical problems as
special cases. These include Burgers equation (n = 1, α = β = γ = j = 0),
nonplanar Burgers equation (n = 1, α = β = γ = 0), modified Burgers
equation (n = 2 or 4, α = j = β = γ = 0), damped Burgers equation
(n = 1, j = β = γ = 0), and Burgers-Fisher equation (n = 1, j = γ = 0).

We first give the general approach and then consider one of the cases in
some detail.

We seek exact N wave solutions of (6.2.26) for the cases (i) β = 0, (ii)
α > 0, β > 0, which tend in the limit t→∞ to the old-age solution of the
respective equations. We observe that

u(x, t) = c
x/t1/2

t1+j/2
e−αte−x

2/2δt (6.2.27)

is solution of the linearised form of (6.2.26), namely

ut +
(
α+

j

2t

)
u =

δ

2
uxx (6.2.28)

where c is the so called old age constant, which depends in a complicated
way on the initial conditions.

Motivated by the form (6.2.21) of the Burgers equation, we introduce
the variables

u(x, t) =
x/t1/2

[V (ξ, τ)]1/n
, ξ(x, t) =

x

(2δt)1/2
, τ = t1/2 (6.2.29)

into (6.2.26) and obtain the following PDE for V (ξ, τ) :

n ξ V Vξξ − (n+ 1)ξV 2
ξ + 2nV Vξ + 2nξ2V Vξ − 2nτξV Vτ

+2n2(j − 1)ξV 2 + 4n2ατ2ξV 2 + 4n2(2δ)(n−1)/2τξnV

−4n(2δ)(n−1)/2τξn+1Vξ + 4n2β(2δ)n/2τ2ξn+1V

+4n2γ(2δ)(n−1)/2τξnV = 0. (6.2.30)
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The planar solution (6.2.21) suggests that we write

V (ξ, τ) =
∞∑
i=0

fi(τ)
ξi

i!
. (6.2.31)

Inserting (6.2.31) into (6.2.30) and equating coefficients of ξi, i ≥ 0 to zero
lead to the following system of coupled nonlinear ODEs for fi’s:

2n
i∑

k=0

fk
k!
fi+1−k

(i− k)!
+ n

i−1∑
k=0

fk
k!

fi−k
(i− 1− k)!

− (n+ 1)
i−1∑
k=0

fk+1

k!
fi−k

(i− 1− k)!

+(2n2(j − 1) + 4n2ατ2)
i−1∑
k=0

fk
k!

fi−1−k

(i− 1− k)!
(6.2.32)

−2nτ
i−1∑
k=0

f ′k
k!

fi−1−k

(i− 1− k)!
+ 2n

i−2∑
k=0

fk
k!

fi−1−k

(i− 2− k)!
+

+4n2(2δ)(n−1)/2(1 + γ)τ
fi−n

(i− n)!

+4n2β(2δ)n/2τ2 fi−n−1

(i− n− 1)!

−4n(2δ)(n−1)/2τ
fi−n

(i− n− 1)!
= 0.

We construct solution (6.2.29) of (6.2.26) where V (ξ, τ) is given by (6.2.31).
The functions fi(τ) governed by (6.2.32) must be such that (6.2.29) tends
to the linear solution (6.2.27) in the limit t→∞. This requires that

cni!f2i(τ)
ni(2i)!τnj+2nenατ2 → 1 as τ →∞ (6.2.33)

and
f2i+1(τ)

τnj+2nenατ2 → 0 (6.2.34)

uniformly in i = 0, 1, 2, . . . .
For i = 0, (6.2.32) is simply 2nf0(τ)f1(τ) = 0. Since f0(τ) 6= 0, we

must have
f1(τ) = 0. (6.2.35)

Using (6.2.35) in (6.2.32), we may show that, when n is even,

fk(τ) = 0, k = 1, 3, 5, . . . , n− 1 (6.2.36)

and
fn+1(τ) = −4

3
(n+ 1)!n(2δ)(n−1)/2(1 + γ)τ ;
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for odd n and β 6= 0,

fk(τ) = 0, k = 1, 3, 5, . . . n, (6.2.37)

and
fn+2(τ) = −4

3
n(n+ 2)!β(2δ)n/2τ2.

If β = 0 and n is an odd integer, we have

fk = 0, k = 1, 3, 5, . . . (6.2.38)

The case n = 1 in (6.2.26), as indicated earlier, has many important
GBEs as its special cases. We shall therefore consider the cases n = 1 and
n 6= 1 separately.

a. n 6= 1.
In this case, (6.2.32) with i = 1 and f1(τ) = 0 (see (6.2.35)) becomes

3f2(τ) + 2n(j − 1 + 2ατ2)f0(τ)− 2τf ′0(τ) = 0. (6.2.39)

Since f2i are required to satisfy (6.2.33) for i = 0, 1, 2, . . . , an appropriate
choice of f0 is

f0(τ) = aτnj+2nenατ
2

(6.2.40)

where
a =

1
cn
. (6.2.41)

Insertion of (6.2.40) into (6.2.39) gives

f2 = 2anτnj+2nenατ
2

(6.2.42)

which satisfies (6.2.33) with i = 1. Since we know f0 and f2 from (6.2.40)
and (6.2.42) and f1 = f3 = 0 (see (6.2.36)), we can find f4, f6, . . . , etc.
from (6.2.32) rewritten as

n(i+ 2)
i!

f0fi+1

= (n+ 1)
i−1∑
k=0

fk+1

k!
fi−k

(i− 1− k)!
+ 2nτ

i−1∑
k=0

f ′k
k!

fi−1−k

(i− 1− k)!

−2n
i∑

k=1

fk
k!
fi+1−k

(i− k)!
− n

i−1∑
k=1

fk
k!

fi+1−k

(i− 1− k)!

−(2n2(j − 1) + 4n2ατ2)
i−1∑
k=0

fk
k!

fi−1−k

(i− 1− k)!

−2n
i−2∑
k=0

fk
k!

fi−1−k

(i− 2− k)!
− 4n2(2δ)(n−1)/2(1 + γ)τ

fi−n
i− n
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−4n2β(2δ)n/2τ2 fi−n−1

(i− n− 1)!

+4n(2δ)(n−1)/2τ
fi−n

(i− n− 1)!
. (6.2.43)

To complete the construction of the N wave solutions we must prove that
(6.2.33) and (6.2.34) hold generally. We do this by induction argument.
Let this be true for k = 0, 1, 2, . . . i. We first assume that i is odd. Then
using (6.2.33)-(6.2.34) for k = 0, 1, . . . i in (6.2.43) and dividing throughout
by

n(i+ 2)(i+ 1)!n(i+1)/2a2τ2(nj+2n)e2nατ
2

i!((i+ 1)/2)!
,

we get, after some simplification,

fi+1((i+ 1)/2)!
n(i+1)/2(i+ 1)!aτnj+2nenατ2 '

i!((i+ 1)/2)!
n(i+1)/2n(i+ 2)!nn(i+1)/2


(i−1)/2∑
l=0

(4l − i+ 1)(i+ 1− 2l)
l!((i+ 1− 2l)/2)!

+
(i+ 1)(i+ 2)
((i+ 1)/2)!


 = 1

since
(i−1)/2∑
l=0

(4l − i+ 1)(i+ 1− 2l)
l!((i+ 1− 2l)/2)!

= 0

is an identity for each positive integer i. The proof of (6.2.34) for i an
even integer is similar. Thus, we have constructed N wave solution of the
GBE (6.2.26) which has the correct old-age asymptotic behaviour (6.2.27)
for large t.

We conclude this section with an example of (6.2.26) with n = 1, j =
γ = 0, corresponding to the Burgers-Fisher equation

ut + uux + αu+ βu2 =
δ

2
uxx. (6.2.44)

In this case (6.2.32) becomes

2
i∑

k=0

fk
k!
fi+1−k

(i− k)!
+

i−1∑
k=0

fk
k!

fi+1−k

(i− 1− k)!

−2
i−1∑
k=0

fk+1

k!
fi−k

(i− 1− k)!
+ 2(2ατ2 − 1)

i−1∑
k=0

fk
k!

fi−1−k

(i− 1− k)!

−2τ
i−1∑
k=0

f ′k
k!

fi−1−k

(i− 1− k)!
+ 2

i−2∑
k=0

fk
k!

fi−1−k

(i− 2− k)!
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+4(2δ)n/2βτ2 fi−2

(i− 2)!
+

4τ(2− i)
(i− 1)!

fi−1(τ) = 0, i = 0, 1, 2, . . .

(6.2.45)

For i = 0, (6.2.45) gives simply 2f0(τ)f1(τ) = 0. Since f0(τ) 6= 0, we have
f1(τ) = 0. For i = 1, (6.2.45) becomes

3f2(τ) + 2(−1 + 2ατ2)f0(τ)− 2τf ′0(τ) + 4τ = 0. (6.2.46)

We choose f0(τ) in conformity with the old-age solution according to (6.2.33)
with j = 0, n = 1:

f0(τ) = aτ2eατ
2
. (6.2.47)

Therefore, (6.2.46) gives

f2(τ) = 2aτ2eατ
2
− 4

3
τ (6.2.48)

and, from (6.2.45), we have

f3(τ) = −2
√

2βδ1/2τ2

f4(τ) = 12aτ2eατ
2
+

32
15a

e−ατ
2 − 16

5
τ +

16
5
ατ3 etc.

(6.2.49)

It may be easily verified that, as for the general case,

f2i(τ) ≈
a(2i)!
i!

τ2eατ
2

(6.2.50)

f2i+1(τ) ≈ O(τ2) (6.2.51)

as τ → ∞ uniformly in i, proving that the series (6.2.31) converges for
large t and the solution (6.2.29) so constructed has the appropriate (old
age) behaviour given by (6.2.27) in the limit t→∞.

In the present analysis we chose f0(τ) simply to be the contribution
arising from the old-age behaviour. A slightly different approach which
expresses this contribution to f0 in descending powers of τ (as also for
other fi’s) will be discussed in Sections 6.4 and 6.5, where we discuss N
wave solutions of two important GBEs – the nonplanar Burgers equation
and the modified Burgers equation. The solution thus obtained will also be
compared with the numerical solution of certain IVPs to demonstrate their
asymptotic character.
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6.3 Burgers Equation in Cylindrical
Coordinates with Axisymmetry

Apart from the Burgers equation, there is another interesting GBE which
admits Cole-Hopf transformation and, hence, exact solution of IVPs from
the linearised form (see Section 5.3 for multidimensional Burgers equation
and its linearisation). This is the Burgers equation in cylindrical coordi-
nates with axisymmetry, namely

ut + uur = ν

[
1
r
(rur)r −

u

r2

]
= ν

(
1
r
(ru)r

)
r

. (6.3.1)

Here, r is the radial coordinate and ν is the coefficient of viscosity. The
solution of this equation also motivates an approach to seeking solution of
GBEs for which no Cole-Hopf transformation is available.

The transformation (Nerney, Schmahl, and Musielak (1996))

u =
−2ν
θ

∂θ

∂r
(6.3.2)

changes (6.3.1) to the linear diffusion equation

θt =
ν

r
(rθr)r. (6.3.3)

Equation (6.3.2) may also be written as

θ(r, t) = k(t) exp
(
− 1

2ν

∫ r

0

u(, t)d
)

(6.3.4)

where
k(t) = θ(0, t). (6.3.5)

The initial values θ(r, 0) and u(r, 0) are connected by

θ(r, 0) = θ0(r) = k(0) exp
(
− 1

2ν

∫ r

0

u0()d
)

(6.3.6)

for r0 ≤ r ≤ R.
The general solution of (6.3.3) may formally be written as

θ(r, t) =
∫ ∞

0

∫ ∞

0

θ0(r′)J0(kr′)J0(kr)e−νk
2tkr′dkdr′. (6.3.7)

The integral with respect to k in (6.3.7) can be immediately evaluated by
using the formula∫ ∞

0

e−νk
2tJ0(kr)J0(kr′)kdk =

1
2νt

exp
(
−r

2 + r′2

4νt

)
I0

(
rr′

2νt

)
(6.3.8)
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(Watson (1962)) where the modified function I0(αr′) = J0(iαr′) is real.
Equation (6.3.7) may now be written as

θ(r, t) =
1

2νt
exp

(
− r2

4νt

)∫ ∞

0

θ0(r′) exp
(
− r′2

4νt

)
J0

(
ir′r

2νt

)
r′dr′.

(6.3.9)
The initial condition for (6.3.1) is assumed by Nerney et al. (1996) as

u(r, 0) = u0
r0
r
, r0 ≤ r ≤ R (6.3.10)

to simulate an incompressible flow where the source of water is assumed to
emanate from the origin of coordinates and spread out in a circularly sym-
metric pattern. The initial flow covers the domain r0 < r < R, where r0 ' 0
and R is longer than any other length scale in the problem; subsequently,
we let R→∞.

Transforming (6.3.10) according to (6.3.6) we have

θ0(r) = k0

(r0
r

)a
(6.3.11)

where
a =

u0r0
2ν

(6.3.12)

is a Reynolds number and is assumed to be finite. With θ0(r) given by
(6.3.11), we may explicitly evaluate (6.3.9) using Hankel’s generalisation of
(6.3.8) (Watson (1962)). Thus, we obtain

θ = k0r
a
0Γ
(
1− a

2

)
(4νt)−a/2

∞∑
n=0

(
a
2

)
n

(n!)2

(
− r2

4νt

)n
(6.3.13)

where
(
a
2

)
n

is Pochhammer notation(a
2

)
n

=
a

2

(a
2

+ 1
)
· · ·
(a

2
+ n− 1

)
(6.3.14)

and (a
2

)
0

= 1. (6.3.15)

Now we use (6.3.2) to write the solution in terms of confluent hypergeo-
metric functions

u(r, t) =
a

2
r

t

M(a/2 + 1, 2,−r2/(4νt))
M(a/2, 1,−r2/(4νt))

=
r

t

∑∞
n=1

(
a
2

)
n

n
(n!)2

(
− r2

4νt

)n−1

∑∞
n=0

1
(n!)2

(
a
2

)
n

(
− r2

4νt

)n . (6.3.16)
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The important observation is that the solution (6.3.16) can be written
as the products of the inviscid solution and an infinite sum of the similarity
variable r2/4νt. The effect of nonlinearity is manifested by the factor n in
the numerator multiplying the powers of the similarity variable. The form
(6.3.16) is similar to that for the Burgers equation (see (6.2.17) of Section
6.2) that we attempt to simulate for other GBEs in the following section,
and succeed in some cases in obtaining exact solutions. How various stages
of decay come about in the solution (6.3.16) — from early nonlinear steep-
ening to later diffusion domination leading to old-age and, hence, decay to
zero — is entirely analogous to that for the Burgers equation (see Sachdev
(1987)). Nerney et al. depict the solution (6.3.16) as it evolves in time.

Another simple example derives from the initial condition

u(r, 0) = u0
r

r0
=

r

t0
, 0 ≤ r ≤ r0; t = 0 (6.3.17)

where

t0 =
r0
u0
. (6.3.18)

Here, the condition (6.3.17) describes a wind emanating from the origin
with a linearly increasing velocity out to some radius r0, larger than any
other length scale in the problem.

Equations (6.3.4) and (6.3.17) give

θ0(r) = k0e
−br2 (6.3.19)

where

b =
u0

4νr0
. (6.3.20)

The solution of (6.3.3) subject to (6.3.19) is easily found to be

θ(r, t) =
k0

1 + t/t0
exp

[
− r2

4νt
1

1 + t0/t

]
(6.3.21)

and, hence, we get via (6.3.2) the solution

u =
r

t+ t0
. (6.3.22)

In the present case the solution (6.3.22) approaches the inviscid solution
u = r/t as t→∞, and not the linear diffusive (old age) solution.

Some of these features will come out in the discussion of other GBEs in
Sections 6.4 and 6.5.
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6.4 Nonplanar Burgers Equation – A Com-
posite Solution

The equation

ut + uux +
1
2
d

dt
(lnA)u =

δ

2
uxx (6.4.1)

describes the propagation of weakly nonlinear longitudinal waves in a gas
or liquid, subject not only to the diffusive effects associated with viscosity
and thermal conductivity represented by the right-hand side of (6.4.1), but
also to the geometrical effects of change of ray tube area A(t) represented
by the last term on the left (see Lighthill (1956) and Leibovich and Seebass
(1974)). Assuming the form of ray tube area to be A = A0 t

j , where j is
a positive or negative constant (the latter for a contracting ray tube) and
A0 is another (positive) constant, (6.4.1) reduces to

ut + uux +
1
2
ju

t
=
δ

2
uxx. (6.4.2)

Equation (6.4.2) does not admit Cole-Hopf-like transformation for exact
linearisation. Taking a cue from the analytic form ofN wave solution for the
plane Burgers equation (and also from the solution for the axis-symmetric
Burgers equation discussed in Section 6.3), we attempt to simulate the N
wave solutions of (6.4.2) which, unlike in Section 6.2, do not merely extend
the (old-age) linear solution back in time, but also include the nonlinear
effects as represented by the inviscid solution. This happens in a simple way
for the Burgers equation – the contributions from the inviscid and old-age
solutions to f0(T ) in (6.2.24) in the representation (6.2.21) of Section 6.2
simply add up after appropriate peeling off of some factors from the inviscid
and old-age solutions. We investigate what happens when we attempt to
mimic the solution (6.2.21) of Section 6.2 for the nonplanar equation (6.4.2)
(Sachdev, Joseph, and Nair (1994)).

Following the discussion in Section 6.2, we first assume that j = m/n,
(−1 < j < 2), a rational number, with m < n or m > n (this restriction
will become clear later). We first consider the case j > 0 such that m and
n are positive integers with no common divisor. In this case the inviscid
form of (6.4.2)

ut + uux +
1
2
mu/nt = 0 (6.4.3)

has an exact N -wave solution

u(x, t) =
(2δ)1/2

2n/(2n−m)
x

(2δt)1/2
1
t1/2

. (6.4.4)

The old-age (linear) form of (6.4.2) is

ut +
1
2
mu

nt
=
δ

2
uxx (6.4.5)
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and has the antisymmetric solution

u(x, t) = C
x

t1/2
1

t(2n+m)/2n
e−x

2/2δt (6.4.6)

where C is an arbitrary constant. The idea is to attempt to construct a
composite solution of (6.4.2) such that it has the inviscid form (6.4.4) in
the limit of large initial Reynolds number and tends to the old-age solution
(6.4.6) as t→∞. This is what happens for the plane Burgers equation (see
Section 6.2). Motivated by the form (6.2.11) or (6.2.12) of Section 6.2 for
the Burgers equation, we write

u(x, t) = (2δ)1/2ξ/V (η, T ) (6.4.7)

where
ξ = x/(2δt)1/2, η = ξ2, T = t1/2 (6.4.8)

and substitute it in (6.4.2) to get the PDE governing V (η, T ):

V (jV −TVT )+(2T −V )(V −2ηVη)+3V Vη+2ηV Vηη−4ηV 2
η = 0. (6.4.9)

We seek a representation of the solution of (6.4.9) in the form

V (η, T ) =
∞∑
i=0

fi(T )
ηi

i!
(6.4.10)

(see (6.2.23) of Section 6.2). Substituting (6.4.10) into (6.4.9) and equating
coefficients of like powers of η to zero, we get an infinite system of coupled
nonlinear ODEs for fi(T )(i = 1, 2, 3, . . .):

3f1 + 2T − Tf ′0 + (j − 1)f0 = 0 (6.4.11)
5f0f2 + 2jf0f1 − f2

1 − T (f0f1)′ − 2Tf1 = 0 (6.4.12)
7f0f3 + [2(j + 1)f0 − Tf ′0 − 3f1 − 6T ]f2

−Tf0f ′2 + 2f1[(j + 1)f1 − Tf ′1] = 0 (6.4.13)

(j − 1)
i∑

k=0

fk
k!

fi−k
(i− k)!

− T
i∑

k=0

fk
k!

f ′i−k
(i− k)!

+ 2T
fi
i!

+ 3
i∑

k=0

fk
k!
fi−k+1

(i− k)!

−4T
fi

(i− 1)!
+ 2

i−1∑
k=0

fk
k!

fi−k
(i− k − 1)!

+ 2
i−1∑
k=0

fk
k!

fi−k+1

(i− k − 1)!

−4
i−1∑
k=0

fk+1

k!
fi−k

(i− k − 1)!
= 0, i = 3, 4, 5, . . . (6.4.14)

The structure of system (6.4.11)-(6.4.14) is such that once f0, f1, and f2 can
be found, all other fi, i ≥ 3 are obtained by algebraic operations alone. We
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determine f0, f1, and f2 from (6.4.11) and (6.4.12) by making use of the in-
viscid and old-age behaviours (6.4.4) and (6.4.6), respectively. Introducing
the variable

τ = T 1/n = t1/2n (6.4.15)

in (6.4.11) and (6.4.12), we get

3f1 + 2τn − (τ/n)f ′0 + ((m− n)/n)f0 = 0 (6.4.16)
5f0f2 + (2m/n)f0f1 − f2

1 − (τ/n)(f0f1)′ − 2τnf1 = 0. (6.4.17)

The inviscid and old-age forms of solutions (6.4.4) and (6.4.6) of (6.4.2)
suggest (in the light of the solution of Burgers equation) that the first term
in the expansions for fi(τ)(i = 0, 1, 2) is proportional to t1/2 = τn while
the last term should be proportional to t(2n+m)/2n = τ2n+m. Therefore, we
seek solutions for fi in the form

f0(τ) = τn
n+m∑
i=0

aiτ
i

f1(τ) = τn
n+m∑
i=0

biτ
i (6.4.18)

f2(τ) = τn
n+m∑
i=0

ciτ
i.

Substituting (6.4.18) into (6.4.16) and (6.4.17) and equating coefficients of
like powers of τ to zero, we get the following system for the coefficients
ai, bi, and ci appearing in (6.4.18):

a0 = 2n/(2n−m)
b0 = 0, c0 = 0

an+m = bn+m = cn+m (6.4.19)
bi = [(2n+ i−m)/3n]ai, i = 1, 2, . . . (n+m)

and

5αi + [(2m− 2n− i)/n]βi − 2bi − γi = 0 i = 1, 2, . . . (n+m)
(6.4.20)

5αi + [(2m− 2n− i)/n]βi − γi = 0,
i = n+m+ 1, . . . 2(n+m)− 1 (6.4.21)

where αi, βi, and γi are defined by

αi =



i∑
q=0

aqci−q i = 0, 1, . . . (n+m)

n+m∑
q=i−(n+m)

aqci−q i = (n+m+ 1), . . . 2(n+m)
(6.4.22)
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βi =



i∑
q=0

aqbi−q i = 0, 1, . . . (n+m)

n+m∑
q=i−(n+m)

aqbi−q i = (n+m+ 1), . . . 2(n+m)
(6.4.23)

γi =



i∑
q=0

bqbi−q i = 0, 1, . . . (n+m)

n+m∑
q=i−(n+m)

bqbi−q i = (n+m+ 1), . . . 2(n+m)
(6.4.24)

Using the expressions for bi from (6.4.19) into (6.4.21), we get the following
system of linear algebraic equations for c1, c2, . . . cn+m−1:

5
n+m∑

q=i−(n+m)

aqci−q +
(

2m− 2n− i

n

) n+m∑
q=i−(n+m)(

2n+ i− q −m

3n

)
aqai−q −

n+m∑
q=i−(n+m)(

2n+ i− q −m

3n

)(
2n+ q −m

3n

)
aqai−q = 0

i = n+m+ 1, . . . , 2(n+m)− 1. (6.4.25)i

We begin evaluation of ci starting with (6.4.25)i for i = 2(n +m) − 1.
Since cn+m = an+m (see (6.4.19)), we can solve the cn+m−1 in terms of
ai. Then from (6.4.25)2(n+m)−2, we can get cn+m−2. Proceeding in this
manner, we obtain cn+m−1, cn+m−2, . . . c1 in terms of ai, i = 1, 2, . . . (n +
m). Substituting these in (6.4.20), we get (n +m) algebraic equations for
(n+m−1) unknowns a1, a2, . . . an+m−1; these can be solved in terms of the
(an+m)−1, the old-age constant, which itself must be obtained from fitting
the asymptotic linear form with the numerical solution. To show that the
solution (6.4.7) has the correct old-age behaviour (6.4.6), we first observe
that fi/τ2n+m → an+m as τ →∞ for i = 0, 1, 2 by construction. It is then
possible to show by an induction argument using (6.4.13) and (6.4.14) that
fi/τ

2n+m → an+m as τ → ∞ for i ≥ 3. We conclude that the solution
(6.4.7) has the right old-age behaviour as τ →∞.

To determine the decay of N wave we define the lobe Reynolds number

R(t) =
1
δ

∫ ∞

0

u(x, t)dx (6.4.25)

which is nondimensional area under one lobe of the N wave. Integrating
(6.4.2) with respect to x from 0 to ∞ and using (6.4.7), (6.4.10), (6.4.15),
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and (6.4.181), we get the ODE

dR

dt
+
mR

2nt
= − 1

2t
1

n+m∑
i=0

aiti/2n

. (6.4.26)

Multiplying (6.4.27) by the integrating factor tm/2n and integrating, we
obtain

R(t) =
1

2tm/2n

∫ ∞

t

ds

s(2n−m)/2n

[
n+m∑
i=0

aisi/2n

] . (6.4.27)

Here, we have imposed the condition that R(t = ∞) = 0, requiring that
Rtm/2n → 0 as t→∞.

Now we consider some special cases which admit explicit solution. The
nonlinear algebraic system of equations for the unknown coefficients in fi
often admit more than one solution. A unique choice must be made by
rejecting those solutions which give singularities; the numerical solution
also aids this choice.
(i) The simplest case is one with cylindrical symmetry corresponding to

j = 1(m = 1, n = 1) (6.4.28)

in (6.4.2). Here,
τ = T = t1/2 (6.4.29)

and (6.4.11)-(6.4.12) become

3f1 − τf ′0 + 2τ = 0 (6.4.30)

5f0f2 − f2
1 + 2f0f1 − 2τf1 − τ(f0f1)′ = 0. (6.4.31)

We seek solution of (6.4.31)-(6.4.32) in the form

f0 = a0τ + a1τ
2 + a2τ

3 (6.4.32)
f1 = b0τ + b1τ

2 + b2τ
3 (6.4.33)

f2 = c0τ + c1τ
2 + c2τ

3. (6.4.34)

Substituting (6.4.33)-(6.4.35) into (6.4.31) and equating coefficients of like
powers of τ to zero, we get

b0 =
1
3
(a0 − 2), b1 = 2a1/3, b2 = a2. (6.4.35)

Substituting (6.4.33)-(6.4.35) into (6.4.32) etc., we find that

5a0c0 − b20 − 2b0 = 0 (6.4.36)

©2000 CRC Press LLC



5a0c1 + 5a1c0 − 2b0b1 − a0b1 − a1b0 − 2b1 = 0 (6.4.37)

5a0c2+5a1c1+5a2c0−b21−2b0b2−2a0b2−2a1b1−2b0a2−2b2 = 0 (6.4.38)

5a1c2 + 5a2c1 − 2b1b2 − 3a2b1 − 3a1b2 = 0 (6.4.39)

5a2c2 − b22 − 4a2b2 = 0. (6.4.40)

From (6.4.36) and (6.4.41) we have

c2 = a2. (6.4.41)

Equation (6.4.40), with the help of (6.4.36) and (6.4.42), gives

c1 =
4
15
a1. (6.4.42)

From (6.4.36) and (6.4.37) we get

c0 =
1

45a0
(a2

0 + 2a0 − 8). (6.4.43)

Substituting for ci(i = 0, 1, 2) from (6.4.42)-(6.4.44) and bi(i = 0, 1, 2) from
(6.4.36) into (6.4.38), we get either a1 = 2 or a1 = 0. The case a1 = 2 gives
the following solution for the coefficients:

a0 = 2, a1 = ±3a1/2
2

b0 = 0, b1 = ±2a1/2
2 , b2 = a2 (6.4.44)

c0 = 0, c1 = ±4
5
a
1/2
2 , c2 = a2.

Rejecting the solution with a negative sign (remember that the old-age
constant a−1

2 is positive), since it gives a singularity in the expression for
Reynolds number at a finite time, we have the following forms for fi,

f0(t) = 2t1/2 + 3a1/2
2 t+ a2t

3/2

f1(t) = 2a1/2
2 t+ a2t

3/2 (6.4.45)

f2(t) =
4
5
a
1/2
2 t+ a2t

3/2,

in terms of the old-age constant a−1
2 . Consider the second alternative a1 =

0. Using these values of a1, bi, and ci(i = 0, 1, 2) from (6.4.36) and (6.4.42)-
(6.4.44), and after some simplification, we arrive at the quadratic

2a2
0 + a0 − 1 = 0 (6.4.46)

for a0. This gives a0 = −1 or 1/2. Rejecting the negative value and putting
together bi and ci found earlier in terms of ai’s etc., we have

a0 = 1/2, a1 = 0
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b0 = −1/2, b1 = 0, b2 = a2 (6.4.47)
c0 = −3/10, c1 = 0, c2 = a2

in terms of a−1
2 alone. The functions fi(t) now become

f0(t) = t1/2
(

1
2

+ a2t

)
f1(t) = t1/2

(
−1

2
+ a2t

)
(6.4.48)

f2(t) = t1/2
(
− 3

10
+ a2t

)
.

The numerical solution of the problem shows that of the two possible
choices (6.4.46) and (6.4.49), the latter gives better results. With f0(t) from
(6.4.49), we get the Reynolds number from (6.4.7), (6.4.10), and (6.4.26) as

R(t) = t−1/2(R0t
1/2
0 − h(t) + h(t0)) (6.4.49)

where
h(s) =

√
2 arctan (

√
2a2s)/

√
a2 (6.4.50)

and a−1
2 is the old-age constant.

j =
1
2
.

In this case, τ = T 1/2 = t1/4 and (6.4.11)-(6.4.12) become

3f1 −
1
2
f0 −

τ

2
f ′0 + 2τ2 = 0 (6.4.51)

5f0f2 + f0f1 − f2
1 − 2τ2f1 −

1
2
τ(f0f1)′ = 0. (6.4.52)

The appropriate forms for f0, f1, and f2 here are

f0(τ) = τ2[a0 + a1τ + a2τ
2 + a3τ

3]
f1(τ) = τ2[b0 + b1τ + b2τ

2 + b3τ
3] (6.4.53)

f2(τ) = τ2[c0 + c1τ + c2τ
2 + c3τ

3].

Substituting (6.4.54) into (6.4.52) and equating coefficients of like powers
of τ to zero, we get

b0 =
a0

2
− 2

3
, b1 =

2a1

3
, b2 =

5a2

6
, b3 = a3 (6.4.54)

while the same process for (6.4.53) yields

c0 =
1

5a0

(
3a2

0

4
− a0

3
− 8

9

)
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c1 =
1

5a0

(
5a0a1

3
− 2a1

9
+

8a1

9a0

)
(6.4.55)

c2 =
37
60
a2

c3 = a3

where a1, a2 and a3 satisfy

a0a2(3a2
0 + 4a0 − 8)− a2

1(a
2
0 + 2a0 − 8) = 0 (6.4.56)

8a1a2 − 2a0a1a2 − a2
0a1a2 − 8a0a3 + 6a2

0a3 + 9a3
0a3 = 0 (6.4.57)

−a2
0a

2
2 + 8a1a3 − 2a0a1a3 + 3a2

0a1a3 = 0. (6.4.58)

If we choose the coefficient of a2 in (6.4.57) to be zero, we get

a0 = 0,
−4 + 4

√
7

6
,
−4− 4

√
7

6
. (6.4.59)

Equation (6.4.57) implies that a1 = 0. If we put a0 = 0, a1 = 0 in (6.4.58),
we get a3 = 0; this is impossible since a−1

3 is the old-age constant. If we
assume that none of the values of a’s in (6.4.60) holds, then (6.4.57) gives

a2 =
a2
1

a0

a2
0 + 2a0 − 8

3a2
0 + 4a0 − 8

. (6.4.60)

Putting (6.4.61) into (6.4.58), we get

a3
1 =

9a3
0(3a

2
0 + 4a0 − 8)

(a2
0 + 2a0 − 8)2

(
a0a3 +

2
3
a3 −

8a3

9a0

)
. (6.4.61)

Substituting (6.4.61)-(6.4.62) into (6.4.59) we get, after some simplification,

a1
16a3(3a0 − 4)

9a2
0(3a

2
0 + 4a0 − 8)

= 0 (6.4.62)

implying that either a0 =
4
3

or a1 = 0. The choice a0 =
4
3

leads to an

infinite slope ux(0, t) at a finite time t. Rejecting this possibility, we choose
a1 = 0, and, hence, a2 = 0, in view of (6.4.57). Equation (6.4.58) then
gives

−8a0a3 + 6a2
0a3 + 9a3

0a3 = 0. (6.4.63)

Since a3 6= 0, we have either a0 = −4/3 or 2/3. Rejecting, again, the
negative root, we arrive at the unique choice a0 = 2/3. Therefore,

a0 =
2
3
, a1 = 0, a2 = 0
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b0 = −1
3
, b1 = b2 = 0, b3 = a3 (6.4.64)

c0 = − 7
30
, c1 = c2 = 0, c3 = a3,

determining all the coefficients in terms of the old-age constant a−1
3 .

The functions fi(i = 1, 2, 3) in (6.4.54) are thus found to be

f0(τ) = τ2

(
2
3

+ a3τ
3

)
f1(τ) = τ2

(
−1

3
+ a3τ

3

)
(6.4.65)

f2(τ) = τ2

(
− 7

30
+ a3τ

3

)
,

where τ = t1/4 and a−1
3 is the old-age constant. Using f0(τ) from (6.4.66)

along with (6.4.7), (6.4.10), and (6.4.26), we arrive at the Reynolds number

R(t) = R(t0)
(
t0
t

)1/4

− 1
2
t−1/4(h(t)− h(t0)) (6.4.66)

where

h(s) =
4arctan((−a1/3

0 + 2a1/3
3 s1/4)/(

√
3a1/3

0 ))
√

3a2/3
0 a

1/3
3

+
4 log

(
a
1/3
0 + a

1/3
3 s1/4

)
3a2/3

0 a
1/3
3

−
2 log

(
a
2/3
0 − a

1/3
0 a

1/3
3 s1/4 + a

2/3
3 s1/2

)
3a2/3

0 a
1/3
3

(6.4.67)

where a0 =
2
3
, as found earlier, and a−1

3 is the old-age constant.

We give the final results for j =
1
3
,
1
4

since the process of evaluation of
coefficients, etc. is similar.

j =
1
3

f0(τ) =
3
4
τ3 + a1τ

7

f1(τ) = −1
4
τ3 + a1τ

7 (6.4.68)

f2(τ) = −11
60
τ3 + a1τ

7
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where τ = t1/6 and

R(t) = R(t0)
(
t0
t

)1/6

−
(

1
2

)
t−1/6(h(t)− h(t0)) (6.4.69)

where

h(s) =
3 arctan ((−

√
2a1/4

0 + 2a1/4
1 s1/6)/(

√
2a1/4

0 ))
√

2a3/4
0 a

1/4
1

+
3 arctan (

√
2a1/4

0 + 2a1/4
1 s1/6)/

√
2a1/4

0 )
√

2a3/4
0 a

1/4
1

−
3 log(

√
a0 −

√
2a1/4

0 a
1/4
1 s1/6 +

√
a1s

1/3)

2
√

2a3/4
0 a

1/4
1

(6.4.70)

+
3 log

(√
a0 +

√
2a1/4

0 a
1/4
1 s1/6

√
a1s

1/3
)

2
√

2a3/4
0 a

1/4
1

with a0 =
3
4

and a−1
1 as the old-age constant.

j =
1
4

f0 =
4
5
τ4 + a1τ

9

f1 = −τ
4

5
+ a1τ

9 (6.4.71)

f2 = −3τ4

20
+ a1τ

9

where τ = t1/8 and a−1
1 is the old-age constant.

R(t) = R(t0)
(
t0
t

)1/8

− 1
2
t−1/8(h(t)− h(t0)) (6.4.72)

where

h(s) =
8 log(a1/5

0 + a
1/5
1 s1/8)

5a4/5
0 a

1/5
1

−
8 cos(π/5) log

(
a
2/5
0 + a

2/5
1 s1/4 − 2a1/5

0 a
1/5
1 cos(π/5)s1/8

)
5a4/5

0 a
1/5
1

−
8 cos(3π/5) log

(
a
2/5
0 + a

2/5
1 s1/4 − 2a1/5

0 a
1/5
1 cos(3π/5)s1/8

)
5a4/5

0 a
1/5
1
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+
16arctan

[{(
a
1/5
1 s1/8 − a

1/5
0 cos(π/5)

)
csc(π/5)

}
/a

1/5
0

]
sin(π/5)

5a4/5
0 a

1/5
1

+
16arctan

[{(
a
1/5
1 s1/8 − a

1/5
0 cos(3π/5)

)
csc(3π/5)

}
/a

1/5
0

]
sin(3π/5)

5a4/5
0 a

1/5
1

(6.4.73)

where a0 = 4
5 and a−1

1 is the old-age constant.
For j = m

n ,−1 < j < 0, the above procedure does not lead to a non-
singular choice of coefficients in the function f0(t). Instead, what was at-
tempted was a rather ad hoc choice of the function f0(t), which is simply a
sum of contributions arising from the inviscid and old-age solutions, in anal-
ogy with the case for the plane Burgers equation for which this is exactly
true. Surprisingly, the numerical solution shows that this ad hoc choice
gives excellent results for the Reynolds number R(t) and, hence, the de-
scription of the rate of decay of N wave with time. Such a choice was first
used for nonplanar N waves by Sachdev and Seebass (1973), for which we
now have given an exact treatment. For details of the case for −1 < j < 0,
see Sachdev, Srinivasa Rao, and Joseph (1999).

The analytic results for 0 < j < 2 given above agree very well with
the numerical solution, except in the very early stages of the evolution of
discontinuous N wave when it adjusts itself via an embryonic shock to the
Taylor shock. Indeed, these solutions have the validity in the same sense
as the solution (6.4.12) of the plane Burgers equation in Section 6.2 (see
again Sachdev, Srinivasa Rao, and Joseph (1999)). Evolution of a typical
initial profile and decrease in the corresponding Reynolds number for j = 1
are shown in Figure 6.1 and Table 6.1, respectively.

Figure 6.1. Evolution of a typical initial N wave profile for

Equation (6.4.2) with j = 1 and δ = 0.001.
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Table 6.1. Comparison of the Reynolds numbers obtained from numerical and

composite solutions (see Equation (6.4.50)) for the IC u(x, ti) = (1−j/2)x/ti, |x| <
d0, u(x, ti) = 0 otherwise; the parameters were chosen to be ti = 0.5, d0 = 0.205,

j = 1, δ = 0.001.

t numerical composite

100.0 1.0691 1.3227
200.0 0.6375 0.7240
300.0 0.4597 0.5001
400.0 0.3603 0.3824
500.0 0.2957 0.3097
600.0 0.2501 0.2603
700.0 0.2177 0.2245
800.0 0.1927 0.1974
900.0 0.1729 0.1761
1000.0 0.1568 0.1590
1100.0 0.1434 0.1449
1200.0 0.1322 0.1331
1300.0 0.1225 0.1231
1400.0 0.1142 0.1145
1500.0 0.1069 0.1071
1600.0 0.1005 0.1005
1700.0 0.0948 0.0947
1800.0 0.0897 0.0896
1900.0 0.0851 0.0849
2000.0 0.0809 0.0808
2100.0 0.0771 0.0770
2200.0 0.0736 0.0735
2300.0 0.0704 0.0704
2400.0 0.0674 0.0675
2500.0 0.0647 0.0649
2600.0 0.0621 0.0624
2700.0 0.0597 0.0601
2800.0 0.0574 0.0580
2900.0 0.0553 0.0560
3000.0 0.0533 0.0542

6.5 Modified Burgers Equation

The modified Burgers equation (MBE)

ut + u2ux =
δ

2
uxx (6.5.1)

is the counterpart of the modified K-dV equation

ut + u2ux + δuxxx = 0. (6.5.2)
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While the analysis of (6.5.2) turns out simpler than that for the K-dV equa-
tion, which has a quadratic nonlinearity instead of a cube nonlinearity and
facilitates the solution of the latter via Miura’s transformation, Whitham
(1974), (6.5.1) is more difficult than the Burgers equation (BE), which has a
quadratic nonlinearity instead of cubic nonlinearity. Unlike BE, (6.5.1) does
not admit exact linearisation since no Cole-Hopf-like transformation seems
to exist for the purpose. Moreover, (6.5.1) does not enjoy the symmetry
u(−x, t) = −u(x, t). For N wave initial conditions, lack of this symmetry
makes the analysis hard (see Sachdev and Srinivasa Rao (1999)). Indeed,
the matched asymptotic expansion technique which was so successful in
handling nonplanar Burgers equation (Crighton and Scott (1979)) fails to
provide information about the shock wave displacement due to diffusion
and other details such as the old-age constant (Lee-Bapty and Crighton
(1987)). This analysis basically provides the evolution of (6.5.1) subject to
IC

u(x, 0) =
{
−x |x| ≤ 1
0 otherwise, (6.5.3)

only in the very early stages of the evolution of the N wave for very small
δ, when (6.5.1) behaves essentially like the hyperbolic equation

ut + u2ux = 0 (6.5.4)

and the method of characteristics proves useful. Even this turns out to
be quite complicated, displaying the peculiar situation in which the steady
Taylor shocks which separate the lossless portions of the wave develop an
internal singularity at and beyond some finite time t.

As we pointed out earlier, (6.5.1) does not enjoy the antisymmetry prop-
erty, and so the two lobes of the N wave in (6.5.3) evolve nonsymmetrically
to each other; the node of the wave (unlike for the planar or nonplanar
BEs) itself moves as the wave evolves. Numerical solution of (6.5.1) and
(6.5.3) indicates, however, that after sufficiently long time when the wave
is still in its nonlinear evolution and is far from its old-age regime, the node
becomes essentially stationary. So, with this basic assumption, we find
out the asymptotic solution of the N wave using the exact nonlinearisation
technique. We closely follow the work of Sachdev and Srinivasa Rao (1999).

We consider a more general form of MBE, namely

ut + unux =
δ

2
uxx (6.5.5)

where n is an even integer. The special case n = 2 and the more general
case n ≥ 2 were treated by matched asymptotic expansions by Lee-Bapty
and Crighton (1987) and Harris (1996), respectively.

The linear form of (6.5.5) is

ut =
δ

2
uxx. (6.5.6)
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It has the antisymmetric solution

u = c
(x− x0)
t3/2

e−(x−x0)
2/2δt (6.5.7)

where x0 is an (arbitrary) point of antisymmetry and c is the old-age con-
stant. We choose x0 to be the point where the node of the evolving N wave
finally comes to (near) rest.

Introducing the independent variables

ξ =
(x− x0)
(2δt)1/2

, τ = t1/2 (6.5.8)

and the dependent variable

v = [(2δ)1/2ξu−1]n (6.5.9)

into (6.5.5), we get

2nvvξ + ξ(nvvξξ − 2nτvvτ − 2n2v2)

+2nξ2vvξ + 4n2(2δ)(n−1)/2τξnv − 4n(2δ)(n−1)/2τξn+1vξ

−(n+ 1)ξv2
ξ = 0. (6.5.10)

Observe the negative power of u in (6.5.9); the transformation (6.5.9) is mo-
tivated by the N -wave solution of the plane Burgers equation (see Section
6.2). We attempt the following form for v wherein the old-age (linear) solu-
tion (6.5.7) is the dominant term and lower-order terms take into account
the effects of nonlinearity:

v =
∞∑
i=0

fi(τ)
ξi

i!
. (6.5.11)

Substituting (6.5.11) into (6.5.10) and equating coefficients of various pow-
ers of ξ to zero, we get

2n
i∑

k=0

fk
k!
fi+1−k

(i− k)!
+ n

i−1∑
k=0

fk
k!

fi+1−k

(i− 1− k)!

−(n+ 1)
i−1∑
k=0

fk+1

k!
fi−k

(i− 1− k)!
− 2n2

i−1∑
k=0

fk
k!

fi−1−k

(i− 1− k)!

−2nτ
i−1∑
k=0

f ′k
k!

fi−1−k

(i− 1− k)!
+ 2n

i−2∑
k=0

fk
k!

fi−1−k

(i− 2− k)!

+4n2(2δ)(n−1)/2τ
fi−n

(i− n)!
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−4n(2δ)(n−1)/2τ
fi−n

(i− n− 1)!
= 0 i ≥ 0. (6.5.12)

It is found that f1 = 0. For i = 1, 3, Equation (6.5.12) gives

3f2 − 2nf0 − 2τf ′0 = 0 (6.5.13)
5nf0f4 + 3(n− 2)f2

2 + 12n(1− n)f0f2 − 6nτ(f0f2)′ = 0. (6.5.14)

We seek solution of (6.5.13) and (6.5.14) in the form

f0(τ) = τ2n
(
a0 +

a1

τ
+ · · · ap

τp

)
(6.5.15)

f2(τ) = τ2n

(
b0 +

b1
τ

+ · · · bp
τp

)
(6.5.16)

f4(τ) = τ2n
(
c0 +

c1
τ

+ · · · cp
τp

)
(6.5.17)

where the leading terms come from the contributions of the linear solution
(6.5.7). Substituting (6.5.15)-(6.5.17) into (6.5.13) and (6.5.14) and equat-
ing the coefficients of like powers of τ to zero, we get algebraic equations
relating ai, bi, and ci. Solving these equations, we get the coefficients bi’s
and ci’s in terms of the first and last coefficients in (6.5.15), namely a0 and
ap. We give explicit solution of the algebraic systems for p = 2, 3, 4.

p = 2

a1 = 2(a0a2)1/2

b0 = 2na0, b1 = 4(n− 1/3)(a0a2)1/2, b2 = 2(n− 2/3)a2

c0 = 12n2a0, c1 = 8(3n2 − 2n− 1/5)(a0a2)1/2 (6.5.18)
c2 = (180n3 − 240n2 + 32n+ 32)a2/15n

p = 3

a1 = 3a2/3
0 a

1/3
3 , a2 = 3a1/3

0 a
2/3
3

b0 = 2na0, b1 = 2(3n− 1)a2/3
0 a

1/3
3

b2 = 2(3n− 2)a1/3
0 a

2/3
3 , b3 = 2(n− 1)a3 (6.5.19)

c0 = 12n2a0, c1 = 12(15n2 − 10n− 1)a2/3
0 a

1/3
3 /5

c2 = 12(15n3 − 20n2 + 2n+ 2)a1/3
0 a

2/3
3 /5n

c3 = 12(5n3 − 10n2 + 3n+ 2)a3/5n

p = 4

a1 = 4a3/4
0 a

1/4
4 , a2 = 6a1/2

0 a
1/2
4

a3 = 4a1/4
0 a

3/4
4

b0 = 2na0, b1 = (−8/3 + 8n)a1/4
4 a

3/4
0
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b2 = (−8 + 12n)a1/2
0 a

1/2
4

b3 = (−8 + 8n)a1/4
0 a

3/4
4 (6.5.20)

b4 = (−8/3 + 2n)a4

c0 = 12a0n
2

c1 = (−16/5− 32n+ 48n2)a3/4
0 a

1/4
4

c2 = (128/15 + 128/15n− 96n+ 72n2)a1/2
0 a

1/2
4

c3 = (80/3 + 256/15n− 96n+ 48n2)a1/4
0 a

3/4
4

c4 = (224/15 + 128/15n− 32n+ 12n2)a4

In fact, if we let f0(τ) have the form

f0(τ) = τ2n(a1/p
0 + a1/p

p /τ)p (6.5.21)

for all p = 2, 3, 4, . . . (this is clearly true for p = 2, 3, and 4), then the
solution of (6.5.13) and (6.5.14), respectively, gives

f2(τ) = −2
3
τ2n(a1/p

0 + a1/p
p /τ)p−1(−3a1/p

0 n+ a1/p
p (−3n+ p)/τ)

f4(τ) = − 4
15n

τ2n(a1/p
0 + a1/p

p /τ)p−2
[
−45a2/p

0 n3 (6.5.22)

+a1/p
0 a1/p

p (−90n3 + 30n2p+ 3pn)/τ

+a2/p
p (−45n3 + 30n2p− 5np2 + 6pn− 2p2)/τ2

]
in decreasing powers of τ for all p = 2, 3, 4, . . .: Other fi(τ), i > 4, can be
found from (6.5.12), recursively.

The simple form (6.5.21) for f0(τ) makes the calculation of the Reynolds
number for arbitrary p rather easy.

It is clear from the above that each representation has two arbitrary
constants: the old-age constant a0 and the last constant in f0, namely ap.
It is also evident that the solutions that we have constructed have linear
solution as their asymptotic in the limit t → ∞. A rigorous argument for
this can be given in a manner similar to that for the nonplanar equation in
Section 6.4.

The Reynolds number of the N -wave solution of (6.5.5) is defined as

R(t) =
1
δ

∫ x0

−∞
u(x, t)dx. (6.5.23)

Integrating (6.5.5) with respect to x form −∞ to x0 and using the vanishing
conditions at −∞, we have

R′(t) =
1
2
ux(x0, t). (6.5.24)
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From (6.5.8), (6.5.9), (6.5.11), and (6.5.21), we have

ux(x0, t) = − 1
t3/2

(
c1 +

c2
t1/2

)−p/n
(6.5.25)

where c1 = c−n/p, c2 = a
1/p
p , and c is the old-age constant equal to a−1/n

0

in the expansion for f0, and ap is the coefficient of the last term in the
same. Using (6.5.25) in (6.5.24), integrating the latter with the condition
R = R(t0) at t = t0, we have

R(t) = R(t0) +
1
c2

log

[(
c1 +

c2
t1/2

)
/

(
c1 +

c2

t
1/2
0

)]
, n = p

= R(t0)−
n

c2(p− n)

{(
c1 +

c2
t1/2

)−(p−n)/n

−

(
c1 +

c2

t
1/2
0

)−(p−n)/n}
, n 6= p.

(6.5.26)

It may be noted that even though each lobe of the N wave evolves under
(6.5.5) rather differently, their respective areas remain the same. Numer-
ical solution of IVP (6.5.5) and (6.5.3) shows that the formula (6.5.26)
works rather well, its accuracy increasing with increasing p (Sachdev and
Srinivasa Rao (1999)). The old-age constant c and the other coefficient
c2 = a

1/p
p appearing in (6.5.26) are obtained by matching the latter with

the numerical solution. Evolution of the N wave for n = 2 and the cor-
responding Reynolds numbers at different times are shown in Figures 6.2,
6.3, and Table 6.2, respectively.

Figure 6.2. Evolution of N

wave under Equation (6.5.1)

with IC (6.5.3) and δ = 0.01 at

t = 200, 400, 600, 800.

Figure 6.3. Evolution of N

wave under Equation (6.5.1)

with IC (6.5.3) and δ = 0.01 at

t = 1000, 1200, 1400.
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Table 6.2. Comparison of the Reynolds numbers obtained by the nonlinearisa-

tion method with p = 4 (see Equation (6.5.26)) and numerical solution. Here,

n = 2, δ = 0.01 in Equation (6.5.5). The initial profile is given by (6.5.3).

t Rnum Ranal

100.0 22.5408 24.6575
200.0 17.7679 18.3592
300.0 15.1795 15.3699
400.0 13.4729 13.5248
500.0 12.2374 12.2374
600.0 11.2892 11.2719
700.0 10.5319 10.5125
800.0 9.9088 9.8944
900.0 9.3835 9.3785
1000.0 8.9346 8.9391
1100.0 8.5444 8.5590
1200.0 8.2012 8.2258
1300.0 7.8963 7.9306
1400.0 7.6231 7.6666
1500.0 7.3728 7.4286
1600.0 7.1490 7.2127
1700.0 6.9443 7.0155
1800.0 6.7562 6.8346
1900.0 6.5826 6.6677
2000.0 6.4218 6.5132
2100.0 6.2722 6.3696
2200.0 6.1325 6.2356
2300.0 6.0018 6.1103
2400.0 5.8791 5.9927
2500.0 5.7637 5.8820
2600.0 5.6547 5.7776
2700.0 5.5518 5.6790
2800.0 5.4542 5.5855
2900.0 5.3616 5.4969
3000.0 5.2736 5.4126

6.6 Embedding of Similarity Solution in a
Larger Class

Before we discuss this matter for nonlinear PDEs, it is instructive to view
the role of special exact solution of nonlinear ODEs in the larger family
of asymptotic solutions. To illustrate this point we consider the Thomas-
Fermi equation

y′′(x) = x−1/2[y(x)]3/2 (6.6.1)
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and observe that it has a special exact solution vanishing at infinity, namely

ys(x) =
144
x3

. (6.6.2)

The following results have been proved regarding the place of (6.6.2) in the
larger family of solutions (Hille (1970), (1970a), Sachdev (1991)).

1. Equation (6.6.1) has a one-parameter family of solutions of the form

y∞(x, a) = x−3

[
144 +

∞∑
n=1

anx
−nσ

]
(6.6.3)

where a1 = a is arbitrary and other coefficients are uniquely deter-
mined in terms of a. The series (6.6.3) converges for large x. In
particular, if a = 0, (6.6.3) reduces to the special solution (6.6.2). For
σ in (6.6.3), see (6.6.8).

2. Equation (6.6.1) has a one-parameter family of solutions

y0(x, c) = x−3

{
144 +

∞∑
n=1

cnx
nτ

}
(6.6.4)

where c1 = c is arbitrary, the other coefficients are uniquely deter-
mined, and the series converges for small values of x (see (6.6.8) for
the definition of τ).

3. The boundary value problem for (6.6.1) with

y(a) = b, lim
x→∞

y(x) = 0, a ≥ 0, b > 0 (6.6.5)

has a unique solution. The singular solution ys(x) = 144x−3 satisfies
(6.6.5) for any choice of (a, b) on its graph C. This curve separates
the points of the first quadrant into two domains: D− below C and
D+ above it. For (a, b) ∈ D−, there is a unique value of β > 0 such
that

y = β−3y∞(β−1x) (6.6.6)

defines the solution of (6.6.5). All these integral curves stay in D−
and are defined for x ≥ 0. They can be extended to the left of (a, b) to
the y-axis. If (a, b) ∈ D+, then the corresponding solution of (6.6.5)
stays in D+. Its graph has a vertical asymptote.

4. The singular boundary value problem

lim
x↓0

y(x) = ∞, y(a) = b, a > 0, b > 0
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has a unique solution which is strictly decreasing. The function

ν(x) = x3y(x) (6.6.7)

is bounded and monotone with limit 144 as x ↓ 0. If (a, b) ∈ D−, then
y(x) stays in D− and ν(x) increases to 144 as x ↓ 0. If (a, b) ∈ D+,
then y(x) stays in D+, and ν(x) decreases to 144 as x ↓ 0.

The exponents σ and τ in (6.6.3) and (6.6.4) are

σ =
1
2

[√
73− 7

]
, τ =

1
2

[√
73 + 7

]
(6.6.8)

and arise naturally when the exact solution is sought to be extended
by writing ν(x) = x3y(x) and then ν = 144 + u, etc. (See Sachdev
(1991)).

This kind of analysis is not so common in nonlinear PDEs. We conjec-
ture that the similarity solutions have such a special role in demarcating
different classes of solutions of PDEs. We consider below plane gasdynamic
equations and show how their self-similar solutions describing piston-driven
shocks of large or arbitrary strength may be extended so that the enlarged
class contains the self-similar solution as a special case.

We follow the work of Sachdev, Gupta, and Ahluwalia (1992). We
consider one of the simplest cases investigated in this work, namely when
the special form of gasdynamic equations arises from the conservation of
mass and momentum, and the piston-driven shocks are of infinite strength.
The analysis in this case is relatively simpler; we refer the reader to the
original work for solutions of other forms of gasdynamic equations and for
shocks of arbitrary strength.

The gasdynamic equations governing plane, unsteady, anisentropic flows
are

ρt + uρx + ρux = 0 (6.6.9)
ρ(ut + uux) + px = 0 (6.6.10)
St + uSx = 0 (6.6.11)

p = ργ exp
(
S − S0

cv

)
(6.6.12)

where ρ, u, p, and S are the density of the fluid, particle velocity, pressure,
and entropy, respectively, at any point x and time t. The variables p, ρ, and
S are related by the thermodynamic relation (6.6.12). γ and cv are ratio of
specific heats (cp/cv) and the specific heat at constant volume, respectively.

The system of nonlinear PDEs (6.6.9)-(6.6.11) may be rewritten in the
conservation form as

ρt + (ρu)x = 0 (6.6.13)
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(ρu)t + (ρu2 + p)x = 0 (6.6.14)(
1
2
ρu2 +

p

γ − 1

)
t

+
((

1
2
ρu2 +

p

γ − 1

)
u+ pu

)
x

= 0. (6.6.15)

The Rankine-Hugoniot conditions holding across a shock moving into
a nonuniform medium with velocity u0 = 0, pressure p = p0 (a constant),
and density ρ = ρ∗(x) are

u =
(

2
ρ∗

)1/2

(p− p0)[(γ + 1)p+ (γ − 1)p0]−1/2 (6.6.16)

ρ

ρ∗
=

(γ + 1)p+ (γ − 1)p0

(γ − 1)p+ (γ + 1)p0
(6.6.17)

U = (2ρ∗)−1/2[(γ + 1)p+ (γ − 1)p0]1/2 (6.6.18)

where U is the shock velocity; the trajectory of the shock is given by

dx

dt
= U. (6.6.19)

For strong shocks, the relations (6.6.16)-(6.6.18) simplify to

u =
(

2
γ + 1

p

ρ∗

)1/2

(6.6.20)

ρ

ρ∗
=
γ + 1
γ − 1

(6.6.21)

U =
(
γ + 1

2
p

ρ∗

)1/2

. (6.6.22)

Equations (6.6.13)-(6.6.14) suggest the introduction of the variables τ
and ξ through the differential relations

dτ = ρdx− (ρu)dt (6.6.23)
dξ = ρudx− (p+ ρu2)dt (6.6.24)

yielding

dx = −u
p
dξ +

(p+ ρu2)
pρ

dτ (6.6.25)

dt = −1
p
dξ +

u

p
dτ. (6.6.26)

The shock trajectory (6.6.19) in terms of τ and ξ becomes

dξ + φ(τ)dτ = 0 (6.6.27)
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where
φ(τ) =

p0

ρ∗(x)
U−1. (6.6.28)

To facilitate the fitting of shock conditions (6.6.20)-(6.6.22), a new variable
s is introduced so that

ds = dξ + φ(τ)dτ (6.6.29)

which, in view of (6.6.27), states that s is constant along the shock. In
terms of the variables s and τ , (6.6.25) and (6.6.26) become

dx = −u
p
ds+

(p+ ρu2 + ρuφ)
ρp

dτ (6.6.30)

dt = −1
p
ds+

u+ φ

p
dτ. (6.6.31)

For convenience we choose s = 0 as the level line corresponding to the shock
path, since (6.6.29) is invariant under translation in s. The other level lines
τ = constant give paths of constant entropy (see (6.6.23)) in (τ, s) plane.
In view of this, we may drop Equation (6.6.11). Equations (6.6.9)-(6.6.10)
with τ and s as independent variables become

uτ + (u+ φ)us − (f/γ)p−1/γps = 0 (6.6.32)
pτ + (u+ φ)ps − pus = 0 (6.6.33)

where
f(τ) = (p1/γρ−1). (6.6.34)

The relation (6.6.34) follows from (6.6.12). The shock trajectory for the
case of strong shock is easily found in the (s, τ) plane as

ds = dξ = 0. (6.6.35)

The relation dξ = 0 derives from (6.6.27) and (6.6.28) since φ(τ) → 0 as
p0 → 0 in the strong shock limit. Thus, s = ξ = 0 give the shock locus. In
this special case, the governing equations (6.6.32)-(6.6.34) simplify to

uτ + uus −
γ − 1
γ

fp−1/γps = 0 (6.6.36)

pτ + ups − pus = 0 (6.6.37)

where
f(τ) =

1
ρ(γ − 1)

p1/γ . (6.6.38)

We introduce the variables

W =
u

φ
, H =

(
p

b0

)(γ−1)/γ

(6.6.39)
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into (6.6.36)-(6.6.37), where φ(τ) is an arbitrary function of τ and b0 is an
arbitrary constant with the dimension of pressure; we get the system

Hτ + φWHs −
γ − 1
γ

φHWs = 0 (6.6.40)

φ(Wτ + φWWs)− b
(γ−1)/γ
0 fHs +W

dφ

dτ
= 0. (6.6.41)

If we specify the function φ and the constant b0 such that

φ(τ) = U(τ) (6.6.42)

and

ρ∗U
2 = b0 =

ρ0x
2
0

t20
, (6.6.43)

then the strong shock conditions (6.6.20)-(6.6.22) in terms of the functions
W and H simplify:

Ws=0 =
2

γ + 1
(6.6.44)

Hs=0 =
(

2
γ + 1

)(γ−1)/γ

. (6.6.45)

We seek a solution of the system (6.6.40)-(6.6.41) subject to the conditions
(6.6.44)-(6.6.45) in the form

W (s, τ) =
∞∑
j=0

W (j)(τ)
sj

j!
(6.6.46)

H(s, τ) =
∞∑
j=0

H(j)(τ)
sj

j!
. (6.6.47)

Putting (6.6.46)-(6.6.47) into (6.6.40) and (6.6.41) and equating coeffi-
cients of different powers of s to zero, we get the following algebraic relations
for first- and higher- order coefficients:

W (n+1)(τ) =
γ

(γ − 1)φH(0)

[
φW (0)H(n+1) +

dH(n)

dτ

+φT (n)({W (i)}, {H(i)})

]
(6.6.48)

H(n+1)(τ) =
1
D0

[
W (n) dφ

dτ
+ φ

(
dW (n)

dτ
+

γ

γ − 1
W (0)

H(0)

dH(n)

dτ

+φS(n)
(
{W i}, {H(j)}

))]
(6.6.49)
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with the notation

T (n)({W (i)}, {H(i)}) =
n∑
k=1

(
n
k

)[
W (k)H(n+1−k) − γ − 1

γ
H(k)W (n+1−k)

]
(6.6.50)

S(n)({W (i)}, {H(i)}) =
n∑
k=1

(
n
k

)
W (k)W (n+1−k)

+
γ

γ − 1
W (0)

H(0)
T (n)({W i}, {H(i)}),

D0 = b
(γ−1)/γ
0 f − γ

γ − 1

(
W (0)

H(0)

)2

. (6.6.51)

It is interesting to note that the recursion relations (6.6.48)-(6.6.51)
involve only algebraic operations; no differential equations need be solved.
The zeroth order terms in (6.6.46)-(6.6.47) (corresponding to s = 0) are
given by (6.6.44) and (6.6.45):

W (0) =
2

γ + 1
(6.6.52)

H(0) =
(

2
γ + 1

)(γ−1)/γ

. (6.6.53)

In the following, the higher terms in the series solution (6.6.46)-(6.6.47)
would be found by choosing the functions φ(τ) and f(τ) appropriately.
These will yield power law and exponential types of solutions.

1. Power law similarity solutions of the system (6.6.40)-
(6.6.41)

We choose

ρ∗ = ρ0

(
1 +

aτ

ρ0x0

)−2α

(6.6.54)

φ =
x0

t0

(
1 +

aτ

ρ0x0

)α
(6.6.55)

f = c∗
x2

0

t20

(
1 +

aτ

ρ0x0

)2α

(6.6.56)

where c∗ is a parameter defined by

c∗ =
1
2

(
2

γ + 1

)(γ+1)/γ

b
−(γ+1)/γ
0 . (6.6.57)
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Here, α(6= 0) is the similarity exponent, and x0, t0, and ρ0 are arbitrary
dimensional constants representing distance, time, and density, respectively.
The constant a assumes values +1 or −1.

Substituting (6.6.54)-(6.6.56) into (6.6.48)-(6.6.49), we get

W (n+1)(z) = W
(n+1)
∗ zn+1 (6.6.58)

H(n+1)(z) = H
(n+1)
∗ zn+1, n = 0, 1, . . . (6.6.59)

where

z =
t0
ρ0x2

0

(
1 +

aτ

ρ0x0

)−(α+1)

(6.6.60)

and

W
(n+1)
∗ =

γ

(γ − 1)H(0)

[
W (0)H

(n+1)
∗ − na(α+ 1)Hn

∗ + T
(n)
∗(

{W (i)
∗ }, {H(i)

∗ }
)]

H
(n+1)
∗ =

1
D∗

[
(α− n(α+ 1))aW (n)

∗ − γan(α+ 1)W (0)

(γ − 1)H(0)
H

(n)
∗

+S(n)
∗

(
{W (i)

∗ }, {H(i)
∗ }
)]

(6.6.61)

are constants, and

T
(n)
∗ ({W (i)

∗ }, {H(i)
∗ }) =

n∑
k=1

(
n
k

)[
W

(k)
∗ H

(n+1−k)
∗ − γ − 1

γ
H

(k)
∗ W

(n+1−k)
∗

]

S
(n)
∗ ({W (i)

∗ }, {H(i)
∗ }) =

n∑
k=1

(
n
k

)
W

(k)
∗ W

(n+1−k)
∗

+
γW (0)

(γ − 1)H(0)
T

(n)
∗

(
{W (i)

∗ }, {H(i)
∗ }
)

(6.6.62)

D∗ = b
(γ−1)/γ
0 c∗ −

γ

γ − 1
W

(0)2

∗

H(0)
= − 1

γ − 1

(
2

γ + 1

)1/γ

. (6.6.63)

We may now write the series solution (6.6.46)-(6.6.47) as

W =
∞∑
j=0

W
(j)
∗

σj

j!
(6.6.64)

H =
∞∑
j=0

H
(j)
∗
σj

j!
(6.6.65)
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where

σ =
t0
ρ0x2

0

(
1 +

aτ

ρ0x0

)−(α+1)

s. (6.6.66)

The coefficients W (j)
∗ and H(j)

∗ in the series (6.6.64) and (6.6.65) for j ≥ 0
are given by (6.6.52), (6.6.53), (6.6.61), and (6.6.62) with j = n + 1, n =
0, 1, . . .. It may be checked that the solution (6.6.64)-(6.6.65) is a similarity
solution, with σ defined by (6.6.66) as the similarity variable, and satisfies
the system of ODEs

[−a(α+ 1)σ +W ]
dH

dσ
− γ − 1

γ
H
dW

dσ
= 0 (6.6.67)

[−a(α+ 1)σ +W ]
dW

dσ
− c∗b

(γ−1)/γ
0

dH

dσ
+ aαW = 0 (6.6.68)

with IC (6.6.44) and (6.6.45) at the shock. The parametric representation
of the shock may now be found to be

x

x0
=


1

a(1 + 2α)

[(
1 +

aτ

ρ0x0

)2α+1

− 1

]
, α 6= −1

2

1
a

ln
(

aτ

ρ0x0

)
α = −1

2

(6.6.69)

t

t0
=


1

a(α+ 1)

[(
1 +

aτ

ρ0x0

)α+1

− 1

]
, α 6= −1

1
a

ln
[
1 +

aτ

ρ0x0

]
, α = −1.

(6.6.70)

We have used the conditions that x = t = 0 when τ = 0. Eliminating τ
between (6.6.69) and (6.6.70), we get the shock locus as

x(t)
x0

=



1
a(2α+ 1)

[(
1 +

a(α+ 1)
t0

t

)(2α+1)/(α+1)

− 1

]
, α 6= −1,− 1

2

1
a

[
1− exp

(
−at
t0

)]
, α = −1

2
a

ln
[
1 +

at

2t0

]
, α = − 1

2

(6.6.71)
and, hence, the shock velocity and the undisturbed density (using (6.6.54)
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and (6.6.69)):

U =


x0

t0

(
1 +

a(α+ 1)t
t0

)α/(α+1)

, α 6= −1

x0

t0
exp

(
−at
t0

)
, α = −1

(6.6.72)

ρ∗ =


ρ0

[
1 +

a(2α+ 1)x
x0

]−2α/(2α+1)

, α 6= − 1
2

ρ0 exp
(
ax

x0

)
, α = − 1

2 .

(6.6.73)

Making use of (6.6.30)-(6.6.31) and remembering that w = w(σ),H = H(σ)
where σ is given by (6.6.66), we get

x(H, τ)
x0

=



[
1 + aτ

ρ0x0

]2α+1

aα

∫ H

H∗

[
γ − 1
γ

H

(
dW

dH

)2

− c

]
H−γ/(γ−1)dH

+
1

a(2α+ 1)

[(
1 +

aτ

ρ0x0

)2α+1

− 1

]
, α 6= −1

2

2
a

∫ H

H∗

[
c− γ − 1

γ
H

(
dW

dH

)2
]
H−γ/(γ−1)dH

+
1
a

ln
[
1 +

aτ

ρ0x0

]
, α = −1

2
(6.6.74)

t(H, τ)
t0

=



(1 + aτ/ρ0x0)α+1

aα

∫ H

H∗

[
γ − 1
γ

H

(
dW

dH

)2

− c

]
H−γ/(γ−1)

W
dH

+
1

a(α+ 1)

[(
1 +

aτ

ρ0x0

)α+1

− 1

]
, α 6= −1

1
a

∫ H

H∗

[
c− γ − 1

γ
H

(
dW

dH

)2
]
H−γ/(γ−1)

W
dH

+
1
a

ln
[
1 +

aτ

ρ0x0

]
, α = −1

(6.6.75)

where c = 1
2

(
2

γ+1

)(γ+1)/γ

,H∗ ≤ H < ∞ if aα > 0, and 1 < H ≤ H∗ if
aα < 0.

Setting τ = constant in (6.6.74) and (6.6.75), we get the lines of constant
entropy or paths of gas particles in a parametric form. For τ = 0, these

©2000 CRC Press LLC



reduce to the parametric representation of the law of piston motion:

x(H)
xo

=
1
aα

∫ H

H∗

[
γ − 1
γ

H

(
dW

dH

)2

− c

]
H−γ/(γ−1)dH (6.6.76)

t(H)
to

=
1
aα

∫ H

H∗

[
γ − 1
γ

H

(
dW

dH

)2

− c

]
H−γ/(γ−1)

W
dH. (6.6.77)

The solution (6.6.52), (6.6.53), (6.6.64)-(6.6.66), (6.6.61), (6.6.62), (6.6.76),
and (6.6.77) of a certain piston problem involves four arbitrary constants
ρ0, x0, t0, and α. The series (6.6.64)-(6.6.66), alongside (6.6.52)-(6.6.53),
can be summed up only for α = −1,−1/2. For α = −1, we have a first
integral of the ODE system (6.6.67)-(6.6.68), namely W = Hγ/(γ−1), and
then the similarity solution simplifies to give the following.

α = −1.

u = UHγ/(γ−1), ρ∗ = ρ0

(
1− ax

x0

)−2

f = c∗
x2

0

t20

(
1 +

aτ

ρ0x0

)−2

, U =
x0

t0
exp

(
−at
t0

)
Shock locus:

xs(t)
x0

=
1
a

[
1− exp

(
−at
t0

)]
(6.6.78)

Piston path :

x(H)
x0

=
1
a

∫ H

H∗

[
c− γ − 1

γ
H

(
dW

dH

)2
]
H−γ/(γ−1)dH

t(H)
t0

=
1
a

∫ H

H∗

[
c− γ − 1

γ
H

(
dW

dH

)2
]
H−γ/(γ−1)

W
dH

where H∗ ≤ H < ∞ if a = −1 or 1 < H ≤ H∗ if a = 1. Again,
H∗ = H(0). This solution involves only three arbitrary constants, ρ0, x0,
and t0.

α = −1/2.

u = UW, ρ∗ = ρ0 exp
(
ax

x0

)

U =
x0

t0

(
1 +

at

2t0

)−1

, f = c∗
x2

0

t20

(
1 +

aτ

ρ0x0

)−1
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Shock locus:
xs(t)
x0

=
2
a

ln
[
1 +

at

2t0

]
(6.6.79)

Piston path:

x(H)
x0

=
2
a

∫ H

H∗

[
c− γ − 1

γ
H

(
dW

dH

)2
]
H−γ/(γ−1)dH

t(H)
t0

=
2
a

∫ H

H∗

[
c− γ − 1

γ
H

(
dW

dH

)2
]
H−γ/(γ−1)

W
dH

where
W = [−2γcH + 2Hγ/(γ−1)]1/2.

The choice

ρ∗ = ρ0 exp
(
− 2aτ
ρ0x0

)
U =

x0

t0
exp

(
aτ

ρ0x0

)
(6.6.80)

f = c∗
x2

0

t20
exp

(
2aτ
ρ0x0

)
leads to exponential types of solutions of the system (6.6.40)-(6.6.41). Since
the analysis is entirely similar to that for the power law case, we refer the
reader to the original paper of Sachdev et al. (1992).

Sachdev et al. (1992) carried out a detailed study for shocks of arbitrary
strength; the analysis in this case becomes even more arduous. Previous
similarity solutions of the transformed system (6.6.32)-(6.6.34) found ear-
lier by Sachdev and Reddy (1982) were recovered as special cases. The
analysis was also carried out for another transformed system deriving from
the conservation form of the equations of continuity and energy instead of
equations of continuity and momentum. Some of the series solutions for cer-
tain sets of parameters were either summed or computed; the convergence
in the latter case was checked numerically.
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Chapter 7

Asymptotic Solutions by
Balancing Arguments

7.1 Asymptotic Solution by Balancing Argu-
ments – Examples from ODEs

For nonlinear problems for which exact solution is not tenable, one may
look for asymptotic solutions for large time or distance. For this purpose,
one may sift from the full equation(s) those terms which balance in terms
of power of the limiting variable, the remaining terms being smaller in
comparison in the limit. The effect of the neglected terms may be sub-
sequently incorporated in the next order. This approach was first made
popular in the context of nonlinear ODEs by Bender and Orszag (1978),
but has since been used to great effect by Grundy and his collaborators
(Grundy, Sachdev, and Dawson (1994); Grundy, Van Duijn, and Dawson
(1994); Dawson, Van Duijn, and Grundy (1996); Escobedo and Grundy
(1996); Van Duijn, Grundy, and Dawson (1997)).

We shall, in this section, discuss some examples from ODEs (Bender
and Orszag (1978); Sachdev (1991)) for which the balancing argument has
been used profitably.

Let us investigate the behaviour of

y2y
′′′

= −1
3

(7.1.1)

as the independent variable x → ∞. One obvious possibility for y is a
quadratic in x and a small correction term which may include the effect of

the term −1
3

on the right-hand side of (7.1.1). If we substitute

y(x) ∼ ax2 + bx+ c+ ε(x) (7.1.2)

257
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into (7.1.1) and assume that ε(x) is small as x→∞, we have

a2x4ε
′′′
∼ −1

3
as x→∞. (7.1.3)

On integration, (7.1.3) gives

ε ∼ 1
18a2x

as x→∞ (7.1.4)

which, indeed, vanishes as x→∞. With the correction term (7.1.4) put in
(7.1.2), one may justifiably generalise the latter and assume that

y(x) ∼ ax2 + bx+ c+
d

x
+

e

x2
+

f

x3
+ . . . (7.1.5)

Substituting (7.1.5) into (7.1.1) and comparing like powers of x on both
sides, it is found that

d =
1

18a2
, e = − b

36a3
, f =

3b2 − 2ac
180a4

, etc. (7.1.6)

and, therefore, the solution takes the form

y(x) ∼ ax2 +bx+c+
1

18a2x
− b

36a3x2
+

3b2 − 2ac
180a4x3

+ . . . , x→∞. (7.1.7)

The behaviour of the series (7.1.7) for large x may be investigated ana-
lytically or numerically. This series is clearly singular for a = 0 (b and c
are other arbitrary constants), suggesting that there is another asymptotic
behaviour which covers this case. If we attempt

y(x) ∼ Axα, x→∞ (7.1.8)

for (7.1.1), we find that

A3α(α− 1)(α− 2)x3α−3 ∼ −1
3
, x→∞ (7.1.9)

giving α = 1, which, however, leads to a contradiction. In such circum-
stances it is usual to attempt

y(x) ∼ Ax(lnx)α (7.1.10)

which may correct the choice Ax. Putting (7.1.10) into (7.1.1), we find that

A2x2(lnx)2α
[
−Aα (lnx)α−1

x2
+
Aα(α− 1)(α− 2)(lnx)α−3

x2

]
∼ −1

3
.

(7.1.11)
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Neglecting (lnx)α−3 in comparison with (lnx)α−1 as x→∞, we find that

−A3α(lnx)3α−1 ∼ −1
3

as x → ∞. We thus have the choice α =
1
3

and
A = 1. To lowest order, we have

y(x) ∼ x(lnx)1/3, x→∞. (7.1.12)

The next step is to attempt to improve upon (7.1.12). One “plausible”
choice is to write a descending power series in lnx :

y(x) ∼ x(lnx)1/3
[
1 +A/(lnx) +B/(lnx)2 + C/(lnx)3 + . . .

]
. (7.1.13)

If we substitute (7.1.13) into (7.1.1) and equate various powers of (lnx) on

both sides, it turns out that A is arbitrary and B = −10
27
− A2, C =

50
27

A+
5
3
A3, etc. Thus, (7.1.13) becomes

y(x) ∼ x(lnx)1/3
[
1 +

A

lnx
−
A2 + 10

27

(lnx)2
+

5
3A

3 + 50
27A

(lnx)3
+ . . .

]
, x→∞.

(7.1.14)
Actually, Equation (7.1.1) can be solved in a closed form following a se-
quence of (perfectly logical) transformations, but the final solution is so
implicit that it has little practical use. On the other hand, the behaviours
(7.1.7) and (7.1.14) for x→∞ when combined with appropriate numerical
solution can provide useful information about the structure of the solution
for large x (see Bender and Orszag (1978)).

More interesting work on asymptotics of nonlinear ODE by balancing
argument is due to Levinson (1969), who also gave an estimate of error in
the approximate solution. We consider an example due to Levinson (1969),
namely

xx
′′

+ x′ + tx = t2 (7.1.15)

where x = x(t) and x′ = (dx/dt), etc. If we attempt the solution x = Cta,
we find from (7.1.15) that

C2a(a− 1)t2a−2 + aCta−1 + Cta+1 = t2. (7.1.16)

All the terms in powers of t clearly do not balance. Instead, we have partial
balances:

(i) The first and third terms on the left-hand side balance so that 2a− 2
= a + 1 or a = 3; the remaining terms are O(t2) and are therefore
less important as t → ∞. Moreover, if we choose C = −1/6, the
dominant terms with exponent 4 exactly cancel and, therefore, −t3/6
is a possible approximate solution.
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(ii) If the last term on the left of (7.1.16) balances with t2 on the right,
we have a+ 1 = 2 or a = 1; other terms are clearly of lesser order as
t→∞. In this case, x = t is a plausible approximate solution.

Since t2 appears explicitly in (7.1.15), a power of t is an obvious guess
function; other functions such as exponential may not be appropriate. A
simple substitution of this kind would easily convince the reader.

We attempt to improve upon the approximate solution (i) of (7.1.15)
by writing

x = − t
3

6
+ u. (7.1.17)

On substituting (7.1.17) into (7.1.15) we get

u
′′
− 6
t3

(
1− 6u

t3

)−1

u′ +
54u
t4

(
1− 6u

t3

)−1

u′ = −9
t
. (7.1.18)

Expanding the inverse functions for large t, keeping only the linear terms
on the left and pushing all other terms to right, we have the linear operator
on the left as

L̃u = u
′′
− 6u′

t3
+

54u
t4

. (7.1.19)

If u behaves like a power of t less than 3 (as it should), then u/t4, u′/t3 are
smaller than u

′′
by a factor of t−2 for large t. We may therefore drop the

former two and keep only the simple operator Lu = u′′ on the left. The
two linearly independent solutions of

Lu = u′′ = 0

are ψ1 = 1, ψ2 = t. Now, using the variation of parameters, we can write
the general solution of (7.1.18) in the form of an integral equation

u(t) = C1t+C2− 9t log t+6
∫ ∞

t

(s− t)
(

1− 6u(s)
s3

)−1

(su′(s)− 9u(s))
ds

s4
.

(7.1.20)
Here, the factor (s− t) arises from

ψ1(t)ψ2(s)− ψ1(s)ψ2(t)
ψ′1(s)ψ2(s)− ψ1(s)ψ′2(s)

= t− s (7.1.21)

in the solution obtained by the method of variation of parameters and the
term −9t log t comes from integration of (t−s)(−9/s) with respect to s. The
constants C1 and C2 in (7.1.20) are arbitrary. To prove that the integral
equation (7.1.20) possesses a solution, we first differentiate it with respect
to t and multiply u′(t) so obtained by t to have another term of the same
order as u(t):

tu′(t) = C1t− 9t log t− 9t− 6t
∫ ∞

t

(
1− 6u(s)

s3

)−1

[su′(s)− 9u(s)]
ds

s4
.

(7.1.22)
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The system (7.1.20) and (7.1.22) is in a form to which the following
theorem due to Levinson (1969) can be applied.

Theorem. Let h(t),K1(t, s), and K2(t, s) be continuous vector functions,
and let g(y, t) be a continuous scalar function. Consider the integral equa-
tion

y(t) = h(t) +
∫ t

a

K1(t, s)g(y(s), s)ds+
∫ ∞

t

K2(t, s)g(y(s), s)ds. (7.1.23)

Let g(0, t) = 0. Let there be a continuous scalar function H(t) such that

|h(t)| ≤ H(t). (7.1.24)

Moreover, for y and ỹ satisfying

|y| ≤ 2H(t), |ỹ| ≤ 2H(t), (7.1.25)

let there be a scalar function γ(t) for which

|g(y, t)− g(ỹ, t)| ≤ γ(t)|y − ỹ| (7.1.26)

and ∫ t

a

|K1(t, s)|γ(s)H(s)ds ≤ 1
4
H(t) (7.1.27)∫ ∞

t

|K2(t, s)|γ(s)H(s)ds ≤ 1
4
H(t). (7.1.28)

Then, (7.1.23) has a solution which can be obtained by successive approx-
imations starting with y = 0 as the zeroth iterate on the right-hand side.
The processes will converge uniformly in a norm involving H(t). The so-
lution y(t) will satisfy |y(t)| ≤ 2H(t) and will be unique. If h(t) depends
continuously on the parameters, then y will also do so.

We shall apply this theorem to the system (7.1.20) and (7.1.22). Here,

h(t) =
(
C1t+ C2 − 9t log t
(C1 − 9)t− 9t log t

)
(7.1.29)

We can therefore choose
H(t) = At log t (7.1.30)

where A is some large number such that (2|C1|+ |C2|+ 27) ≤ A. Also, we
have

g(u(s), su′(s), s) =
(

1− 6u(s)
s3

)−1

(su′(s)− 9u(s))
1
s4
. (7.1.31)

©2000 CRC Press LLC



So, for |y(t)| ≤ 2At log t and for t sufficiently large (depending on A), one
chooses

γ(t) =
20
t4
. (7.1.32)

To check (7.1.28), we have the left-hand side as

12
∫ ∞

t

s
20
s4
As log sds ≤ 240A

(
1 + log t

t

)
(7.1.33)

≤ H(t)
240(1 + log t)

t2 log t

≤ 1
4
H(t) (7.1.34)

for large enough t. Hence, the theorem applies and (7.1.20) and (7.1.22)
have a solution u(t), tu′(t) depending continuously on C1 and C2. Moreover,

|u(t)|+ |tu′(t)| ≤ 2H(t) = 2A log t. (7.1.35)

Using (7.1.35) in the integrals in (7.1.20) and (7.1.22), we get

u(t) = C1t+ C2 − 9t log t+O

(
A log t
t

)
(7.1.36)

u′(t) = (C1 − 9)− 9 log t+O

(
A log t
t2

)
(7.1.37)

where A ≥ (2|C1| + |C2| + 27). That (7.1.36)-(7.1.37) satisfy (7.1.18) can
be checked by direct substitution. We have thus proved the existence of a

two-parameter family of solutions x(t) = − t
3

6
+ u(t) for Equation (7.1.1).

For this nonlinear equation there exists another family of asymptotic
solutions corresponding to the second guess x(t) = t + u. We do not give
the details here and refer the reader to Levinson (1969). The solution is
found to be

x(t) = t+ (C1 sin t+ C2 cos t)t−1/2 +O(1/t) (7.1.38)

where C1 and C2 are arbitrary constants.
It is possible to further refine these approximate solutions by iteration.
In the context of nonlinear PDEs, the balancing argument can be easily

extended. One first introduces some cononical independent variables, the
(relevant) similarity variable, and time, say, and then uses the balancing
argument in the time variable. The lowest-order equation is still a PDE,
but simpler than the original one and can often be solved. The solution thus
obtained can be improved upon but the error analysis, similar to that in the
work of Levinson (1969) for ODEs, seems difficult. What is done instead
is to use the numerical solution of the original PDE subject to appropriate
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IC/BC to determine the missing information in the asymptotic solution;
the latter is oftentimes an improvised form of the solution of the linearised
equation, which takes into account the effects of nonlinearity. This approach
has been used to great advantage by Grundy and his collaborators (Grundy,
Sachdev, and Dawson (1994); Grundy, Van Duijn, and Dawson (1994);
Escobedo and Grundy (1996); Dawson, Van Duijn, and Grundy (1996);
Van Duijn, Grundy, and Dawson (1997)).

7.2 Asymptotic Solution of Nonplanar Burg-
ers Equation with N Wave Initial Condi-
tions

We seek large-time solution to the nonplanar Burgers equation

ut + uux +
ju

2t
=
δ

2
uxx (7.2.1)

where j > −1 and δ is small, subject to discontinuous N wave initial
conditions

u(x, ti) = (1− j/2)x/ti, |x| < d0

= 0, otherwise (7.2.2)

where d0 is the initial length of one lobe of the antisymmetric N wave.
We introduce the new variables

t, η = xta, u = tcv(η, t) (7.2.3)

into (7.2.1), where a and c are parameters to be chosen subsequently; we
get

(c+ j/2)v + aηvη + tvt =
δ

2
t(2a+1)vηη − t(a+c+1)vvη. (7.2.4)

We compare the relative importance, as t→∞, of the two terms explicitly
involving t on the RHS of (7.2.4). If the second term on the right balances
with all the terms in the left, we have

a+ c+ 1 = 0, 2a+ 1 < 0. (7.2.5)

This approximation ignores the viscous dissipation effect represented by
vηη term on the right of (7.2.4). The exact inviscid solution of (7.2.4) is
u = (1− j/2)x/t. Motivated by this solution, we choose

a = −1, c = 0. (7.2.6)

With a and c thus chosen, (7.2.4) becomes

j

2
v − ηvη + tvt =

δ

2
t−1vηη − vvη. (7.2.7)
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We now introduce the large-time asymptotic expansion

v(η, t) = v0(η) + o(1) (7.2.8)

as t→∞. Putting (7.2.8) into (7.2.7) and equating the leading order terms,
we get

j

2
v0 − ηv′0 ≈ v0v

′
0 (7.2.9)

with the general solution

v(η) ≈ (1− j/2)η + c1. (7.2.10)

If we require the solution to be antisymmetric with respect to x = 0, we
must have c1 = 0. Thus, (7.2.10) reduces to

v(η) = (1− j/2)η + o(1) (7.2.11)

as t→∞, or equivalently,

u(x, t) = (1− j/2)
x

t
+ o(1), j 6= 2 (7.2.12)

as t→∞. This is the zeroth order outer solution in the matched asymptotic
expansion approach of Crighton and Scott (1979), who get the N-wave
solution to first order by introducing appropriate shock layers at the front
and the tail and matching them to the outer solution. Since this case has
been dealt with in great detail by Crighton and Scott (1979), we refer the
reader to their work. The other balance in (7.2.4) is between the first
term on RHS with the LHS; here, viscous dissipation dominates nonlinear
convection. Assuming that all the η derivatives are bounded, t(∂v/∂t) =
O(1) and η = O(1) as t→∞, we have in this case

2a+ 1 = 0, a+ c+ 1 < 0 (7.2.13)

or
a = −1

2
and c < −1

2
. (7.2.14)

The (linear) old-age solution of (7.2.1) is

u(x, t) = C1
x

t(3+j)/2
exp(−x2/2δt), (7.2.15)

C1 being the old-age constant; (7.2.15) motivates the choice

c = −(1 + j)/2 (7.2.16)

(see (7.2.3)). Equation (7.2.4) now becomes

−v − η

2
vη + tvt =

δ

2
vηη − t−(j+1)/2vvη. (7.2.17)

©2000 CRC Press LLC



We seek solution of (7.2.17) in the form

v(η, t) = v0(η) + o(1). (7.2.18)

Putting (7.2.18) into (7.2.17), we get, to the lowest order, the linear equa-
tion

δ

2
v
′′

0 +
η

2
v′0 + v0 = 0, (7.2.19)

which has the general solution

v0(η) = Aη exp(−η2/2δ)+Bη exp(−η2/2δ)
∫ η

0

η−2 exp(η2/2δ)dη. (7.2.20)

Here, A and B are arbitrary constants. If we choose B = 0, the leading
order solution of (7.2.17) is simply the “old-age” solution

v0(η) = Aη exp(−η2/2δ). (7.2.21)

To include the effect of the (neglected) convective term in (7.2.17), we write

v(η, t) = v0(η, t) + ε(η, t) (7.2.22)

as t → ∞. Substituting (7.2.22) into (7.2.17) and retaining the dominant
terms in ε, we have

−ε− η

2
εη + tεt =

δ

2
εηη − t−(j+1)/2

{
A2η(1− η2/δ) exp(−η2/δ)

}
. (7.2.23)

If we write
ε = t−(j+1)/2f(η) (7.2.24)

in (7.2.23), we get

f ′′ +
η

δ
f ′ +

(3 + j)
δ

f =
2A2

δ
η(1− η2/δ) exp(−η2/δ) ≡ R, say. (7.2.25)

The homogeneous part of (7.2.25) has the linearly independent solutions

f1(η) = exp(−η2/2δ) 1F1

(
−j + 2

2
,
1
2
;
η2

2δ

)
(7.2.26)

f2(η) =
η

(2δ)1/2
exp(−η2/2δ) 1F1

(
1− j

2
,
3
2
;
η2

2δ

)
(7.2.27)

where

1F1(a, c; z) =
∞∑
k=0

Akz
k

Ak = a(a+ 1) . . . (a+ k − 1)/c(c+ 1) . . . (c+ k − 1)k! (7.2.28)
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is the relevant solution of the confluent hypergeometric equation

zy′′ + (c− z)y′ − ay = 0. (7.2.29)

A particular solution of (7.2.25) is obtained by the method of variation of
parameters:

fp(η) = f1(η)
∫ η

0

−f2(s)R(s)
W (f1, f2)

ds+ f2(η)
∫ η

0

f1(s)R(s)
W (f1, f2)

ds (7.2.30)

where R, f1 and f2 are as in (7.2.25), (7.2.26), and (7.2.27), respectively,
and W is the Wronskian. The general solution of (7.2.25) is

f(η) = c1f1(η) + c2f2(η) + fp(η). (7.2.31)

Since the N -wave solution we seek is antisymmetric in x (and hence η) with
respect to the origin, we must choose c1 = c2 = 0 in (7.2.31), and so

f(η) = fp(η). (7.2.32)

The solution (7.2.22) in view of (7.2.24) and (7.2.30) becomes

v(η) = Aη exp(−η2/2δ) + t−(j+1)/2f(η) (7.2.33)

as t→∞. In terms of original variables we have

u(x, t) = t−(1+j/2)
[
Axt−1/2 exp(−x2/2δt)

+t−(j+1)/2f(x/t1/2) +O(t−(j+1))
]

(7.2.34)

as t→∞.
As a quick check we derive the above results for Burgers equation (j = 0

in (7.2.1)) itself and verify their correctness with reference to the known
exact solution. In this case (7.2.25) reduces to

f ′′ +
η

δ
f ′ +

3
δ
f =

2A2

δ
η

(
1− η2

δ

)
exp(−η2/δ). (7.2.35)

A particular solution of (7.2.35) is

fp(η) = −A2η exp(−η2/δ). (7.2.36)

The general solution of (7.2.35) is

f(η) = c1f1(η) + c2f2(η)−A2η exp(−η2/δ) (7.2.37)

where f1 and f2 are given by (7.2.26) and (7.2.27) with j = 0. Arguing as
for the general j case, we may write the asymptotic solution in the present
case as

u(x, t) = t−1

[
A

x

t1/2
exp

(
− x2

2δt

)
+ t−1/2f(x/t1/2) +O(t−1)

]
(7.2.38)
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as t→∞; here, f refers to (7.2.37) with c1 = c2 = 0. We now refer to the
exact N -wave solution of plane Burgers equation (see Section 6.2)

u(x, t) =
x/t

1 +
(
t
t0

)1/2

exp(x2/2δt)
(7.2.39)

= A
x

t3/2
exp

(
− x2

2δt

){
1− A

t1/2
exp

(
− x2

2δt

)
+O(t−1)

}
(7.2.40)

as t → ∞; here A = t
1/2
0 . The solution (7.2.40) is the same as (7.2.38),

obtained by balancing argument with f(η) given by (7.2.37).
We summarise here large-time behaviour of the nonnegative solutions

of the generalised Burgers equation

ut + (uα+1)x +
Ju

2t
= δuxx, J > 0, α > 0 (7.2.41)

due to Grundy, Sachdev, and Dawson (1994), using the method of balances.
Equation (7.2.41) is called subcylindrical if J < 1, and supercylindrical if
J > 1. For α = 1/(J + 1), (7.2.41) possesses exact self-similar solution,
found first by Sachdev and Nair (1987). Large-time nonnegative solutions
of this equation were sought subject to the bounded initial data

u(x, 1) = u1(x), (7.2.42)

which have either finite support or vanish sufficiently quickly as |x| → ∞.
First, an integral invariance property was found by defining

M(t) =
∫ ∞

−∞
u(x, t)dx. (7.2.43)

Integrating (7.2.41) with respect to x from −∞ to +∞ and using vanishing
conditions u, ux → 0 as |x| → ∞, it may be checked that

dM

dt
= −JM

2t
or

M(t) = M1t
−J/2 (7.2.44)

where M1 is the constant of integration.
Introducing the variables

η = x/tδ, u(x, t) = t−av(η, t), a > 0, δ > 0 (7.2.45)

into (7.2.41), the balancing argument was used to identify three distinct
cases. The resulting approximate equations were solved and improved upon,
as illustrated for the N wave problem earlier.

The integral invariance property (7.2.44) was imposed in each case to
fix the parameters.
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1. α > J + 1.

In this case, diffusion dominates convection. The final solution has
the form

u(x, t) =
M1t

−(J+1)/2

2
√
π

e−x
2/4t{1 + o(1)} (7.2.46)

as t→∞, the result being uniform in −∞ < x <∞. The asymptotic
nature of (7.2.46) was verified with the numerical solution of (7.2.41)
subject to the initial condition

u0 = {H(x+ 1)−H(x− 1)}/2 (7.2.47)

where H is the Heaviside function; here, the parameters were chosen
to be α = 2/3, J = 2. The convergence of the solution to the limiting
profile (7.2.46) was clearly demonstrated.

2. α = 1/(J + 1).

Here, diffusion and convection both balance and the exact solution of
Sachdev and Nair (1987), namely

u = t−1/2α e−η
2/4{

B +
√
απerfc

(
η
√
α

2

)}1/α
, (7.2.48)

was recovered. B is an arbitrary constant. For α = 1/3 and J = 2,
convergence of the solution with the initial condition (7.2.47) to the
limiting form (7.2.48) was numerically demonstrated.

3. α < 1/(J + 1).

Here, convection dominates large-time solution when η = O(1). In
this case the analysis is relatively more complicated; it requires inter-
posing of a shock layer at the leading edge and a trailing layer near
the origin by matching the outer and inner solutions.

The numerical scheme used to supplement the analytic results is due to
Dawson (1991). This scheme has been found effective in the treatment of
this class of nonlinear diffusion problems.

7.3 Asymptotic Profiles with Finite Mass in
1-D Contaminant Transport through Porous
Media

Here, we give another example to illustrate the method of balancing to
obtain large-time behaviour of solutions (Grundy, Van Duijn, and Dawson
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(1994)). This concerns the large-time behaviour of positive solutions of

∂

∂t
(u+ up) = uxx − ux, p > 0 (7.3.1)

with −∞ < x < ∞ and t ≥ 0 for pulse-type initial data. This equation,
in suitably scaled variables, describes the one-dimensional flow of a solute
through a porous medium with the solution undergoing absorption by the
solid matrix of the media. Grundy et al. (1994) describe the physics in
great detail and introduce suitable scaling, etc. to bring the model to the
form (7.3.1). The nature of the asymptotic behaviour depends crucially on
the value of the parameter p. The analysis shows that distinct behaviours
come about for three ranges of p : (1)0 < p < 1, (2)1 < p < 2, (3)p > 2.
The transformation of independent variables in (7.3.1) to

t, ξ = x− t (7.3.2)

is clearly suggested so that (7.3.1) takes the form

∂

∂t
(u+ up) =

∂2u

∂ξ2
+

∂

∂ξ
(up). (7.3.3)

As for the example in Section 7.2, we introduce the similarity variable in
(7.3.3), namely

η =
ξ

tδ
=
x− t

tδ
, δ > 0, (7.3.4)

together with the change of the dependent variable according to

u(ξ, t) = tαv(η, t) (7.3.5)

with α < 0 to simulate solutions with temporal decay. Equation (7.3.3)
becomes

{tvt + αv − δηvη} + tα(p−1){t(vp)t + αpvp − δη(vp)η}

= t1−2δvηη + tα(p−1)+(1−δ)(vp)η, (7.3.6)

which, for convenience, may be referred to as A+B = C +D. Integrating
(7.3.1) with respect to x from x = −∞ to x = +∞ and using vanishing
condition for u and ux at ∓∞, we arrive at the mass conservation equality∫ ∞

−∞
(u+ up)dx =

∫ ∞

−∞
(u0 + up0)dx = M, say, (7.3.7)

where u0 refers to the initial value u(x, 0) = u0. We shall use (7.3.7) as well
as the balancing argument to find the parameters α and δ. Putting (7.3.4)
and (7.3.5) into (7.3.7) we have

M =
∫ ∞

−∞
(tα+δv + tαp+δvp)dη. (7.3.8)
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Since α < 0, (7.3.8) implies that for p > 1, we have

M ∼ O(tα+δ) as t→∞. (7.3.9)

Hence, for M to be invariant, we require that

δ = −α. (7.3.10)

We seek solutions in the limit t→∞, η = O(1) and assume that v, vη, vηη,
as well as tvt are bounded in this limit. With this assumption we check
from (7.3.6) that for p > 1 and α < 0, the term A on LHS of (7.3.6)
dominates B. Now two possibilities arise with respect to RHS of (7.3.6):
1. A balances C, and D is less important. 2. A balances D, which itself
dominates C. The asymptotic balance is really tantamount to asymptotic
equivalence as t→∞.

1. In this case it is clear that

δ =
1
2

(7.3.11)

and
α(p− 1) + 1− δ < 0. (7.3.12)

From (7.3.10) and (7.3.11) we have α = −1
2
, and so (7.3.12) becomes

p > 2. (7.3.13)

Thus, the possibility p > 2 naturally arises from the analysis. With α, δ,
and p thus determined, (7.3.6) becomes

tvt −
1
2
(v + ηvη) + t−(p−1)/2{t(vp)t −

p

2
vp − η

2
(vp)η}

= vηη + t−(p−2)/2(vp)η. (7.3.14)

Now, writing
v(η, t) = v0(η) + o(1) (7.3.15)

with the assumptions that tvt = o(1) in the limit t→∞ and η = O(1), we
find from (7.3.14) that

v′′0 +
1
2
(ηv′0 + v0) = 0. (7.3.16)

The general solution of (7.3.16) is

v0 = k1e
−η2/4 − k2e

−η2/4

∫ ∞

η

es
2/4ds = k1e

−η2/4 +O(η−1) (7.3.17)
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as η → ∞; k1 and k2 are arbitrary constants. Since the integral in (7.3.8)
with respect to η over (−∞,∞) must converge, we must put k2 = 0 in
(7.3.17) and thus have

v0 = k1e
−η2/4. (7.3.18)

Substituting (7.3.15) and (7.3.18) into (7.3.8), we have

M = k1

∫ ∞

−∞
e−η

2/4dη (7.3.19)

or
k1 =

M

2
√
π
. (7.3.20)

Thus, k1 is found in terms of the initial mass M in (7.3.7). The solution
for p > 2 is thus explicitly found to be

u(x, t) =
M

2
√
π
t−1/2e−(x−t)2/4t{1 + o(1)} (7.3.21)

as t→∞, (x− t)/
√

2t = O(1). This result holds uniformly in x. To check
the validity of (7.3.21), Grundy et al. (1994) solved (7.3.1) for p = 3 with
IC

u0(x) = H(x+ 1)−H(x− 1) (7.3.22)

where H(x) is the Heaviside function. The area under the initial profile
being M = 4, the asymptotic solution (7.3.21) becomes

t1/2u(x, t) =
2√
π
e−η

2/4. (7.3.23)

The convergence of t1/2u(x, t) is slow, but evident. Grundy et al. (1994),
in the appendix to their paper, obtain the next approximation

v(η, t) = v0(η) +
M2

4
t−1/2

π
√

3
log tv′0(η) +O(t−1/2) (7.3.24)

or, equivalently,
v(η, t) = v0(η1) +O(t−1/2) (7.3.25)

where

η1 = η +
M2t−1/2 log t

4π
√

3
. (7.3.26)

The convergence of t1/2u(x, t), as obtained from the numerical solution to
(7.3.25), is found to be much faster than it was to (7.3.21).

2. We now turn to the second possibility in (7.3.6) when the second term
D on the RHS dominates the first, namely C. Under the same assumptions
as in case 1, we have

α(p− 1) + 1− δ = 0. (7.3.27)
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and
1− 2δ < 0. (7.3.28)

Together with the condition (7.3.10), which holds in the present case, too,
(7.3.27) and (7.3.28) give

α = −1
p
, δ =

1
p

(7.3.29)

and
p < 2. (7.3.30)

With values α and δ from (7.3.29), (7.3.6) becomes

tvt −
1
p
(v + ηvη) + t−(p−1)/p

{
t(vp)t − vp − η

p
(vp)η

}
= t−(2−p)/pvηη + (vp)η. (7.3.31)

We seek solution of (7.3.31) in the form

v = v0(η) +O(1) (7.3.32)

as t→∞, with η = O(1) and tvt = o(1), which, as will become clear, may
be referred to as the “outer limit.” Putting (7.3.32) into (7.3.31) we have

(v0 + ηv′0) + p(vp0)′ = 0 (7.3.33)

to leading order. The general solution of the first-order ODE (7.3.33) is
clearly

vp0 +
η

p
v0 = C (7.3.34)

where C is the constant of integration. To fix C, we observe that, if
C < 0, v0(η) is double-valued for

η ≤ −p2(−C)1/p/(p− 1)(p−1)/p. (7.3.35)

This solution is rejected. For C > 0, v0(η) is single-valued on −∞ < η <∞,
but as η → +∞ (7.3.34) shows that

v0 ∼ pC/η. (7.3.36)

However, the mass invariance condition requiring v0(η) to be integrable
over −∞ < η < ∞ would rule out (7.3.36) as well. Thus, we must have
C = 0, and the solution (7.3.34) simply becomes

v0 =
(
−η
p

)1/(p−1)

+

. (7.3.37)
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v0 in (7.3.37) is defined for all η ∈ R but has infinite mass M (see (7.3.7)).
To ensure a finite mass, we must choose (7.3.37) only over a finite interval
η1 ≤ η ≤ 0, say, and zero outside this interval. In this case, to leading
order, we get

M =
∫ 0

η1

(
−η
p

)1/(p−1)

dη (7.3.38)

or

η1 = −p
(

M

p− 1

)(p−1)/p

< 0. (7.3.39)

The solution (7.3.37) has a discontinuity at η = η1. Thus, for this case with
1 < p < 2, our solution, to lowest order, becomes

u(x, t) = t−1/p

(
t− x

pt1/p

)1/(p−1)

{1 + o(1)} (7.3.40)

as t→∞, with (x− t)/t1/p = O(1). The condition η1 < η < 0 implies that
(7.3.40) holds for

η1t
1/p ≤ x− t < 0. (7.3.41)

The above solution, discontinuous at η = η1, is an outer solution and must
be supplemented by an outer layer. Before we turn to this matter we con-
sider the case p = 2. In this case A,C, and D in (7.3.6) are asymptotically
equivalent as t→∞, η = O(1); therefore,

α = −δ = −1
2
. (7.3.42)

We write
v = v0(η) + o(1), (7.3.43)

and with the assumption that tvt = o(1), (7.3.6) gives

αv0 − δηv′0 = v′′0 + (v2
0)′, (7.3.44)

which has the exact solution

v0(η) =
e−η

2/4

k +
√
πerf (η/2)

(7.3.45)

where k is the constant of integration and may be obtained from the mass-
invariance condition

M =
∫ ∞

−∞
v0(η)dη. (7.3.46)

Thus, (7.3.45)-(7.3.46) give

k =
√
π(eM + 1)/(eM − 1). (7.3.47)
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This solution (7.3.5) of (7.3.3) for p = 2 with v = v0(η) as in (7.3.45) and
(7.3.47) is an exact similarity solution of the standard Burgers equation.
Using the IC (7.3.22), Grundy et al. (1994) showed numerically that it
converges, though slowly, to the above asymptotic solution. In an appendix
to their paper, they improvised upon this solution to obtain

v(η, t) = v0(η)− 0.0639t−1/2(log t)v′0(η) +O(t−1/2)

= v0(η1) +O(t1/2) (7.3.48)

η1 = η − 0.0639t−1/2 log t.

The asymptotic form (7.3.48) was approached much faster as the numerical
solution referred to above was compared with it at different times.

For 0 < p < 1, Grundy et al. (1994), motivated by the numerical
solution as well as properties of the PDE in the hyperbolic limit (when the
viscous term is absent) sought the solution of (7.3.1) in the form

u = tβv(η, t), β < 0 (7.3.49)

η =
x

tν
, ν > 0. (7.3.50)

Equation (7.3.1) in these variables becomes

tβ(1−p){tvt + βv − νηvη} + {t(vp)t + βpvp − νη(vp)η}

= tβ(1−p)+1−2νvηη − tβ(1−p)+1−νvη. (7.3.51)

Writing (7.3.51) again as A + B = C + D, it is easy to check that, since
β < 0 and p < 1, B dominates A as t → ∞. Considering the possibilities
on the RHS, it may be verified that the only consistent choice arises when
D dominates C and asymptotically balances with B. This leads to

β(1− p) + 1− ν = 0 (7.3.52)

and
β(1− p) + 1− 2ν < 0. (7.3.53)

As in the previous cases, we get another constraint relating β and ν from
the condition of mass-invariance (7.3.7):

M =
∫ ∞

−∞
{tβ+νv + tβp+νvp}dη (7.3.54)

and, for p < 1 and β < 0,

M ∼ O(tβp+ν) as t→∞. (7.3.55)

So, the invariance of M requires that

ν = −βp. (7.3.56)
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Equations (7.3.52) and (7.3.56) then give

β = −1 and ν = p. (7.3.57)

Equation (7.3.51) now assumes the form

t(vp)t − p{vp + η(vp)η}+ t−(1−p){tvt − v − pηvη} = t−pvηη − vη. (7.3.58)

Writing
v(η, t) = v0(η) + o(1), (7.3.59)

assuming that tvt = o(1) as t→∞ and η = O(1), and substituting it into
(7.3.58), we get, to leading order,

p{vp0 + η(vp0)′} = v′0. (7.3.60)

Integration of (7.3.60) gives

pηvp0 − v0 = C (7.3.61)

where C is a constant. An argument similar to that for (7.3.34) shows that
C = 0, and so

v0 = (pη)1/(1−p)+ . (7.3.62)

The nontrivial part of the asymptotic solution (7.3.62) must, as before, be
restricted to the interval 0 < η < η2. Using the mass-invariance condition
(7.3.56), we get

M =
∫ η2

0

(pη)p/(1−p)dη, (7.3.63)

yielding

η2 =
{

M

1− p

}1−p

p−p. (7.3.64)

In terms of x and t, the solution for 0 < p < 1 may now be written as

u(x, t) = t−1
(px
tp

)1/(1−p)
{1 + o(1)} (7.3.65)

as t→∞, x/tp = O(1). This solution holds over 0 < η < η2, that is, over

0 < x < η2t
p. (7.3.66)

We call (7.3.65) the “outer solution,” which may be written out as

u(x, t) =


0 x < 0
t−1(px/tp)1/(1−p) 0 < x < η2t

p

0 x > η2t
p.

(7.3.67)
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This solution is deficient in two ways:- it is discontinuous at x = η2t
p, and

there is no moving interface to the left.
Both for 0 < p < 1 and 1 < p < 2, Grundy et al. (1994) introduce

boundary layer solutions at the trailing edges η = η1,2 and the leading edge
η = 0. In the composite solution that they construct, two arbitrary con-
stants remain undetermined in each of the boundary layer solutions. These
must be determined in some ad hoc way by fitting with the numerical solu-
tions; the composite solutions may help in reducing the excessive computing
time required to calculate the slowly converging large-time solutions. The
details of the boundary layers and their matching with the outer solutions
may be found in the original paper of Grundy et al. (1994).

We shall now deal briefly with the same physical problem in two di-
mensions, namely contaminant transport in porous media for initial data
with bounded support, and show how the analysis becomes more compli-
cated. Although it is not feasible to construct the solution, as it was for
one-dimensional, considerable qualitative details can be read off from the
asymptotic analysis (Dawson, Van Duijn, and Grundy (1996)). We again
start with the nondimensional form of the IVP

(u+ up)t + ux = uxx + uyy for (x, y, t) ∈ Q (7.3.68)

u(x, y, 0) = u0(x, y) for (x, y) ∈ R2, (7.3.69)

where Q = {(x, y, t) : −∞ < x, y < ∞, t > 0}, and investigate the large-
time behaviour of the nonnegative solutions of (7.3.68)-(7.3.69) (u ≥ 0, u
being the redefined concentration) which satisfy mass conservation: we
suppose that for all t ≥ 0, u(x, y, t) → 0 sufficiently fast as |x|, |y| → ∞ so
that u+ up is integrable for all t ≥ 0. This implies that∫ ∫

R2
(u+ up)dxdy =

∫ ∫
R2

(u0 + up0)dxdy := M (7.3.70)

for all t ≥ 0.
Intuitively, one expects that for p ≥ 1, the solution u will become small

for large time and, therefore, one may replace u + up with u in (7.3.68)
as a first approximation. This would lead to a linear convection-diffusion
equation and, consequently, to a limit profile which is independent of the
exponent p. This, however, was not what was observed numerically by
Dawson et al. (1996).

As for the one-dimensional case, one introduces the moving coordinate
system t, y and ξ = t− x in (7.3.68) to find that

(u+ up)t + (up)ξ = uξξ + uyy. (7.3.71)

Since (u + up)t = (1 + pup−1)ut, one may view the term (1 + pup−1) as a
concentration-dependent capacity. For p ≥ 1, this capacity is bounded for
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all u ≥ 0, while for p < 1 it blows up as u↘ 0. In the former case, (7.3.71)
is uniformly parabolic, and in the latter it is degenerate parabolic. In the
theory of parabolic PDEs this has important consequences. If u0(x, y) = 0
for all x2 + y2 ≥ R2, then for the case p ≥ 1, u(x, y, t) = 0 outside a disc
DR(t)(0) having a radius which expands in time (r < R(t) <∞ and R(t) →
∞ as t→∞). Hence, if p < 1 and, depending on the initial distribution, a
free boundary may occur which separates the region where u > 0 from the
region where u = 0. We shall treat these two cases separately.
1. p > 1.

We introduce the variables

η =
ξ

tβ
=
t− x

tβ
, ζ =

y

tδ
(7.3.72)

and
u(ξ, y, t) = tαv(η, ζ, t) (7.3.73)

where β, δ ≥ 0 and α < 0 to simulate temporal decay. In terms of the new
variables, (7.3.71) becomes(

t
∂

∂t
+ α− βη

∂

∂η
− δζ

∂

∂ζ

)
(v + tα(p−1)vp)

+t1+α(p−1)−β ∂v
p

∂η
= t1−2β ∂

2v

∂η2
+ t1−2δ ∂

2v

∂ζ2
. (7.3.74)

Intuitively, we expect

v(η, ζ, t) = v0(η, ζ) + o(1) as t→∞ (7.3.75)

giving

u(x, y, t) = tαv0

(
t− x

tβ
,
y

tδ

)
. (7.3.76)

The parameters α, β, and δ must be found from (7.3.74) by the method of
asymptotic balance as well as from the mass invariance condition (7.3.70).
The latter, for p > 1 and in the limit t→∞, gives

α+ β + δ = 0. (7.3.77)

The balancing argument for (7.3.74) gives three possibilities:

(a) For p > 3/2, the time derivative and both the diffusion terms are
dominant in (7.3.74), giving

β = δ =
1
2

and α = −1. (7.3.78)

Since v0 = v0(η, ζ), the solution is simply the fundamental solution
of the heat equation

v0(η, ζ) =
M

4π
e−(η2+ζ2)/4,
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and hence

u(x, y, t) → M

4πt
e−{(t−x)

2+y2}/4t as t→∞. (7.3.79)

The solution (7.3.79) is radially symmetric with respect to the moving
coordinates (x = t, y = 0). Dawson et al. (1996), starting with a pulse
initial condition, u0 = 1, on the square of side 2 centered at the origin
and u0 = 0 elsewhere, arrived at this behaviour numerically for large
time ∼ 100. The exponent p here was chosen to be 3.

(b) For p =
3
2
, there is a balance between the time derivative, convection,

and both diffusion terms. The parameters in this case also come out

to be α = −1, β = δ =
1
2
, and v0 satisfies the equation

v0 +
η

2
(v0)η +

ζ

2
(v0)ζ − (v3/2

0 )η + (v0)ηη + (v0)ζζ = 0 for (η, ζ) ∈ <2

(7.3.80)
where

v0 ≥ 0 and
∫ ∫

<2
v0dηdζ = M. (7.3.81)

Thus, for p = 3/2, we have the solution (7.3.76) with v0 satisfying
(7.3.80) and (7.3.81). This problem, though simpler than the original
problem, cannot be solved in a closed form. Numerical solutions with
p = 3/2 with the same IC as for the case (a) show that these solutions
are symmetric in ζ but not in η (see Figure 7.1).

(c) 1 < p <
3
2
. In this case, the time derivative term balances with

ζ-diffusion and η-convection. It follows from (7.3.74) that, in this
case,

α = − 3
2p
, β =

3− p

2p
, δ =

1
2
. (7.3.82)

Writing again v = v0(η, ζ) + o(1), it follows from (7.3.74) that

3
2p
v0 +

3− p

2p
η(v0)η +

ζ

2
(v0)ζ − (vp0)η + (v0)ζζ = 0 (7.3.83)

for (η, ζ) ∈ <2, where v0 also must satisfy (7.3.81). The form of the

asymptotic solution for 1 < p <
3
2
, therefore, is

u(x, y, t) → t−3/2pv0

(
t− x

t(3−p)/2p
,
y

t1/2

)
as t→∞ (7.3.84)

where v0 is the solution of (7.3.83) and (7.3.81). The numerical solu-
tion shows convergence to this form of the solution with appropriate
initial conditions as before.
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Figure 7.1. Numerical results of the IVP for the spreading of

the contaminant (see Equation (7.3.71)) in the scaled variables for

p = 3/2, M = 8. The results relate to t = 1, 15, 100, respectively.

As for the one-dimensional case, when 0 < p < 1, one seeks solution in
terms of the similarity variables

η =
x

tb
, ζ =

y

td
(7.3.85)

where b, d ≥ 0. The solution is assumed in the form

u(x, y, t) = tav(η, ζ, t) (7.3.86)

where a < 0 to consider temporal decay. Putting (7.3.85) and (7.3.86) into
(7.3.68), we get(

t
∂

∂t
+ ap− bη

∂

∂ζ
− dζ

∂

∂ζ

)
(ta(1−p)v + vp)

+t1+a(1−p)−b
∂v

∂η
= t1+a(1−p)−2b ∂

2v

∂η2
+ t1+a(1−p)−2d ∂

2v

∂ζ2
. (7.3.87)

The mass invariance condition (7.3.70) for 0 < p < 1 gives

ap+ b+ d = 0. (7.3.88)

Writing v = v0(η, ζ) + O(1) and looking for different balances, one finds
that the only sensible balance is between η-convection and ζ-diffusion; in
this case we must have

a =
−3

3− p
, b =

2p
3− p

, and d =
p

3− p
. (7.3.89)

It is then governed by

3p
3− p

vp0 +
2p

3− p
η(vp0)η +

p

3− p
ζ(vp0)ζ − (v0)η + (v0)ζζ = 0 for (η, ζ) ∈ <2.

(7.3.90)
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It must also satisfy

v0 ≥ 0 and
∫ ∫

<2
vp0dηdζ = M. (7.3.91)

Equation (7.3.90) is too hard to solve explicitly. However, we may conclude
that, for 0 < p < 1,

u(x, y, t) → t−3/(3−p)v0

( x

t2p/(3−p)
,

y

tp/(3−p)

)
as t→∞. (7.3.92)

This asymptotic form is confirmed by numerical solution of the IVP, posed
for case (a) with p > 3

2 .
It is clear from the above discussion that the reduced equations for this

two-dimensional problem, which hold for large t, do not generally admit
explicit analysis. However, in conjunction with the numerical solution,
they make the problem more tractable, reveal some qualitative features,
and help one understand the structure of the solution in the asymptotic
limit. We consider the case (c), 1 < p < 3/2, in some detail to illustrate
this point. In this case we have

3
2p
v0 +

3− p

2p
η
∂v0
∂η

+
ζ

2
∂v0
∂ζ

− ∂vp0
∂η

+
∂2v0
∂ζ2

= 0 (7.3.93)

for (η, ζ) ∈ <2, and

v0 ≥ 0,
∫ ∫

<2
v0dηdζ = M. (7.3.94)

We first observe that v0 involves first derivative in η and second deriva-
tive in ζ, showing that the solutions are smoother in the transverse direction
ζ than in the η direction, the direction of flow. The following points may
now be noted.

(i) v0(η, ζ) = v0(η,−ζ) for all (η, ζ) ∈ <2 (7.3.95)

This follows immediately from the symmetry properties of (7.3.93)
together with uniqueness of the solution (see Escobedo, Vazquez, and
Zuazua (1993)).

(ii) There exists a constant L > 0 such that

v0(η, ζ) = 0 outside the strip S = {(η, ζ) : 0 < η < L,−∞ < ζ <∞}.
(7.3.96)

To show this we assume that v0 decays sufficiently fast to zero as
|η|, |ζ| → ∞. We write (7.3.90) in the divergence form

∂

∂η

{
3− p

2p
ηv0 − vp0

}
+

∂

∂ζ

{
1
2
ζv0 +

∂v0
∂ζ

}
= 0 (7.3.97)
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and introduce the transversal mass

Mt(η) =
∫ ∞

−∞
v0(η, ζ)dζ for −∞ < η <∞. (7.3.98)

Integration of (7.3.97) with respect to ζ gives

3− p

2p
d

dη
(ηMt)−

d

dη

∫ ∞

−∞
vp0(η, ζ)dζ = 0. (7.3.99)

Integration of (7.3.99), then, with respect to η yields

3− p

2p
ηMt −

∫ ∞

−∞
vp0(η, ζ)dζ = C for −∞ < η <∞, (7.3.100)

where C is the constant of integration. Letting |η| → ∞ in (7.3.100)
and using the rapid decay of v0 at infinity yield C = 0, we have

3− p

2p
ηMt =

∫ ∞

−∞
vp0(η, ζ)dζ for −∞ < η <∞. (7.3.101)

Since v0 ≥ 0 and, hence, Mt(η) ≥ 0, it follows from (7.3.101) that
v0(η, ζ) = 0 for all η ≤ 0. We also get from (7.3.101) that

3− p

2p
ηMt ≤ sup

ζ∈<
vp−1
0 (η, ζ)Mt

or (
3− p

2p
η − sup

ζ∈<
vp−1
0 (η, ζ)

)
Mt ≤ 0. (7.3.102)

It follows from (7.3.102) that there exists a constant L > 0, depending
on the maximum value of v0 such that Mt(η) = 0 for all η > L. This
proves the assertion (ii).

(iii) The inequality (7.3.102) implies that

sup
ζ∈<

vp−1
0 (η, ζ) ≥ 3− p

2p
η for 0 ≤ η ≤ L. (7.3.103)

(iv) Having shown that the maximum value of vp−1
0 with respect to ζ

is strictly positive for each 0 < η < L, it follows from Escobedo,
Vazquez, and Zuazua (1993) that

v0 > 0 in S. (7.3.104)
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(v)

v0(η, ζ) ≤
(
η

p

)1/(p−1)

for (η, ζ) ∈ S (7.3.105)

(see (7.3.96) for definition of S). The upper bound in (7.3.105) is the
one-dimensional solution (7.3.37); the result (7.3.105) follows from a
straightforward application of comparison theorems.

(vi) The estimate (7.3.105) implies that ∂/(∂η)v(p−1)
0 (0, ζ) ≤ 1/p for all

−∞ < ζ <∞. In fact,

∂vp−1
0

∂η
≤ 1
p

in S. (7.3.106)

To prove this, one first writes the equation for w = vp−1
0 and then for

the derivative
∂w

∂η
= z. The latter equation has the constant solution

z = 1/p. A comparison argument then yields (7.3.106).

(vii) To find the behaviour of v0 as |ζ| → ∞, let

ML(ζ) =
∫ L

0

v0(η, ζ)dη (7.3.107)

denote the longitudinal mass. To find ML(ζ), we integrate (7.3.97)
with respect to η and put constant of integration equal to zero; we
get

dML

dζ
+

1
2
ζML = 0 (7.3.108)

and, therefore,

ML(ζ) = ML(0)e−ζ
2/4,−∞ < ζ <∞. (7.3.109)

ML(0) is obtained from (7.3.94).

(viii) From (vi) and (vii) one may derive

vp0(η, ζ) ≤ M(p− 1)√
πp

e−ζ
2/4 for all (η, ζ) ∈ S. (7.3.110)

Using (7.3.103) in (7.3.110), one may estimate the magnitude of L as

L ≤ 2p
3− p

(
M(p− 1)√

πp

)(p−1)/p

. (7.3.111)
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The list of properties is concluded with two conjectures about the asymp-
totic properties of the solution near η = 0 and η ↑ L; these conjectures are
subsequently supported with the help of numerical solution. We note that
(7.3.93) has a separable solution which vanishes at η = 0, namely,

v(η, ζ) =
(
p− 1
p

η

)1/(p−1)

f0(ζ) for η > 0 and −∞ < ζ <∞ (7.3.112)

where f0(ζ) satisfies the ODE

f
′′

0 +
ζ

2
f ′0 +

f0
p− 1

− fp0 = 0 −∞ < ζ <∞ (7.3.113)

and the boundary conditions

f0(±∞) = 0. (7.3.114)

The BVP (7.3.113)-(7.3.114) was studied by Brezis, Peletier, and Terman
(1986). They proved the existence of a solution f0 satisfying maxζ∈< f0(ζ) =
f0(0) < (1/(p− 1))1/(p−1), ζf ′(ζ) < 0 for ζ 6= 0; f0(ζ) decays to zero expo-
nentially as |ζ| → ∞. Dawson et al. (1996) prove the following behaviour
of v0 near η = 0 in the appendix of their paper:

v0(η, ζ)(
p−1
p η
)1/(p−1)

− f0(ζ) = O(ηλ) as η ↓ 0 (7.3.115)

where λ is a positive constant.
The conjecture about the behaviour of v0 as η ↑ L is that for any ζ 6= 0,

lim
η↑L

v0(η, ζ) = 0 (7.3.116)

while at ζ = 0

lim
η↑L

v0(η, 0) = v0(L−, 0) =
(

3− p

2p
L

)1/(p−1)

. (7.3.117)

The behaviour of singularities at η = L and η = 0 is discussed in detail.
The qualitative features derived or conjectured above are validated by the
numerical solution of the problem (7.3.93)-(7.3.94).

Dawson et al. (1996) compare their asymptotic results via balancing
arguments with the more rigorous results of Escobedo, Vazquez, and Zuazua
(1993) and others for p > 1 and find them in good agreement. The dominant
balance approach is simpler and, when combined with numerical solution,
can provide a good picture of the asymptotic structure of the solution.
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Chapter 8

Series Solutions of
Nonlinear PDEs

8.1 Introduction

From early times, exact similarity solutions were intuitively sought in the
form ~u = tm ~f(xtn) when the PDEs involved two independent variables;
m and n were found either by dimensional argument or direct substitution
so that PDEs reduced to ODEs. This class was more fully identified by the
use of Lie group methods as described in Section 3.1, or intuitively by the
direct similarity approach detailed in Section 3.4. In the latter, the solution
was written in the form u = α(x, t) + β(x, t)U(η(x, t)) where the functions
α, β, and η were subsequently found by substitution into a PDE so that
the resulting equation became an ODE in U with η as the independent
variable. However, even this substitution (which again requires invariance
properties of the original PDE) may not yield physically meaningful so-
lutions. In such a circumstance, one attempts to write an infinite series
for each of the dependent variables in powers of one of the independent
variables, time, say, with coefficient functions depending on the similarity
variable. The substitution of the infinite series in the PDEs and BCs results
in an infinite system of ODEs with appropriate boundary conditions which
must be solved analytically or otherwise. The series solution must then
be summed up. The convergence of the series may be proved numerically
or analytically. In the following sections we take up several problems for
which closed form exact solutions are known for some special cases, say for
plane geometry. These special exact solutions motivate infinite series form
of the solution for the more general problems. The approach is best un-
derstood by discussing the solution of some specific problems taken mostly
from gasdynamics.
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8.2 Analysis of Expansion of a Gas Sphere
(Cylinder) into Vacuum

Imagine a gas sphere or cylinder initially at rest in a state of uniform
pressure p0 and density ρ0, surrounded by vacuum. At some initial time
the gas is suddenly allowed to expand into the surrounding vacuum. We
shall discuss the mathematical solution of this problem which, as we shall
show, has to go beyond similarity solution and be expressed in an infinite
series in time with coefficient functions depending on a similarity variable.

It may be noted that if there is no spherical or cylindrical geometry
constraining the flow, and the problem is strictly one-dimensional (in this
case the gas initially occupies an entire half-space), the solution of the
problem can be found explicitly. This solution also suggests the form of the
solution for other geometries. We therefore discuss this simpler case first
(Stanyukovich (1960)).

If we let l, c0 = (γp0/ρ0)1/2, l/c0, ρ0 and ρ0c
2
0 represent, respectively,

the characteristic length, velocity, time, density, and pressure, then the
equations of plane isentropic fluid motion in dimensionless form are

ut + uux +
2

γ − 1
ccx = 0 (8.2.1)

2
γ − 1

(ct + ucx) + cux = 0 (8.2.2)

where u is the particle velocity, c is the local sound speed, and γ the ratio
of specific heats; x and t are the space and time coordinates, respectively.
Since the flow is isentropic, we have c2 = ργ−1.

Immediately after release, the only particles in motion lie between the
gas vacuum interface and the rarefaction front which propagates into the
stationary gas. The condition at the interface is c = 0 (pressure and density
are also zero there). This interface moves with a velocity which must be
found as part of the solution. The sound (characteristic) front moves into
the undisturbed gas with unit dimensionless velocity. If the gas initially oc-
cupies the half space x < 0, the sound front has the locus x = −t (obtained
by solving dx/dt = −1 + 0) where u = 0. We have thus prescribed bound-
ary conditions both at the vacuum front and the sound front. The system
(8.2.1)-(8.2.2) must be solved subject to these BCs. The solution of this
problem may be found by similarity approach or otherwise (Stanyukovich
(1960)):

u =
2

γ + 1
(1 + η) (8.2.3)

c =
γ − 1
γ + 1

(
2

γ − 1
− η

)
(8.2.4)
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where η = x/t and −1 < η ≤ 2/(γ − 1). For η ≤ −1, the solution is the
uniform state u = 0 and c = 1, and for η ≥ 2/γ − 1 we have vacuum where
c = 0. The C+ characteristics are obtained by integrating

dx

dt
= u+ c (8.2.5)

with u and c from (8.2.3)-(8.2.4), and the IC x = 0, t = 0; we thus obtain

x = kt(3−γ)/(γ+1) +
2

γ − 1
t (8.2.6)

where k is the parameter denominating individual characteristics. The
negative characteristics dx/dt = u− c are similarly found to be

x = ηt, (8.2.7)

different values of η giving different characteristics issuing from the origin.
The negative characteristics (8.2.7) are straight lines in the (x, t) plane.

We now turn to the case of spherical or cylindrical gas mass expanding
freely into the complementary vacuous state. The fronts separating the
moving gas from the stationary one and from the vacuum are the same,
namely, a sound wave and vacuum front, respectively. The Euler equations
of motion in the present case are

ut + uur +
2

γ − 1
ccr = 0 (8.2.8)

2(γ − 1)−1(ct + ucr) + cur + σcu/r = 0 (8.2.9)

where σ = 0, 1, 2 for plane, cylindrical, and spherical symmetry, respec-
tively. Here, we follow the work of Greenspan and Butler (1962), consider-
ably improvised by Nagesawara Yogi (1995). The boundary conditions, as
before, are u = 0 on the curve c = 1, the leading characteristic propagat-
ing into the stationary gas. The gas-vacuum front must be located by the
requirement that c = 0 there.

Greenspan and Butler (1962) showed, by using the Euler and Lagrangian
forms of the equations applied at the vacuum front, that it does not decel-
erate, and that, indeed, it must move with a constant velocity 2/(γ − 1).
We shall show by our construction of the solution that there is a unique
solution of the problem when the front is assumed to move with constant
speed. For this purpose, appropriate series solution would be shown to
converge; this will be accomplished both analytically and numerically.

A similarity solution of the form (8.2.3)-(8.2.4) does not exist for the
nonplanar geometries (σ 6= 0). For the latter, we first introduce the Rie-
mann invariants

φ = u+ 2c/(γ − 1) (8.2.10)
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ψ = u− 2c/(γ − 1) (8.2.11)

as the new dependent variables, and

η =
r − 1
t

(8.2.12)

and time as the new independent variables, into (8.2.8) and (8.2.9) (observe
that the initial radius is unity, hence the definition (8.2.12) of η). Equations
(8.2.8)-(8.2.9) now become

(1 + ηt)[tφt − ηφη +
1
4
{(γ + 1)φ+ (3− γ)ψ}φη] +

1
8
σ(γ − 1)t(φ2 − ψ2) = 0

(8.2.13)

(1 + ηt)[tψt − ηψη +
1
4
{(3− γ)φ+ (γ + 1)ψ}ψη]−

1
8
σ(γ − 1)t(φ2 − ψ2) = 0

(8.2.14)
It may be noted that the system (8.2.13)-(8.2.14) has certain symmetries.
If (8.2.13) is written as L(φ, ψ) = 0, then (8.2.14) is simply L(ψ, φ) = 0;
besides, if φ(η, t) and ψ(η, t) are solutions of (8.2.13)-(8.2.14), then so are

φ∗(η, t) = −ψ(−η,−t), ψ∗(η, t) = −φ(−η,−t). (8.2.15)

These symmetries have important consequences. If one finds the solution
for the expanding gas-vacuum interface, the solution for the problem of
cavity collapse can be easily derived therefore (see Section 8.3), and vice
versa.

The boundary conditions u = 0, c = 1 on the leading front, in view of
(8.2.10) and (8.2.11), become φ = −ψ = 2/(γ − 1) on η = −1, that is, on
r = 1− t. The vacuum front must be located by the condition c = 0.

Restricting our attention to t ≤ 1, that is, before the sound wave reaches
the center or axis of symmetry (see (8.2.12)), we seek solution of (8.2.13)-
(8.2.14) in the form

φ =
∞∑
n=0

An(η)tn (8.2.16)

ψ =
∞∑
n=0

Bn(η)tn. (8.2.17)

Putting (8.2.16)-(8.2.17) into (8.2.13) and (8.2.14) and equating coefficients
of different powers of t to zero, we get the following infinite system of ODEs
for the coefficient functions An(η) and Bn(η):
n = 0. (

−η +
1
4
(γ + 1)A0 +

1
4
(3− γ)B0

)
dA0

dη
= 0 (8.2.18)(

−η +
1
4
(3− γ)A0 +

1
4
(γ + 1)B0

)
dB0

dη
= 0 (8.2.19)
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n ≥ 1.

Sn({Ai}, {Bi}) + ηSn−1({Ai}, {Bi}) = −Tn−1({Ai}, {Bi}) (8.2.20)

Sn({Bi}, {Ai}) + ηSn−1({Bi}, {Ai}) = Tn−1({Bi}, {Ai}) (8.2.21)

where

Sn({Ai}, {Bi}) = nAn − η
dAn
dη

+
1
4

n∑
k=0

((γ + 1)An−k + (3− γ)Bn−k)
dAk
dη

(8.2.22)
and

Tn({Ai, Bi}) =
1
8
σ(γ − 1)

n∑
k=0

(An−kAk −Bn−kBk). (8.2.23)

The boundary conditions at the sound wave interface become

An(−1) = −Bn(−1) =
2

γ − 1
δ0η (8.2.24)

where δ0η is the Kronecker’s delta. The system (8.2.18)-(8.2.19) with BC
from (8.2.24) for n = 0 is easily found to be

A0 =
2

γ − 1
(8.2.25)

B0 =
4

γ + 1

(
η − 1

2
3− γ

γ − 1

)
. (8.2.26)

This, with (8.2.10)-(8.2.11) and (8.2.16)-(8.2.17), is just the exact solution
of the planar problem, σ = 0. The series solution (8.2.16)-(8.2.17) builds
upon this planar solution to take into account the geometrical effects for
σ = 1, 2 via the coefficients An and Bn(n ≥ 1). To further facilitate the
imposition of BCs it is convenient to introduce

z =
γ − 1
γ + 1

(
2

γ − 1
− η

)
(8.2.27)

and t as the new independent variables instead of η and t (see Equation
(8.2.4)). The coefficients in the solution (8.2.16)-(8.2.17) would now become
An = An(z), Bn = Bn(z) and φ = φ(z, t) and ψ = ψ(z, t), etc. The zeroth
order solution (8.2.25)-(8.2.26) now becomes

A0 =
2

γ − 1
, B0 =

2
γ − 1

(1− 2z). (8.2.28)
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Equations (8.2.20)-(8.2.21) can be manipulated to the form

z
dAn
dz

− n

2

(
γ + 1
γ − 1

)
An = − 1

γ

n−1∑
k=1

[(γ + 1)An−k + (3− γ)Bn−k]
dAk
dz

+
1
2
γ + 1
γ − 1

n∑
k=1

(
2

γ − 1

)k−1(
γ + 1

2
z − 1

)k−1

×Tn−k({Ai}, {Bi}) (8.2.29)

(n+ 1)Bn +
3− γ

γ + 1
An =

1
4
γ − 1
γ + 1

n−1∑
k=1

[(γ + 1)Bn−k + (3− γ)An−k]
dBk
dz

+
n∑
k=1

(
2

γ − 1

)k−1(
γ + 1

2
z − 1

)k−1

×Tn−k({Ai}, {Bi}), (8.2.30)

Tn is again given by (8.2.23).
Greenspan and Butler (1962), using an induction argument, prove that

all the coefficient functions An(z) and Bn(z) satisfying (8.2.29)-(8.2.30) are
members of a certain class of functions R, which consists of a linear finite
sum of terms of the form Kzν lnm z, where ν ≥ 1, where m is a positive
integer and K is a constant. Thus, if p(z) is a typical element of this set,
then it has the form

p(z) = zν0 [k(0)
0 + k

(0)
1 ln z + · · ·K(0)

m0
lnm0 z] + · · ·

+zνj [K(γ)
0 +K

(γ)
1 ln z + · · ·+K(γ)

mj
lnmj z]. (8.2.31)

It is clear from (8.2.31) that every function p(z) belonging to the class R
has the following properties: (i) p(0) = 0, (ii) |dp/dz| < ∞ for all finite
values of z. Since A0(0) = −B0(0) = 2/(γ − 1), it follows that c = 0,
u = 2/(γ − 1) on the curve z = 0. That is, the gas-vacuum interface is
given by z = 0, corresponding to η = 2/(γ − 1). It moves with constant
speed 2/(γ − 1).

The first five coefficients for An(z) and Bn(z) for γ = 5/3, 3 are given
explicitly in Nagesawara Yogi (1995).

The following statements about An(z) and Bn(z) for different γ may be
easily verified.

(a) For 1 < γ < 3, the leading power of z in An(z) and B(z) is max
[1 + n, nN ], where N = (γ + 1)/(2(γ − 1)). There is a countable set of
values of γ for which either N or nN is an integer.

(b) Three distinct forms of An(z) and Bn(z) may be identified.

(i) If N 6= (n+ 1)/n is fractional, An and Bn are multinomials in z and
zN−1.
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(ii) If N 6= (n + 1)/n is integer, An and Bn are polynomials in z for
γ = 7/5, 9/7, 11/9, · · ·.

(iii) N = 1, 2, corresponding to γ = 3 and 5/3, respectively. In these cases,
An and Bn contain powers of both z and z log z. Thus, logarithmic
terms appear only for γ = 5/3 in the range 1 < γ < 2 and for γ = 3
in γ > 2.

To give an idea of the specific forms for An and Bn for case (i) above,
we have for n ≥ 1,

An(z) =
n+1∑
i=1

an,iz
i +

n∑
k=1

n∑
j=1

an,k,jz
kN+j−k (8.2.32)

Bn(z) =
n+1∑
i=1

bn,iz
i +

n∑
k=1

n∑
j=1

bn,k,jz
kN+j−k. (8.2.33)

For the specific value γ = 7/5 in case (ii), we have

An(z) =
nN∑
k=1

Ak,nz
k, Bn(q) =

nN∑
k=1

Bk,nz
k. (8.2.34)

For case (iii) above we have the following:
γ = 5/3, n ≥ 1.

An(z) =

[
2n∑
i=1

An,iz
i

]
+

n−1∑
k=1

(z ln z)k

2(n−k)∑
j=1

An,k,jz
j


+(z ln z)n(An,n,1z) (8.2.35)

Bn(z) =

[
2n∑
i=1

Bn,iz
i

]
+

n−1∑
k=1

(z ln z)k

2(n−k)∑
j=1

Bn,k,jz
j


+(z ln z)n(Bn,n,1z) (8.2.36)

γ = 3, n ≥ 1.

An(z) =
n+1∑
i=0

An,iz
i +

n∑
i=1

(lni z)

 n∑
j=1

An,i,jz
j

 (8.2.37)

Bn(z) =
n+1∑
i=0

Bn,iz
i +

n∑
i=1

(lni z)

 n∑
j=1

Bn,i,jz
j


Bn,n,n = 0. (8.2.38)
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The solution of the problem under consideration was obtained by a direct
summation of the series (8.2.16)-(8.2.17), using Pade sums and by direct
numerical solution of the system of ODEs (8.2.29)-(8.2.30). The solution of
the expansion of gas sphere (cylinder) into vacuum, with the vacuum front
moving with constant speed, is thus shown to exist by actual construction.

An attempt to prove analytically the convergence of the series (8.2.16)
and (8.2.17) was made by Greenspan and Butler (1962). They argued that,
if the series for φz(z, t) and ψz(z, t), the most highly differentiated terms
evaluated at the most crucial physical positions z = 0, 1 can be shown to
converge, the convergence elsewhere would follow. Indeed, they showed
that the series in t at these locations can be summed up for γ = 5/3 both
for convergent and divergent flows (see Section 8.3). This, in fact, is also
true for z = 1 for all values of γ. Thus, we have

φz(0, t) = − 12t
1 + 3t

, ψz(0, t) = −6
(1 + 2t)
1 + 3t

for γ = 5/3 (8.2.39)

φz(1, t) = 0, ψz(1, t) =
4

γ − 1
t

1− t

1
ln(1− t)

for all γ. (8.2.40)

The series converge at either end of the rarefaction wave and Greenspan
and Butler (1962) surmised that it would therefore converge throughout
the interval 0 ≤ z ≤ 1.

Sachdev, Gupta, and Ahluwalia (1992a) proved the local convergence of
the series in the neighbourhood of z = 0 for the cavity collapse problem (see
Section 8.3); the same argument holds for the expansion front. Our com-
putations clearly bear out the conjecture of Greenspan and Butler (1962)
for the entire flow for all γ: 1 < γ < 5/3 (see Nagesawara Yogi (1995)).

8.3 Collapse of a Spherical or Cylindrical Cav-
ity

The present problem is entirely analogous to the one treated in the previ-
ous section, namely the expansion of gas sphere (cylinder) into surrounding
vacuum; however, it has considerable interest — both physical and mathe-
matical — and merits discussion. Imagine an ideal homogeneous polytropic
gas at rest, surrounding a spherical or cylindrical vacuous space. At time
t = 0, the surface containing the vacuous space is instantaneously removed
and a one-dimensional flow of the medium ensues inward. The flow region is
bounded by the free surface separating the gas from the vacuum (hereafter
called gas-vacuum interface) and a sound front, a characteristic, adjoining
the medium at rest. This characteristic is given by dx/dt = c0, the speed
of sound in the undisturbed gas. The gas-vacuum interface moves, start-
ing initially with a constant speed 2/(γ − 1) corresponding to the planar
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case (see Section 8.2) and continues to do so until it collapses to the center
or axis of asymmetry for 1 < γ < 1 + 2/(1 + ν), as we shall demonstrate
(Sachdev, Gupta, and Ahluwalia (1992a)). Here, ν = 0, 1, 2 for plane, cylin-
drical, and spherical symmetry, respectively (see Equation (8.3.2) below).
The Eulerian equations of motion for an isentropic flow in these geometries
are

ut + uur + βccr = 0 (8.3.1)

ct + ucr + β−1
(
cur +

νuc

r

)
= 0 (8.3.2)

where β = 2/(γ−1), γ = cp/cv, being the ratio of specific heats at constant
pressure and volume, respectively. The spatial variable r and time t have
been rendered nondimensional by reference to the initial cavity radius R0

and R0/c0, respectively. The radial velocity u and the sound speed c have
also been made nondimensional by the undisturbed sound speed c0.

The boundary condition on the leading characteristic separating the
undisturbed gas from the disturbed one is

u = 0 on the curve c = 1. (8.3.3)

The movement of the gas vacuum interface is given by the condition

c = 0. (8.3.4)

This is the second boundary condition and locates the interface.
The gas-vacuum interface, on initiation of the collapse, accelerates in-

stantaneously to move subsequently with a constant speed β. It may ap-
pear that the spherical or cylindrical cavity would accelerate as it converges.
This, however, is not the case. It was shown by Sachdev et al. (1992a) using
a wave-fronts analysis on the back of the interface, that infinite gradients
develop before the collapse only if γ > γ∗, where γ∗ = 1 + 2/(1 + ν). This
is also confirmed by the convergence argument given in Section 8.2. We
therefore construct the global solution of the problem for 1 < γ < γ∗, for
which the flow behind the interface remains free from infinite gradients.

As in Section 8.2, we introduce in (8.3.1)-(8.3.2) the Riemann invariants

φ = u+ βc (8.3.5)
ψ = u− βc (8.3.6)

as the dependent variables, and

z =
1

1 + β
{β + (x− 1)/t} (8.3.7)

and t as the independent variables. We obtain
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{1 + ((1 + β)z − β)t}
[
t
∂φ

∂t
+

1
1 + β

×
{

1
2β

((β + 1)φ+ (β − 1)ψ) + β − (1 + β)z
}
∂φ

∂z

]
+
νt

4β
(φ2 − ψ2) = 0 (8.3.8)

{1 + ((1 + β)z − β)t}
[
t
∂ψ

∂t
+

1
1 + β

×
{

1
2β

((β + 1)ψ + (β − 1)φ) + β − (1 + β)z
}
∂ψ

∂z

]
− νt

4β
(φ2 − ψ2) = 0. (8.3.9)

Here, 0 ≤ z ≤ 1; z = 0 corresponds to gas-vacuum interface starting from
x = 1 and moving with constant speed −β < 0, while z = 1 represents
the sound front. On the latter, the condition (8.3.3), in terms of φ and ψ,
becomes

φ(1, t) = β, ψ(1, t) = −β. (8.3.10)

We seek solution of (8.3.8)-(8.3.9) subject to (8.3.10) in the form

φ(z, t) =
∞∑
i=1

fi(z)ti, ψ(z, t) =
∞∑
i=0

gi(z)ti. (8.3.11)

We restrict ourselves to the interval 0 < t < 1, which covers the time
t = (γ − 1)/2 for a uniformly moving cavity surface to collapse to center
(axis) of symmetry provided 1 < γ < 3. Substituting (8.3.11) into (8.3.8)
and (8.3.9) and equating coefficients of different powers of t to zero, we
arrive at the following system of ODEs for fi, gi:[

β − (1 + β)z +
1
2β
{(1 + β)f0 + (β − 1)g0}

]
df0
dz

= 0 (8.3.12)[
β − (1 + β)z +

1
2β
{(1 + β)g0 + (β − 1)f0}

]
dg0
dz

= 0 (8.3.13)

and

z
dgi
dz

− i(1 + β)
2

gi−
1
4β
Gi = − (1− β)

2

i∑
k=1

{β− (1 + β)z}k−1Ti−k (8.3.14)

(1+i)fi+
(β − 1)
(β + 1)

gi+
1

2β(1 + β)
Fi = −

i∑
k=1

{β−(1+β)z}k−1Ti−k (8.3.15)
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for i = 0 and i ≥ 1, respectively. Here

Ti =
ν

4β

i∑
p=0

(fi−pfp − gi−pgp)

Gi =


0 i = 1
i−1∑
k=1

{(1 + β)gi−k + (β − 1)fi−k}
dgk
dz

, i ≥ 2 (8.3.16)

and

Fi =


0 i = 1
i−1∑
k=1

{(1 + β)fi−k + (β − 1)gi−k}
dfk
dz

, i ≥ 2. (8.3.17)

The boundary conditions on fi and gi become

f0(1) = β, g0(1) = −β (8.3.18)

and
fi(1) = 0, gi(1) = 0, i ≥ 1. (8.3.19)

The solution of zeroth order (nonlinear) system (8.3.12)-(8.3.13) subject to
(8.3.18), namely

f0(z) = β(2z − 1), g0(z) = −β, (8.3.20)

corresponds just to the planar solution of the problem for ν = 0, namely
the escape of a slab of gas into vacuum. The functions gi(z), i ≥ 1 are gov-
erned by a system of inhomogeneous linear, first-order, ordinary differential
equations (8.3.14) and (8.3.15), subject to the homogeneous boundary con-
ditions (8.3.19). If gi, i ≥ 1 is found by solving (8.3.14), fi, i ≥ 1 is found
from the algebraic relation (8.3.15). fi, gi(i ≥ 1) embody the effect of
spherical or cylindrical contraction.

The coefficient functions fi(z) and gi(z) enjoy the same properties as
the functions named An(z) and Bn(z) in the solution of the expansion
problem detailed in Section 8.2. The series (8.3.11) was shown to be locally
convergent near z = 0 by Sachdev et al. (1992a).

The series solution for c was computed for spherical geometry (ν = 2)
for γ = 1.4, 5/3, and for cylindrical geometry (ν = 1) for γ = 1.999.
These values represent distinct structures of the series solution (see Sec-
tion 8.2). Table 8.1 shows the rate of convergence for the series solution
for c for spherical symmetry for the case γ = 1.4 at different times be-
fore the point of focusing as the number of terms increases. It is clear
that the rate of convergence decreases as t tends to (γ − 1)/2, the time
of collapse of the cavity. It may also be observed that the convergence
is slower near the gas-vacuum interface (z = 0). The computations for
γ = 5/3 show that the series for c converges in the closed domain between
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the vacuum front and the characteristic front for the entire time to the
point of collapse, that is, t ≤ 0.3332. For the cylindrical case, the se-
ries solution converges for γ . 2 all the way to the time of collapse. For
γ > 2, the solution series diverges at times earlier than the collapse time,

Table 8.1. Partial sums ci for the series solutions for c as given by (8.3.5),

(8.3.6), and (8.3.11) for γ = 1.4 and ν = 2 at t = 0.149, 0.199.

t = 0.149
z 0.0 0.01 0.021 0.61 0.81 1.0

c0 0.00000 0.01000 0.21000 0.61000 0.81000 1.00000
c2 0.00000 0.01366 0.26142 0.65537 0.83018 1.00000
c2 0.00000 0.01557 0.28105 0.66144 0.83014 1.00000
c3 0.00000 0.01670 0.28968 0.66243 0.83016 1.00000
c4 0.00000 0.01740 0.29373 0.66261 0.83016 1.00000
c5 0.00000 0.01785 0.29570 0.66264 0.83016 1.00000
c6 0.00000 0.01815 0.29669 0.66264 0.83016 1.00000
c7 0.00000 0.01835 0.29719 0.66265 0.83016 1.00000
c8 0.00000 0.01848 0.29745 0.66265 0.83016 1.00000
c9 0.00000 0.01857 0.29758 0.66265 0.83016 1.00000
c10 0.00000 0.01864 0.29765 0.66265 0.83016 1.00000

t = 0.199
z 0.0 0.01 0.21 0.61 0.81 1.0

c0 0.00000 0.01000 0.21000 0.61000 0.81000 1.00000
c2 0.00000 0.01489 0.27867 0.67060 0.83695 1.00000
c2 0.00000 0.01830 0.31370 0.68143 0.83688 1.00000
c3 0.00000 0.02098 0.33425 0.68379 0.83692 1.00000
c4 0.00000 0.02321 0.34713 0.68434 0.83693 1.00000
c5 0.00000 0.02512 0.35552 0.68447 0.83693 1.00000
c6 0.00000 0.02681 0.36112 0.68450 0.83693 1.00000
c7 0.00000 0.02832 0.36492 0.68451 0.83693 1.00000
c8 0.00000 0.02969 0.36753 0.68451 0.83693 1.00000
c9 0.00000 0.03094 0.36934 0.68452 0.83693 1.00000
c10 0.00000 0.03210 0.37061 0.68452 0.83693 1.00000

the greater the value of γ, the earlier the divergence. The series structure
for the solution of the system (8.3.14)-(8.3.15) for γ = 2 is extremely com-
plicated, involving as it does powers of z, zα, and zα ln z, α > 1. This case
was not computed. Instead, the solution was found for γ = 1.999, for which
we have a double series in z and zα−1.

Now we compare the results of the global solution thus found with
the numerical solution of the problem by Thomas, Pais, Gratton, and
Diez (1986), and the asymptotic self-similar solution of Sachdev et al.
(1992a), which holds close to the time of cavity collapse. The series so-
lution for a uniformly moving spherical or cylindrical cavity exists for
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0 < γ < 1 + 2/(1 + ν) up to the time of collapse. This is in agreement
with the numerical results of Thomas et al. (1986) for a spherical cavity
for γ < γp where 3/2 < γp . 5/3. For γ > γp, the numerical results show
that the spherical cavity moves initially with a constant velocity equal to
−2/(γ−1), but then it begins to accelerate as the center is approached. The
solution in the limiting situation assumes a self-similar form, as discussed
by Lazarus (1981). Lazarus (1982) also carried out the stability analysis
of the self-similar solutions for uniformly moving cavity surfaces. He con-
cluded that these solutions are unstable for γ < 1 + 2/(1 + ν), confirming
that the self-similar solution for the uniformly moving cavity does not form
intermediate asymptotics.

8.4 Converging Shock Wave from a Spherical
or Cylindrical Piston

In Section 8.3 we considered the global solution of the problem describing
spherical or cylindrical cavity collapse; we also summarised the results with
respect to the self-similar solutions of this problem, which were shown to
be unstable for most ranges of γ. A related problem is that of converging
shock waves, which also possesses a similarity solution. Indeed, self-similar
solutions of both these problems belong to the class called the “second
kind” (see Zel’dovich and Raizer (1967)) for which dimensional analysis or
group properties of the PDEs do not fully determine the self-similar form
of the problem; they require a global solution of an eigenvalue problem
for the reduced system of ODEs. Typically, for this class of problems the
exponent in the definition of the similarity variable turns out, in general,
to be an irrational number. For the converging shock problem, which was
first studied by Guderley (1942), this exponent α in the similarity variable
ξ = rt−α was found to be 0.717 for the spherical converging shock for γ(=
cp/cv) = 1.4. This value was later refined by several other investigators.

Indeed, the cavity collapse and the converging shock phenomena have
some interesting physical closeness (Greenspan and Butler (1962)). The
gas-vacuum interface is related, in a sense, to an infinitely strong shock.
Imagine one gas escaping into another gas at rest; the resultant flow may
be divided into three regions, including a shock proceeding into the rest
gas and a stationary rarefaction wave into the escaping gas. If, now, the
density of the rest gas tends to zero, the entire shock regime, including
the stationary wave, becomes meaningless inasmuch as the density also
vanishes in this domain. The shock, however, becomes infinitely strong,
i.e., the density ratio approaches (γ + 1)/(γ − 1), even though the density
itself is zero. The gas-vacuum front, in short, behaves in certain respects
like an infinitely strong shock. These ideas are illustrated by Greenspan
and Butler (1962) by considering the reflection of a vacuum front off a wall;
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the front does indeed reflect as an infinitely strong shock.
As in Sections 8.2 and 8.3, we are not concerned with local behaviour

of the solution in the close vicinity of the point (axis) of convergence of the
shock. Instead, we describe a global problem arising out of the motion of
a spherical or cylindrical piston that collapses with uniform inward speed
(Van Dyke and Guttmann (1982)). As for the motions of expanding and
contracting vacuum fronts, the base flow here is also assumed to be pro-
duced by impulsive motion of a plane piston. This piston motion is assumed
to be so strong that the shock generated is of infinite strength. Even though
this motion seems rather contrived, it can be shown that several other sim-
ilar piston motions asymptotically lead to Guderley’s self-similar solution
near the center (axis).

Consider a spherical or cylindrical container of initial radius, R0, con-
taining a perfect gas at rest with uniform density ρ0 and adiabatic constant
γ. At time t = 0, the container suddenly contracts with a very large veloc-
ity V , emitting ahead of it a shock wave of radius R(t), whose trajectory
must be found as part of the solution.

The equation governing this flow in different geometries are

ρt + (ρv)r + j
ρv

r
= 0 (8.4.1)

vt + vvr +
1
ρ
pr = 0 (8.4.2)

(pρ−γ)t + v(pρ−γ)r = 0 (8.4.3)

where ρ, p, and v are density, pressure, and particle velocity at any point
r and time t; j = 0, 1, 2 for planar, cylindrical, and spherical symmetry,
respectively. The Rankine-Hugoniot relations connecting the states ahead
of and behind an infinitely strong shock are

v =
2

γ + 1
Ṙ (8.4.4)

ρ =
γ + 1
γ − 1

ρ0 (8.4.5)

p =
2

γ + 1
ρ0Ṙ

2 (8.4.6)

where Ṙ is the velocity of the shock.
The boundary condition at the piston generating the shock is

v = −V at r = R0 − V t (8.4.7)

where R0 is the initial position of the piston. It is convenient to introduce
the coordinate x = R0 − r, measuring the distance (inward) from the ini-
tial position of the piston. The particle velocity v then becomes −u, say.
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Figure 8.1. History of converging shock wave in (x, t) plane for

spherical piston with γ = 7/5. ᵀT ᵀT ᵀ, path of piston; ....., 1-term

planar approximation to shock wave; - - - - - , 3-term approxima-

tion (8.4.23); , full solution.

The flow in the (x, t) plane is shown in Figure 8.1 for a short initial time;
when the effect of geometry is insignificant, the flow between the uniformly
moving strong shock with velocity (γ + 1)V/2 and the (uniformly) moving
piston is simply u = V , the density ρ = [(γ+1)/(γ−1)]ρ0, and the pressure

p =
1
2
(γ + 1)ρ0V

2, in accordance with (8.4.4)-(8.4.6).

With this short-time plane flow in view, it is convenient to introduce
the “similarity” variable

ξ =
2

γ − 1

( x

V t
− 1
)

(8.4.8)

and time as new independent variables so that, for this basic flow, the
position of the piston is given simply by ξ = 0, and that of the shock by
ξ = 1. (cf. the transformation (8.3.7)). The initial radius of the position
R0, its velocity V , time R0/V , initial density ρ0, and the pressure ρ0V

2 may
be used to render all the variables dimensionless. The governing system of
PDEs (8.4.1)-(8.4.3) and BC (8.4.4)-(8.4.7) may be rewritten in terms of
the variables ξ and t as follows:[

1−
(

1 +
1
2
(γ − 1)ξ

)
t

]{
ρuξ +

(
u− 1− 1

2
(γ − 1)ξ

)
ρξ +

1
2
(γ − 1)tρt

}
=

1
2
(γ − 1)jtρu (8.4.9)

ρ

(
u− 1− 1

2
(γ − 1)ξ

)
uξ +

1
2
(γ − 1)tρut + pξ = 0 (8.4.10)(

u− 1− 1
2
(γ − 1)ξ

)
(ρpξ − γpρξ) +

1
2
(γ − 1)t(ρpt − γpρt) = 0 (8.4.11)
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u =
2

γ + 1
Ẋ, ρ =

γ + 1
γ − 1

, p =
2

γ + 1
Ẋ2 at ξ =

2
γ − 1

[
X(t)
t

− 1
]

(8.4.12)

and
u = 1 at ξ = 0 (8.4.13)

where x = X(t) is the locus of the shock for the nonplanar flow. We may
quite reasonably assume that the shock trajectory X(t) is analytic in time
so that

X(t) =
∞∑
n=1

Xnt
n. (8.4.14)

The other flow variables are expanded as

u =
∞∑
n=1

Un(ξ)tn−1, ρ =
∞∑
n=1

Rn(ξ)tn−1, p =
∞∑
n=1

Pn(ξ)tn−1. (8.4.15)

Here, we take the basic flow U1, R1, and P1 to be that given by the planar
solution mentioned earlier, which in nondimensional form is

U1 = 1, R1 =
γ + 1
γ − 1

, P1 =
1
2
(γ + 1), X1 =

1
2
(γ + 1). (8.4.16)

Substituting (8.4.15) into (8.4.9)-(8.4.11) and equating coefficients of dif-
ferent powers of t to zero, we get a sequence of triads of first-order, linear
ordinary differential equations for Un, Rn, and Pn. The equations for U2,
R2, and P2, for example, are

γ + 1
γ − 1

U ′2 −
1
2
(γ − 1)ξR′2 +

1
2
(γ − 1)R2 =

1
2
(γ + 1)j (8.4.17)

−ξU ′2 + U2 +
2

γ + 1
P ′2 = 0 (8.4.18)

ξ

(
P ′2 −

1
2
γ(γ − 1)R′2

)
−
(
P2 −

1
2
γ(γ − 1)R2

)
= 0. (8.4.19)

The boundary condition (8.4.13) on the piston gives Un(0) = 0 for all n > 1.
The BCs at the shock must be found by substituting (8.4.14) and (8.4.15)
in (8.4.12) and then putting ξ = 1. For the second-order terms we get

U2(1) =
4

γ + 1
X2, R2(1) = 0, P2(1) = 4X2. (8.4.20)

The form of this problem suggests that U2, R2, and P2 are linear in ξ. On
using the BCs (8.4.20), the solution of (8.4.17)-(8.4.19) comes out to be

U2 =
γ(γ − 1)
2(2γ − 1)

jξ, R2 =
γ + 1
2γ − 1

j(1− ξ)

(8.4.21)

P2 =
γ(γ + 1)(γ − 1)

2(2γ − 1)
j, X2 =

γ(γ + 1)(γ − 1)
8(2γ − 1)

j.
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Indeed, for this problem the higher order coefficients Un, Rn, and Pn are
simply polynomials in ξ of degree n− 1:

Un(ξ) =
n∑
k=2

Unkξ
k−1, Rn(ξ) =

n∑
k=1

Rnkξ
k−1,

(8.4.22)

Pn(ξ) =
n∑
k=1

Pnkξ
k−1.

We substitute (8.4.22) into the corresponding ODE, for Un(ξ), Rn(ξ),
and Pn(ξ), and expand the shock conditions (8.4.12) about ξ = 1, using
(8.4.14). We then equate like powers of ξ as well as of t, and obtain for
each approximation a system of 3n inhomogeneous algebraic equations for
Unk, Rnk, Pnk, and Xn, with right-hand sides depending on the previous
approximations.

Solving these equations in the third order, we get the position of the
shock as

X(t) =
1
2
(γ + 1)t+

γ(γ + 1)(γ − 1)
8(2γ − 1)

jt2 +
(γ + 1)(γ − 1)

48(7γ − 5)

×
[
(γ + 1)(3γ + 1)j +

γ(13γ3 − 21γ2 + 13γ − 1)
(2γ − 1)2

j2
]
t3 + · · ·

(8.4.23)

This result for γ = 7/5 for a spherical shock is shown in Figure 8.1 The
results obtained from (8.4.23) were also compared with the numerical eval-
uation of Lee (1968) to this order. The second and third coefficients in
(8.4.23) agree with his to three significant places.

Van Dyke and Guttmann (1982) wrote a computer programme to gen-
erate the general term in (8.4.23). Table 8.2 gives 40 coefficients in the
series for shock trajectory, obtained in the manner described earlier for
three terms, for spherical symmetry for γ = 7/5, 5/3, 3 and for cylindrical
symmetry for γ = 7/5. Since all the coefficients in the series are positive,
the singularity (if one arises) on the shock trajectory must lie on the pos-
itive t-axis. It is also observed that the coefficients in this series increase
steadily in magnitude, implying that the radius of convergence must be less
than unity. This is sensible since the piston itself would reach the axis with
unit velocity at t = 1. It is also found that the coefficients grow faster for
the spherical case than for the cylindrical case, indicating that the focusing
is more intense for the former.

For estimating the radius of convergence of the series (8.4.14), Van Dyke
and Guttmann (1982) used the Domb and Sykes (1957) approach. If the
series in the neighbourhood of the nearest singularity (assuming there is a
finite one) has the form
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Table 8.2. Coefficients Xn in series (8.4.14) for shock waves.

Spherical, Spherical, Spherical, Cylindrical,
n γ = 7/5 γ = 5/2 γ = 3 γ = 7/5

1 1.200000000000 1.333333333333 2.00000000000 1.2000000000000
2 0.186666666667 0.317460317460 1.20000000000 0.0933333333333
3 0.188345679012 0.330964978584 1.83333333333 0.0730864197531
4 0.172851981806 0.351087328915 3.40035087719 0.0577257959714
5 0.172147226896 0.428702976041 7.24262900585 0.0497185254748
6 0.195748089820 0.581262688522 16.7325356185 0.0473867537972
7 0.239592510180 0.833416073327 40.8212062145 0.0487020337051
8 0.303219524757 1.24182040572 103.538798073 0.0525457596193
9 0.394337922617 1.90667020627 270.351164204 0.0586078973893
10 0.525663995528 2.99573095341 721.973134446 0.0670385267585
11 0.714271423746 4.79335492559 1962.93555769 0.0782473038694
12 0.985060389731 7.78505460535 5415.71134591 0.0928536362648
13 1.37561449412 12.8028036868 15125.3041521 0.111712634840
14 1.94193338406 21.2785506061 42681.0787588 0.135973603154
15 2.76700088699 35.6880234991 121509.247882 0.167161791445
16 3.97437632751 60.3290517468 348589.799633 0.207289223128
17 5.74887230925 102.690500277 1006783.95686 0.259004706586
18 8.36757126135 175.866803349 2925043.77126 0.325795437783
19 12.2467590407 302.827404305 8543150.61409 0.412256433109
20 18.0133655273 523.983733067 25069946.9513 0.524449933038
21 26.6137638895 910.630204719 73881275.4824 0.670384889712
22 39.4795522908 1588.86850668 218567708.399 0.860657162621
23 58.7805913213 2782.27435391 648869068.945 1.10930506416
24 87.8118838110 4888.12883923 1932484742.18 1.43495376450
25 131.585889835 8613.85327622 5772286224.84 1.86234753012
26 197.740487538 15221.5900368 17288250591.8 2.42440315613
27 297.932522944 26967.3254176 51908194965.1 3.16496440419
28 449.979223858 47890.4406560 156214990411 4.14250004943
29 681.152558004 85235.2928220 471129305758 5.43507307638
30 1033.25274612 152014.101220 1.42371888519 12 7.14702352524
31 1570.42985951 271633.152889 4.31039960943 12 9.41796318002
32 2391.25395142 486253.291668 1.30727810033 13 12.4348912563
33 3647.35908070 871915.946437 3.97126124722 13 16.4485262673
34 5572.26775610 1565938.77695 1.20824798683 14 21.7953372274
35 8525.99348990 2816584.06448 3.68138936143 14 28.9272839088
36 13064.1157676 5073195.16260 1.12320678078 15 38.4519908447
37 20044.8405790 9149924.83352 3.43136709434 15 51.1870510605
38 30795.0631275 16523403.6091 1.04955212172 16 68.2334756229
39 47368.1399675 29874379.4238 3.21397456855 16 91.0751000913
40 72944.3025390 54074091.6579 9.85273540521 16 121.713200768
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X(t) =
∞∑
n=1

Xnt
n ∼ A1

(
1− t

tc

)α1

as t→ tc, (8.4.24)

then
Xn

Xn−1
∼ 1
tc

(
1− 1 + α1

n

)
as n→∞. (8.4.25)

Figure 8.2 shows 1/n versusXn/Xn−1 for the spherical converging shock for
γ = 7/5. A linear fit with the exponent α1 = 0.717, as given by Guderley,
yields 1/tc = 1.61 or tc = 0.62 to graphical accuracy. A more accurate fit
by a polynomial in 1/n gave a value of 1/tc as 1.609021, which agrees with
Guderley’s result to three significant figures.

Figure 8.2. Graphical ratio test of Domb and Sykes for the series

(8.4.14) for position of shock wave. , 1.61 (1–1.717/n).

To verify that the nearest singularity for the above case does not occur
before collapse, the series (8.4.14) was solved for t0 such that X(t0) = 1.
For γ = 1.4, this value was found to be 0.62149604. Similar figures were
obtained for spherical symmetry for γ = 5/3 and 3, and for cylindrical
symmetry for γ = 1.4.

A series equivalent of (14) in the form

R(τ) =
∞∑
i=1

Ai
1 + αiτ

, τ = ln
(

1− t

tc

)−1

(8.4.26)

was also constructed using a Padé approximation. For γ = 7/5, the values of
A1 and α1 for the spherical converging shock were found to be 0.71717450
and 0.981706, respectively. The value of α1 thus calculated is in excel-
lent agreement with that obtained from the precise numerical solution of
the governing PDEs and boundary conditions by Lazarus and Richtmyer
(1977). Indeed, it was found that the three-term series (8.4.23) for the shock
trajectory gives an excellent description of the trajectory of the converging
shock in its entire course, the error never exceeding 0.5%.
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Regarding the intermediate asymptotic character of the Guderley’s sim-
ilarity solution, there are conflicting views in Russian and Western litera-
ture (see Van Dyke and Guttmann (1982) for a discussion). To the author’s
knowledge, this matter has not yet been fully resolved.

For other investigations related to this problem, which are partly an-
alytic, reference may be made to Lee (1968) and Nakamura (1983). The
latter work is close to that of Van Dyke and Guttmann (1982); however,
here the piston velocity was assumed to be quadratic in time. The first
three-term solution (similar to that of Van Dyke and Guttmann (1982))
was used to determine the starting conditions for the numerical solution.
The numerical method was based on characteristics and the transition of
the nonself-similar motion of the shock to its self-similar asymptotic regime
was analysed.

We conclude this section with a summary of the work of Kozmanov
(1977), which assumes a general piston motion

x(t) = ξ1t+ ξ2t
2 + · · · + ξnt

n, ξ1 > 1, (8.4.27)

but does not quite carry the work to its completion. The shock trajectory
was written out as

x = c1t+ c2t
2 + · · · + cnt

n (8.4.28)

where ci are constants. The flow between the piston and the shock was
to be found, leading in the process to the determination of the unknown
constants ci in (8.4.28). The series form of the solution was assumed as

u =
∞∑
k=0

uk(t)φk(x, t), ρ =
∞∑
k=0

ρk(t)φk(x, t)
(8.4.29)

S =
∞∑
k=0

Sk(t)φk(x, t)

where
φ(x, t) = x− c1t− c2t

2 − . . .− cnt
n. (8.4.30)

φ(x, t) is similar to the variable ξ in the analysis of Van Dyke and Guttmann
(1982): φ(x, t) = 0 is the shock trajectory. Kozmanov (1977) considered
plane, cylindrical, and spherical geometries. Explicit results were found for
the case for which x(t) in (8.4.27) is a quadratic and the geometry is planar.
For ξ1 = 10 and ξ2 = 5, the shock trajectory was found to be X = 15.132t
+4.241t2. A comparison with the numerical solution of the problem showed
a discrepancy in the shock trajectory to be less than 0.1% for t < 0.3.
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